gt
stringclasses
1 value
context
stringlengths
2.49k
119k
from __future__ import absolute_import, unicode_literals import pytest import select import ssl import socket import sys import time import uuid from collections import OrderedDict try: from collections.abc import Callable except ImportError: from collections import Callable from itertools import count from case import Mock, call, patch, skip from kombu.five import Empty, range, monotonic from kombu.transport.qpid import (AuthenticationFailure, Channel, Connection, ConnectionError, Message, NotFound, QoS, Transport) from kombu.transport.virtual import Base64 QPID_MODULE = 'kombu.transport.qpid' @pytest.fixture def disable_runtime_dependency_check(patching): mock_dependency_is_none = patching(QPID_MODULE + '.dependency_is_none') mock_dependency_is_none.return_value = False return mock_dependency_is_none class QpidException(Exception): """ An object used to mock Exceptions provided by qpid.messaging.exceptions """ def __init__(self, code=None, text=None): super(Exception, self).__init__(self) self.code = code self.text = text class BreakOutException(Exception): pass @skip.if_python3() @skip.if_pypy() class test_QoS__init__(object): def setup(self): self.mock_session = Mock() self.qos = QoS(self.mock_session) def test__init__prefetch_default_set_correct_without_prefetch_value(self): assert self.qos.prefetch_count == 1 def test__init__prefetch_is_hard_set_to_one(self): qos_limit_two = QoS(self.mock_session) assert qos_limit_two.prefetch_count == 1 def test__init___not_yet_acked_is_initialized(self): assert isinstance(self.qos._not_yet_acked, OrderedDict) @skip.if_python3() @skip.if_pypy() class test_QoS_can_consume(object): def setup(self): session = Mock() self.qos = QoS(session) def test_True_when_prefetch_limit_is_zero(self): self.qos.prefetch_count = 0 self.qos._not_yet_acked = [] assert self.qos.can_consume() def test_True_when_len_of__not_yet_acked_is_lt_prefetch_count(self): self.qos.prefetch_count = 3 self.qos._not_yet_acked = ['a', 'b'] assert self.qos.can_consume() def test_False_when_len_of__not_yet_acked_is_eq_prefetch_count(self): self.qos.prefetch_count = 3 self.qos._not_yet_acked = ['a', 'b', 'c'] assert not self.qos.can_consume() @skip.if_python3() @skip.if_pypy() class test_QoS_can_consume_max_estimate(object): def setup(self): self.mock_session = Mock() self.qos = QoS(self.mock_session) def test_return_one_when_prefetch_count_eq_zero(self): self.qos.prefetch_count = 0 assert self.qos.can_consume_max_estimate() == 1 def test_return_prefetch_count_sub_len__not_yet_acked(self): self.qos._not_yet_acked = ['a', 'b'] self.qos.prefetch_count = 4 assert self.qos.can_consume_max_estimate() == 2 @skip.if_python3() @skip.if_pypy() class test_QoS_ack(object): def setup(self): self.mock_session = Mock() self.qos = QoS(self.mock_session) def test_ack_pops__not_yet_acked(self): message = Mock() self.qos.append(message, 1) assert 1 in self.qos._not_yet_acked self.qos.ack(1) assert 1 not in self.qos._not_yet_acked def test_ack_calls_session_acknowledge_with_message(self): message = Mock() self.qos.append(message, 1) self.qos.ack(1) self.qos.session.acknowledge.assert_called_with(message=message) @skip.if_python3() @skip.if_pypy() class test_QoS_reject(object): @pytest.fixture(autouse=True) def setup_qpid(self, patching): self.mock_qpid = patching(QPID_MODULE + '.qpid') self.mock_Disposition = self.mock_qpid.messaging.Disposition self.mock_RELEASED = self.mock_qpid.messaging.RELEASED self.mock_REJECTED = self.mock_qpid.messaging.REJECTED def setup(self): self.mock_session = Mock() self.mock_message = Mock() self.qos = QoS(self.mock_session) def test_reject_pops__not_yet_acked(self): self.qos.append(self.mock_message, 1) assert 1 in self.qos._not_yet_acked self.qos.reject(1) assert 1 not in self.qos._not_yet_acked def test_reject_requeue_true(self): self.qos.append(self.mock_message, 1) self.qos.reject(1, requeue=True) self.mock_Disposition.assert_called_with(self.mock_RELEASED) self.qos.session.acknowledge.assert_called_with( message=self.mock_message, disposition=self.mock_Disposition.return_value, ) def test_reject_requeue_false(self): message = Mock() self.qos.append(message, 1) self.qos.reject(1, requeue=False) self.mock_Disposition.assert_called_with(self.mock_REJECTED) self.qos.session.acknowledge.assert_called_with( message=message, disposition=self.mock_Disposition.return_value, ) @skip.if_python3() @skip.if_pypy() class test_QoS(object): def mock_message_factory(self): """Create and return a mock message tag and delivery_tag.""" m_delivery_tag = self.delivery_tag_generator.next() m = 'message %s' % (m_delivery_tag, ) return m, m_delivery_tag def add_n_messages_to_qos(self, n, qos): """Add N mock messages into the passed in qos object""" for i in range(n): self.add_message_to_qos(qos) def add_message_to_qos(self, qos): """Add a single mock message into the passed in qos object. Uses the mock_message_factory() to create the message and delivery_tag. """ m, m_delivery_tag = self.mock_message_factory() qos.append(m, m_delivery_tag) def setup(self): self.mock_session = Mock() self.qos_no_limit = QoS(self.mock_session) self.qos_limit_2 = QoS(self.mock_session, prefetch_count=2) self.delivery_tag_generator = count(1) def test_append(self): """Append two messages and check inside the QoS object that they were put into the internal data structures correctly """ qos = self.qos_no_limit m1, m1_tag = self.mock_message_factory() m2, m2_tag = self.mock_message_factory() qos.append(m1, m1_tag) length_not_yet_acked = len(qos._not_yet_acked) assert length_not_yet_acked == 1 checked_message1 = qos._not_yet_acked[m1_tag] assert m1 is checked_message1 qos.append(m2, m2_tag) length_not_yet_acked = len(qos._not_yet_acked) assert length_not_yet_acked == 2 checked_message2 = qos._not_yet_acked[m2_tag] assert m2 is checked_message2 def test_get(self): """Append two messages, and use get to receive them""" qos = self.qos_no_limit m1, m1_tag = self.mock_message_factory() m2, m2_tag = self.mock_message_factory() qos.append(m1, m1_tag) qos.append(m2, m2_tag) message1 = qos.get(m1_tag) message2 = qos.get(m2_tag) assert m1 is message1 assert m2 is message2 @skip.if_python3() @skip.if_pypy() class ConnectionTestBase(object): @patch(QPID_MODULE + '.qpid') def setup(self, mock_qpid): self.connection_options = { 'host': 'localhost', 'port': 5672, 'transport': 'tcp', 'timeout': 10, 'sasl_mechanisms': 'ANONYMOUS', } self.mock_qpid_connection = mock_qpid.messaging.Connection self.conn = Connection(**self.connection_options) @skip.if_python3() @skip.if_pypy() class test_Connection__init__(ConnectionTestBase): def test_stores_connection_options(self): # ensure that only one mech was passed into connection. The other # options should all be passed through as-is modified_conn_opts = self.connection_options assert modified_conn_opts == self.conn.connection_options def test_class_variables(self): assert isinstance(self.conn.channels, list) assert isinstance(self.conn._callbacks, dict) def test_establishes_connection(self): modified_conn_opts = self.connection_options self.mock_qpid_connection.establish.assert_called_with( **modified_conn_opts ) def test_saves_established_connection(self): created_conn = self.mock_qpid_connection.establish.return_value assert self.conn._qpid_conn is created_conn @patch(QPID_MODULE + '.ConnectionError', new=(QpidException, )) @patch(QPID_MODULE + '.sys.exc_info') @patch(QPID_MODULE + '.qpid') def test_mutates_ConnError_by_message(self, mock_qpid, mock_exc_info): text = 'connection-forced: Authentication failed(320)' my_conn_error = QpidException(text=text) mock_qpid.messaging.Connection.establish.side_effect = my_conn_error mock_exc_info.return_value = 'a', 'b', None try: self.conn = Connection(**self.connection_options) except AuthenticationFailure as error: exc_info = sys.exc_info() assert not isinstance(error, QpidException) assert exc_info[1] == 'b' assert exc_info[2] is None else: self.fail('ConnectionError type was not mutated correctly') @patch(QPID_MODULE + '.ConnectionError', new=(QpidException, )) @patch(QPID_MODULE + '.sys.exc_info') @patch(QPID_MODULE + '.qpid') def test_mutates_ConnError_by_code(self, mock_qpid, mock_exc_info): my_conn_error = QpidException(code=320, text='someothertext') mock_qpid.messaging.Connection.establish.side_effect = my_conn_error mock_exc_info.return_value = 'a', 'b', None try: self.conn = Connection(**self.connection_options) except AuthenticationFailure as error: exc_info = sys.exc_info() assert not isinstance(error, QpidException) assert exc_info[1] == 'b' assert exc_info[2] is None else: self.fail('ConnectionError type was not mutated correctly') @patch(QPID_MODULE + '.ConnectionError', new=(QpidException, )) @patch(QPID_MODULE + '.sys.exc_info') @patch(QPID_MODULE + '.qpid') def test_connection__init__mutates_ConnError_by_message2(self, mock_qpid, mock_exc_info): """ Test for PLAIN connection via python-saslwrapper, sans cyrus-sasl-plain This test is specific for what is returned when we attempt to connect with PLAIN mech and python-saslwrapper is installed, but cyrus-sasl-plain is not installed. """ my_conn_error = QpidException() my_conn_error.text = 'Error in sasl_client_start (-4) SASL(-4): no '\ 'mechanism available' mock_qpid.messaging.Connection.establish.side_effect = my_conn_error mock_exc_info.return_value = ('a', 'b', None) try: self.conn = Connection(**self.connection_options) except AuthenticationFailure as error: exc_info = sys.exc_info() assert not isinstance(error, QpidException) assert exc_info[1] == 'b' assert exc_info[2] is None else: self.fail('ConnectionError type was not mutated correctly') @patch(QPID_MODULE + '.ConnectionError', new=(QpidException, )) @patch(QPID_MODULE + '.sys.exc_info') @patch(QPID_MODULE + '.qpid') def test_unknown_connection_error(self, mock_qpid, mock_exc_info): # If we get a connection error that we don't understand, # bubble it up as-is my_conn_error = QpidException(code=999, text='someothertext') mock_qpid.messaging.Connection.establish.side_effect = my_conn_error mock_exc_info.return_value = 'a', 'b', None try: self.conn = Connection(**self.connection_options) except Exception as error: assert error.code == 999 else: self.fail('Connection should have thrown an exception') @patch.object(Transport, 'channel_errors', new=(QpidException, )) @patch(QPID_MODULE + '.qpid') @patch(QPID_MODULE + '.ConnectionError', new=IOError) def test_non_qpid_error_raises(self, mock_qpid): mock_Qpid_Connection = mock_qpid.messaging.Connection my_conn_error = SyntaxError() my_conn_error.text = 'some non auth related error message' mock_Qpid_Connection.establish.side_effect = my_conn_error with pytest.raises(SyntaxError): Connection(**self.connection_options) @patch(QPID_MODULE + '.qpid') @patch(QPID_MODULE + '.ConnectionError', new=IOError) def test_non_auth_conn_error_raises(self, mock_qpid): mock_Qpid_Connection = mock_qpid.messaging.Connection my_conn_error = IOError() my_conn_error.text = 'some non auth related error message' mock_Qpid_Connection.establish.side_effect = my_conn_error with pytest.raises(IOError): Connection(**self.connection_options) @skip.if_python3() @skip.if_pypy() class test_Connection_class_attributes(ConnectionTestBase): def test_connection_verify_class_attributes(self): assert Channel == Connection.Channel @skip.if_python3() @skip.if_pypy() class test_Connection_get_Qpid_connection(ConnectionTestBase): def test_connection_get_qpid_connection(self): self.conn._qpid_conn = Mock() returned_connection = self.conn.get_qpid_connection() assert self.conn._qpid_conn is returned_connection @skip.if_python3() @skip.if_pypy() class test_Connection_close(ConnectionTestBase): def test_connection_close(self): self.conn._qpid_conn = Mock() self.conn.close() self.conn._qpid_conn.close.assert_called_once_with() @skip.if_python3() @skip.if_pypy() class test_Connection_close_channel(ConnectionTestBase): def setup(self): super(test_Connection_close_channel, self).setup() self.conn.channels = Mock() def test_connection_close_channel_removes_channel_from_channel_list(self): mock_channel = Mock() self.conn.close_channel(mock_channel) self.conn.channels.remove.assert_called_once_with(mock_channel) def test_connection_close_channel_handles_ValueError_being_raised(self): self.conn.channels.remove = Mock(side_effect=ValueError()) self.conn.close_channel(Mock()) def test_connection_close_channel_set_channel_connection_to_None(self): mock_channel = Mock() mock_channel.connection = False self.conn.channels.remove = Mock(side_effect=ValueError()) self.conn.close_channel(mock_channel) assert mock_channel.connection is None @skip.if_python3() @skip.if_pypy() class ChannelTestBase(object): @pytest.fixture(autouse=True) def setup_channel(self, patching): self.mock_qpidtoollibs = patching(QPID_MODULE + '.qpidtoollibs') self.mock_broker_agent = self.mock_qpidtoollibs.BrokerAgent self.conn = Mock() self.transport = Mock() self.channel = Channel(self.conn, self.transport) @skip.if_python3() @skip.if_pypy() class test_Channel_purge(ChannelTestBase): def setup(self): self.mock_queue = Mock() def test_gets_queue(self): self.channel._purge(self.mock_queue) getQueue = self.mock_broker_agent.return_value.getQueue getQueue.assert_called_once_with(self.mock_queue) def test_does_not_call_purge_if_message_count_is_zero(self): values = {'msgDepth': 0} queue_obj = self.mock_broker_agent.return_value.getQueue.return_value queue_obj.values = values self.channel._purge(self.mock_queue) assert not queue_obj.purge.called def test_purges_all_messages_from_queue(self): values = {'msgDepth': 5} queue_obj = self.mock_broker_agent.return_value.getQueue.return_value queue_obj.values = values self.channel._purge(self.mock_queue) queue_obj.purge.assert_called_with(5) def test_returns_message_count(self): values = {'msgDepth': 5} queue_obj = self.mock_broker_agent.return_value.getQueue.return_value queue_obj.values = values result = self.channel._purge(self.mock_queue) assert result == 5 @patch(QPID_MODULE + '.NotFound', new=QpidException) def test_raises_channel_error_if_queue_does_not_exist(self): self.mock_broker_agent.return_value.getQueue.return_value = None with pytest.raises(QpidException): self.channel._purge(self.mock_queue) @skip.if_python3() @skip.if_pypy() class test_Channel_put(ChannelTestBase): @patch(QPID_MODULE + '.qpid') def test_channel__put_onto_queue(self, mock_qpid): routing_key = 'routingkey' mock_message = Mock() mock_Message_cls = mock_qpid.messaging.Message self.channel._put(routing_key, mock_message) address_str = '{0}; {{assert: always, node: {{type: queue}}}}'.format( routing_key, ) self.transport.session.sender.assert_called_with(address_str) mock_Message_cls.assert_called_with( content=mock_message, subject=None, durable=True ) mock_sender = self.transport.session.sender.return_value mock_sender.send.assert_called_with( mock_Message_cls.return_value, sync=True, ) mock_sender.close.assert_called_with() @patch(QPID_MODULE + '.qpid') def test_channel__put_onto_exchange(self, mock_qpid): mock_routing_key = 'routingkey' mock_exchange_name = 'myexchange' mock_message = Mock() mock_Message_cls = mock_qpid.messaging.Message self.channel._put(mock_routing_key, mock_message, mock_exchange_name) addrstr = '{0}/{1}; {{assert: always, node: {{type: topic}}}}'.format( mock_exchange_name, mock_routing_key, ) self.transport.session.sender.assert_called_with(addrstr) mock_Message_cls.assert_called_with( content=mock_message, subject=mock_routing_key, durable=True ) mock_sender = self.transport.session.sender.return_value mock_sender.send.assert_called_with( mock_Message_cls.return_value, sync=True, ) mock_sender.close.assert_called_with() @skip.if_python3() @skip.if_pypy() class test_Channel_get(ChannelTestBase): def test_channel__get(self): mock_queue = Mock() result = self.channel._get(mock_queue) self.transport.session.receiver.assert_called_once_with(mock_queue) mock_rx = self.transport.session.receiver.return_value mock_rx.fetch.assert_called_once_with(timeout=0) mock_rx.close.assert_called_once_with() assert mock_rx.fetch.return_value is result @skip.if_python3() @skip.if_pypy() class test_Channel_close(ChannelTestBase): @pytest.fixture(autouse=True) def setup_basic_cancel(self, patching, setup_channel): self.mock_basic_cancel = patching.object(self.channel, 'basic_cancel') self.channel.closed = False @pytest.fixture(autouse=True) def setup_receivers(self, setup_channel): self.mock_receiver1 = Mock() self.mock_receiver2 = Mock() self.channel._receivers = { 1: self.mock_receiver1, 2: self.mock_receiver2, } def test_channel_close_sets_close_attribute(self): self.channel.close() assert self.channel.closed def test_channel_close_calls_basic_cancel_on_all_receivers(self): self.channel.close() self.mock_basic_cancel.assert_has_calls([call(1), call(2)]) def test_channel_close_calls_close_channel_on_connection(self): self.channel.close() self.conn.close_channel.assert_called_once_with(self.channel) def test_channel_close_calls_close_on_broker_agent(self): self.channel.close() self.channel._broker.close.assert_called_once_with() def test_channel_close_does_nothing_if_already_closed(self): self.channel.closed = True self.channel.close() self.mock_basic_cancel.assert_not_called() def test_channel_close_does_not_call_close_channel_if_conn_is_None(self): self.channel.connection = None self.channel.close() self.conn.close_channel.assert_not_called() @skip.if_python3() @skip.if_pypy() class test_Channel_basic_qos(ChannelTestBase): def test_channel_basic_qos_always_returns_one(self): self.channel.basic_qos(2) assert self.channel.qos.prefetch_count == 1 @skip.if_python3() @skip.if_pypy() class test_Channel_basic_get(ChannelTestBase): @pytest.fixture(autouse=True) def setup_channel_attributes(self, setup_channel): self.channel.Message = Mock() self.channel._get = Mock() def test_channel_basic_get_calls__get_with_queue(self): mock_queue = Mock() self.channel.basic_get(mock_queue) self.channel._get.assert_called_once_with(mock_queue) def test_channel_basic_get_creates_Message_correctly(self): mock_queue = Mock() self.channel.basic_get(mock_queue) mock_raw_message = self.channel._get.return_value.content self.channel.Message.assert_called_once_with( mock_raw_message, channel=self.channel, ) def test_channel_basic_get_acknowledges_message_by_default(self): mock_queue = Mock() self.channel.basic_get(mock_queue) mock_qpid_message = self.channel._get.return_value acknowledge = self.transport.session.acknowledge acknowledge.assert_called_once_with(message=mock_qpid_message) def test_channel_basic_get_acknowledges_message_with_no_ack_False(self): mock_queue = Mock() self.channel.basic_get(mock_queue, no_ack=False) mock_qpid_message = self.channel._get.return_value acknowledge = self.transport.session.acknowledge acknowledge.assert_called_once_with(message=mock_qpid_message) def test_channel_basic_get_acknowledges_message_with_no_ack_True(self): mock_queue = Mock() self.channel.basic_get(mock_queue, no_ack=True) mock_qpid_message = self.channel._get.return_value acknowledge = self.transport.session.acknowledge acknowledge.assert_called_once_with(message=mock_qpid_message) def test_channel_basic_get_returns_correct_message(self): mock_queue = Mock() basic_get_result = self.channel.basic_get(mock_queue) expected_message = self.channel.Message.return_value assert expected_message is basic_get_result def test_basic_get_returns_None_when_channel__get_raises_Empty(self): mock_queue = Mock() self.channel._get = Mock(side_effect=Empty) basic_get_result = self.channel.basic_get(mock_queue) assert self.channel.Message.call_count == 0 assert basic_get_result is None @skip.if_python3() @skip.if_pypy() class test_Channel_basic_cancel(ChannelTestBase): @pytest.fixture(autouse=True) def setup_receivers(self, setup_channel): self.channel._receivers = {1: Mock()} def test_channel_basic_cancel_no_error_if_consumer_tag_not_found(self): self.channel.basic_cancel(2) def test_channel_basic_cancel_pops_receiver(self): self.channel.basic_cancel(1) assert 1 not in self.channel._receivers def test_channel_basic_cancel_closes_receiver(self): mock_receiver = self.channel._receivers[1] self.channel.basic_cancel(1) mock_receiver.close.assert_called_once_with() def test_channel_basic_cancel_pops__tag_to_queue(self): self.channel._tag_to_queue = Mock() self.channel.basic_cancel(1) self.channel._tag_to_queue.pop.assert_called_once_with(1, None) def test_channel_basic_cancel_pops_connection__callbacks(self): self.channel._tag_to_queue = Mock() self.channel.basic_cancel(1) mock_queue = self.channel._tag_to_queue.pop.return_value self.conn._callbacks.pop.assert_called_once_with(mock_queue, None) @skip.if_python3() @skip.if_pypy() class test_Channel__init__(ChannelTestBase): def test_channel___init__sets_variables_as_expected(self): assert self.conn is self.channel.connection assert self.transport is self.channel.transport assert not self.channel.closed self.conn.get_qpid_connection.assert_called_once_with() expected_broker_agent = self.mock_broker_agent.return_value assert self.channel._broker is expected_broker_agent assert self.channel._tag_to_queue == {} assert self.channel._receivers == {} assert self.channel._qos is None @skip.if_python3() @skip.if_pypy() class test_Channel_basic_consume(ChannelTestBase): @pytest.fixture(autouse=True) def setup_callbacks(self, setup_channel): self.conn._callbacks = {} def test_channel_basic_consume_adds_queue_to__tag_to_queue(self): mock_tag = Mock() mock_queue = Mock() self.channel.basic_consume(mock_queue, Mock(), Mock(), mock_tag) expected_dict = {mock_tag: mock_queue} assert expected_dict == self.channel._tag_to_queue def test_channel_basic_consume_adds_entry_to_connection__callbacks(self): mock_queue = Mock() self.channel.basic_consume(mock_queue, Mock(), Mock(), Mock()) assert mock_queue in self.conn._callbacks assert isinstance(self.conn._callbacks[mock_queue], Callable) def test_channel_basic_consume_creates_new_receiver(self): mock_queue = Mock() self.channel.basic_consume(mock_queue, Mock(), Mock(), Mock()) self.transport.session.receiver.assert_called_once_with(mock_queue) def test_channel_basic_consume_saves_new_receiver(self): mock_tag = Mock() self.channel.basic_consume(Mock(), Mock(), Mock(), mock_tag) new_mock_receiver = self.transport.session.receiver.return_value expected_dict = {mock_tag: new_mock_receiver} assert expected_dict == self.channel._receivers def test_channel_basic_consume_sets_capacity_on_new_receiver(self): mock_prefetch_count = Mock() self.channel.qos.prefetch_count = mock_prefetch_count self.channel.basic_consume(Mock(), Mock(), Mock(), Mock()) new_receiver = self.transport.session.receiver.return_value assert new_receiver.capacity is mock_prefetch_count def get_callback(self, no_ack=Mock(), original_cb=Mock()): self.channel.Message = Mock() mock_queue = Mock() self.channel.basic_consume(mock_queue, no_ack, original_cb, Mock()) return self.conn._callbacks[mock_queue] def test_channel_basic_consume_callback_creates_Message_correctly(self): callback = self.get_callback() mock_qpid_message = Mock() callback(mock_qpid_message) mock_content = mock_qpid_message.content self.channel.Message.assert_called_once_with( mock_content, channel=self.channel, ) def test_channel_basic_consume_callback_adds_message_to_QoS(self): self.channel._qos = Mock() callback = self.get_callback() mock_qpid_message = Mock() callback(mock_qpid_message) mock_delivery_tag = self.channel.Message.return_value.delivery_tag self.channel._qos.append.assert_called_once_with( mock_qpid_message, mock_delivery_tag, ) def test_channel_basic_consume_callback_gratuitously_acks(self): self.channel.basic_ack = Mock() callback = self.get_callback() mock_qpid_message = Mock() callback(mock_qpid_message) mock_delivery_tag = self.channel.Message.return_value.delivery_tag self.channel.basic_ack.assert_called_once_with(mock_delivery_tag) def test_channel_basic_consume_callback_does_not_ack_when_needed(self): self.channel.basic_ack = Mock() callback = self.get_callback(no_ack=False) mock_qpid_message = Mock() callback(mock_qpid_message) self.channel.basic_ack.assert_not_called() def test_channel_basic_consume_callback_calls_real_callback(self): self.channel.basic_ack = Mock() mock_original_callback = Mock() callback = self.get_callback(original_cb=mock_original_callback) mock_qpid_message = Mock() callback(mock_qpid_message) expected_message = self.channel.Message.return_value mock_original_callback.assert_called_once_with(expected_message) @skip.if_python3() @skip.if_pypy() class test_Channel_queue_delete(ChannelTestBase): @pytest.fixture(autouse=True) def setup_channel_patches(self, patching, setup_channel): self.mock__has_queue = patching.object(self.channel, '_has_queue') self.mock__size = patching.object(self.channel, '_size') self.mock__delete = patching.object(self.channel, '_delete') self.mock_queue = Mock() def test_checks_if_queue_exists(self): self.channel.queue_delete(self.mock_queue) self.mock__has_queue.assert_called_once_with(self.mock_queue) def test_does_nothing_if_queue_does_not_exist(self): self.mock__has_queue.return_value = False self.channel.queue_delete(self.mock_queue) self.mock__delete.assert_not_called() def test_not_empty_and_if_empty_True_no_delete(self): self.mock__size.return_value = 1 self.channel.queue_delete(self.mock_queue, if_empty=True) mock_broker = self.mock_broker_agent.return_value mock_broker.getQueue.assert_not_called() def test_calls_get_queue(self): self.channel.queue_delete(self.mock_queue) getQueue = self.mock_broker_agent.return_value.getQueue getQueue.assert_called_once_with(self.mock_queue) def test_gets_queue_attribute(self): self.channel.queue_delete(self.mock_queue) queue_obj = self.mock_broker_agent.return_value.getQueue.return_value queue_obj.getAttributes.assert_called_once_with() def test_queue_in_use_and_if_unused_no_delete(self): queue_obj = self.mock_broker_agent.return_value.getQueue.return_value queue_obj.getAttributes.return_value = {'consumerCount': 1} self.channel.queue_delete(self.mock_queue, if_unused=True) self.mock__delete.assert_not_called() def test_calls__delete_with_queue(self): self.channel.queue_delete(self.mock_queue) self.mock__delete.assert_called_once_with(self.mock_queue) @skip.if_python3() @skip.if_pypy() class test_Channel(object): @patch(QPID_MODULE + '.qpidtoollibs') def setup(self, mock_qpidtoollibs): self.mock_connection = Mock() self.mock_qpid_connection = Mock() self.mock_qpid_session = Mock() self.mock_qpid_connection.session = Mock( return_value=self.mock_qpid_session, ) self.mock_connection.get_qpid_connection = Mock( return_value=self.mock_qpid_connection, ) self.mock_transport = Mock() self.mock_broker = Mock() self.mock_Message = Mock() self.mock_BrokerAgent = mock_qpidtoollibs.BrokerAgent self.mock_BrokerAgent.return_value = self.mock_broker self.my_channel = Channel( self.mock_connection, self.mock_transport, ) self.my_channel.Message = self.mock_Message def test_verify_QoS_class_attribute(self): """Verify that the class attribute QoS refers to the QoS object""" assert QoS is Channel.QoS def test_verify_Message_class_attribute(self): """Verify that the class attribute Message refers to the Message object.""" assert Message is Channel.Message def test_body_encoding_class_attribute(self): """Verify that the class attribute body_encoding is set to base64""" assert Channel.body_encoding == 'base64' def test_codecs_class_attribute(self): """Verify that the codecs class attribute has a correct key and value.""" assert isinstance(Channel.codecs, dict) assert 'base64' in Channel.codecs assert isinstance(Channel.codecs['base64'], Base64) def test_size(self): """Test getting the number of messages in a queue specified by name and returning them.""" message_count = 5 mock_queue = Mock() mock_queue_to_check = Mock() mock_queue_to_check.values = {'msgDepth': message_count} self.mock_broker.getQueue.return_value = mock_queue_to_check result = self.my_channel._size(mock_queue) self.mock_broker.getQueue.assert_called_with(mock_queue) assert message_count == result def test_delete(self): """Test deleting a queue calls purge and delQueue with queue name.""" mock_queue = Mock() self.my_channel._purge = Mock() result = self.my_channel._delete(mock_queue) self.my_channel._purge.assert_called_with(mock_queue) self.mock_broker.delQueue.assert_called_with(mock_queue) assert result is None def test_has_queue_true(self): """Test checking if a queue exists, and it does.""" mock_queue = Mock() self.mock_broker.getQueue.return_value = True result = self.my_channel._has_queue(mock_queue) assert result def test_has_queue_false(self): """Test checking if a queue exists, and it does not.""" mock_queue = Mock() self.mock_broker.getQueue.return_value = False result = self.my_channel._has_queue(mock_queue) assert not result @patch('amqp.protocol.queue_declare_ok_t') def test_queue_declare_with_exception_raised(self, mock_queue_declare_ok_t): """Test declare_queue, where an exception is raised and silenced.""" mock_queue = Mock() mock_passive = Mock() mock_durable = Mock() mock_exclusive = Mock() mock_auto_delete = Mock() mock_nowait = Mock() mock_arguments = Mock() mock_msg_count = Mock() mock_queue.startswith.return_value = False mock_queue.endswith.return_value = False options = { 'passive': mock_passive, 'durable': mock_durable, 'exclusive': mock_exclusive, 'auto-delete': mock_auto_delete, 'arguments': mock_arguments, } mock_consumer_count = Mock() mock_return_value = Mock() values_dict = { 'msgDepth': mock_msg_count, 'consumerCount': mock_consumer_count, } mock_queue_data = Mock() mock_queue_data.values = values_dict exception_to_raise = Exception('The foo object already exists.') self.mock_broker.addQueue.side_effect = exception_to_raise self.mock_broker.getQueue.return_value = mock_queue_data mock_queue_declare_ok_t.return_value = mock_return_value result = self.my_channel.queue_declare( mock_queue, passive=mock_passive, durable=mock_durable, exclusive=mock_exclusive, auto_delete=mock_auto_delete, nowait=mock_nowait, arguments=mock_arguments, ) self.mock_broker.addQueue.assert_called_with( mock_queue, options=options, ) mock_queue_declare_ok_t.assert_called_with( mock_queue, mock_msg_count, mock_consumer_count, ) assert mock_return_value is result def test_queue_declare_set_ring_policy_for_celeryev(self): """Test declare_queue sets ring_policy for celeryev.""" mock_queue = Mock() mock_queue.startswith.return_value = True mock_queue.endswith.return_value = False expected_default_options = { 'passive': False, 'durable': False, 'exclusive': False, 'auto-delete': True, 'arguments': None, 'qpid.policy_type': 'ring', } mock_msg_count = Mock() mock_consumer_count = Mock() values_dict = { 'msgDepth': mock_msg_count, 'consumerCount': mock_consumer_count, } mock_queue_data = Mock() mock_queue_data.values = values_dict self.mock_broker.addQueue.return_value = None self.mock_broker.getQueue.return_value = mock_queue_data self.my_channel.queue_declare(mock_queue) mock_queue.startswith.assert_called_with('celeryev') self.mock_broker.addQueue.assert_called_with( mock_queue, options=expected_default_options, ) def test_queue_declare_set_ring_policy_for_pidbox(self): """Test declare_queue sets ring_policy for pidbox.""" mock_queue = Mock() mock_queue.startswith.return_value = False mock_queue.endswith.return_value = True expected_default_options = { 'passive': False, 'durable': False, 'exclusive': False, 'auto-delete': True, 'arguments': None, 'qpid.policy_type': 'ring', } mock_msg_count = Mock() mock_consumer_count = Mock() values_dict = { 'msgDepth': mock_msg_count, 'consumerCount': mock_consumer_count, } mock_queue_data = Mock() mock_queue_data.values = values_dict self.mock_broker.addQueue.return_value = None self.mock_broker.getQueue.return_value = mock_queue_data self.my_channel.queue_declare(mock_queue) mock_queue.endswith.assert_called_with('pidbox') self.mock_broker.addQueue.assert_called_with( mock_queue, options=expected_default_options, ) def test_queue_declare_ring_policy_not_set_as_expected(self): """Test declare_queue does not set ring_policy as expected.""" mock_queue = Mock() mock_queue.startswith.return_value = False mock_queue.endswith.return_value = False expected_default_options = { 'passive': False, 'durable': False, 'exclusive': False, 'auto-delete': True, 'arguments': None, } mock_msg_count = Mock() mock_consumer_count = Mock() values_dict = { 'msgDepth': mock_msg_count, 'consumerCount': mock_consumer_count, } mock_queue_data = Mock() mock_queue_data.values = values_dict self.mock_broker.addQueue.return_value = None self.mock_broker.getQueue.return_value = mock_queue_data self.my_channel.queue_declare(mock_queue) mock_queue.startswith.assert_called_with('celeryev') mock_queue.endswith.assert_called_with('pidbox') self.mock_broker.addQueue.assert_called_with( mock_queue, options=expected_default_options, ) def test_queue_declare_test_defaults(self): """Test declare_queue defaults.""" mock_queue = Mock() mock_queue.startswith.return_value = False mock_queue.endswith.return_value = False expected_default_options = { 'passive': False, 'durable': False, 'exclusive': False, 'auto-delete': True, 'arguments': None, } mock_msg_count = Mock() mock_consumer_count = Mock() values_dict = { 'msgDepth': mock_msg_count, 'consumerCount': mock_consumer_count, } mock_queue_data = Mock() mock_queue_data.values = values_dict self.mock_broker.addQueue.return_value = None self.mock_broker.getQueue.return_value = mock_queue_data self.my_channel.queue_declare(mock_queue) self.mock_broker.addQueue.assert_called_with( mock_queue, options=expected_default_options, ) def test_queue_declare_raises_exception_not_silenced(self): unique_exception = Exception('This exception should not be silenced') mock_queue = Mock() self.mock_broker.addQueue.side_effect = unique_exception with pytest.raises(unique_exception.__class__): self.my_channel.queue_declare(mock_queue) self.mock_broker.addQueue.assert_called_once_with( mock_queue, options={ 'exclusive': False, 'durable': False, 'qpid.policy_type': 'ring', 'passive': False, 'arguments': None, 'auto-delete': True }) def test_exchange_declare_raises_exception_and_silenced(self): """Create exchange where an exception is raised and then silenced""" self.mock_broker.addExchange.side_effect = Exception( 'The foo object already exists.', ) self.my_channel.exchange_declare() def test_exchange_declare_raises_exception_not_silenced(self): """Create Exchange where an exception is raised and not silenced.""" unique_exception = Exception('This exception should not be silenced') self.mock_broker.addExchange.side_effect = unique_exception with pytest.raises(unique_exception.__class__): self.my_channel.exchange_declare() def test_exchange_declare(self): """Create Exchange where an exception is NOT raised.""" mock_exchange = Mock() mock_type = Mock() mock_durable = Mock() options = {'durable': mock_durable} result = self.my_channel.exchange_declare( mock_exchange, mock_type, mock_durable, ) self.mock_broker.addExchange.assert_called_with( mock_type, mock_exchange, options, ) assert result is None def test_exchange_delete(self): """Test the deletion of an exchange by name.""" mock_exchange = Mock() result = self.my_channel.exchange_delete(mock_exchange) self.mock_broker.delExchange.assert_called_with(mock_exchange) assert result is None def test_queue_bind(self): """Test binding a queue to an exchange using a routing key.""" mock_queue = Mock() mock_exchange = Mock() mock_routing_key = Mock() self.my_channel.queue_bind( mock_queue, mock_exchange, mock_routing_key, ) self.mock_broker.bind.assert_called_with( mock_exchange, mock_queue, mock_routing_key, ) def test_queue_unbind(self): """Test unbinding a queue from an exchange using a routing key.""" mock_queue = Mock() mock_exchange = Mock() mock_routing_key = Mock() self.my_channel.queue_unbind( mock_queue, mock_exchange, mock_routing_key, ) self.mock_broker.unbind.assert_called_with( mock_exchange, mock_queue, mock_routing_key, ) def test_queue_purge(self): """Test purging a queue by name.""" mock_queue = Mock() purge_result = Mock() self.my_channel._purge = Mock(return_value=purge_result) result = self.my_channel.queue_purge(mock_queue) self.my_channel._purge.assert_called_with(mock_queue) assert purge_result is result @patch(QPID_MODULE + '.Channel.qos') def test_basic_ack(self, mock_qos): """Test that basic_ack calls the QoS object properly.""" mock_delivery_tag = Mock() self.my_channel.basic_ack(mock_delivery_tag) mock_qos.ack.assert_called_with(mock_delivery_tag) @patch(QPID_MODULE + '.Channel.qos') def test_basic_reject(self, mock_qos): """Test that basic_reject calls the QoS object properly.""" mock_delivery_tag = Mock() mock_requeue_value = Mock() self.my_channel.basic_reject(mock_delivery_tag, mock_requeue_value) mock_qos.reject.assert_called_with( mock_delivery_tag, requeue=mock_requeue_value, ) def test_qos_manager_is_none(self): """Test the qos property if the QoS object did not already exist.""" self.my_channel._qos = None result = self.my_channel.qos assert isinstance(result, QoS) assert result == self.my_channel._qos def test_qos_manager_already_exists(self): """Test the qos property if the QoS object already exists.""" mock_existing_qos = Mock() self.my_channel._qos = mock_existing_qos result = self.my_channel.qos assert mock_existing_qos is result def test_prepare_message(self): """Test that prepare_message() returns the correct result.""" mock_body = Mock() mock_priority = Mock() mock_content_encoding = Mock() mock_content_type = Mock() mock_header1 = Mock() mock_header2 = Mock() mock_properties1 = Mock() mock_properties2 = Mock() headers = {'header1': mock_header1, 'header2': mock_header2} properties = {'properties1': mock_properties1, 'properties2': mock_properties2} result = self.my_channel.prepare_message( mock_body, priority=mock_priority, content_type=mock_content_type, content_encoding=mock_content_encoding, headers=headers, properties=properties) assert mock_body is result['body'] assert mock_content_encoding is result['content-encoding'] assert mock_content_type is result['content-type'] assert headers == result['headers'] assert properties == result['properties'] assert (mock_priority is result['properties']['delivery_info']['priority']) @patch('__builtin__.buffer') @patch(QPID_MODULE + '.Channel.body_encoding') @patch(QPID_MODULE + '.Channel.encode_body') @patch(QPID_MODULE + '.Channel._put') def test_basic_publish(self, mock_put, mock_encode_body, mock_body_encoding, mock_buffer): """Test basic_publish().""" mock_original_body = Mock() mock_encoded_body = 'this is my encoded body' mock_message = {'body': mock_original_body, 'properties': {'delivery_info': {}}} mock_encode_body.return_value = ( mock_encoded_body, mock_body_encoding, ) mock_exchange = Mock() mock_routing_key = Mock() mock_encoded_buffered_body = Mock() mock_buffer.return_value = mock_encoded_buffered_body self.my_channel.basic_publish( mock_message, mock_exchange, mock_routing_key, ) mock_encode_body.assert_called_once_with( mock_original_body, mock_body_encoding, ) mock_buffer.assert_called_once_with(mock_encoded_body) assert mock_message['body'] is mock_encoded_buffered_body assert (mock_message['properties']['body_encoding'] is mock_body_encoding) assert isinstance( mock_message['properties']['delivery_tag'], uuid.UUID) assert (mock_message['properties']['delivery_info']['exchange'] is mock_exchange) assert (mock_message['properties']['delivery_info']['routing_key'] is mock_routing_key) mock_put.assert_called_with( mock_routing_key, mock_message, mock_exchange, ) @patch(QPID_MODULE + '.Channel.codecs') def test_encode_body_expected_encoding(self, mock_codecs): """Test if encode_body() works when encoding is set correctly""" mock_body = Mock() mock_encoder = Mock() mock_encoded_result = Mock() mock_codecs.get.return_value = mock_encoder mock_encoder.encode.return_value = mock_encoded_result result = self.my_channel.encode_body(mock_body, encoding='base64') expected_result = (mock_encoded_result, 'base64') assert expected_result == result @patch(QPID_MODULE + '.Channel.codecs') def test_encode_body_not_expected_encoding(self, mock_codecs): """Test if encode_body() works when encoding is not set correctly.""" mock_body = Mock() result = self.my_channel.encode_body(mock_body, encoding=None) expected_result = mock_body, None assert expected_result == result @patch(QPID_MODULE + '.Channel.codecs') def test_decode_body_expected_encoding(self, mock_codecs): """Test if decode_body() works when encoding is set correctly.""" mock_body = Mock() mock_decoder = Mock() mock_decoded_result = Mock() mock_codecs.get.return_value = mock_decoder mock_decoder.decode.return_value = mock_decoded_result result = self.my_channel.decode_body(mock_body, encoding='base64') assert mock_decoded_result == result @patch(QPID_MODULE + '.Channel.codecs') def test_decode_body_not_expected_encoding(self, mock_codecs): """Test if decode_body() works when encoding is not set correctly.""" mock_body = Mock() result = self.my_channel.decode_body(mock_body, encoding=None) assert mock_body == result def test_typeof_exchange_exists(self): """Test that typeof() finds an exchange that already exists.""" mock_exchange = Mock() mock_qpid_exchange = Mock() mock_attributes = {} mock_type = Mock() mock_attributes['type'] = mock_type mock_qpid_exchange.getAttributes.return_value = mock_attributes self.mock_broker.getExchange.return_value = mock_qpid_exchange result = self.my_channel.typeof(mock_exchange) assert mock_type is result def test_typeof_exchange_does_not_exist(self): """Test that typeof() finds an exchange that does not exists.""" mock_exchange = Mock() mock_default = Mock() self.mock_broker.getExchange.return_value = None result = self.my_channel.typeof(mock_exchange, default=mock_default) assert mock_default is result @skip.if_python3() @skip.if_pypy() @pytest.mark.usefixtures('disable_runtime_dependency_check') class test_Transport__init__(object): @pytest.fixture(autouse=True) def mock_verify_runtime_environment(self, patching): self.mock_verify_runtime_environment = patching.object( Transport, 'verify_runtime_environment') @pytest.fixture(autouse=True) def mock_transport_init(self, patching): self.mock_base_Transport__init__ = patching( QPID_MODULE + '.base.Transport.__init__') def test_Transport___init___calls_verify_runtime_environment(self): Transport(Mock()) self.mock_verify_runtime_environment.assert_called_once_with() def test_transport___init___calls_parent_class___init__(self): m = Mock() Transport(m) self.mock_base_Transport__init__.assert_called_once_with(m) def test_transport___init___sets_use_async_interface_False(self): transport = Transport(Mock()) assert not transport.use_async_interface @skip.if_python3() @skip.if_pypy() @pytest.mark.usefixtures('disable_runtime_dependency_check') class test_Transport_drain_events(object): @pytest.fixture(autouse=True) def setup_self(self, disable_runtime_dependency_check): # ^^ disable_runtime.. must be called before this fixture. self.transport = Transport(Mock()) self.transport.session = Mock() self.mock_queue = Mock() self.mock_message = Mock() self.mock_conn = Mock() self.mock_callback = Mock() self.mock_conn._callbacks = {self.mock_queue: self.mock_callback} def mock_next_receiver(self, timeout): time.sleep(0.3) mock_receiver = Mock() mock_receiver.source = self.mock_queue mock_receiver.fetch.return_value = self.mock_message return mock_receiver def test_socket_timeout_raised_when_all_receivers_empty(self): with patch(QPID_MODULE + '.QpidEmpty', new=QpidException): self.transport.session.next_receiver.side_effect = QpidException() with pytest.raises(socket.timeout): self.transport.drain_events(Mock()) def test_socket_timeout_raised_when_by_timeout(self): self.transport.session.next_receiver = self.mock_next_receiver with pytest.raises(socket.timeout): self.transport.drain_events(self.mock_conn, timeout=1) def test_timeout_returns_no_earlier_then_asked_for(self): self.transport.session.next_receiver = self.mock_next_receiver start_time = monotonic() try: self.transport.drain_events(self.mock_conn, timeout=1) except socket.timeout: pass elapsed_time_in_s = monotonic() - start_time assert elapsed_time_in_s >= 1.0 def test_callback_is_called(self): self.transport.session.next_receiver = self.mock_next_receiver try: self.transport.drain_events(self.mock_conn, timeout=1) except socket.timeout: pass self.mock_callback.assert_called_with(self.mock_message) @skip.if_python3() @skip.if_pypy() class test_Transport_create_channel(object): @pytest.fixture(autouse=True) def setup_self(self, disable_runtime_dependency_check): # ^^ disable runtime MUST be called before this fixture self.transport = Transport(Mock()) self.mock_conn = Mock() self.mock_new_channel = Mock() self.mock_conn.Channel.return_value = self.mock_new_channel self.returned_channel = self.transport.create_channel(self.mock_conn) def test_new_channel_created_from_connection(self): assert self.mock_new_channel is self.returned_channel self.mock_conn.Channel.assert_called_with( self.mock_conn, self.transport, ) def test_new_channel_added_to_connection_channel_list(self): append_method = self.mock_conn.channels.append append_method.assert_called_with(self.mock_new_channel) @skip.if_python3() @skip.if_pypy() @pytest.mark.usefixtures('disable_runtime_dependency_check') class test_Transport_establish_connection(object): @pytest.fixture(autouse=True) def setup_self(self, disable_runtime_dependency_check): class MockClient(object): pass self.client = MockClient() self.client.connect_timeout = 4 self.client.ssl = False self.client.transport_options = {} self.client.userid = None self.client.password = None self.client.login_method = None self.transport = Transport(self.client) self.mock_conn = Mock() self.transport.Connection = self.mock_conn def test_transport_establish_conn_new_option_overwrites_default(self): self.client.userid = 'new-userid' self.client.password = 'new-password' self.transport.establish_connection() self.mock_conn.assert_called_once_with( username=self.client.userid, password=self.client.password, sasl_mechanisms='PLAIN', host='localhost', timeout=4, port=5672, transport='tcp', ) def test_transport_establish_conn_empty_client_is_default(self): self.transport.establish_connection() self.mock_conn.assert_called_once_with( sasl_mechanisms='ANONYMOUS', host='localhost', timeout=4, port=5672, transport='tcp', ) def test_transport_establish_conn_additional_transport_option(self): new_param_value = 'mynewparam' self.client.transport_options['new_param'] = new_param_value self.transport.establish_connection() self.mock_conn.assert_called_once_with( sasl_mechanisms='ANONYMOUS', host='localhost', timeout=4, new_param=new_param_value, port=5672, transport='tcp', ) def test_transport_establish_conn_transform_localhost_to_127_0_0_1(self): self.client.hostname = 'localhost' self.transport.establish_connection() self.mock_conn.assert_called_once_with( sasl_mechanisms='ANONYMOUS', host='localhost', timeout=4, port=5672, transport='tcp', ) def test_transport_password_no_userid_raises_exception(self): self.client.password = 'somepass' with pytest.raises(Exception): self.transport.establish_connection() def test_transport_userid_no_password_raises_exception(self): self.client.userid = 'someusername' with pytest.raises(Exception): self.transport.establish_connection() def test_transport_overrides_sasl_mech_from_login_method(self): self.client.login_method = 'EXTERNAL' self.transport.establish_connection() self.mock_conn.assert_called_once_with( sasl_mechanisms='EXTERNAL', host='localhost', timeout=4, port=5672, transport='tcp', ) def test_transport_overrides_sasl_mech_has_username(self): self.client.userid = 'new-userid' self.client.login_method = 'EXTERNAL' self.transport.establish_connection() self.mock_conn.assert_called_once_with( username=self.client.userid, sasl_mechanisms='EXTERNAL', host='localhost', timeout=4, port=5672, transport='tcp', ) def test_transport_establish_conn_set_password(self): self.client.userid = 'someuser' self.client.password = 'somepass' self.transport.establish_connection() self.mock_conn.assert_called_once_with( username='someuser', password='somepass', sasl_mechanisms='PLAIN', host='localhost', timeout=4, port=5672, transport='tcp', ) def test_transport_establish_conn_no_ssl_sets_transport_tcp(self): self.client.ssl = False self.transport.establish_connection() self.mock_conn.assert_called_once_with( sasl_mechanisms='ANONYMOUS', host='localhost', timeout=4, port=5672, transport='tcp', ) def test_transport_establish_conn_with_ssl_with_hostname_check(self): self.client.ssl = { 'keyfile': 'my_keyfile', 'certfile': 'my_certfile', 'ca_certs': 'my_cacerts', 'cert_reqs': ssl.CERT_REQUIRED, } self.transport.establish_connection() self.mock_conn.assert_called_once_with( ssl_certfile='my_certfile', ssl_trustfile='my_cacerts', timeout=4, ssl_skip_hostname_check=False, sasl_mechanisms='ANONYMOUS', host='localhost', ssl_keyfile='my_keyfile', port=5672, transport='ssl', ) def test_transport_establish_conn_with_ssl_skip_hostname_check(self): self.client.ssl = { 'keyfile': 'my_keyfile', 'certfile': 'my_certfile', 'ca_certs': 'my_cacerts', 'cert_reqs': ssl.CERT_OPTIONAL, } self.transport.establish_connection() self.mock_conn.assert_called_once_with( ssl_certfile='my_certfile', ssl_trustfile='my_cacerts', timeout=4, ssl_skip_hostname_check=True, sasl_mechanisms='ANONYMOUS', host='localhost', ssl_keyfile='my_keyfile', port=5672, transport='ssl', ) def test_transport_establish_conn_sets_client_on_connection_object(self): self.transport.establish_connection() assert self.mock_conn.return_value.client is self.client def test_transport_establish_conn_creates_session_on_transport(self): self.transport.establish_connection() qpid_conn = self.mock_conn.return_value.get_qpid_connection new_mock_session = qpid_conn.return_value.session.return_value assert self.transport.session is new_mock_session def test_transport_establish_conn_returns_new_connection_object(self): new_conn = self.transport.establish_connection() assert new_conn is self.mock_conn.return_value def test_transport_establish_conn_uses_hostname_if_not_default(self): self.client.hostname = 'some_other_hostname' self.transport.establish_connection() self.mock_conn.assert_called_once_with( sasl_mechanisms='ANONYMOUS', host='some_other_hostname', timeout=4, port=5672, transport='tcp', ) def test_transport_sets_qpid_message_ready_handler(self): self.transport.establish_connection() qpid_conn_call = self.mock_conn.return_value.get_qpid_connection mock_session = qpid_conn_call.return_value.session.return_value mock_set_callback = mock_session.set_message_received_notify_handler expected_msg_callback = self.transport._qpid_message_ready_handler mock_set_callback.assert_called_once_with(expected_msg_callback) def test_transport_sets_session_exception_handler(self): self.transport.establish_connection() qpid_conn_call = self.mock_conn.return_value.get_qpid_connection mock_session = qpid_conn_call.return_value.session.return_value mock_set_callback = mock_session.set_async_exception_notify_handler exc_callback = self.transport._qpid_async_exception_notify_handler mock_set_callback.assert_called_once_with(exc_callback) def test_transport_sets_connection_exception_handler(self): self.transport.establish_connection() qpid_conn_call = self.mock_conn.return_value.get_qpid_connection qpid_conn = qpid_conn_call.return_value mock_set_callback = qpid_conn.set_async_exception_notify_handler exc_callback = self.transport._qpid_async_exception_notify_handler mock_set_callback.assert_called_once_with(exc_callback) @skip.if_python3() @skip.if_pypy() class test_Transport_class_attributes(object): def test_verify_Connection_attribute(self): assert Connection is Transport.Connection def test_verify_polling_disabled(self): assert Transport.polling_interval is None def test_transport_verify_supports_asynchronous_events(self): assert Transport.supports_ev def test_verify_driver_type_and_name(self): assert Transport.driver_type == 'qpid' assert Transport.driver_name == 'qpid' def test_transport_verify_recoverable_connection_errors(self): connection_errors = Transport.recoverable_connection_errors assert ConnectionError in connection_errors assert select.error in connection_errors def test_transport_verify_recoverable_channel_errors(self): channel_errors = Transport.recoverable_channel_errors assert NotFound in channel_errors def test_transport_verify_pre_kombu_3_0_exception_labels(self): assert (Transport.recoverable_channel_errors == Transport.channel_errors) assert (Transport.recoverable_connection_errors == Transport.connection_errors) @skip.if_python3() @skip.if_pypy() @pytest.mark.usefixtures('disable_runtime_dependency_check') class test_Transport_register_with_event_loop(object): def test_transport_register_with_event_loop_calls_add_reader(self): transport = Transport(Mock()) mock_connection = Mock() mock_loop = Mock() transport.register_with_event_loop(mock_connection, mock_loop) mock_loop.add_reader.assert_called_with( transport.r, transport.on_readable, mock_connection, mock_loop, ) @skip.if_python3() @skip.if_pypy() @pytest.mark.usefixtures('disable_runtime_dependency_check') class test_Transport_Qpid_callback_handlers_async(object): @pytest.fixture(autouse=True) def setup_self(self, patching, disable_runtime_dependency_check): self.mock_os_write = patching(QPID_MODULE + '.os.write') self.transport = Transport(Mock()) self.transport.register_with_event_loop(Mock(), Mock()) def test__qpid_message_ready_handler_writes_symbol_to_fd(self): self.transport._qpid_message_ready_handler(Mock()) self.mock_os_write.assert_called_once_with(self.transport._w, '0') def test__qpid_async_exception_notify_handler_writes_symbol_to_fd(self): self.transport._qpid_async_exception_notify_handler(Mock(), Mock()) self.mock_os_write.assert_called_once_with(self.transport._w, 'e') @skip.if_python3() @skip.if_pypy() @pytest.mark.usefixtures('disable_runtime_dependency_check') class test_Transport_Qpid_callback_handlers_sync(object): @pytest.fixture(autouse=True) def setup(self, patching, disable_runtime_dependency_check): self.mock_os_write = patching(QPID_MODULE + '.os.write') self.transport = Transport(Mock()) def test__qpid_message_ready_handler_dows_not_write(self): self.transport._qpid_message_ready_handler(Mock()) self.mock_os_write.assert_not_called() def test__qpid_async_exception_notify_handler_does_not_write(self): self.transport._qpid_async_exception_notify_handler(Mock(), Mock()) self.mock_os_write.assert_not_called() @skip.if_python3() @skip.if_pypy() @pytest.mark.usefixtures('disable_runtime_dependency_check') class test_Transport_on_readable(object): @pytest.fixture(autouse=True) def setup_self(self, patching, disable_runtime_dependency_check): self.mock_os_read = patching(QPID_MODULE + '.os.read') self.mock_drain_events = patching.object(Transport, 'drain_events') self.transport = Transport(Mock()) self.transport.register_with_event_loop(Mock(), Mock()) def test_transport_on_readable_reads_symbol_from_fd(self): self.transport.on_readable(Mock(), Mock()) self.mock_os_read.assert_called_once_with(self.transport.r, 1) def test_transport_on_readable_calls_drain_events(self): mock_connection = Mock() self.transport.on_readable(mock_connection, Mock()) self.mock_drain_events.assert_called_with(mock_connection) def test_transport_on_readable_catches_socket_timeout(self): self.mock_drain_events.side_effect = socket.timeout() self.transport.on_readable(Mock(), Mock()) def test_transport_on_readable_ignores_non_socket_timeout_exception(self): self.mock_drain_events.side_effect = IOError() with pytest.raises(IOError): self.transport.on_readable(Mock(), Mock()) @skip.if_python3() @skip.if_pypy() @pytest.mark.usefixtures('disable_runtime_dependency_check') class test_Transport_verify_runtime_environment(object): @pytest.fixture(autouse=True) def setup_self(self, patching): self.verify_runtime_environment = Transport.verify_runtime_environment patching.object(Transport, 'verify_runtime_environment') self.transport = Transport(Mock()) @patch(QPID_MODULE + '.PY3', new=True) def test_raises_exception_for_Python3(self): with pytest.raises(RuntimeError): self.verify_runtime_environment(self.transport) @patch('__builtin__.getattr') def test_raises_exc_for_PyPy(self, mock_getattr): mock_getattr.return_value = True with pytest.raises(RuntimeError): self.verify_runtime_environment(self.transport) @patch(QPID_MODULE + '.dependency_is_none') def test_raises_exc_dep_missing(self, mock_dep_is_none): mock_dep_is_none.return_value = True with pytest.raises(RuntimeError): self.verify_runtime_environment(self.transport) @patch(QPID_MODULE + '.dependency_is_none') def test_calls_dependency_is_none(self, mock_dep_is_none): mock_dep_is_none.return_value = False self.verify_runtime_environment(self.transport) mock_dep_is_none.assert_called() def test_raises_no_exception(self): self.verify_runtime_environment(self.transport) @skip.if_python3() @skip.if_pypy() @pytest.mark.usefixtures('disable_runtime_dependency_check') class test_Transport(object): def setup(self): """Creates a mock_client to be used in testing.""" self.mock_client = Mock() def test_close_connection(self): """Test that close_connection calls close on the connection.""" my_transport = Transport(self.mock_client) mock_connection = Mock() my_transport.close_connection(mock_connection) mock_connection.close.assert_called_once_with() def test_default_connection_params(self): """Test that the default_connection_params are correct""" correct_params = { 'hostname': 'localhost', 'port': 5672, } my_transport = Transport(self.mock_client) result_params = my_transport.default_connection_params assert correct_params == result_params @patch(QPID_MODULE + '.os.close') def test_del_sync(self, close): my_transport = Transport(self.mock_client) my_transport.__del__() close.assert_not_called() @patch(QPID_MODULE + '.os.close') def test_del_async(self, close): my_transport = Transport(self.mock_client) my_transport.register_with_event_loop(Mock(), Mock()) my_transport.__del__() close.assert_called() @patch(QPID_MODULE + '.os.close') def test_del_async_failed(self, close): close.side_effect = OSError() my_transport = Transport(self.mock_client) my_transport.register_with_event_loop(Mock(), Mock()) my_transport.__del__() close.assert_called()
#!/usr/bin/env python # # dewadl # # Turn WADL XML into Python API. # # Matt Kubilus 2015 # # This is written to support the uDeploy WADL specifically. Your mileage may vary with other WADLs. # # import os import re import cmd import json import urlparse import urllib2 from types import FunctionType import xml.etree.ElementTree as ET from functools import partial from optparse import OptionParser import ConfigParser import pprint import getpass DEBUG=False class wadl_processor(object): ns={"ns":"http://wadl.dev.java.net/2009/02"} base_url = "" def __init__(self, wadl_file=None, wadl_url=None, userid=None, passwd=None): if wadl_url: # If we were supplied wadl_url, first we may need to authenticate in order to get the WADL file self.__auth(wadl_url, userid, passwd) wadl_string = self.__do_url(wadl_url) self.__process_wadl(wadl_file=wadl_file, wadl_string=wadl_string) else: # If we have a supplied wadl_file, we will need to get the base_url from the file before auth self.__process_wadl(wadl_file=wadl_file) self.__auth(self.base_url, userid, passwd) def __auth(self, url, userid=None, passwd=None): if userid: if not passwd: passwd = getpass.getpass() p = urlparse.urlparse(url) auth_url = "%s://%s" % (p.scheme, p.netloc) if DEBUG: print "Authenticating to %s" % auth_url connected = False for i in range(5): try: p_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm() p_mgr.add_password(None, auth_url, userid, passwd) auth_handler = urllib2.HTTPBasicAuthHandler(p_mgr) opener = urllib2.build_opener(auth_handler) urllib2.install_opener(opener) except urllib2.URLError: print "Error connecting" time.sleep(i) continue connected = True if DEBUG: print "Successfully authenticated." break if not connected: print "Could not connect to: %s" % url sys.exit(1) def __do_url(self, url, mtype="GET", data_dict=None): myurl = "/".join(x.strip('/') for x in [self.base_url, url]) myurl = myurl.lstrip("/") req = urllib2.Request(myurl, json.dumps(data_dict)) req.get_method = lambda: mtype try: response = urllib2.urlopen(req) except urllib2.HTTPError, err: print "Error %sting url: %s" % (mtype, myurl) print err return con_type = response.info().getheader('Content-Type') resp_data = response.read() if resp_data and "application/json" in con_type : #return json.loads(resp_data) return json.loads(resp_data, object_hook=wadl_to_obj) elif resp_data: return resp_data def __method_creator(cls, url, mtype, params): if DEBUG: print "Creating method: ", url, mtype, params def method_template(*args, **kwds): data_dict = kwds.get("data_dict") if DEBUG: print "PARAMS:", params print "ARGS:", args print "KWDS:", kwds print "URL:", url print "DATADICT:", data_dict arglen = len(args) m = re.findall("{(.*?)}", url) if arglen != len(params): print "Requires %s arguments(s) %s" % (len(params), params) return do_url = url #for idx in xrange(arglen): for idx in xrange(len(m)): # First replace REST positional arguments do_url = do_url.replace("{%s}" % m[idx], args[idx]) url_args = '&'.join([ "%s=%s" % (k,v) for k,v in zip(params[len(m):],args[len(m):])]) do_url = do_url.replace("//","/") if url_args: do_url = "%s?%s" % (do_url, url_args) return cls.__do_url(do_url, mtype, data_dict=data_dict) return method_template def __handleResources(self, resources): if DEBUG: print resources self.base_url = resources.get("base") if DEBUG: print "Setting base_url to: %s" % self.base_url for resource in resources: self.__handleResource(resource) def __handleResource(self, resource, path=""): if DEBUG: print "resource", resource.tag, resource.get('path') prev_path = path path = '/'.join([path, resource.get('path')]) params = re.findall("{(.*?)}", path) method=None for node in resource: # We have to assume params come before methods if node.tag == "{%s}method" % self.ns.get('ns'): mtype, method, method_params = self.__handleMethod(node, path) if hasattr(self, method): # We have clashed with an existing method name # TODO: After we process the entire file, perhaps cleanup original clashed name basename = os.path.basename(prev_path) if DEBUG: print "RESOURCE: ", prev_path print "Method %s already exists. Adjusting name to %s" % (method, "%s_%s" % (basename, method)) old_method_t = getattr(self, method) method = "%s_%s" % (basename, method) old_method_name = "%s_%s" % (os.path.basename(old_method_t.__prev_path), old_method_t.__name__) if DEBUG: print "Also updating %s to %s" % (old_method_t.__name__, old_method_name) setattr(self, old_method_name, old_method_t) params.extend(method_params) #print "Create method for %s" % path tmethod = self.__method_creator(path, mtype, tuple(params)) tmethod.__doc__ = "%s accepts arguments: %s" % (method, params) tmethod.__name__ = method tmethod.__prev_path = prev_path setattr(self, method, tmethod) #params = [] if node.tag == "{%s}param" % self.ns.get('ns'): param = self.__handleParam(node, path) #params.append(param) if node.tag == "{%s}resource" % self.ns.get('ns'): self.__handleResource(node, path) def __handleRequest(self, request): if DEBUG: print " ", request.tag tparams = [] for node in request: if node.tag == "{%s}param" % self.ns.get('ns'): param = self.__handleParam(node, "") if param: tparams.append(param) return tparams def __handleResponse(self, response): pass def __handleMethod(self, method, path): if DEBUG: print " ", method.tag, method.get('id') method_type = method.get('name') method_name = method.get('id') method_params = [] for node in method: if node.tag == "{%s}request" % self.ns.get('ns'): tparams = self.__handleRequest(node) method_params.extend(tparams) elif node.tag == "{%s}response" % self.ns.get('ns'): self.__handleResponse(node) return method_type, method_name, method_params def __handleParam(self, param, path): if DEBUG: print " ", param.tag, param.get('name'), param.get('type'), param.get('style') p = None if param.get('style') == 'template': p = param.get('name') return p def __process_wadl(self, wadl_file=None, wadl_string=None): if wadl_file: tree = ET.parse(wadl_file) root = tree.getroot() elif wadl_string: root = ET.fromstring(wadl_string) else: print "Must provide either wadl_file or wadl_string" return 1 #print root.tag m = re.match("\{(.*)\}application", root.tag) if m: self.ns['ns'] = m.groups()[0] #print "Setting namespace to: %s" % self.ns.get('ns') for resources in root.findall('{%s}resources' % self.ns.get('ns')): self.__handleResources(resources) def call_method(obj, args): if len(args) >= 1: meth_name = args[0] else: meth_name = "help" if args > 1: params = args[1:] meths = [method for method in dir(obj) if callable(getattr(obj, method)) and not method.startswith('__')] if meth_name == "help": print "------------------" print "Available methods:" print "------------------" for meth in meths: print meth, do_method = getattr(obj, meth) argc = do_method.func_code.co_argcount print do_method.func_code.co_varnames[1:argc] print " ", do_method.__doc__ print return if meth_name in meths: do_method = getattr(obj, meth_name) return do_method(*params) else: print "Could not find: %s", meth_name def wadl_to_obj(d): tmpobj = _wadl_obj(d) return tmpobj class _wadl_obj(dict): def __init__(self, data): for key, value in data.iteritems(): setattr(self, key, value) self.__dict__[key] = value def __setattr__(self, name, value): if not hasattr(super(_wadl_obj, self), name): super(_wadl_obj, self).__setitem__(name, value) def get_config(): config = ConfigParser.ConfigParser() config.read([".dewadl", "/etc/dewadl.cfg", os.path.expanduser("~/.dewadl")]) #print config._sections all_defaults = config._sections return all_defaults.get("dewadl", {}) if __name__ == "__main__": cfg_defaults = get_config() parser = OptionParser() parser.add_option( "-f", "--wadlfile", action="store", dest="wadlfile", default=None ) parser.add_option( "-w", "--weburl", action="store", dest="weburl", default=cfg_defaults.get("weburl") ) parser.add_option( "-u", "--userid", action="store", dest="userid", default=cfg_defaults.get("userid") ) parser.add_option( "-p", "--password", action="store", dest="password", default=cfg_defaults.get("password") ) parser.add_option( "-i", "--interact", action="store_true", dest="interact", default=False ) opts, args = parser.parse_args() if opts.wadlfile: wadl = wadl_processor(wadl_file=opts.wadlfile, userid=opts.userid, passwd=opts.password) elif opts.weburl: wadl = wadl_processor(wadl_url=opts.weburl, userid=opts.userid, passwd=opts.password) else: parser.error("Please provider either --wadlfile or --weburl") if opts.interact: import rlcompleter import readline import code import sys readline.parse_and_bind('tab: complete') sys.ps1 = "W) " sys.ps2 = ". " vars = globals().copy() vars.update(locals()) shell = code.InteractiveConsole(vars) shell.interact(banner="\n\n-----------------------------\n\nWelcome to DeWADL Python interface!.\n'wadl' object has been created.\n") sys.exit(0) ret = call_method(wadl, args) if ret: pprint.pprint(ret)
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2013 Cloudbase Solutions Srl # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from nova import test from nova.virt.hyperv import vmutilsv2 class VMUtilsV2TestCase(test.NoDBTestCase): """Unit tests for the Hyper-V VMUtilsV2 class.""" _FAKE_VM_NAME = 'fake_vm' _FAKE_MEMORY_MB = 2 _FAKE_VCPUS_NUM = 4 _FAKE_JOB_PATH = 'fake_job_path' _FAKE_RET_VAL = 0 _FAKE_CTRL_PATH = 'fake_ctrl_path' _FAKE_CTRL_ADDR = 0 _FAKE_DRIVE_ADDR = 0 _FAKE_MOUNTED_DISK_PATH = 'fake_mounted_disk_path' _FAKE_VM_PATH = "fake_vm_path" _FAKE_ENABLED_STATE = 1 _FAKE_SNAPSHOT_PATH = "_FAKE_SNAPSHOT_PATH" _FAKE_RES_DATA = "fake_res_data" _FAKE_RES_PATH = "fake_res_path" _FAKE_DYNAMIC_MEMORY_RATIO = 1.0 _FAKE_VHD_PATH = "fake_vhd_path" _FAKE_VOLUME_DRIVE_PATH = "fake_volume_drive_path" def setUp(self): self._vmutils = vmutilsv2.VMUtilsV2() self._vmutils._conn = mock.MagicMock() super(VMUtilsV2TestCase, self).setUp() def _lookup_vm(self): mock_vm = mock.MagicMock() self._vmutils._lookup_vm_check = mock.MagicMock( return_value=mock_vm) mock_vm.path_.return_value = self._FAKE_VM_PATH return mock_vm def test_create_vm(self): mock_svc = self._vmutils._conn.Msvm_VirtualSystemManagementService()[0] mock_svc.DefineSystem.return_value = (None, self._FAKE_JOB_PATH, self._FAKE_RET_VAL) self._vmutils._get_wmi_obj = mock.MagicMock() mock_vm = self._vmutils._get_wmi_obj.return_value mock_s = mock.MagicMock() mock_s.VirtualSystemType = self._vmutils._VIRTUAL_SYSTEM_TYPE_REALIZED mock_vm.associators.return_value = [mock_s] self._vmutils._set_vm_memory = mock.MagicMock() self._vmutils._set_vm_vcpus = mock.MagicMock() self._vmutils.create_vm(self._FAKE_VM_NAME, self._FAKE_MEMORY_MB, self._FAKE_VCPUS_NUM, False, self._FAKE_DYNAMIC_MEMORY_RATIO) self.assertTrue(mock_svc.DefineSystem.called) self._vmutils._set_vm_memory.assert_called_with( mock_vm, mock_s, self._FAKE_MEMORY_MB, self._FAKE_DYNAMIC_MEMORY_RATIO) self._vmutils._set_vm_vcpus.assert_called_with(mock_vm, mock_s, self._FAKE_VCPUS_NUM, False) def test_attach_ide_drive(self): self._lookup_vm() self._vmutils._get_vm_ide_controller = mock.MagicMock() self._vmutils._get_new_resource_setting_data = mock.MagicMock() self._vmutils._add_virt_resource = mock.MagicMock() self._vmutils.attach_ide_drive(self._FAKE_VM_NAME, self._FAKE_CTRL_PATH, self._FAKE_CTRL_ADDR, self._FAKE_DRIVE_ADDR) self.assertTrue(self._vmutils._get_vm_ide_controller.called) self.assertTrue(self._vmutils._get_new_resource_setting_data.called) self.assertTrue(self._vmutils._add_virt_resource.called) def test_attach_volume_to_controller(self): self._lookup_vm() self._vmutils._add_virt_resource = mock.MagicMock() self._vmutils.attach_volume_to_controller(self._FAKE_VM_NAME, self._FAKE_CTRL_PATH, self._FAKE_CTRL_ADDR, self._FAKE_MOUNTED_DISK_PATH) self.assertTrue(self._vmutils._add_virt_resource.called) def test_create_scsi_controller(self): self._lookup_vm() self._vmutils._add_virt_resource = mock.MagicMock() self._vmutils.create_scsi_controller(self._FAKE_VM_NAME) self.assertTrue(self._vmutils._add_virt_resource.called) def test_get_vm_storage_paths(self): mock_vm = self._lookup_vm() mock_vmsettings = [mock.MagicMock()] mock_vm.associators.return_value = mock_vmsettings mock_sasds = [] mock_sasd1 = mock.MagicMock() mock_sasd1.ResourceSubType = self._vmutils._IDE_DISK_RES_SUB_TYPE mock_sasd1.HostResource = [self._FAKE_VHD_PATH] mock_sasd2 = mock.MagicMock() mock_sasd2.ResourceSubType = self._vmutils._PHYS_DISK_RES_SUB_TYPE mock_sasd2.HostResource = [self._FAKE_VOLUME_DRIVE_PATH] mock_sasds.append(mock_sasd1) mock_sasds.append(mock_sasd2) mock_vmsettings[0].associators.return_value = mock_sasds storage = self._vmutils.get_vm_storage_paths(self._FAKE_VM_NAME) (disk_files, volume_drives) = storage mock_vm.associators.assert_called_with( wmi_result_class='Msvm_VirtualSystemSettingData') mock_vmsettings[0].associators.assert_called_with( wmi_result_class='Msvm_StorageAllocationSettingData') self.assertEqual([self._FAKE_VHD_PATH], disk_files) self.assertEqual([self._FAKE_VOLUME_DRIVE_PATH], volume_drives) def test_destroy(self): self._lookup_vm() mock_svc = self._vmutils._conn.Msvm_VirtualSystemManagementService()[0] mock_svc.DestroySystem.return_value = (self._FAKE_JOB_PATH, self._FAKE_RET_VAL) self._vmutils.destroy_vm(self._FAKE_VM_NAME) mock_svc.DestroySystem.assert_called_with(self._FAKE_VM_PATH) def test_get_vm_state(self): self._vmutils.get_vm_summary_info = mock.MagicMock( return_value={'EnabledState': self._FAKE_ENABLED_STATE}) enabled_state = self._vmutils.get_vm_state(self._FAKE_VM_NAME) self.assertEqual(self._FAKE_ENABLED_STATE, enabled_state) def test_take_vm_snapshot(self): self._lookup_vm() mock_svc = self._vmutils._conn.Msvm_VirtualSystemSnapshotService()[0] mock_svc.CreateSnapshot.return_value = (self._FAKE_JOB_PATH, mock.MagicMock(), self._FAKE_RET_VAL) vmutilsv2.wmi = mock.MagicMock() self._vmutils.take_vm_snapshot(self._FAKE_VM_NAME) mock_svc.CreateSnapshot.assert_called_with( AffectedSystem=self._FAKE_VM_PATH, SnapshotType=self._vmutils._SNAPSHOT_FULL) def test_remove_vm_snapshot(self): mock_svc = self._vmutils._conn.Msvm_VirtualSystemSnapshotService()[0] mock_svc.DestroySnapshot.return_value = (self._FAKE_JOB_PATH, self._FAKE_RET_VAL) self._vmutils.remove_vm_snapshot(self._FAKE_SNAPSHOT_PATH) mock_svc.DestroySnapshot.assert_called_with(self._FAKE_SNAPSHOT_PATH) def test_set_nic_connection(self): self._lookup_vm() self._vmutils._get_nic_data_by_name = mock.MagicMock() self._vmutils._add_virt_resource = mock.MagicMock() fake_eth_port = mock.MagicMock() self._vmutils._get_new_setting_data = mock.MagicMock( return_value=fake_eth_port) self._vmutils.set_nic_connection(self._FAKE_VM_NAME, None, None) self._vmutils._add_virt_resource.assert_called_with(fake_eth_port, self._FAKE_VM_PATH) def test_add_virt_resource(self): mock_svc = self._vmutils._conn.Msvm_VirtualSystemManagementService()[0] mock_svc.AddResourceSettings.return_value = (self._FAKE_JOB_PATH, mock.MagicMock(), self._FAKE_RET_VAL) mock_res_setting_data = mock.MagicMock() mock_res_setting_data.GetText_.return_value = self._FAKE_RES_DATA self._vmutils._add_virt_resource(mock_res_setting_data, self._FAKE_VM_PATH) mock_svc.AddResourceSettings.assert_called_with(self._FAKE_VM_PATH, [self._FAKE_RES_DATA]) def test_modify_virt_resource(self): mock_svc = self._vmutils._conn.Msvm_VirtualSystemManagementService()[0] mock_svc.ModifyResourceSettings.return_value = (self._FAKE_JOB_PATH, mock.MagicMock(), self._FAKE_RET_VAL) mock_res_setting_data = mock.MagicMock() mock_res_setting_data.GetText_.return_value = self._FAKE_RES_DATA self._vmutils._modify_virt_resource(mock_res_setting_data, self._FAKE_VM_PATH) mock_svc.ModifyResourceSettings.assert_called_with( ResourceSettings=[self._FAKE_RES_DATA]) def test_remove_virt_resource(self): mock_svc = self._vmutils._conn.Msvm_VirtualSystemManagementService()[0] mock_svc.RemoveResourceSettings.return_value = (self._FAKE_JOB_PATH, self._FAKE_RET_VAL) mock_res_setting_data = mock.MagicMock() mock_res_setting_data.path_.return_value = self._FAKE_RES_PATH self._vmutils._remove_virt_resource(mock_res_setting_data, self._FAKE_VM_PATH) mock_svc.RemoveResourceSettings.assert_called_with( [self._FAKE_RES_PATH]) def test_enable_vm_metrics_collection(self): self._lookup_vm() mock_svc = self._vmutils._conn.Msvm_MetricService()[0] metric_def = mock.MagicMock() fake_metric_def_paths = ["fake_0", "fake_1", "fake_2"] metric_def.path_.side_effect = fake_metric_def_paths self._vmutils._conn.CIM_BaseMetricDefinition.return_value = [ metric_def] self._vmutils.enable_vm_metrics_collection(self._FAKE_VM_NAME) calls = [] for fake_metric_def_path in fake_metric_def_paths: calls.append(mock.call( Subject=self._FAKE_VM_PATH, Definition=fake_metric_def_path, MetricCollectionEnabled=self._vmutils._METRIC_ENABLED)) mock_svc.ControlMetrics.assert_has_calls(calls, any_order=True)
from __future__ import absolute_import from django.db.models import Q from rest_framework import serializers, status from rest_framework.response import Response from sentry import roles from sentry.api.bases.organization import OrganizationEndpoint, OrganizationPermission from sentry.api.exceptions import ResourceDoesNotExist from sentry.api.serializers import serialize from sentry.api.serializers.models.team import TeamWithProjectsSerializer from sentry.auth.superuser import is_active_superuser from sentry.models import ( AuditLogEntryEvent, OrganizationAccessRequest, OrganizationMember, OrganizationMemberTeam, Team, ) ERR_INSUFFICIENT_ROLE = "You do not have permission to edit that user's membership." class OrganizationMemberTeamSerializer(serializers.Serializer): isActive = serializers.BooleanField() class RelaxedOrganizationPermission(OrganizationPermission): _allowed_scopes = [ "org:read", "org:write", "org:admin", "member:read", "member:write", "member:admin", ] scope_map = { "GET": _allowed_scopes, "POST": _allowed_scopes, "PUT": _allowed_scopes, "DELETE": _allowed_scopes, } class OrganizationMemberTeamDetailsEndpoint(OrganizationEndpoint): permission_classes = [RelaxedOrganizationPermission] def _can_create_team_member(self, request, organization, team_slug): """ User can join or add a member to a team: * If they are an active superuser * If they are a team admin or have global write access * If the open membership organization setting is enabled """ return ( is_active_superuser(request) or self._can_admin_team(request, organization, team_slug) or organization.flags.allow_joinleave ) def _can_delete(self, request, member, organization, team_slug): """ User can remove a member from a team: * If they are an active superuser * If they are removing their own membership * If they are a team admin or have global write access """ if is_active_superuser(request): return True if not request.user.is_authenticated(): return False if request.user.id == member.user_id: return True if self._can_admin_team(request, organization, team_slug): return True return False def _can_admin_team(self, request, organization, team_slug): global_roles = [r.id for r in roles.with_scope("org:write") if r.is_global] team_roles = [r.id for r in roles.with_scope("team:write")] # must be a team admin or have global write access return OrganizationMember.objects.filter( Q(role__in=global_roles) | Q(organizationmemberteam__team__slug=team_slug, role__in=team_roles), organization=organization, user__id=request.user.id, user__is_active=True, ).exists() def _get_member(self, request, organization, member_id): if member_id == "me": queryset = OrganizationMember.objects.filter( organization=organization, user__id=request.user.id, user__is_active=True ) else: queryset = OrganizationMember.objects.filter( Q(user__is_active=True) | Q(user__isnull=True), organization=organization, id=member_id, ) return queryset.select_related("user").get() def _create_access_request(self, request, team, member): omt, created = OrganizationAccessRequest.objects.get_or_create(team=team, member=member) if not created: return requester = request.user if request.user != member.user else None if requester: omt.update(requester=requester) omt.send_request_email() def post(self, request, organization, member_id, team_slug): """ Join, request access to or add a member to a team. If the user needs permission to join the team, an access request will be generated and the returned status code will be 202. If the user is already a member of the team, this will simply return a 204. """ try: member = self._get_member(request, organization, member_id) except OrganizationMember.DoesNotExist: raise ResourceDoesNotExist if not request.user.is_authenticated(): return Response(status=status.HTTP_401_UNAUTHORIZED) try: team = Team.objects.get(organization=organization, slug=team_slug) except Team.DoesNotExist: raise ResourceDoesNotExist try: omt = OrganizationMemberTeam.objects.get(team=team, organizationmember=member) except OrganizationMemberTeam.DoesNotExist: if self._can_create_team_member(request, organization, team_slug): omt = OrganizationMemberTeam.objects.create(team=team, organizationmember=member) else: self._create_access_request(request, team, member) return Response(status=202) else: return Response(status=204) self.create_audit_entry( request=request, organization=organization, target_object=omt.id, target_user=member.user, event=AuditLogEntryEvent.MEMBER_JOIN_TEAM, data=omt.get_audit_log_data(), ) return Response(serialize(team, request.user, TeamWithProjectsSerializer()), status=201) def delete(self, request, organization, member_id, team_slug): """ Leave or remove a member from a team """ try: member = self._get_member(request, organization, member_id) except OrganizationMember.DoesNotExist: raise ResourceDoesNotExist if not self._can_delete(request, member, organization, team_slug): return Response({"detail": ERR_INSUFFICIENT_ROLE}, status=400) try: team = Team.objects.get(organization=organization, slug=team_slug) except Team.DoesNotExist: raise ResourceDoesNotExist try: omt = OrganizationMemberTeam.objects.get(team=team, organizationmember=member) except OrganizationMemberTeam.DoesNotExist: pass else: self.create_audit_entry( request=request, organization=organization, target_object=omt.id, target_user=member.user, event=AuditLogEntryEvent.MEMBER_LEAVE_TEAM, data=omt.get_audit_log_data(), ) omt.delete() return Response(serialize(team, request.user, TeamWithProjectsSerializer()), status=200)
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ Helper module for computations when modelling sessions. In particular, this module is for when each session is a list of the Cmd datatype with the params attribute set to a set of accompanying params. """ from collections import defaultdict from typing import Tuple, List, Union, DefaultDict import copy import numpy as np from ..utils.data_structures import StateMatrix, Cmd from ..utils.laplace_smooth import ( laplace_smooth_cmd_counts, laplace_smooth_param_counts, ) from ....common.exceptions import MsticpyException # pylint: disable=too-many-locals, too-many-branches def compute_counts( # nosec sessions: List[List[Cmd]], start_token: str, end_token: str ) -> Tuple[ DefaultDict[str, int], DefaultDict[str, DefaultDict[str, int]], DefaultDict[str, int], DefaultDict[str, DefaultDict[str, int]], ]: """ Compute the training counts for the sessions. In particular, computes counts of individual commands and of sequences of two commands. It also computes the counts of individual params as well as counts of params conditional on the command. Parameters ---------- sessions: List[List[Cmd]] each session is a list of the Cmd datatype. Where the Cmd datatype has a name attribute (command name) and a params attribute (set containing params associated with the command) an example session: [Cmd(name='Set-User', params={'Identity', 'Force'}), Cmd(name='Set-Mailbox', params={'Identity', 'AuditEnabled'})] start_token: str dummy command to signify the start of a session (e.g. "##START##") end_token: str dummy command to signify the end of a session (e.g. "##END##") Returns ------- tuple of counts: individual command counts, sequence command (length 2) counts, individual param counts, param conditional on command counts """ seq1_counts: DefaultDict[str, int] = defaultdict(lambda: 0) seq2_counts: DefaultDict[str, DefaultDict[str, int]] = defaultdict( lambda: defaultdict(lambda: 0) ) param_counts: DefaultDict[str, int] = defaultdict(lambda: 0) cmd_param_counts: DefaultDict[str, DefaultDict[str, int]] = defaultdict( lambda: defaultdict(lambda: 0) ) for session in sessions: prev = start_token seq1_counts[prev] += 1 for cmd in session: seq1_counts[cmd.name] += 1 seq2_counts[prev][cmd.name] += 1 prev = cmd.name for par in cmd.params: param_counts[par] += 1 cmd_param_counts[cmd.name][par] += 1 seq2_counts[prev][end_token] += 1 seq1_counts[end_token] += 1 return seq1_counts, seq2_counts, param_counts, cmd_param_counts def laplace_smooth_counts( seq1_counts: DefaultDict[str, int], seq2_counts: DefaultDict[str, DefaultDict[str, int]], param_counts: DefaultDict[str, int], cmd_param_counts: DefaultDict[str, DefaultDict[str, int]], start_token: str, end_token: str, unk_token: str, ): """ Laplace smoothing is applied to the counts. We do this by adding 1 to each of the counts. This is so we shift some of the probability mass from the very probable commands/params to the unseen and very unlikely commands/params. The `unk_token` means we can handle unseen commands, sequences of commands and params Parameters ---------- seq1_counts: DefaultDict[str, int] individual command counts seq2_counts: DefaultDict[str, DefaultDict[str, int]] sequence command (length 2) counts param_counts: DefaultDict[str, int] individual param counts cmd_param_counts: DefaultDict[str, DefaultDict[str, int]] param conditional on command counts start_token: str dummy command to signify the start of a session (e.g. "##START##") end_token: str dummy command to signify the end of a session (e.g. "##END##") unk_token: str dummy command to signify an unseen command (e.g. "##UNK##") Returns ------- tuple of StateMatrix counts: individual command counts, sequence command (length 2) counts, individual param counts, param conditional on command counts """ cmds: List[str] = list(seq1_counts.keys()) + [unk_token] # apply laplace smoothing for cmds seq1_counts_ls, seq2_counts_ls = laplace_smooth_cmd_counts( seq1_counts=copy.deepcopy(seq1_counts), seq2_counts=copy.deepcopy(seq2_counts), start_token=start_token, end_token=end_token, unk_token=unk_token, ) # apply laplace smoothing for params param_counts_ls, cmd_param_counts_ls = laplace_smooth_param_counts( cmds=cmds, param_counts=copy.deepcopy(param_counts), cmd_param_counts=copy.deepcopy(cmd_param_counts), unk_token=unk_token, ) seq1_counts_sm = StateMatrix(states=seq1_counts_ls, unk_token=unk_token) seq2_counts_sm = StateMatrix(states=seq2_counts_ls, unk_token=unk_token) param_counts_sm = StateMatrix(states=param_counts_ls, unk_token=unk_token) cmd_param_counts_sm = StateMatrix(states=cmd_param_counts_ls, unk_token=unk_token) return seq1_counts_sm, seq2_counts_sm, param_counts_sm, cmd_param_counts_sm def compute_prob_setofparams_given_cmd( cmd: str, params: Union[set, dict], param_cond_cmd_probs: Union[StateMatrix, dict], use_geo_mean: bool = True, ) -> float: """ Compute probability of a set of params given the cmd. Parameters ---------- cmd: str name of command (e.g. for Exchange powershell commands: "Set-Mailbox") params: Union[set, dict] set of accompanying params for the cmd (e.g for Exchange powershell commands: {'Identity', 'ForwardingEmailAddress'}). If params is set to be a dictionary of accompanying params and values, then only the keys of the dict will be used. param_cond_cmd_probs: Union[StateMatrix, dict] computed probabilities of params conditional on the command use_geo_mean: bool if True, then the likelihood will be raised to the power of (1/K) where K is the number of distinct params which appeared for the given `cmd` across our training set. See Notes. Returns ------- float computed likelihood Notes ----- `use_geo_mean` - Some commands may have more params set in general compared with other commands. It can be useful to use the geo mean so that you can compare this probability across different commands with differing number of params """ pars = params.copy() if isinstance(pars, dict): pars = set(pars.keys()) if len(pars) == 0: return 1.0 ref = param_cond_cmd_probs[cmd] lik: float = 1 for param, prob in ref.items(): if param in pars: lik *= prob else: lik *= 1 - prob if use_geo_mean: k = len(ref) lik = lik ** (1 / k) return lik # pylint: disable=too-many-locals, too-many-arguments, too-many-branches def compute_likelihood_window( window: List[Cmd], prior_probs: Union[StateMatrix, dict], trans_probs: Union[StateMatrix, dict], param_cond_cmd_probs: Union[StateMatrix, dict], use_start_token: bool, use_end_token: bool, start_token: str = None, end_token: str = None, ) -> float: """ Compute the likelihood of the input `window`. Parameters ---------- window: List[Cmd] part or all of a session, where a session is a list of the Cmd datatype an example session: [Cmd(name='Set-User', params={'Identity', 'Force'}), Cmd(name='Set-Mailbox', params={'Identity', 'AuditEnabled'})] prior_probs: Union[StateMatrix, dict] computed probabilities of individual commands trans_probs: Union[StateMatrix, dict] computed probabilities of sequences of commands (length 2) param_cond_cmd_probs: Union[StateMatrix, dict] computed probabilities of the params conditional on the commands use_start_token: bool if set to True, the start_token will be prepended to the window before the likelihood calculation is done use_end_token: bool if set to True, the end_token will be appended to the window before the likelihood calculation is done start_token: str dummy command to signify the start of the session (e.g. "##START##") end_token: str dummy command to signify the end of the session (e.g. "##END##") Returns ------- likelihood of the window """ if use_end_token: if end_token is None: raise MsticpyException( "end_token should not be None, when use_end_token is True" ) if use_start_token: if start_token is None: raise MsticpyException( "start_token should not be None, when use_start_token is True" ) w_len = len(window) if w_len == 0: return np.nan prob: float = 1 cur_cmd = window[0].name params = window[0].params param_cond_prob = compute_prob_setofparams_given_cmd( cmd=cur_cmd, params=params, param_cond_cmd_probs=param_cond_cmd_probs, use_geo_mean=True, ) if use_start_token: prob *= trans_probs[start_token][cur_cmd] * param_cond_prob else: prob *= prior_probs[cur_cmd] * param_cond_prob for i in range(1, w_len): prev, cur = window[i - 1], window[i] prev_cmd, cur_cmd = prev.name, cur.name cur_par = cur.params prob *= trans_probs[prev_cmd][cur_cmd] param_cond_prob = compute_prob_setofparams_given_cmd( cmd=cur_cmd, params=cur_par, param_cond_cmd_probs=param_cond_cmd_probs, use_geo_mean=True, ) prob *= param_cond_prob if use_end_token: prob *= trans_probs[cur_cmd][end_token] return prob # pylint: disable=too-many-locals, too-many-arguments, too-many-branches def compute_likelihood_windows_in_session( session: List[Cmd], prior_probs: Union[StateMatrix, dict], trans_probs: Union[StateMatrix, dict], param_cond_cmd_probs: Union[StateMatrix, dict], window_len: int, use_start_end_tokens: bool, start_token: str = None, end_token: str = None, use_geo_mean: bool = False, ) -> List[float]: """ Compute the likelihoods of a sliding window in the session. Parameters ---------- session: List[Cmd] list of Cmd datatype an example session: [Cmd(name='Set-User', params={'Identity', 'Force'}), Cmd(name='Set-Mailbox', params={'Identity', 'AuditEnabled'})] prior_probs: Union[StateMatrix, dict] computed probabilities of individual commands trans_probs: Union[StateMatrix, dict] computed probabilities of sequences of commands (length 2) param_cond_cmd_probs: Union[StateMatrix, dict] computed probabilities of the params conditional on the command window_len: int length of sliding window for likelihood calculations use_start_end_tokens: bool if True, then `start_token` and `end_token` will be prepended and appended to the session respectively before the calculations are done start_token: str dummy command to signify the start of the session (e.g. "##START##") end_token: str dummy command to signify the end of the session (e.g. "##END##") use_geo_mean: bool if True, then each of the likelihoods of the sliding windows will be raised to the power of (1/`window_len`) Returns ------- List[float] list of likelihoods """ if use_start_end_tokens: if start_token is None or end_token is None: raise MsticpyException( "start_token and end_token should not be set to None when " "use_start_end_tokens is set to True" ) likelihoods = [] sess = session.copy() if use_start_end_tokens and end_token: sess += [Cmd(name=str(end_token), params={})] end = len(sess) - window_len for i in range(end + 1): window = sess[i : i + window_len] # noqa E203 if i == 0: use_start = use_start_end_tokens else: use_start = False lik = compute_likelihood_window( window=window, prior_probs=prior_probs, trans_probs=trans_probs, param_cond_cmd_probs=param_cond_cmd_probs, use_start_token=use_start, use_end_token=False, start_token=start_token, end_token=end_token, ) if use_geo_mean: k = window_len lik = lik ** (1 / k) likelihoods.append(lik) return likelihoods # pylint: disable=too-many-arguments def rarest_window_session( session: List[Cmd], prior_probs: StateMatrix, trans_probs: StateMatrix, param_cond_cmd_probs: StateMatrix, window_len: int, use_start_end_tokens: bool, start_token: str, end_token: str, use_geo_mean=False, ) -> Tuple[List[Cmd], float]: """ Find and compute the likelihood of the rarest window of `window_len` in the session. Parameters ---------- session: List[Cmd] list of Cmd datatype an example session: [Cmd(name='Set-User', params={'Identity', 'Force'}), Cmd(name='Set-Mailbox', params={'Identity', 'AuditEnabled'})] prior_probs: Union[StateMatrix, dict] computed probabilities of individual commands trans_probs: Union[StateMatrix, dict] computed probabilities of sequences of commands (length 2) param_cond_cmd_probs: Union[StateMatrix, dict] computed probabilities of the params conditional on the command window_len: int length of sliding window for likelihood calculations use_start_end_tokens: bool if True, then `start_token` and `end_token` will be prepended and appended to the session respectively before the calculations are done start_token: str dummy command to signify the start of the session (e.g. "##START##") end_token: str dummy command to signify the end of the session (e.g. "##END##") use_geo_mean: bool if True, then each of the likelihoods of the sliding windows will be raised to the power of (1/`window_len`) Returns ------- Tuple: rarest window part of the session, likelihood of the rarest window """ likelihoods = compute_likelihood_windows_in_session( session=session, prior_probs=prior_probs, trans_probs=trans_probs, param_cond_cmd_probs=param_cond_cmd_probs, window_len=window_len, use_start_end_tokens=use_start_end_tokens, start_token=start_token, end_token=end_token, use_geo_mean=use_geo_mean, ) if len(likelihoods) == 0: return [], np.nan min_lik = min(likelihoods) ind = likelihoods.index(min_lik) return session[ind : ind + window_len], min_lik # noqa E203
from django.utils.translation import ugettext_lazy as _ # ISO 3166-1 country names and codes adapted from http://opencountrycodes.appspot.com/python/ CONTINENTS = [ (u'africa', _(u'Africa')), (u'antarctica', _(u'Antarctica')), (u'asia', _(u'Asia')), (u'europe', _(u'Europe')), (u'north-america', _(u'North America')), (u'oceania', _(u'Oceania')), (u'south-america', _(u'South America')), ] COUNTRIES = ( (u'GB', _(u'United Kingdom')), (u'AF', _(u'Afghanistan')), (u'AX', _(u'Aland Islands')), (u'AL', _(u'Albania')), (u'DZ', _(u'Algeria')), (u'AS', _(u'American Samoa')), (u'AD', _(u'Andorra')), (u'AO', _(u'Angola')), (u'AI', _(u'Anguilla')), (u'AQ', _(u'Antarctica')), (u'AG', _(u'Antigua and Barbuda')), (u'AR', _(u'Argentina')), (u'AM', _(u'Armenia')), (u'AW', _(u'Aruba')), (u'AU', _(u'Australia')), (u'AT', _(u'Austria')), (u'AZ', _(u'Azerbaijan')), (u'BS', _(u'Bahamas')), (u'BH', _(u'Bahrain')), (u'BD', _(u'Bangladesh')), (u'BB', _(u'Barbados')), (u'BY', _(u'Belarus')), (u'BE', _(u'Belgium')), (u'BZ', _(u'Belize')), (u'BJ', _(u'Benin')), (u'BM', _(u'Bermuda')), (u'BT', _(u'Bhutan')), (u'BO', _(u'Bolivia')), (u'BA', _(u'Bosnia and Herzegovina')), (u'BW', _(u'Botswana')), (u'BV', _(u'Bouvet Island')), (u'BR', _(u'Brazil')), (u'IO', _(u'British Indian Ocean Territory')), (u'BN', _(u'Brunei Darussalam')), (u'BG', _(u'Bulgaria')), (u'BF', _(u'Burkina Faso')), (u'BI', _(u'Burundi')), (u'KH', _(u'Cambodia')), (u'CM', _(u'Cameroon')), (u'CA', _(u'Canada')), (u'CV', _(u'Cape Verde')), (u'KY', _(u'Cayman Islands')), (u'CF', _(u'Central African Republic')), (u'TD', _(u'Chad')), (u'CL', _(u'Chile')), (u'CN', _(u'China')), (u'CX', _(u'Christmas Island')), (u'CC', _(u'Cocos (Keeling) Islands')), (u'CO', _(u'Colombia')), (u'KM', _(u'Comoros')), (u'CG', _(u'Congo')), (u'CD', _(u'Congo, The Democratic Republic of the')), (u'CK', _(u'Cook Islands')), (u'CR', _(u'Costa Rica')), (u'CI', _(u'Cote d\'Ivoire')), (u'HR', _(u'Croatia')), (u'CU', _(u'Cuba')), (u'CY', _(u'Cyprus')), (u'CZ', _(u'Czech Republic')), (u'DK', _(u'Denmark')), (u'DJ', _(u'Djibouti')), (u'DM', _(u'Dominica')), (u'DO', _(u'Dominican Republic')), (u'EC', _(u'Ecuador')), (u'EG', _(u'Egypt')), (u'SV', _(u'El Salvador')), (u'GQ', _(u'Equatorial Guinea')), (u'ER', _(u'Eritrea')), (u'EE', _(u'Estonia')), (u'ET', _(u'Ethiopia')), (u'FK', _(u'Falkland Islands (Malvinas)')), (u'FO', _(u'Faroe Islands')), (u'FJ', _(u'Fiji')), (u'FI', _(u'Finland')), (u'FR', _(u'France')), (u'GF', _(u'French Guiana')), (u'PF', _(u'French Polynesia')), (u'TF', _(u'French Southern Territories')), (u'GA', _(u'Gabon')), (u'GM', _(u'Gambia')), (u'GE', _(u'Georgia')), (u'DE', _(u'Germany')), (u'GH', _(u'Ghana')), (u'GI', _(u'Gibraltar')), (u'GR', _(u'Greece')), (u'GL', _(u'Greenland')), (u'GD', _(u'Grenada')), (u'GP', _(u'Guadeloupe')), (u'GU', _(u'Guam')), (u'GT', _(u'Guatemala')), (u'GG', _(u'Guernsey')), (u'GN', _(u'Guinea')), (u'GW', _(u'Guinea-Bissau')), (u'GY', _(u'Guyana')), (u'HT', _(u'Haiti')), (u'HM', _(u'Heard Island and McDonald Islands')), (u'VA', _(u'Holy See (Vatican City State)')), (u'HN', _(u'Honduras')), (u'HK', _(u'Hong Kong')), (u'HU', _(u'Hungary')), (u'IS', _(u'Iceland')), (u'IN', _(u'India')), (u'ID', _(u'Indonesia')), (u'IR', _(u'Iran, Islamic Republic of')), (u'IQ', _(u'Iraq')), (u'IE', _(u'Ireland')), (u'IM', _(u'Isle of Man')), (u'IL', _(u'Israel')), (u'IT', _(u'Italy')), (u'JM', _(u'Jamaica')), (u'JP', _(u'Japan')), (u'JE', _(u'Jersey')), (u'JO', _(u'Jordan')), (u'KZ', _(u'Kazakhstan')), (u'KE', _(u'Kenya')), (u'KI', _(u'Kiribati')), (u'KP', _(u'Korea, Democratic People\'s Republic of')), (u'KR', _(u'Korea, Republic of')), (u'KW', _(u'Kuwait')), (u'KG', _(u'Kyrgyzstan')), (u'LA', _(u'Lao People\'s Democratic Republic')), (u'LV', _(u'Latvia')), (u'LB', _(u'Lebanon')), (u'LS', _(u'Lesotho')), (u'LR', _(u'Liberia')), (u'LY', _(u'Libyan Arab Jamahiriya')), (u'LI', _(u'Liechtenstein')), (u'LT', _(u'Lithuania')), (u'LU', _(u'Luxembourg')), (u'MO', _(u'Macao')), (u'MK', _(u'Macedonia, The Former Yugoslav Republic of')), (u'MG', _(u'Madagascar')), (u'MW', _(u'Malawi')), (u'MY', _(u'Malaysia')), (u'MV', _(u'Maldives')), (u'ML', _(u'Mali')), (u'MT', _(u'Malta')), (u'MH', _(u'Marshall Islands')), (u'MQ', _(u'Martinique')), (u'MR', _(u'Mauritania')), (u'MU', _(u'Mauritius')), (u'YT', _(u'Mayotte')), (u'MX', _(u'Mexico')), (u'FM', _(u'Micronesia, Federated States of')), (u'MD', _(u'Moldova')), (u'MC', _(u'Monaco')), (u'MN', _(u'Mongolia')), (u'ME', _(u'Montenegro')), (u'MS', _(u'Montserrat')), (u'MA', _(u'Morocco')), (u'MZ', _(u'Mozambique')), (u'MM', _(u'Myanmar')), (u'NA', _(u'Namibia')), (u'NR', _(u'Nauru')), (u'NP', _(u'Nepal')), (u'NL', _(u'Netherlands')), (u'AN', _(u'Netherlands Antilles')), (u'NC', _(u'New Caledonia')), (u'NZ', _(u'New Zealand')), (u'NI', _(u'Nicaragua')), (u'NE', _(u'Niger')), (u'NG', _(u'Nigeria')), (u'NU', _(u'Niue')), (u'NF', _(u'Norfolk Island')), (u'MP', _(u'Northern Mariana Islands')), (u'NO', _(u'Norway')), (u'OM', _(u'Oman')), (u'PK', _(u'Pakistan')), (u'PW', _(u'Palau')), (u'PS', _(u'Palestinian Territory, Occupied')), (u'PA', _(u'Panama')), (u'PG', _(u'Papua New Guinea')), (u'PY', _(u'Paraguay')), (u'PE', _(u'Peru')), (u'PH', _(u'Philippines')), (u'PN', _(u'Pitcairn')), (u'PL', _(u'Poland')), (u'PT', _(u'Portugal')), (u'PR', _(u'Puerto Rico')), (u'QA', _(u'Qatar')), (u'RE', _(u'Reunion')), (u'RO', _(u'Romania')), (u'RU', _(u'Russian Federation')), (u'RW', _(u'Rwanda')), (u'BL', _(u'Saint Barthelemy')), (u'SH', _(u'Saint Helena')), (u'KN', _(u'Saint Kitts and Nevis')), (u'LC', _(u'Saint Lucia')), (u'MF', _(u'Saint Martin')), (u'PM', _(u'Saint Pierre and Miquelon')), (u'VC', _(u'Saint Vincent and the Grenadines')), (u'WS', _(u'Samoa')), (u'SM', _(u'San Marino')), (u'ST', _(u'Sao Tome and Principe')), (u'SA', _(u'Saudi Arabia')), (u'SN', _(u'Senegal')), (u'RS', _(u'Serbia')), (u'SC', _(u'Seychelles')), (u'SL', _(u'Sierra Leone')), (u'SG', _(u'Singapore')), (u'SK', _(u'Slovakia')), (u'SI', _(u'Slovenia')), (u'SB', _(u'Solomon Islands')), (u'SO', _(u'Somalia')), (u'ZA', _(u'South Africa')), (u'GS', _(u'South Georgia and the South Sandwich Islands')), (u'ES', _(u'Spain')), (u'LK', _(u'Sri Lanka')), (u'SD', _(u'Sudan')), (u'SR', _(u'Suriname')), (u'SJ', _(u'Svalbard and Jan Mayen')), (u'SZ', _(u'Swaziland')), (u'SE', _(u'Sweden')), (u'CH', _(u'Switzerland')), (u'SY', _(u'Syrian Arab Republic')), (u'TW', _(u'Taiwan, Province of China')), (u'TJ', _(u'Tajikistan')), (u'TZ', _(u'Tanzania, United Republic of')), (u'TH', _(u'Thailand')), (u'TL', _(u'Timor-Leste')), (u'TG', _(u'Togo')), (u'TK', _(u'Tokelau')), (u'TO', _(u'Tonga')), (u'TT', _(u'Trinidad and Tobago')), (u'TN', _(u'Tunisia')), (u'TR', _(u'Turkey')), (u'TM', _(u'Turkmenistan')), (u'TC', _(u'Turks and Caicos Islands')), (u'TV', _(u'Tuvalu')), (u'UG', _(u'Uganda')), (u'UA', _(u'Ukraine')), (u'AE', _(u'United Arab Emirates')), (u'US', _(u'United States')), (u'UM', _(u'United States Minor Outlying Islands')), (u'UY', _(u'Uruguay')), (u'UZ', _(u'Uzbekistan')), (u'VU', _(u'Vanuatu')), (u'VE', _(u'Venezuela')), (u'VN', _(u'Viet Nam')), (u'VG', _(u'Virgin Islands, British')), (u'VI', _(u'Virgin Islands, U.S.')), (u'WF', _(u'Wallis and Futuna')), (u'EH', _(u'Western Sahara')), (u'YE', _(u'Yemen')), (u'ZM', _(u'Zambia')), (u'ZW', _(u'Zimbabwe')), ) CONTINENT_COUNTRIES = ( (_(u'Africa'), ( (u'DZ', _(u'Algeria')), (u'AO', _(u'Angola')), (u'BJ', _(u'Benin')), (u'BW', _(u'Botswana')), (u'BF', _(u'Burkina Faso')), (u'BI', _(u'Burundi')), (u'CM', _(u'Cameroon')), (u'CV', _(u'Cape Verde')), (u'CF', _(u'Central African Republic')), (u'TD', _(u'Chad')), (u'KM', _(u'Comoros')), (u'CG', _(u'Congo')), (u'CD', _(u'Congo, The Democratic Republic of the')), (u'CI', _(u'Cote d\'Ivoire')), (u'DJ', _(u'Djibouti')), (u'EG', _(u'Egypt')), (u'GQ', _(u'Equatorial Guinea')), (u'ER', _(u'Eritrea')), (u'ET', _(u'Ethiopia')), (u'GA', _(u'Gabon')), (u'GM', _(u'Gambia')), (u'GH', _(u'Ghana')), (u'GN', _(u'Guinea')), (u'GW', _(u'Guinea-Bissau')), (u'KE', _(u'Kenya')), (u'LS', _(u'Lesotho')), (u'LR', _(u'Liberia')), (u'LY', _(u'Libyan Arab Jamahiriya')), (u'MG', _(u'Madagascar')), (u'YT', _(u'Mayotte')), (u'MW', _(u'Malawi')), (u'ML', _(u'Mali')), (u'MR', _(u'Mauritania')), (u'MU', _(u'Mauritius')), (u'MA', _(u'Morocco')), (u'MZ', _(u'Mozambique')), (u'NA', _(u'Namibia')), (u'NE', _(u'Niger')), (u'NG', _(u'Nigeria')), (u'RE', _(u'Reunion')), (u'RW', _(u'Rwanda')), (u'SH', _(u'Saint Helena')), (u'ST', _(u'Sao Tome and Principe')), (u'SN', _(u'Senegal')), (u'SC', _(u'Seychelles')), (u'SL', _(u'Sierra Leone')), (u'SO', _(u'Somalia')), (u'ZA', _(u'South Africa')), (u'SD', _(u'Sudan')), (u'SZ', _(u'Swaziland')), (u'TZ', _(u'Tanzania, United Republic of')), (u'TG', _(u'Togo')), (u'TN', _(u'Tunisia')), (u'UG', _(u'Uganda')), (u'EH', _(u'Western Sahara')), (u'ZM', _(u'Zambia')), (u'ZW', _(u'Zimbabwe')), )), (_(u'Antarctica'), ( (u'AQ', _(u'Antarctica')), (u'BV', _(u'Bouvet Island')), (u'TF', _(u'French Southern Territories')), (u'HM', _(u'Heard Island and McDonald Islands')), )), (_(u'Asia'), ( (u'AF', _(u'Afghanistan')), (u'BH', _(u'Bahrain')), (u'BD', _(u'Bangladesh')), (u'BT', _(u'Bhutan')), (u'IO', _(u'British Indian Ocean Territory')), (u'BN', _(u'Brunei Darussalam')), (u'KH', _(u'Cambodia')), (u'CN', _(u'China')), (u'HK', _(u'Hong Kong')), (u'IR', _(u'Iran, Islamic Republic of')), (u'IN', _(u'India')), (u'ID', _(u'Indonesia')), (u'IQ', _(u'Iraq')), (u'IL', _(u'Israel')), (u'JP', _(u'Japan')), (u'JO', _(u'Jordan')), (u'KZ', _(u'Kazakhstan')), (u'KW', _(u'Kuwait')), (u'KP', _(u'Korea, Democratic People\'s Republic of')), (u'KR', _(u'Korea, Republic of')), (u'LA', _(u'Lao People\'s Democratic Republic')), (u'KG', _(u'Kyrgyzstan')), (u'LB', _(u'Lebanon')), (u'MO', _(u'Macao')), (u'MY', _(u'Malaysia')), (u'MV', _(u'Maldives')), (u'MM', _(u'Myanmar')), (u'MN', _(u'Mongolia')), (u'NP', _(u'Nepal')), (u'OM', _(u'Oman')), (u'PK', _(u'Pakistan')), (u'PS', _(u'Palestinian Territory, Occupied')), (u'PH', _(u'Philippines')), (u'QA', _(u'Qatar')), (u'RU', _(u'Russian Federation')), (u'SA', _(u'Saudi Arabia')), (u'SG', _(u'Singapore')), (u'SY', _(u'Syrian Arab Republic')), (u'LK', _(u'Sri Lanka')), (u'TJ', _(u'Tajikistan')), (u'TW', _(u'Taiwan, Province of China')), (u'TH', _(u'Thailand')), (u'TL', _(u'Timor-Leste')), (u'TR', _(u'Turkey')), (u'TM', _(u'Turkmenistan')), (u'AE', _(u'United Arab Emirates')), (u'UZ', _(u'Uzbekistan')), (u'VN', _(u'Vietnam')), (u'YE', _(u'Yemen')), )), (_(u'Europe'), ( (u'AX', _(u'Aland Islands')), (u'AL', _(u'Albania')), (u'AD', _(u'Andorra')), (u'AM', _(u'Armenia')), (u'AT', _(u'Austria')), (u'AZ', _(u'Azerbaijan')), (u'BY', _(u'Belarus')), (u'BE', _(u'Belgium')), (u'BA', _(u'Bosnia and Herzegovina')), (u'BG', _(u'Bulgaria')), (u'HR', _(u'Croatia')), (u'CY', _(u'Cyprus')), (u'CZ', _(u'Czech Republic')), (u'DK', _(u'Denmark')), (u'EE', _(u'Estonia')), (u'FO', _(u'Faroe Islands')), (u'FI', _(u'Finland')), (u'FR', _(u'France')), (u'GE', _(u'Georgia')), (u'DE', _(u'Germany')), (u'GI', _(u'Gibraltar')), (u'GR', _(u'Greece')), (u'GL', _(u'Greenland')), (u'GG', _(u'Guernsey')), (u'HU', _(u'Hungary')), (u'IS', _(u'Iceland')), (u'IE', _(u'Ireland')), (u'IM', _(u'Isle of Man')), (u'IT', _(u'Italy')), (u'JE', _(u'Jersey')), (u'LV', _(u'Latvia')), (u'LI', _(u'Liechtenstein')), (u'LT', _(u'Lithuania')), (u'LU', _(u'Luxembourg')), (u'MK', _(u'Macedonia, The Former Yugoslav Republic of')), (u'MT', _(u'Malta')), (u'MD', _(u'Moldova')), (u'MC', _(u'Monaco')), (u'ME', _(u'Montenegro')), (u'NL', _(u'Netherlands')), (u'NO', _(u'Norway')), (u'PL', _(u'Poland')), (u'PT', _(u'Portugal')), (u'RO', _(u'Romania')), (u'SM', _(u'San Marino')), (u'RS', _(u'Serbia')), (u'SK', _(u'Slovakia')), (u'SI', _(u'Slovenia')), (u'ES', _(u'Spain')), (u'SJ', _(u'Svalbard and Jan Mayen')), (u'SE', _(u'Sweden')), (u'CH', _(u'Switzerland')), (u'UA', _(u'Ukraine')), (u'GB', _(u'United Kingdom')), (u'VA', _(u'Holy See (Vatican City State)')), )), (_(u'North America'), ( (u'AS', _(u'American Samoa')), (u'AI', _(u'Anguilla')), (u'AG', _(u'Antigua and Barbuda')), (u'AW', _(u'Aruba')), (u'BS', _(u'Bahamas')), (u'BB', _(u'Barbados')), (u'BZ', _(u'Belize')), (u'BM', _(u'Bermuda')), (u'CA', _(u'Canada')), (u'KY', _(u'Cayman Islands')), (u'CR', _(u'Costa Rica')), (u'CU', _(u'Cuba')), (u'DM', _(u'Dominica')), (u'DO', _(u'Dominican Republic')), (u'SV', _(u'El Salvador')), (u'GD', _(u'Grenada')), (u'GP', _(u'Guadeloupe')), (u'GT', _(u'Guatemala')), (u'HT', _(u'Haiti')), (u'HN', _(u'Honduras')), (u'JM', _(u'Jamaica')), (u'MX', _(u'Mexico')), (u'MS', _(u'Montserrat')), (u'AN', _(u'Netherlands Antilles')), (u'NI', _(u'Nicaragua')), (u'PA', _(u'Panama')), (u'PR', _(u'Puerto Rico')), (u'BL', _(u'Saint Barthelemy')), (u'KN', _(u'Saint Kitts and Nevis')), (u'LC', _(u'Saint Lucia')), (u'MF', _(u'Saint Martin')), (u'PM', _(u'Saint Pierre and Miquelon')), (u'VC', _(u'Saint Vincent and the Grenadines')), (u'TT', _(u'Trinidad and Tobago')), (u'TC', _(u'Turks and Caicos Islands')), (u'US', _(u'United States')), (u'UM', _(u'United States Minor Outlying Islands')), (u'VG', _(u'Virgin Islands, British')), (u'VI', _(u'Virgin Islands, U.S.')), )), (_(u'Oceania'), ( (u'AU', _(u'Australia')), (u'CX', _(u'Christmas Island')), (u'CC', _(u'Cocos (Keeling) Islands')), (u'CK', _(u'Cook Islands')), (u'FJ', _(u'Fiji')), (u'PF', _(u'French Polynesia')), (u'GU', _(u'Guam')), (u'KI', _(u'Kiribati')), (u'MH', _(u'Marshall Islands')), (u'FM', _(u'Micronesia, Federated States of')), (u'NR', _(u'Nauru')), (u'NC', _(u'New Caledonia')), (u'NZ', _(u'New Zealand')), (u'NU', _(u'Niue')), (u'NF', _(u'Norfolk Island')), (u'MP', _(u'Northern Mariana Islands')), (u'PW', _(u'Palau')), (u'PG', _(u'Papua New Guinea')), (u'PN', _(u'Pitcairn')), (u'WS', _(u'Samoa')), (u'SB', _(u'Solomon Islands')), (u'TK', _(u'Tokelau')), (u'TO', _(u'Tonga')), (u'TV', _(u'Tuvalu')), (u'VU', _(u'Vanuatu')), (u'WF', _(u'Wallis and Futuna')), )), (_(u'South America'), ( (u'AR', _(u'Argentina')), (u'BO', _(u'Bolivia')), (u'BR', _(u'Brazil')), (u'CL', _(u'Chile')), (u'CO', _(u'Colombia')), (u'EC', _(u'Ecuador')), (u'FK', _(u'Falkland Islands (Malvinas)')), (u'GF', _(u'French Guiana')), (u'GY', _(u'Guyana')), (u'MQ', _(u'Martinique')), (u'PY', _(u'Paraguay')), (u'PE', _(u'Peru')), (u'GS', _(u'South Georgia and the South Sandwich Islands')), (u'SR', _(u'Suriname')), (u'UY', _(u'Uruguay')), (u'VE', _(u'Venezuela')), ) ), )
# Copyright 2013 10gen Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from bson.json_util import loads, dumps import datetime import mock import webapps.server from webapps.server.views import ratelimit from webapps.lib.db import get_db from webapps.lib.util import get_internal_coll_name, get_collection_names from flask import session from pymongo.errors import OperationFailure from webapps.lib.MWSServerError import MWSServerError from tests import MongoWSTestCase from webapps.lib import CLIENTS_COLLECTION class ViewsSetUpUnitTestCase(MongoWSTestCase): def test_create_mws_resource(self): url = '/mws/' rv = self.app.post(url) new_response_dict = loads(rv.data) self.assertIn('res_id', new_response_dict) res_id = new_response_dict['res_id'] is_new = new_response_dict['is_new'] self.assertIsNotNone(res_id) self.assertTrue(is_new) # check if res_id is unchanged rv = self.app.post(url) new_response_dict = loads(rv.data) new_res_id = new_response_dict['res_id'] new_is_new = new_response_dict['is_new'] self.assertIsNotNone(new_res_id) self.assertEqual(res_id, new_res_id) self.assertFalse(new_is_new) def test_create_mws_resource_new_session(self): url = '/mws/' rv = self.app.post(url) response_dict = loads(rv.data) self.assertIn('res_id', response_dict) res_id = response_dict['res_id'] self.assertIsNotNone(res_id) with self.app.session_transaction() as sess: del sess['session_id'] # check if res_id is unique rv = self.app.post(url) new_res_id = loads(rv.data)['res_id'] self.assertIsNotNone(new_res_id) self.assertNotEqual(res_id, new_res_id) @mock.patch('webapps.server.views.datetime') def test_keep_mws_alive(self, datetime_mock): first = datetime.datetime(2012, 7, 4) second = first + datetime.timedelta(days=1) datetime_mock.now.return_value = first db = get_db() # get a session to keep alive rv = self.app.post('/mws/') res_id = loads(rv.data)['res_id'] with self.app.session_transaction() as sess: session_id = sess['session_id'] res = db.clients.find({'res_id': res_id, 'session_id': session_id}, {'timestamp': 1}) _id = res[0]['_id'] old_ts = res[0]['timestamp'] self.assertEqual(old_ts, first) datetime_mock.now.return_value = second url = '/mws/' + res_id + '/keep-alive' rv = self.app.post(url) self.assertEqual(rv.status_code, 204) newres = db.clients.find({'_id': _id}, {'timestamp': 1}) self.assertEqual(newres[0]['timestamp'], second) def test_ratelimit(self): rv = self.app.post('/mws/') self.res_id = loads(rv.data)['res_id'] limit = self.real_app.config['RATELIMIT_QUOTA'] = 3 def dummy(): return ('', 204) with self.app.session_transaction() as client_sess: session_id = client_sess['session_id'] with self.real_app.test_request_context(): session['session_id'] = session_id for i in range(limit): self.assertEqual(ratelimit(dummy)(), ('', 204)) with self.assertRaises(MWSServerError) as cm: ratelimit(dummy)() self.assertEqual(cm.exception.error, 429) def test_ratelimit_no_session(self): def dummy(): return ('', 204) with self.real_app.test_request_context(): with self.assertRaises(MWSServerError) as cm: ratelimit(dummy)() self.assertEqual(cm.exception.error, 401) def test_nocache(self): res = self.app.post('/mws/') self.assertEqual(res.headers['cache-control'], 'no-cache') self.assertEqual(res.headers['expires'], '0') res_id = loads(res.data)['res_id'] res = self.app.get('/mws/%s/db/coll/find?{}' % res_id) self.assertEqual(res.headers['cache-control'], 'no-cache') self.assertEqual(res.headers['expires'], '0') class DBTestCase(MongoWSTestCase): def setUp(self): super(DBTestCase, self).setUp() # Todo: For stuff that isn't checking authentication, # we probably don't want to rely on/use the authentication code rv = self.app.post('/mws/') response_dict = loads(rv.data) self.assertIn('res_id', response_dict) self.res_id = response_dict['res_id'] self.assertIsNotNone(self.res_id) self.db = get_db() self.make_request_url = '/mws/%s/db/%%s' % (self.res_id) def _make_request(self, endpoint, data, method, expected_status): url = self.make_request_url % (endpoint) if data is not None: if isinstance(data, dict): data = dumps( dict((k, v) for (k, v) in data.iteritems() if v is not None) ) else: data = dumps(data) if method == self.app.get: url = '%s?%s' % (url, data) data = None result = method(url, data=data, content_type='application/json') actual_status = result.status_code self.assertEqual( actual_status, expected_status, ("Expected request status to be %s, got %s instead." " Full result: %s") % (expected_status, actual_status, result.data)) result_dict = loads(result.data) if result.data else {} return result_dict def make_get_collection_names_request(self, expected_status=200): return self._make_request('getCollectionNames', None, self.app.get, expected_status) def make_db_drop_request(self, expected_status=204): self.make_request_url = '/mws/%s/db%%s' % (self.res_id) return self._make_request('', None, self.app.delete, expected_status) class DBCollectionTestCase(DBTestCase): def setUp(self): super(DBCollectionTestCase, self).setUp() self.coll_name = 'test_collection' self.internal_coll_name = get_internal_coll_name(self.res_id, self.coll_name) self.db = get_db() self.db_collection = self.db[self.internal_coll_name] self.make_request_url = '/mws/%s/db/%s/%%s' % \ (self.res_id, self.coll_name) def tearDown(self): super(DBCollectionTestCase, self).setUp() self.db_collection.drop() def make_find_request(self, query=None, projection=None, skip=None, limit=None, expected_status=200): data = { 'query': query, 'projection': projection, 'skip': skip, 'limit': limit, } return self._make_request('find', data, self.app.get, expected_status) def make_insert_request(self, document, expected_status=204): data = {'document': document} return self._make_request('insert', data, self.app.post, expected_status) def make_remove_request(self, constraint, just_one=False, expected_status=204): data = {'constraint': constraint, 'just_one': just_one} return self._make_request('remove', data, self.app.delete, expected_status) def make_update_request(self, query, update, upsert=False, multi=False, expected_status=204): data = { 'query': query, 'update': update, 'upsert': upsert, 'multi': multi, } return self._make_request('update', data, self.app.put, expected_status) def make_aggregate_request(self, query=None, expected_status=200): return self._make_request('aggregate', query, self.app.get, expected_status) def make_drop_request(self, expected_status=204): return self._make_request('drop', None, self.app.delete, expected_status) def make_count_request(self, query=None, skip=None, limit=None, expected_status=200): data = {'query': query, 'skip': skip, 'limit': limit} return self._make_request('count', data, self.app.get, expected_status) def set_session_id(self, new_id): with self.app.session_transaction() as sess: sess['session_id'] = new_id class FindUnitTestCase(DBCollectionTestCase): def test_find(self): query = {'name': 'mongo'} self.db_collection.insert(query) result = self.make_find_request(query) self.assertEqual(len(result), 1) self.assertEqual(result['result'][0]['name'], 'mongo') def test_skipping_results(self): self.db_collection.insert([{'val': i} for i in xrange(10)]) response = self.make_find_request(query={}, skip=4) result = response['result'] self.assertEqual(len(result), 6) values = [r['val'] for r in result] self.assertItemsEqual(values, range(4, 10)) def test_limiting_results(self): self.db_collection.insert([{'val': i} for i in xrange(10)]) response = self.make_find_request(query={}, limit=4) result = response['result'] self.assertEqual(len(result), 4) values = [r['val'] for r in result] self.assertItemsEqual(values, range(4)) def test_invalid_find_session(self): self.set_session_id('invalid_id') document = {'name': 'mongo'} result = self.make_find_request(document, expected_status=403) error = { 'error': 403, 'reason': 'Session error. User does not have access to res_id', 'detail': '', } self.assertEqual(result, error) class InsertUnitTestCase(DBCollectionTestCase): def test_simple_insert(self): document = {'name': 'Mongo'} self.make_insert_request(document) result = self.db_collection.find() self.assertEqual(result.count(), 1) self.assertEqual(result[0]['name'], 'Mongo') def test_multiple_document_insert(self): document = [{'name': 'Mongo'}, {'name': '10gen'}] self.make_insert_request(document) result = self.db_collection.find() self.assertEqual(result.count(), 2) names = [r['name'] for r in result] self.assertItemsEqual(names, ['Mongo', '10gen']) def test_invalid_insert_session(self): self.set_session_id('invalid_session') document = {'name': 'mongo'} self.make_insert_request(document, expected_status=403) def test_insert_quota(self): limit = self.real_app.config['QUOTA_COLLECTION_SIZE'] = 150 self.make_insert_request([ {'name': 'Mongo'}, {'name': 'Mongo'}, {'name': 'NotMongo'} ], expected_status=204) result = self.make_insert_request([ {'name': 'Mongo'}, {'name': 'Mongo'}, {'name': 'NotMongo'} ], expected_status=403) error = { 'error': 403, 'reason': 'Collection size exceeded', 'detail': '' } self.assertEqual(result, error) class RemoveUnitTestCase(DBCollectionTestCase): def test_remove(self): self.db_collection.insert([ {'name': 'Mongo'}, {'name': 'Mongo'}, {'name': 'NotMongo'} ]) document = {'name': 'Mongo'} self.make_remove_request(document) result = self.db_collection.find() self.assertEqual(result.count(), 1) self.assertEqual(result[0]['name'], 'NotMongo') def test_remove_one(self): self.db_collection.insert([ {'name': 'Mongo'}, {'name': 'Mongo'}, {'name': 'NotMongo'} ]) document = {'name': 'Mongo'} self.make_remove_request(document, just_one=True) result = self.db_collection.find() names = [r['name'] for r in result] self.assertItemsEqual(names, ['Mongo', 'NotMongo']) def test_remove_requires_valid_res_id(self): self.set_session_id('invalid_session') self.make_remove_request({}, expected_status=403) class UpdateUnitTestCase(DBCollectionTestCase): def test_upsert(self): result = self.db_collection.find({'name': 'Mongo'}) self.assertEqual(result.count(), 0) self.make_update_request({}, {'name': 'Mongo'}, True) result = self.db_collection.find() self.assertEqual(result.count(), 1) self.assertEqual(result[0]['name'], 'Mongo') def test_update_one(self): self.db_collection.insert([ {'name': 'Mongo'}, {'name': 'Mongo'}, {'name': 'NotMongo'} ]) self.make_update_request({'name': 'Mongo'}, {'name': 'Mongo2'}, True) result = self.db_collection.find() names = [r['name'] for r in result] self.assertItemsEqual(names, ['Mongo', 'Mongo2', 'NotMongo']) def test_update_multi(self): self.db_collection.insert([ {'name': 'Mongo'}, {'name': 'Mongo'}, {'name': 'NotMongo'} ]) self.make_update_request( {'name': 'Mongo'}, {'$set': {'name': 'Mongo2'}}, False, True ) result = self.db_collection.find() names = [r['name'] for r in result] self.assertItemsEqual(names, ['Mongo2', 'Mongo2', 'NotMongo']) def test_multi_upsert(self): # Does not exist - upsert self.make_update_request({}, {'$set': {'name': 'Mongo'}}, True, True) result = self.db_collection.find() self.assertEqual(result.count(), 1) self.assertEqual(result[0]['name'], 'Mongo') # Exists - multi-update self.db_collection.insert([{'name': 'Mongo'}, {'name': 'NotMongo'}]) self.make_update_request( {'name': 'Mongo'}, {'$set': {'name': 'Mongo2'}}, True, True ) result = self.db_collection.find() names = [r['name'] for r in result] self.assertItemsEqual(names, ['Mongo2', 'Mongo2', 'NotMongo']) def test_update_quota(self): limit = self.real_app.config['QUOTA_COLLECTION_SIZE'] = 500 self.db_collection.insert([ {'name': 'Mongo'}, {'name': 'Mongo'}, {'name': 'NotMongo'} ]) self.make_update_request({'name': 'Mongo'}, {'name': 'Mongo2'}, expected_status=204) result = self.make_update_request({'name': 'Mongo'}, {'$set': {'a': list(range(50))}}, expected_status=403) error = { 'error': 403, 'reason': 'Collection size exceeded', 'detail': '' } self.assertEqual(result, error) def test_multi_update_quota(self): limit = self.real_app.config['QUOTA_COLLECTION_SIZE'] = 500 self.db_collection.insert([ {'name': 'Mongo'}, {'name': 'Mongo'}, {'name': 'NotMongo'} ]) self.make_update_request({}, {'$set': {'a': list(range(12))}}, multi=False, expected_status=204) result = self.make_update_request({}, {'$set': {'a': list(range(12))}}, multi=True, expected_status=403) error = { 'error': 403, 'reason': 'Collection size exceeded', 'detail': '' } self.assertEqual(result, error) class AggregateUnitTestCase(DBCollectionTestCase): def test_aggregate(self): for i in range(6): self.db_collection.insert({'val': i}) query = [ {'$match': {'val': {'$lt': 5}}}, {'$sort': {'val': -1}}, {'$skip': 1}, {'$limit': 2} ] self.db_collection.aggregate(query) result = self.make_aggregate_request(query) self.assertEqual(result['ok'], 1) result = result['result'] self.assertEqual(len(result), 2) self.assertEqual([x['val'] for x in result], [3, 2]) def test_invalid_query(self): result = self.make_aggregate_request({}, expected_status=400) self.assertEqual(result['error'], 400) with self.assertRaises(OperationFailure) as cm: self.db_collection.aggregate({}) self.assertEqual(cm.exception.message, result['reason']) def test_invalid_find_session(self): self.set_session_id('invalid_id') query = [{'$match': {'val': {'$lt': 5}}}] result = self.make_aggregate_request(query, expected_status=403) error = { 'error': 403, 'reason': 'Session error. User does not have access to res_id', 'detail': '', } self.assertEqual(result, error) class CountTestCase(DBCollectionTestCase): def test_get_query_count(self): self.db_collection.insert([{'n': i} for i in xrange(10)]) response = self.make_count_request({'n': {'$gt': 5}}) self.assertEqual(response['count'], 4) self.db_collection.insert([{'n': i} for i in xrange(10)]) response = self.make_count_request({'n': {'$gt': 4}}) self.assertEqual(response['count'], 10) def test_uses_skip_and_limit_info(self): self.db_collection.insert([{'n': i} for i in xrange(10)]) response = self.make_count_request({}, skip=0, limit=1) self.assertEqual(response['count'], 1) response = self.make_count_request({}, skip=8, limit=0) self.assertEqual(response['count'], 2) class DropUnitTestCase(DBCollectionTestCase): def test_drop(self): self.db_collection.insert([ {'name': 'Mongo'}, {'name': 'Mongo'}, {'name': 'NotMongo'} ]) result = self.db_collection.find() self.assertEqual(result.count(), 3) self.make_drop_request() result = self.db_collection.find() self.assertEqual(result.count(), 0) self.assertNotIn(self.internal_coll_name, self.db.collection_names()) class GetCollectionNamesUnitTestCase(DBTestCase): def test_get_collection_names(self): result = self.make_get_collection_names_request()['result'] self.assertEqual(result, []) self.db[CLIENTS_COLLECTION].update({'res_id': self.res_id}, {'$push': {'collections': 'test'}}) result = self.make_get_collection_names_request()['result'] self.assertEqual(result, ['test']) def test_invalid_session(self): with self.app.session_transaction() as sess: sess['session_id'] = 'invalid session' result = self.make_get_collection_names_request(expected_status=403) error = { 'error': 403, 'reason': 'Session error. User does not have access to res_id', 'detail': '', } self.assertEqual(result, error) def test_resid_isolation(self): self.db[CLIENTS_COLLECTION].update({'res_id': self.res_id}, {'$push': {'collections': 'test'}}) result = self.make_get_collection_names_request()['result'] self.assertEqual(result, ['test']) with self.app.session_transaction() as sess: del sess['session_id'] new_resid = loads(self.app.post('/mws/').data)['res_id'] self.assertNotEqual(self.res_id, new_resid) self.db[CLIENTS_COLLECTION].update({'res_id': new_resid}, {'$push': {'collections': 'test2'}}) self.make_request_url = '/mws/%s/db/%%s' % (new_resid) result = self.make_get_collection_names_request()['result'] self.assertEqual(result, ['test2']) class DropDBUnitTestCase(DBTestCase): def test_drop_db(self): testdoc = {'name': 'Mongo'} colls = ['a', 'b', 'c'] update = {'$addToSet': {'collections': {'$each': colls}}} self.db[CLIENTS_COLLECTION].update({'res_id': self.res_id}, update) colls = [get_internal_coll_name(self.res_id, c) for c in colls] for c in colls: self.db[c].insert(testdoc) actual_colls = self.db.collection_names() for c in colls: self.assertIn(c, actual_colls) self.make_db_drop_request() actual_colls = self.db.collection_names() for c in colls: self.assertNotIn(c, actual_colls) self.assertItemsEqual(get_collection_names(self.res_id), []) class IntegrationTestCase(DBCollectionTestCase): def test_insert_find(self): document = {'name': 'mongo'} self.make_insert_request(document) result = self.make_find_request(document) self.assertDictContainsSubset(document, result['result'][0])
import entDevType as edt class entropyDeviationType: """ A class that provides an interface to Chi-Square distribution testing, Shannon Entropy Analysis and Monte Carlo Pi Approximation for the purposes of analyzing entropy in unknown binary stream to locate hidden or encrypted data with a primary intended focus on XOR encrypted PE files hidden in Office, PDF, et cetera documents """ def __init__(self, bs = 8192): """ Takes a parameter, 'bs' that represents the block size represented in byte to be used. The default value is 8192 or 8KB """ self.block_size = bs self.edt = edt.entDevType(long(bs)) def openFile(self, name, whole = False): """ Opens and reads the file specified by 'name' performs whole file analysis if 'whole' is True """ self.fileName = name self.fileHand = open(self.fileName, 'rb') self.data = self.fileHand.read() self.fileHand.close() self.edt.setData(self.data, long(self.block_size), whole) self.edt.calculate() def getBlockCount(self): """ Returns the number of blocks in a file """ return self.edt.count() def isValidBlockNumber(self, idx, base = 16): """ Checks that a given index, 'idx' is within the range of valid blocks; defaults to base 16 format, modified by the 'base' parameter. Returns True if the index is valid. """ if type(idx) == str: idx = long(idx, base) if self.edt.maxIndex() < idx: return False else: return True def isValidBlockRange(self, low, high, base = 16): """ Checks that a given range of indices demarked by 'low' and 'high' are valid; defaults to base 16 format and modified by the 'base' parameter. Returns True if the range is valid """ if self.isValidBlockNumber(low, base) and self.isValidBlockNumber(high, base): return True return False def getScore(self, idx, base = 16): """ Gets the Chi, Shannon and Pi approximation score for a given block indicated by 'idx', which by default is specified in base 16 format but can be changed via the 'base' parameter. Returns a native object with the properties 'chi_square', 'shannon' and 'estimate' and 'error' for the Chi, Shannon Entropy and Monte Carli Pi approximation respectively. Throws a ValueError() if the index is invalid """ if not self.isValidBlockNumber(idx, base): raise ValueError("Invalid block number") return self.edt.getScore(idx) def getAllScores(self): """Retrieves the Chi, Shannon and Pi approximation scores for all blocks in the file. Returns a list() of native objects with 'chi_square', 'shannon', 'estimate' and 'error' properties for the Chi, Shannon and Pi approximation values respectively""" return self.edt.getAllScores() def getWholeFileScore(self): """ Retrieves the Chi, Shannon and Pi approximation scores for the entire file. Returns a native object with 'chi_square', 'shannon', 'estimate' and 'error' properties for the Chi, Shannon and Pi approximation values respectively """ return self.edt.getWholeScore() def getXYDeviation(self, x, y, base = 16): """ Retrieves the Chi, Shannon and Pi approximation deviation scores between two blocks indicated by the parameters 'x' and 'y', which by default are specified in base 16 format but is changable via the 'base' parameter. Returns a native object With 'chi_square', 'shannon', 'estimate' and 'error' properties that indicate the deviation between the two blocks. Throws a ValueError() if the specified range is invalid. """ if type(x) == str: x = long(x, base) if type(y) == str: y = long(y, base) if self.isValidBlockRange(x, y, base): return self.edt.getDeviation(x, y) raise ValueError("Invalid XY range") def getBlockAllDeviation(self, x, base = 16): """ Retrieves the Chi, Shannon and Pi approximation deviations between all blocks in a file against the block specified by the parameter 'x', which by default is specified in base 16 format, but is changable via the 'base' parameter. Returns a list() of native objects with 'chi_square', 'shannon', 'estimate' and 'error' properties for the Chi, Shannon and Pi approximation values respectively. Throws a ValueError() if the specified index is invalid """ if self.isValidBlockNumber(x, base): return self.edt.getAllDeviations(x) raise ValueError("Invalid block number") def getWholeFileDeviation(self, x, base = 16): """ Returns the Chi, Shannon and Pi approximation deviations for a block indicated by the parameter 'x' relative to the entire file. The index is specified in base 16 by default, however that is customizable via 'base' parameter. The returned native object has properties named 'chi_square', 'shannon', 'estimate' and 'error' for the Chi, Shannon and Pi approximation values respectively. If the index specified is invalid then a ValueError() is thrown. """ if self.isValidBlockNumber(x, base): return ed.getWholeFileDeviation(x) raise ValueError("Invalid block number") def getSequentialDeviation(self, x = 0, y = 0, base = 16): """ Calculates the deviation for sequential blocks, both prior and following within a range of blocks that is specified by the 'x' and 'y' parameters or every block in the file by default. The x and y parameters by default are specified in base 16 format however this is customizable via the 'base' parameter. Returns a list() of dict() objects with the keys 'prior', 'next', 'index' and 'dev' for the prior block number, next block number, the block the deviations are relative to, and the native object respectively. Only one of the 'prior' and 'next' keys will be valid in any given list element. The other will have a value of None. The object stored at the key 'dev' will contain the properties 'chi_square', 'shannon', 'estimate' and 'error' for the Chi, Shannon and Pi approximation values respectively. Throws a ValueError() if the index range specified is invalid. """ ret = list() if 0 == x and 0 == y: x = 0 y = self.edt.maxIndex() if x > y: raise ValueError("Invalid block range specified (x > y)") if not self.isValidBlockRange(x, y, base): raise ValueError("Invalid block range specified") for idx in range(x, y, 2): if (0 != idx): ret.append(dict({'prior': idx-1, 'next': None, 'index': idx, 'dev': self.edt.getDeviation(idx-1, idx)})) if self.edt.maxIndex()-1 != idx: ret.append(dict({'prior': None, 'next': idx+1, 'index': idx, 'dev': self.edt.getDeviation(idx, idx+1)})) return ret def findHighDeviation(self, c = 100, s = 20, e = 1): """ THIS METHOD IS AN ILLUSTRATED EXAMPLE ONLY. Attempts to find blocks with high deviation values relative to the blocks around it. What constitutes high deviation is specified by the 'c', 's' and 'e' parameters that denote the Chi Square, Shannon and Pi approximation Estimate respectively Returns a list of native objects for any blocks that match, or an empty list if none do. The returned native objects have the properties 'chi_square', 'shannon', 'estimate' and 'error' for the Chi, Shannon and Pi approximation deviation values respectively. """ ret = list() items = self.getSequentialDeviation(0, self.edt.maxIndex()) for item in items: dev = item['dev'] if dev.chi_square > c and dev.shannon > s and dev.estimate > e: ret.append(item) return ret def getBlocksAverage(self, ilist): """ Averages the Chi, Shannon and Pi approximation values in a list() specified by the 'ilist' parameter. Returns a dict() object with 'chi_square', 'shannon', 'estimate' and 'error' keys containing the averaged Chi, Shannon and Pi approxmation values. Throws a ValueError() if passed an empty list() as a parameter """ ret = dict({'chi_square': 0.0, 'shannon': 0.0, 'estimate': 0.0, 'error': 0.0}) cnt = len(ilist); chi = 0.0 sha = 0.0 est = 0.0 err = 0.0 if 0 == cnt: raise ValueError("An invalid (empty) list was specified") for item in ilist: chi += item['dev'].chi_square sha += item['dev'].shannon est += item['dev'].estimate err += item['dev'].error ret['chi_square'] = chi/cnt ret['shannon'] = sha/cnt ret['estimate'] = est/cnt ret['error'] = err/cnt return ret def isHighAverageChi(self, maxv, chi = 15): """ WARNING: METHOD IS AN ILLUSTRATED EXAMPLE ONLY. Identifies blocks with uniform or near uniform Chi distributions for a range between the first block and the block specified by 'maxv'. The blocks in that range have their scores averaged and then if the average exceeds a percentage specified by the 'chi' parameter it returns true. Otherwise it returns false. The 'maxv' parameter is specified in base 16 format and methods called by this method can throw a ValueError() when an invalid index is specified. """ items = self.getSequentialDeviation(0, maxv) avg = self.getBlocksAverage(items) if avg['chi_square'] > chi: return True return False def priorHighAndNextLowShannon(self, idx, high = 20.0, low = 2.5): """ WARNING: METHOD IS AN ILLUSTRATED EXAMPLE ONLY. Attempts to identify the beginning of a significant deviation by attempting to determine if the block denoted by the parameter 'idx' has a high percentage of deviation in its Shannon score relative to the prior block and a low percentage of deviation in its Shannon score in the block that follows it. The high and low marks are denoted by the parameters 'high' and 'low' and default to 20% and 2.5% respectively. These values were chosen based on deviations in a very small sample and will result in high false negative and false positive results. Returns true if the prior blocks Shannon deviation exceeds 'high' and the following blocks is less than 'low', otherwise it returns false. A ValueError() is thrown if the index, index-1 or index+1 are invalid. """ prv = None nxt = None if (not self.isValidBlockNumber(idx) or not self.isValidBlockNumber(idx-1) or not self.isValidBlockNumber(idx+1)): raise ValueError("An invalid index was specified") prv = self.getXYDeviation(idx-1, idx) nxt = self.getXYDeviation(idx, idx+1) if prv.shannon > high and nxt.shannon < low: return True return False def getSequentialLowShannon(self, idx, low = 1.7): """ WARNING: METHOD IS AN ILLUSTRATED EXAMPLE ONLY. Attempts to identify sequential blocks of deviant data by looking for low Shannon score deviations in sequential blocks. The block to start at is specified by the 'idx' parameter, which is specified in base 16 format. What exactly constitutes a low percentage of deviation is specified by the parameter 'low', which defaults to 1.7%. This value was chosen based on analysis of a very small set of samples and is likely to result in high amounts of false positive and false negatives as a result. Returns the index of the highest block following 'idx' that has a relative Shannon deviation less than 'low', or the index specified by 'idx' if the following block does not match. Throws a ValueError() if the index specified is invalid. """ ret = list() if not self.isValidBlockNumber(idx): raise ValueError("An invalid index was specified") for idx in range(idx, self.edt.maxIndex()): if not self.isValidBlockNumber(idx+1): return idx dev = self.getXYDeviation(idx, idx+1) if dev.shannon < low: continue else: return idx return idx def getSequentialCloseChi(self, lidx, hidx, dmax = 26.0): """ WARNING: METHOD IS AN ILLUSTRATED EXAMPLE ONLY Attempts to identify related deviant blocks between a range specified by the indices 'lidx' and 'hidx' respectively. Specifically this method attempts to identify blocks that have Chi Square scores that are within 'dmax' percent of one another, which defaults to 26%. This value was chosen based on analysis of a very small sample set and is likely to result in high false positive and false negative rates if used as is. The theory is based on the observation that the distribution of shorter XOR keys varies relatively little. Returns the highest index of a block that follows 'lidx' that deviates less than 'dmax' percent, or 'lidx' if the block immediately following 'lidx' exceeds 'dmax'%. Throws a ValueError() if the index range specified is invalid. """ ret = 0 if lidx > hidx or not self.isValidBlockRange(lidx, hidx): raise ValueError("An invalid index range was specified") ret = lidx for idx in range(lidx, hidx): dev = self.getXYDeviation(idx, idx+1) if dev.chi_square < dmax: ret = idx else: break return ret def coalesceSequential(self, lst, maxv = 2): """ Takes a list of tuples in the format of tuple((low, high)) indicating a start and stop range of blocks and checks to see if sequential list elements have nearly overlapping ranges with a distance less than or equal to 'maxv'. The concept behind this method is that once a sequence of suspicious blocks are identified it is not uncommon for a few outlier blocks to cause multiple ranges of suspect blocks that really is a single range of blocks. As such, this method checks to see if that is the case and coalesces the indices into a single range of blocks. Returns a list of tuples with high and low ranges. """ pb = None ph = None ret = list() for itr in lst: if None == pb and None == ph: pb = itr[0] ph = itr[1] continue elif itr[0] - ph <= maxv: ph = itr[1] continue else: ret.append(tuple((pb, ph))) pb = itr[0] ph = itr[1] if len(ret) and ret[-1][0] != pb and ret[-1][1] != ph: ret.append(tuple((pb, ph))) return ret def calculateDistribution(self, x = 0, y = 0, base = 16): """ Takes a range of block indices denoted by 'x' and 'y', which are specified in base 16 format by default and calculates the frequency each character occurs in the block range. The idea is that shorter XOR keys across real data tend to encounter the value zero a lot, which leaks the key in question. Thus by analyzing the frequency of characters in a block range, we can easily spot abnormal sequential frequencies and quickly identify an XOR key as a result. Returns a list sorted in descending order of the frequency of each character in the block range, yielding a list with a static length of 256. Throws a ValueError() if the range specified is invalid. """ dist = list() if 0 == y: y = self.edt.maxIndex() if not self.isValidBlockRange(x, y): raise ValueError("Invalid index range specified") self.edt.calculateDistribution(x, y) dist = self.edt.getDistribution() dist = sorted(dist, key=lambda d: d.count) dist.reverse() return dist
