gt
stringclasses
1 value
context
stringlengths
2.49k
119k
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16 class TestElementwiseOp(OpTest): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"), 'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64") } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out') def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')) class TestBF16ElementwiseOp(OpTest): def setUp(self): self.op_type = "elementwise_sub" self.dtype = np.uint16 x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32) y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32) out = x - y self.inputs = { 'X': convert_float_to_uint16(x), 'Y': convert_float_to_uint16(y) } self.outputs = {'Out': convert_float_to_uint16(out)} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out') def test_check_grad_ingore_x(self): self.check_grad(['Y'], 'Out', no_grad_set=set("X")) def test_check_grad_ingore_y(self): self.check_grad(['X'], 'Out', no_grad_set=set('Y')) @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast.") class TestElementwiseSubOp_scalar(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(10, 3, 4).astype(np.float64), 'Y': np.random.rand(1).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_Vector(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.random((100, )).astype("float64"), 'Y': np.random.random((100, )).astype("float64") } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_broadcast_0(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(100, 3, 2).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64) } self.attrs = {'axis': 0} self.outputs = { 'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1) } class TestElementwiseSubOp_broadcast_1(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 100, 3).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64) } self.attrs = {'axis': 1} self.outputs = { 'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1) } class TestElementwiseSubOp_broadcast_2(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 3, 100).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64) } self.outputs = { 'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100) } class TestElementwiseSubOp_broadcast_3(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 10, 12, 3).astype(np.float64), 'Y': np.random.rand(10, 12).astype(np.float64) } self.attrs = {'axis': 1} self.outputs = { 'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1) } class TestElementwiseSubOp_broadcast_4(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 5, 3, 12).astype(np.float64), 'Y': np.random.rand(2, 5, 1, 12).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_commonuse_1(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 3, 100).astype(np.float64), 'Y': np.random.rand(1, 1, 100).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_commonuse_2(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(10, 3, 1, 4).astype(np.float64), 'Y': np.random.rand(10, 1, 12, 1).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(10, 12).astype(np.float64), 'Y': np.random.rand(2, 3, 10, 12).astype(np.float64) } self.attrs = {'axis': 2} self.outputs = { 'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y'] } class TestComplexElementwiseSubOp(OpTest): def setUp(self): self.op_type = "elementwise_sub" self.dtype = np.float64 self.shape = (2, 3, 4, 5) self.init_input_output() self.init_grad_input_output() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y) } self.attrs = {'axis': -1, 'use_mkldnn': False} self.outputs = {'Out': self.out} def init_base_dtype(self): self.dtype = np.float64 def init_input_output(self): self.x = np.random.random(self.shape).astype( self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype) self.y = np.random.random(self.shape).astype( self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype) self.out = self.x - self.y def init_grad_input_output(self): self.grad_out = np.ones(self.shape, self.dtype) + 1J * np.ones( self.shape, self.dtype) self.grad_x = self.grad_out self.grad_y = -self.grad_out def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad( ['X', 'Y'], 'Out', user_defined_grads=[self.grad_x, self.grad_y], user_defined_grad_outputs=[self.grad_out]) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), user_defined_grads=[self.grad_y], user_defined_grad_outputs=[self.grad_out]) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), user_defined_grads=[self.grad_x], user_defined_grad_outputs=[self.grad_out]) class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp): def init_input_output(self): self.x = np.random.random(self.shape).astype(self.dtype) self.y = np.random.random(self.shape).astype( self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype) self.out = self.x - self.y def init_grad_input_output(self): self.grad_out = np.ones(self.shape, self.dtype) + 1J * np.ones( self.shape, self.dtype) self.grad_x = np.real(self.grad_out) self.grad_y = -self.grad_out class TestSubtractApi(unittest.TestCase): def _executed_api(self, x, y, name=None): return paddle.subtract(x, y, name) def test_name(self): with fluid.program_guard(fluid.Program()): x = fluid.data(name="x", shape=[2, 3], dtype="float32") y = fluid.data(name='y', shape=[2, 3], dtype='float32') y_1 = self._executed_api(x, y, name='subtract_res') self.assertEqual(('subtract_res' in y_1.name), True) def test_declarative(self): with fluid.program_guard(fluid.Program()): def gen_data(): return { "x": np.array([2, 3, 4]).astype('float32'), "y": np.array([1, 5, 2]).astype('float32') } x = fluid.data(name="x", shape=[3], dtype='float32') y = fluid.data(name="y", shape=[3], dtype='float32') z = self._executed_api(x, y) place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) z_expected = np.array([1., -2., 2.]) self.assertEqual((z_value == z_expected).all(), True) def test_dygraph(self): with fluid.dygraph.guard(): np_x = np.array([2, 3, 4]).astype('float64') np_y = np.array([1, 5, 2]).astype('float64') x = fluid.dygraph.to_variable(np_x) y = fluid.dygraph.to_variable(np_y) z = self._executed_api(x, y) np_z = z.numpy() z_expected = np.array([1., -2., 2.]) self.assertEqual((np_z == z_expected).all(), True) class TestSubtractInplaceApi(TestSubtractApi): def _executed_api(self, x, y, name=None): return x.subtract_(y, name) class TestSubtractInplaceBroadcastSuccess(unittest.TestCase): def init_data(self): self.x_numpy = np.random.rand(2, 3, 4).astype('float') self.y_numpy = np.random.rand(3, 4).astype('float') def test_broadcast_success(self): paddle.disable_static() self.init_data() x = paddle.to_tensor(self.x_numpy) y = paddle.to_tensor(self.y_numpy) inplace_result = x.subtract_(y) numpy_result = self.x_numpy - self.y_numpy self.assertEqual((inplace_result.numpy() == numpy_result).all(), True) paddle.enable_static() class TestSubtractInplaceBroadcastSuccess2(TestSubtractInplaceBroadcastSuccess): def init_data(self): self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float') self.y_numpy = np.random.rand(3, 1).astype('float') class TestSubtractInplaceBroadcastSuccess3(TestSubtractInplaceBroadcastSuccess): def init_data(self): self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float') self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float') class TestSubtractInplaceBroadcastError(unittest.TestCase): def init_data(self): self.x_numpy = np.random.rand(3, 4).astype('float') self.y_numpy = np.random.rand(2, 3, 4).astype('float') def test_broadcast_errors(self): paddle.disable_static() self.init_data() x = paddle.to_tensor(self.x_numpy) y = paddle.to_tensor(self.y_numpy) def broadcast_shape_error(): x.subtract_(y) self.assertRaises(ValueError, broadcast_shape_error) paddle.enable_static() class TestSubtractInplaceBroadcastError2(TestSubtractInplaceBroadcastError): def init_data(self): self.x_numpy = np.random.rand(2, 1, 4).astype('float') self.y_numpy = np.random.rand(2, 3, 4).astype('float') class TestSubtractInplaceBroadcastError3(TestSubtractInplaceBroadcastError): def init_data(self): self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float') self.y_numpy = np.random.rand(2, 3, 4).astype('float') if __name__ == '__main__': paddle.enable_static() unittest.main()
from sympy.core import symbols, Symbol, Tuple, oo from sympy.core.compatibility import iterable, range from sympy.tensor.indexed import IndexException from sympy.utilities.pytest import raises # import test: from sympy import IndexedBase, Idx, Indexed, S, sin, cos, Sum, Piecewise, And, Order def test_Idx_construction(): i, a, b = symbols('i a b', integer=True) assert Idx(i) != Idx(i, 1) assert Idx(i, a) == Idx(i, (0, a - 1)) assert Idx(i, oo) == Idx(i, (0, oo)) x = symbols('x') raises(TypeError, lambda: Idx(x)) raises(TypeError, lambda: Idx(0.5)) raises(TypeError, lambda: Idx(i, x)) raises(TypeError, lambda: Idx(i, 0.5)) raises(TypeError, lambda: Idx(i, (x, 5))) raises(TypeError, lambda: Idx(i, (2, x))) raises(TypeError, lambda: Idx(i, (2, 3.5))) def test_Idx_properties(): i, a, b = symbols('i a b', integer=True) assert Idx(i).is_integer def test_Idx_bounds(): i, a, b = symbols('i a b', integer=True) assert Idx(i).lower is None assert Idx(i).upper is None assert Idx(i, a).lower == 0 assert Idx(i, a).upper == a - 1 assert Idx(i, 5).lower == 0 assert Idx(i, 5).upper == 4 assert Idx(i, oo).lower == 0 assert Idx(i, oo).upper == oo assert Idx(i, (a, b)).lower == a assert Idx(i, (a, b)).upper == b assert Idx(i, (1, 5)).lower == 1 assert Idx(i, (1, 5)).upper == 5 assert Idx(i, (-oo, oo)).lower == -oo assert Idx(i, (-oo, oo)).upper == oo def test_Idx_fixed_bounds(): i, a, b, x = symbols('i a b x', integer=True) assert Idx(x).lower is None assert Idx(x).upper is None assert Idx(x, a).lower == 0 assert Idx(x, a).upper == a - 1 assert Idx(x, 5).lower == 0 assert Idx(x, 5).upper == 4 assert Idx(x, oo).lower == 0 assert Idx(x, oo).upper == oo assert Idx(x, (a, b)).lower == a assert Idx(x, (a, b)).upper == b assert Idx(x, (1, 5)).lower == 1 assert Idx(x, (1, 5)).upper == 5 assert Idx(x, (-oo, oo)).lower == -oo assert Idx(x, (-oo, oo)).upper == oo def test_Idx_func_args(): i, a, b = symbols('i a b', integer=True) ii = Idx(i) assert ii.func(*ii.args) == ii ii = Idx(i, a) assert ii.func(*ii.args) == ii ii = Idx(i, (a, b)) assert ii.func(*ii.args) == ii def test_Idx_subs(): i, a, b = symbols('i a b', integer=True) assert Idx(i, a).subs(a, b) == Idx(i, b) assert Idx(i, a).subs(i, b) == Idx(b, a) assert Idx(i).subs(i, 2) == Idx(2) assert Idx(i, a).subs(a, 2) == Idx(i, 2) assert Idx(i, (a, b)).subs(i, 2) == Idx(2, (a, b)) def test_IndexedBase_sugar(): i, j = symbols('i j', integer=True) a = symbols('a') A1 = Indexed(a, i, j) A2 = IndexedBase(a) assert A1 == A2[i, j] assert A1 == A2[(i, j)] assert A1 == A2[[i, j]] assert A1 == A2[Tuple(i, j)] assert all(a.is_Integer for a in A2[1, 0].args[1:]) def test_IndexedBase_subs(): i, j, k = symbols('i j k', integer=True) a, b, c = symbols('a b c') A = IndexedBase(a) B = IndexedBase(b) C = IndexedBase(c) assert A[i] == B[i].subs(b, a) assert isinstance(C[1].subs(C, {1: 2}), type(A[1])) def test_IndexedBase_shape(): i, j, m, n = symbols('i j m n', integer=True) a = IndexedBase('a', shape=(m, m)) b = IndexedBase('a', shape=(m, n)) assert b.shape == Tuple(m, n) assert a[i, j] != b[i, j] assert a[i, j] == b[i, j].subs(n, m) assert b.func(*b.args) == b assert b[i, j].func(*b[i, j].args) == b[i, j] raises(IndexException, lambda: b[i]) raises(IndexException, lambda: b[i, i, j]) F = IndexedBase("F", shape=m) assert F.shape == Tuple(m) assert F[i].subs(i, j) == F[j] raises(IndexException, lambda: F[i, j]) def test_Indexed_constructor(): i, j = symbols('i j', integer=True) A = Indexed('A', i, j) assert A == Indexed(Symbol('A'), i, j) assert A == Indexed(IndexedBase('A'), i, j) raises(TypeError, lambda: Indexed(A, i, j)) raises(IndexException, lambda: Indexed("A")) def test_Indexed_func_args(): i, j = symbols('i j', integer=True) a = symbols('a') A = Indexed(a, i, j) assert A == A.func(*A.args) def test_Indexed_subs(): i, j, k = symbols('i j k', integer=True) a, b = symbols('a b') A = IndexedBase(a) B = IndexedBase(b) assert A[i, j] == B[i, j].subs(b, a) assert A[i, j] == A[i, k].subs(k, j) def test_Indexed_properties(): i, j = symbols('i j', integer=True) A = Indexed('A', i, j) assert A.rank == 2 assert A.indices == (i, j) assert A.base == IndexedBase('A') assert A.ranges == [None, None] raises(IndexException, lambda: A.shape) n, m = symbols('n m', integer=True) assert Indexed('A', Idx( i, m), Idx(j, n)).ranges == [Tuple(0, m - 1), Tuple(0, n - 1)] assert Indexed('A', Idx(i, m), Idx(j, n)).shape == Tuple(m, n) raises(IndexException, lambda: Indexed("A", Idx(i, m), Idx(j)).shape) def test_Indexed_shape_precedence(): i, j = symbols('i j', integer=True) o, p = symbols('o p', integer=True) n, m = symbols('n m', integer=True) a = IndexedBase('a', shape=(o, p)) assert a.shape == Tuple(o, p) assert Indexed( a, Idx(i, m), Idx(j, n)).ranges == [Tuple(0, m - 1), Tuple(0, n - 1)] assert Indexed(a, Idx(i, m), Idx(j, n)).shape == Tuple(o, p) assert Indexed( a, Idx(i, m), Idx(j)).ranges == [Tuple(0, m - 1), Tuple(None, None)] assert Indexed(a, Idx(i, m), Idx(j)).shape == Tuple(o, p) def test_complex_indices(): i, j = symbols('i j', integer=True) A = Indexed('A', i, i + j) assert A.rank == 2 assert A.indices == (i, i + j) def test_not_interable(): i, j = symbols('i j', integer=True) A = Indexed('A', i, i + j) assert not iterable(A) def test_Indexed_coeff(): N = Symbol('N', integer=True) len_y = N i = Idx('i', len_y-1) y = IndexedBase('y', shape=(len_y,)) a = (1/y[i+1]*y[i]).coeff(y[i]) b = (y[i]/y[i+1]).coeff(y[i]) assert a == b def test_differentiation(): from sympy.functions.special.tensor_functions import KroneckerDelta i, j, k, l = symbols('i j k l', cls=Idx) a = symbols('a') m, n = symbols("m, n", integer=True, finite=True) assert m.is_real h, L = symbols('h L', cls=IndexedBase) hi, hj = h[i], h[j] expr = hi assert expr.diff(hj) == KroneckerDelta(i, j) assert expr.diff(hi) == KroneckerDelta(i, i) expr = S(2) * hi assert expr.diff(hj) == S(2) * KroneckerDelta(i, j) assert expr.diff(hi) == S(2) * KroneckerDelta(i, i) assert expr.diff(a) == S.Zero assert Sum(expr, (i, -oo, oo)).diff(hj) == Sum(2*KroneckerDelta(i, j), (i, -oo, oo)) assert Sum(expr.diff(hj), (i, -oo, oo)) == Sum(2*KroneckerDelta(i, j), (i, -oo, oo)) assert Sum(expr, (i, -oo, oo)).diff(hj).doit() == 2 assert Sum(expr.diff(hi), (i, -oo, oo)).doit() == Sum(2, (i, -oo, oo)).doit() assert Sum(expr, (i, -oo, oo)).diff(hi).doit() == oo expr = a * hj * hj / S(2) assert expr.diff(hi) == a * h[j] * KroneckerDelta(i, j) assert expr.diff(a) == hj * hj / S(2) assert expr.diff(a, 2) == S.Zero assert Sum(expr, (i, -oo, oo)).diff(hi) == Sum(a*KroneckerDelta(i, j)*h[j], (i, -oo, oo)) assert Sum(expr.diff(hi), (i, -oo, oo)) == Sum(a*KroneckerDelta(i, j)*h[j], (i, -oo, oo)) assert Sum(expr, (i, -oo, oo)).diff(hi).doit() == a*h[j] assert Sum(expr, (j, -oo, oo)).diff(hi) == Sum(a*KroneckerDelta(i, j)*h[j], (j, -oo, oo)) assert Sum(expr.diff(hi), (j, -oo, oo)) == Sum(a*KroneckerDelta(i, j)*h[j], (j, -oo, oo)) assert Sum(expr, (j, -oo, oo)).diff(hi).doit() == a*h[i] expr = a * sin(hj * hj) assert expr.diff(hi) == 2*a*cos(hj * hj) * hj * KroneckerDelta(i, j) assert expr.diff(hj) == 2*a*cos(hj * hj) * hj expr = a * L[i, j] * h[j] assert expr.diff(hi) == a*L[i, j]*KroneckerDelta(i, j) assert expr.diff(hj) == a*L[i, j] assert expr.diff(L[i, j]) == a*h[j] assert expr.diff(L[k, l]) == a*KroneckerDelta(i, k)*KroneckerDelta(j, l)*h[j] assert expr.diff(L[i, l]) == a*KroneckerDelta(j, l)*h[j] assert Sum(expr, (j, -oo, oo)).diff(L[k, l]) == Sum(a * KroneckerDelta(i, k) * KroneckerDelta(j, l) * h[j], (j, -oo, oo)) assert Sum(expr, (j, -oo, oo)).diff(L[k, l]).doit() == a * KroneckerDelta(i, k) * h[l] assert h[m].diff(h[m]) == 1 assert h[m].diff(h[n]) == KroneckerDelta(m, n) assert Sum(a*h[m], (m, -oo, oo)).diff(h[n]) == Sum(a*KroneckerDelta(m, n), (m, -oo, oo)) assert Sum(a*h[m], (m, -oo, oo)).diff(h[n]).doit() == a assert Sum(a*h[m], (n, -oo, oo)).diff(h[n]) == Sum(a*KroneckerDelta(m, n), (n, -oo, oo)) assert Sum(a*h[m], (m, -oo, oo)).diff(h[m]).doit() == oo*a def test_indexed_series(): A = IndexedBase("A") i = symbols("i", integer=True) assert sin(A[i]).series(A[i]) == A[i] - A[i]**3/6 + A[i]**5/120 + Order(A[i]**6, A[i])
#!/usr/bin/env python """ClooudFormation custom Lambda backed resource that returns the latest AMI with the given parameters.""" # Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. ######################################################## # Changelog # 1.0.0 # Made compliant with major Python linters # flake8 (pep8 & pyflakes) # Disabled E501 (line length) # Disabled E241 (whitespace after comma) # OpenStack Style Guide # Disabled H306 (alphabetize imports) # pep257 # pycodestyle # pylint # Disabled C0301 (line length) # Disabled C0326 (whitespace after comma) from __future__ import print_function import json import time import boto3 from botocore.vendored import requests DEBUG_MODE = True # Manually change when debugging try: CFN_CLIENT = boto3.client('cloudformation') except Exception as error: print('Error creating boto3.client, error text follows:\n%s' % error) raise Exception(error) def format_response_body(event, context, response_status, response_data, physical_resource_id): """Format the response for Cloudformation.""" if DEBUG_MODE is True: print("Started function format_response_body") response_body = {} response_body['Status'] = response_status if response_status is "FAILED": response_body['Reason'] = response_data['Message'] else: response_body['Reason'] = "completed" response_body['PhysicalResourceId'] = physical_resource_id or context.log_stream_name response_body['StackId'] = event['StackId'] response_body['RequestId'] = event['RequestId'] response_body['LogicalResourceId'] = event['LogicalResourceId'] response_body['Data'] = response_data if DEBUG_MODE is True: print("Finished function format_response_body") return response_body def send(event, context, response_status, response_data, physical_resource_id): """Send a response.""" if 'ResponseURL' in event: if DEBUG_MODE is True: print("Started function send") print("CF Response URL: " + event['ResponseURL']) response_body = format_response_body(event, context, response_status, response_data, physical_resource_id) json_response_body = json.dumps(response_body) if DEBUG_MODE is True: print("CF Response Body: %s" % str(json_response_body)) headers = { 'content-type': '', 'content-length': str(len(json_response_body)) } try: response = requests.put( event['ResponseURL'], data=json_response_body, headers=headers ) if DEBUG_MODE is True: print("CF Status code: ", response.reason) print("Finished function send") except Exception as error: # pylint: disable=W0703 print("Failed to send event, raising exception without retrying.") raise Exception(error) def validate_role_on_create(event, context): """Validate the role we are running as is the right one.""" if DEBUG_MODE is True: print("Started function validate_role_on_create") try: describe_stacks_response = CFN_CLIENT.describe_stacks( StackName=event['StackId'] ) except Exception as error: # pylint: disable=W0703 custom_raise_exception(event, context, str('Error describing our stack to discover our IAM role, error text follows:\n' + str(error))) if 'Stacks' in describe_stacks_response: if describe_stacks_response['Stacks']: if 'RoleARN' in describe_stacks_response['Stacks'][0]: stack_role = describe_stacks_response['Stacks'][0]['RoleARN'] else: stack_role = None else: stack_role = None else: stack_role = None if DEBUG_MODE is True: print("Finished function validate_role_on_create, role is %s" % stack_role) def custom_raise_exception(event, context, message): """Raise an exception, print error, etc.""" print(message) response_data = { 'Message': message } if event['StackId'] == '012345678910/fake-stack-id': print("Skipping sending CloudFormation response due to local testing.") else: send(event, context, 'FAILED', response_data, None) raise Exception(message) def connect_to_region(event, context, region): """Connect to the given region.""" try: ec2_client = boto3.client( 'ec2', region_name=region, ) except Exception as error: # pylint: disable=W0703 print("Failed to connect to given region, aborting.") custom_raise_exception(event, context, error) return ec2_client def describe_images(event, context): """Perform the API call and lookup the AMIs that meet our search criteria.""" ec2_client = connect_to_region(event, context, event['ResourceProperties']['region']) if event['ResourceProperties']['owners'] in (None, ''): owners = [] else: owners = event['ResourceProperties']['owners'].split(' ') if event['ResourceProperties']['executable-users'] in (None, ''): executable_users = [] else: executable_users = event['ResourceProperties']['executable-users'].split(' ') try: filters = json.loads(event['ResourceProperties']['filters']) except Exception as error: # pylint: disable=W0703 print("Failed to parse 'filters' parameter from JSON string to python dict, aborting.") custom_raise_exception(event, context, error) try: response = ec2_client.describe_images( ExecutableUsers=executable_users, Filters=filters, Owners=owners ) except Exception as error: # pylint: disable=W0703 print("Failed to search AMIs, aborting.") custom_raise_exception(event, context, error) return response def validate_inputs(event, context): """Evaluate our inputs and error if they are incorrect.""" if DEBUG_MODE is True: print("Received event: \n%s" % json.dumps(event, indent=2)) if 'StackId' not in event or 'ResourceProperties' not in event: custom_raise_exception(event, context, 'Malformed CloudFormation request, missing StackId or ResourceProperties.') for parameter in ['owners', 'filters', 'executable-users', 'region']: if parameter not in event['ResourceProperties']: custom_raise_exception(event, context, 'Malformed CloudFormation request, missing one or more ResourceProperties.') if event['StackId'] == '012345678910/fake-stack-id': print("Skipping CloudFormation role validation due to local testing.") else: validate_role_on_create(event, context) if DEBUG_MODE is True: print("Stack ID : %s" % event['StackId']) print("Stack Name : %s" % str(event['StackId']).split('/')[1]) def cloudformation_create(event, context): """Cloudformation called us with CreateStack.""" if DEBUG_MODE is True: print("Create Option: Attempting to run creation") image_dict = describe_images(event, context) if DEBUG_MODE is True: print(json.dumps(image_dict, indent=2)) if len(image_dict['Images']) < 1: custom_raise_exception(event, context, 'AMI Search returned no results.') newest_entry = {"CreationDate": "1980-01-01T01:01:01.000Z"} counter = 0 for image in image_dict['Images']: counter = counter + 1 if DEBUG_MODE is True: print("Loop count: %d" % counter) if time.strptime(image['CreationDate'], "%Y-%m-%dT%H:%M:%S.000Z") > time.strptime(newest_entry['CreationDate'], "%Y-%m-%dT%H:%M:%S.000Z"): newest_entry = image if DEBUG_MODE is True: print("Found newer entry time of %s" % str(newest_entry['CreationDate'])) if DEBUG_MODE is True: print(json.dumps(newest_entry, indent=2)) response_data = { 'ami-id': newest_entry['ImageId'] } if event['StackId'] == '012345678910/fake-stack-id': print("Skipping sending CloudFormation response due to local testing.") return send(event, context, 'SUCCESS', response_data, event['StackId']) if DEBUG_MODE is True: print("Exiting successfully") return def cloudformation_update(event, context): """Cloudformation called us with CreateStack.""" # For updates we run a new search, maybe the AMI has changed since the last time we ran? cloudformation_create(event, context) return def lambda_handler(event, context): """Main Lambda function.""" validate_inputs(event, context) if event['RequestType'] == 'Create': cloudformation_create(event, context) elif event['RequestType'] == 'Update': cloudformation_update(event, context) elif event['RequestType'] == 'Delete': # This resource never truely creates anything so for deletes it just sends a success. send(event, context, 'SUCCESS', {}, event['StackId']) if DEBUG_MODE is True: print("Exiting successfully") return if __name__ == '__main__': # Example Linux/Mac CLI command we are replicating # aws ec2 describe-images --owners self amazon --filters "Name=root-device-type,Values=ebs,Name=name,Values=amzn-ami-hvm-????.??.?.*ebs" --query 'Images[*].[CreationDate, ImageId, Name, Description]' --output text | sort -nr | head -n1 | awk '{print $2}' # Note: The filters entry must use double quotes inside with encapsulating single quotes TEST_EVENT = { 'StackId': '012345678910/fake-stack-id', 'RequestType': 'Create', 'ResourceProperties': { 'owners': 'self amazon', 'filters': '[{"Name":"root-device-type","Values":["ebs"]},{"Name":"name","Values":["amzn-ami-hvm-????.??.?.*gp2"]}]', 'executable-users': '', 'region': 'us-west-2' } } TEST_CONTEXT = "bar" lambda_handler(TEST_EVENT, TEST_CONTEXT)
''' Created on 12/05/2011 @author: mikel ''' import time from spotify import link, session, SampleType from collections import deque import threading #General buffer error class BufferError(IOError): pass #Risen when stutter is detected class BufferUnderrunError(BufferError): pass class BufferInitializationError(BufferError): pass class BufferStoppedError(BufferError): pass class AbstractBuffer: def music_delivery(self, data, num_samples, sample_type, sample_rate, num_channels): pass def get_stats(self): pass def track_ended(self): pass class QueueItem: data = None num_samples = None sample_type = None sample_rate = None num_channels = None frame_time = None def __init__(self, data, num_samples, sample_type, sample_rate, num_channels, frame_time): self.data = data self.num_samples = num_samples self.sample_type = sample_type self.sample_rate = sample_rate self.num_channels = num_channels self.frame_time = frame_time class AudioBuffer(AbstractBuffer): #OMG! It's full of vars! #Queue that holds the in-memory framen numbers __frames = None #Dict that holds the actual frame data __frame_data = None #Number of underruns since last get_stats() call __stutter = None #Flag indicating that the playback was stopped __playback_stopped = None #Configured buffer length in seconds __max_buffer_length = None #Current buffer length in seconds __buffer_length = None #Number of samples in buffer (not used but required by libspotify) __samples_in_buffer = None #Total samples delivered by libspotify __total_samples = None #Session instance __session = None #Last (and highest) requested frame by any client __last_frame = None #Frame flagged as the last one __end_frame = None #Currently playing track object __track = None #Stores the time the buffer started __start_time = None def __init__(self, session, track, max_buffer_length = 10): self.__frames = deque() self.__frame_data = {} self.__stutter = 0 self.__playback_stopped = False self.__max_buffer_length = max_buffer_length self.__buffer_length = 0 self.__samples_in_buffer = 0 self.__total_samples = 0 self.__session = session self.__last_frame = -1 self.__end_frame = -1 #Load the track self.__track = track self.__session.player_load(self.__track) def start(self): #Start receiving data self.__session.player_play(True) def _remove_first_frame(self): if len(self.__frames) > 0: frame_id = self.__frames[0] frame = self.__frame_data[frame_id] #Update sums self.__samples_in_buffer -= frame.num_samples self.__buffer_length -= frame.frame_time #Delete from the index first, then from the dict del self.__frames[0] del self.__frame_data[frame_id] def _append_frame(self, data, num_samples, sample_type, sample_rate, num_channels, frame_time): #Calculate the new frame id frame_id = self.get_last_frame_in_buffer() + 1 #Save the data self.__frame_data[frame_id] = QueueItem( data, num_samples, sample_type, sample_rate, num_channels, frame_time, ) #Update the buffer self.__buffer_length += frame_time #Update the sample counts self.__samples_in_buffer += num_samples self.__total_samples += num_samples #And finally index it on the queue self.__frames.append(frame_id) #Tell that all samples were consumed return num_samples def _will_fill_buffer(self, frame_time): return frame_time + self.__buffer_length > self.__max_buffer_length def _buffer_init_purge_check(self): return ( #Do not calculate if the buffer was not consumed self.__start_time is None or ( #Keep this check for performance reasons self.get_first_frame_in_buffer() <= 0 and #Don't purge if opened less than x seconds ago. #We check if this number is less than half the #max length of the buffer. time.time() - self.__start_time < self.__max_buffer_length * 0.5 ) ) def _purge_frames(self): while len(self.__frames) > 0: #If we are on the start, don't purge for some seconds if self._buffer_init_purge_check(): break #Don't purge past the half of the buffer elif self.__buffer_length < self.__max_buffer_length * 0.5: break #Break if reached to an undeletable frame elif self.__frames[0] == self.__last_frame: break #Delete the first one else: self._remove_first_frame() def get_first_frame_in_buffer(self): if len(self.__frames) > 0: return self.__frames[0] else: return -1 def get_last_frame_in_buffer(self): if len(self.__frames) > 0: return self.__frames[-1] else: return -1 def _get_sample_width(self, sample_type): #FIXME: Duplicate code Arghhhhh! if sample_type == SampleType.Int16NativeEndian: return 16 else: return -1 def music_delivery(self, data, num_samples, sample_type, sample_rate, num_channels): #Calculate the length of this delivery in seconds #frame_time = 1.0 * num_samples / sample_rate #Get the sample size for further calculations sample_size = self._get_sample_width(sample_type) / 8 * num_channels while True: #Calculate the time on this payload frame_time = 1.0 * num_samples / sample_rate #If the delivery does not fit, truncate it if self._will_fill_buffer(frame_time) and num_samples > 0: num_samples -= 1 data = data[:num_samples * sample_size] #It fits, break off the loop else: break #If there was no room for the frames, purge and return zero if num_samples == 0: self._purge_frames() return 0 #Otherwise add the data else: return self._append_frame( data, num_samples, sample_type, sample_rate, num_channels, frame_time ) def get_stats(self): stutter = self.__stutter self.__stutter = 0 return self.__samples_in_buffer, stutter def get_total_samples(self): return self.__total_samples def set_track_ended(self): self.__end_frame = self.get_last_frame_in_buffer() def get_frame(self, frame_num): #What happens if this frame is not on the index? if frame_num not in self.__frames: #Buffer was stopped, and we depleted remaining frames if self.__playback_stopped: raise BufferStoppedError() #Frame is no longer available elif frame_num < self.get_first_frame_in_buffer(): raise BufferError("Frame number #%d gone, too late my friend." % frame_num) #If it's ahead of the buffer, it's an underrun else: self.__stutter += 1 raise BufferUnderrunError("Frame #%d not yet available." % frame_num) #Let's serve the frame else: #Get requested frame frame = self.__frame_data[frame_num] #If requested frame is higher than the last requested if self.__last_frame < frame_num: #Set if as the last requested one self.__last_frame = frame_num #Flag to indicate if there are frames left has_frames = frame_num != self.__end_frame # Store the time buffer was first requested. # Also, do not account frame #0, since it's immediately # requested after __init__() if self.__start_time is None and frame_num != 0: self.__start_time = time.time() return frame, has_frames def get_frame_wait(self, frame_num): while True: try: return self.get_frame(frame_num) #Wait a bit if we are ahead of the buffer except BufferUnderrunError: time.sleep(0.1) def stop(self): if not self.__playback_stopped: self.__session.player_unload() self.__playback_stopped = True def is_stopped(self): return self.__playback_stopped def get_track(self): return self.__track class BufferManager(AbstractBuffer): __current_buffer = None __buffer_size = None __buffer_open_lock= None def __init__(self, buffer_size = 10): self.__buffer_size = buffer_size self.__buffer_open_lock = threading.Lock() def _can_share_buffer(self, track): """ Check if the requested track and the current one are the same. If true, check if the buffer is still on the start position, so this thread can catch up it. The result is a shared buffer between threads. """ return( self.__current_buffer is not None and str(track) == str(self.__current_buffer.get_track()) and self.__current_buffer.get_first_frame_in_buffer() == 0 ) def open(self, session, track): self.__buffer_open_lock.acquire() try: #If we can't share this buffer start a new one if not self._can_share_buffer(track): #Stop current buffer if any if self.__current_buffer is not None: self.__current_buffer.stop() #Create the new buffer self.__current_buffer = AudioBuffer( session, track, self.__buffer_size ) #And start receiving data self.__current_buffer.start() finally: self.__buffer_open_lock.release() return self.__current_buffer def music_delivery(self, data, num_samples, sample_type, sample_rate, num_channels): if self.__current_buffer is not None: return self.__current_buffer.music_delivery( data, num_samples, sample_type, sample_rate, num_channels ) else: return 0 def get_stats(self): if self.__current_buffer is not None: return self.__current_buffer.get_stats() def set_track_ended(self): if self.__current_buffer is not None: self.__current_buffer.set_track_ended() def stop(self): if self.__current_buffer is not None: self.__current_buffer.stop() def cleanup(self): self.__current_buffer = None
"""Extract reference documentation from the NumPy source tree. """ from __future__ import division, absolute_import, print_function import inspect import textwrap import re import pydoc from warnings import warn import collections import sys class Reader(object): """A line-based string reader. """ def __init__(self, data): """ Parameters ---------- data : str String with lines separated by '\n'. """ if isinstance(data, list): self._str = data else: self._str = data.split('\n') # store string as list of lines self.reset() def __getitem__(self, n): return self._str[n] def reset(self): self._l = 0 # current line nr def read(self): if not self.eof(): out = self[self._l] self._l += 1 return out else: return '' def seek_next_non_empty_line(self): for l in self[self._l:]: if l.strip(): break else: self._l += 1 def eof(self): return self._l >= len(self._str) def read_to_condition(self, condition_func): start = self._l for line in self[start:]: if condition_func(line): return self[start:self._l] self._l += 1 if self.eof(): return self[start:self._l+1] return [] def read_to_next_empty_line(self): self.seek_next_non_empty_line() def is_empty(line): return not line.strip() return self.read_to_condition(is_empty) def read_to_next_unindented_line(self): def is_unindented(line): return (line.strip() and (len(line.lstrip()) == len(line))) return self.read_to_condition(is_unindented) def peek(self, n=0): if self._l + n < len(self._str): return self[self._l + n] else: return '' def is_empty(self): return not ''.join(self._str).strip() class ParseError(Exception): def __str__(self): message = self.message if hasattr(self, 'docstring'): message = "%s in %r" % (message, self.docstring) return message class NumpyDocString(collections.Mapping): def __init__(self, docstring, config={}): orig_docstring = docstring docstring = textwrap.dedent(docstring).split('\n') self._doc = Reader(docstring) self._parsed_data = { 'Signature': '', 'Summary': [''], 'Extended Summary': [], 'Parameters': [], 'Returns': [], 'Yields': [], 'Raises': [], 'Warns': [], 'Other Parameters': [], 'Attributes': [], 'Methods': [], 'See Also': [], 'Notes': [], 'Warnings': [], 'References': '', 'Examples': '', 'index': {} } try: self._parse() except ParseError as e: e.docstring = orig_docstring raise def __getitem__(self, key): return self._parsed_data[key] def __setitem__(self, key, val): if key not in self._parsed_data: warn("Unknown section %s" % key) else: self._parsed_data[key] = val def __iter__(self): return iter(self._parsed_data) def __len__(self): return len(self._parsed_data) def _is_at_section(self): self._doc.seek_next_non_empty_line() if self._doc.eof(): return False l1 = self._doc.peek().strip() # e.g. Parameters if l1.startswith('.. index::'): return True l2 = self._doc.peek(1).strip() # ---------- or ========== return l2.startswith('-'*len(l1)) or l2.startswith('='*len(l1)) def _strip(self, doc): i = 0 j = 0 for i, line in enumerate(doc): if line.strip(): break for j, line in enumerate(doc[::-1]): if line.strip(): break return doc[i:len(doc)-j] def _read_to_next_section(self): section = self._doc.read_to_next_empty_line() while not self._is_at_section() and not self._doc.eof(): if not self._doc.peek(-1).strip(): # previous line was empty section += [''] section += self._doc.read_to_next_empty_line() return section def _read_sections(self): while not self._doc.eof(): data = self._read_to_next_section() name = data[0].strip() if name.startswith('..'): # index section yield name, data[1:] elif len(data) < 2: yield StopIteration else: yield name, self._strip(data[2:]) def _parse_param_list(self, content): r = Reader(content) params = [] while not r.eof(): header = r.read().strip() if ' : ' in header: arg_name, arg_type = header.split(' : ')[:2] else: arg_name, arg_type = header, '' desc = r.read_to_next_unindented_line() desc = dedent_lines(desc) params.append((arg_name, arg_type, desc)) return params _name_rgx = re.compile(r"^\s*(:(?P<role>\w+):`(?P<name>[a-zA-Z0-9_.-]+)`|" r" (?P<name2>[a-zA-Z0-9_.-]+))\s*", re.X) def _parse_see_also(self, content): """ func_name : Descriptive text continued text another_func_name : Descriptive text func_name1, func_name2, :meth:`func_name`, func_name3 """ items = [] def parse_item_name(text): """Match ':role:`name`' or 'name'""" m = self._name_rgx.match(text) if m: g = m.groups() if g[1] is None: return g[3], None else: return g[2], g[1] raise ParseError("%s is not a item name" % text) def push_item(name, rest): if not name: return name, role = parse_item_name(name) items.append((name, list(rest), role)) del rest[:] current_func = None rest = [] for line in content: if not line.strip(): continue m = self._name_rgx.match(line) if m and line[m.end():].strip().startswith(':'): push_item(current_func, rest) current_func, line = line[:m.end()], line[m.end():] rest = [line.split(':', 1)[1].strip()] if not rest[0]: rest = [] elif not line.startswith(' '): push_item(current_func, rest) current_func = None if ',' in line: for func in line.split(','): if func.strip(): push_item(func, []) elif line.strip(): current_func = line elif current_func is not None: rest.append(line.strip()) push_item(current_func, rest) return items def _parse_index(self, section, content): """ .. index: default :refguide: something, else, and more """ def strip_each_in(lst): return [s.strip() for s in lst] out = {} section = section.split('::') if len(section) > 1: out['default'] = strip_each_in(section[1].split(','))[0] for line in content: line = line.split(':') if len(line) > 2: out[line[1]] = strip_each_in(line[2].split(',')) return out def _parse_summary(self): """Grab signature (if given) and summary""" if self._is_at_section(): return # If several signatures present, take the last one while True: summary = self._doc.read_to_next_empty_line() summary_str = " ".join([s.strip() for s in summary]).strip() if re.compile('^([\w., ]+=)?\s*[\w\.]+\(.*\)$').match(summary_str): self['Signature'] = summary_str if not self._is_at_section(): continue break if summary is not None: self['Summary'] = summary if not self._is_at_section(): self['Extended Summary'] = self._read_to_next_section() def _parse(self): self._doc.reset() self._parse_summary() sections = list(self._read_sections()) section_names = set([section for section, content in sections]) has_returns = 'Returns' in section_names has_yields = 'Yields' in section_names # We could do more tests, but we are not. Arbitrarily. if has_returns and has_yields: msg = 'Docstring contains both a Returns and Yields section.' raise ValueError(msg) for (section, content) in sections: if not section.startswith('..'): section = (s.capitalize() for s in section.split(' ')) section = ' '.join(section) if section in ('Parameters', 'Returns', 'Yields', 'Raises', 'Warns', 'Other Parameters', 'Attributes', 'Methods'): self[section] = self._parse_param_list(content) elif section.startswith('.. index::'): self['index'] = self._parse_index(section, content) elif section == 'See Also': self['See Also'] = self._parse_see_also(content) else: self[section] = content # string conversion routines def _str_header(self, name, symbol='-'): return [name, len(name)*symbol] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): if self['Signature']: return [self['Signature'].replace('*', '\*')] + [''] else: return [''] def _str_summary(self): if self['Summary']: return self['Summary'] + [''] else: return [] def _str_extended_summary(self): if self['Extended Summary']: return self['Extended Summary'] + [''] else: return [] def _str_param_list(self, name): out = [] if self[name]: out += self._str_header(name) for param, param_type, desc in self[name]: if param_type: out += ['%s : %s' % (param, param_type)] else: out += [param] out += self._str_indent(desc) out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += self[name] out += [''] return out def _str_see_also(self, func_role): if not self['See Also']: return [] out = [] out += self._str_header("See Also") last_had_desc = True for func, desc, role in self['See Also']: if role: link = ':%s:`%s`' % (role, func) elif func_role: link = ':%s:`%s`' % (func_role, func) else: link = "`%s`_" % func if desc or last_had_desc: out += [''] out += [link] else: out[-1] += ", %s" % link if desc: out += self._str_indent([' '.join(desc)]) last_had_desc = True else: last_had_desc = False out += [''] return out def _str_index(self): idx = self['index'] out = [] out += ['.. index:: %s' % idx.get('default', '')] for section, references in idx.items(): if section == 'default': continue out += [' :%s: %s' % (section, ', '.join(references))] return out def __str__(self, func_role=''): out = [] out += self._str_signature() out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Yields', 'Other Parameters', 'Raises', 'Warns'): out += self._str_param_list(param_list) out += self._str_section('Warnings') out += self._str_see_also(func_role) for s in ('Notes', 'References', 'Examples'): out += self._str_section(s) for param_list in ('Attributes', 'Methods'): out += self._str_param_list(param_list) out += self._str_index() return '\n'.join(out) def indent(str, indent=4): indent_str = ' '*indent if str is None: return indent_str lines = str.split('\n') return '\n'.join(indent_str + l for l in lines) def dedent_lines(lines): """Deindent a list of lines maximally""" return textwrap.dedent("\n".join(lines)).split("\n") def header(text, style='-'): return text + '\n' + style*len(text) + '\n' class FunctionDoc(NumpyDocString): def __init__(self, func, role='func', doc=None, config={}): self._f = func self._role = role # e.g. "func" or "meth" if doc is None: if func is None: raise ValueError("No function or docstring given") doc = inspect.getdoc(func) or '' NumpyDocString.__init__(self, doc) if not self['Signature'] and func is not None: func, func_name = self.get_func() try: if hasattr(inspect, 'signature'): signature = str(inspect.signature(func)) else: # try to read signature, backward compat for older Python if sys.version_info[0] >= 3: argspec = inspect.getfullargspec(func) else: argspec = inspect.getargspec(func) signature = inspect.formatargspec(*argspec) signature = '%s%s' % (func_name, signature.replace('*', '\*')) except TypeError: signature = '%s()' % func_name self['Signature'] = signature def get_func(self): func_name = getattr(self._f, '__name__', self.__class__.__name__) if inspect.isclass(self._f): func = getattr(self._f, '__call__', self._f.__init__) else: func = self._f return func, func_name def __str__(self): out = '' func, func_name = self.get_func() signature = self['Signature'].replace('*', '\*') roles = {'func': 'function', 'meth': 'method'} if self._role: if self._role not in roles: print("Warning: invalid role %s" % self._role) out += '.. %s:: %s\n \n\n' % (roles.get(self._role, ''), func_name) out += super(FunctionDoc, self).__str__(func_role=self._role) return out class ClassDoc(NumpyDocString): extra_public_methods = ['__call__'] def __init__(self, cls, doc=None, modulename='', func_doc=FunctionDoc, config={}): if not inspect.isclass(cls) and cls is not None: raise ValueError("Expected a class or None, but got %r" % cls) self._cls = cls self.show_inherited_members = config.get( 'show_inherited_class_members', True) if modulename and not modulename.endswith('.'): modulename += '.' self._mod = modulename if doc is None: if cls is None: raise ValueError("No class or documentation string given") doc = pydoc.getdoc(cls) NumpyDocString.__init__(self, doc) if config.get('show_class_members', True): def splitlines_x(s): if not s: return [] else: return s.splitlines() for field, items in [('Methods', self.methods), ('Attributes', self.properties)]: if not self[field]: doc_list = [] for name in sorted(items): try: doc_item = pydoc.getdoc(getattr(self._cls, name)) doc_list.append((name, '', splitlines_x(doc_item))) except AttributeError: pass # method doesn't exist self[field] = doc_list @property def methods(self): if self._cls is None: return [] return [name for name, func in inspect.getmembers(self._cls) if ((not name.startswith('_') or name in self.extra_public_methods) and isinstance(func, collections.Callable) and self._is_show_member(name))] @property def properties(self): if self._cls is None: return [] return [name for name, func in inspect.getmembers(self._cls) if (not name.startswith('_') and (func is None or isinstance(func, property) or inspect.isgetsetdescriptor(func)) and self._is_show_member(name))] def _is_show_member(self, name): if self.show_inherited_members: return True # show all class members if name not in self._cls.__dict__: return False # class member is inherited, we do not show it return True
# Python Classes/Functions used to Export Tycho's Datasets # ------------------------------------- # # Python Package Importing # # ------------------------------------- # # TO-DO: Add time back to bookkeeping becasue of Tyler's code # Importing Necessary System Packages import os, io import numpy as np import matplotlib as plt import random import numpy # Import the Amuse Base Packages from amuse import datamodel from amuse.units import nbody_system from amuse.units import units from amuse.io import * from amuse.lab import * from amuse.couple import multiples from amuse import io # Import the Amuse Stellar Packages from amuse.ic.kingmodel import new_king_model from amuse.ic.kroupa import new_kroupa_mass_distribution # Import cPickle/Pickle try: import pickle as pickle except: import pickle from tycho import util #from tycho import multiples2 as multiples # ------------------------------------- # # Defining Functions # # ------------------------------------- # def write_initial_state(master_set, ic_array, file_prefix): ''' Writes out an initial state for the Tycho Module. master_set: The Master Amuse Particle Set used in Tycho ic_array: Predefined Numpy Array that Stores Initial Conditions in SI Units file_prefix: String Value for a Prefix to the Saved File ''' # First, Define/Make the Directory for the Initial State to be Stored file_dir = os.getcwd()+"/InitialState" if not os.path.exists(file_dir): os.makedirs(file_dir) file_base = file_dir+"/"+file_prefix # Second, Write the AMUSE Particle Set to a HDF5 File file_format = "hdf5" write_set_to_file(master_set, file_base+"_particles.hdf5", format=file_format, close_file=True) # Third, Pickle the Initial Conditions Array ic_file = open(file_base+"_ic.pkl", "wb") pickle.dump(ic_array, ic_file) ic_file.close() def write_time_step(gravity_set, current_time, file_prefix): ''' Writes out necessary information for a time step. master_set: The Master AMUSE Particle Set used in Tycho multiples_code: The Multiples Instance for Tycho current_time: The Simulations Current Time file_prefix: String Value for a Prefix to the Saved File ''' # First, Define/Make the Directory for the Time Step to be Stored file_dir_MS = os.getcwd()+"/Snapshots" if not os.path.exists(file_dir_MS): os.makedirs(file_dir_MS) file_base_MS = file_dir_MS+"/"+file_prefix # Second, Write the AMUSE Particle Set to a HDF5 File file_format = "hdf5" write_set_to_file(gravity_set, file_base_MS+"_MS_t%.3f.hdf5" %(current_time.number), \ format=file_format, close_file=True) # ------------------------------------ # # WRITING RESTART FILE # # ------------------------------------ # def write_state_to_file(time, stars_python,gravity_code, multiples_code, write_file, cp_hist=False, backup = 0 ): res_dir = os.getcwd()+"/Restart" if not os.path.exists(res_dir): os.makedirs(res_dir) print("Writing state to write file: ", write_file,"\n\n") if write_file is not None: particles = gravity_code.particles.copy() write_channel = gravity_code.particles.new_channel_to(particles) write_channel.copy_attribute("index_in_code", "id") bookkeeping = {'neighbor_veto': multiples_code.neighbor_veto, 'neighbor_distance_factor': multiples_code.neighbor_distance_factor, 'multiples_external_tidal_correction': multiples_code.multiples_external_tidal_correction, 'multiples_integration_energy_error': multiples_code.multiples_integration_energy_error, 'multiples_internal_tidal_correction': multiples_code.multiples_internal_tidal_correction, 'model_time': multiples_code.model_time, 'root_index': multiples.root_index } for root, tree in multiples_code.root_to_tree.items(): root_in_particles = root.as_particle_in_set(particles) subset = tree.get_tree_subset().copy() if root_in_particles is not None: root_in_particles.components = subset io.write_set_to_file(particles,write_file+".stars.hdf5",'hdf5',version='2.0', append_to_file=False, copy_history=cp_hist) io.write_set_to_file(stars_python,write_file+".stars_python.hdf5",'hdf5',version='2.0', append_to_file=False, copy_history=cp_hist) config = {'time' : time, 'py_seed': pickle.dumps(random.getstate()), 'numpy_seed': pickle.dumps(numpy.random.get_state()), # 'options': pickle.dumps(options) } with open(write_file + ".conf", "wb") as f: pickle.dump(config, f) with open(write_file + ".bookkeeping", "wb") as f: pickle.dump(bookkeeping, f) print("\nState successfully written to: ", write_file) print(time) if backup > 0: io.write_set_to_file(particles,write_file+".backup.stars.hdf5",'hdf5', version='2.0', append_to_file=False, copy_history=cp_hist, close_file=True) io.write_set_to_file(stars_python,write_file+".backup.stars_python.hdf5",'hdf5', version='2.0', append_to_file=False, copy_history=cp_hist, close_file=True) config2 = {'time' : time, 'py_seed': pickle.dumps(random.getstate()), 'numpy_seed': pickle.dumps(numpy.random.get_state()), # 'options': pickle.dumps(options) } with open(write_file + ".backup.conf", "wb") as f: pickle.dump(config2, f) f.close() with open(write_file + ".backup.bookkeeping", "wb") as f: pickle.dump(bookkeeping, f) f.close() print("\nBackup write completed.\n") if backup > 2: io.write_set_to_file(particles, write_file+"."+str(int(time.number)) +".stars.hdf5",'hdf5',version='2.0', append_to_file=False, copy_history=cp_hist, close_file=True) io.write_set_to_file(stars_python, write_file+"."+str(int(time.number)) +".stars_python.hdf5",'hdf5',version='2.0', append_to_file=False, copy_history=cp_hist, close_file=True) config2 = {'time' : time, 'py_seed': pickle.dumps(random.getstate()), 'numpy_seed': pickle.dumps(numpy.random.get_state()), # 'options': pickle.dumps(options) } with open(write_file + "." +str(int(time.number))+".conf", "wb") as f: pickle.dump(config2, f) f.close() with open(write_file + "."+str(int(time.number))+".bookkeeping", "wb") as f: pickle.dump(bookkeeping, f) f.close() print("\nBackup write completed.\n") # ----------------------------------------- # # WRITING CRASH RESTART FILE # # ----------------------------------------- # def write_crash_save(time, stars_python,gravity_code, multiples_code, write_file, cp_hist=False, backup = 0 ): crash_dir = os.getcwd()+"/CrashSave" if not os.path.exists(crash_dir): os.makedirs(crash_dir) print("Writing state to write file: ", write_file,"\n\n") if write_file is not None: particles = gravity_code.particles.copy() write_channel = gravity_code.particles.new_channel_to(particles) write_channel.copy_attribute("index_in_code", "id") bookkeeping = {'neighbor_veto': multiples_code.neighbor_veto, 'neighbor_distance_factor': multiples_code.neighbor_distance_factor, 'multiples_external_tidal_correction': multiples_code.multiples_external_tidal_correction, 'multiples_integration_energy_error': multiples_code.multiples_integration_energy_error, 'multiples_internal_tidal_correction': multiples_code.multiples_internal_tidal_correction, 'model_time': multiples_code.model_time, 'root_index': multiples.root_index } ''' bookkeeping.neighbor_veto = bookkeeping.multiples_external_tidal_correction = multiples_code.multiples_external_tidal_correction bookkeeping.multiples_integration_energy_error = multiples_code.multiples_integration_energy_error bookkeeping.multiples_internal_tidal_correction = multiples_code.multiples_internal_tidal_correction bookkeeping.model_time = multiples_code.model_time ''' for root, tree in multiples_code.root_to_tree.items(): #multiples.print_multiple_simple(tree,kep) root_in_particles = root.as_particle_in_set(particles) subset = tree.get_tree_subset().copy() if root_in_particles is not None: root_in_particles.components = subset io.write_set_to_file(particles,write_file+".stars.hdf5",'hdf5',version='2.0', append_to_file=False, copy_history=cp_hist) io.write_set_to_file(stars_python,write_file+".stars_python.hdf5",'hdf5',version='2.0', append_to_file=False, copy_history=cp_hist) config = {'time' : time, 'py_seed': pickle.dumps(random.getstate()), 'numpy_seed': pickle.dumps(numpy.random.get_state()), # 'options': pickle.dumps(options) } with open(write_file + ".conf", "wb") as f: pickle.dump(config, f) with open(write_file + ".bookkeeping", "wb") as f: pickle.dump(bookkeeping, f) print("\nState successfully written to: ", write_file) print(time) if backup > 0: io.write_set_to_file(particles,write_file+".backup.stars.hdf5",'hdf5',version='2.0', append_to_file=False, copy_history=cp_hist, close_file=True) io.write_set_to_file(stars_python,write_file+".backup.stars_python.hdf5",'hdf5',version='2.0', append_to_file=False, copy_history=cp_hist, close_file=True) config2 = {'time' : time, 'py_seed': pickle.dumps(random.getstate()), 'numpy_seed': pickle.dumps(numpy.random.get_state()), # 'options': pickle.dumps(options) } with open(write_file + ".backup.conf", "wb") as f: pickle.dump(config2, f) f.close() with open(write_file + ".backup.bookkeeping", "wb") as f: pickle.dump(bookkeeping, f) f.close() print("\nBackup write completed.\n") if backup > 2: io.write_set_to_file(particles,write_file+"."+str(int(time.number))+".stars.hdf5",'hdf5',version='2.0', append_to_file=False, copy_history=cp_hist, close_file=True) io.write_set_to_file(stars_python,write_file+"."+str(int(time.number))+".stars_python.hdf5",'hdf5',version='2.0', append_to_file=False, copy_history=cp_hist, close_file=True) config2 = {'time' : time, 'py_seed': pickle.dumps(random.getstate()), 'numpy_seed': pickle.dumps(numpy.random.get_state()), # 'options': pickle.dumps(options) } with open(write_file + "." +str(int(time.number))+".conf", "wb") as f: pickle.dump(config2, f) f.close() with open(write_file + "."+str(int(time.number))+".bookkeeping", "wb") as f: pickle.dump(bookkeeping, f) f.close() print("\nBackup write completed.\n")
#!/usr/bin/python # # N9 Personal Web Server # 2012-02-19; Thomas Perl # http://thp.io/2012/serverr/ # # Copyright (c) 2012 Thomas Perl <[email protected]> # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # from PySide.QtCore import * from PySide.QtGui import * from PySide.QtDeclarative import * import SimpleHTTPServer import SocketServer import threading import sys import subprocess import re import time import string import random import os from StringIO import StringIO import cgi import urllib import mimetypes app = QApplication(sys.argv) settings = QSettings('thp.io', 'serverr') def boolsetting(key, default=False): global settings # Kludge -> at startup we get 'false' instead of False return (settings.value(key, default) not in ('false', False)) class SettingsProxy(QObject): def __init__(self, settings): QObject.__init__(self) self._settings = settings @Slot(str, result='QVariant') def get(self, key): return self._settings.value(key) @Slot(str, 'QVariant') def set(self, key, value): self._settings.setValue(key, value) class ThreadedTCPServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer): pass class MyRequestHandler(SimpleHTTPServer.SimpleHTTPRequestHandler): def directory_entry(self, f, fullname): mimetype, _ = mimetypes.guess_type(fullname) name = os.path.basename(fullname) displayname = linkname = name # Append / for directories or @ for symbolic links if os.path.isdir(fullname): icon = '/:theme:/icon-m-common-directory.png' displayname = name + "/" linkname = name + "/" elif mimetype is None: icon = '/:theme:/icon-m-content-file-unknown.png' elif mimetype.startswith('audio/'): icon = '/:theme:/icon-m-content-audio.png' elif mimetype.startswith('video/'): icon = '/:theme:/icon-m-content-videos.png' elif mimetype.startswith('image/'): icon = '/:theme:/icon-m-content-image.png' elif mimetype == 'application/pdf': icon = '/:theme:/icon-m-content-pdf.png' elif mimetype == 'application/msword': icon = '/:theme:/icon-m-content-word.png' elif mimetype == 'application/vnd.ms-excel': icon = '/:theme:/icon-m-content-excel.png' elif mimetype == 'application/vnd.ms-powerpoint': icon = '/:theme:/icon-m-content-powerpoint.png' else: icon = '/:theme:/icon-m-content-file-unknown.png' f.write('<li><a href="%s"><img style="vertical-align: middle;" src="%s" width=32> %s</a>\n' % (urllib.quote(linkname), icon, cgi.escape(displayname))) def list_directory(self, path): try: listing = os.listdir(path) except os.error: self.send_error(404, "Cannot read directory") return None listing = filter(lambda x: not x.startswith('.'), sorted(listing, key=lambda x: (0 if os.path.isdir(os.path.join(path, x)) else 1, x.lower()))) if self.path != '/': listing.insert(0, '..') f = StringIO() displaypath = cgi.escape(urllib.unquote(self.path)) f.write("<html>\n<head><title>%s on N9</title>\n" % displaypath) f.write(""" <style type="text/css"> body { font-family: sans-serif; } li a { padding: 7px; background-color: #eee; text-decoration: none; display: block; color: #333; } li a:hover { background-color: #ddd; color: black; } ul { list-style: none; margin: 0px; padding: 0px; } img { width: 32px; height: 32px; border: 0px; } hr { border-width: 0px; border-bottom: 1px solid #aaa; } </style> </head>""") f.write("<body>\n<h2>Directory listing for %s</h2>\n" % displaypath) f.write("<hr>\n<ul>\n") for name in listing: fullname = os.path.join(path, name) self.directory_entry(f, fullname) f.write(""" </ul><hr> <address> Powered by <a href="http://thp.io/2012/serverr/">Personal Web Server for N9</a> </address> </body></html> """) length = f.tell() f.seek(0) self.send_response(200) encoding = sys.getfilesystemencoding() self.send_header("Content-type", "text/html; charset=%s" % encoding) self.send_header("Content-Length", str(length)) self.end_headers() return f def do_GET(self): authorized = False auth_header = self.headers.get('authorization', '') m = re.match(r'^Basic (.*)$', auth_header) if m is not None: auth_data = m.group(1).decode('base64').split(':', 1) if len(auth_data) == 2: username, password = auth_data if username == 'client' and password == serverr.password: authorized = True if authorized: if not self.path.startswith('/:theme:/'): serverr.log_message = u'<b>%s</b> %s %s' % ( self.client_address[0], self.command, self.path) serverr.logMessage.emit() if self.path.startswith('/:theme:/'): filename = os.path.basename(self.path) fn = '/usr/share/themes/blanco/meegotouch/icons/'+filename if os.path.exists(fn): f = open(fn, 'rb') self.send_response(200) self.send_header('Content-type', 'image/png') self.end_headers() self.copyfile(f, self.wfile) f.close() self.wfile.close() return path = self.translate_path(self.path) f = None if os.path.isdir(path) and path.endswith('/'): self.list_directory(path) else: SimpleHTTPServer.SimpleHTTPRequestHandler.do_GET(self) else: self.send_response(401) self.send_header('WWW-Authenticate', 'Basic realm="N9 Personal Web Server"') self.send_header('Content-type', 'text/html') self.end_headers() self.wfile.write('<em>401 Access denied - wrong username/password') self.wfile.close() return class Serverr(QObject): PORT = 8888 def __init__(self): QObject.__init__(self) self.httpd = None self.thread = None self.password = self._newpassword() self.log_message = u'' self.port_number = self.PORT @Slot(result=unicode) def getLogMessage(self): return self.log_message def _newpassword(self, length=5): # Avoid some characters that look alike in certain fonts charset = [x for x in string.letters + string.digits if x not in 'IlO0'] return ''.join([random.choice(charset) for _ in range(length)]) logMessage = Signal() def getCurrentStatus(self): if self.httpd is not None: return u'Serving on port %d' % self.port_number else: return u'Not running' currentStatusChanged = Signal() currentStatus = Property(unicode, fget=getCurrentStatus, notify=currentStatusChanged) def getCurrentPassword(self): return unicode(self.password) currentPasswordChanged = Signal() currentPassword = Property(unicode, fget=getCurrentPassword, notify=currentPasswordChanged) @Slot() def generateNewPassword(self): self.password = self._newpassword() self.currentPasswordChanged.emit() @Slot() def start(self): if self.httpd is None: self.thread = threading.Thread(target=self.thread_proc) self.thread.setDaemon(True) self.thread.start() @Slot() def stop(self): if self.httpd is not None: self.httpd.shutdown() self.httpd = None self.currentStatusChanged.emit() @Slot(result=unicode) def get_ips(self): ifconfig = subprocess.Popen('/sbin/ifconfig', stdout=subprocess.PIPE) stdout, stderr = ifconfig.communicate() ips = re.findall('addr:([^ ]+)', stdout) ips = filter(lambda ip: not ip.startswith('127.'), ips) or None if ips is None: return u'You are offline.' return u'<center>Point your browser to:<br>' + u'<br>or '.join(u'http://%s:%d/' % (ip, self.port_number) for ip in ips) + '</center>' def thread_proc(self): os.chdir('/home/user/MyDocs/') self.port_number = self.PORT while self.port_number < self.PORT + 100: try: self.httpd = ThreadedTCPServer(("", self.port_number), MyRequestHandler) break except: self.port_number += 1 self.currentStatusChanged.emit() self.httpd.serve_forever() self.thread = None view = QDeclarativeView() rootContext = view.rootContext() proxy = SettingsProxy(settings) rootContext.setContextProperty('settings', proxy) serverr = Serverr() rootContext.setContextProperty('serverr', serverr) view.setSource('/opt/serverr/serverr.qml') view.showFullScreen() app.exec_()
# -*- coding: utf-8 -*- # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Gsutil API delegator for interacting with cloud storage providers.""" from __future__ import absolute_import from __future__ import print_function from __future__ import division from __future__ import unicode_literals import boto from boto import config from gslib.cloud_api import ArgumentException from gslib.cloud_api import CloudApi from gslib.cs_api_map import ApiMapConstants from gslib.cs_api_map import ApiSelector from gslib.exception import CommandException class CloudApiDelegator(CloudApi): """Class that handles delegating requests to gsutil Cloud API implementations. This class is responsible for determining at runtime which gsutil Cloud API implementation should service the request based on the Cloud storage provider, command-level API support, and configuration file override. During initialization it takes as an argument a gsutil_api_map which maps providers to their default and supported gsutil Cloud API implementations (see comments in cs_api_map for details). Instantiation of multiple delegators per-thread is required for multiprocess and/or multithreaded operations. Calling methods on the same delegator in multiple threads is unsafe. """ def __init__(self, bucket_storage_uri_class, gsutil_api_map, logger, status_queue, provider=None, debug=0, trace_token=None, perf_trace_token=None, user_project=None): """Performs necessary setup for delegating cloud storage requests. This function has different arguments than the gsutil Cloud API __init__ function because of the delegation responsibilties of this class. Args: bucket_storage_uri_class: boto storage_uri class, used by APIs that provide boto translation or mocking. gsutil_api_map: Map of providers and API selector tuples to api classes which can be used to communicate with those providers. logger: logging.logger for outputting log messages. status_queue: Queue for relaying status to UI. provider: Default provider prefix describing cloud storage provider to connect to. debug: Debug level for the API implementation (0..3). trace_token: Apiary trace token to pass to API. perf_trace_token: Performance trace token to use when making API calls. user_project: Project to be billed for this project. """ super(CloudApiDelegator, self).__init__(bucket_storage_uri_class, logger, status_queue, provider=provider, debug=debug, trace_token=trace_token, perf_trace_token=perf_trace_token, user_project=user_project) self.api_map = gsutil_api_map self.prefer_api = boto.config.get('GSUtil', 'prefer_api', '').upper() self.loaded_apis = {} if not self.api_map[ApiMapConstants.API_MAP]: raise ArgumentException('No apiclass supplied for gsutil Cloud API map.') def _GetApi(self, provider): """Returns a valid CloudApi for use by the caller. This function lazy-loads connection and credentials using the API map and credential store provided during class initialization. Args: provider: Provider to load API for. If None, class-wide default is used. Raises: ArgumentException if there is no matching API available in the API map. Returns: Valid API instance that can be used to communicate with the Cloud Storage provider. """ provider = provider or self.provider if not provider: raise ArgumentException('No provider selected for _GetApi') provider = str(provider) if provider not in self.loaded_apis: self.loaded_apis[provider] = {} api_selector = self.GetApiSelector(provider) if api_selector not in self.loaded_apis[provider]: # Need to load the API. self._LoadApi(provider, api_selector) return self.loaded_apis[provider][api_selector] def _LoadApi(self, provider, api_selector): """Loads a CloudApi into the loaded_apis map for this class. Args: provider: Provider to load the API for. api_selector: cs_api_map.ApiSelector defining the API type. """ if provider not in self.api_map[ApiMapConstants.API_MAP]: raise ArgumentException( 'gsutil Cloud API map contains no entry for provider %s.' % provider) if api_selector not in self.api_map[ApiMapConstants.API_MAP][provider]: raise ArgumentException( 'gsutil Cloud API map does not support API %s for provider %s.' % (api_selector, provider)) self.loaded_apis[provider][api_selector] = ( self.api_map[ApiMapConstants.API_MAP][provider][api_selector]( self.bucket_storage_uri_class, self.logger, self.status_queue, provider=provider, debug=self.debug, trace_token=self.trace_token, perf_trace_token=self.perf_trace_token, user_project=self.user_project)) def GetApiSelector(self, provider=None): """Returns a cs_api_map.ApiSelector based on input and configuration. Args: provider: Provider to return the ApiSelector for. If None, class-wide default is used. Returns: cs_api_map.ApiSelector that will be used for calls to the delegator for this provider. """ selected_provider = provider or self.provider if not selected_provider: raise ArgumentException('No provider selected for CloudApi') if (selected_provider not in self.api_map[ApiMapConstants.DEFAULT_MAP] or self.api_map[ApiMapConstants.DEFAULT_MAP][selected_provider] not in self.api_map[ApiMapConstants.API_MAP][selected_provider]): raise ArgumentException('No default api available for provider %s' % selected_provider) if selected_provider not in self.api_map[ApiMapConstants.SUPPORT_MAP]: raise ArgumentException('No supported apis available for provider %s' % selected_provider) api = self.api_map[ApiMapConstants.DEFAULT_MAP][selected_provider] using_gs_hmac = ( provider == 'gs' and not config.has_option('Credentials', 'gs_oauth2_refresh_token') and not (config.has_option('Credentials', 'gs_service_client_id') and config.has_option('Credentials', 'gs_service_key_file')) and (config.has_option('Credentials', 'gs_access_key_id') and config.has_option('Credentials', 'gs_secret_access_key'))) configured_encryption = (provider == 'gs' and (config.has_option('GSUtil', 'encryption_key') or config.has_option('GSUtil', 'decryption_key1'))) if using_gs_hmac and configured_encryption: raise CommandException( 'gsutil does not support HMAC credentials with customer-supplied ' 'encryption keys (CSEK) or customer-managed KMS encryption keys ' '(CMEK). Please generate and include non-HMAC credentials ' 'in your .boto configuration file, or to access public encrypted ' 'objects, remove your HMAC credentials.') # If we have only HMAC credentials for Google Cloud Storage, we must use # the XML API as the JSON API does not support HMAC. # # Technically if we have only HMAC credentials, we should still be able to # access public read resources via the JSON API, but the XML API can do # that just as well. It is better to use it than inspect the credentials on # every HTTP call. elif using_gs_hmac: api = ApiSelector.XML # CSEK and CMEK encryption keys are currently only supported in the # JSON API implementation (GcsJsonApi). We can't stop XML API users from # interacting with encrypted objects, since we don't know the object is # encrypted until after the API call is made, but if they specify # configuration values we will use JSON. elif configured_encryption: api = ApiSelector.JSON # Try to force the user's preference to a supported API. elif self.prefer_api in ( self.api_map[ApiMapConstants.SUPPORT_MAP][selected_provider]): api = self.prefer_api return api # For function docstrings, see CloudApi class. def GetBucket(self, bucket_name, provider=None, fields=None): return self._GetApi(provider).GetBucket(bucket_name, fields=fields) def GetBucketIamPolicy(self, bucket_name, provider=None, fields=None): return self._GetApi(provider).GetBucketIamPolicy(bucket_name, fields=fields) def SetBucketIamPolicy(self, bucket_name, policy, provider=None): return self._GetApi(provider).SetBucketIamPolicy(bucket_name, policy) def ListBuckets(self, project_id=None, provider=None, fields=None): return self._GetApi(provider).ListBuckets(project_id=project_id, fields=fields) def PatchBucket(self, bucket_name, metadata, canned_acl=None, canned_def_acl=None, preconditions=None, provider=None, fields=None): return self._GetApi(provider).PatchBucket(bucket_name, metadata, canned_acl=canned_acl, canned_def_acl=canned_def_acl, preconditions=preconditions, fields=fields) def LockRetentionPolicy(self, bucket_name, metageneration, provider=None): return self._GetApi(provider).LockRetentionPolicy(bucket_name, metageneration, provider=provider) def CreateBucket(self, bucket_name, project_id=None, metadata=None, provider=None, fields=None): return self._GetApi(provider).CreateBucket(bucket_name, project_id=project_id, metadata=metadata, fields=fields) def DeleteBucket(self, bucket_name, preconditions=None, provider=None): return self._GetApi(provider).DeleteBucket(bucket_name, preconditions=preconditions) def GetObjectIamPolicy(self, bucket_name, object_name, generation=None, provider=None, fields=None): return self._GetApi(provider).GetObjectIamPolicy(bucket_name, object_name, generation, fields=fields) def SetObjectIamPolicy(self, bucket_name, object_name, policy, generation=None, provider=None): return self._GetApi(provider).SetObjectIamPolicy(bucket_name, object_name, policy, generation) def ListObjects(self, bucket_name, prefix=None, delimiter=None, all_versions=None, provider=None, fields=None): return self._GetApi(provider).ListObjects(bucket_name, prefix=prefix, delimiter=delimiter, all_versions=all_versions, fields=fields) def GetObjectMetadata(self, bucket_name, object_name, generation=None, provider=None, fields=None): return self._GetApi(provider).GetObjectMetadata(bucket_name, object_name, generation=generation, fields=fields) def PatchObjectMetadata(self, bucket_name, object_name, metadata, canned_acl=None, generation=None, preconditions=None, provider=None, fields=None): return self._GetApi(provider).PatchObjectMetadata( bucket_name, object_name, metadata, canned_acl=canned_acl, generation=generation, preconditions=preconditions, fields=fields) def GetObjectMedia(self, bucket_name, object_name, download_stream, provider=None, generation=None, object_size=None, compressed_encoding=False, download_strategy=CloudApi.DownloadStrategy.ONE_SHOT, start_byte=0, end_byte=None, progress_callback=None, serialization_data=None, digesters=None, decryption_tuple=None): return self._GetApi(provider).GetObjectMedia( bucket_name, object_name, download_stream, compressed_encoding=compressed_encoding, download_strategy=download_strategy, start_byte=start_byte, end_byte=end_byte, generation=generation, object_size=object_size, progress_callback=progress_callback, serialization_data=serialization_data, digesters=digesters, decryption_tuple=decryption_tuple) def UploadObject(self, upload_stream, object_metadata, size=None, canned_acl=None, preconditions=None, progress_callback=None, encryption_tuple=None, provider=None, fields=None, gzip_encoded=False): return self._GetApi(provider).UploadObject( upload_stream, object_metadata, size=size, canned_acl=canned_acl, preconditions=preconditions, progress_callback=progress_callback, encryption_tuple=encryption_tuple, fields=fields, gzip_encoded=gzip_encoded) def UploadObjectStreaming(self, upload_stream, object_metadata, canned_acl=None, preconditions=None, progress_callback=None, encryption_tuple=None, provider=None, fields=None, gzip_encoded=False): return self._GetApi(provider).UploadObjectStreaming( upload_stream, object_metadata, canned_acl=canned_acl, preconditions=preconditions, progress_callback=progress_callback, encryption_tuple=encryption_tuple, fields=fields, gzip_encoded=gzip_encoded) def UploadObjectResumable(self, upload_stream, object_metadata, canned_acl=None, preconditions=None, size=None, serialization_data=None, tracker_callback=None, progress_callback=None, encryption_tuple=None, provider=None, fields=None, gzip_encoded=False): return self._GetApi(provider).UploadObjectResumable( upload_stream, object_metadata, canned_acl=canned_acl, preconditions=preconditions, size=size, serialization_data=serialization_data, tracker_callback=tracker_callback, progress_callback=progress_callback, encryption_tuple=encryption_tuple, fields=fields, gzip_encoded=gzip_encoded) def CopyObject(self, src_obj_metadata, dst_obj_metadata, src_generation=None, canned_acl=None, preconditions=None, progress_callback=None, max_bytes_per_call=None, encryption_tuple=None, decryption_tuple=None, provider=None, fields=None): return self._GetApi(provider).CopyObject( src_obj_metadata, dst_obj_metadata, src_generation=src_generation, canned_acl=canned_acl, preconditions=preconditions, progress_callback=progress_callback, max_bytes_per_call=max_bytes_per_call, encryption_tuple=encryption_tuple, decryption_tuple=decryption_tuple, fields=fields) def ComposeObject(self, src_objs_metadata, dst_obj_metadata, preconditions=None, encryption_tuple=None, provider=None, fields=None): return self._GetApi(provider).ComposeObject( src_objs_metadata, dst_obj_metadata, preconditions=preconditions, encryption_tuple=encryption_tuple, fields=fields) def DeleteObject(self, bucket_name, object_name, preconditions=None, generation=None, provider=None): return self._GetApi(provider).DeleteObject(bucket_name, object_name, preconditions=preconditions, generation=generation) def WatchBucket(self, bucket_name, address, channel_id, token=None, provider=None, fields=None): return self._GetApi(provider).WatchBucket(bucket_name, address, channel_id, token=token, fields=fields) def StopChannel(self, channel_id, resource_id, provider=None): return self._GetApi(provider).StopChannel(channel_id, resource_id) def ListChannels(self, bucket_name, provider=None): return self._GetApi(provider).ListChannels(bucket_name) def GetProjectServiceAccount(self, project_number, provider=None): return self._GetApi(provider).GetProjectServiceAccount(project_number) def CreateNotificationConfig(self, bucket_name, pubsub_topic, payload_format, event_types=None, custom_attributes=None, object_name_prefix=None, provider=None): return self._GetApi(provider).CreateNotificationConfig( bucket_name, pubsub_topic, payload_format, event_types, custom_attributes, object_name_prefix) def DeleteNotificationConfig(self, bucket_name, notification, provider=None): return self._GetApi(provider).DeleteNotificationConfig( bucket_name, notification) def ListNotificationConfigs(self, bucket_name, provider=None): return self._GetApi(provider).ListNotificationConfigs(bucket_name) def ListBucketAccessControls(self, bucket_name, provider=None): return self._GetApi(provider).ListBucketAccessControls(bucket_name) def ListObjectAccessControls(self, bucket_name, object_name, provider=None): return self._GetApi(provider).ListObjectAccessControls( bucket_name, object_name) def CreateHmacKey(self, project_id, service_account_email, provider=None): return self._GetApi(provider).CreateHmacKey(project_id, service_account_email) def DeleteHmacKey(self, project_id, access_id, provider=None): return self._GetApi(provider).DeleteHmacKey(project_id, access_id) def GetHmacKey(self, project_id, access_id, provider=None): return self._GetApi(provider).GetHmacKey(project_id, access_id) def ListHmacKeys(self, project_id, service_account_email, show_deleted_keys=False, provider=None): return self._GetApi(provider).ListHmacKeys(project_id, service_account_email, show_deleted_keys) def UpdateHmacKey(self, project_id, access_id, state, etag, provider=None): return self._GetApi(provider).UpdateHmacKey(project_id, access_id, state, etag) def XmlPassThroughGetAcl(self, storage_url, def_obj_acl=False, provider=None): """XML compatibility function for getting ACLs. Args: storage_url: StorageUrl object. def_obj_acl: If true, get the default object ACL on a bucket. provider: Cloud storage provider to connect to. If not present, class-wide default is used. Raises: ArgumentException for errors during input validation. ServiceException for errors interacting with cloud storage providers. Returns: ACL XML for the resource specified by storage_url. """ return self._GetApi(provider).XmlPassThroughGetAcl(storage_url, def_obj_acl=def_obj_acl) def XmlPassThroughSetAcl(self, acl_text, storage_url, canned=True, def_obj_acl=False, provider=None): """XML compatibility function for setting ACLs. Args: acl_text: XML ACL or canned ACL string. storage_url: StorageUrl object. canned: If true, acl_text is treated as a canned ACL string. def_obj_acl: If true, set the default object ACL on a bucket. provider: Cloud storage provider to connect to. If not present, class-wide default is used. Raises: ArgumentException for errors during input validation. ServiceException for errors interacting with cloud storage providers. Returns: None. """ self._GetApi(provider).XmlPassThroughSetAcl(acl_text, storage_url, canned=canned, def_obj_acl=def_obj_acl) def XmlPassThroughGetCors(self, storage_url, provider=None): """XML compatibility function for getting CORS configuration on a bucket. Args: storage_url: StorageUrl object. provider: Cloud storage provider to connect to. If not present, class-wide default is used. Raises: ArgumentException for errors during input validation. ServiceException for errors interacting with cloud storage providers. Returns: CORS configuration XML for the bucket specified by storage_url. """ return self._GetApi(provider).XmlPassThroughGetCors(storage_url) def XmlPassThroughSetCors(self, cors_text, storage_url, provider=None): """XML compatibility function for setting CORS configuration on a bucket. Args: cors_text: Raw CORS XML string. storage_url: StorageUrl object. provider: Cloud storage provider to connect to. If not present, class-wide default is used. Raises: ArgumentException for errors during input validation. ServiceException for errors interacting with cloud storage providers. Returns: None. """ self._GetApi(provider).XmlPassThroughSetCors(cors_text, storage_url) def XmlPassThroughGetLifecycle(self, storage_url, provider=None): """XML compatibility function for getting lifecycle config on a bucket. Args: storage_url: StorageUrl object. provider: Cloud storage provider to connect to. If not present, class-wide default is used. Raises: ArgumentException for errors during input validation. ServiceException for errors interacting with cloud storage providers. Returns: Lifecycle configuration XML for the bucket specified by storage_url. """ return self._GetApi(provider).XmlPassThroughGetLifecycle(storage_url) def XmlPassThroughSetLifecycle(self, lifecycle_text, storage_url, provider=None): """XML compatibility function for setting lifecycle config on a bucket. Args: lifecycle_text: Raw lifecycle configuration XML string. storage_url: StorageUrl object. provider: Cloud storage provider to connect to. If not present, class-wide default is used. Raises: ArgumentException for errors during input validation. ServiceException for errors interacting with cloud storage providers. Returns: None. """ self._GetApi(provider).XmlPassThroughSetLifecycle(lifecycle_text, storage_url) def XmlPassThroughGetLogging(self, storage_url, provider=None): """XML compatibility function for getting logging configuration on a bucket. Args: storage_url: StorageUrl object. provider: Cloud storage provider to connect to. If not present, class-wide default is used. Raises: ArgumentException for errors during input validation. ServiceException for errors interacting with cloud storage providers. Returns: Logging configuration XML for the bucket specified by storage_url. """ return self._GetApi(provider).XmlPassThroughGetLogging(storage_url) def XmlPassThroughSetTagging(self, tags_text, storage_url, provider=None): """XML compatibility function for setting tagging configuration on a bucket. This passthrough provides support for setting a tagging configuration (equivalent to a label configuration) on a cloud bucket. Args: tags_text: Raw tagging configuration XML string. storage_url: StorageUrl object. provider: Cloud storage provider to connect to. If not present, class-wide default is used. Raises: ArgumentException for errors during input validation. ServiceException for errors interacting with cloud storage providers. Returns: None. """ return self._GetApi(provider).XmlPassThroughSetTagging( tags_text, storage_url) def XmlPassThroughGetTagging(self, storage_url, provider=None): """XML compatibility function for getting tagging configuration on a bucket. Args: storage_url: StorageUrl object. provider: Cloud storage provider to connect to. If not present, class-wide default is used. Raises: ArgumentException for errors during input validation. ServiceException for errors interacting with cloud storage providers. Returns: Tagging configuration XML for the bucket specified by storage_url. """ return self._GetApi(provider).XmlPassThroughGetTagging(storage_url) def XmlPassThroughGetWebsite(self, storage_url, provider=None): """XML compatibility function for getting website configuration on a bucket. Args: storage_url: StorageUrl object. provider: Cloud storage provider to connect to. If not present, class-wide default is used. Raises: ArgumentException for errors during input validation. ServiceException for errors interacting with cloud storage providers. Returns: Website configuration XML for the bucket specified by storage_url. """ return self._GetApi(provider).XmlPassThroughGetWebsite(storage_url)
#! /usr/bin/env python """Basic Model Interface implementation for deltaRCM.""" import types import numpy as np from bmi import Bmi from .deltaRCM import DeltaRCM class BmiDeltaRCM(Bmi): """Create deltas from random walks.""" _name = 'DeltaRCM' _input_var_names = ('surface__elevation',) _output_var_names = ('surface__elevation',) def __init__(self): """Create a BmiDeltaRCM model that is ready for initialization.""" self._model = None self._values = {} self._var_units = {} self._grids = {} self._grid_type = {} def initialize(self): """Initialize the deltaRCM model. Parameters ---------- filename : str, optional Path to name of input file. """ self._model = DeltaRCM() self._values = { 'surface__elevation': self._model.eta, } self._var_units = { 'surface__elevation': 'm' } self._grids = { 0: ['surface__elevation'] } self._grid_type = { 0: 'uniform_rectilinear_grid' } def update(self): """Advance model by one time step.""" self._model.advance_in_time() def update_frac(self, time_frac): """Update model by a fraction of a time step. Parameters ---------- time_frac : float Fraction fo a time step. """ time_step = self.get_time_step() self._model.time_step = time_frac * time_step Np_water = self._model.Np_water Np_sed = self._model.Np_sed self._model.Np_water = int(time_frac * Np_water) self._model.Np_sed = int(time_frac * Np_sed) self.update() self._model.time_step = time_step self._model.Np_water = Np_water self._model.Np_sed = Np_sed def update_until(self, then): """Update model until a particular time. Parameters ---------- then : float Time to run model until. """ n_steps = (then - self.get_current_time()) / self.get_time_step() for _ in xrange(int(n_steps)): self.update() self.update_frac(n_steps - int(n_steps)) def finalize(self): """Finalize model.""" self._model = None def get_var_type(self, var_name): """Data type of variable. Parameters ---------- var_name : str Name of variable as CSDMS Standard Name. Returns ------- str Data type. """ return str(self.get_value_ref(var_name).dtype) def get_var_units(self, var_name): """Get units of variable. Parameters ---------- var_name : str Name of variable as CSDMS Standard Name. Returns ------- str Variable units. """ return self._var_units[var_name] def get_var_nbytes(self, var_name): """Get units of variable. Parameters ---------- var_name : str Name of variable as CSDMS Standard Name. Returns ------- int Size of data array in bytes. """ return self.get_value_ref(var_name).nbytes def get_var_grid(self, var_name): """Grid id for a variable. Parameters ---------- var_name : str Name of variable as CSDMS Standard Name. Returns ------- int Grid id. """ for grid_id, var_name_list in self._grids.items(): if var_name in var_name_list: return grid_id def get_grid_rank(self, grid_id): """Rank of grid. Parameters ---------- grid_id : int Identifier of a grid. Returns ------- int Rank of grid. """ return len(self.get_grid_shape(grid_id)) def get_grid_size(self, grid_id): """Size of grid. Parameters ---------- grid_id : int Identifier of a grid. Returns ------- int Size of grid. """ return np.prod(self.get_grid_shape(grid_id)) def get_value_ref(self, var_name): """Reference to values. Parameters ---------- var_name : str Name of variable as CSDMS Standard Name. Returns ------- array_like Value array. """ return self._values[var_name] def get_value(self, var_name): """Copy of values. Parameters ---------- var_name : str Name of variable as CSDMS Standard Name. Returns ------- array_like Copy of values. """ return self.get_value_ref(var_name).copy() def get_value_at_indices(self, var_name, indices): """Get values at particular indices. Parameters ---------- var_name : str Name of variable as CSDMS Standard Name. indices : array_like Array of indices. Returns ------- array_like Values at indices. """ return self.get_value_ref(var_name).take(indices) def set_value(self, var_name, src): """Set model values. Parameters ---------- var_name : str Name of variable as CSDMS Standard Name. src : array_like Array of new values. """ val = self.get_value_ref(var_name) val[:] = src def set_value_at_indices(self, var_name, src, indices): """Set model values at particular indices. Parameters ---------- var_name : str Name of variable as CSDMS Standard Name. src : array_like Array of new values. indices : array_like Array of indices. """ val = self.get_value_ref(var_name) val.flat[indices] = src def get_component_name(self): """Name of the component.""" return self._name def get_input_var_names(self): """Get names of input variables.""" return self._input_var_names def get_output_var_names(self): """Get names of output variables.""" return self._output_var_names def get_grid_shape(self, grid_id): """Number of rows and columns of uniform rectilinear grid.""" var_name = self._grids[grid_id][0] return self.get_value_ref(var_name).shape def get_grid_spacing(self, grid_id): """Spacing of rows and columns of uniform rectilinear grid.""" return self._model.spacing def get_grid_origin(self, grid_id): """Origin of uniform rectilinear grid.""" return self._model.origin def get_grid_type(self, grid_id): """Type of grid.""" return self._grid_type[grid_id] def get_start_time(self): """Start time of model.""" return 0. def get_end_time(self): """End time of model.""" return np.finfo('d').max def get_current_time(self): """Current time of model.""" return self._model.time def get_time_step(self): """Time step of model.""" return self._model.time_step
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Common functions for BFGS and L-BFGS algorithm.""" import collections import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.optimizer import linesearch # A namedtuple to hold the point at which a line function is evaluated, the # value of the function, directional derivative, and full gradient evaluated # evaluated at that point. To be used with the linesearch method. ValueAndGradient = collections.namedtuple('ValueAndGradient', ['x', 'f', 'df', 'full_gradient']) def converged_any(converged, failed): """Condition to stop when any batch member converges, or all have failed.""" return tf.reduce_any(converged) | tf.reduce_all(failed) def converged_all(converged, failed): """Condition to stop when all batch members have converged or failed.""" return tf.reduce_all(converged | failed) def get_initial_state_args(value_and_gradients_function, initial_position, grad_tolerance, control_inputs=None): """Returns a dictionary to populate the initial state of the search procedure. Performs an initial convergence check and the first evaluation of the objective function. Args: value_and_gradients_function: A Python callable that accepts a tensor and returns a tuple of two tensors: the objective function value and its derivative. initial_position: The starting point of the search procedure. grad_tolerance: The gradient tolerance for the procedure. control_inputs: Optional ops used to assert the validity of inputs, these are added as control dependencies to execute before the objective function is evaluated for the first time. Returns: An dictionary with values for the following keys: converged: True if the convergence check finds that the initial position is already an argmin of the objective function. failed: Initialized to False. num_objective_evaluations: Initialized to 1. position: Initialized to the initial position. objective_value: Initialized to the value of the objective function at the initial position. objective_gradient: Initialized to the gradient of the objective function at the initial position. """ if control_inputs: with tf.control_dependencies(control_inputs): f0, df0 = value_and_gradients_function(initial_position) else: f0, df0 = value_and_gradients_function(initial_position) # This is a gradient-based convergence check. We only do it for finite # objective values because we assume the gradient reported at a position with # a non-finite objective value is untrustworthy. The main loop handles # non-finite objective values itself (see `terminate_if_not_finite`). init_converged = tf.math.is_finite(f0) & (norm(df0, dims=1) < grad_tolerance) return dict( converged=init_converged, failed=tf.zeros_like(init_converged), # i.e. False. num_iterations=tf.convert_to_tensor(0), num_objective_evaluations=tf.convert_to_tensor(1), position=initial_position, objective_value=f0, objective_gradient=df0) def terminate_if_not_finite(state, value=None, gradient=None): """Terminates optimization if the objective or gradient values are not finite. Specifically, - If the objective is -inf, stop with success, since this position is a global minimum. - Otherwise, if the objective or any component of the gradient is not finite, stop with failure. Why fail? - If the objective is nan, it could be a global minimum, but we can't know. - If the objective is +inf, we can't trust the gradient, so we can't know where to go next. This should only ever happen on the first iteration, because the line search avoids returning points whose objective values are +inf. - If the gradient has any nonfinite values, we can't use it to move a finite amount. Args: state: A BfgsOptimizerResults or LbfgsOptimizerResults representing the current position and information about it. value: A Tensor giving the value of the objective function. `state.objective_value` if not supplied. gradient: A Tensor giving the gradient of the objective function. `state.objective_gradient` if not supplied. Returns: state: A namedputple of the same type with possibly updated `converged` and `failed` fields. """ if value is None: value = state.objective_value if gradient is None: gradient = state.objective_gradient minus_inf_mask = _is_negative_inf(value) state = state._replace(converged=state.converged | minus_inf_mask) non_finite_mask = ( ~tf.math.is_finite(value) | tf.reduce_any(~tf.math.is_finite(gradient), axis=-1)) state = state._replace(failed=state.failed | (~state.converged & non_finite_mask)) return state def _is_negative_inf(x): return x <= tf.constant(float('-inf'), dtype=x.dtype) def line_search_step(state, value_and_gradients_function, search_direction, grad_tolerance, f_relative_tolerance, x_tolerance, stopping_condition, max_iterations, f_absolute_tolerance): """Performs the line search step of the BFGS search procedure. Uses hager_zhang line search procedure to compute a suitable step size to advance the current `state.position` along the given `search_direction`. Also, if the line search is successful, updates the `state.position` by taking the corresponding step. Args: state: A namedtuple instance holding values for the current state of the search procedure. The state must include the fields: `position`, `objective_value`, `objective_gradient`, `num_iterations`, `num_objective_evaluations`, `converged` and `failed`. value_and_gradients_function: A Python callable that accepts a point as a real `Tensor` of shape `[..., n]` and returns a tuple of two tensors of the same dtype: the objective function value, a real `Tensor` of shape `[...]`, and its derivative, another real `Tensor` of shape `[..., n]`. search_direction: A real `Tensor` of shape `[..., n]`. The direction along which to perform line search. grad_tolerance: Scalar `Tensor` of real dtype. Specifies the gradient tolerance for the procedure. f_relative_tolerance: Scalar `Tensor` of real dtype. Specifies the tolerance for the relative change in the objective value. x_tolerance: Scalar `Tensor` of real dtype. Specifies the tolerance for the change in the position. stopping_condition: A Python function that takes as input two Boolean tensors of shape `[...]`, and returns a Boolean scalar tensor. The input tensors are `converged` and `failed`, indicating the current status of each respective batch member; the return value states whether the algorithm should stop. max_iterations: A Python integer that is used as the maximum number of iterations of the hager_zhang line search algorithm f_absolute_tolerance: Scalar `Tensor` of real dtype. Specifies the tolerance for the absolute change in the objective value. Returns: A copy of the input state with the following fields updated: converged: a Boolean `Tensor` of shape `[...]` indicating whether the convergence criteria has been met. failed: a Boolean `Tensor` of shape `[...]` indicating whether the line search procedure failed to converge, or if either the updated gradient or objective function are no longer finite. num_iterations: Increased by 1. num_objective_evaluations: Increased by the number of times that the objective function got evaluated. position, objective_value, objective_gradient: If line search succeeded, updated by computing the new position and evaluating the objective function at that position. """ line_search_value_grad_func = _restrict_along_direction( value_and_gradients_function, state.position, search_direction) derivative_at_start_pt = tf.reduce_sum( state.objective_gradient * search_direction, axis=-1) val_0 = ValueAndGradient(x=_broadcast(0, state.position), f=state.objective_value, df=derivative_at_start_pt, full_gradient=state.objective_gradient) inactive = state.failed | state.converged ls_result = linesearch.hager_zhang( line_search_value_grad_func, initial_step_size=_broadcast(1, state.position), value_at_zero=val_0, converged=inactive, max_iterations=max_iterations) # No search needed for these. state_after_ls = update_fields( state, failed=state.failed | (~state.converged & ~ls_result.converged), num_iterations=state.num_iterations + 1, num_objective_evaluations=( state.num_objective_evaluations + ls_result.func_evals)) def _do_update_position(): # For inactive batch members `left.x` is zero. However, their # `search_direction` might also be undefined, so we can't rely on # multiplication by zero to produce a `position_delta` of zero. position_delta = tf.where( inactive[..., tf.newaxis], dtype_util.as_numpy_dtype(search_direction.dtype)(0), search_direction * ls_result.left.x[..., tf.newaxis]) return _update_position( state_after_ls, position_delta, ls_result.left.f, ls_result.left.full_gradient, grad_tolerance, f_relative_tolerance, x_tolerance, f_absolute_tolerance) # pyformat: disable return ps.cond( stopping_condition(state.converged, state.failed), true_fn=lambda: state_after_ls, false_fn=_do_update_position) def update_fields(state, **kwargs): """Copies the argument and overrides some of its fields. Args: state: A `collections.namedtuple` instance. **kwargs: Other named arguments represent fields in the tuple to override with new values. Returns: A namedtuple, of the same class as the input argument, with the updated fields. Raises: ValueError if the supplied kwargs contain fields not present in the input argument. """ return state._replace(**kwargs) def _restrict_along_direction(value_and_gradients_function, position, direction): """Restricts a function in n-dimensions to a given direction. Suppose f: R^n -> R. Then given a point x0 and a vector p0 in R^n, the restriction of the function along that direction is defined by: ```None g(t) = f(x0 + t * p0) ``` This function performs this restriction on the given function. In addition, it also computes the gradient of the restricted function along the restriction direction. This is equivalent to computing `dg/dt` in the definition above. Args: value_and_gradients_function: Callable accepting a single real `Tensor` argument of shape `[..., n]` and returning a tuple of a real `Tensor` of shape `[...]` and a real `Tensor` of shape `[..., n]`. The multivariate function whose restriction is to be computed. The output values of the callable are the function value and the gradients at the input argument. position: `Tensor` of real dtype and shape consumable by `value_and_gradients_function`. Corresponds to `x0` in the definition above. direction: `Tensor` of the same dtype and shape as `position`. The direction along which to restrict the function. Note that the direction need not be a unit vector. Returns: restricted_value_and_gradients_func: A callable accepting a tensor of shape broadcastable to `[...]` and same dtype as `position` and returning a namedtuple of `Tensors`. The input tensor is the parameter along the direction labelled `t` above. The return value contains fields: x: A real `Tensor` of shape `[...]`. The input value `t` where the line function was evaluated, after any necessary broadcasting. f: A real `Tensor` of shape `[...]` containing the value of the function at the point `position + t * direction`. df: A real `Tensor` of shape `[...]` containing the derivative at `position + t * direction`. full_gradient: A real `Tensor` of shape `[..., n]`, the full gradient of the original `value_and_gradients_function`. """ def _restricted_func(t): pt = position + t[..., tf.newaxis] * direction t = _broadcast(t, position) objective_value, gradient = value_and_gradients_function(pt) return ValueAndGradient( x=t, f=objective_value, df=tf.reduce_sum(gradient * direction, axis=-1), full_gradient=gradient) return _restricted_func def _update_position(state, position_delta, next_objective, next_gradient, grad_tolerance, f_relative_tolerance, x_tolerance, f_absolute_tolerance): # pyformat: disable """Updates the state advancing its position by a given position_delta.""" state = terminate_if_not_finite(state, next_objective, next_gradient) next_position = state.position + position_delta # pyformat: disable converged = ~state.failed & _check_convergence(state.position, next_position, state.objective_value, next_objective, next_gradient, grad_tolerance, f_relative_tolerance, x_tolerance, f_absolute_tolerance) # pyformat: enable return update_fields( state, converged=state.converged | converged, position=next_position, objective_value=next_objective, objective_gradient=next_gradient) def norm(value, dims, order=None): """Compute the norm of the given (possibly batched) value. Args: value: A `Tensor` of real dtype. dims: An Python integer with the number of non-batching dimensions in the value, i.e. `dims=0` (scalars), `dims=1` (vectors), `dims=2` (matrices). order: Order of the norm, defaults to `np.inf`. """ if dims == 0: return tf.math.abs(value) elif dims == 1: axis = -1 elif dims == 2: axis = [-1, -2] else: ValueError(dims) if order is None: order = np.inf return tf.norm(tensor=value, axis=axis, ord=order) def _check_convergence(current_position, next_position, current_objective, next_objective, next_gradient, grad_tolerance, f_relative_tolerance, x_tolerance, f_absolute_tolerance): # pyformat: disable """Checks if the algorithm satisfies the convergence criteria.""" grad_converged = norm(next_gradient, dims=1) <= grad_tolerance x_converged = norm(next_position - current_position, dims=1) <= x_tolerance f_relative_converged = ( norm(next_objective - current_objective, dims=0) <= f_relative_tolerance * current_objective) f_absolute_converged = ( norm(next_objective - current_objective, dims=0) <= f_absolute_tolerance) return (grad_converged | x_converged | f_relative_converged | f_absolute_converged) def _broadcast(value, target): """Broadcast a value to match the batching dimensions of a target. If necessary the value is converted into a tensor. Both value and target should be of the same dtype. Args: value: A value to broadcast. target: A `Tensor` of shape [b1, ..., bn, d]. Returns: A `Tensor` of shape [b1, ..., bn] and same dtype as the target. """ return tf.broadcast_to( tf.convert_to_tensor(value, dtype=target.dtype), ps.shape(target)[:-1])
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Strategy combinations for combinations.combine().""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python import tf2 from tensorflow.python.distribute import central_storage_strategy from tensorflow.python.distribute import cluster_resolver from tensorflow.python.distribute import collective_all_reduce_strategy from tensorflow.python.distribute import combinations from tensorflow.python.distribute import distribution_strategy_context from tensorflow.python.distribute import mirrored_strategy as mirrored_lib from tensorflow.python.distribute import multi_process_runner from tensorflow.python.distribute import multi_worker_test_base from tensorflow.python.distribute import one_device_strategy as one_device_lib from tensorflow.python.distribute import test_util from tensorflow.python.distribute import tpu_strategy as tpu_lib from tensorflow.python.distribute.cluster_resolver import tpu_cluster_resolver from tensorflow.python.eager import context from tensorflow.python.eager import remote from tensorflow.python.platform import flags from tensorflow.python.tpu import device_assignment as device_assignment_lib from tensorflow.python.tpu import tpu_strategy_util from tensorflow.python.util.tf_export import tf_export _TF_INTERNAL_API_PREFIX = "__internal__.distribute.combinations." _did_connect_to_cluster = False CollectiveAllReduceExtended = ( collective_all_reduce_strategy.CollectiveAllReduceExtended) def _version_chooser(tf1_cls, tf2_cls): def creator(*args, **kwargs): if tf2.enabled(): return tf2_cls(*args, **kwargs) return tf1_cls(*args, **kwargs) return creator MirroredStrategy = _version_chooser(mirrored_lib.MirroredStrategyV1, mirrored_lib.MirroredStrategy) CentralStorageStrategy = _version_chooser( central_storage_strategy.CentralStorageStrategyV1, central_storage_strategy.CentralStorageStrategy) OneDeviceStrategy = _version_chooser(one_device_lib.OneDeviceStrategyV1, one_device_lib.OneDeviceStrategy) # Only V2 CollectiveAllReduceStrategy combinations are supported. CollectiveAllReduceStrategy = ( collective_all_reduce_strategy.CollectiveAllReduceStrategy) # pylint: disable=missing-docstring def _get_tpu_strategy_creator(steps_per_run, use_single_core=False, enable_packed_variable=False, **kwargs): def _create_tpu_strategy(): FLAGS = flags.FLAGS # pylint: disable=invalid-name global _did_connect_to_cluster try: # Attempt to locally discover the TPU. This will fail for Cloud TPU, in # which case we fall back to the values passed as flags. resolver = tpu_cluster_resolver.TPUClusterResolver() did_automatically_resolve = True except ValueError: did_automatically_resolve = False # These flags will be defined by tpu_test_wrapper.py. resolver = tpu_cluster_resolver.TPUClusterResolver( tpu=hasattr(FLAGS, "tpu") and FLAGS.tpu or "", zone=hasattr(FLAGS, "zone") and FLAGS.zone or None, project=hasattr(FLAGS, "project") and FLAGS.project or None, ) # Only connect once per process, rather than per test method. if getattr(FLAGS, "tpu", "") or did_automatically_resolve: if not _did_connect_to_cluster: remote.connect_to_cluster(resolver) _did_connect_to_cluster = True topology = tpu_strategy_util.initialize_tpu_system(resolver) device_assignment = None if use_single_core: device_assignment = device_assignment_lib.DeviceAssignment( topology, core_assignment=device_assignment_lib.SINGLE_CORE_ASSIGNMENT) # Steps per run is only supported in TF 1.x if tf2.enabled(): strategy = tpu_lib.TPUStrategy(resolver, device_assignment, **kwargs) else: strategy = tpu_lib.TPUStrategyV1(resolver, steps_per_run, device_assignment, **kwargs) strategy._enable_packed_variable_in_eager_mode = enable_packed_variable # pylint: disable=protected-access return strategy return _create_tpu_strategy def _get_multi_worker_mirrored_creator(required_gpus): def _create_multi_worker_mirrored(): tf_config = cluster_resolver.TFConfigClusterResolver() master = tf_config.master() if tf_config.rpc_layer: # Strip off the rpc_layer suffix. master = master[len("%s://" % tf_config.rpc_layer):] resolver = cluster_resolver.SimpleClusterResolver( cluster_spec=tf_config.cluster_spec(), task_type=tf_config.task_type, task_id=tf_config.task_id, master=master, environment=tf_config.environment, num_accelerators={"GPU": required_gpus}, rpc_layer=tf_config.rpc_layer or "grpc", ) # Disable health check. We don't have a reliable to shutdown the strategy # (and thus the health check) at the end of a test. Turning on health check # causes some flakiness since we re-create part of the server when creating # a strategy, and our tests are capable of handling failures. CollectiveAllReduceExtended._enable_check_health = False # pylint: disable=protected-access # Always create the strategy in eager mode so that it starts the server and # configures the eager context. The eager context can no longer be # configured after initialization. with context.eager_mode(): strategy = CollectiveAllReduceStrategy(cluster_resolver=resolver) # TODO(b/152320929): Wait for the cluster before proceeding, otherwise # collectives may hang if any worker launches collectives before the chief # creates the strategy. try: multi_process_runner.get_barrier().wait() except ValueError: # If the creator is called in the main process, # multi_process_runner.get_barrier() raises ValueError, which is safe to # ignore. pass return strategy return _create_multi_worker_mirrored def _deferred_pool_runner(has_chief, num_workers, initializer=None): """Returns a callable that returns the pool runner. It creates the pool runner only upon first invocation. This avoids creating it when this file is imported. Args: has_chief: whether there should be a chief. num_workers: the number of workers excluding the chief. initializer: initializer of each process. Returns: A callable that returns the runner. """ container = [] def get_or_create(): if not container: cluster_spec = multi_worker_test_base.create_cluster_spec( has_chief=has_chief, num_workers=num_workers, num_ps=0, has_eval=False) runner = multi_process_runner.MultiProcessPoolRunner( cluster_spec, initializer=initializer) container.append(runner) return container[0] return get_or_create # We need to create the strategy in the initializer to start the server before # any test runs. _two_worker_pool = _deferred_pool_runner( has_chief=True, num_workers=1, initializer=_get_multi_worker_mirrored_creator(required_gpus=0)) _four_worker_pool = _deferred_pool_runner( has_chief=True, num_workers=3, initializer=_get_multi_worker_mirrored_creator(required_gpus=0)) # pylint: disable=g-long-lambda default_strategy = combinations.NamedDistribution( "Default", distribution_strategy_context._get_default_strategy, # pylint: disable=protected-access required_gpus=None) one_device_strategy = combinations.NamedDistribution( "OneDeviceCPU", lambda: OneDeviceStrategy("/cpu:0"), required_gpus=None) one_device_strategy_gpu = combinations.NamedDistribution( "OneDeviceGPU", lambda: OneDeviceStrategy("/gpu:0"), required_gpus=1) one_device_strategy_on_worker_1 = combinations.NamedDistribution( "OneDeviceOnWorker1CPU", lambda: OneDeviceStrategy("/job:worker/replica:0/task:1/cpu:0"), required_gpus=None) one_device_strategy_gpu_on_worker_1 = combinations.NamedDistribution( "OneDeviceOnWorker1GPU", lambda: OneDeviceStrategy("/job:worker/replica:0/task:1/gpu:0"), required_gpus=1) tpu_strategy = combinations.NamedDistribution( "TPU", _get_tpu_strategy_creator(steps_per_run=2), required_tpu=True) tpu_strategy_packed_var = combinations.NamedDistribution( "TPUPackedVar", _get_tpu_strategy_creator(steps_per_run=2, enable_packed_variable=True), required_tpu=True) tpu_strategy_one_step = combinations.NamedDistribution( "TPUOneStep", _get_tpu_strategy_creator(steps_per_run=1), required_tpu=True) tpu_strategy_one_core = combinations.NamedDistribution( "TPUOneCore", _get_tpu_strategy_creator(steps_per_run=2, use_single_core=True), required_tpu=True) tpu_strategy_one_step_one_core = combinations.NamedDistribution( "TPUOneStepOneCore", _get_tpu_strategy_creator(steps_per_run=1, use_single_core=True), required_tpu=True) cloud_tpu_strategy = combinations.NamedDistribution( "CloudTPU", _get_tpu_strategy_creator(steps_per_run=2), required_tpu=True, use_cloud_tpu=True) mirrored_strategy_with_one_cpu = combinations.NamedDistribution( "Mirrored1CPU", lambda: MirroredStrategy(["/cpu:0"])) mirrored_strategy_with_one_gpu = combinations.NamedDistribution( "Mirrored1GPU", lambda: MirroredStrategy(["/gpu:0"]), required_gpus=1) mirrored_strategy_with_gpu_and_cpu = combinations.NamedDistribution( "MirroredCPUAndGPU", lambda: MirroredStrategy(["/gpu:0", "/cpu:0"]), required_gpus=1) mirrored_strategy_with_two_gpus = combinations.NamedDistribution( "Mirrored2GPUs", lambda: MirroredStrategy(["/gpu:0", "/gpu:1"]), required_gpus=2) # Should call set_virtual_cpus_to_at_least(3) in your test's setUp methods. mirrored_strategy_with_cpu_1_and_2 = combinations.NamedDistribution( "Mirrored2CPU", lambda: MirroredStrategy(["/cpu:1", "/cpu:2"])) mirrored_strategy_with_cpu_1_and_2.__doc__ = ( """Mirrored strategy with 2 virtual CPUs. Should set up logical devices before use """) central_storage_strategy_with_two_gpus = combinations.NamedDistribution( "CentralStorage2GPUs", lambda: CentralStorageStrategy(["/gpu:0", "/gpu:1"]), required_gpus=2) central_storage_strategy_with_gpu_and_cpu = combinations.NamedDistribution( "CentralStorageCPUAndGPU", lambda: CentralStorageStrategy(["/gpu:0", "/cpu:0"]), required_gpus=1) # chief + 1 worker, with CPU. multi_worker_mirrored_2x1_cpu = combinations.NamedDistribution( "MultiWorkerMirrored2x1CPU", _get_multi_worker_mirrored_creator(required_gpus=0), has_chief=True, num_workers=1, pool_runner_fn=_two_worker_pool, no_xla=True, ) # chief + 1 worker, with 1 GPU each. multi_worker_mirrored_2x1_gpu = combinations.NamedDistribution( "MultiWorkerMirrored2x1GPU", _get_multi_worker_mirrored_creator(required_gpus=1), has_chief=True, num_workers=1, required_gpus=1, pool_runner_fn=_two_worker_pool, no_xla=True, ) # chief + 1 worker, with 2 GPU each. multi_worker_mirrored_2x2_gpu = combinations.NamedDistribution( "MultiWorkerMirrored2x2GPU", _get_multi_worker_mirrored_creator(required_gpus=2), has_chief=True, num_workers=1, required_gpus=2, pool_runner_fn=_two_worker_pool, no_xla=True, ) # chief + 3 workers, with CPU. multi_worker_mirrored_4x1_cpu = combinations.NamedDistribution( "MultiWorkerMirrored4x1CPU", _get_multi_worker_mirrored_creator(required_gpus=0), has_chief=True, num_workers=3, pool_runner_fn=_four_worker_pool, no_xla=True, ) graph_and_eager_modes = ["graph", "eager"] # TODO(crccw): remove after tf-nightly picks up the new API. def set_virtual_cpus_to_at_least(num_virtual_cpus): test_util.set_logical_devices_to_at_least("CPU", num_virtual_cpus) strategies_minus_tpu = [ default_strategy, one_device_strategy, one_device_strategy_gpu, mirrored_strategy_with_gpu_and_cpu, mirrored_strategy_with_two_gpus, central_storage_strategy_with_gpu_and_cpu, ] strategies_minus_default_and_tpu = [ one_device_strategy, one_device_strategy_gpu, mirrored_strategy_with_gpu_and_cpu, mirrored_strategy_with_two_gpus, ] tpu_strategies = [ tpu_strategy, # steps_per_run=2 tpu_strategy_one_step, tpu_strategy_packed_var, cloud_tpu_strategy, ] all_strategies_minus_default = strategies_minus_default_and_tpu + tpu_strategies all_strategies = strategies_minus_tpu + tpu_strategies two_replica_strategies = [ mirrored_strategy_with_gpu_and_cpu, mirrored_strategy_with_two_gpus, multi_worker_mirrored_2x1_cpu, multi_worker_mirrored_2x1_gpu, tpu_strategy, # steps_per_run=2 tpu_strategy_one_step, central_storage_strategy_with_gpu_and_cpu, ] four_replica_strategies = [ multi_worker_mirrored_2x2_gpu, multi_worker_mirrored_4x1_cpu, ] # TODO(b/159831907): replace with two_replica_strategies after the tests using # it work with MWMS. multidevice_strategies = [ mirrored_strategy_with_gpu_and_cpu, mirrored_strategy_with_two_gpus, tpu_strategy, # steps_per_run=2 tpu_strategy_one_step ] multiworker_strategies = [ multi_worker_mirrored_2x1_cpu, multi_worker_mirrored_2x1_gpu, multi_worker_mirrored_2x2_gpu ] def strategy_minus_tpu_combinations(): return combinations.combine( distribution=strategies_minus_tpu, mode=["graph", "eager"]) def tpu_strategy_combinations(): return combinations.combine(distribution=tpu_strategies, mode=["graph"]) def all_strategy_combinations(): return strategy_minus_tpu_combinations() + tpu_strategy_combinations() def all_strategy_minus_default_and_tpu_combinations(): return combinations.combine( distribution=[ one_device_strategy, one_device_strategy_gpu, mirrored_strategy_with_gpu_and_cpu, mirrored_strategy_with_two_gpus ], mode=["graph", "eager"]) def all_strategy_combinations_minus_default(): return (all_strategy_minus_default_and_tpu_combinations() + tpu_strategy_combinations()) tf_export( _TF_INTERNAL_API_PREFIX + "central_storage_strategy_with_gpu_and_cpu", v1=[]).export_constant(__name__, "central_storage_strategy_with_gpu_and_cpu") tf_export( _TF_INTERNAL_API_PREFIX + "central_storage_strategy_with_two_gpus", v1=[]).export_constant(__name__, "central_storage_strategy_with_two_gpus") tf_export( _TF_INTERNAL_API_PREFIX + "cloud_tpu_strategy", v1=[]).export_constant(__name__, "cloud_tpu_strategy") tf_export( _TF_INTERNAL_API_PREFIX + "default_strategy", v1=[]).export_constant(__name__, "default_strategy") tf_export( _TF_INTERNAL_API_PREFIX + "mirrored_strategy_with_cpu_1_and_2", v1=[]).export_constant(__name__, "mirrored_strategy_with_cpu_1_and_2") tf_export( _TF_INTERNAL_API_PREFIX + "mirrored_strategy_with_gpu_and_cpu", v1=[]).export_constant(__name__, "mirrored_strategy_with_gpu_and_cpu") tf_export( _TF_INTERNAL_API_PREFIX + "mirrored_strategy_with_one_cpu", v1=[]).export_constant(__name__, "mirrored_strategy_with_one_cpu") tf_export( _TF_INTERNAL_API_PREFIX + "mirrored_strategy_with_one_gpu", v1=[]).export_constant(__name__, "mirrored_strategy_with_one_gpu") tf_export( _TF_INTERNAL_API_PREFIX + "mirrored_strategy_with_two_gpus", v1=[]).export_constant(__name__, "mirrored_strategy_with_two_gpus") tf_export( _TF_INTERNAL_API_PREFIX + "multi_worker_mirrored_2x1_cpu", v1=[]).export_constant(__name__, "multi_worker_mirrored_2x1_cpu") tf_export( _TF_INTERNAL_API_PREFIX + "multi_worker_mirrored_2x1_gpu", v1=[]).export_constant(__name__, "multi_worker_mirrored_2x1_gpu") tf_export( _TF_INTERNAL_API_PREFIX + "multi_worker_mirrored_2x2_gpu", v1=[]).export_constant(__name__, "multi_worker_mirrored_2x2_gpu") tf_export( _TF_INTERNAL_API_PREFIX + "one_device_strategy", v1=[]).export_constant(__name__, "one_device_strategy") tf_export( _TF_INTERNAL_API_PREFIX + "one_device_strategy_gpu", v1=[]).export_constant(__name__, "one_device_strategy_gpu") tf_export( _TF_INTERNAL_API_PREFIX + "tpu_strategy", v1=[]).export_constant(__name__, "tpu_strategy") tf_export( _TF_INTERNAL_API_PREFIX + "tpu_strategy_one_core", v1=[]).export_constant(__name__, "tpu_strategy_one_core") tf_export( _TF_INTERNAL_API_PREFIX + "tpu_strategy_packed_var", v1=[]).export_constant(__name__, "tpu_strategy_packed_var")
import param import numpy as np from ..core import Dimension, Dataset, NdOverlay from ..core.operation import Operation from ..core.util import basestring, cartesian_product, isfinite from ..element import (Curve, Area, Image, Distribution, Bivariate, Contours, Polygons) from .element import contours def _kde_support(bin_range, bw, gridsize, cut, clip): """Establish support for a kernel density estimate.""" kmin, kmax = bin_range[0] - bw * cut, bin_range[1] + bw * cut if isfinite(clip[0]): kmin = max(kmin, clip[0]) if isfinite(clip[1]): kmax = min(kmax, clip[1]) return np.linspace(kmin, kmax, gridsize) class univariate_kde(Operation): """ Computes a 1D kernel density estimate (KDE) along the supplied dimension. Kernel density estimation is a non-parametric way to estimate the probability density function of a random variable. The KDE works by placing a Gaussian kernel at each sample with the supplied bandwidth. These kernels are then summed to produce the density estimate. By default a good bandwidth is determined using the bw_method but it may be overridden by an explicit value. """ bw_method = param.ObjectSelector(default='scott', objects=['scott', 'silverman'], doc=""" Method of automatically determining KDE bandwidth""") bandwidth = param.Number(default=None, doc=""" Allows supplying explicit bandwidth value rather than relying on scott or silverman method.""") cut = param.Number(default=3, doc=""" Draw the estimate to cut * bw from the extreme data points.""") bin_range = param.NumericTuple(default=None, length=2, doc=""" Specifies the range within which to compute the KDE.""") dimension = param.String(default=None, doc=""" Along which dimension of the Element to compute the KDE.""") filled = param.Boolean(default=True, doc=""" Controls whether to return filled or unfilled KDE.""") n_samples = param.Integer(default=100, doc=""" Number of samples to compute the KDE over.""") groupby = param.ClassSelector(default=None, class_=(basestring, Dimension), doc=""" Defines a dimension to group the Histogram returning an NdOverlay of Histograms.""") def _process(self, element, key=None): if self.p.groupby: if not isinstance(element, Dataset): raise ValueError('Cannot use histogram groupby on non-Dataset Element') grouped = element.groupby(self.p.groupby, group_type=Dataset, container_type=NdOverlay) self.p.groupby = None return grouped.map(self._process, Dataset) try: from scipy import stats from scipy.linalg import LinAlgError except ImportError: raise ImportError('%s operation requires SciPy to be installed.' % type(self).__name__) params = {} if isinstance(element, Distribution): selected_dim = element.kdims[0] if element.group != type(element).__name__: params['group'] = element.group params['label'] = element.label vdim = element.vdims[0] vdim_name = '{}_density'.format(selected_dim.name) vdims = [vdim(vdim_name, label='Density') if vdim.name == 'Density' else vdim] else: if self.p.dimension: selected_dim = element.get_dimension(self.p.dimension) else: dimensions = element.vdims+element.kdims if not dimensions: raise ValueError("%s element does not declare any dimensions " "to compute the kernel density estimate on." % type(element).__name__) selected_dim = dimensions[0] vdim_name = '{}_density'.format(selected_dim.name) vdims = [Dimension(vdim_name, label='Density')] data = element.dimension_values(selected_dim) bin_range = self.p.bin_range or element.range(selected_dim) if bin_range == (0, 0) or any(not isfinite(r) for r in bin_range): bin_range = (0, 1) elif bin_range[0] == bin_range[1]: bin_range = (bin_range[0]-0.5, bin_range[1]+0.5) element_type = Area if self.p.filled else Curve data = data[isfinite(data)] if len(data) else [] if len(data) > 1: try: kde = stats.gaussian_kde(data) except LinAlgError: return element_type([], selected_dim, vdims, **params) if self.p.bandwidth: kde.set_bandwidth(self.p.bandwidth) bw = kde.scotts_factor() * data.std(ddof=1) if self.p.bin_range: xs = np.linspace(bin_range[0], bin_range[1], self.p.n_samples) else: xs = _kde_support(bin_range, bw, self.p.n_samples, self.p.cut, selected_dim.range) ys = kde.evaluate(xs) else: xs = np.linspace(bin_range[0], bin_range[1], self.p.n_samples) ys = np.full_like(xs, 0) return element_type((xs, ys), kdims=[selected_dim], vdims=vdims, **params) class bivariate_kde(Operation): """ Computes a 2D kernel density estimate (KDE) of the first two dimensions in the input data. Kernel density estimation is a non-parametric way to estimate the probability density function of a random variable. The KDE works by placing 2D Gaussian kernel at each sample with the supplied bandwidth. These kernels are then summed to produce the density estimate. By default a good bandwidth is determined using the bw_method but it may be overridden by an explicit value. """ contours = param.Boolean(default=True, doc=""" Whether to compute contours from the KDE, determines whether to return an Image or Contours/Polygons.""") bw_method = param.ObjectSelector(default='scott', objects=['scott', 'silverman'], doc=""" Method of automatically determining KDE bandwidth""") bandwidth = param.Number(default=None, doc=""" Allows supplying explicit bandwidth value rather than relying on scott or silverman method.""") cut = param.Number(default=3, doc=""" Draw the estimate to cut * bw from the extreme data points.""") filled = param.Boolean(default=False, doc=""" Controls whether to return filled or unfilled contours.""") levels = param.ClassSelector(default=10, class_=(list, int), doc=""" A list of scalar values used to specify the contour levels.""") n_samples = param.Integer(default=100, doc=""" Number of samples to compute the KDE over.""") x_range = param.NumericTuple(default=None, length=2, doc=""" The x_range as a tuple of min and max x-value. Auto-ranges if set to None.""") y_range = param.NumericTuple(default=None, length=2, doc=""" The x_range as a tuple of min and max y-value. Auto-ranges if set to None.""") def _process(self, element, key=None): try: from scipy import stats except ImportError: raise ImportError('%s operation requires SciPy to be installed.' % type(self).__name__) if len(element.dimensions()) < 2: raise ValueError("bivariate_kde can only be computed on elements " "declaring at least two dimensions.") xdim, ydim = element.dimensions()[:2] params = {} if isinstance(element, Bivariate): if element.group != type(element).__name__: params['group'] = element.group params['label'] = element.label vdim = element.vdims[0] else: vdim = 'Density' data = element.array([0, 1]).T xmin, xmax = self.p.x_range or element.range(0) ymin, ymax = self.p.y_range or element.range(1) if any(not isfinite(v) for v in (xmin, xmax)): xmin, xmax = -0.5, 0.5 elif xmin == xmax: xmin, xmax = xmin-0.5, xmax+0.5 if any(not isfinite(v) for v in (ymin, ymax)): ymin, ymax = -0.5, 0.5 elif ymin == ymax: ymin, ymax = ymin-0.5, ymax+0.5 data = data[:, isfinite(data).min(axis=0)] if data.shape[1] > 1 else np.empty((2, 0)) if data.shape[1] > 1: kde = stats.gaussian_kde(data) if self.p.bandwidth: kde.set_bandwidth(self.p.bandwidth) bw = kde.scotts_factor() * data.std(ddof=1) if self.p.x_range: xs = np.linspace(xmin, xmax, self.p.n_samples) else: xs = _kde_support((xmin, xmax), bw, self.p.n_samples, self.p.cut, xdim.range) if self.p.y_range: ys = np.linspace(ymin, ymax, self.p.n_samples) else: ys = _kde_support((ymin, ymax), bw, self.p.n_samples, self.p.cut, ydim.range) xx, yy = cartesian_product([xs, ys], False) positions = np.vstack([xx.ravel(), yy.ravel()]) f = np.reshape(kde(positions).T, xx.shape) elif self.p.contours: eltype = Polygons if self.p.filled else Contours return eltype([], kdims=[xdim, ydim], vdims=[vdim]) else: xs = np.linspace(xmin, xmax, self.p.n_samples) ys = np.linspace(ymin, ymax, self.p.n_samples) f = np.zeros((self.p.n_samples, self.p.n_samples)) img = Image((xs, ys, f.T), kdims=element.dimensions()[:2], vdims=[vdim], **params) if self.p.contours: cntr = contours(img, filled=self.p.filled, levels=self.p.levels) return cntr.clone(cntr.data[1:], **params) return img
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from subprocess import check_call from tests.beeswax.impala_beeswax import ImpalaBeeswaxException from tests.common.impala_test_suite import ImpalaTestSuite from tests.common.test_dimensions import create_single_exec_option_dimension from tests.common.test_dimensions import create_uncompressed_text_dimension from tests.common.skip import SkipIfS3, SkipIfIsilon, SkipIfLocal from tests.util.filesystem_utils import get_fs_path @SkipIfS3.hive @SkipIfIsilon.hive @SkipIfLocal.hive class TestRefreshPartition(ImpalaTestSuite): """ This class tests the functionality to refresh a partition individually for a table in HDFS """ @classmethod def get_workload(self): return 'functional-query' @classmethod def add_test_dimensions(cls): super(TestRefreshPartition, cls).add_test_dimensions() # There is no reason to run these tests using all dimensions. cls.ImpalaTestMatrix.add_dimension(create_single_exec_option_dimension()) cls.ImpalaTestMatrix.add_dimension( create_uncompressed_text_dimension(cls.get_workload())) def test_add_hive_partition_and_refresh(self, vector, unique_database): """ Partition added in Hive can be viewed in Impala after refreshing partition. """ table_name = unique_database + '.' + "partition_test_table" self.client.execute( 'create table %s (x int) partitioned by (y int, z int)' % table_name) assert [] == self.get_impala_partition_info(table_name, 'y', 'z') self.run_stmt_in_hive( 'alter table %s add partition (y=333, z=5309)' % table_name) # Make sure Impala can't see the partition yet assert [] == self.get_impala_partition_info(table_name, 'y', 'z') self.client.execute('refresh %s partition (y=333, z=5309)' % table_name) # Impala can see the partition assert [('333', '5309')] == self.get_impala_partition_info(table_name, 'y', 'z') # Impala's refresh didn't alter Hive's knowledge of the partition assert ['y=333/z=5309'] == self.hive_partition_names(table_name) def test_drop_hive_partition_and_refresh(self, vector, unique_database): """ Partition dropped in Hive is removed in Impala as well after refreshing partition. """ table_name = unique_database + '.' + "partition_test_table" self.client.execute( 'create table %s (x int) partitioned by (y int, z int)' % table_name) self.client.execute( 'alter table %s add partition (y=333, z=5309)' % table_name) assert [('333', '5309')] == self.get_impala_partition_info(table_name, 'y', 'z') self.run_stmt_in_hive( 'alter table %s drop partition (y=333, z=5309)' % table_name) # Make sure Impala can still see the partition assert [('333', '5309')] == self.get_impala_partition_info(table_name, 'y', 'z') self.client.execute('refresh %s partition (y=333, z=5309)' % table_name) # Impala can see the partition is not there anymore assert [] == self.get_impala_partition_info(table_name, 'y', 'z') # Impala's refresh didn't alter Hive's knowledge of the partition assert [] == self.hive_partition_names(table_name) def test_add_data_and_refresh(self, vector, unique_database): """ Data added through hive is visible in impala after refresh of partition. """ table_name = unique_database + '.' + "partition_test_table" self.client.execute( 'create table %s (x int) partitioned by (y int, z int)' % table_name) self.client.execute( 'alter table %s add partition (y=333, z=5309)' % table_name) result = self.client.execute("select count(*) from %s" % table_name) assert result.data == [str('0')] self.run_stmt_in_hive( 'insert into table %s partition (y=333, z=5309) values (2)' % table_name) # Make sure its still shows the same result before refreshing result = self.client.execute("select count(*) from %s" % table_name) assert result.data == [str('0')] self.client.execute('refresh %s partition (y=333, z=5309)' % table_name) assert '2\t333\t5309' == self.client.execute( 'select * from %s' % table_name).get_data() def test_refresh_invalid_partition(self, vector, unique_database): """ Trying to refresh a partition that does not exist does not modify anything either in impala or hive. """ table_name = unique_database + '.' + "partition_test_table" self.client.execute( 'create table %s (x int) partitioned by (y int, z int)' % table_name) self.client.execute( 'alter table %s add partition (y=333, z=5309)' % table_name) assert [('333', '5309')] == self.get_impala_partition_info(table_name, 'y', 'z') assert ['y=333/z=5309'] == self.hive_partition_names(table_name) self.client.execute('refresh %s partition (y=71, z=8857)' % table_name) assert [('333', '5309')] == self.get_impala_partition_info(table_name, 'y', 'z') assert ['y=333/z=5309'] == self.hive_partition_names(table_name) def test_remove_data_and_refresh(self, vector, unique_database): """ Data removed through hive is visible in impala after refresh of partition. """ expected_error = 'Error(2): No such file or directory' table_name = unique_database + '.' + "partition_test_table" self.client.execute( 'create table %s (x int) partitioned by (y int, z int)' % table_name) self.client.execute( 'alter table %s add partition (y=333, z=5309)' % table_name) self.client.execute( 'insert into table %s partition (y=333, z=5309) values (2)' % table_name) assert '2\t333\t5309' == self.client.execute( 'select * from %s' % table_name).get_data() self.run_stmt_in_hive( 'alter table %s drop partition (y=333, z=5309)' % table_name) # Query the table and check for expected error. try: self.client.execute("select * from %s" % table_name) assert False, "Query was expected to fail" except ImpalaBeeswaxException as e: assert expected_error in str(e) self.client.execute('refresh %s partition (y=333, z=5309)' % table_name) result = self.client.execute("select count(*) from %s" % table_name) assert result.data == [str('0')] def test_add_delete_data_to_hdfs_and_refresh(self, vector, unique_database): """ Data added/deleted directly in HDFS is visible in impala after refresh of partition. """ table_name = unique_database + '.' + "partition_test_table" table_location = get_fs_path("/test-warehouse/%s" % unique_database) file_name = "alltypes.parq" src_file = get_fs_path("/test-warehouse/alltypesagg_parquet/year=2010/month=1/" "day=9/*.parq") file_num_rows = 1000 self.client.execute(""" create table %s like functional.alltypes stored as parquet location '%s' """ % (table_name, table_location)) self.client.execute("alter table %s add partition (year=2010, month=1)" % table_name) self.client.execute("refresh %s" % table_name) # Check that there is no data in table result = self.client.execute("select count(*) from %s" % table_name) assert result.data == [str(0)] dst_path = "%s/year=2010/month=1/%s" % (table_location, file_name) check_call(["hadoop", "fs", "-cp", "-f", src_file, dst_path], shell=False) # Check that data added is not visible before refresh result = self.client.execute("select count(*) from %s" % table_name) assert result.data == [str(0)] # Chech that data is visible after refresh self.client.execute("refresh %s partition (year=2010, month=1)" % table_name) result = self.client.execute("select count(*) from %s" % table_name) assert result.data == [str(file_num_rows)] # Check that after deleting the file and refreshing, it returns zero rows check_call(["hadoop", "fs", "-rm", dst_path], shell=False) self.client.execute("refresh %s partition (year=2010, month=1)" % table_name) result = self.client.execute("select count(*) from %s" % table_name) assert result.data == [str(0)] def test_confirm_individual_refresh(self, vector, unique_database): """ Data added directly to HDFS is only visible for the partition refreshed """ table_name = unique_database + '.' + "partition_test_table" table_location = get_fs_path("/test-warehouse/%s" % unique_database) file_name = "alltypes.parq" src_file = get_fs_path("/test-warehouse/alltypesagg_parquet/year=2010/month=1/" "day=9/*.parq") file_num_rows = 1000 self.client.execute(""" create table %s like functional.alltypes stored as parquet location '%s' """ % (table_name, table_location)) for month in [1, 2]: self.client.execute("alter table %s add partition (year=2010, month=%s)" % (table_name, month)) self.client.execute("refresh %s" % table_name) # Check that there is no data in table result = self.client.execute("select count(*) from %s" % table_name) assert result.data == [str(0)] dst_path = table_location + "/year=2010/month=%s/" + file_name for month in [1, 2]: check_call(["hadoop", "fs", "-cp", "-f", src_file, dst_path % month], shell=False) # Check that data added is not visible before refresh result = self.client.execute("select count(*) from %s" % table_name) assert result.data == [str(0)] # Check that data is visible after refresh on the first partition only self.client.execute("refresh %s partition (year=2010, month=1)" % table_name) result = self.client.execute("select count(*) from %s" % table_name) assert result.data == [str(file_num_rows)] # Check that the data is not yet visible for the second partition # that was not refreshed result = self.client.execute( "select count(*) from %s where year=2010 and month=2" % table_name) assert result.data == [str(0)] # Check that data is visible for the second partition after refresh self.client.execute("refresh %s partition (year=2010, month=2)" % table_name) result = self.client.execute("select count(*) from %s" % table_name) assert result.data == [str(file_num_rows*2)]
"""various utility functions""" import os.path import sys import platform import multiprocessing import yaml from mod import log host_platforms = { 'Darwin': 'osx', 'Linux': 'linux', 'Windows': 'win' } #------------------------------------------------------------------------------- def fix_path(path) : """if on Windows, replace backslashes in path with forward slashes :param path: input path :returns: fixed up path """ return path.replace('\\', '/') #------------------------------------------------------------------------------- def get_workspace_dir(fips_dir) : """get workspace (parent) dir from fips dir :param fips_dir: absolute path to fips :returns: absolute path to workspace (parent dir of fips) """ return os.path.split(fips_dir)[0] #------------------------------------------------------------------------------- def get_project_dir(fips_dir, proj_name) : """get absolute path to project directory in same workspace as fips :param fips_dir: absolute path of fips :param proj_name: project name :returns: absolute path to project in same directory as fips """ return get_workspace_dir(fips_dir) + '/' + proj_name #------------------------------------------------------------------------------- def get_build_dir(fips_dir, proj_name, cfg) : """get absolute path to build directory in same workspace as fips for given configuration :param fips_dir: absolute path of fips :param proj_name: project name :param cfg: build config name (or config object for backward compatibility) :returns: absolute path of build directory """ cfg_name = cfg if type(cfg) == str else cfg['name'] return '{}/fips-build/{}/{}'.format(get_workspace_dir(fips_dir), proj_name, cfg_name) #------------------------------------------------------------------------------- def get_deploy_dir(fips_dir, proj_name, cfg) : """get absolute path to deploy directory in same workspace as fips :param fips_dir: absolute path of fips :param proj_name: project name :param cfg: build config name (or config object for backward compatibility) :returns: absolute path of deploy directory """ cfg_name = cfg if type(cfg) == str else cfg['name'] return '{}/fips-deploy/{}/{}'.format(get_workspace_dir(fips_dir), proj_name, cfg_name) #------------------------------------------------------------------------------- def get_fips_dir(proj_dir, name): """Internal helper method to check for and return the absolute path of a fips directory. If name is 'config', the following happens: If 'proj_dir/fips-configs/' exists, return that path, otherwise, if 'proj_dir/fips-files/configs' exists, return that path, otherwise, return None. :param proj_dir: absolute path of project directory :name: the name without the 'fips-' prefix """ d0 = proj_dir + '/fips-' + name d1 = proj_dir + '/fips-files/' + name if os.path.isdir(d0): return d0 elif os.path.isdir(d1): return d1 else: return None #------------------------------------------------------------------------------- def get_configs_dir(proj_dir): """returns path to directory with project-specific config files, or None if no such directory exists. :param proj_dir: absolute path of project directory :returns: absolute path of configs dir, or None """ return get_fips_dir(proj_dir, 'configs') #------------------------------------------------------------------------------- def get_verbs_dir(proj_dir): """returns path to directory with project-specifc verbs, or None if no such directory exists. :param proj_dir: absolute path of project directory :returns: absolute path of verbs dir, or None """ return get_fips_dir(proj_dir, 'verbs') #------------------------------------------------------------------------------- def get_generators_dir(proj_dir): """returns path to directory with project-specific generators, or None if no such directory exists. :param proj_dir: absolute path of project directory :returns: absolute path of generators dir, or None """ return get_fips_dir(proj_dir, 'generators') #------------------------------------------------------------------------------- def get_toolchains_dir(proj_dir): """returns path to directory with project-specific cmake toolchain files, or None if no such directory exists. :param proj_dir: absolute path of project directory :returns: absolute path of toolchains dir, or None """ return get_fips_dir(proj_dir, 'toolchains') #------------------------------------------------------------------------------- def get_giturl_from_url(url) : """extracts the actual git url from an url string (splits off the branch name after the optional '#') :param url: an url string, with optional '#' branch name appended :returns: the actual git url """ return url.split('#')[0] #------------------------------------------------------------------------------- def get_gitbranch_from_url(url) : """extracts the branch name from an url string (after the optional '#'), returns 'master' if no branch name specified. :param url: an url string, with optional '#' branch name appended :returns: the extracted branch name, or 'master' """ if '#' in url : return url.split('#')[1] else : return 'master' #------------------------------------------------------------------------------- def get_project_name_from_url(url) : """get the project name from a git url :param url: a git url :returns: project name (last component of git url, minus extension) """ return os.path.splitext(url.split('/')[-1])[0] #------------------------------------------------------------------------------- def get_project_name_from_dir(proj_dir) : """extract the project name from the absolute project directory :param proj_dir: absolute project directory :returns: project name (last dir-name of project directory) """ return os.path.split(proj_dir)[1] #------------------------------------------------------------------------------- def load_fips_yml(proj_dir) : """load the fips.yml file from project directory :param proj_dir: absolute project directory :returns: dictionary object """ dic = None path = proj_dir + '/fips.yml' if os.path.isfile(path) : with open(path, 'r') as f: dic = yaml.load(f) if not dic : dic = {} return dic #------------------------------------------------------------------------------- def lookup_target_cwd(proj_dir, target) : """lookup optional working directory for target from fips.yml, return None if no cwd has been specified for this target in fips.yml :param proj_dir: absolute project directory :param target: target name :returns: working directory or None """ target_cwd = None dic = load_fips_yml(proj_dir) if 'run' in dic : if target in dic['run'] : if 'cwd' in dic['run'][target] : target_cwd = proj_dir + '/' + dic['run'][target]['cwd'] return target_cwd #------------------------------------------------------------------------------- def is_valid_project_dir(proj_dir) : """test if the provided directory is a valid fips project (has a fips.yml file) :param proj_dir: absolute project directory to check :returns: True if a valid fips project """ if os.path.isdir(proj_dir) : if not os.path.isfile(proj_dir + '/fips.yml') : return False return True else : return False #------------------------------------------------------------------------------- def ensure_valid_project_dir(proj_dir) : """test if project dir is valid, if not, dump error and abort :param proj_dir: absolute project directory to check """ if not is_valid_project_dir(proj_dir) : log.error("'{}' is not a valid project directory".format(proj_dir)) #------------------------------------------------------------------------------- def is_git_url(url) : """check if 'url' is a valid git url :param url: url string :returns: True if a valid url """ # we simply check whether the 'naked' url ends with '.git' url = get_giturl_from_url(url) return url[-4:] == '.git' #------------------------------------------------------------------------------- def confirm(question) : """ask user to confirm (y/N) :param question: the question to confirm :return: True: user pressed 'y', False: user pressed 'n' """ validAnswers={'': False, 'yes': True, 'ye': True, 'y': True, 'no': False, 'n': False } while True : sys.stdout.write(question + ' [y/N]: ') if sys.version_info[0] >= 3: choice = str(input()).lower() else: choice = raw_input().lower() if choice in validAnswers : return validAnswers[choice] else : log.info("please respond with 'y', 'yes', 'n' or 'no'") #------------------------------------------------------------------------------- def url_download_hook(count, block_size, total_size) : """a download progress hook for urllib""" percent = int(count * block_size * 100 / total_size) sys.stdout.write('\r{}%'.format(percent)) #------------------------------------------------------------------------------- def get_host_platform() : """get the current host platform name (osx, linux or win) :returns: platform name (osx, linux, win) """ plat = platform.system() if "CYGWIN_NT" in plat: return host_platforms['Linux'] return host_platforms[platform.system()] #------------------------------------------------------------------------------- def get_cfg_target_list(fips_dir, proj_dir, cfg): proj_name = get_project_name_from_dir(proj_dir) build_dir = get_build_dir(fips_dir, proj_name, cfg) targets_path = build_dir + '/fips_targets.yml' if os.path.isfile(targets_path) : targets = [] with open(targets_path) as f : targets = yaml.load(f) return True, targets else : return False, [] #------------------------------------------------------------------------------- def get_cfg_headersdirs_by_target(fips_dir, proj_dir, cfg): proj_name = get_project_name_from_dir(proj_dir) build_dir = get_build_dir(fips_dir, proj_name, cfg) path = build_dir + '/fips_headerdirs.yml' if os.path.isfile(path): headerdirs = {} with open(path) as f: headerdirs = yaml.load(f) return True, headerdirs else: return False,{} #------------------------------------------------------------------------------- def get_cfg_defines_by_target(fips_dir, proj_dir, cfg): proj_name = get_project_name_from_dir(proj_dir) build_dir = get_build_dir(fips_dir, proj_name, cfg) path = build_dir + '/fips_defines.yml' if os.path.isfile(path): defines = {} with open(path) as f: defines = yaml.load(f) return True,defines else: return False,{} #------------------------------------------------------------------------------- def get_num_cpucores(): try : return multiprocessing.cpu_count() except NotImplementedError : return 2
from __future__ import unicode_literals import os import sys import json from copy import deepcopy from itertools import count from threading import RLock, Event from datetime import datetime, timedelta from collections import Mapping, MutableMapping import six from ws4py.client.threadedclient import WebSocketClient import sideboard.lib from sideboard.lib import log, config, stopped, on_startup, on_shutdown, DaemonTask, Caller class _WebSocketClientDispatcher(WebSocketClient): def __init__(self, dispatcher, url, ssl_opts=None): self.connected = False self.dispatcher = dispatcher WebSocketClient.__init__(self, url, ssl_options=ssl_opts) def pre_connect(self): pass def connect(self, *args, **kwargs): self.pre_connect() WebSocketClient.connect(self, *args, **kwargs) self.connected = True def close(self, code=1000, reason=''): try: WebSocketClient.close(self, code=code, reason=reason) except: pass try: WebSocketClient.close_connection(self) except: pass self.connected = False def send(self, data): log.debug('sending {!r}', data) assert self.connected, 'tried to send data on closed websocket {!r}'.format(self.url) if isinstance(data, Mapping): data = json.dumps(data) return WebSocketClient.send(self, data) def received_message(self, message): message = message.data if isinstance(message.data, six.text_type) else message.data.decode('utf-8') log.debug('received {!r}', message) try: message = json.loads(message) except: log.debug('failed to parse incoming message', exc_info=True) finally: self.dispatcher.defer(message) class _Subscriber(object): def __init__(self, method, src_client, dst_client, src_ws, dest_ws): self.method, self.src_ws, self.dest_ws, self.src_client, self.dst_client = method, src_ws, dest_ws, src_client, dst_client def unsubscribe(self): self.dest_ws.unsubscribe(self.dst_client) def callback(self, data): self.src_ws.send(data=data, client=self.src_client) def errback(self, error): self.src_ws.send(error=error, client=self.src_client) def __call__(self, *args, **kwargs): self.dest_ws.subscribe({ 'client': self.dst_client, 'callback': self.callback, 'errback': self.errback }, self.method, *args, **kwargs) return self.src_ws.NO_RESPONSE def __del__(self): self.unsubscribe() class WebSocket(object): """ Utility class for making websocket connections. This improves on the ws4py websocket client classes mainly by adding several features: - automatically detecting dead connections and re-connecting - utility methods for making synchronous rpc calls and for making asynchronous subscription calls with callbacks - adding locking to make sending messages thread-safe """ poll_method = 'sideboard.poll' WebSocketDispatcher = _WebSocketClientDispatcher def __init__(self, url=None, ssl_opts=None, connect_immediately=True, max_wait=2): self.ws = None self.url = url or 'ws://127.0.0.1:{}/wsrpc'.format(config['cherrypy']['server.socket_port']) self._lock = RLock() self._callbacks = {} self._counter = count() self.ssl_opts = ssl_opts self._reconnect_attempts = 0 self._last_poll, self._last_reconnect_attempt = None, None self._dispatcher = Caller(self._dispatch, threads=1) self._checker = DaemonTask(self._check, interval=1) if connect_immediately: self.connect(max_wait=max_wait) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def preprocess(self, method, params): """ Each message we send has its parameters passed to this function and the actual parameters sent are whatever this function returns. By default this just returns the message unmodified, but plugins can override this to add whatever logic is needed. We pass the method name in its full "service.method" form in case the logic depends on the service being invoked. """ return params @property def _should_reconnect(self): interval = min(config['ws.reconnect_interval'], 2 ** self._reconnect_attempts) cutoff = datetime.now() - timedelta(seconds=interval) return not self.connected and (self._reconnect_attempts == 0 or self._last_reconnect_attempt < cutoff) @property def _should_poll(self): cutoff = datetime.now() - timedelta(seconds=config['ws.poll_interval']) return self.connected and (self._last_poll is None or self._last_poll < cutoff) def _check(self): if self._should_reconnect: self._reconnect() if self._should_poll: self._poll() def _poll(self): assert self.ws and self.ws.connected, 'cannot poll while websocket is not connected' try: self.call(self.poll_method) except: log.warning('no poll response received from {!r}, closing connection, will attempt to reconnect', self.url, exc_info=True) self.ws.close() else: self._last_poll = datetime.now() def _refire_subscriptions(self): try: for cb in self._callbacks.values(): if 'client' in cb: params = cb['paramback']() if 'paramback' in cb else cb['params'] self._send(method=cb['method'], params=params, client=cb['client']) except: pass # self._send() already closes and logs on error def _reconnect(self): with self._lock: assert not self.connected, 'connection is still active' try: self.ws = self.WebSocketDispatcher(self._dispatcher, self.url, ssl_opts=self.ssl_opts) self.ws.connect() except Exception as e: log.warn('failed to connect to {}: {}', self.url, str(e)) self._last_reconnect_attempt = datetime.now() self._reconnect_attempts += 1 else: self._reconnect_attempts = 0 self._refire_subscriptions() def _next_id(self, prefix): return '{}-{}'.format(prefix, next(self._counter)) def _send(self, **kwargs): log.debug('sending {}', kwargs) with self._lock: assert self.connected, 'tried to send data on closed websocket {!r}'.format(self.url) try: return self.ws.send(kwargs) except: log.warn('failed to send {!r} on {!r}, closing websocket and will attempt to reconnect', kwargs, self.url) self.ws.close() raise def _dispatch(self, message): log.debug('dispatching {}', message) try: assert isinstance(message, Mapping), 'incoming message is not a dictionary' assert 'client' in message or 'callback' in message, 'no callback or client in message {}'.format(message) id = message.get('client') or message.get('callback') assert id in self._callbacks, 'unknown dispatchee {}'.format(id) except AssertionError: self.fallback(message) else: if 'error' in message: self._callbacks[id]['errback'](message['error']) else: self._callbacks[id]['callback'](message.get('data')) def fallback(self, message): """ Handler method which is called for incoming websocket messages which aren't valid responses to an outstanding call or subscription. By default this just logs an error message. You can override this by subclassing this class, or just by assigning a hander method, e.g. >>> ws = WebSocket() >>> ws.fallback = some_handler_function >>> ws.connect() """ _, exc, _ = sys.exc_info() log.error('no callback registered for message {!r}, message ignored: {}', message, exc) @property def connected(self): """boolean indicating whether or not this connection is currently active""" return bool(self.ws) and self.ws.connected def connect(self, max_wait=0): """ Start the background threads which connect this websocket and handle RPC dispatching. This method is safe to call even if the websocket is already connected. You may optionally pass a max_wait parameter if you want to wait for up to that amount of time for the connection to go through; if that amount of time elapses without successfully connecting, a warning message is logged. """ self._checker.start() self._dispatcher.start() for i in range(10 * max_wait): if not self.connected: stopped.wait(0.1) else: break else: if max_wait: log.warn('websocket {!r} not connected after {} seconds', self.url, max_wait) def close(self): """ Closes the underlying websocket connection and stops background tasks. This method is always safe to call; exceptions will be swallowed and logged, and calling close on an already-closed websocket is a no-op. """ self._checker.stop() self._dispatcher.stop() if self.ws: self.ws.close() def subscribe(self, callback, method, *args, **kwargs): """ Send a websocket request which you expect to subscribe you to a channel with a callback which will be called every time there is new data, and return the client id which uniquely identifies this subscription. Callback may be either a function or a dictionary in the form { 'callback': <function>, 'errback': <function>, # optional 'paramback: <function>, # optional 'client': <string> # optional } Both callback and errback take a single argument; for callback, this is the return value of the method, for errback it is the error message returning. If no errback is specified, we will log errors at the ERROR level and do nothing further. The paramback function exists for subscriptions where we might want to pass different parameters every time we reconnect. This might be used for e.g. time-based parameters. This function takes no arguments and returns the parameters which should be passed every time we connect and fire (or re-fire) all of our subscriptions. The client id is automatically generated if omitted, and you should not set this yourself unless you really know what you're doing. The positional and keyword arguments passed to this function will be used as the arguments to the remote method, unless paramback is passed, in which case that will be used to generate the params, and args/kwargs will be ignored. """ client = self._next_id('client') if isinstance(callback, Mapping): assert 'callback' in callback, 'callback is required' client = callback.setdefault('client', client) self._callbacks[client] = callback else: self._callbacks[client] = { 'client': client, 'callback': callback } paramback = self._callbacks[client].get('paramback') params = self.preprocess(method, paramback() if paramback else (args or kwargs)) self._callbacks[client].setdefault('errback', lambda result: log.error('{}(*{}, **{}) returned an error: {!r}', method, args, kwargs, result)) self._callbacks[client].update({ 'method': method, 'params': params }) try: self._send(method=method, params=params, client=client) except: log.warn('initial subscription to {} at {!r} failed, will retry on reconnect', method, self.url) return client def unsubscribe(self, client): """ Cancel the websocket subscription identified by the specified client id. This id is returned from the subscribe() method, e.g. >>> client = ws.subscribe(some_callback, 'foo.some_function') >>> ws.unsubscribe(client) """ self._callbacks.pop(client, None) try: self._send(action='unsubscribe', client=client) except: pass def call(self, method, *args, **kwargs): """ Send a websocket rpc method call, then wait for and return the eventual response, or raise an exception if we get back an error. This method will raise an AssertionError after 10 seconds if no response of any kind was received. The positional and keyword arguments to this method are used as the arguments to the rpc function call. """ finished = Event() result, error = [], [] callback = self._next_id('callback') self._callbacks[callback] = { 'callback': lambda response: (result.append(response), finished.set()), 'errback': lambda response: (error.append(response), finished.set()) } params = self.preprocess(method, args or kwargs) try: self._send(method=method, params=params, callback=callback) except: self._callbacks.pop(callback, None) raise wait_until = datetime.now() + timedelta(seconds=config['ws.call_timeout']) while datetime.now() < wait_until: finished.wait(0.1) if stopped.is_set() or result or error: break self._callbacks.pop(callback, None) assert not stopped.is_set(), 'websocket closed before response was received' assert result, error[0] if error else 'no response received for 10 seconds' return result[0] def make_caller(self, method): """ Returns a function which calls the specified method; useful for creating callbacks, e.g. >>> authenticate = ws.make_caller('auth.authenticate') >>> authenticate('username', 'password') True Sideboard supports "passthrough subscriptions", e.g. -> a browser makes a subscription for the "foo.bar" method -> the server has "foo" registered as a remote service -> the server creates its own subscription to "foo.bar" on the remote service and passes all results back to the client as they arrive This method implements that by checking whether it was called from a thread with an active websocket as part of a subscription request. If so then in addition to returning a callable, it also registers the new subscription with the client websocket so it can be cleaned up when the client websocket closes and/or when its subscription is canceled. """ client = sideboard.lib.threadlocal.get_client() originating_ws = sideboard.lib.threadlocal.get('websocket') if client and originating_ws: sub = originating_ws.passthru_subscriptions.get(client) if not sub: sub = _Subscriber(method=method, src_client=client, dst_client=self._next_id('client'), src_ws=originating_ws, dest_ws=self) originating_ws.passthru_subscriptions[client] = sub return sub else: return lambda *args, **kwargs: self.call(method, *args, **kwargs) class Model(MutableMapping): """ Utility class for representing database objects found in the databases of other Sideboard plugins. Instances of this class can have their values accessed as either attributes or dictionary keys. """ _prefix = None _unpromoted = () _defaults = None def __init__(self, data, prefix=None, unpromoted=None, defaults=None): assert prefix or self._prefix object.__setattr__(self, '_data', deepcopy(data)) object.__setattr__(self, '_orig_data', deepcopy(data)) object.__setattr__(self, '_prefix', (prefix or self._prefix) + '_') object.__setattr__(self, '_project_key', self._prefix + 'data') object.__setattr__(self, '_unpromoted', self._unpromoted if unpromoted is None else unpromoted) object.__setattr__(self, '_defaults', defaults or self._defaults or {}) @property def query(self): assert self.id, 'id was not set' assert self._model, '_model was not set' return {'_model': self._model, 'field': 'id', 'value': self.id} @property def dirty(self): return {k: v for k, v in self._data.items() if v != self._orig_data.get(k)} def to_dict(self): data = deepcopy(self._data) serialized = {k: v for k, v in data.pop(self._project_key, {}).items()} for k in list(data.get('extra_data', {}).keys()): if k.startswith(self._prefix): serialized[k[len(self._prefix):]] = data['extra_data'].pop(k) elif k in self._unpromoted: serialized[k] = data['extra_data'].pop(k) serialized.update(data) return serialized @property def _extra_data(self): return self._data.setdefault('extra_data', {}) def _extra_data_key(self, key): return ('' if key in self._unpromoted else self._prefix) + key def __len__(self): return len(self._data) + len(self._extra_data) + len(self._data.get(self._project_key, {})) def __setitem__(self, key, value): assert key != 'id' or value == self.id, 'id is not settable' if key in self._data: self._data[key] = value elif self._project_key in self._data: self._extra_data.pop(self._prefix + key, None) self._data[self._project_key][key] = value else: self._extra_data[self._extra_data_key(key)] = value def __getitem__(self, key): if key in self._data: return self._data[key] elif key in self._data.get(self._project_key, {}): return self._data[self._project_key][key] else: return self._extra_data.get(self._extra_data_key(key), self._defaults.get(key)) def __delitem__(self, key): if key in self._data: del self._data[key] elif key in self._data.get(self._project_key, {}): del self._data[self._project_key][key] else: self._extra_data.pop(self._extra_data_key(key), None) def __iter__(self): return iter(k for k in self.to_dict() if k != 'extra_data') def __repr__(self): return repr(dict(self.items())) def __getattr__(self, name): return self.__getitem__(name) def __setattr__(self, name, value): return self.__setitem__(name, value) def __delattr__(self, name): self.__delitem__(name) class Subscription(object): """ Utility class for opening a websocket to a given destination, subscribing to an rpc call, and processing the response. >>> logged_in_users = Subscription('admin.get_logged_in_users') >>> logged_in_users.result # this will always be the latest return value of your rpc method If you want to do postprocessing on the results, you can override the "callback" method: >>> class UserList(Subscription): ... def __init__(self): ... self.usernames = [] ... Subscription.__init__(self, 'admin.get_logged_in_users') ... ... def callback(self, users): ... self.usernames = [user['username'] for user in users] ... >>> users = UserList() The above code gives you a "users" object with a "usernames" attribute; when Sideboard starts, it opens a websocket connection to whichever remote server defines the "admin" service (as defined in the rpc_services config section), then subscribes to the "admin.get_logged_in_users" method and calls the "callback" method on every response. """ def __init__(self, rpc_method, *args, **kwargs): self.result = None connect_immediately = kwargs.pop('connect_immediately', False) self.method, self.args, self.kwargs = rpc_method, args, kwargs self.ws = sideboard.lib.services.get_websocket(rpc_method.split('.')[0]) on_startup(self._subscribe) on_shutdown(self._unsubscribe) if connect_immediately: self.ws.connect(max_wait=2) self._subscribe() def _subscribe(self): self._client_id = self.ws.subscribe(self._callback, self.method, *self.args, **self.kwargs) def _unsubscribe(self): self.ws.unsubscribe(self._client_id) def refresh(self): """ re-fire your subscription method and invoke the callback method with the response; this will manually check for changes if you are subscribed to a method which by design doesn't re-fire on every change """ assert self.ws.connected, 'cannot refresh {}: websocket not connected'.format(self.method) self._callback(self.ws.call(self.method, *self.args, **self.kwargs)) def _callback(self, response_data): self.result = response_data self.callback(response_data) def callback(self, response_data): """override this to define what to do with your rpc method return values""" class MultiSubscription(object): """ A version of the Subscription utility class which subscribes to an arbitrary number of remote servers and aggregates the results from each. You invoke this similarly to Subscription class, with two main differences: 1) The first parameter is a list of hostnames to which we should connect. Each hostname will have a websocket registered for it if one does not already exist, using the standard config options under [rpc_services]. 2) Unlike the Subscription class, we do not support the connect_immediately parameter. Because this class looks in the [rpc_services] config section of every plugin to find the client cert settings, we need to wait for all plugins to be loaded before trying to connect. Like the Subscription class, you can instantiate this class directly, e.g. >>> logged_in_users = MultiSubscription(['host1', 'host2'], 'admin.get_logged_in_users') >>> logged_in_users.results # this will always be the latest return values of your rpc method The "results" attribute is a dictionary whose keys are the websocket objects used to connect to each host, and whose values are the latest return values from each of those websockets. Hosts for which we have not yet received a response will have no key/value pair in the "results" dictionary. If you want to do postprocessing on the results, you can subclass this and override the "callback" method, e.g. >>> class UserList(MultiSubscription): ... def __init__(self): ... self.usernames = set() ... MultiSubscription.__init__(self, ['host1', 'host2'], 'admin.get_logged_in_users') ... ... def callback(self, users, ws): ... self.usernames.update(user['username'] for user in users) ... >>> users = UserList() The above code gives you a "users" object with a "usernames" attribute; when Sideboard starts, it opens websocket connections to 'host1' and 'host2', then subscribes to the "admin.get_logged_in_users" method and calls the "callback" method on every response. """ def __init__(self, hostnames, rpc_method, *args, **kwargs): from sideboard.lib import listify self.hostnames, self.method, self.args, self.kwargs = listify(hostnames), rpc_method, args, kwargs self.results, self.websockets, self._client_ids = {}, {}, {} on_startup(self._subscribe) on_shutdown(self._unsubscribe) def _websocket(self, url, ssl_opts): from sideboard.lib import services return services._register_websocket(url, ssl_opts=ssl_opts) def _subscribe(self): from sideboard.lib._services import _ws_url, _rpc_opts, _ssl_opts for hostname in self.hostnames: rpc_opts = _rpc_opts(hostname) self.websockets[hostname] = self._websocket(_ws_url(hostname, rpc_opts), _ssl_opts(rpc_opts)) for ws in self.websockets.values(): self._client_ids[ws] = ws.subscribe(self._make_callback(ws), self.method, *self.args, **self.kwargs) def _unsubscribe(self): for ws in self.websockets.values(): ws.unsubscribe(self._client_ids.get(ws)) def _make_callback(self, ws): return lambda result_data: self._callback(result_data, ws) def _callback(self, response_data, ws): self.results[ws] = response_data self.callback(response_data, ws) def callback(self, result_data, ws): """override this to define what to do with your rpc method return values""" def refresh(self): """ Sometimes we want to manually re-fire all of our subscription methods to get the latest data. This is useful in cases where the remote server isn't necessarily programmed to always push the latest data as soon as it's available, usually for performance reasons. This method allows the client to get the latest data more often than the server is programmed to provide it. """ for ws in self.websockets.values(): try: self._callback(self.ws.call(self.method, *self.args, **self.kwargs), ws) except: log.warn('failed to fetch latest data from {} on {}', self.method, ws.url)
