gt
stringclasses
1 value
context
stringlengths
2.49k
119k
## # @license # Copyright Neekware Inc. All Rights Reserved. # # Use of this source code is governed by an MIT-style license that can be # found in the LICENSE file at http://neekware.com/license/MIT.html ### from django.conf import settings from django.utils import timezone from django.db import models from django.utils.translation import ugettext as _ from django.contrib.auth.models import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin from django.contrib.auth.models import BaseUserManager from django.core.files.storage import get_storage_class from toolware.utils.generic import get_uuid from toolware.utils.query import CaseInsensitiveUniqueManager from slugify import slugify from . import utils as util from . import defaults as defs EnabledLanguages = getattr(settings, 'ENABLED_LANGUAGES', {}) DefaultStorage = get_storage_class(defs.DEFAULT_FILE_STORAGE) class UserProfileManager(CaseInsensitiveUniqueManager, BaseUserManager): """ Custom User Manager Class. USERNAME_FIELD is the email field. """ def _create_user(self, email, password, is_staff, is_superuser, **extra_fields): """ Creates and saves a User with the given, email and password. """ if email: if password is None: # Social users have no passwords, but they can request one later on # via password reset. We need to setup a random password since a usable # password is required by `has_usable_password()` to allow password resets. password = get_uuid(length=20, version=4) user = self.model(email=self.normalize_email(email), is_staff=is_staff, is_active=True, is_superuser=is_superuser, last_login=timezone.now(), **extra_fields) user.set_password(password) user.save(using=self._db) return user else: # Translators: admin:skip raise ValueError(_('USER.EMAIL.REQUIRED')) def create_user(self, email=None, password=None, **extra_fields): return self._create_user(email, password, False, False, **extra_fields) def create_superuser(self, email, password, **extra_fields): return self._create_user(email, password, True, True, **extra_fields) class Profile(AbstractBaseUser, PermissionsMixin): """ A custom user class w/ email & password as the only required fileds """ default_storage = DefaultStorage() email = models.EmailField( # Translators: admin:skip _('USER.EMAIL'), db_index=True, unique=True, # Translators: admin:skip help_text=_('USER.EMAIL.DESC'), ) is_superuser = models.BooleanField( # Translators: admin:skip _('USER.SUPERUSER'), default=False, # Translators: admin:skip help_text=_('USER.SUPERUSER.DESC'), ) is_staff = models.BooleanField( # Translators: admin:skip _('USER.STAFF'), default=False, # Translators: admin:skip help_text=_('USER.STAFF.DESC'), ) is_active = models.BooleanField( # Translators: admin:skip _('USER.ACTIVE'), default=True, # Translators: admin:skip help_text=_('USER.ACTIVE.DESC'), ) # Django specific fields are above this line ############################################# created_at = models.DateTimeField( # Translators: admin:skip _('USER.CREATED_AT'), default=timezone.now, ) updated_at = models.DateTimeField( # Translators: admin:skip _('USER.UPDATED_AT'), auto_now=True, ) first_name = models.CharField( # Translators: admin:skip _('USER.FIRST_NAME'), max_length=60, null=True, blank=False, # Translators: admin:skip help_text=_('USER.FIRST_NAME.DESC'), ) last_name = models.CharField( # Translators: admin:skip _('USER.LAST_NAME'), max_length=255, null=True, blank=False, # Translators: admin:skip help_text=_('USER.LAST_NAME.DESC'), ) is_verified = models.BooleanField( # Translators: admin:skip _('USER.VERIFIED'), default=False, # Translators: admin:skip help_text=_('USER.VERIFIED.DESC'), ) photo = models.ImageField( # Translators: admin:skip _('USER.PHOTO'), null=True, blank=True, storage=default_storage, upload_to=util.uploadto_user_photo, max_length=255, # Translators: admin:skip help_text=_('USER.PHOTO.DESC'), ) status = models.CharField( # Translators: admin:skip _('USER.STATUS'), default=defs.USER_STATUS_DEFAULT, choices=defs.USER_STATUS_CHOICES, max_length=60, # Translators: admin:skip help_text=_('USER.STATUS.DESC'), ) language = models.CharField( # Translators: admin:skip _('USER.LANGUAGE'), max_length=40, default=defs.USER_DEFAULT_LANGUAGE, # Translators: admin:skip help_text=_('USER.LANGUAGE.DESC') ) # ########## Add new fields above this line ############# objects = UserProfileManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = [] CASE_INSENSITIVE_FIELDS = ['email', 'first_name', 'last_name'] class Meta: # Translators: admin:skip verbose_name = _('USER.LABEL') # Translators: admin:skip verbose_name_plural = _('USER.LABEL.PLURAL') permissions = ( # ('add_profile', 'Can add new profile'), # ('change_profile', 'Can change all data on any profile'), # ('delete_profile', 'Can delete any non-superuser profile'), # ('view_profile', 'Can view public data on any profile'), ('read_profile', 'Can read all data on any profile'), ('update_profile', 'Can update public data on any profile'), ('switch_profile', 'Can switch to any non-superuser profile'), ) def __str__(self): return '{} [{}]'.format(self.email, self.id) def get_username(self): """ Return a unique user id instead of username """ return self.email def get_absolute_url(self): """ Return public URL for user """ return "/m/{}/{}".format(self.id, slugify(self.get_full_name())) def get_short_name(self): """ Returns first name """ return self.first_name def get_full_name(self): """ Returns full name """ return '{} {}'.format(self.first_name, self.last_name) def email_user(self, subject, message, from_email=None, **kwargs): """ Sends an email to this user """ send_mail(subject, message, from_email, [self.email], **kwargs) # ########## Add new methods below this line ############# @property def avatar(self): if self.photo and self.photo.url: return self.photo.url return None
#!/usr/bin/python # Subscribes to the Glider Singleton Publishing Service Socket. # When a new set is published, it outputs a new NetCDF to a given # output directory. # # By: Michael Lindemuth # University of South Florida # College of Marine Science # Ocean Technology Group import daemon import zmq import argparse import sys import shutil import os import json import logging logger = logging.getLogger('gsps_netcdf_sub') from glider_netcdf_writer import ( open_glider_netcdf ) from netCDF4 import default_fillvals as NC_FILL_VALUES from threading import Thread from gsps_netcdf_subscriber.generators import ( generate_global_attributes, generate_filename, generate_set_key ) import lockfile import numpy as np from glider_utils.yo import find_yo_extrema from glider_utils.yo.filters import ( filter_profile_depth, filter_profile_time, filter_profile_distance, filter_profile_number_of_points ) from glider_utils.gps import interpolate_gps from glider_utils.ctd.salinity import calculate_practical_salinity from glider_utils.ctd.density import calculate_density class GliderDataset(object): """Represents a complete glider dataset """ def __init__(self, handler_dataset): self.glider = handler_dataset['glider'] self.segment = handler_dataset['segment'] self.headers = handler_dataset['headers'] self.__parse_lines(handler_dataset['lines']) self.__interpolate_glider_gps() self.__calculate_salinity_and_density() self.__calculate_position_uv() def __interpolate_glider_gps(self): if 'm_gps_lat-lat' in self.data_by_type: dataset = np.column_stack(( self.times, self.data_by_type['m_gps_lat-lat'], self.data_by_type['m_gps_lon-lon'] )) gps = interpolate_gps(dataset) self.data_by_type['lat-lat'] = gps[:, 1] self.data_by_type['lon-lon'] = gps[:, 2] def __calculate_salinity_and_density(self): if 'sci_water_cond-s/m' in self.data_by_type: dataset = np.column_stack(( self.times, self.data_by_type['sci_water_cond-s/m'], self.data_by_type['sci_water_temp-degc'], self.data_by_type['sci_water_pressure-bar'] )) salinity_dataset = calculate_practical_salinity(dataset) density_dataset = calculate_density( salinity_dataset, self.data_by_type['lat-lat'], self.data_by_type['lon-lon'] ) density_dataset[np.isnan(density_dataset[:, 7]), 7] = ( NC_FILL_VALUES['f8'] ) density_dataset[np.isnan(density_dataset[:, 9]), 9] = ( NC_FILL_VALUES['f8'] ) self.data_by_type['salinity-psu'] = density_dataset[:, 7] self.data_by_type['density-kg/m^3'] = density_dataset[:, 9] def __parse_lines(self, lines): self.time_uv = NC_FILL_VALUES['f8'] self.times = [] self.data_by_type = {} for header in self.headers: self.data_by_type[header] = [] for line in lines: self.times.append(line['timestamp']) for key in self.data_by_type.keys(): if key in line: datum = line[key] if key == 'm_water_vx-m/s': self.time_uv = line['timestamp'] else: datum = NC_FILL_VALUES['f8'] self.data_by_type[key].append(datum) def calculate_profiles(self): profiles = [] if 'm_depth-m' in self.data_by_type: dataset = np.column_stack(( self.times, self.data_by_type['m_depth-m'] )) profiles = find_yo_extrema(dataset) profiles = filter_profile_depth(profiles) profiles = filter_profile_time(profiles) profiles = filter_profile_distance(profiles) profiles = filter_profile_number_of_points(profiles) return profiles[:, 2] def __calculate_position_uv(self): dataset = np.column_stack(( self.times, self.data_by_type['lat-lat'], self.data_by_type['lon-lon'] )) i = np.min(dataset[:, 0] - self.time_uv).argmin() self.data_by_type['lat_uv-lat'] = [dataset[i, 1]] self.data_by_type['lon_uv-lon'] = [dataset[i, 2]] def write_netcdf(configs, sets, set_key): dataset = GliderDataset(sets[set_key]) # No longer need the dataset stored by handlers del sets[set_key] global_attributes = ( generate_global_attributes(configs, dataset) ) filename = generate_filename(configs, dataset) tmp_path = '/tmp/' + filename with open_glider_netcdf(tmp_path, 'w') as glider_nc: glider_nc.set_global_attributes(global_attributes) glider_nc.set_platform( configs[dataset.glider]['deployment']['platform'] ) glider_nc.set_trajectory_id(1) glider_nc.set_segment_id(dataset.segment) glider_nc.set_datatypes(configs['datatypes']) glider_nc.set_instruments(configs[dataset.glider]['instruments']) glider_nc.set_times(dataset.times) # Insert time_uv parameters glider_nc.set_time_uv(dataset.time_uv) glider_nc.set_profile_ids(dataset.calculate_profiles()) for datatype, data in dataset.data_by_type.items(): glider_nc.insert_data(datatype, data) deployment_path = ( configs['output_directory'] + '/' + configs[dataset.glider]['deployment']['directory'] ) if not os.path.exists(deployment_path): os.mkdir(deployment_path) file_path = deployment_path + '/' + filename shutil.move(tmp_path, file_path) logger.info("Datafile written to %s" % file_path) def handle_set_start(configs, sets, message): """Handles the set start message from the GSPS publisher Initializes the new dataset store in memory """ set_key = generate_set_key(message) sets[set_key] = { 'glider': message['glider'], 'segment': message['segment'], 'headers': [], 'lines': [] } for header in message['headers']: key = header['name'] + '-' + header['units'] sets[set_key]['headers'].append(key) logger.info( "Dataset start for %s @ %s" % (message['glider'], message['start']) ) def handle_set_data(configs, sets, message): """Handles all new data coming in for a GSPS dataset All datasets must already have been initialized by a set_start message. Appends new data lines to the set lines variable. """ set_key = generate_set_key(message) if set_key in sets: sets[set_key]['lines'].append(message['data']) else: logger.error( "Unknown dataset passed for key glider %s dataset @ %s" % (message['glider'], message['start']) ) def handle_set_end(configs, sets, message): """Handles the set_end message coming from GSPS Checks for empty dataset. If not empty, it hands off dataset to thread. Thread writes NetCDF data to new file in output directory. """ set_key = generate_set_key(message) if set_key in sets: if len(sets[set_key]['lines']) == 0: logger.info( "Empty set: for glider %s dataset @ %s" % (message['glider'], message['start']) ) return # No data in set, do nothing thread = Thread( target=write_netcdf, args=(configs, sets, set_key) ) thread.start() logger.info( "Dataset end for %s @ %s. Processing..." % (message['glider'], message['start']) ) message_handlers = { 'set_start': handle_set_start, 'set_data': handle_set_data, 'set_end': handle_set_end } def load_configs(configs_directory): configs = {} for filename in os.listdir(configs_directory): # Skip hidden directories if filename[0] == '.': continue ext_sep = filename.find('.') if ext_sep != -1: key = filename[:ext_sep] else: key = filename full_path = configs_directory + '/' + filename # Glider configurations are in directories. # Load configs recursively if os.path.isdir(full_path): configs[key] = load_configs(full_path) # Load configuration from file else: with open(full_path, 'r') as f: contents = f.read() conf = {} try: conf = json.loads(contents) except Exception, e: logger.error('Error processing %s: %s' % (filename, e)) configs[key] = conf return configs def run_subscriber(configs): context = zmq.Context() socket = context.socket(zmq.SUB) socket.connect(configs['zmq_url']) socket.setsockopt(zmq.SUBSCRIBE, '') sets = {} while True: try: message = socket.recv_json() if message['message_type'] in message_handlers: message_type = message['message_type'] message_handlers[message_type](configs, sets, message) except Exception, e: logger.error("Subscriber exited: %s" % (e)) break def main(): parser = argparse.ArgumentParser( description="Subscribes to the Glider Singleton Publishing Service " "Socket. When a new set is published, it outputs a new " "NetCDF to a given output directory." ) parser.add_argument( "--zmq_url", default="tcp://localhost:8008", help="ZMQ url for the GSPS publisher. Default: tcp://localhost:8008" ) parser.add_argument( "--configs", default="/etc/gsps_netcdf_sub", help="Folder to look for NetCDF global and glider " "JSON configuration files. Default: /etc/gsps_netcdf_sub" ) parser.add_argument( "--daemonize", type=bool, help="To daemonize or not to daemonize. Default: false", default=False ) parser.add_argument( "--log_file", help="Path of log file. Default: ./gsps_netcdf_sub.log", default="./gsps_netcdf_sub.log" ) parser.add_argument( "--pid_file", help="Path of PID file for daemon. Default: ./gsps_netcdf_sub.pid", default="./gsps_netcdf_sub.pid" ) parser.add_argument( "output_directory", help="Where to place the newly generated netCDF file.", default=False ) args = parser.parse_args() # Setup logger logger.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s - %(name)s " "- %(levelname)s - %(message)s") if args.daemonize: log_handler = logging.FileHandler(args.log_file) else: log_handler = logging.StreamHandler(sys.stdout) log_handler.setFormatter(formatter) logger.addHandler(log_handler) configs_directory = args.configs if configs_directory[-1] == '/': configs_directory = configs_directory[:-1] configs = load_configs(configs_directory) output_directory = args.output_directory if args.output_directory[-1] == '/': output_directory = args.output_directory[:-1] configs['output_directory'] = output_directory configs['zmq_url'] = args.zmq_url if args.daemonize: logger.info('Starting') daemon_context = daemon.DaemonContext( pidfile=lockfile.FileLock(args.pid_file), files_preserve=[log_handler.stream.fileno()], ) with daemon_context: run_subscriber(configs) else: run_subscriber(configs) logger.info('Stopped') if __name__ == '__main__': sys.exit(main())
# Copyright 2011-2013 James McCauley # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is loosely based on the discovery component in NOX. """ This module discovers the connectivity between OpenFlow switches by sending out LLDP packets. To be notified of this information, listen to LinkEvents on core.openflow_discovery. It's possible that some of this should be abstracted out into a generic Discovery module, or a Discovery superclass. """ from pox.lib.revent import * from pox.lib.recoco import Timer from pox.lib.util import dpid_to_str, str_to_bool from pox.core import core import pox.openflow.libopenflow_01 as of import pox.lib.packet as pkt import struct import time from collections import namedtuple from random import shuffle log = core.getLogger() class LLDPSender (object): """ Sends out discovery packets """ SendItem = namedtuple("LLDPSenderItem", ('dpid','port_num','packet')) #NOTE: This class keeps the packets to send in a flat list, which makes # adding/removing them on switch join/leave or (especially) port # status changes relatively expensive. Could easily be improved. def __init__ (self, send_cycle_time, ttl = 120): """ Initialize an LLDP packet sender send_cycle_time is the time (in seconds) that this sender will take to send every discovery packet. Thus, it should be the link timeout interval at most. ttl is the time (in seconds) for which a receiving LLDP agent should consider the rest of the data to be valid. We don't use this, but other LLDP agents might. Can't be 0 (this means revoke). """ # Packets remaining to be sent in this cycle self._this_cycle = [] # Packets we've already sent in this cycle self._next_cycle = [] self._timer = None self._ttl = ttl self._send_cycle_time = send_cycle_time core.listen_to_dependencies(self) def _handle_openflow_PortStatus (self, event): """ Track changes to switch ports """ if event.added: self.add_port(event.dpid, event.port, event.ofp.desc.hw_addr) elif event.deleted: self.del_port(event.dpid, event.port) def _handle_openflow_ConnectionUp (self, event): self.del_switch(event.dpid, set_timer = False) ports = [(p.port_no, p.hw_addr) for p in event.ofp.ports] for port_num, port_addr in ports: self.add_port(event.dpid, port_num, port_addr, set_timer = False) self._set_timer() def _handle_openflow_ConnectionDown (self, event): self.del_switch(event.dpid) def del_switch (self, dpid, set_timer = True): self._this_cycle = [p for p in self._this_cycle if p.dpid != dpid] self._next_cycle = [p for p in self._next_cycle if p.dpid != dpid] if set_timer: self._set_timer() def del_port (self, dpid, port_num, set_timer = True): if port_num > of.OFPP_MAX: return self._this_cycle = [p for p in self._this_cycle if p.dpid != dpid or p.port_num != port_num] self._next_cycle = [p for p in self._next_cycle if p.dpid != dpid or p.port_num != port_num] if set_timer: self._set_timer() def add_port (self, dpid, port_num, port_addr, set_timer = True): if port_num > of.OFPP_MAX: return self.del_port(dpid, port_num, set_timer = False) self._next_cycle.append(LLDPSender.SendItem(dpid, port_num, self.create_discovery_packet(dpid, port_num, port_addr))) if set_timer: self._set_timer() def _set_timer (self): if self._timer: self._timer.cancel() self._timer = None num_packets = len(self._this_cycle) + len(self._next_cycle) if num_packets != 0: self._timer = Timer(self._send_cycle_time / float(num_packets), self._timer_handler, recurring=True) def _timer_handler (self): """ Called by a timer to actually send packets. Picks the first packet off this cycle's list, sends it, and then puts it on the next-cycle list. When this cycle's list is empty, starts the next cycle. """ if len(self._this_cycle) == 0: self._this_cycle = self._next_cycle self._next_cycle = [] shuffle(self._this_cycle) item = self._this_cycle.pop(0) self._next_cycle.append(item) core.openflow.sendToDPID(item.dpid, item.packet) def create_discovery_packet (self, dpid, port_num, port_addr): """ Build discovery packet """ chassis_id = pkt.chassis_id(subtype=pkt.chassis_id.SUB_LOCAL) chassis_id.id = bytes('dpid:' + hex(long(dpid))[2:-1]) # Maybe this should be a MAC. But a MAC of what? Local port, maybe? port_id = pkt.port_id(subtype=pkt.port_id.SUB_PORT, id=str(port_num)) ttl = pkt.ttl(ttl = self._ttl) sysdesc = pkt.system_description() sysdesc.payload = bytes('dpid:' + hex(long(dpid))[2:-1]) discovery_packet = pkt.lldp() discovery_packet.tlvs.append(chassis_id) discovery_packet.tlvs.append(port_id) discovery_packet.tlvs.append(ttl) discovery_packet.tlvs.append(sysdesc) discovery_packet.tlvs.append(pkt.end_tlv()) eth = pkt.ethernet(type=pkt.ethernet.LLDP_TYPE) eth.src = port_addr eth.dst = pkt.ETHERNET.NDP_MULTICAST eth.payload = discovery_packet po = of.ofp_packet_out(action = of.ofp_action_output(port=port_num)) po.data = eth.pack() return po.pack() class LinkEvent (Event): """ Link up/down event """ def __init__ (self, add, link): Event.__init__(self) self.link = link self.added = add self.removed = not add def port_for_dpid (self, dpid): if self.link.dpid1 == dpid: return self.link.port1 if self.link.dpid2 == dpid: return self.link.port2 return None class Link (namedtuple("LinkBase",("dpid1","port1","dpid2","port2"))): @property def uni (self): """ Returns a "unidirectional" version of this link The unidirectional versions of symmetric keys will be equal """ pairs = list(self.end) pairs.sort() return Link(pairs[0][0],pairs[0][1],pairs[1][0],pairs[1][1]) @property def end (self): return ((self[0],self[1]),(self[2],self[3])) def __str__ (self): return "%s.%s -> %s.%s" % (dpid_to_str(self[0]),self[1], dpid_to_str(self[2]),self[3]) def __repr__ (self): return "Link(dpid1=%s,port1=%s, dpid2=%s,port2=%s)" % (self.dpid1, self.port1, self.dpid2, self.port2) class Discovery (EventMixin): """ Component that attempts to discover network toplogy. Sends out specially-crafted LLDP packets, and monitors their arrival. """ _flow_priority = 65000 # Priority of LLDP-catching flow (if any) _link_timeout = 10 # How long until we consider a link dead _timeout_check_period = 5 # How often to check for timeouts _eventMixin_events = set([ LinkEvent, ]) _core_name = "openflow_discovery" # we want to be core.openflow_discovery Link = Link def __init__ (self, install_flow = True, explicit_drop = True, link_timeout = None, eat_early_packets = False): self._eat_early_packets = eat_early_packets self._explicit_drop = explicit_drop self._install_flow = install_flow if link_timeout: self._link_timeout = link_timeout self.adjacency = {} # From Link to time.time() stamp self._sender = LLDPSender(self.send_cycle_time) # Listen with a high priority (mostly so we get PacketIns early) core.listen_to_dependencies(self, listen_args={'openflow':{'priority':0xffffffff}}) Timer(self._timeout_check_period, self._expire_links, recurring=True) @property def send_cycle_time (self): return self._link_timeout / 2.0 def install_flow (self, con_or_dpid, priority = None): if priority is None: priority = self._flow_priority if isinstance(con_or_dpid, (int,long)): con = core.openflow.connections.get(con_or_dpid) if con is None: log.warn("Can't install flow for %s", dpid_to_str(con_or_dpid)) return False else: con = con_or_dpid match = of.ofp_match(dl_type = pkt.ethernet.LLDP_TYPE, dl_dst = pkt.ETHERNET.NDP_MULTICAST) msg = of.ofp_flow_mod() msg.priority = priority msg.match = match msg.actions.append(of.ofp_action_output(port = of.OFPP_CONTROLLER)) con.send(msg) return True def _handle_openflow_ConnectionUp (self, event): if self._install_flow: # Make sure we get appropriate traffic log.debug("Installing flow for %s", dpid_to_str(event.dpid)) self.install_flow(event.connection) def _handle_openflow_ConnectionDown (self, event): # Delete all links on this switch self._delete_links([link for link in self.adjacency if link.dpid1 == event.dpid or link.dpid2 == event.dpid]) def _expire_links (self): """ Remove apparently dead links """ now = time.time() expired = [link for link,timestamp in self.adjacency.iteritems() if timestamp + self._link_timeout < now] if expired: for link in expired: log.info('link timeout: %s', link) self._delete_links(expired) def _handle_openflow_PacketIn (self, event): """ Receive and process LLDP packets """ packet = event.parsed if (packet.effective_ethertype != pkt.ethernet.LLDP_TYPE or packet.dst != pkt.ETHERNET.NDP_MULTICAST): if not self._eat_early_packets: return if not event.connection.connect_time: return enable_time = time.time() - self.send_cycle_time - 1 if event.connection.connect_time > enable_time: return EventHalt return if self._explicit_drop: if event.ofp.buffer_id is not None: log.debug("Dropping LLDP packet %i", event.ofp.buffer_id) msg = of.ofp_packet_out() msg.buffer_id = event.ofp.buffer_id msg.in_port = event.port event.connection.send(msg) lldph = packet.find(pkt.lldp) if lldph is None or not lldph.parsed: log.error("LLDP packet could not be parsed") return EventHalt if len(lldph.tlvs) < 3: log.error("LLDP packet without required three TLVs") return EventHalt if lldph.tlvs[0].tlv_type != pkt.lldp.CHASSIS_ID_TLV: log.error("LLDP packet TLV 1 not CHASSIS_ID") return EventHalt if lldph.tlvs[1].tlv_type != pkt.lldp.PORT_ID_TLV: log.error("LLDP packet TLV 2 not PORT_ID") return EventHalt if lldph.tlvs[2].tlv_type != pkt.lldp.TTL_TLV: log.error("LLDP packet TLV 3 not TTL") return EventHalt def lookInSysDesc (): r = None for t in lldph.tlvs[3:]: if t.tlv_type == pkt.lldp.SYSTEM_DESC_TLV: # This is our favored way... for line in t.payload.split('\n'): if line.startswith('dpid:'): try: return int(line[5:], 16) except: pass if len(t.payload) == 8: # Maybe it's a FlowVisor LLDP... # Do these still exist? try: return struct.unpack("!Q", t.payload)[0] except: pass return None originatorDPID = lookInSysDesc() if originatorDPID == None: # We'll look in the CHASSIS ID if lldph.tlvs[0].subtype == pkt.chassis_id.SUB_LOCAL: if lldph.tlvs[0].id.startswith('dpid:'): # This is how NOX does it at the time of writing try: originatorDPID = int(lldph.tlvs[0].id[5:], 16) except: pass if originatorDPID == None: if lldph.tlvs[0].subtype == pkt.chassis_id.SUB_MAC: # Last ditch effort -- we'll hope the DPID was small enough # to fit into an ethernet address if len(lldph.tlvs[0].id) == 6: try: s = lldph.tlvs[0].id originatorDPID = struct.unpack("!Q",'\x00\x00' + s)[0] except: pass if originatorDPID == None: log.warning("Couldn't find a DPID in the LLDP packet") return EventHalt if originatorDPID not in core.openflow.connections: log.info('Received LLDP packet from unknown switch') return EventHalt # Get port number from port TLV if lldph.tlvs[1].subtype != pkt.port_id.SUB_PORT: log.warning("Thought we found a DPID, but packet didn't have a port") return EventHalt originatorPort = None if lldph.tlvs[1].id.isdigit(): # We expect it to be a decimal value originatorPort = int(lldph.tlvs[1].id) elif len(lldph.tlvs[1].id) == 2: # Maybe it's a 16 bit port number... try: originatorPort = struct.unpack("!H", lldph.tlvs[1].id)[0] except: pass if originatorPort is None: log.warning("Thought we found a DPID, but port number didn't " + "make sense") return EventHalt if (event.dpid, event.port) == (originatorDPID, originatorPort): log.warning("Port received its own LLDP packet; ignoring") return EventHalt link = Discovery.Link(originatorDPID, originatorPort, event.dpid, event.port) if link not in self.adjacency: self.adjacency[link] = time.time() log.info('link detected: %s', link) self.raiseEventNoErrors(LinkEvent, True, link) else: # Just update timestamp self.adjacency[link] = time.time() return EventHalt # Probably nobody else needs this event def _delete_links (self, links): for link in links: self.raiseEventNoErrors(LinkEvent, False, link) for link in links: self.adjacency.pop(link, None) def is_edge_port (self, dpid, port): """ Return True if given port does not connect to another switch """ for link in self.adjacency: if link.dpid1 == dpid and link.port1 == port: return False if link.dpid2 == dpid and link.port2 == port: return False return True def launch (no_flow = False, explicit_drop = True, link_timeout = None, eat_early_packets = False): explicit_drop = str_to_bool(explicit_drop) eat_early_packets = str_to_bool(eat_early_packets) install_flow = not str_to_bool(no_flow) if link_timeout: link_timeout = int(link_timeout) core.registerNew(Discovery, explicit_drop=explicit_drop, install_flow=install_flow, link_timeout=link_timeout, eat_early_packets=eat_early_packets)
from __future__ import division, absolute_import, print_function import sys, re, inspect, textwrap, pydoc import sphinx import collections from .docscrape import NumpyDocString, FunctionDoc, ClassDoc if sys.version_info[0] >= 3: sixu = lambda s: s else: sixu = lambda s: unicode(s, 'unicode_escape') class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): # Subclasses seemingly do not call this. NumpyDocString.__init__(self, docstring, config=config) def load_config(self, config): self.use_plots = config.get('use_plots', False) self.class_members_toctree = config.get('class_members_toctree', True) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_returns(self): out = [] if self['Returns']: out += self._str_field_list('Returns') out += [''] for param, param_type, desc in self['Returns']: if param_type: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) else: out += self._str_indent([param.strip()]) if desc: out += [''] out += self._str_indent(desc, 8) out += [''] return out def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: if param_type: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) else: out += self._str_indent(['**%s**' % param.strip()]) if desc: out += [''] out += self._str_indent(desc, 8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() # Check if the referenced member can have a docstring or not param_obj = getattr(self._obj, param, None) if not (callable(param_obj) or isinstance(param_obj, property) or inspect.isgetsetdescriptor(param_obj)): param_obj = None if param_obj and (pydoc.getdoc(param_obj) or not desc): # Referenced object has a docstring autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: out += ['.. autosummary::'] if self.class_members_toctree: out += [' :toctree:'] out += [''] + autosum if others: maxlen_0 = max(3, max([len(x[0]) for x in others])) hdr = sixu("=")*maxlen_0 + sixu(" ") + sixu("=")*10 fmt = sixu('%%%ds %%s ') % (maxlen_0,) out += ['', hdr] for param, param_type, desc in others: desc = sixu(" ").join(x.strip() for x in desc).strip() if param_type: desc = "(%s) %s" % (param_type, desc) out += [fmt % (param.strip(), desc)] out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default','')] for section, references in idx.items(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex',''] else: out += ['.. latexonly::',''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() out += self._str_param_list('Parameters') out += self._str_returns() for param_list in ('Other Parameters', 'Raises', 'Warns'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out,indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.load_config(config) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.load_config(config) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj self.load_config(config) SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif isinstance(obj, collections.Callable): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
# Copyright 2013 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Tests for Glance Registry's client. This tests are temporary and will be removed once the registry's driver tests will be added. """ import copy import datetime import os import uuid from mock import patch from oslo_utils import timeutils from glance.common import config from glance.common import exception from glance import context from glance.db.sqlalchemy import api as db_api from glance import i18n from glance.registry.api import v2 as rserver import glance.registry.client.v2.api as rapi from glance.registry.client.v2.api import client as rclient from glance.tests.unit import base from glance.tests import utils as test_utils _ = i18n._ _gen_uuid = lambda: str(uuid.uuid4()) UUID1 = str(uuid.uuid4()) UUID2 = str(uuid.uuid4()) # NOTE(bcwaldon): needed to init config_dir cli opt config.parse_args(args=[]) class TestRegistryV2Client(base.IsolatedUnitTest, test_utils.RegistryAPIMixIn): """Test proper actions made against a registry service. Test for both valid and invalid requests. """ # Registry server to user # in the stub. registry = rserver def setUp(self): """Establish a clean test environment""" super(TestRegistryV2Client, self).setUp() db_api.get_engine() self.context = context.RequestContext(is_admin=True) uuid1_time = timeutils.utcnow() uuid2_time = uuid1_time + datetime.timedelta(seconds=5) self.FIXTURES = [ self.get_extra_fixture( id=UUID1, name='fake image #1', is_public=False, disk_format='ami', container_format='ami', size=13, virtual_size=26, properties={'type': 'kernel'}, location="swift://user:passwd@acct/container/obj.tar.0", created_at=uuid1_time), self.get_extra_fixture(id=UUID2, name='fake image #2', properties={}, size=19, virtual_size=38, location="file:///tmp/glance-tests/2", created_at=uuid2_time)] self.destroy_fixtures() self.create_fixtures() self.client = rclient.RegistryClient("0.0.0.0") def tearDown(self): """Clear the test environment""" super(TestRegistryV2Client, self).tearDown() self.destroy_fixtures() def test_image_get_index(self): """Test correct set of public image returned""" images = self.client.image_get_all() self.assertEqual(2, len(images)) def test_create_image_with_null_min_disk_min_ram(self): UUID3 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID3, name='asdf', min_disk=None, min_ram=None) db_api.image_create(self.context, extra_fixture) image = self.client.image_get(image_id=UUID3) self.assertEqual(0, image["min_ram"]) self.assertEqual(0, image["min_disk"]) def test_get_index_sort_name_asc(self): """Tests that the registry API returns list of public images. Must be sorted alphabetically by name in ascending order. """ UUID3 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID3, name='asdf') db_api.image_create(self.context, extra_fixture) UUID4 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID4, name='xyz') db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(sort_key=['name'], sort_dir=['asc']) self.assertEqualImages(images, (UUID3, UUID1, UUID2, UUID4), unjsonify=False) def test_get_index_sort_status_desc(self): """Tests that the registry API returns list of public images. Must be sorted alphabetically by status in descending order. """ uuid4_time = timeutils.utcnow() + datetime.timedelta(seconds=10) UUID3 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID3, name='asdf', status='queued') db_api.image_create(self.context, extra_fixture) UUID4 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID4, name='xyz', created_at=uuid4_time) db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(sort_key=['status'], sort_dir=['desc']) self.assertEqualImages(images, (UUID3, UUID4, UUID2, UUID1), unjsonify=False) def test_get_index_sort_disk_format_asc(self): """Tests that the registry API returns list of public images. Must besorted alphabetically by disk_format in ascending order. """ UUID3 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID3, name='asdf', disk_format='ami', container_format='ami') db_api.image_create(self.context, extra_fixture) UUID4 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID4, name='xyz', disk_format='vdi') db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(sort_key=['disk_format'], sort_dir=['asc']) self.assertEqualImages(images, (UUID1, UUID3, UUID4, UUID2), unjsonify=False) def test_get_index_sort_container_format_desc(self): """Tests that the registry API returns list of public images. Must be sorted alphabetically by container_format in descending order. """ UUID3 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID3, name='asdf', disk_format='ami', container_format='ami') db_api.image_create(self.context, extra_fixture) UUID4 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID4, name='xyz', disk_format='iso', container_format='bare') db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(sort_key=['container_format'], sort_dir=['desc']) self.assertEqualImages(images, (UUID2, UUID4, UUID3, UUID1), unjsonify=False) def test_get_index_sort_size_asc(self): """Tests that the registry API returns list of public images. Must be sorted by size in ascending order. """ UUID3 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID3, name='asdf', disk_format='ami', container_format='ami', size=100, virtual_size=200) db_api.image_create(self.context, extra_fixture) UUID4 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID4, name='asdf', disk_format='iso', container_format='bare', size=2, virtual_size=4) db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(sort_key=['size'], sort_dir=['asc']) self.assertEqualImages(images, (UUID4, UUID1, UUID2, UUID3), unjsonify=False) def test_get_index_sort_created_at_asc(self): """Tests that the registry API returns list of public images. Must be sorted by created_at in ascending order. """ uuid4_time = timeutils.utcnow() + datetime.timedelta(seconds=10) uuid3_time = uuid4_time + datetime.timedelta(seconds=5) UUID3 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID3, created_at=uuid3_time) db_api.image_create(self.context, extra_fixture) UUID4 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID4, created_at=uuid4_time) db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(sort_key=['created_at'], sort_dir=['asc']) self.assertEqualImages(images, (UUID1, UUID2, UUID4, UUID3), unjsonify=False) def test_get_index_sort_updated_at_desc(self): """Tests that the registry API returns list of public images. Must be sorted by updated_at in descending order. """ uuid4_time = timeutils.utcnow() + datetime.timedelta(seconds=10) uuid3_time = uuid4_time + datetime.timedelta(seconds=5) UUID3 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID3, created_at=None, updated_at=uuid3_time) db_api.image_create(self.context, extra_fixture) UUID4 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID4, created_at=None, updated_at=uuid4_time) db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(sort_key=['updated_at'], sort_dir=['desc']) self.assertEqualImages(images, (UUID3, UUID4, UUID2, UUID1), unjsonify=False) def test_get_image_details_sort_multiple_keys(self): """ Tests that a detailed call returns list of public images sorted by name-size and size-name in ascending order. """ UUID3 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID3, name='asdf', size=19) db_api.image_create(self.context, extra_fixture) UUID4 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID4, name=u'xyz', size=20) db_api.image_create(self.context, extra_fixture) UUID5 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID5, name=u'asdf', size=20) db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(sort_key=['name', 'size'], sort_dir=['asc']) self.assertEqualImages(images, (UUID3, UUID5, UUID1, UUID2, UUID4), unjsonify=False) images = self.client.image_get_all(sort_key=['size', 'name'], sort_dir=['asc']) self.assertEqualImages(images, (UUID1, UUID3, UUID2, UUID5, UUID4), unjsonify=False) def test_get_image_details_sort_multiple_dirs(self): """ Tests that a detailed call returns list of public images sorted by name-size and size-name in ascending and descending orders. """ UUID3 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID3, name='asdf', size=19) db_api.image_create(self.context, extra_fixture) UUID4 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID4, name='xyz', size=20) db_api.image_create(self.context, extra_fixture) UUID5 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID5, name='asdf', size=20) db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(sort_key=['name', 'size'], sort_dir=['asc', 'desc']) self.assertEqualImages(images, (UUID5, UUID3, UUID1, UUID2, UUID4), unjsonify=False) images = self.client.image_get_all(sort_key=['name', 'size'], sort_dir=['desc', 'asc']) self.assertEqualImages(images, (UUID4, UUID2, UUID1, UUID3, UUID5), unjsonify=False) images = self.client.image_get_all(sort_key=['size', 'name'], sort_dir=['asc', 'desc']) self.assertEqualImages(images, (UUID1, UUID2, UUID3, UUID4, UUID5), unjsonify=False) images = self.client.image_get_all(sort_key=['size', 'name'], sort_dir=['desc', 'asc']) self.assertEqualImages(images, (UUID5, UUID4, UUID3, UUID2, UUID1), unjsonify=False) def test_image_get_index_marker(self): """Test correct set of images returned with marker param.""" uuid4_time = timeutils.utcnow() + datetime.timedelta(seconds=10) uuid3_time = uuid4_time + datetime.timedelta(seconds=5) UUID3 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID3, name='new name! #123', status='saving', created_at=uuid3_time) db_api.image_create(self.context, extra_fixture) UUID4 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID4, name='new name! #125', status='saving', created_at=uuid4_time) db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(marker=UUID3) self.assertEqualImages(images, (UUID4, UUID2, UUID1), unjsonify=False) def test_image_get_index_limit(self): """Test correct number of images returned with limit param.""" extra_fixture = self.get_fixture(id=_gen_uuid(), name='new name! #123', status='saving') db_api.image_create(self.context, extra_fixture) extra_fixture = self.get_fixture(id=_gen_uuid(), name='new name! #125', status='saving') db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(limit=2) self.assertEqual(2, len(images)) def test_image_get_index_marker_limit(self): """Test correct set of images returned with marker/limit params.""" uuid4_time = timeutils.utcnow() + datetime.timedelta(seconds=10) uuid3_time = uuid4_time + datetime.timedelta(seconds=5) UUID3 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID3, name='new name! #123', status='saving', created_at=uuid3_time) db_api.image_create(self.context, extra_fixture) UUID4 = _gen_uuid() extra_fixture = self.get_fixture(id=UUID4, name='new name! #125', status='saving', created_at=uuid4_time) db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(marker=UUID4, limit=1) self.assertEqualImages(images, (UUID2,), unjsonify=False) def test_image_get_index_limit_None(self): """Test correct set of images returned with limit param == None.""" extra_fixture = self.get_fixture(id=_gen_uuid(), name='new name! #123', status='saving') db_api.image_create(self.context, extra_fixture) extra_fixture = self.get_fixture(id=_gen_uuid(), name='new name! #125', status='saving') db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(limit=None) self.assertEqual(4, len(images)) def test_image_get_index_by_name(self): """Test correct set of public, name-filtered image returned. This is just a sanity check, we test the details call more in-depth. """ extra_fixture = self.get_fixture(id=_gen_uuid(), name='new name! #123') db_api.image_create(self.context, extra_fixture) images = self.client.image_get_all(filters={'name': 'new name! #123'}) self.assertEqual(1, len(images)) for image in images: self.assertEqual('new name! #123', image['name']) def test_image_get_is_public_v2(self): """Tests that a detailed call can be filtered by a property""" extra_fixture = self.get_fixture(id=_gen_uuid(), status='saving', properties={'is_public': 'avalue'}) context = copy.copy(self.context) db_api.image_create(context, extra_fixture) filters = {'is_public': 'avalue'} images = self.client.image_get_all(filters=filters) self.assertEqual(1, len(images)) for image in images: self.assertEqual('avalue', image['properties'][0]['value']) def test_image_get(self): """Tests that the detailed info about an image returned""" fixture = self.get_fixture(id=UUID1, name='fake image #1', is_public=False, size=13, virtual_size=26, disk_format='ami', container_format='ami') data = self.client.image_get(image_id=UUID1) for k, v in fixture.items(): el = data[k] self.assertEqual(v, data[k], "Failed v != data[k] where v = %(v)s and " "k = %(k)s and data[k] = %(el)s" % dict(v=v, k=k, el=el)) def test_image_get_non_existing(self): """Tests that NotFound is raised when getting a non-existing image""" self.assertRaises(exception.NotFound, self.client.image_get, image_id=_gen_uuid()) def test_image_create_basic(self): """Tests that we can add image metadata and returns the new id""" fixture = self.get_fixture() new_image = self.client.image_create(values=fixture) # Test all other attributes set data = self.client.image_get(image_id=new_image['id']) for k, v in fixture.items(): self.assertEqual(v, data[k]) # Test status was updated properly self.assertIn('status', data) self.assertEqual('active', data['status']) def test_image_create_with_properties(self): """Tests that we can add image metadata with properties""" fixture = self.get_fixture(location="file:///tmp/glance-tests/2", properties={'distro': 'Ubuntu 10.04 LTS'}) new_image = self.client.image_create(values=fixture) self.assertIn('properties', new_image) self.assertEqual(new_image['properties'][0]['value'], fixture['properties']['distro']) del fixture['location'] del fixture['properties'] for k, v in fixture.items(): self.assertEqual(v, new_image[k]) # Test status was updated properly self.assertIn('status', new_image.keys()) self.assertEqual('active', new_image['status']) def test_image_create_already_exists(self): """Tests proper exception is raised if image with ID already exists""" fixture = self.get_fixture(id=UUID2, location="file:///tmp/glance-tests/2") self.assertRaises(exception.Duplicate, self.client.image_create, values=fixture) def test_image_create_with_bad_status(self): """Tests proper exception is raised if a bad status is