import os import os.path as op import numpy as np import nibabel as nib from dipy.reconst import dki from dipy.reconst import dki_micro from dipy.core.ndindex import ndindex import AFQ.utils.models as ut __all__ = ["fit_dki", "predict"] def _fit(gtab, data, mask=None): dkimodel = dki.DiffusionKurtosisModel(gtab) return dkimodel.fit(data, mask=mask) def fit_dki(data_files, bval_files, bvec_files, mask=None, min_kurtosis=-1, max_kurtosis=3, out_dir=None, b0_threshold=50): """ Fit the DKI model, save files with derived maps Parameters ---------- data_files : str or list Files containing DWI data. If this is a str, that's the full path to a single file. If it's a list, each entry is a full path. bval_files : str or list Equivalent to `data_files`. bvec_files : str or list Equivalent to `data_files`. mask : ndarray, optional Binary mask, set to True or 1 in voxels to be processed. Default: Process all voxels. min_kurtosis : float, optional The minimal plausible value of kurtosis. Default: -1. max_kurtosis : float, optional The maximal plausible value of kurtosis. Default: 3. out_dir : str, optional A full path to a directory to store the maps that get computed. Default: maps get stored in the same directory as the last DWI file in `data_files`. b0_threshold : float Returns ------- file_paths : a dict with the derived maps that were computed and full-paths to the files containing these maps. Note ---- Maps that are calculated: FA, MD, AD, RD, MK, AK, RK """ img, data, gtab, mask = ut.prepare_data(data_files, bval_files, bvec_files, mask=mask, b0_threshold=b0_threshold) dkimodel = dki.DiffusionKurtosisModel(gtab) dkifit = dkimodel.fit(data, mask=mask) FA = dkifit.fa MD = dkifit.md AD = dkifit.ad RD = dkifit.rd MK = dkifit.mk(min_kurtosis, max_kurtosis) AK = dkifit.ak(min_kurtosis, max_kurtosis) RK = dkifit.rk(min_kurtosis, max_kurtosis) params = dkifit.model_params maps = [FA, MD, AD, RD, MK, AK, RK, params] names = ['FA', 'MD', 'AD', 'RD', 'MK', 'AK', 'RK', 'params'] if out_dir is None: if isinstance(data_files, list): out_dir = op.join(op.split(data_files[0])[0], 'dki') else: out_dir = op.join(op.split(data_files)[0], 'dki') if not op.exists(out_dir): os.makedirs(out_dir) aff = img.affine file_paths = {} for m, n in zip(maps, names): file_paths[n] = op.join(out_dir, 'dki_%s.nii.gz' % n) nib.save(nib.Nifti1Image(m, aff), file_paths[n]) return file_paths def avs_dki_df(gtab, data, mask=None, min_signal=1.0e-6): r""" Computes mean diffusion kurtosis Parameters ---------- gtab : a GradientTable class instance The gradient table containing diffusion acquisition parameters. data : ndarray ([X, Y, Z, ...], g) Data or response variables holding the data. Note that the last dimension should contain the data. It makes no copies of data. mask : array, optional A boolean array used to mark the coordinates in the data that should be analyzed that has the shape data.shape[:-1] min_signal : float The minimum signal value. Needs to be a strictly positive number. Default: 1.0e-6. Returns ------- params : ndarray ([X, Y, Z, ...], 3) All parameters estimated from the dir fit DKI model. Parameters are ordered as follows: 1) Direct Mean Diffusivity measure 2) Direct Mean Kurtosis measure 3) Direct S0 estimate Reference --------- Henriques, R.N., Correia, M.M., Interpreting age-related changes based on the mean signal diffusion kurtosis. 25th Annual Meeting of ISMRM, Honolulu, April 22-28, 2017 """ params = np.zeros(data.shape[:-1] + (3,)) bmag = int(np.log10(gtab.bvals.max())) b = gtab.bvals.copy() / (10 ** (bmag - 1)) # normalize b units b = b.round() * (10 ** (bmag - 1)) uniqueb = np.unique(b) nb = len(uniqueb) B = np.zeros((nb, 3)) B[:, 0] = -uniqueb B[:, 1] = 1.0 / 6.0 * uniqueb ** 2 B[:, 2] = np.ones(nb) ng = np.zeros(nb) for bi in range(nb): ng[bi] = np.sum(b == uniqueb[bi]) ng = np.sqrt(ng) # Prepare mask if mask is None: mask = np.ones(data.shape[:-1], dtype=bool) else: if mask.shape != data.shape[:-1]: raise ValueError("Mask is not the same shape as data.") mask = np.array(mask, dtype=bool, copy=False) index = ndindex(mask.shape) sig = np.zeros(nb) for v in index: if mask[v]: for bi in range(nb): sig[bi] = np.mean(data[v][b == uniqueb[bi]]) # Define weights as diag(sqrt(ng) * yn**2) W = np.diag(ng * sig**2) BTW = np.dot(B.T, W) inv_BT_W_B = np.linalg.pinv(np.dot(BTW, B)) invBTWB_BTW = np.dot(inv_BT_W_B, BTW) p = np.dot(invBTWB_BTW, np.log(sig)) p[1] = p[1] / (p[0]**2) p[2] = np.exp(p[2]) params[v] = p return params def fit_mdki(data_files, bval_files, bvec_files, mask=None, out_dir=None, b0_threshold=50): """ Fit the DKI model, save files with derived maps Parameters ---------- data_files : str or list Files containing DWI data. If this is a str, that's the full path to a single file. If it's a list, each entry is a full path. bval_files : str or list Equivalent to `data_files`. bvec_files : str or list Equivalent to `data_files`. mask : ndarray, optional Binary mask, set to True or 1 in voxels to be processed. Default: Process all voxels. min_kurtosis : float, optional The minimal plausible value of kurtosis. Default: -1. max_kurtosis : float, optional The maximal plausible value of kurtosis. Default: 3. out_dir : str, optional A full path to a directory to store the maps that get computed. Default: maps get stored in the same directory as the last DWI file in `data_files`. b0_threshold : float Returns ------- file_paths : a dict with the derived maps that were computed and full-paths to the files containing these maps. Note ---- Maps that are calculated: FA, MD, AD, RD, MK, AK, RK """ img, data, gtab, mask = ut.prepare_data(data_files, bval_files, bvec_files, mask=mask, b0_threshold=b0_threshold) params = avs_dki_df(gtab, data, mask=mask) MD = params[..., 0] MK = params[..., 1] S0 = params[..., 2] maps = [MD, MK, S0] names = ['MD', 'MK', 'S0'] if out_dir is None: if isinstance(data_files, list): out_dir = op.join(op.split(data_files[0])[0], 'dki') else: out_dir = op.join(op.split(data_files)[0], 'dki') if not op.exists(out_dir): os.makedirs(out_dir) aff = img.affine file_paths = {} for m, n in zip(maps, names): file_paths[n] = op.join(out_dir, 'mdki_%s.nii.gz' % n) nib.save(nib.Nifti1Image(m, aff), file_paths[n]) return file_paths def fit_dkimicro(data_files, bval_files, bvec_files, mask=None, min_kurtosis=-1, max_kurtosis=3, out_dir=None, b0_threshold=50): """ Fit the DKI model, save files with derived maps Parameters ---------- data_files : str or list Files containing DWI data. If this is a str, that's the full path to a single file. If it's a list, each entry is a full path. bval_files : str or list Equivalent to `data_files`. bvec_files : str or list Equivalent to `data_files`. mask : ndarray, optional Binary mask, set to True or 1 in voxels to be processed. Default: Process all voxels. min_kurtosis : float, optional The minimal plausible value of kurtosis. Default: -1. max_kurtosis : float, optional The maximal plausible value of kurtosis. Default: 3. out_dir : str, optional A full path to a directory to store the maps that get computed. Default: maps get stored in the same directory as the last DWI file in `data_files`. b0_threshold : float Returns ------- file_paths : a dict with the derived maps that were computed and full-paths to the files containing these maps. Note ---- Maps that are calculated: FA, MD, AD, RD, MK, AK, RK """ img, data, gtab, mask = ut.prepare_data(data_files, bval_files, bvec_files, mask=mask, b0_threshold=b0_threshold) dkimodel = dki_micro.KurtosisMicrostructureModel(gtab) dkifit = dkimodel.fit(data, mask=mask) AWF = dkifit.awf T = dkifit.tortuosity Da = dkifit.axonal_diffusivity hRD = dkifit.hindered_rd hAD = dkifit.hindered_ad evals = dkifit.hindered_evals hMD = (evals[..., 0] + evals[..., 1] + evals[..., 2]) / 3.0 params = dkifit.model_params maps = [AWF, T, hAD, hRD, hMD, Da, params] names = ['AWF', 'T', 'hAD', 'hRD', 'hMD', 'Da', 'params'] if out_dir is None: if isinstance(data_files, list): out_dir = op.join(op.split(data_files[0])[0], 'dki') else: out_dir = op.join(op.split(data_files)[0], 'dki') if not op.exists(out_dir): os.makedirs(out_dir) aff = img.affine file_paths = {} for m, n in zip(maps, names): file_paths[n] = op.join(out_dir, 'dkimicro_%s.nii.gz' % n) nib.save(nib.Nifti1Image(m, aff), file_paths[n]) return file_paths def predict(params_file, gtab, S0_file=None, out_dir=None): """ Create a signal prediction from DKI params params_file : str Full path to a file with parameters saved from a DKI fit gtab : GradientTable object The gradient table to predict for S0_file : str Full path to a nifti file that contains S0 measurements to incorporate into the prediction. If the file contains 4D data, the volumes that contain the S0 data must be the same as the gtab.b0s_mask. """ if out_dir is None: out_dir = op.join(op.split(params_file)[0]) if S0_file is None: S0 = 100 else: S0 = nib.load(S0_file).get_fdata() # If the S0 data is 4D, we assume it comes from an acquisition that had # B0 measurements in the same volumes described in the gtab: if len(S0.shape) == 4: S0 = np.mean(S0[..., gtab.b0s_mask], -1) # Otherwise, we assume that it's already a 3D volume, and do nothing img = nib.load(params_file) params = img.get_fdata() pred = dki.dki_prediction(params, gtab, S0=S0) fname = op.join(out_dir, 'dki_prediction.nii.gz') nib.save(nib.Nifti1Image(pred, img.affine), fname) return fname
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class VpnConnectionsOperations(object): """VpnConnectionsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_03_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def get( self, resource_group_name, # type: str gateway_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.VpnConnection" """Retrieves the details of a vpn connection. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param connection_name: The name of the vpn connection. :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VpnConnection, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_03_01.models.VpnConnection :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VpnConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VpnConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} # type: ignore def _create_or_update_initial( self, resource_group_name, # type: str gateway_name, # type: str connection_name, # type: str vpn_connection_parameters, # type: "_models.VpnConnection" **kwargs # type: Any ): # type: (...) -> "_models.VpnConnection" cls = kwargs.pop('cls', None) # type: ClsType["_models.VpnConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(vpn_connection_parameters, 'VpnConnection') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('VpnConnection', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('VpnConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str gateway_name, # type: str connection_name, # type: str vpn_connection_parameters, # type: "_models.VpnConnection" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.VpnConnection"] """Creates a vpn connection to a scalable vpn gateway if it doesn't exist else updates the existing connection. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param connection_name: The name of the connection. :type connection_name: str :param vpn_connection_parameters: Parameters supplied to create or Update a VPN Connection. :type vpn_connection_parameters: ~azure.mgmt.network.v2020_03_01.models.VpnConnection :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either VpnConnection or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.VpnConnection] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.VpnConnection"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, connection_name=connection_name, vpn_connection_parameters=vpn_connection_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VpnConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} # type: ignore def _delete_initial( self, resource_group_name, # type: str gateway_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str gateway_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes a vpn connection. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param connection_name: The name of the connection. :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, connection_name=connection_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} # type: ignore def list_by_vpn_gateway( self, resource_group_name, # type: str gateway_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.ListVpnConnectionsResult"] """Retrieves all vpn connections for a particular virtual wan vpn gateway. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ListVpnConnectionsResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2020_03_01.models.ListVpnConnectionsResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ListVpnConnectionsResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_vpn_gateway.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ListVpnConnectionsResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_vpn_gateway.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections'} # type: ignore
import cPickle as pickle #from matplotlib.patches import Rectangle #from matplotlib.pyplot import gca,tight_layout,figure,plot from pylab import * ##################################### # Function to calculate theoretical # # profiles from continuity and # # flux steady state assumptions # ##################################### def theoreticalprofile(K1, K2, H1, H2, U, nlayers, unit_area = 1., m = 0.5, n = 1, hshift = 0): if(abs(n-1)>1E-6): ratio = (K1/K2)**(1/(1-n)) E2 = U*(H1 + ratio * H2)/(ratio*(H1+H2)) E1 = ratio * E2 Sx1 = (E1/K1)**(1/n) * unit_area**(n/m) #E2 = U*((H2/H1) + (K2/K1)**(1/(1-n)))/(1 + H2/H1) #E2 = U * H2 / (H1 + H2 - H1 * U / E1) Sx2 = (E2/K2)**(1/n) * unit_area**(n/m) output = empty([2*nlayers+1,2]) output[0,0]=hshift output[0,1]=0 for i in range(nlayers): output[2*i+1,0]=output[2*i,0] + H1/Sx1 output[2*i+2,0]=output[2*i+1,0] + H2/Sx2 output[2*i+1,1]=output[2*i,1] + H1 output[2*i+2,1]=output[2*i+1,1] + H2 return output else: Sx1 = U/K1 * unit_area**(n/m) Sx2 = U/K2 * unit_area**(n/m) #print Sx1, Sx2 output = empty([4*nlayers+2,2]) output[0,0]=hshift output[0,1]=0 output[1,0]=hshift output[1,1]=0 for i in range(nlayers): output[4*i+2,0]=output[4*i+1,0] + H1/Sx1 output[4*i+2,1]=output[4*i+1,1] + H1 output[4*i+3,0]=output[4*i,0] + H1/Sx2 output[4*i+3,1]=output[4*i,1] + H1 output[4*i+4,0]=output[4*i+3,0] + H2/Sx2 output[4*i+4,1]=output[4*i+3,1] + H2 output[4*i+5,0]=output[4*i+2,0] + H2/Sx1 output[4*i+5,1]=output[4*i+2,1] + H2 for i in range(nlayers): output[4*i+4,0]=output[4*i+5,0] output[4*i+4,1]=output[4*i+3,1] + Sx2 * (output[4*i+4,0]-output[4*i+3,0]) return output ############################################# #Figure 3 (slope ratios as a function of n) ############################################# figure(figsize=(5,4)) n=linspace(0.5,2.0,50) k_w=2. k_s=1. k_w2 = 4. k_w3 = 1.25 s_ratio = (k_w/k_s)**(1./(1.-n)) s_ratio_trad = (k_s/k_w)**(1./n) s_ratio2 = (k_w2/k_s)**(1./(1.-n)) s_ratio_trad2 = (k_s/k_w2)**(1./n) s_ratio3 = (k_w3/k_s)**(1./(1.-n)) s_ratio_trad3 = (k_s/k_w3)**(1./n) big = s_ratio>1 small = s_ratio<1 semilogy(n[big],s_ratio[big],'-k',lw=2) semilogy(n,s_ratio_trad,'--k',lw=2) semilogy(n[small],s_ratio[small],'-k',lw=2) plot([0.5,2.0],[1,1],':k',lw=1) plot([1,1],[1e-5,1e5],':k',lw=1) ylim([10**-3,10**3]) xlim([.5,2.0]) legend(['Horizontal contacts','Vertical contacts'],loc='upper right',fontsize=10.) xlabel('$n$ value in Erosion law',fontsize=12) ylabel('$S_w/S_s$',fontsize=14) tight_layout() savefig('fig3.pdf') ################################################# #Stream profile figures (high uplift, Figure 4) # ################################################# #Panel a #n=2/3 figure(figsize=(9,6)) res = pickle.load(open('high_uplift_0.66.pkl','rb')) chi = res['chi'] elev = res['elev'] start_soft = res['start_soft'] end_soft = res['end_soft'] start_soft_chi = res['start_soft_chi'] end_soft_chi = res['end_soft_chi'] uplift = res['uplift'] x = res['x']/1000. #convert to km subplot(2,3,1) idx = 450 #final timestep before duration was reached nstep = 15 plot(chi,elev[idx], color='black', lw=2) plot(chi,elev[idx-nstep]-uplift[idx-nstep]+uplift[idx], 'k', lw=2) plot(chi,elev[idx+nstep]-uplift[idx+nstep]+uplift[idx], 'k', lw=2) ax = gca() ax1 = ax #save for use in shared axis for i, lly in enumerate(end_soft[idx]): r = Rectangle((0,lly),200,start_soft[idx][i]-lly,color='grey',alpha=.5) ax.add_patch(r) xlabel('$\chi$ [m]',fontsize=16) ylabel('Elevation [m]',fontsize=12) xlim([0,7]) ylim([0,600]) text(4,210,'weak rocks', fontsize=12) text(0.05,0.85,'A', fontsize=20, transform=gca().transAxes) bbox_props = dict(boxstyle='round', fc="w",alpha=0.9, ec="k") text(0.07,0.67,'n=2/3', fontsize=14, transform=gca().transAxes,bbox=bbox_props) #plot theoretical profile profile = theoreticalprofile(2e-4,1e-4,50,50,2.5e-3,6,m=.33,n=2./3., unit_area=1.) plot(profile[:,0],profile[:,1], 'k--o',ms=4) tight_layout() #Panel D subplot(2,3,4) idx = 450 #final timestep before duration was reached nstep = 15 plot(x,elev[idx], color='black', lw=2) plot(x,elev[idx-nstep]-uplift[idx-nstep]+uplift[idx], 'k', lw=2) plot(x,elev[idx+nstep]-uplift[idx+nstep]+uplift[idx], 'k', lw=2) ax = gca() ax2 = ax #save for shared axis ax.invert_xaxis() for i, lly in enumerate(end_soft[idx]): r = Rectangle((0,lly),200,start_soft[idx][i]-lly,color='grey',alpha=.5) ax.add_patch(r) xlabel('Distance from divide [km]',fontsize=12) ylabel('Elevation [m]',fontsize=12) xlim([50,0]) ylim([0,600]) text(45,310,'weak rocks', fontsize=12) text(0.05,0.85,'D', fontsize=20, transform=gca().transAxes) bbox_props = dict(boxstyle='round', fc="w",alpha=0.9, ec="k") text(0.07,0.67,'n=2/3', fontsize=14, transform=gca().transAxes,bbox=bbox_props) tight_layout() #Panel B #n=3/2 res = pickle.load(open('high_uplift_1.5.pkl','rb')) chi = res['chi'] elev = res['elev'] start_soft = res['start_soft'] end_soft = res['end_soft'] uplift = res['uplift'] x = res['x']/1000. subplot(2,3,2,sharey=ax1) idx = 445 nstep = 15 plot(chi,elev[idx], color='black', lw=2) plot(chi,elev[idx-nstep-2]-uplift[idx-nstep-2]+uplift[idx], 'k', lw=2) plot(chi,elev[idx+nstep]-uplift[idx+nstep]+uplift[idx], 'k', lw=2) ax = gca() for i, lly in enumerate(end_soft[idx]): r = Rectangle((0,lly),200,start_soft[idx][i]-lly,color='grey',alpha=.5) ax.add_patch(r) xlabel('$\chi$ [m]',fontsize=16) xlim([0,7]) ylim([0,600]) setp(ax.get_yticklabels(), visible=False) bbox_props = dict(boxstyle='round', fc="w",alpha=0.9, ec="k") text(0.07,0.67,'n=3/2', fontsize=14, transform=gca().transAxes,bbox=bbox_props) text(4,210,'weak rocks', fontsize=12) text(0.05,0.85,'B', fontsize=20, transform=gca().transAxes) #make theoretical profile profile = theoreticalprofile(3e-6,1.5e-6,50,50,2.5e-3,6,m=.75,n=3./2., unit_area=1.) plot(profile[:,0],profile[:,1], 'k--o',ms=4) tight_layout() #Panel e subplot(2,3,5, sharey=ax2) plot(x,elev[idx], color='black', lw=2) plot(x,elev[idx-nstep-2]-uplift[idx-nstep-2]+uplift[idx], 'k', lw=2) plot(x,elev[idx+nstep]-uplift[idx+nstep]+uplift[idx], 'k', lw=2) ax = gca() for i, lly in enumerate(end_soft[idx]): r = Rectangle((0,lly),200,start_soft[idx][i]-lly,color='grey',alpha=.5) ax.add_patch(r) ax.invert_xaxis() setp(ax.get_yticklabels(), visible=False) xlabel('Distance from divide [km]',fontsize=12) xlim([50,0]) ylim([0,600]) bbox_props = dict(boxstyle='round', fc="w",alpha=0.9, ec="k") text(0.07,0.67,'n=3/2', fontsize=14, transform=gca().transAxes,bbox=bbox_props) text(45,310,'weak rocks', fontsize=12) text(0.05,0.85,'E', fontsize=20, transform=gca().transAxes) #Panel C #n=1 res = pickle.load(open('high_uplift_1.pkl','rb')) chi = res['chi'] elev = res['elev'] start_soft = res['start_soft'] end_soft = res['end_soft'] uplift = res['uplift'] x = res['x']/1000. subplot(2,3,3, sharey=ax1) idx = 445 nstep = 20 plot(chi,elev[idx], color='black', lw=2) plot(chi,elev[idx-nstep-1]-uplift[idx-nstep-1]+uplift[idx], 'k', lw=2) plot(chi,elev[idx+nstep]-uplift[idx+nstep]+uplift[idx], 'k', lw=2) ax = gca() for i, lly in enumerate(end_soft[idx]): r = Rectangle((0,lly),200,start_soft[idx][i]-lly,color='grey',alpha=.5) ax.add_patch(r) xlabel('$\chi$ [m]',fontsize=16) #ylabel('Elevation [m]',fontsize=12) xlim([0,7]) ylim([0,600]) setp(ax.get_yticklabels(), visible=False) bbox_props = dict(boxstyle='round', fc="w",alpha=0.9, ec="k") text(0.07,0.67,'n=1', fontsize=14, transform=gca().transAxes,bbox=bbox_props) text(4,210,'weak rocks', fontsize=12) text(0.05,0.85,'C', fontsize=20, transform=gca().transAxes) tight_layout() #Panel f subplot(2,3,6,sharey=ax2) plot(x,elev[idx], color='black', lw=2) plot(x,elev[idx-nstep-1]-uplift[idx-nstep-1]+uplift[idx], 'k', lw=2) plot(x,elev[idx+nstep]-uplift[idx+nstep]+uplift[idx], 'k', lw=2) ax = gca() for i, lly in enumerate(end_soft[idx]): r = Rectangle((0,lly),200,start_soft[idx][i]-lly,color='grey',alpha=.5) ax.add_patch(r) ax.invert_xaxis() xlabel('Distance from divide [km]',fontsize=12) #ylabel('Elevation [m]',fontsize=12) xlim([50,0]) ylim([0,600]) bbox_props = dict(boxstyle='round', fc="w",alpha=0.9, ec="k") text(0.07,0.67,'n=1', fontsize=14, transform=gca().transAxes,bbox=bbox_props) text(45,310,'weak rocks', fontsize=12) text(0.05,0.85,'F', fontsize=20, transform=gca().transAxes) setp(ax.get_yticklabels(), visible=False) tight_layout() savefig('fig4.pdf') ####################################### ## Stream profiles (Low uplift, Fig 5)# ####################################### #Panel A #n=2/3 figure(figsize=(9,6)) res = pickle.load(open('low_uplift_0.66.pkl','rb')) chi = res['chi'] elev = res['elev'] start_soft = res['start_soft'] end_soft = res['end_soft'] start_soft_chi = res['start_soft_chi'] end_soft_chi = res['end_soft_chi'] uplift = res['uplift'] x = res['x']/1000. #convert to km subplot(2,3,1) idx = 436 #final timestep before duration was reached nstep = 15 plot(chi,elev[idx], color='black', lw=2) plot(chi,elev[idx-nstep]-uplift[idx-nstep]+uplift[idx], 'k', lw=2) plot(chi,elev[idx+nstep]-uplift[idx+nstep]+uplift[idx], 'k', lw=2) ax = gca() ax1 = ax #save for use in shared axis for i, lly in enumerate(end_soft[idx]): r = Rectangle((0,lly),200,start_soft[idx][i]-lly,color='grey',alpha=.5) ax.add_patch(r) xlabel('$\chi$ [m]',fontsize=16) ylabel('Elevation [m]',fontsize=12) xlim([0,9]) ylim([0,100]) text(4,210,'weak rocks', fontsize=12) text(0.05,0.85,'A', fontsize=20, transform=gca().transAxes) bbox_props = dict(boxstyle='round', fc="w",alpha=0.9, ec="k") text(0.07,0.67,'n=2/3', fontsize=14, transform=gca().transAxes,bbox=bbox_props) #plot theoretical profile profile = theoreticalprofile(8e-5,4e-5,10,10,2.5e-4,5,m=.33,n=2./3., unit_area=1.) plot(profile[:,0],profile[:,1], 'k--o',ms=4) tight_layout() #Panel D subplot(2,3,4) plot(x,elev[idx], color='black', lw=2) plot(x,elev[idx-nstep]-uplift[idx-nstep]+uplift[idx], 'k', lw=2) plot(x,elev[idx+nstep]-uplift[idx+nstep]+uplift[idx], 'k', lw=2) ax = gca() ax2 = ax #save for shared axis ax.invert_xaxis() for i, lly in enumerate(end_soft[idx]): r = Rectangle((0,lly),200,start_soft[idx][i]-lly,color='grey',alpha=.5) ax.add_patch(r) xlabel('Distance from divide [km]',fontsize=12) ylabel('Elevation [m]',fontsize=12) xlim([200,0]) ylim([0,100]) text(45,310,'weak rocks', fontsize=12) text(0.05,0.85,'D', fontsize=20, transform=gca().transAxes) bbox_props = dict(boxstyle='round', fc="w",alpha=0.9, ec="k") text(0.07,0.67,'n=2/3', fontsize=14, transform=gca().transAxes,bbox=bbox_props) tight_layout() #Panel B #n=3/2 res = pickle.load(open('low_uplift_1.5.pkl','rb')) chi = res['chi'] elev = res['elev'] start_soft = res['start_soft'] end_soft = res['end_soft'] uplift = res['uplift'] x = res['x']/1000. subplot(2,3,2,sharey=ax1) idx = 439 nstep = 15 plot(chi,elev[idx], color='black', lw=2) plot(chi,elev[idx-nstep-2]-uplift[idx-nstep-2]+uplift[idx], 'k', lw=2) plot(chi,elev[idx+nstep]-uplift[idx+nstep]+uplift[idx], 'k', lw=2) ax = gca() for i, lly in enumerate(end_soft[idx]): r = Rectangle((0,lly),200,start_soft[idx][i]-lly,color='grey',alpha=.5) ax.add_patch(r) xlabel('$\chi$ [m]',fontsize=16) xlim([0,9]) ylim([0,100]) setp(ax.get_yticklabels(), visible=False) bbox_props = dict(boxstyle='round', fc="w",alpha=0.9, ec="k") text(0.07,0.67,'n=3/2', fontsize=14, transform=gca().transAxes,bbox=bbox_props) text(4,210,'weak rocks', fontsize=12) text(0.05,0.85,'B', fontsize=20, transform=gca().transAxes) #make theoretical profile profile = theoreticalprofile(6e-6,3e-6,10,10,2.5e-4,5,m=.75,n=3./2., unit_area=1.) plot(profile[:,0],profile[:,1], 'k--o',ms=4) tight_layout() #Panel e subplot(2,3,5, sharey=ax2) plot(x,elev[idx], color='black', lw=2) plot(x,elev[idx-nstep-2]-uplift[idx-nstep-2]+uplift[idx], 'k', lw=2) plot(x,elev[idx+nstep]-uplift[idx+nstep]+uplift[idx], 'k', lw=2) ax = gca() for i, lly in enumerate(end_soft[idx]): r = Rectangle((0,lly),200,start_soft[idx][i]-lly,color='grey',alpha=.5) ax.add_patch(r) ax.invert_xaxis() setp(ax.get_yticklabels(), visible=False) xlabel('Distance from divide [km]',fontsize=12) xlim([200,0]) ylim([0,100]) bbox_props = dict(boxstyle='round', fc="w",alpha=0.9, ec="k") text(0.07,0.67,'n=3/2', fontsize=14, transform=gca().transAxes,bbox=bbox_props) text(45,310,'weak rocks', fontsize=12) text(0.05,0.85,'E', fontsize=20, transform=gca().transAxes) #Panel C #n=1 res = pickle.load(open('low_uplift_1.pkl','rb')) chi = res['chi'] elev = res['elev'] start_soft = res['start_soft'] end_soft = res['end_soft'] uplift = res['uplift'] x = res['x']/1000. subplot(2,3,3, sharey=ax1) idx = 454 nstep = 20 plot(chi,elev[idx], color='black', lw=2) plot(chi,elev[idx-nstep-1]-uplift[idx-nstep-1]+uplift[idx], 'k', lw=2) plot(chi,elev[idx+nstep]-uplift[idx+nstep]+uplift[idx], 'k', lw=2) ax = gca() for i, lly in enumerate(end_soft[idx]): r = Rectangle((0,lly),200,start_soft[idx][i]-lly,color='grey',alpha=.5) ax.add_patch(r) xlabel('$\chi$ [m]',fontsize=16) #ylabel('Elevation [m]',fontsize=12) xlim([0,9]) ylim([0,100]) setp(ax.get_yticklabels(), visible=False) bbox_props = dict(boxstyle='round', fc="w",alpha=0.9, ec="k") text(0.07,0.67,'n=1', fontsize=14, transform=gca().transAxes,bbox=bbox_props) text(4,210,'weak rocks', fontsize=12) text(0.05,0.85,'C', fontsize=20, transform=gca().transAxes) tight_layout() #Panel f subplot(2,3,6,sharey=ax2) plot(x,elev[idx], color='black', lw=2) plot(x,elev[idx-nstep-1]-uplift[idx-nstep-1]+uplift[idx], 'k', lw=2) plot(x,elev[idx+nstep]-uplift[idx+nstep]+uplift[idx], 'k', lw=2) ax = gca() for i, lly in enumerate(end_soft[idx]): r = Rectangle((0,lly),200,start_soft[idx][i]-lly,color='grey',alpha=.5) ax.add_patch(r) ax.invert_xaxis() xlabel('Distance from divide [km]',fontsize=12) xlim([200,0]) ylim([0,100]) bbox_props = dict(boxstyle='round', fc="w",alpha=0.9, ec="k") text(0.07,0.67,'n=1', fontsize=14, transform=gca().transAxes,bbox=bbox_props) text(45,310,'weak rocks', fontsize=12) text(0.05,0.85,'F', fontsize=20, transform=gca().transAxes) setp(ax.get_yticklabels(), visible=False) tight_layout() savefig('fig5.pdf')
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines model architectures.""" import tensorflow as tf layers = tf.keras.layers # Classifier type. TYPE_CLASSIFIER_CONVNET = 'CONVNET' TYPE_CLASSIFIER_RESNET = 'RESNET' TYPE_CLASSIFIER_RESTCN = 'RESTCN' SUPPORTED_CLASSIFIER_TYPES = [ TYPE_CLASSIFIER_CONVNET, TYPE_CLASSIFIER_RESNET, TYPE_CLASSIFIER_RESTCN ] def get_temporal_classifier(classifier_type, **kwargs): """Gets classifier. Args: classifier_type: A string for classifier type. **kwargs: A dictionary for additional arguments. Returns: An classifier instance. """ if classifier_type == TYPE_CLASSIFIER_CONVNET: return build_simple_temporal_model(**kwargs) elif classifier_type == TYPE_CLASSIFIER_RESNET: return build_residual_temporal_model(**kwargs) elif classifier_type == TYPE_CLASSIFIER_RESTCN: return build_residual_temporal_convolutional_model(**kwargs) else: raise ValueError('Unknown classifier: {}'.format(classifier_type)) def build_residual_block(input_layer, feature_dim, stride, activation='relu', dropout_rate=0.5, **layer_kwargs): """Builds a residual block. Args: input_layer: A `tf.keras.layers.Layer` object for the input layer. feature_dim: An integer for the feature dimension of all layers. stride: An integer for the stride. activation: A string for the activation function. dropout_rate: A float between 0 and 1 for the dropout rate. **layer_kwargs: A dictionary for additional layer arguments. Returns: A configured model. """ layer_kwargs.update(dict(padding='same')) conv_x = layers.Conv1D( filters=feature_dim, kernel_size=7, strides=stride, **layer_kwargs)(input_layer) conv_x = layers.BatchNormalization()(conv_x) conv_x = layers.Activation(activation)(conv_x) conv_x = layers.Dropout(dropout_rate)(conv_x) conv_y = layers.Conv1D( filters=feature_dim, kernel_size=5, **layer_kwargs)(conv_x) conv_y = layers.BatchNormalization()(conv_y) conv_y = layers.Activation(activation)(conv_y) conv_y = layers.Dropout(dropout_rate)(conv_y) conv_z = layers.Conv1D( filters=feature_dim, kernel_size=3, **layer_kwargs)(conv_y) conv_z = layers.BatchNormalization()(conv_z) shortcut_y = layers.Conv1D( filters=feature_dim, kernel_size=1, strides=stride, **layer_kwargs)(input_layer) shortcut_y = layers.BatchNormalization()(shortcut_y) output_layer = layers.add([shortcut_y, conv_z]) output_layer = layers.Activation(activation)(output_layer) return output_layer def build_residual_temporal_model(input_shape, num_classes, channel_depths=(64, 128, 256), activation='relu', temporal_stride=2, dropout_rate=0.5): """Builds a residual temporal model for classifier. Reference: Fawaz et al. Deep learning for time series classification: a review. https://arxiv.org/pdf/1809.04356.pdf. Args: input_shape: A tuple for the shape of inputs. num_classes: An integer for the number of classes. channel_depths: A tuple for the feature dimension of all layers. activation: A string for the activation function. temporal_stride: An integer for the stride of temporal dimension. dropout_rate: A float between 0 and 1 for the dropout rate. Returns: A configured model. """ layer_kwargs = dict( kernel_initializer='he_normal', bias_initializer='he_normal') input_layer = tf.keras.Input(input_shape) output_layer = layers.Conv1D( filters=channel_depths[0], kernel_size=7, padding='same', **layer_kwargs)( input_layer) output_layer = layers.BatchNormalization()(output_layer) output_layer = layers.Activation(activation)(output_layer) stride_layout = [temporal_stride] * (len(channel_depths) - 1) + [1] for feature_dim, stride in zip(channel_depths, stride_layout): output_layer = build_residual_block( output_layer, feature_dim, stride, activation=activation, dropout_rate=dropout_rate, **layer_kwargs) output_layer = layers.GlobalAveragePooling1D()(output_layer) output_layer = layers.Dense(num_classes, **layer_kwargs)(output_layer) return tf.keras.models.Model(inputs=input_layer, outputs=output_layer) def build_simple_temporal_model(input_shape, num_classes, channel_depths=(64, 128, 256), activation='relu', temporal_stride=2, kernel_size=7, dropout_rate=0.5): """Builds a simple temporal model for classifier. Args: input_shape: A tuple for the shape of inputs. num_classes: An integer for the number of classes. channel_depths: A tuple for the feature dimension of all layers. activation: A string for the activation function. temporal_stride: An integer for the stride of temporal dimension. kernel_size: An integer for the kernel size of the 1D Conv layers. dropout_rate: A float between 0 and 1 for the dropout rate. Returns: A configured model. """ layer_kwargs = dict( kernel_initializer='he_normal', bias_initializer='he_normal') input_layer = tf.keras.Input(input_shape) output_layer = input_layer for feature_dim in channel_depths: output_layer = layers.Conv1D( filters=feature_dim, kernel_size=kernel_size, strides=temporal_stride, padding='same', **layer_kwargs)(output_layer) output_layer = layers.BatchNormalization()(output_layer) output_layer = layers.Activation(activation)(output_layer) output_layer = layers.Dropout(dropout_rate)(output_layer) output_layer = layers.GlobalAveragePooling1D()(output_layer) output_layer = layers.Dense(num_classes, **layer_kwargs)(output_layer) return tf.keras.models.Model(inputs=input_layer, outputs=output_layer) def build_residual_temporal_convolutional_model( input_shape, num_classes, pooling=True, activation='relu', dropout_rate=0.5, kernel_regularizer=tf.keras.regularizers.l1(1.e-4)): """Builds a residual temporal convolutional model for classifier (Res-TCN). Reference: Kim et al. Interpretable 3D Human Action Analysis with Temporal Convolutional Networks. https://arxiv.org/pdf/1704.04516.pdf. Args: input_shape: A tuple for the shape of inputs. num_classes: An integer for the number of classes. pooling: A boolean for whether to use average pooling. activation: A string for the activation function. dropout_rate: A float between 0 and 1 for the dropout rate. kernel_regularizer: A `tf.keras.regularizers` instance for regularizer. Returns: A configured model. """ row_axis = 1 channel_axis = 2 # Each tuple in config represents (stride, kernel_size, feature_dim). config = [[(1, 8, 64)], [(1, 8, 64)], [(1, 8, 64)], [(2, 8, 128)], [(1, 8, 128)], [(1, 8, 128)], [(2, 8, 256)], [(1, 8, 256)], [(1, 8, 256)]] initial_stride = 1 initial_kernel_size = 8 initial_num = 64 model_input = tf.keras.Input(shape=input_shape) model = layers.Conv1D( initial_num, kernel_size=initial_kernel_size, strides=initial_stride, padding='same', kernel_initializer='he_normal', kernel_regularizer=kernel_regularizer)( model_input) for depth in range(len(config)): for stride, kernel_size, feature_dim in config[depth]: bn = layers.BatchNormalization(axis=channel_axis)(model) relu = layers.Activation(activation)(bn) dr = layers.Dropout(dropout_rate)(relu) res = layers.Conv1D( feature_dim, kernel_size=kernel_size, strides=stride, padding='same', kernel_initializer='he_normal', kernel_regularizer=kernel_regularizer)( dr) res_shape = tf.keras.backend.int_shape(res) model_shape = tf.keras.backend.int_shape(model) if res_shape[channel_axis] != model_shape[channel_axis]: model = layers.Conv1D( feature_dim, kernel_size=1, strides=stride, padding='same', kernel_initializer='he_normal', kernel_regularizer=kernel_regularizer)( model) model = layers.add([model, res]) bn = layers.BatchNormalization(axis=channel_axis)(model) model = layers.Activation(activation)(bn) if pooling: pool_window_shape = tf.keras.backend.int_shape(model) gap = layers.AveragePooling1D(pool_window_shape[row_axis], strides=1)(model) flatten = layers.Flatten()(gap) else: flatten = layers.Flatten()(model) dense = layers.Dense( units=num_classes, activation='softmax', kernel_initializer='he_normal')( flatten) return tf.keras.models.Model(inputs=model_input, outputs=dense)
# Copyright 2013 IBM Corp. # Copyright 2010 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from xml.dom import minidom import mock import webob import webob.dec import webob.exc import nova.api.openstack from nova.api.openstack import common from nova.api.openstack import wsgi from nova import exception from nova.openstack.common import gettextutils from nova.openstack.common import jsonutils from nova import test class TestFaultWrapper(test.NoDBTestCase): """Tests covering `nova.api.openstack:FaultWrapper` class.""" @mock.patch('nova.openstack.common.gettextutils.get_localized_message') def test_safe_exception_translated(self, mock_get_localized): msg = gettextutils.Message('Should be translated.', 'nova') safe_exception = exception.NotFound() safe_exception.msg_fmt = msg safe_exception.safe = True safe_exception.code = 404 req = webob.Request.blank('/') def fake_translate(mesg, locale): if str(mesg) == "Should be translated.": return "I've been translated!" return mesg mock_get_localized.side_effect = fake_translate def raiser(*args, **kwargs): raise safe_exception wrapper = nova.api.openstack.FaultWrapper(raiser) response = req.get_response(wrapper) self.assertIn("I've been translated!", unicode(response.body)) mock_get_localized.assert_any_call( u'Should be translated.', None) class TestFaults(test.NoDBTestCase): """Tests covering `nova.api.openstack.faults:Fault` class.""" def _prepare_xml(self, xml_string): """Remove characters from string which hinder XML equality testing.""" xml_string = xml_string.replace(" ", "") xml_string = xml_string.replace("\n", "") xml_string = xml_string.replace("\t", "") return xml_string def test_400_fault_json(self): # Test fault serialized to JSON via file-extension and/or header. requests = [ webob.Request.blank('/.json'), webob.Request.blank('/', headers={"Accept": "application/json"}), ] for request in requests: fault = wsgi.Fault(webob.exc.HTTPBadRequest(explanation='scram')) response = request.get_response(fault) expected = { "badRequest": { "message": "scram", "code": 400, }, } actual = jsonutils.loads(response.body) self.assertEqual(response.content_type, "application/json") self.assertEqual(expected, actual) def test_413_fault_json(self): # Test fault serialized to JSON via file-extension and/or header. requests = [ webob.Request.blank('/.json'), webob.Request.blank('/', headers={"Accept": "application/json"}), ] for request in requests: exc = webob.exc.HTTPRequestEntityTooLarge # NOTE(aloga): we intentionally pass an integer for the # 'Retry-After' header. It should be then converted to a str fault = wsgi.Fault(exc(explanation='sorry', headers={'Retry-After': 4})) response = request.get_response(fault) expected = { "overLimit": { "message": "sorry", "code": 413, "retryAfter": "4", }, } actual = jsonutils.loads(response.body) self.assertEqual(response.content_type, "application/json") self.assertEqual(expected, actual) def test_429_fault_json(self): # Test fault serialized to JSON via file-extension and/or header. requests = [ webob.Request.blank('/.json'), webob.Request.blank('/', headers={"Accept": "application/json"}), ] for request in requests: exc = webob.exc.HTTPTooManyRequests # NOTE(aloga): we intentionally pass an integer for the # 'Retry-After' header. It should be then converted to a str fault = wsgi.Fault(exc(explanation='sorry', headers={'Retry-After': 4})) response = request.get_response(fault) expected = { "overLimit": { "message": "sorry", "code": 429, "retryAfter": "4", }, } actual = jsonutils.loads(response.body) self.assertEqual(response.content_type, "application/json") self.assertEqual(expected, actual) def test_raise(self): # Ensure the ability to raise :class:`Fault` in WSGI-ified methods. @webob.dec.wsgify def raiser(req): raise wsgi.Fault(webob.exc.HTTPNotFound(explanation='whut?')) req = webob.Request.blank('/.xml') resp = req.get_response(raiser) self.assertEqual(resp.content_type, "application/xml") self.assertEqual(resp.status_int, 404) self.assertIn('whut?', resp.body) def test_raise_403(self): # Ensure the ability to raise :class:`Fault` in WSGI-ified methods. @webob.dec.wsgify def raiser(req): raise wsgi.Fault(webob.exc.HTTPForbidden(explanation='whut?')) req = webob.Request.blank('/.xml') resp = req.get_response(raiser) self.assertEqual(resp.content_type, "application/xml") self.assertEqual(resp.status_int, 403) self.assertNotIn('resizeNotAllowed', resp.body) self.assertIn('forbidden', resp.body) def test_raise_localize_explanation(self): msgid = "String with params: %s" params = ('blah', ) lazy_gettext = gettextutils._ expl = lazy_gettext(msgid) % params @webob.dec.wsgify def raiser(req): raise wsgi.Fault(webob.exc.HTTPNotFound(explanation=expl)) req = webob.Request.blank('/.xml') resp = req.get_response(raiser) self.assertEqual(resp.content_type, "application/xml") self.assertEqual(resp.status_int, 404) self.assertIn((msgid % params), resp.body) def test_fault_has_status_int(self): # Ensure the status_int is set correctly on faults. fault = wsgi.Fault(webob.exc.HTTPBadRequest(explanation='what?')) self.assertEqual(fault.status_int, 400) def test_xml_serializer(self): # Ensure that a v1.1 request responds with a v1.1 xmlns. request = webob.Request.blank('/v1.1', headers={"Accept": "application/xml"}) fault = wsgi.Fault(webob.exc.HTTPBadRequest(explanation='scram')) response = request.get_response(fault) self.assertIn(common.XML_NS_V11, response.body) self.assertEqual(response.content_type, "application/xml") self.assertEqual(response.status_int, 400) class FaultsXMLSerializationTestV11(test.NoDBTestCase): """Tests covering `nova.api.openstack.faults:Fault` class.""" def _prepare_xml(self, xml_string): xml_string = xml_string.replace(" ", "") xml_string = xml_string.replace("\n", "") xml_string = xml_string.replace("\t", "") return xml_string def test_400_fault(self): metadata = {'attributes': {"badRequest": 'code'}} serializer = wsgi.XMLDictSerializer(metadata=metadata, xmlns=common.XML_NS_V11) fixture = { "badRequest": { "message": "scram", "code": 400, }, } output = serializer.serialize(fixture) actual = minidom.parseString(self._prepare_xml(output)) expected = minidom.parseString(self._prepare_xml(""" <badRequest code="400" xmlns="%s"> <message>scram</message> </badRequest> """) % common.XML_NS_V11) self.assertEqual(expected.toxml(), actual.toxml()) def test_413_fault(self): metadata = {'attributes': {"overLimit": 'code'}} serializer = wsgi.XMLDictSerializer(metadata=metadata, xmlns=common.XML_NS_V11) fixture = { "overLimit": { "message": "sorry", "code": 413, "retryAfter": 4, }, } output = serializer.serialize(fixture) actual = minidom.parseString(self._prepare_xml(output)) expected = minidom.parseString(self._prepare_xml(""" <overLimit code="413" xmlns="%s"> <message>sorry</message> <retryAfter>4</retryAfter> </overLimit> """) % common.XML_NS_V11) self.assertEqual(expected.toxml(), actual.toxml()) def test_429_fault(self): metadata = {'attributes': {"overLimit": 'code'}} serializer = wsgi.XMLDictSerializer(metadata=metadata, xmlns=common.XML_NS_V11) fixture = { "overLimit": { "message": "sorry", "code": 429, "retryAfter": 4, }, } output = serializer.serialize(fixture) actual = minidom.parseString(self._prepare_xml(output)) expected = minidom.parseString(self._prepare_xml(""" <overLimit code="429" xmlns="%s"> <message>sorry</message> <retryAfter>4</retryAfter> </overLimit> """) % common.XML_NS_V11) self.assertEqual(expected.toxml(), actual.toxml()) def test_404_fault(self): metadata = {'attributes': {"itemNotFound": 'code'}} serializer = wsgi.XMLDictSerializer(metadata=metadata, xmlns=common.XML_NS_V11) fixture = { "itemNotFound": { "message": "sorry", "code": 404, }, } output = serializer.serialize(fixture) actual = minidom.parseString(self._prepare_xml(output)) expected = minidom.parseString(self._prepare_xml(""" <itemNotFound code="404" xmlns="%s"> <message>sorry</message> </itemNotFound> """) % common.XML_NS_V11) self.assertEqual(expected.toxml(), actual.toxml())
#!/usr/bin/python """import23.py - Script to import the data into Gluu Server 2.3.x """ # Requires JSON Merge library # wget https://github.com/avian2/jsonmerge/archive/master.zip # unzip master.zip # cd jsonmerge-master # python setup.py install # Also requires ldif.py in same folder import os import os.path import shutil import sys import time import traceback from ldif import LDIFParser from jsonmerge import merge import base64 import json import uuid log = "./import23.log" logError = "./import23.error" password_file = "/root/.pw" service = "/usr/sbin/service" ldapmodify = "/opt/opendj/bin/ldapmodify" ldapsearch = "/opt/opendj/bin/ldapsearch" ldapdelete = "/opt/opendj/bin/ldapdelete" ignore_files = ['101-ox.ldif', 'gluuImportPerson.properties', 'oxTrust.properties', 'oxauth-config.xml', 'oxauth-errors.json', 'oxauth.config.reload', 'oxauth-static-conf.json', 'oxtrust.config.reload' ] ldap_creds = ['-h', 'localhost', '-p', '1389', '-D', '"cn=directory', 'manager"', '-j', password_file ] class MyLDIF(LDIFParser): def __init__(self, input, output): LDIFParser.__init__(self, input) self.targetDN = None self.targetAttr = None self.targetEntry = None self.DNs = [] self.lastDN = None self.lastEntry = None def getResults(self): return (self.targetDN, self.targetAttr) def getDNs(self): return self.DNs def getLastEntry(self): return self.lastEntry def handle(self, dn, entry): if self.targetDN == None: self.targetDN = dn self.lastDN = dn self.DNs.append(dn) self.lastEntry = entry if dn.lower().strip() == self.targetDN.lower().strip(): self.targetEntry = entry if entry.has_key(self.targetAttr): self.targetAttr = entry[self.targetAttr] def addEntry(dn, entry, ldifModFolder): newLdif = """dn: %s changetype: add """ % dn for attr in entry.keys(): for value in entry[attr]: newLdif = newLdif + getMod(attr, value) newLdif = newLdif + "\n" f = open("%s/%s.ldif" % (ldifModFolder, str(uuid.uuid4())), 'w') f.write(newLdif) f.close() def getNewConfig(fn): # Backup the appliance config just in case! args = [ldapsearch] + ldap_creds + \ ['-b', 'o=gluu', 'objectclass=*'] output = getOutput(args) f = open(fn, 'w') f.write(output) f.close() logIt("Wrote new ldif to %s" % fn) def copyFiles(backup23_folder): os.path.walk ("%s/etc" % backup23_folder, walk_function, None) os.path.walk ("%s/opt" % backup23_folder, walk_function, None) os.path.walk ("%s/usr" % backup23_folder, walk_function, None) def deleteEntries(dn_list): for dn in dn_list: cmd = [ldapdelete] + ldap_creds + [dn] output = getOutput(cmd) if output: logIt(output) else: logIt("Error deleting %s" % dn) def getAttributeValue(fn, targetAttr): # Load oxAuth Config From LDIF parser = MyLDIF(open(fn, 'rb'), sys.stdout) parser.targetAttr = targetAttr parser.parse() value = parser.targetAttr return value def getOldEntryMap(folder): files = os.listdir(folder) dnMap = {} for fn in files: if (fn == "site.ldif") or (fn == "people.ldif"): continue dnList = getDns("%s/%s" % (folder,fn)) for dn in dnList: dnMap[dn] = fn return dnMap def getEntry(fn, dn): parser = MyLDIF(open(fn, 'rb'), sys.stdout) parser.targetDN = dn parser.parse() return parser.targetEntry def getDns(fn): parser = MyLDIF(open(fn, 'rb'), sys.stdout) parser.parse() return parser.DNs def getMod(attr, s): val = str(s).strip() if val.find('\n') > -1: val = base64.b64encode(val) return "%s\n" % tab_attr(attr, val, True) elif len(val) > (78 - len(attr)): return "%s\n" % tab_attr(attr, val) else: return "%s: %s\n" % (attr, val) def getOutput(args): try: logIt("Running command : %s" % " ".join(args)) output = os.popen(" ".join(args)).read().strip() return output except: logIt("Error running command : %s" % " ".join(args), True) logIt(traceback.format_exc(), True) sys.exit(1) def logIt(msg, errorLog=False): if errorLog: f = open(logError, 'a') f.write('%s %s\n' % (time.strftime('%X %x'), msg)) f.close() f = open(log, 'a') f.write('%s %s\n' % (time.strftime('%X %x'), msg)) f.close() def restoreConfig(ldifFolder, newLdif, ldifModFolder): ignoreList = ['objectClass', 'ou'] current_config_dns = getDns(newLdif) oldDnMap = getOldEntryMap(ldifFolder) for dn in oldDnMap.keys(): old_entry = getEntry("%s/%s" % (ldifFolder, oldDnMap[dn]), dn) if dn not in current_config_dns: addEntry(dn, old_entry, ldifModFolder) continue new_entry = getEntry(newLdif, dn) for attr in old_entry.keys(): if attr in ignoreList: continue if not new_entry.has_key(attr): writeMod(dn, attr, old_entry[attr], '%s/%s.ldif' % (ldifModFolder, str(uuid.uuid4())), True) logIt("Adding attr %s to %s" % (attr, dn)) else: mod_list = None if old_entry[attr] != new_entry[attr]: if len(old_entry[attr]) == 1: try: logIt("Merging json value for %s " % attr) old_json = json.loads(old_entry[attr][0]) new_json = json.loads(new_entry[attr][0]) new_json = merge(new_json, old_json) mod_list = [json.dumps(new_json)] except: mod_list = old_entry[attr] else: mod_list = old_entry[attr] logIt("Keeping multiple old values for %s" % attr) else: continue writeMod(dn, attr, mod_list, '%s/%s.ldif' % (ldifModFolder, str(uuid.uuid4()))) def startOpenDJ(): output = getOutput([service, 'opendj', 'start']) if output.find("Directory Server has started successfully") > 0: logIt("Directory Server has started successfully") else: logIt("OpenDJ did not start properly... exiting. Check /opt/opendj/logs/errors", True) sys.exit(2) def stopOpenDJ(): output = getOutput([service, 'opendj', 'stop']) if output.find("Directory Server is now stopped") > 0: logIt("Directory Server is now stopped") else: logIt("OpenDJ did not stop properly... exiting. Check /opt/opendj/logs/errors", True) sys.exit(3) def tab_attr(attr, value, encoded=False): targetLength = 80 lines = ['%s: ' % attr] if encoded: lines = ['%s:: ' % attr] for char in value: current_line = lines[-1] if len(current_line) < 80: new_line = current_line + char del lines[-1] lines.append(new_line) else: lines.append(" " + char) return "\n".join(lines) def uploadLDIF(ldifFolder, outputLdifFolder): files = os.listdir(outputLdifFolder) for fn in files: cmd = [ldapmodify] + ldap_creds + ['-a', '-f', "%s/%s" % (outputLdifFolder, fn)] output = getOutput(cmd) if output: logIt(output) else: logIt("Error adding file %s" % fn, True) # delete default admin user created in 2.4 install dn_list = getDns("/opt/opendj/ldif/people.ldif") deleteEntries(dn_list) # Add People cmd = [ldapmodify] + ldap_creds + ['-a', '-c', '-f', "%s/people.ldif" % ldifFolder] output = getOutput(cmd) if output: logIt(output) else: logIt("Error adding people.ldif", True) dn_list = getDns("%s/site.ldif" % ldifFolder) if dn_list > 2: cmd = [ldapmodify] + ldap_creds + ['-a', '-c', '-f', "%s/site.ldif" % ldifFolder] output = getOutput(cmd) if output: logIt(output) else: logIt("Error adding site.ldif", True) def walk_function(a, dir, files): for file in files: if file in ignore_files: continue fn = "%s/%s" % (dir, file) targetFn = fn[1:] if os.path.isdir(fn): if not os.path.exists(targetFn): os.mkdir(targetFn) else: # It's a file... try: logIt("copying %s" % targetFn) shutil.copyfile(fn, targetFn) except: logIt("Error copying %s" % targetFn, True) def writeMod(dn, attr, value_list, fn, add=False): operation = "replace" if add: operation = "add" modLdif = """dn: %s changetype: modify %s: %s\n""" % (dn, operation, attr) if value_list == None: return for val in value_list: modLdif = modLdif + getMod(attr, val) modLdif = modLdif + "\n" f = open(fn, 'w') f.write(modLdif) f.close() backup23_folder = None error = False try: backup23_folder = sys.argv[1] if (not os.path.exists("%s/ldif" % backup23_folder)): error = True if (not os.path.exists("%s/etc" % backup23_folder)): error = True if (not os.path.exists("%s/opt" % backup23_folder)): error = True except: error = True if error: print "backup folders not found" print "Usage: ./import.py <path_to_backup_folders>" sys.exit(1) ldif_folder = "%s/ldif" % backup23_folder outputFolder = "./output_ldif" outputLdifFolder = "%s/config" % outputFolder if not os.path.exists(outputFolder): os.mkdir(outputFolder) if not os.path.exists(outputLdifFolder): os.mkdir(outputLdifFolder) newLdif = "%s/current_config.ldif" % outputFolder stopOpenDJ() copyFiles(backup23_folder) startOpenDJ() getNewConfig(newLdif) restoreConfig(ldif_folder, newLdif, outputLdifFolder) uploadLDIF(ldif_folder, outputLdifFolder)
import requests from slackclient import SlackClient from kalliope import Utils from kalliope.core.NeuronModule import NeuronModule, MissingParameterException Slack_Actions = ( "POST", "READ", "USERS" ) class Slack(NeuronModule): def __init__(self, **kwargs): super(Slack, self).__init__(**kwargs) # parameters self.action = kwargs.get('action', None) self.token = kwargs.get('slack_token', None) self.channel = kwargs.get('channel', None) self.message = kwargs.get('message', None) self.nb_messages = int(kwargs.get('nb_messages', 10)) # Int self.only_connected = bool(kwargs.get('only_connected', True)) # check parameters if self._is_parameters_ok(): sc = SlackClient(self.token) if self.action == Slack_Actions[0]: # POST if self._is_post_parameters_ok(): sc.api_call( "chat.postMessage", channel=self.channel, text=self.message, as_user=True ) message = { "action": self.action, "text": self.message, "channel": self.channel } if self.action == Slack_Actions[1]: # READ if self.is_read_parameters_ok(): # get the list of channel user_list = sc.api_call("users.list") channel_list = sc.api_call("channels.list") # Find the channel ID of the given channel name channel_id = self._get_channel_id(channel_name=self.channel, channel_list=channel_list) # Get all messages of the channel messages_list = self._get_list_messages(sc=sc, channel_id=channel_id, nb_messages=self.nb_messages) # Order the messages messages_list.reverse() # Associate user ID of messages to the user name user_messages = self._get_user_message_list(user_list=user_list, messages=messages_list) message = { "action": self.action, "messages": user_messages, "channel": self.channel } if self.action == Slack_Actions[2]: # USERS user_list = sc.api_call( "users.list", presence=1 ) members = user_list["members"] if self.only_connected: members = filter(lambda m: "presence" in m and m["presence"] == "active", members) message = { "action": self.action, "members": members, "only_connected": self.only_connected } self.say(message) def _is_parameters_ok(self): """ Check if received parameters are ok to perform operations in the neuron. :return: True if parameters are ok, raise an exception otherwise. .. raises:: MissingParameterException """ if self.token is None: raise MissingParameterException("Slack needs a slack_token") if self.action is None: raise MissingParameterException("Slack needs an action parameter") return True def _is_post_parameters_ok(self): """ Check if parameters required to POST a message are present. :return: True, if parameters are OK, raise exception otherwise. .. raises:: MissingParameterException """ if self.channel is None: raise MissingParameterException("Slack needs a channel") if self.message is None: raise MissingParameterException("Slack needs a message") return True def is_read_parameters_ok(self): """ Check if parameters required to READ a message are present. :return: True, if parameters are OK, raise exception otherwise. .. raises:: MissingParameterException """ if self.channel is None: raise MissingParameterException("Slack needs a channel") return True @staticmethod def _get_list_messages(sc=None, channel_id=None, nb_messages=None): """ Using Slack API to access messages from a given channel id. :param sc: the slack client :param channel_id: the channel id :param nb_messages: the number of messages :return: the message list of the last nb_messages """ global_message_list = sc.api_call( "channels.history", channel=channel_id, count=nb_messages ) message_list = list() if "messages" in global_message_list: message_list = global_message_list["messages"] else: Utils.print_warning("No messages found !") return message_list @staticmethod def _get_channel_id(channel_name=None, channel_list=None): """ return the id from the channel list corresponding to the channel name. :param channel_name: str of the name :param channel_list: list of the channel :return: the id from the channel list corresponding to the channel name. """ id = next((channel["id"] for channel in channel_list["channels"] if channel["name"] == channel_name), None) if id is None: Utils.print_warning("The channel name has not been found !") return id @staticmethod def _get_user_message_list(user_list=None, messages=None): """ List of associate message to an user. :param user_list: the full list of user :param messages: the list of messages :return: the list of dicts user:message """ current_user_message_dict = dict() user_message_list = list() for message in messages: if "username" in message: current_user_message_dict[message["username"]] = message["text"] user_message_list.append(current_user_message_dict) current_user_message_dict = dict() continue elif "user" in message: for user in user_list["members"]: if "id" in user: if user["id"] == message["user"]: current_user_message_dict[user["name"]] = message["text"] user_message_list.append(current_user_message_dict) current_user_message_dict = dict() continue return user_message_list
""" manage PyTables query interface via Expressions """ import ast from functools import partial import numpy as np from pandas._libs.tslibs import Timedelta, Timestamp from pandas.compat.chainmap import DeepChainMap from pandas.core.dtypes.common import is_list_like import pandas as pd from pandas.core.base import StringMixin import pandas.core.common as com from pandas.core.computation import expr, ops from pandas.core.computation.common import _ensure_decoded from pandas.core.computation.expr import BaseExprVisitor from pandas.core.computation.ops import UndefinedVariableError, is_term from pandas.io.formats.printing import pprint_thing, pprint_thing_encoded class Scope(expr.Scope): __slots__ = ("queryables",) def __init__(self, level, global_dict=None, local_dict=None, queryables=None): super().__init__(level + 1, global_dict=global_dict, local_dict=local_dict) self.queryables = queryables or dict() class Term(ops.Term): def __new__(cls, name, env, side=None, encoding=None): klass = Constant if not isinstance(name, str) else cls supr_new = StringMixin.__new__ return supr_new(klass) def __init__(self, name, env, side=None, encoding=None): super().__init__(name, env, side=side, encoding=encoding) def _resolve_name(self): # must be a queryables if self.side == "left": if self.name not in self.env.queryables: raise NameError("name {name!r} is not defined".format(name=self.name)) return self.name # resolve the rhs (and allow it to be None) try: return self.env.resolve(self.name, is_local=False) except UndefinedVariableError: return self.name # read-only property overwriting read/write property @property # type: ignore def value(self): return self._value class Constant(Term): def __init__(self, value, env, side=None, encoding=None): super().__init__(value, env, side=side, encoding=encoding) def _resolve_name(self): return self._name class BinOp(ops.BinOp): _max_selectors = 31 def __init__(self, op, lhs, rhs, queryables, encoding): super().__init__(op, lhs, rhs) self.queryables = queryables self.encoding = encoding self.filter = None self.condition = None def _disallow_scalar_only_bool_ops(self): pass def prune(self, klass): def pr(left, right): """ create and return a new specialized BinOp from myself """ if left is None: return right elif right is None: return left k = klass if isinstance(left, ConditionBinOp): if isinstance(right, ConditionBinOp): k = JointConditionBinOp elif isinstance(left, k): return left elif isinstance(right, k): return right elif isinstance(left, FilterBinOp): if isinstance(right, FilterBinOp): k = JointFilterBinOp elif isinstance(left, k): return left elif isinstance(right, k): return right return k( self.op, left, right, queryables=self.queryables, encoding=self.encoding ).evaluate() left, right = self.lhs, self.rhs if is_term(left) and is_term(right): res = pr(left.value, right.value) elif not is_term(left) and is_term(right): res = pr(left.prune(klass), right.value) elif is_term(left) and not is_term(right): res = pr(left.value, right.prune(klass)) elif not (is_term(left) or is_term(right)): res = pr(left.prune(klass), right.prune(klass)) return res def conform(self, rhs): """ inplace conform rhs """ if not is_list_like(rhs): rhs = [rhs] if isinstance(rhs, np.ndarray): rhs = rhs.ravel() return rhs @property def is_valid(self): """ return True if this is a valid field """ return self.lhs in self.queryables @property def is_in_table(self): """ return True if this is a valid column name for generation (e.g. an actual column in the table) """ return self.queryables.get(self.lhs) is not None @property def kind(self): """ the kind of my field """ return getattr(self.queryables.get(self.lhs), "kind", None) @property def meta(self): """ the meta of my field """ return getattr(self.queryables.get(self.lhs), "meta", None) @property def metadata(self): """ the metadata of my field """ return getattr(self.queryables.get(self.lhs), "metadata", None) def generate(self, v): """ create and return the op string for this TermValue """ val = v.tostring(self.encoding) return "({lhs} {op} {val})".format(lhs=self.lhs, op=self.op, val=val) def convert_value(self, v): """ convert the expression that is in the term to something that is accepted by pytables """ def stringify(value): if self.encoding is not None: encoder = partial(pprint_thing_encoded, encoding=self.encoding) else: encoder = pprint_thing return encoder(value) kind = _ensure_decoded(self.kind) meta = _ensure_decoded(self.meta) if kind == "datetime64" or kind == "datetime": if isinstance(v, (int, float)): v = stringify(v) v = _ensure_decoded(v) v = Timestamp(v) if v.tz is not None: v = v.tz_convert("UTC") return TermValue(v, v.value, kind) elif kind == "timedelta64" or kind == "timedelta": v = Timedelta(v, unit="s").value return TermValue(int(v), v, kind) elif meta == "category": metadata = com.values_from_object(self.metadata) result = metadata.searchsorted(v, side="left") # result returns 0 if v is first element or if v is not in metadata # check that metadata contains v if not result and v not in metadata: result = -1 return TermValue(result, result, "integer") elif kind == "integer": v = int(float(v)) return TermValue(v, v, kind) elif kind == "float": v = float(v) return TermValue(v, v, kind) elif kind == "bool": if isinstance(v, str): v = not v.strip().lower() in [ "false", "f", "no", "n", "none", "0", "[]", "{}", "", ] else: v = bool(v) return TermValue(v, v, kind) elif isinstance(v, str): # string quoting return TermValue(v, stringify(v), "string") else: raise TypeError( "Cannot compare {v} of type {typ} to {kind} column".format( v=v, typ=type(v), kind=kind ) ) def convert_values(self): pass class FilterBinOp(BinOp): def __str__(self): return pprint_thing( "[Filter : [{lhs}] -> [{op}]".format(lhs=self.filter[0], op=self.filter[1]) ) def invert(self): """ invert the filter """ if self.filter is not None: f = list(self.filter) f[1] = self.generate_filter_op(invert=True) self.filter = tuple(f) return self def format(self): """ return the actual filter format """ return [self.filter] def evaluate(self): if not self.is_valid: raise ValueError("query term is not valid [{slf}]".format(slf=self)) rhs = self.conform(self.rhs) values = [TermValue(v, v, self.kind).value for v in rhs] if self.is_in_table: # if too many values to create the expression, use a filter instead if self.op in ["==", "!="] and len(values) > self._max_selectors: filter_op = self.generate_filter_op() self.filter = (self.lhs, filter_op, pd.Index(values)) return self return None # equality conditions if self.op in ["==", "!="]: filter_op = self.generate_filter_op() self.filter = (self.lhs, filter_op, pd.Index(values)) else: raise TypeError( "passing a filterable condition to a non-table " "indexer [{slf}]".format(slf=self) ) return self def generate_filter_op(self, invert=False): if (self.op == "!=" and not invert) or (self.op == "==" and invert): return lambda axis, vals: ~axis.isin(vals) else: return lambda axis, vals: axis.isin(vals) class JointFilterBinOp(FilterBinOp): def format(self): raise NotImplementedError("unable to collapse Joint Filters") def evaluate(self): return self class ConditionBinOp(BinOp): def __str__(self): return pprint_thing("[Condition : [{cond}]]".format(cond=self.condition)) def invert(self): """ invert the condition """ # if self.condition is not None: # self.condition = "~(%s)" % self.condition # return self raise NotImplementedError( "cannot use an invert condition when " "passing to numexpr" ) def format(self): """ return the actual ne format """ return self.condition def evaluate(self): if not self.is_valid: raise ValueError("query term is not valid [{slf}]".format(slf=self)) # convert values if we are in the table if not self.is_in_table: return None rhs = self.conform(self.rhs) values = [self.convert_value(v) for v in rhs] # equality conditions if self.op in ["==", "!="]: # too many values to create the expression? if len(values) <= self._max_selectors: vs = [self.generate(v) for v in values] self.condition = "({cond})".format(cond=" | ".join(vs)) # use a filter after reading else: return None else: self.condition = self.generate(values[0]) return self class JointConditionBinOp(ConditionBinOp): def evaluate(self): self.condition = "({lhs} {op} {rhs})".format( lhs=self.lhs.condition, op=self.op, rhs=self.rhs.condition ) return self class UnaryOp(ops.UnaryOp): def prune(self, klass): if self.op != "~": raise NotImplementedError("UnaryOp only support invert type ops") operand = self.operand operand = operand.prune(klass) if operand is not None: if issubclass(klass, ConditionBinOp): if operand.condition is not None: return operand.invert() elif issubclass(klass, FilterBinOp): if operand.filter is not None: return operand.invert() return None _op_classes = {"unary": UnaryOp} class ExprVisitor(BaseExprVisitor): const_type = Constant term_type = Term def __init__(self, env, engine, parser, **kwargs): super().__init__(env, engine, parser) for bin_op in self.binary_ops: bin_node = self.binary_op_nodes_map[bin_op] setattr( self, "visit_{node}".format(node=bin_node), lambda node, bin_op=bin_op: partial(BinOp, bin_op, **kwargs), ) def visit_UnaryOp(self, node, **kwargs): if isinstance(node.op, (ast.Not, ast.Invert)): return UnaryOp("~", self.visit(node.operand)) elif isinstance(node.op, ast.USub): return self.const_type(-self.visit(node.operand).value, self.env) elif isinstance(node.op, ast.UAdd): raise NotImplementedError("Unary addition not supported") def visit_Index(self, node, **kwargs): return self.visit(node.value).value def visit_Assign(self, node, **kwargs): cmpr = ast.Compare( ops=[ast.Eq()], left=node.targets[0], comparators=[node.value] ) return self.visit(cmpr) def visit_Subscript(self, node, **kwargs): # only allow simple subscripts value = self.visit(node.value) slobj = self.visit(node.slice) try: value = value.value except AttributeError: pass try: return self.const_type(value[slobj], self.env) except TypeError: raise ValueError( "cannot subscript {value!r} with " "{slobj!r}".format(value=value, slobj=slobj) ) def visit_Attribute(self, node, **kwargs): attr = node.attr value = node.value ctx = node.ctx.__class__ if ctx == ast.Load: # resolve the value resolved = self.visit(value) # try to get the value to see if we are another expression try: resolved = resolved.value except (AttributeError): pass try: return self.term_type(getattr(resolved, attr), self.env) except AttributeError: # something like datetime.datetime where scope is overridden if isinstance(value, ast.Name) and value.id == attr: return resolved raise ValueError("Invalid Attribute context {name}".format(name=ctx.__name__)) def translate_In(self, op): return ast.Eq() if isinstance(op, ast.In) else op def _rewrite_membership_op(self, node, left, right): return self.visit(node.op), node.op, left, right def _validate_where(w): """ Validate that the where statement is of the right type. The type may either be String, Expr, or list-like of Exprs. Parameters ---------- w : String term expression, Expr, or list-like of Exprs. Returns ------- where : The original where clause if the check was successful. Raises ------ TypeError : An invalid data type was passed in for w (e.g. dict). """ if not (isinstance(w, (Expr, str)) or is_list_like(w)): raise TypeError( "where must be passed as a string, Expr, " "or list-like of Exprs" ) return w class Expr(expr.Expr): """ hold a pytables like expression, comprised of possibly multiple 'terms' Parameters ---------- where : string term expression, Expr, or list-like of Exprs queryables : a "kinds" map (dict of column name -> kind), or None if column is non-indexable encoding : an encoding that will encode the query terms Returns ------- an Expr object Examples -------- 'index>=date' "columns=['A', 'D']" 'columns=A' 'columns==A' "~(columns=['A','B'])" 'index>df.index[3] & string="bar"' '(index>df.index[3] & index<=df.index[6]) | string="bar"' "ts>=Timestamp('2012-02-01')" "major_axis>=20130101" """ def __init__(self, where, queryables=None, encoding=None, scope_level=0): where = _validate_where(where) self.encoding = encoding self.condition = None self.filter = None self.terms = None self._visitor = None # capture the environment if needed local_dict = DeepChainMap() if isinstance(where, Expr): local_dict = where.env.scope where = where.expr elif isinstance(where, (list, tuple)): for idx, w in enumerate(where): if isinstance(w, Expr): local_dict = w.env.scope else: w = _validate_where(w) where[idx] = w where = " & ".join(map("({})".format, com.flatten(where))) # noqa self.expr = where self.env = Scope(scope_level + 1, local_dict=local_dict) if queryables is not None and isinstance(self.expr, str): self.env.queryables.update(queryables) self._visitor = ExprVisitor( self.env, queryables=queryables, parser="pytables", engine="pytables", encoding=encoding, ) self.terms = self.parse() def __str__(self): if self.terms is not None: return pprint_thing(self.terms) return pprint_thing(self.expr) def evaluate(self): """ create and return the numexpr condition and filter """ try: self.condition = self.terms.prune(ConditionBinOp) except AttributeError: raise ValueError( "cannot process expression [{expr}], [{slf}] " "is not a valid condition".format(expr=self.expr, slf=self) ) try: self.filter = self.terms.prune(FilterBinOp) except AttributeError: raise ValueError( "cannot process expression [{expr}], [{slf}] " "is not a valid filter".format(expr=self.expr, slf=self) ) return self.condition, self.filter class TermValue: """ hold a term value the we use to construct a condition/filter """ def __init__(self, value, converted, kind): self.value = value self.converted = converted self.kind = kind def tostring(self, encoding): """ quote the string if not encoded else encode and return """ if self.kind == "string": if encoding is not None: return self.converted return '"{converted}"'.format(converted=self.converted) elif self.kind == "float": # python 2 str(float) is not always # round-trippable so use repr() return repr(self.converted) return self.converted def maybe_expression(s): """ loose checking if s is a pytables-acceptable expression """ if not isinstance(s, str): return False ops = ExprVisitor.binary_ops + ExprVisitor.unary_ops + ("=",) # make sure we have an op at least return any(op in s for op in ops)
#!/usr/bin/env python #============================================================================== # Copyright 2012 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Amazon Software License (the "License"). You may not use # this file except in compliance with the License. A copy of the License is # located at # # http://aws.amazon.com/asl/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or # implied. See the License for the specific language governing permissions # and limitations under the License. #============================================================================== import logging as _logging import re as _re from lib.utility import misc from lib.aws.exception import AwsErrorCode from lib.aws.exception import AwsServiceException from lib.aws.exception import MissingParameterException from lib.aws.exception import InsufficientPrivilegesException from lib.aws.exception import InvalidParameterValueException from lib.aws.exception import OptInRequiredException from lib.aws.webservice import AWSQueryClient from lib.aws.webservice import AWSSignature from lib.elasticbeanstalk.request import Request from lib.elasticbeanstalk.request import Response from lib.elasticbeanstalk import strings as Strings from lib.elasticbeanstalk.model import ApplicationDescription from lib.elasticbeanstalk.model import ApplicationVersionDescription from lib.elasticbeanstalk.model import ConfigurationSettingsDescription from lib.elasticbeanstalk.model import ConfigurationOptionDescription from lib.elasticbeanstalk.model import EnvironmentDescription from lib.elasticbeanstalk.model import EnvironmentResourceDescription from lib.elasticbeanstalk.model import EventDescription from lib.elasticbeanstalk.model import SolutionStackDescription from lib.elasticbeanstalk.model import ValidationMessage from lib.elasticbeanstalk.exception import EBErrorCode from lib.elasticbeanstalk.exception import AlreadyExistException from lib.elasticbeanstalk.exception import ApplicationHasRunningEnvException from lib.elasticbeanstalk.exception import OperationInProgressException from lib.elasticbeanstalk.exception import SourceBundleDeletionException from lib.elasticbeanstalk.exception import S3LocationNotInServiceRegionException log = _logging.getLogger('eb') class ElasticBeanstalkClient(object): ''' Web service client for Elastic Beanstalk ''' _signature_version = AWSSignature.SigV4 _api_version = u'2010-12-01' _service_name = u'elasticbeanstalk' def __init__(self, accessKey, secretKey, endpoint, region, result_format = 'json'): ''' Constructor ''' self._accessKey = accessKey self._secretKey = secretKey self._endpoint = endpoint self._format = result_format self._region = region self._client = AWSQueryClient(self._accessKey, self._secretKey, self._endpoint, self._region, self._service_name, self._format, self._signature_version, self._api_version) def call(self, request): '''Make API call and translate AWSServiceException to more specific exception''' try: log.debug(request) return_msg = self._client.call(request, self._format) log.debug(u'Request ID: {0}'.format(return_msg.json.values()[0]\ [u'ResponseMetadata'][u'RequestId'])) #TODO: set more specific charset code return return_msg.json except AwsServiceException as ex: log.debug(misc.to_unicode(ex)) # Translate general Elastic Beanstalk exception if misc.string_equal_ignore_case(ex.code, AwsErrorCode.OptInRequired): raise OptInRequiredException(ex) if misc.string_equal_ignore_case(ex.code, AwsErrorCode.InsufficientPrivileges): raise InsufficientPrivilegesException(ex) if misc.string_equal_ignore_case(ex.code, AwsErrorCode.InvalidParameterValue): raise InvalidParameterValueException(ex) if misc.string_equal_ignore_case(ex.code, AwsErrorCode.MissingParameter): raise MissingParameterException(ex) raise #--------------------------------------- # service calls def create_application(self, name, description = None): request = Request() request.set_operation(u'CreateApplication') request.set_app_name(name) if description is not None: request.set_description(description) try: response = self.call(request) except AwsServiceException as ex: if ex.code.lower() == AwsErrorCode.InvalidParameterValue.lower()\ and _re.search(Strings.APP_EXIST_RE, ex.message): raise AlreadyExistException(ex) raise # TODO: take care of too many application exception? result = response[u'CreateApplicationResponse']\ [u'CreateApplicationResult'][u'Application'] request_id = response[u'CreateApplicationResponse']\ [u'ResponseMetadata'][u'RequestId'] return Response(request_id, ApplicationDescription.from_json(result)) def delete_application(self, name, terminate_env = u'false'): request = Request() request.set_operation(u'DeleteApplication') request.set_app_name(name) request.set_terminate_env(terminate_env) try: response = self.call(request) except AwsServiceException as ex: if ex.code.lower() == AwsErrorCode.InvalidParameterValue.lower()\ and _re.search(Strings.APP_HAS_RUNNING_ENV, ex.message): raise ApplicationHasRunningEnvException(ex) if ex.code.lower() == EBErrorCode.OperationInProgress.lower(): raise OperationInProgressException(ex) raise request_id = response[u'DeleteApplicationResponse']\ [u'ResponseMetadata'][u'RequestId'] return Response(request_id) def create_application_version(self, application, version_label, s3bucket = None, s3key = None, auto_create_app = u'false', description = None): if (s3bucket is None and s3key is not None) \ or (s3bucket is not None and s3key is None): raise AttributeError(u'Must specify both s3 bucket and key') request = Request() request.set_operation(u'CreateApplicationVersion') request.set_app_name(application) request.set_version_label(version_label) if s3bucket is not None: request.set_s3bucket(s3bucket) request.set_s3key(s3key) request.set_auto_create_app(auto_create_app) if description is not None: request.set_description(description) try: response = self.call(request) except AwsServiceException as ex: if ex.code.lower() == AwsErrorCode.InvalidParameterValue.lower()\ and _re.search(Strings.VER_EXIST_RE, ex.message): raise AlreadyExistException(ex) raise # TODO: take care of too many application and/or version exception result = response[u'CreateApplicationVersionResponse']\ [u'CreateApplicationVersionResult'][u'ApplicationVersion'] request_id = response[u'CreateApplicationVersionResponse']\ [u'ResponseMetadata'][u'RequestId'] return Response(request_id, ApplicationVersionDescription.from_json(result)) def delete_application_version(self, application, version_label, delete_bundle = u'false'): request = Request() request.set_operation(u'DeleteApplicationVersion') request.set_app_name(application) request.set_version_label(version_label) request.set_delete_source_bundle(delete_bundle) try: response = self.call(request) except AwsServiceException as ex: if ex.code.lower() == EBErrorCode.SourceBundleDeletion: raise SourceBundleDeletionException(ex) if ex.code.lower() == EBErrorCode.S3LocationNotInServiceRegion: raise S3LocationNotInServiceRegionException(ex) if ex.code.lower() == EBErrorCode.OperationInProgress: raise OperationInProgressException(ex) raise request_id = response[u'DeleteApplicationVersionResponse']\ [u'ResponseMetadata'][u'RequestId'] return Response(request_id) def create_environment(self, application, environment, cname_prefix = None, template = None, solution_stack = None, version_label = None, option_settings = None, option_remove = None, template_specification = None, description = None): request = Request() request.set_operation(u'CreateEnvironment') request.set_app_name(application) request.set_env_name(environment) if cname_prefix is not None: request.set_cname(cname_prefix) if template is not None: request.set_template(template) if solution_stack is not None: request.set_solution_stack(solution_stack) if version_label is not None: request.set_version_label(version_label) if option_settings is not None: request.set_option_settings(option_settings) if option_remove is not None: request.set_options_to_remove(option_remove) if template_specification is not None: request.set_template_specification(template_specification) if description is not None: request.set_description(description) try: response = self.call(request) except AwsServiceException as ex: if ex.code.lower() == AwsErrorCode.InvalidParameterValue.lower()\ and _re.search(Strings.ENV_EXIST_RE, ex.message): raise AlreadyExistException(ex) raise result = response[u'CreateEnvironmentResponse'][u'CreateEnvironmentResult'] request_id = response[u'CreateEnvironmentResponse']\ [u'ResponseMetadata'][u'RequestId'] return Response(request_id, EnvironmentDescription.from_json(result)) def update_environment(self, env_name = None, env_id = None, template = None, version_label = None, option_settings = None, option_remove = None, template_specification = None, description = None): request = Request() request.set_operation(u'UpdateEnvironment') if env_name is not None: request.set_env_name(env_name) if env_id is not None: request.set_env_id(env_id) if template is not None: request.set_template(template) if version_label is not None: request.set_version_label(version_label) if option_settings is not None: request.set_option_settings(option_settings) if option_remove is not None: request.set_options_to_remove(option_remove) if template_specification is not None: request.set_template_specification(template_specification) if description is not None: request.set_description(description) try: response = self.call(request) except AwsServiceException as ex: if ex.code.lower() == AwsErrorCode.InvalidParameterValue.lower(): raise InvalidParameterValueException(ex) raise result = response[u'UpdateEnvironmentResponse'][u'UpdateEnvironmentResult'] request_id = response[u'UpdateEnvironmentResponse']\ [u'ResponseMetadata'][u'RequestId'] return Response(request_id, EnvironmentDescription.from_json(result)) def terminate_environment(self, environment_name, environment_id = None, delete_resource = u'true'): request = Request() request.set_operation(u'TerminateEnvironment') if environment_name is not None: request.set_env_name(environment_name) if environment_id is not None: request.set_env_id(environment_id) request.set_terminate_resources(delete_resource) try: response = self.call(request) except: raise result = response[u'TerminateEnvironmentResponse']\ [u'TerminateEnvironmentResult'] request_id = response[u'TerminateEnvironmentResponse']\ [u'ResponseMetadata'][u'RequestId'] return Response(request_id, EnvironmentDescription.from_json(result)) def describe_applications(self, names): request = Request() request.set_operation(u'DescribeApplications') request.set_app_names(names) try: response = self.call(request) except: raise results = response[u'DescribeApplicationsResponse']\ [u'DescribeApplicationsResult'][u'Applications'] request_id = response[u'DescribeApplicationsResponse']\ [u'ResponseMetadata'][u'RequestId'] applications = [] for result in results: applications.append(ApplicationDescription.from_json(result)) return Response(request_id, applications) def describe_configuration_options(self, application_name = None, environment_name = None, template = None, solution_stack = None, options = None, ): request = Request() request.set_operation(u'DescribeConfigurationOptions') if application_name is not None: request.set_app_name(application_name) if environment_name is not None: request.set_env_name(environment_name) if template is not None: request.set_template(template) if solution_stack is not None: request.set_solution_stack(solution_stack) if options is not None and len(options) > 0: request.set_options(options) try: response = self.call(request) except: raise options = response[u'DescribeConfigurationOptionsResponse']\ [u'DescribeConfigurationOptionsResult'][u'Options'] request_id = response[u'DescribeConfigurationOptionsResponse']\ [u'ResponseMetadata'][u'RequestId'] option_descriptions = set() for option in options: option_descriptions.add(ConfigurationOptionDescription.from_json(option)) return Response(request_id, option_descriptions) def describe_configuration_settings(self, application_name, environment_name = None, template = None, options = None): request = Request() request.set_operation(u'DescribeConfigurationSettings') request.set_app_name(application_name) if environment_name is not None: request.set_env_name(environment_name) if template is not None: request.set_template(template) if options is not None: request.set_options(options) try: response = self.call(request) except: raise result = response[u'DescribeConfigurationSettingsResponse']\ [u'DescribeConfigurationSettingsResult'][u'ConfigurationSettings'][0] request_id = response[u'DescribeConfigurationSettingsResponse']\ [u'ResponseMetadata'][u'RequestId'] configuration = ConfigurationSettingsDescription.from_json(result) return Response(request_id, configuration) def describe_environments (self, application = None, environment_names = None, environment_ids = None, include_deleted = None, included_deleted_backto = None, version_label = None): request = Request() request.set_operation(u'DescribeEnvironments') if application is not None: request.set_app_name(application) if environment_names is not None: request.set_env_names(environment_names) if environment_ids is not None: request.set_env_ids(environment_ids) if include_deleted is not None: request.set_include_deleted(include_deleted) if included_deleted_backto is not None: request.set_included_deleted_backto(included_deleted_backto) if version_label is not None: request.set_version_label(version_label) try: response = self.call(request) except: raise # parse message results = response[u'DescribeEnvironmentsResponse']\ [u'DescribeEnvironmentsResult'][u'Environments'] request_id = response[u'DescribeEnvironmentsResponse']\ [u'ResponseMetadata'][u'RequestId'] environments = [] for result in results: environments.append(EnvironmentDescription.from_json(result)) return Response(request_id, environments) def describe_environment_resources (self, environment_name, environment_id = None): request = Request() request.set_operation(u'DescribeEnvironmentResources') if environment_name is not None: request.set_env_name(environment_name) if environment_id is not None: request.set_env_id(environment_id) try: response = self.call(request) except: raise # parse message result = response[u'DescribeEnvironmentResourcesResponse']\ [u'DescribeEnvironmentResourcesResult'][u'EnvironmentResources'] request_id = response[u'DescribeEnvironmentResourcesResponse']\ [u'ResponseMetadata'][u'RequestId'] resources = EnvironmentResourceDescription.from_json(result) return Response(request_id, resources) def describe_events (self, application = None, environment_name = None, environment_id = None, start_time = None, end_time = None, severity = None, request_id = None, template = None, version_label = None, max_records = None, next_token = None ): request = Request() request.set_operation(u'DescribeEvents') if application is not None: request.set_app_name(application) if environment_name is not None: request.set_env_name(environment_name) if environment_id is not None: request.set_env_id(environment_id) if start_time is not None: request.set_start_time(start_time) if end_time is not None: request.set_end_time(end_time) if severity is not None: request.set_severity(severity) if request_id is not None: request.set_requst_id(request_id) if template is not None: request.set_template(template) if version_label is not None: request.set_version_label(version_label) if max_records is not None: request.set_max_records(max_records) if next_token is not None: request.set_next_token(next_token) try: response = self.call(request) except: raise # parse message combined_result = response[u'DescribeEventsResponse']\ [u'DescribeEventsResult'] results = combined_result[u'Events'] next_token = combined_result[u'NextToken'] \ if u'NextToken' in combined_result else None request_id = response[u'DescribeEventsResponse']\ [u'ResponseMetadata'][u'RequestId'] events = [] for result in results: events.append(EventDescription.from_json(result)) return Response(request_id, events, next_token) def list_available_solutionstacks(self): request = Request() request.set_operation(u'ListAvailableSolutionStacks') try: response = self.call(request) except: raise results = response[u'ListAvailableSolutionStacksResponse']\ [u'ListAvailableSolutionStacksResult'][u'SolutionStackDetails'] request_id = response[u'ListAvailableSolutionStacksResponse']\ [u'ResponseMetadata'][u'RequestId'] solutionstacks = [] for result in results: solutionstacks.append(SolutionStackDescription.from_json(result)) return Response(request_id, solutionstacks) def create_configuration_template(self, application, template, environment_id = None, solution_stack = None, source_configuration = None, option_settings = None, option_remove = None, template_specification = None, description = None): request = Request() request.set_operation(u'CreateConfigurationTemplate') request.set_app_name(application) request.set_template(template) if environment_id is not None: request.set_env_id(environment_id) if solution_stack is not None: request.set_solution_stack(solution_stack) if source_configuration is not None: request.set_source_configuration(source_configuration) if option_settings is not None: request.set_option_settings(option_settings) if option_remove is not None: request.set_options_to_remove(option_remove) if template_specification is not None: request.set_template_specification(template_specification) if description is not None: request.set_description(description) response = self.call(request) result = response[u'CreateConfigurationTemplateResponse'][u'CreateConfigurationTemplateResult'] request_id = response[u'CreateConfigurationTemplateResponse']\ [u'ResponseMetadata'][u'RequestId'] configuration = ConfigurationSettingsDescription.from_json(result) return Response(request_id, configuration) def update_configuration_template(self, application, template, environment_id = None, solution_stack = None, source_configuration = None, option_settings = None, option_remove = None, template_specification = None, description = None): request = Request() request.set_operation(u'UpdateConfigurationTemplate') request.set_app_name(application) request.set_template(template) if environment_id is not None: request.set_env_id(environment_id) if solution_stack is not None: request.set_solution_stack(solution_stack) if source_configuration is not None: request.set_source_configuration(source_configuration) if option_settings is not None: request.set_option_settings(option_settings) if option_remove is not None: request.set_options_to_remove(option_remove) if template_specification is not None: request.set_template_specification(template_specification) if description is not None: request.set_description(description) response = self.call(request) result = response[u'UpdateConfigurationTemplateResponse'][u'UpdateConfigurationTemplateResult'] request_id = response[u'UpdateConfigurationTemplateResponse']\ [u'ResponseMetadata'][u'RequestId'] configuration = ConfigurationSettingsDescription.from_json(result) return Response(request_id, configuration) def delete_configuration_template(self, application, template): request = Request() request.set_operation(u'DeleteConfigurationTemplate') request.set_app_name(application) request.set_template(template) response = self.call(request) request_id = response[u'DeleteConfigurationTemplateResponse']\ [u'ResponseMetadata'][u'RequestId'] return Response(request_id, None) def validate_configuration_settings(self, application_name = None, option_settings = None, environment_name = None, template = None, version_label = None, option_remove = None, template_specification = None): request = Request() request.set_operation(u'ValidateConfigurationSettings') if application_name is not None: request.set_app_name(application_name) if option_settings is not None: request.set_option_settings(option_settings) if environment_name is not None: request.set_env_name(environment_name) if template is not None: request.set_template(template) if version_label is not None: request.set_version_label(version_label) if option_remove is not None: request.set_options_to_remove(option_remove) if template_specification is not None: request.set_template_specification(template_specification) try: response = self.call(request) except AwsServiceException as ex: if ex.code.lower() == AwsErrorCode.InsufficientPrivileges.lower(): raise InsufficientPrivilegesException(ex) if ex.code.lower() == AwsErrorCode.MissingParameter.lower(): raise MissingParameterException(ex) if ex.code.lower() == AwsErrorCode.InvalidParameterValue.lower(): raise InvalidParameterValueException(ex) raise results = response[u'ValidateConfigurationSettingsResponse']\ [u'ValidateConfigurationSettingsResult'][u'Messages'] request_id = response[u'ValidateConfigurationSettingsResponse']\ [u'ResponseMetadata'][u'RequestId'] messages = [] if results is not None: for result in results: messages.append(ValidationMessage.from_json(result)) return Response(request_id, messages)
"""Tests for Incremental PCA.""" import numpy as np import pytest from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_allclose_dense_sparse from numpy.testing import assert_array_equal from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA from scipy import sparse iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) assert X_transformed.shape == (X.shape[0], 2) np.testing.assert_allclose( ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), rtol=1e-3, ) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() np.testing.assert_allclose( np.dot(cov, precision), np.eye(X.shape[1]), atol=1e-13 ) @pytest.mark.parametrize( "matrix_class", [sparse.csc_matrix, sparse.csr_matrix, sparse.lil_matrix] ) def test_incremental_pca_sparse(matrix_class): # Incremental PCA on sparse arrays. X = iris.data pca = PCA(n_components=2) pca.fit_transform(X) X_sparse = matrix_class(X) batch_size = X_sparse.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) X_transformed = ipca.fit_transform(X_sparse) assert X_transformed.shape == (X_sparse.shape[0], 2) np.testing.assert_allclose( ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), rtol=1e-3, ) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X_sparse) cov = ipca.get_covariance() precision = ipca.get_precision() np.testing.assert_allclose( np.dot(cov, precision), np.eye(X_sparse.shape[1]), atol=1e-13 ) with pytest.raises( TypeError, match=( "IncrementalPCA.partial_fit does not support " "sparse input. Either convert data to dense " "or use IncrementalPCA.fit to do so in batches." ), ): ipca.partial_fit(X_sparse) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * 0.1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1.0, 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= 0.00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = np.array([[0, 1, 0], [1, 0, 0]]) n_samples, n_features = X.shape for n_components in [-1, 0, 0.99, 4]: with pytest.raises( ValueError, match=( "n_components={} invalid" " for n_features={}, need more rows than" " columns for IncrementalPCA" " processing".format(n_components, n_features) ), ): IncrementalPCA(n_components, batch_size=10).fit(X) # Tests that n_components is also <= n_samples. n_components = 3 with pytest.raises( ValueError, match=( "n_components={} must be" " less or equal to the batch number of" " samples {}".format(n_components, n_samples) ), ): IncrementalPCA(n_components=n_components).partial_fit(X) def test_n_components_none(): # Ensures that n_components == None is handled correctly rng = np.random.RandomState(1999) for n_samples, n_features in [(50, 10), (10, 50)]: X = rng.rand(n_samples, n_features) ipca = IncrementalPCA(n_components=None) # First partial_fit call, ipca.n_components_ is inferred from # min(X.shape) ipca.partial_fit(X) assert ipca.n_components_ == min(X.shape) # Second partial_fit call, ipca.n_components_ is inferred from # ipca.components_ computed from the first partial_fit call ipca.partial_fit(X) assert ipca.n_components_ == ipca.components_.shape[0] def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) with pytest.raises(ValueError): ipca.partial_fit(X2) # Increasing number of components ipca.set_params(n_components=15) with pytest.raises(ValueError): ipca.partial_fit(X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) with pytest.raises(ValueError): ipca.partial_fit(X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_batch_rank(): # Test sample size in each batch is always larger or equal to n_components rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 90, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=20, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for components_i, components_j in zip(all_components[:-1], all_components[1:]): assert_allclose_dense_sparse(components_i, components_j) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= 0.00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix( 1000, 100, tail_strength=0.0, effective_rank=10, random_state=1999 ) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal( pca.explained_variance_, ipca.explained_variance_, decimal=prec ) assert_almost_equal( pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec ) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_singular_values(): # Check that the IncrementalPCA output has the correct singular values rng = np.random.RandomState(0) n_samples = 1000 n_features = 100 X = datasets.make_low_rank_matrix( n_samples, n_features, tail_strength=0.0, effective_rank=10, random_state=rng ) pca = PCA(n_components=10, svd_solver="full", random_state=rng).fit(X) ipca = IncrementalPCA(n_components=10, batch_size=100).fit(X) assert_array_almost_equal(pca.singular_values_, ipca.singular_values_, 2) # Compare to the Frobenius norm X_pca = pca.transform(X) X_ipca = ipca.transform(X) assert_array_almost_equal( np.sum(pca.singular_values_ ** 2.0), np.linalg.norm(X_pca, "fro") ** 2.0, 12 ) assert_array_almost_equal( np.sum(ipca.singular_values_ ** 2.0), np.linalg.norm(X_ipca, "fro") ** 2.0, 2 ) # Compare to the 2-norms of the score vectors assert_array_almost_equal( pca.singular_values_, np.sqrt(np.sum(X_pca ** 2.0, axis=0)), 12 ) assert_array_almost_equal( ipca.singular_values_, np.sqrt(np.sum(X_ipca ** 2.0, axis=0)), 2 ) # Set the singular values and see what we get back rng = np.random.RandomState(0) n_samples = 100 n_features = 110 X = datasets.make_low_rank_matrix( n_samples, n_features, tail_strength=0.0, effective_rank=3, random_state=rng ) pca = PCA(n_components=3, svd_solver="full", random_state=rng) ipca = IncrementalPCA(n_components=3, batch_size=100) X_pca = pca.fit_transform(X) X_pca /= np.sqrt(np.sum(X_pca ** 2.0, axis=0)) X_pca[:, 0] *= 3.142 X_pca[:, 1] *= 2.718 X_hat = np.dot(X_pca, pca.components_) pca.fit(X_hat) ipca.fit(X_hat) assert_array_almost_equal(pca.singular_values_, [3.142, 2.718, 1.0], 14) assert_array_almost_equal(ipca.singular_values_, [3.142, 2.718, 1.0], 14) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix( 1000, 10, tail_strength=0.0, effective_rank=2, random_state=1999 ) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec) def test_incremental_pca_partial_fit_float_division(): # Test to ensure float division is used in all versions of Python # (non-regression test for issue #9489) rng = np.random.RandomState(0) A = rng.randn(5, 3) + 2 B = rng.randn(7, 3) + 5 pca = IncrementalPCA(n_components=2) pca.partial_fit(A) # Set n_samples_seen_ to be a floating point number instead of an int pca.n_samples_seen_ = float(pca.n_samples_seen_) pca.partial_fit(B) singular_vals_float_samples_seen = pca.singular_values_ pca2 = IncrementalPCA(n_components=2) pca2.partial_fit(A) pca2.partial_fit(B) singular_vals_int_samples_seen = pca2.singular_values_ np.testing.assert_allclose( singular_vals_float_samples_seen, singular_vals_int_samples_seen ) def test_incremental_pca_fit_overflow_error(): # Test for overflow error on Windows OS # (non-regression test for issue #17693) rng = np.random.RandomState(0) A = rng.rand(500000, 2) ipca = IncrementalPCA(n_components=2, batch_size=10000) ipca.fit(A) pca = PCA(n_components=2) pca.fit(A) np.testing.assert_allclose(ipca.singular_values_, pca.singular_values_) def test_incremental_pca_feature_names_out(): """Check feature names out for IncrementalPCA.""" ipca = IncrementalPCA(n_components=2).fit(iris.data) names = ipca.get_feature_names_out() assert_array_equal([f"incrementalpca{i}" for i in range(2)], names)
# python client.py import json import hmac import time import base64 import hashlib import requests from datetime import datetime, timedelta one_week_ago = datetime.today() - timedelta(days=7) class BitfinexError(Exception): pass class Base(object): # A base class for the API Client methods that handles interaction with the requests library. api_url = 'https://api.bitfinex.com/' exception_on_error = True def __init__(self, proxydict=None, *args, **kwargs): self.proxydict = proxydict def _get(self, *args, **kwargs): # Make a GET request. return self._request(requests.get, *args, **kwargs) def _post(self, *args, **kwargs): # Make a POST request. data = self._default_data() data.update(kwargs.get('data') or {}) kwargs['data'] = data return self._request(requests.post, *args, **kwargs) def _default_data(self): # Default data for a POST request. return {} def _request(self, func, url, *args, **kwargs): # Make a generic request, adding in any proxy defined by the instance. # Raises a 'requests.HTTPError if the response status isn't 200, # Raises a 'BitfinexError' if the response contains a json encoded error message. return_json = kwargs.pop('return_json', False) url = self.api_url + url response = func(url, *args, **kwargs) if 'proxies' not in kwargs: kwargs['proxies'] = self.proxydict # Check for error, raising an exception if appropriate. response.raise_for_status() try: json_response = response.json() except ValueError: json_response = None if isinstance(json_response, dict): error = json_response.get('error') if error: raise BitfinexError(error) if return_json: if json_response is None: raise BitfinexError( "Could not decode json for: " + response.text) return json_response return response class Public(Base): def ticker(self, symbol="btcusd"): # The ticker is a high level overview of the state of the market. url = "v1/pubticker/" + symbol return self._get(url, return_json=True) def last_trade(self, symbol="btcusd"): # Shortcut for last trade return float(self.ticker(symbol)['last_price']) def stats(self, symbol="btcusd"): # Various statistics about the requested pair. url = "v1/stats/" + symbol return self._get(url, return_json=True) def funding_book(self, currency="USD"): # Get the full margin funding book url = "v1/lendbook/" + currency return self._get(url, return_json=True) def order_book(self, symbol="btcusd"): # Get the full order book. url = "v1/book/" + symbol return self._get(url, return_json=True) def trades(self, symbol="btcusd"): # Get a list of the most recent trades for the given symbol. url = "v1/trades/" + symbol return self._get(url, return_json=True) def lends(self, currency="USD"): # Get a list of the most recent funding data for the given currency: total amount provided and Flash Return Rate (in % by 365 days) over time. url = "v1/lends/" + currency return self._get(url, return_json=True) def symbols(self): # A list of symbol names. return self._get("/v1/symbols", return_json=True) def symbols_details(self): # Get a list of valid symbol IDs and the pair details. return self._get("/v1/symbols_details", return_json=True) class Private(Public): def __init__(self, key, secret, *args, **kwargs): # Stores the username, key, and secret which is used when making POST requests to Bitfinex. super(Private, self).__init__( key=key, secret=secret, *args, **kwargs) self.key = key self.secret = secret def _get_nonce(self): # Get a unique nonce for the bitfinex API. # This isn't a thread-safe function. nonce = getattr(self, '_nonce', 0) if nonce: nonce += 1 self._nonce = max(int(time.time()), nonce) return self._nonce def _default_data(self, *args, **kwargs): # Generate a one-time signature and other data required to send a secure POST request to the Bitfinex API. data = {} nonce = self._get_nonce() data['nonce'] = str(nonce) data['request'] = args[0] return data def _post(self, *args, **kwargs): # Make a POST request. data = kwargs.pop('data', {}) data.update(self._default_data(*args, **kwargs)) key = self.key secret = self.secret payload_json = json.dumps(data) payload = base64.b64encode(payload_json) sig = hmac.new(secret, payload, hashlib.sha384) sig = sig.hexdigest() headers = { 'X-BFX-APIKEY' : key, 'X-BFX-PAYLOAD' : payload, 'X-BFX-SIGNATURE' : sig } kwargs['headers'] = headers return self._request(requests.post, *args, **kwargs) def account_infos(self): # Return information about your account return self._post("/v1/account_infos", return_json=True) def account_fees(self): # See the fees applied to your withdrawals return self._post("/v1/account_fees", return_json=True) def summary(self): # Returns a 30-day summary of your trading volume and return on margin funding return self._post("/v1/summary", return_json=True) def deposit(self, method, wallet_name, renew=0): data = {'method': method, 'wallet_name': wallet_name, 'renew': renew } return self._post("/v1/deposit/new", data=data, return_json=True) def key_info(self): # Check the permissions of the key being used to generate this request. return self._post("/v1/key_info",return_json=True) def margin_infos(self): # See your trading wallet information for margin trading. return self._post("/v1/margin_infos",return_json=True) def balances(self): # See your balances return self._post("/v1/balances",return_json=True) def transfer(self, amount, currency, wallet_from, wallet_to): # Allow you to move available balances between your wallets. data = {'amount': amount, 'currency': currency, 'walletfrom': wallet_from, 'walletto': wallet_to } return self._post("/v1/transfer", data=data, return_json=True) def withdraw(self, withdraw_type, wallet_selected, amount, address, payment_id="", account_name="", account_number, swift_code="", bank_name, bank_address, bank_city, bank_country, detail_payment="", express_wire=0, intermediary_bank_name="", intermediary_bank_address="", intermediary_bank_city="", intermediary_bank_country="", intermediary_bank_account="", intermediary_bank_swift=""): # Allow you to request a withdrawal from one of your wallet. data = {'withdraw_type': withdraw_type, 'walletselected': wallet_selected, 'amount': amount, 'address': address, 'payment_id': payment_id, 'account_name': account_name, 'account_number': account_number, 'swift': swift_code, 'bank_name': bank_name, 'bank_address': bank_address, 'bank_city': bank_city, 'bank_country': bank_country, 'detail_payment': detail_payment, 'expressWire': express_wire, 'intermediary_bank_name': intermediary_bank_name, 'intermediary_bank_address': intermediary_bank_address, 'intermediary_bank_city': intermediary_bank_city, 'intermediary_bank_country': intermediary_bank_country, 'intermediary_bank_account': intermediary_bank_account, 'intermediary_bank_swift': intermediary_bank_swift } return self._post("/v1/withdraw", data=data, return_json=True) ####### Orders ####### def new_order(self, symbol, amount, price, side, order_type): # Submit a new Order data = {'symbol': symbol, 'amount': amount, 'price': price, 'exchange': 'bitfinex', 'side': side, 'type': order_type } return self._post("/v1/order/new", data=data, return_json=True) def multiple_orders(self): # Submit several new orders at once. return def cancel_order(self, order_id): # Cancel an order. data = {'order_id': order_id} return self._post("/v1/order/cancel",data, return_json=True) def cancel_multiple_orders(self, order_ids): # Cancel multiples orders at once. data = {'order_ids': order_ids} req = self._post("/v1/order/cancel/multi",data, return_json=True) if req.content == "Orders cancelled": return True else: return False def cancel_all_orders(self): # Cancel all active orders at once. req = self._post('/v1/order/cancel/all', return_json=False) if req.content == "All orders cancelled": return True else: return False def replace_order(self, order_id, symbol, amount, price, side, order_type): # Replace an order with a new one. data = {'order_id': order_id, 'symbol': symbol, 'amount': amount, 'price': price, 'exchange': 'bitfinex', 'side': side, 'type': order_type } return self._post('/v1/order/cancel/replace', return_json=False) def order_status(self, order_id): # Get the status of an order. data = {'order_id': order_id} return self._post('/v1/order/status', return_json=True) def active_orders(self): # Returns an array of the results of `/order/status` for all your live orders. return self._post("/v1/orders", return_json=True) def order_history(self, limit=10): # View your latest inactive orders # Limited to last 3 days and 1 request per minute. data = {'limit': limit} return self._post("/v1/orders/hist", return_json=True) ####### Positions ####### def active_positions(self): # View your active positions. return self._post("/v1/positions", return_json=True) def claim_position(self, position_id, amount): ''' A position can be claimed if: It is a long position: The amount in the last unit of the position pair that you have in your trading wallet AND/OR the realized profit of the position is greater or equal to the purchase amount of the position (base price position amount) and the funds which need to be returned. For example, for a long BTCUSD position, you can claim the position if the amount of USD you have in the trading wallet is greater than the base price the position amount and the funds used. It is a short position: The amount in the first unit of the position pair that you have in your trading wallet is greater or equal to the amount of the position and the margin funding used. ''' data = {'position_id': position_id, 'amount': amount } return self._post("/v1/position/claim", return_json=True) ####### Historical Data ####### def balance_history(self, currency, since=one_week_ago, until=datetime.today(), limit=100, wallet): # View all of your balance ledger entries. data = {'currency': currency, 'since': since, 'until': until, 'limit': limit, 'wallet': wallet } return self._post("/v1/history", return_json=True) def deposit_withdrawl_history(self, currency, method="bitcoin",since=one_week_ago, until=datetime.today(), limit=100): # View your past deposits/withdrawals. data = {'currency': currency, 'method': method, 'since': since, 'until': until, 'limit': limit } return self._post("/v1/history/movements", return_json=True) def past_trades(self, symbol="BTCUSD", timestamp=one_week_ago, until=datetime.today(), limit_trades=50, reverse=0): data = {'symbol': symbol, 'timestamp': timestamp, 'until': until, 'limit_trades': limit_trades, 'reverse': reverse } return self._post("/v1/mytrades", return_json=True) ####### Margin Funding ####### def new_offer(self): # Submit a new Offer return def cancel_offer(self): return def offer_status(self): return def active_credits(self): return def offers(self): return def offers_history(self): return def past_funding_trades(self): return def taken_funds(self): # Active Funding Used in a margin position return def unused_taken_funds(self): # Active Funding Not Used in a margin position # View your funding currently borrowed and not used (available for a new margin position). return def total_taken_funds(self): # View the total of your active funding used in your position(s). return def close_margin_funding(self): return def basket_manage(self): return
from __future__ import absolute_import, division, print_function import functools import sys import traceback from tornado.concurrent import Future from tornado import gen from tornado.httpclient import HTTPError, HTTPRequest from tornado.log import gen_log, app_log from tornado.template import DictLoader from tornado.testing import AsyncHTTPTestCase, gen_test, bind_unused_port, ExpectLog from tornado.test.util import unittest, skipBefore35, exec_test from tornado.web import Application, RequestHandler try: import tornado.websocket # noqa from tornado.util import _websocket_mask_python except ImportError: # The unittest module presents misleading errors on ImportError # (it acts as if websocket_test could not be found, hiding the underlying # error). If we get an ImportError here (which could happen due to # TORNADO_EXTENSION=1), print some extra information before failing. traceback.print_exc() raise from tornado.websocket import WebSocketHandler, websocket_connect, WebSocketError try: from tornado import speedups except ImportError: speedups = None class TestWebSocketHandler(WebSocketHandler): """Base class for testing handlers that exposes the on_close event. This allows for deterministic cleanup of the associated socket. """ def initialize(self, close_future, compression_options=None): self.close_future = close_future self.compression_options = compression_options def get_compression_options(self): return self.compression_options def on_close(self): self.close_future.set_result((self.close_code, self.close_reason)) class EchoHandler(TestWebSocketHandler): def on_message(self, message): self.write_message(message, isinstance(message, bytes)) class ErrorInOnMessageHandler(TestWebSocketHandler): def on_message(self, message): 1 / 0 class HeaderHandler(TestWebSocketHandler): def open(self): methods_to_test = [ functools.partial(self.write, 'This should not work'), functools.partial(self.redirect, 'http://localhost/elsewhere'), functools.partial(self.set_header, 'X-Test', ''), functools.partial(self.set_cookie, 'Chocolate', 'Chip'), functools.partial(self.set_status, 503), self.flush, self.finish, ] for method in methods_to_test: try: # In a websocket context, many RequestHandler methods # raise RuntimeErrors. method() raise Exception("did not get expected exception") except RuntimeError: pass self.write_message(self.request.headers.get('X-Test', '')) class HeaderEchoHandler(TestWebSocketHandler): def set_default_headers(self): self.set_header("X-Extra-Response-Header", "Extra-Response-Value") def prepare(self): for k, v in self.request.headers.get_all(): if k.lower().startswith('x-test'): self.set_header(k, v) class NonWebSocketHandler(RequestHandler): def get(self): self.write('ok') class CloseReasonHandler(TestWebSocketHandler): def open(self): self.on_close_called = False self.close(1001, "goodbye") class AsyncPrepareHandler(TestWebSocketHandler): @gen.coroutine def prepare(self): yield gen.moment def on_message(self, message): self.write_message(message) class PathArgsHandler(TestWebSocketHandler): def open(self, arg): self.write_message(arg) class CoroutineOnMessageHandler(TestWebSocketHandler): def initialize(self, close_future, compression_options=None): super(CoroutineOnMessageHandler, self).initialize(close_future, compression_options) self.sleeping = 0 @gen.coroutine def on_message(self, message): if self.sleeping > 0: self.write_message('another coroutine is already sleeping') self.sleeping += 1 yield gen.sleep(0.01) self.sleeping -= 1 self.write_message(message) class RenderMessageHandler(TestWebSocketHandler): def on_message(self, message): self.write_message(self.render_string('message.html', message=message)) class WebSocketBaseTestCase(AsyncHTTPTestCase): @gen.coroutine def ws_connect(self, path, **kwargs): ws = yield websocket_connect( 'ws://127.0.0.1:%d%s' % (self.get_http_port(), path), **kwargs) raise gen.Return(ws) @gen.coroutine def close(self, ws): """Close a websocket connection and wait for the server side. If we don't wait here, there are sometimes leak warnings in the tests. """ ws.close() yield self.close_future class WebSocketTest(WebSocketBaseTestCase): def get_app(self): self.close_future = Future() return Application([ ('/echo', EchoHandler, dict(close_future=self.close_future)), ('/non_ws', NonWebSocketHandler), ('/header', HeaderHandler, dict(close_future=self.close_future)), ('/header_echo', HeaderEchoHandler, dict(close_future=self.close_future)), ('/close_reason', CloseReasonHandler, dict(close_future=self.close_future)), ('/error_in_on_message', ErrorInOnMessageHandler, dict(close_future=self.close_future)), ('/async_prepare', AsyncPrepareHandler, dict(close_future=self.close_future)), ('/path_args/(.*)', PathArgsHandler, dict(close_future=self.close_future)), ('/coroutine', CoroutineOnMessageHandler, dict(close_future=self.close_future)), ('/render', RenderMessageHandler, dict(close_future=self.close_future)), ], template_loader=DictLoader({ 'message.html': '<b>{{ message }}</b>', })) def tearDown(self): super(WebSocketTest, self).tearDown() RequestHandler._template_loaders.clear() def test_http_request(self): # WS server, HTTP client. response = self.fetch('/echo') self.assertEqual(response.code, 400) def test_bad_websocket_version(self): response = self.fetch('/echo', headers={'Connection': 'Upgrade', 'Upgrade': 'WebSocket', 'Sec-WebSocket-Version': '12'}) self.assertEqual(response.code, 426) @gen_test def test_websocket_gen(self): ws = yield self.ws_connect('/echo') yield ws.write_message('hello') response = yield ws.read_message() self.assertEqual(response, 'hello') yield self.close(ws) def test_websocket_callbacks(self): websocket_connect( 'ws://127.0.0.1:%d/echo' % self.get_http_port(), io_loop=self.io_loop, callback=self.stop) ws = self.wait().result() ws.write_message('hello') ws.read_message(self.stop) response = self.wait().result() self.assertEqual(response, 'hello') self.close_future.add_done_callback(lambda f: self.stop()) ws.close() self.wait() @gen_test def test_binary_message(self): ws = yield self.ws_connect('/echo') ws.write_message(b'hello \xe9', binary=True) response = yield ws.read_message() self.assertEqual(response, b'hello \xe9') yield self.close(ws) @gen_test def test_unicode_message(self): ws = yield self.ws_connect('/echo') ws.write_message(u'hello \u00e9') response = yield ws.read_message() self.assertEqual(response, u'hello \u00e9') yield self.close(ws) @gen_test def test_render_message(self): ws = yield self.ws_connect('/render') ws.write_message('hello') response = yield ws.read_message() self.assertEqual(response, '<b>hello</b>') yield self.close(ws) @gen_test def test_error_in_on_message(self): ws = yield self.ws_connect('/error_in_on_message') ws.write_message('hello') with ExpectLog(app_log, "Uncaught exception"): response = yield ws.read_message() self.assertIs(response, None) yield self.close(ws) @gen_test def test_websocket_http_fail(self): with self.assertRaises(HTTPError) as cm: yield self.ws_connect('/notfound') self.assertEqual(cm.exception.code, 404) @gen_test def test_websocket_http_success(self): with self.assertRaises(WebSocketError): yield self.ws_connect('/non_ws') @gen_test def test_websocket_network_fail(self): sock, port = bind_unused_port() sock.close() with self.assertRaises(IOError): with ExpectLog(gen_log, ".*"): yield websocket_connect( 'ws://127.0.0.1:%d/' % port, io_loop=self.io_loop, connect_timeout=3600) @gen_test def test_websocket_close_buffered_data(self): ws = yield websocket_connect( 'ws://127.0.0.1:%d/echo' % self.get_http_port()) ws.write_message('hello') ws.write_message('world') # Close the underlying stream. ws.stream.close() yield self.close_future @gen_test def test_websocket_headers(self): # Ensure that arbitrary headers can be passed through websocket_connect. ws = yield websocket_connect( HTTPRequest('ws://127.0.0.1:%d/header' % self.get_http_port(), headers={'X-Test': 'hello'})) response = yield ws.read_message() self.assertEqual(response, 'hello') yield self.close(ws) @gen_test def test_websocket_header_echo(self): # Ensure that headers can be returned in the response. # Specifically, that arbitrary headers passed through websocket_connect # can be returned. ws = yield websocket_connect( HTTPRequest('ws://127.0.0.1:%d/header_echo' % self.get_http_port(), headers={'X-Test-Hello': 'hello'})) self.assertEqual(ws.headers.get('X-Test-Hello'), 'hello') self.assertEqual(ws.headers.get('X-Extra-Response-Header'), 'Extra-Response-Value') yield self.close(ws) @gen_test def test_server_close_reason(self): ws = yield self.ws_connect('/close_reason') msg = yield ws.read_message() # A message of None means the other side closed the connection. self.assertIs(msg, None) self.assertEqual(ws.close_code, 1001) self.assertEqual(ws.close_reason, "goodbye") # The on_close callback is called no matter which side closed. code, reason = yield self.close_future # The client echoed the close code it received to the server, # so the server's close code (returned via close_future) is # the same. self.assertEqual(code, 1001) @gen_test def test_client_close_reason(self): ws = yield self.ws_connect('/echo') ws.close(1001, 'goodbye') code, reason = yield self.close_future self.assertEqual(code, 1001) self.assertEqual(reason, 'goodbye') @gen_test def test_async_prepare(self): # Previously, an async prepare method triggered a bug that would # result in a timeout on test shutdown (and a memory leak). ws = yield self.ws_connect('/async_prepare') ws.write_message('hello') res = yield ws.read_message() self.assertEqual(res, 'hello') @gen_test def test_path_args(self): ws = yield self.ws_connect('/path_args/hello') res = yield ws.read_message() self.assertEqual(res, 'hello') @gen_test def test_coroutine(self): ws = yield self.ws_connect('/coroutine') # Send both messages immediately, coroutine must process one at a time. yield ws.write_message('hello1') yield ws.write_message('hello2') res = yield ws.read_message() self.assertEqual(res, 'hello1') res = yield ws.read_message() self.assertEqual(res, 'hello2') @gen_test def test_check_origin_valid_no_path(self): port = self.get_http_port() url = 'ws://127.0.0.1:%d/echo' % port headers = {'Origin': 'http://127.0.0.1:%d' % port} ws = yield websocket_connect(HTTPRequest(url, headers=headers), io_loop=self.io_loop) ws.write_message('hello') response = yield ws.read_message() self.assertEqual(response, 'hello') yield self.close(ws) @gen_test def test_check_origin_valid_with_path(self): port = self.get_http_port() url = 'ws://127.0.0.1:%d/echo' % port headers = {'Origin': 'http://127.0.0.1:%d/something' % port} ws = yield websocket_connect(HTTPRequest(url, headers=headers), io_loop=self.io_loop) ws.write_message('hello') response = yield ws.read_message() self.assertEqual(response, 'hello') yield self.close(ws) @gen_test def test_check_origin_invalid_partial_url(self): port = self.get_http_port() url = 'ws://127.0.0.1:%d/echo' % port headers = {'Origin': '127.0.0.1:%d' % port} with self.assertRaises(HTTPError) as cm: yield websocket_connect(HTTPRequest(url, headers=headers), io_loop=self.io_loop) self.assertEqual(cm.exception.code, 403) @gen_test def test_check_origin_invalid(self): port = self.get_http_port() url = 'ws://127.0.0.1:%d/echo' % port # Host is 127.0.0.1, which should not be accessible from some other # domain headers = {'Origin': 'http://somewhereelse.com'} with self.assertRaises(HTTPError) as cm: yield websocket_connect(HTTPRequest(url, headers=headers), io_loop=self.io_loop) self.assertEqual(cm.exception.code, 403) @gen_test def test_check_origin_invalid_subdomains(self): port = self.get_http_port() url = 'ws://localhost:%d/echo' % port # Subdomains should be disallowed by default. If we could pass a # resolver to websocket_connect we could test sibling domains as well. headers = {'Origin': 'http://subtenant.localhost'} with self.assertRaises(HTTPError) as cm: yield websocket_connect(HTTPRequest(url, headers=headers), io_loop=self.io_loop) self.assertEqual(cm.exception.code, 403) if sys.version_info >= (3, 5): NativeCoroutineOnMessageHandler = exec_test(globals(), locals(), """ class NativeCoroutineOnMessageHandler(TestWebSocketHandler): def initialize(self, close_future, compression_options=None): super().initialize(close_future, compression_options) self.sleeping = 0 async def on_message(self, message): if self.sleeping > 0: self.write_message('another coroutine is already sleeping') self.sleeping += 1 await gen.sleep(0.01) self.sleeping -= 1 self.write_message(message)""")['NativeCoroutineOnMessageHandler'] class WebSocketNativeCoroutineTest(WebSocketBaseTestCase): def get_app(self): self.close_future = Future() return Application([ ('/native', NativeCoroutineOnMessageHandler, dict(close_future=self.close_future))]) @skipBefore35 @gen_test def test_native_coroutine(self): ws = yield self.ws_connect('/native') # Send both messages immediately, coroutine must process one at a time. yield ws.write_message('hello1') yield ws.write_message('hello2') res = yield ws.read_message() self.assertEqual(res, 'hello1') res = yield ws.read_message() self.assertEqual(res, 'hello2') class CompressionTestMixin(object): MESSAGE = 'Hello world. Testing 123 123' def get_app(self): self.close_future = Future() return Application([ ('/echo', EchoHandler, dict( close_future=self.close_future, compression_options=self.get_server_compression_options())), ]) def get_server_compression_options(self): return None def get_client_compression_options(self): return None @gen_test def test_message_sizes(self): ws = yield self.ws_connect( '/echo', compression_options=self.get_client_compression_options()) # Send the same message three times so we can measure the # effect of the context_takeover options. for i in range(3): ws.write_message(self.MESSAGE) response = yield ws.read_message() self.assertEqual(response, self.MESSAGE) self.assertEqual(ws.protocol._message_bytes_out, len(self.MESSAGE) * 3) self.assertEqual(ws.protocol._message_bytes_in, len(self.MESSAGE) * 3) self.verify_wire_bytes(ws.protocol._wire_bytes_in, ws.protocol._wire_bytes_out) yield self.close(ws) class UncompressedTestMixin(CompressionTestMixin): """Specialization of CompressionTestMixin when we expect no compression.""" def verify_wire_bytes(self, bytes_in, bytes_out): # Bytes out includes the 4-byte mask key per message. self.assertEqual(bytes_out, 3 * (len(self.MESSAGE) + 6)) self.assertEqual(bytes_in, 3 * (len(self.MESSAGE) + 2)) class NoCompressionTest(UncompressedTestMixin, WebSocketBaseTestCase): pass # If only one side tries to compress, the extension is not negotiated. class ServerOnlyCompressionTest(UncompressedTestMixin, WebSocketBaseTestCase): def get_server_compression_options(self): return {} class ClientOnlyCompressionTest(UncompressedTestMixin, WebSocketBaseTestCase): def get_client_compression_options(self): return {} class DefaultCompressionTest(CompressionTestMixin, WebSocketBaseTestCase): def get_server_compression_options(self): return {} def get_client_compression_options(self): return {} def verify_wire_bytes(self, bytes_in, bytes_out): self.assertLess(bytes_out, 3 * (len(self.MESSAGE) + 6)) self.assertLess(bytes_in, 3 * (len(self.MESSAGE) + 2)) # Bytes out includes the 4 bytes mask key per message. self.assertEqual(bytes_out, bytes_in + 12) class MaskFunctionMixin(object): # Subclasses should define self.mask(mask, data) def test_mask(self): self.assertEqual(self.mask(b'abcd', b''), b'') self.assertEqual(self.mask(b'abcd', b'b'), b'\x03') self.assertEqual(self.mask(b'abcd', b'54321'), b'TVPVP') self.assertEqual(self.mask(b'ZXCV', b'98765432'), b'c`t`olpd') # Include test cases with \x00 bytes (to ensure that the C # extension isn't depending on null-terminated strings) and # bytes with the high bit set (to smoke out signedness issues). self.assertEqual(self.mask(b'\x00\x01\x02\x03', b'\xff\xfb\xfd\xfc\xfe\xfa'), b'\xff\xfa\xff\xff\xfe\xfb') self.assertEqual(self.mask(b'\xff\xfb\xfd\xfc', b'\x00\x01\x02\x03\x04\x05'), b'\xff\xfa\xff\xff\xfb\xfe') class PythonMaskFunctionTest(MaskFunctionMixin, unittest.TestCase): def mask(self, mask, data): return _websocket_mask_python(mask, data) @unittest.skipIf(speedups is None, "tornado.speedups module not present") class CythonMaskFunctionTest(MaskFunctionMixin, unittest.TestCase): def mask(self, mask, data): return speedups.websocket_mask(mask, data) class ServerPeriodicPingTest(WebSocketBaseTestCase): def get_app(self): class PingHandler(TestWebSocketHandler): def on_pong(self, data): self.write_message("got pong") self.close_future = Future() return Application([ ('/', PingHandler, dict(close_future=self.close_future)), ], websocket_ping_interval=0.01) @gen_test def test_server_ping(self): ws = yield self.ws_connect('/') for i in range(3): response = yield ws.read_message() self.assertEqual(response, "got pong") yield self.close(ws) # TODO: test that the connection gets closed if ping responses stop. class ClientPeriodicPingTest(WebSocketBaseTestCase): def get_app(self): class PingHandler(TestWebSocketHandler): def on_ping(self, data): self.write_message("got ping") self.close_future = Future() return Application([ ('/', PingHandler, dict(close_future=self.close_future)), ]) @gen_test def test_client_ping(self): ws = yield self.ws_connect('/', ping_interval=0.01) for i in range(3): response = yield ws.read_message() self.assertEqual(response, "got ping") yield self.close(ws) # TODO: test that the connection gets closed if ping responses stop. class MaxMessageSizeTest(WebSocketBaseTestCase): def get_app(self): self.close_future = Future() return Application([ ('/', EchoHandler, dict(close_future=self.close_future)), ], websocket_max_message_size=1024) @gen_test def test_large_message(self): ws = yield self.ws_connect('/') # Write a message that is allowed. msg = 'a' * 1024 ws.write_message(msg) resp = yield ws.read_message() self.assertEqual(resp, msg) # Write a message that is too large. ws.write_message(msg + 'b') resp = yield ws.read_message() # A message of None means the other side closed the connection. self.assertIs(resp, None) self.assertEqual(ws.close_code, 1009) self.assertEqual(ws.close_reason, "message too big") # TODO: Needs tests of messages split over multiple # continuation frames.