#!/usr/bin/python #--------------------------------------------------------------------------------------------------- # Show the TA assignments in the database that have been made for a specific semester. # #--------------------------------------------------------------------------------------------------- import sys,re,os import MySQLdb import Database def termString(period): # set term string termString = period if period[0] == "I": termString = "IAP %s"%(period[1:]) elif period[0] == "S": termString = "Spring %s"%(period[1:]) elif period[0] == "F": termString = "Fall %s"%(period[1:]) return termString debug = False #debug = True check = False dataDir = os.getenv('TAPAS_TOOLS_DATA','./') os.chdir(dataDir) usage = " usage: showAssignment.py <semesterId> <taskType> [ <printEmail> ]\n\n" usage += " semesterId identification string for a specific semster\n" usage += " ex. F2013 (Fall 2013), I2013 (IAP 2013), S2013 (Spring 2013)\n" usage += " taskType description of the type of assignment\n" usage += " 'full' (fulltime, includes 2xhalf), 'part' (10%,20%IAP)\n\n" usage += " printEmail generate emails and print email linux commands\n" usage += " def = '', activate with 'email'\n\n" if len(sys.argv) < 3: print "\n ERROR - need to specify the semester id and the relevant task type.\n" print usage sys.exit(0) period = sys.argv[1] taskType = sys.argv[2] printEmail = '' if len(sys.argv) > 3: printEmail = sys.argv[3] if taskType == "part": taskType = "part" else: taskType = "full" # set term string termString = termString(period) # Open database connection db = Database.DatabaseHandle() # Prepare a cursor object using cursor() method cursor = db.getCursor() # Make a new objects of all courses courses = Database.Container() rc = courses.fillWithCourses(db.handle,debug) if rc != 0: print " ERROR - filling courses." # disconnect from server db.disco() sys.exit() # Make a new objects of faculties teachers = Database.Container() rc = teachers.fillWithTeachers(db.handle) if rc != 0: print " ERROR - filling teachers." # disconnect from server db.disco() sys.exit() # Make a new objects of students students = Database.Container() rc = students.fillWithStudents(db.handle) if rc != 0: print " ERROR - filling students." # disconnect from server db.disco() sys.exit() # Remember active courses, teachers and students activeCourses = Database.Container() activeTeachers = Database.Container() activeStudents = Database.Container() #--------------------------------------------------------------------------------------------------- # Make a complete list of all assignments #--------------------------------------------------------------------------------------------------- assignments = {} # Prepare SQL query to select a record from the database. sql = "select * from Assignments where Term = '" + period + "';" try: # Execute the SQL command cursor.execute(sql) # Fetch results results = cursor.fetchall() for row in results: term = row[0] task = row[1] email = row[2] # deal with empty assignments first if email == None or email == '': print ' WARNING - empty assignment for task: ' + task continue if debug: print " TASK : %s EMAIL: %s"%(task,email) # decode the course number number = task.split('-')[1] # flags to test whether person is part of the database isTeacher = False isStudent = False # find corresponding course in our courses list try: course = courses.retrieveElement(number); #print "%-20s"%(number) activeCourses.addElement(number,course) except: print " ERROR - course is not in our master table (%s)."%(number) # disconnect from server db.disco() sys.exit() # try if it is a techer in our teachers list try: teacher = teachers.retrieveElement(email); activeTeachers.addElement(email,teacher) isTeacher = True # Add teaching teacher to the course if task.split('-')[2] == 'Lec': ## and task.split('-')[3] == '1': course = activeCourses.retrieveElement(number); course.setTeacher(email) if debug: course.show() elif task.split('-')[2] == 'Adm': course = activeCourses.retrieveElement(number); course.setAdmin(email) except: #print " Not a teacher (%s)"%(email) teacher = 0 # find the student in our students list try: student = students.retrieveElement(email) activeStudents.addElement(email,student) isStudent = True except: #print " Not a student (%s)"%(email) student = 0 # store assignment try: tmp = assignments[email] assignments[email] = tmp + ',' + task except: assignments[email] = task # did we find the person in the database if isStudent or isTeacher: if check: print " Found the person." else: print " ERROR -- Did not find the person: " + email + " (task: " + task + ")" #db.disco() #sys.exit(0) except: print " ERROR - unable to complete ACTIVE elements loop." # disconnect from server db.disco() #--------------------------------------------------------------------------------------------------- # Prepare the assignment emails #--------------------------------------------------------------------------------------------------- # prepare unique list of students that get assignments (there could be several) departmentEmail = os.getenv('TAPAS_TOOLS_DEPEML','[email protected]') preAssignment = [ ] preEmails = '' teachersEmails = '' with open("%s/eml/%s/distributor.csv"%(dataDir,period),"w") as f: f.write("TERM+EMAIL+FIRST_NAME+LAST_NAME+CC+COURSE+PS\n") for key, assignment in assignments.iteritems(): if debug: print "\n\n# NEXT # Key: " + key + ' --> ' + assignment # try: if True: try: student = activeStudents.retrieveElement(key) except: if debug: print ' Not a student (%s) ... moving on to next entry.'%(key) # make sure to add up all the teachers emails if re.search('-Lec-',assignment): if teachersEmails == '': teachersEmails = key else: teachersEmails += "," + key continue if debug: print "\n Assignment for %s %s (%s)"%(student.firstName,student.lastName,key) if preEmails == '': preEmails = key else: preEmails += "," + key # filename for the email filename = period + "_" + taskType + "_" + student.firstName + "_" + student.lastName # reset the assignment string assignString = "" # construct the '*visors' email additionalCc = student.advisorEmail if student.supervisorEmail != "?": additionalCc += ',' + student.supervisorEmail for task in assignment.split(','): if assignString != "": assignString += "\\n" term = task.split('-')[0] number = task.split('-')[1] type = task.split('-')[2] filename += "_" + number if debug: print " FileName: %s"%(filename) if ((taskType == 'full' and (re.search('TaF',type) or re.search('TaH',type))) or \ (taskType == 'part' and re.search('TaP',type)) ): if debug: print " Number: %s"%(number) try: course = activeCourses.retrieveElement(number) except: print '\n ERROR - Not a registered course (%s). EXIT!\n'%(number) sys.exit(1) if debug: print " Admin: %s"%(course.admin) try: teacher = activeTeachers.retrieveElement(course.admin) except: print '\n ERROR - Not a registered teacher (%s). EXIT!\n'%(course.admin) sys.exit(1) if debug: print " Course: " + number + " Teacher: " + course.admin psString = "PS: Please add 12 units of 8.399 to your registration." if type[2:4] == "PU": tmp = "%-14s, %-14s TA (U) - %-6s %-40s %s %s (%s)"%\ (student.lastName,student.firstName,course.number,course.name, \ teacher.firstName,teacher.lastName,teacher.eMail) preAssignment.append(tmp) psString = "" assignString += " Part-time Utility TA in course " + course.number + \ " (" + course.name + ") administered by " + \ teacher.firstName + " " + teacher.lastName + \ " (" + teacher.eMail + ")" elif type[3] == "U": tmp = "%-14s, %-14s TA (U) - %-6s %-40s %s %s (%s)"%\ (student.lastName,student.firstName,course.number,course.name, \ teacher.firstName,teacher.lastName,teacher.eMail) preAssignment.append(tmp) assignString += " Utility TA in course " + course.number + \ " (" + course.name + ") administered by " + \ teacher.firstName + " " + teacher.lastName + \ " (" + teacher.eMail + ")" elif type[3] == "R" or type[3] == "L": tmp = "%-14s, %-14s TA (R) - %-6s %-40s %s %s (%s)"%\ (student.lastName,student.firstName,course.number,course.name, \ teacher.firstName,teacher.lastName,teacher.eMail) preAssignment.append(tmp) assignString += " Recitation TA in course " + course.number + \ " (" + course.name + ") administered by " + \ teacher.firstName + " " + teacher.lastName + \ " (" + teacher.eMail + ")" else: assignString += " ERROR - Unknown TA type found: " + type[3] # addup the additional teacher to be copied ##additionalCc += "," + teacher.eMail if course.admin != '[email protected]' and course.admin != 'EMPTY': additionalCc += "," + course.admin if debug: print assignString if assignString == "": if debug: print "No type match %s %s %s %s\n"% \ (student.firstName,student.lastName,key,assignment) continue filename += ".eml" print "\n" + term + " " + student.firstName + " " + student.lastName + "\n" \ + assignString cc = "%s,%s"%(additionalCc,departmentEmail) f.write("%s+%s+%s+%s+%s+%s+%s\n"\ %(termString,student.eMail,student.firstName,student.lastName,cc,assignString,psString)) if printEmail == "email": cmd = "generateEmail.sh '" + term + "' \"" + student.firstName + " " \ + student.lastName + "\" '" + assignString +"' \"" + filename + "\" " + taskType if debug: print " CMD: " + cmd os.system(cmd) print " mail -S [email protected] " + "-c " + additionalCc + "," + departmentEmail \ + " -s \'TA Assignment " + term + " (" + student.firstName + " " \ + student.lastName + ")\' " + student.eMail + " < " + dataDir + "/spool/" + filename # except: # student = 0 # #--------------------------------------------------------------------------------------------------- # Print out (pre-)assignment Summary #--------------------------------------------------------------------------------------------------- print "\nEMAIL TEXT for pre-assignments" preAssignment.sort(); for task in preAssignment: print task print "\nEMAIL ADDRESS for pre-assignments" print preEmails print "\nEMAIL ADDRESS for feedback" print teachersEmails sys.exit(0)
#!/usr/bin/env python """ This application presents a 'console' prompt to the user asking for Who-Is and I-Am commands which create the related APDUs, then for each I-Am that is returned, reads the object name of the device object (often called simply the device name). """ import sys from bacpypes.debugging import bacpypes_debugging, ModuleLogger from bacpypes.consolelogging import ConfigArgumentParser from bacpypes.consolecmd import ConsoleCmd from bacpypes.core import run, enable_sleeping from bacpypes.iocb import IOCB from bacpypes.pdu import Address, GlobalBroadcast from bacpypes.apdu import WhoIsRequest, ReadPropertyRequest, ReadPropertyACK from bacpypes.primitivedata import CharacterString from bacpypes.errors import MissingRequiredParameter from bacpypes.app import BIPForeignApplication from bacpypes.local.device import LocalDeviceObject # some debugging _debug = 1 _log = ModuleLogger(globals()) # globals this_device = None this_application = None # # DiscoveryApplication # @bacpypes_debugging class DiscoveryApplication(BIPForeignApplication): def __init__(self, *args): if _debug: DiscoveryApplication._debug("__init__ %r", args) BIPForeignApplication.__init__(self, *args) # keep track of requests to line up responses self.who_is_request = None def request(self, apdu): """Sniff for Who-Is requests going downstream.""" if _debug: DiscoveryApplication._debug("request %r", apdu) # save a copy of just the Who-Is request if isinstance(apdu, WhoIsRequest): self.who_is_request = apdu # forward it along BIPForeignApplication.request(self, apdu) def do_IAmRequest(self, apdu): """Do something with incoming I-Am requests.""" if _debug: DiscoveryApplication._debug("do_IAmRequest %r", apdu) # check for required parameters if apdu.iAmDeviceIdentifier is None: raise MissingRequiredParameter("iAmDeviceIdentifier required") if apdu.maxAPDULengthAccepted is None: raise MissingRequiredParameter("maxAPDULengthAccepted required") if apdu.segmentationSupported is None: raise MissingRequiredParameter("segmentationSupported required") if apdu.vendorID is None: raise MissingRequiredParameter("vendorID required") # extract the device instance number device_instance = apdu.iAmDeviceIdentifier[1] if _debug: DiscoveryApplication._debug(" - device_instance: %r", device_instance) # extract the source address device_address = apdu.pduSource if _debug: DiscoveryApplication._debug(" - device_address: %r", device_address) # we didn't request anything yet if not self.who_is_request: return if (self.who_is_request.deviceInstanceRangeLowLimit is not None) and \ (device_instance < self.who_is_request.deviceInstanceRangeLowLimit): pass elif (self.who_is_request.deviceInstanceRangeHighLimit is not None) and \ (device_instance > self.who_is_request.deviceInstanceRangeHighLimit): pass else: # build a request for the object name request = ReadPropertyRequest( destination=apdu.pduSource, objectIdentifier=apdu.iAmDeviceIdentifier, propertyIdentifier='objectName', ) # make an IOCB iocb = IOCB(request) if _debug: DiscoveryApplication._debug(" - iocb: %r", iocb) # let us know when its complete iocb.add_callback(self.device_discovered) # give it to the application self.request_io(iocb) def device_discovered(self, iocb): if _debug: DiscoveryApplication._debug("device_discovered %r", iocb) # do something for error/reject/abort if iocb.ioError: sys.stdout.write(str(iocb.ioError) + '\n') # do something for success elif iocb.ioResponse: apdu = iocb.ioResponse # should be an ack if not isinstance(apdu, ReadPropertyACK): if _debug: DiscoveryApplication._debug(" - not an ack") return # pull out the name device_name = apdu.propertyValue.cast_out(CharacterString) if _debug: DiscoveryApplication._debug(" - device_name: %r", device_name) # print out the response sys.stdout.write("%s is at %s named %r\n" % (apdu.objectIdentifier[1], apdu.pduSource, device_name)) # do something with nothing? else: if _debug: DiscoveryApplication._debug(" - ioError or ioResponse expected") # # DiscoveryConsoleCmd # @bacpypes_debugging class DiscoveryConsoleCmd(ConsoleCmd): def do_whois(self, args): """whois [ <addr> ] [ <lolimit> <hilimit> ]""" args = args.split() if _debug: DiscoveryConsoleCmd._debug("do_whois %r", args) try: # gather the parameters if (len(args) == 1) or (len(args) == 3): addr = Address(args[0]) del args[0] else: addr = GlobalBroadcast() if len(args) == 2: lolimit = int(args[0]) hilimit = int(args[1]) else: lolimit = hilimit = None # code lives in the device service this_application.who_is(lolimit, hilimit, addr) except Exception as error: DiscoveryConsoleCmd._exception("exception: %r", error) def do_rtn(self, args): """rtn <addr> <net> ... """ args = args.split() if _debug: DiscoveryConsoleCmd._debug("do_rtn %r", args) # provide the address and a list of network numbers router_address = Address(args[0]) network_list = [int(arg) for arg in args[1:]] # pass along to the service access point this_application.nsap.update_router_references(None, router_address, network_list) # # __main__ # def main(): global this_device global this_application # parse the command line arguments args = ConfigArgumentParser(description=__doc__).parse_args() if _debug: _log.debug("initialization") if _debug: _log.debug(" - args: %r", args) # make a device object this_device = LocalDeviceObject(ini=args.ini) if _debug: _log.debug(" - this_device: %r", this_device) # make a simple application this_application = DiscoveryApplication( this_device, args.ini.address, Address(args.ini.foreignbbmd), int(args.ini.foreignttl), ) # make a console this_console = DiscoveryConsoleCmd() if _debug: _log.debug(" - this_console: %r", this_console) # enable sleeping will help with threads enable_sleeping() _log.debug("running") run() _log.debug("fini") if __name__ == "__main__": main()
""" Basic sorting algorithms and their variations """ import random from Numerical import merge_sorted_lists def insert_sort_inplace(arr): """ Sort all the elements in a list in place. As the elements are picked off from one end of the list, they are put in sorted order, at the other end. RUNTIME: Best - O(n), Avg - O(n^2), Worst - O(n^2) """ arrlen = len(arr) for i in range(1, arrlen): for j in range(0, i): if arr[i] < arr[j]: arr[i], arr[j] = arr[j], arr[i] return arr def insert_sort_inplace_variation(arr): """ Same as 'insert_sort_inplace'. Difference being that, newly inserted elements are inserted from the end of the sorted part of the list. RUNTIME: Best - O(n), Avg - O(n^2), Worst - O(n^2) """ arrlen = len(arr) for i in range(1, arrlen): for j in range(i-1, -1, -1): if arr[i] < arr[j]: arr[i], arr[j] = arr[j], arr[i] i = j #inner loop uses 'i' at point of j -= 1 #initialization. #outerloop #re-initializes 'i' else: break return arr #A useless algorithm. #Not as bad as bogosort, bozosort. def bubble_sort_inplace(arr): """ Traverse the list as many times as the number of elements. In each traversal, the largest element bubbles up to the top. RUNTIME: Best - O(n), Avg - O(n^2), Worst - O(n^2) """ arrlen = len(arr) for i in range(arrlen-1, 0, -1): for j in range(0, i): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j] return arr #Utterly useless def selection_sort_inplace(arr): """ Every iteration through the list, find the smallest element and swap it with the last index in the sorted part of the list. RUNTIME: Best - O(n^2), Avg - O(n^2), Worst - O(n^2) """ arrlen = len(arr) for i in range(0, arrlen - 1): cm = i for j in range(i+1, arrlen): if arr[j] < arr[cm]: cm = j arr[i], arr[cm] = arr[cm], arr[i] return arr def pivot_partition(arr, lefti, righti, pivoti): """ Partition algorithm used by median sort to split items based on pivot. Left side of pivot are items smaller than pivot. Right side are items greater than pivot. RUNTIME: Worst - O(n^2) """ arr[righti], arr[pivoti] = arr[pivoti], arr[righti] correct_pivoti = lefti for i in range(lefti, righti): if arr[i] <= arr[righti]: arr[correct_pivoti], arr[i] = arr[i], arr[correct_pivoti] correct_pivoti += 1 arr[correct_pivoti], arr[righti] = arr[righti], arr[correct_pivoti] return correct_pivoti def median_element(arr, ki, lefti, righti): """ This finds the actual median element by partitioning the array multiple times until median element is found RUNTIME: """ while True: pivoti = random.randint(lefti, righti) newp = pivot_partition(arr, lefti, righti, pivoti) if newp == ki: break elif ki < newp: righti = newp - 1 else: lefti = newp + 1 return arr def median_sort_inplace(arr, lefti, righti): #TODO: Runtime needs confirmation """ Sorts the elements by recursively finding the median of the arr, their sub-arrays and so on. RUNTIME: Best - O(n log n), Avg - O(n log n), Worst - O(n^2) """ if righti <= lefti: return ki = lefti + (righti - lefti + 1)/2 median_element(arr, ki, lefti, righti) median_sort_inplace(arr, lefti, ki-1) median_sort_inplace(arr, ki+1, righti) return arr def merge_sort_inplace(arr, lefti, righti): """ Sorts the array by iteratively splitting the array into smaller and smaller array until, the array cannot be split anymore at which point they are joined together using the algorithm to merge 2 sorted lists. The merges take place from inside out. RUNTIME: Best - O(n log n), Avg - O(n log n), Worst - O(n log n) """ size = righti - lefti + 1 if size < 2: return half = size/2 + lefti - 1 merge_sort_inplace(arr, lefti, half) merge_sort_inplace(arr, half+1, righti) merge_sorted_lists(arr, lefti, half, half+1, righti) return arr def quicksort_middle_pivot(arr): """ Divide and Conquer algorithm. List broken down into smaller and smaller lists and then sorted. This is not inplace. Every recursive call creates 2 extra lists. Middle element is used as pivot RUNTIME: Best - O(n log n), Avg - O(n log n), Worst - O(n^2) """ lenarr = len(arr) if lenarr <= 1: return arr pivot = lenarr/2 lessp = list() largerp = list() for v in range(pivot): if arr[v] <= arr[pivot]: lessp.append(arr[v]) else: largerp.append(arr[v]) for v in range(pivot+1, lenarr): if arr[v] <= arr[pivot]: lessp.append(arr[v]) else: largerp.append(arr[v]) sleft = quicksort_middle_pivot(lessp) sright = quicksort_middle_pivot(largerp) sleft.append(arr[pivot]) sleft.extend(sright) return sleft def radix_sort(arr, minradix, maxradix): #TODO: Take another parameter that gives the max number of # digits/chars for any single element in array """ An implementation of MSD radix sort. Sorts elements based on the individual digits in the number or characters in a string. The runtime depends on the size of the array and the number of digits or characters in the biggest number or string respectively. RUNTIME: (nk) """ if minradix >= maxradix: return arr buckets = dict() for v in arr: val_index = int(str(v)[minradix]) l = buckets.get(val_index, []) l.append(v) buckets[val_index] = l for i in buckets.iterkeys(): if len(buckets[i])>1: buckets[i] = radix_sort(buckets[i], minradix+1, maxradix) l = list() #There will always be only a maximum of 10 keys to sort. #So 'k' is the number of times the keys of bucket will be sorted. #'k' being the number of digits in largest number for i in sorted(buckets.keys()): l.extend(buckets[i]) return l def bucket_sort(): #TODO: pass def quicksort_random_pivot(): #TODO: pass def heap_sort_arr(heap): from arr_heap import heapify from arr_heap import extract_max lheap = len(heap) heap = heapify(heap, lheap, cmp) l = list() while heap: heap, mx = extract_max(heap, lheap) lheap -= 1 l.append(mx) return list(reversed(l)) def counting_sort(arr, mx): """ Used for sorting a list of elements N where each element is in the range [0, k). Counting sort is a good algorithm in situations where N is much greater than k. RUNTIME: Best - O(n), Avg - O(n), Worst - O(n) """ mx += 1 #This is to compensate for the fact that counting sort #can only sort from [0, k). s = [0] * mx for v in arr: s[v] += 1 idx = 0 for i in range(mx): while s[i] > 0: arr[idx] = i idx += 1 s[i] -= 1 return arr def sorting_test(fn, rndlist, *args): """ This is a test function that takes a function as input and calls the function with a random list of numbers. Verifies that the returned list is sorted. """ if args: rndlist = fn(rndlist, *args) else: rndlist = fn(rndlist) for i in range(1, len(rndlist)): if rndlist[i] < rndlist[i-1]: print rndlist print "Error at Index: ", i return False return True def mk_rnd_ls(mn, mx, totalnums): l = [0] * totalnums for i in range(totalnums): l[i] = random.randint(mn, mx) return l
__all__ = ['Distribution'] import re import os import warnings import numbers import distutils.log import distutils.core import distutils.cmd import distutils.dist from distutils.errors import (DistutilsOptionError, DistutilsPlatformError, DistutilsSetupError) from distutils.util import rfc822_escape from setuptools.extern import six from setuptools.extern.six.moves import map from pkg_resources.extern import packaging from setuptools.depends import Require from setuptools import windows_support from setuptools.monkey import get_unpatched import pkg_resources def _get_unpatched(cls): warnings.warn("Do not call this function", DeprecationWarning) return get_unpatched(cls) # Based on Python 3.5 version def write_pkg_file(self, file): """Write the PKG-INFO format data to a file object. """ version = '1.0' if (self.provides or self.requires or self.obsoletes or self.classifiers or self.download_url): version = '1.1' # Setuptools specific for PEP 345 if hasattr(self, 'python_requires'): version = '1.2' file.write('Metadata-Version: %s\n' % version) file.write('Name: %s\n' % self.get_name()) file.write('Version: %s\n' % self.get_version()) file.write('Summary: %s\n' % self.get_description()) file.write('Home-page: %s\n' % self.get_url()) file.write('Author: %s\n' % self.get_contact()) file.write('Author-email: %s\n' % self.get_contact_email()) file.write('License: %s\n' % self.get_license()) if self.download_url: file.write('Download-URL: %s\n' % self.download_url) long_desc = rfc822_escape(self.get_long_description()) file.write('Description: %s\n' % long_desc) keywords = ','.join(self.get_keywords()) if keywords: file.write('Keywords: %s\n' % keywords) self._write_list(file, 'Platform', self.get_platforms()) self._write_list(file, 'Classifier', self.get_classifiers()) # PEP 314 self._write_list(file, 'Requires', self.get_requires()) self._write_list(file, 'Provides', self.get_provides()) self._write_list(file, 'Obsoletes', self.get_obsoletes()) # Setuptools specific for PEP 345 if hasattr(self, 'python_requires'): file.write('Requires-Python: %s\n' % self.python_requires) # from Python 3.4 def write_pkg_info(self, base_dir): """Write the PKG-INFO file into the release tree. """ with open(os.path.join(base_dir, 'PKG-INFO'), 'w', encoding='UTF-8') as pkg_info: self.write_pkg_file(pkg_info) sequence = tuple, list def check_importable(dist, attr, value): try: ep = pkg_resources.EntryPoint.parse('x=' + value) assert not ep.extras except (TypeError, ValueError, AttributeError, AssertionError): raise DistutilsSetupError( "%r must be importable 'module:attrs' string (got %r)" % (attr, value) ) def assert_string_list(dist, attr, value): """Verify that value is a string list or None""" try: assert ''.join(value) != value except (TypeError, ValueError, AttributeError, AssertionError): raise DistutilsSetupError( "%r must be a list of strings (got %r)" % (attr, value) ) def check_nsp(dist, attr, value): """Verify that namespace packages are valid""" assert_string_list(dist, attr, value) for nsp in value: if not dist.has_contents_for(nsp): raise DistutilsSetupError( "Distribution contains no modules or packages for " + "namespace package %r" % nsp ) if '.' in nsp: parent = '.'.join(nsp.split('.')[:-1]) if parent not in value: distutils.log.warn( "WARNING: %r is declared as a package namespace, but %r" " is not: please correct this in setup.py", nsp, parent ) def check_extras(dist, attr, value): """Verify that extras_require mapping is valid""" try: for k, v in value.items(): if ':' in k: k, m = k.split(':', 1) if pkg_resources.invalid_marker(m): raise DistutilsSetupError("Invalid environment marker: " + m) list(pkg_resources.parse_requirements(v)) except (TypeError, ValueError, AttributeError): raise DistutilsSetupError( "'extras_require' must be a dictionary whose values are " "strings or lists of strings containing valid project/version " "requirement specifiers." ) def assert_bool(dist, attr, value): """Verify that value is True, False, 0, or 1""" if bool(value) != value: tmpl = "{attr!r} must be a boolean value (got {value!r})" raise DistutilsSetupError(tmpl.format(attr=attr, value=value)) def check_requirements(dist, attr, value): """Verify that install_requires is a valid requirements list""" try: list(pkg_resources.parse_requirements(value)) except (TypeError, ValueError) as error: tmpl = ( "{attr!r} must be a string or list of strings " "containing valid project/version requirement specifiers; {error}" ) raise DistutilsSetupError(tmpl.format(attr=attr, error=error)) def check_specifier(dist, attr, value): """Verify that value is a valid version specifier""" try: packaging.specifiers.SpecifierSet(value) except packaging.specifiers.InvalidSpecifier as error: tmpl = ( "{attr!r} must be a string or list of strings " "containing valid version specifiers; {error}" ) raise DistutilsSetupError(tmpl.format(attr=attr, error=error)) def check_entry_points(dist, attr, value): """Verify that entry_points map is parseable""" try: pkg_resources.EntryPoint.parse_map(value) except ValueError as e: raise DistutilsSetupError(e) def check_test_suite(dist, attr, value): if not isinstance(value, six.string_types): raise DistutilsSetupError("test_suite must be a string") def check_package_data(dist, attr, value): """Verify that value is a dictionary of package names to glob lists""" if isinstance(value, dict): for k, v in value.items(): if not isinstance(k, str): break try: iter(v) except TypeError: break else: return raise DistutilsSetupError( attr + " must be a dictionary mapping package names to lists of " "wildcard patterns" ) def check_packages(dist, attr, value): for pkgname in value: if not re.match(r'\w+(\.\w+)*', pkgname): distutils.log.warn( "WARNING: %r not a valid package name; please use only " ".-separated package names in setup.py", pkgname ) _Distribution = get_unpatched(distutils.core.Distribution) class Distribution(_Distribution): """Distribution with support for features, tests, and package data This is an enhanced version of 'distutils.dist.Distribution' that effectively adds the following new optional keyword arguments to 'setup()': 'install_requires' -- a string or sequence of strings specifying project versions that the distribution requires when installed, in the format used by 'pkg_resources.require()'. They will be installed automatically when the package is installed. If you wish to use packages that are not available in PyPI, or want to give your users an alternate download location, you can add a 'find_links' option to the '[easy_install]' section of your project's 'setup.cfg' file, and then setuptools will scan the listed web pages for links that satisfy the requirements. 'extras_require' -- a dictionary mapping names of optional "extras" to the additional requirement(s) that using those extras incurs. For example, this:: extras_require = dict(reST = ["docutils>=0.3", "reSTedit"]) indicates that the distribution can optionally provide an extra capability called "reST", but it can only be used if docutils and reSTedit are installed. If the user installs your package using EasyInstall and requests one of your extras, the corresponding additional requirements will be installed if needed. 'features' **deprecated** -- a dictionary mapping option names to 'setuptools.Feature' objects. Features are a portion of the distribution that can be included or excluded based on user options, inter-feature dependencies, and availability on the current system. Excluded features are omitted from all setup commands, including source and binary distributions, so you can create multiple distributions from the same source tree. Feature names should be valid Python identifiers, except that they may contain the '-' (minus) sign. Features can be included or excluded via the command line options '--with-X' and '--without-X', where 'X' is the name of the feature. Whether a feature is included by default, and whether you are allowed to control this from the command line, is determined by the Feature object. See the 'Feature' class for more information. 'test_suite' -- the name of a test suite to run for the 'test' command. If the user runs 'python setup.py test', the package will be installed, and the named test suite will be run. The format is the same as would be used on a 'unittest.py' command line. That is, it is the dotted name of an object to import and call to generate a test suite. 'package_data' -- a dictionary mapping package names to lists of filenames or globs to use to find data files contained in the named packages. If the dictionary has filenames or globs listed under '""' (the empty string), those names will be searched for in every package, in addition to any names for the specific package. Data files found using these names/globs will be installed along with the package, in the same location as the package. Note that globs are allowed to reference the contents of non-package subdirectories, as long as you use '/' as a path separator. (Globs are automatically converted to platform-specific paths at runtime.) In addition to these new keywords, this class also has several new methods for manipulating the distribution's contents. For example, the 'include()' and 'exclude()' methods can be thought of as in-place add and subtract commands that add or remove packages, modules, extensions, and so on from the distribution. They are used by the feature subsystem to configure the distribution for the included and excluded features. """ _patched_dist = None def patch_missing_pkg_info(self, attrs): # Fake up a replacement for the data that would normally come from # PKG-INFO, but which might not yet be built if this is a fresh # checkout. # if not attrs or 'name' not in attrs or 'version' not in attrs: return key = pkg_resources.safe_name(str(attrs['name'])).lower() dist = pkg_resources.working_set.by_key.get(key) if dist is not None and not dist.has_metadata('PKG-INFO'): dist._version = pkg_resources.safe_version(str(attrs['version'])) self._patched_dist = dist def __init__(self, attrs=None): have_package_data = hasattr(self, "package_data") if not have_package_data: self.package_data = {} _attrs_dict = attrs or {} if 'features' in _attrs_dict or 'require_features' in _attrs_dict: Feature.warn_deprecated() self.require_features = [] self.features = {} self.dist_files = [] self.src_root = attrs and attrs.pop("src_root", None) self.patch_missing_pkg_info(attrs) # Make sure we have any eggs needed to interpret 'attrs' if attrs is not None: self.dependency_links = attrs.pop('dependency_links', []) assert_string_list(self, 'dependency_links', self.dependency_links) if attrs and 'setup_requires' in attrs: self.fetch_build_eggs(attrs['setup_requires']) for ep in pkg_resources.iter_entry_points('distutils.setup_keywords'): vars(self).setdefault(ep.name, None) _Distribution.__init__(self, attrs) if isinstance(self.metadata.version, numbers.Number): # Some people apparently take "version number" too literally :) self.metadata.version = str(self.metadata.version) if self.metadata.version is not None: try: ver = packaging.version.Version(self.metadata.version) normalized_version = str(ver) if self.metadata.version != normalized_version: warnings.warn( "Normalizing '%s' to '%s'" % ( self.metadata.version, normalized_version, ) ) self.metadata.version = normalized_version except (packaging.version.InvalidVersion, TypeError): warnings.warn( "The version specified (%r) is an invalid version, this " "may not work as expected with newer versions of " "setuptools, pip, and PyPI. Please see PEP 440 for more " "details." % self.metadata.version ) if getattr(self, 'python_requires', None): self.metadata.python_requires = self.python_requires def parse_command_line(self): """Process features after parsing command line options""" result = _Distribution.parse_command_line(self) if self.features: self._finalize_features() return result def _feature_attrname(self, name): """Convert feature name to corresponding option attribute name""" return 'with_' + name.replace('-', '_') def fetch_build_eggs(self, requires): """Resolve pre-setup requirements""" resolved_dists = pkg_resources.working_set.resolve( pkg_resources.parse_requirements(requires), installer=self.fetch_build_egg, replace_conflicting=True, ) for dist in resolved_dists: pkg_resources.working_set.add(dist, replace=True) def finalize_options(self): _Distribution.finalize_options(self) if self.features: self._set_global_opts_from_features() for ep in pkg_resources.iter_entry_points('distutils.setup_keywords'): value = getattr(self, ep.name, None) if value is not None: ep.require(installer=self.fetch_build_egg) ep.load()(self, ep.name, value) if getattr(self, 'convert_2to3_doctests', None): # XXX may convert to set here when we can rely on set being builtin self.convert_2to3_doctests = [os.path.abspath(p) for p in self.convert_2to3_doctests] else: self.convert_2to3_doctests = [] def get_egg_cache_dir(self): egg_cache_dir = os.path.join(os.curdir, '.eggs') if not os.path.exists(egg_cache_dir): os.mkdir(egg_cache_dir) windows_support.hide_file(egg_cache_dir) readme_txt_filename = os.path.join(egg_cache_dir, 'README.txt') with open(readme_txt_filename, 'w') as f: f.write('This directory contains eggs that were downloaded ' 'by setuptools to build, test, and run plug-ins.\n\n') f.write('This directory caches those eggs to prevent ' 'repeated downloads.\n\n') f.write('However, it is safe to delete this directory.\n\n') return egg_cache_dir def fetch_build_egg(self, req): """Fetch an egg needed for building""" try: cmd = self._egg_fetcher cmd.package_index.to_scan = [] except AttributeError: from setuptools.command.easy_install import easy_install dist = self.__class__({'script_args': ['easy_install']}) dist.parse_config_files() opts = dist.get_option_dict('easy_install') keep = ( 'find_links', 'site_dirs', 'index_url', 'optimize', 'site_dirs', 'allow_hosts' ) for key in list(opts): if key not in keep: del opts[key] # don't use any other settings if self.dependency_links: links = self.dependency_links[:] if 'find_links' in opts: links = opts['find_links'][1].split() + links opts['find_links'] = ('setup', links) install_dir = self.get_egg_cache_dir() cmd = easy_install( dist, args=["x"], install_dir=install_dir, exclude_scripts=True, always_copy=False, build_directory=None, editable=False, upgrade=False, multi_version=True, no_report=True, user=False ) cmd.ensure_finalized() self._egg_fetcher = cmd return cmd.easy_install(req) def _set_global_opts_from_features(self): """Add --with-X/--without-X options based on optional features""" go = [] no = self.negative_opt.copy() for name, feature in self.features.items(): self._set_feature(name, None) feature.validate(self) if feature.optional: descr = feature.description incdef = ' (default)' excdef = '' if not feature.include_by_default(): excdef, incdef = incdef, excdef go.append(('with-' + name, None, 'include ' + descr + incdef)) go.append(('without-' + name, None, 'exclude ' + descr + excdef)) no['without-' + name] = 'with-' + name self.global_options = self.feature_options = go + self.global_options self.negative_opt = self.feature_negopt = no def _finalize_features(self): """Add/remove features and resolve dependencies between them""" # First, flag all the enabled items (and thus their dependencies) for name, feature in self.features.items(): enabled = self.feature_is_included(name) if enabled or (enabled is None and feature.include_by_default()): feature.include_in(self) self._set_feature(name, 1) # Then disable the rest, so that off-by-default features don't # get flagged as errors when they're required by an enabled feature for name, feature in self.features.items(): if not self.feature_is_included(name): feature.exclude_from(self) self._set_feature(name, 0) def get_command_class(self, command): """Pluggable version of get_command_class()""" if command in self.cmdclass: return self.cmdclass[command] for ep in pkg_resources.iter_entry_points('distutils.commands', command): ep.require(installer=self.fetch_build_egg) self.cmdclass[command] = cmdclass = ep.load() return cmdclass else: return _Distribution.get_command_class(self, command) def print_commands(self): for ep in pkg_resources.iter_entry_points('distutils.commands'): if ep.name not in self.cmdclass: # don't require extras as the commands won't be invoked cmdclass = ep.resolve() self.cmdclass[ep.name] = cmdclass return _Distribution.print_commands(self) def get_command_list(self): for ep in pkg_resources.iter_entry_points('distutils.commands'): if ep.name not in self.cmdclass: # don't require extras as the commands won't be invoked cmdclass = ep.resolve() self.cmdclass[ep.name] = cmdclass return _Distribution.get_command_list(self) def _set_feature(self, name, status): """Set feature's inclusion status""" setattr(self, self._feature_attrname(name), status) def feature_is_included(self, name): """Return 1 if feature is included, 0 if excluded, 'None' if unknown""" return getattr(self, self._feature_attrname(name)) def include_feature(self, name): """Request inclusion of feature named 'name'""" if self.feature_is_included(name) == 0: descr = self.features[name].description raise DistutilsOptionError( descr + " is required, but was excluded or is not available" ) self.features[name].include_in(self) self._set_feature(name, 1) def include(self, **attrs): """Add items to distribution that are named in keyword arguments For example, 'dist.exclude(py_modules=["x"])' would add 'x' to the distribution's 'py_modules' attribute, if it was not already there. Currently, this method only supports inclusion for attributes that are lists or tuples. If you need to add support for adding to other attributes in this or a subclass, you can add an '_include_X' method, where 'X' is the name of the attribute. The method will be called with the value passed to 'include()'. So, 'dist.include(foo={"bar":"baz"})' will try to call 'dist._include_foo({"bar":"baz"})', which can then handle whatever special inclusion logic is needed. """ for k, v in attrs.items(): include = getattr(self, '_include_' + k, None) if include: include(v) else: self._include_misc(k, v) def exclude_package(self, package): """Remove packages, modules, and extensions in named package""" pfx = package + '.' if self.packages: self.packages = [ p for p in self.packages if p != package and not p.startswith(pfx) ] if self.py_modules: self.py_modules = [ p for p in self.py_modules if p != package and not p.startswith(pfx) ] if self.ext_modules: self.ext_modules = [ p for p in self.ext_modules if p.name != package and not p.name.startswith(pfx) ] def has_contents_for(self, package): """Return true if 'exclude_package(package)' would do something""" pfx = package + '.' for p in self.iter_distribution_names(): if p == package or p.startswith(pfx): return True def _exclude_misc(self, name, value): """Handle 'exclude()' for list/tuple attrs without a special handler""" if not isinstance(value, sequence): raise DistutilsSetupError( "%s: setting must be a list or tuple (%r)" % (name, value) ) try: old = getattr(self, name) except AttributeError: raise DistutilsSetupError( "%s: No such distribution setting" % name ) if old is not None and not isinstance(old, sequence): raise DistutilsSetupError( name + ": this setting cannot be changed via include/exclude" ) elif old: setattr(self, name, [item for item in old if item not in value]) def _include_misc(self, name, value): """Handle 'include()' for list/tuple attrs without a special handler""" if not isinstance(value, sequence): raise DistutilsSetupError( "%s: setting must be a list (%r)" % (name, value) ) try: old = getattr(self, name) except AttributeError: raise DistutilsSetupError( "%s: No such distribution setting" % name ) if old is None: setattr(self, name, value) elif not isinstance(old, sequence): raise DistutilsSetupError( name + ": this setting cannot be changed via include/exclude" ) else: setattr(self, name, old + [item for item in value if item not in old]) def exclude(self, **attrs): """Remove items from distribution that are named in keyword arguments For example, 'dist.exclude(py_modules=["x"])' would remove 'x' from the distribution's 'py_modules' attribute. Excluding packages uses the 'exclude_package()' method, so all of the package's contained packages, modules, and extensions are also excluded. Currently, this method only supports exclusion from attributes that are lists or tuples. If you need to add support for excluding from other attributes in this or a subclass, you can add an '_exclude_X' method, where 'X' is the name of the attribute. The method will be called with the value passed to 'exclude()'. So, 'dist.exclude(foo={"bar":"baz"})' will try to call 'dist._exclude_foo({"bar":"baz"})', which can then handle whatever special exclusion logic is needed. """ for k, v in attrs.items(): exclude = getattr(self, '_exclude_' + k, None) if exclude: exclude(v) else: self._exclude_misc(k, v) def _exclude_packages(self, packages): if not isinstance(packages, sequence): raise DistutilsSetupError( "packages: setting must be a list or tuple (%r)" % (packages,) ) list(map(self.exclude_package, packages)) def _parse_command_opts(self, parser, args): # Remove --with-X/--without-X options when processing command args self.global_options = self.__class__.global_options self.negative_opt = self.__class__.negative_opt # First, expand any aliases command = args[0] aliases = self.get_option_dict('aliases') while command in aliases: src, alias = aliases[command] del aliases[command] # ensure each alias can expand only once! import shlex args[:1] = shlex.split(alias, True) command = args[0] nargs = _Distribution._parse_command_opts(self, parser, args) # Handle commands that want to consume all remaining arguments cmd_class = self.get_command_class(command) if getattr(cmd_class, 'command_consumes_arguments', None): self.get_option_dict(command)['args'] = ("command line", nargs) if nargs is not None: return [] return nargs def get_cmdline_options(self): """Return a '{cmd: {opt:val}}' map of all command-line options Option names are all long, but do not include the leading '--', and contain dashes rather than underscores. If the option doesn't take an argument (e.g. '--quiet'), the 'val' is 'None'. Note that options provided by config files are intentionally excluded. """ d = {} for cmd, opts in self.command_options.items(): for opt, (src, val) in opts.items(): if src != "command line": continue opt = opt.replace('_', '-') if val == 0: cmdobj = self.get_command_obj(cmd) neg_opt = self.negative_opt.copy() neg_opt.update(getattr(cmdobj, 'negative_opt', {})) for neg, pos in neg_opt.items(): if pos == opt: opt = neg val = None break else: raise AssertionError("Shouldn't be able to get here") elif val == 1: val = None d.setdefault(cmd, {})[opt] = val return d def iter_distribution_names(self): """Yield all packages, modules, and extension names in distribution""" for pkg in self.packages or (): yield pkg for module in self.py_modules or (): yield module for ext in self.ext_modules or (): if isinstance(ext, tuple): name, buildinfo = ext else: name = ext.name if name.endswith('module'): name = name[:-6] yield name def handle_display_options(self, option_order): """If there were any non-global "display-only" options (--help-commands or the metadata display options) on the command line, display the requested info and return true; else return false. """ import sys if six.PY2 or self.help_commands: return _Distribution.handle_display_options(self, option_order) # Stdout may be StringIO (e.g. in tests) import io if not isinstance(sys.stdout, io.TextIOWrapper): return _Distribution.handle_display_options(self, option_order) # Don't wrap stdout if utf-8 is already the encoding. Provides # workaround for #334. if sys.stdout.encoding.lower() in ('utf-8', 'utf8'): return _Distribution.handle_display_options(self, option_order) # Print metadata in UTF-8 no matter the platform encoding = sys.stdout.encoding errors = sys.stdout.errors newline = sys.platform != 'win32' and '\n' or None line_buffering = sys.stdout.line_buffering sys.stdout = io.TextIOWrapper( sys.stdout.detach(), 'utf-8', errors, newline, line_buffering) try: return _Distribution.handle_display_options(self, option_order) finally: sys.stdout = io.TextIOWrapper( sys.stdout.detach(), encoding, errors, newline, line_buffering) class Feature: """ **deprecated** -- The `Feature` facility was never completely implemented or supported, `has reported issues <https://github.com/pypa/setuptools/issues/58>`_ and will be removed in a future version. A subset of the distribution that can be excluded if unneeded/wanted Features are created using these keyword arguments: 'description' -- a short, human readable description of the feature, to be used in error messages, and option help messages. 'standard' -- if true, the feature is included by default if it is available on the current system. Otherwise, the feature is only included if requested via a command line '--with-X' option, or if another included feature requires it. The default setting is 'False'. 'available' -- if true, the feature is available for installation on the current system. The default setting is 'True'. 'optional' -- if true, the feature's inclusion can be controlled from the command line, using the '--with-X' or '--without-X' options. If false, the feature's inclusion status is determined automatically, based on 'availabile', 'standard', and whether any other feature requires it. The default setting is 'True'. 'require_features' -- a string or sequence of strings naming features that should also be included if this feature is included. Defaults to empty list. May also contain 'Require' objects that should be added/removed from the distribution. 'remove' -- a string or list of strings naming packages to be removed from the distribution if this feature is *not* included. If the feature *is* included, this argument is ignored. This argument exists to support removing features that "crosscut" a distribution, such as defining a 'tests' feature that removes all the 'tests' subpackages provided by other features. The default for this argument is an empty list. (Note: the named package(s) or modules must exist in the base distribution when the 'setup()' function is initially called.) other keywords -- any other keyword arguments are saved, and passed to the distribution's 'include()' and 'exclude()' methods when the feature is included or excluded, respectively. So, for example, you could pass 'packages=["a","b"]' to cause packages 'a' and 'b' to be added or removed from the distribution as appropriate. A feature must include at least one 'requires', 'remove', or other keyword argument. Otherwise, it can't affect the distribution in any way. Note also that you can subclass 'Feature' to create your own specialized feature types that modify the distribution in other ways when included or excluded. See the docstrings for the various methods here for more detail. Aside from the methods, the only feature attributes that distributions look at are 'description' and 'optional'. """ @staticmethod def warn_deprecated(): warnings.warn( "Features are deprecated and will be removed in a future " "version. See https://github.com/pypa/setuptools/issues/65.", DeprecationWarning, stacklevel=3, ) def __init__(self, description, standard=False, available=True, optional=True, require_features=(), remove=(), **extras): self.warn_deprecated() self.description = description self.standard = standard self.available = available self.optional = optional if isinstance(require_features, (str, Require)): require_features = require_features, self.require_features = [ r for r in require_features if isinstance(r, str) ] er = [r for r in require_features if not isinstance(r, str)] if er: extras['require_features'] = er if isinstance(remove, str): remove = remove, self.remove = remove self.extras = extras if not remove and not require_features and not extras: raise DistutilsSetupError( "Feature %s: must define 'require_features', 'remove', or at least one" " of 'packages', 'py_modules', etc." ) def include_by_default(self): """Should this feature be included by default?""" return self.available and self.standard def include_in(self, dist): """Ensure feature and its requirements are included in distribution You may override this in a subclass to perform additional operations on the distribution. Note that this method may be called more than once per feature, and so should be idempotent. """ if not self.available: raise DistutilsPlatformError( self.description + " is required, " "but is not available on this platform" ) dist.include(**self.extras) for f in self.require_features: dist.include_feature(f) def exclude_from(self, dist): """Ensure feature is excluded from distribution You may override this in a subclass to perform additional operations on the distribution. This method will be called at most once per feature, and only after all included features have been asked to include themselves. """ dist.exclude(**self.extras) if self.remove: for item in self.remove: dist.exclude_package(item) def validate(self, dist): """Verify that feature makes sense in context of distribution This method is called by the distribution just before it parses its command line. It checks to ensure that the 'remove' attribute, if any, contains only valid package/module names that are present in the base distribution when 'setup()' is called. You may override it in a subclass to perform any other required validation of the feature against a target distribution. """ for item in self.remove: if not dist.has_contents_for(item): raise DistutilsSetupError( "%s wants to be able to remove %s, but the distribution" " doesn't contain any packages or modules under %s" % (self.description, item, item) )
# ============================================================================== # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Upgrade script to move from pre-release schema to new schema. Usage examples: bazel run tensorflow/contrib/lite/schema/upgrade_schema -- in.json out.json bazel run tensorflow/contrib/lite/schema/upgrade_schema -- in.bin out.bin bazel run tensorflow/contrib/lite/schema/upgrade_schema -- in.bin out.json bazel run tensorflow/contrib/lite/schema/upgrade_schema -- in.json out.bin bazel run tensorflow/contrib/lite/schema/upgrade_schema -- in.tflite out.tflite """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import contextlib import json import os import shutil import subprocess import sys import tempfile import tensorflow as tf from tensorflow.python.platform import resource_loader parser = argparse.ArgumentParser( description="Script to move TFLite models from pre-release schema to" " new schema.") parser.add_argument( "input", type=str, help="Input TensorFlow lite file in `.json`, `.bin` or `.tflite` format.") parser.add_argument( "output", type=str, help="Output json or bin TensorFlow lite model compliant with" "the new schema. Extension must be `.json`, `.bin` or `.tflite`.") # RAII Temporary Directory, because flatc doesn't allow direct use of tempfiles. @contextlib.contextmanager def TemporaryDirectoryResource(): temporary = tempfile.mkdtemp() try: yield temporary finally: shutil.rmtree(temporary) class Converter(object): """Converts TensorFlow flatbuffer models from old to new version of schema. This can convert between any version to the latest version. It uses an incremental upgrade strategy to go from version to version. Usage: converter = Converter() converter.Convert("a.tflite", "a.json") converter.Convert("b.json", "b.tflite") """ def __init__(self): # TODO(aselle): make this work in the open source version with better # path. paths_to_try = [ "../../../../flatbuffers/flatc", # not bazel "../../../../external/flatbuffers/flatc" # bazel ] for p in paths_to_try: self._flatc_path = resource_loader.get_path_to_datafile(p) if os.path.exists(self._flatc_path): break def FindSchema(base_name): return resource_loader.get_path_to_datafile("%s" % base_name) # Supported schemas for upgrade. self._schemas = [ (0, FindSchema("schema_v0.fbs"), True, self._Upgrade0To1), (1, FindSchema("schema_v1.fbs"), True, self._Upgrade1To2), (2, FindSchema("schema_v2.fbs"), True, self._Upgrade2To3), (3, FindSchema("schema_v3.fbs"), False, None) # Non-callable by design. ] # Ensure schemas are sorted, and extract latest version and upgrade # dispatch function table. self._schemas.sort() self._new_version, self._new_schema = self._schemas[-1][:2] self._upgrade_dispatch = dict( (version, dispatch) for version, unused1, unused2, dispatch in self._schemas) def _Read(self, input_file, schema, raw_binary=False): """Read a tflite model assuming the given flatbuffer schema. If `input_file` is in bin, then we must use flatc to convert the schema from binary to json. Args: input_file: a binary (flatbuffer) or json file to read from. Extension must be `.tflite`, `.bin`, or `.json` for FlatBuffer Binary or FlatBuffer JSON. schema: which schema to use for reading raw_binary: whether to assume raw_binary (versions previous to v3) that lacked file_identifier require this. Raises: RuntimeError: When flatc cannot be invoked. ValueError: When the extension is not json or bin. Returns: A dictionary representing the read tflite model. """ raw_binary = ["--raw-binary"] if raw_binary else [] with TemporaryDirectoryResource() as tempdir: basename = os.path.basename(input_file) basename_no_extension, extension = os.path.splitext(basename) if extension in [".bin", ".tflite"]: # Convert to json using flatc returncode = subprocess.call([ self._flatc_path, "-t", "--strict-json", "--defaults-json", ] + raw_binary + ["-o", tempdir, schema, "--", input_file]) if returncode != 0: raise RuntimeError("flatc failed to convert from binary to json.") json_file = os.path.join(tempdir, basename_no_extension + ".json") if not os.path.exists(json_file): raise RuntimeError("Could not find %r" % json_file) elif extension == ".json": json_file = input_file else: raise ValueError("Invalid extension on input file %r" % input_file) return json.load(open(json_file)) def _Write(self, data, output_file): """Output a json or bin version of the flatbuffer model. Args: data: Dict representing the TensorFlow Lite model to write. output_file: filename to write the converted flatbuffer to. (json, tflite, or bin extension is required). Raises: ValueError: When the extension is not json or bin RuntimeError: When flatc fails to convert json data to binary. """ _, extension = os.path.splitext(output_file) with TemporaryDirectoryResource() as tempdir: if extension == ".json": json.dump(data, open(output_file, "w"), sort_keys=True, indent=2) elif extension in [".tflite", ".bin"]: input_json = os.path.join(tempdir, "temp.json") with open(input_json, "w") as fp: json.dump(data, fp, sort_keys=True, indent=2) returncode = subprocess.call([ self._flatc_path, "-b", "--defaults-json", "--strict-json", "-o", tempdir, self._new_schema, input_json ]) if returncode != 0: raise RuntimeError("flatc failed to convert upgraded json to binary.") shutil.copy(os.path.join(tempdir, "temp.tflite"), output_file) else: raise ValueError("Invalid extension on output file %r" % output_file) def _Upgrade0To1(self, data): """Upgrade data from Version 0 to Version 1. Changes: Added subgraphs (which contains a subset of formally global entries). Args: data: Dictionary representing the TensorFlow lite data to be upgraded. This will be modified in-place to be an upgraded version. """ subgraph = {} for key_to_promote in ["tensors", "operators", "inputs", "outputs"]: subgraph[key_to_promote] = data[key_to_promote] del data[key_to_promote] data["subgraphs"] = [subgraph] def _Upgrade1To2(self, data): """Upgrade data from Version 1 to Version 2. Changes: Rename operators to Conform to NN API. Args: data: Dictionary representing the TensorFlow lite data to be upgraded. This will be modified in-place to be an upgraded version. Raises: ValueError: Throws when model builtins are numeric rather than symbols. """ def RemapOperator(opcode_name): """Go from old schema op name to new schema op name. Args: opcode_name: String representing the ops (see :schema.fbs). Returns: Converted opcode_name from V1 to V2. """ old_name_to_new_name = { "CONVOLUTION": "CONV_2D", "DEPTHWISE_CONVOLUTION": "DEPTHWISE_CONV_2D", "AVERAGE_POOL": "AVERAGE_POOL_2D", "MAX_POOL": "MAX_POOL_2D", "L2_POOL": "L2_POOL_2D", "SIGMOID": "LOGISTIC", "L2NORM": "L2_NORMALIZATION", "LOCAL_RESPONSE_NORM": "LOCAL_RESPONSE_NORMALIZATION", "Basic_RNN": "RNN", } return (old_name_to_new_name[opcode_name] if opcode_name in old_name_to_new_name else opcode_name) def RemapOperatorType(operator_type): """Remap operator structs from old names to new names. Args: operator_type: String representing the builtin operator data type string. (see :schema.fbs). Returns: Upgraded builtin operator data type as a string. """ old_to_new = { "PoolOptions": "Pool2DOptions", "DepthwiseConvolutionOptions": "DepthwiseConv2DOptions", "ConvolutionOptions": "Conv2DOptions", "LocalResponseNormOptions": "LocalResponseNormalizationOptions", "BasicRNNOptions": "RNNOptions", } return (old_to_new[operator_type] if operator_type in old_to_new else operator_type) for subgraph in data["subgraphs"]: for ops in subgraph["operators"]: ops["builtin_options_type"] = RemapOperatorType( ops["builtin_options_type"]) # Upgrade the operator codes for operator_code in data["operator_codes"]: # Check if builtin_code is the appropriate string type # use type("") instead of str or unicode. for py2and3 if not isinstance(operator_code["builtin_code"], type(u"")): raise ValueError("builtin_code %r is non-string. this usually means" "your model has consistency problems." % (operator_code["builtin_code"])) operator_code["builtin_code"] = (RemapOperator( operator_code["builtin_code"])) def _Upgrade2To3(self, data): """Upgrade data from Version 2 to Version 3. Changed actual read-only tensor data to be in a buffers table instead of inline with the tensor. Args: data: Dictionary representing the TensorFlow lite data to be upgraded. This will be modified in-place to be an upgraded version. """ buffers = [{"data": []}] # Start with 1 empty buffer for subgraph in data["subgraphs"]: if "tensors" not in subgraph: continue for tensor in subgraph["tensors"]: if "data_buffer" not in tensor: tensor["buffer"] = 0 else: if tensor["data_buffer"]: tensor[u"buffer"] = len(buffers) buffers.append({"data": tensor["data_buffer"]}) else: tensor["buffer"] = 0 del tensor["data_buffer"] data["buffers"] = buffers def _PerformUpgrade(self, data): """Manipulate the `data` (parsed JSON) based on changes in format. This incrementally will upgrade from version to version within data. Args: data: Dictionary representing the TensorFlow data. This will be upgraded in place. """ while data["version"] < self._new_version: self._upgrade_dispatch[data["version"]](data) data["version"] += 1 def Convert(self, input_file, output_file): """Perform schema conversion from input_file to output_file. Args: input_file: Filename of TensorFlow Lite data to convert from. Must be `.json` or `.bin` extension files for JSON or Binary forms of the TensorFlow FlatBuffer schema. output_file: Filename to write to. Extension also must be `.json` or `.bin`. Raises: RuntimeError: Generated when none of the upgrader supported schemas matche the `input_file` data. """ # Read data in each schema (since they are incompatible). Version is # always present. Use the read data that matches the version of the # schema. for version, schema, raw_binary, _ in self._schemas: try: data_candidate = self._Read(input_file, schema, raw_binary) except RuntimeError: continue # Skip and hope another schema works if "version" not in data_candidate: # Assume version 1 if not present. data_candidate["version"] = 1 elif data_candidate["version"] == 0: # Version 0 doesn't exist in wild. data_candidate["version"] = 1 if data_candidate["version"] == version: self._PerformUpgrade(data_candidate) self._Write(data_candidate, output_file) return raise RuntimeError("No schema that the converter understands worked with " "the data file you provided.") def main(argv): del argv Converter().Convert(FLAGS.input, FLAGS.output) if __name__ == "__main__": FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
import re import os import sys import logging import argparse import multiprocessing as mp import sqlalchemy as sa import db title_pattern = re.compile("#\*([^\r\n]*)") author_pattern = re.compile("#@([^\r\n]*)") year_pattern = re.compile("#year([0-9]*)") venue_pattern = re.compile("#conf([^\r\n]*)") citation_pattern = re.compile('#citation([^\r\n]*)') id_pattern = re.compile("#index([^\r\n]*)") arnetid_pattern = re.compile('#arnetid([^\r\n]*)') refs_pattern = re.compile("#%([^\r\n]*)") abstract_pattern = re.compile("#!([^\r\n]*)") class Record(object): __slots__ = ['id', 'title', 'authors', 'venue', 'refs', 'abstract', 'year'] def __init__(self, id, title, authors, venue, refs, abstract, year): self.id = int(id) self.title = title self.venue = venue self.refs = [int(ref) for ref in refs] self.abstract = abstract if abstract else None self.year = int(year) if year else None self.authors = [a for a in authors.split(',') if a] def match(line, pattern): m = pattern.match(line) return m.groups()[0].decode('utf-8').strip() if m else None def fmatch(f, pattern): return match(f.readline(), pattern) def nextrecord(f): """Assume file pos is at beginning of record and read to end. Returns all components as a Record. Assume components are listed in the following order: title authors year venue id arnetid references (0 or more lines) abstract (0 or 1 line) """ title = fmatch(f, title_pattern) if title is None: return None # truncate for varchar(255) field if len(title) > 255: title = title[0:255] authors = fmatch(f, author_pattern) year = fmatch(f, year_pattern) venue = fmatch(f, venue_pattern) citation_num = fmatch(f, citation_pattern) paperid = fmatch(f, id_pattern) arnetid = fmatch(f, arnetid_pattern) # process reference list refs = [] line = f.readline() m = match(line, refs_pattern) while m is not None: if m: refs.append(m) line = f.readline() m = match(line, refs_pattern) # once refs have been processed, all that remains is optional abstract abstract = match(line, abstract_pattern) if line != '\n': f.readline() # consume blank line return Record( id=paperid, title=title, authors=authors, year=year, venue=venue, refs=refs, abstract=abstract ) def castrecord(record): record['id'] = int(record['id']) record['refs'] = [int(ref) for ref in record['refs']] abstract = record['abstract'] record['abstract'] = abstract if abstract else None year = record['year'] record['year'] = int(year) if year else None author = record['authors'] if ',' in author: record['authors'] = [a for a in author.split(',') if a] else: record['authors'] = [author] return record def iterrecords(fpath): with open(fpath) as f: num_records = f.readline().strip() logging.info('processing %s records' % num_records) record = nextrecord(f) while record is not None: yield record record = nextrecord(f) def insert(conn, ins): """Attempt to run an insertion statement; return results, None if error.""" try: ins_res = conn.execute(ins) except sa.exc.IntegrityError as err: # a paper already exists with this id logging.error(str(err)) return None except Exception as e: logging.error('unexpected exception\n%s', str(e)) return None else: return ins_res def person_insert(conn, name): sel = sa.sql.text("SELECT id FROM person WHERE LOWER(name)=LOWER(:n)") res = conn.execute(sel, n=name) p = res.first() if p is not None: return p['id'] ins = db.person.insert().values(name=name) try: res = conn.execute(ins) except sa.exc.IntegrityError: # concurrency issue res = conn.execute(sel, n=name) p = res.first() if p is None: raise else: return p['id'] return res.inserted_primary_key[0] def process_record(record): """Update the database with the contents of the record.""" logging.debug('processing record\n%s' % record); conn = db.engine.connect() paper_id = record.id ins = db.papers.insert().\ values(id=paper_id, title=record.title, venue=record.venue, year=record.year, abstract=record.abstract) # attempt to insert a new paper into the db result = insert(conn, ins) if result is None: # since ids come from data, we've already processed this record conn.close() return False # make new records for each author for author in record.authors: person_id = person_insert(conn, author) ins = db.authors.insert().values(paper=paper_id, person=person_id) insert(conn, ins) # may fail, but we don't really care for ref in record.refs: ins = db.refs.insert().values(paper=paper_id, ref=ref) insert(conn, ins) conn.close() return True # success def process_records(fpath): """Process all records in data file.""" processed = 0 successful = 0 for record in iterrecords(fpath): try: success = process_record(record) except Exception as e: logging.info('unexpected exception in `process_record`') logging.error(str(e)) success = False processed += 1 if success: successful += 1 if processed % 20 == 0: logging.info('processed: %d records' % processed) logging.info('successful: %d' % successful) def make_parser(): parser = argparse.ArgumentParser( description="parse dblp data") parser.add_argument( 'fpath', action='store', help='file to parse data from') parser.add_argument( '-v', '--verbose', action='store_true', help="turn on verbose logging") parser.add_argument( '-vv', '--very-verbose', action='store_true', help='turn on very verbose logging') return parser if __name__ == "__main__": parser = make_parser() args = parser.parse_args() if args.verbose: logging.basicConfig( level=logging.INFO, format='[%(asctime)s][%(levelname)s]: %(message)s') elif args.very_verbose: logging.basicConfig( level=logging.DEBUG, format='[%(asctime)s][%(levelname)s]: %(message)s') db.engine.echo = True else: logging.basicConfig(level=logging.CRITICAL) db.engine.echo = False # f = open(args.fpath) # r = nextrecord(f) # c = castrecord(r) try: process_records(args.fpath) except Exception as err: logging.info('ERROR OCCURED IN `process_records`') logging.error(str(err)) sys.exit(-1) sys.exit(0)
# This script is going to create the skelton of our LTER # database and begin to populate it with raw data # Note this is the newer version of the schema # that was based on the meeting that tool place on # December 21, 2015 with Aldo, Tom, and myself # In addition rather than using psycopg2 as a module # to populate the database, we are strictly using # sqlalchemy with a psycog # interpreter as our module for talking to postgresql # THIS ASSUMES YOU HAVE THE DATABASE ALREADY CREATED # IN POSTGRESQL from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import * from sqlalchemy.dialects.postgresql import * import pandas as pd import sys, os if sys.platform == "darwin": rootpath = ( "/Users/bibsian/Desktop/git/database-development/") end = "/" elif sys.platform == "win32": rootpath = ( "C:\\Users\MillerLab\\Desktop\\database-development\\") end = "\\" lterex = pd.read_csv( rootpath + 'db' + end + 'lter_table_test.csv') ltertablename = 'lter_table' # Here we are using the packageage sqlalchemy # connecting to the lter databse # by specifying the title of the database # and the user name we will be working under. # Note, postgres is the super user and can do # everything possible (CREATE,INSERT, MANIPULATE, etc.) #create_engine = create_engine( # 'postgresql+psycopg2:///', # echo=True) #conn = create_engine.connect() #conn.execute("commit") #conn.execute("CREATE DATABASE popler_3") #conn.close() #create_engine.dispose() engine = create_engine( 'postgresql+psycopg2://--/popler_test', echo=True) # Note that the relationships in the database (i.e. entity-relation #-ship diagram or ED diagram) can be visualized after all the tables # have been created. So, the first step to setting up the skeleton # of out LTER database # is going to be to create all tables, and attributes within each, # and then use our open source database software manager (DBeaver) # to visualize the layout ######################## # Table creation ######################### # Now we're going to begin to create the tables and # specify their attributes/attribute classes # The first step of this process is to create a database # metadata catalog. With the object title 'metadata', we # can create all the tables, their columns, primary, and foreign # keys from the 'Table' command and use the 'metadata' object # to compile all the information. Then it can be written # to the postegresql database with a special method called # 'create_all' metadata = MetaData() # Raw climate station data climate_raw_table = Table( 'climate_raw_table', metadata, Column('metarecordid_', Integer, primary_key=True), Column('title', TEXT), Column('stationid', None, ForeignKey( 'climate_station_table.stationid', ondelete="CASCADE")), Column('year', NUMERIC), Column('month', NUMERIC), Column('day', NUMERIC), # Terrestiral environmental variables Column('avetempobs', NUMERIC), Column('avetempmeasure', VARCHAR(50)), Column('mintempobs', NUMERIC), Column('mintempmeasure', VARCHAR(50)), Column('maxtempobs', NUMERIC), Column('maxtempmeasure', VARCHAR(50)), Column('aveprecipobs', NUMERIC), Column('aveprecipmeasure', VARCHAR(50)), Column('minprecipobs', NUMERIC), Column('minprecipmeasure', VARCHAR(50)), Column('maxprecipobs', NUMERIC), Column('maxprecipmeasure', NUMERIC), Column('avewindobs', NUMERIC), Column('avewindmeasure', VARCHAR(50)), Column('minwindobs', NUMERIC), Column('minwindmeasure', VARCHAR(50)), Column('maxwindobs', NUMERIC), Column('maxwindmeasure', NUMERIC), Column('avelightobs', NUMERIC), Column('avelightmeasure', VARCHAR(50)), Column('minlightobs', NUMERIC), Column('minlightmeasure', VARCHAR(50)), Column('maxlightobs', NUMERIC), Column('maxlightmeasure', NUMERIC), # Aquatic environmental vairables Column('avewatertempobs', NUMERIC), Column('avewatertempmeasure', VARCHAR(50)), Column('minwatertempobs', NUMERIC), Column('minwatertempmeasure', VARCHAR(50)), Column('maxwatertempobs', NUMERIC), Column('maxwatertempmeasure', VARCHAR(50)), Column('avephobs', NUMERIC), Column('avephmeasure', VARCHAR(50)), Column('minphobs', NUMERIC), Column('minphmeasure', VARCHAR(50)), Column('maxphobs', NUMERIC), Column('maxphmeasure', NUMERIC), Column('avecondobs', NUMERIC), Column('avecondmeasure', VARCHAR(50)), Column('mincondobs', NUMERIC), Column('mincondmeasure', VARCHAR(50)), Column('maxcondobs', NUMERIC), Column('maxcondmeasure', VARCHAR(50)), Column('aveturbidityobs', NUMERIC), Column('aveturbiditymeasure', VARCHAR(50)), Column('minturbidityobs', NUMERIC), Column('minturbiditymeasure', VARCHAR(50)), Column('maxturbidityobs', NUMERIC), Column('maxturbiditymeasure', VARCHAR(50)), Column('covariates', TEXT), Column('knbid_', VARCHAR(200)), Column('metalink_', VARCHAR(200)), Column('authors_', VARCHAR(200)), Column('authors_contact_', VARCHAR(200))) # climate_site_table: This is the initial table # that will contain information # regarding the LTER sites themselves. Column names # should be self explanatory. climate_station_table = Table( 'climate_station_table', metadata, Column('stationid', VARCHAR(200), primary_key=True), Column('lterid', None, ForeignKey('lter_table.lterid')), Column('lat_climate', NUMERIC), Column('lng_climate', NUMERIC), Column('descript', TEXT)) #lter_table will be the link from climate data to study data lter_table = Table( 'lter_table', metadata, Column('lterid', VARCHAR(10), primary_key=True), Column('lter_name', TEXT), Column('lat_lter', NUMERIC), Column('lng_lter', NUMERIC), Column('currently_funded', VARCHAR(50)), Column('current_principle_investigator', VARCHAR(200)), Column('current_contact_email', VARCHAR(200)), Column('alt_contact_email', VARCHAR(200)), Column('homepage', VARCHAR(200))) # site_info: Table regarding site information for within each # individual study. The table will be related to lter_info and # the 'foreign key'= lterid/'lterid' # (i.e. no entries are allowed in this table unless the site # information originates at a given lter_id) study_site_table = Table( 'study_site_table', metadata, Column('study_site_key', VARCHAR(200), primary_key=True), Column('lter_table_fkey', VARCHAR(10), ForeignKey('lter_table.lterid')), Column('lat_study_site', NUMERIC), Column('lng_study_site', NUMERIC), Column('descript', TEXT)) project_table = Table( 'project_table', metadata, # This column is the unique index that we created # in order to keep track of all the datasets that # will be uploaded Column('proj_metadata_key', INTEGER, primary_key=True), Column('lter_project_fkey', VARCHAR(10), ForeignKey('lter_table.lterid')), Column('title', TEXT), # META: This column specifies the type of information # about the sampling organisms life stage # ie. adult, juvenile, size, etc Column('samplingunits', VARCHAR(50)), # META: This column specifies the type of data that was # collected (i.e. count, biomass, percent cover, etc.) Column('datatype', VARCHAR(50)), # META: This column specifies the type of information # about the sampling organisms life stage # ie. size, age, life-stage Column('structured_type_1', VARCHAR(50)), Column('structured_type_1_units', VARCHAR(50)), Column('structured_type_2', VARCHAR(50)), Column('structured_type_2_units', VARCHAR(50)), Column('structured_type_3', VARCHAR(50)), Column('structured_type_3_units', VARCHAR(50)), Column('structured_type_4', VARCHAR(50)), Column('structured_type_4_units', VARCHAR(50)), Column('studystartyr', NUMERIC), Column('studyendyr', NUMERIC), Column('duration_years', Integer), # META: This column relates to the frequency of sampling # i.e. seasonal, monthly, month:yr, season:yr, daily, etc. Column('samplefreq', TEXT), # META: This column list whether the study was observational # or experimental (which includes historic experiemental # events) Column('studytype', VARCHAR(50)), # META: This column indicates whether the study contained # community level data (i.e. data over multiple # taxonomic groups Column('community', VARCHAR(50)), # Spatial replicate informatoin # META: # sp_repX_ext: columns describes the # spatial extent sample at that level of spatial # replication # sp_repX_ext_units: column describes the unit # of measurement corresponding to that level of spatial # replication # sp_repX_label: describes the labeling scheme used # by the study #Derived: # sp_repX_uniquelevels: count of the number of unique # levels within that replicate level for a given site; # encompassed all time and taxa units. Column('spatial_replication_level_1_extent', NUMERIC), Column('spatial_replication_level_1_extent_units', VARCHAR(200)), Column('spatial_replication_level_1_label', VARCHAR(200)), Column('spatial_replication_level_1_number_of_unique_reps', INTEGER), Column('spatial_replication_level_2_extent', NUMERIC), Column('spatial_replication_level_2_extent_units', VARCHAR(200)), Column('spatial_replication_level_2_label', VARCHAR(200)), Column('spatial_replication_level_2_number_of_unique_reps', INTEGER), Column('spatial_replication_level_3_extent', NUMERIC), Column('spatial_replication_level_3_extent_units', VARCHAR(200)), Column('spatial_replication_level_3_label', VARCHAR(200)), Column('spatial_replication_level_3_number_of_unique_reps', INTEGER), Column('spatial_replication_level_4_extent', NUMERIC), Column('spatial_replication_level_4_extent_units', VARCHAR(200)), Column('spatial_replication_level_4_label', VARCHAR(200)), Column('spatial_replication_level_4_number_of_unique_reps', INTEGER), Column('spatial_replication_level_5_extent', NUMERIC), Column('spatial_replication_level_5_extent_units', VARCHAR(200)), Column('spatial_replication_level_5_label', VARCHAR(200)), Column('spatial_replication_level_5_number_of_unique_reps', INTEGER), # Columns regarding treatments Column('treatment_type_1', VARCHAR(200)), Column('treatment_type_2', VARCHAR(200)), Column('treatment_type_3', VARCHAR(200)), Column('control_group', VARCHAR(200)), Column('derived', VARCHAR(200)), # Columns relating to author, metadata, other sources Column('authors', TEXT), Column('authors_contact', VARCHAR(200)), Column('metalink', TEXT), Column('knbid', VARCHAR(200))) # main: Table describing the raw data that was collected # for each individual project # 'foreign key' ='siteid' # This is in case there is a project that does not give a specific # 'siteid' that can be used in the schema and to ensure that # any site data entered comes from site_in_project_table = Table( 'site_in_project_table', metadata, Column( 'site_in_project_key', Integer, primary_key=True), Column('study_site_table_fkey', None, ForeignKey( 'study_site_table.study_site_key')), Column('project_table_fkey', None, ForeignKey('project_table.proj_metadata_key')), # DERIVED: start year of data collection for # a particular site Column('sitestartyr', NUMERIC), # DERIVED: end year of data collection for # a particular site Column('siteendyr', NUMERIC), # DERIVED: This will be the total observation # related to this project. THis includes # all temporal and spatial levels and # all taxa units Column('totalobs', NUMERIC), # DERIVED: calculates the number of unique # taxonomic units from raw data Column('uniquetaxaunits', NUMERIC)) # taxa: Table regarding taxanomic information. Change from # last time involves the forgein key and the addition of # a column for species code (in case raw table information, does # not contain a key for translation). # 'foreign key' = site_info/'siteid' taxa_table = Table( 'taxa_table', metadata, Column('taxa_table_key', Integer, primary_key=True), Column('site_in_project_taxa_key', None, ForeignKey( 'site_in_project_table.site_in_project_key', ondelete="CASCADE")), Column('sppcode', VARCHAR(100)), Column('kingdom', VARCHAR(100)), Column('subkingdom', VARCHAR(100)), Column('infrakingdom', VARCHAR(100)), Column('superdivision', VARCHAR(100)), Column('division', VARCHAR(100)), Column('subdivision', VARCHAR(100)), Column('superphylum', VARCHAR(100)), Column('phylum', VARCHAR(100)), Column('subphylum', VARCHAR(100)), Column('clss', VARCHAR(100)), Column('subclass', VARCHAR(100)), Column('ordr', VARCHAR(100)), Column('family', VARCHAR(100)), Column('genus', VARCHAR(100)), Column('species', VARCHAR(100)), Column('common_name', VARCHAR(100)), Column('authority', VARCHAR(100)), Column('metadata_taxa_key', Integer)) taxa_accepted_table = Table( 'taxa_accepted_table', metadata, Column('taxa_accepted_table_key', Integer, primary_key=True), Column('taxa_original_fkey', None, ForeignKey( 'taxa_table.taxa_table_key', ondelete="CASCADE")), Column('sppcode', VARCHAR(100)), Column('kingdom_accepted', VARCHAR(100)), Column('subkingdom_accepted', VARCHAR(100)), Column('infrakingdom_accepted', VARCHAR(100)), Column('superdivision_accepted', VARCHAR(100)), Column('division_accepted', VARCHAR(100)), Column('superphylum_accepted', VARCHAR(100)), Column('phylum_accepted', VARCHAR(100)), Column('subphylum_accepted', VARCHAR(100)), Column('subdivision_accepted', VARCHAR(100)), Column('clss_accepted', VARCHAR(100)), Column('subclass_accepted', VARCHAR(100)), Column('ordr_accepted', VARCHAR(100)), Column('family_accepted', VARCHAR(100)), Column('genus_accepted', VARCHAR(100)), Column('species_accepted', VARCHAR(100)), Column('common_name_accepted', VARCHAR(100)), Column('authority', VARCHAR(100))) # Count table count_table = Table( 'count_table', metadata, Column('count_table_key', Integer, primary_key=True), Column('taxa_count_fkey', None, ForeignKey( 'taxa_table.taxa_table_key', ondelete="CASCADE")), Column('site_in_project_count_fkey', None, ForeignKey( 'site_in_project_table.site_in_project_key', ondelete="CASCADE")), Column('year', NUMERIC), Column('month', NUMERIC), Column('day', NUMERIC), Column('spatial_replication_level_1', VARCHAR(50)), Column('spatial_replication_level_2', VARCHAR(50)), Column('spatial_replication_level_3', VARCHAR(50)), Column('spatial_replication_level_4', VARCHAR(50)), Column('spatial_replication_level_5', VARCHAR(50)), Column('treatment_type_1', VARCHAR(200)), Column('treatment_type_2', VARCHAR(200)), Column('treatment_type_3', VARCHAR(200)), Column('structure_type_1', VARCHAR(200)), Column('structure_type_2', VARCHAR(200)), Column('structure_type_3', VARCHAR(200)), Column('structure_type_4', VARCHAR(50)), Column('count_observation', NUMERIC), Column('covariates', TEXT), Column('metadata_count_key', Integer)) # Biomass Table biomass_table = Table( 'biomass_table', metadata, Column('biomass_table_key', Integer, primary_key=True), Column('taxa_biomass_fkey', None, ForeignKey( 'taxa_table.taxa_table_key', ondelete="CASCADE")), Column('site_in_project_biomass_fkey', None, ForeignKey( 'site_in_project_table.site_in_project_key', ondelete="CASCADE")), Column('year', NUMERIC), Column('month', NUMERIC), Column('day', NUMERIC), Column('spatial_replication_level_1', VARCHAR(50)), Column('spatial_replication_level_2', VARCHAR(50)), Column('spatial_replication_level_3', VARCHAR(50)), Column('spatial_replication_level_4', VARCHAR(50)), Column('spatial_replication_level_5', VARCHAR(50)), Column('treatment_type_1', VARCHAR(200)), Column('treatment_type_2', VARCHAR(200)), Column('treatment_type_3', VARCHAR(200)), Column('structure_type_1', VARCHAR(200)), Column('structure_type_2', VARCHAR(200)), Column('structure_type_3', VARCHAR(200)), Column('structure_type_4', VARCHAR(50)), Column('biomass_observation', NUMERIC), Column('covariates', TEXT), Column('metadata_biomass_key', Integer)) # Density Table density_table = Table( 'density_table', metadata, Column('density_table_key', Integer, primary_key=True), Column('taxa_density_fkey', None, ForeignKey( 'taxa_table.taxa_table_key', ondelete="CASCADE")), Column('site_in_project_density_fkey', None, ForeignKey( 'site_in_project_table.site_in_project_key', ondelete="CASCADE")), Column('year', NUMERIC), Column('month', NUMERIC), Column('day', NUMERIC), Column('spatial_replication_level_1', VARCHAR(50)), Column('spatial_replication_level_2', VARCHAR(50)), Column('spatial_replication_level_3', VARCHAR(50)), Column('spatial_replication_level_4', VARCHAR(50)), Column('spatial_replication_level_5', VARCHAR(50)), Column('treatment_type_1', VARCHAR(200)), Column('treatment_type_2', VARCHAR(200)), Column('treatment_type_3', VARCHAR(200)), Column('structure_type_1', VARCHAR(200)), Column('structure_type_2', VARCHAR(200)), Column('structure_type_3', VARCHAR(200)), Column('structure_type_4', VARCHAR(50)), Column('density_observation', NUMERIC), Column('covariates', TEXT), Column('metadata_density_key', Integer)) # Percent Cover Table percent_cover_table = Table( 'percent_cover_table', metadata, Column('percent_cover_table_key', Integer, primary_key=True), Column('taxa_percent_cover_fkey', None, ForeignKey( 'taxa_table.taxa_table_key', ondelete="CASCADE")), Column('site_in_project_percent_cover_fkey', None, ForeignKey( 'site_in_project_table.site_in_project_key', ondelete="CASCADE")), Column('year', NUMERIC), Column('month', NUMERIC), Column('day', NUMERIC), Column('spatial_replication_level_1', VARCHAR(50)), Column('spatial_replication_level_2', VARCHAR(50)), Column('spatial_replication_level_3', VARCHAR(50)), Column('spatial_replication_level_4', VARCHAR(50)), Column('spatial_replication_level_5', VARCHAR(50)), Column('treatment_type_1', VARCHAR(200)), Column('treatment_type_2', VARCHAR(200)), Column('treatment_type_3', VARCHAR(200)), Column('structure_type_1', VARCHAR(200)), Column('structure_type_2', VARCHAR(200)), Column('structure_type_3', VARCHAR(200)), Column('structure_type_4', VARCHAR(50)), Column('percent_cover_observation', NUMERIC), Column('covariates', TEXT), Column('metadata_percent_cover_key', Integer)) # Individual Table individual_table = Table( 'individual_table', metadata, Column('individual_table_key', Integer, primary_key=True), Column('taxa_individual_fkey', None, ForeignKey( 'taxa_table.taxa_table_key', ondelete="CASCADE")), Column('site_in_project_individual_fkey', None, ForeignKey( 'site_in_project_table.site_in_project_key', ondelete="CASCADE")), Column('year', NUMERIC), Column('month', NUMERIC), Column('day', NUMERIC), Column('spatial_replication_level_1', VARCHAR(50)), Column('spatial_replication_level_2', VARCHAR(50)), Column('spatial_replication_level_3', VARCHAR(50)), Column('spatial_replication_level_4', VARCHAR(50)), Column('spatial_replication_level_5', VARCHAR(50)), Column('treatment_type_1', VARCHAR(200)), Column('treatment_type_2', VARCHAR(200)), Column('treatment_type_3', VARCHAR(200)), Column('structure_type_1', VARCHAR(200)), Column('structure_type_2', VARCHAR(200)), Column('structure_type_3', VARCHAR(200)), Column('structure_type_4', VARCHAR(50)), Column('individual_observation', NUMERIC), Column('covariates', TEXT), Column('metadata_individual_key', Integer)) # This command takes all the information that was stored in the # metadata catalog and uses it to populate the database that # we connected to with our engine (user=postgres, databse=LTER) metadata.create_all(engine) lterex.to_sql( ltertablename, con=engine, if_exists="append", index=False)
######## # Copyright (c) 2014 GigaSpaces Technologies Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############ import os import sys import json import time import click import errno import string import random import shutil import logging import tarfile import zipfile import tempfile import collections from shutil import copy from contextlib import closing, contextmanager from backports.shutil_get_terminal_size import get_terminal_size import yaml import requests from retrying import retry from .logger import get_logger, get_events_logger from .exceptions import CloudifyCliError, CloudifyTimeoutError from .constants import SUPPORTED_ARCHIVE_TYPES, DEFAULT_TIMEOUT from .execution_events_fetcher import ExecutionEventsFetcher from cloudify._compat import urlparse from cloudify.models_states import BlueprintUploadState from cloudify_rest_client.constants import VisibilityState from cloudify_rest_client.exceptions import CloudifyClientError WAIT_FOR_BLUEPRINT_UPLOAD_SLEEP_INTERVAL = 1 def get_deployment_environment_execution(client, deployment_id, workflow): executions = client.executions.list(deployment_id=deployment_id, workflow_id=workflow, sort='created_at', is_descending=True) if executions and len(executions) > 0: return executions[0] raise RuntimeError( 'Failed to get {0} workflow execution for deployment {1}'.format( workflow, deployment_id) ) def dump_to_file(collection, file_path): with open(file_path, 'a') as f: f.write(os.linesep.join(collection)) f.write(os.linesep) def is_virtual_env(): if hasattr(sys, 'base_prefix'): # py3 case, with the stdlib venv return sys.base_prefix != sys.prefix return hasattr(sys, 'real_prefix') # TODO: Really? Remove! def get_cwd(): """Allows use to patch the cwd when needed. """ return os.getcwd() def remove_if_exists(path): try: if os.path.isfile(path): os.remove(path) if os.path.isdir(path): shutil.rmtree(path) except OSError as e: if e.errno != errno.ENOENT: # errno.ENOENT = no such file or directory raise # re-raise exception if a different error occurred def generate_random_string(size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def generate_suffixed_id(id): return '{0}_{1}'.format(id, generate_random_string()) def is_archive(source): return tarfile.is_tarfile(source) or zipfile.is_zipfile(source) def extract_archive(source): if tarfile.is_tarfile(source): return untar(source) elif zipfile.is_zipfile(source): return unzip(source) raise CloudifyCliError( 'Unsupported archive type provided or archive is not valid: {0}.' ' Supported archive types are: {1}' .format(source, SUPPORTED_ARCHIVE_TYPES) ) def tar(source, destination): logger = get_logger() logger.debug('Creating tgz archive: {0}...'.format(destination)) with closing(tarfile.open(destination, 'w:gz')) as tar: tar.add(source, arcname=os.path.basename(source)) def untar(archive, destination=None): if not destination: destination = tempfile.mkdtemp() logger = get_logger() logger.debug('Extracting tar archive {0} to {1}...' .format(archive, destination)) with closing(tarfile.open(name=archive)) as tar: tar.extractall(path=destination, members=tar.getmembers()) return destination def zip_files(files): source_folder = tempfile.mkdtemp() destination_zip = source_folder + '.zip' for path in files: copy(path, source_folder) create_zip(source_folder, destination_zip, include_folder=False) shutil.rmtree(source_folder) return destination_zip def create_zip(source, destination, include_folder=True): logger = get_logger() logger.debug('Creating zip archive: {0}...'.format(destination)) with closing(zipfile.ZipFile(destination, 'w')) as zip_file: for root, _, files in os.walk(source): for filename in files: file_path = os.path.join(root, filename) source_dir = os.path.dirname(source) if include_folder\ else source zip_file.write( file_path, os.path.relpath(file_path, source_dir)) return destination def unzip(archive, destination=None): if not destination: destination = tempfile.mkdtemp() logger = get_logger() logger.debug('Extracting zip {0} to {1}...'.format(archive, destination)) with closing(zipfile.ZipFile(archive, 'r')) as zip_file: zip_file.extractall(destination) return destination def download_file(url, destination=None, keep_name=False): """Download file. :param url: Location of the file to download :type url: str :param destination: Location where the file should be saved (autogenerated by default) :param keep_name: use the filename from the url as destination filename :type destination: str | None :returns: Location where the file was saved :rtype: str """ CHUNK_SIZE = 1024 logger = get_logger() if not destination: if keep_name: path = urlparse(url).path name = os.path.basename(path) destination = os.path.join(tempfile.mkdtemp(), name) else: fd, destination = tempfile.mkstemp() os.close(fd) logger.info('Downloading {0} to {1}...'.format(url, destination)) try: response = requests.get(url, stream=True) except requests.exceptions.RequestException as ex: raise CloudifyCliError( 'Failed to download {0}. ({1})'.format(url, str(ex))) final_url = response.url if final_url != url: logger.debug('Redirected to {0}'.format(final_url)) try: with open(destination, 'wb') as destination_file: for chunk in response.iter_content(CHUNK_SIZE): destination_file.write(chunk) except IOError as ex: raise CloudifyCliError( 'Failed to download {0}. ({1})'.format(url, str(ex))) return destination def generate_progress_handler(file_path, action='', max_bar_length=80): """Returns a function that prints a progress bar in the terminal :param file_path: The name of the file being transferred :param action: Uploading/Downloading :param max_bar_length: Maximum allowed length of the bar. Default: 80 :return: The configured print_progress function """ # We want to limit the maximum line length to 80, but allow for a smaller # terminal size. We also include the action string, and some extra chars terminal_width = get_terminal_size().columns # This takes care of the case where there is no terminal (e.g. unittest) terminal_width = terminal_width or max_bar_length bar_length = min(max_bar_length, terminal_width) - len(action) - 12 # Shorten the file name if it's too long file_name = os.path.basename(file_path) if len(file_name) > (bar_length // 4) + 3: file_name = file_name[:bar_length // 4] + '...' bar_length -= len(file_name) def print_progress(read_bytes, total_bytes): """Print upload/download progress on a single line Call this function in a loop to create a progress bar in the terminal :param read_bytes: Number of bytes already processed :param total_bytes: Total number of bytes in the file """ filled_length = min(bar_length, int(round(bar_length * read_bytes / float(total_bytes)))) percents = min(100.00, round( 100.00 * (read_bytes / float(total_bytes)), 2)) bar = '#' * filled_length + '-' * (bar_length - filled_length) # The \r caret makes sure the cursor moves back to the beginning of # the line msg = '\r{0} {1} |{2}| {3}%'.format(action, file_name, bar, percents) click.echo(msg, nl=False) if read_bytes >= total_bytes: sys.stdout.write('\n') return print_progress @contextmanager def handle_client_error(status_code, message, logger): """Gracefully handle client errors with specific status codes """ try: yield except CloudifyClientError as e: if e.status_code != status_code: raise logger.info(message) @contextmanager def prettify_client_error(status_codes, logger): """Prettify client errors with specific status codes :param status_codes: List of status codes :param logger: Logger for writing the error """ try: yield except CloudifyClientError as e: if e.status_code not in status_codes: raise logger.error('Error: %s', e) def get_visibility(private_resource, visibility, logger, valid_values=VisibilityState.STATES): # These arguments are mutually exclusive so only one can be used if private_resource: logger.info("The 'private_resource' argument will be deprecated soon, " "please use the 'visibility' argument instead") return VisibilityState.PRIVATE validate_visibility(visibility, valid_values) return visibility def validate_visibility(visibility, valid_values=VisibilityState.STATES): if visibility and visibility not in valid_values: raise CloudifyCliError( "Invalid visibility: `{0}`. Valid visibility's values are: " "{1}".format(visibility, valid_values) ) def get_local_path(source, destination=None, create_temp=False): allowed_schemes = ['http', 'https'] if urlparse(source).scheme in allowed_schemes: downloaded_file = download_file(source, destination, keep_name=True) return downloaded_file elif os.path.isfile(source): if not destination and create_temp: source_name = os.path.basename(source) destination = os.path.join(tempfile.mkdtemp(), source_name) if destination: shutil.copy(source, destination) return destination else: return source else: raise CloudifyCliError( 'You must provide either a path to a local file, or a remote URL ' 'using one of the allowed schemes: {0}'.format(allowed_schemes)) def explicit_tenant_name_message(tenant_name, logger): if tenant_name: logger.info('Explicitly using tenant `{0}`'.format(tenant_name)) def deep_update_dict(dest_dict, src_dict): for key, value in src_dict.items(): if isinstance(dest_dict, collections.MutableMapping): if isinstance(value, collections.MutableMapping): dest_dict[key] = deep_update_dict(dest_dict.get(key), value) else: dest_dict[key] = src_dict[key] else: dest_dict = {key: src_dict[key]} return dest_dict def deep_subtract_dict(dest_dict, src_dict): for key, value in src_dict.items(): if isinstance(value, collections.MutableMapping): deep_subtract_dict(dest_dict.get(key), value) else: if key not in dest_dict: raise CloudifyCliError('Key {} does not exist'.format(key)) dest_dict.pop(key) def insert_dotted_key_to_dict(dest_dict, key, value): """Insert the value into dest_dict according to the key which is in dot hierarchy format :param dest_dict: The dict to update :param key: The dot hierarchy key, e.g. 'a.b.c' :param value: The value to insert, e.g. 'd' :return: dest_dict will include the value in the wanted location, e.g. {a: {b: {c: d}}} """ key_path = key.split('.') for item in key_path[:-1]: dest_dict.setdefault(item, {}) dest_dict = dest_dict[item] dest_dict.setdefault(key_path[-1], value) def assert_one_argument(arguments): """Asserts exactly one argument in a dictionary of {argument_name: argument} is not null or False, else raises an error """ filtered = [k for k in arguments if arguments[k]] if len(filtered) != 1: raise CloudifyCliError('Please provide one of the options: ' + ', '.join(arguments)) def load_json(input_path): if not input_path: return with open(input_path) as json_file: return json.load(json_file) # return json_content def print_dict(keys_dict, logger): for key, values in keys_dict.items(): str_values = [str(value) for value in values] logger.info('{0}: {1}'. format(key, str_values)) def get_dict_from_yaml(yaml_path): with open(yaml_path) as f: return yaml.load(f, yaml.Loader) def wait_for_blueprint_upload(client, blueprint_id, logging_level): def _handle_errors(): if blueprint['state'] in BlueprintUploadState.FAILED_STATES: error_msg = '{error_type} blueprint: {description}.'.format( error_type=blueprint['state'].capitalize().replace('_', ' '), description=blueprint['error'] ) if logging_level == logging.DEBUG: error_msg += '\nError traceback: {}'.format( blueprint['error_traceback']) raise CloudifyCliError(error_msg) @retry(stop_max_attempt_number=5, wait_fixed=1000) def _get_blueprint_and_upload_execution_id(): bp = client.blueprints.get(blueprint_id) # upload_execution['id'] might not be available at first, hence retry return bp, bp.upload_execution['id'] try: blueprint, execution_id = _get_blueprint_and_upload_execution_id() except KeyError: raise RuntimeError( 'Failed to get upload_blueprint workflow execution for blueprint ' '{0}. That may indicate a problem with blueprint upload. Verify ' 'blueprint\'s state by running command `cfy blueprints get {0}`.' .format(blueprint_id) ) # if blueprint upload already ended - return without waiting if blueprint['state'] in BlueprintUploadState.END_STATES: _handle_errors() return blueprint deadline = time.time() + DEFAULT_TIMEOUT events_fetcher = ExecutionEventsFetcher( client, execution_id=execution_id, include_logs=True) # Poll for execution status and execution logs, until execution ends # and we receive an event of type in WORKFLOW_END_TYPES upload_ended = False events_handler = get_events_logger(None) # Poll for blueprint upload status, until the upload ends while True: if time.time() > deadline: raise CloudifyTimeoutError('Blueprint {0} upload timed ' 'out'.format(blueprint.id)) timeout = deadline - time.time() # update remaining timeout if not upload_ended: blueprint = client.blueprints.get(blueprint.id) upload_ended = \ blueprint['state'] in BlueprintUploadState.END_STATES events_fetcher.fetch_and_process_events( events_handler=events_handler, timeout=timeout) if upload_ended: break time.sleep(WAIT_FOR_BLUEPRINT_UPLOAD_SLEEP_INTERVAL) blueprint = client.blueprints.get(blueprint_id) _handle_errors() return blueprint
from django.contrib.auth.models import User from django.db import models from core.lists import ( ALIGNMENT_CHOICES, DIRECTION_CHOICES, DOOR_RESET_CHOICES, DOOR_TRIGGER_TYPE_CHOICES, SEX_CHOICES, WEAPON_TYPE_CHOICES, ) ### Area models ### class AreaFlag(models.Model): """ Flags that can be applied to an area. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField() class Area(models.Model): """ A new TFC Area! Yay! """ author = models.OneToOneField(User, blank=False) vnum = models.PositiveIntegerField(unique=True) name = models.TextField(blank=False, unique=True) forum = models.URLField(blank=True) level_low = models.PositiveSmallIntegerField(blank=False, default=1) level_high = models.PositiveSmallIntegerField(blank=False, default=50) flags = models.ManyToManyField(AreaFlag) notes = models.TextField() class AreaHelp(models.Model): """ A help file related to this area. BLOCK: #HELP """ area = models.OneToOneField(Area, blank=False) keywords = models.CharField(max_length=50) level = models.SmallIntegerField(blank=False, default=0, help_text="Lowest level that can read this help.") blank_line = models.BooleanField(blank=False, default=False, help_text="Include blank line at the beginning of this help?") text = models.TextField(blank=False) ### Item models ### # TODO: fill out the write_values() defs for each item type. use adv string formatting! # TODO: write tests to ensure that the item type ids are correct and all t class Spell(models.Model): """ Approved spells. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) class WeaponDamageType(models.Model): """ Damage identifiers done by certain types of weapons. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) weapon_type = models.CharField(max_length=1, choices=WEAPON_TYPE_CHOICES) class DrinkType(models.Model): """ Types that a drinkable can be. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) adjective = models.CharField(max_length=50, blank=False, unique=True) class ContainerFlag(models.Model): """ Flags that can be applied to a container. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField() class ItemType(models.Model): """ Types that an item can be. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField() class ExtraDescription(models.Model): """ Extra description available to add to an object. """ item = models.ForeignKey('Item', related_name='extra_descriptions') TFC_id = models.PositiveIntegerField(blank=False) keywords = models.TextField(blank=False) description = models.TextField(blank=False) class WearFlag(models.Model): """ Places an item can be worn. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField() class ResetWearFlag(models.Model): """ Places an item can be reset to on a mobile. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField() class ItemExtraFlag(models.Model): """ Extra flags available to apply to items. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField() class ItemModifier(models.Model): """ Stats that an item can modify in some way - these are the Item Applies flags. If any of these are used on an item, it automatically gets the (Magical) ItemExtraFlag. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) requires_approval = models.BooleanField(blank=False, default=False) description = models.TextField() ### There is actually a reason for all this Item model madness. It has to do ### with properly displaying the fields for creation of item types to the ### area builder. This could all be cleaned up with some Class Factory ### magic (which would also make Item Types dynamically editable), but that ### is going to have to be on the wishlist for now. class Item(models.Model): """ An item that lives in a TFC Area. BLOCK: #OBJECTS """ area = models.ForeignKey(Area, blank=False) vnum = models.PositiveIntegerField(blank=False) # names needs to be lower()d. names = models.TextField(help_text='A few keywords for this object.') # short_desc needs to be lower()d. short_desc = models.TextField(help_text='A short phrase identifying the object; e.g. "a stone hammer"') long_desc = models.TextField(help_text='Description of an object standing alone; e.g. "A heavy stone hammer lies here."') takeable = models.BooleanField(default=False) # A shopkeeper will sell most Item types, but not Trash. salable = True wear_flags = models.ForeignKey(WearFlag) weight = models.PositiveSmallIntegerField(default=4, help_text="Total weight including carrying weight if this is a container.") cost = models.PositiveIntegerField(default=1000) values = models.PositiveIntegerField(help_text="Number of coins") flammable = models.BooleanField(blank=False, default=False) metallic = models.BooleanField(blank=False, default=False) two_handed = models.BooleanField(blank=False, default=False) underwater_breath = models.BooleanField(blank=False, default=False) total_in_game = models.PositiveSmallIntegerField(blank=False, default=1, help_text="Total number of this item allowed in the game (won't reset when max is reached)") notes = models.TextField() class Meta: unique_together = ('area', 'vnum') class Light(Item): """ An item of the Light type. """ item_type = 1 hours = models.SmallIntegerField(blank=False, default=0, help_text="Number of hours of light. Use -1 for infinite and 0 for dead.") def write_values(self): """ Prints out the values needed for a zone file. """ print "0 0 %d 0" % (hours) class Fountain(Item): """ A fountain item. """ item_type = 25 spell = models.ForeignKey(Spell, blank=False) spell_level = models.PositiveSmallIntegerField(blank=False) drink_type = models.ForeignKey(DrinkType, blank=False) def write_values(self): pass class BaseWeapon(Item): """ Weapon base class. There are weapons and animal weapons. """ minimum_damage = models.PositiveSmallIntegerField(blank=False) maximum_damage = models.PositiveSmallIntegerField(blank=False) weapon_damage_type = models.ForeignKey(WeaponDamageType, blank=False) class Meta: abstract = True class BaseArmor(Item): """ Base armor class. There is armor and animal armor. """ ac_rating = models.SmallIntegerField(blank=False) class Meta: abstract = True class BaseFood(Item): """ Base food class. There is food and pet food. """ hours = models.PositiveSmallIntegerField(blank=False) poison = models.SmallIntegerField(blank=False, default=0, help_text="0 is non-poisonous, non-zero is poisonous.") class Meta: abstract = True class SimpleMagicalItem(Item): """ A magical item that just has one charge of up to three spells. """ spells = models.ManyToManyField(Spell, blank=False, help_text="Choose up to three spells. Only three will be exported, randomly if more exist.") spell_level = models.PositiveSmallIntegerField(blank=False) class Meta: abstract = True class ChargedMagicalItem(Item): """ A magical item with charges. """ spell = models.ForeignKey(Spell, blank=False) spell_level = models.PositiveSmallIntegerField(blank=False) max_charges = models.PositiveSmallIntegerField(blank=False) remaining_charges = models.PositiveSmallIntegerField(blank=False) class Meta: abstract = True class Weapon(BaseWeapon): item_type = 5 def write_values(self): pass class AnimalWeapon(BaseWeapon): """ A weapon derived from an animal (e.g. a scorpion's stinger).) """ item_type = 6 def write_values(self): pass class Meta: verbose_name = 'animal-based weapon' class Armor(BaseArmor): item_type = 9 def write_values(self): pass class Meta: verbose_name = 'armor item' class AnimalArmor(BaseArmor): """ Armor derived from an animal. Mobs that have no_wear_armor can still wear animal armor. """ item_type = 14 def write_values(self): pass class Meta: verbose_name = 'animal-based armor item' class Food(BaseFood): item_type = 19 def write_values(self): pass class Meta: verbose_name = 'food item' class PetFood(BaseFood): item_type = 11 def write_values(self): pass class Meta: verbose_name = 'pet food item' class Scroll(SimpleMagicalItem): item_type = 2 def write_values(self): pass class Potion(SimpleMagicalItem): item_type = 10 def write_values(self): pass class Pill(SimpleMagicalItem): item_type = 26 def write_values(self): pass class Wand(ChargedMagicalItem): item_type = 3 def write_values(self): pass class Staff(ChargedMagicalItem): item_type = 4 def write_values(self): pass class Meta: verbose_name_plural = 'staves' class Fetish(ChargedMagicalItem): item_type = 7 def write_values(self): pass class Meta: verbose_name_plural = 'fetishes' class Ring(ChargedMagicalItem): item_type = 29 def write_values(self): pass class Relic(ChargedMagicalItem): item_type = 33 def write_values(self): pass class NonMagicalItem(Item): class Meta: abstract = True class Treasure(NonMagicalItem): item_type = 8 def write_values(self): pass class Meta: verbose_name = 'treasure item' class Furniture(NonMagicalItem): item_type = 12 def write_values(self): pass class Meta: verbose_name = 'furniture item' class Trash(NonMagicalItem): item_type = 13 # Shopkeepers don't sell Trash. Sorry. salable = False def write_values(self): pass class Meta: verbose_name = 'trash item' class Key(NonMagicalItem): item_type = 18 def write_values(self): pass class Boat(NonMagicalItem): item_type = 22 def write_values(self): pass class Decoration(NonMagicalItem): item_type = 27 def write_values(self): pass class Jewelry(NonMagicalItem): item_type = 30 def write_values(self): pass class Meta: verbose_name = 'jewelry item' class DrinkContainer(Item): """ An item that can contain liquids. """ item_type = 17 capacity = models.SmallIntegerField(blank=False, help_text="Capacity of this drink container.") remaining = models.SmallIntegerField(blank=False, help_text="Amount remaining in the container.") drink_type = models.ForeignKey(DrinkType, blank=False) poison = models.SmallIntegerField(blank=False, default=0, help_text="0 is non-poisonous, non-zero is poisonous.") def write_values(self): pass class Container(Item): """ An item that can contain other non-liquid items. """ item_type = 15 key = models.ForeignKey(Key, blank=True) flags = models.ManyToManyField('ContainerFlag') def write_values(self): pass class ItemContainerReset(models.Model): """ AKA a Place Reset. Loads an object into another object. This will be placed onto a Container type object, since only containers can contain other objects. """ container = models.ForeignKey(Container, blank=False, related_name='item_resets') item = models.ForeignKey(Item, blank=False, related_name='container_resets') reset_every_cycle = models.BooleanField(blank=False, default=False, help_text="Reset this item every cycle (instead of only when zone is deserted)?") comment = models.TextField(blank=True) class Meta: verbose_name = 'item-container reset' unique_together = ('container', 'item') class Money(Item): item_type = 20 number_of_coins = models.SmallIntegerField(blank=False, default=1, help_text="How many coins is this money worth?") def write_values(self): pass class Meta: verbose_name = 'pile of money' verbose_name_plural = 'piles of money' ### Mobile models class Race(models.Model): """ Races available for shopkeepers. """ TFC_id = models.SmallIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) class KnownLanguage(models.Model): """ Languages that mobiles can *know*. The Language called "God" has a different id if it is preferred vs. just known by a mob, so we have to have separate models, here. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) class PreferredLanguage(models.Model): """ Languages that mobiles can *prefer*. The Language called "God" has a different id if it is preferred vs. just known by a mob, so we have to have separate models, here. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) class ActionFlag(models.Model): """ Action flags available to apply to mobiles. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField(blank=False) class AffectFlag(models.Model): """ Affect flags available to apply to mobiles. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField() implemented = models.BooleanField(blank=False, default=True) class SpecialFunction(models.Model): """ Additional functionality for mobiles. BLOCK: #SPECIALS """ TFC_id = models.CharField(max_length=50, blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField() generic = models.BooleanField(blank=False, default=True) class Mobile(models.Model): """ A creature that can move around and do stuff, but isn't human. BLOCK: #MOBILES """ area = models.ForeignKey(Area, blank=False) vnum = models.PositiveIntegerField(blank=False) names = models.TextField() short_desc = models.TextField() long_desc = models.TextField() look_desc = models.TextField() level = models.PositiveSmallIntegerField(default=1, help_text="What level is this Mob?") alignment = models.PositiveSmallIntegerField(choices=ALIGNMENT_CHOICES) sex = models.SmallIntegerField(choices=SEX_CHOICES) is_animal = models.BooleanField(default=False, help_text="Is this Mob an animal?") spell = models.ForeignKey(Spell, blank=True, help_text="What spell (if any) does this Mob know?") affect_flags = models.ManyToManyField(AffectFlag) action_flags = models.ManyToManyField(ActionFlag) no_wear = models.BooleanField(default=False, help_text="Should this Mob be allowed to wear armor (animal armor excluded)?") special_functions = models.ManyToManyField(SpecialFunction, blank=True) known_languages = models.ManyToManyField(KnownLanguage, help_text="What languages does this Mob know?") preferred_language = models.ForeignKey(PreferredLanguage, help_text="What language does this Mob prefer?") total_in_game = models.PositiveSmallIntegerField(blank=False, default=1, help_text="Total number of this mob allowed in the game (won't reset when max is reached)") notes = models.TextField() class Meta: unique_together = ('area', 'vnum') class Shopkeeper(models.Model): """ A shopkeeper mob. BLOCK: #SHOPS """ mobile = models.OneToOneField(Mobile, blank=False, unique=True, help_text="Which Mob is running this shop?") race = models.ForeignKey(Race, blank=False, help_text="What race is this shopkeeper?") will_buy = models.CommaSeparatedIntegerField(max_length=50, blank=True, help_text="Item types the mob will buy. Only the first 5 will be used.") opens = models.SmallIntegerField(blank=False, default=6, help_text="Hour of the day this shop opens. (0-23)") closes = models.SmallIntegerField(blank=False, default=23, help_text="Hour of the day this shop closes. (0-23)") reset_items = models.ManyToManyField(Item, blank=True) class MobRoomReset(models.Model): """ AKA a Mob Reset. Reset definition for a Mob into a Room. BLOCK: #RESETS """ mobile = models.ForeignKey(Mobile, blank=False, related_name='room_resets') room = models.ForeignKey('Room', blank=False, related_name='mob_resets') reset_every_cycle = models.BooleanField(blank=False, default=False, help_text="Reset this item every cycle (instead of only when zone is deserted)?") comment = models.TextField(blank=True) class Meta: verbose_name = 'mob-room reset' unique_together = ('mobile', 'room') class MobItemReset(models.Model): """ AKA a Give Reset, or an Equip Reset if a wear_location is set. Reset definition for an object into a Mob. BLOCK: #RESETS """ item = models.ForeignKey(Item, blank=False, related_name='mob_resets') mobile = models.ForeignKey(Mobile, blank=False, related_name='item_resets') reset_every_cycle = models.BooleanField(blank=False, default=False, help_text="Reset this item every cycle (instead of only when zone is deserted)?") wear_location = models.ForeignKey(ResetWearFlag, blank=True, help_text="Optional: Where (if anywhere) do you want the Mob to equip this item?") comment = models.TextField(blank=True) class Meta: verbose_name = 'mob-item reset' unique_together = ('item', 'mobile') ### Room and Door models ### class RoomType(models.Model): """ Types of terrain that a room can have/be. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField() class RoomFlag(models.Model): """ Flags that can be applied to a room. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField() implemented = models.BooleanField(blank=False, default=True) class RoomSpecialFunction(models.Model): """ Special functions that can be attached to a room. BLOCK: #RSPECS """ TFC_id = models.CharField(max_length=50, blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField() class Room(models.Model): """ A room in TFC Area. BLOCK: #ROOMS """ area = models.ForeignKey(Area, blank=False) vnum = models.PositiveIntegerField(blank=False) special_functions = models.ManyToManyField(RoomSpecialFunction, blank=True) notes = models.TextField() class Meta: unique_together = ('area', 'vnum') class ItemRoomReset(models.Model): """ AKA an Object Reset. Resets an Item into a Room. BLOCK: #RESETS """ room = models.ForeignKey(Room, blank=False, related_name='object_resets') item = models.ForeignKey(Item, blank=False, related_name='room_resets') reset_every_cycle = models.BooleanField(blank=False, default=False, help_text="Reset this item every cycle (instead of only when zone is deserted)?") comment = models.TextField(blank=True) class Meta: verbose_name = 'item-room reset' unique_together = ('room', 'item') class DoorTrigger(models.Model): """ Door special functions - holds both Prevent and Allow Door Specfuns (Triggers). BLOCK: #TRIGGERS """ door = models.ForeignKey('Door', blank=False, related_name='triggers') TFC_id = models.CharField(max_length=50, blank=False) trigger_type = models.CharField(max_length=1, choices=DOOR_TRIGGER_TYPE_CHOICES) class DoorType(models.Model): """ Types that a door can be. """ TFC_id = models.PositiveIntegerField(blank=False) name = models.CharField(max_length=50, blank=False, unique=True) description = models.TextField() class Door(models.Model): """ A door leading out of a room. A room can have up to six doors, one in each direction. BLOCK: #ROOMS Listed along with the Room to which they are attached. """ room = models.ForeignKey(Room, blank=False, related_name='exits') name = models.CharField(max_length=50, blank=False, help_text='A one-word description of the door (e.g. "door" or "gate")') direction = models.CharField(max_length=1, blank=False, choices=DIRECTION_CHOICES) door_type = models.ForeignKey(DoorType, blank=False) keywords = models.TextField(blank=False, help_text='Keywords for interacting with the door.') description = models.TextField(blank=True) room_to = models.ForeignKey(Room, blank=True, related_name='entrances') reset = models.BooleanField(blank=False, default=False, help_text="Should this door be reset?") reset_every_cycle = models.BooleanField(blank=False, default=False, help_text="Reset this door every cycle (instead of only when deserted)?") reset_value = models.SmallIntegerField(blank=True, choices=DOOR_RESET_CHOICES) reset_comment = models.TextField(blank=True) notes = models.TextField() class Meta: unique_together = ('room', 'direction')
import hashlib import logging import random import re import time from datetime import datetime, timedelta from django.conf import settings from django.contrib.auth.models import User, Group from django.contrib.sites.models import Site from django.db import models from django.utils.translation import ugettext as _, ugettext_lazy as _lazy from celery.task import task from django_statsd.clients import statsd from timezones.fields import TimeZoneField from kitsune.lib.countries import COUNTRIES from kitsune.search.es_utils import UnindexMeBro from kitsune.search.models import ( SearchMappingType, SearchMixin, register_for_indexing, register_mapping_type) from kitsune.sumo import email_utils from kitsune.sumo.models import ModelBase, LocaleField from kitsune.sumo.urlresolvers import reverse from kitsune.sumo.utils import auto_delete_files, chunked from kitsune.users.validators import TwitterValidator log = logging.getLogger('k.users') SHA1_RE = re.compile('^[a-f0-9]{40}$') CONTRIBUTOR_GROUP = 'Registered as contributor' @auto_delete_files class Profile(ModelBase, SearchMixin): """Profile model for django users.""" user = models.OneToOneField(User, primary_key=True, verbose_name=_lazy(u'User')) name = models.CharField(max_length=255, null=True, blank=True, verbose_name=_lazy(u'Display name')) public_email = models.BooleanField( # show/hide email default=False, verbose_name=_lazy(u'Make my email public')) avatar = models.ImageField(upload_to=settings.USER_AVATAR_PATH, null=True, blank=True, verbose_name=_lazy(u'Avatar'), max_length=settings.MAX_FILEPATH_LENGTH) bio = models.TextField(null=True, blank=True, verbose_name=_lazy(u'Biography')) website = models.URLField(max_length=255, null=True, blank=True, verbose_name=_lazy(u'Website')) twitter = models.CharField(max_length=15, null=True, blank=True, validators=[TwitterValidator], verbose_name=_lazy(u'Twitter Username')) facebook = models.URLField(max_length=255, null=True, blank=True, verbose_name=_lazy(u'Facebook URL')) mozillians = models.CharField(max_length=255, null=True, blank=True, verbose_name=_lazy(u'Mozillians Username')) irc_handle = models.CharField(max_length=255, null=True, blank=True, verbose_name=_lazy(u'IRC nickname')) timezone = TimeZoneField(null=True, blank=True, verbose_name=_lazy(u'Timezone')) country = models.CharField(max_length=2, choices=COUNTRIES, null=True, blank=True, verbose_name=_lazy(u'Country')) # No city validation city = models.CharField(max_length=255, null=True, blank=True, verbose_name=_lazy(u'City')) locale = LocaleField(default=settings.LANGUAGE_CODE, verbose_name=_lazy(u'Preferred language')) first_answer_email_sent = models.BooleanField( default=False, help_text=_lazy(u'Has been sent a first answer contribution email.')) first_l10n_email_sent = models.BooleanField( default=False, help_text=_lazy(u'Has been sent a first revision contribution email.')) involved_from = models.DateField(null=True, blank=True, verbose_name=_lazy(u'Involved with Mozilla from')) csat_email_sent = models.DateField(null=True, blank=True, verbose_name=_lazy(u'When the user was sent a community ' u'health survey')) class Meta(object): permissions = (('view_karma_points', 'Can view karma points'), ('deactivate_users', 'Can deactivate users'), ('screen_share', 'Can screen share'),) def __unicode__(self): try: return unicode(self.user) except Exception as exc: return unicode('%d (%r)' % (self.pk, exc)) def get_absolute_url(self): return reverse('users.profile', args=[self.user_id]) def clear(self): """Clears out the users profile""" self.name = '' self.public_email = False self.avatar = None self.bio = '' self.website = '' self.twitter = '' self.facebook = '' self.mozillians = '' self.irc_handle = '' self.city = '' @property def display_name(self): return self.name if self.name else self.user.username @property def twitter_usernames(self): from kitsune.customercare.models import Reply return list( Reply.objects.filter(user=self.user) .values_list('twitter_username', flat=True) .distinct()) @classmethod def get_mapping_type(cls): return UserMappingType @classmethod def get_serializer(cls, serializer_type='full'): # Avoid circular import from kitsune.users import api if serializer_type == 'full': return api.ProfileSerializer elif serializer_type == 'fk': return api.ProfileFKSerializer else: raise ValueError('Unknown serializer type "{}".'.format(serializer_type)) @property def last_contribution_date(self): """Get the date of the user's last contribution.""" from kitsune.customercare.models import Reply from kitsune.questions.models import Answer from kitsune.wiki.models import Revision dates = [] # Latest Army of Awesome reply: try: aoa_reply = Reply.objects.filter( user=self.user).latest('created') dates.append(aoa_reply.created) except Reply.DoesNotExist: pass # Latest Support Forum answer: try: answer = Answer.objects.filter( creator=self.user).latest('created') dates.append(answer.created) except Answer.DoesNotExist: pass # Latest KB Revision edited: try: revision = Revision.objects.filter( creator=self.user).latest('created') dates.append(revision.created) except Revision.DoesNotExist: pass # Latest KB Revision reviewed: try: revision = Revision.objects.filter( reviewer=self.user).latest('reviewed') # Old revisions don't have the reviewed date. dates.append(revision.reviewed or revision.created) except Revision.DoesNotExist: pass if len(dates) == 0: return None return max(dates) @property def settings(self): return self.user.settings @property def answer_helpfulness(self): # Avoid circular import from kitsune.questions.models import AnswerVote return AnswerVote.objects.filter(answer__creator=self.user, helpful=True).count() @register_mapping_type class UserMappingType(SearchMappingType): list_keys = [ 'twitter_usernames', 'itwitter_usernames', ] @classmethod def get_model(cls): return Profile @classmethod def get_index_group(cls): return 'non-critical' @classmethod def get_mapping(cls): return { 'properties': { 'id': {'type': 'long'}, 'model': {'type': 'string', 'index': 'not_analyzed'}, 'url': {'type': 'string', 'index': 'not_analyzed'}, 'indexed_on': {'type': 'integer'}, 'username': {'type': 'string', 'index': 'not_analyzed'}, 'display_name': {'type': 'string', 'index': 'not_analyzed'}, 'twitter_usernames': { 'type': 'string', 'index': 'not_analyzed' }, 'last_contribution_date': {'type': 'date'}, # lower-cased versions for querying: 'iusername': {'type': 'string', 'index': 'not_analyzed'}, 'idisplay_name': {'type': 'string', 'analyzer': 'whitespace'}, 'itwitter_usernames': { 'type': 'string', 'index': 'not_analyzed' }, 'avatar': {'type': 'string', 'index': 'not_analyzed'}, 'suggest': { 'type': 'completion', 'analyzer': 'whitespace', 'payloads': True, } } } @classmethod def extract_document(cls, obj_id, obj=None): """Extracts interesting thing from a Thread and its Posts""" if obj is None: model = cls.get_model() obj = model.objects.select_related('user').get(pk=obj_id) if not obj.user.is_active: raise UnindexMeBro() d = {} d['id'] = obj.pk d['model'] = cls.get_mapping_type_name() d['url'] = obj.get_absolute_url() d['indexed_on'] = int(time.time()) d['username'] = obj.user.username d['display_name'] = obj.display_name d['twitter_usernames'] = obj.twitter_usernames d['last_contribution_date'] = obj.last_contribution_date d['iusername'] = obj.user.username.lower() d['idisplay_name'] = obj.display_name.lower() d['itwitter_usernames'] = [u.lower() for u in obj.twitter_usernames] from kitsune.users.templatetags.jinja_helpers import profile_avatar d['avatar'] = profile_avatar(obj.user, size=120) d['suggest'] = { 'input': [ d['iusername'], d['idisplay_name'] ], 'output': _(u'{displayname} ({username})').format( displayname=d['display_name'], username=d['username']), 'payload': {'user_id': d['id']}, } return d @classmethod def suggest_completions(cls, text): """Suggest completions for the text provided.""" USER_SUGGEST = 'user-suggest' es = UserMappingType.search().get_es() results = es.suggest(index=cls.get_index(), body={ USER_SUGGEST: { 'text': text.lower(), 'completion': { 'field': 'suggest' } } }) if results[USER_SUGGEST][0]['length'] > 0: return results[USER_SUGGEST][0]['options'] return [] register_for_indexing('users', Profile) def get_profile(u): try: return Profile.objects.get(user=u) except Profile.DoesNotExist: return None register_for_indexing( 'users', User, instance_to_indexee=get_profile) class Setting(ModelBase): """User specific value per setting""" user = models.ForeignKey(User, verbose_name=_lazy(u'User'), related_name='settings') name = models.CharField(max_length=100) value = models.CharField(blank=True, max_length=60, verbose_name=_lazy(u'Value')) class Meta(object): unique_together = (('user', 'name'),) def __unicode__(self): return u'%s %s:%s' % (self.user, self.name, self.value or u'[none]') @classmethod def get_for_user(cls, user, name): from kitsune.users.forms import SettingsForm form = SettingsForm() if name not in form.fields.keys(): raise KeyError(("'{name}' is not a field in " "user.forms.SettingsFrom()").format(name=name)) try: setting = Setting.objects.get(user=user, name=name) except Setting.DoesNotExist: value = form.fields[name].initial or '' setting = Setting.objects.create(user=user, name=name, value=value) # Cast to the field's Python type. return form.fields[name].to_python(setting.value) # Activation model and manager: # (based on http://bitbucket.org/ubernostrum/django-registration) class ConfirmationManager(models.Manager): """ Custom manager for confirming keys sent by email. The methods defined here provide shortcuts for creation of instances and sending email confirmations. Activation should be done in specific managers. """ def _send_email(self, confirmation_profile, url, subject, text_template, html_template, send_to, **kwargs): """ Send an email using a passed in confirmation profile. Use specified url, subject, text_template, html_template and email to send_to. """ current_site = Site.objects.get_current() email_kwargs = {'activation_key': confirmation_profile.activation_key, 'domain': current_site.domain, 'activate_url': url, 'login_url': reverse('users.login'), 'reg': 'main'} email_kwargs.update(kwargs) # RegistrationProfile doesn't have a locale attribute. So if # we get one of those, then we have to get the real profile # from the user. if hasattr(confirmation_profile, 'locale'): locale = confirmation_profile.locale else: locale = confirmation_profile.user.profile.locale @email_utils.safe_translation def _make_mail(locale): mail = email_utils.make_mail( subject=subject, text_template=text_template, html_template=html_template, context_vars=email_kwargs, from_email=settings.DEFAULT_FROM_EMAIL, to_email=send_to) return mail email_utils.send_messages([_make_mail(locale)]) def send_confirmation_email(self, *args, **kwargs): """This is meant to be overwritten.""" raise NotImplementedError def create_profile(self, user, *args, **kwargs): """ Create an instance of this manager's object class for a given ``User``, and return it. The activation key will be a SHA1 hash, generated from a combination of the ``User``'s username and a random salt. """ salt = hashlib.sha1(str(random.random())).hexdigest()[:5] activation_key = hashlib.sha1(salt + user.username).hexdigest() return self.create(user=user, activation_key=activation_key, **kwargs) class RegistrationManager(ConfirmationManager): def get_user(self, activation_key): """Get the user for the specified activation_key.""" try: profile = self.get(activation_key=activation_key) return profile.user except self.model.DoesNotExist: return None def activate_user(self, activation_key, request=None): """ Validate an activation key and activate the corresponding ``User`` if valid. If the key is valid and has not expired, return the ``User`` after activating. If the key is not valid or has expired, return ``False``. """ # Make sure the key we're trying conforms to the pattern of a # SHA1 hash; if it doesn't, no point trying to look it up in # the database. if SHA1_RE.search(activation_key): try: profile = self.get(activation_key=activation_key) except self.model.DoesNotExist: profile = None statsd.incr('user.activate-error.does-not-exist') reason = 'key not found' if profile: if not profile.activation_key_expired(): user = profile.user user.is_active = True user.save() # We don't need the RegistrationProfile anymore, delete it. profile.delete() # If user registered as contributor, send them the # welcome email. if user.groups.filter(name=CONTRIBUTOR_GROUP): self._send_email( confirmation_profile=profile, url=None, subject=_('Welcome to SUMO!'), text_template='users/email/contributor.ltxt', html_template='users/email/contributor.html', send_to=user.email, contributor=user) return user else: statsd.incr('user.activate-error.expired') reason = 'key expired' else: statsd.incr('user.activate-error.invalid-key') reason = 'invalid key' log.warning(u'User activation failure ({r}): {k}'.format( r=reason, k=activation_key)) return False def create_inactive_user(self, username, password, email, locale=settings.LANGUAGE_CODE, text_template=None, html_template=None, subject=None, email_data=None, volunteer_interest=False, **kwargs): """ Create a new, inactive ``User`` and ``Profile``, generates a ``RegistrationProfile`` and email its activation key to the ``User``, returning the new ``User``. """ new_user = User.objects.create_user(username, email, password) new_user.is_active = False new_user.save() Profile.objects.create(user=new_user, locale=locale) registration_profile = self.create_profile(new_user) self.send_confirmation_email( registration_profile, text_template, html_template, subject, email_data, **kwargs) if volunteer_interest: statsd.incr('user.registered-as-contributor') group = Group.objects.get(name=CONTRIBUTOR_GROUP) new_user.groups.add(group) return new_user def send_confirmation_email(self, registration_profile, text_template=None, html_template=None, subject=None, email_data=None, **kwargs): """Send the user confirmation email.""" user_id = registration_profile.user.id key = registration_profile.activation_key self._send_email( confirmation_profile=registration_profile, url=reverse('users.activate', args=[user_id, key]), subject=subject or _('Please confirm your email address'), text_template=text_template or 'users/email/activate.ltxt', html_template=html_template or 'users/email/activate.html', send_to=registration_profile.user.email, expiration_days=settings.ACCOUNT_ACTIVATION_DAYS, username=registration_profile.user.username, email_data=email_data, **kwargs) def delete_expired_users(self): """ Remove expired instances of this manager's object class. Accounts to be deleted are identified by searching for instances of this manager's object class with expired activation keys, and then checking to see if their associated ``User`` instances have the field ``is_active`` set to ``False``; any ``User`` who is both inactive and has an expired activation key will be deleted. """ days_valid = settings.ACCOUNT_ACTIVATION_DAYS expired = datetime.now() - timedelta(days=days_valid) prof_ids = self.filter(user__date_joined__lt=expired) prof_ids = prof_ids.values_list('id', flat=True) for chunk in chunked(prof_ids, 1000): _delete_registration_profiles_chunk.apply_async(args=[chunk]) @task def _delete_registration_profiles_chunk(data): log_msg = u'Deleting {num} expired registration profiles.' log.info(log_msg.format(num=len(data))) qs = RegistrationProfile.objects.filter(id__in=data) for profile in qs.select_related('user'): user = profile.user profile.delete() if user and not user.is_active: user.delete() class EmailChangeManager(ConfirmationManager): def send_confirmation_email(self, email_change, new_email): """Ask for confirmation before changing a user's email.""" self._send_email( confirmation_profile=email_change, url=reverse('users.confirm_email', args=[email_change.activation_key]), subject=_('Please confirm your email address'), text_template='users/email/confirm_email.ltxt', html_template='users/email/confirm_email.html', send_to=new_email) class RegistrationProfile(models.Model): """ A simple profile which stores an activation key used for user account registration. Generally, you will not want to interact directly with instances of this model; the provided manager includes methods for creating and activating new accounts. """ user = models.ForeignKey(User, unique=True, verbose_name=_lazy(u'user')) activation_key = models.CharField(verbose_name=_lazy(u'activation key'), max_length=40) objects = RegistrationManager() class Meta: verbose_name = _lazy(u'registration profile') verbose_name_plural = _lazy(u'registration profiles') def __unicode__(self): return u'Registration information for %s' % self.user def activation_key_expired(self): """ Determine whether this ``RegistrationProfile``'s activation key has expired, returning a boolean -- ``True`` if the key has expired. Key expiration is determined by: 1. The date the user signed up is incremented by the number of days specified in the setting ``ACCOUNT_ACTIVATION_DAYS`` (which should be the number of days after signup during which a user is allowed to activate their account); if the result is less than or equal to the current date, the key has expired and this method returns ``True``. """ exp_date = timedelta(days=settings.ACCOUNT_ACTIVATION_DAYS) return self.user.date_joined + exp_date <= datetime.now() activation_key_expired.boolean = True class EmailChange(models.Model): """Stores email with activation key when user requests a change.""" ACTIVATED = u"ALREADY_ACTIVATED" user = models.ForeignKey(User, unique=True, verbose_name=_lazy(u'user')) activation_key = models.CharField(verbose_name=_lazy(u'activation key'), max_length=40) email = models.EmailField(db_index=True, null=True) objects = EmailChangeManager() def __unicode__(self): return u'Change email request to %s for %s' % (self.email, self.user) class Deactivation(models.Model): """Stores user deactivation logs.""" user = models.ForeignKey(User, verbose_name=_lazy(u'user'), related_name='+') moderator = models.ForeignKey(User, verbose_name=_lazy(u'moderator'), related_name='deactivations') date = models.DateTimeField(default=datetime.now) def __unicode__(self): return u'%s was deactivated by %s on %s' % (self.user, self.moderator, self.date)