set""" fixture = self.get_fixture(status='bad status', location="file:///tmp/glance-tests/2") self.assertRaises(exception.Invalid, self.client.image_create, values=fixture) def test_image_update(self): """Tests that the registry API updates the image""" fixture = {'name': 'fake public image #2', 'disk_format': 'vmdk', 'status': 'saving'} self.assertTrue(self.client.image_update(image_id=UUID2, values=fixture)) # Test all other attributes set data = self.client.image_get(image_id=UUID2) for k, v in fixture.items(): self.assertEqual(v, data[k]) def test_image_update_conflict(self): """Tests that the registry API updates the image""" next_state = 'saving' fixture = {'name': 'fake public image #2', 'disk_format': 'vmdk', 'status': next_state} image = self.client.image_get(image_id=UUID2) current = image['status'] self.assertEqual('active', current) # image is in 'active' state so this should cause a failure. from_state = 'saving' self.assertRaises(exception.Conflict, self.client.image_update, image_id=UUID2, values=fixture, from_state=from_state) try: self.client.image_update(image_id=UUID2, values=fixture, from_state=from_state) except exception.Conflict as exc: msg = (_('cannot transition from %(current)s to ' '%(next)s in update (wanted ' 'from_state=%(from)s)') % {'current': current, 'next': next_state, 'from': from_state}) self.assertEqual(str(exc), msg) def test_image_update_with_invalid_min_disk(self): """Tests that the registry API updates the image""" next_state = 'saving' fixture = {'name': 'fake image', 'disk_format': 'vmdk', 'min_disk': str(2 ** 31 + 1), 'status': next_state} image = self.client.image_get(image_id=UUID2) current = image['status'] self.assertEqual('active', current) # image is in 'active' state so this should cause a failure. from_state = 'saving' self.assertRaises(exception.Invalid, self.client.image_update, image_id=UUID2, values=fixture, from_state=from_state) def test_image_update_with_invalid_min_ram(self): """Tests that the registry API updates the image""" next_state = 'saving' fixture = {'name': 'fake image', 'disk_format': 'vmdk', 'min_ram': str(2 ** 31 + 1), 'status': next_state} image = self.client.image_get(image_id=UUID2) current = image['status'] self.assertEqual('active', current) # image is in 'active' state so this should cause a failure. from_state = 'saving' self.assertRaises(exception.Invalid, self.client.image_update, image_id=UUID2, values=fixture, from_state=from_state) def _test_image_update_not_existing(self): """Tests non existing image update doesn't work""" fixture = self.get_fixture(status='bad status') self.assertRaises(exception.NotFound, self.client.image_update, image_id=_gen_uuid(), values=fixture) def test_image_destroy(self): """Tests that image metadata is deleted properly""" # Grab the original number of images orig_num_images = len(self.client.image_get_all()) # Delete image #2 image = self.FIXTURES[1] deleted_image = self.client.image_destroy(image_id=image['id']) self.assertTrue(deleted_image) self.assertEqual(image['id'], deleted_image['id']) self.assertTrue(deleted_image['deleted']) self.assertTrue(deleted_image['deleted_at']) # Verify one less image filters = {'deleted': False} new_num_images = len(self.client.image_get_all(filters=filters)) self.assertEqual(new_num_images, orig_num_images - 1) def test_image_destroy_not_existing(self): """Tests cannot delete non-existing image""" self.assertRaises(exception.NotFound, self.client.image_destroy, image_id=_gen_uuid()) def test_image_get_members(self): """Tests getting image members""" memb_list = self.client.image_member_find(image_id=UUID2) num_members = len(memb_list) self.assertEqual(0, num_members) def test_image_get_members_not_existing(self): """Tests getting non-existent image members""" self.assertRaises(exception.NotFound, self.client.image_get_members, image_id=_gen_uuid()) def test_image_member_find(self): """Tests getting member images""" memb_list = self.client.image_member_find(member='pattieblack') num_members = len(memb_list) self.assertEqual(0, num_members) def test_add_update_members(self): """Tests updating image members""" values = dict(image_id=UUID2, member='pattieblack') member = self.client.image_member_create(values=values) self.assertTrue(member) values['member'] = 'pattieblack2' self.assertTrue(self.client.image_member_update(memb_id=member['id'], values=values)) def test_add_delete_member(self): """Tests deleting image members""" values = dict(image_id=UUID2, member='pattieblack') member = self.client.image_member_create(values=values) self.client.image_member_delete(memb_id=member['id']) memb_list = self.client.image_member_find(member='pattieblack') self.assertEqual(0, len(memb_list)) class TestRegistryV2ClientApi(base.IsolatedUnitTest): """Test proper actions made against a registry service. Test for both valid and invalid requests. """ def setUp(self): """Establish a clean test environment""" super(TestRegistryV2ClientApi, self).setUp() reload(rapi) def tearDown(self): """Clear the test environment""" super(TestRegistryV2ClientApi, self).tearDown() def test_configure_registry_client_not_using_use_user_token(self): self.config(use_user_token=False) with patch.object(rapi, 'configure_registry_admin_creds') as mock_rapi: rapi.configure_registry_client() mock_rapi.assert_called_once_with() def _get_fake_config_creds(self, auth_url='auth_url', strategy='keystone'): return { 'user': 'user', 'password': 'password', 'username': 'user', 'tenant': 'tenant', 'auth_url': auth_url, 'strategy': strategy, 'region': 'region' } def test_configure_registry_admin_creds(self): expected = self._get_fake_config_creds(auth_url=None, strategy='configured_strategy') self.config(admin_user=expected['user']) self.config(admin_password=expected['password']) self.config(admin_tenant_name=expected['tenant']) self.config(auth_strategy=expected['strategy']) self.config(auth_region=expected['region']) self.stubs.Set(os, 'getenv', lambda x: None) self.assertIsNone(rapi._CLIENT_CREDS) rapi.configure_registry_admin_creds() self.assertEqual(expected, rapi._CLIENT_CREDS) def test_configure_registry_admin_creds_with_auth_url(self): expected = self._get_fake_config_creds() self.config(admin_user=expected['user']) self.config(admin_password=expected['password']) self.config(admin_tenant_name=expected['tenant']) self.config(auth_url=expected['auth_url']) self.config(auth_strategy='test_strategy') self.config(auth_region=expected['region']) self.assertIsNone(rapi._CLIENT_CREDS) rapi.configure_registry_admin_creds() self.assertEqual(expected, rapi._CLIENT_CREDS)
# file eulcommon/binfile/outlookexpress.py # # Copyright 2012 Emory University Libraries # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Map binary email folder index and content files for Outlook Express 4.5 for Macintosh to Python objects. What documentation is available suggests that Outlook Express stored email in either .mbx or .dbx format, but in Outlook Express 4.5 for Macintosh, each mail folder consists of a directory with an ``Index`` file and an optional ``Mail`` file (no Mail file is present when a mail folder is empty). ''' import email from eulcommon import binfile import logging import os logger = logging.getLogger(__name__) class MacIndex(binfile.BinaryStructure): '''A :class:`~eulcommon.binfile.BinaryStructure` for the Index file of an Outlook Express 4.5 for Mac email folder.''' MAGIC_NUMBER = 'FMIn' # data file is FMDF '''Magic Number for Outlook Express 4.5 Mac Index file''' _magic_num = binfile.ByteField(0, 4) # first four bytes should match magic number header_length = 28 # 28 bytes at beginning of header '''length of the binary header at the beginning of the Index file''' total_messages = binfile.IntegerField(13, 16) '''number of email messages in this folder''' # seems to be number of messages in the folder (or close, anyway) def sanity_check(self): if self._magic_num != self.MAGIC_NUMBER: logger.debug('Index file sanity check failed') return self._magic_num == self.MAGIC_NUMBER @property def messages(self): '''A generator yielding the :class:`MacIndexMessage` structures in this index file.''' # The file contains the fixed-size file header followed by # fixed-size message structures, followed by minimal message # information (subject, from, to). Start after the file # header and then simply return the message structures in # sequence until we have returned the number of messages in # this folder, ignoring the minimal message information at the # end of the file. offset = self.header_length # initial offset # how much of the data in this file we expect to use, based on # the number of messages in this folder and the index message block size maxlen = self.header_length + self.total_messages * MacIndexMessage.LENGTH while offset < maxlen: yield MacIndexMessage(mm=self.mmap, offset=offset) offset += MacIndexMessage.LENGTH class MacIndexMessage(binfile.BinaryStructure): '''Information about a single email message within the :class:`MacIndex`.''' LENGTH = 52 '''size of a single message information block''' offset = binfile.IntegerField(13, 16) '''the offset of the raw email data in the folder data file''' size = binfile.IntegerField(17, 20) '''the size of the raw email data in the folder data file''' class MacMail(binfile.BinaryStructure): '''A :class:`~eulcommon.binfile.BinaryStructure` for the Mail file of an Outlook Express 4.5 for Mac email folder. The Mail file includes the actual contents of any email files in the folder, which must be accessed based on the message offset and size from the Index file. ''' MAGIC_NUMBER = 'FMDF' # data file (?) '''Magic Number for a mail content file within an Outlook Express 4.5 for Macintosh folder''' _magic_num = binfile.ByteField(0, 4) # should match magic number def sanity_check(self): if self._magic_num != self.MAGIC_NUMBER: logger.debug('Mail file sanity check failed') return self._magic_num == self.MAGIC_NUMBER def get_message(self, offset, size): '''Get an individual :class:`MacMailMessage` within a Mail data file, based on size and offset information from the corresponding :class:`MacIndexMessage`. :param offset: offset within the Mail file where the desired message begins, i.e. :attr:`MacMailMessage.offset` :param size: size of the message, i.e. :attr:`MacMailMessage.size` ''' return MacMailMessage(size=size, mm=self.mmap, offset=offset) class MacMailMessage(binfile.BinaryStructure): '''A single email message within the Mail data file, as indexed by a :class:`MacIndexMessage`. Consists of a variable length header or message summary followed by the content of the email (also variable length). The size of a single :class:`MacMailMessage` is stored in the :class:`MacIndexMessage` but not (as far as we have determined) in the Mail data file, an individual message must be initialized with the a size parameter, so that the correct content can be returned. :param size: size of this message (as determined by :attr:`MacIndexMessage.size`); **required** to return :attr:`data` correctly. ''' header_type = binfile.ByteField(0, 4) '''Each mail message begins with a header, starting with either ``MSum`` (message summary, perhaps) or ``MDel`` for deleted messages.''' MESSAGE = 'MSum' 'Header string indicating a normal message' DELETED_MESSAGE = 'MDel' 'Header string indicating a deleted message' content_offset = binfile.IntegerField(5, 8) '''offset within this message block where the message summary header ends and message content begins''' def __init__(self, size, *args, **kwargs): self.size = size super(MacMailMessage, self).__init__(*args, **kwargs) @property def deleted(self): 'boolean flag indicating if this is a deleted message' return self.header_type == self.DELETED_MESSAGE @property def data(self): '''email content for this message''' # return data after any initial offset, plus content offset to # skip header, up to the size of this message return self.mmap[self.content_offset + self._offset: self._offset + self.size] def as_email(self): '''Return message data as a :class:`email.message.Message` object.''' return email.message_from_string(self.data) class MacFolder(object): '''Wrapper object for an Outlook Express 4.5 for Mac folder, with a :class:`MacIndex` and an optional :class:`MacMail`. :param folder_path: path to the Outlook Express 4.5 folder directory, which must contain at least an ``Index`` file (and probably a ``Mail`` file, for non-empty folders) ''' index = None data = None def __init__(self, folder_path): index_filename = os.path.join(folder_path, 'Index') data_filename = os.path.join(folder_path, 'Mail') if os.path.exists(index_filename): self.index = MacIndex(index_filename) else: raise RuntimeError('Outlook Express Folder Index does not exist at "%s"' % \ index_filename) # data file will not be present for empty folders if os.path.exists(data_filename): self.data = MacMail(data_filename) @property def count(self): 'Number of email messages in this folder' return self.index.total_messages skipped_chunks = None '''Number of data chunks skipped between raw messages, based on offset and size. (Only set after iterating through messages.)''' @property def raw_messages(self): '''A generator yielding a :class:`MacMailMessage` binary object for each message in this folder, based on message index information in :class:`MacIndex` and content in :class:`MacMail`.''' if self.data: # offset for first message, at end of Mail data file header last_offset = 24 self.skipped_chunks = 0 for msginfo in self.index.messages: msg = self.data.get_message(msginfo.offset, msginfo.size) # Index file seems to references messages in order by # offset; check for data skipped between messages. if msginfo.offset > last_offset: logger.debug('Skipped %d bytes between %s (%s) and %s (%s)', msginfo.offset - last_offset, last_offset, hex(last_offset), msginfo.offset, hex(msginfo.offset)) self.skipped_chunks += 1 last_offset = msginfo.offset + msginfo.size yield msg @property def messages(self): '''A generator yielding an :class:`email.message.Message` for each message in this folder, based on message index information in :class:`MacIndex` and content in :class:`MacMail`. Does **not** include deleted messages.''' return self._messages() @property def all_messages(self): '''Same as :attr:`messages` except deleted messages are included.''' return self._messages(skip_deleted=False) def _messages(self, skip_deleted=True): # common logic for messages / all_messages for raw_msg in self.raw_messages: if skip_deleted and raw_msg.deleted: continue yield raw_msg.as_email()
########################################################################## # # Copyright (c) 2008-2013, Image Engine Design Inc. All rights reserved. # Copyright (c) 2012, John Haddon. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import unittest import os import gc import glob import sys import time from IECore import * class TestImageDisplayDriver(unittest.TestCase): def testConstruction( self ): idd = ImageDisplayDriver( Box2i( V2i(0,0), V2i(100,100) ), Box2i( V2i(10,10), V2i(40,40) ), [ 'r','g','b' ], CompoundData() ) self.assertEqual( idd.scanLineOrderOnly(), False ) self.assertEqual( idd.displayWindow(), Box2i( V2i(0,0), V2i(100,100) ) ) self.assertEqual( idd.dataWindow(), Box2i( V2i(10,10), V2i(40,40) ) ) self.assertEqual( idd.channelNames(), [ 'r', 'g', 'b' ] ) def __prepareBuf( self, buf, width, offset, red, green, blue ): for i in xrange( 0, width ): buf[3*i] = blue[i+offset] buf[3*i+1] = green[i+offset] buf[3*i+2] = red[i+offset] def testComplete( self ): img = Reader.create( "test/IECore/data/tiff/bluegreen_noise.400x300.tif" )() idd = ImageDisplayDriver( img.displayWindow, img.dataWindow, list( img.channelNames() ), CompoundData() ) self.assertEqual( img.keys(), [ 'B', 'G', 'R' ] ) red = img['R'].data green = img['G'].data blue = img['B'].data width = img.dataWindow.max.x - img.dataWindow.min.x + 1 buf = FloatVectorData( width * 3 ) for i in xrange( 0, img.dataWindow.max.y - img.dataWindow.min.y + 1 ): self.__prepareBuf( buf, width, i*width, red, green, blue ) idd.imageData( Box2i( V2i( img.dataWindow.min.x, i + img.dataWindow.min.y ), V2i( img.dataWindow.max.x, i + img.dataWindow.min.y) ), buf ) idd.imageClose() self.assertEqual( idd.image(), img ) def testFactory( self ): idd = DisplayDriver.create( "ImageDisplayDriver", Box2i( V2i(0,0), V2i(100,100) ), Box2i( V2i(10,10), V2i(40,40) ), [ 'r', 'g', 'b' ], CompoundData() ) self.failUnless( isinstance( idd, ImageDisplayDriver ) ) self.assertEqual( idd.scanLineOrderOnly(), False ) self.assertEqual( idd.displayWindow(), Box2i( V2i(0,0), V2i(100,100) ) ) self.assertEqual( idd.dataWindow(), Box2i( V2i(10,10), V2i(40,40) ) ) self.assertEqual( idd.channelNames(), [ 'r', 'g', 'b' ] ) # test if all symbols are gone after the tests. creator = None idd = None gc.collect() RefCounted.collectGarbage() self.assertEqual( RefCounted.numWrappedInstances(), 0 ) def testImagePool( self ) : img = Reader.create( "test/IECore/data/tiff/bluegreen_noise.400x300.tif" )() idd = DisplayDriver.create( "ImageDisplayDriver", img.displayWindow, img.dataWindow, list( img.channelNames() ), { "handle" : StringData( "myHandle" ) } ) red = img['R'].data green = img['G'].data blue = img['B'].data width = img.dataWindow.max.x - img.dataWindow.min.x + 1 buf = FloatVectorData( width * 3 ) for i in xrange( 0, img.dataWindow.max.y - img.dataWindow.min.y + 1 ): self.__prepareBuf( buf, width, i*width, red, green, blue ) idd.imageData( Box2i( V2i( img.dataWindow.min.x, i + img.dataWindow.min.y ), V2i( img.dataWindow.max.x, i + img.dataWindow.min.y) ), buf ) idd.imageClose() self.assertEqual( ImageDisplayDriver.storedImage( "myHandle" ), idd.image() ) self.assertEqual( ImageDisplayDriver.removeStoredImage( "myHandle" ), idd.image() ) self.assertEqual( ImageDisplayDriver.storedImage( "myHandle" ), None ) def testAcceptsRepeatedData( self ) : window = Box2i( V2i( 0 ), V2i( 15 ) ) dd = ImageDisplayDriver( window, window, [ "Y" ], CompoundData() ) self.assertEqual( dd.acceptsRepeatedData(), True ) y = FloatVectorData( [ 1 ] * 16 * 16 ) dd.imageData( window, y ) y = FloatVectorData( [ 0.5 ] * 16 * 16 ) dd.imageData( window, y ) dd.imageClose() i = dd.image() self.assertEqual( i["Y"].data, y ) class TestClientServerDisplayDriver(unittest.TestCase): def setUp( self ): gc.collect() RefCounted.collectGarbage() # make sure we don't have symbols from previous tests self.assertEqual( RefCounted.numWrappedInstances(), 0 ) # this is necessary so python will allow threads created by the display driver server # to enter into python when those threads execute procedurals. initThreads() self.server = DisplayDriverServer( 1559 ) time.sleep(2) def __prepareBuf( self, buf, width, offset, red, green, blue ): for i in xrange( 0, width ): buf[3*i] = blue[i+offset] buf[3*i+1] = green[i+offset] buf[3*i+2] = red[i+offset] def testUsedPortException( self ): self.assertRaises( RuntimeError, lambda : DisplayDriverServer( 1559 ) ) def testTransfer( self ): img = Reader.create( "test/IECore/data/tiff/bluegreen_noise.400x300.tif" )() self.assertEqual( img.keys(), [ 'B', 'G', 'R' ] ) red = img['R'].data green = img['G'].data blue = img['B'].data width = img.dataWindow.max.x - img.dataWindow.min.x + 1 params = CompoundData() params['displayHost'] = StringData('localhost') params['displayPort'] = StringData( '1559' ) params["remoteDisplayType"] = StringData( "ImageDisplayDriver" ) params["handle"] = StringData( "myHandle" ) params["header:myMetadata"] = StringData( "Metadata!" ) idd = ClientDisplayDriver( img.displayWindow, img.dataWindow, list( img.channelNames() ), params ) buf = FloatVectorData( width * 3 ) for i in xrange( 0, img.dataWindow.max.y - img.dataWindow.min.y + 1 ): self.__prepareBuf( buf, width, i*width, red, green, blue ) idd.imageData( Box2i( V2i( img.dataWindow.min.x, i + img.dataWindow.min.y ), V2i( img.dataWindow.max.x, i + img.dataWindow.min.y) ), buf ) idd.imageClose() newImg = ImageDisplayDriver.removeStoredImage( "myHandle" ) params["clientPID"] = IntData( os.getpid() ) # only data prefixed by 'header:' will come through as blindData/metadata self.assertEqual( newImg.blindData(), CompoundData({"myMetadata": StringData( "Metadata!" )}) ) # remove blindData for comparison newImg.blindData().clear() img.blindData().clear() self.assertEqual( newImg, img ) def testWrongSocketException( self ) : parameters = CompoundData( { "displayHost" : "localhost", "displayPort" : "1560", # wrong port "remoteDisplayType" : "ImageDisplayDriver", } ) dw = Box2i( V2i( 0 ), V2i( 255 ) ) self.assertRaises( RuntimeError, ClientDisplayDriver, dw, dw, [ "R", "G", "B" ], parameters ) try : ClientDisplayDriver( dw, dw, [ "R", "G", "B" ], parameters ) except Exception, e : pass self.failUnless( "Could not connect to remote display driver server : Connection refused" in str( e ) ) def testWrongHostException( self ) : parameters = CompoundData( { "displayHost" : "thisHostDoesNotExist", "displayPort" : "1559", # wrong port "remoteDisplayType" : "ImageDisplayDriver", } ) dw = Box2i( V2i( 0 ), V2i( 255 ) ) self.assertRaises( RuntimeError, ClientDisplayDriver, dw, dw, [ "R", "G", "B" ], parameters ) try : ClientDisplayDriver( dw, dw, [ "R", "G", "B" ], parameters ) except Exception, e : pass self.failUnless( "Could not connect to remote display driver server : Host not found" in str( e ) ) def testAcceptsRepeatedData( self ) : window = Box2i( V2i( 0 ), V2i( 15 ) ) dd = ClientDisplayDriver( window, window, [ "Y" ], CompoundData( { "displayHost" : "localhost", "displayPort" : "1559", "remoteDisplayType" : "ImageDisplayDriver", "handle" : "myHandle" } ) ) self.assertEqual( dd.acceptsRepeatedData(), True ) y = FloatVectorData( [ 1 ] * 16 * 16 ) dd.imageData( window, y ) y = FloatVectorData( [ 0.5 ] * 16 * 16 ) dd.imageData( window, y ) dd.imageClose() i = ImageDisplayDriver.removeStoredImage( "myHandle" ) self.assertEqual( i["Y"].data, y ) def tearDown( self ): self.server = None # test if all symbols are gone after the tests. gc.collect() RefCounted.collectGarbage() self.assertEqual( RefCounted.numWrappedInstances(), 0 ) if __name__ == "__main__": unittest.main()
# Copyright (C) 2001-2007, 2009-2011 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """DNS TSIG support.""" import hmac import struct import sys import dns.exception import dns.hash import dns.rdataclass import dns.name class BadTime(dns.exception.DNSException): """Raised if the current time is not within the TSIG's validity time.""" pass class BadSignature(dns.exception.DNSException): """Raised if the TSIG signature fails to verify.""" pass class PeerError(dns.exception.DNSException): """Base class for all TSIG errors generated by the remote peer""" pass class PeerBadKey(PeerError): """Raised if the peer didn't know the key we used""" pass class PeerBadSignature(PeerError): """Raised if the peer didn't like the signature we sent""" pass class PeerBadTime(PeerError): """Raised if the peer didn't like the time we sent""" pass class PeerBadTruncation(PeerError): """Raised if the peer didn't like amount of truncation in the TSIG we sent""" pass # TSIG Algorithms HMAC_MD5 = dns.name.from_text("HMAC-MD5.SIG-ALG.REG.INT") HMAC_SHA1 = dns.name.from_text("hmac-sha1") HMAC_SHA224 = dns.name.from_text("hmac-sha224") HMAC_SHA256 = dns.name.from_text("hmac-sha256") HMAC_SHA384 = dns.name.from_text("hmac-sha384") HMAC_SHA512 = dns.name.from_text("hmac-sha512") default_algorithm = HMAC_MD5 BADSIG = 16 BADKEY = 17 BADTIME = 18 BADTRUNC = 22 def sign(wire, keyname, secret, time, fudge, original_id, error, other_data, request_mac, ctx=None, multi=False, first=True, algorithm=default_algorithm): """Return a (tsig_rdata, mac, ctx) tuple containing the HMAC TSIG rdata for the input parameters, the HMAC MAC calculated by applying the TSIG signature algorithm, and the TSIG digest context. @rtype: (string, string, hmac.HMAC object) @raises ValueError: I{other_data} is too long @raises NotImplementedError: I{algorithm} is not supported """ (algorithm_name, digestmod) = get_algorithm(algorithm) if first: ctx = hmac.new(secret, digestmod=digestmod) ml = len(request_mac) if ml > 0: ctx.update(struct.pack('!H', ml)) ctx.update(request_mac) id = struct.pack('!H', original_id) ctx.update(id) ctx.update(wire[2:]) if first: ctx.update(keyname.to_digestable()) ctx.update(struct.pack('!H', dns.rdataclass.ANY)) ctx.update(struct.pack('!I', 0)) long_time = time + 0L upper_time = (long_time >> 32) & 0xffffL lower_time = long_time & 0xffffffffL time_mac = struct.pack('!HIH', upper_time, lower_time, fudge) pre_mac = algorithm_name + time_mac ol = len(other_data) if ol > 65535: raise ValueError('TSIG Other Data is > 65535 bytes') post_mac = struct.pack('!HH', error, ol) + other_data if first: ctx.update(pre_mac) ctx.update(post_mac) else: ctx.update(time_mac) mac = ctx.digest() mpack = struct.pack('!H', len(mac)) tsig_rdata = pre_mac + mpack + mac + id + post_mac if multi: ctx = hmac.new(secret, digestmod=digestmod) ml = len(mac) ctx.update(struct.pack('!H', ml)) ctx.update(mac) else: ctx = None return (tsig_rdata, mac, ctx) def hmac_md5(wire, keyname, secret, time, fudge, original_id, error, other_data, request_mac, ctx=None, multi=False, first=True, algorithm=default_algorithm): return sign(wire, keyname, secret, time, fudge, original_id, error, other_data, request_mac, ctx, multi, first, algorithm) def validate(wire, keyname, secret, now, request_mac, tsig_start, tsig_rdata, tsig_rdlen, ctx=None, multi=False, first=True): """Validate the specified TSIG rdata against the other input parameters. @raises FormError: The TSIG is badly formed. @raises BadTime: There is too much time skew between the client and the server. @raises BadSignature: The TSIG signature did not validate @rtype: hmac.HMAC object""" (adcount,) = struct.unpack("!H", wire[10:12]) if adcount == 0: raise dns.exception.FormError adcount -= 1 new_wire = wire[0:10] + struct.pack("!H", adcount) + wire[12:tsig_start] current = tsig_rdata (aname, used) = dns.name.from_wire(wire, current) current = current + used (upper_time, lower_time, fudge, mac_size) = \ struct.unpack("!HIHH", wire[current:current + 10]) time = ((upper_time + 0L) << 32) + (lower_time + 0L) current += 10 mac = wire[current:current + mac_size] current += mac_size (original_id, error, other_size) = \ struct.unpack("!HHH", wire[current:current + 6]) current += 6 other_data = wire[current:current + other_size] current += other_size if current != tsig_rdata + tsig_rdlen: raise dns.exception.FormError if error != 0: if error == BADSIG: raise PeerBadSignature elif error == BADKEY: raise PeerBadKey elif error == BADTIME: raise PeerBadTime elif error == BADTRUNC: raise PeerBadTruncation else: raise PeerError('unknown TSIG error code %d' % error) time_low = time - fudge time_high = time + fudge if now < time_low or now > time_high: raise BadTime (junk, our_mac, ctx) = sign(new_wire, keyname, secret, time, fudge, original_id, error, other_data, request_mac, ctx, multi, first, aname) if (our_mac != mac): raise BadSignature return ctx _hashes = None def _maybe_add_hash(tsig_alg, hash_alg): try: _hashes[tsig_alg] = dns.hash.get(hash_alg) except KeyError: pass def _setup_hashes(): global _hashes _hashes = {} _maybe_add_hash(HMAC_SHA224, 'SHA224') _maybe_add_hash(HMAC_SHA256, 'SHA256') _maybe_add_hash(HMAC_SHA384, 'SHA384') _maybe_add_hash(HMAC_SHA512, 'SHA512') _maybe_add_hash(HMAC_SHA1, 'SHA1') _maybe_add_hash(HMAC_MD5, 'MD5') def get_algorithm(algorithm): """Returns the wire format string and the hash module to use for the specified TSIG algorithm @rtype: (string, hash constructor) @raises NotImplementedError: I{algorithm} is not supported """ global _hashes if _hashes is None: _setup_hashes() if isinstance(algorithm, (str, unicode)): algorithm = dns.name.from_text(algorithm) if sys.hexversion < 0x02050200 and \ (algorithm == HMAC_SHA384 or algorithm == HMAC_SHA512): raise NotImplementedError("TSIG algorithm " + str(algorithm) + " requires Python 2.5.2 or later") try: return (algorithm.to_digestable(), _hashes[algorithm]) except KeyError: raise NotImplementedError("TSIG algorithm " + str(algorithm) + " is not supported")
""" This class is defined to override standard pickle functionality The goals of it follow: -Serialize lambdas and nested functions to compiled byte code -Deal with main module correctly -Deal with other non-serializable objects It does not include an unpickler, as standard python unpickling suffices. This module was extracted from the `cloud` package, developed by `PiCloud, Inc. <http://www.picloud.com>`_. Copyright (c) 2012, Regents of the University of California. Copyright (c) 2009 `PiCloud, Inc. <http://www.picloud.com>`_. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of California, Berkeley nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from __future__ import print_function import operator import os import io import pickle import struct import sys import types from functools import partial import itertools import dis import traceback if sys.version < '3': from pickle import Pickler try: from cStringIO import StringIO except ImportError: from StringIO import StringIO PY3 = False else: types.ClassType = type from pickle import _Pickler as Pickler from io import BytesIO as StringIO PY3 = True #relevant opcodes STORE_GLOBAL = dis.opname.index('STORE_GLOBAL') DELETE_GLOBAL = dis.opname.index('DELETE_GLOBAL') LOAD_GLOBAL = dis.opname.index('LOAD_GLOBAL') GLOBAL_OPS = [STORE_GLOBAL, DELETE_GLOBAL, LOAD_GLOBAL] HAVE_ARGUMENT = dis.HAVE_ARGUMENT EXTENDED_ARG = dis.EXTENDED_ARG def islambda(func): return getattr(func,'__name__') == '<lambda>' _BUILTIN_TYPE_NAMES = {} for k, v in types.__dict__.items(): if type(v) is type: _BUILTIN_TYPE_NAMES[v] = k def _builtin_type(name): return getattr(types, name) class CloudPickler(Pickler): dispatch = Pickler.dispatch.copy() def __init__(self, file, protocol=None): Pickler.__init__(self, file, protocol) # set of modules to unpickle self.modules = set() # map ids to dictionary. used to ensure that functions can share global env self.globals_ref = {} def dump(self, obj): self.inject_addons() try: return Pickler.dump(self, obj) except RuntimeError as e: if 'recursion' in e.args[0]: msg = """Could not pickle object as excessively deep recursion required.""" raise pickle.PicklingError(msg) def save_memoryview(self, obj): """Fallback to save_string""" Pickler.save_string(self, str(obj)) def save_buffer(self, obj): """Fallback to save_string""" Pickler.save_string(self,str(obj)) if PY3: dispatch[memoryview] = save_memoryview else: dispatch[buffer] = save_buffer def save_unsupported(self, obj): raise pickle.PicklingError("Cannot pickle objects of type %s" % type(obj)) dispatch[types.GeneratorType] = save_unsupported # itertools objects do not pickle! for v in itertools.__dict__.values(): if type(v) is type: dispatch[v] = save_unsupported def save_module(self, obj): """ Save a module as an import """ self.modules.add(obj) self.save_reduce(subimport, (obj.__name__,), obj=obj) dispatch[types.ModuleType] = save_module def save_codeobject(self, obj): """ Save a code object """ if PY3: args = ( obj.co_argcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, obj.co_filename, obj.co_name, obj.co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars ) else: args = ( obj.co_argcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, obj.co_filename, obj.co_name, obj.co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars ) self.save_reduce(types.CodeType, args, obj=obj) dispatch[types.CodeType] = save_codeobject def save_function(self, obj, name=None): """ Registered with the dispatch to handle all function types. Determines what kind of function obj is (e.g. lambda, defined at interactive prompt, etc) and handles the pickling appropriately. """ write = self.write if name is None: name = obj.__name__ modname = pickle.whichmodule(obj, name) # print('which gives %s %s %s' % (modname, obj, name)) try: themodule = sys.modules[modname] except KeyError: # eval'd items such as namedtuple give invalid items for their function __module__ modname = '__main__' if modname == '__main__': themodule = None if themodule: self.modules.add(themodule) if getattr(themodule, name, None) is obj: return self.save_global(obj, name) # if func is lambda, def'ed at prompt, is in main, or is nested, then # we'll pickle the actual function object rather than simply saving a # reference (as is done in default pickler), via save_function_tuple. if islambda(obj) or obj.__code__.co_filename == '<stdin>' or themodule is None: #print("save global", islambda(obj), obj.__code__.co_filename, modname, themodule) self.save_function_tuple(obj) return else: # func is nested klass = getattr(themodule, name, None) if klass is None or klass is not obj: self.save_function_tuple(obj) return if obj.__dict__: # essentially save_reduce, but workaround needed to avoid recursion self.save(_restore_attr) write(pickle.MARK + pickle.GLOBAL + modname + '\n' + name + '\n') self.memoize(obj) self.save(obj.__dict__) write(pickle.TUPLE + pickle.REDUCE) else: write(pickle.GLOBAL + modname + '\n' + name + '\n') self.memoize(obj) dispatch[types.FunctionType] = save_function def save_function_tuple(self, func): """ Pickles an actual func object. A func comprises: code, globals, defaults, closure, and dict. We extract and save these, injecting reducing functions at certain points to recreate the func object. Keep in mind that some of these pieces can contain a ref to the func itself. Thus, a naive save on these pieces could trigger an infinite loop of save's. To get around that, we first create a skeleton func object using just the code (this is safe, since this won't contain a ref to the func), and memoize it as soon as it's created. The other stuff can then be filled in later. """ save = self.save write = self.write code, f_globals, defaults, closure, dct, base_globals = self.extract_func_data(func) save(_fill_function) # skeleton function updater write(pickle.MARK) # beginning of tuple that _fill_function expects # create a skeleton function object and memoize it save(_make_skel_func) save((code, closure, base_globals)) write(pickle.REDUCE) self.memoize(func) # save the rest of the func data needed by _fill_function save(f_globals) save(defaults) save(dct) write(pickle.TUPLE) write(pickle.REDUCE) # applies _fill_function on the tuple @staticmethod def extract_code_globals(co): """ Find all globals names read or written to by codeblock co """ code = co.co_code if not PY3: code = [ord(c) for c in code] names = co.co_names out_names = set() n = len(code) i = 0 extended_arg = 0 while i < n: op = code[i] i += 1 if op >= HAVE_ARGUMENT: oparg = code[i] + code[i+1] * 256 + extended_arg extended_arg = 0 i += 2 if op == EXTENDED_ARG: extended_arg = oparg*65536 if op in GLOBAL_OPS: out_names.add(names[oparg]) # see if nested function have any global refs if co.co_consts: for const in co.co_consts: if type(const) is types.CodeType: out_names |= CloudPickler.extract_code_globals(const) return out_names def extract_func_data(self, func): """ Turn the function into a tuple of data necessary to recreate it: code, globals, defaults, closure, dict """ code = func.__code__ # extract all global ref's func_global_refs = self.extract_code_globals(code) # process all variables referenced by global environment f_globals = {} for var in func_global_refs: if var in func.__globals__: f_globals[var] = func.__globals__[var] # defaults requires no processing defaults = func.__defaults__ # process closure closure = [c.cell_contents for c in func.__closure__] if func.__closure__ else [] # save the dict dct = func.__dict__ base_globals = self.globals_ref.get(id(func.__globals__), {}) self.globals_ref[id(func.__globals__)] = base_globals return (code, f_globals, defaults, closure, dct, base_globals) def save_builtin_function(self, obj): if obj.__module__ is "__builtin__": return self.save_global(obj) return self.save_function(obj) dispatch[types.BuiltinFunctionType] = save_builtin_function def save_global(self, obj, name=None, pack=struct.pack): if obj.__module__ == "__builtin__" or obj.__module__ == "builtins": if obj in _BUILTIN_TYPE_NAMES: return self.save_reduce(_builtin_type, (_BUILTIN_TYPE_NAMES[obj],), obj=obj) if name is None: name = obj.__name__ modname = getattr(obj, "__module__", None) if modname is None: modname = pickle.whichmodule(obj, name) if modname == '__main__': themodule = None else: __import__(modname) themodule = sys.modules[modname] self.modules.add(themodule) if hasattr(themodule, name) and getattr(themodule, name) is obj: return Pickler.save_global(self, obj, name) typ = type(obj) if typ is not obj and isinstance(obj, (type, types.ClassType)): d = dict(obj.__dict__) # copy dict proxy to a dict if not isinstance(d.get('__dict__', None), property): # don't extract dict that are properties d.pop('__dict__', None) d.pop('__weakref__', None) # hack as __new__ is stored differently in the __dict__ new_override = d.get('__new__', None) if new_override: d['__new__'] = obj.__new__ # workaround for namedtuple (hijacked by PySpark) if getattr(obj, '_is_namedtuple_', False): self.save_reduce(_load_namedtuple, (obj.__name__, obj._fields)) return self.save(_load_class) self.save_reduce(typ, (obj.__name__, obj.__bases__, {"__doc__": obj.__doc__}), obj=obj) d.pop('__doc__', None) # handle property and staticmethod dd = {} for k, v in d.items(): if isinstance(v, property): k = ('property', k) v = (v.fget, v.fset, v.fdel, v.__doc__) elif isinstance(v, staticmethod) and hasattr(v, '__func__'): k = ('staticmethod', k) v = v.__func__ elif isinstance(v, classmethod) and hasattr(v, '__func__'): k = ('classmethod', k) v = v.__func__ dd[k] = v self.save(dd) self.write(pickle.TUPLE2) self.write(pickle.REDUCE) else: raise pickle.PicklingError("Can't pickle %r" % obj) dispatch[type] = save_global dispatch[types.ClassType] = save_global def save_instancemethod(self, obj): # Memoization rarely is ever useful due to python bounding if PY3: self.save_reduce(types.MethodType, (obj.__func__, obj.__self__), obj=obj) else: self.save_reduce(types.MethodType, (obj.__func__, obj.__self__, obj.__self__.__class__), obj=obj) dispatch[types.MethodType] = save_instancemethod def save_inst(self, obj): """Inner logic to save instance. Based off pickle.save_inst Supports __transient__""" cls = obj.__class__ memo = self.memo write = self.write save = self.save if hasattr(obj, '__getinitargs__'): args = obj.__getinitargs__() len(args) # XXX Assert it's a sequence pickle._keep_alive(args, memo) else: args = () write(pickle.MARK) if self.bin: save(cls) for arg in args: save(arg) write(pickle.OBJ) else: for arg in args: save(arg) write(pickle.INST + cls.__module__ + '\n' + cls.__name__ + '\n') self.memoize(obj) try: getstate = obj.__getstate__ except AttributeError: stuff = obj.__dict__ #remove items if transient if hasattr(obj, '__transient__'): transient = obj.__transient__ stuff = stuff.copy() for k in list(stuff.keys()): if k in transient: del stuff[k] else: stuff = getstate() pickle._keep_alive(stuff, memo) save(stuff) write(pickle.BUILD) if not PY3: dispatch[types.InstanceType] = save_inst def save_property(self, obj): # properties not correctly saved in python self.save_reduce(property, (obj.fget, obj.fset, obj.fdel, obj.__doc__), obj=obj) dispatch[property] = save_property def save_itemgetter(self, obj): """itemgetter serializer (needed for namedtuple support)""" class Dummy: def __getitem__(self, item): return item items = obj(Dummy()) if not isinstance(items, tuple): items = (items, ) return self.save_reduce(operator.itemgetter, items) if type(operator.itemgetter) is type: dispatch[operator.itemgetter] = save_itemgetter def save_attrgetter(self, obj): """attrgetter serializer""" class Dummy(object): def __init__(self, attrs, index=None): self.attrs = attrs self.index = index def __getattribute__(self, item): attrs = object.__getattribute__(self, "attrs") index = object.__getattribute__(self, "index") if index is None: index = len(attrs) attrs.append(item) else: attrs[index] = ".".join([attrs[index], item]) return type(self)(attrs, index) attrs = [] obj(Dummy(attrs)) return self.save_reduce(operator.attrgetter, tuple(attrs)) if type(operator.attrgetter) is type: dispatch[operator.attrgetter] = save_attrgetter def save_reduce(self, func, args, state=None, listitems=None, dictitems=None, obj=None): """Modified to support __transient__ on new objects Change only affects protocol level 2 (which is always used by PiCloud""" # Assert that args is a tuple or None if not isinstance(args, tuple): raise pickle.PicklingError("args from reduce() should be a tuple") # Assert that func is callable if not hasattr(func, '__call__'): raise pickle.PicklingError("func from reduce should be callable") save = self.save write = self.write # Protocol 2 special case: if func's name is __newobj__, use NEWOBJ if self.proto >= 2 and getattr(func, "__name__", "") == "__newobj__": #Added fix to allow transient cls = args[0] if not hasattr(cls, "__new__"): raise pickle.PicklingError( "args[0] from __newobj__ args has no __new__") if obj is not None and cls is not obj.__class__: raise pickle.PicklingError( "args[0] from __newobj__ args has the wrong class") args = args[1:] save(cls) #Don't pickle transient entries if hasattr(obj, '__transient__'): transient = obj.__transient__ state = state.copy() for k in list(state.keys()): if k in transient: del state[k] save(args) write(pickle.NEWOBJ) else: save(func) save(args) write(pickle.REDUCE) if obj is not None: self.memoize(obj) # More new special cases (that work with older protocols as # well): when __reduce__ returns a tuple with 4 or 5 items, # the 4th and 5th item should be iterators that provide list # items and dict items (as (key, value) tuples), or None. if listitems is not None: self._batch_appends(listitems) if dictitems is not None: self._batch_setitems(dictitems) if state is not None: save(state) write(pickle.BUILD) def save_partial(self, obj): """Partial objects do not serialize correctly in python2.x -- this fixes the bugs""" self.save_reduce(_genpartial, (obj.func, obj.args, obj.keywords)) if sys.version_info < (2,7): # 2.7 supports partial pickling dispatch[partial] = save_partial def save_file(self, obj): """Save a file""" try: import StringIO as pystringIO #we can't use cStringIO as it lacks the name attribute except ImportError: import io as pystringIO if not hasattr(obj, 'name') or not hasattr(obj, 'mode'): raise pickle.PicklingError("Cannot pickle files that do not map to an actual file") if obj is sys.stdout: return self.save_reduce(getattr, (sys,'stdout'), obj=obj) if obj is sys.stderr: return self.save_reduce(getattr, (sys,'stderr'), obj=obj) if obj is sys.stdin: raise pickle.PicklingError("Cannot pickle standard input") if hasattr(obj, 'isatty') and obj.isatty(): raise pickle.PicklingError("Cannot pickle files that map to tty objects") if 'r' not in obj.mode: raise pickle.PicklingError("Cannot pickle files that are not opened for reading") name = obj.name try: fsize = os.stat(name).st_size except OSError: raise pickle.PicklingError("Cannot pickle file %s as it cannot be stat" % name) if obj.closed: #create an empty closed string io retval = pystringIO.StringIO("") retval.close() elif not fsize: #empty file retval = pystringIO.StringIO("") try: tmpfile = file(name) tst = tmpfile.read(1) except IOError: raise pickle.PicklingError("Cannot pickle file %s as it cannot be read" % name) tmpfile.close() if tst != '': raise pickle.PicklingError("Cannot pickle file %s as it does not appear to map to a physical, real file" % name) else: try: tmpfile = file(name) contents = tmpfile.read() tmpfile.close() except IOError: raise pickle.PicklingError("Cannot pickle file %s as it cannot be read" % name) retval = pystringIO.StringIO(contents) curloc = obj.tell() retval.seek(curloc) retval.name = name self.save(retval) self.memoize(obj) if PY3: dispatch[io.TextIOWrapper] = save_file else: dispatch[file] = save_file """Special functions for Add-on libraries""" def inject_numpy(self): numpy = sys.modules.get('numpy') if not numpy or not hasattr(numpy, 'ufunc'): return self.dispatch[numpy.ufunc] = self.__class__.save_ufunc def save_ufunc(self, obj): """Hack function for saving numpy ufunc objects""" name = obj.__name__ numpy_tst_mods = ['numpy', 'scipy.special'] for tst_mod_name in numpy_tst_mods: tst_mod = sys.modules.get(tst_mod_name, None) if tst_mod and name in tst_mod.__dict__: return self.save_reduce(_getobject, (tst_mod_name, name)) raise pickle.PicklingError('cannot save %s. Cannot resolve what module it is defined in' % str(obj)) def inject_addons(self): """Plug in system. Register additional pickling functions if modules already loaded""" self.inject_numpy() # Shorthands for legacy support def dump(obj, file, protocol=2): CloudPickler(file, protocol).dump(obj) def dumps(obj, protocol=2): file = StringIO() cp = CloudPickler(file,protocol) cp.dump(obj) return file.getvalue() #hack for __import__ not working as desired def subimport(name): __import__(name) return sys.modules[name] # restores function attributes def _restore_attr(obj, attr): for key, val in attr.items(): setattr(obj, key, val) return obj def _get_module_builtins(): return pickle.__builtins__ def print_exec(stream): ei = sys.exc_info() traceback.print_exception(ei[0], ei[1], ei[2], None, stream) def _modules_to_main(modList): """Force every module in modList to be placed into main""" if not modList: return main = sys.modules['__main__'] for modname in modList: if type(modname) is str: try: mod = __import__(modname) except Exception as e: sys.stderr.write('warning: could not import %s\n. ' 'Your function may unexpectedly error due to this import failing;' 'A version mismatch is likely. Specific error was:\n' % modname) print_exec(sys.stderr) else: setattr(main, mod.__name__, mod) #object generators: def _genpartial(func, args, kwds): if not args: args = () if not kwds: kwds = {} return partial(func, *args, **kwds) def _fill_function(func, globals, defaults, dict): """ Fills in the rest of function data into the skeleton function object that were created via _make_skel_func(). """ func.__globals__.update(globals) func.__defaults__ = defaults func.__dict__ = dict return func def _make_cell(value): return (lambda: value).__closure__[0] def _reconstruct_closure(values): return tuple([_make_cell(v) for v in values]) def _make_skel_func(code, closures, base_globals = None): """ Creates a skeleton function object that contains just the provided code and the correct number of cells in func_closure. All other func attributes (e.g. func_globals) are empty. """ closure = _reconstruct_closure(closures) if closures else None if base_globals is None: base_globals = {} base_globals['__builtins__'] = __builtins__ return types.FunctionType(code, base_globals, None, None, closure) def _load_class(cls, d): """ Loads additional properties into class `cls`. """ for k, v in d.items(): if isinstance(k, tuple): typ, k = k if typ == 'property': v = property(*v) elif typ == 'staticmethod': v = staticmethod(v) elif typ == 'classmethod': v = classmethod(v) setattr(cls, k, v) return cls def _load_namedtuple(name, fields): """ Loads a class generated by namedtuple """ from collections import namedtuple return namedtuple(name, fields) """Constructors for 3rd party libraries Note: These can never be renamed due to client compatibility issues""" def _getobject(modname, attribute): mod = __import__(modname, fromlist=[attribute]) return mod.__dict__[attribute]