# -*- coding: utf-8 -*- # # Copyright (C)2006-2009 Edgewall Software # Copyright (C) 2006 Christopher Lenz <[email protected]> # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://trac.edgewall.org/wiki/TracLicense. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://trac.edgewall.org/log/. """Various utility functions and classes that support common presentation tasks such as grouping or pagination. """ from math import ceil import re __all__ = ['captioned_button', 'classes', 'first_last', 'group', 'istext', 'prepared_paginate', 'paginate', 'Paginator'] __no_apidoc__ = 'prepared_paginate' def captioned_button(req, symbol, text): """Return symbol and text or only symbol, according to user preferences.""" return symbol if req.session.get('ui.use_symbols') \ else u'%s %s' % (symbol, text) def classes(*args, **kwargs): """Helper function for dynamically assembling a list of CSS class names in templates. Any positional arguments are added to the list of class names. All positional arguments must be strings: >>> classes('foo', 'bar') u'foo bar' In addition, the names of any supplied keyword arguments are added if they have a truth value: >>> classes('foo', bar=True) u'foo bar' >>> classes('foo', bar=False) u'foo' If none of the arguments are added to the list, this function returns `None`: >>> classes(bar=False) """ classes = list(filter(None, args)) + [k for k, v in kwargs.items() if v] if not classes: return None return u' '.join(classes) def first_last(idx, seq): """Generate ``first`` or ``last`` or both, according to the position `idx` in sequence `seq`. """ return classes(first=idx == 0, last=idx == len(seq) - 1) def group(iterable, num, predicate=None): """Combines the elements produced by the given iterable so that every `n` items are returned as a tuple. >>> items = [1, 2, 3, 4] >>> for item in group(items, 2): ... print item (1, 2) (3, 4) The last tuple is padded with `None` values if its' length is smaller than `num`. >>> items = [1, 2, 3, 4, 5] >>> for item in group(items, 2): ... print item (1, 2) (3, 4) (5, None) The optional `predicate` parameter can be used to flag elements that should not be packed together with other items. Only those elements where the predicate function returns True are grouped with other elements, otherwise they are returned as a tuple of length 1: >>> items = [1, 2, 3, 4] >>> for item in group(items, 2, lambda x: x != 3): ... print item (1, 2) (3,) (4, None) """ buf = [] for item in iterable: flush = predicate and not predicate(item) if buf and flush: buf += [None] * (num - len(buf)) yield tuple(buf) del buf[:] buf.append(item) if flush or len(buf) == num: yield tuple(buf) del buf[:] if buf: buf += [None] * (num - len(buf)) yield tuple(buf) def istext(text): """`True` for text (`unicode` and `str`), but `False` for `Markup`.""" from genshi.core import Markup return isinstance(text, basestring) and not isinstance(text, Markup) def prepared_paginate(items, num_items, max_per_page): if max_per_page == 0: num_pages = 1 else: num_pages = int(ceil(float(num_items) / max_per_page)) return items, num_items, num_pages def paginate(items, page=0, max_per_page=10): """Simple generic pagination. Given an iterable, this function returns: * the slice of objects on the requested page, * the total number of items, and * the total number of pages. The `items` parameter can be a list, tuple, or iterator: >>> items = range(12) >>> items [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] >>> paginate(items) ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 12, 2) >>> paginate(items, page=1) ([10, 11], 12, 2) >>> paginate(iter(items)) ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 12, 2) >>> paginate(iter(items), page=1) ([10, 11], 12, 2) This function also works with generators: >>> def generate(): ... for idx in range(12): ... yield idx >>> paginate(generate()) ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 12, 2) >>> paginate(generate(), page=1) ([10, 11], 12, 2) The `max_per_page` parameter can be used to set the number of items that should be displayed per page: >>> items = range(12) >>> paginate(items, page=0, max_per_page=6) ([0, 1, 2, 3, 4, 5], 12, 2) >>> paginate(items, page=1, max_per_page=6) ([6, 7, 8, 9, 10, 11], 12, 2) """ if not page: page = 0 start = page * max_per_page stop = start + max_per_page count = None if hasattr(items, '__len__'): count = len(items) if count: assert start < count, 'Page %d out of range' % page try: # Try slicing first for better performance retval = items[start:stop] except TypeError: # Slicing not supported, so iterate through the whole list retval = [] idx = -1 # Needed if items = [] for idx, item in enumerate(items): if start <= idx < stop: retval.append(item) # If we already obtained the total number of items via `len()`, # we can break out of the loop as soon as we've got the last item # for the requested page if count is not None and idx >= stop: break if count is None: count = idx + 1 return retval, count, int(ceil(float(count) / max_per_page)) class Paginator(object): """Pagination controller""" def __init__(self, items, page=0, max_per_page=10, num_items=None): if not page: page = 0 if num_items is None: items, num_items, num_pages = paginate(items, page, max_per_page) else: items, num_items, num_pages = prepared_paginate(items, num_items, max_per_page) offset = page * max_per_page self.page = page self.max_per_page = max_per_page self.items = items self.num_items = num_items self.num_pages = num_pages self.span = offset, offset + len(items) self.show_index = True def __iter__(self): return iter(self.items) def __len__(self): return len(self.items) def __nonzero__(self): return len(self.items) > 0 def __setitem__(self, idx, value): self.items[idx] = value @property def has_more_pages(self): return self.num_pages > 1 @property def has_next_page(self): return self.page + 1 < self.num_pages @property def has_previous_page(self): return self.page > 0 def get_shown_pages(self, page_index_count = 11): if self.has_more_pages == False: return range(1, 2) min_page = 1 max_page = int(ceil(float(self.num_items) / self.max_per_page)) current_page = self.page + 1 start_page = current_page - page_index_count / 2 end_page = current_page + page_index_count / 2 + \ (page_index_count % 2 - 1) if start_page < min_page: start_page = min_page if end_page > max_page: end_page = max_page return range(start_page, end_page + 1) def displayed_items(self): from trac.util.translation import _ start, stop = self.span total = self.num_items if start + 1 == stop: return _("%(last)d of %(total)d", last=stop, total=total) else: return _("%(start)d - %(stop)d of %(total)d", start=self.span[0] + 1, stop=self.span[1], total=total) def separated(items, sep=','): """Yield `(item, sep)` tuples, one for each element in `items`. `sep` will be `None` for the last item. >>> list(separated([1, 2])) [(1, ','), (2, None)] >>> list(separated([1])) [(1, None)] >>> list(separated("abc", ':')) [('a', ':'), ('b', ':'), ('c', None)] """ items = iter(items) last = items.next() for i in items: yield last, sep last = i yield last, None try: from json import dumps _js_quote = dict((c, '\\u%04x' % ord(c)) for c in '&<>') _js_quote_re = re.compile('[' + ''.join(_js_quote) + ']') def to_json(value): """Encode `value` to JSON.""" def replace(match): return _js_quote[match.group(0)] text = dumps(value, sort_keys=True, separators=(',', ':')) return _js_quote_re.sub(replace, text) except ImportError: from trac.util.text import to_js_string def to_json(value): """Encode `value` to JSON.""" if isinstance(value, basestring): return to_js_string(value) elif value is None: return 'null' elif value is False: return 'false' elif value is True: return 'true' elif isinstance(value, (int, long)): return str(value) elif isinstance(value, float): return repr(value) elif isinstance(value, (list, tuple)): return '[%s]' % ','.join(to_json(each) for each in value) elif isinstance(value, dict): return '{%s}' % ','.join('%s:%s' % (to_json(k), to_json(v)) for k, v in sorted(value.iteritems())) else: raise TypeError('Cannot encode type %s' % value.__class__.__name__)
# Copyright 2014 DreamHost, LLC # # Author: DreamHost, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import socket import unittest2 as unittest from akanda.rug import event from akanda.rug import notifications class TestGetTenantID(unittest.TestCase): def test_rpc(self): msg = {'_context_is_admin': False, '_context_project_id': 'c25992581e574b6485dbfdf39a3df46c', '_context_read_deleted': 'no', '_context_roles': ['anotherrole', 'Member', 'admin'], '_context_tenant_id': 'c25992581e574b6485dbfdf39a3df46c', '_context_timestamp': '2013-07-25 13:51:50.791338', '_context_user_id': '472511eedebd4322a26c5fb1f52711ee', '_unique_id': 'c87303336c7c4bb0b097b3e97bebf7ea', 'args': {'router_id': 'f37f31e9-adc2-4712-a002-4ccf0be17a99'}, 'method': 'router_deleted', 'version': '1.0'} tenant_id = notifications._get_tenant_id_for_message(msg) self.assertEqual("c25992581e574b6485dbfdf39a3df46c", tenant_id) def test_notification_tenant_id(self): msg = {u'_context_is_admin': False, u'_context_read_deleted': u'no', u'_context_roles': [u'anotherrole', u'Member'], u'_context_tenant_id': u'c25992581e574b6485dbfdf39a3df46c', u'_context_timestamp': u'2013-07-25 14:02:55.073049', u'_context_user_id': u'472511eedebd4322a26c5fb1f52711ee', u'_unique_id': u'8825f8a6ccec4285a7ecfdad7bd53815', u'event_type': u'port.create.end', u'message_id': u'bb9bcf1d-1547-4867-b41e-f5298fa10869', u'payload': { u'port': { u'admin_state_up': True, u'device_id': u'', u'device_owner': u'', u'fixed_ips': [{ u'ip_address': u'192.168.123.3', u'subnet_id': u'53d8a76a-3e1a-43e0-975e-83a4b464d18c', # noqa }], u'id': u'bbd92f5a-5a1d-4ec5-9272-8e4dd5f0c084', u'mac_address': u'fa:16:3e:f4:81:a9', u'name': u'', u'network_id': u'c3a30111-dd52-405c-84b2-4d62068e2d35', # noqa u'security_groups': [u'5124be1c-b2d5-47e6-ac62-411a0ea028c8'], # noqa u'status': u'DOWN', u'tenant_id': u'c25992581e574b6485dbfdf39a3df46c', }, }, u'priority': u'INFO', u'publisher_id': u'network.akanda', u'timestamp': u'2013-07-25 14:02:55.244126'} tenant_id = notifications._get_tenant_id_for_message(msg) self.assertEqual('c25992581e574b6485dbfdf39a3df46c', tenant_id) def test_notification_project_id(self): msg = { u'_context_is_admin': False, u'_context_project_id': u'c25992581e574b6485dbfdf39a3df46c', u'_context_read_deleted': u'no', u'_context_roles': [u'anotherrole', u'Member'], u'_context_timestamp': u'2013-07-25 14:02:55.073049', u'_context_user_id': u'472511eedebd4322a26c5fb1f52711ee', u'_unique_id': u'8825f8a6ccec4285a7ecfdad7bd53815', u'event_type': u'port.create.end', u'message_id': u'bb9bcf1d-1547-4867-b41e-f5298fa10869', u'payload': { u'port': { u'admin_state_up': True, u'device_id': u'', u'device_owner': u'', u'fixed_ips': [{ u'ip_address': u'192.168.123.3', u'subnet_id': u'53d8a76a-3e1a-43e0-975e-83a4b464d18c'}], # noqa u'id': u'bbd92f5a-5a1d-4ec5-9272-8e4dd5f0c084', u'mac_address': u'fa:16:3e:f4:81:a9', u'name': u'', u'network_id': u'c3a30111-dd52-405c-84b2-4d62068e2d35', u'security_groups': [u'5124be1c-b2d5-47e6-ac62-411a0ea028c8'], # noqa u'status': u'DOWN', u'tenant_id': u'c25992581e574b6485dbfdf39a3df46c', }, }, u'priority': u'INFO', u'publisher_id': u'network.akanda', u'timestamp': u'2013-07-25 14:02:55.244126'} tenant_id = notifications._get_tenant_id_for_message(msg) self.assertEqual('c25992581e574b6485dbfdf39a3df46c', tenant_id) def test_notification_with_tenant_id_from_router_dict(self): msg = { u'_context_roles': [u'admin', u'_member_'], u'priority': u'INFO', u'_context_read_deleted': u'no', u'event_type': u'router.update.end', u'timestamp': u'2013-10-20 17:07:14.573678', u'_context_tenant_id': u'618cb69189144d4bbabe0aaa678d48c6', u'payload': { u'router': { u'status': u'ACTIVE', u'external_gateway_info': { u'network_id': u'8e163d8b-81a8-4f4f-b622-ecbf452de2e9' }, u'name': u'r', u'admin_state_up': True, u'tenant_id': u'cddd1d8533cc4f828837d4c2dcb7ef96', u'id': u'64009064-be1e-44e2-9e5d-1c706cef2e34', u'routes': [], } }, u'_unique_id': u'1cc91b54bd2947fb9d513e67795ebb8d', u'_context_is_admin': True, u'_context_project_id': u'618cb69189144d4bbabe0aaa678d48c6', u'_context_timestamp': u'2013-10-20 17:07:14.349210', u'_context_user_id': u'a5b54cb8fb3a4cb49ba6118f3d2e35af', u'publisher_id': u'network.orange.localdomain', u'message_id': u'd8335b96-0fde-461a-af65-3f1aaa73c8af' } tenant_id = notifications._get_tenant_id_for_message(msg) self.assertEqual('cddd1d8533cc4f828837d4c2dcb7ef96', tenant_id) class TestGetCRUD(unittest.TestCase): def test_rpc_router_deleted(self): msg = {u'oslo.message': u'{"_context_roles": ["anotherrole", "Member", "admin"], "_context_read_deleted": "no", "args": {"router_id": "f37f31e9-adc2-4712-a002-4ccf0be17a99"}, "_unique_id": "c87303336c7c4bb0b097b3e97bebf7ea", "_context_timestamp": "2013-07-25 13:51:50.791338", "_context_is_admin": false, "version": "1.0", "_context_project_id": "c25992581e574b6485dbfdf39a3df46c", "_context_tenant_id": "c25992581e574b6485dbfdf39a3df46c", "_context_user_id": "472511eedebd4322a26c5fb1f52711ee", "method": "router_deleted"}', u'oslo.version': u'2.0'} # noqa e = notifications._make_event_from_message(msg) self.assertEqual(event.DELETE, e.crud) self.assert_(e.router_id) def _test_notification(self, event_type): msg = { u'_context_is_admin': False, u'_context_project_id': u'c25992581e574b6485dbfdf39a3df46c', u'_context_read_deleted': u'no', u'_context_roles': [u'anotherrole', u'Member'], u'_context_timestamp': u'2013-07-25 14:02:55.073049', u'_context_user_id': u'472511eedebd4322a26c5fb1f52711ee', u'_unique_id': u'8825f8a6ccec4285a7ecfdad7bd53815', u'event_type': event_type, u'message_id': u'bb9bcf1d-1547-4867-b41e-f5298fa10869', u'payload': { u'port': { u'admin_state_up': True, u'device_id': u'', u'device_owner': u'', u'fixed_ips': [{ u'ip_address': u'192.168.123.3', u'subnet_id': u'53d8a76a-3e1a-43e0-975e-83a4b464d18c'}], # noqa u'id': u'bbd92f5a-5a1d-4ec5-9272-8e4dd5f0c084', u'mac_address': u'fa:16:3e:f4:81:a9', u'name': u'', u'network_id': u'c3a30111-dd52-405c-84b2-4d62068e2d35', u'security_groups': [u'5124be1c-b2d5-47e6-ac62-411a0ea028c8'], # noqa u'status': u'DOWN', u'tenant_id': u'c25992581e574b6485dbfdf39a3df46c', }, }, u'priority': u'INFO', u'publisher_id': u'network.akanda', u'timestamp': u'2013-07-25 14:02:55.244126'} return notifications._make_event_from_message(msg) def test_notification_port(self): e = self._test_notification('port.create.start') self.assertFalse(e) e = self._test_notification('port.create.end') self.assertEqual(event.UPDATE, e.crud) e = self._test_notification('port.change.start') self.assertFalse(e) e = self._test_notification('port.change.end') self.assertEqual(event.UPDATE, e.crud) e = self._test_notification('port.delete.start') self.assertFalse(e) e = self._test_notification('port.delete.end') self.assertEqual(event.UPDATE, e.crud) def test_notification_subnet(self): e = self._test_notification('subnet.create.start') self.assertFalse(e) e = self._test_notification('subnet.create.end') self.assertEqual(event.UPDATE, e.crud) e = self._test_notification('subnet.change.start') self.assertFalse(e) e = self._test_notification('subnet.change.end') self.assertEqual(event.UPDATE, e.crud) e = self._test_notification('subnet.delete.start') self.assertFalse(e) e = self._test_notification('subnet.delete.end') self.assertEqual(event.UPDATE, e.crud) def test_notification_router(self): e = self._test_notification('router.create.start') self.assertFalse(e) e = self._test_notification('router.create.end') self.assertEqual(event.CREATE, e.crud) e = self._test_notification('router.change.start') self.assertFalse(e) e = self._test_notification('router.change.end') self.assertEqual(event.UPDATE, e.crud) e = self._test_notification('router.delete.start') self.assertFalse(e) e = self._test_notification('router.delete.end') self.assertEqual(event.DELETE, e.crud) def test_notification_router_id(self): msg = { u'_context_is_admin': False, u'_context_project_id': u'c25992581e574b6485dbfdf39a3df46c', u'_context_read_deleted': u'no', u'_context_roles': [u'anotherrole', u'Member'], u'_context_tenant_id': u'c25992581e574b6485dbfdf39a3df46c', u'_context_timestamp': u'2013-08-01 20:17:11.569282', u'_context_user_id': u'472511eedebd4322a26c5fb1f52711ee', u'_unique_id': u'246f69b5dff44156ba56c4a2b7c3d47f', u'event_type': u'router.create.end', u'message_id': u'658c8901-6858-4dbc-be8a-242d94fc4b5d', u'payload': { u'router': { u'admin_state_up': True, u'external_gateway_info': None, u'id': u'f95fb32d-0072-4675-b4bd-61d829a46aca', u'name': u'r2', u'ports': [], u'status': u'ACTIVE', u'tenant_id': u'c25992581e574b6485dbfdf39a3df46c', }, }, u'priority': u'INFO', u'publisher_id': u'network.akanda', u'timestamp': u'2013-08-01 20:17:11.662425', } e = notifications._make_event_from_message(msg) self.assertEqual(e.router_id, u'f95fb32d-0072-4675-b4bd-61d829a46aca') def test_interface_create_and_delete(self): for action in ('create', 'delete'): msg = { u'_context_roles': [u'_member_', u'admin'], u'priority': u'INFO', u'_context_read_deleted': u'no', u'event_type': u'router.interface.%s' % action, u'timestamp': u'2014-04-08 17:48:42.917596', u'_context_tenant_id': u'4838397648d946279ad422886aabcf07', u'payload': { u'router.interface': { u'subnet_id': u'0535072e-6ef4-4916-b1f5-05fab4da3d0c', u'tenant_id': u'c2a1399efbed41e5be2115afa5b5ec25', u'port_id': u'63363e5f-59b7-49ca-b619-96c16883b543', u'id': u'58868681-4a58-4f69-8dc0-b20955e7923f' } }, u'_unique_id': u'bf7cbac3c964442b841f8a0dfda1b84f', u'_context_is_admin': True, u'_context_project_id': u'4838397648d946279ad422886aabcf07', u'_context_timestamp': u'2014-04-08 17:48:42.838558', u'_context_user_id': u'22a73cb6a5bf493da6a1b0b602b61ed6', u'publisher_id': u'network.akanda', u'message_id': u'c441df90-404a-4b53-a4d6-67f042339ef2' } e = notifications._make_event_from_message(msg) self.assertEqual(event.UPDATE, e.crud) self.assertEqual( u'58868681-4a58-4f69-8dc0-b20955e7923f', e.router_id ) def test_notification_akanda(self): e = self._test_notification('akanda.bandwidth.used') self.assertIs(None, e) class TestSend(unittest.TestCase): @mock.patch('kombu.connection.BrokerConnection') @mock.patch('kombu.entity.Exchange') @mock.patch('kombu.Producer') def setUp(self, producer_cls, exchange, broker): super(TestSend, self).setUp() self.messages = [] self.producer = mock.Mock() self.producer.publish.side_effect = self.messages.append producer_cls.return_value = self.producer self.notifier = notifications.Publisher('url', 'quantum', 'topic') self.notifier.start() self.addCleanup(self.notifier.stop) # def tearDown(self): # if self.notifier: # self.notifier.stop() # super(TestSend, self).tearDown() def test_payload(self): self.notifier.publish({'payload': 'message here'}) self.notifier.stop() # flushes the queue msg = self.messages[0] self.assertEqual(msg['payload'], 'message here') def test_context(self): self.notifier.publish({'payload': 'message here'}) self.notifier.stop() # flushes the queue msg = self.messages[0] self.assertIn('_context_tenant', msg) def test_unique_id(self): self.notifier.publish({'payload': 'message here'}) self.notifier.publish({'payload': 'message here'}) self.notifier.stop() # flushes the queue msg1, msg2 = self.messages self.assertNotEqual(msg1['_unique_id'], msg2['_unique_id']) class TestListen(unittest.TestCase): @mock.patch('kombu.connection.BrokerConnection') def test_ensure_connection_is_called(self, mock_broker): broker = mock_broker.return_value broker.ensure_connection = mock.Mock() broker.drain_events = mock.Mock(side_effect=SystemExit()) notification_queue = mock.MagicMock() notifications.listen('test-host', 'amqp://test.host', 'test-notifications', 'test-rpc', notification_queue) broker.ensure_connection.assert_called_once_with( errback=mock.ANY, max_retries=0, interval_start=2, interval_step=2, interval_max=30) @mock.patch('kombu.connection.BrokerConnection') def test_establish_new_connection_after_socket_timeout(self, mock_broker): broker = mock_broker.return_value broker.ensure_connection = mock.Mock() broker.drain_events = mock.Mock( side_effect=(socket.timeout(), SystemExit())) notification_queue = mock.MagicMock() notifications.listen('test-host', 'amqp://test.host', 'test-notifications', 'test-rpc', notification_queue) self.assertEqual(broker.ensure_connection.call_args_list, [mock.call(errback=mock.ANY, max_retries=0, interval_start=2, interval_step=2, interval_max=30), mock.call(errback=mock.ANY, max_retries=0, interval_start=2, interval_step=2, interval_max=30)])
# Copyright 2013 Brocade Communications System, Inc. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # (Some parts adapted from LinuxBridge Plugin) # TODO(shiv) need support for security groups """Implementation of Brocade Neutron Plugin.""" from oslo_config import cfg from oslo_log import log as logging import oslo_messaging from oslo_utils import importutils from neutron.agent import securitygroups_rpc as sg_rpc from neutron.api.rpc.agentnotifiers import dhcp_rpc_agent_api from neutron.api.rpc.agentnotifiers import l3_rpc_agent_api from neutron.api.rpc.handlers import dhcp_rpc from neutron.api.rpc.handlers import l3_rpc from neutron.api.rpc.handlers import metadata_rpc from neutron.api.rpc.handlers import securitygroups_rpc from neutron.common import constants as n_const from neutron.common import rpc as n_rpc from neutron.common import topics from neutron.common import utils from neutron import context as n_context from neutron.db import agents_db from neutron.db import agentschedulers_db from neutron.db import api as db from neutron.db import db_base_plugin_v2 from neutron.db import external_net_db from neutron.db import extraroute_db from neutron.db import l3_agentschedulers_db from neutron.db import portbindings_base from neutron.db import securitygroups_rpc_base as sg_db_rpc from neutron.extensions import portbindings from neutron.extensions import securitygroup as ext_sg from neutron.i18n import _LE, _LI from neutron.plugins.brocade.db import models as brocade_db from neutron.plugins.brocade import vlanbm as vbm from neutron.plugins.common import constants as svc_constants LOG = logging.getLogger(__name__) AGENT_OWNER_PREFIX = "network:" NOS_DRIVER = 'neutron.plugins.brocade.nos.nosdriver.NOSdriver' SWITCH_OPTS = [cfg.StrOpt('address', default='', help=_('The address of the host to SSH to')), cfg.StrOpt('username', default='', help=_('The SSH username to use')), cfg.StrOpt('password', default='', secret=True, help=_('The SSH password to use')), cfg.StrOpt('ostype', default='NOS', help=_('Currently unused')) ] PHYSICAL_INTERFACE_OPTS = [cfg.StrOpt('physical_interface', default='eth0', help=_('The network interface to use when creating ' 'a port')) ] cfg.CONF.register_opts(SWITCH_OPTS, "SWITCH") cfg.CONF.register_opts(PHYSICAL_INTERFACE_OPTS, "PHYSICAL_INTERFACE") class BridgeRpcCallbacks(object): """Agent callback.""" target = oslo_messaging.Target(version='1.2') # Device names start with "tap" # history # 1.1 Support Security Group RPC # 1.2 Support get_devices_details_list def get_device_details(self, rpc_context, **kwargs): """Agent requests device details.""" agent_id = kwargs.get('agent_id') device = kwargs.get('device') LOG.debug("Device %(device)s details requested from %(agent_id)s", {'device': device, 'agent_id': agent_id}) port = brocade_db.get_port(rpc_context, device[len(n_const.TAP_DEVICE_PREFIX):]) if port: entry = {'device': device, 'vlan_id': port.vlan_id, 'network_id': port.network_id, 'port_id': port.port_id, 'physical_network': port.physical_interface, 'admin_state_up': port.admin_state_up } else: entry = {'device': device} LOG.debug("%s can not be found in database", device) return entry def get_devices_details_list(self, rpc_context, **kwargs): return [ self.get_device_details( rpc_context, device=device, **kwargs ) for device in kwargs.pop('devices', []) ] def update_device_down(self, rpc_context, **kwargs): """Device no longer exists on agent.""" device = kwargs.get('device') port = self.get_port_from_device(device) if port: entry = {'device': device, 'exists': True} # Set port status to DOWN port_id = port['port_id'] brocade_db.update_port_state(rpc_context, port_id, False) else: entry = {'device': device, 'exists': False} LOG.debug("%s can not be found in database", device) return entry class SecurityGroupServerRpcMixin(sg_db_rpc.SecurityGroupServerRpcMixin): @classmethod def get_port_from_device(cls, device): """Get port from the brocade specific db.""" # TODO(shh) context is not being passed as # an argument to this function; # # need to be fixed in: # file: neutron/db/securtygroups_rpc_base.py # function: securitygroup_rules_for_devices() # which needs to pass context to us # Doing what other plugins are doing session = db.get_session() port = brocade_db.get_port_from_device( session, device[len(n_const.TAP_DEVICE_PREFIX):]) # TODO(shiv): need to extend the db model to include device owners # make it appears that the device owner is of type network if port: port['device'] = device port['device_owner'] = AGENT_OWNER_PREFIX port['binding:vif_type'] = 'bridge' return port class AgentNotifierApi(sg_rpc.SecurityGroupAgentRpcApiMixin): """Agent side of the linux bridge rpc API. API version history: 1.0 - Initial version. 1.1 - Added get_active_networks_info, create_dhcp_port, and update_dhcp_port methods. """ def __init__(self, topic): self.topic = topic target = oslo_messaging.Target(topic=topic, version='1.0') self.client = n_rpc.get_client(target) self.topic_network_delete = topics.get_topic_name(topic, topics.NETWORK, topics.DELETE) self.topic_port_update = topics.get_topic_name(topic, topics.PORT, topics.UPDATE) def network_delete(self, context, network_id): cctxt = self.client.prepare(topic=self.topic_network_delete, fanout=True) cctxt.cast(context, 'network_delete', network_id=network_id) def port_update(self, context, port, physical_network, vlan_id): cctxt = self.client.prepare(topic=self.topic_port_update, fanout=True) cctxt.cast(context, 'port_update', port=port, physical_network=physical_network, vlan_id=vlan_id) class BrocadePluginV2(db_base_plugin_v2.NeutronDbPluginV2, external_net_db.External_net_db_mixin, extraroute_db.ExtraRoute_db_mixin, SecurityGroupServerRpcMixin, l3_agentschedulers_db.L3AgentSchedulerDbMixin, agentschedulers_db.DhcpAgentSchedulerDbMixin, portbindings_base.PortBindingBaseMixin): """BrocadePluginV2 is a Neutron plugin. Provides L2 Virtual Network functionality using VDX. Upper layer driver class that interfaces to NETCONF layer below. """ def __init__(self): """Initialize Brocade Plugin. Specify switch address and db configuration. """ super(BrocadePluginV2, self).__init__() self.supported_extension_aliases = ["binding", "security-group", "external-net", "router", "extraroute", "agent", "l3_agent_scheduler", "dhcp_agent_scheduler"] self.physical_interface = (cfg.CONF.PHYSICAL_INTERFACE. physical_interface) self.base_binding_dict = self._get_base_binding_dict() portbindings_base.register_port_dict_function() self.ctxt = n_context.get_admin_context() self._vlan_bitmap = vbm.VlanBitmap(self.ctxt) self._setup_rpc() self.network_scheduler = importutils.import_object( cfg.CONF.network_scheduler_driver ) self.router_scheduler = importutils.import_object( cfg.CONF.router_scheduler_driver ) self.brocade_init() self.start_periodic_dhcp_agent_status_check() def brocade_init(self): """Brocade specific initialization.""" self._switch = {'address': cfg.CONF.SWITCH.address, 'username': cfg.CONF.SWITCH.username, 'password': cfg.CONF.SWITCH.password } self._driver = importutils.import_object(NOS_DRIVER) def _setup_rpc(self): # RPC support self.service_topics = {svc_constants.CORE: topics.PLUGIN, svc_constants.L3_ROUTER_NAT: topics.L3PLUGIN} self.rpc_context = n_context.ContextBase('neutron', 'neutron', is_admin=False) self.conn = n_rpc.create_connection() self.endpoints = [BridgeRpcCallbacks(), securitygroups_rpc.SecurityGroupServerRpcCallback(), dhcp_rpc.DhcpRpcCallback(), l3_rpc.L3RpcCallback(), agents_db.AgentExtRpcCallback(), metadata_rpc.MetadataRpcCallback()] for svc_topic in self.service_topics.values(): self.conn.create_consumer(svc_topic, self.endpoints, fanout=False) # Consume from all consumers in threads self.conn.consume_in_threads() self.notifier = AgentNotifierApi(topics.AGENT) self.agent_notifiers[n_const.AGENT_TYPE_DHCP] = ( dhcp_rpc_agent_api.DhcpAgentNotifyAPI() ) self.agent_notifiers[n_const.AGENT_TYPE_L3] = ( l3_rpc_agent_api.L3AgentNotifyAPI() ) def create_network(self, context, network): """Create network. This call to create network translates to creation of port-profile on the physical switch. """ with context.session.begin(subtransactions=True): net = super(BrocadePluginV2, self).create_network(context, network) net_uuid = net['id'] vlan_id = self._vlan_bitmap.get_next_vlan(None) switch = self._switch try: self._driver.create_network(switch['address'], switch['username'], switch['password'], vlan_id) except Exception: # Proper formatting LOG.exception(_LE("Brocade NOS driver error")) LOG.debug("Returning the allocated vlan (%d) to the pool", vlan_id) self._vlan_bitmap.release_vlan(int(vlan_id)) raise Exception(_("Brocade plugin raised exception, " "check logs")) brocade_db.create_network(context, net_uuid, vlan_id) self._process_l3_create(context, net, network['network']) LOG.info(_LI("Allocated vlan (%d) from the pool"), vlan_id) return net def delete_network(self, context, net_id): """Delete network. This call to delete the network translates to removing the port-profile on the physical switch. """ with context.session.begin(subtransactions=True): self._process_l3_delete(context, net_id) result = super(BrocadePluginV2, self).delete_network(context, net_id) # we must delete all ports in db first (foreign key constraint) # there is no need to delete port in the driver (its a no-op) # (actually: note there is no such call to the driver) bports = brocade_db.get_ports(context, net_id) for bport in bports: brocade_db.delete_port(context, bport['port_id']) # find the vlan for this network net = brocade_db.get_network(context, net_id) vlan_id = net['vlan'] # Tell hw to do remove PP switch = self._switch try: self._driver.delete_network(switch['address'], switch['username'], switch['password'], vlan_id) except Exception: # Proper formatting LOG.exception(_LE("Brocade NOS driver error")) raise Exception(_("Brocade plugin raised exception, " "check logs")) # now ok to delete the network brocade_db.delete_network(context, net_id) # relinquish vlan in bitmap self._vlan_bitmap.release_vlan(int(vlan_id)) return result def update_network(self, context, id, network): session = context.session with session.begin(subtransactions=True): net = super(BrocadePluginV2, self).update_network(context, id, network) self._process_l3_update(context, net, network['network']) return net def create_port(self, context, port): """Create logical port on the switch.""" tenant_id = port['port']['tenant_id'] network_id = port['port']['network_id'] admin_state_up = port['port']['admin_state_up'] physical_interface = self.physical_interface with context.session.begin(subtransactions=True): bnet = brocade_db.get_network(context, network_id) vlan_id = bnet['vlan'] neutron_port = super(BrocadePluginV2, self).create_port(context, port) self._process_portbindings_create_and_update(context, port['port'], neutron_port) interface_mac = neutron_port['mac_address'] port_id = neutron_port['id'] switch = self._switch # convert mac format: xx:xx:xx:xx:xx:xx -> xxxx.xxxx.xxxx mac = self.mac_reformat_62to34(interface_mac) try: self._driver.associate_mac_to_network(switch['address'], switch['username'], switch['password'], vlan_id, mac) except Exception: # Proper formatting LOG.exception(_LE("Brocade NOS driver error")) raise Exception(_("Brocade plugin raised exception, " "check logs")) # save to brocade persistent db brocade_db.create_port(context, port_id, network_id, physical_interface, vlan_id, tenant_id, admin_state_up) # apply any extensions return neutron_port def delete_port(self, context, port_id): with context.session.begin(subtransactions=True): neutron_port = self.get_port(context, port_id) interface_mac = neutron_port['mac_address'] # convert mac format: xx:xx:xx:xx:xx:xx -> xxxx.xxxx.xxxx mac = self.mac_reformat_62to34(interface_mac) brocade_port = brocade_db.get_port(context, port_id) vlan_id = brocade_port['vlan_id'] switch = self._switch try: self._driver.dissociate_mac_from_network(switch['address'], switch['username'], switch['password'], vlan_id, mac) except Exception: LOG.exception(_LE("Brocade NOS driver error")) raise Exception( _("Brocade plugin raised exception, check logs")) super(BrocadePluginV2, self).delete_port(context, port_id) brocade_db.delete_port(context, port_id) def update_port(self, context, port_id, port): original_port = self.get_port(context, port_id) session = context.session port_updated = False with session.begin(subtransactions=True): # delete the port binding and read it with the new rules if ext_sg.SECURITYGROUPS in port['port']: port['port'][ext_sg.SECURITYGROUPS] = ( self._get_security_groups_on_port(context, port)) self._delete_port_security_group_bindings(context, port_id) # process_port_create_security_group also needs port id port['port']['id'] = port_id self._process_port_create_security_group( context, port['port'], port['port'][ext_sg.SECURITYGROUPS]) port_updated = True port_data = port['port'] port = super(BrocadePluginV2, self).update_port( context, port_id, port) self._process_portbindings_create_and_update(context, port_data, port) if original_port['admin_state_up'] != port['admin_state_up']: port_updated = True if (original_port['fixed_ips'] != port['fixed_ips'] or not utils.compare_elements( original_port.get(ext_sg.SECURITYGROUPS), port.get(ext_sg.SECURITYGROUPS))): self.notifier.security_groups_member_updated( context, port.get(ext_sg.SECURITYGROUPS)) if port_updated: self._notify_port_updated(context, port) return port def _notify_port_updated(self, context, port): port_id = port['id'] bport = brocade_db.get_port(context, port_id) self.notifier.port_update(context, port, bport.physical_interface, bport.vlan_id) def _get_base_binding_dict(self): binding = { portbindings.VIF_TYPE: portbindings.VIF_TYPE_BRIDGE, portbindings.VIF_DETAILS: { # TODO(rkukura): Replace with new VIF security details portbindings.CAP_PORT_FILTER: 'security-group' in self.supported_extension_aliases}} return binding @staticmethod def mac_reformat_62to34(interface_mac): """Transform MAC address format. Transforms from 6 groups of 2 hexadecimal numbers delimited by ":" to 3 groups of 4 hexadecimals numbers delimited by ".". :param interface_mac: MAC address in the format xx:xx:xx:xx:xx:xx :type interface_mac: string :returns: MAC address in the format xxxx.xxxx.xxxx :rtype: string """ mac = interface_mac.replace(":", "") mac = mac[0:4] + "." + mac[4:8] + "." + mac[8:12] return mac
import abc import logging import math from collections import defaultdict from fn import _ from fn.iters import map, filter from .manipulator import Parameter from .metatechniques import RecyclingMetaTechnique from .technique import SequentialSearchTechnique, register log = logging.getLogger(__name__) class SimplexTechnique(SequentialSearchTechnique): """ Base class with utility functions common to simplex type methods """ def __init__(self, seed_cfg=None, *args, **kwargs): super(SimplexTechnique, self).__init__(*args, **kwargs) self.centroid = None self.last_simplex_points = None self.seed_cfg = seed_cfg self.simplex_points = [] def calculate_centroid(self): """ average of all the PrimitiveParameters in self.simplex_points ComplexParameters are copied from self.simplex_points[0] """ sums = defaultdict(float) counts = defaultdict(int) for config in self.simplex_points: cfg = config.data for param in self.manipulator.parameters(cfg): if param.is_primitive(): sums[param.name] += param.get_unit_value(cfg) counts[param.name] += 1 centroid = self.manipulator.copy(self.simplex_points[0].data) for param in self.manipulator.parameters(centroid): if param.is_primitive(): param.set_unit_value(centroid, sums[param.name] / float(counts[param.name])) return centroid def cfg_to_str(self, cfg): params = list(filter(Parameter.is_primitive, self.manipulator.parameters(cfg))) params.sort(key=_.name) return str(tuple(map(lambda x: x.get_unit_value(cfg), params))) def debug_log(self): for i, config in enumerate(self.simplex_points): log.debug("simplex_points[%d] = %s", i, self.cfg_to_str(config.data)) if self.centroid: log.debug("centroid = %s", self.cfg_to_str(self.centroid)) def linear_point(self, p1, p2, scale): """ return a point on the line passing between p1 and p2 at position scale such that p1 + scale*(p1 - p2) """ return self.manipulator.linear_config(1.0, p1, scale, p1, -scale, p2) def convergence_criterea(self): """True will cause the simplex method to stop""" if self.rounds_since_novel_request > 3 * len(self.simplex_points) + 1: return True if self.last_simplex_points == self.simplex_points: return True self.last_simplex_points = list(self.simplex_points) return False def initial_simplex_seed(self): """ return a point to base the initial simplex on """ if self.seed_cfg is not None: return self.seed_cfg return self.manipulator.random() @abc.abstractmethod def initial_simplex(self): """ return a initial list of configurations """ return [] class RandomInitialMixin(object): """ start with random initial simplex """ def initial_simplex(self): # we implicitly assume number of parameters is fixed here, however # it will work if it isn't (simplex size is undefined) cfg0 = self.initial_simplex_seed() params = self.manipulator.parameters(cfg0) return [cfg0] + [self.manipulator.random() for p in params if p.is_primitive()] class RightInitialMixin(object): """ start with random initial right triangle like simplex """ def __init__(self, initial_unit_edge_length=0.1, *args, **kwargs): assert initial_unit_edge_length <= 0.5 self.initial_unit_edge_length = initial_unit_edge_length super(RightInitialMixin, self).__init__(*args, **kwargs) def initial_simplex(self): cfg0 = self.initial_simplex_seed() simplex = [cfg0] params = self.manipulator.parameters(cfg0) params = filter(lambda x: x.is_primitive(), params) for p in params: simplex.append(self.manipulator.copy(cfg0)) v = p.get_unit_value(simplex[-1]) if v <= 0.5: v += self.initial_unit_edge_length else: v -= self.initial_unit_edge_length p.set_unit_value(simplex[-1], v) return simplex class RegularInitialMixin(object): """ start with random initial regular simplex (all edges equal length) """ def __init__(self, initial_unit_edge_length=0.1, *args, **kwargs): assert initial_unit_edge_length <= 0.5 self.initial_unit_edge_length = initial_unit_edge_length super(RegularInitialMixin, self).__init__(*args, **kwargs) def initial_simplex(self): cfg0 = self.initial_simplex_seed() simplex = [cfg0] params = self.manipulator.parameters(cfg0) params = list(filter(lambda x: x.is_primitive(), params)) if len(params) == 0: return simplex q = (((math.sqrt(len(params) + 1.0) - 1.0) / (len(params) * math.sqrt(2.0))) * self.initial_unit_edge_length) p = q + ((1.0 / math.sqrt(2.0)) * self.initial_unit_edge_length) base = [x.get_unit_value(cfg0) for x in params] for j in xrange(len(base)): if max(p, q) + base[j] > 1.0: #flip this dimension as we would overflow our [0,1] bounds base[j] *= -1.0 for i in xrange(len(params)): simplex.append(self.manipulator.copy(cfg0)) params[i].set_unit_value(simplex[-1], abs(base[i] + p)) for j in xrange(i + 1, len(params)): params[j].set_unit_value(simplex[-1], abs(base[i] + q)) return simplex class NelderMead(SimplexTechnique): """ Nelder-Mead downhill simplex method. Based on description of method on page 82 of 'Noisy Optimization With Evolution Strategies' by Dirk V. Arnold. We set alpha=2.0 by default instead of the often recommended alpha=1.0 to avoid a common degenerate case, where the volume of the simplex becomes zero. This is easiest to see with a single parameter. Let the simplex points be x0,x1. Let the centroid be c=(x0+x1)/2.0 and the reflection point be: reflection = c + alpha*(c-x1) = (x0+x1)*(1+alpha)/2 - x1 The problem is, if we set alpha = 1.0, then the x1's cancel out and the reflection point becomes just reflection=x0, which also happens to be the second best point, meaning we will use it. So in a single step of the algorithm the simplex becomes singular. """ def __init__(self, alpha=2.0, gamma=2.0, beta=0.5, sigma=0.5, *args, **kwargs): self.alpha = alpha self.gamma = gamma self.beta = beta self.sigma = sigma super(NelderMead, self).__init__(*args, **kwargs) @classmethod def get_hyper_parameters(cls): return ['alpha', 'gamma', 'beta', 'sigma'] def main_generator(self): objective = self.objective driver = self.driver # test the entire initial simplex self.simplex_points = list(map(driver.get_configuration, self.initial_simplex())) if len(self.simplex_points) <= 1: log.warning("only 1 point in simplex, will not use %s", self.name) return log.debug("initial points") for p in self.simplex_points: self.yield_nonblocking(p) yield None # wait until results are ready while not self.convergence_criterea(): # next steps assume this ordering self.simplex_points.sort(cmp=objective.compare) # set limit from worst point self.limit = objective.limit_from_config(self.simplex_points[-1]) self.centroid = self.calculate_centroid() if log.isEnabledFor(logging.DEBUG): self.debug_log() reflection = self.reflection_point() yield reflection if objective.lt(reflection, self.simplex_points[0]): #expansion case expansion = self.expansion_point(reflection) yield expansion if objective.lt(expansion, reflection): log.debug("using expansion point") self.simplex_points[-1] = expansion else: log.debug("using reflection point (considered expansion)") self.simplex_points[-1] = reflection elif objective.lt(reflection, self.simplex_points[1]): #reflection case log.debug("using reflection point") self.simplex_points[-1] = reflection else: # contraction case if objective.lte(reflection, self.simplex_points[-1]): # outside contraction contract_base = reflection else: # inside contraction contract_base = self.simplex_points[-1] contraction = self.contraction_point(contract_base) yield contraction if objective.lte(contraction, contract_base): log.debug("using contraction point") self.simplex_points[-1] = contraction else: #reduction case log.debug("performing shrink reduction") self.perform_shrink_reduction() for p in self.simplex_points: self.yield_nonblocking(p) yield None # wait until results are ready def reflection_point(self): """ reflect worst point across centroid """ return self.driver.get_configuration( self.linear_point(self.centroid, self.simplex_points[-1].data, self.alpha)) def expansion_point(self, reflection): """ reflect worst point across centroid more (by default 2x as much) """ return self.driver.get_configuration( self.linear_point(self.centroid, reflection.data, -self.gamma)) def contraction_point(self, contract_base): """ reflect worst point across centroid less """ return self.driver.get_configuration( self.linear_point(self.centroid, contract_base.data, -self.beta)) def perform_shrink_reduction(self): """ shrink the simplex in size by sigma=1/2 (default), moving it closer to the best point """ for i in xrange(1, len(self.simplex_points)): self.simplex_points[i] = self.driver.get_configuration( self.linear_point(self.simplex_points[0].data, self.simplex_points[i].data, -self.sigma)) class Torczon(SimplexTechnique): """ Torczon multi-directional search algorithm. Based on description of method on page 85 of 'Noisy Optimization With Evolution Strategies' by Dirk V. Arnold. """ def __init__(self, alpha=1.0, gamma=2.0, beta=0.5, *args, **kwargs): self.alpha = alpha self.gamma = gamma self.beta = beta super(Torczon, self).__init__(*args, **kwargs) @classmethod def get_hyper_parameters(cls): return ['alpha', 'gamma', 'beta'] def main_generator(self): objective = self.objective driver = self.driver # test the entire initial simplex self.simplex_points = list(map(driver.get_configuration, self.initial_simplex())) if len(self.simplex_points) <= 1: log.warning("only 1 point in simplex, will not use %s", self.name) return log.debug("initial points") for p in self.simplex_points: self.yield_nonblocking(p) yield None # wait until results are ready self.simplex_points.sort(cmp=objective.compare) while not self.convergence_criterea(): # set limit from worst point self.limit = objective.limit_from_config(self.simplex_points[-1]) if log.isEnabledFor(logging.DEBUG): self.debug_log() reflected = self.reflected_simplex() yield None # wait until results are ready reflected.sort(cmp=objective.compare) # this next condition implies reflected[0] < simplex_points[0] since # reflected is sorted and contains simplex_points[0] (saves a db query) if reflected[0] is not self.simplex_points[0]: expanded = self.expanded_simplex() yield None # wait until results are ready expanded.sort(cmp=objective.compare) if objective.lt(expanded[0], reflected[0]): log.debug("expansion performed") self.simplex_points = expanded else: log.debug("reflection performed") self.simplex_points = reflected else: contracted = self.contracted_simplex() yield None # wait until results are ready contracted.sort(cmp=objective.compare) log.debug("contraction performed") self.simplex_points = contracted def scaled_simplex(self, scale): """ assumes self.simplex_points[0] is best point and returns a new simplex reflected across self.simplex_points[0] by scale """ simplex = list(self.simplex_points) # shallow copy for i in xrange(1, len(simplex)): simplex[i] = self.driver.get_configuration( self.linear_point(simplex[0].data, simplex[i].data, scale)) self.yield_nonblocking(simplex[i]) return simplex def reflected_simplex(self): return self.scaled_simplex(self.alpha) def expanded_simplex(self): return self.scaled_simplex(self.gamma) def contracted_simplex(self): return self.scaled_simplex(-self.beta) class RandomNelderMead(RandomInitialMixin, NelderMead): pass class RightNelderMead(RightInitialMixin, NelderMead): pass class RegularNelderMead(RegularInitialMixin, NelderMead): pass class RandomTorczon(RandomInitialMixin, Torczon): pass class RightTorczon(RightInitialMixin, Torczon): pass class RegularTorczon(RegularInitialMixin, Torczon): pass class MultiNelderMead(RecyclingMetaTechnique): def __init__(self): super(MultiNelderMead, self).__init__([RightNelderMead, RandomNelderMead, RegularNelderMead]) class MultiTorczon(RecyclingMetaTechnique): def __init__(self): super(MultiTorczon, self).__init__([RightTorczon, RandomTorczon, RegularTorczon]) register(RandomNelderMead()) register(RegularNelderMead()) register(RightNelderMead()) register(MultiNelderMead()) register(RandomTorczon()) register(RegularTorczon()) register(RightTorczon()) register(MultiTorczon())
from __future__ import unicode_literals import re from .common import InfoExtractor from ..compat import ( compat_urllib_parse, compat_urllib_request, ) from ..utils import ( ExtractorError, ) class UdemyIE(InfoExtractor): IE_NAME = 'udemy' _VALID_URL = r'https?://www\.udemy\.com/(?:[^#]+#/lecture/|lecture/view/?\?lectureId=)(?P<id>\d+)' _LOGIN_URL = 'https://www.udemy.com/join/login-popup/?displayType=ajax&showSkipButton=1' _ORIGIN_URL = 'https://www.udemy.com' _NETRC_MACHINE = 'udemy' _TESTS = [{ 'url': 'https://www.udemy.com/java-tutorial/#/lecture/172757', 'md5': '98eda5b657e752cf945d8445e261b5c5', 'info_dict': { 'id': '160614', 'ext': 'mp4', 'title': 'Introduction and Installation', 'description': 'md5:c0d51f6f21ef4ec65f091055a5eef876', 'duration': 579.29, }, 'skip': 'Requires udemy account credentials', }] def _handle_error(self, response): if not isinstance(response, dict): return error = response.get('error') if error: error_str = 'Udemy returned error #%s: %s' % (error.get('code'), error.get('message')) error_data = error.get('data') if error_data: error_str += ' - %s' % error_data.get('formErrors') raise ExtractorError(error_str, expected=True) def _download_json(self, url_or_request, video_id, note='Downloading JSON metadata'): headers = { 'X-Udemy-Snail-Case': 'true', 'X-Requested-With': 'XMLHttpRequest', } for cookie in self._downloader.cookiejar: if cookie.name == 'client_id': headers['X-Udemy-Client-Id'] = cookie.value elif cookie.name == 'access_token': headers['X-Udemy-Bearer-Token'] = cookie.value if isinstance(url_or_request, compat_urllib_request.Request): for header, value in headers.items(): url_or_request.add_header(header, value) else: url_or_request = compat_urllib_request.Request(url_or_request, headers=headers) response = super(UdemyIE, self)._download_json(url_or_request, video_id, note) self._handle_error(response) return response def _real_initialize(self): self._login() def _login(self): (username, password) = self._get_login_info() if username is None: self.raise_login_required('Udemy account is required') login_popup = self._download_webpage( self._LOGIN_URL, None, 'Downloading login popup') def is_logged(webpage): return any(p in webpage for p in ['href="https://www.udemy.com/user/logout/', '>Logout<']) # already logged in if is_logged(login_popup): return login_form = self._form_hidden_inputs('login-form', login_popup) login_form.update({ 'email': username.encode('utf-8'), 'password': password.encode('utf-8'), }) request = compat_urllib_request.Request( self._LOGIN_URL, compat_urllib_parse.urlencode(login_form).encode('utf-8')) request.add_header('Referer', self._ORIGIN_URL) request.add_header('Origin', self._ORIGIN_URL) response = self._download_webpage( request, None, 'Logging in as %s' % username) if not is_logged(response): error = self._html_search_regex( r'(?s)<div[^>]+class="form-errors[^"]*">(.+?)</div>', response, 'error message', default=None) if error: raise ExtractorError('Unable to login: %s' % error, expected=True) raise ExtractorError('Unable to log in') def _real_extract(self, url): lecture_id = self._match_id(url) lecture = self._download_json( 'https://www.udemy.com/api-1.1/lectures/%s' % lecture_id, lecture_id, 'Downloading lecture JSON') asset_type = lecture.get('assetType') or lecture.get('asset_type') if asset_type != 'Video': raise ExtractorError( 'Lecture %s is not a video' % lecture_id, expected=True) asset = lecture['asset'] stream_url = asset.get('streamUrl') or asset.get('stream_url') mobj = re.search(r'(https?://www\.youtube\.com/watch\?v=.*)', stream_url) if mobj: return self.url_result(mobj.group(1), 'Youtube') video_id = asset['id'] thumbnail = asset.get('thumbnailUrl') or asset.get('thumbnail_url') duration = asset['data']['duration'] download_url = asset.get('downloadUrl') or asset.get('download_url') video = download_url.get('Video') or download_url.get('video') video_480p = download_url.get('Video480p') or download_url.get('video_480p') formats = [ { 'url': video_480p[0], 'format_id': '360p', }, { 'url': video[0], 'format_id': '720p', }, ] title = lecture['title'] description = lecture['description'] return { 'id': video_id, 'title': title, 'description': description, 'thumbnail': thumbnail, 'duration': duration, 'formats': formats } class UdemyCourseIE(UdemyIE): IE_NAME = 'udemy:course' _VALID_URL = r'https?://www\.udemy\.com/(?P<coursepath>[\da-z-]+)' _SUCCESSFULLY_ENROLLED = '>You have enrolled in this course!<' _ALREADY_ENROLLED = '>You are already taking this course.<' _TESTS = [] @classmethod def suitable(cls, url): return False if UdemyIE.suitable(url) else super(UdemyCourseIE, cls).suitable(url) def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) course_path = mobj.group('coursepath') response = self._download_json( 'https://www.udemy.com/api-1.1/courses/%s' % course_path, course_path, 'Downloading course JSON') course_id = int(response['id']) course_title = response['title'] webpage = self._download_webpage( 'https://www.udemy.com/course/subscribe/?courseId=%s' % course_id, course_id, 'Enrolling in the course') if self._SUCCESSFULLY_ENROLLED in webpage: self.to_screen('%s: Successfully enrolled in' % course_id) elif self._ALREADY_ENROLLED in webpage: self.to_screen('%s: Already enrolled in' % course_id) response = self._download_json( 'https://www.udemy.com/api-1.1/courses/%s/curriculum' % course_id, course_id, 'Downloading course curriculum') entries = [ self.url_result( 'https://www.udemy.com/%s/#/lecture/%s' % (course_path, asset['id']), 'Udemy') for asset in response if asset.get('assetType') or asset.get('asset_type') == 'Video' ] return self.playlist_result(entries, course_id, course_title)
"""The Instrument class holds all events for a single instrument and contains functions for extracting information from the events it contains. """ import numpy as np try: import fluidsynth _HAS_FLUIDSYNTH = True except ImportError: _HAS_FLUIDSYNTH = False import os import pkg_resources from .containers import PitchBend from .utilities import pitch_bend_to_semitones, note_number_to_hz DEFAULT_SF2 = 'TimGM6mb.sf2' class Instrument(object): """Object to hold event information for a single instrument. Parameters ---------- program : int MIDI program number (instrument index), in ``[0, 127]``. is_drum : bool Is the instrument a drum instrument (channel 9)? name : str Name of the instrument. Attributes ---------- program : int The program number of this instrument. is_drum : bool Is the instrument a drum instrument (channel 9)? name : str Name of the instrument. notes : list List of :class:`pretty_midi.Note` objects. pitch_bends : list List of of :class:`pretty_midi.PitchBend` objects. control_changes : list List of :class:`pretty_midi.ControlChange` objects. """ def __init__(self, program, is_drum=False, name=''): """Create the Instrument. """ self.program = program self.is_drum = is_drum self.name = name self.notes = [] self.pitch_bends = [] self.control_changes = [] def get_onsets(self): """Get all onsets of all notes played by this instrument. May contain duplicates. Returns ------- onsets : np.ndarray List of all note onsets. """ onsets = [] # Get the note-on time of each note played by this instrument for note in self.notes: onsets.append(note.start) # Return them sorted (because why not?) return np.sort(onsets) def get_piano_roll(self, fs=100, times=None, pedal_threshold=64): """Compute a piano roll matrix of this instrument. Parameters ---------- fs : int Sampling frequency of the columns, i.e. each column is spaced apart by ``1./fs`` seconds. times : np.ndarray Times of the start of each column in the piano roll. Default ``None`` which is ``np.arange(0, get_end_time(), 1./fs)``. pedal_threshold : int Value of control change 64 (sustain pedal) message that is less than this value is reflected as pedal-off. Pedals will be reflected as elongation of notes in the piano roll. If None, then CC64 message is ignored. Default is 64. Returns ------- piano_roll : np.ndarray, shape=(128,times.shape[0]) Piano roll of this instrument. """ # If there are no notes, return an empty matrix if self.notes == []: return np.array([[]]*128) # Get the end time of the last event end_time = self.get_end_time() # Extend end time if one was provided if times is not None and times[-1] > end_time: end_time = times[-1] # Allocate a matrix of zeros - we will add in as we go piano_roll = np.zeros((128, int(fs*end_time))) # Drum tracks don't have pitch, so return a matrix of zeros if self.is_drum: if times is None: return piano_roll else: return np.zeros((128, times.shape[0])) # Add up piano roll matrix, note-by-note for note in self.notes: # Should interpolate piano_roll[note.pitch, int(note.start*fs):int(note.end*fs)] += note.velocity # Process sustain pedals if pedal_threshold is not None: CC_SUSTAIN_PEDAL = 64 time_pedal_on = 0 is_pedal_on = False for cc in [_e for _e in self.control_changes if _e.number == CC_SUSTAIN_PEDAL]: time_now = int(cc.time*fs) is_current_pedal_on = (cc.value >= pedal_threshold) if not is_pedal_on and is_current_pedal_on: time_pedal_on = time_now is_pedal_on = True elif is_pedal_on and not is_current_pedal_on: # For each pitch, a sustain pedal "retains" # the maximum velocity up to now due to # logarithmic nature of human loudness perception subpr = piano_roll[:, time_pedal_on:time_now] # Take the running maximum pedaled = np.maximum.accumulate(subpr, axis=1) piano_roll[:, time_pedal_on:time_now] = pedaled is_pedal_on = False # Process pitch changes # Need to sort the pitch bend list for the following to work ordered_bends = sorted(self.pitch_bends, key=lambda bend: bend.time) # Add in a bend of 0 at the end of time end_bend = PitchBend(0, end_time) for start_bend, end_bend in zip(ordered_bends, ordered_bends[1:] + [end_bend]): # Piano roll is already generated with everything bend = 0 if np.abs(start_bend.pitch) < 1: continue # Get integer and decimal part of bend amount start_pitch = pitch_bend_to_semitones(start_bend.pitch) bend_int = int(np.sign(start_pitch)*np.floor(np.abs(start_pitch))) bend_decimal = np.abs(start_pitch - bend_int) # Column indices effected by the bend bend_range = np.r_[int(start_bend.time*fs):int(end_bend.time*fs)] # Construct the bent part of the piano roll bent_roll = np.zeros(piano_roll[:, bend_range].shape) # Easiest to process differently depending on bend sign if start_bend.pitch >= 0: # First, pitch shift by the int amount if bend_int is not 0: bent_roll[bend_int:] = piano_roll[:-bend_int, bend_range] else: bent_roll = piano_roll[:, bend_range] # Now, linear interpolate by the decimal place bent_roll[1:] = ((1 - bend_decimal)*bent_roll[1:] + bend_decimal*bent_roll[:-1]) else: # Same procedure as for positive bends if bend_int is not 0: bent_roll[:bend_int] = piano_roll[-bend_int:, bend_range] else: bent_roll = piano_roll[:, bend_range] bent_roll[:-1] = ((1 - bend_decimal)*bent_roll[:-1] + bend_decimal*bent_roll[1:]) # Store bent portion back in piano roll piano_roll[:, bend_range] = bent_roll if times is None: return piano_roll piano_roll_integrated = np.zeros((128, times.shape[0])) # Convert to column indices times = np.array(np.round(times*fs), dtype=np.int) for n, (start, end) in enumerate(zip(times[:-1], times[1:])): if start < piano_roll.shape[1]: # if start is >=, leave zeros if start == end: end = start + 1 # Each column is the mean of the columns in piano_roll piano_roll_integrated[:, n] = np.mean(piano_roll[:, start:end], axis=1) return piano_roll_integrated def get_chroma(self, fs=100, times=None, pedal_threshold=64): """Get a sequence of chroma vectors from this instrument. Parameters ---------- fs : int Sampling frequency of the columns, i.e. each column is spaced apart by ``1./fs`` seconds. times : np.ndarray Times of the start of each column in the piano roll. Default ``None`` which is ``np.arange(0, get_end_time(), 1./fs)``. pedal_threshold : int Value of control change 64 (sustain pedal) message that is less than this value is reflected as pedal-off. Pedals will be reflected as elongation of notes in the piano roll. If None, then CC64 message is ignored. Default is 64. Returns ------- piano_roll : np.ndarray, shape=(12,times.shape[0]) Chromagram of this instrument. """ # First, get the piano roll piano_roll = self.get_piano_roll(fs=fs, times=times, pedal_threshold=pedal_threshold) # Fold into one octave chroma_matrix = np.zeros((12, piano_roll.shape[1])) for note in range(12): chroma_matrix[note, :] = np.sum(piano_roll[note::12], axis=0) return chroma_matrix def get_end_time(self): """Returns the time of the end of the events in this instrument. Returns ------- end_time : float Time, in seconds, of the last event. """ # Cycle through all note ends and all pitch bends and find the largest events = ([n.end for n in self.notes] + [b.time for b in self.pitch_bends] + [c.time for c in self.control_changes]) # If there are no events, just return 0 if len(events) == 0: return 0. else: return max(events) def get_pitch_class_histogram(self, use_duration=False, use_velocity=False, normalize=False): """Computes the frequency of pitch classes of this instrument, optionally weighted by their durations or velocities. Parameters ---------- use_duration : bool Weight frequency by note duration. use_velocity : bool Weight frequency by note velocity. normalize : bool Normalizes the histogram such that the sum of bin values is 1. Returns ------- histogram : np.ndarray, shape=(12,) Histogram of pitch classes given current instrument, optionally weighted by their durations or velocities. """ # Return all zeros if track is drum if self.is_drum: return np.zeros(12) weights = np.ones(len(self.notes)) # Assumes that duration and velocity have equal weight if use_duration: weights *= [note.end - note.start for note in self.notes] if use_velocity: weights *= [note.velocity for note in self.notes] histogram, _ = np.histogram([n.pitch % 12 for n in self.notes], bins=np.arange(13), weights=weights, density=normalize) return histogram def get_pitch_class_transition_matrix(self, normalize=False, time_thresh=0.05): """Computes the pitch class transition matrix of this instrument. Transitions are added whenever the end of a note is within ``time_tresh`` from the start of any other note. Parameters ---------- normalize : bool Normalize transition matrix such that matrix sum equals to 1. time_thresh : float Maximum temporal threshold, in seconds, between the start of a note and end time of any other note for a transition to be added. Returns ------- transition_matrix : np.ndarray, shape=(12,12) Pitch class transition matrix. """ # instrument is drum or less than one note, return all zeros if self.is_drum or len(self.notes) <= 1: return np.zeros((12, 12)) # retrieve note starts, ends and pitch classes(nodes) from self.notes starts, ends, nodes = np.array( [[x.start, x.end, x.pitch % 12] for x in self.notes]).T # compute distance matrix for all start and end time pairs dist_mat = np.subtract.outer(ends, starts) # find indices of pairs of notes where the end time of one note is # within time_thresh of the start time of the other sources, targets = np.where(abs(dist_mat) < time_thresh) transition_matrix, _, _ = np.histogram2d(nodes[sources], nodes[targets], bins=np.arange(13), normed=normalize) return transition_matrix def remove_invalid_notes(self): """Removes any notes whose end time is before or at their start time. """ # Crete a list of all invalid notes notes_to_delete = [] for note in self.notes: if note.end <= note.start: notes_to_delete.append(note) # Remove the notes found for note in notes_to_delete: self.notes.remove(note) def synthesize(self, fs=44100, wave=np.sin): """Synthesize the instrument's notes using some waveshape. For drum instruments, returns zeros. Parameters ---------- fs : int Sampling rate of the synthesized audio signal. wave : function Function which returns a periodic waveform, e.g. ``np.sin``, ``scipy.signal.square``, etc. Returns ------- synthesized : np.ndarray Waveform of the instrument's notes, synthesized at ``fs``. """ # Pre-allocate output waveform synthesized = np.zeros(int(fs*(self.get_end_time() + 1))) # If we're a percussion channel, just return the zeros if self.is_drum: return synthesized # If the above if statement failed, we need to revert back to default if not hasattr(wave, '__call__'): raise ValueError('wave should be a callable Python function') # This is a simple way to make the end of the notes fade-out without # clicks fade_out = np.linspace(1, 0, int(.1*fs)) # Create a frequency multiplier array for pitch bend bend_multiplier = np.ones(synthesized.shape) # Need to sort the pitch bend list for the loop below to work ordered_bends = sorted(self.pitch_bends, key=lambda bend: bend.time) # Add in a bend of 0 at the end of time end_bend = PitchBend(0, self.get_end_time()) for start_bend, end_bend in zip(ordered_bends, ordered_bends[1:] + [end_bend]): # Bend start and end time in samples start = int(start_bend.time*fs) end = int(end_bend.time*fs) # The multiplier will be (twelfth root of 2)^(bend semitones) bend_semitones = pitch_bend_to_semitones(start_bend.pitch) bend_amount = (2**(1/12.))**bend_semitones # Sample indices effected by the bend bend_multiplier[start:end] = bend_amount # Add in waveform for each note for note in self.notes: # Indices in samples of this note start = int(fs*note.start) end = int(fs*note.end) # Get frequency of note from MIDI note number frequency = note_number_to_hz(note.pitch) # When a pitch bend gets applied, there will be a sample # discontinuity. So, we also need an array of offsets which get # applied to compensate. offsets = np.zeros(end - start) for bend in ordered_bends: bend_sample = int(bend.time*fs) # Does this pitch bend fall within this note? if bend_sample > start and bend_sample < end: # Compute the average bend so far bend_so_far = bend_multiplier[start:bend_sample].mean() bend_amount = bend_multiplier[bend_sample] # Compute the offset correction offset = (bend_so_far - bend_amount)*(bend_sample - start) # Store this offset for samples effected offsets[bend_sample - start:] = offset # Compute the angular frequencies, bent, over this interval frequencies = 2*np.pi*frequency*(bend_multiplier[start:end])/fs # Synthesize using wave function at this frequency note_waveform = wave(frequencies*np.arange(end - start) + 2*np.pi*frequency*offsets/fs) # Apply an exponential envelope envelope = np.exp(-np.arange(end - start)/(1.0*fs)) # Make the end of the envelope be a fadeout if envelope.shape[0] > fade_out.shape[0]: envelope[-fade_out.shape[0]:] *= fade_out else: envelope *= np.linspace(1, 0, envelope.shape[0]) # Multiply by velocity (don't think it's linearly scaled but # whatever) envelope *= note.velocity # Add in envelope'd waveform to the synthesized signal synthesized[start:end] += envelope*note_waveform return synthesized def fluidsynth(self, fs=44100, sf2_path=None): """Synthesize using fluidsynth. Parameters ---------- fs : int Sampling rate to synthesize. sf2_path : str Path to a .sf2 file. Default ``None``, which uses the TimGM6mb.sf2 file included with ``pretty_midi``. Returns ------- synthesized : np.ndarray Waveform of the MIDI data, synthesized at ``fs``. """ # If sf2_path is None, use the included TimGM6mb.sf2 path if sf2_path is None: sf2_path = pkg_resources.resource_filename(__name__, DEFAULT_SF2) if not _HAS_FLUIDSYNTH: raise ImportError("fluidsynth() was called but pyfluidsynth " "is not installed.") if not os.path.exists(sf2_path): raise ValueError("No soundfont file found at the supplied path " "{}".format(sf2_path)) # If the instrument has no notes, return an empty array if len(self.notes) == 0: return np.array([]) # Create fluidsynth instance fl = fluidsynth.Synth(samplerate=fs) # Load in the soundfont sfid = fl.sfload(sf2_path) # If this is a drum instrument, use channel 9 and bank 128 if self.is_drum: channel = 9 # Try to use the supplied program number res = fl.program_select(channel, sfid, 128, self.program) # If the result is -1, there's no preset with this program number if res == -1: # So use preset 0 fl.program_select(channel, sfid, 128, 0) # Otherwise just use channel 0 else: channel = 0 fl.program_select(channel, sfid, 0, self.program) # Collect all notes in one list event_list = [] for note in self.notes: event_list += [[note.start, 'note on', note.pitch, note.velocity]] event_list += [[note.end, 'note off', note.pitch]] for bend in self.pitch_bends: event_list += [[bend.time, 'pitch bend', bend.pitch]] for control_change in self.control_changes: event_list += [[control_change.time, 'control change', control_change.number, control_change.value]] # Sort the event list by time, and secondarily by whether the event # is a note off event_list.sort(key=lambda x: (x[0], x[1] != 'note off')) # Add some silence at the beginning according to the time of the first # event current_time = event_list[0][0] # Convert absolute seconds to relative samples next_event_times = [e[0] for e in event_list[1:]] for event, end in zip(event_list[:-1], next_event_times): event[0] = end - event[0] # Include 1 second of silence at the end event_list[-1][0] = 1. # Pre-allocate output array total_time = current_time + np.sum([e[0] for e in event_list]) synthesized = np.zeros(int(np.ceil(fs*total_time))) # Iterate over all events for event in event_list: # Process events based on type if event[1] == 'note on': fl.noteon(channel, event[2], event[3]) elif event[1] == 'note off': fl.noteoff(channel, event[2]) elif event[1] == 'pitch bend': fl.pitch_bend(channel, event[2]) elif event[1] == 'control change': fl.cc(channel, event[2], event[3]) # Add in these samples current_sample = int(fs*current_time) end = int(fs*(current_time + event[0])) samples = fl.get_samples(end - current_sample)[::2] synthesized[current_sample:end] += samples # Increment the current sample current_time += event[0] # Close fluidsynth fl.delete() return synthesized def __repr__(self): return 'Instrument(program={}, is_drum={}, name="{}")'.format( self.program, self.is_drum, self.name.replace('"', r'\"'))
# coding=utf-8 # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (c) 2012, Intel Performance Learning Solutions Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Test network resource backend. """ #pylint: disable=W0102,C0103,R0904,R0801 from nova.openstack.common import gettextutils gettextutils.install('nova') import mox import unittest from occi import core_model, exceptions from occi.extensions import infrastructure from occi_os_api import nova_glue from occi_os_api.backends import storage class TestStorageBackend(unittest.TestCase): """ Tests the storage backend! """ def setUp(self): """ Setup the tests. """ self.backend = storage.StorageBackend() self.sec_obj = {'nova_ctx': None} self.mox = mox.Mox() def tearDown(self): """ Cleanup mocks. """ self.mox.UnsetStubs() # Test for failure def test_create_for_failure(self): """ Test attachement. """ # msg size attribute res = mox.MockObject(core_model.Resource) res.attributes = {} self.assertRaises(AttributeError, self.backend.create, res, self.sec_obj) # error in volume creation res.attributes = {'occi.storage.size': '1'} self.mox.StubOutWithMock(nova_glue.storage, 'create_storage') nova_glue.storage.create_storage(mox.IsA(object), mox.IsA(object)).\ AndReturn({'id': '1'}) self.mox.StubOutWithMock(nova_glue.storage, 'get_storage') nova_glue.storage.get_storage(mox.IsA(object), mox.IsA(object)).\ AndReturn({'status': 'error'}) self.mox.ReplayAll() self.assertRaises(exceptions.HTTPError, self.backend.create, res, self.sec_obj) self.mox.VerifyAll() def test_action_for_failure(self): """ Test actions """ res = mox.MockObject(core_model.Resource) res.actions = [] # snapshot self.assertRaises(AttributeError, self.backend.action, res, infrastructure.SNAPSHOT, {}, self.sec_obj) # Test for sanity def test_create_for_sanity(self): """ Test creation. """ res = mox.MockObject(core_model.Resource) res.attributes = {'occi.storage.size': '1'} self.mox.StubOutWithMock(nova_glue.storage, 'create_storage') nova_glue.storage.create_storage(mox.IsA(object), mox.IsA(object)).\ AndReturn({'id': '1'}) self.mox.StubOutWithMock(nova_glue.storage, 'get_storage') nova_glue.storage.get_storage(mox.IsA(object), mox.IsA(object)).\ AndReturn({'status': 'available'}) self.mox.ReplayAll() self.backend.create(res, self.sec_obj) # verify all attrs. self.assertEqual(res.attributes['occi.storage.state'], 'active') self.assertListEqual([infrastructure.OFFLINE, infrastructure.BACKUP, infrastructure.SNAPSHOT, infrastructure.RESIZE], res.actions) self.mox.VerifyAll() def test_retrieve_for_sanity(self): """ Test retrieval. """ res = mox.MockObject(core_model.Resource) res.attributes = {'occi.core.id': '1'} self.mox.StubOutWithMock(nova_glue.storage, 'get_storage') nova_glue.storage.get_storage(mox.IsA(object), mox.IsA(object)).\ AndReturn({'status': 'available', 'size': '1'}) self.mox.ReplayAll() self.backend.retrieve(res, self.sec_obj) # verify all attrs. self.assertEqual(res.attributes['occi.storage.state'], 'online') self.assertListEqual([infrastructure.OFFLINE, infrastructure.BACKUP, infrastructure.SNAPSHOT, infrastructure.RESIZE], res.actions) self.mox.VerifyAll() self.mox.UnsetStubs() self.mox.StubOutWithMock(nova_glue.storage, 'get_storage') nova_glue.storage.get_storage(mox.IsA(object), mox.IsA(object)).\ AndReturn({'status': 'bla', 'size': '1'}) self.mox.ReplayAll() self.backend.retrieve(res, self.sec_obj) # verify all attrs. self.assertEqual(res.attributes['occi.storage.state'], 'offline') self.assertTrue(len(res.actions) == 1) self.mox.VerifyAll() def test_update_for_sanity(self): """ Test updating. """ res1 = mox.MockObject(core_model.Resource) res1.attributes = {} res2 = mox.MockObject(core_model.Resource) res2.attributes = {'occi.core.title': 'foo', 'occi.core.summary': 'bar'} self.mox.ReplayAll() self.backend.update(res1, res2, self.sec_obj) # verify all attrs. self.assertEqual(res1.attributes['occi.core.title'], 'foo') self.assertEqual(res1.attributes['occi.core.summary'], 'bar') self.mox.VerifyAll() def test_remove_for_sanity(self): """ Test removal. """ res = mox.MockObject(core_model.Resource) res.attributes = {'occi.core.id': '1'} self.mox.StubOutWithMock(nova_glue.storage, 'delete_storage_instance') nova_glue.storage.delete_storage_instance(mox.IsA(object), mox.IsA(object)) self.mox.ReplayAll() self.backend.delete(res, self.sec_obj) self.mox.VerifyAll() def test_action_for_sanity(self): """ Test actions """ res = mox.MockObject(core_model.Resource) res.attributes = {'occi.core.id': '1', 'occi.core.summary': 'foo'} res.actions = [infrastructure.SNAPSHOT, infrastructure.BACKUP] # snapshot self.mox.StubOutWithMock(nova_glue.storage, 'snapshot_storage_instance') nova_glue.storage.snapshot_storage_instance(mox.IsA(object), mox.IsA(object), mox.IsA(object), mox.IsA(object)) self.mox.ReplayAll() self.backend.action(res, infrastructure.SNAPSHOT, {}, self.sec_obj) self.mox.VerifyAll() # some other action self.mox.ReplayAll() self.backend.action(res, infrastructure.BACKUP, {}, self.sec_obj) self.mox.VerifyAll() class TestStorageLinkBackend(unittest.TestCase): """ Tests storage linking. """ def setUp(self): """ Setup the tests. """ self.backend = storage.StorageLinkBackend() self.sec_obj = {'nova_ctx': None} self.mox = mox.Mox() def tearDown(self): """ Cleanup mocks. """ self.mox.UnsetStubs() # Test for sanity def test_create_for_sanity(self): """ Test attachement. """ source = mox.MockObject(core_model.Resource) source.attributes = {'occi.core.id': 'foo'} target = mox.MockObject(core_model.Resource) target.attributes = {'occi.core.id': 'bar'} link = core_model.Link('foo', None, [], source, target) link.attributes = {'occi.storagelink.deviceid': '/dev/sda'} self.mox.StubOutWithMock(nova_glue.vm, 'attach_volume') nova_glue.vm.attach_volume(mox.IsA(object), mox.IsA(object), mox.IsA(object), mox.IsA(object)).\ AndReturn({}) self.mox.ReplayAll() self.backend.create(link, self.sec_obj) # verify all attrs. self.assertEqual(link.attributes['occi.storagelink.deviceid'], '/dev/sda') self.assertIn('occi.storagelink.mountpoint', link.attributes) self.assertEqual(link.attributes['occi.storagelink.state'], 'active') self.mox.VerifyAll() def test_delete_for_sanity(self): """ Test deattachement. """ source = mox.MockObject(core_model.Resource) target = mox.MockObject(core_model.Resource) target.attributes = {'occi.core.id': 'bar'} link = core_model.Link('foo', None, [], source, target) self.mox.StubOutWithMock(nova_glue.vm, 'detach_volume') nova_glue.vm.detach_volume(mox.IsA(object), mox.IsA(object)) self.mox.ReplayAll() self.backend.delete(link, self.sec_obj) self.mox.VerifyAll()
# Copyright 2015, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Provides distutils command classes for the gRPC Python setup process.""" from distutils import errors as _errors import glob import os import os.path import platform import re import shutil import subprocess import sys import traceback import setuptools from setuptools.command import build_ext from setuptools.command import build_py from setuptools.command import easy_install from setuptools.command import install from setuptools.command import test PYTHON_STEM = os.path.dirname(os.path.abspath(__file__)) GRPC_STEM = os.path.abspath(PYTHON_STEM + '../../../../') GRPC_PROTO_STEM = os.path.join(GRPC_STEM, 'src', 'proto') PROTO_STEM = os.path.join(PYTHON_STEM, 'src', 'proto') PYTHON_PROTO_TOP_LEVEL = os.path.join(PYTHON_STEM, 'src') class CommandError(object): pass class GatherProto(setuptools.Command): description = 'gather proto dependencies' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): # TODO(atash) ensure that we're running from the repository directory when # this command is used try: shutil.rmtree(PROTO_STEM) except Exception as error: # We don't care if this command fails pass shutil.copytree(GRPC_PROTO_STEM, PROTO_STEM) for root, _, _ in os.walk(PYTHON_PROTO_TOP_LEVEL): path = os.path.join(root, '__init__.py') open(path, 'a').close() class BuildProtoModules(setuptools.Command): """Command to generate project *_pb2.py modules from proto files.""" description = 'build protobuf modules' user_options = [ ('include=', None, 'path patterns to include in protobuf generation'), ('exclude=', None, 'path patterns to exclude from protobuf generation') ] def initialize_options(self): self.exclude = None self.include = r'.*\.proto$' def finalize_options(self): pass def run(self): import grpc_tools.protoc as protoc include_regex = re.compile(self.include) exclude_regex = re.compile(self.exclude) if self.exclude else None paths = [] for walk_root, directories, filenames in os.walk(PROTO_STEM): for filename in filenames: path = os.path.join(walk_root, filename) if include_regex.match(path) and not ( exclude_regex and exclude_regex.match(path)): paths.append(path) # TODO(kpayson): It would be nice to do this in a batch command, # but we currently have name conflicts in src/proto for path in paths: command = [ 'grpc_tools.protoc', '-I {}'.format(PROTO_STEM), '--python_out={}'.format(PROTO_STEM), '--grpc_python_out={}'.format(PROTO_STEM), ] + [path] if protoc.main(command) != 0: sys.stderr.write( 'warning: Command:\n{}\nFailed'.format(command)) # Generated proto directories dont include __init__.py, but # these are needed for python package resolution for walk_root, _, _ in os.walk(PROTO_STEM): path = os.path.join(walk_root, '__init__.py') open(path, 'a').close() class BuildPy(build_py.build_py): """Custom project build command.""" def run(self): try: self.run_command('build_package_protos') except CommandError as error: sys.stderr.write('warning: %s\n' % error.message) build_py.build_py.run(self) class TestLite(setuptools.Command): """Command to run tests without fetching or building anything.""" description = 'run tests without fetching or building anything.' user_options = [] def initialize_options(self): pass def finalize_options(self): # distutils requires this override. pass def run(self): self._add_eggs_to_path() import tests loader = tests.Loader() loader.loadTestsFromNames(['tests']) runner = tests.Runner() result = runner.run(loader.suite) if not result.wasSuccessful(): sys.exit('Test failure') def _add_eggs_to_path(self): """Fetch install and test requirements""" self.distribution.fetch_build_eggs(self.distribution.install_requires) self.distribution.fetch_build_eggs(self.distribution.tests_require) class RunInterop(test.test): description = 'run interop test client/server' user_options = [('args=', 'a', 'pass-thru arguments for the client/server'), ('client', 'c', 'flag indicating to run the client'), ('server', 's', 'flag indicating to run the server')] def initialize_options(self): self.args = '' self.client = False self.server = False def finalize_options(self): if self.client and self.server: raise _errors.DistutilsOptionError( 'you may only specify one of client or server') def run(self): if self.distribution.install_requires: self.distribution.fetch_build_eggs( self.distribution.install_requires) if self.distribution.tests_require: self.distribution.fetch_build_eggs(self.distribution.tests_require) if self.client: self.run_client() elif self.server: self.run_server() def run_server(self): # We import here to ensure that our setuptools parent has had a chance to # edit the Python system path. from tests.interop import server sys.argv[1:] = self.args.split() server.serve() def run_client(self): # We import here to ensure that our setuptools parent has had a chance to # edit the Python system path. from tests.interop import client sys.argv[1:] = self.args.split() client.test_interoperability()
# -*- encoding: utf-8 -*- import re import os import glob import typing import numpy as np scores_dict = { 'train_single': ["single_best_train_score", "single_best_optimization_score"], 'test_single': ["single_best_test_score"], 'train_ensamble': ["ensemble_optimization_score"], 'test_ensamble': ["ensemble_test_score"] } def print_debug_information(automl): # In case it is called with estimator, # Get the automl object if hasattr(automl, 'automl_'): automl = automl.automl_ # Log file path log_file = glob.glob(os.path.join( automl._backend.temporary_directory, 'AutoML*.log'))[0] include_messages = ['INFO', 'DEBUG', 'WARN', 'CRITICAL', 'ERROR', 'FATAL'] # There is a lot of content in the log files. Only # parsing the main message and ignore the metalearning # messages try: with open(log_file) as logfile: content = logfile.readlines() # Get the messages to debug easier! content = [line for line in content if any( msg in line for msg in include_messages ) and 'metalearning' not in line] except Exception as e: return str(e) # Also add the run history if any if hasattr(automl, 'runhistory_') and hasattr(automl.runhistory_, 'data'): for k, v in automl.runhistory_.data.items(): content += ["{}->{}".format(k, v)] else: content += ['No RunHistory'] # Also add the ensemble history if any if len(automl.ensemble_performance_history) > 0: content += [str(h) for h in automl.ensemble_performance_history] else: content += ['No Ensemble History'] return os.linesep.join(content) def _includes(scores, all_scores): return all(score in all_scores for score in scores) and len(scores) == len(all_scores) def count_succeses(cv_results): return np.sum( [status in ['Success', 'Success (but do not advance to higher budget)'] for status in cv_results['status']] ) def includes_all_scores(scores): all_scores = scores_dict["train_single"] + scores_dict["test_single"] + \ scores_dict["train_ensamble"] + scores_dict["test_ensamble"] + ["Timestamp"] return _includes(scores, all_scores) def include_single_scores(scores): all_scores = scores_dict["train_single"] + scores_dict["test_single"] + ["Timestamp"] return _includes(scores, all_scores) def includes_train_scores(scores): all_scores = scores_dict["train_single"] + scores_dict["train_ensamble"] + ["Timestamp"] return _includes(scores, all_scores) def performance_over_time_is_plausible(poT): if len(poT) < 1: return False if len(poT.drop(columns=["Timestamp"]).dropna()) < 1: return False if not poT["Timestamp"].is_monotonic: return False return True class AutoMLLogParser(object): def __init__(self, logfile: str): self.logfile = logfile self.lines = self.parse_logfile() def parse_logfile(self) -> typing.List[str]: # We care about the [debug/info/...] messages # At the time of writing, the message format was: # [DEBUG] [2020-11-30 11:54:05,072:EnsembleBuilder] Restricting your # function to 3072 mb memory. # # [DEBUG] [2020-11-30 11:53:55,062:pynisher] Redirecting # output of the function to files. assert os.path.exists(self.logfile), "{} not found".format(self.logfile) with open(self.logfile) as fh: content = [line.strip() for line in fh if re.search(r'[\w+]', line)] return content def count_ensembler_iterations(self) -> int: iterations = [] # One thing is to call phynisher, the other is to actually execute the funciton iterations_from_inside_ensemble_builder = [] for line in self.lines: # Pynisher call # we have to count the start msg from pynisher # and the return msg # We expect the start msg to be something like: # [DEBUG] [2020-11-26 19:22:42,160:EnsembleBuilder] \ # Function called with argument: (61.... # [DEBUG] [2020-11-30 11:53:47,069:EnsembleBuilder] Function called with argument: # (28.246965646743774, 1, False), {} match = re.search( r'EnsembleBuilder]\s+Function called with argument:\s+\(\d+\.\d+, (\d+), \w+', line) if match: iterations.append(int(match.group(1))) # Ensemble Builder actual call # Here we expect the msg: # [DEBUG] [2020-11-30 11:53:14,877:EnsembleBuilder] Starting iteration 0, # time left: 61.266255 # [DEBUG] [2020-11-27 20:27:28,044:EnsembleBuilder] Starting iteration 2, # time left: 10.603252 match = re.search( r'EnsembleBuilder]\s+Starting iteration (\d+)', line) if match: iterations_from_inside_ensemble_builder.append(int(match.group(1))) # The ensemble builder might not be called if there is no time. # Here we expect the msg: # [DEBUG] [2020-11-27 20:27:28,044:EnsembleBuilder] Not starting iteration 2, # as time left: 1.59324 match = re.search( r'EnsembleBuilder]\s+Not starting iteration (\d+)', line) if match: iterations_from_inside_ensemble_builder.append(int(match.group(1))) assert iterations == iterations_from_inside_ensemble_builder, "{} ! {}".format( iterations, iterations_from_inside_ensemble_builder ) return iterations def count_ensembler_success_pynisher_calls(self) -> int: # We expect the return msg to be something like: # [DEBUG] [2020-11-30 11:53:47,911:EnsembleBuilder] return value: # (([{'Timestamp': Timestamp('2020-11-30 11:53:47.910727'), # 'ensemble_optimization_score': 0.9787234042553191}], 50, None, None, None), 0) # [DEBUG] [2020-11-30 11:54:05,984:EnsembleBuilder] return value: # (([{'Timestamp': Timestamp('2020-11- 30 11:54:05.983837'), # 'ensemble_optimization_score': 0.9787234042553191}], 50, None, None, None), 0) return_msgs = len([line for line in self.lines if re.search( r'EnsembleBuilder]\s+return value:.*Timestamp', line)]) return return_msgs def count_tae_pynisher_calls(self) -> int: # We expect the return msg to be something like: # [DEBUG] [2020-12-16 11:57:08,987:Client-pynisher] Function called with argument: () # , {'queue': <multiprocessing.queues.Queue object at 0x7f9e3cfaae20>, 'config': 1 # [DEBUG] [2020-12-16 11:57:10,537:Client-pynisher] Function called with argument: () # , {'queue': <multiprocessing.queues.Queue object at 0x7f16f5d95c40>, # 'config': Configuration: # Only the parenthesis below need to be escaped, ] and { do not. call_msgs = len([line for line in self.lines if re.search( r'pynisher]\s+Function called with argument: \(\), {', line)]) return call_msgs def count_tae_pynisher_returns(self) -> int: # We expect the return msg to be something like: # [DEBUG] [2020-11-30 11:53:11,264:pynisher] return value: (None, 0) # [DEBUG] [2020-11-30 11:53:13,768:pynisher] return value: (None, 0) return_msgs = len([line for line in self.lines if re.search( r'pynisher]\s+return value:\s+', line)]) # When the pynisher pipe is prematurely closed, we also expect: # Your function call closed the pipe prematurely # -> Subprocess probably got an uncatchable signal # We expect the return msg to be something like: # OR # Something else went wrong, sorry. premature_msgs = len([line for line in self.lines if re.search( r'pynisher]\s+Your function call closed the pipe prematurely', line)]) failure_msgs = len([line for line in self.lines if re.search( r'pynisher]\s+Something else went wrong, sorry.', line)]) return return_msgs + premature_msgs + failure_msgs def get_automl_setting_from_log(self, dataset_name: str, setting: str) -> str: for line in self.lines: # We expect messages of the form # [DEBUG] [2020-11-30 11:53:10,457:AutoML(5):breast_cancer] ensemble_size: 50 # [DEBUG] [2020-11-30 11:53:10,457:AutoML(5):breast_cancer] ensemble_nbest: 50 match = re.search( f"{dataset_name}]\\s*{setting}\\s*:\\s*(\\w+)", line) if match: return match.group(1) return None
from flask import Flask, render_template from mipframework.hichart_server.algorun import get_algorithm_result from PCA import PCA from PEARSON_CORRELATION import Pearson from LOGISTIC_REGRESSION import LogisticRegression from CALIBRATION_BELT import CalibrationBelt from KAPLAN_MEIER import KaplanMeier from ANOVA_ONEWAY import Anova from NAIVE_BAYES import NaiveBayes app = Flask(__name__) charts_info = { "pca_scree_eigen": { "title": "PCA eigenvalue scree plot", "url": "pca_scree_eigenvalues", }, "pca_heatmap_eigen": { "title": "PCA eigenvecots heatmap", "url": "pca_heatmap_eigenvec", }, "pearson_heatmap": { "title": "Pearson Correlation Heatmap", "url": "pearson_heatmap", }, "logistic_confusion_matrix": { "title": "Logistic Regression Confusion Matrix", "url": "logistic_confmat", }, "logistic_roc": {"title": "Logistic Regression ROC", "url": "logistic_roc"}, "calibration_belt": {"title": "Calibration Belt", "url": "calibration_belt"}, "kaplan_meier_survival": { "title": "Kaplan-Meier Survival Curves", "url": "kaplan_meier_survival", }, "anova_errorbars": {"title": "Anova Mean Plot", "url": "anova_errorbars"}, "naive_bayes_confusion_matrix": { "title": "NaiveBayes CM", "url": "naive_bayes_confusion_matrix", }, "naive_bayes_roc": {"title": "NaiveBayes ROC", "url": "naive_bayes_roc",}, } @app.route("/") @app.route("/home") def home(): return render_template( "home.html", title="Exareme Highcharts", charts_info=charts_info ) @app.route("/anova_errorbars") def anova_errorbars(): anova_args = [ "-y", "lefthippocampus", "-x", "alzheimerbroadcategory", "-pathology", "dementia", "-dataset", "adni", "-filter", "", ] result = get_algorithm_result(Anova, anova_args) result = result["result"][3]["data"] return render_template( "highchart_layout.html", title="Anova Mean Plot", data=result ) @app.route("/pca_scree_eigenvalues") def pca_scree_eigenvalues(): pca_args = [ "-y", "subjectage,rightventraldc,rightaccumbensarea, gender", "-pathology", "dementia, leftaccumbensarea", "-dataset", "adni", "-filter", "", "-formula", "", "-coding", "Treatment", ] result = get_algorithm_result(PCA, pca_args) result = result["result"][3]["data"] return render_template("highchart_layout.html", title="PCA scree plot", data=result) @app.route("/pca_heatmap_eigenvec") def pca_heatmap_eigenvec(): pca_args = [ "-y", "subjectage,rightventraldc,rightaccumbensarea, gender", "-pathology", "dementia, leftaccumbensarea", "-dataset", "adni", "-filter", "", "-formula", "", "-coding", "Treatment", ] result = get_algorithm_result(PCA, pca_args) result = result["result"][4]["data"] return render_template( "highchart_layout.html", title="PCA bubble plot", data=result ) @app.route("/pearson_heatmap") def pearson_heatmap(): args = [ "-x", "", "-y", "leftputamen, righthippocampus, subjectage,rightventraldc,rightaccumbensarea, " "rightioginferioroccipitalgyrus,rightmfcmedialfrontalcortex, lefthippocampus," "rightppplanumpolare", "-pathology", "dementia, leftaccumbensarea", "-dataset", "adni", "-filter", "", "-formula", "", "-coding", "", ] result = get_algorithm_result(Pearson, args) result = result["result"][2]["data"] return render_template( "highchart_layout.html", title="Pearson Correlation Heatmap", data=result ) @app.route("/logistic_confmat") def logistic_confmat(): args = [ "-x", "lefthippocampus", "-y", "alzheimerbroadcategory", "-pathology", "dementia", "-dataset", "adni", "-filter", """ { "condition": "OR", "rules": [ { "id": "alzheimerbroadcategory", "field": "alzheimerbroadcategory", "type": "string", "input": "text", "operator": "equal", "value": "AD" }, { "id": "alzheimerbroadcategory", "field": "alzheimerbroadcategory", "type": "string", "input": "text", "operator": "equal", "value": "CN" } ], "valid": true } """, "-formula", "", ] result = get_algorithm_result(LogisticRegression, args) result = result["result"][3]["data"] return render_template( "highchart_layout.html", title="Logistic Regression Confusion Matrix", data=result, ) @app.route("/logistic_roc") def logistic_roc(): args = [ "-x", "lefthippocampus", "-y", "alzheimerbroadcategory", "-pathology", "dementia", "-dataset", "adni", "-filter", """ { "condition": "OR", "rules": [ { "id": "alzheimerbroadcategory", "field": "alzheimerbroadcategory", "type": "string", "input": "text", "operator": "equal", "value": "AD" }, { "id": "alzheimerbroadcategory", "field": "alzheimerbroadcategory", "type": "string", "input": "text", "operator": "equal", "value": "CN" } ], "valid": true } """, "-formula", "", ] result = get_algorithm_result(LogisticRegression, args) result = result["result"][4]["data"] return render_template( "highchart_layout.html", title="Logistic Regression Confusion ROC", data=result, ) @app.route("/calibration_belt") def calibration_belt(): args = [ "-x", "probGiViTI_2017_Complessiva", "-y", "hospOutcomeLatest_RIC10", "-devel", "internal", "-max_deg", "4", "-confLevels", "0.80, 0.95", "-thres", "0.95", "-num_points", "200", "-pathology", "dementia", "-dataset", "cb_data", "-filter", "", "-formula", "", ] result = get_algorithm_result(CalibrationBelt, args) result = result["result"][1]["data"] return render_template( "highchart_layout.html", title="Calibration Belt", data=result, ) @app.route("/kaplan_meier_survival") def kaplan_meier_survival(): args = [ "-x", "apoe4", "-y", "alzheimerbroadcategory", "-pathology", "dementia", "-dataset", "alzheimer_fake_cohort", "-filter", """ { "condition":"OR", "rules":[ { "id":"alzheimerbroadcategory", "field":"alzheimerbroadcategory", "type":"string", "input":"select", "operator":"equal", "value":"AD" }, { "id":"alzheimerbroadcategory", "field":"alzheimerbroadcategory", "type":"string", "input":"select", "operator":"equal", "value":"MCI" } ], "valid":true } """, "-outcome_pos", "AD", "-outcome_neg", "MCI", "-total_duration", "1100", ] result = get_algorithm_result(KaplanMeier, args) result = result["result"][1]["data"] return render_template("highchart_layout.html", title="Kaplan Meier", data=result,) nb_args = [ "-x", # "lefthippocampus,righthippocampus,leftaccumbensarea", # "gender,alzheimerbroadcategory,agegroup", "lefthippocampus,righthippocampus,leftaccumbensarea,apoe4,alzheimerbroadcategory", "-y", "agegroup", "-alpha", "1", "-k", "10", "-pathology", "dementia", "-dataset", "adni, ppmi", "-filter", "", ] @app.route("/naive_bayes_confusion_matrix") def naive_bayes_confusion_matrix(): result = get_algorithm_result(NaiveBayes, nb_args) result = result["result"][4]["data"] return render_template( "highchart_layout.html", title="NaiveBayes Confusion Martix", data=result ) @app.route("/naive_bayes_roc") def naive_bayes_roc(): result = get_algorithm_result(NaiveBayes, nb_args) result = result["result"][5]["data"] return render_template("highchart_layout.html", title="NaiveBayes ROC", data=result) if __name__ == "__main__": app.run(debug=True)
# edoAutoHome.py - This Project for HomeAutomation # URL: https://github.com/engdan77/edoAutoHomeMobile # Author: Daniel Engvall ([email protected]) import kivy kivy.require('1.9.0') import re from functools import partial from collections import namedtuple import webbrowser from kivy.app import App from kivy.lang import Builder from kivy.logger import Logger from kivy.factory import Factory from kivy.animation import Animation from kivy.uix.label import Label from kivy.uix.button import Button from kivy.uix.togglebutton import ToggleButton from kivy.uix.boxlayout import BoxLayout from kivy.uix.floatlayout import FloatLayout from kivy.uix.listview import ListView from kivy.uix.relativelayout import RelativeLayout from kivy.uix.scatter import Scatter from kivy.uix.widget import Widget from kivy.core.image import Image from kivy.core.window import Window from kivy.animation import Animation from kivy.properties import StringProperty, ObjectProperty, ListProperty, DictProperty, NumericProperty from kivy.clock import Clock from kivy.network.urlrequest import UrlRequest from kivy.uix.screenmanager import ScreenManager, Screen, FadeTransition from kivy.config import ConfigParser from kivy.adapters.simplelistadapter import SimpleListAdapter from kivy.uix.settings import (Settings, SettingsWithSidebar, SettingsWithSpinner, SettingsWithTabbedPanel) from garden import Graph, MeshLinePlot import json from kivy.support import install_twisted_reactor install_twisted_reactor() from twisted.internet import reactor, protocol __version__ = "$Revision: 20150730.1573 $" # ---------- Generic functions ---------- def get_date(msg): import time if not msg: return time.strftime("%Y-%m-%d %H:%M:%S") else: return '%s: %s' % (time.strftime("%Y-%m-%d %H:%M:%S"), msg) def show_url_result(req, results): ''' Show result of url request ''' Logger.info("req: %s" % (str(req),)) Logger.info("results: %s" % (str(results),)) def updates_to_plots(last_records): ''' Convert last records to graph plots ''' from datetime import datetime last_records.reverse() last_records = sorted(last_records) Logger.info('='*30) Logger.info(str(last_records)) Logger.info('='*30) result = [] d_fmt = '%Y-%m-%d %H:%M:%S' now = datetime.now() prev_value = None for value_tuple in last_records: d, v = value_tuple d = datetime.strptime(d, d_fmt) # Divide timediff in seconds by one day to get how many days diff timediff = float(int(now.strftime('%s')) - int(d.strftime('%s'))) / 86400 timediff = 0 - float(format(timediff, '.4f')) # Change value if required next_zero = None prev_zero = None prev_one = None if re.match(r'.*Motion.*', v, re.IGNORECASE): v = 1 prev_zero = True next_zero = True elif re.match(r'.*Door Open.*', v, re.IGNORECASE): if prev_value == 1: prev_one = True if prev_value == 0: prev_zero = True v = 1 elif re.match(r'.*Door Close.*', v, re.IGNORECASE): if prev_value == 1: prev_one = True v = 0 else: v = float(v) # Add one where required if prev_one is True: result.append((timediff-0.0001, 1)) if prev_zero is True: result.append((timediff-0.0001, 0)) # Adding value result.append((timediff, v)) # Correct issue with Motion/Door if next_zero is True: result.append((timediff+0.0001, 0)) # Store previous value prev_value = v # Append last value to result if re.match(r'.*Motion.*', value_tuple[1], re.IGNORECASE): result.append((0-0.0001, 0)) result.append((0, v)) else: result.append((0, v)) # Determina min/max values # result = sorted(result) all_x_values, all_y_values = zip(*result) min_x_value = float(min(*all_x_values)) min_y_value = float(min(*all_y_values)) max_y_value = float(max(*all_y_values)) # Return result as dict return {'plots': result, 'min_y': min_y_value, 'max_y': max_y_value, 'min_x': min_x_value} # ---------- ScreenManager and Screens ---------- class MyScreenManager(ScreenManager): connect_server_status = StringProperty('Initiating connection') json_sensors = StringProperty('........') settings_dict = DictProperty() def __init__(self, **kwargs): super(MyScreenManager, self).__init__(**kwargs) self._app = App.get_running_app() def change_screen(self, *args): screen_name = args[0] sm = self._app.root # If changing back to Initial Screen if screen_name == 'initial_screen': Clock.unschedule(sm.update_views) sm.current = screen_name def refresh_variables(self): Logger.info("Refreshing variables after connecting to MyScreenManager") self._app.config.update_config('my.ini') self.port = self._app.config.get('network', 'port') self.server = self._app.config.get('network', 'ip') self.connect_server_status = "Connecting to %s:%s" % (self.server, self.port) self.json_sensors = '....' def update_views(self, dt): ''' Method to be scheduled for updating from server ''' # Poll new JSON data Logger.info(str(self._app.connect_to_server())) # Clean records in log_screen if too many lines if len(self._app.log_list) > 100: self._app.log_list.append(get_date("Cleaning old records in log")) while len(self._app.log_list) > 100: self._app.log_list.pop(0) def return_screen_object(screen_name): # Iterate through all screens found = None for current_screen in self._app.sm.screens: if current_screen.name == screen_name: found = current_screen return found # For each device update Screen if re.match(r'^\{.*\}$', self._app.sm.json_sensors): try: j = json.loads(self._app.sm.json_sensors) except Exception as e: self._app.sm.json_sensors = 'Error in JSON' else: for device in j.keys(): Logger.info("Updating screen for device %s" % (device,)) self._app.log_list.append(get_date("Updating screen for device %s" % (device,))) # Create Device Screen with sensors box_device = BoxLayout(orientation='vertical', spacing=10) box_device.add_widget(Label(text='')) box_device.add_widget(Label(size_hint_y=0.2, text='[color=ff3333]' + device + '[/color]', font_size=40, markup=True)) box_device.add_widget(Label(text='')) # Create Sensor Screen and button on device screen for sensor in j[device]: sensor_name = sensor.keys()[0] sensor_data = sensor[sensor_name] sensor_values = sensor_data['last_records'] sensor_dict = updates_to_plots(sensor_values) sensor_plots = sensor_dict['plots'] ymin = sensor_dict['min_y'] ymax = sensor_dict['max_y'] xmin = sensor_dict['min_x'] last_date, last_value = sensor_values[-1] # Determine suffix suffix = ' ' if re.match(r'.*temp.*', sensor_name, re.IGNORECASE): suffix = u"\u00b0C" if re.match(r'.*humid.*', sensor_name, re.IGNORECASE): suffix = " %" if re.match(r'.*smoke.*', sensor_name, re.IGNORECASE): suffix = " %" if re.match(r'.*stove.*', sensor_name, re.IGNORECASE): suffix = " %" sensor = device + '_' + sensor_name Logger.info(str(sensor)) Logger.info("Last data %s %s" % (last_date, last_value)) # Create new history view box_sensor_history = BoxLayout(orientation='vertical', spacing=10) box_sensor_history.add_widget(Label(size_hint_y=0.1, text='[color=B6BAB9]' + sensor_name + ' (' + device + ')[/color]', font_size=30, markup=True)) # Create history text text_history = [] for d, v in sensor_values: text_history.append(str("%s %s" % (d, v))) # Create left aligned list adapter = SimpleListAdapter(data=text_history, cls=MyLeftAlignedLabel) list_view = ListView(adapter=adapter) # Fix bug with ListView to refresh if required if(hasattr(list_view, '_reset_spopulate')): Logger.info("Refresh list_view") list_view._reset_spopulate() # Add ListView to Sensor History box_sensor_history.add_widget(list_view) back_button = Button(size_hint_y=0.1, font_size=20, text='Back') back_button.bind(on_press=partial(self.change_screen, device + "_" + sensor_name)) box_sensor_history.add_widget(back_button) screen_sensor_history = return_screen_object(device + "_" + sensor_name + '_history') screen_sensor_history.clear_widgets() screen_sensor_history.add_widget(box_sensor_history) screen_sensor = return_screen_object(device + "_" + sensor_name) box_sensor = BoxLayout(orientation='vertical') box_sensor.add_widget(Label(size_hint_y=0.1, text='[color=B6BAB9]' + sensor_name + ' (' + device + ')[/color]', font_size=30, markup=True)) # Add sensor value box_sensor.add_widget(Label(text=last_value + suffix, font_size=60)) # Add sensor date box_sensor.add_widget(Label(size_hint_y=0.1, markup=True, text='[b]Sensor last updated ' + last_date[:-3] + '[/b]\nPolled ' + get_date(None)[:-3], font_size=15)) # Add sensor graph Logger.info("Create plot for %s" % (sensor_name,)) Logger.info(str(sensor_plots)) plot = MeshLinePlot(mode='line_strip', color=[1, 0, 0, 1]) plot.points = sensor_plots sensor_graph = Graph(id='plots_' + sensor_name, precision='%0.0f', x_grid_label=True, y_grid_label=True, xmin=xmin, xmax=0, ymin=ymin, ymax=ymax, xlabel='days ago', ylabel=suffix, x_grid=True, y_grid=False, x_ticks_major=1, y_ticks_major=1) sensor_graph.add_plot(plot) box_sensor.add_widget(sensor_graph) # Add buttonbar for sensor box_buttons = BoxLayout(orientation='horizontal') # Create button for history history_button = Button(size_hint_y=0.2, font_size=20, text='History') history_button.bind(on_press=partial(self.change_screen, device + "_" + sensor_name + "_history")) # Create Back button back_button = Button(size_hint_y=0.2, font_size=20, text='Back') back_button.bind(on_press=partial(self.change_screen, device)) # Add buttons to row box_buttons.add_widget(back_button) box_buttons.add_widget(history_button) # Add row to screen box_sensor.add_widget(box_buttons) # Add all of it to screen screen_sensor.clear_widgets() screen_sensor.add_widget(box_sensor) class InitialScreen(Screen): version = StringProperty(__version__.replace('$', '')) logo_image = ObjectProperty(None) def __init__(self, **kwargs): super(InitialScreen, self).__init__(**kwargs) self.logo_image = Image('logo.png') def move_logo(self, *args): screen = self._app.sm.get_screen('initial_screen') logo_object = screen.ids['logo'] window_x, window_y = Window.size anim = Animation(y=window_y-(window_y/1.5), duration=6, t='in_bounce') + Animation(y=0, duration=6, t='out_bounce') anim.repeat = True anim.start(logo_object) def stop_logo(self, *args): screen = self._app.sm.get_screen('initial_screen') logo_object = screen.ids['logo'] Animation.cancel_all(logo_object) class ConnectingServerScreen(Screen): slideshow_all_sensors_counter = NumericProperty(0) slideshow_all_sensors_screens = ListProperty([]) slideshow_all_sensors_index = NumericProperty(0) def change_screen(self, *args): screen_name = args[0] sm = self._app.root # If changing back to Initial Screen if screen_name == 'initial_screen': Clock.unschedule(sm.update_views) sm.current = screen_name def control_slideshow_all_sensors(self, button, *args): Logger.info('Slideshow for all sensors button is %s' % (button.state,)) self._app.log_list.append(get_date('Slideshow for all sensors button is %s' % (button.state,))) if button.state == 'down': # Create list of screens to switch between for screen in self._app.sm.screens: if re.match(r'[^-]+-[^_]+_[^_]+$', screen.name): self.slideshow_all_sensors_screens.append(screen) self.timeout = int(self._app.sm.settings_dict['slideshow_refresh_time']) self.slideshow_all_sensors_counter = self.timeout device_screen = self._app.sm.get_screen('all_devices_buttons') # Search for button object for widget in device_screen.walk(): button = widget if widget.id == 'slide_all_button': button.text = 'Slideshow All Sensors (' + str(self.slideshow_all_sensors_counter) + ')' Clock.schedule_interval(self.slideshow_all_sensors, 1) if button.state == 'normal': button.text = 'Slideshow All Sensors' Clock.unschedule(self.slideshow_all_sensors) def slideshow_all_sensors(self, dt): self.slideshow_all_sensors_counter -= 1 device_screen = self._app.sm.get_screen('all_devices_buttons') for widget in device_screen.walk(): button = widget if widget.id == 'slide_all_button': button.text = 'Slideshow All Sensors (' + str(self.slideshow_all_sensors_counter) + ')' if self.slideshow_all_sensors_counter == 0: self.slideshow_all_sensors_counter = self.timeout if self.slideshow_all_sensors_index < len(self.slideshow_all_sensors_screens)-1: self.slideshow_all_sensors_index += 1 else: self.slideshow_all_sensors_index = 0 # Switch to next sensor screen self.change_screen(self.slideshow_all_sensors_screens[self.slideshow_all_sensors_index].name) def create_button_view(self, dt): import json import time # Make reference to app root widget sm = self._app.root # Check that JSON been recieved if re.match(r'^\{.*\}$', self._app.sm.json_sensors): try: j = json.loads(self._app.sm.json_sensors) except Exception as e: self._app.sm.json_sensors = 'Error in JSON' else: all_devices_boxlayout = BoxLayout(orientation='vertical', spacing=10) all_devices_boxlayout.add_widget(Label(text='')) all_devices_boxlayout.add_widget(Label(size_hint_y=0.2, text='[color=ff3333]Devices[/color]', font_size=40, markup=True)) all_devices_boxlayout.add_widget(Label(text='')) all_devices_screen = Screen(id='all_devices_buttons', name='all_devices_buttons') all_devices_screen.add_widget(all_devices_boxlayout) sm.add_widget(all_devices_screen) # Bulding new screens for list of devices and sensors based on json # For each device create its own Screen for device in j.keys(): Logger.info("Creating screen for device %s" % (device,)) self._app.log_list.append(get_date("Creating screen for device %s" % (device,))) screen_device = Screen(name=device) # Add button for device on all_devices_boxlayout b = Button(text=device) # This will call the function with 'device' as argument to switch Screen b.bind(on_press=partial(self.change_screen, device)) all_devices_boxlayout.add_widget(b) # Create Device Screen with sensors box_device = BoxLayout(orientation='vertical', spacing=10) box_device.add_widget(Label(text='')) box_device.add_widget(Label(size_hint_y=0.2, text='[color=ff3333]' + device + '[/color]', font_size=40, markup=True)) box_device.add_widget(Label(text='')) # Create Sensor Screen and button on device screen for sensor in j[device]: sensor_name = sensor.keys()[0] sensor_data = sensor[sensor_name] sensor_values = sensor_data['last_records'] sensor_dict = updates_to_plots(sensor_values) sensor_plots = sensor_dict['plots'] ymin = sensor_dict['min_y'] ymax = sensor_dict['max_y'] xmin = sensor_dict['min_x'] last_date, last_value = sensor_values[-1] # Determine suffix suffix = ' ' if re.match(r'.*temp.*', sensor_name, re.IGNORECASE): suffix = u"\u00b0C" if re.match(r'.*humid.*', sensor_name, re.IGNORECASE): suffix = " %" if re.match(r'.*smoke.*', sensor_name, re.IGNORECASE): suffix = " %" if re.match(r'.*stove.*', sensor_name, re.IGNORECASE): suffix = " %" sensor = device + '_' + sensor_name Logger.info(str(sensor)) Logger.info("Last data %s %s" % (last_date, last_value)) # Create history view screen_sensor_history = Screen(name=device + "_" + sensor_name + "_history") box_sensor_history = BoxLayout(orientation='vertical', spacing=10) box_sensor_history.add_widget(Label(size_hint_y=0.1, text='[color=B6BAB9]' + sensor_name + ' (' + device + ')[/color]', font_size=30, markup=True)) # Create history text text_history = [] for d, v in sensor_values: text_history.append(str("%s %s" % (d, v))) # Create left aligned list adapter = SimpleListAdapter(data=text_history, cls=MyLeftAlignedLabel) list_view = ListView(adapter=adapter) # Fix bug with ListView to refresh if required if(hasattr(list_view, '_reset_spopulate')): Logger.info("Refresh list_view") list_view._reset_spopulate() # Add ListView to Sensor History box_sensor_history.add_widget(list_view) back_button = Button(size_hint_y=0.1, font_size=20, text='Back') back_button.bind(on_press=partial(self.change_screen, device + "_" + sensor_name)) box_sensor_history.add_widget(back_button) screen_sensor_history.add_widget(box_sensor_history) sm.add_widget(screen_sensor_history) # Create sensor screen screen_sensor = Screen(name=device + "_" + sensor_name) box_sensor = BoxLayout(orientation='vertical') box_sensor.add_widget(Label(size_hint_y=0.1, text='[color=B6BAB9]' + sensor_name + ' (' + device + ')[/color]', font_size=30, markup=True)) # Add sensor value box_sensor.add_widget(Label(text=last_value + suffix, font_size=60)) # Add sensor date box_sensor.add_widget(Label(size_hint_y=0.1, markup=True, text='[b]Sensor last updated ' + last_date[:-3] + '[/b]\nPolled ' + get_date(None)[:-3], font_size=15)) # Add sensor graph Logger.info("Create plot for %s" % (sensor_name,)) Logger.info(str(sensor_plots)) plot = MeshLinePlot(mode='line_strip', color=[1, 0, 0, 1]) plot.points = sensor_plots sensor_graph = Graph(id='plots_' + sensor_name, precision='%0.0f', x_grid_label=True, y_grid_label=True, xmin=xmin, xmax=0, ymin=ymin, ymax=ymax, xlabel='days ago', ylabel=suffix, x_grid=True, y_grid=False, x_ticks_major=1, y_ticks_major=1) sensor_graph.add_plot(plot) box_sensor.add_widget(sensor_graph) # Add buttonbar for sensor box_buttons = BoxLayout(orientation='horizontal') # Create button for history history_button = Button(size_hint_y=0.2, font_size=20, text='History') history_button.bind(on_press=partial(self.change_screen, device + "_" + sensor_name + "_history")) # Create Back button back_button = Button(size_hint_y=0.2, font_size=20, text='Back') back_button.bind(on_press=partial(self.change_screen, device)) # Add buttons to row box_buttons.add_widget(back_button) box_buttons.add_widget(history_button) # Add row to screen box_sensor.add_widget(box_buttons) # Add all of it to screen screen_sensor.add_widget(box_sensor) sm.add_widget(screen_sensor) # Create button on device screen button_sensor = Button(text=sensor_name) button_sensor.bind(on_press=partial(self.change_screen, sensor)) box_device.add_widget(button_sensor) # Add Device Screen with all sensor buttons to ScreenManager back_button = Button(font_size=20, text='[b]Back[/b]', markup=True) back_button.bind(on_press=partial(self.change_screen, 'all_devices_buttons')) box_device.add_widget(back_button) screen_device.add_widget(box_device) sm.add_widget(screen_device) # Adding Back button to Devices screen back_button = Button(font_size=20, text='[b]Back[/b]', markup=True) back_button.bind(on_press=partial(self.change_screen, 'initial_screen')) all_devices_buttonrow = BoxLayout(orientation='horizontal') all_devices_buttonrow.add_widget(back_button) slide_all_button = ToggleButton(id='slide_all_button', font_size=20, text='Slideshow All Sensors') slide_all_button.bind(on_press=partial(self.control_slideshow_all_sensors, slide_all_button)) all_devices_buttonrow.add_widget(slide_all_button) all_devices_boxlayout.add_widget(all_devices_buttonrow) # Unschedule timer Clock.unschedule(self.create_button_view) # Return to buttons of all devices sm.current = 'all_devices_buttons' # Schedule updates from server Clock.schedule_interval(sm.update_views, int(self._app.sm.settings_dict['refresh_time'])) # Check if failed pause for error before return if re.match(r'.*fail.*', self._app.sm.connect_server_status) or re.match(r'.*error.*', self._app.sm.json_sensors): Clock.unschedule(self.create_button_view) time.sleep(2) self.port = self._app.config.get('network', 'port') self.server = self._app.config.get('network', 'ip') self._app.sm.connect_server_status = "Connecting to %s:%s" % (self.server, self.port) sm.current = 'initial_screen' def call_connect_sensor_status(self, dt): ''' Function that connects and retrieves json ''' self._app.config.update_config('my.ini') port = self._app.config.get('network', 'port') server = self._app.config.get('network', 'ip') refresh_time = self._app.config.get('network', 'refresh_time') slideshow_refresh_time = self._app.config.get('other', 'slideshow_refresh_time') self._app.sm.settings_dict['ip'] = server self._app.sm.settings_dict['port'] = port self._app.sm.settings_dict['refresh_time'] = refresh_time self._app.sm.settings_dict['slideshow_refresh_time'] = slideshow_refresh_time # Initiate connection Logger.info("Connecting to %s:%s" % (server, port)) self._app.log_list.append(get_date("Connecting to %s:%s" % (server, port))) Logger.info(str(self._app.connect_to_server())) Clock.schedule_interval(self.create_button_view, 1) class AboutScreen(Screen): def move_text(self, *args): screen = self._app.sm.get_screen('about_screen') text_object = screen.ids['moving_text'] window_x, window_y = Window.size center_x = window_x/2 center_x = 10 center_y = window_y/2 center_y = 10 dia = 200 dur = 3 t = 'in_out_circ' anim = Animation(x=center_x, y=center_y-dia, duration=dur, t=t) + Animation(x=center_x+dia, y=center_y, duration=dur, t=t) + Animation(x=center_x, y=center_y+dia, duration=dur, t=t) + Animation(x=center_x-dia, y=center_y, duration=dur, t=t) anim.repeat = True anim.start(text_object) def stop_text(self, *args): screen = self._app.sm.get_screen('about_screen') text_object = screen.ids['moving_text'] Animation.cancel_all(text_object) def open_browser(self, *args): url = 'https://github.com/engdan77' webbrowser.open(url) class MyLeftAlignedLabel(Label): pass class LogScreen(Screen): left_label = ObjectProperty(MyLeftAlignedLabel) class SettingScreen(Screen): pass Builder.load_string(''' #:import FadeTransition kivy.uix.screenmanager.FadeTransition #:import Clock kivy.clock.Clock #:import partial functools #:import sla kivy.adapters.simplelistadapter #:import label kivy.uix.label #:import window kivy.core.window <InitialScreen> name: 'initial_screen' _app: app on_enter: self.move_logo(self) on_leave: self.stop_logo(self) BoxLayout: orientation: 'horizontal' BoxLayout: orientation: 'vertical' Button: text: 'View Sensors' on_press: root._app.sm.refresh_variables(); app.root.current = 'connecting_server_screen' Button: text: 'View App Log' on_press: app.root.current = 'log_screen' Button: text: 'Settings' on_press: app.open_settings() Button: text: 'About This App' on_press: app.root.current = 'about_screen' Button: text: '[b]Exit[/b]' font_size: 20 on_press: app.stop() markup: True BoxLayout: orientation: 'vertical' id: right_pane Image: id: logo source: 'logo.png' allow_stretch: False keep_ratio: True pos_hint: {'center_x': .5, 'top': .9} Label: text: root.version size_hint: None, None pos_hint: {'center_x': .5, 'top': .8} font_size: self.width / 7 valign: 'middle' halign: 'center' <ConnectingServerScreen> name: 'connecting_server_screen' id: 'connecting_server_screen' on_enter: Clock.schedule_once(self.call_connect_sensor_status) _app: app BoxLayout: orientation: 'vertical' Label: font_size: 30 text: app.sm.connect_server_status Image: source: 'RingGreen.zip' allow_stretch: False keep_ratio: True anim_delay: 0.02 Label: font_size: 20 text: app.sm.json_sensors[:40] Button: font_size: 20 text: 'Abort' size_hint_y: 0.2 on_press: Clock.unschedule(root.create_button_view); app.sm.current = 'initial_screen' <AboutScreen> name: 'about_screen' _app: app on_enter: self.move_text(self) on_leave: self.stop_text(self) FloatLayout: orientation: 'vertical' Scatter: auto_bring_to_front: False Image: center: self.parent.center source: 'daniel_engvall.png' size: root.width-400, root.height-400 Label: text: "[color=ff3333][b]AutoHomeMobile[/b][/color]\\nDeveloped by [email protected]\\n[color=0000ff][ref=url]https://github.com/engdan77[/ref][/font]" markup: True on_ref_press: root.open_browser(self) size_hint: None, None font_size: self.width / 5 pos_hint: {'center_x': .5, 'top': .2} Label: id: moving_text text: '[color=A31B00]Try to pinch/rotate me...[/color]' markup: True pos: 50, 50 Button: text: 'Back' on_press: app.root.current = 'initial_screen' size_hint: None, None <MyLeftAlignedLabel> font_size: 15 halign: 'left' size_hint_y: None text_size: self.size <LogScreen>: name: 'log_screen' BoxLayout: orientation: 'vertical' ListView: adapter: sla.SimpleListAdapter(data=app.log_list, cls=root.left_label) Button: size_hint_y: 0.1 text: 'Back' on_press: app.root.current = 'initial_screen' ''') # ---------- Generic Classes ---------- class ProtocolClass(protocol.Protocol): def connectionMade(self): self.factory.app.on_connection(self.transport) def dataReceived(self, data): self.factory.app.print_message(data) class ConnectionClass(protocol.ClientFactory): protocol = ProtocolClass def __init__(self, app): self.app = app def clientConnectionLost(self, conn, reason): self.app.print_message("Connection lost") self.app.log_list.append(get_date("Connected and disconnecting from server")) Logger.info('Connection lost') def clientConnectionFailed(self, conn, reason): self.app.print_message("Connection failed") self.app.log_list.append(get_date("Connection failed")) Logger.error('Connection failed') # ---------- Main App ---------- class MyApp(App): sm = ObjectProperty() settings = DictProperty({'apa': 1}) connection = None log_list = ListProperty([get_date(None) + ': Application Started']) def __init__(self, **kwargs): # Superclass if we like to adjust present init super(MyApp, self).__init__(**kwargs) def build_config(self, config): config.setdefaults('network', { 'ip': '127.0.0.1', 'port': '3000', 'refresh_time': '60'}) config.setdefaults('other', {'slideshow_refresh_time': '60'}) def on_config_change(self, config, section, key, value): pass def build_settings(self, settings): import json self.setting_json = '''[ { "type": "title", "title": "Server" }, { "type": "string", "title": "IP Address", "desc": "IP address for server", "section": "network", "key": "ip" }, { "type": "numeric", "title": "Port", "desc": "Port for server", "section": "network", "key": "port" }, { "type": "numeric", "title": "Server Refresh Time", "desc": "Number of seconds before refresh status from server", "section": "network", "key": "refresh_time" }, { "type": "numeric", "title": "Slideshow Refresh Time", "desc": "Number of seconds for each slide", "section": "other", "key": "slideshow_refresh_time" } ]''' settings.add_json_panel('EdoAutoHome', self.config, data=self.setting_json) def on_stop(self): Logger.info("Good Bye!!") def connect_to_server(self): server = str(self.config.get('network', 'ip')) port = int(self.config.get('network', 'port')) return reactor.connectTCP(server, port, ConnectionClass(self)) def on_connection(self, connection): self.sm.connect_server_status = 'Connected succesfully, retrieving JSON data!' self.connection = connection # Send actual command to server self.send_message() def send_message(self, *args): msg = '"show_status_json"' if msg and self.connection: Logger.info("Sending %s" % (msg,)) self.connection.write(msg) def print_message(self, msg): import time # Successfully receieved JSON if str(msg).find('{') > 0 or str(msg).find('}') > 0: if not str(msg)[0] == '{': Logger.info("Appending JSON") self.sm.json_sensors += str(msg) else: Logger.info("Found JSON") self.sm.json_sensors = str(msg) Logger.info("Printing Result of JSON Sensor") Logger.info(str(self.sm.json_sensors)) self.sm.connect_server_status = 'Parsing JSON!' # Save to local file as debug # with open('debug.txt', 'w') as f: # f.write(msg) # Failed connection if msg.find("failed") > 0: self.sm.connect_server_status = 'Connection failed!' def build(self): import time super(MyApp, self).build() # Set icon and name self.title = 'AutoHomeMobile' self.icon = 'icon.png' # Configuration settings config = self.config # self.settings_cls = SettingsWithSidebar self.settings_cls = SettingsWithTabbedPanel self.use_kivy_settings = False # Clock handler # Clock.schedule_interval(self.timer, 20) self.sm = MyScreenManager(id='manager', transition=FadeTransition()) self.sm.add_widget(InitialScreen(name='initial_screen')) self.sm.add_widget(LogScreen(name='log_screen')) self.sm.add_widget(AboutScreen(name='about_screen')) self.sm.add_widget(ConnectingServerScreen(name='connecting_server_screen')) # Return ScreenManager return self.sm if __name__ == '__main__': MyApp().run()
# -*- coding: utf-8 -*- # # K9 Forward Sensors Controller # # authored by Richard Hopkins December 2017 for AoT Autonomy Team # # Licensed under The Unlicense, so free for public domain use # # This program turns K9's radar crisps into rotating LIDAR # sensors that can detect what is in front of the robot dog. # # This data is supplemented by a stationary mouth sensor that permanently # detects what is front of the dog at ground level (thanks to the wonderful # Paul Booth for that particular idea!) # # The information from all the sensors is stored in a Redis database # in the Pi, so that the Python Motorcontroller can transmit the current state # to the browser via Node-RED # import sys # allows for command line to be interpreted import json # enables creation of JSON strings import os # enables access to environment variables import math # import maths operations import random # import random numbers import time # enable sleep function import memory # imports K9's memory capability sim = False # sim is a program wide flag to allow the program to run off the Raspberry Pi # this can be enabled by appending the word "test" to the command line if ( len(sys.argv) > 1 ) : if ( sys.argv[1] == "test" ) : sim = True print "Executing ears in simulation mode" # let the user know they are in sim mode # GPIO for left LIDAR shutdown pin mouth_LIDAR_shutdown = 16 # GPIO for right LIDAR shutdown pin right_LIDAR_shutdown = 20 left_LIDAR_shutdown = 21 focus = 0.5 # If running for real initialise servo driver, LIDARs and ADC if not sim : sys.path.append('/home/pi') # persistent import directory for K9 secrets sys.path.append('/home/pi/Adafruit_Python_PCA9685/Adafruit_PCA9685') # persistent directory for Adafruit driver print "Importing RPi GPIO and shutting down LIDAR..." import RPi.GPIO as GPIO GPIO.setwarnings(False) # Setup GPIO for shutdown pins on each VL53L0X GPIO.setmode(GPIO.BCM) GPIO.setup(left_LIDAR_shutdown, GPIO.OUT) GPIO.setup(right_LIDAR_shutdown, GPIO.OUT) GPIO.setup(mouth_LIDAR_shutdown, GPIO.OUT) # Set all shutdown pins low to turn off each VL53L0X GPIO.output(left_LIDAR_shutdown, GPIO.LOW) GPIO.output(right_LIDAR_shutdown, GPIO.LOW) GPIO.output(mouth_LIDAR_shutdown, GPIO.LOW) # Keep all low for 500 ms or so to make sure they reset time.sleep(0.50) print "Importing servo driver library..." import Adafruit_PCA9685 # enable control of devices ear servos via Adafruit library print "Importing LIDAR driver library..." import VL53L0X # enable control of LIDAR sesnsors print "Importing ADC driver library..." import Adafruit_ADS1x15 # Create ADC object adc = Adafruit_ADS1x15.ADS1115() GAIN = 1 # Create and intialise servo driver pwm = Adafruit_PCA9685.PCA9685() pwm.set_pwm_freq(60) pwm.set_pwm(4,0,125) pwm.set_pwm(5,0,615) class K9ForwardSensors : def __init__(self) : """Creates two LIDAR instances, one for each ear and a sensor array. """ print "K9 object initialising..." # Create LIDAR sensor instances with different channels self.left_ear = LIDAR(name="ear_left",adc=0,gpio=left_LIDAR_shutdown,address=0x30) self.right_ear = LIDAR(name="ear_right",adc=1,gpio=right_LIDAR_shutdown,address=0x31) #self.mouth = LIDAR(name="mouth",adc=99,gpio=mouth_LIDAR_shutdown,address=0x32) # Initialise the various measures that will control the ears # the pwm settings control the target directions of the ears self.min_pwm = 140 self.mid_pwm = 370 self.max_pwm = 600 self.max_l_pot = 16776 self.mid_r_pot = 10932 self.mid_l_pot = 12963 self.min_r_pot = 4906 self.left_pwm_channel = 4 self.right_pwm_channel = 5 def getForwardSpeed(self) : # retrieve current actual robot speed from Redis self.left_speed=float(memory.retrieveState("left:speed")) self.right_speed=float(memory.retrieveState("right:speed")) # forward speed will be the average of the two # then convert into a percentage of maximum speed (100) return ((self.left_speed + self.right_speed)/200) def makeReading(self) : """Controls the movement of the ears based on robot speed """ # make reading from mouth sensor #self.mouth.makeReading() #self.mouth.recordReading() #make reading from ear sensors self.forward_speed = self.getForwardSpeed() # if the robot is moving forward, then work out what # the boundaries should be for the potentiometer and pwm # these boundaries should narrow the movement as the robot gets # faster if (self.forward_speed > 0) : self.percent = min(1,self.forward_speed) else: self.percent = 0 self.left_pot_tgt = self.mid_l_pot + (focus*self.percent*(self.max_l_pot - self.mid_l_pot)) self.right_pot_tgt = self.mid_r_pot - (focus*self.percent*(self.mid_r_pot-self.min_r_pot)) self.left_pwm_tgt = self.mid_pwm + (focus*self.percent*(self.max_pwm - self.mid_pwm)) self.right_pwm_tgt = self.mid_pwm - (focus*self.percent*(self.mid_pwm - self.min_pwm)) #print ("LT:"+str(self.left_pot_tgt)+" RT:"+str(self.right_pot_tgt)+" pLT:"+str(self.left_pwm_tgt)+" pRT:"+str(self.right_pwm_tgt)) # Make a reading with the left ear to determine distance and direction self.left_ear.makeReading() self.left_ear.recordReading() # Make a reading with the right ear to determine distance and direction self.right_ear.makeReading() self.right_ear.recordReading() #print ("LA:"+str(self.left_ear.direction)+" RA:"+str(self.right_ear.direction)) # If both ears are outside the boundaries over which they are meant to move # then reverse their direction of travel if ((self.left_ear.direction < self.left_pot_tgt) or (self.right_ear.direction > self.right_pot_tgt)) : if not sim : pwm.set_pwm(self.left_pwm_channel,0, self.max_pwm) pwm.set_pwm(self.right_pwm_channel,0, self.min_pwm) #print("Flip L in towards: " + str(self.max_pwm) + ", R in towards: " + str(self.min_pwm)) if ((self.left_ear.direction > self.max_l_pot) or (self.right_ear.direction < self.min_r_pot)) : if not sim : pwm.set_pwm(self.left_pwm_channel,0, int(self.left_pwm_tgt)) pwm.set_pwm(self.right_pwm_channel,0, int(self.right_pwm_tgt)) #print("Flip L out towards: " + str(self.left_pwm_tgt) + ", R out towards: " + str(self.right_pwm_tgt)) class LIDAR : def __init__(self, name, adc, gpio, address) : """Initialise the VL530L0X that will be used by this LIDAR instance Arguments: name -- the name of the sensor e.g. left or right adc -- this value will determine which ADC channel is used gpio -- the GPIO pin that controls the LIDAR shutdown address -- the i2c address of the LIDAR itself when the sensor is queried (also translates to I2C address) """ self.adc = adc self.name = name self.gpio = gpio self.address = address # initialise sensor via I2C and GPIO shutdown pin if not sim : self.sensor = VL53L0X.VL53L0X(address=self.address) GPIO.output(self.gpio, GPIO.HIGH) time.sleep(0.50) # start sensor ranging self.sensor.start_ranging(VL53L0X.VL53L0X_LONG_RANGE_MODE) print str(self.name) + " LIDAR instantiated at " + str(self.address) + " measured by ADC " + str(self.adc) + " and controlled by GPIO " + str(self.gpio) def recordReading(self) : memory.storeSensorReading(self.name,self.distance,self.direction) print("dist_"+str(self.name)+": "+str(self.distance)+"mm at bearing: "+str(self.direction)) def makeReading(self) : """Make a distance reading and update the sensors internal state Gets the latest distance reading from the LIDAR sensor and the direction from the associated ADC channel Arguments: none """ self.time=time # get distance from LIDAR sensor if not sim : self.distance = self.sensor.get_distance() #self.distance = random.uniform(0,1200) # TEMPORARY FOR TESTING if (self.adc == 99) : self.direction = 99 else : self.direction = adc.read_adc(self.adc,gain=GAIN) else : self.distance = random.uniform(0,1200) self.direction = random.uniform(0,5) # print str(self.name) + " reads: " + str(self.distance) + " at an angle of " + str(self.direction) try : k9sensors = K9ForwardSensors() max_time = 0 while True : k9sensors.makeReading() except KeyboardInterrupt : if not sim : k9sensors.left_ear.sensor.stop_ranging() k9sensors.right_ear.sensor.stop_ranging() #k9sensors.mouth.sensor.stop_ranging() GPIO.output(left_LIDAR_shutdown, GPIO.LOW) GPIO.output(right_LIDAR_shutdown, GPIO.LOW) GPIO.output(mouth_LIDAR_shutdown, GPIO.LOW)
#!/usr/bin/env python # Inject TV show into iTunes # system import datetime import os import re import time import sys import urllib from optparse import OptionParser from ConfigParser import SafeConfigParser # Mac OS X import appscript import mactypes # To get episode summary, some extra Python packages are required #port install py25-lxml #port install py25-libxslt #port install py25-libxml2 #easy_install-2.5 pyxml try: import libxml2dom #from xml.dom.ext.reader import HtmlLib except ImportError: # missing XML parser lib, do not try to retrieve summary print >> sys.stderr, \ "Warning: libxml2dom missing, no summary can be retrieved" class EasyConfigParser(SafeConfigParser): """ConfigParser extension to support default config values """ def get(self, section, option, default=None): if not self.has_section(section): return default if not self.has_option(section, option): return default return SafeConfigParser.get(self, section, option) class Injector(object): """ """ def __init__(self, configfile, topdir, refdir): # generate regular expression to parse video files today = datetime.date.today() monthre = '|'.join([today.replace(month=m).strftime("%b") \ for m in range(1,13)]) self.filecre = re.compile(r'^(?P<show>.*)\.[sS](?P<season>\d\d)[eE]' \ r'(?P<episode>\d\d)') self.showbcre = re.compile(r'(?P<season>\d+)\-\s?(?P<episode>\d+).*' \ r'\s(?P<date>\d+\s(' + monthre + \ r')\s\d+).*' \ r'<a.*\shref="(?P<url>.*)"' + \ r'>(?P<title>.*)</a>') # application handlers self.qtime = appscript.app('QuickTime Player') self.itunes = appscript.app('iTunes') self._load_config(configfile, topdir, refdir) self._query_shows() def _load_config(self, configfile, topdir): """Load configuration from the configuration file""" parser = EasyConfigParser() if not parser.read(configfile): raise AssertionError('Unable to read config file %s' % configfile) self.epguides = parser.get('config', 'epguides', 'http://epguides.com') self.topdir = parser.get('config', 'topdir', topdir) if not self.topdir: raise AssertionError('Top directory not defined in %s' % \ configfile) self.refdir = parser.get('config', 'refdir', refdir) if not self.refdir: raise AssertionError('Reference directory not defined in %s' % \ configfile) os.makedirs(self.refdir) extensions = parser.get('config', 'extensions', 'avi') self.exts = [e.strip() for e in extensions.split(',')] self.playlistname = parser.get('config', 'playlist', 'ImportAVI') self.map = dict() for option in parser.options('map'): self.map[option.lower()] = parser.get('map', option).strip() self.ignore = [] for option in parser.options('ignore'): if parser.get('ignore', option).strip(): self.ignore.append(option.lower()) def _query_shows(self): """Load existing TV shows from iTunes""" self.tvshows = [t for t in self.itunes.tracks() \ if t.video_kind() == appscript.k.TV_show] def _show_exists(self, show, season, episode): """Test whether the show already exists in iTunes""" for track in self.tvshows: if (show == track.show()) and \ (episode == int(track.episode_number() or 0)) and \ (season == int(track.season_number() or 0)): print "Show %s Track %s.%s already in iTunes, skipping" % \ (show, season, episode) return True return False def _make_quicktime_reffile(self, filename): """Creates a reference file so that iTunes can manage a foreign file""" filesize = os.stat(filename)[6] reffilename = os.path.join(self.refdir, '%s.mov' % os.path.basename(filename)) try: self.qtime.open(filename) except appscript.reference.CommandError, e: print >> sys.stderr, "Cannot open %s in QuickTime" % filename return None lastsize = 0 # increase nochange if quicktime is slow to import files nochange = 2 while nochange: size = self.qtime.documents[1]().data_size() if size == lastsize and size: nochange = max(nochange-1,0) else: nochange = 2 lastsize = size time.sleep(1) print "\rFile %s %02u%% %u" % \ (filename, (100*size)/filesize, nochange), sys.stdout.flush() self.qtime.save(self.qtime.documents[1],in_=reffilename) self.qtime.close(self.qtime.documents[1]) print " saved" return reffilename def _inject(self, filename): """Inject the reference file into iTunes and define track properties""" # Search for an exising playlist pl = None for p in self.itunes.playlists(): if p.name() == self.playlistname: pl = p break if not pl: pl = self.itunes.make(new = appscript.k.playlist, with_properties = \ {appscript.k.name: self.playlistname}) macref = mactypes.File(filename) track = self.itunes.add(macref,to = pl) return track def _retrieve_info(self, show, season, episode): """Retrieve the episode information""" epurl = '%s/%s' % (self.epguides, show) try: epguide = urllib.urlopen(epurl) except IOError: print >> sys.stderr, "Cannot connect to %s" % self.epguides return None epdate = None url = None title = None year = None print "URL: %s" % epurl for line in epguide.readlines(): mo = self.showbcre.search(line) if mo: if not (season == int(mo.group('season')) and episode == int(mo.group('episode'))): continue epdate = datetime.datetime.strptime(mo.group('date'), r'%d %b %y').date() title = mo.group('title') url = mo.group('url') year = int(epdate.year) print "Episode: %s %d.%d %s: %s" % \ (show, season, episode, epdate, title) epguide.close() if not title or not year: return None return (title, year, url) def _retrieve_summary(self, url): """Retrieve the episode summary""" # reader = HtmlLib.Reader() if not url: print >> sys.stderr, 'Warning: no URL for summary' return '' print "Retrieving %s" % url show = urllib.urlopen(url) showstr = show.read() # Website sometimes contains invalid characters, which cause the # DOM parser to fail. Discard any non-ASCII character showstr = showstr.decode('ascii', 'ignore') show.close() doc = libxml2dom.parseString(showstr, html=1) for node in doc.getElementsByTagName('p'): if node.hasAttribute('class'): if 'deck' in node.getAttribute('class'): for child_node in node.childNodes: if child_node.nodeType == child_node.TEXT_NODE: summary = child_node.nodeValue.strip() if summary: return summary return '' def run(self): """Process video files, one after another""" for root, dirs, files in os.walk(self.topdir): for f in files: (base, ext) = os.path.splitext(f) if ext[1:].lower() in self.exts: filename = os.path.join(root, f) filemo = self.filecre.match(os.path.basename(filename)) if not filemo: print >> sys.stderr, "Filename %s does not match " \ "any supported pattern" % filename continue show = filemo.group('show') season = int(filemo.group('season')) episode = int(filemo.group('episode')) for ignore in self.ignore: if -1 != show.lower().find(ignore): print 'Show %s discarded, skipping' % show show = None break if not show: continue showname = show if show.lower() in self.map: showname = self.map[show.lower()] if self._show_exists(show, season, episode): continue info = self._retrieve_info(showname, season, episode) if not info: print "Unable to retrieve info for %s" % filename continue (title, year, url) = info ref = self._make_quicktime_reffile(filename) if not ref: continue summary = '' if 'libxml2dom' in sys.modules: summary = self._retrieve_summary(url) track = self._inject(ref) track.video_kind.set(appscript.k.TV_show) track.show.set(show) track.season_number.set(season) track.episode_number.set(episode) track.episode_ID.set(title) track.year.set(year) track.description.set(summary) if __name__ == '__main__': usage = 'Usage: %prog [options]\n'\ ' Inject TV show into iTunes' optparser = OptionParser(usage=usage) optparser.add_option('-c', '--config', dest='config', help='configuration file') optparser.add_option('-d', '--dir', dest='topdir', help='search path for video files') optparser.add_option('-r', '--refdir', dest='refdir', help='path to store reference files') (options, args) = optparser.parse_args(sys.argv[1:]) if not options.config: raise AssertionError('No configuration file') injector = Injector(options.config, options.topdir, options.refdir) injector.run()
#!/usr/bin/python # -- Content-Encoding: UTF-8 -- """ :author: Thomas Calmant :copyright: Copyright 2014, isandlaTech :license: Apache License 2.0 :version: 0.0.5 :status: Alpha .. Copyright 2014 isandlaTech Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Module version __version_info__ = (0, 0, 5) __version__ = ".".join(str(x) for x in __version_info__) # Documentation strings format __docformat__ = "restructuredtext en" # ------------------------------------------------------------------------------ # Herald XMPP from . import FACTORY_TRANSPORT, SERVICE_XMPP_DIRECTORY, ACCESS_ID, \ PROP_XMPP_SERVER, PROP_XMPP_PORT, PROP_XMPP_JID, PROP_XMPP_PASSWORD, \ PROP_XMPP_KEEPALIVE_INTERVAL, PROP_XMPP_KEEPALIVE_DELAY from .beans import XMPPAccess from .bot import HeraldBot import herald.transports.peer_contact as peer_contact # Room creation utility from .utils import RoomCreator, MarksCallback # Herald Core from herald.exceptions import InvalidPeerAccess import herald import herald.beans as beans import herald.utils as utils # XMPP import sleekxmpp # Pelix from pelix.ipopo.decorators import ComponentFactory, Requires, Provides, \ Property, Validate, Invalidate, RequiresBest from pelix.utilities import to_str, to_bytes import pelix.misc.jabsorb as jabsorb import pelix.threadpool as threadpool # Standard library import hashlib import json import logging import threading import time import uuid # ------------------------------------------------------------------------------ _logger = logging.getLogger(__name__) FEATURE_MUC = 'http://jabber.org/protocol/muc' # ------------------------------------------------------------------------------ @ComponentFactory(FACTORY_TRANSPORT) @RequiresBest('_probe', herald.SERVICE_PROBE) @Requires('_herald', herald.SERVICE_HERALD_INTERNAL) @Requires('_directory', herald.SERVICE_DIRECTORY) @Requires('_xmpp_directory', SERVICE_XMPP_DIRECTORY) @Provides(herald.SERVICE_TRANSPORT, '_controller') @Property('_access_id', herald.PROP_ACCESS_ID, ACCESS_ID) @Property('_host', PROP_XMPP_SERVER, 'localhost') @Property('_port', PROP_XMPP_PORT, 5222) @Property('_username', PROP_XMPP_JID) @Property('_password', PROP_XMPP_PASSWORD) @Property('_xmpp_keepalive_interval', PROP_XMPP_KEEPALIVE_INTERVAL, 15) @Property('_xmpp_keepalive_delay', PROP_XMPP_KEEPALIVE_DELAY, 5) class XmppTransport(object): """ XMPP Messenger for Herald. """ def __init__(self): """ Sets up the transport """ # Probe service self._probe = None # Herald core service self._herald = None # Herald Core directory self._directory = None # Herald XMPP directory self._xmpp_directory = None # Service controller self._controller = False # Peer contact handling self.__contact = None # Properties self._access_id = ACCESS_ID self._host = "localhost" self._port = 5222 self._username = None self._password = None # Herald XMPP Keppalive interval self._xmpp_keepalive_interval = 15 # Herald XMPP Keepalive delay self._xmpp_keepalive_delay = 5 # XMPP bot self._authenticated = False self._bot = None # MUC service name self.__muc_service = None # Pending count downs and joined rooms self.__countdowns = set() self.__countdowns_lock = threading.Lock() # Message sending queue self.__pool = threadpool.ThreadPool(max_threads=1, logname="Herald-XMPP-SendThread") # Bot possible states : creating, created, destroying, destroyed self._bot_state = "destroyed" # Bot state's lock self._bot_lock = threading.RLock() # Bot method recall timer self._bot_recall_timer = None @Validate def _validate(self, _): """ Component validated """ self.__create_new_bot() def __create_new_bot(self): """ (Re)Creates a new XMPP bot object """ # Cancel the current timer if self._bot_recall_timer is not None: self._bot_recall_timer.cancel() self._bot_recall_timer = None with self._bot_lock: if self._bot_state == "destroyed": threading.Thread(target=self._create_new_bot, name="Herald-CreateBot").start() self._bot_state = "creating" _logger.info("changing XMPP bot state to : creating") elif self._bot_state == "destroying": # Wait before trying to create new bot self._bot_recall_timer = \ threading.Timer(1, self.__create_new_bot) self._bot_recall_timer.start() elif self._bot_state == "creating": pass elif self._bot_state == "created": pass def _create_new_bot(self): """ Really (re)creates a new XMPP bot object """ # Clear & Start the thread pool self.__pool.clear() self.__pool.start() # Prepare the peer contact handler self.__contact = peer_contact.PeerContact(self._directory, None, __name__ + ".contact") if self._username: # Generate the bot full JID: resource is set to be peer's UUID bot_jid = sleekxmpp.JID(self._username) bot_jid.resource = self._directory.local_uid else: # Anonymous login bot_jid = None # Create the bot self._bot = HeraldBot(bot_jid, self._password, self._directory.local_uid) # Avoids bot's auto reconnection. # when disconnected event is captured, # we destroy the old bot and re-create a new one. self._bot.auto_reconnect = False # This avoids to wait too long between initial reattempts, i.e. if # the first server addresses (DNS records) aren't responding self._bot.reconnect_max_delay = 5 # Register to session events self._bot.add_event_handler("session_start", self._on_session_start) self._bot.add_event_handler("failed_auth", self._on_failed_auth) self._bot.add_event_handler("session_end", self._on_session_end) self._bot.add_event_handler("disconnected", self._on_disconnected) # Register the Multi-User Chat plug-in self._bot.register_plugin('xep_0045') # Register "XEP-0203: Delayed Delivery" plug-in self._bot.register_plugin("xep_0203") # Register to messages (loop back filtered by the bot) self._bot.set_message_callback(self.__on_message) # Connect to the server # set reattempt to True to try to reconnect to the server in case of # network problems or address errors. if not self._bot.connect(self._host, self._port, reattempt=True): _logger.error("Can't connect to the XMPP server at %s port %s", self._host, self._port) # the bot is fully created and activated when all rooms are created # (see __on_ready) def __destroy_bot(self): """ Destroys the current bot """ # Cancel the current timer if self._bot_recall_timer is not None: self._bot_recall_timer.cancel() self._bot_recall_timer = None with self._bot_lock: if self._bot_state == "destroyed": pass elif self._bot_state == "destroying": pass elif self._bot_state == "creating": # Wait before trying to destroying existing bot self._bot_recall_timer = threading.Timer(1, self.__destroy_bot) self._bot_recall_timer.start() elif self._bot_state == "created": # Destroy the bot, in a new thread threading.Thread(target=self._destroy_bot, name="Herald-DestroyBot").start() self._bot_state = "destroying" _logger.info("changing XMPP bot state to : destroying") def _destroy_bot(self): """ Destroys the current bot """ # Stop & Clear the pool self.__pool.stop() self.__pool.clear() # Disconnect the bot and clear callbacks if self._bot is not None: # self._bot.plugin['xep_0199'].disable_keepalive() self._bot.set_message_callback(None) self._bot.del_event_handler("session_start", self._on_session_start) self._bot.del_event_handler("failed_auth", self._on_failed_auth) self._bot.del_event_handler("session_end", self._on_session_end) self._bot.del_event_handler("disconnected", self._on_disconnected) self._bot.disconnect(reconnect=False) self._bot.set_stop() self._bot = None else: _logger.warning("trying to destroy an already destroyed XMPP bot!") # Clean up internal storage if self.__contact is not None: self.__contact.clear() self.__contact = None if self._bot_lock: # unregister provided service self._controller = False # change state self._bot_state = "destroyed" _logger.info("changing XMPP bot state to : destroyed") @Invalidate def _invalidate(self, _): """ Component invalidated """ self.__destroy_bot() def room_jid(self, room_name): """ Prepares a JID object for the given room in the current MUC domain :param room_name: The short name of a room :return: A JID object """ if self.__muc_service == "groupchat.google.com": # Special case: Google Talk requires a specific room name format # Make a MD5 hash of the full room name app_id = self._directory.get_local_peer().app_id full_name = "cohorte-{0}-{1}".format(app_id, room_name) md5 = hashlib.md5(to_bytes(full_name)).hexdigest() # Format the room name to be Google Talk-compatible room_name = "private-chat-{0}".format(str(uuid.UUID(md5))) return sleekxmpp.JID(local=room_name, domain=self.__muc_service) def __create_rooms(self, rooms, nickname): """ Creates or joins the given rooms :param rooms: A list of rooms to join / create :param nickname: Nickname to use in MUC rooms :raise ValueError: No Multi-User Chat service available """ # Look for the MUC service if necessary if not self.__muc_service: if self._bot.boundjid.domain == "gmail.com": # Special case: Google Talk self.__muc_service = "groupchat.google.com" else: try: self.__muc_service = next( self._bot.iter_services(FEATURE_MUC)) except StopIteration: raise ValueError("No Multi-User Chat service on server") # Generate rooms JIDs rooms_jids = {room: self.room_jid(room) for room in rooms} # Prepare a callback self.__countdowns.add( MarksCallback((str(room_jid) for room_jid in rooms_jids.values()), self.__on_ready, __name__ + ".RoomCreator")) # Prepare the room creator creator = RoomCreator(self._bot, __name__ + ".RoomCreator") # Prepare rooms configuration rooms_config = { # ... no max users limit 'muc#roomconfig_maxusers': '0', # ... open to anyone 'muc#roomconfig_membersonly': '0', # ... every participant can send invites 'muc#roomconfig_allowinvites': '1', # ... room can disappear 'muc#roomconfig_persistentroom': '0', # ... OpenFire: Forbid nick changes 'x-muc#roomconfig_canchangenick': '0'} # Create rooms, with our computing JID for room, room_jid in rooms_jids.items(): creator.create_room(room, self.__muc_service, nickname, rooms_config, self.__room_created, self.__room_error, room_jid) def __room_created(self, room, _): """ A room has been correctly created, and we're its owner :param room: Bare JID of the room :param _: Our nick in the room """ with self.__countdowns_lock: to_remove = set() for countdown in self.__countdowns: # Mark the room countdown.set(room) # Check for cleanup if countdown.is_done(): to_remove.add(countdown) # Cleanup self.__countdowns.difference_update(to_remove) def __room_error(self, room, nick, condition, text): """ Error creating a room :param room: Bare JID of the room :param nick: Our nick in the room :param condition: Category of error :param text: Description of the error """ if condition == 'not-owner': _logger.debug("We are not the owner of %s", room) self.__room_created(room, nick) else: with self.__countdowns_lock: to_remove = set() for countdown in self.__countdowns: # Mark the room countdown.set_error(room) # Check for cleanup if countdown.is_done(): to_remove.add(countdown) # Cleanup self.__countdowns.difference_update(to_remove) _logger.error("Error creating room: %s (%s)", text, condition) def _on_failed_auth(self, _): """ An authentication attempt failed """ self._authenticated = False def _on_session_start(self, _): """ The bot session has started: create the main room """ self._authenticated = True # Log our JID _logger.info("Bot connected with JID: %s", self._bot.boundjid.bare) # Get our local peer description peer = self._directory.get_local_peer() # Create/join rooms for each group all_rooms = ["{0}--{1}".format(peer.app_id, group) for group in peer.groups] all_rooms.append(peer.app_id) # Wait to have joined all rooms before activating the service _logger.debug("Creating XMPP rooms...") self.__create_rooms(all_rooms, peer.uid) # activate keepalive (ping) plugin xep_0199 self._bot.plugin['xep_0199'].enable_keepalive( self._xmpp_keepalive_interval, self._xmpp_keepalive_delay) def __on_ready(self, joined, erroneous): """ Called when all MUC rooms have created or joined :param joined: List of joined rooms :param erroneous: List of room that couldn't be joined """ _logger.debug("Client joined rooms: %s", ", ".join(joined)) if erroneous: _logger.error("Error joining rooms: %s", ", ".join(erroneous)) # Register our local access local_peer = self._directory.get_local_peer() local_peer.set_access(self._access_id, XMPPAccess(self._bot.boundjid.full)) # Listen to peers going away from the main room self._bot.add_event_handler( "muc::{0}::got_offline".format(self.room_jid(local_peer.app_id)), self._on_room_out) if self._bot_lock: # We're on line, register our service _logger.debug("XMPP transport service activating...") self._controller = True _logger.info("XMPP transport service activated") self._bot_state = "created" _logger.info("changing XMPP bot state to : created") # Start the discovery handshake, with everybody _logger.debug("Sending discovery step 1...") message = beans.Message(peer_contact.SUBJECT_DISCOVERY_STEP_1, local_peer.dump()) self.__send_message("groupchat", self.room_jid(local_peer.app_id), message) def _on_session_end(self, _): """ End of session """ if self._authenticated: _logger.info("End of session") else: _logger.warning("End of session due to authentication error") with self._bot_lock: if self._bot_state in ("creating", "created"): # disable keepalive plugin self._bot.plugin['xep_0199'].disable_keepalive() # try: # Clean up our access local_peer = self._directory.get_local_peer() if local_peer is not None: local_peer.unset_access(self._access_id) # Shut down the service (MOD: see _destroy_bot) # self._controller = False # Stop listening to the main room # Listen to peers going away from the main room self._bot.del_event_handler( "muc::{0}::got_offline".format( self.room_jid(local_peer.app_id)), self._on_room_out) # except: # pass def _on_room_out(self, data): """ Someone exited the main room :param data: MUC presence stanza """ uid = data['from'].resource room_jid = data['from'].bare local_peer = self._directory.get_local_peer() app_room_jid = self.room_jid(local_peer.app_id) if uid != self._directory.local_uid and room_jid == app_room_jid: # Someone else is leaving the main room: clean up the directory try: peer = self._directory.get_peer(uid) peer.unset_access(ACCESS_ID) except KeyError: pass else: _logger.debug("Peer %s disconnected from XMPP", peer) def _on_disconnected(self, _): """ The bot has been disconnected, maybe due to a network problem """ # create a new bot (which implies the deletion of the old one) _logger.warning("Bot disconnected: reconnect (state=%s)", self._bot_state) with self._bot_lock: # Destroy the old bot, if any if self._bot_state == "created": self.__destroy_bot() # Create a new bot self.__create_new_bot() def __on_message(self, msg): """ Received an XMPP message :param msg: A message stanza """ if msg['delay']['stamp'] is not None: # Delayed message: ignore return subject = msg['subject'] if not subject: # No subject: not an Herald message, treat it differently self.__handle_raw_message(msg) return # Check if the message is from Multi-User Chat or direct muc_message = msg['type'] == 'groupchat' \ or msg['from'].domain == self.__muc_service sender_jid = msg['from'].full try: if muc_message: # Group message: resource is the isolate UID sender_uid = msg['from'].resource else: sender_uid = self._xmpp_directory.from_jid(sender_jid).uid except KeyError: sender_uid = "<unknown>" try: received_msg = utils.from_json(msg['body']) content = received_msg.content except ValueError: # Content can't be decoded, use its string representation as is content = msg['body'] uid = msg['thread'] reply_to = msg['parent_thread'] # Extra parameters, for a reply extra = {"parent_uid": uid, "sender_jid": sender_jid} received_msg.add_header(herald.MESSAGE_HEADER_UID, uid) received_msg.add_header(herald.MESSAGE_HEADER_SENDER_UID, sender_uid) received_msg.add_header(herald.MESSAGE_HEADER_REPLIES_TO, reply_to) received_msg.set_content(content) received_msg.set_access(self._access_id) received_msg.set_extra(extra) # Call back the core service message = received_msg # Log before giving message to Herald self._probe.store( herald.PROBE_CHANNEL_MSG_RECV, {"uid": message.uid, "timestamp": time.time(), "transport": ACCESS_ID, "subject": message.subject, "source": sender_uid, "repliesTo": reply_to or "", "transportSource": str(sender_jid)}) if subject.startswith(peer_contact.SUBJECT_DISCOVERY_PREFIX): # Handle discovery message self.__contact.herald_message(self._herald, message) else: # All other messages are given to Herald Core self._herald.handle_message(message) def __handle_raw_message(self, msg): """ Handles a message that is not from Herald :param msg: An XMPP message """ # Generate a UUID for this message uid = str(uuid.uuid4()) # No sender sender_uid = "<unknown>" # Give the raw body as content content = msg['body'] # Extra parameters, for a reply sender_jid = msg['from'].full extra = {"sender_jid": sender_jid, "raw": True} # Call back the core service message = beans.MessageReceived(uid, herald.SUBJECT_RAW, content, sender_uid, None, self._access_id, extra=extra) # Log before giving message to Herald self._probe.store( herald.PROBE_CHANNEL_MSG_RECV, {"uid": message.uid, "timestamp": time.time(), "transport": ACCESS_ID, "subject": message.subject, "source": sender_uid, "repliesTo": "", "transportSource": str(sender_jid)}) # All other messages are given to Herald Core self._herald.handle_message(message) def __get_jid(self, peer, extra): """ Retrieves the JID to use to communicate with a peer :param peer: A Peer bean or None :param extra: The extra information for a reply or None :return: The JID to use to reply, or None """ # Get JID from reply information jid = None if extra is not None: jid = extra.get('sender_jid') # Try to read information from the peer if not jid and peer is not None: try: # Get the target JID jid = peer.get_access(self._access_id).jid except (KeyError, AttributeError): pass return jid def __send_message(self, msgtype, target, message, parent_uid=None, target_peer=None, target_group=None): """ Prepares and sends a message over XMPP :param msgtype: Kind of message (chat or groupchat) :param target: Target JID or MUC room :param message: Herald message bean :param parent_uid: UID of the message this one replies to (optional) """ # Convert content to JSON if message.subject in herald.SUBJECTS_RAW: content = to_str(message.content) else: # update headers local_peer = self._directory.get_local_peer() message.add_header(herald.MESSAGE_HEADER_SENDER_UID, local_peer.uid) if target_peer is not None: message.add_header(herald.MESSAGE_HEADER_TARGET_PEER, target_peer.uid) if target_group is not None: message.add_header(herald.MESSAGE_HEADER_TARGET_GROUP, target_group) content = utils.to_json(message) # Prepare an XMPP message, based on the Herald message xmpp_msg = self._bot.make_message(mto=target, mbody=content, msubject=message.subject, mtype=msgtype) xmpp_msg['thread'] = message.uid if parent_uid: xmpp_msg['parent_thread'] = parent_uid # Store message content self._probe.store( herald.PROBE_CHANNEL_MSG_CONTENT, {"uid": message.uid, "content": content} ) # Send it, using the 1-thread pool, and wait for its execution future = self.__pool.enqueue(xmpp_msg.send) return future.result() def fire(self, peer, message, extra=None): """ Fires a message to a peer :param peer: A Peer bean :param message: Message to send :param extra: Extra information used in case of a reply """ # Get the request message UID, if any parent_uid = None if extra is not None: parent_uid = extra.get('parent_uid') # Try to read extra information jid = self.__get_jid(peer, extra) if jid: # Log before sending self._probe.store( herald.PROBE_CHANNEL_MSG_SEND, {"uid": message.uid, "timestamp": time.time(), "transport": ACCESS_ID, "subject": message.subject, "target": peer.uid if peer else "<unknown>", "transportTarget": str(jid), "repliesTo": parent_uid or ""}) # Send the XMPP message self.__send_message("chat", jid, message, parent_uid, target_peer=peer) else: # No XMPP access description raise InvalidPeerAccess(beans.Target(uid=peer.uid), "No '{0}' access found" .format(self._access_id)) def fire_group(self, group, peers, message): """ Fires a message to a group of peers :param group: Name of a group :param peers: Peers to communicate with :param message: Message to send :return: The list of reached peers """ # Get the local application ID app_id = self._directory.get_local_peer().app_id # Special case for the main room if group in ('all', 'others'): group_jid = self.room_jid(app_id) else: # Get the group JID group_jid = self.room_jid("{0}--{1}".format(app_id, group)) # Log before sending self._probe.store( herald.PROBE_CHANNEL_MSG_SEND, {"uid": message.uid, "timestamp": time.time(), "transport": ACCESS_ID, "subject": message.subject, "target": group, "transportTarget": str(group_jid), "repliesTo": ""}) # Send the XMPP message self.__send_message("groupchat", group_jid, message, target_group=group) return peers