# Copyright (c) 2014 OpenStack Foundation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections from oslo_config import cfg from oslo_log import log as logging from oslo_utils import excutils import six from neutron._i18n import _, _LI, _LW from neutron.api.v2 import attributes from neutron.callbacks import events from neutron.callbacks import exceptions from neutron.callbacks import registry from neutron.callbacks import resources from neutron.common import constants as l3_const from neutron.common import exceptions as n_exc from neutron.common import utils as n_utils from neutron.db import l3_agentschedulers_db as l3_sched_db from neutron.db import l3_attrs_db from neutron.db import l3_db from neutron.extensions import l3 from neutron.extensions import portbindings from neutron import manager from neutron.plugins.common import constants from neutron.plugins.common import utils as p_utils LOG = logging.getLogger(__name__) router_distributed_opts = [ cfg.BoolOpt('router_distributed', default=False, help=_("System-wide flag to determine the type of router " "that tenants can create. Only admin can override.")), ] cfg.CONF.register_opts(router_distributed_opts) class L3_NAT_with_dvr_db_mixin(l3_db.L3_NAT_db_mixin, l3_attrs_db.ExtraAttributesMixin): """Mixin class to enable DVR support.""" router_device_owners = ( l3_db.L3_NAT_db_mixin.router_device_owners + (l3_const.DEVICE_OWNER_DVR_INTERFACE, l3_const.DEVICE_OWNER_ROUTER_SNAT, l3_const.DEVICE_OWNER_AGENT_GW)) extra_attributes = ( l3_attrs_db.ExtraAttributesMixin.extra_attributes + [{ 'name': "distributed", 'default': cfg.CONF.router_distributed }]) def _create_router_db(self, context, router, tenant_id): """Create a router db object with dvr additions.""" router['distributed'] = is_distributed_router(router) with context.session.begin(subtransactions=True): router_db = super( L3_NAT_with_dvr_db_mixin, self)._create_router_db( context, router, tenant_id) self._process_extra_attr_router_create(context, router_db, router) return router_db def _validate_router_migration(self, context, router_db, router_res): """Allow centralized -> distributed state transition only.""" if (router_db.extra_attributes.distributed and router_res.get('distributed') is False): LOG.info(_LI("Centralizing distributed router %s " "is not supported"), router_db['id']) raise n_exc.BadRequest( resource='router', msg=_("Migration from distributed router to centralized is " "not supported")) elif (not router_db.extra_attributes.distributed and router_res.get('distributed')): # router should be disabled in order for upgrade if router_db.admin_state_up: msg = _('Cannot upgrade active router to distributed. Please ' 'set router admin_state_up to False prior to upgrade.') raise n_exc.BadRequest(resource='router', msg=msg) # Notify advanced services of the imminent state transition # for the router. try: kwargs = {'context': context, 'router': router_db} registry.notify( resources.ROUTER, events.BEFORE_UPDATE, self, **kwargs) except exceptions.CallbackFailure as e: with excutils.save_and_reraise_exception(): # NOTE(armax): preserve old check's behavior if len(e.errors) == 1: raise e.errors[0].error raise l3.RouterInUse(router_id=router_db['id'], reason=e) def _update_distributed_attr( self, context, router_id, router_db, data): """Update the model to support the dvr case of a router.""" if data.get('distributed'): old_owner = l3_const.DEVICE_OWNER_ROUTER_INTF new_owner = l3_const.DEVICE_OWNER_DVR_INTERFACE for rp in router_db.attached_ports.filter_by(port_type=old_owner): rp.port_type = new_owner rp.port.device_owner = new_owner def _update_router_db(self, context, router_id, data): with context.session.begin(subtransactions=True): router_db = super( L3_NAT_with_dvr_db_mixin, self)._update_router_db( context, router_id, data) migrating_to_distributed = ( not router_db.extra_attributes.distributed and data.get('distributed') is True) self._validate_router_migration(context, router_db, data) router_db.extra_attributes.update(data) self._update_distributed_attr( context, router_id, router_db, data) if migrating_to_distributed: if router_db['gw_port_id']: # If the Legacy router is getting migrated to a DVR # router, make sure to create corresponding # snat interface ports that are to be consumed by # the Service Node. if not self._create_snat_intf_ports_if_not_exists( context.elevated(), router_db): LOG.debug("SNAT interface ports not created: %s", router_db['id']) cur_agents = self.list_l3_agents_hosting_router( context, router_db['id'])['agents'] for agent in cur_agents: self._unbind_router(context, router_db['id'], agent['id']) return router_db def _delete_current_gw_port(self, context, router_id, router, new_network): """ Overriden here to handle deletion of dvr internal ports. If there is a valid router update with gateway port to be deleted, then go ahead and delete the csnat ports and the floatingip agent gateway port associated with the dvr router. """ gw_ext_net_id = ( router.gw_port['network_id'] if router.gw_port else None) super(L3_NAT_with_dvr_db_mixin, self)._delete_current_gw_port(context, router_id, router, new_network) if (is_distributed_router(router) and gw_ext_net_id != new_network and gw_ext_net_id is not None): self.delete_csnat_router_interface_ports( context.elevated(), router) # NOTE(Swami): Delete the Floatingip agent gateway port # on all hosts when it is the last gateway port in the # given external network. filters = {'network_id': [gw_ext_net_id], 'device_owner': [l3_const.DEVICE_OWNER_ROUTER_GW]} ext_net_gw_ports = self._core_plugin.get_ports( context.elevated(), filters) if not ext_net_gw_ports: self.delete_floatingip_agent_gateway_port( context.elevated(), None, gw_ext_net_id) # Send the information to all the L3 Agent hosts # to clean up the fip namespace as it is no longer required. self.l3_rpc_notifier.delete_fipnamespace_for_ext_net( context, gw_ext_net_id) def _create_gw_port(self, context, router_id, router, new_network, ext_ips): super(L3_NAT_with_dvr_db_mixin, self)._create_gw_port(context, router_id, router, new_network, ext_ips) # Make sure that the gateway port exists before creating the # snat interface ports for distributed router. if router.extra_attributes.distributed and router.gw_port: snat_p_list = self._create_snat_intf_ports_if_not_exists( context.elevated(), router) if not snat_p_list: LOG.debug("SNAT interface ports not created: %s", snat_p_list) def _get_device_owner(self, context, router=None): """Get device_owner for the specified router.""" router_is_uuid = isinstance(router, six.string_types) if router_is_uuid: router = self._get_router(context, router) if is_distributed_router(router): return l3_const.DEVICE_OWNER_DVR_INTERFACE return super(L3_NAT_with_dvr_db_mixin, self)._get_device_owner(context, router) def _update_fip_assoc(self, context, fip, floatingip_db, external_port): """Override to create floating agent gw port for DVR. Floating IP Agent gateway port will be created when a floatingIP association happens. """ fip_port = fip.get('port_id') super(L3_NAT_with_dvr_db_mixin, self)._update_fip_assoc( context, fip, floatingip_db, external_port) associate_fip = fip_port and floatingip_db['id'] if associate_fip and floatingip_db.get('router_id'): admin_ctx = context.elevated() router_dict = self.get_router( admin_ctx, floatingip_db['router_id']) # Check if distributed router and then create the # FloatingIP agent gateway port if router_dict.get('distributed'): hostid = self._get_dvr_service_port_hostid( context, fip_port) if hostid: # FIXME (Swami): This FIP Agent Gateway port should be # created only once and there should not be a duplicate # for the same host. Until we find a good solution for # augmenting multiple server requests we should use the # existing flow. fip_agent_port = ( self.create_fip_agent_gw_port_if_not_exists( admin_ctx, external_port['network_id'], hostid)) LOG.debug("FIP Agent gateway port: %s", fip_agent_port) def _get_floatingip_on_port(self, context, port_id=None): """Helper function to retrieve the fip associated with port.""" fip_qry = context.session.query(l3_db.FloatingIP) floating_ip = fip_qry.filter_by(fixed_port_id=port_id) return floating_ip.first() def add_router_interface(self, context, router_id, interface_info): add_by_port, add_by_sub = self._validate_interface_info(interface_info) router = self._get_router(context, router_id) device_owner = self._get_device_owner(context, router) # This should be True unless adding an IPv6 prefix to an existing port new_port = True if add_by_port: port, subnets = self._add_interface_by_port( context, router, interface_info['port_id'], device_owner) elif add_by_sub: port, subnets, new_port = self._add_interface_by_subnet( context, router, interface_info['subnet_id'], device_owner) subnet = subnets[0] if new_port: if router.extra_attributes.distributed and router.gw_port: try: admin_context = context.elevated() self._add_csnat_router_interface_port( admin_context, router, port['network_id'], port['fixed_ips'][-1]['subnet_id']) except Exception: with excutils.save_and_reraise_exception(): # we need to preserve the original state prior # the request by rolling back the port creation # that led to new_port=True self._core_plugin.delete_port( admin_context, port['id']) with context.session.begin(subtransactions=True): router_port = l3_db.RouterPort( port_id=port['id'], router_id=router.id, port_type=device_owner ) context.session.add(router_port) # NOTE: For IPv6 additional subnets added to the same # network we need to update the CSNAT port with respective # IPv6 subnet elif subnet and port: fixed_ip = {'subnet_id': subnet['id']} if subnet['ip_version'] == 6: # Add new prefix to an existing ipv6 csnat port with the # same network id if one exists cs_port = self._find_router_port_by_network_and_device_owner( router, subnet['network_id'], l3_const.DEVICE_OWNER_ROUTER_SNAT) if cs_port: fixed_ips = list(cs_port['port']['fixed_ips']) fixed_ips.append(fixed_ip) updated_port = self._core_plugin.update_port( context.elevated(), cs_port['port_id'], {'port': {'fixed_ips': fixed_ips}}) LOG.debug("CSNAT port updated for IPv6 subnet: " "%s", updated_port) router_interface_info = self._make_router_interface_info( router_id, port['tenant_id'], port['id'], port['network_id'], subnet['id'], [subnet['id']]) self.notify_router_interface_action( context, router_interface_info, 'add') return router_interface_info def _port_has_ipv6_address(self, port, csnat_port_check=True): """Overridden to return False if DVR SNAT port.""" if csnat_port_check: if port['device_owner'] == l3_const.DEVICE_OWNER_ROUTER_SNAT: return False return super(L3_NAT_with_dvr_db_mixin, self)._port_has_ipv6_address(port) def _find_router_port_by_network_and_device_owner( self, router, net_id, device_owner): for port in router.attached_ports: p = port['port'] if (p['network_id'] == net_id and p['device_owner'] == device_owner and self._port_has_ipv6_address(p, csnat_port_check=False)): return port def _check_for_multiprefix_csnat_port_and_update( self, context, router, network_id, subnet_id): """Checks if the csnat port contains multiple ipv6 prefixes. If the csnat port contains multiple ipv6 prefixes for the given network when a router interface is deleted, make sure we don't delete the port when a single subnet is deleted and just update it with the right fixed_ip. This function returns true if it is a multiprefix port. """ if router.gw_port: # If router has a gateway port, check if it has IPV6 subnet cs_port = ( self._find_router_port_by_network_and_device_owner( router, network_id, l3_const.DEVICE_OWNER_ROUTER_SNAT)) if cs_port: fixed_ips = ( [fixedip for fixedip in cs_port['port']['fixed_ips'] if fixedip['subnet_id'] != subnet_id]) if fixed_ips: # multiple prefix port - delete prefix from port self._core_plugin.update_port( context.elevated(), cs_port['port_id'], {'port': {'fixed_ips': fixed_ips}}) return True return False def remove_router_interface(self, context, router_id, interface_info): router = self._get_router(context, router_id) if not router.extra_attributes.distributed: return super( L3_NAT_with_dvr_db_mixin, self).remove_router_interface( context, router_id, interface_info) plugin = manager.NeutronManager.get_service_plugins().get( constants.L3_ROUTER_NAT) router_hosts_before = plugin._get_dvr_hosts_for_router( context, router_id) interface_info = super( L3_NAT_with_dvr_db_mixin, self).remove_router_interface( context, router_id, interface_info) router_hosts_after = plugin._get_dvr_hosts_for_router( context, router_id) removed_hosts = set(router_hosts_before) - set(router_hosts_after) if removed_hosts: agents = plugin.get_l3_agents(context, filters={'host': removed_hosts}) binding_table = l3_sched_db.RouterL3AgentBinding snat_binding = context.session.query(binding_table).filter_by( router_id=router_id).first() for agent in agents: is_this_snat_agent = ( snat_binding and snat_binding.l3_agent_id == agent['id']) if not is_this_snat_agent: self.l3_rpc_notifier.router_removed_from_agent( context, router_id, agent['host']) is_multiple_prefix_csport = ( self._check_for_multiprefix_csnat_port_and_update( context, router, interface_info['network_id'], interface_info['subnet_id'])) if not is_multiple_prefix_csport: # Single prefix port - go ahead and delete the port self.delete_csnat_router_interface_ports( context.elevated(), router, subnet_id=interface_info['subnet_id']) return interface_info def _get_snat_sync_interfaces(self, context, router_ids): """Query router interfaces that relate to list of router_ids.""" if not router_ids: return [] qry = context.session.query(l3_db.RouterPort) qry = qry.filter( l3_db.RouterPort.router_id.in_(router_ids), l3_db.RouterPort.port_type == l3_const.DEVICE_OWNER_ROUTER_SNAT ) interfaces = collections.defaultdict(list) for rp in qry: interfaces[rp.router_id].append( self._core_plugin._make_port_dict(rp.port, None)) LOG.debug("Return the SNAT ports: %s", interfaces) return interfaces def _build_routers_list(self, context, routers, gw_ports): # Perform a single query up front for all routers if not routers: return [] router_ids = [r['id'] for r in routers] snat_binding = l3_sched_db.RouterL3AgentBinding query = (context.session.query(snat_binding). filter(snat_binding.router_id.in_(router_ids))).all() bindings = dict((b.router_id, b) for b in query) for rtr in routers: gw_port_id = rtr['gw_port_id'] # Collect gw ports only if available if gw_port_id and gw_ports.get(gw_port_id): rtr['gw_port'] = gw_ports[gw_port_id] if 'enable_snat' in rtr[l3.EXTERNAL_GW_INFO]: rtr['enable_snat'] = ( rtr[l3.EXTERNAL_GW_INFO]['enable_snat']) binding = bindings.get(rtr['id']) if not binding: rtr['gw_port_host'] = None LOG.debug('No snat is bound to router %s', rtr['id']) continue rtr['gw_port_host'] = binding.l3_agent.host return routers def _process_routers(self, context, routers): routers_dict = {} snat_intfs_by_router_id = self._get_snat_sync_interfaces( context, [r['id'] for r in routers]) for router in routers: routers_dict[router['id']] = router if router['gw_port_id']: snat_router_intfs = snat_intfs_by_router_id[router['id']] LOG.debug("SNAT ports returned: %s ", snat_router_intfs) router[l3_const.SNAT_ROUTER_INTF_KEY] = snat_router_intfs return routers_dict def _process_floating_ips_dvr(self, context, routers_dict, floating_ips, host, agent): fip_sync_interfaces = None LOG.debug("FIP Agent : %s ", agent.id) for floating_ip in floating_ips: router = routers_dict.get(floating_ip['router_id']) if router: router_floatingips = router.get(l3_const.FLOATINGIP_KEY, []) if router['distributed']: if floating_ip.get('host', None) != host: continue LOG.debug("Floating IP host: %s", floating_ip['host']) router_floatingips.append(floating_ip) router[l3_const.FLOATINGIP_KEY] = router_floatingips if not fip_sync_interfaces: fip_sync_interfaces = self._get_fip_sync_interfaces( context, agent.id) LOG.debug("FIP Agent ports: %s", fip_sync_interfaces) router[l3_const.FLOATINGIP_AGENT_INTF_KEY] = ( fip_sync_interfaces) def _get_fip_sync_interfaces(self, context, fip_agent_id): """Query router interfaces that relate to list of router_ids.""" if not fip_agent_id: return [] filters = {'device_id': [fip_agent_id], 'device_owner': [l3_const.DEVICE_OWNER_AGENT_GW]} interfaces = self._core_plugin.get_ports(context.elevated(), filters) LOG.debug("Return the FIP ports: %s ", interfaces) return interfaces def _get_dvr_sync_data(self, context, host, agent, router_ids=None, active=None): routers, interfaces, floating_ips = self._get_router_info_list( context, router_ids=router_ids, active=active, device_owners=l3_const.ROUTER_INTERFACE_OWNERS) dvr_router_ids = set(router['id'] for router in routers if is_distributed_router(router)) floating_ip_port_ids = [fip['port_id'] for fip in floating_ips if fip['router_id'] in dvr_router_ids] if floating_ip_port_ids: port_filter = {portbindings.HOST_ID: [host], 'id': floating_ip_port_ids} ports = self._core_plugin.get_ports(context, port_filter) port_dict = dict((port['id'], port) for port in ports) # Add the port binding host to the floatingip dictionary for fip in floating_ips: vm_port = port_dict.get(fip['port_id'], None) if vm_port: fip['host'] = self._get_dvr_service_port_hostid( context, fip['port_id'], port=vm_port) routers_dict = self._process_routers(context, routers) self._process_floating_ips_dvr(context, routers_dict, floating_ips, host, agent) ports_to_populate = [] for router in routers_dict.values(): if router.get('gw_port'): ports_to_populate.append(router['gw_port']) if router.get(l3_const.FLOATINGIP_AGENT_INTF_KEY): ports_to_populate += router[l3_const.FLOATINGIP_AGENT_INTF_KEY] if router.get(l3_const.SNAT_ROUTER_INTF_KEY): ports_to_populate += router[l3_const.SNAT_ROUTER_INTF_KEY] ports_to_populate += interfaces self._populate_mtu_and_subnets_for_ports(context, ports_to_populate) self._process_interfaces(routers_dict, interfaces) return list(routers_dict.values()) def _get_dvr_service_port_hostid(self, context, port_id, port=None): """Returns the portbinding host_id for dvr service port.""" port_db = port or self._core_plugin.get_port(context, port_id) device_owner = port_db['device_owner'] if port_db else "" if (n_utils.is_dvr_serviced(device_owner) or device_owner == l3_const.DEVICE_OWNER_AGENT_GW): return port_db[portbindings.HOST_ID] def _get_agent_gw_ports_exist_for_network( self, context, network_id, host, agent_id): """Return agent gw port if exist, or None otherwise.""" if not network_id: LOG.debug("Network not specified") return filters = { 'network_id': [network_id], 'device_id': [agent_id], 'device_owner': [l3_const.DEVICE_OWNER_AGENT_GW] } ports = self._core_plugin.get_ports(context, filters) if ports: return ports[0] def delete_floatingip_agent_gateway_port( self, context, host_id, ext_net_id): """Function to delete FIP gateway port with given ext_net_id.""" # delete any fip agent gw port device_filter = {'device_owner': [l3_const.DEVICE_OWNER_AGENT_GW], 'network_id': [ext_net_id]} ports = self._core_plugin.get_ports(context, filters=device_filter) for p in ports: if not host_id or p[portbindings.HOST_ID] == host_id: self._core_plugin.ipam.delete_port(context, p['id']) if host_id: return def create_fip_agent_gw_port_if_not_exists( self, context, network_id, host): """Function to return the FIP Agent GW port. This function will create a FIP Agent GW port if required. If the port already exists, it will return the existing port and will not create a new one. """ l3_agent_db = self._get_agent_by_type_and_host( context, l3_const.AGENT_TYPE_L3, host) if l3_agent_db: LOG.debug("Agent ID exists: %s", l3_agent_db['id']) f_port = self._get_agent_gw_ports_exist_for_network( context, network_id, host, l3_agent_db['id']) if not f_port: LOG.info(_LI('Agent Gateway port does not exist,' ' so create one: %s'), f_port) port_data = {'tenant_id': '', 'network_id': network_id, 'device_id': l3_agent_db['id'], 'device_owner': l3_const.DEVICE_OWNER_AGENT_GW, portbindings.HOST_ID: host, 'admin_state_up': True, 'name': ''} agent_port = p_utils.create_port(self._core_plugin, context, {'port': port_data}) if agent_port: self._populate_mtu_and_subnets_for_ports(context, [agent_port]) return agent_port msg = _("Unable to create the Agent Gateway Port") raise n_exc.BadRequest(resource='router', msg=msg) else: self._populate_mtu_and_subnets_for_ports(context, [f_port]) return f_port def _get_snat_interface_ports_for_router(self, context, router_id): """Return all existing snat_router_interface ports.""" qry = context.session.query(l3_db.RouterPort) qry = qry.filter_by( router_id=router_id, port_type=l3_const.DEVICE_OWNER_ROUTER_SNAT ) ports = [self._core_plugin._make_port_dict(rp.port, None) for rp in qry] return ports def _add_csnat_router_interface_port( self, context, router, network_id, subnet_id, do_pop=True): """Add SNAT interface to the specified router and subnet.""" port_data = {'tenant_id': '', 'network_id': network_id, 'fixed_ips': [{'subnet_id': subnet_id}], 'device_id': router.id, 'device_owner': l3_const.DEVICE_OWNER_ROUTER_SNAT, 'admin_state_up': True, 'name': ''} snat_port = p_utils.create_port(self._core_plugin, context, {'port': port_data}) if not snat_port: msg = _("Unable to create the SNAT Interface Port") raise n_exc.BadRequest(resource='router', msg=msg) with context.session.begin(subtransactions=True): router_port = l3_db.RouterPort( port_id=snat_port['id'], router_id=router.id, port_type=l3_const.DEVICE_OWNER_ROUTER_SNAT ) context.session.add(router_port) if do_pop: return self._populate_mtu_and_subnets_for_ports(context, [snat_port]) return snat_port def _create_snat_intf_ports_if_not_exists(self, context, router): """Function to return the snat interface port list. This function will return the snat interface port list if it exists. If the port does not exist it will create new ports and then return the list. """ port_list = self._get_snat_interface_ports_for_router( context, router.id) if port_list: self._populate_mtu_and_subnets_for_ports(context, port_list) return port_list port_list = [] int_ports = ( rp.port for rp in router.attached_ports.filter_by( port_type=l3_const.DEVICE_OWNER_DVR_INTERFACE ) ) LOG.info(_LI('SNAT interface port list does not exist,' ' so create one: %s'), port_list) for intf in int_ports: if intf.fixed_ips: # Passing the subnet for the port to make sure the IP's # are assigned on the right subnet if multiple subnet # exists snat_port = self._add_csnat_router_interface_port( context, router, intf['network_id'], intf['fixed_ips'][0]['subnet_id'], do_pop=False) port_list.append(snat_port) if port_list: self._populate_mtu_and_subnets_for_ports(context, port_list) return port_list def _generate_arp_table_and_notify_agent( self, context, fixed_ip, mac_address, notifier): """Generates the arp table entry and notifies the l3 agent.""" ip_address = fixed_ip['ip_address'] subnet = fixed_ip['subnet_id'] filters = {'fixed_ips': {'subnet_id': [subnet]}, 'device_owner': [l3_const.DEVICE_OWNER_DVR_INTERFACE]} ports = self._core_plugin.get_ports(context, filters=filters) router_id = next((port['device_id'] for port in ports), None) if not router_id: return arp_table = {'ip_address': ip_address, 'mac_address': mac_address, 'subnet_id': subnet} notifier(context, router_id, arp_table) def _should_update_arp_entry_for_dvr_service_port(self, port_dict): # Check this is a valid VM or service port return (n_utils.is_dvr_serviced(port_dict['device_owner']) and port_dict['fixed_ips']) def update_arp_entry_for_dvr_service_port(self, context, port_dict): """Notify L3 agents of ARP table entry for dvr service port. When a dvr service port goes up, look for the DVR router on the port's subnet, and send the ARP details to all L3 agents hosting the router to add it. """ if not self._should_update_arp_entry_for_dvr_service_port(port_dict): return changed_fixed_ips = port_dict['fixed_ips'] for fixed_ip in changed_fixed_ips: self._generate_arp_table_and_notify_agent( context, fixed_ip, port_dict['mac_address'], self.l3_rpc_notifier.add_arp_entry) def delete_arp_entry_for_dvr_service_port(self, context, port_dict): """Notify L3 agents of ARP table entry for dvr service port. When a dvr service port goes down, look for the DVR router on the port's subnet, and send the ARP details to all L3 agents hosting the router to delete it. """ if not self._should_update_arp_entry_for_dvr_service_port(port_dict): return changed_fixed_ips = port_dict['fixed_ips'] for fixed_ip in changed_fixed_ips: self._generate_arp_table_and_notify_agent( context, fixed_ip, port_dict['mac_address'], self.l3_rpc_notifier.del_arp_entry) def delete_csnat_router_interface_ports(self, context, router, subnet_id=None): # Each csnat router interface port is associated # with a subnet, so we need to pass the subnet id to # delete the right ports. # TODO(markmcclain): This is suboptimal but was left to reduce # changeset size since it is late in cycle ports = [ rp.port.id for rp in router.attached_ports.filter_by( port_type=l3_const.DEVICE_OWNER_ROUTER_SNAT) if rp.port ] c_snat_ports = self._core_plugin.get_ports( context, filters={'id': ports} ) for p in c_snat_ports: if subnet_id is None: self._core_plugin.delete_port(context, p['id'], l3_port_check=False) else: if p['fixed_ips'][0]['subnet_id'] == subnet_id: LOG.debug("Subnet matches: %s", subnet_id) self._core_plugin.delete_port(context, p['id'], l3_port_check=False) def create_floatingip(self, context, floatingip, initial_status=l3_const.FLOATINGIP_STATUS_ACTIVE): floating_ip = self._create_floatingip( context, floatingip, initial_status) self._notify_floating_ip_change(context, floating_ip) return floating_ip def _notify_floating_ip_change(self, context, floating_ip): router_id = floating_ip['router_id'] fixed_port_id = floating_ip['port_id'] # we need to notify agents only in case Floating IP is associated if not router_id or not fixed_port_id: return try: # using admin context as router may belong to admin tenant router = self._get_router(context.elevated(), router_id) except l3.RouterNotFound: LOG.warning(_LW("Router %s was not found. " "Skipping agent notification."), router_id) return if is_distributed_router(router): host = self._get_dvr_service_port_hostid(context, fixed_port_id) self.l3_rpc_notifier.routers_updated_on_host( context, [router_id], host) else: self.notify_router_updated(context, router_id) def update_floatingip(self, context, id, floatingip): old_floatingip, floatingip = self._update_floatingip( context, id, floatingip) self._notify_floating_ip_change(context, old_floatingip) if (floatingip['router_id'] != old_floatingip['router_id'] or floatingip['port_id'] != old_floatingip['port_id']): self._notify_floating_ip_change(context, floatingip) return floatingip def delete_floatingip(self, context, id): floating_ip = self._delete_floatingip(context, id) self._notify_floating_ip_change(context, floating_ip) def is_distributed_router(router): """Return True if router to be handled is distributed.""" try: # See if router is a DB object first requested_router_type = router.extra_attributes.distributed except AttributeError: # if not, try to see if it is a request body requested_router_type = router.get('distributed') if attributes.is_attr_set(requested_router_type): return requested_router_type return cfg.CONF.router_distributed
# Copyright (c) 2012-2014 The GPy authors (see AUTHORS.txt) # Licensed under the BSD 3-clause license (see LICENSE.txt) import numpy as np from scipy import stats,special import scipy as sp import link_functions from ..util.misc import chain_1, chain_2, chain_3 from scipy.integrate import quad import warnings from ..core.parameterization import Parameterized class Likelihood(Parameterized): """ Likelihood base class, used to defing p(y|f). All instances use _inverse_ link functions, which can be swapped out. It is expected that inheriting classes define a default inverse link function To use this class, inherit and define missing functionality. Inheriting classes *must* implement: pdf_link : a bound method which turns the output of the link function into the pdf logpdf_link : the logarithm of the above To enable use with EP, inheriting classes *must* define: TODO: a suitable derivative function for any parameters of the class It is also desirable to define: moments_match_ep : a function to compute the EP moments If this isn't defined, the moments will be computed using 1D quadrature. To enable use with Laplace approximation, inheriting classes *must* define: Some derivative functions *AS TODO* For exact Gaussian inference, define *JH TODO* """ def __init__(self, gp_link, name): super(Likelihood, self).__init__(name) assert isinstance(gp_link,link_functions.GPTransformation), "gp_link is not a valid GPTransformation." self.gp_link = gp_link self.log_concave = False def _gradients(self,partial): return np.zeros(0) def update_gradients(self, partial): if self.size > 0: raise NotImplementedError('Must be implemented for likelihoods with parameters to be optimized') def _preprocess_values(self,Y): """ In case it is needed, this function assess the output values or makes any pertinent transformation on them. :param Y: observed output :type Y: Nx1 numpy.darray """ return Y def conditional_mean(self, gp): """ The mean of the random variable conditioned on one value of the GP """ raise NotImplementedError def conditional_variance(self, gp): """ The variance of the random variable conditioned on one value of the GP """ raise NotImplementedError def log_predictive_density(self, y_test, mu_star, var_star): """ Calculation of the log predictive density .. math: p(y_{*}|D) = p(y_{*}|f_{*})p(f_{*}|\mu_{*}\\sigma^{2}_{*}) :param y_test: test observations (y_{*}) :type y_test: (Nx1) array :param mu_star: predictive mean of gaussian p(f_{*}|mu_{*}, var_{*}) :type mu_star: (Nx1) array :param var_star: predictive variance of gaussian p(f_{*}|mu_{*}, var_{*}) :type var_star: (Nx1) array """ assert y_test.shape==mu_star.shape assert y_test.shape==var_star.shape assert y_test.shape[1] == 1 def integral_generator(y, m, v): """Generate a function which can be integrated to give p(Y*|Y) = int p(Y*|f*)p(f*|Y) df*""" def f(f_star): return self.pdf(f_star, y)*np.exp(-(1./(2*v))*np.square(m-f_star)) return f scaled_p_ystar, accuracy = zip(*[quad(integral_generator(y, m, v), -np.inf, np.inf) for y, m, v in zip(y_test.flatten(), mu_star.flatten(), var_star.flatten())]) scaled_p_ystar = np.array(scaled_p_ystar).reshape(-1,1) p_ystar = scaled_p_ystar/np.sqrt(2*np.pi*var_star) return np.log(p_ystar) def _moments_match_ep(self,obs,tau,v): """ Calculation of moments using quadrature :param obs: observed output :param tau: cavity distribution 1st natural parameter (precision) :param v: cavity distribution 2nd natural paramenter (mu*precision) """ #Compute first integral for zeroth moment. #NOTE constant np.sqrt(2*pi/tau) added at the end of the function mu = v/tau def int_1(f): return self.pdf(f, obs)*np.exp(-0.5*tau*np.square(mu-f)) z_scaled, accuracy = quad(int_1, -np.inf, np.inf) #Compute second integral for first moment def int_2(f): return f*self.pdf(f, obs)*np.exp(-0.5*tau*np.square(mu-f)) mean, accuracy = quad(int_2, -np.inf, np.inf) mean /= z_scaled #Compute integral for variance def int_3(f): return (f**2)*self.pdf(f, obs)*np.exp(-0.5*tau*np.square(mu-f)) Ef2, accuracy = quad(int_3, -np.inf, np.inf) Ef2 /= z_scaled variance = Ef2 - mean**2 #Add constant to the zeroth moment #NOTE: this constant is not needed in the other moments because it cancells out. z = z_scaled/np.sqrt(2*np.pi/tau) return z, mean, variance def variational_expectations(self, Y, m, v, gh_points=None): """ Use Gauss-Hermite Quadrature to compute E_p(f) [ log p(y|f) ] d/dm E_p(f) [ log p(y|f) ] d/dv E_p(f) [ log p(y|f) ] where p(f) is a Gaussian with mean m and variance v. The shapes of Y, m and v should match. if no gh_points are passed, we construct them using defualt options """ if gh_points is None: gh_x, gh_w = np.polynomial.hermite.hermgauss(12) else: gh_x, gh_w = gh_points shape = m.shape m,v,Y = m.flatten(), v.flatten(), Y.flatten() #make a grid of points X = gh_x[None,:]*np.sqrt(2.*v[:,None]) + m[:,None] #evaluate the likelhood for the grid. First ax indexes the data (and mu, var) and the second indexes the grid. # broadcast needs to be handled carefully. logp = self.logpdf(X,Y[:,None]) dlogp_dx = self.dlogpdf_df(X, Y[:,None]) d2logp_dx2 = self.d2logpdf_df2(X, Y[:,None]) #clipping for numerical stability logp = np.clip(logp,-1e6,1e6) dlogp_dx = np.clip(dlogp_dx,-1e6,1e6) d2logp_dx2 = np.clip(d2logp_dx2,-1e6,1e6) #average over the gird to get derivatives of the Gaussian's parameters F = np.dot(logp, gh_w) dF_dm = np.dot(dlogp_dx, gh_w) dF_dv = np.dot(d2logp_dx2, gh_w)/2. if np.any(np.isnan(dF_dv)) or np.any(np.isinf(dF_dv)): stop if np.any(np.isnan(dF_dm)) or np.any(np.isinf(dF_dm)): stop return F.reshape(*shape), dF_dm.reshape(*shape), dF_dv.reshape(*shape) def predictive_mean(self, mu, variance, Y_metadata=None): """ Quadrature calculation of the predictive mean: E(Y_star|Y) = E( E(Y_star|f_star, Y) ) :param mu: mean of posterior :param sigma: standard deviation of posterior """ #conditional_mean: the edpected value of y given some f, under this likelihood def int_mean(f,m,v): p = np.exp(-(0.5/v)*np.square(f - m)) #If p is zero then conditional_mean will overflow if p < 1e-10: return 0. else: return self.conditional_mean(f)*p scaled_mean = [quad(int_mean, -np.inf, np.inf,args=(mj,s2j))[0] for mj,s2j in zip(mu,variance)] mean = np.array(scaled_mean)[:,None] / np.sqrt(2*np.pi*(variance)) return mean def _conditional_mean(self, f): """Quadrature calculation of the conditional mean: E(Y_star|f)""" raise NotImplementedError, "implement this function to make predictions" def predictive_variance(self, mu,variance, predictive_mean=None, Y_metadata=None): """ Approximation to the predictive variance: V(Y_star) The following variance decomposition is used: V(Y_star) = E( V(Y_star|f_star) ) + V( E(Y_star|f_star) ) :param mu: mean of posterior :param sigma: standard deviation of posterior :predictive_mean: output's predictive mean, if None _predictive_mean function will be called. """ #sigma2 = sigma**2 normalizer = np.sqrt(2*np.pi*variance) # E( V(Y_star|f_star) ) def int_var(f,m,v): p = np.exp(-(0.5/v)*np.square(f - m)) #If p is zero then conditional_variance will overflow if p < 1e-10: return 0. else: return self.conditional_variance(f)*p scaled_exp_variance = [quad(int_var, -np.inf, np.inf,args=(mj,s2j))[0] for mj,s2j in zip(mu,variance)] exp_var = np.array(scaled_exp_variance)[:,None] / normalizer #V( E(Y_star|f_star) ) = E( E(Y_star|f_star)**2 ) - E( E(Y_star|f_star) )**2 #E( E(Y_star|f_star) )**2 if predictive_mean is None: predictive_mean = self.predictive_mean(mu,variance) predictive_mean_sq = predictive_mean**2 #E( E(Y_star|f_star)**2 ) def int_pred_mean_sq(f,m,v,predictive_mean_sq): p = np.exp(-(0.5/v)*np.square(f - m)) #If p is zero then conditional_mean**2 will overflow if p < 1e-10: return 0. else: return self.conditional_mean(f)**2*p scaled_exp_exp2 = [quad(int_pred_mean_sq, -np.inf, np.inf,args=(mj,s2j,pm2j))[0] for mj,s2j,pm2j in zip(mu,variance,predictive_mean_sq)] exp_exp2 = np.array(scaled_exp_exp2)[:,None] / normalizer var_exp = exp_exp2 - predictive_mean_sq # V(Y_star) = E[ V(Y_star|f_star) ] + V[ E(Y_star|f_star) ] # V(Y_star) = E[ V(Y_star|f_star) ] + E(Y_star**2|f_star) - E[Y_star|f_star]**2 return exp_var + var_exp def pdf_link(self, inv_link_f, y, Y_metadata=None): raise NotImplementedError def logpdf_link(self, inv_link_f, y, Y_metadata=None): raise NotImplementedError def dlogpdf_dlink(self, inv_link_f, y, Y_metadata=None): raise NotImplementedError def d2logpdf_dlink2(self, inv_link_f, y, Y_metadata=None): raise NotImplementedError def d3logpdf_dlink3(self, inv_link_f, y, Y_metadata=None): raise NotImplementedError def dlogpdf_link_dtheta(self, inv_link_f, y, Y_metadata=None): raise NotImplementedError def dlogpdf_dlink_dtheta(self, inv_link_f, y, Y_metadata=None): raise NotImplementedError def d2logpdf_dlink2_dtheta(self, inv_link_f, y, Y_metadata=None): raise NotImplementedError def pdf(self, f, y, Y_metadata=None): """ Evaluates the link function link(f) then computes the likelihood (pdf) using it .. math: p(y|\\lambda(f)) :param f: latent variables f :type f: Nx1 array :param y: data :type y: Nx1 array :param Y_metadata: Y_metadata which is not used in student t distribution - not used :returns: likelihood evaluated for this point :rtype: float """ inv_link_f = self.gp_link.transf(f) return self.pdf_link(inv_link_f, y, Y_metadata=Y_metadata) def logpdf(self, f, y, Y_metadata=None): """ Evaluates the link function link(f) then computes the log likelihood (log pdf) using it .. math: \\log p(y|\\lambda(f)) :param f: latent variables f :type f: Nx1 array :param y: data :type y: Nx1 array :param Y_metadata: Y_metadata which is not used in student t distribution - not used :returns: log likelihood evaluated for this point :rtype: float """ inv_link_f = self.gp_link.transf(f) return self.logpdf_link(inv_link_f, y, Y_metadata=Y_metadata) def dlogpdf_df(self, f, y, Y_metadata=None): """ Evaluates the link function link(f) then computes the derivative of log likelihood using it Uses the Faa di Bruno's formula for the chain rule .. math:: \\frac{d\\log p(y|\\lambda(f))}{df} = \\frac{d\\log p(y|\\lambda(f))}{d\\lambda(f)}\\frac{d\\lambda(f)}{df} :param f: latent variables f :type f: Nx1 array :param y: data :type y: Nx1 array :param Y_metadata: Y_metadata which is not used in student t distribution - not used :returns: derivative of log likelihood evaluated for this point :rtype: 1xN array """ inv_link_f = self.gp_link.transf(f) dlogpdf_dlink = self.dlogpdf_dlink(inv_link_f, y, Y_metadata=Y_metadata) dlink_df = self.gp_link.dtransf_df(f) return chain_1(dlogpdf_dlink, dlink_df) def d2logpdf_df2(self, f, y, Y_metadata=None): """ Evaluates the link function link(f) then computes the second derivative of log likelihood using it Uses the Faa di Bruno's formula for the chain rule .. math:: \\frac{d^{2}\\log p(y|\\lambda(f))}{df^{2}} = \\frac{d^{2}\\log p(y|\\lambda(f))}{d^{2}\\lambda(f)}\\left(\\frac{d\\lambda(f)}{df}\\right)^{2} + \\frac{d\\log p(y|\\lambda(f))}{d\\lambda(f)}\\frac{d^{2}\\lambda(f)}{df^{2}} :param f: latent variables f :type f: Nx1 array :param y: data :type y: Nx1 array :param Y_metadata: Y_metadata which is not used in student t distribution - not used :returns: second derivative of log likelihood evaluated for this point (diagonal only) :rtype: 1xN array """ inv_link_f = self.gp_link.transf(f) d2logpdf_dlink2 = self.d2logpdf_dlink2(inv_link_f, y, Y_metadata=Y_metadata) dlink_df = self.gp_link.dtransf_df(f) dlogpdf_dlink = self.dlogpdf_dlink(inv_link_f, y, Y_metadata=Y_metadata) d2link_df2 = self.gp_link.d2transf_df2(f) return chain_2(d2logpdf_dlink2, dlink_df, dlogpdf_dlink, d2link_df2) def d3logpdf_df3(self, f, y, Y_metadata=None): """ Evaluates the link function link(f) then computes the third derivative of log likelihood using it Uses the Faa di Bruno's formula for the chain rule .. math:: \\frac{d^{3}\\log p(y|\\lambda(f))}{df^{3}} = \\frac{d^{3}\\log p(y|\\lambda(f)}{d\\lambda(f)^{3}}\\left(\\frac{d\\lambda(f)}{df}\\right)^{3} + 3\\frac{d^{2}\\log p(y|\\lambda(f)}{d\\lambda(f)^{2}}\\frac{d\\lambda(f)}{df}\\frac{d^{2}\\lambda(f)}{df^{2}} + \\frac{d\\log p(y|\\lambda(f)}{d\\lambda(f)}\\frac{d^{3}\\lambda(f)}{df^{3}} :param f: latent variables f :type f: Nx1 array :param y: data :type y: Nx1 array :param Y_metadata: Y_metadata which is not used in student t distribution - not used :returns: third derivative of log likelihood evaluated for this point :rtype: float """ inv_link_f = self.gp_link.transf(f) d3logpdf_dlink3 = self.d3logpdf_dlink3(inv_link_f, y, Y_metadata=Y_metadata) dlink_df = self.gp_link.dtransf_df(f) d2logpdf_dlink2 = self.d2logpdf_dlink2(inv_link_f, y, Y_metadata=Y_metadata) d2link_df2 = self.gp_link.d2transf_df2(f) dlogpdf_dlink = self.dlogpdf_dlink(inv_link_f, y, Y_metadata=Y_metadata) d3link_df3 = self.gp_link.d3transf_df3(f) return chain_3(d3logpdf_dlink3, dlink_df, d2logpdf_dlink2, d2link_df2, dlogpdf_dlink, d3link_df3) def dlogpdf_dtheta(self, f, y, Y_metadata=None): """ TODO: Doc strings """ if self.size > 0: inv_link_f = self.gp_link.transf(f) return self.dlogpdf_link_dtheta(inv_link_f, y, Y_metadata=Y_metadata) else: # There are no parameters so return an empty array for derivatives return np.zeros([1, 0]) def dlogpdf_df_dtheta(self, f, y, Y_metadata=None): """ TODO: Doc strings """ if self.size > 0: inv_link_f = self.gp_link.transf(f) dlink_df = self.gp_link.dtransf_df(f) dlogpdf_dlink_dtheta = self.dlogpdf_dlink_dtheta(inv_link_f, y, Y_metadata=Y_metadata) return chain_1(dlogpdf_dlink_dtheta, dlink_df) else: # There are no parameters so return an empty array for derivatives return np.zeros([f.shape[0], 0]) def d2logpdf_df2_dtheta(self, f, y, Y_metadata=None): """ TODO: Doc strings """ if self.size > 0: inv_link_f = self.gp_link.transf(f) dlink_df = self.gp_link.dtransf_df(f) d2link_df2 = self.gp_link.d2transf_df2(f) d2logpdf_dlink2_dtheta = self.d2logpdf_dlink2_dtheta(inv_link_f, y, Y_metadata=Y_metadata) dlogpdf_dlink_dtheta = self.dlogpdf_dlink_dtheta(inv_link_f, y, Y_metadata=Y_metadata) return chain_2(d2logpdf_dlink2_dtheta, dlink_df, dlogpdf_dlink_dtheta, d2link_df2) else: # There are no parameters so return an empty array for derivatives return np.zeros([f.shape[0], 0]) def _laplace_gradients(self, f, y, Y_metadata=None): dlogpdf_dtheta = self.dlogpdf_dtheta(f, y, Y_metadata=Y_metadata) dlogpdf_df_dtheta = self.dlogpdf_df_dtheta(f, y, Y_metadata=Y_metadata) d2logpdf_df2_dtheta = self.d2logpdf_df2_dtheta(f, y, Y_metadata=Y_metadata) #Parameters are stacked vertically. Must be listed in same order as 'get_param_names' # ensure we have gradients for every parameter we want to optimize assert len(dlogpdf_dtheta) == self.size #1 x num_param array assert dlogpdf_df_dtheta.shape[1] == self.size #f x num_param matrix assert d2logpdf_df2_dtheta.shape[1] == self.size #f x num_param matrix return dlogpdf_dtheta, dlogpdf_df_dtheta, d2logpdf_df2_dtheta def predictive_values(self, mu, var, full_cov=False, Y_metadata=None): """ Compute mean, variance of the predictive distibution. :param mu: mean of the latent variable, f, of posterior :param var: variance of the latent variable, f, of posterior :param full_cov: whether to use the full covariance or just the diagonal :type full_cov: Boolean """ pred_mean = self.predictive_mean(mu, var, Y_metadata) pred_var = self.predictive_variance(mu, var, pred_mean, Y_metadata) return pred_mean, pred_var def predictive_quantiles(self, mu, var, quantiles, Y_metadata=None): #compute the quantiles by sampling!!! N_samp = 1000 s = np.random.randn(mu.shape[0], N_samp)*np.sqrt(var) + mu #ss_f = s.flatten() #ss_y = self.samples(ss_f, Y_metadata) ss_y = self.samples(s, Y_metadata) #ss_y = ss_y.reshape(mu.shape[0], N_samp) return [np.percentile(ss_y ,q, axis=1)[:,None] for q in quantiles] def samples(self, gp, Y_metadata=None): """ Returns a set of samples of observations based on a given value of the latent variable. :param gp: latent variable """ raise NotImplementedError
from Classification import classification_by_name from Node import error # noqa: I201 from kinds import lowercase_first_word # noqa: I201 class Token(object): """ Represents the specification for a Token in the TokenSyntax file. """ def __init__(self, name, kind, serialization_code, unprefixed_kind=None, text=None, classification='None', is_keyword=False): self.name = name self.kind = kind if unprefixed_kind is None: self.unprefixed_kind = kind else: self.unprefixed_kind = unprefixed_kind self.serialization_code = serialization_code self.text = text or "" self.classification = classification_by_name(classification) self.is_keyword = is_keyword def swift_kind(self): name = lowercase_first_word(self.name) if self.is_keyword: return name + 'Keyword' return name class Keyword(Token): """ Represents a keyword token. """ def __init__(self, name, text, serialization_code, classification='Keyword'): Token.__init__(self, name, 'kw_' + text, serialization_code, unprefixed_kind=text, text=text, classification=classification, is_keyword=True) def macro_name(self): return "KEYWORD" class SwiftKeyword(Keyword): def macro_name(self): return "SWIFT_KEYWORD" class DeclKeyword(SwiftKeyword): def macro_name(self): return "DECL_KEYWORD" class StmtKeyword(SwiftKeyword): def macro_name(self): return "STMT_KEYWORD" class ExprKeyword(SwiftKeyword): def macro_name(self): return "EXPR_KEYWORD" class PatternKeyword(SwiftKeyword): def macro_name(self): return "PAT_KEYWORD" class SilKeyword(Keyword): def macro_name(self): return "SIL_KEYWORD" class PoundKeyword(Token): def __init__(self, name, kind, text, serialization_code, classification='Keyword'): Token.__init__(self, name, 'pound_' + kind, serialization_code, unprefixed_kind=kind, text=text, classification=classification, is_keyword=True) def macro_name(self): return "POUND_KEYWORD" class PoundObjectLiteral(PoundKeyword): def __init__(self, name, kind, text, serialization_code, description, protocol, classification='ObjectLiteral'): PoundKeyword.__init__(self, name, kind, text, serialization_code, classification) self.description = description self.protocol = protocol def macro_name(self): return "POUND_OBJECT_LITERAL" class PoundConfig(PoundKeyword): def macro_name(self): return "POUND_CONFIG" class PoundDirectiveKeyword(PoundKeyword): def __init__(self, name, kind, text, serialization_code, classification='PoundDirectiveKeyword'): PoundKeyword.__init__(self, name, kind, text, serialization_code, classification) def macro_name(self): return "POUND_DIRECTIVE_KEYWORD" class PoundConditionalDirectiveKeyword(PoundDirectiveKeyword): def __init__(self, name, kind, text, serialization_code, classification='PoundDirectiveKeyword'): PoundKeyword.__init__(self, name, kind, text, serialization_code, classification) def macro_name(self): return "POUND_COND_DIRECTIVE_KEYWORD" class Punctuator(Token): def macro_name(self): return "PUNCTUATOR" class Literal(Token): def macro_name(self): return "LITERAL" class Misc(Token): def macro_name(self): return "MISC" SYNTAX_TOKENS = [ # Keywords that start decls DeclKeyword('Associatedtype', 'associatedtype', serialization_code=1), DeclKeyword('Class', 'class', serialization_code=2), DeclKeyword('Deinit', 'deinit', serialization_code=3), DeclKeyword('Enum', 'enum', serialization_code=4), DeclKeyword('Extension', 'extension', serialization_code=5), DeclKeyword('Func', 'func', serialization_code=6), DeclKeyword('Import', 'import', serialization_code=7), DeclKeyword('Init', 'init', serialization_code=8), DeclKeyword('Inout', 'inout', serialization_code=9), DeclKeyword('Let', 'let', serialization_code=10), DeclKeyword('Operator', 'operator', serialization_code=11), DeclKeyword('Precedencegroup', 'precedencegroup', serialization_code=12), DeclKeyword('Protocol', 'protocol', serialization_code=13), DeclKeyword('Struct', 'struct', serialization_code=14), DeclKeyword('Subscript', 'subscript', serialization_code=15), DeclKeyword('Typealias', 'typealias', serialization_code=16), DeclKeyword('Var', 'var', serialization_code=17), DeclKeyword('Fileprivate', 'fileprivate', serialization_code=18), DeclKeyword('Internal', 'internal', serialization_code=19), DeclKeyword('Private', 'private', serialization_code=20), DeclKeyword('Public', 'public', serialization_code=21), DeclKeyword('Static', 'static', serialization_code=22), # Statement keywords StmtKeyword('Defer', 'defer', serialization_code=23), StmtKeyword('If', 'if', serialization_code=24), StmtKeyword('Guard', 'guard', serialization_code=25), StmtKeyword('Do', 'do', serialization_code=26), StmtKeyword('Repeat', 'repeat', serialization_code=27), StmtKeyword('Else', 'else', serialization_code=28), StmtKeyword('For', 'for', serialization_code=29), StmtKeyword('In', 'in', serialization_code=30), StmtKeyword('While', 'while', serialization_code=31), StmtKeyword('Return', 'return', serialization_code=32), StmtKeyword('Break', 'break', serialization_code=33), StmtKeyword('Continue', 'continue', serialization_code=34), StmtKeyword('Fallthrough', 'fallthrough', serialization_code=35), StmtKeyword('Switch', 'switch', serialization_code=36), StmtKeyword('Case', 'case', serialization_code=37), StmtKeyword('Default', 'default', serialization_code=38), StmtKeyword('Where', 'where', serialization_code=39), StmtKeyword('Catch', 'catch', serialization_code=40), StmtKeyword('Throw', 'throw', serialization_code=50), # Expression keywords ExprKeyword('As', 'as', serialization_code=41), ExprKeyword('Any', 'Any', serialization_code=42), ExprKeyword('False', 'false', serialization_code=43), ExprKeyword('Is', 'is', serialization_code=44), ExprKeyword('Nil', 'nil', serialization_code=45), ExprKeyword('Rethrows', 'rethrows', serialization_code=46), ExprKeyword('Super', 'super', serialization_code=47), ExprKeyword('Self', 'self', serialization_code=48), ExprKeyword('CapitalSelf', 'Self', serialization_code=49), ExprKeyword('True', 'true', serialization_code=51), ExprKeyword('Try', 'try', serialization_code=52), ExprKeyword('Throws', 'throws', serialization_code=53), Keyword('__FILE__', '__FILE__', serialization_code=54), Keyword('__LINE__', '__LINE__', serialization_code=55), Keyword('__COLUMN__', '__COLUMN__', serialization_code=56), Keyword('__FUNCTION__', '__FUNCTION__', serialization_code=57), Keyword('__DSO_HANDLE__', '__DSO_HANDLE__', serialization_code=58), # Pattern keywords PatternKeyword('Wildcard', '_', serialization_code=59), # Punctuators Punctuator('LeftParen', 'l_paren', text='(', serialization_code=88), Punctuator('RightParen', 'r_paren', text=')', serialization_code=89), Punctuator('LeftBrace', 'l_brace', text='{', serialization_code=90), Punctuator('RightBrace', 'r_brace', text='}', serialization_code=91), Punctuator('LeftSquareBracket', 'l_square', text='[', serialization_code=92), Punctuator('RightSquareBracket', 'r_square', text=']', serialization_code=93), Punctuator('LeftAngle', 'l_angle', text='<', serialization_code=94), Punctuator('RightAngle', 'r_angle', text='>', serialization_code=95), Punctuator('Period', 'period', text='.', serialization_code=85), Punctuator('PrefixPeriod', 'period_prefix', text='.', serialization_code=87), Punctuator('Comma', 'comma', text=',', serialization_code=84), Punctuator('Ellipsis', 'ellipsis', text='...', serialization_code=118), Punctuator('Colon', 'colon', text=':', serialization_code=82), Punctuator('Semicolon', 'semi', text=';', serialization_code=83), Punctuator('Equal', 'equal', text='=', serialization_code=86), Punctuator('AtSign', 'at_sign', text='@', classification='Attribute', serialization_code=80), Punctuator('Pound', 'pound', text='#', serialization_code=81), Punctuator('PrefixAmpersand', 'amp_prefix', text='&', serialization_code=96), Punctuator('Arrow', 'arrow', text='->', serialization_code=78), Punctuator('Backtick', 'backtick', text='`', serialization_code=79), Punctuator('Backslash', 'backslash', text='\\\\', serialization_code=100), Punctuator('ExclamationMark', 'exclaim_postfix', text='!', serialization_code=99), Punctuator('PostfixQuestionMark', 'question_postfix', text='?', serialization_code=97), Punctuator('InfixQuestionMark', 'question_infix', text='?', serialization_code=98), Punctuator('StringQuote', 'string_quote', text='\\\"', classification='StringLiteral', serialization_code=102), Punctuator('SingleQuote', 'single_quote', text='\\\'', classification='StringLiteral', serialization_code=120), Punctuator('MultilineStringQuote', 'multiline_string_quote', text='\\\"\\\"\\\"', classification='StringLiteral', serialization_code=103), # Keywords prefixed with a '#'. PoundKeyword('PoundKeyPath', 'keyPath', text='#keyPath', serialization_code=74), PoundKeyword('PoundLine', 'line', text='#line', serialization_code=69), PoundKeyword('PoundSelector', 'selector', text='#selector', serialization_code=73), PoundKeyword('PoundFile', 'file', text='#file', serialization_code=68), PoundKeyword('PoundColumn', 'column', text='#column', serialization_code=70), PoundKeyword('PoundFunction', 'function', text='#function', serialization_code=72), PoundKeyword('PoundDsohandle', 'dsohandle', text='#dsohandle', serialization_code=71), PoundKeyword('PoundAssert', 'assert', text='#assert', serialization_code=117), PoundDirectiveKeyword('PoundSourceLocation', 'sourceLocation', text='#sourceLocation', serialization_code=65), PoundDirectiveKeyword('PoundWarning', 'warning', text='#warning', serialization_code=66), PoundDirectiveKeyword('PoundError', 'error', text='#error', serialization_code=67), PoundConditionalDirectiveKeyword('PoundIf', 'if', text='#if', serialization_code=64), PoundConditionalDirectiveKeyword('PoundElse', 'else', text='#else', serialization_code=62), PoundConditionalDirectiveKeyword('PoundElseif', 'elseif', text='#elseif', serialization_code=63), PoundConditionalDirectiveKeyword('PoundEndif', 'endif', text='#endif', serialization_code=61), PoundConfig('PoundAvailable', 'available', text='#available', serialization_code=60), PoundObjectLiteral('PoundFileLiteral', 'fileLiteral', text='#fileLiteral', serialization_code=76, description='file reference', protocol='ExpressibleByFileReferenceLiteral'), PoundObjectLiteral('PoundImageLiteral', 'imageLiteral', text='#imageLiteral', serialization_code=77, description='image', protocol='ExpressibleByImageLiteral'), PoundObjectLiteral('PoundColorLiteral', 'colorLiteral', text='#colorLiteral', serialization_code=75, description='color', protocol='ExpressibleByColorLiteral'), Literal('IntegerLiteral', 'integer_literal', classification='IntegerLiteral', serialization_code=111), Literal('FloatingLiteral', 'floating_literal', classification='FloatingLiteral', serialization_code=112), Literal('StringLiteral', 'string_literal', classification='StringLiteral', serialization_code=113), Misc('Unknown', 'unknown', serialization_code=115), Misc('Identifier', 'identifier', classification=None, serialization_code=105), Misc('UnspacedBinaryOperator', 'oper_binary_unspaced', serialization_code=107), Misc('SpacedBinaryOperator', 'oper_binary_spaced', serialization_code=108), Misc('PostfixOperator', 'oper_postfix', serialization_code=110), Misc('PrefixOperator', 'oper_prefix', serialization_code=109), Misc('DollarIdentifier', 'dollarident', classification='DollarIdentifier', serialization_code=106), Misc('ContextualKeyword', 'contextual_keyword', classification='Keyword', serialization_code=114), Misc('RawStringDelimiter', 'raw_string_delimiter', serialization_code=119), Misc('StringSegment', 'string_segment', classification='StringLiteral', serialization_code=104), Misc('StringInterpolationAnchor', 'string_interpolation_anchor', text=')', classification='StringInterpolationAnchor', serialization_code=101), Misc('Yield', 'kw_yield', serialization_code=116, text='yield'), ] SYNTAX_TOKEN_MAP = {token.name + 'Token': token for token in SYNTAX_TOKENS} def verify_no_duplicate_serialization_codes(tokens): used_codes = set() for token in tokens: if token.serialization_code in used_codes: error("Serialization code %d used twice for tokens" % token.serialization_code) used_codes.add(token.serialization_code) verify_no_duplicate_serialization_codes(SYNTAX_TOKENS)
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ UniSpeechSat model configuration""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/unispeech_sat-base-960h": "https://huggingface.co/facebook/unispeech_sat-base-960h/resolve/main/config.json", # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UniSpeechSatConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`UniSpeechSatModel`]. It is used to instantiate an UniSpeechSat model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the UniSpeechSat [facebook/unispeech_sat-base-960h](https://huggingface.co/facebook/unispeech_sat-base-960h) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32): Vocabulary size of the UniSpeechSat model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`UniSpeechSatModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`UniSpeechSatModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`UniSpeechSatForCTC`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): The dropout probabilitiy for quantized feature encoder states. conv_dim (`Tuple[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the the length of *conv_dim*. conv_kernel (`Tuple[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. do_stable_layer_norm (`bool`, *optional*, defaults to `False`): Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is False` corresponds to applying layer norm after the attention layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' num_codevectors_per_group (`int`, *optional*, defaults to 320): Number of entries in each quantization codebook (group). num_codevector_groups (`int`, *optional*, defaults to 2): Number of codevector groups for product codevector quantization. contrastive_logits_temperature (`float`, *optional*, defaults to 0.1): The temperature *kappa* in the contrastive loss. feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): The dropout probabilitiy for the output of the feature encoder that's used by the quantizer. num_negatives (`int`, *optional*, defaults to 100): Number of negative samples for the contrastive loss. codevector_dim (`int`, *optional*, defaults to 256): Dimensionality of the quantized feature vectors. proj_codevector_dim (`int`, *optional*, defaults to 256): Dimensionality of the final projection of both the quantized and the transformer features. diversity_loss_weight (`int`, *optional*, defaults to 0.1): The weight of the codebook diversity loss component. ctc_loss_reduction (`str`, *optional*, defaults to `"mean"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`UniSpeechSatForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`UniSpeechSatForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`UniSpeechSatForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. tdnn_dim (`Tuple[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`): A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers. tdnn_kernel (`Tuple[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*. tdnn_dilation (`Tuple[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`): A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*. xvector_output_dim (`int`, *optional*, defaults to 512): Dimensionality of the *XVector* embedding vectors. Example: ```python >>> from transformers import UniSpeechSatModel, UniSpeechSatConfig >>> # Initializing a UniSpeechSat facebook/unispeech_sat-base-960h style configuration >>> configuration = UniSpeechSatConfig() >>> # Initializing a model from the facebook/unispeech_sat-base-960h style configuration >>> model = UniSpeechSatModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "unispeech-sat" def __init__( self, vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, feat_quantizer_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, feat_extract_norm="group", feat_extract_activation="gelu", conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 2, 2), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, do_stable_layer_norm=False, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, num_codevectors_per_group=320, num_codevector_groups=2, contrastive_logits_temperature=0.1, num_negatives=100, codevector_dim=256, proj_codevector_dim=256, diversity_loss_weight=0.1, ctc_loss_reduction="mean", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, tdnn_dim=(512, 512, 512, 512, 1500), tdnn_kernel=(5, 3, 3, 1, 1), tdnn_dilation=(1, 2, 3, 1, 1), xvector_output_dim=512, pad_token_id=0, bos_token_id=1, eos_token_id=2, num_clusters=504, **kwargs ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size self.num_clusters = num_clusters self.do_stable_layer_norm = do_stable_layer_norm self.use_weighted_layer_sum = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. " "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, " f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride) " f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # parameters for pretraining with codevector quantized representations self.num_codevectors_per_group = num_codevectors_per_group self.num_codevector_groups = num_codevector_groups self.contrastive_logits_temperature = contrastive_logits_temperature self.feat_quantizer_dropout = feat_quantizer_dropout self.num_negatives = num_negatives self.codevector_dim = codevector_dim self.proj_codevector_dim = proj_codevector_dim self.diversity_loss_weight = diversity_loss_weight # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. self.classifier_proj_size = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. self.tdnn_dim = list(tdnn_dim) self.tdnn_kernel = list(tdnn_kernel) self.tdnn_dilation = list(tdnn_dilation) self.xvector_output_dim = xvector_output_dim @property def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1)
from . import db from markdown import markdown from . import login_manager from flask.ext.login import UserMixin, AnonymousUserMixin from werkzeug.security import generate_password_hash, check_password_hash from flask import current_app, request from . import db, login_manager from itsdangerous import TimedJSONWebSignatureSerializer as Serialzer from app.exceptions import ValidationError from datetime import datetime import hashlib import bleach class Comment(db.Model): __tablename__ = 'comments' id = db.Column(db.Integer, primary_key =True) body = db.Column(db.Text) body_html = db.Column(db.Text) timestamp = db.Column(db.DateTime, default=datetime.utcnow) author_id = db.Column(db.Integer, db.ForeignKey('users.id')) post_id = db.Column(db.Integer, db.ForeignKey('posts.id')) @staticmethod def on_changed_body(target, value, oldvalue, initiator): allowed_tags = ['a', 'abbr', 'acronym', 'b', 'code', 'em','i','strong'] target.body_html = bleach.linkify(bleach.clean( markdown(value, output_format = 'html'), tags=allowed_tags, strip = True)) @staticmethod def generate_fake(count=100): from random import seed, randint import forgery_py seed() user_count = User.query.count() post_count = Post.query.count() for i in range(count): u = User.query.offset(randint(0,user_count - 1)).first() p = Post.query.offset(randint(0,post_count - 1)).first() c = Comment(body = forgery_py.lorem_ipsum.sentences(randint(1,5)), timestamp = forgery_py.date.date(True), author = u, post = p) db.session.add(c) db.session.commit() class Post(db.Model): __tablename__ = 'posts' id = db.Column(db.Integer, primary_key = True) body = db.Column(db.Text) timestamp = db.Column(db.DateTime, index = True, default = datetime.utcnow) author_id = db.Column(db.Integer, db.ForeignKey('users.id')) body_html = db.Column(db.Text) comments = db.relationship('Comment', backref='post', lazy='dynamic') def to_json(self): json_post = { 'url' : url_for('api.get_post', id =self.id, _external = True), 'body': self.body, 'body_html': self.body_html, 'timestamp': self.timestamp, 'author': url_for('api.get_user', id = self.author._id, _external = True), 'comments': url_for('api.get_post_comments', id = self.id, _external = True), 'comment_count': self.comments.count() } return json_post @staticmethod def from_json(json_post): body = json_post.get('body') if body is None or body =='': raise ValidationError('post does not have a body') return Post(body = body) @staticmethod def generate_fake(count=100): from random import seed, randint import forgery_py seed() user_count=User.query.count() for i in range(count): u=User.query.offset(randint(0,user_count-1)).first() p = Post(body=forgery_py.lorem_ipsum.sentences(randint(1,5)), timestamp=forgery_py.date.date(True), author=u) db.session.add(p) db.session.commit() @staticmethod def on_changed_body(target, value, oldvalue, initiator): allowed_tags = ['a', 'abbr', 'acronym', 'b', 'blockquote', 'code', 'em', 'i', 'li', 'ol','pre','strong','ul','h1','h2','h3','p','h4', 'h5','h6'] target.body_html =bleach.linkify(bleach.clean(markdown(value, output_format='html'), tags=allowed_tags, strip=True)) db.event.listen(Post.body, 'set', Post.on_changed_body) db.event.listen(Comment.body, 'set', Comment.on_changed_body) class Follow(db.Model): __tablename__ = 'follows' follower_id = db.Column(db.Integer, db.ForeignKey('users.id'), primary_key = True) followed_id = db.Column(db.Integer, db.ForeignKey('users.id'), primary_key = True) timestamp = db.Column(db.DateTime, default = datetime.utcnow) class User(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key = True) email = db.Column(db.String(64),unique = True, index = True) username = db.Column(db.String(64), unique = True, index = True) passwd_hash = db.Column(db.String(128)) confirmed = db.Column(db.Boolean, default=False) role_id = db.Column(db.Integer, db.ForeignKey('roles.id')) posts = db.relationship('Post',backref='author',lazy='dynamic') comments = db.relationship('Comment', backref = 'author', lazy='dynamic') name = db.Column(db.String(64)) location = db.Column(db.String(64)) about_me = db.Column(db.Text()) member_since = db.Column(db.DateTime(), default = datetime.utcnow) last_seen = db.Column(db.DateTime(), default = datetime.utcnow) avatar_hash = db.Column(db.String(32)) followed = db.relationship('Follow', foreign_keys=[Follow.follower_id], backref=db.backref('follower', lazy='joined'), lazy = 'dynamic', cascade='all, delete-orphan') followers = db.relationship('Follow', foreign_keys=[Follow.followed_id], backref=db.backref('followed', lazy='joined'), lazy = 'dynamic', cascade='all, delete-orphan') def __init__(self, **kwargs): super(User,self).__init__(**kwargs) if self.role is None: if self.email == current_app.config['FLASKY_ADMIN']: self.role = Role.query.filter_by(permissions=0xff).first() if self.role is None: if self.confirmed == True: self.role = Role.query.filter_by(name='User').first() else: self.role = Role.query.filter_by(default = True).first() if self.email is not None and self.avatar_hash is None: self.avatar_hash = hashlib.md5(self.email.encode('utf-8')).hexdigest() # self.follow(self) self.followed.append(Follow(followed=self)) def can(self, permissions): return self.role is not None and\ ( self.role.permissions & permissions ) == permissions def is_administrator(self): return self.can(Permission.ADMINISTER) def ping(self): self.last_seen = datetime.utcnow() db.session.add(self) db.session.commit() def to_json(self): json_user = { 'url': url_for('api.get_post', id =self.id ,_external = True), 'username' : self.username, 'menber_since': self.member_since, 'last_seen': self.last_seen, 'posts': url_for('api.get_user_posts', id = self.id, _external = True), 'followed_posts': url_for('api.get_user_followed_posts', id = self.id, _external = True), 'post_count': self.posts.count() } return json_user @property def password(self): raise AttributeError('password is not a readable attribute') @property def followed_posts(self): return Post.query.join(Follow, Follow.followed_id == Post.author_id)\ .filter(Follow.follower_id == self.id) @password.setter def password(self, password): self.passwd_hash = generate_password_hash(password) def verify_password(self, password): return check_password_hash(self.passwd_hash, password) def generate_confirmation_token(self, expiration=3600): s = Serialzer(current_app.config['SECRET_KEY'], expiration) return s.dumps({'confirm':self.id}) def confirm(self,token): s = Serialzer( current_app.config['SECRET_KEY'] ) try: data = s.loads(token) except: return False if data.get('confirm') != self.id: return False self.confirmed = True self.role = Role.query.filter_by(name='User').first() db.session.add(self) db.session.commit() return True def generate_change_email_token(self,new_email, expiration = 3600): s = Serialzer(current_app.config['SECRET_KEY'], expiration) return s.dumps({'confirm':self.id, 'old_email':self.email, 'new_email':new_email}) def confirm_change_email(self, token): s = Serialzer(current_app.config['SECRET_KEY']) try: data = s.loads(token) except: return False if data.get('confirm') != self.id or data.get('old_email') != self.email: return False self.email = data.get('new_email') self.avatar_hash = hashlib.md5(self.email.encode('utf-8')).hexdigest() db.session.add(self) db.session.commit() return True def generate_reset_token(self, expiration = 3600): s = Serialzer(current_app.config['SECRET_KEY'], expiration) return s.dumps({'confirm':self.id, 'old_password':self.passwd_hash}) def confirm_reset_password(self,token): s = Serialzer(current_app.config['SECRET_KEY']) try: data = s.loads(token) except: return False if data.get('confirm') != self.id or data.get('old_password') != self.passwd_hash: return False return True def gravatar(self, size=100, default='identicon', rating='g'): if request.is_secure: url="https://secure.gravatar.com/avatar" else: url="http://www.gravatar.com/avatar" hash = self.avatar_hash or hashlib.md5(self.email.encode('utf-8')).hexdigest() return '{url}/{hash}?s={size}&d={default}&r={rating}'.format(url=url, hash=hash, size=size,default=default,rating=rating) def generate_auth_token(self, expiration = 3600): s = Serializer(current_app.config['SECRET_KEY'], expires_in = expiration) return s.dumps({'id':self.id}) @staticmethod def verify_auth_token(token): s = Serializer(current_app.config['SECRET_KEY']) try: data = s.loads(token) except: return None return User.query.get(data.get('id')) @staticmethod def generate_fake(count=100): from sqlalchemy.exc import IntegrityError from random import seed, randint import forgery_py seed() user_count = User.query.count() for i in range(count): u = User(email=forgery_py.internet.email_address(), username=forgery_py.internet.user_name(True), password=forgery_py.lorem_ipsum.word(), confirmed=True, name=forgery_py.name.full_name(), location=forgery_py.address.city(), about_me=forgery_py.lorem_ipsum.sentence(), member_since=forgery_py.date.date(True)) for j in range(i): ut=User.query.offset(randint(0,user_count-1)).first() if ut is not None: u.follow(ut) db.session.add(u) try: db.session.commit() except IntegrityError: db.session.rollback() db.session.commit() @staticmethod def add_self_follows(): for user in User.query.all(): if not user.is_following(user): user.follow(user) db.session.add(user) db.session.commit() def follow(self,user): if not self.is_following(user): f = Follow(follower=self, followed=user) db.session.add(f) db.session.commit() def unfollow(self, user): f = self.followed.filter_by(followed_id=user.id).first() if f: db.session.delete(f) db.session.commit() def is_following(self, user): return self.followed.filter_by(followed_id=user.id).first() is not None def is_followed_by(self, user): return self.followers.filter_by(follower_id = user.id).first() is not None def __repr__(self): return '<User: %r>' % self.username class AnonymousUser(AnonymousUserMixin): def can(self, permissions): return False def is_administrator(self): return False def is_anonymous(self): return True login_manager.anonymous_user = AnonymousUser class Role(db.Model): __tablename__ = 'roles' id = db.Column(db.Integer, primary_key = True) name = db.Column(db.String(64)) default = db.Column(db.Boolean, default = False, index = True) permissions = db.Column(db.Integer) users = db.relationship('User',backref='role',lazy = 'dynamic') @staticmethod def insert_roles(): roles = { 'Uncheck_user':(0x00, True), 'User': (Permission.FOLLOW | Permission.COMMENT | Permission.WRITE_ARTICLES, False), 'Moderator': (Permission.FOLLOW | Permission.COMMENT | Permission.WRITE_ARTICLES | Permission.MODERATE_COMMENTS, False), 'Administrator': (0xff, False) } for r in roles: role = Role.query.filter_by(name=r).first() if role is None: role = Role(name=r) role.permissions = roles[r][0] role.default = roles[r][1] db.session.add(role) db.session.commit() def __repr__(self): return '<Role: %r>' % self.name class Permission: FOLLOW = 0x01 # follow other users COMMENT = 0x02 # comment on other users' articles WRITE_ARTICLES = 0x04 # write articles MODERATE_COMMENTS = 0x08 # moderate users' comments ADMINISTER = 0x80 # administer # anynomous 0x00 0b00000000 read only # user 0x07 0b00000111 write articles, comment, follow ( default user ) # helper admin 0x0f 0b00001111 add moderation on normal user # administer 0xff 0b11111111 all permissions class Question(db.Model): __tablename__ = 'questions' ques = db.Column(db.String(1024)) id = db.Column(db.String(64)) quesid = db.Column(db.Integer, primary_key = True) def __repr__(self): return 'Ques from %r is : %r'%(self.id,self.ques) @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id))
import numpy as np from scipy.signal import ricker, cwt from cued_datalogger.api.pyqt_extensions import MatplotlibCanvas from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QSlider, QLabel, QSpinBox, QHBoxLayout, QGridLayout, QComboBox from PyQt5.QtCore import Qt import sys #-------------------------------- from scipy.signal import gausspulse #import matplotlib.pyplot as plt t = np.linspace(-1, 1, 200, endpoint=False) sig = np.cos(2 * np.pi * 7 * t) + gausspulse(t - 0.4, fc=2) widths = np.arange(1, 31) """ cwt_result = cwt(sig, ricker, widths) T, W = np.meshgrid(t, widths) plt.figure() plt.contour(T, W, cwt_result) plt.show() #---------------------------------- """ class CWTPlotWidget(MatplotlibCanvas): """A MatplotlibCanvas widget displaying the CWT plot""" def __init__(self, sig, t, widths, wavelet=ricker, plot_type="Colourmap", num_contours=5, contour_spacing_dB=5): self.sig = sig self.t = t self.widths = widths self.wavelet = wavelet self.plot_type = plot_type self.num_contours = num_contours self.contour_spacing_dB = contour_spacing_dB MatplotlibCanvas.__init__(self, "Continuous Wavelet Transform") self.calculate_cwt() self.draw_plot() def draw_plot(self): """Redraw the CWT on the canvas""" self.axes.clear() if self.plot_type == "Contour": self.update_contour_sequence() self.axes.contour(self.T, self.W, self.cwt_result, self.contour_sequence) self.axes.set_xlabel('Time (s)') self.axes.set_ylabel('Wavelet width (?)') self.axes.set_xlim(self.t.min(), self.t.max()) self.axes.set_ylim(self.widths.min(), self.widths.max()) elif self.plot_type == "Surface": pass elif self.plot_type == "Colourmap": self.update_contour_sequence() self.axes.pcolormesh(self.T, self.W, self.cwt_result, vmin=self.contour_sequence[0]) self.axes.set_xlabel('Time (s)') self.axes.set_ylabel('Wavelet width (?)') self.axes.set_xlim(self.t.min(), self.t.max()) self.axes.set_ylim(self.widths.min(), self.widths.max()) else: pass self.draw() def update_attributes(self, value): """A slot for updating the attributes when input widgets are adjusted""" # What sent the signal? sender_name = self.sender().objectName() if sender_name == "plot_type_combobox": self.plot_type = value elif sender_name == "contour_spacing_spinbox" or sender_name == "contour_spacing_slider": self.contour_spacing_dB = value elif sender_name == "num_contours_spinbox" or sender_name == "num_contours_slider": self.num_contours = value else: print("Sender {} not implemented.".format(sender_name)) # Discard any other signal pass # Update the plot self.calculate_cwt() self.draw_plot() def calculate_cwt(self): """Recalculate the CWT""" self.cwt_result = cwt(self.sig, self.wavelet, self.widths) self.T, self.W = np.meshgrid(self.t, self.widths) def update_contour_sequence(self): """Update the array which says where to plot contours, how many etc""" # Create a vector with the right spacing from min to max value self.contour_sequence = np.arange(self.cwt_result.min(), self.cwt_result.max(), self.contour_spacing_dB) # Take the appropriate number of contours self.contour_sequence = self.contour_sequence[-self.num_contours:] class CWTWidget(QWidget): def __init__(self, sig, t, widths=np.arange(1, 31), parent=None): self.sig = sig self.t = t self.widths = widths super().__init__() self.init_ui() def init_ui(self): # Add a cwt plot self.cwt_plot = CWTPlotWidget(self.sig, self.t, self.widths) #------------Plot type controls------------ self.plot_type_label = QLabel(self) self.plot_type_label.setText("Plot type") # Create combobox self.plot_type_combobox = QComboBox(self) self.plot_type_combobox.addItems(["Colourmap", "Contour", "Surface"]) self.plot_type_combobox.setObjectName("plot_type_combobox") # Update on change self.plot_type_combobox.activated[str].connect(self.cwt_plot.update_attributes) #------------Contour spacing controls------------ self.contour_spacing_label = QLabel(self) self.contour_spacing_label.setText("Contour spacing") # Create spinbox self.contour_spacing_spinbox = QSpinBox(self) self.contour_spacing_spinbox.setObjectName("contour_spacing_spinbox") self.contour_spacing_spinbox.setRange(1, 12) # Create slider self.contour_spacing_slider = QSlider(Qt.Vertical, self) self.contour_spacing_slider.setObjectName("contour_spacing_slider") self.contour_spacing_slider.setRange(1, 12) # Connect spinbox and slider together self.contour_spacing_spinbox.valueChanged.connect(self.contour_spacing_slider.setValue) self.contour_spacing_slider.valueChanged.connect(self.contour_spacing_spinbox.setValue) # Set values self.contour_spacing_spinbox.setValue(self.cwt_plot.contour_spacing_dB) self.contour_spacing_slider.setValue(self.cwt_plot.contour_spacing_dB) # Update screen on change self.contour_spacing_slider.valueChanged.connect(self.cwt_plot.update_attributes) self.contour_spacing_spinbox.valueChanged.connect(self.cwt_plot.update_attributes) #------------Num contours controls------------ self.num_contours_label = QLabel(self) self.num_contours_label.setText("Num contours") # Create spinbox self.num_contours_spinbox = QSpinBox(self) self.num_contours_spinbox.setObjectName("num_contours_spinbox") self.num_contours_spinbox.setRange(1, 12) # Create slider self.num_contours_slider = QSlider(Qt.Vertical, self) self.num_contours_slider.setObjectName("num_contours_slider") self.num_contours_slider.setRange(1, 12) # Connect spinbox and slider together self.num_contours_spinbox.valueChanged.connect(self.num_contours_slider.setValue) self.num_contours_slider.valueChanged.connect(self.num_contours_spinbox.setValue) # Set values self.num_contours_spinbox.setValue(self.cwt_plot.num_contours) self.num_contours_slider.setValue(self.cwt_plot.num_contours) # Update screen on change self.num_contours_slider.valueChanged.connect(self.cwt_plot.update_attributes) self.num_contours_spinbox.valueChanged.connect(self.cwt_plot.update_attributes) #------------Layout------------ # CWT controls: self.cwt_controls_label = QLabel(self) self.cwt_controls_label.setText("<b>CWT controls</b>") cwt_controls = QGridLayout() cwt_controls.addWidget(self.cwt_controls_label, 0, 0) # Plot controls: self.plot_controls_label = QLabel(self) self.plot_controls_label.setText("<b>Plot controls</b>") plot_controls = QGridLayout() plot_controls.addWidget(self.plot_controls_label, 0, 0) plot_controls.addWidget(self.contour_spacing_label, 1, 0) plot_controls.addWidget(self.contour_spacing_spinbox, 2, 0) plot_controls.addWidget(self.contour_spacing_slider, 3, 0) plot_controls.addWidget(self.num_contours_label, 1, 1) plot_controls.addWidget(self.num_contours_spinbox, 2, 1) plot_controls.addWidget(self.num_contours_slider, 3, 1) plot_controls.addWidget(self.plot_type_label, 4, 0) plot_controls.addWidget(self.plot_type_combobox, 4, 1) vbox = QVBoxLayout() hbox = QHBoxLayout() hbox.addWidget(self.cwt_plot) hbox.addLayout(plot_controls) vbox.addLayout(hbox) vbox.addLayout(cwt_controls) self.setLayout(vbox) self.setWindowTitle('CWT') self.show() if __name__ == '__main__': app = 0 app = QApplication(sys.argv) cwt_w = CWTWidget(sig, t) sys.exit(app.exec_())
import logging import numpy as np from collections import OrderedDict import theano import theano.tensor as T from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams from theano.tensor.nnet.conv import conv2d, ConvOp from theano.sandbox.cuda.blas import GpuCorrMM from theano.sandbox.cuda.basic_ops import gpu_contiguous from blocks.bricks.cost import SquaredError from blocks.bricks.cost import CategoricalCrossEntropy, MisclassificationRate from blocks.graph import add_annotation, Annotation from blocks.roles import add_role, PARAMETER, WEIGHT, BIAS from utils import shared_param, AttributeDict from nn import maxpool_2d, global_meanpool_2d, BNPARAM logger = logging.getLogger('main.model') floatX = theano.config.floatX class LadderAE(): def __init__(self, p): self.p = p self.init_weights_transpose = False self.default_lr = p.lr self.shareds = OrderedDict() self.rstream = RandomStreams(seed=p.seed) self.rng = np.random.RandomState(seed=p.seed) n_layers = len(p.encoder_layers) assert n_layers > 1, "Need to define encoder layers" assert n_layers == len(p.denoising_cost_x), ( "Number of denoising costs does not match with %d layers: %s" % (n_layers, str(p.denoising_cost_x))) def one_to_all(x): """ (5.,) -> 5 -> (5., 5., 5.) ('relu',) -> 'relu' -> ('relu', 'relu', 'relu') """ if type(x) is tuple and len(x) == 1: x = x[0] if type(x) is float: x = (np.float32(x),) * n_layers if type(x) is str: x = (x,) * n_layers return x p.decoder_spec = one_to_all(p.decoder_spec) p.f_local_noise_std = one_to_all(p.f_local_noise_std) acts = one_to_all(p.get('act', 'relu')) assert n_layers == len(p.decoder_spec), "f and g need to match" assert (n_layers == len(acts)), ( "Not enough activations given. Requires %d. Got: %s" % (n_layers, str(acts))) acts = acts[:-1] + ('softmax',) def parse_layer(spec): """ 'fc:5' -> ('fc', 5) '5' -> ('fc', 5) 5 -> ('fc', 5) 'convv:3:2:2' -> ('convv', [3,2,2]) """ if type(spec) is not str: return "fc", spec spec = spec.split(':') l_type = spec.pop(0) if len(spec) >= 2 else "fc" spec = map(int, spec) spec = spec[0] if len(spec) == 1 else spec return l_type, spec enc = map(parse_layer, p.encoder_layers) self.layers = list(enumerate(zip(enc, p.decoder_spec, acts))) def weight(self, init, name, cast_float32=True, for_conv=False): weight = self.shared(init, name, cast_float32, role=WEIGHT) if for_conv: return weight.dimshuffle('x', 0, 'x', 'x') return weight def bias(self, init, name, cast_float32=True, for_conv=False): b = self.shared(init, name, cast_float32, role=BIAS) if for_conv: return b.dimshuffle('x', 0, 'x', 'x') return b def shared(self, init, name, cast_float32=True, role=PARAMETER, **kwargs): p = self.shareds.get(name) if p is None: p = shared_param(init, name, cast_float32, role, **kwargs) self.shareds[name] = p return p def counter(self): name = 'counter' p = self.shareds.get(name) update = [] if p is None: p_max_val = np.float32(10) p = self.shared(np.float32(1), name, role=BNPARAM) p_max = self.shared(p_max_val, name + '_max', role=BNPARAM) update = [(p, T.clip(p + np.float32(1), np.float32(0), p_max)), (p_max, p_max)] return (p, update) def noise_like(self, x): noise = self.rstream.normal(size=x.shape, avg=0.0, std=1.0) return T.cast(noise, dtype=floatX) def rand_init(self, in_dim, out_dim): """ Random initialization for fully connected layers """ W = self.rng.randn(in_dim, out_dim) / np.sqrt(in_dim) return W def rand_init_conv(self, dim): """ Random initialization for convolution filters """ fan_in = np.prod(dtype=floatX, a=dim[1:]) bound = np.sqrt(3. / max(1.0, (fan_in))) W = np.asarray( self.rng.uniform(low=-bound, high=bound, size=dim), dtype=floatX) return W def new_activation_dict(self): return AttributeDict({'z': {}, 'h': {}, 's': {}, 'm': {}}) def annotate_update(self, update, tag_to): a = Annotation() for (var, up) in update: a.updates[var] = up add_annotation(tag_to, a) def apply(self, input_labeled, target_labeled, input_unlabeled): self.layer_counter = 0 input_dim = self.p.encoder_layers[0] # Store the dimension tuples in the same order as layers. layers = self.layers self.layer_dims = {0: input_dim} self.lr = self.shared(self.default_lr, 'learning_rate', role=None) self.costs = costs = AttributeDict() self.costs.denois = AttributeDict() self.act = AttributeDict() self.error = AttributeDict() top = len(layers) - 1 N = input_labeled.shape[0] self.join = lambda l, u: T.concatenate([l, u], axis=0) self.labeled = lambda x: x[:N] if x is not None else x self.unlabeled = lambda x: x[N:] if x is not None else x self.split_lu = lambda x: (self.labeled(x), self.unlabeled(x)) input_concat = self.join(input_labeled, input_unlabeled) def encoder(input_, path_name, input_noise_std=0, noise_std=[]): h = input_ logger.info(' 0: noise %g' % input_noise_std) if input_noise_std > 0.: h = h + self.noise_like(h) * input_noise_std d = AttributeDict() d.unlabeled = self.new_activation_dict() d.labeled = self.new_activation_dict() d.labeled.z[0] = self.labeled(h) d.unlabeled.z[0] = self.unlabeled(h) prev_dim = input_dim for i, (spec, _, act_f) in layers[1:]: d.labeled.h[i - 1], d.unlabeled.h[i - 1] = self.split_lu(h) noise = noise_std[i] if i < len(noise_std) else 0. curr_dim, z, m, s, h = self.f(h, prev_dim, spec, i, act_f, path_name=path_name, noise_std=noise) assert self.layer_dims.get(i) in (None, curr_dim) self.layer_dims[i] = curr_dim d.labeled.z[i], d.unlabeled.z[i] = self.split_lu(z) d.unlabeled.s[i] = s d.unlabeled.m[i] = m prev_dim = curr_dim d.labeled.h[i], d.unlabeled.h[i] = self.split_lu(h) return d # Clean, supervised logger.info('Encoder: clean, labeled') clean = self.act.clean = encoder(input_concat, 'clean') # Corrupted, supervised logger.info('Encoder: corr, labeled') corr = self.act.corr = encoder(input_concat, 'corr', input_noise_std=self.p.super_noise_std, noise_std=self.p.f_local_noise_std) est = self.act.est = self.new_activation_dict() # Decoder path in opposite order logger.info('Decoder: z_corr -> z_est') for i, ((_, spec), l_type, act_f) in layers[::-1]: z_corr = corr.unlabeled.z[i] z_clean = clean.unlabeled.z[i] z_clean_s = clean.unlabeled.s.get(i) z_clean_m = clean.unlabeled.m.get(i) fspec = layers[i+1][1][0] if len(layers) > i+1 else (None, None) if i == top: ver = corr.unlabeled.h[i] ver_dim = self.layer_dims[i] top_g = True else: ver = est.z.get(i + 1) ver_dim = self.layer_dims.get(i + 1) top_g = False z_est = self.g(z_lat=z_corr, z_ver=ver, in_dims=ver_dim, out_dims=self.layer_dims[i], l_type=l_type, num=i, fspec=fspec, top_g=top_g) if z_est is not None: # Denoising cost if z_clean_s and self.p.zestbn == 'bugfix': z_est_norm = (z_est - z_clean_m) / T.sqrt(z_clean_s + np.float32(1e-10)) elif z_clean_s is None or self.p.zestbn == 'no': z_est_norm = z_est else: assert False, 'Not supported path' se = SquaredError('denois' + str(i)) costs.denois[i] = se.apply(z_est_norm.flatten(2), z_clean.flatten(2)) \ / np.prod(self.layer_dims[i], dtype=floatX) costs.denois[i].name = 'denois' + str(i) denois_print = 'denois %.2f' % self.p.denoising_cost_x[i] else: denois_print = '' # Store references for later use est.h[i] = self.apply_act(z_est, act_f) est.z[i] = z_est est.s[i] = None est.m[i] = None logger.info(' g%d: %10s, %s, dim %s -> %s' % ( i, l_type, denois_print, self.layer_dims.get(i+1), self.layer_dims.get(i) )) # Costs y = target_labeled.flatten() costs.class_clean = CategoricalCrossEntropy().apply(y, clean.labeled.h[top]) costs.class_clean.name = 'cost_class_clean' costs.class_corr = CategoricalCrossEntropy().apply(y, corr.labeled.h[top]) costs.class_corr.name = 'cost_class_corr' # This will be used for training costs.total = costs.class_corr * 1.0 for i in range(top + 1): if costs.denois.get(i) and self.p.denoising_cost_x[i] > 0: costs.total += costs.denois[i] * self.p.denoising_cost_x[i] costs.total.name = 'cost_total' # Classification error mr = MisclassificationRate() self.error.clean = mr.apply(y, clean.labeled.h[top]) * np.float32(100.) self.error.clean.name = 'error_rate_clean' def apply_act(self, input, act_name): if input is None: return input act = { 'relu': lambda x: T.maximum(0, x), 'leakyrelu': lambda x: T.switch(x > 0., x, 0.1 * x), 'linear': lambda x: x, 'softplus': lambda x: T.log(1. + T.exp(x)), 'sigmoid': lambda x: T.nnet.sigmoid(x), 'softmax': lambda x: T.nnet.softmax(x), }.get(act_name) assert act, 'unknown act %s' % act_name if act_name == 'softmax': input = input.flatten(2) return act(input) def annotate_bn(self, var, id, var_type, mb_size, size, norm_ax): var_shape = np.array((1,) + size) out_dim = np.prod(var_shape) / np.prod(var_shape[list(norm_ax)]) # Flatten the var - shared variable updating is not trivial otherwise, # as theano seems to believe a row vector is a matrix and will complain # about the updates orig_shape = var.shape var = var.flatten() # Here we add the name and role, the variables will later be identified # by these values var.name = id + '_%s_clean' % var_type add_role(var, BNPARAM) shared_var = self.shared(np.zeros(out_dim), name='shared_%s' % var.name, role=None) # Update running average estimates. When the counter is reset to 1, it # will clear its memory cntr, c_up = self.counter() one = np.float32(1) run_avg = lambda new, old: one / cntr * new + (one - one / cntr) * old if var_type == 'mean': new_value = run_avg(var, shared_var) elif var_type == 'var': mb_size = T.cast(mb_size, 'float32') new_value = run_avg(mb_size / (mb_size - one) * var, shared_var) else: raise NotImplemented('Unknown batch norm var %s' % var_type) # Add the counter update to the annotated update if it is the first # instance of a counter self.annotate_update([(shared_var, new_value)] + c_up, var) return var.reshape(orig_shape) def f(self, h, in_dim, spec, num, act_f, path_name, noise_std=0): assert path_name in ['clean', 'corr'] # Generates identifiers used for referencing shared variables. # E.g. clean and corrupted encoders will end up using the same # variable name and hence sharing parameters gen_id = lambda s: '_'.join(['f', str(num), s]) layer_type, _ = spec # Pooling if layer_type in ['maxpool', 'globalmeanpool']: z, output_size = self.f_pool(h, spec, in_dim) norm_ax = (0, -2, -1) # after pooling, no activation func for now unless its softmax act_f = "linear" if act_f != "softmax" else act_f # Convolution elif layer_type in ['convv', 'convf']: z, output_size = self.f_conv(h, spec, in_dim, gen_id('W')) norm_ax = (0, -2, -1) # Fully connected elif layer_type == "fc": h = h.flatten(2) if h.ndim > 2 else h _, dim = spec W = self.weight(self.rand_init(np.prod(in_dim), dim), gen_id('W')) z, output_size = T.dot(h, W), (dim,) norm_ax = (0,) else: raise ValueError("Unknown layer spec: %s" % layer_type) m = s = None is_normalizing = True if is_normalizing: keep_dims = True z_l = self.labeled(z) z_u = self.unlabeled(z) m = z_u.mean(norm_ax, keepdims=keep_dims) s = z_u.var(norm_ax, keepdims=keep_dims) m_l = z_l.mean(norm_ax, keepdims=keep_dims) s_l = z_l.var(norm_ax, keepdims=keep_dims) if path_name == 'clean': # Batch normalization estimates the mean and variance of # validation and test sets based on the training set # statistics. The following annotates the computation of # running average to the graph. m_l = self.annotate_bn(m_l, gen_id('bn'), 'mean', z_l.shape[0], output_size, norm_ax) s_l = self.annotate_bn(s_l, gen_id('bn'), 'var', z_l.shape[0], output_size, norm_ax) z = self.join( (z_l - m_l) / T.sqrt(s_l + np.float32(1e-10)), (z_u - m) / T.sqrt(s + np.float32(1e-10))) if noise_std > 0: z += self.noise_like(z) * noise_std # z for lateral connection z_lat = z b_init, c_init = 0.0, 1.0 b_c_size = output_size[0] # Add bias if act_f != 'linear': z += self.bias(b_init * np.ones(b_c_size), gen_id('b'), for_conv=len(output_size) > 1) if is_normalizing: # Add free parameter (gamma in original Batch Normalization paper) # if needed by the activation. For instance ReLU does't need one # and we only add it to softmax if hyperparameter top_c is set. if (act_f not in ['relu', 'leakyrelu', 'linear', 'softmax'] or (act_f == 'softmax' and self.p.top_c is True)): c = self.weight(c_init * np.ones(b_c_size), gen_id('c'), for_conv=len(output_size) > 1) z *= c h = self.apply_act(z, act_f) logger.info(' f%d: %s, %s,%s noise %.2f, params %s, dim %s -> %s' % ( num, layer_type, act_f, ' BN,' if is_normalizing else '', noise_std, spec[1], in_dim, output_size)) return output_size, z_lat, m, s, h def f_pool(self, x, spec, in_dim): layer_type, dims = spec num_filters = in_dim[0] if "globalmeanpool" == layer_type: y, output_size = global_meanpool_2d(x, num_filters) # scale the variance to match normal conv layers with xavier init y = y * np.float32(in_dim[-1]) * np.float32(np.sqrt(3)) else: assert dims[0] != 1 or dims[1] != 1 y, output_size = maxpool_2d(x, in_dim, poolsize=(dims[1], dims[1]), poolstride=(dims[0], dims[0])) return y, output_size def f_conv(self, x, spec, in_dim, weight_name): layer_type, dims = spec num_filters = dims[0] filter_size = (dims[1], dims[1]) stride = (dims[2], dims[2]) bm = 'full' if 'convf' in layer_type else 'valid' num_channels = in_dim[0] W = self.weight(self.rand_init_conv( (num_filters, num_channels) + filter_size), weight_name) if stride != (1, 1): f = GpuCorrMM(subsample=stride, border_mode=bm, pad=(0, 0)) y = f(gpu_contiguous(x), gpu_contiguous(W)) else: assert self.p.batch_size == self.p.valid_batch_size y = conv2d(x, W, image_shape=(2*self.p.batch_size, ) + in_dim, filter_shape=((num_filters, num_channels) + filter_size), border_mode=bm) output_size = ((num_filters,) + ConvOp.getOutputShape(in_dim[1:], filter_size, stride, bm)) return y, output_size def g(self, z_lat, z_ver, in_dims, out_dims, l_type, num, fspec, top_g): f_layer_type, dims = fspec is_conv = f_layer_type is not None and ('conv' in f_layer_type or 'pool' in f_layer_type) gen_id = lambda s: '_'.join(['g', str(num), s]) in_dim = np.prod(dtype=floatX, a=in_dims) out_dim = np.prod(dtype=floatX, a=out_dims) num_filters = out_dims[0] if is_conv else out_dim if l_type[-1] in ['0']: g_type, u_type = l_type[:-1], l_type[-1] else: g_type, u_type = l_type, None # Mapping from layer above: u if u_type in ['0'] or z_ver is None: if z_ver is None and u_type not in ['0']: logger.warn('Decoder %d:%s without vertical input' % (num, g_type)) u = None else: if top_g: u = z_ver elif is_conv: u = self.g_deconv(z_ver, in_dims, out_dims, gen_id('W'), fspec) else: W = self.weight(self.rand_init(in_dim, out_dim), gen_id('W')) u = T.dot(z_ver, W) # Batch-normalize u if u is not None: norm_ax = (0,) if u.ndim <= 2 else (0, -2, -1) keep_dims = True u -= u.mean(norm_ax, keepdims=keep_dims) u /= T.sqrt(u.var(norm_ax, keepdims=keep_dims) + np.float32(1e-10)) # Define the g function if not is_conv: z_lat = z_lat.flatten(2) bi = lambda inits, name: self.bias(inits * np.ones(num_filters), gen_id(name), for_conv=is_conv) wi = lambda inits, name: self.weight(inits * np.ones(num_filters), gen_id(name), for_conv=is_conv) if g_type == '': z_est = None elif g_type == 'i': z_est = z_lat elif g_type in ['sig']: sigval = bi(0., 'c1') + wi(1., 'c2') * z_lat if u is not None: sigval += wi(0., 'c3') * u + wi(0., 'c4') * z_lat * u sigval = T.nnet.sigmoid(sigval) z_est = bi(0., 'a1') + wi(1., 'a2') * z_lat + wi(1., 'b1') * sigval if u is not None: z_est += wi(0., 'a3') * u + wi(0., 'a4') * z_lat * u elif g_type in ['lin']: a1 = wi(1.0, 'a1') b = bi(0.0, 'b') z_est = a1 * z_lat + b elif g_type in ['relu']: assert u is not None b = bi(0., 'b') x = u + b z_est = self.apply_act(x, 'relu') elif g_type in ['sigmoid']: assert u is not None b = bi(0., 'b') c = wi(1., 'c') z_est = self.apply_act((u + b) * c, 'sigmoid') elif g_type in ['comparison_g2']: # sig without the uz cross term sigval = bi(0., 'c1') + wi(1., 'c2') * z_lat if u is not None: sigval += wi(0., 'c3') * u sigval = T.nnet.sigmoid(sigval) z_est = bi(0., 'a1') + wi(1., 'a2') * z_lat + wi(1., 'b1') * sigval if u is not None: z_est += wi(0., 'a3') * u elif g_type in ['comparison_g3']: # sig without the sigmoid nonlinearity z_est = bi(0., 'a1') + wi(1., 'a2') * z_lat if u is not None: z_est += wi(0., 'a3') * u + wi(0., 'a4') * z_lat * u elif g_type in ['comparison_g4']: # No mixing between z_lat and u before final sum, otherwise similar # to sig def nonlin(inp, in_name='input', add_bias=True): w1 = wi(1., 'w1_%s' % in_name) b1 = bi(0., 'b1') w2 = wi(1., 'w2_%s' % in_name) b2 = bi(0., 'b2') if add_bias else 0 w3 = wi(0., 'w3_%s' % in_name) return w2 * T.nnet.sigmoid(b1 + w1 * inp) + w3 * inp + b2 z_est = nonlin(z_lat, 'lat') if u is None else \ nonlin(z_lat, 'lat') + nonlin(u, 'ver', False) elif g_type in ['comparison_g5', 'gauss']: # Gaussian assumption on z: (z - mu) * v + mu if u is None: b1 = bi(0., 'b1') w1 = wi(1., 'w1') z_est = w1 * z_lat + b1 else: a1 = bi(0., 'a1') a2 = wi(1., 'a2') a3 = bi(0., 'a3') a4 = bi(0., 'a4') a5 = bi(0., 'a5') a6 = bi(0., 'a6') a7 = wi(1., 'a7') a8 = bi(0., 'a8') a9 = bi(0., 'a9') a10 = bi(0., 'a10') mu = a1 * T.nnet.sigmoid(a2 * u + a3) + a4 * u + a5 v = a6 * T.nnet.sigmoid(a7 * u + a8) + a9 * u + a10 z_est = (z_lat - mu) * v + mu else: raise NotImplementedError("unknown g type: %s" % str(g_type)) # Reshape the output if z is for conv but u from fc layer if (z_est is not None and type(out_dims) == tuple and len(out_dims) > 1.0 and z_est.ndim < 4): z_est = z_est.reshape((z_est.shape[0],) + out_dims) return z_est def g_deconv(self, z_ver, in_dims, out_dims, weight_name, fspec): """ Inverse operation for each type of f used in convnets """ f_type, f_dims = fspec assert z_ver is not None num_channels = in_dims[0] if in_dims is not None else None num_filters, width, height = out_dims[:3] if f_type in ['globalmeanpool']: u = T.addbroadcast(z_ver, 2, 3) assert in_dims[1] == 1 and in_dims[2] == 1, \ "global pooling needs in_dims (1,1): %s" % str(in_dims) elif f_type in ['maxpool']: sh, str, size = z_ver.shape, f_dims[0], f_dims[1] assert str == size, "depooling requires stride == size" u = T.zeros((sh[0], sh[1], sh[2] * str, sh[3] * str), dtype=z_ver.dtype) for x in xrange(str): for y in xrange(str): u = T.set_subtensor(u[:, :, x::str, y::str], z_ver) u = u[:, :, :width, :height] elif f_type in ['convv', 'convf']: filter_size, str = (f_dims[1], f_dims[1]), f_dims[2] W_shape = (num_filters, num_channels) + filter_size W = self.weight(self.rand_init_conv(W_shape), weight_name) if str > 1: # upsample if strided version sh = z_ver.shape u = T.zeros((sh[0], sh[1], sh[2] * str, sh[3] * str), dtype=z_ver.dtype) u = T.set_subtensor(u[:, :, ::str, ::str], z_ver) else: u = z_ver # no strides, only deconv u = conv2d(u, W, filter_shape=W_shape, border_mode='valid' if 'convf' in f_type else 'full') u = u[:, :, :width, :height] else: raise NotImplementedError('Layer %s has no convolutional decoder' % f_type) return u
# Copyright (c) 2013 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from heatclient import exc as heat_exc from oslo_config import cfg from oslo_log import log as logging from sahara import conductor as c from sahara import context from sahara.i18n import _ from sahara.i18n import _LW from sahara.service import engine as e from sahara.service.heat import templates as ht from sahara.service import volumes from sahara.utils import cluster_progress_ops as cpo from sahara.utils import general as g from sahara.utils.openstack import base as b from sahara.utils.openstack import heat conductor = c.API CONF = cfg.CONF LOG = logging.getLogger(__name__) CREATE_STAGES = ["Spawning", "Waiting", "Preparing"] SCALE_STAGES = ["Scaling: Spawning", "Scaling: Waiting", "Scaling: Preparing"] ROLLBACK_STAGES = ["Rollback: Spawning", "Rollback: Waiting", "Rollback: Preparing"] class HeatEngine(e.Engine): def get_type_and_version(self): return "heat.3.0" def create_cluster(self, cluster): self._update_rollback_strategy(cluster, shutdown=True) target_count = self._get_ng_counts(cluster) self._nullify_ng_counts(cluster) self._launch_instances(cluster, target_count, CREATE_STAGES) self._update_rollback_strategy(cluster) def _get_ng_counts(self, cluster): count = {} for node_group in cluster.node_groups: count[node_group.id] = node_group.count return count def _nullify_ng_counts(self, cluster): ctx = context.ctx() for node_group in cluster.node_groups: conductor.node_group_update(ctx, node_group, {"count": 0}) def scale_cluster(self, cluster, target_count): ctx = context.ctx() rollback_count = self._get_ng_counts(cluster) self._update_rollback_strategy(cluster, rollback_count=rollback_count, target_count=target_count) inst_ids = self._launch_instances( cluster, target_count, SCALE_STAGES, update_stack=True, disable_rollback=False) cluster = conductor.cluster_get(ctx, cluster) g.clean_cluster_from_empty_ng(cluster) self._update_rollback_strategy(cluster) return inst_ids def rollback_cluster(self, cluster, reason): rollback_info = cluster.rollback_info or {} self._update_rollback_strategy(cluster) if rollback_info.get('shutdown', False): self._rollback_cluster_creation(cluster, reason) LOG.warning(_LW("Cluster creation rollback " "(reason: {reason})").format(reason=reason)) return False rollback_count = rollback_info.get('rollback_count', {}).copy() target_count = rollback_info.get('target_count', {}).copy() if rollback_count or target_count: self._rollback_cluster_scaling( cluster, rollback_count, target_count, reason) LOG.warning(_LW("Cluster scaling rollback " "(reason: {reason})").format(reason=reason)) return True return False def _update_rollback_strategy(self, cluster, shutdown=False, rollback_count=None, target_count=None): rollback_info = {} if shutdown: rollback_info['shutdown'] = shutdown if rollback_count: rollback_info['rollback_count'] = rollback_count if target_count: rollback_info['target_count'] = target_count cluster = conductor.cluster_update( context.ctx(), cluster, {'rollback_info': rollback_info}) return cluster def _populate_cluster(self, cluster, stack): ctx = context.ctx() old_ids = [i.instance_id for i in g.get_instances(cluster)] new_ids = [] for node_group in cluster.node_groups: instances = stack.get_node_group_instances(node_group) for instance in instances: nova_id = instance['physical_id'] name = instance['name'] if nova_id not in old_ids: instance_id = conductor.instance_add( ctx, node_group, {"instance_id": nova_id, "instance_name": name}) new_ids.append(instance_id) return new_ids def _rollback_cluster_creation(self, cluster, ex): """Shutdown all instances and update cluster status.""" self.shutdown_cluster(cluster) def _rollback_cluster_scaling(self, cluster, rollback_count, target_count, ex): """Attempt to rollback cluster scaling. Our rollback policy for scaling is as follows: We shut down nodes created during scaling, but we don't try to to get back decommissioned nodes. I.e. during the rollback we only shut down nodes and not launch them. That approach should maximize the chance of rollback success. """ for ng in rollback_count: if rollback_count[ng] > target_count[ng]: rollback_count[ng] = target_count[ng] self._launch_instances(cluster, rollback_count, ROLLBACK_STAGES, update_stack=True) def shutdown_cluster(self, cluster): """Shutdown specified cluster and all related resources.""" try: b.execute_with_retries(heat.client().stacks.delete, cluster.name) stack = heat.get_stack(cluster.name) heat.wait_stack_completion(stack) except heat_exc.HTTPNotFound: LOG.warning(_LW('Did not find stack for cluster. Trying to delete ' 'cluster manually.')) # Stack not found. Trying to delete cluster like direct engine # do it self._shutdown_instances(cluster) self._delete_aa_server_group(cluster) self._clean_job_executions(cluster) self._remove_db_objects(cluster) @cpo.event_wrapper( True, step=_('Create Heat stack'), param=('cluster', 1)) def _create_instances(self, cluster, target_count, update_stack=False, disable_rollback=True): stack = ht.ClusterStack(cluster) self._update_instance_count(stack, cluster, target_count) stack.instantiate(update_existing=update_stack, disable_rollback=disable_rollback) heat.wait_stack_completion(stack.heat_stack) return self._populate_cluster(cluster, stack) def _launch_instances(self, cluster, target_count, stages, update_stack=False, disable_rollback=True): # create all instances cluster = g.change_cluster_status(cluster, stages[0]) inst_ids = self._create_instances( cluster, target_count, update_stack, disable_rollback) # wait for all instances are up and networks ready cluster = g.change_cluster_status(cluster, stages[1]) instances = g.get_instances(cluster, inst_ids) self._await_networks(cluster, instances) # prepare all instances cluster = g.change_cluster_status(cluster, stages[2]) instances = g.get_instances(cluster, inst_ids) volumes.mount_to_instances(instances) self._configure_instances(cluster) return inst_ids def _update_instance_count(self, stack, cluster, target_count): ctx = context.ctx() for node_group in cluster.node_groups: count = target_count[node_group.id] stack.add_node_group_extra(node_group.id, count, self._generate_user_data_script) # if number of instances decreases, we need to drop # the excessive ones for i in range(count, node_group.count): conductor.instance_remove(ctx, node_group.instances[i])
#For use with python 3.x. # Program only checks xml files in the directory that contains this python file. # Delete all csv files before running script. Script appends to csv files of # the same name if they already exist. # libraries from bs4 import BeautifulSoup # select XML tags and parse text from os import walk, getcwd, listdir # used to grab all files in directory of script (c.f. line 29) from lxml import etree # using xpath to compare <quote> and <epigraph> tags in order to identify files that may have epigraphs but have not been properly tagged to indicate this import os # used to split off filename root from filename extension (c.f. line 31) import csv # interact with csv files import re # use regular expressions (for parsing author birth/death dates from author names) #import sys # take input from command line (in future versions?) ## GLOBAL VARIABLES & FUNCTIONS totalEpigraphCount = 0 #number of epigraphs in xml files in corpus epigraphlessFileCount = 0 #number of xml files in corpus that do not have epigraphs def count_tags(path, tag): with open(path) as xml: xml_parsed = etree.parse(xml) epigraph_location = xml_parsed.xpath("//tei:" + tag, namespaces = {"tei" : "http://www.tei-c.org/ns/1.0"}) return len(epigraph_location) def count_nested_tags(path, child_tag, ancestor_tag): with open(path) as xml: xml_parsed = etree.parse(xml) child_in_ancestor = xml_parsed.xpath("//tei:" + child_tag + "/ancestor::tei:" + ancestor_tag, namespaces = {"tei" : "http://www.tei-c.org/ns/1.0"}) return len(child_in_ancestor) def remove_characters(listofstrings, characters_to_be_removed): for string in range(0,len(listofstrings)): cleaned_text = "" for character in listofstrings[string]: if character not in characters_to_be_removed: cleaned_text += character listofstrings[string] = cleaned_text return listofstrings ## COLLECTING INFORMATION FROM CORPUS allFilesInDirectory = [ filename for filename in listdir(getcwd()) if filename.endswith('.xml')] #get filenames in current directory ending in ".xml" for document in range(0, len(allFilesInDirectory)): # Loop through all files in directory root, ext = os.path.splitext(allFilesInDirectory[document]) # Select file extension for particular file "x" in the list "allFilesInDirectory" if (ext == '.xml'): # If file ends in ".xml", read file. Skip file otherwise. # open file to be read readfile = open(str(allFilesInDirectory[document])) # Specify file to be read & open file soup = BeautifulSoup(readfile, "lxml") # Make "soup" object of file to search # collect novel author, title of novel, pub date, epigraph, epigraph attrib, pub location, publisher, & encoding company from individual file author_list = [author.text for author in soup('author')] # (1) collect text "author" entries (&, if present, birth/death year) # identify author birth & death years by scraping from author name, clean up author name entry birthDeathYears = [] # years extracted from author_list will be placed here authorBirthYear = 'No Birth Year' # Birth year OR Year if only a single year is provided authorDeathYear = 'No Death Year' # Death year birthDeathYears = re.findall('\d{4}', author_list[0]) # scrape years from author name entry if present birthDeathYears = [int(string) for string in birthDeathYears] # convert years from strings to integers if len(birthDeathYears) >= 3: # does file have three or more years in author line? print('WARNING: ' + str(len(BirthDeathYears)) + ' years in author line in ' + root) authorBirthYear = 'Too many years' # too many years, not sure which is birth or death authorDeathYear = 'Too many years' elif len(birthDeathYears) == 2: # or two years? authorBirthYear = str(min(birthDeathYears[0],birthDeathYears[1])) # birth year authorDeathYear = str(max(birthDeathYears[0],birthDeathYears[1])) # death year elif len(birthDeathYears) == 1: authorBirthYear = str(birthDeathYears[0]) # dump single year into birth year authorDeathYear = '????' # remind ourselves that we don't know if this year is birth or death with '????' # find, extract, and remove birth/death year in parentheses from author name inParensToRemove = re.findall(r'\((.+)\)', author_list[0]) if inParensToRemove: toRemove = ' ('+ inParensToRemove[0] + ')' author_list[0] = author_list[0].replace(toRemove,"") # find, extract, and remove birth/death year from author name if no parentheses exist noParensToRemove = re.findall('\d{4}-\d{4}', author_list[0]) if noParensToRemove: toRemove = noParensToRemove[0] author_list[0] = author_list[0].replace(toRemove,"") #remove trailing commas or white space in author name if these symbols are present, starting from *last* symbol in author name errorcounter = 0 while author_list[0][-1:] == ' ' or author_list[0][-1:] == ',' or author_list[0][-1:] == '\n': errorcounter = errorcounter + 1 if errorcounter > 8: print('ERROR: ' + root + 'author name cleaning stalled. Check file.') break author_list[0] = author_list[0][:-1] title_list = [title.text for title in soup('title')] # (2) collect text "title" entries publication_date = [date.text for date in soup('date')] # (3) collect text pub year entries if "eaf" in root: ### select correct year depending on EAF or Wright corpus. Throw warning if not one of these two corpora. pub_year = str(publication_date[1]) ### pick 2nd date tag for EAF corpus else: if "VAC" in root: pub_year = str(publication_date[0]) ### pick 1st date tag for Wright corpus else: pub_year = 'Unknown Corpus, see terminal warning' ### WARNING: user must check pub year entry print('WARNING: Check publication year for file ' + root +'.'+ ext + '\n') print('List of publication dates in file: \n') print(publication_date) publication_place = [pubplace.text for pubplace in soup('pubplace')] #(4) collect text pub location if len(soup('epigraph')) > 0: #(5) collect entries tagged "epigraph" epigraph_list = [epigraph.text for epigraph in soup('epigraph')] epigraph_attribution = ["No Attribution" if soup('epigraph')[epigraphs].bibl == None \ else soup('epigraph')[epigraphs].bibl.text \ for epigraphs in range(0,len(soup('epigraph')))] #(6) collect epigraph attributions ##see how many quote tags are nested in epigraph tags (for error checking; c.f. line 111) if bool(soup('epigraph')) and bool(soup('quote')) == True : # don't check if there are zero "epipgraph" and/or "quote" tags quote_tags_in_epigraph = [0 if soup('epigraph')[epigraphs].quote == None \ else 1 for epigraphs in range(0,len(soup('epigraph')))] # how often is quote tag appearing in epigraph tag? (used to help hunt for untagged epigraphs in corpus) else: quote_tags_in_epigraph = [0] # either no "quote" or "epigraph" tags or neither, so no quote-in-epigraph tags else: epigraph_list = ['No Epigraphs'] epigraph_attribution = ['No Epigraphs'] if len(soup('publisher')) > 0: publishers = [publisher.text for publisher in soup('publisher')] else: publishers = ['Unknown Publisher', 'Unknown Publisher','Unknown Publisher'] # (7) identify company/individuals that produced each xml file (for exploring provenance of corpus) encoders = [] encoding_counter = 0 ## for Early American Fiction corpus ... if root[:3] == 'eaf': #Not ideal way to handle this, but encoder always 1st 'name' tag in EAF files encoders.append(soup('name')[0].text) encoding_counter = 1 ## for Wright American Fiction corpus ... if root[:3] == 'VAC': # Wright American Fiction corpus files begin with "VAC" encoders = [soup('change')[encoder].get('who') for encoder in range(0,len(soup('change')))] #get encoders from 'who' attrs in 'change' tags encoding_counter = 1 ### remove duplicate encoders entries, if present duplicate_list = [] for x in range(len(encoders)): #find duplicates and place in 'duplicate_list' if x != 0: if (encoders[0] == encoders[x]): duplicate_list.append(x) for deletions in range(len(duplicate_list)): # mark duplicates by replacing element with 'To Erase' encoders[duplicate_list[deletions]] = "To Erase" for deletions in range(len(encoders)-1,0,-1): # delete duplicate entries if encoders[deletions] == "To Erase": del encoders[deletions] if encoding_counter == 0: print('WARNING: No case selected for encoder attribution for ' + root + '. Check file.') if len(encoders) == 0: print('WARNING: no encoder info found for ' + root + '. Check file.') # (8) identify epigraphs with 'quote' tag & tracking of who did encoding (see also lines 47-50) total_epigraph_tags = len(soup('epigraph')) # number of tagged "epigraph"s in file total_quote_tags = len(soup('quote')) # number of tagged "quote"s in file if bool(soup('epigraph')) == True: #print(quote_tags_in_epigraph) quotes_in_epigraphs = sum(quote_tags_in_epigraph) # number of "quote"s in "epigraph"s else: quotes_in_epigraphs = 0 ## CLEANING INFORMATION COLLECTED FROM CORPUS # remove "/n" characters epigraph_attribution = remove_characters(epigraph_attribution, '-\n') author_list = remove_characters(author_list, '\n') title_list = remove_characters(title_list, '\n') publication_place = remove_characters(publication_place, '\n') publishers = remove_characters(publishers, '\n') pub_year = remove_characters([pub_year], '\n')[0] encoders = str(remove_characters(encoders, '\n')) readfile.close() #close file "x" # Error Checking Print-To-Terminal: print all information collected if (len(soup('epigraph')) == 0): #check if file has epigraphs if (len(soup('author')) > 0): epigraphlessFileCount += 1 else: if (len(soup('author')) == 0): author_list = ['NO AUTHOR TAG IN FILE. CHECK XML FILE!'] epigraphlessFileCount += 1 else: for i in range(0, len(soup.findAll('epigraph'))): if (len(soup.findAll('author')) == 0): totalEpigraphCount += 1 else: totalEpigraphCount += 1 #output to a CSV file -- NOTE: need to wrap strings in a list for csvwriter to output properly with open('epigraph_metadata.csv', 'a') as csvfile: #output metadata epi_meta = csv.writer(csvfile, dialect='excel') for i in range(0,len(soup('epigraph'))): if (len(soup('author')) ==0): epi_meta.writerow(['junkrow | ' + str(i) + ' | ' + allFilesInDirectory[document] + ' | '+ str(document) + ' | ' + 'Unknown Author' + ' | ' + authorBirthYear + ' | ' + authorDeathYear + ' | ' + str(title_list[0])+ ' | ' + str(epigraph_attribution[i])+ ' | ' + str(publishers[1]) + ' | ' + str(publication_place[1])+ ' | ' + pub_year + ' | junkrow']) else: epi_meta.writerow(['junkrow | ' + str(i) + ' | ' + allFilesInDirectory[document] + ' | '+ str(document) + ' | ' + author_list[0] + ' | ' + authorBirthYear + ' | ' + authorDeathYear + ' | ' + str(title_list[0])+ ' | ' + str(epigraph_attribution[i])+ ' | ' + str(publishers[1]) + ' | ' + str(publication_place[1])+ ' | ' + pub_year + ' | junkrow']) with open('epigraph_list.csv', 'a') as csvfile: #output metadata epi_list = csv.writer(csvfile, dialect='excel') for i in range(0,len(soup('epigraph'))): epi_list.writerow([allFilesInDirectory[document] + " | " + str(document+1)+ ', epigraph ' + str(i+1)]) epi_list.writerow([epigraph_list[i]]) #output ratio of epigraphs-to-quotes for each file, warnings, & error checks with open('epigraph_to_quotes.csv', 'a') as csvfile: epi_to_quote = csv.writer(csvfile, dialect='excel') if (document == 0): epi_to_quote.writerow(['junkrow | file number | check? | file name | encoding credit | total epigraph tags | total quote tags | quote pairs in epigraphs | junkrow']) author_error_check = 'Field Empty -- ERROR' if len(soup('author')) == 0: author_error_check = 'No Author Tags!' else: author_error_check = str(len(soup('author'))) checkFile = 'yes' #indicator to inspect novel page image checkFile_count = 0 #how many texts do we need to inspect with our eyes if count_tags(allFilesInDirectory[document], "epigraph") >= count_nested_tags(allFilesInDirectory[document], "quote", "epigraph") \ and count_tags(allFilesInDirectory[document], "epigraph") >= count_tags(allFilesInDirectory[document], "quote") \ or count_tags(allFilesInDirectory[document], "epigraph") >= 0 and count_tags(allFilesInDirectory[document], "quote") == 0: checkFile = 'no' else: checkFile_count += 1 epi_to_quote.writerow(['junkrow | ' + str(document) + ' | ' + checkFile + ' | '+ str(allFilesInDirectory[document]) + ' | ' + encoders + ' | ' + str(total_epigraph_tags) + ' | ' + str(total_quote_tags) + ' | ' + str(quotes_in_epigraphs) + ' | junkrow']) #Error Checking Print-To-Terminal: Print total number of epigraphs collected print("TOTAl NUMBER OF EPIGRAPHS: " + str(totalEpigraphCount)) print("TOTAL NUMBER OF FILES: " + str(len(allFilesInDirectory))) print("FILES WITHOUT EPIGRAPHS: " + str(epigraphlessFileCount)) print("TOTAL NUMBER OF FILES TO INSPECT: " + str(checkFile_count)) #NOTE FOR BS4: soup('epigraph') == soup.find_all('epigraph') == soup.findAll('epigraph')
#! /usr/bin/python """ Copyright 2013, Big Switch Networks, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. circuitpusher utilizes floodlight rest APIs to create a bidirectional circuit, i.e., permanent flow entry, on all switches in route between two devices based on IP addresses with specified priority. Notes: 1. The circuit pusher currently only creates circuit with two IP end points 2. Prior to sending restAPI requests to the circuit pusher, the specified end points must already been known to the controller (i.e., already have sent packets on the network, easy way to assure this is to do a ping (to any target) from the two hosts. 3. The current supported command syntax format is: a) circuitpusher.py --controller={IP}:{rest port} --type mac --src {MAC} --dst {MAC} --add --name {circuit-name} adds a new circuit between src and dst devices Currently ip circuit is supported. ARP is automatically supported. Currently a simple circuit record storage is provided in a text file circuits.json in the working directory. The file is not protected and does not clean itself between controller restarts. The file is needed for correct operation and the user should make sure deleting the file when floodlight controller is restarted. b) circuitpusher.py --controller={IP}:{rest port} --delete --name {circuit-name} deletes a created circuit (as recorded in circuits.json) using the previously given name @author kcwang """ import os import sys import subprocess import json import argparse import io import time # parse circuit options. Currently supports add and delete actions. # Syntax: # circuitpusher --controller {IP:REST_PORT} --add --name {CIRCUIT_NAME} --type ip --src {MAC} --dst {MAC} # circuitpusher --controller {IP:REST_PORT} --delete --name {CIRCUIT_NAME} parser = argparse.ArgumentParser(description='Circuit Pusher') parser.add_argument('--controller', dest='controllerRestIp', action='store', default='localhost:8080', help='controller IP:RESTport, e.g., localhost:8080 or A.B.C.D:8080') parser.add_argument('--add', dest='action', action='store_const', const='add', default='add', help='action: add, delete') parser.add_argument('--delete', dest='action', action='store_const', const='delete', default='add', help='action: add, delete') parser.add_argument('--type', dest='type', action='store', default='mac', help='valid types: mac') parser.add_argument('--src', dest='srcAddress', action='store', default='0.0.0.0', help='source address: if type=ip, A.B.C.D') parser.add_argument('--dst', dest='dstAddress', action='store', default='0.0.0.0', help='destination address: if type=ip, A.B.C.D') parser.add_argument('--name', dest='circuitName', action='store', default='circuit-1', help='name for circuit, e.g., circuit-1') args = parser.parse_args() print args controllerRestIp = args.controllerRestIp # first check if a local file exists, which needs to be updated after add/delete if os.path.exists('./circuits.json'): circuitDb = open('./circuits.json','r') lines = circuitDb.readlines() circuitDb.close() else: lines={} if args.action=='add': circuitDb = open('./circuits.json','a') for line in lines: data = json.loads(line) if data['name']==(args.circuitName): print "Circuit %s exists already. Use new name to create." % args.circuitName sys.exit() else: circuitExists = False # retrieve source and destination device attachment points # using DeviceManager rest API command = "curl -s http://%s/wm/device/?mac=%s" % (args.controllerRestIp, args.srcAddress) result = os.popen(command).read() parsedResult = json.loads(result) print command+"\n" try: sourceSwitch = parsedResult[0]['attachmentPoint'][0]['switchDPID'] except IndexError: print "ERROR : the specified source end point (%s) must already been known to the controller (i.e., already have sent packets on the network, easy way to assure this is to do a ping (to any target) from the two hosts." % (args.srcAddress) from pprint import pprint as pp; import ipdb; ipdb.set_trace() sys.exit() sourcePort = parsedResult[0]['attachmentPoint'][0]['port'] command = "curl -s http://%s/wm/device/?mac=%s" % (args.controllerRestIp, args.dstAddress) result = os.popen(command).read() parsedResult = json.loads(result) print command+"\n" try: destSwitch = parsedResult[0]['attachmentPoint'][0]['switchDPID'] except IndexError: print "ERROR : the specified destination end point (%s) must already been known to the controller (i.e., already have sent packets on the network, easy way to assure this is to do a ping (to any target) from the two hosts." % (args.dstAddress) sys.exit() destPort = parsedResult[0]['attachmentPoint'][0]['port'] print "Creating circuit:" print "from source device at switch %s port %s" % (sourceSwitch,sourcePort) print "to destination device at switch %s port %s"% (destSwitch,destPort) # retrieving route from source to destination # using Routing rest API command = "curl -s http://%s/wm/topology/route/%s/%s/%s/%s/json" % (controllerRestIp, sourceSwitch, sourcePort, destSwitch, destPort) result = os.popen(command).read() parsedResult = json.loads(result) print command+"\n" print result+"\n" for i in range(len(parsedResult)): if i % 2 == 0: ap1Dpid = parsedResult[i]['switch'] ap1Port = parsedResult[i]['port'] print ap1Dpid, ap1Port else: ap2Dpid = parsedResult[i]['switch'] ap2Port = parsedResult[i]['port'] print ap2Dpid, ap2Port # send one flow mod per pair of APs in route # using StaticFlowPusher rest API # IMPORTANT NOTE: current Floodlight StaticflowEntryPusher # assumes all flow entries to have unique name across all switches # this will most possibly be relaxed later, but for now we # encode each flow entry's name with both switch dpid, user # specified name, and flow type (f: forward, r: reverse, farp/rarp: arp) command = "curl -s -d '{\"switch\": \"%s\", \"name\":\"%s\", \"src-mac\":\"%s\", \"dst-mac\":\"%s\", \"cookie\":\"0\", \"priority\":\"32768\", \"ingress-port\":\"%s\",\"active\":\"true\", \"actions\":\"output=%s\"}' http://%s/wm/staticflowentrypusher/json" % (ap1Dpid, ap1Dpid+"."+args.circuitName+".f", args.srcAddress, args.dstAddress, ap1Port, ap2Port, controllerRestIp) result = os.popen(command).read() print command command = "curl -s -d '{\"switch\": \"%s\", \"name\":\"%s\", \"ether-type\":\"%s\", \"cookie\":\"0\", \"priority\":\"32768\", \"ingress-port\":\"%s\",\"active\":\"true\", \"actions\":\"output=%s\"}' http://%s/wm/staticflowentrypusher/json" % (ap1Dpid, ap1Dpid+"."+args.circuitName+".farp", "0x806", ap1Port, ap2Port, controllerRestIp) result = os.popen(command).read() print command command = "curl -s -d '{\"switch\": \"%s\", \"name\":\"%s\", \"src-mac\":\"%s\", \"dst-mac\":\"%s\", \"cookie\":\"0\", \"priority\":\"32768\", \"ingress-port\":\"%s\",\"active\":\"true\", \"actions\":\"output=%s\"}' http://%s/wm/staticflowentrypusher/json" % (ap1Dpid, ap1Dpid+"."+args.circuitName+".r", args.dstAddress, args.srcAddress, ap2Port, ap1Port, controllerRestIp) result = os.popen(command).read() print command command = "curl -s -d '{\"switch\": \"%s\", \"name\":\"%s\", \"ether-type\":\"%s\", \"cookie\":\"0\", \"priority\":\"32768\", \"ingress-port\":\"%s\",\"active\":\"true\", \"actions\":\"output=%s\"}' http://%s/wm/staticflowentrypusher/json" % (ap1Dpid, ap1Dpid+"."+args.circuitName+".rarp", "0x806", ap2Port, ap1Port, controllerRestIp) result = os.popen(command).read() print command # store created circuit attributes in local ./circuits.json datetime = time.asctime() circuitParams = {'name':args.circuitName, 'Dpid':ap1Dpid, 'inPort':ap1Port, 'outPort':ap2Port, 'datetime':datetime} str = json.dumps(circuitParams) circuitDb.write(str+"\n") # confirm successful circuit creation # using controller rest API command="curl -s http://%s/wm/core/switch/all/flow/json| python -mjson.tool" % (controllerRestIp) result = os.popen(command).read() print command + "\n" + result elif args.action=='delete': circuitDb = open('./circuits.json','w') # removing previously created flow from switches # using StaticFlowPusher rest API # currently, circuitpusher records created circuits in local file ./circuits.db # with circuit name and list of switches circuitExists = False for line in lines: data = json.loads(line) if data['name']==(args.circuitName): circuitExists = True sw = data['Dpid'] print data, sw command = "curl -X DELETE -d '{\"name\":\"%s\", \"switch\":\"%s\"}' http://%s/wm/staticflowentrypusher/json" % (sw+"."+args.circuitName+".f", sw, controllerRestIp) result = os.popen(command).read() print command, result command = "curl -X DELETE -d '{\"name\":\"%s\", \"switch\":\"%s\"}' http://%s/wm/staticflowentrypusher/json" % (sw+"."+args.circuitName+".farp", sw, controllerRestIp) result = os.popen(command).read() print command, result command = "curl -X DELETE -d '{\"name\":\"%s\", \"switch\":\"%s\"}' http://%s/wm/staticflowentrypusher/json" % (sw+"."+args.circuitName+".r", sw, controllerRestIp) result = os.popen(command).read() print command, result command = "curl -X DELETE -d '{\"name\":\"%s\", \"switch\":\"%s\"}' http://%s/wm/staticflowentrypusher/json" % (sw+"."+args.circuitName+".rarp", sw, controllerRestIp) result = os.popen(command).read() print command, result else: circuitDb.write(line) circuitDb.close() if not circuitExists: print "specified circuit does not exist" sys.exit()
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-04-13 01:25 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='trips', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('miscidx', models.IntegerField(blank=True, default=0, null=True)), ('index', models.IntegerField(blank=True, default=0, null=True)), ('tripid', models.IntegerField(blank=True, default=0, null=True)), ('tripdate', models.DateField(blank=True, default=None, null=True)), ('picktime', models.TimeField(blank=True, default=None, null=True)), ('droptime', models.TimeField(blank=True, default=None, null=True)), ('provider', models.CharField(blank=True, max_length=255, null=True)), ('status', models.CharField(blank=True, max_length=255, null=True)), ('routeid', models.IntegerField(blank=True, default=0, null=True)), ('pickhousenumber', models.IntegerField(blank=True, default=0, null=True)), ('pickaddress1', models.CharField(blank=True, max_length=255, null=True)), ('pickcity', models.CharField(blank=True, max_length=255, null=True)), ('pickcounty', models.CharField(blank=True, max_length=255, null=True)), ('pickzip', models.IntegerField(blank=True, default=0, null=True)), ('drophousenumber', models.IntegerField(blank=True, default=0, null=True)), ('dropaddress1', models.CharField(blank=True, max_length=255, null=True)), ('dropcity', models.CharField(blank=True, max_length=255, null=True)), ('dropcounty', models.CharField(blank=True, max_length=255, null=True)), ('dropzip', models.IntegerField(blank=True, default=0, null=True)), ('shared', models.BooleanField(default=False)), ('puzip', models.IntegerField(blank=True, default=0, null=True)), ('dozip', models.IntegerField(blank=True, default=0, null=True)), ('uid', models.IntegerField(blank=True, default=0, null=True)), ('paid', models.CharField(blank=True, max_length=255, null=True)), ('duid', models.CharField(blank=True, max_length=255, null=True)), ('count', models.IntegerField(blank=True, default=0, null=True)), ('pickboro', models.IntegerField(blank=True, default=0, null=True)), ('dropboro', models.IntegerField(blank=True, default=0, null=True)), ('upast', models.CharField(blank=True, max_length=255, null=True)), ('udast', models.CharField(blank=True, max_length=255, null=True)), ('pickdate', models.DateField(blank=True, default=None, null=True)), ('dropdate', models.DateField(blank=True, default=None, null=True)), ('pickhour', models.IntegerField(blank=True, default=0, null=True)), ('pickmin', models.IntegerField(blank=True, default=0, null=True)), ('drophour', models.IntegerField(blank=True, default=0, null=True)), ('dropmin', models.IntegerField(blank=True, default=0, null=True)), ('pickdaymins', models.IntegerField(blank=True, default=0, null=True)), ('dropdaymins', models.IntegerField(blank=True, default=0, null=True)), ('tripminsdelta', models.IntegerField(blank=True, default=0, null=True)), ('p_bctcb2010', models.IntegerField(blank=True, default=0, null=True)), ('p_lat', models.DecimalField(decimal_places=10, default=0, max_digits=12)), ('p_lon', models.DecimalField(decimal_places=10, default=0, max_digits=13)), ('p_count', models.IntegerField(blank=True, default=0, null=True)), ('p_val', models.BooleanField(default=False)), ('d_bctcb2010', models.IntegerField(blank=True, default=0, null=True)), ('d_lat', models.DecimalField(decimal_places=10, default=0, max_digits=12)), ('d_lon', models.DecimalField(decimal_places=10, default=0, max_digits=13)), ('d_count', models.IntegerField(blank=True, default=0, null=True)), ('d_val', models.BooleanField(default=False)), ('p_geoid', models.CharField(blank=True, max_length=255, null=True)), ('p_xcoord', models.DecimalField(decimal_places=10, default=0, max_digits=12)), ('p_ycoord', models.DecimalField(decimal_places=10, default=0, max_digits=13)), ('d_geoid', models.CharField(blank=True, max_length=255, null=True)), ('d_xcoord', models.DecimalField(decimal_places=10, default=0, max_digits=12)), ('d_ycoord', models.DecimalField(decimal_places=10, default=0, max_digits=13)), ('p_geoid_bg', models.CharField(blank=True, max_length=255, null=True)), ('d_geoid_bg', models.CharField(blank=True, max_length=255, null=True)), ('osrmminsdelta', models.DecimalField(decimal_places=2, default=0, max_digits=6)), ('osrm_dist', models.DecimalField(decimal_places=1, default=0, max_digits=10)), ('osrm_rval', models.BooleanField(default=False)), ('p_nr_bus', models.DecimalField(decimal_places=10, default=0, max_digits=20)), ('d_nr_bus', models.DecimalField(decimal_places=10, default=0, max_digits=20)), ('p_nr_sub', models.DecimalField(decimal_places=10, default=0, max_digits=20)), ('d_nr_sub', models.DecimalField(decimal_places=10, default=0, max_digits=20)), ('p_nr_hea', models.DecimalField(decimal_places=10, default=0, max_digits=20)), ('d_nr_hea', models.DecimalField(decimal_places=10, default=0, max_digits=20)), ('p_p_count', models.IntegerField(blank=True, default=0, null=True)), ('p_d_count', models.IntegerField(blank=True, default=0, null=True)), ('p_a_count', models.IntegerField(blank=True, default=0, null=True)), ('p_p0010001', models.IntegerField(blank=True, default=0, null=True)), ('p_p0030001', models.IntegerField(blank=True, default=0, null=True)), ('p_p0030002', models.IntegerField(blank=True, default=0, null=True)), ('p_p0030003', models.IntegerField(blank=True, default=0, null=True)), ('p_p0030004', models.IntegerField(blank=True, default=0, null=True)), ('p_p0030005', models.IntegerField(blank=True, default=0, null=True)), ('p_p0030006', models.IntegerField(blank=True, default=0, null=True)), ('p_p0030007', models.IntegerField(blank=True, default=0, null=True)), ('p_p0030008', models.IntegerField(blank=True, default=0, null=True)), ('p_p0040001', models.IntegerField(blank=True, default=0, null=True)), ('p_p0040002', models.IntegerField(blank=True, default=0, null=True)), ('p_p0040003', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120001', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120002', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120003', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120004', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120005', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120006', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120007', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120008', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120009', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120010', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120011', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120012', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120013', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120014', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120015', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120016', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120017', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120018', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120019', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120020', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120021', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120022', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120023', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120024', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120025', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120026', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120027', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120028', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120029', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120030', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120031', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120032', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120033', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120034', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120035', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120036', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120037', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120038', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120039', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120040', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120041', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120042', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120043', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120044', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120045', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120046', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120047', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120048', models.IntegerField(blank=True, default=0, null=True)), ('p_p0120049', models.IntegerField(blank=True, default=0, null=True)), ('p_h00010001', models.IntegerField(blank=True, default=0, null=True)), ('p_h0030001', models.IntegerField(blank=True, default=0, null=True)), ('p_h0030002', models.IntegerField(blank=True, default=0, null=True)), ('p_h0030003', models.IntegerField(blank=True, default=0, null=True)), ('p_h0040001', models.IntegerField(blank=True, default=0, null=True)), ('p_h0040002', models.IntegerField(blank=True, default=0, null=True)), ('p_h0040003', models.IntegerField(blank=True, default=0, null=True)), ('p_h0040004', models.IntegerField(blank=True, default=0, null=True)), ('p_h0050001', models.IntegerField(blank=True, default=0, null=True)), ('p_h0050002', models.IntegerField(blank=True, default=0, null=True)), ('p_h0050003', models.IntegerField(blank=True, default=0, null=True)), ('p_h0050004', models.IntegerField(blank=True, default=0, null=True)), ('p_h0050005', models.IntegerField(blank=True, default=0, null=True)), ('p_h0050006', models.IntegerField(blank=True, default=0, null=True)), ('p_h0050007', models.IntegerField(blank=True, default=0, null=True)), ('p_h0050008', models.IntegerField(blank=True, default=0, null=True)), ('p_p_pop', models.DecimalField(decimal_places=10, default=0, max_digits=20)), ('p_d_pop', models.DecimalField(decimal_places=10, default=0, max_digits=20)), ('p_a_pop', models.DecimalField(decimal_places=10, default=0, max_digits=20)), ('d_p_count', models.IntegerField(blank=True, default=0, null=True)), ('d_d_count', models.IntegerField(blank=True, default=0, null=True)), ('d_a_count', models.IntegerField(blank=True, default=0, null=True)), ('d_p0010001', models.IntegerField(blank=True, default=0, null=True)), ('d_p0030001', models.IntegerField(blank=True, default=0, null=True)), ('d_p0030002', models.IntegerField(blank=True, default=0, null=True)), ('d_p0030003', models.IntegerField(blank=True, default=0, null=True)), ('d_p0030004', models.IntegerField(blank=True, default=0, null=True)), ('d_p0030005', models.IntegerField(blank=True, default=0, null=True)), ('d_p0030006', models.IntegerField(blank=True, default=0, null=True)), ('d_p0030007', models.IntegerField(blank=True, default=0, null=True)), ('d_p0030008', models.IntegerField(blank=True, default=0, null=True)), ('d_p0040001', models.IntegerField(blank=True, default=0, null=True)), ('d_p0040002', models.IntegerField(blank=True, default=0, null=True)), ('d_p0040003', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120001', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120002', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120003', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120004', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120005', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120006', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120007', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120008', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120009', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120010', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120011', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120012', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120013', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120014', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120015', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120016', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120017', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120018', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120019', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120020', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120021', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120022', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120023', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120024', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120025', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120026', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120027', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120028', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120029', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120030', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120031', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120032', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120033', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120034', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120035', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120036', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120037', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120038', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120039', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120040', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120041', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120042', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120043', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120044', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120045', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120046', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120047', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120048', models.IntegerField(blank=True, default=0, null=True)), ('d_p0120049', models.IntegerField(blank=True, default=0, null=True)), ('d_h00010001', models.IntegerField(blank=True, default=0, null=True)), ('d_h0030001', models.IntegerField(blank=True, default=0, null=True)), ('d_h0030002', models.IntegerField(blank=True, default=0, null=True)), ('d_h0030003', models.IntegerField(blank=True, default=0, null=True)), ('d_h0040001', models.IntegerField(blank=True, default=0, null=True)), ('d_h0040002', models.IntegerField(blank=True, default=0, null=True)), ('d_h0040003', models.IntegerField(blank=True, default=0, null=True)), ('d_h0040004', models.IntegerField(blank=True, default=0, null=True)), ('d_h0050001', models.IntegerField(blank=True, default=0, null=True)), ('d_h0050002', models.IntegerField(blank=True, default=0, null=True)), ('d_h0050003', models.IntegerField(blank=True, default=0, null=True)), ('d_h0050004', models.IntegerField(blank=True, default=0, null=True)), ('d_h0050005', models.IntegerField(blank=True, default=0, null=True)), ('d_h0050006', models.IntegerField(blank=True, default=0, null=True)), ('d_h0050007', models.IntegerField(blank=True, default=0, null=True)), ('d_h0050008', models.IntegerField(blank=True, default=0, null=True)), ('d_p_pop', models.DecimalField(decimal_places=10, default=0, max_digits=20)), ('d_d_pop', models.DecimalField(decimal_places=10, default=0, max_digits=20)), ('d_a_pop', models.DecimalField(decimal_places=10, default=0, max_digits=20)), ('p_b01001_001e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_002e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_003e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_004e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_005e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_006e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_007e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_008e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_009e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_010e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_011e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_012e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_013e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_014e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_015e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_016e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_017e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_018e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_019e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_020e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_021e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_022e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_023e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_024e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_025e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_026e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_027e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_028e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_029e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_030e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_031e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_032e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_033e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_034e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_035e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_036e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_037e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_038e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_039e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_040e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_041e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_042e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_043e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_044e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_045e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_046e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_047e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_048e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_049e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01003_001e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b19013_001e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b18101_001e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_001e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_002e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_003e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_004e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_005e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_006e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_007e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_008e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_009e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_010e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_011e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_012e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_013e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_014e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_015e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_016e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_017e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_018e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_019e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_020e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_021e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_022e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_023e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_024e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_025e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_026e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_027e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_028e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_029e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_030e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_031e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_032e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_033e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_034e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_035e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_036e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_037e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_038e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_039e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_040e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_041e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_042e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_043e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_044e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_045e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_046e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_047e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_048e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_049e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b01003_001e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b19013_001e_x', models.IntegerField(blank=True, default=0, null=True)), ('d_b18101_001e_x', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_001e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_002e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_003e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_004e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_005e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_006e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_007e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_008e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_009e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_010e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_011e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_012e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_013e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_014e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_015e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_016e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_017e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_018e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_019e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_020e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_021e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_022e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_023e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_024e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_025e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_026e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_027e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_028e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_029e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_030e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_031e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_032e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_033e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_034e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_035e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_036e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_037e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_038e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_039e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_040e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_041e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_042e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_043e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_044e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_045e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_046e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_047e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_048e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01001_049e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b01003_001e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b19013_001e_y', models.IntegerField(blank=True, default=0, null=True)), ('p_b18101_001e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_001e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_002e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_003e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_004e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_005e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_006e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_007e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_008e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_009e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_010e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_011e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_012e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_013e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_014e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_015e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_016e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_017e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_018e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_019e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_020e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_021e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_022e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_023e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_024e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_025e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_026e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_027e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_028e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_029e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_030e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_031e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_032e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_033e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_034e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_035e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_036e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_037e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_038e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_039e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_040e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_041e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_042e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_043e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_044e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_045e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_046e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_047e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_048e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01001_049e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b01003_001e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b19013_001e_y', models.IntegerField(blank=True, default=0, null=True)), ('d_b18101_001e_y', models.IntegerField(blank=True, default=0, null=True)), ], ), ]
import math import numpy as np import subprocess import numbers import importlib import sys import re from itertools import chain, combinations import numba from numba.core import config, cpu from numba import prange, njit from numba.core.compiler import compile_isolated, Flags from numba.tests.support import TestCase, tag, override_env_config import unittest needs_svml = unittest.skipUnless(config.USING_SVML, "SVML tests need SVML to be present") # a map of float64 vector lenghs with corresponding CPU architecture vlen2cpu = {2: 'nehalem', 4: 'haswell', 8: 'skylake-avx512'} # force LLVM to use AVX512 registers for vectorization # https://reviews.llvm.org/D67259 vlen2cpu_features = {2: '', 4: '', 8: '-prefer-256-bit'} # K: SVML functions, V: python functions which are expected to be SIMD-vectorized # using SVML, explicit references to Python functions here are mostly for sake of # instant import checks. # TODO: [] and comments below mean unused/untested SVML function, it's to be # either enabled or to be replaced with the explanation why the function # cannot be used in Numba # TODO: this test does not support functions with more than 1 arguments yet # The test logic should be modified if there is an SVML function being used under # different name or module from Python svml_funcs = { "sin": [np.sin, math.sin], "cos": [np.cos, math.cos], "pow": [], # pow, math.pow], "exp": [np.exp, math.exp], "log": [np.log, math.log], "acos": [math.acos], "acosh": [math.acosh], "asin": [math.asin], "asinh": [math.asinh], "atan2": [], # math.atan2], "atan": [math.atan], "atanh": [math.atanh], "cbrt": [], # np.cbrt], "cdfnorm": [], "cdfnorminv": [], "ceil": [], # np.ceil, math.ceil], "cosd": [], "cosh": [np.cosh, math.cosh], "erf": [math.erf], # np.erf is available in Intel Distribution "erfc": [math.erfc], "erfcinv": [], "erfinv": [], "exp10": [], "exp2": [], # np.exp2], "expm1": [np.expm1, math.expm1], "floor": [], # np.floor, math.floor], "fmod": [], # np.fmod, math.fmod], "hypot": [], # np.hypot, math.hypot], "invsqrt": [], # available in Intel Distribution "log10": [np.log10, math.log10], "log1p": [np.log1p, math.log1p], "log2": [], # np.log2], "logb": [], "nearbyint": [], "rint": [], # np.rint], "round": [], # round], "sind": [], "sinh": [np.sinh, math.sinh], "sqrt": [np.sqrt, math.sqrt], "tan": [np.tan, math.tan], "tanh": [np.tanh, math.tanh], "trunc": [], # np.trunc, math.trunc], } # TODO: these functions are not vectorizable with complex types complex_funcs_exclude = ["sqrt", "tan", "log10", "expm1", "log1p", "tanh", "log"] # remove untested entries svml_funcs = {k: v for k, v in svml_funcs.items() if len(v) > 0} # lists for functions which belong to numpy and math modules correpondently numpy_funcs = [f for f, v in svml_funcs.items() if "<ufunc" in \ [str(p).split(' ')[0] for p in v]] other_funcs = [f for f, v in svml_funcs.items() if "<built-in" in \ [str(p).split(' ')[0] for p in v]] def func_patterns(func, args, res, dtype, mode, vlen, flags, pad=' '*8): """ For a given function and its usage modes, returns python code and assembly patterns it should and should not generate """ # generate a function call according to the usecase if mode == "scalar": arg_list = ','.join([a+'[0]' for a in args]) body = '%s%s[0] += math.%s(%s)\n' % (pad, res, func, arg_list) elif mode == "numpy": body = '%s%s += np.%s(%s)' % (pad, res, func, ','.join(args)) body += '.astype(np.%s)\n' % dtype if dtype.startswith('int') else '\n' else: assert mode == "range" or mode == "prange" arg_list = ','.join([a+'[i]' for a in args]) body = '{pad}for i in {mode}({res}.size):\n' \ '{pad}{pad}{res}[i] += math.{func}({arg_list})\n'. \ format(**locals()) # TODO: refactor so this for-loop goes into umbrella function, # 'mode' can be 'numpy', '0', 'i' instead # TODO: it will enable mixed usecases like prange + numpy # type specialization is_f32 = dtype == 'float32' or dtype == 'complex64' f = func+'f' if is_f32 else func v = vlen*2 if is_f32 else vlen # general expectations prec_suff = '' if getattr(flags, 'fastmath', False) else '_ha' scalar_func = '$_'+f if config.IS_OSX else '$'+f svml_func = '__svml_%s%d%s,' % (f, v, prec_suff) if mode == "scalar": contains = [scalar_func] avoids = ['__svml_', svml_func] else: # will vectorize contains = [svml_func] avoids = [] # [scalar_func] - TODO: if possible, force LLVM to prevent # generating the failsafe scalar paths if vlen != 8 and (is_f32 or dtype == 'int32'): # Issue #3016 avoids += ['%zmm', '__svml_%s%d%s,' % (f, v*2, prec_suff)] # special handling if func == 'sqrt': if mode == "scalar": contains = ['sqrts'] avoids = [scalar_func, svml_func] # LLVM uses CPU instruction elif vlen == 8: contains = ['vsqrtp'] avoids = [scalar_func, svml_func] # LLVM uses CPU instruction # else expect use of SVML for older architectures return body, contains, avoids def usecase_name(dtype, mode, vlen, flags): """ Returns pretty name for given set of modes """ return "{dtype}_{mode}{vlen}_{flags.__name__}".format(**locals()) def combo_svml_usecase(dtype, mode, vlen, flags): """ Combine multiple function calls under single umbrella usecase """ name = usecase_name(dtype, mode, vlen, flags) body = """def {name}(n): x = np.empty(n*8, dtype=np.{dtype}) ret = np.empty_like(x)\n""".format(**locals()) funcs = set(numpy_funcs if mode == "numpy" else other_funcs) if dtype.startswith('complex'): funcs = funcs.difference(complex_funcs_exclude) contains = set() avoids = set() # fill body and expectation patterns for f in funcs: b, c, a = func_patterns(f, ['x'], 'ret', dtype, mode, vlen, flags) avoids.update(a) body += b contains.update(c) body += " "*8 + "return ret" # now compile and return it along with its body in __doc__ and patterns ldict = {} exec(body, globals(), ldict) ldict[name].__doc__ = body return ldict[name], contains, avoids @needs_svml class TestSVMLGeneration(TestCase): """ Tests all SVML-generating functions produce desired calls """ # env mutating, must not run in parallel _numba_parallel_test_ = False # RE for a generic symbol reference and for each particular SVML function asm_filter = re.compile('|'.join(['\$[a-z_]\w+,']+list(svml_funcs))) @classmethod def _inject_test(cls, dtype, mode, vlen, flags): # unsupported combinations if dtype.startswith('complex') and mode != 'numpy': return # TODO: address skipped tests below skipped = dtype.startswith('int') and vlen == 2 args = (dtype, mode, vlen, flags) # unit test body template @unittest.skipUnless(not skipped, "Not implemented") def test_template(self): fn, contains, avoids = combo_svml_usecase(*args) # look for specific patters in the asm for a given target with override_env_config('NUMBA_CPU_NAME', vlen2cpu[vlen]), \ override_env_config('NUMBA_CPU_FEATURES', vlen2cpu_features[vlen]): # recompile for overridden CPU try: jit = compile_isolated(fn, (numba.int64, ), flags=flags) except: raise Exception("raised while compiling "+fn.__doc__) asm = jit.library.get_asm_str() missed = [pattern for pattern in contains if not pattern in asm] found = [pattern for pattern in avoids if pattern in asm] self.assertTrue(not missed and not found, "While expecting %s and no %s,\n" "it contains:\n%s\n" "when compiling %s" % (str(missed), str(found), '\n'.join( [line for line in asm.split('\n') if cls.asm_filter.search(line) and not '"' in line]), fn.__doc__)) # inject it into the class setattr(cls, "test_"+usecase_name(*args), test_template) @classmethod def autogenerate(cls): test_flags = ['fastmath', ] # TODO: add 'auto_parallel' ? # generate all the combinations of the flags test_flags = sum([list(combinations(test_flags, x)) for x in range( \ len(test_flags)+1)], []) flag_list = [] # create Flag class instances for ft in test_flags: flags = Flags() flags.nrt = True flags.error_model = 'numpy' flags.__name__ = '_'.join(ft+('usecase',)) for f in ft: setattr(flags, f, { 'fastmath': cpu.FastMathOptions(True) }.get(f, True)) flag_list.append(flags) # main loop covering all the modes and use-cases for dtype in ('complex64', 'float64', 'float32', 'int32', ): for vlen in vlen2cpu: for flags in flag_list: for mode in "scalar", "range", "prange", "numpy": cls._inject_test(dtype, mode, vlen, flags) # mark important for n in ( "test_int32_range4_usecase", # issue #3016 ): setattr(cls, n, tag("important")(getattr(cls, n))) TestSVMLGeneration.autogenerate() def math_sin_scalar(x): return math.sin(x) def math_sin_loop(n): ret = np.empty(n, dtype=np.float64) for x in range(n): ret[x] = math.sin(np.float64(x)) return ret @needs_svml class TestSVML(TestCase): """ Tests SVML behaves as expected """ # env mutating, must not run in parallel _numba_parallel_test_ = False def __init__(self, *args): self.flags = Flags() self.flags.nrt = True # flags for njit(fastmath=True) self.fastflags = Flags() self.fastflags.nrt = True self.fastflags.fastmath = cpu.FastMathOptions(True) super(TestSVML, self).__init__(*args) def compile(self, func, *args, **kwargs): assert not kwargs sig = tuple([numba.typeof(x) for x in args]) std = compile_isolated(func, sig, flags=self.flags) fast = compile_isolated(func, sig, flags=self.fastflags) return std, fast def copy_args(self, *args): if not args: return tuple() new_args = [] for x in args: if isinstance(x, np.ndarray): new_args.append(x.copy('k')) elif isinstance(x, np.number): new_args.append(x.copy()) elif isinstance(x, numbers.Number): new_args.append(x) else: raise ValueError('Unsupported argument type encountered') return tuple(new_args) def check(self, pyfunc, *args, **kwargs): jitstd, jitfast = self.compile(pyfunc, *args) std_pattern = kwargs.pop('std_pattern', None) fast_pattern = kwargs.pop('fast_pattern', None) cpu_name = kwargs.pop('cpu_name', 'skylake-avx512') # force LLVM to use AVX512 registers for vectorization # https://reviews.llvm.org/D67259 cpu_features = kwargs.pop('cpu_features', '-prefer-256-bit') # python result py_expected = pyfunc(*self.copy_args(*args)) # jit result jitstd_result = jitstd.entry_point(*self.copy_args(*args)) # fastmath result jitfast_result = jitfast.entry_point(*self.copy_args(*args)) # assert numerical equality np.testing.assert_almost_equal(jitstd_result, py_expected, **kwargs) np.testing.assert_almost_equal(jitfast_result, py_expected, **kwargs) # look for specific patters in the asm for a given target with override_env_config('NUMBA_CPU_NAME', cpu_name), \ override_env_config('NUMBA_CPU_FEATURES', cpu_features): # recompile for overridden CPU jitstd, jitfast = self.compile(pyfunc, *args) if std_pattern: self.check_svml_presence(jitstd, std_pattern) if fast_pattern: self.check_svml_presence(jitfast, fast_pattern) def check_svml_presence(self, func, pattern): asm = func.library.get_asm_str() self.assertIn(pattern, asm) def test_scalar_context(self): # SVML will not be used. pat = '$_sin' if config.IS_OSX else '$sin' self.check(math_sin_scalar, 7., std_pattern=pat) self.check(math_sin_scalar, 7., fast_pattern=pat) def test_svml(self): # loops both with and without fastmath should use SVML. # The high accuracy routines are dropped if `fastmath` is set std = "__svml_sin8_ha," fast = "__svml_sin8," # No `_ha`! self.check(math_sin_loop, 10, std_pattern=std, fast_pattern=fast) def test_svml_disabled(self): code = """if 1: import os import numpy as np import math def math_sin_loop(n): ret = np.empty(n, dtype=np.float64) for x in range(n): ret[x] = math.sin(np.float64(x)) return ret def check_no_svml(): try: # ban the use of SVML os.environ['NUMBA_DISABLE_INTEL_SVML'] = '1' # delay numba imports to account for env change as # numba.__init__ picks up SVML and it is too late by # then to override using `numba.config` import numba from numba import config from numba.core import cpu from numba.tests.support import override_env_config from numba.core.compiler import compile_isolated, Flags # compile for overridden CPU, with and without fastmath with override_env_config('NUMBA_CPU_NAME', 'skylake-avx512'), \ override_env_config('NUMBA_CPU_FEATURES', ''): sig = (numba.int32,) f = Flags() f.nrt = True std = compile_isolated(math_sin_loop, sig, flags=f) f.fastmath = cpu.FastMathOptions(True) fast = compile_isolated(math_sin_loop, sig, flags=f) fns = std, fast # assert no SVML call is present in the asm for fn in fns: asm = fn.library.get_asm_str() assert '__svml_sin' not in asm finally: # not really needed as process is separate os.environ['NUMBA_DISABLE_INTEL_SVML'] = '0' config.reload_config() check_no_svml() """ popen = subprocess.Popen( [sys.executable, "-c", code], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = popen.communicate() if popen.returncode != 0: raise AssertionError( "process failed with code %s: stderr follows\n%s\n" % (popen.returncode, err.decode())) def test_svml_working_in_non_isolated_context(self): @njit(fastmath={'fast'}, error_model="numpy") def impl(n): x = np.empty(n * 8, dtype=np.float64) ret = np.empty_like(x) for i in range(ret.size): ret[i] += math.cosh(x[i]) return ret impl(1) self.assertTrue('intel_svmlcc' in impl.inspect_llvm(impl.signatures[0])) if __name__ == '__main__': unittest.main()
""" Returns nicely-presented versions of the ranges between two dates e.g. 27-29 May 2009 27 May-1 June 2009 8 pm-12 midnight 8 am-12 noon 8.30-9 am """ from datetime import date, time, datetime DAYS_IN_MONTHS = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] def days_in_month(date): #January = 1 if date.month ==2 and (date.year % 4) == 0: return 29 else: return DAYS_IN_MONTHS[date.month-1] def _clean_dates(date1, date2): if not date1: raise TypeError("You must provide a start date") if not date2: date2 = date1 #Case: d2 is less than d1. Swap them if date2 < date1: dt = date2 date2 = date1 date1 = dt return date1, date2 def pprint_date_span(date1, date2, space=" ", range_str="-"): date1, date2 = _clean_dates(date1, date2) d1d = date1.day #decimal (remove leading 0s) d1m = date1.strftime("%B") #Month name d1y = date1.strftime("%Y") #Case: the two are equal; no range if date1 == date2: return "%d%s%s%s%s" % (d1d, space, d1m, space, d1y) d2d = date2.day #decimal (remove leading 0s) d2m = date2.strftime("%B") #Month name d2y = date2.strftime("%Y") #get rid of redundancies if d1y == d2y: d1y = "" if d1m == d2m: d1m = "" #by now we know that d1d and d2d are different (or in different months) #Add spacing where necessary if d1m!="": if d1y!="": d1m = "%s%s%s" % (space, d1m, space) else: d1m = "%s%s" % (space, d1m) d2m = "%s%s%s" % (space, d2m, space) return "%s%s%s%s%s%s%s" % (d1d, d1m, d1y, range_str, d2d, d2m, d2y) def humanized_date_range(date1, date2, imply_year=True, space=" ", range_str="-"): """ Like the above, except that if date1 and date2 exactly define a month, then just name the month, rather than the date ranges. Ditto with an exactly-defined year -- just return the year. Also, if imply_year=True, then if both dates fall with in this year, then omit the year (unless the dates exactly describe the year). """ date1, date2 = _clean_dates(date1, date2) if date1.day == 1 and date2.day == days_in_month(date2): #we've got an entire month range. if date1.year == date2.year: if date1.month == date2.month: ds = "%s%s%s" % (date2.strftime("%B"), space, date2.year) else: if date1.month ==1 and date2.month == 12: ds = "%s" % date1.year else: ds = "%s%s%s%s%s" % (date1.strftime("%B"), range_str, date2.strftime("%B"), space, date2.year) else: if date1.month ==1 and date2.month == 12: ds = "%s%s%s" % (date1.year, range_str, date2.year) else: ds = "%s%s%s%s%s%s%s" % (date1.strftime("%B"), space, date1.year, range_str, date2.strftime("%B"), space, date2.year) else: ds = pprint_date_span(date1, date2, space, range_str) if imply_year: today = date.today() if date1.year == date2.year and date1.year == today.year and ds != "%s" % date1.year: #strip off the year return ds[:-5] return ds def pprint_time_span(time1, time2, separator=":", am="am", pm="pm", midnight="midnight", noon="noon", range_str="-"): if time1 == time2 == None: raise Exception("need to provide at least one time") apdict = { 'am': am, 'pm': pm, 'midnight': midnight, 'noon': noon, '': '', } ##THIS IS NOT LOCALE-TOLERANT. Assumption of am/pm. if time1 is not None: t1h = str(int(time1.strftime("%I"))) #decimal (remove leading 0s) t1m = time1.strftime("%M") #leading 0s t1ap = time1.strftime("%p").lower() if t1h == "12" and t1m == "00": if t1ap == "am": t1ap = "midnight" else: t1ap = "noon" t1h = "" if t1ap not in (midnight, noon): t1 = t1h+separator+t1m else: t1 = "" #Case: the two are equal; no range if (time1 == time2): return "%s%s" % (t1, apdict[t1ap]) if time2 is None: return "from %s%s" % (t1, apdict[t1ap]) t2h = str(int(time2.strftime("%I"))) #decimal (remove leading 0s) t2m = time2.strftime("%M") #leading 0s t2ap = time2.strftime("%p").lower() if t2h == "12" and t2m == "00": if t2ap == "am": t2ap = "midnight" else: t2ap = "noon" t2h = "" if t2ap not in (midnight, noon): t2 = t2h+separator+t2m else: t2 = "" if time1 is not None: #get rid of redundancies # and am/pm if t1ap == t2ap and time1 < time2: t1ap = "" return "%s%s%s%s%s" % (t1, apdict[t1ap], range_str, t2, apdict[t2ap]) else: return "until %s%s" % (t2, apdict[t2ap]) def pprint_datetime_span(d1, t1, d2=None, t2=None, infer_all_day=True, space=" ", date_range_str="-", time_range_str="-", separator=":", grand_range_str=" - ", am="am", pm="pm", noon="noon", midnight="midnight", ): datekwargs = { 'range_str': date_range_str, 'space': space, } timekwargs = { 'range_str': time_range_str, 'separator': separator, 'am': am, 'pm': pm, 'noon': noon, 'midnight': midnight, } if isinstance(d1, datetime): dt1 = d1 dt2 = t1 #user has passed in datetimes instead d1 = dt1.date() t1 = dt1.time() if isinstance(dt2, datetime): d2 = dt2.date() t2 = dt2.time() else: d2 = None t2 = None if t1 == time.min and t2 == time.max: if infer_all_day: return "all day on %s" % pprint_date_span(d1, d2, **datekwargs) return pprint_date_span(d1, d2, **datekwargs) if d1 == d2 and t1 is not None and t2 is not None: return "%(d)s, %(t)s" % { 'd': pprint_date_span(d1, d1, **datekwargs), 't': pprint_time_span(t1, t2, **timekwargs), } d1r = pprint_date_span(d1, d1, **datekwargs) if d2 is not None: d2r = pprint_date_span(d2, d2, **datekwargs) else: d2r = None if t1 is not None: t1r = pprint_time_span(t1, t1, **timekwargs) else: t1r = None if t2 is not None: t2r = pprint_time_span(t2, t2, **timekwargs) else: t2r = None datadict = { 'd1': d1r, 't1': t1r, 'd2': d2r, 't2': t2r } if d2 is not None and d2 != d1: if t1 is not None: if t2 is not None and t2 != t1: formatstring = "%(d1)s, %(t1)s until %(t2)s on %(d2)s" else: formatstring = "%(d1)s, %(t1)s until %(d2)s" else: if t2 is not None: formatstring = "%(d1)s until %(t2)s on %(d2)s" else: return pprint_date_span(d1, d2, **datekwargs) #***** else: if t1 is not None: if t2 is not None and t2 != t1: return "%(d)s, %(t)s" % { 'd': pprint_date_span(d1, d1, **datekwargs), 't': pprint_time_span(t1, t2, **timekwargs), # ******* } else: formatstring = "%(d1)s, %(t1)s" else: if t2 is not None: formatstring = "%(d1)s until %(t2)s" else: formatstring = "%(d1)s" return formatstring % datadict if __name__ == "__main__": import unittest class TestDateTimeRange(unittest.TestCase): def setUp(self): self.ae = self.assertEqual def test_normality(self): d1 = date(2010, 9, 23) d2 = date(2010, 9, 24) t1 = time(12,42) t2 = time(14,42) dt1 = datetime.combine(d1, t1) dt2 = datetime.combine(d2, t2) self.ae(pprint_datetime_span(d1, None), "23 September 2010") self.ae(pprint_datetime_span(d1, t1), "23 September 2010, 12:42pm") self.ae(pprint_datetime_span(d1, t1, d1), "23 September 2010, 12:42pm") self.ae(pprint_datetime_span(d1, t1, d1, t1), "23 September 2010, 12:42pm") self.ae(pprint_datetime_span(d1, None, d2, None), "23-24 September 2010") self.ae(pprint_datetime_span(d1, t1, None, t2), "23 September 2010, 12:42-2:42pm") self.ae(pprint_datetime_span(d1, t1, d1, t2), "23 September 2010, 12:42-2:42pm") self.ae(pprint_datetime_span(d1, t1, d2, t2), "23 September 2010, 12:42pm until 2:42pm on 24 September 2010") self.ae(pprint_datetime_span(d1, None, d2, t2), "23 September 2010 until 2:42pm on 24 September 2010") self.ae(pprint_datetime_span(d1, None, None, t2), "23 September 2010 until 2:42pm") self.ae(pprint_datetime_span(d1, t1, d2), "23 September 2010, 12:42pm until 24 September 2010") #datetimes self.ae(pprint_datetime_span(dt1, None), pprint_datetime_span(d1, t1)) self.ae(pprint_datetime_span(dt1, dt2), pprint_datetime_span(d1, t1, d2, t2)) def test_identicality(self): d1 = date(2010, 9, 23) d2 = date(2010, 9, 23) t1 = time(0,0) t2 = time.max self.ae(pprint_datetime_span(d1, t1, d2, t1), "23 September 2010, midnight") self.ae(pprint_datetime_span(d1, None, d2, None), "23 September 2010") self.ae(pprint_datetime_span(d1, t1, d2, t2), "all day on 23 September 2010") def test_minmax(self): dt1 = datetime.combine(date(2010, 9, 23), time.min) dt2 = datetime.combine(date(2010, 9, 24), time.max) self.ae(pprint_datetime_span(dt1, dt2, infer_all_day=False), "23-24 September 2010") self.ae(pprint_datetime_span(dt1, dt2, infer_all_day=True), "all day on 23-24 September 2010") def test_special(self): d1 = date(2010, 9, 23) d2 = date(2010, 9, 24) t1 = time(00,00) t2 = time(12,00) self.ae(pprint_datetime_span(d1, None, d2, t2), "23 September 2010 until noon on 24 September 2010") self.ae(pprint_datetime_span(d1, t1), "23 September 2010, midnight") self.ae(pprint_datetime_span(d1, t1, None, t2), "23 September 2010, midnight-noon") self.ae(pprint_datetime_span(d1, t1, d2), "23 September 2010, midnight until 24 September 2010") self.ae(pprint_datetime_span(d1, t1, d2, t2), "23 September 2010, midnight until noon on 24 September 2010") def test_formatting(self): d1 = date(2010, 9, 23) d2 = date(2010, 9, 24) t1 = time(10,42) t2 = time(14,42) t3 = time(00,00) t4 = time(12,00) kwargs = { 'space': '.', 'date_range_str': " to ", 'time_range_str': "~", 'separator': "/", 'grand_range_str': " continuing to ", 'am': 'a.m.', 'pm': 'p.m.', 'noon': 'nooooon', 'midnight': 'the witching hour', } self.ae(pprint_datetime_span(d1, None, **kwargs), "23.September.2010") self.ae(pprint_datetime_span(d1, None, d2, None, **kwargs), "23 to 24.September.2010") self.ae(pprint_datetime_span(d1, None, d2, t2, **kwargs), "23.September.2010 until 2/42p.m. on 24.September.2010") self.ae(pprint_datetime_span(d1, t1, **kwargs), "23.September.2010, 10/42a.m.") self.ae(pprint_datetime_span(d1, t1, None, t2, **kwargs), "23.September.2010, 10/42a.m.~2/42p.m.") self.ae(pprint_datetime_span(d1, t1, d2, **kwargs), "23.September.2010, 10/42a.m. until 24.September.2010") self.ae(pprint_datetime_span(d1, t1, d2, t2, **kwargs), "23.September.2010, 10/42a.m. until 2/42p.m. on 24.September.2010") self.ae(pprint_datetime_span(d1, t3, None, t4, **kwargs), "23.September.2010, the witching hour~nooooon") class TestTimeRange(unittest.TestCase): def setUp(self): self.ae = self.assertEqual def test_normality(self): time1 = time(10,20) time2 = time(10,40) self.ae(pprint_time_span(time1, time2), "10:20-10:40am") self.ae(pprint_time_span(time1, time1), "10:20am") self.ae(pprint_time_span(time1, None), "from 10:20am") self.ae(pprint_time_span(None, time2), "until 10:40am") # might just want to display this. self.ae(pprint_time_span(time2, time1), "10:40am-10:20am") def test_formatting(self): time1 = time(10,20) time2 = time(14,40) self.ae(pprint_time_span(time1, time2, separator=".", range_str=" to ", am=" a.m.", pm=" p.m."), "10.20 a.m. to 2.40 p.m.") time1 = time(00,00) time2 = time(12,00) self.ae(pprint_time_span(time1, time2, range_str=" a ", midnight="midnuit", noon="midi"), "midnuit a midi") def test_overflow(self): time1 = time(10,50) time2 = time(14,40) self.ae(pprint_time_span(time1, time2), "10:50am-2:40pm") def test_simplify(self): time1 = time(10,00) time2 = time(11,00) time3 = time(11,30) midnight = time(00,00) noon = time(12,00) self.ae(pprint_time_span(time1, time2), "10-11am") self.ae(pprint_time_span(time1, noon), "10am-noon") self.ae(pprint_time_span(midnight, time2), "midnight-11am") self.ae(pprint_time_span(time1, time3), "10-11:30am") self.ae(pprint_time_span(midnight, None), "from midnight") self.ae(pprint_time_span(None, midnight), "until midnight") self.ae(pprint_time_span(midnight, midnight), "midnight") self.ae(pprint_time_span(noon, None), "from noon") class TestDateRange(unittest.TestCase): def setUp(self): self.ae = self.assertEqual def test_normality(self): date1 = date(2001, 10, 10) date2 = date(2001, 10, 12) self.ae(pprint_date_span(date1, date2), "10-12 October 2001") date1 = date(2001, 10, 10) date2 = date(2001, 10, 10) self.ae(pprint_date_span(date1, date2), "10 October 2001") def test_formatting(self): date1 = date(2001, 10, 10) date2 = date(2002, 10, 12) self.ae(pprint_date_span(date1, date2, range_str=" to ", space="."), "10.October.2001 to 12.October.2002") def test_invalid(self): date1 = date(2001, 10, 10) date2 = date(2001, 11, 12) self.ae(pprint_date_span(date1, None), "10 October 2001") self.assertRaises(TypeError, pprint_date_span, None, date2) #what if the dates are not in order self.ae(pprint_date_span(date2, date1), "10 October-12 November 2001") # same with humanize self.ae(humanized_date_range(date1, None), "10 October 2001") self.assertRaises(TypeError, humanized_date_range, None, date2) #what if the dates are not in order self.ae(humanized_date_range(date2, date1), "10 October-12 November 2001") def test_overflow(self): date1 = date(2001, 10, 10) date2 = date(2001, 11, 12) self.ae(pprint_date_span(date1, date2), "10 October-12 November 2001") date1 = date(2001, 10, 10) date2 = date(2002, 10, 12) self.ae(pprint_date_span(date1, date2), "10 October 2001-12 October 2002") def test_humanize_date(self): # Check days are omitted if the range exactly covers the month. date1 = date(2001, 7, 1) date2 = date(2001, 7, 31) self.ae(humanized_date_range(date1, date2), "July 2001") #Or if it exactly covers 2 or more months date1 = date(2002, 7, 1) date2 = date(2002, 8, 31) self.ae(humanized_date_range(date1, date2), "July-August 2002") date1 = date(2001, 7, 1) date2 = date(2002, 8, 31) self.ae(humanized_date_range(date1, date2), "July 2001-August 2002") date1 = date(2001, 7, 1) date2 = date(2002, 7, 31) self.ae(humanized_date_range(date1, date2), "July 2001-July 2002") #check that months and days are omitted if the range exactly covers the year date1 = date(2001, 1, 1) date2 = date(2001, 12, 31) self.ae(humanized_date_range(date1, date2), "2001") date1 = date(2001, 1, 1) date2 = date(2003, 12, 31) self.ae(humanized_date_range(date1, date2), "2001-2003") #Check that the year is omitted for ranges entirely in this year, unless imply_year = False today = date.today() date1 = date(today.year, 1, 12) date2 = date(today.year, 1, 14) self.ae(humanized_date_range(date1, date2), "12-14 January") self.ae(humanized_date_range(date1, date2, imply_year=False), "12-14 January %s" % today.year) date1 = date(today.year, 1, 12) date2 = date(today.year, 2, 14) self.ae(humanized_date_range(date1, date2), "12 January-14 February") self.ae(humanized_date_range(date1, date2, imply_year=False), "12 January-14 February %s" % today.year) #(but not for ranges spanning years) date1 = date(today.year, 12, 1) date2 = date(today.year+1, 3, 31) self.ae(humanized_date_range(date1, date2), "December %s-March %s" % (date1.year, date2.year)) self.ae(humanized_date_range(date1, date2, imply_year=False), "December %s-March %s" % (date1.year, date2.year)) #And if it's the whole month range in this year, all you need is the month name. date1 = date(today.year, today.month, 1) date2 = date(today.year, today.month, days_in_month(today)) self.ae(humanized_date_range(date1, date2), today.strftime("%B")) self.ae(humanized_date_range(date1, date2, imply_year=False), "%s %s" % (today.strftime("%B"), today.year)) date1 = date(today.year, today.month-1, 1) date2 = date(today.year, today.month, days_in_month(today)) self.ae(humanized_date_range(date1, date2), "%s-%s" % (date1.strftime("%B"), date2.strftime("%B"))) self.ae(humanized_date_range(date1, date2, imply_year=False), "%s-%s %s" % (date1.strftime("%B"), date2.strftime("%B"), today.year)) #(don't omit this year if the range is the whole year) date1 = date(today.year, 1, 1) date2 = date(today.year, 12, 31) self.ae(humanized_date_range(date1, date2), "%d" % today.year) self.ae(humanized_date_range(date1, date2, imply_year=False), "%d" % today.year) unittest.main()
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for yapf.pytree_unwrapper.""" import textwrap import unittest from yapf.yapflib import pytree_utils from yapftests import yapf_test_helper class PytreeUnwrapperTest(yapf_test_helper.YAPFTest): def _CheckUnwrappedLines(self, uwlines, list_of_expected): """Check that the given UnwrappedLines match expectations. Args: uwlines: list of UnwrappedLine list_of_expected: list of (depth, values) pairs. Non-semantic tokens are filtered out from the expected values. """ actual = [] for uwl in uwlines: filtered_values = [ ft.value for ft in uwl.tokens if ft.name not in pytree_utils.NONSEMANTIC_TOKENS ] actual.append((uwl.depth, filtered_values)) self.assertEqual(list_of_expected, actual) def testSimpleFileScope(self): code = textwrap.dedent(r""" x = 1 # a comment y = 2 """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['x', '=', '1']), (0, ['# a comment']), (0, ['y', '=', '2']), ]) def testSimpleMultilineStatement(self): code = textwrap.dedent(r""" y = (1 + x) """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['y', '=', '(', '1', '+', 'x', ')']), ]) def testFileScopeWithInlineComment(self): code = textwrap.dedent(r""" x = 1 # a comment y = 2 """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['x', '=', '1', '# a comment']), (0, ['y', '=', '2']), ]) def testSimpleIf(self): code = textwrap.dedent(r""" if foo: x = 1 y = 2 """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['if', 'foo', ':']), (1, ['x', '=', '1']), (1, ['y', '=', '2']), ]) def testSimpleIfWithComments(self): code = textwrap.dedent(r""" # c1 if foo: # c2 x = 1 y = 2 """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['# c1']), (0, ['if', 'foo', ':', '# c2']), (1, ['x', '=', '1']), (1, ['y', '=', '2']), ]) def testIfWithCommentsInside(self): code = textwrap.dedent(r""" if foo: # c1 x = 1 # c2 # c3 y = 2 """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['if', 'foo', ':']), (1, ['# c1']), (1, ['x', '=', '1', '# c2']), (1, ['# c3']), (1, ['y', '=', '2']), ]) def testIfElifElse(self): code = textwrap.dedent(r""" if x: x = 1 # c1 elif y: # c2 y = 1 else: # c3 z = 1 """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['if', 'x', ':']), (1, ['x', '=', '1', '# c1']), (0, ['elif', 'y', ':', '# c2']), (1, ['y', '=', '1']), (0, ['else', ':']), (1, ['# c3']), (1, ['z', '=', '1']), ]) def testNestedCompoundTwoLevel(self): code = textwrap.dedent(r""" if x: x = 1 # c1 while t: # c2 j = 1 k = 1 """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['if', 'x', ':']), (1, ['x', '=', '1', '# c1']), (1, ['while', 't', ':']), (2, ['# c2']), (2, ['j', '=', '1']), (1, ['k', '=', '1']), ]) def testSimpleWhile(self): code = textwrap.dedent(r""" while x > 1: # c1 # c2 x = 1 """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['while', 'x', '>', '1', ':', '# c1']), (1, ['# c2']), (1, ['x', '=', '1']), ]) def testSimpleTry(self): code = textwrap.dedent(r""" try: pass except: pass except: pass else: pass finally: pass """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['try', ':']), (1, ['pass']), (0, ['except', ':']), (1, ['pass']), (0, ['except', ':']), (1, ['pass']), (0, ['else', ':']), (1, ['pass']), (0, ['finally', ':']), (1, ['pass']), ]) def testSimpleFuncdef(self): code = textwrap.dedent(r""" def foo(x): # c1 # c2 return x """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['def', 'foo', '(', 'x', ')', ':', '# c1']), (1, ['# c2']), (1, ['return', 'x']), ]) def testTwoFuncDefs(self): code = textwrap.dedent(r""" def foo(x): # c1 # c2 return x def bar(): # c3 # c4 return x """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['def', 'foo', '(', 'x', ')', ':', '# c1']), (1, ['# c2']), (1, ['return', 'x']), (0, ['def', 'bar', '(', ')', ':', '# c3']), (1, ['# c4']), (1, ['return', 'x']), ]) def testSimpleClassDef(self): code = textwrap.dedent(r""" class Klass: # c1 # c2 p = 1 """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['class', 'Klass', ':', '# c1']), (1, ['# c2']), (1, ['p', '=', '1']), ]) def testSingleLineStmtInFunc(self): code = textwrap.dedent(r""" def f(): return 37 """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['def', 'f', '(', ')', ':']), (1, ['return', '37']), ]) def testMultipleComments(self): code = textwrap.dedent(r""" # Comment #1 # Comment #2 def f(): pass """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [ (0, ['# Comment #1']), (0, ['# Comment #2']), (0, ['def', 'f', '(', ')', ':']), (1, ['pass']), ]) def testSplitListWithComment(self): code = textwrap.dedent(r""" a = [ 'a', 'b', 'c', # hello world ] """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckUnwrappedLines(uwlines, [(0, [ 'a', '=', '[', "'a'", ',', "'b'", ',', "'c'", ',', '# hello world', ']' ])]) class MatchBracketsTest(yapf_test_helper.YAPFTest): def _CheckMatchingBrackets(self, uwlines, list_of_expected): """Check that the tokens have the expected matching bracket. Arguments: uwlines: list of UnwrappedLine. list_of_expected: list of (index, index) pairs. The matching brackets at the indexes need to match. Non-semantic tokens are filtered out from the expected values. """ actual = [] for uwl in uwlines: filtered_values = [(ft, ft.matching_bracket) for ft in uwl.tokens if ft.name not in pytree_utils.NONSEMANTIC_TOKENS] if filtered_values: actual.append(filtered_values) for index, bracket_list in enumerate(list_of_expected): uwline = actual[index] if not bracket_list: for value in uwline: self.assertIsNone(value[1]) else: for open_bracket, close_bracket in bracket_list: self.assertEqual(uwline[open_bracket][0], uwline[close_bracket][1]) self.assertEqual(uwline[close_bracket][0], uwline[open_bracket][1]) def testFunctionDef(self): code = textwrap.dedent("""\ def foo(a, b=['w','d'], c=[42, 37]): pass """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckMatchingBrackets(uwlines, [ [(2, 20), (7, 11), (15, 19)], [], ]) def testDecorator(self): code = textwrap.dedent("""\ @bar() def foo(a, b, c): pass """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckMatchingBrackets(uwlines, [ [(2, 3)], [(2, 8)], [], ]) def testClassDef(self): code = textwrap.dedent("""\ class A(B, C, D): pass """) uwlines = yapf_test_helper.ParseAndUnwrap(code) self._CheckMatchingBrackets(uwlines, [ [(2, 8)], [], ]) if __name__ == '__main__': unittest.main()