""" IOStore class originated here https://github.com/BD2KGenomics/hgvm-graph-bakeoff-evaluations/blob/master/scripts/toillib.py and was then here: https://github.com/cmarkello/toil-lib/blob/master/src/toil_lib/toillib.py In a perfect world, this would be deprecated and replaced with Toil's stores. Actually did this here: https://github.com/glennhickey/toil-vg/tree/issues/110-fix-iostore But couldn't get Toil's multipart S3 uploader working on large files. Also, the toil jobStore interface is a little less clean for our use. So for now keep as part of toil-vg where it works. Could also consider merging into the upstream toil-lib https://github.com/BD2KGenomics/toil-lib """ import sys, os, os.path, json, collections, logging, logging.handlers import SocketServer, struct, socket, threading, tarfile, shutil import tempfile import functools import random import time import dateutil import traceback import stat from toil.realtimeLogger import RealtimeLogger import datetime # Need stuff for Amazon s3 try: import boto3 import botocore have_s3 = True except ImportError: have_s3 = False pass # We need some stuff in order to have Azure try: import azure # Make sure to get the 0.11 BlobService, in case the new azure storage # module is also installed. from azure.storage.blob import BlobService import toil.jobStores.azureJobStore have_azure = True except ImportError: have_azure = False pass def robust_makedirs(directory): """ Make a directory when other nodes may be trying to do the same on a shared filesystem. """ if not os.path.exists(directory): try: # Make it if it doesn't exist os.makedirs(directory) except OSError: # If you can't make it, maybe someone else did? pass # Make sure it exists and is a directory assert(os.path.exists(directory) and os.path.isdir(directory)) def write_global_directory(file_store, path, cleanup=False, tee=None, compress=True): """ Write the given directory into the file store, and return an ID that can be used to retrieve it. Writes the files in the directory and subdirectories into a tar file in the file store. Does not preserve the name or permissions of the given directory (only of its contents). If cleanup is true, directory will be deleted from the file store when this job and its follow-ons finish. If tee is passed, a tar.gz of the directory contents will be written to that filename. The file thus created must not be modified after this function is called. """ write_stream_mode = "w" if compress: write_stream_mode = "w|gz" if tee is not None: with open(tee, "w") as file_handle: # We have a stream, so start taring into it with tarfile.open(fileobj=file_handle, mode=write_stream_mode) as tar: # Open it for streaming-only write (no seeking) # We can't just add the root directory, since then we wouldn't be # able to extract it later with an arbitrary name. for file_name in os.listdir(path): # Add each file in the directory to the tar, with a relative # path tar.add(os.path.join(path, file_name), arcname=file_name) # Save the file on disk to the file store. return file_store.writeGlobalFile(tee) else: with file_store.writeGlobalFileStream(cleanup=cleanup) as (file_handle, file_id): # We have a stream, so start taring into it # TODO: don't duplicate this code. with tarfile.open(fileobj=file_handle, mode=write_stream_mode) as tar: # Open it for streaming-only write (no seeking) # We can't just add the root directory, since then we wouldn't be # able to extract it later with an arbitrary name. for file_name in os.listdir(path): # Add each file in the directory to the tar, with a relative # path tar.add(os.path.join(path, file_name), arcname=file_name) # Spit back the ID to use to retrieve it return file_id def read_global_directory(file_store, directory_id, path): """ Reads a directory with the given tar file id from the global file store and recreates it at the given path. The given path, if it exists, must be a directory. Do not use to extract untrusted directories, since they could sneakily plant files anywhere on the filesystem. """ # Make the path robust_makedirs(path) with file_store.readGlobalFileStream(directory_id) as file_handle: # We need to pull files out of this tar stream with tarfile.open(fileobj=file_handle, mode="r|*") as tar: # Open it for streaming-only read (no seeking) # We need to extract the whole thing into that new directory tar.extractall(path) class IOStore(object): """ A class that lets you get your input files and save your output files to/from a local filesystem, Amazon S3, or Microsoft Azure storage transparently. This is the abstract base class; other classes inherit from this and fill in the methods. """ def __init__(self): """ Make a new IOStore """ raise NotImplementedError() def read_input_file(self, input_path, local_path): """ Read an input file from wherever the input comes from and send it to the given path. If the file at local_path already exists, it is overwritten. If the file at local_path already exists and is a directory, behavior is undefined. """ raise NotImplementedError() def list_input_directory(self, input_path, recursive=False, with_times=False): """ Yields each of the subdirectories and files in the given input path. If recursive is false, yields files and directories in the given directory. If recursive is true, yields all files contained within the current directory, recursively, but does not yield folders. If with_times is True, yields (name, modification time) pairs instead of just names, with modification times represented as datetime objects in the GMT timezone. Modification times may be None on objects that do not support them. Gives relative file/directory names. """ raise NotImplementedError() def write_output_file(self, local_path, output_path): """ Save the given local file to the given output path. No output directory needs to exist already. If the output path already exists, it is overwritten. If the output path already exists and is a directory, behavior is undefined. """ raise NotImplementedError() def exists(self, path): """ Returns true if the given input or output file exists in the store already. """ raise NotImplementedError() def get_mtime(self, path): """ Returns the modification time of the given gile if it exists, or None otherwise. """ raise NotImplementedError() def get_size(self, path): """ Returns the size in bytes of the given file if it exists, or None otherwise. """ raise NotImplementedError() @staticmethod def absolute(store_string): """ Convert a relative path IOStore string to an absolute path one. Leaves strings that aren't FileIOStore specifications alone. Since new Toil versions change the working directory of SingleMachine batch system jobs, we need to have absolute paths passed into jobs. Recommended to be used as an argparse type, so that strings can be directly be passed to IOStore.get on the nodes. """ if store_string == "": return "" if store_string[0] == ".": # It's a relative ./ path return os.path.abspath(store_string) if store_string.startswith("file:"): # It's a file:-prefixed thing that may be a relative path # Normalize the part after "file:" (which is 5 characters) return "file:" + os.path.abspath(store_string[5:]) return store_string @staticmethod def get(store_string): """ Get a concrete IOStore created from the given connection string. Valid formats are just like for a Toil JobStore, except with container names being specified on Azure. Formats: /absolute/filesystem/path ./relative/filesystem/path file:filesystem/path aws:region:bucket (TODO) aws:region:bucket/path/prefix (TODO) azure:account:container (instead of a container prefix) (gets keys like Toil) azure:account:container/path/prefix (trailing slash added automatically) """ # Code adapted from toil's common.py loadJobStore() if store_string[0] in "/.": # Prepend file: tot he path store_string = "file:" + store_string try: # Break off the first colon-separated piece. store_type, store_arguments = store_string.split(":", 1) except ValueError: # They probably forgot the . or / raise RuntimeError("Incorrect IO store specification {}. " "Local paths must start with . or /".format(store_string)) if store_type == "file": return FileIOStore(store_arguments) elif store_type == "aws": # Break out the AWS arguments region, bucket_name = store_arguments.split(":", 1) if "/" in bucket_name: # Split the bucket from the path bucket_name, path_prefix = bucket_name.split("/", 1) else: # No path prefix path_prefix = "" return S3IOStore(region, bucket_name, path_prefix) elif store_type == "azure": # Break out the Azure arguments. account, container = store_arguments.split(":", 1) if "/" in container: # Split the container from the path container, path_prefix = container.split("/", 1) else: # No path prefix path_prefix = "" return AzureIOStore(account, container, path_prefix) else: raise RuntimeError("Unknown IOStore implementation {}".format( store_type)) class FileIOStore(IOStore): """ A class that lets you get input from and send output to filesystem files. """ def __init__(self, path_prefix=""): """ Make a new FileIOStore that just treats everything as local paths, relative to the given prefix. """ self.path_prefix = path_prefix def read_input_file(self, input_path, local_path): """ Get input from the filesystem. """ RealtimeLogger.debug("Loading {} from FileIOStore in {} to {}".format( input_path, self.path_prefix, local_path)) if os.path.exists(local_path): # Try deleting the existing item if it already exists try: os.unlink(local_path) except: # Don't fail here, fail complaining about the assertion, which # will be more informative. pass # Make sure the path is clear for copying assert(not os.path.exists(local_path)) # Where is the file actually? real_path = os.path.abspath(os.path.join(self.path_prefix, input_path)) if not os.path.exists(real_path): RealtimeLogger.error( "Can't find {} from FileIOStore in {}!".format(input_path, self.path_prefix)) raise RuntimeError("File {} missing!".format(real_path)) # Make a temporary file temp_handle, temp_path = tempfile.mkstemp(dir=os.path.dirname(local_path)) os.close(temp_handle) # Copy to the temp file shutil.copy2(real_path, temp_path) # Rename the temp file to the right place, atomically RealtimeLogger.info("rename {} -> {}".format(temp_path, local_path)) os.rename(temp_path, local_path) # Look at the file stats file_stats = os.stat(real_path) if (file_stats.st_uid == os.getuid() and file_stats.st_mode & stat.S_IWUSR): # We own this file and can write to it. We don't want the user # script messing it up through the symlink. try: # Clear the user write bit, so the user can't accidentally # clobber the file in the actual store through the symlink. os.chmod(real_path, file_stats.st_mode ^ stat.S_IWUSR) except OSError: # If something goes wrong here (like us not having permission to # change permissions), ignore it. pass def list_input_directory(self, input_path, recursive=False, with_times=False): """ Loop over directories on the filesystem. """ RealtimeLogger.info("Enumerating {} from " "FileIOStore in {}".format(input_path, self.path_prefix)) if not os.path.exists(os.path.join(self.path_prefix, input_path)): # Nothing to list over return if not os.path.isdir(os.path.join(self.path_prefix, input_path)): # Can't list a file, only a directory. return for item in os.listdir(os.path.join(self.path_prefix, input_path)): if(recursive and os.path.isdir(os.path.join(self.path_prefix, input_path, item))): # We're recursing and this is a directory. # Recurse on this. for subitem in self.list_input_directory( os.path.join(input_path, item), recursive): # Make relative paths include this directory name and yield # them name_to_yield = os.path.join(item, subitem) if with_times: # What is the mtime in seconds since epoch? mtime_epoch_seconds = os.path.getmtime(os.path.join( input_path, item, subitem)) # Convert it to datetime yield name_to_yield, mtime_epoch_seconds else: yield name_to_yield else: # This isn't a directory or we aren't being recursive # Just report this individual item. if with_times: # What is the mtime in seconds since epoch? mtime_epoch_seconds = os.path.getmtime(os.path.join( input_path, item)) yield item, mtime_epoch_seconds else: yield item def write_output_file(self, local_path, output_path): """ Write output to the filesystem """ RealtimeLogger.debug("Saving {} to FileIOStore in {}".format( output_path, self.path_prefix)) # What's the real output path to write to? real_output_path = os.path.join(self.path_prefix, output_path) # What directory should this go in? parent_dir = os.path.split(real_output_path)[0] if parent_dir != "": # Make sure the directory it goes in exists. robust_makedirs(parent_dir) # Make a temporary file temp_handle, temp_path = tempfile.mkstemp(dir=self.path_prefix) os.close(temp_handle) # Copy to the temp file shutil.copy2(local_path, temp_path) if os.path.exists(real_output_path): # At least try to get existing files out of the way first. try: os.unlink(real_output_path) except: pass # Rename the temp file to the right place, atomically os.rename(temp_path, real_output_path) def exists(self, path): """ Returns true if the given input or output file exists in the file system already. """ return os.path.exists(os.path.join(self.path_prefix, path)) def get_mtime(self, path): """ Returns the modification time of the given file if it exists, or None otherwise. """ if not self.exists(path): return None # What is the mtime in seconds since epoch? mtime_epoch_seconds = os.path.getmtime(os.path.join(self.path_prefix, path)) # Convert it to datetime mtime_datetime = datetime.datetime.utcfromtimestamp( mtime_epoch_seconds).replace(tzinfo=dateutil.tz.tzutc()) # Return the modification time, timezoned, in UTC return mtime_datetime def get_size(self, path): """ Returns the size in bytes of the given file if it exists, or None otherwise. """ if not self.exists(path): return None # Return the size in bytes of the backing file return os.stat(os.path.join(self.path_prefix, path)).st_size class BackoffError(RuntimeError): """ Represents an error from running out of retries during exponential back-off. """ def backoff_times(retries, base_delay): """ A generator that yields times for random exponential back-off. You have to do the exception handling and sleeping yourself. Stops when the retries run out. """ # Don't wait at all before the first try yield 0 # What retry are we on? try_number = 1 # Make a delay that increases delay = float(base_delay) * 2 while try_number <= retries: # Wait a random amount between 0 and 2^try_number * base_delay yield random.uniform(base_delay, delay) delay *= 2 try_number += 1 # If we get here, we're stopping iteration without succeeding. The caller # will probably raise an error. def backoff(original_function, retries=6, base_delay=10): """ We define a decorator that does randomized exponential back-off up to a certain number of retries. Raises BackoffError if the operation doesn't succeed after backing off for the specified number of retries (which may be float("inf")). Unfortunately doesn't really work on generators. """ # Make a new version of the function @functools.wraps(original_function) def new_function(*args, **kwargs): # Call backoff times, overriding parameters with stuff from kwargs for delay in backoff_times(retries=kwargs.get("retries", retries), base_delay=kwargs.get("base_delay", base_delay)): # Keep looping until it works or our iterator raises a # BackoffError if delay > 0: # We have to wait before trying again RealtimeLogger.error("Retry after {} seconds".format( delay)) time.sleep(delay) try: return original_function(*args, **kwargs) except: # Report the formatted underlying exception with traceback RealtimeLogger.error("{} failed due to: {}".format( original_function.__name__, "".join(traceback.format_exception(*sys.exc_info())))) # If we get here, the function we're calling never ran through before we # ran out of backoff times. Give an error. raise BackoffError("Ran out of retries calling {}".format( original_function.__name__)) return new_function class S3IOStore(IOStore): """ A class that lets you get input from and send output to AWS S3 Storage. """ def __init__(self, region, bucket_name, name_prefix=""): """ Make a new S3IOStore that reads from and writes to the given container in the given account, adding the given prefix to keys. All paths will be interpreted as keys or key prefixes. """ # Make sure azure libraries actually loaded assert(have_s3) self.region = region self.bucket_name = bucket_name self.name_prefix = name_prefix self.s3 = None def __connect(self): """ Make sure we have an S3 Bucket connection, and set one up if we don't. Creates the S3 bucket if it doesn't exist. """ if self.s3 is None: RealtimeLogger.debug("Connecting to bucket {} in region".format( self.bucket_name, self.region)) # Configure boto3 for caching assumed role credentials with the same cache Toil uses botocore_session = botocore.session.get_session() botocore_session.get_component('credential_provider').get_provider('assume-role').cache = botocore.credentials.JSONFileCache() boto3_session = boto3.Session(botocore_session=botocore_session) # Connect to the s3 bucket service where we keep everything self.s3 = boto3_session.client('s3') try: self.s3.head_bucket(Bucket=self.bucket_name) except: self.s3.create_bucket(Bucket=self.bucket_name, CreateBucketConfiguration={'LocationConstraint':self.region}) def read_input_file(self, input_path, local_path): """ Get input from S3. """ self.__connect() RealtimeLogger.debug("Loading {} from S3IOStore".format( input_path)) # Download the file contents. self.s3.download_file(self.bucket_name, os.path.join(self.name_prefix, input_path), local_path) def list_input_directory(self, input_path, recursive=False, with_times=False): """ Yields each of the subdirectories and files in the given input path. If recursive is false, yields files and directories in the given directory. If recursive is true, yields all files contained within the current directory, recursively, but does not yield folders. If with_times is True, yields (name, modification time) pairs instead of just names, with modification times represented as datetime objects in the GMT timezone. Modification times may be None on objects that do not support them. Gives relative file/directory names. """ raise NotImplementedError() def write_output_file(self, local_path, output_path): """ Write output to S3. """ self.__connect() RealtimeLogger.debug("Saving {} to S3IOStore".format( output_path)) # Download the file contents. self.s3.upload_file(local_path, self.bucket_name, os.path.join(self.name_prefix, output_path)) def exists(self, path): """ Returns true if the given input or output file exists in the store already. """ raise NotImplementedError() def get_mtime(self, path): """ Returns the modification time of the given file if it exists, or None otherwise. """ raise NotImplementedError() def get_size(self, path): """ Returns the size in bytes of the given file if it exists, or None otherwise. """ raise NotImplementedError() class AzureIOStore(IOStore): """ A class that lets you get input from and send output to Azure Storage. """ def __init__(self, account_name, container_name, name_prefix=""): """ Make a new AzureIOStore that reads from and writes to the given container in the given account, adding the given prefix to keys. All paths will be interpreted as keys or key prefixes. If the name prefix does not end with a trailing slash, and is not empty, one will be added automatically. Account keys are retrieved from the AZURE_ACCOUNT_KEY environment variable or from the ~/.toilAzureCredentials file, as in Toil itself. """ # Make sure azure libraries actually loaded assert(have_azure) self.account_name = account_name self.container_name = container_name self.name_prefix = name_prefix if self.name_prefix != "" and not self.name_prefix.endswith("/"): # Make sure it has the trailing slash required. self.name_prefix += "/" # Sneak into Toil and use the same keys it uses self.account_key = toil.jobStores.azureJobStore._fetchAzureAccountKey( self.account_name) # This will hold out Azure blob store connection self.connection = None def __getstate__(self): """ Return the state to use for pickling. We don't want to try and pickle an open Azure connection. """ return (self.account_name, self.account_key, self.container_name, self.name_prefix) def __setstate__(self, state): """ Set up after unpickling. """ self.account_name = state[0] self.account_key = state[1] self.container_name = state[2] self.name_prefix = state[3] self.connection = None def __connect(self): """ Make sure we have an Azure connection, and set one up if we don't. """ if self.connection is None: RealtimeLogger.debug("Connecting to account {}, using " "container {} and prefix {}".format(self.account_name, self.container_name, self.name_prefix)) # Connect to the blob service where we keep everything self.connection = BlobService( account_name=self.account_name, account_key=self.account_key) @backoff def read_input_file(self, input_path, local_path): """ Get input from Azure. """ self.__connect() RealtimeLogger.debug("Loading {} from AzureIOStore".format( input_path)) # Download the blob. This is known to be synchronous, although it can # call a callback during the process. self.connection.get_blob_to_path(self.container_name, self.name_prefix + input_path, local_path) def list_input_directory(self, input_path, recursive=False, with_times=False): """ Loop over fake /-delimited directories on Azure. The prefix may or may not not have a trailing slash; if not, one will be added automatically. Returns the names of files and fake directories in the given input fake directory, non-recursively. If with_times is specified, will yield (name, time) pairs including modification times as datetime objects. Times on directories are None. """ self.__connect() RealtimeLogger.info("Enumerating {} from AzureIOStore".format( input_path)) # Work out what the directory name to list is fake_directory = self.name_prefix + input_path if fake_directory != "" and not fake_directory.endswith("/"): # We have a nonempty prefix, and we need to end it with a slash fake_directory += "/" # This will hold the marker that we need to send back to get the next # page, if there is one. See <http://stackoverflow.com/a/24303682> marker = None # This holds the subdirectories we found; we yield each exactly once if # we aren't recursing. subdirectories = set() while True: # Get the results from Azure. We don't use delimiter since Azure # doesn't seem to provide the placeholder entries it's supposed to. result = self.connection.list_blobs(self.container_name, prefix=fake_directory, marker=marker) RealtimeLogger.info("Found {} files".format(len(result))) for blob in result: # Yield each result's blob name, but directory names only once # Drop the common prefix relative_path = blob.name[len(fake_directory):] if (not recursive) and "/" in relative_path: # We found a file in a subdirectory, and we aren't supposed # to be recursing. subdirectory, _ = relative_path.split("/", 1) if subdirectory not in subdirectories: # It's a new subdirectory. Yield and remember it subdirectories.add(subdirectory) if with_times: yield subdirectory, None else: yield subdirectory else: # We found an actual file if with_times: mtime = blob.properties.last_modified if isinstance(mtime, datetime.datetime): # Make sure we're getting proper localized datetimes # from the new Azure Storage API. assert(mtime.tzinfo is not None and mtime.tzinfo.utcoffset(mtime) is not None) else: # Convert mtime from a string as in the old API. mtime = dateutil.parser.parse(mtime).replace( tzinfo=dateutil.tz.tzutc()) yield relative_path, mtime else: yield relative_path # Save the marker marker = result.next_marker if not marker: break @backoff def write_output_file(self, local_path, output_path): """ Write output to Azure. Will create the container if necessary. """ self.__connect() RealtimeLogger.debug("Saving {} to AzureIOStore".format( output_path)) try: # Make the container self.connection.create_container(self.container_name) except azure.WindowsAzureConflictError: # The container probably already exists pass # Upload the blob (synchronously) # TODO: catch no container error here, make the container, and retry self.connection.put_block_blob_from_path(self.container_name, self.name_prefix + output_path, local_path) @backoff def exists(self, path): """ Returns true if the given input or output file exists in Azure already. """ self.__connect() marker = None while True: try: # Make the container self.connection.create_container(self.container_name) except azure.WindowsAzureConflictError: # The container probably already exists pass # Get the results from Azure. result = self.connection.list_blobs(self.container_name, prefix=self.name_prefix + path, marker=marker) for blob in result: # Look at each blob if blob.name == self.name_prefix + path: # Found it return True # Save the marker marker = result.next_marker if not marker: break return False @backoff def get_mtime(self, path): """ Returns the modification time of the given blob if it exists, or None otherwise. """ self.__connect() marker = None while True: # Get the results from Azure. result = self.connection.list_blobs(self.container_name, prefix=self.name_prefix + path, marker=marker) for blob in result: # Look at each blob if blob.name == self.name_prefix + path: # Found it mtime = blob.properties.last_modified if isinstance(mtime, datetime.datetime): # Make sure we're getting proper localized datetimes # from the new Azure Storage API. assert(mtime.tzinfo is not None and mtime.tzinfo.utcoffset(mtime) is not None) else: # Convert mtime from a string as in the old API. mtime = dateutil.parser.parse(mtime).replace( tzinfo=dateutil.tz.tzutc()) return mtime # Save the marker marker = result.next_marker if not marker: break return None @backoff def get_size(self, path): """ Returns the size in bytes of the given blob if it exists, or None otherwise. """ self.__connect() marker = None while True: # Get the results from Azure. result = self.connection.list_blobs(self.container_name, prefix=self.name_prefix + path, marker=marker) for blob in result: # Look at each blob if blob.name == self.name_prefix + path: # Found it size = blob.properties.content_length return size # Save the marker marker = result.next_marker if not marker: break return None
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test code for sparse operator""" import numpy as np import tvm import topi import topi.testing from topi.util import get_const_tuple import tvm.contrib.sparse as tvmsp from collections import namedtuple import time import scipy.sparse as sp def verify_dynamic_csrmv(batch, in_dim, out_dim, use_bias=True): nr, nc, n = tvm.var("nr"), tvm.var("nc"), tvm.var("n") dtype = 'float32' A = tvmsp.placeholder(shape=(nr, nc), nonzeros=n, dtype=dtype, name='A') B = tvm.placeholder((in_dim, 1), name='B') C = tvm.placeholder((nr,), name='C') D = topi.sparse.csrmv(A, B, C if use_bias else None) s = tvm.create_schedule(D.op) dtype = A.dtype # get the test data def get_ref_data(): a_np = np.maximum(np.random.uniform(size=(batch, in_dim)).astype(dtype)-0.5, 0.) b_np = np.random.uniform(size=(in_dim, 1)).astype(dtype)-0.5 c_np = np.random.uniform(size=(batch, )).astype(dtype) if use_bias: d_np = np.dot(a_np, b_np) + c_np.reshape((batch, 1)) else: d_np = np.dot(a_np, b_np) return (a_np, b_np, c_np, d_np) a_np, b_np, c_np, d_np = get_ref_data() def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) a = tvmsp.array(a_np, ctx) _nr, _nc, _n = a.shape[0], a.shape[1], a.data.shape[0] assert a.shape[0] == a.indptr.shape[0]-1 b = tvm.nd.array(b_np, ctx) c = tvm.nd.array(c_np, ctx) d = tvm.nd.array(np.zeros((_nr, 1), dtype=dtype), ctx) assert a.data.dtype == A.data.dtype assert a.indices.dtype == A.indices.dtype assert a.indptr.dtype == A.indptr.dtype f = tvm.build(s, [nr, A.data, A.indices, A.indptr, B, C, D], device, name="csrmv") f(_nr, a.data, a.indices, a.indptr, b, c, d) tvm.testing.assert_allclose(d.asnumpy(), d_np, rtol=1e-4, atol=1e-4) for device in ["llvm"]: check_device(device) def verify_dynamic_csrmm(batch, in_dim, out_dim, use_bias=True): nr, nc, n = tvm.var("nr"), tvm.var("nc"), tvm.var("n") dtype = 'float32' A = tvmsp.placeholder(shape=(nr, nc), nonzeros=n, dtype=dtype, name='A') B = tvm.placeholder((in_dim, out_dim), name='B') C = tvm.placeholder((nr,), name='C') D = topi.sparse.csrmm(A, B, C if use_bias else None) s = tvm.create_schedule(D.op) dtype = A.dtype # get the test data def get_ref_data(): a_np = np.maximum(np.random.uniform(size=(batch, in_dim)).astype(dtype)-0.5, 0.) b_np = np.random.uniform(size=(in_dim, out_dim)).astype(dtype)-0.5 c_np = np.random.uniform(size=(batch, )).astype(dtype) if use_bias: d_np = np.dot(a_np, b_np) + c_np.reshape((batch, 1)) else: d_np = np.dot(a_np, b_np) return (a_np, b_np, c_np, d_np) a_np, b_np, c_np, d_np = get_ref_data() def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) a = tvmsp.array(a_np, ctx) _nr, _nc, _n = a.shape[0], a.shape[1], a.data.shape[0] assert a.shape[0] == a.indptr.shape[0]-1 b = tvm.nd.array(b_np, ctx) c = tvm.nd.array(c_np, ctx) d = tvm.nd.array(np.zeros((_nr, out_dim), dtype=dtype), ctx) f = tvm.build(s, [nr, A.data, A.indices, A.indptr, B, C, D], device, name="csrmm") f(_nr, a.data, a.indices, a.indptr, b, c, d) tvm.testing.assert_allclose(d.asnumpy(), d_np, rtol=1e-2, atol=1e-2) for device in ["llvm"]: check_device(device) def verify_dense_si(batch, in_dim, out_dim, use_bias=True, dtype='float32'): nonzeros = tvm.var('nonzeros') A = tvmsp.placeholder(shape=(batch, in_dim), nonzeros=nonzeros, dtype=dtype, name='A') B = tvm.placeholder((out_dim, in_dim), dtype=dtype, name='B') C = tvm.placeholder((out_dim,), dtype=dtype, name='C') D = topi.sparse.dense(A, B, C if use_bias else None) s = tvm.create_schedule(D.op) # get the test data def get_ref_data(): mag = 10. a_np = np.maximum(mag*(np.random.uniform(size=(batch, in_dim)).astype('float32')-0.5), 0.).astype(dtype) b_np = (mag*(np.random.uniform(size=(out_dim, in_dim)).astype('float32')-.5)).astype(dtype) c_np = (mag*(np.random.uniform(size=(out_dim,)).astype('float32')-.5)).astype(dtype) if use_bias: d_np = np.dot(a_np, b_np.T) + c_np else: d_np = np.dot(a_np, b_np.T) return (a_np, b_np, c_np, d_np) a_np, b_np, c_np, d_np = get_ref_data() def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) a = tvmsp.array(a_np, ctx) b = tvm.nd.array(b_np, ctx) c = tvm.nd.array(c_np, ctx) d = tvm.nd.array(np.zeros(get_const_tuple(D.shape), dtype=dtype), ctx) f = tvm.build(s, [A.data, A.indices, A.indptr, B, C, D], device, name="dense") f(a.data, a.indices, a.indptr, b, c, d) tvm.testing.assert_allclose(d.asnumpy(), d_np, rtol=1e-4, atol=1e-4) check_device('llvm') def verify_dense_sw(batch, in_dim, out_dim, use_bias=True, dtype='float32'): nonzeros = tvm.var('nonzeros') A = tvm.placeholder((batch, in_dim), dtype=dtype, name='A') B = tvmsp.placeholder(shape=(out_dim, in_dim), nonzeros=nonzeros, dtype=dtype, name='B') C = tvm.placeholder((out_dim,), dtype=dtype, name='C') D = topi.sparse.dense(A, B, C if use_bias else None) s = tvm.create_schedule(D.op) # get the test data def get_ref_data(): mag = 10. a_np = (mag*(np.random.uniform(size=(batch, in_dim)).astype('float32')-.5)).astype(dtype) b_np = np.maximum(mag*(np.random.uniform(size=(out_dim, in_dim)).astype('float32')-0.5), 0.).astype(dtype) c_np = (mag*(np.random.uniform(size=(out_dim,)).astype('float32')-.5)).astype(dtype) if use_bias: d_np = np.dot(a_np, b_np.T) + c_np else: d_np = np.dot(a_np, b_np.T) return (a_np, b_np, c_np, d_np) a_np, b_np, c_np, d_np = get_ref_data() def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) a = tvm.nd.array(a_np, ctx) b = tvmsp.array(b_np, ctx) c = tvm.nd.array(c_np, ctx) d = tvm.nd.array(np.zeros(get_const_tuple(D.shape), dtype=dtype), ctx) f = tvm.build(s, [A, B.data, B.indices, B.indptr, C, D], device, name="dense") f(a, b.data, b.indices, b.indptr, c, d) tvm.testing.assert_allclose(d.asnumpy(), d_np, rtol=1e-4, atol=1e-4) check_device('llvm') def test_csrmv(): verify_dynamic_csrmv(batch=5, in_dim=7, out_dim=1, use_bias=False) verify_dynamic_csrmv(batch=5, in_dim=7, out_dim=1, use_bias=True) def test_csrmm(): M, K, N = 5, 7, 2 verify_dynamic_csrmm(batch=M, in_dim=K, out_dim=N, use_bias=False) verify_dynamic_csrmm(batch=M, in_dim=K, out_dim=N, use_bias=True) def test_dense_si(): M, K, N = 3, 5, 2 verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='float32') verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='float32') verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='int32') verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='int32') verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='int16') verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='int16') def test_dense_sw(): M, K, N = 3, 5, 2 verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='float32') verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='float32') verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='int32') verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='int32') verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='int16') verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='int16') def test_dense(): test_dense_si() test_dense_sw() def test_sparse_dense_csr(): M, N, K, density = 1, 17, 47, 0.2 X_np = np.random.randn(M, K).astype("float32") W_sp_np = sp.random(N, K, density=density, format='csr', dtype="float32") W_np = W_sp_np.todense() Y_np = X_np.dot(W_np.T) W_data = tvm.placeholder(shape=W_sp_np.data.shape, dtype=str(W_sp_np.data.dtype)) W_indices = tvm.placeholder(shape=W_sp_np.indices.shape, dtype=str(W_sp_np.indices.dtype)) W_indptr = tvm.placeholder(shape=W_sp_np.indptr.shape, dtype=str(W_sp_np.indptr.dtype)) X = tvm.placeholder(shape=X_np.shape, dtype=str(X_np.dtype)) Y = topi.nn.sparse_dense(X, W_data, W_indices, W_indptr) s = tvm.create_schedule(Y.op) func = tvm.build(s, [X, W_data, W_indices, W_indptr, Y]) Y_tvm = tvm.ndarray.array(np.zeros(Y_np.shape, dtype=Y_np.dtype)) func(tvm.ndarray.array(X_np), tvm.ndarray.array(W_sp_np.data), tvm.ndarray.array(W_sp_np.indices), tvm.ndarray.array(W_sp_np.indptr), Y_tvm) tvm.testing.assert_allclose(Y_tvm.asnumpy(), Y_np, atol=1e-4, rtol=1e-4) def test_sparse_transpose_csr(): N, density = 1023, 0.3 X_sp = sp.random(N, N, density=density, format='csr', dtype='float32') X_sp_T = X_sp.transpose() X_np_T = X_sp_T.todense() X_data = tvm.placeholder(shape=X_sp.data.shape, dtype=str(X_sp.data.dtype)) X_indices = tvm.placeholder(shape=X_sp.indices.shape, dtype=str(X_sp.indices.dtype)) X_indptr = tvm.placeholder(shape=X_sp.indptr.shape, dtype=str(X_sp.indptr.dtype)) X_T_data, X_T_indices, X_T_indptr = topi.nn.sparse_transpose(X_data, X_indices, X_indptr) s = tvm.create_schedule([X_T_data.op, X_T_indices.op, X_T_indptr.op]) func = tvm.build(s, [X_data, X_indices, X_indptr, X_T_data, X_T_indices, X_T_indptr]) X_T_data_tvm = tvm.ndarray.array(np.zeros(X_sp_T.data.shape, dtype=X_sp_T.data.dtype)) X_T_indices_tvm = tvm.ndarray.array(np.zeros(X_sp_T.indices.shape, dtype=X_sp_T.indices.dtype)) X_T_indptr_tvm = tvm.ndarray.array(np.zeros(X_sp_T.indptr.shape, dtype=X_sp_T.indptr.dtype)) func(tvm.ndarray.array(X_sp.data), tvm.ndarray.array(X_sp.indices), tvm.ndarray.array(X_sp.indptr), X_T_data_tvm, X_T_indices_tvm, X_T_indptr_tvm) X_T_out = sp.csr_matrix((X_T_data_tvm.asnumpy(), X_T_indices_tvm.asnumpy(), X_T_indptr_tvm.asnumpy()), shape=(N,N)).todense() tvm.testing.assert_allclose(X_np_T, X_T_out, atol=1e-4, rtol=1e-4) def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype): import itertools Y = np.zeros((M, N), dtype=dtype) assert M % BS_R == 0 assert N % BS_C == 0 nnz = int(density * M * N) num_blocks = int(nnz / (BS_R * BS_C)) + 1 candidate_blocks = np.asarray(list(itertools.product(range(0, M, BS_R), range(0, N, BS_C)))) assert candidate_blocks.shape[0] == M // BS_R * N // BS_C chosen_blocks = candidate_blocks[np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False)] for i in range(len(chosen_blocks)): r, c = chosen_blocks[i] Y[r:r + BS_R, c:c + BS_C] = np.random.randn(BS_R, BS_C) s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C)) assert s.data.shape == (num_blocks, BS_R, BS_C) assert s.indices.shape == (num_blocks, ) assert s.indptr.shape == (M // BS_R + 1, ) return s def test_sparse_dense_bsr(): M, N, K, BS_R, BS_C, density = 1, 64, 128, 8, 16, 0.9 X_np = np.random.randn(M, K).astype("float32") W_sp_np = random_bsr_matrix(N, K, BS_R, BS_C, density=density, dtype="float32") W_np = W_sp_np.todense() Y_np = X_np.dot(W_np.T) W_data = tvm.placeholder(shape=W_sp_np.data.shape, dtype=str(W_sp_np.data.dtype)) W_indices = tvm.placeholder(shape=W_sp_np.indices.shape, dtype=str(W_sp_np.indices.dtype)) W_indptr = tvm.placeholder(shape=W_sp_np.indptr.shape, dtype=str(W_sp_np.indptr.dtype)) X = tvm.placeholder(shape=X_np.shape, dtype=str(X_np.dtype)) Y = topi.nn.sparse_dense(X, W_data, W_indices, W_indptr) s = tvm.create_schedule(Y.op) func = tvm.build(s, [X, W_data, W_indices, W_indptr, Y]) Y_tvm = tvm.ndarray.array(np.zeros(Y_np.shape, dtype=Y_np.dtype)) func(tvm.ndarray.array(X_np), tvm.ndarray.array(W_sp_np.data), tvm.ndarray.array(W_sp_np.indices), tvm.ndarray.array(W_sp_np.indptr), Y_tvm) tvm.testing.assert_allclose(Y_tvm.asnumpy(), Y_np, atol=1e-4, rtol=1e-4) def test_sparse_dense_bsr_randomized(): for _ in range(20): BS_R = np.random.randint(1, 16) BS_C = np.random.randint(1, 16) M = np.random.randint(1, 32) N = int(np.random.randint(1, 16) * BS_R) K = int(np.random.randint(1, 16) * BS_C) density = np.clip(np.random.random(), 0.1, 0.9) X_np = np.random.randn(M, K).astype("float32") W_sp_np = random_bsr_matrix(N, K, BS_R, BS_C, density=density, dtype="float32") W_np = W_sp_np.todense() Y_np = np.array(X_np.dot(W_np.T)) W_data = tvm.placeholder(shape=W_sp_np.data.shape, dtype=str(W_sp_np.data.dtype)) W_indices = tvm.placeholder(shape=W_sp_np.indices.shape, dtype=str(W_sp_np.indices.dtype)) W_indptr = tvm.placeholder(shape=W_sp_np.indptr.shape, dtype=str(W_sp_np.indptr.dtype)) X = tvm.placeholder(shape=X_np.shape, dtype=str(X_np.dtype)) Y = topi.nn.sparse_dense(X, W_data, W_indices, W_indptr) s = tvm.create_schedule(Y.op) func = tvm.build(s, [X, W_data, W_indices, W_indptr, Y]) Y_tvm = tvm.ndarray.array(np.zeros(Y_np.shape, dtype=Y_np.dtype)) func(tvm.ndarray.array(X_np), tvm.ndarray.array(W_sp_np.data), tvm.ndarray.array(W_sp_np.indices), tvm.ndarray.array(W_sp_np.indptr), Y_tvm) tvm.testing.assert_allclose(Y_tvm.asnumpy(), Y_np, atol=1e-5, rtol=1e-5) def test_sparse_dense(): test_sparse_dense_csr() test_sparse_dense_bsr() test_sparse_dense_bsr_randomized() if __name__ == "__main__": test_csrmv() test_csrmm() test_dense() test_sparse_dense() test_sparse_transpose_csr()