import unittest import os.path import sys import mtree.tests.fixtures as fixtures import mtree.tests.fixtures.generator as generator from mtree import MTree import mtree.functions as f class Test(unittest.TestCase): def setUp(self): # Removing randomness def not_random_promotion(data_objects, distance_function): data_objects = sorted(data_objects) return data_objects[0], data_objects[-1] self.mtree = MTree( min_node_capacity=2, max_node_capacity=3, split_function=f.make_split_function(not_random_promotion, f.balanced_partition) ) def checked(unchecked_method): def checked_method(*args, **kwargs): try: return unchecked_method(*args, **kwargs) finally: self.mtree._check() return checked_method self.mtree.add = checked(self.mtree.add) self.mtree.remove = checked(self.mtree.remove) self.all_data = set() def testEmpty(self): self._check_nearest_by_range((1, 2, 3), 4) self._check_nearest_by_limit((1, 2, 3), 4) def test01(self): self._test('f01') def test02(self): self._test('f02') def test03(self): self._test('f03') def test04(self): self._test('f04') def test05(self): self._test('f05') def test06(self): self._test('f06') def test07(self): self._test('f07') def test08(self): self._test('f08') def test09(self): self._test('f09') def test10(self): self._test('f10') def test11(self): self._test('f11') def test12(self): self._test('f12') def test13(self): self._test('f13') def test14(self): self._test('f14') def test15(self): self._test('f15') def test16(self): self._test('f16') def test17(self): self._test('f17') def test18(self): self._test('f18') def test19(self): self._test('f19') def test20(self): self._test('f20') def testLots(self): self._test('fLots') def testRemoveNonExisting(self): # Empty self.assertRaises(KeyError, lambda: self.mtree.remove((99, 77))) # With some items self.mtree.add((4, 44)) self.assertRaises(KeyError, lambda: self.mtree.remove((99, 77))) self.mtree.add((95, 43)) self.assertRaises(KeyError, lambda: self.mtree.remove((99, 77))) self.mtree.add((76, 21)) self.assertRaises(KeyError, lambda: self.mtree.remove((99, 77))) self.mtree.add((64, 53)) self.assertRaises(KeyError, lambda: self.mtree.remove((99, 77))) self.mtree.add((47, 3)) self.assertRaises(KeyError, lambda: self.mtree.remove((99, 77))) self.mtree.add((26, 11)) self.assertRaises(KeyError, lambda: self.mtree.remove((99, 77))) def testGeneratedCase01(self): self._test('fG01') def testGeneratedCase02(self): self._test('fG02') def testRandom(self): fixtures_path, _ = os.path.split(fixtures.__file__) random_test_path = os.path.join(fixtures_path, 'fRandom.py') if os.path.isfile(random_test_path): print >>sys.stderr, "WARNING: Using previously generated random test (fRandom)." generated = False else: # Random test doesn't exist. Generate it options = generator.Options(actions=500, dimensions=3, remove_chance=0.2) fixture = generator.generate_test_data(options) f = file(random_test_path, 'w') stdout_bkp = sys.stdout sys.stdout = f try: print "# Test case generated by testRandom()." generator.print_test_data(fixture, options) finally: sys.stdout = stdout_bkp f.close() generated = True try: self._test('fRandom') except: print >>sys.stderr, "WARNING: The random test (fRandom) failed." print >>sys.stderr, "Investigate it, fix MTree and then convert" print >>sys.stderr, "the random test to a permanent test case." raise else: if generated: os.remove(random_test_path) for compiled_file in (random_test_path + 'c', random_test_path + 'o'): if os.path.isfile(compiled_file): os.remove(compiled_file) else: print >>sys.stderr, "ATTENTION: The previously existing random test" print >>sys.stderr, "has passed. Do want to delete it or convert to" print >>sys.stderr, "a permanent test case?" def _test(self, fixture_name): fixtures = __import__('fixtures.' + fixture_name) fixture = getattr(fixtures, fixture_name) self._test_fixture(fixture) def _test_fixture(self, fixture): def callback(action): if isinstance(action, generator.ADD): assert action.data not in self.all_data self.all_data.add(action.data) self.mtree.add(action.data) elif isinstance(action, generator.REMOVE): assert action.data in self.all_data self.all_data.remove(action.data) self.mtree.remove(action.data) else: assert False, action.__class__ self._check_nearest_by_range(action.query.data, action.query.radius) self._check_nearest_by_limit(action.query.data, action.query.limit) fixture.PERFORM(callback) def _check_nearest_by_range(self, query_data, radius): result = list(self.mtree.get_nearest(query_data, range=radius)) previous_distance = None for item in result: data, distance = item # Check if increasing distance if previous_distance is not None: self.assertTrue(distance is not None) self.assertLessEqual(previous_distance, distance) previous_distance = distance # Check if every item in the results came from the generated query_data self.assertIn(data, self.all_data) self.assertTrue(isinstance(item, MTree.ResultItem), item) # Check if every item in the results is within the range self.assertLessEqual(distance, radius) self.assertEqual(self.mtree.distance_function(data, query_data), distance) stripped_result = [item.data for item in result] for data in self.all_data: dist = self.mtree.distance_function(data, query_data) if dist <= radius: self.assertIn(data, stripped_result) else: self.assertNotIn(data, stripped_result) def _check_nearest_by_limit(self, query_data, limit): nearest_result = list(self.mtree.get_nearest(query_data, limit=limit)) if limit <= len(self.all_data): self.assertEquals(limit, len(nearest_result)) else: # limit > len(self.all_data) self.assertEquals(len(self.all_data), len(nearest_result)) farthest = 0.0 previous_distance = None for item in nearest_result: data, distance = item # Check if increasing distance if previous_distance is not None: self.assertTrue(distance is not None) self.assertLessEqual(previous_distance, distance) previous_distance = distance # Check if every item in the results came from the generated query_data self.assertIn(data, self.all_data) self.assertTrue(isinstance(item, MTree.ResultItem)) # Check if items are not repeated self.assertEqual(1, nearest_result.count(item)) d = self.mtree.distance_function(data, query_data) self.assertEqual(d, distance) farthest = max(farthest, d) stripped_nearest_result = [item.data for item in nearest_result] for data in self.all_data: d = self.mtree.distance_function(data, query_data) if d < farthest: self.assertIn(data, stripped_nearest_result) elif d > farthest: self.assertNotIn(data, stripped_nearest_result) else: # d == farthest: pass if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
#!/usr/bin/env python3 # Copyright (c) 2017 The PlanBcoin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """An example functional test The module-level docstring should include a high-level description of what the test is doing. It's the first thing people see when they open the file and should give the reader information about *what* the test is testing and *how* it's being tested """ # Imports should be in PEP8 ordering (std library first, then third party # libraries then local imports). from collections import defaultdict # Avoid wildcard * imports if possible from test_framework.blocktools import (create_block, create_coinbase) from test_framework.mininode import ( CInv, NetworkThread, NodeConn, NodeConnCB, mininode_lock, msg_block, msg_getdata, wait_until, ) from test_framework.test_framework import PlanbcoinTestFramework from test_framework.util import ( assert_equal, connect_nodes, p2p_port, ) # NodeConnCB is a class containing callbacks to be executed when a P2P # message is received from the node-under-test. Subclass NodeConnCB and # override the on_*() methods if you need custom behaviour. class BaseNode(NodeConnCB): def __init__(self): """Initialize the NodeConnCB Used to inialize custom properties for the Node that aren't included by default in the base class. Be aware that the NodeConnCB base class already stores a counter for each P2P message type and the last received message of each type, which should be sufficient for the needs of most tests. Call super().__init__() first for standard initialization and then initialize custom properties.""" super().__init__() # Stores a dictionary of all blocks received self.block_receive_map = defaultdict(int) def on_block(self, conn, message): """Override the standard on_block callback Store the hash of a received block in the dictionary.""" message.block.calc_sha256() self.block_receive_map[message.block.sha256] += 1 def custom_function(): """Do some custom behaviour If this function is more generally useful for other tests, consider moving it to a module in test_framework.""" # self.log.info("running custom_function") # Oops! Can't run self.log outside the PlanbcoinTestFramework pass class ExampleTest(PlanbcoinTestFramework): # Each functional test is a subclass of the PlanbcoinTestFramework class. # Override the __init__(), add_options(), setup_chain(), setup_network() # and setup_nodes() methods to customize the test setup as required. def __init__(self): """Initialize the test Call super().__init__() first, and then override any test parameters for your individual test.""" super().__init__() self.setup_clean_chain = True self.num_nodes = 3 # Use self.extra_args to change command-line arguments for the nodes self.extra_args = [[], ["-logips"], []] # self.log.info("I've finished __init__") # Oops! Can't run self.log before run_test() # Use add_options() to add specific command-line options for your test. # In practice this is not used very much, since the tests are mostly written # to be run in automated environments without command-line options. # def add_options() # pass # Use setup_chain() to customize the node data directories. In practice # this is not used very much since the default behaviour is almost always # fine # def setup_chain(): # pass def setup_network(self): """Setup the test network topology Often you won't need to override this, since the standard network topology (linear: node0 <-> node1 <-> node2 <-> ...) is fine for most tests. If you do override this method, remember to start the nodes, assign them to self.nodes, connect them and then sync.""" self.setup_nodes() # In this test, we're not connecting node2 to node0 or node1. Calls to # sync_all() should not include node2, since we're not expecting it to # sync. connect_nodes(self.nodes[0], 1) self.sync_all([self.nodes[0:1]]) # Use setup_nodes() to customize the node start behaviour (for example if # you don't want to start all nodes at the start of the test). # def setup_nodes(): # pass def custom_method(self): """Do some custom behaviour for this test Define it in a method here because you're going to use it repeatedly. If you think it's useful in general, consider moving it to the base PlanbcoinTestFramework class so other tests can use it.""" self.log.info("Running custom_method") def run_test(self): """Main test logic""" # Create a P2P connection to one of the nodes node0 = BaseNode() connections = [] connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)) node0.add_connection(connections[0]) # Start up network handling in another thread. This needs to be called # after the P2P connections have been created. NetworkThread().start() # wait_for_verack ensures that the P2P connection is fully up. node0.wait_for_verack() # Generating a block on one of the nodes will get us out of IBD blocks = [int(self.nodes[0].generate(nblocks=1)[0], 16)] self.sync_all([self.nodes[0:1]]) # Notice above how we called an RPC by calling a method with the same # name on the node object. Notice also how we used a keyword argument # to specify a named RPC argument. Neither of those are defined on the # node object. Instead there's some __getattr__() magic going on under # the covers to dispatch unrecognised attribute calls to the RPC # interface. # Logs are nice. Do plenty of them. They can be used in place of comments for # breaking the test into sub-sections. self.log.info("Starting test!") self.log.info("Calling a custom function") custom_function() self.log.info("Calling a custom method") self.custom_method() self.log.info("Create some blocks") self.tip = int(self.nodes[0].getbestblockhash(), 16) self.block_time = self.nodes[0].getblock(self.nodes[0].getbestblockhash())['time'] + 1 height = 1 for i in range(10): # Use the mininode and blocktools functionality to manually build a block # Calling the generate() rpc is easier, but this allows us to exactly # control the blocks and transactions. block = create_block(self.tip, create_coinbase(height), self.block_time) block.solve() block_message = msg_block(block) # Send message is used to send a P2P message to the node over our NodeConn connection node0.send_message(block_message) self.tip = block.sha256 blocks.append(self.tip) self.block_time += 1 height += 1 self.log.info("Wait for node1 to reach current tip (height 11) using RPC") self.nodes[1].waitforblockheight(11) self.log.info("Connect node2 and node1") connect_nodes(self.nodes[1], 2) self.log.info("Add P2P connection to node2") node2 = BaseNode() connections.append(NodeConn('127.0.0.1', p2p_port(2), self.nodes[2], node2)) node2.add_connection(connections[1]) node2.wait_for_verack() self.log.info("Wait for node2 reach current tip. Test that it has propogated all the blocks to us") for block in blocks: getdata_request = msg_getdata() getdata_request.inv.append(CInv(2, block)) node2.send_message(getdata_request) # wait_until() will loop until a predicate condition is met. Use it to test properties of the # NodeConnCB objects. assert wait_until(lambda: sorted(blocks) == sorted(list(node2.block_receive_map.keys())), timeout=5) self.log.info("Check that each block was received only once") # The network thread uses a global lock on data access to the NodeConn objects when sending and receiving # messages. The test thread should acquire the global lock before accessing any NodeConn data to avoid locking # and synchronization issues. Note wait_until() acquires this global lock when testing the predicate. with mininode_lock: for block in node2.block_receive_map.values(): assert_equal(block, 1) if __name__ == '__main__': ExampleTest().main()
""" This module provides an optimizer class that is based on an evolution strategy algorithm. """ import random, math from time import time from xml.dom import minidom from extra.schedule import Schedule from extra.printer import pprint, BLUE class Optimizer(object): """ This class is the implementation of the evolution strategy to optimize and evaluate schedules. """ def __init__(self, plant, orderList, simulator, evaluator): """ plant - the plant to run the simulation and evaluation on orderList - the list of orders in the given schedule simulator - Simulator instance to run a schedule evaluator - Evaluator instance to evaluate a schedule """ assert plant != None assert orderList != None self.plant = plant self.orderList = orderList self.simulator = simulator self.evaluator = evaluator # used for benchmarking self.simulatorTime = 0 # enable/disable console output self.printing = True # parameters for the evolution strategy algorithm self.populationSize = 0 self.indivMutationRate = 0 self.selectionRate = 0 self.mutationRange = 0 self.iterations = 0 @staticmethod def fromXml(xmlDoc, plant, orderList, simulator, evaluator): """ Loads the optimizer configuration and parameters from an XML tree. """ optimizer = Optimizer(plant, orderList, simulator, evaluator) element = xmlDoc.getElementsByTagName("optimizer") # there should only be 1 optimizer node in the XML tree! assert len(element) == 1 element = element[0] # load the different attributes optimizer.populationSize = \ int(element.getAttribute("populationSize")) optimizer.mutationRange = \ int(element.getAttribute("mutationRange")) optimizer.iterations = \ int(element.getAttribute("iterations")) optimizer.indivMutationRate = \ float(element.getAttribute("indivMutationRate")) optimizer.selectionRate = \ float(element.getAttribute("selectionRate")) return optimizer @staticmethod def fromXmlFile(filename, plant, orderList, simulator, evaluator): """ Loads the optimizer configuration and parameters from an XML tree. """ file = open(filename, "r") doc = minidom.parse(file) optimizer = Optimizer.fromXml(doc, plant, orderList, simulator, evaluator) file.close() return optimizer def run(self, initialPopulation = None): """ Entry point of the evolution strategy algorithm. """ pprint("OPT calculating initial population...", BLUE, self.printing) if initialPopulation == None: # if we don't get an initial set of schedules as the initial population, # then we need to generate one. population = self.initialPopulation() else: # if we do get an initial population as input, then we just need to # calculate the fitnesses of the schedules in it. for p in initialPopulation: self.calcIndividualFitness(p) # if the population is too small or too large (less than or larger than # self.populationSize) then this will fix that for us. population = self.mutatePopulation(initialPopulation) # go through the needed number of iterations and mutate the population # everytime, this will keep the best individuals and will return the # best population achieved at the end. i = 0 while i < self.iterations: pprint("OPT iteration number %s" % (i + 1), BLUE, self.printing) population = self.mutatePopulation(population) i += 1 return population def calcIndividualFitness(self, indiv): """ Calculates fitness of a schedule. """ assert indiv.fitness == None t = time() self.simulator.simulate(indiv) self.evaluator.evaluate(indiv) t = time() - t self.simulatorTime += t def sortPopulation(self, population): """ Sorts the population based on fitness, to have the better individuals at the beginning of the population list. """ population.sort(lambda a, b: cmp(b.fitness, a.fitness)) def mutatePopulation(self, population): """ Mutates a population. Selects the best n individuals (based on the selectionRate) to mutate (maybe they'll give us even better individuals!). After mutating an individual, it checks if we have an individual that is similar to the mutated one, if so, then try to mutate again, otherwise, we simply calculate its fitness and append it to the list. We then sort the population based on fitness and return the best PopulationSize items. """ limit = int(math.ceil(self.selectionRate * len(population))) i = 0 while i < limit: mutatedIndiv = self.mutateIndividual(population[i]) while self.isIndividualInPopulation(mutatedIndiv, population) == True: mutatedIndiv = self.mutateIndividual(population[i]) self.calcIndividualFitness(mutatedIndiv) population.append(mutatedIndiv) i += 1 self.sortPopulation(population) return population[:self.populationSize] def isIndividualInPopulation(self, individual, population): """ Checks if an individual is in a population. """ for i in population: if i == individual: return True return False def initialPopulation(self): """ Generates an initial population. """ population = [] # generate an initial individual, calculate its fitness and add it to our # new population initIndiv = self.initialIndividual() self.calcIndividualFitness(initIndiv) population.append(initIndiv) # until we have filled the population i = 0 while i < self.populationSize: # keep mutating the initial individual to get new ones mutatedIndiv = self.mutateIndividual(initIndiv) # if that new individual is in the population, don't add it, try # getting a new one while self.isIndividualInPopulation(mutatedIndiv, population) == True: mutatedIndiv = self.mutateIndividual(initIndiv) self.calcIndividualFitness(mutatedIndiv) population.append(mutatedIndiv) i += 1 self.sortPopulation(population) return population def mutateIndividual(self, originalIndiv): """ Gets an individual and returns a mutation of it. """ newIndiv = Schedule() # we need to deepcopy the schedule startTimes list object # newIndiv.startTimes = copy.deepcopy(originalIndiv.startTimes) for st in originalIndiv.startTimes: newIndiv.startTimes.append([st[0], st[1], st[2]]) indivLen = len(newIndiv.startTimes) # the plant-entrance times in the schedule should be equal to the number # of orders! otherwise, something is wrong! assert indivLen == len(self.orderList.orders) indexes = range(indivLen) # for n times (based on the individual mutation rate), mutate a random # order plant-entrance time that we didn't mutate before. limit = int(self.indivMutationRate * indivLen) i = 0 while i < limit: index = int(random.uniform(0, len(indexes))) if newIndiv.startTimes[indexes[index]][0].currentMachine == "": newIndiv.startTimes[indexes[index]][2] = \ self.mutateGene(newIndiv.startTimes[indexes[index]][2]) del indexes[index] i += 1 return newIndiv def mutateGene(self, value): """ Gets a value and returns a mutation of it based on the mutation range. """ addent = int(random.uniform(0, self.mutationRange)) if (random.uniform(0, 1) < 0.5): addent = -addent return max(0, value + addent) def initialIndividual(self): """ Generates an initial individual based on order deadlines - minimum processing time. Account whether an order has a current machine and current overtime. """ indiv = Schedule() for o in self.orderList.orders: if o.currentMachine == "": minProcTime = o.recipe.minProcTime(self.plant) machineName = o.recipe.recipe[0][0] enterTime = max(0, o.deadline - minProcTime) else: machineName = o.currentMachine enterTime = 0 indiv.startTimes.append([o, str(machineName), enterTime]) return indiv
#!/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd import pytest from pandas.testing import assert_series_equal from random import shuffle from unittest import TestCase from traceml.processors import df_processors from traceml.processors.units_processors import to_percentage @pytest.mark.processors_mark class DataFrameSummaryTest(TestCase): def setUp(self): self.size = 1000 missing = [np.nan] * (self.size // 10) + list(range(10)) * ( (self.size - self.size // 10) // 10 ) shuffle(missing) self.types = [ df_processors.DF_TYPE_NUMERIC, df_processors.DF_TYPE_BOOL, df_processors.DF_TYPE_CATEGORICAL, df_processors.DF_TYPE_CONSTANT, df_processors.DF_TYPE_UNIQUE, df_processors.DF_TYPE_DATE, ] self.columns = [ "dbool1", "dbool2", "duniques", "dcategoricals", "dnumerics1", "dnumerics2", "dnumerics3", "dmissing", "dconstant", "ddates", ] self.df = pd.DataFrame( dict( dbool1=np.random.choice([0, 1], size=self.size), dbool2=np.random.choice(["a", "b"], size=self.size), duniques=["x{}".format(i) for i in range(self.size)], dcategoricals=[ "a".format(i) if i % 2 == 0 else "b".format(i) if i % 3 == 0 else "c".format(i) for i in range(self.size) ], dnumerics1=range(self.size), dnumerics2=range(self.size, 2 * self.size), dnumerics3=list(range(self.size - self.size // 10)) + list(range(-self.size // 10, 0)), dmissing=missing, dconstant=["a"] * self.size, ddates=pd.date_range("2010-01-01", periods=self.size, freq="1M"), ) ) self.column_stats = df_processors.get_df_column_stats(self.df) self.columns_types = df_processors.get_df_columns_types(self.column_stats) def test_get_columns_works_as_expected(self): assert len(df_processors.get_df_columns(self.df, df_processors.ALL)) == 10 assert ( len( df_processors.get_df_columns( self.df, df_processors.INCLUDE, ["dnumerics1", "dnumerics2", "dnumerics3"], ) ) == 3 ) assert ( len( df_processors.get_df_columns( self.df, df_processors.EXCLUDE, ["dnumerics1", "dnumerics2", "dnumerics3"], ) ) == 7 ) def test_column_types_works_as_expected(self): expected = pd.Series(index=self.types, data=[4, 2, 1, 1, 1, 1], name="types") assert_series_equal(self.columns_types[self.types], expected[self.types]) def test_column_stats_works_as_expected(self): self.assertTupleEqual(self.column_stats.shape, (5, 10)) # counts expected = pd.Series( index=self.columns, data=self.size, name="counts", dtype="object" ) expected["dmissing"] -= 100 assert_series_equal( self.column_stats[self.columns].loc["counts"], expected[self.columns] ) # uniques expected = pd.Series( index=self.columns, data=self.size, name="uniques", dtype="object" ) expected[["dbool1", "dbool2"]] = 2 expected[["dcategoricals"]] = 3 expected[["dconstant"]] = 1 expected[["dmissing"]] = 10 assert_series_equal( self.column_stats[self.columns].loc["uniques"].sort_index(), expected[self.columns].sort_index(), check_dtype=False, ) # missing expected = pd.Series(index=self.columns, data=0, name="missing", dtype="object") expected[["dmissing"]] = 100 assert_series_equal( self.column_stats[self.columns].loc["missing"], expected[self.columns], check_dtype=False, ) # missing_perc expected = pd.Series( index=self.columns, data=["0%"] * 10, name="missing_perc", dtype="object" ) expected[["dmissing"]] = "10%" assert_series_equal( self.column_stats[self.columns].loc["missing_perc"], expected[self.columns] ) # types expected = pd.Series( index=self.columns, data=[np.nan] * 10, name="types", dtype="object" ) expected[["dbool1", "dbool2"]] = df_processors.DF_TYPE_BOOL expected[["dcategoricals"]] = df_processors.DF_TYPE_CATEGORICAL expected[["dconstant"]] = df_processors.DF_TYPE_CONSTANT expected[["ddates"]] = df_processors.DF_TYPE_DATE expected[["duniques"]] = df_processors.DF_TYPE_UNIQUE expected[ ["dnumerics1", "dnumerics2", "dnumerics3", "dmissing"] ] = df_processors.DF_TYPE_NUMERIC assert_series_equal( self.column_stats[self.columns].loc["types"], expected[self.columns] ) def test_uniques_summary(self): expected = pd.Series( index=["counts", "uniques", "missing", "missing_perc", "types"], data=[self.size, self.size, 0, "0%", df_processors.DF_TYPE_UNIQUE], name="duniques", dtype=object, ) assert_series_equal( df_processors.get_df_column_summary(self.df, "duniques"), expected ) def test_constant_summary(self): self.assertEqual( df_processors.get_df_column_summary(self.df, "dconstant"), "This is a constant value: a", ) def test_bool1_summary(self): count_values = self.df["dbool1"].value_counts() total_count = self.df["dbool1"].count() count0 = count_values[0] count1 = count_values[1] perc0 = to_percentage(count0 / total_count) perc1 = to_percentage(count1 / total_count) expected = pd.Series( index=[ '"0" count', '"0" perc', '"1" count', '"1" perc', "counts", "uniques", "missing", "missing_perc", "types", ], data=[ str(count0), perc0, str(count1), perc1, self.size, 2, 0, "0%", df_processors.DF_TYPE_BOOL, ], name="dbool1", dtype=object, ) assert_series_equal( df_processors.get_df_column_summary(self.df, "dbool1"), expected ) def test_bool2_summary(self): count_values = self.df["dbool2"].value_counts() total_count = self.df["dbool2"].count() count0 = count_values["a"] count1 = count_values["b"] perc0 = to_percentage(count0 / total_count) perc1 = to_percentage(count1 / total_count) expected = pd.Series( index=[ '"a" count', '"a" perc', '"b" count', '"b" perc', "counts", "uniques", "missing", "missing_perc", "types", ], data=[ str(count0), perc0, str(count1), perc1, self.size, 2, 0, "0%", df_processors.DF_TYPE_BOOL, ], name="dbool2", dtype=object, ) assert_series_equal( df_processors.get_df_column_summary(self.df, "dbool2"), expected ) def test_categorical_summary(self): expected = pd.Series( index=["top", "counts", "uniques", "missing", "missing_perc", "types"], data=["a: 500", self.size, 3, 0, "0%", df_processors.DF_TYPE_CATEGORICAL], name="dcategoricals", dtype=object, ) assert_series_equal( df_processors.get_df_column_summary(self.df, "dcategoricals"), expected ) def test_dates_summary(self): dmin = self.df["ddates"].min() dmax = self.df["ddates"].max() expected = pd.Series( index=[ "max", "min", "range", "counts", "uniques", "missing", "missing_perc", "types", ], data=[ dmax, dmin, dmax - dmin, self.size, self.size, 0, "0%", df_processors.DF_TYPE_DATE, ], name="ddates", dtype=object, ).sort_index() tmp = df_processors.get_df_column_summary(self.df, "ddates").sort_index() assert_series_equal(tmp, expected) def test_numerics_summary(self): num1 = self.df["dnumerics1"] dm, dmp = df_processors.get_deviation_of_mean(num1) dam, damp = df_processors.get_median_absolute_deviation(num1) expected = pd.Series( index=[ "mean", "std", "variance", "min", "max", "mode", "5%", "25%", "50%", "75%", "95%", "iqr", "kurtosis", "skewness", "sum", "mad", "cv", "zeros_num", "zeros_perc", "deviating_of_mean", "deviating_of_mean_perc", "deviating_of_median", "deviating_of_median_perc", "top_correlations", "counts", "uniques", "missing", "missing_perc", "types", ], data=[ num1.mean(), num1.std(), num1.var(), num1.min(), num1.max(), num1.mode()[0], num1.quantile(0.05), num1.quantile(0.25), num1.quantile(0.5), num1.quantile(0.75), num1.quantile(0.95), num1.quantile(0.75) - num1.quantile(0.25), num1.kurt(), num1.skew(), num1.sum(), num1.mad(), num1.std() / num1.mean() if num1.mean() else np.nan, self.size - np.count_nonzero(num1), to_percentage((self.size - np.count_nonzero(num1)) / self.size), dm, dmp, dam, damp, "dnumerics2: 100%", self.size, self.size, 0, "0%", df_processors.DF_TYPE_NUMERIC, ], name="dnumerics1", dtype=object, ) assert_series_equal( df_processors.get_df_column_summary(self.df, "dnumerics1"), expected )
# Copyright 2016 Joel Dunham # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains the :class:`SyntacticcategoriesController` and its auxiliary functions. .. module:: syntacticcategories :synopsis: Contains the syntactic category controller and its auxiliary functions. """ import logging import datetime import simplejson as json from pylons import request, response, config from formencode.validators import Invalid from onlinelinguisticdatabase.lib.base import BaseController from onlinelinguisticdatabase.lib.schemata import SyntacticCategorySchema import onlinelinguisticdatabase.lib.helpers as h from onlinelinguisticdatabase.lib.SQLAQueryBuilder import SQLAQueryBuilder from onlinelinguisticdatabase.model.meta import Session from onlinelinguisticdatabase.model import SyntacticCategory from forms import update_forms_containing_this_form_as_morpheme log = logging.getLogger(__name__) class SyntacticcategoriesController(BaseController): """Generate responses to requests on syntactic category resources. REST Controller styled on the Atom Publishing Protocol. .. note:: The ``h.jsonify`` decorator converts the return value of the methods to JSON. """ query_builder = SQLAQueryBuilder('SyntacticCategory', config=config) @h.jsonify @h.restrict('GET') @h.authenticate def index(self): """Get all syntactic category resources. :URL: ``GET /syntacticcategorys`` with optional query string parameters for ordering and pagination. :returns: a list of all syntactic category resources. .. note:: See :func:`utils.add_order_by` and :func:`utils.add_pagination` for the query string parameters that effect ordering and pagination. """ try: query = Session.query(SyntacticCategory) query = h.add_order_by(query, dict(request.GET), self.query_builder) return h.add_pagination(query, dict(request.GET)) except Invalid, e: response.status_int = 400 return {'errors': e.unpack_errors()} @h.jsonify @h.restrict('POST') @h.authenticate @h.authorize(['administrator', 'contributor']) def create(self): """Create a new syntactic category resource and return it. :URL: ``POST /syntacticcategorys`` :request body: JSON object representing the syntactic category to create. :returns: the newly created syntactic category. """ try: schema = SyntacticCategorySchema() values = json.loads(unicode(request.body, request.charset)) data = schema.to_python(values) syntactic_category = create_new_syntactic_category(data) Session.add(syntactic_category) Session.commit() return syntactic_category except h.JSONDecodeError: response.status_int = 400 return h.JSONDecodeErrorResponse except Invalid, e: response.status_int = 400 return {'errors': e.unpack_errors()} @h.jsonify @h.restrict('GET') @h.authenticate @h.authorize(['administrator', 'contributor']) def new(self): """Return the data necessary to create a new syntactic category. :URL: ``GET /syntacticcategorys/new``. :returns: a dictionary containing the valid syntactic category types as defined in :mod:`onlinelinguisticdatabase.lib.utils`. """ return {'syntactic_category_types': h.syntactic_category_types} @h.jsonify @h.restrict('PUT') @h.authenticate @h.authorize(['administrator', 'contributor']) def update(self, id): """Update a syntactic category and return it. :URL: ``PUT /syntacticcategorys/id`` :Request body: JSON object representing the syntactic category with updated attribute values. :param str id: the ``id`` value of the syntactic category to be updated. :returns: the updated syntactic category model. """ syntactic_category = Session.query(SyntacticCategory).get(int(id)) if syntactic_category: try: old_name = syntactic_category.name schema = SyntacticCategorySchema() values = json.loads(unicode(request.body, request.charset)) state = h.get_state_object(values) state.id = id data = schema.to_python(values, state) syntactic_category = update_syntactic_category(syntactic_category, data) # syntactic_category will be False if there are no changes (cf. update_syntactic_category). if syntactic_category: Session.add(syntactic_category) Session.commit() if syntactic_category.name != old_name: update_forms_referencing_this_category(syntactic_category) return syntactic_category else: response.status_int = 400 return {'error': u'The update request failed because the submitted data were not new.'} except h.JSONDecodeError: response.status_int = 400 return h.JSONDecodeErrorResponse except Invalid, e: response.status_int = 400 return {'errors': e.unpack_errors()} else: response.status_int = 404 return {'error': 'There is no syntactic category with id %s' % id} @h.jsonify @h.restrict('DELETE') @h.authenticate @h.authorize(['administrator', 'contributor']) def delete(self, id): """Delete an existing syntactic category and return it. :URL: ``DELETE /syntacticcategorys/id`` :param str id: the ``id`` value of the syntactic category to be deleted. :returns: the deleted syntactic category model. """ syntactic_category = Session.query(SyntacticCategory).get(id) if syntactic_category: Session.delete(syntactic_category) Session.commit() update_forms_referencing_this_category(syntactic_category) return syntactic_category else: response.status_int = 404 return {'error': 'There is no syntactic category with id %s' % id} @h.jsonify @h.restrict('GET') @h.authenticate def show(self, id): """Return a syntactic category. :URL: ``GET /syntacticcategorys/id`` :param str id: the ``id`` value of the syntactic category to be returned. :returns: a syntactic category model object. """ syntactic_category = Session.query(SyntacticCategory).get(id) if syntactic_category: return syntactic_category else: response.status_int = 404 return {'error': 'There is no syntactic category with id %s' % id} @h.jsonify @h.restrict('GET') @h.authenticate @h.authorize(['administrator', 'contributor']) def edit(self, id): """Return a syntactic category resource and the data needed to update it. :URL: ``GET /syntacticcategorys/edit`` :param str id: the ``id`` value of the syntactic category that will be updated. :returns: a dictionary of the form:: {"syntactic_category": {...}, "data": {...}} where the value of the ``syntactic_category`` key is a dictionary representation of the syntactic category and the value of the ``data`` key is a dictionary of valid syntactic category types as defined in :mod:`onlinelinguisticdatabase.lib.utils`. """ syntactic_category = Session.query(SyntacticCategory).get(id) if syntactic_category: return { 'data': {'syntactic_category_types': h.syntactic_category_types}, 'syntactic_category': syntactic_category } else: response.status_int = 404 return {'error': 'There is no syntactic category with id %s' % id} ################################################################################ # SyntacticCategory Create & Update Functions ################################################################################ def create_new_syntactic_category(data): """Create a new syntactic category. :param dict data: the data for the syntactic category to be created. :returns: an SQLAlchemy model object representing the syntactic category. """ syntactic_category = SyntacticCategory() syntactic_category.name = h.normalize(data['name']) syntactic_category.type = data['type'] syntactic_category.description = h.normalize(data['description']) syntactic_category.datetime_modified = datetime.datetime.utcnow() return syntactic_category def update_syntactic_category(syntactic_category, data): """Update a syntactic category. :param syntactic_category: the syntactic category model to be updated. :param dict data: representation of the updated syntactic category. :returns: the updated syntactic category model or, if ``changed`` has not been set to ``True``, ``False``. """ changed = False # Unicode Data changed = syntactic_category.set_attr('name', h.normalize(data['name']), changed) changed = syntactic_category.set_attr('type', h.normalize(data['type']), changed) changed = syntactic_category.set_attr('description', h.normalize(data['description']), changed) if changed: syntactic_category.datetime_modified = datetime.datetime.utcnow() return syntactic_category return changed def update_forms_referencing_this_category(syntactic_category): """Update all forms that reference a syntactic category. :param syntactic_category: a syntactic category model object. :returns: ``None`` .. note:: This function is only called when a syntactic category is deleted or when its name is changed. """ forms_of_this_category = syntactic_category.forms for form in forms_of_this_category: update_forms_containing_this_form_as_morpheme(form)
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.math_ops.matrix_inverse.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes as dtypes_lib from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class SelfAdjointEigTest(test.TestCase): def testWrongDimensions(self): # The input to self_adjoint_eig should be a tensor of # at least rank 2. scalar = constant_op.constant(1.) with self.assertRaises(ValueError): linalg_ops.self_adjoint_eig(scalar) vector = constant_op.constant([1., 2.]) with self.assertRaises(ValueError): linalg_ops.self_adjoint_eig(vector) def SortEigenDecomposition(e, v): if v.ndim < 2: return e, v else: perm = np.argsort(e, -1) return np.take(e, perm, -1), np.take(v, perm, -1) def NormalizeEigenvectorsPhase(v): """Normalizes the phase of the Eigenvectors stored in the columns of `v`. (complex) Eigenvectors are only unique up to an arbitrary phase. We normalize the vectors such that the first component has phase 0. Args: v: `np.ndarray` with Eigenvectors as returned from `np.linalg.eigh`. Returns: `np.ndarray` normalized Eigenvectors. """ reference = v / np.linalg.norm(v[..., 0:1, :], axis=-1, keepdims=True) return v * reference.conj() def _GetSelfAdjointEigTest(dtype_, shape_, compute_v_): def CompareEigenVectors(self, x, y, tol): x = NormalizeEigenvectorsPhase(x) y = NormalizeEigenvectorsPhase(y) self.assertAllClose(x, y, atol=tol, rtol=tol) def CompareEigenDecompositions(self, x_e, x_v, y_e, y_v, tol): num_batches = int(np.prod(x_e.shape[:-1])) n = x_e.shape[-1] x_e = np.reshape(x_e, [num_batches] + [n]) x_v = np.reshape(x_v, [num_batches] + [n, n]) y_e = np.reshape(y_e, [num_batches] + [n]) y_v = np.reshape(y_v, [num_batches] + [n, n]) for i in range(num_batches): x_ei, x_vi = SortEigenDecomposition(x_e[i, :], x_v[i, :, :]) y_ei, y_vi = SortEigenDecomposition(y_e[i, :], y_v[i, :, :]) self.assertAllClose(x_ei, y_ei, atol=tol, rtol=tol) CompareEigenVectors(self, x_vi, y_vi, tol) def Test(self): np.random.seed(1) n = shape_[-1] batch_shape = shape_[:-2] np_dtype = dtype_.as_numpy_dtype a = np.random.uniform( low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype) if dtype_.is_complex: a += 1j * np.random.uniform( low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype) a += np.conj(a.T) a = np.tile(a, batch_shape + (1, 1)) if dtype_ in (dtypes_lib.float32, dtypes_lib.complex64): atol = 1e-4 else: atol = 1e-12 np_e, np_v = np.linalg.eigh(a) with self.test_session(): if compute_v_: tf_e, tf_v = linalg_ops.self_adjoint_eig(constant_op.constant(a)) # Check that V*diag(E)*V^T is close to A. a_ev = math_ops.matmul( math_ops.matmul(tf_v, array_ops.matrix_diag(tf_e)), tf_v, adjoint_b=True) self.assertAllClose(a_ev.eval(), a, atol=atol) # Compare to numpy.linalg.eigh. CompareEigenDecompositions(self, np_e, np_v, tf_e.eval(), tf_v.eval(), atol) else: tf_e = linalg_ops.self_adjoint_eigvals(constant_op.constant(a)) self.assertAllClose( np.sort(np_e, -1), np.sort(tf_e.eval(), -1), atol=atol) return Test class SelfAdjointEigGradTest(test.TestCase): pass # Filled in below def _GetSelfAdjointEigGradTest(dtype_, shape_, compute_v_): def Test(self): np.random.seed(1) n = shape_[-1] batch_shape = shape_[:-2] np_dtype = dtype_.as_numpy_dtype a = np.random.uniform( low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype) if dtype_.is_complex: a += 1j * np.random.uniform( low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype) a += np.conj(a.T) a = np.tile(a, batch_shape + (1, 1)) # Optimal stepsize for central difference is O(epsilon^{1/3}). epsilon = np.finfo(np_dtype).eps delta = 0.1 * epsilon**(1.0 / 3.0) # tolerance obtained by looking at actual differences using # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build if dtype_ in (dtypes_lib.float32, dtypes_lib.complex64): tol = 1e-2 else: tol = 1e-7 with self.test_session(): tf_a = constant_op.constant(a) if compute_v_: tf_e, tf_v = linalg_ops.self_adjoint_eig(tf_a) # (complex) Eigenvectors are only unique up to an arbitrary phase # We normalize the vectors such that the first component has phase 0. reference = tf_v / linalg_ops.norm( tf_v[..., 0:1, :], axis=-1, keep_dims=True) tf_v *= math_ops.conj(reference) outputs = [tf_e, tf_v] else: tf_e = linalg_ops.self_adjoint_eigvals(tf_a) outputs = [tf_e,] for b in outputs: x_init = np.random.uniform( low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype) if dtype_.is_complex: x_init += 1j * np.random.uniform( low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype) x_init += np.conj(x_init.T) x_init = np.tile(x_init, batch_shape + (1, 1)) theoretical, numerical = gradient_checker.compute_gradient( tf_a, tf_a.get_shape().as_list(), b, b.get_shape().as_list(), x_init_value=x_init, delta=delta) self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol) return Test if __name__ == '__main__': for compute_v in [True, False]: for dtype in ( dtypes_lib.float32, dtypes_lib.float64, dtypes_lib.complex64, dtypes_lib.complex128): for size in 1, 2, 5, 10: for batch_dims in [(), (3,)] + [(3, 2)] * (max(size, size) < 10): shape = batch_dims + (size, size) name = '%s_%s_%s' % (dtype, '_'.join(map(str, shape)), compute_v) setattr(SelfAdjointEigTest, 'testSelfAdjointEig_' + name, _GetSelfAdjointEigTest(dtype, shape, compute_v)) setattr(SelfAdjointEigGradTest, 'testSelfAdjointEigGrad_' + name, _GetSelfAdjointEigGradTest(dtype, shape, compute_v)) test.main()
#pylint: skip-file """ This module handles all the phishing related operations for Wifiphisher.py """ import os from wifiphisher.common.constants import * from shutil import copyfile import ConfigParser def config_section_map(config_file, section): """ Map the values of a config file to a dictionary. """ config = ConfigParser.ConfigParser() config.read(config_file) dict1 = {} if section not in config.sections(): return dict1 options = config.options(section) for option in options: try: dict1[option] = config.get(section, option) except: dict1[option] = None return dict1 class InvalidTemplate(Exception): """ Exception class to raise in case of a invalid template """ def __init__(self): Exception.__init__(self, "The given template is either invalid or " + "not available locally!") class PhishingTemplate(object): """ This class represents phishing templates """ def __init__(self, name): """ Construct object. :param self: A PhishingTemplate object :type self: PhishingScenario :return: None :rtype: None .. todo:: Maybe add a category field """ # setup all the variables config_path = os.path.join(PHISHING_PAGES_DIR, name, 'config.ini') info = config_section_map(config_path, 'info') self._name = name self._display_name = info['name'] self._description = info['description'] self._payload = False if 'payloadpath' in info: self._payload = info['payloadpath'] self._path = PHISHING_PAGES_DIR + self._name.lower() + "/" self._path_static = PHISHING_PAGES_DIR + self._name.lower() + "/static/" self._context = config_section_map(config_path, 'context') self._extra_files = [] def merge_context(self, context): """ Merge dict context with current one In case of confict always keep current values """ context.update(self._context) self._context = context def get_context(self): """ Return the context of the template. :param self: A PhishingTemplate object :type self: PhishingTemplate :return: the context of the template :rtype: dict """ return self._context def get_display_name(self): """ Return the display name of the template. :param self: A PhishingTemplate object :type self: PhishingTemplate :return: the display name of the template :rtype: str """ return self._display_name def get_payload_path(self): """ Return the payload path of the template. :param self: A PhishingTemplate object :type self: PhishingTemplate :return: The path of the template :rtype: bool """ return self._payload def has_payload(self): """ Return whether the template has a payload. :param self: A PhishingTemplate object :type self: PhishingTemplate :return: boolean if it needs payload :rtype: bool """ if self._payload: return True return False def get_description(self): """ Return the description of the template. :param self: A PhishingTemplate object :type self: PhishingTemplate :return: the description of the template :rtype: str """ return self._description def get_path(self): """ Return the path of the template files. :param self: A PhishingTemplate object :type self: PhishingTemplate :return: the path of template files :rtype: str """ return self._path def get_path_static(self): """ Return the path of the static template files. JS, CSS, Image files lie there. :param self: A PhishingTemplate object :type self: PhishingTemplate :return: the path of static template files :rtype: str """ return self._path_static def use_file(self, path): """ Copies a file in the filesystem to the path of the template files. :param self: A PhishingTemplate object :type self: PhishingTemplate :param path: path of the file that is to be copied :type self: str :return: the path of the file under the template files :rtype: str """ if path is not None and os.path.isfile(path): filename = os.path.basename(path) copyfile(path, self.get_path_static() + filename) self._extra_files.append(self.get_path_static() + filename) return filename def remove_extra_files(self): """ Removes extra used files (if any) :param self: A PhishingTemplate object :type self: PhishingTemplate :return: None :rtype: None """ for f in self._extra_files: if os.path.isfile(f): os.remove(f) def __str__(self): """ Return a string representation of the template. :param self: A PhishingTemplate object :type self: PhishingTemplate :return: the name followed by the description of the template :rtype: str """ return (self._display_name + "\n\t" + self._description + "\n") class TemplateManager(object): """ This class handles all the template management operations """ def __init__(self): """ Construct object. :param self: A TemplateManager object :type self: TemplateManager :return: None :rtype: None """ # setup the templates self._template_directory = PHISHING_PAGES_DIR page_dirs = os.listdir(PHISHING_PAGES_DIR) self._templates = {} for page in page_dirs: if os.path.isdir(page): self._templates[page] = PhishingTemplate(page) # add all the user templates to the database self.add_user_templates() def get_templates(self): """ Return all the available templates. :param self: A TemplateManager object :type self: TemplateManager :return: all the available templates :rtype: dict """ return self._templates def find_user_templates(self): """ Return all the user's templates available. :param self: A TemplateManager object :type self: TemplateManager :return: all the local templates available :rtype: list .. todo:: check to make sure directory contains HTML files """ # a list to store file names in local_templates = [] # loop through the directory content for name in os.listdir(self._template_directory): # check to see if it is a directory and not in the database if (os.path.isdir(os.path.join(self._template_directory, name)) and name not in self._templates): # add it to the list local_templates.append(name) return local_templates def add_user_templates(self): """ Add all the user templates to the database. :param self: A TemplateManager object :type: self: TemplateManager :return: None :rtype: None """ # get all the user's templates user_templates = self.find_user_templates() # loop through the templates for template in user_templates: # create a template object and add it to the database local_template = PhishingTemplate(template) self._templates[template] = local_template def on_exit(self): """ Delete any extra files on exit :param self: A TemplateManager object :type: self: TemplateManager :return: None :rtype: None """ for templ_name, templ_obj in self._templates.iteritems(): templ_obj.remove_extra_files()
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- """ timer.py Created on Wed Apr 24 12:00:00 2013 @author: kyle """ from __future__ import print_function import forseti2 import configurator import json import lcm import threading import time import random import os import settings import util import LCMNode Node = LCMNode.Node LCMNode = LCMNode.LCMNode class Timer(object): def __init__(self): self.segments = [] self.segment_start_time = time.time() self.running = False def _this_segment_time(self): return time.time() - self.segment_start_time def time(self): if self.running: return sum(self.segments) + self._this_segment_time() else: return sum(self.segments) def start(self): if not self.running: self.running = True self.segment_start_time = time.time() return self def pause(self): if not self.running: return self self.running = False self.segments.append(self._this_segment_time()) return self def add(self, additional_time): self.segments.append(additional_time) def subtract(self, less_time): self.segments.append(-less_time) def reset(self): self.__init__() return self class Period(object): def __init__(self, name, length, autocontinue=False): self.name = name self.length = length self.autocontinue = autocontinue class MatchTimer(LCMNode): def __init__(self, lc, match): self.stage_ended = False self.lc = lc self.match = match self.stages = [Period('Setup', 0), Period('Autonomous', settings.AUTONOMOUS_LENGTH_SECONDS, True), Period('Paused', 0), Period('Teleop', settings.TELEOP_LENGTH_SECONDS, True), Period('End', 0)] self.stage_index = 0 self.match_timer = Timer() self.stage_timer = Timer() self.lc.subscribe('Timer/Control', self.handle_control) self.lc.subscribe('Match/Init', self.handle_init) self.start_thread() self.on_stage_change(None, self.stages[0]) def reset(self): self.stage_index = 0 self.match_timer.reset() self.stage_timer.reset() self.on_stage_change(self.stages[self.stage_index], self.stages[0]) self.stage_ended = True def current_stage(self): return self.stages[self.stage_index] def check_for_stage_change(self): if self.stage_timer.time() > self.current_stage().length: self.stage_timer.reset() self.stage_ended = True if self.current_stage().autocontinue: self.stage_index += 1 self.on_stage_change(self.stages[self.stage_index - 1], self.stages[self.stage_index]) self.pause() else: #print('Stage = ', self.current_stage().name) self.pause() def on_stage_change(self, old_stage, new_stage): if new_stage.name == 'Setup': self.match.stage = 'Autonomous' self.match.disable_all() self.pause() elif new_stage.name == 'Autonomous': self.match.stage = 'Autonomous' self.match.enable_all() elif new_stage.name == 'Paused': self.match.stage = 'Paused' self.match.disable_all() self.pause() elif new_stage.name == 'Teleop': self.match.stage = 'Teleop' self.match.enable_all() elif new_stage.name == 'End': self.match.stage = 'End' self.pause() def start(self): self.match_timer.start() self.stage_timer.start() if self.stage_ended and self.stage_index + 1 < len(self.stages): self.stage_index += 1 self.stage_ended = False self.on_stage_change(self.stages[self.stage_index - 1], self.stages[self.stage_index]) def pause(self): self.stage_timer.pause() self.match_timer.pause() def reset_stage(self): self.match_timer.stop() self.stage_timer.reset() def reset_match(self): self.stage_index = 0 self.stage_timer.reset() self.match_timer.reset() def run(self): while self.stage_index < len(self.stages): time.sleep(0.3) self.check_for_stage_change() self.match.time = int(self.match_timer.time()) msg = forseti2.Time() msg.game_time_so_far = self.match_timer.time() msg.stage_time_so_far = self.stage_timer.time() msg.total_stage_time = self.current_stage().length msg.stage_name = self.current_stage().name self.lc.publish('Timer/Time', msg.encode()) def handle_control(self, channel, data): msg = forseti2.TimeControl.decode(data) print('Received command', msg.command_name) func = { 'pause': self.pause, 'start': self.start, 'reset_match': self.reset_match, 'reset_stage': self.reset_stage }[msg.command_name] func() def handle_init(self, channel, data): msg = forseti2.Match.decode(data) self.match.teams = [Team(msg.team_numbers[i], msg.team_names[i]) for i in range(4)] self.reset() class Team(object): def __init__(self, number, name=None): self.number = number if name is None: self.name = configurator.get_team_name(number) else: self.name = name self.teleop = False self.halt_radio = False self.auto = False self.enabled = False def toggle(self): self.enabled = not self.enabled class Match(object): def __init__(self, team_numbers): self.teams = [Team(num) for num in team_numbers] self.stage = 'Setup' self.time = 0 def get_team(self, team_number): for team in self.teams: if team.number == team_number: return team def enable_all(self): for team in self.teams: team.enabled = True def disable_all(self): for team in self.teams: team.enabled = False class ControlDataSender(Node): def __init__(self, lc, match, timer): self.lc = lc self.match = match self.timer = timer self.thread = threading.Thread() self.thread.daemon = True self.start_thread() self.seq = 0; def _loop(self): while True: time.sleep(0.5) for i in range(len(self.match.teams)): self.send(i + 1, self.match.teams[i]) def send(self, piemos_num, team): #print('Sending') msg = forseti2.ControlData() msg.TeleopEnabled = self.match.stage in ['Teleop', 'Paused'] msg.HaltRadio = False msg.AutonomousEnabled = self.match.stage == 'Autonomous' msg.RobotEnabled = self.timer.match_timer.running msg.Stage = self.match.stage msg.Time = self.match.time """ msg = forseti2.piemos_cmd() msg.header = forseti2.header() msg.header.seq = self.seq; self.seq += 1; msg.header.time = time.time() msg.auton = self.match.stage == 'Autonomous' msg.enabled = self.timer.match_timer.running""" self.lc.publish('piemos/Control', msg.encode()) ''' TODO This does not appear to be used anywhere. ''' class RemoteTimer(object): def __init__(self): self.lc = lcm.LCM(settings.LCM_URI) def send(self, command): print('Sending', command) msg = forseti2.TimeControl() msg.command_name = command self.lc.publish('Timer/Control', msg.encode()) def pause(self): self.send('pause') def start(self): self.send('start') def reset_match(self): self.send('reset_match') def reset_stage(self): self.send('reset_stage') def main(): lc = lcm.LCM(settings.LCM_URI) match = Match([0] * 4) timer = MatchTimer(lc, match) cd_sender = ControlDataSender(lc, match, timer) timer.run() if __name__ == '__main__': main()
""" drfjsonapi.filters ~~~~~~~~~~~~~~~~~~~ DRF relationship fields to assist with a JSON API spec compliant API. """ import itertools import re from django.db.models import Q from rest_framework.exceptions import ValidationError from rest_framework.filters import BaseFilterBackend, OrderingFilter from .exceptions import InvalidFilterParam, InvalidIncludeParam, InvalidSortParam from .utils import _get_relationship, _to_set class JsonApiBackend(object): """ For easy `isinstance` checks """ pass class JsonApiFieldFilter(JsonApiBackend, BaseFilterBackend): """ Support the filtering of arbitrary resource fields """ fields = {} max_params = 15 def filter_queryset(self, request, queryset, view): """ DRF entry point into the custom FilterBackend """ filters = self.to_internal_value(request) filters = self.validate(filters) return self.apply_filter(queryset, filters) def apply_filter(self, queryset, filters): """ Turn the vetted query param filters into Q object expressions """ q_filter = Q() for param, value in filters.items(): q_filter.add(Q((param, value)), Q.AND) return queryset.filter(q_filter) def to_internal_value(self, request): """ Coerce & validate the query params & values Loop through all the query parameters & use a regular expression to find all the filters that match a format of: filter[<field>__<lookup>]=<value> An example filter of `filter[home__city__exact]=Orlando` would return a dict of: {'home__city__exact': 'Orlando'} """ filters = {} regex = re.compile(r'^filter\[([A-Za-z0-9_.]+)\]$') for param, value in request.query_params.items(): try: param = regex.match(param).groups()[0] filters[param] = value except (AttributeError, IndexError): continue return filters def validate(self, filters): """ Hook to validate the coerced data """ if len(filters) > self.max_params: msg = 'The request has "%s" filter query parameters which ' \ 'exceeds the max number of "%s" that can be requested.' \ % (len(filters), self.max_params) raise InvalidFilterParam(msg) return {k: self.validate_filter(k, v) for k, v in filters.items()} def validate_filter(self, param, value): """ Coerce & validate each query param & value one-by-one """ # pylint: disable=invalid-name,unused-variable field, _, lookup = param.rpartition('__') try: validator = self.fields[field] return validator.validate(lookup, value) except KeyError: msg = 'The "%s" filter query parameter is invalid, the ' \ '"%s" field either does not exist on the requested ' \ 'resource or you are not allowed to filter on it.' \ % (param, field) raise InvalidFilterParam(msg) except ValidationError as exc: msg = 'The "%s" filter query parameters value failed ' \ 'validation checks with the following error(s): ' \ '%s' % (param, ' '.join(exc.detail)) raise InvalidFilterParam(msg) class JsonApiIncludeFilter(JsonApiBackend, BaseFilterBackend): """ Support the inclusion of compound documents The santizied includes query params will be available on the request object via a `jsonapi_include` attribute. """ fields = {} max_params = 15 def filter_queryset(self, request, queryset, view): """ DRF entry point into the custom FilterBackend """ include = self.to_internal_value(request) include = self.validate(include) request.jsonapi_include = include return self.apply_filter(queryset, include) def apply_filter(self, queryset, include): """ Return a filtered queryset for the query params """ return queryset.prefetch_related(*include) def to_internal_value(self, request): """ Return the sanitized `include` query parameters Handles comma separated & multiple include params & returns a tuple of duplicate free strings """ include = request.query_params.getlist('include') include = (name.split(',') for name in include) include = list(itertools.chain(*include)) return tuple(set(include)) def to_representation(self, serializer, context=None): """ Return the JSON API include array """ try: include = context['request'].jsonapi_include except (AttributeError, KeyError, TypeError): include = [] if not include or not serializer.instance: return [] # uniqifies duplicate serializers & models by using # the serializer as a key & set as value icache = {v: set() for k, v in self.fields.items()} models = _to_set(serializer.instance) for model in models: for field in include: cache_set = icache[self.fields[field]] cache_set.update(_to_set(_get_relationship(model, field))) # prune dupes in the include cache that are also present # in the primary data. _class = serializer.__class__ if _class in icache: icache[_class] = icache[_class].difference(models) return [ serializer(context=context).to_representation(model) for serializer, models in icache.items() for model in models ] def validate(self, include): """ Hook to validate the coerced include """ if len(include) > self.max_params: msg = 'The request has "%s" include query parameters which ' \ 'exceeds the max number of "%s" that can be requested.' \ % (len(include), self.max_params) raise InvalidIncludeParam(msg) for name in include: if name not in self.fields: msg = 'The "%s" include query parameter is not supported ' \ 'by this endpoint.' % name raise InvalidIncludeParam(msg) return include class JsonApiSortFilter(JsonApiBackend, OrderingFilter): """ Override default OrderingFilter to be JSON API compliant If the global `max_sorts` property limit is not exceeded then each sort is tested for eligibility. To be eligible is MUST meet all of the following criteria: 1. The sort cannot be a relationship sort. That is not supported currently & is generally frowned upon. 2. Be present in the list of the DRF superclasses `get_valid_fields` method Step 2 is standard DRF OrderingFilter logic so read it's documentation for more info. """ max_sorts = 3 ordering_param = 'sort' relation_sep = '.' def remove_invalid_fields(self, queryset, fields, view, request): """ Override the default to support exception handling """ if len(fields) > self.max_sorts: msg = 'Sorting on "%s" fields exceeds the maximum number of ' \ '"%s" sortable fields' % (len(fields), self.max_sorts) raise InvalidSortParam(msg) allow = [i[0] for i in self.get_valid_fields(queryset, view)] for field in fields: if not field.lstrip('-') in allow: msg = 'The "%s" sort query parameter either does not ' \ 'exist or you are not allowed to sort on it' % field raise InvalidSortParam(msg) elif self.relation_sep in field: msg = 'The "%s" sort query parameter is not allowed due to ' \ 'unpredictable results when sorting on relationships' % field raise InvalidSortParam(msg) return fields
from __future__ import division import math, random, re from collections import defaultdict class Table: def __init__(self, columns): self.columns = columns self.rows = [] def __repr__(self): """pretty representation of the table: columns then rows""" return str(self.columns) + "\n" + "\n".join(map(str, self.rows)) def insert(self, row_values): if len(row_values) != len(self.columns): raise TypeError("wrong number of elements") row_dict = dict(zip(self.columns, row_values)) self.rows.append(row_dict) def update(self, updates, predicate): for row in self.rows: if predicate(row): for column, new_value in updates.iteritems(): row[column] = new_value def delete(self, predicate=lambda row: True): """delete all rows matching predicate or all rows if no predicate supplied""" self.rows = [row for row in self.rows if not(predicate(row))] def select(self, keep_columns=None, additional_columns=None): if keep_columns is None: # if no columns specified, keep_columns = self.columns # return all columns if additional_columns is None: additional_columns = {} # new table for results result_table = Table(keep_columns + additional_columns.keys()) for row in self.rows: new_row = [row[column] for column in keep_columns] for column_name, calculation in additional_columns.iteritems(): new_row.append(calculation(row)) result_table.insert(new_row) return result_table def where(self, predicate=lambda row: True): """return only the rows that satisfy the supplied predicate""" where_table = Table(self.columns) where_table.rows = filter(predicate, self.rows) return where_table def limit(self, num_rows=None): """return only the first num_rows rows""" limit_table = Table(self.columns) limit_table.rows = (self.rows[:num_rows] if num_rows is not None else self.rows) return limit_table def group_by(self, group_by_columns, aggregates, having=None): grouped_rows = defaultdict(list) # populate groups for row in self.rows: key = tuple(row[column] for column in group_by_columns) grouped_rows[key].append(row) result_table = Table(group_by_columns + aggregates.keys()) for key, rows in grouped_rows.iteritems(): if having is None or having(rows): new_row = list(key) for aggregate_name, aggregate_fn in aggregates.iteritems(): new_row.append(aggregate_fn(rows)) result_table.insert(new_row) return result_table def order_by(self, order): new_table = self.select() # make a copy new_table.rows.sort(key=order) return new_table def join(self, other_table, left_join=False): join_on_columns = [c for c in self.columns # columns in if c in other_table.columns] # both tables additional_columns = [c for c in other_table.columns # columns only if c not in join_on_columns] # in right table # all columns from left table + additional_columns from right table join_table = Table(self.columns + additional_columns) for row in self.rows: def is_join(other_row): return all(other_row[c] == row[c] for c in join_on_columns) other_rows = other_table.where(is_join).rows # each other row that matches this one produces a result row for other_row in other_rows: join_table.insert([row[c] for c in self.columns] + [other_row[c] for c in additional_columns]) # if no rows match and it's a left join, output with Nones if left_join and not other_rows: join_table.insert([row[c] for c in self.columns] + [None for c in additional_columns]) return join_table if __name__ == "__main__": users = Table(["user_id", "name", "num_friends"]) users.insert([0, "Hero", 0]) users.insert([1, "Dunn", 2]) users.insert([2, "Sue", 3]) users.insert([3, "Chi", 3]) users.insert([4, "Thor", 3]) users.insert([5, "Clive", 2]) users.insert([6, "Hicks", 3]) users.insert([7, "Devin", 2]) users.insert([8, "Kate", 2]) users.insert([9, "Klein", 3]) users.insert([10, "Jen", 1]) print "users table" print users print # SELECT print "users.select()" print users.select() print print "users.limit(2)" print users.limit(2) print print "users.select(keep_columns=[\"user_id\"])" print users.select(keep_columns=["user_id"]) print print 'where(lambda row: row["name"] == "Dunn")' print users.where(lambda row: row["name"] == "Dunn") \ .select(keep_columns=["user_id"]) print def name_len(row): return len(row["name"]) print 'with name_length:' print users.select(keep_columns=[], additional_columns = { "name_length" : name_len }) print # GROUP BY def min_user_id(rows): return min(row["user_id"] for row in rows) stats_by_length = users \ .select(additional_columns={"name_len" : name_len}) \ .group_by(group_by_columns=["name_len"], aggregates={ "min_user_id" : min_user_id, "num_users" : len }) print "stats by length" print stats_by_length print def first_letter_of_name(row): return row["name"][0] if row["name"] else "" def average_num_friends(rows): return sum(row["num_friends"] for row in rows) / len(rows) def enough_friends(rows): return average_num_friends(rows) > 1 avg_friends_by_letter = users \ .select(additional_columns={'first_letter' : first_letter_of_name}) \ .group_by(group_by_columns=['first_letter'], aggregates={ "avg_num_friends" : average_num_friends }, having=enough_friends) print "avg friends by letter" print avg_friends_by_letter print def sum_user_ids(rows): return sum(row["user_id"] for row in rows) user_id_sum = users \ .where(lambda row: row["user_id"] > 1) \ .group_by(group_by_columns=[], aggregates={ "user_id_sum" : sum_user_ids }) print "user id sum" print user_id_sum print # ORDER BY friendliest_letters = avg_friends_by_letter \ .order_by(lambda row: -row["avg_num_friends"]) \ .limit(4) print "friendliest letters" print friendliest_letters print # JOINs user_interests = Table(["user_id", "interest"]) user_interests.insert([0, "SQL"]) user_interests.insert([0, "NoSQL"]) user_interests.insert([2, "SQL"]) user_interests.insert([2, "MySQL"]) sql_users = users \ .join(user_interests) \ .where(lambda row: row["interest"] == "SQL") \ .select(keep_columns=["name"]) print "sql users" print sql_users print def count_interests(rows): """counts how many rows have non-None interests""" return len([row for row in rows if row["interest"] is not None]) user_interest_counts = users \ .join(user_interests, left_join=True) \ .group_by(group_by_columns=["user_id"], aggregates={"num_interests" : count_interests }) print "user interest counts" print user_interest_counts # SUBQUERIES likes_sql_user_ids = user_interests \ .where(lambda row: row["interest"] == "SQL") \ .select(keep_columns=['user_id']) likes_sql_user_ids.group_by(group_by_columns=[], aggregates={ "min_user_id" : min_user_id }) print "likes sql user ids" print likes_sql_user_ids
# Copyright 2015 Cloudbase Solutions Srl # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from unittest import mock import ddt from os_win import _utils from os_win import exceptions from os_win.tests.unit import test_base from os_win.utils import win32utils from os_win.utils.winapi import constants as w_const from os_win.utils.winapi import wintypes @ddt.ddt class Win32UtilsTestCase(test_base.BaseTestCase): def setUp(self): super(Win32UtilsTestCase, self).setUp() self._setup_lib_mocks() self._win32_utils = win32utils.Win32Utils() self.addCleanup(mock.patch.stopall) def _setup_lib_mocks(self): self._ctypes = mock.Mock() # This is used in order to easily make assertions on the variables # passed by reference. self._ctypes.byref = lambda x: (x, "byref") self._ctypes_patcher = mock.patch.multiple( win32utils, ctypes=self._ctypes) self._ctypes_patcher.start() mock.patch.multiple(win32utils, kernel32=mock.DEFAULT, create=True).start() @mock.patch.object(win32utils.Win32Utils, 'get_error_message') @mock.patch.object(win32utils.Win32Utils, 'get_last_error') def _test_run_and_check_output(self, mock_get_last_err, mock_get_err_msg, ret_val=0, expected_exc=None, **kwargs): self._ctypes_patcher.stop() mock_func = mock.Mock() mock_func.return_value = ret_val if expected_exc: self.assertRaises(expected_exc, self._win32_utils.run_and_check_output, mock_func, mock.sentinel.arg, kwarg=mock.sentinel.kwarg, **kwargs) else: actual_ret_val = self._win32_utils.run_and_check_output( mock_func, mock.sentinel.arg, kwarg=mock.sentinel.kwarg, **kwargs) self.assertEqual(ret_val, actual_ret_val) mock_func.assert_called_once_with(mock.sentinel.arg, kwarg=mock.sentinel.kwarg) return mock_get_last_err, mock_get_err_msg def test_run_and_check_output(self): self._test_run_and_check_output() def test_run_and_check_output_fail_on_nonzero_ret_val(self): ret_val = 1 (mock_get_last_err, mock_get_err_msg) = self._test_run_and_check_output( ret_val=ret_val, expected_exc=exceptions.VHDWin32APIException, failure_exc=exceptions.VHDWin32APIException) mock_get_err_msg.assert_called_once_with(ret_val) def test_run_and_check_output_explicit_error_ret_vals(self): ret_val = 1 error_ret_vals = [ret_val] (mock_get_last_err, mock_get_err_msg) = self._test_run_and_check_output( ret_val=ret_val, error_ret_vals=error_ret_vals, ret_val_is_err_code=False, expected_exc=exceptions.Win32Exception) mock_get_err_msg.assert_called_once_with( win32utils.ctypes.c_ulong(mock_get_last_err).value) def test_run_and_check_output_ignored_error(self): ret_val = 1 ignored_err_codes = [ret_val] self._test_run_and_check_output(ret_val=ret_val, ignored_error_codes=ignored_err_codes) def test_run_and_check_output_kernel32_lib_func(self): ret_val = 0 self._test_run_and_check_output(ret_val=ret_val, expected_exc=exceptions.Win32Exception, kernel32_lib_func=True) def test_run_and_check_output_with_err_msg_dict(self): self._ctypes_patcher.stop() err_code = 1 err_msg = 'fake_err_msg' err_msg_dict = {err_code: err_msg} mock_func = mock.Mock() mock_func.return_value = err_code try: self._win32_utils.run_and_check_output(mock_func, mock.sentinel.arg, error_msg_src=err_msg_dict) except Exception as ex: self.assertIsInstance(ex, exceptions.Win32Exception) self.assertIn(err_msg, ex.message) @mock.patch.object(win32utils.Win32Utils, '_run_and_check_output') def test_run_and_check_output_eventlet_nb_mode_disabled(self, mock_helper): self._win32_utils.run_and_check_output( mock.sentinel.func, mock.sentinel.arg, eventlet_nonblocking_mode=False) mock_helper.assert_called_once_with(mock.sentinel.func, mock.sentinel.arg) @mock.patch.object(_utils, 'avoid_blocking_call') def test_run_and_check_output_eventlet_nb_mode_enabled(self, mock_helper): self._win32_utils.run_and_check_output( mock.sentinel.func, mock.sentinel.arg, eventlet_nonblocking_mode=True) mock_helper.assert_called_once_with( self._win32_utils._run_and_check_output, mock.sentinel.func, mock.sentinel.arg) def test_get_error_message(self): err_msg = self._win32_utils.get_error_message(mock.sentinel.err_code) fake_msg_buff = win32utils.ctypes.c_char_p.return_value expected_flags = (w_const.FORMAT_MESSAGE_FROM_SYSTEM | w_const.FORMAT_MESSAGE_ALLOCATE_BUFFER | w_const.FORMAT_MESSAGE_IGNORE_INSERTS) win32utils.kernel32.FormatMessageA.assert_called_once_with( expected_flags, None, mock.sentinel.err_code, 0, win32utils.ctypes.byref(fake_msg_buff), 0, None) self.assertEqual(fake_msg_buff.value, err_msg) def test_get_last_error(self): last_err = self._win32_utils.get_last_error() self.assertEqual(win32utils.kernel32.GetLastError.return_value, last_err) win32utils.kernel32.SetLastError.assert_called_once_with(0) @ddt.data(0, 1) @mock.patch.object(win32utils.LOG, 'exception') def test_local_free(self, ret_val, mock_log_exc): mock_localfree = win32utils.kernel32.LocalFree mock_localfree.return_value = ret_val self._win32_utils.local_free(mock.sentinel.handle) mock_localfree.assert_any_call(mock.sentinel.handle) self.assertEqual(bool(ret_val), mock_log_exc.called) @mock.patch.object(win32utils.Win32Utils, 'run_and_check_output') def test_wait_for_multiple_objects(self, mock_helper): fake_handles = [10, 11] ret_val = self._win32_utils.wait_for_multiple_objects( fake_handles, mock.sentinel.wait_all, mock.sentinel.milliseconds) mock_helper.assert_called_once_with( win32utils.kernel32.WaitForMultipleObjects, len(fake_handles), mock.ANY, mock.sentinel.wait_all, mock.sentinel.milliseconds, kernel32_lib_func=True, error_ret_vals=[w_const.WAIT_FAILED]) self.assertEqual(mock_helper.return_value, ret_val) handles_arg = mock_helper.call_args_list[0][0][2] self.assertIsInstance(handles_arg, wintypes.HANDLE * len(fake_handles)) self.assertEqual(fake_handles, handles_arg[:]) @mock.patch.object(win32utils.Win32Utils, 'run_and_check_output') def test_wait_for_multiple_objects_timeout(self, mock_helper): fake_handles = [10] mock_helper.return_value = w_const.ERROR_WAIT_TIMEOUT self.assertRaises( exceptions.Timeout, self._win32_utils.wait_for_multiple_objects, fake_handles, mock.sentinel.wait_all, mock.sentinel.milliseconds) @mock.patch.object(win32utils.Win32Utils, 'run_and_check_output') def test_wait_for_single_object(self, mock_helper): ret_val = self._win32_utils.wait_for_single_object( mock.sentinel.handle, mock.sentinel.milliseconds) mock_helper.assert_called_once_with( win32utils.kernel32.WaitForSingleObject, mock.sentinel.handle, mock.sentinel.milliseconds, kernel32_lib_func=True, error_ret_vals=[w_const.WAIT_FAILED]) self.assertEqual(mock_helper.return_value, ret_val) @mock.patch.object(win32utils.Win32Utils, 'run_and_check_output') def test_wait_for_single_object_timeout(self, mock_helper): mock_helper.return_value = w_const.ERROR_WAIT_TIMEOUT self.assertRaises( exceptions.Timeout, self._win32_utils.wait_for_single_object, mock.sentinel.timeout, mock.sentinel.milliseconds)
# Copyright (c) 2020, Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can be # found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause import logging from coremltools.converters.mil.frontend.tensorflow.basic_graph_ops import ( disconnect_edge, connect_edge, delete_node, replace_node, replace_dest, connect_edge_at_index, ) from coremltools.converters.mil.frontend.tensorflow.parsed_tf_node import ParsedTFNode def _rename_node_in_fn(node, new_name, fn): """ Rename a node and all it's connections. Parameters ---------- node: ParsedTFNode Node to rename. new_name: str New name of the node. fn: SSAFunction Function that contains graph to operate on. """ old_name = node.name node.name = new_name for i in node.inputs: idx = fn.graph[i].outputs.index(old_name) fn.graph[i].outputs[idx] = new_name if old_name in fn.graph[i].control_outputs: idx = fn.graph[i].control_outputs.index(old_name) fn.graph[i].control_outputs[idx] = new_name for o in node.outputs: idx = fn.graph[o].inputs.index(old_name) fn.graph[o].inputs[idx] = new_name if old_name in fn.graph[o].control_inputs: idx = fn.graph[o].control_inputs.index(old_name) fn.graph[o].control_inputs[idx] = new_name for i in node.control_inputs: if old_name in fn.graph[i].control_outputs: idx = fn.graph[i].control_outputs.index(old_name) fn.graph[i].control_outputs[idx] = new_name for o in node.control_outputs: if old_name in fn.graph[o].control_inputs: idx = fn.graph[o].control_inputs.index(old_name) fn.graph[o].control_inputs[idx] = new_name fn.graph[new_name] = fn.graph.pop(old_name) def _flatten_sub_graph_namespaces(tf_ssa, fn_name): """ A pass to flatten namespaces for sub-graphs of the control flow while_loop op. For example, the while_loop's has two sub-graphs, "cond" and "body", all the nodes in the graph will be prefixing the sub-graph's name. This pass is required for converting control flow v2 ops (enabled by default in TensorFlow 2.0+) as the original sub-graphs will contain duplicated names. Parameters ---------- tf_ssa: NetworkEnsemble An object that contains multiple functions / sub-graphs. fn_name: str Name of the function / sub-graph to operate on. """ count = 0 fn = tf_ssa.functions.get(fn_name) for name, node in fn.graph.copy().items(): if node.op not in {"StatelessWhile", "While", "StatelessIf", "If"}: continue if node.op in {"StatelessWhile", "While"}: sub_fn_names = [node.attr.get("cond"), node.attr.get("body")] else: sub_fn_names = [node.attr.get("then_branch"), node.attr.get("else_branch")] for sf_name in sub_fn_names: sf = tf_ssa.functions.get(sf_name) prefix = "{}/{}".format(node.name, sf_name) for old_name, n in sf.graph.copy().items(): _rename_node_in_fn(n, "{}/{}".format(prefix, old_name), sf) count += 1 ios = set(sf.inputs + sf.outputs) io_name_mappings = {n: "{}/{}".format(prefix, n) for n in ios} sf.inputs = [io_name_mappings[n] for n in sf.inputs] sf.outputs = [io_name_mappings[n] for n in sf.outputs] _flatten_sub_graph_namespaces(tf_ssa, sf_name) msg = "flatten_sub_graph_namespaces: {} nodes renamed in '{}'" logging.info(msg.format(count, sf_name)) def _insert_op(fn, op, name, attr=None): """ Create a node with given attributes, then insert to the target graph in given function. Parameters ---------- fn: SSAFunction Function that contains graph to operate on. op: str Type of the operation for the new node. name: str Name of the new node. attr: dict or None (optional) Attributes of the new node. Returns ------- node: ParsedTFNode New node object. """ node = ParsedTFNode() node.op = op node.name = name if attr is not None: node.attr = attr fn.graph[node.name] = node return node def _insert_function_entry(fn): return _insert_op(fn=fn, op="function_entry", name="entry") def _insert_return(fn): return _insert_op(fn=fn, op="return", name="return") def _insert_make_tuple(fn, name=None): name = "make_tuple" if name is None else name return _insert_op(fn=fn, op="make_tuple", name=name) def _insert_get_tuple(fn, name, idx): return _insert_op(fn=fn, op="get_tuple", name=name, attr={"index": idx}) def _rewrite_cond_functions(tf_ssa, fn): r""" Rewrite tf.cond's sub-graphs with get_tuple, make_tuple, function_entry and return ops. This rewrite is required in order to convert functional form control flow v2 nodes 'StatelessIf' and 'If'. Parameters ---------- tf_ssa: NetworkEnsemble An object that contains multiple functions / sub-graphs. fn: SSAFunction Function that contains graph to operate on. Examples -------- Input: Before pass "main" graph: [const/greater/y] ---------\ [placeholder/args_0] -> [greater] -> [if] -> [identity] \------------------/ \--> [identity] [placeholder/args_1] ----------------/ Before pass "then" graph: [const/sub/y] ---------------\ [placeholder/sub_args_0] -> [sub] [placeholder/sub_args_1] -> [identity] Before pass "else" graph: [const/add/y] ---------------\ [placeholder/add_args_0] -> [add] [const/mul/y] ---------------\ [placeholder/add_args_1] -> [mul] Output: After pass "main" graph: [const/greater/y] ---------\ [placeholder/args_0] -> [greater] -> [make_tuple] -> [if] -> [get_tuple] -> [identity] \---------------------/ \--> [get_tuple] -> [identity] [placeholder/args_1] -------------------/ After pass "then" graph: [const/sub/y] ---------------\ [entry] -> [get_tuple] -> [placeholder/sub_args_0] -> [sub] -> [make_tuple] -> [return] -> [get_tuple] -> [placeholder/sub_args_1] -----------------/ After pass "else" graph: [const/add/y] ---------------\ [entry] -> [get_tuple] -> [placeholder/add_args_0] -> [add] -> [make_tuple] -> [return] -> [get_tuple] -> [placeholder/add_args_1] -> [mul] --------/ [const/mul/y] ---------------/ """ for cond_name, cond_node in fn.graph.copy().items(): if cond_node.op not in {"StatelessIf", "If"}: continue then_fn_name = cond_node.attr.get("then_branch") else_fn_name = cond_node.attr.get("else_branch") msg = "Rewriting '{}' ({}) sub-graphs: then '{}', else '{}'" logging.info( msg.format(cond_node.name, cond_node.op, then_fn_name, else_fn_name) ) then_fn = tf_ssa.functions.get(then_fn_name) else_fn = tf_ssa.functions.get(else_fn_name) # insert function entry nodes then_entry = _insert_function_entry(then_fn) else_entry = _insert_function_entry(else_fn) # pack node inputs to a single tuple cond_input = _insert_make_tuple(fn, "make_tuple/{}".format(cond_name)) for ci in cond_node.inputs: disconnect_edge(fn.graph, ci, cond_node.name) connect_edge(fn.graph, ci, cond_input) connect_edge(fn.graph, cond_input, cond_node.name) # unpack node outputs to multiple get_tuples for i, co in enumerate(cond_node.outputs): # utilize FunctionDef's ret to make sure function outputs and # node outputs order matches when multiple outputs are there. # Fallback to use original cond_node.outputs order if fails. o_original = fn.graph[co].original_node if o_original: c_input = [n for n in o_original.input if str(n).startswith(cond_name)][ 0 ] if ":" in c_input: identity_postfix = "identity_{}".format(c_input.split(":")[-1]) else: # access identity "0" identity_postfix = "identity" identity_keys = [t for t in then_fn.ret.keys() if t.endswith(identity_postfix)] if len(identity_keys) != 1: raise NotImplementedError("Branch not found.") mapped_name = then_fn.ret[identity_keys[0]].split(":")[0] if mapped_name in then_fn.outputs: idx = then_fn.outputs.index(mapped_name) else: # in else_fn.outputs idx = else_fn.outputs.index(mapped_name) else: idx = i cond_output = _insert_get_tuple( fn, "get_tuple/{}/{}".format(idx, cond_name), idx ) edge_idx = fn.graph[co].inputs.index(cond_node.name) replace_dest(fn.graph, cond_node, co, cond_output) connect_edge_at_index(fn.graph, cond_output, co, edge_idx) # fetch inputs using get_tuple for then branch for i, ti in enumerate(then_fn.inputs): then_input = _insert_get_tuple( then_fn, "get_tuple/{}/{}".format(i, ti), i + 1 ) connect_edge(then_fn.graph, then_entry, then_input) replace_node(then_fn.graph, ti, then_input) delete_node(then_fn.graph, ti) # fetch inputs using get_tuple for else branch for i, ei in enumerate(else_fn.inputs): else_input = _insert_get_tuple( else_fn, "get_tuple/{}/{}".format(i, ei), i + 1 ) connect_edge(else_fn.graph, else_entry, else_input) replace_node(else_fn.graph, ei, else_input) delete_node(else_fn.graph, ei) # returns a tuple of value(s) as output for then branch then_output = _insert_make_tuple(then_fn) for to in then_fn.outputs: if to not in then_fn.graph.keys(): # from identity, map back to get_tuple node to = "get_tuple/{}/{}".format(then_fn.inputs.index(to), to) connect_edge(then_fn.graph, to, then_output.name) then_return = _insert_return(then_fn) connect_edge(then_fn.graph, then_output.name, then_return.name) # returns a tuple of value(s) as output for else branch else_output = _insert_make_tuple(else_fn) for eo in else_fn.outputs: if eo not in else_fn.graph.keys(): # from identity, map back to get_tuple node eo = "get_tuple/{}/{}".format(else_fn.inputs.index(eo), eo) connect_edge(else_fn.graph, eo, else_output.name) else_return = _insert_return(else_fn) connect_edge(else_fn.graph, else_output.name, else_return.name) def _eliminate_loop_cond_nodes(tf_ssa, fn): """ Eliminate loop condition nodes, such as loop_counters, max_iterations from the cond sub-graph and body sub-graph of tf.while_loop. Parameters ---------- tf_ssa: NetworkEnsemble An object that contains multiple functions / sub-graphs. fn: SSAFunction Function that contains graph to operate on. Examples -------- Input: Before pass "main" graph: [while/maximum_iterations] -----\ [while/loop_counter] -------> [while] --> [identity] [placeholder/args_0] ----------/ Before pass "cond" graph: [const/mean] -------\ [placeholder] --> [mean] --> [greater] [const/greater/y] --------------/ [while_maximum_iterations], [while_loop_counter] (not connected) Before pass "body" graph: [const/sub/y] ------\ [placeholder] ---> [sub] [const/add/y] ------------\ [while_loop_counter] --> [add] [while_maximum_iterations] (not connected) Output: After pass "main" graph: [placeholder/args_0] --> [while] --> [identity] After pass "cond" graph: [const/mean] -------\ [placeholder] --> [mean] --> [greater] [const/greater/y] --------------/ After pass "body" graph: [const/sub/y] ------\ [placeholder] ---> [sub] """ for name, node in fn.graph.copy().items(): if node.op not in {"StatelessWhile", "While"}: continue cond_fn = tf_ssa.functions.get(node.attr.get("cond")) body_fn = tf_ssa.functions.get(node.attr.get("body")) cond_lc_nodes = {cond_fn.inputs.pop(0), cond_fn.inputs.pop(0)} logging.info("Removing {} from cond graph".format(cond_lc_nodes)) for n in cond_lc_nodes: delete_node(cond_fn.graph, n) body_lc_nodes = {body_fn.inputs.pop(0), body_fn.inputs.pop(0)} q = list(body_lc_nodes) # delete entire sub-fn while len(q) > 0: n = body_fn.graph[q.pop(0)] for o in n.outputs: if o not in body_lc_nodes: q.append(o) body_lc_nodes.add(o) for i in body_fn.graph[o].inputs: if i not in body_lc_nodes: q.append(i) body_lc_nodes.add(i) # remove if in outputs for n in body_lc_nodes: if n in body_fn.outputs: msg = "Removing '{}' ({}) from body fn outputs" logging.info(msg.format(n, body_fn.graph[n].op)) body_fn.outputs.remove(n) logging.info("Removing {} from body graph".format(body_lc_nodes)) for n in body_lc_nodes: delete_node(body_fn.graph, n) def _rewrite_while_loop_functions(tf_ssa, fn): """ Rewrite tf.while_loop's sub-graphs with get_tuple, make_tuple, function_entry and return ops. This rewrite is required in order to convert functional form control flow v2 nodes 'StatelessWhile' and 'While'. Parameters ---------- tf_ssa: NetworkEnsemble An object that contains multiple functions / sub-graphs. fn: SSAFunction Function that contains graph to operate on. Example ------- Input: Before pass "main" graph: [placeholder/args_0] --> [while] --> [identity] Before pass "cond" graph: [const/mean] -------\ [placeholder] --> [mean] --> [greater] [const/greater/y] --------------/ Before pass "body" graph: [const/sub/y] ------\ [placeholder] ---> [sub] Output: After pass "main" graph: [placeholder/args_0] --> [make_tuple] --> [while] --> [get_tuple] --> [identity] After pass "cond" graph: [const/mean] ------\ [entry] -> [get_tuple] -> [placeholder] -> [mean] -> [greater] -> [make_tuple] -> [return] [const/greater/y] ------------/ After pass "body" graph: [const/sub/y] ----\ [entry] -> [get_tuple] -> [placeholder] -> [sub] -> [make_tuple] -> [return] """ for while_name, while_node in fn.graph.copy().items(): if while_node.op not in {"StatelessWhile", "While"}: continue cond_fn_name = while_node.attr.get("cond") body_fn_name = while_node.attr.get("body") msg = "Rewriting '{}' ({}) sub-graphs: cond '{}', body '{}'" logging.info( msg.format(while_node.name, while_node.op, cond_fn_name, body_fn_name) ) cond_fn = tf_ssa.functions.get(cond_fn_name) body_fn = tf_ssa.functions.get(body_fn_name) # insert function entry nodes cond_entry = _insert_function_entry(cond_fn) body_entry = _insert_function_entry(body_fn) # pack node inputs to a single tuple while_input_tuple = _insert_make_tuple(fn, "make_tuple/{}".format(while_name)) for wi in while_node.inputs: disconnect_edge(fn.graph, wi, while_node.name) connect_edge(fn.graph, wi, while_input_tuple) connect_edge(fn.graph, while_input_tuple, while_node.name) # unpack node outputs to multiple get_tuples for i, wo in enumerate(while_node.outputs): # utilize FunctionDef's ret to make sure function outputs and # node outputs order matches when multiple outputs are there. o_original = fn.graph[wo].original_node while_input = [ n for n in o_original.input if str(n).startswith(while_name) ][0] while_index = while_input.split(":")[-1] if while_index != 0: identity_postfix = "identity_{}".format(while_index) else: # access identity "0" identity_postfix = "identity" identity_keys = [t for t in body_fn.ret.keys() if t.endswith(identity_postfix)] if len(identity_keys) != 1: raise NotImplementedError("Branch not found.") mapped_name = body_fn.ret[identity_keys[0]].split(":")[0] idx = body_fn.outputs.index(mapped_name) loop_output = _insert_get_tuple( fn, "get_tuple/{}/{}".format(idx, while_input), idx ) edge_idx = fn.graph[wo].inputs.index(while_node.name) replace_dest(fn.graph, while_node, wo, loop_output) connect_edge_at_index(fn.graph, loop_output, wo, edge_idx) # fetch inputs using get_tuple for cond fn for i, ci in enumerate(cond_fn.inputs): cond_input = _insert_get_tuple(cond_fn, "get_tuple/{}/{}".format(i, ci), i) connect_edge(cond_fn.graph, cond_entry, cond_input) replace_node(cond_fn.graph, ci, cond_input) delete_node(cond_fn.graph, ci) # fetch inputs using get_tuple for body fn for i, bi in enumerate(body_fn.inputs): new_name = "get_tuple/{}/{}".format(i, bi) if bi in body_fn.outputs: # input is also an output body_fn.outputs[body_fn.outputs.index(bi)] = new_name body_input = _insert_get_tuple(body_fn, new_name, i) connect_edge(body_fn.graph, body_entry, body_input) replace_node(body_fn.graph, bi, body_input) delete_node(body_fn.graph, bi) # returns a tuple of value(s) as output for cond fn cond_output = _insert_make_tuple(cond_fn) for co in cond_fn.outputs: connect_edge(cond_fn.graph, co, cond_output.name) cond_return = _insert_return(cond_fn) connect_edge(cond_fn.graph, cond_output.name, cond_return.name) # returns a tuple of value(s) as output for body branch body_output = _insert_make_tuple(body_fn) for bo in body_fn.outputs: connect_edge(body_fn.graph, bo, body_output.name) body_return = _insert_return(body_fn) connect_edge(body_fn.graph, body_output.name, body_return.name) def rewrite_control_flow_functions(tf_ssa): for fn_name, fn in tf_ssa.functions.items(): _rewrite_cond_functions(tf_ssa, fn) for fn_name, fn in tf_ssa.functions.items(): _eliminate_loop_cond_nodes(tf_ssa, fn) _rewrite_while_loop_functions(tf_ssa, fn) def flatten_sub_graph_namespaces(tf_ssa): _flatten_sub_graph_namespaces(tf_ssa, fn_name="main")
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Movielens 1-M dataset. Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000 movies, which was collected by GroupLens Research. This module will download Movielens 1-M dataset from http://files.grouplens.org/datasets/movielens/ml-1m.zip and parse training set and test set into paddle reader creators. """ import zipfile import paddle.v2.dataset.common import re import random import functools __all__ = [ 'train', 'test', 'get_movie_title_dict', 'max_movie_id', 'max_user_id', 'age_table', 'movie_categories', 'max_job_id', 'user_info', 'movie_info', 'convert' ] age_table = [1, 18, 25, 35, 45, 50, 56] URL = 'http://files.grouplens.org/datasets/movielens/ml-1m.zip' MD5 = 'c4d9eecfca2ab87c1945afe126590906' class MovieInfo(object): """ Movie id, title and categories information are stored in MovieInfo. """ def __init__(self, index, categories, title): self.index = int(index) self.categories = categories self.title = title def value(self): """ Get information from a movie. """ return [ self.index, [CATEGORIES_DICT[c] for c in self.categories], [MOVIE_TITLE_DICT[w.lower()] for w in self.title.split()] ] def __str__(self): return "<MovieInfo id(%d), title(%s), categories(%s)>" % ( self.index, self.title, self.categories) def __repr__(self): return self.__str__() class UserInfo(object): """ User id, gender, age, and job information are stored in UserInfo. """ def __init__(self, index, gender, age, job_id): self.index = int(index) self.is_male = gender == 'M' self.age = age_table.index(int(age)) self.job_id = int(job_id) def value(self): """ Get information from a user. """ return [self.index, 0 if self.is_male else 1, self.age, self.job_id] def __str__(self): return "<UserInfo id(%d), gender(%s), age(%d), job(%d)>" % ( self.index, "M" if self.is_male else "F", age_table[self.age], self.job_id) def __repr__(self): return str(self) MOVIE_INFO = None MOVIE_TITLE_DICT = None CATEGORIES_DICT = None USER_INFO = None def __initialize_meta_info__(): fn = paddle.v2.dataset.common.download(URL, "movielens", MD5) global MOVIE_INFO if MOVIE_INFO is None: pattern = re.compile(r'^(.*)\((\d+)\)$') with zipfile.ZipFile(file=fn) as package: for info in package.infolist(): assert isinstance(info, zipfile.ZipInfo) MOVIE_INFO = dict() title_word_set = set() categories_set = set() with package.open('ml-1m/movies.dat') as movie_file: for i, line in enumerate(movie_file): movie_id, title, categories = line.strip().split('::') categories = categories.split('|') for c in categories: categories_set.add(c) title = pattern.match(title).group(1) MOVIE_INFO[int(movie_id)] = MovieInfo( index=movie_id, categories=categories, title=title) for w in title.split(): title_word_set.add(w.lower()) global MOVIE_TITLE_DICT MOVIE_TITLE_DICT = dict() for i, w in enumerate(title_word_set): MOVIE_TITLE_DICT[w] = i global CATEGORIES_DICT CATEGORIES_DICT = dict() for i, c in enumerate(categories_set): CATEGORIES_DICT[c] = i global USER_INFO USER_INFO = dict() with package.open('ml-1m/users.dat') as user_file: for line in user_file: uid, gender, age, job, _ = line.strip().split("::") USER_INFO[int(uid)] = UserInfo( index=uid, gender=gender, age=age, job_id=job) return fn def __reader__(rand_seed=0, test_ratio=0.1, is_test=False): fn = __initialize_meta_info__() rand = random.Random(x=rand_seed) with zipfile.ZipFile(file=fn) as package: with package.open('ml-1m/ratings.dat') as rating: for line in rating: if (rand.random() < test_ratio) == is_test: uid, mov_id, rating, _ = line.strip().split("::") uid = int(uid) mov_id = int(mov_id) rating = float(rating) * 2 - 5.0 mov = MOVIE_INFO[mov_id] usr = USER_INFO[uid] yield usr.value() + mov.value() + [[rating]] def __reader_creator__(**kwargs): return lambda: __reader__(**kwargs) train = functools.partial(__reader_creator__, is_test=False) test = functools.partial(__reader_creator__, is_test=True) def get_movie_title_dict(): """ Get movie title dictionary. """ __initialize_meta_info__() return MOVIE_TITLE_DICT def __max_index_info__(a, b): if a.index > b.index: return a else: return b def max_movie_id(): """ Get the maximum value of movie id. """ __initialize_meta_info__() return reduce(__max_index_info__, MOVIE_INFO.viewvalues()).index def max_user_id(): """ Get the maximum value of user id. """ __initialize_meta_info__() return reduce(__max_index_info__, USER_INFO.viewvalues()).index def __max_job_id_impl__(a, b): if a.job_id > b.job_id: return a else: return b def max_job_id(): """ Get the maximum value of job id. """ __initialize_meta_info__() return reduce(__max_job_id_impl__, USER_INFO.viewvalues()).job_id def movie_categories(): """ Get movie categoriges dictionary. """ __initialize_meta_info__() return CATEGORIES_DICT def user_info(): """ Get user info dictionary. """ __initialize_meta_info__() return USER_INFO def movie_info(): """ Get movie info dictionary. """ __initialize_meta_info__() return MOVIE_INFO def unittest(): for train_count, _ in enumerate(train()()): pass for test_count, _ in enumerate(test()()): pass print train_count, test_count def fetch(): paddle.v2.dataset.common.download(URL, "movielens", MD5) def convert(path): """ Converts dataset to recordio format """ paddle.v2.dataset.common.convert(path, train(), 1000, "movielens_train") paddle.v2.dataset.common.convert(path, test(), 1000, "movielens_test") if __name__ == '__main__': unittest()
import time import datetime import dateutil import stripe import hashlib import re import redis import uuid import mongoengine as mongo from django.db import models from django.db import IntegrityError from django.db.utils import DatabaseError from django.db.models.signals import post_save from django.db.models import Sum, Avg, Count from django.conf import settings from django.contrib.auth import authenticate from django.contrib.auth.models import User from django.core.mail import EmailMultiAlternatives from django.core.urlresolvers import reverse from django.template.loader import render_to_string from apps.rss_feeds.models import Feed, MStory, MStarredStory from apps.rss_feeds.tasks import SchedulePremiumSetup from apps.feed_import.models import GoogleReaderImporter, OPMLExporter from apps.reader.models import UserSubscription from apps.reader.models import RUserStory from utils import log as logging from utils import json_functions as json from utils.user_functions import generate_secret_token from utils.feed_functions import chunks from vendor.timezones.fields import TimeZoneField from vendor.paypal.standard.ipn.signals import subscription_signup, payment_was_successful, recurring_payment from vendor.paypal.standard.ipn.signals import payment_was_flagged from vendor.paypal.standard.ipn.models import PayPalIPN from vendor.paypalapi.interface import PayPalInterface from vendor.paypalapi.exceptions import PayPalAPIResponseError from zebra.signals import zebra_webhook_customer_subscription_created from zebra.signals import zebra_webhook_charge_succeeded class Profile(models.Model): user = models.OneToOneField(User, unique=True, related_name="profile") is_premium = models.BooleanField(default=False) premium_expire = models.DateTimeField(blank=True, null=True) send_emails = models.BooleanField(default=True) preferences = models.TextField(default="{}") view_settings = models.TextField(default="{}") collapsed_folders = models.TextField(default="[]") feed_pane_size = models.IntegerField(default=242) tutorial_finished = models.BooleanField(default=False) hide_getting_started = models.NullBooleanField(default=False, null=True, blank=True) has_setup_feeds = models.NullBooleanField(default=False, null=True, blank=True) has_found_friends = models.NullBooleanField(default=False, null=True, blank=True) has_trained_intelligence = models.NullBooleanField(default=False, null=True, blank=True) last_seen_on = models.DateTimeField(default=datetime.datetime.now) last_seen_ip = models.CharField(max_length=50, blank=True, null=True) dashboard_date = models.DateTimeField(default=datetime.datetime.now) timezone = TimeZoneField(default="America/New_York") secret_token = models.CharField(max_length=12, blank=True, null=True) stripe_4_digits = models.CharField(max_length=4, blank=True, null=True) stripe_id = models.CharField(max_length=24, blank=True, null=True) def __unicode__(self): return "%s <%s> (Premium: %s)" % (self.user, self.user.email, self.is_premium) @property def unread_cutoff(self, force_premium=False): if self.is_premium or force_premium: return datetime.datetime.utcnow() - datetime.timedelta(days=settings.DAYS_OF_UNREAD) return datetime.datetime.utcnow() - datetime.timedelta(days=settings.DAYS_OF_UNREAD_FREE) @property def unread_cutoff_premium(self): return datetime.datetime.utcnow() - datetime.timedelta(days=settings.DAYS_OF_UNREAD) def canonical(self): return { 'is_premium': self.is_premium, 'premium_expire': int(self.premium_expire.strftime('%s')) if self.premium_expire else 0, 'preferences': json.decode(self.preferences), 'tutorial_finished': self.tutorial_finished, 'hide_getting_started': self.hide_getting_started, 'has_setup_feeds': self.has_setup_feeds, 'has_found_friends': self.has_found_friends, 'has_trained_intelligence': self.has_trained_intelligence, 'dashboard_date': self.dashboard_date } def save(self, *args, **kwargs): if not self.secret_token: self.secret_token = generate_secret_token(self.user.username, 12) try: super(Profile, self).save(*args, **kwargs) except DatabaseError: print " ---> Profile not saved. Table isn't there yet." def delete_user(self, confirm=False, fast=False): if not confirm: print " ---> You must pass confirm=True to delete this user." return logging.user(self.user, "Deleting user: %s / %s" % (self.user.email, self.user.profile.last_seen_ip)) try: self.cancel_premium() except: logging.user(self.user, "~BR~SK~FWError cancelling premium renewal for: %s" % self.user.username) from apps.social.models import MSocialProfile, MSharedStory, MSocialSubscription from apps.social.models import MActivity, MInteraction try: social_profile = MSocialProfile.objects.get(user_id=self.user.pk) logging.user(self.user, "Unfollowing %s followings and %s followers" % (social_profile.following_count, social_profile.follower_count)) for follow in social_profile.following_user_ids: social_profile.unfollow_user(follow) for follower in social_profile.follower_user_ids: follower_profile = MSocialProfile.objects.get(user_id=follower) follower_profile.unfollow_user(self.user.pk) social_profile.delete() except MSocialProfile.DoesNotExist: logging.user(self.user, " ***> No social profile found. S'ok, moving on.") pass shared_stories = MSharedStory.objects.filter(user_id=self.user.pk) logging.user(self.user, "Deleting %s shared stories" % shared_stories.count()) for story in shared_stories: try: if not fast: original_story = MStory.objects.get(story_hash=story.story_hash) original_story.sync_redis() except MStory.DoesNotExist: pass story.delete() subscriptions = MSocialSubscription.objects.filter(subscription_user_id=self.user.pk) logging.user(self.user, "Deleting %s social subscriptions" % subscriptions.count()) subscriptions.delete() interactions = MInteraction.objects.filter(user_id=self.user.pk) logging.user(self.user, "Deleting %s interactions for user." % interactions.count()) interactions.delete() interactions = MInteraction.objects.filter(with_user_id=self.user.pk) logging.user(self.user, "Deleting %s interactions with user." % interactions.count()) interactions.delete() activities = MActivity.objects.filter(user_id=self.user.pk) logging.user(self.user, "Deleting %s activities for user." % activities.count()) activities.delete() activities = MActivity.objects.filter(with_user_id=self.user.pk) logging.user(self.user, "Deleting %s activities with user." % activities.count()) activities.delete() starred_stories = MStarredStory.objects.filter(user_id=self.user.pk) logging.user(self.user, "Deleting %s starred stories." % starred_stories.count()) starred_stories.delete() logging.user(self.user, "Deleting user: %s" % self.user) self.user.delete() def activate_premium(self, never_expire=False): from apps.profile.tasks import EmailNewPremium EmailNewPremium.delay(user_id=self.user.pk) was_premium = self.is_premium self.is_premium = True self.save() self.user.is_active = True self.user.save() # Only auto-enable every feed if a free user is moving to premium subs = UserSubscription.objects.filter(user=self.user) if not was_premium: for sub in subs: if sub.active: continue sub.active = True try: sub.save() except (IntegrityError, Feed.DoesNotExist): pass try: scheduled_feeds = [sub.feed.pk for sub in subs] except Feed.DoesNotExist: scheduled_feeds = [] logging.user(self.user, "~SN~FMTasking the scheduling immediate premium setup of ~SB%s~SN feeds..." % len(scheduled_feeds)) SchedulePremiumSetup.apply_async(kwargs=dict(feed_ids=scheduled_feeds)) UserSubscription.queue_new_feeds(self.user) self.setup_premium_history() if never_expire: self.premium_expire = None self.save() logging.user(self.user, "~BY~SK~FW~SBNEW PREMIUM ACCOUNT! WOOHOO!!! ~FR%s subscriptions~SN!" % (subs.count())) return True def deactivate_premium(self): self.is_premium = False self.save() subs = UserSubscription.objects.filter(user=self.user) for sub in subs: sub.active = False try: sub.save() # Don't bother recalculating feed's subs, as it will do that on next fetch # sub.feed.setup_feed_for_premium_subscribers() except (IntegrityError, Feed.DoesNotExist): pass logging.user(self.user, "~BY~FW~SBBOO! Deactivating premium account: ~FR%s subscriptions~SN!" % (subs.count())) def activate_free(self): if self.user.is_active: return self.user.is_active = True self.user.save() self.send_new_user_queue_email() def setup_premium_history(self, alt_email=None, check_premium=False, force_expiration=False): paypal_payments = [] stripe_payments = [] total_stripe_payments = 0 existing_history = PaymentHistory.objects.filter(user=self.user, payment_provider__in=['paypal', 'stripe']) if existing_history.count(): logging.user(self.user, "~BY~SN~FRDeleting~FW existing history: ~SB%s payments" % existing_history.count()) existing_history.delete() # Record Paypal payments paypal_payments = PayPalIPN.objects.filter(custom=self.user.username, payment_status='Completed', txn_type='subscr_payment') if not paypal_payments.count(): paypal_payments = PayPalIPN.objects.filter(payer_email=self.user.email, payment_status='Completed', txn_type='subscr_payment') if alt_email and not paypal_payments.count(): paypal_payments = PayPalIPN.objects.filter(payer_email=alt_email, payment_status='Completed', txn_type='subscr_payment') if paypal_payments.count(): # Make sure this doesn't happen again, so let's use Paypal's email. self.user.email = alt_email self.user.save() seen_txn_ids = set() for payment in paypal_payments: if payment.txn_id in seen_txn_ids: continue seen_txn_ids.add(payment.txn_id) PaymentHistory.objects.create(user=self.user, payment_date=payment.payment_date, payment_amount=payment.payment_gross, payment_provider='paypal') # Record Stripe payments if self.stripe_id: self.retrieve_stripe_ids() stripe.api_key = settings.STRIPE_SECRET seen_payments = set() for stripe_id_model in self.user.stripe_ids.all(): stripe_id = stripe_id_model.stripe_id stripe_customer = stripe.Customer.retrieve(stripe_id) stripe_payments = stripe.Charge.all(customer=stripe_customer.id).data for payment in stripe_payments: created = datetime.datetime.fromtimestamp(payment.created) if payment.status == 'failed': continue if created in seen_payments: continue seen_payments.add(created) total_stripe_payments += 1 PaymentHistory.objects.create(user=self.user, payment_date=created, payment_amount=payment.amount / 100.0, payment_provider='stripe') # Calculate payments in last year, then add together payment_history = PaymentHistory.objects.filter(user=self.user) last_year = datetime.datetime.now() - datetime.timedelta(days=364) recent_payments_count = 0 oldest_recent_payment_date = None free_lifetime_premium = False for payment in payment_history: if payment.payment_amount == 0: free_lifetime_premium = True if payment.payment_date > last_year: recent_payments_count += 1 if not oldest_recent_payment_date or payment.payment_date < oldest_recent_payment_date: oldest_recent_payment_date = payment.payment_date if free_lifetime_premium: self.premium_expire = None self.save() elif oldest_recent_payment_date: new_premium_expire = (oldest_recent_payment_date + datetime.timedelta(days=365*recent_payments_count)) # Only move premium expire forward, never earlier. Also set expiration if not premium. if (force_expiration or (check_premium and not self.premium_expire) or (self.premium_expire and new_premium_expire > self.premium_expire)): self.premium_expire = new_premium_expire self.save() logging.user(self.user, "~BY~SN~FWFound ~SB~FB%s paypal~FW~SN and ~SB~FC%s stripe~FW~SN payments (~SB%s payments expire: ~SN~FB%s~FW)" % ( len(paypal_payments), total_stripe_payments, len(payment_history), self.premium_expire)) if (check_premium and not self.is_premium and (not self.premium_expire or self.premium_expire > datetime.datetime.now())): self.activate_premium() @classmethod def reimport_stripe_history(cls, limit=10, days=7, starting_after=None): stripe.api_key = settings.STRIPE_SECRET week = (datetime.datetime.now() - datetime.timedelta(days=days)).strftime('%s') failed = [] i = 0 while True: logging.debug(" ---> At %s / %s" % (i, starting_after)) i += 1 try: data = stripe.Charge.all(created={'gt': week}, count=limit, starting_after=starting_after) except stripe.APIConnectionError: time.sleep(10) continue charges = data['data'] if not len(charges): logging.debug("At %s (%s), finished" % (i, starting_after)) break starting_after = charges[-1]["id"] customers = [c['customer'] for c in charges if 'customer' in c] for customer in customers: if not customer: print " ***> No customer!" continue try: profile = Profile.objects.get(stripe_id=customer) user = profile.user except Profile.DoesNotExist: logging.debug(" ***> Couldn't find stripe_id=%s" % customer) failed.append(customer) continue except Profile.MultipleObjectsReturned: logging.debug(" ***> Multiple stripe_id=%s" % customer) failed.append(customer) continue try: user.profile.setup_premium_history() except stripe.APIConnectionError: logging.debug(" ***> Failed: %s" % user.username) failed.append(user.username) time.sleep(2) continue return ','.join(failed) def refund_premium(self, partial=False): refunded = False if self.stripe_id: stripe.api_key = settings.STRIPE_SECRET stripe_customer = stripe.Customer.retrieve(self.stripe_id) stripe_payments = stripe.Charge.all(customer=stripe_customer.id).data if partial: stripe_payments[0].refund(amount=1200) refunded = 12 else: stripe_payments[0].refund() self.cancel_premium() refunded = stripe_payments[0].amount/100 logging.user(self.user, "~FRRefunding stripe payment: $%s" % refunded) else: self.cancel_premium() paypal_opts = { 'API_ENVIRONMENT': 'PRODUCTION', 'API_USERNAME': settings.PAYPAL_API_USERNAME, 'API_PASSWORD': settings.PAYPAL_API_PASSWORD, 'API_SIGNATURE': settings.PAYPAL_API_SIGNATURE, 'API_CA_CERTS': False, } paypal = PayPalInterface(**paypal_opts) transactions = PayPalIPN.objects.filter(custom=self.user.username, txn_type='subscr_payment' ).order_by('-payment_date') if not transactions: transactions = PayPalIPN.objects.filter(payer_email=self.user.email, txn_type='subscr_payment' ).order_by('-payment_date') if transactions: transaction = transactions[0] refund = paypal.refund_transaction(transaction.txn_id) try: refunded = int(float(refund.raw['TOTALREFUNDEDAMOUNT'][0])) except KeyError: refunded = int(transaction.payment_gross) logging.user(self.user, "~FRRefunding paypal payment: $%s" % refunded) else: logging.user(self.user, "~FRCouldn't refund paypal payment: not found by username or email") refunded = 0 return refunded def cancel_premium(self): paypal_cancel = self.cancel_premium_paypal() stripe_cancel = self.cancel_premium_stripe() return stripe_cancel or paypal_cancel def cancel_premium_paypal(self, second_most_recent_only=False): transactions = PayPalIPN.objects.filter(custom=self.user.username, txn_type='subscr_signup').order_by('-subscr_date') if not transactions: return paypal_opts = { 'API_ENVIRONMENT': 'PRODUCTION', 'API_USERNAME': settings.PAYPAL_API_USERNAME, 'API_PASSWORD': settings.PAYPAL_API_PASSWORD, 'API_SIGNATURE': settings.PAYPAL_API_SIGNATURE, 'API_CA_CERTS': False, } paypal = PayPalInterface(**paypal_opts) if second_most_recent_only: # Check if user has an active subscription. If so, cancel it because a new one came in. if len(transactions) > 1: transaction = transactions[1] else: return False else: transaction = transactions[0] profileid = transaction.subscr_id try: paypal.manage_recurring_payments_profile_status(profileid=profileid, action='Cancel') except PayPalAPIResponseError: logging.user(self.user, "~FRUser ~SBalready~SN canceled Paypal subscription: %s" % profileid) else: if second_most_recent_only: logging.user(self.user, "~FRCanceling ~BR~FWsecond-oldest~SB~FR Paypal subscription: %s" % profileid) else: logging.user(self.user, "~FRCanceling Paypal subscription: %s" % profileid) return True def cancel_premium_stripe(self): if not self.stripe_id: return stripe.api_key = settings.STRIPE_SECRET stripe_customer = stripe.Customer.retrieve(self.stripe_id) try: stripe_customer.cancel_subscription() except stripe.InvalidRequestError: logging.user(self.user, "~FRFailed to cancel Stripe subscription") logging.user(self.user, "~FRCanceling Stripe subscription") return True def retrieve_stripe_ids(self): if not self.stripe_id: return stripe.api_key = settings.STRIPE_SECRET stripe_customer = stripe.Customer.retrieve(self.stripe_id) stripe_email = stripe_customer.email stripe_ids = set() for email in set([stripe_email, self.user.email]): customers = stripe.Customer.list(email=email) for customer in customers: stripe_ids.add(customer.stripe_id) self.user.stripe_ids.all().delete() for stripe_id in stripe_ids: self.user.stripe_ids.create(stripe_id=stripe_id) @property def latest_paypal_email(self): ipn = PayPalIPN.objects.filter(custom=self.user.username) if not len(ipn): return return ipn[0].payer_email def activate_ios_premium(self, product_identifier, transaction_identifier, amount=36): payments = PaymentHistory.objects.filter(user=self.user, payment_identifier=transaction_identifier, payment_date__gte=datetime.datetime.now()-datetime.timedelta(days=3)) if len(payments): # Already paid logging.user(self.user, "~FG~BBAlready paid iOS premium subscription: $%s~FW" % transaction_identifier) return False PaymentHistory.objects.create(user=self.user, payment_date=datetime.datetime.now(), payment_amount=amount, payment_provider='ios-subscription', payment_identifier=transaction_identifier) self.setup_premium_history(check_premium=True) if not self.is_premium: self.activate_premium() logging.user(self.user, "~FG~BBNew iOS premium subscription: $%s~FW" % product_identifier) return True @classmethod def clear_dead_spammers(self, days=30, confirm=False): users = User.objects.filter(date_joined__gte=datetime.datetime.now()-datetime.timedelta(days=days)).order_by('-date_joined') usernames = set() numerics = re.compile(r'[0-9]+') for user in users: opens = UserSubscription.objects.filter(user=user).aggregate(sum=Sum('feed_opens'))['sum'] reads = RUserStory.read_story_count(user.pk) has_numbers = numerics.search(user.username) try: has_profile = user.profile.last_seen_ip except Profile.DoesNotExist: usernames.add(user.username) print " ---> Missing profile: %-20s %-30s %-6s %-6s" % (user.username, user.email, opens, reads) continue if opens is None and not reads and has_numbers: usernames.add(user.username) print " ---> Numerics: %-20s %-30s %-6s %-6s" % (user.username, user.email, opens, reads) elif not has_profile: usernames.add(user.username) print " ---> No IP: %-20s %-30s %-6s %-6s" % (user.username, user.email, opens, reads) if not confirm: return usernames for username in usernames: u = User.objects.get(username=username) u.profile.delete_user(confirm=True) RNewUserQueue.user_count() RNewUserQueue.activate_all() @classmethod def count_feed_subscribers(self, feed_id=None, user_id=None, verbose=True): SUBSCRIBER_EXPIRE = datetime.datetime.now() - datetime.timedelta(days=settings.SUBSCRIBER_EXPIRE) r = redis.Redis(connection_pool=settings.REDIS_FEED_SUB_POOL) entire_feed_counted = False if verbose: feed = Feed.get_by_id(feed_id) logging.debug(" ---> [%-30s] ~SN~FBCounting subscribers for feed:~SB~FM%s~SN~FB user:~SB~FM%s" % (feed.log_title[:30], feed_id, user_id)) if feed_id: feed_ids = [feed_id] elif user_id: feed_ids = [us['feed_id'] for us in UserSubscription.objects.filter(user=user_id, active=True).values('feed_id')] else: assert False, "feed_id or user_id required" if feed_id and not user_id: entire_feed_counted = True for feed_id in feed_ids: total = 0 premium = 0 active = 0 active_premium = 0 key = 's:%s' % feed_id premium_key = 'sp:%s' % feed_id if user_id: active = UserSubscription.objects.get(feed_id=feed_id, user_id=user_id).only('active').active user_ids = dict([(user_id, active)]) else: user_ids = dict([(us.user_id, us.active) for us in UserSubscription.objects.filter(feed_id=feed_id).only('user', 'active')]) profiles = Profile.objects.filter(user_id__in=user_ids.keys()).values('user_id', 'last_seen_on', 'is_premium') feed = Feed.get_by_id(feed_id) if entire_feed_counted: r.delete(key) r.delete(premium_key) for profiles_group in chunks(profiles, 20): pipeline = r.pipeline() for profile in profiles_group: last_seen_on = int(profile['last_seen_on'].strftime('%s')) muted_feed = not bool(user_ids[profile['user_id']]) if muted_feed: last_seen_on = 0 pipeline.zadd(key, profile['user_id'], last_seen_on) total += 1 if profile['is_premium']: pipeline.zadd(premium_key, profile['user_id'], last_seen_on) premium += 1 else: pipeline.zrem(premium_key, profile['user_id']) if profile['last_seen_on'] > SUBSCRIBER_EXPIRE and not muted_feed: active += 1 if profile['is_premium']: active_premium += 1 pipeline.execute() if entire_feed_counted: now = int(datetime.datetime.now().strftime('%s')) r.zadd(key, -1, now) r.expire(key, settings.SUBSCRIBER_EXPIRE*24*60*60) r.zadd(premium_key, -1, now) r.expire(premium_key, settings.SUBSCRIBER_EXPIRE*24*60*60) logging.info(" ---> [%-30s] ~SN~FBCounting subscribers, storing in ~SBredis~SN: ~FMt:~SB~FM%s~SN a:~SB%s~SN p:~SB%s~SN ap:~SB%s" % (feed.log_title[:30], total, active, premium, active_premium)) @classmethod def count_all_feed_subscribers_for_user(self, user): r = redis.Redis(connection_pool=settings.REDIS_FEED_SUB_POOL) if not isinstance(user, User): user = User.objects.get(pk=user) active_feed_ids = [us['feed_id'] for us in UserSubscription.objects.filter(user=user.pk, active=True).values('feed_id')] muted_feed_ids = [us['feed_id'] for us in UserSubscription.objects.filter(user=user.pk, active=False).values('feed_id')] logging.user(user, "~SN~FBRefreshing user last_login_on for ~SB%s~SN/~SB%s subscriptions~SN" % (len(active_feed_ids), len(muted_feed_ids))) for feed_ids in [active_feed_ids, muted_feed_ids]: for feeds_group in chunks(feed_ids, 20): pipeline = r.pipeline() for feed_id in feeds_group: key = 's:%s' % feed_id premium_key = 'sp:%s' % feed_id last_seen_on = int(user.profile.last_seen_on.strftime('%s')) if feed_ids is muted_feed_ids: last_seen_on = 0 pipeline.zadd(key, user.pk, last_seen_on) if user.profile.is_premium: pipeline.zadd(premium_key, user.pk, last_seen_on) else: pipeline.zrem(premium_key, user.pk) pipeline.execute() def import_reader_starred_items(self, count=20): importer = GoogleReaderImporter(self.user) importer.import_starred_items(count=count) def send_new_user_email(self): if not self.user.email or not self.send_emails: return user = self.user text = render_to_string('mail/email_new_account.txt', locals()) html = render_to_string('mail/email_new_account.xhtml', locals()) subject = "Welcome to NewsBlur, %s" % (self.user.username) msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send(fail_silently=True) logging.user(self.user, "~BB~FM~SBSending email for new user: %s" % self.user.email) def send_opml_export_email(self, reason=None, force=False): if not self.user.email: return emails_sent = MSentEmail.objects.filter(receiver_user_id=self.user.pk, email_type='opml_export') day_ago = datetime.datetime.now() - datetime.timedelta(days=1) for email in emails_sent: if email.date_sent > day_ago and not force: logging.user(self.user, "~SN~FMNot sending opml export email, already sent today.") return MSentEmail.record(receiver_user_id=self.user.pk, email_type='opml_export') exporter = OPMLExporter(self.user) opml = exporter.process() params = { 'feed_count': UserSubscription.objects.filter(user=self.user).count(), 'reason': reason, } user = self.user text = render_to_string('mail/email_opml_export.txt', params) html = render_to_string('mail/email_opml_export.xhtml', params) subject = "Backup OPML file of your NewsBlur sites" filename= 'NewsBlur Subscriptions - %s.xml' % datetime.datetime.now().strftime('%Y-%m-%d') msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.attach(filename, opml, 'text/xml') msg.send(fail_silently=True) logging.user(self.user, "~BB~FM~SBSending OPML backup email to: %s" % self.user.email) def send_first_share_to_blurblog_email(self, force=False): from apps.social.models import MSocialProfile, MSharedStory if not self.user.email: return params = dict(receiver_user_id=self.user.pk, email_type='first_share') try: MSentEmail.objects.get(**params) if not force: # Return if email already sent return except MSentEmail.DoesNotExist: MSentEmail.objects.create(**params) social_profile = MSocialProfile.objects.get(user_id=self.user.pk) params = { 'shared_stories': MSharedStory.objects.filter(user_id=self.user.pk).count(), 'blurblog_url': social_profile.blurblog_url, 'blurblog_rss': social_profile.blurblog_rss } user = self.user text = render_to_string('mail/email_first_share_to_blurblog.txt', params) html = render_to_string('mail/email_first_share_to_blurblog.xhtml', params) subject = "Your shared stories on NewsBlur are available on your Blurblog" msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send(fail_silently=True) logging.user(self.user, "~BB~FM~SBSending first share to blurblog email to: %s" % self.user.email) def send_new_premium_email(self, force=False): # subs = UserSubscription.objects.filter(user=self.user) # message = """Woohoo! # # User: %(user)s # Feeds: %(feeds)s # # Sincerely, # NewsBlur""" % {'user': self.user.username, 'feeds': subs.count()} # mail_admins('New premium account', message, fail_silently=True) if not self.user.email or not self.send_emails: return params = dict(receiver_user_id=self.user.pk, email_type='new_premium') try: MSentEmail.objects.get(**params) if not force: # Return if email already sent return except MSentEmail.DoesNotExist: MSentEmail.objects.create(**params) user = self.user text = render_to_string('mail/email_new_premium.txt', locals()) html = render_to_string('mail/email_new_premium.xhtml', locals()) subject = "Thanks for going premium on NewsBlur!" msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send(fail_silently=True) logging.user(self.user, "~BB~FM~SBSending email for new premium: %s" % self.user.email) def send_forgot_password_email(self, email=None): if not self.user.email and not email: print "Please provide an email address." return if not self.user.email and email: self.user.email = email self.user.save() user = self.user text = render_to_string('mail/email_forgot_password.txt', locals()) html = render_to_string('mail/email_forgot_password.xhtml', locals()) subject = "Forgot your password on NewsBlur?" msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send(fail_silently=True) logging.user(self.user, "~BB~FM~SBSending email for forgotten password: %s" % self.user.email) def send_new_user_queue_email(self, force=False): if not self.user.email: print "Please provide an email address." return params = dict(receiver_user_id=self.user.pk, email_type='new_user_queue') try: MSentEmail.objects.get(**params) if not force: # Return if email already sent return except MSentEmail.DoesNotExist: MSentEmail.objects.create(**params) user = self.user text = render_to_string('mail/email_new_user_queue.txt', locals()) html = render_to_string('mail/email_new_user_queue.xhtml', locals()) subject = "Your free account is now ready to go on NewsBlur" msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send(fail_silently=True) logging.user(self.user, "~BB~FM~SBSending email for new user queue: %s" % self.user.email) def send_upload_opml_finished_email(self, feed_count): if not self.user.email: print "Please provide an email address." return user = self.user text = render_to_string('mail/email_upload_opml_finished.txt', locals()) html = render_to_string('mail/email_upload_opml_finished.xhtml', locals()) subject = "Your OPML upload is complete. Get going with NewsBlur!" msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send() logging.user(self.user, "~BB~FM~SBSending email for OPML upload: %s" % self.user.email) def send_import_reader_finished_email(self, feed_count): if not self.user.email: print "Please provide an email address." return user = self.user text = render_to_string('mail/email_import_reader_finished.txt', locals()) html = render_to_string('mail/email_import_reader_finished.xhtml', locals()) subject = "Your Google Reader import is complete. Get going with NewsBlur!" msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send() logging.user(self.user, "~BB~FM~SBSending email for Google Reader import: %s" % self.user.email) def send_import_reader_starred_finished_email(self, feed_count, starred_count): if not self.user.email: print "Please provide an email address." return user = self.user text = render_to_string('mail/email_import_reader_starred_finished.txt', locals()) html = render_to_string('mail/email_import_reader_starred_finished.xhtml', locals()) subject = "Your Google Reader starred stories import is complete. Get going with NewsBlur!" msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send() logging.user(self.user, "~BB~FM~SBSending email for Google Reader starred stories import: %s" % self.user.email) def send_launch_social_email(self, force=False): if not self.user.email or not self.send_emails: logging.user(self.user, "~FM~SB~FRNot~FM sending launch social email for user, %s: %s" % (self.user.email and 'opt-out: ' or 'blank', self.user.email)) return params = dict(receiver_user_id=self.user.pk, email_type='launch_social') try: MSentEmail.objects.get(**params) if not force: # Return if email already sent logging.user(self.user, "~FM~SB~FRNot~FM sending launch social email for user, sent already: %s" % self.user.email) return except MSentEmail.DoesNotExist: MSentEmail.objects.create(**params) delta = datetime.datetime.now() - self.last_seen_on months_ago = delta.days / 30 user = self.user data = dict(user=user, months_ago=months_ago) text = render_to_string('mail/email_launch_social.txt', data) html = render_to_string('mail/email_launch_social.xhtml', data) subject = "NewsBlur is now a social news reader" msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send(fail_silently=True) logging.user(self.user, "~BB~FM~SBSending launch social email for user: %s months, %s" % (months_ago, self.user.email)) def send_launch_turntouch_email(self, force=False): if not self.user.email or not self.send_emails: logging.user(self.user, "~FM~SB~FRNot~FM sending launch TT email for user, %s: %s" % (self.user.email and 'opt-out: ' or 'blank', self.user.email)) return params = dict(receiver_user_id=self.user.pk, email_type='launch_turntouch') try: MSentEmail.objects.get(**params) if not force: # Return if email already sent logging.user(self.user, "~FM~SB~FRNot~FM sending launch social email for user, sent already: %s" % self.user.email) return except MSentEmail.DoesNotExist: MSentEmail.objects.create(**params) delta = datetime.datetime.now() - self.last_seen_on months_ago = delta.days / 30 user = self.user data = dict(user=user, months_ago=months_ago) text = render_to_string('mail/email_launch_turntouch.txt', data) html = render_to_string('mail/email_launch_turntouch.xhtml', data) subject = "Introducing Turn Touch for NewsBlur" msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send(fail_silently=True) logging.user(self.user, "~BB~FM~SBSending launch TT email for user: %s months, %s" % (months_ago, self.user.email)) def send_launch_turntouch_end_email(self, force=False): if not self.user.email or not self.send_emails: logging.user(self.user, "~FM~SB~FRNot~FM sending launch TT end email for user, %s: %s" % (self.user.email and 'opt-out: ' or 'blank', self.user.email)) return params = dict(receiver_user_id=self.user.pk, email_type='launch_turntouch_end') try: MSentEmail.objects.get(**params) if not force: # Return if email already sent logging.user(self.user, "~FM~SB~FRNot~FM sending launch TT end email for user, sent already: %s" % self.user.email) return except MSentEmail.DoesNotExist: MSentEmail.objects.create(**params) delta = datetime.datetime.now() - self.last_seen_on months_ago = delta.days / 30 user = self.user data = dict(user=user, months_ago=months_ago) text = render_to_string('mail/email_launch_turntouch_end.txt', data) html = render_to_string('mail/email_launch_turntouch_end.xhtml', data) subject = "Last day to back Turn Touch: NewsBlur's beautiful remote" msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send(fail_silently=True) logging.user(self.user, "~BB~FM~SBSending launch TT end email for user: %s months, %s" % (months_ago, self.user.email)) def grace_period_email_sent(self, force=False): emails_sent = MSentEmail.objects.filter(receiver_user_id=self.user.pk, email_type='premium_expire_grace') day_ago = datetime.datetime.now() - datetime.timedelta(days=360) for email in emails_sent: if email.date_sent > day_ago and not force: logging.user(self.user, "~SN~FMNot sending premium expire grace email, already sent before.") return True def send_premium_expire_grace_period_email(self, force=False): if not self.user.email: logging.user(self.user, "~FM~SB~FRNot~FM~SN sending premium expire grace for user: %s" % (self.user)) return if self.grace_period_email_sent(force=force): return if self.premium_expire and self.premium_expire < datetime.datetime.now(): self.premium_expire = datetime.datetime.now() self.save() delta = datetime.datetime.now() - self.last_seen_on months_ago = delta.days / 30 user = self.user data = dict(user=user, months_ago=months_ago) text = render_to_string('mail/email_premium_expire_grace.txt', data) html = render_to_string('mail/email_premium_expire_grace.xhtml', data) subject = "Your premium account on NewsBlur has one more month!" msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send(fail_silently=True) MSentEmail.record(receiver_user_id=self.user.pk, email_type='premium_expire_grace') logging.user(self.user, "~BB~FM~SBSending premium expire grace email for user: %s months, %s" % (months_ago, self.user.email)) def send_premium_expire_email(self, force=False): if not self.user.email: logging.user(self.user, "~FM~SB~FRNot~FM sending premium expire for user: %s" % (self.user)) return emails_sent = MSentEmail.objects.filter(receiver_user_id=self.user.pk, email_type='premium_expire') day_ago = datetime.datetime.now() - datetime.timedelta(days=360) for email in emails_sent: if email.date_sent > day_ago and not force: logging.user(self.user, "~FM~SBNot sending premium expire email, already sent before.") return delta = datetime.datetime.now() - self.last_seen_on months_ago = delta.days / 30 user = self.user data = dict(user=user, months_ago=months_ago) text = render_to_string('mail/email_premium_expire.txt', data) html = render_to_string('mail/email_premium_expire.xhtml', data) subject = "Your premium account on NewsBlur has expired" msg = EmailMultiAlternatives(subject, text, from_email='NewsBlur <%s>' % settings.HELLO_EMAIL, to=['%s <%s>' % (user, user.email)]) msg.attach_alternative(html, "text/html") msg.send(fail_silently=True) MSentEmail.record(receiver_user_id=self.user.pk, email_type='premium_expire') logging.user(self.user, "~BB~FM~SBSending premium expire email for user: %s months, %s" % (months_ago, self.user.email)) def autologin_url(self, next=None): return reverse('autologin', kwargs={ 'username': self.user.username, 'secret': self.secret_token }) + ('?' + next + '=1' if next else '') @classmethod def doublecheck_paypal_payments(cls, days=14): payments = PayPalIPN.objects.filter(txn_type='subscr_payment', updated_at__gte=datetime.datetime.now() - datetime.timedelta(days) ).order_by('-created_at') for payment in payments: try: profile = Profile.objects.get(user__username=payment.custom) except Profile.DoesNotExist: logging.debug(" ---> ~FRCouldn't find user: ~SB~FC%s" % payment.custom) continue profile.setup_premium_history(check_premium=True) class StripeIds(models.Model): user = models.ForeignKey(User, related_name='stripe_ids') stripe_id = models.CharField(max_length=24, blank=True, null=True) def __unicode__(self): return "%s: %s" % (self.user.username, self.stripe_id) def create_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) else: Profile.objects.get_or_create(user=instance) post_save.connect(create_profile, sender=User) def paypal_signup(sender, **kwargs): ipn_obj = sender try: user = User.objects.get(username__iexact=ipn_obj.custom) except User.DoesNotExist: user = User.objects.get(email__iexact=ipn_obj.payer_email) logging.user(user, "~BC~SB~FBPaypal subscription signup") try: if not user.email: user.email = ipn_obj.payer_email user.save() except: pass user.profile.activate_premium() user.profile.cancel_premium_stripe() user.profile.cancel_premium_paypal(second_most_recent_only=True) subscription_signup.connect(paypal_signup) def paypal_payment_history_sync(sender, **kwargs): ipn_obj = sender try: user = User.objects.get(username__iexact=ipn_obj.custom) except User.DoesNotExist: user = User.objects.get(email__iexact=ipn_obj.payer_email) logging.user(user, "~BC~SB~FBPaypal subscription payment") try: user.profile.setup_premium_history(check_premium=True) except: return {"code": -1, "message": "User doesn't exist."} payment_was_successful.connect(paypal_payment_history_sync) def paypal_payment_was_flagged(sender, **kwargs): ipn_obj = sender try: user = User.objects.get(username__iexact=ipn_obj.custom) except User.DoesNotExist: if ipn_obj.payer_email: user = User.objects.get(email__iexact=ipn_obj.payer_email) try: user.profile.setup_premium_history(check_premium=True) logging.user(user, "~BC~SB~FBPaypal subscription payment flagged") except: return {"code": -1, "message": "User doesn't exist."} payment_was_flagged.connect(paypal_payment_was_flagged) def paypal_recurring_payment_history_sync(sender, **kwargs): ipn_obj = sender try: user = User.objects.get(username__iexact=ipn_obj.custom) except User.DoesNotExist: user = User.objects.get(email__iexact=ipn_obj.payer_email) logging.user(user, "~BC~SB~FBPaypal subscription recurring payment") try: user.profile.setup_premium_history(check_premium=True) except: return {"code": -1, "message": "User doesn't exist."} recurring_payment.connect(paypal_recurring_payment_history_sync) def stripe_signup(sender, full_json, **kwargs): stripe_id = full_json['data']['object']['customer'] try: profile = Profile.objects.get(stripe_id=stripe_id) logging.user(profile.user, "~BC~SB~FBStripe subscription signup") profile.activate_premium() profile.cancel_premium_paypal() profile.retrieve_stripe_ids() except Profile.DoesNotExist: return {"code": -1, "message": "User doesn't exist."} zebra_webhook_customer_subscription_created.connect(stripe_signup) def stripe_payment_history_sync(sender, full_json, **kwargs): stripe_id = full_json['data']['object']['customer'] try: profile = Profile.objects.get(stripe_id=stripe_id) logging.user(profile.user, "~BC~SB~FBStripe subscription payment") profile.setup_premium_history(check_premium=True) except Profile.DoesNotExist: return {"code": -1, "message": "User doesn't exist."} zebra_webhook_charge_succeeded.connect(stripe_payment_history_sync) def change_password(user, old_password, new_password, only_check=False): user_db = authenticate(username=user.username, password=old_password) if user_db is None: blank = blank_authenticate(user.username) if blank and not only_check: user.set_password(new_password or user.username) user.save() if user_db is None: user_db = authenticate(username=user.username, password=user.username) if not user_db: return -1 else: if not only_check: user_db.set_password(new_password) user_db.save() return 1 def blank_authenticate(username, password=""): try: user = User.objects.get(username__iexact=username) except User.DoesNotExist: return if user.password == "!": return user algorithm, salt, hash = user.password.split('$', 2) encoded_blank = hashlib.sha1(salt + password).hexdigest() encoded_username = authenticate(username=username, password=username) if encoded_blank == hash or encoded_username == user: return user # Unfinished class MEmailUnsubscribe(mongo.Document): user_id = mongo.IntField() email_type = mongo.StringField() date = mongo.DateTimeField(default=datetime.datetime.now) EMAIL_TYPE_FOLLOWS = 'follows' EMAIL_TYPE_REPLIES = 'replies' EMAIL_TYOE_PRODUCT = 'product' meta = { 'collection': 'email_unsubscribes', 'allow_inheritance': False, 'indexes': ['user_id', {'fields': ['user_id', 'email_type'], 'unique': True, 'types': False}], } def __unicode__(self): return "%s unsubscribed from %s on %s" % (self.user_id, self.email_type, self.date) @classmethod def user(cls, user_id): unsubs = cls.objects(user_id=user_id) return unsubs @classmethod def unsubscribe(cls, user_id, email_type): cls.objects.create() class MSentEmail(mongo.Document): sending_user_id = mongo.IntField() receiver_user_id = mongo.IntField() email_type = mongo.StringField() date_sent = mongo.DateTimeField(default=datetime.datetime.now) meta = { 'collection': 'sent_emails', 'allow_inheritance': False, 'indexes': ['sending_user_id', 'receiver_user_id', 'email_type'], } def __unicode__(self): return "%s sent %s email to %s" % (self.sending_user_id, self.email_type, self.receiver_user_id) @classmethod def record(cls, email_type, receiver_user_id, sending_user_id=None): cls.objects.create(email_type=email_type, receiver_user_id=receiver_user_id, sending_user_id=sending_user_id) class PaymentHistory(models.Model): user = models.ForeignKey(User, related_name='payments') payment_date = models.DateTimeField() payment_amount = models.IntegerField() payment_provider = models.CharField(max_length=20) payment_identifier = models.CharField(max_length=100, null=True) def __unicode__(self): return "[%s] $%s/%s" % (self.payment_date.strftime("%Y-%m-%d"), self.payment_amount, self.payment_provider) class Meta: ordering = ['-payment_date'] def canonical(self): return { 'payment_date': self.payment_date.strftime('%Y-%m-%d'), 'payment_amount': self.payment_amount, 'payment_provider': self.payment_provider, } @classmethod def report(cls, months=26): output = "" def _counter(start_date, end_date, output, payments=None): if not payments: payments = PaymentHistory.objects.filter(payment_date__gte=start_date, payment_date__lte=end_date) payments = payments.aggregate(avg=Avg('payment_amount'), sum=Sum('payment_amount'), count=Count('user')) output += "%s-%02d-%02d - %s-%02d-%02d:\t$%.2f\t$%-6s\t%-4s\n" % ( start_date.year, start_date.month, start_date.day, end_date.year, end_date.month, end_date.day, round(payments['avg'] if payments['avg'] else 0, 2), payments['sum'] if payments['sum'] else 0, payments['count']) return payments, output output += "\nMonthly Totals:\n" for m in reversed(range(months)): now = datetime.datetime.now() start_date = datetime.datetime(now.year, now.month, 1) - dateutil.relativedelta.relativedelta(months=m) end_time = start_date + datetime.timedelta(days=31) end_date = datetime.datetime(end_time.year, end_time.month, 1) - datetime.timedelta(seconds=1) total, output = _counter(start_date, end_date, output) total = total['sum'] output += "\nMTD Totals:\n" years = datetime.datetime.now().year - 2009 this_mtd_avg = 0 last_mtd_avg = 0 last_mtd_sum = 0 this_mtd_sum = 0 last_mtd_count = 0 this_mtd_count = 0 for y in reversed(range(years)): now = datetime.datetime.now() start_date = datetime.datetime(now.year, now.month, 1) - dateutil.relativedelta.relativedelta(years=y) end_date = now - dateutil.relativedelta.relativedelta(years=y) if end_date > now: end_date = now count, output = _counter(start_date, end_date, output) if end_date.year != now.year: last_mtd_avg = count['avg'] or 0 last_mtd_sum = count['sum'] or 0 last_mtd_count = count['count'] else: this_mtd_avg = count['avg'] or 0 this_mtd_sum = count['sum'] or 0 this_mtd_count = count['count'] output += "\nCurrent Month Totals:\n" years = datetime.datetime.now().year - 2009 last_month_avg = 0 last_month_sum = 0 last_month_count = 0 for y in reversed(range(years)): now = datetime.datetime.now() start_date = datetime.datetime(now.year, now.month, 1) - dateutil.relativedelta.relativedelta(years=y) end_time = start_date + datetime.timedelta(days=31) end_date = datetime.datetime(end_time.year, end_time.month, 1) - datetime.timedelta(seconds=1) if end_date > now: payments = {'avg': this_mtd_avg / (max(1, last_mtd_avg) / float(max(1, last_month_avg))), 'sum': int(round(this_mtd_sum / (max(1, last_mtd_sum) / float(max(1, last_month_sum))))), 'count': int(round(this_mtd_count / (max(1, last_mtd_count) / float(max(1, last_month_count)))))} _, output = _counter(start_date, end_date, output, payments=payments) else: count, output = _counter(start_date, end_date, output) last_month_avg = count['avg'] last_month_sum = count['sum'] last_month_count = count['count'] output += "\nYTD Totals:\n" years = datetime.datetime.now().year - 2009 this_ytd_avg = 0 last_ytd_avg = 0 this_ytd_sum = 0 last_ytd_sum = 0 this_ytd_count = 0 last_ytd_count = 0 for y in reversed(range(years)): now = datetime.datetime.now() start_date = datetime.datetime(now.year, 1, 1) - dateutil.relativedelta.relativedelta(years=y) end_date = now - dateutil.relativedelta.relativedelta(years=y) count, output = _counter(start_date, end_date, output) if end_date.year != now.year: last_ytd_avg = count['avg'] or 0 last_ytd_sum = count['sum'] or 0 last_ytd_count = count['count'] else: this_ytd_avg = count['avg'] or 0 this_ytd_sum = count['sum'] or 0 this_ytd_count = count['count'] output += "\nYearly Totals:\n" years = datetime.datetime.now().year - 2009 last_year_avg = 0 last_year_sum = 0 last_year_count = 0 annual = 0 for y in reversed(range(years)): now = datetime.datetime.now() start_date = datetime.datetime(now.year, 1, 1) - dateutil.relativedelta.relativedelta(years=y) end_date = datetime.datetime(now.year, 1, 1) - dateutil.relativedelta.relativedelta(years=y-1) - datetime.timedelta(seconds=1) if end_date > now: payments = {'avg': this_ytd_avg / (max(1, last_ytd_avg) / float(max(1, last_year_avg))), 'sum': int(round(this_ytd_sum / (max(1, last_ytd_sum) / float(max(1, last_year_sum))))), 'count': int(round(this_ytd_count / (max(1, last_ytd_count) / float(max(1, last_year_count)))))} count, output = _counter(start_date, end_date, output, payments=payments) annual = count['sum'] else: count, output = _counter(start_date, end_date, output) last_year_avg = count['avg'] or 0 last_year_sum = count['sum'] or 0 last_year_count = count['count'] total = cls.objects.all().aggregate(sum=Sum('payment_amount')) output += "\nTotal: $%s\n" % total['sum'] print output return {'annual': annual, 'output': output} class MGiftCode(mongo.Document): gifting_user_id = mongo.IntField() receiving_user_id = mongo.IntField() gift_code = mongo.StringField(max_length=12) duration_days = mongo.IntField() payment_amount = mongo.IntField() created_date = mongo.DateTimeField(default=datetime.datetime.now) meta = { 'collection': 'gift_codes', 'allow_inheritance': False, 'indexes': ['gifting_user_id', 'receiving_user_id', 'created_date'], } def __unicode__(self): return "%s gifted %s on %s: %s (redeemed %s times)" % (self.gifting_user_id, self.receiving_user_id, self.created_date, self.gift_code, self.redeemed) @property def redeemed(self): redeemed_code = MRedeemedCode.objects.filter(gift_code=self.gift_code) return len(redeemed_code) @staticmethod def create_code(gift_code=None): u = unicode(uuid.uuid4()) code = u[:8] + u[9:13] if gift_code: code = gift_code + code[len(gift_code):] return code @classmethod def add(cls, gift_code=None, duration=0, gifting_user_id=None, receiving_user_id=None, payment=0): return cls.objects.create(gift_code=cls.create_code(gift_code), gifting_user_id=gifting_user_id, receiving_user_id=receiving_user_id, duration_days=duration, payment_amount=payment) class MRedeemedCode(mongo.Document): user_id = mongo.IntField() gift_code = mongo.StringField() redeemed_date = mongo.DateTimeField(default=datetime.datetime.now) meta = { 'collection': 'redeemed_codes', 'allow_inheritance': False, 'indexes': ['user_id', 'gift_code', 'redeemed_date'], } def __unicode__(self): return "%s redeemed %s on %s" % (self.user_id, self.gift_code, self.redeemed_date) @classmethod def record(cls, user_id, gift_code): cls.objects.create(user_id=user_id, gift_code=gift_code) @classmethod def redeem(cls, user, gift_code): newsblur_gift_code = MGiftCode.objects.filter(gift_code__iexact=gift_code) if newsblur_gift_code: newsblur_gift_code = newsblur_gift_code[0] PaymentHistory.objects.create(user=user, payment_date=datetime.datetime.now(), payment_amount=newsblur_gift_code.payment_amount, payment_provider='newsblur-gift') else: # Thinkup / Good Web Bundle PaymentHistory.objects.create(user=user, payment_date=datetime.datetime.now(), payment_amount=12, payment_provider='good-web-bundle') cls.record(user.pk, gift_code) user.profile.activate_premium() logging.user(user, "~FG~BBRedeeming gift code: %s~FW" % gift_code) class MCustomStyling(mongo.Document): user_id = mongo.IntField(unique=True) custom_css = mongo.StringField() custom_js = mongo.StringField() updated_date = mongo.DateTimeField(default=datetime.datetime.now) meta = { 'collection': 'custom_styling', 'allow_inheritance': False, 'indexes': ['user_id'], } def __unicode__(self): return "%s custom style %s/%s %s" % (self.user_id, len(self.custom_css) if self.custom_css else "-", len(self.custom_js) if self.custom_js else "-", self.updated_date) def canonical(self): return { 'css': self.custom_css, 'js': self.custom_js, } @classmethod def get_user(cls, user_id): try: styling = cls.objects.get(user_id=user_id) except cls.DoesNotExist: return None return styling @classmethod def save_user(cls, user_id, css, js): styling = cls.get_user(user_id) if not css and not js: if styling: styling.delete() return if not styling: styling = cls.objects.create(user_id=user_id) styling.custom_css = css styling.custom_js = js styling.save() class RNewUserQueue: KEY = "new_user_queue" @classmethod def activate_next(cls): count = cls.user_count() if not count: return user_id = cls.pop_user() try: user = User.objects.get(pk=user_id) except User.DoesNotExist: logging.debug("~FRCan't activate free account, can't find user ~SB%s~SN. ~FB%s still in queue." % (user_id, count-1)) return logging.user(user, "~FBActivating free account (%s / %s). %s still in queue." % (user.email, user.profile.last_seen_ip, (count-1))) user.profile.activate_free() @classmethod def activate_all(cls): count = cls.user_count() if not count: logging.debug("~FBNo users to activate, sleeping...") return for i in range(count): cls.activate_next() @classmethod def add_user(cls, user_id): r = redis.Redis(connection_pool=settings.REDIS_FEED_UPDATE_POOL) now = time.time() r.zadd(cls.KEY, user_id, now) @classmethod def user_count(cls): r = redis.Redis(connection_pool=settings.REDIS_FEED_UPDATE_POOL) count = r.zcard(cls.KEY) return count @classmethod def user_position(cls, user_id): r = redis.Redis(connection_pool=settings.REDIS_FEED_UPDATE_POOL) position = r.zrank(cls.KEY, user_id) if position >= 0: return position + 1 @classmethod def pop_user(cls): r = redis.Redis(connection_pool=settings.REDIS_FEED_UPDATE_POOL) user = r.zrange(cls.KEY, 0, 0)[0] r.zrem(cls.KEY, user) return user