from sqlalchemy import and_ from sqlalchemy import exc from sqlalchemy import ForeignKey from sqlalchemy import func from sqlalchemy import INT from sqlalchemy import Integer from sqlalchemy import literal from sqlalchemy import MetaData from sqlalchemy import Sequence from sqlalchemy import sql from sqlalchemy import String from sqlalchemy import testing from sqlalchemy import VARCHAR from sqlalchemy.testing import assert_raises_message from sqlalchemy.testing import engines from sqlalchemy.testing import eq_ from sqlalchemy.testing import fixtures from sqlalchemy.testing import is_ from sqlalchemy.testing.schema import Column from sqlalchemy.testing.schema import Table class InsertExecTest(fixtures.TablesTest): __backend__ = True @classmethod def define_tables(cls, metadata): Table( "users", metadata, Column( "user_id", INT, primary_key=True, test_needs_autoincrement=True ), Column("user_name", VARCHAR(20)), test_needs_acid=True, ) @testing.requires.multivalues_inserts def test_multivalues_insert(self, connection): users = self.tables.users connection.execute( users.insert().values( [ {"user_id": 7, "user_name": "jack"}, {"user_id": 8, "user_name": "ed"}, ] ) ) rows = connection.execute( users.select().order_by(users.c.user_id) ).all() eq_(rows[0], (7, "jack")) eq_(rows[1], (8, "ed")) connection.execute(users.insert().values([(9, "jack"), (10, "ed")])) rows = connection.execute( users.select().order_by(users.c.user_id) ).all() eq_(rows[2], (9, "jack")) eq_(rows[3], (10, "ed")) def test_insert_heterogeneous_params(self, connection): """test that executemany parameters are asserted to match the parameter set of the first.""" users = self.tables.users assert_raises_message( exc.StatementError, r"\(sqlalchemy.exc.InvalidRequestError\) A value is required for " "bind parameter 'user_name', in " "parameter group 2\n" r"\[SQL: u?INSERT INTO users", connection.execute, users.insert(), [ {"user_id": 7, "user_name": "jack"}, {"user_id": 8, "user_name": "ed"}, {"user_id": 9}, ], ) # this succeeds however. We aren't yet doing # a length check on all subsequent parameters. connection.execute( users.insert(), [ {"user_id": 7}, {"user_id": 8, "user_name": "ed"}, {"user_id": 9}, ], ) def _test_lastrow_accessor(self, table_, values, assertvalues): """Tests the inserted_primary_key and lastrow_has_id() functions.""" def insert_values(engine, table_, values): """ Inserts a row into a table, returns the full list of values INSERTed including defaults that fired off on the DB side and detects rows that had defaults and post-fetches. """ # verify implicit_returning is working if engine.dialect.implicit_returning: ins = table_.insert() comp = ins.compile(engine, column_keys=list(values)) if not set(values).issuperset( c.key for c in table_.primary_key ): is_(bool(comp.returning), True) with engine.begin() as connection: result = connection.execute(table_.insert(), values) ret = values.copy() ipk = result.inserted_primary_key for col, id_ in zip(table_.primary_key, ipk): ret[col.key] = id_ if result.lastrow_has_defaults(): criterion = and_( *[ col == id_ for col, id_ in zip( table_.primary_key, result.inserted_primary_key ) ] ) row = connection.execute( table_.select().where(criterion) ).first() for c in table_.c: ret[c.key] = row._mapping[c] return ret, ipk if testing.against("postgresql", "oracle", "mssql"): assert testing.db.dialect.implicit_returning if testing.db.dialect.implicit_returning: test_engines = [ engines.testing_engine(options={"implicit_returning": False}), engines.testing_engine(options={"implicit_returning": True}), ] else: test_engines = [testing.db] for engine in test_engines: try: table_.create(bind=engine, checkfirst=True) i, ipk = insert_values(engine, table_, values) eq_(i, assertvalues) # named tuple tests for col in table_.primary_key: eq_(getattr(ipk, col.key), assertvalues[col.key]) eq_(ipk._mapping[col.key], assertvalues[col.key]) eq_( ipk._fields, tuple([col.key for col in table_.primary_key]) ) finally: table_.drop(bind=engine) @testing.skip_if("sqlite") def test_lastrow_accessor_one(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t1", metadata, Column( "id", Integer, primary_key=True, test_needs_autoincrement=True, ), Column("foo", String(30), primary_key=True), ), {"foo": "hi"}, {"id": 1, "foo": "hi"}, ) @testing.skip_if("sqlite") def test_lastrow_accessor_two(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t2", metadata, Column( "id", Integer, primary_key=True, test_needs_autoincrement=True, ), Column("foo", String(30), primary_key=True), Column("bar", String(30), server_default="hi"), ), {"foo": "hi"}, {"id": 1, "foo": "hi", "bar": "hi"}, ) def test_lastrow_accessor_three(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t3", metadata, Column("id", String(40), primary_key=True), Column("foo", String(30), primary_key=True), Column("bar", String(30)), ), {"id": "hi", "foo": "thisisfoo", "bar": "thisisbar"}, {"id": "hi", "foo": "thisisfoo", "bar": "thisisbar"}, ) @testing.requires.sequences def test_lastrow_accessor_four(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t4", metadata, Column( "id", Integer, Sequence("t4_id_seq", optional=True), primary_key=True, ), Column("foo", String(30), primary_key=True), Column("bar", String(30), server_default="hi"), ), {"foo": "hi", "id": 1}, {"id": 1, "foo": "hi", "bar": "hi"}, ) @testing.requires.sequences def test_lastrow_accessor_four_a(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t4", metadata, Column( "id", Integer, Sequence("t4_id_seq"), primary_key=True, ), Column("foo", String(30)), ), {"foo": "hi"}, {"id": 1, "foo": "hi"}, ) def test_lastrow_accessor_five(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t5", metadata, Column("id", String(10), primary_key=True), Column("bar", String(30), server_default="hi"), ), {"id": "id1"}, {"id": "id1", "bar": "hi"}, ) @testing.skip_if("sqlite") def test_lastrow_accessor_six(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t6", metadata, Column( "id", Integer, primary_key=True, test_needs_autoincrement=True, ), Column("bar", Integer, primary_key=True), ), {"bar": 0}, {"id": 1, "bar": 0}, ) # TODO: why not in the sqlite suite? @testing.only_on("sqlite+pysqlite") @testing.provide_metadata def test_lastrowid_zero(self): from sqlalchemy.dialects import sqlite eng = engines.testing_engine() class ExcCtx(sqlite.base.SQLiteExecutionContext): def get_lastrowid(self): return 0 eng.dialect.execution_ctx_cls = ExcCtx t = Table( "t", self.metadata, Column("x", Integer, primary_key=True), Column("y", Integer), ) with eng.begin() as conn: t.create(conn) r = conn.execute(t.insert().values(y=5)) eq_(r.inserted_primary_key, (0,)) @testing.fails_on( "sqlite", "sqlite autoincrement doesn't work with composite pks" ) @testing.provide_metadata def test_misordered_lastrow(self, connection): metadata = self.metadata related = Table( "related", metadata, Column("id", Integer, primary_key=True), mysql_engine="MyISAM", mariadb_engine="MyISAM", ) t6 = Table( "t6", metadata, Column( "manual_id", Integer, ForeignKey("related.id"), primary_key=True, ), Column( "auto_id", Integer, primary_key=True, test_needs_autoincrement=True, ), mysql_engine="MyISAM", mariadb_engine="MyISAM", ) metadata.create_all(connection) r = connection.execute(related.insert().values(id=12)) id_ = r.inserted_primary_key[0] eq_(id_, 12) r = connection.execute(t6.insert().values(manual_id=id_)) eq_(r.inserted_primary_key, (12, 1)) def test_implicit_id_insert_select_columns(self, connection): users = self.tables.users stmt = users.insert().from_select( (users.c.user_id, users.c.user_name), users.select().where(users.c.user_id == 20), ) r = connection.execute(stmt) eq_(r.inserted_primary_key, (None,)) def test_implicit_id_insert_select_keys(self, connection): users = self.tables.users stmt = users.insert().from_select( ["user_id", "user_name"], users.select().where(users.c.user_id == 20), ) r = connection.execute(stmt) eq_(r.inserted_primary_key, (None,)) @testing.requires.empty_inserts @testing.requires.returning def test_no_inserted_pk_on_returning(self, connection): users = self.tables.users result = connection.execute( users.insert().returning(users.c.user_id, users.c.user_name) ) assert_raises_message( exc.InvalidRequestError, r"Can't call inserted_primary_key when returning\(\) is used.", getattr, result, "inserted_primary_key", ) class TableInsertTest(fixtures.TablesTest): """test for consistent insert behavior across dialects regarding the inline() method, lower-case 't' tables. """ run_create_tables = "each" __backend__ = True @classmethod def define_tables(cls, metadata): Table( "foo", metadata, Column( "id", Integer, Sequence("t_id_seq"), primary_key=True, ), Column("data", String(50)), Column("x", Integer), ) Table( "foo_no_seq", metadata, # note this will have full AUTO INCREMENT on MariaDB # whereas "foo" will not due to sequence support Column( "id", Integer, primary_key=True, ), Column("data", String(50)), Column("x", Integer), ) def _fixture(self, types=True): if types: t = sql.table( "foo", sql.column("id", Integer), sql.column("data", String), sql.column("x", Integer), ) else: t = sql.table( "foo", sql.column("id"), sql.column("data"), sql.column("x") ) return t def _test( self, connection, stmt, row, returning=None, inserted_primary_key=False, table=None, ): r = connection.execute(stmt) if returning: returned = r.first() eq_(returned, returning) elif inserted_primary_key is not False: eq_(r.inserted_primary_key, inserted_primary_key) if table is None: table = self.tables.foo eq_(connection.execute(table.select()).first(), row) def _test_multi(self, connection, stmt, rows, data): connection.execute(stmt, rows) eq_( connection.execute( self.tables.foo.select().order_by(self.tables.foo.c.id) ).all(), data, ) @testing.requires.sequences def test_explicit_sequence(self, connection): t = self._fixture() self._test( connection, t.insert().values( id=func.next_value(Sequence("t_id_seq")), data="data", x=5 ), (testing.db.dialect.default_sequence_base, "data", 5), ) def test_uppercase(self, connection): t = self.tables.foo self._test( connection, t.insert().values(id=1, data="data", x=5), (1, "data", 5), inserted_primary_key=(1,), ) def test_uppercase_inline(self, connection): t = self.tables.foo self._test( connection, t.insert().inline().values(id=1, data="data", x=5), (1, "data", 5), inserted_primary_key=(1,), ) @testing.crashes( "mssql+pyodbc", "Pyodbc + SQL Server + Py3K, some decimal handling issue", ) def test_uppercase_inline_implicit(self, connection): t = self.tables.foo self._test( connection, t.insert().inline().values(data="data", x=5), (1, "data", 5), inserted_primary_key=(None,), ) def test_uppercase_implicit(self, connection): t = self.tables.foo self._test( connection, t.insert().values(data="data", x=5), (testing.db.dialect.default_sequence_base, "data", 5), inserted_primary_key=(testing.db.dialect.default_sequence_base,), ) def test_uppercase_direct_params(self, connection): t = self.tables.foo self._test( connection, t.insert().values(id=1, data="data", x=5), (1, "data", 5), inserted_primary_key=(1,), ) @testing.requires.returning def test_uppercase_direct_params_returning(self, connection): t = self.tables.foo self._test( connection, t.insert().values(id=1, data="data", x=5).returning(t.c.id, t.c.x), (1, "data", 5), returning=(1, 5), ) @testing.requires.sql_expressions_inserted_as_primary_key def test_sql_expr_lastrowid(self, connection): # see also test.orm.test_unitofwork.py # ClauseAttributesTest.test_insert_pk_expression t = self.tables.foo_no_seq self._test( connection, t.insert().values(id=literal(5) + 10, data="data", x=5), (15, "data", 5), inserted_primary_key=(15,), table=self.tables.foo_no_seq, ) def test_direct_params(self, connection): t = self._fixture() self._test( connection, t.insert().values(id=1, data="data", x=5), (1, "data", 5), inserted_primary_key=(), ) @testing.requires.returning def test_direct_params_returning(self, connection): t = self._fixture() self._test( connection, t.insert().values(id=1, data="data", x=5).returning(t.c.id, t.c.x), (testing.db.dialect.default_sequence_base, "data", 5), returning=(testing.db.dialect.default_sequence_base, 5), ) # there's a non optional Sequence in the metadata, which if the dialect # supports sequences, it means the CREATE TABLE should *not* have # autoincrement, so the INSERT below would fail because the "t" fixture # does not indicate the Sequence @testing.fails_if(testing.requires.sequences) @testing.requires.emulated_lastrowid def test_implicit_pk(self, connection): t = self._fixture() self._test( connection, t.insert().values(data="data", x=5), (testing.db.dialect.default_sequence_base, "data", 5), inserted_primary_key=(), ) @testing.fails_if(testing.requires.sequences) @testing.requires.emulated_lastrowid def test_implicit_pk_multi_rows(self, connection): t = self._fixture() self._test_multi( connection, t.insert(), [ {"data": "d1", "x": 5}, {"data": "d2", "x": 6}, {"data": "d3", "x": 7}, ], [(1, "d1", 5), (2, "d2", 6), (3, "d3", 7)], ) @testing.fails_if(testing.requires.sequences) @testing.requires.emulated_lastrowid def test_implicit_pk_inline(self, connection): t = self._fixture() self._test( connection, t.insert().inline().values(data="data", x=5), (testing.db.dialect.default_sequence_base, "data", 5), inserted_primary_key=(), )
# -*- coding: utf-8 -*- """ Missing Person Registry @author: nursix """ module = request.controller prefix = request.controller resourcename = request.function if not settings.has_module(module): raise HTTP(404, body="Module disabled: %s" % prefix) MISSING = str(T("Missing")) FOUND = str(T("Found")) DETAILS = str(T("Details")) action = lambda l, u: dict(label=str(l), url=str(u), _class="action-btn") # ----------------------------------------------------------------------------- def index(): """ Home Page """ try: module_name = settings.modules[prefix].name_nice except: module_name = T("Missing Persons Registry") prefix = "pr" resourcename = "person" tablename = "%s_%s" % (prefix, resourcename) table = s3db[tablename] report_url = URL(c="mpr", f=resourcename, args=["[id]", "note"], vars=dict(status="missing")) s3db.configure(tablename, create_next=report_url, list_fields=["id", "first_name", "middle_name", "last_name", "picture", "gender", "age_group", "missing"]) def prep(r): if r.representation == "html": if not r.id and not r.method: r.method = "search" else: redirect(URL(resourcename, args=request.args)) return True s3.prep = prep def postp(r, output): s3.actions = [] if not r.component: open_button_label = DETAILS if auth.s3_logged_in(): mreport = URL(resourcename, args=["[id]", "note", "create"], vars=dict(status="missing")) freport = URL(resourcename, args=["[id]", "note", "create"], vars=dict(status="found")) s3.actions = [action(MISSING, mreport), action(FOUND, freport)] # Is the current user reported missing? if isinstance(output, dict): person = s3_logged_in_person() if person and db.pr_person[person].missing: myself = URL(resourcename, args=[person, "note", "create"], vars=dict(status="found")) output.update(myself=myself) else: open_button_label = UPDATE #linkto = r.resource.crud._linkto(r, update=True)("[id]") linkto = URL(resourcename, args=["[id]", "note"]) s3.actions.append(action(open_button_label, linkto)) return output s3.postp = postp output = s3_rest_controller(prefix, resourcename, module_name=module_name) response.view = "mpr/index.html" response.title = module_name return output # ----------------------------------------------------------------------------- def person(): """ Missing Persons List """ prefix = "pr" tablename = "%s_%s" % (prefix, resourcename) table = s3db[tablename] s3.crud_strings[tablename].update( title_display = T("Missing Person Details"), title_list = T("Missing Persons"), label_list_button = T("List Missing Persons"), msg_list_empty = T("No Persons currently reported missing")) s3db.configure("pr_group_membership", list_fields=["id", "group_id", "group_head", "description" ]) s3db.configure(tablename, create_next = URL(c="mpr", f="person", args=["[id]", "note", "create"], vars=dict(status="missing")), list_fields=["id", "first_name", "middle_name", "last_name", "picture", "gender", "age_group", "missing" ]) def prep(r): if r.interactive and not r.id: r.resource.add_filter(db.pr_person.missing == True) if r.component_name == "config": _config = s3db.gis_config defaults = db(_config.id == 1).select(limitby=(0, 1)).first() for key in defaults.keys(): if key not in ["id", "uuid", "mci", "update_record", "delete_record"]: _config[key].default = defaults[key] elif r.component_name == "note": ntable = db.pr_note status = r.vars.get("status", None) if status: if status == "missing": ntable.status.default = 1 ntable.status.writable = False ntable.timestmp.label = T("Date/Time when last seen") ntable.note_text.label = T("Circumstances of disappearance") s3.crud_strings[str(ntable)].update( title_create = "Add Missing Report", subtitle_create = "Add Missing Report") elif status == "found": ntable.status.default = 2 ntable.status.writable = False ntable.timestmp.label = T("Date/Time when found") ntable.note_text.label = T("Comments") s3.crud_strings[str(ntable)].update( title_create = "Add Find Report", subtitle_create = "Add Find Report") else: ntable.status.default = 99 ntable.status.writable = True return True s3.prep = prep def postp(r, output): if r.interactive: if not r.component: label = READ linkto = URL(f="person", args=("[id]", "note")) else: label = UPDATE linkto = r.resource.crud._linkto(r)("[id]") s3.actions = [action(label, linkto)] if not r.component: label = FOUND linkto = URL(f="person", args=("[id]", "note", "create"), vars=dict(status="found")) s3.actions.append(action(label, linkto)) return output s3.postp = postp ptable = db.pr_person field = ptable.missing field.default = True field.readable = False field.writable = False ptable.pe_label.readable = False ptable.pe_label.writable = False ptable.occupation.readable = False ptable.occupation.writable = False ptable.age_group.readable = True ptable.age_group.writable = True mpr_tabs = [(T("Person Details"), None), (T("Physical Description"), "physical_description"), (T("Images"), "image"), (T("Identity"), "identity"), (T("Address"), "address"), (T("Contact Data"), "contact"), (T("Journal"), "note")] rheader = lambda r: s3db.pr_rheader(r, tabs=mpr_tabs) output = s3_rest_controller("pr", resourcename, rheader=rheader) return output # END =========================================================================
from collections import OrderedDict, Iterable from itertools import takewhile, count try: from itertools import izip, ifilter except ImportError: #Python3 izip = zip ifilter = filter from datetime import datetime, timedelta import numpy as np from scipy.optimize import leastsq, fsolve from astro import astro import constituent d2r, r2d = np.pi/180.0, 180.0/np.pi class Tide(object): dtype = np.dtype([ ('constituent', object), ('amplitude', float), ('phase', float)]) def __init__( self, constituents = None, amplitudes = None, phases = None, model = None, radians = False ): """ Initialise a tidal model. Provide constituents, amplitudes and phases OR a model. Arguments: constituents -- list of constituents used in the model. amplitudes -- list of amplitudes corresponding to constituents phases -- list of phases corresponding to constituents model -- an ndarray of type Tide.dtype representing the constituents, amplitudes and phases. radians -- boolean representing whether phases are in radians (default False) """ if None not in [constituents, amplitudes, phases]: if len(constituents) == len(amplitudes) == len(phases): model = np.zeros(len(phases), dtype=Tide.dtype) model['constituent'] = np.array(constituents) model['amplitude'] = np.array(amplitudes) model['phase'] = np.array(phases) else: raise ValueError("Constituents, amplitudes and phases should all be arrays of equal length.") elif model is not None: if not model.dtype == Tide.dtype: raise ValueError("Model must be a numpy array with dtype == Tide.dtype") else: raise ValueError("Must be initialised with constituents, amplitudes and phases; or a model.") if radians: model['phase'] = r2d*model['phase'] self.model = model[:] self.normalize() def prepare(self, *args, **kwargs): return Tide._prepare(self.model['constituent'], *args, **kwargs) @staticmethod def _prepare(constituents, t0, t = None, radians = True): """ Return constituent speed and equilibrium argument at a given time, and constituent node factors at given times. Arguments: constituents -- list of constituents to prepare t0 -- time at which to evaluate speed and equilibrium argument for each constituent t -- list of times at which to evaluate node factors for each constituent (default: t0) radians -- whether to return the angular arguments in radians or degrees (default: True) """ #The equilibrium argument is constant and taken at the beginning of the #time series (t0). The speed of the equilibrium argument changes very #slowly, so again we take it to be constant over any length of data. The #node factors change more rapidly. if isinstance(t0, Iterable): t0 = t0[0] if t is None: t = [t0] if not isinstance(t, Iterable): t = [t] a0 = astro(t0) a = [astro(t_i) for t_i in t] #For convenience give u, V0 (but not speed!) in [0, 360) V0 = np.array([c.V(a0) for c in constituents])[:, np.newaxis] speed = np.array([c.speed(a0) for c in constituents])[:, np.newaxis] u = [np.mod(np.array([c.u(a_i) for c in constituents])[:, np.newaxis], 360.0) for a_i in a] f = [np.mod(np.array([c.f(a_i) for c in constituents])[:, np.newaxis], 360.0) for a_i in a] if radians: speed = d2r*speed V0 = d2r*V0 u = [d2r*each for each in u] return speed, u, f, V0 def at(self, t): """ Return the modelled tidal height at given times. Arguments: t -- array of times at which to evaluate the tidal height """ t0 = t[0] hours = self._hours(t0, t) partition = 240.0 t = self._partition(hours, partition) times = self._times(t0, [(i + 0.5)*partition for i in range(len(t))]) speed, u, f, V0 = self.prepare(t0, times, radians = True) H = self.model['amplitude'][:, np.newaxis] p = d2r*self.model['phase'][:, np.newaxis] return np.concatenate([ Tide._tidal_series(t_i, H, p, speed, u_i, f_i, V0) for t_i, u_i, f_i in izip(t, u, f) ]) def highs(self, *args): """ Generator yielding only the high tides. Arguments: see Tide.extrema() """ for t in ifilter(lambda e: e[2] == 'H', self.extrema(*args)): yield t def lows(self, *args): """ Generator yielding only the low tides. Arguments: see Tide.extrema() """ for t in ifilter(lambda e: e[2] == 'L', self.extrema(*args)): yield t def form_number(self): """ Returns the model's form number, a helpful heuristic for classifying tides. """ k1, o1, m2, s2 = ( np.extract(self.model['constituent'] == c, self.model['amplitude']) for c in [constituent._K1, constituent._O1, constituent._M2, constituent._S2] ) return (k1+o1)/(m2+s2) def classify(self): """ Classify the tide according to its form number """ form = self.form_number() if 0 <= form <= 0.25: return 'semidiurnal' elif 0.25 < form <= 1.5: return 'mixed (semidiurnal)' elif 1.5 < form <= 3.0: return 'mixed (diurnal)' else: return 'diurnal' def extrema(self, t0, t1 = None, partition = 2400.0): """ A generator for high and low tides. Arguments: t0 -- time after which extrema are sought t1 -- optional time before which extrema are sought (if not given, the generator is infinite) partition -- number of hours for which we consider the node factors to be constant (default: 2400.0) """ if t1: #yield from in python 3.4 for e in takewhile(lambda t: t[0] < t1, self.extrema(t0)): yield e else: #We assume that extrema are separated by at least delta hours delta = np.amin([ 90.0 / c.speed(astro(t0)) for c in self.model['constituent'] if not c.speed(astro(t0)) == 0 ]) #We search for stationary points from offset hours before t0 to #ensure we find any which might occur very soon after t0. offset = 24.0 partitions = ( Tide._times(t0, i*partition) for i in count()), (Tide._times(t0, i*partition) for i in count(1) ) #We'll overestimate to be on the safe side; #values outside (start,end) won't get yielded. interval_count = int(np.ceil((partition + offset) / delta)) + 1 amplitude = self.model['amplitude'][:, np.newaxis] phase = d2r*self.model['phase'][:, np.newaxis] for start, end in izip(*partitions): speed, [u], [f], V0 = self.prepare(start, Tide._times(start, 0.5*partition)) #These derivatives don't include the time dependence of u or f, #but these change slowly. def d(t): return np.sum(-speed*amplitude*f*np.sin(speed*t + (V0 + u) - phase), axis=0) def d2(t): return np.sum(-speed**2.0 * amplitude*f*np.cos(speed*t + (V0 + u) - phase), axis=0) #We'll overestimate to be on the safe side; #values outside (start,end) won't get yielded. intervals = ( delta * i -offset for i in range(interval_count)), (delta*(i+1) - offset for i in range(interval_count) ) for a, b in izip(*intervals): if d(a)*d(b) < 0: extrema = fsolve(d, (a + b) / 2.0, fprime = d2)[0] time = Tide._times(start, extrema) [height] = self.at([time]) hilo = 'H' if d2(extrema) < 0 else 'L' if start < time < end: yield (time, height, hilo) @staticmethod def _hours(t0, t): """ Return the hourly offset(s) of a (list of) time from a given time. Arguments: t0 -- time from which offsets are sought t -- times to find hourly offsets from t0. """ if not isinstance(t, Iterable): return Tide._hours(t0, [t])[0] elif isinstance(t[0], datetime): return np.array([(ti-t0).total_seconds() / 3600.0 for ti in t]) else: return t @staticmethod def _partition(hours, partition = 3600.0): """ Partition a sorted list of numbers (or in this case hours). Arguments: hours -- sorted ndarray of hours. partition -- maximum partition length (default: 3600.0) """ partition = float(partition) relative = hours - hours[0] total_partitions = np.ceil(relative[-1] / partition + 10*np.finfo(np.float).eps).astype('int') return [hours[np.floor(np.divide(relative, partition)) == i] for i in range(total_partitions)] @staticmethod def _times(t0, hours): """ Return a (list of) datetime(s) given an initial time and an (list of) hourly offset(s). Arguments: t0 -- initial time hours -- hourly offsets from t0 """ if not isinstance(hours, Iterable): return Tide._times(t0, [hours])[0] elif not isinstance(hours[0], datetime): return np.array([t0 + timedelta(hours=h) for h in hours]) else: return np.array(hours) @staticmethod def _tidal_series(t, amplitude, phase, speed, u, f, V0): return np.sum(amplitude*f*np.cos(speed*t + (V0 + u) - phase), axis=0) def normalize(self): """ Adapt self.model so that amplitudes are positive and phases are in [0,360) as per convention """ for i, (_, amplitude, phase) in enumerate(self.model): if amplitude < 0: self.model['amplitude'][i] = -amplitude self.model['phase'][i] = phase + 180.0 self.model['phase'][i] = np.mod(self.model['phase'][i], 360.0) @classmethod def decompose( cls, heights, t = None, t0 = None, interval = None, constituents = constituent.noaa, initial = None, n_period = 2, callback = None, full_output = False ): """ Return an instance of Tide which has been fitted to a series of tidal observations. Arguments: It is not necessary to provide t0 or interval if t is provided. heights -- ndarray of tidal observation heights t -- ndarray of tidal observation times t0 -- datetime representing the time at which heights[0] was recorded interval -- hourly interval between readings constituents -- list of constituents to use in the fit (default: constituent.noaa) initial -- optional Tide instance to use as first guess for least squares solver n_period -- only include constituents which complete at least this many periods (default: 2) callback -- optional function to be called at each iteration of the solver full_output -- whether to return the output of scipy's leastsq solver (default: False) """ if t is not None: if isinstance(t[0], datetime): hours = Tide._hours(t[0], t) t0 = t[0] elif t0 is not None: hours = t else: raise ValueError("t can be an array of datetimes, or an array " "of hours since t0 in which case t0 must be " "specified.") elif None not in [t0, interval]: hours = np.arange(len(heights)) * interval else: raise ValueError("Must provide t(datetimes), or t(hours) and " "t0(datetime), or interval(hours) and t0(datetime) " "so that each height can be identified with an " "instant in time.") #Remove duplicate constituents (those which travel at exactly the same #speed, irrespective of phase) constituents = list(OrderedDict.fromkeys(constituents)) #No need for least squares to find the mean water level constituent z0, #work relative to mean constituents = [c for c in constituents if not c == constituent._Z0] z0 = np.mean(heights) heights = heights - z0 #Only analyse frequencies which complete at least n_period cycles over #the data period. constituents = [ c for c in constituents if 360.0 * n_period < hours[-1] * c.speed(astro(t0)) ] n = len(constituents) sort = np.argsort(hours) hours = hours[sort] heights = heights[sort] #We partition our time/height data into intervals over which we consider #the values of u and f to assume a constant value (that is, their true #value at the midpoint of the interval). Constituent #speeds change much more slowly than the node factors, so we will #consider these constant and equal to their speed at t0, regardless of #the length of the time series. partition = 240.0 t = Tide._partition(hours, partition) times = Tide._times(t0, [(i + 0.5)*partition for i in range(len(t))]) speed, u, f, V0 = Tide._prepare(constituents, t0, times, radians = True) #Residual to be minimised by variation of parameters (amplitudes, phases) def residual(hp): H, p = hp[:n, np.newaxis], hp[n:, np.newaxis] s = np.concatenate([ Tide._tidal_series(t_i, H, p, speed, u_i, f_i, V0) for t_i, u_i, f_i in izip(t, u, f) ]) res = heights - s if callback: callback(res) return res #Analytic Jacobian of the residual - this makes solving significantly #faster than just using gradient approximation, especially with many #measurements / constituents. def D_residual(hp): H, p = hp[:n, np.newaxis], hp[n:, np.newaxis] ds_dH = np.concatenate([ f_i*np.cos(speed*t_i+u_i+V0-p) for t_i, u_i, f_i in izip(t, u, f)], axis = 1) ds_dp = np.concatenate([ H*f_i*np.sin(speed*t_i+u_i+V0-p) for t_i, u_i, f_i in izip(t, u, f)], axis = 1) return np.append(-ds_dH, -ds_dp, axis=0) #Initial guess for solver, haven't done any analysis on this since the #solver seems to converge well regardless of the initial guess We do #however scale the initial amplitude guess with some measure of the #variation amplitudes = np.ones(n) * (np.sqrt(np.dot(heights, heights)) / len(heights)) phases = np.ones(n) if initial: for (c0, amplitude, phase) in initial.model: for i, c in enumerate(constituents): if c0 == c: amplitudes[i] = amplitude phases[i] = d2r*phase initial = np.append(amplitudes, phases) lsq = leastsq(residual, initial, Dfun=D_residual, col_deriv=True, ftol=1e-7) model = np.zeros(1+n, dtype=cls.dtype) model[0] = (constituent._Z0, z0, 0) model[1:]['constituent'] = constituents[:] model[1:]['amplitude'] = lsq[0][:n] model[1:]['phase'] = lsq[0][n:] if full_output: return cls(model = model, radians = True), lsq return cls(model = model, radians = True)
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Finds perf trybots that can run telemetry tests.""" import json import logging import os import re import subprocess import sys import urllib2 from telemetry.core import platform from telemetry import decorators from telemetry.internal.browser import possible_browser from telemetry.internal.platform import trybot_device CHROMIUM_CONFIG_FILENAME = 'tools/run-perf-test.cfg' BLINK_CONFIG_FILENAME = 'Tools/run-perf-test.cfg' SUCCESS, NO_CHANGES, ERROR = range(3) # Unsupported Perf bisect bots. EXCLUDED_BOTS = { 'win_xp_perf_bisect', 'linux_perf_tester', 'linux_perf_bisector', 'win_perf_bisect_builder', 'win64_nv_tester', 'winx64_bisect_builder', 'linux_perf_bisect_builder', 'mac_perf_bisect_builder', 'android_perf_bisect_builder', 'android_arm64_perf_bisect_builder' } INCLUDE_BOTS = [ 'trybot-all', 'trybot-all-win', 'trybot-all-mac', 'trybot-all-linux', 'trybot-all-android' ] class TrybotError(Exception): def __str__(self): return '%s\nError running tryjob.' % self.args[0] class PossibleTrybotBrowser(possible_browser.PossibleBrowser): """A script that sends a job to a trybot.""" def __init__(self, browser_type, _): target_os = browser_type.split('-')[1] self._builder_names = _GetBuilderNames(browser_type) super(PossibleTrybotBrowser, self).__init__(browser_type, target_os, True) def Create(self, finder_options): raise NotImplementedError() def SupportsOptions(self, finder_options): if ((finder_options.device and finder_options.device != 'trybot') or finder_options.chrome_root or finder_options.cros_remote or finder_options.extensions_to_load or finder_options.profile_dir): return False return True def IsRemote(self): return True def _RunProcess(self, cmd): logging.debug('Running process: "%s"', ' '.join(cmd)) proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = proc.communicate() returncode = proc.poll() return (returncode, out, err) def _UpdateConfigAndRunTryjob(self, bot_platform, cfg_file_path): """Updates perf config file, uploads changes and excutes perf try job. Args: bot_platform: Name of the platform to be generated. cfg_file_path: Perf config file path. Returns: (result, msg) where result is one of: SUCCESS if a tryjob was sent NO_CHANGES if there was nothing to try, ERROR if a tryjob was attempted but an error encountered and msg is an error message if an error was encountered, or rietveld url if success, otherwise throws TrybotError exception. """ config = self._GetPerfConfig(bot_platform) try: config_file = open(cfg_file_path, 'w') except IOError: msg = 'Cannot find %s. Please run from src dir.' % cfg_file_path return (ERROR, msg) config_file.write('config = %s' % json.dumps( config, sort_keys=True, indent=2, separators=(',', ': '))) config_file.close() # Commit the config changes locally. returncode, out, err = self._RunProcess( ['git', 'commit', '-a', '-m', 'bisect config: %s' % bot_platform]) if returncode: raise TrybotError('Could not commit bisect config change for %s,' ' error %s' % (bot_platform, err)) # Upload the CL to rietveld and run a try job. returncode, out, err = self._RunProcess([ 'git', 'cl', 'upload', '-f', '--bypass-hooks', '-m', 'CL for perf tryjob on %s' % bot_platform ]) if returncode: raise TrybotError('Could upload to rietveld for %s, error %s' % (bot_platform, err)) match = re.search(r'https://codereview.chromium.org/[\d]+', out) if not match: raise TrybotError('Could not upload CL to rietveld for %s! Output %s' % (bot_platform, out)) rietveld_url = match.group(0) # Generate git try command for available bots. git_try_command = ['git', 'cl', 'try', '-m', 'tryserver.chromium.perf'] for bot in self._builder_names[bot_platform]: git_try_command.extend(['-b', bot]) returncode, out, err = self._RunProcess(git_try_command) if returncode: raise TrybotError('Could not try CL for %s, error %s' % (bot_platform, err)) return (SUCCESS, rietveld_url) def _GetPerfConfig(self, bot_platform): """Generates the perf config for try job. Args: bot_platform: Name of the platform to be generated. Returns: A dictionary with perf config parameters. """ # Generate the command line for the perf trybots target_arch = 'ia32' arguments = sys.argv if bot_platform in ['win', 'win-x64']: arguments[0] = 'python tools\\perf\\run_benchmark' else: arguments[0] = './tools/perf/run_benchmark' for index, arg in enumerate(arguments): if arg.startswith('--browser='): if bot_platform == 'android': arguments[index] = '--browser=android-chromium' elif any('x64' in bot for bot in self._builder_names[bot_platform]): arguments[index] = '--browser=release_x64' target_arch = 'x64' else: arguments[index] = '--browser=release' command = ' '.join(arguments) return { 'command': command, 'repeat_count': '1', 'max_time_minutes': '120', 'truncate_percent': '0', 'target_arch': target_arch, } def _AttemptTryjob(self, cfg_file_path): """Attempts to run a tryjob from the current directory. This is run once for chromium, and if it returns NO_CHANGES, once for blink. Args: cfg_file_path: Path to the config file for the try job. Returns: Returns SUCCESS if a tryjob was sent, NO_CHANGES if there was nothing to try, ERROR if a tryjob was attempted but an error encountered. """ source_repo = 'chromium' if cfg_file_path == BLINK_CONFIG_FILENAME: source_repo = 'blink' # TODO(prasadv): This method is quite long, we should consider refactor # this by extracting to helper methods. returncode, original_branchname, err = self._RunProcess( ['git', 'rev-parse', '--abbrev-ref', 'HEAD']) if returncode: msg = 'Must be in a git repository to send changes to trybots.' if err: msg += '\nGit error: %s' % err logging.error(msg) return ERROR original_branchname = original_branchname.strip() # Check if the tree is dirty: make sure the index is up to date and then # run diff-index self._RunProcess(['git', 'update-index', '--refresh', '-q']) returncode, out, err = self._RunProcess(['git', 'diff-index', 'HEAD']) if out: logging.error( 'Cannot send a try job with a dirty tree. Commit locally first.') return ERROR # Make sure the tree does have local commits. returncode, out, err = self._RunProcess( ['git', 'log', 'origin/master..HEAD']) if not out: return NO_CHANGES # Create/check out the telemetry-tryjob branch, and edit the configs # for the tryjob there. returncode, out, err = self._RunProcess( ['git', 'checkout', '-b', 'telemetry-tryjob']) if returncode: logging.error('Error creating branch telemetry-tryjob. ' 'Please delete it if it exists.\n%s', err) return ERROR try: returncode, out, err = self._RunProcess( ['git', 'branch', '--set-upstream-to', 'origin/master']) if returncode: logging.error('Error in git branch --set-upstream-to: %s', err) return ERROR for bot_platform in self._builder_names: try: results, output = self._UpdateConfigAndRunTryjob( bot_platform, cfg_file_path) if results == ERROR: logging.error(output) return ERROR print ('Uploaded %s try job to rietveld for %s platform. ' 'View progress at %s' % (source_repo, bot_platform, output)) except TrybotError, err: print err logging.error(err) finally: # Checkout original branch and delete telemetry-tryjob branch. # TODO(prasadv): This finally block could be extracted out to be a # separate function called _CleanupBranch. returncode, out, err = self._RunProcess( ['git', 'checkout', original_branchname]) if returncode: logging.error('Could not check out %s. Please check it out and ' 'manually delete the telemetry-tryjob branch. ' ': %s', original_branchname, err) return ERROR # pylint: disable=lost-exception logging.info('Checked out original branch: %s', original_branchname) returncode, out, err = self._RunProcess( ['git', 'branch', '-D', 'telemetry-tryjob']) if returncode: logging.error('Could not delete telemetry-tryjob branch. ' 'Please delete it manually: %s', err) return ERROR # pylint: disable=lost-exception logging.info('Deleted temp branch: telemetry-tryjob') return SUCCESS def RunRemote(self): """Sends a tryjob to a perf trybot. This creates a branch, telemetry-tryjob, switches to that branch, edits the bisect config, commits it, uploads the CL to rietveld, and runs a tryjob on the given bot. """ # First check if there are chromium changes to upload. status = self._AttemptTryjob(CHROMIUM_CONFIG_FILENAME) if status not in [SUCCESS, ERROR]: # If we got here, there are no chromium changes to upload. Try blink. os.chdir('third_party/WebKit/') status = self._AttemptTryjob(BLINK_CONFIG_FILENAME) os.chdir('../..') if status not in [SUCCESS, ERROR]: logging.error('No local changes found in chromium or blink trees. ' 'browser=%s argument sends local changes to the ' 'perf trybot(s): %s.', self.browser_type, self._builder_names.values()) def _InitPlatformIfNeeded(self): if self._platform: return self._platform = platform.GetHostPlatform() # pylint: disable=W0212 self._platform_backend = self._platform._platform_backend def SelectDefaultBrowser(_): return None def CanFindAvailableBrowsers(): return True @decorators.Cache def _GetTrybotList(): f = urllib2.urlopen( 'http://build.chromium.org/p/tryserver.chromium.perf/json') builders = json.loads(f.read()).get('builders', {}).keys() builders = ['trybot-%s' % bot.replace('_perf_bisect', '').replace('_', '-') for bot in builders if bot not in EXCLUDED_BOTS] builders.extend(INCLUDE_BOTS) return sorted(builders) def _GetBuilderNames(browser_type): """ Return platform and its available bot name as dictionary.""" if 'all' not in browser_type: bot = ['%s_perf_bisect' % browser_type.replace( 'trybot-', '').replace('-', '_')] bot_platform = browser_type.split('-')[1] if 'x64' in browser_type: bot_platform += '-x64' return {bot_platform: bot} f = urllib2.urlopen( 'http://build.chromium.org/p/tryserver.chromium.perf/json') builders = json.loads(f.read()).get('builders', {}).keys() # Exclude unsupported bots like win xp and some dummy bots. builders = [bot for bot in builders if bot not in EXCLUDED_BOTS] platform_and_bots = {} for os_name in ['linux', 'android', 'mac', 'win']: platform_and_bots[os_name] = [bot for bot in builders if os_name in bot] # Special case for Windows x64, consider it as separate platform # config config should contain target_arch=x64 and --browser=release_x64. win_x64_bots = [platform_and_bots['win'].pop(i) for i, win_bot in enumerate(platform_and_bots['win']) if 'x64' in win_bot] platform_and_bots['win-x64'] = win_x64_bots if 'all-win' in browser_type: return {'win': platform_and_bots['win'], 'win-x64': platform_and_bots['win-x64']} if 'all-mac' in browser_type: return {'mac': platform_and_bots['mac']} if 'all-android' in browser_type: return {'android': platform_and_bots['android']} if 'all-linux' in browser_type: return {'linux': platform_and_bots['linux']} return platform_and_bots def FindAllBrowserTypes(finder_options): # Listing browsers requires an http request; only do this if the user is # running with browser=list or a browser=trybot-* argument. if (finder_options.browser_type and (finder_options.browser_type == 'list' or finder_options.browser_type.startswith('trybot'))): return _GetTrybotList() return [] def FindAllAvailableBrowsers(finder_options, device): """Find all perf trybots on tryserver.chromium.perf.""" if not isinstance(device, trybot_device.TrybotDevice): return [] return [PossibleTrybotBrowser(b, finder_options) for b in FindAllBrowserTypes(finder_options)]
#! /usr/bin/env python # -*- coding: utf-8 -*- """Shell for interactive testing. This file is taken from the Lantz Project. :copyright: (c) 2014-2020 by PyVISA Authors, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import cmd from typing import List, Tuple from . import ResourceManager, VisaIOError, attributes, constants from .thirdparty import prettytable # TODO providing a way to list/use constants would be nice class VisaShell(cmd.Cmd): """Shell for interactive testing.""" intro: str = "\nWelcome to the VISA shell. Type help or ? to list commands.\n" prompt: str = "(visa) " use_rawinput: bool = True def __init__(self, library_path: str = ""): super().__init__() self.resource_manager = ResourceManager(library_path) self.default_prompt = self.prompt #: Resource list (used for autocomplete) #: Store a tuple with the name and the alias. self.resources: List[Tuple[str, str]] = [] #: Resource in use #: pyvisa.resources.Resource self.current = None self.py_attr: List[str] = [] self.vi_attr: List[str] = [] def do_list(self, args): """List all connected resources.""" try: resources = self.resource_manager.list_resources_info() except Exception as e: print(e) else: self.resources = [] for ndx, (resource_name, value) in enumerate(resources.items()): if not args: print("({0:2d}) {1}".format(ndx, resource_name)) if value.alias: print(" alias: {}".format(value.alias)) self.resources.append((resource_name, value.alias or None)) def do_open(self, args): """Open resource by number, resource name or alias: open 3""" if not args: print("A resource name must be specified.") return if self.current: print( "You can only open one resource at a time. Please close the current one first." ) return if args.isdigit(): try: args = self.resources[int(args)][0] except IndexError: print('Not a valid resource number. Use the command "list".') return try: self.current = self.resource_manager.open_resource(args) print( "{} has been opened.\n" 'You can talk to the device using "write", "read" or "query".\n' "The default end of message is added to each message.".format(args) ) self.py_attr = [] self.vi_attr = [] for attr in getattr(self.current, "visa_attributes_classes", ()): if attr.py_name: self.py_attr.append(attr.py_name) self.vi_attr.append(attr.visa_name) self.prompt = "(open) " except Exception as e: print(e) def complete_open(self, text, line, begidx, endidx): """Provide completion on open.""" if not self.resources: self.do_list("do not print") return [item[0] for item in self.resources if item[0].startswith(text)] + [ item[1] for item in self.resources if item[1] and item[1].startswith(text) ] def do_close(self, args): """Close resource in use.""" if not self.current: print('There are no resources in use. Use the command "open".') return try: self.current.close() except Exception as e: print(e) else: print("The resource has been closed.") self.current = None self.prompt = self.default_prompt def do_query(self, args): """Query resource in use: query *IDN?""" if not self.current: print('There are no resources in use. Use the command "open".') return try: print("Response: {}".format(self.current.query(args))) except Exception as e: print(e) def do_read(self, args): """Receive from the resource in use.""" if not self.current: print('There are no resources in use. Use the command "open".') return try: print(self.current.read()) except Exception as e: print(e) def do_write(self, args): """Send to the resource in use: send *IDN?""" if not self.current: print('There are no resources in use. Use the command "open".') return try: self.current.write(args) except Exception as e: print(e) def do_timeout(self, args): """Get or set timeout (in ms) for resource in use. Get timeout: timeout Set timeout: timeout <mstimeout> """ if not self.current: print('There are no resources in use. Use the command "open".') return args = args.strip() if not args: try: print("Timeout: {}ms".format(self.current.timeout)) except Exception as e: print(e) else: args = args.split(" ") try: self.current.timeout = float(args[0]) print("Done") except Exception as e: print(e) def print_attribute_list(self): """Print the supported attribute list.""" p = prettytable.PrettyTable(("VISA name", "Constant", "Python name", "val")) for attr in getattr(self.current, "visa_attributes_classes", ()): try: val = self.current.get_visa_attribute(attr.attribute_id) except VisaIOError as e: val = e.abbreviation except Exception as e: val = str(e) if len(val) > 10: val = val[:10] + "..." p.add_row((attr.visa_name, attr.attribute_id, attr.py_name, val)) print(p.get_string(sortby="VISA name")) def do_attr(self, args): # noqa: C901 """Get or set the state for a visa attribute. List all attributes: attr Get an attribute state: attr <name> Set an attribute state: attr <name> <state> """ if not self.current: print('There are no resources in use. Use the command "open".') return args = args.strip() if not args: self.print_attribute_list() return args = args.split(" ") if len(args) > 2: print( "Invalid syntax, use `attr <name>` to get; or `attr <name> <value>` to set" ) return if len(args) == 1: # Get a given attribute attr_name = args[0] if attr_name.startswith("VI_"): try: print( self.current.get_visa_attribute(getattr(constants, attr_name)) ) except Exception as e: print(e) else: try: print(getattr(self.current, attr_name)) except Exception as e: print(e) return # Set the specified attribute value attr_name, attr_state = args[0], args[1] if attr_name.startswith("VI_"): try: attributeId = getattr(constants, attr_name) attr = attributes.AttributesByID[attributeId] datatype = attr.visa_type retcode = None if datatype == "ViBoolean": if attr_state == "True": attr_state = True elif attr_state == "False": attr_state = False else: retcode = ( constants.StatusCode.error_nonsupported_attribute_state ) elif datatype in [ "ViUInt8", "ViUInt16", "ViUInt32", "ViInt8", "ViInt16", "ViInt32", ]: try: attr_state = int(attr_state) except ValueError: retcode = ( constants.StatusCode.error_nonsupported_attribute_state ) if not retcode: retcode = self.current.set_visa_attribute(attributeId, attr_state) if retcode: print("Error {}".format(str(retcode))) else: print("Done") except Exception as e: print(e) else: print("Setting Resource Attributes by python name is not yet supported.") return def complete_attr(self, text, line, begidx, endidx): """Provide completion for the attr command.""" return [item for item in self.py_attr if item.startswith(text)] + [ item for item in self.vi_attr if item.startswith(text) ] def do_termchar(self, args): """Get or set termination character for resource in use. <termchar> can be one of: CR, LF, CRLF, NUL or None. None is used to disable termination character Get termination character: termchar Set termination character read or read+write: termchar <termchar> [<termchar>] """ if not self.current: print('There are no resources in use. Use the command "open".') return args = args.strip() if not args: try: charmap = {u"\r": "CR", u"\n": "LF", u"\r\n": "CRLF", u"\0": "NUL"} chr = self.current.read_termination if chr in charmap: chr = charmap[chr] chw = self.current.write_termination if chw in charmap: chw = charmap[chw] print("Termchar read: {} write: {}".format(chr, chw)) except Exception as e: print(e) args = args.split(" ") if len(args) > 2: print( "Invalid syntax, use `termchar <termchar>` to set both " "read_termination and write_termination to the same value, or " "`termchar <read_termchar> <write_termchar>` to use distinct values." ) else: charmap = { "CR": u"\r", "LF": u"\n", "CRLF": u"\r\n", "NUL": u"\0", "None": None, } chr = args[0] chw = args[0 if len(args) == 1 else 1] if chr in charmap and chw in charmap: try: self.current.read_termination = charmap[chr] self.current.write_termination = charmap[chw] print("Done") except Exception as e: print(e) else: print("use CR, LF, CRLF, NUL or None to set termchar") return def do_exit(self, arg): """Exit the shell session.""" if self.current: self.current.close() self.resource_manager.close() del self.resource_manager return True def do_EOF(self, arg): """Handle an EOF.""" return True def main(library_path=""): """Main entry point to start the shell.""" VisaShell(library_path).cmdloop()
from core.app import App, AppParameter, AppFile import unittest import shutil import pdb class TestAppParameter(unittest.TestCase): """ test for App Parameters """ def test_check_error_parameter_type(self): param = {'type': 'error type'} self.assertRaises(TypeError, AppParameter, param) def test_number(self): num_param = { 'separator': " ", 'prefix': "-n", 'type': 'number', 'required': True, 'minvalue': 0, 'maxvalue': 100, 'hint': 'number test', 'default': 6 } param = AppParameter(num_param) self.assertEqual(param.__str__(), '-n 6') def test_string(self): string_param = { 'separator': " ", 'prefix': "-db", 'type': 'string', 'required': True, 'quotes': False, 'hint': 'working space', 'default': 'nt', 'quotes': False, 'hint': 'working space' } param = AppParameter(string_param) self.assertEqual(param.__str__(), '-db nt') string_param['quotes'] = True param = AppParameter(string_param) self.assertEqual(param.__str__(), "-db 'nt'") def test_array(self): array_param = { "separator": '=', "prefix": '-taxid', "type": 'array', "required": True, "minitems": 1, "maxitems": 100, "item":{ "type": 'string', "item_quotes": True, "separator": ' ', "is_split": True, }, "hint": 'array test', "default": ['4', '5', '6', '7'] } param = AppParameter(array_param) self.assertEqual(param.__str__(), "-taxid='4' -taxid='5' -taxid='6' -taxid='7'") # print param (array_param['item']['is_split'], array_param['item']['item_quotes']) = (True, False) param = AppParameter(array_param) self.assertEqual(param.__str__(), "-taxid=4 -taxid=5 -taxid=6 -taxid=7") # print param (array_param['item']['is_split'], array_param['item']['item_quotes']) = (False, True) param = AppParameter(array_param) self.assertEqual(param.__str__(), "-taxid='4' '5' '6' '7'") # print param (array_param['item']['is_split'], array_param['item']['item_quotes']) = (False, False) param = AppParameter(array_param) self.assertEqual(param.__str__(), "-taxid=4 5 6 7") # print param array_param['item']['separator'] = ',' param = AppParameter(array_param) self.assertEqual(param.__str__(), "-taxid=4,5,6,7") # print param array_param['separator'] = ' ' param = AppParameter(array_param) self.assertEqual(param.__str__(), "-taxid 4,5,6,7") # print param def test_flag(self): flag_param = { 'separator': ' ', 'prefix': '-pe', 'type': 'flag', 'required': True, 'hint': 'flag test', 'default': True } param = AppParameter(flag_param) self.assertEqual(param.__str__(), "-pe") flag_param['value']=False param = AppParameter(flag_param) self.assertEqual(param.__str__(), "") def test_boolean(self): boolean_param = { 'separator': ' ', 'prefix': '-pe', 'type': 'boolean', 'required': True, 'hint': 'boolean test', 'default': True } param = AppParameter(boolean_param) self.assertEqual(param.__str__(), "-pe True") boolean_param['value']=False param = AppParameter(boolean_param) self.assertEqual(param.__str__(), "-pe False") class TestAppFile(unittest.TestCase): """docstring for TestAppFile""" def setUp(self): self.file = { 'type': 'file', 'required': True, 'minitems': 1, 'maxitems': 1, 'item':{ 'separator': " " }, 'formats': ['tgz'] } def test_path(self): output = AppFile(self.file) self.assertEqual(output.path[:10], "/var/data/") self.assertEqual(output.path[-3:], "tgz") def test_enid(self): output = AppFile(self.file) self.assertEqual(len(output.enid), 32) def test_format(self): self.file['formats'] = 'bam' output = AppFile(self.file) self.assertEqual(output.path[-3:], "bam") def test_name(self): self.file['name'] = '/path/to/data' output = AppFile(self.file) self.assertEqual(output.path, "/path/to/data") class TestApp(unittest.TestCase): """docstring for TestApp""" def setUp(self): #setUp before each test self.app = App('test/test_app') self.app.new() self.app.load() def tearDown(self): # tearDown after each test shutil.rmtree('test/test_app') def test_load(self): self.assertEqual(self.app.config['app']['name'], 'app name') # print app.config def test_new(self): #done in setUP pass def test_setParameters(self): self.app.parameters['Inputs']['bam']={'data': [{"name":"/path/to/data1"}, {"name":"/path/to/data2"}]} self.app.setParameters() self.assertEqual(self.app['inputs']['bam'][0].path, "/path/to/data1") self.assertEqual(self.app['outputs']['results'][0].path, "/var/data/80bad55acc41d5fde324415808d0a700.tgz") #try setParameters ater newParameters self.app.newParameters('test/test_app/test_parameter.yaml') self.app.parameters['Parameters']['workspace']['value'] = '/path/to/data3' self.app.setParameters() self.assertEqual(self.app['parameters']['workspace'].__str__(), '/path/to/data3') def test_newParameters(self): self.app.newParameters() self.app.newParameters('test/test_app/test_parameter.yaml') self.app.newParameters() # print self.app.parameters def test_newParameters_after_setParameters(self): self.app.setParameters() self.app.newParameters('test/test_app/test_parameter.yaml') def test_newParameters_before_setParameters(self): self.app.newParameters('test/test_app/test_parameter.yaml') self.app.setParameters() def test_newParameters_and_setParameters_more(self): self.app.newParameters('test/test_app/test_parameter.yaml') self.app.setParameters() self.app.newParameters('test/test_app/test_parameter.yaml') self.app.setParameters() def test_newParameters_and_setParameters_more2(self): self.app.setParameters() self.app.newParameters('test/test_app/test_parameter.yaml') self.app.setParameters() self.app.newParameters('test/test_app/test_parameter.yaml') def test_loadParameters(self): self.app.newParameters('test/test_app/test_parameter.yaml') self.app.loadParameters('test/test_app/test_parameter.yaml') def test_loadParameters_None(self): self.assertRaises(ValueError, self.app.loadParameters) def test_nodes(self): load_case = {'bam': {'alias': 'load bam', 'node_id': 'loaddata_bam', 'name': 'loaddata', 'parameters': None, 'inputs': None, 'outputs': {'data': {'enid': 'bam'}}, 'type': 'system', 'app_id': '55128c58f6f4067d63b956b5'}} self.assertEqual(cmp(self.app.nodes('load'), load_case), 0) store_case = {'results': {'alias': 'store results', 'node_id': 'storedata_results', 'name': 'storedata', 'parameters': {'description': {'variable': True, 'value': None}, 'name': {'variable': True, 'value': None}}, 'inputs': {'data': {'enid': 'results'}}, 'outputs': None, 'type': 'system', 'app_id': '55128c94f6f4067d63b956b6'}} self.assertEqual(cmp(self.app.nodes('store'), store_case), 0) app_case = {'app name': {'inputs': {'bam': [{'enid': 'bam'}]}, 'name': 'app name', 'parameters': {'workspace': {'variable': False, 'value': None}, 'is_genedock': {'variable': False, 'value': None}}, 'outputs': {'results': [{'enid': 'results'}]}, 'app_id': '', 'alias': 'app name', 'node_id': 'app_name', 'type': 'private'}} self.assertEqual(cmp(self.app.nodes('app'), app_case), 0) def test_workflow(self): self.app.buildTestWorkflow() test_case = {'workflow': {'account': '[email protected]', 'version': 1, 'nodelist': [{'alias': 'load bam', 'node_id': 'loaddata_bam', 'name': 'loaddata', 'parameters': None, 'inputs': None, 'outputs': {'data': {'enid': 'bam'}}, 'type': 'system', 'app_id': '55128c58f6f4067d63b956b5'}, {'inputs': {'bam': [{'enid': 'bam'}]}, 'name': 'app name', 'parameters': {'workspace': {'variable': False, 'value': None}, 'is_genedock': {'variable': False, 'value': None}}, 'outputs': {'results': [{'enid': 'results'}]}, 'app_id': '', 'alias': 'app name', 'node_id': 'app_name', 'type': 'private'}, {'alias': 'store results', 'node_id': 'storedata_results', 'name': 'storedata', 'parameters': {'description': {'variable': True, 'value': None}, 'name': {'variable': True, 'value': None}}, 'inputs': {'data': {'enid': 'results'}}, 'outputs': None, 'type': 'system', 'app_id': '55128c94f6f4067d63b956b6'}], 'name': 'test_app name', 'description': 'test_app name'}} self.assertEqual(cmp(self.app.workflow, test_case), 0) def test_renderScript(self): self.app.newParameters() self.app.parameters['Parameters']['is_genedock']['value']=True self.app.config['app']['outputs']=None self.app.setParameters() self.app.renderScript() # print [self.app.script] self.assertEqual(self.app.script, u'\nmkdir -p /data/project/id;\n\nln -s /var/data/540ef712ea55aa2db8a4cfea4782c74d.bam /data/project/id/samplename.bam;\n\n') def test_build(self): test_case = u'\nmkdir -p /data/project/id;\n\nln -s /var/data/540ef712ea55aa2db8a4cfea4782c74d.bam /data/project/id/samplename.bam;\n\n' self.app.build(None, '/dev/null') self.assertEqual(self.app.script, test_case) self.app.newParameters('test/test_app/test_parameter.yaml') self.app.build('test/test_app/test_parameter.yaml', '/dev/null') self.assertEqual(self.app.script, test_case) def test_dumpYaml(self): self.app.setParameters() self.app.renderScript() # pdb.set_trace() # self.app.dumpYaml(self.app.script, None) if __name__ == '__main__': unittest.main()
import argparse import glob import cv2 import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, BatchNormalization, Lambda, Activation from keras.layers import Conv2D, MaxPooling2D, concatenate, Input from keras.callbacks import TensorBoard from keras.models import load_model, Model from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ModelCheckpoint import tqdm from moviepy.editor import VideoFileClip from scipy.ndimage.measurements import label from sklearn.model_selection import train_test_split import matplotlib import matplotlib.image as mpimg import matplotlib.pyplot as plt import json from PIL import Image, ImageDraw, ImageFont import multiprocessing matplotlib.style.use('ggplot') import logging BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) #The background is set with 40 plus the number of the color, and the foreground with 30 #These are the sequences need to get colored ouput RESET_SEQ = "\033[0m" COLOR_SEQ = "\033[1;%dm" BOLD_SEQ = "\033[1m" def formatter_message(message, use_color = True): if use_color: message = message.replace("$RESET", RESET_SEQ).replace("$BOLD", BOLD_SEQ) else: message = message.replace("$RESET", "").replace("$BOLD", "") return message COLORS = { 'WARNING': YELLOW, 'INFO': WHITE, 'DEBUG': BLUE, 'CRITICAL': YELLOW, 'ERROR': RED } class ColoredFormatter(logging.Formatter): def __init__(self, msg, use_color = True): logging.Formatter.__init__(self, msg) self.use_color = use_color def format(self, record): levelname = record.levelname if self.use_color and levelname in COLORS: levelname_color = COLOR_SEQ % (30 + COLORS[levelname]) + levelname + RESET_SEQ record.levelname = levelname_color return logging.Formatter.format(self, record) # Custom logger class with multiple destinations class ColoredLogger(logging.Logger): FORMAT = "[$BOLD%(name)-20s$RESET][%(levelname)-18s] %(message)s ($BOLD%(filename)s$RESET:%(lineno)d)" COLOR_FORMAT = formatter_message(FORMAT, True) def __init__(self, name): logging.Logger.__init__(self, name, logging.DEBUG) color_formatter = ColoredFormatter(self.COLOR_FORMAT) console = logging.StreamHandler() console.setFormatter(color_formatter) self.addHandler(console) return logging.setLoggerClass(ColoredLogger) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) ####################################################### MAIN CODE ######################################################## class Frames: def __init__(self): self._initialized = False self._current_frame = 0 self._prev_bboxes = [] def init(self, img): self._heatmap = np.zeros_like(img) def _add_heat(self, bbox_list): for box in bbox_list: self._heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1 return self._heatmap def _apply_threshold(self, threshold): self._heatmap[self._heatmap <= threshold] = 0 return self._heatmap def get_labels(self, bboxes, threshold): if len(self._prev_bboxes) > threshold: # Then remove the last bbox list from the previous frames self._prev_bboxes.pop(0) for pbboxes in self._prev_bboxes: self._add_heat(pbboxes) self._add_heat(bboxes) # Add the latest one self._prev_bboxes.append(bboxes) # Figure out the thresholded value # self._apply_threshold(threshold) labels = label(self._heatmap) bboxes = [] # Iterate through all detected cars for car_number in range(1, labels[1] + 1): # Find pixels with each car_number label value nonzero = (labels[0] == car_number).nonzero() # Identify x and y values of those pixels nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Define a bounding box based on min/max x and y bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy))) bboxes.append(bbox) # Get a viewable heatmap heatmap = np.clip(self._heatmap, 0, 255) heatmap[heatmap[:, :, 0] > 0] += 100 heatmap[:, :, 1] = 0 heatmap[:, :, 2] = 0 return bboxes, heatmap frames = Frames() def overlay_text(image, text, pos=(0, 0), color=(255, 255, 255)): image = Image.fromarray(image) draw = ImageDraw.Draw(image) font = ImageFont.truetype("./fonts/liberation-sans.ttf", 64) draw.text(pos, text, color, font=font) image = np.asarray(image) return image def overlay_image(img1, img2): img1[0:img2.shape[0], 0:img2.shape[1]] = img2[:, :] return img1 # Here is your draw_boxes function from the previous exercise def draw_boxes(img, bboxes, color=(0, 255, 0), thick=2): # Make a copy of the image imcopy = np.copy(img) for bbox in bboxes: # Draw a rectangle given bbox coordinates cv2.rectangle(imcopy, bbox[0], bbox[1], color, thick) # Return the image copy with boxes drawn return imcopy class LeNet: @staticmethod def build(width, height, depth, weightsPath=None): model = Sequential() # First set Conv Layers model.add(Conv2D(8, (3, 3), padding='valid', input_shape=(width, height, depth), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(BatchNormalization()) # 2nd set Conv layers model.add(Conv2D(16, (3, 3), padding='valid', input_shape=(width, height, depth), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(BatchNormalization()) model.add(Conv2D(32, (3, 3), padding='valid', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(BatchNormalization()) model.add(Conv2D(64, (3, 3), padding='valid', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.5)) # Set of FC => Relu layers model.add(Flatten()) model.add(Dense(256)) model.add(Activation('relu')) model.add(Dropout(0.5)) # Softmax classifier model.add(Dense(1)) model.add(Activation('sigmoid')) if weightsPath is not None: model.load_weights(weightsPath) return model class SimpleInception: @staticmethod def build(width, height, depth, weightsPath=None): input_img = Input(shape=(width, height, depth)) model = Sequential() # First set Conv Layers tower_1 = Conv2D(32, (1, 1), padding='same', activation='relu')(input_img) tower_1 = Conv2D(32, (3, 3), padding='same', activation='relu')(tower_1) tower_2 = Conv2D(32, (1, 1), padding='same', activation='relu')(input_img) tower_2 = Conv2D(32, (5, 5), padding='same', activation='relu')(tower_2) tower_3 = MaxPooling2D((3, 3), strides=(1, 1), padding='same')(input_img) tower_3 = Conv2D(32, (1, 1), padding='same', activation='relu')(tower_3) concat = concatenate([tower_1, tower_2, tower_3], axis=3) # Set of FC => Relu layers flatten = Flatten()(concat) dense1 = (Dense(256)(flatten)) activation1 = Activation('relu')(dense1) dropout1 = Dropout(0.5)(activation1) # Softmax classifier dense2 = Dense(1)(dropout1) output = Activation('sigmoid')(dense2) model = Model(inputs=input_img, outputs=output) if weightsPath is not None: model.load_weights(weightsPath) return model def read_image(filename): logger.debug("Reading an image") img = mpimg.imread(filename) return img def create_training_data(): logger.info("Creating Training Data") vehicles = [] for filename in tqdm.tqdm(glob.iglob('training/vehicles/**/*.png', recursive=True)): img = read_image(filename) vehicles.append(img) nonvehicles = [] for filename in tqdm.tqdm(glob.iglob('training/non-vehicles/**/*.png', recursive=True)): img = read_image(filename) nonvehicles.append(img) return vehicles, nonvehicles def train_model(vehicles, non_vehicles): generator = ImageDataGenerator( featurewise_center=True, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=20., width_shift_range=0.4, height_shift_range=0.4, shear_range=0.2, zoom_range=0.2, channel_shift_range=0.1, fill_mode='nearest', horizontal_flip=True, vertical_flip=False, rescale=1.2, preprocessing_function=None) logger.info("Training the Model") vehicles_labels = np.ones(len(vehicles)) non_vehicles_labels = np.zeros(len(non_vehicles)) labels = np.hstack((vehicles_labels, non_vehicles_labels)) data = np.array(vehicles + non_vehicles) if len(vehicles[0].shape) == 3: width, height, depth = vehicles[0].shape[1], vehicles[0].shape[0], vehicles[0].shape[2] else: width, height, depth = vehicles[0].shape[1], vehicles[0].shape[0], 1 # model = LeNet.build(width, height, depth) model = SimpleInception.build(width, height, depth) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) trainData, testData, trainLabels, testLabels = train_test_split(data, labels, random_state=20) filepath = "inception.best.h5" checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') generator.fit(trainData) hist = model.fit_generator(generator.flow(trainData, trainLabels, batch_size=16), steps_per_epoch= int(len(trainData) / 16), epochs=30, verbose=1, validation_data=(testData, testLabels), callbacks=[TensorBoard(log_dir='logs'), checkpoint]) print("[INFO] dumping weights to file...") model.save("inception.h5", overwrite=True) model.save_weights("inception_weights.hdf5", overwrite=True) fp = open("history_inception.json", 'w') json.dump(hist.history, fp) def generate_sliding_windows_old(img, window_sizes): height, width = img.shape[0], img.shape[1] # x_start = width // 2 - 100 x_start = 0 x_stop = width y_start = height // 2 + 20 y_stop = height - 70 current_x = x_start current_y = y_start # Towards the bottom of the image use bigger bounding boxes window_list = [] for (window_size, overlap) in window_sizes: while current_x < x_stop: end_x = current_x + window_size[0] while current_y < y_stop: end_y = current_y + window_size[1] window_list.append(((int(current_x), int(current_y)), (int(end_x), int(end_y)))) current_y = end_y - window_size[1] * overlap[1] # At this point reset the x and update the y current_y = y_start current_x = end_x - (window_size[0] * overlap[0]) return window_list def slide_window(img, x_start_stop=[None, None], y_start_stop=[None, None], xy_window=(64, 64), xy_overlap=(0.5, 0.5)): # If x and/or y start/stop positions not defined, set to image size if x_start_stop[0] == None: x_start_stop[0] = 0 if x_start_stop[1] == None: x_start_stop[1] = img.shape[1] if y_start_stop[0] == None: y_start_stop[0] = 0 if y_start_stop[1] == None: y_start_stop[1] = img.shape[0] # Compute the span of the region to be searched xspan = x_start_stop[1] - x_start_stop[0] yspan = y_start_stop[1] - y_start_stop[0] # Compute the number of pixels per step in x/y nx_pix_per_step = np.int(xy_window[0] * (1 - xy_overlap[0])) ny_pix_per_step = np.int(xy_window[1] * (1 - xy_overlap[1])) # Compute the number of windows in x/y nx_buffer = np.int(xy_window[0] * (xy_overlap[0])) ny_buffer = np.int(xy_window[1] * (xy_overlap[1])) nx_windows = np.int((xspan - nx_buffer) / nx_pix_per_step) ny_windows = np.int((yspan - ny_buffer) / ny_pix_per_step) # Initialize a list to append window positions to window_list = [] # Loop through finding x and y window positions # Note: you could vectorize this step, but in practice # you'll be considering windows one by one with your # classifier, so looping makes sense for ys in range(ny_windows): for xs in range(nx_windows): # Calculate window position startx = xs * nx_pix_per_step + x_start_stop[0] endx = startx + xy_window[0] starty = ys * ny_pix_per_step + y_start_stop[0] endy = starty + xy_window[1] # Append window position to list window_list.append(((startx, starty), (endx, endy))) # Return the list of windows return window_list def generate_sliding_windows(img): n_win_size = 3 min_size = (30, 30) max_size = (120, 120) roi_upper = 380 roi_lower = 650 win_step_w = int((max_size[0] - min_size[0]) / n_win_size) win_step_h = int((max_size[1] - min_size[1]) / n_win_size) window_sizes = [(min_size[0] + i * win_step_w, min_size[1] + i * win_step_h) for i in range(n_win_size + 1)] all_windows = [] for win_size in window_sizes: windows = slide_window(img, x_start_stop=[None, None], y_start_stop=[roi_upper, roi_lower], xy_window=win_size, xy_overlap=(0.5, 0.5)) all_windows += windows f = open('all_windows_mine.csv', 'w') for w in all_windows: f.write(str(w)) f.write("\n") f.close() return all_windows def crop_and_predict(idx, img, window, spatial_size): global model cropped = img[window[0][1]:window[1][1], window[0][0]:window[1][0]] # cv2.imwrite("cropped/" + str(idx) + ".png", cropped) cropped = cv2.resize(cropped, spatial_size) cropped = np.array([cropped]) return (window, cropped) def add_heat(heatmap, bbox_list): # Iterate through list of bboxes for box in bbox_list: # Add += 1 for all pixels inside each bbox # Assuming each "box" takes the form ((x1, y1), (x2, y2)) heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1 # Return updated heatmap return heatmap # Iterate through list of bboxes def apply_threshold(heatmap, threshold): # Zero out pixels below the threshold heatmap[heatmap <= threshold] = 0 # Return thresholded map return heatmap def draw_labeled_bboxes(img, labels): # Iterate through all detected cars for car_number in range(1, labels[1]+1): # Find pixels with each car_number label value nonzero = (labels[0] == car_number).nonzero() # Identify x and y values of those pixels nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Define a bounding box based on min/max x and y bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy))) # Draw the box on the image cv2.rectangle(img, bbox[0], bbox[1], (0,255,0), 5) # Return the image return img counter = 0 window_sizes = [[(30, 30), (0.5, 0.5)], [(60, 60), (0.5, 0.5)], [(90, 90), (0.5, 0.5)], [(120, 120), (0.5, 0.5)]] window_list = None last_heat_map = None use_n_frames = 3 def prediction_pipeline(img): global counter, model, frames, window_list, last_heat_map, use_n_frames # Normalize the image logger.debug("Scaling the image colors to 0-1") # window_list = generate_sliding_windows(img) if window_list is None: window_list = generate_sliding_windows(img) frames.init(img) spatial_size = (64, 64) prediction_images = [] original_cropped_images = [] for idx, window in enumerate(window_list): # In numpy the x & Y directions are reversed cropped = img[window[0][1]:window[1][1], window[0][0]:window[1][0]] cropped_copy = np.copy(cropped) original_cropped_images.append(cropped_copy) cropped = cv2.resize(cropped, spatial_size) cropped = cropped / 255 prediction_images.append(cropped) prediction_images = np.array(prediction_images) prediction = np.round(model.predict(prediction_images)) found_cars = [window_list[i] for i in np.where(prediction == 1)[0]] found_car_idx = set([i for i in np.where(prediction == 1)[0]]) for idx, window in enumerate(window_list): fname_prefix = "not_car" if idx in found_car_idx: fname_prefix = "car" mpimg.imsave("cropped/frame_" + str(counter) + "_" + str(idx) + "_" + fname_prefix + ".png", original_cropped_images[idx]) # Now filter out the False positives # Define heatmap heat = np.zeros_like(img[:, :, 0]).astype(np.float) # Add heat to each box in box list heat = add_heat(heat, found_cars) # Apply threshold to help remove false positives heat = apply_threshold(heat, 1) # Visualize the heatmap when displaying heatmap = np.clip(heat, 0, 255) heatmap = heatmap.reshape(1, *heatmap.shape) if last_heat_map is None: last_heat_map = heatmap heatmap = last_heat_map[0] else: last_heat_map = last_heat_map[:use_n_frames, :] last_heat_map = np.concatenate([heatmap, last_heat_map]) heatmap = last_heat_map.mean(axis=0) # Find final boxes from heatmap using label function labels = label(heatmap) new_img = draw_labeled_bboxes(np.copy(img), labels) # found_cars, heatmap = frames.get_labels(found_cars, threshold=3) heatmap = cv2.resize(heatmap, (heatmap.shape[1] // 4, heatmap.shape[0] // 4)) heatmap = np.dstack((heatmap, heatmap, heatmap)) * 255 heatmap[:, :, 1] = 0 heatmap[:, :, 2] = 0 new_img = overlay_image(new_img, heatmap) # found_cars = window_list # new_img = draw_boxes(original, window_list) # new_img = draw_boxes(original, bboxes, color=(0, 1, 0), thick=2) mpimg.imsave('video_imgs/' + str(counter) + ".png", new_img) counter += 1 return new_img def detection_on_video(): global model # Load the model # model = LeNet.build(64, 64, 3, 'weights.h5') # model = load_model('lenet.h5') model = load_model('inception.best.h5') filename = 'project_video.mp4' # clip = VideoFileClip(filename).subclip(21, 23) clip = VideoFileClip(filename) output_clip = clip.fl_image(prediction_pipeline) output_clip.write_videofile("output_" + filename, audio=False) def argument_parser(): parser = argparse.ArgumentParser() parser.add_argument("--action", help="Perform Training", type=str, choices=["train", "test", "test_img"], default="train") parser.add_argument("--file", help="File to perform action on", type=str) args = parser.parse_args() return args def main(): global model args = argument_parser() if args.action == "train": vehicles, nonvehicles = create_training_data() train_model(vehicles, nonvehicles) elif args.action == "test": detection_on_video() elif args.action == "test_img": model = load_model('inception.best.h5') img = read_image(args.file) new_img = prediction_pipeline(img) / 255 fig, ax = plt.subplots(1, 1, figsize=(20, 20)) ax.imshow(new_img) ax.axis('off') plt.show() if __name__ == "__main__": main()
# Copyright 2018, Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import logging import threading import time import types as stdlib_types import mock import pytest from google.api_core import bidi from google.api_core import exceptions from google.cloud.pubsub_v1 import types from google.cloud.pubsub_v1.subscriber import client from google.cloud.pubsub_v1.subscriber import message from google.cloud.pubsub_v1.subscriber import scheduler from google.cloud.pubsub_v1.subscriber._protocol import dispatcher from google.cloud.pubsub_v1.subscriber._protocol import heartbeater from google.cloud.pubsub_v1.subscriber._protocol import leaser from google.cloud.pubsub_v1.subscriber._protocol import messages_on_hold from google.cloud.pubsub_v1.subscriber._protocol import requests from google.cloud.pubsub_v1.subscriber._protocol import streaming_pull_manager from google.cloud.pubsub_v1.subscriber import exceptions as subscriber_exceptions from google.cloud.pubsub_v1.subscriber import futures from google.pubsub_v1 import types as gapic_types import grpc from google.rpc import status_pb2 from google.rpc import code_pb2 from google.rpc import error_details_pb2 @pytest.mark.parametrize( "exception,expected_cls", [ (ValueError("meep"), ValueError), ( mock.create_autospec(grpc.RpcError, instance=True), exceptions.GoogleAPICallError, ), ({"error": "RPC terminated"}, Exception), ("something broke", Exception), ], ) def test__wrap_as_exception(exception, expected_cls): assert isinstance( streaming_pull_manager._wrap_as_exception(exception), expected_cls ) def test__wrap_callback_errors_no_error(): msg = mock.create_autospec(message.Message, instance=True) callback = mock.Mock() on_callback_error = mock.Mock() streaming_pull_manager._wrap_callback_errors(callback, on_callback_error, msg) callback.assert_called_once_with(msg) msg.nack.assert_not_called() on_callback_error.assert_not_called() def test__wrap_callback_errors_error(): callback_error = ValueError("meep") msg = mock.create_autospec(message.Message, instance=True) callback = mock.Mock(side_effect=callback_error) on_callback_error = mock.Mock() streaming_pull_manager._wrap_callback_errors(callback, on_callback_error, msg) msg.nack.assert_called_once() on_callback_error.assert_called_once_with(callback_error) def test_constructor_and_default_state(): manager = streaming_pull_manager.StreamingPullManager( mock.sentinel.client, mock.sentinel.subscription ) # Public state assert manager.is_active is False assert manager.flow_control == types.FlowControl() assert manager.dispatcher is None assert manager.leaser is None assert manager.ack_histogram is not None assert manager.ack_deadline == 10 assert manager.load == 0 # Private state assert manager._client == mock.sentinel.client assert manager._subscription == mock.sentinel.subscription assert manager._scheduler is not None assert manager._messages_on_hold is not None assert manager._client_id is not None def test_constructor_with_options(): manager = streaming_pull_manager.StreamingPullManager( mock.sentinel.client, mock.sentinel.subscription, flow_control=mock.sentinel.flow_control, scheduler=mock.sentinel.scheduler, ) assert manager.flow_control == mock.sentinel.flow_control assert manager._scheduler == mock.sentinel.scheduler def make_manager(**kwargs): client_ = mock.create_autospec(client.Client, instance=True) scheduler_ = mock.create_autospec(scheduler.Scheduler, instance=True) return streaming_pull_manager.StreamingPullManager( client_, "subscription-name", scheduler=scheduler_, **kwargs ) def complete_modify_ack_deadline_calls(dispatcher): def complete_futures(*args, **kwargs): modack_requests = args[0] for req in modack_requests: if req.future: req.future.set_result(subscriber_exceptions.AcknowledgeStatus.SUCCESS) dispatcher.modify_ack_deadline.side_effect = complete_futures def fake_leaser_add(leaser, init_msg_count=0, assumed_msg_size=10): """Add a simplified fake add() method to a leaser instance. The fake add() method actually increases the leaser's internal message count by one for each message, and the total bytes by ``assumed_msg_size`` for each message (regardless of the actual message size). """ def fake_add(self, items): self.message_count += len(items) self.bytes += len(items) * assumed_msg_size leaser.message_count = init_msg_count leaser.bytes = init_msg_count * assumed_msg_size leaser.add = stdlib_types.MethodType(fake_add, leaser) def test__obtain_ack_deadline_no_custom_flow_control_setting(): from google.cloud.pubsub_v1.subscriber._protocol import histogram manager = make_manager() # Make sure that min_duration_per_lease_extension and # max_duration_per_lease_extension is disabled. manager._flow_control = types.FlowControl( min_duration_per_lease_extension=0, max_duration_per_lease_extension=0 ) deadline = manager._obtain_ack_deadline(maybe_update=True) assert deadline == histogram.MIN_ACK_DEADLINE # When we get some historical data, the deadline is adjusted. manager.ack_histogram.add(histogram.MIN_ACK_DEADLINE * 2) deadline = manager._obtain_ack_deadline(maybe_update=True) assert deadline == histogram.MIN_ACK_DEADLINE * 2 # Adding just a single additional data point does not yet change the deadline. manager.ack_histogram.add(histogram.MIN_ACK_DEADLINE) deadline = manager._obtain_ack_deadline(maybe_update=True) assert deadline == histogram.MIN_ACK_DEADLINE * 2 def test__obtain_ack_deadline_with_max_duration_per_lease_extension(): from google.cloud.pubsub_v1.subscriber._protocol import histogram manager = make_manager() manager._flow_control = types.FlowControl( max_duration_per_lease_extension=histogram.MIN_ACK_DEADLINE + 1 ) manager.ack_histogram.add(histogram.MIN_ACK_DEADLINE * 3) # make p99 value large # The deadline configured in flow control should prevail. deadline = manager._obtain_ack_deadline(maybe_update=True) assert deadline == histogram.MIN_ACK_DEADLINE + 1 def test__obtain_ack_deadline_with_min_duration_per_lease_extension(): from google.cloud.pubsub_v1.subscriber._protocol import histogram manager = make_manager() manager._flow_control = types.FlowControl( min_duration_per_lease_extension=histogram.MAX_ACK_DEADLINE ) manager.ack_histogram.add(histogram.MIN_ACK_DEADLINE) # make p99 value small # The deadline configured in flow control should prevail. deadline = manager._obtain_ack_deadline(maybe_update=True) assert deadline == histogram.MAX_ACK_DEADLINE def test__obtain_ack_deadline_with_max_duration_per_lease_extension_too_low(): from google.cloud.pubsub_v1.subscriber._protocol import histogram manager = make_manager() manager._flow_control = types.FlowControl( max_duration_per_lease_extension=histogram.MIN_ACK_DEADLINE - 1 ) # The deadline configured in flow control should be adjusted to the minimum allowed. deadline = manager._obtain_ack_deadline(maybe_update=True) assert deadline == histogram.MIN_ACK_DEADLINE def test__obtain_ack_deadline_with_min_duration_per_lease_extension_too_high(): from google.cloud.pubsub_v1.subscriber._protocol import histogram manager = make_manager() manager._flow_control = types.FlowControl( min_duration_per_lease_extension=histogram.MAX_ACK_DEADLINE + 1 ) # The deadline configured in flow control should be adjusted to the maximum allowed. deadline = manager._obtain_ack_deadline(maybe_update=True) assert deadline == histogram.MAX_ACK_DEADLINE def test__obtain_ack_deadline_with_exactly_once_enabled(): manager = make_manager() manager._flow_control = types.FlowControl( min_duration_per_lease_extension=0 # leave as default value ) manager._exactly_once_enabled = True manager.ack_histogram.add( 10 ) # reduce p99 value below 60s min for exactly_once subscriptions deadline = manager._obtain_ack_deadline(maybe_update=True) # Since the 60-second min ack_deadline value for exactly_once subscriptions # seconds is higher than the histogram value, the deadline should be 60 sec. assert deadline == 60 def test__obtain_ack_deadline_with_min_duration_per_lease_extension_with_exactly_once_enabled(): from google.cloud.pubsub_v1.subscriber._protocol import histogram manager = make_manager() manager._flow_control = types.FlowControl( min_duration_per_lease_extension=histogram.MAX_ACK_DEADLINE ) manager._exactly_once_enabled = True manager.ack_histogram.add(histogram.MIN_ACK_DEADLINE) # make p99 value small # The deadline configured in flow control should prevail. deadline = manager._obtain_ack_deadline(maybe_update=True) # User-defined custom min ack_deadline value takes precedence over # exactly_once default of 60 seconds. assert deadline == histogram.MAX_ACK_DEADLINE def test__obtain_ack_deadline_no_value_update(): manager = make_manager() # Make sure that max_duration_per_lease_extension is disabled. manager._flow_control = types.FlowControl(max_duration_per_lease_extension=0) manager.ack_histogram.add(21) deadline = manager._obtain_ack_deadline(maybe_update=True) assert deadline == 21 for _ in range(5): manager.ack_histogram.add(35) # Gather some new ACK data. deadline = manager._obtain_ack_deadline(maybe_update=False) assert deadline == 21 # still the same # Accessing the value through the ack_deadline property has no side effects either. assert manager.ack_deadline == 21 # Updating the ack deadline is reflected on ack_deadline wrapper, too. deadline = manager._obtain_ack_deadline(maybe_update=True) assert manager.ack_deadline == deadline == 35 def test_client_id(): manager1 = make_manager() request1 = manager1._get_initial_request(stream_ack_deadline_seconds=10) client_id_1 = request1.client_id assert client_id_1 manager2 = make_manager() request2 = manager2._get_initial_request(stream_ack_deadline_seconds=10) client_id_2 = request2.client_id assert client_id_2 assert client_id_1 != client_id_2 def test_streaming_flow_control(): manager = make_manager( flow_control=types.FlowControl(max_messages=10, max_bytes=1000) ) request = manager._get_initial_request(stream_ack_deadline_seconds=10) assert request.max_outstanding_messages == 10 assert request.max_outstanding_bytes == 1000 def test_streaming_flow_control_use_legacy_flow_control(): manager = make_manager( flow_control=types.FlowControl(max_messages=10, max_bytes=1000), use_legacy_flow_control=True, ) request = manager._get_initial_request(stream_ack_deadline_seconds=10) assert request.max_outstanding_messages == 0 assert request.max_outstanding_bytes == 0 def test_maybe_pause_consumer_wo_consumer_set(): manager = make_manager( flow_control=types.FlowControl(max_messages=10, max_bytes=1000) ) manager.maybe_pause_consumer() # no raise # Ensure load > 1 _leaser = manager._leaser = mock.create_autospec(leaser.Leaser) _leaser.message_count = 100 _leaser.bytes = 10000 manager.maybe_pause_consumer() # no raise def test_lease_load_and_pause(): manager = make_manager( flow_control=types.FlowControl(max_messages=10, max_bytes=1000) ) manager._leaser = leaser.Leaser(manager) manager._consumer = mock.create_autospec(bidi.BackgroundConsumer, instance=True) manager._consumer.is_paused = False # This should mean that our messages count is at 10%, and our bytes # are at 15%; load should return the higher (0.15), and shouldn't cause # the consumer to pause. manager.leaser.add( [requests.LeaseRequest(ack_id="one", byte_size=150, ordering_key="")] ) assert manager.load == 0.15 manager.maybe_pause_consumer() manager._consumer.pause.assert_not_called() # After this message is added, the messages should be higher at 20% # (versus 16% for bytes). manager.leaser.add( [requests.LeaseRequest(ack_id="two", byte_size=10, ordering_key="")] ) assert manager.load == 0.2 # Returning a number above 100% is fine, and it should cause this to pause. manager.leaser.add( [requests.LeaseRequest(ack_id="three", byte_size=1000, ordering_key="")] ) assert manager.load == 1.16 manager.maybe_pause_consumer() manager._consumer.pause.assert_called_once() def test_drop_and_resume(): manager = make_manager( flow_control=types.FlowControl(max_messages=10, max_bytes=1000) ) manager._leaser = leaser.Leaser(manager) manager._consumer = mock.create_autospec(bidi.BackgroundConsumer, instance=True) manager._consumer.is_paused = True # Add several messages until we're over the load threshold. manager.leaser.add( [ requests.LeaseRequest(ack_id="one", byte_size=750, ordering_key=""), requests.LeaseRequest(ack_id="two", byte_size=250, ordering_key=""), ] ) assert manager.load == 1.0 # Trying to resume now should have no effect as we're over the threshold. manager.maybe_resume_consumer() manager._consumer.resume.assert_not_called() # Drop the 200 byte message, which should put us under the resume # threshold. manager.leaser.remove( [requests.DropRequest(ack_id="two", byte_size=250, ordering_key="")] ) manager.maybe_resume_consumer() manager._consumer.resume.assert_called_once() def test_resume_not_paused(): manager = make_manager() manager._consumer = mock.create_autospec(bidi.BackgroundConsumer, instance=True) manager._consumer.is_paused = False # Resuming should have no effect is the consumer is not actually paused. manager.maybe_resume_consumer() manager._consumer.resume.assert_not_called() def test_maybe_resume_consumer_wo_consumer_set(): manager = make_manager( flow_control=types.FlowControl(max_messages=10, max_bytes=1000) ) manager.maybe_resume_consumer() # no raise def test__maybe_release_messages_on_overload(): manager = make_manager( flow_control=types.FlowControl(max_messages=10, max_bytes=1000) ) msg = mock.create_autospec(message.Message, instance=True, ack_id="ack", size=11) manager._messages_on_hold.put(msg) manager._on_hold_bytes = msg.size # Ensure load is exactly 1.0 (to verify that >= condition is used) _leaser = manager._leaser = mock.create_autospec(leaser.Leaser) _leaser.message_count = 10 _leaser.bytes = 1000 + msg.size manager._maybe_release_messages() assert manager._messages_on_hold.size == 1 manager._leaser.add.assert_not_called() manager._scheduler.schedule.assert_not_called() def test__maybe_release_messages_below_overload(): manager = make_manager( flow_control=types.FlowControl(max_messages=10, max_bytes=1000) ) manager._callback = mock.sentinel.callback # Init leaser message count to 11, so that when subtracting the 3 messages # that are on hold, there is still room for another 2 messages before the # max load is hit. _leaser = manager._leaser = mock.create_autospec(leaser.Leaser) fake_leaser_add(_leaser, init_msg_count=11, assumed_msg_size=10) messages = [ mock.create_autospec(message.Message, instance=True, ack_id="ack_foo", size=10), mock.create_autospec(message.Message, instance=True, ack_id="ack_bar", size=10), mock.create_autospec(message.Message, instance=True, ack_id="ack_baz", size=10), ] for msg in messages: manager._messages_on_hold.put(msg) manager._on_hold_bytes = 3 * 10 # the actual call of MUT manager._maybe_release_messages() assert manager._messages_on_hold.size == 1 msg = manager._messages_on_hold.get() assert msg.ack_id == "ack_baz" schedule_calls = manager._scheduler.schedule.mock_calls assert len(schedule_calls) == 2 for _, call_args, _ in schedule_calls: assert call_args[0] == mock.sentinel.callback assert isinstance(call_args[1], message.Message) assert call_args[1].ack_id in ("ack_foo", "ack_bar") def test__maybe_release_messages_negative_on_hold_bytes_warning(caplog): manager = make_manager( flow_control=types.FlowControl(max_messages=10, max_bytes=1000) ) manager._callback = lambda msg: msg # pragma: NO COVER msg = mock.create_autospec(message.Message, instance=True, ack_id="ack", size=17) manager._messages_on_hold.put(msg) manager._on_hold_bytes = 5 # too low for some reason _leaser = manager._leaser = mock.create_autospec(leaser.Leaser) _leaser.message_count = 3 _leaser.bytes = 150 with caplog.at_level(logging.WARNING): manager._maybe_release_messages() expected_warnings = [ record.message.lower() for record in caplog.records if "unexpectedly negative" in record.message ] assert len(expected_warnings) == 1 assert "on hold bytes" in expected_warnings[0] assert "-12" in expected_warnings[0] assert manager._on_hold_bytes == 0 # should be auto-corrected def test_send_unary_ack(): manager = make_manager() ack_reqs_dict = { "ack_id1": requests.AckRequest( ack_id="ack_id1", byte_size=0, time_to_ack=20, ordering_key="", future=None ), "ack_id2": requests.AckRequest( ack_id="ack_id2", byte_size=0, time_to_ack=20, ordering_key="", future=None ), } manager.send_unary_ack(ack_ids=["ack_id1", "ack_id2"], ack_reqs_dict=ack_reqs_dict) manager._client.acknowledge.assert_called_once_with( subscription=manager._subscription, ack_ids=["ack_id1", "ack_id2"] ) def test_send_unary_modack(): manager = make_manager() ack_reqs_dict = { "ack_id3": requests.ModAckRequest(ack_id="ack_id3", seconds=60, future=None), "ack_id4": requests.ModAckRequest(ack_id="ack_id4", seconds=60, future=None), "ack_id5": requests.ModAckRequest(ack_id="ack_id5", seconds=60, future=None), } manager.send_unary_modack( modify_deadline_ack_ids=["ack_id3", "ack_id4", "ack_id5"], modify_deadline_seconds=[10, 20, 20], ack_reqs_dict=ack_reqs_dict, ) manager._client.modify_ack_deadline.assert_has_calls( [ mock.call( subscription=manager._subscription, ack_ids=["ack_id3"], ack_deadline_seconds=10, ), mock.call( subscription=manager._subscription, ack_ids=["ack_id4", "ack_id5"], ack_deadline_seconds=20, ), ], any_order=True, ) def test_send_unary_ack_api_call_error(caplog): caplog.set_level(logging.DEBUG) manager = make_manager() error = exceptions.GoogleAPICallError("The front fell off") manager._client.acknowledge.side_effect = error ack_reqs_dict = { "ack_id1": requests.AckRequest( ack_id="ack_id1", byte_size=0, time_to_ack=20, ordering_key="", future=None ), "ack_id2": requests.AckRequest( ack_id="ack_id2", byte_size=0, time_to_ack=20, ordering_key="", future=None ), } manager.send_unary_ack(ack_ids=["ack_id1", "ack_id2"], ack_reqs_dict=ack_reqs_dict) assert "The front fell off" in caplog.text def test_send_unary_modack_api_call_error(caplog): caplog.set_level(logging.DEBUG) manager = make_manager() error = exceptions.GoogleAPICallError("The front fell off") manager._client.modify_ack_deadline.side_effect = error ack_reqs_dict = { "ack_id1": requests.AckRequest( ack_id="ack_id1", byte_size=0, time_to_ack=20, ordering_key="", future=futures.Future(), ), "ack_id2": requests.AckRequest( ack_id="ack_id2", byte_size=0, time_to_ack=20, ordering_key="", future=futures.Future(), ), } manager.send_unary_modack( modify_deadline_ack_ids=["ack_id_string"], modify_deadline_seconds=[0], ack_reqs_dict=ack_reqs_dict, ) assert "The front fell off" in caplog.text def test_send_unary_ack_retry_error(caplog): caplog.set_level(logging.DEBUG) manager, _, _, _, _, _ = make_running_manager() error = exceptions.RetryError( "Too long a transient error", cause=Exception("Out of time!") ) manager._client.acknowledge.side_effect = error future1 = futures.Future() future2 = futures.Future() ack_reqs_dict = { "ack_id1": requests.AckRequest( ack_id="ack_id1", byte_size=0, time_to_ack=20, ordering_key="", future=future1, ), "ack_id2": requests.AckRequest( ack_id="ack_id2", byte_size=0, time_to_ack=20, ordering_key="", future=future2, ), } with pytest.raises(exceptions.RetryError): manager.send_unary_ack( ack_ids=["ack_id1", "ack_id2"], ack_reqs_dict=ack_reqs_dict ) assert "RetryError while sending unary RPC" in caplog.text assert "signaled streaming pull manager shutdown" in caplog.text assert isinstance(future1.exception(), subscriber_exceptions.AcknowledgeError) assert ( future1.exception().error_code is subscriber_exceptions.AcknowledgeStatus.OTHER ) assert isinstance(future2.exception(), subscriber_exceptions.AcknowledgeError) assert ( future2.exception().error_code is subscriber_exceptions.AcknowledgeStatus.OTHER ) def test_send_unary_modack_retry_error(caplog): caplog.set_level(logging.DEBUG) manager, _, _, _, _, _ = make_running_manager() error = exceptions.RetryError( "Too long a transient error", cause=Exception("Out of time!") ) manager._client.modify_ack_deadline.side_effect = error future = futures.Future() ack_reqs_dict = { "ackid1": requests.ModAckRequest(ack_id="ackid1", seconds=60, future=future) } with pytest.raises(exceptions.RetryError): manager.send_unary_modack( modify_deadline_ack_ids=["ackid1"], modify_deadline_seconds=[0], ack_reqs_dict=ack_reqs_dict, ) assert "RetryError while sending unary RPC" in caplog.text assert "signaled streaming pull manager shutdown" in caplog.text assert isinstance(future.exception(), subscriber_exceptions.AcknowledgeError) assert ( future.exception().error_code is subscriber_exceptions.AcknowledgeStatus.OTHER ) def test_heartbeat(): manager = make_manager() manager._rpc = mock.create_autospec(bidi.BidiRpc, instance=True) manager._rpc.is_active = True result = manager.heartbeat() manager._rpc.send.assert_called_once_with(gapic_types.StreamingPullRequest()) assert result def test_heartbeat_inactive(): manager = make_manager() manager._rpc = mock.create_autospec(bidi.BidiRpc, instance=True) manager._rpc.is_active = False manager.heartbeat() result = manager._rpc.send.assert_not_called() assert not result def test_heartbeat_stream_ack_deadline_seconds(): manager = make_manager() manager._rpc = mock.create_autospec(bidi.BidiRpc, instance=True) manager._rpc.is_active = True # Send new ack deadline with next heartbeat. manager._send_new_ack_deadline = True result = manager.heartbeat() manager._rpc.send.assert_called_once_with( gapic_types.StreamingPullRequest(stream_ack_deadline_seconds=10) ) assert result # Set to false after a send is initiated. assert not manager._send_new_ack_deadline @mock.patch("google.api_core.bidi.ResumableBidiRpc", autospec=True) @mock.patch("google.api_core.bidi.BackgroundConsumer", autospec=True) @mock.patch("google.cloud.pubsub_v1.subscriber._protocol.leaser.Leaser", autospec=True) @mock.patch( "google.cloud.pubsub_v1.subscriber._protocol.dispatcher.Dispatcher", autospec=True ) @mock.patch( "google.cloud.pubsub_v1.subscriber._protocol.heartbeater.Heartbeater", autospec=True ) def test_open(heartbeater, dispatcher, leaser, background_consumer, resumable_bidi_rpc): manager = make_manager() with mock.patch.object( type(manager), "ack_deadline", new=mock.PropertyMock(return_value=18) ): manager.open(mock.sentinel.callback, mock.sentinel.on_callback_error) heartbeater.assert_called_once_with(manager) heartbeater.return_value.start.assert_called_once() assert manager._heartbeater == heartbeater.return_value dispatcher.assert_called_once_with(manager, manager._scheduler.queue) dispatcher.return_value.start.assert_called_once() assert manager._dispatcher == dispatcher.return_value leaser.assert_called_once_with(manager) leaser.return_value.start.assert_called_once() assert manager.leaser == leaser.return_value background_consumer.assert_called_once_with(manager._rpc, manager._on_response) background_consumer.return_value.start.assert_called_once() assert manager._consumer == background_consumer.return_value resumable_bidi_rpc.assert_called_once_with( start_rpc=manager._client.streaming_pull, initial_request=mock.ANY, should_recover=manager._should_recover, should_terminate=manager._should_terminate, throttle_reopen=True, ) initial_request_arg = resumable_bidi_rpc.call_args.kwargs["initial_request"] assert initial_request_arg.func == manager._get_initial_request assert initial_request_arg.args[0] == 18 assert not manager._client.get_subscription.called resumable_bidi_rpc.return_value.add_done_callback.assert_called_once_with( manager._on_rpc_done ) assert manager._rpc == resumable_bidi_rpc.return_value manager._consumer.is_active = True assert manager.is_active is True def test_open_already_active(): manager = make_manager() manager._consumer = mock.create_autospec(bidi.BackgroundConsumer, instance=True) manager._consumer.is_active = True with pytest.raises(ValueError, match="already open"): manager.open(mock.sentinel.callback, mock.sentinel.on_callback_error) def test_open_has_been_closed(): manager = make_manager() manager._closed = True with pytest.raises(ValueError, match="closed"): manager.open(mock.sentinel.callback, mock.sentinel.on_callback_error) def make_running_manager(**kwargs): manager = make_manager(**kwargs) manager._consumer = mock.create_autospec(bidi.BackgroundConsumer, instance=True) manager._consumer.is_active = True manager._dispatcher = mock.create_autospec(dispatcher.Dispatcher, instance=True) manager._leaser = mock.create_autospec(leaser.Leaser, instance=True) manager._heartbeater = mock.create_autospec(heartbeater.Heartbeater, instance=True) return ( manager, manager._consumer, manager._dispatcher, manager._leaser, manager._heartbeater, manager._scheduler, ) def await_manager_shutdown(manager, timeout=None): # NOTE: This method should be called after manager.close(), i.e. after the shutdown # thread has been created and started. shutdown_thread = manager._regular_shutdown_thread if shutdown_thread is None: # pragma: NO COVER raise Exception("Shutdown thread does not exist on the manager instance.") shutdown_thread.join(timeout=timeout) if shutdown_thread.is_alive(): # pragma: NO COVER pytest.fail("Shutdown not completed in time.") def test_close(): ( manager, consumer, dispatcher, leaser, heartbeater, scheduler, ) = make_running_manager() manager.close() await_manager_shutdown(manager, timeout=3) consumer.stop.assert_called_once() leaser.stop.assert_called_once() dispatcher.stop.assert_called_once() heartbeater.stop.assert_called_once() scheduler.shutdown.assert_called_once() assert manager.is_active is False def test_close_inactive_consumer(): ( manager, consumer, dispatcher, leaser, heartbeater, scheduler, ) = make_running_manager() consumer.is_active = False manager.close() await_manager_shutdown(manager, timeout=3) consumer.stop.assert_not_called() leaser.stop.assert_called_once() dispatcher.stop.assert_called_once() heartbeater.stop.assert_called_once() scheduler.shutdown.assert_called_once() def test_close_idempotent(): manager, _, _, _, _, scheduler = make_running_manager() manager.close() manager.close() await_manager_shutdown(manager, timeout=3) assert scheduler.shutdown.call_count == 1 class FakeDispatcher(object): def __init__(self, manager, error_callback): self._manager = manager self._error_callback = error_callback self._thread = None self._stop = False def start(self): self._thread = threading.Thread(target=self._do_work) self._thread.daemon = True self._thread.start() def stop(self): self._stop = True self._thread.join() self._thread = None def _do_work(self): while not self._stop: try: self._manager.leaser.add([mock.Mock()]) except Exception as exc: # pragma: NO COVER self._error_callback(exc) time.sleep(0.1) # also try to interact with the leaser after the stop flag has been set try: self._manager.leaser.remove([mock.Mock()]) except Exception as exc: # pragma: NO COVER self._error_callback(exc) def test_close_no_dispatcher_error(): manager, _, _, _, _, _ = make_running_manager() error_callback = mock.Mock(name="error_callback") dispatcher = FakeDispatcher(manager=manager, error_callback=error_callback) manager._dispatcher = dispatcher dispatcher.start() manager.close() await_manager_shutdown(manager, timeout=3) error_callback.assert_not_called() def test_close_callbacks(): manager, _, _, _, _, _ = make_running_manager() callback = mock.Mock() manager.add_close_callback(callback) manager.close(reason="meep") await_manager_shutdown(manager, timeout=3) callback.assert_called_once_with(manager, "meep") def test_close_blocking_scheduler_shutdown(): manager, _, _, _, _, _ = make_running_manager(await_callbacks_on_shutdown=True) scheduler = manager._scheduler manager.close() await_manager_shutdown(manager, timeout=3) scheduler.shutdown.assert_called_once_with(await_msg_callbacks=True) def test_close_nonblocking_scheduler_shutdown(): manager, _, _, _, _, _ = make_running_manager(await_callbacks_on_shutdown=False) scheduler = manager._scheduler manager.close() await_manager_shutdown(manager, timeout=3) scheduler.shutdown.assert_called_once_with(await_msg_callbacks=False) def test_close_nacks_internally_queued_messages(): nacked_messages = [] def fake_nack(self): nacked_messages.append(self.data) MockMsg = functools.partial(mock.create_autospec, message.Message, instance=True) messages = [MockMsg(data=b"msg1"), MockMsg(data=b"msg2"), MockMsg(data=b"msg3")] for msg in messages: msg.nack = stdlib_types.MethodType(fake_nack, msg) manager, _, _, _, _, _ = make_running_manager() dropped_by_scheduler = messages[:2] manager._scheduler.shutdown.return_value = dropped_by_scheduler manager._messages_on_hold._messages_on_hold.append(messages[2]) manager.close() await_manager_shutdown(manager, timeout=3) assert sorted(nacked_messages) == [b"msg1", b"msg2", b"msg3"] def test__get_initial_request(): manager = make_manager() manager._leaser = mock.create_autospec(leaser.Leaser, instance=True) manager._leaser.ack_ids = ["1", "2"] initial_request = manager._get_initial_request(123) assert isinstance(initial_request, gapic_types.StreamingPullRequest) assert initial_request.subscription == "subscription-name" assert initial_request.stream_ack_deadline_seconds == 123 assert initial_request.modify_deadline_ack_ids == ["1", "2"] assert initial_request.modify_deadline_seconds == [10, 10] def test__get_initial_request_wo_leaser(): manager = make_manager() manager._leaser = None initial_request = manager._get_initial_request(123) assert isinstance(initial_request, gapic_types.StreamingPullRequest) assert initial_request.subscription == "subscription-name" assert initial_request.stream_ack_deadline_seconds == 123 assert initial_request.modify_deadline_ack_ids == [] assert initial_request.modify_deadline_seconds == [] def test__on_response_delivery_attempt(): manager, _, dispatcher, leaser, _, scheduler = make_running_manager() manager._callback = mock.sentinel.callback # Set up the messages. response = gapic_types.StreamingPullResponse( received_messages=[ gapic_types.ReceivedMessage( ack_id="fack", message=gapic_types.PubsubMessage(data=b"foo", message_id="1"), ), gapic_types.ReceivedMessage( ack_id="back", message=gapic_types.PubsubMessage(data=b"bar", message_id="2"), delivery_attempt=6, ), ] ) # adjust message bookkeeping in leaser fake_leaser_add(leaser, init_msg_count=0, assumed_msg_size=42) manager._on_response(response) schedule_calls = scheduler.schedule.mock_calls assert len(schedule_calls) == 2 msg1 = schedule_calls[0][1][1] assert msg1.delivery_attempt is None msg2 = schedule_calls[1][1][1] assert msg2.delivery_attempt == 6 def test__on_response_modifies_ack_deadline(): manager, _, dispatcher, leaser, _, scheduler = make_running_manager() manager._callback = mock.sentinel.callback # Set up the messages. response = gapic_types.StreamingPullResponse( received_messages=[ gapic_types.ReceivedMessage( ack_id="ack_1", message=gapic_types.PubsubMessage(data=b"foo", message_id="1"), ), gapic_types.ReceivedMessage( ack_id="ack_2", message=gapic_types.PubsubMessage(data=b"bar", message_id="2"), ), ] ) # adjust message bookkeeping in leaser fake_leaser_add(leaser, init_msg_count=0, assumed_msg_size=80) # Actually run the method and chack that correct MODACK value is used. with mock.patch.object( type(manager), "ack_deadline", new=mock.PropertyMock(return_value=18) ): manager._on_response(response) dispatcher.modify_ack_deadline.assert_called_once_with( [ requests.ModAckRequest("ack_1", 18, None), requests.ModAckRequest("ack_2", 18, None), ] ) def test__on_response_modifies_ack_deadline_with_exactly_once_min_lease(): # exactly_once is disabled by default. manager, _, dispatcher, leaser, _, scheduler = make_running_manager() manager._callback = mock.sentinel.callback complete_modify_ack_deadline_calls(dispatcher) # make p99 value smaller than exactly_once min lease manager.ack_histogram.add(10) # adjust message bookkeeping in leaser fake_leaser_add(leaser, init_msg_count=0, assumed_msg_size=42) # Set up the response with the first set of messages and exactly_once not # enabled. response1 = gapic_types.StreamingPullResponse( received_messages=[ gapic_types.ReceivedMessage( ack_id="ack_1", message=gapic_types.PubsubMessage(data=b"foo", message_id="1"), ), gapic_types.ReceivedMessage( ack_id="ack_2", message=gapic_types.PubsubMessage(data=b"bar", message_id="2"), ), ], subscription_properties=gapic_types.StreamingPullResponse.SubscriptionProperties( exactly_once_delivery_enabled=False ), ) # Set up the response with the second set of messages and exactly_once enabled. response2 = gapic_types.StreamingPullResponse( received_messages=[ gapic_types.ReceivedMessage( ack_id="ack_3", message=gapic_types.PubsubMessage(data=b"foo", message_id="1"), ), gapic_types.ReceivedMessage( ack_id="ack_4", message=gapic_types.PubsubMessage(data=b"bar", message_id="2"), ), ], subscription_properties=gapic_types.StreamingPullResponse.SubscriptionProperties( exactly_once_delivery_enabled=True ), ) # exactly_once is still disabled b/c subscription_properties says so manager._on_response(response1) # expect mod-acks are called with histogram-based lease value assert len(dispatcher.modify_ack_deadline.mock_calls) == 1 call = dispatcher.modify_ack_deadline.mock_calls[0] assert call.args[0] == [ requests.ModAckRequest("ack_1", 10, None), requests.ModAckRequest("ack_2", 10, None), ] # exactly_once should be enabled after this request b/c subscription_properties says so manager._on_response(response2) # expect mod-acks called with 60 sec min lease value for exactly_once subscriptions # ignore the futures here assert len(dispatcher.modify_ack_deadline.mock_calls) == 2 call = dispatcher.modify_ack_deadline.mock_calls[1] modack_reqs = call.args[0] assert modack_reqs[0].ack_id == "ack_3" assert modack_reqs[0].seconds == 60 assert modack_reqs[1].ack_id == "ack_4" assert modack_reqs[1].seconds == 60 def test__on_response_send_ack_deadline_after_enabling_exactly_once(): # exactly_once is disabled by default. manager, _, dispatcher, leaser, _, scheduler = make_running_manager() manager._callback = mock.sentinel.callback complete_modify_ack_deadline_calls(dispatcher) # set up an active RPC manager._rpc = mock.create_autospec(bidi.BidiRpc, instance=True) manager._rpc.is_active = True # make p99 value smaller than exactly_once min lease manager.ack_histogram.add(10) # adjust message bookkeeping in leaser fake_leaser_add(leaser, init_msg_count=0, assumed_msg_size=42) # Set up the response with the a message and exactly_once enabled. response2 = gapic_types.StreamingPullResponse( received_messages=[ gapic_types.ReceivedMessage( ack_id="ack_1", message=gapic_types.PubsubMessage(data=b"foo", message_id="1"), ) ], subscription_properties=gapic_types.StreamingPullResponse.SubscriptionProperties( exactly_once_delivery_enabled=True ), ) # exactly_once should be enabled after this request b/c subscription_properties says so # when exactly_once is enabled or disabled, we send a new ack_deadline via # the heartbeat # should satisfy assertion 1 manager._on_response(response2) # simulate periodic heartbeat trigger heartbeat_request_sent = manager.heartbeat() assert heartbeat_request_sent # heartbeat request is sent with the 60 sec min lease value for exactly_once subscriptions manager._rpc.send.assert_called_once_with( gapic_types.StreamingPullRequest(stream_ack_deadline_seconds=60) ) def test__on_response_no_leaser_overload(): manager, _, dispatcher, leaser, _, scheduler = make_running_manager() manager._callback = mock.sentinel.callback # Set up the messages. response = gapic_types.StreamingPullResponse( received_messages=[ gapic_types.ReceivedMessage( ack_id="fack", message=gapic_types.PubsubMessage(data=b"foo", message_id="1"), ), gapic_types.ReceivedMessage( ack_id="back", message=gapic_types.PubsubMessage(data=b"bar", message_id="2"), ), ] ) # adjust message bookkeeping in leaser fake_leaser_add(leaser, init_msg_count=0, assumed_msg_size=42) # Actually run the method and prove that modack and schedule # are called in the expected way. manager._on_response(response) dispatcher.modify_ack_deadline.assert_called_once_with( [ requests.ModAckRequest("fack", 10, None), requests.ModAckRequest("back", 10, None), ] ) schedule_calls = scheduler.schedule.mock_calls assert len(schedule_calls) == 2 for call in schedule_calls: assert call[1][0] == mock.sentinel.callback assert isinstance(call[1][1], message.Message) # the leaser load limit not hit, no messages had to be put on hold assert manager._messages_on_hold.size == 0 def test__on_response_with_leaser_overload(): manager, _, dispatcher, leaser, _, scheduler = make_running_manager() manager._callback = mock.sentinel.callback # Set up the messages. response = gapic_types.StreamingPullResponse( received_messages=[ gapic_types.ReceivedMessage( ack_id="fack", message=gapic_types.PubsubMessage(data=b"foo", message_id="1"), ), gapic_types.ReceivedMessage( ack_id="back", message=gapic_types.PubsubMessage(data=b"bar", message_id="2"), ), gapic_types.ReceivedMessage( ack_id="zack", message=gapic_types.PubsubMessage(data=b"baz", message_id="3"), ), ] ) # Adjust message bookkeeping in leaser. Pick 999 messages, which is just below # the default FlowControl.max_messages limit. fake_leaser_add(leaser, init_msg_count=999, assumed_msg_size=10) # Actually run the method and prove that modack and schedule # are called in the expected way. manager._on_response(response) # all messages should be added to the lease management and have their ACK # deadline extended, even those not dispatched to callbacks dispatcher.modify_ack_deadline.assert_called_once_with( [ requests.ModAckRequest("fack", 10, None), requests.ModAckRequest("back", 10, None), requests.ModAckRequest("zack", 10, None), ] ) # one message should be scheduled, the flow control limits allow for it schedule_calls = scheduler.schedule.mock_calls assert len(schedule_calls) == 1 call_args = schedule_calls[0][1] assert call_args[0] == mock.sentinel.callback assert isinstance(call_args[1], message.Message) assert call_args[1].message_id == "1" # the rest of the messages should have been put on hold assert manager._messages_on_hold.size == 2 while True: msg = manager._messages_on_hold.get() if msg is None: break else: assert isinstance(msg, message.Message) assert msg.message_id in ("2", "3") def test__on_response_none_data(caplog): caplog.set_level(logging.DEBUG) manager, _, dispatcher, leaser, _, scheduler = make_running_manager() manager._callback = mock.sentinel.callback # adjust message bookkeeping in leaser fake_leaser_add(leaser, init_msg_count=0, assumed_msg_size=10) manager._on_response(response=None) scheduler.schedule.assert_not_called() assert "callback invoked with None" in caplog.text def test__on_response_with_ordering_keys(): manager, _, dispatcher, leaser, _, scheduler = make_running_manager() manager._callback = mock.sentinel.callback # Set up the messages. response = gapic_types.StreamingPullResponse( received_messages=[ gapic_types.ReceivedMessage( ack_id="fack", message=gapic_types.PubsubMessage( data=b"foo", message_id="1", ordering_key="" ), ), gapic_types.ReceivedMessage( ack_id="back", message=gapic_types.PubsubMessage( data=b"bar", message_id="2", ordering_key="key1" ), ), gapic_types.ReceivedMessage( ack_id="zack", message=gapic_types.PubsubMessage( data=b"baz", message_id="3", ordering_key="key1" ), ), ] ) # Make leaser with zero initial messages, so we don't test lease management # behavior. fake_leaser_add(leaser, init_msg_count=0, assumed_msg_size=10) # Actually run the method and prove that modack and schedule are called in # the expected way. manager._on_response(response) # All messages should be added to the lease management and have their ACK # deadline extended, even those not dispatched to callbacks. dispatcher.modify_ack_deadline.assert_called_once_with( [ requests.ModAckRequest("fack", 10, None), requests.ModAckRequest("back", 10, None), requests.ModAckRequest("zack", 10, None), ] ) # The first two messages should be scheduled, The third should be put on # hold because it's blocked by the completion of the second, which has the # same ordering key. schedule_calls = scheduler.schedule.mock_calls assert len(schedule_calls) == 2 call_args = schedule_calls[0][1] assert call_args[0] == mock.sentinel.callback assert isinstance(call_args[1], message.Message) assert call_args[1].message_id == "1" call_args = schedule_calls[1][1] assert call_args[0] == mock.sentinel.callback assert isinstance(call_args[1], message.Message) assert call_args[1].message_id == "2" # Message 3 should have been put on hold. assert manager._messages_on_hold.size == 1 # No messages available because message 2 (with "key1") has not completed yet. assert manager._messages_on_hold.get() is None # Complete message 2 (with "key1"). manager.activate_ordering_keys(["key1"]) # Completing message 2 should release message 3. schedule_calls = scheduler.schedule.mock_calls assert len(schedule_calls) == 3 call_args = schedule_calls[2][1] assert call_args[0] == mock.sentinel.callback assert isinstance(call_args[1], message.Message) assert call_args[1].message_id == "3" # No messages available in the queue. assert manager._messages_on_hold.get() is None def test__on_response_enable_exactly_once(): manager, _, dispatcher, leaser, _, scheduler = make_running_manager() manager._callback = mock.sentinel.callback complete_modify_ack_deadline_calls(dispatcher) # Set up the messages. response = gapic_types.StreamingPullResponse( received_messages=[ gapic_types.ReceivedMessage( ack_id="fack", message=gapic_types.PubsubMessage(data=b"foo", message_id="1"), ) ], subscription_properties=gapic_types.StreamingPullResponse.SubscriptionProperties( exactly_once_delivery_enabled=True ), ) # adjust message bookkeeping in leaser fake_leaser_add(leaser, init_msg_count=0, assumed_msg_size=42) # exactly_once should be enabled manager._on_response(response) assert manager._exactly_once_delivery_enabled() # new deadline for exactly_once subscriptions should be used assert manager.ack_deadline == 60 def test__on_response_disable_exactly_once(): from google.cloud.pubsub_v1.subscriber._protocol import histogram manager, _, dispatcher, leaser, _, scheduler = make_running_manager() manager._callback = mock.sentinel.callback manager._flow_control = types.FlowControl( min_duration_per_lease_extension=histogram.MIN_ACK_DEADLINE ) # enable exactly_once manager._exactly_once_enabled = True # Set up the messages. response = gapic_types.StreamingPullResponse( received_messages=[ gapic_types.ReceivedMessage( ack_id="fack", message=gapic_types.PubsubMessage(data=b"foo", message_id="1"), ) ], subscription_properties=gapic_types.StreamingPullResponse.SubscriptionProperties( exactly_once_delivery_enabled=False ), ) # adjust message bookkeeping in leaser fake_leaser_add(leaser, init_msg_count=0, assumed_msg_size=42) # exactly_once should be disabled manager._on_response(response) assert not manager._exactly_once_enabled # The deadline configured in flow control should be used, not the # exactly_once minimum since exactly_once has been disabled. deadline = manager._obtain_ack_deadline(maybe_update=True) assert deadline == histogram.MIN_ACK_DEADLINE def test__on_response_exactly_once_immediate_modacks_fail(): manager, _, dispatcher, leaser, _, scheduler = make_running_manager() manager._callback = mock.sentinel.callback def complete_futures_with_error(*args, **kwargs): modack_requests = args[0] for req in modack_requests: req.future.set_exception( subscriber_exceptions.AcknowledgeError( subscriber_exceptions.AcknowledgeStatus.SUCCESS, None ) ) dispatcher.modify_ack_deadline.side_effect = complete_futures_with_error # Set up the messages. response = gapic_types.StreamingPullResponse( received_messages=[ gapic_types.ReceivedMessage( ack_id="fack", message=gapic_types.PubsubMessage(data=b"foo", message_id="1"), ) ], subscription_properties=gapic_types.StreamingPullResponse.SubscriptionProperties( exactly_once_delivery_enabled=True ), ) # adjust message bookkeeping in leaser fake_leaser_add(leaser, init_msg_count=0, assumed_msg_size=42) # exactly_once should be enabled manager._on_response(response) # exceptions are logged, but otherwise no effect def test__should_recover_true(): manager = make_manager() details = "UNAVAILABLE. Service taking nap." exc = exceptions.ServiceUnavailable(details) assert manager._should_recover(exc) is True def test__should_recover_false(): manager = make_manager() exc = TypeError("wahhhhhh") assert manager._should_recover(exc) is False def test__should_terminate_true(): manager = make_manager() details = "Cancelled. Go away, before I taunt you a second time." exc = exceptions.Cancelled(details) assert manager._should_terminate(exc) is True def test__should_terminate_false(): manager = make_manager() exc = TypeError("wahhhhhh") assert manager._should_terminate(exc) is False @mock.patch("threading.Thread", autospec=True) def test__on_rpc_done(thread): manager = make_manager() manager._on_rpc_done(mock.sentinel.error) thread.assert_called_once_with( name=mock.ANY, target=manager._shutdown, kwargs={"reason": mock.ANY} ) _, kwargs = thread.call_args reason = kwargs["kwargs"]["reason"] assert isinstance(reason, Exception) assert reason.args == (mock.sentinel.error,) # Exception wraps the original error def test_activate_ordering_keys(): manager = make_manager() manager._messages_on_hold = mock.create_autospec( messages_on_hold.MessagesOnHold, instance=True ) manager.activate_ordering_keys(["key1", "key2"]) manager._messages_on_hold.activate_ordering_keys.assert_called_once_with( ["key1", "key2"], mock.ANY ) def test_activate_ordering_keys_stopped_scheduler(): manager = make_manager() manager._messages_on_hold = mock.create_autospec( messages_on_hold.MessagesOnHold, instance=True ) manager._scheduler = None manager.activate_ordering_keys(["key1", "key2"]) manager._messages_on_hold.activate_ordering_keys.assert_not_called() @mock.patch("grpc_status.rpc_status.from_call") @mock.patch("google.protobuf.any_pb2.Any.Unpack") def test_get_ack_errors_unable_to_unpack(from_call, unpack): st = status_pb2.Status() st.code = code_pb2.Code.INTERNAL st.message = "qmsg" error_info = error_details_pb2.ErrorInfo() error_info.metadata["ack_1"] = "error1" st.details.add().Pack(error_info) mock_gprc_call = mock.Mock(spec=grpc.Call) exception = exceptions.InternalServerError( "msg", errors=(), response=mock_gprc_call ) from_call.return_value = st # Unpack() failed unpack.return_value = None assert not streaming_pull_manager._get_ack_errors(exception) @mock.patch("grpc_status.rpc_status.from_call") def test_get_ack_errors_no_response_obj(from_call): exception = exceptions.InternalServerError("msg", errors=(), response=None) # No response obj assert not streaming_pull_manager._get_ack_errors(exception) @mock.patch("grpc_status.rpc_status.from_call") def test_get_ack_errors_from_call_returned_none(from_call): mock_gprc_call = mock.Mock(spec=grpc.Call) exception = exceptions.InternalServerError( "msg", errors=(), response=mock_gprc_call ) from_call.return_value = None # rpc_status.from_call() returned None assert not streaming_pull_manager._get_ack_errors(exception) @mock.patch("grpc_status.rpc_status.from_call") def test_get_ack_errors_value_error_thrown(from_call): mock_gprc_call = mock.Mock(spec=grpc.Call) exception = exceptions.InternalServerError( "msg", errors=(), response=mock_gprc_call ) from_call.side_effect = ValueError("val error msg") # ValueError thrown, so return None assert not streaming_pull_manager._get_ack_errors(exception) @mock.patch("grpc_status.rpc_status.from_call") def test_get_ack_errors_no_error_details(from_call): st = status_pb2.Status() st.code = code_pb2.Code.INTERNAL st.message = "qmsg" mock_gprc_call = mock.Mock(spec=grpc.Call) exception = exceptions.InternalServerError( "msg", errors=(), response=mock_gprc_call ) from_call.side_effect = None from_call.return_value = st # status has no details to extract exactly-once error info from assert not streaming_pull_manager._get_ack_errors(exception) @mock.patch("grpc_status.rpc_status.from_call") def test_get_ack_errors_detail_not_error_info(from_call): st = status_pb2.Status() st.code = code_pb2.Code.INTERNAL st.message = "qmsg" # pack a dummy status instead of an ErrorInfo dummy_status = status_pb2.Status() st.details.add().Pack(dummy_status) mock_gprc_call = mock.Mock(spec=grpc.Call) exception = exceptions.InternalServerError( "msg", errors=(), response=mock_gprc_call ) from_call.side_effect = None from_call.return_value = st assert not streaming_pull_manager._get_ack_errors(exception) @mock.patch("grpc_status.rpc_status.from_call") def test_get_ack_errors_happy_case(from_call): st = status_pb2.Status() st.code = code_pb2.Code.INTERNAL st.message = "qmsg" error_info = error_details_pb2.ErrorInfo() error_info.metadata["ack_1"] = "error1" st.details.add().Pack(error_info) mock_gprc_call = mock.Mock(spec=grpc.Call) exception = exceptions.InternalServerError( "msg", errors=(), response=mock_gprc_call ) from_call.side_effect = None from_call.return_value = st # happy case - errors returned in a map ack_errors = streaming_pull_manager._get_ack_errors(exception) assert ack_errors assert ack_errors["ack_1"] == "error1" def test_process_requests_no_requests(): # no requests so no items in results lists ack_reqs_dict = {} errors_dict = {} requests_completed, requests_to_retry = streaming_pull_manager._process_requests( None, ack_reqs_dict, errors_dict ) assert not requests_completed assert not requests_to_retry def test_process_requests_error_dict_is_none(): # it's valid to pass in `None` for `errors_dict` ack_reqs_dict = {} errors_dict = None requests_completed, requests_to_retry = streaming_pull_manager._process_requests( None, ack_reqs_dict, errors_dict ) assert not requests_completed assert not requests_to_retry def test_process_requests_no_errors_has_no_future(): # no errors so request should be completed, even with no future ack_reqs_dict = { "ackid1": requests.AckRequest( ack_id="ackid1", byte_size=0, time_to_ack=20, ordering_key="", future=None ) } errors_dict = {} requests_completed, requests_to_retry = streaming_pull_manager._process_requests( None, ack_reqs_dict, errors_dict ) assert requests_completed[0].ack_id == "ackid1" assert not requests_to_retry def test_process_requests_no_errors(): # no errors so request and its future should be completed future = futures.Future() ack_reqs_dict = { "ackid1": requests.AckRequest( ack_id="ackid1", byte_size=0, time_to_ack=20, ordering_key="", future=future ) } errors_dict = {} requests_completed, requests_to_retry = streaming_pull_manager._process_requests( None, ack_reqs_dict, errors_dict ) assert requests_completed[0].ack_id == "ackid1" assert future.result() == subscriber_exceptions.AcknowledgeStatus.SUCCESS assert not requests_to_retry def test_process_requests_permanent_error_raises_exception(): # a permanent error raises an exception future = futures.Future() ack_reqs_dict = { "ackid1": requests.AckRequest( ack_id="ackid1", byte_size=0, time_to_ack=20, ordering_key="", future=future ) } errors_dict = {"ackid1": "PERMANENT_FAILURE_INVALID_ACK_ID"} requests_completed, requests_to_retry = streaming_pull_manager._process_requests( None, ack_reqs_dict, errors_dict ) assert requests_completed[0].ack_id == "ackid1" with pytest.raises(subscriber_exceptions.AcknowledgeError) as exc_info: future.result() assert ( exc_info.value.error_code == subscriber_exceptions.AcknowledgeStatus.INVALID_ACK_ID ) assert not requests_to_retry def test_process_requests_transient_error_returns_request_for_retrying(): # a transient error returns the request in `requests_to_retry` future = futures.Future() ack_reqs_dict = { "ackid1": requests.AckRequest( ack_id="ackid1", byte_size=0, time_to_ack=20, ordering_key="", future=future ) } errors_dict = {"ackid1": "TRANSIENT_FAILURE_INVALID_ACK_ID"} requests_completed, requests_to_retry = streaming_pull_manager._process_requests( None, ack_reqs_dict, errors_dict ) assert not requests_completed assert requests_to_retry[0].ack_id == "ackid1" assert not future.done() def test_process_requests_unknown_error_raises_exception(): # an unknown error raises an exception future = futures.Future() ack_reqs_dict = { "ackid1": requests.AckRequest( ack_id="ackid1", byte_size=0, time_to_ack=20, ordering_key="", future=future ) } errors_dict = {"ackid1": "unknown_error"} requests_completed, requests_to_retry = streaming_pull_manager._process_requests( None, ack_reqs_dict, errors_dict ) assert requests_completed[0].ack_id == "ackid1" with pytest.raises(subscriber_exceptions.AcknowledgeError) as exc_info: future.result() assert exc_info.value.error_code == subscriber_exceptions.AcknowledgeStatus.OTHER assert exc_info.value.info == "unknown_error" assert not requests_to_retry def test_process_requests_retriable_error_status_returns_request_for_retrying(): # a retriable error status returns the request in `requests_to_retry` retriable_errors = [ code_pb2.DEADLINE_EXCEEDED, code_pb2.RESOURCE_EXHAUSTED, code_pb2.ABORTED, code_pb2.INTERNAL, code_pb2.UNAVAILABLE, ] for retriable_error in retriable_errors: future = futures.Future() ack_reqs_dict = { "ackid1": requests.AckRequest( ack_id="ackid1", byte_size=0, time_to_ack=20, ordering_key="", future=future, ) } st = status_pb2.Status() st.code = retriable_error ( requests_completed, requests_to_retry, ) = streaming_pull_manager._process_requests(st, ack_reqs_dict, None) assert not requests_completed assert requests_to_retry[0].ack_id == "ackid1" assert not future.done() def test_process_requests_permission_denied_error_status_raises_exception(): # a permission-denied error status raises an exception future = futures.Future() ack_reqs_dict = { "ackid1": requests.AckRequest( ack_id="ackid1", byte_size=0, time_to_ack=20, ordering_key="", future=future ) } st = status_pb2.Status() st.code = code_pb2.Code.PERMISSION_DENIED requests_completed, requests_to_retry = streaming_pull_manager._process_requests( st, ack_reqs_dict, None ) assert requests_completed[0].ack_id == "ackid1" with pytest.raises(subscriber_exceptions.AcknowledgeError) as exc_info: future.result() assert ( exc_info.value.error_code == subscriber_exceptions.AcknowledgeStatus.PERMISSION_DENIED ) assert exc_info.value.info is None assert not requests_to_retry def test_process_requests_failed_precondition_error_status_raises_exception(): # a failed-precondition error status raises an exception future = futures.Future() ack_reqs_dict = { "ackid1": requests.AckRequest( ack_id="ackid1", byte_size=0, time_to_ack=20, ordering_key="", future=future ) } st = status_pb2.Status() st.code = code_pb2.Code.FAILED_PRECONDITION requests_completed, requests_to_retry = streaming_pull_manager._process_requests( st, ack_reqs_dict, None ) assert requests_completed[0].ack_id == "ackid1" with pytest.raises(subscriber_exceptions.AcknowledgeError) as exc_info: future.result() assert ( exc_info.value.error_code == subscriber_exceptions.AcknowledgeStatus.FAILED_PRECONDITION ) assert exc_info.value.info is None assert not requests_to_retry def test_process_requests_other_error_status_raises_exception(): # an unrecognized error status raises an exception future = futures.Future() ack_reqs_dict = { "ackid1": requests.AckRequest( ack_id="ackid1", byte_size=0, time_to_ack=20, ordering_key="", future=future ) } st = status_pb2.Status() st.code = code_pb2.Code.OUT_OF_RANGE requests_completed, requests_to_retry = streaming_pull_manager._process_requests( st, ack_reqs_dict, None ) assert requests_completed[0].ack_id == "ackid1" with pytest.raises(subscriber_exceptions.AcknowledgeError) as exc_info: future.result() assert exc_info.value.error_code == subscriber_exceptions.AcknowledgeStatus.OTHER assert not requests_to_retry def test_process_requests_mixed_success_and_failure_acks(): # mixed success and failure (acks) future1 = futures.Future() future2 = futures.Future() future3 = futures.Future() ack_reqs_dict = { "ackid1": requests.AckRequest( ack_id="ackid1", byte_size=0, time_to_ack=20, ordering_key="", future=future1, ), "ackid2": requests.AckRequest( ack_id="ackid2", byte_size=0, time_to_ack=20, ordering_key="", future=future2, ), "ackid3": requests.AckRequest( ack_id="ackid3", byte_size=0, time_to_ack=20, ordering_key="", future=future3, ), } errors_dict = { "ackid1": "PERMANENT_FAILURE_INVALID_ACK_ID", "ackid2": "TRANSIENT_FAILURE_INVALID_ACK_ID", } requests_completed, requests_to_retry = streaming_pull_manager._process_requests( None, ack_reqs_dict, errors_dict ) # message with ack_id 'ackid1' fails with an exception assert requests_completed[0].ack_id == "ackid1" with pytest.raises(subscriber_exceptions.AcknowledgeError) as exc_info: future1.result() assert ( exc_info.value.error_code == subscriber_exceptions.AcknowledgeStatus.INVALID_ACK_ID ) # message with ack_id 'ackid2' is to be retried assert requests_to_retry[0].ack_id == "ackid2" assert not requests_to_retry[0].future.done() # message with ack_id 'ackid3' succeeds assert requests_completed[1].ack_id == "ackid3" assert future3.result() == subscriber_exceptions.AcknowledgeStatus.SUCCESS def test_process_requests_mixed_success_and_failure_modacks(): # mixed success and failure (modacks) future1 = futures.Future() future2 = futures.Future() future3 = futures.Future() ack_reqs_dict = { "ackid1": requests.ModAckRequest(ack_id="ackid1", seconds=60, future=future1), "ackid2": requests.ModAckRequest(ack_id="ackid2", seconds=60, future=future2), "ackid3": requests.ModAckRequest(ack_id="ackid3", seconds=60, future=future3), } errors_dict = { "ackid1": "PERMANENT_FAILURE_INVALID_ACK_ID", "ackid2": "TRANSIENT_FAILURE_INVALID_ACK_ID", } requests_completed, requests_to_retry = streaming_pull_manager._process_requests( None, ack_reqs_dict, errors_dict ) # message with ack_id 'ackid1' fails with an exception assert requests_completed[0].ack_id == "ackid1" with pytest.raises(subscriber_exceptions.AcknowledgeError) as exc_info: future1.result() assert ( exc_info.value.error_code == subscriber_exceptions.AcknowledgeStatus.INVALID_ACK_ID ) # message with ack_id 'ackid2' is to be retried assert requests_to_retry[0].ack_id == "ackid2" assert not requests_to_retry[0].future.done() # message with ack_id 'ackid3' succeeds assert requests_completed[1].ack_id == "ackid3" assert future3.result() == subscriber_exceptions.AcknowledgeStatus.SUCCESS
# -*- coding: utf-8 -*- """ Taggers wrapping the neural networks. """ import logging import numpy as np from itertools import izip from . import utils from . import config from . import attributes from .metadata import Metadata from .pos import POSReader from .srl import SRLReader from .parse import DependencyReader from .network import Network, ConvolutionalNetwork, ConvolutionalDependencyNetwork def load_network(md): """ Loads the network from the default file and returns it. """ logger = logging.getLogger("Logger") is_srl = md.task.startswith('srl') and md.task != 'srl_predicates' logger.info('Loading network') if is_srl: net_class = ConvolutionalNetwork elif md.task.endswith('dependency'): net_class = ConvolutionalDependencyNetwork else: net_class = Network nn = net_class.load_from_file(md.paths[md.network]) logger.info('Done') return nn def create_reader(md, gold_file=None): """ Creates a TextReader object for the given task and loads its dictionary. :param md: a metadata object describing the task :param gold_file: path to a file with gold standard data, if the reader will be used for testing. """ logger = logging.getLogger('Logger') logger.info('Loading text reader...') if md.task == 'pos': tr = POSReader(md, filename=gold_file) elif 'dependency' in md.task: labeled = md.task.startswith('labeled') tr = DependencyReader(md, filename=gold_file, labeled=labeled) elif md.task.startswith('srl'): tr = SRLReader(md, filename=gold_file, only_boundaries= (md.task == 'srl_boundary'), only_classify= (md.task == 'srl_classify'), only_predicates= (md.task == 'srl_predicates')) else: raise ValueError("Unknown task: %s" % md.task) logger.info('Done') return tr def _group_arguments(tokens, predicate_positions, boundaries, labels): """ Groups words pertaining to each argument and returns a dictionary for each predicate. """ arg_structs = [] for predicate_position, pred_boundaries, pred_labels in izip(predicate_positions, boundaries, labels): structure = {} for token, boundary_tag in izip(tokens, pred_boundaries): if boundary_tag == 'O': continue elif boundary_tag == 'B': argument_tokens = [token] elif boundary_tag == 'I': argument_tokens.append(token) elif boundary_tag == 'E': argument_tokens.append(token) tag = pred_labels.pop(0) structure[tag] = argument_tokens else: # boundary_tag == 'S' tag = pred_labels.pop(0) structure[tag] = [token] predicate = tokens[predicate_position] arg_structs.append((predicate, structure)) return arg_structs class SRLAnnotatedSentence(object): """ Class storing a sentence with annotated semantic roles. It stores a list with the sentence tokens, called `tokens`, and a list of tuples in the format `(predicate, arg_strucutres)`. Each `arg_structure` is a dict mapping semantic roles to the words that constitute it. This is used instead of a two-level dictionary because one sentence may have more than one occurrence of the same predicate. This class is used only for storing data. """ def __init__(self, tokens, arg_structures): """ Creates an instance of a sentence with SRL data. :param tokens: a list of strings :param arg_structures: a list of tuples in the format (predicate, mapping). Each predicate is a string and each mapping is a dictionary mapping role labels to the words that constitute it. """ self.tokens = tokens self.arg_structures = arg_structures class ParsedSentence(object): """ Class for storing a sentence with dependency parsing annotation. It stores a list of tokens, the dependency heads, dependency labels and POS tags if the parser used them. Dependency heads are the index of the head of each token, and -1 means a dependency to the root. """ def __init__(self, tokens, heads, labels, pos=None): """ Constructor. :param tokens: list of strings :param heads: list of integers (-1 means dependency to root, others are token indices) :param labels: list of strings :param pos: None or list of strings """ self.tokens = tokens self.heads = heads self.labels = labels self.pos = pos def __len__(self): return len(self.tokens) def to_conll(self): """ Return a string representation of the sentence in CoNLL X format. Each line has: [number starting from 1] token _ POS POS _ head label Token numbers start from 1, root is referred as 0. POS is only available if the original parser used it. """ result = [] for i in range(len(self.tokens)): token = self.tokens[i] head = self.heads[i] + 1 label = self.labels[i] pos = self.pos[i] if self.pos else '_' line = u'{id}\t{token}\t_\t{pos}\t{pos}\t_\t{head}\t{label}' result.append(line.format(id=i+1, pos=pos, head=head, label=label, token=token)) return '\n'.join(result) class Tagger(object): """ Base class for taggers. It should not be instantiated. """ def __init__(self, data_dir=None, language='en'): """Creates a tagger and loads data preemptively""" asrt_msg = "nlpnet data directory is not set. \ If you don't have the trained models, download them from http://nilc.icmc.usp.br/nlpnet/models.html" if data_dir is None: assert config.data_dir is not None, asrt_msg self.paths = config.FILES else: self.paths = config.get_config_paths(data_dir) self.data_dir = data_dir self.language = language self._load_data() def _load_data(self): """Implemented by subclasses""" pass class SRLTagger(Tagger): """ An SRLTagger loads the models and performs SRL on text. It works on three stages: predicate identification, argument detection and argument classification. """ def _load_data(self): """Loads data for SRL""" # load boundary identification network and reader md_boundary = Metadata.load_from_file('srl_boundary', self.paths) self.boundary_nn = load_network(md_boundary) self.boundary_reader = create_reader(md_boundary) self.boundary_reader.create_converter() self.boundary_itd = self.boundary_reader.get_inverse_tag_dictionary() # same for arg classification md_classify = Metadata.load_from_file('srl_classify', self.paths) self.classify_nn = load_network(md_classify) self.classify_reader = create_reader(md_classify) self.classify_reader.create_converter() self.classify_itd = self.classify_reader.get_inverse_tag_dictionary() # predicate detection md_pred = Metadata.load_from_file('srl_predicates', self.paths) self.pred_nn = load_network(md_pred) self.pred_reader = create_reader(md_pred) self.pred_reader.create_converter() def find_predicates(self, tokens): """ Finds out which tokens are predicates. :param tokens: a list of attribute.Token elements :returns: the indices of predicate tokens """ sent_codified = np.array([self.pred_reader.converter.convert(token) for token in tokens]) answer = np.array(self.pred_nn.tag_sentence(sent_codified)) return answer.nonzero()[0] def tag(self, text): """ Runs the SRL process on the given text. :param text: unicode or str encoded in utf-8. :param no_repeats: whether to prevent repeated argument labels :returns: a list of SRLAnnotatedSentence objects """ tokens = utils.tokenize(text, self.language) result = [] for sent in tokens: tagged = self.tag_tokens(sent) result.append(tagged) return result def tag_tokens(self, tokens, no_repeats=False): """ Runs the SRL process on the given tokens. :param tokens: a list of tokens (as strings) :param no_repeats: whether to prevent repeated argument labels :returns: a list of lists (one list for each sentence). Sentences have tuples (all_tokens, predicate, arg_structure), where arg_structure is a dictionary mapping argument labels to the words it includes. """ if self.language == 'pt': tokens_obj = [attributes.Token(utils.clean_text(t, False)) for t in tokens] else: tokens_obj = [attributes.Token(t) for t in tokens] converted_bound = np.array([self.boundary_reader.converter.convert(t) for t in tokens_obj]) converted_class = np.array([self.classify_reader.converter.convert(t) for t in tokens_obj]) pred_positions = self.find_predicates(tokens_obj) # first, argument boundary detection # the answer includes all predicates answers = self.boundary_nn.tag_sentence(converted_bound, pred_positions) boundaries = [[self.boundary_itd[x] for x in pred_answer] for pred_answer in answers] arg_limits = [utils.boundaries_to_arg_limits(pred_boundaries) for pred_boundaries in boundaries] # now, argument classification answers = self.classify_nn.tag_sentence(converted_class, pred_positions, arg_limits, allow_repeats=not no_repeats) arguments = [[self.classify_itd[x] for x in pred_answer] for pred_answer in answers] structures = _group_arguments(tokens, pred_positions, boundaries, arguments) return SRLAnnotatedSentence(tokens, structures) class DependencyParser(Tagger): """A Dependency Parser based on a neural network tagger.""" def __init__(self, *args, **kwargs): """ Set the data directory for the POS tagger, if one is used, and call the parent constructor. """ super(DependencyParser, self).__init__(*args, **kwargs) def _load_data(self): """Loads data for Dependency Parsing""" md_udep = Metadata.load_from_file('unlabeled_dependency', paths=self.paths) self.unlabeled_nn = load_network(md_udep) self.unlabeled_reader = create_reader(md_udep) md_ldep = Metadata.load_from_file('labeled_dependency', paths=self.paths) self.labeled_nn = load_network(md_ldep) self.labeled_reader = create_reader(md_ldep) self.itd = self.labeled_reader.get_inverse_tag_dictionary() self.use_pos = md_udep.use_pos or md_ldep.use_pos if self.use_pos: self.pos_tagger = POSTagger(self.data_dir, language=self.language) def parse(self, text): """ Split the given text into sentences and determines their dependency trees. If you want to provide your own tokenized text, use `parse_sentence` instead. :param text: a string :returns: a list of ParsedSentence's """ sentences = utils.tokenize(text, self.language) result = [] for sent in sentences: parsed = self.parse_sentence(sent) result.append(parsed) return result def tag_tokens(self, tokens): """ Parse the given sentence. This function is just an alias for `parse_sentence`. """ return self.parse_sentence(tokens) def parse_sentence(self, tokens): """ Parse the given sentence. It must be already tokenized; if you want nlpnet to tokenize the text, use the method `parse` instead. :param tokens: a list of strings :return: a ParsedSentence instance """ original_tokens = tokens tokens_obj = [] # if the parser uses POS a feature, have a tagger tag it first if self.use_pos: tokens = self.pos_tagger.tag_tokens(tokens, return_tokens=True) for token in tokens: if self.use_pos: # if we tagged for POS, each item is a tuple word, pos = token else: pos = None tokens_obj.append(attributes.Token(word, pos=pos)) converted_tokens = self.unlabeled_reader.codify_sentence(tokens_obj) heads = self.unlabeled_nn.tag_sentence(converted_tokens) # the root is returned having a value == len(sentence) root = heads.argmax() heads[root] = root converted_tokens = self.labeled_reader.codify_sentence(tokens_obj) label_codes = self.labeled_nn.tag_sentence(converted_tokens, heads) labels = [self.itd[code] for code in label_codes] # to the final answer, signal the root with -1 heads[root] = -1 if self.use_pos: # unzip pos_tags = zip(*tokens)[1] else: pos_tags = None parsed = ParsedSentence(original_tokens, heads, labels, pos_tags) return parsed def tag(self, text): """ Parse the given text. This is just an alias for the `parse` method. """ return self.parse(text) class POSTagger(Tagger): """A POSTagger loads the models and performs POS tagging on text.""" def _load_data(self): """Loads data for POS""" md = Metadata.load_from_file('pos', self.paths) self.nn = load_network(md) self.reader = create_reader(md) self.reader.create_converter() self.itd = self.reader.get_inverse_tag_dictionary() def tag(self, text): """ Tags the given text. :param text: a string or unicode object. Strings assumed to be utf-8 :returns: a list of lists (sentences with tokens). Each sentence has (token, tag) tuples. """ tokens = utils.tokenize(text, self.language) result = [] for sent in tokens: tagged = self.tag_tokens(sent, return_tokens=True) result.append(tagged) return result def tag_tokens(self, tokens, return_tokens=False): """ Tags a given list of tokens. Tokens should be produced with the nlpnet tokenizer in order to match the entries in the vocabulary. If you have non-tokenized text, use POSTagger.tag(text). :param tokens: a list of strings :param return_tokens: if True, includes the tokens in the return, as a list of tuples (token, tag). :returns: a list of strings (the tags) """ converter = self.reader.converter converted_tokens = np.array([converter.convert(token) for token in tokens]) answer = self.nn.tag_sentence(converted_tokens) tags = [self.itd[tag] for tag in answer] if return_tokens: return zip(tokens, tags) return tags
""" parted - Command ================ This module provides processing for the ``parted`` command. The output is parsed by the ``PartedL`` class. Attributes are provided for each field for the disk, and a list of ``Partition`` class objects, one for each partition in the output. Typical content of the ``parted -l`` command output looks like:: Model: ATA TOSHIBA MG04ACA4 (scsi) Disk /dev/sda: 4001GB Sector size (logical/physical): 512B/512B Partition Table: gpt Disk Flags: pmbr_boot Number Start End Size File system Name Flags 1 1049kB 2097kB 1049kB bios_grub 2 2097kB 526MB 524MB xfs 3 526MB 4001GB 4000GB lvm The columns may vary depending upon the type of device. Note: The examples in this module may be executed with the following command: ``python -m insights.parsers.parted`` Examples: >>> parted_data = ''' ... Model: ATA TOSHIBA MG04ACA4 (scsi) ... Disk /dev/sda: 4001GB ... Sector size (logical/physical): 512B/512B ... Partition Table: gpt ... Disk Flags: pmbr_boot ... ... Number Start End Size File system Name Flags ... 1 1049kB 2097kB 1049kB bios_grub ... 2 2097kB 526MB 524MB xfs ... 3 526MB 4001GB 4000GB lvm ... '''.strip() >>> from insights.tests import context_wrap >>> shared = {PartedL: PartedL(context_wrap(parted_data))} >>> parted_info = shared[PartedL] >>> parted_info.data {'partition_table': 'gpt', 'sector_size': '512B/512B', 'disk_flags': 'pmbr_boot', 'partitions': [{'end': '2097kB', 'name': 'bios_grub', 'number': '1', 'start': '1049kB', 'flags': 'bios_grub', 'file_system': 'bios_grub', 'size': '1049kB'}, {'start': '2097kB', 'size': '524MB', 'end': '526MB', 'number': '2', 'file_system': 'xfs'}, {'end': '4001GB', 'name': 'lvm', 'number': '3', 'start': '526MB', 'flags': 'lvm', 'file_system': 'lvm', 'size': '4000GB'}], 'model': 'ATA TOSHIBA MG04ACA4 (scsi)', 'disk': '/dev/sda', 'size': '4001GB'} >>> parted_info.data['model'] 'ATA TOSHIBA MG04ACA4 (scsi)' >>> parted_info.disk '/dev/sda' >>> parted_info.logical_sector_size '512B' >>> parted_info.physical_sector_size '512B' >>> parted_info.boot_partition >>> parted_info.data['disk_flags'] 'pmbr_boot' >>> len(parted_info.partitions) 3 >>> parted_info.partitions[0].data {'end': '2097kB', 'name': 'bios_grub', 'number': '1', 'start': '1049kB', 'flags': 'bios_grub', 'file_system': 'bios_grub', 'size': '1049kB'} >>> parted_info.partitions[0].number '1' >>> parted_info.partitions[0].start '1049kB' >>> parted_info.partitions[0].end '2097kB' >>> parted_info.partitions[0].size '1049kB' >>> parted_info.partitions[0].file_system 'bios_grub' >>> parted_info.partitions[0].type >>> parted_info.partitions[0].flags 'bios_grub' """ from .. import Parser, parser from ..parsers import ParseException class Partition(object): """Class to contain information for one partition. Represents the values from one row of the partition information from the ``parted`` command. Column names have been converted to lowercase and are provided as attributes. Column names may vary so the ``get`` method may be used to check for the presence of a column. Attributes: data (dict): Dictionary of partition information keyed by column names in lowercase. """ def __init__(self, data): self.data = data @property def number(self): """str: Partition number.""" return self.data.get('number') @property def start(self): """str: Starting location for the partition.""" return self.data.get('start') @property def end(self): """str: Ending location for the partition.""" return self.data.get('end') @property def size(self): """str: Size of the partition.""" return self.data.get('size') @property def file_system(self): """str: File system type.""" return self.data.get('file_system') @property def type(self): """str: File system type.""" return self.data.get('type') @property def flags(self): """str: Partition flags.""" return self.data.get('flags') def get(self, item): """Get information for column ``item`` or ``None`` if not present.""" return self.data.get(item) @parser("parted_-l") class PartedL(Parser): """Class to represent attributes of the ``parted`` command output. The columns may vary depending upon the type of device. Attributes: data (dict): Dictionary of information returned by ``parted`` command. Raises: ParseException: Raised if ``parted`` output indicates "error" or "warning" in first line, or if "disk" field is not present, or if there is an error parsing the data. ValueError: Raised if there is an error parsing the partition table. """ @property def partitions(self): """list: List of ``Partition`` objects for each partition.""" return self._partitions @property def disk(self): """str: Disk information.""" return self.data['disk'] @property def logical_sector_size(self): """str: Logical part of sector size.""" if self._sector_size: return self._sector_size[0] @property def physical_sector_size(self): """str: Physical part of sector size.""" if self._sector_size: return self._sector_size[1] @property def boot_partition(self): """Partition: Returns a ``Partition`` object if `boot` is found in partition flags. ``None`` is returned otherwise.""" return self._boot_partition def get(self, item): """Returns a value for the specified ``item`` key.""" return self.data.get(item) def parse_content(self, content): # If device was not present output is error message if content[0].startswith("Error") or content[0].startswith("Warning"): raise ParseException("PartedL content indicates an error %s" % content[0]) dev_info = {} table_lines = [] for line in content: if not line.strip(): continue if ':' in line: label_value = line.split(':') label = label_value[0].strip().lower() value = label_value[1] if len(label_value) == 2 else None value = value.strip() if value.strip() else None if value: # Single word labels if ' ' not in label: dev_info[label] = value else: if label.startswith("disk") and '/' in label: disk_parts = label.split() dev_info['disk'] = disk_parts[1].strip() dev_info['size'] = value elif label.startswith("sector"): dev_info['sector_size'] = value else: label = label.replace(' ', '_') dev_info[label] = value else: table_lines.append(line) if 'disk' not in dev_info: raise ParseException("PartedL unable to locate Disk in content") partitions = [] if table_lines: line = table_lines[0].replace('File system', 'File_system') cols = line.strip().split() columns = {} for n in cols: columns[n] = {'name': n.lower()} columns[n]['start'] = line.find(n) columns[n]['end'] = columns[n]['start'] + len(n) for line in table_lines[1:]: line = line.rstrip() part = {} for col in columns.values(): if len(line) > col['start']: val = line[col['start']:] val = val.strip().split(None, 1)[0] part[col['name']] = val if part: partitions.append(part) self._partitions = [] self._boot_partition = None self._sector_size = None self.data = {} if dev_info: if partitions: dev_info['partitions'] = partitions for part in partitions: self._partitions.append(Partition(part)) if 'flags' in part and 'boot' in part['flags']: self._boot_partition = Partition(part) self.data = dev_info if 'sector_size' in self.data: self._sector_size = self.data['sector_size'].split('/', 1) if len(self._sector_size) != 2: self._sector_size = None
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2012, Roboterclub Aachen e.V. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Roboterclub Aachen e.V. nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY ROBOTERCLUB AACHEN E.V. ''AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL ROBOTERCLUB AACHEN E.V. BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ----------------------------------------------------------------------------- import os import sys import builder_base import numpy as np from pyx import * from pyx.connector import arc, curve sys.path = [os.path.join(os.path.dirname(__file__), '..')] + sys.path from xmlparser.utils import SingleAssignDictionary class SystemLayoutBuilder(builder_base.Builder): """ Generate a visual map of all containers, components and events. A common call would be like: # 2012 $ python system_layout.py ../../../../roboter/2012_captain/software/global/xml/robot.xml -o /tmp -s simulator -s "drive simulation" -s "External" # 2015 $ python system_layout.py ../../../../season/common/robot.xml --dtdpath ../../../tools/system_design/xml/dtd -o /tmp $ python system_layout.py ../../../../season/common/robot.xml --dtdpath ../../../tools/system_design/xml/dtd -o /tmp -s "drive big simulation" -s "drive little simulation" -s "External" -s "simulator" -s "drive big" A PDF called system.pdf is generated in /tmp/system.pdf. If you want to display callable actions for each component add the -a switch. """ VERSION = "0.1" def get_y(self, event): """ Get the vertical coordinate for an event line """ return 8.0 - (self.eventsSorted.index(event) * 0.1) def get_component_width(self, component): """ Get the horizontal width of a component. """ # width of text text_width = text.text(0, 0, r"\bf %s" % component, self.textattrs).width.x # number of arrows nr = len(component.events.subscribe) + len(component.events.publish) # Add actions if desired if self.options.actions: nr = nr + len(component.actions) return max((text_width * 15) + 0.1, 0.1 * nr) def get_container_width(self, container): """ Get the horizontal width of a container. """ width = 0 for component in container.components: # include actions from abstract component component = component.flattened() width = width + self.get_component_width(component) + 0.1 return width def get_graph_width(self, tree): width = 0 for container in tree.container: # skip containers that the user asked to skip if self.options.skipList is not None and container.name in self.options.skipList: continue width = width + self.get_container_width(container) + 0.1 return width def generate(self): # check the commandline options if not self.options.outpath: raise builder_base.BuilderException("You need to provide an output path!") # Initialise unit.set(uscale=7) text.set(mode="latex") text.preamble(r"\usepackage{helvet}") text.preamble(r"\renewcommand*\familydefault{\sfdefault}") text.preamble(r"\normalfont") c = canvas.canvas() ### Object to draw eventArrowsSource = [] eventCirclesSource = [] eventTextSource = [] eventCirclesSinkless = [] eventCirclesSourcless = [] eventArrowsSink = [] eventCirclesSink = [] eventTextSink = [] actionArrows = [] actionText = [] ### Text Attributes self.textattrs = [text.halign.center, text.vshift.middlezero] self.textcontainerattrs = [text.halign.left, text.vshift.middlezero] self.texteventattrs = [text.halign.left, text.vshift(-0.6)] self.texteventrotattrs = [text.halign.left, text.vshift(-0.6), trafo.rotate(90), color.rgb.red] self.texteventsubscribedrotattrs = [text.halign.left, text.vshift(-0.6), trafo.rotate(90), color.rgb.blue] self.textactionrotattrs = [text.halign.left, text.vshift(-0.6), trafo.rotate(90), color.rgb(0.0, 0.5, 0.1)] # raster for design debug = False if debug: for x in np.arange(0, 20, 0.05): c.stroke(path.line(x, 10, x, 0), [style.linewidth.thin, color.gray(0.8)]) for y in np.arange(0, 10, 0.05): c.stroke(path.line(0, y, 20, y), [style.linewidth.thin, color.gray(0.8)]) for x in np.arange(0, 20, 0.5): c.stroke(path.line(x, 10, x, 0), [style.linewidth.thin, color.gray(0.5)]) for y in np.arange(0, 10, 0.5): c.stroke(path.line(0, y, 20, y), [style.linewidth.thin, color.gray(0.5)]) # Sorted events # Sort events by publishing component. Makes graph more structured. self.eventsSorted = [] print("Analysing containers:") for container in self.tree.container: print " * " + container.name print("Done. Creating graph") for container in self.tree.container: if container.name is None: continue if self.options.skipList is not None and container.name in self.options.skipList: continue for component in container.components: # include actions from abstract component component = component.flattened() for event in component.events.publish: # add only once if not (event in self.eventsSorted): self.eventsSorted.append(event) # Add sourceless events to the end for event in self.tree.events: if not (event in self.eventsSorted): self.eventsSorted.append(event) # Draw light gray horizontal lines for all events graph_width = self.get_graph_width(self.tree) + 2.1 for event in self.tree.events: event_y = self.get_y(event) c.stroke(path.line(0, event_y, graph_width, event_y), [style.linewidth.THick, color.grey(0.90)]) # Draw Id and name of event A = text.text(0, event_y, r"\bf \texttt{[0x%02x]} %s" % (event.id, event.name), self.texteventattrs) c.insert(A) # Draw type of Event if event.type is not None: A = text.text(1.1, event_y, r"%s" % (event.type.name), self.texteventattrs) c.insert(A) # Legend A = text.text( 0, 8.1, r"\textbf{%s}" % ("Id"), self.texteventattrs) c.insert(A) A = text.text(0.175, 8.1, r"\textbf{%s}" % ("Name"), self.texteventattrs) c.insert(A) A = text.text(1.1, 8.1, r"\textbf{%s}" % ("Type"), self.texteventattrs) c.insert(A) sinklessDict = dict() sourcelessDict = dict() # Write sink and sourceless events for event in self.tree.events: sourceless = True sinkless = True for component in self.tree.components: # include actions from abstract component component = component.flattened() if self.options.skipList is not None and component.name in self.options.skipList: continue for event_cmp in component.events.publish: if event_cmp == event: sourceless = False for event_cmp in component.events.subscribe: if event_cmp == event: sinkless = False if sourceless: A = text.text(1.8, self.get_y(event), r"\bf sourceless", self.texteventattrs) c.insert(A) sourcelessDict[event.name] = sourceless if sinkless: A = text.text(2.1, self.get_y(event), r"\bf sinkless", self.texteventattrs) c.insert(A) sinklessDict[event.name] = sinkless # Empty directories to find out from where to where a thick line # for events must be drawn. eventsLeft = SingleAssignDictionary('EventLeft') eventsRight = dict() # Write what was skipped c.insert(text.text(1, 9.8, r"\bf System Design generated from base file", self.textattrs)) c.insert(text.text(1, 9.7, r"\bf %s" % self.xmlfile.replace('_', '\_'), self.textattrs)) c.insert(text.text(1, 9.5, r"\bf Skipped containers:", self.textattrs)) y = 9.40 if self.options.skipList is not None: for s in self.options.skipList: A = text.text(1, y, r"\bf %s" % s, self.textattrs) c.insert(A) y = y - .1 # Draw containers at the top container_x = 2.5 for container in self.tree.container: # skip containers that are requested to skip if self.options.skipList is not None and container.name in self.options.skipList: continue A = text.text(container_x + 0.15, 9.90, r"\bf %s" % container, self.textcontainerattrs) c.draw(path.rect(container_x + 0.05, 9.65, self.get_container_width(container), 0.30), [deco.stroked(), deco.filled([color.grey(0.85)])]) c.insert(A) component_x = container_x container_x = container_x + self.get_container_width(container) + 0.1 for component in container.components: # include actions from abstract component component = component.flattened() # A = text.text(0, event_y, r"\bf \texttt{[0x%02x]} %s" % (event.id, event.name), self.texteventattrs) A = text.text(component_x + self.get_component_width(component)/2 + 0.1, 9.8, r"\bf \texttt{[0x%02x]} %s" % (component.id, component.name), self.textattrs) c.draw(path.rect(component_x + 0.1, 9.75, self.get_component_width(component), 0.10), [deco.stroked(), deco.filled([color.grey(0.65)])]) c.insert(A) event_x = component_x + 0.15 component_x = component_x + self.get_component_width(component) + 0.1 # Draw vertical lines for published events for event in component.events.publish: eventArrowsSource.append(path.line(event_x, 9.75, event_x, self.get_y(event))) eventCirclesSource.append([event_x, 9.75]) if sinklessDict[event.name]: eventCirclesSinkless.append([event_x, self.get_y(event)]) # write name of event A = text.text(event_x, 8.1, r"\bf \texttt{[0x%02x]} %s" % (event.id, event.name), self.texteventrotattrs) c.insert(A) # Store most left position try: eventsLeft[event.name] = event_x except: pass # this could be the most right position eventsRight[event.name] = event_x event_x = event_x + 0.1 for event in component.events.subscribe: eventArrowsSink.append(path.line(event_x, self.get_y(event), event_x, 9.75)) if sourcelessDict[event.name]: eventCirclesSourcless.append([event_x, self.get_y(event)]) else: eventCirclesSink.append([event_x, self.get_y(event)]) A = text.text(event_x, 8.1, r"\bf \texttt{[0x%02x]} %s" % (event.id, event.name), self.texteventsubscribedrotattrs) c.insert(A) # Store most left position try: eventsLeft[event.name] = event_x except: pass eventsRight[event.name] = event_x event_x = event_x + 0.1 ### Draw actions if selected if self.options.actions: action_x = event_x for action in component.actions: c.stroke(path.line(action_x, 8.05, action_x, 9.75), [style.linewidth.THick, color.rgb(0.0, 0.5, 0.1), deco.earrow([deco.stroked([color.rgb(0.0, 0.5, 0.1), style.linejoin.round]), deco.filled([color.rgb(0.0, 0.5, 0.1)])], size=0.05)]) A = text.text(action_x, 8.1, r"\bf %s" % action.name, self.textactionrotattrs) c.insert(A) action_x = action_x + 0.1 ### Now we know from where to where to draw the thick lines # horizontal lines for events # eventsLeft = SingleAssignDictionary('EventLeft') # eventsRight = SingleAssignDictionary('EventRight') for event in self.tree.events: event_y = self.get_y(event) try: event_x_left = eventsLeft[event.name] event_x_right = eventsRight[event.name] c.stroke(path.line(event_x_left, event_y, event_x_right, event_y), [style.linewidth.THick, color.grey(0.40)]) except: pass ### Draw everything in the right order for p in eventArrowsSource: c.stroke(p, [style.linewidth.THick, color.rgb.red, deco.earrow([deco.stroked([color.rgb.red, style.linejoin.round]), deco.filled([color.rgb.red])], size=0.05)]) for p in eventArrowsSink: c.stroke(p, [style.linewidth.THick, color.rgb.blue, deco.earrow([deco.stroked([color.rgb.blue, style.linejoin.round]), deco.filled([color.rgb.blue])], size=0.05)]) for x, y in eventCirclesSource: c.fill(path.circle(x, y, 0.02), [color.rgb.red]) for x, y in eventCirclesSink: c.fill(path.circle(x, y, 0.02), [color.rgb.blue]) for x, y in eventCirclesSinkless: c.stroke(path.circle(x, y, 0.02), [style.linewidth.THick, color.rgb.red]) for x, y in eventCirclesSourcless: c.stroke(path.circle(x, y, 0.02), [style.linewidth.THick, color.rgb.blue]) ### Write the PDF if os.path.splitext(self.options.outpath)[1] == '': file = os.path.join(self.options.outpath, 'system.pdf') else: file = self.options.outpath c.writePDFfile(file) print "The system layout is shown in ", file def setup(self, optparser): optparser.add_option( "-a", "--actions", action="store_true", dest = "actions", default = False, help = "Also display actions of components [optional]") optparser.add_option( "-s", "--skip", action = "append", dest = "skipList", help = "Skip containers, e.g. simulator.") if __name__ == '__main__': SystemLayoutBuilder().run()