import os import operator import tensorflow as tf import models import time import numpy as np from datetime import datetime from tensorflow.examples.tutorials.mnist import input_data FLAGS = tf.app.flags.FLAGS # Basic model parameters. tf.app.flags.DEFINE_string('train_dir', './multigpu-trained', """Directory where to write event logs """ """and checkpoint.""") tf.app.flags.DEFINE_integer('batch_size', 1024, """Number of images to process in a batch.""") tf.app.flags.DEFINE_integer('epochs', 40, """Max epochs for training.""") tf.app.flags.DEFINE_integer('log_step', 10, """Log step""") tf.app.flags.DEFINE_integer('eval_step', 1, """Evaluate step of epoch""") tf.app.flags.DEFINE_string('device_ids', '', """Device ids. split by comma, e.g. 0,1""") #tf.app.flags.DEFINE_string('data_dir', '/home/comp/csshshi/data/tensorflow/MNIST_data/', tf.app.flags.DEFINE_string('data_dir', os.environ['HOME']+'/data/tensorflow/MNIST_data/', #tf.app.flags.DEFINE_string('data_dir', '/home/comp/pengfeixu/Data/tensorflow/MNIST_data/', """Path to the data directory.""") tf.app.flags.DEFINE_boolean('use_fp16', False, """Train the model using fp16.""") tf.app.flags.DEFINE_boolean('log_device_placement', True, """Whether to log device placement.""") tf.app.flags.DEFINE_integer('num_gpus', 2, """How many GPUs to use.""") tf.app.flags.DEFINE_string('local_ps_device', 'GPU', """Local parameter server GPU if gpus are peered or CPU otherwise try both.""") tf.app.flags.DEFINE_boolean('use_dataset', False, """Whether to use datasets vs. feed_dict.""") tf.app.flags.DEFINE_boolean('xla', False, """True to use XLA, which has to be compiled in.""") EPOCH_SIZE = 60000 TEST_SIZE = 10000 def createFakeData(count, featureDim, labelDim): features = np.random.randn(count, featureDim) labels = np.random.randint(0, labelDim, size=(count, 1)) return features, labels features, labels = createFakeData(1024, 32*32*3, 10) def getFakeMinibatch(minibatchSize, labelDim): feat = features[:minibatchSize] l = labels[:minibatchSize] lab = np.zeros((minibatchSize, labelDim)) for i in range(lab.shape[0]): lab[i][l[i]] = 1 return feat, lab mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) def get_real_batch_data(batch_size, label_dim): batch_xs, batch_ys = mnist.train.next_batch(batch_size) return batch_xs, batch_ys def average_gradients(tower_grads): """Calculate the average gradient for each shared variable across all towers. Note that this function provides a synchronization point across all towers. Args: tower_grads: List of lists of (gradient, variable) tuples. The outer list is over individual gradients. The inner list is over the gradient calculation for each tower. Returns: List of pairs of (gradient, variable) where the gradient has been averaged across all towers. """ average_grads = [] for single_grads in zip(*tower_grads): grads = [g for g, _ in single_grads] grad = tf.add_n(grads) grad = tf.multiply(grad, 1.0/len(grads)) v = single_grads[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads def train(model='fcn5'): config = tf.ConfigProto(allow_soft_placement=True,log_device_placement=FLAGS.log_device_placement) if FLAGS.xla: # Turns on XLA. XLA is not included in the standard build. For single GPU this shows ~5% improvement config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 with tf.Graph().as_default(), tf.device("/" + FLAGS.local_ps_device + ":0"): global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False) device_ids = FLAGS.device_ids if not device_ids: device_ids = [str(i) for i in range(FLAGS.num_gpus)] else: device_ids = device_ids.split(',') lr = 0.05 #optimizer = tf.train.GradientDescentOptimizer(lr) optimizer = tf.train.MomentumOptimizer(lr, 0.9) def assign_to_device(device, ps_device=FLAGS.local_ps_device): worker_device = device ps_sizes = [0] if FLAGS.local_ps_device.lower == 'gpu': ps_sizes = [0] * FLAGS.num_gpus def _assign(op): if op.device: return op.device if op.type not in ['Variable', 'VariableV2']: return worker_device device_index, _ = min(enumerate( ps_sizes), key=operator.itemgetter(1)) device_name = '/' + FLAGS.local_ps_device +':' + str(device_index) var_size = op.outputs[0].get_shape().num_elements() ps_sizes[device_index] += var_size return device_name return _assign images = None labels = None if FLAGS.use_dataset: with tf.device('/CPU:0'): d_features = mnist.train.images d_labels = mnist.train.labels dataset = tf.contrib.data.Dataset.from_tensor_slices((d_features, d_labels)) dataset = dataset.shuffle(buffer_size=60000) dataset = dataset.repeat() dataset = dataset.batch(FLAGS.batch_size) # Trick to get datasets to buffer the next epoch. This is needed because # the data loading is occuring outside DataSets in python. Normally preprocessing # would occur in DataSets and this odd looking line is not needed. dataset = dataset.map(lambda x,y:(x,y), num_threads=FLAGS.num_gpus, output_buffer_size=FLAGS.num_gpus) iterator = dataset.make_initializable_iterator() images,labels = iterator.get_next() tower_grads = [] feed_vars = [] average_loss_tensor = [] reuse_variables = False accuracy = None for i in xrange(FLAGS.num_gpus): with tf.device(assign_to_device('/gpu:%s'%device_ids[i])): with tf.name_scope('%s_%s' % ('TOWER', device_ids[i])) as scope: if not FLAGS.use_dataset: feature_dim = models.feature_dim label_dim = models.label_dim images = tf.placeholder(tf.float32, [None, feature_dim], name='images') labels = tf.placeholder(tf.int64, [None, label_dim], name='labels') feed_vars.append((images, labels)) with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables): logits = models.model_fcn5(images) if i == 0: # Prediction only on GPU:0 predictionCorrectness = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1)) accuracy = tf.reduce_mean(tf.cast(predictionCorrectness, "float")) loss = models.loss(logits, labels) reuse_variables = True average_loss_tensor.append(loss) grads = optimizer.compute_gradients(loss) tower_grads.append(grads) grads = average_gradients(tower_grads) apply_gradient_op = optimizer.apply_gradients(grads, global_step=global_step) train_op = apply_gradient_op average_op = tf.reduce_mean(average_loss_tensor) saver = tf.train.Saver(tf.global_variables()) init = tf.global_variables_initializer() sess = tf.Session(config=config) sess.run(init) if FLAGS.use_dataset: sess.run(iterator.initializer) real_batch_size = FLAGS.batch_size * FLAGS.num_gpus num_batches_per_epoch = int((EPOCH_SIZE + real_batch_size - 1)/ real_batch_size) iterations = FLAGS.epochs * num_batches_per_epoch average_batch_time = 0.0 epochs_info = [] step = 0 average_loss = 0.0 for step in range(iterations): start_time = time.time() feed_dict = {} if not FLAGS.use_dataset: imgs, labs = get_real_batch_data(real_batch_size, 10) for i in range(FLAGS.num_gpus): feed_dict[feed_vars[i][0]] = imgs[i*FLAGS.batch_size:(i+1)*FLAGS.batch_size] feed_dict[feed_vars[i][1]] = labs[i*FLAGS.batch_size:(i+1)*FLAGS.batch_size] _, loss_value = sess.run([train_op, average_op], feed_dict=feed_dict) duration = time.time() - start_time average_batch_time += float(duration) average_loss += loss_value assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % FLAGS.log_step == 0: examples_per_sec = (FLAGS.batch_size * FLAGS.num_gpus) / duration sec_per_batch = float(duration) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)') print (format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) if step > 0 and step % (FLAGS.eval_step * num_batches_per_epoch) == 0: average_loss /= num_batches_per_epoch * FLAGS.eval_step print ('epoch: %d, loss: %.2f' % (step/(FLAGS.eval_step*num_batches_per_epoch), average_loss)) epochs_info.append('%d:-:%s'%(step/(FLAGS.eval_step*num_batches_per_epoch), average_loss)) average_loss = 0.0 feed_dict = { images: mnist.test.images, labels :mnist.test.labels } if not FLAGS.use_dataset: feed_dict = {} feed_dict[feed_vars[0][0]] = mnist.test.images feed_dict[feed_vars[0][1]] = mnist.test.labels accuracy_value = accuracy.eval(session=sess, feed_dict=feed_dict) print("test accuracy %g"%accuracy_value) checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) average_batch_time /= iterations print 'average_batch_time: ', average_batch_time print ('epoch_info: %s' % ','.join(epochs_info)) def main(argv=None): os.environ['TF_SYNC_ON_FINISH'] = '0' os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1' train(model='fcn5') if __name__ == '__main__': tf.app.run()
# sqlite/pysqlite.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php r""" .. dialect:: sqlite+pysqlite :name: pysqlite :dbapi: sqlite3 :connectstring: sqlite+pysqlite:///file_path :url: https://docs.python.org/library/sqlite3.html Note that ``pysqlite`` is the same driver as the ``sqlite3`` module included with the Python distribution. Driver ------ The ``sqlite3`` Python DBAPI is standard on all modern Python versions; for cPython and Pypy, no additional installation is necessary. Connect Strings --------------- The file specification for the SQLite database is taken as the "database" portion of the URL. Note that the format of a SQLAlchemy url is:: driver://user:pass@host/database This means that the actual filename to be used starts with the characters to the **right** of the third slash. So connecting to a relative filepath looks like:: # relative path e = create_engine('sqlite:///path/to/database.db') An absolute path, which is denoted by starting with a slash, means you need **four** slashes:: # absolute path e = create_engine('sqlite:////path/to/database.db') To use a Windows path, regular drive specifications and backslashes can be used. Double backslashes are probably needed:: # absolute path on Windows e = create_engine('sqlite:///C:\\path\\to\\database.db') The sqlite ``:memory:`` identifier is the default if no filepath is present. Specify ``sqlite://`` and nothing else:: # in-memory database e = create_engine('sqlite://') .. _pysqlite_uri_connections: URI Connections ^^^^^^^^^^^^^^^ Modern versions of SQLite support an alternative system of connecting using a `driver level URI <https://www.sqlite.org/uri.html>`_, which has the advantage that additional driver-level arguments can be passed including options such as "read only". The Python sqlite3 driver supports this mode under modern Python 3 versions. The SQLAlchemy pysqlite driver supports this mode of use by specifying "uri=true" in the URL query string. The SQLite-level "URI" is kept as the "database" portion of the SQLAlchemy url (that is, following a slash):: e = create_engine("sqlite:///file:path/to/database?mode=ro&uri=true") .. note:: The "uri=true" parameter must appear in the **query string** of the URL. It will not currently work as expected if it is only present in the :paramref:`_sa.create_engine.connect_args` parameter dictionary. The logic reconciles the simultaneous presence of SQLAlchemy's query string and SQLite's query string by separating out the parameters that belong to the Python sqlite3 driver vs. those that belong to the SQLite URI. This is achieved through the use of a fixed list of parameters known to be accepted by the Python side of the driver. For example, to include a URL that indicates the Python sqlite3 "timeout" and "check_same_thread" parameters, along with the SQLite "mode" and "nolock" parameters, they can all be passed together on the query string:: e = create_engine( "sqlite:///file:path/to/database?" "check_same_thread=true&timeout=10&mode=ro&nolock=1&uri=true" ) Above, the pysqlite / sqlite3 DBAPI would be passed arguments as:: sqlite3.connect( "file:path/to/database?mode=ro&nolock=1", check_same_thread=True, timeout=10, uri=True ) Regarding future parameters added to either the Python or native drivers. new parameter names added to the SQLite URI scheme should be automatically accommodated by this scheme. New parameter names added to the Python driver side can be accommodated by specifying them in the :paramref:`_sa.create_engine.connect_args` dictionary, until dialect support is added by SQLAlchemy. For the less likely case that the native SQLite driver adds a new parameter name that overlaps with one of the existing, known Python driver parameters (such as "timeout" perhaps), SQLAlchemy's dialect would require adjustment for the URL scheme to continue to support this. As is always the case for all SQLAlchemy dialects, the entire "URL" process can be bypassed in :func:`_sa.create_engine` through the use of the :paramref:`_sa.create_engine.creator` parameter which allows for a custom callable that creates a Python sqlite3 driver level connection directly. .. versionadded:: 1.3.9 .. seealso:: `Uniform Resource Identifiers <https://www.sqlite.org/uri.html>`_ - in the SQLite documentation .. _pysqlite_regexp: Regular Expression Support --------------------------- .. versionadded:: 1.4 Support for the :meth:`_sql.ColumnOperators.regexp_match` operator is provided using Python's re.search_ function. SQLite itself does not include a working regular expression operator; instead, it includes a non-implemented placeholder operator ``REGEXP`` that calls a user-defined function that must be provided. SQLAlchemy's implementation makes use of the pysqlite create_function_ hook as follows:: def regexp(a, b): return re.search(a, b) is not None sqlite_connection.create_function( "regexp", 2, regexp, ) There is currently no support for regular expression flags as a separate argument, as these are not supported by SQLite's REGEXP operator, however these may be included inline within the regular expression string. See `Python regular expressions`_ for details. .. seealso:: `Python regular expressions`_: Documentation for Python's regular expression syntax. .. _create_function: https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection.create_function .. _re.search: https://docs.python.org/3/library/re.html#re.search .. _Python regular expressions: https://docs.python.org/3/library/re.html#re.search Compatibility with sqlite3 "native" date and datetime types ----------------------------------------------------------- The pysqlite driver includes the sqlite3.PARSE_DECLTYPES and sqlite3.PARSE_COLNAMES options, which have the effect of any column or expression explicitly cast as "date" or "timestamp" will be converted to a Python date or datetime object. The date and datetime types provided with the pysqlite dialect are not currently compatible with these options, since they render the ISO date/datetime including microseconds, which pysqlite's driver does not. Additionally, SQLAlchemy does not at this time automatically render the "cast" syntax required for the freestanding functions "current_timestamp" and "current_date" to return datetime/date types natively. Unfortunately, pysqlite does not provide the standard DBAPI types in ``cursor.description``, leaving SQLAlchemy with no way to detect these types on the fly without expensive per-row type checks. Keeping in mind that pysqlite's parsing option is not recommended, nor should be necessary, for use with SQLAlchemy, usage of PARSE_DECLTYPES can be forced if one configures "native_datetime=True" on create_engine():: engine = create_engine('sqlite://', connect_args={'detect_types': sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES}, native_datetime=True ) With this flag enabled, the DATE and TIMESTAMP types (but note - not the DATETIME or TIME types...confused yet ?) will not perform any bind parameter or result processing. Execution of "func.current_date()" will return a string. "func.current_timestamp()" is registered as returning a DATETIME type in SQLAlchemy, so this function still receives SQLAlchemy-level result processing. .. _pysqlite_threading_pooling: Threading/Pooling Behavior --------------------------- Pysqlite's default behavior is to prohibit the usage of a single connection in more than one thread. This is originally intended to work with older versions of SQLite that did not support multithreaded operation under various circumstances. In particular, older SQLite versions did not allow a ``:memory:`` database to be used in multiple threads under any circumstances. Pysqlite does include a now-undocumented flag known as ``check_same_thread`` which will disable this check, however note that pysqlite connections are still not safe to use in concurrently in multiple threads. In particular, any statement execution calls would need to be externally mutexed, as Pysqlite does not provide for thread-safe propagation of error messages among other things. So while even ``:memory:`` databases can be shared among threads in modern SQLite, Pysqlite doesn't provide enough thread-safety to make this usage worth it. SQLAlchemy sets up pooling to work with Pysqlite's default behavior: * When a ``:memory:`` SQLite database is specified, the dialect by default will use :class:`.SingletonThreadPool`. This pool maintains a single connection per thread, so that all access to the engine within the current thread use the same ``:memory:`` database - other threads would access a different ``:memory:`` database. * When a file-based database is specified, the dialect will use :class:`.NullPool` as the source of connections. This pool closes and discards connections which are returned to the pool immediately. SQLite file-based connections have extremely low overhead, so pooling is not necessary. The scheme also prevents a connection from being used again in a different thread and works best with SQLite's coarse-grained file locking. Using a Memory Database in Multiple Threads ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ To use a ``:memory:`` database in a multithreaded scenario, the same connection object must be shared among threads, since the database exists only within the scope of that connection. The :class:`.StaticPool` implementation will maintain a single connection globally, and the ``check_same_thread`` flag can be passed to Pysqlite as ``False``:: from sqlalchemy.pool import StaticPool engine = create_engine('sqlite://', connect_args={'check_same_thread':False}, poolclass=StaticPool) Note that using a ``:memory:`` database in multiple threads requires a recent version of SQLite. Using Temporary Tables with SQLite ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Due to the way SQLite deals with temporary tables, if you wish to use a temporary table in a file-based SQLite database across multiple checkouts from the connection pool, such as when using an ORM :class:`.Session` where the temporary table should continue to remain after :meth:`.Session.commit` or :meth:`.Session.rollback` is called, a pool which maintains a single connection must be used. Use :class:`.SingletonThreadPool` if the scope is only needed within the current thread, or :class:`.StaticPool` is scope is needed within multiple threads for this case:: # maintain the same connection per thread from sqlalchemy.pool import SingletonThreadPool engine = create_engine('sqlite:///mydb.db', poolclass=SingletonThreadPool) # maintain the same connection across all threads from sqlalchemy.pool import StaticPool engine = create_engine('sqlite:///mydb.db', poolclass=StaticPool) Note that :class:`.SingletonThreadPool` should be configured for the number of threads that are to be used; beyond that number, connections will be closed out in a non deterministic way. Unicode ------- The pysqlite driver only returns Python ``unicode`` objects in result sets, never plain strings, and accommodates ``unicode`` objects within bound parameter values in all cases. Regardless of the SQLAlchemy string type in use, string-based result values will by Python ``unicode`` in Python 2. The :class:`.Unicode` type should still be used to indicate those columns that require unicode, however, so that non-``unicode`` values passed inadvertently will emit a warning. Pysqlite will emit an error if a non-``unicode`` string is passed containing non-ASCII characters. Dealing with Mixed String / Binary Columns in Python 3 ------------------------------------------------------ The SQLite database is weakly typed, and as such it is possible when using binary values, which in Python 3 are represented as ``b'some string'``, that a particular SQLite database can have data values within different rows where some of them will be returned as a ``b''`` value by the Pysqlite driver, and others will be returned as Python strings, e.g. ``''`` values. This situation is not known to occur if the SQLAlchemy :class:`.LargeBinary` datatype is used consistently, however if a particular SQLite database has data that was inserted using the Pysqlite driver directly, or when using the SQLAlchemy :class:`.String` type which was later changed to :class:`.LargeBinary`, the table will not be consistently readable because SQLAlchemy's :class:`.LargeBinary` datatype does not handle strings so it has no way of "encoding" a value that is in string format. To deal with a SQLite table that has mixed string / binary data in the same column, use a custom type that will check each row individually:: # note this is Python 3 only from sqlalchemy import String from sqlalchemy import TypeDecorator class MixedBinary(TypeDecorator): impl = String cache_ok = True def process_result_value(self, value, dialect): if isinstance(value, str): value = bytes(value, 'utf-8') elif value is not None: value = bytes(value) return value Then use the above ``MixedBinary`` datatype in the place where :class:`.LargeBinary` would normally be used. .. _pysqlite_serializable: Serializable isolation / Savepoints / Transactional DDL ------------------------------------------------------- In the section :ref:`sqlite_concurrency`, we refer to the pysqlite driver's assortment of issues that prevent several features of SQLite from working correctly. The pysqlite DBAPI driver has several long-standing bugs which impact the correctness of its transactional behavior. In its default mode of operation, SQLite features such as SERIALIZABLE isolation, transactional DDL, and SAVEPOINT support are non-functional, and in order to use these features, workarounds must be taken. The issue is essentially that the driver attempts to second-guess the user's intent, failing to start transactions and sometimes ending them prematurely, in an effort to minimize the SQLite databases's file locking behavior, even though SQLite itself uses "shared" locks for read-only activities. SQLAlchemy chooses to not alter this behavior by default, as it is the long-expected behavior of the pysqlite driver; if and when the pysqlite driver attempts to repair these issues, that will be more of a driver towards defaults for SQLAlchemy. The good news is that with a few events, we can implement transactional support fully, by disabling pysqlite's feature entirely and emitting BEGIN ourselves. This is achieved using two event listeners:: from sqlalchemy import create_engine, event engine = create_engine("sqlite:///myfile.db") @event.listens_for(engine, "connect") def do_connect(dbapi_connection, connection_record): # disable pysqlite's emitting of the BEGIN statement entirely. # also stops it from emitting COMMIT before any DDL. dbapi_connection.isolation_level = None @event.listens_for(engine, "begin") def do_begin(conn): # emit our own BEGIN conn.exec_driver_sql("BEGIN") .. warning:: When using the above recipe, it is advised to not use the :paramref:`.Connection.execution_options.isolation_level` setting on :class:`_engine.Connection` and :func:`_sa.create_engine` with the SQLite driver, as this function necessarily will also alter the ".isolation_level" setting. Above, we intercept a new pysqlite connection and disable any transactional integration. Then, at the point at which SQLAlchemy knows that transaction scope is to begin, we emit ``"BEGIN"`` ourselves. When we take control of ``"BEGIN"``, we can also control directly SQLite's locking modes, introduced at `BEGIN TRANSACTION <https://sqlite.org/lang_transaction.html>`_, by adding the desired locking mode to our ``"BEGIN"``:: @event.listens_for(engine, "begin") def do_begin(conn): conn.exec_driver_sql("BEGIN EXCLUSIVE") .. seealso:: `BEGIN TRANSACTION <https://sqlite.org/lang_transaction.html>`_ - on the SQLite site `sqlite3 SELECT does not BEGIN a transaction <https://bugs.python.org/issue9924>`_ - on the Python bug tracker `sqlite3 module breaks transactions and potentially corrupts data <https://bugs.python.org/issue10740>`_ - on the Python bug tracker """ # noqa import os import re from .base import DATE from .base import DATETIME from .base import SQLiteDialect from ... import exc from ... import pool from ... import types as sqltypes from ... import util class _SQLite_pysqliteTimeStamp(DATETIME): def bind_processor(self, dialect): if dialect.native_datetime: return None else: return DATETIME.bind_processor(self, dialect) def result_processor(self, dialect, coltype): if dialect.native_datetime: return None else: return DATETIME.result_processor(self, dialect, coltype) class _SQLite_pysqliteDate(DATE): def bind_processor(self, dialect): if dialect.native_datetime: return None else: return DATE.bind_processor(self, dialect) def result_processor(self, dialect, coltype): if dialect.native_datetime: return None else: return DATE.result_processor(self, dialect, coltype) class SQLiteDialect_pysqlite(SQLiteDialect): default_paramstyle = "qmark" supports_statement_cache = True colspecs = util.update_copy( SQLiteDialect.colspecs, { sqltypes.Date: _SQLite_pysqliteDate, sqltypes.TIMESTAMP: _SQLite_pysqliteTimeStamp, }, ) if not util.py2k: description_encoding = None driver = "pysqlite" @classmethod def dbapi(cls): if util.py2k: try: from pysqlite2 import dbapi2 as sqlite except ImportError: try: from sqlite3 import dbapi2 as sqlite except ImportError as e: raise e else: from sqlite3 import dbapi2 as sqlite return sqlite @classmethod def _is_url_file_db(cls, url): if (url.database and url.database != ":memory:") and ( url.query.get("mode", None) != "memory" ): return True else: return False @classmethod def get_pool_class(cls, url): if cls._is_url_file_db(url): return pool.NullPool else: return pool.SingletonThreadPool def _get_server_version_info(self, connection): return self.dbapi.sqlite_version_info _isolation_lookup = SQLiteDialect._isolation_lookup.union( { "AUTOCOMMIT": None, } ) def set_isolation_level(self, connection, level): if hasattr(connection, "dbapi_connection"): dbapi_connection = connection.dbapi_connection else: dbapi_connection = connection if level == "AUTOCOMMIT": dbapi_connection.isolation_level = None else: dbapi_connection.isolation_level = "" return super(SQLiteDialect_pysqlite, self).set_isolation_level( connection, level ) def on_connect(self): connect = super(SQLiteDialect_pysqlite, self).on_connect() def regexp(a, b): if b is None: return None return re.search(a, b) is not None def set_regexp(connection): if hasattr(connection, "dbapi_connection"): dbapi_connection = connection.dbapi_connection else: dbapi_connection = connection dbapi_connection.create_function( "regexp", 2, regexp, ) fns = [set_regexp] if self.isolation_level is not None: def iso_level(conn): self.set_isolation_level(conn, self.isolation_level) fns.append(iso_level) def connect(conn): for fn in fns: fn(conn) return connect def create_connect_args(self, url): if url.username or url.password or url.host or url.port: raise exc.ArgumentError( "Invalid SQLite URL: %s\n" "Valid SQLite URL forms are:\n" " sqlite:///:memory: (or, sqlite://)\n" " sqlite:///relative/path/to/file.db\n" " sqlite:////absolute/path/to/file.db" % (url,) ) # theoretically, this list can be augmented, at least as far as # parameter names accepted by sqlite3/pysqlite, using # inspect.getfullargspec(). for the moment this seems like overkill # as these parameters don't change very often, and as always, # parameters passed to connect_args will always go to the # sqlite3/pysqlite driver. pysqlite_args = [ ("uri", bool), ("timeout", float), ("isolation_level", str), ("detect_types", int), ("check_same_thread", bool), ("cached_statements", int), ] opts = url.query pysqlite_opts = {} for key, type_ in pysqlite_args: util.coerce_kw_type(opts, key, type_, dest=pysqlite_opts) if pysqlite_opts.get("uri", False): uri_opts = dict(opts) # here, we are actually separating the parameters that go to # sqlite3/pysqlite vs. those that go the SQLite URI. What if # two names conflict? again, this seems to be not the case right # now, and in the case that new names are added to # either side which overlap, again the sqlite3/pysqlite parameters # can be passed through connect_args instead of in the URL. # If SQLite native URIs add a parameter like "timeout" that # we already have listed here for the python driver, then we need # to adjust for that here. for key, type_ in pysqlite_args: uri_opts.pop(key, None) filename = url.database if uri_opts: # sorting of keys is for unit test support filename += "?" + ( "&".join( "%s=%s" % (key, uri_opts[key]) for key in sorted(uri_opts) ) ) else: filename = url.database or ":memory:" if filename != ":memory:": filename = os.path.abspath(filename) return ([filename], pysqlite_opts) def is_disconnect(self, e, connection, cursor): return isinstance( e, self.dbapi.ProgrammingError ) and "Cannot operate on a closed database." in str(e) dialect = SQLiteDialect_pysqlite
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, List, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class CustomLocationsOperations: """CustomLocationsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.extendedlocation.v2021_08_15.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_operations( self, **kwargs: Any ) -> AsyncIterable["_models.CustomLocationOperationsList"]: """Lists all available Custom Locations operations. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CustomLocationOperationsList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.extendedlocation.v2021_08_15.models.CustomLocationOperationsList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomLocationOperationsList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-08-15" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_operations.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CustomLocationOperationsList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_operations.metadata = {'url': '/providers/Microsoft.ExtendedLocation/operations'} # type: ignore def list_by_subscription( self, **kwargs: Any ) -> AsyncIterable["_models.CustomLocationListResult"]: """Gets a list of Custom Locations in a subscription. Gets a list of Custom Locations in the specified subscription. The operation returns properties of each Custom Location. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CustomLocationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.extendedlocation.v2021_08_15.models.CustomLocationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomLocationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-08-15" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_subscription.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CustomLocationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_subscription.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.ExtendedLocation/customLocations'} # type: ignore def list_by_resource_group( self, resource_group_name: str, **kwargs: Any ) -> AsyncIterable["_models.CustomLocationListResult"]: """Gets a list of Custom Locations in the specified subscription and resource group. Gets a list of Custom Locations in the specified subscription and resource group. The operation returns properties of each Custom Location. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CustomLocationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.extendedlocation.v2021_08_15.models.CustomLocationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomLocationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-08-15" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CustomLocationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ExtendedLocation/customLocations'} # type: ignore async def get( self, resource_group_name: str, resource_name: str, **kwargs: Any ) -> "_models.CustomLocation": """Gets a Custom Location. Gets the details of the customLocation with a specified resource group and name. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param resource_name: Custom Locations name. :type resource_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CustomLocation, or the result of cls(response) :rtype: ~azure.mgmt.extendedlocation.v2021_08_15.models.CustomLocation :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomLocation"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-08-15" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'resourceName': self._serialize.url("resource_name", resource_name, 'str', max_length=63, min_length=1, pattern=r'^[a-zA-Z0-9]$|^[a-zA-Z0-9][-_a-zA-Z0-9]{0,61}[a-zA-Z0-9]$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('CustomLocation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ExtendedLocation/customLocations/{resourceName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, resource_name: str, parameters: "_models.CustomLocation", **kwargs: Any ) -> "_models.CustomLocation": cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomLocation"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-08-15" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'resourceName': self._serialize.url("resource_name", resource_name, 'str', max_length=63, min_length=1, pattern=r'^[a-zA-Z0-9]$|^[a-zA-Z0-9][-_a-zA-Z0-9]{0,61}[a-zA-Z0-9]$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'CustomLocation') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('CustomLocation', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('CustomLocation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ExtendedLocation/customLocations/{resourceName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, resource_name: str, parameters: "_models.CustomLocation", **kwargs: Any ) -> AsyncLROPoller["_models.CustomLocation"]: """Creates or updates a Custom Location. Creates or updates a Custom Location in the specified Subscription and Resource Group. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param resource_name: Custom Locations name. :type resource_name: str :param parameters: Parameters supplied to create or update a Custom Location. :type parameters: ~azure.mgmt.extendedlocation.v2021_08_15.models.CustomLocation :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either CustomLocation or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.extendedlocation.v2021_08_15.models.CustomLocation] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomLocation"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, resource_name=resource_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('CustomLocation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'resourceName': self._serialize.url("resource_name", resource_name, 'str', max_length=63, min_length=1, pattern=r'^[a-zA-Z0-9]$|^[a-zA-Z0-9][-_a-zA-Z0-9]{0,61}[a-zA-Z0-9]$'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ExtendedLocation/customLocations/{resourceName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, resource_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-08-15" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'resourceName': self._serialize.url("resource_name", resource_name, 'str', max_length=63, min_length=1, pattern=r'^[a-zA-Z0-9]$|^[a-zA-Z0-9][-_a-zA-Z0-9]{0,61}[a-zA-Z0-9]$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ExtendedLocation/customLocations/{resourceName}'} # type: ignore async def begin_delete( self, resource_group_name: str, resource_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Deletes a Custom Location. Deletes the Custom Location with the specified Resource Name, Resource Group, and Subscription Id. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param resource_name: Custom Locations name. :type resource_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, resource_name=resource_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'resourceName': self._serialize.url("resource_name", resource_name, 'str', max_length=63, min_length=1, pattern=r'^[a-zA-Z0-9]$|^[a-zA-Z0-9][-_a-zA-Z0-9]{0,61}[a-zA-Z0-9]$'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ExtendedLocation/customLocations/{resourceName}'} # type: ignore async def update( self, resource_group_name: str, resource_name: str, identity: Optional["_models.Identity"] = None, tags: Optional[Dict[str, str]] = None, authentication: Optional["_models.CustomLocationPropertiesAuthentication"] = None, cluster_extension_ids: Optional[List[str]] = None, display_name: Optional[str] = None, host_resource_id: Optional[str] = None, host_type: Optional[Union[str, "_models.HostType"]] = None, namespace: Optional[str] = None, provisioning_state: Optional[str] = None, **kwargs: Any ) -> "_models.CustomLocation": """Updates a Custom Location. Updates a Custom Location with the specified Resource Name in the specified Resource Group and Subscription. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param resource_name: Custom Locations name. :type resource_name: str :param identity: Identity for the resource. :type identity: ~azure.mgmt.extendedlocation.v2021_08_15.models.Identity :param tags: Resource tags. :type tags: dict[str, str] :param authentication: This is optional input that contains the authentication that should be used to generate the namespace. :type authentication: ~azure.mgmt.extendedlocation.v2021_08_15.models.CustomLocationPropertiesAuthentication :param cluster_extension_ids: Contains the reference to the add-on that contains charts to deploy CRDs and operators. :type cluster_extension_ids: list[str] :param display_name: Display name for the Custom Locations location. :type display_name: str :param host_resource_id: Connected Cluster or AKS Cluster. The Custom Locations RP will perform a checkAccess API for listAdminCredentials permissions. :type host_resource_id: str :param host_type: Type of host the Custom Locations is referencing (Kubernetes, etc...). :type host_type: str or ~azure.mgmt.extendedlocation.v2021_08_15.models.HostType :param namespace: Kubernetes namespace that will be created on the specified cluster. :type namespace: str :param provisioning_state: Provisioning State for the Custom Location. :type provisioning_state: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CustomLocation, or the result of cls(response) :rtype: ~azure.mgmt.extendedlocation.v2021_08_15.models.CustomLocation :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomLocation"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) _parameters = _models.PatchableCustomLocations(identity=identity, tags=tags, authentication=authentication, cluster_extension_ids=cluster_extension_ids, display_name=display_name, host_resource_id=host_resource_id, host_type=host_type, namespace=namespace, provisioning_state=provisioning_state) api_version = "2021-08-15" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'resourceName': self._serialize.url("resource_name", resource_name, 'str', max_length=63, min_length=1, pattern=r'^[a-zA-Z0-9]$|^[a-zA-Z0-9][-_a-zA-Z0-9]{0,61}[a-zA-Z0-9]$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(_parameters, 'PatchableCustomLocations') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('CustomLocation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ExtendedLocation/customLocations/{resourceName}'} # type: ignore def list_enabled_resource_types( self, resource_group_name: str, resource_name: str, **kwargs: Any ) -> AsyncIterable["_models.EnabledResourceTypesListResult"]: """Gets the list of Enabled Resource Types. Gets the list of the Enabled Resource Types. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param resource_name: Custom Locations name. :type resource_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either EnabledResourceTypesListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.extendedlocation.v2021_08_15.models.EnabledResourceTypesListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.EnabledResourceTypesListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-08-15" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_enabled_resource_types.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'resourceName': self._serialize.url("resource_name", resource_name, 'str', max_length=63, min_length=1, pattern=r'^[a-zA-Z0-9]$|^[a-zA-Z0-9][-_a-zA-Z0-9]{0,61}[a-zA-Z0-9]$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('EnabledResourceTypesListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_enabled_resource_types.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ExtendedLocation/customLocations/{resourceName}/enabledResourceTypes'} # type: ignore
import datetime import functools import json import urllib.parse import pytz from django.conf import settings from django.contrib.staticfiles import finders from django.urls import reverse, reverse_lazy from django.db import models from django.utils.timezone import make_naive from django.utils.translation import get_language, gettext, gettext_lazy as _ from core.models import ( BigForeignKey, EventInfo, ConferenceRelated, DefaultConferenceManagerMixin, ) from core.utils import format_html_lazy from proposals.models import TalkProposal, TutorialProposal, PrimarySpeaker from sponsors.models import Sponsor MIDNIGHT_TIME = datetime.time(tzinfo=pytz.timezone('Asia/Taipei')) EVENT_DATETIME_START_END = ( datetime.datetime.combine( min(settings.EVENTS_DAY_NAMES.keys()), MIDNIGHT_TIME, ), datetime.datetime.combine( max(settings.EVENTS_DAY_NAMES.keys()) + datetime.timedelta(days=1), MIDNIGHT_TIME, ), ) class TimeManager(models.Manager): def get(self, value): """We only has one field, so let's make it available without keyword. """ return super().get(value=value) class LimitedTimeManager(TimeManager): def get_queryset(self): """Limit times to those in the current conference's time. """ qs = super().get_queryset() return qs.filter(value__range=EVENT_DATETIME_START_END) @functools.total_ordering class Time(models.Model): value = models.DateTimeField( primary_key=True, verbose_name=_('value'), ) objects = LimitedTimeManager() all_objects = TimeManager() class Meta: verbose_name = _('time') verbose_name_plural = _('times') ordering = ['value'] def __str__(self): return str(make_naive(self.value)) def __lt__(self, other): if not isinstance(other, Time): return NotImplemented if (not isinstance(self.value, datetime.datetime) or not isinstance(other.value, datetime.datetime)): return NotImplemented return self.value < other.value class Location: """All possible location combinations. The numbering prefix helps to order events by locations. We need this information when resolving events in the same time period. Rules: 1. The R3 events are put first. 2. Belt and partial belt events are next, in that order. 3. Block events in R0-2 are next, in that order. """ R3 = '1-r3' ALL = '2-all' R012 = '3-r012' R0 = '4-r0' R1 = '5-r1' R2 = '6-r2' R4 = '7-r4' OTHER = '8-oth' @classmethod def get_md_width(cls, value): return { '2-all': 4, '3-r012': 3, '4-r0': 1, '5-r1': 1, '6-r2': 1, '1-r3': 1, '7-r4': 1, '8-oth': 1, }[value] EVENT_ROOMS = {Location.R0, Location.R1, Location.R2, Location.R3, Location.R4} class BaseEvent(ConferenceRelated): """Base interface for all events in the schedule. """ LOCATION_CHOICES = [ (Location.ALL, _('All rooms')), (Location.R012, _('R1, R2, R3')), (Location.R0, _('R1')), (Location.R1, _('R2')), (Location.R2, _('R3')), (Location.R3, _('Multifunction room')), (Location.R4, _('Goodideas Studio')), (Location.OTHER, _('Other')), ] location = models.CharField( max_length=6, choices=LOCATION_CHOICES, blank=True, null=True, db_index=True, verbose_name=_('location'), ) begin_time = models.ForeignKey( to=Time, blank=True, null=True, related_name='begined_%(class)s_set', verbose_name=_('begin time'), on_delete=models.CASCADE, ) end_time = models.ForeignKey( to=Time, blank=True, null=True, related_name='ended_%(class)s_set', verbose_name=_('end time'), on_delete=models.CASCADE, ) class Meta: abstract = True class CustomEvent(BaseEvent): title = models.CharField( verbose_name=_('title'), max_length=140, ) break_event = models.BooleanField( verbose_name=_('is break event'), default=False, help_text=_( "Whether this event is displays as a break. A break can be " "visually distinguished from \"real\" conference sessions, such " "as keynotes, talks, etc.", ) ) description = models.TextField( verbose_name=_('event description'), blank=True, ) link_path = models.CharField( verbose_name=_('link path'), max_length=255, blank=True, ) class Meta: verbose_name = _('custom event') verbose_name_plural = _('custom events') def __str__(self): return self.title class KeynoteEvent(BaseEvent): speaker_name = models.CharField( verbose_name=_('speaker name'), max_length=100, ) slug = models.SlugField( verbose_name=_('slug'), help_text=format_html_lazy( _("This is used to link to the speaker's introduction on the " "Keynote page, e.g. 'liang2' will link to " "'{link}#keynote-speaker-liang2'."), link=reverse_lazy('page', kwargs={'path': 'conference/keynotes'}), ) ) is_remote = models.BooleanField( verbose_name=_('is remote'), default=False, ) class Meta: verbose_name = _('keynote event') verbose_name_plural = _('keynote events') def __str__(self): return gettext('Keynote: {speaker}'.format( speaker=self.speaker_name, )) def get_absolute_url(self): url = reverse('page', kwargs={'path': 'conference/keynotes'}) split = urllib.parse.urlsplit(url) frag = 'keynote-speaker-{slug}'.format(slug=self.slug) return urllib.parse.urlunsplit(split._replace(fragment=frag)) def get_static_data(self): path = '/'.join([ settings.CONFERENCE_DEFAULT_SLUG, 'assets/keynotes', f'{self.slug}.json', ]) keynote_info = finders.find(path) if not keynote_info: raise FileNotFoundError(path) with open(keynote_info) as f: data = json.load(f) return data def get_static_data_for_locale(self, code=None): if code is None: code = get_language() code = code.split('-', 1)[0] data = self.get_static_data() data = {k: v[code] if isinstance(v, dict) and code in v else v for k, v in data.items()} return data class JobListingsEvent(BaseEvent): sponsor = BigForeignKey( to=Sponsor, verbose_name=_("sponsor"), on_delete=models.CASCADE, ) class Meta: verbose_name = _('Job Listings') verbose_name_plural = _('Job Listings') def __str__(self): return gettext('Open Role of Sponsor: {sponsor}'.format( sponsor=self.sponsor, )) class SponsoredEvent(EventInfo, BaseEvent): host = BigForeignKey( to=settings.AUTH_USER_MODEL, verbose_name=_('host'), on_delete=models.CASCADE, ) slug = models.SlugField( allow_unicode=True, verbose_name=_('slug'), ) class Meta: verbose_name = _('sponsored event') verbose_name_plural = _('sponsored events') def get_absolute_url(self): return reverse('events_sponsored_event_detail', kwargs={ 'slug': self.slug, }) @property def speakers(self): yield PrimarySpeaker(user=self.host) class ProposedEventManager(DefaultConferenceManagerMixin, models.Manager): proposal_attr = 'proposal' conference_attr = 'proposal__conference' def get_queryset(self): """We almost always need the proposal info, so let's always JOIN it. """ return super().get_queryset().select_related(self.proposal_attr) class ProposedTalkEvent(BaseEvent): proposal = BigForeignKey( to=TalkProposal, limit_choices_to={'accepted': True}, verbose_name=_('proposal'), on_delete=models.CASCADE, unique=True, ) is_remote = models.BooleanField( verbose_name=_('is remote'), default=False, ) objects = ProposedEventManager() class Meta: verbose_name = _('talk event') verbose_name_plural = _('talk events') def __str__(self): return self.proposal.title def get_absolute_url(self): return reverse('events_talk_detail', kwargs={'pk': self.proposal.pk}) class ProposedTutorialEvent(BaseEvent): proposal = BigForeignKey( to=TutorialProposal, verbose_name=_('proposal'), on_delete=models.CASCADE, unique=True, ) registration_link = models.URLField( verbose_name=_('registration link'), blank=True, default='', ) is_remote = models.BooleanField( verbose_name=_('is remote'), default=False, ) objects = ProposedEventManager() class Meta: verbose_name = _('tutorial event') verbose_name_plural = _('tutorial events') def __str__(self): return self.proposal.title def get_absolute_url(self): return reverse('events_tutorial_detail', kwargs={ 'pk': self.proposal.pk, }) class Schedule(ConferenceRelated): html = models.TextField( verbose_name=_('HTML'), ) created_at = models.DateTimeField( verbose_name=_('created at'), auto_now_add=True, ) class Meta: verbose_name = _('Schedule') verbose_name_plural = _('Schedules') ordering = ['-created_at'] get_latest_by = 'created_at' def __str__(self): return gettext('Schedule created at {}').format(self.created_at)