# -*- coding: utf-8 -*- import os # noqa: F401 import re import shutil import time import unittest from configparser import ConfigParser from os import environ from installed_clients.DataFileUtilClient import DataFileUtil from GenomeFileUtil.GenomeFileUtilImpl import GenomeFileUtil from GenomeFileUtil.GenomeFileUtilImpl import SDKConfig from GenomeFileUtil.GenomeFileUtilServer import MethodContext from GenomeFileUtil.authclient import KBaseAuth as _KBaseAuth from GenomeFileUtil.core.FastaGFFToGenome import FastaGFFToGenome from installed_clients.WorkspaceClient import Workspace as workspaceService class FastaGFFToGenomeUploadTest(unittest.TestCase): @classmethod def setUpClass(cls): print('setting up class') cls.token = environ.get('KB_AUTH_TOKEN') config_file = environ['KB_DEPLOYMENT_CONFIG'] cls.cfg = {} config = ConfigParser() config.read(config_file) for nameval in config.items('GenomeFileUtil'): cls.cfg[nameval[0]] = nameval[1] authServiceUrl = cls.cfg.get('auth-service-url', "https://kbase.us/services/authorization/Sessions/Login") auth_client = _KBaseAuth(authServiceUrl) cls.user_id = auth_client.get_user(cls.token) cls.ctx = MethodContext(None) cls.ctx.update({'token': cls.token, 'user_id': cls.user_id, 'provenance': [ {'service': 'GenomeFileUtil', 'method': 'please_never_use_it_in_production', 'method_params': [] }], 'authenticated': 1}) cls.wsURL = cls.cfg['workspace-url'] cls.wsClient = workspaceService(cls.wsURL, token=cls.token) cls.serviceImpl = GenomeFileUtil(cls.cfg) cls.dfu = DataFileUtil(os.environ['SDK_CALLBACK_URL'], token=cls.token) cls.scratch = cls.cfg['scratch'] cls.shockURL = cls.cfg['shock-url'] cls.gfu_cfg = SDKConfig(cls.cfg) cls.prepare_data() @classmethod def tearDownClass(cls): if hasattr(cls, 'wsName'): cls.wsClient.delete_workspace({'workspace': cls.wsName}) print('Test workspace was deleted') def getWsClient(self): return self.__class__.wsClient def getWsName(self): if hasattr(self.__class__, 'wsName'): return self.__class__.wsName suffix = int(time.time() * 1000) wsName = "test_GenomeFileUtil_" + str(suffix) ret = self.getWsClient().create_workspace({'workspace': wsName}) # noqa self.__class__.wsName = wsName return wsName def getImpl(self): return self.__class__.serviceImpl def getContext(self): return self.__class__.ctx @classmethod def prepare_data(cls): cls.importer = FastaGFFToGenome(cls.gfu_cfg) cls.gff_filename = 'Test_v1.0.gene.gff3.gz' cls.gff_path = os.path.join(cls.scratch, cls.gff_filename) shutil.copy(os.path.join("data", "fasta_gff", "JGI", "Plant_Data", cls.gff_filename), cls.gff_path) cls.fa_filename = 'Test_v1.0.fa.gz' cls.fa_path = os.path.join(cls.scratch, cls.fa_filename) shutil.copy(os.path.join("data", "fasta_gff", "JGI", "Plant_Data", cls.fa_filename), cls.fa_path) cls.fungal_gff_filename = 'Neucr2.filtered_proteins.BroadModels.gff3.gz' cls.fungal_gff_path = os.path.join(cls.scratch, cls.fungal_gff_filename) shutil.copy(os.path.join("data", "fasta_gff", "JGI", "Fungal_Data", cls.fungal_gff_filename), cls.fungal_gff_path) cls.fungal_fa_filename = 'Neucr2_AssemblyScaffolds.fasta.gz' cls.fungal_fa_path = os.path.join(cls.scratch, cls.fungal_fa_filename) shutil.copy(os.path.join("data", "fasta_gff", "JGI", "Fungal_Data", cls.fungal_fa_filename), cls.fungal_fa_path) cls.jgi_bacterial_gff_filename = '2547132501.gff.gz' cls.jgi_bacterial_gff_path = os.path.join(cls.scratch, cls.jgi_bacterial_gff_filename) shutil.copy(os.path.join("data", "fasta_gff", "JGI", "Bacterial_Data", cls.jgi_bacterial_gff_filename), cls.jgi_bacterial_gff_path) cls.jgi_bacterial_fa_filename = '2547132501.fna.gz' cls.jgi_bacterial_fa_path = os.path.join(cls.scratch, cls.jgi_bacterial_fa_filename) shutil.copy(os.path.join("data", "fasta_gff", "JGI", "Bacterial_Data", cls.jgi_bacterial_fa_filename), cls.jgi_bacterial_fa_path) cls.jgi_bacterial_gff2_filename = '91705.assembled.gff' cls.jgi_bacterial_gff2_path = os.path.join(cls.scratch, cls.jgi_bacterial_gff2_filename) shutil.copy(os.path.join("data", "fasta_gff", "JGI", "Bacterial_Data", cls.jgi_bacterial_gff2_filename), cls.jgi_bacterial_gff2_path) cls.jgi_bacterial_fa2_filename = '91705.assembled.fna' cls.jgi_bacterial_fa2_path = os.path.join(cls.scratch, cls.jgi_bacterial_fa2_filename) shutil.copy(os.path.join("data", "fasta_gff", "JGI", "Bacterial_Data", cls.jgi_bacterial_fa2_filename), cls.jgi_bacterial_fa2_path) cls.patric_bacterial_gff_filename = '1240778.3.PATRIC.gff.gz' cls.patric_bacterial_gff_path = os.path.join(cls.scratch, cls.patric_bacterial_gff_filename) shutil.copy(os.path.join("data", "fasta_gff", "PATRIC", "Ecoli_O104", cls.patric_bacterial_gff_filename), cls.patric_bacterial_gff_path) cls.patric_bacterial_fa_filename = '1240778.3.fna.gz' cls.patric_bacterial_fa_path = os.path.join(cls.scratch, cls.patric_bacterial_fa_filename) shutil.copy(os.path.join("data", "fasta_gff", "PATRIC", "Ecoli_O104", cls.patric_bacterial_fa_filename), cls.patric_bacterial_fa_path) cls.refseq_bacterial_gff_filename = 'NC_021490.gff.gz' cls.refseq_bacterial_gff_path = os.path.join(cls.scratch, cls.refseq_bacterial_gff_filename) shutil.copy(os.path.join("data", "fasta_gff", "RefSeq", "Bacterial_Data", cls.refseq_bacterial_gff_filename), cls.refseq_bacterial_gff_path) cls.refseq_bacterial_fa_filename = 'NC_021490.fasta.gz' cls.refseq_bacterial_fa_path = os.path.join(cls.scratch, cls.refseq_bacterial_fa_filename) shutil.copy(os.path.join("data", "fasta_gff", "RefSeq", "Bacterial_Data", cls.refseq_bacterial_fa_filename), cls.refseq_bacterial_fa_path) def check_minimal_items_exist(self, result): self.assertTrue('genome_info' in result) self.assertTrue('genome_ref' in result) genome_info = result['genome_info'] self.assertEqual(genome_info[10]['Domain'], 'Unknown') self.assertEqual(genome_info[10]['Genetic code'], '11') self.assertEqual(genome_info[10]['Name'], 'unknown_taxon') self.assertEqual(genome_info[10]['Source'], 'Genbank') self.assertTrue('GC content' in genome_info[10]) self.assertTrue(re.match(r"^\d+?\.\d+?$", genome_info[10]['GC content']) is not None) self.assertTrue('Number of Protein Encoding Genes' in genome_info[10]) self.assertTrue(genome_info[10]['Number of Protein Encoding Genes'].isdigit()) self.assertTrue('Size' in genome_info[10]) self.assertTrue(genome_info[10]['Size'].isdigit()) self.assertEqual(genome_info[10]['Taxonomy'], 'Unconfirmed Organism: unknown_taxon') def print_genome_warnings(self, result): data_file_cli = DataFileUtil(os.environ['SDK_CALLBACK_URL'], service_ver='dev') genome = data_file_cli.get_objects({'object_refs': [result['genome_ref']]})['data'][0]['data'] if 'warnings' in genome: print("Genome warnings:" + str(genome['warnings'])) def check_CDS_warnings(self, result, test_name): data_file_cli = DataFileUtil(os.environ['SDK_CALLBACK_URL'], service_ver='dev') genome = data_file_cli.get_objects({'object_refs': [result['genome_ref']]})['data'][0]['data'] print("IN TEST NAME : " + str(test_name)) cds_warning_count = 0 cds_with_warning_count = 0 if 'cdss' in genome: total_cds_count = len(genome['cdss']) for feature in genome['cdss']: if 'warnings' in feature: if test_name == "test_jgi_bacterial_fasta_gff2_to_genome": print(str(feature['id']) + " warnings:" + str(feature['warnings'])) print("Location: " + str(feature['location'])) print("Translation: " + feature['protein_translation']) print("DNA Sequence: " + feature["dna_sequence"]) cds_with_warning_count = cds_with_warning_count + 1 cds_warning_count = cds_warning_count + len(feature['warnings']) print("Total CDS: " + str(total_cds_count)) print("CDS Warning Count: " + str(cds_warning_count)) print("CDSs with a warning Count: " + str(cds_with_warning_count)) print("Percent CDS with warning: " + str((cds_with_warning_count/float(total_cds_count)) * 100)) def test_simple_fasta_gff_to_genome_w_null_params(self): input_params = { "fasta_file": {'path': self.fa_path}, "gff_file": {'path': self.gff_path}, "workspace_name": self.getWsName(), "genome_name": 'MyGenome', "scientific_name": None, "taxon_reference": None, "genetic_code": None, "source": None, "taxon_wsname": None, "release": None, "type": None } result = self.getImpl().fasta_gff_to_genome(self.getContext(), input_params)[0] self.assertTrue('genome_info' in result) self.assertTrue('genome_ref' in result) genome_info = result['genome_info'] self.assertEqual(genome_info[10]['Domain'], 'Unknown') self.assertEqual(genome_info[10]['Genetic code'], '11') self.assertEqual(genome_info[10]['Name'], 'unknown_taxon') self.assertEqual(genome_info[10]['Source'], 'User') self.assertTrue('GC content' in genome_info[10]) self.assertTrue(re.match(r"^\d+?\.\d+?$", genome_info[10]['GC content']) is not None) self.assertTrue('Number of Protein Encoding Genes' in genome_info[10]) self.assertTrue(genome_info[10]['Number of Protein Encoding Genes'].isdigit()) self.assertTrue('Size' in genome_info[10]) self.assertTrue(genome_info[10]['Size'].isdigit()) self.assertEqual(genome_info[10]['Taxonomy'], 'Unconfirmed Organism') def test_fasta_gff_to_genome_json(self): input_params = { 'fasta_file': {'path': self.fa_path}, 'gff_file': {'path': self.gff_path}, 'genome_name': 'Plant', 'workspace_name': self.getWsName(), 'source': 'Genbank', 'type': 'Reference', 'taxon_id': 3694, 'scientific_name': 'Populus trichocarpa' } genome_json = self.getImpl().fasta_gff_to_genome_json(self.getContext(), input_params)[0][0] assert 'features' in genome_json assert 'feature_counts' in genome_json assert 'genome_tiers' in genome_json self.assertEqual(genome_json['domain'], 'Eukaryota') self.assertEqual(genome_json['genetic_code'], 1) self.assertEqual(genome_json['scientific_name'], 'Populus trichocarpa') self.assertEqual(genome_json['source'], 'Genbank') self.assertTrue('gc_content' in genome_json) self.assertTrue('dna_size' in genome_json) self.assertEqual(genome_json['taxonomy'], 'cellular organisms; Eukaryota; Viridiplantae; Streptophyta; ' + 'Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; ' + 'Spermatophyta; Magnoliopsida; Mesangiospermae; eudicotyledons; ' + 'Gunneridae; Pentapetalae; rosids; fabids; Malpighiales; Salicaceae; ' + 'Saliceae; Populus')
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DCT operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import importlib from absl.testing import parameterized import numpy as np from tensorflow.python.framework import test_util from tensorflow.python.ops import spectral_ops_test_util from tensorflow.python.ops.signal import dct_ops from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging def try_import(name): # pylint: disable=invalid-name module = None try: module = importlib.import_module(name) except ImportError as e: tf_logging.warning("Could not import %s: %s" % (name, str(e))) return module fftpack = try_import("scipy.fftpack") def _modify_input_for_dct(signals, n=None): """ This is a supporting function for the numpy implementation of DCT operations. If n < signal size, it returns the first n elements, else it pads the signal with zeros. """ signal = np.array(signals) if n is None or n == signal.shape[-1]: signal_mod = signal elif n >= 1: signal_len = signal.shape[-1] if n <= signal_len: signal_mod = signal[..., 0:n] else: output_shape = list(signal.shape) output_shape[-1] = n signal_mod = np.zeros(output_shape) signal_mod[..., 0:signal.shape[-1]] = signal if n: assert signal_mod.shape[-1] == n return signal_mod def _np_dct1(signals, n=None, norm=None): """Computes the DCT-I manually with NumPy.""" # X_k = (x_0 + (-1)**k * x_{N-1} + # 2 * sum_{n=0}^{N-2} x_n * cos(\frac{pi}{N-1} * n * k) k=0,...,N-1 del norm signals_mod = _modify_input_for_dct(signals, n=n) dct_size = signals_mod.shape[-1] dct = np.zeros_like(signals_mod) for k in range(dct_size): phi = np.cos(np.pi * np.arange(1, dct_size - 1) * k / (dct_size - 1)) dct[..., k] = 2 * np.sum( signals_mod[..., 1:-1] * phi, axis=-1) + ( signals_mod[..., 0] + (-1)**k * signals_mod[..., -1]) return dct def _np_dct2(signals, n=None, norm=None): """Computes the DCT-II manually with NumPy.""" # X_k = sum_{n=0}^{N-1} x_n * cos(\frac{pi}{N} * (n + 0.5) * k) k=0,...,N-1 signals_mod = _modify_input_for_dct(signals, n=n) dct_size = signals_mod.shape[-1] dct = np.zeros_like(signals_mod) for k in range(dct_size): phi = np.cos(np.pi * (np.arange(dct_size) + 0.5) * k / dct_size) dct[..., k] = np.sum(signals_mod * phi, axis=-1) # SciPy's `dct` has a scaling factor of 2.0 which we follow. # https://github.com/scipy/scipy/blob/v0.15.1/scipy/fftpack/src/dct.c.src if norm == "ortho": # The orthonormal scaling includes a factor of 0.5 which we combine with # the overall scaling of 2.0 to cancel. dct[..., 0] *= np.sqrt(1.0 / dct_size) dct[..., 1:] *= np.sqrt(2.0 / dct_size) else: dct *= 2.0 return dct def _np_dct3(signals, n=None, norm=None): """Computes the DCT-III manually with NumPy.""" # SciPy's `dct` has a scaling factor of 2.0 which we follow. # https://github.com/scipy/scipy/blob/v0.15.1/scipy/fftpack/src/dct.c.src signals_mod = _modify_input_for_dct(signals, n=n) dct_size = signals_mod.shape[-1] signals_mod = np.array(signals_mod) # make a copy so we can modify if norm == "ortho": signals_mod[..., 0] *= np.sqrt(4.0 / dct_size) signals_mod[..., 1:] *= np.sqrt(2.0 / dct_size) else: signals_mod *= 2.0 dct = np.zeros_like(signals_mod) # X_k = 0.5 * x_0 + # sum_{n=1}^{N-1} x_n * cos(\frac{pi}{N} * n * (k + 0.5)) k=0,...,N-1 half_x0 = 0.5 * signals_mod[..., 0] for k in range(dct_size): phi = np.cos(np.pi * np.arange(1, dct_size) * (k + 0.5) / dct_size) dct[..., k] = half_x0 + np.sum(signals_mod[..., 1:] * phi, axis=-1) return dct NP_DCT = {1: _np_dct1, 2: _np_dct2, 3: _np_dct3} NP_IDCT = {1: _np_dct1, 2: _np_dct3, 3: _np_dct2} class DCTOpsTest(parameterized.TestCase, test.TestCase): def _compare(self, signals, n, norm, dct_type, atol=5e-4, rtol=5e-4): """Compares (I)DCT to SciPy (if available) and a NumPy implementation.""" np_dct = NP_DCT[dct_type](signals, n=n, norm=norm) tf_dct = dct_ops.dct(signals, n=n, type=dct_type, norm=norm).eval() self.assertAllClose(np_dct, tf_dct, atol=atol, rtol=rtol) np_idct = NP_IDCT[dct_type](signals, n=None, norm=norm) tf_idct = dct_ops.idct(signals, type=dct_type, norm=norm).eval() self.assertAllClose(np_idct, tf_idct, atol=atol, rtol=rtol) if fftpack: scipy_dct = fftpack.dct(signals, n=n, type=dct_type, norm=norm) self.assertAllClose(scipy_dct, tf_dct, atol=atol, rtol=rtol) scipy_idct = fftpack.idct(signals, type=dct_type, norm=norm) self.assertAllClose(scipy_idct, tf_idct, atol=atol, rtol=rtol) # Verify inverse(forward(s)) == s, up to a normalization factor. # Since `n` is not implemented for IDCT operation, re-calculating tf_dct without n. tf_dct = dct_ops.dct(signals, type=dct_type, norm=norm).eval() tf_idct_dct = dct_ops.idct( tf_dct, type=dct_type, norm=norm).eval() tf_dct_idct = dct_ops.dct( tf_idct, type=dct_type, norm=norm).eval() if norm is None: if dct_type == 1: tf_idct_dct *= 0.5 / (signals.shape[-1] - 1) tf_dct_idct *= 0.5 / (signals.shape[-1] - 1) else: tf_idct_dct *= 0.5 / signals.shape[-1] tf_dct_idct *= 0.5 / signals.shape[-1] self.assertAllClose(signals, tf_idct_dct, atol=atol, rtol=rtol) self.assertAllClose(signals, tf_dct_idct, atol=atol, rtol=rtol) @parameterized.parameters([ [[2]], [[3]], [[10]], [[2, 20]], [[2, 3, 25]]]) @test_util.run_deprecated_v1 def test_random(self, shape): """Test randomly generated batches of data.""" with spectral_ops_test_util.fft_kernel_label_map(): with self.session(use_gpu=True): signals = np.random.rand(*shape).astype(np.float32) n = np.random.randint(1, 2 * signals.shape[-1]) n = np.random.choice([None, n]) # Normalization not implemented for orthonormal. self._compare(signals, n, norm=None, dct_type=1) for norm in (None, "ortho"): self._compare(signals, n=n, norm=norm, dct_type=2) self._compare(signals, n=n, norm=norm, dct_type=3) def test_error(self): signals = np.random.rand(10) # Unsupported type. with self.assertRaises(ValueError): dct_ops.dct(signals, type=5) # Invalid n. with self.assertRaises(ValueError): dct_ops.dct(signals, n=-2) # DCT-I normalization not implemented. with self.assertRaises(ValueError): dct_ops.dct(signals, type=1, norm="ortho") # DCT-I requires at least two inputs. with self.assertRaises(ValueError): dct_ops.dct(np.random.rand(1), type=1) # Unknown normalization. with self.assertRaises(ValueError): dct_ops.dct(signals, norm="bad") with self.assertRaises(NotImplementedError): dct_ops.dct(signals, axis=0) if __name__ == "__main__": test.main()
from __future__ import absolute_import, division, print_function from itertools import count from operator import getitem from .compatibility import zip_longest from .core import add, inc # noqa: F401 from .core import (istask, get_dependencies, subs, toposort, flatten, reverse_dict, ishashable, preorder_traversal) from .rewrite import END def cull(dsk, keys): """ Return new dask with only the tasks required to calculate keys. In other words, remove unnecessary tasks from dask. ``keys`` may be a single key or list of keys. Examples -------- >>> d = {'x': 1, 'y': (inc, 'x'), 'out': (add, 'x', 10)} >>> dsk, dependencies = cull(d, 'out') # doctest: +SKIP >>> dsk # doctest: +SKIP {'x': 1, 'out': (add, 'x', 10)} >>> dependencies # doctest: +SKIP {'x': set(), 'out': set(['x'])} Returns ------- dsk: culled dask graph dependencies: Dict mapping {key: [deps]}. Useful side effect to accelerate other optimizations, notably fuse. """ if not isinstance(keys, (list, set)): keys = [keys] out = dict() seen = set() dependencies = dict() stack = list(set(flatten(keys))) while stack: key = stack.pop() out[key] = dsk[key] deps = get_dependencies(dsk, key, as_list=True) # fuse needs lists dependencies[key] = deps unseen = [d for d in deps if d not in seen] stack.extend(unseen) seen.update(unseen) return out, dependencies def fuse(dsk, keys=None, dependencies=None): """ Return new dask graph with linear sequence of tasks fused together. If specified, the keys in ``keys`` keyword argument are *not* fused. Supply ``dependencies`` from output of ``cull`` if available to avoid recomputing dependencies. Parameters ---------- dsk: dict keys: list dependencies: dict, optional {key: [list-of-keys]}. Must be a list to provide count of each key This optional input often comes from ``cull`` Examples -------- >>> d = {'a': 1, 'b': (inc, 'a'), 'c': (inc, 'b')} >>> dsk, dependencies = fuse(d) >>> dsk # doctest: +SKIP {'c': (inc, (inc, 1))} >>> dsk, dependencies = fuse(d, keys=['b']) >>> dsk # doctest: +SKIP {'b': (inc, 1), 'c': (inc, 'b')} Returns ------- dsk: output graph with keys fused dependencies: dict mapping dependencies after fusion. Useful side effect to accelerate other downstream optimizations. """ if keys is not None and not isinstance(keys, set): if not isinstance(keys, list): keys = [keys] keys = set(flatten(keys)) if dependencies is None: dependencies = dict((key, get_dependencies(dsk, key, as_list=True)) for key in dsk) # locate all members of linear chains child2parent = {} unfusible = set() for parent in dsk: deps = dependencies[parent] has_many_children = len(deps) > 1 for child in deps: if keys is not None and child in keys: unfusible.add(child) elif child in child2parent: del child2parent[child] unfusible.add(child) elif has_many_children: unfusible.add(child) elif child not in unfusible: child2parent[child] = parent # construct the chains from ancestor to descendant chains = [] parent2child = dict(map(reversed, child2parent.items())) while child2parent: child, parent = child2parent.popitem() chain = [child, parent] while parent in child2parent: parent = child2parent.pop(parent) del parent2child[parent] chain.append(parent) chain.reverse() while child in parent2child: child = parent2child.pop(child) del child2parent[child] chain.append(child) chains.append(chain) dependencies = dict((k, set(v)) for k, v in dependencies.items()) # create a new dask with fused chains rv = {} fused = set() for chain in chains: child = chain.pop() val = dsk[child] while chain: parent = chain.pop() dependencies[parent].update(dependencies.pop(child)) dependencies[parent].remove(child) val = subs(dsk[parent], child, val) fused.add(child) child = parent fused.add(child) rv[child] = val for key, val in dsk.items(): if key not in fused: rv[key] = val return rv, dependencies def _flat_set(x): if x is None: return set() elif isinstance(x, set): return x elif not isinstance(x, (list, set)): x = [x] return set(x) def inline(dsk, keys=None, inline_constants=True, dependencies=None): """ Return new dask with the given keys inlined with their values. Inlines all constants if ``inline_constants`` keyword is True. Note that the constant keys will remain in the graph, to remove them follow ``inline`` with ``cull``. Examples -------- >>> d = {'x': 1, 'y': (inc, 'x'), 'z': (add, 'x', 'y')} >>> inline(d) # doctest: +SKIP {'x': 1, 'y': (inc, 1), 'z': (add, 1, 'y')} >>> inline(d, keys='y') # doctest: +SKIP {'x': 1, 'y': (inc, 1), 'z': (add, 1, (inc, 1))} >>> inline(d, keys='y', inline_constants=False) # doctest: +SKIP {'x': 1, 'y': (inc, 1), 'z': (add, 'x', (inc, 'x'))} """ if dependencies and isinstance(next(iter(dependencies.values())), list): dependencies = {k: set(v) for k, v in dependencies.items()} keys = _flat_set(keys) if dependencies is None: dependencies = dict((k, get_dependencies(dsk, k)) for k in dsk) if inline_constants: keys.update(k for k, v in dsk.items() if (ishashable(v) and v in dsk) or (not dependencies[k] and not istask(v))) # Keys may depend on other keys, so determine replace order with toposort. # The values stored in `keysubs` do not include other keys. replaceorder = toposort(dict((k, dsk[k]) for k in keys if k in dsk), dependencies=dependencies) keysubs = {} for key in replaceorder: val = dsk[key] for dep in keys & dependencies[key]: if dep in keysubs: replace = keysubs[dep] else: replace = dsk[dep] val = subs(val, dep, replace) keysubs[key] = val # Make new dask with substitutions dsk2 = keysubs.copy() for key, val in dsk.items(): if key not in dsk2: for item in keys & dependencies[key]: val = subs(val, item, keysubs[item]) dsk2[key] = val return dsk2 def inline_functions(dsk, output, fast_functions=None, inline_constants=False, dependencies=None): """ Inline cheap functions into larger operations Examples -------- >>> dsk = {'out': (add, 'i', 'd'), # doctest: +SKIP ... 'i': (inc, 'x'), ... 'd': (double, 'y'), ... 'x': 1, 'y': 1} >>> inline_functions(dsk, [], [inc]) # doctest: +SKIP {'out': (add, (inc, 'x'), 'd'), 'd': (double, 'y'), 'x': 1, 'y': 1} Protect output keys. In the example below ``i`` is not inlined because it is marked as an output key. >>> inline_functions(dsk, ['i', 'out'], [inc, double]) # doctest: +SKIP {'out': (add, 'i', (double, 'y')), 'i': (inc, 'x'), 'x': 1, 'y': 1} """ if not fast_functions: return dsk output = set(output) fast_functions = set(fast_functions) if dependencies is None: dependencies = dict((k, get_dependencies(dsk, k)) for k in dsk) dependents = reverse_dict(dependencies) keys = [k for k, v in dsk.items() if istask(v) and functions_of(v).issubset(fast_functions) and dependents[k] and k not in output] if keys: dsk = inline(dsk, keys, inline_constants=inline_constants, dependencies=dependencies) for k in keys: del dsk[k] return dsk def functions_of(task): """ Set of functions contained within nested task Examples -------- >>> task = (add, (mul, 1, 2), (inc, 3)) # doctest: +SKIP >>> functions_of(task) # doctest: +SKIP set([add, mul, inc]) """ if istask(task): args = set.union(*map(functions_of, task[1:])) if task[1:] else set() return set([unwrap_partial(task[0])]) | args if isinstance(task, (list, tuple)): if not task: return set() return set.union(*map(functions_of, task)) return set() def unwrap_partial(func): while hasattr(func, 'func'): func = func.func return func def dealias(dsk, keys=None, dependencies=None): """ Remove aliases from dask Removes and renames aliases using ``inline``. Optional ``keys`` keyword argument protects keys from being deleted. This is useful to protect keys that would be expected by a scheduler. If not provided, all inlined aliases are removed. Examples -------- >>> dsk = {'a': (range, 5), ... 'b': 'a', ... 'c': 'b', ... 'd': (sum, 'c'), ... 'e': 'd', ... 'f': (inc, 'd')} >>> dealias(dsk) # doctest: +SKIP {'a': (range, 5), 'd': (sum, 'a'), 'f': (inc, 'd')} >>> dsk = {'a': (range, 5), ... 'b': 'a'} >>> dealias(dsk) # doctest: +SKIP {'a': (range, 5)} >>> dealias(dsk, keys=['a', 'b']) # doctest: +SKIP {'a': (range, 5), 'b': 'a'} """ keys = keys or set() if not isinstance(keys, set): keys = set(keys) if not dependencies: dependencies = dict((k, get_dependencies(dsk, k)) for k in dsk) aliases = set(k for k, task in dsk.items() if ishashable(task) and task in dsk) dsk2 = inline(dsk, aliases, inline_constants=False) for k in aliases.difference(keys): del dsk2[k] return dsk2 def equivalent(term1, term2, subs=None): """Determine if two terms are equivalent, modulo variable substitution. Equivalent to applying substitutions in `subs` to `term2`, then checking if `term1 == term2`. If a subterm doesn't support comparison (i.e. `term1 == term2` errors), returns `False`. Parameters ---------- term1, term2 : terms subs : dict, optional Mapping of substitutions from `term2` to `term1` Examples -------- >>> from operator import add >>> term1 = (add, 'a', 'b') >>> term2 = (add, 'x', 'y') >>> subs = {'x': 'a', 'y': 'b'} >>> equivalent(term1, term2, subs) True >>> subs = {'x': 'a'} >>> equivalent(term1, term2, subs) False """ # Quick escape for special cases head_type = type(term1) if type(term2) != head_type: # If terms aren't same type, fail return False elif head_type not in (tuple, list): # For literals, just compare try: # `is` is tried first, to allow objects that don't implement `==` # to work for cases where term1 is term2. If `is` returns False, # and `==` errors, then the only thing we can do is return False. return term1 is term2 or term1 == term2 except: return False pot1 = preorder_traversal(term1) pot2 = preorder_traversal(term2) subs = {} if subs is None else subs for t1, t2 in zip_longest(pot1, pot2, fillvalue=END): if t1 is END or t2 is END: # If terms aren't same length: fail return False elif ishashable(t2) and t2 in subs: val = subs[t2] else: val = t2 try: if t1 is not t2 and t1 != val: return False except: return False return True def dependency_dict(dsk): """Create a dict matching ordered dependencies to keys. Examples -------- >>> from operator import add >>> dsk = {'a': 1, 'b': 2, 'c': (add, 'a', 'a'), 'd': (add, 'b', 'a')} >>> dependency_dict(dsk) # doctest: +SKIP {(): ['a', 'b'], ('a', 'a'): ['c'], ('b', 'a'): ['d']} """ dep_dict = {} for key in dsk: deps = tuple(get_dependencies(dsk, key, True)) dep_dict.setdefault(deps, []).append(key) return dep_dict def _possible_matches(dep_dict, deps, subs): deps2 = [] for d in deps: v = subs.get(d, None) if v is not None: deps2.append(v) else: return [] deps2 = tuple(deps2) return dep_dict.get(deps2, []) def _sync_keys(dsk1, dsk2, dsk2_topo): dep_dict1 = dependency_dict(dsk1) subs = {} for key2 in toposort(dsk2): deps = tuple(get_dependencies(dsk2, key2, True)) # List of keys in dsk1 that have terms that *may* match key2 possible_matches = _possible_matches(dep_dict1, deps, subs) if possible_matches: val2 = dsk2[key2] for key1 in possible_matches: val1 = dsk1[key1] if equivalent(val1, val2, subs): subs[key2] = key1 break return subs def sync_keys(dsk1, dsk2): """Return a dict matching keys in `dsk2` to equivalent keys in `dsk1`. Parameters ---------- dsk1, dsk2 : dict Examples -------- >>> from operator import add, mul >>> dsk1 = {'a': 1, 'b': (add, 'a', 10), 'c': (mul, 'b', 5)} >>> dsk2 = {'x': 1, 'y': (add, 'x', 10), 'z': (mul, 'y', 2)} >>> sync_keys(dsk1, dsk2) # doctest: +SKIP {'x': 'a', 'y': 'b'} """ return _sync_keys(dsk1, dsk2, toposort(dsk2)) def merge_sync(dsk1, dsk2): """Merge two dasks together, combining equivalent tasks. If a task in `dsk2` exists in `dsk1`, the task and key from `dsk1` is used. If a task in `dsk2` has the same key as a task in `dsk1` (and they aren't equivalent tasks), then a new key is created for the task in `dsk2`. This prevents name conflicts. Parameters ---------- dsk1, dsk2 : dict Variable names in `dsk2` are replaced with equivalent ones in `dsk1` before merging. Returns ------- new_dsk : dict The merged dask. key_map : dict A mapping between the keys from `dsk2` to their new names in `new_dsk`. Examples -------- >>> from operator import add, mul >>> dsk1 = {'a': 1, 'b': (add, 'a', 10), 'c': (mul, 'b', 5)} >>> dsk2 = {'x': 1, 'y': (add, 'x', 10), 'z': (mul, 'y', 2)} >>> new_dsk, key_map = merge_sync(dsk1, dsk2) >>> new_dsk # doctest: +SKIP {'a': 1, 'b': (add, 'a', 10), 'c': (mul, 'b', 5), 'z': (mul, 'b', 2)} >>> key_map # doctest: +SKIP {'x': 'a', 'y': 'b', 'z': 'z'} Conflicting names are replaced with auto-generated names upon merging. >>> dsk1 = {'a': 1, 'res': (add, 'a', 1)} >>> dsk2 = {'x': 1, 'res': (add, 'x', 2)} >>> new_dsk, key_map = merge_sync(dsk1, dsk2) >>> new_dsk # doctest: +SKIP {'a': 1, 'res': (add, 'a', 1), 'merge_1': (add, 'a', 2)} >>> key_map # doctest: +SKIP {'x': 'a', 'res': 'merge_1'} """ dsk2_topo = toposort(dsk2) sd = _sync_keys(dsk1, dsk2, dsk2_topo) new_dsk = dsk1.copy() for key in dsk2_topo: if key in sd: new_key = sd[key] else: if key in dsk1: new_key = next(merge_sync.names) else: new_key = key sd[key] = new_key task = dsk2[key] for a, b in sd.items(): task = subs(task, a, b) new_dsk[new_key] = task return new_dsk, sd # store the name iterator in the function merge_sync.names = ('merge_%d' % i for i in count(1)) def fuse_selections(dsk, head1, head2, merge): """Fuse selections with lower operation. Handles graphs of the form: ``{key1: (head1, key2, ...), key2: (head2, ...)}`` Parameters ---------- dsk : dict dask graph head1 : function The first element of task1 head2 : function The first element of task2 merge : function Takes ``task1`` and ``task2`` and returns a merged task to replace ``task1``. >>> def load(store, partition, columns): ... pass >>> dsk = {'x': (load, 'store', 'part', ['a', 'b']), ... 'y': (getitem, 'x', 'a')} >>> merge = lambda t1, t2: (load, t2[1], t2[2], t1[2]) >>> dsk2 = fuse_selections(dsk, getitem, load, merge) >>> cull(dsk2, 'y')[0] {'y': (<function load at ...>, 'store', 'part', 'a')} """ dsk2 = dict() for k, v in dsk.items(): try: if (istask(v) and v[0] == head1 and v[1] in dsk and istask(dsk[v[1]]) and dsk[v[1]][0] == head2): dsk2[k] = merge(v, dsk[v[1]]) else: dsk2[k] = v except TypeError: dsk2[k] = v return dsk2 def fuse_getitem(dsk, func, place): """ Fuse getitem with lower operation Parameters ---------- dsk: dict dask graph func: function A function in a task to merge place: int Location in task to insert the getitem key >>> def load(store, partition, columns): ... pass >>> dsk = {'x': (load, 'store', 'part', ['a', 'b']), ... 'y': (getitem, 'x', 'a')} >>> dsk2 = fuse_getitem(dsk, load, 3) # columns in arg place 3 >>> cull(dsk2, 'y')[0] {'y': (<function load at ...>, 'store', 'part', 'a')} """ return fuse_selections(dsk, getitem, func, lambda a, b: tuple(b[:place]) + (a[2],) + tuple(b[place + 1:]))
from functools import reduce import torch from torch._utils import _accumulate from ..function import Function, InplaceFunction class Index(Function): def __init__(self, index): super(Index, self).__init__() self.index = index def forward(self, i): self.input_size = i.size() result = i.index(self.index) self.mark_shared_storage((i, result)) return result def backward(self, grad_output): grad_input = grad_output.new(self.input_size).zero_() grad_input._set_index(self.index, grad_output) return grad_input class SetItem(InplaceFunction): def __init__(self, index, value=None): super(SetItem, self).__init__(True) self.index = index self.value = value def forward(self, i, value=None): self.mark_dirty(i) if value is None: # value is scalar value = self.value else: # value is Tensor self.value_size = value.size() i._set_index(self.index, value) return i def backward(self, grad_output): if self.value is None: # value is Tensor grad_input = grad_output.clone() grad_input._set_index(self.index, 0) grad_value = grad_output.index(self.index).clone() grad_value = grad_value.view(self.value_size) return grad_input, grad_value else: grad_input = grad_output.clone() grad_input._set_index(self.index, 0) return grad_input class NoGrad(Function): def forward(self, i): result = i.new(i) self.mark_non_differentiable(result) self.mark_shared_storage((i, result)) return result def backward(self, grad_output): assert False, "backward of NoGrad should never be called" def _do_forward(self, *args, **kwargs): result = super(NoGrad, self)._do_forward(*args, **kwargs) self.requires_grad = False return result __call__ = _do_forward class Transpose(Function): def __init__(self, *dims): super(Transpose, self).__init__() assert len(dims) == 2 self.dims = dims def forward(self, i): result = i.transpose(*self.dims) self.mark_shared_storage((i, result)) return result def backward(self, grad_output): return grad_output.transpose(*self.dims) class View(Function): def __init__(self, *sizes): super(View, self).__init__() self.sizes = sizes def forward(self, i): self.input_size = i.size() result = i.view(*self.sizes) self.mark_shared_storage((i, result)) return result def backward(self, grad_output): # TODO: not sure if this clone is necessary return grad_output.contiguous().view(self.input_size) class Expand(Function): def __init__(self, sizes): super(Expand, self).__init__() self.sizes = sizes self.expanded_dims = [] def forward(self, i): result = i.expand(*self.sizes) self.num_unsqueezed = len(self.sizes) - i.dim() self.expanded_dims = [dim for dim, (expanded, original) in enumerate(zip(self.sizes[self.num_unsqueezed:], i.size())) if expanded != original] self.mark_shared_storage((i, result)) return result def backward(self, grad_output): grad_input = grad_output for i in range(self.num_unsqueezed): grad_input = grad_input.sum(0).squeeze(0) for dim in self.expanded_dims: grad_input = grad_input.sum(dim) return grad_input class Type(Function): def __init__(self, dest_type): super(Type, self).__init__() self.dest_type = dest_type def forward(self, i): assert self.dest_type != type(i) self.input_type = type(i) return i.type(self.dest_type) def backward(self, grad_output): return grad_output.type(self.input_type) class CudaTransfer(Function): def __init__(self, device_id=None, async=False): super(CudaTransfer, self).__init__() self.device_id = device_id self.async = async def forward(self, i): self.source_device = -1 if not i.is_cuda else i.get_device() self.source_was_cuda = i.is_cuda if self.device_id: return i.cuda(self.device_id, async=self.async) else: return i.cuda(async=self.async) def backward(self, grad_output): if self.source_device != -1: return grad_output.cuda(self.source_device) elif self.source_was_cuda: return grad_output else: return grad_output.cpu() class Permute(Function): def __init__(self, dim_indices): super(Permute, self).__init__() self.dim_indices = dim_indices self.rev_dim_indices = [None for _ in range(len(dim_indices))] for i, dim_idx in enumerate(self.dim_indices): self.rev_dim_indices[dim_idx] = i def forward(self, i): result = i.permute(*self.dim_indices) self.mark_shared_storage((i, result)) return result def backward(self, grad_output): return grad_output.permute(*self.rev_dim_indices) class IndexAdd(InplaceFunction): def __init__(self, dim, inplace=False): super(IndexAdd, self).__init__(inplace) self.dim = dim def forward(self, tensor1, index, tensor2): assert not self.needs_input_grad[1] if self.needs_input_grad[2]: self.save_for_backward(index) if not self.inplace: tensor1 = tensor1.clone() else: self.mark_dirty(tensor1) return tensor1.index_add_(self.dim, index, tensor2) def backward(self, grad_output): grad_tensor1 = grad_tensor2 = None if self.needs_input_grad[0]: grad_tensor1 = grad_output if self.needs_input_grad[2]: index, = self.saved_tensors grad_tensor2 = grad_output.index_select(self.dim, index) return grad_tensor1, None, grad_tensor2 class IndexCopy(InplaceFunction): def __init__(self, dim, inplace=False): super(IndexCopy, self).__init__(inplace) self.dim = dim def forward(self, tensor1, index, tensor2): assert not self.needs_input_grad[1] if any(self.needs_input_grad): self.save_for_backward(index) if not self.inplace: tensor1 = tensor1.clone() else: self.mark_dirty(tensor1) return tensor1.index_copy_(self.dim, index, tensor2) def backward(self, grad_output): grad_tensor1 = grad_tensor2 = None if any(self.needs_input_grad): index, = self.saved_tensors if self.needs_input_grad[0]: grad_tensor1 = grad_output.clone().index_fill_(self.dim, index, 0) if self.needs_input_grad[2]: grad_tensor2 = grad_output.index_select(self.dim, index) return grad_tensor1, None, grad_tensor2 class IndexFill(InplaceFunction): def __init__(self, dim, value, inplace=False): super(IndexFill, self).__init__(inplace) self.dim = dim self.value = value def forward(self, tensor, index): assert not self.needs_input_grad[1] if self.needs_input_grad[0]: self.save_for_backward(index) if not self.inplace: tensor = tensor.clone() else: self.mark_dirty(tensor) return tensor.index_fill_(self.dim, index, self.value) def backward(self, grad_output): grad_tensor = None if self.needs_input_grad[0]: index, = self.saved_tensors grad_tensor = grad_output.clone().index_fill_(self.dim, index, 0) return grad_tensor, None class IndexSelect(Function): def __init__(self, dim): super(IndexSelect, self).__init__() self.dim = dim def forward(self, tensor, index): assert not self.needs_input_grad[1] if self.needs_input_grad[0]: self.save_for_backward(index) self.input_size = tensor.size() return tensor.index_select(self.dim, index) def backward(self, grad_output): grad_tensor = None if self.needs_input_grad[0]: index, = self.saved_tensors grad_tensor = grad_output.new(*self.input_size).zero_() grad_tensor.index_add_(self.dim, index, grad_output) return grad_tensor, None class Concat(Function): def __init__(self, dim): super(Concat, self).__init__() self.dim = dim def forward(self, *inputs): self.input_sizes = [i.size(self.dim) for i in inputs] return torch.cat(inputs, self.dim) def backward(self, grad_output): return tuple(grad_output.narrow(self.dim, end - size, size) for size, end in zip(self.input_sizes, _accumulate(self.input_sizes))) class Resize(Function): def __init__(self, *sizes): super(Resize, self).__init__() self.sizes = sizes self.numel = reduce(lambda x, y: x * y, sizes, 1) def forward(self, tensor): if tensor.numel() != self.numel: raise RuntimeError(("requested resize to {} ({} elements in total), " "but the given tensor has a size of {} ({} elements). " "autograd's resize can only change the shape of a given " "tensor, while preserving the number of elements. ").format( 'x'.join(map(str, self.sizes)), self.numel, 'x'.join(map(str, tensor.size())), tensor.numel())) self.input_sizes = tensor.size() result = tensor.new(tensor).resize_(*self.sizes) self.mark_shared_storage((tensor, result)) return result def backward(self, grad_output): assert grad_output.numel() == self.numel return grad_output.new(grad_output).resize_(self.input_sizes) class Clone(Function): def forward(self, input): return input.clone() def backward(self, grad_output): return grad_output class Squeeze(Function): def __init__(self, dim=None): super(Squeeze, self).__init__() self.dim = dim def forward(self, input): self.input_size = input.size() self.numel = input.numel() if self.dim is not None: result = input.squeeze(self.dim) else: result = input.squeeze() self.mark_shared_storage((input, result)) return result def backward(self, grad_output): assert grad_output.numel() == self.numel return grad_output.contiguous().view(self.input_size) class Unsqueeze(Function): def __init__(self, dim): super(Unsqueeze, self).__init__() self.dim = dim def forward(self, input): result = input.unsqueeze(self.dim) self.mark_shared_storage((input, result)) return result def backward(self, grad_output): return grad_output.squeeze(self.dim) class MaskedCopy(InplaceFunction): def forward(self, tensor1, mask, tensor2): assert not self.needs_input_grad[1], "MaskedCopy can't differentiate " \ "the mask" if not self.inplace: tensor1 = tensor1.clone() else: self.mark_dirty(tensor1) self.save_for_backward(mask) return tensor1.masked_copy_(mask, tensor2) def backward(self, grad_output): mask, = self.saved_tensors grad_tensor1 = grad_tensor2 = None if self.needs_input_grad[0]: grad_tensor1 = grad_output.clone().masked_fill_(mask, 0) if self.needs_input_grad[2]: grad_tensor2 = grad_output.masked_select(mask) return grad_tensor1, None, grad_tensor2 class MaskedFill(InplaceFunction): def __init__(self, value, inplace=False): super(MaskedFill, self).__init__(inplace) self.value = value def forward(self, tensor, mask): assert not self.needs_input_grad[1], "MaskedFill can't differentiate " \ "the mask" if not self.inplace: tensor = tensor.clone() else: self.mark_dirty(tensor) self.save_for_backward(mask) return tensor.masked_fill_(mask, self.value) def backward(self, grad_output): mask, = self.saved_tensors grad_tensor = None if self.needs_input_grad[0]: grad_tensor = grad_output.clone().masked_fill_(mask, 0) return grad_tensor, None class MaskedSelect(Function): def forward(self, tensor, mask): assert not self.needs_input_grad[1], "MaskedSelect can't differentiate " \ "the mask" self.input_size = tensor.size() self.save_for_backward(mask) return tensor.masked_select(mask) def backward(self, grad_output): mask, = self.saved_tensors grad_tensor = None if self.needs_input_grad[0]: # TODO: remove zero grad_tensor = grad_output.new(self.input_size).zero_() grad_tensor.masked_copy_(mask, grad_output) return grad_tensor, None class _MultiSelectionFunction(Function): def __init__(self, dim, return_indices): super(_MultiSelectionFunction, self).__init__() self.dim = dim self.return_indices = return_indices def forward(self, input): fn = getattr(input, self.__class__.__name__.lower()) self.input_size = input.size() output, indices = fn(*self.args) if self.return_indices: self.save_for_backward(indices) self.mark_non_differentiable(indices) return output, indices else: self.indices = indices return output def backward(self, grad_output, grad_indices=None): grad_input = grad_output.new(self.input_size).zero_() if self.return_indices: indices, = self.saved_tensors else: indices = self.indices dim = self.dim if self.dim is not None else grad_output.dim() - 1 return grad_input.scatter_(dim, indices, grad_output) class Sort(_MultiSelectionFunction): def __init__(self, dim=None, descending=False, return_indices=True): super(Sort, self).__init__(dim, return_indices) self.descending = descending def forward(self, input): dim = self.dim if self.dim is not None else input.dim() - 1 self.args = (dim, self.descending) return super(Sort, self).forward(input) class Topk(_MultiSelectionFunction): def __init__(self, k, dim=None, largest=True, sort=True, return_indices=True): super(Topk, self).__init__(dim, return_indices) self.k = k self.largest = largest self.sort = sort def forward(self, input): dim = self.dim if self.dim is not None else input.dim() - 1 self.args = (self.k, dim, self.largest, self.sort) return super(Topk, self).forward(input) class Chunk(Function): def __init__(self, num_chunks, dim=0): super(Chunk, self).__init__() self.num_chunks = num_chunks self.dim = dim def forward(self, i): self.input_size = i.size() result = i.chunk(self.num_chunks, self.dim) self.mark_shared_storage(*((i, chunk) for chunk in result)) return result def backward(self, *grad_output): grad_input = grad_output[0].new(self.input_size) offset = 0 for grad in grad_output: grad_size = grad.size(self.dim) grad_input.narrow(self.dim, offset, grad_size).copy_(grad) offset += grad_size return grad_input class Gather(Function): def __init__(self, dim): super(Gather, self).__init__() self.dim = dim def forward(self, input, index): assert not self.needs_input_grad[1], "Gather can't differentiate " \ "the index" self.input_size = input.size() self.save_for_backward(index) return input.gather(self.dim, index) def backward(self, grad_output): index, = self.saved_tensors grad_input = grad_output.new(self.input_size).zero_() return grad_input.scatter_(self.dim, index, grad_output), None class Scatter(InplaceFunction): def __init__(self, dim, inplace=False): super(Scatter, self).__init__(inplace) self.dim = dim def forward(self, input, index, source): assert not self.needs_input_grad[1], "Scatter can't differentiate " \ "the index" if self.inplace: self.mark_dirty(input) else: input = input.clone() self.save_for_backward(index) return input.scatter_(self.dim, index, source) def backward(self, grad_output): index, = self.saved_tensors grad_input = grad_source = None if self.needs_input_grad[0]: grad_input = grad_output.clone() grad_input.scatter_(self.dim, index, 0) if self.needs_input_grad[2]: grad_source = grad_output.gather(self.dim, index) return grad_input, None, grad_source class Repeat(Function): def __init__(self, repeats): super(Repeat, self).__init__() self.repeats = repeats def forward(self, input): return input.repeat(self.repeats) def backward(self, grad_output): grad_input = grad_output for dim, repeat in enumerate(self.repeats): if repeat == 1: continue grad_input = sum(grad_input.chunk(repeat, dim)) return grad_input class Cumsum(Function): def __init__(self, dim): super(Cumsum, self).__init__() self.dim = dim def forward(self, input): return torch.cumsum(input, dim=self.dim) def backward(self, grad_output): grad_input = torch.cumsum(-grad_output, dim=self.dim) end_idx = grad_input.size(self.dim) - 1 grad_sum = grad_input.narrow(self.dim, end_idx, 1) grad_input -= grad_sum.expand_as(grad_input) grad_input += grad_output return grad_input # TODO: unfold
import ui import dice class Cell(object): alias = None default_kick_msg = "Ouch! You hurt your foot!" default_open_msg = "You see nothing you could open." default_close_msg = "You see nothing you could open." default_enter_msg = "You don't see stairs." default_descr = "<no-descr>" default_properties = {} def __init__(self, **kwargs): self.__dict__.update(self.default_properties) self.__dict__.update(kwargs) def gfx(self): return self.default_gfx def describe(self): return self.default_descr def is_opaque(self): return self.default_is_opaque def is_walkable(self): return self.default_is_walkable # Actions on cell by monsters def kick(self, level, who, x, y): ui.ifpc(who, self.default_kick_msg) def walk(self, level, who, x, y): if self.is_walkable(): level.move_monster(who, x, y) def open(self, level, who, x, y): ui.ifpc(who, self.default_open_msg) def close(self, level, who, x, y): ui.ifpc(who, self.default_close_msg) def enter(self, level, who, x, y): ui.ifpc(who, self.default_enter_msg) class Door(Cell): alias = '+' default_properties = {'state': 'closed', 'material': 'metal'} def is_walkable(self): return self.state in ('open', 'smashed') def is_opaque(self): return self.state == 'closed' def kick(self, level, who, x, y): if self.state in ('open', 'smashed'): ui.ifpc(who, "You kick at air.") elif self.state == 'closed': ui.ifpc(who, "You smash the door to pieces.") self.state = 'smashed' level.set_cell(x, y, self) def walk(self, level, who, x, y): if self.state != 'closed': super(Door, self).walk(level, who, x, y) else: bonk_tab = {'wood': "*bong!*", 'metal': "*plang!*"} ui.ifpc(who, bonk_tab[self.material]) def open(self, level, who, x, y): if self.state == "closed": ui.ifpc(who, "You open the door.") self.state = 'open' else: ui.ifpc(who, "The door is already open.") level.set_cell(x, y, self) def close(self, level, who, x, y): if self.state == "open": ui.ifpc(who, "You close the door.") self.state = 'closed' else: ui.ifpc(who, "The door is already closed.") level.set_cell(x, y, self) _ch_map = {'open': '/', 'closed': '+', 'smashed': '.'} _col_map = {'wood': 6, 'metal': 8} def gfx(self): return (Door._ch_map[self.state], Door._col_map[self.material]) class Floor(Cell): alias = '.' default_is_walkable = True default_is_opaque = False default_gfx = ('.', 7) default_descr = "floor." class Grass(Cell): default_is_walkable = True default_is_opaque = False default_gfx = ('.', 10) default_descr = "gras" class Tree(Cell): alias = 'T' default_is_walkable = True default_is_opaque = False default_gfx = ('T', 10) default_descr = "tree" default_properties = {'looted': False} def kick(self, level, who, x, y): ui.ifpc(who, "You kick the tree.") if dice.chance(20): ui.ifpc(who, "You hurt your foot!") if not self.looted: if dice.chance(20): ui.ifpc(who, "Some apples drop down.") if dice.chance(20): self.looted = True class Wall(Cell): alias = '#' default_is_walkable = False default_is_opaque = True default_gfx = ('#', 7) default_descr = "a wall" class Water(Cell): alias = '=' default_is_walkable = False default_is_opaque = False default_gfx = ('=', 1) default_descr = "water" def kick(self, level, who, x, y): ui.ifpc(who, "*splash*") class Lava(Cell): default_is_walkable = False default_is_opaque = False default_gfx = ('=', 4) default_descr = "lava" class Altar(Cell): alias = '_' default_is_walkable = True default_is_opaque = False default_properties = {'alignment': 'neutral'} _col_map = {'lawful': 15, 'neutral': 8, 'evil': 7} def gfx(self): return '_', Altar._col_map[self.alignment] class AbstractPortal(Cell): default_is_walkable = True default_is_opaque = False default_properties = {'connection': (None, 0, 0)} # (level, x, y) def enter(self, level, who, x, y): if not who.is_pc: return new_level, x, y = self.connection if not new_level: ui.ifpc(who, "This path leads nowhere...") else: level.remove_monster(who) new_level.nudge_monster_at(x, y) new_level.add_monster(who, x, y) class StairsUp(AbstractPortal): alias = '<' default_gfx = ('<', 7) class StairsDown(AbstractPortal): alias = '>' default_gfx = ('>', 7) class Tunnel(AbstractPortal): alias = '*' default_gfx = ('*', 7) # Throne, Ice #################################################################### def gfx(cell): return cell.gfx() def describe(cell): return cell.describe() def is_walkable(cell): return cell.is_walkable() def is_opaque(cell): return cell.is_opaque() def walk(level, who, cell, x, y): return cell.walk(level, who, x, y) def kick(level, who, cell, x, y): return cell.kick(level, who, x, y) def open(level, who, cell, x, y): return cell.open(level, who, x, y) def close(level, who, cell, x, y): return cell.close(level, who, x, y) def enter(level, who, cell, x, y): return cell.enter(level, who, x, y) #################################################################### db = { 'floor': Floor, 'grass': Grass, 'wall': Wall, 'door': Door, 'water': Water, 'tree': Tree, 'stairs_up': StairsUp, 'stairs_down': StairsDown, 'tunnel': Tunnel, 'altar': Altar, } db_alias = {cell_class.alias: cell_class for cell_class in db.values() if cell_class.alias is not None} def make_cell_from_alias(ch, *args, **kwargs): return db_alias.get(ch, Floor)(*args, **kwargs)
from typing import List import numpy as np from numpy import ndarray from gdsfactory.components.bend_euler import bend_euler from gdsfactory.cross_section import strip from gdsfactory.geometry.functions import path_length from gdsfactory.routing.manhattan import ( _is_horizontal, _is_vertical, remove_flat_angles, ) from gdsfactory.types import ComponentFactory, CrossSectionFactory def path_length_matched_points( list_of_waypoints: List[ndarray], margin: float = 0.0, modify_segment_i: int = -2, extra_length: float = 0.0, nb_loops: int = 1, bend: ComponentFactory = bend_euler, cross_section: CrossSectionFactory = strip, **kwargs, ) -> List[ndarray]: """ Several types of paths won't match correctly. We do not try to handle all the corner cases here. You will need to modify the input list of waypoints in some cases. Args: list_of_waypoints: [[p1, p2, p3,...], [q1, q2, q3,...], ...] the number of turns have to be identical (usually means same number of points. exception is if there are some flat angles) margin: some extra space to budget for in addition to the bend radius in most cases, the default is fine modify_segment_i: index of the segment which accomodates the new turns default is next to last segment (-2) extra_length: distance added to all path length compensation. Useful is we want to add space for extra taper on all branches nb_loops: number of extra loops added in the path if nb_loops==0, no extra loop is added, instead, in each route, the segment indexed by `modify_segment_i` is elongated to match the longuest route in `list_of_waypoints` bend: bend function cross_section: cross_section factory **kwargs Returns: another list of waypoints where - the path_lenth of each waypoints list are identical - the number of turns are identical """ if nb_loops >= 1: return path_length_matched_points_add_waypoints( list_of_waypoints=list_of_waypoints, modify_segment_i=modify_segment_i, bend=bend, margin=margin, extra_length=extra_length, nb_loops=nb_loops, cross_section=cross_section, **kwargs, ) else: return path_length_matched_points_modify_segment( list_of_waypoints=list_of_waypoints, modify_segment_i=modify_segment_i, extra_length=extra_length, ) def path_length_matched_points_modify_segment( list_of_waypoints, modify_segment_i, extra_length, ): if not isinstance(list_of_waypoints, list): raise ValueError( "list_of_waypoints should be a list, got {}".format(type(list_of_waypoints)) ) list_of_waypoints = [ remove_flat_angles(waypoints) for waypoints in list_of_waypoints ] lengths = [path_length(waypoints) for waypoints in list_of_waypoints] L0 = max(lengths) N = len(list_of_waypoints[0]) # Find how many turns there are per path nb_turns = [len(waypoints) - 2 for waypoints in list_of_waypoints] # The paths have to have the same number of turns, otherwise this algo # cannot path length match if min(nb_turns) != max(nb_turns): raise ValueError( f"Number of turns in paths have to be identical got {nb_turns}" ) if modify_segment_i < 0: modify_segment_i = modify_segment_i + N + 1 list_new_waypoints = [] # For each list of waypoints, modify one segment in-place for i, waypoints in enumerate(list_of_waypoints): p_s0, p_s1, p_next = waypoints[modify_segment_i - 1 : modify_segment_i + 2] p_s0 = np.array(p_s0) p_s1 = np.array(p_s1) L = lengths[i] # Path length compensation length dL = (L0 - L) / 2 # Additional fixed length dL = dL + extra_length # Modify the segment to accomodate for path length matching # Two cases: vertical or horizontal segment if _is_vertical(p_s0, p_s1): sx = np.sign(p_next[0] - p_s1[0]) dx = -sx * dL dp = (dx, 0) # Sequence of displacements to apply elif _is_horizontal(p_s0, p_s1): sy = np.sign(p_next[1] - p_s1[1]) dy = -sy * dL dp = (0, dy) waypoints[modify_segment_i - 1] = p_s0 + dp waypoints[modify_segment_i] = p_s1 + dp list_new_waypoints += [waypoints] return list_new_waypoints def path_length_matched_points_add_waypoints( list_of_waypoints: List[ndarray], modify_segment_i: int = -2, bend: ComponentFactory = bend_euler, margin: float = 0.0, extra_length: float = 0.0, nb_loops: int = 1, cross_section: CrossSectionFactory = strip, **kwargs, ) -> List[ndarray]: """ Args: list_of_waypoints: a list of list_of_points: [[p1, p2, p3,...], [q1, q2, q3,...], ...] - the number of turns have to be identical (usually means same number of points. exception is if there are some flat angles) modify_segment_i: index of the segment which accomodates the new turns default is next to last segment bend: for bends margin: some extra space to budget for in addition to the bend radius in most cases, the default is fine extra_length: distance added to all path length compensation. Useful is we want to add space for extra taper on all branches nb_loops: number of extra loops added in the path cross_section: factory **kwargs: cross_section settings returns: another list of waypoints where: - the path_lenth of each waypoints list are identical - the number of turns are identical Several types of paths won't match correctly. We do not try to handle all the corner cases here. If the paths are not well behaved, the input list_of_waypoints needs to be modified. To have flexibility in the path length, we need to add 4 bends One path has to be converted in this way: .. code:: __ | | | | This length is adjusted to make all path with the same length | | ___| |___ """ if not isinstance(list_of_waypoints, list): raise ValueError( f"list_of_waypoints should be a list, got {type(list_of_waypoints)}" ) list_of_waypoints = [ remove_flat_angles(waypoints) for waypoints in list_of_waypoints ] lengths = [path_length(waypoints) for waypoints in list_of_waypoints] L0 = max(lengths) N = len(list_of_waypoints[0]) # Find how many turns there are per path nb_turns = [len(waypoints) - 2 for waypoints in list_of_waypoints] # The paths have to have the same number of turns, otherwise cannot path-length # match with this algorithm if min(nb_turns) != max(nb_turns): raise ValueError( f"Number of turns in paths have to be identical got {nb_turns}" ) # Get the points for the segment we need to modify bend90 = bend(cross_section=cross_section, **kwargs) a = margin + bend90.info["dy"] if modify_segment_i < 0: modify_segment_i = modify_segment_i + N + 1 list_new_waypoints = [] for i, waypoints in enumerate(list_of_waypoints): p_s0, p_s1, p_next = waypoints[modify_segment_i - 2 : modify_segment_i + 1] p_s1 = np.array(p_s1) L = lengths[i] # Path length compensation length dL = (L0 - L) / (2 * nb_loops) # Additional fixed length dL = dL + extra_length # Generate a new sequence of points which will replace this segment # Two cases: vertical or horizontal segment if _is_vertical(p_s0, p_s1): sx = np.sign(p_next[0] - p_s1[0]) sy = np.sign(p_s1[1] - p_s0[1]) dx = sx * (2 * a + dL) dy = sy * 2 * a # First new point to insert q0 = p_s1 + (0, -2 * nb_loops * dy) # Sequence of displacements to apply seq = [(dx, 0), (0, dy), (-dx, 0), (0, dy)] * nb_loops seq.pop() # Remove last point to avoid flat angle with next point elif _is_horizontal(p_s0, p_s1): sy = np.sign(p_next[1] - p_s1[1]) sx = np.sign(p_s1[0] - p_s0[0]) dx = sx * 2 * a dy = sy * (2 * a + dL) # First new point to insert q0 = p_s1 + (-2 * dx * nb_loops, 0) # Sequence of displacements to apply seq = [(0, dy), (dx, 0), (0, -dy), (dx, 0)] * nb_loops seq.pop() # Remove last point to avoid flat angle with next point # Generate points to insert qs = [q0] for dp in seq: qs += [qs[-1] + dp] inserted_points = np.stack(qs, axis=0) waypoints = np.array(waypoints) # Insert the points new_points = np.vstack( [ waypoints[: modify_segment_i - 1], inserted_points, waypoints[modify_segment_i - 1 :], ] ) list_new_waypoints += [new_points] return list_new_waypoints if __name__ == "__main__": import gdsfactory as gf c = gf.Component() c1 = c << gf.components.straight_array(n=4, spacing=50) c2 = c << gf.components.straight_array(n=4, spacing=20) c1.y = 0 c2.y = 0 c2.x = 300 routes = gf.routing.get_bundle_path_length_match( c1.get_ports_list(prefix="E"), c2.get_ports_list(prefix="W"), radius=5, layer=(2, 0), ) for route in routes: c.add(route.references) c.show()
# -*- coding: utf-8 -*- """ pygments.lexers.ml ~~~~~~~~~~~~~~~~~~ Lexers for ML family languages. :copyright: Copyright 2006-2017 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import re from pygments.lexer import RegexLexer, include, bygroups, default, words from pygments.token import Text, Comment, Operator, Keyword, Name, String, \ Number, Punctuation, Error __all__ = ['SMLLexer', 'OcamlLexer', 'OpaLexer'] class SMLLexer(RegexLexer): """ For the Standard ML language. .. versionadded:: 1.5 """ name = 'Standard ML' aliases = ['sml'] filenames = ['*.sml', '*.sig', '*.fun'] mimetypes = ['text/x-standardml', 'application/x-standardml'] alphanumid_reserved = set(( # Core 'abstype', 'and', 'andalso', 'as', 'case', 'datatype', 'do', 'else', 'end', 'exception', 'fn', 'fun', 'handle', 'if', 'in', 'infix', 'infixr', 'let', 'local', 'nonfix', 'of', 'op', 'open', 'orelse', 'raise', 'rec', 'then', 'type', 'val', 'with', 'withtype', 'while', # Modules 'eqtype', 'functor', 'include', 'sharing', 'sig', 'signature', 'struct', 'structure', 'where', )) symbolicid_reserved = set(( # Core ':', r'\|', '=', '=>', '->', '#', # Modules ':>', )) nonid_reserved = set(('(', ')', '[', ']', '{', '}', ',', ';', '...', '_')) alphanumid_re = r"[a-zA-Z][\w']*" symbolicid_re = r"[!%&$#+\-/:<=>?@\\~`^|*]+" # A character constant is a sequence of the form #s, where s is a string # constant denoting a string of size one character. This setup just parses # the entire string as either a String.Double or a String.Char (depending # on the argument), even if the String.Char is an erronous # multiple-character string. def stringy(whatkind): return [ (r'[^"\\]', whatkind), (r'\\[\\"abtnvfr]', String.Escape), # Control-character notation is used for codes < 32, # where \^@ == \000 (r'\\\^[\x40-\x5e]', String.Escape), # Docs say 'decimal digits' (r'\\[0-9]{3}', String.Escape), (r'\\u[0-9a-fA-F]{4}', String.Escape), (r'\\\s+\\', String.Interpol), (r'"', whatkind, '#pop'), ] # Callbacks for distinguishing tokens and reserved words def long_id_callback(self, match): if match.group(1) in self.alphanumid_reserved: token = Error else: token = Name.Namespace yield match.start(1), token, match.group(1) yield match.start(2), Punctuation, match.group(2) def end_id_callback(self, match): if match.group(1) in self.alphanumid_reserved: token = Error elif match.group(1) in self.symbolicid_reserved: token = Error else: token = Name yield match.start(1), token, match.group(1) def id_callback(self, match): str = match.group(1) if str in self.alphanumid_reserved: token = Keyword.Reserved elif str in self.symbolicid_reserved: token = Punctuation else: token = Name yield match.start(1), token, str tokens = { # Whitespace and comments are (almost) everywhere 'whitespace': [ (r'\s+', Text), (r'\(\*', Comment.Multiline, 'comment'), ], 'delimiters': [ # This lexer treats these delimiters specially: # Delimiters define scopes, and the scope is how the meaning of # the `|' is resolved - is it a case/handle expression, or function # definition by cases? (This is not how the Definition works, but # it's how MLton behaves, see http://mlton.org/SMLNJDeviations) (r'\(|\[|\{', Punctuation, 'main'), (r'\)|\]|\}', Punctuation, '#pop'), (r'\b(let|if|local)\b(?!\')', Keyword.Reserved, ('main', 'main')), (r'\b(struct|sig|while)\b(?!\')', Keyword.Reserved, 'main'), (r'\b(do|else|end|in|then)\b(?!\')', Keyword.Reserved, '#pop'), ], 'core': [ # Punctuation that doesn't overlap symbolic identifiers (r'(%s)' % '|'.join(re.escape(z) for z in nonid_reserved), Punctuation), # Special constants: strings, floats, numbers in decimal and hex (r'#"', String.Char, 'char'), (r'"', String.Double, 'string'), (r'~?0x[0-9a-fA-F]+', Number.Hex), (r'0wx[0-9a-fA-F]+', Number.Hex), (r'0w\d+', Number.Integer), (r'~?\d+\.\d+[eE]~?\d+', Number.Float), (r'~?\d+\.\d+', Number.Float), (r'~?\d+[eE]~?\d+', Number.Float), (r'~?\d+', Number.Integer), # Labels (r'#\s*[1-9][0-9]*', Name.Label), (r'#\s*(%s)' % alphanumid_re, Name.Label), (r'#\s+(%s)' % symbolicid_re, Name.Label), # Some reserved words trigger a special, local lexer state change (r'\b(datatype|abstype)\b(?!\')', Keyword.Reserved, 'dname'), (r'(?=\b(exception)\b(?!\'))', Text, ('ename')), (r'\b(functor|include|open|signature|structure)\b(?!\')', Keyword.Reserved, 'sname'), (r'\b(type|eqtype)\b(?!\')', Keyword.Reserved, 'tname'), # Regular identifiers, long and otherwise (r'\'[\w\']*', Name.Decorator), (r'(%s)(\.)' % alphanumid_re, long_id_callback, "dotted"), (r'(%s)' % alphanumid_re, id_callback), (r'(%s)' % symbolicid_re, id_callback), ], 'dotted': [ (r'(%s)(\.)' % alphanumid_re, long_id_callback), (r'(%s)' % alphanumid_re, end_id_callback, "#pop"), (r'(%s)' % symbolicid_re, end_id_callback, "#pop"), (r'\s+', Error), (r'\S+', Error), ], # Main parser (prevents errors in files that have scoping errors) 'root': [ default('main') ], # In this scope, I expect '|' to not be followed by a function name, # and I expect 'and' to be followed by a binding site 'main': [ include('whitespace'), # Special behavior of val/and/fun (r'\b(val|and)\b(?!\')', Keyword.Reserved, 'vname'), (r'\b(fun)\b(?!\')', Keyword.Reserved, ('#pop', 'main-fun', 'fname')), include('delimiters'), include('core'), (r'\S+', Error), ], # In this scope, I expect '|' and 'and' to be followed by a function 'main-fun': [ include('whitespace'), (r'\s', Text), (r'\(\*', Comment.Multiline, 'comment'), # Special behavior of val/and/fun (r'\b(fun|and)\b(?!\')', Keyword.Reserved, 'fname'), (r'\b(val)\b(?!\')', Keyword.Reserved, ('#pop', 'main', 'vname')), # Special behavior of '|' and '|'-manipulating keywords (r'\|', Punctuation, 'fname'), (r'\b(case|handle)\b(?!\')', Keyword.Reserved, ('#pop', 'main')), include('delimiters'), include('core'), (r'\S+', Error), ], # Character and string parsers 'char': stringy(String.Char), 'string': stringy(String.Double), 'breakout': [ (r'(?=\b(%s)\b(?!\'))' % '|'.join(alphanumid_reserved), Text, '#pop'), ], # Dealing with what comes after module system keywords 'sname': [ include('whitespace'), include('breakout'), (r'(%s)' % alphanumid_re, Name.Namespace), default('#pop'), ], # Dealing with what comes after the 'fun' (or 'and' or '|') keyword 'fname': [ include('whitespace'), (r'\'[\w\']*', Name.Decorator), (r'\(', Punctuation, 'tyvarseq'), (r'(%s)' % alphanumid_re, Name.Function, '#pop'), (r'(%s)' % symbolicid_re, Name.Function, '#pop'), # Ignore interesting function declarations like "fun (x + y) = ..." default('#pop'), ], # Dealing with what comes after the 'val' (or 'and') keyword 'vname': [ include('whitespace'), (r'\'[\w\']*', Name.Decorator), (r'\(', Punctuation, 'tyvarseq'), (r'(%s)(\s*)(=(?!%s))' % (alphanumid_re, symbolicid_re), bygroups(Name.Variable, Text, Punctuation), '#pop'), (r'(%s)(\s*)(=(?!%s))' % (symbolicid_re, symbolicid_re), bygroups(Name.Variable, Text, Punctuation), '#pop'), (r'(%s)' % alphanumid_re, Name.Variable, '#pop'), (r'(%s)' % symbolicid_re, Name.Variable, '#pop'), # Ignore interesting patterns like 'val (x, y)' default('#pop'), ], # Dealing with what comes after the 'type' (or 'and') keyword 'tname': [ include('whitespace'), include('breakout'), (r'\'[\w\']*', Name.Decorator), (r'\(', Punctuation, 'tyvarseq'), (r'=(?!%s)' % symbolicid_re, Punctuation, ('#pop', 'typbind')), (r'(%s)' % alphanumid_re, Keyword.Type), (r'(%s)' % symbolicid_re, Keyword.Type), (r'\S+', Error, '#pop'), ], # A type binding includes most identifiers 'typbind': [ include('whitespace'), (r'\b(and)\b(?!\')', Keyword.Reserved, ('#pop', 'tname')), include('breakout'), include('core'), (r'\S+', Error, '#pop'), ], # Dealing with what comes after the 'datatype' (or 'and') keyword 'dname': [ include('whitespace'), include('breakout'), (r'\'[\w\']*', Name.Decorator), (r'\(', Punctuation, 'tyvarseq'), (r'(=)(\s*)(datatype)', bygroups(Punctuation, Text, Keyword.Reserved), '#pop'), (r'=(?!%s)' % symbolicid_re, Punctuation, ('#pop', 'datbind', 'datcon')), (r'(%s)' % alphanumid_re, Keyword.Type), (r'(%s)' % symbolicid_re, Keyword.Type), (r'\S+', Error, '#pop'), ], # common case - A | B | C of int 'datbind': [ include('whitespace'), (r'\b(and)\b(?!\')', Keyword.Reserved, ('#pop', 'dname')), (r'\b(withtype)\b(?!\')', Keyword.Reserved, ('#pop', 'tname')), (r'\b(of)\b(?!\')', Keyword.Reserved), (r'(\|)(\s*)(%s)' % alphanumid_re, bygroups(Punctuation, Text, Name.Class)), (r'(\|)(\s+)(%s)' % symbolicid_re, bygroups(Punctuation, Text, Name.Class)), include('breakout'), include('core'), (r'\S+', Error), ], # Dealing with what comes after an exception 'ename': [ include('whitespace'), (r'(exception|and)\b(\s+)(%s)' % alphanumid_re, bygroups(Keyword.Reserved, Text, Name.Class)), (r'(exception|and)\b(\s*)(%s)' % symbolicid_re, bygroups(Keyword.Reserved, Text, Name.Class)), (r'\b(of)\b(?!\')', Keyword.Reserved), include('breakout'), include('core'), (r'\S+', Error), ], 'datcon': [ include('whitespace'), (r'(%s)' % alphanumid_re, Name.Class, '#pop'), (r'(%s)' % symbolicid_re, Name.Class, '#pop'), (r'\S+', Error, '#pop'), ], # Series of type variables 'tyvarseq': [ (r'\s', Text), (r'\(\*', Comment.Multiline, 'comment'), (r'\'[\w\']*', Name.Decorator), (alphanumid_re, Name), (r',', Punctuation), (r'\)', Punctuation, '#pop'), (symbolicid_re, Name), ], 'comment': [ (r'[^(*)]', Comment.Multiline), (r'\(\*', Comment.Multiline, '#push'), (r'\*\)', Comment.Multiline, '#pop'), (r'[(*)]', Comment.Multiline), ], } class OcamlLexer(RegexLexer): """ For the OCaml language. .. versionadded:: 0.7 """ name = 'OCaml' aliases = ['ocaml'] filenames = ['*.ml', '*.mli', '*.mll', '*.mly'] mimetypes = ['text/x-ocaml'] keywords = ( 'as', 'assert', 'begin', 'class', 'constraint', 'do', 'done', 'downto', 'else', 'end', 'exception', 'external', 'false', 'for', 'fun', 'function', 'functor', 'if', 'in', 'include', 'inherit', 'initializer', 'lazy', 'let', 'match', 'method', 'module', 'mutable', 'new', 'object', 'of', 'open', 'private', 'raise', 'rec', 'sig', 'struct', 'then', 'to', 'true', 'try', 'type', 'value', 'val', 'virtual', 'when', 'while', 'with', ) keyopts = ( '!=', '#', '&', '&&', r'\(', r'\)', r'\*', r'\+', ',', '-', r'-\.', '->', r'\.', r'\.\.', ':', '::', ':=', ':>', ';', ';;', '<', '<-', '=', '>', '>]', r'>\}', r'\?', r'\?\?', r'\[', r'\[<', r'\[>', r'\[\|', ']', '_', '`', r'\{', r'\{<', r'\|', r'\|]', r'\}', '~' ) operators = r'[!$%&*+\./:<=>?@^|~-]' word_operators = ('and', 'asr', 'land', 'lor', 'lsl', 'lxor', 'mod', 'or') prefix_syms = r'[!?~]' infix_syms = r'[=<>@^|&+\*/$%-]' primitives = ('unit', 'int', 'float', 'bool', 'string', 'char', 'list', 'array') tokens = { 'escape-sequence': [ (r'\\[\\"\'ntbr]', String.Escape), (r'\\[0-9]{3}', String.Escape), (r'\\x[0-9a-fA-F]{2}', String.Escape), ], 'root': [ (r'\s+', Text), (r'false|true|\(\)|\[\]', Name.Builtin.Pseudo), (r'\b([A-Z][\w\']*)(?=\s*\.)', Name.Namespace, 'dotted'), (r'\b([A-Z][\w\']*)', Name.Class), (r'\(\*(?![)])', Comment, 'comment'), (r'\b(%s)\b' % '|'.join(keywords), Keyword), (r'(%s)' % '|'.join(keyopts[::-1]), Operator), (r'(%s|%s)?%s' % (infix_syms, prefix_syms, operators), Operator), (r'\b(%s)\b' % '|'.join(word_operators), Operator.Word), (r'\b(%s)\b' % '|'.join(primitives), Keyword.Type), (r"[^\W\d][\w']*", Name), (r'-?\d[\d_]*(.[\d_]*)?([eE][+\-]?\d[\d_]*)', Number.Float), (r'0[xX][\da-fA-F][\da-fA-F_]*', Number.Hex), (r'0[oO][0-7][0-7_]*', Number.Oct), (r'0[bB][01][01_]*', Number.Bin), (r'\d[\d_]*', Number.Integer), (r"'(?:(\\[\\\"'ntbr ])|(\\[0-9]{3})|(\\x[0-9a-fA-F]{2}))'", String.Char), (r"'.'", String.Char), (r"'", Keyword), # a stray quote is another syntax element (r'"', String.Double, 'string'), (r'[~?][a-z][\w\']*:', Name.Variable), ], 'comment': [ (r'[^(*)]+', Comment), (r'\(\*', Comment, '#push'), (r'\*\)', Comment, '#pop'), (r'[(*)]', Comment), ], 'string': [ (r'[^\\"]+', String.Double), include('escape-sequence'), (r'\\\n', String.Double), (r'"', String.Double, '#pop'), ], 'dotted': [ (r'\s+', Text), (r'\.', Punctuation), (r'[A-Z][\w\']*(?=\s*\.)', Name.Namespace), (r'[A-Z][\w\']*', Name.Class, '#pop'), (r'[a-z_][\w\']*', Name, '#pop'), default('#pop'), ], } class OpaLexer(RegexLexer): """ Lexer for the Opa language (http://opalang.org). .. versionadded:: 1.5 """ name = 'Opa' aliases = ['opa'] filenames = ['*.opa'] mimetypes = ['text/x-opa'] # most of these aren't strictly keywords # but if you color only real keywords, you might just # as well not color anything keywords = ( 'and', 'as', 'begin', 'case', 'client', 'css', 'database', 'db', 'do', 'else', 'end', 'external', 'forall', 'function', 'if', 'import', 'match', 'module', 'or', 'package', 'parser', 'rec', 'server', 'then', 'type', 'val', 'with', 'xml_parser', ) # matches both stuff and `stuff` ident_re = r'(([a-zA-Z_]\w*)|(`[^`]*`))' op_re = r'[.=\-<>,@~%/+?*&^!]' punc_re = r'[()\[\],;|]' # '{' and '}' are treated elsewhere # because they are also used for inserts tokens = { # copied from the caml lexer, should be adapted 'escape-sequence': [ (r'\\[\\"\'ntr}]', String.Escape), (r'\\[0-9]{3}', String.Escape), (r'\\x[0-9a-fA-F]{2}', String.Escape), ], # factorizing these rules, because they are inserted many times 'comments': [ (r'/\*', Comment, 'nested-comment'), (r'//.*?$', Comment), ], 'comments-and-spaces': [ include('comments'), (r'\s+', Text), ], 'root': [ include('comments-and-spaces'), # keywords (words(keywords, prefix=r'\b', suffix=r'\b'), Keyword), # directives # we could parse the actual set of directives instead of anything # starting with @, but this is troublesome # because it needs to be adjusted all the time # and assuming we parse only sources that compile, it is useless (r'@' + ident_re + r'\b', Name.Builtin.Pseudo), # number literals (r'-?.[\d]+([eE][+\-]?\d+)', Number.Float), (r'-?\d+.\d*([eE][+\-]?\d+)', Number.Float), (r'-?\d+[eE][+\-]?\d+', Number.Float), (r'0[xX][\da-fA-F]+', Number.Hex), (r'0[oO][0-7]+', Number.Oct), (r'0[bB][01]+', Number.Bin), (r'\d+', Number.Integer), # color literals (r'#[\da-fA-F]{3,6}', Number.Integer), # string literals (r'"', String.Double, 'string'), # char literal, should be checked because this is the regexp from # the caml lexer (r"'(?:(\\[\\\"'ntbr ])|(\\[0-9]{3})|(\\x[0-9a-fA-F]{2})|.)'", String.Char), # this is meant to deal with embedded exprs in strings # every time we find a '}' we pop a state so that if we were # inside a string, we are back in the string state # as a consequence, we must also push a state every time we find a # '{' or else we will have errors when parsing {} for instance (r'\{', Operator, '#push'), (r'\}', Operator, '#pop'), # html literals # this is a much more strict that the actual parser, # since a<b would not be parsed as html # but then again, the parser is way too lax, and we can't hope # to have something as tolerant (r'<(?=[a-zA-Z>])', String.Single, 'html-open-tag'), # db path # matching the '[_]' in '/a[_]' because it is a part # of the syntax of the db path definition # unfortunately, i don't know how to match the ']' in # /a[1], so this is somewhat inconsistent (r'[@?!]?(/\w+)+(\[_\])?', Name.Variable), # putting the same color on <- as on db path, since # it can be used only to mean Db.write (r'<-(?!'+op_re+r')', Name.Variable), # 'modules' # although modules are not distinguished by their names as in caml # the standard library seems to follow the convention that modules # only area capitalized (r'\b([A-Z]\w*)(?=\.)', Name.Namespace), # operators # = has a special role because this is the only # way to syntactic distinguish binding constructions # unfortunately, this colors the equal in {x=2} too (r'=(?!'+op_re+r')', Keyword), (r'(%s)+' % op_re, Operator), (r'(%s)+' % punc_re, Operator), # coercions (r':', Operator, 'type'), # type variables # we need this rule because we don't parse specially type # definitions so in "type t('a) = ...", "'a" is parsed by 'root' ("'"+ident_re, Keyword.Type), # id literal, #something, or #{expr} (r'#'+ident_re, String.Single), (r'#(?=\{)', String.Single), # identifiers # this avoids to color '2' in 'a2' as an integer (ident_re, Text), # default, not sure if that is needed or not # (r'.', Text), ], # it is quite painful to have to parse types to know where they end # this is the general rule for a type # a type is either: # * -> ty # * type-with-slash # * type-with-slash -> ty # * type-with-slash (, type-with-slash)+ -> ty # # the code is pretty funky in here, but this code would roughly # translate in caml to: # let rec type stream = # match stream with # | [< "->"; stream >] -> type stream # | [< ""; stream >] -> # type_with_slash stream # type_lhs_1 stream; # and type_1 stream = ... 'type': [ include('comments-and-spaces'), (r'->', Keyword.Type), default(('#pop', 'type-lhs-1', 'type-with-slash')), ], # parses all the atomic or closed constructions in the syntax of type # expressions: record types, tuple types, type constructors, basic type # and type variables 'type-1': [ include('comments-and-spaces'), (r'\(', Keyword.Type, ('#pop', 'type-tuple')), (r'~?\{', Keyword.Type, ('#pop', 'type-record')), (ident_re+r'\(', Keyword.Type, ('#pop', 'type-tuple')), (ident_re, Keyword.Type, '#pop'), ("'"+ident_re, Keyword.Type), # this case is not in the syntax but sometimes # we think we are parsing types when in fact we are parsing # some css, so we just pop the states until we get back into # the root state default('#pop'), ], # type-with-slash is either: # * type-1 # * type-1 (/ type-1)+ 'type-with-slash': [ include('comments-and-spaces'), default(('#pop', 'slash-type-1', 'type-1')), ], 'slash-type-1': [ include('comments-and-spaces'), ('/', Keyword.Type, ('#pop', 'type-1')), # same remark as above default('#pop'), ], # we go in this state after having parsed a type-with-slash # while trying to parse a type # and at this point we must determine if we are parsing an arrow # type (in which case we must continue parsing) or not (in which # case we stop) 'type-lhs-1': [ include('comments-and-spaces'), (r'->', Keyword.Type, ('#pop', 'type')), (r'(?=,)', Keyword.Type, ('#pop', 'type-arrow')), default('#pop'), ], 'type-arrow': [ include('comments-and-spaces'), # the look ahead here allows to parse f(x : int, y : float -> truc) # correctly (r',(?=[^:]*?->)', Keyword.Type, 'type-with-slash'), (r'->', Keyword.Type, ('#pop', 'type')), # same remark as above default('#pop'), ], # no need to do precise parsing for tuples and records # because they are closed constructions, so we can simply # find the closing delimiter # note that this function would be not work if the source # contained identifiers like `{)` (although it could be patched # to support it) 'type-tuple': [ include('comments-and-spaces'), (r'[^()/*]+', Keyword.Type), (r'[/*]', Keyword.Type), (r'\(', Keyword.Type, '#push'), (r'\)', Keyword.Type, '#pop'), ], 'type-record': [ include('comments-and-spaces'), (r'[^{}/*]+', Keyword.Type), (r'[/*]', Keyword.Type), (r'\{', Keyword.Type, '#push'), (r'\}', Keyword.Type, '#pop'), ], # 'type-tuple': [ # include('comments-and-spaces'), # (r'\)', Keyword.Type, '#pop'), # default(('#pop', 'type-tuple-1', 'type-1')), # ], # 'type-tuple-1': [ # include('comments-and-spaces'), # (r',?\s*\)', Keyword.Type, '#pop'), # ,) is a valid end of tuple, in (1,) # (r',', Keyword.Type, 'type-1'), # ], # 'type-record':[ # include('comments-and-spaces'), # (r'\}', Keyword.Type, '#pop'), # (r'~?(?:\w+|`[^`]*`)', Keyword.Type, 'type-record-field-expr'), # ], # 'type-record-field-expr': [ # # ], 'nested-comment': [ (r'[^/*]+', Comment), (r'/\*', Comment, '#push'), (r'\*/', Comment, '#pop'), (r'[/*]', Comment), ], # the copy pasting between string and single-string # is kinda sad. Is there a way to avoid that?? 'string': [ (r'[^\\"{]+', String.Double), (r'"', String.Double, '#pop'), (r'\{', Operator, 'root'), include('escape-sequence'), ], 'single-string': [ (r'[^\\\'{]+', String.Double), (r'\'', String.Double, '#pop'), (r'\{', Operator, 'root'), include('escape-sequence'), ], # all the html stuff # can't really reuse some existing html parser # because we must be able to parse embedded expressions # we are in this state after someone parsed the '<' that # started the html literal 'html-open-tag': [ (r'[\w\-:]+', String.Single, ('#pop', 'html-attr')), (r'>', String.Single, ('#pop', 'html-content')), ], # we are in this state after someone parsed the '</' that # started the end of the closing tag 'html-end-tag': [ # this is a star, because </> is allowed (r'[\w\-:]*>', String.Single, '#pop'), ], # we are in this state after having parsed '<ident(:ident)?' # we thus parse a possibly empty list of attributes 'html-attr': [ (r'\s+', Text), (r'[\w\-:]+=', String.Single, 'html-attr-value'), (r'/>', String.Single, '#pop'), (r'>', String.Single, ('#pop', 'html-content')), ], 'html-attr-value': [ (r"'", String.Single, ('#pop', 'single-string')), (r'"', String.Single, ('#pop', 'string')), (r'#'+ident_re, String.Single, '#pop'), (r'#(?=\{)', String.Single, ('#pop', 'root')), (r'[^"\'{`=<>]+', String.Single, '#pop'), (r'\{', Operator, ('#pop', 'root')), # this is a tail call! ], # we should probably deal with '\' escapes here 'html-content': [ (r'<!--', Comment, 'html-comment'), (r'</', String.Single, ('#pop', 'html-end-tag')), (r'<', String.Single, 'html-open-tag'), (r'\{', Operator, 'root'), (r'[^<{]+', String.Single), ], 'html-comment': [ (r'-->', Comment, '#pop'), (r'[^\-]+|-', Comment), ], }
from modularodm.exceptions import ValidationError from modularodm import Q from rest_framework import exceptions from rest_framework import serializers as ser from api.base.exceptions import Conflict from api.base.serializers import ( JSONAPISerializer, IDField, LinksField, RelationshipField, DateByVersion, ) from api.base.utils import absolute_reverse, get_user_auth from api.taxonomies.serializers import TaxonomyField from api.nodes.serializers import ( NodeCitationSerializer, NodeLicenseSerializer, get_license_details ) from framework.exceptions import PermissionsError from website.util import permissions from website.exceptions import NodeStateError from website.project import signals as project_signals from osf.models import BaseFileNode, PreprintService, PreprintProvider, Node, NodeLicense class PrimaryFileRelationshipField(RelationshipField): def get_object(self, file_id): return BaseFileNode.load(file_id) def to_internal_value(self, data): file = self.get_object(data) return {'primary_file': file} class NodeRelationshipField(RelationshipField): def get_object(self, node_id): return Node.load(node_id) def to_internal_value(self, data): node = self.get_object(data) return {'node': node} class PreprintProviderRelationshipField(RelationshipField): def get_object(self, node_id): return PreprintProvider.load(node_id) def to_internal_value(self, data): provider = self.get_object(data) return {'provider': provider} class PreprintLicenseRelationshipField(RelationshipField): def to_internal_value(self, license_id): license = NodeLicense.load(license_id) if license: return {'license_type': license} raise exceptions.NotFound('Unable to find specified license.') class PreprintSerializer(JSONAPISerializer): filterable_fields = frozenset([ 'id', 'date_created', 'date_modified', 'date_published', 'provider', 'is_published', 'subjects', ]) id = IDField(source='_id', read_only=True) subjects = ser.SerializerMethodField() date_created = DateByVersion(read_only=True) date_modified = DateByVersion(read_only=True) date_published = DateByVersion(read_only=True) doi = ser.CharField(source='article_doi', required=False, allow_null=True) is_published = ser.BooleanField(required=False) is_preprint_orphan = ser.BooleanField(read_only=True) license_record = NodeLicenseSerializer(required=False, source='license') citation = RelationshipField( related_view='preprints:preprint-citation', related_view_kwargs={'preprint_id': '<_id>'} ) identifiers = RelationshipField( related_view='preprints:identifier-list', related_view_kwargs={'preprint_id': '<_id>'} ) node = NodeRelationshipField( related_view='nodes:node-detail', related_view_kwargs={'node_id': '<node._id>'}, read_only=False ) license = PreprintLicenseRelationshipField( related_view='licenses:license-detail', related_view_kwargs={'license_id': '<license.node_license._id>'}, read_only=False ) provider = PreprintProviderRelationshipField( related_view='preprint_providers:preprint_provider-detail', related_view_kwargs={'provider_id': '<provider._id>'}, read_only=False ) primary_file = PrimaryFileRelationshipField( related_view='files:file-detail', related_view_kwargs={'file_id': '<primary_file._id>'}, lookup_url_kwarg='file_id', read_only=False ) links = LinksField( { 'self': 'get_preprint_url', 'html': 'get_absolute_html_url', 'doi': 'get_article_doi_url', 'preprint_doi': 'get_preprint_doi_url' } ) class Meta: type_ = 'preprints' def get_subjects(self, obj): return [ [ TaxonomyField().to_representation(subj) for subj in hier ] for hier in obj.subject_hierarchy ] def get_preprint_url(self, obj): return absolute_reverse('preprints:preprint-detail', kwargs={'preprint_id': obj._id, 'version': self.context['request'].parser_context['kwargs']['version']}) def get_absolute_url(self, obj): return self.get_preprint_url(obj) def get_article_doi_url(self, obj): return 'https://dx.doi.org/{}'.format(obj.article_doi) if obj.article_doi else None def get_preprint_doi_url(self, obj): doi_identifier = obj.get_identifier('doi') return 'https://dx.doi.org/{}'.format(doi_identifier.value) if doi_identifier else None def run_validation(self, *args, **kwargs): # Overrides construtor for validated_data to allow writes to a SerializerMethodField # Validation for `subjects` happens in the model _validated_data = super(PreprintSerializer, self).run_validation(*args, **kwargs) if 'subjects' in self.initial_data: _validated_data['subjects'] = self.initial_data['subjects'] return _validated_data def update(self, preprint, validated_data): assert isinstance(preprint, PreprintService), 'You must specify a valid preprint to be updated' assert isinstance(preprint.node, Node), 'You must specify a preprint with a valid node to be updated.' auth = get_user_auth(self.context['request']) if not preprint.node.has_permission(auth.user, 'admin'): raise exceptions.PermissionDenied(detail='User must be an admin to update a preprint.') save_node = False save_preprint = False recently_published = False primary_file = validated_data.pop('primary_file', None) if primary_file: self.set_field(preprint.set_primary_file, primary_file, auth) save_node = True if 'subjects' in validated_data: subjects = validated_data.pop('subjects', None) self.set_field(preprint.set_subjects, subjects, auth) save_preprint = True if 'article_doi' in validated_data: preprint.node.preprint_article_doi = validated_data['article_doi'] save_node = True if 'license_type' in validated_data or 'license' in validated_data: license_details = get_license_details(preprint, validated_data) self.set_field(preprint.set_preprint_license, license_details, auth) save_preprint = True published = validated_data.pop('is_published', None) if published is not None: self.set_field(preprint.set_published, published, auth) save_preprint = True recently_published = published if save_node: try: preprint.node.save() except ValidationError as e: # Raised from invalid DOI raise exceptions.ValidationError(detail=e.messages[0]) if save_preprint: preprint.save() # Send preprint confirmation email signal to new authors on preprint! -- only when published # TODO: Some more thought might be required on this; preprints made from existing # nodes will send emails making it seem like a new node. if recently_published: for author in preprint.node.contributors: if author != auth.user: project_signals.contributor_added.send(preprint.node, contributor=author, auth=auth, email_template='preprint') return preprint def set_field(self, func, val, auth, save=False): try: func(val, auth) except PermissionsError as e: raise exceptions.PermissionDenied(detail=e.message) except ValueError as e: raise exceptions.ValidationError(detail=e.message) except NodeStateError as e: raise exceptions.ValidationError(detail=e.message) class PreprintCreateSerializer(PreprintSerializer): # Overrides PreprintSerializer to make id nullable, adds `create` id = IDField(source='_id', required=False, allow_null=True) def create(self, validated_data): node = validated_data.pop('node', None) if not node: raise exceptions.NotFound('Unable to find Node with specified id.') elif node.is_deleted: raise exceptions.ValidationError('Cannot create a preprint from a deleted node.') auth = get_user_auth(self.context['request']) if not node.has_permission(auth.user, permissions.ADMIN): raise exceptions.PermissionDenied primary_file = validated_data.pop('primary_file', None) if not primary_file: raise exceptions.ValidationError(detail='You must specify a valid primary_file to create a preprint.') provider = validated_data.pop('provider', None) if not provider: raise exceptions.ValidationError(detail='You must specify a valid provider to create a preprint.') if PreprintService.find(Q('node', 'eq', node) & Q('provider', 'eq', provider)).count(): conflict = PreprintService.find_one(Q('node', 'eq', node) & Q('provider', 'eq', provider)) raise Conflict('Only one preprint per provider can be submitted for a node. Check `meta[existing_resource_id]`.', meta={'existing_resource_id': conflict._id}) preprint = PreprintService(node=node, provider=provider) self.set_field(preprint.set_primary_file, primary_file, auth) preprint.save() preprint.node._has_abandoned_preprint = True preprint.node.save() return self.update(preprint, validated_data) class PreprintCitationSerializer(NodeCitationSerializer): class Meta: type_ = 'preprint-citation'
from collections.abc import Iterable from numbers import Integral, Real import numpy as np import openmc.checkvalue as cv from openmc.mixin import EqualityMixin from .data import EV_PER_MEV class ProbabilityTables(EqualityMixin): r"""Unresolved resonance region probability tables. Parameters ---------- energy : Iterable of float Energies in eV at which probability tables exist table : numpy.ndarray Probability tables for each energy. This array is of shape (N, 6, M) where N is the number of energies and M is the number of bands. The second dimension indicates whether the value is for the cumulative probability (0), total (1), elastic (2), fission (3), :math:`(n,\gamma)` (4), or heating number (5). interpolation : {2, 5} Interpolation scheme between tables inelastic_flag : int A value less than zero indicates that the inelastic cross section is zero within the unresolved energy range. A value greater than zero indicates the MT number for a reaction whose cross section is to be used in the unresolved range. absorption_flag : int A value less than zero indicates that the "other absorption" cross section is zero within the unresolved energy range. A value greater than zero indicates the MT number for a reaction whose cross section is to be used in the unresolved range. multiply_smooth : bool Indicate whether probability table values are cross sections (False) or whether they must be multiply by the corresponding "smooth" cross sections (True). Attributes ---------- energy : Iterable of float Energies in eV at which probability tables exist table : numpy.ndarray Probability tables for each energy. This array is of shape (N, 6, M) where N is the number of energies and M is the number of bands. The second dimension indicates whether the value is for the cumulative probability (0), total (1), elastic (2), fission (3), :math:`(n,\gamma)` (4), or heating number (5). interpolation : {2, 5} Interpolation scheme between tables inelastic_flag : int A value less than zero indicates that the inelastic cross section is zero within the unresolved energy range. A value greater than zero indicates the MT number for a reaction whose cross section is to be used in the unresolved range. absorption_flag : int A value less than zero indicates that the "other absorption" cross section is zero within the unresolved energy range. A value greater than zero indicates the MT number for a reaction whose cross section is to be used in the unresolved range. multiply_smooth : bool Indicate whether probability table values are cross sections (False) or whether they must be multiply by the corresponding "smooth" cross sections (True). """ def __init__(self, energy, table, interpolation, inelastic_flag=-1, absorption_flag=-1, multiply_smooth=False): self.energy = energy self.table = table self.interpolation = interpolation self.inelastic_flag = inelastic_flag self.absorption_flag = absorption_flag self.multiply_smooth = multiply_smooth @property def absorption_flag(self): return self._absorption_flag @property def energy(self): return self._energy @property def inelastic_flag(self): return self._inelastic_flag @property def interpolation(self): return self._interpolation @property def multiply_smooth(self): return self._multiply_smooth @property def table(self): return self._table @absorption_flag.setter def absorption_flag(self, absorption_flag): cv.check_type('absorption flag', absorption_flag, Integral) self._absorption_flag = absorption_flag @energy.setter def energy(self, energy): cv.check_type('probability table energies', energy, Iterable, Real) self._energy = energy @inelastic_flag.setter def inelastic_flag(self, inelastic_flag): cv.check_type('inelastic flag', inelastic_flag, Integral) self._inelastic_flag = inelastic_flag @interpolation.setter def interpolation(self, interpolation): cv.check_value('interpolation', interpolation, [2, 5]) self._interpolation = interpolation @multiply_smooth.setter def multiply_smooth(self, multiply_smooth): cv.check_type('multiply by smooth', multiply_smooth, bool) self._multiply_smooth = multiply_smooth @table.setter def table(self, table): cv.check_type('probability tables', table, np.ndarray) self._table = table def to_hdf5(self, group): """Write probability tables to an HDF5 group Parameters ---------- group : h5py.Group HDF5 group to write to """ group.attrs['interpolation'] = self.interpolation group.attrs['inelastic'] = self.inelastic_flag group.attrs['absorption'] = self.absorption_flag group.attrs['multiply_smooth'] = int(self.multiply_smooth) group.create_dataset('energy', data=self.energy) group.create_dataset('table', data=self.table) @classmethod def from_hdf5(cls, group): """Generate probability tables from HDF5 data Parameters ---------- group : h5py.Group HDF5 group to read from Returns ------- openmc.data.ProbabilityTables Probability tables """ interpolation = group.attrs['interpolation'] inelastic_flag = group.attrs['inelastic'] absorption_flag = group.attrs['absorption'] multiply_smooth = bool(group.attrs['multiply_smooth']) energy = group['energy'].value table = group['table'].value return cls(energy, table, interpolation, inelastic_flag, absorption_flag, multiply_smooth) @classmethod def from_ace(cls, ace): """Generate probability tables from an ACE table Parameters ---------- ace : openmc.data.ace.Table ACE table to read from Returns ------- openmc.data.ProbabilityTables Unresolved resonance region probability tables """ # Check if URR probability tables are present idx = ace.jxs[23] if idx == 0: return None N = int(ace.xss[idx]) # Number of incident energies M = int(ace.xss[idx+1]) # Length of probability table interpolation = int(ace.xss[idx+2]) inelastic_flag = int(ace.xss[idx+3]) absorption_flag = int(ace.xss[idx+4]) multiply_smooth = (int(ace.xss[idx+5]) == 1) idx += 6 # Get energies at which tables exist energy = ace.xss[idx : idx+N]*EV_PER_MEV idx += N # Get probability tables table = ace.xss[idx : idx+N*6*M].copy() table.shape = (N, 6, M) # Convert units on heating numbers table[:,5,:] *= EV_PER_MEV return cls(energy, table, interpolation, inelastic_flag, absorption_flag, multiply_smooth)
from rpython.rlib.rarithmetic import r_singlefloat, r_uint from rpython.rtyper.lltypesystem import lltype, rffi from rpython.translator.tool.cbuild import ExternalCompilationInfo r_uint32 = rffi.r_uint assert r_uint32.BITS == 32 UINT32MAX = 2 ** 32 - 1 # keep in sync with the C code in pypy__decay_jit_counters below ENTRY = lltype.Struct('timetable_entry', ('times', lltype.FixedSizeArray(rffi.FLOAT, 5)), ('subhashes', lltype.FixedSizeArray(rffi.USHORT, 5))) class JitCounter: """A process translated with the JIT contains one prebuilt instance of this class. It is used for three things: * It maps greenkey hashes to counters, to know when we have seen this greenkey enough to reach the 'threshold' or 'function_threshold' parameters. This is done in a lossy way by a fixed-size 'timetable'. * It handles the counters on the failing guards, for 'trace_eagerness'. This is done in the same 'timetable'. * It records the JitCell objects that are created when we compile a loop, in a non-lossy dictionary-like strurcture. This is done in the 'celltable'. The 'timetable' is a table of DEFAULT_SIZE entries, each of which containing 5 entries. From a hash value, we use the index number '_get_index(hash)', and then we look in all five entries for a matching '_get_subhash(hash)'. The five entries are roughly kept sorted by decreasing recorded time. The hash value itself should be computed accordingly: we only use bits 21:32 for _get_index and bits 0:16 for _get_subhash. (This organization is "probably good" to get not-too-random behavior; another motivation for it was for the STM branch, to avoid pointless conflicts between threads.) The time value stored in the timetable is a (short-precision) floating-point number. The idea is that a value of 0.0 means absent, and values go up to the maximum of 1.0. 'compute_threshold(threshold)' returns basically the fraction 1.0/threshold, corresponding to the 'increment' value for the following APIs. 'tick(hash, increment)' adds 'increment' to the time value stored with the 'hash'. Remember that only bits 0:16,21:32 of the hash are used; in case of collision between two hashes, they will grow twice as fast, because each tick() call will contribute to the colliding time value. 'fetch_next_hash()' returns a "random" hash value suitable for using in tick() later. Used when compiling guards; when the guard actually fails, we'll tick() the guard's stored random hash. 'reset(hash)', 'change_current_fraction(hash, new_time_value)' change the time value associated with a hash. The former resets it to zero, and the latter changes it to the given value (which should be a value close to 1.0). 'set_decay(decay)', 'decay_all_counters()' is used to globally reduce all the stored time values. They all get multiplied by a fraction close to (but smaller than) 1.0, computed from the 'decay' parameter. 'install_new_cell(hash, newcell)' adds the new JitCell to the celltable, at the index given by 'hash' (bits 21:32). Unlike the timetable, the celltable stores a linked list of JitCells for every entry, and so it is not lossy. 'lookup_chain(hash)' returns the first JitCell at 'hash'. You can then walk the chain by following the '.next' attributes until you reach None. 'cleanup_chain(hash)' resets the timetable's 'hash' entry and cleans up the celltable at 'hash'. It removes those JitCells for which 'cell.should_remove_jitcell()' returns True. """ DEFAULT_SIZE = 2048 def __init__(self, size=DEFAULT_SIZE, translator=None): "NOT_RPYTHON" self.size = size self.shift = 16 while (UINT32MAX >> self.shift) != size - 1: self.shift += 1 assert self.shift < 999, "size is not a power of two <= 2**16" # # The table of timings. This is a 5-ways associative cache. # We index into it using a number between 0 and (size - 1), # and we're getting a 32-bytes-long entry; then this entry # contains 5 possible ways, each occupying 6 bytes: 4 bytes # for a float, and the 2 lowest bytes from the original hash. self.timetable = lltype.malloc(rffi.CArray(ENTRY), self.size, flavor='raw', zero=True, track_allocation=False) self._nexthash = r_uint(0) # # The table of JitCell entries, recording already-compiled loops self.celltable = [None] * size # if translator is not None: class Glob: step = 0 glob = Glob() def invoke_after_minor_collection(): # After 32 minor collections, we call decay_all_counters(). # The "--jit decay=N" option measures the amount the # counters are then reduced by. glob.step += 1 if glob.step == 32: glob.step = 0 self.decay_all_counters() if not hasattr(translator, '_jit2gc'): translator._jit2gc = {} translator._jit2gc['invoke_after_minor_collection'] = ( invoke_after_minor_collection) def compute_threshold(self, threshold): """Return the 'increment' value corresponding to the given number.""" if threshold <= 0: return 0.0 # no increment, never reach 1.0 return 1.0 / (threshold - 0.001) def _get_index(self, hash): """Return the index (< self.size) from a hash. This truncates the hash to 32 bits, and then keep the *highest* remaining bits. Be sure that hash is computed correctly, by multiplying with a large odd number or by fetch_next_hash().""" hash32 = r_uint(r_uint32(hash)) # mask off the bits higher than 32 index = hash32 >> self.shift # shift, resulting in a value < size return index # return the result as a r_uint _get_index._always_inline_ = True @staticmethod def _get_subhash(hash): return hash & 65535 def fetch_next_hash(self): result = self._nexthash # note: all three "1" bits in the following constant are needed # to make test_counter.test_fetch_next_index pass. The first # is to increment the "subhash" (lower 16 bits of the hash). # The second is to increment the "index" portion of the hash. # The third is so that after 65536 passes, the "index" is # incremented by one more (by overflow), so that the next # 65536 passes don't end up with the same subhashes. self._nexthash = result + r_uint(1 | (1 << self.shift) | (1 << (self.shift - 16))) return result def _swap(self, p_entry, n): if float(p_entry.times[n]) > float(p_entry.times[n + 1]): return n + 1 else: x = p_entry.times[n] p_entry.times[n] = p_entry.times[n + 1] p_entry.times[n + 1] = x x = p_entry.subhashes[n] p_entry.subhashes[n] = p_entry.subhashes[n + 1] p_entry.subhashes[n + 1] = x return n _swap._always_inline_ = True def _tick_slowpath(self, p_entry, subhash): if p_entry.subhashes[1] == subhash: n = self._swap(p_entry, 0) elif p_entry.subhashes[2] == subhash: n = self._swap(p_entry, 1) elif p_entry.subhashes[3] == subhash: n = self._swap(p_entry, 2) elif p_entry.subhashes[4] == subhash: n = self._swap(p_entry, 3) else: n = 4 while n > 0 and float(p_entry.times[n - 1]) == 0.0: n -= 1 p_entry.subhashes[n] = rffi.cast(rffi.USHORT, subhash) p_entry.times[n] = r_singlefloat(0.0) return n def tick(self, hash, increment): p_entry = self.timetable[self._get_index(hash)] subhash = self._get_subhash(hash) # if p_entry.subhashes[0] == subhash: n = 0 else: n = self._tick_slowpath(p_entry, subhash) # counter = float(p_entry.times[n]) + increment if counter < 1.0: p_entry.times[n] = r_singlefloat(counter) return False else: # when the bound is reached, we immediately reset the value to 0.0 self.reset(hash) return True tick._always_inline_ = True def change_current_fraction(self, hash, new_fraction): """Change the value stored for 'hash' to be the given 'new_fraction', which should be a float equal to or slightly lower than 1.0. """ p_entry = self.timetable[self._get_index(hash)] subhash = self._get_subhash(hash) # find in 'n' the index that will be overwritten: the first within # range(5) that contains either the right subhash, or a null time # (or, if there isn't any, then just n == 4 will do). n = 0 while n < 4 and (p_entry.subhashes[n] != subhash and float(p_entry.times[n]) != 0.0): n += 1 # move one step to the right all elements [n - 1, n - 2, ..., 0], # (this overwrites the old item at index 'n') while n > 0: n -= 1 p_entry.subhashes[n + 1] = p_entry.subhashes[n] p_entry.times[n + 1] = p_entry.times[n] # insert the new hash at index 0. This is a good approximation, # because change_current_fraction() should be used for # new_fraction == value close to 1.0. p_entry.subhashes[0] = rffi.cast(rffi.USHORT, subhash) p_entry.times[0] = r_singlefloat(new_fraction) def reset(self, hash): p_entry = self.timetable[self._get_index(hash)] subhash = self._get_subhash(hash) for i in range(5): if p_entry.subhashes[i] == subhash: p_entry.times[i] = r_singlefloat(0.0) def lookup_chain(self, hash): return self.celltable[self._get_index(hash)] def cleanup_chain(self, hash): self.reset(hash) self.install_new_cell(hash, None) def install_new_cell(self, hash, newcell): index = self._get_index(hash) cell = self.celltable[index] keep = newcell while cell is not None: nextcell = cell.next if not cell.should_remove_jitcell(): cell.next = keep keep = cell cell = nextcell self.celltable[index] = keep def set_decay(self, decay): """Set the decay, from 0 (none) to 1000 (max).""" if decay < 0: decay = 0 elif decay > 1000: decay = 1000 self.decay_by_mult = 1.0 - (decay * 0.001) def decay_all_counters(self): # Called during a minor collection by the GC, to gradually decay # counters that didn't reach their maximum. Thus if a counter # is incremented very slowly, it will never reach the maximum. # This avoids altogether the JIT compilation of rare paths. # We also call this function when any maximum bound is reached, # to avoid sudden bursts of JIT-compilation (the next one will # not reach the maximum bound immmediately after). This is # important in corner cases where we would suddenly compile more # than one loop because all counters reach the bound at the same # time, but where compiling all but the first one is pointless. p = rffi.cast(rffi.CCHARP, self.timetable) pypy__decay_jit_counters(p, self.decay_by_mult, self.size) # this function is written directly in C; gcc will optimize it using SSE eci = ExternalCompilationInfo(post_include_bits=[""" static void pypy__decay_jit_counters(char *data, double f1, long size) { struct rpy_jitcnt { float times[5]; unsigned short subhashes[5]; }; struct rpy_jitcnt *p = (struct rpy_jitcnt *)data; float f = (float)f1; long i; for (i=0; i<size; i++) { p->times[0] *= f; p->times[1] *= f; p->times[2] *= f; p->times[3] *= f; p->times[4] *= f; ++p; } } """]) pypy__decay_jit_counters = rffi.llexternal( "pypy__decay_jit_counters", [rffi.CCHARP, lltype.Float, lltype.Signed], lltype.Void, compilation_info=eci, _nowrapper=True, sandboxsafe=True) # ____________________________________________________________ # # A non-RPython version that avoids issues with rare random collisions, # which make all tests brittle class DeterministicJitCounter(JitCounter): def __init__(self): from collections import defaultdict JitCounter.__init__(self, size=8) def make_null_entry(): return lltype.malloc(ENTRY, immortal=True, zero=True) self.timetable = defaultdict(make_null_entry) self.celltable = defaultdict(lambda: None) def _get_index(self, hash): "NOT_RPYTHON" return hash def decay_all_counters(self): "NOT_RPYTHON" pass def _clear_all(self): self.timetable.clear() self.celltable.clear()
# Copyright 2014-2017 Insight Software Consortium. # Copyright 2004-2009 Roman Yakovenko. # Distributed under the Boost Software License, Version 1.0. # See http://www.boost.org/LICENSE_1_0.txt import os from . import templates from . import matcher_base_t from . import variable from . import cpptypes from . import namespace from . import calldef from . import calldef_members from .. import utils class declaration_matcher_t(matcher_base_t): """ Instance of this class will match declarations by next criteria: - declaration name, also could be fully qualified name Example: `wstring` or `::std::wstring` - declaration type Example: :class:`class_t`, :class:`namespace_t`, :class:`enumeration_t` - location within file system ( file or directory ) """ def __init__( self, name=None, decl_type=None, header_dir=None, header_file=None): """ :param decl_type: declaration type to match by. For example :class:`enumeration_t`. :type decl_type: any class that derives from :class:`declaration_t` class :param name: declaration name, could be full name. :type name: str :param header_dir: absolute directory path :type header_dir: str :param header_file: absolute file path :type header_file: str """ # An other option is that pygccxml will create absolute path using # os.path.abspath function. But I think this is just wrong, because # abspath builds path using current working directory. This behavior # is fragile and very difficult to find a bug. matcher_base_t.__init__(self) self.decl_type = decl_type self.__name = None self.__opt_is_tmpl_inst = None self.__opt_tmpl_name = None self.__opt_is_full_name = None self.__decl_name_only = None # Set the name through the setter. self.name = name self.header_dir = header_dir self.header_file = header_file if self.header_dir: self.header_dir = utils.normalize_path(self.header_dir) if not os.path.isabs(self.header_dir): raise RuntimeError( "Path to header directory should be absolute!") if self.header_file: self.header_file = utils.normalize_path(self.header_file) if not os.path.isabs(self.header_file): raise RuntimeError("Path to header file should be absolute!") @property def name(self): return self.__name @name.setter def name(self, name): self.__name = name if not self.__name: self.__opt_is_tmpl_inst = None self.__opt_tmpl_name = None self.__opt_is_full_name = None self.__decl_name_only = None else: self.__opt_is_tmpl_inst = templates.is_instantiation(self.__name) self.__opt_tmpl_name = templates.name(self.__name) if self.__opt_is_tmpl_inst: if '::' in self.__opt_tmpl_name: self.__opt_is_full_name = True self.__decl_name_only = \ self.__opt_tmpl_name.split('::')[-1] else: self.__opt_is_full_name = False self.__decl_name_only = self.__opt_tmpl_name self.__name = templates.normalize(name) else: if '::' in self.__name: self.__opt_is_full_name = True self.__decl_name_only = self.__name.split('::')[-1] else: self.__opt_is_full_name = False self.__decl_name_only = self.__name def __str__(self): msg = [] if self.decl_type is not None: msg.append('(decl type==%s)' % self.decl_type.__name__) if self.name is not None: msg.append('(name==%s)' % self.name) if self.header_dir is not None: msg.append('(header dir==%s)' % self.header_dir) if self.header_file is not None: msg.append('(header file==%s)' % self.header_file) if not msg: msg.append('any') return ' and '.join(msg) def __call__(self, decl): if self.decl_type is not None: if not isinstance(decl, self.decl_type): return False if self.name is not None: if not self.check_name(decl): return False if self.header_dir is not None: if decl.location: decl_dir = os.path.abspath( os.path.dirname(decl.location.file_name)) decl_dir = utils.normalize_path(decl_dir) if decl_dir[:len(self.header_dir)] != self.header_dir: return False else: return False if self.header_file is not None: if decl.location: decl_file = os.path.abspath(decl.location.file_name) decl_file = utils.normalize_path(decl_file) if decl_file != self.header_file: return False else: return False return True def check_name(self, decl): assert self.name is not None if self.__opt_is_tmpl_inst: if not self.__opt_is_full_name: if self.name != templates.normalize_name(decl) \ and self.name != templates.normalize_partial_name(decl): return False else: if self.name != templates.normalize_full_name_true(decl) and \ self.name != templates.normalize_full_name_false(decl): return False else: if not self.__opt_is_full_name: if self.name != decl.name and self.name != decl.partial_name: return False else: if self.name != templates.normalize_full_name_true(decl) and \ self.name != templates.normalize_full_name_false(decl): return False return True def is_full_name(self): return self.__opt_is_full_name @property def decl_name_only(self): return self.__decl_name_only class variable_matcher_t(declaration_matcher_t): """ Instance of this class will match variables by next criteria: - :class:`declaration_matcher_t` criteria - variable type. Example: :class:`int_t` or 'int' """ def __init__( self, name=None, decl_type=None, header_dir=None, header_file=None): """ :param decl_type: variable type :type decl_type: string or instance of :class:`type_t` derived class """ declaration_matcher_t.__init__( self, name=name, decl_type=variable.variable_t, header_dir=header_dir, header_file=header_file) self._decl_type = decl_type def __call__(self, decl): if not super(variable_matcher_t, self).__call__(decl): return False if self._decl_type is not None: if isinstance(self._decl_type, cpptypes.type_t): if self._decl_type != decl.decl_type: return False else: if self._decl_type != decl.decl_type.decl_string: return False return True def __str__(self): msg = [super(variable_matcher_t, self).__str__()] if msg == ['any']: msg = [] if self._decl_type is not None: msg.append('(value type==%s)' % str(self._decl_type)) if not msg: msg.append('any') return ' and '.join(msg) class namespace_matcher_t(declaration_matcher_t): """Instance of this class will match namespaces by name.""" def __init__(self, name=None): declaration_matcher_t.__init__( self, name=name, decl_type=namespace.namespace_t) def __call__(self, decl): if self.name and decl.name == '': # unnamed namespace have same name as thier parent, we should # prevent this happens. The price is: user should search for # unnamed namespace directly. return False return super(namespace_matcher_t, self).__call__(decl) class calldef_matcher_t(declaration_matcher_t): """ Instance of this class will match callable by the following criteria: * :class:`declaration_matcher_t` criteria * return type. For example: :class:`int_t` or 'int' * argument types """ def __init__( self, name=None, return_type=None, arg_types=None, decl_type=None, header_dir=None, header_file=None): """ :param return_type: callable return type :type return_type: string or instance of :class:`type_t` derived class :type arg_types: list :param arg_types: list of function argument types. `arg_types` can contain. Any item within the list could be string or instance of :class:`type_t` derived class. If you don't want some argument to participate in match you can put None. For example: .. code-block:: python calldef_matcher_t( arg_types=[ 'int &', None ] ) will match all functions that takes 2 arguments, where the first one is reference to integer and second any """ if None is decl_type: decl_type = calldef.calldef_t declaration_matcher_t.__init__( self, name=name, decl_type=decl_type, header_dir=header_dir, header_file=header_file) self.return_type = return_type self.arg_types = arg_types def __call__(self, decl): if not super(calldef_matcher_t, self).__call__(decl): return False if self.return_type is not None \ and not self.__compare_types(self.return_type, decl.return_type): return False if self.arg_types: if isinstance(self.arg_types, (list, tuple)): if len(self.arg_types) != len(decl.arguments): return False for type_or_str, arg in zip(self.arg_types, decl.arguments): if type_or_str is None: continue else: if not self.__compare_types( type_or_str, arg.decl_type): return False return True @staticmethod def __compare_types(type_or_str, decl_type): assert type_or_str if decl_type is None: return False if isinstance(type_or_str, cpptypes.type_t): if type_or_str != decl_type: return False else: if type_or_str != decl_type.decl_string: return False return True def __str__(self): msg = [super(calldef_matcher_t, self).__str__()] if msg == ['any']: msg = [] if self.return_type is not None: msg.append('(return type==%s)' % str(self.return_type)) if self.arg_types: for i, arg_type in enumerate(self.arg_types): if arg_type is None: msg.append('(arg %d type==any)' % i) else: msg.append('(arg %d type==%s)' % (i, str(arg_type))) if not msg: msg.append('any') return ' and '.join(msg) class operator_matcher_t(calldef_matcher_t): """ Instance of this class will match operators by next criteria: * :class:`calldef_matcher_t` criteria * operator symbol: =, !=, (), [] and etc """ def __init__( self, name=None, symbol=None, return_type=None, arg_types=None, decl_type=None, header_dir=None, header_file=None): """ :param symbol: operator symbol :type symbol: str """ if None is decl_type: decl_type = calldef_members.operator_t calldef_matcher_t.__init__( self, name=name, return_type=return_type, arg_types=arg_types, decl_type=decl_type, header_dir=header_dir, header_file=header_file) self.symbol = symbol def __call__(self, decl): if not super(operator_matcher_t, self).__call__(decl): return False if self.symbol is not None: if self.symbol != decl.symbol: return False return True def __str__(self): msg = [super(operator_matcher_t, self).__str__()] if msg == ['any']: msg = [] if self.symbol is not None: msg.append('(symbol==%s)' % str(self.symbol)) if not msg: msg.append('any') return ' and '.join(msg)
# =============================================================================== # Copyright 2012 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from __future__ import absolute_import from traits.api import Str, Float, Int from traitsui.api import Item # ============= standard library imports ======================== # ============= local library imports ========================== from pychron.pyscripts.commands.core import Command from pychron.pyscripts.commands.valve import ValveCommand class Lock(Command): pass class Ramp(Command): pass class SetLight(Command): pass class Unlock(Command): pass class Wake(Command): pass class Disable(Command): pass class DrillPoint(Command): pass class Enable(Command): pass class MovingExtract(Command): pass class Prepare(Command): pass class SetMotor(Command): pass class SetMotorLock(Command): pass class Snapshot(Command): pass class Autofocus(Command): pass class StartVideoRecording(Command): pass class StopVideoRecording(Command): pass class VideoRecording(Command): pass class TracePath(Command): pass class Degas(Command): pass class PowerMap(Command): pass class Open(ValveCommand): description = "Open a valve" example = """1. open("V") 2. open(description="Bone to Turbo") """ class Close(ValveCommand): description = "Close a valve" example = """1. open("V") 2. close(description="Bone to Turbo") """ class Unlock(ValveCommand): description = "Unlock a valve" example = """1. unlock("V") 2. unlock(description="Bone to Turbo") """ class Lock(ValveCommand): description = "Lock a valve" example = """1. lock("V") 2. lock(description="Bone to Turbo") """ class IsOpen(ValveCommand): description = "Check if a valve is Open" example = """1. is_open("V") 2. is_open(description="Bone to Turbo") """ class IsClosed(ValveCommand): description = "Check if a valve is Closed" example = """1. is_closed("V") 2. is_closed(description="Bone to Turbo") """ class NameCommand(Command): name = Str def _get_view(self): return Item("name", width=300) def _to_string(self): return self._keyword("name", self.name) class Release(NameCommand): description = "" example = "" class Acquire(NameCommand): description = "Acquire a resource" example = """acquire('foo')""" class MoveToPosition(Command): position = Str def _get_view(self): return Item("position") def _to_string(self): return "{}".format(self.position) class ExecutePattern(Command): description = "Execute a pattern" example = 'execute_pattern("diamond")' class ValueCommand(Command): value = Float def _get_view(self): return Item("value") def _to_string(self): return "{}".format(self.value) class Extract(ValueCommand): description = "Set extraction device to specified value" example = "" class EndExtract(Command): description = "" example = "" class SetTray(Command): description = "" example = "" class SetResource(Command): description = "" example = "" class GetResourceValue(Command): description = "" example = "" class SetPositionCommand(ValueCommand): pass class SetX(SetPositionCommand): pass class SetY(SetPositionCommand): pass class SetZ(SetPositionCommand): pass class SetXy(Command): xvalue = Float yvalue = Float def _get_view(self): return Item("xvalue", "yvalue") def _to_string(self): return "{},{}".format(self.xvalue, self.yvalue) class GetValue(Command): pass class Waitfor(Command): timeout = Int def _get_view(self): return Item("timeout") def _to_string(self): return "waitfor(timeout={})".format(self.timeout) class LoadPipette(Command): pipette_name = Str def _get_view(self): return Item("pipette_name") def _to_string(self): return "load_pipette('{}')".format(self.pipette_name) class ExtractPipette(Command): pipette_name = Str def _get_view(self): return Item("pipette_name") def _to_string(self): return "extract_pipette('{}')".format(self.pipette_name) # class HeatSample(Command): # value = Float # def _get_view(self): # return Item('value') # # def _to_string(self): # return '{}'.format(self.value) # ============= EOF =============================================
# Copyright (C) 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import googlecl import inspect import logging import os import sys from googlecl.base import Task safe_encode = googlecl.safe_encode service_name = __name__.split('.')[-1] LOGGER_NAME = __name__ SECTION_HEADER = service_name.upper() LOG = logging.getLogger(LOGGER_NAME) class BaseFormatter(object): """Base class for formatters.""" def __init__(self, avail_fields, fields, sep=','): """Init formatter Args: avail_fields: list of tuples [(field_name, format_spec), ...] for all possible fields fields: string, list of <sep>-separated requested fields names. sep: string, separator, comma by default """ if fields: self.fields = fields.split(sep) else: self.fields = [item[0] for item in avail_fields] self.avail_fields = avail_fields avail_dict = dict(avail_fields) self.format = ' '.join(avail_dict[name] for name in self.fields) @property def header(self): """Make output header. Uses names of available fields as column headers. replaces '_' with ' ' and capitalizes them. Utilizes the same format as used for body lines: self.format Returns: string, header. """ return self.format % \ dict([(item[0], item[0].replace('_', ' ').capitalize()) \ for item in self.avail_fields]) def get_line(self, entry): """Get formatted entry. Abstract method. Args: entry: entry object Returns: string, formatted entry. """ raise NotImplementedError("Abstract method %s.%s called" % \ (self.__class__.__name__, inspect.stack()[0][3] )) def output(self, entries, stream=sys.stdout): """Output list of entries to the output stream. Args: entries: list of entries. stream: output stream. """ if self.header: stream.write(self.header + os.linesep) for entry in entries: stream.write(self.get_line(entry) + os.linesep) class PortfolioFormatter(BaseFormatter): avail_fields = [('id', '%(id)3s'), ('title', '%(title)-15s'), ('curr', '%(curr)-4s'), ('gain', '%(gain)-10s'), ('gain_persent', '%(gain_persent)-14s'), ('cost_basis', '%(cost_basis)-10s'), ('days_gain', '%(days_gain)-10s'), ('market_value', '%(market_value)-10s')] def __init__(self, fields): super(self.__class__, self).__init__(self.avail_fields, fields) def get_line(self, entry): data = entry.portfolio_data return self.format % \ {'id': entry.portfolio_id, 'title': entry.portfolio_title, 'curr': data.currency_code, 'gain': data.gain and data.gain.money[0].amount, 'gain_persent': '%-14.2f' % (float(data.gain_percentage) * 100,), 'cost_basis': data.cost_basis and data.cost_basis.money[0].amount, 'days_gain': data.days_gain and data.days_gain.money[0].amount, 'market_value': data.market_value and data.market_value.money[0].amount } class PositionFormatter(BaseFormatter): avail_fields = [('ticker', '%(ticker)-14s'), ('shares', '%(shares)-10s'), ('gain', '%(gain)-10s'), ('gain_persent', '%(gain_persent)-14s'), ('cost_basis', '%(cost_basis)-10s'), ('days_gain', '%(days_gain)-10s'), ('market_value', '%(market_value)-10s')] def __init__(self, fields): super(self.__class__, self).__init__(self.avail_fields, fields) def get_line(self, entry): data = entry.position_data return self.format % \ {'ticker': entry.ticker_id, 'shares': data.shares, 'gain': data.gain and data.gain.money[0].amount, 'gain_persent': '%-14.2f' % (float(data.gain_percentage) * 100,), 'cost_basis': data.cost_basis and data.cost_basis.money[0].amount, 'days_gain': data.days_gain and data.days_gain.money[0].amount, 'market_value': data.market_value and data.market_value.money[0].amount } class TransactionFormatter(BaseFormatter): avail_fields = [('id', '%(id)-3s'), ('type', '%(type)-12s'), ('shares', '%(shares)-10s'), ('price', '%(price)-10s'), ('commission', '%(commission)-10s'), ('date', '%(date)-10s'), ('notes', '%(notes)-30s')] def __init__(self, fields): super(self.__class__, self).__init__(self.avail_fields, fields) def get_line(self, entry): data = entry.transaction_data if data.date: data.date = data.date[:10] # stip isoformat tail return self.format % \ {'id': entry.transaction_id, 'type': data.type, 'shares': data.shares, 'price': data.price.money[0].amount, 'commission': data.commission.money[0].amount, 'date': data.date or '', 'notes': data.notes or ''} #=============================================================================== # Each of the following _run_* functions execute a particular task. # # Keyword arguments: # client: Client to the service being used. # options: Contains all attributes required to perform the task # args: Additional arguments passed in on the command line, may or may not be # required #=============================================================================== # Portfolio-related tasks def _run_create(client, options, args): client.CreatePortfolio(options.title, options.currency) def _run_delete(client, options, args): entries = client.get_portfolio_entries(options.title, positions=True) if entries: client.DeleteEntryList(entries, 'portfolio', options.prompt) def _run_list(client, options, args): entries = client.get_portfolio_entries(returns=True) if entries: PortfolioFormatter(options.fields).output(entries) else: LOG.info('No portfolios found') # Position-related tasks def _run_create_position(client, options, args): # Quote from Developer's Guide: # You can't directly create, update, or delete position entries; # positions are derived from transactions. # Therefore, to create or modify a position, send appropriate # transactions on that position. pfl = client.get_portfolio(options.title, positions=True) if pfl: # create empty transaction client.create_transaction(pfl, "Buy", options.ticker) def _run_delete_positions(client, options, args): positions = client.get_positions(portfolio_title=options.title, ticker_id=options.ticker) client.DeleteEntryList(positions, 'position', options.prompt, callback=lambda pos: client.DeletePosition(position_entry=pos)) def _run_list_positions(client, options, args): positions = client.get_positions(options.title, options.ticker, include_returns=True) if positions: PositionFormatter(options.fields).output(positions) else: LOG.info('No positions found in this portfolio') # Transaction-related tasks def _run_create_transaction(client, options, args): pfl = client.get_portfolio(options.title) if pfl: client.create_transaction(pfl, options.ttype, options.ticker, options.shares, options.price, options.currency, options.commission, options.date, options.notes) def _run_delete_transactions(client, options, args): transactions = client.get_transactions(portfolio_title=options.title, ticker_id=options.ticker, transaction_id=options.txnid) client.DeleteEntryList(transactions, 'transaction', options.prompt) def _run_list_transactions(client, options, args): transactions = client.get_transactions(portfolio_title=options.title, ticker_id=options.ticker, transaction_id=options.txnid) TransactionFormatter(options.fields).output(transactions) TASKS = {'create': Task('Create a portfolio', callback=_run_create, required=['title', 'currency']), 'delete': Task('Delete portfolios', callback=_run_delete, required=['title']), 'list': Task('List portfolios', callback=_run_list, optional=['fields']), 'create-pos': Task('Create position', callback=_run_create_position, required=['title', 'ticker']), 'delete-pos': Task('Delete positions', callback=_run_delete_positions, required=['title'], optional=['ticker']), 'list-pos': Task('List positions', callback=_run_list_positions, required=['title'], optional=['fields']), 'create-txn': Task('Create transaction', callback=_run_create_transaction, required=['title', 'ticker', 'ttype', 'shares', 'price'], optional=['shares', 'price', 'date', 'commission', 'currency', 'notes']), 'list-txn': Task('List transactions', callback=_run_list_transactions, required=['title', 'ticker']), 'delete-txn': Task('Delete transactions', callback=_run_delete_transactions, required=['title', 'ticker'], optional=['txnid']), }
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [ 'Zone', 'Record', 'DNSDriver' ] from libcloud.common.base import ConnectionUserAndKey, BaseDriver from libcloud.dns.types import RecordType class Zone(object): """ DNS zone. """ def __init__(self, id, domain, type, ttl, driver, extra=None): """ :param id: Zone id. :type id: ``str`` :param domain: The name of the domain. :type domain: ``str`` :param type: Zone type (master, slave). :type type: ``str`` :param ttl: Default TTL for records in this zone (in seconds). :type ttl: ``int`` :param driver: DNSDriver instance. :type driver: :class:`DNSDriver` :param extra: (optional) Extra attributes (driver specific). :type extra: ``dict`` """ self.id = str(id) if id else None self.domain = domain self.type = type self.ttl = ttl or None self.driver = driver self.extra = extra or {} def list_records(self): return self.driver.list_records(zone=self) def create_record(self, name, type, data, extra=None): return self.driver.create_record(name=name, zone=self, type=type, data=data, extra=extra) def update(self, domain=None, type=None, ttl=None, extra=None): return self.driver.update_zone(zone=self, domain=domain, type=type, ttl=ttl, extra=extra) def delete(self): return self.driver.delete_zone(zone=self) def __repr__(self): return ('<Zone: domain=%s, ttl=%s, provider=%s ...>' % (self.domain, self.ttl, self.driver.name)) class Record(object): """ Zone record / resource. """ def __init__(self, id, name, type, data, zone, driver, extra=None): """ :param id: Record id :type id: ``str`` :param name: Hostname or FQDN. :type name: ``str`` :param type: DNS record type (A, AAAA, ...). :type type: :class:`RecordType` :param data: Data for the record (depends on the record type). :type data: ``str`` :param zone: Zone instance. :type zone: :class:`Zone` :param driver: DNSDriver instance. :type driver: :class:`DNSDriver` :param extra: (optional) Extra attributes (driver specific). :type extra: ``dict`` """ self.id = str(id) if id else None self.name = name self.type = type self.data = data self.zone = zone self.driver = driver self.extra = extra or {} def update(self, name=None, type=None, data=None, extra=None): return self.driver.update_record(record=self, name=name, type=type, data=data, extra=extra) def delete(self): return self.driver.delete_record(record=self) def __repr__(self): return ('<Record: zone=%s, name=%s, type=%s, data=%s, provider=%s ' '...>' % (self.zone.id, self.name, RecordType.__repr__(self.type), self.data, self.driver.name)) class DNSDriver(BaseDriver): """ A base DNSDriver class to derive from This class is always subclassed by a specific driver. """ connectionCls = ConnectionUserAndKey name = None website = None def __init__(self, key, secret=None, secure=True, host=None, port=None, **kwargs): """ :param key: API key or username to used (required) :type key: ``str`` :param secret: Secret password to be used (required) :type secret: ``str`` :param secure: Weither to use HTTPS or HTTP. Note: Some providers only support HTTPS, and it is on by default. :type secure: ``bool`` :param host: Override hostname used for connections. :type host: ``str`` :param port: Override port used for connections. :type port: ``int`` :return: ``None`` """ super(DNSDriver, self).__init__(key=key, secret=secret, secure=secure, host=host, port=port, **kwargs) def list_record_types(self): """ Return a list of RecordType objects supported by the provider. :return: ``list`` of :class:`RecordType` """ return list(self.RECORD_TYPE_MAP.keys()) def iterate_zones(self): """ Return a generator to iterate over available zones. :rtype: ``generator`` of :class:`Zone` """ raise NotImplementedError( 'iterate_zones not implemented for this driver') def list_zones(self): """ Return a list of zones. :return: ``list`` of :class:`Zone` """ return list(self.iterate_zones()) def iterate_records(self, zone): """ Return a generator to iterate over records for the provided zone. :param zone: Zone to list records for. :type zone: :class:`Zone` :rtype: ``generator`` of :class:`Record` """ raise NotImplementedError( 'iterate_records not implemented for this driver') def list_records(self, zone): """ Return a list of records for the provided zone. :param zone: Zone to list records for. :type zone: L{Zone} :return: ``list`` of :class:`Record` """ return list(self.iterate_records(zone)) def get_zone(self, zone_id): """ Return a Zone instance. :param zone_id: ID of the required zone :type zone_id: ``str`` :rtype: :class:`Zone` """ raise NotImplementedError( 'get_zone not implemented for this driver') def get_record(self, zone_id, record_id): """ Return a Record instance. :param zone_id: ID of the required zone :type zone_id: ``str`` :param record_id: ID of the required record :type record_id: ``str`` :rtype: :class:`Record` """ raise NotImplementedError( 'get_record not implemented for this driver') def create_zone(self, domain, type='master', ttl=None, extra=None): """ Create a new zone. :param domain: Zone domain name (e.g. example.com) :type domain: ``str`` :param type: Zone type (master / slave). :type type: ``str`` :param ttl: TTL for new records. (optional) :type ttl: ``int`` :param extra: Extra attributes (driver specific). (optional) :type extra: ``dict`` :rtype: :class:`Zone` """ raise NotImplementedError( 'create_zone not implemented for this driver') def update_zone(self, zone, domain, type='master', ttl=None, extra=None): """ Update en existing zone. :param zone: Zone to update. :type zone: :class:`Zone` :param domain: Zone domain name (e.g. example.com) :type domain: ``str`` :param type: Zone type (master / slave). :type type: ``str`` :param ttl: TTL for new records. (optional) :type ttl: ``int`` :param extra: Extra attributes (driver specific). (optional) :type extra: ``dict`` :rtype: :class:`Zone` """ raise NotImplementedError( 'update_zone not implemented for this driver') def create_record(self, name, zone, type, data, extra=None): """ Create a new record. :param name: Record name without the domain name (e.g. www). Note: If you want to create a record for a base domain name, you should specify empty string ('') for this argument. :type name: ``str`` :param zone: Zone where the requested record is created. :type zone: :class:`Zone` :param type: DNS record type (A, AAAA, ...). :type type: :class:`RecordType` :param data: Data for the record (depends on the record type). :type data: ``str`` :param extra: Extra attributes (driver specific). (optional) :type extra: ``dict`` :rtype: :class:`Record` """ raise NotImplementedError( 'create_record not implemented for this driver') def update_record(self, record, name, type, data, extra): """ Update an existing record. :param record: Record to update. :type record: :class:`Record` :param name: Record name without the domain name (e.g. www). Note: If you want to create a record for a base domain name, you should specify empty string ('') for this argument. :type name: ``str`` :param type: DNS record type (A, AAAA, ...). :type type: :class:`RecordType` :param data: Data for the record (depends on the record type). :type data: ``str`` :param extra: (optional) Extra attributes (driver specific). :type extra: ``dict`` :rtype: :class:`Record` """ raise NotImplementedError( 'update_record not implemented for this driver') def delete_zone(self, zone): """ Delete a zone. Note: This will delete all the records belonging to this zone. :param zone: Zone to delete. :type zone: :class:`Zone` :rtype: ``bool`` """ raise NotImplementedError( 'delete_zone not implemented for this driver') def delete_record(self, record): """ Delete a record. :param record: Record to delete. :type record: :class:`Record` :rtype: ``bool`` """ raise NotImplementedError( 'delete_record not implemented for this driver') def _string_to_record_type(self, string): """ Return a string representation of a DNS record type to a libcloud RecordType ENUM. """ string = string.upper() record_type = getattr(RecordType, string) return record_type
import numpy as np import helper import problem_unittests as tests from collections import Counter from distutils.version import LooseVersion import warnings import tensorflow as tf from tensorflow.contrib import seq2seq data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] view_sentence_range = (0, 10) print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ counter = Counter(text) vocab = sorted(counter, key=counter.get, reverse=True) vocab_to_int = {word: ii for ii, word in enumerate(vocab)} int_to_vocab = {ii: word for ii, word in enumerate(vocab)} return vocab_to_int, int_to_vocab tests.test_create_lookup_tables(create_lookup_tables) def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ return { ".": "||period||", ",": "||comma||", "\"": "||quotation_mark||", ";": "||semicolon||", "!": "||exclamation_mark||", "?": "||question_mark||", "(": "||left_parentheses||", ")": "||right_parentheses||", "--": "||dash||", "\n": "||return||" } tests.test_tokenize(token_lookup) helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ inputs = tf.placeholder(tf.int32, [None, None], name="input") targets = tf.placeholder(tf.int32, [None, None], name="targets") rate = tf.placeholder(tf.float32, name="learning_rate") return inputs, targets, rate tests.test_get_inputs(get_inputs) def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size) cell = tf.contrib.rnn.MultiRNNCell([lstm]) initial_state = cell.zero_state(batch_size, tf.float32) initial_state = tf.identity(initial_state, name="initial_state") return cell, initial_state tests.test_get_init_cell(get_init_cell) def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1)) embed = tf.nn.embedding_lookup(embedding, input_data) return embed tests.test_get_embed(get_embed) def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) return outputs, tf.identity(final_state, name="final_state") tests.test_build_rnn(build_rnn) def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :param embed_dim: Number of embedding dimensions :return: Tuple (Logits, FinalState) """ # TODO: Implement Function embed = get_embed(input_data, vocab_size, embed_dim) outputs, final_state = build_rnn(cell, embed) logits = tf.contrib.layers.fully_connected(outputs, vocab_size, activation_fn=None) return logits, final_state tests.test_build_nn(build_nn) def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ # TODO: Implement Function words_per_batch = (batch_size*seq_length) word_batches = len(int_text) // words_per_batch word_to_use = int_text[:word_batches*words_per_batch] batches = [np.array([np.zeros((batch_size, seq_length)), np.zeros((batch_size, seq_length))]) for i in range(0, word_batches)] batches = np.array(batches) seq = 0 for idx in range(0, len(word_to_use), word_batches*seq_length): batch_index = 0 for ii in range(idx, idx+(word_batches*seq_length), seq_length): batches[batch_index][0][seq] = np.add(batches[batch_index][0][seq], np.array(word_to_use[ii: ii+seq_length])) if ii+seq_length+1 > len(word_to_use): last = word_to_use[ii + 1: ii + seq_length] last.extend([word_to_use[0]]) batches[batch_index][1][seq] = np.add(batches[batch_index][1][seq], np.array(last)) else: batches[batch_index][1][seq] = np.add(batches[batch_index][1][seq], np.array(word_to_use[ii+1: ii+seq_length+1])) batch_index += 1 seq += 1 return batches tests.test_get_batches(get_batches) # Number of Epochs num_epochs = 100 # Batch Size batch_size = 128 # RNN Size rnn_size = 256 # Embedding Dimension Size embed_dim = 500 # Sequence Length seq_length = 20 # Learning Rate learning_rate = 0.01 # Show stats for every n number of batches show_every_n_batches = 50 save_dir = './save' train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') helper.save_params((seq_length, save_dir))
# -*- coding: utf-8 -*- """ werkzeug.http ~~~~~~~~~~~~~ Werkzeug comes with a bunch of utilities that help Werkzeug to deal with HTTP data. Most of the classes and functions provided by this module are used by the wrappers, but they are useful on their own, too, especially if the response and request objects are not used. This covers some of the more HTTP centric features of WSGI, some other utilities such as cookie handling are documented in the `werkzeug.utils` module. :copyright: (c) 2011 by the Werkzeug Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import re from time import time try: from email.utils import parsedate_tz except ImportError: # pragma: no cover from email.Utils import parsedate_tz from urllib2 import parse_http_list as _parse_list_header from datetime import datetime, timedelta try: from hashlib import md5 except ImportError: # pragma: no cover from md5 import new as md5 #: HTTP_STATUS_CODES is "exported" from this module. #: XXX: move to werkzeug.consts or something from werkzeug._internal import HTTP_STATUS_CODES, _dump_date, \ _ExtendedCookie, _ExtendedMorsel, _decode_unicode _accept_re = re.compile(r'([^\s;,]+)(?:[^,]*?;\s*q=(\d*(?:\.\d+)?))?') _token_chars = frozenset("!#$%&'*+-.0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" '^_`abcdefghijklmnopqrstuvwxyz|~') _etag_re = re.compile(r'([Ww]/)?(?:"(.*?)"|(.*?))(?:\s*,\s*|$)') _unsafe_header_chars = set('()<>@,;:\"/[]?={} \t') _quoted_string_re = r'"[^"\\]*(?:\\.[^"\\]*)*"' _option_header_piece_re = re.compile(r';\s*([^\s;=]+|%s)\s*(?:=\s*([^;]+|%s))?\s*' % (_quoted_string_re, _quoted_string_re)) _entity_headers = frozenset([ 'allow', 'content-encoding', 'content-language', 'content-length', 'content-location', 'content-md5', 'content-range', 'content-type', 'expires', 'last-modified' ]) _hop_by_pop_headers = frozenset([ 'connection', 'keep-alive', 'proxy-authenticate', 'proxy-authorization', 'te', 'trailers', 'transfer-encoding', 'upgrade' ]) def quote_header_value(value, extra_chars='', allow_token=True): """Quote a header value if necessary. .. versionadded:: 0.5 :param value: the value to quote. :param extra_chars: a list of extra characters to skip quoting. :param allow_token: if this is enabled token values are returned unchanged. """ value = str(value) if allow_token: token_chars = _token_chars | set(extra_chars) if set(value).issubset(token_chars): return value return '"%s"' % value.replace('\\', '\\\\').replace('"', '\\"') def unquote_header_value(value, is_filename=False): r"""Unquotes a header value. (Reversal of :func:`quote_header_value`). This does not use the real unquoting but what browsers are actually using for quoting. .. versionadded:: 0.5 :param value: the header value to unquote. """ if value and value[0] == value[-1] == '"': # this is not the real unquoting, but fixing this so that the # RFC is met will result in bugs with internet explorer and # probably some other browsers as well. IE for example is # uploading files with "C:\foo\bar.txt" as filename value = value[1:-1] # if this is a filename and the starting characters look like # a UNC path, then just return the value without quotes. Using the # replace sequence below on a UNC path has the effect of turning # the leading double slash into a single slash and then # _fix_ie_filename() doesn't work correctly. See #458. if not is_filename or value[:2] != '\\\\': return value.replace('\\\\', '\\').replace('\\"', '"') return value def dump_options_header(header, options): """The reverse function to :func:`parse_options_header`. :param header: the header to dump :param options: a dict of options to append. """ segments = [] if header is not None: segments.append(header) for key, value in options.iteritems(): if value is None: segments.append(key) else: segments.append('%s=%s' % (key, quote_header_value(value))) return '; '.join(segments) def dump_header(iterable, allow_token=True): """Dump an HTTP header again. This is the reversal of :func:`parse_list_header`, :func:`parse_set_header` and :func:`parse_dict_header`. This also quotes strings that include an equals sign unless you pass it as dict of key, value pairs. >>> dump_header({'foo': 'bar baz'}) 'foo="bar baz"' >>> dump_header(('foo', 'bar baz')) 'foo, "bar baz"' :param iterable: the iterable or dict of values to quote. :param allow_token: if set to `False` tokens as values are disallowed. See :func:`quote_header_value` for more details. """ if isinstance(iterable, dict): items = [] for key, value in iterable.iteritems(): if value is None: items.append(key) else: items.append('%s=%s' % ( key, quote_header_value(value, allow_token=allow_token) )) else: items = [quote_header_value(x, allow_token=allow_token) for x in iterable] return ', '.join(items) def parse_list_header(value): """Parse lists as described by RFC 2068 Section 2. In particular, parse comma-separated lists where the elements of the list may include quoted-strings. A quoted-string could contain a comma. A non-quoted string could have quotes in the middle. Quotes are removed automatically after parsing. It basically works like :func:`parse_set_header` just that items may appear multiple times and case sensitivity is preserved. The return value is a standard :class:`list`: >>> parse_list_header('token, "quoted value"') ['token', 'quoted value'] To create a header from the :class:`list` again, use the :func:`dump_header` function. :param value: a string with a list header. :return: :class:`list` """ result = [] for item in _parse_list_header(value): if item[:1] == item[-1:] == '"': item = unquote_header_value(item[1:-1]) result.append(item) return result def parse_dict_header(value): """Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict: >>> d = parse_dict_header('foo="is a fish", bar="as well"') >>> type(d) is dict True >>> sorted(d.items()) [('bar', 'as well'), ('foo', 'is a fish')] If there is no value for a key it will be `None`: >>> parse_dict_header('key_without_value') {'key_without_value': None} To create a header from the :class:`dict` again, use the :func:`dump_header` function. :param value: a string with a dict header. :return: :class:`dict` """ result = {} for item in _parse_list_header(value): if '=' not in item: result[item] = None continue name, value = item.split('=', 1) if value[:1] == value[-1:] == '"': value = unquote_header_value(value[1:-1]) result[name] = value return result def parse_options_header(value): """Parse a ``Content-Type`` like header into a tuple with the content type and the options: >>> parse_options_header('Content-Type: text/html; mimetype=text/html') ('Content-Type:', {'mimetype': 'text/html'}) This should not be used to parse ``Cache-Control`` like headers that use a slightly different format. For these headers use the :func:`parse_dict_header` function. .. versionadded:: 0.5 :param value: the header to parse. :return: (str, options) """ def _tokenize(string): for match in _option_header_piece_re.finditer(string): key, value = match.groups() key = unquote_header_value(key) if value is not None: value = unquote_header_value(value, key == 'filename') yield key, value if not value: return '', {} parts = _tokenize(';' + value) name = parts.next()[0] extra = dict(parts) return name, extra def parse_accept_header(value, cls=None): """Parses an HTTP Accept-* header. This does not implement a complete valid algorithm but one that supports at least value and quality extraction. Returns a new :class:`Accept` object (basically a list of ``(value, quality)`` tuples sorted by the quality with some additional accessor methods). The second parameter can be a subclass of :class:`Accept` that is created with the parsed values and returned. :param value: the accept header string to be parsed. :param cls: the wrapper class for the return value (can be :class:`Accept` or a subclass thereof) :return: an instance of `cls`. """ if cls is None: cls = Accept if not value: return cls(None) result = [] for match in _accept_re.finditer(value): quality = match.group(2) if not quality: quality = 1 else: quality = max(min(float(quality), 1), 0) result.append((match.group(1), quality)) return cls(result) def parse_cache_control_header(value, on_update=None, cls=None): """Parse a cache control header. The RFC differs between response and request cache control, this method does not. It's your responsibility to not use the wrong control statements. .. versionadded:: 0.5 The `cls` was added. If not specified an immutable :class:`~werkzeug.datastructures.RequestCacheControl` is returned. :param value: a cache control header to be parsed. :param on_update: an optional callable that is called every time a value on the :class:`~werkzeug.datastructures.CacheControl` object is changed. :param cls: the class for the returned object. By default :class:`~werkzeug.datastructures.RequestCacheControl` is used. :return: a `cls` object. """ if cls is None: cls = RequestCacheControl if not value: return cls(None, on_update) return cls(parse_dict_header(value), on_update) def parse_set_header(value, on_update=None): """Parse a set-like header and return a :class:`~werkzeug.datastructures.HeaderSet` object: >>> hs = parse_set_header('token, "quoted value"') The return value is an object that treats the items case-insensitively and keeps the order of the items: >>> 'TOKEN' in hs True >>> hs.index('quoted value') 1 >>> hs HeaderSet(['token', 'quoted value']) To create a header from the :class:`HeaderSet` again, use the :func:`dump_header` function. :param value: a set header to be parsed. :param on_update: an optional callable that is called every time a value on the :class:`~werkzeug.datastructures.HeaderSet` object is changed. :return: a :class:`~werkzeug.datastructures.HeaderSet` """ if not value: return HeaderSet(None, on_update) return HeaderSet(parse_list_header(value), on_update) def parse_authorization_header(value): """Parse an HTTP basic/digest authorization header transmitted by the web browser. The return value is either `None` if the header was invalid or not given, otherwise an :class:`~werkzeug.datastructures.Authorization` object. :param value: the authorization header to parse. :return: a :class:`~werkzeug.datastructures.Authorization` object or `None`. """ if not value: return try: auth_type, auth_info = value.split(None, 1) auth_type = auth_type.lower() except ValueError: return if auth_type == 'basic': try: username, password = auth_info.decode('base64').split(':', 1) except Exception, e: return return Authorization('basic', {'username': username, 'password': password}) elif auth_type == 'digest': auth_map = parse_dict_header(auth_info) for key in 'username', 'realm', 'nonce', 'uri', 'nc', 'cnonce', \ 'response': if not key in auth_map: return return Authorization('digest', auth_map) def parse_www_authenticate_header(value, on_update=None): """Parse an HTTP WWW-Authenticate header into a :class:`~werkzeug.datastructures.WWWAuthenticate` object. :param value: a WWW-Authenticate header to parse. :param on_update: an optional callable that is called every time a value on the :class:`~werkzeug.datastructures.WWWAuthenticate` object is changed. :return: a :class:`~werkzeug.datastructures.WWWAuthenticate` object. """ if not value: return WWWAuthenticate(on_update=on_update) try: auth_type, auth_info = value.split(None, 1) auth_type = auth_type.lower() except (ValueError, AttributeError): return WWWAuthenticate(value.strip().lower(), on_update=on_update) return WWWAuthenticate(auth_type, parse_dict_header(auth_info), on_update) def parse_if_range_header(value): """Parses an if-range header which can be an etag or a date. Returns a :class:`~werkzeug.datastructures.IfRange` object. .. versionadded:: 0.7 """ if not value: return IfRange() date = parse_date(value) if date is not None: return IfRange(date=date) # drop weakness information return IfRange(unquote_etag(value)[0]) def parse_range_header(value, make_inclusive=True): """Parses a range header into a :class:`~werkzeug.datastructures.Range` object. If the header is missing or malformed `None` is returned. `ranges` is a list of ``(start, stop)`` tuples where the ranges are non-inclusive. .. versionadded:: 0.7 """ if not value or '=' not in value: return None ranges = [] last_end = 0 units, rng = value.split('=', 1) units = units.strip().lower() for item in rng.split(','): item = item.strip() if '-' not in item: return None if item.startswith('-'): if last_end < 0: return None begin = int(item) end = None last_end = -1 elif '-' in item: begin, end = item.split('-', 1) begin = int(begin) if begin < last_end or last_end < 0: return None if end: end = int(end) + 1 if begin >= end: return None else: end = None last_end = end ranges.append((begin, end)) return Range(units, ranges) def parse_content_range_header(value, on_update=None): """Parses a range header into a :class:`~werkzeug.datastructures.ContentRange` object or `None` if parsing is not possible. .. versionadded:: 0.7 :param value: a content range header to be parsed. :param on_update: an optional callable that is called every time a value on the :class:`~werkzeug.datastructures.ContentRange` object is changed. """ if value is None: return None try: units, rangedef = (value or '').strip().split(None, 1) except ValueError: return None if '/' not in rangedef: return None rng, length = rangedef.split('/', 1) if length == '*': length = None elif length.isdigit(): length = int(length) else: return None if rng == '*': return ContentRange(units, None, None, length, on_update=on_update) elif '-' not in rng: return None start, stop = rng.split('-', 1) try: start = int(start) stop = int(stop) + 1 except ValueError: return None if is_byte_range_valid(start, stop, length): return ContentRange(units, start, stop, length, on_update=on_update) def quote_etag(etag, weak=False): """Quote an etag. :param etag: the etag to quote. :param weak: set to `True` to tag it "weak". """ if '"' in etag: raise ValueError('invalid etag') etag = '"%s"' % etag if weak: etag = 'w/' + etag return etag def unquote_etag(etag): """Unquote a single etag: >>> unquote_etag('w/"bar"') ('bar', True) >>> unquote_etag('"bar"') ('bar', False) :param etag: the etag identifier to unquote. :return: a ``(etag, weak)`` tuple. """ if not etag: return None, None etag = etag.strip() weak = False if etag[:2] in ('w/', 'W/'): weak = True etag = etag[2:] if etag[:1] == etag[-1:] == '"': etag = etag[1:-1] return etag, weak def parse_etags(value): """Parse an etag header. :param value: the tag header to parse :return: an :class:`~werkzeug.datastructures.ETags` object. """ if not value: return ETags() strong = [] weak = [] end = len(value) pos = 0 while pos < end: match = _etag_re.match(value, pos) if match is None: break is_weak, quoted, raw = match.groups() if raw == '*': return ETags(star_tag=True) elif quoted: raw = quoted if is_weak: weak.append(raw) else: strong.append(raw) pos = match.end() return ETags(strong, weak) def generate_etag(data): """Generate an etag for some data.""" return md5(data).hexdigest() def parse_date(value): """Parse one of the following date formats into a datetime object: .. sourcecode:: text Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123 Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036 Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format If parsing fails the return value is `None`. :param value: a string with a supported date format. :return: a :class:`datetime.datetime` object. """ if value: t = parsedate_tz(value.strip()) if t is not None: try: year = t[0] # unfortunately that function does not tell us if two digit # years were part of the string, or if they were prefixed # with two zeroes. So what we do is to assume that 69-99 # refer to 1900, and everything below to 2000 if year >= 0 and year <= 68: year += 2000 elif year >= 69 and year <= 99: year += 1900 return datetime(*((year,) + t[1:7])) - \ timedelta(seconds=t[-1] or 0) except (ValueError, OverflowError): return None def cookie_date(expires=None): """Formats the time to ensure compatibility with Netscape's cookie standard. Accepts a floating point number expressed in seconds since the epoch in, a datetime object or a timetuple. All times in UTC. The :func:`parse_date` function can be used to parse such a date. Outputs a string in the format ``Wdy, DD-Mon-YYYY HH:MM:SS GMT``. :param expires: If provided that date is used, otherwise the current. """ return _dump_date(expires, '-') def http_date(timestamp=None): """Formats the time to match the RFC1123 date format. Accepts a floating point number expressed in seconds since the epoch in, a datetime object or a timetuple. All times in UTC. The :func:`parse_date` function can be used to parse such a date. Outputs a string in the format ``Wdy, DD Mon YYYY HH:MM:SS GMT``. :param timestamp: If provided that date is used, otherwise the current. """ return _dump_date(timestamp, ' ') def is_resource_modified(environ, etag=None, data=None, last_modified=None): """Convenience method for conditional requests. :param environ: the WSGI environment of the request to be checked. :param etag: the etag for the response for comparison. :param data: or alternatively the data of the response to automatically generate an etag using :func:`generate_etag`. :param last_modified: an optional date of the last modification. :return: `True` if the resource was modified, otherwise `False`. """ if etag is None and data is not None: etag = generate_etag(data) elif data is not None: raise TypeError('both data and etag given') if environ['REQUEST_METHOD'] not in ('GET', 'HEAD'): return False unmodified = False if isinstance(last_modified, basestring): last_modified = parse_date(last_modified) # ensure that microsecond is zero because the HTTP spec does not transmit # that either and we might have some false positives. See issue #39 if last_modified is not None: last_modified = last_modified.replace(microsecond=0) modified_since = parse_date(environ.get('HTTP_IF_MODIFIED_SINCE')) if modified_since and last_modified and last_modified <= modified_since: unmodified = True if etag: if_none_match = parse_etags(environ.get('HTTP_IF_NONE_MATCH')) if if_none_match: unmodified = if_none_match.contains_raw(etag) return not unmodified def remove_entity_headers(headers, allowed=('expires', 'content-location')): """Remove all entity headers from a list or :class:`Headers` object. This operation works in-place. `Expires` and `Content-Location` headers are by default not removed. The reason for this is :rfc:`2616` section 10.3.5 which specifies some entity headers that should be sent. .. versionchanged:: 0.5 added `allowed` parameter. :param headers: a list or :class:`Headers` object. :param allowed: a list of headers that should still be allowed even though they are entity headers. """ allowed = set(x.lower() for x in allowed) headers[:] = [(key, value) for key, value in headers if not is_entity_header(key) or key.lower() in allowed] def remove_hop_by_hop_headers(headers): """Remove all HTTP/1.1 "Hop-by-Hop" headers from a list or :class:`Headers` object. This operation works in-place. .. versionadded:: 0.5 :param headers: a list or :class:`Headers` object. """ headers[:] = [(key, value) for key, value in headers if not is_hop_by_hop_header(key)] def is_entity_header(header): """Check if a header is an entity header. .. versionadded:: 0.5 :param header: the header to test. :return: `True` if it's an entity header, `False` otherwise. """ return header.lower() in _entity_headers def is_hop_by_hop_header(header): """Check if a header is an HTTP/1.1 "Hop-by-Hop" header. .. versionadded:: 0.5 :param header: the header to test. :return: `True` if it's an entity header, `False` otherwise. """ return header.lower() in _hop_by_pop_headers def parse_cookie(header, charset='utf-8', errors='replace', cls=None): """Parse a cookie. Either from a string or WSGI environ. Per default encoding errors are ignored. If you want a different behavior you can set `errors` to ``'replace'`` or ``'strict'``. In strict mode a :exc:`HTTPUnicodeError` is raised. .. versionchanged:: 0.5 This function now returns a :class:`TypeConversionDict` instead of a regular dict. The `cls` parameter was added. :param header: the header to be used to parse the cookie. Alternatively this can be a WSGI environment. :param charset: the charset for the cookie values. :param errors: the error behavior for the charset decoding. :param cls: an optional dict class to use. If this is not specified or `None` the default :class:`TypeConversionDict` is used. """ if isinstance(header, dict): header = header.get('HTTP_COOKIE', '') if cls is None: cls = TypeConversionDict cookie = _ExtendedCookie() cookie.load(header) result = {} # decode to unicode and skip broken items. Our extended morsel # and extended cookie will catch CookieErrors and convert them to # `None` items which we have to skip here. for key, value in cookie.iteritems(): if value.value is not None: result[key] = _decode_unicode(unquote_header_value(value.value), charset, errors) return cls(result) def dump_cookie(key, value='', max_age=None, expires=None, path='/', domain=None, secure=None, httponly=False, charset='utf-8', sync_expires=True): """Creates a new Set-Cookie header without the ``Set-Cookie`` prefix The parameters are the same as in the cookie Morsel object in the Python standard library but it accepts unicode data, too. :param max_age: should be a number of seconds, or `None` (default) if the cookie should last only as long as the client's browser session. Additionally `timedelta` objects are accepted, too. :param expires: should be a `datetime` object or unix timestamp. :param path: limits the cookie to a given path, per default it will span the whole domain. :param domain: Use this if you want to set a cross-domain cookie. For example, ``domain=".example.com"`` will set a cookie that is readable by the domain ``www.example.com``, ``foo.example.com`` etc. Otherwise, a cookie will only be readable by the domain that set it. :param secure: The cookie will only be available via HTTPS :param httponly: disallow JavaScript to access the cookie. This is an extension to the cookie standard and probably not supported by all browsers. :param charset: the encoding for unicode values. :param sync_expires: automatically set expires if max_age is defined but expires not. """ try: key = str(key) except UnicodeError: raise TypeError('invalid key %r' % key) if isinstance(value, unicode): value = value.encode(charset) value = quote_header_value(value) morsel = _ExtendedMorsel(key, value) if isinstance(max_age, timedelta): max_age = (max_age.days * 60 * 60 * 24) + max_age.seconds if expires is not None: if not isinstance(expires, basestring): expires = cookie_date(expires) morsel['expires'] = expires elif max_age is not None and sync_expires: morsel['expires'] = cookie_date(time() + max_age) if domain and ':' in domain: # The port part of the domain should NOT be used. Strip it domain = domain.split(':', 1)[0] if domain: assert '.' in domain, ( "Setting \"domain\" for a cookie on a server running localy (ex: " "localhost) is not supportted by complying browsers. You should " "have something like: \"127.0.0.1 localhost dev.localhost\" on " "your hosts file and then point your server to run on " "\"dev.localhost\" and also set \"domain\" for \"dev.localhost\"" ) for k, v in (('path', path), ('domain', domain), ('secure', secure), ('max-age', max_age), ('httponly', httponly)): if v is not None and v is not False: morsel[k] = str(v) return morsel.output(header='').lstrip() def is_byte_range_valid(start, stop, length): """Checks if a given byte content range is valid for the given length. .. versionadded:: 0.7 """ if (start is None) != (stop is None): return False elif start is None: return length is None or length >= 0 elif length is None: return 0 <= start < stop elif start >= stop: return False return 0 <= start < length # circular dependency fun from werkzeug.datastructures import Accept, HeaderSet, ETags, Authorization, \ WWWAuthenticate, TypeConversionDict, IfRange, Range, ContentRange, \ RequestCacheControl # DEPRECATED # backwards compatible imports from werkzeug.datastructures import MIMEAccept, CharsetAccept, \ LanguageAccept, Headers
from netlib.http import cookies from netlib.tutils import raises def test_read_token(): tokens = [ [("foo", 0), ("foo", 3)], [("foo", 1), ("oo", 3)], [(" foo", 1), ("foo", 4)], [(" foo;", 1), ("foo", 4)], [(" foo=", 1), ("foo", 4)], [(" foo=bar", 1), ("foo", 4)], ] for q, a in tokens: assert cookies._read_token(*q) == a def test_read_quoted_string(): tokens = [ [('"foo" x', 0), ("foo", 5)], [('"f\oo" x', 0), ("foo", 6)], [(r'"f\\o" x', 0), (r"f\o", 6)], [(r'"f\\" x', 0), (r"f" + '\\', 5)], [('"fo\\\"" x', 0), ("fo\"", 6)], [('"foo" x', 7), ("", 8)], ] for q, a in tokens: assert cookies._read_quoted_string(*q) == a def test_read_pairs(): vals = [ [ "one", [["one", None]] ], [ "one=two", [["one", "two"]] ], [ "one=", [["one", ""]] ], [ 'one="two"', [["one", "two"]] ], [ 'one="two"; three=four', [["one", "two"], ["three", "four"]] ], [ 'one="two"; three=four; five', [["one", "two"], ["three", "four"], ["five", None]] ], [ 'one="\\"two"; three=four', [["one", '"two'], ["three", "four"]] ], ] for s, lst in vals: ret, off = cookies._read_pairs(s) assert ret == lst def test_pairs_roundtrips(): pairs = [ [ "", [] ], [ "one=uno", [["one", "uno"]] ], [ "one", [["one", None]] ], [ "one=uno; two=due", [["one", "uno"], ["two", "due"]] ], [ 'one="uno"; two="\due"', [["one", "uno"], ["two", "due"]] ], [ 'one="un\\"o"', [["one", 'un"o']] ], [ 'one="uno,due"', [["one", 'uno,due']] ], [ "one=uno; two; three=tre", [["one", "uno"], ["two", None], ["three", "tre"]] ], [ "_lvs2=zHai1+Hq+Tc2vmc2r4GAbdOI5Jopg3EwsdUT9g=; " "_rcc2=53VdltWl+Ov6ordflA==;", [ ["_lvs2", "zHai1+Hq+Tc2vmc2r4GAbdOI5Jopg3EwsdUT9g="], ["_rcc2", "53VdltWl+Ov6ordflA=="] ] ] ] for s, lst in pairs: ret, off = cookies._read_pairs(s) assert ret == lst s2 = cookies._format_pairs(lst) ret, off = cookies._read_pairs(s2) assert ret == lst def test_cookie_roundtrips(): pairs = [ [ "one=uno", [["one", "uno"]] ], [ "one=uno; two=due", [["one", "uno"], ["two", "due"]] ], ] for s, lst in pairs: ret = cookies.parse_cookie_header(s) assert ret == lst s2 = cookies.format_cookie_header(ret) ret = cookies.parse_cookie_header(s2) assert ret == lst def test_parse_set_cookie_pairs(): pairs = [ [ "one=uno", [ ["one", "uno"] ] ], [ "one=un\x20", [ ["one", "un\x20"] ] ], [ "one=uno; foo", [ ["one", "uno"], ["foo", None] ] ], [ "mun=1.390.f60; " "expires=sun, 11-oct-2015 12:38:31 gmt; path=/; " "domain=b.aol.com", [ ["mun", "1.390.f60"], ["expires", "sun, 11-oct-2015 12:38:31 gmt"], ["path", "/"], ["domain", "b.aol.com"] ] ], [ r'rpb=190%3d1%2616726%3d1%2634832%3d1%2634874%3d1; ' 'domain=.rubiconproject.com; ' 'expires=mon, 11-may-2015 21:54:57 gmt; ' 'path=/', [ ['rpb', r'190%3d1%2616726%3d1%2634832%3d1%2634874%3d1'], ['domain', '.rubiconproject.com'], ['expires', 'mon, 11-may-2015 21:54:57 gmt'], ['path', '/'] ] ], ] for s, lst in pairs: ret = cookies._parse_set_cookie_pairs(s) assert ret == lst s2 = cookies._format_set_cookie_pairs(ret) ret2 = cookies._parse_set_cookie_pairs(s2) assert ret2 == lst def test_parse_set_cookie_header(): vals = [ [ "", None ], [ ";", None ], [ "one=uno", ("one", "uno", ()) ], [ "one=uno; foo=bar", ("one", "uno", (("foo", "bar"),)) ], [ "one=uno; foo=bar; foo=baz", ("one", "uno", (("foo", "bar"), ("foo", "baz"))) ], ] for s, expected in vals: ret = cookies.parse_set_cookie_header(s) if expected: assert ret[0] == expected[0] assert ret[1] == expected[1] assert ret[2].items(multi=True) == expected[2] s2 = cookies.format_set_cookie_header(*ret) ret2 = cookies.parse_set_cookie_header(s2) assert ret2[0] == expected[0] assert ret2[1] == expected[1] assert ret2[2].items(multi=True) == expected[2] else: assert ret is None def test_refresh_cookie(): # Invalid expires format, sent to us by Reddit. c = "rfoo=bar; Domain=reddit.com; expires=Thu, 31 Dec 2037 23:59:59 GMT; Path=/" assert cookies.refresh_set_cookie_header(c, 60) c = "MOO=BAR; Expires=Tue, 08-Mar-2011 00:20:38 GMT; Path=foo.com; Secure" assert "00:21:38" in cookies.refresh_set_cookie_header(c, 60) c = "foo,bar" with raises(ValueError): cookies.refresh_set_cookie_header(c, 60) # https://github.com/mitmproxy/mitmproxy/issues/773 c = ">=A" assert cookies.refresh_set_cookie_header(c, 60) # https://github.com/mitmproxy/mitmproxy/issues/1118 c = "foo:bar=bla" assert cookies.refresh_set_cookie_header(c, 0) c = "foo/bar=bla" assert cookies.refresh_set_cookie_header(c, 0)