from freeipa_base_action_test_case import FreeIPABaseActionTestCase import ipa_action from ipa_command_args_options import IPA_COMMAND_ARGS_OPTIONS import copy import mock import requests class TestActionsIpaAction(FreeIPABaseActionTestCase): __test__ = True action_cls = ipa_action.IpaAction def test_init(self): action = self.get_action_instance({}) self.assertIsInstance(action, ipa_action.IpaAction) self.assertIsInstance(action.session, requests.Session) def test__resolve_connection_from_config(self): action = self.get_action_instance(self.config_good) connection_name = 'base' connection_config = self.config_good['connections'][connection_name] connection_expected = {'connection': connection_name} connection_expected.update(connection_config) connection_result = action._resolve_connection(connection=connection_name) self.assertEqual(connection_result, connection_expected) def test__resolve_connection_from_config_missing(self): action = self.get_action_instance(self.config_good) connection_name = 'this_connection_doesnt_exist' with self.assertRaises(KeyError): action._resolve_connection(connection=connection_name) def test__resolve_connection_from_config_defaults(self): action = self.get_action_instance(self.config_good) connection_name = 'base' connection_config = self.config_good['connections'][connection_name] connection_expected = {'connection': connection_name} connection_expected.update(connection_config) connection_result = action._resolve_connection(connection=connection_name) self.assertEqual(connection_result, connection_expected) def test__resolve_connection_from_kwargs(self): action = self.get_action_instance(self.config_blank) kwargs = {'connection': None, 'server': 'kwargs_server', 'username': 'kwargs_user', 'password': 'kwargs_password'} connection_expected = copy.deepcopy(kwargs) connection_result = action._resolve_connection(**kwargs) self.assertEqual(connection_result, connection_expected) def test__resolve_connection_from_kwargs_defaults(self): action = self.get_action_instance(self.config_blank) kwargs = {'connection': None, 'server': 'kwargs_server', 'username': 'kwargs_user', 'password': 'kwargs_password'} connection_expected = copy.deepcopy(kwargs) connection_result = action._resolve_connection(**kwargs) self.assertEqual(connection_result, connection_expected) def test__resolve_connection_from_kwargs_extras(self): action = self.get_action_instance(self.config_blank) kwargs = {'connection': None, 'server': 'kwargs_server', 'username': 'kwargs_user', 'password': 'kwargs_password', "extra_key1": "extra_value1", "extra_key2": 234} connection_expected = copy.deepcopy(kwargs) connection_result = action._resolve_connection(**kwargs) self.assertEqual(connection_result, connection_expected) def test__resolve_connection_kwargs_overwrites_config(self): action = self.get_action_instance(self.config_good) connection_name = 'full' connection_config = self.config_good['connections'][connection_name] kwargs = {'connection': connection_name, 'server': 'kwargs_server', 'username': 'kwargs_user'} connection_expected = copy.deepcopy(kwargs) connection_expected['password'] = connection_config['password'] connection_expected['verify_ssl'] = connection_config['verify_ssl'] connection_result = action._resolve_connection(**kwargs) self.assertEqual(connection_result, connection_expected) def test__validate_connection(self): action = self.get_action_instance(self.config_blank) connection = {} for key in ipa_action.CONNECTION_OPTIONS: connection[key] = "dummy value" result = action._validate_connection(connection) self.assertTrue(result) def test__validate_connection_missing_raises(self): action = self.get_action_instance(self.config_blank) connection = {} with self.assertRaises(KeyError): action._validate_connection(connection) def test__validate_connection_none_raises(self): action = self.get_action_instance(self.config_blank) connection = {} for key in ipa_action.CONNECTION_OPTIONS: connection[key] = None with self.assertRaises(KeyError): action._validate_connection(connection) def test__ipa_url(self): action = self.get_action_instance(self.config_blank) expected = "https://server.domain.tld/ipa/api/host_add" result = action._ipa_url("server.domain.tld", "/api/host_add") self.assertEqual(result, expected) def test__ipa_url_no_endpoint(self): action = self.get_action_instance(self.config_blank) expected = "https://server.domain.tld/ipa" result = action._ipa_url("server.domain.tld") self.assertEqual(result, expected) def test__login_success(self): # setup action = self.get_action_instance(self.config_good) connection = self.config_good['connections']['base'] expected_session = "session123" mock_response = mock.Mock(cookies={'ipa_session': expected_session}, reason=None, status_code=200) mock_session = mock.Mock() mock_session.post.return_value = mock_response action.session = mock_session url = 'https://{0}/ipa/session/login_password'.format(connection['server']) headers = {"referer": 'https://{0}/ipa'.format(connection['server']), "Content-Type": "application/x-www-form-urlencoded", "Accept": "text/plain"} payload = 'user={0}&password={1}'.format(connection['username'], connection['password']) # execute result = action._login(connection) # verify mock_session.post.assert_called_with(url, headers=headers, data=payload) self.assertEqual(result, expected_session) def test__login_error(self): # setup action = self.get_action_instance(self.config_good) connection = self.config_good['connections']['base'] mock_response = mock.Mock(cookies={'xxx': ''}, reason=None, status_code=200) mock_session = mock.Mock() mock_session.post.return_value = mock_response action.session = mock_session url = 'https://{0}/ipa/session/login_password'.format(connection['server']) headers = {"referer": 'https://{0}/ipa'.format(connection['server']), "Content-Type": "application/x-www-form-urlencoded", "Accept": "text/plain"} payload = 'user={0}&password={1}'.format(connection['username'], connection['password']) # execute with self.assertRaises(RuntimeError): action._login(connection) # verify mock_session.post.assert_called_with(url, headers=headers, data=payload) def test__login_http_error(self): # setup action = self.get_action_instance(self.config_good) connection = self.config_good['connections']['base'] mock_response = mock.Mock(cookies={'xxx': ''}, reason=None, status_code=401) mock_session = mock.Mock() mock_session.post.return_value = mock_response action.session = mock_session url = 'https://{0}/ipa/session/login_password'.format(connection['server']) headers = {"referer": 'https://{0}/ipa'.format(connection['server']), "Content-Type": "application/x-www-form-urlencoded", "Accept": "text/plain"} payload = 'user={0}&password={1}'.format(connection['username'], connection['password']) # execute with self.assertRaises(requests.HTTPError): action._login(connection) # verify mock_session.post.assert_called_with(url, headers=headers, data=payload) def test__create_payload(self): action = self.get_action_instance(self.config_good) method = 'hostgroup_show' args = IPA_COMMAND_ARGS_OPTIONS[method]['args'] options = IPA_COMMAND_ARGS_OPTIONS[method]['options'] kwargs = { 'method': method, } expected_args = [] for i, a in enumerate(args): kwargs[a] = i expected_args.append(i) expected_options = {} for i, o in enumerate(options): kwargs[o] = i expected_options[o] = i result = action._create_payload(**kwargs) self.assertEqual(result, { "id": 0, "method": method, "params": [ expected_args, expected_options, ], }) def test__create_payload_api_version(self): action = self.get_action_instance(self.config_good) method = 'hostgroup_show' args = IPA_COMMAND_ARGS_OPTIONS[method]['args'] options = IPA_COMMAND_ARGS_OPTIONS[method]['options'] kwargs = { 'method': method, } expected_args = [] for i, a in enumerate(args): kwargs[a] = i expected_args.append(i) expected_options = {} for i, o in enumerate(options): kwargs[o] = i expected_options[o] = i expected_options['version'] = 99 result = action._create_payload(api_version=99, **kwargs) self.assertEqual(result, { "id": 0, "method": method, "params": [ expected_args, expected_options, ], }) def test__execute_success(self): # setup action = self.get_action_instance(self.config_good) connection = self.config_good['connections']['base'] server = connection['server'] session = "session123" method = 'hostgroup_show' args = IPA_COMMAND_ARGS_OPTIONS[method]['args'] options = IPA_COMMAND_ARGS_OPTIONS[method]['options'] kwargs = { 'method': method, } expected_args = [] for i, a in enumerate(args): kwargs[a] = i expected_args.append(i) expected_options = {} for i, o in enumerate(options): kwargs[o] = i expected_options[o] = i expected_dict = {'result': 'value'} mock_response = mock.Mock(reason=None, status_code=200) mock_response.json.return_value = expected_dict mock_session = mock.Mock() mock_session.post.return_value = mock_response action.session = mock_session url = 'https://{0}/ipa/session/json'.format(server) headers = {"referer": 'https://{0}/ipa'.format(server), "Content-Type": "application/json", "Accept": "application/json"} payload = {"id": 0, "method": kwargs['method'], "params": [expected_args, expected_options]} # execute result = action._execute(session, server, **kwargs) # verify mock_session.post.assert_called_with(url, headers=headers, json=payload, cookies={'ipa_session': session}) self.assertEqual(result, (True, expected_dict)) def test__execute_error(self): # setup action = self.get_action_instance(self.config_good) connection = self.config_good['connections']['base'] server = connection['server'] session = "session123" method = 'hostgroup_show' args = IPA_COMMAND_ARGS_OPTIONS[method]['args'] options = IPA_COMMAND_ARGS_OPTIONS[method]['options'] kwargs = { 'method': method, } expected_args = [] for i, a in enumerate(args): kwargs[a] = i expected_args.append(i) expected_options = {} for i, o in enumerate(options): kwargs[o] = i expected_options[o] = i expected_dict = {'error': 'value'} expected_result = (False, expected_dict) mock_response = mock.Mock(reason=None, status_code=200) mock_response.json.return_value = expected_dict mock_session = mock.Mock() mock_session.post.return_value = mock_response action.session = mock_session url = 'https://{0}/ipa/session/json'.format(server) headers = {"referer": 'https://{0}/ipa'.format(server), "Content-Type": "application/json", "Accept": "application/json"} payload = {"id": 0, "method": kwargs['method'], "params": [expected_args, expected_options]} # execute result = action._execute(session, server, **kwargs) # verify mock_session.post.assert_called_with(url, headers=headers, json=payload, cookies={'ipa_session': session}) self.assertEqual(result, expected_result) def test__execute_http_error(self): # setup action = self.get_action_instance(self.config_good) connection = self.config_good['connections']['base'] server = connection['server'] session = "session123" method = 'hostgroup_show' args = IPA_COMMAND_ARGS_OPTIONS[method]['args'] options = IPA_COMMAND_ARGS_OPTIONS[method]['options'] kwargs = { 'method': method, } expected_args = [] for i, a in enumerate(args): kwargs[a] = i expected_args.append(i) expected_options = {} for i, o in enumerate(options): kwargs[o] = i expected_options[o] = i mock_response = mock.Mock(reason=None, status_code=400) mock_session = mock.Mock() mock_session.post.return_value = mock_response action.session = mock_session url = 'https://{0}/ipa/session/json'.format(server) headers = {"referer": 'https://{0}/ipa'.format(server), "Content-Type": "application/json", "Accept": "application/json"} payload = {"id": 0, "method": kwargs['method'], "params": [expected_args, expected_options]} # execute with self.assertRaises(requests.HTTPError): action._execute(session, server, **kwargs) # verify mock_session.post.assert_called_with(url, headers=headers, json=payload, cookies={'ipa_session': session}) @mock.patch('ipa_action.IpaAction._execute') def test__get_api_version(self, mock__execute): # setup action = self.get_action_instance(self.config_blank) ping_good = True data = {'result': {'summary': "API version 1.234"}} mock__execute.return_value = (ping_good, data) session = 'session123' server = 'server.domain.tld' # execute result = action._get_api_version(session, server) # verify self.assertEqual(result, "1.234") @mock.patch('ipa_action.IpaAction._execute') def test__get_api_version_missing(self, mock__execute): # setup action = self.get_action_instance(self.config_blank) ping_good = True data = {'result': {}} mock__execute.return_value = (ping_good, data) session = 'session123' server = 'server.domain.tld' # execute result = action._get_api_version(session, server) # verify self.assertEqual(result, None) @mock.patch('ipa_action.IpaAction._execute') def test__get_api_version_bad_ping(self, mock__execute): # setup action = self.get_action_instance(self.config_blank) ping_good = False data = {'result': {'summary': "API version 1.234"}} mock__execute.return_value = (ping_good, data) session = 'session123' server = 'server.domain.tld' # execute result = action._get_api_version(session, server) # verify self.assertEqual(result, None) @mock.patch('ipa_action.IpaAction._execute') def test__get_api_version_bad_regex(self, mock__execute): # setup action = self.get_action_instance(self.config_blank) ping_good = True data = {'result': {'summary': "API version bad string 1.234"}} mock__execute.return_value = (ping_good, data) session = 'session123' server = 'server.domain.tld' # execute result = action._get_api_version(session, server) # verify self.assertEqual(result, None) def test_run_login_existing_session(self): # setup action = self.get_action_instance(self.config_blank) kwargs_dict = {'method': 'login', 'session': 'session123', 'server': 'server.domain.tld', 'username': 'test', 'password': 'abc123', 'verify_ssl': False} # execute result = action.run(**kwargs_dict) # verify self.assertEqual(result, 'session123') self.assertEqual(action.session.verify, False) @mock.patch('ipa_action.IpaAction._login') def test_run_login_missing_session(self, mock__login): # setup action = self.get_action_instance(self.config_blank) kwargs_dict = {'method': 'login', 'server': 'server.domain.tld', 'session': None, 'username': 'username123', 'password': 'password123', 'verify_ssl': True} mock__login.return_value = 'session123' # execute result = action.run(**kwargs_dict) # verify self.assertEqual(result, 'session123') self.assertEqual(action.session.verify, True) @mock.patch('ipa_action.IpaAction._get_api_version') @mock.patch('ipa_action.IpaAction._execute') def test_run_execute(self, mock__execute, mock__get_api_version): # setup action = self.get_action_instance(self.config_blank) kwargs = {'method': 'host_add', 'session': 'session123', 'server': 'server.domain.tld', 'username': 'username123', 'password': 'password123', 'verify_ssl': True} mock__get_api_version.return_value = '1.234' mock__execute.return_value = (True, {'data': 'value'}) # execute result = action.run(**kwargs) # verify self.assertEqual(result, (True, {'data': 'value'})) self.assertEqual(action.session.verify, True) mock__get_api_version.assert_called_with('session123', 'server.domain.tld') mock__execute.assert_called_with('session123', 'server.domain.tld', method='host_add', api_version='1.234', username='username123', password='password123')
#!/usr/bin/env python __author__ = 'heroico' ######################################################################################################################## # Gathers statistics on allele information. # Produces a csv with the following columns: # rsid,chromosome,wdb_ref_allele,wdb_eff_allele,legend_ref_allele,legend_eff_allele,legend_type,gwas_ref_allele,gwas_eff_allele,gwas_OR_BETA # # TODO: needs maintenance import logging import os import metax.ThousandGenomesUtilities as ThousandGenomesUtilities import metax.GWASUtilities as GWASUtilities import metax.Utilities as Utilities import metax.WeightDBUtilities as WeightDBUtilities import metax.Logging as Logging class AlleleStats(object): def __init__(self, rsid, chromosome, weight_db_entry): self.rsid = rsid self.chromosome = chromosome self.weight_db_ref_allele = weight_db_entry.ref_allele self.weight_db_eff_allele = weight_db_entry.eff_allele self.gwas_ref_allele = "NA" self.gwas_eff_allele = "NA" self.gwas_OR_BETA = "NA" self.legend_type = "NA" self.legend_ref_allele = "NA" self.legend_eff_allele = "NA" def getGWASEntryData(self, gwas_entry): if gwas_entry: self.gwas_ref_allele = gwas_entry[GWASUtilities.GWASSNPInfoLineCollector.A1] self.gwas_eff_allele = gwas_entry[GWASUtilities.GWASSNPInfoLineCollector.A2] self.gwas_OR_BETA = gwas_entry[GWASUtilities.GWASSNPInfoLineCollector.OR_BETA] else: self.gwas_ref_allele = "NA" self.gwas_eff_allele = "NA" self.gwas_OR_BETA = "NA" def getLegendData(self, type, a0, a1): self.legend_type = type if type is not None else "NA" self.legend_ref_allele = a0 if a0 is not None else "NA" self.legend_eff_allele = a1 if a1 is not None else "NA" def toCSVLine(self): tuple = (self.rsid, self.chromosome, self.weight_db_ref_allele, self.weight_db_eff_allele, self.legend_ref_allele, self.legend_eff_allele, self.legend_type, self.gwas_ref_allele, self.gwas_eff_allele, self.gwas_OR_BETA) line = "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n" % tuple return line @classmethod def CSVHeader(cls): return "rsid,chromosome,wdb_ref_allele,wdb_eff_allele,legend_ref_allele,legend_eff_allele,legend_type,gwas_ref_allele,gwas_eff_allele,gwas_OR_BETA\n" class ProcessAlleleStatistics(object): def __init__(self, args): self.data_folder = args.data_folder self.weight_db = args.weight_db self.db_path = os.path.join(self.data_folder, args.weight_db) self.data_folder_phase = args.phase_folder self.data_folder_gwas_dosage = args.gwas_dosage_folder self.output_file = args.output_file def run(self): if os.path.exists(self.output_file): logging.info("File %s already exists, delete it if you want it calculated again", self.output_file) return logging.info("Opening %s", self.weight_db) weight_db_logic = WeightDBUtilities.WeightDBEntryLogic(self.db_path) CHROMOSOMES = ["chr"+str(x) for x in xrange(1, 23)] dosage_names = Utilities.dosageNamesFromFolder(self.data_folder_gwas_dosage) legend_names = Utilities.legendNamesFromFolder(self.data_folder_phase) findings={} for chromosome in CHROMOSOMES: logging.info("Processing chromosome %s", chromosome) dosage_name = Utilities.removeNameWithPatterns(dosage_names, [chromosome+"."]) dosage = self.loadDosageFile(self.data_folder_gwas_dosage, dosage_name) self.processDosage(chromosome, weight_db_logic, dosage, findings) legend_name = Utilities.removeNameEndingWith(legend_names, chromosome) self.processLegendName(chromosome, weight_db_logic, dosage, findings, legend_name) with open(self.output_file, "w") as file: file.write(AlleleStats.CSVHeader()) def sortByChromosome(finding): return finding.chromosome entries = sorted(findings.values(), key=sortByChromosome) for finding in entries: line = finding.toCSVLine() file.write(line) def loadDosageFile(self, base_path, name): callback = GWASUtilities.GWASSNPInfoLineCollector() dosage_loader = GWASUtilities.GWASDosageFileLoader(base_path, name, callback) keyed_data_set = dosage_loader.load() return keyed_data_set def processDosage(self, chromosome, weight_db_logic, dosage, findings): ok = 0 for rsid, dosage_entry in dosage.values_by_key.iteritems(): weight_db_entry = weight_db_logic.anEntryWithRSID(rsid) if not weight_db_entry: logging.log(7, "%s in dosage not in weights", rsid) continue a1 = dosage_entry[GWASUtilities.GWASSNPInfoLineCollector.A1] a2 = dosage_entry[GWASUtilities.GWASSNPInfoLineCollector.A2] OR= dosage_entry[GWASUtilities.GWASSNPInfoLineCollector.OR] if not weight_db_entry.ref_allele == a1 or \ not weight_db_entry.eff_allele == a2 or \ OR == "NA": logging.log(7, "%s in dosage is problematic (%s, %s)(%s, %s, %s)", rsid, weight_db_entry.ref_allele, weight_db_entry.eff_allele, a1, a2, OR) finding = appropriateFinding(findings, rsid, chromosome, weight_db_entry) finding.getGWASEntryData(dosage_entry) continue ok += 1 logging.log(8,"After processing dosage, %d snps were found to be ok", ok) def processLegendName(self, chromosome, weight_db_logic, dosage, findings, legend_name): class LegendCallback(object): def __init__(self): pass def __call__(self, i, comps): id = comps[ThousandGenomesUtilities.ILTF.ID] id_components = id.split(':') rsid = id_components[0] weight_db_entry = weight_db_logic.anEntryWithRSID(rsid) if not weight_db_entry: logging.log(8, "rsid %s from legend not in db, %s", rsid, id) return type = comps[ThousandGenomesUtilities.ILTF.TYPE] a0 = comps[ThousandGenomesUtilities.ILTF.A0] a1 = comps[ThousandGenomesUtilities.ILTF.A1] if rsid in findings: finding = findings[rsid] finding.getLegendData(type, a0, a1) move_on = True if not type == "Biallelic_SNP": logging.log(8, "%s %s Not biallelic: %s", chromosome, id, type) move_on = False else: if (a0 == 'T' and a1 == 'A') or \ (a0 == 'A' and a1 == 'T') or \ (a0 == 'C' and a1 == 'G') or \ (a0 == 'G' and a1 == 'C'): logging.log(8, "%s %s Problematic: %s, %s", chromosome, id, a0, a1) move_on = False if not weight_db_entry.ref_allele == a0 or \ not weight_db_entry.eff_allele == a1: logging.log(8, "%s %s Different alleles %s %s", chromosome, id, a0, a1) move_on = False if not move_on: finding = appropriateFinding(findings, rsid, chromosome, weight_db_entry) finding.getLegendData(type,a0,a1) dosage_entry = None if rsid in dosage.values_by_key: dosage_entry = dosage.values_by_key[rsid] finding.getGWASEntryData(dosage_entry) callback = LegendCallback() loader = ThousandGenomesUtilities.LEGENDLoader(self.data_folder_phase, legend_name) loader.iterateOverFileLegends(callback) def appropriateFinding(findings, rsid, chromosome, weight_db_entry): finding = None if rsid in findings: finding = findings[rsid] else: finding = AlleleStats(rsid, chromosome, weight_db_entry) findings[rsid] = finding return finding if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Build correlations from PHASE3 data and weights database.') parser.add_argument("--data_folder", help="higher level data folder", default="data") parser.add_argument("--weight_db", help="name of weight db in data folder", default="DGN-WB_0.5.db") parser.add_argument("--phase_folder", help="name of folder containing PHASE 3 data", default="data/1000GP_Phase3") parser.add_argument("--gwas_dosage_folder", help="name of folder containing dosage data", default="data/T1D-GWAS") parser.add_argument("--output_file", help="name of file to dump results in", default="results/allele_stats.csv") args = parser.parse_args() Logging.configureLogging(logging.INFO) work = ProcessAlleleStatistics(args) work.run()
""" Basic tests of DatasetAssembler. Some features are testsed in other sibling test files, such as alternative naming conventions. """ from datetime import datetime, timezone from pathlib import Path from pprint import pprint from textwrap import dedent from uuid import UUID import numpy import pytest from ruamel import yaml from eodatasets3 import DatasetAssembler, DatasetPrepare, namer, serialise from eodatasets3.images import GridSpec from eodatasets3.model import DatasetDoc from tests import assert_file_structure from tests.common import assert_expected_eo3_path, assert_same def test_dea_style_package( l1_ls8_dataset: DatasetDoc, l1_ls8_dataset_path: Path, tmp_path: Path ): out = tmp_path [blue_geotiff_path] = l1_ls8_dataset_path.rglob("L*_B2.TIF") with DatasetAssembler(out, naming_conventions="dea") as p: # We add a source dataset, asking to inherit the common properties (eg. platform, instrument, datetime) p.add_source_path(l1_ls8_dataset_path, auto_inherit_properties=True) # It's a GA product of "numerus-unus" ("the number one"). p.producer = "ga.gov.au" p.product_family = "ones" p.dataset_version = "3.0.0" # Known properties are normalised (see tests at bottom of file) p.platform = "LANDSAT_8" # to: 'landsat-8' p.processed = "2016-03-04 14:23:30Z" # into a date. p.maturity = "FINAL" # lowercased p.properties["eo:off_nadir"] = "34" # into a number # Write a measurement from a numpy array, using the source dataset's grid spec. p.write_measurement_numpy( "ones", numpy.ones((60, 60), numpy.int16), GridSpec.from_dataset_doc(l1_ls8_dataset), nodata=-999, ) # Copy a measurement from an input file (it will write a COG with DEA naming conventions) p.write_measurement("blue", blue_geotiff_path) # Alternatively, all measurements could be by reference rather that a copy: # p.note_measurement("external_blue", blue_geotiff_path) # (See an example of referencing in eodatasets3/prepare/landsat_l1_prepare.py ) # Write a thumbnail using the given bands as r/g/b. p.write_thumbnail("ones", "ones", "blue") # Write a singleband thumbnail using a bit flag p.write_thumbnail_singleband("blue", bit=1, kind="singleband") # Write a singleband thumbnail using a lookuptable p.write_thumbnail_singleband( "blue", lookup_table={1: (0, 0, 255)}, kind="singleband_lut" ) # Note any software versions important to this created data. p.note_software_version( "numerus-unus-processor", "https://github.com/GeoscienceAustralia/eo-datasets", "1.2.3", ) # p.done() will validate the dataset and write it to the destination atomically. dataset_id, metadata_path = p.done() assert isinstance(dataset_id, UUID), "Expected a random UUID to be assigned" out = tmp_path / "ga_ls8c_ones_3/090/084/2016/01/21" assert out == metadata_path.parent assert_file_structure( out, { "ga_ls8c_ones_3-0-0_090084_2016-01-21_final.odc-metadata.yaml": "", "ga_ls8c_ones_3-0-0_090084_2016-01-21_final_blue.tif": "", "ga_ls8c_ones_3-0-0_090084_2016-01-21_final_ones.tif": "", "ga_ls8c_ones_3-0-0_090084_2016-01-21_final_thumbnail.jpg": "", "ga_ls8c_ones_3-0-0_090084_2016-01-21_final.proc-info.yaml": "", "ga_ls8c_ones_3-0-0_090084_2016-01-21_final.sha1": "", "ga_ls8c_ones_3-0-0_090084_2016-01-21_final_singleband-thumbnail.jpg": "", "ga_ls8c_ones_3-0-0_090084_2016-01-21_final_singleband-lut-thumbnail.jpg": "", }, ) # TODO: check sha1 checksum list. assert_expected_eo3_path( { "$schema": "https://schemas.opendatacube.org/dataset", "id": dataset_id, "label": "ga_ls8c_ones_3-0-0_090084_2016-01-21_final", "product": { # This was added automatically because we chose 'dea' conventions. "href": "https://collections.dea.ga.gov.au/product/ga_ls8c_ones_3", "name": "ga_ls8c_ones_3", }, "crs": "epsg:32655", "geometry": { "coordinates": [ [ [879_315.0, -3_714_585.0], [641_985.0, -3_714_585.0], [641_985.0, -3_953_115.0], [879_315.0, -3_953_115.0], [879_315.0, -3_714_585.0], ] ], "type": "Polygon", }, "grids": { # Note that the two bands had identical grid specs, so it combined them into one grid. "default": { "shape": [60, 60], "transform": [ 3955.5, 0.0, 641_985.0, 0.0, -3975.500_000_000_000_5, -3_714_585.0, 0.0, 0.0, 1.0, ], } }, "measurements": { "blue": {"path": "ga_ls8c_ones_3-0-0_090084_2016-01-21_final_blue.tif"}, "ones": {"path": "ga_ls8c_ones_3-0-0_090084_2016-01-21_final_ones.tif"}, }, "properties": { "datetime": datetime(2016, 1, 21, 23, 50, 23, 54435), "dea:dataset_maturity": "final", "odc:dataset_version": "3.0.0", "odc:file_format": "GeoTIFF", "odc:processing_datetime": "2016-03-04T14:23:30", "odc:producer": "ga.gov.au", "odc:product_family": "ones", # The remaining fields were inherited from the source dataset # (because we set auto_inherit_properties=True, and they're in the whitelist) "eo:platform": "landsat-8", # matching Stac's examples for capitalisation. "eo:instrument": "OLI_TIRS", # matching Stac's examples for capitalisation. "eo:cloud_cover": 93.22, "eo:off_nadir": 34.0, "eo:gsd": 15.0, "eo:sun_azimuth": 74.007_443_8, "eo:sun_elevation": 55.486_483, "landsat:collection_category": "T1", "landsat:collection_number": 1, "landsat:landsat_product_id": "LC08_L1TP_090084_20160121_20170405_01_T1", "landsat:landsat_scene_id": "LC80900842016021LGN02", "landsat:wrs_path": 90, "landsat:wrs_row": 84, "odc:region_code": "090084", }, "accessories": { # It wrote a checksum file for all of our files. "checksum:sha1": { "path": "ga_ls8c_ones_3-0-0_090084_2016-01-21_final.sha1" }, # We didn't add any extra processor metadata, so this just contains # some software versions. "metadata:processor": { "path": "ga_ls8c_ones_3-0-0_090084_2016-01-21_final.proc-info.yaml" }, # The thumbnails we made. "thumbnail": { "path": "ga_ls8c_ones_3-0-0_090084_2016-01-21_final_thumbnail.jpg" }, "thumbnail:singleband": { "path": "ga_ls8c_ones_3-0-0_090084_2016-01-21_final_singleband-thumbnail.jpg" }, "thumbnail:singleband_lut": { "path": "ga_ls8c_ones_3-0-0_090084_2016-01-21_final_singleband-lut-thumbnail.jpg" }, }, "lineage": {"level1": ["a780754e-a884-58a7-9ac0-df518a67f59d"]}, }, metadata_path, ) def test_minimal_package_with_product_name(tmp_path: Path, l1_ls8_folder: Path): """ You can specify an ODC product name manually to avoid most of the name generation. """ out = tmp_path / "out" out.mkdir() [blue_geotiff_path] = l1_ls8_folder.rglob("L*_B2.TIF") with DatasetAssembler(out) as p: p.datetime = datetime(2019, 7, 4, 13, 7, 5) p.product_name = "loch_ness_sightings" p.processed = datetime(2019, 7, 4, 13, 8, 7) p.write_measurement("blue", blue_geotiff_path) dataset_id, metadata_path = p.done() assert dataset_id is not None assert_file_structure( out, { "loch_ness_sightings": { "2019": { "07": { "04": { # Set a dataset version to get rid of 'beta' label. "loch_ness_sightings_2019-07-04.odc-metadata.yaml": "", "loch_ness_sightings_2019-07-04.proc-info.yaml": "", "loch_ness_sightings_2019-07-04_blue.tif": "", "loch_ness_sightings_2019-07-04.sha1": "", } } } } }, ) def test_in_memory_dataset(tmp_path: Path, l1_ls8_folder: Path): """ You can create metadata fully in-memory, without touching paths. """ out = tmp_path / "out" out.mkdir() [blue_geotiff_path] = l1_ls8_folder.rglob("L*_B2.TIF") dataset_location = out / "my/custom/dataset/path/ls_whatever.stac-item.json" p = DatasetPrepare(dataset_location=dataset_location) p.datetime = datetime(2019, 7, 4, 13, 7, 5) p.product_name = "loch_ness_sightings" p.processed = datetime(2019, 7, 4, 13, 8, 7) pretend_path = dataset_location.parent / "our_image_dont_read_it.tif" p.note_measurement( "blue", pretend_path, # We give it grid information, so it doesn't have to read it itself. # (reading will fail if it tries, because the path is fake!) grid=GridSpec.from_path(blue_geotiff_path), pixels=numpy.ones((60, 60), numpy.int16), nodata=-1, ) dataset: DatasetDoc = p.to_dataset_doc() doc: dict = serialise.to_doc(dataset) # We're testing geometry calc in other tests. assert doc["geometry"] is not None, "Expected geometry" del doc["geometry"] assert doc["id"] is not None, "Expected an id" del doc["id"] # Users can ask the generator for file names: assert ( p.names.measurement_filename("red") == "loch_ness_sightings_2019-07-04_red.tif" ) # The computed file paths are relative to our given dataset location. out_url = out.as_uri() assert ( p.names.resolve_file(p.names.measurement_filename("red")) == f"{out_url}/my/custom/dataset/path/loch_ness_sightings_2019-07-04_red.tif" ) pprint(doc) assert_same( { "$schema": "https://schemas.opendatacube.org/dataset", "label": "loch_ness_sightings_2019-07-04", "crs": "epsg:32655", "measurements": {"blue": {"path": "our_image_dont_read_it.tif"}}, "product": {"name": "loch_ness_sightings"}, "properties": { "datetime": datetime(2019, 7, 4, 13, 7, 5, tzinfo=timezone.utc), "odc:processing_datetime": datetime( 2019, 7, 4, 13, 8, 7, tzinfo=timezone.utc ), "odc:product": "loch_ness_sightings", }, "grids": { "default": { "shape": [60, 60], "transform": [ 3955.5, 0.0, 641985.0, 0.0, -3975.5000000000005, -3714585.0, 0.0, 0.0, 1.0, ], } }, "accessories": {}, "lineage": {}, }, doc, ) def test_minimal_generated_naming_package(tmp_path: Path, l1_ls8_folder: Path): """ What's the minimum number of fields we can set and still generate file/product names to produce a package? """ out = tmp_path / "out" out.mkdir() [blue_geotiff_path] = l1_ls8_folder.rglob("L*_B2.TIF") with DatasetAssembler(out) as p: p.datetime = datetime(2019, 7, 4, 13, 7, 5) p.product_family = "quaternarius" p.processed_now() p.write_measurement("blue", blue_geotiff_path) # A friendly __str__ for notebook/terminal users: assert str(p) == dedent( f""" Assembling quaternarius (unfinished) - 1 measurements: blue - 4 properties: datetime, odc:file_format, odc:processing_datetime, odc:prod... Writing to location: {out}/quaternarius/2019/07/04/quaternarius_2019-07-04.odc-metadata.yaml """ ) # p.done() will validate the dataset and write it to the destination atomically. dataset_id, metadata_path = p.done() assert dataset_id is not None assert_file_structure( out, { "quaternarius": { "2019": { "07": { "04": { # Set a dataset version to get rid of 'beta' label. "quaternarius_2019-07-04.odc-metadata.yaml": "", "quaternarius_2019-07-04.proc-info.yaml": "", "quaternarius_2019-07-04_blue.tif": "", "quaternarius_2019-07-04.sha1": "", } } } } }, ) def test_generated_metadata_path(l1_ls7_tarball: Path): """ We can specify a dataset_location alone, such as a compressed tarball. The metadata path will be a sibling file, and measurements will be read from inside the tarball. """ with DatasetPrepare( # Our location is a Path() to a local tar (with suffix '.tar') dataset_location=l1_ls7_tarball ) as p: p.datetime = datetime(2019, 7, 4, 13, 7, 5) p.product_family = "tarred-product" p.processed_now() # When converting the Path() to a URL, it should convert tar paths to `tar://` scheme. expected_dataset_location = f"tar:{l1_ls7_tarball.as_posix()}!/" assert p.names.dataset_location == expected_dataset_location # relative-to-location means our resulting URL will be a file inside our tar location: p.note_measurement( "green", "LE07_L1TP_104078_20130429_20161124_01_T1_B2.TIF", relative_to_dataset_location=True, ) dataset_id, metadata_path = p.done(embed_location=True) # The generated metadata-path has the same name as the tar, but with ".odc-metadata.yaml" suffix. assert ( metadata_path == l1_ls7_tarball.parent / "LE07_L1TP_104078_20130429_20161124_01_T1.odc-metadata.yaml" ) assert_expected_eo3_path( { "$schema": "https://schemas.opendatacube.org/dataset", "label": "tarred_product_2019-07-04", "product": {"name": "tarred_product"}, "location": expected_dataset_location, "measurements": { "green": {"path": "LE07_L1TP_104078_20130429_20161124_01_T1_B2.TIF"} }, "accessories": {}, "lineage": {}, }, metadata_path, # Tested in other tests. We only care about paths. ignore_fields=["id", "properties", "geometry", "grids", "crs"], ) def test_dataset_no_measurements(tmp_path: Path): """Can we make a dataset with no measurements? (eg. telemetry data)""" with DatasetAssembler(tmp_path) as p: # A custom label too. p.label = "chipmonk_sightings_2019" p.datetime = datetime(2019, 1, 1) p.product_family = "chipmonk_sightings" p.processed_now() dataset_id, metadata_path = p.done() with metadata_path.open("r") as f: doc = yaml.YAML(typ="safe").load(f) assert doc["label"] == "chipmonk_sightings_2019", "Couldn't override label field" def test_dataset_given_properties(tmp_path: Path): """Can we give existing properties to the assembler?""" properties = { "datetime": datetime(2019, 1, 1), "odc:product_family": "chipmonk_sightings", "odc:processing_datetime": "2021-06-15T01:33:43.378850", } names = namer(properties=properties) with DatasetAssembler(tmp_path, names=names) as p: # It should have normalised properties! assert p.processed == datetime(2021, 6, 15, 1, 33, 43, 378850, timezone.utc) dataset_id, metadata_path = p.done() relative_path = metadata_path.relative_to(tmp_path) assert relative_path == Path( "chipmonk_sightings/2019/01/01/chipmonk_sightings_2019-01-01.odc-metadata.yaml" ) @pytest.mark.parametrize( "inherit_geom", [True, False], ids=["inherit geom from dataset", "don't inherit geom"], ) def test_add_source_dataset(tmp_path: Path, inherit_geom): from eodatasets3 import serialise p = DatasetAssembler(tmp_path, naming_conventions="dea_c3") source_dataset = serialise.from_path( Path(__file__).parent / "data/LC08_L1TP_089080_20160302_20170328_01_T1.yaml" ) p.add_source_dataset( source_dataset, auto_inherit_properties=True, inherit_geometry=inherit_geom ) if inherit_geom: assert p.geometry == source_dataset.geometry else: assert p.geometry is None p.maturity = "interim" p.collection_number = "3" p.dataset_version = "1.6.0" p.producer = "ga.gov.au" p.processed = "1998-07-30T12:23:23" p.product_family = "wofs" p.write_measurement( "water", Path(__file__).parent / "data/wofs/ga_ls_wofs_3_099081_2020-07-26_interim_water_clipped.tif", ) id, path = p.done() output = serialise.from_path(path) if inherit_geom: # POLYGON((609615 - 3077085, 378285 - 3077085, 378285 - 3310515, 609615 - 3310515, 609615 - 3077085)) assert output.geometry == source_dataset.geometry else: # POLYGON((684285 - 3439275, 684285 - 3444495, 689925 - 3444495, 689925 - 3439275, 684285 - 3439275)) # Geometry is not set from the source dataset, but instead from the added wofs measurement assert output.geometry is not None assert output.geometry != source_dataset.geometry
# -*- coding: utf-8 -*- """ pyrseas.dbobject.operclass ~~~~~~~~~~~~~~~~~~~~~~~~~~ This module defines two classes: OperatorClass derived from DbSchemaObject and OperatorClassDict derived from DbObjectDict. """ from pyrseas.dbobject import DbObjectDict, DbSchemaObject from pyrseas.dbobject import commentable, ownable class OperatorClass(DbSchemaObject): """An operator class""" keylist = ['schema', 'name', 'index_method'] objtype = "OPERATOR CLASS" single_extern_file = True def extern_key(self): """Return the key to be used in external maps for this operator :return: string """ return '%s %s using %s' % (self.objtype.lower(), self.name, self.index_method) def identifier(self): """Return a full identifier for an operator class :return: string """ return "%s USING %s" % (self.qualname(), self.index_method) def to_map(self, no_owner): """Convert operator class to a YAML-suitable format :return: dictionary """ dct = self._base_map(no_owner) if self.name == self.family: del dct['family'] return dct @commentable @ownable def create(self): """Return SQL statements to CREATE the operator class :return: SQL statements """ dflt = '' if hasattr(self, 'default') and self.default: dflt = "DEFAULT " clauses = [] for (strat, oper) in list(self.operators.items()): clauses.append("OPERATOR %d %s" % (strat, oper)) for (supp, func) in list(self.functions.items()): clauses.append("FUNCTION %d %s" % (supp, func)) if hasattr(self, 'storage'): clauses.append("STORAGE %s" % self.storage) return ["CREATE OPERATOR CLASS %s\n %sFOR TYPE %s USING %s " "AS\n %s" % ( self.qualname(), dflt, self.type, self.index_method, ',\n ' .join(clauses))] class OperatorClassDict(DbObjectDict): "The collection of operator classes in a database" cls = OperatorClass query = \ """SELECT nspname AS schema, opcname AS name, rolname AS owner, amname AS index_method, opfname AS family, opcintype::regtype AS type, opcdefault AS default, opckeytype::regtype AS storage, obj_description(o.oid, 'pg_opclass') AS description FROM pg_opclass o JOIN pg_am a ON (opcmethod = a.oid) JOIN pg_roles r ON (r.oid = opcowner) JOIN pg_opfamily f ON (opcfamily = f.oid) JOIN pg_namespace n ON (opcnamespace = n.oid) WHERE (nspname != 'pg_catalog' AND nspname != 'information_schema') AND o.oid NOT IN ( SELECT objid FROM pg_depend WHERE deptype = 'e' AND classid = 'pg_opclass'::regclass) ORDER BY nspname, opcname, amname""" opquery = \ """SELECT nspname AS schema, opcname AS name, amname AS index_method, amopstrategy AS strategy, amopopr::regoperator AS operator FROM pg_opclass o JOIN pg_am a ON (opcmethod = a.oid) JOIN pg_namespace n ON (opcnamespace = n.oid), pg_amop ao, pg_depend WHERE refclassid = 'pg_opclass'::regclass AND classid = 'pg_amop'::regclass AND objid = ao.oid AND refobjid = o.oid AND (nspname != 'pg_catalog' AND nspname != 'information_schema') AND o.oid NOT IN ( SELECT objid FROM pg_depend WHERE deptype = 'e' AND classid = 'pg_opclass'::regclass) ORDER BY nspname, opcname, amname, amopstrategy""" prquery = \ """SELECT nspname AS schema, opcname AS name, amname AS index_method, amprocnum AS support, amproc::regprocedure AS function FROM pg_opclass o JOIN pg_am a ON (opcmethod = a.oid) JOIN pg_namespace n ON (opcnamespace = n.oid), pg_amproc ap, pg_depend WHERE refclassid = 'pg_opclass'::regclass AND classid = 'pg_amproc'::regclass AND objid = ap.oid AND refobjid = o.oid AND (nspname != 'pg_catalog' AND nspname != 'information_schema') AND o.oid NOT IN ( SELECT objid FROM pg_depend WHERE deptype = 'e' AND classid = 'pg_opclass'::regclass) ORDER BY nspname, opcname, amname, amprocnum""" def _from_catalog(self): """Initialize the dictionary of operator classes from the catalogs""" for opclass in self.fetch(): if opclass.storage == '-': del opclass.storage self[opclass.key()] = OperatorClass(**opclass.__dict__) opers = self.dbconn.fetchall(self.opquery) self.dbconn.rollback() for (sch, opc, idx, strat, oper) in opers: opcls = self[(sch, opc, idx)] if not hasattr(opcls, 'operators'): opcls.operators = {} opcls.operators.update({strat: oper}) funcs = self.dbconn.fetchall(self.prquery) self.dbconn.rollback() for (sch, opc, idx, supp, func) in funcs: opcls = self[(sch, opc, idx)] if not hasattr(opcls, 'functions'): opcls.functions = {} opcls.functions.update({supp: func}) def from_map(self, schema, inopcls): """Initalize the dictionary of operator classes from the input map :param schema: schema owning the operator classes :param inopcls: YAML map defining the operator classes """ for key in inopcls: if not key.startswith('operator class ') or not ' using ' in key: raise KeyError("Unrecognized object type: %s" % key) pos = key.rfind(' using ') opc = key[15:pos] # 15 = len('operator class ') idx = key[pos + 7:] # 7 = len(' using ') inopcl = inopcls[key] self[(schema.name, opc, idx)] = opclass = OperatorClass( schema=schema.name, name=opc, index_method=idx) if not inopcl: raise ValueError("Operator '%s' has no specification" % opc) for attr, val in list(inopcl.items()): setattr(opclass, attr, val) if 'oldname' in inopcl: opclass.oldname = inopcl['oldname'] if 'description' in inopcl: opclass.description = inopcl['description'] def diff_map(self, inopcls): """Generate SQL to transform existing operator classes :param inopcls: a YAML map defining the new operator classes :return: list of SQL statements Compares the existing operator class definitions, as fetched from the catalogs, to the input map and generates SQL statements to transform the operator classes accordingly. """ stmts = [] # check input operator classes for (sch, opc, idx) in inopcls: inoper = inopcls[(sch, opc, idx)] # does it exist in the database? if (sch, opc, idx) not in self: if not hasattr(inoper, 'oldname'): # create new operator stmts.append(inoper.create()) else: stmts.append(self[(sch, opc, idx)].rename(inoper)) else: # check operator objects stmts.append(self[(sch, opc, idx)].diff_map(inoper)) # check existing operators for (sch, opc, idx) in self: oper = self[(sch, opc, idx)] # if missing, mark it for dropping if (sch, opc, idx) not in inopcls: oper.dropped = False return stmts def _drop(self): """Actually drop the operator classes :return: SQL statements """ stmts = [] for (sch, opc, idx) in self: oper = self[(sch, opc, idx)] if hasattr(oper, 'dropped'): stmts.append(oper.drop()) return stmts
import logging from collections import defaultdict from .. import Analysis from .annotations import StackLocationAnnotation from ..code_location import CodeLocation from ..forward_analysis import ForwardAnalysis, FunctionGraphVisitor from ... import BP, BP_AFTER from ...keyed_region import KeyedRegion from ...sim_variable import SimRegisterVariable, SimStackVariable, SimStackVariablePhi l = logging.getLogger("angr.analyses.variable_recovery.variable_recovery") class VariableRecoveryState(object): """ The abstract state of variable recovery analysis. :ivar angr.knowledge.variable_manager.VariableManager variable_manager: The variable manager. """ def __init__(self, variable_manager, arch, func_addr, concrete_states, stack_region=None, register_region=None): self.variable_manager = variable_manager # type: angr.knowledge.variable_manager.VariableManager self.arch = arch self.func_addr = func_addr self._concrete_states = concrete_states # self._state_per_instruction = { } if stack_region is not None: self.stack_region = stack_region else: self.stack_region = KeyedRegion() if register_region is not None: self.register_region = register_region else: self.register_region = KeyedRegion() # register callbacks self.register_callbacks(self.concrete_states) def __repr__(self): return "<VRAbstractState: %d register variables, %d stack variables>" % (len(self.register_region), len(self.stack_region)) @property def concrete_states(self): return self._concrete_states @concrete_states.setter def concrete_states(self, v): self._concrete_states = v def get_concrete_state(self, addr): """ :param addr: :return: """ for s in self.concrete_states: if s.ip._model_concrete.value == addr: return s return None def copy(self): state = VariableRecoveryState(self.variable_manager, self.arch, self.func_addr, self._concrete_states, stack_region=self.stack_region.copy(), register_region=self.register_region.copy(), ) return state def register_callbacks(self, concrete_states): """ :param concrete_states: :return: """ for concrete_state in concrete_states: # clear existing breakpoints # TODO: all breakpoints are removed. Fix this later by only removing breakpoints that we added for bp_type in ('reg_read', 'reg_write', 'mem_read', 'mem_write', 'instruction'): concrete_state.inspect._breakpoints[bp_type] = [ ] concrete_state.inspect.add_breakpoint('reg_read', BP(when=BP_AFTER, enabled=True, action=self._hook_register_read ) ) concrete_state.inspect.add_breakpoint('reg_write', BP(enabled=True, action=self._hook_register_write)) concrete_state.inspect.add_breakpoint('mem_read', BP(when=BP_AFTER, enabled=True, action=self._hook_memory_read ) ) concrete_state.inspect.add_breakpoint('mem_write', BP(enabled=True, action=self._hook_memory_write)) def merge(self, other): """ Merge two abstract states. :param VariableRecoveryState other: The other abstract state to merge. :return: The merged abstract state. :rtype: VariableRecoveryState """ # TODO: finish it merged_concrete_states = [ self._concrete_states[0] ] # self._merge_concrete_states(other) new_stack_region = self.stack_region.copy() new_stack_region.merge(other.stack_region) new_register_region = self.register_region.copy() new_register_region.merge(other.register_region) return VariableRecoveryState(self.variable_manager, self.arch, self.func_addr, merged_concrete_states, stack_region=new_stack_region, register_region=new_register_region ) def _merge_concrete_states(self, other): """ :param VariableRecoveryState other: :return: :rtype: list """ merged = [ ] for s in self.concrete_states: other_state = other.get_concrete_state(s.ip._model_concrete.value) if other_state is not None: s = s.merge(other_state) merged.append(s) return merged # # SimInspect callbacks # def _hook_register_read(self, state): reg_read_offset = state.inspect.reg_read_offset reg_read_length = state.inspect.reg_read_length if reg_read_offset == state.arch.sp_offset and reg_read_length == state.arch.bits / 8: # TODO: make sure the sp is not overwritten by something that we are not tracking return #if reg_read_offset == state.arch.bp_offset and reg_read_length == state.arch.bits / 8: # # TODO: var_offset = self._normalize_register_offset(reg_read_offset) if var_offset not in self.register_region: # the variable being read doesn't exist before variable = SimRegisterVariable(reg_read_offset, reg_read_length, ident=self.variable_manager[self.func_addr].next_variable_ident('register'), region=self.func_addr, ) self.register_region.add_variable(var_offset, variable) # record this variable in variable manager self.variable_manager[self.func_addr].add_variable('register', var_offset, variable) def _hook_register_write(self, state): reg_write_offset = state.inspect.reg_write_offset if reg_write_offset == state.arch.sp_offset: # it's updating stack pointer. skip return reg_write_expr = state.inspect.reg_write_expr reg_write_length = len(reg_write_expr) / 8 # annotate it # reg_write_expr = reg_write_expr.annotate(VariableSourceAnnotation.from_state(state)) state.inspect.reg_write_expr = reg_write_expr # create the variable variable = SimRegisterVariable(reg_write_offset, reg_write_length, ident=self.variable_manager[self.func_addr].next_variable_ident('register'), region=self.func_addr, ) var_offset = self._normalize_register_offset(reg_write_offset) self.register_region.set_variable(var_offset, variable) # record this variable in variable manager self.variable_manager[self.func_addr].add_variable('register', var_offset, variable) # is it writing a pointer to a stack variable into the register? # e.g. lea eax, [ebp-0x40] stack_offset = self._addr_to_stack_offset(reg_write_expr) if stack_offset is not None: # it is! # unfortunately we don't know the size. We use size None for now. if stack_offset not in self.stack_region: new_var = SimStackVariable(stack_offset, None, base='bp', ident=self.variable_manager[self.func_addr].next_variable_ident('stack'), region=self.func_addr, ) self.stack_region.add_variable(stack_offset, new_var) # record this variable in variable manager self.variable_manager[self.func_addr].add_variable('stack', stack_offset, new_var) base_offset = self.stack_region.get_base_addr(stack_offset) assert base_offset is not None for var in self.stack_region.get_variables_by_offset(stack_offset): self.variable_manager[self.func_addr].reference_at(var, stack_offset - base_offset, self._codeloc_from_state(state) ) def _hook_memory_read(self, state): mem_read_address = state.inspect.mem_read_address mem_read_length = state.inspect.mem_read_length stack_offset = self._addr_to_stack_offset(mem_read_address) if stack_offset is None: # it's not a stack access # TODO: pass else: if stack_offset not in self.stack_region: # this stack offset is not covered by any existing stack variable ident_sort = 'argument' if stack_offset > 0 else 'stack' variable = SimStackVariable(stack_offset, mem_read_length, base='bp', ident=self.variable_manager[self.func_addr].next_variable_ident(ident_sort), region=self.func_addr, ) self.stack_region.add_variable(stack_offset, variable) # record this variable in variable manager self.variable_manager[self.func_addr].add_variable('stack', stack_offset, variable) base_offset = self.stack_region.get_base_addr(stack_offset) assert base_offset is not None existing_variables = self.stack_region.get_variables_by_offset(stack_offset) if len(existing_variables) > 1: # create a phi node for all other variables ident_sort = 'argument' if stack_offset > 0 else 'stack' variable = SimStackVariablePhi( ident=self.variable_manager[self.func_addr].next_variable_ident(ident_sort), region=self.func_addr, variables=existing_variables, ) self.stack_region.set_variable(stack_offset, variable) self.variable_manager[self.func_addr].add_variable('stack', stack_offset, variable) for variable in self.stack_region.get_variables_by_offset(stack_offset): self.variable_manager[self.func_addr].read_from(variable, stack_offset - base_offset, self._codeloc_from_state(state)) def _hook_memory_write(self, state): mem_write_address = state.inspect.mem_write_address mem_write_expr = state.inspect.mem_write_expr mem_write_length = len(mem_write_expr) / 8 stack_offset = self._addr_to_stack_offset(mem_write_address) if stack_offset is None: # it's not a stack access # TODO: pass else: # we always add a new variable to keep it SSA variable = SimStackVariable(stack_offset, mem_write_length, base='bp', ident=self.variable_manager[self.func_addr].next_variable_ident('stack'), region=self.func_addr, ) self.stack_region.set_variable(stack_offset, variable) # record this variable in variable manager self.variable_manager[self.func_addr].add_variable('stack', stack_offset, variable) base_offset = self.stack_region.get_base_addr(stack_offset) assert base_offset is not None for variable in self.stack_region.get_variables_by_offset(stack_offset): self.variable_manager[self.func_addr].write_to(variable, stack_offset - base_offset, self._codeloc_from_state(state)) # # Util methods # def _normalize_register_offset(self, offset): #pylint:disable=no-self-use # TODO: return offset @staticmethod def _codeloc_from_state(state): return CodeLocation(state.scratch.bbl_addr, state.scratch.stmt_idx, ins_addr=state.scratch.ins_addr) def _to_signed(self, n): if n >= 2 ** (self.arch.bits - 1): # convert it to a negative number return n - 2 ** self.arch.bits return n def _addr_to_stack_offset(self, addr): """ Convert an address to a stack offset. :param claripy.ast.Base addr: The address to convert from. :return: A stack offset if the addr comes from the stack pointer, or None if the address does not come from the stack pointer. """ def _parse(addr): if addr.op == '__add__': # __add__ might have multiple arguments parsed = [ _parse(arg) for arg in addr.args ] annotated = [ True for annotated, _ in parsed if annotated is True ] if len(annotated) != 1: # either nothing is annotated, or more than one element is annotated raise ValueError() return True, sum([ offset for _, offset in parsed ]) elif addr.op == '__sub__': # __sub__ might have multiple arguments parsed = [ _parse(arg) for arg in addr.args ] first_annotated, first_offset = parsed[0] if first_annotated is False: # the first argument is not annotated. we don't support it. raise ValueError() if any([ annotated for annotated, _ in parsed[1:] ]): # more than one argument is annotated. we don't support it. raise ValueError() return True, first_offset - sum([ offset for _, offset in parsed[1:] ]) else: anno = next(iter(anno for anno in addr.annotations if isinstance(anno, StackLocationAnnotation)), None) if anno is None: if addr.op == 'BVV': return False, addr._model_concrete.value raise ValueError() return True, anno.offset # find the annotated AST try: annotated, offset = _parse(addr) except ValueError: return None if not annotated: return None return self._to_signed(offset) class VariableRecovery(ForwardAnalysis, Analysis): #pylint:disable=abstract-method """ Recover "variables" from a function using forced execution. While variables play a very important role in programming, it does not really exist after compiling. However, we can still identify and recovery their counterparts in binaries. It is worth noting that not every variable in source code can be identified in binaries, and not every recognized variable in binaries have a corresponding variable in the original source code. In short, there is no guarantee that the variables we identified/recognized in a binary are the same variables in its source code. This analysis uses heuristics to identify and recovers the following types of variables: - Register variables. - Stack variables. - Heap variables. - Global variables. This analysis takes a function as input, and performs a data-flow analysis on nodes. It runs concrete execution on every statement and hooks all register/memory accesses to discover all places that are accessing variables. It is slow, but has a more accurate analysis result. For a fast but inaccurate variable recovery, you may consider using VariableRecoveryFast. This analysis follows SSA, which means every write creates a new variable in registers or memory (statck, heap, etc.). Things may get tricky when overlapping variable (in memory, as you cannot really have overlapping accesses to registers) accesses exist, and in such cases, a new variable will be created, and this new variable will overlap with one or more existing varaibles. A decision procedure (which is pretty much TODO) is required at the end of this analysis to resolve the conflicts between overlapping variables. """ def __init__(self, func, max_iterations=20): """ :param knowledge.Function func: The function to analyze. """ function_graph_visitor = FunctionGraphVisitor(func) ForwardAnalysis.__init__(self, order_jobs=True, allow_merging=True, allow_widening=False, graph_visitor=function_graph_visitor) self.function = func self._node_to_state = { } self.variable_manager = self.kb.variables self._max_iterations = max_iterations self._node_iterations = defaultdict(int) self._analyze() # # Main analysis routines # def _pre_analysis(self): pass def _pre_job_handling(self, job): pass def _initial_abstract_state(self, node): concrete_state = self.project.factory.blank_state( addr=node.addr, mode='fastpath' # we don't want to do any solving ) # annotate the stack pointer concrete_state.regs.sp = concrete_state.regs.sp.annotate(StackLocationAnnotation(8)) # give it enough stack space concrete_state.regs.bp = concrete_state.regs.sp + 0x100000 return VariableRecoveryState(self.variable_manager, self.project.arch, self.function.addr, [ concrete_state ]) def _merge_states(self, node, *states): if len(states) == 1: return states[0] return reduce(lambda s_0, s_1: s_0.merge(s_1), states[1:], states[0]) def _run_on_node(self, node, state): """ :param angr.Block node: :param VariableRecoveryState state: :return: """ l.debug('Analyzing block %#x, iteration %d.', node.addr, self._node_iterations[node]) concrete_state = state.get_concrete_state(node.addr) if concrete_state is None: # didn't find any state going to here l.error("_run_on_node(): cannot find any state for address %#x.", node.addr) return False, state state = state.copy() if self._node_iterations[node] >= self._max_iterations: l.debug('Skip node %s as we have iterated %d times on it.', node, self._node_iterations[node]) return False, state state.register_callbacks([ concrete_state ]) successors = self.project.factory.successors(concrete_state, addr=node.addr, size=node.size, opt_level=0 # disable the optimization in order to have # instruction-level analysis results ) output_states = successors.all_successors state.concrete_states = output_states self._node_to_state[node.addr] = state self._node_iterations[node] += 1 return True, state def _intra_analysis(self): pass def _post_analysis(self): # TODO: only re-assign variable names to those that are newly changed self.variable_manager.initialize_variable_names() for addr, state in self._node_to_state.iteritems(): self.variable_manager[self.function.addr].set_live_variables(addr, state.register_region, state.stack_region ) from angr.analyses import AnalysesHub AnalysesHub.register_default('VariableRecovery', VariableRecovery)
# !/usr/bin/python3 import logging from argparse import ArgumentParser from collections import deque from time import sleep import yaml from mppsolar.libs.mqttbroker import MqttBroker from mppsolar.outputs import output_results from mppsolar.ports import get_port from mppsolar.protocols import get_protocol from mppsolar.version import __version__ # noqa: F401 # from mppsolar.io import get_port # Set-up logger log = logging.getLogger("") FORMAT = "%(asctime)-15s:%(levelname)s:%(module)s:%(funcName)s@%(lineno)d: %(message)s" logging.basicConfig(format=FORMAT) class ConfigError(Exception): pass sample_config = """ port: path: /dev/ttyUSB0 type: test baud: 2400 protocol: PI30 mqttbroker: name: null port: 1883 user: null pass: null adhoc_commands: topic: test/command_topic outputs: - name: screen - name: mqtt commands: - command: QPIGS gap: 10s outputs: - name: screen - name: mqtt - command: QPIRI gap: 1m outputs: - name: screen tag: testtag filter: volt """ ADHOC_COMMANDS = deque([]) SPLIT_TOKEN = "," def mqtt_callback(client, userdata, msg): print(f"Received `{msg.payload}` on topic `{msg.topic}`") newCommand = msg.payload ADHOC_COMMANDS.append(newCommand) def main(): description = f"Power Device Monitoring Utility, version: {__version__}" parser = ArgumentParser(description=description) parser.add_argument( "-C", "--configFile", nargs="?", type=str, help="Full location of config file", const="/etc/mpp-solar/powermon.yml", default=None, ) parser.add_argument("-v", "--version", action="store_true", help="Display the version") parser.add_argument( "--generateConfigFile", action="store_true", help="Print a new config file based on options supplied (including the existing config file)", ) parser.add_argument( "--once", action="store_true", help="Only loop through config once", ) parser.add_argument( "-D", "--debug", action="store_true", help="Enable Debug and above (i.e. all) messages", ) parser.add_argument( "-I", "--info", action="store_true", help="Enable Info and above level messages" ) args = parser.parse_args() # prog_name = parser.prog # logging (DEBUG, INFO, WARNING, ERROR, CRITICAL) # Turn on debug if needed if args.debug: log.setLevel(logging.DEBUG) elif args.info: log.setLevel(logging.INFO) else: # set default log level log.setLevel(logging.WARNING) logging.basicConfig() # Display version if asked log.info(description) if args.version: print(description) return None # Build configuration from defaults, config file and command line overrides log.info(f"Using config file:{args.configFile}") # build config - start with defaults config = yaml.safe_load(sample_config) # build config - update with details from config file if args.configFile is not None: with open("args.configFile", "r") as stream: try: config.update(yaml.safe_load(stream)) except yaml.YAMLError as exc: print(exc) # build config - override with any command line arguments # TODO: command line overrides # if generateConfigFile is true then print config out if args.generateConfigFile: print("# yaml config for powermon") print("# default location /etc/mpp-solar/powermon.yml") print(yaml.dump(config)) return # debug dump config log.debug(config) # Build mqtt broker # TODO disable if not defined mqtt_broker = MqttBroker( name=config["mqttbroker"]["name"], port=config["mqttbroker"]["port"], username=config["mqttbroker"]["user"], password=config["mqttbroker"]["pass"], ) log.debug(mqtt_broker) # sub to command topic # TODO disable if not defined # TODO disable if mqttbroker is null mqtt_broker.connect() mqtt_broker.subscribe(config["adhoc_commands"]["topic"], mqtt_callback) # connect to mqtt mqtt_broker.start() # get port portconfig = config["port"].copy() log.debug("portconfig", portconfig) port = get_port(portconfig) # port = get_port(porttype=porttype) if not port: log.error(f"No port for config '{portconfig}' found") raise ConfigError(f"No port for config '{portconfig}' found") # get protocol handler protocol = get_protocol(protocol=config["protocol"]) loop = True try: # connect to port port.connect() while loop: # loop through command list for command in config["commands"]: # process any adhoc commands first log.debug(f"adhoc command list: {ADHOC_COMMANDS}") while len(ADHOC_COMMANDS) > 0: adhoc_command = ADHOC_COMMANDS.popleft().decode() # FIXME: decode to str # log.info(f"Processing command: {adhoc_command}") results = port.process_command(command=adhoc_command, protocol=protocol) log.debug(f"results {results}") # send to output processor(s) # TODO sort outputs output_results( results=results, outputs=config["adhoc_commands"], mqtt_broker=mqtt_broker ) # process 'normal' commands log.info(f"Processing command: {command}") results = port.process_command(command=command["command"], protocol=protocol) log.debug(f"results {results}") # send to output processor(s) output_results(results=results, outputs=command, mqtt_broker=mqtt_broker) # pause pause_time = config["command_pause"] log.debug(f"Sleeping for {pause_time}secs") if args.once: loop = False else: sleep(pause_time) except KeyboardInterrupt: print("KeyboardInterrupt") finally: # Disconnect port port.disconnect() # Disconnect mqtt mqtt_broker.stop()
#!/usr/bin/python3 # db.py by Bill Weinman <http://bw.org/contact/> # Copyright (c) 2010 The BearHeart Group, LLC # created 2010-04-23 # import sys, os import sqlite3 from bwCGI import bwCGI from bwDB import bwDB from bwTL import tlFile from bwConfig import configFile __version__ = "1.1.3" # namespace container for global variables g = dict( VERSION = 'db.py version {}'.format(__version__), config_file = 'db.conf', template_ext = '.html', table_name = 'testimonial', stacks = dict( messages = [], errors = [], hiddens = [] ) ) def main(): init() if 'a' in g['vars']: dispatch() main_page() def init(): g['cgi'] = bwCGI() g['cgi'].send_header() g['vars'] = g['cgi'].vars() g['linkback'] = g['cgi'].linkback() g['config'] = configFile(g['config_file']).recs() g['tl'] = tlFile(None, showUnknowns = True) g['db'] = bwDB( filename = g['config']['db'], table = g['table_name'] ) def dispatch(): v = g['vars'] a = v.getfirst('a') if a == 'add': add() elif a == 'edit_del': if 'edit' in v: edit() elif 'delete' in v: delete_confirm() else: error("invalid edit_del") elif a == 'update': if 'cancel' in v: message('Edit canceled') main_page() else: update() elif a == 'delete_do': if 'cancel' in v: message('Delete canceled') main_page() else: delete_do() else: error("unhandled jump: ", a) main_page() def main_page(): listrecs() hidden('a', 'add') page('main', 'Enter a new testimonial') def listrecs(): ''' display the database content ''' db = g['db'] v = g['vars'] sql_limit = int(g['config'].get('sql_limit', 25)) # how many records do we have? count = db.countrecs() message('There are {} records in the database. Add some more!'.format(count or 'no')) # how many pages do we have? numpages = count // int(sql_limit) if count % int(sql_limit): numpages += 1 # what page is this? curpage = 0 if 'jumppage' in v: curpage = int(v.getfirst('jumppage')) elif 'nextpage' in v: curpage = int(v.getfirst('pageno')) + 1 elif 'prevpage' in v: curpage = int(v.getfirst('pageno')) - 1 pagebar = list_pagebar(curpage, numpages) a = '' q = ''' SELECT * FROM {} ORDER BY byline LIMIT ? OFFSET ? '''.format(g['table_name']) for r in db.sql_query(q, [sql_limit, (curpage * sql_limit)]): set_form_vars(**r) a += getpage('recline') set_form_vars() var('CONTENT', pagebar + a + pagebar ) def list_pagebar(pageno, numpages): ''' return the html for the pager line ''' prevlink = '<span class="n">&lt;&lt;</span>' nextlink = '<span class="n">&gt;&gt;</span>' linkback = g['linkback'] if pageno > 0: prevlink = '<a href="{}?pageno={}&prevpage=1">&lt;&lt;</a>'.format(linkback, pageno) if pageno < ( numpages - 1 ): nextlink = '<a href="{}?pageno={}&nextpage=1">&gt;&gt;</a>'.format(linkback, pageno) pagebar = '' for n in range(0, numpages): if n is pageno: pagebar += '<span class="n">{}</span>'.format(n + 1) else: pagebar += '<a href="{}?jumppage={}">{}</a>'.format(linkback, n, n + 1) var('prevlink', prevlink) var('nextlink', nextlink) var('pagebar', pagebar) p = getpage('nextprev') return p def page(pagename, title = ''): ''' display a page from html template ''' tl = g['tl'] htmldir = g['config']['htmlDir'] file_ext = g['template_ext'] var('pageTitle', title) var('VERSION', g['VERSION']) set_stack_vars() for p in ( 'header', pagename, 'footer' ): try: tl.file(os.path.join(htmldir, p + file_ext)) for line in tl.readlines(): print(line, end='') # lines are already terminated except IOError as e: errorexit('Cannot open file ({})'.format(e)) exit() def getpage(p): ''' return a page as text from an html template ''' tl = g['tl'] htmldir = g['config']['htmlDir'] file_ext = g['template_ext'] a = '' try: tl.file(os.path.join(htmldir, p + file_ext)) for line in tl.readlines(): a += line # lines are already terminated except IOError as e: errorexit('Cannot open file ({})'.format(e)) return(a) ### actions def add(): db = g['db'] v = g['vars'] cgi = g['cgi'] rec = dict( testimonial = cgi.entity_encode(v.getfirst('testimonial')), byline = cgi.entity_encode(v.getfirst('byline')) ) db.insert(rec) message('Record ({}) added'.format(rec['byline'])) main_page() def edit(): id = g['vars'].getfirst('id') rec = g['db'].getrec(id) set_form_vars(**rec) hidden('a', 'update') hidden('id', id) page('edit', 'Edit this testimonial') def delete_confirm(): id = g['vars'].getfirst('id') rec = g['db'].getrec(id) set_form_vars(**rec) hidden('a', 'delete_do') hidden('id', id) hidden('byline', rec['byline']) page('delconfirm', 'Delete this testimonial?') def delete_do(): db = g['db'] v = g['vars'] id = v.getfirst('id') byline = v.getfirst('byline') db.delete(id) message('Record ({}) deleted'.format(byline)) main_page() def update(): db = g['db'] v = g['vars'] cgi = g['cgi'] id = v.getfirst('id') rec = dict( id = id, testimonial = cgi.entity_encode(v.getfirst('testimonial')), byline = cgi.entity_encode(v.getfirst('byline')) ) db.update(id, rec) message('Record ({}) updated'.format(rec['byline'])) main_page() ### manage template variables def var(n, v = None): ''' shortcut for setting a variable ''' return g['tl'].var(n, v) def set_form_vars(**kwargs): t = kwargs.get('testimonial', '') b = kwargs.get('byline', '') id = kwargs.get('id', '') var('testimonial', t) var('byline', b) var('id', id) var('SELF', g['linkback']) def stackmessage(stack, *list, **kwargs): sep = kwargs.get('sep', ' ') m = sep.join(str(i) for i in list) g['stacks'][stack].append(m) def message(*list, **kwargs): stackmessage('messages', *list, **kwargs) def error(*list, **kwargs): if 'cgi' in g: stackmessage('errors', *list, **kwargs) else: errorexit(' '.join(list)) def hidden(n, v): g['stacks']['hiddens'].append([n, v]) def set_stack_vars(): a = '' for m in g['stacks']['messages']: a += '<p class="message">{}</p>\n'.format(m) var('MESSAGES', a) a = '' for m in g['stacks']['errors']: a += '<p class="error">{}</p>\n'.format(m) var('ERRORS', a) a = '' for m in g['stacks']['hiddens']: a += '<input type="hidden" name="{}" value="{}" />\n'.format(*m) var('hiddens', a) ### utilities def errorexit(e): me = os.path.basename(sys.argv[0]) print('<p style="color:red">') print('{}: {}'.format(me, e)) print('</p>') exit(0) def message_page(*list): message(*list) main_page() def debug(*args): print(*args, file=sys.stderr) if __name__ == "__main__": main()
#!/usr/bin/env python # # $Id: kfssetup.py 36 2007-11-12 02:43:36Z sriramsrao $ # # Copyright 2007 Kosmix Corp. # # This file is part of Kosmos File System (KFS). # # Licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. # # Script to setup KFS servers on a set of nodes # This scripts reads a machines.cfg file that describes the meta/chunk # servers configurations and installs the binaries/scripts and creates # the necessary directory hierarchy. # import os,sys,os.path,getopt import socket,threading,popen2 import md5 from ConfigParser import ConfigParser # Use the python config parser to parse out machines setup # Input file format for machines.cfg # [metaserver] # type: metaserver # clusterkey: <cluster name> # node: <value> # rundir: <dir> # baseport: <port> # # [chunkserver1] # node: <value> # rundir: <dir> # baseport: <port> # space: <space exported by the server> (n m/g) # {chunkdir: <dir>} # [chunkserver2] # ... # [chunkserverN] # ... # # where, space is expressed in units of MB/GB or bytes. # # Install on each machine with the following directory hierarchy: # rundir/ # bin/ -- binaries, config file, kfscp/kfslog/kfschunk dirs # logs/ -- log output from running the binary # scripts/ -- all the helper scripts # If a path for storing the chunks isn't specified, then it defaults to bin # unitsScale = {'g' : 1 << 30, 'm' : 1 << 20, 'k' : 1 << 10, 'b' : 1} maxConcurrent = 25 chunkserversOnly = 0 tarProg = 'gtar' md5String = "" def which(program): import os def is_exe(fpath): return os.path.exists(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None def setupMeta(section, config, outputFn, packageFn): """ Setup the metaserver binaries/config files on a node. """ global chunkserversOnly if chunkserversOnly > 0: print "Chunkservers only is set; not doing meta" return key = config.get(section, 'clusterkey') baseport = config.getint(section, 'baseport') rundir = config.get(section, 'rundir') fh = open(outputFn, 'w') print >> fh, "metaServer.clientPort = %d" % baseport print >> fh, "metaServer.chunkServerPort = %d" % (baseport + 100) print >> fh, "metaServer.clusterKey = %s" % (key) print >> fh, "metaServer.cpDir = %s/bin/kfscp" % rundir print >> fh, "metaServer.logDir = %s/bin/kfslog" % rundir if config.has_option(section, 'loglevel'): print >> fh, "metaServer.loglevel = %s" % config.get(section, 'loglevel') if config.has_option(section, 'worm'): print >> fh, "metaServer.wormMode = 1" if config.has_option(section, 'numservers'): print >> fh, "metaServer.minChunkservers = %s" % config.get(section, 'numservers') if config.has_option(section, 'md5sumfilename'): print >> fh, "metaServer.md5sumFilename = %s" % config.get(section, 'md5sumfilename') fh.close() if config.has_option(section, 'webuiConfFile'): confFile = config.get(section, 'webuiConfFile') fh = open(confFile, 'w') print >> fh, "[webserver]" print >> fh, "webServer.metaserverPort = %d" % baseport print >> fh, "webServer.port = %d" % (baseport + 50) print >> fh, "webServer.allMachinesFn = %s/webui/all-machines.txt" % rundir print >> fh, "webServer.docRoot = %s/webui/files" % rundir fh.close() cmd = "%s -zcf %s bin/logcompactor bin/metaserver %s lib webui scripts/*" % (tarProg, packageFn, outputFn) os.system(cmd) installArgs = "-r %s -d %s -m" % (tarProg, rundir) return installArgs def setupChunkConfig(section, config, outputFn): """ Setup the chunkserver binaries/config files on a node. """ metaNode = config.get('metaserver', 'node') metaToChunkPort = config.getint('metaserver', 'baseport') + 100 hostname = config.get(section, 'node') # for rack-aware replication, we assume that nodes on different racks are on different subnets s = socket.gethostbyname(hostname) ipoctets = s.split('.') rackId = int(ipoctets[2]) # fh = open (outputFn, 'w') print >> fh, "chunkServer.metaServer.hostname = %s" % metaNode print >> fh, "chunkServer.metaServer.port = %d" % metaToChunkPort print >> fh, "chunkServer.clientPort = %d" % config.getint(section, 'baseport') print >> fh, "chunkServer.clusterKey = %s" % config.get('metaserver', 'clusterkey') print >> fh, "chunkServer.rackId = %d" % (rackId) print >> fh, "chunkServer.md5sum = %s" % (md5String) space = config.get(section, 'space') s = space.split() if (len(s) >= 2): units = s[1].lower() else: units = 'b' value = int(s[0]) * unitsScale[ units[0] ] print >> fh, "chunkServer.totalSpace = %d" % value rundir = config.get(section, 'rundir') if config.has_option(section, 'chunkdir'): chunkDir = config.get(section, 'chunkdir') else: chunkDir = "%s/bin/kfschunk" % (rundir) print >> fh, "chunkServer.chunkDir = %s" % (chunkDir) print >> fh, "chunkServer.logDir = %s/bin/kfslog" % (rundir) if config.has_option(section, 'loglevel'): print >> fh, "chunkServer.loglevel = %s" % config.get(section, 'loglevel') fh.close() def setupChunk(section, config, outputFn, packageFn): """ Setup the chunkserver binaries/config files on a node. """ setupChunkConfig(section, config, outputFn) cmd = "%s -zcf %s bin/chunkscrubber bin/chunkserver %s lib scripts/*" % (tarProg, packageFn, outputFn) os.system(cmd) rundir = config.get(section, 'rundir') if config.has_option(section, 'chunkdir'): chunkDir = config.get(section, 'chunkdir') else: chunkDir = "%s/bin/kfschunk" % (rundir) installArgs = "-r %s -d %s -c \"%s\" " % (tarProg, rundir, chunkDir) return installArgs def usage(): """ Print out the usage for this program. """ print "%s [-f, --file <server.cfg>] [-m , --machines <chunkservers.txt>] [-r, --tar <tar|gtar>] \ [-w, --webui <webui dir>] [ [-b, --bin <dir with binaries>] {-u, --upgrade} | [-U, --uninstall] ]\n" % sys.argv[0] return def copyDir(srcDir, dstDir): """ Copy files from src to dest""" cmd = "cp -r %s %s" % (srcDir, dstDir) os.system(cmd) def computeMD5(datadir, digest): """Update the MD5 digest using the MD5 of all the files in a directory""" files = os.listdir(datadir) for f in sorted(files): path = os.path.join(datadir, f) if os.path.isdir(path): continue fh = open(path, 'r') while 1: buf = fh.read(4096) if buf == "": break digest.update(buf) def getFiles(buildDir, webuidir): """ Copy files from buildDir/bin, buildDir/lib and . to ./bin, ./lib, and ./scripts respectively.""" global md5String cmd = "mkdir -p ./scripts; cp ./* scripts; chmod u+w scripts/*" os.system(cmd) s = "%s/bin" % buildDir if (os.path.exists(s + "/amd64")): s += "/amd64" copyDir(s, './bin') digest = md5.new() computeMD5('./bin', digest) s = "%s/lib" % buildDir if (os.path.exists(s + "/amd64")): s += "/amd64" copyDir(s, './lib') computeMD5('./lib', digest) md5String = digest.hexdigest() copyDir(webuidir, './webui') def cleanup(fn): """ Cleanout the dirs we created. """ cmd = "rm -rf ./scripts ./bin ./lib ./webui %s " % fn os.system(cmd) class InstallWorker(threading.Thread): """InstallWorker thread that runs a command on remote node""" def __init__(self, sec, conf, tmpdir, i, m): threading.Thread.__init__(self) self.section = sec self.config = conf self.tmpdir = tmpdir self.id = i self.mode = m self.doBuildPkg = 1 def singlePackageForAll(self, packageFn, installArgs): self.doBuildPkg = 0 self.packageFn = packageFn self.installArgs = installArgs def buildPackage(self): if (self.section == 'metaserver'): self.installArgs = setupMeta(self.section, self.config, self.configOutputFn, self.packageFn) else: self.installArgs = setupChunk(self.section, self.config, self.configOutputFn, self.packageFn) def doInstall(self): fn = os.path.basename(self.packageFn) if (self.section == 'metaserver'): if chunkserversOnly > 0: return c = "scp -pr -o StrictHostKeyChecking=no -q %s kfsinstall.sh %s:/tmp/; ssh -o StrictHostKeyChecking=no %s 'mv /tmp/%s /tmp/kfspkg.tgz; sh /tmp/kfsinstall.sh %s %s ' " % \ (self.packageFn, self.dest, self.dest, fn, self.mode, self.installArgs) else: # chunkserver configFn = os.path.basename(self.configOutputFn) c = "scp -pr -o StrictHostKeyChecking=no -q %s kfsinstall.sh %s %s:/tmp/; ssh -o StrictHostKeyChecking=no %s 'mv /tmp/%s /tmp/kfspkg.tgz; mv /tmp/%s /tmp/ChunkServer.prp; sh /tmp/kfsinstall.sh %s %s ' " % \ (self.packageFn, self.configOutputFn, self.dest, self.dest, fn, configFn, self.mode, self.installArgs) p = popen2.Popen3(c, True) for out in p.fromchild: if len(out) > 1: print '[%s]: %s' % (self.dest, out[:-1]) def cleanup(self): if self.doBuildPkg > 0: # if we built the package, nuke it c = "rm -f %s %s" % (self.configOutputFn, self.packageFn) else: c = "rm -f %s" % (self.configOutputFn) os.system(c) c = "ssh -o StrictHostKeyChecking=no %s 'rm -f /tmp/install.sh /tmp/kfspkg.tgz' " % self.dest popen2.Popen3(c, True) def run(self): self.configOutputFn = "%s/fn.%d" % (self.tmpdir, self.id) if self.doBuildPkg > 0: self.packageFn = "%s/kfspkg.%d.tgz" % (self.tmpdir, self.id) self.buildPackage() else: setupChunkConfig(self.section, self.config, self.configOutputFn) self.dest = config.get(self.section, 'node') self.doInstall() self.cleanup() def doInstall(config, builddir, tmpdir, webuidir, upgrade, serialMode): if not config.has_section('metaserver'): raise config.NoSectionError, "No metaserver section" if not os.path.exists(builddir): print "%s : directory doesn't exist\n" % builddir sys.exit(-1) getFiles(builddir, webuidir) if os.path.exists('webui'): webuiconfFile = os.path.join(webuidir, "server.conf") config.set('metaserver', 'webuiConfFile', webuiconfFile) workers = [] i = 0 sections = config.sections() if upgrade == 1: mode = "-u" else: mode = "-i" chunkPkgFn = "" cleanupFn = "" for s in sections: w = InstallWorker(s, config, tmpdir, i, mode) workers.append(w) if serialMode == 1: w.start() w.join() else: # same package for all chunkservers if (s != 'metaserver'): if chunkPkgFn == "": configOutputFn = "%s/fn.common" % (tmpdir) chunkPkgFn = "kfspkg-chunk.tgz" cleanupFn = "%s %s" % (configOutputFn, chunkPkgFn) installArgs = setupChunk(s, config, configOutputFn, chunkPkgFn) w.singlePackageForAll(chunkPkgFn, installArgs) i = i + 1 if serialMode == 0: for i in xrange(0, len(workers), maxConcurrent): #start a bunch for j in xrange(maxConcurrent): idx = i + j if idx >= len(workers): break workers[idx].start() #wait for each one to finish for j in xrange(maxConcurrent): idx = i + j if idx >= len(workers): break workers[idx].join() print "Done with %d workers" % idx for i in xrange(len(workers)): workers[i].join(120.0) cleanup(cleanupFn) class UnInstallWorker(threading.Thread): """UnInstallWorker thread that runs a command on remote node""" def __init__(self, c, n): threading.Thread.__init__(self) self.cmd = c self.node = n def run(self): # capture stderr and ignore the hostkey has changed message p = popen2.Popen3(self.cmd, True) for out in p.fromchild: if len(out) > 1: print '[%s]: %s' % (self.node, out[:-1]) def doUninstall(config): sections = config.sections() workers = [] for s in sections: rundir = config.get(s, 'rundir') node = config.get(s, 'node') if (s == 'metaserver'): otherArgs = '-m' else: # This is a chunkserver; so nuke out chunk dir as well if config.has_option(s, 'chunkdir'): chunkDir = config.get(s, 'chunkdir') else: chunkDir = "%s/bin/kfschunk" % (rundir) otherArgs = "-c \"%s\"" % (chunkDir) cmd = "ssh -o StrictHostKeyChecking=no %s 'cd %s; sh scripts/kfsinstall.sh -U -d %s %s' " % \ (node, rundir, rundir, otherArgs) # print "Uninstall cmd: %s\n" % cmd # os.system(cmd) w = UnInstallWorker(cmd, node) workers.append(w) w.start() print "Started all the workers..waiting for them to finish" for i in xrange(len(workers)): workers[i].join(120.0) sys.exit(0) def readChunkserversFile(machinesFn): '''Given a list of chunkserver node names, one per line, construct a config for each chunkserver and add that to the config based on the defaults''' global config defaultChunkOptions = config.options("chunkserver_defaults") for l in open(machinesFn, 'r'): line = l.strip() if (line.startswith('#')): # ignore commented out node names continue section_name = "chunkserver_" + line config.add_section(section_name) config.set(section_name, "node", line) for o in defaultChunkOptions: config.set(section_name, o, config.get("chunkserver_defaults", o)) config.remove_section("chunkserver_defaults") if __name__ == '__main__': (opts, args) = getopt.getopt(sys.argv[1:], "cb:f:m:r:t:w:hsUu", ["chunkserversOnly", "build=", "file=", "machines=", "tar=", "tmpdir=", "webui=", "help", "serialMode", "uninstall", "upgrade"]) filename = "" builddir = "" uninstall = 0 upgrade = 0 serialMode = 0 machines = "" webuidir = "" chunkserversOnly = 0 # Script probably won't work right if you change tmpdir from /tmp location tmpdir = "/tmp" for (o, a) in opts: if o in ("-h", "--help"): usage() sys.exit(2) if o in ("-f", "--file"): filename = a elif o in ("-b", "--build"): builddir = a elif o in ("-c", "--chunkserversOnly"): chunkserversOnly = 1 elif o in ("-m", "--machines"): machines = a elif o in ("-r", "--tar"): tarProg = a elif o in ("-w", "--webuidir"): webuidir = a elif o in ("-t", "--tmpdir"): tmpdir = a elif o in ("-U", "--uninstall"): uninstall = 1 elif o in ("-u", "--upgrade"): upgrade = 1 elif o in ("-s", "--serialMode"): serialMode = 1 if not which(tarProg): if (which('gtar')): tarProg = 'gtar' else: tarProg = 'tar' if not os.path.exists(filename): print "%s : directory doesn't exist\n" % filename sys.exit(-1) config = ConfigParser() config.readfp(open(filename, 'r')) if machines != "": readChunkserversFile(machines) if uninstall == 1: doUninstall(config) else: doInstall(config, builddir, tmpdir, webuidir, upgrade, serialMode)
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """WSGI Routers for the Identity service.""" from keystone.common import router from keystone.common import wsgi from keystone import config from keystone.identity import controllers class Public(wsgi.ComposableRouter): def add_routes(self, mapper): tenant_controller = controllers.Tenant() mapper.connect('/tenants', controller=tenant_controller, action='get_projects_for_token', conditions=dict(method=['GET'])) class Admin(wsgi.ComposableRouter): def add_routes(self, mapper): # Tenant Operations tenant_controller = controllers.Tenant() mapper.connect('/tenants', controller=tenant_controller, action='get_all_projects', conditions=dict(method=['GET'])) mapper.connect('/tenants/{tenant_id}', controller=tenant_controller, action='get_project', conditions=dict(method=['GET'])) # User Operations user_controller = controllers.User() mapper.connect('/users/{user_id}', controller=user_controller, action='get_user', conditions=dict(method=['GET'])) # Role Operations roles_controller = controllers.Role() mapper.connect('/tenants/{tenant_id}/users/{user_id}/roles', controller=roles_controller, action='get_user_roles', conditions=dict(method=['GET'])) mapper.connect('/users/{user_id}/roles', controller=roles_controller, action='get_user_roles', conditions=dict(method=['GET'])) def append_v3_routers(mapper, routers): routers.append( router.Router(controllers.DomainV3(), 'domains', 'domain')) project_controller = controllers.ProjectV3() routers.append( router.Router(project_controller, 'projects', 'project')) mapper.connect('/users/{user_id}/projects', controller=project_controller, action='list_user_projects', conditions=dict(method=['GET'])) user_controller = controllers.UserV3() routers.append( router.Router(user_controller, 'users', 'user')) mapper.connect('/groups/{group_id}/users', controller=user_controller, action='list_users_in_group', conditions=dict(method=['GET'])) mapper.connect('/groups/{group_id}/users/{user_id}', controller=user_controller, action='add_user_to_group', conditions=dict(method=['PUT'])) mapper.connect('/groups/{group_id}/users/{user_id}', controller=user_controller, action='check_user_in_group', conditions=dict(method=['HEAD'])) mapper.connect('/groups/{group_id}/users/{user_id}', controller=user_controller, action='remove_user_from_group', conditions=dict(method=['DELETE'])) group_controller = controllers.GroupV3() routers.append( router.Router(group_controller, 'groups', 'group')) mapper.connect('/users/{user_id}/groups', controller=group_controller, action='list_groups_for_user', conditions=dict(method=['GET'])) role_controller = controllers.RoleV3() routers.append(router.Router(role_controller, 'roles', 'role')) mapper.connect('/projects/{project_id}/users/{user_id}/roles/{role_id}', controller=role_controller, action='create_grant', conditions=dict(method=['PUT'])) mapper.connect('/projects/{project_id}/groups/{group_id}/roles/{role_id}', controller=role_controller, action='create_grant', conditions=dict(method=['PUT'])) mapper.connect('/projects/{project_id}/users/{user_id}/roles/{role_id}', controller=role_controller, action='check_grant', conditions=dict(method=['HEAD'])) mapper.connect('/projects/{project_id}/groups/{group_id}/roles/{role_id}', controller=role_controller, action='check_grant', conditions=dict(method=['HEAD'])) mapper.connect('/projects/{project_id}/users/{user_id}/roles', controller=role_controller, action='list_grants', conditions=dict(method=['GET'])) mapper.connect('/projects/{project_id}/groups/{group_id}/roles', controller=role_controller, action='list_grants', conditions=dict(method=['GET'])) mapper.connect('/projects/{project_id}/users/{user_id}/roles/{role_id}', controller=role_controller, action='revoke_grant', conditions=dict(method=['DELETE'])) mapper.connect('/projects/{project_id}/groups/{group_id}/roles/{role_id}', controller=role_controller, action='revoke_grant', conditions=dict(method=['DELETE'])) mapper.connect('/domains/{domain_id}/users/{user_id}/roles/{role_id}', controller=role_controller, action='create_grant', conditions=dict(method=['PUT'])) mapper.connect('/domains/{domain_id}/groups/{group_id}/roles/{role_id}', controller=role_controller, action='create_grant', conditions=dict(method=['PUT'])) mapper.connect('/domains/{domain_id}/users/{user_id}/roles/{role_id}', controller=role_controller, action='check_grant', conditions=dict(method=['HEAD'])) mapper.connect('/domains/{domain_id}/groups/{group_id}/roles/{role_id}', controller=role_controller, action='check_grant', conditions=dict(method=['HEAD'])) mapper.connect('/domains/{domain_id}/users/{user_id}/roles', controller=role_controller, action='list_grants', conditions=dict(method=['GET'])) mapper.connect('/domains/{domain_id}/groups/{group_id}/roles', controller=role_controller, action='list_grants', conditions=dict(method=['GET'])) mapper.connect('/domains/{domain_id}/users/{user_id}/roles/{role_id}', controller=role_controller, action='revoke_grant', conditions=dict(method=['DELETE'])) mapper.connect('/domains/{domain_id}/groups/{group_id}/roles/{role_id}', controller=role_controller, action='revoke_grant', conditions=dict(method=['DELETE'])) if config.CONF.os_inherit.enabled: mapper.connect(('/OS-INHERIT/domains/{domain_id}/users/{user_id}' '/roles/{role_id}/inherited_to_projects'), controller=role_controller, action='create_grant', conditions=dict(method=['PUT'])) mapper.connect(('/OS-INHERIT/domains/{domain_id}/groups/{group_id}' '/roles/{role_id}/inherited_to_projects'), controller=role_controller, action='create_grant', conditions=dict(method=['PUT'])) mapper.connect(('/OS-INHERIT/domains/{domain_id}/users/{user_id}' '/roles/{role_id}/inherited_to_projects'), controller=role_controller, action='check_grant', conditions=dict(method=['HEAD'])) mapper.connect(('/OS-INHERIT/domains/{domain_id}/groups/{group_id}' '/roles/{role_id}/inherited_to_projects'), controller=role_controller, action='check_grant', conditions=dict(method=['HEAD'])) mapper.connect(('/OS-INHERIT/domains/{domain_id}/users/{user_id}' '/roles/inherited_to_projects'), controller=role_controller, action='list_grants', conditions=dict(method=['GET'])) mapper.connect(('/OS-INHERIT/domains/{domain_id}/groups/{group_id}' '/roles/inherited_to_projects'), controller=role_controller, action='list_grants', conditions=dict(method=['GET'])) mapper.connect(('/OS-INHERIT/domains/{domain_id}/users/{user_id}' '/roles/{role_id}/inherited_to_projects'), controller=role_controller, action='revoke_grant', conditions=dict(method=['DELETE'])) mapper.connect(('/OS-INHERIT/domains/{domain_id}/groups/{group_id}' '/roles/{role_id}/inherited_to_projects'), controller=role_controller, action='revoke_grant', conditions=dict(method=['DELETE'])) routers.append( router.Router(controllers.RoleAssignmentV3(), 'role_assignments', 'role_assignment'))
# Copyright 2016 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.lib.services.volume.v2 import snapshots_client from tempest.tests.lib import fake_auth_provider from tempest.tests.lib.services import base class TestSnapshotsClient(base.BaseServiceTest): FAKE_CREATE_SNAPSHOT = { "snapshot": { "display_name": "snap-001", "display_description": "Daily backup", "volume_id": "521752a6-acf6-4b2d-bc7a-119f9148cd8c", "force": True } } FAKE_UPDATE_SNAPSHOT_REQUEST = { "metadata": { "key": "v1" } } FAKE_INFO_SNAPSHOT = { "snapshot": { "id": "3fbbcccf-d058-4502-8844-6feeffdf4cb5", "display_name": "snap-001", "display_description": "Daily backup", "volume_id": "521752a6-acf6-4b2d-bc7a-119f9148cd8c", "status": "available", "size": 30, "created_at": "2012-02-29T03:50:07Z" } } FAKE_LIST_SNAPSHOTS = { "snapshots": [ { "id": "3fbbcccf-d058-4502-8844-6feeffdf4cb5", "display_name": "snap-001", "display_description": "Daily backup", "volume_id": "521752a6-acf6-4b2d-bc7a-119f9148cd8c", "status": "available", "size": 30, "created_at": "2012-02-29T03:50:07Z", "metadata": { "contents": "junk" } }, { "id": "e479997c-650b-40a4-9dfe-77655818b0d2", "display_name": "snap-002", "display_description": "Weekly backup", "volume_id": "76b8950a-8594-4e5b-8dce-0dfa9c696358", "status": "available", "size": 25, "created_at": "2012-03-19T01:52:47Z", "metadata": {} } ] } FAKE_SNAPSHOT_METADATA_ITEM = { "meta": { "key1": "value1" } } def setUp(self): super(TestSnapshotsClient, self).setUp() fake_auth = fake_auth_provider.FakeAuthProvider() self.client = snapshots_client.SnapshotsClient(fake_auth, 'volume', 'regionOne') def _test_create_snapshot(self, bytes_body=False): self.check_service_client_function( self.client.create_snapshot, 'tempest.lib.common.rest_client.RestClient.post', self.FAKE_CREATE_SNAPSHOT, bytes_body, status=202) def _test_show_snapshot(self, bytes_body=False): self.check_service_client_function( self.client.show_snapshot, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_INFO_SNAPSHOT, bytes_body, snapshot_id="3fbbcccf-d058-4502-8844-6feeffdf4cb5") def _test_list_snapshots(self, bytes_body=False): self.check_service_client_function( self.client.list_snapshots, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_LIST_SNAPSHOTS, bytes_body, detail=True) def _test_create_snapshot_metadata(self, bytes_body=False): self.check_service_client_function( self.client.create_snapshot_metadata, 'tempest.lib.common.rest_client.RestClient.post', self.FAKE_INFO_SNAPSHOT, bytes_body, snapshot_id="3fbbcccf-d058-4502-8844-6feeffdf4cb5", metadata={"key": "v1"}) def _test_update_snapshot(self, bytes_body=False): self.check_service_client_function( self.client.update_snapshot, 'tempest.lib.common.rest_client.RestClient.put', self.FAKE_UPDATE_SNAPSHOT_REQUEST, bytes_body, snapshot_id="3fbbcccf-d058-4502-8844-6feeffdf4cb5") def _test_show_snapshot_metadata(self, bytes_body=False): self.check_service_client_function( self.client.show_snapshot_metadata, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_UPDATE_SNAPSHOT_REQUEST, bytes_body, snapshot_id="3fbbcccf-d058-4502-8844-6feeffdf4cb5") def _test_update_snapshot_metadata(self, bytes_body=False): self.check_service_client_function( self.client.update_snapshot_metadata, 'tempest.lib.common.rest_client.RestClient.put', self.FAKE_UPDATE_SNAPSHOT_REQUEST, bytes_body, snapshot_id="cbc36478b0bd8e67e89") def _test_update_snapshot_metadata_item(self, bytes_body=False): self.check_service_client_function( self.client.update_snapshot_metadata_item, 'tempest.lib.common.rest_client.RestClient.put', self.FAKE_INFO_SNAPSHOT, bytes_body, volume_type_id="cbc36478b0bd8e67e89") def _test_show_snapshot_metadata_item(self, bytes_body=False): self.check_service_client_function( self.client.show_snapshot_metadata_item, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_SNAPSHOT_METADATA_ITEM, bytes_body, snapshot_id="3fbbcccf-d058-4502-8844-6feeffdf4cb5", id="key1") def test_create_snapshot_with_str_body(self): self._test_create_snapshot() def test_create_snapshot_with_bytes_body(self): self._test_create_snapshot(bytes_body=True) def test_show_snapshot_with_str_body(self): self._test_show_snapshot() def test_show_snapshot_with_bytes_body(self): self._test_show_snapshot(bytes_body=True) def test_list_snapshots_with_str_body(self): self._test_list_snapshots() def test_list_snapshots_with_bytes_body(self): self._test_list_snapshots(bytes_body=True) def test_create_snapshot_metadata_with_str_body(self): self._test_create_snapshot_metadata() def test_create_snapshot_metadata_with_bytes_body(self): self._test_create_snapshot_metadata(bytes_body=True) def test_update_snapshot_with_str_body(self): self._test_update_snapshot() def test_update_snapshot_with_bytes_body(self): self._test_update_snapshot(bytes_body=True) def test_show_snapshot_metadata_with_str_body(self): self._test_show_snapshot_metadata() def test_show_snapshot_metadata_with_bytes_body(self): self._test_show_snapshot_metadata(bytes_body=True) def test_update_snapshot_metadata_with_str_body(self): self._test_update_snapshot_metadata() def test_update_snapshot_metadata_with_bytes_body(self): self._test_update_snapshot_metadata(bytes_body=True) def test_show_snapshot_metadata_item_with_str_body(self): self._test_show_snapshot_metadata_item() def test_show_snapshot_metadata_item_with_bytes_body(self): self._test_show_snapshot_metadata_item(bytes_body=True) def test_force_delete_snapshot(self): self.check_service_client_function( self.client.force_delete_snapshot, 'tempest.lib.common.rest_client.RestClient.post', {}, snapshot_id="521752a6-acf6-4b2d-bc7a-119f9148cd8c", status=202) def test_delete_snapshot(self): self.check_service_client_function( self.client.delete_snapshot, 'tempest.lib.common.rest_client.RestClient.delete', {}, snapshot_id="521752a6-acf6-4b2d-bc7a-119f9148cd8c", status=202)
""" Plotting utility functions. """ import cartopy.crs as ccrs from cartopy.util import add_cyclic_point from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import matplotlib.pyplot as plt import matplotlib.ticker as mticker import numpy as np import xarray from xarray.plot.utils import _determine_cmap_params import warnings # Some default plotting arguments; not really used in this script # but taken from my plotting toolkit along with geo_plot and # add_colorbar. _PLOTTYPE_ARGS = { 'pcolormesh': dict(linewidth='0'), 'pcolor': dict(linewidth='0'), 'contourf': dict(), } def add_colorbar(mappable, fig=None, ax=None, thickness=0.025, shrink=0.1, pad=0.05, orientation='horizontal'): """ Add a colorbar into an existing axis or figure. Need to pass either an Axis or Figure element to the appropriate keyword argument. Should elegantly handle multi-axes figures. Parameters ---------- mappable : mappable The element set with data to tailor to the colorbar fig : Figure ax: Axis thickness: float The width/height of the colorbar in fractional figure area, given either vertical/horizontal orientation. shrink: float Fraction of the width/height of the figure to leave blank pad : float Padding between bottom/right subplot edge and the colorbar orientation : str The orientation of the colorbar """ if (fig is None) and (ax is None): raise ValueError("Must pass either 'fig' or 'ax'") elif fig is None: # Plot on Axis cb = plt.colorbar(mappable, ax=ax, pad=pad, orientation=orientation) else: # Plot onto Figure's set of axes axes = fig.get_axes() # Get coordinates for making the colorbar ul = axes[0] lr = axes[-1] top = ul.get_position().get_points()[1][1] bot = lr.get_position().get_points()[0][1] right = lr.get_position().get_points()[1][0] left = ul.get_position().get_points()[0][0] # Calculate colorbar positioning and geometry if orientation == 'vertical': cb_left = right + pad cb_width = thickness cb_bottom = bot + shrink cb_height = (top - shrink) - cb_bottom elif orientation == 'horizontal': cb_left = left + shrink cb_width = (right - shrink) - cb_left cb_height = thickness cb_bottom = (bot - pad) - cb_height else: raise ValueError("Uknown orientation '%s'" % orientation) cax = fig.add_axes([cb_left, cb_bottom, cb_width, cb_height]) cb = fig.colorbar(mappable, cax=cax, orientation=orientation) return cb def check_cyclic(data, coord='lon'): """ Checks if a DataArray already includes a cyclic point along the specified coordinate axis. If not, adds the cyclic point and returns the modified DataArray. """ return np.all(data.isel(**{coord: 0}) == data.isel(**{coord: -1})) def cyclic_dataarray(da, coord='lon'): """ Add a cyclic coordinate point to a DataArray along a specified named coordinate dimension. >>> from xray import DataArray >>> data = DataArray([[1, 2, 3], [4, 5, 6]], ... coords={'x': [1, 2], 'y': range(3)}, ... dims=['x', 'y']) >>> cd = cyclic_dataarray(data, 'y') >>> print cd.data array([[1, 2, 3, 1], [4, 5, 6, 4]]) """ assert isinstance(da, xray.DataArray) lon_idx = da.dims.index(coord) cyclic_data, cyclic_coord = add_cyclic_point(da.values, coord=da.coords[coord], axis=lon_idx) # Copy and add the cyclic coordinate and data new_coords = dict(da.coords) new_coords[coord] = cyclic_coord new_values = cyclic_data new_da = xray.DataArray(new_values, dims=da.dims, coords=new_coords) # Copy the attributes for the re-constructed data and coords for att, val in da.attrs.items(): new_da.attrs[att] = val for c in da.coords: for att in da.coords[c].attrs: new_da.coords[c].attrs[att] = da.coords[c].attrs[att] return new_da def geo_plot(darray, ax=None, method='contourf', projection='PlateCarree', grid=False, **kwargs): """ Create a global plot of a given variable. Parameters: ----------- darray : xray.DataArray The darray to be plotted. ax : axis An existing axis instance, else one will be created. method : str String to use for looking up name of plotting function via iris projection : str or tuple Name of the cartopy projection to use and any args necessary for initializing it passed as a dictionary; see func:`make_geoaxes` for more information grid : bool Include lat-lon grid overlay **kwargs : dict Any additional keyword arguments to pass to the plotter, including colormap params. If 'vmin' is not in this set of optional keyword arguments, the plot colormap will be automatically inferred. """ # Set up plotting function if method in _PLOTTYPE_ARGS: extra_args = _PLOTTYPE_ARGS[method].copy() else: raise ValueError("Don't know how to deal with '%s' method" % method) extra_args.update(**kwargs) # Alias a plot function based on the requested method and the # datatype being plotted plot_func = plt.__dict__[method] # `transform` should be the ORIGINAL coordinate system - # which is always a simple lat-lon coordinate system in CESM # output extra_args['transform'] = ccrs.PlateCarree() # Was an axis passed to plot on? new_axis = ax is None if new_axis: # Create a new cartopy axis object for plotting if isinstance(projection, (list, tuple)): if len(projection) != 2: raise ValueError("Expected 'projection' to only have 2 values") projection, proj_kwargs = projection[0], projection[1] else: proj_kwargs = {} # hack to look up the name of the projection in the cartopy # reference system namespace; makes life a bit easier, so you # can just pass a string with the name of the projection wanted. proj = ccrs.__dict__[projection](**proj_kwargs) ax = plt.axes(projection=proj) else: # Set current axis to one passed as argument if not hasattr(ax, 'projection'): raise ValueError("Expected `ax` to be a GeoAxes instance") plt.sca(ax) # Setup map ax.set_global() ax.coastlines() try: gl = ax.gridlines(crs=extra_args['transform'], draw_labels=True, linewidth=0.5, color='grey', alpha=0.8) LON_TICKS = [ -180, -90, 0, 90, 180 ] LAT_TICKS = [ -90, -60, -30, 0, 30, 60, 90 ] gl.xlabels_top = False gl.ylabels_right = False gl.xlines = grid gl.ylines = grid gl.xlocator = mticker.FixedLocator(LON_TICKS) gl.ylocator = mticker.FixedLocator(LAT_TICKS) gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER except TypeError: warnings.warn("Could not label the given map projection.") # Infer colormap settings if not provided if not ('vmin' in kwargs): warnings.warn("Re-inferring color parameters...") cmap_kws = _determine_cmap_params(darray.data) extra_args.update(cmap_kws) gp = plot_func(darray.lon.values, darray.lat.values, darray.data, **extra_args) return ax, gp
def find_seeing(SUPA,FLAT_TYPE): import os, re, utilities, sys from copy import copy dict = get_files(SUPA,FLAT_TYPE) print dict['file'] search_params = initialize(dict['filter'],dict['cluster']) search_params.update(dict) print dict['files'] #params PIXSCALE GAIN ''' quick run through for seeing ''' children = [] for image in search_params['files']: child = os.fork() if child: children.append(child) else: params = copy(search_params) ROOT = re.split('\.',re.split('\/',image)[-1])[0] params['ROOT'] = ROOT NUM = re.split('O',re.split('\_',ROOT)[1])[0] params['NUM'] = NUM print ROOT weightim = "/%(path)s/%(fil_directory)s/WEIGHTS/%(ROOT)s.weight.fits" % params #flagim = "/%(path)s/%(fil_directory)s/WEIGHTS/globalflag_%(NUM)s.fits" % params #finalflagim = TEMPDIR + "flag_%(ROOT)s.fits" % params params['finalflagim'] = weightim #os.system('rm ' + finalflagim) #command = "ic -p 16 '1 %2 %1 0 == ?' " + weightim + " " + flagim + " > " + finalflagim #utilities.run(command) command = "nice sex %(file)s -c %(PHOTCONF)s/singleastrom.conf.sex \ -FLAG_IMAGE ''\ -FLAG_TYPE MAX\ -CATALOG_NAME %(TEMPDIR)s/seeing_%(ROOT)s.cat \ -FILTER_NAME %(PHOTCONF)s/default.conv\ -CATALOG_TYPE 'ASCII' \ -DETECT_MINAREA 8 -DETECT_THRESH 8.\ -ANALYSIS_THRESH 8 \ -WEIGHT_IMAGE /%(path)s/%(fil_directory)s/WEIGHTS/%(ROOT)s.weight.fits\ -WEIGHT_TYPE MAP_WEIGHT\ -PARAMETERS_NAME %(PHOTCONF)s/singleastrom.ascii.flag.sex" % params print command os.system(command) sys.exit(0) for child in children: os.waitpid(child,0) command = 'cat ' + search_params['TEMPDIR'] + 'seeing_' + SUPA + '*cat > ' + search_params['TEMPDIR'] + 'paste_seeing_' + SUPA + '.cat' utilities.run(command) file_seeing = search_params['TEMPDIR'] + '/paste_seeing_' + SUPA + '.cat' PIXSCALE = float(search_params['PIXSCALE']) reload(utilities) fwhm = utilities.calc_seeing(file_seeing,10,PIXSCALE) save_exposure({'fwhm':fwhm},SUPA,FLAT_TYPE) print file_seeing, SUPA, PIXSCALE def find_files(directories): exposures = {} import glob files = glob.glob(directories + '/SCIENCE/*fits') print files def sextract(FILE): import os, re, utilities, bashreader, sys, string from copy import copy from glob import glob dict = get_files(SUPA,FLAT_TYPE) search_params = initialize(dict['filter'],dict['cluster']) search_params.update(dict) path='/nfs/slac/g/ki/ki05/anja/SUBARU/%(cluster)s/' % {'cluster':search_params['cluster']} subpath='/nfs/slac/g/ki/ki05/anja/SUBARU/' children = [] print search_params kws = utilities.get_header_kw(search_params['files'][0],['PPRUN']) print kws['PPRUN'] pprun = kws['PPRUN'] #fs = glob.glob(subpath+pprun+'/SCIENCE_DOMEFLAT*.tarz') #if len(fs) > 0: # os.system('tar xzvf ' + fs[0]) #fs = glob.glob(subpath+pprun+'/SCIENCE_SKYFLAT*.tarz') #if len(fs) > 0: # os.system('tar xzvf ' + fs[0]) search_params['files'].sort() if 1: print search_params['files'] for image in search_params['files']: print image child = os.fork() if child: children.append(child) else: try: params = copy(search_params) ROOT = re.split('\.',re.split('\/',image)[-1])[0] params['ROOT'] = ROOT BASE = re.split('O',ROOT)[0] params['BASE'] = BASE NUM = re.split('O',re.split('\_',ROOT)[1])[0] params['NUM'] = NUM print NUM, BASE, ROOT params['GAIN'] = 2.50 ## WARNING!!!!!! print ROOT finalflagim = "%(TEMPDIR)sflag_%(ROOT)s.fits" % params weightim = "/%(path)s/%(fil_directory)s/WEIGHTS/%(ROOT)s.weight.fits" % params #flagim = "/%(path)s/%(fil_directory)s/WEIGHTS/globalflag_%(NUM)s.fits" % params #finalflagim = TEMPDIR + "flag_%(ROOT)s.fits" % params params['finalflagim'] = weightim im = "/%(path)s/%(fil_directory)s/SCIENCE/%(ROOT)s.fits" % params crpix = utilities.get_header_kw(im,['CRPIX1','CRPIX2']) SDSS1 = "/%(path)s/%(fil_directory)s/SCIENCE/headers_scamp_SDSS-R6/%(BASE)s.head" % params SDSS2 = "/%(path)s/%(fil_directory)s/SCIENCE/headers_scamp_SDSS-R6/%(BASE)sO*.head" % params from glob import glob print glob(SDSS1), glob(SDSS2) head = None if len(glob(SDSS1)) > 0: head = glob(SDSS1)[0] elif len(glob(SDSS2)) > 0: head = glob(SDSS2)[0] if head is None: command = "sex /%(path)s/%(fil_directory)s/SCIENCE/%(ROOT)s.fits -c %(PHOTCONF)s/phot.conf.sex \ -PARAMETERS_NAME %(PHOTCONF)s/phot.param.sex \ -CATALOG_NAME %(TEMPDIR)s/%(ROOT)s.cat \ -FILTER_NAME %(DATACONF)s/default.conv\ -FILTER Y \ -FLAG_TYPE MAX\ -FLAG_IMAGE ''\ -SEEING_FWHM %(fwhm).3f \ -DETECT_MINAREA 3 -DETECT_THRESH 3 -ANALYSIS_THRESH 3 \ -MAG_ZEROPOINT 27.0 \ -GAIN %(GAIN).3f \ -WEIGHT_IMAGE /%(path)s/%(fil_directory)s/WEIGHTS/%(ROOT)s.weight.fits\ -WEIGHT_TYPE MAP_WEIGHT" % params #-CHECKIMAGE_TYPE BACKGROUND,APERTURES,SEGMENTATION\ #-CHECKIMAGE_NAME /%(path)s/%(fil_directory)s/PHOTOMETRY/coadd.background.fits,/%(path)s/%(fil_directory)s/PHOTOMETRY/coadd.apertures.fits,/%(path)s/%(fil_directory)s/PHOTOMETRY/coadd.segmentation.fits\ catname = "%(TEMPDIR)s/%(ROOT)s.cat" % params filtcatname = "%(TEMPDIR)s/%(ROOT)s.filt.cat" % params print command utilities.run(command,[catname]) utilities.run('ldacfilter -i ' + catname + ' -o ' + filtcatname + ' -t LDAC_OBJECTS\ -c "(CLASS_STAR > 0.0);"',[filtcatname]) if len(glob(filtcatname)) > 0: import commands lines = commands.getoutput('ldactoasc -s -b -i ' + filtcatname + ' -t LDAC_OBJECTS | wc -l') import re res = re.split('\n',lines) print lines if int(res[-1]) == 0: sys.exit(0) command = 'scamp ' + filtcatname + " -SOLVE_PHOTOM N -ASTREF_CATALOG SDSS-R6 -CHECKPLOT_TYPE NONE -WRITE_XML N " print command utilities.run(command) head = "%(TEMPDIR)s/%(ROOT)s.filt.head" % params #headfile = "%(TEMPDIR)s/%(ROOT)s.head" % params print head if head is not None: hf = open(head,'r').readlines() hdict = {} for line in hf: import re if string.find(line,'=') != -1: res = re.split('=',line) name = res[0].replace(' ','') res = re.split('/',res[1]) value = res[0].replace(' ','') print name, value hdict[name] = value imfix = "%(TEMPDIR)s/%(ROOT)s.fixwcs.fits" % params print imfix os.system('mkdir ' + search_params['TEMPDIR']) command = "cp " + im + " " + imfix print command utilities.run(command) import commands out = commands.getoutput('gethead ' + imfix + ' CRPIX1 CRPIX2') import re res = re.split('\s+',out) os.system('sethead ' + imfix + ' CRPIX1OLD=' + res[0]) os.system('sethead ' + imfix + ' CRPIX2OLD=' + res[1]) for name in ['CRVAL1','CRVAL2','CD1_1','CD1_2','CD2_1','CD2_2','CRPIX1','CRPIX2']: command = 'sethead ' + imfix + ' ' + name + '=' + hdict[name] print command os.system(command) main_file = '%(TEMPDIR)s/%(ROOT)s.fixwcs.fits' % params doubles_raw = [{'file_pattern':main_file,'im_type':''}, {'file_pattern':subpath+pprun+'/SCIENCE_DOMEFLAT*/'+BASE+'OC*.fits','im_type':'D'}, {'file_pattern':subpath+pprun+'/SCIENCE_SKYFLAT*/'+BASE+'OC*.fits','im_type':'S'}] #{'file_pattern':subpath+pprun+'/SCIENCE/OC_IMAGES/'+BASE+'OC*.fits','im_type':'OC'} # ] print doubles_raw doubles_output = [] print doubles_raw for double in doubles_raw: file = glob(double['file_pattern']) if len(file) > 0: params.update(double) params['double_cat'] = '%(TEMPDIR)s/%(ROOT)s.%(im_type)s.fixwcs.cat' % params params['file_double'] = file[0] command = "nice sex %(TEMPDIR)s%(ROOT)s.fixwcs.fits,%(file_double)s -c %(PHOTCONF)s/phot.conf.sex \ -PARAMETERS_NAME %(PHOTCONF)s/phot.param.sex \ -CATALOG_NAME %(double_cat)s \ -FILTER_NAME %(DATACONF)s/default.conv\ -FILTER Y \ -FLAG_TYPE MAX\ -FLAG_IMAGE ''\ -SEEING_FWHM %(fwhm).3f \ -DETECT_MINAREA 3 -DETECT_THRESH 3 -ANALYSIS_THRESH 3 \ -MAG_ZEROPOINT 27.0 \ -GAIN %(GAIN).3f \ -WEIGHT_IMAGE /%(path)s/%(fil_directory)s/WEIGHTS/%(ROOT)s.weight.fits\ -WEIGHT_TYPE MAP_WEIGHT" % params #-CHECKIMAGE_TYPE BACKGROUND,APERTURES,SEGMENTATION\ #-CHECKIMAGE_NAME /%(path)s/%(fil_directory)s/PHOTOMETRY/coadd.background.fits,/%(path)s/%(fil_directory)s/PHOTOMETRY/coadd.apertures.fits,/%(path)s/%(fil_directory)s/PHOTOMETRY/coadd.segmentation.fits\ catname = "%(TEMPDIR)s/%(ROOT)s.cat" % params print command utilities.run(command,[catname]) command = 'ldacconv -b 1 -c R -i ' + params['double_cat'] + ' -o ' + params['double_cat'].replace('cat','rawconv') print command utilities.run(command) #command = 'ldactoasc -b -q -i ' + params['double_cat'].replace('cat','rawconv') + ' -t OBJECTS\ # -k ALPHA_J2000 DELTA_J2000 > ' + params['double_cat'].replace('cat','pos') #print command #utilities.run(command) #print 'mkreg.pl -c -rad 8 -xcol 0 -ycol 1 -wcs -colour green ' + params['double_cat'].replace('cat','pos') #utilities.run(command) #print params['double_cat'].replace('cat','pos') # Xpos_ABS is difference of CRPIX and zero CRPIX doubles_output.append({'cat':params['double_cat'].replace('cat','rawconv'),'im_type':double['im_type']}) print doubles_output print '***********************************' outfile = params['TEMPDIR'] + params['ROOT'] + '.conv' combine_cats(doubles_output,outfile,search_params) #outfile_field = params['TEMPDIR'] + params['ROOT'] + '.field' #command = 'ldacdeltab -i ' + outfile + ' -t FIELDS -o ' + outfile_field #utilities.run(command) command = 'ldactoasc -b -q -i ' + outfile + ' -t OBJECTS\ -k ALPHA_J2000 DELTA_J2000 > ' + outfile.replace('conv','pos') print command utilities.run(command) command = 'mkreg.pl -c -rad 8 -xcol 0 -ycol 1 -wcs -colour green ' + outfile.replace('conv','pos') print command utilities.run(command) print outfile command = 'ldaccalc -i ' + outfile + ' -o ' + params['TEMPDIR'] + params['ROOT'] + '.newpos -t OBJECTS -c "(Xpos + ' + str(float(search_params['CRPIX1ZERO']) - float(crpix['CRPIX1'])) + ');" -k FLOAT -n Xpos_ABS "" -c "(Ypos + ' + str(float(search_params['CRPIX2ZERO']) - float(crpix['CRPIX2'])) + ');" -k FLOAT -n Ypos_ABS "" -c "(Ypos*0 + ' + str(params['NUM']) + ');" -k FLOAT -n CHIP "" ' print command utilities.run(command) except: print sys.exc_info() print 'finishing' sys.exit(0) sys.exit(0) print children for child in children: print 'waiting for', child os.waitpid(child,0) print 'finished waiting' pasted_cat = path + 'PHOTOMETRY/ILLUMINATION/' + 'pasted_' + SUPA + '_' + search_params['filter'] + '_' + str(search_params['ROTATION']) + '.cat' from glob import glob outcat = search_params['TEMPDIR'] + 'tmppaste_' + SUPA + '.cat' newposlist = glob(search_params['TEMPDIR'] + SUPA + '*newpos') print search_params['TEMPDIR'] + SUPA + '*newpos' if len(newposlist) > 1: #command = 'ldacpaste -i ' + search_params['TEMPDIR'] + SUPA + '*newpos -o ' + pasted_cat #print command files = glob(search_params['TEMPDIR'] + SUPA + '*newpos') print files paste_cats(files,pasted_cat) else: command = 'cp ' + newposlist[0] + ' ' + pasted_cat utilities.run(command) save_exposure({'pasted_cat':pasted_cat},SUPA,FLAT_TYPE) #fs = glob.glob(subpath+pprun+'/SCIENCE_DOMEFLAT*.tarz'.replace('.tarz','')) #if len(fs) > 0: # os.system('tar xzvf ' + fs[0]) #fs = glob.glob(subpath+pprun+'/SCIENCE_SKYFLAT*.tarz'.replace('.tarz','')) #fs = glob.glob(subpath+pprun+'/SCIENCE_SKYFLAT*.tarz') #if len(fs) > 0: # os.system('tar xzvf ' + fs[0]) #return exposures, LENGTH1, LENGTH2
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This module contains a Google ML Engine Hook. """ import logging import random import time from typing import Callable, Dict, List, Optional from googleapiclient.discovery import build from googleapiclient.errors import HttpError from airflow.providers.google.cloud.hooks.base import CloudBaseHook from airflow.version import version as airflow_version log = logging.getLogger(__name__) _AIRFLOW_VERSION = 'v' + airflow_version.replace('.', '-').replace('+', '-') def _poll_with_exponential_delay(request, max_n, is_done_func, is_error_func): for i in range(0, max_n): try: response = request.execute() if is_error_func(response): raise ValueError( 'The response contained an error: {}'.format(response) ) if is_done_func(response): log.info('Operation is done: %s', response) return response time.sleep((2**i) + (random.randint(0, 1000) / 1000)) except HttpError as e: if e.resp.status != 429: log.info('Something went wrong. Not retrying: %s', format(e)) raise else: time.sleep((2**i) + (random.randint(0, 1000) / 1000)) raise ValueError('Connection could not be established after {} retries.'.format(max_n)) class MLEngineHook(CloudBaseHook): """ Hook for Google ML Engine APIs. All the methods in the hook where project_id is used must be called with keyword arguments rather than positional. """ def get_conn(self): """ Retrieves the connection to MLEngine. :return: Google MLEngine services object. """ authed_http = self._authorize() return build('ml', 'v1', http=authed_http, cache_discovery=False) @CloudBaseHook.fallback_to_default_project_id def create_job( self, job: Dict, project_id: Optional[str] = None, use_existing_job_fn: Optional[Callable] = None ) -> Dict: """ Launches a MLEngine job and wait for it to reach a terminal state. :param project_id: The Google Cloud project id within which MLEngine job will be launched. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param job: MLEngine Job object that should be provided to the MLEngine API, such as: :: { 'jobId': 'my_job_id', 'trainingInput': { 'scaleTier': 'STANDARD_1', ... } } :type job: dict :param use_existing_job_fn: In case that a MLEngine job with the same job_id already exist, this method (if provided) will decide whether we should use this existing job, continue waiting for it to finish and returning the job object. It should accepts a MLEngine job object, and returns a boolean value indicating whether it is OK to reuse the existing job. If 'use_existing_job_fn' is not provided, we by default reuse the existing MLEngine job. :type use_existing_job_fn: function :return: The MLEngine job object if the job successfully reach a terminal state (which might be FAILED or CANCELLED state). :rtype: dict """ if not project_id: raise ValueError("The project_id should be set") hook = self.get_conn() self._append_label(job) request = hook.projects().jobs().create( # pylint: disable=no-member parent='projects/{}'.format(project_id), body=job) job_id = job['jobId'] try: request.execute() except HttpError as e: # 409 means there is an existing job with the same job ID. if e.resp.status == 409: if use_existing_job_fn is not None: existing_job = self._get_job(project_id, job_id) if not use_existing_job_fn(existing_job): self.log.error( 'Job with job_id %s already exist, but it does ' 'not match our expectation: %s', job_id, existing_job ) raise self.log.info( 'Job with job_id %s already exist. Will waiting for it to finish', job_id ) else: self.log.error('Failed to create MLEngine job: %s', e) raise return self._wait_for_job_done(project_id, job_id) def _get_job(self, project_id: str, job_id: str) -> Dict: """ Gets a MLEngine job based on the job id. :param project_id: The project in which the Job is located. If set to None or missing, the default project_id from the GCP connection is used. (templated) :type project_id: str :param job_id: A unique id for the Google MLEngine job. (templated) :type job_id: str :return: MLEngine job object if succeed. :rtype: dict :raises: googleapiclient.errors.HttpError """ hook = self.get_conn() job_name = 'projects/{}/jobs/{}'.format(project_id, job_id) request = hook.projects().jobs().get(name=job_name) # pylint: disable=no-member while True: try: return request.execute() except HttpError as e: if e.resp.status == 429: # polling after 30 seconds when quota failure occurs time.sleep(30) else: self.log.error('Failed to get MLEngine job: %s', e) raise def _wait_for_job_done(self, project_id: str, job_id: str, interval: int = 30): """ Waits for the Job to reach a terminal state. This method will periodically check the job state until the job reach a terminal state. :param project_id: The project in which the Job is located. If set to None or missing, the default project_id from the GCP connection is used. (templated) :type project_id: str :param job_id: A unique id for the Google MLEngine job. (templated) :type job_id: str :param interval: Time expressed in seconds after which the job status is checked again. (templated) :type interval: int :raises: googleapiclient.errors.HttpError """ if interval <= 0: raise ValueError("Interval must be > 0") while True: job = self._get_job(project_id, job_id) if job['state'] in ['SUCCEEDED', 'FAILED', 'CANCELLED']: return job time.sleep(interval) @CloudBaseHook.fallback_to_default_project_id def create_version( self, model_name: str, version_spec: Dict, project_id: Optional[str] = None, ) -> Dict: """ Creates the Version on Google Cloud ML Engine. :param version_spec: A dictionary containing the information about the version. (templated) :type version_spec: dict :param model_name: The name of the Google Cloud ML Engine model that the version belongs to. (templated) :type model_name: str :param project_id: The Google Cloud project name to which MLEngine model belongs. If set to None or missing, the default project_id from the GCP connection is used. (templated) :type project_id: str :return: If the version was created successfully, returns the operation. Otherwise raises an error . :rtype: dict """ hook = self.get_conn() parent_name = 'projects/{}/models/{}'.format(project_id, model_name) self._append_label(version_spec) create_request = hook.projects().models().versions().create( # pylint: disable=no-member parent=parent_name, body=version_spec) response = create_request.execute() get_request = hook.projects().operations().get( # pylint: disable=no-member name=response['name']) return _poll_with_exponential_delay( request=get_request, max_n=9, is_done_func=lambda resp: resp.get('done', False), is_error_func=lambda resp: resp.get('error', None) is not None) @CloudBaseHook.fallback_to_default_project_id def set_default_version( self, model_name: str, version_name: str, project_id: Optional[str] = None, ) -> Dict: """ Sets a version to be the default. Blocks until finished. :param model_name: The name of the Google Cloud ML Engine model that the version belongs to. (templated) :type model_name: str :param version_name: A name to use for the version being operated upon. (templated) :type version_name: str :param project_id: The Google Cloud project name to which MLEngine model belongs. If set to None or missing, the default project_id from the GCP connection is used. (templated) :type project_id: str :return: If successful, return an instance of Version. Otherwise raises an error. :rtype: dict :raises: googleapiclient.errors.HttpError """ hook = self.get_conn() full_version_name = 'projects/{}/models/{}/versions/{}'.format( project_id, model_name, version_name) request = hook.projects().models().versions().setDefault( # pylint: disable=no-member name=full_version_name, body={}) try: response = request.execute() self.log.info('Successfully set version: %s to default', response) return response except HttpError as e: self.log.error('Something went wrong: %s', e) raise @CloudBaseHook.fallback_to_default_project_id def list_versions( self, model_name: str, project_id: Optional[str] = None, ) -> List[Dict]: """ Lists all available versions of a model. Blocks until finished. :param model_name: The name of the Google Cloud ML Engine model that the version belongs to. (templated) :type model_name: str :param project_id: The Google Cloud project name to which MLEngine model belongs. If set to None or missing, the default project_id from the GCP connection is used. (templated) :type project_id: str :return: return an list of instance of Version. :rtype: List[Dict] :raises: googleapiclient.errors.HttpError """ hook = self.get_conn() result = [] # type: List[Dict] full_parent_name = 'projects/{}/models/{}'.format( project_id, model_name) request = hook.projects().models().versions().list( # pylint: disable=no-member parent=full_parent_name, pageSize=100) while request is not None: response = request.execute() result.extend(response.get('versions', [])) request = hook.projects().models().versions().list_next( # pylint: disable=no-member previous_request=request, previous_response=response) time.sleep(5) return result @CloudBaseHook.fallback_to_default_project_id def delete_version( self, model_name: str, version_name: str, project_id: Optional[str] = None, ) -> Dict: """ Deletes the given version of a model. Blocks until finished. :param model_name: The name of the Google Cloud ML Engine model that the version belongs to. (templated) :type model_name: str :param project_id: The Google Cloud project name to which MLEngine model belongs. :type project_id: str :return: If the version was deleted successfully, returns the operation. Otherwise raises an error. :rtype: Dict """ if not project_id: raise ValueError("The project_id should be set") hook = self.get_conn() full_name = 'projects/{}/models/{}/versions/{}'.format( project_id, model_name, version_name) delete_request = hook.projects().models().versions().delete( # pylint: disable=no-member name=full_name) response = delete_request.execute() get_request = hook.projects().operations().get( # pylint: disable=no-member name=response['name']) return _poll_with_exponential_delay( request=get_request, max_n=9, is_done_func=lambda resp: resp.get('done', False), is_error_func=lambda resp: resp.get('error', None) is not None) @CloudBaseHook.fallback_to_default_project_id def create_model( self, model: Dict, project_id: Optional[str] = None ) -> Dict: """ Create a Model. Blocks until finished. :param model: A dictionary containing the information about the model. :type model: dict :param project_id: The Google Cloud project name to which MLEngine model belongs. If set to None or missing, the default project_id from the GCP connection is used. (templated) :type project_id: str :return: If the version was created successfully, returns the instance of Model. Otherwise raises an error. :rtype: Dict :raises: googleapiclient.errors.HttpError """ hook = self.get_conn() if not model['name']: raise ValueError("Model name must be provided and " "could not be an empty string") project = 'projects/{}'.format(project_id) self._append_label(model) request = hook.projects().models().create( # pylint: disable=no-member parent=project, body=model) return request.execute() @CloudBaseHook.fallback_to_default_project_id def get_model( self, model_name: str, project_id: Optional[str] = None, ) -> Optional[Dict]: """ Gets a Model. Blocks until finished. :param model_name: The name of the model. :type model_name: str :param project_id: The Google Cloud project name to which MLEngine model belongs. If set to None or missing, the default project_id from the GCP connection is used. (templated) :type project_id: str :return: If the model exists, returns the instance of Model. Otherwise return None. :rtype: Dict :raises: googleapiclient.errors.HttpError """ hook = self.get_conn() if not model_name: raise ValueError("Model name must be provided and " "it could not be an empty string") full_model_name = 'projects/{}/models/{}'.format( project_id, model_name) request = hook.projects().models().get(name=full_model_name) # pylint: disable=no-member try: return request.execute() except HttpError as e: if e.resp.status == 404: self.log.error('Model was not found: %s', e) return None raise @CloudBaseHook.fallback_to_default_project_id def delete_model( self, model_name: str, delete_contents: bool = False, project_id: Optional[str] = None, ) -> None: """ Delete a Model. Blocks until finished. :param model_name: The name of the model. :type model_name: str :param delete_contents: Whether to force the deletion even if the models is not empty. Will delete all version (if any) in the dataset if set to True. The default value is False. :type delete_contents: bool :param project_id: The Google Cloud project name to which MLEngine model belongs. If set to None or missing, the default project_id from the GCP connection is used. (templated) :type project_id: str :raises: googleapiclient.errors.HttpError """ if not project_id: raise ValueError("The project_id should be set") hook = self.get_conn() if not model_name: raise ValueError("Model name must be provided and it could not be an empty string") model_path = 'projects/{}/models/{}'.format(project_id, model_name) if delete_contents: self._delete_all_versions(model_name, project_id) request = hook.projects().models().delete(name=model_path) # pylint: disable=no-member try: request.execute() except HttpError as e: if e.resp.status == 404: self.log.error('Model was not found: %s', e) return raise def _delete_all_versions(self, model_name: str, project_id: str): versions = self.list_versions(project_id=project_id, model_name=model_name) # The default version can only be deleted when it is the last one in the model non_default_versions = (version for version in versions if not version.get('isDefault', False)) for version in non_default_versions: _, _, version_name = version['name'].rpartition('/') self.delete_version(project_id=project_id, model_name=model_name, version_name=version_name) default_versions = (version for version in versions if version.get('isDefault', False)) for version in default_versions: _, _, version_name = version['name'].rpartition('/') self.delete_version(project_id=project_id, model_name=model_name, version_name=version_name) def _append_label(self, model: Dict) -> None: model['labels'] = model.get('labels', {}) model['labels']['airflow-version'] = _AIRFLOW_VERSION
# -*- coding: utf-8 -*- """ Buildings Assessments module @author Fran Boon <[email protected]> Data model from: http://www.atcouncil.org/products/downloadable-products/placards Postearthquake Safety Evaluation of Buildings: ATC-20 http://www.atcouncil.org/pdfs/rapid.pdf This is actually based on the New Zealand variant: http://eden.sahanafoundation.org/wiki/BluePrintBuildingAssessments @ToDo: Hide fields for triage form server side - once print comes from controller then it will also skip these fields - less to download to browser (more scalable) @ToDo: add other forms """ module = request.controller resourcename = request.function if module not in deployment_settings.modules: session.error = T("Module disabled!") redirect(URL(r=request, c="default", f="index")) # Options Menu (available in all Functions' Views) def shn_menu(): menu = [ [T("NZSEE Level 1"), False, aURL(r=request, f="nzseel1"), [ [T("Submit New (triage)"), False, aURL(p="create", r=request, f="nzseel1", args="create", vars={"triage":1})], [T("Submit New (full form)"), False, aURL(p="create", r=request, f="nzseel1", args="create")], [T("Search"), False, aURL(r=request, f="nzseel1", args="search")], [T("List"), False, aURL(r=request, f="nzseel1")], ]], [T("NZSEE Level 2"), False, aURL(r=request, f="nzseel2"), [ [T("Submit New"), False, aURL(p="create", r=request, f="nzseel2", args="create")], [T("Search"), False, aURL(r=request, f="nzseel2", args="search")], [T("List"), False, aURL(r=request, f="nzseel2")], ]], [T("Report"), False, aURL(r=request, f="index"), [ [T("Snapshot"), False, aURL(r=request, f="report")], [T("Assessment timeline"), False, aURL(r=request, f="timeline")], [T("Assessment admin level"), False, aURL(r=request, f="adminLevel")], ] ] ] response.menu_options = menu shn_menu() # S3 framework functions # ----------------------------------------------------------------------------- def index(): """ Module's Home Page """ module_name = deployment_settings.modules[module].name_nice response.title = module_name return dict(module_name=module_name) # NZSEE Level 1 (~ATC-20 Rapid Evaluation) Safety Assessment Form ------------- def nzseel1(): """ RESTful CRUD controller @ToDo: Action Button to create a new L2 Assessment from an L1 """ tablename = "%s_%s" % (module, resourcename) table = db[tablename] # Pre-populate Inspector ID table.person_id.default = s3_logged_in_person() # Subheadings in forms: s3xrc.model.configure(table, deletable=False, create_next = URL(r=request, c=module, f=resourcename, args="[id]"), subheadings = { ".": "name", # Description in ATC-20 "%s / %s" % (T("Overall Hazards"), T("Damage")): "collapse", ".": "posting", "%s:" % T("Further Action Recommended"): "barricades", ".": "estimated_damage", }) rheader = lambda r: nzseel1_rheader(r) output = s3_rest_controller(module, resourcename, rheader=rheader) return output # ----------------------------------------------------------------------------- def nzseel1_rheader(r, tabs=[]): """ Resource Headers """ if r.representation == "html": if r.name == "nzseel1": assess = r.record if assess: rheader_tabs = s3_rheader_tabs(r, tabs) location = assess.location_id if location: location = shn_gis_location_represent(location) person = assess.person_id if person: pe_id = db(db.pr_person.id == person).select(db.pr_person.pe_id, limitby=(0, 1)).first().pe_id query = (db.pr_contact.pe_id == pe_id) & (db.pr_contact.contact_method == 2) mobile = db(query).select(db.pr_contact.value, limitby=(0, 1)).first() if mobile: mobile = mobile.value person = vita.fullname(person) rheader = DIV(TABLE( TR( TH("%s: " % T("Person")), person, TH("%s: " % T("Mobile")), mobile, ), TR( TH("%s: " % T("Location")), location, TH("%s: " % T("Date")), assess.date ), TR( TH(""), "", TH("%s: " % T("Ticket ID")), r.table.ticket_id.represent(assess.ticket_id), ), ), rheader_tabs) return rheader return None # ----------------------------------------------------------------------------- # NZSEE Level 2 (~ATC-20 Rapid Evaluation) Safety Assessment Form def nzseel2(): """ RESTful CRUD controller """ tablename = "%s_%s" % (module, resourcename) table = db[tablename] # Pre-populate Inspector ID table.person_id.default = s3_logged_in_person() # Subheadings in forms: s3xrc.model.configure(table, deletable=False, create_next = URL(r=request, c=module, f=resourcename, args="[id]"), subheadings = { ".": "name", # Description in ATC-20 "%s / %s" % (T("Overall Hazards"), T("Damage")): "collapse", ".": "posting_existing", "%s:" % T("Further Action Recommended"): "barricades", ".": "estimated_damage", "%s / %s" % (T("Structural Hazards"), T("Damage")): "structural_foundations", "%s / %s" % (T("Non-structural Hazards"), T("Damage")): "non_parapets", "%s / %s" % (T("Geotechnical Hazards"), T("Damage")): "geotechnical_slope", }) rheader = lambda r: nzseel2_rheader(r) output = s3_rest_controller(module, resourcename, rheader=rheader) return output # ----------------------------------------------------------------------------- def nzseel2_rheader(r, tabs=[]): """ Resource Headers """ if r.representation == "html": if r.name == "nzseel2": assess = r.record if assess: rheader_tabs = s3_rheader_tabs(r, tabs) location = assess.location_id if location: location = shn_gis_location_represent(location) person = assess.person_id if person: pe_id = db(db.pr_person.id == person).select(db.pr_person.pe_id, limitby=(0, 1)).first().pe_id query = (db.pr_contact.pe_id == pe_id) & (db.pr_contact.contact_method == 2) mobile = db(query).select(db.pr_contact.value, limitby=(0, 1)).first() if mobile: mobile = mobile.value person = vita.fullname(person) rheader = DIV(TABLE( TR( TH("%s: " % T("Person")), person, TH("%s: " % T("Mobile")), mobile, ), TR( TH("%s: " % T("Location")), location, TH("%s: " % T("Date")), assess.date ), TR( TH(""), "", TH("%s: " % T("Ticket ID")), r.table.ticket_id.represent(assess.ticket_id), ), ), rheader_tabs) return rheader return None # ----------------------------------------------------------------------------- def report(): """ A report providing assessment totals, and breakdown by assessment type and status. e.g. Level 1 (red, yellow, green) Level 2 (R1-R3, Y1-Y2, G1-G2) @ToDo: Make into a Custom Method to be able to support Table ACLs (currently protected by Controller ACL) """ level1 = Storage() table = db.building_nzseel1 # Which is more efficient? # A) 4 separate .count() in DB # B) Pulling all records into Python & doing counts in Python query = (table.deleted == False) level1.total = db(query).count() filter = (table.posting == 1) level1.green = db(query & filter).count() filter = (table.posting == 2) level1.yellow = db(query & filter).count() filter = (table.posting == 3) level1.red = db(query & filter).count() level2 = Storage() table = db.building_nzseel2 query = (table.deleted == False) level2.total = db(query).count() filter = (table.posting.belongs((1, 2))) level2.green = db(query & filter).count() filter = (table.posting.belongs((3, 4))) level2.yellow = db(query & filter).count() filter = (table.posting.belongs((5, 6, 7))) level2.red = db(query & filter).count() return dict(level1=level1, level2=level2) # ----------------------------------------------------------------------------- #def getformatedData(dbresult): # result = [] # cnt = -1; # # Format the results # for row in dbresult: # damage = row.estimated_damage # try: # trueDate = row.date #datetime.datetime.strptime(row.date, "%Y-%m-%d %H:%M:%S") # except: # trueDate = row.created_on # date = trueDate.strftime('%d %b %Y') # hour = trueDate.strftime("%H") # key = (date, hour) # if (cnt == -1) or (result[cnt][0] != key): # result.append([key , 0, 0, 0, 0, 0, 0, 0, 1]) # cnt += 1 # else: # result[cnt][8] += 1 # result[cnt][damage] += 1 # # return result def getformatedData(dbresult): result = [] cntT = cntH = -1 for row in dbresult: damage = row.estimated_damage try: trueDate = row.date except: trueDate = row.created_on date = trueDate.strftime('%d %b %Y') hour = trueDate.strftime("%H") keyT = (date, "Total") keyH = (date, hour) #print date, hour, keyT, keyH, cntT, cntH if (cntT == -1) or (result[cntT][0] != keyT): result.append([keyT, 0, 0, 0, 0, 0, 0, 0, 0]) cntT = cntH + 1 cntH = cntT if (result[cntH][0] != keyH): result.append([keyH, 0, 0, 0, 0, 0, 0, 0, 0]) cntH += 1 result[cntT][8] += 1 result[cntH][8] += 1 result[cntT][damage] += 1 result[cntH][damage] += 1 return result def timeline(): """ A report providing assessments received broken down by time """ result = Storage() inspection = [] creation = [] # raw SQL command # select `date`, estimated_damage FROM building_nzseel1 WHERE deleted = "F" ORDER BY `date` DESC table = db.building_nzseel1 dbresult = db(table.deleted == False).select(table.date, table.estimated_damage, orderby=~table.date, ) inspection = getformatedData(dbresult) # Here is the raw SQL command # select created_on, estimated_damage FROM building_nzseel1 WHERE deleted = "F" ORDER BY created_on DESC dbresult = db(table.deleted == False).select(table.created_on, table.estimated_damage, orderby=~table.created_on, ) creation = getformatedData(dbresult) totals = [0, 0, 0, 0, 0, 0, 0, 0] for line in inspection: if line[0][1] == "Total": for i in range(8): totals[i] += line[i + 1] return dict(inspection=inspection, creation=creation, totals= totals ) # ----------------------------------------------------------------------------- def adminLevel(): """ A report providing assessments received broken down by administration level """ # raw SQL command # select parent, `path`, estimated_damage FROM building_nzseel1, gis_location WHERE building_nzseel1.deleted = "F" and (gis_location.id = building_nzseel1.location_id) tableNZ1 = db.building_nzseel1 tableGIS = db.gis_location query = (tableNZ1.location_id == tableGIS.id) & (tableNZ1.deleted == False) dbresult = db(query).select(tableGIS.path, tableGIS.parent, tableNZ1.estimated_damage ) result = [] temp = {} # Format the results for row in dbresult: parent = row.gis_location.parent ##report[0] path = row.gis_location.path #report[1] damage = row.building_nzseel1.estimated_damage #report[2] if temp.has_key(parent): temp[parent][7] += 1 else: temp[parent]=[0, 0, 0, 0, 0, 0, 0, 1] temp[parent][damage - 1] += 1 gis = {} for (key) in temp.keys(): # raw SQL command # "select name, parent FROM gis_location WHERE gis_location.id = '%s'" % key row = tableGIS(key) if row == None: gis[key] = T("Unknown") else: gis[key] = row.name for (key,item) in temp.items(): if gis.has_key(key): name = gis[key] else: name = T("Unknown") result.append((name,item)) return dict(report=result, ) # -----------------------------------------------------------------------------
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import ast import numpy as np import mxnet as mx class BinaryRBM(mx.operator.CustomOp): def __init__(self, k): self.k = k # Persistent contrastive divergence k def forward(self, is_train, req, in_data, out_data, aux): visible_layer_data = in_data[0] # (num_batch, num_visible) visible_layer_bias = in_data[1] # (num_visible,) hidden_layer_bias = in_data[2] # (num_hidden,) interaction_weight= in_data[3] # (num_visible, num_hidden) if is_train: _, hidden_layer_prob_1 = self.sample_hidden_layer(visible_layer_data, hidden_layer_bias, interaction_weight) hidden_layer_sample = aux[1] # The initial state of the Gibbs sampling for persistent CD else: hidden_layer_sample, hidden_layer_prob_1 = self.sample_hidden_layer(visible_layer_data, hidden_layer_bias, interaction_weight) # k-step Gibbs sampling for _ in range(self.k): visible_layer_sample, visible_layer_prob_1 = self.sample_visible_layer(hidden_layer_sample, visible_layer_bias, interaction_weight) hidden_layer_sample, _ = self.sample_hidden_layer(visible_layer_sample, hidden_layer_bias, interaction_weight) if is_train: # Used in backward and next forward aux[0][:] = visible_layer_sample aux[1][:] = hidden_layer_sample self.assign(out_data[0], req[0], visible_layer_prob_1) self.assign(out_data[1], req[1], hidden_layer_prob_1) def backward(self, req, out_grad, in_data, out_data, in_grad, aux): visible_layer_data = in_data[0] # (num_batch, num_visible) visible_layer_sample = aux[0] # (num_batch, num_visible) hidden_layer_prob_1 = out_data[1] # (num_batch, num_hidden) hidden_layer_sample = aux[1] # (num_batch, num_hidden) grad_visible_layer_bias = (visible_layer_sample - visible_layer_data).mean(axis=0) grad_hidden_layer_bias = (hidden_layer_sample - hidden_layer_prob_1).mean(axis=0) grad_interaction_weight= (mx.nd.linalg.gemm2(visible_layer_sample.expand_dims(2), hidden_layer_sample.expand_dims(1)) - mx.nd.linalg.gemm2(visible_layer_data.expand_dims(2), hidden_layer_prob_1.expand_dims(1)) ).mean(axis=0) # We don't need the gradient on the visible layer input self.assign(in_grad[1], req[1], grad_visible_layer_bias) self.assign(in_grad[2], req[2], grad_hidden_layer_bias) self.assign(in_grad[3], req[3], grad_interaction_weight) def sample_hidden_layer(self, visible_layer_batch, hidden_layer_bias, interaction_weight): return self.sample_layer(visible_layer_batch, hidden_layer_bias, interaction_weight, False) def sample_visible_layer(self, hidden_layer_batch, visible_layer_bias, interaction_weight): return self.sample_layer(hidden_layer_batch, visible_layer_bias, interaction_weight, True) def sample_layer(self, other_layer_sample, layer_bias, interaction_weight, interaction_transpose): prob_1 = mx.nd.linalg.gemm( other_layer_sample, interaction_weight, layer_bias.tile(reps=(other_layer_sample.shape[0], 1)), transpose_b=interaction_transpose) # (num_batch, num_units_in_layer) prob_1.sigmoid(out=prob_1) return mx.nd.random.uniform(shape=prob_1.shape) < prob_1, prob_1 @mx.operator.register('BinaryRBM') class BinaryRBMProp(mx.operator.CustomOpProp): # Auxiliary states are requested only if `for_training` is true. def __init__(self, num_hidden, k, for_training): super(BinaryRBMProp, self).__init__(False) self.num_hidden = int(num_hidden) self.k = int(k) self.for_training = ast.literal_eval(for_training) def list_arguments(self): # 0: (batch size, the number of visible units) # 1: (the number of visible units,) # 2: (the number of hidden units,) # 3: (the number of visible units, the number of hidden units) return ['data', 'visible_layer_bias', 'hidden_layer_bias', 'interaction_weight'] def list_outputs(self): # 0: The probabilities that each visible unit is 1 after `k` steps of Gibbs sampling starting from the given `data`. # (batch size, the number of visible units) # 1: The probabilities that each hidden unit is 1 conditional on the given `data`. # (batch size, the number of hidden units) return ['visible_layer_prob_1', 'hidden_layer_prob_1'] def list_auxiliary_states(self): # Used only if `self.for_trainig is true. # 0: Store the visible layer samples obtained in the forward pass, used in the backward pass. # (batch size, the number of visible units) # 1: Store the hidden layer samples obtained in the forward pass, used in the backward and next forward pass. # (batch size, the number of hidden units) return ['aux_visible_layer_sample', 'aux_hidden_layer_sample'] if self.for_training else [] def infer_shape(self, in_shapes): visible_layer_data_shape = in_shapes[0] # The input data visible_layer_bias_shape = (visible_layer_data_shape[1],) hidden_layer_bias_shape = (self.num_hidden,) interaction_shape = (visible_layer_data_shape[1], self.num_hidden) visible_layer_sample_shape = visible_layer_data_shape visible_layer_prob_1_shape = visible_layer_sample_shape hidden_layer_sample_shape = (visible_layer_data_shape[0], self.num_hidden) hidden_layer_prob_1_shape = hidden_layer_sample_shape return [visible_layer_data_shape, visible_layer_bias_shape, hidden_layer_bias_shape, interaction_shape], \ [visible_layer_prob_1_shape, hidden_layer_prob_1_shape], \ [visible_layer_sample_shape, hidden_layer_sample_shape] if self.for_training else [] def infer_type(self, in_type): return [in_type[0], in_type[0], in_type[0], in_type[0]], \ [in_type[0], in_type[0]], \ [in_type[0], in_type[0]] if self.for_training else [] def create_operator(self, ctx, in_shapes, in_dtypes): return BinaryRBM(self.k) # For gluon API class BinaryRBMBlock(mx.gluon.HybridBlock): def __init__(self, num_hidden, k, for_training, **kwargs): super(BinaryRBMBlock, self).__init__(**kwargs) with self.name_scope(): self.num_hidden = num_hidden self.k = k self.for_training = for_training self.visible_layer_bias = self.params.get('visible_layer_bias', shape=(0,), allow_deferred_init=True) self.hidden_layer_bias = self.params.get('hidden_layer_bias', shape=(0,), allow_deferred_init=True) self.interaction_weight= self.params.get('interaction_weight', shape=(0, 0), allow_deferred_init=True) if for_training: self.aux_visible_layer_sample = self.params.get('aux_visible_layer_sample', shape=(0, 0), allow_deferred_init=True) self.aux_hidden_layer_sample = self.params.get('aux_hidden_layer_sample', shape=(0, 0), allow_deferred_init=True) def hybrid_forward(self, F, data, visible_layer_bias, hidden_layer_bias, interaction_weight, aux_visible_layer_sample=None, aux_hidden_layer_sample=None): # As long as `for_training` is kept constant, this conditional statement does not prevent hybridization. if self.for_training: return F.Custom( data, visible_layer_bias, hidden_layer_bias, interaction_weight, aux_visible_layer_sample, aux_hidden_layer_sample, num_hidden=self.num_hidden, k=self.k, for_training=self.for_training, op_type='BinaryRBM') else: return F.Custom( data, visible_layer_bias, hidden_layer_bias, interaction_weight, num_hidden=self.num_hidden, k=self.k, for_training=self.for_training, op_type='BinaryRBM') def estimate_log_likelihood(visible_layer_bias, hidden_layer_bias, interaction_weight, ais_batch_size, ais_num_batch, ais_intermediate_steps, ais_burn_in_steps, data, ctx): # The base-rate RBM with no hidden layer. The visible layer bias is set to the same with the given RBM. # This is not the only possible choice but simple and works well. base_rate_visible_layer_bias = visible_layer_bias base_rate_visible_prob_1 = base_rate_visible_layer_bias.sigmoid() log_base_rate_z = base_rate_visible_layer_bias.exp().log1p().sum() def log_intermediate_unnormalized_prob(visible_layer_sample, beta): p = mx.nd.dot( visible_layer_sample, (1 - beta) * base_rate_visible_layer_bias + beta * visible_layer_bias) if beta != 0: p += mx.nd.linalg.gemm( visible_layer_sample, interaction_weight, hidden_layer_bias.tile(reps=(visible_layer_sample.shape[0], 1)), transpose_b=False, alpha=beta, beta=beta).exp().log1p().sum(axis=1) return p def sample_base_rbm(): rands = mx.nd.random.uniform(shape=(ais_batch_size, base_rate_visible_prob_1.shape[0]), ctx=ctx) return rands < base_rate_visible_prob_1.tile(reps=(ais_batch_size, 1)) def sample_intermediate_visible_layer(visible_layer_sample, beta): for _ in range(ais_burn_in_steps): hidden_prob_1 = mx.nd.linalg.gemm( visible_layer_sample, interaction_weight, hidden_layer_bias.tile(reps=(visible_layer_sample.shape[0], 1)), transpose_b=False, alpha=beta, beta=beta) hidden_prob_1.sigmoid(out=hidden_prob_1) hidden_layer_sample = mx.nd.random.uniform(shape=hidden_prob_1.shape, ctx=ctx) < hidden_prob_1 visible_prob_1 = mx.nd.linalg.gemm( hidden_layer_sample, interaction_weight, visible_layer_bias.tile(reps=(hidden_layer_sample.shape[0], 1)), transpose_b=True, alpha=beta, beta=beta) + (1 - beta) * base_rate_visible_layer_bias visible_prob_1.sigmoid(out=visible_prob_1) visible_layer_sample = mx.nd.random.uniform(shape=visible_prob_1.shape, ctx=ctx) < visible_prob_1 return visible_layer_sample def array_from_batch(batch): if isinstance(batch, mx.io.DataBatch): return batch.data[0].as_in_context(ctx).flatten() else: # batch is an instance of list in the case of gluon DataLoader return batch[0].as_in_context(ctx).flatten() importance_weight_sum = 0 num_ais_samples = ais_num_batch * ais_batch_size for _ in range(ais_num_batch): log_importance_weight = 0 visible_layer_sample = sample_base_rbm() for n in range(1, ais_intermediate_steps + 1): beta = 1. * n / ais_intermediate_steps log_importance_weight += \ log_intermediate_unnormalized_prob(visible_layer_sample, beta) - \ log_intermediate_unnormalized_prob(visible_layer_sample, (n - 1.) / ais_intermediate_steps) visible_layer_sample = sample_intermediate_visible_layer(visible_layer_sample, beta) importance_weight_sum += log_importance_weight.exp().sum() log_z = (importance_weight_sum / num_ais_samples).log() + log_base_rate_z log_likelihood = 0 num_data = 0 for batch in data: batch_array = array_from_batch(batch) log_likelihood += log_intermediate_unnormalized_prob(batch_array, 1) - log_z num_data += batch_array.shape[0] log_likelihood = log_likelihood.sum() / num_data return log_likelihood.asscalar(), log_z.asscalar()
""" Feature scoring functionality """ import math from operator import itemgetter import numpy as np import pandas as pd from sklearn.ensemble import (ExtraTreesClassifier, ExtraTreesRegressor, RandomForestClassifier, RandomForestRegressor) from sklearn.feature_selection import (f_regression, f_classif, chi2) from .scenario_discovery_util import RuleInductionType from ..util import get_module_logger # Created on Jul 9, 2014 # # .. codeauthor:: jhkwakkel <j.h.kwakkel (at) tudelft (dot) nl> # # TODO:: look at # http://scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_recovery.html#example-linear-model-plot-sparse-recovery-py __all__ = ['F_REGRESSION', 'F_CLASSIFICATION', 'CHI2', 'get_univariate_feature_scores', 'get_rf_feature_scores', 'get_ex_feature_scores', 'get_feature_scores_all'] _logger = get_module_logger(__name__) F_REGRESSION = f_regression F_CLASSIFICATION = f_classif CHI2 = chi2 def _prepare_experiments(experiments): """ transform the experiments structured array into a numpy array. Parameters ---------- experiments :DataFrame Returns ------- ndarray, list """ try: experiments = experiments.drop('scenario', axis=1) except KeyError: pass x = experiments.copy() x_nominal = x.select_dtypes(exclude=np.number) x_nominal_columns = x_nominal.columns.values for column in x_nominal_columns: if np.unique(x[column]).shape == (1,): x = x.drop(column, axis=1) _logger.info(("{} dropped from analysis " "because only a single category").format(column)) else: x[column] = x[column].astype('category').cat.codes return x.values, x.columns.tolist() def _prepare_outcomes(outcomes, classify): """ transform the outcomes dict into a vector with either the class allocation or the value. Parameters ---------- outcomes : dict the outcomes dict classify : callable or str a classify function or variable analogous to PRIM Returns ------- 1d ndarray the return from classify bool data is categorical (True) or continuous (False) Raises -------- TypeError if classify is neither a StringType nor a callable KeyError if classify is a string which is not a key in the outcomes dict. """ if isinstance(classify, str): try: y = outcomes[classify] except KeyError as e: raise e categorical = False elif callable(classify): y = classify(outcomes) categorical = True else: raise TypeError("unknown type for classify") return y, categorical def get_univariate_feature_scores(x, y, score_func=F_CLASSIFICATION): """ calculate feature scores using univariate statistical tests. In case of categorical data, chi square or the Anova F value is used. In case of continuous data the Anova F value is used. Parameters ---------- x : structured array y : 1D nd.array score_func : {F_CLASSIFICATION, F_REGRESSION, CHI2} the score function to use, one of f_regression (regression), or f_classification or chi2 (classification). Returns ------- pandas DataFrame sorted in descending order of tuples with uncertainty and feature scores (i.e. p values in this case). """ x, uncs = _prepare_experiments(x) pvalues = score_func(x, y)[1] pvalues = np.asarray(pvalues) pvalues = zip(uncs, pvalues) pvalues = list(pvalues) pvalues.sort(key=itemgetter(1)) pvalues = pd.DataFrame(pvalues) pvalues = pvalues.set_index(0) return pvalues def get_rf_feature_scores(x, y, mode=RuleInductionType.CLASSIFICATION, nr_trees=250, max_features='auto', max_depth=None, min_samples_split=2, min_samples_leaf=1, bootstrap=True, oob_score=True, random_state=None): """ Get feature scores using a random forest Parameters ---------- x : structured array y : 1D nd.array mode : {RuleInductionType.CLASSIFICATION, RuleInductionType.REGRESSION} nr_trees : int, optional nr. of trees in forest (default=250) max_features : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html max_depth : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html min_samples : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html min_samples_leaf : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html bootstrap : bool, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html oob_score : bool, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html random_state : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html Returns ------- pandas DataFrame sorted in descending order of tuples with uncertainty and feature scores object either RandomForestClassifier or RandomForestRegressor """ x, uncs = _prepare_experiments(x) if mode == RuleInductionType.CLASSIFICATION: rfc = RandomForestClassifier criterion = 'gini' elif mode == RuleInductionType.REGRESSION: rfc = RandomForestRegressor criterion = 'mse' else: raise ValueError('{} not valid for mode'.format(mode)) forest = rfc(n_estimators=nr_trees, criterion=criterion, max_features=max_features, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, bootstrap=bootstrap, oob_score=oob_score, random_state=random_state) forest.fit(x, y) importances = forest.feature_importances_ importances = zip(uncs, importances) importances = list(importances) importances.sort(key=itemgetter(1), reverse=True) importances = pd.DataFrame(importances) importances = importances.set_index(0) return importances, forest def get_ex_feature_scores(x, y, mode=RuleInductionType.CLASSIFICATION, nr_trees=100, max_features=None, max_depth=None, min_samples_split=2, min_samples_leaf=None, min_weight_fraction_leaf=0, max_leaf_nodes=None, bootstrap=True, oob_score=True, random_state=None): """ Get feature scores using extra trees Parameters ---------- x : structured array y : 1D nd.array mode : {RuleInductionType.CLASSIFICATION, RuleInductionType.REGRESSION} nr_trees : int, optional nr. of trees in forest (default=250) max_features : int, float, string or None, optional by default, it will use number of featers/3, following Jaxa-Rozen & Kwakkel (2018) doi: 10.1016/j.envsoft.2018.06.011 see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html max_depth : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html min_samples_split : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html min_samples_leaf : int, optional defaults to 1 for N=1000 or lower, from there on proportional to sqrt of N (see discussion in Jaxa-Rozen & Kwakkel (2018) doi: 10.1016/j.envsoft.2018.06.011) see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html min_weight_fraction_leaf : float, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html max_leaf_nodes: int or None, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html bootstrap : bool, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html oob_score : bool, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html random_state : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html Returns ------- pandas DataFrame sorted in descending order of tuples with uncertainty and feature scores object either ExtraTreesClassifier or ExtraTreesRegressor """ x, uncs = _prepare_experiments(x) # TODO # max_features = number of variables/3 # # min_samples_leaf # 1000 - > # then proportional based on sqrt of N # dus sqrt(N) / Sqrt(1000) met 1 als minimumd if max_features is None: max_features = int(round(x.shape[1] / 3)) if min_samples_leaf is None: min_samples_leaf = max(1, int(round( math.sqrt(x.shape[0]) / math.sqrt(1000)))) if mode == RuleInductionType.CLASSIFICATION: etc = ExtraTreesClassifier criterion = 'gini' elif mode == RuleInductionType.REGRESSION: etc = ExtraTreesRegressor criterion = 'mse' else: raise ValueError('{} not valid for mode'.format(mode)) extra_trees = etc(n_estimators=nr_trees, criterion=criterion, max_features=max_features, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_leaf_nodes=max_leaf_nodes, bootstrap=bootstrap, oob_score=oob_score, random_state=random_state) extra_trees.fit(x, y) importances = extra_trees.feature_importances_ importances = zip(uncs, importances) importances = list(importances) importances.sort(key=itemgetter(1), reverse=True) importances = pd.DataFrame(importances) importances = importances.set_index(0) return importances, extra_trees algorithms = {'extra trees': get_ex_feature_scores, 'random forest': get_rf_feature_scores, 'univariate': get_univariate_feature_scores} def get_feature_scores_all(x, y, alg='extra trees', mode=RuleInductionType.REGRESSION, **kwargs): """perform feature scoring for all outcomes using the specified feature scoring algorithm Parameters ---------- x : numpy structured array y : dict of 1d numpy arrays the outcomes, with a string as key, and a 1D array for each outcome alg : {'extra trees', 'random forest', 'univariate'}, optional mode : {RuleInductionType.REGRESSION, RuleInductionType.CLASSIFICATION}, optional kwargs : dict, optional any remaining keyword arguments will be passed to the specific feature scoring algorithm Returns ------- DataFrame instance """ complete = None for key, value in y.items(): fs, _ = algorithms[alg](x, value, mode=mode, **kwargs) fs = fs.rename(columns={1: key}) if complete is None: complete = fs.T else: complete = complete.append(fs.T, sort=True) return complete.T