# -*- coding: utf-8 -*- from io import open import os.path import jinja2 import pystache from statik.errors import * from statik.utils import * from statik import templatetags import logging logger = logging.getLogger(__name__) __all__ = [ 'StatikTemplateEngine', 'StatikTemplate', 'StatikTemplateProvider', 'StatikJinjaTemplate', 'StatikJinjaTemplateProvider', 'StatikMustacheTemplateProvider', 'StatikMustacheTemplate', 'DEFAULT_TEMPLATE_PROVIDERS', 'SAFER_TEMPLATE_PROVIDERS' ] # our default template engine providers, in order of precedence DEFAULT_TEMPLATE_PROVIDERS = [ "jinja2", "mustache" ] # template providers that we consider to be "safe" SAFER_TEMPLATE_PROVIDERS = [ "mustache" ] TEMPLATE_PROVIDER_EXTS = { "jinja2": [".html.jinja2", ".jinja2", ".html"], "mustache": [".html.mustache", ".mustache", ".html"] } def get_template_provider_class(provider): provider_classes = { "jinja2": StatikJinjaTemplateProvider, "mustache": StatikMustacheTemplateProvider } return provider_classes[provider] def template_exception_handler(fn, error_context, filename=None): """Calls the given function, attempting to catch any template-related errors, and converts the error to a Statik TemplateError instance. Returns the result returned by the function itself.""" error_message = None if filename: error_context.update(filename=filename) try: return fn() except jinja2.TemplateSyntaxError as exc: error_context.update(filename=exc.filename, line_no=exc.lineno) error_message = exc.message except jinja2.TemplateError as exc: error_message = exc.message except Exception as exc: error_message = "%s" % exc raise TemplateError(message=error_message, context=error_context) class StatikTemplateEngine(object): """Provides a common interface to different underlying template engines. At present, Jinja2 and Mustache templates are supported.""" def __init__(self, project, error_context=None): """Constructor. Args: project: The project to which this template engine relates. """ self.project = project self.error_context = error_context or StatikErrorContext() self.supported_providers = project.config.template_providers if project.safe_mode: self.supported_providers = [provider for provider in self.supported_providers \ if provider in SAFER_TEMPLATE_PROVIDERS] if len(self.supported_providers) == 0: raise NoSupportedTemplateProvidersError( SAFER_TEMPLATE_PROVIDERS if project.safe_mode else DEFAULT_TEMPLATE_PROVIDERS, project.safe_mode ) self.provider_classes = dict() self.providers_by_ext = dict() self.exts = [] for provider in self.supported_providers: self.provider_classes[provider] = get_template_provider_class(provider) # track which provider to use for which file extension for ext in TEMPLATE_PROVIDER_EXTS[provider]: if ext not in self.providers_by_ext: self.providers_by_ext[ext] = provider self.exts.append(ext) self.providers = dict() self.cached_templates = dict() # build up our expected template paths # we allow the templates/ folder to take highest precedence self.template_paths = [os.path.join(project.path, project.TEMPLATES_DIR)] # if this project has a theme associated with it if project.config.theme is not None: self.template_paths.append(os.path.join( project.path, project.THEMES_DIR, project.config.theme, project.TEMPLATES_DIR )) logger.debug( "Looking in the following path(s) (in the following order) for templates:\n%s", "\n".join(self.template_paths) ) # now make sure that all of the relevant template paths actually exist for path in self.template_paths: if not os.path.exists(path) or not os.path.isdir(path): raise MissingProjectFolderError(path) logger.debug( "Configured the following template providers: %s", ", ".join(self.supported_providers) ) def get_provider(self, name): """Allows for lazy instantiation of providers (Jinja2 templating is heavy, so only instantiate it if necessary).""" if name not in self.providers: cls = self.provider_classes[name] # instantiate the provider self.providers[name] = cls(self) return self.providers[name] def find_template_details(self, name): base_path = None name_with_ext = name found_ext = None for ext in self.exts: if name.endswith(ext): found_ext = ext if found_ext is None: base_path, found_ext = find_first_file_with_ext(self.template_paths, name, self.exts) if base_path is None or found_ext is None: raise MissingTemplateError(name=name) name_with_ext = "%s%s" % (name, found_ext) return name_with_ext, self.providers_by_ext[found_ext], base_path def load_template(self, name): """Attempts to load the relevant template from our templating system/environment. Args: name: The name of the template to load. Return: On success, a StatikTemplate object that can be used to render content. """ # hopefully speeds up loading of templates a little, especially when loaded multiple times if name in self.cached_templates: logger.debug("Using cached template: %s", name) return self.cached_templates[name] logger.debug("Attempting to find template by name: %s", name) name_with_ext, provider_name, base_path = self.find_template_details(name) full_path = None if base_path is not None: full_path = os.path.join(base_path, name_with_ext) # load it with the relevant provider template = template_exception_handler( lambda: self.get_provider(provider_name).load_template( name_with_ext, full_path=full_path ), self.error_context, filename=full_path ) # cache it for potential later use self.cached_templates[name] = template return template def create_template(self, s, provider_name=None): """Creates a template from the given string based on the specified provider or the provider with highest precedence. Args: s: The string to convert to a template. provider_name: The name of the provider to use to create the template. """ if provider_name is None: provider_name = self.supported_providers[0] return template_exception_handler( lambda: self.get_provider(provider_name).create_template(s), self.error_context ) class StatikTemplate(object): """Abstract class to act as an interface to the underlying templating engine's templates.""" def __init__(self, filename, error_context=None): self.filename = filename self.error_context = error_context or StatikErrorContext() def render(self, context): return template_exception_handler( lambda: self.do_render(context), self.error_context, filename=self.filename ) def do_render(self, context): """Renders this template using the given context data.""" raise NotImplementedError("Must be implemented in subclasses") class StatikTemplateProvider(object): """Abstract base class for all template providers.""" def __init__(self, engine, error_context=None): """Constructor.""" if not isinstance(engine, StatikTemplateEngine): raise TypeError( "Expecting a StatikTemplateEngine instance to initialise template provider" ) self.engine = engine self.error_context = error_context or StatikErrorContext() def load_template(self, name, full_path=None): """Loads the template with the given name/filename.""" raise NotImplementedError("Must be implemented in subclasses") def create_template(self, s): """Creates a template from the given string.""" raise NotImplementedError("Must be implemented in subclasses") class StatikJinjaTemplateProvider(StatikTemplateProvider): """Template provider specifically for Jinja2.""" expected_template_exts = TEMPLATE_PROVIDER_EXTS["jinja2"] def __init__(self, engine): """Constructor. Args: engine: The StatikTemplateEngine to which this template provider belongs. """ super(StatikJinjaTemplateProvider, self).__init__(engine) project = engine.project logger.debug("Instantiating Jinja2 template provider") # now load our template tags self.templatetags_path = os.path.join(project.path, project.TEMPLATETAGS_DIR) if os.path.exists(self.templatetags_path) and os.path.isdir(self.templatetags_path): # dynamically import modules; they register themselves with our template tag store import_python_modules_by_path(self.templatetags_path) extensions = [ 'statik.jinja2ext.StatikUrlExtension', 'statik.jinja2ext.StatikAssetExtension', 'statik.jinja2ext.StatikLoremIpsumExtension', 'statik.jinja2ext.StatikTemplateTagsExtension', 'jinja2.ext.do', 'jinja2.ext.loopcontrols', 'jinja2.ext.with_', 'jinja2.ext.autoescape', ] jinja2_config = project.config.vars.get('jinja2', dict()) extensions.extend(jinja2_config.get('extensions', list())) self.env = jinja2.Environment( loader=jinja2.FileSystemLoader( engine.template_paths, encoding=project.config.encoding ), extensions=extensions ) if templatetags.store.filters: logger.debug( "Loaded custom template tag filters: %s", ", ".join(templatetags.store.filters) ) self.env.filters.update(templatetags.store.filters) # configure views for the Jinja2 templating environment self.env.statik_views = project.views self.env.statik_base_url = project.config.base_path self.env.statik_base_asset_url = add_url_path_component( project.config.base_path, project.config.assets_dest_path ) def reattach_project_views(self): if len(self.env.statik_views) == 0: self.env.statik_views = self.engine.project.views def load_template(self, name, full_path=None): logger.debug("Attempting to load Jinja2 template: %s", name) return StatikJinjaTemplate(self, self.env.get_template(name)) def create_template(self, s): return StatikJinjaTemplate(self, self.env.from_string(s)) class StatikJinjaTemplate(StatikTemplate): """Wraps a simple Jinja2 template.""" def __init__(self, provider, template, **kwargs): """Constructor. Args: provider: The provider that created this template. template: The Jinja2 template to wrap. """ super(StatikJinjaTemplate, self).__init__(template.filename, **kwargs) self.provider = provider self.template = template def __repr__(self): return "StatikJinjaTemplate(template=%s)" % self.template def __str__(self): return repr(self) def do_render(self, context): # make sure we lazily reattach our provider's environment to the project's views self.provider.reattach_project_views() return self.template.render(**context) class StatikMustachePartialGetter(object): def __init__(self, provider): self.provider = provider self.cache = dict() def get(self, partial_name): if partial_name in self.cache: return self.cache[partial_name] logger.debug("Attempting to load Mustache partial: %s", partial_name) content = self.provider.load_template_content(partial_name) self.cache[partial_name] = content return content class StatikMustacheTemplateProvider(StatikTemplateProvider): """Template provider specifically for Mustache templates.""" expected_template_exts = TEMPLATE_PROVIDER_EXTS["mustache"] def __init__(self, engine, **kwargs): super(StatikMustacheTemplateProvider, self).__init__(engine, **kwargs) logger.debug("Instantiating Mustache template provider") self.renderer = pystache.Renderer(partials=StatikMustachePartialGetter(self)) def load_template_content(self, name, full_path=None): logger.debug("Attempting to load Mustache template: %s", name) if full_path is None: base_path, ext = find_first_file_with_ext( self.engine.template_paths, name, self.expected_template_exts ) if base_path is None or ext is None: raise MissingTemplateError( name=name, kind="Mustache", context=self.error_context ) full_path = os.path.join(base_path, "%s%s" % (name, ext)) if not os.path.exists(full_path) or not os.path.isfile(full_path): raise MissingTemplateError( path=full_path, kind="Mustache", context=self.error_context ) # read the template's content from the file with open(full_path, encoding=self.engine.project.config.encoding) as f: template_content = f.read() return template_content def load_template(self, name, full_path=None): return self.create_template( self.load_template_content(name, full_path=full_path), filename=full_path ) def create_template(self, s, filename=None): return StatikMustacheTemplate( pystache.parse(s), self.renderer, filename=filename ) class StatikMustacheTemplate(StatikTemplate): """Wraps a simple Mustache template.""" def __init__(self, parsed_template, renderer, filename=None, error_context=None): super(StatikMustacheTemplate, self).__init__( filename, error_context=error_context ) self.parsed_template = parsed_template self.renderer = renderer def __repr__(self): return "StatikMustacheTemplate(parsed_template=%s)" % self.parsed_template def __str__(self): return repr(self) def do_render(self, context): return self.renderer.render(self.parsed_template, context)
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyspark import keyword_only, since from pyspark.ml.util import * from pyspark.ml.wrapper import JavaEstimator, JavaModel from pyspark.ml.param.shared import * __all__ = ["FPGrowth", "FPGrowthModel"] class HasMinSupport(Params): """ Mixin for param minSupport. """ minSupport = Param( Params._dummy(), "minSupport", "Minimal support level of the frequent pattern. [0.0, 1.0]. " + "Any pattern that appears more than (minSupport * size-of-the-dataset) " + "times will be output in the frequent itemsets.", typeConverter=TypeConverters.toFloat) def setMinSupport(self, value): """ Sets the value of :py:attr:`minSupport`. """ return self._set(minSupport=value) def getMinSupport(self): """ Gets the value of minSupport or its default value. """ return self.getOrDefault(self.minSupport) class HasNumPartitions(Params): """ Mixin for param numPartitions: Number of partitions (at least 1) used by parallel FP-growth. """ numPartitions = Param( Params._dummy(), "numPartitions", "Number of partitions (at least 1) used by parallel FP-growth. " + "By default the param is not set, " + "and partition number of the input dataset is used.", typeConverter=TypeConverters.toInt) def setNumPartitions(self, value): """ Sets the value of :py:attr:`numPartitions`. """ return self._set(numPartitions=value) def getNumPartitions(self): """ Gets the value of :py:attr:`numPartitions` or its default value. """ return self.getOrDefault(self.numPartitions) class HasMinConfidence(Params): """ Mixin for param minConfidence. """ minConfidence = Param( Params._dummy(), "minConfidence", "Minimal confidence for generating Association Rule. [0.0, 1.0]. " + "minConfidence will not affect the mining for frequent itemsets, " + "but will affect the association rules generation.", typeConverter=TypeConverters.toFloat) def setMinConfidence(self, value): """ Sets the value of :py:attr:`minConfidence`. """ return self._set(minConfidence=value) def getMinConfidence(self): """ Gets the value of minConfidence or its default value. """ return self.getOrDefault(self.minConfidence) class HasItemsCol(Params): """ Mixin for param itemsCol: items column name. """ itemsCol = Param(Params._dummy(), "itemsCol", "items column name", typeConverter=TypeConverters.toString) def setItemsCol(self, value): """ Sets the value of :py:attr:`itemsCol`. """ return self._set(itemsCol=value) def getItemsCol(self): """ Gets the value of itemsCol or its default value. """ return self.getOrDefault(self.itemsCol) class FPGrowthModel(JavaModel, JavaMLWritable, JavaMLReadable): """ .. note:: Experimental Model fitted by FPGrowth. .. versionadded:: 2.2.0 """ @property @since("2.2.0") def freqItemsets(self): """ DataFrame with two columns: * `items` - Itemset of the same type as the input column. * `freq` - Frequency of the itemset (`LongType`). """ return self._call_java("freqItemsets") @property @since("2.2.0") def associationRules(self): """ Data with three columns: * `antecedent` - Array of the same type as the input column. * `consequent` - Array of the same type as the input column. * `confidence` - Confidence for the rule (`DoubleType`). """ return self._call_java("associationRules") class FPGrowth(JavaEstimator, HasItemsCol, HasPredictionCol, HasMinSupport, HasNumPartitions, HasMinConfidence, JavaMLWritable, JavaMLReadable): """ .. note:: Experimental A parallel FP-growth algorithm to mine frequent itemsets. The algorithm is described in Li et al., PFP: Parallel FP-Growth for Query Recommendation [LI2008]_. PFP distributes computation in such a way that each worker executes an independent group of mining tasks. The FP-Growth algorithm is described in Han et al., Mining frequent patterns without candidate generation [HAN2000]_ .. [LI2008] http://dx.doi.org/10.1145/1454008.1454027 .. [HAN2000] http://dx.doi.org/10.1145/335191.335372 .. note:: null values in the feature column are ignored during fit(). .. note:: Internally `transform` `collects` and `broadcasts` association rules. >>> from pyspark.sql.functions import split >>> data = (spark.read ... .text("data/mllib/sample_fpgrowth.txt") ... .select(split("value", "\s+").alias("items"))) >>> data.show(truncate=False) +------------------------+ |items | +------------------------+ |[r, z, h, k, p] | |[z, y, x, w, v, u, t, s]| |[s, x, o, n, r] | |[x, z, y, m, t, s, q, e]| |[z] | |[x, z, y, r, q, t, p] | +------------------------+ >>> fp = FPGrowth(minSupport=0.2, minConfidence=0.7) >>> fpm = fp.fit(data) >>> fpm.freqItemsets.show(5) +---------+----+ | items|freq| +---------+----+ | [s]| 3| | [s, x]| 3| |[s, x, z]| 2| | [s, z]| 2| | [r]| 3| +---------+----+ only showing top 5 rows >>> fpm.associationRules.show(5) +----------+----------+----------+ |antecedent|consequent|confidence| +----------+----------+----------+ | [t, s]| [y]| 1.0| | [t, s]| [x]| 1.0| | [t, s]| [z]| 1.0| | [p]| [r]| 1.0| | [p]| [z]| 1.0| +----------+----------+----------+ only showing top 5 rows >>> new_data = spark.createDataFrame([(["t", "s"], )], ["items"]) >>> sorted(fpm.transform(new_data).first().prediction) ['x', 'y', 'z'] .. versionadded:: 2.2.0 """ @keyword_only def __init__(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", predictionCol="prediction", numPartitions=None): """ __init__(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", \ predictionCol="prediction", numPartitions=None) """ super(FPGrowth, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.fpm.FPGrowth", self.uid) self._setDefault(minSupport=0.3, minConfidence=0.8, itemsCol="items", predictionCol="prediction") kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("2.2.0") def setParams(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", predictionCol="prediction", numPartitions=None): """ setParams(self, minSupport=0.3, minConfidence=0.8, itemsCol="items", \ predictionCol="prediction", numPartitions=None) """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model): return FPGrowthModel(java_model)
""" Geographically weighted regression """ import numpy as np from .gwr.base.gwr import GWR as PySAL_GWR from .gwr.base.sel_bw import Sel_BW import json from crankshaft.analysis_data_provider import AnalysisDataProvider import plpy class GWR: def __init__(self, data_provider=None): if data_provider: self.data_provider = data_provider else: self.data_provider = AnalysisDataProvider() def gwr(self, subquery, dep_var, ind_vars, bw=None, fixed=False, kernel='bisquare', geom_col='the_geom', id_col='cartodb_id'): """ subquery: 'select * from demographics' dep_var: 'pctbachelor' ind_vars: ['intercept', 'pctpov', 'pctrural', 'pctblack'] bw: value of bandwidth, if None then select optimal fixed: False (kNN) or True ('distance') kernel: 'bisquare' (default), or 'exponential', 'gaussian' """ params = {'geom_col': geom_col, 'id_col': id_col, 'subquery': subquery, 'dep_var': dep_var, 'ind_vars': ind_vars} # get data from data provider query_result = self.data_provider.get_gwr(params) # exit if data to analyze is empty if len(query_result) == 0: plpy.error('No data passed to analysis or independent variables ' 'are all null-valued') # unique ids and variable names list rowid = np.array(query_result[0]['rowid'], dtype=np.int) # x, y are centroids of input geometries x = np.array(query_result[0]['x'], dtype=np.float) y = np.array(query_result[0]['y'], dtype=np.float) coords = list(zip(x, y)) # extract dependent variable Y = np.array(query_result[0]['dep_var'], dtype=np.float).reshape((-1, 1)) n = Y.shape[0] k = len(ind_vars) X = np.zeros((n, k)) # extract query result for attr in range(0, k): attr_name = 'attr' + str(attr + 1) X[:, attr] = np.array( query_result[0][attr_name], dtype=np.float).flatten() # add intercept variable name ind_vars.insert(0, 'intercept') # calculate bandwidth if none is supplied if bw is None: bw = Sel_BW(coords, Y, X, fixed=fixed, kernel=kernel).search() model = PySAL_GWR(coords, Y, X, bw, fixed=fixed, kernel=kernel).fit() # containers for outputs coeffs = [] stand_errs = [] t_vals = [] filtered_t_vals = [] # extracted model information c_alpha = model.adj_alpha filtered_t = model.filter_tvals(c_alpha[1]) predicted = model.predy.flatten() residuals = model.resid_response r_squared = model.localR2.flatten() bw = np.repeat(float(bw), n) # create lists of json objs for model outputs for idx in range(n): coeffs.append(json.dumps({var: model.params[idx, k] for k, var in enumerate(ind_vars)})) stand_errs.append(json.dumps({var: model.bse[idx, k] for k, var in enumerate(ind_vars)})) t_vals.append(json.dumps({var: model.tvalues[idx, k] for k, var in enumerate(ind_vars)})) filtered_t_vals.append( json.dumps({var: filtered_t[idx, k] for k, var in enumerate(ind_vars)})) return list(zip(coeffs, stand_errs, t_vals, filtered_t_vals, predicted, residuals, r_squared, bw, rowid)) def gwr_predict(self, subquery, dep_var, ind_vars, bw=None, fixed=False, kernel='bisquare', geom_col='the_geom', id_col='cartodb_id'): """ subquery: 'select * from demographics' dep_var: 'pctbachelor' ind_vars: ['intercept', 'pctpov', 'pctrural', 'pctblack'] bw: value of bandwidth, if None then select optimal fixed: False (kNN) or True ('distance') kernel: 'bisquare' (default), or 'exponential', 'gaussian' """ params = {'geom_col': geom_col, 'id_col': id_col, 'subquery': subquery, 'dep_var': dep_var, 'ind_vars': ind_vars} # get data from data provider query_result = self.data_provider.get_gwr_predict(params) # exit if data to analyze is empty if len(query_result) == 0: plpy.error('No data passed to analysis or independent variables ' 'are all null-valued') # unique ids and variable names list rowid = np.array(query_result[0]['rowid'], dtype=np.int) x = np.array(query_result[0]['x'], dtype=np.float) y = np.array(query_result[0]['y'], dtype=np.float) coords = np.array(list(zip(x, y)), dtype=np.float) # extract dependent variable Y = np.array(query_result[0]['dep_var']).reshape((-1, 1)) n = Y.shape[0] k = len(ind_vars) X = np.empty((n, k), dtype=np.float) for attr in range(0, k): attr_name = 'attr' + str(attr + 1) X[:, attr] = np.array( query_result[0][attr_name], dtype=np.float).flatten() # add intercept variable name ind_vars.insert(0, 'intercept') # split data into "training" and "test" for predictions # create index to split based on null y values train = np.where(Y != np.array(None))[0] test = np.where(Y == np.array(None))[0] # report error if there is no data to predict if len(test) < 1: plpy.error('No rows flagged for prediction: verify that rows ' 'denoting prediction locations have a dependent ' 'variable value of `null`') # split dependent variable (only need training which is non-Null's) Y_train = Y[train].reshape((-1, 1)) Y_train = Y_train.astype(np.float) # split coords coords_train = coords[train] coords_test = coords[test] # split explanatory variables X_train = X[train] X_test = X[test] # calculate bandwidth if none is supplied if bw is None: bw = Sel_BW(coords_train, Y_train, X_train, fixed=fixed, kernel=kernel).search() # estimate model and predict at new locations model = PySAL_GWR(coords_train, Y_train, X_train, bw, fixed=fixed, kernel=kernel).predict(coords_test, X_test) coeffs = [] stand_errs = [] t_vals = [] r_squared = model.localR2.flatten() predicted = model.predy.flatten() m = len(model.predy) for idx in range(m): coeffs.append(json.dumps({var: model.params[idx, k] for k, var in enumerate(ind_vars)})) stand_errs.append(json.dumps({var: model.bse[idx, k] for k, var in enumerate(ind_vars)})) t_vals.append(json.dumps({var: model.tvalues[idx, k] for k, var in enumerate(ind_vars)})) return list(zip(coeffs, stand_errs, t_vals, r_squared, predicted, rowid[test]))
#!/usr/bin/env python # -*- coding: utf-8 -*- """ functions for mathematical calculations: * transfer matrix for quad, drift, undulator, chicane, etc. .. Tong Zhang .. Aug. 11, 2015 .. Revised: 2016-05-11 11:12:20 AM CST .. 1: expand 2 x 2 transport matrice to 6 x 6 """ import numpy as np from functools import reduce def funTransQuadF(k, s): """ Focusing quad in X, defocusing in Y :param k: k1, in [T/m] :param s: width, in [m] :return: 2x2 numpy array """ sqrtk = np.sqrt(complex(k)) a = np.cos(sqrtk * s) b = np.sin(sqrtk * s) / sqrtk c = -sqrtk * np.sin(sqrtk * s) d = np.cos(sqrtk * s) return np.matrix([[a.real, b.real], [c.real, d.real]], dtype=np.double) def funTransQuadD(k, s): """ Defocusing quad in X, focusing in Y :param k: k1, in [T/m] :param s: width, in [m] :return: 2x2 numpy array """ sqrtk = np.sqrt(complex(k)) a = np.cosh(sqrtk * s) b = np.sinh(sqrtk * s) / sqrtk c = sqrtk * np.sinh(sqrtk * s) d = np.cosh(sqrtk * s) return np.matrix([[a.real, b.real], [c.real, d.real]], dtype=np.double) def funTransDrift(s): """ Drift space :param s: drift length, in [m] :return: 2x2 numpy array """ return np.matrix([[1, s], [0, 1]], dtype=np.double) def funTransUnduV(k, s): """ Planar undulator transport matrix in vertical direction :param k: equivalent k1, in [T/m], i.e. natural focusing :param s: horizontal width, in [m] :return: 2x2 numpy array """ m = funTransQuadF(k, s) return m def funTransUnduH(s): """ Planar undulator transport matrix in horizontal direction :param s: horizontal width, in [m] :return: 2x2 numpy array """ return np.matrix([[1, s], [0, 1]], dtype=np.double) def funTransEdgeX(theta, rho): """ Fringe matrix in X :param theta: fringe angle, in [rad] :param rho: bend radius, in [m] :return: 2x2 numpy array """ return np.matrix([[1, 0], [np.tan(theta) / rho, 1]], dtype=np.double) def funTransEdgeY(theta, rho): """ Fringe matrix in Y :param theta: fringe angle, in [rad] :param rho: bend radius, in [m] :return: 2x2 numpy array """ return np.matrix([[1, 0], [-np.tan(theta) / rho, 1]], dtype=np.double) def funTransSectX(theta, rho): """ Sector matrix in X :param theta: bend angle, in [rad] :param rho: bend radius, in [m] :return: 2x2 numpy array """ return np.matrix([[np.cos(theta), rho * np.sin(theta)], [-np.sin(theta) / rho, np.cos(theta)]], dtype=np.double) def funTransSectY(theta, rho): """ Sector matrix in Y :param theta: bend angle, in [rad] :param rho: bend radius, in [m] :return: 2x2 numpy array """ return np.matrix([[1, rho * theta], [0, 1]], dtype=np.double) def funTransChica(imagl, idril, ibfield, gamma0, xoy='x'): """ Chicane matrix, composed of four rbends, seperated by drifts :param imagl: rbend width, in [m] :param idril: drift length between two adjacent rbends, in [m] :param ibfield: rbend magnetic strength, in [T] :param gamma0: electron energy, gamma :param xoy: ``'x'`` or ``'y'``, matrix in X or Y direction, ``'x'`` by default :return: 2x2 numpy array """ m0 = 9.10938215e-31 e0 = 1.602176487e-19 c0 = 299792458 rho = np.sqrt(gamma0 ** 2 - 1) * m0 * c0 / ibfield / e0 theta = np.arcsin(imagl / rho) ld = idril mx = reduce(np.dot, [funTransDrift(idril), funTransSectX(theta, rho), funTransEdgeX(theta, rho), funTransDrift(ld), funTransEdgeX(-theta, -rho), funTransSectX(-theta, -rho), funTransDrift(ld), funTransSectX(-theta, -rho), funTransEdgeX(-theta, -rho), funTransDrift(ld), funTransEdgeX(theta, rho), funTransSectX(theta, rho), funTransDrift(idril)]) my = reduce(np.dot, [funTransDrift(idril), funTransSectY(theta, rho), funTransEdgeY(theta, rho), funTransDrift(ld), funTransEdgeY(-theta, -rho), funTransSectY(-theta, -rho), funTransDrift(ld), funTransSectY(-theta, -rho), funTransEdgeY(-theta, -rho), funTransDrift(ld), funTransEdgeY(theta, rho), funTransSectY(theta, rho), funTransDrift(idril)]) if xoy == 'x': m = mx else: m = my return m # 6 x 6 transport matrice def transDrift(length=0.0, gamma=None): """ Transport matrix of drift :param length: drift length in [m] :param gamma: electron energy, gamma value :return: 6x6 numpy array """ m = np.eye(6, 6, dtype=np.float64) if length == 0.0: print("warning: 'length' should be a positive float number.") elif gamma is not None and gamma != 0.0: m[0, 1] = m[2, 3] = length m[4, 5] = float(length) / gamma / gamma else: print("warning: 'gamma' should be a positive float number.") return m def transQuad(length=0.0, k1=0.0, gamma=None): """ Transport matrix of quadrupole :param length: quad width in [m] :param k1: quad k1 strength in [T/m] :param gamma: electron energy, gamma value :return: 6x6 numpy array """ m = np.eye(6, 6, dtype=np.float64) if length == 0.0: print("warning: 'length' should be a positive float number.") elif gamma is not None and gamma != 0.0: if k1 == 0: print("warning: 'k1' should be a positive float number.") m[0, 1] = m[2, 3] = 1.0 m[4, 5] = float(length) / gamma / gamma else: sqrtk = np.sqrt(complex(k1)) sqrtkl = sqrtk * length m[0, 0] = m[1, 1] = (np.cos(sqrtkl)).real m[0, 1] = (np.sin(sqrtkl) / sqrtk).real m[1, 0] = (-np.sin(sqrtkl) * sqrtk).real m[2, 2] = m[3, 3] = (np.cosh(sqrtkl)).real m[2, 3] = (np.sinh(sqrtkl) / sqrtk).real m[3, 2] = (-np.sinh(sqrtkl) * sqrtk).real m[4, 5] = float(length) / gamma / gamma else: print("warning: 'gamma' should be a positive float number.") return m def transSect(theta=None, rho=None, gamma=None): """ Transport matrix of sector dipole :param theta: bending angle in [RAD] :param rho: bending radius in [m] :param gamma: electron energy, gamma value :return: 6x6 numpy array """ m = np.eye(6, 6, dtype=np.float64) if None in (theta, rho, gamma): print("warning: 'theta', 'rho', 'gamma' should be positive float numbers.") return m else: rc = rho * np.cos(theta) rs = rho * np.sin(theta) m[0, 0] = m[1, 1] = rc / rho m[0, 1] = rs m[0, 5] = rho - rc m[1, 0] = -np.sin(theta) / rho m[1, 5] = rs / rho m[2, 3] = rho * np.sin(theta) m[4, 0] = m[1, 5] m[4, 1] = m[0, 5] m[4, 5] = rho * np.sin(theta) / gamma / gamma - rho * theta + rs return m def transRbend(theta=None, rho=None, gamma=None, incsym=-1): """ Transport matrix of rectangle dipole :param theta: bending angle in [RAD] :param incsym: incident symmetry, -1 by default, available options: * -1: left half symmetry, * 0: full symmetry, * 1: right half symmetry :param rho: bending radius in [m] :param gamma: electron energy, gamma value :return: 6x6 numpy array """ if None in (theta, rho, gamma): print("warning: 'theta', 'rho', 'gamma' should be positive float numbers.") m = np.eye(6, 6, dtype=np.float64) return m else: beta12d = {'-1': (0, theta), '0': (theta * 0.5, theta * 0.5), '1': (theta, 0)} (beta1, beta2) = beta12d[str(incsym)] mf1 = transFringe(beta=beta1, rho=rho) mf2 = transFringe(beta=beta2, rho=rho) ms = transSect(theta=theta, rho=rho, gamma=gamma) m = reduce(np.dot, [mf1, ms, mf2]) return m def transFringe(beta=None, rho=None): """ Transport matrix of fringe field :param beta: angle of rotation of pole-face in [RAD] :param rho: bending radius in [m] :return: 6x6 numpy array """ m = np.eye(6, 6, dtype=np.float64) if None in (beta, rho): print("warning: 'theta', 'rho' should be positive float numbers.") return m else: m[1, 0] = np.tan(beta) / rho m[3, 2] = -np.tan(beta) / rho return m def transChicane(bend_length=None, bend_field=None, drift_length=None, gamma=None): """ Transport matrix of chicane composed of four rbends and three drifts between them :param bend_length: rbend width in [m] :param bend_field: rbend magnetic field in [T] :param drift_length: drift length, list or tuple of three elements, in [m] single float number stands for same length for three drifts :param gamma: electron energy, gamma value :return: 6x6 numpy array """ if None in (bend_length, bend_field, drift_length, gamma): print("warning: 'bend_length', 'bend_field', 'drift_length', 'gamma' should be positive float numbers.") m = np.eye(6, 6, dtype=np.float64) return m else: if isinstance(drift_length, tuple) or isinstance(drift_length, list): if len(drift_length) == 1: dflist = drift_length * 3 elif len(drift_length) == 2: dflist = [] dflist.extend(drift_length) dflist.append(drift_length[0]) elif len(drift_length) >= 3: dflist = drift_length[0:3] if dflist[0] != dflist[-1]: print("warning: chicane is not symmetric.") else: print("drift_length is not a valid list or tuple.") else: dflist = [] dflist.extend([drift_length, drift_length, drift_length]) m0 = 9.10938215e-31 e0 = 1.602176487e-19 c0 = 299792458.0 rho = np.sqrt(gamma ** 2 - 1) * m0 * c0 / bend_field / e0 theta = np.arcsin(bend_length / rho) m_rb_1 = transRbend(theta, rho, gamma, -1) m_rb_2 = transRbend(-theta, -rho, gamma, 1) m_rb_3 = transRbend(-theta, -rho, gamma, -1) m_rb_4 = transRbend(theta, rho, gamma, 1) m_df_12 = transDrift(dflist[0], gamma) m_df_23 = transDrift(dflist[1], gamma) m_df_34 = transDrift(dflist[2], gamma) m = reduce(np.dot, [m_rb_1, m_df_12, m_rb_2, m_df_23, m_rb_3, m_df_34, m_rb_4]) return m class Chicane(object): """ Chicane class transport configuration of a chicane, comprising of four dipole with three drift sections .. warning:: it's better to issue ``getMatrix()`` before ``getR()``, ``getAngle()`` :param bend_length: bend length, [m] :param bend_field: bend field, [T] :param drift_length: drift length [m], list: [1,2,1], [1], [1,2], 1 :param gamma: electron energy, gamma value """ def __init__(self, bend_length=None, bend_field=None, drift_length=None, gamma=None): self.transM = np.eye(6, 6, dtype=np.float64) self.setParams(bend_length, bend_field, drift_length, gamma) self.mflag = True # if calculate m or return eye matrix self.refresh = False # refresh or not def setParams(self, bend_length, bend_field, drift_length, gamma): """ set chicane parameters :param bend_length: bend length, [m] :param bend_field: bend field, [T] :param drift_length: drift length, [m], list :param gamma: electron energy, gamma :return: None """ if None in (bend_length, bend_field, drift_length, gamma): print("warning: 'bend_length', 'bend_field', 'drift_length', 'gamma' should be positive float numbers.") self.mflag = False else: self._setDriftList(drift_length) self.gamma = gamma self.bend_length = bend_length self.bend_field = bend_field def _setDriftList(self, drift_length): """ set drift length list of three elements :param drift_length: input drift_length in [m], single float, or list/tuple of float numbers """ if isinstance(drift_length, tuple) or isinstance(drift_length, list): if len(drift_length) == 1: self.dflist = drift_length * 3 elif len(drift_length) == 2: self.dflist = [] self.dflist.extend(drift_length) self.dflist.append(drift_length[0]) elif len(drift_length) >= 3: self.dflist = drift_length[0:3] if self.dflist[0] != self.dflist[-1]: print("warning: chicane is not symmetric.") else: print("drift_length is not a valid list or tuple.") self.mflag = False else: self.dflist = [] self.dflist.extend([drift_length, drift_length, drift_length]) def getMatrix(self): """ get transport matrix with ``mflag`` flag, if ``mflag`` is True, return calculated matrix, else return unity matrix :return: transport matrix """ if self.mflag: m0 = 9.10938215e-31 e0 = 1.602176487e-19 c0 = 299792458.0 rho = np.sqrt(self.gamma ** 2 - 1) * m0 * c0 / self.bend_field / e0 theta = np.arcsin(self.bend_length / rho) self.bangle = theta m_rb_1 = transRbend(theta, rho, self.gamma, -1) m_rb_2 = transRbend(-theta, -rho, self.gamma, 1) m_rb_3 = transRbend(-theta, -rho, self.gamma, -1) m_rb_4 = transRbend(theta, rho, self.gamma, 1) m_df_12 = transDrift(self.dflist[0], self.gamma) m_df_23 = transDrift(self.dflist[1], self.gamma) m_df_34 = transDrift(self.dflist[2], self.gamma) self.transM = reduce(np.dot, [m_rb_1, m_df_12, m_rb_2, m_df_23, m_rb_3, m_df_34, m_rb_4]) return self.transM def getAngle(self, mode='deg'): """ return bend angle :param mode: 'deg' or 'rad' :return: deflecting angle in RAD """ if self.refresh is True: self.getMatrix() try: if self.mflag: if mode == 'deg': return self.bangle / np.pi * 180 else: # rad return self.bangle else: return 0 except AttributeError: print("Please execute getMatrix() first.") def getR(self, i=5, j=6): """ return transport matrix element, indexed by i, j, be default, return dispersion value, i.e. getR(5,6) in [m] :param i: row index, with initial index of 1 :param j: col indx, with initial index of 1 :return: transport matrix element """ if self.refresh is True: self.getMatrix() return self.transM[i - 1, j - 1] def setBendLength(self, x): """ set bend length :param x: new bend length to be assigned, [m] :return: None """ if x != self.bend_length: self.bend_length = x self.refresh = True def getBendLength(self): """ :return: bend length """ return self.bend_length def setBendField(self, x): """ set bend magnetic field :param x: new bend field to be assigned, [T] :return: None """ if x != self.bend_field: self.bend_field = x self.refresh = True def getBendField(self): """ :return: bend magnetic field """ return self.bend_field def setDriftLength(self, x): """ set lengths for drift sections :param x: single double or list :return: None :Example: >>> import beamline >>> chi = beamline.mathutils.Chicane(bend_length=1,bend_field=0.5,drift_length=1,gamma=1000) >>> chi.getMatrix() >>> r56 = chi.getR(5,6) # r56 = -0.432 >>> chi.setDriftLength([2,4,2]) >>> # same effect (to R56) as ``chi.setDriftLength([2,4])`` or ``chi.setDriftLength([2])`` >>> # or ``chi.setDriftLength(2)`` >>> r56 = chi.getR(5,6) # r56 = -0.620 """ if x != self.getDriftLength(): self._setDriftList(x) self.refresh = True def getDriftLength(self): """ :return: drift lengths list """ return self.dflist def setGamma(self, x): """ set electron energy, gamma value :param x: new energy, gamma value :return: None """ if x != self.gamma: self.gamma = x self.refresh = True def getGamma(self): """ :return: gamma value """ return self.gamma def test(): k = -10 s = 1 theta = 2 rho = 9 imagl = 0.5 idril = 1.0 ibfield = 0.8 gamma0 = 500 xoy = 'y' f1 = funTransQuadF(k, s) f2 = funTransQuadD(k, s) f3 = funTransUnduV(k, s) f4 = funTransChica(imagl, idril, ibfield, gamma0, xoy) print(f1) print(f2) print(f3) print("-" * 40) print(f1.dot(f2).dot(f3)) print(reduce(np.dot, [f1, f2, f3])) print("-" * 40) print(f4) print("-" * 40) print(funTransQuadF(k, s) - funTransQuadD(-k, s)) if __name__ == "__main__": test()
#!/usr/bin/env python3 ''' Source code metrics for C programs Copyright 2013-2018 RIKEN Copyright 2018-2020 Chiba Institute of Technology Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' __author__ = 'Masatomo Hashimoto <[email protected]>' import pathsetup import dp import sparql from factutils.entity import SourceCodeEntity from virtuoso import VIRTUOSO_PW, VIRTUOSO_PORT from sourcecode_metrics_for_survey_base import get_lver, get_proj_list, ftbl_list_to_orange, MetricsBase from metrics_queries_cpp import QUERY_TBL FOP_TBL = { # number of FP operations (for SPARC64 VIIIfx) 'nint' : 2, 'jnint' : 2, 'cos' : 29, 'dcos' : 31, 'exp' : 19, 'dexp' : 23, 'log' : 19, 'alog' : 19, 'dlog' : 23, 'mod' : 8, 'amod' : 8, 'dmod' : 8, 'sign' : 2, 'dsign' : 2, 'sin' : 29, 'dsin' : 31, 'sqrt' : 11, 'dsqrt' : 21, 'tan' : 58, 'dtan' : 64, } FOP_TBL_DBL_EXTRA = { 'cos' : 2, 'exp' : 4, 'log' : 4, 'sin' : 2, 'sqrt' : 10, 'tan' : 6, } FOP_TBL_VA = { 'max' : lambda n: n-1, 'amax1' : lambda n: n-1, 'dmax1' : lambda n: n-1, 'min' : lambda n: n-1, 'amin1' : lambda n: n-1, 'dmin1' : lambda n: n-1, } LINES_OF_CODE = 'lines_of_code' MAX_LOOP_DEPTH = 'max_loop_depth' MAX_FUSIBLE_LOOPS = 'max_fusible_loops' MAX_MERGEABLE_ARRAYS = 'max_mergeable_arrays' MAX_ARRAY_RANK = 'max_array_rank' MAX_LOOP_LEVEL = 'max_loop_level' N_BRANCHES = 'branches' N_STMTS = 'stmts' N_FP_OPS = 'fp_ops' N_OPS = 'ops' N_CALLS = 'calls' N_A_REFS = ['array_refs0','array_refs1','array_refs2'] N_IND_A_REFS = ['indirect_array_refs0','indirect_array_refs1','indirect_array_refs2'] N_DBL_A_REFS = ['dbl_array_refs0','dbl_array_refs1','dbl_array_refs2'] BF = ['bf0','bf1','bf2'] META_KEYS = ['proj', 'ver', 'path', 'sub', 'lnum', 'digest'] abbrv_tbl = { LINES_OF_CODE : 'LOC', MAX_LOOP_DEPTH : 'LpD', MAX_FUSIBLE_LOOPS : 'FLp', MAX_MERGEABLE_ARRAYS : 'MA', MAX_ARRAY_RANK : 'ARk', MAX_LOOP_LEVEL : 'LLv', N_BRANCHES : 'Br', N_STMTS : 'St', N_FP_OPS : 'FOp', N_OPS : 'Op', N_CALLS : 'Ca', N_A_REFS[0] : 'AR0', N_IND_A_REFS[0] : 'IAR0', N_DBL_A_REFS[0] : 'DAR0', N_A_REFS[1] : 'AR1', N_IND_A_REFS[1] : 'IAR1', N_DBL_A_REFS[1] : 'DAR1', N_A_REFS[2] : 'AR2', N_IND_A_REFS[2] : 'IAR2', N_DBL_A_REFS[2] : 'DAR2', BF[0] : 'BF0', BF[1] : 'BF1', BF[2] : 'BF2', } ### def count_aas(aas): c = 0 for aa in aas: if aa.startswith(','): c += 2 else: c += 1 return c def get_nfops(name, nargs, double=False): nfop = 1 try: nfop = FOP_TBL_VA[name](nargs) except KeyError: nfop = FOP_TBL.get(name, 1) if double: nfop += FOP_TBL_DBL_EXTRA.get(name, 0) prec = 's' if double: prec = 'd' dp.debug('%s{%s}(%d) --> %d' % (name, prec, nargs, nfop)) return nfop def make_feature_tbl(): v = { 'meta' : {'proj' : '', 'ver' : '', 'path' : '', 'sub' : '', 'lnum' : '', }, BF[0] : 0.0, BF[1] : 0.0, BF[2] : 0.0, N_FP_OPS : 0, N_OPS : 0, N_A_REFS[0] : 0, N_IND_A_REFS[0] : 0, N_DBL_A_REFS[0] : 0, N_A_REFS[1] : 0, N_IND_A_REFS[1] : 0, N_DBL_A_REFS[1] : 0, N_A_REFS[2] : 0, N_IND_A_REFS[2] : 0, N_DBL_A_REFS[2] : 0, N_BRANCHES : 0, N_STMTS : 0, N_CALLS : 0, LINES_OF_CODE : 0, MAX_LOOP_LEVEL : 0, MAX_ARRAY_RANK : 0, MAX_LOOP_DEPTH : 0, MAX_FUSIBLE_LOOPS : 0, MAX_MERGEABLE_ARRAYS : 0, } return v def ftbl_to_string(ftbl): meta_str = '%(proj)s:%(ver)s:%(path)s:%(sub)s:%(lnum)s' % ftbl['meta'] cpy = ftbl.copy() cpy['meta'] = meta_str ks = ftbl.keys() ks.remove('meta') fmt = '%(meta)s (' fmt += ','.join(['%s:%%(%s)s' % (abbrv_tbl[k], k) for k in ks]) fmt += ')' s = fmt % cpy return s class Metrics(MetricsBase): def __init__(self, proj_id, method='odbc', pw=VIRTUOSO_PW, port=VIRTUOSO_PORT): MetricsBase.