""" Test Results for discrete models from Stata """ import os import numpy as np #### Discrete Model Tests #### # Note that there is a slight refactor of the classes, so that one dataset # might be used for more than one model cur_dir = os.path.abspath(os.path.dirname(__file__)) class Anes(object): def __init__(self): """ Results are from Stata 11 (checked vs R nnet package). """ self.nobs = 944 def mnlogit_basezero(self): params = [-.01153598, .29771435, -.024945, .08249144, .00519655, -.37340167, -.08875065, .39166864, -.02289784, .18104276, .04787398, -2.2509132, -.1059667, .57345051, -.01485121, -.00715242, .05757516, -3.6655835, -.0915567, 1.2787718, -.00868135, .19982796, .08449838, -7.6138431, -.0932846, 1.3469616, -.01790407, .21693885, .08095841, -7.0604782, -.14088069, 2.0700801, -.00943265, .3219257, .10889408, -12.105751] self.params = np.reshape(params, (6,-1), order='F') bse = [.0342823657, .093626795, .0065248584, .0735865799, .0176336937, .6298376313, .0391615553, .1082386919, .0079144618, .0852893563, .0222809297, .7631899491, .0570382292, .1585481337, .0113313133, .1262913234, .0336142088, 1.156541492, .0437902764, .1288965854, .0084187486, .0941250559, .0261963632, .9575809602, .0393516553, .1171860107, .0076110152, .0850070091, .0229760791, .8443638283, .042138047, .1434089089, .0081338625, .0910979921, .025300888, 1.059954821] self.bse = np.reshape(bse, (6,-1), order='F') self.yhat = np.loadtxt(os.path.join(cur_dir,'yhat_mnlogit.csv')) self.phat = np.loadtxt(os.path.join(cur_dir,'phat_mnlogit.csv')) self.cov_params = None self.llf = -1461.922747312 self.llnull = -1750.34670999 self.llr = 576.8479253554 self.llr_pvalue = 1.8223179e-102 self.prsquared = .1647810465387 self.df_model = 30 self.df_resid = 944 - 36 self.J = 7 self.K = 6 self.aic = 2995.84549462 self.bic = 3170.45003661 z = [-.3364988051, 3.179798597, -3.823070772, 1.121012042, .2946945327, -.5928538661, -2.266269864, 3.618564069, -2.893164162, 2.122688754, 2.148652536, -2.949348555, -1.857818873, 3.616885888, -1.310634214, -.0566342868, 1.712822091, -3.169435381, -2.090799808, 9.920912816, -1.031191864, 2.123004903, 3.225576554, -7.951122047, -2.370538224, 11.49421878, -2.352389066, 2.552011323, 3.523595639, -8.361890935, -3.34331327, 14.43480847, -1.159676452, 3.533839715, 4.303962885, -11.42100649] self.z = np.reshape(z, (6,-1), order='F') pvalues = [0.7364947525, 0.0014737744, 0.0001317999, 0.2622827367, 0.7682272401, 0.5532789548, 0.0234348654, 0.0002962422, 0.0038138191, 0.0337799420, 0.0316619538, 0.0031844460, 0.0631947400, 0.0002981687, 0.1899813744, 0.9548365214, 0.0867452747, 0.0015273542, 0.0365460134, 3.37654e-23, 0.3024508550, 0.0337534410, 0.0012571921, 1.84830e-15, 0.0177622072, 1.41051e-30, 0.0186532528, 0.0107103038, 0.0004257334, 6.17209e-17, 0.0008278439, 3.12513e-47, 0.2461805610, 0.0004095694, 0.0000167770, 3.28408e-30] self.pvalues = np.reshape(pvalues, (6,-1), order='F') conf_int = [[[-0.0787282, 0.0556562], [0.1142092, 0.4812195], [-0.0377335, -0.0121565], [-0.0617356, 0.2267185], [-0.0293649, 0.0397580], [-1.6078610, 0.8610574]], [[-0.1655059, -0.0119954], [0.1795247, 0.6038126], [-0.0384099, -0.0073858], [0.0138787, 0.3482068], [0.0042042, 0.0915438], [-3.7467380, -0.7550884]], [[-0.2177596, 0.0058262], [0.2627019, 0.8841991], [-0.0370602, 0.0073578], [-0.2546789, 0.2403740], [-0.0083075, 0.1234578], [-5.9323630,-1.3988040]],[[-0.1773841, -0.0057293], [1.0261390, 1.5314040], [-0.0251818, 0.0078191], [0.0153462, 0.3843097], [0.0331544, 0.1358423], [-9.4906670, -5.7370190]], [[-0.1704124, -0.0161568], [1.1172810, 1.5766420], [-0.0328214, -0.0029868], [0.0503282, 0.3835495], [0.0359261, 0.1259907], [-8.7154010, -5.4055560]], [[-0.2234697, -0.0582916], [1.7890040, 2.3511560], [-0.0253747, 0.0065094], [0.1433769, 0.5004745], [0.0593053, 0.1584829], [-14.1832200, -10.0282800]]] self.conf_int = np.asarray(conf_int) # margins, dydx(*) predict(outcome(#)) self.margeff_dydx_overall = np.array([ [0.00868085993550, -0.09779854015456, 0.00272556969847, -0.01992376579372, -0.00603133322764], [0.00699386733148, -0.05022430802614, -0.00211003909752, -0.00536980000265, -0.00554366741814], [-0.00391040848820, -0.02824717135857, -0.00100551299310, 0.00664337806861, 0.00097987356999], [-0.00182580888015, -0.00573744730031, -0.00004249256428, -0.00546669558488, 0.00054101121854], [-0.00098558129923, 0.01985550937033, 0.00047972250012, 0.00172605778905, 0.00211291403209], [-0.00153469551647, 0.03755346502013, -0.00068531143399, 0.00472471794347, 0.00254733486106], [-0.00741820702809, 0.12459834487569, 0.00063806819375, 0.01766610701188, 0.00539385283759] ]).T self.margeff_dydx_overall_se = np.array([ [.0038581061, .0080471125, .0007068488, .0082318967, .0020261706], [.003904378, .0073600286, .000756431, .0084381578, .0020482238], [.003137126, .0056813182, .0006601377, .0068932588, .0018481806], [.0019427783, .0031904763, .0003865411, .004361789, .0011523221], [.0029863227, .0054076092, .0005886612, .0064426365, .0018886818], [.0035806552, .0069497362, .000722511, .0078287717, .0022352393], [.0033641608, .008376629, .0006774697, .0073505286, .0021660086] ]).T self.margeff_dydx_mean = np.array([ [0.01149887431225, -0.13784207091973, 0.00273313385873, -0.02542974260540, -0.00855346837482], [0.01114846831102, -0.09864273512889, -0.00222435063712, -0.01214617126321, -0.00903581444579], [-0.00381702868421, -0.05132297961269, -0.00116763216994, 0.00624203027060, 0.00021912081810], [-0.00233455327258, -0.00928554037343, -0.00000206561214, -0.00775415690571, 0.00060004460394], [-0.00352579921274, 0.06412187169362, 0.00073938948643, 0.00747778063206, 0.00459965010365], [-0.00574308219449, 0.11126535089794, -0.00057337915464, 0.01467424346725, 0.00641760846097], [-0.00722687818452, 0.12170608820238, 0.00049490419675, 0.01693601418978, 0.00575285798725]]).T self.margeff_dydx_mean_se = np.array([ [.0043729758, .0110343353, .0008149907, .0092551389, .0023752071], [.004875051, .0124746358, .0009613152, .0105665812, .0026524426], [.0040718954, .0103613938, .0008554615, .0089931297, .0024374625], [.0026430804, .0070845916, .0005364369, .0057654258, .0015988838], [.0037798151, .0103849291, .0007393481, .0082021938, .0023489261], [.0045654631, .0130329403, .0009128134, .0100053262, .0028048602], [.0027682389, .0113292677, .0005325113, .0061289353, .0017330763] ]).T self.margeff_dydx_dummy_overall = np.array([ [0.00549149574321, -0.05348235321783, 0.00298963549049, -0.01479461677951, -0.00332167981255, -0.26502967041815], [0.00345677928276, -0.00950322030929, -0.00189456107189, 0.00033893662061, -0.00314690167350, -0.21040878091828], [-0.00645089013284, 0.00401746940204, -0.00083948249351, 0.01114202556889, 0.00277069841472, -0.15967397659686], [-0.00215436802341, -0.00366545199370, -0.00000002297812, -0.00457368049644, 0.00065303026027, -0.00094772782001], [0.00058038428936, -0.00369080100124, 0.00035948233235, -0.00018863693013, 0.00079351293461, 0.12640653743480], [0.00217597030999, -0.01279456622853, -0.00091882392767, 0.00001651192759, -0.00037998290789, 0.27175070356670], [-0.00309932483642, 0.07911868907484, 0.00030378521102, 0.00805941631677, 0.00263129901425, 0.23790291475181]]).T self.margeff_dydx_dummy_overall_se = np.array([ [.0037314453, .0094102332, .000688838, .0079744554, .0019365971, .0243914836], [.0038215262, .0095938828, .0007410885, .008259353, .0019984087, .0317628806], [.0031045718, .00785814, .0006504353, .0067892866, .0018060332, 0.0262803561], [.0019756086, .0051031194, .0003862449, .0043621673, .0011796953, .0219999601], [.0029714074, .0081732018, .0005715192, .0064742872, .0019130195, .0331694192], [.0034443743, .0097296187, .0006774867, .0075996454, .0021993881, .038600835], [.0032003518, .0098741227, .0006335772, .0070902078, .0021003227, .0255727127]]).T self.margeff_eydx_dummy_overall = np.array([ [.03939188, -.65758371, .01750922, -.12131806, -.03613241, -3.2132513], [.02752366, -.383165, -.00830021, -.03652935, -.03286046, -1.8741853], [-.05006681, -.2719659, -.00626481, .06525323, .01012554, -2.0058029], [-.05239558, -.22549142, .00025015, -.13104416, .01114517, -.27052009], [-.00296374, .25627809, .00140513, .03358712, .02296041, 1.3302701], [.00328283, .2800168, -.0083912, .04332782, .01575863, 1.8441023], [-.03257068, .98346111, -.00122118, .10847807, .0406456, 2.9119099]]).T self.margeff_eydx_dummy_overall_se = np.array([ [.0272085605, .0777760394, .0052427952, .0584011446, .0148618012, .5796921383], [.0262290023, .0724479385, .005174736, .0567743614, .0144447083, .3015738731], [.0321415498, .0895589422, .0067480662, .0701460193, .0190451865, .3904138447], [.0511305319, .1420904068, .0102342163, .1129912244, .0308618233, .3693799595], [.0340186217, .0991711703, .0065812158, .0737441012, .0212966336, .2346982385], [.0289250212, .0840662279, .0056743561, .0631772185, .0177278895, .2089516714], [.0318251305, .1085637405, .0062400589, .0699123044, .0201045606, .3727166284]]).T # taken from gretl self.resid = np.loadtxt(os.path.join(cur_dir,'mnlogit_resid.csv'), delimiter=",") class DiscreteL1(object): def __init__(self): """ Special results for L1 models Uses the Spector data and a script to generate the baseline results """ pass def logit(self): """ Results generated with: data = sm.datasets.spector.load() data.exog = sm.add_constant(data.exog, prepend=True) alpha = 3 * np.array([0, 1, 1, 1]) res2 = sm.Logit(data.endog, data.exog).fit_regularized( method="l1", alpha=alpha, disp=0, trim_mode='size', size_trim_tol=1e-5, acc=1e-10, maxiter=1000) """ nan = np.nan self.params = [-4.10271595, 0., 0.15493781, 0.] self.conf_int = [[-9.15205122, 0.94661932], [nan, nan], [-0.06539482, 0.37527044], [ nan, nan]] self.bse = [ 2.5762388 , nan, 0.11241668, nan] self.nnz_params = 2 self.aic = 42.091439368583671 self.bic = 45.022911174183122 self.cov_params = [[ 6.63700638, nan, -0.28636261, nan], [nan, nan, nan, nan], [-0.28636261, nan, 0.01263751, nan], [nan, nan, nan, nan]] def sweep(self): """ Results generated with params = np.zeros((3, 4)) alphas = np.array( [[0.1, 0.1, 0.1, 0.1], [0.4, 0.4, 0.5, 0.5], [0.5, 0.5, 1, 1]]) model = sm.Logit(data.endog, data.exog) for i in range(3): alpha = alphas[i, :] res2 = model.fit_regularized(method="l1", alpha=alpha, disp=0, acc=1e-10, maxiter=1000, trim_mode='off') params[i, :] = res2.params print params """ self.params = [[-10.37593611, 2.27080968, 0.06670638, 2.05723691], [ -5.32670811, 1.18216019, 0.01402395, 1.45178712], [ -3.92630318, 0.90126958, -0. , 1.09498178]] def probit(self): """ Results generated with data = sm.datasets.spector.load() data.exog = sm.add_constant(data.exog, prepend=True) alpha = np.array([0.1, 0.2, 0.3, 10]) res2 = sm.Probit(data.endog, data.exog).fit_regularized( method="l1", alpha=alpha, disp=0, trim_mode='auto', auto_trim_tol=0.02, acc=1e-10, maxiter=1000) """ nan = np.nan self.params = [-5.40476992, 1.25018458, 0.04744558, 0. ] self.conf_int = [[-9.44077951, -1.36876033], [ 0.03716721, 2.46320194], [-0.09727571, 0.19216687], [ np.nan, np.nan]] self.bse = [ 2.05922641, 0.61889778, 0.07383875, np.nan] self.nnz_params = 3 self.aic = 38.399773877542927 self.bic = 42.796981585942106 self.cov_params = [[ 4.24041339, -0.83432592, -0.06827915, nan], [-0.83432592, 0.38303447, -0.01700249, nan], [-0.06827915, -0.01700249, 0.00545216, nan], [ nan, nan, nan, nan]] def mnlogit(self): """ Results generated with anes_data = sm.datasets.anes96.load() anes_exog = anes_data.exog anes_exog = sm.add_constant(anes_exog, prepend=False) mlogit_mod = sm.MNLogit(anes_data.endog, anes_exog) alpha = 10 * np.ones((mlogit_mod.J - 1, mlogit_mod.K)) alpha[-1,:] = 0 mlogit_l1_res = mlogit_mod.fit_regularized( method='l1', alpha=alpha, trim_mode='auto', auto_trim_tol=0.02, acc=1e-10) """ self.params = [[ 0.00100163, -0.05864195, -0.06147822, -0.04769671, -0.05222987, -0.09522432], [ 0. , 0.03186139, 0.12048999, 0.83211915, 0.92330292, 1.5680646 ], [-0.0218185 , -0.01988066, -0.00808564, -0.00487463, -0.01400173, -0.00562079], [ 0. , 0.03306875, 0. , 0.02362861, 0.05486435, 0.14656966], [ 0. , 0.04448213, 0.03252651, 0.07661761, 0.07265266, 0.0967758 ], [ 0.90993803, -0.50081247, -2.08285102, -5.26132955, -4.86783179, -9.31537963]] self.conf_int = [[[ -0.0646223 , 0.06662556], [ np.nan, np.nan], [ -0.03405931, -0.00957768], [ np.nan, np.nan], [ np.nan, np.nan], [ 0.26697895, 1.55289711]], [[ -0.1337913 , 0.01650741], [ -0.14477255, 0.20849532], [ -0.03500303, -0.00475829], [ -0.11406121, 0.18019871], [ 0.00479741, 0.08416684], [ -1.84626136, 0.84463642]], [[ -0.17237962, 0.04942317], [ -0.15146029, 0.39244026], [ -0.02947379, 0.01330252], [ np.nan, np.nan], [ -0.02501483, 0.09006785], [ -3.90379391, -0.26190812]], [[ -0.12938296, 0.03398954], [ 0.62612955, 1.03810876], [ -0.02046322, 0.01071395], [ -0.13738534, 0.18464256], [ 0.03017236, 0.12306286], [ -6.91227465, -3.61038444]], [[ -0.12469773, 0.02023799], [ 0.742564 , 1.10404183], [ -0.02791975, -0.00008371], [ -0.08491561, 0.19464431], [ 0.0332926 , 0.11201273], [ -6.29331126, -3.44235233]], [[ -0.17165567, -0.01879296], [ 1.33994079, 1.79618841], [ -0.02027503, 0.00903345], [ -0.00267819, 0.29581751], [ 0.05343135, 0.14012026], [-11.10419107, -7.52656819]]] self.bse = [[ 0.03348221, 0.03834221, 0.05658338, 0.04167742, 0.03697408, 0.03899631], [ np.nan, 0.09012101, 0.13875269, 0.10509867, 0.09221543, 0.11639184], [ 0.00624543, 0.00771564, 0.01091253, 0.00795351, 0.00710116, 0.00747679], [ np.nan, 0.07506769, np.nan, 0.08215148, 0.07131762, 0.07614826], [ np.nan, 0.02024768, 0.02935837, 0.02369699, 0.02008204, 0.02211492], [ 0.32804638, 0.68646613, 0.92906957, 0.84233441, 0.72729881, 0.91267567]] self.nnz_params = 32 self.aic = 3019.4391360294126 self.bic = 3174.6431733460686 class Spector(object): """ Results are from Stata 11 """ def __init__(self): self.nobs = 32 def logit(self): self.params = [2.82611297201, .0951576702557, 2.37868772835, -13.0213483201] self.cov_params = [[1.59502033639, -.036920566629, .427615725153, -4.57347950298], [-.036920566629, .0200375937069, .0149126464275, -.346255757562], [.427615725153 , .0149126464275, 1.13329715236, -2.35916128427], [-4.57347950298, -.346255757562, -2.35916128427, 24.3179625937]] self.bse = [1.26294114526, .141554207662, 1.06456430165, 4.93132462871] self.resid_pearson = [-.1652382, -.2515266, -.4800059, -.1630655, .8687437, -.1900454, -.165002, -.2331563, -.3535812, .6647838, -.1583799, -.4843181, -.689527, 2.043449, -.7516119, -.1764176, -.2380445, -.2003426, -1.199277, .7164842, -.255713, .3242821, -.5646816, -2.400189, .4392082, 1.038473, .75747, -.6659256, .4336657, .2404583, -1.060033, 2.829577] self.resid_dev = [-.2321102, -.3502712, -.6439626, -.2290982, 1.060478, -.2663844, -.2317827, -.3253788, -.4853875, .8555557, -.2225972, -.6491808, -.8819993, 1.813269, -.9463985, -.247583, -.3320177, -.2805444, -1.335131, .9103027, -.3559217, .4471892, -.744005, -1.955074, .5939538, 1.209638, .952332, -.8567857, .5870719, .335292, -1.227311, 2.096639] # from gretl self.resid_generalized = [-0.026578, -0.059501, -0.187260, -0.025902, 0.430107, -0.034858, -0.026504, -0.051559, -0.111127, 0.306489, -0.024470, -0.189997, -0.322240, 0.806789, -0.360990, -0.030184, -0.053626, -0.038588, -0.589872, 0.339214, -0.061376, 0.095153, -0.241772, -0.852091, 0.161709, 0.518867, 0.364579, -0.307219, 0.158296, 0.054660, -0.529117, 0.888969] self.phat = np.array([ .02657799236476, .05950126051903, .18725991249084, .02590163610876, .56989300251007, .03485824912786, .02650404907763, .05155897513032, .11112663894892, .69351142644882, .02447037212551, .18999740481377, .32223951816559, .1932111531496, .36098992824554, .03018374741077, .05362640321255, .03858831897378, .58987241983414, .66078591346741, .06137581542134, .90484726428986, .24177247285843, .85209089517593, .8382905125618, .48113295435905, .63542068004608, .30721867084503, .84170418977737, .94534027576447, .52911710739136, .1110308393836]) self.yhat = np.array([-3.6007342338562, -2.7604126930237, -1.4679137468338, -3.6272060871124, .28141465783119, -3.3209850788116, -3.6035962104797, -2.9120934009552, -2.0792844295502, .81658720970154, -3.6855175495148, -1.4500269889832, -.74349880218506, -1.429278254509, -.57107019424438, -3.4698030948639, -2.8705959320068, -3.2154531478882, .36343798041344, .66679841279984, -2.7273993492126, 2.2522828578949, -1.1429864168167, 1.7510952949524, 1.6455633640289, -.07550399750471, .55554306507111, -.81315463781357, 1.6709630489349, 2.8504176139832, .11660042405128, -2.0802545547485]) self.llf = -12.8896334653335 self.llnull = -20.5917296966173 self.df_model = 3 self.df_resid = 32 - 4 #TODO: is this right? not reported in stata self.llr = 15.4041924625676 self.prsquared = .374038332124624 self.llr_pvalue = .00150187761112892 self.aic = 33.779266930667 self.bic = 39.642210541866 self.z = [2.237723415, 0.6722348408, 2.234423721, -2.640537645] self.conf_int = [[.3507938,5.301432],[-.1822835,.3725988],[.29218, 4.465195],[-22.68657,-3.35613]] self.pvalues = [.0252390974, .5014342039, .0254552063, .0082774596] # taken from margins command self.margeff_nodummy_dydx = [.36258084688424,.01220841099085, .30517768382304] self.margeff_nodummy_dydx_se = [.1094412, .0177942, .0923796] self.margeff_nodummy_dydxmean = [.53385885781692,.01797548988961, .44933926079386] self.margeff_nodummy_dydxmean_se = [.237038, .0262369, .1967626] self.margeff_nodummy_dydxmedian = [.25009492465091,.00842091261329, .2105003352955] self.margeff_nodummy_dydxmedian_se = [.1546708, .0134314, .0928183] self.margeff_nodummy_dydxzero = [6.252993785e-06,2.105437138e-07, 5.263030788e-06] self.margeff_nodummy_dydxzero_se = [.0000288, 9.24e-07, .000025] self.margeff_nodummy_dyex = [1.1774000792198,.27896245178384, .16960002159996] self.margeff_nodummy_dyex_se = [.3616481, .4090679, .0635583] self.margeff_nodummy_dyexmean = [1.6641381583512,.39433730945339, .19658592659731] self.margeff_nodummy_dyexmean_se = [.7388917, .5755722, .0860836] #NOTE: PSI at median should be a NaN or 'omitted' self.margeff_nodummy_dyexmedian = [.76654095836557,.18947053379898,0] self.margeff_nodummy_dyexmedian_se = [ .4740659, .302207, 0] #NOTE: all should be NaN self.margeff_nodummy_dyexzero = [0,0,0] self.margeff_nodummy_dyexzero_se = [0,0,0] self.margeff_nodummy_eydx = [1.8546366266779,.06244722072812, 1.5610138123033] self.margeff_nodummy_eydx_se = [.847903, .0930901, .7146715] self.margeff_nodummy_eydxmean = [2.1116143062702,.0710998816585, 1.7773072368626] self.margeff_nodummy_eydxmean_se = [ 1.076109, .1081501, .9120842] self.margeff_nodummy_eydxmedian = [2.5488082240624,.0858205793373, 2.1452853812126] self.margeff_nodummy_eydxmedian_se = [1.255377, .1283771, 1.106872] self.margeff_nodummy_eydxzero = [2.8261067189993,.0951574597115, 2.3786824653103] self.margeff_nodummy_eydxzero_se = [1.262961, .1415544, 1.064574] self.margeff_nodummy_eyex = [5.4747106798973,1.3173389907576, .44600395466634] self.margeff_nodummy_eyex_se = [2.44682, 1.943525, .1567618] self.margeff_nodummy_eyexmean = [6.5822977203268,1.5597536538833, .77757191612739] self.margeff_nodummy_eyexmean_se = [3.354433, 2.372543, .3990368] self.margeff_nodummy_eyexmedian = [7.8120973525952,1.9309630350892,0] self.margeff_nodummy_eyexmedian_se = [3.847731951, 2.888485089, 0] self.margeff_nodummy_eyexzero = [0,0,0] self.margeff_nodummy_eyexzero_se = [0,0,0] # for below GPA = 2.0, psi = 1 self.margeff_nodummy_atexog1 = [.1456333017086,.00490359933927, .12257689308426] self.margeff_nodummy_atexog1_se = [.145633, .0111226, .1777101] # for below GPA at mean, tuce = 21, psi = 0 self.margeff_nodummy_atexog2 = [.25105129214546,.00845311433473, .2113052923675] self.margeff_nodummy_atexog2_se = [.1735778, .012017, .0971515] # must get this from older margeff or i.psi then margins self.margeff_dummy_dydx = [.36258084688424,.01220841099085, .35751515254729] self.margeff_dummy_dydx_se = [.1094412, .0177942, .1420034] self.margeff_dummy_dydxmean = [.53385885781692,.01797548988961, .4564984096959] self.margeff_dummy_dydxmean_se = [.237038, .0262369, .1810537] #self.margeff_dummy_dydxmedian # from margeff self.margeff_dummy_count_dydx_median = [0.250110487483923, 0.008426867847905, 0.441897738279663] self.margeff_dummy_count_dydx_median_se = [.1546736661, .0134551951, .1792363708] # estimate with i.psi for the below then use margins self.margeff_dummy_eydx = [1.8546366266779,.06244722072812, 1.5549034398832] self.margeff_dummy_eydx_se = [.847903, .0930901, .7283702] # ie # margins, eydx(*) at((mean) _all) self.margeff_dummy_eydxmean = [2.1116143062702,.0710998816585, 1.6631775707188] self.margeff_dummy_eydxmean_se = [1.076109, .1081501, .801205] # Factor variables not allowed in below # test raises #self.margeff_dummy_dydxzero #self.margeff_dummy_eydxmedian #self.margeff_dummy_eydxzero #self.margeff_dummy_dyex #self.margeff_dummy_dyexmean #self.margeff_dummy_dyexmedian #self.margeff_dummy_dyexzero #self.margeff_dummy_eyex #self.margeff_count_dummy_dydx_median #self.margeff_count_dummy_dydx_median_se #NOTE: need old version of margeff for nodisc but at option is broken # stata command is margeff, count nodisc # this can be replicated with the new results by margeff # and then using margins for the last value self.margeff_count_dydx = [.3625767598018, .0122068569914, .3051777] self.margeff_count_dydx_se = [.1094379569, .0177869773, .0923796] # middle value taken from margeff rest from margins self.margeff_count_dydxmean = [.5338588, 0.01797186545386, .4493393 ] self.margeff_count_dydxmean_se = [.237038, .0262211, .1967626] # with new version of margeff this is just a call to # margeff # mat list e(margeff_b), nonames format(%17.16g) self.margeff_count_dummy_dydxoverall = [.362576759801767, .012206856991439, .357515163621704] # AFAICT, an easy way to get se is # mata # V = st_matrix("e(margeff_V)") # se = diagonal(cholesky(diag(V))) # last SE taken from margins with i.psi, don't know how they # don't know why margeff is different, but trust official results self.margeff_count_dummy_dydxoverall_se = [.1094379569, .0177869773, .1420034] #.1574340751 ] # from new margeff self.margeff_count_dummy_dydxmean = [0.533849340033768, 0.017971865453858, 0.456498405282412] self.margeff_count_dummy_dydxmean_se = [.2370202503, .0262210796, .1810536852 ] # for below GPA = 2.0, psi = 1 self.margeff_dummy_atexog1 = [.1456333017086,.00490359933927, .0494715429937] self.margeff_dummy_atexog1_se = [.145633, .0111226, .0731368] # for below GPA at mean, tuce = 21, psi = 0 self.margeff_dummy_atexog2 = [.25105129214546,.00845311433473, .44265645632553] self.margeff_dummy_atexog2_se = [.1735778, .012017, .1811925] #The test for the prediction table was taken from Gretl #Gretl Output matched the Stata output here for params and SE self.pred_table = np.array([[18, 3], [3, 8]]) def probit(self): self.params = [1.62581025407, .051728948442, 1.42633236818, -7.45232041607] self.cov_params = [[.481472955383, -.01891350017, .105439226234, -1.1696681354], [-.01891350017, .00703757594, .002471864882, -.101172838897], [.105439226234, .002471864882, .354070126802, -.594791776765], [-1.1696681354, -.101172838897, -.594791776765, 6.46416639958]] self.bse = [.693882522754, .083890261293, .595037920474, 2.54247249731] self.llf = -12.8188033249334 self.llnull = -20.5917296966173 self.df_model = 3 self.df_resid = 32 - 4 self.llr = 15.5458527433678 self.prsquared = .377478069409622 self.llr_pvalue = .00140489496775855 self.aic = 33.637606649867 self.bic = 39.500550261066 self.z = [ 2.343062695, .6166263836, 2.397044489, -2.931131182] self.conf_int = [[.2658255,2.985795],[-.1126929,.2161508],[.2600795, 2.592585],[-12.43547,-2.469166]] self.pvalues = [.0191261688, .537481188, .0165279168, .0033773013] self.phat = [.0181707, .0530805, .1899263, .0185707, .5545748, .0272331, .0185033, .0445714, .1088081, .6631207, .0161024, .1935566, .3233282, .1951826, .3563406, .0219654, .0456943, .0308513, .5934023, .6571863, .0619288, .9045388, .2731908, .8474501, .8341947, .488726, .6424073, .3286732, .8400168, .9522446, .5399595, .123544] self.yhat = np.array([-2.0930860042572, -1.615691781044, -.87816804647446, -2.0842070579529, .13722851872444, -1.9231110811234, -2.0856919288635, -1.6999372243881, -1.2328916788101, .42099541425705, -2.1418602466583, -.86486464738846, -.45841211080551, -.85895526409149, -.36825761198997, -2.0147502422333, -1.6881184577942, -1.8684275150299, .23630557954311, .40479621291161, -1.538782119751, 1.3078554868698, -.60319095849991, 1.025558590889, .97087496519089, -.02826354466379, .36490100622177, -.44357979297638, .99452745914459, 1.6670187711716, .10033150017262, -1.1574513912201]) self.resid_dev = [-.191509, -.3302762, -.6490455, -.1936247, 1.085867, -.2349926, -.1932698, -.3019776, -.4799906, .9064196, -.1801855, -.6559291, -.8838201, 1.807661, -.9387071, -.2107617, -.3058469, -.2503485, -1.341589, .9162835, -.3575735, .447951, -.7988633, -1.939208, .6021435, 1.196623, .9407793, -.8927477, .59048, .3128364, -1.246147, 2.045071] # Stata doesn't have it, but I think it's just oversight self.resid_pearson = None # generalized residuals from gretl self.resid_generalized = [-0.045452, -0.114220, -0.334908, -0.046321, 0.712624, -0.064538, -0.046175, -0.098447, -0.209349, 0.550593, -0.040906, -0.340339, -0.530763, 1.413373, -0.579170, -0.053593, -0.100556, -0.071855, -0.954156, 0.559294, -0.130167, 0.187523, -0.457597, -1.545643, 0.298511, 0.815964, 0.581013, -0.538579, 0.289631, 0.104405, -0.862836, 1.652638] self.pred_table = np.array([[18, 3], [3, 8]]) class RandHIE(object): """ Results obtained from Stata 11 """ def __init__(self): self.nobs = 20190 def poisson(self): self.params = [-.052535114675, -.247086797633, .035290201794, -.03457750643, .271713973711, .033941474461, -.012635035534, .054056326828, .206115121809, .700352877227] self.cov_params = None self.bse = [.00288398915279, .01061725196728, .00182833684966, .00161284852954, .01223913844387, .00056476496963, .00925061122826, .01530987068312, .02627928267502, .01116266712362] predict = np.loadtxt(os.path.join(cur_dir, 'yhat_poisson.csv'), delimiter=",") self.phat = predict[:,0] self.yhat = predict[:,1] self.llf = -62419.588535018 self.llnull = -66647.181687959 self.df_model = 9 self.df_resid = self.nobs - self.df_model - 1 self.llr = 8455.186305881856 self.prsquared = .0634324369893758 self.llr_pvalue = 0 self.aic = 124859.17707 self.bic = 124938.306497 self.z = [-18.21612769, -23.27219872, 19.30180524, -21.43878101, 22.20041672, 60.09840604, -1.36585953, 3.53081538, 7.84325525, 62.74063980] self.conf_int = [[ -.0581876, -.0468826],[-0.2678962, -0.2262774], [0.0317067, 0.0388737],[-0.0377386, -0.0314164], [0.2477257, 0.2957022], [0.0328346, 0.0350484],[-0.0307659, 0.0054958], [0.0240495, 0.0840631],[0.1546087, 0.2576216], [0.6784745, 0.7222313]] self.pvalues = [3.84415e-74, 8.4800e-120, 5.18652e-83, 5.8116e-102, 3.4028e-109, 0, .1719830562, .0004142808, 4.39014e-15, 0] # from stata # use margins and put i. in front of dummies self.margeff_dummy_overall = [-0.15027280560599, -0.66568074771099, 0.10094500919706, -0.09890639687842, 0.77721770295360, 0.09708707452600, -0.03608195237609, 0.15804581481115, 0.65104087597053] self.margeff_dummy_overall_se = [.008273103, .0269856266, .0052466639, .0046317555, .0351582169, .0016652181, .0263736472, .0457480115, .0913901155] # just use margins self.margeff_nodummy_overall = [-0.15027280560599, -0.70677348928158, 0.10094500919705, -0.09890639687842, 0.77721770295359, 0.09708707452600, -0.03614158359367, 0.15462412033340, 0.58957704430148] self.margeff_nodummy_overall_se = [.008273103, .0305119343, .0052466639, .0046317555, .0351582168, .0016652181, .0264611158, .0437974779, .0752099666] # taken from gretl self.resid = np.loadtxt(os.path.join(cur_dir,'poisson_resid.csv'), delimiter=",") def negativebinomial_nb2_bfgs(self): # R 2.15.1 MASS 7.3-22 glm.nb() self.params = [-0.0579469537244314, -0.267787718814838, 0.0412060770911646, -0.0381376804392121, 0.268915772213171, 0.0381637446219235, -0.0441338846217674, 0.0172521803400544, 0.177960787443151,0.663556087183864, # lnalpha from stata 1.292953339909746 ] # alpha and stderr from stata self.lnalpha_std_err = .0143932 self.lnalpha = 0.256929012449 self.bse = [0.00607085853920512, 0.0226125368090765, 0.00405542008282773, 0.00344455937127785, 0.0298855063286547, 0.00142421904710063, 0.0199374393307107, 0.0358416931939136, 0.0741013728607101, 0.0250354082637892, # from stata .0186098 ] self.z = [-9.54510030998327, -11.8424447940467, 10.1607419822296, -11.071860382846, 8.99820030672628, 26.7962605187844, -2.21361850384595, 0.481343898758222, 2.40158556546135, 26.5047040652267] self.pvalues = [1.35975947860026e-21, 2.35486776488278e-32, 2.96808970292151e-24, 1.71796558863781e-28, 2.2944789508802e-19, 3.57231639404726e-158, 0.0268550333379416, 0.630272102021494, 0.0163241908407114, 8.55476622951356e-155] self.fittedvalues = [0.892904166867786, 0.892904166867786, 0.892904166867786, 0.892904166867786, 0.892904166867786, 0.937038051489553, 0.937038051489553, 0.937038051489553, 0.937038051489553, 0.937038051489553] #self.aic = 86789.3241530713 # This is what R reports self.aic = 86789.32415307125484 # from Stata self.df_resid = 20180 self.df_model = 9 # R conf_int: 1.96 * bse, not profile likelihood via R's confint() self.conf_int = [ # from Stata [-.0698826, -.0460113], [-.3122654, -.2233101], [ .0330781, .049334], [-.0448006, -.0314748], [ .2102246, .3276069], [ .0352959, .0410316], [-.0834356, -.0048321], [-.0535908, .0880951], [ .0324115, .3235101], [ .6150055, .7121067], # from Stata [ 1.256989, 1.329947] ] self.bic = 86876.36652289562335 # stata self.llnull = -44199.27443563430279 # stata self.llr = 1631.224718197351 # stata self.llf = -43383.66207653563 # stata self.df_model = 9.0 self.llr_pvalue = 0.0 def negativebinomial_nb1_bfgs(self): # Unpublished implementation intended for R's COUNT package. Sent by # J.Hilbe (of Cambridge UP NBin book) and Andrew Robinson to Vincent # Arel-Bundock on 2012-12-06. #self.params = [-0.065309744899923, -0.296016207412261, # 0.0411724098925173, -0.0320460533573259, 0.19083354227553, # 0.0318566232844115, -0.0331972813313092, -0.0484691550721231, # 0.111971860837541, 0.757560143822609, # 3.73086958562569] # from Stata self.params = [-.065317260803762961, -.296023807893893376, .041187021258044826, -.032028789543547605, .19065933246421754, .031871625115758778, -.033250849053302826, -.04850769174426571, .111813637465757343, .757277086555503409, 3.731151380800305] # lnalpha and lnalpha_std_err are from stata self.lnalpha = 1.316716867203 self.lnalpha_std_err = .0168876692 self.bse = [0.00536019929563678, 0.0196998350459769, 0.00335779098766272, 0.00301145915122889, 0.0237984097096245, 0.00107360844112751, 0.0167174614755359, 0.0298037989274781, 0.0546838603596457,0.0214703279904911, 0.0630011409376052] self.z = [-12.1842008660173, -15.0263292419148, 12.2617548393554, -10.6413707601675, 8.0187518663633, 29.6724784046551, -1.98578482623631, -1.62627439508848, 2.04762173155154, 35.2840508145997, # From R, this is alpha/bse(alpha) 59.2190796881069 # taken from Stata even though they don't report it # lnalpha/bse(lnalpha) #77.968995 ] self.conf_int = [ [-0.075815736,-0.0548037543], [-0.334627884,-0.2574045307], [ 0.034591140, 0.0477536802], [-0.037948513,-0.0261435934], [ 0.144188659, 0.2374784253], [ 0.029752351, 0.0339608958], [-0.065963506,-0.0004310568], [-0.106884601, 0.0099462908], [ 0.004791495, 0.2191522271], [ 3.607387349, 3.8543518219], [ 0.715478301, 0.7996419867]] # from Stata self.llf = -43278.75612911823 self.llnull = -44199.2744356343 self.llr = 1841.036613032149 self.aic = 86579.51225823645655 self.bic = 86666.55462806082505 self.llr_pvalue = 0.0 self.df_model = 9.0 self.df_resid = 20180.0 # Smoke tests TODO: check against other stats package self.pvalues = [3.65557865e-034, 5.24431864e-051, 1.42921171e-034, 2.09797259e-026, 1.15949461e-015, 1.56785415e-193, 4.71746349e-002, 1.04731854e-001, 4.07534831e-002, 1.95504975e-272, 0.00000000e+000] self.conf_int = [[-.0758236, -.054811], [-.3346363, -.2574113], [ .0346053, .0477687], [-.0379314, -.0261261], [ .1440119, .2373067], [ .0297667, .0339766], [-.0660178, -.0004839], [-.1069241, .0099087], [ .0046266, .2190007], [ .7151889, .7993652], # from stata for alpha no lnalpha [ 3.609675, 3.856716]] #[ 1.28360034e+00, 1.34979803e+00]] self.fittedvalues = [ 0.8487497 , 0.8487497 , 0.8487497 , 0.8487497, 0.8487497 , 0.88201746, 0.88201746, 0.88201746, 0.88201746, 0.88201746] def negativebinomial_geometric_bfgs(self): # Smoke tests TODO: Cross check with other stats package self.params = [-0.05768894, -0.26646696, 0.04088528, -0.03795503, 0.26885821, 0.03802523, -0.04308456, 0.01931675, 0.18051684, 0.66469896] self.bse = [ 0.00553867, 0.02061988, 0.00375937, 0.0030924 , 0.02701658, 0.00132201, 0.01821646, 0.03271784, 0.06666231, 0.02250053] self.pvalues = [ 2.10310916e-025, 3.34666368e-038, 1.50697768e-027, 1.25468406e-034, 2.48155744e-023, 6.18745348e-182, 1.80230194e-002, 5.54919603e-001, 6.77044178e-003, 8.44913440e-192] self.z = [-10.41567024, -12.92281571, 10.8755779 , -12.27364916, 9.95160202, 28.76323587, -2.36514487, 0.59040434, 2.70792943, 29.54148082] self.aic = 87101.159433012392 # old value 87101.160011780419 self.bic = 87180.288860125467 # old value 87180.289438893495 self.df_model = 9.0 self.df_resid = 20180.0 self.llf = -43540.58000589021 self.llnull = -44586.650971362695 # old value -44199.27443567125 self.llr = 2092.1425097129977 # old value 1317.3888595620811 self.llr_pvalue = 0 # old value 5.4288002863296022e-278 self.fittedvalues = [ 0.89348994, 0.89348994, 0.89348994, 0.89348994, 0.89348994, 0.9365745 , 0.9365745 , 0.9365745 , 0.9365745 , 0.9365745 ] self.conf_int = [[-0.06854453, -0.04683335], [-0.30688118, -0.22605273], [ 0.03351706, 0.04825351], [-0.04401602, -0.03189404], [ 0.21590669, 0.32180972], [ 0.03543415, 0.04061632], [-0.07878816, -0.00738096], [-0.04480903, 0.08344253], [ 0.04986111, 0.31117258], [ 0.62059873, 0.70879919]]
from __future__ import division from sympy.assumptions.ask import Q from sympy.core.numbers import oo from sympy.core.relational import Equality from sympy.core.singleton import S from sympy.core.symbol import (Dummy, symbols) from sympy.sets.sets import (EmptySet, Interval, Union) from sympy.simplify.simplify import simplify from sympy.logic.boolalg import ( And, Boolean, Equivalent, ITE, Implies, Nand, Nor, Not, Or, POSform, SOPform, Xor, conjuncts, disjuncts, distribute_or_over_and, distribute_and_over_or, eliminate_implications, is_nnf, is_cnf, is_dnf, simplify_logic, to_nnf, to_cnf, to_dnf, to_int_repr, bool_map, true, false, BooleanAtom, is_literal, term_to_integer, integer_to_term, truth_table) from sympy.utilities.pytest import raises, XFAIL from sympy.utilities import cartes A, B, C, D= symbols('A,B,C,D') def test_overloading(): """Test that |, & are overloaded as expected""" assert A & B == And(A, B) assert A | B == Or(A, B) assert (A & B) | C == Or(And(A, B), C) assert A >> B == Implies(A, B) assert A << B == Implies(B, A) assert ~A == Not(A) assert A ^ B == Xor(A, B) def test_And(): assert And() is true assert And(A) == A assert And(True) is true assert And(False) is false assert And(True, True ) is true assert And(True, False) is false assert And(False, False) is false assert And(True, A) == A assert And(False, A) is false assert And(True, True, True) is true assert And(True, True, A) == A assert And(True, False, A) is false assert And(2, A) == A assert And(2, 3) is true assert And(A < 1, A >= 1) is false e = A > 1 assert And(e, e.canonical) == e.canonical g, l, ge, le = A > B, B < A, A >= B, B <= A assert And(g, l, ge, le) == And(l, le) def test_Or(): assert Or() is false assert Or(A) == A assert Or(True) is true assert Or(False) is false assert Or(True, True ) is true assert Or(True, False) is true assert Or(False, False) is false assert Or(True, A) is true assert Or(False, A) == A assert Or(True, False, False) is true assert Or(True, False, A) is true assert Or(False, False, A) == A assert Or(2, A) is true assert Or(A < 1, A >= 1) is true e = A > 1 assert Or(e, e.canonical) == e g, l, ge, le = A > B, B < A, A >= B, B <= A assert Or(g, l, ge, le) == Or(g, ge) def test_Xor(): assert Xor() is false assert Xor(A) == A assert Xor(A, A) is false assert Xor(True, A, A) is true assert Xor(A, A, A, A, A) == A assert Xor(True, False, False, A, B) == ~Xor(A, B) assert Xor(True) is true assert Xor(False) is false assert Xor(True, True ) is false assert Xor(True, False) is true assert Xor(False, False) is false assert Xor(True, A) == ~A assert Xor(False, A) == A assert Xor(True, False, False) is true assert Xor(True, False, A) == ~A assert Xor(False, False, A) == A assert isinstance(Xor(A, B), Xor) assert Xor(A, B, Xor(C, D)) == Xor(A, B, C, D) assert Xor(A, B, Xor(B, C)) == Xor(A, C) assert Xor(A < 1, A >= 1, B) == Xor(0, 1, B) == Xor(1, 0, B) e = A > 1 assert Xor(e, e.canonical) == Xor(0, 0) == Xor(1, 1) def test_Not(): raises(TypeError, lambda: Not(True, False)) assert Not(True) is false assert Not(False) is true assert Not(0) is true assert Not(1) is false assert Not(2) is false def test_Nand(): assert Nand() is false assert Nand(A) == ~A assert Nand(True) is false assert Nand(False) is true assert Nand(True, True ) is false assert Nand(True, False) is true assert Nand(False, False) is true assert Nand(True, A) == ~A assert Nand(False, A) is true assert Nand(True, True, True) is false assert Nand(True, True, A) == ~A assert Nand(True, False, A) is true def test_Nor(): assert Nor() is true assert Nor(A) == ~A assert Nor(True) is false assert Nor(False) is true assert Nor(True, True ) is false assert Nor(True, False) is false assert Nor(False, False) is true assert Nor(True, A) is false assert Nor(False, A) == ~A assert Nor(True, True, True) is false assert Nor(True, True, A) is false assert Nor(True, False, A) is false def test_Implies(): raises(ValueError, lambda: Implies(A, B, C)) assert Implies(True, True) is true assert Implies(True, False) is false assert Implies(False, True) is true assert Implies(False, False) is true assert Implies(0, A) is true assert Implies(1, 1) is true assert Implies(1, 0) is false assert A >> B == B << A assert (A < 1) >> (A >= 1) == (A >= 1) assert (A < 1) >> (S(1) > A) is true assert A >> A is true def test_Equivalent(): assert Equivalent(A, B) == Equivalent(B, A) == Equivalent(A, B, A) assert Equivalent() is true assert Equivalent(A, A) == Equivalent(A) is true assert Equivalent(True, True) == Equivalent(False, False) is true assert Equivalent(True, False) == Equivalent(False, True) is false assert Equivalent(A, True) == A assert Equivalent(A, False) == Not(A) assert Equivalent(A, B, True) == A & B assert Equivalent(A, B, False) == ~A & ~B assert Equivalent(1, A) == A assert Equivalent(0, A) == Not(A) assert Equivalent(A, Equivalent(B, C)) != Equivalent(Equivalent(A, B), C) assert Equivalent(A < 1, A >= 1) is false assert Equivalent(A < 1, A >= 1, 0) is false assert Equivalent(A < 1, A >= 1, 1) is false assert Equivalent(A < 1, S(1) > A) == Equivalent(1, 1) == Equivalent(0, 0) assert Equivalent(Equality(A, B), Equality(B, A)) is true def test_equals(): assert Not(Or(A, B)).equals( And(Not(A), Not(B)) ) is True assert Equivalent(A, B).equals((A >> B) & (B >> A)) is True assert ((A | ~B) & (~A | B)).equals((~A & ~B) | (A & B)) is True assert (A >> B).equals(~A >> ~B) is False assert (A >> (B >> A)).equals(A >> (C >> A)) is False raises(NotImplementedError, lambda: And(A, A < B).equals(And(A, B > A))) def test_simplification(): """ Test working of simplification methods. """ set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]] set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]] from sympy.abc import w, x, y, z assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x)) assert Not(SOPform([x, y, z], set2)) == Not(Or(And(Not(x), Not(z)), And(x, z))) assert POSform([x, y, z], set1 + set2) is true assert SOPform([x, y, z], set1 + set2) is true assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(Not(w), z), And(y, z))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) # test simplification ans = And(A, Or(B, C)) assert simplify_logic(A & (B | C)) == ans assert simplify_logic((A & B) | (A & C)) == ans assert simplify_logic(Implies(A, B)) == Or(Not(A), B) assert simplify_logic(Equivalent(A, B)) == \ Or(And(A, B), And(Not(A), Not(B))) assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C) assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A) assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C) assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \ == And(Equality(A, 3), Or(B, C)) e = And(A, x**2 - x) assert simplify_logic(e) == And(A, x*(x - 1)) assert simplify_logic(e, deep=False) == e # check input ans = SOPform([x, y], [[1, 0]]) assert SOPform([x, y], [[1, 0]]) == ans assert POSform([x, y], [[1, 0]]) == ans raises(ValueError, lambda: SOPform([x], [[1]], [[1]])) assert SOPform([x], [[1]], [[0]]) is true assert SOPform([x], [[0]], [[1]]) is true assert SOPform([x], [], []) is false raises(ValueError, lambda: POSform([x], [[1]], [[1]])) assert POSform([x], [[1]], [[0]]) is true assert POSform([x], [[0]], [[1]]) is true assert POSform([x], [], []) is false # check working of simplify assert simplify((A & B) | (A & C)) == And(A, Or(B, C)) assert simplify(And(x, Not(x))) == False assert simplify(Or(x, Not(x))) == True def test_bool_map(): """ Test working of bool_map function. """ minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] from sympy.abc import a, b, c, w, x, y, z assert bool_map(Not(Not(a)), a) == (a, {a: a}) assert bool_map(SOPform([w, x, y, z], minterms), POSform([w, x, y, z], minterms)) == \ (And(Or(Not(w), y), Or(Not(x), y), z), {x: x, w: w, z: z, y: y}) assert bool_map(SOPform([x, z, y],[[1, 0, 1]]), SOPform([a, b, c],[[1, 0, 1]])) != False function1 = SOPform([x,z,y],[[1, 0, 1], [0, 0, 1]]) function2 = SOPform([a,b,c],[[1, 0, 1], [1, 0, 0]]) assert bool_map(function1, function2) == \ (function1, {y: a, z: b}) def test_bool_symbol(): """Test that mixing symbols with boolean values works as expected""" assert And(A, True) == A assert And(A, True, True) == A assert And(A, False) is false assert And(A, True, False) is false assert Or(A, True) is true assert Or(A, False) == A def test_is_boolean(): assert true.is_Boolean assert (A & B).is_Boolean assert (A | B).is_Boolean assert (~A).is_Boolean assert (A ^ B).is_Boolean def test_subs(): assert (A & B).subs(A, True) == B assert (A & B).subs(A, False) is false assert (A & B).subs(B, True) == A assert (A & B).subs(B, False) is false assert (A & B).subs({A: True, B: True}) is true assert (A | B).subs(A, True) is true assert (A | B).subs(A, False) == B assert (A | B).subs(B, True) is true assert (A | B).subs(B, False) == A assert (A | B).subs({A: True, B: True}) is true """ we test for axioms of boolean algebra see http://en.wikipedia.org/wiki/Boolean_algebra_(structure) """ def test_commutative(): """Test for commutativity of And and Or""" A, B = map(Boolean, symbols('A,B')) assert A & B == B & A assert A | B == B | A def test_and_associativity(): """Test for associativity of And""" assert (A & B) & C == A & (B & C) def test_or_assicativity(): assert ((A | B) | C) == (A | (B | C)) def test_double_negation(): a = Boolean() assert ~(~a) == a # test methods def test_eliminate_implications(): from sympy.abc import A, B, C, D assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B assert eliminate_implications( A >> (C >> Not(B))) == Or(Or(Not(B), Not(C)), Not(A)) assert eliminate_implications(Equivalent(A, B, C, D)) == \ (~A | B) & (~B | C) & (~C | D) & (~D | A) def test_conjuncts(): assert conjuncts(A & B & C) == set([A, B, C]) assert conjuncts((A | B) & C) == set([A | B, C]) assert conjuncts(A) == set([A]) assert conjuncts(True) == set([True]) assert conjuncts(False) == set([False]) def test_disjuncts(): assert disjuncts(A | B | C) == set([A, B, C]) assert disjuncts((A | B) & C) == set([(A | B) & C]) assert disjuncts(A) == set([A]) assert disjuncts(True) == set([True]) assert disjuncts(False) == set([False]) def test_distribute(): assert distribute_and_over_or(Or(And(A, B), C)) == And(Or(A, C), Or(B, C)) assert distribute_or_over_and(And(A, Or(B, C))) == Or(And(A, B), And(A, C)) def test_to_nnf(): assert to_nnf(true) is true assert to_nnf(false) is false assert to_nnf(A) == A assert to_nnf(A | ~A | B) is true assert to_nnf(A & ~A & B) is false assert to_nnf(A >> B) == ~A | B assert to_nnf(Equivalent(A, B, C)) == (~A | B) & (~B | C) & (~C | A) assert to_nnf(A ^ B ^ C) == \ (A | B | C) & (~A | ~B | C) & (A | ~B | ~C) & (~A | B | ~C) assert to_nnf(ITE(A, B, C)) == (~A | B) & (A | C) assert to_nnf(Not(A | B | C)) == ~A & ~B & ~C assert to_nnf(Not(A & B & C)) == ~A | ~B | ~C assert to_nnf(Not(A >> B)) == A & ~B assert to_nnf(Not(Equivalent(A, B, C))) == And(Or(A, B, C), Or(~A, ~B, ~C)) assert to_nnf(Not(A ^ B ^ C)) == \ (~A | B | C) & (A | ~B | C) & (A | B | ~C) & (~A | ~B | ~C) assert to_nnf(Not(ITE(A, B, C))) == (~A | ~B) & (A | ~C) assert to_nnf((A >> B) ^ (B >> A)) == (A & ~B) | (~A & B) assert to_nnf((A >> B) ^ (B >> A), False) == \ (~A | ~B | A | B) & ((A & ~B) | (~A & B)) def test_to_cnf(): assert to_cnf(~(B | C)) == And(Not(B), Not(C)) assert to_cnf((A & B) | C) == And(Or(A, C), Or(B, C)) assert to_cnf(A >> B) == (~A) | B assert to_cnf(A >> (B & C)) == (~A | B) & (~A | C) assert to_cnf(A & (B | C) | ~A & (B | C), True) == B | C assert to_cnf(Equivalent(A, B)) == And(Or(A, Not(B)), Or(B, Not(A))) assert to_cnf(Equivalent(A, B & C)) == \ (~A | B) & (~A | C) & (~B | ~C | A) assert to_cnf(Equivalent(A, B | C), True) == \ And(Or(Not(B), A), Or(Not(C), A), Or(B, C, Not(A))) def test_to_dnf(): assert to_dnf(~(B | C)) == And(Not(B), Not(C)) assert to_dnf(A & (B | C)) == Or(And(A, B), And(A, C)) assert to_dnf(A >> B) == (~A) | B assert to_dnf(A >> (B & C)) == (~A) | (B & C) assert to_dnf(Equivalent(A, B), True) == \ Or(And(A, B), And(Not(A), Not(B))) assert to_dnf(Equivalent(A, B & C), True) == \ Or(And(A, B, C), And(Not(A), Not(B)), And(Not(A), Not(C))) def test_to_int_repr(): x, y, z = map(Boolean, symbols('x,y,z')) def sorted_recursive(arg): try: return sorted(sorted_recursive(x) for x in arg) except TypeError: # arg is not a sequence return arg assert sorted_recursive(to_int_repr([x | y, z | x], [x, y, z])) == \ sorted_recursive([[1, 2], [1, 3]]) assert sorted_recursive(to_int_repr([x | y, z | ~x], [x, y, z])) == \ sorted_recursive([[1, 2], [3, -1]]) def test_is_nnf(): from sympy.abc import A, B assert is_nnf(true) is True assert is_nnf(A) is True assert is_nnf(~A) is True assert is_nnf(A & B) is True assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), False) is True assert is_nnf((A | B) & (~A | ~B)) is True assert is_nnf(Not(Or(A, B))) is False assert is_nnf(A ^ B) is False assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), True) is False def test_is_cnf(): x, y, z = symbols('x,y,z') assert is_cnf(x) is True assert is_cnf(x | y | z) is True assert is_cnf(x & y & z) is True assert is_cnf((x | y) & z) is True assert is_cnf((x & y) | z) is False def test_is_dnf(): x, y, z = symbols('x,y,z') assert is_dnf(x) is True assert is_dnf(x | y | z) is True assert is_dnf(x & y & z) is True assert is_dnf((x & y) | z) is True assert is_dnf((x | y) & z) is False def test_ITE(): A, B, C = map(Boolean, symbols('A,B,C')) assert ITE(True, False, True) is false assert ITE(True, True, False) is true assert ITE(False, True, False) is false assert ITE(False, False, True) is true assert isinstance(ITE(A, B, C), ITE) A = True assert ITE(A, B, C) == B A = False assert ITE(A, B, C) == C B = True assert ITE(And(A, B), B, C) == C assert ITE(Or(A, False), And(B, True), False) is false def test_ITE_diff(): # analogous to Piecewise.diff x = symbols('x') assert ITE(x > 0, x**2, x).diff(x) == ITE(x > 0, 2*x, 1) def test_is_literal(): assert is_literal(True) is True assert is_literal(False) is True assert is_literal(A) is True assert is_literal(~A) is True assert is_literal(Or(A, B)) is False assert is_literal(Q.zero(A)) is True assert is_literal(Not(Q.zero(A))) is True assert is_literal(Or(A, B)) is False assert is_literal(And(Q.zero(A), Q.zero(B))) is False def test_operators(): # Mostly test __and__, __rand__, and so on assert True & A == A & True == A assert False & A == A & False == False assert A & B == And(A, B) assert True | A == A | True == True assert False | A == A | False == A assert A | B == Or(A, B) assert ~A == Not(A) assert True >> A == A << True == A assert False >> A == A << False == True assert A >> True == True << A == True assert A >> False == False << A == ~A assert A >> B == B << A == Implies(A, B) assert True ^ A == A ^ True == ~A assert False ^ A == A ^ False == A assert A ^ B == Xor(A, B) def test_true_false(): x = symbols('x') assert true is S.true assert false is S.false assert true is not True assert false is not False assert true assert not false assert true == True assert false == False assert not (true == False) assert not (false == True) assert not (true == false) assert hash(true) == hash(True) assert hash(false) == hash(False) assert len(set([true, True])) == len(set([false, False])) == 1 assert isinstance(true, BooleanAtom) assert isinstance(false, BooleanAtom) # We don't want to subclass from bool, because bool subclasses from # int. But operators like &, |, ^, <<, >>, and ~ act differently on 0 and # 1 then we want them to on true and false. See the docstrings of the # various And, Or, etc. functions for examples. assert not isinstance(true, bool) assert not isinstance(false, bool) # Note: using 'is' comparison is important here. We want these to return # true and false, not True and False assert Not(true) is false assert Not(True) is false assert Not(false) is true assert Not(False) is true assert ~true is false assert ~false is true for T, F in cartes([True, true], [False, false]): assert And(T, F) is false assert And(F, T) is false assert And(F, F) is false assert And(T, T) is true assert And(T, x) == x assert And(F, x) is false if not (T is True and F is False): assert T & F is false assert F & T is false if not F is False: assert F & F is false if not T is True: assert T & T is true assert Or(T, F) is true assert Or(F, T) is true assert Or(F, F) is false assert Or(T, T) is true assert Or(T, x) is true assert Or(F, x) == x if not (T is True and F is False): assert T | F is true assert F | T is true if not F is False: assert F | F is false if not T is True: assert T | T is true assert Xor(T, F) is true assert Xor(F, T) is true assert Xor(F, F) is false assert Xor(T, T) is false assert Xor(T, x) == ~x assert Xor(F, x) == x if not (T is True and F is False): assert T ^ F is true assert F ^ T is true if not F is False: assert F ^ F is false if not T is True: assert T ^ T is false assert Nand(T, F) is true assert Nand(F, T) is true assert Nand(F, F) is true assert Nand(T, T) is false assert Nand(T, x) == ~x assert Nand(F, x) is true assert Nor(T, F) is false assert Nor(F, T) is false assert Nor(F, F) is true assert Nor(T, T) is false assert Nor(T, x) is false assert Nor(F, x) == ~x assert Implies(T, F) is false assert Implies(F, T) is true assert Implies(F, F) is true assert Implies(T, T) is true assert Implies(T, x) == x assert Implies(F, x) is true assert Implies(x, T) is true assert Implies(x, F) == ~x if not (T is True and F is False): assert T >> F is false assert F << T is false assert F >> T is true assert T << F is true if not F is False: assert F >> F is true assert F << F is true if not T is True: assert T >> T is true assert T << T is true assert Equivalent(T, F) is false assert Equivalent(F, T) is false assert Equivalent(F, F) is true assert Equivalent(T, T) is true assert Equivalent(T, x) == x assert Equivalent(F, x) == ~x assert Equivalent(x, T) == x assert Equivalent(x, F) == ~x assert ITE(T, T, T) is true assert ITE(T, T, F) is true assert ITE(T, F, T) is false assert ITE(T, F, F) is false assert ITE(F, T, T) is true assert ITE(F, T, F) is false assert ITE(F, F, T) is true assert ITE(F, F, F) is false def test_bool_as_set(): x = symbols('x') assert And(x <= 2, x >= -2).as_set() == Interval(-2, 2) assert Or(x >= 2, x <= -2).as_set() == Interval(-oo, -2) + Interval(2, oo) assert Not(x > 2).as_set() == Interval(-oo, 2) # issue 10240 assert Not(And(x > 2, x < 3)).as_set() == \ Union(Interval(-oo,2),Interval(3,oo)) assert true.as_set() == S.UniversalSet assert false.as_set() == EmptySet() @XFAIL def test_multivariate_bool_as_set(): x, y = symbols('x,y') assert And(x >= 0, y >= 0).as_set() == Interval(0, oo)*Interval(0, oo) assert Or(x >= 0, y >= 0).as_set() == S.Reals*S.Reals - \ Interval(-oo, 0, True, True)*Interval(-oo, 0, True, True) def test_all_or_nothing(): x = symbols('x', real=True) args = x >=- oo, x <= oo v = And(*args) if v.func is And: assert len(v.args) == len(args) - args.count(S.true) else: assert v == True v = Or(*args) if v.func is Or: assert len(v.args) == 2 else: assert v == True def test_canonical_atoms(): assert true.canonical == true assert false.canonical == false def test_issue_8777(): x = symbols('x') assert And(x > 2, x < oo).as_set() == Interval(2, oo, left_open=True) assert And(x >= 1, x < oo).as_set() == Interval(1, oo) assert (x < oo).as_set() == Interval(-oo, oo) assert (x > -oo).as_set() == Interval(-oo, oo) def test_issue_8975(): x = symbols('x') assert Or(And(-oo < x, x <= -2), And(2 <= x, x < oo)).as_set() == \ Interval(-oo, -2) + Interval(2, oo) def test_term_to_integer(): assert term_to_integer([1, 0, 1, 0, 0, 1, 0]) == 82 assert term_to_integer('0010101000111001') == 10809 def test_integer_to_term(): assert integer_to_term(777) == [1, 1, 0, 0, 0, 0, 1, 0, 0, 1] assert integer_to_term(123, 3) == [1, 1, 1, 1, 0, 1, 1] assert integer_to_term(456, 16) == [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0] def test_truth_table(): x, y = symbols('x,y') assert list(truth_table(And(x, y), [x, y], input=False)) == [False, False, False, True] assert list(truth_table(x | y, [x, y], input=False)) == [False, True, True, True] assert list(truth_table(x >> y, [x, y], input=False)) == [True, True, False, True] def test_issue_8571(): x = symbols('x') for t in (S.true, S.false): raises(TypeError, lambda: +t) raises(TypeError, lambda: -t) raises(TypeError, lambda: abs(t)) # use int(bool(t)) to get 0 or 1 raises(TypeError, lambda: int(t)) for o in [S.Zero, S.One, x]: for _ in range(2): raises(TypeError, lambda: o + t) raises(TypeError, lambda: o - t) raises(TypeError, lambda: o % t) raises(TypeError, lambda: o*t) raises(TypeError, lambda: o/t) raises(TypeError, lambda: o**t) o, t = t, o # do again in reversed order
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for operating different options on the weight matrix.""" import abc import textwrap from typing import List, Optional, Sequence, Tuple, Union import deprecation import ml_collections import numpy as np from reservoir_nn.utils import weight_properties from scipy import stats class WeightTransformation(abc.ABC): """Base class for WeightTransformation. A WeightTransformation operates on one or more np.ndarray's. """ @abc.abstractmethod def apply_transform(self, *args: np.ndarray) -> np.ndarray: raise NotImplementedError() @deprecation.deprecated( details='Use WeightTransformation.apply_transform(*args). cl/366874369') def __call__(self, *args: np.ndarray) -> np.ndarray: return self.apply_transform(*args) def batch_apply( self, *args: Union[np.ndarray, Tuple[np.ndarray, ...]]) -> List[np.ndarray]: """Applies the transform to each of the args.""" r = [] for inputs in args: if not isinstance(inputs, tuple): inputs = (inputs,) r.append(self.apply_transform(*inputs)) return r class Chain(WeightTransformation, list): """Chains transformations to apply them in sequence.""" def __init__(self, transformations: Optional[Sequence[WeightTransformation]] = None ): if transformations is None: list.__init__(self, []) else: list.__init__(self, transformations) def __repr__(self): transformation_str = ',\n'.join([repr(t) for t in self]) transformation_str = textwrap.indent(transformation_str, ' ') return '{}([\n{}\n])'.format(self.__class__.__name__, transformation_str) def apply_transform(self, *args: np.ndarray) -> np.ndarray: inputs = args for i, transformation in enumerate(self): try: output = transformation.apply_transform(*inputs) # output will become inputs for the next transformation: inputs = (output,) except Exception as e: raise Exception( f'Error in {transformation}, the transformation at index position ' f'{i} of this Chain') from e return output class FlipSignEntireRows(WeightTransformation): """Flips signs of a number of rows of the matrix to negative. Attributes: flip_proportion: proportion of the number of rows to be flipped """ def __init__(self, flip_proportion: float): self.flip_proportion = flip_proportion def apply_transform(self, matrix: np.ndarray, seed: int = -1) -> np.ndarray: # number of rows num_rows = matrix.shape[0] # number of rows to flip sign num_flips = int(num_rows * self.flip_proportion) # randomly pick ids of rows to flip sign if seed > -1: np.random.seed(seed) ids_row_flip = np.random.choice(num_rows, num_flips, replace=False) # flip sign of the selected rows matrix = np.copy(matrix) matrix[ids_row_flip] *= -1 return matrix class ScaleWeightByDistance(WeightTransformation): """Scales connection weights of neurons with their distances. Attributes: scaling_function: either 'linear', 'quadratic', or 'exponential'. box_size: length of one side of the cubic box, which is the region that contains the neurons. Only used for scaling_function = 'exponential'. Returns: weights scaled with distances. Raises: ValueError: if wrong input for scaling_function is provided. """ def __init__(self, scaling_function, box_size=None): valid_functions = {'linear', 'quadratic', 'exponential'} if scaling_function not in valid_functions: raise ValueError( f'Wrong input for scale_weight_by_distance in scaling_function: ' f'{scaling_function}. Must be one of {valid_functions}.') elif (scaling_function == 'exponential') and (box_size is None): raise ValueError( f'Missing argument for scale_weight_by_distance: scaling_function is ' f'{scaling_function}, but box_size is {box_size}') self.scaling_function = scaling_function self.box_size = box_size def apply_transform(self, weights: np.ndarray, distances: np.ndarray) -> np.ndarray: """Runs the step. Args: weights: weight matrix, each element is the connection weight between two neurons (currently representing segments). distances: distance matrix of the same size as weights, each element is the distance between the two connected neurons. Returns: Scaled weight matrix. """ size = weights.shape[0] # pad diagonal of distances with 1.0 since they are zero: for n in range(size): distances[n][n] = 1.0 if self.scaling_function == 'linear': weights = weights / distances elif self.scaling_function == 'quadratic': weights = weights / distances**2 else: # self.scaling_function == 'exponential' weights = weights * np.exp(-2 * distances / self.box_size) return weights class RandomizeNonZeroWeight(WeightTransformation): """Starts with a weight matrix and makes it random uniformly. Based on the sparsity of the weight matrix, replace it with another one with the same sparsity, but the non-zero values are chosen randomly and placed at random locations. """ def __init__(self): pass def apply_transform(self, matrix: np.ndarray) -> np.ndarray: """Executes the transformation. Args: matrix: a square numpy array. Returns: A random numpy array of the same size and sparsity with those of input. """ # calculate how many values of weight matrix are zero num_zero = np.sum((matrix == 0)) # initialize a 1D random matrix random_weight = np.random.uniform(size=matrix.size) # select randomly indices of values that will be made zero ids_zero = np.random.choice(range(matrix.size), num_zero, replace=False) # make these values zero random_weight[ids_zero] = 0 return random_weight.reshape(matrix.shape) class RandomizeNonZeroWeightKde(WeightTransformation): """Randomizes the weight matrix using kernel-density estimate. This function produces a random weight matrix of the same size and sparsity with those of the original matrix. The non-zero elements are sampled from the probability density function of the original non-zero elements. Attributes: rng: The random state to use for generating arrays of random numbers. Default is the global np.random module. """ def __init__(self, rng: np.random.RandomState = np.random): self.rng = rng def apply_transform(self, matrix: np.ndarray, seed: int = -1) -> np.ndarray: """Executes the transformation. Args: matrix: a square numpy array. seed: Optional seed for np.random.seed() Returns: A random numpy array of the same sparsity and size with those of input. """ if seed > -1: np.random.seed(seed) # indices of the non-zero: id_non_zeros = (matrix != 0) # get non-zero elements weight_non_zero = matrix[id_non_zeros].ravel() # number of non-zero elements: num_non_zeros = weight_non_zero.size # There must be at least 2 non-zero elements: if num_non_zeros < 2: raise ValueError( f'Expecting matrix of at least 2 non-zeros, but got {num_non_zeros}.') # Non-zero elements must not the same: if not np.sum(weight_non_zero != weight_non_zero[0]): raise ValueError( f'Expecting different non-zeros, but got only {weight_non_zero[0]}.') # calculate the probability density function: density = stats.gaussian_kde(weight_non_zero) # get new non-zero weights: weight_non_zero = density.resample(num_non_zeros).ravel() # initiate a new random weight matrix: random_weight = np.zeros(matrix.size) # select randomly indices of values that will be made non-zero id_non_zeros = self.rng.choice( range(matrix.size), num_non_zeros, replace=False) # assign non-zero weights from a sample of the density function: random_weight[id_non_zeros] = weight_non_zero return random_weight.reshape(matrix.shape) class CutOffSmallWeightsInRows(WeightTransformation): """Cuts off smallest weights of the weight matrix. So that number of non-zeros per row does not exceed non_zeros_per_row_limit. Attributes: non_zeros_per_row_limit: limit of non-zeros to be retained per row. """ def __init__(self, non_zeros_per_row_limit: int): self.non_zeros_per_row_limit = non_zeros_per_row_limit def apply_transform(self, matrix: np.ndarray) -> np.ndarray: """Executes the transformation. Args: matrix: the weight matrix, a 2d square numpy array. Returns: matrix_transformed: the transformed weight matrix. """ num_row, num_col = matrix.shape # number of smallest elements to be removed per row: num_remove_per_row = num_col - self.non_zeros_per_row_limit matrix_transformed = matrix.copy() if num_remove_per_row > 0: for i in range(num_row): weight_row = matrix_transformed[i] # get indices of num_remove_per_row smallest elements of this row small_weight_indices = weight_row.argsort()[:num_remove_per_row] # and set these values zero: weight_row[small_weight_indices] = 0.0 return matrix_transformed class ScaleToZeroOne(WeightTransformation): """Scales the weight matrix to the [0, 1] range.""" def __init__(self): pass def apply_transform(self, matrix: np.ndarray) -> np.ndarray: matrix = matrix - matrix.min() return matrix / matrix.max() class ScaleSpectralRadius(WeightTransformation): """Scales the weight matrix to specified spectral radius.""" def __init__(self, spectral_radius: float = 1.0): self.spectral_radius = spectral_radius def apply_transform(self, matrix: np.ndarray) -> np.ndarray: matrix_spectral_radius = weight_properties.get_spectral_radius(matrix) return matrix / matrix_spectral_radius * self.spectral_radius class GetSubMatrix(WeightTransformation): """Returns a sub-matrix composed of `num_neurons` first rows/columns. If the original matrix already has number of rows/columns less than or equal to the input `num_neurons`, the original matrix is returned. Attributes: num_neurons: Number of first rows/columns to be retained. """ def __init__(self, num_neurons: int): self.num_neurons = num_neurons def apply_transform(self, matrix: np.ndarray) -> np.ndarray: # numbers of rows and columns in the original matrix num_rows, num_columns = matrix.shape if num_rows != num_columns: raise ValueError(f'A square matrix is expected, but input has number ' f'of rows = {num_rows}, which is different from ' f'number of columns = {num_columns}') if num_rows > self.num_neurons: return matrix[:self.num_neurons, :self.num_neurons] return matrix class ResizeNumRows(WeightTransformation): """Resizes the weight matrix to the target number of rows. If the original matrix already has number of rows larger than or equal to to the target number of rows, it is trimmed. Otherwise, new rows are added that are built to maintain sparsity and KDE distribution of the original. Attributes: target_num_rows: The target number of rows. rng: The random state to use for generating arrays of random numbers. Default is the global np.random module. """ def __init__(self, target_num_rows: int, rng: np.random.RandomState = np.random): if target_num_rows < 1: raise ValueError( f'Expecting `target_num_rows` > 0, but getting {target_num_rows}') self.target_num_rows = target_num_rows self.rng = rng def apply_transform(self, matrix: np.ndarray) -> np.ndarray: original_num_rows = matrix.shape[0] # If the original matrix is larger than or equal to the target if original_num_rows >= self.target_num_rows: return matrix[:self.target_num_rows, :] # Otherwise: # Number of new rows to be added to the matrix num_additional_rows = self.target_num_rows - original_num_rows # If the additional is larger than or equal to the original num_new_blocks = num_additional_rows // original_num_rows new_matrix = [matrix] for _ in range(num_new_blocks): # The addition is of the same sparsity and KDE distribution random_kde = RandomizeNonZeroWeightKde(self.rng).apply_transform(matrix) new_matrix.append(random_kde) # Add the remainders num_remainder_rows = num_additional_rows % original_num_rows if num_remainder_rows: random_kde = RandomizeNonZeroWeightKde(self.rng).apply_transform( matrix[:num_remainder_rows, :]) new_matrix.append(random_kde) return np.vstack(new_matrix) class ResizeNumColumns(WeightTransformation): """Resizes the weight matrix to the target number of columns. If the original matrix already has number of columns larger than or equal to to the target number of columns, it is trimmed. Otherwise, new columns are added while maintaining sparsity and KDE distribution of the original matrix. Attributes: target_num_columns: The target number of columns. rng: The random state to use for generating arrays of random numbers. Default is the global np.random module. """ def __init__(self, target_num_columns: int, rng: np.random.RandomState = np.random): if target_num_columns < 1: raise ValueError( f'Expecting target_num_columns > 0, but getting {target_num_columns}') self.target_num_columns = target_num_columns self.rng = rng def apply_transform(self, matrix: np.ndarray) -> np.ndarray: original_num_columns = matrix.shape[1] # If the original matrix is larger than or equal to the target if original_num_columns >= self.target_num_columns: return matrix[:, :self.target_num_columns] # Otherwise: # Number of new columns to be added to the matrix num_additional_columns = self.target_num_columns - original_num_columns # If the additional is larger than or equal to the original num_new_blocks = num_additional_columns // original_num_columns new_matrix = [matrix] for _ in range(num_new_blocks): # The addition is of the same sparsity and KDE distribution random_kde = RandomizeNonZeroWeightKde(self.rng).apply_transform(matrix) new_matrix.append(random_kde) # Add the remainders num_remainder_columns = num_additional_columns % original_num_columns if num_remainder_columns: random_kde = RandomizeNonZeroWeightKde(self.rng).apply_transform( matrix[:, :num_remainder_columns]) new_matrix.append(random_kde) return np.hstack(new_matrix) def flip_sign_entire_rows(matrix: np.ndarray, flip_proportion: float) -> np.ndarray: """Flips signs of a number of rows of the matrix to negative. Args: matrix: the matrix to be transformed in numpy array flip_proportion: proportion of the number of rows to be flipped Returns: The weight matrix with signs randomly flipped in some rows. """ return FlipSignEntireRows(flip_proportion).apply_transform(matrix) def randomize_non_zero_weights_kde(matrix: np.ndarray) -> np.ndarray: """Randomizes the weight matrix using kernel-density estimate. This function produces a random weight matrix of the same size and sparsity with those of the original matrix. The non-zero elements are sampled from the probability density function of the original non-zero elements. Args: matrix: a square numpy array. Returns: A random numpy array of the same sparsity and size with those of input. """ return RandomizeNonZeroWeightKde().apply_transform(matrix) def randomize_non_zero_weights(matrix: np.ndarray) -> np.ndarray: """Starts with a weight matrix and makes it random uniformly. Based on the sparsity of the weight matrix, replace it with another one with the same sparsity, but the non-zero values are chosen randomly and placed at random locations. Args: matrix: A square matrix. Returns: A random numpy array of the same size and sparsity with those of input. """ return RandomizeNonZeroWeight().apply_transform(matrix) def shuffle_weights(matrix: np.ndarray) -> np.ndarray: """Shuffles the weights in the weight matrix. Args: matrix: the weight matrix. Returns: matrix_shuffled: A shuffled matrix. """ nrows, ncols = matrix.shape matrix_shuffled = np.reshape(matrix, (nrows * ncols)) np.random.shuffle(matrix_shuffled) matrix_shuffled = np.reshape(matrix_shuffled, (nrows, ncols)) return matrix_shuffled def assign_random_signs(matrix: np.ndarray, inhibitory_proportion: float) -> np.ndarray: """Assigns plus or minus signs randomly to the weight matrix. given the proportion of connections that should be inhibitory. Args: matrix: The weight matrix. inhibitory_proportion: A [0, 1] number, proportion of inhibitory connections. Returns: The resulting matrix. """ # Make all the connections positive matrix = np.abs(matrix) # Generate random matrix random_matrix = np.random.random(matrix.shape) # Select the portion randomly to reverse the sign inhibitory_mask = random_matrix < inhibitory_proportion matrix[inhibitory_mask] = -matrix[inhibitory_mask] return matrix def scale_weight_by_distance(weights, distances, scaling_function, box_size=None): """Scales connection weights of neurons with their distances. Args: weights: weight matrix, each element is the connection weight between two neurons (currently representing segments). distances: distance matrix of the same size as weights, each element is the distance between the two connected neurons. scaling_function: either 'linear', 'quadratic', or 'exponential'. box_size: length of one side of the cubic box, which is the region that contains the neurons. Only used for scaling_function = 'exponential'. Returns: weights scaled with distances. """ return ScaleWeightByDistance(scaling_function, box_size).apply_transform(weights, distances) def make_sparse(weight_array: np.ndarray, zero_weight_proportion: float) -> np.ndarray: """Sets an arbitrary percentage (pct) of weights in an input matrix to 0. Args: weight_array: The weight array zero_weight_proportion: A [0,1] number, proportion of weights that should be set to 0 Returns: The resulting array. """ num_zeros_initial = np.sum(weight_array == 0) if num_zeros_initial >= (weight_array.size * zero_weight_proportion): print('This matrix is already sparser than requested') return weight_array idx = np.random.choice( np.arange(weight_array.size), replace=False, size=int((weight_array.size * zero_weight_proportion) - num_zeros_initial)) weight_array[np.unravel_index(idx, weight_array.shape)] = 0 return weight_array def cutoff_small_weights_in_rows(matrix: np.ndarray, non_zeros_per_row_limit: int) -> np.ndarray: """Cuts off smallest weights of the weight matrix. So that number of non-zeros per row does not exceed non_zeros_per_row_limit. Args: matrix: the weight matrix, a 2d square numpy array. non_zeros_per_row_limit: limit of non-zeros to be retained per row. Returns: matrix_transformed: the transformed weight matrix. """ return CutOffSmallWeightsInRows(non_zeros_per_row_limit).apply_transform( matrix) def transform_weight(weight_matrix: np.ndarray, distance_matrix: np.ndarray, params: ml_collections.ConfigDict) -> np.ndarray: """Transforms the weight matrix with the following step. 1. Scale the connection weights with the distances between connected neurons. 2. Only keep largest weights on each row. 3. If signaled, a random weight matrix is generated to replace the original while retaining the size and sparsity of the original. 4. Scale the weight matrix to [0, 1] assuming sparsity > 0. 5. Convert a proportion of neurons to inhibitory (all elements in row made 0). Parameters to provide: distance_scaling_function - name of method to scale weight by distance. Values are 'none', 'linear', 'quadratic', 'exponential'. box_size - length of one side of the cubic brain region from which the weight and distance matrices were extracted. num_cutoff - number of non zeros to keep on each row of the weight matrix, the rest are made zero. Make num_cutoff arbitrarily large to keep all. random_weights - boolean, whether to replace the original weight matrix with a random matrix of the same size and sparsity with the original. kde_random_weights - boolean. If random_weights is True, this parameter decides whether the random weights are generated with the same distribution of those in the original weight matrix. inhibitory_neurons_proportion - proportion of rows are made negative. Args: weight_matrix: 2D square numpy array. distance_matrix: 2D square numpy array of the same shape of weight_matrix. params: ConfigDict of parameters used for transformation, listed above. Returns: The transformed weight matrix. """ transformation = setup_weight_transformation(params) if params.distance_scaling_function != 'none': return transformation.apply_transform(weight_matrix, distance_matrix) return transformation.apply_transform(weight_matrix) def setup_weight_transformation(params: ml_collections.ConfigDict) -> Chain: """Sets up the chain of transformations to transform the weight matrix. The chain might include: 1. Scale the connection weights with the distances between connected neurons. 2. Only keep largest weights on each row. 3. If signaled, a random weight matrix is generated to replace the original while retaining the size and sparsity of the original. 4. Scale the weight matrix to [0, 1] assuming sparsity > 0. 5. Convert a proportion of neurons to inhibitory (all elements in row made 0). Args: params: ConfigDict of parameters used for transformation, including: distance_scaling_function - name of method to scale weight by distance. Values are 'none', 'linear', 'quadratic', 'exponential'. box_size - length of one side of the cubic brain region from which the weight and distance matrices were extracted. num_cutoff - number of non zeros to keep on each row of the weight matrix, the rest are made zero. Make num_cutoff arbitrarily large to keep all. random_weights - boolean, whether to replace the original weight matrix with a random matrix of the same size and sparsity with the original. kde_random_weights - boolean. If random_weights is True, this parameter decides whether the random weights are generated with the same distribution of those in the original weight matrix. inhibitory_neurons_proportion - proportion of rows are made negative. Returns: The chained transformations. """ transformation = Chain() # scale connection weight by distance between connected neurons: if params.distance_scaling_function != 'none': transformation.append( ScaleWeightByDistance(params.distance_scaling_function, params.box_size)) # only keep largest weights on each row: transformation.append(CutOffSmallWeightsInRows(params.num_cutoff)) # if random weights should be used if params.random_weights: # if kernel-density estimate is used to randomize non-zero elements: if params.kde_random_weights: transformation.append(RandomizeNonZeroWeightKde()) else: transformation.append(RandomizeNonZeroWeight()) # scale weights to [0, 1] range: transformation.append(ScaleToZeroOne()) # convert neurons to inhibitory: if params.inhibitory_neurons_proportion > 0: transformation.append( FlipSignEntireRows(params.inhibitory_neurons_proportion)) return transformation def chain_weight_matrices(matrices: List[np.ndarray]) -> List[np.ndarray]: """Chains the matrices in the list. The purpose is to trim the matrices so their multiplication can be done with their order in the chain. Suppose we have two matrices in the list, matrix A represents the connections between two sets of neurons Set_1 and Set_2 (the two sets might fully or partially overlap, or separate completely), and matrix B represents the connections between Set_3 and Set_4. Ideally, the realistic representation of the actual brain is to find the common subset of Set_2 and Set_3 and trim both A and B according to this subset. For simplicity, we assume either Set_2 is a subset of Set_3 or vice versa depending on their sizes. In practice, we often have matrices from separate regions and the post-synaptic neurons of the preceding regions might not overlap with the pre-synaptic neurons of the succeeding regions. In this case, we don't have a good way to tell which neurons are important to keep. For simplicity, we keep neurons that appear first and discard those that appear last in the matrix. Therefore, for each pair of adjacent matrices, the number of columns of the preceding matrix is compared to the number of rows of the succeeding matrix, and the larger is trimmed down to be equal to the smaller, and in this process, the neurons that are trimmed appear last in the original matrix. Args: matrices: The list of matrices to be chained. Returns: The list of chained matrices. """ num_matrices = len(matrices) if num_matrices < 2: return matrices new_matrices = [] for i in range(num_matrices - 1): # compare num_columns of the preceding to num_rows of the succeeding: smaller_num_neurons = min(matrices[i].shape[1], matrices[i + 1].shape[0]) # append the new matrix at position i to the new list: new_matrices.append(matrices[i][:, :smaller_num_neurons]) # update the matrix at position i+1 in the old list: matrices[i + 1] = matrices[i + 1][:smaller_num_neurons, :] # append the last matrix to the new list: new_matrices.append(matrices[num_matrices - 1]) return new_matrices def resize_weight_matrices( reservoir_weights: List[np.ndarray], reservoirs_num_neurons: Tuple[int, ...], ) -> List[np.ndarray]: """Resizes the weight matrices to the target numbers of neurons. Args: reservoir_weights: The weight matrices to be transformed. reservoirs_num_neurons: The target numbers of neurons of the reservoirs. The number of elements must be the same as that of `reservoir_weights`. Returns: The transformed weight matrices. """ # Check length matching of `reservoir_weights` and `reservoirs_num_neurons` if len(reservoir_weights) != len(reservoirs_num_neurons): raise ValueError( f'`reservoirs_num_neurons` has {len(reservoirs_num_neurons)} elements ' f'but `reservoir_weights` has {len(reservoir_weights)} elements.') for i, num_neurons in enumerate(reservoirs_num_neurons): resize_rows = ResizeNumRows(num_neurons) reservoir_weights[i] = resize_rows.apply_transform(reservoir_weights[i]) resize_columns = ResizeNumColumns(num_neurons) reservoir_weights[i] = resize_columns.apply_transform(reservoir_weights[i]) return reservoir_weights
# Copyright 2018 Google LLC. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Tests for sam_reader CLIF python wrappers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys if 'google' in sys.modules and 'google.protobuf' not in sys.modules: del sys.modules['google'] from absl.testing import absltest from absl.testing import parameterized from third_party.nucleus.io import clif_postproc from third_party.nucleus.io.python import sam_reader from third_party.nucleus.protos import reads_pb2 from third_party.nucleus.protos import reference_pb2 from third_party.nucleus.testing import test_utils from third_party.nucleus.util import ranges class SamReaderTest(parameterized.TestCase): def setUp(self): self.bam = test_utils.genomics_core_testdata('test.bam') self.options = reads_pb2.SamReaderOptions() def test_bam_iterate(self): reader = sam_reader.SamReader.from_file( reads_path=self.bam, ref_path='', options=self.options) with reader: iterable = reader.iterate() self.assertIsInstance(iterable, clif_postproc.WrappedCppIterable) self.assertEqual(test_utils.iterable_len(iterable), 106) def test_bam_query(self): reader = sam_reader.SamReader.from_file( reads_path=self.bam, ref_path='', options=self.options) expected = [(ranges.parse_literal('chr20:10,000,000-10,000,100'), 106), (ranges.parse_literal('chr20:10,000,000-10,000,000'), 45)] with reader: for interval, n_expected in expected: with reader.query(interval) as iterable: self.assertIsInstance(iterable, clif_postproc.WrappedCppIterable) self.assertEqual(test_utils.iterable_len(iterable), n_expected) def test_bam_samples(self): reader = sam_reader.SamReader.from_file( reads_path=self.bam, ref_path='', options=self.options) with reader: self.assertLen(reader.header.read_groups, 1) self.assertEqual(reader.header.read_groups[0].sample_id, 'NA12878') def test_sam_contigs(self): reader = sam_reader.SamReader.from_file( reads_path=self.bam, ref_path='', options=self.options) with reader: self.assertEqual([ reference_pb2.ContigInfo(name='chrM', pos_in_fasta=0, n_bases=16571), reference_pb2.ContigInfo( name='chr1', pos_in_fasta=1, n_bases=249250621), reference_pb2.ContigInfo( name='chr2', pos_in_fasta=2, n_bases=243199373), reference_pb2.ContigInfo( name='chr3', pos_in_fasta=3, n_bases=198022430), reference_pb2.ContigInfo( name='chr4', pos_in_fasta=4, n_bases=191154276), reference_pb2.ContigInfo( name='chr5', pos_in_fasta=5, n_bases=180915260), reference_pb2.ContigInfo( name='chr6', pos_in_fasta=6, n_bases=171115067), reference_pb2.ContigInfo( name='chr7', pos_in_fasta=7, n_bases=159138663), reference_pb2.ContigInfo( name='chr8', pos_in_fasta=8, n_bases=146364022), reference_pb2.ContigInfo( name='chr9', pos_in_fasta=9, n_bases=141213431), reference_pb2.ContigInfo( name='chr10', pos_in_fasta=10, n_bases=135534747), reference_pb2.ContigInfo( name='chr11', pos_in_fasta=11, n_bases=135006516), reference_pb2.ContigInfo( name='chr12', pos_in_fasta=12, n_bases=133851895), reference_pb2.ContigInfo( name='chr13', pos_in_fasta=13, n_bases=115169878), reference_pb2.ContigInfo( name='chr14', pos_in_fasta=14, n_bases=107349540), reference_pb2.ContigInfo( name='chr15', pos_in_fasta=15, n_bases=102531392), reference_pb2.ContigInfo( name='chr16', pos_in_fasta=16, n_bases=90354753), reference_pb2.ContigInfo( name='chr17', pos_in_fasta=17, n_bases=81195210), reference_pb2.ContigInfo( name='chr18', pos_in_fasta=18, n_bases=78077248), reference_pb2.ContigInfo( name='chr19', pos_in_fasta=19, n_bases=59128983), reference_pb2.ContigInfo( name='chr20', pos_in_fasta=20, n_bases=63025520), reference_pb2.ContigInfo( name='chr21', pos_in_fasta=21, n_bases=48129895), reference_pb2.ContigInfo( name='chr22', pos_in_fasta=22, n_bases=51304566), reference_pb2.ContigInfo( name='chrX', pos_in_fasta=23, n_bases=155270560), reference_pb2.ContigInfo( name='chrY', pos_in_fasta=24, n_bases=59373566), ], list(reader.header.contigs)) def test_context_manager(self): """Test that we can use context manager to do two queries in sequence.""" reader = sam_reader.SamReader.from_file( reads_path=self.bam, ref_path='', options=self.options) region = ranges.parse_literal('chr20:10,000,000-10,000,100') with reader: with reader.query(region) as query_iterable1: self.assertIsNotNone(query_iterable1) self.assertIsInstance(query_iterable1, clif_postproc.WrappedCppIterable) with reader.query(region) as query_iterable2: self.assertIsNotNone(query_iterable2) self.assertIsInstance(query_iterable2, clif_postproc.WrappedCppIterable) def test_from_file_raises_with_missing_bam(self): # redacted with self.assertRaisesRegex(ValueError, 'Could not open missing.bam'): sam_reader.SamReader.from_file( reads_path='missing.bam', ref_path='', options=self.options) def test_ops_on_closed_reader_raise(self): reader = sam_reader.SamReader.from_file( reads_path=self.bam, ref_path='', options=self.options) with reader: pass # At this point the reader is closed. with self.assertRaisesRegex(ValueError, 'Cannot Iterate a closed'): reader.iterate() with self.assertRaisesRegex(ValueError, 'Cannot Query a closed'): reader.query(ranges.parse_literal('chr20:10,000,000-10,000,100')) @parameterized.parameters('test.sam', 'unindexed.bam') def test_query_without_index_raises(self, unindexed_file_name): path = test_utils.genomics_core_testdata(unindexed_file_name) window = ranges.parse_literal('chr20:10,000,000-10,000,100') with sam_reader.SamReader.from_file( reads_path=path, ref_path='', options=self.options) as reader: with self.assertRaisesRegex(ValueError, 'Cannot query without an index'): reader.query(window) def test_query_raises_with_bad_range(self): with sam_reader.SamReader.from_file( reads_path=self.bam, ref_path='', options=self.options) as reader: with self.assertRaisesRegex(ValueError, 'Unknown reference_name'): reader.query(ranges.parse_literal('XXX:1-10')) with self.assertRaisesRegex(ValueError, 'unknown reference interval'): reader.query(ranges.parse_literal('chr20:10-5')) def test_sam_iterate_raises_on_malformed_record(self): malformed = test_utils.genomics_core_testdata('malformed.sam') reader = sam_reader.SamReader.from_file( reads_path=malformed, ref_path='', options=self.options) iterable = iter(reader.iterate()) self.assertIsNotNone(next(iterable)) with self.assertRaises(ValueError): list(iterable) def test_headless_sam_raises(self): headerless = test_utils.genomics_core_testdata('headerless.sam') with self.assertRaisesRegex(ValueError, 'Could not parse file with bad SAM header'): sam_reader.SamReader.from_file( reads_path=headerless, ref_path='', options=self.options) if __name__ == '__main__': absltest.main()
# Copyright 2012 OpenStack Foundation # Copyright 2013 IBM Corp. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging import os import subprocess # Default client libs import cinderclient.client import glanceclient import heatclient.client import keystoneclient.apiclient.exceptions import keystoneclient.v2_0.client import netaddr from neutronclient.common import exceptions as exc import neutronclient.v2_0.client import novaclient.client from novaclient import exceptions as nova_exceptions import swiftclient from tempest.api.network import common as net_common from tempest.common import isolated_creds from tempest.common.utils import data_utils from tempest.common.utils.linux.remote_client import RemoteClient from tempest import exceptions import tempest.manager from tempest.openstack.common import log import tempest.test import fusionclient.client LOG = log.getLogger(__name__) # NOTE(afazekas): Workaround for the stdout logging LOG_nova_client = logging.getLogger('novaclient.client') LOG_nova_client.addHandler(log.NullHandler()) LOG_cinder_client = logging.getLogger('cinderclient.client') LOG_cinder_client.addHandler(log.NullHandler()) class OfficialClientManager(tempest.manager.Manager): """ Manager that provides access to the official python clients for calling various OpenStack APIs. """ NOVACLIENT_VERSION = '2' CINDERCLIENT_VERSION = '1' HEATCLIENT_VERSION = '1' FUSIONCLIENT_VERSION = '1' def __init__(self, username, password, tenant_name): super(OfficialClientManager, self).__init__() self.compute_client = self._get_compute_client(username, password, tenant_name) self.identity_client = self._get_identity_client(username, password, tenant_name) # self.image_client = self._get_image_client() self.network_client = self._get_network_client() self.volume_client = self._get_volume_client(username, password, tenant_name) # self.object_storage_client = self._get_object_storage_client( # username, # password, # tenant_name) self.orchestration_client = self._get_orchestration_client( username, password, tenant_name) self.fusion_client = self._get_fusion_client( username, password, tenant_name) def _get_compute_client(self, username, password, tenant_name): # Novaclient will not execute operations for anyone but the # identified user, so a new client needs to be created for # each user that operations need to be performed for. self._validate_credentials(username, password, tenant_name) auth_url = self.config.identity.uri dscv = self.config.identity.disable_ssl_certificate_validation region = self.config.identity.region client_args = (username, password, tenant_name, auth_url) # Create our default Nova client to use in testing service_type = self.config.compute.catalog_type return novaclient.client.Client(self.NOVACLIENT_VERSION, *client_args, service_type=service_type, region_name=region, no_cache=True, insecure=dscv, http_log_debug=True) def _get_image_client(self): token = self.identity_client.auth_token region = self.config.identity.region endpoint = self.identity_client.service_catalog.url_for( attr='region', filter_value=region, service_type='image', endpoint_type='publicURL') dscv = self.config.identity.disable_ssl_certificate_validation return glanceclient.Client('1', endpoint=endpoint, token=token, insecure=dscv) def _get_volume_client(self, username, password, tenant_name): auth_url = self.config.identity.uri region = self.config.identity.region return cinderclient.client.Client(self.CINDERCLIENT_VERSION, username, password, tenant_name, auth_url, region_name=region, http_log_debug=True) def _get_object_storage_client(self, username, password, tenant_name): auth_url = self.config.identity.uri # add current tenant to Member group. keystone_admin = self._get_identity_client( self.config.identity.admin_username, self.config.identity.admin_password, self.config.identity.admin_tenant_name) # enable test user to operate swift by adding Member role to him. roles = keystone_admin.roles.list() member_role = [role for role in roles if role.name == 'Member'][0] # NOTE(maurosr): This is surrounded in the try-except block cause # neutron tests doesn't have tenant isolation. try: keystone_admin.roles.add_user_role(self.identity_client.user_id, member_role.id, self.identity_client.tenant_id) except keystoneclient.apiclient.exceptions.Conflict: pass return swiftclient.Connection(auth_url, username, password, tenant_name=tenant_name, auth_version='2') def _get_orchestration_client(self, username=None, password=None, tenant_name=None): if not username: username = self.config.identity.admin_username if not password: password = self.config.identity.admin_password if not tenant_name: tenant_name = self.config.identity.tenant_name self._validate_credentials(username, password, tenant_name) keystone = self._get_identity_client(username, password, tenant_name) region = self.config.identity.region token = keystone.auth_token try: endpoint = keystone.service_catalog.url_for( attr='region', filter_value=region, service_type='orchestration', endpoint_type='publicURL') except keystoneclient.exceptions.EndpointNotFound: return None else: return heatclient.client.Client(self.HEATCLIENT_VERSION, endpoint, token=token, username=username, password=password) def _get_fusion_client(self, username=None, password=None, tenant_name=None): if not username: username = self.config.identity.admin_username if not password: password = self.config.identity.admin_password if not tenant_name: tenant_name = self.config.identity.tenant_name self._validate_credentials(username, password, tenant_name) keystone = self._get_identity_client(username, password, tenant_name) region = self.config.identity.region token = keystone.auth_token try: endpoint = keystone.service_catalog.url_for( attr='region', filter_value=region, service_type='orchestration', endpoint_type='publicURL') except keystoneclient.exceptions.EndpointNotFound: return None else: return fusionclient.client.Client(self.FUSIONCLIENT_VERSION, endpoint, token=token, username=username, password=password) def _get_identity_client(self, username, password, tenant_name): # This identity client is not intended to check the security # of the identity service, so use admin credentials by default. self._validate_credentials(username, password, tenant_name) auth_url = self.config.identity.uri dscv = self.config.identity.disable_ssl_certificate_validation return keystoneclient.v2_0.client.Client(username=username, password=password, tenant_name=tenant_name, auth_url=auth_url, insecure=dscv) def _get_network_client(self): # The intended configuration is for the network client to have # admin privileges and indicate for whom resources are being # created via a 'tenant_id' parameter. This will often be # preferable to authenticating as a specific user because # working with certain resources (public routers and networks) # often requires admin privileges anyway. username = self.config.identity.admin_username password = self.config.identity.admin_password tenant_name = self.config.identity.admin_tenant_name self._validate_credentials(username, password, tenant_name) auth_url = self.config.identity.uri dscv = self.config.identity.disable_ssl_certificate_validation return neutronclient.v2_0.client.Client(username=username, password=password, tenant_name=tenant_name, auth_url=auth_url, insecure=dscv) class OfficialClientTest(tempest.test.BaseTestCase): """ Official Client test base class for scenario testing. Official Client tests are tests that have the following characteristics: * Test basic operations of an API, typically in an order that a regular user would perform those operations * Test only the correct inputs and action paths -- no fuzz or random input data is sent, only valid inputs. * Use only the default client tool for calling an API """ @classmethod def setUpClass(cls): super(OfficialClientTest, cls).setUpClass() cls.isolated_creds = isolated_creds.IsolatedCreds( __name__, tempest_client=False, network_resources=cls.network_resources) username, password, tenant_name = cls.credentials() cls.manager = OfficialClientManager(username, password, tenant_name) cls.compute_client = cls.manager.compute_client # cls.image_client = cls.manager.image_client cls.identity_client = cls.manager.identity_client # cls.network_client = cls.manager.network_client # cls.volume_client = cls.manager.volume_client # cls.object_storage_client = cls.manager.object_storage_client cls.orchestration_client = cls.manager.orchestration_client cls.fusion_client = cls.manager.fusion_client cls.resource_keys = {} cls.os_resources = [] @classmethod def _get_credentials(cls, get_creds, prefix): if cls.config.compute.allow_tenant_isolation: username, tenant_name, password = get_creds() else: username = getattr(cls.config.identity, prefix + 'username') password = getattr(cls.config.identity, prefix + 'password') tenant_name = getattr(cls.config.identity, prefix + 'tenant_name') return username, password, tenant_name @classmethod def credentials(cls): return cls._get_credentials(cls.isolated_creds.get_primary_creds, '') @classmethod def alt_credentials(cls): return cls._get_credentials(cls.isolated_creds.get_alt_creds, 'alt_') @classmethod def admin_credentials(cls): return cls._get_credentials(cls.isolated_creds.get_admin_creds, 'admin_') @classmethod def tearDownClass(cls): # NOTE(jaypipes): Because scenario tests are typically run in a # specific order, and because test methods in scenario tests # generally create resources in a particular order, we destroy # resources in the reverse order in which resources are added to # the scenario test class object while cls.os_resources: thing = cls.os_resources.pop() LOG.debug("Deleting %r from shared resources of %s" % (thing, cls.__name__)) try: # OpenStack resources are assumed to have a delete() # method which destroys the resource... thing.delete() except Exception as e: # If the resource is already missing, mission accomplished. # add status code as workaround for bug 1247568 if (e.__class__.__name__ == 'NotFound' or hasattr(e, 'status_code') and e.status_code == 404): continue raise def is_deletion_complete(): # Deletion testing is only required for objects whose # existence cannot be checked via retrieval. if isinstance(thing, dict): return True try: thing.get() except Exception as e: # Clients are expected to return an exception # called 'NotFound' if retrieval fails. if e.__class__.__name__ == 'NotFound': return True raise return False # Block until resource deletion has completed or timed-out tempest.test.call_until_true(is_deletion_complete, 10, 1) cls.isolated_creds.clear_isolated_creds() super(OfficialClientTest, cls).tearDownClass() @classmethod def set_resource(cls, key, thing): LOG.debug("Adding %r to shared resources of %s" % (thing, cls.__name__)) cls.resource_keys[key] = thing cls.os_resources.append(thing) @classmethod def get_resource(cls, key): return cls.resource_keys[key] @classmethod def remove_resource(cls, key): thing = cls.resource_keys[key] cls.os_resources.remove(thing) del cls.resource_keys[key] def status_timeout(self, things, thing_id, expected_status, error_status='ERROR', not_found_exception=nova_exceptions.NotFound): """ Given a thing and an expected status, do a loop, sleeping for a configurable amount of time, checking for the expected status to show. At any time, if the returned status of the thing is ERROR, fail out. """ self._status_timeout(things, thing_id, expected_status=expected_status, error_status=error_status, not_found_exception=not_found_exception) def delete_timeout(self, things, thing_id, error_status='ERROR', not_found_exception=nova_exceptions.NotFound): """ Given a thing, do a loop, sleeping for a configurable amount of time, checking for the deleted status to show. At any time, if the returned status of the thing is ERROR, fail out. """ self._status_timeout(things, thing_id, allow_notfound=True, error_status=error_status, not_found_exception=not_found_exception) def _status_timeout(self, things, thing_id, expected_status=None, allow_notfound=False, error_status='ERROR', not_found_exception=nova_exceptions.NotFound): log_status = expected_status if expected_status else '' if allow_notfound: log_status += ' or NotFound' if log_status != '' else 'NotFound' def check_status(): # python-novaclient has resources available to its client # that all implement a get() method taking an identifier # for the singular resource to retrieve. try: thing = things.get(thing_id) except not_found_exception: if allow_notfound: return True else: raise new_status = thing.status # Some components are reporting error status in lower case # so case sensitive comparisons can really mess things # up. if new_status.lower() == error_status.lower(): message = ("%s failed to get to expected status. " "In %s state.") % (thing, new_status) raise exceptions.BuildErrorException(message) elif new_status == expected_status and expected_status is not None: return True # All good. LOG.debug("Waiting for %s to get to %s status. " "Currently in %s status", thing, log_status, new_status) if not tempest.test.call_until_true( check_status, self.config.compute.build_timeout, self.config.compute.build_interval): message = ("Timed out waiting for thing %s " "to become %s") % (thing_id, log_status) raise exceptions.TimeoutException(message) def _create_loginable_secgroup_rule_nova(self, client=None, secgroup_id=None): if client is None: client = self.compute_client if secgroup_id is None: sgs = client.security_groups.list() for sg in sgs: if sg.name == 'default': secgroup_id = sg.id # These rules are intended to permit inbound ssh and icmp # traffic from all sources, so no group_id is provided. # Setting a group_id would only permit traffic from ports # belonging to the same security group. rulesets = [ { # ssh 'ip_protocol': 'tcp', 'from_port': 22, 'to_port': 22, 'cidr': '0.0.0.0/0', }, { # ping 'ip_protocol': 'icmp', 'from_port': -1, 'to_port': -1, 'cidr': '0.0.0.0/0', } ] rules = list() for ruleset in rulesets: sg_rule = client.security_group_rules.create(secgroup_id, **ruleset) self.set_resource(sg_rule.id, sg_rule) rules.append(sg_rule) return rules def create_server(self, client=None, name=None, image=None, flavor=None, create_kwargs={}): if client is None: client = self.compute_client if name is None: name = data_utils.rand_name('scenario-server-') if image is None: image = self.config.compute.image_ref if flavor is None: flavor = self.config.compute.flavor_ref LOG.debug("Creating a server (name: %s, image: %s, flavor: %s)", name, image, flavor) server = client.servers.create(name, image, flavor, **create_kwargs) self.assertEqual(server.name, name) self.set_resource(name, server) self.status_timeout(client.servers, server.id, 'ACTIVE') # The instance retrieved on creation is missing network # details, necessitating retrieval after it becomes active to # ensure correct details. server = client.servers.get(server.id) self.set_resource(name, server) LOG.debug("Created server: %s", server) return server def create_volume(self, client=None, size=1, name=None, snapshot_id=None, imageRef=None): if client is None: client = self.volume_client if name is None: name = data_utils.rand_name('scenario-volume-') LOG.debug("Creating a volume (size: %s, name: %s)", size, name) volume = client.volumes.create(size=size, display_name=name, snapshot_id=snapshot_id, imageRef=imageRef) self.set_resource(name, volume) self.assertEqual(name, volume.display_name) self.status_timeout(client.volumes, volume.id, 'available') LOG.debug("Created volume: %s", volume) return volume def create_server_snapshot(self, server, compute_client=None, image_client=None, name=None): if compute_client is None: compute_client = self.compute_client if image_client is None: image_client = self.image_client if name is None: name = data_utils.rand_name('scenario-snapshot-') LOG.debug("Creating a snapshot image for server: %s", server.name) image_id = compute_client.servers.create_image(server, name) self.addCleanup(image_client.images.delete, image_id) self.status_timeout(image_client.images, image_id, 'active') snapshot_image = image_client.images.get(image_id) self.assertEqual(name, snapshot_image.name) LOG.debug("Created snapshot image %s for server %s", snapshot_image.name, server.name) return snapshot_image def create_keypair(self, client=None, name=None): if client is None: client = self.compute_client if name is None: name = data_utils.rand_name('scenario-keypair-') keypair = client.keypairs.create(name) self.assertEqual(keypair.name, name) self.set_resource(name, keypair) return keypair def get_remote_client(self, server_or_ip, username=None, private_key=None): if isinstance(server_or_ip, basestring): ip = server_or_ip else: network_name_for_ssh = self.config.compute.network_for_ssh ip = server_or_ip.networks[network_name_for_ssh][0] if username is None: username = self.config.scenario.ssh_user if private_key is None: private_key = self.keypair.private_key return RemoteClient(ip, username, pkey=private_key) def _log_console_output(self, servers=None): if not servers: servers = self.compute_client.servers.list() for server in servers: LOG.debug('Console output for %s', server.id) LOG.debug(server.get_console_output()) class NetworkScenarioTest(OfficialClientTest): """ Base class for network scenario tests """ @classmethod def check_preconditions(cls): if (cls.config.service_available.neutron): cls.enabled = True # verify that neutron_available is telling the truth try: cls.network_client.list_networks() except exc.EndpointNotFound: cls.enabled = False raise else: cls.enabled = False msg = 'Neutron not available' raise cls.skipException(msg) @classmethod def setUpClass(cls): super(NetworkScenarioTest, cls).setUpClass() if cls.config.compute.allow_tenant_isolation: cls.tenant_id = cls.isolated_creds.get_primary_tenant().id else: cls.tenant_id = cls.manager._get_identity_client( cls.config.identity.username, cls.config.identity.password, cls.config.identity.tenant_name).tenant_id def _create_network(self, tenant_id, namestart='network-smoke-'): name = data_utils.rand_name(namestart) body = dict( network=dict( name=name, tenant_id=tenant_id, ), ) result = self.network_client.create_network(body=body) network = net_common.DeletableNetwork(client=self.network_client, **result['network']) self.assertEqual(network.name, name) self.set_resource(name, network) return network def _list_networks(self): nets = self.network_client.list_networks() return nets['networks'] def _list_subnets(self): subnets = self.network_client.list_subnets() return subnets['subnets'] def _list_routers(self): routers = self.network_client.list_routers() return routers['routers'] def _list_ports(self): ports = self.network_client.list_ports() return ports['ports'] def _get_tenant_own_network_num(self, tenant_id): nets = self._list_networks() ownnets = [value for value in nets if tenant_id == value['tenant_id']] return len(ownnets) def _get_tenant_own_subnet_num(self, tenant_id): subnets = self._list_subnets() ownsubnets = ([value for value in subnets if tenant_id == value['tenant_id']]) return len(ownsubnets) def _get_tenant_own_port_num(self, tenant_id): ports = self._list_ports() ownports = ([value for value in ports if tenant_id == value['tenant_id']]) return len(ownports) def _create_subnet(self, network, namestart='subnet-smoke-'): """ Create a subnet for the given network within the cidr block configured for tenant networks. """ cfg = self.config.network tenant_cidr = netaddr.IPNetwork(cfg.tenant_network_cidr) result = None # Repeatedly attempt subnet creation with sequential cidr # blocks until an unallocated block is found. for subnet_cidr in tenant_cidr.subnet(cfg.tenant_network_mask_bits): body = dict( subnet=dict( ip_version=4, network_id=network.id, tenant_id=network.tenant_id, cidr=str(subnet_cidr), ), ) try: result = self.network_client.create_subnet(body=body) break except exc.NeutronClientException as e: is_overlapping_cidr = 'overlaps with another subnet' in str(e) if not is_overlapping_cidr: raise self.assertIsNotNone(result, 'Unable to allocate tenant network') subnet = net_common.DeletableSubnet(client=self.network_client, **result['subnet']) self.assertEqual(subnet.cidr, str(subnet_cidr)) self.set_resource(data_utils.rand_name(namestart), subnet) return subnet def _create_port(self, network, namestart='port-quotatest-'): name = data_utils.rand_name(namestart) body = dict( port=dict(name=name, network_id=network.id, tenant_id=network.tenant_id)) result = self.network_client.create_port(body=body) self.assertIsNotNone(result, 'Unable to allocate port') port = net_common.DeletablePort(client=self.network_client, **result['port']) self.set_resource(name, port) return port def _get_server_port_id(self, server): result = self.network_client.list_ports(device_id=server.id) ports = result.get('ports', []) self.assertEqual(len(ports), 1, "Unable to determine which port to target.") return ports[0]['id'] def _create_floating_ip(self, server, external_network_id): port_id = self._get_server_port_id(server) body = dict( floatingip=dict( floating_network_id=external_network_id, port_id=port_id, tenant_id=server.tenant_id, ) ) result = self.network_client.create_floatingip(body=body) floating_ip = net_common.DeletableFloatingIp( client=self.network_client, **result['floatingip']) self.set_resource(data_utils.rand_name('floatingip-'), floating_ip) return floating_ip def _associate_floating_ip(self, floating_ip, server): port_id = self._get_server_port_id(server) floating_ip.update(port_id=port_id) self.assertEqual(port_id, floating_ip.port_id) return floating_ip def _disassociate_floating_ip(self, floating_ip): """ :param floating_ip: type DeletableFloatingIp """ floating_ip.update(port_id=None) self.assertEqual(None, floating_ip.port_id) return floating_ip def _ping_ip_address(self, ip_address, should_succeed=True): cmd = ['ping', '-c1', '-w1', ip_address] def ping(): proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.wait() return (proc.returncode == 0) == should_succeed return tempest.test.call_until_true( ping, self.config.compute.ping_timeout, 1) def _check_vm_connectivity(self, ip_address, username=None, private_key=None, should_connect=True): """ :param ip_address: server to test against :param username: server's ssh username :param private_key: server's ssh private key to be used :param should_connect: True/False indicates positive/negative test positive - attempt ping and ssh negative - attempt ping and fail if succeed :raises: AssertError if the result of the connectivity check does not match the value of the should_connect param """ if should_connect: msg = "Timed out waiting for %s to become reachable" % ip_address else: msg = "ip address %s is reachable" % ip_address self.assertTrue(self._ping_ip_address(ip_address, should_succeed=should_connect), msg=msg) if should_connect: # no need to check ssh for negative connectivity linux_client = self.get_remote_client(ip_address, username, private_key) linux_client.validate_authentication() def _create_security_group_nova(self, client=None, namestart='secgroup-smoke-', tenant_id=None): if client is None: client = self.compute_client # Create security group sg_name = data_utils.rand_name(namestart) sg_desc = sg_name + " description" secgroup = client.security_groups.create(sg_name, sg_desc) self.assertEqual(secgroup.name, sg_name) self.assertEqual(secgroup.description, sg_desc) self.set_resource(sg_name, secgroup) # Add rules to the security group self._create_loginable_secgroup_rule_nova(client, secgroup.id) return secgroup def _create_security_group_neutron(self, tenant_id, client=None, namestart='secgroup-smoke-'): if client is None: client = self.network_client secgroup = self._create_empty_security_group(namestart=namestart, client=client, tenant_id=tenant_id) # Add rules to the security group rules = self._create_loginable_secgroup_rule_neutron(secgroup=secgroup) for rule in rules: self.assertEqual(tenant_id, rule.tenant_id) self.assertEqual(secgroup.id, rule.security_group_id) return secgroup def _create_empty_security_group(self, tenant_id, client=None, namestart='secgroup-smoke-'): """Create a security group without rules. Default rules will be created: - IPv4 egress to any - IPv6 egress to any :param tenant_id: secgroup will be created in this tenant :returns: DeletableSecurityGroup -- containing the secgroup created """ if client is None: client = self.network_client sg_name = data_utils.rand_name(namestart) sg_desc = sg_name + " description" sg_dict = dict(name=sg_name, description=sg_desc) sg_dict['tenant_id'] = tenant_id body = dict(security_group=sg_dict) result = client.create_security_group(body=body) secgroup = net_common.DeletableSecurityGroup( client=client, **result['security_group'] ) self.assertEqual(secgroup.name, sg_name) self.assertEqual(tenant_id, secgroup.tenant_id) self.assertEqual(secgroup.description, sg_desc) self.set_resource(sg_name, secgroup) return secgroup def _default_security_group(self, tenant_id, client=None): """Get default secgroup for given tenant_id. :returns: DeletableSecurityGroup -- default secgroup for given tenant """ if client is None: client = self.network_client sgs = [ sg for sg in client.list_security_groups().values()[0] if sg['tenant_id'] == tenant_id and sg['name'] == 'default' ] msg = "No default security group for tenant %s." % (tenant_id) self.assertTrue(len(sgs) > 0, msg) if len(sgs) > 1: msg = "Found %d default security groups" % len(sgs) raise exc.NeutronClientNoUniqueMatch(msg=msg) return net_common.DeletableSecurityGroup(client=client, **sgs[0]) def _create_security_group_rule(self, client=None, secgroup=None, tenant_id=None, **kwargs): """Create a rule from a dictionary of rule parameters. Create a rule in a secgroup. if secgroup not defined will search for default secgroup in tenant_id. :param secgroup: type DeletableSecurityGroup. :param secgroup_id: search for secgroup by id default -- choose default secgroup for given tenant_id :param tenant_id: if secgroup not passed -- the tenant in which to search for default secgroup :param kwargs: a dictionary containing rule parameters: for example, to allow incoming ssh: rule = { direction: 'ingress' protocol:'tcp', port_range_min: 22, port_range_max: 22 } """ if client is None: client = self.network_client if secgroup is None: secgroup = self._default_security_group(tenant_id) ruleset = dict(security_group_id=secgroup.id, tenant_id=secgroup.tenant_id, ) ruleset.update(kwargs) body = dict(security_group_rule=dict(ruleset)) sg_rule = client.create_security_group_rule(body=body) sg_rule = net_common.DeletableSecurityGroupRule( client=client, **sg_rule['security_group_rule'] ) self.set_resource(sg_rule.id, sg_rule) self.assertEqual(secgroup.tenant_id, sg_rule.tenant_id) self.assertEqual(secgroup.id, sg_rule.security_group_id) return sg_rule def _create_loginable_secgroup_rule_neutron(self, client=None, secgroup=None): """These rules are intended to permit inbound ssh and icmp traffic from all sources, so no group_id is provided. Setting a group_id would only permit traffic from ports belonging to the same security group. """ if client is None: client = self.network_client rules = [] rulesets = [ dict( # ssh protocol='tcp', port_range_min=22, port_range_max=22, ), dict( # ping protocol='icmp', ) ] for ruleset in rulesets: for r_direction in ['ingress', 'egress']: ruleset['direction'] = r_direction try: sg_rule = self._create_security_group_rule( client=client, secgroup=secgroup, **ruleset) except exc.NeutronClientException as ex: # if rule already exist - skip rule and continue if not (ex.status_code is 409 and 'Security group rule' ' already exists' in ex.message): raise ex else: self.assertEqual(r_direction, sg_rule.direction) rules.append(sg_rule) return rules def _ssh_to_server(self, server, private_key): ssh_login = self.config.compute.image_ssh_user return self.get_remote_client(server, username=ssh_login, private_key=private_key) def _show_quota_network(self, tenant_id): quota = self.network_client.show_quota(tenant_id) return quota['quota']['network'] def _show_quota_subnet(self, tenant_id): quota = self.network_client.show_quota(tenant_id) return quota['quota']['subnet'] def _show_quota_port(self, tenant_id): quota = self.network_client.show_quota(tenant_id) return quota['quota']['port'] def _get_router(self, tenant_id): """Retrieve a router for the given tenant id. If a public router has been configured, it will be returned. If a public router has not been configured, but a public network has, a tenant router will be created and returned that routes traffic to the public network. """ router_id = self.config.network.public_router_id network_id = self.config.network.public_network_id if router_id: result = self.network_client.show_router(router_id) return net_common.AttributeDict(**result['router']) elif network_id: router = self._create_router(tenant_id) router.add_gateway(network_id) return router else: raise Exception("Neither of 'public_router_id' or " "'public_network_id' has been defined.") def _create_router(self, tenant_id, namestart='router-smoke-'): name = data_utils.rand_name(namestart) body = dict( router=dict( name=name, admin_state_up=True, tenant_id=tenant_id, ), ) result = self.network_client.create_router(body=body) router = net_common.DeletableRouter(client=self.network_client, **result['router']) self.assertEqual(router.name, name) self.set_resource(name, router) return router def _create_networks(self, tenant_id=None): """Create a network with a subnet connected to a router. :returns: network, subnet, router """ if tenant_id is None: tenant_id = self.tenant_id network = self._create_network(tenant_id) router = self._get_router(tenant_id) subnet = self._create_subnet(network) subnet.add_to_router(router.id) self.networks.append(network) self.subnets.append(subnet) self.routers.append(router) return network, subnet, router class OrchestrationScenarioTest(OfficialClientTest): """ Base class for orchestration scenario tests """ @classmethod def setUpClass(cls): super(OrchestrationScenarioTest, cls).setUpClass() if not cls.config.service_available.heat: raise cls.skipException("Heat support is required") @classmethod def credentials(cls): username = cls.config.identity.admin_username password = cls.config.identity.admin_password tenant_name = cls.config.identity.tenant_name return username, password, tenant_name def _load_template(self, base_file, file_name): filepath = os.path.join(os.path.dirname(os.path.realpath(base_file)), file_name) with open(filepath) as f: return f.read() @classmethod def _stack_rand_name(cls): return data_utils.rand_name(cls.__name__ + '-') @classmethod def _get_default_network(cls): networks = cls.network_client.list_networks() for net in networks['networks']: if net['name'] == cls.config.compute.fixed_network_name: return net class FusionScenarioTest(OfficialClientTest): """ Base class for orchestration scenario tests """ @classmethod def setUpClass(cls): super(FusionScenarioTest, cls).setUpClass() if not cls.config.service_available.heat: raise cls.skipException("Heat support is required") @classmethod def credentials(cls): username = cls.config.identity.admin_username password = cls.config.identity.admin_password tenant_name = cls.config.identity.tenant_name return username, password, tenant_name def _load_template(self, base_file, file_name): filepath = os.path.join(os.path.dirname(os.path.realpath(base_file)), file_name) with open(filepath) as f: return f.read() @classmethod def _stack_rand_name(cls): return data_utils.rand_name(cls.__name__ + '-') # @classmethod # def _get_default_network(cls): # networks = cls.network_client.list_networks() # for net in networks['networks']: # if net['name'] == cls.config.compute.fixed_network_name: # return net #
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define API Subscriptions.""" from gcloud.exceptions import NotFound from gcloud.pubsub._helpers import topic_name_from_path from gcloud.pubsub.message import Message class Subscription(object): """Subscriptions receive messages published to their topics. See: https://cloud.google.com/pubsub/reference/rest/v1/projects.subscriptions :type name: string :param name: the name of the subscription :type topic: :class:`gcloud.pubsub.topic.Topic` :param topic: the topic to which the subscription belongs.. :type ack_deadline: int :param ack_deadline: the deadline (in seconds) by which messages pulled from the back-end must be acknowledged. :type push_endpoint: string :param push_endpoint: URL to which messages will be pushed by the back-end. If not set, the application must pull messages. """ def __init__(self, name, topic, ack_deadline=None, push_endpoint=None): self.name = name self.topic = topic self.ack_deadline = ack_deadline self.push_endpoint = push_endpoint @classmethod def from_api_repr(cls, resource, client, topics=None): """Factory: construct a topic given its API representation :type resource: dict :param resource: topic resource representation returned from the API :type client: :class:`gcloud.pubsub.client.Client` :param client: Client which holds credentials and project configuration for a topic. :type topics: dict or None :param topics: A mapping of topic names -> topics. If not passed, the subscription will have a newly-created topic. :rtype: :class:`gcloud.pubsub.subscription.Subscription` :returns: Subscription parsed from ``resource``. """ if topics is None: topics = {} topic_path = resource['topic'] topic = topics.get(topic_path) if topic is None: # NOTE: This duplicates behavior from Topic.from_api_repr to avoid # an import cycle. topic_name = topic_name_from_path(topic_path, client.project) topic = topics[topic_path] = client.topic(topic_name) _, _, _, name = resource['name'].split('/') ack_deadline = resource.get('ackDeadlineSeconds') push_config = resource.get('pushConfig', {}) push_endpoint = push_config.get('pushEndpoint') return cls(name, topic, ack_deadline, push_endpoint) @property def path(self): """URL path for the subscription's APIs""" project = self.topic.project return '/projects/%s/subscriptions/%s' % (project, self.name) def _require_client(self, client): """Check client or verify over-ride. :type client: :class:`gcloud.pubsub.client.Client` or ``NoneType`` :param client: the client to use. If not passed, falls back to the ``client`` stored on the topic of the current subscription. :rtype: :class:`gcloud.pubsub.client.Client` :returns: The client passed in or the currently bound client. """ if client is None: client = self.topic._client return client def create(self, client=None): """API call: create the subscription via a PUT request See: https://cloud.google.com/pubsub/reference/rest/v1/projects.subscriptions/create :type client: :class:`gcloud.pubsub.client.Client` or ``NoneType`` :param client: the client to use. If not passed, falls back to the ``client`` stored on the current subscription's topic. """ data = {'topic': self.topic.full_name} if self.ack_deadline is not None: data['ackDeadlineSeconds'] = self.ack_deadline if self.push_endpoint is not None: data['pushConfig'] = {'pushEndpoint': self.push_endpoint} client = self._require_client(client) client.connection.api_request(method='PUT', path=self.path, data=data) def exists(self, client=None): """API call: test existence of the subscription via a GET request See https://cloud.google.com/pubsub/reference/rest/v1/projects.subscriptions/get :type client: :class:`gcloud.pubsub.client.Client` or ``NoneType`` :param client: the client to use. If not passed, falls back to the ``client`` stored on the current subscription's topic. """ client = self._require_client(client) try: client.connection.api_request(method='GET', path=self.path) except NotFound: return False else: return True def reload(self, client=None): """API call: sync local subscription configuration via a GET request See https://cloud.google.com/pubsub/reference/rest/v1/projects.subscriptions/get :type client: :class:`gcloud.pubsub.client.Client` or ``NoneType`` :param client: the client to use. If not passed, falls back to the ``client`` stored on the current subscription's topic. """ client = self._require_client(client) data = client.connection.api_request(method='GET', path=self.path) self.ack_deadline = data.get('ackDeadlineSeconds') push_config = data.get('pushConfig', {}) self.push_endpoint = push_config.get('pushEndpoint') def modify_push_configuration(self, push_endpoint, client=None): """API call: update the push endpoint for the subscription. See: https://cloud.google.com/pubsub/reference/rest/v1/projects.subscriptions/modifyPushConfig :type push_endpoint: string :param push_endpoint: URL to which messages will be pushed by the back-end. If None, the application must pull messages. :type client: :class:`gcloud.pubsub.client.Client` or ``NoneType`` :param client: the client to use. If not passed, falls back to the ``client`` stored on the current subscription's topic. """ client = self._require_client(client) data = {} config = data['pushConfig'] = {} if push_endpoint is not None: config['pushEndpoint'] = push_endpoint client.connection.api_request( method='POST', path='%s:modifyPushConfig' % (self.path,), data=data) self.push_endpoint = push_endpoint def pull(self, return_immediately=False, max_messages=1, client=None): """API call: retrieve messages for the subscription. See: https://cloud.google.com/pubsub/reference/rest/v1/projects.subscriptions/pull :type return_immediately: boolean :param return_immediately: if True, the back-end returns even if no messages are available; if False, the API call blocks until one or more messages are available. :type max_messages: int :param max_messages: the maximum number of messages to return. :type client: :class:`gcloud.pubsub.client.Client` or ``NoneType`` :param client: the client to use. If not passed, falls back to the ``client`` stored on the current subscription's topic. :rtype: list of (ack_id, message) tuples :returns: sequence of tuples: ``ack_id`` is the ID to be used in a subsequent call to :meth:`acknowledge`, and ``message`` is an instance of :class:`gcloud.pubsub.message.Message`. """ client = self._require_client(client) data = {'returnImmediately': return_immediately, 'maxMessages': max_messages} response = client.connection.api_request( method='POST', path='%s:pull' % (self.path,), data=data) return [(info['ackId'], Message.from_api_repr(info['message'])) for info in response.get('receivedMessages', ())] def acknowledge(self, ack_ids, client=None): """API call: acknowledge retrieved messages for the subscription. See: https://cloud.google.com/pubsub/reference/rest/v1/projects.subscriptions/acknowledge :type ack_ids: list of string :param ack_ids: ack IDs of messages being acknowledged :type client: :class:`gcloud.pubsub.client.Client` or ``NoneType`` :param client: the client to use. If not passed, falls back to the ``client`` stored on the current subscription's topic. """ client = self._require_client(client) data = {'ackIds': ack_ids} client.connection.api_request( method='POST', path='%s:acknowledge' % (self.path,), data=data) def modify_ack_deadline(self, ack_id, ack_deadline, client=None): """API call: update acknowledgement deadline for a retrieved message. See: https://cloud.google.com/pubsub/reference/rest/v1/projects.subscriptions/acknowledge :type ack_id: string :param ack_id: ack ID of message being updated :type ack_deadline: int :param ack_deadline: new deadline for the message, in seconds :type client: :class:`gcloud.pubsub.client.Client` or ``NoneType`` :param client: the client to use. If not passed, falls back to the ``client`` stored on the current subscription's topic. """ client = self._require_client(client) data = {'ackIds': [ack_id], 'ackDeadlineSeconds': ack_deadline} client.connection.api_request( method='POST', path='%s:modifyAckDeadline' % (self.path,), data=data) def delete(self, client=None): """API call: delete the subscription via a DELETE request. See: https://cloud.google.com/pubsub/reference/rest/v1/projects.subscriptions/delete :type client: :class:`gcloud.pubsub.client.Client` or ``NoneType`` :param client: the client to use. If not passed, falls back to the ``client`` stored on the current subscription's topic. """ client = self._require_client(client) client.connection.api_request(method='DELETE', path=self.path)
"""Support for Epson projector.""" import logging from epson_projector.const import ( BACK, BUSY, CMODE, CMODE_LIST, CMODE_LIST_SET, DEFAULT_SOURCES, EPSON_CODES, FAST, INV_SOURCES, MUTE, PAUSE, PLAY, POWER, SOURCE, SOURCE_LIST, STATE_UNAVAILABLE as EPSON_STATE_UNAVAILABLE, TURN_OFF, TURN_ON, VOL_DOWN, VOL_UP, VOLUME, ) import voluptuous as vol from homeassistant.components.media_player import PLATFORM_SCHEMA, MediaPlayerEntity from homeassistant.components.media_player.const import ( SUPPORT_NEXT_TRACK, SUPPORT_PREVIOUS_TRACK, SUPPORT_SELECT_SOURCE, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_STEP, ) from homeassistant.config_entries import SOURCE_IMPORT from homeassistant.const import CONF_HOST, CONF_NAME, CONF_PORT, STATE_OFF, STATE_ON from homeassistant.helpers import entity_platform import homeassistant.helpers.config_validation as cv from .const import ATTR_CMODE, DEFAULT_NAME, DOMAIN, SERVICE_SELECT_CMODE _LOGGER = logging.getLogger(__name__) SUPPORT_EPSON = ( SUPPORT_TURN_ON | SUPPORT_TURN_OFF | SUPPORT_SELECT_SOURCE | SUPPORT_VOLUME_MUTE | SUPPORT_VOLUME_STEP | SUPPORT_NEXT_TRACK | SUPPORT_PREVIOUS_TRACK ) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_PORT, default=80): cv.port, } ) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up the Epson projector from a config entry.""" unique_id = config_entry.entry_id projector = hass.data[DOMAIN][unique_id] projector_entity = EpsonProjectorMediaPlayer( projector, config_entry.title, unique_id ) async_add_entities([projector_entity], True) platform = entity_platform.current_platform.get() platform.async_register_entity_service( SERVICE_SELECT_CMODE, {vol.Required(ATTR_CMODE): vol.All(cv.string, vol.Any(*CMODE_LIST_SET))}, SERVICE_SELECT_CMODE, ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the Epson projector.""" hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data=config ) ) class EpsonProjectorMediaPlayer(MediaPlayerEntity): """Representation of Epson Projector Device.""" def __init__(self, projector, name, unique_id): """Initialize entity to control Epson projector.""" self._name = name self._projector = projector self._available = False self._cmode = None self._source_list = list(DEFAULT_SOURCES.values()) self._source = None self._volume = None self._state = None self._unique_id = unique_id async def async_update(self): """Update state of device.""" power_state = await self._projector.get_property(POWER) _LOGGER.debug("Projector status: %s", power_state) if not power_state or power_state == EPSON_STATE_UNAVAILABLE: self._available = False return self._available = True if power_state == EPSON_CODES[POWER]: self._state = STATE_ON self._source_list = list(DEFAULT_SOURCES.values()) cmode = await self._projector.get_property(CMODE) self._cmode = CMODE_LIST.get(cmode, self._cmode) source = await self._projector.get_property(SOURCE) self._source = SOURCE_LIST.get(source, self._source) volume = await self._projector.get_property(VOLUME) if volume: self._volume = volume elif power_state == BUSY: self._state = STATE_ON else: self._state = STATE_OFF @property def name(self): """Return the name of the device.""" return self._name @property def unique_id(self): """Return unique ID.""" return self._unique_id @property def state(self): """Return the state of the device.""" return self._state @property def available(self): """Return if projector is available.""" return self._available @property def supported_features(self): """Flag media player features that are supported.""" return SUPPORT_EPSON async def async_turn_on(self): """Turn on epson.""" if self._state == STATE_OFF: await self._projector.send_command(TURN_ON) async def async_turn_off(self): """Turn off epson.""" if self._state == STATE_ON: await self._projector.send_command(TURN_OFF) @property def source_list(self): """List of available input sources.""" return self._source_list @property def source(self): """Get current input sources.""" return self._source @property def volume_level(self): """Return the volume level of the media player (0..1).""" return self._volume async def select_cmode(self, cmode): """Set color mode in Epson.""" await self._projector.send_command(CMODE_LIST_SET[cmode]) async def async_select_source(self, source): """Select input source.""" selected_source = INV_SOURCES[source] await self._projector.send_command(selected_source) async def async_mute_volume(self, mute): """Mute (true) or unmute (false) sound.""" await self._projector.send_command(MUTE) async def async_volume_up(self): """Increase volume.""" await self._projector.send_command(VOL_UP) async def async_volume_down(self): """Decrease volume.""" await self._projector.send_command(VOL_DOWN) async def async_media_play(self): """Play media via Epson.""" await self._projector.send_command(PLAY) async def async_media_pause(self): """Pause media via Epson.""" await self._projector.send_command(PAUSE) async def async_media_next_track(self): """Skip to next.""" await self._projector.send_command(FAST) async def async_media_previous_track(self): """Skip to previous.""" await self._projector.send_command(BACK) @property def device_state_attributes(self): """Return device specific state attributes.""" if self._cmode is None: return {} return {ATTR_CMODE: self._cmode}