# Copyright Hybrid Logic Ltd. See LICENSE file for details. # -*- test-case-name: flocker.provision.test.test_install -*- """ Install flocker on a remote node. """ import posixpath from textwrap import dedent from urlparse import urljoin, urlparse from effect import Func, Effect import yaml from zope.interface import implementer from characteristic import attributes from pyrsistent import PRecord, field from flocker.acceptance.testtools import DatasetBackend from ._libcloud import INode from ._common import PackageSource, Variants from ._ssh import ( run, run_from_args, sudo, sudo_from_args, put, run_remotely ) from ._effect import sequence from flocker import __version__ as version from flocker.cli import configure_ssh from flocker.common.version import ( get_installable_version, get_package_key_suffix, is_release, ) # A systemctl sub-command to start or restart a service. We use restart here # so that if it is already running it gets restart (possibly necessary to # respect updated configuration) and because restart will also start it if it # is not running. START = "restart" ZFS_REPO = { 'centos-7': "https://s3.amazonaws.com/archive.zfsonlinux.org/" "epel/zfs-release.el7.noarch.rpm", } ARCHIVE_BUCKET = 'clusterhq-archive' def get_repository_url(distribution, flocker_version): """ Return the URL for the repository of a given distribution. For ``yum``-using distributions this gives the URL to a package that adds entries to ``/etc/yum.repos.d``. For ``apt``-using distributions, this gives the URL for a repo containing a Packages(.gz) file. :param bytes distribution: The Linux distribution to get a repository for. :param bytes flocker_version: The version of Flocker to get a repository for. :return bytes: The URL pointing to a repository of packages. :raises: ``UnsupportedDistribution`` if the distribution is unsupported. """ distribution_to_url = { # TODO instead of hardcoding keys, use the _to_Distribution map # and then choose the name 'centos-7': "https://{archive_bucket}.s3.amazonaws.com/" "{key}/clusterhq-release$(rpm -E %dist).noarch.rpm".format( archive_bucket=ARCHIVE_BUCKET, key='centos', ), # This could hardcode the version number instead of using # ``lsb_release`` but that allows instructions to be shared between # versions, and for earlier error reporting if you try to install on a # separate version. The $(ARCH) part must be left unevaluated, hence # the backslash escapes (one to make shell ignore the $ as a # substitution marker, and then doubled to make Python ignore the \ as # an escape marker). The output of this value then goes into # /etc/apt/sources.list which does its own substitution on $(ARCH) # during a subsequent apt-get update 'ubuntu-14.04': 'https://{archive_bucket}.s3.amazonaws.com/{key}/' '$(lsb_release --release --short)/\\$(ARCH)'.format( archive_bucket=ARCHIVE_BUCKET, key='ubuntu' + get_package_key_suffix( flocker_version), ), 'ubuntu-15.04': 'https://{archive_bucket}.s3.amazonaws.com/{key}/' '$(lsb_release --release --short)/\\$(ARCH)'.format( archive_bucket=ARCHIVE_BUCKET, key='ubuntu' + get_package_key_suffix( flocker_version), ), } try: return distribution_to_url[distribution] except KeyError: raise UnsupportedDistribution() def get_repo_options(flocker_version): """ Get a list of options for enabling necessary yum repositories. :param bytes flocker_version: The version of Flocker to get options for. :return: List of bytes for enabling (or not) a testing repository. """ is_dev = not is_release(flocker_version) if is_dev: return ['--enablerepo=clusterhq-testing'] else: return [] class UnsupportedDistribution(Exception): """ Raised if trying to support a distribution which is not supported. """ @attributes(['distribution']) class DistributionNotSupported(NotImplementedError): """ Raised when the provisioning step is not supported on the given distribution. :ivar bytes distribution: The distribution that isn't supported. """ def __str__(self): return "Distribution not supported: %s" % (self.distribution,) @implementer(INode) class ManagedNode(PRecord): """ A node managed by some other system (eg by hand or by another piece of orchestration software). """ address = field(type=bytes, mandatory=True) private_address = field(type=(bytes, type(None)), initial=None, mandatory=True) distribution = field(type=bytes, mandatory=True) def task_client_installation_test(): """ Check that the CLI is working. """ return run_from_args(['flocker-deploy', '--version']) def install_cli_commands_yum(distribution, package_source): """ Install Flocker CLI on CentOS. The ClusterHQ repo is added for downloading latest releases. If ``package_source`` contains a branch, then a BuildBot repo will also be added to the package search path, to use in-development packages. Note, the ClusterHQ repo is always enabled, to provide dependencies. :param bytes distribution: The distribution the node is running. :param PackageSource package_source: The source from which to install the package. :return: a sequence of commands to run on the distribution """ if package_source.branch: # A development branch has been selected - add its Buildbot repo use_development_branch = True result_path = posixpath.join( '/results/omnibus/', package_source.branch, distribution) base_url = urljoin(package_source.build_server, result_path) else: use_development_branch = False commands = [ sudo(command="yum install -y " + get_repository_url( distribution=distribution, flocker_version=get_installable_version(version))), ] if use_development_branch: repo = dedent(b"""\ [clusterhq-build] name=clusterhq-build baseurl=%s gpgcheck=0 enabled=0 """) % (base_url,) commands.append(put(content=repo, path='/tmp/clusterhq-build.repo')) commands.append(sudo_from_args([ 'cp', '/tmp/clusterhq-build.repo', '/etc/yum.repos.d/clusterhq-build.repo'])) repo_options = ['--enablerepo=clusterhq-build'] else: repo_options = get_repo_options( flocker_version=get_installable_version(version)) if package_source.os_version: package = 'clusterhq-flocker-cli-%s' % (package_source.os_version,) else: package = 'clusterhq-flocker-cli' # Install Flocker CLI and all dependencies commands.append(sudo_from_args( ["yum", "install"] + repo_options + ["-y", package])) return sequence(commands) def install_cli_commands_ubuntu(distribution, package_source): """ Install flocker CLI on Ubuntu. The ClusterHQ repo is added for downloading latest releases. If ``package_source`` contains a branch, then a BuildBot repo will also be added to the package search path, to use in-development packages. Note, the ClusterHQ repo is always enabled, to provide dependencies. :param bytes distribution: The distribution the node is running. :param PackageSource package_source: The source from which to install the package. :return: a sequence of commands to run on the distribution """ if package_source.branch: # A development branch has been selected - add its Buildbot repo use_development_branch = True result_path = posixpath.join( '/results/omnibus/', package_source.branch, distribution) base_url = urljoin(package_source.build_server, result_path) else: use_development_branch = False commands = [ # Minimal images often have cleared apt caches and are missing # packages that are common in a typical release. These commands # ensure that we start from a good base system with the required # capabilities, particularly that the add-apt-repository command # and HTTPS URLs are supported. # FLOC-1880 will ensure these are necessary and sufficient. sudo_from_args(["apt-get", "update"]), sudo_from_args([ "apt-get", "-y", "install", "apt-transport-https", "software-properties-common"]), # Add ClusterHQ repo for installation of Flocker packages. sudo(command='add-apt-repository -y "deb {} /"'.format( get_repository_url( distribution=distribution, flocker_version=get_installable_version(version)))) ] if use_development_branch: # Add BuildBot repo for running tests commands.append(sudo_from_args([ "add-apt-repository", "-y", "deb {} /".format(base_url)])) # During a release, the ClusterHQ repo may contain packages with # a higher version number than the Buildbot repo for a branch. # Use a pin file to ensure that any Buildbot repo has higher # priority than the ClusterHQ repo. buildbot_host = urlparse(package_source.build_server).hostname commands.append(put(dedent('''\ Package: * Pin: origin {} Pin-Priority: 900 '''.format(buildbot_host)), '/tmp/apt-pref')) commands.append(sudo_from_args([ 'mv', '/tmp/apt-pref', '/etc/apt/preferences.d/buildbot-900'])) # Update to read package info from new repos commands.append(sudo_from_args(["apt-get", "update"])) if package_source.os_version: package = 'clusterhq-flocker-cli=%s' % (package_source.os_version,) else: package = 'clusterhq-flocker-cli' # Install Flocker CLI and all dependencies commands.append(sudo_from_args([ 'apt-get', '-y', '--force-yes', 'install', package])) return sequence(commands) _task_install_commands = { 'centos-7': install_cli_commands_yum, 'ubuntu-14.04': install_cli_commands_ubuntu, 'ubuntu-15.04': install_cli_commands_ubuntu, } def task_install_cli(distribution, package_source=PackageSource()): """ Install flocker CLI on a distribution. The ClusterHQ repo is added for downloading latest releases. If ``package_source`` contains a branch, then a BuildBot repo will also be added to the package search path, to use in-development packages. Note, the ClusterHQ repo is always enabled, to provide dependencies. :param bytes distribution: The distribution the node is running. :param PackageSource package_source: The source from which to install the package. :return: a sequence of commands to run on the distribution """ return _task_install_commands[distribution](distribution, package_source) def install_cli(package_source, node): """ Return an effect to run the CLI installation tasks on a remote node. :param package_source: Package source description :param node: Remote node description """ return run_remotely( node.get_default_username(), node.address, task_install_cli(node.distribution, package_source)) def task_configure_brew_path(): """ Configure non-interactive shell to use all paths. By default, OSX provides a minimal $PATH, for programs run via SSH. In particular /usr/local/bin (which contains `brew`) isn't in the path. This configures the path to have it there. """ return put( path='.bashrc', content=dedent("""\ if [ -x /usr/libexec/path_helper ]; then eval `/usr/libexec/path_helper -s` fi """)) def task_test_homebrew(recipe): """ The commands used to install a Homebrew recipe for Flocker and test it. This taps the ClusterHQ/tap tap, which means that Homebrew looks in the ClusterHQ/homebrew-tap GitHub repository for any recipe name given. :param bytes recipe: The name of a recipe in a either the official Homebrew tap or ClusterHQ/tap, or a URL pointing to a recipe. :return Effect: Commands used to install a Homebrew recipe for Flocker and test it. """ return sequence([ run_from_args(['brew', 'tap', 'ClusterHQ/tap']), run("brew update"), run("brew install {recipe}".format(recipe=recipe)), run("brew test {recipe}".format(recipe=recipe)), ]) def task_install_ssh_key(): """ Install the authorized ssh keys of the current user for root as well. """ return sequence([ sudo_from_args(['cp', '.ssh/authorized_keys', '/root/.ssh/authorized_keys']), ]) def task_upgrade_kernel(distribution): """ Upgrade kernel. """ if distribution == 'centos-7': return sequence([ run_from_args([ "yum", "install", "-y", "kernel-devel", "kernel"]), run_from_args(['sync']), ]) elif distribution == 'ubuntu-14.04': # Not required. return sequence([]) else: raise DistributionNotSupported(distribution=distribution) def task_disable_selinux(distribution): """ Disable SELinux for this session and permanently. XXX: Remove this when we work out suitable SELinux settings. See https://clusterhq.atlassian.net/browse/FLOC-619. """ if distribution in ('centos-7',): return sequence([ run("if selinuxenabled; then setenforce 0; fi"), run("test -e /etc/selinux/config && " "sed --in-place='.preflocker' " "'s/^SELINUX=.*$/SELINUX=disabled/g' " "/etc/selinux/config"), ]) elif distribution in ('ubuntu-14.04',): # Ubuntu does not have SELinux enabled return sequence([]) else: raise DistributionNotSupported(distribution=distribution) def task_install_control_certificates(ca_cert, control_cert, control_key): """ Install certificates and private key required by the control service. :param FilePath ca_cert: Path to CA certificate on local machine. :param FilePath control_cert: Path to control service certificate on local machine. :param FilePath control_key: Path to control service private key local machine. """ # Be better if permissions were correct from the start. # https://clusterhq.atlassian.net/browse/FLOC-1922 return sequence([ run('mkdir -p /etc/flocker'), run('chmod u=rwX,g=,o= /etc/flocker'), put(path="/etc/flocker/cluster.crt", content=ca_cert.getContent()), put(path="/etc/flocker/control-service.crt", content=control_cert.getContent()), put(path="/etc/flocker/control-service.key", content=control_key.getContent()), ]) def task_install_node_certificates(ca_cert, node_cert, node_key): """ Install certificates and private key required by a node. :param FilePath ca_cert: Path to CA certificate on local machine. :param FilePath node_cert: Path to node certificate on local machine. :param FilePath node_key: Path to node private key local machine. """ # Be better if permissions were correct from the start. # https://clusterhq.atlassian.net/browse/FLOC-1922 return sequence([ run('mkdir -p /etc/flocker'), run('chmod u=rwX,g=,o= /etc/flocker'), put(path="/etc/flocker/cluster.crt", content=ca_cert.getContent()), put(path="/etc/flocker/node.crt", content=node_cert.getContent()), put(path="/etc/flocker/node.key", content=node_key.getContent()), ]) def task_enable_docker(distribution): """ Start docker and configure it to start automatically. """ if distribution in ('centos-7',): return sequence([ run_from_args(["systemctl", "enable", "docker.service"]), run_from_args(["systemctl", "start", "docker.service"]), ]) elif distribution == 'ubuntu-14.04': # Ubuntu enables docker service during installation return sequence([]) else: raise DistributionNotSupported(distribution=distribution) def open_firewalld(service): """ Open firewalld port for a service. :param str service: Name of service. """ return sequence([ run_from_args(command + [service]) for command in [['firewall-cmd', '--permanent', '--add-service'], ['firewall-cmd', '--add-service']]]) def open_ufw(service): """ Open ufw port for a service. :param str service: Name of service. """ return sequence([ run_from_args(['ufw', 'allow', service]) ]) def task_enable_flocker_control(distribution): """ Enable flocker-control service. """ if distribution in ('centos-7',): return sequence([ run_from_args(['systemctl', 'enable', 'flocker-control']), run_from_args(['systemctl', START, 'flocker-control']), ]) elif distribution == 'ubuntu-14.04': # Since the flocker-control service is currently installed # alongside the flocker-dataset-agent service, the default control # service configuration does not automatically start the # service. Here, we provide an override file to start it. return sequence([ put( path='/etc/init/flocker-control.override', content=dedent('''\ start on runlevel [2345] stop on runlevel [016] '''), ), run("echo 'flocker-control-api\t4523/tcp\t\t\t# Flocker Control API port' >> /etc/services"), # noqa run("echo 'flocker-control-agent\t4524/tcp\t\t\t# Flocker Control Agent port' >> /etc/services"), # noqa run_from_args(['service', 'flocker-control', 'start']), ]) else: raise DistributionNotSupported(distribution=distribution) def task_open_control_firewall(distribution): """ Open the firewall for flocker-control. """ if distribution in ('centos-7',): open_firewall = open_firewalld elif distribution == 'ubuntu-14.04': open_firewall = open_ufw else: raise DistributionNotSupported(distribution=distribution) return sequence([ open_firewall(service) for service in ['flocker-control-api', 'flocker-control-agent'] ]) def task_enable_flocker_agent(distribution, control_node, dataset_backend=DatasetBackend.zfs, dataset_backend_configuration=dict( pool=u'flocker' )): """ Configure and enable the flocker agents. :param bytes control_node: The address of the control agent. :param DatasetBackend dataset_backend: The volume backend the nodes are configured with. (This has a default for use in the documentation). :param dict dataset_backend_configuration: The backend specific configuration options. """ dataset_backend_configuration = dataset_backend_configuration.copy() dataset_backend_configuration.update({ u"backend": dataset_backend.name, }) put_config_file = put( path='/etc/flocker/agent.yml', content=yaml.safe_dump( { "version": 1, "control-service": { "hostname": control_node, "port": 4524, }, "dataset": dataset_backend_configuration, }, ), ) if distribution in ('centos-7',): return sequence([ put_config_file, run_from_args(['systemctl', 'enable', 'flocker-dataset-agent']), run_from_args(['systemctl', START, 'flocker-dataset-agent']), run_from_args(['systemctl', 'enable', 'flocker-container-agent']), run_from_args(['systemctl', START, 'flocker-container-agent']), ]) elif distribution == 'ubuntu-14.04': return sequence([ put_config_file, run_from_args(['service', 'flocker-dataset-agent', 'start']), run_from_args(['service', 'flocker-container-agent', 'start']), ]) else: raise DistributionNotSupported(distribution=distribution) def task_create_flocker_pool_file(): """ Create a file-back zfs pool for flocker. """ return sequence([ run('mkdir -p /var/opt/flocker'), run('truncate --size 10G /var/opt/flocker/pool-vdev'), run('zpool create flocker /var/opt/flocker/pool-vdev'), ]) def task_install_zfs(distribution, variants=set()): """ Install ZFS on a node. :param bytes distribution: The distribution the node is running. :param set variants: The set of variant configurations to use when """ commands = [] if distribution == 'ubuntu-14.04': commands += [ # ZFS not available in base Ubuntu - add ZFS repo run_from_args([ "add-apt-repository", "-y", "ppa:zfs-native/stable"]), ] commands += [ # Update to read package info from new repos run_from_args([ "apt-get", "update"]), # Package spl-dkms sometimes does not have libc6-dev as a # dependency, add it before ZFS installation requires it. # See https://github.com/zfsonlinux/zfs/issues/3298 run_from_args(["apt-get", "-y", "install", "libc6-dev"]), run_from_args(['apt-get', '-y', 'install', 'zfsutils']), ] elif distribution in ('centos-7',): commands += [ run_from_args(["yum", "install", "-y", ZFS_REPO[distribution]]), ] if distribution == 'centos-7': commands.append( run_from_args(["yum", "install", "-y", "epel-release"])) if Variants.ZFS_TESTING in variants: commands += [ run_from_args(['yum', 'install', '-y', 'yum-utils']), run_from_args([ 'yum-config-manager', '--enable', 'zfs-testing']) ] commands += [ run_from_args(['yum', 'install', '-y', 'zfs']), ] else: raise DistributionNotSupported(distribution) return sequence(commands) def configure_zfs(node, variants): """ Configure ZFS for use as a Flocker backend. :param INode node: The node to configure ZFS on. :param set variants: The set of variant configurations to use when :return Effect: """ return sequence([ run_remotely( username='root', address=node.address, commands=task_upgrade_kernel( distribution=node.distribution), ), node.reboot(), run_remotely( username='root', address=node.address, commands=sequence([ task_install_zfs( distribution=node.distribution, variants=variants), task_create_flocker_pool_file(), ]), ), Effect( Func(lambda: configure_ssh(node.address, 22))), ]) def _uninstall_flocker_ubuntu1404(): """ Return an ``Effect`` for uninstalling the Flocker package from an Ubuntu 14.04 machine. """ return run_from_args([ b"apt-get", b"remove", b"-y", b"--purge", b"clusterhq-python-flocker", ]) def _uninstall_flocker_centos7(): """ Return an ``Effect`` for uninstalling the Flocker package from a CentOS 7 machine. """ return sequence([ run_from_args([ b"yum", b"erase", b"-y", b"clusterhq-python-flocker", ]), run_from_args([ b"yum", b"erase", b"-y", b"clusterhq-release", ]), ]) _flocker_uninstallers = { "ubuntu-14.04": _uninstall_flocker_ubuntu1404, "centos-7": _uninstall_flocker_centos7, } def task_uninstall_flocker(distribution): """ Return an ``Effect`` for uninstalling the Flocker package from the given distribution. """ return _flocker_uninstallers[distribution]() def uninstall_flocker(nodes): """ Return an ``Effect`` for uninstalling the Flocker package from all of the given nodes. """ return _run_on_all_nodes( nodes, task=lambda node: task_uninstall_flocker(node.distribution) ) def task_install_flocker( distribution=None, package_source=PackageSource(), ): """ Install flocker cluster on a distribution. The ClusterHQ repo is added for downloading latest releases. If ``package_source`` contains a branch, then a BuildBot repo will also be added to the package search path, to use in-development packages. Note, the ClusterHQ repo is always enabled, to provide dependencies. :param bytes distribution: The distribution the node is running. :param PackageSource package_source: The source from which to install the package. :raises: ``UnsupportedDistribution`` if the distribution is unsupported. """ if package_source.branch: # A development branch has been selected - add its Buildbot repo use_development_branch = True result_path = posixpath.join( '/results/omnibus/', package_source.branch, distribution) base_url = urljoin(package_source.build_server, result_path) else: use_development_branch = False if distribution in ('ubuntu-14.04', 'ubuntu-15.04'): commands = [ # Ensure add-apt-repository command and HTTPS URLs are supported # FLOC-1880 will ensure these are necessary and sufficient run_from_args([ "apt-get", "-y", "install", "apt-transport-https", "software-properties-common"]), # Add Docker repo for recent Docker versions run_from_args([ "add-apt-repository", "-y", "ppa:james-page/docker"]), # Add ClusterHQ repo for installation of Flocker packages. run(command='add-apt-repository -y "deb {} /"'.format( get_repository_url( distribution=distribution, flocker_version=get_installable_version(version)))), ] if use_development_branch: # Add BuildBot repo for testing commands.append(run_from_args([ "add-apt-repository", "-y", "deb {} /".format(base_url)])) # During a release, the ClusterHQ repo may contain packages with # a higher version number than the Buildbot repo for a branch. # Use a pin file to ensure that any Buildbot repo has higher # priority than the ClusterHQ repo. buildbot_host = urlparse(package_source.build_server).hostname commands.append(put( dedent('''\ Package: * Pin: origin {} Pin-Priority: 900 '''.format(buildbot_host)), '/etc/apt/preferences.d/buildbot-900')) commands += [ # Update to read package info from new repos run_from_args([ "apt-get", "update"]), ] if package_source.os_version: package = 'clusterhq-flocker-node=%s' % ( package_source.os_version,) else: package = 'clusterhq-flocker-node' # Install Flocker node and all dependencies commands.append(run_from_args([ 'apt-get', '-y', '--force-yes', 'install', package])) return sequence(commands) elif distribution in ('centos-7',): commands = [ run(command="yum clean all"), run(command="yum install -y " + get_repository_url( distribution=distribution, flocker_version=get_installable_version(version))) ] if use_development_branch: repo = dedent(b"""\ [clusterhq-build] name=clusterhq-build baseurl=%s gpgcheck=0 enabled=0 """) % (base_url,) commands.append(put(content=repo, path='/etc/yum.repos.d/clusterhq-build.repo')) repo_options = ['--enablerepo=clusterhq-build'] else: repo_options = get_repo_options( flocker_version=get_installable_version(version)) if package_source.os_version: package = 'clusterhq-flocker-node-%s' % ( package_source.os_version,) else: package = 'clusterhq-flocker-node' commands.append(run_from_args( ["yum", "install"] + repo_options + ["-y", package])) return sequence(commands) else: raise UnsupportedDistribution() ACCEPTANCE_IMAGES = [ "postgres:latest", "clusterhq/mongodb:latest", "clusterhq/flask", "clusterhq/flaskenv", "busybox", ] def task_pull_docker_images(images=ACCEPTANCE_IMAGES): """ Pull docker images. :param list images: List of images to pull. Defaults to images used in acceptance tests. """ return sequence([ run_from_args(['docker', 'pull', image]) for image in images ]) def task_enable_updates_testing(distribution): """ Enable the distribution's proposed updates repository. :param bytes distribution: See func:`task_install_flocker` """ raise DistributionNotSupported(distribution=distribution) def task_enable_docker_head_repository(distribution): """ Enable the distribution's repository containing in-development docker builds. :param bytes distribution: See func:`task_install_flocker` """ if distribution == "centos-7": return sequence([ put(content=dedent("""\ [virt7-testing] name=virt7-testing baseurl=http://cbs.centos.org/repos/virt7-testing/x86_64/os/ enabled=1 gpgcheck=0 """), path="/etc/yum.repos.d/virt7-testing.repo") ]) else: raise DistributionNotSupported(distribution=distribution) def provision(distribution, package_source, variants): """ Provision the node for running flocker. This drives all the common node installation steps in: * http://doc-dev.clusterhq.com/gettingstarted/installation.html :param bytes address: Address of the node to provision. :param bytes username: Username to connect as. :param bytes distribution: See func:`task_install_flocker` :param PackageSource package_source: See func:`task_install_flocker` :param set variants: The set of variant configurations to use when provisioning """ commands = [] if Variants.DISTRO_TESTING in variants: commands.append(task_enable_updates_testing(distribution)) if Variants.DOCKER_HEAD in variants: commands.append(task_enable_docker_head_repository(distribution)) commands.append( task_install_flocker( package_source=package_source, distribution=distribution)) if distribution in ('centos-7'): commands.append(task_disable_selinux(distribution)) commands.append(task_enable_docker(distribution)) return sequence(commands) def _run_on_all_nodes(nodes, task): """ Run some commands on some nodes. :param nodes: An iterable of ``Node`` instances where the commands should be run. :param task: A one-argument callable which is called with each ``Node`` and should return the ``Effect`` to run on that node. :return: An ``Effect`` that runs the commands on a group of nodes. """ return sequence(list( run_remotely( username='root', address=node.address, commands=task(node), ) for node in nodes )) def install_flocker(nodes, package_source): """ Return an ``Effect`` that installs a certain version of Flocker on the given nodes. :param nodes: An iterable of ``Node`` instances on which to install Flocker. :param PackageSource package_source: The version of Flocker to install. :return: An ``Effect`` which installs Flocker on the nodes. """ return _run_on_all_nodes( nodes, task=lambda node: task_install_flocker( distribution=node.distribution, package_source=package_source, ) ) def configure_cluster(cluster, dataset_backend_configuration): """ Configure flocker-control, flocker-dataset-agent and flocker-container-agent on a collection of nodes. :param Cluster cluster: Description of the cluster to configure. :param dict dataset_backend_configuration: Configuration parameters to supply to the dataset backend. """ return sequence([ run_remotely( username='root', address=cluster.control_node.address, commands=sequence([ task_install_control_certificates( cluster.certificates.cluster.certificate, cluster.certificates.control.certificate, cluster.certificates.control.key), task_enable_flocker_control(cluster.control_node.distribution), ]), ), sequence([ sequence([ run_remotely( username='root', address=node.address, commands=sequence([ task_install_node_certificates( cluster.certificates.cluster.certificate, certnkey.certificate, certnkey.key), task_enable_flocker_agent( distribution=node.distribution, control_node=cluster.control_node.address, dataset_backend=cluster.dataset_backend, dataset_backend_configuration=( dataset_backend_configuration ), )]), ), ]) for certnkey, node in zip(cluster.certificates.nodes, cluster.agent_nodes) ]) ])
#!/usr/bin/env python """ Unit tests for :mod:`clans.fmt`. """ import sys if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest import clans.fmt from io import StringIO from datetime import datetime TEST_DATA = { 'test_format_date': datetime(2015, 1, 28, 23, 46), 'test_format_date_dst': datetime(2012, 4, 12, 20, 6), 'test_format_plan': { 'lastupdated': datetime(2013, 8, 5, 13, 22), 'lastlogin': datetime(2013, 8, 7, 3, 42), 'username': 'username', 'planname': 'clever catchphrase', 'plan': 'this is my plan\n' }, 'test_br_stripping': "one<br>two<br/>three<br />four", 'test_crlf_stripping': "one\ntwo\rthree\r\nfour", 'test_html_escapes': ("I develop in a &quot;quick &amp; dirty&quot; " "&lt;style&gt;"), 'test_tag_stripping': "This is <b>bold</b> and <i>italic</i>", 'test_underline': ('This is <span ' 'class="underline">underlined</span><!--u-->'), 'test_link_formatting': ('<a href="http://www.facebook.com/" ' 'class="onplan">my favorite website</a>'), 'test_love_formatting': ('[<a href="read.php?searchname=gorp" ' 'class="planlove">GORP</a>]'), 'test_love_formatting': ('[<a href="read.php?searchname=gorp" ' 'class="planlove">GORP</a>]'), 'test_psub_formatting': '<p class="sub">we all live in a yellow</p>', 'test_hr_formatting': """I need a clean <hr>break""", 'test_print_list': ['one', 'two', 'three', 'four'], 'test_print_autoread': { 'Level 1': ['bff', 'interesting', 'funny', 'gorp'], 'Level 2': ['roommate', 'rando'], 'Level 3': ['meh', ], }, 'test_print_search_results': [ ('plan1', 1, ['snip one <b>term</b> context', ]), ('plan2', 2, ['snip one <b>term</b> context', 'snip two <b>term</b> context']), ('plan3', 2, ['snip <b>term</b> twice <b>term</b> twice', ]) ], } class FakeStdout(unittest.TestCase): def setUp(self): self.real_stdout = sys.stdout sys.stdout = StringIO() def tearDown(self): sys.stdout = self.real_stdout class TestRaw(FakeStdout): def setUp(self): FakeStdout.setUp(self) self.fmt = clans.fmt.RawFormatter() def test_format_date(self): date = TEST_DATA['test_format_date'] text = self.fmt.format_date(date) expect = '2015-01-28 23:46:00' # no assumed timezone self.assertEqual(expect, text) # plan format test: a header, two newlines, then the plan. def test_format_plan(self): data = TEST_DATA['test_format_plan'] text = self.fmt.format_plan(**data) expect = """\ Username: username Last Updated: 2013-08-05 13:22:00 Last Login: 2013-08-07 03:42:00 Name: clever catchphrase this is my plan """ self.assertEqual(expect, text) # other tests def test_print_list(self): lst = TEST_DATA['test_print_list'] self.fmt.print_list(lst) output = sys.stdout.getvalue() expect = u"""\ one two three four """ self.assertEqual(expect, output) def test_print_bulleted_list(self): lst = TEST_DATA['test_print_list'] self.fmt.print_list(lst, bullets=True) output = sys.stdout.getvalue() expect = u"""\ - one - two - three - four """ self.assertEqual(expect, output) def test_print_search_results(self): results = TEST_DATA['test_print_search_results'] self.fmt.print_search_results(results) output = sys.stdout.getvalue() expect = u"""\ [plan1]: 1 - snip one <b>term</b> context [plan2]: 2 - snip one <b>term</b> context - snip two <b>term</b> context [plan3]: 2 - snip <b>term</b> twice <b>term</b> twice """ self.assertEqual(expect, output) def test_print_autoread(self): autoread = TEST_DATA['test_print_autoread'] self.fmt.print_autoread(autoread) output = sys.stdout.getvalue() expect = u"""\ Level 1: bff interesting funny gorp Level 2: roommate rando Level 3: meh """ self.assertEqual(expect, output) class TestJSON(FakeStdout): def setUp(self): FakeStdout.setUp(self) self.fmt = clans.fmt.JSONFormatter() def test_format_date(self): date = TEST_DATA['test_format_date'] text = self.fmt.format_date(date) expect = '2015-01-28T23:46:00Z' # ISO 8601, assume UTC self.assertEqual(expect, text) def test_format_plan(self): data = TEST_DATA['test_format_plan'] text = self.fmt.format_plan(**data) expect = """\ { "username": "username", "lastupdated": "2013-08-05T13:22:00Z", "lastlogin": "2013-08-07T03:42:00Z", "planname": "clever catchphrase", "plan": "this is my plan\\n" }""" self.assertEqual(expect, text) # other tests def test_print_list(self): lst = TEST_DATA['test_print_list'] self.fmt.print_list(lst) output = sys.stdout.getvalue() expect = u"""\ [ "one", "two", "three", "four" ] """ self.assertEqual(expect, output) def test_print_search_results(self): results = TEST_DATA['test_print_search_results'] self.fmt.print_search_results(results) output = sys.stdout.getvalue() expect = u"""\ [ [ "plan1", 1, [ "snip one <b>term</b> context" ] ], [ "plan2", 2, [ "snip one <b>term</b> context", "snip two <b>term</b> context" ] ], [ "plan3", 2, [ "snip <b>term</b> twice <b>term</b> twice" ] ] ] """ self.assertEqual(expect, output) def test_print_autoread(self): autoread = TEST_DATA['test_print_autoread'] self.fmt.print_autoread(autoread) output = sys.stdout.getvalue() expect = u"""\ { "Level 1": [ "bff", "interesting", "funny", "gorp" ], "Level 2": [ "roommate", "rando" ], "Level 3": [ "meh" ] } """ self.assertEqual(expect, output) class TestText(TestRaw): def setUp(self): FakeStdout.setUp(self) kwargs = {'timezone': 'US/Central'} self.fmt = clans.fmt.TextFormatter(**kwargs) def test_format_date(self): date = TEST_DATA['test_format_date'] text = self.fmt.format_date(date) expect = 'Wed January 28 2015, 5:46 PM' # timezone should have been converted to central. # same format as plans web (but w/o ordinal suffix) self.assertEqual(expect, text) def test_format_date_dst(self): date = TEST_DATA['test_format_date_dst'] text = self.fmt.format_date(date) expect = 'Thu April 12 2012, 3:06 PM' self.assertEqual(expect, text) def test_alt_tz(self): date = TEST_DATA['test_format_date'] kwargs = {'timezone': 'US/Pacific'} fmt = clans.fmt.TextFormatter(**kwargs) text = fmt.format_date(date) expect = 'Wed January 28 2015, 3:46 PM' self.assertEqual(expect, text) def test_no_tz(self): date = TEST_DATA['test_format_date'] fmt = clans.fmt.TextFormatter() text = fmt.format_date(date) self.assertIn('January', text) def test_format_plan(self): data = TEST_DATA['test_format_plan'] text = self.fmt.format_plan(**data) expect = """\ Username: username Last Updated: Mon August 5 2013, 8:22 AM Last Login: Tue August 6 2013, 10:42 PM Name: clever catchphrase this is my plan """ self.assertEqual(expect, text) # filter_html tests def test_br_stripping(self): html = TEST_DATA['test_br_stripping'] text = self.fmt.filter_html(html) expect = "one\ntwo\nthree\nfour" self.assertEqual(expect, text) def test_crlf_stripping(self): html = TEST_DATA['test_crlf_stripping'] text = self.fmt.filter_html(html) expect = "onetwothreefour" self.assertEqual(expect, text) def test_html_escapes(self): html = TEST_DATA['test_html_escapes'] text = self.fmt.filter_html(html) expect = 'I develop in a "quick & dirty" <style>' self.assertEqual(expect, text) def test_tag_stripping(self): html = TEST_DATA['test_tag_stripping'] expect = "This is bold and italic" text = self.fmt.filter_html(html) self.assertEqual(expect, text) def test_underline(self): html = TEST_DATA['test_underline'] expect = 'This is underlined' text = self.fmt.filter_html(html) self.assertEqual(expect, text) def test_link_formatting(self): html = TEST_DATA['test_link_formatting'] expect = '[http://www.facebook.com/|my favorite website]' text = self.fmt.filter_html(html) self.assertEqual(expect, text) def test_love_formatting(self): html = TEST_DATA['test_love_formatting'] expect = '[GORP]' text = self.fmt.filter_html(html) self.assertEqual(expect, text) def test_psub_formatting(self): html = TEST_DATA['test_psub_formatting'] expect = 'we all live in a yellow' text = self.fmt.filter_html(html) self.assertEqual(expect, text) def test_hr_formatting(self): html = TEST_DATA['test_hr_formatting'] expect = """I need a clean ====================================================================== break""" text = self.fmt.filter_html(html) self.assertEqual(expect, text) def test_print_list_in_columns(self): lst = TEST_DATA['test_print_list'] self.fmt.print_list(lst, columns=True) output = sys.stdout.getvalue() expect = u"""\ one two three four """ self.assertEqual(expect, output) def test_print_search_results(self): results = TEST_DATA['test_print_search_results'] self.fmt.print_search_results(results) output = sys.stdout.getvalue() expect = u"""\ [plan1]: 1 - snip one term context [plan2]: 2 - snip one term context - snip two term context [plan3]: 2 - snip term twice term twice """ self.assertEqual(expect, output) class TestColor(TestText): def setUp(self): FakeStdout.setUp(self) kwargs = {'timezone': 'US/Central'} self.fmt = clans.fmt.ColorFormatter(**kwargs) # plan format test def test_format_plan(self): data = TEST_DATA['test_format_plan'] text = self.fmt.format_plan(**data) expect = """\ %sUsername%s: username %sLast Updated%s: Mon August 5 2013, 8:22 AM %sLast Login%s: Tue August 6 2013, 10:42 PM %sName%s: clever catchphrase this is my plan """ % (('\x1b[1m', '\x1b[22m') * 4) self.assertEqual(expect, text) # filter_html tests def test_tag_stripping(self): html = TEST_DATA['test_tag_stripping'] expect = "This is \x1b[1mbold\x1b[22m and \x1b[2mitalic\x1b[22m" # italic is actually 'dim', bold 'bright' text = self.fmt.filter_html(html) self.assertEqual(expect, text) def test_underline(self): html = TEST_DATA['test_underline'] expect = 'This is \x1b[4munderlined\x1b[0m' text = self.fmt.filter_html(html) self.assertEqual(expect, text) def test_link_formatting(self): html = TEST_DATA['test_link_formatting'] expect = ('[\x1b[32mhttp://www.facebook.com/\x1b[39m|\x1b[35m' 'my favorite website\x1b[39m]') # green for the link, magenta for the link text text = self.fmt.filter_html(html) self.assertEqual(expect, text) def test_love_formatting(self): html = TEST_DATA['test_love_formatting'] expect = '[\x1b[1m\x1b[34mGORP\x1b[22m\x1b[39m]' # blue and bold text = self.fmt.filter_html(html) self.assertEqual(expect, text) def test_hr_formatting(self): html = TEST_DATA['test_hr_formatting'] expect = """I need a clean \x1b[31m======================================================================\x1b[39m break""" # red text = self.fmt.filter_html(html) self.assertEqual(expect, text) # other tests def test_print_search_results(self): results = TEST_DATA['test_print_search_results'] self.fmt.print_search_results(results) output = sys.stdout.getvalue() expect = u"""\ [{link}plan1{unlink}]: 1 - snip one {bold}term{unbold} context [{link}plan2{unlink}]: 2 - snip one {bold}term{unbold} context - snip two {bold}term{unbold} context [{link}plan3{unlink}]: 2 - snip {bold}term{unbold} twice {bold}term{unbold} twice """.format(bold='\x1b[1m', unbold='\x1b[22m', link='\x1b[1m\x1b[34m', unlink='\x1b[22m\x1b[39m') self.assertEqual(expect, output) if __name__ == "__main__": unittest.main(buffer=True)
import collections import sys import os from enum import Enum from functools import reduce from inspect import signature from time import gmtime, strftime import numpy as np import tensorflow as tf # noinspection PyProtectedMember from tensorflow.python.ops.gradients_impl import _hessian_vector_product as _hvp from tensorflow.python.client.session import register_session_run_conversion_functions from tensorflow.python.ops import control_flow_ops utils_settings = { 'WSA': True, # gives a warning when new nodes are being created during session runtime } def get_available_devices(gpu_only=False): from tensorflow.python.client import device_lib local_device_protos = device_lib.list_local_devices() if gpu_only: return [x.name for x in local_device_protos if x.device_type == 'GPU'] else: return [x.name for x in local_device_protos] def wsr(node): # warning on session running if utils_settings['WSA'] and tf.get_default_session(): print('Warning: creating nodes at tf.Session runtime: node %s' % node, file=sys.stderr) return node def call_method_optional_param(method, optional_param): """ Convenience method for function that may or not have one parameter (like feed dictionary suppliers) :param method: :param optional_param: :return: the result of calling the method. """ return method(optional_param) if len(signature(method).parameters) > 0 else method() CONFIG_GPU_GROWTH = tf.ConfigProto(allow_soft_placement=True) CONFIG_GPU_GROWTH.gpu_options.allow_growth = True def simple_name(tensor_or_name): if isinstance(tensor_or_name, str): return tensor_or_name.split(':')[0] return tensor_or_name.name.split(':')[0] class SummaryUtil: def __init__(self, ops=None, condition=None, writer=None, fd_supplier=None): """ Utility class used by SummariesUtils to collect summary ops :param ops: summary operations :param condition: (default: always True) :param writer: either a tf.summary.FileWriter or a string for standard log dirs :param fd_supplier: (default None supplier) """ assert ops is not None self.ops = ops self.condition = condition if condition else lambda step: True self.writer = (tf.summary.FileWriter(writer + strftime("%a_%d_%b_%Y_%H:%M:%S", gmtime())) if isinstance(writer, str) else writer) self.fd_supplier = fd_supplier if fd_supplier else lambda: None class SummaryUtils: def __init__(self, *summary_utils_list): self.summary_list = summary_utils_list def run(self, session, step): [su.writer.add_summary( session.run(su.ops, feed_dict=su.fd_supplier(step)), step ) for su in self.summary_list if su.condition(step)] PrintUtil = collections.namedtuple('PrintSummaryUtil', ['print_supplier', 'condition']) def stepwise_pu(print_supplier, every_n_steps): return PrintUtil(print_supplier=print_supplier, condition=lambda step: step == every_n_steps) def unconditional_pu(print_supplier): return PrintUtil(print_supplier=print_supplier, condition=lambda step: True) class PrintUtils: # TODO fix this class... Looks horrible now def __init__(self, *print_list, add_print=False): # here can be added also the standard output self.print_utils = print_list self.add_print = add_print def run(self, session=None, step=None): if self.add_print: [print(pu.print_supplier(session, step)) for pu in self.print_utils if pu.condition(step)] else: [pu.print_supplier(session, step) for pu in self.print_utils if pu.condition(step)] class MergedUtils: def __init__(self, *utils): self.merged = utils def run(self, session, step): [u.run(session, step) for u in self.merged] # ------------------------------------------------ # DATA PROCESSING # ------------------------------------------------ def np_normalize_data(data, m=None, sd=None, return_mean_and_sd=False): if m is None: m = np.mean(data, 0) sd = np.std(data, 0) normalized_data = (data - m) / sd if return_mean_and_sd: return normalized_data, m, sd return normalized_data def norm(v, name='norm'): """ The the norm of a Tensor: if v is a vector then the norm is the Euclid's norm L2, otherwise it computes the Frobenius norm. :param name: (optional, default norm) name of the name_scope :param v: tf.Tensor or Variable :return: a tensor that computes the norm """ with tf.name_scope(name): return wsr(tf.sqrt(tf.reduce_sum(tf.square(v)))) def cross_entropy_loss(labels, logits, linear_input=True, eps=1.e-5, name='cross_entropy_loss'): """ Clipped standard-version cross entropy loss. Implemented because the standard function tf.nn.softmax_cross_entropy_with_logits has wrong (?) Hessian. Clipped because it easily brings to nan otherwise, especially when calculating the Hessian. Maybe the code could be optimized since ln(softmax(z_j)) = z_j - prod z_i . Should benchmark it. :param labels: :param logits: softmax or linear output of the model :param linear_input: True (default) if y is linear in which case tf.nn.softmax will be applied to y :param eps: (optional, default 1.e-5) clipping value for log. :param name: (optional, default cross_entropy_loss) name scope for the defined operations. :return: tensor for the cross_entropy_loss (WITHOUT MEAN ON THE EXAMPLES) """ with tf.name_scope(name): softmax_out = tf.nn.softmax(logits) if linear_input else logits return -tf.reduce_sum( labels * tf.log(tf.clip_by_value(softmax_out, eps, 1. - eps)), reduction_indices=[1] ) def binary_cross_entropy(labels, logits, linear_input=True, eps=1.e-5, name='binary_cross_entropy_loss'): """ Same as cross_entropy_loss for the binary classification problem. the model should have a one dimensional output, the targets should be given in form of a matrix of dimensions batch_size x 1 with values in [0,1]. :param labels: :param logits: sigmoid or linear output of the model :param linear_input: (default: True) is y is linear in which case tf.nn.sigmoid will be applied to y :param eps: (optional, default 1.e-5) clipping value for log. :param name: (optional, default binary_cross_entropy_loss) name scope for the defined operations. :return: tensor for the cross_entropy_loss (WITHOUT MEAN ON THE EXAMPLES) """ with tf.name_scope(name): sigmoid_out = tf.nn.sigmoid(logits)[:, 0] if linear_input else logits # tgs = targets if len(targets.) return - (labels * tf.log(tf.clip_by_value(sigmoid_out, eps, 1. - eps)) + (1. - labels) * tf.log(tf.clip_by_value(1. - sigmoid_out, eps, 1. - eps))) def l_diag_mul(d, m, name='diag_matrix_product'): """ Performs diag(d) * m product :param d: n-dimensional vector :param m: n x k matrix :param name: optional name :return: n x k matrix """ with tf.name_scope(name): return tf.transpose(d * tf.transpose(m)) def matmul(a, b, benchmark=True, name='mul'): # TODO maybe put inside dot """ Interface function for matmul that works also with sparse tensors :param a: :param b: :param benchmark: :param name: :return: """ a_is_sparse = isinstance(a, tf.SparseTensor) with tf.name_scope(name): if a_is_sparse: mul = wsr(tf.matmul(tf.sparse_tensor_to_dense(a, default_value=0.), b)) if benchmark: mul_ops = [wsr(tf.sparse_tensor_dense_matmul(a, b)), mul, # others ? # wsr(tf.nn.embedding_lookup_sparse()) # I couldn't figure out how this works...... ] def _avg_exe_times(op, repetitions): from time import time ex_times = [] for _ in range(repetitions): st = time() op.eval() ex_times.append(time() - st) return np.mean(ex_times[1:]), np.max(ex_times), np.min(ex_times) with tf.Session(config=CONFIG_GPU_GROWTH).as_default(): tf.global_variables_initializer().run() # TODO here should only initialize necessary variable # (downstream in the computation graph) statistics = {op: _avg_exe_times(op, repetitions=4) for op in mul_ops} [print(k, v) for k, v in statistics.items()] mul = sorted(statistics.items(), key=lambda v: v[1][0])[0][0] # returns best one w.r.t. avg exe time print(mul, 'selected') else: mul = wsr(tf.matmul(a, b)) return mul # Define a context manager to suppress stdout and stderr. class suppress_stdout_stderr(object): """ A context manager for doing a "deep suppression" of stdout and stderr in Python, i.e. will suppress all print, even if the print originates in a compiled C/Fortran sub-function. This will not suppress raised exceptions, since exceptions are printed to stderr just before a script exits, and after the context manager has exited (at least, I think that is why it lets exceptions through). """ def __init__(self): # Open a pair of null files self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)] # Save the actual stdout (1) and stderr (2) file descriptors. self.save_fds = (os.dup(1), os.dup(2)) def __enter__(self): # Assign the null pointers to stdout and stderr. os.dup2(self.null_fds[0], 1) os.dup2(self.null_fds[1], 2) def __exit__(self, *_): # Re-assign the real stdout/stderr back to (1) and (2) os.dup2(self.save_fds[0], 1) os.dup2(self.save_fds[1], 2) # Close the null files os.close(self.null_fds[0]) os.close(self.null_fds[1]) def dot(v1, v2, name='dot'): """ Dot product (No idea why there isn't already in tensorflow...) and some partial extensions for matrix vector multiplication. Should ideally copy `np.dot` method. :param v1: first vector :param v2: second vector :return: """ v1_shape = v1.get_shape().ndims v2_shape = v2.get_shape().ndims # print(v1_shape, v2_shape) if v1_shape > 1 and v2_shape > 1: return tf.matmul(v1, v2, name=name) elif v1_shape == 2 and v2_shape == 1: if v1.get_shape().as_list()[1] != 1: # it is a true matrix return tf.reduce_sum(v1 * v2, reduction_indices=[1], name=name) else: raise NotImplementedError('This would be a multiplication column vector times row vector.. TODO') elif v1_shape == 1 and v2_shape == 2: # fine for mat # this is a thing that is useful in DirectDoh res = tf.reduce_sum(v1 * tf.transpose(v2), reduction_indices=[1]) if v2.get_shape().as_list()[1] == 1: return tf.identity(res[0], name=name) else: return tf.identity(res[0], name=name) elif v1_shape == 1 and v2_shape == 1: return tf.reduce_sum(v1 * v2, name=name) else: raise NotImplementedError() # TODO finish implement this also with scalars and maybe with others def vectorize_all(var_list): """Given a list of tensors returns their concatenated vectorization. Note that for matrices the vectorization is row-wise instead of column-wise as it should be in Magnus. Could it be a problem? :param var_list: **bold** :return: vectorization of `var_list`""" return wsr(tf.concat([tf.reshape(_w, [-1]) for _w in var_list], 0)) def hv_1(_dyn, _lv, _v): # NOTE this is not an efficient implementation """Computes hessian-vector product (without storing the Hessian) in a naive way. If _lv is a list of tensor, then vectorizes them with vectorize_all""" res = [] for i in range(_v.get_shape()[0].value): _hvi = tf.gradients(_dyn[i], _lv) if isinstance(_lv, list): _hvi = vectorize_all(_hvi) res.append( tf.reduce_sum(_hvi * _v) ) return tf.stack(res) # takes forever.... def hvp(loss, w, v, name='hessian_vector_product'): """ Convenience function for hessian vector product. :param name: :param loss: :param w: :param v: :return: """ # some parameter checking if not isinstance(w, list) and not isinstance(v, list): # single inputs if len(v.get_shape().as_list()) == 2 and len(w.get_shape().as_list()) == 1: return tf.stack([ hvp(loss, w, v[:, k]) for k in range(v.get_shape().as_list()[1]) ], axis=1) return wsr(tf.identity(_hvp(loss, [w], [v]), name=name)[0]) return wsr(tf.identity(_hvp(loss, w, v), name=name)) def canonical_base(n): identity = np.eye(n) return [tf.constant(identity[:, j], dtype=tf.float32) for j in range(n)] # ChunksInfo = collections.namedtuple('ChunksInfo', ['start', 'end', 'reshape']) def as_list(obj): """ Makes sure `obj` is a list or otherwise converts it to a list with a single element. :param obj: :return: A `list` """ return obj if isinstance(obj, list) else [obj] def as_tuple_or_list(obj): """ Make sure that `obj` is a tuple or a list and eventually converts it into a list with a single element :param obj: :return: A `tuple` or a `list` """ return obj if isinstance(obj, (list, tuple)) else [obj] def merge_dicts(*dicts): return reduce(lambda a, nd: {**a, **nd}, dicts, {}) def reshape_generator(original_var, start, end): return lambda merged: wsr(tf.reshape(merged[start:end], original_var.get_shape())) def cleaner_accuracy(x, correct_labels, epsilon): n_examples = x.shape[0] correct_guesses = np.abs(x - correct_labels) < epsilon return np.count_nonzero(correct_guesses) / n_examples def one_hot_confidence(vec, epsilon): n_examples = vec.shape[0] near_one_hot = np.amax(vec, 1) > 1 - epsilon # print("near_one_hot ({}/{}): {}".format(near_one_hot.size, n_examples, near_one_hot)) #DEBUG return np.count_nonzero(near_one_hot) / n_examples def one_or_zero_similarity(x): n_examples = x.shape[0] one_or_zero_similarity_vector = np.abs(x - 0.5) * 2 return np.sum(one_or_zero_similarity_vector) / n_examples class VlMode(Enum): """ Possible arguments for `MergedVariable.var_list` getter function """ RAW = 0 BASE = 1 TENSOR = 2 class MergedVariable: """ This class (that should ideally be a subclass of tf.Variable) implements the vectorization and management of a list of tf.Variables in an hopefully convenient way. """ def __init__(self, var_list, model=None, name='merged_variable_tensor'): """ :param var_list: List of variables to merge and vectorize :param name: (optional) name for the tensor """ self._var_list = var_list self.tensor = tf.identity(vectorize_all([ # MergedVariable.get_tensor(v) v for v in var_list]), name=name) self.name = name self.model = model self.chunks_info_dict = {} start = 0 for v in self.var_list(VlMode.BASE): # CHANGED (in var_list) dim_var = reduce(lambda v1, v2: v1 * v2, v.get_shape().as_list(), 1) end = start + dim_var self.chunks_info_dict[v] = reshape_generator(v, start, end) start += dim_var def var_list(self, mode=VlMode.RAW): """ Get the chunks that define this variable. :param mode: (optional, default VL_MODE.RAW) VL_MODE.RAW: returns simply var_list, that may contain tf.Variables or MergedVariables VL_MODE.BASE: returns a list of tf.Variables that are the "base" variables that for this MergedVariable VL_MODE.TENSOR: returns a list of tf.Variables or tf.Tensor from the MergedVariables :return: A list that may contain tf.Tensors, tf.Variables and/or MergedVariables """ if mode == VlMode.RAW: return self._var_list elif mode == VlMode.BASE: return self._get_base_variable_list() elif mode == VlMode.TENSOR: return self._var_list_as_tensors() # return w unic tensor + copies augmented else: raise NotImplementedError('mode %d does not exists' % mode) def initialize(self, session=None): """ Initialize this merged variable or call `model.initialize` if a model is associated to this variable (see `Network.initialize`) :param session: :return: """ ss = session or tf.get_default_session() assert ss, 'No default session' ss.run(tf.variables_initializer(self.var_list(VlMode.BASE))) if self.model: self.model.initialize(session=session) def _get_base_variable_list(self): """ This methods checks that all the elements of var_list are legitimate (tf.Variables or MergedVariables) and returns the underlying tf.Variables. :return: """ res = [] for v in self._var_list: if isinstance(v, MergedVariable): res.extend(v._get_base_variable_list()) elif isinstance(v, tf.Variable): res.append(v) else: raise ValueError('something wrong here') return res def _var_list_as_tensors(self): if any([isinstance(v, MergedVariable) for v in self._var_list]): return [ #v self.get_tensor(v) for v in self._var_list] else: return [self.tensor] def generate_swap_dict(self): """ Utility function to use in graph_editor.graph_replace in rfho.utils.vectorize_models :return: """ return {v.op.outputs[0]: reshape(self.tensor) for v, reshape in self.chunks_info_dict.items()} def assign(self, value, use_locking=False): """ Behaves as tf.Variable.assign, building assign ops for the underlying (original) Variables :param value: rank-1 tensor. Assumes it has the same structure as the tensor contained in the object. :param use_locking: (optional) see use_locking in `tf.Variables.assign` :return: A list of `tf.Variables.assign` ops. """ assign_ops = [ wsr(v.assign(reshape(value), use_locking=use_locking)) for v, reshape in self.chunks_info_dict.items() ] return tf.group(*assign_ops) def eval(self, feed_dict=None): """ Calls `eval` on `self.tensor` :param feed_dict: :return: """ return self.tensor.eval(feed_dict=feed_dict) def get_shape(self): """ Calls `get_shape` on `self.tensor` :return: """ return self.tensor.get_shape() @property def graph(self): return self.tensor.graph @staticmethod def get_tensor(v): # return v.tensor if isinstance(v, MergedVariable) else v @property def dtype(self): return self.tensor.dtype def __pow__(self, power, modulo=None): return self.tensor.__pow__(power) def __add__(self, other): return self.tensor.__add__(other) def __sub__(self, other): return self.tensor.__sub__(other) def __mul__(self, other): return self.tensor.__mul__(other) @staticmethod def tensor_conversion(value, dtype=None, name=None, as_ref=False): """ tensorflow tensor conversion function. Simply gives to tensorflow the underlying tensor :param value: :param dtype: :param name: :param as_ref: :return: """ # if as_ref: # raise NotImplemented() return tf.convert_to_tensor(value.tensor, dtype=dtype, name=name) tf.register_tensor_conversion_function(MergedVariable, MergedVariable.tensor_conversion) # import tensorflow.client.session as tf_pcs register_session_run_conversion_functions(MergedVariable, lambda merged_var: ([merged_var.tensor], lambda val: val[0])) # def flatten_list(lst): from itertools import chain return list(chain(*lst)) def simple_size_of_with_pickle(obj): import pickle import os name = str(np.random.rand()) with open(name, mode='bw') as f: pickle.dump(obj, f) size = os.stat(name).st_size os.remove(name) return size class GlobalStep: """ Helper for global step (probably would be present also in tensorflow) """ def __init__(self, start_from=0, name='global_step'): self._var = tf.Variable(start_from, trainable=False, name=name) self.increase = self.var.assign_add(1) self.decrease = self.var.assign_sub(1) self.gs_placeholder = tf.placeholder(tf.int32) self.assign_op = self.var.assign(self.gs_placeholder) def eval(self, auto_initialize=True): if not auto_initialize: return self.var.eval() else: try: return self.var.eval() except tf.errors.FailedPreconditionError: tf.variables_initializer([self.var]).run() return self.var.eval() @property def var(self): return self._var class ZMergedMatrix: """ Class for dealing with the Z quantities in the forward mode (which are the total derivative of the state w.r.t. hyperparameters). """ def __init__(self, matrix_list, name='Z'): self.components = as_list(matrix_list) # assumes that you want matrices and not vectors. This means that eventual vectors are casted to matrices # of dimension (n, 1) for i, c in enumerate(self.components): if c.get_shape().ndims == 1: self.components[i] = tf.transpose(tf.stack([c])) self.tensor = tf.concat(self.components, 0, name=name) # def create_copy(self): # new_components = [] # for c in self.components: # with tf.name_scope('copy_z'): # if isinstance(c, tf.Variable): # print('copying variable') # new_components.append(tf.Variable(c, name=simple_name(c))) # else: # print('copying tensor') # new_components.append(c) # return ZMergedMatrix(new_components) def initializer(self): """ :return: """ assert all([isinstance(c, tf.Variable) for c in self.components]), 'this merged matrix is not composed by Vars' return tf.variables_initializer(self.components) def assign(self, value_list): if isinstance(value_list, ZMergedMatrix): value_list = value_list.components assert len(value_list) == len(self.components), 'the length of value_list and of z, components must coincide' value_list = tf.tuple(value_list) # THIS PROBABLY SOLVES THE PROBLEM! ao1 = [tf.assign(c, v) for c, v in zip(self.components, value_list)] return tf.group(*ao1) # noinspection PyUnusedLocal def var_list(self, mode=VlMode.RAW): return self.components def __add__(self, other): assert isinstance(other, ZMergedMatrix) # TODO make it a little bit more flexible (e.g. case of GD) assert len(other.components) == len(self.components) return ZMergedMatrix([c + v for c, v in zip(self.components, other.components)]) def get_shape(self): """ Tensorflow :return: """ return self.tensor.get_shape() def eval(self, feed_dict=None): return self.tensor.eval(feed_dict=feed_dict) @property def name(self): """ :return: name of the tensor """ return self.tensor.name @staticmethod def tensor_conversion(value, dtype=None, name=None, as_ref=False): """ tensorflow tensor conversion function. Simply gives to tensorflow the underlying tensor :param value: :param dtype: :param name: :param as_ref: :return: """ if as_ref: raise NotImplemented() return tf.convert_to_tensor(value.tensor, dtype=dtype, name=name) tf.register_tensor_conversion_function(ZMergedMatrix, ZMergedMatrix.tensor_conversion) register_session_run_conversion_functions(ZMergedMatrix, lambda zmm: ([zmm.tensor], lambda val: val[0])) #
""" Methods for reading vcf files and importing it in our database representation. We leverage pyvcf as much as possible. """ from django.db import reset_queries import vcf from main.model_utils import get_dataset_with_type from main.models import Chromosome from main.models import ExperimentSample from main.models import ReferenceGenome from main.models import Variant from main.models import VariantCallerCommonData from main.models import VariantAlternate from main.models import VariantEvidence from variants.common import update_parent_child_variant_fields from variants.dynamic_snp_filter_key_map import update_filter_key_map SV_TYPES = { 'DEL': 'DELETION', 'DUP': 'DUPLICATION', 'DUP:TANDEM': 'DUPLICATION', 'INV': 'INVERSION' } UNKNOWN_VARIANT_TYPE = 'unknown' IGNORE_VCF_RECORD_KEYS = [ # Bug in pyvcf where some alleles are some sort of object rather than str. 'alleles', # Fake/Pseudo VCFs parsed as CSVs have ID fields, which we are skipping 'ID' ] class QueryCache(object): """Manual caching for queries to avoid excessive db calls. NOTE: Only trying this with one model so far. Haven't determined how useful this really is. """ def __init__(self): self.uid_to_experiment_sample_map = {} def parse_alignment_group_vcf(alignment_group, vcf_dataset_type): """Parses the VCF associated with the AlignmentGroup and saves data there. """ vcf_dataset = get_dataset_with_type(alignment_group, vcf_dataset_type) parse_vcf(vcf_dataset, alignment_group) def parse_vcf(vcf_dataset, alignment_group): """ Parses the VCF and creates Variant models relative to ReferenceGenome. alignment_group.options may contains: * skip_het_only: throw out variants that are het only - if organism is not diploid, these variants are likely to be just poorly mapped reads, so discard the variants created by them. In the future, this option will be moved to an alignment_group options dictionary. """ reference_genome = alignment_group.reference_genome # This helper object will help prevent repeated calls to the database. # We'll use it at least for ExperimentSamples. query_cache = QueryCache() # First count the number of records to give helpful status debug output. record_count = 0 with open(vcf_dataset.get_absolute_location()) as fh: vcf_reader = vcf.Reader(fh) for record in vcf_reader: record_count += 1 # Now iterate through the vcf file again and parse the data. # NOTE: Do not save handles to the Variants, else suffer the wrath of a # memory leak when parsing a large vcf file. with open(vcf_dataset.get_absolute_location()) as fh: vcf_reader = vcf.Reader(fh) # First, update the reference_genome's key list with any new # keys from this VCF. reference_genome = ReferenceGenome.objects.get(id=reference_genome.id) # Update the reference genome and grab it from the db again. update_filter_key_map(reference_genome, vcf_reader) reference_genome = ReferenceGenome.objects.get(id=reference_genome.id) for record_idx, record in enumerate(vcf_reader): print 'vcf_parser: Parsing %d out of %d' % ( record_idx + 1, record_count) # Make sure the QueryCache object has experiment samples populated. # Assumes every row has same samples. (Pretty sure this is true # for well-formatted vcf file.) if (len(query_cache.uid_to_experiment_sample_map) == 0 and len(record.samples) > 0): for sample in record.samples: sample_uid = sample.sample query_cache.uid_to_experiment_sample_map[sample_uid] = ( ExperimentSample.objects.get(uid=sample_uid)) # If the record has no GT_TYPE = 2 samples, then skip by default if alignment_group.alignment_options['skip_het_only']: if sum([s.gt_type == 2 for s in record.samples]) == 0: print 'HET only, skipping record %d' % (record_idx + 1) continue # Get or create the Variant for this record. This step # also generates the alternate objects and assigns their # data fields as well. get_or_create_variant(reference_genome, record, vcf_dataset, alignment_group, query_cache) # For large VCFs, the cached SQL object references can exhaust memory # so we explicitly clear them here. Our efficiency doesn't really suffer. reset_queries() # Finally, update the parent/child relationships for these new # created variants. update_parent_child_variant_fields(alignment_group) def extract_raw_data_dict(vcf_record): """Extract a dictionary of raw data from the Record. Returns: Dictionary representation of the record. """ # Keys that we need to do extra work with in order to copy. MANUAL_KEYS = ['INFO', 'samples'] data_dict = {} # Extract keys that do not need to be handled manually. for key, value in vcf_record.__dict__.iteritems(): if key in IGNORE_VCF_RECORD_KEYS or key in MANUAL_KEYS: continue data_dict[str(key)] = value # The TYPE is just a property of the record object. # TODO: Do we care about the var_subtype()? (ts/tv/complex/sv type/etc?) # Just store UNKNOWN into TYPE, because the field is not used # (if SV, the type is stored in SVTYPE) data_dict['TYPE'] = UNKNOWN_VARIANT_TYPE # Populate 'INFO' if hasattr(vcf_record, 'INFO'): populate_common_data_info(data_dict, vcf_record) return data_dict def populate_common_data_info(data_dict, vcf_record): """Parses the vcf record INFO field and updates the data dict. """ for key, value in vcf_record.INFO.iteritems(): effective_key = 'INFO_' + key data_dict[effective_key] = value def get_or_create_variant(reference_genome, vcf_record, vcf_dataset, alignment_group=None, query_cache=None): """Create a variant and its relations. A new Variant is only created if it doesn't exist already. The following relations are created: * VariantCallerCommonData * VariantEvidence * VariantAlternate Also go through all per-alt keys and add them as a json field to the VariantAlternate object. Right now this assumes we are always using Freebayes for alignment. Args: reference_genome: The ReferenceGenome. vcf_record: pyvcf Record object. vcf_dataset: Source Dataset for this data. query_cache: QueryCache helper object for making queries. Returns: Tuple (Variant, List<VariantAlt>) """ # Build a dictionary of data for this record. raw_data_dict = extract_raw_data_dict(vcf_record) # Extract the REQUIRED fields from the common data object. type = str(raw_data_dict.pop('TYPE')) chromosome_label = raw_data_dict.pop('CHROM') position = int(raw_data_dict.pop('POS')) ref_value = raw_data_dict.pop('REF') alt_values = raw_data_dict.pop('ALT') # Make sure the chromosome cited in the VCF exists for # the reference genome variant is being added to if not chromosome_label in [chrom.label for chrom in Chromosome.objects.filter(reference_genome=reference_genome)]: variant_string = ('TYPE: ' + str(type) + ' CHROM: ' + str(chromosome_label) + ' POS: ' + str(position) + ' REF: ' + str(ref_value) + ' ALT: ' + str(alt_values if len(alt_values)-1 else alt_values[0])) raise Exception(('The CHROM field of the following variant does not match any of ' 'the chromosomes belonging to its reference genome:' + variant_string + '\n' 'Chromosomes belonging to reference genome ' + str(reference_genome.label) + ' are: ' + str([str(chrom.label) for chrom in Chromosome.objects.filter(reference_genome=reference_genome)]).strip('[]'))) # Try to find an existing Variant, or create it. variant, created = Variant.objects.get_or_create( reference_genome=reference_genome, chromosome=Chromosome.objects.filter( reference_genome=reference_genome, label=chromosome_label)[0], position=position, ref_value=ref_value ) # We don't want to search by type above, but we do want to save # the type here. There are weird cases where we might be overwriting # the type (i.e. two SNVs with identical ref/alt but different types), # but I think this is OK for now. if type: variant.type = type variant.save() # Whether or not this is an (structural variant) SV is determined in # VariantAlternate data. Still, we want to expose this on the Variant # level, so we check whether this is SV internally. is_sv = False alts = [] all_alt_keys = reference_genome.get_variant_alternate_map().keys() raw_alt_keys = [k for k in raw_data_dict.keys() if k in all_alt_keys] for alt_idx, alt_value in enumerate(alt_values): # Grab the alt data for this alt index. alt_data = dict([(k, raw_data_dict[k][alt_idx]) for k in raw_alt_keys]) var_alt, var_created = VariantAlternate.objects.get_or_create( variant=variant, alt_value=alt_value) # If this is a new alternate, initialize the data dictionary if var_created: var_alt.data = {} # TODO: We are overwriting keys here. Is this desired? var_alt.data.update(alt_data) var_alt.save() if 'INFO_SVTYPE' in alt_data: is_sv = True alts.append(var_alt) # Remove all per-alt keys from raw_data_dict before passing to VCC create. [raw_data_dict.pop(k, None) for k in raw_alt_keys] # Indicate whether this is SV type, making it queryable. raw_data_dict['IS_SV'] = is_sv # Create a common data object for this variant. # NOTE: raw_data_dict only contains the values that were not popped until # this point. # Only create a VCCD if there is an associated alignment group. if alignment_group: common_data_obj = VariantCallerCommonData.objects.create( alignment_group=alignment_group, variant=variant, source_dataset=vcf_dataset, data=raw_data_dict ) # TODO: What about num -2 objects? I'm really not excited about # creating a VariantGenotype object, nor do I think it will # be necessary, so skipping it for now, and keeping that data in # the VCC object. # Create a VariantEvidence object for each ExperimentSample. # NOTE: VariantEvidence are automatically linked to the correct # VariantAlternate after they are created in # main.signals.post_variant_evidence_create() for sample in vcf_record.samples: sample_uid = sample.sample sample_data_dict = extract_sample_data_dict(sample) if query_cache is not None: sample_obj = query_cache.uid_to_experiment_sample_map[sample_uid] else: sample_obj = ExperimentSample.objects.get(uid=sample_uid) VariantEvidence.objects.create( experiment_sample=sample_obj, variant_caller_common_data=common_data_obj, data=sample_data_dict) return (variant, alts) def extract_sample_data_dict(s): """Extract sample data from the pyvcf _Call object. Args: s: pyvcf _Call object. Returns: A dictionary representing the object. """ def _add_property(result_dict, s, key, eval_string): """Helper method to add keys. PyVCF is really buggy so we need to be extra paranoid when parsing it. """ try: result_dict[key.upper()] = getattr(s, eval_string) except AttributeError: result_dict[key.upper()] = None result = {} # The main properties we'll want to query across. key_eval_string_pairs = ( ('sample', 'sample'), ('called', 'called'), ('gt_bases', 'gt_bases'), ('gt_nums', 'gt_nums'), ('gt_type', 'gt_type'), ('is_het', 'is_het'), ('is_variant', 'is_variant'), ('phased', 'phased'), ) for key, eval_string in key_eval_string_pairs: _add_property(result, s, key, eval_string) # Add data fields in slightly different way. SAMPLE_DATA_FIELDS = [ 'AO', 'DP', 'GL', 'GT', 'QA', 'QR', 'RO', ] if hasattr(s, 'data'): for key in SAMPLE_DATA_FIELDS: if hasattr(s.data, key): result[key] = getattr(s.data, key) # TODO: Add support for SnpEff data. return result
''' Created 09/04/2014 @authors: Yifan Ning and Rich Boyce @summary: parse drug synonymns, dbid, name from drugbank.xml then parse synonymns from UNIIs records and match the results. Output: FDA PreferredTerm, FDA synonymn, UNII, Drugbank drug, drugbank id, matchedByKey ''' from lxml import etree from lxml.etree import XMLParser, parse import os, sys from sets import Set DRUGBANK_XML = "../drugbank.xml" UNIIS_NAMES = "../UNII-data/UNIIs 27Jun2014 Names.txt" PT_INCHI_RECORDS = "../UNII-data/UNIIs 27Jun2014 Records.txt" NS = "{http://www.drugbank.ca}" DRUGBANK_BIO2RDF = "http://bio2rdf.org/drugbank:" DRUGBANK_CA = "http://www.drugbank.ca/drugs/" ''' data structure of drugbank.xml </drug><drug type="small molecule" created="2005-06-13 07:24:05 -0600" updated="2013-09-16 17:11:29 -0600" version="4.0"> <drugbank-id>DB00641</drugbank-id> ata structure of drugbank.xml </drug><drug type="small molecule" created="2005-06-13 07:24:05 -0600" updated="2013-09-16 17:11:29 -0600" version="4.0"> <drugbank-id>DB00641</drugbank-id> <name>Simvastatin</name> <property> <kind>InChIKey</kind> <value>InChIKey=RYMZZMVNJRMUDD-HGQWONQESA-N</value> <source>ChemAxon</source> </property> <synonymns> <synonymn>...</synonymn> </synonyms> ''' if len(sys.argv) > 4: validate_mode = str(sys.argv[1]) DRUGBANK_XML = str(sys.argv[2]) UNIIS_NAMES = str(sys.argv[3]) PT_INCHI_RECORDS = str(sys.argv[4]) else: print "Usage: parseDBIdAndUNIIsBySynonymns.py <match mode>(0: (Inchi | name | synomyns) matched, 1: (Inchi && (name | synomyns matched)) <drugbank.xml> <FDA_UNII_Names> <FDA_UNII_Records>)" sys.exit(1) ## get dict of mappings of drugbank id, name, inchikeys and synonmymns def parseDbIdAndSynonymns(root): dict_name_inchi_syns = {} for childDrug in root.iter(tag=NS + "drug"): subId = childDrug.find(NS + "drugbank-id") if subId == None: continue else: drugbankid = subId.text drugbankName = unicode(childDrug.find(NS + "name").text.upper()) dict_name_inchi_syns[drugbankName]={} dict_name_inchi_syns[drugbankName]["dbid"] = drugbankid ## get inchikey ikey = "" for subProp in childDrug.iter(NS + "property"): subKind = subProp.find(NS + "kind") if subKind == None: continue elif subKind.text == "InChIKey": subValue = subProp.find(NS + "value") if subValue is not None: ikey = subValue.text[9:] dict_name_inchi_syns[drugbankName]["inchi"] = ikey ## get synonyms set_syns = set() syns = childDrug.find(NS + "synonyms") if syns is not None: for subProp in syns.iter(): if subProp == None or subProp.text == None: continue if subProp.text.strip().replace('\n',"") is not "": set_syns.add(subProp.text.upper()) dict_name_inchi_syns[drugbankName]["syns"] = set_syns return dict_name_inchi_syns ## get dict of unii with inchi from PT_INCHI_RECORDS ## UNII PT RN MF INCHIKEY EINECS NCIt ITIS NCBI PLANTS SMILES def parsePTAndInchi(path): dict_inchi = {} for line in open(path,'r').readlines(): row = line.split('\t') if len(row) == 0: continue unii = row[0] inchi = row[4].strip().upper() if unii and inchi: dict_inchi[unii]=inchi return dict_inchi def validates(dict_unii_inchi, dict_xml, validate_mode): #print "mode:" + validate_mode #read mapping file that contains Name TYPE UNII PT (NAME, TYPE, UNII, PT) = range(0,4) for line in open(UNIIS_NAMES,'r').readlines(): row = line.split('\t') if len(row) == 0: continue name = row[NAME].strip().upper() unii = row[UNII] inchi="" if dict_unii_inchi.has_key(unii): inchi = dict_unii_inchi[unii] if inchi == "": continue drug_type = row[TYPE] if (drug_type == "PT") or (drug_type == "SY") or (drug_type == "SN"): if validate_mode is "0": for k,v in dict_xml.items(): matchedBy = "" if k == name: matchedBy = "name" if name in v["syns"]: if matchedBy == "": matchedBy = "synonyms" else: matchedBy += "ANDsynonyms" if inchi == v["inchi"]: if matchedBy == "": matchedBy = "inchi" else: matchedBy += "ANDinchi" if matchedBy is not "": #print "MATCHED:" + matchedBy #print "NAMES:" + name + "|" + unii + "|" + inchi #print "DICT_XML:" + str(k) + "|" + str(v) drugbankid = v["dbid"] drugbankName = k output = row[PT].strip() +'\t' + row[NAME].strip() +'\t' + row[UNII].strip() +'\t'+ drugbankName +'\t'+ drugbankid + '\t' + matchedBy print output.encode('utf-8').strip() break elif validate_mode == "1": for k,v in dict_xml.items(): #print str(k) + "|" + str(v) matchedBy = "" if inchi == v["inchi"]: if k == name: matchedBy = "nameANDinchi" if name in v["syns"]: if matchedBy == "": matchedBy = "synonymsANDinchi" else: matchedBy = "nameANDsynonymsANDinchi" if matchedBy is not "": drugbankid = v["dbid"] drugbankName = k output = row[PT].strip() +'\t' + row[NAME].strip() +'\t' + row[UNII].strip() +'\t'+ drugbankName +'\t'+ drugbankid+ '\t' + matchedBy print output.encode('utf-8').strip() break def main(): p = XMLParser(huge_tree=True) tree = parse(DRUGBANK_XML,parser=p) root = tree.getroot() ## get name, syns and inchi from drugbank.xml dict_xml = parseDbIdAndSynonymns(root) #print str(dict_xml) dict_unii_inchi = parsePTAndInchi(PT_INCHI_RECORDS) #print str(dict_unii_inchi) validates(dict_unii_inchi, dict_xml, validate_mode) if __name__ == "__main__": main()
#!/usr/bin/env python import zipfile import gzip class SNP: def __init__(self,data): self.rsid = data[0].strip('"') self.chromosome = data[1].strip('"') if len(self.chromosome) == 1 and self.chromosome.isdigit(): self.chromosome = '0'+self.chromosome self.position = int(data[2].strip('"')) self.genotype = data[3].strip('"') if len(data) == 5: self.genotype += data[4] if self.genotype in ('--','00'): self.genotype = None elif self.chromosome == 'X' and len(self.genotype) == 2: self.genotype = self.genotype[0] def __str__(self): return " ".join((self.rsid,self.chromosome,str(self.position),str(self.genotype))) def hasAllel(self,a): if self.genotype is not None: return a in self.genotype return False def otherAllel(self,a): if not self.hasAllel(a): return None if self.genotype[0] == a: return self.genotype[1] return self.genotype[0] def hasGenotype(self): return self.genotype is not None def isHomozygous(self): return self.genotype is not None and self.genotype[0] == self.genotype[1] def isHeterozygous(self): return self.genotype is not None and self.genotype[0] != self.genotype[1] def matches(self,other): if self.genotype[0] == other.genotype[0]: return True if len(self.genotype) == 2 and len(other.genotype) == 2: return self.genotype[0] == other.genotype[1] or self.genotype[1] == other.genotype[0] or self.genotype[1] == other.genotype[1] return False class Genome: def __init__(self,files,label=None): self.label = label self.chromosomes = {} for f in files: print f if f.endswith('.zip'): inz = zipfile.ZipFile(f,'r') for zinfo in inz.infolist(): self.read(inz.open(zinfo)) if f.endswith('.gz'): self.read(gzip.GzipFile(f,'r')) def read(self,infile): sep = None for l in infile: if len(l) and l[0] != '#': if l.startswith('RSID') or l.startswith('rsid'): if ',' in l: sep = ',' else: parts = l.strip().split(sep) snp = SNP(parts) if not snp.chromosome in self.chromosomes: self.chromosomes[snp.chromosome] = {} self.chromosomes[snp.chromosome][snp.position] = snp def __str__(self): clist = self.chromosomes.keys() clist.sort() ret = [] if self.label is not None: ret.append(self.label) for c in clist: ret.append(c+' '+str(len(self.chromosomes[c]))) return '\n'.join(ret) def compare(self,other,diffFile = None): all_cromes = self.chromosomes.keys() for c in other.chromosomes.keys(): if not c in all_cromes: all_cromes.append(c) all_cromes.sort() total_tcount = 0 total_ocount = 0 total_matches = 0 total_nulls = 0 total_transposes = 0 total_diffs = 0 for c in all_cromes: tcount = 0 if c in self.chromosomes: tcount = len(self.chromosomes[c]) ocount = 0 if c in other.chromosomes: ocount = len(other.chromosomes[c]) total_tcount += tcount total_ocount += ocount print 'Chromosome',c+':',self.label,tcount,'SNPs,',other.label,ocount,'SNPs' if c in self.chromosomes and c in other.chromosomes: matches = 0 diffs = 0 nulls = 0 for position,snp in self.chromosomes[c].iteritems(): if position in other.chromosomes[c]: matches += 1 if snp.genotype is None or other.chromosomes[c][position].genotype is None: nulls += 1 elif snp.genotype != other.chromosomes[c][position].genotype: if len(snp.genotype) == 2 and snp.genotype[0] == other.chromosomes[c][position].genotype[1] and snp.genotype[1] == other.chromosomes[c][position].genotype[0]: pass else: diffs += 1 if diffFile is not None: diffFile.write(c+','+str(position)+','+snp.genotype+','+other.chromosomes[c][position].genotype+'\n') total_matches += matches total_nulls += nulls total_diffs += diffs print '\tcommon SNPs:',matches,'nulls (one or both):',nulls,'different results:',diffs,'({:.2%} disagreement)'.format(diffs/float(matches)) else: print '\tno matching SNPs' print 'All:',self.label,total_tcount,'SNPs,',other.label,total_ocount,'SNPs' print '\tcommon SNPs:',total_matches,'nulls (one or both):',total_nulls,'different results:',total_diffs,'({:.2%} disagreement)'.format(total_diffs/float(total_matches)) def phase(self,p1,p2): ckeys = self.chromosomes.keys() ckeys.sort() mutations = 0 for clabel in ckeys: if clabel != 'MT' and clabel != 'Y' and clabel != 'X': print clabel c = self.chromosomes[clabel] positions = c.keys() positions.sort() for p in positions: sc = c[p] sp1 = p1.chromosomes[clabel][p] sp2 = p2.chromosomes[clabel][p] gc = sc.genotype gp1 = sp1.genotype gp2 = sp2.genotype p1c = '?' p2c = '?' p1nc = '?' p2nc = '?' mutation = False if not sc.hasGenotype(): if sp1.isHomozygous(): p1c = sp1.genotype[0] p1nc = p1c if sp2.isHomozygous(): p2c = sp2.genotype[0] p2nc = p2c sc.phase = p1c+p2c if sc.isHomozygous(): sc.phased = sc.genotype if sp1.hasAllel(gc[0]): p1c = gc[0] p1nc = sp1.otherAllel(p1c) elif not sp1.hasGenotype(): p1c = gc[0] else: mutation = True if sp2.hasAllel(gc[1]): p2c = gc[1] p2nc = sp2.otherAllel(p2c) elif not sp2.hasGenotype(): p2c = gc[1] else: mutation = True if sc.isHeterozygous(): if sp1.hasAllel(gc[0]) and sp2.hasAllel(gc[1]): if not (sp2.hasAllel(gc[0]) and sp1.hasAllel(gc[1])): p1c = gc[0] p1nc = sp1.otherAllel(p1c) p2c = gc[1] p2nc = sp2.otherAllel(p2c) elif sp1.hasAllel(gc[1]) and sp2.hasAllel(gc[0]): if not (sp2.hasAllel(gc[1]) and sp1.hasAllel(gc[0])): p1c = gc[1] p1nc = sp1.otherAllel(p1c) p2c = gc[0] p2nc = sp2.otherAllel(p2c) if not sp1.hasGenotype() and sp2.isHomozygous(): if sc.hasAllel(gp2[0]): p2c = gp2[0] p2nc = p2c p1c = sc.otherAllel(p2c) if not sp2.hasGenotype() and sp1.isHomozygous(): if sc.hasAllel(gp1[0]): p1c = gp1[0] p1nc = p1c p2c = sc.otherAllel(p1c) phase = ' '+p1c+ ' '+p2c phase += ' '+p1c+ ' '+p1nc phase += ' '+p2c+ ' '+p2nc if mutation: phase += ' mutation' mutations += 1 if not (sc.isHeterozygous() and sp1.isHeterozygous() and sp2.isHeterozygous) and '?' in phase: if sc.hasGenotype() or sp1.hasGenotype() or sp2.hasGenotype(): if gp1 is None: gp1 = '--' if gp2 is None: gp2 = '--' if gc is None: gc = '--' print clabel,str(p), gc ,gp1,gp2,phase, sc.rsid print mutations,'mutations'
from discord.ext import commands, tasks from .utils import db, checks from collections import Counter, defaultdict import discord import asyncio import asyncpg import datetime import logging import yarl import re import io log = logging.getLogger(__name__) BLOB_GUILD_ID = 272885620769161216 EMOJI_REGEX = re.compile(r'<a?:.+?:([0-9]{15,21})>') EMOJI_NAME_REGEX = re.compile(r'[0-9a-zA-Z\_]{2,32}') class BlobEmoji(commands.Converter): async def convert(self, ctx, argument): guild = ctx.bot.get_guild(BLOB_GUILD_ID) emojis = {e.id: e for e in guild.emojis} m = EMOJI_REGEX.match(argument) if m is not None: emoji = emojis.get(int(m.group(1))) elif argument.isdigit(): emoji = emojis.get(int(argument)) else: emoji = discord.utils.find(lambda e: e.name == argument, emojis.values()) if emoji is None: raise commands.BadArgument('Not a valid blob emoji.') return emoji def partial_emoji(argument, *, regex=EMOJI_REGEX): if argument.isdigit(): # assume it's an emoji ID return int(argument) m = regex.match(argument) if m is None: raise commands.BadArgument("That's not a custom emoji...") return int(m.group(1)) def emoji_name(argument, *, regex=EMOJI_NAME_REGEX): m = regex.match(argument) if m is None: raise commands.BadArgument('Invalid emoji name.') return argument class EmojiURL: def __init__(self, *, animated, url): self.url = url self.animated = animated @classmethod async def convert(cls, ctx, argument): try: partial = await commands.PartialEmojiConverter().convert(ctx, argument) except commands.BadArgument: try: url = yarl.URL(argument) if url.scheme not in ('http', 'https'): raise RuntimeError path = url.path.lower() if not path.endswith(('.png', '.jpeg', '.jpg', '.gif')): raise RuntimeError return cls(animated=url.path.endswith('.gif'), url=url) except Exception: raise commands.BadArgument('Not a valid or supported emoji URL.') from None else: return cls(animated=partial.animated, url=str(partial.url)) def usage_per_day(dt, usages): tracking_started = datetime.datetime(2017, 3, 31, tzinfo=datetime.timezone.utc) now = discord.utils.utcnow() if dt < tracking_started: base = tracking_started else: base = dt days = (now - base).total_seconds() / 86400 # 86400 seconds in a day if int(days) == 0: return usages return usages / days class EmojiStats(db.Table, table_name='emoji_stats'): id = db.Column(db.Integer(big=True, auto_increment=True), primary_key=True) guild_id = db.Column(db.Integer(big=True), index=True) emoji_id = db.Column(db.Integer(big=True), index=True) total = db.Column(db.Integer, default=0) @classmethod def create_table(cls, *, exists_ok=True): statement = super().create_table(exists_ok=exists_ok) # create the indexes sql = "CREATE UNIQUE INDEX IF NOT EXISTS emoji_stats_uniq_idx ON emoji_stats (guild_id, emoji_id);" return statement + '\n' + sql class Emoji(commands.Cog): """Custom emoji tracking""" def __init__(self, bot): self.bot = bot self._batch_of_data = defaultdict(Counter) self._batch_lock = asyncio.Lock(loop=bot.loop) self.bulk_insert.add_exception_type(asyncpg.PostgresConnectionError) self.bulk_insert.start() @property def display_emoji(self) -> discord.PartialEmoji: return discord.PartialEmoji(name='\N{LOWER LEFT PAINTBRUSH}\ufe0f') def cog_unload(self): self.bulk_insert.stop() async def cog_command_error(self, ctx, error): if isinstance(error, commands.BadArgument): await ctx.send(error) @tasks.loop(seconds=60.0) async def bulk_insert(self): query = """INSERT INTO emoji_stats (guild_id, emoji_id, total) SELECT x.guild, x.emoji, x.added FROM jsonb_to_recordset($1::jsonb) AS x(guild BIGINT, emoji BIGINT, added INT) ON CONFLICT (guild_id, emoji_id) DO UPDATE SET total = emoji_stats.total + excluded.total; """ async with self._batch_lock: transformed = [ {'guild': guild_id, 'emoji': emoji_id, 'added': count} for guild_id, data in self._batch_of_data.items() for emoji_id, count in data.items() ] self._batch_of_data.clear() await self.bot.pool.execute(query, transformed) async def do_redirect(self, message): if len(message.attachments) == 0: return data = io.BytesIO() await message.attachments[0].save(data) data.seek(0) ch = self.bot.get_channel(305838206119575552) if ch is not None: fmt = f'Suggestion from {message.author}: {message.clean_content}' await ch.send(fmt, file=discord.File(data, message.attachments[0].filename)) def find_all_emoji(self, message, *, regex=EMOJI_REGEX): return regex.findall(message.content) @commands.Cog.listener() async def on_message(self, message): if message.guild is None: return if message.author.bot: return # no bots. # handle the redirection from #suggestions if message.channel.id == 295012914564169728: return await self.do_redirect(message) matches = EMOJI_REGEX.findall(message.content) if not matches: return async with self._batch_lock: self._batch_of_data[message.guild.id].update(map(int, matches)) @commands.Cog.listener() async def on_guild_emojis_update(self, guild, before, after): # we only care when an emoji is added lookup = { e.id for e in before } added = [e for e in after if e.id not in lookup and len(e.roles) == 0] if len(added) == 0: return log.info('Server %s has added %s emojis.', guild, len(added)) if guild.id != BLOB_GUILD_ID: return # not the guild we care about # this is the backup channel channel = self.bot.get_channel(305841865293430795) if channel is None: return for emoji in added: async with self.bot.session.get(emoji.url) as resp: if resp.status != 200: continue data = io.BytesIO(await resp.read()) await channel.send(emoji.name, file=discord.File(data, f'{emoji.name}.png')) await asyncio.sleep(1) async def get_all_blob_stats(self, ctx): blob_guild = self.bot.get_guild(BLOB_GUILD_ID) blob_ids = {e.id: e for e in blob_guild.emojis if len(e.roles) == 0 } query = "SELECT COALESCE(SUM(total), 0) FROM emoji_stats;" total_usage = await ctx.db.fetchrow(query) query = """SELECT emoji_id, COALESCE(SUM(total), 0) AS "Count" FROM emoji_stats WHERE emoji_id = ANY($1::bigint[]) GROUP BY emoji_id ORDER BY "Count" DESC; """ blob_usage = await ctx.db.fetch(query, list(blob_ids.keys())) e = discord.Embed(title='Blob Statistics', colour=0xf1c40f) total_count = sum(r['Count'] for r in blob_usage) global_usage = total_usage[0] e.add_field(name='Total Usage', value=f'{total_count} ({total_count / global_usage:.2%})') def elem_to_string(key, count): elem = blob_ids.get(key) per_day = usage_per_day(elem.created_at, count) return f'{elem}: {count} times, {per_day:.2f}/day ({count / total_count:.2%})' top = [elem_to_string(key, count) for key, count in blob_usage[0:7]] bottom = [elem_to_string(key, count) for key, count in blob_usage[-7:]] e.add_field(name='Most Common', value='\n'.join(top), inline=False) e.add_field(name='Least Common', value='\n'.join(bottom), inline=False) await ctx.send(embed=e) async def get_stats_for(self, ctx, emoji): e = discord.Embed(colour=0xf1c40f, title='Statistics') query = """SELECT COALESCE(SUM(total), 0) AS "Count" FROM emoji_stats WHERE emoji_id=$1 GROUP BY emoji_id; """ usage = await ctx.db.fetchrow(query, emoji.id) usage = usage[0] e.add_field(name='Emoji', value=emoji) e.add_field(name='Usage', value=f'{usage}, {usage_per_day(emoji.created_at, usage):.2f}/day') await ctx.send(embed=e) @commands.group(hidden=True, invoke_without_command=True) async def blobstats(self, ctx, *, emoji: BlobEmoji = None): """Usage statistics of blobs.""" if emoji is None: await self.get_all_blob_stats(ctx) else: await self.get_stats_for(ctx, emoji) @commands.command(aliases=['blobpost'], hidden=True) @checks.is_in_guilds(BLOB_GUILD_ID) @checks.is_admin() async def blobsort(self, ctx): """Sorts the blob post.""" emojis = sorted([e.name for e in ctx.guild.emojis if len(e.roles) == 0]) fp = io.BytesIO() pages = [emojis[i:i + 30] for i in range(0, len(emojis), 30)] for number, page in enumerate(pages, 1): fmt = f'Page {number}\n' fp.write(fmt.encode('utf-8')) for emoji in page: fmt = f':{emoji}: = `:{emoji}:`\n' fp.write(fmt.encode('utf-8')) fp.write(b'\n') fp.seek(0) await ctx.send(file=discord.File(fp, 'blob_posts.txt')) def emoji_fmt(self, emoji_id, count, total): emoji = self.bot.get_emoji(emoji_id) if emoji is None: name = f'[\N{WHITE QUESTION MARK ORNAMENT}](https://cdn.discordapp.com/emojis/{emoji_id}.png)' emoji = discord.Object(id=emoji_id) else: name = str(emoji) per_day = usage_per_day(emoji.created_at, count) p = count / total return f'{name}: {count} uses ({p:.1%}), {per_day:.1f} uses/day.' async def get_guild_stats(self, ctx): e = discord.Embed(title='Emoji Leaderboard', colour=discord.Colour.blurple()) query = """SELECT COALESCE(SUM(total), 0) AS "Count", COUNT(*) AS "Emoji" FROM emoji_stats WHERE guild_id=$1 GROUP BY guild_id; """ record = await ctx.db.fetchrow(query, ctx.guild.id) if record is None: return await ctx.send('This server has no emoji stats...') total = record['Count'] emoji_used = record['Emoji'] per_day = usage_per_day(ctx.me.joined_at, total) e.set_footer(text=f'{total} uses over {emoji_used} emoji for {per_day:.2f} uses per day.') query = """SELECT emoji_id, total FROM emoji_stats WHERE guild_id=$1 ORDER BY total DESC LIMIT 10; """ top = await ctx.db.fetch(query, ctx.guild.id) e.description = '\n'.join(f'{i}. {self.emoji_fmt(emoji, count, total)}' for i, (emoji, count) in enumerate(top, 1)) await ctx.send(embed=e) async def get_emoji_stats(self, ctx, emoji_id): e = discord.Embed(title='Emoji Stats') cdn = f'https://cdn.discordapp.com/emojis/{emoji_id}.png' # first verify it's a real ID async with ctx.session.get(cdn) as resp: if resp.status == 404: e.description = "This isn't a valid emoji." e.set_thumbnail(url='https://this.is-serious.business/09e106.jpg') return await ctx.send(embed=e) e.set_thumbnail(url=cdn) # valid emoji ID so let's use it query = """SELECT guild_id, SUM(total) AS "Count" FROM emoji_stats WHERE emoji_id=$1 GROUP BY guild_id; """ records = await ctx.db.fetch(query, emoji_id) transformed = {k: v for k, v in records} total = sum(transformed.values()) dt = discord.utils.snowflake_time(emoji_id) # get the stats for this guild in particular try: count = transformed[ctx.guild.id] per_day = usage_per_day(dt, count) value = f'{count} uses ({count / total:.2%} of global uses), {per_day:.2f} uses/day' except KeyError: value = 'Not used here.' e.add_field(name='Server Stats', value=value, inline=False) # global stats per_day = usage_per_day(dt, total) value = f'{total} uses, {per_day:.2f} uses/day' e.add_field(name='Global Stats', value=value, inline=False) e.set_footer(text='These statistics are for servers I am in') await ctx.send(embed=e) @commands.group(invoke_without_command=True) @commands.guild_only() async def emojistats(self, ctx, *, emoji: partial_emoji = None): """Shows you statistics about the emoji usage in this server. If no emoji is given, then it gives you the top 10 emoji used. """ if emoji is None: await self.get_guild_stats(ctx) else: await self.get_emoji_stats(ctx, emoji) @emojistats.command(name='server', aliases=['guild']) @commands.guild_only() async def emojistats_guild(self, ctx): """Shows you statistics about the local server emojis in this server.""" emoji_ids = [e.id for e in ctx.guild.emojis] if not emoji_ids: await ctx.send('This guild has no custom emoji.') query = """SELECT emoji_id, total FROM emoji_stats WHERE guild_id=$1 AND emoji_id = ANY($2::bigint[]) ORDER BY total DESC """ e = discord.Embed(title='Emoji Leaderboard', colour=discord.Colour.blurple()) records = await ctx.db.fetch(query, ctx.guild.id, emoji_ids) total = sum(a for _, a in records) emoji_used = len(records) per_day = usage_per_day(ctx.me.joined_at, total) e.set_footer(text=f'{total} uses over {emoji_used} emoji for {per_day:.2f} uses per day.') top = records[:10] value = '\n'.join(self.emoji_fmt(emoji, count, total) for (emoji, count) in top) e.add_field(name=f'Top {len(top)}', value=value or 'Nothing...') record_count = len(records) if record_count > 10: bottom = records[-10:] if record_count >= 20 else records[-record_count + 10:] value = '\n'.join(self.emoji_fmt(emoji, count, total) for (emoji, count) in bottom) e.add_field(name=f'Bottom {len(bottom)}', value=value) await ctx.send(embed=e) @commands.group(name='emoji') @commands.guild_only() @checks.has_guild_permissions(manage_emoji=True) async def _emoji(self, ctx): """Emoji management commands.""" if ctx.subcommand_passed is None: await ctx.send_help(ctx.command) @_emoji.command(name='create') async def _emoji_create(self, ctx, name: emoji_name, *, emoji: EmojiURL): """Create an emoji for the server under the given name. You must have Manage Emoji permission to use this. The bot must have this permission too. """ if not ctx.me.guild_permissions.manage_emojis: return await ctx.send('Bot does not have permission to add emoji.') reason = f'Action done by {ctx.author} (ID: {ctx.author.id})' emoji_count = sum(e.animated == emoji.animated for e in ctx.guild.emojis) if emoji_count >= ctx.guild.emoji_limit: return await ctx.send('There are no more emoji slots in this server.') async with self.bot.session.get(emoji.url) as resp: if resp.status >= 400: return await ctx.send('Could not fetch the image.') if int(resp.headers['Content-Length']) >= (256 * 1024): return await ctx.send('Image is too big.') data = await resp.read() coro = ctx.guild.create_custom_emoji(name=name, image=data, reason=reason) async with ctx.typing(): try: created = await asyncio.wait_for(coro, timeout=10.0) except asyncio.TimeoutError: return await ctx.send('Sorry, the bot is rate limited or it took too long.') except discord.HTTPException as e: return await ctx.send(f'Failed to create emoji somehow: {e}') else: return await ctx.send(f'Created {created}') def setup(bot): bot.add_cog(Emoji(bot))
from unittest import TestCase, main from socketio.namespace import BaseNamespace from socketio.virtsocket import Socket from mock import MagicMock class MockSocketIOServer(object): """Mock a SocketIO server""" def __init__(self, *args, **kwargs): self.sockets = {} def get_socket(self, socket_id=''): return self.sockets.get(socket_id) class MockSocket(Socket): pass class ChatNamespace(BaseNamespace): def __init__(self, *args, **kwargs): self.use_set = args[0] super(ChatNamespace, self).__init__(*args[1:], **kwargs) def get_initial_acl(self): acls = ['on_foo'] if self.use_set == True: return set(acls) else: return acls def on_foo(self): return 'a' def on_bar(self): return 'b' def on_baz(foo, bar, baz): return 'c' class GlobalNamespace(BaseNamespace): def on_woot(self): return '' def on_tobi(self): return '' class TestBaseNamespace(TestCase): def setUp(self): server = MockSocketIOServer() self.environ = {} socket = MockSocket(server, {}) socket.error = MagicMock() self.environ['socketio'] = socket self.ns = GlobalNamespace(self.environ, '/woot') def test_process_packet_disconnect(self): pkt = {'type': 'disconnect', 'endpoint': '/woot' } self.ns.process_packet(pkt) assert not self.environ['socketio'].error.called def test_process_packet_connect(self): """processing a connection packet """ pkt = {'type': 'connect', 'endpoint': '/tobi', 'qs': '' } self.ns.process_packet(pkt) assert not self.environ['socketio'].error.called # processing a connection packet with query string pkt = {'type': 'connect', 'endpoint': '/test', 'qs': '?test=1' } self.ns.process_packet(pkt) assert not self.environ['socketio'].error.called def test_process_packet_heartbeat(self): """processing a heartbeat packet """ pkt = {'type': 'heartbeat', 'endpoint': '' } self.ns.process_packet(pkt) assert not self.environ['socketio'].error.called def test_process_packet_message(self): """processing a message packet """ pkt = {'type': 'message', 'endpoint': '', 'data': 'woot'} data = self.ns.process_packet(pkt) self.assertEqual(data, pkt['data']) assert not self.environ['socketio'].error.called # processing a message packet with id and endpoint pkt = {'type': 'message', 'id': 5, 'ack': True, 'endpoint': '/tobi', 'data': ''} data = self.ns.process_packet(pkt) self.assertEqual(data, pkt['data']) assert not self.environ['socketio'].error.called def test_process_packet_json(self): """processing json packet """ pkt = {'type': 'json', 'endpoint': '', 'data': '2'} data = self.ns.process_packet(pkt) self.assertEqual(data, pkt['data']) assert not self.environ['socketio'].error.called # processing json packet with message id and ack data pkt = {'type': 'json', 'id': 1, 'endpoint': '', 'ack': 'data', 'data': {u'a': u'b'}} data = self.ns.process_packet(pkt) self.assertEqual(data, pkt['data']) assert not self.environ['socketio'].error.called def test_process_packet_event(self): """processing an event packet """ pkt = {'type': 'event', 'name': 'woot', 'endpoint': '', 'args': []} self.ns.process_packet(pkt) assert not self.environ['socketio'].error.called # processing an event packet with message id and ack pkt = {'type': 'event', 'id': 1, 'ack': 'data', 'name': 'tobi', 'endpoint': '', 'args': []} self.ns.process_packet(pkt) assert not self.environ['socketio'].error.called def test_process_packet_ack(self): """processing a ack packet """ pkt = {'type': 'ack', 'ackId': 140, 'endpoint': '', 'args': []} self.ns.process_packet(pkt) assert not self.environ['socketio'].error.called def test_process_packet_error(self): """processing error packet """ pkt = {'type': 'error', 'reason': '', 'advice': '', 'endpoint': ''} self.ns.process_packet(pkt) pkt = {'type': 'error', 'reason': 'transport not supported', 'advice': '', 'endpoint': ''} self.ns.process_packet(pkt) # processing error packet with reason and advice pkt = {'type': 'error', 'reason': 'unauthorized', 'advice': 'reconnect', 'endpoint': ''} self.ns.process_packet(pkt) # processing error packet with endpoint pkt = {'type': 'error', 'reason': '', 'advice': '', 'endpoint': '/woot'} self.ns.process_packet(pkt) def test_process_packet_message_with_new_line(self): """processing a newline in a message""" pkt = {'type': 'message', 'data': '\n', 'endpoint': ''} self.ns.process_packet(pkt) assert not self.environ['socketio'].error.called def test_del_acl_method(self): pkt = {'type': 'event', 'name': 'foo', 'endpoint': '/chat', 'args': []} message = ("Trying to delete an ACL method, but none were" + " defined yet! Or: No ACL restrictions yet, why would you" + " delete one?") try: self.ns.del_acl_method('on_foo') self.ns.process_packet(pkt) except ValueError as e: self.assertEqual( message, e.args[0], ) else: raise Exception("""We should not be able to delete an acl that doesn't exist""") def test_allowed_event_name_regex(self): pkt = {'type': 'event', 'name': '$foo', 'endpoint': '/chat', 'args': []} self.ns.process_packet(pkt) args = ['unallowed_event_name', 'name must only contains alpha numerical characters', ] kwargs = dict(msg_id=None, endpoint='/woot', quiet=False) self.environ['socketio'].error.assert_called_with(*args, **kwargs) def test_method_not_found(self): """ test calling a method that doesn't exist """ pkt = {'type': 'event', 'name': 'foo', 'endpoint': '/chat', 'args': [] } self.ns.process_packet(pkt) kwargs = dict( msg_id=None, endpoint='/woot', quiet=False ) self.environ['socketio'].error.assert_called_with( 'no_such_method', 'The method "%s" was not found' % 'on_foo', **kwargs ) class TestChatNamespace(TestCase): def setUp(self): server = MockSocketIOServer() self.environ = {} socket = MockSocket(server, {}) socket.error = MagicMock() self.environ['socketio'] = socket self.ns = ChatNamespace( False, self.environ, '/chat' ) def test_allowed_event(self): pkt = {'type': 'event', 'name': 'foo', 'endpoint': '/chat', 'args': []} self.ns.process_packet(pkt) assert not self.environ['socketio'].error.called def test_blocked_event(self): pkt = {'type': 'event', 'name': 'bar', 'endpoint': '/chat', 'args': []} self.ns.process_packet(pkt) args = [ 'method_access_denied', 'You do not have access to method "on_bar"', ] kwargs = dict( msg_id=None, endpoint='/chat', quiet=False ) self.environ['socketio'].error.assert_called_with(*args, **kwargs) def test_add_acl_method(self): pkt = {'type': 'event', 'name': 'bar', 'endpoint': '/chat', 'args': []} self.ns.add_acl_method('on_bar') self.ns.process_packet(pkt) assert not self.environ['socketio'].error.called def test_del_acl_method(self): pkt = {'type': 'event', 'name': 'foo', 'endpoint': '/chat', 'args': []} self.ns.del_acl_method('on_foo') self.ns.process_packet(pkt) args = [ 'method_access_denied', 'You do not have access to method "on_foo"', ] kwargs = dict( msg_id=None, endpoint='/chat', quiet=False ) self.environ['socketio'].error.assert_called_with(*args, **kwargs) def test_lift_acl_restrictions(self): pkt1 = {'type': 'event', 'name': 'foo', 'endpoint': '/chat', 'args': []} self.ns.lift_acl_restrictions() self.ns.process_packet(pkt1) assert not self.environ['socketio'].error.called pkt2 = {'type': 'event', 'name': 'bar', 'endpoint': '/chat', 'args': []} self.ns.process_packet(pkt2) assert not self.environ['socketio'].error.called def test_use_set_on_acl(self): self.ns = ChatNamespace( True, self.environ, '/chat' ) pkt = {'type': 'event', 'name': 'bar', 'endpoint': '/chat', 'args': []} self.ns.add_acl_method('on_bar') self.ns.process_packet(pkt) assert not self.environ['socketio'].error.called def test_call_method_invalid_definition(self): pkt = {'type': 'event', 'name': 'baz', 'endpoint': '/chat', 'args': []} self.ns.add_acl_method('on_baz') self.ns.process_packet(pkt) kwargs = dict(msg_id=None, endpoint='/chat', quiet=False) self.environ['socketio'].error.assert_called_with( "invalid_method_args", "The server-side method is invalid, as it doesn't " "have 'self' as its first argument" , **kwargs) if __name__ == '__main__': main()
#!/usr/bin/env python """ Apply a "Security Group" to the members of an etcd cluster. Usage: apply-firewall.py """ import os import re import string import argparse from threading import Thread import uuid import colorama from colorama import Fore, Style import paramiko import requests import sys import yaml def get_nodes_from_args(args): if args.discovery_url is not None: return get_nodes_from_discovery_url(args.discovery_url) return get_nodes_from_discovery_url(get_discovery_url_from_user_data()) def get_nodes_from_discovery_url(discovery_url): try: nodes = [] json = requests.get(discovery_url).json() discovery_nodes = json['node']['nodes'] for node in discovery_nodes: value = node['value'] ip = re.search('([0-9]{1,3}\.){3}[0-9]{1,3}', value).group(0) nodes.append(ip) return nodes except: raise IOError('Could not load nodes from discovery url ' + discovery_url) def get_discovery_url_from_user_data(): name = 'linode-user-data.yaml' log_info('Loading discovery url from ' + name) try: current_dir = os.path.dirname(__file__) user_data_file = file(os.path.abspath(os.path.join(current_dir, name)), 'r') user_data_yaml = yaml.safe_load(user_data_file) return user_data_yaml['coreos']['etcd2']['discovery'] except: raise IOError('Could not load discovery url from ' + name) def validate_ip_address(ip): return True if re.match('([0-9]{1,3}\.){3}[0-9]{1,3}', ip) else False def get_firewall_contents(node_ips, private=False): rules_template_text = """*filter :INPUT DROP [0:0] :FORWARD DROP [0:0] :OUTPUT ACCEPT [0:0] :DOCKER - [0:0] :Firewall-INPUT - [0:0] -A INPUT -j Firewall-INPUT -A FORWARD -j Firewall-INPUT -A Firewall-INPUT -i lo -j ACCEPT -A Firewall-INPUT -p icmp --icmp-type echo-reply -j ACCEPT -A Firewall-INPUT -p icmp --icmp-type destination-unreachable -j ACCEPT -A Firewall-INPUT -p icmp --icmp-type time-exceeded -j ACCEPT # Ping -A Firewall-INPUT -p icmp --icmp-type echo-request -j ACCEPT # Accept any established connections -A Firewall-INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT # Enable the traffic between the nodes of the cluster -A Firewall-INPUT -s $node_ips -j ACCEPT # Allow connections from docker container -A Firewall-INPUT -i docker0 -j ACCEPT # Accept ssh, http, https and git -A Firewall-INPUT -m conntrack --ctstate NEW -m multiport$multiport_private -p tcp --dports 22,2222,80,443 -j ACCEPT # Log and drop everything else -A Firewall-INPUT -j REJECT COMMIT """ multiport_private = ' -s 192.168.0.0/16' if private else '' rules_template = string.Template(rules_template_text) return rules_template.substitute(node_ips=string.join(node_ips, ','), multiport_private=multiport_private) def apply_rules_to_all(host_ips, rules, private_key): pkey = detect_and_create_private_key(private_key) threads = [] for ip in host_ips: t = Thread(target=apply_rules, args=(ip, rules, pkey)) t.setDaemon(False) t.start() threads.append(t) for thread in threads: thread.join() def detect_and_create_private_key(private_key): private_key_text = private_key.read() private_key.seek(0) if '-----BEGIN RSA PRIVATE KEY-----' in private_key_text: return paramiko.RSAKey.from_private_key(private_key) elif '-----BEGIN DSA PRIVATE KEY-----' in private_key_text: return paramiko.DSSKey.from_private_key(private_key) else: raise ValueError('Invalid private key file ' + private_key.name) def apply_rules(host_ip, rules, private_key): # connect to the server via ssh ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(host_ip, username='core', allow_agent=False, look_for_keys=False, pkey=private_key) # copy the rules to the temp directory temp_file = '/tmp/' + str(uuid.uuid4()) ssh.open_sftp() sftp = ssh.open_sftp() sftp.open(temp_file, 'w').write(rules) # move the rules in to place and enable and run the iptables-restore.service commands = [ 'sudo mv ' + temp_file + ' /var/lib/iptables/rules-save', 'sudo chown root:root /var/lib/iptables/rules-save', 'sudo systemctl enable iptables-restore.service', 'sudo systemctl start iptables-restore.service' ] for command in commands: stdin, stdout, stderr = ssh.exec_command(command) stdout.channel.recv_exit_status() ssh.close() log_success('Applied rule to ' + host_ip) def main(): colorama.init() parser = argparse.ArgumentParser(description='Apply a "Security Group" to a Deis cluster') parser.add_argument('--private-key', required=True, type=file, dest='private_key', help='Cluster SSH Private Key') parser.add_argument('--private', action='store_true', dest='private', help='Only allow access to the cluster from the private network') parser.add_argument('--discovery-url', dest='discovery_url', help='Etcd discovery url') parser.add_argument('--hosts', nargs='+', dest='hosts', help='The IP addresses of the hosts to apply rules to') args = parser.parse_args() nodes = get_nodes_from_args(args) hosts = args.hosts if args.hosts is not None else nodes node_ips = [] for ip in nodes: if validate_ip_address(ip): node_ips.append(ip) else: log_warning('Invalid IP will not be added to security group: ' + ip) if not len(node_ips) > 0: raise ValueError('No valid IP addresses in security group.') host_ips = [] for ip in hosts: if validate_ip_address(ip): host_ips.append(ip) else: log_warning('Host has invalid IP address: ' + ip) if not len(host_ips) > 0: raise ValueError('No valid host addresses.') log_info('Generating iptables rules...') rules = get_firewall_contents(node_ips, args.private) log_success('Generated rules:') log_debug(rules) log_info('Applying rules...') apply_rules_to_all(host_ips, rules, args.private_key) log_success('Done!') def log_debug(message): print(Style.DIM + Fore.MAGENTA + message + Fore.RESET + Style.RESET_ALL) def log_info(message): print(Fore.CYAN + message + Fore.RESET) def log_warning(message): print(Fore.YELLOW + message + Fore.RESET) def log_success(message): print(Style.BRIGHT + Fore.GREEN + message + Fore.RESET + Style.RESET_ALL) def log_error(message): print(Style.BRIGHT + Fore.RED + message + Fore.RESET + Style.RESET_ALL) if __name__ == "__main__": try: main() except Exception as e: log_error(e.message) sys.exit(1)
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Test cases for L{twisted.names.client}. """ from __future__ import division, absolute_import from zope.interface.verify import verifyClass, verifyObject from twisted.python import failure from twisted.python.filepath import FilePath from twisted.python.runtime import platform from twisted.internet import defer from twisted.internet.error import CannotListenError, ConnectionRefusedError from twisted.internet.interfaces import IResolver from twisted.internet.test.modulehelpers import AlternateReactor from twisted.internet.task import Clock from twisted.names import error, client, dns, hosts, cache from twisted.names.error import DNSQueryTimeoutError from twisted.names.common import ResolverBase from twisted.names.test.test_hosts import GoodTempPathMixin from twisted.names.test.test_util import MemoryReactor from twisted.test import proto_helpers from twisted.trial import unittest if platform.isWindows(): windowsSkip = "These tests need more work before they'll work on Windows." else: windowsSkip = None class FakeResolver(ResolverBase): def _lookup(self, name, cls, qtype, timeout): """ The getHostByNameTest does a different type of query that requires it return an A record from an ALL_RECORDS lookup, so we accommodate that here. """ if name == b'getHostByNameTest': rr = dns.RRHeader(name=name, type=dns.A, cls=cls, ttl=60, payload=dns.Record_A(address='127.0.0.1', ttl=60)) else: rr = dns.RRHeader(name=name, type=qtype, cls=cls, ttl=60) results = [rr] authority = [] additional = [] return defer.succeed((results, authority, additional)) class StubPort(object): """ A partial implementation of L{IListeningPort} which only keeps track of whether it has been stopped. @ivar disconnected: A C{bool} which is C{False} until C{stopListening} is called, C{True} afterwards. """ disconnected = False def stopListening(self): self.disconnected = True class StubDNSDatagramProtocol(object): """ L{dns.DNSDatagramProtocol}-alike. @ivar queries: A C{list} of tuples giving the arguments passed to C{query} along with the L{defer.Deferred} which was returned from the call. """ def __init__(self): self.queries = [] self.transport = StubPort() def query(self, address, queries, timeout=10, id=None): """ Record the given arguments and return a Deferred which will not be called back by this code. """ result = defer.Deferred() self.queries.append((address, queries, timeout, id, result)) return result class GetResolverTests(unittest.TestCase): """ Tests for L{client.getResolver}. """ if windowsSkip: skip = windowsSkip def test_interface(self): """ L{client.getResolver} returns an object providing L{IResolver}. """ with AlternateReactor(Clock()): resolver = client.getResolver() self.assertTrue(verifyObject(IResolver, resolver)) def test_idempotent(self): """ Multiple calls to L{client.getResolver} return the same L{IResolver} implementation. """ with AlternateReactor(Clock()): a = client.getResolver() b = client.getResolver() self.assertIs(a, b) class CreateResolverTests(unittest.TestCase, GoodTempPathMixin): """ Tests for L{client.createResolver}. """ if windowsSkip: skip = windowsSkip def _hostsTest(self, resolver, filename): res = [r for r in resolver.resolvers if isinstance(r, hosts.Resolver)] self.assertEqual(1, len(res)) self.assertEqual(res[0].file, filename) def test_defaultHosts(self): """ L{client.createResolver} returns a L{resolve.ResolverChain} including a L{hosts.Resolver} using I{/etc/hosts} if no alternate hosts file is specified. """ with AlternateReactor(Clock()): resolver = client.createResolver() self._hostsTest(resolver, b"/etc/hosts") def test_overrideHosts(self): """ The I{hosts} parameter to L{client.createResolver} overrides the hosts file used by the L{hosts.Resolver} in the L{resolve.ResolverChain} it returns. """ with AlternateReactor(Clock()): resolver = client.createResolver(hosts=b"/foo/bar") self._hostsTest(resolver, b"/foo/bar") def _resolvConfTest(self, resolver, filename): """ Verify that C{resolver} has a L{client.Resolver} with a configuration filename set to C{filename}. """ res = [r for r in resolver.resolvers if isinstance(r, client.Resolver)] self.assertEqual(1, len(res)) self.assertEqual(res[0].resolv, filename) def test_reactor(self): """ The L{client.Resolver} included in the L{resolve.ResolverChain} returned by L{client.createResolver} uses the global reactor. """ reactor = Clock() with AlternateReactor(reactor): resolver = client.createResolver() res = [r for r in resolver.resolvers if isinstance(r, client.Resolver)] self.assertEqual(1, len(res)) self.assertIs(reactor, res[0]._reactor) def test_defaultResolvConf(self): """ L{client.createResolver} returns a L{resolve.ResolverChain} including a L{client.Resolver} using I{/etc/resolv.conf} if no alternate resolver configuration file is specified. """ with AlternateReactor(Clock()): resolver = client.createResolver() self._resolvConfTest(resolver, b"/etc/resolv.conf") def test_overrideResolvConf(self): """ The I{resolvconf} parameter to L{client.createResolver} overrides the resolver configuration file used by the L{client.Resolver} in the L{resolve.ResolverChain} it returns. """ with AlternateReactor(Clock()): resolver = client.createResolver(resolvconf=b"/foo/bar") self._resolvConfTest(resolver, b"/foo/bar") def test_defaultServers(self): """ If no servers are given, addresses are taken from the file given by the I{resolvconf} parameter to L{client.createResolver}. """ resolvconf = self.path() resolvconf.setContent(b"nameserver 127.1.2.3\n") with AlternateReactor(Clock()): resolver = client.createResolver(resolvconf=resolvconf.path) res = [r for r in resolver.resolvers if isinstance(r, client.Resolver)] self.assertEqual(1, len(res)) self.assertEqual([], res[0].servers) self.assertEqual([("127.1.2.3", 53)], res[0].dynServers) def test_overrideServers(self): """ Servers passed to L{client.createResolver} are used in addition to any found in the file given by the I{resolvconf} parameter. """ resolvconf = self.path() resolvconf.setContent(b"nameserver 127.1.2.3\n") with AlternateReactor(Clock()): resolver = client.createResolver( servers=[("127.3.2.1", 53)], resolvconf=resolvconf.path) res = [r for r in resolver.resolvers if isinstance(r, client.Resolver)] self.assertEqual(1, len(res)) self.assertEqual([("127.3.2.1", 53)], res[0].servers) self.assertEqual([("127.1.2.3", 53)], res[0].dynServers) def test_cache(self): """ L{client.createResolver} returns a L{resolve.ResolverChain} including a L{cache.CacheResolver}. """ with AlternateReactor(Clock()): resolver = client.createResolver() res = [r for r in resolver.resolvers if isinstance(r, cache.CacheResolver)] self.assertEqual(1, len(res)) class ResolverTests(unittest.TestCase): """ Tests for L{client.Resolver}. """ def test_clientProvidesIResolver(self): """ L{client} provides L{IResolver} through a series of free functions. """ verifyObject(IResolver, client) def test_clientResolverProvidesIResolver(self): """ L{client.Resolver} provides L{IResolver}. """ verifyClass(IResolver, client.Resolver) def test_noServers(self): """ L{client.Resolver} raises L{ValueError} if constructed with neither servers nor a nameserver configuration file. """ self.assertRaises(ValueError, client.Resolver) def test_missingConfiguration(self): """ A missing nameserver configuration file results in no server information being loaded from it (ie, not an exception) and a default server being provided. """ resolver = client.Resolver(resolv=self.mktemp(), reactor=Clock()) self.assertEqual([("127.0.0.1", 53)], resolver.dynServers) def test_closesResolvConf(self): """ As part of its constructor, C{StubResolver} opens C{/etc/resolv.conf}; then, explicitly closes it and does not count on the GC to do so for it. """ handle = FilePath(self.mktemp()) resolvConf = handle.open(mode='w+') class StubResolver(client.Resolver): def _openFile(self, name): return resolvConf StubResolver(servers=["example.com", 53], resolv='/etc/resolv.conf', reactor=Clock()) self.assertTrue(resolvConf.closed) def test_domainEmptyArgument(self): """ L{client.Resolver.parseConfig} treats a I{domain} line without an argument as indicating a domain of C{b""}. """ resolver = client.Resolver(servers=[("127.0.0.1", 53)]) resolver.parseConfig([b"domain\n"]) self.assertEqual(b"", resolver.domain) def test_searchEmptyArgument(self): """ L{client.Resolver.parseConfig} treats a I{search} line without an argument as indicating an empty search suffix. """ resolver = client.Resolver(servers=[("127.0.0.1", 53)]) resolver.parseConfig([b"search\n"]) self.assertEqual([], resolver.search) def test_datagramQueryServerOrder(self): """ L{client.Resolver.queryUDP} should issue queries to its L{dns.DNSDatagramProtocol} with server addresses taken from its own C{servers} and C{dynServers} lists, proceeding through them in order as L{DNSQueryTimeoutError}s occur. """ protocol = StubDNSDatagramProtocol() servers = [object(), object()] dynServers = [object(), object()] resolver = client.Resolver(servers=servers) resolver.dynServers = dynServers resolver._connectedProtocol = lambda: protocol expectedResult = object() queryResult = resolver.queryUDP(None) queryResult.addCallback(self.assertEqual, expectedResult) self.assertEqual(len(protocol.queries), 1) self.assertIs(protocol.queries[0][0], servers[0]) protocol.queries[0][-1].errback(DNSQueryTimeoutError(0)) self.assertEqual(len(protocol.queries), 2) self.assertIs(protocol.queries[1][0], servers[1]) protocol.queries[1][-1].errback(DNSQueryTimeoutError(1)) self.assertEqual(len(protocol.queries), 3) self.assertIs(protocol.queries[2][0], dynServers[0]) protocol.queries[2][-1].errback(DNSQueryTimeoutError(2)) self.assertEqual(len(protocol.queries), 4) self.assertIs(protocol.queries[3][0], dynServers[1]) protocol.queries[3][-1].callback(expectedResult) return queryResult def test_singleConcurrentRequest(self): """ L{client.Resolver.query} only issues one request at a time per query. Subsequent requests made before responses to prior ones are received are queued and given the same response as is given to the first one. """ protocol = StubDNSDatagramProtocol() resolver = client.Resolver(servers=[('example.com', 53)]) resolver._connectedProtocol = lambda: protocol queries = protocol.queries query = dns.Query(b'foo.example.com', dns.A, dns.IN) # The first query should be passed to the underlying protocol. firstResult = resolver.query(query) self.assertEqual(len(queries), 1) # The same query again should not be passed to the underlying protocol. secondResult = resolver.query(query) self.assertEqual(len(queries), 1) # The response to the first query should be sent in response to both # queries. answer = object() response = dns.Message() response.answers.append(answer) queries.pop()[-1].callback(response) d = defer.gatherResults([firstResult, secondResult]) def cbFinished(responses): firstResponse, secondResponse = responses self.assertEqual(firstResponse, ([answer], [], [])) self.assertEqual(secondResponse, ([answer], [], [])) d.addCallback(cbFinished) return d def test_multipleConcurrentRequests(self): """ L{client.Resolver.query} issues a request for each different concurrent query. """ protocol = StubDNSDatagramProtocol() resolver = client.Resolver(servers=[('example.com', 53)]) resolver._connectedProtocol = lambda: protocol queries = protocol.queries # The first query should be passed to the underlying protocol. firstQuery = dns.Query(b'foo.example.com', dns.A) resolver.query(firstQuery) self.assertEqual(len(queries), 1) # A query for a different name is also passed to the underlying # protocol. secondQuery = dns.Query(b'bar.example.com', dns.A) resolver.query(secondQuery) self.assertEqual(len(queries), 2) # A query for a different type is also passed to the underlying # protocol. thirdQuery = dns.Query(b'foo.example.com', dns.A6) resolver.query(thirdQuery) self.assertEqual(len(queries), 3) def test_multipleSequentialRequests(self): """ After a response is received to a query issued with L{client.Resolver.query}, another query with the same parameters results in a new network request. """ protocol = StubDNSDatagramProtocol() resolver = client.Resolver(servers=[('example.com', 53)]) resolver._connectedProtocol = lambda: protocol queries = protocol.queries query = dns.Query(b'foo.example.com', dns.A) # The first query should be passed to the underlying protocol. resolver.query(query) self.assertEqual(len(queries), 1) # Deliver the response. queries.pop()[-1].callback(dns.Message()) # Repeating the first query should touch the protocol again. resolver.query(query) self.assertEqual(len(queries), 1) def test_multipleConcurrentFailure(self): """ If the result of a request is an error response, the Deferreds for all concurrently issued requests associated with that result fire with the L{Failure}. """ protocol = StubDNSDatagramProtocol() resolver = client.Resolver(servers=[('example.com', 53)]) resolver._connectedProtocol = lambda: protocol queries = protocol.queries query = dns.Query(b'foo.example.com', dns.A) firstResult = resolver.query(query) secondResult = resolver.query(query) class ExpectedException(Exception): pass queries.pop()[-1].errback(failure.Failure(ExpectedException())) return defer.gatherResults([ self.assertFailure(firstResult, ExpectedException), self.assertFailure(secondResult, ExpectedException)]) def test_connectedProtocol(self): """ L{client.Resolver._connectedProtocol} returns a new L{DNSDatagramProtocol} connected to a new address with a cryptographically secure random port number. """ resolver = client.Resolver(servers=[('example.com', 53)]) firstProto = resolver._connectedProtocol() secondProto = resolver._connectedProtocol() self.assertIsNotNone(firstProto.transport) self.assertIsNotNone(secondProto.transport) self.assertNotEqual( firstProto.transport.getHost().port, secondProto.transport.getHost().port) return defer.gatherResults([ defer.maybeDeferred(firstProto.transport.stopListening), defer.maybeDeferred(secondProto.transport.stopListening)]) def test_resolverUsesOnlyParameterizedReactor(self): """ If a reactor instance is supplied to L{client.Resolver} L{client.Resolver._connectedProtocol} should pass that reactor to L{twisted.names.dns.DNSDatagramProtocol}. """ reactor = MemoryReactor() resolver = client.Resolver(resolv=self.mktemp(), reactor=reactor) proto = resolver._connectedProtocol() self.assertIs(proto._reactor, reactor) def test_differentProtocol(self): """ L{client.Resolver._connectedProtocol} is called once each time a UDP request needs to be issued and the resulting protocol instance is used for that request. """ resolver = client.Resolver(servers=[('example.com', 53)]) protocols = [] class FakeProtocol(object): def __init__(self): self.transport = StubPort() def query(self, address, query, timeout=10, id=None): protocols.append(self) return defer.succeed(dns.Message()) resolver._connectedProtocol = FakeProtocol resolver.query(dns.Query(b'foo.example.com')) resolver.query(dns.Query(b'bar.example.com')) self.assertEqual(len(set(protocols)), 2) def test_disallowedPort(self): """ If a port number is initially selected which cannot be bound, the L{CannotListenError} is handled and another port number is attempted. """ ports = [] class FakeReactor(object): def listenUDP(self, port, *args): ports.append(port) if len(ports) == 1: raise CannotListenError(None, port, None) resolver = client.Resolver(servers=[('example.com', 53)]) resolver._reactor = FakeReactor() resolver._connectedProtocol() self.assertEqual(len(set(ports)), 2) def test_differentProtocolAfterTimeout(self): """ When a query issued by L{client.Resolver.query} times out, the retry uses a new protocol instance. """ resolver = client.Resolver(servers=[('example.com', 53)]) protocols = [] results = [defer.fail(failure.Failure(DNSQueryTimeoutError(None))), defer.succeed(dns.Message())] class FakeProtocol(object): def __init__(self): self.transport = StubPort() def query(self, address, query, timeout=10, id=None): protocols.append(self) return results.pop(0) resolver._connectedProtocol = FakeProtocol resolver.query(dns.Query(b'foo.example.com')) self.assertEqual(len(set(protocols)), 2) def test_protocolShutDown(self): """ After the L{Deferred} returned by L{DNSDatagramProtocol.query} is called back, the L{DNSDatagramProtocol} is disconnected from its transport. """ resolver = client.Resolver(servers=[('example.com', 53)]) protocols = [] result = defer.Deferred() class FakeProtocol(object): def __init__(self): self.transport = StubPort() def query(self, address, query, timeout=10, id=None): protocols.append(self) return result resolver._connectedProtocol = FakeProtocol resolver.query(dns.Query(b'foo.example.com')) self.assertFalse(protocols[0].transport.disconnected) result.callback(dns.Message()) self.assertTrue(protocols[0].transport.disconnected) def test_protocolShutDownAfterTimeout(self): """ The L{DNSDatagramProtocol} created when an interim timeout occurs is also disconnected from its transport after the Deferred returned by its query method completes. """ resolver = client.Resolver(servers=[('example.com', 53)]) protocols = [] result = defer.Deferred() results = [defer.fail(failure.Failure(DNSQueryTimeoutError(None))), result] class FakeProtocol(object): def __init__(self): self.transport = StubPort() def query(self, address, query, timeout=10, id=None): protocols.append(self) return results.pop(0) resolver._connectedProtocol = FakeProtocol resolver.query(dns.Query(b'foo.example.com')) self.assertFalse(protocols[1].transport.disconnected) result.callback(dns.Message()) self.assertTrue(protocols[1].transport.disconnected) def test_protocolShutDownAfterFailure(self): """ If the L{Deferred} returned by L{DNSDatagramProtocol.query} fires with a failure, the L{DNSDatagramProtocol} is still disconnected from its transport. """ class ExpectedException(Exception): pass resolver = client.Resolver(servers=[('example.com', 53)]) protocols = [] result = defer.Deferred() class FakeProtocol(object): def __init__(self): self.transport = StubPort() def query(self, address, query, timeout=10, id=None): protocols.append(self) return result resolver._connectedProtocol = FakeProtocol queryResult = resolver.query(dns.Query(b'foo.example.com')) self.assertFalse(protocols[0].transport.disconnected) result.errback(failure.Failure(ExpectedException())) self.assertTrue(protocols[0].transport.disconnected) return self.assertFailure(queryResult, ExpectedException) def test_tcpDisconnectRemovesFromConnections(self): """ When a TCP DNS protocol associated with a Resolver disconnects, it is removed from the Resolver's connection list. """ resolver = client.Resolver(servers=[('example.com', 53)]) protocol = resolver.factory.buildProtocol(None) protocol.makeConnection(None) self.assertIn(protocol, resolver.connections) # Disconnecting should remove the protocol from the connection list: protocol.connectionLost(None) self.assertNotIn(protocol, resolver.connections) def test_singleTCPQueryErrbackOnConnectionFailure(self): """ The deferred returned by L{client.Resolver.queryTCP} will errback when the TCP connection attempt fails. The reason for the connection failure is passed as the argument to errback. """ reactor = proto_helpers.MemoryReactor() resolver = client.Resolver( servers=[('192.0.2.100', 53)], reactor=reactor) d = resolver.queryTCP(dns.Query('example.com')) host, port, factory, timeout, bindAddress = reactor.tcpClients[0] class SentinelException(Exception): pass factory.clientConnectionFailed( reactor.connectors[0], failure.Failure(SentinelException())) self.failureResultOf(d, SentinelException) def test_multipleTCPQueryErrbackOnConnectionFailure(self): """ All pending L{resolver.queryTCP} C{deferred}s will C{errback} with the same C{Failure} if the connection attempt fails. """ reactor = proto_helpers.MemoryReactor() resolver = client.Resolver( servers=[('192.0.2.100', 53)], reactor=reactor) d1 = resolver.queryTCP(dns.Query('example.com')) d2 = resolver.queryTCP(dns.Query('example.net')) host, port, factory, timeout, bindAddress = reactor.tcpClients[0] class SentinelException(Exception): pass factory.clientConnectionFailed( reactor.connectors[0], failure.Failure(SentinelException())) f1 = self.failureResultOf(d1, SentinelException) f2 = self.failureResultOf(d2, SentinelException) self.assertIs(f1, f2) def test_reentrantTCPQueryErrbackOnConnectionFailure(self): """ An errback on the deferred returned by L{client.Resolver.queryTCP} may trigger another TCP query. """ reactor = proto_helpers.MemoryReactor() resolver = client.Resolver( servers=[('127.0.0.1', 10053)], reactor=reactor) q = dns.Query('example.com') # First query sent d = resolver.queryTCP(q) # Repeat the query when the first query fails def reissue(e): e.trap(ConnectionRefusedError) return resolver.queryTCP(q) d.addErrback(reissue) self.assertEqual(len(reactor.tcpClients), 1) self.assertEqual(len(reactor.connectors), 1) host, port, factory, timeout, bindAddress = reactor.tcpClients[0] # First query fails f1 = failure.Failure(ConnectionRefusedError()) factory.clientConnectionFailed( reactor.connectors[0], f1) # A second TCP connection is immediately attempted self.assertEqual(len(reactor.tcpClients), 2) self.assertEqual(len(reactor.connectors), 2) # No result expected until the second chained query returns self.assertNoResult(d) # Second query fails f2 = failure.Failure(ConnectionRefusedError()) factory.clientConnectionFailed( reactor.connectors[1], f2) # Original deferred now fires with the second failure f = self.failureResultOf(d, ConnectionRefusedError) self.assertIs(f, f2) def test_pendingEmptiedInPlaceOnError(self): """ When the TCP connection attempt fails, the L{client.Resolver.pending} list is emptied in place. It is not replaced with a new empty list. """ reactor = proto_helpers.MemoryReactor() resolver = client.Resolver( servers=[('192.0.2.100', 53)], reactor=reactor) d = resolver.queryTCP(dns.Query('example.com')) host, port, factory, timeout, bindAddress = reactor.tcpClients[0] prePending = resolver.pending self.assertEqual(len(prePending), 1) class SentinelException(Exception): pass factory.clientConnectionFailed( reactor.connectors[0], failure.Failure(SentinelException())) self.failureResultOf(d, SentinelException) self.assertIs(resolver.pending, prePending) self.assertEqual(len(prePending), 0) class ClientTests(unittest.TestCase): def setUp(self): """ Replace the resolver with a FakeResolver """ client.theResolver = FakeResolver() self.hostname = b'example.com' self.hostnameForGetHostByName = b'getHostByNameTest' def tearDown(self): """ By setting the resolver to None, it will be recreated next time a name lookup is done. """ client.theResolver = None def checkResult(self, results, qtype): """ Verify that the result is the same query type as what is expected. """ answers, authority, additional = results result = answers[0] self.assertEqual(result.name.name, self.hostname) self.assertEqual(result.type, qtype) def checkGetHostByName(self, result): """ Test that the getHostByName query returns the 127.0.0.1 address. """ self.assertEqual(result, '127.0.0.1') def test_getHostByName(self): """ do a getHostByName of a value that should return 127.0.0.1. """ d = client.getHostByName(self.hostnameForGetHostByName) d.addCallback(self.checkGetHostByName) return d def test_lookupAddress(self): """ Do a lookup and test that the resolver will issue the correct type of query type. We do this by checking that FakeResolver returns a result record with the same query type as what we issued. """ d = client.lookupAddress(self.hostname) d.addCallback(self.checkResult, dns.A) return d def test_lookupIPV6Address(self): """ See L{test_lookupAddress} """ d = client.lookupIPV6Address(self.hostname) d.addCallback(self.checkResult, dns.AAAA) return d def test_lookupAddress6(self): """ See L{test_lookupAddress} """ d = client.lookupAddress6(self.hostname) d.addCallback(self.checkResult, dns.A6) return d def test_lookupNameservers(self): """ See L{test_lookupAddress} """ d = client.lookupNameservers(self.hostname) d.addCallback(self.checkResult, dns.NS) return d def test_lookupCanonicalName(self): """ See L{test_lookupAddress} """ d = client.lookupCanonicalName(self.hostname) d.addCallback(self.checkResult, dns.CNAME) return d def test_lookupAuthority(self): """ See L{test_lookupAddress} """ d = client.lookupAuthority(self.hostname) d.addCallback(self.checkResult, dns.SOA) return d def test_lookupMailBox(self): """ See L{test_lookupAddress} """ d = client.lookupMailBox(self.hostname) d.addCallback(self.checkResult, dns.MB) return d def test_lookupMailGroup(self): """ See L{test_lookupAddress} """ d = client.lookupMailGroup(self.hostname) d.addCallback(self.checkResult, dns.MG) return d def test_lookupMailRename(self): """ See L{test_lookupAddress} """ d = client.lookupMailRename(self.hostname) d.addCallback(self.checkResult, dns.MR) return d def test_lookupNull(self): """ See L{test_lookupAddress} """ d = client.lookupNull(self.hostname) d.addCallback(self.checkResult, dns.NULL) return d def test_lookupWellKnownServices(self): """ See L{test_lookupAddress} """ d = client.lookupWellKnownServices(self.hostname) d.addCallback(self.checkResult, dns.WKS) return d def test_lookupPointer(self): """ See L{test_lookupAddress} """ d = client.lookupPointer(self.hostname) d.addCallback(self.checkResult, dns.PTR) return d def test_lookupHostInfo(self): """ See L{test_lookupAddress} """ d = client.lookupHostInfo(self.hostname) d.addCallback(self.checkResult, dns.HINFO) return d def test_lookupMailboxInfo(self): """ See L{test_lookupAddress} """ d = client.lookupMailboxInfo(self.hostname) d.addCallback(self.checkResult, dns.MINFO) return d def test_lookupMailExchange(self): """ See L{test_lookupAddress} """ d = client.lookupMailExchange(self.hostname) d.addCallback(self.checkResult, dns.MX) return d def test_lookupText(self): """ See L{test_lookupAddress} """ d = client.lookupText(self.hostname) d.addCallback(self.checkResult, dns.TXT) return d def test_lookupSenderPolicy(self): """ See L{test_lookupAddress} """ d = client.lookupSenderPolicy(self.hostname) d.addCallback(self.checkResult, dns.SPF) return d def test_lookupResponsibility(self): """ See L{test_lookupAddress} """ d = client.lookupResponsibility(self.hostname) d.addCallback(self.checkResult, dns.RP) return d def test_lookupAFSDatabase(self): """ See L{test_lookupAddress} """ d = client.lookupAFSDatabase(self.hostname) d.addCallback(self.checkResult, dns.AFSDB) return d def test_lookupService(self): """ See L{test_lookupAddress} """ d = client.lookupService(self.hostname) d.addCallback(self.checkResult, dns.SRV) return d def test_lookupZone(self): """ See L{test_lookupAddress} """ d = client.lookupZone(self.hostname) d.addCallback(self.checkResult, dns.AXFR) return d def test_lookupAllRecords(self): """ See L{test_lookupAddress} """ d = client.lookupAllRecords(self.hostname) d.addCallback(self.checkResult, dns.ALL_RECORDS) return d def test_lookupNamingAuthorityPointer(self): """ See L{test_lookupAddress} """ d = client.lookupNamingAuthorityPointer(self.hostname) d.addCallback(self.checkResult, dns.NAPTR) return d def test_query(self): """ L{client.query} accepts a L{dns.Query} instance and dispatches it to L{client.theResolver}.C{query}, which in turn dispatches to an appropriate C{lookup*} method of L{client.theResolver}, based on the L{dns.Query} type. """ q = dns.Query(self.hostname, dns.A) d = client.query(q) d.addCallback(self.checkResult, dns.A) return d class FilterAnswersTests(unittest.TestCase): """ Test L{twisted.names.client.Resolver.filterAnswers}'s handling of various error conditions it might encounter. """ def setUp(self): # Create a resolver pointed at an invalid server - we won't be hitting # the network in any of these tests. self.resolver = client.Resolver(servers=[('0.0.0.0', 0)]) def test_truncatedMessage(self): """ Test that a truncated message results in an equivalent request made via TCP. """ m = dns.Message(trunc=True) m.addQuery(b'example.com') def queryTCP(queries): self.assertEqual(queries, m.queries) response = dns.Message() response.answers = ['answer'] response.authority = ['authority'] response.additional = ['additional'] return defer.succeed(response) self.resolver.queryTCP = queryTCP d = self.resolver.filterAnswers(m) d.addCallback( self.assertEqual, (['answer'], ['authority'], ['additional'])) return d def _rcodeTest(self, rcode, exc): m = dns.Message(rCode=rcode) err = self.resolver.filterAnswers(m) err.trap(exc) def test_formatError(self): """ Test that a message with a result code of C{EFORMAT} results in a failure wrapped around L{DNSFormatError}. """ return self._rcodeTest(dns.EFORMAT, error.DNSFormatError) def test_serverError(self): """ Like L{test_formatError} but for C{ESERVER}/L{DNSServerError}. """ return self._rcodeTest(dns.ESERVER, error.DNSServerError) def test_nameError(self): """ Like L{test_formatError} but for C{ENAME}/L{DNSNameError}. """ return self._rcodeTest(dns.ENAME, error.DNSNameError) def test_notImplementedError(self): """ Like L{test_formatError} but for C{ENOTIMP}/L{DNSNotImplementedError}. """ return self._rcodeTest(dns.ENOTIMP, error.DNSNotImplementedError) def test_refusedError(self): """ Like L{test_formatError} but for C{EREFUSED}/L{DNSQueryRefusedError}. """ return self._rcodeTest(dns.EREFUSED, error.DNSQueryRefusedError) def test_refusedErrorUnknown(self): """ Like L{test_formatError} but for an unrecognized error code and L{DNSUnknownError}. """ return self._rcodeTest(dns.EREFUSED + 1, error.DNSUnknownError) class FakeDNSDatagramProtocol(object): def __init__(self): self.queries = [] self.transport = StubPort() def query(self, address, queries, timeout=10, id=None): self.queries.append((address, queries, timeout, id)) return defer.fail(error.DNSQueryTimeoutError(queries)) def removeResend(self, id): # Ignore this for the time being. pass class RetryLogicTests(unittest.TestCase): """ Tests for query retrying implemented by L{client.Resolver}. """ testServers = [ '1.2.3.4', '4.3.2.1', 'a.b.c.d', 'z.y.x.w'] def test_roundRobinBackoff(self): """ When timeouts occur waiting for responses to queries, the next configured server is issued the query. When the query has been issued to all configured servers, the timeout is increased and the process begins again at the beginning. """ addrs = [(x, 53) for x in self.testServers] r = client.Resolver(resolv=None, servers=addrs) proto = FakeDNSDatagramProtocol() r._connectedProtocol = lambda: proto return r.lookupAddress(b"foo.example.com" ).addCallback(self._cbRoundRobinBackoff ).addErrback(self._ebRoundRobinBackoff, proto ) def _cbRoundRobinBackoff(self, result): self.fail("Lookup address succeeded, should have timed out") def _ebRoundRobinBackoff(self, failure, fakeProto): failure.trap(defer.TimeoutError) # Assert that each server is tried with a particular timeout # before the timeout is increased and the attempts are repeated. for t in (1, 3, 11, 45): tries = fakeProto.queries[:len(self.testServers)] del fakeProto.queries[:len(self.testServers)] tries.sort() expected = list(self.testServers) expected.sort() for ((addr, query, timeout, id), expectedAddr) in zip(tries, expected): self.assertEqual(addr, (expectedAddr, 53)) self.assertEqual(timeout, t) self.assertFalse(fakeProto.queries) class ThreadedResolverTests(unittest.TestCase): """ Tests for L{client.ThreadedResolver}. """ def test_deprecated(self): """ L{client.ThreadedResolver} is deprecated. Instantiating it emits a deprecation warning pointing at the code that does the instantiation. """ client.ThreadedResolver() warnings = self.flushWarnings(offendingFunctions=[self.test_deprecated]) self.assertEqual( warnings[0]['message'], "twisted.names.client.ThreadedResolver is deprecated since " "Twisted 9.0, use twisted.internet.base.ThreadedResolver " "instead.") self.assertEqual(warnings[0]['category'], DeprecationWarning) self.assertEqual(len(warnings), 1)
# -*- coding: utf-8 -*- from django.conf import settings from datetime import datetime import logging from django.contrib.auth.models import User, Permission from django.contrib.contenttypes.models import ContentType from django.test import TestCase from django.urls import reverse from django.test.utils import override_settings from model_mommy import mommy from coop_cms.apps.test_app.models import TestClass, TestTag from coop_cms import settings as coop_settings from coop_cms.models import BaseArticle, Newsletter from coop_cms.tests import BeautifulSoup, BaseArticleTest from coop_cms.tests.test_newsletter import NewsletterSettingsTest from coop_cms.utils import get_login_url class BaseTestCase(TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def _log_as_viewer(self): self.viewer = user = User.objects.create_user('viewer', '[email protected]', 'viewer') return self.client.login(username='viewer', password='viewer') def _log_as_editor(self): self.editor = user = User.objects.create_user('editor', '[email protected]', 'editor') content_type = ContentType.objects.get_for_model(TestClass) perm = 'change_{0}'.format(content_type.model) can_edit = Permission.objects.get(content_type=content_type, codename=perm) user.user_permissions.add(can_edit) perm = 'add_{0}'.format(content_type.model) can_add = Permission.objects.get(content_type=content_type, codename=perm) user.user_permissions.add(can_add) user.is_active = True user.is_staff = True # can_edit_object user.save() return self.client.login(username='editor', password='editor') class GenericViewTestCase(BaseTestCase): def test_view_list_objects(self): obj = mommy.make(TestClass) response = self.client.get(obj.get_list_url()) self.assertEqual(200, response.status_code) def test_view_object_anomymous(self): obj = mommy.make(TestClass) url = obj.get_absolute_url() response = self.client.get(url) if coop_settings.is_perm_middleware_installed(): self.assertEqual(302, response.status_code) auth_url = get_login_url() self.assertRedirects(response, auth_url + '?next=' + url) else: self.assertEqual(403, response.status_code) def test_edit_object_anonymous(self): obj = mommy.make(TestClass) url = obj.get_edit_url() response = self.client.get(url) if coop_settings.is_perm_middleware_installed(): self.assertEqual(302, response.status_code) auth_url = get_login_url() self.assertRedirects(response, auth_url + '?next=' + url) else: self.assertEqual(403, response.status_code) field1, field2 = obj.field1, obj.field2 data = {'field1': "ABC", 'field2': "DEF", 'bool_field': True, 'int_field': 2, 'float_field': 3.14} response = self.client.post(url, data=data) if coop_settings.is_perm_middleware_installed(): self.assertEqual(302, response.status_code) auth_url = get_login_url() self.assertRedirects(response, auth_url + '?next=' + url) else: self.assertEqual(403, response.status_code) obj = TestClass.objects.get(id=obj.id) self.assertEqual(obj.field1, field1) self.assertEqual(obj.field2, field2) def test_view_object_viewer(self): self._log_as_viewer() obj = mommy.make(TestClass) response = self.client.get(obj.get_absolute_url()) self.assertEqual(200, response.status_code) soup = BeautifulSoup(response.content) self.assertEqual("ABC", soup.select("#properties")[0].text) def test_view_object_viewer_bool_true(self): self._log_as_viewer() obj = mommy.make(TestClass, bool_field=True) response = self.client.get(obj.get_absolute_url()) self.assertEqual(200, response.status_code) soup = BeautifulSoup(response.content) self.assertEqual(1, len(soup.select(".bool_field_is_true"))) self.assertEqual(0, len(soup.select(".bool_field_is_false"))) def test_view_object_m2m_relationships(self): self._log_as_viewer() obj = mommy.make(TestClass) tag1 = mommy.make(TestTag, name='The-Tag-1#') tag2 = mommy.make(TestTag, name='The-Tag-2#') tag3 = mommy.make(TestTag, name='The-Tag-3#') obj.tags.add(tag1) obj.tags.add(tag2) obj.save() response = self.client.get(obj.get_absolute_url()) self.assertEqual(200, response.status_code) self.assertContains(response, tag1.name) self.assertContains(response, tag2.name) self.assertNotContains(response, tag3.name) def test_view_object_viewer_bool_false(self): self._log_as_viewer() obj = mommy.make(TestClass, bool_field=False) response = self.client.get(obj.get_absolute_url()) self.assertEqual(200, response.status_code) soup = BeautifulSoup(response.content) self.assertEqual(0, len(soup.select(".bool_field_is_true"))) self.assertEqual(1, len(soup.select(".bool_field_is_false"))) def test_edit_object_viewer(self): self._log_as_viewer() obj = mommy.make(TestClass) response = self.client.get(obj.get_edit_url()) self.assertEqual(403, response.status_code) field1, field2 = obj.field1, obj.field2 data = {'field1': "ABC", 'field2': "DEF", 'bool_field': True, 'int_field': 2, 'float_field': 3.14} response = self.client.post(obj.get_edit_url(), data=data, follow=True) self.assertEqual(403, response.status_code) obj = TestClass.objects.get(id=obj.id) self.assertEqual(obj.field1, field1) self.assertEqual(obj.field2, field2) def test_view_object_editor(self): self._log_as_editor() obj = mommy.make(TestClass) response = self.client.get(obj.get_absolute_url()) self.assertEqual(200, response.status_code) def test_edit_object_editor(self): self._log_as_editor() obj = mommy.make(TestClass) response = self.client.get(obj.get_edit_url()) self.assertEqual(200, response.status_code) data = {'field1': "ABC", 'field2': "DEF", 'bool_field': True, 'int_field': 2, 'float_field': 3.14} response = self.client.post(obj.get_edit_url(), data=data, follow=True) self.assertEqual(200, response.status_code) obj = TestClass.objects.get(id=obj.id) self.assertEqual(obj.field1, data["field1"]) self.assertEqual(obj.field2, data["field2"]) self.assertEqual(obj.bool_field, data["bool_field"]) self.assertEqual(obj.int_field, data["int_field"]) self.assertEqual(obj.float_field, data["float_field"]) def test_edit_object_inactive(self): self._log_as_editor() self.editor.is_active = False self.editor.save() obj = mommy.make(TestClass) response = self.client.get(obj.get_edit_url()) self.assertEqual(403, response.status_code) data = {'field1': "ABC", 'field2': "DEF", 'bool_field': True, 'int_field': 2, 'float_field': 3.14} response = self.client.post(obj.get_edit_url(), data=data, follow=True) self.assertEqual(403, response.status_code) obj = TestClass.objects.get(id=obj.id) self.assertNotEqual(obj.field1, data["field1"]) self.assertNotEqual(obj.field2, data["field2"]) class FormsetViewTestCase(BaseTestCase): def test_view_formset_no_objects(self): self._log_as_viewer() url = reverse('coop_cms_testapp_formset') response = self.client.get(url) self.assertEqual(200, response.status_code) soup = BeautifulSoup(response.content) self.assertEqual(0, len(soup.select('form'))) def test_edit_formset_no_objects(self): self._log_as_editor() url = reverse('coop_cms_testapp_formset_edit') response = self.client.get(url) self.assertEqual(200, response.status_code) soup = BeautifulSoup(response.content) self.assertEqual(1, len(soup.select('form'))) def test_view_formset_one_object(self): self._log_as_viewer() obj = mommy.make(TestClass) url = reverse('coop_cms_testapp_formset') response = self.client.get(url) self.assertEqual(200, response.status_code) soup = BeautifulSoup(response.content) self.assertEqual(0, len(soup.select('form'))) self.assertContains(response, obj.field1) self.assertContains(response, obj.field2) self.assertContains(response, obj.other_field) #def test_edit_formset_one_object(self): # self._log_as_viewer() # # obj = mommy.make(TestClass) # # url = reverse('coop_cms_testapp_formset_edit') # # response = self.client.get(url) # self.assertEqual(200, response.status_code) # # soup = BeautifulSoup(response.content) # self.assertEqual(1, len(soup.select('form'))) # # print response.content # # self.assertContains(response, obj.field1) # self.assertContains(response, obj.field2) # self.assertContains(response, obj.other_field) def test_view_formset_several_object(self): self._log_as_viewer() obj1 = mommy.make(TestClass) obj2 = mommy.make(TestClass) obj3 = mommy.make(TestClass) objects = [obj1, obj2, obj3] url = reverse('coop_cms_testapp_formset') response = self.client.get(url) self.assertEqual(200, response.status_code) for obj in objects: self.assertContains(response, obj.field1) self.assertContains(response, obj.field2) self.assertContains(response, obj.other_field) def test_edit_formset_no_objects(self): self._log_as_editor() url = reverse('coop_cms_testapp_formset_edit') data = { 'form-TOTAL_FORMS': 0, 'form-INITIAL_FORMS': 0, 'form-MAX_NUM_FORMS': 1, } response = self.client.post(url, data=data, follow=True) self.assertEqual(200, response.status_code) def test_post_formset_on_view(self): self._log_as_editor() url = reverse('coop_cms_testapp_formset') data = { 'form-TOTAL_FORMS': 0, 'form-INITIAL_FORMS': 0, 'form-MAX_NUM_FORMS': 1, } response = self.client.post(url, data=data, follow=True) self.assertEqual(404, response.status_code) def test_post_edit_formset_one_object(self): self._log_as_editor() obj = mommy.make(TestClass) url = reverse('coop_cms_testapp_formset_edit') other_field = obj.other_field data = { 'form-0-id': obj.id, 'form-0-field1': "AZERTYUIOP", 'form-0-field2': "<p>QWERTY/nUIOP</p>", #'form-0-field3': "", 'form-0-other_field': "wxcvbn", 'form-0-bool_field': True, 'form-0-int_field': 2, 'form-0-float_field': 3.14, 'form-TOTAL_FORMS': 1, 'form-INITIAL_FORMS': 1, 'form-MAX_NUM_FORMS': 1, } response = self.client.post(url, data=data, follow=True) self.assertEqual(200, response.status_code) obj = TestClass.objects.get(id=obj.id) self.assertContains(response, obj.field1) self.assertContains(response, obj.field2) self.assertContains(response, other_field) self.assertEqual(data['form-0-field1'], obj.field1) self.assertEqual(data['form-0-field2'], obj.field2) self.assertEqual(other_field, obj.other_field) self.assertEqual(data['form-0-bool_field'], obj.bool_field) self.assertEqual(data['form-0-int_field'], obj.int_field) self.assertEqual(data['form-0-float_field'], obj.float_field) def test_edit_formset_several_object(self): self._log_as_editor() obj1 = mommy.make(TestClass) obj2 = mommy.make(TestClass) data = { 'form-0-id': obj1.id, 'form-0-field1': "AZERTYUIOP", 'form-0-field2': "<p>QWERTY/nUIOP</p>", 'form-0-field3': "AZDD", 'form-0-bool_field': True, 'form-0-int_field': 2, 'form-0-float_field': 3.14, 'form-1-id': obj2.id, 'form-1-field1': "POIUYTREZA", 'form-1-field2': "<p>MLKJHGFDSQ</p>", 'form-1-field3': "QSkk", 'form-1-bool_field': False, 'form-1-int_field': 2, 'form-1-float_field': 3.14, 'form-TOTAL_FORMS': 2, 'form-INITIAL_FORMS': 2, 'form-MAX_NUM_FORMS': 2, } url = reverse('coop_cms_testapp_formset_edit') response = self.client.post(url, data=data, follow=True) self.assertEqual(200, response.status_code) objects = TestClass.objects.all() for i, obj in enumerate(objects): self.assertEqual(data['form-{0}-field1'.format(i)], obj.field1) self.assertEqual(data['form-{0}-field2'.format(i)], obj.field2) self.assertEqual(data['form-{0}-field3'.format(i)], obj.field3) self.assertEqual(data['form-{0}-bool_field'.format(i)], obj.bool_field) self.assertEqual(data['form-{0}-int_field'.format(i)], obj.int_field) self.assertEqual(data['form-{0}-float_field'.format(i)], obj.float_field) def test_edit_formset_extra_1(self): self._log_as_editor() obj1 = mommy.make(TestClass) data = { 'form-0-id': obj1.id, 'form-0-field1': "AZERTYUIOP", 'form-0-field2': "<p>QWERTY/nUIOP</p>", 'form-0-field3': "AZDD", 'form-0-bool_field': True, 'form-0-int_field': 2, 'form-0-float_field': 3.14, 'form-1-id': '', 'form-1-field1': "POIUYTREZA", 'form-1-field2': "<p>MLKJHGFDSQ</p>", 'form-1-field3': "QSkk", 'form-1-bool_field': True, 'form-1-int_field': 2, 'form-1-float_field': 3.14, 'form-TOTAL_FORMS': 2, 'form-INITIAL_FORMS': 1, 'form-MAX_NUM_FORMS': 2, } url = reverse('coop_cms_testapp_formset_edit') response = self.client.post(url, data=data, follow=True) self.assertEqual(200, response.status_code) objects = TestClass.objects.all() self.assertEqual(2, objects.count()) for i, obj in enumerate(objects): self.assertEqual(data['form-{0}-field1'.format(i)], obj.field1) self.assertEqual(data['form-{0}-field2'.format(i)], obj.field2) self.assertEqual(data['form-{0}-field3'.format(i)], obj.field3) self.assertEqual(data['form-{0}-bool_field'.format(i)], obj.bool_field) self.assertEqual(data['form-{0}-int_field'.format(i)], obj.int_field) self.assertEqual(data['form-{0}-float_field'.format(i)], obj.float_field) def test_edit_formset_anonymous(self): obj = mommy.make(TestClass) url = reverse('coop_cms_testapp_formset_edit') other_field = obj.other_field data = { 'form-0-id': obj.id, 'form-0-field1': "AZERTYUIOP", 'form-0-field2': "<p>QWERTY/nUIOP</p>", 'form-0-bool_field': True, 'form-0-int_field': 2, 'form-0-float_field': 3.14, 'form-TOTAL_FORMS': 1, 'form-INITIAL_FORMS': 1, 'form-MAX_NUM_FORMS': 1, } response = self.client.post(url, data=data) if coop_settings.is_perm_middleware_installed(): self.assertEqual(302, response.status_code) auth_url = get_login_url() self.assertRedirects(response, auth_url+'?next='+url) else: self.assertEqual(403, response.status_code) obj = TestClass.objects.get(id=obj.id) self.assertNotEqual(data['form-0-field1'], obj.field1) self.assertNotEqual(data['form-0-field2'], obj.field2) def test_edit_formset_viewer(self): self._log_as_viewer() obj = mommy.make(TestClass) url = reverse('coop_cms_testapp_formset_edit') other_field = obj.other_field data = { 'form-0-id': obj.id, 'form-0-field1': "AZERTYUIOP", 'form-0-field2': "<p>QWERTY/nUIOP</p>", 'form-0-bool_field': True, 'form-0-int_field': 2, 'form-0-float_field': 3.14, 'form-TOTAL_FORMS': 1, 'form-INITIAL_FORMS': 1, 'form-MAX_NUM_FORMS': 1, } response = self.client.post(url, data=data, follow=True) self.assertEqual(403, response.status_code) obj = TestClass.objects.get(id=obj.id) self.assertNotEqual(data['form-0-field1'], obj.field1) self.assertNotEqual(data['form-0-field2'], obj.field2) def test_edit_formset_inactive(self): self._log_as_editor() self.editor.is_active = False self.editor.save() obj = mommy.make(TestClass) url = reverse('coop_cms_testapp_formset_edit') other_field = obj.other_field data = { 'form-0-id': obj.id, 'form-0-field1': "AZERTYUIOP", 'form-0-field2': "<p>QWERTY/nUIOP</p>", 'form-0-bool_field': True, 'form-0-int_field': 2, 'form-0-float_field': 3.14, 'form-TOTAL_FORMS': 1, 'form-INITIAL_FORMS': 1, 'form-MAX_NUM_FORMS': 1, } response = self.client.post(url, data=data, follow=True) self.assertEqual(403, response.status_code) obj = TestClass.objects.get(id=obj.id) self.assertNotEqual(data['form-0-field1'], obj.field1) self.assertNotEqual(data['form-0-field2'], obj.field2) class ArticleFormTest(BaseTestCase): def _log_as_viewer(self): self.viewer = user = User.objects.create_user('viewer', '[email protected]', 'viewer') return self.client.login(username='viewer', password='viewer') def _log_as_editor(self): self.user = user = User.objects.create_user('toto', '[email protected]', 'toto') ct = ContentType.objects.get_for_model(coop_settings.get_article_class()) perm = 'change_{0}'.format(ct.model) can_edit_article = Permission.objects.get(content_type=ct, codename=perm) user.user_permissions.add(can_edit_article) perm = 'add_{0}'.format(ct.model) can_add_article = Permission.objects.get(content_type=ct, codename=perm) user.user_permissions.add(can_add_article) user.save() return self.client.login(username='toto', password='toto') def _settings_fields_to_backup(self): return ( 'COOP_CMS_ARTICLE_SETTINGS_FORM', 'COOP_CMS_NEW_ARTICLE_FORM', 'COOP_CMS_ARTICLE_TEMPLATES', ) def setUp(self): self._settings_backup = {} for s in self._settings_fields_to_backup(): v = getattr(settings, s, None) if v is None: self._settings_backup[s] = v self.LOGIN_URL = settings.LOGIN_URL settings.LOGIN_URL = get_login_url() settings.COOP_CMS_NEW_ARTICLE_FORM = 'coop_cms.apps.test_app.forms.MyNewArticleForm' settings.COOP_CMS_ARTICLE_SETTINGS_FORM = 'coop_cms.apps.test_app.forms.MyArticleSettingsForm' settings.COOP_CMS_ARTICLE_TEMPLATES = ( ('test/article.html', 'Article'), ('test/article_with_blocks.html', 'Article with blocks'), ) super(ArticleFormTest, self).setUp() def tearDown(self): for setting in self._settings_fields_to_backup(): value = self._settings_backup.get(setting, None) if value is not None: setattr(settings, setting, value) settings.LOGIN_URL = self.LOGIN_URL super(ArticleFormTest, self).tearDown() def test_view_new_article(self): self._log_as_editor() url = reverse('coop_cms_new_article') response = self.client.get(url) self.assertEqual(response.status_code, 200) soup = BeautifulSoup(response.content) self.assertEqual(1, len(soup.select("#id_dummy"))) def test_view_new_article_anonymous(self): url = reverse('coop_cms_new_article') response = self.client.get(url) self.assertEqual(302, response.status_code) auth_url = get_login_url() self.assertRedirects(response, auth_url+'?next='+url) def test_view_article_not_allowed(self): self._log_as_viewer() article_class = coop_settings.get_article_class() url = reverse('coop_cms_new_article') response = self.client.get(url) self.assertEqual(response.status_code, 403) self.assertEqual(article_class.objects.count(), 0) def test_new_article(self): self._log_as_editor() article_class = coop_settings.get_article_class() url = reverse('coop_cms_new_article') data = { 'title': 'test', 'template': settings.COOP_CMS_ARTICLE_TEMPLATES[0][0], 'publication': BaseArticle.PUBLISHED, 'in_newsletter': False, 'navigation_parent': '', 'sites': [settings.SITE_ID] } response = self.client.post(url, data=data) self.assertEqual(response.status_code, 200) self.assertEqual(article_class.objects.count(), 1) article = article_class.objects.all()[0] for field in data: if field == "sites": self.assertEqual([x.id for x in getattr(article, field).all()], data[field]) elif field == "navigation_parent": self.assertEqual(getattr(article, field), None) else: self.assertEqual(getattr(article, field), data[field]) def test_new_article_anoymous(self): article_class = coop_settings.get_article_class() url = reverse('coop_cms_new_article') data = { 'title': 'test', 'template': settings.COOP_CMS_ARTICLE_TEMPLATES[0][0], 'publication': BaseArticle.PUBLISHED, 'in_newsletter': False, 'navigation_parent': '', 'sites': [settings.SITE_ID], } response = self.client.post(url, data=data) self.assertEqual(response.status_code, 302) login_url = get_login_url() self.assertTrue(response['Location'].find(login_url) >= 0) self.assertEqual(article_class.objects.count(), 0) def test_new_article_not_allowed(self): self._log_as_viewer() article_class = coop_settings.get_article_class() url = reverse('coop_cms_new_article') data = { 'title': 'test', 'template': settings.COOP_CMS_ARTICLE_TEMPLATES[0][0], 'publication': BaseArticle.PUBLISHED, 'in_newsletter': False, 'navigation_parent': '', 'sites': [settings.SITE_ID], } response = self.client.post(url, data=data) self.assertEqual(response.status_code, 403) self.assertEqual(article_class.objects.count(), 0) def test_view_article_settings(self): self._log_as_editor() article_class = coop_settings.get_article_class() article = mommy.make(article_class, slug="test") url = reverse('coop_cms_article_settings', args=[article.id]) response = self.client.get(url) self.assertEqual(response.status_code, 200) soup = BeautifulSoup(response.content) self.assertEqual(1, len(soup.select("#id_dummy"))) def test_view_article_settings_anonymous(self): article_class = coop_settings.get_article_class() article = mommy.make(article_class, slug="test") url = reverse('coop_cms_article_settings', args=[article.id]) response = self.client.get(url) self.assertEqual(302, response.status_code) auth_url = get_login_url() self.assertRedirects(response, auth_url+'?next='+url) def test_view_article_settings_not_allowed(self): self._log_as_viewer() article_class = coop_settings.get_article_class() article = mommy.make(article_class, slug="test") url = reverse('coop_cms_article_settings', args=[article.id]) response = self.client.get(url) self.assertEqual(response.status_code, 403) self.assertEqual(article_class.objects.count(), 1) def test_article_settings(self): self._log_as_editor() article_class = coop_settings.get_article_class() article = mommy.make(article_class, slug="test") url = reverse('coop_cms_article_settings', args=[article.id]) now = datetime.now() now = now.replace(microsecond=0) data = { 'template': settings.COOP_CMS_ARTICLE_TEMPLATES[0][0], 'publication_date': now, 'publication': BaseArticle.PUBLISHED, 'in_newsletter': False, 'summary': 'Summary', 'navigation_parent': '', 'sites': [settings.SITE_ID], } response = self.client.post(url, data=data) self.assertEqual(response.status_code, 200) self.assertEqual(article_class.objects.count(), 1) article = article_class.objects.all()[0] for field in data: if field == "sites": self.assertEqual([x.id for x in getattr(article, field).all()], data[field]) elif field == "navigation_parent": self.assertEqual(article.navigation_parent, None) else: self.assertEqual(getattr(article, field), data[field]) def test_article_settings_anonymous(self): article_class = coop_settings.get_article_class() article = mommy.make(article_class, slug="test") url = reverse('coop_cms_article_settings', args=[article.id]) data = { 'template': settings.COOP_CMS_ARTICLE_TEMPLATES[0][0], 'publication_date': datetime.now(), 'publication': BaseArticle.PUBLISHED, 'in_newsletter': False, 'summary': 'Summary', 'navigation_parent': '', 'sites': [settings.SITE_ID], } response = self.client.post(url, data=data) self.assertEqual(response.status_code, 302) login_url = get_login_url() self.assertTrue(response['Location'].find(login_url) >= 0) self.assertEqual(article_class.objects.count(), 1) article = article_class.objects.all()[0] self.assertNotEqual(article.summary, data['summary']) def test_article_settings_not_allowed(self): self._log_as_viewer() article_class = coop_settings.get_article_class() article = mommy.make(article_class, slug="test") url = reverse('coop_cms_article_settings', args=[article.id]) data = { 'template': settings.COOP_CMS_ARTICLE_TEMPLATES[0][0], 'publication_date': datetime.now(), 'publication': BaseArticle.PUBLISHED, 'in_newsletter': False, 'summary': 'Summary', 'navigation_parent': '', 'sites': [settings.SITE_ID], } response = self.client.post(url, data=data) self.assertEqual(response.status_code, 403) self.assertEqual(article_class.objects.count(), 1) article = article_class.objects.all()[0] self.assertNotEqual(article.summary, data['summary']) class MyNewsletterSettingsTest(NewsletterSettingsTest): @override_settings(COOP_CMS_NEWSLETTER_SETTINGS_FORM="coop_cms.apps.test_app.forms.MyNewsletterSettingsForm") def test_additional_field_on_edit(self): self._log_as_editor() newsletter = mommy.make( Newsletter, subject="a little intro for this newsletter", template="test/newsletter_blue.html", ) url = reverse("coop_cms_newsletter_settings", args=[newsletter.id]) response = self.client.get(url) self.assertEqual(response.status_code, 200) soup = BeautifulSoup(response.content) self.assertEqual(1, len(soup.select("#id_dummy"))) @override_settings(COOP_CMS_NEWSLETTER_SETTINGS_FORM="coop_cms.apps.test_app.forms.MyNewsletterSettingsForm") def test_additional_field_on_create(self): self._log_as_editor() url = reverse("coop_cms_new_newsletter") response = self.client.get(url) self.assertEqual(response.status_code, 200) soup = BeautifulSoup(response.content) self.assertEqual(1, len(soup.select("#id_dummy"))) @override_settings(COOP_CMS_ARTICLE_TEMPLATES=(('coop_cms/test_app/custom_tag_template.html', 'Custom Tag'),)) class CustomTemplateTagInCmsEditTag(BaseArticleTest): """test using custom templatetag inside the cms_edit template tag""" def test_view_with_blocks(self): """test view article with block templatetag inside the cms_edit template tag""" article_class = coop_settings.get_article_class() article = mommy.make( article_class, title="This is my article", content="<p>This is my <b>content</b></p>", template='coop_cms/test_app/custom_tag_template.html' ) response = self.client.get(article.get_absolute_url()) self.assertEqual(response.status_code, 200) soup = BeautifulSoup(response.content) self.assertEqual(3, len(soup.select("ul.custom li"))) self.assertContains(response, article.title) self.assertContains(response, article.content) self.assertContains(response, "*** HELLO FROM CHILD ***") self.assertContains(response, "*** HELLO FROM PARENT ***") self.assertContains(response, "*** HELLO FROM BLOCK ***") def test_edit_with_blocks(self): """test edition with block templatetag inside the cms_edit template tag""" article_class = coop_settings.get_article_class() article = mommy.make( article_class, title="This is my article", content="<p>This is my <b>content</b></p>", template='coop_cms/test_app/custom_tag_template.html' ) self._log_as_editor() data = { "title": "This is a new title", 'content': "<p>This is a <i>*** NEW ***</i> <b>content</b></p>" } response = self.client.post(article.get_edit_url(), data=data, follow=True) self.assertEqual(response.status_code, 200) article = article_class.objects.get(id=article.id) self.assertEqual(article.title, data['title']) self.assertEqual(article.content, data['content']) self.assertContains(response, article.title) self.assertContains(response, article.content) self.assertContains(response, "*** HELLO FROM CHILD ***") self.assertContains(response, "*** HELLO FROM PARENT ***") self.assertContains(response, "*** HELLO FROM BLOCK ***")
from ..errors import AngrMemoryError, AngrTranslationError from ..analysis import Analysis, register_analysis from collections import deque import logging import math import networkx import types # todo include an explanation of the algorithm # todo include a method that detects any change other than constants # todo use function names / string references where available l = logging.getLogger(name="angr.analyses.bindiff") # basic block changes DIFF_TYPE = "type" DIFF_VALUE = "value" # exception for trying find basic block changes class UnmatchedStatementsException(Exception): pass # statement difference classes class Difference(object): def __init__(self, diff_type, value_a, value_b): self.type = diff_type self.value_a = value_a self.value_b = value_b class ConstantChange(object): def __init__(self, offset, value_a, value_b): self.offset = offset self.value_a = value_a self.value_b = value_b # helper methods def _euclidean_dist(vector_a, vector_b): """ :param vector_a: A list of numbers. :param vector_b: A list of numbers. :returns: The euclidean distance between the two vectors. """ dist = 0 for (x, y) in zip(vector_a, vector_b): dist += (x-y)*(x-y) return math.sqrt(dist) def _get_closest_matches(input_attributes, target_attributes): """ :param input_attributes: First dictionary of objects to attribute tuples. :param target_attributes: Second dictionary of blocks to attribute tuples. :returns: A dictionary of objects in the input_attributes to the closest objects in the target_attributes. """ closest_matches = {} # for each object in the first set find the objects with the closest target attributes for a in input_attributes: best_dist = float('inf') best_matches = [] for b in target_attributes: dist = _euclidean_dist(input_attributes[a], target_attributes[b]) if dist < best_dist: best_matches = [b] best_dist = dist elif dist == best_dist: best_matches.append(b) closest_matches[a] = best_matches return closest_matches # from http://rosettacode.org/wiki/Levenshtein_distance def _levenshtein_distance(s1, s2): """ :param s1: A list or string :param s2: Another list or string :returns: The levenshtein distance between the two """ if len(s1) > len(s2): s1, s2 = s2, s1 distances = range(len(s1) + 1) for index2, num2 in enumerate(s2): new_distances = [index2 + 1] for index1, num1 in enumerate(s1): if num1 == num2: new_distances.append(distances[index1]) else: new_distances.append(1 + min((distances[index1], distances[index1+1], new_distances[-1]))) distances = new_distances return distances[-1] def _normalized_levenshtein_distance(s1, s2, acceptable_differences): """ This function calculates the levenshtein distance but allows for elements in the lists to be different by any number in the set acceptable_differences. :param s1: A list. :param s2: Another list. :param acceptable_differences: A set of numbers. If (s2[i]-s1[i]) is in the set then they are considered equal. :returns: """ if len(s1) > len(s2): s1, s2 = s2, s1 acceptable_differences = set(-i for i in acceptable_differences) distances = range(len(s1) + 1) for index2, num2 in enumerate(s2): new_distances = [index2 + 1] for index1, num1 in enumerate(s1): if num2 - num1 in acceptable_differences: new_distances.append(distances[index1]) else: new_distances.append(1 + min((distances[index1], distances[index1+1], new_distances[-1]))) distances = new_distances return distances[-1] def _is_better_match(x, y, matched_a, matched_b, attributes_dict_a, attributes_dict_b): """ :param x: The first element of a possible match. :param y: The second element of a possible match. :param matched_a: The current matches for the first set. :param matched_b: The current matches for the second set. :param attributes_dict_a: The attributes for each element in the first set. :param attributes_dict_b: The attributes for each element in the second set. :returns: True/False """ attributes_x = attributes_dict_a[x] attributes_y = attributes_dict_b[y] if x in matched_a: attributes_match = attributes_dict_b[matched_a[x]] if _euclidean_dist(attributes_x, attributes_y) >= _euclidean_dist(attributes_x, attributes_match): return False if y in matched_b: attributes_match = attributes_dict_a[matched_b[y]] if _euclidean_dist(attributes_x, attributes_y) >= _euclidean_dist(attributes_y, attributes_match): return False return True def differing_constants(block_a, block_b): """ Compares two basic blocks and finds all the constants that differ from the first block to the second. :param block_a: The first block to compare. :param block_b: The second block to compare. :returns: Returns a list of differing constants in the form of ConstantChange, which has the offset in the block and the respective constants. """ statements_a = [s for s in block_a.vex.statements if s.tag != "Ist_IMark"] + [block_a.vex.next] statements_b = [s for s in block_b.vex.statements if s.tag != "Ist_IMark"] + [block_b.vex.next] if len(statements_a) != len(statements_b): raise UnmatchedStatementsException("Blocks have different numbers of statements") start_1 = min(block_a.instruction_addrs) start_2 = min(block_b.instruction_addrs) changes = [] # check statements current_offset = None for statement, statement_2 in zip(statements_a, statements_b): # sanity check if statement.tag != statement_2.tag: raise UnmatchedStatementsException("Statement tag has changed") if statement.tag == "Ist_IMark": if statement.addr - start_1 != statement_2.addr - start_2: raise UnmatchedStatementsException("Instruction length has changed") current_offset = statement.addr - start_1 continue differences = compare_statement_dict(statement, statement_2) for d in differences: if d.type != DIFF_VALUE: raise UnmatchedStatementsException("Instruction has changed") else: changes.append(ConstantChange(current_offset, d.value_a, d.value_b)) return changes def compare_statement_dict(statement_1, statement_2): # should return whether or not the statement's type/effects changed # need to return the specific number that changed too if type(statement_1) != type(statement_2): return [Difference(DIFF_TYPE, None, None)] # None if statement_1 is None and statement_2 is None: return [] # constants if isinstance(statement_1, (int, long, float, str)): if isinstance(statement_1, float) and math.isnan(statement_1) and math.isnan(statement_2): return [] elif statement_1 == statement_2: return [] else: return [Difference(None, statement_1, statement_2)] # tuples/lists if isinstance(statement_1, (tuple, list)): if len(statement_1) != len(statement_2): return Difference(DIFF_TYPE, None, None) differences = [] for s1, s2 in zip(statement_1, statement_2): differences += compare_statement_dict(s1, s2) return differences # Yan's weird types differences = [] for attr in statement_1.