__init__(self, proj_id, method, pw, port) def find_ftbl(self, key): md = self.get_metadata(key) fn = md['fn'] digest = md['digest'] (ver, path, lnum) = key ftbl = make_feature_tbl() ftbl['meta'] = { 'proj' : self._proj_id, 'ver' : ver, 'path' : path, 'fn' : fn, 'lnum' : str(lnum), 'digest' : digest, } fop = self.get_value(N_FP_OPS, key) if fop > 0: for lv in range(3): if BF[lv] in ftbl: aa = self.get_value(N_A_REFS[lv], key) daa = self.get_value(N_DBL_A_REFS[lv], key) saa = aa - daa bf = float(saa * 4 + daa * 8) / float(fop) print('!!! {} -> fop={} aa[{}]={} daa[{}]={} bf[{}]={}'.format(key, fop, lv, aa, lv, daa, lv, bf)) ftbl[BF[lv]] = bf for item in ftbl.keys(): try: ftbl[item] = self._result_tbl[item][key] except KeyError: pass return ftbl def key_to_string(self, key): (ver, loc, fn, loop, vname) = key e = SourceCodeEntity(uri=loop) lnum = e.get_range().get_start_line() s = '%s:%s:%s:%s' % (ver, loc, fn, lnum) return s def set_metrics(self, name, _key, value, add=False): #print('!!! set_metrics: name={} key={} value={} add={}'.format(name, _key, value, add)) (ver, loc, fn, loop, vname) = _key ent = SourceCodeEntity(uri=loop) lnum = ent.get_range().get_start_line() key = (ver, loc, str(lnum)) key_str = '%s:%s:%s' % key self.debug('%s(%s): %s -> %s' % (self.key_to_string(_key), key_str, name, value)) loop_d = self.get_loop_digest(_key) self._metadata_tbl[key] = {'fn':fn,'digest':loop_d} try: tbl = self._result_tbl[name] except KeyError: tbl = {} self._result_tbl[name] = tbl if add: v = tbl.get(key, 0) tbl[key] = v + value else: tbl[key] = value def finalize_ipp(self): self.message('finalizing call graph...') query = QUERY_TBL['fd_fd'] % { 'proj' : self._graph_uri } for qvs, row in self._sparql.query(query): callee = row['callee'] fd = row['fd'] self.ipp_add(callee, fd) query = QUERY_TBL['loop_fd'] % { 'proj' : self._graph_uri } for qvs, row in self._sparql.query(query): callee = row['callee'] loop = row['loop'] self.ipp_add(callee, loop, is_loop=True) def build_tree(self, f=None): query = QUERY_TBL['loop_loop'] % { 'proj' : self._graph_uri } children_tbl = {} parent_tbl = {} for qvs, row in self._sparql.query(query): ver = row['ver'] loc = row['loc'] fn = row.get('fn', '') loop = row['loop'] loop_d = row['loop_d'] vname = '' child_loop = row.get('child_loop', None) child_loop_d = row.get('child_loop_d', '') child_vname = '' lver = get_lver(ver) key = (lver, loc, fn, loop, vname) self.set_loop_digest(key, loop_d) if f: f(key, row) try: child_loops = children_tbl[key] except KeyError: child_loops = [] children_tbl[key] = child_loops if child_loop: child_key = (lver, loc, fn, child_loop, child_vname) self.set_loop_digest(child_key, child_loop_d) if child_key not in child_loops: child_loops.append(child_key) parent_tbl[child_key] = key self.ipp_add(child_loop, loop, is_loop=True) roots = [] for k in children_tbl.keys(): if k not in parent_tbl: roots.append(k) r = SourceCodeEntity(uri=self.get_loop_of_key(k)).get_range() lines = r.get_end_line() - r.get_start_line() + 1 self.set_metrics(LINES_OF_CODE, k, lines) self.message('%d top loops found' % len(roots)) tree = {'children':children_tbl,'parent':parent_tbl,'roots':roots} self.set_tree(tree) return tree def get_key(self, row): ver = row['ver'] loc = row['loc'] fn = row.get('fn', '') loop = row['loop'] vname = '' lver = get_lver(ver) key = (lver, loc, fn, loop, vname) return key def calc_array_metrics(self): self.message('calculating array metrics...') try: query = QUERY_TBL['arrays'] % { 'proj' : self._graph_uri } tbl = {} for qvs, row in self._sparql.query(query): key = self.get_key(row) array = row['dtor'] tyc = row['tyc'] rank = int(row['rank']) try: arrays = tbl[key] except KeyError: arrays = [] tbl[key] = arrays arrays.append((array, (tyc, rank))) def get(key): arrays = tbl.get(key, []) max_rank = 0 t = {} for (a, spec) in arrays: (tyc, rank) = spec if rank > max_rank: max_rank = rank try: t[spec] += 1 except KeyError: t[spec] = 1 max_mergeable_arrays = 0 for spec in t.keys(): if t[spec] > max_mergeable_arrays: max_mergeable_arrays = t[spec] return {'max_rank':max_rank, 'max_mergeable_arrays':max_mergeable_arrays} tree = self.get_tree() for key in tree['roots']: data = {'max_rank':0, 'max_mergeable_arrays':0} def f(k): d = get(k) if d['max_rank'] > data['max_rank']: data['max_rank'] = d['max_rank'] if d['max_mergeable_arrays'] > data['max_mergeable_arrays']: data['max_mergeable_arrays'] = d['max_mergeable_arrays'] self.iter_tree(tree, key, f) self.debug('key=%s' % (self.key_to_string(key))) self.debug('max_mergeable_arrays=%(max_mergeable_arrays)d max_rank=%(max_rank)d' % data) self.set_metrics(MAX_MERGEABLE_ARRAYS, key, data['max_mergeable_arrays']) self.set_metrics(MAX_ARRAY_RANK, key, data['max_rank']) except KeyError: pass self.message('done.') def calc_in_loop_metrics(self): self.message('calculating other in_loop metrics...') try: query = QUERY_TBL['in_loop'] % { 'proj' : self._graph_uri } def make_data(): return { 'nbr' : 0, 'nes' : 0, 'nop' : 0, 'nc' : 0, } tbl = {} for qvs, row in self._sparql.query(query): key = self.get_key(row) data = make_data() data['nbr'] = int(row['nbr'] or '0') data['nes'] = int(row['nes'] or '0') data['nop'] = int(row['nop'] or '0') data['nc'] = int(row['nc'] or '0') tbl[key] = data fd = row['fd'] if fd: self.ipp_add(row['loop'], fd) tree = self.get_tree() for key in tree['roots']: data = make_data() def f(k): d = tbl.get(k, None) if d: data['nbr'] += d['nbr'] data['nes'] += d['nes'] data['nop'] += d['nop'] data['nc'] += d['nc'] self.iter_tree(tree, key, f) self.set_metrics(N_BRANCHES, key, data['nbr']) self.set_metrics(N_STMTS, key, data['nes']) self.set_metrics(N_OPS, key, data['nop']) self.set_metrics(N_CALLS, key, data['nc']) except KeyError: raise self.message('done.') # end of calc_in_loop_metrics def calc_aref_in_loop_metrics(self, lv): # level: 0, 1, 2 self.message('calculating other aref_in_loop metrics (lv=%d)...' % lv) try: if lv == 0: qtbl = QUERY_TBL['aref0_in_loop'] elif lv == 1 or lv == 2: qtbl = QUERY_TBL['aref12_in_loop'] else: self.warning('illegal level: %d' % lv) return tbl = {} kinds = ['aa','iaa','daa'] def make_data(): d = {} for k in kinds: d[k] = set() return d for kind in kinds: query = qtbl[kind] % {'proj':self._graph_uri,'level':lv} for qvs, row in self._sparql.query(query): key = self.get_key(row) sig = row.get('sig') if sig: try: data = tbl[key] except KeyError: data = make_data() tbl[key] = data data[kind].add(sig) tree = self.get_tree() for key in tree['roots']: data = make_data() def f(k): d = tbl.get(k, None) if d: for kind in kinds: data[kind] |= d.get(kind, set()) self.iter_tree(tree, key, f) self.set_metrics(N_A_REFS[lv], key, count_aas(data['aa'])) self.set_metrics(N_IND_A_REFS[lv], key, count_aas(data['iaa'])) self.set_metrics(N_DBL_A_REFS[lv], key, count_aas(data['daa'])) except KeyError: raise self.message('done.') # end of calc_aref_in_loop_metrics def calc_fop_in_loop_metrics(self): self.message('calculating fop metrics...') try: query = QUERY_TBL['fop_in_loop'] % { 'proj' : self._graph_uri } def make_data(): return { 'nfop' : 0, } tbl = {} for qvs, row in self._sparql.query(query): key = self.get_key(row) data = make_data() data['nfop'] = int(row['nfop'] or '0') tbl[key] = data fd = row['fd'] if fd: self.ipp_add(row['loop'], fd) tree = self.get_tree() for key in tree['roots']: data = make_data() def f(k): d = tbl.get(k, None) if d: data['nfop'] += d['nfop'] self.iter_tree(tree, key, f) self.set_metrics(N_FP_OPS, key, data['nfop']) except KeyError: raise self.message('done.') # end of calc_fop_in_loop_metrics def calc_ffr_in_loop_metrics(self): self.message('calculating ffr metrics...') try: query = QUERY_TBL['ffr_in_loop'] % { 'proj' : self._graph_uri } tbl = {} # key -> hash -> fname * nargs * is_dbl for qvs, row in self._sparql.query(query): key = self.get_key(row) try: fref_tbl = tbl[key] # hash -> fname * nargs * is_dbl except KeyError: fref_tbl = {} tbl[key] = fref_tbl h = row['h'] fname = row['fname'] nargs = row['nargs'] fref_tbl[h] = (fname, nargs, False) fd = row['fd'] if fd: self.ipp_add(row['loop'], fd) # query = QUERY_TBL['dfr_in_loop'] % { 'proj' : self._graph_uri } for qvs, row in self._sparql.query(query): key = self.get_key(row) fref_tbl = tbl.get(key, None) if fref_tbl: h = row['h'] fname = row['fname'] try: (fn, na, b) = fref_tbl[h] if fn == fname: fref_tbl[h] = (fn, na, True) else: self.warning('function name mismatch (%s != %s)' % (fname, fn)) except KeyError: self.warning('reference of %s not found (hash=%s)' % (fname, h)) # tree = self.get_tree() def make_data(): return { 'nfop' : 0, } for key in tree['roots']: data = make_data() def f(k): fref_tbl = tbl.get(k, None) if fref_tbl: for (h, (fn, na, dbl)) in fref_tbl.items(): data['nfop'] += get_nfops(fn, na, double=dbl) self.iter_tree(tree, key, f) self.set_metrics(N_FP_OPS, key, data['nfop'], add=True) except KeyError: raise self.message('done.') # end of calc_ffr_in_loop_metrics def filter_results(self): self.message('filtering results...') to_be_removed = set() for item in (MAX_ARRAY_RANK, N_FP_OPS, N_A_REFS[0]): for (k, v) in self._result_tbl.get(item, {}).items(): if v == 0: to_be_removed.add(k) for (item, tbl) in self._result_tbl.items(): for k in to_be_removed: del tbl[k] def calc(self): self.message('calculating for "%s"...' % self._proj_id) self.calc_loop_metrics() self.calc_array_metrics() self.calc_fop_in_loop_metrics() self.calc_ffr_in_loop_metrics() for lv in range(3): self.calc_aref_in_loop_metrics(lv) self.calc_in_loop_metrics() self.finalize_ipp() self.calc_max_loop_level() self.filter_results() #self.dump() if __name__ == '__main__': from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter parser = ArgumentParser(description='get source code metrics') parser.add_argument('-d', '--debug', dest='debug', action='store_true', help='enable debug printing') parser.add_argument('-k', '--key', dest='key', default=None, metavar='KEY', type=str, help='show metrics for KEY=VER:PATH:LNUM') parser.add_argument('-o', '--outfile', dest='outfile', default=None, metavar='FILE', type=str, help='dump feature vector into FILE') parser.add_argument('-m', '--method', dest='method', default='odbc', metavar='METHOD', type=str, help='execute query via METHOD (odbc|http)') parser.add_argument('proj_list', nargs='*', default=[], metavar='PROJ', type=str, help='project id (default: all projects)') args = parser.parse_args() dp.debug_flag = args.debug proj_list = [] if args.key: l = args.key.split(':') if len(l) != 3: print('invalid key: %s' % args.key) exit(1) else: try: int(l[2]) except: print('invalid key: %s' % args.key) exit(1) if args.proj_list: proj_list = args.proj_list else: proj_list = get_proj_list() ftbl_list = [] for proj_id in proj_list: m = Metrics(proj_id, method=args.method) m.calc() if args.key: ftbl_list += m.search(args.key) else: ftbl_list += m.get_ftbl_list() if ftbl_list: if args.outfile: ftbl_list_to_orange(ftbl_list, args.outfile, META_KEYS) else: for ftbl in sorted(ftbl_list, key=lambda x: (x['meta']['ver'], x['meta']['fn'], x['meta']['lnum'])): print('%s' % ftbl_to_string(ftbl)) else: print('not found')
#============================================================================ # This library is free software; you can redistribute it and/or # modify it under the terms of version 2.1 of the GNU Lesser General Public # License as published by the Free Software Foundation. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #============================================================================ # Copyright (C) 2006-2007 XenSource Inc. #============================================================================ # # Parts of this file are based upon xmlrpclib.py, the XML-RPC client # interface included in the Python distribution. # # Copyright (c) 1999-2002 by Secret Labs AB # Copyright (c) 1999-2002 by Fredrik Lundh # # By obtaining, using, and/or copying this software and/or its # associated documentation, you agree that you have read, understood, # and will comply with the following terms and conditions: # # Permission to use, copy, modify, and distribute this software and # its associated documentation for any purpose and without fee is # hereby granted, provided that the above copyright notice appears in # all copies, and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of # Secret Labs AB or the author not be used in advertising or publicity # pertaining to distribution of the software without specific, written # prior permission. # # SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD # TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT- # ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR # BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY # DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, # WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE # OF THIS SOFTWARE. # -------------------------------------------------------------------- import gettext import xmlrpclib import httplib import socket translation = gettext.translation('xen-xm', fallback = True) API_VERSION_1_1 = '1.1' API_VERSION_1_2 = '1.2' class Failure(Exception): def __init__(self, details): self.details = details def __str__(self): try: return str(self.details) except Exception, exn: import sys print >>sys.stderr, exn return "Xen-API failure: %s" % str(self.details) def _details_map(self): return dict([(str(i), self.details[i]) for i in range(len(self.details))]) _RECONNECT_AND_RETRY = (lambda _ : ()) class UDSHTTPConnection(httplib.HTTPConnection): """HTTPConnection subclass to allow HTTP over Unix domain sockets. """ def connect(self): path = self.host.replace("_", "/") self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) self.sock.connect(path) class UDSHTTP(httplib.HTTP): _connection_class = UDSHTTPConnection class UDSTransport(xmlrpclib.Transport): def __init__(self, use_datetime=0): self._use_datetime = use_datetime self._extra_headers=[] def add_extra_header(self, key, value): self._extra_headers += [ (key,value) ] def make_connection(self, host): return UDSHTTP(host) def send_request(self, connection, handler, request_body): connection.putrequest("POST", handler) for key, value in self._extra_headers: connection.putheader(key, value) class Session(xmlrpclib.ServerProxy): """A server proxy and session manager for communicating with xapi using the Xen-API. Example: session = Session('http://localhost/') session.login_with_password('me', 'mypassword') session.xenapi.VM.start(vm_uuid) session.xenapi.session.logout() """ def __init__(self, uri, transport=None, encoding=None, verbose=0, allow_none=1): xmlrpclib.ServerProxy.__init__(self, uri, transport, encoding, verbose, allow_none) self.transport = transport self._session = None self.last_login_method = None self.last_login_params = None self.API_version = API_VERSION_1_1 def xenapi_request(self, methodname, params): if methodname.startswith('login'): self._login(methodname, params) return None elif methodname == 'logout' or methodname == 'session.logout': self._logout() return None else: retry_count = 0 while retry_count < 3: full_params = (self._session,) + params result = _parse_result(getattr(self, methodname)(*full_params)) if result == _RECONNECT_AND_RETRY: retry_count += 1 if self.last_login_method: self._login(self.last_login_method, self.last_login_params) else: raise xmlrpclib.Fault(401, 'You must log in') else: return result raise xmlrpclib.Fault( 500, 'Tried 3 times to get a valid session, but failed') def _login(self, method, params): result = _parse_result(getattr(self, 'session.%s' % method)(*params)) if result == _RECONNECT_AND_RETRY: raise xmlrpclib.Fault( 500, 'Received SESSION_INVALID when logging in') self._session = result self.last_login_method = method self.last_login_params = params self.API_version = self._get_api_version() def _logout(self): try: if self.last_login_method.startswith("slave_local"): return _parse_result(self.session.local_logout(self._session)) else: return _parse_result(self.session.logout(self._session)) finally: self._session = None self.last_login_method = None self.last_login_params = None self.API_version = API_VERSION_1_1 def _get_api_version(self): pool = self.xenapi.pool.get_all()[0] host = self.xenapi.pool.get_master(pool) major = self.xenapi.host.get_API_version_major(host) minor = self.xenapi.host.get_API_version_minor(host) return "%s.%s"%(major,minor) def __getattr__(self, name): if name == 'handle': return self._session elif name == 'xenapi': return _Dispatcher(self.API_version, self.xenapi_request, None) elif name.startswith('login') or name.startswith('slave_local'): return lambda *params: self._login(name, params) else: return xmlrpclib.ServerProxy.__getattr__(self, name) def xapi_local(): return Session("http://_var_xapi_xapi/", transport=UDSTransport()) def _parse_result(result): if type(result) != dict or 'Status' not in result: raise xmlrpclib.Fault(500, 'Missing Status in response from server' + result) if result['Status'] == 'Success': if 'Value' in result: return result['Value'] else: raise xmlrpclib.Fault(500, 'Missing Value in response from server') else: if 'ErrorDescription' in result: if result['ErrorDescription'][0] == 'SESSION_INVALID': return _RECONNECT_AND_RETRY else: raise Failure(result['ErrorDescription']) else: raise xmlrpclib.Fault( 500, 'Missing ErrorDescription in response from server') # Based upon _Method from xmlrpclib. class _Dispatcher: def __init__(self, API_version, send, name): self.__API_version = API_version self.__send = send self.__name = name def __repr__(self): if self.__name: return '<XenAPI._Dispatcher for %s>' % self.__name else: return '<XenAPI._Dispatcher>' def __getattr__(self, name): if self.__name is None: return _Dispatcher(self.__API_version, self.__send, name) else: return _Dispatcher(self.__API_version, self.__send, "%s.%s" % (self.__name, name)) def __call__(self, *args): return self.__send(self.__name, args)
# -*- coding: utf-8 -*- """ h2/settings ~~~~~~~~~~~ This module contains a HTTP/2 settings object. This object provides a simple API for manipulating HTTP/2 settings, keeping track of both the current active state of the settings and the unacknowledged future values of the settings. """ import collections import enum from hyperframe.frame import SettingsFrame from h2.errors import ErrorCodes from h2.exceptions import InvalidSettingsValueError try: from collections.abc import MutableMapping except ImportError: # pragma: no cover # Python 2.7 compatibility from collections import MutableMapping class SettingCodes(enum.IntEnum): """ All known HTTP/2 setting codes. .. versionadded:: 2.6.0 """ #: Allows the sender to inform the remote endpoint of the maximum size of #: the header compression table used to decode header blocks, in octets. HEADER_TABLE_SIZE = SettingsFrame.HEADER_TABLE_SIZE #: This setting can be used to disable server push. To disable server push #: on a client, set this to 0. ENABLE_PUSH = SettingsFrame.ENABLE_PUSH #: Indicates the maximum number of concurrent streams that the sender will #: allow. MAX_CONCURRENT_STREAMS = SettingsFrame.MAX_CONCURRENT_STREAMS #: Indicates the sender's initial window size (in octets) for stream-level #: flow control. INITIAL_WINDOW_SIZE = SettingsFrame.INITIAL_WINDOW_SIZE #: Indicates the size of the largest frame payload that the sender is #: willing to receive, in octets. MAX_FRAME_SIZE = SettingsFrame.MAX_FRAME_SIZE #: This advisory setting informs a peer of the maximum size of header list #: that the sender is prepared to accept, in octets. The value is based on #: the uncompressed size of header fields, including the length of the name #: and value in octets plus an overhead of 32 octets for each header field. MAX_HEADER_LIST_SIZE = SettingsFrame.MAX_HEADER_LIST_SIZE #: This setting can be used to enable the connect protocol. To enable on a #: client set this to 1. ENABLE_CONNECT_PROTOCOL = SettingsFrame.ENABLE_CONNECT_PROTOCOL def _setting_code_from_int(code): """ Given an integer setting code, returns either one of :class:`SettingCodes <h2.settings.SettingCodes>` or, if not present in the known set of codes, returns the integer directly. """ try: return SettingCodes(code) except ValueError: return code class ChangedSetting: def __init__(self, setting, original_value, new_value): #: The setting code given. Either one of :class:`SettingCodes #: <h2.settings.SettingCodes>` or ``int`` #: #: .. versionchanged:: 2.6.0 self.setting = setting #: The original value before being changed. self.original_value = original_value #: The new value after being changed. self.new_value = new_value def __repr__(self): return ( "ChangedSetting(setting=%s, original_value=%s, " "new_value=%s)" ) % ( self.setting, self.original_value, self.new_value ) class Settings(MutableMapping): """ An object that encapsulates HTTP/2 settings state. HTTP/2 Settings are a complex beast. Each party, remote and local, has its own settings and a view of the other party's settings. When a settings frame is emitted by a peer it cannot assume that the new settings values are in place until the remote peer acknowledges the setting. In principle, multiple settings changes can be "in flight" at the same time, all with different values. This object encapsulates this mess. It provides a dict-like interface to settings, which return the *current* values of the settings in question. Additionally, it keeps track of the stack of proposed values: each time an acknowledgement is sent/received, it updates the current values with the stack of proposed values. On top of all that, it validates the values to make sure they're allowed, and raises :class:`InvalidSettingsValueError <h2.exceptions.InvalidSettingsValueError>` if they are not. Finally, this object understands what the default values of the HTTP/2 settings are, and sets those defaults appropriately. .. versionchanged:: 2.2.0 Added the ``initial_values`` parameter. .. versionchanged:: 2.5.0 Added the ``max_header_list_size`` property. :param client: (optional) Whether these settings should be defaulted for a client implementation or a server implementation. Defaults to ``True``. :type client: ``bool`` :param initial_values: (optional) Any initial values the user would like set, rather than RFC 7540's defaults. :type initial_vales: ``MutableMapping`` """ def __init__(self, client=True, initial_values=None): # Backing object for the settings. This is a dictionary of # (setting: [list of values]), where the first value in the list is the # current value of the setting. Strictly this doesn't use lists but # instead uses collections.deque to avoid repeated memory allocations. # # This contains the default values for HTTP/2. self._settings = { SettingCodes.HEADER_TABLE_SIZE: collections.deque([4096]), SettingCodes.ENABLE_PUSH: collections.deque([int(client)]), SettingCodes.INITIAL_WINDOW_SIZE: collections.deque([65535]), SettingCodes.MAX_FRAME_SIZE: collections.deque([16384]), SettingCodes.ENABLE_CONNECT_PROTOCOL: collections.deque([0]), } if initial_values is not None: for key, value in initial_values.items(): invalid = _validate_setting(key, value) if invalid: raise InvalidSettingsValueError( "Setting %d has invalid value %d" % (key, value), error_code=invalid ) self._settings[key] = collections.deque([value]) def acknowledge(self): """ The settings have been acknowledged, either by the user (remote settings) or by the remote peer (local settings). :returns: A dict of {setting: ChangedSetting} that were applied. """ changed_settings = {} # If there is more than one setting in the list, we have a setting # value outstanding. Update them. for k, v in self._settings.items(): if len(v) > 1: old_setting = v.popleft() new_setting = v[0] changed_settings[k] = ChangedSetting( k, old_setting, new_setting ) return changed_settings # Provide easy-access to well known settings. @property def header_table_size(self): """ The current value of the :data:`HEADER_TABLE_SIZE <h2.settings.SettingCodes.HEADER_TABLE_SIZE>` setting. """ return self[SettingCodes.HEADER_TABLE_SIZE] @header_table_size.setter def header_table_size(self, value): self[SettingCodes.HEADER_TABLE_SIZE] = value @property def enable_push(self): """ The current value of the :data:`ENABLE_PUSH <h2.settings.SettingCodes.ENABLE_PUSH>` setting. """ return self[SettingCodes.ENABLE_PUSH] @enable_push.setter def enable_push(self, value): self[SettingCodes.ENABLE_PUSH] = value @property def initial_window_size(self): """ The current value of the :data:`INITIAL_WINDOW_SIZE <h2.settings.SettingCodes.INITIAL_WINDOW_SIZE>` setting. """ return self[SettingCodes.INITIAL_WINDOW_SIZE] @initial_window_size.setter def initial_window_size(self, value): self[SettingCodes.INITIAL_WINDOW_SIZE] = value @property def max_frame_size(self): """ The current value of the :data:`MAX_FRAME_SIZE <h2.settings.SettingCodes.MAX_FRAME_SIZE>` setting. """ return self[SettingCodes.MAX_FRAME_SIZE] @max_frame_size.setter def max_frame_size(self, value): self[SettingCodes.MAX_FRAME_SIZE] = value @property def max_concurrent_streams(self): """ The current value of the :data:`MAX_CONCURRENT_STREAMS <h2.settings.SettingCodes.MAX_CONCURRENT_STREAMS>` setting. """ return self.get(SettingCodes.MAX_CONCURRENT_STREAMS, 2**32+1) @max_concurrent_streams.setter def max_concurrent_streams(self, value): self[SettingCodes.MAX_CONCURRENT_STREAMS] = value @property def max_header_list_size(self): """ The current value of the :data:`MAX_HEADER_LIST_SIZE <h2.settings.SettingCodes.MAX_HEADER_LIST_SIZE>` setting. If not set, returns ``None``, which means unlimited. .. versionadded:: 2.5.0 """ return self.get(SettingCodes.MAX_HEADER_LIST_SIZE, None) @max_header_list_size.setter def max_header_list_size(self, value): self[SettingCodes.MAX_HEADER_LIST_SIZE] = value @property def enable_connect_protocol(self): """ The current value of the :data:`ENABLE_CONNECT_PROTOCOL <h2.settings.SettingCodes.ENABLE_CONNECT_PROTOCOL>` setting. """ return self[SettingCodes.ENABLE_CONNECT_PROTOCOL] @enable_connect_protocol.setter def enable_connect_protocol(self, value): self[SettingCodes.ENABLE_CONNECT_PROTOCOL] = value # Implement the MutableMapping API. def __getitem__(self, key): val = self._settings[key][0] # Things that were created when a setting was received should stay # KeyError'd. if val is None: raise KeyError return val def __setitem__(self, key, value): invalid = _validate_setting(key, value) if invalid: raise InvalidSettingsValueError( "Setting %d has invalid value %d" % (key, value), error_code=invalid ) try: items = self._settings[key] except KeyError: items = collections.deque([None]) self._settings[key] = items items.append(value) def __delitem__(self, key): del self._settings[key] def __iter__(self): return self._settings.__iter__() def __len__(self): return len(self._settings) def __eq__(self, other): if isinstance(other, Settings): return self._settings == other._settings else: return NotImplemented def __ne__(self, other): if isinstance(other, Settings): return not self == other else: return NotImplemented def _validate_setting(setting, value): # noqa: C901 """ Confirms that a specific setting has a well-formed value. If the setting is invalid, returns an error code. Otherwise, returns 0 (NO_ERROR). """ if setting == SettingCodes.ENABLE_PUSH: if value not in (0, 1): return ErrorCodes.PROTOCOL_ERROR elif setting == SettingCodes.INITIAL_WINDOW_SIZE: if not 0 <= value <= 2147483647: # 2^31 - 1 return ErrorCodes.FLOW_CONTROL_ERROR elif setting == SettingCodes.MAX_FRAME_SIZE: if not 16384 <= value <= 16777215: # 2^14 and 2^24 - 1 return ErrorCodes.PROTOCOL_ERROR elif setting == SettingCodes.MAX_HEADER_LIST_SIZE: if value < 0: return ErrorCodes.PROTOCOL_ERROR elif setting == SettingCodes.ENABLE_CONNECT_PROTOCOL: if value not in (0, 1): return ErrorCodes.PROTOCOL_ERROR return 0
from unittest import mock import pytest from astropy import units as u from astropy.coordinates import ( ICRS, BarycentricMeanEcliptic, CartesianDifferential, CartesianRepresentation, ) from astropy.tests.helper import assert_quantity_allclose from astropy.time import Time from poliastro.bodies import Earth, Venus from poliastro.ephem import Ephem, InterpolationMethods from poliastro.frames import Planes from poliastro.warnings import TimeScaleWarning AVAILABLE_INTERPOLATION_METHODS = InterpolationMethods.__members__.values() AVAILABLE_PLANES = Planes.__members__.values() def assert_coordinates_allclose(actual, desired, rtol=1e-7, atol_scale=None, **kwargs): if atol_scale is None: atol_scale = 0 assert_quantity_allclose( actual.xyz, desired.xyz, rtol, atol=atol_scale * desired.xyz.unit, **kwargs ) if "s" in desired.differentials: assert_quantity_allclose( actual.differentials["s"].d_xyz, desired.differentials["s"].d_xyz, rtol=rtol, atol=atol_scale * desired.differentials["s"].d_xyz.unit, **kwargs, ) @pytest.fixture def epochs(): return Time( [ "2020-03-01 12:00:00", "2020-03-02 12:00:00", "2020-03-03 12:00:00", "2020-03-04 12:00:00", ], scale="tdb", ) @pytest.fixture def coordinates(): return CartesianRepresentation( [(1, 0, 0), (0.9, 0.1, 0), (0.8, 0.2, 0), (0.7, 0.3, 0)] * u.au, xyz_axis=1, differentials=CartesianDifferential( [(0, 1, 0), (-0.1, 0.9, 0), (-0.2, 0.8, 0), (-0.3, 0.7, 0)] * (u.au / u.day), xyz_axis=1, ), ) @pytest.mark.parametrize("plane", AVAILABLE_PLANES) def test_ephem_has_given_plane(epochs, coordinates, plane): ephem = Ephem(epochs, coordinates, plane) assert ephem.plane is plane def test_ephem_fails_if_dimensions_are_not_correct(epochs, coordinates): unused_plane = Planes.EARTH_EQUATOR with pytest.raises(ValueError) as excinfo: Ephem(epochs[0], coordinates, unused_plane) assert ( "Coordinates and epochs must have dimension 1, got 0 and 1" in excinfo.exconly() ) @pytest.mark.parametrize("method", AVAILABLE_INTERPOLATION_METHODS) def test_ephem_sample_no_arguments_returns_exactly_same_input( epochs, coordinates, method ): unused_plane = Planes.EARTH_EQUATOR ephem = Ephem(coordinates, epochs, unused_plane) result_coordinates = ephem.sample(method=method) # Exactly the same assert result_coordinates == coordinates @pytest.mark.parametrize("method", AVAILABLE_INTERPOLATION_METHODS) def test_ephem_sample_scalar_epoch_returns_1_dimensional_coordinates( epochs, coordinates, method ): unused_plane = Planes.EARTH_EQUATOR ephem = Ephem(coordinates, epochs, unused_plane) result_coordinates = ephem.sample(epochs[0], method=method) # Exactly the same assert result_coordinates.ndim == 1 def test_ephem_str_matches_expected_representation(epochs, coordinates): plane = Planes.EARTH_EQUATOR ephem = Ephem(coordinates, epochs, plane) expected_str = ( "Ephemerides at 4 epochs " "from 2020-03-01 12:00:00.000 (TDB) to 2020-03-04 12:00:00.000 (TDB)" ) assert repr(ephem) == str(ephem) == expected_str @pytest.mark.parametrize("method", AVAILABLE_INTERPOLATION_METHODS) def test_ephem_sample_scalar_epoch_and_coordinates_returns_exactly_same_input( epochs, coordinates, method ): unused_plane = Planes.EARTH_EQUATOR coordinates = coordinates[0].reshape(-1) epochs = epochs[0].reshape(-1) ephem = Ephem(coordinates, epochs, unused_plane) result_coordinates = ephem.sample(epochs[0], method=method) # Exactly the same assert result_coordinates == coordinates @pytest.mark.parametrize("method", AVAILABLE_INTERPOLATION_METHODS) def test_ephem_sample_same_epochs_returns_same_input(epochs, coordinates, method): unused_plane = Planes.EARTH_EQUATOR ephem = Ephem(coordinates, epochs, unused_plane) result_coordinates = ephem.sample(epochs, method=method) # TODO: Should it return exactly the same? assert_coordinates_allclose(result_coordinates, coordinates, atol_scale=1e-17) @pytest.mark.parametrize("method", AVAILABLE_INTERPOLATION_METHODS) def test_ephem_sample_existing_epochs_returns_corresponding_input( epochs, coordinates, method ): unused_plane = Planes.EARTH_EQUATOR ephem = Ephem(coordinates, epochs, unused_plane) result_coordinates = ephem.sample(epochs[::2], method=method) # Exactly the same assert_coordinates_allclose(result_coordinates, coordinates[::2], atol_scale=1e-17) def test_rv_no_parameters_returns_input_vectors(coordinates, epochs): unused_plane = Planes.EARTH_EQUATOR ephem = Ephem(coordinates, epochs, unused_plane) expected_r = coordinates.get_xyz(xyz_axis=1) expected_v = coordinates.differentials["s"].get_d_xyz(xyz_axis=1) r, v = ephem.rv() assert_quantity_allclose(r, expected_r) assert_quantity_allclose(v, expected_v) def test_rv_scalar_epoch_returns_scalar_vectors(coordinates, epochs): unused_plane = Planes.EARTH_EQUATOR ephem = Ephem(coordinates, epochs, unused_plane) expected_r = coordinates.get_xyz(xyz_axis=1)[0] expected_v = coordinates.differentials["s"].get_d_xyz(xyz_axis=1)[0] r, v = ephem.rv(epochs[0]) assert_quantity_allclose(r, expected_r) assert_quantity_allclose(v, expected_v) @pytest.mark.parametrize("method", AVAILABLE_INTERPOLATION_METHODS) @pytest.mark.parametrize( "plane, FrameClass, rtol", [ (Planes.EARTH_EQUATOR, ICRS, 1e-7), (Planes.EARTH_ECLIPTIC, BarycentricMeanEcliptic, 1e-5), ], ) def test_ephem_from_body_has_expected_properties(method, plane, FrameClass, rtol): epochs = Time( ["2020-03-01 12:00:00", "2020-03-17 00:00:00.000", "2020-04-01 12:00:00.000"], scale="tdb", ) equatorial_coordinates = CartesianRepresentation( [ (-1.40892271e08, 45067626.83900666, 19543510.68386639), (-1.4925067e08, 9130104.71634121, 3964948.59999307), (-1.46952333e08, -27413113.24215863, -11875983.21773582), ] * u.km, xyz_axis=1, differentials=CartesianDifferential( [ (-10.14262131, -25.96929533, -11.25810932), (-2.28639444, -27.3906416, -11.87218591), (5.67814544, -26.84316701, -11.63720607), ] * (u.km / u.s), xyz_axis=1, ), ) expected_coordinates = ( ICRS(equatorial_coordinates) .transform_to(FrameClass) .represent_as(CartesianRepresentation, CartesianDifferential) ) earth = Ephem.from_body(Earth, epochs, plane=plane) coordinates = earth.sample(method=method) assert earth.epochs is epochs assert_coordinates_allclose(coordinates, expected_coordinates, rtol=rtol) def test_from_body_non_tdb_epochs_warning(epochs): unused_body = Earth epochs = Time.now() # This uses UTC scale with pytest.warns(TimeScaleWarning) as record: Ephem.from_body(unused_body, epochs) assert len(record) == 1 assert "Input time was converted to scale='tdb'" in record[0].message.args[0] assert "Use Time(..., scale='tdb') instead" in record[0].message.args[0] def test_from_body_scalar_epoch_uses_reshaped_epochs(): expected_epochs = Time(["2020-03-01 12:00:00"], scale="tdb") epochs = expected_epochs[0] unused_plane = Planes.EARTH_EQUATOR ephem = Ephem.from_body(Earth, epochs, plane=unused_plane) assert ephem.epochs == expected_epochs @mock.patch("poliastro.ephem.Horizons") @pytest.mark.parametrize( "attractor,location_str", [(None, "@ssb"), (Earth, "500@399"), (Venus, "500@299")] ) @pytest.mark.parametrize( "plane,refplane_str", [(Planes.EARTH_EQUATOR, "earth"), (Planes.EARTH_ECLIPTIC, "ecliptic")], ) def test_ephem_from_horizons_calls_horizons_with_correct_parameters( horizons_mock, attractor, location_str, plane, refplane_str ): unused_name = "Strange Object" unused_id_type = "id_type" epochs = Time(["2020-03-01 12:00:00"], scale="tdb") horizons_mock().vectors.return_value = { "x": [1] * u.au, "y": [0] * u.au, "z": [0] * u.au, "vx": [0] * (u.au / u.day), "vy": [1] * (u.au / u.day), "vz": [0] * (u.au / u.day), } expected_coordinates = CartesianRepresentation( [(1, 0, 0)] * u.au, xyz_axis=1, differentials=CartesianDifferential([(0, 1, 0)] * (u.au / u.day), xyz_axis=1), ) ephem = Ephem.from_horizons( unused_name, epochs, attractor=attractor, plane=plane, id_type=unused_id_type ) horizons_mock.assert_called_with( id=unused_name, location=location_str, epochs=epochs.jd, id_type=unused_id_type ) horizons_mock().vectors.assert_called_once_with(refplane=refplane_str) coordinates = ephem.sample() assert_coordinates_allclose(coordinates, expected_coordinates) @mock.patch("poliastro.ephem.Horizons") def test_from_horizons_scalar_epoch_uses_reshaped_epochs(horizons_mock): unused_name = "Strange Object" unused_id_type = "id_type" unused_plane = Planes.EARTH_EQUATOR unused_location_str = "500@399" unused_attractor = Earth expected_epochs = Time(["2020-03-01 12:00:00"], scale="tdb") epochs = expected_epochs[0] horizons_mock().vectors.return_value = { "x": [1] * u.au, "y": [0] * u.au, "z": [0] * u.au, "vx": [0] * (u.au / u.day), "vy": [1] * (u.au / u.day), "vz": [0] * (u.au / u.day), } Ephem.from_horizons( unused_name, epochs, attractor=unused_attractor, plane=unused_plane, id_type=unused_id_type, ) horizons_mock.assert_called_with( id=unused_name, location=unused_location_str, epochs=expected_epochs.jd, id_type=unused_id_type, )
""" XML serializer. """ from django.conf import settings from django.core.serializers import base from django.db import models from django.utils.xmlutils import SimplerXMLGenerator from django.utils.encoding import smart_unicode from xml.dom import pulldom class Serializer(base.Serializer): """ Serializes a QuerySet to XML. """ def indent(self, level): if self.options.get('indent', None) is not None: self.xml.ignorableWhitespace('\n' + ' ' * self.options.get('indent', None) * level) def start_serialization(self): """ Start serialization -- open the XML document and the root element. """ self.xml = SimplerXMLGenerator(self.stream, self.options.get("encoding", settings.DEFAULT_CHARSET)) self.xml.startDocument() self.xml.startElement("django-objects", {"version" : "1.0"}) def end_serialization(self): """ End serialization -- end the document. """ self.indent(0) self.xml.endElement("django-objects") self.xml.endDocument() def start_object(self, obj): """ Called as each object is handled. """ if not hasattr(obj, "_meta"): raise base.SerializationError("Non-model object (%s) encountered during serialization" % type(obj)) self.indent(1) self.xml.startElement("object", { "pk" : smart_unicode(obj._get_pk_val()), "model" : smart_unicode(obj._meta), }) def end_object(self, obj): """ Called after handling all fields for an object. """ self.indent(1) self.xml.endElement("object") def handle_field(self, obj, field): """ Called to handle each field on an object (except for ForeignKeys and ManyToManyFields) """ self.indent(2) self.xml.startElement("field", { "name" : field.name, "type" : field.get_internal_type() }) # Get a "string version" of the object's data (this is handled by the # serializer base class). if getattr(obj, field.name) is not None: value = self.get_string_value(obj, field) self.xml.characters(smart_unicode(value)) else: self.xml.addQuickElement("None") self.xml.endElement("field") def handle_fk_field(self, obj, field): """ Called to handle a ForeignKey (we need to treat them slightly differently from regular fields). """ self._start_relational_field(field) related = getattr(obj, field.name) if related is not None: # TODO: can we remove the field_name part? if field.rel.field_name in related._meta.pk.names: # Related to remote object via primary key related = related._get_pk_val() else: # Related to remote object via other field related = getattr(related, field.rel.field_name) self.xml.characters(smart_unicode(related)) else: self.xml.addQuickElement("None") self.xml.endElement("field") def handle_m2m_field(self, obj, field): """ Called to handle a ManyToManyField. Related objects are only serialized as references to the object's PK (i.e. the related *data* is not dumped, just the relation). """ if field.creates_table: self._start_relational_field(field) for relobj in getattr(obj, field.name).iterator(): self.xml.addQuickElement("object", attrs={"pk" : smart_unicode(relobj._get_pk_val())}) self.xml.endElement("field") def _start_relational_field(self, field): """ Helper to output the <field> element for relational fields """ self.indent(2) self.xml.startElement("field", { "name" : field.name, "rel" : field.rel.__class__.__name__, "to" : smart_unicode(field.rel.to._meta), }) class Deserializer(base.Deserializer): """ Deserialize XML. """ def __init__(self, stream_or_string, **options): super(Deserializer, self).__init__(stream_or_string, **options) self.event_stream = pulldom.parse(self.stream) def next(self): for event, node in self.event_stream: if event == "START_ELEMENT" and node.nodeName == "object": self.event_stream.expandNode(node) return self._handle_object(node) raise StopIteration def _handle_object(self, node): """ Convert an <object> node to a DeserializedObject. """ # Look up the model using the model loading mechanism. If this fails, # bail. Model = self._get_model_from_node(node, "model") # Start building a data dictionary from the object. If the node is # missing the pk attribute, bail. pk = node.getAttribute("pk") if not pk: raise base.DeserializationError("<object> node is missing the 'pk' attribute") data = {Model._meta.pk.attname : Model._meta.pk.to_python(pk)} # Also start building a dict of m2m data (this is saved as # {m2m_accessor_attribute : [list_of_related_objects]}) m2m_data = {} # Deseralize each field. for field_node in node.getElementsByTagName("field"): # If the field is missing the name attribute, bail (are you # sensing a pattern here?) field_name = field_node.getAttribute("name") if not field_name: raise base.DeserializationError("<field> node is missing the 'name' attribute") # Get the field from the Model. This will raise a # FieldDoesNotExist if, well, the field doesn't exist, which will # be propagated correctly. field = Model._meta.get_field(field_name) # As is usually the case, relation fields get the special treatment. if field.rel and isinstance(field.rel, models.ManyToManyRel): m2m_data[field.name] = self._handle_m2m_field_node(field_node, field) elif field.rel and isinstance(field.rel, models.ManyToOneRel): data[field.attname] = self._handle_fk_field_node(field_node, field) else: if field_node.getElementsByTagName('None'): value = None else: value = field.to_python(getInnerText(field_node).strip()) data[field.name] = value # Return a DeserializedObject so that the m2m data has a place to live. return base.DeserializedObject(Model(**data), m2m_data) def _handle_fk_field_node(self, node, field): """ Handle a <field> node for a ForeignKey """ # Check if there is a child node named 'None', returning None if so. if node.getElementsByTagName('None'): return None else: return field.rel.to._meta.get_field(field.rel.field_name).to_python( getInnerText(node).strip()) def _handle_m2m_field_node(self, node, field): """ Handle a <field> node for a ManyToManyField. """ return [field.rel.to._meta.pk.to_python( c.getAttribute("pk")) for c in node.getElementsByTagName("object")] def _get_model_from_node(self, node, attr): """ Helper to look up a model from a <object model=...> or a <field rel=... to=...> node. """ model_identifier = node.getAttribute(attr) if not model_identifier: raise base.DeserializationError( "<%s> node is missing the required '%s' attribute" \ % (node.nodeName, attr)) try: Model = models.get_model(*model_identifier.split(".")) except TypeError: Model = None if Model is None: raise base.DeserializationError( "<%s> node has invalid model identifier: '%s'" % \ (node.nodeName, model_identifier)) return Model def getInnerText(node): """ Get all the inner text of a DOM node (recursively). """ # inspired by http://mail.python.org/pipermail/xml-sig/2005-March/011022.html inner_text = [] for child in node.childNodes: if child.nodeType == child.TEXT_NODE or child.nodeType == child.CDATA_SECTION_NODE: inner_text.append(child.data) elif child.nodeType == child.ELEMENT_NODE: inner_text.extend(getInnerText(child)) else: pass return u"".join(inner_text)