# sqlalchemy/events.py # Copyright (C) 2005-2016 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Core event interfaces.""" from . import event, exc from .pool import Pool from .engine import Connectable, Engine, Dialect from .sql.base import SchemaEventTarget class DDLEvents(event.Events): """ Define event listeners for schema objects, that is, :class:`.SchemaItem` and other :class:`.SchemaEventTarget` subclasses, including :class:`.MetaData`, :class:`.Table`, :class:`.Column`. :class:`.MetaData` and :class:`.Table` support events specifically regarding when CREATE and DROP DDL is emitted to the database. Attachment events are also provided to customize behavior whenever a child schema element is associated with a parent, such as, when a :class:`.Column` is associated with its :class:`.Table`, when a :class:`.ForeignKeyConstraint` is associated with a :class:`.Table`, etc. Example using the ``after_create`` event:: from sqlalchemy import event from sqlalchemy import Table, Column, Metadata, Integer m = MetaData() some_table = Table('some_table', m, Column('data', Integer)) def after_create(target, connection, **kw): connection.execute("ALTER TABLE %s SET name=foo_%s" % (target.name, target.name)) event.listen(some_table, "after_create", after_create) DDL events integrate closely with the :class:`.DDL` class and the :class:`.DDLElement` hierarchy of DDL clause constructs, which are themselves appropriate as listener callables:: from sqlalchemy import DDL event.listen( some_table, "after_create", DDL("ALTER TABLE %(table)s SET name=foo_%(table)s") ) The methods here define the name of an event as well as the names of members that are passed to listener functions. See also: :ref:`event_toplevel` :class:`.DDLElement` :class:`.DDL` :ref:`schema_ddl_sequences` """ _target_class_doc = "SomeSchemaClassOrObject" _dispatch_target = SchemaEventTarget def before_create(self, target, connection, **kw): """Called before CREATE statements are emitted. :param target: the :class:`.MetaData` or :class:`.Table` object which is the target of the event. :param connection: the :class:`.Connection` where the CREATE statement or statements will be emitted. :param \**kw: additional keyword arguments relevant to the event. The contents of this dictionary may vary across releases, and include the list of tables being generated for a metadata-level event, the checkfirst flag, and other elements used by internal events. """ def after_create(self, target, connection, **kw): """Called after CREATE statements are emitted. :param target: the :class:`.MetaData` or :class:`.Table` object which is the target of the event. :param connection: the :class:`.Connection` where the CREATE statement or statements have been emitted. :param \**kw: additional keyword arguments relevant to the event. The contents of this dictionary may vary across releases, and include the list of tables being generated for a metadata-level event, the checkfirst flag, and other elements used by internal events. """ def before_drop(self, target, connection, **kw): """Called before DROP statements are emitted. :param target: the :class:`.MetaData` or :class:`.Table` object which is the target of the event. :param connection: the :class:`.Connection` where the DROP statement or statements will be emitted. :param \**kw: additional keyword arguments relevant to the event. The contents of this dictionary may vary across releases, and include the list of tables being generated for a metadata-level event, the checkfirst flag, and other elements used by internal events. """ def after_drop(self, target, connection, **kw): """Called after DROP statements are emitted. :param target: the :class:`.MetaData` or :class:`.Table` object which is the target of the event. :param connection: the :class:`.Connection` where the DROP statement or statements have been emitted. :param \**kw: additional keyword arguments relevant to the event. The contents of this dictionary may vary across releases, and include the list of tables being generated for a metadata-level event, the checkfirst flag, and other elements used by internal events. """ def before_parent_attach(self, target, parent): """Called before a :class:`.SchemaItem` is associated with a parent :class:`.SchemaItem`. :param target: the target object :param parent: the parent to which the target is being attached. :func:`.event.listen` also accepts a modifier for this event: :param propagate=False: When True, the listener function will be established for any copies made of the target object, i.e. those copies that are generated when :meth:`.Table.tometadata` is used. """ def after_parent_attach(self, target, parent): """Called after a :class:`.SchemaItem` is associated with a parent :class:`.SchemaItem`. :param target: the target object :param parent: the parent to which the target is being attached. :func:`.event.listen` also accepts a modifier for this event: :param propagate=False: When True, the listener function will be established for any copies made of the target object, i.e. those copies that are generated when :meth:`.Table.tometadata` is used. """ def column_reflect(self, inspector, table, column_info): """Called for each unit of 'column info' retrieved when a :class:`.Table` is being reflected. The dictionary of column information as returned by the dialect is passed, and can be modified. The dictionary is that returned in each element of the list returned by :meth:`.reflection.Inspector.get_columns`. The event is called before any action is taken against this dictionary, and the contents can be modified. The :class:`.Column` specific arguments ``info``, ``key``, and ``quote`` can also be added to the dictionary and will be passed to the constructor of :class:`.Column`. Note that this event is only meaningful if either associated with the :class:`.Table` class across the board, e.g.:: from sqlalchemy.schema import Table from sqlalchemy import event def listen_for_reflect(inspector, table, column_info): "receive a column_reflect event" # ... event.listen( Table, 'column_reflect', listen_for_reflect) ...or with a specific :class:`.Table` instance using the ``listeners`` argument:: def listen_for_reflect(inspector, table, column_info): "receive a column_reflect event" # ... t = Table( 'sometable', autoload=True, listeners=[ ('column_reflect', listen_for_reflect) ]) This because the reflection process initiated by ``autoload=True`` completes within the scope of the constructor for :class:`.Table`. """ class PoolEvents(event.Events): """Available events for :class:`.Pool`. The methods here define the name of an event as well as the names of members that are passed to listener functions. e.g.:: from sqlalchemy import event def my_on_checkout(dbapi_conn, connection_rec, connection_proxy): "handle an on checkout event" event.listen(Pool, 'checkout', my_on_checkout) In addition to accepting the :class:`.Pool` class and :class:`.Pool` instances, :class:`.PoolEvents` also accepts :class:`.Engine` objects and the :class:`.Engine` class as targets, which will be resolved to the ``.pool`` attribute of the given engine or the :class:`.Pool` class:: engine = create_engine("postgresql://scott:tiger@localhost/test") # will associate with engine.pool event.listen(engine, 'checkout', my_on_checkout) """ _target_class_doc = "SomeEngineOrPool" _dispatch_target = Pool @classmethod def _accept_with(cls, target): if isinstance(target, type): if issubclass(target, Engine): return Pool elif issubclass(target, Pool): return target elif isinstance(target, Engine): return target.pool else: return target def connect(self, dbapi_connection, connection_record): """Called at the moment a particular DBAPI connection is first created for a given :class:`.Pool`. This event allows one to capture the point directly after which the DBAPI module-level ``.connect()`` method has been used in order to produce a new DBAPI connection. :param dbapi_connection: a DBAPI connection. :param connection_record: the :class:`._ConnectionRecord` managing the DBAPI connection. """ def first_connect(self, dbapi_connection, connection_record): """Called exactly once for the first time a DBAPI connection is checked out from a particular :class:`.Pool`. The rationale for :meth:`.PoolEvents.first_connect` is to determine information about a particular series of database connections based on the settings used for all connections. Since a particular :class:`.Pool` refers to a single "creator" function (which in terms of a :class:`.Engine` refers to the URL and connection options used), it is typically valid to make observations about a single connection that can be safely assumed to be valid about all subsequent connections, such as the database version, the server and client encoding settings, collation settings, and many others. :param dbapi_connection: a DBAPI connection. :param connection_record: the :class:`._ConnectionRecord` managing the DBAPI connection. """ def checkout(self, dbapi_connection, connection_record, connection_proxy): """Called when a connection is retrieved from the Pool. :param dbapi_connection: a DBAPI connection. :param connection_record: the :class:`._ConnectionRecord` managing the DBAPI connection. :param connection_proxy: the :class:`._ConnectionFairy` object which will proxy the public interface of the DBAPI connection for the lifespan of the checkout. If you raise a :class:`~sqlalchemy.exc.DisconnectionError`, the current connection will be disposed and a fresh connection retrieved. Processing of all checkout listeners will abort and restart using the new connection. .. seealso:: :meth:`.ConnectionEvents.engine_connect` - a similar event which occurs upon creation of a new :class:`.Connection`. """ def checkin(self, dbapi_connection, connection_record): """Called when a connection returns to the pool. Note that the connection may be closed, and may be None if the connection has been invalidated. ``checkin`` will not be called for detached connections. (They do not return to the pool.) :param dbapi_connection: a DBAPI connection. :param connection_record: the :class:`._ConnectionRecord` managing the DBAPI connection. """ def reset(self, dbapi_connection, connection_record): """Called before the "reset" action occurs for a pooled connection. This event represents when the ``rollback()`` method is called on the DBAPI connection before it is returned to the pool. The behavior of "reset" can be controlled, including disabled, using the ``reset_on_return`` pool argument. The :meth:`.PoolEvents.reset` event is usually followed by the :meth:`.PoolEvents.checkin` event is called, except in those cases where the connection is discarded immediately after reset. :param dbapi_connection: a DBAPI connection. :param connection_record: the :class:`._ConnectionRecord` managing the DBAPI connection. .. versionadded:: 0.8 .. seealso:: :meth:`.ConnectionEvents.rollback` :meth:`.ConnectionEvents.commit` """ def invalidate(self, dbapi_connection, connection_record, exception): """Called when a DBAPI connection is to be "invalidated". This event is called any time the :meth:`._ConnectionRecord.invalidate` method is invoked, either from API usage or via "auto-invalidation", without the ``soft`` flag. The event occurs before a final attempt to call ``.close()`` on the connection occurs. :param dbapi_connection: a DBAPI connection. :param connection_record: the :class:`._ConnectionRecord` managing the DBAPI connection. :param exception: the exception object corresponding to the reason for this invalidation, if any. May be ``None``. .. versionadded:: 0.9.2 Added support for connection invalidation listening. .. seealso:: :ref:`pool_connection_invalidation` """ def soft_invalidate(self, dbapi_connection, connection_record, exception): """Called when a DBAPI connection is to be "soft invalidated". This event is called any time the :meth:`._ConnectionRecord.invalidate` method is invoked with the ``soft`` flag. Soft invalidation refers to when the connection record that tracks this connection will force a reconnect after the current connection is checked in. It does not actively close the dbapi_connection at the point at which it is called. .. versionadded:: 1.0.3 """ def close(self, dbapi_connection, connection_record): """Called when a DBAPI connection is closed. The event is emitted before the close occurs. The close of a connection can fail; typically this is because the connection is already closed. If the close operation fails, the connection is discarded. The :meth:`.close` event corresponds to a connection that's still associated with the pool. To intercept close events for detached connections use :meth:`.close_detached`. .. versionadded:: 1.1 """ def detach(self, dbapi_connection, connection_record): """Called when a DBAPI connection is "detached" from a pool. This event is emitted after the detach occurs. The connection is no longer associated with the given connection record. .. versionadded:: 1.1 """ def close_detached(self, dbapi_connection): """Called when a detached DBAPI connection is closed. The event is emitted before the close occurs. The close of a connection can fail; typically this is because the connection is already closed. If the close operation fails, the connection is discarded. .. versionadded:: 1.1 """ class ConnectionEvents(event.Events): """Available events for :class:`.Connectable`, which includes :class:`.Connection` and :class:`.Engine`. The methods here define the name of an event as well as the names of members that are passed to listener functions. An event listener can be associated with any :class:`.Connectable` class or instance, such as an :class:`.Engine`, e.g.:: from sqlalchemy import event, create_engine def before_cursor_execute(conn, cursor, statement, parameters, context, executemany): log.info("Received statement: %s", statement) engine = create_engine('postgresql://scott:tiger@localhost/test') event.listen(engine, "before_cursor_execute", before_cursor_execute) or with a specific :class:`.Connection`:: with engine.begin() as conn: @event.listens_for(conn, 'before_cursor_execute') def before_cursor_execute(conn, cursor, statement, parameters, context, executemany): log.info("Received statement: %s", statement) When the methods are called with a `statement` parameter, such as in :meth:`.after_cursor_execute`, :meth:`.before_cursor_execute` and :meth:`.dbapi_error`, the statement is the exact SQL string that was prepared for transmission to the DBAPI ``cursor`` in the connection's :class:`.Dialect`. The :meth:`.before_execute` and :meth:`.before_cursor_execute` events can also be established with the ``retval=True`` flag, which allows modification of the statement and parameters to be sent to the database. The :meth:`.before_cursor_execute` event is particularly useful here to add ad-hoc string transformations, such as comments, to all executions:: from sqlalchemy.engine import Engine from sqlalchemy import event @event.listens_for(Engine, "before_cursor_execute", retval=True) def comment_sql_calls(conn, cursor, statement, parameters, context, executemany): statement = statement + " -- some comment" return statement, parameters .. note:: :class:`.ConnectionEvents` can be established on any combination of :class:`.Engine`, :class:`.Connection`, as well as instances of each of those classes. Events across all four scopes will fire off for a given instance of :class:`.Connection`. However, for performance reasons, the :class:`.Connection` object determines at instantiation time whether or not its parent :class:`.Engine` has event listeners established. Event listeners added to the :class:`.Engine` class or to an instance of :class:`.Engine` *after* the instantiation of a dependent :class:`.Connection` instance will usually *not* be available on that :class:`.Connection` instance. The newly added listeners will instead take effect for :class:`.Connection` instances created subsequent to those event listeners being established on the parent :class:`.Engine` class or instance. :param retval=False: Applies to the :meth:`.before_execute` and :meth:`.before_cursor_execute` events only. When True, the user-defined event function must have a return value, which is a tuple of parameters that replace the given statement and parameters. See those methods for a description of specific return arguments. .. versionchanged:: 0.8 :class:`.ConnectionEvents` can now be associated with any :class:`.Connectable` including :class:`.Connection`, in addition to the existing support for :class:`.Engine`. """ _target_class_doc = "SomeEngine" _dispatch_target = Connectable @classmethod def _listen(cls, event_key, retval=False): target, identifier, fn = \ event_key.dispatch_target, event_key.identifier, \ event_key._listen_fn target._has_events = True if not retval: if identifier == 'before_execute': orig_fn = fn def wrap_before_execute(conn, clauseelement, multiparams, params): orig_fn(conn, clauseelement, multiparams, params) return clauseelement, multiparams, params fn = wrap_before_execute elif identifier == 'before_cursor_execute': orig_fn = fn def wrap_before_cursor_execute(conn, cursor, statement, parameters, context, executemany): orig_fn(conn, cursor, statement, parameters, context, executemany) return statement, parameters fn = wrap_before_cursor_execute elif retval and \ identifier not in ('before_execute', 'before_cursor_execute', 'handle_error'): raise exc.ArgumentError( "Only the 'before_execute', " "'before_cursor_execute' and 'handle_error' engine " "event listeners accept the 'retval=True' " "argument.") event_key.with_wrapper(fn).base_listen() def before_execute(self, conn, clauseelement, multiparams, params): """Intercept high level execute() events, receiving uncompiled SQL constructs and other objects prior to rendering into SQL. This event is good for debugging SQL compilation issues as well as early manipulation of the parameters being sent to the database, as the parameter lists will be in a consistent format here. This event can be optionally established with the ``retval=True`` flag. The ``clauseelement``, ``multiparams``, and ``params`` arguments should be returned as a three-tuple in this case:: @event.listens_for(Engine, "before_execute", retval=True) def before_execute(conn, conn, clauseelement, multiparams, params): # do something with clauseelement, multiparams, params return clauseelement, multiparams, params :param conn: :class:`.Connection` object :param clauseelement: SQL expression construct, :class:`.Compiled` instance, or string statement passed to :meth:`.Connection.execute`. :param multiparams: Multiple parameter sets, a list of dictionaries. :param params: Single parameter set, a single dictionary. See also: :meth:`.before_cursor_execute` """ def after_execute(self, conn, clauseelement, multiparams, params, result): """Intercept high level execute() events after execute. :param conn: :class:`.Connection` object :param clauseelement: SQL expression construct, :class:`.Compiled` instance, or string statement passed to :meth:`.Connection.execute`. :param multiparams: Multiple parameter sets, a list of dictionaries. :param params: Single parameter set, a single dictionary. :param result: :class:`.ResultProxy` generated by the execution. """ def before_cursor_execute(self, conn, cursor, statement, parameters, context, executemany): """Intercept low-level cursor execute() events before execution, receiving the string SQL statement and DBAPI-specific parameter list to be invoked against a cursor. This event is a good choice for logging as well as late modifications to the SQL string. It's less ideal for parameter modifications except for those which are specific to a target backend. This event can be optionally established with the ``retval=True`` flag. The ``statement`` and ``parameters`` arguments should be returned as a two-tuple in this case:: @event.listens_for(Engine, "before_cursor_execute", retval=True) def before_cursor_execute(conn, cursor, statement, parameters, context, executemany): # do something with statement, parameters return statement, parameters See the example at :class:`.ConnectionEvents`. :param conn: :class:`.Connection` object :param cursor: DBAPI cursor object :param statement: string SQL statement, as to be passed to the DBAPI :param parameters: Dictionary, tuple, or list of parameters being passed to the ``execute()`` or ``executemany()`` method of the DBAPI ``cursor``. In some cases may be ``None``. :param context: :class:`.ExecutionContext` object in use. May be ``None``. :param executemany: boolean, if ``True``, this is an ``executemany()`` call, if ``False``, this is an ``execute()`` call. See also: :meth:`.before_execute` :meth:`.after_cursor_execute` """ def after_cursor_execute(self, conn, cursor, statement, parameters, context, executemany): """Intercept low-level cursor execute() events after execution. :param conn: :class:`.Connection` object :param cursor: DBAPI cursor object. Will have results pending if the statement was a SELECT, but these should not be consumed as they will be needed by the :class:`.ResultProxy`. :param statement: string SQL statement, as passed to the DBAPI :param parameters: Dictionary, tuple, or list of parameters being passed to the ``execute()`` or ``executemany()`` method of the DBAPI ``cursor``. In some cases may be ``None``. :param context: :class:`.ExecutionContext` object in use. May be ``None``. :param executemany: boolean, if ``True``, this is an ``executemany()`` call, if ``False``, this is an ``execute()`` call. """ def dbapi_error(self, conn, cursor, statement, parameters, context, exception): """Intercept a raw DBAPI error. This event is called with the DBAPI exception instance received from the DBAPI itself, *before* SQLAlchemy wraps the exception with it's own exception wrappers, and before any other operations are performed on the DBAPI cursor; the existing transaction remains in effect as well as any state on the cursor. The use case here is to inject low-level exception handling into an :class:`.Engine`, typically for logging and debugging purposes. .. warning:: Code should **not** modify any state or throw any exceptions here as this will interfere with SQLAlchemy's cleanup and error handling routines. For exception modification, please refer to the new :meth:`.ConnectionEvents.handle_error` event. Subsequent to this hook, SQLAlchemy may attempt any number of operations on the connection/cursor, including closing the cursor, rolling back of the transaction in the case of connectionless execution, and disposing of the entire connection pool if a "disconnect" was detected. The exception is then wrapped in a SQLAlchemy DBAPI exception wrapper and re-thrown. :param conn: :class:`.Connection` object :param cursor: DBAPI cursor object :param statement: string SQL statement, as passed to the DBAPI :param parameters: Dictionary, tuple, or list of parameters being passed to the ``execute()`` or ``executemany()`` method of the DBAPI ``cursor``. In some cases may be ``None``. :param context: :class:`.ExecutionContext` object in use. May be ``None``. :param exception: The **unwrapped** exception emitted directly from the DBAPI. The class here is specific to the DBAPI module in use. .. deprecated:: 0.9.7 - replaced by :meth:`.ConnectionEvents.handle_error` """ def handle_error(self, exception_context): """Intercept all exceptions processed by the :class:`.Connection`. This includes all exceptions emitted by the DBAPI as well as within SQLAlchemy's statement invocation process, including encoding errors and other statement validation errors. Other areas in which the event is invoked include transaction begin and end, result row fetching, cursor creation. Note that :meth:`.handle_error` may support new kinds of exceptions and new calling scenarios at *any time*. Code which uses this event must expect new calling patterns to be present in minor releases. To support the wide variety of members that correspond to an exception, as well as to allow extensibility of the event without backwards incompatibility, the sole argument received is an instance of :class:`.ExceptionContext`. This object contains data members representing detail about the exception. Use cases supported by this hook include: * read-only, low-level exception handling for logging and debugging purposes * exception re-writing The hook is called while the cursor from the failed operation (if any) is still open and accessible. Special cleanup operations can be called on this cursor; SQLAlchemy will attempt to close this cursor subsequent to this hook being invoked. If the connection is in "autocommit" mode, the transaction also remains open within the scope of this hook; the rollback of the per-statement transaction also occurs after the hook is called. The user-defined event handler has two options for replacing the SQLAlchemy-constructed exception into one that is user defined. It can either raise this new exception directly, in which case all further event listeners are bypassed and the exception will be raised, after appropriate cleanup as taken place:: @event.listens_for(Engine, "handle_error") def handle_exception(context): if isinstance(context.original_exception, psycopg2.OperationalError) and \\ "failed" in str(context.original_exception): raise MySpecialException("failed operation") .. warning:: Because the :meth:`.ConnectionEvents.handle_error` event specifically provides for exceptions to be re-thrown as the ultimate exception raised by the failed statement, **stack traces will be misleading** if the user-defined event handler itself fails and throws an unexpected exception; the stack trace may not illustrate the actual code line that failed! It is advised to code carefully here and use logging and/or inline debugging if unexpected exceptions are occurring. Alternatively, a "chained" style of event handling can be used, by configuring the handler with the ``retval=True`` modifier and returning the new exception instance from the function. In this case, event handling will continue onto the next handler. The "chained" exception is available using :attr:`.ExceptionContext.chained_exception`:: @event.listens_for(Engine, "handle_error", retval=True) def handle_exception(context): if context.chained_exception is not None and \\ "special" in context.chained_exception.message: return MySpecialException("failed", cause=context.chained_exception) Handlers that return ``None`` may remain within this chain; the last non-``None`` return value is the one that continues to be passed to the next handler. When a custom exception is raised or returned, SQLAlchemy raises this new exception as-is, it is not wrapped by any SQLAlchemy object. If the exception is not a subclass of :class:`sqlalchemy.exc.StatementError`, certain features may not be available; currently this includes the ORM's feature of adding a detail hint about "autoflush" to exceptions raised within the autoflush process. :param context: an :class:`.ExceptionContext` object. See this class for details on all available members. .. versionadded:: 0.9.7 Added the :meth:`.ConnectionEvents.handle_error` hook. .. versionchanged:: 1.0.0 The :meth:`.handle_error` event is now invoked when an :class:`.Engine` fails during the initial call to :meth:`.Engine.connect`, as well as when a :class:`.Connection` object encounters an error during a reconnect operation. .. versionchanged:: 1.0.0 The :meth:`.handle_error` event is not fired off when a dialect makes use of the ``skip_user_error_events`` execution option. This is used by dialects which intend to catch SQLAlchemy-specific exceptions within specific operations, such as when the MySQL dialect detects a table not present within the ``has_table()`` dialect method. Prior to 1.0.0, code which implements :meth:`.handle_error` needs to ensure that exceptions thrown in these scenarios are re-raised without modification. """ def engine_connect(self, conn, branch): """Intercept the creation of a new :class:`.Connection`. This event is called typically as the direct result of calling the :meth:`.Engine.connect` method. It differs from the :meth:`.PoolEvents.connect` method, which refers to the actual connection to a database at the DBAPI level; a DBAPI connection may be pooled and reused for many operations. In contrast, this event refers only to the production of a higher level :class:`.Connection` wrapper around such a DBAPI connection. It also differs from the :meth:`.PoolEvents.checkout` event in that it is specific to the :class:`.Connection` object, not the DBAPI connection that :meth:`.PoolEvents.checkout` deals with, although this DBAPI connection is available here via the :attr:`.Connection.connection` attribute. But note there can in fact be multiple :meth:`.PoolEvents.checkout` events within the lifespan of a single :class:`.Connection` object, if that :class:`.Connection` is invalidated and re-established. There can also be multiple :class:`.Connection` objects generated for the same already-checked-out DBAPI connection, in the case that a "branch" of a :class:`.Connection` is produced. :param conn: :class:`.Connection` object. :param branch: if True, this is a "branch" of an existing :class:`.Connection`. A branch is generated within the course of a statement execution to invoke supplemental statements, most typically to pre-execute a SELECT of a default value for the purposes of an INSERT statement. .. versionadded:: 0.9.0 .. seealso:: :ref:`pool_disconnects_pessimistic` - illustrates how to use :meth:`.ConnectionEvents.engine_connect` to transparently ensure pooled connections are connected to the database. :meth:`.PoolEvents.checkout` the lower-level pool checkout event for an individual DBAPI connection :meth:`.ConnectionEvents.set_connection_execution_options` - a copy of a :class:`.Connection` is also made when the :meth:`.Connection.execution_options` method is called. """ def set_connection_execution_options(self, conn, opts): """Intercept when the :meth:`.Connection.execution_options` method is called. This method is called after the new :class:`.Connection` has been produced, with the newly updated execution options collection, but before the :class:`.Dialect` has acted upon any of those new options. Note that this method is not called when a new :class:`.Connection` is produced which is inheriting execution options from its parent :class:`.Engine`; to intercept this condition, use the :meth:`.ConnectionEvents.engine_connect` event. :param conn: The newly copied :class:`.Connection` object :param opts: dictionary of options that were passed to the :meth:`.Connection.execution_options` method. .. versionadded:: 0.9.0 .. seealso:: :meth:`.ConnectionEvents.set_engine_execution_options` - event which is called when :meth:`.Engine.execution_options` is called. """ def set_engine_execution_options(self, engine, opts): """Intercept when the :meth:`.Engine.execution_options` method is called. The :meth:`.Engine.execution_options` method produces a shallow copy of the :class:`.Engine` which stores the new options. That new :class:`.Engine` is passed here. A particular application of this method is to add a :meth:`.ConnectionEvents.engine_connect` event handler to the given :class:`.Engine` which will perform some per- :class:`.Connection` task specific to these execution options. :param conn: The newly copied :class:`.Engine` object :param opts: dictionary of options that were passed to the :meth:`.Connection.execution_options` method. .. versionadded:: 0.9.0 .. seealso:: :meth:`.ConnectionEvents.set_connection_execution_options` - event which is called when :meth:`.Connection.execution_options` is called. """ def engine_disposed(self, engine): """Intercept when the :meth:`.Engine.dispose` method is called. The :meth:`.Engine.dispose` method instructs the engine to "dispose" of it's connection pool (e.g. :class:`.Pool`), and replaces it with a new one. Disposing of the old pool has the effect that existing checked-in connections are closed. The new pool does not establish any new connections until it is first used. This event can be used to indicate that resources related to the :class:`.Engine` should also be cleaned up, keeping in mind that the :class:`.Engine` can still be used for new requests in which case it re-acquires connection resources. .. versionadded:: 1.0.5 """ def begin(self, conn): """Intercept begin() events. :param conn: :class:`.Connection` object """ def rollback(self, conn): """Intercept rollback() events, as initiated by a :class:`.Transaction`. Note that the :class:`.Pool` also "auto-rolls back" a DBAPI connection upon checkin, if the ``reset_on_return`` flag is set to its default value of ``'rollback'``. To intercept this rollback, use the :meth:`.PoolEvents.reset` hook. :param conn: :class:`.Connection` object .. seealso:: :meth:`.PoolEvents.reset` """ def commit(self, conn): """Intercept commit() events, as initiated by a :class:`.Transaction`. Note that the :class:`.Pool` may also "auto-commit" a DBAPI connection upon checkin, if the ``reset_on_return`` flag is set to the value ``'commit'``. To intercept this commit, use the :meth:`.PoolEvents.reset` hook. :param conn: :class:`.Connection` object """ def savepoint(self, conn, name): """Intercept savepoint() events. :param conn: :class:`.Connection` object :param name: specified name used for the savepoint. """ def rollback_savepoint(self, conn, name, context): """Intercept rollback_savepoint() events. :param conn: :class:`.Connection` object :param name: specified name used for the savepoint. :param context: :class:`.ExecutionContext` in use. May be ``None``. """ def release_savepoint(self, conn, name, context): """Intercept release_savepoint() events. :param conn: :class:`.Connection` object :param name: specified name used for the savepoint. :param context: :class:`.ExecutionContext` in use. May be ``None``. """ def begin_twophase(self, conn, xid): """Intercept begin_twophase() events. :param conn: :class:`.Connection` object :param xid: two-phase XID identifier """ def prepare_twophase(self, conn, xid): """Intercept prepare_twophase() events. :param conn: :class:`.Connection` object :param xid: two-phase XID identifier """ def rollback_twophase(self, conn, xid, is_prepared): """Intercept rollback_twophase() events. :param conn: :class:`.Connection` object :param xid: two-phase XID identifier :param is_prepared: boolean, indicates if :meth:`.TwoPhaseTransaction.prepare` was called. """ def commit_twophase(self, conn, xid, is_prepared): """Intercept commit_twophase() events. :param conn: :class:`.Connection` object :param xid: two-phase XID identifier :param is_prepared: boolean, indicates if :meth:`.TwoPhaseTransaction.prepare` was called. """ class DialectEvents(event.Events): """event interface for execution-replacement functions. These events allow direct instrumentation and replacement of key dialect functions which interact with the DBAPI. .. note:: :class:`.DialectEvents` hooks should be considered **semi-public** and experimental. These hooks are not for general use and are only for those situations where intricate re-statement of DBAPI mechanics must be injected onto an existing dialect. For general-use statement-interception events, please use the :class:`.ConnectionEvents` interface. .. seealso:: :meth:`.ConnectionEvents.before_cursor_execute` :meth:`.ConnectionEvents.before_execute` :meth:`.ConnectionEvents.after_cursor_execute` :meth:`.ConnectionEvents.after_execute` .. versionadded:: 0.9.4 """ _target_class_doc = "SomeEngine" _dispatch_target = Dialect @classmethod def _listen(cls, event_key, retval=False): target, identifier, fn = \ event_key.dispatch_target, event_key.identifier, event_key.fn target._has_events = True event_key.base_listen() @classmethod def _accept_with(cls, target): if isinstance(target, type): if issubclass(target, Engine): return Dialect elif issubclass(target, Dialect): return target elif isinstance(target, Engine): return target.dialect else: return target def do_connect(self, dialect, conn_rec, cargs, cparams): """Receive connection arguments before a connection is made. Return a DBAPI connection to halt further events from invoking; the returned connection will be used. Alternatively, the event can manipulate the cargs and/or cparams collections; cargs will always be a Python list that can be mutated in-place and cparams a Python dictionary. Return None to allow control to pass to the next event handler and ultimately to allow the dialect to connect normally, given the updated arguments. .. versionadded:: 1.0.3 """ def do_executemany(self, cursor, statement, parameters, context): """Receive a cursor to have executemany() called. Return the value True to halt further events from invoking, and to indicate that the cursor execution has already taken place within the event handler. """ def do_execute_no_params(self, cursor, statement, context): """Receive a cursor to have execute() with no parameters called. Return the value True to halt further events from invoking, and to indicate that the cursor execution has already taken place within the event handler. """ def do_execute(self, cursor, statement, parameters, context): """Receive a cursor to have execute() called. Return the value True to halt further events from invoking, and to indicate that the cursor execution has already taken place within the event handler. """
import theano import logging from theano import tensor as T from blocks.bricks.base import application from blocks.initialization import (Constant, Uniform) import numpy as np from toolz.itertoolz import interleave from collections import Counter from blocks.bricks.conv import (Convolutional, ConvolutionalSequence, Flattener) from blocks.bricks import (Initializable, Rectifier, FeedforwardSequence, MLP, Activation, Softmax, Linear) from blocks.model import Model from blocks.graph import ComputationGraph from blocks.algorithms import (Adam, GradientDescent, CompositeRule, StepClipping, Scale) from newblocks import (AsyncUpdate, AsyncRMSProp) from blocks.bricks.recurrent import LSTM logger = logging.getLogger(__name__) class SharedA3CConvNet(FeedforwardSequence, Initializable): """ Implements the Shared Layers of the Actor-Critic Parameters ---------- conv_activations : list of `blocks.bricks.base.brick` activation functions after every convolutional layers num_channels : int input channels in the first convolution layer. It is the number of historic frames used as the input state of the agent. image_shape : list of int width and height shape of the resized image filter_sizes: list of int # FIXME: change the name num of filters at each convolutional layer feature_maps : list of [int, int] size of the filters (width, height) at each convolutional layer pooling sizes: list of [int,int] # FIXME: not used size of the pooling layer. One element per convolutional layer mlp_hiddens: list of int size of the output layer of the hidden layers. One element per hidden layer. mlp_activations: list of `blocks.bricks.base.brick` activation functions at each hidden layer. One element per layer conv_step: list of (int, int) typically called stride border_mode : str full or valid are accepted by Blocks. Full will be usually employed. """ def __init__(self, conv_activations, num_channels, image_shape, filter_sizes, feature_maps, pooling_sizes, mlp_hiddens, mlp_activations, conv_step=None, border_mode='valid', **kwargs): if conv_step is None: self.conv_step = [(1, 1) for i in range(len(conv_activations))] else: self.conv_step = conv_step self.num_channels = num_channels self.image_shape = image_shape self.border_mode = border_mode self.top_mlp_activations = mlp_activations conv_parameters = zip(filter_sizes, feature_maps) # Build convolutional layers with corresponding parameters self.layers = list(interleave([ (Convolutional(filter_size=filter_size, num_filters=num_filter, step=self.conv_step[i], border_mode=self.border_mode, name='conv_{}'.format(i)) for i, (filter_size, num_filter) in enumerate(conv_parameters)), conv_activations])) # Build the sequence of conv layers self.conv_sequence = ConvolutionalSequence(self.layers, num_channels, image_size=image_shape) # We need to flatten the output of the last convolutional layer. # This brick accepts a tensor of dimension (batch_size, ...) and # returns a matrix (batch_size, features) self.top_mlp_dims = mlp_hiddens # Flatten the output so it can be used by DenseLayers self.flattener = Flattener() self.top_mlp = MLP(self.top_mlp_activations, self.top_mlp_dims) application_methods = [self.conv_sequence.apply, self.flattener.apply, self.top_mlp.apply] # FIXME this line was commented # self.children = [self.conv_sequence, self.flattener, self.top_mlp] super(SharedA3CConvNet, self).__init__(application_methods, **kwargs) @property def output_dim(self): return self.top_mlp_dims[-1] @output_dim.setter def output_dim(self, value): self.top_mlp_dims[-1] = value def _push_allocation_config(self): self.conv_sequence._push_allocation_config() conv_out_dim = self.conv_sequence.get_dim('output') print "Input to MLP hidden layer ", [np.prod(conv_out_dim)] self.top_mlp.activations = self.top_mlp_activations self.top_mlp.dims = [np.prod(conv_out_dim)] + self.top_mlp_dims print "Dimensions of hidden layer", self.top_mlp.dims class PolicyAndValueA3C(Initializable): """ Parameters ---------- conv_activations : list of `blocks.bricks.base.brick` activation functions after every convolutional layers num_channels : int input channels in the first convolution layer. It is the number of historic frames used as the input state of the agent. image_shape : list of int width and height shape of the resized image filter_sizes: list of int # FIXME: change the name num of filters at each convolutional layer feature_maps : list of [int, int] size of the filters (width, height) at each convolutional layer pooling sizes: list of [int,int] # FIXME: not used size of the pooling layer. One element per convolutional layer mlp_hiddens: list of int size of the output layer of the hidden layers. One element per hidden layer. number_actions: int number of actions of the Actor (output of the policy network) mlp_activations: list of `blocks.bricks.base.brick` activation functions at each hidden layer. One element per layer activation_policy: instance of :class: `blocks.bricks.base.brick` activation at the policy layer. Tipically a Softmax because we want the probabilities of each action activation_value: instance of :class: `blocks.bricks.base.brick` the original function is a Linear one which is the default in Blocks. So None is the default. conv_step: list of (int, int) typically called stride border_mode : str full or valid are accepted by Blocks. Full will be usually employed. beta: float entropy error modulator. Default is 0.01 """ def __init__(self, conv_activations, num_channels, image_shape, filter_sizes, feature_maps, pooling_sizes, mlp_hiddens, number_actions, mlp_activations, activation_policy=Softmax(), activation_value=None, conv_step=None, border_mode='valid', beta=1e-2, **kwargs): self.activation_policy = activation_policy self.activation_value = activation_value self.beta = beta self.shared_a3c = SharedA3CConvNet(conv_activations=conv_activations, num_channels=num_channels, image_shape=image_shape, filter_sizes=filter_sizes, feature_maps=feature_maps, pooling_sizes=pooling_sizes, mlp_hiddens=mlp_hiddens, mlp_activations=mlp_activations, conv_step=conv_step, border_mode=border_mode, **kwargs) # We build now the policy/value separated networks print("Dimenson of the last shared layer {}".format( self.shared_a3c.top_mlp_dims[-1])) # Policy has one dimension per each action self.policy = MLP([activation_policy], [ self.shared_a3c.top_mlp_dims[-1]] + [number_actions], name="mlp_policy") # The critic has one dimension in the output layer self.value = MLP([activation_value], [ self.shared_a3c.top_mlp_dims[-1]] + [1], name="mlp_value") super(PolicyAndValueA3C, self).__init__(**kwargs) #self.children = [ self.shared_a3c, self.fork] self.children = [self.shared_a3c, self.policy, self.value] @application(inputs=['input_image'], outputs=['output_policy']) def apply_policy(self, input_image): output_policy = self.policy.apply(self.shared_a3c.apply(input_image)) return output_policy @application(inputs=['input_image'], outputs=['output_value']) def apply_value(self, input_image): output_value = self.value.apply(self.shared_a3c.apply(input_image)) return output_value # FIXME: remove this function @application(inputs=['input_image', 'input_actions', 'input_reward'], outputs=['total_error', 'p_loss', 'v_loss', 'entropy', 'log_prob', 'advantage', 'v_value', 'sum_p_value']) def extra_cost(self, input_image, input_actions, input_reward): p_value = self.policy.apply(self.shared_a3c.apply(input_image)) log_prob = T.log(T.sum(p_value * input_actions, axis=1, keepdims=True)) v_value = self.value.apply(self.shared_a3c.apply(input_image)) advantage = (input_reward[:, None] - v_value) p_loss = -1 * log_prob * advantage entropy = -T.sum(p_value * T.log(p_value), axis=1, keepdims=True) p_loss = p_loss - self.beta * entropy # add entropy penalty v_loss = 0.5 * T.sqr(input_reward[:, None] - v_value) total_error = T.mean(p_loss + (0.5 * v_loss.reshape(p_loss.shape))) return (total_error, p_loss, v_loss, entropy, log_prob, advantage, v_value, T.sum(p_value, axis=1)) @application(inputs=['input_image', 'input_actions', 'input_reward'], outputs=['total_error']) def cost(self, input_image, input_actions, input_reward): p_value = (self.policy.apply(self.shared_a3c.apply(input_image))) log_prob = T.log(T.sum((p_value) * input_actions, axis=1, keepdims=True)) v_value = self.value.apply(self.shared_a3c.apply(input_image)) p_loss = -log_prob * theano.gradient.disconnected_grad( input_reward[:, None] - v_value) entropy = -T.sum(p_value * T.log(p_value), axis=1, keepdims=True) # encourage action diversity by substracting entropy p_loss = p_loss - self.beta * entropy v_loss = T.sqr(input_reward[:, None] - v_value) total_error = T.mean(p_loss + (0.5 * v_loss)) return total_error class PolicyAndValueA3CLSTM(Initializable): """ Parameters ---------- conv_activations : list of `blocks.bricks.base.brick` activation functions after every convolutional layers num_channels : int input channels in the first convolution layer. It is the number of historic frames used as the input state of the agent. image_shape : list of int width and height shape of the resized image filter_sizes: list of int # FIXME: change the name num of filters at each convolutional layer feature_maps : list of [int, int] size of the filters (width, height) at each convolutional layer pooling sizes: list of [int,int] # FIXME: not used size of the pooling layer. One element per convolutional layer mlp_hiddens: list of int size of the output layer of the hidden layers. One element per hidden layer. number_actions: int number of actions of the Actor (output of the policy network) mlp_activations: list of `blocks.bricks.base.brick` activation functions at each hidden layer. One element per layer activation_policy: instance of :class: `blocks.bricks.base.brick` activation at the policy layer. Tipically a Softmax because we want the probabilities of each action activation_value: instance of :class: `blocks.bricks.base.brick` the original function is a Linear one which is the default in Blocks. So None is the default. conv_step: list of (int, int) typically called stride border_mode : str full or valid are accepted by Blocks. Full will be usually employed. beta: float entropy error modulator. Default is 0.01 lstm_output_units: int number of LSTM output units """ def __init__(self, conv_activations, num_channels, image_shape, filter_sizes, feature_maps, pooling_sizes, mlp_hiddens, number_actions, mlp_activations, activation_policy=Softmax(), activation_value=None, conv_step=None, border_mode='valid', beta=1e-2, lstm_output_units=None, **kwargs): self.activation_policy = activation_policy self.activation_value = activation_value self.beta = beta self.lstm_output_units = lstm_output_units self.shared_a3c = SharedA3CConvNet(conv_activations=conv_activations, num_channels=num_channels, image_shape=image_shape, filter_sizes=filter_sizes, feature_maps=feature_maps, pooling_sizes=pooling_sizes, mlp_hiddens=mlp_hiddens, mlp_activations=mlp_activations, conv_step=conv_step, border_mode=border_mode, **kwargs) # We build now the policy/value separated networks print("Dimenson of the last shared layer {}".format( self.shared_a3c.top_mlp_dims[-1])) # LSTM block # Preparation to LSTM print "LSTM UNITS ", self.lstm_output_units self.linear_to_lstm = Linear(self.shared_a3c.top_mlp_dims[-1], self.lstm_output_units * 4, name='linear_to_lstm') self.lstm_block = LSTM(lstm_output_units, name='lstm') # activation=Rectifier()) # Policy has one dimension per each action self.policy = MLP([activation_policy], [ lstm_output_units] + [number_actions], name="mlp_policy") # The critic has one dimension in the output layer self.value = MLP([activation_value], [ lstm_output_units] + [1], name="mlp_value") super(PolicyAndValueA3CLSTM, self).__init__(**kwargs) self.children = [self.shared_a3c, self.linear_to_lstm, self.lstm_block, self.policy, self.value] @application(inputs=['input_image', 'states', 'cells'], outputs=['output_policy', 'states', 'cells']) def apply_policy(self, input_image, states, cells): h, c = self.lstm_block.apply(inputs=self.linear_to_lstm.apply( self.shared_a3c.apply(input_image)), states=states, cells=cells) h = h.sum(axis=1) c = c.sum(axis=1) output_policy = self.policy.apply(h) return output_policy, h, c @application(inputs=['input_image', 'states', 'cells'], outputs=['output_value']) def apply_value(self, input_image, states, cells): h, c = self.lstm_block.apply(inputs=self.linear_to_lstm.apply( self.shared_a3c.apply(input_image)), states=states, cells=cells) h = h.sum(axis=1) c = c.sum(axis=1) output_value = self.value.apply(h) return output_value @application(inputs=['input_image', 'input_actions', 'input_reward', 'states', 'cells'], outputs=['total_error']) def cost(self, input_image, input_actions, input_reward, states, cells): h, c = self.lstm_block.apply(inputs=self.linear_to_lstm.apply( self.shared_a3c.apply(input_image)), states=states, cells=cells) h = h.sum(axis=1) c = c.sum(axis=1) p_value = self.policy.apply(h) log_prob = T.log(T.sum((p_value) * input_actions, axis=1, keepdims=True)) v_value = self.value.apply(h) p_loss = -log_prob * theano.gradient.disconnected_grad( input_reward[:, None] - v_value) entropy = -T.sum(p_value * T.log(p_value), axis=1, keepdims=True) # encourage action diversity by substracting entropy p_loss = p_loss - self.beta * entropy v_loss = T.sqr(input_reward[:, None] - v_value) total_error = T.mean(p_loss + (0.5 * v_loss)) return total_error def build_a3c_network(feature_maps=[16, 32], conv_sizes=[8, 4], pool_sizes=[4, 2], # FIXME: used image_shape elsewhere image_size=(80, 80), step_size=[4, 2], num_channels=10, mlp_hiddens=[256], num_actions=10, lr=0.00025, clip_c=0.8, border_mode='full', async_update=False): """ Builds the agent networks/functions Parameters: ----------- feature_maps : list of [int, int] size of the filters (width, height) at each convolutional layer conv_sizes: list of int # FIXME: change the name num of filters at each convolutional layer pooling sizes: list of int # FIXME: not used size of the pooling layer. One element per convolutional layer image_size : list of int width and height shape of the resized image step_size: list of int typically called stride num_channels : int input channels in the first convolution layer. It is the number of historic frames used as the input state of the agent. mlp_hiddens: list of int size of the output layer of the hidden layers. One element per hidden layer. num_actions: int number of actions of the Actor (output of the policy network) lr : float learning rate of async rmsprop clip_c : float > 0 if gradient should be clipped. FIXME: actually not used border_mode : str full or valid are accepted by Blocks. Full will be usually employed. async_update: bool true if the network to be created is the shared worker or False if it is just a worker. """ # Activation functions conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] conv_subsample = [[step, step] for step in step_size] policy_and_value_net = PolicyAndValueA3C( conv_activations, num_channels, image_size, filter_sizes=zip(conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip(pool_sizes, pool_sizes), mlp_hiddens=mlp_hiddens, number_actions=num_actions, mlp_activations=mlp_activations, conv_step=conv_subsample, border_mode='full', weights_init=Uniform(width=.2), biases_init=Constant(.0)) # We push initialization config to set different initialization schemes # for convolutional layers. policy_and_value_net.shared_a3c.push_initialization_config() policy_and_value_net.push_initialization_config() # Xavier initialization for i in range(len(policy_and_value_net.shared_a3c.layers)): if i == 0: policy_and_value_net.shared_a3c.layers[i].weights_init = Uniform( std=1.0/np.sqrt((image_size[0] * image_size[1] * num_channels))) else: policy_and_value_net.shared_a3c.layers[i].weights_init = Uniform( std=1.0/np.sqrt((conv_sizes[(i-1)/2] * conv_sizes[(i-1)/2] * feature_maps[(i-1)/2]))) policy_and_value_net.shared_a3c.layers[i].bias_init = Constant(.1) for i in range(len(policy_and_value_net.shared_a3c. top_mlp.linear_transformations)): policy_and_value_net.shared_a3c.top_mlp.linear_transformations[ i].weights_init = Uniform(std=1.0/np.sqrt((conv_sizes[-1] * conv_sizes[-1] * feature_maps[-1]))) policy_and_value_net.shared_a3c.top_mlp.linear_transformations[ i].bias_init = Constant(.0) policy_and_value_net.policy.weights_init = Uniform( std=1.0/np.sqrt(mlp_hiddens[-1])) policy_and_value_net.value.weights_init = Uniform( std=1.0/np.sqrt(mlp_hiddens[-1])) policy_and_value_net.shared_a3c.initialize() policy_and_value_net.initialize() logging.info("Input dim: {} {} {}".format( *policy_and_value_net.shared_a3c.children[0].get_dim('input_'))) for i, layer in enumerate(policy_and_value_net.shared_a3c.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format( i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) th_input_image = T.tensor4('input_image') th_reward = T.fvector('input_reward') th_actions = T.imatrix('input_actions') policy_network = policy_and_value_net.apply_policy(th_input_image) value_network = policy_and_value_net.apply_value(th_input_image) cost_network = policy_and_value_net.cost(th_input_image, th_actions, th_reward) # FIXME: added for debug, remove extracost_network = policy_and_value_net.extra_cost(th_input_image, th_actions, th_reward) # DEBUG cg_policy = ComputationGraph(policy_network) cg_value = ComputationGraph(value_network) # Perform some optimization step cg = ComputationGraph(cost_network) # FIXME: Remove cg_extra = ComputationGraph(extracost_network) # DEBUG # Print shapes of network parameters shapes = [param.get_value().shape for param in cg.parameters] logger.info("Parameter shapes: ") for shape, count in Counter(shapes).most_common(): logger.info(' {:15}: {}'.format(shape, count)) logger.info("Total number of parameters: {}".format(len(shapes))) # Set up training algorithm logger.info("Initializing training algorithm") cost_model = Model(cost_network) value_model = Model(value_network) if not async_update: # A threaded worker: steep gradient descent # A trick was done here to reuse existent bricks. The system performed # steepest descent to aggregate the gradients. However, the gradients # are averaged in a minibatch (instead of being just added). Therefore, # the agent is going to perform the following operations in each # minibatch: # 1) steepes descent with learning rate of 1 to only aggregate the # gradients. # 2) undo the update operation to obtain the avg. gradient : # gradient = parameter_before_minibatch - parameter_after_minibatch # 3) Multiply the gradient by the length of the minibatch to obtain the # exact gradient at each minibatch. algorithm = GradientDescent( cost=cost_network, parameters=cg.parameters, step_rule=Scale()) else: # Async update for the shared worker # The other part of the trick. A custom optimization block was # developed # here to receive as inputs the acc. gradients at each worker algorithm = AsyncUpdate(parameters=cg.parameters, inputs=cost_model.get_parameter_dict().keys(), step_rule=AsyncRMSProp(learning_rate=lr, # FIXME: put as # parameter decay_rate=0.99, max_scaling=10)) algorithm.initialize() f_cost = theano.function(inputs=cg.inputs, outputs=cg.outputs) f_policy = theano.function(inputs=cg_policy.inputs, outputs=cg_policy.outputs) f_value = theano.function(inputs=cg_value.inputs, outputs=cg_value.outputs) # f_extracost = theano.function(inputs=cg_extra.inputs, # outputs=cg_extra.outputs) return cost_model, f_policy, f_value, algorithm, f_cost def build_a3c_network_lstm(feature_maps=[16, 32], conv_sizes=[8, 4], pool_sizes=[4, 2], # FIXME: used image_shape elsewhere image_size=(80, 80), step_size=[4, 2], num_channels=10, mlp_hiddens=[256], lstm_output_units=256, num_actions=10, lr=0.00025, clip_c=0.8, border_mode='full', async_update=False): """ Builds the agent networks/functions Parameters: ----------- feature_maps : list of [int, int] size of the filters (width, height) at each convolutional layer conv_sizes: list of int # FIXME: change the name num of filters at each convolutional layer pooling sizes: list of int # FIXME: not used size of the pooling layer. One element per convolutional layer image_size : list of int width and height shape of the resized image step_size: list of int typically called stride num_channels : int input channels in the first convolution layer. It is the number of historic frames used as the input state of the agent. mlp_hiddens: list of int size of the output layer of the hidden layers. One element per hidden layer. lstm_output_units: int number of units in the lstm output num_actions: int number of actions of the Actor (output of the policy network) lr : float learning rate of async rmsprop clip_c : float > 0 if gradient should be clipped. FIXME: actually not used border_mode : str full or valid are accepted by Blocks. Full will be usually employed. async_update: bool true if the network to be created is the shared worker or False if it is just a worker. """ # Activation functions conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] conv_subsample = [[step, step] for step in step_size] policy_and_value_net = PolicyAndValueA3CLSTM( conv_activations, num_channels, image_size, filter_sizes=zip(conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip(pool_sizes, pool_sizes), mlp_hiddens=mlp_hiddens, lstm_output_units=lstm_output_units, number_actions=num_actions, mlp_activations=mlp_activations, conv_step=conv_subsample, border_mode='full', weights_init=Uniform(width=.2), biases_init=Constant(.0)) # We push initialization config to set different initialization schemes # for convolutional layers. policy_and_value_net.shared_a3c.push_initialization_config() policy_and_value_net.push_initialization_config() # Xavier initialization for i in range(len(policy_and_value_net.shared_a3c.layers)): if i == 0: policy_and_value_net.shared_a3c.layers[i].weights_init = Uniform( std=1.0/np.sqrt((image_size[0] * image_size[1] * num_channels))) else: policy_and_value_net.shared_a3c.layers[i].weights_init = Uniform( std=1.0/np.sqrt((conv_sizes[(i-1)/2] * conv_sizes[(i-1)/2] * feature_maps[(i-1)/2]))) policy_and_value_net.shared_a3c.layers[i].bias_init = Constant(.1) for i in range(len(policy_and_value_net.shared_a3c. top_mlp.linear_transformations)): policy_and_value_net.shared_a3c.top_mlp.linear_transformations[ i].weights_init = Uniform(std=1.0/np.sqrt((conv_sizes[-1] * conv_sizes[-1] * feature_maps[-1]))) policy_and_value_net.shared_a3c.top_mlp.linear_transformations[ i].bias_init = Constant(.0) policy_and_value_net.linear_to_lstm.weights_init = Uniform( std=1.0/np.sqrt(mlp_hiddens[-1])) policy_and_value_net.linear_to_lstm.biases_init = Constant(.0) policy_and_value_net.linear_to_lstm.initialize() policy_and_value_net.lstm_block.weights_init = Uniform( std=1.0/np.sqrt(mlp_hiddens[-1])) policy_and_value_net.lstm_block.biases_init = Constant(.0) policy_and_value_net.lstm_block.initialize() policy_and_value_net.policy.weights_init = Uniform( std=1.0/np.sqrt(lstm_output_units)) policy_and_value_net.value.weights_init = Uniform( std=1.0/np.sqrt(lstm_output_units)) policy_and_value_net.shared_a3c.initialize() policy_and_value_net.initialize() logging.info("Input dim: {} {} {}".format( *policy_and_value_net.shared_a3c.children[0].get_dim('input_'))) for i, layer in enumerate(policy_and_value_net.shared_a3c.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format( i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) th_input_image = T.tensor4('input_image') th_reward = T.fvector('input_reward') th_actions = T.imatrix('input_actions') th_states = T.matrix('states') th_cells = T.matrix('cells') policy_network = policy_and_value_net.apply_policy(th_input_image, th_states, th_cells) value_network = policy_and_value_net.apply_value(th_input_image, th_states, th_cells) cost_network = policy_and_value_net.cost(th_input_image, th_actions, th_reward, th_states, th_cells) cg_policy = ComputationGraph(policy_network) cg_value = ComputationGraph(value_network) print "POLICY INPUTS ", cg_policy.inputs print "VALUE INPUTS ", cg_value.inputs print "POLICY OUTPUTS ", cg_policy.outputs print "VALUE OUTPUTS ", cg_value.outputs # Perform some optimization step cg = ComputationGraph(cost_network) # Print shapes of network parameters shapes = [param.get_value().shape for param in cg.parameters] logger.info("Parameter shapes: ") for shape, count in Counter(shapes).most_common(): logger.info(' {:15}: {}'.format(shape, count)) logger.info("Total number of parameters: {}".format(len(shapes))) # Set up training algorithm logger.info("Initializing training algorithm") cost_model = Model(cost_network) value_model = Model(value_network) # FIXME: delete if not async_update: # A threaded worker: steep gradient descent # A trick was done here to reuse existent bricks. The system performed # steepest descent to aggregate the gradients. However, the gradients # are averaged in a minibatch (instead of being just added). Therefore, # the agent is going to perform the following operations in each # minibatch: # 1) steepes descent with learning rate of 1 to only aggregate the # gradients. # 2) undo the update operation to obtain the avg. gradient : # gradient = parameter_before_minibatch - parameter_after_minibatch # 3) Multiply the gradient by the length of the minibatch to obtain the # exact gradient at each minibatch. algorithm = GradientDescent( cost=cost_network, parameters=cg.parameters, step_rule=Scale()) else: # Async update for the shared worker # The other part of the trick. A custom optimization block was # developed # here to receive as inputs the acc. gradients at each worker algorithm = AsyncUpdate(parameters=cg.parameters, inputs=cost_model.get_parameter_dict().keys(), step_rule=AsyncRMSProp(learning_rate=lr, # FIXME: put as # parameter decay_rate=0.99, max_scaling=10)) algorithm.initialize() print "COST_INPUTS ", cg.inputs f_cost = theano.function(inputs=cg.inputs, outputs=cg.outputs) f_policy = theano.function(inputs=cg_policy.inputs, outputs=cg_policy.outputs) f_value = theano.function(inputs=cg_value.inputs, outputs=cg_value.outputs) return cost_model, f_policy, f_value, algorithm, f_cost if __name__ == "__main__": """ A small code snippet to test the network """ feature_maps = [32, 64] conv_sizes = [8, 4] pool_sizes = [4, 2] image_size = (80, 80) step_size = [4, 2] num_channels = 10 mlp_hiddens = [500, 256] num_actions = 10 # dropout and gradient clipping dropout = 0.2 clip_c = 0.8 # Initialize policy network # Shared A3C # Initialize value network conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] conv_subsample = [[step, step] for step in step_size] policy_and_value_net = PolicyAndValueA3C(conv_activations, num_channels, image_size, filter_sizes=zip( conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip( pool_sizes, pool_sizes), mlp_hiddens=mlp_hiddens, number_actions=num_actions, mlp_activations=mlp_activations, conv_step=conv_subsample, border_mode='full', weights_init=Uniform(width=.2), biases_init=Constant(0)) # We push initialization config to set different initialization schemes # for convolutional layers. policy_and_value_net.shared_a3c.push_initialization_config() policy_and_value_net.push_initialization_config() policy_and_value_net.shared_a3c.layers[0].weights_init = Uniform(width=.2) policy_and_value_net.shared_a3c.layers[1].weights_init = Uniform(width=.09) policy_and_value_net.shared_a3c.top_mlp.linear_transformations[ 0].weights_init = Uniform(width=.08) policy_and_value_net.policy.weights_init = Uniform(width=.15) policy_and_value_net.value.weights_init = Uniform(width=.15) policy_and_value_net.shared_a3c.initialize() policy_and_value_net.policy.initialize() policy_and_value_net.value.initialize() policy_and_value_net.initialize() logging.info("Input dim: {} {} {}".format( *policy_and_value_net.shared_a3c.children[0].get_dim('input_'))) for i, layer in enumerate(policy_and_value_net.shared_a3c.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format( i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) x = T.tensor4('features') policy = policy_and_value_net.apply_policy(x) value = policy_and_value_net.apply_value(x) num_batches = 32 random_data = np.array(np.random.randint(128, size=(num_batches, num_channels, image_size[0], image_size[1])), dtype="float32") pol_result = policy.eval({x: random_data}) val_result = value.eval({x: random_data}) print "POLICY SHAPE ", np.shape(pol_result) print "VALUE SHAPE ", np.shape(val_result) th_reward = T.vector('ereward') th_actions = T.imatrix('actions') reward = np.array(np.random.rand((num_batches)), dtype="float32") actions = np.zeros((num_batches, num_actions), dtype="int32") for i in range(0, num_batches): index_action = np.random.randint(num_actions) actions[i, index_action] = 1 cost_network = policy_and_value_net.cost(x, th_actions, th_reward) cost_results = cost_network.eval( {x: random_data, th_actions: actions, th_reward: reward}) # Perform some optimization step cg = ComputationGraph(cost_network) # Print shapes shapes = [param.get_value().shape for param in cg.parameters] logger.info("Parameter shapes: ") for shape, count in Counter(shapes).most_common(): logger.info(' {:15}: {}'.format(shape, count)) logger.info("Total number of parameters: {}".format(len(shapes))) # Set up training algorithm logger.info("Initializing training algorithm") algorithm = GradientDescent( cost=cost_network, parameters=cg.parameters, step_rule=CompositeRule([StepClipping(clip_c), Adam()])) cost_model = Model(cost_network) logger.info("Cost Model ".format(cost_model.get_parameter_dict())) # Check A3C-LSTM network lstm_output_units = mlp_hiddens[-1] policy_and_value_net_lstm = PolicyAndValueA3CLSTM( conv_activations, num_channels, image_size, filter_sizes=zip( conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip( pool_sizes, pool_sizes), mlp_hiddens=mlp_hiddens, number_actions=num_actions, mlp_activations=mlp_activations, conv_step=conv_subsample, border_mode='full', weights_init=Uniform(width=.2), biases_init=Constant(0), lstm_output_units=lstm_output_units) # We push initialization config to set different initialization schemes # for convolutional layers. policy_and_value_net_lstm.shared_a3c.push_initialization_config() policy_and_value_net_lstm.push_initialization_config() policy_and_value_net_lstm.shared_a3c.layers[ 0].weights_init = Uniform(width=.2) policy_and_value_net_lstm.shared_a3c.layers[ 1].weights_init = Uniform(width=.09) policy_and_value_net_lstm.shared_a3c.top_mlp.linear_transformations[ 0].weights_init = Uniform(width=.08) policy_and_value_net_lstm.policy.weights_init = Uniform(width=.15) policy_and_value_net_lstm.value.weights_init = Uniform(width=.15) policy_and_value_net_lstm.shared_a3c.initialize() policy_and_value_net_lstm.policy.initialize() policy_and_value_net_lstm.value.initialize() policy_and_value_net_lstm.linear_to_lstm.weights_init = Uniform(width=.15) policy_and_value_net_lstm.linear_to_lstm.biases_init = Constant(.0) policy_and_value_net_lstm.linear_to_lstm.initialize() policy_and_value_net_lstm.lstm_block.initialize() policy_and_value_net_lstm.initialize() logging.info("Input dim: {} {} {}".format( *policy_and_value_net_lstm.shared_a3c.children[0].get_dim('input_'))) for i, layer in enumerate(policy_and_value_net_lstm.shared_a3c.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format( i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) x = T.tensor4('features') th_states = T.matrix('states') th_cells = T.matrix('cells') policy = policy_and_value_net_lstm.apply_policy( x, th_states, th_cells) value = policy_and_value_net_lstm.apply_value( x, th_states, th_cells) num_batches = 32 random_data = np.array(np.random.randint(128, size=(num_batches, num_channels, image_size[0], image_size[1])), dtype="float32") random_states = np.array(np.random.rand(1, lstm_output_units), dtype="float32") random_cells = np.array(np.random.rand(1, lstm_output_units), dtype="float32") pol_result = policy[0].eval( {x: random_data, th_states: random_states, th_cells: random_cells}) val_result = value.eval( {x: random_data, th_states: random_states, th_cells: random_cells}) h_result = policy[1].eval( {x: random_data, th_states: random_states, th_cells: random_cells}) c_result = policy[2].eval( {x: random_data, th_states: random_states, th_cells: random_cells}) print "POLICY SHAPE LSTM ", np.shape(pol_result) print "VALUE SHAPE LSTM ", np.shape(val_result) print "H SHAPE LSTM ", np.shape(h_result) print "C SHAPE LSTM ", np.shape(c_result) th_reward = T.vector('ereward') th_actions = T.imatrix('actions') reward = np.array(np.random.rand((num_batches)), dtype="float32") actions = np.zeros((num_batches, num_actions), dtype="int32") for i in range(0, num_batches): index_action = np.random.randint(num_actions) actions[i, index_action] = 1 cost_network = policy_and_value_net_lstm.cost(x, th_actions, th_reward, th_states, th_cells) cost_results = cost_network.eval( {x: random_data, th_actions: actions, th_reward: reward, th_states: random_states, th_cells: random_cells}) # Perform some optimization step cg = ComputationGraph(cost_network) # Print shapes shapes = [param.get_value().shape for param in cg.parameters] logger.info("Parameter shapes: ") for shape, count in Counter(shapes).most_common(): logger.info(' {:15}: {}'.format(shape, count)) logger.info("Total number of parameters: {}".format(len(shapes))) # Set up training algorithm logger.info("Initializing training algorithm") algorithm = GradientDescent( cost=cost_network, parameters=cg.parameters, step_rule=CompositeRule([StepClipping(clip_c), Adam()])) cost_model = Model(cost_network) logger.info("Cost Model ".format(cost_model.get_parameter_dict())) # Check differnent result with batch random_data = np.array(np.random.randint(128, size=(1, num_channels, image_size[0], image_size[1])), dtype="float32") random_data = np.concatenate((random_data, random_data), axis=0) print "RANDOM_INPUT_", np.shape(random_data) random_states = np.array(np.random.rand(1, lstm_output_units), dtype="float32") random_cells = np.array(np.random.rand(1, lstm_output_units), dtype="float32") pol_result = policy[0].eval( {x: random_data, th_states: random_states, th_cells: random_cells}) next_state = policy[1].eval( {x: random_data, th_states: random_states, th_cells: random_cells}) next_cell = policy[2].eval( {x: random_data, th_states: random_states, th_cells: random_cells}) print "POLRESULT ", pol_result print "NEXT_STATE {} SUM0 {} SUM1 {}".format(np.shape(next_state), np.sum(next_state[0]), np.sum(next_state[1])) print "NEXT_CELL {} SUM0 {} SUM1 {}".format(np.shape(next_cell), np.sum(next_cell[0]), np.sum(next_cell[1])) # Do the same step by step prev_state = random_states prev_cell = random_cells pol_result = policy[0].eval( {x: [random_data[0]], th_states: prev_state, th_cells: prev_cell}) next_state = policy[1].eval( {x: [random_data[0]], th_states: prev_state, th_cells: prev_cell}) next_cell = policy[2].eval( {x: [random_data[0]], th_states: prev_state, th_cells: prev_cell}) print "NEXT_STATE {} SUM1 {}".format(np.shape(next_state), np.sum(next_state)) print "NEXT_CELL {} SUM1 {}".format(np.shape(next_cell), np.sum(next_cell))
#!/Users/lcladm/anaconda2/bin/python # TODO - python path - assuming condo here ## HEALTH WARNING - BETA CODE IN DEVELOPMENT ## ''' This standalone application will build a mesh from a nifti classification file. To keep the procedure as similar as possible to the way mrMesh used to do this, we will keep this as a standalon application. Matlab reads in the segmented nifti file using vistasofts own nifti class handler meshBuild>mrmBuild> meshBuildFromClass - we just dont use the old build_mesh mex file - we do that bit and any smoothing in this application and send a mesh struture back to matlab. AG 2017 ''' import os,sys import scipy import vtk from numpy import * from scipy.io import loadmat, savemat from vtk.util import numpy_support debug = False #TODO error handling fileToLoad = sys.argv[1] fileToSave = sys.argv[2] # load the voxel data that has been dumped to disk voxels = scipy.io.loadmat(fileToLoad) mmPerVox = voxels['mmPerVox'][0] if debug: print mmPerVox voxels = voxels['voxels'] #unpack if debug: print voxels if debug: print shape(voxels) extent = shape(voxels) if debug: print extent if debug: print extent[0] if debug: print extent[1] if debug: print extent[2] ''' ### ------------------------------------------------------------------------------ ### this is faster but for now exactly replicate the way mrMesh sets up the volume array # import voxels to vtk dataImporter = vtk.vtkImageImport() data_string = voxels.tostring() dataImporter.CopyImportVoidPointer(data_string, len(data_string)) dataImporter.SetDataScalarTypeToUnsignedChar() dataImporter.SetDataExtent(0, extent[2]-1, 0, extent[1]-1, 0, extent[0]-1) # TODO have to work this out dataImporter.SetWholeExtent(0, extent[2]-1, 0, extent[1]-1, 0, extent[0]-1) # TODO have to work this out dataImporter.SetDataSpacing(mmPerVox[0],mmPerVox[1],mmPerVox[2]) # TODO have to work this out dataImporter.Update() if debug: print dataImporter.GetOutput() ### ------------------------------------------------------------------------------ ''' ### ------- the way mrMesh did it in mesh_build -------------------------------- pArray = map(ord,voxels.tostring()) #unpack pDims = shape(voxels) scale = mmPerVox iSizes = [pDims[0]+2, pDims[1]+2, pDims[2]+2] nTotalValues = iSizes[0] * iSizes[1] * iSizes[2] pClassValues = vtk.vtkUnsignedCharArray() pClassValues.SetNumberOfValues(nTotalValues) pClassData = vtk.vtkStructuredPoints() pClassData.SetDimensions(iSizes[0], iSizes[1], iSizes[2]) pClassData.SetOrigin(-scale[0], -scale[1], -scale[2]) #??? pClassData.SetOrigin(-1, -1, -1) #??? pClassData.SetSpacing(scale[0], scale[1], scale[2]) for iSrcZ in range(pDims[2]): for iSrcY in range(pDims[1]): iSrcIndex = iSrcZ * pDims[1] * pDims[0] + iSrcY * pDims[0] iDstIndex = (iSrcZ+1) * iSizes[1] * iSizes[0] + (iSrcY+1) * iSizes[0] + 1 for iSrcX in range(pDims[0]): fTemp = int(pArray[iSrcIndex]) #if debug: print fTemp, 'iSrcIndex', iSrcIndex, 'iDstIndex', iDstIndex if fTemp>0: pClassValues.SetValue(iDstIndex, 0) else: pClassValues.SetValue(iDstIndex, 1) iSrcIndex+=1 iDstIndex+=1 pClassData.GetPointData().SetScalars(pClassValues) pClassData.Modified() if debug: spw = vtk.vtkStructuredPointsWriter() spw.SetFileTypeToASCII() spw.SetInputData(pClassData) spw.SetFileName("/tmp/test-mrMeshPy-structuredPoints.vtk") spw.Write() spw.Update() ### ------ Data volume is loaded and constructed - extract some surgfaces ------------- mc = vtk.vtkMarchingCubes() # mc = vtk.vtkContourFilter() #- could use a contour filter instead? # mc.SetInputConnection(dataImporter.GetOutputPort()) # later - for use with direct imagedata import mc.SetInputData(pClassData) mc.SetValue(0,0.5) #extract 0-th surface at 0.5? mc.ComputeGradientsOff() mc.ComputeNormalsOff() mc.ComputeScalarsOff() mc.Update() if debug: print mc.GetOutput() write = vtk.vtkPolyDataWriter() write.SetFileName('/htmp/test-mrMeshPy-marchingCubesOutput.txt') write.SetFileTypeToASCII() write.SetInputData(mc.GetOutput()) write.Write() write.Update() # ---- extract center surface - edges are normally extracted to (the cube around the edge of the volume)-------- confilter = vtk.vtkPolyDataConnectivityFilter() confilter.SetInputConnection(mc.GetOutputPort()) confilter.SetExtractionModeToClosestPointRegion() confilter.SetClosestPoint(extent[0]/2.0,extent[1]/2.0,extent[2]/2.0) # center of volume confilter.Update() # ---- Normals --------------------- # normals already computed by mc algorithm so this code is obsolete normals = vtk.vtkPolyDataNormals() normals.ComputePointNormalsOn() normals.SplittingOff() normals.SetInputConnection(confilter.GetOutputPort()) #normals.SetInputData(discrete.GetOutput()) normals.Update() print normals.GetOutput() norm = normals.GetOutput().GetPointData().GetNormals() output_normals = array(numpy_support.vtk_to_numpy(norm).transpose(),'d') ####if debug: print output_normals # ---- Initial vertices - unsmoothed --------------------- init_verts = normals.GetOutput().GetPoints().GetData() output_init_verts = array(numpy_support.vtk_to_numpy(init_verts).transpose(),'d') if debug: print output_init_verts # ---- Polys (triangles) --------------------- triangles = normals.GetOutput().GetPolys().GetData() tmp_triangles = numpy_support.vtk_to_numpy(triangles) # N.B. the polygon data returned here have 4 values for poly - the first is the number # of vertices that describe the polygo (ironically always 3) and the next 3 are the # indices of the vertices that make up the polygon # so first we need to reshape data from a vector tmp_triangles = reshape(tmp_triangles,(len(tmp_triangles)/4,4)) # and then we drop the first column (all 3's) output_triangles = array((tmp_triangles[:,1:4]).transpose(),'d') #remember zero index here, add one for matlab if debug: print output_triangles # -------- smoothed version of mesh ---------------- smooth = vtk.vtkSmoothPolyDataFilter() smooth.SetNumberOfIterations(32) #standard value sused in old mrMesh smooth.SetRelaxationFactor(0.5) #standard value sused in old mrMesh smooth.FeatureEdgeSmoothingOff() smooth.SetFeatureAngle(45) smooth.SetEdgeAngle(15) smooth.SetBoundarySmoothing(1) smooth.SetInputConnection(normals.GetOutputPort()) smooth.Update() # different smoothing option? ''' smooth = vtk.vtkWindowedSincPolyDataFilter() smooth.SetInputConnection(mc.GetOutputPort()) smooth.SetNumberOfIterations(30) smooth.SetPassBand(0.5) smooth.SetFeatureAngle(45) smooth.SetEdgeAngle(15) smooth.SetBoundarySmoothing(1) smooth.SetFeatureEdgeSmoothing(0) smooth.Update() ''' # ---- Vertices - smoothed --------------------- smooth_verts = smooth.GetOutput().GetPoints().GetData() output_smooth_verts = array(numpy_support.vtk_to_numpy(smooth_verts).transpose(),'d') if debug: print output_smooth_verts # ---- Curvature --------------------- curvature = vtk.vtkCurvatures() curvature.SetInputConnection(smooth.GetOutputPort()) curvature.SetCurvatureTypeToMean() curvature.Update() curv = curvature.GetOutput().GetPointData().GetScalars() output_curvature = array(numpy_support.vtk_to_numpy(curv).transpose(),'d') if debug: print min(output_curvature) if debug: print max(output_curvature) if debug: print output_curvature # -------- colours based on curvature ------------ # turn curvature into color tmp_colors = output_curvature.copy() #min_curv = min(tmp_colors) #max_curv = max(tmp_colors) #tmp_colors = (tmp_colors -min_curv) / (max_curv-min_curv) *255 tmp_colors[tmp_colors>=0] = 85 #standard value sused in old mrMesh tmp_colors[tmp_colors<0] = 160 #standard value sused in old mrMesh output_colors = vstack((tmp_colors, tmp_colors, tmp_colors, ones((1,len(tmp_colors)))*255)) output_colors = array(output_colors,'d') if debug: print output_colors # OK we have all the data we need now, lets write it out to file data = {} #empty dictionary data['initVertices'] = output_init_verts data['initialvertices'] = output_init_verts data['vertices'] = output_smooth_verts data['colors'] = output_colors data['normals'] = output_normals data['triangles'] = output_triangles data['curvature'] = output_curvature # save it out savemat(fileToSave,data) # data have been sent, but let's view them here pdm = vtk.vtkPolyDataMapper() pdm.SetInputConnection(confilter.GetOutputPort()) actor = vtk.vtkActor() actor.SetMapper(pdm) ren = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) ren.AddActor(actor) ren.SetBackground(1,1,1) renWin.SetSize(500,500) iren.Initialize() iren.Start() pdm = vtk.vtkPolyDataMapper() pdm.SetInputConnection(curvature.GetOutputPort()) actor = vtk.vtkActor() actor.SetMapper(pdm) ren = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) ren.AddActor(actor) ren.SetBackground(1,1,1) renWin.SetSize(500,500) iren.Initialize() iren.Start()
# -*- coding: utf-8 -*- from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ from . import state class link_protection_type(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/isis/levels/level/link-state-database/lsp/tlvs/tlv/isis-neighbor-attribute/neighbors/neighbor/subTLVs/subTLVs/link-protection-type. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: ISIS LSDB parameters relating to the type of link protection offered. """ __slots__ = ("_path_helper", "_extmethods", "__state") _yang_name = "link-protection-type" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "isis", "levels", "level", "link-state-database", "lsp", "tlvs", "tlv", "isis-neighbor-attribute", "neighbors", "neighbor", "subTLVs", "subTLVs", "link-protection-type", ] def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_neighbor_attribute/neighbors/neighbor/subTLVs/subTLVs/link_protection_type/state (container) YANG Description: State parameters of sub-TLV 20. """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_neighbor_attribute/neighbors/neighbor/subTLVs/subTLVs/link_protection_type/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State parameters of sub-TLV 20. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """state must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False)""", } ) self.__state = t if hasattr(self, "_set"): self._set() def _unset_state(self): self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) state = __builtin__.property(_get_state) _pyangbind_elements = OrderedDict([("state", state)]) from . import state class link_protection_type(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/isis/levels/level/link-state-database/lsp/tlvs/tlv/isis-neighbor-attribute/neighbors/neighbor/subTLVs/subTLVs/link-protection-type. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: ISIS LSDB parameters relating to the type of link protection offered. """ __slots__ = ("_path_helper", "_extmethods", "__state") _yang_name = "link-protection-type" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "isis", "levels", "level", "link-state-database", "lsp", "tlvs", "tlv", "isis-neighbor-attribute", "neighbors", "neighbor", "subTLVs", "subTLVs", "link-protection-type", ] def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_neighbor_attribute/neighbors/neighbor/subTLVs/subTLVs/link_protection_type/state (container) YANG Description: State parameters of sub-TLV 20. """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_neighbor_attribute/neighbors/neighbor/subTLVs/subTLVs/link_protection_type/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State parameters of sub-TLV 20. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """state must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False)""", } ) self.__state = t if hasattr(self, "_set"): self._set() def _unset_state(self): self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) state = __builtin__.property(_get_state) _pyangbind_elements = OrderedDict([("state", state)])
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Admin views for managing volumes. """ from collections import OrderedDict from django.core.urlresolvers import reverse from django.core.urlresolvers import reverse_lazy from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import forms from horizon import tables from horizon.utils import memoized from horizon import views from openstack_dashboard import api from openstack_dashboard.dashboards.admin.volume_types \ import forms as volume_types_forms from openstack_dashboard.dashboards.admin.volume_types \ import tables as volume_types_tables from openstack_dashboard.dashboards.project.volumes \ import views as volumes_views from openstack_dashboard import policy class VolumeTypesView(tables.MultiTableView, volumes_views.VolumeTableMixIn): table_classes = (volume_types_tables.VolumeTypesTable, volume_types_tables.QosSpecsTable) page_title = _("Volume Types") template_name = "admin/volume_types/volume_types_tables.html" def get_volume_types_data(self): try: volume_types = \ api.cinder.volume_type_list_with_qos_associations(self.request) except Exception: volume_types = [] exceptions.handle(self.request, _("Unable to retrieve volume types")) encryption_allowed = policy.check( (("volume", "volume_extension:volume_type_encryption"),), self.request) if encryption_allowed: # Gather volume type encryption information try: vol_type_enc_list = api.cinder.volume_encryption_type_list( self.request) except Exception: vol_type_enc_list = [] msg = _( 'Unable to retrieve volume type encryption information.') exceptions.handle(self.request, msg) vol_type_enc_dict = OrderedDict([(e.volume_type_id, e) for e in vol_type_enc_list]) for volume_type in volume_types: vol_type_enc = vol_type_enc_dict.get(volume_type.id, None) if vol_type_enc is not None: volume_type.encryption = vol_type_enc volume_type.encryption.name = volume_type.name else: volume_type.encryption = None return volume_types def get_qos_specs_data(self): try: qos_specs = api.cinder.qos_spec_list(self.request) except Exception: qos_specs = [] exceptions.handle(self.request, _("Unable to retrieve QoS specs")) return qos_specs INDEX_URL = 'horizon:admin:volume_types:index' class CreateVolumeTypeView(forms.ModalFormView): form_class = volume_types_forms.CreateVolumeType modal_id = "create_volume_type_modal" template_name = 'admin/volume_types/create_volume_type.html' submit_label = _("Create Volume Type") submit_url = reverse_lazy("horizon:admin:volume_types:create_type") success_url = reverse_lazy('horizon:admin:volume_types:index') page_title = _("Create Volume Type") class VolumeTypeEncryptionDetailView(views.HorizonTemplateView): template_name = "admin/volume_types/volume_encryption_type_detail.html" page_title = _("Volume Type Encryption Details") def get_context_data(self, **kwargs): context = super(VolumeTypeEncryptionDetailView, self).\ get_context_data(**kwargs) context["volume_type_encryption"] = self.get_data() return context @memoized.memoized_method def get_data(self): try: volume_type_id = self.kwargs['volume_type_id'] self._volume_type_encryption = api.cinder.\ volume_encryption_type_get(self.request, volume_type_id) volume_type_list = api.cinder.volume_type_list(self.request) for volume_type in volume_type_list: if volume_type.id == volume_type_id: self.name = volume_type.name self._volume_type_encryption.name = self.name except Exception: redirect = reverse(INDEX_URL) exceptions.handle(self.request, _('Unable to retrieve volume type encryption' ' details.'), redirect=redirect) return None return self._volume_type_encryption class CreateVolumeTypeEncryptionView(forms.ModalFormView): form_class = volume_types_forms.CreateVolumeTypeEncryption form_id = "create_volume_form" modal_id = "create_volume_type_modal" template_name = "admin/volume_types/create_volume_type_encryption.html" submit_label = _("Create Volume Type Encryption") submit_url = "horizon:admin:volume_types:create_type_encryption" success_url = reverse_lazy(INDEX_URL) page_title = _("Create an Encrypted Volume Type") @memoized.memoized_method def get_name(self): if not hasattr(self, "name"): self.name = _get_volume_type_name(self.request, self.kwargs) return self.name def get_context_data(self, **kwargs): context = super(CreateVolumeTypeEncryptionView, self).\ get_context_data(**kwargs) context['volume_type_id'] = self.kwargs['volume_type_id'] args = (self.kwargs['volume_type_id'],) context['submit_url'] = reverse(self.submit_url, args=args) return context def get_initial(self): name = self.get_name() return {'name': name, 'volume_type_id': self.kwargs['volume_type_id']} class EditVolumeTypeView(forms.ModalFormView): form_class = volume_types_forms.EditVolumeType template_name = 'admin/volume_types/update_volume_type.html' success_url = reverse_lazy('horizon:admin:volume_types:index') cancel_url = reverse_lazy('horizon:admin:volume_types:index') submit_label = _('Edit') @memoized.memoized_method def get_data(self): try: volume_type_id = self.kwargs['type_id'] volume_type = api.cinder.volume_type_get(self.request, volume_type_id) except Exception: error_message = _( 'Unable to retrieve volume type for: "%s"') \ % volume_type_id exceptions.handle(self.request, error_message, redirect=self.success_url) return volume_type def get_context_data(self, **kwargs): context = super(EditVolumeTypeView, self).get_context_data(**kwargs) context['volume_type'] = self.get_data() return context def get_initial(self): volume_type = self.get_data() return {'id': self.kwargs['type_id'], 'name': volume_type.name, 'is_public': getattr(volume_type, 'is_public', True), 'description': getattr(volume_type, 'description', "")} def _get_volume_type_name(request, kwargs): try: volume_type_list = api.cinder.volume_type_list(request) for volume_type in volume_type_list: if volume_type.id == kwargs['volume_type_id']: return volume_type.name except Exception: msg = _('Unable to retrieve volume type name.') url = reverse(INDEX_URL) exceptions.handle(request, msg, redirect=url) class UpdateVolumeTypeEncryptionView(forms.ModalFormView): form_class = volume_types_forms.UpdateVolumeTypeEncryption form_id = "update_volume_form" modal_id = "update_volume_type_modal" template_name = "admin/volume_types/update_volume_type_encryption.html" page_title = _("Update an Encrypted Volume Type") submit_label = _("Update Volume Type Encryption") submit_url = "horizon:admin:volume_types:update_type_encryption" success_url = reverse_lazy('horizon:admin:volume_types:index') def get_object(self): if not hasattr(self, "_object"): try: self._object = api.cinder.\ volume_encryption_type_get(self.request, self.kwargs['volume_type_id']) except Exception: msg = _('Unable to retrieve encryption type.') url = reverse('horizon:admin:volume_types:index') exceptions.handle(self.request, msg, redirect=url) return self._object @memoized.memoized_method def get_name(self): if not hasattr(self, "name"): self.name = _get_volume_type_name(self.request, self.kwargs) return self.name def get_context_data(self, **kwargs): context = super(UpdateVolumeTypeEncryptionView, self).\ get_context_data(**kwargs) context['volume_type_id'] = self.kwargs['volume_type_id'] args = (self.kwargs['volume_type_id'],) context['submit_url'] = reverse(self.submit_url, args=args) return context def get_initial(self): encryption_type = self.get_object() name = self.get_name() return {'volume_type_id': encryption_type.volume_type_id, 'control_location': encryption_type.control_location, 'key_size': encryption_type.key_size, 'provider': encryption_type.provider, 'cipher': encryption_type.cipher, 'name': name} class CreateQosSpecView(forms.ModalFormView): form_class = volume_types_forms.CreateQosSpec modal_id = "create_volume_type_modal" template_name = 'admin/volume_types/create_qos_spec.html' success_url = reverse_lazy('horizon:admin:volume_types:index') page_title = _("Create QoS Spec") submit_label = _("Create") submit_url = reverse_lazy("horizon:admin:volume_types:create_qos_spec") class EditQosSpecConsumerView(forms.ModalFormView): form_class = volume_types_forms.EditQosSpecConsumer modal_id = "edit_qos_spec_modal" template_name = 'admin/volume_types/edit_qos_spec_consumer.html' submit_label = _("Modify Consumer") submit_url = "horizon:admin:volume_types:edit_qos_spec_consumer" success_url = reverse_lazy('horizon:admin:volume_types:index') page_title = _("Edit QoS Spec Consumer") def get_context_data(self, **kwargs): context = super(EditQosSpecConsumerView, self).\ get_context_data(**kwargs) context['qos_spec_id'] = self.kwargs["qos_spec_id"] args = (self.kwargs['qos_spec_id'],) context['submit_url'] = reverse(self.submit_url, args=args) return context @memoized.memoized_method def get_object(self, *args, **kwargs): qos_spec_id = self.kwargs['qos_spec_id'] try: self._object = api.cinder.qos_spec_get(self.request, qos_spec_id) except Exception: msg = _('Unable to retrieve QoS Spec details.') exceptions.handle(self.request, msg) return self._object def get_initial(self): qos_spec = self.get_object() qos_spec_id = self.kwargs['qos_spec_id'] return {'qos_spec_id': qos_spec_id, 'qos_spec': qos_spec} class ManageQosSpecAssociationView(forms.ModalFormView): form_class = volume_types_forms.ManageQosSpecAssociation modal_id = "associate_qos_spec_modal" template_name = 'admin/volume_types/associate_qos_spec.html' submit_label = _("Associate") submit_url = "horizon:admin:volume_types:manage_qos_spec_association" success_url = reverse_lazy('horizon:admin:volume_types:index') page_title = _("Associate QoS Spec with Volume Type") def get_context_data(self, **kwargs): context = super(ManageQosSpecAssociationView, self).\ get_context_data(**kwargs) context['type_id'] = self.kwargs["type_id"] args = (self.kwargs['type_id'],) context['submit_url'] = reverse(self.submit_url, args=args) return context @memoized.memoized_method def get_object(self, *args, **kwargs): type_id = self.kwargs['type_id'] try: self._object = api.cinder.volume_type_get(self.request, type_id) except Exception: msg = _('Unable to retrieve volume type details.') exceptions.handle(self.request, msg) return self._object @memoized.memoized_method def get_qos_specs(self, *args, **kwargs): try: return api.cinder.qos_spec_list(self.request) except Exception: exceptions.handle(self.request, _('Unable to retrieve QoS Specs.')) def find_current_qos_spec_association(self, vol_type_id): qos_specs = self.get_qos_specs() if qos_specs: try: # find out which QOS Spec is currently associated with this # volume type, if any # NOTE - volume type can only have ONE QOS Spec association for qos_spec in qos_specs: type_ids = \ api.cinder.qos_spec_get_associations(self.request, qos_spec.id) for vtype in type_ids: if vtype.id == vol_type_id: return qos_spec except Exception: exceptions.handle( self.request, _('Unable to retrieve QoS Spec association.')) return None def get_initial(self): volume_type = self.get_object() vol_type_id = self.kwargs['type_id'] cur_qos_spec_id = None cur_qos_spec_name = None qos_spec = self.find_current_qos_spec_association(vol_type_id) if qos_spec: cur_qos_spec_id = qos_spec.id cur_qos_spec_name = qos_spec.name return {'type_id': vol_type_id, 'name': getattr(volume_type, 'name', None), 'cur_qos_spec_id': cur_qos_spec_id, 'cur_qos_spec_name': cur_qos_spec_name, 'qos_specs': self.get_qos_specs()} class EditAccessView(forms.ModalFormView): form_class = volume_types_forms.EditTypeAccessForm template_name = 'admin/volume_types/update_access.html' submit_label = _("Save") submit_url = "horizon:admin:volume_types:edit_access" success_url = reverse_lazy('horizon:admin:volume_types:index') cancel_url = reverse_lazy('horizon:admin:volume_types:index') page_title = _("Edit Volume Type Access") def get_context_data(self, **kwargs): context = super(EditAccessView, self).get_context_data(**kwargs) context['volume_type_id'] = self.kwargs["volume_type_id"] args = (self.kwargs['volume_type_id'],) context['submit_url'] = reverse(self.submit_url, args=args) return context def get_initial(self): return {'volume_type_id': self.kwargs['volume_type_id']}
from ._base import BaseAPIDispatch, BaseAPIEndpoint class Usergroups(BaseAPIDispatch): pass @Usergroups.register('users') class Users(BaseAPIDispatch): pass @Usergroups.register('create') class UsergroupsCreate(BaseAPIEndpoint): """This method is used to create a User Group. If successful, the command returns a usergroup object, including preferences: .. code-block:: json { "ok": true, "usergroup": { "id": "S0615G0KT", "team_id": "T060RNRCH", "is_usergroup": true, "name": "Marketing Team", "description": "Marketing gurus, PR experts and product advocates.", "handle": "marketing-team", "is_external": false, "date_create": 1446746793, "date_update": 1446746793, "date_delete": 0, "auto_type": null, "created_by": "U060RNRCZ", "updated_by": "U060RNRCZ", "deleted_by": null, "prefs": { "channels": [ ], "groups": [ ] }, "user_count": "0" } } For more information see https://api.slack.com/methods/create """ endpoint = 'usergroups.create' required_args = { 'name', } optional_args = { 'channels', 'description', 'handle', 'include_count', } options = { 'include_token': True, } # Scope Information scopes = { 'all': { 'usergroups:write', }, 'bot': set(), 'user': set(), } def __call__(self, name, channels=None, description=None, handle=None, include_count=None, ): """Create a User Group :param name: Required. A name for the User Group. Must be unique among User Groups. e.g. My Test Team :param channels: Optional. A comma separated string of encoded channel IDs for which the User Group uses as a default. e.g. C1234567890,C2345678901,C3456789012 :param description: Optional. A short description of the User Group. e.g. :param handle: Optional. A mention handle. Must be unique among channels, users and User Groups. e.g. marketing :param include_count: Optional. Include the number of users in each User Group. e.g. true """ optional_kwargs = {} if channels is not None: optional_kwargs['channels'] = channels if description is not None: optional_kwargs['description'] = description if handle is not None: optional_kwargs['handle'] = handle if include_count is not None: optional_kwargs['include_count'] = include_count return BaseAPIEndpoint.__call__(self, name=name, **optional_kwargs ) @Usergroups.register('disable') class UsergroupsDisable(BaseAPIEndpoint): """This method disables an existing User Group. .. code-block:: json { "ok": true, "usergroup": { "id": "S0615G0KT", "team_id": "T060RNRCH", "is_usergroup": true, "name": "Marketing Team", "description": "Marketing gurus, PR experts and product advocates.", "handle": "marketing-team", "is_external": false, "date_create": 1446746793, "date_update": 1446747568, "date_delete": 1446747568, "auto_type": null, "created_by": "U060RNRCZ", "updated_by": "U060RNRCZ", "deleted_by": "U060RNRCZ", "prefs": { "channels": [ ], "groups": [ ] }, "user_count": "0" } } When a User Group has been disabled its date_delete parameter will be non-zero. For more information see https://api.slack.com/methods/disable """ endpoint = 'usergroups.disable' required_args = { 'usergroup', } optional_args = { 'include_count', } options = { 'include_token': True, } # Scope Information scopes = { 'all': { 'usergroups:write', }, 'bot': set(), 'user': set(), } def __call__(self, usergroup, include_count=None, ): """Disable an existing User Group :param usergroup: Required. The encoded ID of the User Group to disable. e.g. S0604QSJC :param include_count: Optional. Include the number of users in the User Group. e.g. true """ optional_kwargs = {} if include_count is not None: optional_kwargs['include_count'] = include_count return BaseAPIEndpoint.__call__(self, usergroup=usergroup, **optional_kwargs ) @Usergroups.register('enable') class UsergroupsEnable(BaseAPIEndpoint): """This method enables a User Group which was previously disabled. .. code-block:: json { "ok": true, "usergroup": { "id": "S0615G0KT", "team_id": "T060RNRCH", "is_usergroup": true, "name": "Marketing Team", "description": "Marketing gurus, PR experts and product advocates.", "handle": "marketing-team", "is_external": false, "date_create": 1446746793, "date_update": 1446747767, "date_delete": 0, "auto_type": null, "created_by": "U060RNRCZ", "updated_by": "U060RNRCZ", "deleted_by": null, "prefs": { "channels": [ ], "groups": [ ] }, "user_count": "0" } } When a User Group is enabled, it's date_delete parameter will be 0 (zero). For more information see https://api.slack.com/methods/enable """ endpoint = 'usergroups.enable' required_args = { 'usergroup', } optional_args = { 'include_count', } options = { 'include_token': True, } # Scope Information scopes = { 'all': { 'usergroups:write', }, 'bot': set(), 'user': set(), } def __call__(self, usergroup, include_count=None, ): """Enable a User Group :param usergroup: Required. The encoded ID of the User Group to enable. e.g. S0604QSJC :param include_count: Optional. Include the number of users in the User Group. e.g. true """ optional_kwargs = {} if include_count is not None: optional_kwargs['include_count'] = include_count return BaseAPIEndpoint.__call__(self, usergroup=usergroup, **optional_kwargs ) @Usergroups.register('list') class UsergroupsList(BaseAPIEndpoint): """This method returns a list of all User Groups in the team. This can optionally include disabled User Groups. Returns a list of usergroup objects, in no particular order: .. code-block:: json { "ok": true, "usergroups": [ { "id": "S0614TZR7", "team_id": "T060RNRCH", "is_usergroup": true, "name": "Team Admins", "description": "A group of all Administrators on your team.", "handle": "admins", "is_external": false, "date_create": 1446598059, "date_update": 1446670362, "date_delete": 0, "auto_type": "admin", "created_by": "USLACKBOT", "updated_by": "U060RNRCZ", "deleted_by": null, "prefs": { "channels": [ ], "groups": [ ] }, "user_count": "2" }, { "id": "S06158AV7", "team_id": "T060RNRCH", "is_usergroup": true, "name": "Team Owners", "description": "A group of all Owners on your team.", "handle": "owners", "is_external": false, "date_create": 1446678371, "date_update": 1446678371, "date_delete": 0, "auto_type": "owner", "created_by": "USLACKBOT", "updated_by": "USLACKBOT", "deleted_by": null, "prefs": { "channels": [ ], "groups": [ ] }, "user_count": "1" }, { "id": "S0615G0KT", "team_id": "T060RNRCH", "is_usergroup": true, "name": "Marketing Team", "description": "Marketing gurus, PR experts and product advocates.", "handle": "marketing-team", "is_external": false, "date_create": 1446746793, "date_update": 1446747767, "date_delete": 1446748865, "auto_type": null, "created_by": "U060RNRCZ", "updated_by": "U060RNRCZ", "deleted_by": null, "prefs": { "channels": [ ], "groups": [ ] }, "user_count": "0" } ] } For more information see https://api.slack.com/methods/list """ endpoint = 'usergroups.list' required_args = {} optional_args = { 'include_count', 'include_disabled', 'include_users', } options = { 'include_token': True, } # Scope Information scopes = { 'all': { 'usergroups:read', }, 'bot': set(), 'user': set(), } def __call__(self, include_count=None, include_disabled=None, include_users=None, ): """List all User Groups for a team :param include_count: Optional. Include the number of users in each User Group. e.g. true :param include_disabled: Optional. Include disabled User Groups. e.g. true :param include_users: Optional. Include the list of users for each User Group. e.g. true """ optional_kwargs = {} if include_count is not None: optional_kwargs['include_count'] = include_count if include_disabled is not None: optional_kwargs['include_disabled'] = include_disabled if include_users is not None: optional_kwargs['include_users'] = include_users return BaseAPIEndpoint.__call__(self, **optional_kwargs ) @Usergroups.register('update') class UsergroupsUpdate(BaseAPIEndpoint): """This method updates the properties of an existing User Group. .. code-block:: json { "ok": true, "usergroup": { "id": "S0615G0KT", "team_id": "T060RNRCH", "is_usergroup": true, "name": "Marketing Gurus", "description": "Marketing gurus, PR experts and product advocates.", "handle": "marketing-team", "is_external": false, "date_create": 1446746793, "date_update": 1446748574, "date_delete": 0, "auto_type": null, "created_by": "U060RNRCZ", "updated_by": "U060RNRCZ", "deleted_by": null, "prefs": { "channels": [ ], "groups": [ ] }, "user_count": "0" } } For more information see https://api.slack.com/methods/update """ endpoint = 'usergroups.update' required_args = { 'usergroup', } optional_args = { 'channels', 'description', 'handle', 'include_count', 'name', } options = { 'include_token': True, } # Scope Information scopes = { 'all': { 'usergroups:write', }, 'bot': set(), 'user': set(), } def __call__(self, usergroup, channels=None, description=None, handle=None, include_count=None, name=None, ): """Update an existing User Group :param usergroup: Required. The encoded ID of the User Group to update. e.g. S0604QSJC :param channels: Optional. A comma separated string of encoded channel IDs for which the User Group uses as a default. e.g. C1234567890,C2345678901,C3456789012 :param description: Optional. A short description of the User Group. e.g. :param handle: Optional. A mention handle. Must be unique among channels, users and User Groups. e.g. marketing :param include_count: Optional. Include the number of users in the User Group. e.g. true :param name: Optional. A name for the User Group. Must be unique among User Groups. e.g. My Test Team """ optional_kwargs = {} if channels is not None: optional_kwargs['channels'] = channels if description is not None: optional_kwargs['description'] = description if handle is not None: optional_kwargs['handle'] = handle if include_count is not None: optional_kwargs['include_count'] = include_count if name is not None: optional_kwargs['name'] = name return BaseAPIEndpoint.__call__(self, usergroup=usergroup, **optional_kwargs ) @Users.register('list') class UsersList(BaseAPIEndpoint): """This method returns a list of all users within a User Group. .. code-block:: json { "ok": true, "users": [ "U060R4BJ4" ] } For more information see https://api.slack.com/methods/list """ endpoint = 'usergroups.users.list' required_args = { 'usergroup', } optional_args = { 'include_disabled', } options = { 'include_token': True, } # Scope Information scopes = { 'all': { 'usergroups:read', }, 'bot': set(), 'user': set(), } def __call__(self, usergroup, include_disabled=None, ): """List all users in a User Group :param usergroup: Required. The encoded ID of the User Group to update. e.g. S0604QSJC :param include_disabled: Optional. Allow results that involve disabled User Groups. e.g. true """ optional_kwargs = {} if include_disabled is not None: optional_kwargs['include_disabled'] = include_disabled return BaseAPIEndpoint.__call__(self, usergroup=usergroup, **optional_kwargs ) @Users.register('update') class UsersUpdate(BaseAPIEndpoint): """This method updates the list of users that belong to a User Group. This method replaces all users in a User Group with the list of users provided in the users parameter. .. code-block:: json { "ok": true, "usergroup": { "id": "S0616NG6M", "team_id": "T060R4BHN", "is_usergroup": true, "name": "Marketing Team", "description": "Marketing gurus, PR experts and product advocates.", "handle": "marketing-team", "is_external": false, "date_create": 1447096577, "date_update": 1447102109, "date_delete": 0, "auto_type": null, "created_by": "U060R4BJ4", "updated_by": "U060R4BJ4", "deleted_by": null, "prefs": { "channels": [ ], "groups": [ ] }, "users": [ "U060R4BJ4", "U060RNRCZ" ], "user_count": 1 } } For more information see https://api.slack.com/methods/update """ endpoint = 'usergroups.users.update' required_args = { 'usergroup', 'users', } optional_args = { 'include_count', } options = { 'include_token': True, } # Scope Information scopes = { 'all': { 'usergroups:write', }, 'bot': set(), 'user': set(), } def __call__(self, usergroup, users, include_count=None, ): """Update the list of users for a User Group :param usergroup: Required. The encoded ID of the User Group to update. e.g. S0604QSJC :param users: Required. A comma separated string of encoded user IDs that represent the entire list of users for the User Group. e.g. U060R4BJ4,U060RNRCZ :param include_count: Optional. Include the number of users in the User Group. e.g. true """ optional_kwargs = {} if include_count is not None: optional_kwargs['include_count'] = include_count return BaseAPIEndpoint.__call__(self, usergroup=usergroup, users=users, **optional_kwargs )
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ script: univariate-analysis-2.py followinf univariate-analysis.py, used to explore more features of univariate analysis In this script we show how to load/compute univariate analysis on other types of observables, and how to build good-looking autocorrelation functions by using the stationary hypothesis, where only time differences matter, which in practice increases the effective sample size. """ from __future__ import print_function from builtins import input import argparse import time from tqdm import tqdm import matplotlib.pyplot as plt from tunacell import Experiment, Observable, FilterSet from tunacell.base.observable import FunctionalObservable from tunacell.filters.cells import FilterCellIDparity from tunacell.stats.api import (compute_univariate, load_univariate, compute_stationary, load_stationary, NoValidTimes) from tunacell.stats.single import UnivariateIOError, StationaryUnivariateIOError from tunacell.stats.utils import Regions, CompuParams from tunacell.plotting.dynamics import plot_onepoint, plot_twopoints, plot_stationary # close all open plots plt.close('all') # Arguments argparser = argparse.ArgumentParser() argparser.add_argument('-e', '--experiment', type=str, help='Path to experiment root folder', default='~/tmptunacell/simutest') argparser.add_argument('-i', '--interactive', help='Ask user to press Enter between parts', action='store_true') argparser.add_argument('--time', type=float, help='Time per figure when non-interactive mode is on', default=3) args = argparser.parse_args() single_plot_timing = args.time msg = ('==============tunacell=tutorial==============\n' '== ==\n' '== Univariate analysis (2/2) ==\n' '== ==\n' '== This tutorial shows more details about ==\n' '== the univariate analysis (statistics of ==\n' '== single, dynamic observable): ==\n' '== * import/export of results ==\n' '== * details of stationary analysis ==\n' '== * time-lapse, cell cycle observables ==\n' '== (refer to comments in code to get more ==\n' '== details) ==\n' '== ==\n' '==============tunacell=tutorial==============\n') print(msg) print() # ============================================================================= # We start with the same settings as in univariate-analysis.py. # We first load the univariate analysis that we performed, and exported # in univariate-anbalysis.py (please run that script before starting this one) # ============================================================================= msg = 'Loading experiment with evenID condition (from part 1/2)' dashes = len(msg) * '*' print(msg + '\n' + dashes) # define the exp instance, no filter applied path_to_exp = args.experiment exp = Experiment(path_to_exp) # define a condition even = FilterCellIDparity('even') condition = FilterSet(label='evenID', filtercell=even) ou = Observable(name='exact-growth-rate', raw='ou') # Reference values md = exp.metadata params = md['ornstein_uhlenbeck_params'] ref_mean = params['target'] ref_var = params['noise']/(2 * params['spring']) ref_decayrate = params['spring'] print('Loading univariate results (computed and exported in part 1/2)') # loading univariate analysis for the ou observable univariate = load_univariate(exp, ou, cset=[condition, ]) # ============================================================================= # The last command would raise an exception of type UnivariateIOError if # computations had not been exported before. We can use this property # to try loading results, and if it fails, start the computation. # Below we do so for a few other observables # ============================================================================= # TIME-LAPSE OBSERVABLES (time-series per cell) print('Defining a bunch of observables, time-lapse, and cell-cycle') # local estimate of growth rate by using the differentiation of size measurement # (the raw column 'exp_ou_int' plays the role of cell size in our simulations) gr = Observable(name='approx-growth-rate', raw='exp_ou_int', differentiate=True, scale='log', local_fit=True, time_window=15.) # dynamic, functional observable: twice the growth rate ou2 = FunctionalObservable(name='double-growth-rate', f=lambda x : 2 * x, observables=[ou, ]) # time-aligned upon root cell division for size analysis # fixing tref allows to align timeseries to a common origin; the 'root' option # means that it will be aligned to each colony root cell division time size = Observable(name='size', raw='exp_ou_int', tref='root') continuous_obs = [ou, gr, ou2, size] # SOME CELL-CYCLE TYPE OBSERVABLES (one value per cell) # cell-cycle average growth rate average_gr = Observable(name='average-growth-rate', raw='ou', differentiate=False, scale='linear', local_fit=False, mode='average', timing='g') # size at cell division division_size = Observable(name='division-size', raw='exp_ou_int', differentiate=False, scale='log', local_fit=False, mode='division', timing='g') # increase in cell size timed at division time increase = Observable(name='added-size', raw='exp_ou_int', mode='net-increase-additive', timing='d') cycle_obs = [average_gr, division_size, increase] # Start computations univariates_store = {} figs = [] msg = 'Computing dynamic univariate statistics...' dashes = len(msg) * '*' print(msg + '\n' + dashes) for obs in continuous_obs + cycle_obs: print('* {} ...'.format(obs.name)) try: univ = load_univariate(exp, obs, cset=[condition, ]) except UnivariateIOError: univ = compute_univariate(exp, obs, cset=[condition, ]) univ.export_text() # save as text files # store univariate object in a dic indexed by observable univariates_store[obs] = univ # some options for plotting functions trefs = [40., 80., 150.] grefs = [1, 2] if obs in [ou, gr]: kwargs = {'mean_ref': ref_mean, 'var_ref': ref_var} kwargs2 = {'show_exp_decay': ref_decayrate, 'trefs': trefs} elif obs in [ou2, ]: kwargs = {'mean_ref': 2 * ref_mean, 'var_ref': 4 * ref_var} kwargs2 = {'show_exp_decay': ref_decayrate, 'trefs': trefs} elif obs in [size, increase]: kwargs = {} kwargs2 = {'trefs': trefs} elif obs in [average_gr, ]: kwargs = {'mean_ref': ref_mean} kwargs2 = {'trefs': grefs} else: kwargs = {} kwargs2 = {'trefs': grefs} # print('Ok') fig = plot_onepoint(univ, show_ci=True, save=True, verbose=False, **kwargs) fig.show() figs.append(fig) fig2 = plot_twopoints(univ, save=True, verbose=False, **kwargs2) # figs.append(fig2) # commented: too much figures if args.interactive: ans = input('Press Enter to close these figures and proceed to stationary autocorrelation analysis') else: for seconds in tqdm(range(10*len(figs)), desc='waiting'): time.sleep(single_plot_timing/10) plt.close('all') # ============================================================================= # A look at the onepoint functions allows the user to identify regions of time # where the process looks stationary. There is a function to define such # regions, and in fact, we already use one in the previous computations, # defined by default: the region 'ALL' that comprises all time values. # Here we mention the used region explicitely, and we stick to the 'ALL' # region since we find the process stationary on the entire time course # ============================================================================= regions = Regions(exp) regions.reset() # eliminate all regions except 'ALL' steady_region = regions.get('ALL') # and we need to use some computation options (more on that elsewhere) # define computation options options = CompuParams() # leaving to default is safe # ============================================================================= # Now we proceed in the same way: try to load, if it fails, compute. # We call the plotting function accordingly. # ============================================================================= msg = 'Computing stationary autocorrelation functions...' dashes = len(msg) * '*' print(msg + '\n' + dashes) figs = [] for obs in continuous_obs + cycle_obs: print('* {} ...'.format(obs.name)) # need the univariate object to compute stationary statistics univ = univariates_store[obs] try: stat = load_stationary(univ, steady_region, options) except StationaryUnivariateIOError: try: stat = compute_stationary(univ, steady_region, options) stat.export_text() # save as text files except NoValidTimes: stat = None # print('Ok') # plotting features if obs in [ou, gr, ou2]: kwargs = {'show_exp_decay': ref_decayrate} else: kwargs = {} if stat is not None: fig = plot_stationary(stat, save=True, verbose=False, **kwargs) fig.show() figs.append(fig) if args.interactive: ans = input('Press Enter to close these figures and proceed') else: for seconds in tqdm(range(10*len(figs)), desc='waiting'): time.sleep(single_plot_timing/10) plt.close('all') # ============================================================================= # For the sake of demonstration, we define here another, smaller region # ============================================================================= msg = 'Selecting a smaller region of time' dashes = len(msg) * '*' print(msg + '\n' + dashes) regions.add(name='beginning', tmin=0., tmax=100.) reg = regions.get('beginning') # we just start the computation for exact-growth-rate univ = univariates_store[ou] try: stat = load_stationary(univ, reg, options) except StationaryUnivariateIOError: stat = compute_stationary(univ, reg, options) stat.export_text() fig = plot_stationary(stat, save=True, verbose=False, show_exp_decay=ref_decayrate) fig.show() if args.interactive: ans = input('Press Enter to close these figures and terminate script') else: for seconds in tqdm(range(10), desc='waiting'): time.sleep(single_plot_timing/10) plt.close('all')
from __future__ import unicode_literals from future.builtins import super from datetime import timedelta from django.contrib.auth.models import User from django.contrib.messages import info, error from django.shortcuts import get_object_or_404, redirect from django.utils.timezone import now from django.views.generic import ListView, CreateView, DetailView, TemplateView from mezzanine.accounts import get_profile_model from mezzanine.conf import settings from mezzanine.generic.models import ThreadedComment, Keyword from mezzanine.utils.views import paginate from drum.links.forms import LinkForm from drum.links.models import Link, WaveSurfComment from drum.links.utils import order_by_score # Returns the name to be used for reverse profile lookups from the user # object. That's "profile" for the ``drum.links.Profile``, but otherwise # depends on the model specified in ``AUTH_PROFILE_MODULE``. USER_PROFILE_RELATED_NAME = get_profile_model().user.field.related_query_name() class UserFilterView(ListView): """ List view that puts a ``profile_user`` variable into the context, which is optionally retrieved by a ``username`` urlpattern var. If a user is loaded, ``object_list`` is filtered by the loaded user. Used for showing lists of links and comments. """ def get_context_data(self, **kwargs): context = super(UserFilterView, self).get_context_data(**kwargs) try: username = self.kwargs["username"] except KeyError: profile_user = None else: users = User.objects.select_related(USER_PROFILE_RELATED_NAME) lookup = {"username__iexact": username, "is_active": True} profile_user = get_object_or_404(users, **lookup) qs = context["object_list"].filter(user=profile_user) context["object_list"] = qs # Update context_object_name variable context_object_name = self.get_context_object_name(context["object_list"]) context[context_object_name] = context["object_list"] context["profile_user"] = profile_user context["no_data"] = ("Whoa, there's like, literally no data here, " "like seriously, I totally got nothin.") return context class ScoreOrderingView(UserFilterView): """ List view that optionally orders ``object_list`` by calculated score. Subclasses must defined a ``date_field`` attribute for the related model, that's used to determine time-scaled scoring. Ordering by score is the default behaviour, but can be overridden by passing ``False`` to the ``by_score`` arg in urlpatterns, in which case ``object_list`` is sorted by most recent, using the ``date_field`` attribute. Used for showing lists of links and comments. """ def get_context_data(self, **kwargs): context = super(ScoreOrderingView, self).get_context_data(**kwargs) qs = context["object_list"] context["by_score"] = self.kwargs.get("by_score", True) if context["by_score"]: qs = order_by_score(qs, self.score_fields, self.date_field) else: qs = qs.order_by("-" + self.date_field) context["object_list"] = paginate(qs, self.request.GET.get("page", 1), settings.ITEMS_PER_PAGE, settings.MAX_PAGING_LINKS) # Update context_object_name variable context_object_name = self.get_context_object_name(context["object_list"]) context[context_object_name] = context["object_list"] context["title"] = self.get_title(context) return context class LinkView(object): """ List and detail view mixin for links - just defines the correct queryset. """ def get_queryset(self): return Link.objects.published().select_related( "user", "user__%s" % USER_PROFILE_RELATED_NAME ) class LinkList(LinkView, ScoreOrderingView): """ List view for links, which can be for all users (homepage) or a single user (links from user's profile page). Links can be order by score (homepage, profile links) or by most recently created ("newest" main nav item). """ date_field = "publish_date" score_fields = ["rating_sum", "comments_count"] def get_queryset(self): queryset = super(LinkList, self).get_queryset() tag = self.kwargs.get("tag") if tag: queryset = queryset.filter(keywords__keyword__slug=tag) return queryset.prefetch_related("keywords__keyword") def get_title(self, context): tag = self.kwargs.get("tag") if tag: return get_object_or_404(Keyword, slug=tag).title if context["by_score"]: return "" # Homepage if context["profile_user"]: return "Links by %s" % getattr( context["profile_user"], USER_PROFILE_RELATED_NAME ) else: return "Newest" class LinkCreate(CreateView): """ Link creation view - assigns the user to the new link, as well as setting Mezzanine's ``gen_description`` attribute to ``False``, so that we can provide our own descriptions. """ form_class = LinkForm model = Link def form_valid(self, form): hours = getattr(settings, "ALLOWED_DUPLICATE_LINK_HOURS", None) if hours and form.instance.link: lookup = { "link": form.instance.link, "publish_date__gt": now() - timedelta(hours=hours), } try: link = Link.objects.get(**lookup) except Link.DoesNotExist: pass else: error(self.request, "Link exists") return redirect(link) form.instance.user = self.request.user form.instance.gen_description = False info(self.request, "Link created") return super(LinkCreate, self).form_valid(form) class LinkDetail(LinkView, DetailView): """ Link detail view - threaded comments and rating are implemented in its template. """ pass class CommentList(ScoreOrderingView): """ List view for comments, which can be for all users ("comments" and "best" main nav items) or a single user (comments from user's profile page). Comments can be order by score ("best" main nav item) or by most recently created ("comments" main nav item, profile comments). """ date_field = "submit_date" score_fields = ["rating_sum"] def get_queryset(self): qs = ThreadedComment.objects.filter(is_removed=False, is_public=True) select = ["user", "user__%s" % (USER_PROFILE_RELATED_NAME)] prefetch = ["content_object"] return qs.select_related(*select).prefetch_related(*prefetch) def get_title(self, context): if context["profile_user"]: return "Comments by %s" % getattr( context["profile_user"], USER_PROFILE_RELATED_NAME ) elif context["by_score"]: return "Best comments" else: return "Latest comments" class WaveSurfCommentList(ScoreOrderingView): date_field = "submit_date" score_fields = ["rating_sum"] def get_queryset(self): qs = WaveSurfComment.objects.filter(is_removed=False, is_public=True) select = ["user", "user__%s" % (USER_PROFILE_RELATED_NAME)] prefetch = ["content_object"] return qs.select_related(*select).prefetch_related(*prefetch) def get_title(self, context): if context["profile_user"]: return "Comments by %s" % getattr( context["profile_user"], USER_PROFILE_RELATED_NAME ) elif context["by_score"]: return "Best comments" else: return "Latest comments" class TagList(TemplateView): template_name = "links/tag_list.html"
import copy import pymc3 as pm from lasagne import init from gelato.specs.base import DistSpec, get_default_testval, smart_init __all__ = [ 'get_default_spec', 'set_default_spec', 'PartialSpec', 'UniformSpec', 'FlatSpec', 'NormalSpec', 'BetaSpec', 'ExponentialSpec', 'LaplaceSpec', 'StudentTSpec', 'CauchySpec', 'HalfCauchySpec', 'GammaSpec', 'WeibullSpec', 'LognormalSpec', 'ChiSquaredSpec', 'HalfNormalSpec', 'WaldSpec', 'ParetoSpec', 'InverseGammaSpec', 'ExGaussianSpec', 'VonMisesSpec', 'SkewNormalSpec', # 'HalfStudentTSpec', # 'NormalMixtureSpec' ] _default_spec = DistSpec(pm.Normal, mu=0, sd=10, testval=smart_init) def get_default_spec(testval=None): # to avoid init collision cp = copy.deepcopy(_default_spec) if testval is None and cp.testval is None: cp.testval = get_default_testval() elif testval is not None: cp.testval = testval else: pass return cp def set_default_spec(spec): global _default_spec _default_spec = spec class PartialSpec(DistSpec): spec = None def __init__(self, *args, **kwargs): super(PartialSpec, self).__init__(self.spec, *args, **kwargs) class UniformSpec(PartialSpec): spec = pm.Uniform __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, lower=0, upper=1): super(UniformSpec, self).__init__(lower=lower, upper=upper) class FlatSpec(PartialSpec): spec = pm.Flat __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self): super(FlatSpec, self).__init__(testval=init.Uniform(1)) class NormalSpec(PartialSpec): spec = pm.Normal __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, mu=0, sd=1): super(NormalSpec, self).__init__(mu=mu, sd=sd) class BetaSpec(PartialSpec): spec = pm.Beta __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, alpha=1, beta=1): super(BetaSpec, self).__init__(alpha=alpha, beta=beta) class ExponentialSpec(PartialSpec): spec = pm.Exponential __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, lam=1): super(ExponentialSpec, self).__init__(lam=lam) class LaplaceSpec(PartialSpec): spec = pm.Laplace __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, mu=0, b=1): super(LaplaceSpec, self).__init__(mu=mu, b=b) class StudentTSpec(PartialSpec): spec = pm.StudentT __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, nu, mu=0, sd=1): super(StudentTSpec, self).__init__(nu=nu, mu=mu, sd=sd) class CauchySpec(PartialSpec): spec = pm.Cauchy __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, alpha=0, beta=1): super(CauchySpec, self).__init__(alpha=alpha, beta=beta) class HalfCauchySpec(PartialSpec): spec = pm.HalfCauchy __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, beta): super(HalfCauchySpec, self).__init__(beta=beta) class GammaSpec(PartialSpec): spec = pm.Gamma __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, alpha, beta): super(GammaSpec, self).__init__(alpha=alpha, beta=beta) class WeibullSpec(PartialSpec): spec = pm.Weibull __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, alpha, beta): super(WeibullSpec, self).__init__(alpha=alpha, beta=beta) class LognormalSpec(PartialSpec): spec = pm.Lognormal __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, mu=0, sd=1): super(LognormalSpec, self).__init__(mu=mu, sd=sd) class ChiSquaredSpec(PartialSpec): spec = pm.ChiSquared __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, nu): super(ChiSquaredSpec, self).__init__(nu=nu) class HalfNormalSpec(PartialSpec): spec = pm.HalfNormal __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, sd=1): super(HalfNormalSpec, self).__init__(sd=sd) class WaldSpec(PartialSpec): spec = pm.Wald __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, mu, lam, alpha=0.): super(WaldSpec, self).__init__(mu=mu, lam=lam, alpha=alpha) class ParetoSpec(PartialSpec): spec = pm.Pareto __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, alpha, m): super(ParetoSpec, self).__init__(alpha=alpha, m=m) class InverseGammaSpec(PartialSpec): spec = pm.InverseGamma __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, alpha, beta=1): super(InverseGammaSpec, self).__init__(alpha=alpha, beta=beta) class ExGaussianSpec(PartialSpec): spec = pm.ExGaussian __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, mu, sd, nu): super(ExGaussianSpec, self).__init__(mu=mu, sigma=sd, nu=nu) class VonMisesSpec(PartialSpec): spec = pm.VonMises __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, mu, kappa): super(VonMisesSpec, self).__init__(mu=mu, kappa=kappa) class SkewNormalSpec(PartialSpec): spec = pm.SkewNormal __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, mu=0.0, sd=1, alpha=1): super(SkewNormalSpec, self).__init__(mu=mu, sd=sd, alpha=alpha) ''' class HalfStudentTSpec(PartialSpec): __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=pm.HalfStudentT.distribution.__name__, doc="""Bounded StudentT with support on [0, +inf]\n{doc}""".format( doc=pm.StudentT.__doc__ ) ) spec = pm.HalfStudentT def __init__(self, nu, mu=0, sd=1): super(HalfStudentTSpec, self).__init__(nu=nu, mu=mu, sd=sd) ''' ''' class NormalMixtureSpec(PartialSpec): spec = pm.NormalMixture __doc__ = """Gelato DistSpec with {dist} prior\n\n{doc}""".format( dist=spec.__name__, doc=spec.__doc__ ) def __init__(self, w, mu, sd=None, tau=None): w = np.asarray(w) mu = np.asarray(mu) if sd is not None: sd = np.asarray(sd) if tau is not None: tau = np.asarray(tau) _, sd = get_tau_sd(tau, sd) super(NormalMixtureSpec, self).__init__(w=w, mu=mu, sd=sd) '''
# Copyright (C) 2016 EMC Corporation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Tests for group_snapshot code. """ import mock import webob from cinder.api.v3 import group_snapshots as v3_group_snapshots from cinder import context from cinder import db from cinder import exception from cinder.group import api as group_api from cinder import objects from cinder import test from cinder.tests.unit.api import fakes from cinder.tests.unit import fake_constants as fake from cinder.tests.unit import utils import cinder.volume GROUP_MICRO_VERSION = '3.14' class GroupSnapshotsAPITestCase(test.TestCase): """Test Case for group_snapshots API.""" def setUp(self): super(GroupSnapshotsAPITestCase, self).setUp() self.controller = v3_group_snapshots.GroupSnapshotsController() self.volume_api = cinder.volume.API() self.context = context.get_admin_context() self.context.project_id = fake.PROJECT_ID self.context.user_id = fake.USER_ID self.user_ctxt = context.RequestContext( fake.USER_ID, fake.PROJECT_ID, auth_token=True) def test_show_group_snapshot(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] group_snapshot = utils.create_group_snapshot( self.context, group_id=group.id) req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s' % (fake.PROJECT_ID, group_snapshot.id), version=GROUP_MICRO_VERSION) res_dict = self.controller.show(req, group_snapshot.id) self.assertEqual(1, len(res_dict)) self.assertEqual('this is a test group snapshot', res_dict['group_snapshot']['description']) self.assertEqual('test_group_snapshot', res_dict['group_snapshot']['name']) self.assertEqual('creating', res_dict['group_snapshot']['status']) group_snapshot.destroy() db.volume_destroy(context.get_admin_context(), volume_id) group.destroy() def test_show_group_snapshot_with_group_snapshot_NotFound(self): req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s' % (fake.PROJECT_ID, fake.WILL_NOT_BE_FOUND_ID), version=GROUP_MICRO_VERSION) self.assertRaises(exception.GroupSnapshotNotFound, self.controller.show, req, fake.WILL_NOT_BE_FOUND_ID) def test_list_group_snapshots_json(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] group_snapshot1 = utils.create_group_snapshot( self.context, group_id=group.id) group_snapshot2 = utils.create_group_snapshot( self.context, group_id=group.id) group_snapshot3 = utils.create_group_snapshot( self.context, group_id=group.id) req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) res_dict = self.controller.index(req) self.assertEqual(1, len(res_dict)) self.assertEqual(group_snapshot1.id, res_dict['group_snapshots'][0]['id']) self.assertEqual('test_group_snapshot', res_dict['group_snapshots'][0]['name']) self.assertEqual(group_snapshot2.id, res_dict['group_snapshots'][1]['id']) self.assertEqual('test_group_snapshot', res_dict['group_snapshots'][1]['name']) self.assertEqual(group_snapshot3.id, res_dict['group_snapshots'][2]['id']) self.assertEqual('test_group_snapshot', res_dict['group_snapshots'][2]['name']) group_snapshot3.destroy() group_snapshot2.destroy() group_snapshot1.destroy() db.volume_destroy(context.get_admin_context(), volume_id) group.destroy() def test_list_group_snapshots_detail_json(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] group_snapshot1 = utils.create_group_snapshot( self.context, group_id=group.id) group_snapshot2 = utils.create_group_snapshot( self.context, group_id=group.id) group_snapshot3 = utils.create_group_snapshot( self.context, group_id=group.id) req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/detail' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) res_dict = self.controller.detail(req) self.assertEqual(1, len(res_dict)) self.assertEqual(3, len(res_dict['group_snapshots'])) self.assertEqual('this is a test group snapshot', res_dict['group_snapshots'][0]['description']) self.assertEqual('test_group_snapshot', res_dict['group_snapshots'][0]['name']) self.assertEqual(group_snapshot1.id, res_dict['group_snapshots'][0]['id']) self.assertEqual('creating', res_dict['group_snapshots'][0]['status']) self.assertEqual('this is a test group snapshot', res_dict['group_snapshots'][1]['description']) self.assertEqual('test_group_snapshot', res_dict['group_snapshots'][1]['name']) self.assertEqual(group_snapshot2.id, res_dict['group_snapshots'][1]['id']) self.assertEqual('creating', res_dict['group_snapshots'][1]['status']) self.assertEqual('this is a test group snapshot', res_dict['group_snapshots'][2]['description']) self.assertEqual('test_group_snapshot', res_dict['group_snapshots'][2]['name']) self.assertEqual(group_snapshot3.id, res_dict['group_snapshots'][2]['id']) self.assertEqual('creating', res_dict['group_snapshots'][2]['status']) group_snapshot3.destroy() group_snapshot2.destroy() group_snapshot1.destroy() db.volume_destroy(context.get_admin_context(), volume_id) group.destroy() @mock.patch( 'cinder.api.openstack.wsgi.Controller.validate_name_and_description') @mock.patch('cinder.db.volume_type_get') @mock.patch('cinder.quota.VolumeTypeQuotaEngine.reserve') def test_create_group_snapshot_json(self, mock_quota, mock_vol_type, mock_validate): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] body = {"group_snapshot": {"name": "group_snapshot1", "description": "Group Snapshot 1", "group_id": group.id}} req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) res_dict = self.controller.create(req, body) self.assertEqual(1, len(res_dict)) self.assertIn('id', res_dict['group_snapshot']) self.assertTrue(mock_validate.called) group.destroy() group_snapshot = objects.GroupSnapshot.get_by_id( context.get_admin_context(), res_dict['group_snapshot']['id']) db.volume_destroy(context.get_admin_context(), volume_id) group_snapshot.destroy() @mock.patch( 'cinder.api.openstack.wsgi.Controller.validate_name_and_description') @mock.patch('cinder.db.volume_type_get') def test_create_group_snapshot_when_volume_in_error_status( self, mock_vol_type, mock_validate): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, status='error', group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] body = {"group_snapshot": {"name": "group_snapshot1", "description": "Group Snapshot 1", "group_id": group.id}} req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, body) self.assertTrue(mock_validate.called) group.destroy() db.volume_destroy(context.get_admin_context(), volume_id) def test_create_group_snapshot_with_no_body(self): # omit body from the request req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, None) @mock.patch.object(group_api.API, 'create_group_snapshot', side_effect=exception.InvalidGroupSnapshot( reason='Invalid group snapshot')) def test_create_with_invalid_group_snapshot(self, mock_create_group_snap): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, status='error', group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] body = {"group_snapshot": {"name": "group_snapshot1", "description": "Group Snapshot 1", "group_id": group.id}} req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, body) group.destroy() db.volume_destroy(context.get_admin_context(), volume_id) @mock.patch.object(group_api.API, 'create_group_snapshot', side_effect=exception.GroupSnapshotNotFound( group_snapshot_id='invalid_id')) def test_create_with_group_snapshot_not_found(self, mock_create_grp_snap): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, status='error', group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] body = {"group_snapshot": {"name": "group_snapshot1", "description": "Group Snapshot 1", "group_id": group.id}} req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) self.assertRaises(exception.GroupSnapshotNotFound, self.controller.create, req, body) group.destroy() db.volume_destroy(context.get_admin_context(), volume_id) def test_create_group_snapshot_from_empty_group(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) body = {"group_snapshot": {"name": "group_snapshot1", "description": "Group Snapshot 1", "group_id": group.id}} req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots' % fake.PROJECT_ID, version=GROUP_MICRO_VERSION) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, body) group.destroy() def test_delete_group_snapshot_available(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] group_snapshot = utils.create_group_snapshot( self.context, group_id=group.id, status='available') req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s' % (fake.PROJECT_ID, group_snapshot.id), version=GROUP_MICRO_VERSION) res_dict = self.controller.delete(req, group_snapshot.id) group_snapshot = objects.GroupSnapshot.get_by_id(self.context, group_snapshot.id) self.assertEqual(202, res_dict.status_int) self.assertEqual('deleting', group_snapshot.status) group_snapshot.destroy() db.volume_destroy(context.get_admin_context(), volume_id) group.destroy() def test_delete_group_snapshot_available_used_as_source(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] group_snapshot = utils.create_group_snapshot( self.context, group_id=group.id, status='available') group2 = utils.create_group( self.context, status='creating', group_snapshot_id=group_snapshot.id, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s' % (fake.PROJECT_ID, group_snapshot.id), version=GROUP_MICRO_VERSION) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.delete, req, group_snapshot.id) group_snapshot.destroy() db.volume_destroy(context.get_admin_context(), volume_id) group.destroy() group2.destroy() def test_delete_group_snapshot_with_group_snapshot_NotFound(self): req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s' % (fake.PROJECT_ID, fake.WILL_NOT_BE_FOUND_ID), version=GROUP_MICRO_VERSION) self.assertRaises(exception.GroupSnapshotNotFound, self.controller.delete, req, fake.WILL_NOT_BE_FOUND_ID) def test_delete_group_snapshot_with_Invalid_group_snapshot(self): group = utils.create_group( self.context, group_type_id=fake.GROUP_TYPE_ID, volume_type_ids=[fake.VOLUME_TYPE_ID],) volume_id = utils.create_volume( self.context, group_id=group.id, volume_type_id=fake.VOLUME_TYPE_ID)['id'] group_snapshot = utils.create_group_snapshot( self.context, group_id=group.id, status='invalid') req = fakes.HTTPRequest.blank('/v3/%s/group_snapshots/%s' % (fake.PROJECT_ID, group_snapshot.id), version=GROUP_MICRO_VERSION) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.delete, req, group_snapshot.id) group_snapshot.destroy() db.volume_destroy(context.get_admin_context(), volume_id) group.destroy()
from tcga_encoder.definitions.locations import * from tcga_encoder.utils.helpers import * from tcga_encoder.data.data import * from tcga_encoder.analyses.dna_functions import * from sklearn.model_selection import StratifiedKFold from sklearn.linear_model import LogisticRegression from sklearn.metrics import average_precision_score, precision_recall_curve from tcga_encoder.analyses.survival_functions import * def load_data_and_fill( data_location, results_location ): input_sources = ["RNA","miRNA","METH"] data_store = load_store( data_location, "data.h5") model_store = load_store( results_location, "full_vae_model.h5") fill_store = load_store( results_location, "full_vae_fill.h5") subtypes = load_subtypes( data_store ) #tissues = data_store["/CLINICAL/TISSUE"].loc[barcodes] survival = PanCancerSurvival( data_store ) #pdb.set_trace() Z,Z_std = load_latent( fill_store ) model_barcodes = Z.index.values H = load_hidden( fill_store, model_barcodes ) RNA_fair, miRNA_fair, METH_fair = load_fair_data( data_store, model_barcodes ) RNA_scale, miRNA_scale, METH_scale = load_scaled_data( fill_store, model_barcodes ) rna_names = RNA_scale.columns mirna_names = miRNA_scale.columns meth_names = METH_scale.columns h_names = H.columns z_names = Z.columns n_rna = len(rna_names) n_mirna = len(mirna_names) n_meth = len(meth_names) n_h = len(h_names) n_z = len(z_names) everything_dir = os.path.join( os.path.join( HOME_DIR, results_location ), "everything2" ) check_and_mkdir(everything_dir) data = EverythingObject() data.input_sources = input_sources data.data_store = data_store data.model_store = model_store data.fill_store = fill_store data.subtypes = subtypes data.survival = survival data.Z = Z try: data.T=data.data_store["/CLINICAL_USED/TISSUE"].loc[ Z.index ] except: data.T=data.data_store["/CLINICAL/TISSUE"].loc[ Z.index ] data.Z_std = Z_std data.H = H data.W_input2h = get_hidden_weights( model_store, input_sources, data_store ) data.W_h2z = get_hidden2z_weights( model_store ) data.weighted_W_h2z = join_weights( data.W_h2z, data.W_input2h ) data.dna = data.data_store["/DNA/channel/0"].loc[data.Z.index].fillna(0) data.RNA_scale = RNA_scale data.miRNA_scale = miRNA_scale data.METH_scale = METH_scale data.RNA_fair = RNA_fair data.miRNA_fair = miRNA_fair data.METH_fair = METH_fair data.rna_names = rna_names data.mirna_names = mirna_names data.meth_names = meth_names data.h_names = h_names data.z_names = z_names data.n_rna = n_rna data.n_mirna = n_mirna data.n_meth = n_meth data.n_h = n_h data.n_z = n_z data.save_dir = everything_dir data.data_store.close() data.fill_store.close() data.model_store.close() return data def merge_tissues( T, tissues ): ids = np.zeros( len(T), dtype=bool) s = "" for tissue in tissues: s += tissue ids |= (T[ tissue ]==1).values T = T.drop(tissue,axis=1) T[s] = ids.astype(float) return T def pearsonr( X, Y ): XN = X / np.sqrt(np.sum( X*X,0)) YN = Y / np.sqrt(np.sum( Y*Y,0)) pearson = np.dot( XN.T, YN ) p_values = 1.0 - np.abs(pearson) return pearson,p_values def auc_and_pvalue( true_y, z_values ): n_1 = true_y.sum() n_0 = len(true_y) - n_1 auc = roc_auc_score( true_y, z_values ) if auc < 0.5: se_auc = auc_standard_error( auc, n_0, n_1 ) else: se_auc = auc_standard_error( auc, n_1, n_0 ) se_random = auc_standard_error( 0.5, n_1, n_0 ) p_value = auc_p_value( auc, 0.5, se_auc, se_random ) return auc, p_value class LogisticBinaryClassifierKFold(object): def __init__(self, K=5, random_state = None ): self.random_state = random_state self.K = K self.M = [] for k in range(K): self.M.append( LogisticBinaryClassifier() ) def fit_and_prob( self, y, X, penalty = 'l2', C = 0.0 ): print "LogisticBinaryClassifierKFold penalty/C = ", penalty, C self.folds = StratifiedKFold(n_splits=self.K, shuffle = True, random_state=self.random_state) y_prob = np.zeros( y.shape ) k = 0 for train_split, test_split in self.folds.split( X, y ): self.M[k].fit( y[train_split], X[train_split,:], penalty = penalty, C=C ) y_est = self.M[k].prob( X[test_split,:] ) #pdb.set_trace() # if np.any(np.isnan(y_est)): # pdb.set_trace() y_prob[test_split] = y_est return y_prob class LogisticBinaryClassifier(object): def __init__(self): pass def fit( self, y, X, penalty = 'l2', C = 0.0, fit_intercept=True, class_weight="balanced" ): self.dim = X.shape[1] self.n = len(y) self.n_1 = y.sum() self.n_0 = self.n-self.n_1 self.penalty = penalty self.C = C self.M = LogisticRegression(penalty=self.penalty,\ C=self.C, \ intercept_scaling=1.0, \ fit_intercept=fit_intercept, \ class_weight = class_weight) self.mean = X.mean(0) self.std = X.std(0) self.M.fit( self.normalize(X), y ) self.coef_ = self.M.coef_ def normalize(self,X): return X return (X-self.mean)/self.std def predict( self, X ): return self.M.predict(self.normalize(X)).astype(int) def prob( self, X ): return self.M.predict_proba(self.normalize(X))[:,1] def log_prob( self, X ): return self.M.predict_log_proba(self.normalize(X)) class GenerativeBinaryClassifierKFold(object): def __init__(self, K=5, random_state = None ): self.random_state = random_state self.K = K self.M = [] for k in range(K): self.M.append( GenerativeBinaryClassifier() ) def fit_and_prob( self, y, X, cov_type = "full", ridge = 0.0 ): print "GenerativeBinaryClassifierKFold ridge = ", ridge self.folds = StratifiedKFold(n_splits=self.K, shuffle = True, random_state=self.random_state) y_prob = np.zeros( y.shape ) k = 0 for train_split, test_split in self.folds.split( X, y ): #print "\t\t\tINFO (%s): running fold %d of %d"%(dna_gene,fold_idx, n_folds) self.M[k].fit( y[train_split], X[train_split,:], cov_type, ridge ) y_est = self.M[k].prob( X[test_split,:] ) if np.any(np.isnan(y_est)): pdb.set_trace() y_prob[test_split] = y_est return y_prob class GenerativeBinaryClassifier(object): def __init__(self): pass def fit( self, y, X, cov_type = "full", ridge = 0.0 ): self.dim = X.shape[1] self.n = len(y) self.n_1 = y.sum() self.n_0 = self.n-self.n_1 self.ridge = ridge self.pi_1 = float(self.n_1)/float(self.n) self.pi_0 = float(self.n_0)/float(self.n) self.log_pi_1 = np.log(self.pi_1) self.log_pi_0 = np.log(self.pi_0) self.class_1 = y==1 self.class_0 = y==0 self.class_1_ids = pp.find(self.class_1) self.class_0_ids = pp.find(self.class_0) self.mean_1 = X[self.class_1].mean(0) self.mean_0 = X[self.class_0].mean(0) if cov_type == "full": self.cov_1 = np.cov( X[self.class_1].T ) + self.ridge*np.eye(self.dim) self.cov_0 = np.cov( X[self.class_0].T ) + ridge*np.eye(self.dim) elif cov_type == "diag": self.cov_1 = np.diag( X[self.class_1].var(0) ) + self.ridge*np.eye(self.dim) self.cov_0 = np.diag( X[self.class_0].var(0) )+ self.ridge*np.eye(self.dim) elif cov_type == "shared": self.cov_1 = np.cov( X.T ) + self.ridge*np.eye(self.dim) self.cov_0 = self.cov_1 self.inv_cov_1 = np.linalg.inv(self.cov_1) self.inv_cov_0 = np.linalg.inv(self.cov_0) #pdb.set_trace() def predict( self, X ): return self.prob(X).astype(int) def prob( self, X ): return np.exp(self.log_prob(X)) def log_prob( self, X ): log_prob_1 = self.log_prob_class( X, self.log_pi_1, self.cov_1, self.inv_cov_1, self.mean_1 ) log_prob_0 = self.log_prob_class( X, self.log_pi_0, self.cov_0, self.inv_cov_0, self.mean_0 ) if np.any(np.isnan(log_prob_1)) or np.any(np.isnan(log_prob_0)): print self.mean_0 print self.mean_1 print self.cov_1 print self.cov_0 print self.ridge print np.cov( X[self.class_1].T ) print np.cov( X[self.class_0].T ) pdb.set_trace() #log_denom = np.log( np.exp(log_prob_1)+np.exp(log_prob_0)) max_ = np.maximum( log_prob_1, log_prob_0 ) log_denom = max_ + np.log( np.exp( log_prob_1-max_ )+np.exp( log_prob_0-max_ )) # if log_prob_1 > log_prob_0: # log_denom = log_prob_1 + np.log( 1.0 + np.exp(log_prob_0-log_prob_1) ) # else: # log_denom = log_prob_0 + np.log( 1.0 + np.exp(log_prob_1-log_prob_0) ) #pdb.set_trace() return log_prob_1 - log_denom def log_prob_class(self, X, log_pi, cov, invcov, mean ): dif = X-mean[np.newaxis,:] a = log_pi b = -0.5*np.log( np.linalg.det( 2*np.pi*cov)) c = -0.5*np.sum( np.dot( dif, invcov )*dif, 1 ) return a+b+c class EverythingObject(object): def __init__(self): self.results = {} def load_store( location, name, mode="r" ): store_path = os.path.join( HOME_DIR, location ) store_name = os.path.join( store_path, name ) return pd.HDFStore( store_name, mode ) def load_scaled_data( fill_store, barcodes ): RNA_scale = fill_store["/scaled/RNA"].loc[barcodes] miRNA_scale = fill_store["/scaled/miRNA"].loc[barcodes] METH_scale = fill_store["/scaled/METH"].loc[barcodes] return RNA_scale, miRNA_scale, METH_scale def load_fair_data( data_store, barcodes ): RNA_fair = data_store["/RNA/FAIR"].loc[barcodes] miRNA_fair = data_store["/miRNA/FAIR"].loc[barcodes] METH_fair = data_store["/METH/FAIR"].loc[barcodes] return RNA_fair, miRNA_fair, METH_fair def load_subtypes( data_store ): sub_bcs = np.array([ x+"_"+y for x,y in np.array(data_store["/CLINICAL/data"]["patient.stage_event.pathologic_stage"].index.tolist(),dtype=str)] ) sub_values = np.array( data_store["/CLINICAL/data"]["patient.stage_event.pathologic_stage"].values, dtype=str ) subtypes = pd.Series( sub_values, index = sub_bcs, name="subtypes") return subtypes def load_latent( fill_store ): Z_train = fill_store["/Z/TRAIN/Z/mu"] Z_val = fill_store["/Z/VAL/Z/mu"] Z = pd.concat( [Z_train, Z_val], axis = 0 ) Z_train = fill_store["/Z/TRAIN/Z/var"] Z_val = fill_store["/Z/VAL/Z/var"] Z_var = pd.concat( [Z_train, Z_val], axis = 0 ) Z_std = np.sqrt(Z_var) return Z, Z_std def load_hidden( fill_store, barcodes ): try: H = fill_store["hidden"].loc[barcodes] except: print "found no hidden" H = pd.DataFrame( [], index = barcodes ) return H def join_weights( W_hidden2z, W_hidden ): W = {} n_z = W_hidden2z.shape[1] columns = np.array( ["z_%d"%i for i in range(n_z)]) for input_source, source_w in W_hidden.iteritems(): #pdb.set_trace() W[ input_source ] = pd.DataFrame( np.dot( source_w, W_hidden2z ), index = source_w.index, columns = columns ) #pdb.set_trace() return W def get_hidden2z_weights( model_store ): layer = "rec_z_space" model_store.open() w = model_store[ "%s"%(layer) + "/W/w%d"%(0)].values model_store.close() return w def get_hidden_weights( model_store, input_sources, data_store ): rna_genes = data_store["/RNA/FAIR"].columns meth_genes = ["M_"+s for s in data_store["/METH/FAIR"].columns] mirna_hsas = data_store["/miRNA/FAIR"].columns post_fix = "_scaled" idx=1 n_sources = len(input_sources) W = {} for w_idx, input_source in zip( range(n_sources), input_sources ): w = model_store[ "rec_hidden" + "/W/w%d"%(w_idx)].values #pdb.set_trace() d,k = w.shape columns = np.array( ["h_%d"%i for i in range(k)]) if input_source == "RNA": rows = rna_genes print input_source, w.shape, len(rows), len(columns) W[ input_source ] = pd.DataFrame( w, index=rows, columns = columns ) if input_source == "miRNA": rows = mirna_hsas print input_source, w.shape, len(rows), len(columns) W[ input_source ] = pd.DataFrame( w, index=rows, columns = columns ) if input_source == "METH": rows = meth_genes #rows = np.array( [ "M-%s"%g for g in meth_genes], dtype=str ) print input_source, w.shape, len(rows), len(columns) W[ input_source ] = pd.DataFrame( w, index=rows, columns = columns ) if input_source == "TISSUE": rows = tissue_names print input_source, w.shape, len(rows), len(columns) W[ input_source ] = pd.DataFrame( w, index=rows, columns = columns ) model_store.close() return W def quantize( Z, q_range =[0,0.2, 0.4,0.6,0.8,1.0] ): #n_z = len(Z) n_z = len(Z.columns) #quantiles = (len(Z)*np.array( [0,0.33, 0.66, 1.0] )).astype(int) quantiles = (len(Z)*np.array( q_range )).astype(int) #quantiles = (len(Z)*np.array( [0,0.1, 0.2,0.3,0.4,0.6,0.7,0.8,0.9,1.0] )).astype(int) n_quantiles = len(quantiles)-1 start_q_id = -(n_quantiles-1)/2 #Z=Z.loc[barcodes] Z_values = Z.values argsort_Z = np.argsort( Z_values, 0 ) Z_quantized = np.zeros( Z_values.shape, dtype=int ) for start_q, end_q in zip( quantiles[:-1], quantiles[1:] ): for z_idx in range(n_z): z_idx_order = argsort_Z[:,z_idx] Z_quantized[ z_idx_order[start_q:end_q], z_idx] = start_q_id start_q_id+=1 Z_quantized = pd.DataFrame(Z_quantized, index=Z.index, columns=Z.columns ) return Z_quantized def normalize( Z ): Z_values = Z.values Z_values -= Z_values.mean(0) Z_values /= Z_values.std(0) Z_normalized = pd.DataFrame(Z_values, index=Z.index, columns=Z.columns ) return Z_normalized def normalize_by_tissue(X,T): XV = X.values #X2 = for tissue_name in T.columns: #print "working ", tissue_name ids = pp.find( T[tissue_name]==1 ) n_ids = len(ids); n_tissue=n_ids if n_ids==0: continue XV[ids,:] -= XV[ids,:].mean(0) XV[ids,:] /= XV[ids,:].std(0) return pd.DataFrame( XV, index = X.index, columns = X.columns ) def ids_with_at_least_n_mutations( dna, tissue, n = 1 ): ok_ids = np.zeros( len(dna), dtype=bool ) for tissue_name in tissue.columns: #print "working ", tissue_name ids = pp.find( tissue[tissue_name]==1 ) n_ids = len(ids); n_tissue=n_ids if n_ids==0: continue n_mutations = dna[ids].sum() if n_mutations >= 1: ok_ids[ ids ] = True return ok_ids def ids_with_at_least_p_mutations( dna, tissue, p = 1 ): ok_ids = np.zeros( len(dna), dtype=bool ) relevant_tissues=[] for tissue_name in tissue.columns: #print "working ", tissue_name ids = pp.find( tissue[tissue_name]==1 ) n_ids = len(ids); n_tissue=n_ids if n_ids==0: continue n_mutations = dna[ids].sum() if float(n_mutations)/float(n_ids) >= p: ok_ids[ ids ] = True relevant_tissues.append(tissue_name) return ok_ids,relevant_tissues def tissue_level_performance( ids, y_true, y_est, relevant_tissues, tissues ): performances = [] mutations = int(np.sum(y_true[ids])) wildtype = len(y_est[ids])-mutations #pdb.set_trace() auc_y_est, p_value_y_est = auc_and_pvalue(y_true[ids], y_est[ids] ) mean_precision = average_precision_score(y_true[ids], y_est[ids] ) performances.append( pd.Series( [mean_precision,auc_y_est,p_value_y_est,wildtype,mutations],index = ["AUPRC","AUROC","p-value","wildtype","mutations"], name = "PAN" ) ) for tissue in relevant_tissues: tissue_query = tissues[tissue]==1 tissue_ids = pp.find(tissue_query) #ids_with_n[ tissue_query ] #tissue_bcs = gene_bcs[ tissue_query ] y_true_tissue = y_true[tissue_ids] y_est_tissue = y_est[tissue_ids] n = len(y_true_tissue) mutations = int(np.sum(y_true_tissue)) wildtype = n-mutations if mutations==0 or wildtype==0: print "skipping ",tissue continue #pdb.set_trace() auc_y_est, p_value_y_est = auc_and_pvalue(y_true_tissue, y_est_tissue ) mean_precision = average_precision_score(y_true_tissue, y_est_tissue ) performances.append( pd.Series( [mean_precision,auc_y_est,p_value_y_est,n,wildtype,mutations],index = ["AUPRC","AUROC","p-value","n","wildtype","mutations"], name = tissue ) ) performances = pd.concat(performances, axis=1).T #pdb.set_trace() print performances return performances def plot_pr_tissues( gene_dir, gene, bcs, y_est_full, y_true_full, relevant_tissues, tissues, performance, ax=None, save=True ): if ax is None: f=pp.figure() ax=f.add_subplot(111) best_tissues = performance["AUPRC"].sort_values().index.values for tissue in best_tissues: if tissue == "PAN": continue tissue_bcs = tissues[ tissues[tissue]==1 ].index.values y_est = y_est_full.loc[tissue_bcs] y_true = y_true_full.loc[tissue_bcs] precision, recall, _ = precision_recall_curve(y_true.values, y_est.values ) ax.plot( recall, precision, '-', lw=1, label='%s %0.2f' % (tissue,performance.loc[tissue]["AUPRC"]) ) y_est = y_est_full.loc[bcs] y_true = y_true_full.loc[bcs] precision, recall, _ = precision_recall_curve(y_true.values, y_est.values ) ax.plot( recall, precision, 'k-', lw=4, label = 'PAN %0.2f'%(performance.loc["PAN"]["AUPRC"]) ) #ax.plot([0, 1], [mean_precision, mean_precision], color='navy', lw=1, linestyle='--') #ax.plot( recall, precision, 'r-', lw=2, label='PR curve (mean = %0.2f)' % mean_precision ) ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.05]) ax.set_xlabel('Recall') ax.set_ylabel('Precision') ax.set_title('%s'%(gene)) ax.legend(loc="lower right") if save is True: pp.savefig( gene_dir + "/precision_recall_tissues.png", fmt='png', dpi=300, bbox_inches='tight') return ax def plot_roc_tissues( gene_dir, gene, bcs, y_est_full, y_true_full, relevant_tissues, tissues, performance, ax=None, save=True ): if ax is None: f=pp.figure() ax=f.add_subplot(111) best_tissues = performance["AUROC"].sort_values().index.values for tissue in best_tissues: if tissue == "PAN": continue tissue_bcs = tissues[ tissues[tissue]==1 ].index.values y_est = y_est_full.loc[tissue_bcs] y_true = y_true_full.loc[tissue_bcs] #precision, recall, _ = precision_recall_curve(y_true.values, y_est.values ) fpr, tpr, _ = roc_curve(y_true.values, y_est.values ) ax.plot( fpr, tpr, '-', lw=1, label='%s %0.2f' % (tissue,performance.loc[tissue]["AUROC"]) ) y_est = y_est_full.loc[bcs] y_true = y_true_full.loc[bcs] fpr, tpr, _ = roc_curve(y_true.values, y_est.values ) #precision, recall, _ = precision_recall_curve(y_true.values, y_est.values ) ax.plot( fpr, tpr, 'k-', lw=4, label='PAN %0.2f'%(performance.loc["PAN"]["AUROC"]) ) #ax.plot([0, 1], [mean_precision, mean_precision], color='navy', lw=1, linestyle='--') #ax.plot( recall, precision, 'r-', lw=2, label='PR curve (mean = %0.2f)' % mean_precision ) ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.05]) ax.set_xlabel('FPR') ax.set_ylabel('TPR') ax.set_title('%s'%(gene)) ax.legend(loc="lower right") if save is True: pp.savefig( gene_dir + "/roc_tissues.png", fmt='png', dpi=300, bbox_inches='tight') return ax # # def auc_standard_error( theta, nA, nN ): # # from: Hanley and McNeil (1982), The Meaning and Use of the Area under the ROC Curve # # theta: estimated AUC, can be 0.5 for a random test # # nA size of population A # # nN size of population N # # Q1=theta/(2.0-theta); Q2=2*theta*theta/(1+theta) # # SE = np.sqrt( (theta*(1-theta)+(nA-1)*(Q1-theta*theta) + (nN-1)*(Q2-theta*theta) )/(nA*nN) ) # # return SE
# -*- coding: utf-8 -*- # Copyright 2013 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from datetime import datetime from decorator import decorator from sqlalchemy import exc as sa_exc import web from nailgun.api.v1.validators.base import BasicValidator from nailgun.db import db from nailgun.errors import errors from nailgun.logger import logger from nailgun import objects from nailgun.objects.serializers.base import BasicSerializer from nailgun.openstack.common import jsonutils def check_client_content_type(handler): content_type = web.ctx.env.get("CONTENT_TYPE", "application/json") if web.ctx.path.startswith("/api")\ and not content_type.startswith("application/json"): raise handler.http(415) return handler() def forbid_client_caching(handler): if web.ctx.path.startswith("/api"): web.header('Cache-Control', 'store, no-cache, must-revalidate,' ' post-check=0, pre-check=0') web.header('Pragma', 'no-cache') dt = datetime.fromtimestamp(0).strftime( '%a, %d %b %Y %H:%M:%S GMT' ) web.header('Expires', dt) return handler() def load_db_driver(handler): """Wrap all handlers calls in a special construction, that's call rollback if something wrong or commit changes otherwise. Please note, only HTTPError should be rised up from this function. All another possible errors should be handle. """ try: # execute handler and commit changes if all is ok response = handler() db.commit() return response except web.HTTPError: # a special case: commit changes if http error ends with # 200, 201, 202, etc if web.ctx.status.startswith('2'): db.commit() else: db.rollback() raise except (sa_exc.IntegrityError, sa_exc.DataError) as exc: # respond a "400 Bad Request" if database constraints were broken db.rollback() raise BaseHandler.http(400, exc.message) except Exception: db.rollback() raise finally: db.remove() @decorator def content_json(func, *args, **kwargs): try: data = func(*args, **kwargs) except web.notmodified: raise except web.HTTPError as http_error: web.header('Content-Type', 'application/json') if isinstance(http_error.data, (dict, list)): http_error.data = build_json_response(http_error.data) raise web.header('Content-Type', 'application/json') return build_json_response(data) def build_json_response(data): web.header('Content-Type', 'application/json') if type(data) in (dict, list): return jsonutils.dumps(data) return data class BaseHandler(object): validator = BasicValidator serializer = BasicSerializer fields = [] @classmethod def render(cls, instance, fields=None): return cls.serializer.serialize( instance, fields=fields or cls.fields ) @classmethod def http(cls, status_code, message='', headers=None): """Raise an HTTP status code, as specified. Useful for returning status codes like 401 Unauthorized or 403 Forbidden. :param status_code: the HTTP status code as an integer :param message: the message to send along, as a string :param headers: the headers to send along, as a dictionary """ class _nocontent(web.HTTPError): message = 'No Content' def __init__(self, message=''): super(_nocontent, self).__init__( status='204 No Content', data=message or self.message ) exc_status_map = { 200: web.ok, 201: web.created, 202: web.accepted, 204: _nocontent, 301: web.redirect, 302: web.found, 400: web.badrequest, 401: web.unauthorized, 403: web.forbidden, 404: web.notfound, 405: web.nomethod, 406: web.notacceptable, 409: web.conflict, 410: web.gone, 415: web.unsupportedmediatype, 500: web.internalerror, } exc = exc_status_map[status_code]() exc.data = message headers = headers or {} for key, value in headers.items(): web.header(key, value) return exc def checked_data(self, validate_method=None, **kwargs): try: data = kwargs.pop('data', web.data()) method = validate_method or self.validator.validate valid_data = method(data, **kwargs) except ( errors.InvalidInterfacesInfo, errors.InvalidMetadata ) as exc: objects.Notification.create({ "topic": "error", "message": exc.message }) raise self.http(400, exc.message) except ( errors.NotAllowed, ) as exc: raise self.http(403, exc.message) except ( errors.AlreadyExists ) as exc: raise self.http(409, exc.message) except ( errors.InvalidData, errors.NodeOffline, ) as exc: raise self.http(400, exc.message) except ( errors.ObjectNotFound, ) as exc: raise self.http(404, exc.message) except Exception as exc: raise return valid_data def get_object_or_404(self, obj, *args, **kwargs): """Get object instance by ID :http: 404 when not found :returns: object instance """ log_404 = kwargs.pop("log_404", None) log_get = kwargs.pop("log_get", None) uid = kwargs.get("id", (args[0] if args else None)) if uid is None: if log_404: getattr(logger, log_404[0])(log_404[1]) raise self.http(404, u'Invalid ID specified') else: instance = obj.get_by_uid(uid) if not instance: raise self.http(404, u'{0} not found'.format(obj.__name__)) if log_get: getattr(logger, log_get[0])(log_get[1]) return instance def get_objects_list_or_404(self, obj, ids): """Get list of objects :param model: model object :param ids: list of ids :http: 404 when not found :returns: list of object instances """ node_query = obj.filter_by_id_list(None, ids) objects_count = obj.count(node_query) if len(set(ids)) != objects_count: raise self.http(404, '{0} not found'.format(obj.__name__)) return list(node_query) class SingleHandler(BaseHandler): validator = BasicValidator single = None @content_json def GET(self, obj_id): """:returns: JSONized REST object. :http: * 200 (OK) * 404 (object not found in db) """ obj = self.get_object_or_404(self.single, obj_id) return self.single.to_json(obj) @content_json def PUT(self, obj_id): """:returns: JSONized REST object. :http: * 200 (OK) * 404 (object not found in db) """ obj = self.get_object_or_404(self.single, obj_id) data = self.checked_data( self.validator.validate_update, instance=obj ) self.single.update(obj, data) return self.single.to_json(obj) def DELETE(self, obj_id): """:returns: Empty string :http: * 204 (object successfully deleted) * 404 (object not found in db) """ obj = self.get_object_or_404( self.single, obj_id ) try: self.validator.validate_delete(obj) except errors.CannotDelete as exc: raise self.http(400, exc.message) self.single.delete(obj) raise self.http(204) class CollectionHandler(BaseHandler): validator = BasicValidator collection = None eager = () @content_json def GET(self): """:returns: Collection of JSONized REST objects. :http: * 200 (OK) """ q = self.collection.eager(None, self.eager) return self.collection.to_json(q) @content_json def POST(self): """:returns: JSONized REST object. :http: * 201 (object successfully created) * 400 (invalid object data specified) * 409 (object with such parameters already exists) """ data = self.checked_data() try: new_obj = self.collection.create(data) except errors.CannotCreate as exc: raise self.http(400, exc.message) raise self.http(201, self.collection.single.to_json(new_obj)) # TODO(enchantner): rewrite more handlers to inherit from this # and move more common code here class DeferredTaskHandler(BaseHandler): """Abstract Deferred Task Handler """ validator = BasicValidator single = objects.Task log_message = u"Starting deferred task on environment '{env_id}'" log_error = u"Error during execution of deferred task " \ u"on environment '{env_id}': {error}" task_manager = None @content_json def PUT(self, cluster_id): """:returns: JSONized Task object. :http: * 202 (task successfully executed) * 400 (invalid object data specified) * 404 (environment is not found) * 409 (task with such parameters already exists) """ cluster = self.get_object_or_404( objects.Cluster, cluster_id, log_404=( u"warning", u"Error: there is no cluster " u"with id '{0}' in DB.".format(cluster_id) ) ) logger.info(self.log_message.format(env_id=cluster_id)) try: task_manager = self.task_manager(cluster_id=cluster.id) task = task_manager.execute() except ( errors.AlreadyExists, errors.StopAlreadyRunning ) as exc: raise self.http(409, exc.message) except ( errors.DeploymentNotRunning, errors.WrongNodeStatus ) as exc: raise self.http(400, exc.message) except Exception as exc: logger.error( self.log_error.format( env_id=cluster_id, error=str(exc) ) ) # let it be 500 raise raise self.http(202, self.single.to_json(task))
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import gapic_v1 from google.api_core import grpc_helpers_async from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from grpc.experimental import aio # type: ignore from google.cloud.recommendationengine_v1beta1.types import prediction_service from .base import PredictionServiceTransport, DEFAULT_CLIENT_INFO from .grpc import PredictionServiceGrpcTransport class PredictionServiceGrpcAsyncIOTransport(PredictionServiceTransport): """gRPC AsyncIO backend transport for PredictionService. Service for making recommendation prediction. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _grpc_channel: aio.Channel _stubs: Dict[str, Callable] = {} @classmethod def create_channel( cls, host: str = "recommendationengine.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> aio.Channel: """Create and return a gRPC AsyncIO channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: aio.Channel: A gRPC AsyncIO channel object. """ return grpc_helpers_async.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) def __init__( self, *, host: str = "recommendationengine.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, channel: aio.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id=None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. channel (Optional[aio.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, # use the credentials which are saved credentials=self._credentials, # Set ``credentials_file`` to ``None`` here as # the credentials that we saved earlier should be used. credentials_file=None, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @property def grpc_channel(self) -> aio.Channel: """Create the channel designed to connect to this service. This property caches on the instance; repeated calls return the same channel. """ # Return the channel from cache. return self._grpc_channel @property def predict( self, ) -> Callable[ [prediction_service.PredictRequest], Awaitable[prediction_service.PredictResponse], ]: r"""Return a callable for the predict method over gRPC. Makes a recommendation prediction. If using API Key based authentication, the API Key must be registered using the [PredictionApiKeyRegistry][google.cloud.recommendationengine.v1beta1.PredictionApiKeyRegistry] service. `Learn more </recommendations-ai/docs/setting-up#register-key>`__. Returns: Callable[[~.PredictRequest], Awaitable[~.PredictResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "predict" not in self._stubs: self._stubs["predict"] = self.grpc_channel.unary_unary( "/google.cloud.recommendationengine.v1beta1.PredictionService/Predict", request_serializer=prediction_service.PredictRequest.serialize, response_deserializer=prediction_service.PredictResponse.deserialize, ) return self._stubs["predict"] def close(self): return self.grpc_channel.close() __all__ = ("PredictionServiceGrpcAsyncIOTransport",)