__dict__: # don't check arch, property, or methods if attr == "arch": continue if hasattr(statement_1.__class__, attr) and isinstance(getattr(statement_1.__class__, attr), property): continue if isinstance(getattr(statement_1, attr), types.MethodType): continue new_diffs = compare_statement_dict(getattr(statement_1, attr), getattr(statement_2, attr)) # set the difference types for diff in new_diffs: if diff.type is None: diff.type = attr differences += new_diffs return differences class NormalizedBlock(object): # block may span multiple calls def __init__(self, block, function): addresses = [block.addr] if block.addr in function.merged_blocks: for a in function.merged_blocks[block.addr]: addresses.append(a.addr) self.addr = block.addr self.addresses = addresses self.statements = [] self.all_constants = [] self.operations = [] self.call_targets = [] self.blocks = [] self.instruction_addrs = [] if block.addr in function.call_sites: self.call_targets = function.call_sites[block.addr] self.jumpkind = None for a in addresses: block = function.project.factory.block(a) self.instruction_addrs += block.instruction_addrs irsb = block.vex self.blocks.append(block) self.statements += irsb.statements self.all_constants += irsb.all_constants self.operations += irsb.operations self.jumpkind = irsb.jumpkind self.size = sum([b.size for b in self.blocks]) def __repr__(self): size = sum([b.size for b in self.blocks]) return '<Normalized Block for %#x, %d bytes>' % (self.addr, size) class NormalizedFunction(object): # a more normalized function def __init__(self, function): # start by copying the graph self.graph = function.graph.copy() self.project = function._function_manager._kb._project self.call_sites = dict() self.startpoint = function.startpoint self.merged_blocks = dict() self.orig_function = function # find nodes which end in call and combine them done = False while not done: done = True for node in self.graph.nodes(): try: bl = self.project.factory.block(node.addr) except AngrMemoryError: continue except AngrTranslationError: continue # merge if it ends with a single call, and the successor has only one predecessor and succ is after successors = self.graph.successors(node) if bl.vex.jumpkind == "Ijk_Call" and len(successors) == 1 and \ len(self.graph.predecessors(successors[0])) == 1 and successors[0].addr > node.addr: # add edges to the successors of its successor, and delete the original successors succ = self.graph.successors(node)[0] for s in self.graph.successors(succ): self.graph.add_edge(node, s) self.graph.remove_node(succ) done = False # add to merged blocks if node not in self.merged_blocks: self.merged_blocks[node] = [] self.merged_blocks[node].append(succ) if succ in self.merged_blocks: self.merged_blocks[node] += self.merged_blocks[succ] del self.merged_blocks[succ] # stop iterating and start over break # set up call sites for n in self.graph.nodes(): call_targets = [] if n.addr in self.orig_function.get_call_sites(): call_targets.append(self.orig_function.get_call_target(n.addr)) if n.addr in self.merged_blocks: for block in self.merged_blocks[n]: if block.addr in self.orig_function.get_call_sites(): call_targets.append(self.orig_function.get_call_target(block.addr)) if len(call_targets) > 0: self.call_sites[n] = call_targets class FunctionDiff(object): """ This class computes the a diff between two functions. """ def __init__(self, function_a, function_b, bindiff=None): """ :param function_a: The first angr Function object to diff. :param function_b: The second angr Function object. :param bindiff: An optional Bindiff object. Used for some extra normalization during basic block comparison. """ self._function_a = NormalizedFunction(function_a) self._function_b = NormalizedFunction(function_b) self._project_a = self._function_a.project self._project_b = self._function_b.project self._bindiff = bindiff self._attributes_a = dict() self._attributes_a = dict() self._block_matches = set() self._unmatched_blocks_from_a = set() self._unmatched_blocks_from_b = set() self._compute_diff() @property def probably_identical(self): """ :returns: Whether or not these two functions are identical. """ if len(self._unmatched_blocks_from_a | self._unmatched_blocks_from_b) > 0: return False for (a, b) in self._block_matches: if not self.blocks_probably_identical(a, b): return False return True @property def identical_blocks(self): """ :returns: A list of block matches which appear to be identical """ identical_blocks = [] for (block_a, block_b) in self._block_matches: if self.blocks_probably_identical(block_a, block_b): identical_blocks.append((block_a, block_b)) return identical_blocks @property def differing_blocks(self): """ :returns: A list of block matches which appear to differ """ differing_blocks = [] for (block_a, block_b) in self._block_matches: if not self.blocks_probably_identical(block_a, block_b): differing_blocks.append((block_a, block_b)) return differing_blocks @property def blocks_with_differing_constants(self): """ :return: A list of block matches which appear to differ """ differing_blocks = [] diffs = dict() for (block_a, block_b) in self._block_matches: if self.blocks_probably_identical(block_a, block_b) and \ not self.blocks_probably_identical(block_a, block_b, check_constants=True): differing_blocks.append((block_a, block_b)) for block_a, block_b in differing_blocks: ba = NormalizedBlock(block_a, self._function_a) bb = NormalizedBlock(block_b, self._function_b) diffs[(block_a, block_b)] = FunctionDiff._block_diff_constants(ba, bb) return diffs @property def block_matches(self): return self._block_matches @property def unmatched_blocks(self): return self._unmatched_blocks_from_a, self._unmatched_blocks_from_b @staticmethod def get_normalized_block(addr, function): """ :param addr: Where to start the normalized block. :param function: A function containing the block address. :returns: A normalized basic block. """ return NormalizedBlock(addr, function) def block_similarity(self, block_a, block_b): """ :param block_a: The first block address. :param block_b: The second block address. :returns: The similarity of the basic blocks, normalized for the base address of the block and function call addresses. """ # handle sim procedure blocks if self._project_a.is_hooked(block_a) and self._project_b.is_hooked(block_b): if self._project_a._sim_procedures[block_a] == self._project_b._sim_procedures[block_b]: return 1.0 else: return 0.0 try: block_a = NormalizedBlock(block_a, self._function_a) except AngrMemoryError: block_a = None except AngrTranslationError: block_a = None try: block_b = NormalizedBlock(block_b, self._function_b) except AngrMemoryError: block_b = None except AngrTranslationError: block_b = None # if both were None then they are assumed to be the same, if only one was the same they are assumed to differ if block_a is None and block_b is None: return 1.0 elif block_a is None or block_b is None: return 0.0 # get all elements for computing similarity tags_a = [s.tag for s in block_a.statements] tags_b = [s.tag for s in block_b.statements] consts_a = [c.value for c in block_a.all_constants] consts_b = [c.value for c in block_b.all_constants] all_registers_a = [s.offset for s in block_a.statements if hasattr(s, "offset")] all_registers_b = [s.offset for s in block_b.statements if hasattr(s, "offset")] jumpkind_a = block_a.jumpkind jumpkind_b = block_b.jumpkind # compute total distance total_dist = 0 total_dist += _levenshtein_distance(tags_a, tags_b) total_dist += _levenshtein_distance(block_a.operations, block_b.operations) total_dist += _levenshtein_distance(all_registers_a, all_registers_b) acceptable_differences = self._get_acceptable_constant_differences(block_a, block_b) total_dist += _normalized_levenshtein_distance(consts_a, consts_b, acceptable_differences) total_dist += 0 if jumpkind_a == jumpkind_b else 1 # compute similarity num_values = max(len(tags_a), len(tags_b)) num_values += max(len(consts_a), len(consts_b)) num_values += max(len(block_a.operations), len(block_b.operations)) num_values += 1 # jumpkind similarity = 1 - (float(total_dist) / num_values) return similarity def blocks_probably_identical(self, block_a, block_b, check_constants=False): """ :param block_a: The first block address. :param block_b: The second block address. :param check_constants: Whether or not to require matching constants in blocks. :returns: Whether or not the blocks appear to be identical. """ # handle sim procedure blocks if self._project_a.is_hooked(block_a) and self._project_b.is_hooked(block_b): return self._project_a._sim_procedures[block_a] == self._project_b._sim_procedures[block_b] try: block_a = NormalizedBlock(block_a, self._function_a) except AngrMemoryError: block_a = None except AngrTranslationError: block_a = None try: block_b = NormalizedBlock(block_b, self._function_b) except AngrMemoryError: block_b = None except AngrTranslationError: block_b = None # if both were None then they are assumed to be the same, if only one was None they are assumed to differ if block_a is None and block_b is None: return True elif block_a is None or block_b is None: return False # if they represent a different number of blocks they are not the same if len(block_a.blocks) != len(block_b.blocks): return False # check differing constants try: diff_constants = FunctionDiff._block_diff_constants(block_a, block_b) except UnmatchedStatementsException: return False if not check_constants: return True # get values of differences that probably indicate no change acceptable_differences = self._get_acceptable_constant_differences(block_a, block_b) # todo match globals for c in diff_constants: if (c.value_a, c.value_b) in self._block_matches: # constants point to matched basic blocks continue if self._bindiff is not None and (c.value_a and c.value_b) in self._bindiff.function_matches: # constants point to matched functions continue # if both are in the binary we'll assume it's okay, although we should really match globals # TODO use global matches if self._project_a.loader.main_bin.contains_addr(c.value_a) and \ self._project_b.loader.main_bin.contains_addr(c.value_b): continue # if the difference is equal to the difference in block addr's or successor addr's we'll say it's also okay if (c.value_b - c.value_a) in acceptable_differences: continue # otherwise they probably are different return False # the blocks appear to be identical return True @staticmethod def _block_diff_constants(block_a, block_b): diff_constants = [] for irsb_a, irsb_b in zip(block_a.blocks, block_b.blocks): diff_constants += differing_constants(irsb_a, irsb_b) return diff_constants @staticmethod def _compute_block_attributes(function): """ :param function: A normalized function object. :returns: A dictionary of basic block addresses to tuples of attributes. """ # The attributes we use are the distance form function start, distance from function exit and whether # or not it has a subfunction call distances_from_start = FunctionDiff._distances_from_function_start(function) distances_from_exit = FunctionDiff._distances_from_function_exit(function) call_sites = function.call_sites attributes = {} for block in function.graph.nodes(): if block in call_sites: number_of_subfunction_calls = len(call_sites[block]) else: number_of_subfunction_calls = 0 # there really shouldn't be blocks that can't be reached from the start, but there are for now dist_start = distances_from_start[block] if block in distances_from_start else 10000 dist_exit = distances_from_exit[block] if block in distances_from_exit else 10000 attributes[block] = (dist_start, dist_exit, number_of_subfunction_calls) return attributes @staticmethod def _distances_from_function_start(function): """ :param function: A normalized Function object. :returns: A dictionary of basic block addresses and their distance to the start of the function. """ return networkx.single_source_shortest_path_length(function.graph, function.startpoint) @staticmethod def _block_diff_constants(block_a, block_b): diff_constants = [] for irsb_a, irsb_b in zip(block_a.blocks, block_b.blocks): diff_constants += differing_constants(irsb_a, irsb_b) return diff_constants @staticmethod def _distances_from_function_exit(function): """ :param function: A normalized Function object. :returns: A dictionary of basic block addresses and their distance to the exit of the function. """ reverse_graph = function.graph.reverse() # we aren't guaranteed to have an exit from the function so explicitly add the node reverse_graph.add_node("start") found_exits = False for n in function.graph.nodes(): if len(function.graph.successors(n)) == 0: reverse_graph.add_edge("start", n) found_exits = True # if there were no exits (a function with a while 1) let's consider the block with the highest address to # be the exit. This isn't the most scientific way, but since this case is pretty rare it should be okay if not found_exits: last = max(function.graph.nodes(), key=lambda x:x.addr) reverse_graph.add_edge("start", last) dists = networkx.single_source_shortest_path_length(reverse_graph, "start") # remove temp node del dists["start"] # correct for the added node for n in dists: dists[n] -= 1 return dists def _compute_diff(self): """ Computes the diff of the functions and saves the result. """ # get the attributes for all blocks l.debug("Computing diff of functions: %s, %s", ("%#x" % self._function_a.startpoint.addr) if self._function_a.startpoint is not None else "None", ("%#x" % self._function_b.startpoint.addr) if self._function_b.startpoint is not None else "None" ) self.attributes_a = self._compute_block_attributes(self._function_a) self.attributes_b = self._compute_block_attributes(self._function_b) # get the initial matches initial_matches = self._get_block_matches(self.attributes_a, self.attributes_b, tiebreak_with_block_similarity=False) # Use a queue so we process matches in the order that they are found to_process = deque(initial_matches) # Keep track of which matches we've already added to the queue processed_matches = set((x, y) for (x, y) in initial_matches) # Keep a dict of current matches, which will be updated if better matches are found matched_a = dict() matched_b = dict() for (x, y) in processed_matches: matched_a[x] = y matched_b[y] = x # while queue is not empty while to_process: (block_a, block_b) = to_process.pop() l.debug("FunctionDiff: Processing (%#x, %#x)", block_a.addr, block_b.addr) # we could find new matches in the successors or predecessors of functions block_a_succ = self._function_a.graph.successors(block_a) block_b_succ = self._function_b.graph.successors(block_b) block_a_pred = self._function_a.graph.predecessors(block_a) block_b_pred = self._function_b.graph.predecessors(block_b) # propagate the difference in blocks as delta delta = tuple((i-j) for i, j in zip(self.attributes_b[block_b], self.attributes_a[block_a])) # get possible new matches new_matches = [] # if the blocks are identical then the successors should most likely be matched in the same order if self.blocks_probably_identical(block_a, block_b) and len(block_a_succ) == len(block_b_succ): ordered_succ_a = self._get_ordered_successors(self._project_a, block_a, block_a_succ) ordered_succ_b = self._get_ordered_successors(self._project_b, block_b, block_b_succ) new_matches += zip(ordered_succ_a, ordered_succ_b) new_matches += self._get_block_matches(self.attributes_a, self.attributes_b, block_a_succ, block_b_succ, delta, tiebreak_with_block_similarity=True) new_matches += self._get_block_matches(self.attributes_a, self.attributes_b, block_a_pred, block_b_pred, delta, tiebreak_with_block_similarity=True) # for each of the possible new matches add it if it improves the matching for (x, y) in new_matches: if (x, y) not in processed_matches: processed_matches.add((x, y)) l.debug("FunctionDiff: checking if (%#x, %#x) is better", x.addr, y.addr) # if it's a better match than what we already have use it if _is_better_match(x, y, matched_a, matched_b, self.attributes_a, self.attributes_b): l.debug("FunctionDiff: adding possible match (%#x, %#x)", x.addr, y.addr) if x in matched_a: old_match = matched_a[x] del matched_b[old_match] if y in matched_b: old_match = matched_b[y] del matched_a[old_match] matched_a[x] = y matched_b[y] = x to_process.appendleft((x, y)) # reformat matches into a set of pairs self._block_matches = set((x, y) for (x, y) in matched_a.items()) # get the unmatched blocks self._unmatched_blocks_from_a = set(x for x in self._function_a.graph.nodes() if x not in matched_a) self._unmatched_blocks_from_b = set(x for x in self._function_b.graph.nodes() if x not in matched_b) @staticmethod def _get_ordered_successors(project, block, succ): try: # add them in order of the vex addr = block.addr succ = set(succ) ordered_succ = [] bl = project.factory.block(addr) for x in bl.vex.all_constants: if x in succ: ordered_succ.append(x) # add the rest (sorting might be better than no order) for s in sorted(succ - set(ordered_succ), key=lambda x:x.addr): ordered_succ.append(s) return ordered_succ except AngrMemoryError: return sorted(succ, key=lambda x:x.addr) except AngrTranslationError: return sorted(succ, key=lambda x:x.addr) def _get_block_matches(self, attributes_a, attributes_b, filter_set_a=None, filter_set_b=None, delta=(0, 0, 0), tiebreak_with_block_similarity=False): """ :param attributes_a: A dict of blocks to their attributes :param attributes_b: A dict of blocks to their attributes The following parameters are optional. :param filter_set_a: A set to limit attributes_a to the blocks in this set. :param filter_set_b: A set to limit attributes_b to the blocks in this set. :param delta: An offset to add to each vector in attributes_a. :returns: A list of tuples of matching objects. """ # get the attributes that are in the sets if filter_set_a is None: filtered_attributes_a = {k: v for k, v in attributes_a.items()} else: filtered_attributes_a = {k: v for k, v in attributes_a.items() if k in filter_set_a} if filter_set_b is None: filtered_attributes_b = {k: v for k, v in attributes_b.items()} else: filtered_attributes_b = {k: v for k, v in attributes_b.items() if k in filter_set_b} # add delta for k in filtered_attributes_a: filtered_attributes_a[k] = tuple((i+j) for i, j in zip(filtered_attributes_a[k], delta)) for k in filtered_attributes_b: filtered_attributes_b[k] = tuple((i+j) for i, j in zip(filtered_attributes_b[k], delta)) # get closest closest_a = _get_closest_matches(filtered_attributes_a, filtered_attributes_b) closest_b = _get_closest_matches(filtered_attributes_b, filtered_attributes_a) if tiebreak_with_block_similarity: # use block similarity to break ties in the first set for a in closest_a: if len(closest_a[a]) > 1: best_similarity = 0 best = [] for x in closest_a[a]: similarity = self.block_similarity(a, x) if similarity > best_similarity: best_similarity = similarity best = [x] elif similarity == best_similarity: best.append(x) closest_a[a] = best # use block similarity to break ties in the second set for b in closest_b: if len(closest_b[b]) > 1: best_similarity = 0 best = [] for x in closest_b[b]: similarity = self.block_similarity(x, b) if similarity > best_similarity: best_similarity = similarity best = [x] elif similarity == best_similarity: best.append(x) closest_b[b] = best # a match (x,y) is good if x is the closest to y and y is the closest to x matches = [] for a in closest_a: if len(closest_a[a]) == 1: match = closest_a[a][0] if len(closest_b[match]) == 1 and closest_b[match][0] == a: matches.append((a, match)) return matches def _get_acceptable_constant_differences(self, block_a, block_b): # keep a set of the acceptable differences in constants between the two blocks acceptable_differences = set() acceptable_differences.add(0) block_a_base = block_a.instruction_addrs[0] block_b_base = block_b.instruction_addrs[0] acceptable_differences.add(block_b_base - block_a_base) # get matching successors for target_a, target_b in zip(block_a.call_targets, block_b.call_targets): # these can be none if we couldn't resolve the call target if target_a is None or target_b is None: continue acceptable_differences.add(target_b - target_a) acceptable_differences.add((target_b - block_b_base) - (target_a - block_a_base)) # get the difference between the data segments # this is hackish if ".bss" in self._project_a.loader.main_bin.sections_map and \ ".bss" in self._project_b.loader.main_bin.sections_map: bss_a = self._project_a.loader.main_bin.sections_map[".bss"].min_addr bss_b = self._project_b.loader.main_bin.sections_map[".bss"].min_addr acceptable_differences.add(bss_b - bss_a) acceptable_differences.add((bss_b - block_b_base) - (bss_a - block_a_base)) return acceptable_differences class BinDiff(Analysis): """ This class computes the a diff between two binaries represented by angr Projects """ def __init__(self, other_project, enable_advanced_backward_slicing=False, cfg_a=None, cfg_b=None): """ :param other_project: The second project to diff """ l.debug("Computing cfg's") back_traversal = not enable_advanced_backward_slicing if cfg_a is None: self.cfg_a = self.project.analyses.CFG(context_sensitivity_level=1, keep_state=True, enable_symbolic_back_traversal=back_traversal, enable_advanced_backward_slicing=enable_advanced_backward_slicing) self.cfg_b = other_project.analyses.CFG(context_sensitivity_level=1, keep_state=True, enable_symbolic_back_traversal=back_traversal, enable_advanced_backward_slicing=enable_advanced_backward_slicing) else: self.cfg_a = cfg_a self.cfg_b = cfg_b l.debug("Done computing cfg's") self._p2 = other_project self._attributes_a = dict() self._attributes_a = dict() self._function_diffs = dict() self.function_matches = set() self._unmatched_functions_from_a = set() self._unmatched_functions_from_b = set() self._compute_diff() def functions_probably_identical(self, func_a_addr, func_b_addr, check_consts=False): """ Compare two functions and return True if they appear identical. :param func_a_addr: The address of the first function (in the first binary). :param func_b_addr: The address of the second function (in the second binary). :returns: Whether or not the functions appear to be identical. """ if self.cfg_a.project.is_hooked(func_a_addr) and self.cfg_b.project.is_hooked(func_b_addr): return self.cfg_a.project._sim_procedures[func_a_addr] == self.cfg_b.project._sim_procedures[func_b_addr] func_diff = self.get_function_diff(func_a_addr, func_b_addr) if check_consts: return func_diff.probably_identical_with_consts return func_diff.probably_identical @property def identical_functions(self): """ :returns: A list of function matches that appear to be identical """ identical_funcs = [] for (func_a, func_b) in self.function_matches: if self.functions_probably_identical(func_a, func_b): identical_funcs.append((func_a, func_b)) return identical_funcs @property def differing_functions(self): """ :returns: A list of function matches that appear to differ """ different_funcs = [] for (func_a, func_b) in self.function_matches: if not self.functions_probably_identical(func_a, func_b): different_funcs.append((func_a, func_b)) return different_funcs def differing_functions_with_consts(self): """ :return: A list of function matches that appear to differ including just by constants """ different_funcs = [] for (func_a, func_b) in self.function_matches: if not self.functions_probably_identical(func_a, func_b, check_consts=True): different_funcs.append((func_a, func_b)) return different_funcs @property def differing_blocks(self): """ :returns: A list of block matches that appear to differ """ differing_blocks = [] for (func_a, func_b) in self.function_matches: differing_blocks.extend(self.get_function_diff(func_a, func_b).differing_blocks) return differing_blocks @property def identical_blocks(self): """ :return A list of all block matches that appear to be identical """ identical_blocks = [] for (func_a, func_b) in self.function_matches: identical_blocks.extend(self.get_function_diff(func_a, func_b).identical_blocks) return identical_blocks @property def blocks_with_differing_constants(self): """ :return: A dict of block matches with differing constants to the tuple of constants """ diffs = dict() for (func_a, func_b) in self.function_matches: diffs.update(self.get_function_diff(func_a, func_b).blocks_with_differing_constants) return diffs @property def unmatched_functions(self): return self._unmatched_functions_from_a, self._unmatched_functions_from_b # gets the diff of two functions in the binaries def get_function_diff(self, function_addr_a, function_addr_b): """ :param function_addr_a: The address of the first function (in the first binary) :param function_addr_b: The address of the second function (in the second binary) :returns: the FunctionDiff of the two functions """ pair = (function_addr_a, function_addr_b) if pair not in self._function_diffs: function_a = self.cfg_a.kb.functions.function(function_addr_a) function_b = self.cfg_b.kb.functions.function(function_addr_b) self._function_diffs[pair] = FunctionDiff(function_a, function_b, self) return self._function_diffs[pair] @staticmethod def _compute_function_attributes(cfg): """ :param cfg: An angr CFG object :returns: a dictionary of function addresses to tuples of attributes """ # the attributes we use are the number of basic blocks, number of edges, and number of subfunction calls attributes = dict() all_funcs = set(cfg.kb.callgraph.nodes()) for function_addr in cfg.kb.functions: # skip syscalls and functions which are None in the cfg if cfg.kb.functions.function(function_addr) is None or cfg.kb.functions.function(function_addr).is_syscall: continue if cfg.kb.functions.function(function_addr) is not None: normalized_funtion = NormalizedFunction(cfg.kb.functions.function(function_addr)) number_of_basic_blocks = len(normalized_funtion.graph.nodes()) number_of_edges = len(normalized_funtion.graph.edges()) else: number_of_basic_blocks = 0 number_of_edges = 0 if function_addr in all_funcs: number_of_subfunction_calls = len(cfg.kb.callgraph.successors(function_addr)) else: number_of_subfunction_calls = 0 attributes[function_addr] = (number_of_basic_blocks, number_of_edges, number_of_subfunction_calls) return attributes def _get_call_site_matches(self, func_a, func_b): possible_matches = set() # Make sure those functions are not SimProcedures f_a = self.cfg_a.kb.functions.function(func_a) f_b = self.cfg_b.kb.functions.function(func_b) if f_a.startpoint is None or f_b.startpoint is None: return possible_matches fd = self.get_function_diff(func_a, func_b) basic_block_matches = fd.block_matches function_a = fd._function_a function_b = fd._function_b for (a, b) in basic_block_matches: if a in function_a.call_sites and b in function_b.call_sites: # add them in order for target_a, target_b in zip(function_a.call_sites[a], function_b.call_sites[b]): possible_matches.add((target_a, target_b)) # add them in reverse, since if a new call was added the ordering from each side # will remain constant until the change for target_a, target_b in zip(reversed(function_a.call_sites[a]), reversed(function_b.call_sites[b])): possible_matches.add((target_a, target_b)) return possible_matches def _get_plt_matches(self): plt_matches = [] for name, addr in self.project.loader.main_bin.plt.items(): if name in self._p2.loader.main_bin.plt: plt_matches.append((addr, self._p2.loader.main_bin.plt[name])) # in the case of sim procedures the actual sim procedure might be in the interfunction graph, not the plt entry func_to_addr_a = dict() func_to_addr_b = dict() for (k, v) in self.project._sim_procedures.items(): if "resolves" in v[1]: func_to_addr_a[v[1]['resolves']] = k for (k, v) in self._p2._sim_procedures.items(): if "resolves" in v[1]: func_to_addr_b[v[1]['resolves']] = k for name, addr in func_to_addr_a.items(): if name in func_to_addr_b: plt_matches.append((addr, func_to_addr_b[name])) # remove ones that aren't in the interfunction graph, because these seem to not be consistent all_funcs_a = set(self.cfg_a.kb.callgraph.nodes()) all_funcs_b = set(self.cfg_b.kb.callgraph.nodes()) plt_matches = [x for x in plt_matches if x[0] in all_funcs_a and x[1] in all_funcs_b] return plt_matches def _compute_diff(self): # get the attributes for all functions self.attributes_a = self._compute_function_attributes(self.cfg_a) self.attributes_b = self._compute_function_attributes(self.cfg_b) # get the initial matches initial_matches = self._get_plt_matches() initial_matches += self._get_function_matches(self.attributes_a, self.attributes_b) for (a, b) in initial_matches: l.debug("Initally matched (%#x, %#x)", a, b) # Use a queue so we process matches in the order that they are found to_process = deque(initial_matches) # Keep track of which matches we've already added to the queue processed_matches = set((x, y) for (x, y) in initial_matches) # Keep a dict of current matches, which will be updated if better matches are found matched_a = dict() matched_b = dict() for (x, y) in processed_matches: matched_a[x] = y matched_b[y] = x # while queue is not empty while to_process: (func_a, func_b) = to_process.pop() l.debug("Processing (%#x, %#x)", func_a, func_b) # we could find new matches in the successors or predecessors of functions if not self.project.loader.main_bin.contains_addr(func_a): continue if not self._p2.loader.main_bin.contains_addr(func_b): continue func_a_succ = self.cfg_a.kb.callgraph.successors(func_a) func_b_succ = self.cfg_b.kb.callgraph.successors(func_b) func_a_pred = self.cfg_a.kb.callgraph.predecessors(func_a) func_b_pred = self.cfg_b.kb.callgraph.predecessors(func_b) # get possible new matches new_matches = set(self._get_function_matches(self.attributes_a, self.attributes_b, func_a_succ, func_b_succ)) new_matches |= set(self._get_function_matches(self.attributes_a, self.attributes_b, func_a_pred, func_b_pred)) # could also find matches as function calls of matched basic blocks new_matches.update(self._get_call_site_matches(func_a, func_b)) # for each of the possible new matches add it if it improves the matching for (x, y) in new_matches: # skip none functions and syscalls if self.cfg_a.kb.functions.function(x) is None or self.cfg_a.kb.functions.function(x).is_syscall: continue if self.cfg_b.kb.functions.function(y) is None or self.cfg_b.kb.functions.function(y).is_syscall: continue if (x, y) not in processed_matches: processed_matches.add((x, y)) # if it's a better match than what we already have use it l.debug("Checking function match %s, %s", hex(x), hex(y)) if _is_better_match(x, y, matched_a, matched_b, self.attributes_a, self.attributes_b): l.debug("Adding potential match %s, %s", hex(x), hex(y)) if x in matched_a: old_match = matched_a[x] del matched_b[old_match] l.debug("Removing previous match (%#x, %#x)", x, old_match) if y in matched_b: old_match = matched_b[y] del matched_a[old_match] l.debug("Removing previous match (%#x, %#x)", old_match, y) matched_a[x] = y matched_b[y] = x to_process.appendleft((x, y)) # reformat matches into a set of pairs self.function_matches = set() for x,y in matched_a.items(): # only keep if the pair is in the binary ranges if self.project.loader.main_bin.contains_addr(x) and self._p2.loader.main_bin.contains_addr(y): self.function_matches.add((x, y)) # get the unmatched functions self._unmatched_functions_from_a = set(x for x in self.attributes_a.keys() if x not in matched_a) self._unmatched_functions_from_b = set(x for x in self.attributes_b.keys() if x not in matched_b) # remove unneeded function diffs for (x, y) in dict(self._function_diffs): if (x, y) not in self.function_matches: del self._function_diffs[(x, y)] @staticmethod def _get_function_matches(attributes_a, attributes_b, filter_set_a=None, filter_set_b=None): """ :param attributes_a: A dict of functions to their attributes :param attributes_b: A dict of functions to their attributes The following parameters are optional. :param filter_set_a: A set to limit attributes_a to the functions in this set. :param filter_set_b: A set to limit attributes_b to the functions in this set. :returns: A list of tuples of matching objects. """ # get the attributes that are in the sets if filter_set_a is None: filtered_attributes_a = {k: v for k, v in attributes_a.items()} else: filtered_attributes_a = {k: v for k, v in attributes_a.items() if k in filter_set_a} if filter_set_b is None: filtered_attributes_b = {k: v for k, v in attributes_b.items()} else: filtered_attributes_b = {k: v for k, v in attributes_b.items() if k in filter_set_b} # get closest closest_a = _get_closest_matches(filtered_attributes_a, filtered_attributes_b) closest_b = _get_closest_matches(filtered_attributes_b, filtered_attributes_a) # a match (x,y) is good if x is the closest to y and y is the closest to x matches = [] for a in closest_a: if len(closest_a[a]) == 1: match = closest_a[a][0] if len(closest_b[match]) == 1 and closest_b[match][0] == a: matches.append((a, match)) return matches register_analysis(BinDiff, 'BinDiff')
# -*- coding: utf-8 -*- """ Created on Fri Aug 28 09:47:17 2015 @author: ibackus """ # External imports import os import numpy as np import cPickle as pickle from warnings import warn # Internal imports from pbmov import pbmov_utils # Setup defaults file _dir = os.path.dirname(os.path.abspath(__file__)) fDefaults = os.path.join(_dir, '.keyframerc.py') if not os.path.exists(fDefaults): fDefaults = os.path.join(_dir, 'defaults.py') class movieSettings(): """ Defines the movieSettings class, used by pbmov for handling keyframes and storing movie settings. Examples -------- >>> from movieSettings import movieSettings >>> settings = movieSettings() Change a movie-wide setting >>> settings.params['nt'] = 50 Add a keyframe >>> settings.addKeyframes('cam', [0,1,0], frames=49, zero_slope=True) Delete a keyframe >>> settings.delKeyframes('cam', 0) Make sure frame-by-frame data is up-to-date >>> settings.makeFrames() Add frames without changing the total movie-time: >>> settings.timeStretch(200, adjustFPS=True) Retrieve a frame: >>> frameData = settings.getFrame(25) Notes ----- Defaults are handled by defaults.py. To change the defaults, create a .keyframerc.py file in the same folder as defaults.py Movie-wide settings are stored in settings.params Keyframes are stored in settings.keyframes """ def __init__(self): self.defaults() self.frames = {} self.makeFrames() def __getstate__(self): """ Defined to make self pickleable """ state = {'params': self.params, 'keyframes': self.keyframes} return state def __setstate__(self, newstate): """ Defined to make self un-pickleable """ self.__init__() self.params = newstate['params'] self.keyframes = newstate['keyframes'] self.makeFrames() def timeStretch(self, ntNew, adjustFPS=False): """ Increases the number of time steps without changing the relative time of the keyframes. Note: if the number of timesteps is decreased, multiple keyframes may overlap. Earlier keyframes are deleted (ignored) first Parameters ---------- ntNew : int New number of time steps (frames) for the movie adjustFPS : bool (optional) If True, the framerate is changed to keep the movie runtime constant """ ntOld = self.params['nt'] for k, v in self.keyframes.iteritems(): self.keyframes[k] = timeStretch(v, ntNew, ntOld) self.params['nt'] = ntNew self.makeFrames() if adjustFPS: self.params['fps'] *= float(ntNew)/ntOld def defaults(self, filename=None): """ Sets up the default values for movie parameters """ if filename is None: filename = fDefaults g = {} execfile(filename, g) params = g['params'] keyframes = g['keyframes'] logvalues = g['logvalues'] # Save to self self.params = params self.keyframes = keyframes self._logvalues = logvalues def makeFrames(self, key=None): """ Generates the frames for key (or all keys) by interpolating the keyFrames. Frames are stored in self.frames[key] Parameters ---------- key : str (optional) Key to generate. If None, all keys are generated """ # If there are no arguments, loop through and make frames for alll # keys if key is None: for k in self.keyframes.keys(): self.makeFrames(k) return # --------------- # make frames # --------------- nt = self.params['nt'] # Get a copy of the keyframe value keyframe = self.keyframes[key].copy() # Check for Nones for val in keyframe.values(): if val[0] is None: # Make all values None. There's no way to interpolate a None self.frames[key] = np.array([None]*nt) return # Generate interpolator log = self.islogval(key) interp = pbmov_utils.interpKeyframes(keyframe, nt, log) # Evaluate interpolator self.frames[key] = interp(np.arange(nt)) return def islogval(self, key): """ Check to see if a key is expected to be a logarithmic value """ default_log_keys = self._logvalues # Default log (True or False) log = (key in default_log_keys) if key in ('vmin', 'vmax'): # Check if we are rendering using logarithmic color coding # Default to previous value of 'log' not set in pynbody args log = self.params['pbkwargs'].get('log', log) return log def getFrame(self, frame): """ Retrieves the key, val pairs at a given frame. (By default, runs self.makeFrames()) Parameters ---------- frame : int Frame number Returns ------- frameDict : dict Dictionary containing all the key, val pairs at frame """ self.makeFrames() frameDict = {} for key in self.keyframes.keys(): frameDict[key] = self.frames[key][frame] return frameDict def addKeyframes(self, key, vals, frames=0, zero_slope=False): """ Adds keyframe(s), specified by the key, frame number(s), and value(s) Note that vals, frames, and zero_slope should be the same length Parameters ---------- key : str key (parameter) that the keyframe controls vals : obj or list of obj The value(s) at each frame. If frames is a list, should be a list of the same length frames : int or list of ints The frame number (numbers). If a list, vals should be a list of values zero_slope : bool or list of bools (see pbmov_utils.interpolate) A flag which tells whether the value specified by key should change slowly around the current frame """ # Turn into lists if not hasattr(frames, '__iter__'): frames = [frames] vals = [vals] nFrames = len(frames) if isinstance(zero_slope, bool): zero_slope = [zero_slope] * nFrames if key not in self.keyframes: self.keyframes[key] = {} for i in range(nFrames): self.keyframes[key][frames[i]] = [vals[i], zero_slope[i]] # Update the frames self.makeFrames(key) def delKeyframes(self, key, frames): """ Deletes keyframe(s) from self, specified by key, frame. Nothing is done if the keyframe is not present. Parameters ---------- key : str Key to delete, e.g. 'cam' or 'target' frame : int or list of ints keyframe number(s) to delete """ if not hasattr(frames, '__iter__'): # Assume frames is an int, make it a list frames = [frames] # Loop through all frames for frame in frames: try: # Delete the keyframe del self.keyframes[key][frame] except KeyError: # Assume the keyframe is not present pass # Update the frames self.makeFrames(key) return def save(self, filename='movieSettings.p'): """ Save to filename Parameters ---------- filename : str Filename to save to """ pickle.dump(self, open(filename, 'w')) def timeStretch(keyframes, ntNew, ntOld=None): """ Increases the number of time steps without changing the relative time of the keyframes. Note: if the number of timesteps is decreased, multiple keyframes may overlap. Earlier keyframes are deleted (ignored) first Parameters ---------- keyframes : dict Keyframes dict (see movieSettings) for a single key. ntNew : int New number of time steps (frames) for the movie ntOld : int (optional) old number of time steps (frames) for the movie. If None, it the last keyframe is assumed to be the last frame of the movie. Returns ------- newframes : dict Updated keyframes """ keyframes = keyframes.copy() # Do nothing if nt doesn't change if ntOld == ntNew: return keyframes # Original keys (frame numbers) oldKeys = np.array(keyframes.keys()) oldKeys.sort() if ntOld is None: ntOld = oldKeys[-1] + 1 # Scale frame numbers newKeys = (float(ntNew)/ntOld) * oldKeys newKeys = np.round(newKeys).astype(int) # Apply maximum frame number newKeys[newKeys >= ntNew-1] = ntNew-1 # check for duplicates if len(set(newKeys)) < len(newKeys): warn('Duplicate keys detected after timestretch. Earlier keys will ' 'be ignored') newframes = {} for new, old in zip(newKeys, oldKeys): newframes[new] = keyframes[old] return newframes
"""Training objective for self-critical learning. Self-critic learning is a modification of the REINFORCE algorithm that uses the reward of the train-time decoder output as a baseline in the update step. For more details see: https://arxiv.org/pdf/1612.00563.pdf """ from typing import Callable, Iterable, Tuple from itertools import takewhile from collections import Counter import numpy as np import tensorflow as tf from typeguard import check_argument_types from neuralmonkey.trainers.generic_trainer import Objective from neuralmonkey.decoders.decoder import Decoder from neuralmonkey.vocabulary import END_TOKEN_INDEX # pylint: disable=invalid-name RewardFunction = Callable[[np.ndarray, np.ndarray], np.ndarray] # pylint: enable=invalid-name def reinforce_score(reward: tf.Tensor, baseline: tf.Tensor, decoded: tf.Tensor, logits: tf.Tensor) -> tf.Tensor: """Cost function whose derivative is the REINFORCE equation. This implements the primitive function to the central equation of the REINFORCE algorithm that estimates the gradients of the loss with respect to decoder logits. It uses the fact that the second term of the product (the difference of the word distribution and one hot vector of the decoded word) is a derivative of negative log likelihood of the decoded word. The reward function and the baseline are however treated as a constant, so they influence the derivate only multiplicatively. """ # shape (1, batch, 1) reward_diff = tf.expand_dims(reward - baseline, 0) # runtime probabilities, shape (time, batch, vocab) decoded_neg_likelihood = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=decoded, logits=logits) # REINFORCE gradient, shape (time, batch, vocab) score = tf.stop_gradient(reward_diff) * decoded_neg_likelihood return score def self_critical_objective(decoder: Decoder, reward_function: RewardFunction, weight: float = None) -> Objective: """Self-critical objective. Args: decoder: A recurrent decoder. reward_function: A reward function computing score in Python. weight: Mixing weight for a trainer. Returns: Objective object to be used in generic trainer. """ check_argument_types() # decoded, shape (time, batch) train_decoded = tf.argmax(decoder.train_logits, axis=2) runtime_decoded = tf.argmax(decoder.runtime_logits, axis=2) reference = decoder.train_inputs # rewards, shape (batch) train_reward = tf.py_func( reward_function, [reference, train_decoded], tf.float32) runtime_reward = tf.py_func( reward_function, [reference, runtime_decoded], tf.float32) tf.summary.scalar( "train_{}/{}".format(decoder.data_id, reward_function.__name__), tf.reduce_mean(runtime_reward), collections=["summary_train"]) # REINFORCE score: shape (time, batch, vocab) score_by_word = reinforce_score( runtime_reward, train_reward, runtime_decoded, decoder.runtime_logits) float_mask = tf.to_float(decoder.runtime_mask) masked_score_by_word = score_by_word * float_mask # sum the matrix up (dot product of rows, sum over time, and over batch) # pylint: disable=invalid-unary-operand-type loss = -tf.reduce_sum(masked_score_by_word) / tf.reduce_sum(float_mask) # pylint: enable=invalid-unary-operand-type tf.summary.scalar( "train_{}/self_critical_cost".format(decoder.data_id), loss, collections=["summary_train"]) return Objective( name="{}_self_critical".format(decoder.name), decoder=decoder, loss=loss, gradients=None, weight=weight) def sentence_bleu(references: np.ndarray, hypotheses: np.ndarray) -> np.ndarray: """Compute index-based sentence-level BLEU score. Computes sentence level BLEU on indices outputed by the decoder, i.e. whatever the decoder uses as a unit is used a token in the BLEU computation, ignoring the tokens may be sub-word units. """ bleu_scores = [] for ref, hyp in zip(np.transpose(references), np.transpose(hypotheses)): matched_counts = [] hyp_n_grams_counts = [] for n in range(1, 5): matched, total, _ = _count_matching_n_grams(ref, hyp, n) if n > 1: matched += 1 total += 1 matched_counts.append(matched) hyp_n_grams_counts.append(total) if hyp_n_grams_counts[0] == 0: bleu_scores.append(0.) else: precision = ( np.prod(matched_counts) / np.prod(hyp_n_grams_counts)) ** .25 ref_len = sum(1 for _ in takewhile(lambda i: i != END_TOKEN_INDEX, ref)) brevity_penalty = np.min([ 1., np.exp(1 - ref_len / hyp_n_grams_counts[0])]) bleu_scores.append(brevity_penalty * precision) assert all(0 <= s <= 1 for s in bleu_scores) return np.array(bleu_scores, dtype=np.float32) def sentence_gleu(references: np.ndarray, hypotheses: np.ndarray) -> np.ndarray: """Compute index-based GLEU score. GLEU score is a sentence-level metric used in Google's Neural MT as a reward in reinforcement learning (https://arxiv.org/abs/1609.08144). It is a minimum of precision and recall on 1- to 4-grams. It operates over the indices emitted by the decoder which are not necessarily tokens (could be characters or subword units). """ gleu_scores = [] for ref, hyp in zip(np.transpose(references), np.transpose(hypotheses)): matched_counts = [] hyp_n_grams_counts = [] ref_n_grams_counts = [] for n in range(1, 5): matched, total_hyp, total_ref = _count_matching_n_grams( ref, hyp, n) matched_counts.append(matched) hyp_n_grams_counts.append(total_hyp) ref_n_grams_counts.append(total_ref) precision = np.sum(matched_counts) / np.sum(hyp_n_grams_counts) recall = np.sum(matched_counts) / np.sum(ref_n_grams_counts) assert 0. <= precision <= 1.0 assert 0. <= recall <= 1.0 gleu_scores.append(min(precision, recall)) return np.array(gleu_scores, dtype=np.float32) def _count_matching_n_grams(ref: np.ndarray, hyp: np.ndarray, n: int) -> Tuple[int, int, int]: ref_counts = Counter() # type: Counter[str] total_ref_n_grams = 0 for n_gram in _get_n_grams(ref, n): ref_counts[str(n_gram)] += 1 total_ref_n_grams += 1 matched_n_grams = 0 total_hyp_n_grams = 0 hyp_n_grams = _get_n_grams(hyp, n) for n_gram in hyp_n_grams: n_gram_s = str(n_gram) if ref_counts[n_gram_s] > 0: matched_n_grams += 1 ref_counts[n_gram_s] -= 1 total_hyp_n_grams += 1 assert matched_n_grams <= total_hyp_n_grams assert matched_n_grams <= total_ref_n_grams return matched_n_grams, total_hyp_n_grams, total_ref_n_grams def _get_n_grams(indices: np.ndarray, order: int) -> Iterable[np.ndarray]: all_n_grams = [indices[i:i + order] for i in range(len(indices) - order + 1)] return takewhile(lambda g: g[-1] != END_TOKEN_INDEX, all_n_grams)
# Copyright 2012-2014 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import re import time import logging import datetime import hashlib import binascii import functools import weakref from six import string_types, text_type import dateutil.parser from dateutil.tz import tzlocal, tzutc import botocore from botocore.exceptions import InvalidExpressionError, ConfigNotFound from botocore.exceptions import InvalidDNSNameError, ClientError from botocore.exceptions import MetadataRetrievalError from botocore.compat import json, quote, zip_longest, urlsplit, urlunsplit from botocore.vendored import requests from botocore.compat import OrderedDict logger = logging.getLogger(__name__) DEFAULT_METADATA_SERVICE_TIMEOUT = 1 METADATA_SECURITY_CREDENTIALS_URL = ( 'http://169.254.169.254/latest/meta-data/iam/security-credentials/' ) # These are chars that do not need to be urlencoded. # Based on rfc2986, section 2.3 SAFE_CHARS = '-._~' LABEL_RE = re.compile('[a-z0-9][a-z0-9\-]*[a-z0-9]') RESTRICTED_REGIONS = [ 'us-gov-west-1', 'fips-us-gov-west-1', ] RETRYABLE_HTTP_ERRORS = (requests.Timeout, requests.ConnectionError) S3_ACCELERATE_WHITELIST = ['dualstack'] class _RetriesExceededError(Exception): """Internal exception used when the number of retries are exceeded.""" pass def get_service_module_name(service_model): """Returns the module name for a service This is the value used in both the documentation and client class name """ name = service_model.metadata.get( 'serviceAbbreviation', service_model.metadata.get( 'serviceFullName', service_model.service_name)) name = name.replace('Amazon', '') name = name.replace('AWS', '') name = re.sub('\W+', '', name) return name def normalize_url_path(path): if not path: return '/' return remove_dot_segments(path) def remove_dot_segments(url): # RFC 3986, section 5.2.4 "Remove Dot Segments" # Also, AWS services require consecutive slashes to be removed, # so that's done here as well if not url: return '' input_url = url.split('/') output_list = [] for x in input_url: if x and x != '.': if x == '..': if output_list: output_list.pop() else: output_list.append(x) if url[0] == '/': first = '/' else: first = '' if url[-1] == '/' and output_list: last = '/' else: last = '' return first + '/'.join(output_list) + last def validate_jmespath_for_set(expression): # Validates a limited jmespath expression to determine if we can set a # value based on it. Only works with dotted paths. if not expression or expression == '.': raise InvalidExpressionError(expression=expression) for invalid in ['[', ']', '*']: if invalid in expression: raise InvalidExpressionError(expression=expression) def set_value_from_jmespath(source, expression, value, is_first=True): # This takes a (limited) jmespath-like expression & can set a value based # on it. # Limitations: # * Only handles dotted lookups # * No offsets/wildcards/slices/etc. if is_first: validate_jmespath_for_set(expression) bits = expression.split('.', 1) current_key, remainder = bits[0], bits[1] if len(bits) > 1 else '' if not current_key: raise InvalidExpressionError(expression=expression) if remainder: if current_key not in source: # We've got something in the expression that's not present in the # source (new key). If there's any more bits, we'll set the key # with an empty dictionary. source[current_key] = {} return set_value_from_jmespath( source[current_key], remainder, value, is_first=False ) # If we're down to a single key, set it. source[current_key] = value class InstanceMetadataFetcher(object): def __init__(self, timeout=DEFAULT_METADATA_SERVICE_TIMEOUT, num_attempts=1, url=METADATA_SECURITY_CREDENTIALS_URL): self._timeout = timeout self._num_attempts = num_attempts self._url = url def _get_request(self, url, timeout, num_attempts=1): for i in range(num_attempts): try: response = requests.get(url, timeout=timeout) except RETRYABLE_HTTP_ERRORS as e: logger.debug("Caught exception while trying to retrieve " "credentials: %s", e, exc_info=True) else: if response.status_code == 200: return response raise _RetriesExceededError() def retrieve_iam_role_credentials(self): data = {} url = self._url timeout = self._timeout num_attempts = self._num_attempts try: r = self._get_request(url, timeout, num_attempts) if r.content: fields = r.content.decode('utf-8').split('\n') for field in fields: if field.endswith('/'): data[field[0:-1]] = self.retrieve_iam_role_credentials( url + field, timeout, num_attempts) else: val = self._get_request( url + field, timeout=timeout, num_attempts=num_attempts).content.decode('utf-8') if val[0] == '{': val = json.loads(val) data[field] = val else: logger.debug("Metadata service returned non 200 status code " "of %s for url: %s, content body: %s", r.status_code, url, r.content) except _RetriesExceededError: logger.debug("Max number of attempts exceeded (%s) when " "attempting to retrieve data from metadata service.", num_attempts) # We sort for stable ordering. In practice, this should only consist # of one role, but may need revisiting if this expands in the future. final_data = {} for role_name in sorted(data): final_data = { 'role_name': role_name, 'access_key': data[role_name]['AccessKeyId'], 'secret_key': data[role_name]['SecretAccessKey'], 'token': data[role_name]['Token'], 'expiry_time': data[role_name]['Expiration'], } return final_data def merge_dicts(dict1, dict2, append_lists=False): """Given two dict, merge the second dict into the first. The dicts can have arbitrary nesting. :param append_lists: If true, instead of clobbering a list with the new value, append all of the new values onto the original list. """ for key in dict2: if isinstance(dict2[key], dict): if key in dict1 and key in dict2: merge_dicts(dict1[key], dict2[key]) else: dict1[key] = dict2[key] # If the value is a list and the ``append_lists`` flag is set, # append the new values onto the original list elif isinstance(dict2[key], list) and append_lists: # The value in dict1 must be a list in order to append new # values onto it. if key in dict1 and isinstance(dict1[key], list): dict1[key].extend(dict2[key]) else: dict1[key] = dict2[key] else: # At scalar types, we iterate and merge the # current dict that we're on. dict1[key] = dict2[key] def parse_key_val_file(filename, _open=open): try: with _open(filename) as f: contents = f.read() return parse_key_val_file_contents(contents) except OSError: raise ConfigNotFound(path=filename) def parse_key_val_file_contents(contents): # This was originally extracted from the EC2 credential provider, which was # fairly lenient in its parsing. We only try to parse key/val pairs if # there's a '=' in the line. final = {} for line in contents.splitlines(): if '=' not in line: continue key, val = line.split('=', 1) key = key.strip() val = val.strip() final[key] = val return final def percent_encode_sequence(mapping, safe=SAFE_CHARS): """Urlencode a dict or list into a string. This is similar to urllib.urlencode except that: * It uses quote, and not quote_plus * It has a default list of safe chars that don't need to be encoded, which matches what AWS services expect. If any value in the input ``mapping`` is a list type, then each list element wil be serialized. This is the equivalent to ``urlencode``'s ``doseq=True`` argument. This function should be preferred over the stdlib ``urlencode()`` function. :param mapping: Either a dict to urlencode or a list of ``(key, value)`` pairs. """ encoded_pairs = [] if hasattr(mapping, 'items'): pairs = mapping.items() else: pairs = mapping for key, value in pairs: if isinstance(value, list): for element in value: encoded_pairs.append('%s=%s' % (percent_encode(key), percent_encode(element))) else: encoded_pairs.append('%s=%s' % (percent_encode(key), percent_encode(value))) return '&'.join(encoded_pairs) def percent_encode(input_str, safe=SAFE_CHARS): """Urlencodes a string. Whereas percent_encode_sequence handles taking a dict/sequence and producing a percent encoded string, this function deals only with taking a string (not a dict/sequence) and percent encoding it. """ if not isinstance(input_str, string_types): input_str = text_type(input_str) return quote(text_type(input_str).encode('utf-8'), safe=safe) def parse_timestamp(value): """Parse a timestamp into a datetime object. Supported formats: * iso8601 * rfc822 * epoch (value is an integer) This will return a ``datetime.datetime`` object. """ if isinstance(value, (int, float)): # Possibly an epoch time. return datetime.datetime.fromtimestamp(value, tzlocal()) else: try: return datetime.datetime.fromtimestamp(float(value), tzlocal()) except (TypeError, ValueError): pass try: return dateutil.parser.parse(value) except (TypeError, ValueError) as e: raise ValueError('Invalid timestamp "%s": %s' % (value, e)) def parse_to_aware_datetime(value): """Converted the passed in value to a datetime object with tzinfo. This function can be used to normalize all timestamp inputs. This function accepts a number of different types of inputs, but will always return a datetime.datetime object with time zone information. The input param ``value`` can be one of several types: * A datetime object (both naive and aware) * An integer representing the epoch time (can also be a string of the integer, i.e '0', instead of 0). The epoch time is considered to be UTC. * An iso8601 formatted timestamp. This does not need to be a complete timestamp, it can contain just the date portion without the time component. The returned value will be a datetime object that will have tzinfo. If no timezone info was provided in the input value, then UTC is assumed, not local time. """ # This is a general purpose method that handles several cases of # converting the provided value to a string timestamp suitable to be # serialized to an http request. It can handle: # 1) A datetime.datetime object. if isinstance(value, datetime.datetime): datetime_obj = value else: # 2) A string object that's formatted as a timestamp. # We document this as being an iso8601 timestamp, although # parse_timestamp is a bit more flexible. datetime_obj = parse_timestamp(value) if datetime_obj.tzinfo is None: # I think a case would be made that if no time zone is provided, # we should use the local time. However, to restore backwards # compat, the previous behavior was to assume UTC, which is # what we're going to do here. datetime_obj = datetime_obj.replace(tzinfo=tzutc()) else: datetime_obj = datetime_obj.astimezone(tzutc()) return datetime_obj def datetime2timestamp(dt, default_timezone=None): """Calculate the timestamp based on the given datetime instance. :type dt: datetime :param dt: A datetime object to be converted into timestamp :type default_timezone: tzinfo :param default_timezone: If it is provided as None, we treat it as tzutc(). But it is only used when dt is a naive datetime. :returns: The timestamp """ epoch = datetime.datetime(1970, 1, 1) if dt.tzinfo is None: if default_timezone is None: default_timezone = tzutc() dt = dt.replace(tzinfo=default_timezone) d = dt.replace(tzinfo=None) - dt.utcoffset() - epoch if hasattr(d, "total_seconds"): return d.total_seconds() # Works in Python 2.7+ return (d.microseconds + (d.seconds + d.days * 24 * 3600) * 10**6) / 10**6 def calculate_sha256(body, as_hex=False): """Calculate a sha256 checksum. This method will calculate the sha256 checksum of a file like object. Note that this method will iterate through the entire file contents. The caller is responsible for ensuring the proper starting position of the file and ``seek()``'ing the file back to its starting location if other consumers need to read from the file like object. :param body: Any file like object. The file must be opened in binary mode such that a ``.read()`` call returns bytes. :param as_hex: If True, then the hex digest is returned. If False, then the digest (as binary bytes) is returned. :returns: The sha256 checksum """ checksum = hashlib.sha256() for chunk in iter(lambda: body.read(1024 * 1024), b''): checksum.update(chunk) if as_hex: return checksum.hexdigest() else: return checksum.digest() def calculate_tree_hash(body): """Calculate a tree hash checksum. For more information see: http://docs.aws.amazon.com/amazonglacier/latest/dev/checksum-calculations.html :param body: Any file like object. This has the same constraints as the ``body`` param in calculate_sha256 :rtype: str :returns: The hex version of the calculated tree hash """ chunks = [] required_chunk_size = 1024 * 1024 sha256 = hashlib.sha256 for chunk in iter(lambda: body.read(required_chunk_size), b''): chunks.append(sha256(chunk).digest()) if not chunks: return sha256(b'').hexdigest() while len(chunks) > 1: new_chunks = [] for first, second in _in_pairs(chunks): if second is not None: new_chunks.append(sha256(first + second).digest()) else: # We're at the end of the list and there's no pair left. new_chunks.append(first) chunks = new_chunks return binascii.hexlify(chunks[0]).decode('ascii') def _in_pairs(iterable): # Creates iterator that iterates over the list in pairs: # for a, b in _in_pairs([0, 1, 2, 3, 4]): # print(a, b) # # will print: # 0, 1 # 2, 3 # 4, None shared_iter = iter(iterable) # Note that zip_longest is a compat import that uses # the itertools izip_longest. This creates an iterator, # this call below does _not_ immediately create the list # of pairs. return zip_longest(shared_iter, shared_iter) class CachedProperty(object): """A read only property that caches the initially computed value. This descriptor will only call the provided ``fget`` function once. Subsequent access to this property will return the cached value. """ def __init__(self, fget): self._fget = fget def __get__(self, obj, cls): if obj is None: return self else: computed_value = self._fget(obj) obj.__dict__[self._fget.__name__] = computed_value return computed_value class ArgumentGenerator(object): """Generate sample input based on a shape model. This class contains a ``generate_skeleton`` method that will take an input/output shape (created from ``botocore.model``) and generate a sample dictionary corresponding to the input/output shape. The specific values used are place holder values. For strings either an empty string or the member name can be used, for numbers 0 or 0.0 is used. The intended usage of this class is to generate the *shape* of the input structure. This can be useful for operations that have complex input shapes. This allows a user to just fill in the necessary data instead of worrying about the specific structure of the input arguments. Example usage:: s = botocore.session.get_session() ddb = s.get_service_model('dynamodb') arg_gen = ArgumentGenerator() sample_input = arg_gen.generate_skeleton( ddb.operation_model('CreateTable').input_shape) print("Sample input for dynamodb.CreateTable: %s" % sample_input) """ def __init__(self, use_member_names=False): self._use_member_names = use_member_names def generate_skeleton(self, shape): """Generate a sample input. :type shape: ``botocore.model.Shape`` :param shape: The input shape. :return: The generated skeleton input corresponding to the provided input shape. """ stack = [] return self._generate_skeleton(shape, stack) def _generate_skeleton(self, shape, stack, name=''): stack.append(shape.name) try: if shape.type_name == 'structure': return self._generate_type_structure(shape, stack) elif shape.type_name == 'list': return self._generate_type_list(shape, stack) elif shape.type_name == 'map': return self._generate_type_map(shape, stack) elif shape.type_name == 'string': if self._use_member_names: return name return '' elif shape.type_name in ['integer', 'long']: return 0 elif shape.type_name == 'float': return 0.0 elif shape.type_name == 'boolean': return True finally: stack.pop() def _generate_type_structure(self, shape, stack): if stack.count(shape.name) > 1: return {} skeleton = OrderedDict() for member_name, member_shape in shape.members.items(): skeleton[member_name] = self._generate_skeleton( member_shape, stack, name=member_name) return skeleton def _generate_type_list(self, shape, stack): # For list elements we've arbitrarily decided to # return two elements for the skeleton list. return [ self._generate_skeleton(shape.member, stack), ] def _generate_type_map(self, shape, stack): key_shape = shape.key value_shape = shape.value assert key_shape.type_name == 'string' return OrderedDict([ ('KeyName', self._generate_skeleton(value_shape, stack)), ]) def is_valid_endpoint_url(endpoint_url): """Verify the endpoint_url is valid. :type endpoint_url: string :param endpoint_url: An endpoint_url. Must have at least a scheme and a hostname. :return: True if the endpoint url is valid. False otherwise. """ parts = urlsplit(endpoint_url) hostname = parts.hostname if hostname is None: return False if len(hostname) > 255: return False if hostname[-1] == ".": hostname = hostname[:-1] allowed = re.compile( "^((?!-)[A-Z\d-]{1,63}(?<!-)\.)*((?!-)[A-Z\d-]{1,63}(?<!-))$", re.IGNORECASE) return allowed.match(hostname) def check_dns_name(bucket_name): """ Check to see if the ``bucket_name`` complies with the restricted DNS naming conventions necessary to allow access via virtual-hosting style. Even though "." characters are perfectly valid in this DNS naming scheme, we are going to punt on any name containing a "." character because these will cause SSL cert validation problems if we try to use virtual-hosting style addressing. """ if '.' in bucket_name: return False n = len(bucket_name) if n < 3 or n > 63: # Wrong length return False if n == 1: if not bucket_name.isalnum(): return False match = LABEL_RE.match(bucket_name) if match is None or match.end() != len(bucket_name): return False return True def fix_s3_host(request, signature_version, region_name, default_endpoint_url='s3.amazonaws.com', **kwargs): """ This handler looks at S3 requests just before they are signed. If there is a bucket name on the path (true for everything except ListAllBuckets) it checks to see if that bucket name conforms to the DNS naming conventions. If it does, it alters the request to use ``virtual hosting`` style addressing rather than ``path-style`` addressing. This allows us to avoid 301 redirects for all bucket names that can be CNAME'd. """ # By default we do not use virtual hosted style addressing when # signed with signature version 4. if signature_version is not botocore.UNSIGNED and \ 's3v4' in signature_version: return elif not _allowed_region(region_name): return try: switch_to_virtual_host_style( request, signature_version, default_endpoint_url) except InvalidDNSNameError as e: bucket_name = e.kwargs['bucket_name'] logger.debug('Not changing URI, bucket is not DNS compatible: %s', bucket_name) def switch_to_virtual_host_style(request, signature_version, default_endpoint_url=None, **kwargs): """ This is a handler to force virtual host style s3 addressing no matter the signature version (which is taken in consideration for the default case). If the bucket is not DNS compatible an InvalidDNSName is thrown. :param request: A AWSRequest object that is about to be sent. :param signature_version: The signature version to sign with :param default_endpoint_url: The endpoint to use when switching to a virtual style. If None is supplied, the virtual host will be constructed from the url of the request. """ if request.auth_path is not None: # The auth_path has already been applied (this may be a # retried request). We don't need to perform this # customization again. return elif _is_get_bucket_location_request(request): # For the GetBucketLocation response, we should not be using # the virtual host style addressing so we can avoid any sigv4 # issues. logger.debug("Request is GetBucketLocation operation, not checking " "for DNS compatibility.") return parts = urlsplit(request.url) request.auth_path = parts.path path_parts = parts.path.split('/') # Retrieve what the endpoint we will be prepending the bucket name to. if default_endpoint_url is None: default_endpoint_url = parts.netloc if len(path_parts) > 1: bucket_name = path_parts[1] if not bucket_name: # If the bucket name is empty we should not be checking for # dns compatibility. return logger.debug('Checking for DNS compatible bucket for: %s', request.url) if check_dns_name(bucket_name): # If the operation is on a bucket, the auth_path must be # terminated with a '/' character. if len(path_parts) == 2: if request.auth_path[-1] != '/': request.auth_path += '/' path_parts.remove(bucket_name) # At the very least the path must be a '/', such as with the # CreateBucket operation when DNS style is being used. If this # is not used you will get an empty path which is incorrect. path = '/'.join(path_parts) or '/' global_endpoint = default_endpoint_url host = bucket_name + '.' + global_endpoint new_tuple = (parts.scheme, host, path, parts.query, '') new_uri = urlunsplit(new_tuple) request.url = new_uri logger.debug('URI updated to: %s', new_uri) else: raise InvalidDNSNameError(bucket_name=bucket_name) def _is_get_bucket_location_request(request): return request.url.endswith('?location') def _allowed_region(region_name): return region_name not in RESTRICTED_REGIONS def instance_cache(func): """Method decorator for caching method calls to a single instance. **This is not a general purpose caching decorator.** In order to use this, you *must* provide an ``_instance_cache`` attribute on the instance. This decorator is used to cache method calls. The cache is only scoped to a single instance though such that multiple instances will maintain their own cache. In order to keep things simple, this decorator requires that you provide an ``_instance_cache`` attribute on your instance. """ func_name = func.__name__ @functools.wraps(func) def _cache_guard(self, *args, **kwargs): cache_key = (func_name, args) if kwargs: kwarg_items = tuple(sorted(kwargs.items())) cache_key = (func_name, args, kwarg_items) result = self._instance_cache.get(cache_key) if result is not None: return result result = func(self, *args, **kwargs) self._instance_cache[cache_key] = result return result return _cache_guard def switch_host_s3_accelerate(request, operation_name, **kwargs): """Switches the current s3 endpoint with an S3 Accelerate endpoint""" # Note that when registered the switching of the s3 host happens # before it gets changed to virtual. So we are not concerned with ensuring # that the bucket name is translated to the virtual style here and we # can hard code the Accelerate endpoint. parts = urlsplit(request.url).netloc.split('.') parts = [p for p in parts if p in S3_ACCELERATE_WHITELIST] endpoint = 'https://s3-accelerate.' if len(parts) > 0: endpoint += '.'.join(parts) + '.' endpoint += 'amazonaws.com' if operation_name in ['ListBuckets', 'CreateBucket', 'DeleteBucket']: return _switch_hosts(request, endpoint, use_new_scheme=False) def switch_host_with_param(request, param_name): """Switches the host using a parameter value from a JSON request body""" request_json = json.loads(request.data.decode('utf-8')) if request_json.get(param_name): new_endpoint = request_json[param_name] _switch_hosts(request, new_endpoint) def _switch_hosts(request, new_endpoint, use_new_scheme=True): final_endpoint = _get_new_endpoint( request.url, new_endpoint, use_new_scheme) request.url = final_endpoint def _get_new_endpoint(original_endpoint, new_endpoint, use_new_scheme=True): new_endpoint_components = urlsplit(new_endpoint) original_endpoint_components = urlsplit(original_endpoint) scheme = original_endpoint_components.scheme if use_new_scheme: scheme = new_endpoint_components.scheme final_endpoint_components = ( scheme, new_endpoint_components.netloc, original_endpoint_components.path, original_endpoint_components.query, '' ) final_endpoint = urlunsplit(final_endpoint_components) logger.debug('Updating URI from %s to %s' % ( original_endpoint, final_endpoint)) return final_endpoint class S3RegionRedirector(object): def __init__(self, endpoint_bridge, client, cache=None): self._endpoint_resolver = endpoint_bridge self._cache = cache if self._cache is None: self._cache = {} # This needs to be a weak ref in order to prevent memory leaks on # python 2.6 self._client = weakref.proxy(client) def register(self, event_emitter=None): emitter = event_emitter or self._client.meta.events emitter.register('needs-retry.s3', self.redirect_from_error) emitter.register('before-call.s3', self.set_request_url) emitter.register('before-parameter-build.s3', self.redirect_from_cache) def redirect_from_error(self, request_dict, response, operation, **kwargs): """ An S3 request sent to the wrong region will return an error that contains the endpoint the request should be sent to. This handler will add the redirect information to the signing context and then redirect the request. """ if response is None: # This could be none if there was a ConnectionError or other # transport error. return error = response[1].get('Error', {}) error_code = error.get('Code') if error_code == '301': # A raw 301 error might be returned for several reasons, but we # only want to try to redirect it if it's a HeadObject or # HeadBucket because all other operations will return # PermanentRedirect if region is incorrect. if operation.name not in ['HeadObject', 'HeadBucket']: return elif error_code != 'PermanentRedirect': return bucket = request_dict['context']['signing']['bucket'] client_region = request_dict['context'].get('client_region') new_region = self.get_bucket_region(bucket, response) if new_region is None: logger.debug( "S3 client configured for region %s but the bucket %s is not " "in that region and the proper region could not be " "automatically determined." % (client_region, bucket)) return logger.debug( "S3 client configured for region %s but the bucket %s is in region" " %s; Please configure the proper region to avoid multiple " "unnecessary redirects and signing attempts." % ( client_region, bucket, new_region)) endpoint = self._endpoint_resolver.resolve('s3', new_region) endpoint = endpoint['endpoint_url'] signing_context = { 'region': new_region, 'bucket': bucket, 'endpoint': endpoint } request_dict['context']['signing'] = signing_context self._cache[bucket] = signing_context self.set_request_url(request_dict, request_dict['context']) # Return 0 so it doesn't wait to retry return 0 def get_bucket_region(self, bucket, response): """ There are multiple potential sources for the new region to redirect to, but they aren't all universally available for use. This will try to find region from response elements, but will fall back to calling HEAD on the bucket if all else fails. :param bucket: The bucket to find the region for. This is necessary if the region is not available in the error response. :param response: A response representing a service request that failed due to incorrect region configuration. """ # First try to source the region from the headers. service_response = response[1] response_headers = service_response['ResponseMetadata']['HTTPHeaders'] if 'x-amz-bucket-region' in response_headers: return response_headers['x-amz-bucket-region'] # Next, check the error body region = service_response.get('Error', {}).get('Region', None) if region is not None: return region # Finally, HEAD the bucket. No other choice sadly. try: response = self._client.head_bucket(Bucket=bucket) headers = response['ResponseMetadata']['HTTPHeaders'] except ClientError as e: headers = e.response['ResponseMetadata']['HTTPHeaders'] region = headers.get('x-amz-bucket-region', None) return region def set_request_url(self, params, context, **kwargs): endpoint = context.get('signing', {}).get('endpoint', None) if endpoint is not None: params['url'] = _get_new_endpoint(params['url'], endpoint, False) def redirect_from_cache(self, params, context, **kwargs): """ This handler retrieves a given bucket's signing context from the cache and adds it into the request context. """ bucket = params.get('Bucket') signing_context = self._cache.get(bucket) if signing_context is not None: context['signing'] = signing_context else: context['signing'] = {'bucket': bucket} class ContainerMetadataFetcher(object): TIMEOUT_SECONDS = 2 RETRY_ATTEMPTS = 3 SLEEP_TIME = 1 IP_ADDRESS = '169.254.170.2' def __init__(self, session=None, sleep=time.sleep): if session is None: session = requests.Session() self._session = session self._sleep = sleep def retrieve_uri(self, relative_uri): """Retrieve JSON metadata from ECS metadata. :type relative_uri: str :param relative_uri: A relative URI, e.g "/foo/bar?id=123" :return: The parsed JSON response. """ full_url = self._full_url(relative_uri) headers = {'Accept': 'application/json'} attempts = 0 while True: try: return self._get_response(full_url, headers, self.TIMEOUT_SECONDS) except MetadataRetrievalError as e: logger.debug("Received error when attempting to retrieve " "ECS metadata: %s", e, exc_info=True) self._sleep(self.SLEEP_TIME) attempts += 1 if attempts >= self.RETRY_ATTEMPTS: raise def _get_response(self, full_url, headers, timeout): try: response = self._session.get(full_url, headers=headers, timeout=timeout) if response.status_code != 200: raise MetadataRetrievalError( error_msg="Received non 200 response (%s) from ECS metadata: %s" % (response.status_code, response.text)) try: return json.loads(response.text) except ValueError: raise MetadataRetrievalError( error_msg=("Unable to parse JSON returned from " "ECS metadata: %s" % response.text)) except RETRYABLE_HTTP_ERRORS as e: error_msg = ("Received error when attempting to retrieve " "ECS metadata: %s" % e) raise MetadataRetrievalError(error_msg=error_msg) def _full_url(self, relative_uri): return 'http://%s%s' % (self.IP_ADDRESS, relative_uri)
# Copyright (c) 2016 Universidade Federal Fluminense (UFF) # Copyright (c) 2016 Polytechnic Institute of New York University. # This file is part of noWorkflow. # Please, consult the license terms in the LICENSE file. """Define bytecode interpreter that supports iteration on bytecode""" from __future__ import (absolute_import, print_function, division, unicode_literals) import sys import dis from dis import opmap from collections import defaultdict from opcode import HAVE_ARGUMENT, cmp_op from .instructions import Instruction CALL_FUNCTIONS = { opmap["CALL_FUNCTION"], opmap["CALL_FUNCTION_KW"], } if sys.version_info < (3, 6): CALL_FUNCTIONS.add(opmap["CALL_FUNCTION_VAR"]) CALL_FUNCTIONS.add(opmap["CALL_FUNCTION_VAR_KW"]) PRINT_ITEMS = set() if "PRINT_ITEM" in opmap: PRINT_ITEMS.add(opmap["PRINT_ITEM"]) PRINT_ITEMS.add(opmap["PRINT_ITEM_TO"]) PRINT_NEW_LINES = set() if "PRINT_NEWLINE" in opmap: PRINT_NEW_LINES.add(opmap["PRINT_NEWLINE"]) PRINT_NEW_LINES.add(opmap["PRINT_NEWLINE_TO"]) SETUP_WITH = {opmap["SETUP_WITH"], } WITH_CLEANUP = {opmap.get("WITH_CLEANUP") or opmap.get("WITH_CLEANUP_START"), } SETUP_ASYNC_WITH = set() if "SETUP_ASYNC_WITH" in opmap: SETUP_ASYNC_WITH.add(opmap["SETUP_ASYNC_WITH"]) IMPORTS = {opmap["IMPORT_NAME"], opmap["IMPORT_FROM"]} IMPORT_NAMES = {opmap["IMPORT_NAME"],} FOR_ITERS = {opmap["FOR_ITER"],} GET_ITERS = {opmap["GET_ITER"],} def cord(value): """Convert (str or int) to ord""" if isinstance(value, str): return ord(value) return value class ListAccessor(object): # pylint: disable=too-few-public-methods """List Proxy. Return value on x[i] and tuple on x(i)""" def __init__(self, values, repr_is_val=True): self.values = values self.repr_is_val = repr_is_val def __getitem__(self, index): if self.values is not None: return self.values[index] return index def __call__(self, index): argval = self[index] if self.repr_is_val and self.values is not None: argrepr = argval else: argrepr = repr(argval) return argval, argrepr class Interpreter(object): # pylint: disable=too-many-instance-attributes """Bytecode iterator""" def __init__(self, co_code, varnames=None, names=None, constants=None, # pylint: disable=too-many-arguments cells=None, linestarts=None, line_offset=0): self.lasti = 0 self.opi = 0 self._extended_arg = 0 self._co_code = co_code self.varnames = ListAccessor(varnames) self.names = ListAccessor(names) self.consts = ListAccessor(constants, repr_is_val=False) self.cells = ListAccessor(cells) self.linestarts = linestarts self.line_offset = line_offset self._size = len(co_code) self.opcode = None self.oparg = 0 self._stop = False self._map = {} self._extra = set() self._missing = set() self._supported = set() if not hasattr(self, "_known_missing"): self._known_missing = set() self._create_map() def __iter__(self): """Restart iterator""" self._stop = False return self def __call__(self, lasti=0, extended_arg=0): self.lasti = lasti self._extended_arg = extended_arg def next(self): """Python 2 iterator""" if self._stop: raise StopIteration opcode = self._next_op() self._map[opcode]() return opcode def __next__(self): """Python 3 iterator""" return self.next() def _next_op(self): """Get next operation""" self._set_opcode() if self.opcode >= HAVE_ARGUMENT: self._have_argument() if self.lasti >= self._size: self._stop = True return self.opcode def _set_opcode(self): """Get op from code""" self.oparg = None self.opcode = cord(self._co_code[self.lasti]) self.opi = self.lasti self.lasti += 1 def _have_argument(self): """Read argument if op has argument""" cod = self._co_code i = self.lasti self.oparg = cord(cod[i]) + cord(cod[i + 1]) * 256 + self._extended_arg self._extended_arg = 0 self.lasti += 2 def _create_map(self): """Create map of functions""" condition = lambda x, obj: ( x[0] != "_" and hasattr(obj, "__call__") and obj.__doc__ is not None and "opcode" in obj.__doc__) to_opcode = lambda x: x.upper().replace("__", "+") self._map = defaultdict(lambda: self.nop) self._extra = set() self._missing = set() self._supported = set() for name in dir(self): method = getattr(self, name) if condition(name, method): opcode = to_opcode(name) if opcode not in opmap: self._extra.add(opcode) else: self._map[opmap[opcode]] = method self._supported.add(opcode) self._missing = ( set(opmap.keys()) - self._supported - self._known_missing) @property def extra_opcode(self): """Return opcode implemented by this class but not supported by Python """ return self._extra @property def missing_opcode(self): """Return opcode supported by Python but not implemented by this class""" return self._missing def nop(self): """NOP opcode""" pass class InstructionInterpreter(Interpreter): """Mix Python3 dis._get_instructions_bytes with Python2 dis.disassemble""" def __init__(self, *args, **kwargs): super(InstructionInterpreter, self).__init__(*args, **kwargs) self._labels = dis.findlabels(self._co_code) self.starts_line = None self.is_jump_target = False self.argval = None self.argrepr = None self.current_line = -1 def _set_opcode(self): super(InstructionInterpreter, self)._set_opcode() if self.linestarts is not None: self.starts_line = self.linestarts.get(self.opi, None) if self.starts_line is not None: self.starts_line += self.line_offset self.current_line = self.starts_line self.is_jump_target = self.opi in self._labels def _have_argument(self): super(InstructionInterpreter, self)._have_argument() opcode = self.opcode arg = argval = self.oparg argrepr = "" if opcode in dis.hasconst: argval, argrepr = self.consts(arg) elif opcode in dis.hasname: argval, argrepr = self.names(arg) elif opcode in dis.hasjrel: argval = self.lasti + arg argrepr = "to " + repr(argval) elif opcode in dis.haslocal: argval, argrepr = self.varnames(arg) elif opcode in dis.hascompare: argval = cmp_op[arg] argrepr = argval elif opcode in dis.hasfree: argval, argrepr = self.cells(arg) elif opcode in CALL_FUNCTIONS: argrepr = "%d positional, %d keyword pair" % ( cord(self._co_code[self.lasti - 2]), cord(self._co_code[self.lasti - 1])) self.argval, self.argrepr = argval, argrepr def next(self): super(InstructionInterpreter, self).next() return Instruction( dis.opname[self.opcode], self.opcode, self.oparg, self. argval, self.argrepr, self.opi, self.starts_line, self.is_jump_target, self.current_line)
"""Endpoint to generate footer HTML.""" import logging import re from functools import lru_cache from django.conf import settings from django.shortcuts import get_object_or_404 from django.template import loader as template_loader from rest_framework.renderers import JSONRenderer from rest_framework.response import Response from rest_framework.views import APIView from rest_framework_jsonp.renderers import JSONPRenderer from readthedocs.api.v2.mixins import CachedResponseMixin from readthedocs.api.v2.permissions import IsAuthorizedToViewVersion from readthedocs.builds.constants import LATEST, TAG from readthedocs.builds.models import Version from readthedocs.core.utils.extend import SettingsOverrideObject from readthedocs.projects.constants import MKDOCS, SPHINX_HTMLDIR from readthedocs.projects.models import Project from readthedocs.projects.version_handling import ( highest_version, parse_version_failsafe, ) log = logging.getLogger(__name__) def get_version_compare_data(project, base_version=None): """ Retrieve metadata about the highest version available for this project. :param base_version: We assert whether or not the base_version is also the highest version in the resulting "is_highest" value. """ if ( not project.show_version_warning or (base_version and base_version.is_external) ): return {'is_highest': False} versions_qs = ( Version.internal.public(project=project) .filter(built=True, active=True) ) # Take preferences over tags only if the project has at least one tag if versions_qs.filter(type=TAG).exists(): versions_qs = versions_qs.filter(type=TAG) # Optimization versions_qs = versions_qs.select_related('project') highest_version_obj, highest_version_comparable = highest_version( versions_qs, ) ret_val = { 'project': str(highest_version_obj), 'version': str(highest_version_comparable), 'is_highest': True, } if highest_version_obj: # Never link to the dashboard, # users reading the docs may don't have access to the dashboard. ret_val['url'] = highest_version_obj.get_absolute_url() ret_val['slug'] = highest_version_obj.slug if base_version and base_version.slug != LATEST: try: base_version_comparable = parse_version_failsafe( base_version.verbose_name, ) if base_version_comparable: # This is only place where is_highest can get set. All error # cases will be set to True, for non- standard versions. ret_val['is_highest'] = ( base_version_comparable >= highest_version_comparable ) else: ret_val['is_highest'] = True except (Version.DoesNotExist, TypeError): ret_val['is_highest'] = True return ret_val class BaseFooterHTML(CachedResponseMixin, APIView): """ Render and return footer markup. Query parameters: - project - version - page: Sphinx's page name (name of the source file), used to build the "edit on" links. - theme: Used to decide how to integrate the flyout menu. - docroot: Path where all the source documents are. Used to build the ``edit_on`` URL. - source_suffix: Suffix from the source document. Used to build the ``edit_on`` URL. .. note:: The methods `_get_project` and `_get_version` are called many times, so a basic cache is implemented. """ http_method_names = ['get'] permission_classes = [IsAuthorizedToViewVersion] renderer_classes = [JSONRenderer, JSONPRenderer] project_cache_tag = 'rtd-footer' @lru_cache(maxsize=1) def _get_project(self): project_slug = self.request.GET.get('project', None) project = get_object_or_404(Project, slug=project_slug) return project @lru_cache(maxsize=1) def _get_version(self): version_slug = self.request.GET.get('version', None) # Hack in a fix for missing version slug deploy # that went out a while back if version_slug == '': version_slug = LATEST project = self._get_project() version = get_object_or_404( project.versions.all(), slug__iexact=version_slug, ) return version def _get_active_versions_sorted(self): """Get all versions that the user has access, sorted.""" project = self._get_project() versions = project.ordered_active_versions( user=self.request.user, include_hidden=False, ) return versions def _get_context(self): theme = self.request.GET.get('theme', False) docroot = self.request.GET.get('docroot', '') source_suffix = self.request.GET.get('source_suffix', '.rst') new_theme = (theme == 'sphinx_rtd_theme') project = self._get_project() main_project = project.main_language_project or project version = self._get_version() page_slug = self.request.GET.get('page', '') path = '' if page_slug and page_slug != 'index': if version.documentation_type in {SPHINX_HTMLDIR, MKDOCS}: path = re.sub('/index$', '', page_slug) + '/' else: path = page_slug + '.html' context = { 'project': project, 'version': version, 'path': path, 'downloads': version.get_downloads(pretty=True), 'current_version': version.verbose_name, 'versions': self._get_active_versions_sorted(), 'main_project': main_project, 'translations': main_project.translations.all(), 'current_language': project.language, 'new_theme': new_theme, 'settings': settings, 'github_edit_url': version.get_github_url( docroot, page_slug, source_suffix, 'edit', ), 'github_view_url': version.get_github_url( docroot, page_slug, source_suffix, 'view', ), 'gitlab_edit_url': version.get_gitlab_url( docroot, page_slug, source_suffix, 'edit', ), 'gitlab_view_url': version.get_gitlab_url( docroot, page_slug, source_suffix, 'view', ), 'bitbucket_url': version.get_bitbucket_url( docroot, page_slug, source_suffix, ), } return context def get(self, request, format=None): project = self._get_project() version = self._get_version() version_compare_data = get_version_compare_data( project, version, ) context = self._get_context() html = template_loader.get_template('restapi/footer.html').render( context, request, ) show_version_warning = ( project.show_version_warning and not version.is_external ) resp_data = { 'html': html, 'show_version_warning': show_version_warning, 'version_active': version.active, 'version_compare': version_compare_data, 'version_supported': version.supported, } return Response(resp_data) class FooterHTML(SettingsOverrideObject): _default_class = BaseFooterHTML
# -*- coding: utf-8 -*- """ continuity.services.pt ~~~~~~~~~~~~~~~~~~~~~~ Pivotal Tracker API. :copyright: 2015 by Jonathan Zempel. :license: BSD, see LICENSE for more details. """ from .commons import IDObject, RemoteService, ServiceException from .utils import cached_property, datetime_property from requests import RequestException from urlparse import urljoin class Comment(IDObject): """Pivotal Tracker comment object. """ FIELDS = ":default,person" @property def author(self): """Comment author accessor. """ member = self.data.get("person") return Member(member) if member else None @datetime_property def created(self): """Comment created accessor. """ return self.data.get("created_at") @property def text(self): """Comment text accessor. """ return self.data.get("text") class Member(IDObject): """Pivotal Tracker member object. :param member: Member data. """ def __init__(self, member): super(Member, self).__init__(member) if "person" in self.data: person = self.data["person"] self.data.update(person) del self.data["person"] def __str__(self): """Get a string representation of this Member. """ return self.name @property def email(self): """Person email accessor. """ return self.data.get("email") @property def initials(self): """Person initials accessor. """ return self.data.get("initials") @property def name(self): """Person name accessor. """ return self.data.get("name") @property def role(self): """Member role accessor. """ return self.data.get("role") class Project(IDObject): """Pivotal Tracker project object. """ FIELDS = ":default,memberships" @cached_property def members(self): """Project membership accessor. """ ret_val = [] memberships = self.data.get("memberships") for membership in memberships: ret_val.append(Member(membership)) return ret_val @property def name(self): """Project name accessor. """ return self.data.get("name") class Story(IDObject): """Pivotal Tracker story object. """ FIELDS = ":default,owners,requested_by" STATE_UNSCHEDULED = "unscheduled" STATE_UNSTARTED = "unstarted" STATE_STARTED = "started" STATE_FINISHED = "finished" STATE_DELIVERED = "delivered" STATE_ACCEPTED = "accepted" STATE_REJECTED = "rejected" TYPE_BUG = "bug" TYPE_CHORE = "chore" TYPE_FEATURE = "feature" TYPE_RELEASE = "release" @datetime_property def created(self): """Story created accessor. """ return self.data.get("created_at") @property def description(self): """Story description accessor. """ return self.data.get("description") @property def estimate(self): """Story estimate accessor. """ value = self.data.get("estimate") return int(value) if value else None @property def name(self): """Story name accessor. """ return self.data.get("name") @property def owners(self): """Story owners accessor. """ ret_val = [] owners = self.data.get("owners", []) for owner in owners: ret_val.append(Member(owner)) return ret_val @property def requester(self): """Story requester accessor. """ member = self.data.get("requested_by") return Member(member) if member else None @property def state(self): """Story state accessor. """ return self.data.get("current_state") @property def type(self): """Story type accessor. """ return self.data.get("story_type") @datetime_property def updated(self): """Story updated accessor. """ return self.data.get("updated_at") @property def url(self): """Story URL accessor. """ return self.data.get("url") class Iteration(IDObject): """Pivotal Tracker iteration object. """ FIELDS = ":default,stories({0})".format(Story.FIELDS) @datetime_property def finished(self): """Iteration finished accessor. """ return self.data.get("finish") @property def number(self): """Iteration number accessor. """ value = self.data.get("number") return int(value) if value else None @datetime_property def started(self): """Iteration started accessor. """ return self.data.get("start") @property def stories(self): """Iteration stories accessor. """ ret_val = [] stories = self.data.get("stories") for story in stories: story = Story(story) ret_val.append(story) return ret_val class Task(IDObject): """Pivotal Tracker task object. """ @datetime_property def created(self): """Task created accessor. """ return self.data.get("created_at") @property def description(self): """Task description accessor. """ return self.data.get("description") @property def is_checked(self): """Determine if this task is checked. """ return self.data.get("complete") @property def number(self): """Task number accessor. """ value = self.data.get("position") return int(value) if value else None class PivotalTrackerException(ServiceException): """Base Pivotal Tracker exception. """ class PivotalTrackerService(RemoteService): """Pivotal Tracker service. :param token: The API token to use. """ URI = "https://www.pivotaltracker.com/services/v5/" def __init__(self, token): super(PivotalTrackerService, self).__init__(PivotalTrackerService.URI) self.token = token def _request(self, method, resource, **kwargs): """Send a Pivotal Tracker request. :param method: The HTTP method. :param resource: The URI resource. :param kwargs: Request keyword-arguments. """ headers = kwargs.get("headers", {}) headers["X-TrackerToken"] = self.token if method.lower() in ("post", "put"): headers["Content-Type"] = "application/json" kwargs["headers"] = headers try: ret_val = super(PivotalTrackerService, self)._request(method, resource, **kwargs) except RequestException, e: raise PivotalTrackerException(e) return ret_val def get_backlog(self, project, limit=None): """Get a list of stories in the backlog. :param project: The project to use. :param limit: Limit the number of iterations to get. """ ret_val = [] resource = "projects/{0:d}/iterations".format(project.id) params = {"fields": Iteration.FIELDS, "scope": "current_backlog"} if limit: params["limit"] = limit iterations = self._request("get", resource, params=params) if not iterations: params["scope"] = "backlog" iterations = self._request("get", resource, params=params) for iteration in iterations: iteration = Iteration(iteration) ret_val.extend(iteration.stories) return ret_val def get_comments(self, project, story): """Get the comments for the given story. :param project: The project to use. :param story: The story to use. """ ret_val = [] resource = "projects/{0:d}/stories/{1:d}/comments".format(project.id, story.id) params = {"fields": Comment.FIELDS} comments = self._request("get", resource, params=params) for comment in comments: ret_val.append(Comment(comment)) return ret_val def get_project(self, id): """Get a project for the given ID. :param id: The ID of the project to get. """ for project in self.projects: if project.id == int(id): ret_val = project break else: ret_val = None return ret_val def get_story(self, project, filter): """Get the next story for the given filter. :param project: The project to use. :param filter: The PT API filter. See `https://www.pivotaltracker.com/help/faq#howcanasearchberefined` for details. """ resource = "projects/{0:d}/stories".format(project.id) params = { "fields": Story.FIELDS, "filter": "type:feature,chore,bug {0}".format(filter), "limit": 1 } stories = self._request("get", resource, params=params) if len(stories) == 1: ret_val = Story(stories[0]) else: ret_val = None return ret_val def get_tasks(self, project, story): """Get the tasks for the given story. :param project: The project to use. :param story: The story to use. """ ret_val = [] resource = "projects/{0:d}/stories/{1:d}/tasks".format(project.id, story.id) tasks = self._request("get", resource) for task in tasks: ret_val.append(Task(task)) return ret_val @staticmethod def get_token(user, password): """Get an active token for the given user. :param user: The user to get a token for. :param password: The user password. """ url = urljoin(PivotalTrackerService.URI, "me") auth = (user, password) response = PivotalTrackerService.get_response("get", url, auth=auth) try: response.raise_for_status() data = response.json() ret_val = data["api_token"] except RequestException: ret_val = None return ret_val @cached_property def projects(self): """Get a list of projects. """ ret_val = [] params = {"fields": Project.FIELDS} projects = self._request("get", "projects", params=params) for project in projects: ret_val.append(Project(project)) return ret_val def set_story(self, project, story, state, owner=None): """Set the state of the story for the given ID. :param project: The project to use. :param story: The story to update. :param state: The updated story state: ``'unscheduled'``, ``'unstarted'``, ``'started'``, ``'finished'``, ``'delivered'``, ``'accepted'``, or ``'rejected'``. :param owner: Default `None`. Optional story owner. """ resource = "projects/{0:d}/stories/{1:d}".format(project.id, story.id) data = {"current_state": state, "fields": Story.FIELDS} if owner: data["owner_ids"] = [owner.id] story = self._request("put", resource, data=data) return Story(story) def set_task(self, project, story, task, checked): """Set the completion of the given task. :param project: The project to use. :param story: The story the task is a part of. :param task: The task to update. :param checked: ``True`` to check the story as completed, otherwise ``False``. """ resource = "projects/{0:d}/stories/{1:d}/tasks/{2:d}".format( project.id, story.id, task.id) data = {"complete": checked} task = self._request("put", resource, data=data) return Task(task)
# -*- coding: utf-8 -*- from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ from . import afi_safi class afi_safis(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/bgp/global/afi-safis. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Address family specific configuration """ __slots__ = ("_path_helper", "_extmethods", "__afi_safi") _yang_name = "afi-safis" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__afi_safi = YANGDynClass( base=YANGListType( "afi_safi_name", afi_safi.afi_safi, yang_name="afi-safi", parent=self, is_container="list", user_ordered=False, path_helper=self._path_helper, yang_keys="afi-safi-name", extensions=None, ), is_container="list", yang_name="afi-safi", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="list", is_config=True, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "bgp", "global", "afi-safis", ] def _get_afi_safi(self): """ Getter method for afi_safi, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi (list) YANG Description: AFI,SAFI configuration available for the neighbour or group """ return self.__afi_safi def _set_afi_safi(self, v, load=False): """ Setter method for afi_safi, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi (list) If this variable is read-only (config: false) in the source YANG file, then _set_afi_safi is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_afi_safi() directly. YANG Description: AFI,SAFI configuration available for the neighbour or group """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=YANGListType( "afi_safi_name", afi_safi.afi_safi, yang_name="afi-safi", parent=self, is_container="list", user_ordered=False, path_helper=self._path_helper, yang_keys="afi-safi-name", extensions=None, ), is_container="list", yang_name="afi-safi", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="list", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """afi_safi must be of a type compatible with list""", "defined-type": "list", "generated-type": """YANGDynClass(base=YANGListType("afi_safi_name",afi_safi.afi_safi, yang_name="afi-safi", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='afi-safi-name', extensions=None), is_container='list', yang_name="afi-safi", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='list', is_config=True)""", } ) self.__afi_safi = t if hasattr(self, "_set"): self._set() def _unset_afi_safi(self): self.__afi_safi = YANGDynClass( base=YANGListType( "afi_safi_name", afi_safi.afi_safi, yang_name="afi-safi", parent=self, is_container="list", user_ordered=False, path_helper=self._path_helper, yang_keys="afi-safi-name", extensions=None, ), is_container="list", yang_name="afi-safi", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="list", is_config=True, ) afi_safi = __builtin__.property(_get_afi_safi, _set_afi_safi) _pyangbind_elements = OrderedDict([("afi_safi", afi_safi)]) from . import afi_safi class afi_safis(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/bgp/global/afi-safis. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Address family specific configuration """ __slots__ = ("_path_helper", "_extmethods", "__afi_safi") _yang_name = "afi-safis" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__afi_safi = YANGDynClass( base=YANGListType( "afi_safi_name", afi_safi.afi_safi, yang_name="afi-safi", parent=self, is_container="list", user_ordered=False, path_helper=self._path_helper, yang_keys="afi-safi-name", extensions=None, ), is_container="list", yang_name="afi-safi", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="list", is_config=True, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "bgp", "global", "afi-safis", ] def _get_afi_safi(self): """ Getter method for afi_safi, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi (list) YANG Description: AFI,SAFI configuration available for the neighbour or group """ return self.__afi_safi def _set_afi_safi(self, v, load=False): """ Setter method for afi_safi, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi (list) If this variable is read-only (config: false) in the source YANG file, then _set_afi_safi is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_afi_safi() directly. YANG Description: AFI,SAFI configuration available for the neighbour or group """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=YANGListType( "afi_safi_name", afi_safi.afi_safi, yang_name="afi-safi", parent=self, is_container="list", user_ordered=False, path_helper=self._path_helper, yang_keys="afi-safi-name", extensions=None, ), is_container="list", yang_name="afi-safi", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="list", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """afi_safi must be of a type compatible with list""", "defined-type": "list", "generated-type": """YANGDynClass(base=YANGListType("afi_safi_name",afi_safi.afi_safi, yang_name="afi-safi", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='afi-safi-name', extensions=None), is_container='list', yang_name="afi-safi", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='list', is_config=True)""", } ) self.__afi_safi = t if hasattr(self, "_set"): self._set() def _unset_afi_safi(self): self.__afi_safi = YANGDynClass( base=YANGListType( "afi_safi_name", afi_safi.afi_safi, yang_name="afi-safi", parent=self, is_container="list", user_ordered=False, path_helper=self._path_helper, yang_keys="afi-safi-name", extensions=None, ), is_container="list", yang_name="afi-safi", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="list", is_config=True, ) afi_safi = __builtin__.property(_get_afi_safi, _set_afi_safi) _pyangbind_elements = OrderedDict([("afi_safi", afi_safi)])
""" missing types & inference """ import numpy as np from pandas._libs import lib, missing as libmissing from pandas._libs.tslib import NaT, iNaT from .generic import (ABCMultiIndex, ABCSeries, ABCIndexClass, ABCGeneric, ABCExtensionArray) from .common import (is_string_dtype, is_datetimelike, is_datetimelike_v_numeric, is_float_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_interval_dtype, is_period_dtype, is_complex_dtype, is_string_like_dtype, is_bool_dtype, is_integer_dtype, is_dtype_equal, is_extension_array_dtype, needs_i8_conversion, _ensure_object, pandas_dtype, is_scalar, is_object_dtype, is_integer, _TD_DTYPE, _NS_DTYPE) from .inference import is_list_like isposinf_scalar = libmissing.isposinf_scalar isneginf_scalar = libmissing.isneginf_scalar def isna(obj): """ Detect missing values for an array-like object. This function takes a scalar or array-like object and indicates whether values are missing (``NaN`` in numeric arrays, ``None`` or ``NaN`` in object arrays, ``NaT`` in datetimelike). Parameters ---------- obj : scalar or array-like Object to check for null or missing values. Returns ------- bool or array-like of bool For scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is missing. See Also -------- notna : boolean inverse of pandas.isna. Series.isna : Detect missing values in a Series. DataFrame.isna : Detect missing values in a DataFrame. Index.isna : Detect missing values in an Index. Examples -------- Scalar arguments (including strings) result in a scalar boolean. >>> pd.isna('dog') False >>> pd.isna(np.nan) True ndarrays result in an ndarray of booleans. >>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) >>> array array([[ 1., nan, 3.], [ 4., 5., nan]]) >>> pd.isna(array) array([[False, True, False], [False, False, True]]) For indexes, an ndarray of booleans is returned. >>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None, ... "2017-07-08"]) >>> index DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'], dtype='datetime64[ns]', freq=None) >>> pd.isna(index) array([False, False, True, False]) For Series and DataFrame, the same type is returned, containing booleans. >>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df 0 1 2 0 ant bee cat 1 dog None fly >>> pd.isna(df) 0 1 2 0 False False False 1 False True False >>> pd.isna(df[1]) 0 False 1 True Name: 1, dtype: bool """ return _isna(obj) isnull = isna def _isna_new(obj): if is_scalar(obj): return libmissing.checknull(obj) # hack (for now) because MI registers as ndarray elif isinstance(obj, ABCMultiIndex): raise NotImplementedError("isna is not defined for MultiIndex") elif isinstance(obj, (ABCSeries, np.ndarray, ABCIndexClass, ABCExtensionArray)): return _isna_ndarraylike(obj) elif isinstance(obj, ABCGeneric): return obj._constructor(obj._data.isna(func=isna)) elif isinstance(obj, list): return _isna_ndarraylike(np.asarray(obj, dtype=object)) elif hasattr(obj, '__array__'): return _isna_ndarraylike(np.asarray(obj)) else: return obj is None def _isna_old(obj): """Detect missing values. Treat None, NaN, INF, -INF as null. Parameters ---------- arr: ndarray or object value Returns ------- boolean ndarray or boolean """ if is_scalar(obj): return libmissing.checknull_old(obj) # hack (for now) because MI registers as ndarray elif isinstance(obj, ABCMultiIndex): raise NotImplementedError("isna is not defined for MultiIndex") elif isinstance(obj, (ABCSeries, np.ndarray, ABCIndexClass)): return _isna_ndarraylike_old(obj) elif isinstance(obj, ABCGeneric): return obj._constructor(obj._data.isna(func=_isna_old)) elif isinstance(obj, list): return _isna_ndarraylike_old(np.asarray(obj, dtype=object)) elif hasattr(obj, '__array__'): return _isna_ndarraylike_old(np.asarray(obj)) else: return obj is None _isna = _isna_new def _use_inf_as_na(key): """Option change callback for na/inf behaviour Choose which replacement for numpy.isnan / -numpy.isfinite is used. Parameters ---------- flag: bool True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). Notes ----- This approach to setting global module values is discussed and approved here: * http://stackoverflow.com/questions/4859217/ programmatically-creating-variables-in-python/4859312#4859312 """ from pandas.core.config import get_option flag = get_option(key) if flag: globals()['_isna'] = _isna_old else: globals()['_isna'] = _isna_new def _isna_ndarraylike(obj): values = getattr(obj, 'values', obj) dtype = values.dtype if is_extension_array_dtype(obj): if isinstance(obj, (ABCIndexClass, ABCSeries)): values = obj._values else: values = obj result = values.isna() elif is_interval_dtype(values): # TODO(IntervalArray): remove this if block from pandas import IntervalIndex result = IntervalIndex(obj).isna() elif is_string_dtype(dtype): # Working around NumPy ticket 1542 shape = values.shape if is_string_like_dtype(dtype): # object array of strings result = np.zeros(values.shape, dtype=bool) else: # object array of non-strings result = np.empty(shape, dtype=bool) vec = libmissing.isnaobj(values.ravel()) result[...] = vec.reshape(shape) elif needs_i8_conversion(obj): # this is the NaT pattern result = values.view('i8') == iNaT else: result = np.isnan(values) # box if isinstance(obj, ABCSeries): from pandas import Series result = Series(result, index=obj.index, name=obj.name, copy=False) return result def _isna_ndarraylike_old(obj): values = getattr(obj, 'values', obj) dtype = values.dtype if is_string_dtype(dtype): # Working around NumPy ticket 1542 shape = values.shape if is_string_like_dtype(dtype): result = np.zeros(values.shape, dtype=bool) else: result = np.empty(shape, dtype=bool) vec = libmissing.isnaobj_old(values.ravel()) result[:] = vec.reshape(shape) elif is_datetime64_dtype(dtype): # this is the NaT pattern result = values.view('i8') == iNaT else: result = ~np.isfinite(values) # box if isinstance(obj, ABCSeries): from pandas import Series result = Series(result, index=obj.index, name=obj.name, copy=False) return result def notna(obj): """ Detect non-missing values for an array-like object. This function takes a scalar or array-like object and indicates whether values are valid (not missing, which is ``NaN`` in numeric arrays, ``None`` or ``NaN`` in object arrays, ``NaT`` in datetimelike). Parameters ---------- obj : array-like or object value Object to check for *not* null or *non*-missing values. Returns ------- bool or array-like of bool For scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is valid. See Also -------- isna : boolean inverse of pandas.notna. Series.notna : Detect valid values in a Series. DataFrame.notna : Detect valid values in a DataFrame. Index.notna : Detect valid values in an Index. Examples -------- Scalar arguments (including strings) result in a scalar boolean. >>> pd.notna('dog') True >>> pd.notna(np.nan) False ndarrays result in an ndarray of booleans. >>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) >>> array array([[ 1., nan, 3.], [ 4., 5., nan]]) >>> pd.notna(array) array([[ True, False, True], [ True, True, False]]) For indexes, an ndarray of booleans is returned. >>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None, ... "2017-07-08"]) >>> index DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'], dtype='datetime64[ns]', freq=None) >>> pd.notna(index) array([ True, True, False, True]) For Series and DataFrame, the same type is returned, containing booleans. >>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df 0 1 2 0 ant bee cat 1 dog None fly >>> pd.notna(df) 0 1 2 0 True True True 1 True False True >>> pd.notna(df[1]) 0 True 1 False Name: 1, dtype: bool """ res = isna(obj) if is_scalar(res): return not res return ~res notnull = notna def is_null_datelike_scalar(other): """ test whether the object is a null datelike, e.g. Nat but guard against passing a non-scalar """ if other is NaT or other is None: return True elif is_scalar(other): # a timedelta if hasattr(other, 'dtype'): return other.view('i8') == iNaT elif is_integer(other) and other == iNaT: return True return isna(other) return False def _isna_compat(arr, fill_value=np.nan): """ Parameters ---------- arr: a numpy array fill_value: fill value, default to np.nan Returns ------- True if we can fill using this fill_value """ dtype = arr.dtype if isna(fill_value): return not (is_bool_dtype(dtype) or is_integer_dtype(dtype)) return True def array_equivalent(left, right, strict_nan=False): """ True if two arrays, left and right, have equal non-NaN elements, and NaNs in corresponding locations. False otherwise. It is assumed that left and right are NumPy arrays of the same dtype. The behavior of this function (particularly with respect to NaNs) is not defined if the dtypes are different. Parameters ---------- left, right : ndarrays strict_nan : bool, default False If True, consider NaN and None to be different. Returns ------- b : bool Returns True if the arrays are equivalent. Examples -------- >>> array_equivalent( ... np.array([1, 2, np.nan]), ... np.array([1, 2, np.nan])) True >>> array_equivalent( ... np.array([1, np.nan, 2]), ... np.array([1, 2, np.nan])) False """ left, right = np.asarray(left), np.asarray(right) # shape compat if left.shape != right.shape: return False # Object arrays can contain None, NaN and NaT. # string dtypes must be come to this path for NumPy 1.7.1 compat if is_string_dtype(left) or is_string_dtype(right): if not strict_nan: # isna considers NaN and None to be equivalent. return lib.array_equivalent_object( _ensure_object(left.ravel()), _ensure_object(right.ravel())) for left_value, right_value in zip(left, right): if left_value is NaT and right_value is not NaT: return False elif isinstance(left_value, float) and np.isnan(left_value): if (not isinstance(right_value, float) or not np.isnan(right_value)): return False else: if left_value != right_value: return False return True # NaNs can occur in float and complex arrays. if is_float_dtype(left) or is_complex_dtype(left): # empty if not (np.prod(left.shape) and np.prod(right.shape)): return True return ((left == right) | (isna(left) & isna(right))).all() # numpy will will not allow this type of datetimelike vs integer comparison elif is_datetimelike_v_numeric(left, right): return False # M8/m8 elif needs_i8_conversion(left) and needs_i8_conversion(right): if not is_dtype_equal(left.dtype, right.dtype): return False left = left.view('i8') right = right.view('i8') # if we have structured dtypes, compare first if (left.dtype.type is np.void or right.dtype.type is np.void): if left.dtype != right.dtype: return False return np.array_equal(left, right) def _infer_fill_value(val): """ infer the fill value for the nan/NaT from the provided scalar/ndarray/list-like if we are a NaT, return the correct dtyped element to provide proper block construction """ if not is_list_like(val): val = [val] val = np.array(val, copy=False) if is_datetimelike(val): return np.array('NaT', dtype=val.dtype) elif is_object_dtype(val.dtype): dtype = lib.infer_dtype(_ensure_object(val)) if dtype in ['datetime', 'datetime64']: return np.array('NaT', dtype=_NS_DTYPE) elif dtype in ['timedelta', 'timedelta64']: return np.array('NaT', dtype=_TD_DTYPE) return np.nan def _maybe_fill(arr, fill_value=np.nan): """ if we have a compatible fill_value and arr dtype, then fill """ if _isna_compat(arr, fill_value): arr.fill(fill_value) return arr def na_value_for_dtype(dtype, compat=True): """ Return a dtype compat na value Parameters ---------- dtype : string / dtype compat : boolean, default True Returns ------- np.dtype or a pandas dtype """ dtype = pandas_dtype(dtype) if is_extension_array_dtype(dtype): return dtype.na_value if (is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype) or is_timedelta64_dtype(dtype) or is_period_dtype(dtype)): return NaT elif is_float_dtype(dtype): return np.nan elif is_integer_dtype(dtype): if compat: return 0 return np.nan elif is_bool_dtype(dtype): return False return np.nan def remove_na_arraylike(arr): """ Return array-like containing only true/non-NaN values, possibly empty. """ if is_extension_array_dtype(arr): return arr[notna(arr)] else: return arr[notna(lib.values_from_object(arr))]
from __future__ import with_statement from optparse import make_option import re import shutil import os from django.core.management.base import CommandError from django.template import Context from django.template.loader import get_template from django.conf import settings # external import inflection from subcommand.management.base import BaseVerboseCommand from generate_scaffold.management.transactions import ( FilesystemTransaction, FileModification, FileCreation, Filelike, DirectoryCreation ) from generate_scaffold.utils.cacheclear import ( reload_django_appcache, clean_pyc_in_dir ) # ... from .base import ( BaseSubCommand # AppSubCommand, # LabelSubCommand, # NoArgsSubCommand, # TemplateSubCommand ) from ..utils import strext fields_ptn = re.compile("^-") class FileDestroy(object): def __init__(self, transaction, filename): self.transaction = transaction self.filename = filename self.backup_path = None def execute(self): self.backup_path = self.transaction.generate_path() if os.path.exists(self.filename): shutil.copy2(self.filename, self.backup_path) # self.transaction.msg("backup", self.filename) else: self.transaction.msg("notfound", self.filename) def rollback(self): if not self.transaction.is_dry_run: shutil.copy2(self.backup_path, self.filename) self.transaction.msg("revert", self.filename) def commit(self): if os.path.exists(self.filename): self.transaction.msg("destroy", self.filename) os.remove(self.filename) os.remove(self.backup_path) class DirectoryDestroy(object): def __init__(self, transaction, dirname): self.transaction = transaction self.dirname = dirname def execute(self): self.backup_path = self.transaction.generate_path() if os.path.exists(self.dirname): os.mkdir(self.backup_path) # self.transaction.msg("backup", self.dirname) else: self.transaction.msg("notfound", self.dirname) def rollback(self): if not self.transaction.is_dry_run: shutil.copy2(self.backup_path, self.dirname) self.transaction.msg("revert", self.dirname) def commit(self): if os.path.exists(self.dirname): try: os.rmdir(self.dirname) self.transaction.msg("destroy", self.dirname) except OSError: self.transaction.msg("notempty", self.dirname) os.rmdir(self.backup_path) class FilesystemTransactionWrapper(FilesystemTransaction): def __init__(self, is_dry_run=False, delegate=None, destroy=False): super(FilesystemTransactionWrapper, self).__init__(is_dry_run, delegate) self.destroy = destroy def rollback(self): for entry in self.log[::-1]: entry.rollback() def commit(self): for entry in self.log[::-1] if self.destroy else self.log: entry.commit() def open(self, filename, mode): if self.destroy: modification = FileDestroy(self, filename) elif os.path.exists(filename): modification = FileModification(self, filename) else: modification = FileCreation(self, filename) modification.execute() self.log.append(modification) if self.is_dry_run or self.destroy: return Filelike() else: return open(filename, mode) def mkdir(self, dirname): if self.destroy: modification = DirectoryDestroy(self, dirname) modification.execute() self.log.append(modification) elif os.path.exists(dirname): self.msg("exists", dirname) else: modification = DirectoryCreation(self, dirname) modification.execute() self.log.append(modification) def transaction_wrapper(self, dry_run=False, destroy=False): # TODO: implement decorator. return FilesystemTransactionWrapper(dry_run, self, destroy) class GenerateMixin(object): def __init__(self, *arg, **kwargs): super(GenerateMixin, self).__init__(*arg, **kwargs) self.app_name = "" self.app_dir = "" self.app_module = None self.class_name = "" self.fields = [] self.verbose = 1 self.dry_run = False self.nodes = [] self.destroy = False self.inflect = inflection def template(self, template, src, **options): self.nodes.append({"src": src, "template": template, "options": options}) def empty_directory(self, src, **options): self.nodes.append({"src": src, "template": False, "options": options}) def create_file(self, src, **options): self.nodes.append({"src": src, "template": "dummy", "options": options}) def empty_package(self, src, **options): self.empty_directory(src) self.create_file(os.path.join(src, "__init__.py")) def run(self, dry_run=False): with transaction_wrapper(self, dry_run, self.destroy) as transaction: for n in self.nodes: src = n.get("src") template = n.get("template") options = n.get("options") if template: with transaction.open(src, "w+") as f: data = self.render_template(template, **options) f.seek(0) f.write(options.get("write", "" if self.destroy else data)) self.log(f.read()) else: transaction.mkdir(src) reload_django_appcache() clean_pyc_in_dir(self.app_dir) def _dictstrmap(self, func, dic): assert isinstance(dic, dict) dict_ = dict([(k, func(v)) for k, v in dic.items() if isinstance(v, str)]) dic.update(dict_) def render_template(self, template, **options): c = {"package": self.package, "basecommand": self.basecommand, "usercommand": self.usercommand, "class_name": self.class_name, "app_name": self.app_name, "app_class": self.app_name, "app_dir": self.app_dir, "fields": map(lambda field: strext(field), self.fields), "template": template, "options": self._dictstrmap(strext, options) } self._dictstrmap(strext, c) try: return get_template("{0}/{1}".format(self.package, template)).render(Context(c)) except Exception: return "" def handle(self, *args, **options): try: app_name = args[0] except IndexError: raise CommandError("You must provide an app_name.") if app_name not in settings.INSTALLED_APPS: raise CommandError( "{1}. App with label {0} could not be found. " \ "Are you sure your INSTALLED_APPS setting is correct?".format( app_name, self.usercommand)) try: app_module = __import__(app_name) except ImportError: raise CommandError( "Could not import app with name: {0}".format(app_name)) self.app_name = app_name self.app_module = app_module self.app_dir = app_module.__path__[0] self.class_name = args[1] if len(args) > 1 else "" self.fields = [arg for arg in args[2:] if not fields_ptn.match(arg)] if len(args) > 2 else "" self.package_dir = os.path.abspath(os.path.dirname(__import__(__package__).__file__)) self.destroy = self.basecommand == "destroy" # handle self._handle_generate(*args, **options) exit() class GenerateSubCommand(GenerateMixin, BaseSubCommand): def _handle_generate(self, *args, **options): self.handle_generate(*args, **options) class GenerateCommand(GenerateMixin, BaseVerboseCommand): help = ("generate template command generator.") option_list = BaseVerboseCommand.option_list + ( make_option('--destroy', action='store_true', dest='destroy', default=False, help='Destroy flg.' ), ) def _handle_generate(self, *args, **options): try: self.subcommand_name = args[1] except IndexError: raise CommandError("You must provide an subcommand name.") self.handle_generate(*args, **options)
import codecs from collections import defaultdict import os import re import time RPM_AVAILABLE = False try: import rpm import rpmUtils.miscutils RPM_AVAILABLE = True except ImportError: pass import exception def spec_fn(spec_dir='.'): specs = [f for f in os.listdir(spec_dir) \ if os.path.isfile(f) and f.endswith('.spec')] if not specs: raise exception.SpecFileNotFound() if len(specs) != 1: raise exception.MultipleSpecFilesFound() return specs[0] def version_parts(version): """ Split a version into numeric and non-numeric (milestone) parts if possible. """ m = re.match('(\d[\d.]*)(?:\.(.+))?$', version) if m: return m.groups() return version, None def release_parts(release): """ Split a release string into numeric, milestone and macro parts. """ m = re.match('([\d.]*)([^%{}]*)(.*)$', release) if m: return m.group(1), m.group(2), m.group(3) return '', '', release def has_macros(s): return s.find('%{') != -1 def nvrcmp(nvr1, nvr2): if not RPM_AVAILABLE: raise exception.RpmModuleNotAvailable() t1 = rpmUtils.miscutils.stringToVersion(nvr1) t2 = rpmUtils.miscutils.stringToVersion(nvr2) return rpm.labelCompare(t1, t2) def vcmp(v1, v2): if not RPM_AVAILABLE: raise exception.RpmModuleNotAvailable() t1 = ('0', v1, '') t2 = ('0', v2, '') return rpm.labelCompare(t1, t2) def nvr2version(nvr): if not RPM_AVAILABLE: raise exception.RpmModuleNotAvailable() _, v, _, _, _ = rpmUtils.miscutils.splitFilename(nvr) return v class Spec(object): """ Lazy .spec file parser and editor. """ RE_PATCH = r'(?:^|\n)(Patch\d+:)' RE_AFTER_SOURCES = r'((?:^|\n)Source\d+:[^\n]*\n\n?)' RE_AFTER_PATCHES_BASE = ( r'((?:^|\n)(?:#[ \t]*\n)*#\s*patches_base\s*=[^\n]*\n(?:#[ ' r'\t]*\n)*)\n*') def __init__(self, fn=None, txt=None): self._fn = fn self._txt = txt self._rpmspec = None @property def fn(self): if not self._fn: self._fn = spec_fn() return self._fn @property def txt(self): if not self._txt: self._txt = codecs.open(self.fn, 'r', encoding='utf-8').read() return self._txt @property def rpmspec(self): if not self._rpmspec: if not RPM_AVAILABLE: raise exception.RpmModuleNotAvailable() rpm.addMacro('_sourcedir', os.path.dirname(os.path.realpath(self.fn))) try: self._rpmspec = rpm.spec(self.fn) except ValueError, e: raise exception.SpecFileParseError(spec_fn=self.fn, error=e.args[0]) return self._rpmspec def expand_macro(self, macro): rs = self.rpmspec return rpm.expandMacro(macro) def get_tag(self, tag, expand_macros=False): m = re.search('^%s:\s+(\S.*)$' % tag, self.txt, re.M) if not m: raise exception.SpecFileParseError(spec_fn=self.fn, error="%s tag not found" % tag) tag = m.group(1).rstrip() if expand_macros and has_macros(tag): # don't parse using rpm unless required tag = self.expand_macro(tag) return tag def set_tag(self, tag, value): self._txt, n = re.subn(r'^(%s:\s+).*$' % re.escape(tag), r'\g<1>%s' % value, self.txt, flags=re.M) return n > 0 def get_patches_base(self, expand_macros=False): """Return a tuple (version, number_of_commits) that are parsed from the patches_base in the specfile. """ match = re.search(r'(?<=patches_base=)[\w.+?%{}]+', self.txt) if not match: return None, 0 patches_base = match.group() if expand_macros and has_macros(patches_base): # don't parse using rpm unless required patches_base = self.expand_macro(patches_base) patches_base_ref, _, n_commits = patches_base.partition('+') try: n_commits = int(n_commits) except ValueError as e: n_commits = 0 return patches_base_ref, n_commits def get_patches_ignore_regex(self): """Returns a string representing a regex for filtering out patches This string is parsed from a comment in the specfile that contains the word filter-out followed by an equal sign. For example a comment as such: # patches_ignore=(regex) would mean this method returns the string '(regex)' Only a very limited subset of characters are accepted so no fancy stuff like matching groups etc. """ match = re.search(r'# *patches_ignore=([\w *.+?[\]{,}\-_]+)', self.txt) if not match: return None regex_string = match.group(1) try: return re.compile(regex_string) except: return None def _create_new_patches_base(self, base): self._txt, n = re.subn( self.RE_PATCH, r'\n#\n# patches_base=%s\n#\n\g<1>' % base, self.txt, count=1, flags=re.M) if n != 1: self._txt, n = re.subn( self.RE_AFTER_SOURCES, r'\g<1>#\n# patches_base=%s\n#\n\n' % base, self.txt, count=1, flags=re.M) if n != 1: raise exception.SpecFileParseError( spec_fn=self.fn, error="Unable to create new #patches_base entry.") def set_patches_base(self, base): v, _ = self.get_patches_base() if base: if v is None: self._create_new_patches_base(base) else: self._txt, n = re.subn( r'(#\s*patches_base\s*=\s*)[\w.+]*', r'\g<1>%s' % base, self.txt, flags=re.M) if n != 1: raise exception.SpecFileParseError( spec_fn=self.fn, error="Unable to set new #patches_base") else: if v is not None: self._txt = re.sub( r'(?:\n#)+\s*patches_base\s*=[^\n]*\n(?:#\n)*', '', self.txt, flags=re.M) def set_patches_base_version(self, version, ignore_macros=True): if not version: version = '' old_pb, n_commits = self.get_patches_base() if (ignore_macros and old_pb and has_macros(old_pb)): return False if n_commits > 0: version += ("+%s" % n_commits) self.set_patches_base(version) return True def get_n_patches(self): return len(re.findall(r'^Patch[0-9]+:', self.txt, re.M)) def get_n_excluded_patches(self): """ Gets number of excluded patches from patches_base: #patches_base=1.0.0+THIS_NUMBER """ _, n_commits = self.get_patches_base() return n_commits def get_patch_fns(self): fns = [] for m in re.finditer(r'^\s*Patch\d+:\s*(\S+)\s*$', self.txt, flags=re.M): fns.append(m.group(1)) return fns def wipe_patches(self): self._txt = re.sub(r'\n+(?:(?:Patch|.patch)\d+[^\n]*)', '', self.txt) def buildarch_sanity_check(self): bm = re.search('^BuildArch:', self.txt, flags=re.M) if not bm: return bi = bm.start() sm = re.search('^Source\d+:', self.txt, flags=re.M) if sm: si = sm.start() if bi < si: raise exception.BuildArchSanityCheckFailed() pm = re.search('^Patch\d+:', self.txt, flags=re.M) if pm: pi = pm.start() if bi < pi: raise exception.BuildArchSanityCheckFailed() def sanity_check(self): if self.patches_apply_method() == 'git-am': self.buildarch_sanity_check() def patches_apply_method(self): if '\ngit am %{patches}' in self.txt: return 'git-am' if '\n%autosetup' in self.txt: return 'autosetup' return 'rpm' def set_commit_ref_macro(self, ref): self._txt = re.sub( r'^\%global commit \w+', '%%global commit %s' % ref, self.txt, flags=re.M) def set_new_patches(self, fns): self.wipe_patches() if not fns: return apply_method = self.patches_apply_method() ps = '' pa = '' for i, pfn in enumerate(fns, start=1): ps += "Patch%04d: %s\n" % (i, pfn) if apply_method == 'rpm': pa += "%%patch%04d -p1\n" % i ## PatchXXX: lines after Source0 / #patches_base= self._txt, n = re.subn( self.RE_AFTER_PATCHES_BASE, r'\g<1>%s\n' % ps, self.txt, count=1) if n != 1: for m in re.finditer(self.RE_AFTER_SOURCES, self.txt): pass if not m: raise exception.SpecFileParseError( spec_fn=self.fn, error="Failed to append PatchXXXX: lines") i = m.end() startnl, endnl = '', '' if self._txt[i-2] != '\n': startnl += '\n' if self._txt[i] != '\n': endnl += '\n' self._txt = self._txt[:i] + startnl + ps + endnl + self._txt[i:] ## %patchXXX -p1 lines after "%setup" if needed if apply_method == 'rpm': self._txt, n = re.subn( r'((?:^|\n)%setup[^\n]*\n)\s*', r'\g<1>\n%s\n' % pa, self.txt) if n == 0: raise exception.SpecFileParseError( spec_fn=self.fn, error="Failed to append %patchXXXX lines after %setup") def get_release_parts(self): release = self.get_tag('Release') return release_parts(release) def recognized_release(self): _, _, rest = self.get_release_parts() if rest == '' or re.match('%{\??dist}', rest): return True return False def set_release(self, new_release, milestone=None, postfix=None): recognized_format = True release = new_release if milestone: release += '.%s' % milestone if postfix is None: _, _, postfix = self.get_release_parts() release += postfix return self.set_tag('Release', release) def bump_release(self, milestone=None): numbers, milestone, postfix = self.get_release_parts() numlist = numbers.split('.') i = -1 if numbers[-1] == '.': i = -2 numlist[i] = str(int(numlist[i]) + 1) release = ".".join(numlist) return self.set_release(release, milestone=milestone, postfix=postfix) def new_changelog_entry(self, user, email, changes=[]): changes_str = "\n".join(map(lambda x: "- %s" % x, changes)) + "\n" date = time.strftime('%a %b %d %Y') version = self.get_tag('Version', expand_macros=True) try: epoch = self.get_tag('Epoch') version = '%s:%s' % (epoch, version) except exception.SpecFileParseError: pass release = self.get_tag('Release', expand_macros=True) # Assume release ends with %{?dist} release, _, _ = release.rpartition('.') # TODO: detect if there is '-' in changelog entries and use it if so head = "* %s %s <%s> %s-%s" % (date, user, email, version, release) entry = "%s\n%s\n" % (head, changes_str) self._txt = re.sub(r'(%changelog\n)', r'\g<1>%s' % entry, self.txt) def save(self): if not self.txt: # no changes return if not self.fn: raise exception.InvalidAction( "Can't save .spec file without its file name specified.") f = codecs.open(self.fn, 'w', encoding='utf-8') f.write(self.txt) f.close() self._rpmspec = None def get_source_urls(self): # arcane rpm constants, now in python! sources = filter(lambda x: x[2] == 1, self.rpmspec.sources) if len(sources) == 0: error = "No sources found" raise exception.SpecFileParseError(spec_fn=self.fn, error=error) # OpenStack packages seem to always use only one tarball sources0 = filter(lambda x: x[1] == 0, sources) if len(sources0) == 0: error = "Source0 not found" raise exception.SpecFileParseError(spec_fn=self.fn, error=error) source_url = sources0[0][0] return [source_url] def get_source_fns(self): return map(os.path.basename, self.get_source_urls()) def get_last_changelog_entry(self, strip=False): _, changelog = self.txt.split("%changelog\n") changelog = changelog.strip() entries = re.split(r'\n\n+', changelog) entry = entries[0] lines = entry.split("\n") if strip: lines = map(lambda x: x.lstrip(" -*\t"), lines) return lines[0], lines[1:] def get_requires(self, versions_as_string=False, remove_epoch=True): reqs = defaultdict(set) for pkg in self.rpmspec.packages: pkg_reqs = pkg.header.dsFromHeader('requirename') for req in pkg_reqs: m = re.match(r'R (\S+)\s+([=<>!]+)\s*(\S+)', req.DNEVR()) if m: name, eq, ver = m.groups() if eq == '=': eq = '==' if remove_epoch: _, sep, rest = ver.partition(':') if sep: ver = rest reqs[name].add(eq + ver) else: name = req.N() reqs[name] if versions_as_string: for name in reqs: reqs[name] = ','.join(reqs[name]) return reqs
from matplotlib import rc import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter import numpy as np plot_params = {'margin': {'left': 0.13, 'right': 0.05, 'top': 0.07, 'bottom': 0.15}, 'keepAxis': ['left', 'bottom'], 'markersize': 3, 'dimensions': {'width': 345}, 'fontsize': 10.0, 'ratio': 1.6813} def format(subplot=111, style='thesis'): global plot_params, plt rc('font', **{'family': 'serif', 'serif': ['Palatino']}) if style.lower() == 'ieee': plot_params['margin']['bottom'] += 0.02 plot_params['margin']['left'] += 0.02 plot_params['markersize'] /= 3.0 plot_params['dimensions']['width'] = 255.0 plot_params['fontsize'] = 9.0 params = {'backend': 'ps', 'axes.labelsize': plot_params['fontsize'], 'font.size':plot_params['fontsize'], 'legend.fontsize': plot_params['fontsize'] - 2, 'axes.linewidth': 0.5, 'xtick.labelsize': plot_params['fontsize'], 'ytick.labelsize': plot_params['fontsize'], 'text.latex.preamble': '\\usepackage{siunitx}', # 'axes.formatter.limits': '-3, 3', 'text.usetex': False, 'text.latex.unicode': True, 'lines.markersize': plot_params['markersize']} if subplot == 111: g_scale_left = plot_params['margin']['left'] g_scale_right = 1.0 - plot_params['margin']['right'] g_scale_top = 1.0 - plot_params['margin']['top'] g_scale_bottom = plot_params['margin']['bottom'] width_pt = plot_params['dimensions']['width'] inch_per_pt = 1.0 / 72.27 ratio = plot_params['ratio'] width_total = width_pt * inch_per_pt width_graph = width_total * (g_scale_right - g_scale_left) height_graph = width_graph / ratio height_total = height_graph / (g_scale_top - g_scale_bottom) dimensions = [width_total, height_total] params['figure.figsize'] = dimensions plt.rcParams.update(params) fig = plt.figure() # turn off ticks where there is no spine fig.gca().xaxis.set_ticks_position('bottom') fig.gca().yaxis.set_ticks_position('left') # for loc, spine in plt.gca().spines.iteritems(): #For python 2 for loc, spine in list(plt.gca().spines.items()): # For python 3 if loc in plot_params['keepAxis']: spine.set_position(('outward', 0)) # outward by 10 points elif loc in ['right', 'top']: spine.set_color('none') # don't draw spine if subplot == 111: fig.subplots_adjust(left=g_scale_left, bottom=g_scale_bottom, right=g_scale_right, top=g_scale_top, wspace=0.2, hspace=0.2) return fig.add_subplot(subplot) def get_heatPair(num=5): return [generate_colours(list(np.linspace(12, 44, num)), 90, 100), generate_colours(list(np.linspace(224, 192, num)), 90, 100)] def get_blues(num): return generate_colours(list(np.linspace(225, 210, num)), list(np.linspace(100, 100, num)), list(np.linspace(55, 98, num))) def get_yellows(num): return generate_colours(list(np.linspace(34, 44, num)), list(np.linspace(90, 90, num)), list(np.linspace(90, 100, num))) def get_purples(num): return generate_colours(list(np.linspace(263, 283, num)), list(np.linspace(90, 90, num)), list(np.linspace(90, 100, num))) def get_reds(num): return generate_colours(list(np.linspace(353, 360, num)), list(np.linspace(90, 100, num)), list(np.linspace(75, 100, num))) def format_labels(axis, ys, debug=False): """ Takes a matplotlib axes and formats the labels according to the values containind in it. This function returns the quantifier eg. 'm' or '\eta' to indicate any scaling that was applied to the labels """ if debug: print("formatting axis " + str(axis)) # print ys miny = abs(min(ys)) maxy = abs(max(ys)) if miny > maxy: tmp = miny miny = maxy maxy = tmp del(tmp) if debug: print('miny = ' + str(miny)) print('maxy = ' + str(maxy)) quantifiers = ['n', '\mu ', 'm', '', 'k', 'M', 'G'] quantifiers.reverse() magnitudes = [1e9, 1e6, 1e3, 1, 1e-3, 1e-6, 1e-9] # Find the lowest quantifier for mag_low_index, mag_low_value in enumerate(magnitudes): if miny >= mag_low_value: break if debug: print('lowest magnitude = ' + str(magnitudes[mag_low_index])) # Find the maximum quantifier for mag_high_index, mag_high_value in enumerate(magnitudes): if maxy >= mag_high_value: break # Detect if min was zero, if it was just use the max for both if miny == 0: mag_low_index = mag_high_index if debug: print('lowest magnitude adjusted to ' + str(magnitudes[mag_low_index]) + ' because of being equal to 0') if debug: print('largest magnitude = ' + str(magnitudes[mag_high_index])) mag_mid_index = int(((mag_high_index - mag_low_index) / 2.0) + mag_low_index) multiplyer = 1 / magnitudes[mag_mid_index] if debug: print('selected magnitude = ' + str(multiplyer)) quantifier = quantifiers[mag_mid_index] if debug: print('selected quantifier = ' + quantifier) decimalPlaces = 2 if debug: print('max number on y after scaling = ', (maxy * multiplyer)) if maxy * multiplyer > 10: decimalPlaces = 1 if maxy * multiplyer > 100: decimalPlaces = 0 formattingString = '%0.' + str(decimalPlaces) + 'f' if debug: print('format string = ' + formattingString) print(multiplyer) axis.set_major_formatter(FuncFormatter(lambda x, pos: formattingString % (x * multiplyer))) return quantifier def get_standardColours(num, sets=1, palette='new'): """ Returns the standard colour arrays for use with creating the graphs """ offset = 360.0 / sets colours = [] if palette == 'new': saturation = 90 value = 100 for i in range(sets): hues = list(np.linspace(34 + i * offset, 44 + i * offset, num)) saturation = list(np.linspace(90, 100, num)) value = list(np.linspace(90, 100, num)) colours.append(generate_colours(hues, saturation, value)) elif palette == 'old': saturation = 100 value = list(np.linspace(50, 100, num)) hue = 34 for i in range(sets): colours.append(generate_colours(hue + i * offset, saturation, value)) return colours def generate_colours(hue, saturation, value): """ Hue is 360 degrees Saturation is percent Vale is percent Any of the fields can be arrays """ import colorsys num = 1 if type(hue) == list: if len(hue) > num: num = len(hue) if type(saturation) == list: if len(saturation) > num: num = len(saturation) if type(value) == list: if len(value) > num: num = len(value) tuples = [] for i in range(num): if type(hue) == list: h = hue[i] / 360.0 else: h = hue / 360.0 if type(saturation) == list: s = saturation[i] / 100.0 else: s = saturation / 100.0 if type(value) == list: v = value[i] / 100.0 else: v = value / 100.0 tuples.append((h, s, v)) return list(map(lambda x: colorsys.hsv_to_rgb(*x), tuples))
#!/usr/bin/env python # Copyright (c) 2014-2015, NVIDIA CORPORATION. All rights reserved. import sys import os import time import argparse import logging import re import shutil import math import random from collections import Counter import threading import Queue try: import digits except ImportError: # Add path for DIGITS package sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import digits.config digits.config.load_config() from digits import utils, log import numpy as np import PIL.Image import lmdb import h5py from cStringIO import StringIO # must call digits.config.load_config() before caffe to set the path import caffe.io try: import caffe_pb2 except ImportError: # See issue #32 from caffe.proto import caffe_pb2 logger = logging.getLogger('digits.tools.create_db') class Error(Exception): pass class BadInputFileError(Error): """Input file is empty""" pass class ParseLineError(Error): """Failed to parse a line in the input file""" pass class LoadError(Error): """Failed to load image[s]""" pass class WriteError(Error): """Failed to write image[s]""" pass class Hdf5DatasetExtendError(Error): """Failed to extend an hdf5 dataset""" pass class DbWriter(object): """ Abstract class for writing to databases """ def __init__(self, output_dir, image_height, image_width, image_channels): self._dir = output_dir os.makedirs(output_dir) self._image_height = image_height self._image_width = image_width self._image_channels = image_channels self._count = 0 def write_batch(self, batch): raise NotImplementedError def count(self): return self._count class LmdbWriter(DbWriter): # TODO pass class Hdf5Writer(DbWriter): """ A class for writing to HDF5 files """ LIST_FILENAME = 'list.txt' DTYPE = 'float32' def __init__(self, **kwargs): """ Keyword arguments: compression -- the type of dataset compression dset_limit -- the dataset size limit """ self._compression = kwargs.pop('compression', None) self._dset_limit = kwargs.pop('dset_limit', None) super(Hdf5Writer, self).__init__(**kwargs) self._db = None if self._dset_limit is not None: self._max_count = self._dset_limit / ( self._image_height * self._image_width * self._image_channels) else: self._max_count = None def write_batch(self, batch): # convert batch to numpy arrays if batch[0][0].ndim == 2: # add channel axis for grayscale images data_batch = np.array([i[0][...,np.newaxis] for i in batch]) else: data_batch = np.array([i[0] for i in batch]) # Transpose to (channels, height, width) data_batch = data_batch.transpose((0,3,1,2)) label_batch = np.array([i[1] for i in batch]) # first batch if self._db is None: self._create_new_file(len(batch)) self._db['data'][:] = data_batch self._db['label'][:] = label_batch self._count += len(batch) return current_count = self._db['data'].len() # will fit in current dataset if current_count + len(batch) <= self._max_count: self._db['data'].resize(current_count+len(batch),axis=0) self._db['label'].resize(current_count+len(batch),axis=0) self._db['data'][-len(batch):] = data_batch self._db['label'][-len(batch):] = label_batch self._count += len(batch) return # calculate how many will fit in current dataset split = current_count + len(batch) - self._max_count if split > 0: # put what we can into the current dataset self._db['data'].resize(self._max_count,axis=0) self._db['label'].resize(self._max_count,axis=0) self._db['data'][-split:] = data_batch[:split] self._db['label'][-split:] = label_batch[:split] self._count += split self._create_new_file(len(batch) - split) self._db['data'][:] = data_batch[split:] self._db['label'][:] = label_batch[split:] self._count += len(batch) - split def _create_new_file(self, initial_count): assert self._max_count is None or initial_count <= self._max_count, \ 'Your batch size is too large for your dataset limit - %d vs %d' % \ (initial_count, self._max_count) # close the old file if self._db is not None: self._db.close() mode = 'a' else: mode = 'w' # get the filename filename = self._new_filename() logger.info('Creating HDF5 database at "%s" ...' % os.path.join(*filename.split(os.sep)[-2:])) # update the list with open(self._list_filename(), mode) as outfile: outfile.write('%s\n' % filename) # create the new file self._db = h5py.File(os.path.join(self._dir, filename), 'w') # initialize the datasets self._db.create_dataset('data', (initial_count,self._image_channels, self._image_height,self._image_width), maxshape=(self._max_count,self._image_channels, self._image_height,self._image_width), chunks=True, compression=self._compression, dtype=self.DTYPE) self._db.create_dataset('label', (initial_count,), maxshape=(self._max_count,), chunks=True, compression=self._compression, dtype=self.DTYPE) def _list_filename(self): return os.path.join(self._dir, self.LIST_FILENAME) def _new_filename(self): return '%s.h5' % self.count() def create_db(input_file, output_dir, image_width, image_height, image_channels, backend, resize_mode = None, image_folder = None, shuffle = True, mean_files = None, **kwargs): """ Create a database of images from a list of image paths Raises exceptions on errors Arguments: input_file -- a textfile containing labelled image paths output_dir -- the location to store the created database image_width -- image resize width image_height -- image resize height image_channels -- image channels backend -- the DB format (lmdb/hdf5) Keyword arguments: resize_mode -- passed to utils.image.resize_image() shuffle -- if True, shuffle the images in the list before creating mean_files -- a list of mean files to save """ ### Validate arguments if not os.path.exists(input_file): raise ValueError('input_file does not exist') if os.path.exists(output_dir): logger.warning('removing existing database') if os.path.isdir(output_dir): shutil.rmtree(output_dir, ignore_errors=True) else: os.remove(output_dir) if image_width <= 0: raise ValueError('invalid image width') if image_height <= 0: raise ValueError('invalid image height') if image_channels not in [1,3]: raise ValueError('invalid number of channels') if resize_mode not in [None, 'crop', 'squash', 'fill', 'half_crop']: raise ValueError('invalid resize_mode') if image_folder is not None and not os.path.exists(image_folder): raise ValueError('image_folder does not exist') if mean_files: for mean_file in mean_files: if os.path.exists(mean_file): logger.warning('overwriting existing mean file "%s"!' % mean_file) else: dirname = os.path.dirname(mean_file) if not dirname: dirname = '.' if not os.path.exists(dirname): raise ValueError('Cannot save mean file at "%s"' % mean_file) compute_mean = bool(mean_files) ### Load lines from input_file into a load_queue load_queue = Queue.Queue() image_count = _fill_load_queue(input_file, load_queue, shuffle) # Start some load threads batch_size = _calculate_batch_size(image_count, bool(backend=='hdf5'), kwargs.get('hdf5_dset_limit'), image_channels, image_height, image_width) num_threads = _calculate_num_threads(batch_size, shuffle) write_queue = Queue.Queue(2*batch_size) summary_queue = Queue.Queue() for i in xrange(num_threads): p = threading.Thread(target=_load_thread, args=(load_queue, write_queue, summary_queue, image_width, image_height, image_channels, resize_mode, image_folder, compute_mean) ) p.daemon = True p.start() start = time.time() if backend == 'lmdb': _create_lmdb(image_count, write_queue, batch_size, output_dir, summary_queue, num_threads, mean_files, **kwargs) elif backend == 'hdf5': _create_hdf5(image_count, write_queue, batch_size, output_dir, image_width, image_height, image_channels, summary_queue, num_threads, mean_files, **kwargs) else: raise ValueError('invalid backend') logger.info('Database created after %d seconds.' % (time.time() - start)) def _create_lmdb(image_count, write_queue, batch_size, output_dir, summary_queue, num_threads, mean_files = None, encoding = None, lmdb_map_size = None, **kwargs): """ Create an LMDB Keyword arguments: encoding -- image encoding format lmdb_map_size -- the initial LMDB map size """ wait_time = time.time() threads_done = 0 images_loaded = 0 images_written = 0 image_sum = None batch = [] compute_mean = bool(mean_files) db = lmdb.open(output_dir, map_size=lmdb_map_size, map_async=True, max_dbs=0) while (threads_done < num_threads) or not write_queue.empty(): # Send update every 2 seconds if time.time() - wait_time > 2: logger.debug('Processed %d/%d' % (images_written, image_count)) wait_time = time.time() processed_something = False if not summary_queue.empty(): result_count, result_sum = summary_queue.get() images_loaded += result_count # Update total_image_sum if compute_mean and result_count > 0 and result_sum is not None: if image_sum is None: image_sum = result_sum else: image_sum += result_sum threads_done += 1 processed_something = True if not write_queue.empty(): image, label = write_queue.get() datum = _array_to_datum(image, label, encoding) batch.append(datum) if len(batch) == batch_size: _write_batch_lmdb(db, batch, images_written) images_written += len(batch) batch = [] processed_something = True if not processed_something: time.sleep(0.2) if len(batch) > 0: _write_batch_lmdb(db, batch, images_written) images_written += len(batch) if images_loaded == 0: raise LoadError('no images loaded from input file') logger.debug('%s images loaded' % images_loaded) if images_written == 0: raise WriteError('no images written to database') logger.info('%s images written to database' % images_written) if compute_mean: _save_means(image_sum, images_written, mean_files) db.close() def _create_hdf5(image_count, write_queue, batch_size, output_dir, image_width, image_height, image_channels, summary_queue, num_threads, mean_files = None, compression = None, hdf5_dset_limit = None, **kwargs): """ Create an HDF5 file Keyword arguments: compression -- dataset compression format """ wait_time = time.time() threads_done = 0 images_loaded = 0 images_written = 0 image_sum = None batch = [] compute_mean = bool(mean_files) writer = Hdf5Writer( output_dir = output_dir, image_height = image_height, image_width = image_width, image_channels = image_channels, dset_limit = hdf5_dset_limit, compression = compression, ) while (threads_done < num_threads) or not write_queue.empty(): # Send update every 2 seconds if time.time() - wait_time > 2: logger.debug('Processed %d/%d' % (images_written, image_count)) wait_time = time.time() processed_something = False if not summary_queue.empty(): result_count, result_sum = summary_queue.get() images_loaded += result_count # Update total_image_sum if compute_mean and result_count > 0 and result_sum is not None: if image_sum is None: image_sum = result_sum else: image_sum += result_sum threads_done += 1 processed_something = True if not write_queue.empty(): batch.append(write_queue.get()) if len(batch) == batch_size: writer.write_batch(batch) images_written += len(batch) batch = [] processed_something = True if not processed_something: time.sleep(0.2) if len(batch) > 0: writer.write_batch(batch) images_written += len(batch) assert images_written == writer.count() if images_loaded == 0: raise LoadError('no images loaded from input file') logger.debug('%s images loaded' % images_loaded) if images_written == 0: raise WriteError('no images written to database') logger.info('%s images written to database' % images_written) if compute_mean: _save_means(image_sum, images_written, mean_files) def _fill_load_queue(filename, queue, shuffle): """ Fill the queue with data from the input file Print the category distribution Returns the number of lines added to the queue NOTE: This can be slow on a large input file, but we need the total image count in order to report the progress, so we might as well read it all """ total_lines = 0 valid_lines = 0 distribution = Counter() with open(filename) as infile: if shuffle: lines = infile.readlines() # less memory efficient random.shuffle(lines) for line in lines: total_lines += 1 try: result = _parse_line(line, distribution) valid_lines += 1 queue.put(result) except ParseLineError: pass else: for line in infile: # more memory efficient total_lines += 1 try: result = _parse_line(line, distribution) valid_lines += 1 queue.put(result) except ParseLineError: pass logger.debug('%s total lines in file' % total_lines) if valid_lines == 0: raise BadInputFileError('No valid lines in input file') logger.info('%s valid lines in file' % valid_lines) for key in sorted(distribution): logger.debug('Category %s has %d images.' % (key, distribution[key])) return valid_lines def _parse_line(line, distribution): """ Parse a line in the input file into (path, label) """ line = line.strip() if not line: raise ParseLineError # Expect format - [/]path/to/file.jpg 123 match = re.match(r'(.+)\s+(\d+)\s*$', line) if match is None: raise ParseLineError path = match.group(1) label = int(match.group(2)) distribution[label] += 1 return path, label def _calculate_batch_size(image_count, is_hdf5=False, hdf5_dset_limit=None, image_channels=None, image_height=None, image_width=None): """ Calculates an appropriate batch size for creating this database """ if is_hdf5 and hdf5_dset_limit is not None: return min(100, image_count, hdf5_dset_limit/(image_channels*image_height*image_width)) else: return min(100, image_count) def _calculate_num_threads(batch_size, shuffle): """ Calculates an appropriate number of threads for creating this database """ if shuffle: return min(10, int(round(math.sqrt(batch_size)))) else: #XXX This is the only way to preserve order for now # This obviously hurts performance considerably return 1 def _load_thread(load_queue, write_queue, summary_queue, image_width, image_height, image_channels, resize_mode, image_folder, compute_mean): """ Consumes items in load_queue Produces items to write_queue Stores cumulative results in summary_queue """ images_added = 0 if compute_mean: image_sum = _initial_image_sum(image_width, image_height, image_channels) else: image_sum = None while not load_queue.empty(): try: path, label = load_queue.get(True, 0.05) except Queue.Empty: continue # prepend path with image_folder, if appropriate if not utils.is_url(path) and image_folder and not os.path.isabs(path): path = os.path.join(image_folder, path) try: image = utils.image.load_image(path) except utils.errors.LoadImageError as e: logger.warning('[%s] %s: %s' % (path, type(e).__name__, e) ) continue image = utils.image.resize_image(image, image_height, image_width, channels = image_channels, resize_mode = resize_mode, ) if compute_mean: image_sum += image write_queue.put((image, label)) images_added += 1 summary_queue.put((images_added, image_sum)) def _initial_image_sum(width, height, channels): """ Returns an array of zeros that will be used to store the accumulated sum of images """ if channels == 1: return np.zeros((height, width), np.float64) else: return np.zeros((height, width, channels), np.float64) def _array_to_datum(image, label, encoding): """ Create a caffe Datum from a numpy.ndarray """ if not encoding: # Transform to caffe's format requirements if image.ndim == 3: # Transpose to (channels, height, width) image = image.transpose((2,0,1)) if image.shape[0] == 3: # channel swap # XXX see issue #59 image = image[[2,1,0],...] elif image.ndim == 2: # Add a channels axis image = image[np.newaxis,:,:] else: raise Exception('Image has unrecognized shape: "%s"' % image.shape) datum = caffe.io.array_to_datum(image, label) else: datum = caffe_pb2.Datum() if image.ndim == 3: datum.channels = image.shape[2] else: datum.channels = 1 datum.height = image.shape[0] datum.width = image.shape[1] datum.label = label s = StringIO() if encoding == 'png': PIL.Image.fromarray(image).save(s, format='PNG') elif encoding == 'jpg': PIL.Image.fromarray(image).save(s, format='JPEG', quality=90) else: raise ValueError('Invalid encoding type') datum.data = s.getvalue() datum.encoded = True return datum def _write_batch_lmdb(db, batch, image_count): """ Write a batch to an LMDB database """ try: with db.begin(write=True) as lmdb_txn: for i, datum in enumerate(batch): key = '%08d_%d' % (image_count + i, datum.label) lmdb_txn.put(key, datum.SerializeToString()) except lmdb.MapFullError: # double the map_size curr_limit = db.info()['map_size'] new_limit = curr_limit*2 logger.debug('Doubling LMDB map size to %sMB ...' % (new_limit>>20,)) try: db.set_mapsize(new_limit) # double it except AttributeError as e: version = tuple(int(x) for x in lmdb.__version__.split('.')) if version < (0,87): raise Error('py-lmdb is out of date (%s vs 0.87)' % lmdb.__version__) else: raise e # try again _write_batch_lmdb(db, batch, image_count) def _save_means(image_sum, image_count, mean_files): """ Save mean[s] to file """ mean = np.around(image_sum / image_count).astype(np.uint8) for mean_file in mean_files: if mean_file.lower().endswith('.npy'): np.save(mean_file, mean) elif mean_file.lower().endswith('.binaryproto'): data = mean # Transform to caffe's format requirements if data.ndim == 3: # Transpose to (channels, height, width) data = data.transpose((2,0,1)) if data.shape[0] == 3: # channel swap # XXX see issue #59 data = data[[2,1,0],...] elif mean.ndim == 2: # Add a channels axis data = data[np.newaxis,:,:] blob = caffe_pb2.BlobProto() blob.num = 1 blob.channels, blob.height, blob.width = data.shape blob.data.extend(data.astype(float).flat) with open(mean_file, 'wb') as outfile: outfile.write(blob.SerializeToString()) elif mean_file.lower().endswith(('.jpg', '.jpeg', '.png')): image = PIL.Image.fromarray(mean) image.save(mean_file) else: logger.warning('Unrecognized file extension for mean file: "%s"' % mean_file) continue logger.info('Mean saved at "%s"' % mean_file) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Create-Db tool - DIGITS') ### Positional arguments parser.add_argument('input_file', help='An input file of labeled images') parser.add_argument('output_dir', help='Path to the output database') parser.add_argument('width', type=int, help='width of resized images' ) parser.add_argument('height', type=int, help='height of resized images' ) ### Optional arguments parser.add_argument('-c', '--channels', type=int, default=3, help='channels of resized images (1 for grayscale, 3 for color [default])' ) parser.add_argument('-r', '--resize_mode', help='resize mode for images (must be "crop", "squash" [default], "fill" or "half_crop")' ) parser.add_argument('-m', '--mean_file', action='append', help="location to output the image mean (doesn't save mean if not specified)") parser.add_argument('-f', '--image_folder', help='folder containing the images (if the paths in input_file are not absolute)') parser.add_argument('-s', '--shuffle', action='store_true', help='Shuffle images before saving' ) parser.add_argument('-e', '--encoding', help = 'Image encoding format (jpg/png)' ) parser.add_argument('-C', '--compression', help = 'Database compression format (gzip)' ) parser.add_argument('-b', '--backend', default='lmdb', help = 'The database backend - lmdb[default] or hdf5') parser.add_argument('--lmdb_map_size', type=int, help = 'The initial map size for LMDB (in MB)') parser.add_argument('--hdf5_dset_limit', type=int, help = 'The size limit for HDF5 datasets') args = vars(parser.parse_args()) if args['lmdb_map_size']: # convert from MB to B args['lmdb_map_size'] <<= 20 try: create_db(args['input_file'], args['output_dir'], args['width'], args['height'], args['channels'], args['backend'], resize_mode = args['resize_mode'], image_folder = args['image_folder'], shuffle = args['shuffle'], mean_files = args['mean_file'], encoding = args['encoding'], compression = args['compression'], lmdb_map_size = args['lmdb_map_size'], hdf5_dset_limit = args['hdf5_dset_limit'], ) except Exception as e: logger.error('%s: %s' % (type(e).__name__, e.message)) raise