""" Msgpack serializer support for reading and writing pandas data structures to disk portions of msgpack_numpy package, by Lev Givon were incorporated into this module (and tests_packers.py) License ======= Copyright (c) 2013, Lev Givon. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Lev Givon nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from datetime import datetime, date, timedelta from dateutil.parser import parse import os from textwrap import dedent import warnings import numpy as np from pandas import compat from pandas.compat import u, u_safe from pandas import (Timestamp, Period, Series, DataFrame, # noqa Index, MultiIndex, Float64Index, Int64Index, Panel, RangeIndex, PeriodIndex, DatetimeIndex, NaT, Categorical) from pandas.tslib import NaTType from pandas.sparse.api import SparseSeries, SparseDataFrame, SparsePanel from pandas.sparse.array import BlockIndex, IntIndex from pandas.core.generic import NDFrame from pandas.core.common import (PerformanceWarning, is_categorical_dtype, is_object_dtype, needs_i8_conversion, pandas_dtype) from pandas.io.common import get_filepath_or_buffer from pandas.core.internals import BlockManager, make_block import pandas.core.internals as internals from pandas.msgpack import Unpacker as _Unpacker, Packer as _Packer, ExtType from pandas.util._move import ( BadMove as _BadMove, move_into_mutable_buffer as _move_into_mutable_buffer, ) # check whcih compression libs we have installed try: import zlib def _check_zlib(): pass except ImportError: def _check_zlib(): raise ImportError('zlib is not installed') _check_zlib.__doc__ = dedent( """\ Check if zlib is installed. Raises ------ ImportError Raised when zlib is not installed. """, ) try: import blosc def _check_blosc(): pass except ImportError: def _check_blosc(): raise ImportError('blosc is not installed') _check_blosc.__doc__ = dedent( """\ Check if blosc is installed. Raises ------ ImportError Raised when blosc is not installed. """, ) # until we can pass this into our conversion functions, # this is pretty hacky compressor = None def to_msgpack(path_or_buf, *args, **kwargs): """ msgpack (serialize) object to input file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters ---------- path_or_buf : string File path, buffer-like, or None if None, return generated string args : an object or objects to serialize encoding: encoding for unicode objects append : boolean whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no compression) """ global compressor compressor = kwargs.pop('compress', None) if compressor: compressor = u(compressor) append = kwargs.pop('append', None) if append: mode = 'a+b' else: mode = 'wb' def writer(fh): for a in args: fh.write(pack(a, **kwargs)) if isinstance(path_or_buf, compat.string_types): with open(path_or_buf, mode) as fh: writer(fh) elif path_or_buf is None: buf = compat.BytesIO() writer(buf) return buf.getvalue() else: writer(path_or_buf) def read_msgpack(path_or_buf, encoding='utf-8', iterator=False, **kwargs): """ Load msgpack pandas object from the specified file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters ---------- path_or_buf : string File path, BytesIO like or string encoding: Encoding for decoding msgpack str type iterator : boolean, if True, return an iterator to the unpacker (default is False) Returns ------- obj : type of object stored in file """ path_or_buf, _, _ = get_filepath_or_buffer(path_or_buf) if iterator: return Iterator(path_or_buf) def read(fh): l = list(unpack(fh, encoding=encoding, **kwargs)) if len(l) == 1: return l[0] return l # see if we have an actual file if isinstance(path_or_buf, compat.string_types): try: exists = os.path.exists(path_or_buf) except (TypeError, ValueError): exists = False if exists: with open(path_or_buf, 'rb') as fh: return read(fh) # treat as a binary-like if isinstance(path_or_buf, compat.binary_type): fh = None try: fh = compat.BytesIO(path_or_buf) return read(fh) finally: if fh is not None: fh.close() # a buffer like if hasattr(path_or_buf, 'read') and compat.callable(path_or_buf.read): return read(path_or_buf) raise ValueError('path_or_buf needs to be a string file path or file-like') dtype_dict = {21: np.dtype('M8[ns]'), u('datetime64[ns]'): np.dtype('M8[ns]'), u('datetime64[us]'): np.dtype('M8[us]'), 22: np.dtype('m8[ns]'), u('timedelta64[ns]'): np.dtype('m8[ns]'), u('timedelta64[us]'): np.dtype('m8[us]'), # this is platform int, which we need to remap to np.int64 # for compat on windows platforms 7: np.dtype('int64'), 'category': 'category' } def dtype_for(t): """ return my dtype mapping, whether number or name """ if t in dtype_dict: return dtype_dict[t] return np.typeDict.get(t, t) c2f_dict = {'complex': np.float64, 'complex128': np.float64, 'complex64': np.float32} # numpy 1.6.1 compat if hasattr(np, 'float128'): c2f_dict['complex256'] = np.float128 def c2f(r, i, ctype_name): """ Convert strings to complex number instance with specified numpy type. """ ftype = c2f_dict[ctype_name] return np.typeDict[ctype_name](ftype(r) + 1j * ftype(i)) def convert(values): """ convert the numpy values to a list """ dtype = values.dtype if is_categorical_dtype(values): return values elif is_object_dtype(dtype): return values.ravel().tolist() if needs_i8_conversion(dtype): values = values.view('i8') v = values.ravel() if compressor == 'zlib': _check_zlib() # return string arrays like they are if dtype == np.object_: return v.tolist() # convert to a bytes array v = v.tostring() return ExtType(0, zlib.compress(v)) elif compressor == 'blosc': _check_blosc() # return string arrays like they are if dtype == np.object_: return v.tolist() # convert to a bytes array v = v.tostring() return ExtType(0, blosc.compress(v, typesize=dtype.itemsize)) # ndarray (on original dtype) return ExtType(0, v.tostring()) def unconvert(values, dtype, compress=None): as_is_ext = isinstance(values, ExtType) and values.code == 0 if as_is_ext: values = values.data if is_categorical_dtype(dtype): return values elif is_object_dtype(dtype): return np.array(values, dtype=object) dtype = pandas_dtype(dtype).base if not as_is_ext: values = values.encode('latin1') if compress: if compress == u'zlib': _check_zlib() decompress = zlib.decompress elif compress == u'blosc': _check_blosc() decompress = blosc.decompress else: raise ValueError("compress must be one of 'zlib' or 'blosc'") try: return np.frombuffer( _move_into_mutable_buffer(decompress(values)), dtype=dtype, ) except _BadMove as e: # Pull the decompressed data off of the `_BadMove` exception. # We don't just store this in the locals because we want to # minimize the risk of giving users access to a `bytes` object # whose data is also given to a mutable buffer. values = e.args[0] if len(values) > 1: # The empty string and single characters are memoized in many # string creating functions in the capi. This case should not # warn even though we need to make a copy because we are only # copying at most 1 byte. warnings.warn( 'copying data after decompressing; this may mean that' ' decompress is caching its result', PerformanceWarning, ) # fall through to copying `np.fromstring` # Copy the string into a numpy array. return np.fromstring(values, dtype=dtype) def encode(obj): """ Data encoder """ tobj = type(obj) if isinstance(obj, Index): if isinstance(obj, RangeIndex): return {u'typ': u'range_index', u'klass': u(obj.__class__.__name__), u'name': getattr(obj, 'name', None), u'start': getattr(obj, '_start', None), u'stop': getattr(obj, '_stop', None), u'step': getattr(obj, '_step', None)} elif isinstance(obj, PeriodIndex): return {u'typ': u'period_index', u'klass': u(obj.__class__.__name__), u'name': getattr(obj, 'name', None), u'freq': u_safe(getattr(obj, 'freqstr', None)), u'dtype': u(obj.dtype.name), u'data': convert(obj.asi8), u'compress': compressor} elif isinstance(obj, DatetimeIndex): tz = getattr(obj, 'tz', None) # store tz info and data as UTC if tz is not None: tz = u(tz.zone) obj = obj.tz_convert('UTC') return {u'typ': u'datetime_index', u'klass': u(obj.__class__.__name__), u'name': getattr(obj, 'name', None), u'dtype': u(obj.dtype.name), u'data': convert(obj.asi8), u'freq': u_safe(getattr(obj, 'freqstr', None)), u'tz': tz, u'compress': compressor} elif isinstance(obj, MultiIndex): return {u'typ': u'multi_index', u'klass': u(obj.__class__.__name__), u'names': getattr(obj, 'names', None), u'dtype': u(obj.dtype.name), u'data': convert(obj.values), u'compress': compressor} else: return {u'typ': u'index', u'klass': u(obj.__class__.__name__), u'name': getattr(obj, 'name', None), u'dtype': u(obj.dtype.name), u'data': convert(obj.values), u'compress': compressor} elif isinstance(obj, Categorical): return {u'typ': u'category', u'klass': u(obj.__class__.__name__), u'name': getattr(obj, 'name', None), u'codes': obj.codes, u'categories': obj.categories, u'ordered': obj.ordered, u'compress': compressor} elif isinstance(obj, Series): if isinstance(obj, SparseSeries): raise NotImplementedError( 'msgpack sparse series is not implemented' ) # d = {'typ': 'sparse_series', # 'klass': obj.__class__.__name__, # 'dtype': obj.dtype.name, # 'index': obj.index, # 'sp_index': obj.sp_index, # 'sp_values': convert(obj.sp_values), # 'compress': compressor} # for f in ['name', 'fill_value', 'kind']: # d[f] = getattr(obj, f, None) # return d else: return {u'typ': u'series', u'klass': u(obj.__class__.__name__), u'name': getattr(obj, 'name', None), u'index': obj.index, u'dtype': u(obj.dtype.name), u'data': convert(obj.values), u'compress': compressor} elif issubclass(tobj, NDFrame): if isinstance(obj, SparseDataFrame): raise NotImplementedError( 'msgpack sparse frame is not implemented' ) # d = {'typ': 'sparse_dataframe', # 'klass': obj.__class__.__name__, # 'columns': obj.columns} # for f in ['default_fill_value', 'default_kind']: # d[f] = getattr(obj, f, None) # d['data'] = dict([(name, ss) # for name, ss in compat.iteritems(obj)]) # return d elif isinstance(obj, SparsePanel): raise NotImplementedError( 'msgpack sparse frame is not implemented' ) # d = {'typ': 'sparse_panel', # 'klass': obj.__class__.__name__, # 'items': obj.items} # for f in ['default_fill_value', 'default_kind']: # d[f] = getattr(obj, f, None) # d['data'] = dict([(name, df) # for name, df in compat.iteritems(obj)]) # return d else: data = obj._data if not data.is_consolidated(): data = data.consolidate() # the block manager return {u'typ': u'block_manager', u'klass': u(obj.__class__.__name__), u'axes': data.axes, u'blocks': [{u'locs': b.mgr_locs.as_array, u'values': convert(b.values), u'shape': b.values.shape, u'dtype': u(b.dtype.name), u'klass': u(b.__class__.__name__), u'compress': compressor} for b in data.blocks] } elif isinstance(obj, (datetime, date, np.datetime64, timedelta, np.timedelta64, NaTType)): if isinstance(obj, Timestamp): tz = obj.tzinfo if tz is not None: tz = u(tz.zone) offset = obj.offset if offset is not None: offset = u(offset.freqstr) return {u'typ': u'timestamp', u'value': obj.value, u'offset': offset, u'tz': tz} if isinstance(obj, NaTType): return {u'typ': u'nat'} elif isinstance(obj, np.timedelta64): return {u'typ': u'timedelta64', u'data': obj.view('i8')} elif isinstance(obj, timedelta): return {u'typ': u'timedelta', u'data': (obj.days, obj.seconds, obj.microseconds)} elif isinstance(obj, np.datetime64): return {u'typ': u'datetime64', u'data': u(str(obj))} elif isinstance(obj, datetime): return {u'typ': u'datetime', u'data': u(obj.isoformat())} elif isinstance(obj, date): return {u'typ': u'date', u'data': u(obj.isoformat())} raise Exception("cannot encode this datetimelike object: %s" % obj) elif isinstance(obj, Period): return {u'typ': u'period', u'ordinal': obj.ordinal, u'freq': u(obj.freq)} elif isinstance(obj, BlockIndex): return {u'typ': u'block_index', u'klass': u(obj.__class__.__name__), u'blocs': obj.blocs, u'blengths': obj.blengths, u'length': obj.length} elif isinstance(obj, IntIndex): return {u'typ': u'int_index', u'klass': u(obj.__class__.__name__), u'indices': obj.indices, u'length': obj.length} elif isinstance(obj, np.ndarray): return {u'typ': u'ndarray', u'shape': obj.shape, u'ndim': obj.ndim, u'dtype': u(obj.dtype.name), u'data': convert(obj), u'compress': compressor} elif isinstance(obj, np.number): if np.iscomplexobj(obj): return {u'typ': u'np_scalar', u'sub_typ': u'np_complex', u'dtype': u(obj.dtype.name), u'real': u(obj.real.__repr__()), u'imag': u(obj.imag.__repr__())} else: return {u'typ': u'np_scalar', u'dtype': u(obj.dtype.name), u'data': u(obj.__repr__())} elif isinstance(obj, complex): return {u'typ': u'np_complex', u'real': u(obj.real.__repr__()), u'imag': u(obj.imag.__repr__())} return obj def decode(obj): """ Decoder for deserializing numpy data types. """ typ = obj.get(u'typ') if typ is None: return obj elif typ == u'timestamp': return Timestamp(obj[u'value'], tz=obj[u'tz'], offset=obj[u'offset']) elif typ == u'nat': return NaT elif typ == u'period': return Period(ordinal=obj[u'ordinal'], freq=obj[u'freq']) elif typ == u'index': dtype = dtype_for(obj[u'dtype']) data = unconvert(obj[u'data'], dtype, obj.get(u'compress')) return globals()[obj[u'klass']](data, dtype=dtype, name=obj[u'name']) elif typ == u'range_index': return globals()[obj[u'klass']](obj[u'start'], obj[u'stop'], obj[u'step'], name=obj[u'name']) elif typ == u'multi_index': dtype = dtype_for(obj[u'dtype']) data = unconvert(obj[u'data'], dtype, obj.get(u'compress')) data = [tuple(x) for x in data] return globals()[obj[u'klass']].from_tuples(data, names=obj[u'names']) elif typ == u'period_index': data = unconvert(obj[u'data'], np.int64, obj.get(u'compress')) d = dict(name=obj[u'name'], freq=obj[u'freq']) return globals()[obj[u'klass']](data, **d) elif typ == u'datetime_index': data = unconvert(obj[u'data'], np.int64, obj.get(u'compress')) d = dict(name=obj[u'name'], freq=obj[u'freq'], verify_integrity=False) result = globals()[obj[u'klass']](data, **d) tz = obj[u'tz'] # reverse tz conversion if tz is not None: result = result.tz_localize('UTC').tz_convert(tz) return result elif typ == u'category': from_codes = globals()[obj[u'klass']].from_codes return from_codes(codes=obj[u'codes'], categories=obj[u'categories'], ordered=obj[u'ordered'], name=obj[u'name']) elif typ == u'series': dtype = dtype_for(obj[u'dtype']) pd_dtype = pandas_dtype(dtype) np_dtype = pandas_dtype(dtype).base index = obj[u'index'] result = globals()[obj[u'klass']](unconvert(obj[u'data'], dtype, obj[u'compress']), index=index, dtype=np_dtype, name=obj[u'name']) tz = getattr(pd_dtype, 'tz', None) if tz: result = result.dt.tz_localize('UTC').dt.tz_convert(tz) return result elif typ == u'block_manager': axes = obj[u'axes'] def create_block(b): values = unconvert(b[u'values'], dtype_for(b[u'dtype']), b[u'compress']).reshape(b[u'shape']) # locs handles duplicate column names, and should be used instead # of items; see GH 9618 if u'locs' in b: placement = b[u'locs'] else: placement = axes[0].get_indexer(b[u'items']) return make_block(values=values, klass=getattr(internals, b[u'klass']), placement=placement, dtype=b[u'dtype']) blocks = [create_block(b) for b in obj[u'blocks']] return globals()[obj[u'klass']](BlockManager(blocks, axes)) elif typ == u'datetime': return parse(obj[u'data']) elif typ == u'datetime64': return np.datetime64(parse(obj[u'data'])) elif typ == u'date': return parse(obj[u'data']).date() elif typ == u'timedelta': return timedelta(*obj[u'data']) elif typ == u'timedelta64': return np.timedelta64(int(obj[u'data'])) # elif typ == 'sparse_series': # dtype = dtype_for(obj['dtype']) # return globals()[obj['klass']]( # unconvert(obj['sp_values'], dtype, obj['compress']), # sparse_index=obj['sp_index'], index=obj['index'], # fill_value=obj['fill_value'], kind=obj['kind'], name=obj['name']) # elif typ == 'sparse_dataframe': # return globals()[obj['klass']]( # obj['data'], columns=obj['columns'], # default_fill_value=obj['default_fill_value'], # default_kind=obj['default_kind'] # ) # elif typ == 'sparse_panel': # return globals()[obj['klass']]( # obj['data'], items=obj['items'], # default_fill_value=obj['default_fill_value'], # default_kind=obj['default_kind']) elif typ == u'block_index': return globals()[obj[u'klass']](obj[u'length'], obj[u'blocs'], obj[u'blengths']) elif typ == u'int_index': return globals()[obj[u'klass']](obj[u'length'], obj[u'indices']) elif typ == u'ndarray': return unconvert(obj[u'data'], np.typeDict[obj[u'dtype']], obj.get(u'compress')).reshape(obj[u'shape']) elif typ == u'np_scalar': if obj.get(u'sub_typ') == u'np_complex': return c2f(obj[u'real'], obj[u'imag'], obj[u'dtype']) else: dtype = dtype_for(obj[u'dtype']) try: return dtype(obj[u'data']) except: return dtype.type(obj[u'data']) elif typ == u'np_complex': return complex(obj[u'real'] + u'+' + obj[u'imag'] + u'j') elif isinstance(obj, (dict, list, set)): return obj else: return obj def pack(o, default=encode, encoding='utf-8', unicode_errors='strict', use_single_float=False, autoreset=1, use_bin_type=1): """ Pack an object and return the packed bytes. """ return Packer(default=default, encoding=encoding, unicode_errors=unicode_errors, use_single_float=use_single_float, autoreset=autoreset, use_bin_type=use_bin_type).pack(o) def unpack(packed, object_hook=decode, list_hook=None, use_list=False, encoding='utf-8', unicode_errors='strict', object_pairs_hook=None, max_buffer_size=0, ext_hook=ExtType): """ Unpack a packed object, return an iterator Note: packed lists will be returned as tuples """ return Unpacker(packed, object_hook=object_hook, list_hook=list_hook, use_list=use_list, encoding=encoding, unicode_errors=unicode_errors, object_pairs_hook=object_pairs_hook, max_buffer_size=max_buffer_size, ext_hook=ext_hook) class Packer(_Packer): def __init__(self, default=encode, encoding='utf-8', unicode_errors='strict', use_single_float=False, autoreset=1, use_bin_type=1): super(Packer, self).__init__(default=default, encoding=encoding, unicode_errors=unicode_errors, use_single_float=use_single_float, autoreset=autoreset, use_bin_type=use_bin_type) class Unpacker(_Unpacker): def __init__(self, file_like=None, read_size=0, use_list=False, object_hook=decode, object_pairs_hook=None, list_hook=None, encoding='utf-8', unicode_errors='strict', max_buffer_size=0, ext_hook=ExtType): super(Unpacker, self).__init__(file_like=file_like, read_size=read_size, use_list=use_list, object_hook=object_hook, object_pairs_hook=object_pairs_hook, list_hook=list_hook, encoding=encoding, unicode_errors=unicode_errors, max_buffer_size=max_buffer_size, ext_hook=ext_hook) class Iterator(object): """ manage the unpacking iteration, close the file on completion """ def __init__(self, path, **kwargs): self.path = path self.kwargs = kwargs def __iter__(self): needs_closing = True try: # see if we have an actual file if isinstance(self.path, compat.string_types): try: path_exists = os.path.exists(self.path) except TypeError: path_exists = False if path_exists: fh = open(self.path, 'rb') else: fh = compat.BytesIO(self.path) else: if not hasattr(self.path, 'read'): fh = compat.BytesIO(self.path) else: # a file-like needs_closing = False fh = self.path unpacker = unpack(fh) for o in unpacker: yield o finally: if needs_closing: fh.close()
#!/usr/bin/python # -*- coding: utf-8 -*- # ====================================================================== # Copyright 2016 Julien LE CLEACH # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ====================================================================== import zmq from supervisor.loggers import Logger from supvisors.ttypes import Payload from supvisors.utils import * # Constant for Zmq sockets INPROC_NAME = 'supvisors' ZMQ_LINGER = 0 # reference to the Zmq Context instance ZmqContext = zmq.Context.instance() class InternalEventPublisher(object): """ This class is the wrapper of the ZeroMQ socket that publishes the events to the Supvisors instances. Attributes are: - logger: a reference to the Supvisors logger, - address: the address name where this process is running, - socket: the ZeroMQ socket with a PUBLISH pattern, bound on the internal_port defined in the ['supvisors'] section of the Supervisor configuration file. """ def __init__(self, address: str, port: int, logger: Logger) -> None: """ Initialization of the attributes. """ # keep a reference to supvisors self.logger = logger # get local address self.address = address # create ZMQ socket self.socket = ZmqContext.socket(zmq.PUB) url = 'tcp://*:{}'.format(port) self.logger.info('binding InternalEventPublisher to %s' % url) self.socket.bind(url) def close(self) -> None: """ This method closes the PyZMQ socket. """ self.socket.close(ZMQ_LINGER) def send_tick_event(self, payload: Payload) -> None: """ Publishes the tick event with ZeroMQ. """ self.logger.trace('send TickEvent {}'.format(payload)) self.socket.send_pyobj((InternalEventHeaders.TICK, self.address, payload)) def send_process_event(self, payload: Payload) -> None: """ Publishes the process event with ZeroMQ. """ self.logger.trace('send ProcessEvent {}'.format(payload)) self.socket.send_pyobj((InternalEventHeaders.PROCESS, self.address, payload)) def send_statistics(self, payload: Payload) -> None: """ Publishes the statistics with ZeroMQ. """ self.logger.trace('send Statistics {}'.format(payload)) self.socket.send_pyobj((InternalEventHeaders.STATISTICS, self.address, payload)) class InternalEventSubscriber(object): """ Class for subscription to Listener events. Attributes: - port: the port number used for internal events, - socket: the PyZMQ subscriber. """ def __init__(self, addresses, port: int): """ Initialization of the attributes. """ self.port = port self.socket = ZmqContext.socket(zmq.SUB) # connect all addresses for address in addresses: url = 'tcp://{}:{}'.format(address, self.port) self.socket.connect(url) self.socket.setsockopt(zmq.SUBSCRIBE, b'') def close(self) -> None: """ This method closes the PyZMQ socket. """ self.socket.close(ZMQ_LINGER) def receive(self): """ Reception and pyobj de-serialization of one message. """ return self.socket.recv_pyobj(zmq.NOBLOCK) def disconnect(self, addresses) -> None: """ This method disconnects from the PyZMQ socket all addresses passed in parameter. """ for address in addresses: url = 'tcp://{}:{}'.format(address, self.port) self.socket.disconnect(url) class EventPublisher(object): """ Class for ZMQ publication of Supvisors events. """ def __init__(self, port, logger): """ Initialization of the attributes. """ self.logger = logger self.socket = ZmqContext.socket(zmq.PUB) # WARN: this is a local binding, only visible to processes located on the same address url = 'tcp://127.0.0.1:%d' % port self.logger.info('binding local Supvisors EventPublisher to %s' % url) self.socket.bind(url) def close(self) -> None: """ This method closes the PyZMQ socket. """ self.socket.close(ZMQ_LINGER) def send_supvisors_status(self, status: Payload) -> None: """ This method sends a serialized form of the supvisors status through the socket. """ self.logger.trace('send SupvisorsStatus {}'.format(status)) self.socket.send_string(EventHeaders.SUPVISORS, zmq.SNDMORE) self.socket.send_json(status) def send_address_status(self, status: Payload) -> None: """ This method sends a serialized form of the address status through the socket. """ self.logger.trace('send AddressStatus {}'.format(status)) self.socket.send_string(EventHeaders.ADDRESS, zmq.SNDMORE) self.socket.send_json(status) def send_application_status(self, status: Payload) -> None: """ This method sends a serialized form of the application status through the socket. """ self.logger.trace('send ApplicationStatus {}'.format(status)) self.socket.send_string(EventHeaders.APPLICATION, zmq.SNDMORE) self.socket.send_json(status) def send_process_event(self, address: str, event: Payload) -> None: """ This method sends a process event through the socket. """ # build the event before it is sent evt = event.copy() evt['address'] = address self.logger.trace('send Process Event {}'.format(evt)) self.socket.send_string(EventHeaders.PROCESS_EVENT, zmq.SNDMORE) self.socket.send_json(evt) def send_process_status(self, status: Payload) -> None: """ This method sends a serialized form of the process status through the socket. """ self.logger.trace('send Process Status {}'.format(status)) self.socket.send_string(EventHeaders.PROCESS_STATUS, zmq.SNDMORE) self.socket.send_json(status) class EventSubscriber(object): """ The EventSubscriber wraps the ZeroMQ socket that connects to **Supvisors**. The TCP socket is configured with a ZeroMQ ``SUBSCRIBE`` pattern. It is connected to the **Supvisors** instance running on the localhost and bound on the event port. The EventSubscriber requires: - the event port number used by **Supvisors** to publish its events, - a logger reference to log traces. Attributes: - logger: the reference to the logger, - socket: the ZeroMQ socket connected to **Supvisors**. """ def __init__(self, zmq_context, port, logger): """ Initialization of the attributes. """ self.logger = logger # create ZeroMQ socket self.socket = zmq_context.socket(zmq.SUB) # WARN: this is a local binding, only visible to processes # located on the same address url = 'tcp://127.0.0.1:%d' % port self.logger.info('connecting EventSubscriber to Supvisors at %s' % url) self.socket.connect(url) self.logger.debug('EventSubscriber connected') def close(self): """ Close the ZeroMQ socket. """ self.socket.close(ZMQ_LINGER) # subscription part def subscribe_all(self): """ Subscription to all events. """ self.socket.setsockopt(zmq.SUBSCRIBE, b'') def subscribe_supvisors_status(self): """ Subscription to Supvisors Status messages. """ self.subscribe(EventHeaders.SUPVISORS) def subscribe_address_status(self): """ Subscription to Address Status messages. """ self.subscribe(EventHeaders.ADDRESS) def subscribe_application_status(self): """ Subscription to Application Status messages. """ self.subscribe(EventHeaders.APPLICATION) def subscribe_process_event(self): """ Subscription to Process Event messages. """ self.subscribe(EventHeaders.PROCESS_EVENT) def subscribe_process_status(self): """ Subscription to Process Status messages. """ self.subscribe(EventHeaders.PROCESS_STATUS) def subscribe(self, code): """ Subscription to the event named code. """ self.socket.setsockopt(zmq.SUBSCRIBE, code.encode('utf-8')) # unsubscription part def unsubscribe_all(self): """ Subscription to all events. """ self.socket.setsockopt(zmq.UNSUBSCRIBE, b'') def unsubscribe_supvisors_status(self): """ Subscription to Supvisors Status messages. """ self.unsubscribe(EventHeaders.SUPVISORS) def unsubscribe_address_status(self): """ Subscription to Address Status messages. """ self.unsubscribe(EventHeaders.ADDRESS) def unsubscribe_application_status(self): """ Subscription to Application Status messages. """ self.unsubscribe(EventHeaders.APPLICATION) def unsubscribe_process_event(self): """ Subscription to Process Event messages. """ self.unsubscribe(EventHeaders.PROCESS_EVENT) def unsubscribe_process_status(self): """ Subscription to Process Status messages. """ self.unsubscribe(EventHeaders.PROCESS_STATUS) def unsubscribe(self, code): """ Remove subscription to the event named code. """ self.socket.setsockopt(zmq.UNSUBSCRIBE, code.encode('utf-8')) # reception part def receive(self): """ Reception of two-parts message: - header as an unicode string, - data encoded in JSON. """ return self.socket.recv_string(), self.socket.recv_json() class RequestPuller(object): """ Class for pulling deferred XML-RPC. Attributes: - socket: the PyZMQ puller. As it uses an inproc transport, this implies the following conditions: - the RequestPusher instance and the RequestPuller instance MUST share the same ZMQ context, - the RequestPusher instance MUST be created before the RequestPuller instance. """ def __init__(self): """ Initialization of the attributes. """ self.socket = ZmqContext.socket(zmq.PULL) url = 'inproc://' + INPROC_NAME self.socket.connect(url) def close(self): """ This method closes the PyZMQ socket. """ self.socket.close(ZMQ_LINGER) def receive(self): """ Reception and pyobj deserialization of one message. """ return self.socket.recv_pyobj() class RequestPusher(object): """ Class for pushing deferred XML-RPC. Attributes: - logger: a reference to the Supvisors logger, - socket: the PyZMQ pusher. As it uses an inproc transport, this implies the following conditions: - the RequestPusher instance and the RequestPuller instance MUST share the same ZMQ context, - the RequestPusher instance MUST be created before the RequestPuller instance. """ def __init__(self, logger): """ Initialization of the attributes. """ self.logger = logger self.socket = ZmqContext.socket(zmq.PUSH) url = 'inproc://' + INPROC_NAME self.logger.info('binding RequestPuller to %s' % url) self.socket.bind(url) def close(self): """ This method closes the PyZMQ socket. """ self.socket.close(ZMQ_LINGER) def send_check_address(self, address_name: str) -> None: """ Send request to check address. """ self.logger.debug('RequestPusher.send_check_address: address_name={}'.format(address_name)) try: self.socket.send_pyobj((DeferredRequestHeaders.CHECK_ADDRESS, (address_name,)), zmq.NOBLOCK) except zmq.error.Again: self.logger.error('RequestPusher.send_check_address: CHECK_ADDRESS not sent') def send_isolate_addresses(self, address_names): """ Send request to isolate address. """ self.logger.trace('RequestPusher.send_isolate_addresses: address_names={}'.format(address_names)) try: self.socket.send_pyobj((DeferredRequestHeaders.ISOLATE_ADDRESSES, address_names), zmq.NOBLOCK) except zmq.error.Again: self.logger.error('RequestPusher.send_isolate_addresses: ISOLATE_ADDRESSES not sent') def send_start_process(self, address_name, namespec, extra_args): """ Send request to start process. """ self.logger.trace('send START_PROCESS {} to {} with {}'.format(namespec, address_name, extra_args)) try: self.socket.send_pyobj((DeferredRequestHeaders.START_PROCESS, (address_name, namespec, extra_args)), zmq.NOBLOCK) except zmq.error.Again: self.logger.error('START_PROCESS not sent') def send_stop_process(self, address_name, namespec): """ Send request to stop process. """ self.logger.trace('send STOP_PROCESS {} to {}'.format(namespec, address_name)) try: self.socket.send_pyobj((DeferredRequestHeaders.STOP_PROCESS, (address_name, namespec)), zmq.NOBLOCK) except zmq.error.Again: self.logger.error('STOP_PROCESS not sent') def send_restart(self, address_name): """ Send request to restart a Supervisor. """ self.logger.trace('send RESTART {}'.format(address_name)) try: self.socket.send_pyobj((DeferredRequestHeaders.RESTART, (address_name,)), zmq.NOBLOCK) except zmq.error.Again: self.logger.error('RESTART not sent') def send_shutdown(self, address_name): """ Send request to shutdown a Supervisor. """ self.logger.trace('send SHUTDOWN {}'.format(address_name)) try: self.socket.send_pyobj((DeferredRequestHeaders.SHUTDOWN, (address_name,)), zmq.NOBLOCK) except zmq.error.Again: self.logger.error('SHUTDOWN not sent') class SupervisorZmq(object): """ Class for PyZmq context and sockets used from the Supervisor thread. This instance owns the PyZmq context that is shared between the Supervisor thread and the Supvisors thread. """ def __init__(self, supvisors): """ Create the sockets. """ self.publisher = EventPublisher(supvisors.options.event_port, supvisors.logger) self.internal_publisher = InternalEventPublisher(supvisors.address_mapper.local_address, supvisors.options.internal_port, supvisors.logger) self.pusher = RequestPusher(supvisors.logger) def close(self): """ Close the sockets. """ self.pusher.close() self.internal_publisher.close() self.publisher.close() class SupvisorsZmq(object): """ Class for PyZmq context and sockets used from the Supvisors thread. """ def __init__(self, supvisors): """ Create the sockets. The Supervisor logger cannot be used here (not thread-safe). """ self.internal_subscriber = InternalEventSubscriber(supvisors.address_mapper.addresses, supvisors.options.internal_port) self.puller = RequestPuller() def close(self): """ Close the sockets. """ self.puller.close() self.internal_subscriber.close()
"""BaseHTTPServer that implements the Python WSGI protocol (PEP 333, rev 1.21) This is both an example of how WSGI can be implemented, and a basis for running simple web applications on a local machine, such as might be done when testing or debugging an application. It has not been reviewed for security issues, however, and we strongly recommend that you use a "real" web server for production use. For example usage, see the 'if __name__=="__main__"' block at the end of the module. See also the BaseHTTPServer module docs for other API information. """ from http.server import BaseHTTPRequestHandler, HTTPServer import sys import urllib.parse from wsgiref.handlers import SimpleHandler __version__ = "0.1" __all__ = ['WSGIServer', 'WSGIRequestHandler', 'demo_app', 'make_server'] server_version = "WSGIServer/" + __version__ sys_version = "Python/" + sys.version.split()[0] software_version = server_version + ' ' + sys_version class ServerHandler(SimpleHandler): server_software = software_version def close(self): try: self.request_handler.log_request( self.status.split(' ',1)[0], self.bytes_sent ) finally: SimpleHandler.close(self) class WSGIServer(HTTPServer): """BaseHTTPServer that implements the Python WSGI protocol""" application = None def server_bind(self): """Override server_bind to store the server name.""" HTTPServer.server_bind(self) self.setup_environ() def setup_environ(self): # Set up base environment env = self.base_environ = {} env['SERVER_NAME'] = self.server_name env['GATEWAY_INTERFACE'] = 'CGI/1.1' env['SERVER_PORT'] = str(self.server_port) env['REMOTE_HOST']='' env['CONTENT_LENGTH']='' env['SCRIPT_NAME'] = '' def get_app(self): return self.application def set_app(self,application): self.application = application class WSGIRequestHandler(BaseHTTPRequestHandler): server_version = "WSGIServer/" + __version__ def get_environ(self): env = self.server.base_environ.copy() env['SERVER_PROTOCOL'] = self.request_version env['REQUEST_METHOD'] = self.command if '?' in self.path: path,query = self.path.split('?',1) else: path,query = self.path,'' env['PATH_INFO'] = urllib.parse.unquote(path) env['QUERY_STRING'] = query host = self.address_string() if host != self.client_address[0]: env['REMOTE_HOST'] = host env['REMOTE_ADDR'] = self.client_address[0] if self.headers.get('content-type') is None: env['CONTENT_TYPE'] = self.headers.get_content_type() else: env['CONTENT_TYPE'] = self.headers['content-type'] length = self.headers.get('content-length') if length: env['CONTENT_LENGTH'] = length for k, v in self.headers.items(): k=k.replace('-','_').upper(); v=v.strip() if k in env: continue # skip content length, type,etc. if 'HTTP_'+k in env: env['HTTP_'+k] += ','+v # comma-separate multiple headers else: env['HTTP_'+k] = v return env def get_stderr(self): return sys.stderr def handle(self): """Handle a single HTTP request""" self.raw_requestline = self.rfile.readline() if not self.parse_request(): # An error code has been sent, just exit return handler = ServerHandler( self.rfile, self.wfile, self.get_stderr(), self.get_environ() ) handler.request_handler = self # backpointer for logging handler.run(self.server.get_app()) def demo_app(environ,start_response): from io import StringIO stdout = StringIO() print("Hello world!", file=stdout) print(file=stdout) h = sorted(environ.items()) for k,v in h: print(k,'=',repr(v), file=stdout) start_response(b"200 OK", [(b'Content-Type',b'text/plain; charset=utf-8')]) return [stdout.getvalue().encode("utf-8")] def make_server( host, port, app, server_class=WSGIServer, handler_class=WSGIRequestHandler ): """Create a new WSGI server listening on `host` and `port` for `app`""" server = server_class((host, port), handler_class) server.set_app(app) return server if __name__ == '__main__': httpd = make_server('', 8000, demo_app) sa = httpd.socket.getsockname() print("Serving HTTP on", sa[0], "port", sa[1], "...") import webbrowser webbrowser.open('http://localhost:8000/xyz?abc') httpd.handle_request() # serve one request, then exit #
import os import six from twisted.trial import unittest from twisted.protocols.policies import WrappingFactory from twisted.python.filepath import FilePath from twisted.internet import reactor, defer, error from twisted.web import server, static, util, resource from twisted.web.test.test_webclient import ForeverTakingResource, \ NoLengthResource, HostHeaderResource, \ PayloadResource, BrokenDownloadResource from twisted.cred import portal, checkers, credentials from w3lib.url import path_to_file_uri from scrapy import twisted_version from scrapy.core.downloader.handlers import DownloadHandlers from scrapy.core.downloader.handlers.file import FileDownloadHandler from scrapy.core.downloader.handlers.http import HTTPDownloadHandler, HttpDownloadHandler from scrapy.core.downloader.handlers.http10 import HTTP10DownloadHandler from scrapy.core.downloader.handlers.http11 import HTTP11DownloadHandler from scrapy.core.downloader.handlers.s3 import S3DownloadHandler from scrapy.spiders import Spider from scrapy.http import Request from scrapy.settings import Settings from scrapy.utils.test import get_crawler from scrapy.utils.python import to_bytes from scrapy.exceptions import NotConfigured from tests.mockserver import MockServer, ssl_context_factory from tests.spiders import SingleRequestSpider class DummyDH(object): def __init__(self, crawler): pass class OffDH(object): def __init__(self, crawler): raise NotConfigured class LoadTestCase(unittest.TestCase): def test_enabled_handler(self): handlers = {'scheme': 'tests.test_downloader_handlers.DummyDH'} crawler = get_crawler(settings_dict={'DOWNLOAD_HANDLERS': handlers}) dh = DownloadHandlers(crawler) self.assertIn('scheme', dh._schemes) for scheme in handlers: # force load handlers dh._get_handler(scheme) self.assertIn('scheme', dh._handlers) self.assertNotIn('scheme', dh._notconfigured) def test_not_configured_handler(self): handlers = {'scheme': 'tests.test_downloader_handlers.OffDH'} crawler = get_crawler(settings_dict={'DOWNLOAD_HANDLERS': handlers}) dh = DownloadHandlers(crawler) self.assertIn('scheme', dh._schemes) for scheme in handlers: # force load handlers dh._get_handler(scheme) self.assertNotIn('scheme', dh._handlers) self.assertIn('scheme', dh._notconfigured) def test_disabled_handler(self): handlers = {'scheme': None} crawler = get_crawler(settings_dict={'DOWNLOAD_HANDLERS': handlers}) dh = DownloadHandlers(crawler) self.assertNotIn('scheme', dh._schemes) for scheme in handlers: # force load handlers dh._get_handler(scheme) self.assertNotIn('scheme', dh._handlers) self.assertIn('scheme', dh._notconfigured) class FileTestCase(unittest.TestCase): def setUp(self): self.tmpname = self.mktemp() fd = open(self.tmpname + '^', 'w') fd.write('0123456789') fd.close() self.download_request = FileDownloadHandler(Settings()).download_request def test_download(self): def _test(response): self.assertEquals(response.url, request.url) self.assertEquals(response.status, 200) self.assertEquals(response.body, b'0123456789') request = Request(path_to_file_uri(self.tmpname + '^')) assert request.url.upper().endswith('%5E') return self.download_request(request, Spider('foo')).addCallback(_test) def test_non_existent(self): request = Request('file://%s' % self.mktemp()) d = self.download_request(request, Spider('foo')) return self.assertFailure(d, IOError) class HttpTestCase(unittest.TestCase): scheme = 'http' download_handler_cls = HTTPDownloadHandler def setUp(self): name = self.mktemp() os.mkdir(name) FilePath(name).child("file").setContent(b"0123456789") r = static.File(name) r.putChild(b"redirect", util.Redirect(b"/file")) r.putChild(b"wait", ForeverTakingResource()) r.putChild(b"hang-after-headers", ForeverTakingResource(write=True)) r.putChild(b"nolength", NoLengthResource()) r.putChild(b"host", HostHeaderResource()) r.putChild(b"payload", PayloadResource()) r.putChild(b"broken", BrokenDownloadResource()) self.site = server.Site(r, timeout=None) self.wrapper = WrappingFactory(self.site) self.host = 'localhost' if self.scheme == 'https': self.port = reactor.listenSSL( 0, self.wrapper, ssl_context_factory(), interface=self.host) else: self.port = reactor.listenTCP(0, self.wrapper, interface=self.host) self.portno = self.port.getHost().port self.download_handler = self.download_handler_cls(Settings()) self.download_request = self.download_handler.download_request @defer.inlineCallbacks def tearDown(self): yield self.port.stopListening() if hasattr(self.download_handler, 'close'): yield self.download_handler.close() def getURL(self, path): return "%s://%s:%d/%s" % (self.scheme, self.host, self.portno, path) def test_download(self): request = Request(self.getURL('file')) d = self.download_request(request, Spider('foo')) d.addCallback(lambda r: r.body) d.addCallback(self.assertEquals, b"0123456789") return d def test_download_head(self): request = Request(self.getURL('file'), method='HEAD') d = self.download_request(request, Spider('foo')) d.addCallback(lambda r: r.body) d.addCallback(self.assertEquals, b'') return d def test_redirect_status(self): request = Request(self.getURL('redirect')) d = self.download_request(request, Spider('foo')) d.addCallback(lambda r: r.status) d.addCallback(self.assertEquals, 302) return d def test_redirect_status_head(self): request = Request(self.getURL('redirect'), method='HEAD') d = self.download_request(request, Spider('foo')) d.addCallback(lambda r: r.status) d.addCallback(self.assertEquals, 302) return d @defer.inlineCallbacks def test_timeout_download_from_spider(self): if self.scheme == 'https': raise unittest.SkipTest( 'test_timeout_download_from_spider skipped under https') spider = Spider('foo') meta = {'download_timeout': 0.2} # client connects but no data is received request = Request(self.getURL('wait'), meta=meta) d = self.download_request(request, spider) yield self.assertFailure(d, defer.TimeoutError, error.TimeoutError) # client connects, server send headers and some body bytes but hangs request = Request(self.getURL('hang-after-headers'), meta=meta) d = self.download_request(request, spider) yield self.assertFailure(d, defer.TimeoutError, error.TimeoutError) def test_host_header_not_in_request_headers(self): def _test(response): self.assertEquals( response.body, to_bytes('%s:%d' % (self.host, self.portno))) self.assertEquals(request.headers, {}) request = Request(self.getURL('host')) return self.download_request(request, Spider('foo')).addCallback(_test) def test_host_header_seted_in_request_headers(self): def _test(response): self.assertEquals(response.body, b'example.com') self.assertEquals(request.headers.get('Host'), b'example.com') request = Request(self.getURL('host'), headers={'Host': 'example.com'}) return self.download_request(request, Spider('foo')).addCallback(_test) d = self.download_request(request, Spider('foo')) d.addCallback(lambda r: r.body) d.addCallback(self.assertEquals, b'example.com') return d def test_payload(self): body = b'1'*100 # PayloadResource requires body length to be 100 request = Request(self.getURL('payload'), method='POST', body=body) d = self.download_request(request, Spider('foo')) d.addCallback(lambda r: r.body) d.addCallback(self.assertEquals, body) return d class DeprecatedHttpTestCase(HttpTestCase): """HTTP 1.0 test case""" download_handler_cls = HttpDownloadHandler class Http10TestCase(HttpTestCase): """HTTP 1.0 test case""" download_handler_cls = HTTP10DownloadHandler class Https10TestCase(Http10TestCase): scheme = 'https' class Http11TestCase(HttpTestCase): """HTTP 1.1 test case""" download_handler_cls = HTTP11DownloadHandler if twisted_version < (11, 1, 0): skip = 'HTTP1.1 not supported in twisted < 11.1.0' def test_download_without_maxsize_limit(self): request = Request(self.getURL('file')) d = self.download_request(request, Spider('foo')) d.addCallback(lambda r: r.body) d.addCallback(self.assertEquals, b"0123456789") return d @defer.inlineCallbacks def test_download_with_maxsize(self): request = Request(self.getURL('file')) # 10 is minimal size for this request and the limit is only counted on # response body. (regardless of headers) d = self.download_request(request, Spider('foo', download_maxsize=10)) d.addCallback(lambda r: r.body) d.addCallback(self.assertEquals, b"0123456789") yield d d = self.download_request(request, Spider('foo', download_maxsize=9)) yield self.assertFailure(d, defer.CancelledError, error.ConnectionAborted) @defer.inlineCallbacks def test_download_with_maxsize_per_req(self): meta = {'download_maxsize': 2} request = Request(self.getURL('file'), meta=meta) d = self.download_request(request, Spider('foo')) yield self.assertFailure(d, defer.CancelledError, error.ConnectionAborted) @defer.inlineCallbacks def test_download_with_small_maxsize_per_spider(self): request = Request(self.getURL('file')) d = self.download_request(request, Spider('foo', download_maxsize=2)) yield self.assertFailure(d, defer.CancelledError, error.ConnectionAborted) def test_download_with_large_maxsize_per_spider(self): request = Request(self.getURL('file')) d = self.download_request(request, Spider('foo', download_maxsize=100)) d.addCallback(lambda r: r.body) d.addCallback(self.assertEquals, b"0123456789") return d class Https11TestCase(Http11TestCase): scheme = 'https' class Http11MockServerTestCase(unittest.TestCase): """HTTP 1.1 test case with MockServer""" if twisted_version < (11, 1, 0): skip = 'HTTP1.1 not supported in twisted < 11.1.0' def setUp(self): self.mockserver = MockServer() self.mockserver.__enter__() def tearDown(self): self.mockserver.