#!/usr/bin/python import sys import copy import numpy as np import pos_wrappers from pos_wrapper_skel import generic_workflow import pos_parameters from pos_deformable_wrappers import blank_slice_deformation_wrapper """ * Assigning weights for the images by reading them from files or applying weighting functions. * Preprocessing images: calculating images that will be used to perform registration based on the resliced images from previous iteration. * Launching actual registration process and calculating deformation fields. """ class deformable_reconstruction_iteration(generic_workflow): _f = { 'src_slice' : pos_parameters.filename('src_slice', work_dir='00_src_slices', str_template='{idx:04d}.nii.gz'), 'processed' : pos_parameters.filename('processed', work_dir='01_process_slices', str_template='{idx:04d}.nii.gz'), 'outline' : pos_parameters.filename('outline', work_dir='02_outline', str_template='{idx:04d}.nii.gz'), 'poutline' : pos_parameters.filename('poutline', work_dir='03_poutline', str_template='{idx:04d}.nii.gz'), 'cmask' : pos_parameters.filename('cmask', work_dir='04_cmask', str_template='{idx:04d}.nii.gz'), 'pcmask' : pos_parameters.filename('pcmask', work_dir='05_pcmask', str_template='{idx:04d}.nii.gz'), 'transform' : pos_parameters.filename('transform', work_dir='11_transformations', str_template='{idx:04d}Warp.nii.gz'), 'out_naming' : pos_parameters.filename('out_naming', work_dir='11_transformations', str_template='{idx:04d}'), 'resliced' : pos_parameters.filename('resliced', work_dir='21_resliced', str_template='{idx:04d}.nii.gz'), 'resliced_outline' : pos_parameters.filename('resliced_outline', work_dir='22_resliced_outline', str_template='{idx:04d}.nii.gz'), 'resliced_custom' : pos_parameters.filename('resliced_custom', work_dir='24_resliced_custom', str_template='{idx:04d}.nii.gz') } __IMAGE_DIMENSION = 2 def __init__(self, options, args): super(self.__class__, self).__init__(options, args) start, end, eps = self._get_edges() self.slice_range = range(start, end + 1) # Convert the number of iterations string to list of integers self.options.antsIterations = \ map(int, self.options.antsIterations.strip().split("x")) # Load data for outlier removal rutines self._load_subset_file() self._read_custom_registration_assignment() def _read_custom_registration_assignment(self): """ Helper method for correcting outlier slices. """ # If custom mask is provided and its weight is more than zero, it means # that 'outlier removal mechanism' should be used. This mechanism # corrects only a part of the slices indicated by masks to the slices # which are enumerated in self.options.maskedVolumeFile. if self.options.maskedVolume and \ self.options.maskedVolumeWeight > 0 and \ self.options.maskedVolumeFile: self.masked_registraion = \ self._get_outliers_registration_assignment( self.options.maskedVolumeFile) self.subset = self.masked_registraion.keys() else: self.masked_registraion = {} def _get_outliers_registration_assignment(self, filename, delimiter=" "): """ :param filename: filename to read the outliers assignment from :type filename: str :param delimiter: field delimiter :type delimiter: str :returns: Settings for the coregistration of the given moving section. :rtype: dict Reads file containing the correction parameters for the outliers slices. The registration parameters are used to correct individual images, instead of correcting whole series of sections. The parameters are required to be passed via CSV file. Depending on the amount of parameters in a single line one of two workflows is used. The parameters may be passed twofolds. 1. If a row contains two values, they are interpreted as: (1) moving file index and (2) fixed file index. This means the the outlier correction process will rely on warping moving image to the fixed images. The registration process will be driven according to the parameters passed via the command line thus all images will be registared using the same set of parameters. 2. If a row contains nine fields they are interpreted in the following way: 1. Moving image index, 2. Fixed image index, 3. Image similarity metric, 4. Image similarity metric parameter, 5. Registration iterations, 6. Gradient step for SyN transformation, 7. Regularization type, 8. Ammount of regularization. Unlike in the former scheme, In the latter approach each pair of sections may be coregistered using different setting. """ returnDictionary = {} columns = {'fixed': 1, 'moving': 0, 'metric': 2, 'met_opt': 3, 'iters': 4, 'trval': 5, 'regtype': 6, 'regam': 7} for sourceLine in open(filename): if sourceLine.strip().startswith('#') or sourceLine.strip() == "": continue line = sourceLine.split("#")[0].strip().split(delimiter) key = int(line[columns['moving']]) # There are two options possible, either # 1) There is only moving_image => fixed image assignment # 2) There are full registration settings provided for # each of the entries # The two options can be mixed within single assignment file # Check, if there is only one assignment per file if key in returnDictionary: print >> sys.stderr, \ "Entry %s defined more than once. Skipping..." % key continue if len(line) > 2: value = {} value['moving'] = key value['fixed'] = int(line[columns['fixed']]) value['metric'] = line[columns['metric']] value['met_opt'] = float(line[columns['met_opt']]) value['iters'] = map(int, line[columns['iters']].split("x")) value['trval'] = float(line[columns['trval']]) value['regtype'] = line[columns['regtype']] value['regam'] = map(float, line[columns['regam']].split(",")) elif len(line) == 2: value = {} value['moving'] = key value['fixed'] = int(line[columns['fixed']]) value['metric'] = self.options.antsImageMetric value['met_opt'] = self.options.antsImageMetricOpt value['iters'] = self.options.antsIterations value['trval'] = self.options.antsTransformation value['regtype'] = self.options.antsRegularizationType value['regam'] = self.options.antsRegularization returnDictionary[key] = value return returnDictionary def _get_edges(self): """ Convenience function for returning frequently used numbers :returns: Returns the first and the last slice index of the reconstruction process as well as epsilon. :rtype: tuple """ return (self.options.startSlice, self.options.endSlice, self.options.neighbourhood) def _load_subset_file(self): """ Loads a subset of slices from a given file. When the additional file is provided, only slices with indices from the file will be registered. """ if self.options.registerSubset: subset = np.loadtxt(self.options.registerSubset) self.subset = list(subset) else: self.subset = self.slice_range def _assign_weights_from_func(self): """ Assing weights for image averaging. Currently just constants weights are assigned and that seems to be quite a good solution. """ start, end, eps = self._get_edges() self.weights = {} for i in self.slice_range: for j in range(i - eps, i + eps + 1): self.weights[(i, j)] = 1 def _assign_weights(self): self._assign_weights_from_func() def get_weight(self, i, j): return self.weights[(i, j)] def _preprocess_images(self): return self._average_images() def _average_images(self): start, end, eps = self._get_edges() if self.options.inputVolume and self.options.inputVolumeWeight > 0: commands = [] for i in self.slice_range: files_to_average = [] weights = [] for j in range(i - eps, i + eps + 1): if j != i and j <= end and j >= start: files_to_average.append(self.f['src_slice'](idx=j)) weights.append(self.get_weight(i, j)) if j < start: files_to_average.append(self.f['src_slice'](idx=start)) weights.append(self.get_weight(i, start)) if j > end: files_to_average.append(self.f['src_slice'](idx=end)) weights.append(self.get_weight(i, end)) command = pos_wrappers.images_weighted_average( dimension=2, input_images=files_to_average, weights=weights, output_type='float', output_image=self.f['processed'](idx=i)) commands.append(copy.deepcopy(command)) self.execute(commands) if self.options.outlineVolume and self.options.outlineVolumeWeight > 0: commands = [] for i in self.slice_range: files_to_average = [] weights = [] for j in range(i - eps, i + eps + 1): if j != i and j <= end and j >= start: files_to_average.append(self.f['outline'](idx=j)) weights.append(self.get_weight(i, j)) if j < start: files_to_average.append(self.f['src_slice'](idx=start)) weights.append(self.get_weight(i, start)) if j > end: files_to_average.append(self.f['src_slice'](idx=end)) weights.append(self.get_weight(i, end)) command = pos_wrappers.images_weighted_average( dimension=2, input_images=files_to_average, weights=weights, output_type='float', output_image=self.f['poutline'](idx=i)) commands.append(copy.deepcopy(command)) self.execute(commands) def _get_default_reg_settings(self): return (self.options.antsImageMetric, self.options.antsImageMetricOpt, self.options.antsIterations, self.options.antsTransformation, self.options.antsRegularizationType, self.options.antsRegularization) def _get_custom_reg_settings(self, mov_slice_idx): src = self.masked_registraion[mov_slice_idx] return (src['metric'], src['met_opt'], src['iters'], src['trval'], src['regtype'], src['regam']) def _calculate_transformations_masked(self): """ Generate and invoke commands for generating deformation fields. Commands are generated based on a number of factors. The actual dependencies what is registered to what and how its quite complicated and it is my sweet secret how it is actually calculated. """ start, end, eps = self._get_edges() commands = [] for i in self.slice_range: metrics = [] j_data = self.masked_registraion.get(i, None) if j_data is None: fixed_image_type = 'processed' fixed_outline_type = 'poutline' mask_image = None j = i r_metric, parameter, iterations, transf_grad, reg_type, reg_ammount =\ self._get_default_reg_settings() else: fixed_image_type = 'src_slice' fixed_outline_type = 'outline' j = j_data['fixed'] mask_image = self.f['cmask'](idx=j) r_metric, parameter, iterations, transf_grad, reg_type, reg_ammount =\ self._get_custom_reg_settings(i) if self.options.inputVolume and self.options.inputVolumeWeight > 0: metric = pos_wrappers.ants_intensity_meric( fixed_image=self.f[fixed_image_type](idx=j), moving_image=self.f['src_slice'](idx=i), metric=r_metric, weight=self.options.inputVolumeWeight, parameter=parameter) metrics.append(copy.deepcopy(metric)) if self.options.outlineVolume and self.options.outlineVolumeWeight > 0: outline_metric = pos_wrappers.ants_intensity_meric( fixed_image=self.f[fixed_outline_type](idx=j), moving_image=self.f['outline'](idx=i), metric=r_metric, weight=self.options.outlineVolumeWeight, parameter=parameter) metrics.append(copy.deepcopy(outline_metric)) if self.options.referenceVolume and self.options.referenceVolumeWeight > 0: reference_metric = pos_wrappers.ants_intensity_meric( fixed_image=self.parent_process.f['ref_custom'](idx=j), moving_image=self.f['src_slice'](idx=i), metric=r_metric, weight=self.options.referenceVolumeWeight, parameter=parameter) metrics.append(copy.deepcopy(reference_metric)) if i in self.subset: registration = pos_wrappers.ants_registration( dimension=self.__IMAGE_DIMENSION, outputNaming=self.f['out_naming'](idx=i), iterations=iterations, transformation=('SyN', [transf_grad]), regularization=(reg_type, reg_ammount), affineIterations=[0], # 0: Hardcoded as this is a continueAffine=False, # deformable reconstruction rigidAffine=False, # workflow imageMetrics=metrics, maskImage=mask_image, allMetricsConverge=True) else: registration = blank_slice_deformation_wrapper( input_image=self.f['src_slice'](idx=i), output_image=self.f['transform'](idx=i)) commands.append(copy.deepcopy(registration)) self.execute(commands) def launch(self): self._assign_weights() self._preprocess_images() self._calculate_transformations_masked() def __call__(self, *args, **kwargs): return self.launch()
# # # # # # Routes requests to the Data Access Framework through Python Thrift. # # # # SOFTWARE HISTORY # # Date Ticket# Engineer Description # ------------ ---------- ----------- -------------------------- # 05/21/13 2023 dgilling Initial Creation. # 01/06/14 2537 bsteffen Share geometry WKT. # 03/03/14 2673 bsteffen Add ability to query only ref times. # 07/22/14 3185 njensen Added optional/default args to newDataRequest # 07/23/14 3185 njensen Added new methods # 07/30/14 3185 njensen Renamed valid identifiers to optional # 06/30/15 4569 nabowle Use hex WKB for geometries. # 04/13/15 5379 tgurney Add getIdentifierValues() # 06/01/16 5587 tgurney Add new signatures for # getRequiredIdentifiers() and # getOptionalIdentifiers() # 08/01/16 2416 tgurney Add getNotificationFilter() # 10/13/16 5916 bsteffen Correct grid shape, allow lazy grid lat/lon # 10/26/16 5919 njensen Speed up geometry creation in getGeometryData() # import numpy import shapely.wkb from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.impl import DefaultDataRequest from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.request import GetAvailableLocationNamesRequest from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.request import GetAvailableTimesRequest from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.request import GetGeometryDataRequest from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.request import GetGridDataRequest from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.request import GetGridLatLonRequest from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.request import GetAvailableParametersRequest from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.request import GetAvailableLevelsRequest from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.request import GetRequiredIdentifiersRequest from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.request import GetOptionalIdentifiersRequest from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.request import GetIdentifierValuesRequest from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.request import GetSupportedDatatypesRequest from dynamicserialize.dstypes.com.raytheon.uf.common.dataaccess.request import GetNotificationFilterRequest from awips import ThriftClient from awips.dataaccess import PyGeometryData from awips.dataaccess import PyGridData class LazyGridLatLon(object): def __init__(self, client, nx, ny, envelope, crsWkt): self._latLonGrid = None self._client = client self._request = GetGridLatLonRequest() self._request.setNx(nx) self._request.setNy(ny) self._request.setEnvelope(envelope) self._request.setCrsWkt(crsWkt) def __call__(self): # Its important that the data is cached internally so that if multiple # GridData are sharing the same delegate then they can also share a # single request for the LatLon information. if self._latLonGrid is None: response = self._client.sendRequest(self._request) nx = response.getNx() ny = response.getNy() latData = numpy.reshape(numpy.array(response.getLats()), (ny, nx)) lonData = numpy.reshape(numpy.array(response.getLons()), (ny, nx)) self._latLonGrid = (lonData, latData) return self._latLonGrid class ThriftClientRouter(object): def __init__(self, host='localhost'): self._client = ThriftClient.ThriftClient(host) self._lazyLoadGridLatLon = False def setLazyLoadGridLatLon(self, lazyLoadGridLatLon): self._lazyLoadGridLatLon = lazyLoadGridLatLon def getAvailableTimes(self, request, refTimeOnly): timesRequest = GetAvailableTimesRequest() timesRequest.setRequestParameters(request) timesRequest.setRefTimeOnly(refTimeOnly) response = self._client.sendRequest(timesRequest) return response def getGridData(self, request, times): gridDataRequest = GetGridDataRequest() gridDataRequest.setIncludeLatLonData(not self._lazyLoadGridLatLon) gridDataRequest.setRequestParameters(request) # if we have an iterable times instance, then the user must have asked # for grid data with the List of DataTime objects # else, we assume it was a single TimeRange that was meant for the # request try: iter(times) gridDataRequest.setRequestedTimes(times) except TypeError: gridDataRequest.setRequestedPeriod(times) response = self._client.sendRequest(gridDataRequest) locSpecificData = {} locNames = list(response.getSiteNxValues().keys()) for location in locNames: nx = response.getSiteNxValues()[location] ny = response.getSiteNyValues()[location] if self._lazyLoadGridLatLon: envelope = response.getSiteEnvelopes()[location] crsWkt = response.getSiteCrsWkt()[location] delegate = LazyGridLatLon( self._client, nx, ny, envelope, crsWkt) locSpecificData[location] = (nx, ny, delegate) else: latData = numpy.reshape(numpy.array( response.getSiteLatGrids()[location]), (ny, nx)) lonData = numpy.reshape(numpy.array( response.getSiteLonGrids()[location]), (ny, nx)) locSpecificData[location] = (nx, ny, (lonData, latData)) retVal = [] for gridDataRecord in response.getGridData(): locationName = gridDataRecord.getLocationName() locData = locSpecificData[locationName] if self._lazyLoadGridLatLon: retVal.append(PyGridData.PyGridData(gridDataRecord, locData[ 0], locData[1], latLonDelegate=locData[2])) else: retVal.append(PyGridData.PyGridData( gridDataRecord, locData[0], locData[1], locData[2])) return retVal def getGeometryData(self, request, times): geoDataRequest = GetGeometryDataRequest() geoDataRequest.setRequestParameters(request) # if we have an iterable times instance, then the user must have asked # for geometry data with the List of DataTime objects # else, we assume it was a single TimeRange that was meant for the # request try: iter(times) geoDataRequest.setRequestedTimes(times) except TypeError: geoDataRequest.setRequestedPeriod(times) response = self._client.sendRequest(geoDataRequest) geometries = [] for wkb in response.getGeometryWKBs(): # the wkb is a numpy.ndarray of dtype int8 # convert the bytearray to a byte string and load it geometries.append(shapely.wkb.loads(wkb.tostring())) retVal = [] for geoDataRecord in response.getGeoData(): geom = geometries[geoDataRecord.getGeometryWKBindex()] retVal.append(PyGeometryData.PyGeometryData(geoDataRecord, geom)) return retVal def getAvailableLocationNames(self, request): locNamesRequest = GetAvailableLocationNamesRequest() locNamesRequest.setRequestParameters(request) response = self._client.sendRequest(locNamesRequest) return response def getAvailableParameters(self, request): paramReq = GetAvailableParametersRequest() paramReq.setRequestParameters(request) response = self._client.sendRequest(paramReq) return response def getAvailableLevels(self, request): levelReq = GetAvailableLevelsRequest() levelReq.setRequestParameters(request) response = self._client.sendRequest(levelReq) return response def getRequiredIdentifiers(self, request): if str(request) == request: # Handle old version getRequiredIdentifiers(str) request = self.newDataRequest(request) idReq = GetRequiredIdentifiersRequest() idReq.setRequest(request) response = self._client.sendRequest(idReq) return response def getOptionalIdentifiers(self, request): if str(request) == request: # Handle old version getOptionalIdentifiers(str) request = self.newDataRequest(request) idReq = GetOptionalIdentifiersRequest() idReq.setRequest(request) response = self._client.sendRequest(idReq) return response def getIdentifierValues(self, request, identifierKey): idValReq = GetIdentifierValuesRequest() idValReq.setIdentifierKey(identifierKey) idValReq.setRequestParameters(request) response = self._client.sendRequest(idValReq) return response def newDataRequest(self, datatype, parameters=[], levels=[], locationNames=[], envelope=None, **kwargs): req = DefaultDataRequest() if datatype: req.setDatatype(datatype) if parameters: req.setParameters(*parameters) if levels: req.setLevels(*levels) if locationNames: req.setLocationNames(*locationNames) if envelope: req.setEnvelope(envelope) if kwargs: # any args leftover are assumed to be identifiers req.identifiers = kwargs return req def getSupportedDatatypes(self): response = self._client.sendRequest(GetSupportedDatatypesRequest()) return response def getNotificationFilter(self, request): notifReq = GetNotificationFilterRequest() notifReq.setRequestParameters(request) response = self._client.sendRequest(notifReq) return response
# -*- coding: utf-8 -*- """ Class for reading the old data format from Plexon acquisition system (.plx) Note that Plexon now use a new format PL2 which is NOT supported by this IO. Compatible with versions 100 to 106. Other versions have not been tested. This IO is developed thanks to the header file downloadable from: http://www.plexon.com/software-downloads This IO was rewritten in 2017 and this was a huge pain because the underlying file format is really inefficient. The rewrite is now based on numpy dtype and not on Python struct. This should be faster. If one day, somebody use it, consider to offer me a beer. Author: Samuel Garcia """ from __future__ import print_function, division, absolute_import # from __future__ import unicode_literals is not compatible with numpy.dtype both py2 py3 from .baserawio import (BaseRawIO, _signal_channel_dtype, _unit_channel_dtype, _event_channel_dtype) import numpy as np from collections import OrderedDict import datetime class PlexonRawIO(BaseRawIO): extensions = ['plx'] rawmode = 'one-file' def __init__(self, filename=''): BaseRawIO.__init__(self) self.filename = filename def _source_name(self): return self.filename def _parse_header(self): # global header with open(self.filename, 'rb') as fid: offset0 = 0 global_header = read_as_dict(fid, GlobalHeader, offset=offset0) rec_datetime = datetime.datetime(global_header['Year'], global_header['Month'], global_header['Day'], global_header['Hour'], global_header['Minute'], global_header['Second']) # dsp channels header = spikes and waveforms nb_unit_chan = global_header['NumDSPChannels'] offset1 = np.dtype(GlobalHeader).itemsize dspChannelHeaders = np.memmap(self.filename, dtype=DspChannelHeader, mode='r', offset=offset1, shape=(nb_unit_chan,)) # event channel header nb_event_chan = global_header['NumEventChannels'] offset2 = offset1 + np.dtype(DspChannelHeader).itemsize * nb_unit_chan eventHeaders = np.memmap(self.filename, dtype=EventChannelHeader, mode='r', offset=offset2, shape=(nb_event_chan,)) # slow channel header = signal nb_sig_chan = global_header['NumSlowChannels'] offset3 = offset2 + np.dtype(EventChannelHeader).itemsize * nb_event_chan slowChannelHeaders = np.memmap(self.filename, dtype=SlowChannelHeader, mode='r', offset=offset3, shape=(nb_sig_chan,)) offset4 = offset3 + np.dtype(SlowChannelHeader).itemsize * nb_sig_chan # loop over data blocks and put them by type and channel block_headers = {1: {c: [] for c in dspChannelHeaders['Channel']}, 4: {c: [] for c in eventHeaders['Channel']}, 5: {c: [] for c in slowChannelHeaders['Channel']}, } block_pos = {1: {c: [] for c in dspChannelHeaders['Channel']}, 4: {c: [] for c in eventHeaders['Channel']}, 5: {c: [] for c in slowChannelHeaders['Channel']}, } data = self._memmap = np.memmap(self.filename, dtype='u1', offset=0, mode='r') pos = offset4 while pos < data.size: bl_header = data[pos:pos + 16].view(DataBlockHeader)[0] length = bl_header['NumberOfWaveforms'] * bl_header['NumberOfWordsInWaveform'] * 2 + 16 bl_type = int(bl_header['Type']) chan_id = int(bl_header['Channel']) block_headers[bl_type][chan_id].append(bl_header) block_pos[bl_type][chan_id].append(pos) pos += length self._last_timestamps = bl_header['UpperByteOf5ByteTimestamp'] * \ 2 ** 32 + bl_header['TimeStamp'] # ... and finalize them in self._data_blocks # for a faster acces depending on type (1, 4, 5) self._data_blocks = {} dt_base = [('pos', 'int64'), ('timestamp', 'int64'), ('size', 'int64')] dtype_by_bltype = { # Spikes and waveforms 1: np.dtype(dt_base + [('unit_id', 'uint16'), ('n1', 'uint16'), ('n2', 'uint16'), ]), # Events 4: np.dtype(dt_base + [('label', 'uint16'), ]), # Signals 5: np.dtype(dt_base + [('cumsum', 'int64'), ]), } for bl_type in block_headers: self._data_blocks[bl_type] = {} for chan_id in block_headers[bl_type]: bl_header = np.array(block_headers[bl_type][chan_id], dtype=DataBlockHeader) bl_pos = np.array(block_pos[bl_type][chan_id], dtype='int64') timestamps = bl_header['UpperByteOf5ByteTimestamp'] * \ 2 ** 32 + bl_header['TimeStamp'] n1 = bl_header['NumberOfWaveforms'] n2 = bl_header['NumberOfWordsInWaveform'] dt = dtype_by_bltype[bl_type] data_block = np.empty(bl_pos.size, dtype=dt) data_block['pos'] = bl_pos + 16 data_block['timestamp'] = timestamps data_block['size'] = n1 * n2 * 2 if bl_type == 1: # Spikes and waveforms data_block['unit_id'] = bl_header['Unit'] data_block['n1'] = n1 data_block['n2'] = n2 elif bl_type == 4: # Events data_block['label'] = bl_header['Unit'] elif bl_type == 5: # Signals if data_block.size > 0: # cumulative some of sample index for fast acces to chunks data_block['cumsum'][0] = 0 data_block['cumsum'][1:] = np.cumsum(data_block['size'][:-1]) // 2 self._data_blocks[bl_type][chan_id] = data_block # signals channels sig_channels = [] all_sig_length = [] for chan_index in range(nb_sig_chan): h = slowChannelHeaders[chan_index] name = h['Name'].decode('utf8') chan_id = h['Channel'] length = self._data_blocks[5][chan_id]['size'].sum() // 2 if length == 0: continue # channel not added all_sig_length.append(length) sampling_rate = float(h['ADFreq']) sig_dtype = 'int16' units = '' # I dont't knwon units if global_header['Version'] in [100, 101]: gain = 5000. / (2048 * h['Gain'] * 1000.) elif global_header['Version'] in [102]: gain = 5000. / (2048 * h['Gain'] * h['PreampGain']) elif global_header['Version'] >= 103: gain = global_header['SlowMaxMagnitudeMV'] / ( .5 * (2 ** global_header['BitsPerSpikeSample']) * h['Gain'] * h['PreampGain']) offset = 0. group_id = 0 sig_channels.append((name, chan_id, sampling_rate, sig_dtype, units, gain, offset, group_id)) if len(all_sig_length) > 0: self._signal_length = min(all_sig_length) sig_channels = np.array(sig_channels, dtype=_signal_channel_dtype) self._global_ssampling_rate = global_header['ADFrequency'] if slowChannelHeaders.size > 0: assert np.unique(slowChannelHeaders['ADFreq'] ).size == 1, 'Signal do not have the same sampling rate' self._sig_sampling_rate = float(slowChannelHeaders['ADFreq'][0]) # Determine number of units per channels self.internal_unit_ids = [] for chan_id, data_clock in self._data_blocks[1].items(): unit_ids = np.unique(data_clock['unit_id']) for unit_id in unit_ids: self.internal_unit_ids.append((chan_id, unit_id)) # Spikes channels unit_channels = [] for unit_index, (chan_id, unit_id) in enumerate(self.internal_unit_ids): c = np.nonzero(dspChannelHeaders['Channel'] == chan_id)[0][0] h = dspChannelHeaders[c] name = h['Name'].decode('utf8') _id = 'ch{}#{}'.format(chan_id, unit_id) wf_units = '' if global_header['Version'] < 103: wf_gain = 3000. / (2048 * h['Gain'] * 1000.) elif 103 <= global_header['Version'] < 105: wf_gain = global_header['SpikeMaxMagnitudeMV'] / ( .5 * 2. ** (global_header['BitsPerSpikeSample']) * h['Gain'] * 1000.) elif global_header['Version'] >= 105: wf_gain = global_header['SpikeMaxMagnitudeMV'] / ( .5 * 2. ** (global_header['BitsPerSpikeSample']) * h['Gain'] * global_header['SpikePreAmpGain']) wf_offset = 0. wf_left_sweep = -1 # DONT KNOWN wf_sampling_rate = global_header['WaveformFreq'] unit_channels.append((name, _id, wf_units, wf_gain, wf_offset, wf_left_sweep, wf_sampling_rate)) unit_channels = np.array(unit_channels, dtype=_unit_channel_dtype) # Event channels event_channels = [] for chan_index in range(nb_event_chan): h = eventHeaders[chan_index] chan_id = h['Channel'] name = h['Name'].decode('utf8') _id = h['Channel'] event_channels.append((name, _id, 'event')) event_channels = np.array(event_channels, dtype=_event_channel_dtype) # fille into header dict self.header = {} self.header['nb_block'] = 1 self.header['nb_segment'] = [1] self.header['signal_channels'] = sig_channels self.header['unit_channels'] = unit_channels self.header['event_channels'] = event_channels # Annotations self._generate_minimal_annotations() bl_annotations = self.raw_annotations['blocks'][0] seg_annotations = bl_annotations['segments'][0] for d in (bl_annotations, seg_annotations): d['rec_datetime'] = rec_datetime d['plexon_version'] = global_header['Version'] def _segment_t_start(self, block_index, seg_index): return 0. def _segment_t_stop(self, block_index, seg_index): t_stop1 = float(self._last_timestamps) / self._global_ssampling_rate if hasattr(self, '_signal_length'): t_stop2 = self._signal_length / self._sig_sampling_rate return max(t_stop1, t_stop2) else: return t_stop1 def _get_signal_size(self, block_index, seg_index, channel_indexes): return self._signal_length def _get_signal_t_start(self, block_index, seg_index, channel_indexes): return 0. def _get_analogsignal_chunk(self, block_index, seg_index, i_start, i_stop, channel_indexes): if i_start is None: i_start = 0 if i_stop is None: i_stop = self._signal_length if channel_indexes is None: channel_indexes = np.arange(self.header['signal_channels'].size) raw_signals = np.zeros((i_stop - i_start, len(channel_indexes)), dtype='int16') for c, channel_index in enumerate(channel_indexes): chan_header = self.header['signal_channels'][channel_index] chan_id = chan_header['id'] data_blocks = self._data_blocks[5][chan_id] # loop over data blocks and get chunks bl0 = np.searchsorted(data_blocks['cumsum'], i_start, side='left') bl1 = np.searchsorted(data_blocks['cumsum'], i_stop, side='left') ind = 0 for bl in range(bl0, bl1): ind0 = data_blocks[bl]['pos'] ind1 = data_blocks[bl]['size'] + ind0 data = self._memmap[ind0:ind1].view('int16') if bl == bl1 - 1: # right border # be carfull that bl could be both bl0 and bl1!! border = data.size - (i_stop - data_blocks[bl]['cumsum']) data = data[:-border] if bl == bl0: # left border border = i_start - data_blocks[bl]['cumsum'] data = data[border:] raw_signals[ind:data.size + ind, c] = data ind += data.size return raw_signals def _get_internal_mask(self, data_block, t_start, t_stop): timestamps = data_block['timestamp'] if t_start is None: lim0 = 0 else: lim0 = int(t_start * self._global_ssampling_rate) if t_stop is None: lim1 = self._last_timestamps else: lim1 = int(t_stop * self._global_ssampling_rate) keep = (timestamps >= lim0) & (timestamps <= lim1) return keep def _spike_count(self, block_index, seg_index, unit_index): chan_id, unit_id = self.internal_unit_ids[unit_index] data_block = self._data_blocks[1][chan_id] nb_spike = np.sum(data_block['unit_id'] == unit_id) return nb_spike def _get_spike_timestamps(self, block_index, seg_index, unit_index, t_start, t_stop): chan_id, unit_id = self.internal_unit_ids[unit_index] data_block = self._data_blocks[1][chan_id] keep = self._get_internal_mask(data_block, t_start, t_stop) keep &= data_block['unit_id'] == unit_id spike_timestamps = data_block[keep]['timestamp'] return spike_timestamps def _rescale_spike_timestamp(self, spike_timestamps, dtype): spike_times = spike_timestamps.astype(dtype) spike_times /= self._global_ssampling_rate return spike_times def _get_spike_raw_waveforms(self, block_index, seg_index, unit_index, t_start, t_stop): chan_id, unit_id = self.internal_unit_ids[unit_index] data_block = self._data_blocks[1][chan_id] n1 = data_block['n1'][0] n2 = data_block['n2'][0] keep = self._get_internal_mask(data_block, t_start, t_stop) keep &= data_block['unit_id'] == unit_id data_block = data_block[keep] nb_spike = data_block.size waveforms = np.zeros((nb_spike, n1, n2), dtype='int16') for i, db in enumerate(data_block): ind0 = db['pos'] ind1 = db['size'] + ind0 data = self._memmap[ind0:ind1].view('int16').reshape(n1, n2) waveforms[i, :, :] = data return waveforms def _event_count(self, block_index, seg_index, event_channel_index): chan_id = int(self.header['event_channels'][event_channel_index]['id']) nb_event = self._data_blocks[4][chan_id].size return nb_event def _get_event_timestamps(self, block_index, seg_index, event_channel_index, t_start, t_stop): chan_id = int(self.header['event_channels'][event_channel_index]['id']) data_block = self._data_blocks[4][chan_id] keep = self._get_internal_mask(data_block, t_start, t_stop) db = data_block[keep] timestamps = db['timestamp'] labels = db['label'].astype('U') durations = None return timestamps, durations, labels def _rescale_event_timestamp(self, event_timestamps, dtype): event_times = event_timestamps.astype(dtype) event_times /= self._global_ssampling_rate return event_times def read_as_dict(fid, dtype, offset=None): """ Given a file descriptor and a numpy.dtype of the binary struct return a dict. Make conversion for strings. """ if offset is not None: fid.seek(offset) dt = np.dtype(dtype) h = np.frombuffer(fid.read(dt.itemsize), dt)[0] info = OrderedDict() for k in dt.names: v = h[k] if dt[k].kind == 'S': v = v.decode('utf8') v = v.replace('\x03', '') v = v.replace('\x00', '') info[k] = v return info GlobalHeader = [ ('MagicNumber', 'uint32'), ('Version', 'int32'), ('Comment', 'S128'), ('ADFrequency', 'int32'), ('NumDSPChannels', 'int32'), ('NumEventChannels', 'int32'), ('NumSlowChannels', 'int32'), ('NumPointsWave', 'int32'), ('NumPointsPreThr', 'int32'), ('Year', 'int32'), ('Month', 'int32'), ('Day', 'int32'), ('Hour', 'int32'), ('Minute', 'int32'), ('Second', 'int32'), ('FastRead', 'int32'), ('WaveformFreq', 'int32'), ('LastTimestamp', 'float64'), # version >103 ('Trodalness', 'uint8'), ('DataTrodalness', 'uint8'), ('BitsPerSpikeSample', 'uint8'), ('BitsPerSlowSample', 'uint8'), ('SpikeMaxMagnitudeMV', 'uint16'), ('SlowMaxMagnitudeMV', 'uint16'), # version 105 ('SpikePreAmpGain', 'uint16'), # version 106 ('AcquiringSoftware', 'S18'), ('ProcessingSoftware', 'S18'), ('Padding', 'S10'), # all version ('TSCounts', 'int32', (650,)), ('WFCounts', 'int32', (650,)), ('EVCounts', 'int32', (512,)), ] DspChannelHeader = [ ('Name', 'S32'), ('SIGName', 'S32'), ('Channel', 'int32'), ('WFRate', 'int32'), ('SIG', 'int32'), ('Ref', 'int32'), ('Gain', 'int32'), ('Filter', 'int32'), ('Threshold', 'int32'), ('Method', 'int32'), ('NUnits', 'int32'), ('Template', 'uint16', (320,)), ('Fit', 'int32', (5,)), ('SortWidth', 'int32'), ('Boxes', 'uint16', (40,)), ('SortBeg', 'int32'), # version 105 ('Comment', 'S128'), # version 106 ('SrcId', 'uint8'), ('reserved', 'uint8'), ('ChanId', 'uint16'), ('Padding', 'int32', (10,)), ] EventChannelHeader = [ ('Name', 'S32'), ('Channel', 'int32'), # version 105 ('Comment', 'S128'), # version 106 ('SrcId', 'uint8'), ('reserved', 'uint8'), ('ChanId', 'uint16'), ('Padding', 'int32', (32,)), ] SlowChannelHeader = [ ('Name', 'S32'), ('Channel', 'int32'), ('ADFreq', 'int32'), ('Gain', 'int32'), ('Enabled', 'int32'), ('PreampGain', 'int32'), # version 104 ('SpikeChannel', 'int32'), # version 105 ('Comment', 'S128'), # version 106 ('SrcId', 'uint8'), ('reserved', 'uint8'), ('ChanId', 'uint16'), ('Padding', 'int32', (27,)), ] DataBlockHeader = [ ('Type', 'uint16'), ('UpperByteOf5ByteTimestamp', 'uint16'), ('TimeStamp', 'int32'), ('Channel', 'uint16'), ('Unit', 'uint16'), ('NumberOfWaveforms', 'uint16'), ('NumberOfWordsInWaveform', 'uint16'), ] # 16 bytes
"""Functions and classes related to optimization (weight updates).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import tensorflow.compat.v1 as tf from REDACTED.tensorflow_models.mlperf.models.rough.bert import lamb_optimizer def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu, optimizer_name="adamw", poly_power=1.0, start_warmup_step=0, lamb_weight_decay_rate=0.01, lamb_beta_1=0.9, lamb_beta_2=0.999, log_epsilon=-6, use_bfloat16_all_reduce=False): """Creates an optimizer training op.""" global_step = tf.train.get_or_create_global_step() learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32) # Implements linear decay of the learning rate. learning_rate = tf.train.polynomial_decay( learning_rate, global_step, num_train_steps, end_learning_rate=0.0, power=poly_power, cycle=False) # Implements linear warmup. I.e., if global_step - start_warmup_step < # num_warmup_steps, the learning rate will be # `(global_step - start_warmup_step)/num_warmup_steps * init_lr`. if num_warmup_steps: tf.logging.info("++++++ warmup starts at step " + str(start_warmup_step) + ", for " + str(num_warmup_steps) + " steps ++++++") global_steps_int = tf.cast(global_step, tf.int32) start_warm_int = tf.constant(start_warmup_step, dtype=tf.int32) global_steps_int = global_steps_int - start_warm_int warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32) global_steps_float = tf.cast(global_steps_int, tf.float32) warmup_steps_float = tf.cast(warmup_steps_int, tf.float32) warmup_percent_done = global_steps_float / warmup_steps_float warmup_learning_rate = init_lr * warmup_percent_done is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32) learning_rate = ( (1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate) # It is OK that you use this optimizer for finetuning, since this # is how the model was trained (note that the Adam m/v variables are NOT # loaded from init_checkpoint.) # It is OK to use AdamW in the finetuning even the model is trained by LAMB. # As report in the Bert pulic github, the learning rate for SQuAD 1.1 finetune # is 3e-5, 4e-5 or 5e-5. For LAMB, the users can use 3e-4, 4e-4,or 5e-4 for a # batch size of 64 in the finetune. if optimizer_name == "adamw": tf.logging.info("using adamw") optimizer = AdamWeightDecayOptimizer( learning_rate=learning_rate, weight_decay_rate=0.01, beta_1=0.9, beta_2=0.999, epsilon=10**(log_epsilon), exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) elif optimizer_name == "lamb": tf.logging.info("using lamb") optimizer = lamb_optimizer.LAMBOptimizer( learning_rate=learning_rate, weight_decay_rate=lamb_weight_decay_rate, beta_1=lamb_beta_1, beta_2=lamb_beta_2, epsilon=10**(log_epsilon), exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) else: raise ValueError("Not supported optimizer: ", optimizer) tvars = tf.trainable_variables() grads = tf.gradients(loss, tvars) # This is how the model was pre-trained. (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0) grads_tvars = zip(grads, tvars) if use_tpu: if use_bfloat16_all_reduce: grads_tvars = [(tf.cast( tf.tpu.cross_replica_sum(tf.cast(g, tf.bfloat16)), tf.float32), v) for g, v in grads_tvars] else: grads_tvars = [(tf.tpu.cross_replica_sum(g), v) for g, v in grads_tvars] train_op = optimizer.apply_gradients(grads_tvars, global_step=global_step) if optimizer_name == "adamw": # Normally the global step update is done inside of `apply_gradients`. # However, `AdamWeightDecayOptimizer` does not do this. new_global_step = global_step + 1 train_op = tf.group(train_op, [global_step.assign(new_global_step)]) return train_op class AdamWeightDecayOptimizer(tf.train.Optimizer): """A basic Adam optimizer that includes "correct" L2 weight decay.""" def __init__(self, learning_rate, weight_decay_rate=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=None, name="AdamWeightDecayOptimizer"): """Constructs a AdamWeightDecayOptimizer.""" super(AdamWeightDecayOptimizer, self).__init__(False, name) self.learning_rate = learning_rate self.weight_decay_rate = weight_decay_rate self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.exclude_from_weight_decay = exclude_from_weight_decay def apply_gradients(self, grads_and_vars, global_step=None, name=None): """See base class.""" assignments = [] for (grad, param) in grads_and_vars: if grad is None or param is None: continue param_name = self._get_variable_name(param.name) m = tf.get_variable( name=param_name + "/adam_m", shape=param.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) v = tf.get_variable( name=param_name + "/adam_v", shape=param.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) # Standard Adam update. next_m = ( tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad)) next_v = ( tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2, tf.square(grad))) update = next_m / (tf.sqrt(next_v) + self.epsilon) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want ot decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if self._do_use_weight_decay(param_name): update += self.weight_decay_rate * param update_with_lr = self.learning_rate * update next_param = param - update_with_lr assignments.extend( [param.assign(next_param), m.assign(next_m), v.assign(next_v)]) return tf.group(*assignments, name=name) def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if not self.weight_decay_rate: return False if self.exclude_from_weight_decay: for r in self.exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True def _get_variable_name(self, param_name): """Get the variable name from the tensor name.""" m = re.match("^(.*):\\d+$", param_name) if m is not None: param_name = m.group(1) return param_name
"""Tests for certbot._internal.client.""" import datetime import contextlib import platform import shutil import tempfile import unittest from unittest.mock import MagicMock from josepy import interfaces from certbot import errors from certbot import util from certbot._internal.display import obj as display_obj from certbot._internal import account from certbot._internal import constants from certbot.compat import os import certbot.tests.util as test_util try: import mock except ImportError: # pragma: no cover from unittest import mock KEY = test_util.load_vector("rsa512_key.pem") CSR_SAN = test_util.load_vector("csr-san_512.pem") # pylint: disable=line-too-long class DetermineUserAgentTest(test_util.ConfigTestCase): """Tests for certbot._internal.client.determine_user_agent.""" def _call(self): from certbot._internal.client import determine_user_agent return determine_user_agent(self.config) @mock.patch.dict(os.environ, {"CERTBOT_DOCS": "1"}) def test_docs_value(self): self._test(expect_doc_values=True) @mock.patch.dict(os.environ, {}) def test_real_values(self): self._test(expect_doc_values=False) def _test(self, expect_doc_values): ua = self._call() if expect_doc_values: doc_value_check = self.assertIn real_value_check = self.assertNotIn else: doc_value_check = self.assertNotIn real_value_check = self.assertIn doc_value_check("OS_NAME OS_VERSION", ua) doc_value_check("major.minor.patchlevel", ua) real_value_check(util.get_os_info_ua(), ua) real_value_check(platform.python_version(), ua) class RegisterTest(test_util.ConfigTestCase): """Tests for certbot._internal.client.register.""" def setUp(self): super().setUp() self.config.rsa_key_size = 1024 self.config.register_unsafely_without_email = False self.config.email = "[email protected]" self.account_storage = account.AccountMemoryStorage() with mock.patch("zope.component.provideUtility"): display_obj.set_display(MagicMock()) def _call(self): from certbot._internal.client import register tos_cb = mock.MagicMock() return register(self.config, self.account_storage, tos_cb) @staticmethod def _public_key_mock(): m = mock.Mock(__class__=interfaces.JSONDeSerializable) m.to_partial_json.return_value = '{"a": 1}' return m @staticmethod def _new_acct_dir_mock(): return "/acme/new-account" @staticmethod def _true_mock(): return True @staticmethod def _false_mock(): return False @staticmethod @contextlib.contextmanager def _patched_acme_client(): # This function is written this way to avoid deprecation warnings that # are raised when BackwardsCompatibleClientV2 is accessed on the real # acme.client module. with mock.patch('certbot._internal.client.acme_client') as mock_acme_client: yield mock_acme_client.BackwardsCompatibleClientV2 def test_no_tos(self): with self._patched_acme_client() as mock_client: mock_client.new_account_and_tos().terms_of_service = "http://tos" mock_client().external_account_required.side_effect = self._false_mock with mock.patch("certbot._internal.eff.prepare_subscription") as mock_prepare: mock_client().new_account_and_tos.side_effect = errors.Error self.assertRaises(errors.Error, self._call) self.assertIs(mock_prepare.called, False) mock_client().new_account_and_tos.side_effect = None self._call() self.assertIs(mock_prepare.called, True) @test_util.patch_display_util() def test_it(self, unused_mock_get_utility): with self._patched_acme_client() as mock_client: mock_client().external_account_required.side_effect = self._false_mock with mock.patch("certbot._internal.eff.handle_subscription"): self._call() @mock.patch("certbot._internal.client.display_ops.get_email") def test_email_retry(self, mock_get_email): from acme import messages self.config.noninteractive_mode = False msg = "DNS problem: NXDOMAIN looking up MX for example.com" mx_err = messages.Error.with_code('invalidContact', detail=msg) with self._patched_acme_client() as mock_client: mock_client().external_account_required.side_effect = self._false_mock with mock.patch("certbot._internal.eff.prepare_subscription") as mock_prepare: mock_client().new_account_and_tos.side_effect = [mx_err, mock.MagicMock()] self._call() self.assertEqual(mock_get_email.call_count, 1) self.assertIs(mock_prepare.called, True) def test_email_invalid_noninteractive(self): from acme import messages self.config.noninteractive_mode = True msg = "DNS problem: NXDOMAIN looking up MX for example.com" mx_err = messages.Error.with_code('invalidContact', detail=msg) with self._patched_acme_client() as mock_client: mock_client().external_account_required.side_effect = self._false_mock with mock.patch("certbot._internal.eff.handle_subscription"): mock_client().new_account_and_tos.side_effect = [mx_err, mock.MagicMock()] self.assertRaises(errors.Error, self._call) def test_needs_email(self): self.config.email = None self.assertRaises(errors.Error, self._call) @mock.patch("certbot._internal.client.logger") def test_without_email(self, mock_logger): with mock.patch("certbot._internal.eff.prepare_subscription") as mock_prepare: with self._patched_acme_client() as mock_client: mock_client().external_account_required.side_effect = self._false_mock self.config.email = None self.config.register_unsafely_without_email = True self.config.dry_run = False self._call() mock_logger.debug.assert_called_once_with(mock.ANY) self.assertIs(mock_prepare.called, True) @mock.patch("certbot._internal.client.display_ops.get_email") def test_dry_run_no_staging_account(self, mock_get_email): """Tests dry-run for no staging account, expect account created with no email""" with self._patched_acme_client() as mock_client: mock_client().external_account_required.side_effect = self._false_mock with mock.patch("certbot._internal.eff.handle_subscription"): self.config.dry_run = True self._call() # check Certbot did not ask the user to provide an email self.assertIs(mock_get_email.called, False) # check Certbot created an account with no email. Contact should return empty self.assertFalse(mock_client().new_account_and_tos.call_args[0][0].contact) @test_util.patch_display_util() def test_with_eab_arguments(self, unused_mock_get_utility): with self._patched_acme_client() as mock_client: mock_client().client.directory.__getitem__ = mock.Mock( side_effect=self._new_acct_dir_mock ) mock_client().external_account_required.side_effect = self._false_mock with mock.patch("certbot._internal.eff.handle_subscription"): target = "certbot._internal.client.messages.ExternalAccountBinding.from_data" with mock.patch(target) as mock_eab_from_data: self.config.eab_kid = "test-kid" self.config.eab_hmac_key = "J2OAqW4MHXsrHVa_PVg0Y-L_R4SYw0_aL1le6mfblbE" self._call() self.assertIs(mock_eab_from_data.called, True) @test_util.patch_display_util() def test_without_eab_arguments(self, unused_mock_get_utility): with self._patched_acme_client() as mock_client: mock_client().external_account_required.side_effect = self._false_mock with mock.patch("certbot._internal.eff.handle_subscription"): target = "certbot._internal.client.messages.ExternalAccountBinding.from_data" with mock.patch(target) as mock_eab_from_data: self.config.eab_kid = None self.config.eab_hmac_key = None self._call() self.assertIs(mock_eab_from_data.called, False) def test_external_account_required_without_eab_arguments(self): with self._patched_acme_client() as mock_client: mock_client().client.net.key.public_key = mock.Mock(side_effect=self._public_key_mock) mock_client().external_account_required.side_effect = self._true_mock with mock.patch("certbot._internal.eff.handle_subscription"): with mock.patch("certbot._internal.client.messages.ExternalAccountBinding.from_data"): self.config.eab_kid = None self.config.eab_hmac_key = None self.assertRaises(errors.Error, self._call) def test_unsupported_error(self): from acme import messages msg = "Test" mx_err = messages.Error.with_code("malformed", detail=msg, title="title") with self._patched_acme_client() as mock_client: mock_client().client.directory.__getitem__ = mock.Mock( side_effect=self._new_acct_dir_mock ) mock_client().external_account_required.side_effect = self._false_mock with mock.patch("certbot._internal.eff.handle_subscription") as mock_handle: mock_client().new_account_and_tos.side_effect = [mx_err, mock.MagicMock()] self.assertRaises(messages.Error, self._call) self.assertIs(mock_handle.called, False) class ClientTestCommon(test_util.ConfigTestCase): """Common base class for certbot._internal.client.Client tests.""" def setUp(self): super().setUp() self.config.no_verify_ssl = False self.config.allow_subset_of_names = False self.account = mock.MagicMock(**{"key.pem": KEY}) from certbot._internal.client import Client with mock.patch("certbot._internal.client.acme_client") as acme: self.acme_client = acme.BackwardsCompatibleClientV2 self.acme = self.acme_client.return_value = mock.MagicMock() self.client_network = acme.ClientNetwork self.client = Client( config=self.config, account_=self.account, auth=None, installer=None) class ClientTest(ClientTestCommon): """Tests for certbot._internal.client.Client.""" def setUp(self): super().setUp() self.config.allow_subset_of_names = False self.config.dry_run = False self.config.strict_permissions = True self.eg_domains = ["example.com", "www.example.com"] self.eg_order = mock.MagicMock( authorizations=[None], csr_pem=mock.sentinel.csr_pem) def test_init_acme_verify_ssl(self): self.assertIs(self.client_network.call_args[1]['verify_ssl'], True) def _mock_obtain_certificate(self): self.client.auth_handler = mock.MagicMock() self.client.auth_handler.handle_authorizations.return_value = [None] self.client.auth_handler.deactivate_valid_authorizations.return_value = ([], []) self.acme.finalize_order.return_value = self.eg_order self.acme.new_order.return_value = self.eg_order self.eg_order.update.return_value = self.eg_order def _check_obtain_certificate(self, auth_count=1): if auth_count == 1: self.client.auth_handler.handle_authorizations.assert_called_once_with( self.eg_order, self.config, self.config.allow_subset_of_names) else: self.assertEqual(self.client.auth_handler.handle_authorizations.call_count, auth_count) self.acme.finalize_order.assert_called_once_with( self.eg_order, mock.ANY, fetch_alternative_chains=self.config.preferred_chain is not None) @mock.patch("certbot._internal.client.crypto_util") @mock.patch("certbot._internal.client.logger") def test_obtain_certificate_from_csr(self, mock_logger, mock_crypto_util): self._mock_obtain_certificate() test_csr = util.CSR(form="pem", file=None, data=CSR_SAN) auth_handler = self.client.auth_handler self._set_mock_from_fullchain(mock_crypto_util.cert_and_chain_from_fullchain) orderr = self.acme.new_order(test_csr.data) auth_handler.handle_authorizations(orderr, self.config, False) self.assertEqual( (mock.sentinel.cert, mock.sentinel.chain), self.client.obtain_certificate_from_csr( test_csr, orderr=orderr)) mock_crypto_util.find_chain_with_issuer.assert_not_called() # and that the cert was obtained correctly self._check_obtain_certificate() # Test that --preferred-chain results in chain selection self.config.preferred_chain = "some issuer" self.assertEqual( (mock.sentinel.cert, mock.sentinel.chain), self.client.obtain_certificate_from_csr( test_csr, orderr=orderr)) mock_crypto_util.find_chain_with_issuer.assert_called_once_with( [orderr.fullchain_pem] + orderr.alternative_fullchains_pem, "some issuer", True) self.config.preferred_chain = None # Test for default issuance_timeout expected_deadline = \ datetime.datetime.now() + datetime.timedelta( seconds=constants.CLI_DEFAULTS["issuance_timeout"]) self.client.obtain_certificate_from_csr(test_csr, orderr=orderr) ((_, deadline), _) = self.client.acme.finalize_order.call_args self.assertTrue( abs(expected_deadline - deadline) <= datetime.timedelta(seconds=1)) # Test for specific issuance_timeout (300 seconds) expected_deadline = \ datetime.datetime.now() + datetime.timedelta(seconds=300) self.config.issuance_timeout = 300 self.client.obtain_certificate_from_csr(test_csr, orderr=orderr) ((_, deadline), _) = self.client.acme.finalize_order.call_args self.assertTrue( abs(expected_deadline - deadline) <= datetime.timedelta(seconds=1)) # Test for orderr=None self.assertEqual( (mock.sentinel.cert, mock.sentinel.chain), self.client.obtain_certificate_from_csr( test_csr, orderr=None)) auth_handler.handle_authorizations.assert_called_with(self.eg_order, self.config, False) # Test for no auth_handler self.client.auth_handler = None self.assertRaises( errors.Error, self.client.obtain_certificate_from_csr, test_csr) mock_logger.error.assert_called_once_with(mock.ANY) @mock.patch("certbot._internal.client.crypto_util") def test_obtain_certificate(self, mock_crypto_util): csr = util.CSR(form="pem", file=None, data=CSR_SAN) mock_crypto_util.generate_csr.return_value = csr mock_crypto_util.generate_key.return_value = mock.sentinel.key self._set_mock_from_fullchain(mock_crypto_util.cert_and_chain_from_fullchain) self._test_obtain_certificate_common(mock.sentinel.key, csr) mock_crypto_util.generate_key.assert_called_once_with( key_size=self.config.rsa_key_size, key_dir=self.config.key_dir, key_type=self.config.key_type, elliptic_curve="secp256r1", strict_permissions=True, ) mock_crypto_util.generate_csr.assert_called_once_with( mock.sentinel.key, self.eg_domains, self.config.csr_dir, False, True) mock_crypto_util.cert_and_chain_from_fullchain.assert_called_once_with( self.eg_order.fullchain_pem) @mock.patch("certbot._internal.client.crypto_util") @mock.patch("certbot.compat.os.remove") def test_obtain_certificate_partial_success(self, mock_remove, mock_crypto_util): csr = util.CSR(form="pem", file=mock.sentinel.csr_file, data=CSR_SAN) key = util.CSR(form="pem", file=mock.sentinel.key_file, data=CSR_SAN) mock_crypto_util.generate_csr.return_value = csr mock_crypto_util.generate_key.return_value = key self._set_mock_from_fullchain(mock_crypto_util.cert_and_chain_from_fullchain) authzr = self._authzr_from_domains(["example.com"]) self.config.allow_subset_of_names = True self._test_obtain_certificate_common(key, csr, authzr_ret=authzr, auth_count=2) self.assertEqual(mock_crypto_util.generate_key.call_count, 2) self.assertEqual(mock_crypto_util.generate_csr.call_count, 2) self.assertEqual(mock_remove.call_count, 2) self.assertEqual(mock_crypto_util.cert_and_chain_from_fullchain.call_count, 1) @mock.patch("certbot._internal.client.crypto_util") @mock.patch("certbot._internal.client.acme_crypto_util") def test_obtain_certificate_dry_run(self, mock_acme_crypto, mock_crypto): csr = util.CSR(form="pem", file=None, data=CSR_SAN) mock_acme_crypto.make_csr.return_value = CSR_SAN mock_crypto.make_key.return_value = mock.sentinel.key_pem key = util.Key(file=None, pem=mock.sentinel.key_pem) self._set_mock_from_fullchain(mock_crypto.cert_and_chain_from_fullchain) self.client.config.dry_run = True self._test_obtain_certificate_common(key, csr) mock_crypto.make_key.assert_called_once_with( bits=self.config.rsa_key_size, elliptic_curve="secp256r1", key_type=self.config.key_type, ) mock_acme_crypto.make_csr.assert_called_once_with( mock.sentinel.key_pem, self.eg_domains, self.config.must_staple) mock_crypto.generate_key.assert_not_called() mock_crypto.generate_csr.assert_not_called() self.assertEqual(mock_crypto.cert_and_chain_from_fullchain.call_count, 1) @mock.patch("certbot._internal.client.logger") @mock.patch("certbot._internal.client.crypto_util") @mock.patch("certbot._internal.client.acme_crypto_util") def test_obtain_certificate_dry_run_authz_deactivations_failed(self, mock_acme_crypto, mock_crypto, mock_log): from acme import messages csr = util.CSR(form="pem", file=None, data=CSR_SAN) mock_acme_crypto.make_csr.return_value = CSR_SAN mock_crypto.make_key.return_value = mock.sentinel.key_pem key = util.Key(file=None, pem=mock.sentinel.key_pem) self._set_mock_from_fullchain(mock_crypto.cert_and_chain_from_fullchain) self._mock_obtain_certificate() self.client.config.dry_run = True # Two authzs that are already valid and should get deactivated (dry run) authzrs = self._authzr_from_domains(["example.com", "www.example.com"]) for authzr in authzrs: authzr.body.status = messages.STATUS_VALID # One deactivation succeeds, one fails auth_handler = self.client.auth_handler auth_handler.deactivate_valid_authorizations.return_value = ([authzrs[0]], [authzrs[1]]) # Certificate should get issued despite one failed deactivation self.eg_order.authorizations = authzrs self.client.auth_handler.handle_authorizations.return_value = authzrs with test_util.patch_display_util(): result = self.client.obtain_certificate(self.eg_domains) self.assertEqual(result, (mock.sentinel.cert, mock.sentinel.chain, key, csr)) self._check_obtain_certificate(1) # Deactivation success/failure should have been handled properly self.assertEqual(auth_handler.deactivate_valid_authorizations.call_count, 1, "Deactivate authorizations should be called") self.assertEqual(self.acme.new_order.call_count, 2, "Order should be recreated due to successfully deactivated authorizations") mock_log.warning.assert_called_with("Certbot was unable to obtain fresh authorizations for" " every domain. The dry run will continue, but results" " may not be accurate.") def _set_mock_from_fullchain(self, mock_from_fullchain): mock_cert = mock.Mock() mock_cert.encode.return_value = mock.sentinel.cert mock_chain = mock.Mock() mock_chain.encode.return_value = mock.sentinel.chain mock_from_fullchain.return_value = (mock_cert, mock_chain) def _authzr_from_domains(self, domains): authzr = [] # domain ordering should not be affected by authorization order for domain in reversed(domains): authzr.append( mock.MagicMock( body=mock.MagicMock( identifier=mock.MagicMock( value=domain)))) return authzr def _test_obtain_certificate_common(self, key, csr, authzr_ret=None, auth_count=1): self._mock_obtain_certificate() # return_value is essentially set to (None, None) in # _mock_obtain_certificate(), which breaks this test. # Thus fixed by the next line. authzr = authzr_ret or self._authzr_from_domains(self.eg_domains) self.eg_order.authorizations = authzr self.client.auth_handler.handle_authorizations.return_value = authzr with test_util.patch_display_util(): result = self.client.obtain_certificate(self.eg_domains) self.assertEqual( result, (mock.sentinel.cert, mock.sentinel.chain, key, csr)) self._check_obtain_certificate(auth_count) @mock.patch('certbot._internal.client.Client.obtain_certificate') @mock.patch('certbot._internal.storage.RenewableCert.new_lineage') def test_obtain_and_enroll_certificate(self, mock_storage, mock_obtain_certificate): domains = ["*.example.com", "example.com"] mock_obtain_certificate.return_value = (mock.MagicMock(), mock.MagicMock(), mock.MagicMock(), None) self.client.config.dry_run = False self.assertTrue(self.client.obtain_and_enroll_certificate(domains, "example_cert")) self.assertTrue(self.client.obtain_and_enroll_certificate(domains, None)) self.assertTrue(self.client.obtain_and_enroll_certificate(domains[1:], None)) self.client.config.dry_run = True self.assertFalse(self.client.obtain_and_enroll_certificate(domains, None)) names = [call[0][0] for call in mock_storage.call_args_list] self.assertEqual(names, ["example_cert", "example.com", "example.com"]) @mock.patch("certbot._internal.cli.helpful_parser") def test_save_certificate(self, mock_parser): certs = ["cert_512.pem", "cert-san_512.pem"] tmp_path = tempfile.mkdtemp() cert_pem = test_util.load_vector(certs[0]) chain_pem = (test_util.load_vector(certs[0]) + test_util.load_vector(certs[1])) candidate_cert_path = os.path.join(tmp_path, "certs", "cert_512.pem") candidate_chain_path = os.path.join(tmp_path, "chains", "chain.pem") candidate_fullchain_path = os.path.join(tmp_path, "chains", "fullchain.pem") mock_parser.verb = "certonly" mock_parser.args = ["--cert-path", candidate_cert_path, "--chain-path", candidate_chain_path, "--fullchain-path", candidate_fullchain_path] cert_path, chain_path, fullchain_path = self.client.save_certificate( cert_pem, chain_pem, candidate_cert_path, candidate_chain_path, candidate_fullchain_path) self.assertEqual(os.path.dirname(cert_path), os.path.dirname(candidate_cert_path)) self.assertEqual(os.path.dirname(chain_path), os.path.dirname(candidate_chain_path)) self.assertEqual(os.path.dirname(fullchain_path), os.path.dirname(candidate_fullchain_path)) with open(cert_path, "rb") as cert_file: cert_contents = cert_file.read() self.assertEqual(cert_contents, test_util.load_vector(certs[0])) with open(chain_path, "rb") as chain_file: chain_contents = chain_file.read() self.assertEqual(chain_contents, test_util.load_vector(certs[0]) + test_util.load_vector(certs[1])) shutil.rmtree(tmp_path) @test_util.patch_display_util() def test_deploy_certificate_success(self, mock_util): self.assertRaises(errors.Error, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") installer = mock.MagicMock() self.client.installer = installer self.client.deploy_certificate(["foo.bar"], "key", "cert", "chain", "fullchain") installer.deploy_cert.assert_called_once_with( cert_path=os.path.abspath("cert"), chain_path=os.path.abspath("chain"), domain='foo.bar', fullchain_path='fullchain', key_path=os.path.abspath("key")) self.assertEqual(installer.save.call_count, 2) installer.restart.assert_called_once_with() @mock.patch('certbot._internal.client.display_util.notify') @test_util.patch_display_util() def test_deploy_certificate_failure(self, mock_util, mock_notify): installer = mock.MagicMock() self.client.installer = installer self.config.installer = "foobar" installer.deploy_cert.side_effect = errors.PluginError self.assertRaises(errors.PluginError, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") installer.recovery_routine.assert_called_once_with() mock_notify.assert_any_call('Deploying certificate') @test_util.patch_display_util() def test_deploy_certificate_save_failure(self, mock_util): installer = mock.MagicMock() self.client.installer = installer installer.save.side_effect = errors.PluginError self.assertRaises(errors.PluginError, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") installer.recovery_routine.assert_called_once_with() @mock.patch('certbot._internal.client.display_util.notify') @test_util.patch_display_util() def test_deploy_certificate_restart_failure(self, mock_get_utility, mock_notify): installer = mock.MagicMock() installer.restart.side_effect = [errors.PluginError, None] self.client.installer = installer self.assertRaises(errors.PluginError, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") mock_notify.assert_called_with( 'We were unable to install your certificate, however, we successfully restored ' 'your server to its prior configuration.') installer.rollback_checkpoints.assert_called_once_with() self.assertEqual(installer.restart.call_count, 2) @mock.patch('certbot._internal.client.logger') @test_util.patch_display_util() def test_deploy_certificate_restart_failure2(self, mock_get_utility, mock_logger): installer = mock.MagicMock() installer.restart.side_effect = errors.PluginError installer.rollback_checkpoints.side_effect = errors.ReverterError self.client.installer = installer self.assertRaises(errors.PluginError, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") self.assertEqual(mock_logger.error.call_count, 1) self.assertIn( 'An error occurred and we failed to restore your config', mock_logger.error.call_args[0][0]) installer.rollback_checkpoints.assert_called_once_with() self.assertEqual(installer.restart.call_count, 1) class EnhanceConfigTest(ClientTestCommon): """Tests for certbot._internal.client.Client.enhance_config.""" def setUp(self): super().setUp() self.config.hsts = False self.config.redirect = False self.config.staple = False self.config.uir = False self.domain = "example.org" def test_no_installer(self): self.assertRaises( errors.Error, self.client.enhance_config, [self.domain], None) def test_unsupported(self): self.client.installer = mock.MagicMock() self.client.installer.supported_enhancements.return_value = [] self.config.redirect = None self.config.hsts = True with mock.patch("certbot._internal.client.logger") as mock_logger: self.client.enhance_config([self.domain], None) self.assertEqual(mock_logger.error.call_count, 1) self.client.installer.enhance.assert_not_called() @mock.patch("certbot._internal.client.logger") def test_already_exists_header(self, mock_log): self.config.hsts = True self._test_with_already_existing() self.assertIs(mock_log.info.called, True) self.assertEqual(mock_log.info.call_args[0][1], 'Strict-Transport-Security') @mock.patch("certbot._internal.client.logger") def test_already_exists_redirect(self, mock_log): self.config.redirect = True self._test_with_already_existing() self.assertIs(mock_log.info.called, True) self.assertEqual(mock_log.info.call_args[0][1], 'redirect') @mock.patch("certbot._internal.client.logger") def test_config_set_no_warning_redirect(self, mock_log): self.config.redirect = False self._test_with_already_existing() self.assertIs(mock_log.warning.called, False) @mock.patch("certbot._internal.client.logger") def test_no_warn_redirect(self, mock_log): self.config.redirect = None self._test_with_all_supported() self.assertIs(mock_log.warning.called, False) def test_no_ask_hsts(self): self.config.hsts = True self._test_with_all_supported() self.client.installer.enhance.assert_called_with( self.domain, "ensure-http-header", "Strict-Transport-Security") def test_no_ask_redirect(self): self.config.redirect = True self._test_with_all_supported() self.client.installer.enhance.assert_called_with( self.domain, "redirect", None) def test_no_ask_staple(self): self.config.staple = True self._test_with_all_supported() self.client.installer.enhance.assert_called_with( self.domain, "staple-ocsp", None) def test_no_ask_uir(self): self.config.uir = True self._test_with_all_supported() self.client.installer.enhance.assert_called_with( self.domain, "ensure-http-header", "Upgrade-Insecure-Requests") def test_enhance_failure(self): self.client.installer = mock.MagicMock() self.client.installer.enhance.side_effect = errors.PluginError self._test_error(enhance_error=True) self.client.installer.recovery_routine.assert_called_once_with() def test_save_failure(self): self.client.installer = mock.MagicMock() self.client.installer.save.side_effect = errors.PluginError self._test_error() self.client.installer.recovery_routine.assert_called_once_with() self.client.installer.save.assert_called_once_with(mock.ANY) def test_restart_failure(self): self.client.installer = mock.MagicMock() self.client.installer.restart.side_effect = [errors.PluginError, None] self._test_error_with_rollback() def test_restart_failure2(self): installer = mock.MagicMock() installer.restart.side_effect = errors.PluginError installer.rollback_checkpoints.side_effect = errors.ReverterError self.client.installer = installer self._test_error_with_rollback() def _test_error_with_rollback(self): self._test_error() self.assertIs(self.client.installer.restart.called, True) def _test_error(self, enhance_error=False, restart_error=False): self.config.redirect = True with mock.patch('certbot._internal.client.logger') as mock_logger, \ test_util.patch_display_util() as mock_gu: self.assertRaises( errors.PluginError, self._test_with_all_supported) if enhance_error: self.assertEqual(mock_logger.error.call_count, 1) self.assertEqual('Unable to set the %s enhancement for %s.', mock_logger.error.call_args_list[0][0][0]) if restart_error: mock_logger.critical.assert_called_with( 'Rolling back to previous server configuration...') def _test_with_all_supported(self): if self.client.installer is None: self.client.installer = mock.MagicMock() self.client.installer.supported_enhancements.return_value = [ "ensure-http-header", "redirect", "staple-ocsp"] self.client.enhance_config([self.domain], None) self.assertEqual(self.client.installer.save.call_count, 1) self.assertEqual(self.client.installer.restart.call_count, 1) def _test_with_already_existing(self): self.client.installer = mock.MagicMock() self.client.installer.supported_enhancements.return_value = [ "ensure-http-header", "redirect", "staple-ocsp"] self.client.installer.enhance.side_effect = errors.PluginEnhancementAlreadyPresent() self.client.enhance_config([self.domain], None) class RollbackTest(unittest.TestCase): """Tests for certbot._internal.client.rollback.""" def setUp(self): self.m_install = mock.MagicMock() @classmethod def _call(cls, checkpoints, side_effect): from certbot._internal.client import rollback with mock.patch("certbot._internal.client.plugin_selection.pick_installer") as mpi: mpi.side_effect = side_effect rollback(None, checkpoints, {}, mock.MagicMock()) def test_no_problems(self): self._call(1, self.m_install) self.assertEqual(self.m_install().rollback_checkpoints.call_count, 1) self.assertEqual(self.m_install().restart.call_count, 1) def test_no_installer(self): self._call(1, None) # Just make sure no exceptions are raised if __name__ == "__main__": unittest.main() # pragma: no cover
"""Define the `mydriver.main` way of controlling experiments. """ import sys import logging from .tools import flatten from .api0 import open_db as sql_db, parse_dbstring from .sql import HOST, HOST_WORKDIR, EXPERIMENT, FUCKED_UP from .sql import insert_dict, hash_state logging.basicConfig(level=logging.DEBUG, stream=sys.stderr) class Cmd(object): """ A callable object that attaches documentation strings to command functions. This class is a helper for the decorators `cmd` and `cmd_desc`. """ def __init__(self, f, desc): self.f = f self.desc = desc def __call__(self, *args, **kwargs): return self.f(*args, **kwargs) cmd_dct = {} def cmd(f): """Declare a function `f` as a `mydriver.main` command. The docstring of `f` is taken as the description of the command. """ cmd_dct[f.__name__] = Cmd(f, f.__doc__) return f mydriver_cmd = cmd def cmd_desc(desc): """Declare a function `f` as a `mydriver.main` command, and provide an explicit description to appear to the right of your command when running the 'help' command. """ def deco(f): cmd_dct[f.__name__] = Cmd(f, desc) return f return deco mydriver_cmd_desc = cmd_desc def help(db, **kwargs): """Print help for this program""" print "Usage: %s <cmd>" % sys.argv[0] # TODO print "Commands available:" for name, cmd in cmd_dct.iteritems(): print "%20s - %s" % (name, cmd.desc) @cmd def clear_db(db, **kwargs): """Delete all entries from the database """ class y (object): pass really_clear_db = False n_records = len([i for i in db]) try: if y is input('Are you sure you want to DELETE ALL %i records from %s? (N/y)' % (n_records, kwargs['dbstring'])): really_clear_db = True except: print 'not deleting anything' if really_clear_db: print 'deleting all...' for d in db: print d.id d.delete() @cmd_desc('Insert the job sequence into the database') def insert(db, dbstring, argv, job_fn, job_dct_seq, exp_root, **kwargs): if ('-h' in argv or '' in argv): print """Ensure that all jobs in the job sequence have been inserted into the database. Optional arguments to cmd 'insert': --dry: don't actually commit any transaction with the database, just print how many duplicates there are. --dbi: print to stdout the command necessary to launch all new jobs using dbidispatch. """ return dryrun = ('--dry' in argv) didsomething = True pos = 0 full_job_fn_name = job_fn.__module__ + '.' + job_fn.__name__ S = db.session() for i, dct in enumerate(job_dct_seq): # TODO: use hashlib, not the builtin hash function. Requires changing in .sql as well, maybe more places? # Also, will break old experiment code because inserts will all work # even though jobs have already run. state = dict(flatten(dct)) if EXPERIMENT in state: if state[EXPERIMENT] != full_job_fn_name: raise Exception('Inconsistency: state element %s does not match experiment %s' % ( EXPERIMENT, full_job_fn_name)) else: state[EXPERIMENT] = full_job_fn_name if HOST in state or HOST_WORKDIR in state: raise ValueError(('State dictionary has HOST/HOST_WORKDIR already set,' ' use a lower-level insertion function if you really want to do this.'), state) jobhash = hash_state(state) if dryrun: # TODO: detect if dct is a duplicate or not if (None is S.query(db._Dict).filter(db._Dict.hash == jobhash).filter(db._Dict.status != FUCKED_UP).first()): is_dup = False else: is_dup = True # print 'DEBUG', inserted, jobhash else: if None is insert_dict(state, db, force_dup=False, priority=1, session=S): is_dup = True else: is_dup = False if is_dup: sys.stdout.write('-') else: pos += 1 sys.stdout.write('.') # print ' #', jobhash,':', experiment # print '\n' sys.stdout.write('\n') S.close() print '***************************************' if dryrun: print '* Summary [DRY RUN] *' else: print '* Summary *' print '***************************************' print '* Inserted %i/%i jobs in database' % (pos, i + 1) print '***************************************' if '--dbi' in sys.argv: dbi_index = argv.index('--dbi') cmd = 'dbidispatch --repeat_jobs=%i %s' % (pos, argv[dbi_index + 1]) print 'TODO: run ', cmd, 'jobman sql', dbstring, exp_root @cmd def create_view(db, tablename, **kwargs): """Create a view (WRITEME)""" db.createView(tablename + 'view') @cmd def status(db, **kwargs): """List counts of jobs that are queued, running, done, etc.""" sts = {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 666: 0} for d in db: cnt = sts.get(d['jobman.status'], 0) sts[d['jobman.status']] = cnt + 1 print 'QUEUED :', sts[0] del sts[0] print 'RUNNING :', sts[1] del sts[1] print 'DONE :', sts[2] del sts[2] print 'ERR_START:', sts[3] del sts[3] print 'ERR_SYNC :', sts[4] del sts[4] print 'CANCELED :', sts[5] del sts[5] print 'MESSED :', sts[666] del sts[666] if sts: print 'WARNING: other status counts:', sts @cmd def dbstring(dbstring, **kwargs): """List what database we are using""" print dbstring def main(argv, dbstring, exp_root, job_fn, job_dct_seq): db = sql_db(dbstring) job_dct_seq = tuple(job_dct_seq) try: cmd = cmd_dct[argv[1]] except: cmd = help cmd(**locals())
# jsb/plugs/core/core.py # # """ core bot commands. """ ## jsb imports from jsb.lib.aliases import setalias from jsb.lib.config import getmainconfig from jsb.utils.statdict import StatDict from jsb.utils.log import setloglevel, getloglevel from jsb.utils.timeutils import elapsedstring from jsb.utils.exception import handle_exception from jsb.lib.commands import cmnds from jsb.lib.examples import examples from jsb.lib.plugins import plugs from jsb.lib.boot import plugin_packages, getpluginlist, boot, getcmndtable, whatcommands, getshorttable from jsb.lib.persist import Persist from jsb.lib.reboot import reboot, reboot_stateful from jsb.lib.eventhandler import mainhandler from jsb.lib.fleet import getfleet from jsb.lib.partyline import partyline from jsb.lib.exit import globalshutdown from jsb.lib.runner import defaultrunner, cmndrunner, longrunner, apirunner, threadrunner from jsb.lib.errors import NoSuchPlugin from jsb.utils.statdict import StatDict from jsb.contrib.natural import date from jsb.lib.threadloop import threadloops from jsb.lib.threads import getname ## basic imports import time import threading import sys import re import os import copy import cgi import logging import functools ## defines cpy = copy.deepcopy ## reboot command def handle_reboot(bot, ievent): """ no arguments - reboot the bot. """ ievent.reply("rebooting") #time.sleep(3) if ievent.rest == "cold": stateful = False else: stateful = True if stateful: if bot.type == "tornado": callback = functools.partial(reboot_stateful, bot, ievent, getfleet(), partyline) bot.server.io_loop.add_callback(callback) else: mainhandler.put(0, reboot_stateful, bot, ievent, getfleet(), partyline) else: getfleet().exit() mainhandler.put(0, reboot) cmnds.add("reboot", handle_reboot, "OPER") examples.add("reboot", "reboot the bot.", "reboot") ## ping command def handle_ping(bot, event): event.reply("pong") cmnds.add("ping", handle_ping, ["OPER", "USER"]) examples.add("ping", "ping/pong", "ping") ## quit command def handle_quit(bot, ievent): """ no arguments - disconnect from the server. """ ievent.reply("quiting") bot.exit() cmnds.add("quit", handle_quit, "OPER") examples.add("quit", "quit the bot.", "quit") ## encoding command def handle_encoding(bot, ievent): """ not arguments - show default encoding. """ ievent.reply('default encoding is %s' % bot.encoding or sys.getdefaultencoding()) cmnds.add('encoding', handle_encoding, ['USER', 'GUEST']) examples.add('encoding', 'show default encoding', 'encoding') ## uptime command def handle_uptime(bot, ievent): """ no arguments - show uptime. """ ievent.reply("<b>uptime is %s</b>" % elapsedstring(time.time()-bot.starttime)) cmnds.add('uptime', handle_uptime, ['USER', 'GUEST']) examples.add('uptime', 'show uptime of the bot', 'uptime') ## list command def handle_available(bot, ievent): """ no arguments - show available plugins .. to enable use !plug-enable. """ if ievent.rest: ievent.reply("%s plugin has the following commands: " % ievent.rest, whatcommands(ievent.rest)) else: ievent.reply("available plugins: ", getpluginlist(), raw=True) ; return cmnds.add('list', handle_available, ['USER', 'GUEST']) examples.add('list', 'list available plugins', 'list') ## commands command def handle_commands(bot, ievent): """ arguments: [<plugname>] - show commands of plugin. """ try: plugin = ievent.args[0].lower() except IndexError: plugin = "" result = [] cmnds = getcmndtable() for cmnd, plugname in cmnds.iteritems(): if plugname: if not plugin or plugin in plugname: result.append(cmnd) if result: result.sort() if not plugin: plugin = "JSONBOT" ievent.reply('%s has the following commands: ' % plugin, result) else: ievent.reply('no commands found for plugin %s' % plugin) cmnds.add('commands', handle_commands, ['USER', 'GUEST']) examples.add('commands', 'show commands of <plugin>', '1) commands core') ## perm command def handle_perm(bot, ievent): """ arguments: <cmnd> - get permission of command. """ try:cmnd = ievent.args[0] except IndexError: ievent.missing("<cmnd>") return try: perms = cmnds.perms(cmnd) except KeyError: ievent.reply("no %sw command registered") return if perms: ievent.reply("%s command needs %s permission" % (cmnd, perms)) else: ievent.reply("can't find perm for %s" % cmnd) cmnds.add('perm', handle_perm, ['USER', 'GUEST']) examples.add('perm', 'show permission of command', 'perm quit') ## version command def handle_version(bot, ievent): """ no arguments - show bot's version. """ from jsb.version import getversion version = getversion(bot.type.upper()) cfg = getmainconfig() if cfg.dbenable: version += " " + cfg.dbtype.upper() if ievent.rest and ievent.rest == "repo": try: from mercurial import context, hg, node, repo, ui repository = hg.repository(ui.ui(), '.') ctx = context.changectx(repository) tip = str(ctx.rev()) except: tip = None if tip: version2 = version + " HG " + tip else: version2 = version ievent.reply(version2) cmnds.add('version', handle_version, ['USER', 'GUEST']) examples.add('version', 'show version of the bot', 'version') setalias('v', "version") ## short command def handle_short(bot, ievent): """ arguments: <cmnd> - give short possibilities for a command. """ try: cmnd = ievent.args[0] except IndexError: ievent.missing('<cmnd>') ; return try: ievent.reply("short commands for %s" % cmnd, getshorttable()[cmnd]) except KeyError: ievent.reply("no commands found for %s" % cmnd) cmnds.add('short', handle_short, ['USER', 'GUEST']) examples.add('short', 'find full comamands', 'short admin-exceptions') ## whereis command def handle_whereis(bot, ievent): """ arguments: <cmnd> - locate a command. """ try: cmnd = ievent.args[0] except IndexError: ievent.missing('<cmnd>') return cmnds.reloadcheck(bot, ievent, cmnd) plugin = cmnds.whereis(cmnd) if plugin: ievent.reply("%s command is in: %s" % (cmnd, plugin)) else: ievent.reply("can't find " + cmnd) cmnds.add('whereis', handle_whereis, ['USER', 'GUEST']) examples.add('whereis', 'show in which plugins <what> is', 'whereis test') ## help-plug command def handle_helpplug(bot, ievent): """ arguments: <plugname> - how help on plugin/command or show basic help msg. """ try: what = ievent.args[0] except (IndexError, TypeError): ievent.reply("available plugins: ", getpluginlist()) ievent.reply("see !help <plugin> to get help on a plugin.") return ievent.untildone = True cmnds.reloadcheck(bot, ievent, what) plugin = None modname = "" perms = [] for package in plugin_packages: try: modname = "%s.%s" % (package, what) try: plugin = plugs.load_mod(modname) if plugin: break except NoSuchPlugin: continue except(KeyError, ImportError): pass if not plugin: ievent.reply("no %s plugin loaded" % what) return try: phelp = plugin.__doc__ except (KeyError, AttributeError): ievent.reply('no description of %s plugin available' % what) return cmndresult = [] if phelp: counter = 1 for i, j in cmnds.iteritems(): if what == j.plugname: try: descr = j.func.__doc__ if not descr: descr = "no description provided" try: cmndresult.append(u" <b>!%s</b> - <i>%s</i> - perms: %s" % (i, descr, j.perms)) except KeyError: pass except AttributeError: pass counter += 1 if cmndresult and phelp: res = [] for r in cmndresult: if bot.type in ['web', ]: res.append("%s<br>" % r) elif bot.type in ['irc', ]: res.append(r.strip()) else: res.append(r) res.sort() what = what.upper() ievent.reply('<br><b>plugin %s: </b><br>%s' % (what, phelp)) ievent.reply("<b>commands: </b>", res, dot="count") else: if perms: ievent.reply('no commands available for permissions: %s' % ", ".join(perms)) else: ievent.reply("can't find help on %s" % what) ievent.done(silent=True) cmnds.add('help-plug', handle_helpplug, ['USER', 'GUEST'], how="msg") examples.add('help-plug', 'get help on <plugin>', '1) help-plug 2) help-plug misc') ## help-site command def handle_helpsite(bot, event): """ arguments: <cmnd> - help commands that gives a url to the docs. """ if event.rest: target = cmnds.whereis(event.rest) target = target or event.rest where = bot.plugs.getmodule(target) if where: theplace = os.sep.join(where.split(".")[-2:]) event.reply("help for %s is at http://jsonbot.org/plugins/%s.html" % (event.rest.upper(), theplace)) else: event.reply("can't find a help url for %s" % event.rest) else: event.reply("documentation for jsonbot can be found at http://jsonbot.org or http://jsonbot.appspot.com/docs") event.reply('see !list for loaded plugins and "!help plugin" for a url to the plugin docs.') cmndhelp = cmnds.gethelp(event.rest) if cmndhelp: event.reply("<br><b>%s docstring: </b><br>" % event.rest, cmndhelp.split("\n")) cmnds.add("help-site", handle_helpsite, ["OPER", "USER", "GUEST"]) examples.add("help-site", "show url pointing to the docs", "1) help 2) help rss") ## help command def handle_help(bot, event): """ arguments: [<cmndname or plugname>] - show help. """ if not event.args: event.reply("documentation for jsonbot can be found at http://jsonbot.org") event.reply('see !list for loaded plugins and "!help plugin" for help on the plugin.') return t = event.args[0] logging.warn("help target is %s" % t) cmnds.reloadcheck(bot, event, t) where = cmnds.whereis(t) cmndhelp = cmnds.gethelp(t) if not cmndhelp: ex = examples.get(t) if ex: cmndhelp = ex.descr if not cmndhelp: handle_helpplug(bot, event) ; return try: ex = examples[t].example except KeyError: ex = None p = cmnds.perms(t) res = "permissions: %s - location: %s - examples: %s" % (", ".join(p), where, ex) event.reply('<br><b>%s command:</b> %s' % (event.rest, cmndhelp), res.split(" - "), dot="<br>") cmnds.add("help", handle_help, ["OPER", "USER", "GUEST"]) examples.add("help", "show help of a command", "help rss-list") ## apro command def handle_apro(bot, ievent): """ arguments: <searchtxt> - apropos (search) for commands. """ try: what = ievent.args[0] except IndexError: ievent.missing('<what>') return result = cmnds.apropos(what) result.sort() if result: ievent.reply("commands matching %s: " % what, result) else: ievent.reply('no matching commands found for %s' % what) cmnds.add('apro', handle_apro, ['USER', 'GUEST']) examples.add('apro', 'apro <what> .. search for commands that contain <what>', 'apro com') ## whatcommands command def handle_whatcommands(bot, ievent): """ arguments: <permission. - show all commands with permission. """ if not ievent.rest: ievent.missing('<perm>') return result = cmnds res = [] for cmnd in result.values(): if cmnd and cmnd.perms and ievent.rest in cmnd.perms: res.append(cmnd.cmnd) res.sort() if not res: ievent.reply('no commands known for permission %s' % ievent.rest) else: ievent.reply('commands known for permission %s: ' % ievent.rest, res) cmnds.add('whatcommands', handle_whatcommands, ['USER', 'GUEST']) examples.add('whatcommands', 'show commands with permission <perm>', 'whatcommands USER') ## versions command def handle_versions(bot, ievent): """ no arguments - show versions of all loaded modules (if available). """ versions = {} allowed = ["jsb.", ] for mod in copy.copy(sys.modules): for allow in allowed: if mod.startswith(allow): try: versions[mod] = sys.modules[mod].__version__ except AttributeError, ex: pass try: versions['python'] = sys.version except AttributeError, ex: pass ievent.reply("versions ==> %s" % unicode(versions)) cmnds.add('versions', handle_versions, ['USER', 'GUEST']) examples.add('versions', 'show versions of all loaded modules', 'versions') ## loglevel command def handle_loglevel(bot, event): """ arguments: <loglevel> - change loglevel of the bot. loglevel is on of debug, info, warn or error. """ if not event.rest: event.reply("loglevel is %s" % getloglevel()) ; return from jsb.lib.config import getmainconfig mainconfig = getmainconfig() mainconfig.loglevel = event.rest mainconfig.save() #mainhandler.put(4, setloglevel, event.rest) setloglevel(event.rest) event.done() cmnds.add("loglevel", handle_loglevel, "OPER") examples.add("loglevel", "set loglevel ot on of debug, info, warning or error", "loglevel warn") ## activity command def handle_activity(bot, ievent): """ no arguments - show running threads. """ try: import threading except ImportError: ievent.reply("threading is not enabled.") return result = {} todo = threadloops for thread in threadloops: name = "%s_%s" % (getname(type(thread)), thread.name) try: result[name] = date.duration(thread.lastiter, plain=True) except Exception, ex: logging.warn("%s - %s" % (name, str(ex))) for b in getfleet().bots: try: result[b.cfg.name] = date.duration(b.lastiter, plain=True) except Exception, ex: logging.warn("%s - %s" % (name, str(ex))) ievent.reply("last iterations: ", result) cmnds.add('activity', handle_activity, ['USER', 'GUEST']) examples.add('activity', 'show time past last thread iteration', 'activity') ## threads command def handle_threads(bot, ievent): """ no arguments - show running threads. """ try: import threading except ImportError: ievent.reply("threading is not enabled.") return stats = StatDict() threadlist = threading.enumerate() for thread in threadlist: stats.upitem(thread.getName()) result = [] for item in stats.top(): result.append("%s = %s" % (item[0], item[1])) result.sort() ievent.reply("threads running: ", result) cmnds.add('threads', handle_threads, ['USER', 'GUEST']) examples.add('threads', 'show running threads', 'threads') ## loaded command def handle_loaded(bot, event): """ no arguments - show plugins in cache. """ res = [] for plug in plugs.keys(): res.append(plug.split(".")[-1]) event.reply("loaded plugins (cache): ", res) cmnds.add('loaded', handle_loaded, ['USER', 'GUEST']) examples.add('loaded', 'show list of loaded plugins', 'loaded') ## statusline command def handle_statusline(bot, event): """ no arguments - show a status line. """ event.reply("<b>controlchars:</b> %s - <b>perms:</b> %s" % (event.chan.data.cc, ", ".join(event.user.data.perms))) cmnds.add('statusline', handle_statusline, ['USER', 'GUEST']) examples.add('statusline', 'show status line', 'statusline') ## topper command def handle_topper(bot, event): """ no arguments - show a 'topper' startus line. """ event.reply("<b>forwards:</b> %s - <b>watched:</b> %s - <b>feeds:</b> %s" % (", ".join(event.chan.data.forwards) or "none", ", ".join(event.chan.data.watched) or "none", ", ".join([unicode(x) for x in event.chan.data.feeds]) or "none")) cmnds.add('topper', handle_topper, ['USER', 'GUEST']) examples.add('topper', 'show topper line', 'topper') ## running command def handle_running(bot, event): """ no arguments - show running tasks. """ event.reply("<b>callbacks:</b> %s - <b>commands:</b> %s - <b>longrunning:</b> %s - <b>apirunner:</b> %s - <b>threadrunner:</b> %s" % (defaultrunner.running(), cmndrunner.running(), longrunner.running(), apirunner.running(), threadrunner.running())) cmnds.add('running', handle_running, ['USER', 'GUEST']) examples.add('running', "show running tasks", "running") ## descriptions command def handle_descriptions(bot, event): """ no arguments - show descriptions of all plugins. """ bot.plugs.loadall() result = [] target = bot.plugs.keys() target.sort() for modname in target: plug = bot.plugs.get(modname) if plug.__doc__: txt = plug.__doc__.replace("\n", "<br>") else: txt = "no docstring available" result.append("* %s plugin (%s) - %s" % (modname.split(".")[-1], modname, txt)) event.reply("descriptions: <br>", result, dot="<br><br>") cmnds.add('descriptions', handle_descriptions, ['USER', 'GUEST']) examples.add('descriptions', "show descriptions of all plugins", "descriptions") ## stats command def handle_stats(bot, event): totalstats = StatDict() counter = 0 for modname in sys.modules: if modname.startswith("jsb"): plugname = modname.split(".")[-1] if event.args and plugname not in event.args: continue try: modstats = getattr(sys.modules[modname], "stats") except AttributeError: continue totalstats += modstats counter += 1 event.reply("stats results from %s modules: " % counter, totalstats) cmnds.add("stats", handle_stats, ["OPER", "USER"]) examples.add("stats", "show stats for all JSONBOT modules/plugins or specify a module/plugin", "1) stats 2) stats rss")
""" Tests the TextReader class in parsers.pyx, which is integral to the C engine in parsers.py """ from io import BytesIO, StringIO import os import numpy as np import pytest import pandas._libs.parsers as parser from pandas._libs.parsers import TextReader from pandas import DataFrame import pandas._testing as tm from pandas.io.parsers import TextFileReader, read_csv class TestTextReader: @pytest.fixture(autouse=True) def setup_method(self, datapath): self.dirpath = datapath("io", "parser", "data") self.csv1 = os.path.join(self.dirpath, "test1.csv") self.csv2 = os.path.join(self.dirpath, "test2.csv") self.xls1 = os.path.join(self.dirpath, "test.xls") def test_file_handle(self): with open(self.csv1, "rb") as f: reader = TextReader(f) reader.read() def test_string_filename(self): reader = TextReader(self.csv1, header=None) reader.read() def test_file_handle_mmap(self): with open(self.csv1, "rb") as f: reader = TextReader(f, memory_map=True, header=None) reader.read() def test_StringIO(self): with open(self.csv1, "rb") as f: text = f.read() src = BytesIO(text) reader = TextReader(src, header=None) reader.read() def test_string_factorize(self): # should this be optional? data = "a\nb\na\nb\na" reader = TextReader(StringIO(data), header=None) result = reader.read() assert len(set(map(id, result[0]))) == 2 def test_skipinitialspace(self): data = "a, b\na, b\na, b\na, b" reader = TextReader(StringIO(data), skipinitialspace=True, header=None) result = reader.read() tm.assert_numpy_array_equal( result[0], np.array(["a", "a", "a", "a"], dtype=np.object_) ) tm.assert_numpy_array_equal( result[1], np.array(["b", "b", "b", "b"], dtype=np.object_) ) def test_parse_booleans(self): data = "True\nFalse\nTrue\nTrue" reader = TextReader(StringIO(data), header=None) result = reader.read() assert result[0].dtype == np.bool_ def test_delimit_whitespace(self): data = 'a b\na\t\t "b"\n"a"\t \t b' reader = TextReader(StringIO(data), delim_whitespace=True, header=None) result = reader.read() tm.assert_numpy_array_equal( result[0], np.array(["a", "a", "a"], dtype=np.object_) ) tm.assert_numpy_array_equal( result[1], np.array(["b", "b", "b"], dtype=np.object_) ) def test_embedded_newline(self): data = 'a\n"hello\nthere"\nthis' reader = TextReader(StringIO(data), header=None) result = reader.read() expected = np.array(["a", "hello\nthere", "this"], dtype=np.object_) tm.assert_numpy_array_equal(result[0], expected) def test_euro_decimal(self): data = "12345,67\n345,678" reader = TextReader(StringIO(data), delimiter=":", decimal=",", header=None) result = reader.read() expected = np.array([12345.67, 345.678]) tm.assert_almost_equal(result[0], expected) def test_integer_thousands(self): data = "123,456\n12,500" reader = TextReader(StringIO(data), delimiter=":", thousands=",", header=None) result = reader.read() expected = np.array([123456, 12500], dtype=np.int64) tm.assert_almost_equal(result[0], expected) def test_integer_thousands_alt(self): data = "123.456\n12.500" reader = TextFileReader( StringIO(data), delimiter=":", thousands=".", header=None ) result = reader.read() expected = DataFrame([123456, 12500]) tm.assert_frame_equal(result, expected) def test_skip_bad_lines(self, capsys): # too many lines, see #2430 for why data = "a:b:c\nd:e:f\ng:h:i\nj:k:l:m\nl:m:n\no:p:q:r" reader = TextReader(StringIO(data), delimiter=":", header=None) msg = r"Error tokenizing data\. C error: Expected 3 fields in line 4, saw 4" with pytest.raises(parser.ParserError, match=msg): reader.read() reader = TextReader( StringIO(data), delimiter=":", header=None, error_bad_lines=False, warn_bad_lines=False, ) result = reader.read() expected = { 0: np.array(["a", "d", "g", "l"], dtype=object), 1: np.array(["b", "e", "h", "m"], dtype=object), 2: np.array(["c", "f", "i", "n"], dtype=object), } assert_array_dicts_equal(result, expected) reader = TextReader( StringIO(data), delimiter=":", header=None, error_bad_lines=False, warn_bad_lines=True, ) reader.read() captured = capsys.readouterr() assert "Skipping line 4" in captured.err assert "Skipping line 6" in captured.err def test_header_not_enough_lines(self): data = "skip this\nskip this\na,b,c\n1,2,3\n4,5,6" reader = TextReader(StringIO(data), delimiter=",", header=2) header = reader.header expected = [["a", "b", "c"]] assert header == expected recs = reader.read() expected = { 0: np.array([1, 4], dtype=np.int64), 1: np.array([2, 5], dtype=np.int64), 2: np.array([3, 6], dtype=np.int64), } assert_array_dicts_equal(recs, expected) def test_escapechar(self): data = '\\"hello world"\n\\"hello world"\n\\"hello world"' reader = TextReader(StringIO(data), delimiter=",", header=None, escapechar="\\") result = reader.read() expected = {0: np.array(['"hello world"'] * 3, dtype=object)} assert_array_dicts_equal(result, expected) def test_eof_has_eol(self): # handling of new line at EOF pass def test_na_substitution(self): pass def test_numpy_string_dtype(self): data = """\ a,1 aa,2 aaa,3 aaaa,4 aaaaa,5""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=",", header=None, **kwds) reader = _make_reader(dtype="S5,i4") result = reader.read() assert result[0].dtype == "S5" ex_values = np.array(["a", "aa", "aaa", "aaaa", "aaaaa"], dtype="S5") assert (result[0] == ex_values).all() assert result[1].dtype == "i4" reader = _make_reader(dtype="S4") result = reader.read() assert result[0].dtype == "S4" ex_values = np.array(["a", "aa", "aaa", "aaaa", "aaaa"], dtype="S4") assert (result[0] == ex_values).all() assert result[1].dtype == "S4" def test_pass_dtype(self): data = """\ one,two 1,a 2,b 3,c 4,d""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=",", **kwds) reader = _make_reader(dtype={"one": "u1", 1: "S1"}) result = reader.read() assert result[0].dtype == "u1" assert result[1].dtype == "S1" reader = _make_reader(dtype={"one": np.uint8, 1: object}) result = reader.read() assert result[0].dtype == "u1" assert result[1].dtype == "O" reader = _make_reader(dtype={"one": np.dtype("u1"), 1: np.dtype("O")}) result = reader.read() assert result[0].dtype == "u1" assert result[1].dtype == "O" def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=",", **kwds) reader = _make_reader(usecols=(1, 2)) result = reader.read() exp = _make_reader().read() assert len(result) == 2 assert (result[1] == exp[1]).all() assert (result[2] == exp[2]).all() def test_cr_delimited(self): def _test(text, **kwargs): nice_text = text.replace("\r", "\r\n") result = TextReader(StringIO(text), **kwargs).read() expected = TextReader(StringIO(nice_text), **kwargs).read() assert_array_dicts_equal(result, expected) data = "a,b,c\r1,2,3\r4,5,6\r7,8,9\r10,11,12" _test(data, delimiter=",") data = "a b c\r1 2 3\r4 5 6\r7 8 9\r10 11 12" _test(data, delim_whitespace=True) data = "a,b,c\r1,2,3\r4,5,6\r,88,9\r10,11,12" _test(data, delimiter=",") sample = ( "A,B,C,D,E,F,G,H,I,J,K,L,M,N,O\r" "AAAAA,BBBBB,0,0,0,0,0,0,0,0,0,0,0,0,0\r" ",BBBBB,0,0,0,0,0,0,0,0,0,0,0,0,0" ) _test(sample, delimiter=",") data = "A B C\r 2 3\r4 5 6" _test(data, delim_whitespace=True) data = "A B C\r2 3\r4 5 6" _test(data, delim_whitespace=True) def test_empty_field_eof(self): data = "a,b,c\n1,2,3\n4,," result = TextReader(StringIO(data), delimiter=",").read() expected = { 0: np.array([1, 4], dtype=np.int64), 1: np.array(["2", ""], dtype=object), 2: np.array(["3", ""], dtype=object), } assert_array_dicts_equal(result, expected) # GH5664 a = DataFrame([["b"], [np.nan]], columns=["a"], index=["a", "c"]) b = DataFrame([[1, 1, 1, 0], [1, 1, 1, 0]], columns=list("abcd"), index=[1, 1]) c = DataFrame( [ [1, 2, 3, 4], [6, np.nan, np.nan, np.nan], [8, 9, 10, 11], [13, 14, np.nan, np.nan], ], columns=list("abcd"), index=[0, 5, 7, 12], ) for _ in range(100): df = read_csv(StringIO("a,b\nc\n"), skiprows=0, names=["a"], engine="c") tm.assert_frame_equal(df, a) df = read_csv( StringIO("1,1,1,1,0\n" * 2 + "\n" * 2), names=list("abcd"), engine="c" ) tm.assert_frame_equal(df, b) df = read_csv( StringIO("0,1,2,3,4\n5,6\n7,8,9,10,11\n12,13,14"), names=list("abcd"), engine="c", ) tm.assert_frame_equal(df, c) def test_empty_csv_input(self): # GH14867 df = read_csv(StringIO(), chunksize=20, header=None, names=["a", "b", "c"]) assert isinstance(df, TextFileReader) def assert_array_dicts_equal(left, right): for k, v in left.items(): tm.assert_numpy_array_equal(np.asarray(v), np.asarray(right[k]))
import ast import builtins import traceback from enum import Enum from sys import version_info from textwrap import TextWrapper from taichi.lang.exception import (TaichiCompilationError, TaichiNameError, TaichiSyntaxError, handle_exception_from_cpp) class Builder: def __call__(self, ctx, node): method = getattr(self, 'build_' + node.__class__.__name__, None) try: if method is None: error_msg = f'Unsupported node "{node.__class__.__name__}"' raise TaichiSyntaxError(error_msg) return method(ctx, node) except Exception as e: if ctx.raised or not isinstance(node, (ast.stmt, ast.expr)): raise e.with_traceback(None) ctx.raised = True e = handle_exception_from_cpp(e) if not isinstance(e, TaichiCompilationError): msg = ctx.get_pos_info(node) + traceback.format_exc() raise TaichiCompilationError(msg) from None msg = ctx.get_pos_info(node) + str(e) raise type(e)(msg) from None class VariableScopeGuard: def __init__(self, scopes): self.scopes = scopes def __enter__(self): self.scopes.append({}) def __exit__(self, exc_type, exc_val, exc_tb): self.scopes.pop() class StaticScopeStatus: def __init__(self): self.is_in_static_scope = False class StaticScopeGuard: def __init__(self, status): self.status = status def __enter__(self): self.prev = self.status.is_in_static_scope self.status.is_in_static_scope = True def __exit__(self, exc_type, exc_val, exc_tb): self.status.is_in_static_scope = self.prev class NonStaticControlFlowStatus: def __init__(self): self.is_in_non_static_control_flow = False class NonStaticControlFlowGuard: def __init__(self, status): self.status = status def __enter__(self): self.prev = self.status.is_in_non_static_control_flow self.status.is_in_non_static_control_flow = True def __exit__(self, exc_type, exc_val, exc_tb): self.status.is_in_non_static_control_flow = self.prev class LoopStatus(Enum): Normal = 0 Break = 1 Continue = 2 class LoopScopeAttribute: def __init__(self, is_static): self.is_static = is_static self.status = LoopStatus.Normal class LoopScopeGuard: def __init__(self, scopes, non_static_guard=None): self.scopes = scopes self.non_static_guard = non_static_guard def __enter__(self): self.scopes.append(LoopScopeAttribute(self.non_static_guard is None)) if self.non_static_guard: self.non_static_guard.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): self.scopes.pop() if self.non_static_guard: self.non_static_guard.__exit__(exc_type, exc_val, exc_tb) class ASTTransformerContext: def __init__(self, excluded_parameters=(), is_kernel=True, func=None, arg_features=None, global_vars=None, argument_data=None, file=None, src=None, start_lineno=None, ast_builder=None, is_real_function=False): self.func = func self.local_scopes = [] self.loop_scopes = [] self.excluded_parameters = excluded_parameters self.is_kernel = is_kernel self.arg_features = arg_features self.returns = None self.global_vars = global_vars self.argument_data = argument_data self.return_data = None self.file = file self.src = src self.indent = 0 for c in self.src[0]: if c == ' ': self.indent += 1 else: break self.lineno_offset = start_lineno - 1 self.raised = False self.non_static_control_flow_status = NonStaticControlFlowStatus() self.static_scope_status = StaticScopeStatus() self.returned = False self.ast_builder = ast_builder self.visited_funcdef = False self.is_real_function = is_real_function # e.g.: FunctionDef, Module, Global def variable_scope_guard(self): return VariableScopeGuard(self.local_scopes) # e.g.: For, While def loop_scope_guard(self, is_static=False): if is_static: return LoopScopeGuard(self.loop_scopes) return LoopScopeGuard(self.loop_scopes, self.non_static_control_flow_guard()) def non_static_control_flow_guard(self): return NonStaticControlFlowGuard(self.non_static_control_flow_status) def static_scope_guard(self): return StaticScopeGuard(self.static_scope_status) def current_scope(self): return self.local_scopes[-1] def current_loop_scope(self): return self.loop_scopes[-1] def loop_status(self): if self.loop_scopes: return self.loop_scopes[-1].status return LoopStatus.Normal def set_loop_status(self, status): self.loop_scopes[-1].status = status def is_in_static_for(self): if self.loop_scopes: return self.loop_scopes[-1].is_static return False def is_in_non_static_control_flow(self): return self.non_static_control_flow_status.is_in_non_static_control_flow def is_in_static_scope(self): return self.static_scope_status.is_in_static_scope def is_var_declared(self, name): for s in self.local_scopes: if name in s: return True return False def create_variable(self, name, var): if name in self.current_scope(): raise TaichiSyntaxError("Recreating variables is not allowed") self.current_scope()[name] = var def check_loop_var(self, loop_var): if self.is_var_declared(loop_var): raise TaichiSyntaxError( f"Variable '{loop_var}' is already declared in the outer scope and cannot be used as loop variable" ) def get_var_by_name(self, name): for s in reversed(self.local_scopes): if name in s: return s[name] if name in self.global_vars: return self.global_vars[name] try: return getattr(builtins, name) except AttributeError: raise TaichiNameError(f'Name "{name}" is not defined') def get_pos_info(self, node): msg = f'On line {node.lineno + self.lineno_offset} of file "{self.file}", in {self.func.func.__name__}:\n' if version_info < (3, 8): msg += self.src[node.lineno - 1] + "\n" return msg col_offset = self.indent + node.col_offset end_col_offset = self.indent + node.end_col_offset wrapper = TextWrapper(width=80) def gen_line(code, hint): hint += ' ' * (len(code) - len(hint)) code = wrapper.wrap(code) hint = wrapper.wrap(hint) if not len(code): return "\n\n" return "".join([c + '\n' + h + '\n' for c, h in zip(code, hint)]) if node.lineno == node.end_lineno: hint = ' ' * col_offset + '^' * (end_col_offset - col_offset) msg += gen_line(self.src[node.lineno - 1], hint) else: node_type = node.__class__.__name__ if node_type in ["For", "While", "FunctionDef", "If"]: end_lineno = max(node.body[0].lineno - 1, node.lineno) else: end_lineno = node.end_lineno for i in range(node.lineno - 1, end_lineno): last = len(self.src[i]) while last > 0 and (self.src[i][last - 1].isspace() or not self.src[i][last - 1].isprintable()): last -= 1 first = 0 while first < len(self.src[i]) and ( self.src[i][first].isspace() or not self.src[i][first].isprintable()): first += 1 if i == node.lineno - 1: hint = ' ' * col_offset + '^' * (last - col_offset) elif i == node.end_lineno - 1: hint = ' ' * first + '^' * (end_col_offset - first) elif first < last: hint = ' ' * first + '^' * (last - first) else: hint = '' msg += gen_line(self.src[i], hint) return msg
#!/usr/bin/python3 """ DHT_publish_AWS ##Copyright 2016 Clint H. O'Connor ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. """ ##----- imports ----------------------------------------------------------------- import os import sys import ast import time import json import argparse from Sensors import Sensors, Sensor_DHT from AwsPubSub import AwsClient from Configuration import Configuration ##----- testing ----------------------------------------------------------------- debugthis = True ##----- globals ----------------------------------------------------------------- cfg = None state = None thismodule = None ##----- configuration ----------------------------------------------------------------- new_configuration = { 'name' : 'DHT_THING', # name of thing 'publish' : 'unassigned', # topic to publish on 'subscribe' : 'unassigned_reply', # topic to reply on 'interval' : '3600', # default interval = 1 hour = 60*60 secs 'qos' : '0', # quality of service needed for this thing 'hwpin' : '0', 'hwtype' : '' } ##----- defs ----------------------------------------------------------------- def subscribe_callback(client, userdata, message): global cfg, state # MQTT message callback try: control = ast.literal_eval(message.payload.decode()) if debugthis: print ("control ", control) if 'state' in control and control['state'] == '?': if debugthis: print ("state ", state) client.publish( cfg.configuration['publish'], json.dumps({'ack':'state '+state}), 1 ) elif 'configuration' in control: if control['configuration'] == '?': if debugthis: print ("configuration ", cfg.configuration) client.publish( cfg.configuration['publish'], json.dumps(cfg.configuration), 1 ) elif control['configuration'] == 'save': if debugthis: print ("saved configuration file") cfg.write() client.publish( cfg.configuration['publish'], json.dumps({'ack':'saved configuration file'}), 1 ) elif 'interval' in control and int(control['interval']) >= 1: cfg.configuration['interval'] = control['interval'] if debugthis: print ("new interval ", cfg.configuration['interval']) client.publish( cfg.configuration['publish'], json.dumps({'ack':'interval '+cfg.configuration['interval']}), 1 ) elif 'hwpin' in control and int(control['hwpin']) > 0: cfg.configuration['hwpin'] = control['hwpin'] state = 'ready' if debugthis: print ("new hwpin ", cfg.configuration['hwpin']) client.publish( cfg.configuration['publish'], json.dumps({'ack':'hwpin '+cfg.configuration['hwpin']}), 1 ) elif 'hwtype' in control and control['hwtype'] is not "": cfg.configuration['hwtype'] = control['hwtype'] state = 'ready' if debugthis: print ("new hwtype ", cfg.configuration['hwtype']) client.publish( cfg.configuration['publish'], json.dumps({'ack':'hwtype '+cfg.configuration['hwpin']}), 1 ) elif 'publish' in control: # unsubscribe and disconnect immediately client.publish( cfg.configuration['publish'], json.dumps({'ack':'changing topic to '+control['publish']}), 1 ) client.unsubscribe(cfg.configuration['subscribe']) client.disconnect() # set up new mqtt channels cfg.configuration['publish'] = control['publish'] cfg.configuration['subscribe'] = control['publish'] + '_reply' if debugthis: print ("new publish ", cfg.configuration['publish']) print ("new subscribe ", cfg.configuration['subscribe']) state = 'connect' elif 'Reb00t' in control and control['Reb00t'] == 'True': client.publish( cfg.configuration['publish'], json.dumps({'ack':'rebooting...'}), 1 ) command = "/usr/bin/sudo /sbin/shutdown -r now" import subprocess process = subprocess.Popen(command.split(), stdout=subprocess.PIPE) output = process.communicate()[0] except: if debugthis: print("Unprocessed message: ") print(message.payload) print("from topic: ") print(message.topic) print("--------------\n\n") pass def process_command_line_parameters(): """ process command line parameters -e endpoint -r root CA -c cert -k private key -p port """ global thismodule # process command line parameters parser = argparse.ArgumentParser("Description: " + thismodule) parser.add_argument('-e','--endpoint', help='Root CA file path',required=True) parser.add_argument('-r','--rootCA', help='Root CA file path',required=True) parser.add_argument('-c','--cert', help='Certificate file path',required=True) parser.add_argument('-k','--key', help='Private key file path',required=True) parser.add_argument('-p','--port', help='Port number',required=True) args = parser.parse_args() if debugthis: print("endpoint ", args.endpoint) print("rootCA ", args.rootCA) print("cert ", args.cert) print("key ", args.key) print("port ", args.port) return args ##----- main ----------------------------------------------------------------- def __main__(argv): global cfg, state, thismodule args = None state = 'init' thismodule = os.path.splitext(os.path.basename(sys.argv[0]))[0] if debugthis and len(sys.argv) == 1: import args_gitignore for arg1 in args_gitignore.test_args: sys.argv.extend(arg1) print (sys.argv) with open('call.txt', 'w') as fileout: fileout.write(str(sys.argv)) while state is not 'stop': if state is 'init': try: args = process_command_line_parameters() cfile = os.path.dirname(os.path.realpath(__file__)) \ + '/' + thismodule + '.conf' if debugthis: print ("configfile ", cfile) cfg = Configuration(cfile, new_configuration) if cfg.read() is not None: state = 'connect' except: raise if state is 'connect': try: # get instance of AWS IOT services mymqtt = AwsClient( thismodule, args.endpoint, int(args.port), args.rootCA, args.cert, args.key ) # connect to AWS connect_attempts = 3 while mymqtt.connect() == False and connect_attempts > 0: time.sleep(5) connect_attempts -= 1 if connect_attempts > 0: state = 'subscribe' except: raise if state is 'subscribe': try: # subscribe to control topic, QoS must be 1 to ensure responsiveness connect_attempts = 3 if debugthis: print("state subscribe") print("subscribe ", cfg.configuration['subscribe']) while (mymqtt.subscribe( cfg.configuration['subscribe'], 1, subscribe_callback ) == False and connect_attempts > 0): time.sleep(5) connect_attempts -= 1 if connect_attempts > 0: state = 'ready' except: raise if state is 'ready': try: if debugthis: print ("hwpin ", cfg.configuration['hwpin']) print ("hwtype ", cfg.configuration['hwtype'], Sensor_DHT.DHT[cfg.configuration['hwtype']]) with Sensor_DHT( pin=cfg.configuration['hwpin'], type=Sensor_DHT.DHT[cfg.configuration['hwtype']] ) as myDHT: if myDHT is not None: state = 'active' while state is 'active': try: # get DHT readings and timestamp readtime, humidity, temperature = myDHT.read() dht = { 'timestamp' : readtime, 'humidity' : humidity, 'temperature' : temperature } # publish the data json_data = json.dumps(dht) mymqtt.publish( cfg.configuration['publish'], json_data, int(cfg.configuration['qos']) ) # wait for the next interval now = time.time() while time.time() < now + int(cfg.configuration['interval']): time.sleep(1) except: raise except: raise ## if state is 'disconnect': ## try: ## mymqtt.unsubscribe(cfg.configuration['subscribe']) ## mymqtt.disconnect() ## state = 'connect' ## except: ## return True if __name__ == "__main__": __main__(sys.argv[1:])
# -*- coding: utf-8 -*- # ########################## Copyrights and license ############################ # # # Copyright 2012 Vincent Jacques <[email protected]> # # Copyright 2012 Zearin <[email protected]> # # Copyright 2013 AKFish <[email protected]> # # Copyright 2013 Michael Stead <[email protected]> # # Copyright 2013 Vincent Jacques <[email protected]> # # Copyright 2013 martinqt <[email protected]> # # # # This file is part of PyGithub. http://jacquev6.github.com/PyGithub/ # # # # PyGithub is free software: you can redistribute it and/or modify it under # # the terms of the GNU Lesser General Public License as published by the Free # # Software Foundation, either version 3 of the License, or (at your option) # # any later version. # # # # PyGithub is distributed in the hope that it will be useful, but WITHOUT ANY # # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # # details. # # # # You should have received a copy of the GNU Lesser General Public License # # along with PyGithub. If not, see <http://www.gnu.org/licenses/>. # # # # ############################################################################## import github.GithubObject import github.NamedUser class PullRequestComment(github.GithubObject.CompletableGithubObject): """ This class represents PullRequestComments. The reference can be found here http://developer.github.com/v3/pulls/comments/ """ @property def body(self): """ :type: string """ self._completeIfNotSet(self._body) return self._body.value @property def commit_id(self): """ :type: string """ self._completeIfNotSet(self._commit_id) return self._commit_id.value @property def created_at(self): """ :type: datetime.datetime """ self._completeIfNotSet(self._created_at) return self._created_at.value @property def diff_hunk(self): """ :type: string """ self._completeIfNotSet(self._diff_hunk) return self._diff_hunk.value @property def id(self): """ :type: integer """ self._completeIfNotSet(self._id) return self._id.value @property def original_commit_id(self): """ :type: string """ self._completeIfNotSet(self._original_commit_id) return self._original_commit_id.value @property def original_position(self): """ :type: integer """ self._completeIfNotSet(self._original_position) return self._original_position.value @property def path(self): """ :type: string """ self._completeIfNotSet(self._path) return self._path.value @property def position(self): """ :type: integer """ self._completeIfNotSet(self._position) return self._position.value @property def pull_request_url(self): """ :type: string """ self._completeIfNotSet(self._pull_request_url) return self._pull_request_url.value @property def updated_at(self): """ :type: datetime.datetime """ self._completeIfNotSet(self._updated_at) return self._updated_at.value @property def url(self): """ :type: string """ self._completeIfNotSet(self._url) return self._url.value @property def html_url(self): """ :type: string """ self._completeIfNotSet(self._html_url) return self._html_url.value @property def user(self): """ :type: :class:`github.NamedUser.NamedUser` """ self._completeIfNotSet(self._user) return self._user.value def delete(self): """ :calls: `DELETE /repos/:owner/:repo/pulls/comments/:number <http://developer.github.com/v3/pulls/comments>`_ :rtype: None """ headers, data = self._requester.requestJsonAndCheck( "DELETE", self.url ) def edit(self, body): """ :calls: `PATCH /repos/:owner/:repo/pulls/comments/:number <http://developer.github.com/v3/pulls/comments>`_ :param body: string :rtype: None """ assert isinstance(body, (str, unicode)), body post_parameters = { "body": body, } headers, data = self._requester.requestJsonAndCheck( "PATCH", self.url, input=post_parameters ) self._useAttributes(data) def _initAttributes(self): self._body = github.GithubObject.NotSet self._commit_id = github.GithubObject.NotSet self._created_at = github.GithubObject.NotSet self._diff_hunk = github.GithubObject.NotSet self._id = github.GithubObject.NotSet self._original_commit_id = github.GithubObject.NotSet self._original_position = github.GithubObject.NotSet self._path = github.GithubObject.NotSet self._position = github.GithubObject.NotSet self._pull_request_url = github.GithubObject.NotSet self._updated_at = github.GithubObject.NotSet self._url = github.GithubObject.NotSet self._html_url = github.GithubObject.NotSet self._user = github.GithubObject.NotSet def _useAttributes(self, attributes): if "body" in attributes: # pragma no branch self._body = self._makeStringAttribute(attributes["body"]) if "commit_id" in attributes: # pragma no branch self._commit_id = self._makeStringAttribute(attributes["commit_id"]) if "created_at" in attributes: # pragma no branch self._created_at = self._makeDatetimeAttribute(attributes["created_at"]) if "diff_hunk" in attributes: # pragma no branch self._diff_hunk = self._makeStringAttribute(attributes["diff_hunk"]) if "id" in attributes: # pragma no branch self._id = self._makeIntAttribute(attributes["id"]) if "original_commit_id" in attributes: # pragma no branch self._original_commit_id = self._makeStringAttribute(attributes["original_commit_id"]) if "original_position" in attributes: # pragma no branch self._original_position = self._makeIntAttribute(attributes["original_position"]) if "path" in attributes: # pragma no branch self._path = self._makeStringAttribute(attributes["path"]) if "position" in attributes: # pragma no branch self._position = self._makeIntAttribute(attributes["position"]) if "pull_request_url" in attributes: # pragma no branch self._pull_request_url = self._makeStringAttribute(attributes["pull_request_url"]) if "updated_at" in attributes: # pragma no branch self._updated_at = self._makeDatetimeAttribute(attributes["updated_at"]) if "url" in attributes: # pragma no branch self._url = self._makeStringAttribute(attributes["url"]) if "html_url" in attributes: # pragma no branch self._html_url = self._makeStringAttribute(attributes["html_url"]) if "user" in attributes: # pragma no branch self._user = self._makeClassAttribute(github.NamedUser.NamedUser, attributes["user"])
import numpy as np import logging import collections from pystella.rf import band from pystella.rf.lc import SetLightCurve, LightCurve __author__ = 'bakl' logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) err_prefix = ('er', 'er_', 'err', 'err_') def read_table_header_float(fname, header=None, skip=0): if header is None: i = 0 with open(fname, "r") as f: for line in f: i += 1 if i <= skip: continue header = line break names = [s for s in header.split()] dt = np.dtype({'names': names, 'formats': [np.float64] * len(names)}) block = np.loadtxt(fname, skiprows=skip+1, dtype=dt, comments='#') return block def read_obs_table_header(fname, header=None, skip=0, colt=('time', 'JD', 'MJD'), include_names=None, include_patterns=None, is_out=False, comments='#'): """ Load tabular data from file. :param fname: The name of the file with data :param header: str, optional The string is used to build data-type of the resulting array. Default: None. :param skip: int, optional Skip the first rows before header. Default: 0. :param colt: list, optional. Possible names for time column. Default: ('time', 'JD', 'MJD') :param include_names: list or None Which columns to read. Default None, results in all columns being read. Example: ['B','V','R'] The columns with errors, like 'err'+use_names, also will be read. :param include_patterns: list or None Which columns to read as the pattern of regular expression. Default None, results in all columns being read. Example: ['Vel\d+','Vel.*'] The columns with errors, like 'err'+use_names, also will be read. :param is_out: bool, optional If True the skipped, header and first file-rows are printed. Default: False :param comments: str or sequence, optional Default: '#'. :return: ndarray - data is read from the file """ lskip = 0 if isinstance(colt, str): colt = [colt] if header is None: with open(fname, "r") as f: i = 0 for line in f: i += 1 if is_out: print(line.strip()) if i <= skip: continue if line.strip().startswith(comments): if not line.strip().startswith('###'): lskip += 1 continue else: line = line.replace('###', '') header = line break else: raise ValueError('Could not get header. Check the file: {}. Probably skip [{}] is too large.' .format(fname, skip)) # print first lines if is_out: line = f.readline().strip() print(line) cols_names = header.split() cols = {i: nm for i, nm in enumerate(cols_names)} is_time = False cols_used = {} cols_data = {} def check_col_nm(nm, names, patterns): import re if names is None and patterns is None: return True if names is not None and v in names: return True if patterns is not None: for n in patterns: if re.match(n, nm): return True return False for k, v in list(cols.items()): # time if not is_time and v.lower() in map(str.lower, colt): cols_used[k] = v is_time = True # data elif check_col_nm(v, include_names, include_patterns): cols_used[k] = v cols_data[k] = v # error for err_name in (es+v for es in err_prefix): for i, bn in list(cols.items()): if err_name.upper() == bn.upper(): cols_used[i] = bn cols.pop(i) break od = collections.OrderedDict(sorted(cols_used.items())) usecols = list(od.keys()) names = list(od.values()) dt = np.dtype({'names': names, 'formats': [np.float64] * len(names)}) block = np.loadtxt(fname, skiprows=max(lskip, skip)+1, dtype=dt, comments=comments, usecols=usecols) return block, cols_data def table2curves(name, tbl, bands=None, colt=('time', 'JD', 'MJD'), is_filter_zero=True): # time = None for nm in colt: if nm in tbl.dtype.names: time = tbl[nm] break else: raise ValueError("THe table should contain a column with name in [{0}]".format(', '.join(colt))) curves = SetLightCurve(name) if bands is None: bands = [n for n in tbl.dtype.names if band.is_exist(n)] for bname in bands: b = band.band_by_name(bname) mag = tbl[bname] mask = ~np.isnan(mag) # filter if is_filter_zero: mask = np.logical_and(mask, mag != 0) # filter out values not equal 0 mask = np.logical_and(mask, mag < 99) t = time[mask] m = mag[mask] for err_name in (prefix+bname for prefix in err_prefix): if err_name in tbl.dtype.names: err = tbl[err_name] e = err[mask] lc = LightCurve(b, t, m, e) break else: lc = LightCurve(b, t, m) curves.add(lc) return curves def curves2table(curves): def add(a, vals): # a = np.append(a, [lc.Mag], axis=0) # # a[:, :-1] = lc.Mag combined = np.vstack((a, vals)) return combined # a = np.array(curves.TimeCommon, dtype=[('time', np.float64, (len(curves.TimeCommon)))]) # a = np.empty([0, len(curves.TimeCommon)]) # a = np.array([0,100]) # a = np.append(a, [curves.TimeCommon], axis=0) a = np.array(curves.TimeCommon) names = ['time'] for lc in curves: a = add(a, lc.Mag) names.append(lc.Band.Name) if lc.IsErr: a = add(a, lc.MagErr) names.append('err'+lc.Band.Name) # dt = {'names': names, 'formats': [np.float64] * len(names)} dt = list(zip(names, [np.float64] * len(names))) a = a.T a.dtype = np.dtype(dt) # a.dtype = np.dtype(dt) # a.dtype.names = names return a
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow estimators for Linear and DNN joined training models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import six from tensorflow.contrib import layers from tensorflow.contrib.framework.python.ops import variables as contrib_variables from tensorflow.contrib.layers.python.layers import feature_column_ops from tensorflow.contrib.learn.python.learn.estimators import composable_model from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import logging_ops from tensorflow.python.ops import nn from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.training import training # TODO(ispir): Increase test coverage class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator): """An estimator for TensorFlow Linear and DNN joined training models. Input of `fit`, `train`, and `evaluate` should have following features, otherwise there will be a `KeyError`: if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. for each `column` in `dnn_feature_columns` + `linear_feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, target_column, model_dir=None, linear_feature_columns=None, linear_optimizer=None, dnn_feature_columns=None, dnn_optimizer=None, dnn_hidden_units=None, dnn_activation_fn=nn.relu, dnn_dropout=None, gradient_clip_norm=None, enable_centered_bias=True, config=None): """Initializes a _DNNLinearCombinedBaseEstimator instance. Args: target_column: A _TargetColumn object. model_dir: Directory to save model parameters, graph and etc. linear_feature_columns: An iterable containing all the feature columns used by linear part of the model. All items in the set should be instances of classes derived from `FeatureColumn`. linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to the linear part of the model. If `None`, will use a FTRL optimizer. dnn_feature_columns: An iterable containing all the feature columns used by deep part of the model. All items in the set should be instances of classes derived from `FeatureColumn`. dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to the deep part of the model. If `None`, will use an Adagrad optimizer. dnn_hidden_units: List of hidden units per layer. All layers are fully connected. dnn_activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dnn_dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. config: RunConfig object to configure the runtime settings. Raises: ValueError: If both linear_feature_columns and dnn_features_columns are empty at the same time. """ super(_DNNLinearCombinedBaseEstimator, self).__init__(model_dir=model_dir, config=config) num_ps_replicas = config.num_ps_replicas if config else 0 self._linear_model = composable_model.LinearComposableModel( num_label_columns=target_column.num_label_columns, optimizer=linear_optimizer, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas) self._dnn_model = composable_model.DNNComposableModel( num_label_columns=target_column.num_label_columns, hidden_units=dnn_hidden_units, optimizer=dnn_optimizer, activation_fn=dnn_activation_fn, dropout=dnn_dropout, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas) if dnn_hidden_units else None self._linear_feature_columns = linear_feature_columns self._linear_optimizer = linear_optimizer self._linear_weight_collection = ( self._linear_model.get_weight_collection_name()) self._dnn_feature_columns = dnn_feature_columns self._dnn_hidden_units = dnn_hidden_units self._centered_bias_weight_collection = "centered_bias" self._enable_centered_bias = enable_centered_bias self._target_column = target_column @property def linear_weights_(self): """Returns weights per feature of the linear part.""" all_variables = self.get_variable_names() # TODO(ispir): Figure out a better way to retrieve variables for features. # for example using feature info / columns. values = {} for name in all_variables: if (name.startswith("linear/") and name.rfind("/") == 6 and name != "linear/bias_weight"): values[name] = self.get_variable_value(name) if len(values) == 1: return values[list(values.keys())[0]] return values @property def linear_bias_(self): """Returns bias of the linear part.""" return (self.get_variable_value("linear/bias_weight") + self.get_variable_value("centered_bias_weight")) @property def dnn_weights_(self): """Returns weights of deep neural network part.""" return [self.get_variable_value("hiddenlayer_%d/weights" % i) for i, _ in enumerate(self._dnn_hidden_units)] + [ self.get_variable_value("dnn_logits/weights")] @property def dnn_bias_(self): """Returns bias of deep neural network part.""" return [self.get_variable_value("hiddenlayer_%d/biases" % i) for i, _ in enumerate(self._dnn_hidden_units)] + [ self.get_variable_value("dnn_logits/biases"), self.get_variable_value("centered_bias_weight")] def _get_feature_dict(self, features): if isinstance(features, dict): return features return {"": features} def _get_train_ops(self, features, targets): """See base class.""" global_step = contrib_variables.get_global_step() assert global_step features = self._get_feature_dict(features) logits = self._logits(features, is_training=True) if self._enable_centered_bias: centered_bias_step = [self._centered_bias_step(targets, features)] else: centered_bias_step = [] with ops.control_dependencies(centered_bias_step): loss = self._target_column.loss(logits, targets, features) logging_ops.scalar_summary("loss", loss) linear_train_step = self._linear_model.get_train_step(loss) dnn_train_step = (self._dnn_model.get_train_step(loss) if self._dnn_model else []) with ops.control_dependencies(linear_train_step + dnn_train_step): with ops.get_default_graph().colocate_with(global_step): return state_ops.assign_add(global_step, 1).op, loss def _get_eval_ops(self, features, targets, metrics=None): raise NotImplementedError def _get_predict_ops(self, features): """See base class.""" features = self._get_feature_dict(features) logits = self._logits(features) return self._target_column.logits_to_predictions(logits, proba=True) def _get_feature_ops_from_example(self, examples_batch): column_types = layers.create_feature_spec_for_parsing(( self._get_linear_feature_columns() or []) + ( self._get_dnn_feature_columns() or [])) features = parsing_ops.parse_example(examples_batch, column_types) return features def _get_linear_feature_columns(self): if not self._linear_feature_columns: return None feature_column_ops.check_feature_columns(self._linear_feature_columns) return sorted(set(self._linear_feature_columns), key=lambda x: x.key) def _get_dnn_feature_columns(self): if not self._dnn_feature_columns: return None feature_column_ops.check_feature_columns(self._dnn_feature_columns) return sorted(set(self._dnn_feature_columns), key=lambda x: x.key) def _dnn_logits(self, features, is_training): return self._dnn_model.build_model( features, self._dnn_feature_columns, is_training) def _linear_logits(self, features, is_training): return self._linear_model.build_model( features, self._linear_feature_columns, is_training) def _centered_bias(self): centered_bias = variables.Variable( array_ops.zeros([self._target_column.num_label_columns]), collections=[self._centered_bias_weight_collection, ops.GraphKeys.VARIABLES], name="centered_bias_weight") logging_ops.scalar_summary( ["centered_bias_%d" % cb for cb in range( self._target_column.num_label_columns)], array_ops.reshape(centered_bias, [-1])) return centered_bias def _centered_bias_step(self, targets, features): centered_bias = ops.get_collection(self._centered_bias_weight_collection) batch_size = array_ops.shape(targets)[0] logits = array_ops.reshape( array_ops.tile(centered_bias[0], [batch_size]), [batch_size, self._target_column.num_label_columns]) loss = self._target_column.loss(logits, targets, features) # Learn central bias by an optimizer. 0.1 is a convervative lr for a single # variable. return training.AdagradOptimizer(0.1).minimize(loss, var_list=centered_bias) def _logits(self, features, is_training=False): linear_feature_columns = self._get_linear_feature_columns() dnn_feature_columns = self._get_dnn_feature_columns() if not (linear_feature_columns or dnn_feature_columns): raise ValueError("Either linear_feature_columns or dnn_feature_columns " "should be defined.") if linear_feature_columns and dnn_feature_columns: logits = (self._linear_logits(features, is_training) + self._dnn_logits(features, is_training)) elif dnn_feature_columns: logits = self._dnn_logits(features, is_training) else: logits = self._linear_logits(features, is_training) if self._enable_centered_bias: return nn.bias_add(logits, self._centered_bias()) else: return logits def _get_optimizer(self, optimizer, default_optimizer, default_learning_rate): if optimizer is None: optimizer = default_optimizer if isinstance(optimizer, six.string_types): optimizer = layers.OPTIMIZER_CLS_NAMES[optimizer]( learning_rate=default_learning_rate) return optimizer class DNNLinearCombinedClassifier(_DNNLinearCombinedBaseEstimator): """A classifier for TensorFlow Linear and DNN joined training models. Example: ```python education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_x_occupation = crossed_column(columns=[education, occupation], hash_bucket_size=10000) education_emb = embedding_column(sparse_id_column=education, dimension=16, combiner="sum") occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16, combiner="sum") estimator = DNNLinearCombinedClassifier( # common settings n_classes=n_classes, weight_column_name=weight_column_name, # wide settings linear_feature_columns=[education_x_occupation], linear_optimizer=tf.train.FtrlOptimizer(...), # deep settings dnn_feature_columns=[education_emb, occupation_emb], dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.train.AdagradOptimizer(...)) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. for each `column` in `dnn_feature_columns` + `linear_feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, model_dir=None, n_classes=2, weight_column_name=None, linear_feature_columns=None, linear_optimizer=None, dnn_feature_columns=None, dnn_optimizer=None, dnn_hidden_units=None, dnn_activation_fn=nn.relu, dnn_dropout=None, gradient_clip_norm=None, enable_centered_bias=True, config=None): """Constructs a DNNLinearCombinedClassifier instance. Args: model_dir: Directory to save model parameters, graph and etc. n_classes: number of target classes. Default is binary classification. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. linear_feature_columns: An iterable containing all the feature columns used by linear part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to the linear part of the model. If `None`, will use a FTRL optimizer. dnn_feature_columns: An iterable containing all the feature columns used by deep part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to the deep part of the model. If `None`, will use an Adagrad optimizer. dnn_hidden_units: List of hidden units per layer. All layers are fully connected. dnn_activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dnn_dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. config: RunConfig object to configure the runtime settings. Raises: ValueError: If `n_classes` < 2. ValueError: If both `linear_feature_columns` and `dnn_features_columns` are empty at the same time. """ if n_classes < 2: raise ValueError("n_classes should be greater than 1. Given: {}".format( n_classes)) target_column = layers.multi_class_target( n_classes=n_classes, weight_column_name=weight_column_name) super(DNNLinearCombinedClassifier, self).__init__( model_dir=model_dir, linear_feature_columns=linear_feature_columns, linear_optimizer=linear_optimizer, dnn_feature_columns=dnn_feature_columns, dnn_optimizer=dnn_optimizer, dnn_hidden_units=dnn_hidden_units, dnn_activation_fn=dnn_activation_fn, dnn_dropout=dnn_dropout, gradient_clip_norm=gradient_clip_norm, enable_centered_bias=enable_centered_bias, target_column=target_column, config=config) def predict(self, x=None, input_fn=None, batch_size=None): """Returns predictions for given features. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. Returns: Numpy array of predicted classes or regression values. """ predictions = super(DNNLinearCombinedClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size) predictions = np.argmax(predictions, axis=1) return predictions def predict_proba(self, x=None, input_fn=None, batch_size=None): """Returns prediction probabilities for given features. Args: x: features. input_fn: Input function. If set, x and y must be None. batch_size: Override default batch size. Returns: Numpy array of predicted probabilities. """ return super(DNNLinearCombinedClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size) def _get_eval_ops(self, features, targets, metrics=None): """See base class.""" features = self._get_feature_dict(features) logits = self._logits(features) return self._target_column.get_eval_ops(features, logits, targets, metrics) class DNNLinearCombinedRegressor(_DNNLinearCombinedBaseEstimator): """A regressor for TensorFlow Linear and DNN joined training models. Example: ```python education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_x_occupation = crossed_column(columns=[education, occupation], hash_bucket_size=10000) education_emb = embedding_column(sparse_id_column=education, dimension=16, combiner="sum") occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16, combiner="sum") estimator = DNNLinearCombinedClassifier( # common settings n_classes=n_classes, weight_column_name=weight_column_name, # wide settings linear_feature_columns=[education_x_occupation], linear_optimizer=tf.train.FtrlOptimizer(...), # deep settings dnn_feature_columns=[education_emb, occupation_emb], dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.train.ProximalAdagradOptimizer(...)) # To apply L1 and L2 regularization, you can set optimizers as follows: tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001, l2_regularization_strength=0.001) # It is same for FtrlOptimizer. # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.train(input_fn_train) estimator.evaluate(input_fn_eval) estimator.predict(x) ``` Input of `fit`, `train`, and `evaluate` should have following features, otherwise there will be a `KeyError`: if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. for each `column` in `dnn_feature_columns` + `linear_feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, model_dir=None, weight_column_name=None, linear_feature_columns=None, linear_optimizer=None, dnn_feature_columns=None, dnn_optimizer=None, dnn_hidden_units=None, dnn_activation_fn=nn.relu, dnn_dropout=None, gradient_clip_norm=None, enable_centered_bias=True, target_dimension=1, config=None): """Initializes a DNNLinearCombinedRegressor instance. Args: model_dir: Directory to save model parameters, graph and etc. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. linear_feature_columns: An iterable containing all the feature columns used by linear part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to the linear part of the model. If `None`, will use a FTRL optimizer. dnn_feature_columns: An iterable containing all the feature columns used by deep part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to the deep part of the model. If `None`, will use an Adagrad optimizer. dnn_hidden_units: List of hidden units per layer. All layers are fully connected. dnn_activation_fn: Activation function applied to each layer. If None, will use `tf.nn.relu`. dnn_dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. target_dimension: TODO(zakaria): dimension of the target for multilabels. config: RunConfig object to configure the runtime settings. Raises: ValueError: If both linear_feature_columns and dnn_features_columns are empty at the same time. """ target_column = layers.regression_target( weight_column_name=weight_column_name, target_dimension=target_dimension) super(DNNLinearCombinedRegressor, self).__init__( model_dir=model_dir, linear_feature_columns=linear_feature_columns, linear_optimizer=linear_optimizer, dnn_feature_columns=dnn_feature_columns, dnn_optimizer=dnn_optimizer, dnn_hidden_units=dnn_hidden_units, dnn_activation_fn=dnn_activation_fn, dnn_dropout=dnn_dropout, gradient_clip_norm=gradient_clip_norm, enable_centered_bias=enable_centered_bias, target_column=target_column, config=config) def _get_eval_ops(self, features, targets, metrics=None): """See base class.""" features = self._get_feature_dict(features) logits = self._logits(features) return self._target_column.get_eval_ops(features, logits, targets, metrics)
# Copyright 2011 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module contains the BaseHandler.""" __author__ = \ '[email protected] (Jeff Posnick) and [email protected] (JJ Behrens)' from cgi import escape from apiclient.errors import HttpError from gdata.service import RequestError from google.appengine.api import app_identity, users from google.appengine.ext import webapp import httplib2 from oauth2client.appengine import CredentialsModel, OAuth2Decorator, \ StorageByKeyName from playlistpicker import model from playlistpicker.utils import googleplus as googleplusutils from playlistpicker.utils import memcache as memcacheutils from playlistpicker.utils import web as webutils from playlistpicker.utils import youtube as youtubeutils class BaseHandler(webapp.RequestHandler): """This is the base request handler. It contains code that's common to several request handlers. Some of these things couldn't be broken off into the utils directory because they had too much knowledge of the request handler's environment. """ # The client_id and client_secret are copied from the API Access tab on # the Google APIs Console <http://code.google.com/apis/console> oauth2_decorator = OAuth2Decorator( client_id='205496663185.apps.googleusercontent.com', client_secret='-84bG7a8jGJDRCqD6f8ug_c0', scope=" ".join([ "https://www.googleapis.com/auth/plus.me", "http://gdata.youtube.com" ]), user_agent=app_identity.get_application_id()) def __init__(self): """Set some instance variables. I hate to set these here (especially to None!) because they're actually set in various decorators. However, I'm trying to appease PyCharm because it's really useful to have it statically figure out where stuff is coming from. """ self.current_user_id = None self.current_display_name = None self.people = None self.owner_oauth_token = None self.playlist_uri = None self.playlist_entry_id = None @staticmethod def playlist_entry_uri_required(handler_method): """This is a decorator to parse the uri parameter. Set self.playlist_uri and self.playlist_entry_id. Automatically handle any errors. """ def handle(self, *args, **kargs): uri = self.request.get("uri") match = youtubeutils.PLAYLIST_ENTRY_URL_RE.match(uri) if not match: self.error(400) self.response.out.write("Invalid uri parameter: %s" % escape(uri)) return self.playlist_uri, self.playlist_entry_id = match.groups() return handler_method(self, *args, **kargs) return handle @staticmethod def authorize_playlist(handler_method): """Lookup the playlist and check authorization. The owner of the playlist can always edit the playlist. Other users can only edit the playlist if they have the right uuid in the URL. This decorator wraps handler methods. The handler method must receive a playlist_id argument, and it must use @decorator.oauth_required before this decorator. This decorator will set: - self.playlist_metadata - self.people - self.current_user_id - self.current_display_name - self.owner_oauth_token """ def handle(self, playlist_id): try: self.playlist_metadata = model.PlaylistMetadata.gql( "WHERE playlist_id = :1", playlist_id)[0] except IndexError: self.error(404) self.response.out.write("Party Playlist Picker does not know about playlist %s." % escape(playlist_id)) return if users.get_current_user() != self.playlist_metadata.owner: if self.request.get("uuid", -1) != self.playlist_metadata.uuid: self.error(401) self.response.out.write("You are not authorized to view this page.") return owner_id = self.playlist_metadata.owner.user_id() owner_credentials = StorageByKeyName(CredentialsModel, owner_id, 'credentials').get() self.owner_oauth_token = owner_credentials.access_token try: me = memcacheutils.cache_call( key=self.oauth2_decorator.credentials.access_token, namespace="oauth2_token_to_user", time=memcacheutils.USER_EXPIRATION_SECS, f=lambda: googleplusutils.service.people().get(userId="me").execute( webutils.create_authorized_http_with_timeout( self.oauth2_decorator.credentials))) except HttpError, e: if e.resp['status'] == 404: webutils.render_to_response(self, "no_profile.html") return raise self.current_user_id = me["id"] self.current_display_name = me["displayName"] # TODO: Front some of the following datastore lookups with memcache. query = model.Person.all().filter("user_id = ", me["id"]) person = query.get() if person is None: person = model.Person( user_id=me["id"], display_name=me["displayName"], image_url=me.get("image", {}).get("url", "/static/images/default_profile.jpg"), profile_url=me["url"] ) person.put() query = model.PlaylistEditors.all().filter("playlist_id = ", playlist_id).ancestor(person) if query.get() is None: model.PlaylistEditors(parent=person, playlist_id=playlist_id).put() # We'll probably end up moving this out of the decorator entirely. self.people = [] playlist_editors = model.PlaylistEditors.all().filter("playlist_id = ", playlist_id) for playlist_editor in playlist_editors: person = playlist_editor.parent() self.people.append(dict( user_id=person.user_id, display_name=person.display_name, image_url=person.image_url, profile_url=person.profile_url )) handler_method(self, playlist_id) return handle def handle_exception(self, exception, debug_mode): """Handle certain global exceptions such as OAuth2 problems.""" if (isinstance(exception, RequestError) and exception.args[0]["status"] == 401): body = exception.args[0]["body"] if "Stateless token expired" in body: self._force_refresh() self.redirect(self.request.url) return if "NoLinkedYouTubeAccount" in body: webutils.render_to_response(self, "unlinked_account.html") return webapp.RequestHandler.handle_exception(self, exception, debug_mode) @oauth2_decorator.oauth_required def _force_refresh(self): """HACK: Force the refresh of the OAuth2 token.""" self.oauth2_decorator.credentials._refresh(httplib2.Http().request)
# Copyright 2013 IBM Corp. # Copyright (c) 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ IBM Storage driver is a unified Volume driver for IBM XIV, Spectrum Accelerate, FlashSystem A9000, FlashSystem A9000R and DS8000 storage systems. """ from oslo_config import cfg from oslo_log import log as logging from oslo_utils import importutils from cinder import exception from cinder import interface from cinder.volume import configuration from cinder.volume import driver from cinder.volume.drivers.san import san from cinder.zonemanager import utils as fczm_utils driver_opts = [ cfg.StrOpt( 'proxy', default='cinder.volume.drivers.ibm.ibm_storage.proxy.IBMStorageProxy', help='Proxy driver that connects to the IBM Storage Array'), cfg.StrOpt( 'connection_type', default='iscsi', choices=['fibre_channel', 'iscsi'], help='Connection type to the IBM Storage Array'), cfg.StrOpt( 'chap', default='disabled', choices=['disabled', 'enabled'], help='CHAP authentication mode, effective only for iscsi' ' (disabled|enabled)'), cfg.StrOpt( 'management_ips', default='', help='List of Management IP addresses (separated by commas)'), ] CONF = cfg.CONF CONF.register_opts(driver_opts, group=configuration.SHARED_CONF_GROUP) LOG = logging.getLogger(__name__) @interface.volumedriver class IBMStorageDriver(san.SanDriver, driver.ManageableVD, driver.MigrateVD, driver.CloneableImageVD): """IBM Storage driver IBM Storage driver is a unified Volume driver for IBM XIV, Spectrum Accelerate, FlashSystem A9000, FlashSystem A9000R and DS8000 storage systems. Version history: .. code-block:: none 2.0 - First open source driver version 2.1.0 - Support Consistency groups through Generic volume groups - Support XIV/A9000 Volume independent QoS - Support Consistency groups replication 2.3.0 - Support Report backend state """ VERSION = "2.3.0" # ThirdPartySystems wiki page CI_WIKI_NAME = "IBM_STORAGE_CI" def __init__(self, *args, **kwargs): """Initialize the driver.""" super(IBMStorageDriver, self).__init__(*args, **kwargs) self.configuration.append_config_values(driver_opts) proxy = importutils.import_class(self.configuration.proxy) active_backend_id = kwargs.get('active_backend_id', None) # Driver additional flags should be specified in the cinder.conf # preferably in each backend configuration. self.proxy = proxy( { "user": self.configuration.san_login, "password": self.configuration.san_password, "address": self.configuration.san_ip, "vol_pool": self.configuration.san_clustername, "connection_type": self.configuration.connection_type, "chap": self.configuration.chap, "management_ips": self.configuration.management_ips }, LOG, exception, driver=self, active_backend_id=active_backend_id, host=self.host) @staticmethod def get_driver_options(): return driver_opts def do_setup(self, context): """Setup and verify connection to IBM Storage.""" self.proxy.setup(context) def ensure_export(self, context, volume): """Ensure an export.""" return self.proxy.ensure_export(context, volume) def create_export(self, context, volume, connector): """Create an export.""" return self.proxy.create_export(context, volume) def create_volume(self, volume): """Create a volume on the IBM Storage system.""" return self.proxy.create_volume(volume) def delete_volume(self, volume): """Delete a volume on the IBM Storage system.""" self.proxy.delete_volume(volume) def remove_export(self, context, volume): """Disconnect a volume from an attached instance.""" return self.proxy.remove_export(context, volume) def initialize_connection(self, volume, connector): """Map the created volume.""" conn_info = self.proxy.initialize_connection(volume, connector) fczm_utils.add_fc_zone(conn_info) return conn_info def terminate_connection(self, volume, connector, **kwargs): """Terminate a connection to a volume.""" conn_info = self.proxy.terminate_connection(volume, connector) fczm_utils.remove_fc_zone(conn_info) return conn_info def create_volume_from_snapshot(self, volume, snapshot): """Create a volume from a snapshot.""" return self.proxy.create_volume_from_snapshot( volume, snapshot) def create_snapshot(self, snapshot): """Create a snapshot.""" return self.proxy.create_snapshot(snapshot) def delete_snapshot(self, snapshot): """Delete a snapshot.""" return self.proxy.delete_snapshot(snapshot) def get_volume_stats(self, refresh=False): """Get volume stats.""" return self.proxy.get_volume_stats(refresh) def create_cloned_volume(self, tgt_volume, src_volume): """Create Cloned Volume.""" return self.proxy.create_cloned_volume(tgt_volume, src_volume) def extend_volume(self, volume, new_size): """Extend Created Volume.""" self.proxy.extend_volume(volume, new_size) def migrate_volume(self, context, volume, host): """Migrate the volume to the specified host.""" return self.proxy.migrate_volume(context, volume, host) def manage_existing(self, volume, existing_ref): """Brings an existing backend storage object to Cinder management.""" return self.proxy.manage_volume(volume, existing_ref) def manage_existing_get_size(self, volume, existing_ref): """Return size of volume to be managed by manage_existing.""" return self.proxy.manage_volume_get_size(volume, existing_ref) def unmanage(self, volume): """Removes the specified volume from Cinder management.""" return self.proxy.unmanage_volume(volume) def freeze_backend(self, context): """Notify the backend that it's frozen. """ return self.proxy.freeze_backend(context) def thaw_backend(self, context): """Notify the backend that it's unfrozen/thawed. """ return self.proxy.thaw_backend(context) def failover_host(self, context, volumes, secondary_id=None, groups=None): """Failover a backend to a secondary replication target. """ return self.proxy.failover_host( context, volumes, secondary_id, groups) def get_replication_status(self, context, volume): """Return replication status.""" return self.proxy.get_replication_status(context, volume) def retype(self, ctxt, volume, new_type, diff, host): """Convert the volume to be of the new type.""" return self.proxy.retype(ctxt, volume, new_type, diff, host) def revert_to_snapshot(self, ctxt, volume, snapshot): """Revert volume to snapshot.""" return self.proxy.revert_to_snapshot(ctxt, volume, snapshot) def create_group(self, context, group): """Creates a group.""" return self.proxy.create_group(context, group) def delete_group(self, context, group, volumes): """Deletes a group.""" return self.proxy.delete_group(context, group, volumes) def create_group_snapshot(self, context, group_snapshot, snapshots): """Creates a group snapshot.""" return self.proxy.create_group_snapshot( context, group_snapshot, snapshots) def delete_group_snapshot(self, context, group_snapshot, snapshots): """Deletes a group snapshot.""" return self.proxy.delete_group_snapshot( context, group_snapshot, snapshots) def update_group(self, context, group, add_volumes, remove_volumes): """Adds or removes volume(s) to/from an existing group.""" return self.proxy.update_group( context, group, add_volumes, remove_volumes) def create_group_from_src( self, context, group, volumes, group_snapshot, snapshots, source_cg=None, source_vols=None): """Creates a group from source.""" return self.proxy.create_group_from_src( context, group, volumes, group_snapshot, snapshots, source_cg, source_vols) def enable_replication(self, context, group, volumes): """Enable replication.""" return self.proxy.enable_replication(context, group, volumes) def disable_replication(self, context, group, volumes): """Disable replication.""" return self.proxy.disable_replication(context, group, volumes) def failover_replication(self, context, group, volumes, secondary_backend_id): """Failover replication.""" return self.proxy.failover_replication(context, group, volumes, secondary_backend_id) def get_replication_error_status(self, context, groups): """Returns error info for replicated groups and its volumes.""" return self.proxy.get_replication_error_status(context, groups)