# Copyright 2019, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for building TFF optimizers from flags.""" import collections import inspect from typing import Any, Dict, List, Optional from absl import flags from absl import logging import tensorflow_federated as tff # List of optimizers currently supported. _OPTIMIZER_BUILDERS = collections.OrderedDict( adagrad=tff.learning.optimizers.build_adagrad, adam=tff.learning.optimizers.build_adam, rmsprop=tff.learning.optimizers.build_rmsprop, sgd=tff.learning.optimizers.build_sgdm, yogi=tff.learning.optimizers.build_yogi) def define_optimizer_flags(prefix: str) -> None: """Defines flags with `prefix` to configure an optimizer. This method is inteded to be paired with `create_optimizer_from_flags` using the same `prefix`, to allow Python binaries to constructed TensorFlow optimizers parameterized by commandline flags. This creates two new flags: * `--<prefix>_optimizer=<optimizer name>` * `--<prefix>_learning_rate` In addition to a suite of flags for each optimizer: * `--<prefix>_<optimizer name>_<constructor_argument>` For example, given the prefix "client" this will create flags (non-exhaustive list): * `--client_optimizer` * `--client_learning_rate` * `--client_sgd_momentum` * `--client_adam_beta_1` * `--client_adam_beta_2` * `--client_adam_epsilon` Then calls to `create_optimizer_from_flags('client')` will construct an optimizer of the type named in `--client_optimizer`, parameterized by the flags prefixed with the matching optimizer name. For example, if `--client_optimizer=sgd`, `--client_sgd_*` flags will be used. IMPORTANT: For flags to be correctly parsed from the commandline, this method must be called before `absl.app.run(main)`, and is recommened to be called next to other flag definitions at the top of a py_binary. Args: prefix: A string (possibly empty) indicating which optimizer is being configured. """ # Create top-level, non-optimizer specific flags for picking the optimizer # type and the learning rate. flags.DEFINE_enum( name='{!s}_optimizer'.format(prefix), default=None, enum_values=list(_OPTIMIZER_BUILDERS.keys()), help='The type of optimizer to construct for `{!s}`'.format(prefix)) logging.info('Defined new flag: [%s]', '{!s}_optimizer'.format(prefix)) flags.DEFINE_float( name='{!s}_learning_rate'.format(prefix), default=None, help='Base learning rate for optimizer `{!s}`'.format(prefix)) logging.info('Defined new flag: [%s]', '{!s}_learning_rate'.format(prefix)) for optimizer_name, optimizer_builder in _OPTIMIZER_BUILDERS.items(): # Pull out the constructor parameters except for `self`. constructor_signature = inspect.signature(optimizer_builder) constructor_params = list(constructor_signature.parameters.values())[1:] def prefixed(basename, optimizer_name=optimizer_name): if prefix: return '{!s}_{!s}_{!s}'.format(prefix, optimizer_name, basename) else: return '{!s}_{!s}'.format(optimizer_name, basename) def is_param_of_type(param, typ): return (param.default is None and param.annotation == Optional[typ] or isinstance(param.default, typ)) for param in constructor_params: if param.name in ['kwargs', 'args', 'learning_rate']: continue if is_param_of_type(param, bool): define_flag_fn = flags.DEFINE_bool elif is_param_of_type(param, float): define_flag_fn = flags.DEFINE_float elif is_param_of_type(param, int): define_flag_fn = flags.DEFINE_integer elif is_param_of_type(param, str): define_flag_fn = flags.DEFINE_string elif is_param_of_type(param, List[str]): define_flag_fn = flags.DEFINE_multi_string else: raise NotImplementedError('Cannot define flag [{!s}] ' 'for parameter [{!s}] of type [{!s}] ' '(default value type [{!s}]) ' 'on optimizer [{!s}]'.format( prefixed(param.name), param.name, param.annotation, type(param.default), optimizer_name)) define_flag_fn( name=prefixed(param.name), default=param.default, help='{!s} argument for the {!s} optimizer.'.format( param.name, optimizer_name)) logging.info('Defined new flag: [%s]', prefixed(param.name)) def remove_unused_flags(prefix: str, hparam_dict: Dict[str, Any]) -> collections.OrderedDict: """Removes unused optimizer flags with a given prefix. This method is intended to be used with `define_optimizer_flags`, and is used to remove elements of hparam_dict associated with unused optimizer flags. For example, given the prefix "client", define_optimizer_flags will create flags including: * `--client_optimizer` * `--client_learning_rate` * `--client_sgd_momentum` * `--client_adam_beta_1` * `--client_adam_beta_2` * `--client_adam_epsilon` and other such flags. However, for purposes of recording hyperparameters, we would like to only keep those that correspond to the optimizer selected in the flag --client_optimizer. This method is intended to remove the unused flags. For example, if `--client_optimizer=sgd` was set, then calling this method with the prefix `client` will remove all pairs in hparam_dict except those associated with the flags: * `--client_optimizer` * `--client_learning_rate` * `--client_sgd_momentum` Args: prefix: The prefix used to define optimizer flags, such as via `optimizer_utils.define_optimizer_flags(prefix)`. Standard examples include `prefix=client` and `prefix=server`. hparam_dict: A dictionary of (string, value) pairs corresponding to experiment hyperparameters. Returns: An ordered dictionary of (string, value) pairs from hparam_dict that omits any pairs where string = "<prefix>_<optimizer>*" but <optimizer> is not the one set via the flag --<prefix>_optimizer=... """ def prefixed(basename): return '{}_{}'.format(prefix, basename) if prefix else basename if prefixed('optimizer') not in hparam_dict.keys(): raise ValueError('The flag {!s} was not defined.'.format( prefixed('optimizer'))) optimizer_name = hparam_dict[prefixed('optimizer')] if not optimizer_name: raise ValueError('The flag {!s} was not set. Unable to determine the ' 'relevant optimizer.'.format(prefixed('optimizer'))) unused_optimizer_flag_prefixes = [ prefixed(k) for k in _OPTIMIZER_BUILDERS.keys() if k != optimizer_name ] def _is_used_flag(flag_name): # We filter by whether the flag contains an unused optimizer prefix. # This retains any flag not of the form <prefix>_<optimizer>_*. for unused_flag_prefix in unused_optimizer_flag_prefixes: if flag_name.startswith(f'{unused_flag_prefix}_'): return False return True used_flags = collections.OrderedDict() for (flag_name, flag_value) in hparam_dict.items(): if _is_used_flag(flag_name): used_flags[flag_name] = flag_value return used_flags def create_optimizer_from_flags( prefix: str) -> tff.learning.optimizers.Optimizer: """Returns an optimizer based on prefixed flags. This method is inteded to be paired with `define_optimizer_flags` using the same `prefix`, to allow Python binaries to constructed TensorFlow optimizers parameterized by commandline flags. This method expects at least two flags to have been defined and set: * `--<prefix>_optimizer=<optimizer name>` * `--<prefix>_learning_rate` In addition to suites of flags for each optimizer: * `--<prefix>_<optimizer name>_<constructor_argument>` For example, if `prefix='client'` this method first reads the flags: * `--client_optimizer` * `--client_learning_rate` If the optimizer flag is `'sgd'`, then an SGD-based optimizer is constructed using the values in the flags prefixed with `--client_sgd_`. Args: prefix: The same string prefix passed to `define_optimizer_flags`. Returns: A `tff.learning.optimizers.Optimizer`. """ def prefixed(basename): return '{}_{}'.format(prefix, basename) if prefix else basename optimizer_flag_name = prefixed('optimizer') if flags.FLAGS[optimizer_flag_name] is None: raise ValueError('Must specify flag --{!s}'.format(optimizer_flag_name)) optimizer_name = flags.FLAGS[optimizer_flag_name].value optimizer_builder = _OPTIMIZER_BUILDERS.get(optimizer_name) if optimizer_builder is None: logging.error('Unknown optimizer [%s], known optimizers are [%s].', optimizer_name, list(_OPTIMIZER_BUILDERS.keys())) raise ValueError('`{!s}` is not a valid optimizer for flag --{!s}, must be ' 'one of {!s}. See error log for details.'.format( optimizer_name, optimizer_flag_name, list(_OPTIMIZER_BUILDERS.keys()))) def _has_user_value(flag): """Check if a commandline flag has a user set value.""" return flag.present or flag.value != flag.default # Validate that the optimizers that weren't picked don't have flag values set. # Settings that won't be used likely means there is an expectation gap between # the user and the system and we should notify them. unused_flag_prefixes = [ prefixed(k) for k in _OPTIMIZER_BUILDERS.keys() if k != optimizer_name ] mistakenly_set_flags = [] for flag_name in flags.FLAGS: if not _has_user_value(flags.FLAGS[flag_name]): # Flag was not set by the user, skip it. continue # Otherwise the flag has a value set by the user. for unused_prefix in unused_flag_prefixes: if flag_name.startswith(f'{unused_prefix}_'): mistakenly_set_flags.append(flag_name) break if mistakenly_set_flags: raise ValueError('Commandline flags for optimizers other than [{!s}] ' '(value of --{!s}) are set. These would be ignored, ' 'were the flags set by mistake? Flags: {!s}'.format( optimizer_name, optimizer_flag_name, mistakenly_set_flags)) lr_flag_name = prefixed('learning_rate') lr_flag = flags.FLAGS[lr_flag_name] kwargs = {} if _has_user_value(lr_flag): kwargs['learning_rate'] = lr_flag.value else: raise ValueError( 'Learning rate for {!s} must be set by the flag --{!s} .'.format( prefix, lr_flag_name)) flag_prefix = prefixed(optimizer_name) prefix_len = len(flag_prefix) + 1 for flag_name in flags.FLAGS: if not flag_name.startswith(f'{flag_prefix}_'): continue arg_name = flag_name[prefix_len:] kwargs[arg_name] = flags.FLAGS[flag_name].value return optimizer_builder(**kwargs)
# pylint: disable=unused-argument import importlib import logging import pytest import sys import warnings from concurrent.futures import ThreadPoolExecutor from io import StringIO from itertools import permutations from unittest import mock import mlflow from mlflow.tracking import MlflowClient from mlflow.utils import gorilla from mlflow.utils.autologging_utils import ( safe_patch, get_autologging_config, autologging_is_disabled, ) from tests.autologging.fixtures import test_mode_off from tests.autologging.fixtures import reset_stderr # pylint: disable=unused-import pytestmark = pytest.mark.large AUTOLOGGING_INTEGRATIONS_TO_TEST = { mlflow.sklearn: "sklearn", mlflow.keras: "keras", mlflow.xgboost: "xgboost", mlflow.lightgbm: "lightgbm", mlflow.pytorch: "torch", mlflow.gluon: "mxnet.gluon", mlflow.fastai: "fastai", mlflow.statsmodels: "statsmodels", mlflow.spark: "pyspark", mlflow.pyspark.ml: "pyspark", } @pytest.fixture(autouse=True, scope="module") def import_integration_libraries(): for library_module in AUTOLOGGING_INTEGRATIONS_TO_TEST.values(): importlib.import_module(library_module) @pytest.fixture(autouse=True) def disable_autologging_at_test_end(): # The yeild statement is to insure that code below is executed as teardown code. # This will avoid bleeding of an active autologging session from test suite. yield for integration in AUTOLOGGING_INTEGRATIONS_TO_TEST: integration.autolog(disable=True) @pytest.fixture() def setup_sklearn_model(): from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression X, y = load_iris(return_X_y=True) model = LogisticRegression() return X, y, model @pytest.mark.parametrize("integration", AUTOLOGGING_INTEGRATIONS_TO_TEST.keys()) def test_autologging_integrations_expose_configs_and_support_disablement(integration): for integration in AUTOLOGGING_INTEGRATIONS_TO_TEST: integration.autolog(disable=False) integration_name = integration.autolog.integration_name assert not autologging_is_disabled(integration_name) assert not get_autologging_config(integration_name, "disable", True) integration.autolog(disable=True) assert autologging_is_disabled(integration_name) assert get_autologging_config(integration_name, "disable", False) @pytest.mark.parametrize("integration", AUTOLOGGING_INTEGRATIONS_TO_TEST.keys()) def test_autologging_integrations_use_safe_patch_for_monkey_patching(integration): for integration in AUTOLOGGING_INTEGRATIONS_TO_TEST: with mock.patch( "mlflow.utils.gorilla.apply", wraps=gorilla.apply ) as gorilla_mock, mock.patch( integration.__name__ + ".safe_patch", wraps=safe_patch ) as safe_patch_mock: # In `mlflow.xgboost.autolog()` and `mlflow.lightgbm.autolog()`, # we enable autologging for XGBoost and LightGBM sklearn models # using `mlflow.sklearn._autolog()`. So besides `safe_patch` calls in # `autolog()`, we need to count additional `safe_patch` calls # in sklearn autologging routine as well. if integration.__name__ in ["mlflow.xgboost", "mlflow.lightgbm"]: with mock.patch( "mlflow.sklearn.safe_patch", wraps=safe_patch ) as sklearn_safe_patch_mock: integration.autolog(disable=False) safe_patch_call_count = ( safe_patch_mock.call_count + sklearn_safe_patch_mock.call_count ) else: integration.autolog(disable=False) safe_patch_call_count = safe_patch_mock.call_count assert safe_patch_call_count > 0 # `safe_patch` leverages `gorilla.apply` in its implementation. Accordingly, we expect # that the total number of `gorilla.apply` calls to be equivalent to the number of # `safe_patch` calls. This verifies that autologging integrations are leveraging # `safe_patch`, rather than calling `gorilla.apply` directly (which does not provide # exception safety properties) assert safe_patch_call_count == gorilla_mock.call_count def test_autolog_respects_exclusive_flag(setup_sklearn_model): x, y, model = setup_sklearn_model mlflow.sklearn.autolog(exclusive=True) run = mlflow.start_run() model.fit(x, y) mlflow.end_run() run_data = MlflowClient().get_run(run.info.run_id).data metrics, params, tags = run_data.metrics, run_data.params, run_data.tags assert not metrics assert not params assert all("mlflow." in key for key in tags) mlflow.sklearn.autolog(exclusive=False) run = mlflow.start_run() model.fit(x, y) mlflow.end_run() run_data = MlflowClient().get_run(run.info.run_id).data metrics, params = run_data.metrics, run_data.params assert metrics assert params def test_autolog_respects_disable_flag(setup_sklearn_model): x, y, model = setup_sklearn_model mlflow.sklearn.autolog(disable=True, exclusive=False) run = mlflow.start_run() model.fit(x, y) mlflow.end_run() run_data = MlflowClient().get_run(run.info.run_id).data metrics, params, tags = run_data.metrics, run_data.params, run_data.tags assert not metrics assert not params assert all("mlflow." in key for key in tags) mlflow.sklearn.autolog(disable=False, exclusive=False) run = mlflow.start_run() model.fit(x, y) mlflow.end_run() run_data = MlflowClient().get_run(run.info.run_id).data metrics, params = run_data.metrics, run_data.params assert metrics assert params def test_autolog_reverts_patched_code_when_disabled(): # use `KMeans` because it implements `fit`, `fit_transform`, and `fit_predict`. from sklearn.cluster import KMeans # Before any patching. model = KMeans() original_fit = model.fit original_fit_transform = model.fit_transform original_fit_predict = model.fit_predict # After patching. mlflow.sklearn.autolog(disable=False) patched_fit = model.fit patched_fit_transform = model.fit_transform patched_fit_predict = model.fit_predict assert patched_fit != original_fit assert patched_fit_transform != original_fit_transform assert patched_fit_predict != original_fit_predict # After revert of patching. mlflow.sklearn.autolog(disable=True) reverted_fit = model.fit reverted_fit_transform = model.fit_transform reverted_fit_predict = model.fit_predict assert reverted_fit == original_fit assert reverted_fit_transform == original_fit_transform assert reverted_fit_predict == original_fit_predict assert reverted_fit != patched_fit assert reverted_fit_transform != patched_fit_transform assert reverted_fit_predict != patched_fit_predict def test_autolog_respects_disable_flag_across_import_orders(): def test(): from sklearn import svm, datasets iris = datasets.load_iris() svc = svm.SVC(C=2.0, degree=5, kernel="rbf") run = mlflow.start_run() svc.fit(iris.data, iris.target) mlflow.end_run() run_data = MlflowClient().get_run(run.info.run_id).data metrics, params, tags = run_data.metrics, run_data.params, run_data.tags assert not metrics assert not params assert all("mlflow." in key for key in tags) def import_sklearn(): import sklearn # pylint: disable=unused-import def disable_autolog(): mlflow.sklearn.autolog(disable=True) def mlflow_autolog(): mlflow.autolog() import_list = [import_sklearn, disable_autolog, mlflow_autolog] for func_order_list in permutations(import_list): for fun in func_order_list: fun() test() @pytest.mark.usefixtures(test_mode_off.__name__) def test_autolog_respects_silent_mode(tmpdir): # Use file-based experiment storage for this test. Otherwise, concurrent experiment creation in # multithreaded contexts may fail for other storage backends (e.g. SQLAlchemy) mlflow.set_tracking_uri(str(tmpdir)) mlflow.set_experiment("test_experiment") og_showwarning = warnings.showwarning stream = StringIO() sys.stderr = stream logger = logging.getLogger(mlflow.__name__) from sklearn import datasets iris = datasets.load_iris() def train_model(): import sklearn.utils from sklearn import svm from sklearn.model_selection import GridSearchCV parameters = {"kernel": ("linear", "rbf"), "C": [1, 10]} svc = svm.SVC() with sklearn.utils.parallel_backend(backend="threading"): clf = GridSearchCV(svc, parameters) clf.fit(iris.data, iris.target) return True # Call general and framework-specific autologging APIs to cover a # larger surface area for testing purposes mlflow.autolog(silent=True) mlflow.sklearn.autolog(silent=True, log_input_examples=True) executions = [] with ThreadPoolExecutor(max_workers=50) as executor: for _ in range(2): e = executor.submit(train_model) executions.append(e) assert all([e.result() is True for e in executions]) assert not stream.getvalue() # Verify that `warnings.showwarning` was restored to its original value after training # and that MLflow event logs are enabled assert warnings.showwarning == og_showwarning logger.info("verify that event logs are enabled") assert "verify that event logs are enabled" in stream.getvalue() stream.truncate(0) mlflow.sklearn.autolog(silent=False, log_input_examples=True) executions = [] with ThreadPoolExecutor(max_workers=50) as executor: for _ in range(100): e = executor.submit(train_model) executions.append(e) assert all([e.result() is True for e in executions]) assert stream.getvalue() # Verify that `warnings.showwarning` was restored to its original value after training # and that MLflow event logs are enabled assert warnings.showwarning == og_showwarning logger.info("verify that event logs are enabled") assert "verify that event logs are enabled" in stream.getvalue() # TODO: Investigate why this test occasionally leaks a run, which causes the # `clean_up_leaked_runs` fixture in `tests/conftest.py` to fail. while mlflow.active_run(): mlflow.end_run() def test_autolog_globally_configured_flag_set_correctly(): from mlflow.utils.autologging_utils import AUTOLOGGING_INTEGRATIONS AUTOLOGGING_INTEGRATIONS.clear() import sklearn # pylint: disable=unused-import,unused-variable import pyspark # pylint: disable=unused-import,unused-variable import pyspark.ml # pylint: disable=unused-import,unused-variable integrations_to_test = ["sklearn", "spark", "pyspark.ml"] mlflow.autolog() for integration_name in integrations_to_test: assert AUTOLOGGING_INTEGRATIONS[integration_name]["globally_configured"] mlflow.sklearn.autolog() mlflow.spark.autolog() mlflow.pyspark.ml.autolog() for integration_name in integrations_to_test: assert "globally_configured" not in AUTOLOGGING_INTEGRATIONS[integration_name]
# Copyright 2012 Locaweb. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # based on # https://github.com/openstack/nova/blob/master/nova/network/linux_net.py """Implements iptables rules using linux utilities.""" import collections import contextlib import difflib import os import re import sys from oslo_concurrency import lockutils from oslo_config import cfg from oslo_log import log as logging from oslo_utils import excutils import six from neutron._i18n import _, _LE, _LW from neutron.agent.common import config from neutron.agent.linux import iptables_comments as ic from neutron.agent.linux import utils as linux_utils from neutron.common import exceptions as n_exc from neutron.common import utils LOG = logging.getLogger(__name__) config.register_iptables_opts(cfg.CONF) # NOTE(vish): Iptables supports chain names of up to 28 characters, and we # add up to 12 characters to binary_name which is used as a prefix, # so we limit it to 16 characters. # (max_chain_name_length - len('-POSTROUTING') == 16) def get_binary_name(): """Grab the name of the binary we're running in.""" return os.path.basename(sys.argv[0])[:16].replace(' ', '_') binary_name = get_binary_name() # A length of a chain name must be less than or equal to 11 characters. # <max length of iptables chain name> - (<binary_name> + '-') = 28-(16+1) = 11 MAX_CHAIN_LEN_WRAP = 11 MAX_CHAIN_LEN_NOWRAP = 28 # Number of iptables rules to print before and after a rule that causes a # a failure during iptables-restore IPTABLES_ERROR_LINES_OF_CONTEXT = 5 def comment_rule(rule, comment): if not cfg.CONF.AGENT.comment_iptables_rules or not comment: return rule # iptables-save outputs the comment before the jump so we need to match # that order so _find_last_entry works comment = '-m comment --comment "%s"' % comment if rule.startswith('-j'): # this is a jump only rule so we just put the comment first return '%s %s' % (comment, rule) try: jpos = rule.index(' -j ') return ' '.join((rule[:jpos], comment, rule[jpos + 1:])) except ValueError: return '%s %s' % (rule, comment) def get_chain_name(chain_name, wrap=True): if wrap: return chain_name[:MAX_CHAIN_LEN_WRAP] else: return chain_name[:MAX_CHAIN_LEN_NOWRAP] class IptablesRule(object): """An iptables rule. You shouldn't need to use this class directly, it's only used by IptablesManager. """ def __init__(self, chain, rule, wrap=True, top=False, binary_name=binary_name, tag=None, comment=None): self.chain = get_chain_name(chain, wrap) self.rule = rule self.wrap = wrap self.top = top self.wrap_name = binary_name[:16] self.tag = tag self.comment = comment def __eq__(self, other): return ((self.chain == other.chain) and (self.rule == other.rule) and (self.top == other.top) and (self.wrap == other.wrap)) def __ne__(self, other): return not self == other def __str__(self): if self.wrap: chain = '%s-%s' % (self.wrap_name, self.chain) else: chain = self.chain return comment_rule('-A %s %s' % (chain, self.rule), self.comment) class IptablesTable(object): """An iptables table.""" def __init__(self, binary_name=binary_name): self.rules = [] self.remove_rules = [] self.chains = set() self.unwrapped_chains = set() self.remove_chains = set() self.wrap_name = binary_name[:16] def add_chain(self, name, wrap=True): """Adds a named chain to the table. The chain name is wrapped to be unique for the component creating it, so different components of Nova can safely create identically named chains without interfering with one another. At the moment, its wrapped name is <binary name>-<chain name>, so if neutron-openvswitch-agent creates a chain named 'OUTPUT', it'll actually end up being named 'neutron-openvswi-OUTPUT'. """ name = get_chain_name(name, wrap) if wrap: self.chains.add(name) else: self.unwrapped_chains.add(name) def _select_chain_set(self, wrap): if wrap: return self.chains else: return self.unwrapped_chains def remove_chain(self, name, wrap=True): """Remove named chain. This removal "cascades". All rule in the chain are removed, as are all rules in other chains that jump to it. If the chain is not found, this is merely logged. """ name = get_chain_name(name, wrap) chain_set = self._select_chain_set(wrap) if name not in chain_set: LOG.debug('Attempted to remove chain %s which does not exist', name) return chain_set.remove(name) if not wrap: # non-wrapped chains and rules need to be dealt with specially, # so we keep a list of them to be iterated over in apply() self.remove_chains.add(name) # first, add rules to remove that have a matching chain name self.remove_rules += [str(r) for r in self.rules if r.chain == name] # next, remove rules from list that have a matching chain name self.rules = [r for r in self.rules if r.chain != name] if not wrap: jump_snippet = '-j %s' % name # next, add rules to remove that have a matching jump chain self.remove_rules += [str(r) for r in self.rules if jump_snippet in r.rule] else: jump_snippet = '-j %s-%s' % (self.wrap_name, name) # finally, remove rules from list that have a matching jump chain self.rules = [r for r in self.rules if jump_snippet not in r.rule] def add_rule(self, chain, rule, wrap=True, top=False, tag=None, comment=None): """Add a rule to the table. This is just like what you'd feed to iptables, just without the '-A <chain name>' bit at the start. However, if you need to jump to one of your wrapped chains, prepend its name with a '$' which will ensure the wrapping is applied correctly. """ chain = get_chain_name(chain, wrap) if wrap and chain not in self.chains: raise LookupError(_('Unknown chain: %r') % chain) if '$' in rule: rule = ' '.join( self._wrap_target_chain(e, wrap) for e in rule.split(' ')) self.rules.append(IptablesRule(chain, rule, wrap, top, self.wrap_name, tag, comment)) def _wrap_target_chain(self, s, wrap): if s.startswith('$'): s = ('%s-%s' % (self.wrap_name, get_chain_name(s[1:], wrap))) return s def remove_rule(self, chain, rule, wrap=True, top=False, comment=None): """Remove a rule from a chain. Note: The rule must be exactly identical to the one that was added. You cannot switch arguments around like you can with the iptables CLI tool. """ chain = get_chain_name(chain, wrap) try: if '$' in rule: rule = ' '.join( self._wrap_target_chain(e, wrap) for e in rule.split(' ')) self.rules.remove(IptablesRule(chain, rule, wrap, top, self.wrap_name, comment=comment)) if not wrap: self.remove_rules.append(str(IptablesRule(chain, rule, wrap, top, self.wrap_name, comment=comment))) except ValueError: LOG.warning(_LW('Tried to remove rule that was not there:' ' %(chain)r %(rule)r %(wrap)r %(top)r'), {'chain': chain, 'rule': rule, 'top': top, 'wrap': wrap}) def _get_chain_rules(self, chain, wrap): chain = get_chain_name(chain, wrap) return [rule for rule in self.rules if rule.chain == chain and rule.wrap == wrap] def empty_chain(self, chain, wrap=True): """Remove all rules from a chain.""" chained_rules = self._get_chain_rules(chain, wrap) for rule in chained_rules: self.rules.remove(rule) def clear_rules_by_tag(self, tag): if not tag: return rules = [rule for rule in self.rules if rule.tag == tag] for rule in rules: self.rules.remove(rule) class IptablesManager(object): """Wrapper for iptables. See IptablesTable for some usage docs A number of chains are set up to begin with. First, neutron-filter-top. It's added at the top of FORWARD and OUTPUT. Its name is not wrapped, so it's shared between the various neutron workers. It's intended for rules that need to live at the top of the FORWARD and OUTPUT chains. It's in both the ipv4 and ipv6 set of tables. For ipv4 and ipv6, the built-in INPUT, OUTPUT, and FORWARD filter chains are wrapped, meaning that the "real" INPUT chain has a rule that jumps to the wrapped INPUT chain, etc. Additionally, there's a wrapped chain named "local" which is jumped to from neutron-filter-top. For ipv4, the built-in PREROUTING, OUTPUT, and POSTROUTING nat chains are wrapped in the same was as the built-in filter chains. Additionally, there's a snat chain that is applied after the POSTROUTING chain. """ def __init__(self, _execute=None, state_less=False, use_ipv6=False, namespace=None, binary_name=binary_name): if _execute: self.execute = _execute else: self.execute = linux_utils.execute self.use_ipv6 = use_ipv6 self.namespace = namespace self.iptables_apply_deferred = False self.wrap_name = binary_name[:16] self.ipv4 = {'filter': IptablesTable(binary_name=self.wrap_name)} self.ipv6 = {'filter': IptablesTable(binary_name=self.wrap_name)} # Add a neutron-filter-top chain. It's intended to be shared # among the various neutron components. It sits at the very top # of FORWARD and OUTPUT. for tables in [self.ipv4, self.ipv6]: tables['filter'].add_chain('neutron-filter-top', wrap=False) tables['filter'].add_rule('FORWARD', '-j neutron-filter-top', wrap=False, top=True) tables['filter'].add_rule('OUTPUT', '-j neutron-filter-top', wrap=False, top=True) tables['filter'].add_chain('local') tables['filter'].add_rule('neutron-filter-top', '-j $local', wrap=False) # Wrap the built-in chains builtin_chains = {4: {'filter': ['INPUT', 'OUTPUT', 'FORWARD']}, 6: {'filter': ['INPUT', 'OUTPUT', 'FORWARD']}} if not state_less: self.ipv4.update( {'mangle': IptablesTable(binary_name=self.wrap_name)}) builtin_chains[4].update( {'mangle': ['PREROUTING', 'INPUT', 'FORWARD', 'OUTPUT', 'POSTROUTING']}) self.ipv6.update( {'mangle': IptablesTable(binary_name=self.wrap_name)}) builtin_chains[6].update( {'mangle': ['PREROUTING', 'INPUT', 'FORWARD', 'OUTPUT', 'POSTROUTING']}) self.ipv4.update( {'nat': IptablesTable(binary_name=self.wrap_name)}) builtin_chains[4].update({'nat': ['PREROUTING', 'OUTPUT', 'POSTROUTING']}) self.ipv4.update({'raw': IptablesTable(binary_name=self.wrap_name)}) builtin_chains[4].update({'raw': ['PREROUTING', 'OUTPUT']}) self.ipv6.update({'raw': IptablesTable(binary_name=self.wrap_name)}) builtin_chains[6].update({'raw': ['PREROUTING', 'OUTPUT']}) for ip_version in builtin_chains: if ip_version == 4: tables = self.ipv4 elif ip_version == 6: tables = self.ipv6 for table, chains in six.iteritems(builtin_chains[ip_version]): for chain in chains: tables[table].add_chain(chain) tables[table].add_rule(chain, '-j $%s' % (chain), wrap=False) if not state_less: # Add a neutron-postrouting-bottom chain. It's intended to be # shared among the various neutron components. We set it as the # last chain of POSTROUTING chain. self.ipv4['nat'].add_chain('neutron-postrouting-bottom', wrap=False) self.ipv4['nat'].add_rule('POSTROUTING', '-j neutron-postrouting-bottom', wrap=False) # We add a snat chain to the shared neutron-postrouting-bottom # chain so that it's applied last. self.ipv4['nat'].add_chain('snat') self.ipv4['nat'].add_rule('neutron-postrouting-bottom', '-j $snat', wrap=False, comment=ic.SNAT_OUT) # And then we add a float-snat chain and jump to first thing in # the snat chain. self.ipv4['nat'].add_chain('float-snat') self.ipv4['nat'].add_rule('snat', '-j $float-snat') # Add a mark chain to mangle PREROUTING chain. It is used to # identify ingress packets from a certain interface. self.ipv4['mangle'].add_chain('mark') self.ipv4['mangle'].add_rule('PREROUTING', '-j $mark') def get_tables(self, ip_version): return {4: self.ipv4, 6: self.ipv6}[ip_version] def get_chain(self, table, chain, ip_version=4, wrap=True): try: requested_table = self.get_tables(ip_version)[table] except KeyError: return [] return requested_table._get_chain_rules(chain, wrap) def is_chain_empty(self, table, chain, ip_version=4, wrap=True): return not self.get_chain(table, chain, ip_version, wrap) @contextlib.contextmanager def defer_apply(self): """Defer apply context.""" self.defer_apply_on() try: yield finally: try: self.defer_apply_off() except Exception: msg = _('Failure applying iptables rules') LOG.exception(msg) raise n_exc.IpTablesApplyException(msg) def defer_apply_on(self): self.iptables_apply_deferred = True def defer_apply_off(self): self.iptables_apply_deferred = False self._apply() def apply(self): if self.iptables_apply_deferred: return return self._apply() def _apply(self): lock_name = 'iptables' if self.namespace: lock_name += '-' + self.namespace with lockutils.lock(lock_name, utils.SYNCHRONIZED_PREFIX, True): return self._apply_synchronized() def get_rules_for_table(self, table): """Runs iptables-save on a table and returns the results.""" args = ['iptables-save', '-t', table] if self.namespace: args = ['ip', 'netns', 'exec', self.namespace] + args return self.execute(args, run_as_root=True).split('\n') def _apply_synchronized(self): """Apply the current in-memory set of iptables rules. This will create a diff between the rules from the previous runs and replace them with the current set of rules. This happens atomically, thanks to iptables-restore. Returns a list of the changes that were sent to iptables-save. """ s = [('iptables', self.ipv4)] if self.use_ipv6: s += [('ip6tables', self.ipv6)] all_commands = [] # variable to keep track all commands for return val for cmd, tables in s: args = ['%s-save' % (cmd,)] if self.namespace: args = ['ip', 'netns', 'exec', self.namespace] + args save_output = self.execute(args, run_as_root=True) all_lines = save_output.split('\n') commands = [] # Traverse tables in sorted order for predictable dump output for table_name in sorted(tables): table = tables[table_name] # isolate the lines of the table we are modifying start, end = self._find_table(all_lines, table_name) old_rules = all_lines[start:end] # generate the new table state we want new_rules = self._modify_rules(old_rules, table, table_name) # generate the iptables commands to get between the old state # and the new state changes = _generate_path_between_rules(old_rules, new_rules) if changes: # if there are changes to the table, we put on the header # and footer that iptables-save needs commands += (['# Generated by iptables_manager'] + ['*%s' % table_name] + changes + ['COMMIT', '# Completed by iptables_manager']) if not commands: continue all_commands += commands args = ['%s-restore' % (cmd,), '-n'] if self.namespace: args = ['ip', 'netns', 'exec', self.namespace] + args try: # always end with a new line commands.append('') self.execute(args, process_input='\n'.join(commands), run_as_root=True) except RuntimeError as r_error: with excutils.save_and_reraise_exception(): try: line_no = int(re.search( 'iptables-restore: line ([0-9]+?) failed', str(r_error)).group(1)) context = IPTABLES_ERROR_LINES_OF_CONTEXT log_start = max(0, line_no - context) log_end = line_no + context except AttributeError: # line error wasn't found, print all lines instead log_start = 0 log_end = len(commands) log_lines = ('%7d. %s' % (idx, l) for idx, l in enumerate( commands[log_start:log_end], log_start + 1) ) LOG.error(_LE("IPTablesManager.apply failed to apply the " "following set of iptables rules:\n%s"), '\n'.join(log_lines)) LOG.debug("IPTablesManager.apply completed with success. %d iptables " "commands were issued", len(all_commands)) return all_commands def _find_table(self, lines, table_name): if len(lines) < 3: # length only <2 when fake iptables return (0, 0) try: start = lines.index('*%s' % table_name) except ValueError: # Couldn't find table_name LOG.debug('Unable to find table %s', table_name) return (0, 0) end = lines[start:].index('COMMIT') + start + 1 return (start, end) def _find_rules_index(self, lines): seen_chains = False rules_index = 0 for rules_index, rule in enumerate(lines): if not seen_chains: if rule.startswith(':'): seen_chains = True else: if not rule.startswith(':'): break if not seen_chains: rules_index = 2 return rules_index def _modify_rules(self, current_lines, table, table_name): # Chains are stored as sets to avoid duplicates. # Sort the output chains here to make their order predictable. unwrapped_chains = sorted(table.unwrapped_chains) chains = sorted(table.chains) # we don't want to change any rules that don't belong to us so we start # the new_filter with these rules new_filter = [line.strip() for line in current_lines if self.wrap_name not in line] # generate our list of chain names our_chains = [':%s-%s' % (self.wrap_name, name) for name in chains] # the unwrapped chains (e.g. neutron-filter-top) may already exist in # the new_filter since they aren't marked by the wrap_name so we only # want to add them if they arent' already there our_chains += [':%s' % name for name in unwrapped_chains if not any(':%s' % name in s for s in new_filter)] our_top_rules = [] our_bottom_rules = [] for rule in table.rules: rule_str = str(rule) # similar to the unwrapped chains, there are some rules that belong # to us but they don't have the wrap name. we want to remove them # from the new_filter and then add them in the right location in # case our new rules changed the order. # (e.g. '-A FORWARD -j neutron-filter-top') new_filter = [s for s in new_filter if rule_str not in s] if rule.top: # rule.top == True means we want this rule to be at the top. our_top_rules += [rule_str] else: our_bottom_rules += [rule_str] our_chains_and_rules = our_chains + our_top_rules + our_bottom_rules # locate the position immediately after the existing chains to insert # our chains and rules rules_index = self._find_rules_index(new_filter) new_filter[rules_index:rules_index] = our_chains_and_rules def _weed_out_removes(line): # remove any rules or chains from the filter that were slated # for removal if line.startswith(':'): chain = line[1:] if chain in table.remove_chains: table.remove_chains.remove(chain) return False else: if line in table.remove_rules: table.remove_rules.remove(line) return False # Leave it alone return True seen_lines = set() # TODO(kevinbenton): remove this function and the next one. They are # just oversized brooms to sweep bugs under the rug!!! We generate the # rules and we shouldn't be generating duplicates. def _weed_out_duplicates(line): if line in seen_lines: thing = 'chain' if line.startswith(':') else 'rule' LOG.warning(_LW("Duplicate iptables %(thing)s detected. This " "may indicate a bug in the the iptables " "%(thing)s generation code. Line: %(line)s"), {'thing': thing, 'line': line}) return False seen_lines.add(line) # Leave it alone return True new_filter.reverse() new_filter = [line for line in new_filter if _weed_out_duplicates(line) and _weed_out_removes(line)] new_filter.reverse() # flush lists, just in case a rule or chain marked for removal # was already gone. (chains is a set, rules is a list) table.remove_chains.clear() table.remove_rules = [] return new_filter def _get_traffic_counters_cmd_tables(self, chain, wrap=True): name = get_chain_name(chain, wrap) cmd_tables = [('iptables', key) for key, table in self.ipv4.items() if name in table._select_chain_set(wrap)] if self.use_ipv6: cmd_tables += [('ip6tables', key) for key, table in self.ipv6.items() if name in table._select_chain_set(wrap)] return cmd_tables def get_traffic_counters(self, chain, wrap=True, zero=False): """Return the sum of the traffic counters of all rules of a chain.""" cmd_tables = self._get_traffic_counters_cmd_tables(chain, wrap) if not cmd_tables: LOG.warning(_LW('Attempted to get traffic counters of chain %s ' 'which does not exist'), chain) return name = get_chain_name(chain, wrap) acc = {'pkts': 0, 'bytes': 0} for cmd, table in cmd_tables: args = [cmd, '-t', table, '-L', name, '-n', '-v', '-x'] if zero: args.append('-Z') if self.namespace: args = ['ip', 'netns', 'exec', self.namespace] + args current_table = self.execute(args, run_as_root=True) current_lines = current_table.split('\n') for line in current_lines[2:]: if not line: break data = line.split() if (len(data) < 2 or not data[0].isdigit() or not data[1].isdigit()): break acc['pkts'] += int(data[0]) acc['bytes'] += int(data[1]) return acc def _generate_path_between_rules(old_rules, new_rules): """Generates iptables commands to get from old_rules to new_rules. This function diffs the two rule sets and then calculates the iptables commands necessary to get from the old rules to the new rules using insert and delete commands. """ old_by_chain = _get_rules_by_chain(old_rules) new_by_chain = _get_rules_by_chain(new_rules) old_chains, new_chains = set(old_by_chain.keys()), set(new_by_chain.keys()) # all referenced chains should be declared at the top before rules. # NOTE(kevinbenton): sorting and grouping chains is for determinism in # tests. iptables doesn't care about the order here statements = [':%s - [0:0]' % c for c in sorted(new_chains - old_chains)] sg_chains = [] other_chains = [] for chain in sorted(old_chains | new_chains): if '-sg-' in chain: sg_chains.append(chain) else: other_chains.append(chain) for chain in other_chains + sg_chains: statements += _generate_chain_diff_iptables_commands( chain, old_by_chain[chain], new_by_chain[chain]) # unreferenced chains get the axe for chain in sorted(old_chains - new_chains): statements += ['-X %s' % chain] return statements def _get_rules_by_chain(rules): by_chain = collections.defaultdict(list) for line in rules: if line.startswith(':'): chain = line[1:].split(' ', 1)[0] # even though this is a default dict, we need to manually add # chains to ensure that ones without rules are included because # they might be a jump reference if chain not in by_chain: by_chain[chain] = [] elif line.startswith('-A'): chain = line[3:].split(' ', 1)[0] by_chain[chain].append(line) return by_chain def _generate_chain_diff_iptables_commands(chain, old_chain_rules, new_chain_rules): # keep track of the old index because we have to insert rules # in the right position old_index = 1 statements = [] for line in difflib.ndiff(old_chain_rules, new_chain_rules): if line.startswith('?'): # skip ? because that's a guide string for intraline differences continue elif line.startswith('-'): # line deleted statements.append('-D %s %d' % (chain, old_index)) # since we are removing a line from the old rules, we # backup the index by 1 old_index -= 1 elif line.startswith('+'): # line added # strip the chain name since we have to add it before the index rule = line[5:].split(' ', 1)[-1] # rule inserted at this position statements.append('-I %s %d %s' % (chain, old_index, rule)) old_index += 1 return statements
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc import resultstoresearchapi.invocation_pb2 as invocation__pb2 import resultstoresearchapi.resultstore_download_pb2 as resultstore__download__pb2 class ResultStoreDownloadStub(object): """This is the interface used to download information from the ResultStore database. Most APIs require setting a response FieldMask via the 'fields' URL query parameter or the X-Goog-FieldMask HTTP/gRPC header. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.SearchInvocations = channel.unary_unary( '/resultstoresearch.v1.ResultStoreDownload/SearchInvocations', request_serializer=resultstore__download__pb2.SearchInvocationsRequest.SerializeToString, response_deserializer=resultstore__download__pb2.SearchInvocationsResponse.FromString, ) self.GetInvocation = channel.unary_unary( '/resultstoresearch.v1.ResultStoreDownload/GetInvocation', request_serializer=resultstore__download__pb2.GetInvocationRequest.SerializeToString, response_deserializer=invocation__pb2.Invocation.FromString, ) self.ListTargets = channel.unary_unary( '/resultstoresearch.v1.ResultStoreDownload/ListTargets', request_serializer=resultstore__download__pb2.ListTargetsRequest.SerializeToString, response_deserializer=resultstore__download__pb2.ListTargetsResponse.FromString, ) self.ListTargetSubFiles = channel.unary_unary( '/resultstoresearch.v1.ResultStoreDownload/ListTargetSubFiles', request_serializer=resultstore__download__pb2.ListTargetSubFilesRequest.SerializeToString, response_deserializer=resultstore__download__pb2.ListTargetSubFilesResponse.FromString, ) self.GetFile = channel.unary_stream( '/resultstoresearch.v1.ResultStoreDownload/GetFile', request_serializer=resultstore__download__pb2.GetFileRequest.SerializeToString, response_deserializer=resultstore__download__pb2.GetFileResponse.FromString, ) self.DownloadFile = channel.unary_unary( '/resultstoresearch.v1.ResultStoreDownload/DownloadFile', request_serializer=resultstore__download__pb2.DownloadFileRequest.SerializeToString, response_deserializer=resultstore__download__pb2.DownloadFileResponse.FromString, ) self.GetInitialState = channel.unary_unary( '/resultstoresearch.v1.ResultStoreDownload/GetInitialState', request_serializer=resultstore__download__pb2.GetInitialStateRequest.SerializeToString, response_deserializer=resultstore__download__pb2.GetInitialStateResponse.FromString, ) self.GetTestCases = channel.unary_unary( '/resultstoresearch.v1.ResultStoreDownload/GetTestCases', request_serializer=resultstore__download__pb2.GetTestCasesRequest.SerializeToString, response_deserializer=resultstore__download__pb2.GetTestCasesResponse.FromString, ) class ResultStoreDownloadServicer(object): """This is the interface used to download information from the ResultStore database. Most APIs require setting a response FieldMask via the 'fields' URL query parameter or the X-Goog-FieldMask HTTP/gRPC header. """ def SearchInvocations(self, request, context): """Searches for invocations matching the given query parameters. Results will be ordered by timing.start_time with most recent first, but total ordering of results is not guaranteed when difference in timestamps is very small. Results may be stale. An error will be reported in the following cases: - If a query string is not provided - If no field mask was given. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetInvocation(self, request, context): """Retrieves the invocation with the given name. An error will be reported in the following cases: - If the invocation is not found. - If the given invocation name is badly formatted. - If no field mask was given. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListTargets(self, request, context): """Retrieves all targets for a parent invocation. This might be limited by user or server, in which case a continuation token is provided. The order in which results are returned is undefined, but stable. An error will be reported in the following cases: - If the parent is not found. - If the given parent name is badly formatted. - If no field mask was given. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListTargetSubFiles(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetFile(self, request, context): """Retrieves the File with the given uri. returns a stream of bytes to be stitched together in order. An error will be reported in the following cases: - If the File is not found. - If the given File uri is badly formatted. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DownloadFile(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetInitialState(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetTestCases(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_ResultStoreDownloadServicer_to_server(servicer, server): rpc_method_handlers = { 'SearchInvocations': grpc.unary_unary_rpc_method_handler( servicer.SearchInvocations, request_deserializer=resultstore__download__pb2.SearchInvocationsRequest.FromString, response_serializer=resultstore__download__pb2.SearchInvocationsResponse.SerializeToString, ), 'GetInvocation': grpc.unary_unary_rpc_method_handler( servicer.GetInvocation, request_deserializer=resultstore__download__pb2.GetInvocationRequest.FromString, response_serializer=invocation__pb2.Invocation.SerializeToString, ), 'ListTargets': grpc.unary_unary_rpc_method_handler( servicer.ListTargets, request_deserializer=resultstore__download__pb2.ListTargetsRequest.FromString, response_serializer=resultstore__download__pb2.ListTargetsResponse.SerializeToString, ), 'ListTargetSubFiles': grpc.unary_unary_rpc_method_handler( servicer.ListTargetSubFiles, request_deserializer=resultstore__download__pb2.ListTargetSubFilesRequest.FromString, response_serializer=resultstore__download__pb2.ListTargetSubFilesResponse.SerializeToString, ), 'GetFile': grpc.unary_stream_rpc_method_handler( servicer.GetFile, request_deserializer=resultstore__download__pb2.GetFileRequest.FromString, response_serializer=resultstore__download__pb2.GetFileResponse.SerializeToString, ), 'DownloadFile': grpc.unary_unary_rpc_method_handler( servicer.DownloadFile, request_deserializer=resultstore__download__pb2.DownloadFileRequest.FromString, response_serializer=resultstore__download__pb2.DownloadFileResponse.SerializeToString, ), 'GetInitialState': grpc.unary_unary_rpc_method_handler( servicer.GetInitialState, request_deserializer=resultstore__download__pb2.GetInitialStateRequest.FromString, response_serializer=resultstore__download__pb2.GetInitialStateResponse.SerializeToString, ), 'GetTestCases': grpc.unary_unary_rpc_method_handler( servicer.GetTestCases, request_deserializer=resultstore__download__pb2.GetTestCasesRequest.FromString, response_serializer=resultstore__download__pb2.GetTestCasesResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'resultstoresearch.v1.ResultStoreDownload', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class ResultStoreDownload(object): """This is the interface used to download information from the ResultStore database. Most APIs require setting a response FieldMask via the 'fields' URL query parameter or the X-Goog-FieldMask HTTP/gRPC header. """ @staticmethod def SearchInvocations(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/resultstoresearch.v1.ResultStoreDownload/SearchInvocations', resultstore__download__pb2.SearchInvocationsRequest.SerializeToString, resultstore__download__pb2.SearchInvocationsResponse.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetInvocation(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/resultstoresearch.v1.ResultStoreDownload/GetInvocation', resultstore__download__pb2.GetInvocationRequest.SerializeToString, invocation__pb2.Invocation.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ListTargets(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/resultstoresearch.v1.ResultStoreDownload/ListTargets', resultstore__download__pb2.ListTargetsRequest.SerializeToString, resultstore__download__pb2.ListTargetsResponse.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ListTargetSubFiles(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/resultstoresearch.v1.ResultStoreDownload/ListTargetSubFiles', resultstore__download__pb2.ListTargetSubFilesRequest.SerializeToString, resultstore__download__pb2.ListTargetSubFilesResponse.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetFile(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_stream(request, target, '/resultstoresearch.v1.ResultStoreDownload/GetFile', resultstore__download__pb2.GetFileRequest.SerializeToString, resultstore__download__pb2.GetFileResponse.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def DownloadFile(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/resultstoresearch.v1.ResultStoreDownload/DownloadFile', resultstore__download__pb2.DownloadFileRequest.SerializeToString, resultstore__download__pb2.DownloadFileResponse.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetInitialState(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/resultstoresearch.v1.ResultStoreDownload/GetInitialState', resultstore__download__pb2.GetInitialStateRequest.SerializeToString, resultstore__download__pb2.GetInitialStateResponse.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetTestCases(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/resultstoresearch.v1.ResultStoreDownload/GetTestCases', resultstore__download__pb2.GetTestCasesRequest.SerializeToString, resultstore__download__pb2.GetTestCasesResponse.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata)
# Copyright 2013 Josh Durgin # Copyright 2013 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime import mock from oslo_serialization import jsonutils from six.moves import urllib import webob from webob import exc from nova.api.openstack import common from nova.api.openstack.compute import assisted_volume_snapshots \ as assisted_snaps_v21 from nova.api.openstack.compute import volumes as volumes_v21 from nova.compute import api as compute_api from nova.compute import flavors from nova.compute import vm_states import nova.conf from nova import context from nova import exception from nova import objects from nova.objects import base from nova import test from nova.tests.unit.api.openstack import fakes from nova.tests.unit import fake_block_device from nova.tests.unit import fake_instance from nova.volume import cinder CONF = nova.conf.CONF FAKE_UUID = 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa' FAKE_UUID_A = '00000000-aaaa-aaaa-aaaa-000000000000' FAKE_UUID_B = 'bbbbbbbb-bbbb-bbbb-bbbb-bbbbbbbbbbbb' FAKE_UUID_C = 'cccccccc-cccc-cccc-cccc-cccccccccccc' IMAGE_UUID = 'c905cedb-7281-47e4-8a62-f26bc5fc4c77' def fake_get_instance(self, context, instance_id, expected_attrs=None): return fake_instance.fake_instance_obj(context, **{'uuid': instance_id}) def fake_get_volume(self, context, id): return {'id': FAKE_UUID_A, 'status': 'available', 'attach_status': 'detached' } def fake_attach_volume(self, context, instance, volume_id, device): pass def fake_detach_volume(self, context, instance, volume): pass def fake_swap_volume(self, context, instance, old_volume_id, new_volume_id): pass def fake_create_snapshot(self, context, volume, name, description): return {'id': 123, 'volume_id': 'fakeVolId', 'status': 'available', 'volume_size': 123, 'created_at': '2013-01-01 00:00:01', 'display_name': 'myVolumeName', 'display_description': 'myVolumeDescription'} def fake_delete_snapshot(self, context, snapshot_id): pass def fake_compute_volume_snapshot_delete(self, context, volume_id, snapshot_id, delete_info): pass def fake_compute_volume_snapshot_create(self, context, volume_id, create_info): pass @classmethod def fake_bdm_list_get_by_instance_uuid(cls, context, instance_uuid): db_list = [fake_block_device.FakeDbBlockDeviceDict( {'id': 1, 'instance_uuid': instance_uuid, 'device_name': '/dev/fake0', 'delete_on_termination': 'False', 'source_type': 'volume', 'destination_type': 'volume', 'snapshot_id': None, 'volume_id': FAKE_UUID_A, 'volume_size': 1}), fake_block_device.FakeDbBlockDeviceDict( {'id': 2, 'instance_uuid': instance_uuid, 'device_name': '/dev/fake1', 'delete_on_termination': 'False', 'source_type': 'volume', 'destination_type': 'volume', 'snapshot_id': None, 'volume_id': FAKE_UUID_B, 'volume_size': 1})] item_cls = objects.BlockDeviceMapping return base.obj_make_list(context, cls(), item_cls, db_list) class BootFromVolumeTest(test.TestCase): def setUp(self): super(BootFromVolumeTest, self).setUp() self.stubs.Set(compute_api.API, 'create', self._get_fake_compute_api_create()) fakes.stub_out_nw_api(self) self._block_device_mapping_seen = None self._legacy_bdm_seen = True def _get_fake_compute_api_create(self): def _fake_compute_api_create(cls, context, instance_type, image_href, **kwargs): self._block_device_mapping_seen = kwargs.get( 'block_device_mapping') self._legacy_bdm_seen = kwargs.get('legacy_bdm') inst_type = flavors.get_flavor_by_flavor_id(2) resv_id = None return ([{'id': 1, 'display_name': 'test_server', 'uuid': FAKE_UUID, 'instance_type': inst_type, 'access_ip_v4': '1.2.3.4', 'access_ip_v6': 'fead::1234', 'image_ref': IMAGE_UUID, 'user_id': 'fake', 'project_id': 'fake', 'created_at': datetime.datetime(2010, 10, 10, 12, 0, 0), 'updated_at': datetime.datetime(2010, 11, 11, 11, 0, 0), 'progress': 0, 'fixed_ips': [] }], resv_id) return _fake_compute_api_create def test_create_root_volume(self): body = dict(server=dict( name='test_server', imageRef=IMAGE_UUID, flavorRef=2, min_count=1, max_count=1, block_device_mapping=[dict( volume_id='ca9fe3f5-cede-43cb-8050-1672acabe348', device_name='/dev/vda', delete_on_termination=False, )] )) req = fakes.HTTPRequest.blank('/v2/fake/os-volumes_boot') req.method = 'POST' req.body = jsonutils.dump_as_bytes(body) req.headers['content-type'] = 'application/json' res = req.get_response(fakes.wsgi_app_v21( init_only=('os-volumes', 'servers'))) self.assertEqual(202, res.status_int) server = jsonutils.loads(res.body)['server'] self.assertEqual(FAKE_UUID, server['id']) self.assertEqual(CONF.password_length, len(server['adminPass'])) self.assertEqual(1, len(self._block_device_mapping_seen)) self.assertTrue(self._legacy_bdm_seen) self.assertEqual('ca9fe3f5-cede-43cb-8050-1672acabe348', self._block_device_mapping_seen[0]['volume_id']) self.assertEqual('/dev/vda', self._block_device_mapping_seen[0]['device_name']) def test_create_root_volume_bdm_v2(self): body = dict(server=dict( name='test_server', imageRef=IMAGE_UUID, flavorRef=2, min_count=1, max_count=1, block_device_mapping_v2=[dict( source_type='volume', uuid='1', device_name='/dev/vda', boot_index=0, delete_on_termination=False, )] )) req = fakes.HTTPRequest.blank('/v2/fake/os-volumes_boot') req.method = 'POST' req.body = jsonutils.dump_as_bytes(body) req.headers['content-type'] = 'application/json' res = req.get_response(fakes.wsgi_app_v21( init_only=('os-volumes', 'servers'))) self.assertEqual(202, res.status_int) server = jsonutils.loads(res.body)['server'] self.assertEqual(FAKE_UUID, server['id']) self.assertEqual(CONF.password_length, len(server['adminPass'])) self.assertEqual(1, len(self._block_device_mapping_seen)) self.assertFalse(self._legacy_bdm_seen) self.assertEqual('1', self._block_device_mapping_seen[0]['volume_id']) self.assertEqual(0, self._block_device_mapping_seen[0]['boot_index']) self.assertEqual('/dev/vda', self._block_device_mapping_seen[0]['device_name']) class VolumeApiTestV21(test.NoDBTestCase): url_prefix = '/v2/fake' def setUp(self): super(VolumeApiTestV21, self).setUp() fakes.stub_out_networking(self) self.stubs.Set(cinder.API, "delete", fakes.stub_volume_delete) self.stubs.Set(cinder.API, "get", fakes.stub_volume_get) self.stubs.Set(cinder.API, "get_all", fakes.stub_volume_get_all) self.context = context.get_admin_context() @property def app(self): return fakes.wsgi_app_v21(init_only=('os-volumes', 'servers')) def test_volume_create(self): self.stubs.Set(cinder.API, "create", fakes.stub_volume_create) vol = {"size": 100, "display_name": "Volume Test Name", "display_description": "Volume Test Desc", "availability_zone": "zone1:host1"} body = {"volume": vol} req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes') req.method = 'POST' req.body = jsonutils.dump_as_bytes(body) req.headers['content-type'] = 'application/json' resp = req.get_response(self.app) self.assertEqual(200, resp.status_int) resp_dict = jsonutils.loads(resp.body) self.assertIn('volume', resp_dict) self.assertEqual(vol['size'], resp_dict['volume']['size']) self.assertEqual(vol['display_name'], resp_dict['volume']['displayName']) self.assertEqual(vol['display_description'], resp_dict['volume']['displayDescription']) self.assertEqual(vol['availability_zone'], resp_dict['volume']['availabilityZone']) def _test_volume_translate_exception(self, cinder_exc, api_exc): """Tests that cinder exceptions are correctly translated""" def fake_volume_create(self, context, size, name, description, snapshot, **param): raise cinder_exc self.stubs.Set(cinder.API, "create", fake_volume_create) vol = {"size": '10', "display_name": "Volume Test Name", "display_description": "Volume Test Desc", "availability_zone": "zone1:host1"} body = {"volume": vol} req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes') self.assertRaises(api_exc, volumes_v21.VolumeController().create, req, body=body) @mock.patch.object(cinder.API, 'get_snapshot') @mock.patch.object(cinder.API, 'create') def test_volume_create_bad_snapshot_id(self, mock_create, mock_get): vol = {"snapshot_id": '1', "size": 10} body = {"volume": vol} mock_get.side_effect = exception.SnapshotNotFound(snapshot_id='1') req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes') self.assertRaises(webob.exc.HTTPNotFound, volumes_v21.VolumeController().create, req, body=body) def test_volume_create_bad_input(self): self._test_volume_translate_exception( exception.InvalidInput(reason='fake'), webob.exc.HTTPBadRequest) def test_volume_create_bad_quota(self): self._test_volume_translate_exception( exception.OverQuota(overs='fake'), webob.exc.HTTPForbidden) def test_volume_index(self): req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes') resp = req.get_response(self.app) self.assertEqual(200, resp.status_int) def test_volume_detail(self): req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes/detail') resp = req.get_response(self.app) self.assertEqual(200, resp.status_int) def test_volume_show(self): req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes/123') resp = req.get_response(self.app) self.assertEqual(200, resp.status_int) def test_volume_show_no_volume(self): self.stubs.Set(cinder.API, "get", fakes.stub_volume_notfound) req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes/456') resp = req.get_response(self.app) self.assertEqual(404, resp.status_int) self.assertIn('Volume 456 could not be found.', resp.body) def test_volume_delete(self): req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes/123') req.method = 'DELETE' resp = req.get_response(self.app) self.assertEqual(202, resp.status_int) def test_volume_delete_no_volume(self): self.stubs.Set(cinder.API, "delete", fakes.stub_volume_notfound) req = fakes.HTTPRequest.blank(self.url_prefix + '/os-volumes/456') req.method = 'DELETE' resp = req.get_response(self.app) self.assertEqual(404, resp.status_int) self.assertIn('Volume 456 could not be found.', resp.body) class VolumeAttachTestsV21(test.NoDBTestCase): validation_error = exception.ValidationError def setUp(self): super(VolumeAttachTestsV21, self).setUp() self.stub_out('nova.objects.BlockDeviceMappingList' '.get_by_instance_uuid', fake_bdm_list_get_by_instance_uuid) self.stubs.Set(compute_api.API, 'get', fake_get_instance) self.stubs.Set(cinder.API, 'get', fake_get_volume) self.context = context.get_admin_context() self.expected_show = {'volumeAttachment': {'device': '/dev/fake0', 'serverId': FAKE_UUID, 'id': FAKE_UUID_A, 'volumeId': FAKE_UUID_A }} self._set_up_controller() def _set_up_controller(self): self.attachments = volumes_v21.VolumeAttachmentController() def test_show(self): req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context result = self.attachments.show(req, FAKE_UUID, FAKE_UUID_A) self.assertEqual(self.expected_show, result) @mock.patch.object(compute_api.API, 'get', side_effect=exception.InstanceNotFound(instance_id=FAKE_UUID)) def test_show_no_instance(self, mock_mr): req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(exc.HTTPNotFound, self.attachments.show, req, FAKE_UUID, FAKE_UUID_A) @mock.patch.object(objects.BlockDeviceMappingList, 'get_by_instance_uuid', return_value=None) def test_show_no_bdms(self, mock_mr): req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(exc.HTTPNotFound, self.attachments.show, req, FAKE_UUID, FAKE_UUID_A) def test_show_bdms_no_mountpoint(self): FAKE_UUID_NOTEXIST = '00000000-aaaa-aaaa-aaaa-aaaaaaaaaaaa' req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(exc.HTTPNotFound, self.attachments.show, req, FAKE_UUID, FAKE_UUID_NOTEXIST) def test_detach(self): self.stubs.Set(compute_api.API, 'detach_volume', fake_detach_volume) req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'DELETE' req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context result = self.attachments.delete(req, FAKE_UUID, FAKE_UUID_A) # NOTE: on v2.1, http status code is set as wsgi_code of API # method instead of status_int in a response object. if isinstance(self.attachments, volumes_v21.VolumeAttachmentController): status_int = self.attachments.delete.wsgi_code else: status_int = result.status_int self.assertEqual(202, status_int) @mock.patch.object(common, 'get_instance') def test_detach_vol_shelved_not_supported(self, mock_get_instance): inst = fake_instance.fake_instance_obj(self.context, **{'uuid': FAKE_UUID}) inst.vm_state = vm_states.SHELVED mock_get_instance.return_value = inst req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid', version='2.19') req.method = 'DELETE' req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(webob.exc.HTTPConflict, self.attachments.delete, req, FAKE_UUID, FAKE_UUID_A) @mock.patch.object(compute_api.API, 'detach_volume') @mock.patch.object(common, 'get_instance') def test_detach_vol_shelved_supported(self, mock_get_instance, mock_detach): inst = fake_instance.fake_instance_obj(self.context, **{'uuid': FAKE_UUID}) inst.vm_state = vm_states.SHELVED mock_get_instance.return_value = inst req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid', version='2.20') req.method = 'DELETE' req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.attachments.delete(req, FAKE_UUID, FAKE_UUID_A) self.assertTrue(mock_detach.called) def test_detach_vol_not_found(self): self.stubs.Set(compute_api.API, 'detach_volume', fake_detach_volume) req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'DELETE' req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(exc.HTTPNotFound, self.attachments.delete, req, FAKE_UUID, FAKE_UUID_C) @mock.patch('nova.objects.BlockDeviceMapping.is_root', new_callable=mock.PropertyMock) def test_detach_vol_root(self, mock_isroot): req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'DELETE' req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context mock_isroot.return_value = True self.assertRaises(exc.HTTPForbidden, self.attachments.delete, req, FAKE_UUID, FAKE_UUID_A) def test_detach_volume_from_locked_server(self): def fake_detach_volume_from_locked_server(self, context, instance, volume): raise exception.InstanceIsLocked(instance_uuid=instance['uuid']) self.stubs.Set(compute_api.API, 'detach_volume', fake_detach_volume_from_locked_server) req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'DELETE' req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(webob.exc.HTTPConflict, self.attachments.delete, req, FAKE_UUID, FAKE_UUID_A) def test_attach_volume(self): self.stubs.Set(compute_api.API, 'attach_volume', fake_attach_volume) body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake'}} req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context result = self.attachments.create(req, FAKE_UUID, body=body) self.assertEqual('00000000-aaaa-aaaa-aaaa-000000000000', result['volumeAttachment']['id']) @mock.patch.object(common, 'get_instance') def test_attach_vol_shelved_not_supported(self, mock_get_instance): body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake'}} inst = fake_instance.fake_instance_obj(self.context, **{'uuid': FAKE_UUID}) inst.vm_state = vm_states.SHELVED mock_get_instance.return_value = inst req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments', version='2.19') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(webob.exc.HTTPConflict, self.attachments.create, req, FAKE_UUID, body=body) @mock.patch.object(compute_api.API, 'attach_volume', return_value='/dev/myfake') @mock.patch.object(common, 'get_instance') def test_attach_vol_shelved_supported(self, mock_get_instance, mock_attach): body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake'}} inst = fake_instance.fake_instance_obj(self.context, **{'uuid': FAKE_UUID}) inst.vm_state = vm_states.SHELVED mock_get_instance.return_value = inst req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments', version='2.20') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context result = self.attachments.create(req, FAKE_UUID, body=body) self.assertEqual('00000000-aaaa-aaaa-aaaa-000000000000', result['volumeAttachment']['id']) self.assertEqual('/dev/myfake', result['volumeAttachment']['device']) @mock.patch.object(compute_api.API, 'attach_volume', return_value='/dev/myfake') def test_attach_volume_with_auto_device(self, mock_attach): body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': None}} req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context result = self.attachments.create(req, FAKE_UUID, body=body) self.assertEqual('00000000-aaaa-aaaa-aaaa-000000000000', result['volumeAttachment']['id']) self.assertEqual('/dev/myfake', result['volumeAttachment']['device']) def test_attach_volume_to_locked_server(self): def fake_attach_volume_to_locked_server(self, context, instance, volume_id, device=None): raise exception.InstanceIsLocked(instance_uuid=instance['uuid']) self.stubs.Set(compute_api.API, 'attach_volume', fake_attach_volume_to_locked_server) body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake'}} req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(webob.exc.HTTPConflict, self.attachments.create, req, FAKE_UUID, body=body) def test_attach_volume_bad_id(self): self.stubs.Set(compute_api.API, 'attach_volume', fake_attach_volume) body = { 'volumeAttachment': { 'device': None, 'volumeId': 'TESTVOLUME', } } req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(self.validation_error, self.attachments.create, req, FAKE_UUID, body=body) @mock.patch.object(compute_api.API, 'attach_volume', side_effect=exception.DevicePathInUse(path='/dev/sda')) def test_attach_volume_device_in_use(self, mock_attach): body = { 'volumeAttachment': { 'device': '/dev/sda', 'volumeId': FAKE_UUID_A, } } req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(webob.exc.HTTPConflict, self.attachments.create, req, FAKE_UUID, body=body) def test_attach_volume_without_volumeId(self): self.stubs.Set(compute_api.API, 'attach_volume', fake_attach_volume) body = { 'volumeAttachment': { 'device': None } } req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(self.validation_error, self.attachments.create, req, FAKE_UUID, body=body) def test_attach_volume_with_extra_arg(self): body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake', 'extra': 'extra_arg'}} req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(self.validation_error, self.attachments.create, req, FAKE_UUID, body=body) @mock.patch.object(compute_api.API, 'attach_volume') def test_attach_volume_with_invalid_input(self, mock_attach): mock_attach.side_effect = exception.InvalidInput( reason='Invalid volume') body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake'}} req = fakes.HTTPRequest.blank('/v2/servers/id/os-volume_attachments') req.method = 'POST' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context self.assertRaises(exc.HTTPBadRequest, self.attachments.create, req, FAKE_UUID, body=body) def _test_swap(self, attachments, uuid=FAKE_UUID_A, fake_func=None, body=None): fake_func = fake_func or fake_swap_volume self.stubs.Set(compute_api.API, 'swap_volume', fake_func) body = body or {'volumeAttachment': {'volumeId': FAKE_UUID_B}} req = fakes.HTTPRequest.blank( '/v2/servers/id/os-volume_attachments/uuid') req.method = 'PUT' req.body = jsonutils.dump_as_bytes({}) req.headers['content-type'] = 'application/json' req.environ['nova.context'] = self.context return attachments.update(req, FAKE_UUID, uuid, body=body) def test_swap_volume_for_locked_server(self): def fake_swap_volume_for_locked_server(self, context, instance, old_volume, new_volume): raise exception.InstanceIsLocked(instance_uuid=instance['uuid']) self.assertRaises(webob.exc.HTTPConflict, self._test_swap, self.attachments, fake_func=fake_swap_volume_for_locked_server) def test_swap_volume(self): result = self._test_swap(self.attachments) # NOTE: on v2.1, http status code is set as wsgi_code of API # method instead of status_int in a response object. if isinstance(self.attachments, volumes_v21.VolumeAttachmentController): status_int = self.attachments.update.wsgi_code else: status_int = result.status_int self.assertEqual(202, status_int) def test_swap_volume_with_nonexistent_uri(self): self.assertRaises(exc.HTTPNotFound, self._test_swap, self.attachments, uuid=FAKE_UUID_C) @mock.patch.object(cinder.API, 'get') def test_swap_volume_with_nonexistent_dest_in_body(self, mock_update): mock_update.side_effect = [ None, exception.VolumeNotFound(volume_id=FAKE_UUID_C)] body = {'volumeAttachment': {'volumeId': FAKE_UUID_C}} self.assertRaises(exc.HTTPBadRequest, self._test_swap, self.attachments, body=body) def test_swap_volume_without_volumeId(self): body = {'volumeAttachment': {'device': '/dev/fake'}} self.assertRaises(self.validation_error, self._test_swap, self.attachments, body=body) def test_swap_volume_with_extra_arg(self): body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake'}} self.assertRaises(self.validation_error, self._test_swap, self.attachments, body=body) class CommonBadRequestTestCase(object): resource = None entity_name = None controller_cls = None kwargs = {} bad_request = exc.HTTPBadRequest """ Tests of places we throw 400 Bad Request from """ def setUp(self): super(CommonBadRequestTestCase, self).setUp() self.controller = self.controller_cls() def _bad_request_create(self, body): req = fakes.HTTPRequest.blank('/v2/fake/' + self.resource) req.method = 'POST' kwargs = self.kwargs.copy() kwargs['body'] = body self.assertRaises(self.bad_request, self.controller.create, req, **kwargs) def test_create_no_body(self): self._bad_request_create(body=None) def test_create_missing_volume(self): body = {'foo': {'a': 'b'}} self._bad_request_create(body=body) def test_create_malformed_entity(self): body = {self.entity_name: 'string'} self._bad_request_create(body=body) class BadRequestVolumeTestCaseV21(CommonBadRequestTestCase, test.NoDBTestCase): resource = 'os-volumes' entity_name = 'volume' controller_cls = volumes_v21.VolumeController bad_request = exception.ValidationError @mock.patch.object(cinder.API, 'delete', side_effect=exception.InvalidInput(reason='vol attach')) def test_delete_invalid_status_volume(self, mock_delete): req = fakes.HTTPRequest.blank('/v2.1/os-volumes') req.method = 'DELETE' self.assertRaises(webob.exc.HTTPBadRequest, self.controller.delete, req, FAKE_UUID) class BadRequestSnapshotTestCaseV21(CommonBadRequestTestCase, test.NoDBTestCase): resource = 'os-snapshots' entity_name = 'snapshot' controller_cls = volumes_v21.SnapshotController bad_request = exception.ValidationError class AssistedSnapshotCreateTestCaseV21(test.NoDBTestCase): assisted_snaps = assisted_snaps_v21 bad_request = exception.ValidationError def setUp(self): super(AssistedSnapshotCreateTestCaseV21, self).setUp() self.controller = \ self.assisted_snaps.AssistedVolumeSnapshotsController() self.stubs.Set(compute_api.API, 'volume_snapshot_create', fake_compute_volume_snapshot_create) def test_assisted_create(self): req = fakes.HTTPRequest.blank('/v2/fake/os-assisted-volume-snapshots') body = {'snapshot': {'volume_id': '1', 'create_info': {'type': 'qcow2', 'new_file': 'new_file', 'snapshot_id': 'snapshot_id'}}} req.method = 'POST' self.controller.create(req, body=body) def test_assisted_create_missing_create_info(self): req = fakes.HTTPRequest.blank('/v2/fake/os-assisted-volume-snapshots') body = {'snapshot': {'volume_id': '1'}} req.method = 'POST' self.assertRaises(self.bad_request, self.controller.create, req, body=body) def test_assisted_create_with_unexpected_attr(self): req = fakes.HTTPRequest.blank('/v2/fake/os-assisted-volume-snapshots') body = { 'snapshot': { 'volume_id': '1', 'create_info': { 'type': 'qcow2', 'new_file': 'new_file', 'snapshot_id': 'snapshot_id' } }, 'unexpected': 0, } req.method = 'POST' self.assertRaises(self.bad_request, self.controller.create, req, body=body) class AssistedSnapshotDeleteTestCaseV21(test.NoDBTestCase): assisted_snaps = assisted_snaps_v21 def _check_status(self, expected_status, res, controller_method): self.assertEqual(expected_status, controller_method.wsgi_code) def setUp(self): super(AssistedSnapshotDeleteTestCaseV21, self).setUp() self.controller = \ self.assisted_snaps.AssistedVolumeSnapshotsController() self.stubs.Set(compute_api.API, 'volume_snapshot_delete', fake_compute_volume_snapshot_delete) def test_assisted_delete(self): params = { 'delete_info': jsonutils.dumps({'volume_id': '1'}), } req = fakes.HTTPRequest.blank( '/v2/fake/os-assisted-volume-snapshots?%s' % urllib.parse.urlencode(params)) req.method = 'DELETE' result = self.controller.delete(req, '5') self._check_status(204, result, self.controller.delete) def test_assisted_delete_missing_delete_info(self): req = fakes.HTTPRequest.blank('/v2/fake/os-assisted-volume-snapshots') req.method = 'DELETE' self.assertRaises(webob.exc.HTTPBadRequest, self.controller.delete, req, '5') class TestAssistedVolumeSnapshotsPolicyEnforcementV21(test.NoDBTestCase): def setUp(self): super(TestAssistedVolumeSnapshotsPolicyEnforcementV21, self).setUp() self.controller = ( assisted_snaps_v21.AssistedVolumeSnapshotsController()) self.req = fakes.HTTPRequest.blank('') def test_create_assisted_volumes_snapshots_policy_failed(self): rule_name = "os_compute_api:os-assisted-volume-snapshots:create" self.policy.set_rules({rule_name: "project:non_fake"}) body = {'snapshot': {'volume_id': '1', 'create_info': {'type': 'qcow2', 'new_file': 'new_file', 'snapshot_id': 'snapshot_id'}}} exc = self.assertRaises( exception.PolicyNotAuthorized, self.controller.create, self.req, body=body) self.assertEqual( "Policy doesn't allow %s to be performed." % rule_name, exc.format_message()) def test_delete_assisted_volumes_snapshots_policy_failed(self): rule_name = "os_compute_api:os-assisted-volume-snapshots:delete" self.policy.set_rules({rule_name: "project:non_fake"}) exc = self.assertRaises( exception.PolicyNotAuthorized, self.controller.delete, self.req, '5') self.assertEqual( "Policy doesn't allow %s to be performed." % rule_name, exc.format_message()) class TestVolumeAttachPolicyEnforcementV21(test.NoDBTestCase): def setUp(self): super(TestVolumeAttachPolicyEnforcementV21, self).setUp() self.controller = volumes_v21.VolumeAttachmentController() self.req = fakes.HTTPRequest.blank('') def _common_policy_check(self, rules, rule_name, func, *arg, **kwarg): self.policy.set_rules(rules) exc = self.assertRaises( exception.PolicyNotAuthorized, func, *arg, **kwarg) self.assertEqual( "Policy doesn't allow %s to be performed." % rule_name, exc.format_message()) def test_index_volume_attach_policy_failed(self): rule_name = "os_compute_api:os-volumes-attachments:index" rules = {rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.index, self.req, FAKE_UUID) def test_show_volume_attach_policy_failed(self): rule_name = "os_compute_api:os-volumes" rules = {"os_compute_api:os-volumes-attachments:show": "@", rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.show, self.req, FAKE_UUID, FAKE_UUID_A) rule_name = "os_compute_api:os-volumes-attachments:show" rules = {"os_compute_api:os-volumes": "@", rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.show, self.req, FAKE_UUID, FAKE_UUID_A) def test_create_volume_attach_policy_failed(self): rule_name = "os_compute_api:os-volumes" rules = {"os_compute_api:os-volumes-attachments:create": "@", rule_name: "project:non_fake"} body = {'volumeAttachment': {'volumeId': FAKE_UUID_A, 'device': '/dev/fake'}} self._common_policy_check(rules, rule_name, self.controller.create, self.req, FAKE_UUID, body=body) rule_name = "os_compute_api:os-volumes-attachments:create" rules = {"os_compute_api:os-volumes": "@", rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.create, self.req, FAKE_UUID, body=body) def test_update_volume_attach_policy_failed(self): rule_name = "os_compute_api:os-volumes" rules = {"os_compute_api:os-volumes-attachments:update": "@", rule_name: "project:non_fake"} body = {'volumeAttachment': {'volumeId': FAKE_UUID_B}} self._common_policy_check(rules, rule_name, self.controller.update, self.req, FAKE_UUID, FAKE_UUID_A, body=body) rule_name = "os_compute_api:os-volumes-attachments:update" rules = {"os_compute_api:os-volumes": "@", rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.update, self.req, FAKE_UUID, FAKE_UUID_A, body=body) def test_delete_volume_attach_policy_failed(self): rule_name = "os_compute_api:os-volumes" rules = {"os_compute_api:os-volumes-attachments:delete": "@", rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.delete, self.req, FAKE_UUID, FAKE_UUID_A) rule_name = "os_compute_api:os-volumes-attachments:delete" rules = {"os_compute_api:os-volumes": "@", rule_name: "project:non_fake"} self._common_policy_check(rules, rule_name, self.controller.delete, self.req, FAKE_UUID, FAKE_UUID_A) class TestVolumesAPIDeprecation(test.NoDBTestCase): def setUp(self): super(TestVolumesAPIDeprecation, self).setUp() self.controller = volumes_v21.VolumeController() self.req = fakes.HTTPRequest.blank('', version='2.36') def test_all_apis_return_not_found(self): self.assertRaises(exception.VersionNotFoundForAPIMethod, self.controller.show, self.req, fakes.FAKE_UUID) self.assertRaises(exception.VersionNotFoundForAPIMethod, self.controller.delete, self.req, fakes.FAKE_UUID) self.assertRaises(exception.VersionNotFoundForAPIMethod, self.controller.index, self.req) self.assertRaises(exception.VersionNotFoundForAPIMethod, self.controller.create, self.req, {}) self.assertRaises(exception.VersionNotFoundForAPIMethod, self.controller.detail, self.req)
# Copyright 2017 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A client for the google.longrunning.operations meta-API. This is a client that deals with long-running operations that follow the pattern outlined by the `Google API Style Guide`_. When an API method normally takes long time to complete, it can be designed to return ``Operation`` to the client, and the client can use this interface to receive the real response asynchronously by polling the operation resource to receive the response. It is not a separate service, but rather an interface implemented by a larger service. The protocol-level definition is available at `google/longrunning/operations.proto`_. Typically, this will be constructed automatically by another client class to deal with operations. .. _Google API Style Guide: https://cloud.google.com/apis/design/design_pattern s#long_running_operations .. _google/longrunning/operations.proto: https://github.com/googleapis/googleapis/blob/master/google/longrunning /operations.proto """ import functools from google.api_core import gapic_v1 from google.api_core import page_iterator from google.api_core.operations_v1 import operations_client_config from google.longrunning import operations_pb2 class OperationsClient(object): """Client for interacting with long-running operations within a service. Args: channel (grpc.Channel): The gRPC channel associated with the service that implements the ``google.longrunning.operations`` interface. client_config (dict): A dictionary of call options for each method. If not specified the default configuration is used. """ def __init__(self, channel, client_config=operations_client_config.config): # Create the gRPC client stub. self.operations_stub = operations_pb2.OperationsStub(channel) # Create all wrapped methods using the interface configuration. # The interface config contains all of the default settings for retry # and timeout for each RPC method. interfaces = client_config["interfaces"] interface_config = interfaces["google.longrunning.Operations"] method_configs = gapic_v1.config.parse_method_configs(interface_config) self._get_operation = gapic_v1.method.wrap_method( self.operations_stub.GetOperation, default_retry=method_configs["GetOperation"].retry, default_timeout=method_configs["GetOperation"].timeout, ) self._list_operations = gapic_v1.method.wrap_method( self.operations_stub.ListOperations, default_retry=method_configs["ListOperations"].retry, default_timeout=method_configs["ListOperations"].timeout, ) self._cancel_operation = gapic_v1.method.wrap_method( self.operations_stub.CancelOperation, default_retry=method_configs["CancelOperation"].retry, default_timeout=method_configs["CancelOperation"].timeout, ) self._delete_operation = gapic_v1.method.wrap_method( self.operations_stub.DeleteOperation, default_retry=method_configs["DeleteOperation"].retry, default_timeout=method_configs["DeleteOperation"].timeout, ) # Service calls def get_operation( self, name, retry=gapic_v1.method.DEFAULT, timeout=gapic_v1.method.DEFAULT, metadata=None, ): """Gets the latest state of a long-running operation. Clients can use this method to poll the operation result at intervals as recommended by the API service. Example: >>> from google.api_core import operations_v1 >>> api = operations_v1.OperationsClient() >>> name = '' >>> response = api.get_operation(name) Args: name (str): The name of the operation resource. retry (google.api_core.retry.Retry): The retry strategy to use when invoking the RPC. If unspecified, the default retry from the client configuration will be used. If ``None``, then this method will not retry the RPC at all. timeout (float): The amount of time in seconds to wait for the RPC to complete. Note that if ``retry`` is used, this timeout applies to each individual attempt and the overall time it takes for this method to complete may be longer. If unspecified, the the default timeout in the client configuration is used. If ``None``, then the RPC method will not time out. metadata (Optional[List[Tuple[str, str]]]): Additional gRPC metadata. Returns: google.longrunning.operations_pb2.Operation: The state of the operation. Raises: google.api_core.exceptions.GoogleAPICallError: If an error occurred while invoking the RPC, the appropriate ``GoogleAPICallError`` subclass will be raised. """ request = operations_pb2.GetOperationRequest(name=name) # Add routing header metadata = metadata or [] metadata.append(gapic_v1.routing_header.to_grpc_metadata({"name": name})) return self._get_operation( request, retry=retry, timeout=timeout, metadata=metadata ) def list_operations( self, name, filter_, retry=gapic_v1.method.DEFAULT, timeout=gapic_v1.method.DEFAULT, metadata=None, ): """ Lists operations that match the specified filter in the request. Example: >>> from google.api_core import operations_v1 >>> api = operations_v1.OperationsClient() >>> name = '' >>> >>> # Iterate over all results >>> for operation in api.list_operations(name): >>> # process operation >>> pass >>> >>> # Or iterate over results one page at a time >>> iter = api.list_operations(name) >>> for page in iter.pages: >>> for operation in page: >>> # process operation >>> pass Args: name (str): The name of the operation collection. filter_ (str): The standard list filter. retry (google.api_core.retry.Retry): The retry strategy to use when invoking the RPC. If unspecified, the default retry from the client configuration will be used. If ``None``, then this method will not retry the RPC at all. timeout (float): The amount of time in seconds to wait for the RPC to complete. Note that if ``retry`` is used, this timeout applies to each individual attempt and the overall time it takes for this method to complete may be longer. If unspecified, the the default timeout in the client configuration is used. If ``None``, then the RPC method will not time out. metadata (Optional[List[Tuple[str, str]]]): Additional gRPC metadata. Returns: google.api_core.page_iterator.Iterator: An iterator that yields :class:`google.longrunning.operations_pb2.Operation` instances. Raises: google.api_core.exceptions.MethodNotImplemented: If the server does not support this method. Services are not required to implement this method. google.api_core.exceptions.GoogleAPICallError: If an error occurred while invoking the RPC, the appropriate ``GoogleAPICallError`` subclass will be raised. """ # Create the request object. request = operations_pb2.ListOperationsRequest(name=name, filter=filter_) # Add routing header metadata = metadata or [] metadata.append(gapic_v1.routing_header.to_grpc_metadata({"name": name})) # Create the method used to fetch pages method = functools.partial( self._list_operations, retry=retry, timeout=timeout, metadata=metadata ) iterator = page_iterator.GRPCIterator( client=None, method=method, request=request, items_field="operations", request_token_field="page_token", response_token_field="next_page_token", ) return iterator def cancel_operation( self, name, retry=gapic_v1.method.DEFAULT, timeout=gapic_v1.method.DEFAULT, metadata=None, ): """Starts asynchronous cancellation on a long-running operation. The server makes a best effort to cancel the operation, but success is not guaranteed. Clients can use :meth:`get_operation` or service- specific methods to check whether the cancellation succeeded or whether the operation completed despite cancellation. On successful cancellation, the operation is not deleted; instead, it becomes an operation with an ``Operation.error`` value with a ``google.rpc.Status.code`` of ``1``, corresponding to ``Code.CANCELLED``. Example: >>> from google.api_core import operations_v1 >>> api = operations_v1.OperationsClient() >>> name = '' >>> api.cancel_operation(name) Args: name (str): The name of the operation resource to be cancelled. retry (google.api_core.retry.Retry): The retry strategy to use when invoking the RPC. If unspecified, the default retry from the client configuration will be used. If ``None``, then this method will not retry the RPC at all. timeout (float): The amount of time in seconds to wait for the RPC to complete. Note that if ``retry`` is used, this timeout applies to each individual attempt and the overall time it takes for this method to complete may be longer. If unspecified, the the default timeout in the client configuration is used. If ``None``, then the RPC method will not time out. metadata (Optional[List[Tuple[str, str]]]): Additional gRPC metadata. Raises: google.api_core.exceptions.MethodNotImplemented: If the server does not support this method. Services are not required to implement this method. google.api_core.exceptions.GoogleAPICallError: If an error occurred while invoking the RPC, the appropriate ``GoogleAPICallError`` subclass will be raised. """ # Create the request object. request = operations_pb2.CancelOperationRequest(name=name) # Add routing header metadata = metadata or [] metadata.append(gapic_v1.routing_header.to_grpc_metadata({"name": name})) self._cancel_operation(request, retry=retry, timeout=timeout, metadata=metadata) def delete_operation( self, name, retry=gapic_v1.method.DEFAULT, timeout=gapic_v1.method.DEFAULT, metadata=None, ): """Deletes a long-running operation. This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. Example: >>> from google.api_core import operations_v1 >>> api = operations_v1.OperationsClient() >>> name = '' >>> api.delete_operation(name) Args: name (str): The name of the operation resource to be deleted. retry (google.api_core.retry.Retry): The retry strategy to use when invoking the RPC. If unspecified, the default retry from the client configuration will be used. If ``None``, then this method will not retry the RPC at all. timeout (float): The amount of time in seconds to wait for the RPC to complete. Note that if ``retry`` is used, this timeout applies to each individual attempt and the overall time it takes for this method to complete may be longer. If unspecified, the the default timeout in the client configuration is used. If ``None``, then the RPC method will not time out. metadata (Optional[List[Tuple[str, str]]]): Additional gRPC metadata. Raises: google.api_core.exceptions.MethodNotImplemented: If the server does not support this method. Services are not required to implement this method. google.api_core.exceptions.GoogleAPICallError: If an error occurred while invoking the RPC, the appropriate ``GoogleAPICallError`` subclass will be raised. """ # Create the request object. request = operations_pb2.DeleteOperationRequest(name=name) # Add routing header metadata = metadata or [] metadata.append(gapic_v1.routing_header.to_grpc_metadata({"name": name})) self._delete_operation(request, retry=retry, timeout=timeout, metadata=metadata)
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (C) 2012 Midokura Japan K.K. # Copyright (C) 2013 Midokura PTE LTD # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # @author: Takaaki Suzuki, Midokura Japan KK # @author: Tomoe Sugihara, Midokura Japan KK # @author: Ryu Ishimoto, Midokura Japan KK # @author: Rossella Sblendido, Midokura Japan KK # @author: Duarte Nunes, Midokura Japan KK from midonetclient import api from oslo.config import cfg from sqlalchemy.orm import exc as sa_exc from neutron.api.v2 import attributes from neutron.common import constants from neutron.common import exceptions as n_exc from neutron.common import rpc as n_rpc from neutron.common import topics from neutron.db import agents_db from neutron.db import agentschedulers_db from neutron.db import db_base_plugin_v2 from neutron.db import dhcp_rpc_base from neutron.db import external_net_db from neutron.db import l3_db from neutron.db import models_v2 from neutron.db import portbindings_db from neutron.db import securitygroups_db from neutron.extensions import external_net as ext_net from neutron.extensions import l3 from neutron.extensions import portbindings from neutron.extensions import securitygroup as ext_sg from neutron.openstack.common import excutils from neutron.openstack.common import log as logging from neutron.openstack.common import rpc from neutron.plugins.midonet.common import config # noqa from neutron.plugins.midonet.common import net_util from neutron.plugins.midonet import midonet_lib LOG = logging.getLogger(__name__) EXTERNAL_GW_INFO = l3.EXTERNAL_GW_INFO METADATA_DEFAULT_IP = "169.254.169.254/32" OS_FLOATING_IP_RULE_KEY = 'OS_FLOATING_IP' OS_SG_RULE_KEY = 'OS_SG_RULE_ID' OS_TENANT_ROUTER_RULE_KEY = 'OS_TENANT_ROUTER_RULE' PRE_ROUTING_CHAIN_NAME = "OS_PRE_ROUTING_%s" PORT_INBOUND_CHAIN_NAME = "OS_PORT_%s_INBOUND" PORT_OUTBOUND_CHAIN_NAME = "OS_PORT_%s_OUTBOUND" POST_ROUTING_CHAIN_NAME = "OS_POST_ROUTING_%s" SG_INGRESS_CHAIN_NAME = "OS_SG_%s_INGRESS" SG_EGRESS_CHAIN_NAME = "OS_SG_%s_EGRESS" SG_PORT_GROUP_NAME = "OS_PG_%s" SNAT_RULE = 'SNAT' def _get_nat_ips(type, fip): """Get NAT IP address information. From the route type given, determine the source and target IP addresses from the provided floating IP DB object. """ if type == 'pre-routing': return fip["floating_ip_address"], fip["fixed_ip_address"] elif type == 'post-routing': return fip["fixed_ip_address"], fip["floating_ip_address"] else: raise ValueError(_("Invalid nat_type %s") % type) def _nat_chain_names(router_id): """Get the chain names for NAT. These names are used to associate MidoNet chains to the NAT rules applied to the router. For each of these, there are two NAT types, 'dnat' and 'snat' that are returned as keys, and the corresponding chain names as their values. """ pre_routing_name = PRE_ROUTING_CHAIN_NAME % router_id post_routing_name = POST_ROUTING_CHAIN_NAME % router_id return {'pre-routing': pre_routing_name, 'post-routing': post_routing_name} def _sg_chain_names(sg_id): """Get the chain names for security group. These names are used to associate a security group to MidoNet chains. There are two names for ingress and egress security group directions. """ ingress = SG_INGRESS_CHAIN_NAME % sg_id egress = SG_EGRESS_CHAIN_NAME % sg_id return {'ingress': ingress, 'egress': egress} def _port_chain_names(port_id): """Get the chain names for a port. These are chains to hold security group chains. """ inbound = PORT_INBOUND_CHAIN_NAME % port_id outbound = PORT_OUTBOUND_CHAIN_NAME % port_id return {'inbound': inbound, 'outbound': outbound} def _sg_port_group_name(sg_id): """Get the port group name for security group.. This name is used to associate a security group to MidoNet port groups. """ return SG_PORT_GROUP_NAME % sg_id def _rule_direction(sg_direction): """Convert the SG direction to MidoNet direction MidoNet terms them 'inbound' and 'outbound' instead of 'ingress' and 'egress'. Also, the direction is reversed since MidoNet sees it from the network port's point of view, not the VM's. """ if sg_direction == 'ingress': return 'outbound' elif sg_direction == 'egress': return 'inbound' else: raise ValueError(_("Unrecognized direction %s") % sg_direction) def _is_router_interface_port(port): """Check whether the given port is a router interface port.""" device_owner = port['device_owner'] return (device_owner in l3_db.DEVICE_OWNER_ROUTER_INTF) def _is_router_gw_port(port): """Check whether the given port is a router gateway port.""" device_owner = port['device_owner'] return (device_owner in l3_db.DEVICE_OWNER_ROUTER_GW) def _is_vif_port(port): """Check whether the given port is a standard VIF port.""" device_owner = port['device_owner'] return (not _is_dhcp_port(port) and device_owner not in (l3_db.DEVICE_OWNER_ROUTER_GW, l3_db.DEVICE_OWNER_ROUTER_INTF)) def _is_dhcp_port(port): """Check whether the given port is a DHCP port.""" device_owner = port['device_owner'] return device_owner.startswith(constants.DEVICE_OWNER_DHCP) def _check_resource_exists(func, id, name, raise_exc=False): """Check whether the given resource exists in MidoNet data store.""" try: func(id) except midonet_lib.MidonetResourceNotFound as exc: LOG.error(_("There is no %(name)s with ID %(id)s in MidoNet."), {"name": name, "id": id}) if raise_exc: raise MidonetPluginException(msg=exc) class MidoRpcCallbacks(dhcp_rpc_base.DhcpRpcCallbackMixin): RPC_API_VERSION = '1.1' def create_rpc_dispatcher(self): """Get the rpc dispatcher for this manager. This a basic implementation that will call the plugin like get_ports and handle basic events If a manager would like to set an rpc API version, or support more than one class as the target of rpc messages, override this method. """ return n_rpc.PluginRpcDispatcher([self, agents_db.AgentExtRpcCallback()]) class MidonetPluginException(n_exc.NeutronException): message = _("%(msg)s") class MidonetPluginV2(db_base_plugin_v2.NeutronDbPluginV2, portbindings_db.PortBindingMixin, external_net_db.External_net_db_mixin, l3_db.L3_NAT_db_mixin, agentschedulers_db.DhcpAgentSchedulerDbMixin, securitygroups_db.SecurityGroupDbMixin): supported_extension_aliases = ['external-net', 'router', 'security-group', 'agent', 'dhcp_agent_scheduler', 'binding'] __native_bulk_support = False def __init__(self): super(MidonetPluginV2, self).__init__() # Read config values midonet_conf = cfg.CONF.MIDONET midonet_uri = midonet_conf.midonet_uri admin_user = midonet_conf.username admin_pass = midonet_conf.password admin_project_id = midonet_conf.project_id self.provider_router_id = midonet_conf.provider_router_id self.provider_router = None self.mido_api = api.MidonetApi(midonet_uri, admin_user, admin_pass, project_id=admin_project_id) self.client = midonet_lib.MidoClient(self.mido_api) # self.provider_router_id should have been set. if self.provider_router_id is None: msg = _('provider_router_id should be configured in the plugin ' 'config file') LOG.exception(msg) raise MidonetPluginException(msg=msg) self.setup_rpc() self.base_binding_dict = { portbindings.VIF_TYPE: portbindings.VIF_TYPE_MIDONET, portbindings.VIF_DETAILS: { # TODO(rkukura): Replace with new VIF security details portbindings.CAP_PORT_FILTER: 'security-group' in self.supported_extension_aliases}} def _get_provider_router(self): if self.provider_router is None: self.provider_router = self.client.get_router( self.provider_router_id) return self.provider_router def _dhcp_mappings(self, context, fixed_ips, mac): for fixed_ip in fixed_ips: subnet = self._get_subnet(context, fixed_ip["subnet_id"]) if subnet["ip_version"] == 6: # TODO(ryu) handle IPv6 continue if not subnet["enable_dhcp"]: # Skip if DHCP is disabled continue yield subnet['cidr'], fixed_ip["ip_address"], mac def _metadata_subnets(self, context, fixed_ips): for fixed_ip in fixed_ips: subnet = self._get_subnet(context, fixed_ip["subnet_id"]) if subnet["ip_version"] == 6: continue yield subnet['cidr'], fixed_ip["ip_address"] def _initialize_port_chains(self, port, in_chain, out_chain, sg_ids): tenant_id = port["tenant_id"] position = 1 # mac spoofing protection self._add_chain_rule(in_chain, action='drop', dl_src=port["mac_address"], inv_dl_src=True, position=position) # ip spoofing protection for fixed_ip in port["fixed_ips"]: position += 1 self._add_chain_rule(in_chain, action="drop", src_addr=fixed_ip["ip_address"] + "/32", inv_nw_src=True, dl_type=0x0800, # IPv4 position=position) # conntrack position += 1 self._add_chain_rule(in_chain, action='accept', match_forward_flow=True, position=position) # Reset the position to process egress position = 1 # Add rule for SGs if sg_ids: for sg_id in sg_ids: chain_name = _sg_chain_names(sg_id)["ingress"] chain = self.client.get_chain_by_name(tenant_id, chain_name) self._add_chain_rule(out_chain, action='jump', jump_chain_id=chain.get_id(), jump_chain_name=chain_name, position=position) position += 1 # add reverse flow matching at the end self._add_chain_rule(out_chain, action='accept', match_return_flow=True, position=position) position += 1 # fall back DROP rule at the end except for ARP self._add_chain_rule(out_chain, action='drop', dl_type=0x0806, # ARP inv_dl_type=True, position=position) def _bind_port_to_sgs(self, context, port, sg_ids): self._process_port_create_security_group(context, port, sg_ids) if sg_ids is not None: for sg_id in sg_ids: pg_name = _sg_port_group_name(sg_id) self.client.add_port_to_port_group_by_name( port["tenant_id"], pg_name, port["id"]) def _unbind_port_from_sgs(self, context, port_id): self._delete_port_security_group_bindings(context, port_id) self.client.remove_port_from_port_groups(port_id) def _create_accept_chain_rule(self, context, sg_rule, chain=None): direction = sg_rule["direction"] tenant_id = sg_rule["tenant_id"] sg_id = sg_rule["security_group_id"] chain_name = _sg_chain_names(sg_id)[direction] if chain is None: chain = self.client.get_chain_by_name(tenant_id, chain_name) pg_id = None if sg_rule["remote_group_id"] is not None: pg_name = _sg_port_group_name(sg_id) pg = self.client.get_port_group_by_name(tenant_id, pg_name) pg_id = pg.get_id() props = {OS_SG_RULE_KEY: str(sg_rule["id"])} # Determine source or destination address by looking at direction src_pg_id = dst_pg_id = None src_addr = dst_addr = None src_port_to = dst_port_to = None src_port_from = dst_port_from = None if direction == "egress": dst_pg_id = pg_id dst_addr = sg_rule["remote_ip_prefix"] dst_port_from = sg_rule["port_range_min"] dst_port_to = sg_rule["port_range_max"] else: src_pg_id = pg_id src_addr = sg_rule["remote_ip_prefix"] src_port_from = sg_rule["port_range_min"] src_port_to = sg_rule["port_range_max"] return self._add_chain_rule( chain, action='accept', port_group_src=src_pg_id, port_group_dst=dst_pg_id, src_addr=src_addr, src_port_from=src_port_from, src_port_to=src_port_to, dst_addr=dst_addr, dst_port_from=dst_port_from, dst_port_to=dst_port_to, nw_proto=net_util.get_protocol_value(sg_rule["protocol"]), dl_type=net_util.get_ethertype_value(sg_rule["ethertype"]), properties=props) def _remove_nat_rules(self, context, fip): router = self.client.get_router(fip["router_id"]) self.client.remove_static_route(self._get_provider_router(), fip["floating_ip_address"]) chain_names = _nat_chain_names(router.get_id()) for _type, name in chain_names.iteritems(): self.client.remove_rules_by_property( router.get_tenant_id(), name, OS_FLOATING_IP_RULE_KEY, fip["id"]) def setup_rpc(self): # RPC support self.topic = topics.PLUGIN self.conn = rpc.create_connection(new=True) self.callbacks = MidoRpcCallbacks() self.dispatcher = self.callbacks.create_rpc_dispatcher() self.conn.create_consumer(self.topic, self.dispatcher, fanout=False) # Consume from all consumers in a thread self.conn.consume_in_thread() def create_subnet(self, context, subnet): """Create Neutron subnet. Creates a Neutron subnet and a DHCP entry in MidoNet bridge. """ LOG.debug(_("MidonetPluginV2.create_subnet called: subnet=%r"), subnet) s = subnet["subnet"] net = super(MidonetPluginV2, self).get_network( context, subnet['subnet']['network_id'], fields=None) session = context.session with session.begin(subtransactions=True): sn_entry = super(MidonetPluginV2, self).create_subnet(context, subnet) bridge = self.client.get_bridge(sn_entry['network_id']) gateway_ip = s['gateway_ip'] cidr = s['cidr'] if s['enable_dhcp']: dns_nameservers = None host_routes = None if s['dns_nameservers'] is not attributes.ATTR_NOT_SPECIFIED: dns_nameservers = s['dns_nameservers'] if s['host_routes'] is not attributes.ATTR_NOT_SPECIFIED: host_routes = s['host_routes'] self.client.create_dhcp(bridge, gateway_ip, cidr, host_rts=host_routes, dns_servers=dns_nameservers) # For external network, link the bridge to the provider router. if net['router:external']: self._link_bridge_to_gw_router( bridge, self._get_provider_router(), gateway_ip, cidr) LOG.debug(_("MidonetPluginV2.create_subnet exiting: sn_entry=%r"), sn_entry) return sn_entry def delete_subnet(self, context, id): """Delete Neutron subnet. Delete neutron network and its corresponding MidoNet bridge. """ LOG.debug(_("MidonetPluginV2.delete_subnet called: id=%s"), id) subnet = super(MidonetPluginV2, self).get_subnet(context, id, fields=None) net = super(MidonetPluginV2, self).get_network(context, subnet['network_id'], fields=None) session = context.session with session.begin(subtransactions=True): super(MidonetPluginV2, self).delete_subnet(context, id) bridge = self.client.get_bridge(subnet['network_id']) if subnet['enable_dhcp']: self.client.delete_dhcp(bridge, subnet['cidr']) # If the network is external, clean up routes, links, ports if net[ext_net.EXTERNAL]: self._unlink_bridge_from_gw_router( bridge, self._get_provider_router()) LOG.debug(_("MidonetPluginV2.delete_subnet exiting")) def create_network(self, context, network): """Create Neutron network. Create a new Neutron network and its corresponding MidoNet bridge. """ LOG.debug(_('MidonetPluginV2.create_network called: network=%r'), network) net_data = network['network'] tenant_id = self._get_tenant_id_for_create(context, net_data) net_data['tenant_id'] = tenant_id self._ensure_default_security_group(context, tenant_id) bridge = self.client.create_bridge(**net_data) net_data['id'] = bridge.get_id() session = context.session with session.begin(subtransactions=True): net = super(MidonetPluginV2, self).create_network(context, network) self._process_l3_create(context, net, net_data) LOG.debug(_("MidonetPluginV2.create_network exiting: net=%r"), net) return net def update_network(self, context, id, network): """Update Neutron network. Update an existing Neutron network and its corresponding MidoNet bridge. """ LOG.debug(_("MidonetPluginV2.update_network called: id=%(id)r, " "network=%(network)r"), {'id': id, 'network': network}) session = context.session with session.begin(subtransactions=True): net = super(MidonetPluginV2, self).update_network( context, id, network) self._process_l3_update(context, net, network['network']) self.client.update_bridge(id, **network['network']) LOG.debug(_("MidonetPluginV2.update_network exiting: net=%r"), net) return net def get_network(self, context, id, fields=None): """Get Neutron network. Retrieves a Neutron network and its corresponding MidoNet bridge. """ LOG.debug(_("MidonetPluginV2.get_network called: id=%(id)r, " "fields=%(fields)r"), {'id': id, 'fields': fields}) qnet = super(MidonetPluginV2, self).get_network(context, id, fields) self.client.get_bridge(id) LOG.debug(_("MidonetPluginV2.get_network exiting: qnet=%r"), qnet) return qnet def delete_network(self, context, id): """Delete a network and its corresponding MidoNet bridge.""" LOG.debug(_("MidonetPluginV2.delete_network called: id=%r"), id) self.client.delete_bridge(id) try: super(MidonetPluginV2, self).delete_network(context, id) except Exception: with excutils.save_and_reraise_exception(): LOG.error(_('Failed to delete neutron db, while Midonet ' 'bridge=%r had been deleted'), id) def create_port(self, context, port): """Create a L2 port in Neutron/MidoNet.""" LOG.debug(_("MidonetPluginV2.create_port called: port=%r"), port) port_data = port['port'] # Create a bridge port in MidoNet and set the bridge port ID as the # port ID in Neutron. bridge = self.client.get_bridge(port_data["network_id"]) tenant_id = bridge.get_tenant_id() asu = port_data.get("admin_state_up", True) bridge_port = self.client.add_bridge_port(bridge, admin_state_up=asu) port_data["id"] = bridge_port.get_id() try: session = context.session with session.begin(subtransactions=True): # Create a Neutron port new_port = super(MidonetPluginV2, self).create_port(context, port) port_data.update(new_port) self._ensure_default_security_group_on_port(context, port) if _is_vif_port(port_data): # Bind security groups to the port sg_ids = self._get_security_groups_on_port(context, port) self._bind_port_to_sgs(context, new_port, sg_ids) # Create port chains port_chains = {} for d, name in _port_chain_names( new_port["id"]).iteritems(): port_chains[d] = self.client.create_chain(tenant_id, name) self._initialize_port_chains(port_data, port_chains['inbound'], port_chains['outbound'], sg_ids) # Update the port with the chain self.client.update_port_chains( bridge_port, port_chains["inbound"].get_id(), port_chains["outbound"].get_id()) # DHCP mapping is only for VIF ports for cidr, ip, mac in self._dhcp_mappings( context, port_data["fixed_ips"], port_data["mac_address"]): self.client.add_dhcp_host(bridge, cidr, ip, mac) elif _is_dhcp_port(port_data): # For DHCP port, add a metadata route for cidr, ip in self._metadata_subnets( context, port_data["fixed_ips"]): self.client.add_dhcp_route_option(bridge, cidr, ip, METADATA_DEFAULT_IP) self._process_portbindings_create_and_update(context, port_data, new_port) except Exception as ex: # Try removing the MidoNet port before raising an exception. with excutils.save_and_reraise_exception(): LOG.error(_("Failed to create a port on network %(net_id)s: " "%(err)s"), {"net_id": port_data["network_id"], "err": ex}) self.client.delete_port(bridge_port.get_id()) LOG.debug(_("MidonetPluginV2.create_port exiting: port=%r"), new_port) return new_port def get_port(self, context, id, fields=None): """Retrieve port.""" LOG.debug(_("MidonetPluginV2.get_port called: id=%(id)s " "fields=%(fields)r"), {'id': id, 'fields': fields}) port = super(MidonetPluginV2, self).get_port(context, id, fields) "Check if the port exists in MidoNet DB""" try: self.client.get_port(id) except midonet_lib.MidonetResourceNotFound as exc: LOG.error(_("There is no port with ID %(id)s in MidoNet."), {"id": id}) port['status'] = constants.PORT_STATUS_ERROR raise exc LOG.debug(_("MidonetPluginV2.get_port exiting: port=%r"), port) return port def get_ports(self, context, filters=None, fields=None): """List neutron ports and verify that they exist in MidoNet.""" LOG.debug(_("MidonetPluginV2.get_ports called: filters=%(filters)s " "fields=%(fields)r"), {'filters': filters, 'fields': fields}) ports = super(MidonetPluginV2, self).get_ports(context, filters, fields) return ports def delete_port(self, context, id, l3_port_check=True): """Delete a neutron port and corresponding MidoNet bridge port.""" LOG.debug(_("MidonetPluginV2.delete_port called: id=%(id)s " "l3_port_check=%(l3_port_check)r"), {'id': id, 'l3_port_check': l3_port_check}) # if needed, check to see if this is a port owned by # and l3-router. If so, we should prevent deletion. if l3_port_check: self.prevent_l3_port_deletion(context, id) self.disassociate_floatingips(context, id) port = self.get_port(context, id) device_id = port['device_id'] # If this port is for router interface/gw, unlink and delete. if _is_router_interface_port(port): self._unlink_bridge_from_router(device_id, id) elif _is_router_gw_port(port): # Gateway removed # Remove all the SNAT rules that are tagged. router = self._get_router(context, device_id) tenant_id = router["tenant_id"] chain_names = _nat_chain_names(device_id) for _type, name in chain_names.iteritems(): self.client.remove_rules_by_property( tenant_id, name, OS_TENANT_ROUTER_RULE_KEY, SNAT_RULE) # Remove the default routes and unlink self._remove_router_gateway(port['device_id']) self.client.delete_port(id, delete_chains=True) try: for cidr, ip, mac in self._dhcp_mappings( context, port["fixed_ips"], port["mac_address"]): self.client.delete_dhcp_host(port["network_id"], cidr, ip, mac) except Exception: LOG.error(_("Failed to delete DHCP mapping for port %(id)s"), {"id": id}) super(MidonetPluginV2, self).delete_port(context, id) def update_port(self, context, id, port): """Handle port update, including security groups and fixed IPs.""" with context.session.begin(subtransactions=True): # Get the port and save the fixed IPs old_port = self._get_port(context, id) net_id = old_port["network_id"] mac = old_port["mac_address"] old_ips = old_port["fixed_ips"] # update the port DB p = super(MidonetPluginV2, self).update_port(context, id, port) if "admin_state_up" in port["port"]: asu = port["port"]["admin_state_up"] mido_port = self.client.update_port(id, admin_state_up=asu) # If we're changing the admin_state_up flag and the port is # associated with a router, then we also need to update the # peer port. if _is_router_interface_port(p): self.client.update_port(mido_port.get_peer_id(), admin_state_up=asu) new_ips = p["fixed_ips"] if new_ips: bridge = self.client.get_bridge(net_id) # If it's a DHCP port, add a route to reach the MD server if _is_dhcp_port(p): for cidr, ip in self._metadata_subnets( context, new_ips): self.client.add_dhcp_route_option( bridge, cidr, ip, METADATA_DEFAULT_IP) else: # IPs have changed. Re-map the DHCP entries for cidr, ip, mac in self._dhcp_mappings( context, old_ips, mac): self.client.remove_dhcp_host( bridge, cidr, ip, mac) for cidr, ip, mac in self._dhcp_mappings( context, new_ips, mac): self.client.add_dhcp_host( bridge, cidr, ip, mac) if (self._check_update_deletes_security_groups(port) or self._check_update_has_security_groups(port)): self._unbind_port_from_sgs(context, p["id"]) sg_ids = self._get_security_groups_on_port(context, port) self._bind_port_to_sgs(context, p, sg_ids) self._process_portbindings_create_and_update(context, port['port'], p) return p def create_router(self, context, router): """Handle router creation. When a new Neutron router is created, its corresponding MidoNet router is also created. In MidoNet, this router is initialized with chains for inbound and outbound traffic, which will be used to hold other chains that include various rules, such as NAT. :param router: Router information provided to create a new router. """ # NOTE(dcahill): Similar to the NSX plugin, we completely override # this method in order to be able to use the MidoNet ID as Neutron ID # TODO(dcahill): Propose upstream patch for allowing # 3rd parties to specify IDs as we do with l2 plugin LOG.debug(_("MidonetPluginV2.create_router called: router=%(router)s"), {"router": router}) r = router['router'] tenant_id = self._get_tenant_id_for_create(context, r) r['tenant_id'] = tenant_id mido_router = self.client.create_router(**r) mido_router_id = mido_router.get_id() try: has_gw_info = False if EXTERNAL_GW_INFO in r: has_gw_info = True gw_info = r.pop(EXTERNAL_GW_INFO) with context.session.begin(subtransactions=True): # pre-generate id so it will be available when # configuring external gw port router_db = l3_db.Router(id=mido_router_id, tenant_id=tenant_id, name=r['name'], admin_state_up=r['admin_state_up'], status="ACTIVE") context.session.add(router_db) if has_gw_info: self._update_router_gw_info(context, router_db['id'], gw_info) router_data = self._make_router_dict(router_db, process_extensions=False) except Exception: # Try removing the midonet router with excutils.save_and_reraise_exception(): self.client.delete_router(mido_router_id) # Create router chains chain_names = _nat_chain_names(mido_router_id) try: self.client.add_router_chains(mido_router, chain_names["pre-routing"], chain_names["post-routing"]) except Exception: # Set the router status to Error with context.session.begin(subtransactions=True): r = self._get_router(context, router_data["id"]) router_data['status'] = constants.NET_STATUS_ERROR r['status'] = router_data['status'] context.session.add(r) LOG.debug(_("MidonetPluginV2.create_router exiting: " "router_data=%(router_data)s."), {"router_data": router_data}) return router_data def _set_router_gateway(self, id, gw_router, gw_ip): """Set router uplink gateway :param ID: ID of the router :param gw_router: gateway router to link to :param gw_ip: gateway IP address """ LOG.debug(_("MidonetPluginV2.set_router_gateway called: id=%(id)s, " "gw_router=%(gw_router)s, gw_ip=%(gw_ip)s"), {'id': id, 'gw_router': gw_router, 'gw_ip': gw_ip}), router = self.client.get_router(id) # Create a port in the gw router gw_port = self.client.add_router_port(gw_router, port_address='169.254.255.1', network_address='169.254.255.0', network_length=30) # Create a port in the router port = self.client.add_router_port(router, port_address='169.254.255.2', network_address='169.254.255.0', network_length=30) # Link them self.client.link(gw_port, port.get_id()) # Add a route for gw_ip to bring it down to the router self.client.add_router_route(gw_router, type='Normal', src_network_addr='0.0.0.0', src_network_length=0, dst_network_addr=gw_ip, dst_network_length=32, next_hop_port=gw_port.get_id(), weight=100) # Add default route to uplink in the router self.client.add_router_route(router, type='Normal', src_network_addr='0.0.0.0', src_network_length=0, dst_network_addr='0.0.0.0', dst_network_length=0, next_hop_port=port.get_id(), weight=100) def _remove_router_gateway(self, id): """Clear router gateway :param ID: ID of the router """ LOG.debug(_("MidonetPluginV2.remove_router_gateway called: " "id=%(id)s"), {'id': id}) router = self.client.get_router(id) # delete the port that is connected to the gateway router for p in router.get_ports(): if p.get_port_address() == '169.254.255.2': peer_port_id = p.get_peer_id() if peer_port_id is not None: self.client.unlink(p) self.client.delete_port(peer_port_id) # delete default route for r in router.get_routes(): if (r.get_dst_network_addr() == '0.0.0.0' and r.get_dst_network_length() == 0): self.client.delete_route(r.get_id()) def update_router(self, context, id, router): """Handle router updates.""" LOG.debug(_("MidonetPluginV2.update_router called: id=%(id)s " "router=%(router)r"), {"id": id, "router": router}) router_data = router["router"] # Check if the update included changes to the gateway. gw_updated = l3_db.EXTERNAL_GW_INFO in router_data with context.session.begin(subtransactions=True): # Update the Neutron DB r = super(MidonetPluginV2, self).update_router(context, id, router) tenant_id = r["tenant_id"] if gw_updated: if (l3_db.EXTERNAL_GW_INFO in r and r[l3_db.EXTERNAL_GW_INFO] is not None): # Gateway created gw_port_neutron = self._get_port( context.elevated(), r["gw_port_id"]) gw_ip = gw_port_neutron['fixed_ips'][0]['ip_address'] # First link routers and set up the routes self._set_router_gateway(r["id"], self._get_provider_router(), gw_ip) gw_port_midonet = self.client.get_link_port( self._get_provider_router(), r["id"]) # Get the NAT chains and add dynamic SNAT rules. chain_names = _nat_chain_names(r["id"]) props = {OS_TENANT_ROUTER_RULE_KEY: SNAT_RULE} self.client.add_dynamic_snat(tenant_id, chain_names['pre-routing'], chain_names['post-routing'], gw_ip, gw_port_midonet.get_id(), **props) self.client.update_router(id, **router_data) LOG.debug(_("MidonetPluginV2.update_router exiting: router=%r"), r) return r def delete_router(self, context, id): """Handler for router deletion. Deleting a router on Neutron simply means deleting its corresponding router in MidoNet. :param id: router ID to remove """ LOG.debug(_("MidonetPluginV2.delete_router called: id=%s"), id) self.client.delete_router_chains(id) self.client.delete_router(id) super(MidonetPluginV2, self).delete_router(context, id) def _link_bridge_to_gw_router(self, bridge, gw_router, gw_ip, cidr): """Link a bridge to the gateway router :param bridge: bridge :param gw_router: gateway router to link to :param gw_ip: IP address of gateway :param cidr: network CIDR """ net_addr, net_len = net_util.net_addr(cidr) # create a port on the gateway router gw_port = self.client.add_router_port(gw_router, port_address=gw_ip, network_address=net_addr, network_length=net_len) # create a bridge port, then link it to the router. port = self.client.add_bridge_port(bridge) self.client.link(gw_port, port.get_id()) # add a route for the subnet in the gateway router self.client.add_router_route(gw_router, type='Normal', src_network_addr='0.0.0.0', src_network_length=0, dst_network_addr=net_addr, dst_network_length=net_len, next_hop_port=gw_port.get_id(), weight=100) def _unlink_bridge_from_gw_router(self, bridge, gw_router): """Unlink a bridge from the gateway router :param bridge: bridge to unlink :param gw_router: gateway router to unlink from """ # Delete routes and unlink the router and the bridge. routes = self.client.get_router_routes(gw_router.get_id()) bridge_ports_to_delete = [ p for p in gw_router.get_peer_ports() if p.get_device_id() == bridge.get_id()] for p in bridge.get_peer_ports(): if p.get_device_id() == gw_router.get_id(): # delete the routes going to the bridge for r in routes: if r.get_next_hop_port() == p.get_id(): self.client.delete_route(r.get_id()) self.client.unlink(p) self.client.delete_port(p.get_id()) # delete bridge port for port in bridge_ports_to_delete: self.client.delete_port(port.get_id()) def _link_bridge_to_router(self, router, bridge_port, net_addr, net_len, gw_ip, metadata_gw_ip): router_port = self.client.add_router_port( router, network_length=net_len, network_address=net_addr, port_address=gw_ip, admin_state_up=bridge_port['admin_state_up']) self.client.link(router_port, bridge_port['id']) self.client.add_router_route(router, type='Normal', src_network_addr='0.0.0.0', src_network_length=0, dst_network_addr=net_addr, dst_network_length=net_len, next_hop_port=router_port.get_id(), weight=100) if metadata_gw_ip: # Add a route for the metadata server. # Not all VM images supports DHCP option 121. Add a route for the # Metadata server in the router to forward the packet to the bridge # that will send them to the Metadata Proxy. md_net_addr, md_net_len = net_util.net_addr(METADATA_DEFAULT_IP) self.client.add_router_route( router, type='Normal', src_network_addr=net_addr, src_network_length=net_len, dst_network_addr=md_net_addr, dst_network_length=md_net_len, next_hop_port=router_port.get_id(), next_hop_gateway=metadata_gw_ip) def _unlink_bridge_from_router(self, router_id, bridge_port_id): """Unlink a bridge from a router.""" # Remove the routes to the port and unlink the port bridge_port = self.client.get_port(bridge_port_id) routes = self.client.get_router_routes(router_id) self.client.delete_port_routes(routes, bridge_port.get_peer_id()) self.client.unlink(bridge_port) def add_router_interface(self, context, router_id, interface_info): """Handle router linking with network.""" LOG.debug(_("MidonetPluginV2.add_router_interface called: " "router_id=%(router_id)s " "interface_info=%(interface_info)r"), {'router_id': router_id, 'interface_info': interface_info}) with context.session.begin(subtransactions=True): info = super(MidonetPluginV2, self).add_router_interface( context, router_id, interface_info) try: subnet = self._get_subnet(context, info["subnet_id"]) cidr = subnet["cidr"] net_addr, net_len = net_util.net_addr(cidr) router = self.client.get_router(router_id) # Get the metadata GW IP metadata_gw_ip = None rport_qry = context.session.query(models_v2.Port) dhcp_ports = rport_qry.filter_by( network_id=subnet["network_id"], device_owner=constants.DEVICE_OWNER_DHCP).all() if dhcp_ports and dhcp_ports[0].fixed_ips: metadata_gw_ip = dhcp_ports[0].fixed_ips[0].ip_address else: LOG.warn(_("DHCP agent is not working correctly. No port " "to reach the Metadata server on this network")) # Link the router and the bridge port = super(MidonetPluginV2, self).get_port(context, info["port_id"]) self._link_bridge_to_router(router, port, net_addr, net_len, subnet["gateway_ip"], metadata_gw_ip) except Exception: LOG.error(_("Failed to create MidoNet resources to add router " "interface. info=%(info)s, router_id=%(router_id)s"), {"info": info, "router_id": router_id}) with excutils.save_and_reraise_exception(): with context.session.begin(subtransactions=True): self.remove_router_interface(context, router_id, info) LOG.debug(_("MidonetPluginV2.add_router_interface exiting: " "info=%r"), info) return info def _assoc_fip(self, fip): router = self.client.get_router(fip["router_id"]) link_port = self.client.get_link_port( self._get_provider_router(), router.get_id()) self.client.add_router_route( self._get_provider_router(), src_network_addr='0.0.0.0', src_network_length=0, dst_network_addr=fip["floating_ip_address"], dst_network_length=32, next_hop_port=link_port.get_peer_id()) props = {OS_FLOATING_IP_RULE_KEY: fip['id']} tenant_id = router.get_tenant_id() chain_names = _nat_chain_names(router.get_id()) for chain_type, name in chain_names.items(): src_ip, target_ip = _get_nat_ips(chain_type, fip) if chain_type == 'pre-routing': nat_type = 'dnat' else: nat_type = 'snat' self.client.add_static_nat(tenant_id, name, src_ip, target_ip, link_port.get_id(), nat_type, **props) def create_floatingip(self, context, floatingip): session = context.session with session.begin(subtransactions=True): fip = super(MidonetPluginV2, self).create_floatingip( context, floatingip) if fip['port_id']: self._assoc_fip(fip) return fip def update_floatingip(self, context, id, floatingip): """Handle floating IP association and disassociation.""" LOG.debug(_("MidonetPluginV2.update_floatingip called: id=%(id)s " "floatingip=%(floatingip)s "), {'id': id, 'floatingip': floatingip}) session = context.session with session.begin(subtransactions=True): if floatingip['floatingip']['port_id']: fip = super(MidonetPluginV2, self).update_floatingip( context, id, floatingip) self._assoc_fip(fip) # disassociate floating IP elif floatingip['floatingip']['port_id'] is None: fip = super(MidonetPluginV2, self).get_floatingip(context, id) self._remove_nat_rules(context, fip) super(MidonetPluginV2, self).update_floatingip(context, id, floatingip) LOG.debug(_("MidonetPluginV2.update_floating_ip exiting: fip=%s"), fip) return fip def disassociate_floatingips(self, context, port_id): """Disassociate floating IPs (if any) from this port.""" try: fip_qry = context.session.query(l3_db.FloatingIP) fip_dbs = fip_qry.filter_by(fixed_port_id=port_id) for fip_db in fip_dbs: self._remove_nat_rules(context, fip_db) except sa_exc.NoResultFound: pass super(MidonetPluginV2, self).disassociate_floatingips(context, port_id) def create_security_group(self, context, security_group, default_sg=False): """Create security group. Create a new security group, including the default security group. In MidoNet, this means creating a pair of chains, inbound and outbound, as well as a new port group. """ LOG.debug(_("MidonetPluginV2.create_security_group called: " "security_group=%(security_group)s " "default_sg=%(default_sg)s "), {'security_group': security_group, 'default_sg': default_sg}) sg = security_group.get('security_group') tenant_id = self._get_tenant_id_for_create(context, sg) if not default_sg: self._ensure_default_security_group(context, tenant_id) # Create the Neutron sg first sg = super(MidonetPluginV2, self).create_security_group( context, security_group, default_sg) try: # Process the MidoNet side self.client.create_port_group(tenant_id, _sg_port_group_name(sg["id"])) chain_names = _sg_chain_names(sg["id"]) chains = {} for direction, chain_name in chain_names.iteritems(): c = self.client.create_chain(tenant_id, chain_name) chains[direction] = c # Create all the rules for this SG. Only accept rules are created for r in sg['security_group_rules']: self._create_accept_chain_rule(context, r, chain=chains[r['direction']]) except Exception: LOG.error(_("Failed to create MidoNet resources for sg %(sg)r"), {"sg": sg}) with excutils.save_and_reraise_exception(): with context.session.begin(subtransactions=True): sg = self._get_security_group(context, sg["id"]) context.session.delete(sg) LOG.debug(_("MidonetPluginV2.create_security_group exiting: sg=%r"), sg) return sg def delete_security_group(self, context, id): """Delete chains for Neutron security group.""" LOG.debug(_("MidonetPluginV2.delete_security_group called: id=%s"), id) with context.session.begin(subtransactions=True): sg = super(MidonetPluginV2, self).get_security_group(context, id) if not sg: raise ext_sg.SecurityGroupNotFound(id=id) if sg["name"] == 'default' and not context.is_admin: raise ext_sg.SecurityGroupCannotRemoveDefault() sg_id = sg['id'] filters = {'security_group_id': [sg_id]} if super(MidonetPluginV2, self)._get_port_security_group_bindings( context, filters): raise ext_sg.SecurityGroupInUse(id=sg_id) # Delete MidoNet Chains and portgroup for the SG tenant_id = sg['tenant_id'] self.client.delete_chains_by_names( tenant_id, _sg_chain_names(sg["id"]).values()) self.client.delete_port_group_by_name( tenant_id, _sg_port_group_name(sg["id"])) super(MidonetPluginV2, self).delete_security_group(context, id) def create_security_group_rule(self, context, security_group_rule): """Create a security group rule Create a security group rule in the Neutron DB and corresponding MidoNet resources in its data store. """ LOG.debug(_("MidonetPluginV2.create_security_group_rule called: " "security_group_rule=%(security_group_rule)r"), {'security_group_rule': security_group_rule}) with context.session.begin(subtransactions=True): rule = super(MidonetPluginV2, self).create_security_group_rule( context, security_group_rule) self._create_accept_chain_rule(context, rule) LOG.debug(_("MidonetPluginV2.create_security_group_rule exiting: " "rule=%r"), rule) return rule def delete_security_group_rule(self, context, sg_rule_id): """Delete a security group rule Delete a security group rule from the Neutron DB and corresponding MidoNet resources from its data store. """ LOG.debug(_("MidonetPluginV2.delete_security_group_rule called: " "sg_rule_id=%s"), sg_rule_id) with context.session.begin(subtransactions=True): rule = super(MidonetPluginV2, self).get_security_group_rule( context, sg_rule_id) if not rule: raise ext_sg.SecurityGroupRuleNotFound(id=sg_rule_id) sg = self._get_security_group(context, rule["security_group_id"]) chain_name = _sg_chain_names(sg["id"])[rule["direction"]] self.client.remove_rules_by_property(rule["tenant_id"], chain_name, OS_SG_RULE_KEY, str(rule["id"])) super(MidonetPluginV2, self).delete_security_group_rule( context, sg_rule_id) def _add_chain_rule(self, chain, action, **kwargs): nw_proto = kwargs.get("nw_proto") src_addr = kwargs.pop("src_addr", None) dst_addr = kwargs.pop("dst_addr", None) src_port_from = kwargs.pop("src_port_from", None) src_port_to = kwargs.pop("src_port_to", None) dst_port_from = kwargs.pop("dst_port_from", None) dst_port_to = kwargs.pop("dst_port_to", None) # Convert to the keys and values that midonet client understands if src_addr: kwargs["nw_src_addr"], kwargs["nw_src_length"] = net_util.net_addr( src_addr) if dst_addr: kwargs["nw_dst_addr"], kwargs["nw_dst_length"] = net_util.net_addr( dst_addr) kwargs["tp_src"] = {"start": src_port_from, "end": src_port_to} kwargs["tp_dst"] = {"start": dst_port_from, "end": dst_port_to} if nw_proto == 1: # ICMP # Overwrite port fields regardless of the direction kwargs["tp_src"] = {"start": src_port_from, "end": src_port_from} kwargs["tp_dst"] = {"start": dst_port_to, "end": dst_port_to} return self.client.add_chain_rule(chain, action=action, **kwargs)
# -*- coding: utf-8 -*- import sys from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.keys import Keys from tqdm import tqdm from winnaker.helpers import * from winnaker.settings import * ERROR_LIST = { "Whitelabel Error Page": "Check clouddriver", "No hosted service provider is configured": "Check Gate", "no alias was selected": "TBD", "This application has no explicit mapping for": "TBD", "so you are seeing this as a fallback.": "Check Gate", "Error Code: Throttling": "Check Edda/Cloud Provider", "Rate exceeded": "Check Edda", "This application has no explicit mapping for /error": "Check Deck"} class Spinnaker(): def __init__(self): chrome_options = Options() chrome_options.add_argument("--disable-extensions") chrome_options.add_argument("--no-sandbox") self.driver = webdriver.Chrome(chrome_options=chrome_options) # self.driver = webdriver.Firefox() time.sleep(1) self.driver.get(cfg_spinnaker_url) self.wait = WebDriverWait(self.driver, 10) if not os.path.exists(cfg_output_files_path): os.makedirs(cfg_output_files_path) def authorize(self): logging.debug("Authorizing OAuth Request") try: e = wait_for_xpath_presence(self.driver, cfg_oauth_authorize_xpath, stop_max_attempt=2) self.driver.save_screenshot(join( cfg_output_files_path, "authorize.png")) e.click() except: logging.debug("couldn't find authorize xpath. This is OK if the user has already been authorized, looked for: %s" % cfg_oauth_authorize_xpath) def login(self): self.check_page_contains_error() e = wait_for_xpath_presence(self.driver, cfg_usernamebox_xpath) logging.debug( "Logging in as: {}".format( cfg_spinnaker_username)) e.send_keys(cfg_spinnaker_username) e = wait_for_xpath_presence(self.driver, cfg_passwordbox_xpath) self.driver.save_screenshot(join( cfg_output_files_path, "login.png")) e.send_keys(cfg_spinnaker_password) e = wait_for_xpath_presence(self.driver, cfg_signin_button_xpath) e.click() logging.info( "- Logged in to the spinnaker instance at {}".format(cfg_spinnaker_url)) self.driver.save_screenshot(join(cfg_output_files_path, "login2.png")) time.sleep(3) def get_application(self, appname): self.check_page_contains_error() e = wait_for_xpath_presence( self.driver, cfg_applications_xpath, be_clickable=True) e.click() e = wait_for_xpath_presence(self.driver, cfg_searchbox_xpath) e.send_keys(appname) e.send_keys(Keys.RETURN) time.sleep(1) self.driver.save_screenshot(join( cfg_output_files_path, "applications.png")) app_xpath = "//a[contains (.,'" + appname + "')]" e = wait_for_xpath_presence(self.driver, app_xpath) e.click() time.sleep(1) logging.info("- Searched for application: {}".format(appname)) def get_pipelines(self, appname): self.get_application(appname) pipelines_xpath = "//a[@href='#/applications/" + \ appname + "/executions']" e = wait_for_xpath_presence(self.driver, pipelines_xpath) e.click() def get_pipeline(self, appname, pipelinename): self.check_page_contains_error() self.get_pipelines(appname) time.sleep(0.5) checkbox = "//div[@class='nav']//execution-filters//label[contains(.,' %s')]/input[@type='checkbox']" % pipelinename e = wait_for_xpath_presence( self.driver, checkbox, be_clickable=True) move_to_element(self.driver, e, click=True) time.sleep(2) if not e.get_attribute('checked'): e = wait_for_xpath_presence( self.driver, checkbox, be_clickable=True) e.click() time.sleep(2) self.driver.save_screenshot( join(cfg_output_files_path, "pipelines.png")) logging.info( "- Selected pipeline: {} successfully".format(pipelinename)) def start_manual_execution(self, force_bake=False): self.check_page_contains_error() # starts the 1st pipeline which is currently on the page e = wait_for_xpath_presence( self.driver, cfg_start_manual_execution_xpath) click_stubborn(self.driver, e, cfg_start_manual_execution_xpath) time.sleep(2) if force_bake: e = wait_for_xpath_presence( self.driver, cfg_force_rebake_xpath, be_clickable=True) move_to_element(self.driver, e, click=True) time.sleep(2) if not e.get_attribute('checked'): e = wait_for_xpath_presence( self.driver, cfg_force_rebake_xpath, be_clickable=True) logging.info("Checking force bake option") e.click() self.driver.save_screenshot( join(cfg_output_files_path, "force_bake_check.png")) run_xpath = "//button[@type='submit' and contains(.,'Run')]/span[1]" e = wait_for_xpath_presence(self.driver, run_xpath, be_clickable=True) e.click() time.sleep(2) start_time = time.time() logging.info("- Starting Manual Execution") time.sleep(10) # To give enough time for pipeline kick off show up logging.info("\t Running ... (will wait up to {} minutes".format( int(cfg_max_wait_for_pipeline_run_mins / 60))) for i in tqdm(range(int(cfg_max_wait_for_pipeline_run_mins / 10))): if time.time() - start_time > cfg_max_wait_for_pipeline_run_mins: logging.error("The run is taking more than {} minutes".format( int(cfg_max_wait_for_pipeline_run_mins / 60))) logging.error("Considering it as an error") sys.exit(1) status = self.get_last_build().status if "RUNNING" in status: time.sleep(10) elif "NOT_STARTED" in status: logging.info("Pipeline has not yet started.") time.sleep(10) elif "SUCCEEDED" in status: logging.info("Congratulations pipeline run was successful.") print_passed() self.get_stages(n=cfg_number_of_stages_to_check) return 0 elif "TERMINAL" in status: logging.error( "Pipeline stopped with terminal state. screenshot generated.") print_failed() sys.exit(1) else: logging.error("Error: something went wrong {}".format(status)) sys.exit(2) def get_last_build(self): execution_summary = wait_for_xpath_presence( self.driver, cfg_execution_summary_xp) trigger_details = wait_for_xpath_presence( self.driver, cfg_trigger_details_xp) self.build = Build(trigger_details.text, execution_summary.text) time.sleep(1) wait_for_xpath_presence(self.driver, cfg_detail_xpath) self.driver.save_screenshot(join( cfg_output_files_path, "last_build_status.png")) return self.build # TODO Get all the stages automatically def get_stages(self, n=cfg_number_of_stages_to_check): # n number of stages to get for i in range(1, n + 1): stage_xpath = "//div[@class='stages']/span[%s]/div" % str(i) e = wait_for_xpath_presence( self.driver, stage_xpath, be_clickable=True) move_to_element(self.driver, e) e.click() alert_box_xps = ["//div[@class='alert alert-danger']", "//div[@class='well alert alert-info']", "//div[@class='alert alert-info']"] for xpath in alert_box_xps: try: e = self.wait.until( EC.presence_of_element_located((By.XPATH, xpath))) logging.info("- Stage Detail: \n\t" + e.text.replace("\n", "\n\t\n")) for error in ERROR_LIST: if error in e.text: logging.error("\t Stage Failed: {}".format(e.text)) sys.exit(1) except TimeoutException: continue self.driver.save_screenshot( join( cfg_output_files_path, "stage_" + str(i) + ".png")) def check_page_contains_error(self): for error in ERROR_LIST.keys(): if error in get_body_text(self.driver): logging.error("- Failed for: {}".format(error)) logging.info("- Suggestion: {}".format(ERROR_LIST[error])) print_failed() sys.exit(1) assert error not in get_body_text(self.driver) # Represents a build of a pipeline class Build(): def __init__(self, trigger_details, execution_summary): try: self.status = execution_summary.split( "\n")[0].replace("Status: ", "") self.duration = execution_summary.split( "\n")[1].replace("Duration: ", "") self.type_of_start = "" self.username = trigger_details.split("\n")[0] logging.debug("Username: {}".format(self.username)) if " CDT" in trigger_details: self.datetime_started = datetime.strptime( trigger_details.split("\n")[1].replace( " CDT", ""), '%Y-%m-%d %H:%M:%S') # TO DO: convert ago to UTC time if " ago" in trigger_details: self.datetime_started = trigger_details.split("\n")[1] self.detail = trigger_details.split("\n")[2] self.stack = trigger_details.split("\n")[3] except (ValueError, IndexError): pass def status_is_valid(self): if self.status in ["RUNNING", "SUCCEEDED", "TERMINAL", "CANCELED"]: return True return False
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import time import os import urllib import urllib3 import certifi from knack.log import get_logger from azure.cli.core.azclierror import (RequiredArgumentMissingError, ValidationError, ResourceNotFoundError) from azure.cli.core.commands.parameters import get_subscription_locations from azure.cli.core.util import should_disable_connection_verify from msrestazure.tools import parse_resource_id from ._client_factory import web_client_factory logger = get_logger(__name__) REQUESTS_CA_BUNDLE = "REQUESTS_CA_BUNDLE" def str2bool(v): if v == 'true': retval = True elif v == 'false': retval = False else: retval = None return retval def _normalize_sku(sku): sku = sku.upper() if sku == 'FREE': return 'F1' if sku == 'SHARED': return 'D1' return sku def get_sku_tier(name): # pylint: disable=too-many-return-statements name = name.upper() if name in ['F1', 'FREE']: return 'FREE' if name in ['D1', "SHARED"]: return 'SHARED' if name in ['B1', 'B2', 'B3', 'BASIC']: return 'BASIC' if name in ['S1', 'S2', 'S3']: return 'STANDARD' if name in ['P1', 'P2', 'P3']: return 'PREMIUM' if name in ['P1V2', 'P2V2', 'P3V2']: return 'PREMIUMV2' if name in ['P1V3', 'P2V3', 'P3V3']: return 'PREMIUMV3' if name in ['PC2', 'PC3', 'PC4']: return 'PremiumContainer' if name in ['EP1', 'EP2', 'EP3']: return 'ElasticPremium' if name in ['I1', 'I2', 'I3']: return 'Isolated' if name in ['I1V2', 'I2V2', 'I3V2']: return 'IsolatedV2' if name in ['WS1', 'WS2', 'WS3']: return 'WorkflowStandard' raise ValidationError("Invalid sku(pricing tier), please refer to command help for valid values") # Deprecated; Do not use # Keeping this for now so that we don't break extensions that use it def get_sku_name(tier): return get_sku_tier(name=tier) # resource is client.web_apps for webapps, client.app_service_plans for ASPs, etc. def get_resource_if_exists(resource, **kwargs): from azure.core.exceptions import ResourceNotFoundError as E try: return resource.get(**kwargs) except E: return None def normalize_sku_for_staticapp(sku): if sku.lower() == 'free': return 'Free' if sku.lower() == 'standard': return 'Standard' raise ValidationError("Invalid sku(pricing tier), please refer to command help for valid values") def retryable_method(retries=3, interval_sec=5, excpt_type=Exception): def decorate(func): def call(*args, **kwargs): current_retry = retries while True: try: return func(*args, **kwargs) except excpt_type as exception: # pylint: disable=broad-except current_retry -= 1 if current_retry <= 0: raise exception time.sleep(interval_sec) return call return decorate def raise_missing_token_suggestion(): pat_documentation = "https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line" raise RequiredArgumentMissingError("GitHub access token is required to authenticate to your repositories. " "If you need to create a Github Personal Access Token, " "please run with the '--login-with-github' flag or follow " "the steps found at the following link:\n{0}".format(pat_documentation)) def _get_location_from_resource_group(cli_ctx, resource_group_name): from azure.cli.core.commands.client_factory import get_mgmt_service_client from azure.cli.core.profiles import ResourceType client = get_mgmt_service_client(cli_ctx, ResourceType.MGMT_RESOURCE_RESOURCES) group = client.resource_groups.get(resource_group_name) return group.location def _list_app(cli_ctx, resource_group_name=None): client = web_client_factory(cli_ctx) if resource_group_name: result = list(client.web_apps.list_by_resource_group(resource_group_name)) else: result = list(client.web_apps.list()) for webapp in result: _rename_server_farm_props(webapp) return result def _rename_server_farm_props(webapp): # Should be renamed in SDK in a future release setattr(webapp, 'app_service_plan_id', webapp.server_farm_id) del webapp.server_farm_id return webapp def _get_location_from_webapp(client, resource_group_name, webapp): webapp = client.web_apps.get(resource_group_name, webapp) if not webapp: raise ResourceNotFoundError("'{}' app doesn't exist".format(webapp)) return webapp.location # can't just normalize locations with location.lower().replace(" ", "") because of UAE/UK regions def _normalize_location(cmd, location): location = location.lower() locations = get_subscription_locations(cmd.cli_ctx) for loc in locations: if loc.display_name.lower() == location or loc.name.lower() == location: return loc.name return location def get_pool_manager(url): proxies = urllib.request.getproxies() bypass_proxy = urllib.request.proxy_bypass(urllib.parse.urlparse(url).hostname) if 'https' in proxies and not bypass_proxy: proxy = urllib.parse.urlparse(proxies['https']) if proxy.username and proxy.password: proxy_headers = urllib3.util.make_headers(proxy_basic_auth='{0}:{1}'.format(proxy.username, proxy.password)) logger.debug('Setting proxy-authorization header for basic auth') else: proxy_headers = None logger.info('Using proxy for app service tunnel connection') http = urllib3.ProxyManager(proxy.geturl(), proxy_headers=proxy_headers) else: http = urllib3.PoolManager() if should_disable_connection_verify(): http.connection_pool_kw['cert_reqs'] = 'CERT_NONE' else: http.connection_pool_kw['cert_reqs'] = 'CERT_REQUIRED' if REQUESTS_CA_BUNDLE in os.environ: ca_bundle_file = os.environ[REQUESTS_CA_BUNDLE] logger.debug("Using CA bundle file at '%s'.", ca_bundle_file) if not os.path.isfile(ca_bundle_file): raise ValidationError('REQUESTS_CA_BUNDLE environment variable is specified with an invalid file path') else: ca_bundle_file = certifi.where() http.connection_pool_kw['ca_certs'] = ca_bundle_file return http def get_app_service_plan_from_webapp(cmd, webapp, api_version=None): client = web_client_factory(cmd.cli_ctx, api_version=api_version) plan = parse_resource_id(webapp.server_farm_id) return client.app_service_plans.get(plan['resource_group'], plan['name']) # Allows putting additional properties on an SDK model instance def use_additional_properties(resource): resource.enable_additional_properties_sending() existing_properties = resource.serialize().get("properties") resource.additional_properties["properties"] = {} if existing_properties is None else existing_properties
# Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import logging import os import signal import sys import time import traceback from abc import ABCMeta from hashlib import sha256 from typing import Callable, Optional, cast import psutil from pants.base.build_environment import get_buildroot from pants.bin.pants_env_vars import DAEMON_ENTRYPOINT from pants.option.options import Options from pants.option.options_fingerprinter import OptionsFingerprinter from pants.option.scope import GLOBAL_SCOPE from pants.pantsd.lock import OwnerPrintingInterProcessFileLock from pants.util.dirutil import read_file, rm_rf, safe_file_dump, safe_mkdir from pants.util.memo import memoized_classproperty, memoized_property logger = logging.getLogger(__name__) class ProcessManager: """Manages contextual, on-disk process metadata. Metadata is stored under a per-host fingerprinted directory, and a nested per-named-process directory. The per-host directory defends against attempting to use process metadata that has been mounted into virtual machines or docker images. """ class MetadataError(Exception): pass class Timeout(Exception): pass class NonResponsiveProcess(Exception): pass class NotStarted(Exception): pass KILL_WAIT_SEC = 5 KILL_CHAIN = (signal.SIGTERM, signal.SIGKILL) FAIL_WAIT_SEC = 10 INFO_INTERVAL_SEC = 5 WAIT_INTERVAL_SEC = 0.1 SOCKET_KEY = "socket" PROCESS_NAME_KEY = "process_name" PID_KEY = "pid" FINGERPRINT_KEY = "fingerprint" def __init__(self, name: str, metadata_base_dir: str) -> None: """ :param string name: The process identity/name (e.g. 'pantsd' or 'ng_Zinc'). :param str metadata_base_dir: The overridden base directory for process metadata. """ super().__init__() self._metadata_base_dir = metadata_base_dir self._name = name.lower().strip() # TODO: Extract process spawning code. self._buildroot = get_buildroot() @memoized_classproperty def host_fingerprint(cls) -> str: """A fingerprint that attempts to identify the potential scope of a live process. See the class pydoc. In the absence of kernel hotswapping, a new uname means a restart or virtual machine, both of which mean that process metadata is invalid. Additionally, docker generates a random hostname per instance, which improves the reliability of this hash. TODO: It would be nice to be able to use `uptime` (e.g. https://crates.io/crates/uptime_lib) to identify reboots, but it's more challenging than it should be because it would involve subtracting from the current time, which might hit aliasing issues. """ hasher = sha256() for component in os.uname(): hasher.update(component.encode()) return hasher.hexdigest()[:12] @staticmethod def _maybe_cast(item, caster): """Given a casting function, attempt to cast to that type while masking common cast exceptions. N.B. This is mostly suitable for casting string types to numeric types - e.g. a port number read from disk into an int. :param func caster: A casting callable (e.g. `int`). :returns: The result of caster(item) or item if TypeError or ValueError are raised during cast. """ try: return caster(item) except (TypeError, ValueError): # N.B. the TypeError catch here (already) protects against the case that caster is None. return item @classmethod def _deadline_until( cls, closure: Callable[[], bool], ongoing_msg: str, completed_msg: str, timeout: float = FAIL_WAIT_SEC, wait_interval: float = WAIT_INTERVAL_SEC, info_interval: float = INFO_INTERVAL_SEC, ): """Execute a function/closure repeatedly until a True condition or timeout is met. :param func closure: the function/closure to execute (should not block for long periods of time and must return True on success). :param str ongoing_msg: a description of the action that is being executed, to be rendered as info while we wait, and as part of any rendered exception. :param str completed_msg: a description of the action that is being executed, to be rendered after the action has succeeded (but only if we have previously rendered the ongoing_msg). :param float timeout: the maximum amount of time to wait for a true result from the closure in seconds. N.B. this is timing based, so won't be exact if the runtime of the closure exceeds the timeout. :param float wait_interval: the amount of time to sleep between closure invocations. :param float info_interval: the amount of time to wait before and between reports via info logging that we're still waiting for the closure to succeed. :raises: :class:`ProcessManager.Timeout` on execution timeout. """ now = time.time() deadline = now + timeout info_deadline = now + info_interval rendered_ongoing = False while 1: if closure(): if rendered_ongoing: logger.info(completed_msg) return True now = time.time() if now > deadline: raise cls.Timeout( "exceeded timeout of {} seconds while waiting for {}".format( timeout, ongoing_msg ) ) if now > info_deadline: logger.info("waiting for {}...".format(ongoing_msg)) rendered_ongoing = True info_deadline = info_deadline + info_interval elif wait_interval: time.sleep(wait_interval) @classmethod def _wait_for_file( cls, filename: str, ongoing_msg: str, completed_msg: str, timeout: float = FAIL_WAIT_SEC, want_content: bool = True, ): """Wait up to timeout seconds for filename to appear with a non-zero size or raise Timeout().""" def file_waiter(): return os.path.exists(filename) and (not want_content or os.path.getsize(filename)) return cls._deadline_until(file_waiter, ongoing_msg, completed_msg, timeout=timeout) @classmethod def _get_metadata_dir_by_name(cls, name: str, metadata_base_dir: str) -> str: """Retrieve the metadata dir by name. This should always live outside of the workdir to survive a clean-all. """ return os.path.join(metadata_base_dir, cls.host_fingerprint, name) def _metadata_file_path(self, metadata_key) -> str: return self.metadata_file_path(self.name, metadata_key, self._metadata_base_dir) @classmethod def metadata_file_path(cls, name, metadata_key, metadata_base_dir) -> str: return os.path.join(cls._get_metadata_dir_by_name(name, metadata_base_dir), metadata_key) def read_metadata_by_name(self, metadata_key, caster=None): """Read process metadata using a named identity. :param string metadata_key: The metadata key (e.g. 'pid'). :param func caster: A casting callable to apply to the read value (e.g. `int`). """ file_path = self._metadata_file_path(metadata_key) try: metadata = read_file(file_path).strip() return self._maybe_cast(metadata, caster) except (IOError, OSError): return None def write_metadata_by_name(self, metadata_key, metadata_value) -> None: """Write process metadata using a named identity. :param string metadata_key: The metadata key (e.g. 'pid'). :param string metadata_value: The metadata value (e.g. '1729'). """ safe_mkdir(self._get_metadata_dir_by_name(self.name, self._metadata_base_dir)) file_path = self._metadata_file_path(metadata_key) safe_file_dump(file_path, metadata_value) def await_metadata_by_name( self, metadata_key, ongoing_msg: str, completed_msg: str, timeout: float, caster=None ): """Block up to a timeout for process metadata to arrive on disk. :param string metadata_key: The metadata key (e.g. 'pid'). :param str ongoing_msg: A message that describes what is being waited for while waiting. :param str completed_msg: A message that describes what was being waited for after completion. :param float timeout: The deadline to write metadata. :param type caster: A type-casting callable to apply to the read value (e.g. int, str). :returns: The value of the metadata key (read from disk post-write). :raises: :class:`ProcessManager.Timeout` on timeout. """ file_path = self._metadata_file_path(metadata_key) self._wait_for_file(file_path, ongoing_msg, completed_msg, timeout=timeout) return self.read_metadata_by_name(metadata_key, caster) def purge_metadata_by_name(self, name) -> None: """Purge a processes metadata directory. :raises: `ProcessManager.MetadataError` when OSError is encountered on metadata dir removal. """ meta_dir = self._get_metadata_dir_by_name(name, self._metadata_base_dir) logger.debug("purging metadata directory: {}".format(meta_dir)) try: rm_rf(meta_dir) except OSError as e: raise ProcessManager.MetadataError( "failed to purge metadata directory {}: {!r}".format(meta_dir, e) ) @property def name(self): """The logical name/label of the process.""" return self._name @memoized_property def lifecycle_lock(self): """An identity-keyed inter-process lock for safeguarding lifecycle and other operations.""" safe_mkdir(self._metadata_base_dir) return OwnerPrintingInterProcessFileLock( # N.B. This lock can't key into the actual named metadata dir (e.g. `.pids/pantsd/lock` # via `ProcessManager._get_metadata_dir_by_name()`) because of a need to purge # the named metadata dir on startup to avoid stale metadata reads. os.path.join(self._metadata_base_dir, ".lock.{}".format(self._name)) ) @property def fingerprint(self): """The fingerprint of the current process. This reads the current fingerprint from the `ProcessManager` metadata. :returns: The fingerprint of the running process as read from ProcessManager metadata or `None`. :rtype: string """ return self.read_metadata_by_name(self.FINGERPRINT_KEY) @property def pid(self): """The running processes pid (or None).""" return self.read_metadata_by_name(self.PID_KEY, int) @property def process_name(self): """The process name, to be compared to the psutil exe_name for stale pid checking.""" return self.read_metadata_by_name(self.PROCESS_NAME_KEY, str) @property def socket(self): """The running processes socket/port information (or None).""" return self.read_metadata_by_name(self.SOCKET_KEY, int) def has_current_fingerprint(self, fingerprint): """Determines if a new fingerprint is the current fingerprint of the running process. :param string fingerprint: The new fingerprint to compare to. :rtype: bool """ return fingerprint == self.fingerprint def needs_restart(self, fingerprint): """Determines if the current ProcessManager needs to be started or restarted. :param string fingerprint: The new fingerprint to compare to. :rtype: bool """ return self.is_dead() or not self.has_current_fingerprint(fingerprint) def await_pid(self, timeout: float) -> int: """Wait up to a given timeout for a process to write pid metadata.""" return cast( int, self.await_metadata_by_name( self.PID_KEY, f"{self._name} to start", f"{self._name} started", timeout, caster=int, ), ) def await_socket(self, timeout: float) -> int: """Wait up to a given timeout for a process to write socket info.""" return cast( int, self.await_metadata_by_name( self.SOCKET_KEY, f"{self._name} socket to be opened", f"{self._name} socket opened", timeout, caster=int, ), ) def write_pid(self, pid: Optional[int] = None): """Write the current process's PID.""" pid = os.getpid() if pid is None else pid self.write_metadata_by_name(self.PID_KEY, str(pid)) def _get_process_name(self, process: psutil.Process | None = None) -> str: proc = process or self._as_process() cmdline = proc.cmdline() return cast(str, cmdline[0] if cmdline else proc.name()) def write_process_name(self, process_name: Optional[str] = None): """Write the current process's name.""" process_name = process_name or self._get_process_name() self.write_metadata_by_name(self.PROCESS_NAME_KEY, process_name) def write_socket(self, socket_info: int): """Write the local processes socket information (TCP port or UNIX socket).""" self.write_metadata_by_name(self.SOCKET_KEY, str(socket_info)) def write_fingerprint(self, fingerprint: str) -> None: self.write_metadata_by_name(self.FINGERPRINT_KEY, fingerprint) def _as_process(self): """Returns a psutil `Process` object wrapping our pid. NB: Even with a process object in hand, subsequent method calls against it can always raise `NoSuchProcess`. Care is needed to document the raises in the public API or else trap them and do something sensible for the API. :returns: a psutil Process object or else None if we have no pid. :rtype: :class:`psutil.Process` :raises: :class:`psutil.NoSuchProcess` if the process identified by our pid has died. :raises: :class:`self.NotStarted` if no pid has been recorded for this process. """ pid = self.pid if not pid: raise self.NotStarted() return psutil.Process(pid) def is_dead(self): """Return a boolean indicating whether the process is dead or not.""" return not self.is_alive() def is_alive(self, extended_check=None): """Return a boolean indicating whether the process is running or not. :param func extended_check: An additional callable that will be invoked to perform an extended liveness check. This callable should take a single argument of a `psutil.Process` instance representing the context-local process and return a boolean True/False to indicate alive vs not alive. """ try: process = self._as_process() return not ( # Can happen if we don't find our pid. (not process) or # Check for walkers. (process.status() == psutil.STATUS_ZOMBIE) or # Check for stale pids. (self.process_name and self.process_name != self._get_process_name(process)) or # Extended checking. (extended_check and not extended_check(process)) ) except (self.NotStarted, psutil.NoSuchProcess, psutil.AccessDenied): # On some platforms, accessing attributes of a zombie'd Process results in NoSuchProcess. return False def purge_metadata(self, force=False): """Instance-based version of ProcessManager.purge_metadata_by_name() that checks for process liveness before purging metadata. :param bool force: If True, skip process liveness check before purging metadata. :raises: `ProcessManager.MetadataError` when OSError is encountered on metadata dir removal. """ if not force and self.is_alive(): raise ProcessManager.MetadataError("cannot purge metadata for a running process!") self.purge_metadata_by_name(self._name) def _kill(self, kill_sig): """Send a signal to the current process.""" if self.pid: os.kill(self.pid, kill_sig) def terminate(self, signal_chain=KILL_CHAIN, kill_wait=KILL_WAIT_SEC, purge=True): """Ensure a process is terminated by sending a chain of kill signals (SIGTERM, SIGKILL).""" alive = self.is_alive() if alive: logger.debug("terminating {}".format(self._name)) for signal_type in signal_chain: pid = self.pid try: logger.debug("sending signal {} to pid {}".format(signal_type, pid)) self._kill(signal_type) except OSError as e: logger.warning( "caught OSError({e!s}) during attempt to kill -{signal} {pid}!".format( e=e, signal=signal_type, pid=pid ) ) # Wait up to kill_wait seconds to terminate or move onto the next signal. try: if self._deadline_until( self.is_dead, f"{self._name} to exit", f"{self._name} exited", timeout=kill_wait, ): alive = False logger.debug("successfully terminated pid {}".format(pid)) break except self.Timeout: # Loop to the next kill signal on timeout. pass if alive: raise ProcessManager.NonResponsiveProcess( "failed to kill pid {pid} with signals {chain}".format( pid=self.pid, chain=signal_chain ) ) if purge: self.purge_metadata(force=True) def daemon_spawn( self, pre_fork_opts=None, post_fork_parent_opts=None, post_fork_child_opts=None ): """Perform a single-fork to run a subprocess and write the child pid file. Use this if your post_fork_child block invokes a subprocess via subprocess.Popen(). In this case, a second fork is extraneous given that Popen() also forks. Using this daemonization method leaves the responsibility of writing the pid to the caller to allow for library- agnostic flexibility in subprocess execution. """ self.purge_metadata() self.pre_fork(**pre_fork_opts or {}) pid = os.fork() if pid == 0: # fork's child execution try: os.setsid() os.chdir(self._buildroot) self.post_fork_child(**post_fork_child_opts or {}) except Exception: logger.critical(traceback.format_exc()) finally: os._exit(0) else: # fork's parent execution try: self.post_fork_parent(**post_fork_parent_opts or {}) except Exception: logger.critical(traceback.format_exc()) def pre_fork(self): """Pre-fork callback for subclasses.""" def post_fork_child(self): """Pre-fork child callback for subclasses.""" def post_fork_parent(self): """Post-fork parent callback for subclasses.""" class PantsDaemonProcessManager(ProcessManager, metaclass=ABCMeta): """An ABC for classes that interact with pantsd's metadata. This is extended by both a pantsd client handle, and by the server: the client reads process metadata, and the server writes it. """ def __init__(self, bootstrap_options: Options, daemon_entrypoint: str): super().__init__( name="pantsd", metadata_base_dir=bootstrap_options.for_global_scope().pants_subprocessdir, ) self._bootstrap_options = bootstrap_options self._daemon_entrypoint = daemon_entrypoint @property def options_fingerprint(self): """Returns the options fingerprint for the pantsd process. This should cover all options consumed by the pantsd process itself in order to start: also known as the "micro-bootstrap" options. These options are marked `daemon=True` in the global options. The `daemon=True` options are a small subset of the bootstrap options. Independently, the PantsDaemonCore fingerprints the entire set of bootstrap options to identify when the Scheduler needs need to be re-initialized. """ return OptionsFingerprinter.combined_options_fingerprint_for_scope( GLOBAL_SCOPE, self._bootstrap_options, fingerprint_key="daemon" ) def needs_restart(self, option_fingerprint): """Overrides ProcessManager.needs_restart, to account for the case where pantsd is running but we want to shutdown after this run. :param option_fingerprint: A fingerprint of the global bootstrap options. :return: True if the daemon needs to restart. """ return super().needs_restart(option_fingerprint) def post_fork_child(self): """Post-fork() child callback for ProcessManager.daemon_spawn().""" spawn_control_env = { DAEMON_ENTRYPOINT: f"{self._daemon_entrypoint}:launch_new_pantsd_instance", # The daemon should run under the same sys.path as us; so we ensure # this. NB: It will scrub PYTHONPATH once started to avoid infecting # its own unrelated subprocesses. "PYTHONPATH": os.pathsep.join(sys.path), } exec_env = {**os.environ, **spawn_control_env} # Pass all of sys.argv so that we can proxy arg flags e.g. `-ldebug`. cmd = [sys.executable] + sys.argv spawn_control_env_vars = " ".join(f"{k}={v}" for k, v in spawn_control_env.items()) cmd_line = " ".join(cmd) logger.debug(f"pantsd command is: {spawn_control_env_vars} {cmd_line}") # TODO: Improve error handling on launch failures. os.spawnve(os.P_NOWAIT, sys.executable, cmd, env=exec_env)