__exit__(None, None, None) @defer.inlineCallbacks def test_download_with_content_length(self): crawler = get_crawler(SingleRequestSpider) # http://localhost:8998/partial set Content-Length to 1024, use download_maxsize= 1000 to avoid # download it yield crawler.crawl(seed=Request(url='http://localhost:8998/partial', meta={'download_maxsize': 1000})) failure = crawler.spider.meta['failure'] self.assertIsInstance(failure.value, defer.CancelledError) @defer.inlineCallbacks def test_download(self): crawler = get_crawler(SingleRequestSpider) yield crawler.crawl(seed=Request(url='http://localhost:8998')) failure = crawler.spider.meta.get('failure') self.assertTrue(failure == None) reason = crawler.spider.meta['close_reason'] self.assertTrue(reason, 'finished') @defer.inlineCallbacks def test_download_gzip_response(self): if twisted_version > (12, 3, 0): crawler = get_crawler(SingleRequestSpider) body = b'1'*100 # PayloadResource requires body length to be 100 request = Request('http://localhost:8998/payload', method='POST', body=body, meta={'download_maxsize': 50}) yield crawler.crawl(seed=request) failure = crawler.spider.meta['failure'] # download_maxsize < 100, hence the CancelledError self.assertIsInstance(failure.value, defer.CancelledError) if six.PY2: request.headers.setdefault(b'Accept-Encoding', b'gzip,deflate') request = request.replace(url='http://localhost:8998/xpayload') yield crawler.crawl(seed=request) # download_maxsize = 50 is enough for the gzipped response failure = crawler.spider.meta.get('failure') self.assertTrue(failure == None) reason = crawler.spider.meta['close_reason'] self.assertTrue(reason, 'finished') else: # See issue https://twistedmatrix.com/trac/ticket/8175 raise unittest.SkipTest("xpayload only enabled for PY2") else: raise unittest.SkipTest("xpayload and payload endpoint only enabled for twisted > 12.3.0") class UriResource(resource.Resource): """Return the full uri that was requested""" def getChild(self, path, request): return self def render(self, request): return request.uri class HttpProxyTestCase(unittest.TestCase): download_handler_cls = HTTPDownloadHandler def setUp(self): site = server.Site(UriResource(), timeout=None) wrapper = WrappingFactory(site) self.port = reactor.listenTCP(0, wrapper, interface='127.0.0.1') self.portno = self.port.getHost().port self.download_handler = self.download_handler_cls(Settings()) self.download_request = self.download_handler.download_request @defer.inlineCallbacks def tearDown(self): yield self.port.stopListening() if hasattr(self.download_handler, 'close'): yield self.download_handler.close() def getURL(self, path): return "http://127.0.0.1:%d/%s" % (self.portno, path) def test_download_with_proxy(self): def _test(response): self.assertEquals(response.status, 200) self.assertEquals(response.url, request.url) self.assertEquals(response.body, b'http://example.com') http_proxy = self.getURL('') request = Request('http://example.com', meta={'proxy': http_proxy}) return self.download_request(request, Spider('foo')).addCallback(_test) def test_download_with_proxy_https_noconnect(self): def _test(response): self.assertEquals(response.status, 200) self.assertEquals(response.url, request.url) self.assertEquals(response.body, b'https://example.com') http_proxy = '%s?noconnect' % self.getURL('') request = Request('https://example.com', meta={'proxy': http_proxy}) return self.download_request(request, Spider('foo')).addCallback(_test) def test_download_without_proxy(self): def _test(response): self.assertEquals(response.status, 200) self.assertEquals(response.url, request.url) self.assertEquals(response.body, b'/path/to/resource') request = Request(self.getURL('path/to/resource')) return self.download_request(request, Spider('foo')).addCallback(_test) class DeprecatedHttpProxyTestCase(unittest.TestCase): """Old deprecated reference to http10 downloader handler""" download_handler_cls = HttpDownloadHandler class Http10ProxyTestCase(HttpProxyTestCase): download_handler_cls = HTTP10DownloadHandler class Http11ProxyTestCase(HttpProxyTestCase): download_handler_cls = HTTP11DownloadHandler if twisted_version < (11, 1, 0): skip = 'HTTP1.1 not supported in twisted < 11.1.0' @defer.inlineCallbacks def test_download_with_proxy_https_timeout(self): """ Test TunnelingTCP4ClientEndpoint """ http_proxy = self.getURL('') domain = 'https://no-such-domain.nosuch' request = Request( domain, meta={'proxy': http_proxy, 'download_timeout': 0.2}) d = self.download_request(request, Spider('foo')) timeout = yield self.assertFailure(d, error.TimeoutError) self.assertIn(domain, timeout.osError) class HttpDownloadHandlerMock(object): def __init__(self, settings): pass def download_request(self, request, spider): return request class S3AnonTestCase(unittest.TestCase): try: import boto except ImportError: skip = 'missing boto library' def setUp(self): self.s3reqh = S3DownloadHandler(Settings(), httpdownloadhandler=HttpDownloadHandlerMock, #anon=True, # is implicit ) self.download_request = self.s3reqh.download_request self.spider = Spider('foo') def test_anon_request(self): req = Request('s3://aws-publicdatasets/') httpreq = self.download_request(req, self.spider) self.assertEqual(hasattr(self.s3reqh.conn, 'anon'), True) self.assertEqual(self.s3reqh.conn.anon, True) class S3TestCase(unittest.TestCase): download_handler_cls = S3DownloadHandler try: import boto except ImportError: skip = 'missing boto library' # test use same example keys than amazon developer guide # http://s3.amazonaws.com/awsdocs/S3/20060301/s3-dg-20060301.pdf # and the tests described here are the examples from that manual AWS_ACCESS_KEY_ID = '0PN5J17HBGZHT7JJ3X82' AWS_SECRET_ACCESS_KEY = 'uV3F3YluFJax1cknvbcGwgjvx4QpvB+leU8dUj2o' def setUp(self): s3reqh = S3DownloadHandler(Settings(), self.AWS_ACCESS_KEY_ID, self.AWS_SECRET_ACCESS_KEY, httpdownloadhandler=HttpDownloadHandlerMock) self.download_request = s3reqh.download_request self.spider = Spider('foo') def test_request_signing1(self): # gets an object from the johnsmith bucket. req = Request('s3://johnsmith/photos/puppy.jpg', headers={'Date': 'Tue, 27 Mar 2007 19:36:42 +0000'}) httpreq = self.download_request(req, self.spider) self.assertEqual(httpreq.headers['Authorization'], \ 'AWS 0PN5J17HBGZHT7JJ3X82:xXjDGYUmKxnwqr5KXNPGldn5LbA=') def test_request_signing2(self): # puts an object into the johnsmith bucket. req = Request('s3://johnsmith/photos/puppy.jpg', method='PUT', headers={ 'Content-Type': 'image/jpeg', 'Date': 'Tue, 27 Mar 2007 21:15:45 +0000', 'Content-Length': '94328', }) httpreq = self.download_request(req, self.spider) self.assertEqual(httpreq.headers['Authorization'], \ 'AWS 0PN5J17HBGZHT7JJ3X82:hcicpDDvL9SsO6AkvxqmIWkmOuQ=') def test_request_signing3(self): # lists the content of the johnsmith bucket. req = Request('s3://johnsmith/?prefix=photos&max-keys=50&marker=puppy', \ method='GET', headers={ 'User-Agent': 'Mozilla/5.0', 'Date': 'Tue, 27 Mar 2007 19:42:41 +0000', }) httpreq = self.download_request(req, self.spider) self.assertEqual(httpreq.headers['Authorization'], \ 'AWS 0PN5J17HBGZHT7JJ3X82:jsRt/rhG+Vtp88HrYL706QhE4w4=') def test_request_signing4(self): # fetches the access control policy sub-resource for the 'johnsmith' bucket. req = Request('s3://johnsmith/?acl', \ method='GET', headers={'Date': 'Tue, 27 Mar 2007 19:44:46 +0000'}) httpreq = self.download_request(req, self.spider) self.assertEqual(httpreq.headers['Authorization'], \ 'AWS 0PN5J17HBGZHT7JJ3X82:thdUi9VAkzhkniLj96JIrOPGi0g=') def test_request_signing5(self): # deletes an object from the 'johnsmith' bucket using the # path-style and Date alternative. req = Request('s3://johnsmith/photos/puppy.jpg', \ method='DELETE', headers={ 'Date': 'Tue, 27 Mar 2007 21:20:27 +0000', 'x-amz-date': 'Tue, 27 Mar 2007 21:20:26 +0000', }) httpreq = self.download_request(req, self.spider) self.assertEqual(httpreq.headers['Authorization'], \ 'AWS 0PN5J17HBGZHT7JJ3X82:k3nL7gH3+PadhTEVn5Ip83xlYzk=') def test_request_signing6(self): # uploads an object to a CNAME style virtual hosted bucket with metadata. req = Request('s3://static.johnsmith.net:8080/db-backup.dat.gz', \ method='PUT', headers={ 'User-Agent': 'curl/7.15.5', 'Host': 'static.johnsmith.net:8080', 'Date': 'Tue, 27 Mar 2007 21:06:08 +0000', 'x-amz-acl': 'public-read', 'content-type': 'application/x-download', 'Content-MD5': '4gJE4saaMU4BqNR0kLY+lw==', 'X-Amz-Meta-ReviewedBy': '[email protected],[email protected]', 'X-Amz-Meta-FileChecksum': '0x02661779', 'X-Amz-Meta-ChecksumAlgorithm': 'crc32', 'Content-Disposition': 'attachment; filename=database.dat', 'Content-Encoding': 'gzip', 'Content-Length': '5913339', }) httpreq = self.download_request(req, self.spider) self.assertEqual(httpreq.headers['Authorization'], \ 'AWS 0PN5J17HBGZHT7JJ3X82:C0FlOtU8Ylb9KDTpZqYkZPX91iI=') def test_request_signing7(self): # ensure that spaces are quoted properly before signing req = Request( ("s3://johnsmith/photos/my puppy.jpg" "?response-content-disposition=my puppy.jpg"), method='GET', headers={ 'Date': 'Tue, 27 Mar 2007 19:42:41 +0000', }) httpreq = self.download_request(req, self.spider) self.assertEqual( httpreq.headers['Authorization'], 'AWS 0PN5J17HBGZHT7JJ3X82:+CfvG8EZ3YccOrRVMXNaK2eKZmM=') class FTPTestCase(unittest.TestCase): username = "scrapy" password = "passwd" if twisted_version < (10, 2, 0): skip = "Twisted pre 10.2.0 doesn't allow to set home path other than /home" if six.PY3: skip = "Twisted missing ftp support for PY3" def setUp(self): from twisted.protocols.ftp import FTPRealm, FTPFactory from scrapy.core.downloader.handlers.ftp import FTPDownloadHandler # setup dirs and test file self.directory = self.mktemp() os.mkdir(self.directory) userdir = os.path.join(self.directory, self.username) os.mkdir(userdir) fp = FilePath(userdir) fp.child('file.txt').setContent("I have the power!") fp.child('file with spaces.txt').setContent("Moooooooooo power!") # setup server realm = FTPRealm(anonymousRoot=self.directory, userHome=self.directory) p = portal.Portal(realm) users_checker = checkers.InMemoryUsernamePasswordDatabaseDontUse() users_checker.addUser(self.username, self.password) p.registerChecker(users_checker, credentials.IUsernamePassword) self.factory = FTPFactory(portal=p) self.port = reactor.listenTCP(0, self.factory, interface="127.0.0.1") self.portNum = self.port.getHost().port self.download_handler = FTPDownloadHandler(Settings()) self.addCleanup(self.port.stopListening) def _add_test_callbacks(self, deferred, callback=None, errback=None): def _clean(data): self.download_handler.client.transport.loseConnection() return data deferred.addCallback(_clean) if callback: deferred.addCallback(callback) if errback: deferred.addErrback(errback) return deferred def test_ftp_download_success(self): request = Request(url="ftp://127.0.0.1:%s/file.txt" % self.portNum, meta={"ftp_user": self.username, "ftp_password": self.password}) d = self.download_handler.download_request(request, None) def _test(r): self.assertEqual(r.status, 200) self.assertEqual(r.body, 'I have the power!') self.assertEqual(r.headers, {'Local Filename': [''], 'Size': ['17']}) return self._add_test_callbacks(d, _test) def test_ftp_download_path_with_spaces(self): request = Request( url="ftp://127.0.0.1:%s/file with spaces.txt" % self.portNum, meta={"ftp_user": self.username, "ftp_password": self.password} ) d = self.download_handler.download_request(request, None) def _test(r): self.assertEqual(r.status, 200) self.assertEqual(r.body, 'Moooooooooo power!') self.assertEqual(r.headers, {'Local Filename': [''], 'Size': ['18']}) return self._add_test_callbacks(d, _test) def test_ftp_download_notexist(self): request = Request(url="ftp://127.0.0.1:%s/notexist.txt" % self.portNum, meta={"ftp_user": self.username, "ftp_password": self.password}) d = self.download_handler.download_request(request, None) def _test(r): self.assertEqual(r.status, 404) return self._add_test_callbacks(d, _test) def test_ftp_local_filename(self): local_fname = "/tmp/file.txt" request = Request(url="ftp://127.0.0.1:%s/file.txt" % self.portNum, meta={"ftp_user": self.username, "ftp_password": self.password, "ftp_local_filename": local_fname}) d = self.download_handler.download_request(request, None) def _test(r): self.assertEqual(r.body, local_fname) self.assertEqual(r.headers, {'Local Filename': ['/tmp/file.txt'], 'Size': ['17']}) self.assertTrue(os.path.exists(local_fname)) with open(local_fname) as f: self.assertEqual(f.read(), "I have the power!") os.remove(local_fname) return self._add_test_callbacks(d, _test) def test_invalid_credentials(self): from twisted.protocols.ftp import ConnectionLost request = Request(url="ftp://127.0.0.1:%s/file.txt" % self.portNum, meta={"ftp_user": self.username, "ftp_password": 'invalid'}) d = self.download_handler.download_request(request, None) def _test(r): self.assertEqual(r.type, ConnectionLost) return self._add_test_callbacks(d, errback=_test)
""" This module provide GUI for the neutron scattering length density calculator """ import wx import math import sys from sas.sasgui.guiframe.panel_base import PanelBase from sas.sasgui.guiframe.utils import format_number from sas.sasgui.guiframe.utils import check_float from sas.sasgui.guiframe.events import StatusEvent # the calculator default value for wavelength is 6 #import periodictable from periodictable import formula from periodictable.xsf import xray_energy from periodictable.xsf import xray_sld_from_atoms from periodictable.nsf import neutron_scattering from sas.sasgui.perspectives.calculator import calculator_widgets as widget from sas.sasgui.guiframe.documentation_window import DocumentationWindow WAVELENGTH = 6.0 _BOX_WIDTH = 76 _STATICBOX_WIDTH = 350 _SCALE = 1e-6 #SLD panel size if sys.platform.count("win32") > 0: PANEL_TOP = 0 _STATICBOX_WIDTH = 350 PANEL_SIZE = 400 FONT_VARIANT = 0 else: PANEL_TOP = 60 _STATICBOX_WIDTH = 380 PANEL_SIZE = 410 FONT_VARIANT = 1 class SldPanel(wx.Panel, PanelBase): """ Provides the SLD calculator GUI. """ ## Internal nickname for the window, used by the AUI manager window_name = "SLD Calculator" ## Name to appear on the window title bar window_caption = "SLD Calculator" ## Flag to tell the AUI manager to put this panel in the center pane CENTER_PANE = True def __init__(self, parent, base=None, *args, **kwds): """ """ wx.Panel.__init__(self, parent, *args, **kwds) PanelBase.__init__(self) #Font size self.SetWindowVariant(variant=FONT_VARIANT) # Object that receive status event self.base = base self.neutron_wavelength = WAVELENGTH self.xray_source_input = WAVELENGTH self.parent = parent #layout attribute self.compound_ctl = None self.density_ctl = None self.compound = "" self.density = "" self.neutron_wavelength_ctl = None self.xray_source_input_ctl = None self.xray_cbox = None self.neutron_sld_real_ctl = None self.neutron_sld_im_ctl = None self.xray_sld_real_ctl = None self.xray_sld_im_ctl = None self.neutron_abs_ctl = None self.neutron_inc_ctl = None self.neutron_length_ctl = None self.button_calculate = None self.xray_source = None #Draw the panel self._do_layout() self.SetAutoLayout(True) self.Layout() self.fill_xray_cbox() def _do_layout(self): """ Draw window content """ unit_a = '[A]' unit_density = '[g/cm^(3)]' unit_sld = '[1/A^(2)]' unit_cm1 = '[1/cm]' unit_cm = '[cm]' sizer_input = wx.GridBagSizer(5, 5) sizer_output = wx.GridBagSizer(5, 5) sizer_button = wx.BoxSizer(wx.HORIZONTAL) sizer1 = wx.BoxSizer(wx.HORIZONTAL) sizer2 = wx.BoxSizer(wx.HORIZONTAL) sizer3 = wx.BoxSizer(wx.HORIZONTAL) #---------inputs---------------- inputbox = wx.StaticBox(self, -1, "Input") boxsizer1 = wx.StaticBoxSizer(inputbox, wx.VERTICAL) boxsizer1.SetMinSize((_STATICBOX_WIDTH, -1)) compound_txt = wx.StaticText(self, -1, 'Compound ') self.compound_ctl = wx.TextCtrl(self, -1, size=(_BOX_WIDTH * 2, -1)) density_txt = wx.StaticText(self, -1, 'Density ') self.density_ctl = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, -1)) unit_density_txt = wx.StaticText(self, -1, unit_density) neutron_wavelength_txt = wx.StaticText(self, -1, 'Neutron wavelength') self.neutron_wavelength_ctl = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, -1)) self.neutron_wavelength_ctl.SetValue(str(self.neutron_wavelength)) self.xray_source_input_txt = wx.StaticText(self, -1, 'X-ray wavelength') self.xray_source_input_ctl = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, -1)) self.xray_source_input_ctl.SetValue(str(self.xray_source_input)) neutron_unit_a_txt = wx.StaticText(self, -1, unit_a) self.xray_cbox = wx.ComboBox(self, -1, size=(70, 20), style=wx.CB_READONLY) xray_cbox_tip = "Select an element, wavelength or energy" self.xray_cbox.SetToolTipString(xray_cbox_tip) wx.EVT_COMBOBOX(self.xray_cbox, -1, self.on_select_xray) iy = 0 ix = 0 sizer_input.Add(compound_txt, (iy, ix), (1, 1), wx.LEFT | wx.EXPAND | wx.ADJUST_MINSIZE, 15) ix += 1 sizer_input.Add(self.compound_ctl, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer_input.Add(density_txt, (iy, ix), (1, 1), wx.LEFT | wx.EXPAND | wx.ADJUST_MINSIZE, 15) ix += 1 sizer_input.Add(self.density_ctl, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) ix += 1 sizer_input.Add(unit_density_txt, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer_input.Add(neutron_wavelength_txt, (iy, ix), (1, 1), wx.LEFT | wx.EXPAND | wx.ADJUST_MINSIZE, 15) ix += 1 sizer_input.Add(self.neutron_wavelength_ctl, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) ix += 1 sizer_input.Add(neutron_unit_a_txt, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer_input.Add(self.xray_source_input_txt, (iy, ix), (1, 1), wx.LEFT | wx.EXPAND | wx.ADJUST_MINSIZE, 15) ix += 1 sizer_input.Add(self.xray_source_input_ctl, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) ix += 1 sizer_input.Add(self.xray_cbox, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) boxsizer1.Add(sizer_input) sizer1.Add(boxsizer1, 0, wx.EXPAND | wx.ALL, 10) #---------Outputs sizer-------- outputbox = wx.StaticBox(self, -1, "Output") boxsizer2 = wx.StaticBoxSizer(outputbox, wx.VERTICAL) boxsizer2.SetMinSize((_STATICBOX_WIDTH, -1)) i_complex = '- i' neutron_sld_txt = wx.StaticText(self, -1, 'Neutron SLD') self.neutron_sld_real_ctl = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, -1)) self.neutron_sld_real_ctl.SetEditable(False) self.neutron_sld_real_ctl.SetToolTipString("Neutron SLD real") self.neutron_sld_im_ctl = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, -1)) self.neutron_sld_im_ctl.SetEditable(False) self.neutron_sld_im_ctl.SetToolTipString("Neutron SLD imaginary") neutron_sld_units_txt = wx.StaticText(self, -1, unit_sld) xray_sld_txt = wx.StaticText(self, -1, 'X-ray SLD') self.xray_sld_real_ctl = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, -1)) self.xray_sld_real_ctl.SetEditable(False) self.xray_sld_real_ctl.SetToolTipString("X-ray SLD real") self.xray_sld_im_ctl = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, -1)) self.xray_sld_im_ctl.SetEditable(False) self.xray_sld_im_ctl.SetToolTipString("X-ray SLD imaginary") xray_sld_units_txt = wx.StaticText(self, -1, unit_sld) neutron_inc_txt = wx.StaticText(self, -1, 'Neutron Inc. Xs') self.neutron_inc_ctl = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, -1)) self.neutron_inc_ctl.SetEditable(False) self.neutron_inc_ctl.SetToolTipString("Neutron Inc. Xs") neutron_inc_units_txt = wx.StaticText(self, -1, unit_cm1) neutron_abs_txt = wx.StaticText(self, -1, 'Neutron Abs. Xs') self.neutron_abs_ctl = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, -1)) self.neutron_abs_ctl.SetEditable(False) self.neutron_abs_ctl.SetToolTipString("Neutron Abs. Xs") neutron_abs_units_txt = wx.StaticText(self, -1, unit_cm1) neutron_length_txt = wx.StaticText(self, -1, 'Neutron 1/e length') self.neutron_length_ctl = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, -1)) self.neutron_length_ctl.SetEditable(False) self.neutron_length_ctl.SetToolTipString("Neutron 1/e length") neutron_length_units_txt = wx.StaticText(self, -1, unit_cm) iy = 0 ix = 0 sizer_output.Add(neutron_sld_txt, (iy, ix), (1, 1), wx.LEFT | wx.EXPAND | wx.ADJUST_MINSIZE, 15) ix += 1 sizer_output.Add(self.neutron_sld_real_ctl, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) ix += 1 sizer_output.Add(wx.StaticText(self, -1, i_complex), (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) ix += 1 sizer_output.Add(self.neutron_sld_im_ctl, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) ix += 1 sizer_output.Add(neutron_sld_units_txt, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer_output.Add(xray_sld_txt, (iy, ix), (1, 1), wx.LEFT | wx.EXPAND | wx.ADJUST_MINSIZE, 15) ix += 1 sizer_output.Add(self.xray_sld_real_ctl, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) ix += 1 sizer_output.Add(wx.StaticText(self, -1, i_complex), (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) ix += 1 sizer_output.Add(self.xray_sld_im_ctl, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) ix += 1 sizer_output.Add(xray_sld_units_txt, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer_output.Add(neutron_inc_txt, (iy, ix), (1, 1), wx.LEFT | wx.EXPAND | wx.ADJUST_MINSIZE, 15) ix += 1 sizer_output.Add(self.neutron_inc_ctl, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) ix += 2 sizer_output.Add(neutron_inc_units_txt, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer_output.Add(neutron_abs_txt, (iy, ix), (1, 1), wx.LEFT | wx.EXPAND | wx.ADJUST_MINSIZE, 15) ix += 1 sizer_output.Add(self.neutron_abs_ctl, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) ix += 2 sizer_output.Add(neutron_abs_units_txt, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) iy += 1 ix = 0 sizer_output.Add(neutron_length_txt, (iy, ix), (1, 1), wx.LEFT | wx.EXPAND | wx.ADJUST_MINSIZE, 15) ix += 1 sizer_output.Add(self.neutron_length_ctl, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) ix += 2 sizer_output.Add(neutron_length_units_txt, (iy, ix), (1, 1), wx.EXPAND | wx.ADJUST_MINSIZE, 0) boxsizer2.Add(sizer_output) sizer2.Add(boxsizer2, 0, wx.EXPAND | wx.ALL, 10) #-----Button sizer------------ id = wx.NewId() self.button_calculate = wx.Button(self, id, "Calculate") self.button_calculate.SetToolTipString("Calculate SLD.") self.Bind(wx.EVT_BUTTON, self.calculateSld, id=id) id = wx.NewId() self.button_help = wx.Button(self, id, "HELP") self.button_help.SetToolTipString("help on SLD calculator.") self.Bind(wx.EVT_BUTTON, self.on_help, id=id) self.button_close = wx.Button(self, wx.ID_CANCEL, 'Close') self.button_close.Bind(wx.EVT_BUTTON, self.on_close) self.button_close.SetToolTipString("Close this window.") sizer_button.Add((150, 20), 1, wx.EXPAND | wx.ADJUST_MINSIZE, 0) sizer_button.Add(self.button_calculate, 0, wx.RIGHT | wx.ADJUST_MINSIZE, 20) sizer_button.Add(self.button_help, 0, wx.RIGHT | wx.ADJUST_MINSIZE, 20) sizer_button.Add(self.button_close, 0, wx.RIGHT | wx.ADJUST_MINSIZE, 20) sizer3.Add(sizer_button) #---------layout---------------- vbox = wx.BoxSizer(wx.VERTICAL) vbox.Add(sizer1) vbox.Add(sizer2) vbox.Add(sizer3) vbox.Fit(self) self.SetSizer(vbox) def fill_xray_cbox(self): """ fill the x-ray combobox with the sources """ source_list = ['[A]', '[keV]', 'Element'] for source in source_list: pos = self.xray_cbox.Append(str(source)) self.xray_cbox.SetClientData(pos, str(source.strip())) self.xray_cbox.SetSelection(0) self.xray_source = source_list[0] def on_select_xray(self, event=None): """ On Selecting a source """ item = event.GetEventObject() self.xray_source = item.GetValue().strip() if self.xray_source == "[A]": self.xray_source_input_txt.SetLabel("X-ray wavelength") elif self.xray_source == "[keV]": self.xray_source_input_txt.SetLabel("X-ray energy") elif self.xray_source == "Element": self.xray_source_input_txt.SetLabel("X-ray source") def on_help(self, event): """ Bring up the SLD Documentation whenever the HELP button is clicked. Calls DocumentationWindow with the path of the location within the documentation tree (after /doc/ ....". Note that when using old versions of Wx (before 2.9) and thus not the release version of installers, the help comes up at the top level of the file as webbrowser does not pass anything past the # to the browser when it is running "file:///...." :param evt: Triggers on clicking the help button """ _TreeLocation = "user/sasgui/perspectives/calculator/" _TreeLocation += "sld_calculator_help.html" _doc_viewer = DocumentationWindow(self, -1, _TreeLocation, "", "General Scattering Calculator Help") def on_close(self, event): """ close the window containing this panel """ self.parent.Close() def calculate_xray_sld(self, element): """ Get an element and compute the corresponding SLD for a given formula :param element: elements a string of existing atom """ myformula = formula(str(element)) if len(myformula.atoms) != 1: return element = myformula.atoms.keys()[0] energy = xray_energy(element.K_alpha) self.sld_formula = formula(str(self.compound), density=self.density) atom = self.sld_formula.atoms return xray_sld_from_atoms(atom, density=self.density, energy=energy) def check_inputs(self): """Check validity user inputs""" flag = True msg = "" if check_float(self.density_ctl): self.density = float(self.density_ctl.GetValue()) else: flag = False msg += "Error for Density value :expect float" self.neutron_wavelength = self.neutron_wavelength_ctl.GetValue() self.xray_source_input = self.xray_source_input_ctl.GetValue() if str(self.neutron_wavelength).lstrip().rstrip() == "": self.neutron_wavelength = WAVELENGTH self.neutron_wavelength_ctl.SetValue(str(WAVELENGTH)) self.neutron_wavelength_ctl.SetBackgroundColour(wx.WHITE) self.neutron_wavelength_ctl.Refresh() msg += "Default value for wavelength is 6.0" else: if check_float(self.neutron_wavelength_ctl): self.neutron_wavelength = float(self.neutron_wavelength) else: flag = False msg += "Error for wavelength value :expect float" if str(self.xray_source_input).lstrip().rstrip() == "": self.xray_source_input = WAVELENGTH self.xray_source_input_ctl.SetValue(str(WAVELENGTH)) self.xray_source_input_ctl.SetBackgroundColour(wx.WHITE) self.xray_source_input_ctl.Refresh() msg += "Default value for wavelength is 6.0" else: if (self.xray_source == '[A]') or (self.xray_source == '[keV]'): if check_float(self.xray_source_input_ctl): self.xray_source_input = float(self.xray_source_input) else: flag = False msg += "Error for wavelength value :expect float" elif (self.xray_source == 'Element'): try: import periodictable exec("periodictable." + self.xray_source_input) except AttributeError: flag = False msg += "X-ray element supplied isn't in the database" self.compound = self.compound_ctl.GetValue().lstrip().rstrip() if self.compound != "": try : formula(self.compound) self.compound_ctl.SetBackgroundColour(wx.WHITE) self.compound_ctl.Refresh() except: self.compound_ctl.SetBackgroundColour("pink") self.compound_ctl.Refresh() flag = False msg += "Enter correct formula" else: self.compound_ctl.SetBackgroundColour("pink") self.compound_ctl.Refresh() flag = False msg += "Enter a formula" return flag, msg def calculate_sld_helper(self, element, density, molecule_formula): """ Get an element and compute the corresponding SLD for a given formula :param element: elements a string of existing atom """ element_formula = formula(str(element)) if len(element_formula.atoms) != 1: return element = element_formula.atoms.keys()[0] energy = xray_energy(element.K_alpha) atom = molecule_formula.atoms return xray_sld_from_atoms(atom, density=density, energy=energy) def calculateSld(self, event): """ Calculate the neutron scattering density length of a molecule """ self.clear_outputs() try: #Check validity user inputs flag, msg = self.check_inputs() if self.base is not None and msg.lstrip().rstrip() != "": msg = "SLD Calculator: %s" % str(msg) wx.PostEvent(self.base, StatusEvent(status=msg)) if not flag: return #get ready to compute self.sld_formula = formula(self.compound, density=self.density) (sld_real, sld_im, _), (_, absorp, incoh), \ length = neutron_scattering(compound=self.compound, density=self.density, wavelength=self.neutron_wavelength) if self.xray_source == "[A]": energy = xray_energy(self.xray_source_input) xray_real, xray_im = xray_sld_from_atoms(self.sld_formula.atoms, density=self.density, energy=energy) elif self.xray_source == "[keV]": xray_real, xray_im = xray_sld_from_atoms(self.sld_formula.atoms, density=self.density, energy=self.xray_source_input) elif self.xray_source == "Element": xray_real, xray_im = self.calculate_sld_helper(element=self.xray_source_input, density=self.density, molecule_formula=self.sld_formula) # set neutron sld values val = format_number(sld_real * _SCALE) self.neutron_sld_real_ctl.SetValue(val) val = format_number(math.fabs(sld_im) * _SCALE) self.neutron_sld_im_ctl.SetValue(val) # Compute the Cu SLD self.xray_sld_real_ctl.SetValue(format_number(xray_real * _SCALE)) val = format_number(math.fabs(xray_im) * _SCALE) self.xray_sld_im_ctl.SetValue(val) # set incoherence and absorption self.neutron_inc_ctl.SetValue(format_number(incoh)) self.neutron_abs_ctl.SetValue(format_number(absorp)) # Neutron length self.neutron_length_ctl.SetValue(format_number(length)) # display wavelength #self.wavelength_ctl.SetValue(str(self.wavelength)) #self.wavelength_ctl.SetValue(str(self.wavelength)) except: if self.base is not None: msg = "SLD Calculator: %s" % (sys.exc_value) wx.PostEvent(self.base, StatusEvent(status=msg)) if event is not None: event.Skip() def clear_outputs(self): """ Clear the outputs textctrl """ self.neutron_sld_real_ctl.SetValue("") self.neutron_sld_im_ctl.SetValue("") self.xray_sld_real_ctl.SetValue("") self.xray_sld_im_ctl.SetValue("") self.neutron_abs_ctl.SetValue("") self.neutron_inc_ctl.SetValue("") self.neutron_length_ctl.SetValue("") class SldWindow(widget.CHILD_FRAME): """ """ def __init__(self, parent=None, title="SLD Calculator", base=None, manager=None, size=(PANEL_SIZE, PANEL_SIZE), *args, **kwds): """ """ kwds['title'] = title kwds['size'] = size widget.CHILD_FRAME.__init__(self, parent, *args, **kwds) """ """ self.parent = parent self.base = base self.manager = manager self.panel = SldPanel(self, base=base) self.Bind(wx.EVT_CLOSE, self.on_close) self.SetPosition((wx.LEFT, PANEL_TOP)) self.Show(True) def on_close(self, event): """ On close event """ if self.manager is not None: self.manager.sld_frame = None self.Destroy() class ViewApp(wx.App): """ """ def OnInit(self): """ """ widget.CHILD_FRAME = wx.Frame frame = SldWindow(None, title='SLD Calculator') frame.Show(True) self.SetTopWindow(frame) return True if __name__ == "__main__": app = ViewApp(0) app.MainLoop()
""" Base classes are defined here. """ __docformat__='reStructuredText' __author__ = 'Anand Patil, [email protected]' import os, sys, pdb import numpy as np import types def logp_of_set(s): exc = None logp = 0. for obj in s: try: logp += obj.logp except: cls, inst, tb = sys.exc_info() if cls is ZeroProbability: raise cls, inst, tb elif exc is None: exc = (cls, inst, tb) if exc is None: return logp else: raise exc[0], exc[1], exc[2] def batchsd(trace, batches=5): """ Calculates the simulation standard error, accounting for non-independent samples. The trace is divided into batches, and the standard deviation of the batch means is calculated. """ if len(np.shape(trace)) > 1: dims = np.shape(trace) #ttrace = np.transpose(np.reshape(trace, (dims[0], sum(dims[1:])))) ttrace = np.transpose([t.ravel() for t in trace]) return np.reshape([batchsd(t, batches) for t in ttrace], dims[1:]) else: if batches == 1: return np.std(trace)/np.sqrt(len(trace)) try: batched_traces = np.resize(trace, (batches, len(trace)/batches)) except ValueError: # If batches do not divide evenly, trim excess samples resid = len(trace) % batches batched_traces = np.resize(trace[:-resid], (batches, len(trace)/batches)) means = np.mean(batched_traces, 1) return np.std(means)/np.sqrt(batches) class ZeroProbability(ValueError): "Log-probability is undefined or negative infinity" pass class Node(object): """ The base class for Stochastic, Deterministic and Potential. :Parameters: doc : string The docstring for this node. name : string The name of this node. parents : dictionary A dictionary containing the parents of this node. cache_depth : integer An integer indicating how many of this node's value computations should be 'memorized'. verbose (optional) : integer Level of output verbosity: 0=none, 1=low, 2=medium, 3=high .. seealso:: :class:`Stochastic` The class defining *random* variables, or unknown parameters. :class:`Deterministic` The class defining deterministic values, ie the result of a function. :class:`Potential` An arbitrary log-probability term to multiply into the joint distribution. :class:`Variable` The base class for :class:`Stochastics` and :class:`Deterministics`. """ def __init__(self, doc, name, parents, cache_depth, verbose=None): # Name and docstrings self.__doc__ = doc self.__name__ = name # Level of feedback verbosity self.verbose = verbose # Number of memorized values self._cache_depth = cache_depth # Initialize self.parents = parents def _get_parents(self): # Get parents of this object return self._parents def _set_parents(self, new_parents): # Define parents of this object # Remove from current parents if hasattr(self,'_parents'): self._parents.detach_children() # Specify new parents self._parents = self.ParentDict(regular_dict = new_parents, owner = self) # Add self as child of parents self._parents.attach_parents() # Get new lazy function self.gen_lazy_function() parents = property(_get_parents, _set_parents, doc="Self's parents: the variables referred to in self's declaration.") def __str__(self): return self.__repr__() def __repr__(self): return object.__repr__(self).replace(' object ', " '%s' "%self.__name__) def gen_lazy_function(self): pass class Variable(Node): """ The base class for Stochastics and Deterministics. :Parameters: doc : string The docstring for this node. name : string The name of this node. parents : dictionary A dictionary containing the parents of this node. cache_depth : integer An integer indicating how many of this node's value computations should be 'memorized'. trace : boolean Indicates whether a trace should be kept for this variable if its model is fit using a Monte Carlo method. plot : boolean Indicates whether summary plots should be prepared for this variable if summary plots of its model are requested. dtype : numpy dtype If the value of this variable's numpy dtype can be known in advance, it is advantageous to specify it here. verbose (optional) : integer Level of output verbosity: 0=none, 1=low, 2=medium, 3=high :SeeAlso: Stochastic, Deterministic, Potential, Node """ def __init__(self, doc, name, parents, cache_depth, trace=False, dtype=None, plot=None, verbose=None): self.dtype=dtype self.trace=trace self._plot=plot self.children = set() self.extended_children = set() Node.__init__(self, doc, name, parents, cache_depth, verbose=verbose) if self.dtype is None: if hasattr(self.value, 'dtype'): self.dtype = self.value.dtype else: self.dtype = np.dtype(type(self.value)) def __str__(self): return self.__name__ def _get_plot(self): # Get plotting flag return self._plot def _set_plot(self, true_or_false): # Set plotting flag self._plot = true_or_false plot = property(_get_plot, _set_plot, doc='A flag indicating whether self should be plotted.') def stats(self, alpha=0.05, start=0, batches=100): """ Generate posterior statistics for node. """ from utils import hpd, quantiles from numpy import sqrt try: trace = np.squeeze(np.array(self.trace(), float)[start:]) n = len(trace) if not n: print 'Cannot generate statistics for zero-length trace in', self.__name__ return return { 'n': n, 'standard deviation': trace.std(0), 'mean': trace.mean(0), '%s%s HPD interval' % (int(100*(1-alpha)),'%'): hpd(trace, alpha), 'mc error': batchsd(trace, batches), 'quantiles': quantiles(trace) } except: print 'Could not generate output statistics for', self.__name__ return ContainerRegistry = [] class ContainerMeta(type): def __init__(cls, name, bases, dict): type.__init__(cls, name, bases, dict) def change_method(self, *args, **kwargs): raise NotImplementedError, name + ' instances cannot be changed.' if cls.register: ContainerRegistry.append((cls, cls.containing_classes)) for meth in cls.change_methods: setattr(cls, meth, types.UnboundMethodType(change_method, None, cls)) cls.register=False class ContainerBase(object): """ Abstract base class. :SeeAlso: ListContainer, SetContainer, DictContainer, TupleContainer, ArrayContainer """ register = False __metaclass__ = ContainerMeta change_methods = [] containing_classes = [] def __init__(self, input): # ContainerBase class initialization # Look for name attributes if hasattr(input, '__file__'): _filename = os.path.split(input.__file__)[-1] self.__name__ = os.path.splitext(_filename)[0] elif hasattr(input, '__name__'): self.__name__ = input.__name__ else: try: self.__name__ = input['__name__'] except: self.__name__ = 'container' def assimilate(self, new_container): self.containers.append(new_container) self.variables.update(new_container.variables) self.stochastics.update(new_container.stochastics) self.potentials.update(new_container.potentials) self.deterministics.update(new_container.deterministics) self.observed_stochastics.update(new_container.observed_stochastics) def _get_logp(self): # Return total log-probabilities from all elements return logp_of_set(self.stochastics | self.potentials | self.observed_stochastics) # Define log-probability property logp = property(_get_logp, doc='The summed log-probability of all stochastic variables (data\nor otherwise) and factor potentials in self.') StochasticRegistry = [] class StochasticMeta(type): def __init__(cls, name, bases, dict): type.__init__(cls, name, bases, dict) StochasticRegistry.append(cls) class StochasticBase(Variable): """ Abstract base class. :SeeAlso: Stochastic, Variable """ __metaclass__ = StochasticMeta DeterministicRegistry = [] class DeterministicMeta(type): def __init__(cls, name, bases, dict): type.__init__(cls, name, bases, dict) DeterministicRegistry.append(cls) class DeterministicBase(Variable): """ Abstract base class. :SeeAlso: Deterministic, Variable """ __metaclass__ = DeterministicMeta PotentialRegistry = [] class PotentialMeta(type): def __init__(cls, name, bases, dict): type.__init__(cls, name, bases, dict) PotentialRegistry.append(cls) class PotentialBase(Node): """ Abstract base class. :SeeAlso: Potential, Variable """ __metaclass__ = PotentialMeta
import Op, Interface import numpy as np from GCore import Calibrate class Cameras(Op.Op): def __init__(self, name='/Calibrate Cameras', locations='', detections='', x3ds='', solve_focal_length=True, solve_distortion=True, error_threshold=0.05, min_samples=100, jumpFrames=5, showDetections=False, frameRange=''): fields = [ ('name', 'Name', 'Name', 'string', name, {}), ('locations', 'Camera locations', 'Camera locations', 'string', locations, {}), ('detections', '2D Detections', '2D Detections', 'string', detections, {}), ('x3ds', '3D Points', '3D Points', 'string', x3ds, {}), ('solve_focal_length', 'Solve Focal Length', 'Solve Focal Length', 'bool', solve_focal_length, {}), ('solve_distortion', 'Solve Distortion', 'Solve Distortion', 'bool', solve_distortion, {}), ('error_threshold', 'Error Threshold', 'Error Threshold', 'float', error_threshold, {}), ('min_samples', 'Min. samples', 'Min. samples to solve distortion', 'int', min_samples, {}), ('jumpFrames', 'Jump Frames', 'Handle every Nth frame', 'int', jumpFrames, {}), ('showDetections', 'Show detections', 'Show all collected detections', 'bool', showDetections, {}), ('frameRange', 'Frame range', 'Frame range', 'string', frameRange, {}) ] super(self.__class__, self).__init__(name, fields) def cook(self, location, interface, attrs): if not self.useFrame(interface.frame(), attrs['frameRange']): interface.setAttr('updateMats', False) return # We need 2D data e.g. wand detections from a wand op # We need 3D wand data from e.g. c3d or a 3D wand detector dets_location = attrs['detections'] x3ds_location = attrs['x3ds'] if not dets_location or not x3ds_location: return # Get the 2D and 3D data x2ds = interface.attr('rx2ds', atLocation=dets_location) x2d_splits = interface.attr('x2ds_splits', atLocation=dets_location) x3ds = interface.attr('x3ds', atLocation=x3ds_location) if x2ds is None or x2d_splits is None or x3ds is None: return numCameras = len(x2d_splits) - 1 error_threshold = attrs['error_threshold'] # Get the data we've collected already so we can add to it frame = interface.frame() dets_colours = interface.attr('x2ds_colours', atLocation=dets_location) collectedDets = interface.attr('collect_rx2ds') collectedX3ds = interface.attr('collect_x3ds') lastFrame = interface.attr('lastFrame', [frame] * numCameras) emptyFrame3d = np.array([[]], dtype=np.float32).reshape(-1, 3) # This is potentially used by other ops so we only set it when we have some confidence # (and we might reset or tweak the values to indicate confidence levels at some point) cameraErrors = interface.attr('cameraErrors', [-1] * numCameras) # This is never modified to allow checking the camera rms values regardless of what we make of them rmsValues = interface.attr('rms', [-1] * numCameras) # Get the width and height for the videos vwidth = interface.attr('vwidth', [1920] * numCameras) vheight = interface.attr('vheight', [1080] * numCameras) # Get the frame mapping for x3ds x3ds_frames = interface.attr('x3ds_frames', {}) x2ds_frames = interface.attr('x2ds_frames', [[] for i in xrange(numCameras)]) # Get the camera matrices. We initialise them with default settings if we don't find any mats = interface.attr('mats', atLocation=location) if mats is None: mats = [] for ci in range(numCameras): mats.append(Calibrate.makeUninitialisedMat(ci, (vheight[ci], vwidth[ci]))) # Allow overriding the error threshold using an attribute (on the cooked location) error_threshold_attr = interface.attr('error_threshold') if error_threshold_attr is not None: error_threshold = error_threshold_attr Ps = interface.attr('Ps') if Ps is None: Ps = [np.array([], dtype=np.float32) for n in range(numCameras)] # Get the minimum number of samples we need to start solving distortion etc. as specified by the user minSamples = attrs['min_samples'] # Prepare the collected data for further processing (or initialise if nothing has been collected) if collectedDets is not None: c_x2ds, c_splits = collectedDets cams_collected = [c_x2ds[c0:c1] for ci, (c0, c1) in enumerate(zip(c_splits[:-1], c_splits[1:]))] else: cams_collected = [[] for ci, (c0, c1) in enumerate(zip(x2d_splits[:-1], x2d_splits[1:]))] collectedX3ds = [] for ci, (c0, c1) in enumerate(zip(x2d_splits[:-1], x2d_splits[1:])): collectedX3ds.append(emptyFrame3d) # Process each camera by looking for a wand and attempt a calibration. If we're happy with the results we'll # add it to our collection for ci, (c0, c1) in enumerate(zip(x2d_splits[:-1], x2d_splits[1:])): elapsed = frame - lastFrame[ci] if 0 < elapsed < attrs['jumpFrames']: continue # Get the 2Ds and 3Ds for the wand in this camera (if any) cameraDetections = x2ds[c0:c1] cameraX3ds = x3ds if not cameraDetections.any() or not cameraX3ds.any(): continue # Add the new detection to the existing collection as a candidate for a new collection if cams_collected[ci] is None or len(cams_collected[ci]) == 0: proposalDets, proposalX3ds = cameraDetections, cameraX3ds else: proposalDets = np.concatenate((cams_collected[ci], cameraDetections)) proposalX3ds = np.concatenate((collectedX3ds[ci], cameraX3ds)) # Check if we want to solve for distortion and focal length by looking at the number of samples # we've got already compared to our minimum number of samples required numSamples = len(proposalDets) / 5 # if numSamples == minSamples: self.logger.info('Camera %d reached min samples of %d' % (ci, minSamples)) solveTrigger = True if numSamples > minSamples else False solve_focal_length = attrs['solve_focal_length'] if solveTrigger else False solve_distortion = attrs['solve_distortion'] if solveTrigger else False # The wand is assumed to have 5 points so we make sure we've got at least one wand before attempting # to calibrate if len(proposalDets) >= 5 and len(proposalX3ds) >= 5: P, ks, rms = Calibrate.cv2_solve_camera_from_3d(proposalX3ds, proposalDets, solve_focal_length=solve_focal_length, solve_distortion=solve_distortion) if ks[0] < -3. or ks[0] > 3.: ks[0] = 0. if ks[1] < -3. or ks[1] > 3.: ks[1] = 0. # This shouldn't' happen but if we lose confidence in the camera we can visualise it # by resetting the camera error (this will change the colour in the UI) if rms > error_threshold: cameraErrors[ci] = -1 continue # See how the rms for the calibration compares to the last recorded value for this camera prevRms = rms if rmsValues[ci] == -1 else rmsValues[ci] rmsDelta = rms - prevRms # If the rms is lower than the last recorded error for this camera then # we want to keep this data if rmsDelta <= 0 or not solveTrigger: cams_collected[ci] = proposalDets collectedX3ds[ci] = proposalX3ds if frame not in x3ds_frames: x3ds_frames[frame] = proposalX3ds[-5:] x2ds_frames[ci] += ([frame] * 5) else: continue # Record the rms value for the camera rmsValues[ci] = rms # Once we've solved for distortion etc. we are more confident with the accuracy of our # error so we start reporting it, where the value can be used for visualiation etc. if solveTrigger: cameraErrors[ci] = rms lastFrame[ci] = frame # Everything has gone well so far so we create and add the new camera matrix mat = Calibrate.makeMat(P, ks, (vheight[ci], vwidth[ci])) mats[ci] = mat Ps[ci] = P # Concatenate the results from all the cameras cams = [np.concatenate((cc)) for cc in cams_collected if len(cc)] if not cams: # We haven't found a wand in any camera so we just keep calm and return return # Build our collections and write to the interface collectedDets = np.array(np.concatenate(cams), dtype=np.float32).reshape(-1, 2), \ Interface.makeSplitBoundaries(map(len, cams_collected)) interface.setAttr('collect_rx2ds', collectedDets) interface.setAttr('collect_x3ds', collectedX3ds) interface.setAttr('x2ds_frames', x2ds_frames) interface.setAttr('x3ds_frames', x3ds_frames) interface.setAttr('lastFrame', lastFrame) # Write the calibration data to the interface and request an update at render time interface.setAttr('mats', mats) interface.setAttr('Ps', Ps) interface.setAttr('rms', rmsValues) interface.setAttr('cameraErrors', cameraErrors) interface.setAttr('updateMats', True) # Optionally display all the collected wand detections if 'showDetections' in attrs and attrs['showDetections']: colours = np.tile(dets_colours, (len(collectedDets[0]) / 5, 1)) allAttrs = {'x2ds': collectedDets[0], 'x2ds_splits': collectedDets[1], 'x2ds_colours': colours} interface.createChild('collected', 'detections', attrs=allAttrs) class WandCorrespondences(Op.Op): def __init__(self, name='/Wand Correspondences', detections='', matsLocation=''): fields = [ ('name', 'Name', 'Name', 'string', name, {}), ('detections', 'Detections', 'Detections', 'string', detections, {}), ('matsLocation', 'Mats Location', 'Mats locations', 'string', matsLocation, {}), ] super(self.__class__, self).__init__(name, fields) def cook(self, location, interface, attrs): detections = attrs['detections'] matsLocation = attrs['matsLocation'] if not detections or not matsLocation: return wand_frames = interface.attr('x2ds', atLocation=detections) print wand_frames[1:2] vicon_mats = interface.attr('mats', atLocation=matsLocation) vicon_solved = [not (m[1][1,3] == 0.0 and m[1][2,3] == 0.0 and m[1][0,3] != 0.0) for m in vicon_mats] x2s_cameras, x3s_cameras, frames_cameras, num_kept_frames = Calibrate.generate_wand_correspondences(wand_frames, vicon_mats, vicon_solved) # TODO: Finish this bit of code import numpy as np import scipy.optimize as sci_opt from scipy.sparse import lil_matrix from GCore import Calibrate import cv2 import ISCV ''' Implements Bundle Adjustment with Scipy Cameras are represented as 1 floats, 3 rotation angles, 3 translations, focal length, 2 for optical centre and 2 distortions Points3d are just a 3 vector in world space Points2d are a 2 vector of the pixel location camera_indices is the camera_ids for each observation points_indices is the index of the 2d point for each observation ''' def matToVec(P, distortion): outVec = np.zeros(11, dtype=np.float32) K, RT = Calibrate.decomposeKRT(P) outVec[:3] = cv2.Rodrigues(RT[:3, :3])[0].ravel() outVec[3:6] = RT[:3, 3] outVec[6] = K[0, 0] # Focal Length outVec[7:9] = distortion outVec[9:] = K[:2, 2] # Optical Centre return outVec def vecToMat(vec): f, k1, k2, ox, oy = vec[6:] rot = vec[:3] trans = vec[3:6] K = np.eye(3) K[[0,1],[0,1]] = f K[:2, 2] = [ox, oy] R = cv2.Rodrigues(rot)[0] RT = np.zeros((3, 4), dtype=np.float32) RT[:3, :3] = R RT[:3, 3] = trans P = Calibrate.composeKRT(K, RT)[:3,:] return np.float32(P), (k1, k2) def bundle_adjustment_sparsity(n_cameras, n_points, x2ds_splits, point_indices): camera_indices = np.zeros(x2ds_splits[-1], dtype=int) for i, (c0, c1) in enumerate(zip(x2ds_splits[:-1], x2ds_splits[1:])): camera_indices[c0:c1] = i m = camera_indices.size * 2 n = n_cameras * 11 + n_points * 3 A = lil_matrix((m, n), dtype=int) i = np.arange(camera_indices.size) for s in range(11): A[2 * i, camera_indices * 11 + s] = 1 A[2 * i + 1, camera_indices * 11 + s] = 1 for s in range(3): A[2 * i, n_cameras * 11 + point_indices * 3 + s] = 1 A[2 * i + 1, n_cameras * 11 + point_indices * 3 + s] = 1 return A def errorFunction(X, n_cameras, n_points, x2d_splits, x2ds_labels, x2ds): camera_params = X[:n_cameras * 11].reshape((n_cameras, 11)) x3ds = X[n_cameras * 11:].reshape((n_points, 3)) projected_x2ds = np.zeros_like(x2ds) for camVec, c0, c1 in zip(camera_params, x2d_splits[:-1], x2d_splits[1:]): P, distortion = vecToMat(camVec) x3d_labels = np.int32([x2ds_labels[i] for i in xrange(c0, c1)]) proj_x2ds, proj_splits, proj_labels = ISCV.project(np.float32(x3ds[x3d_labels]), x3d_labels, np.float32([P])) assert np.all(x3d_labels == proj_labels) ISCV.distort_points(proj_x2ds, float(camVec[9]), float(camVec[10]), float(distortion[0]), float(distortion[1]), proj_x2ds) projected_x2ds[c0:c1, :] = proj_x2ds return (projected_x2ds - x2ds).ravel() def printProblemDetails(n_cameras, n_points, x2ds): n = 9 * n_cameras + 3 * n_points m = 2 * x2ds.shape[0] print("n_cameras: {}".format(n_cameras)) print("n_points: {}".format(n_points)) print("Total number of parameters: {}".format(n)) print("Total number of residuals: {}".format(m)) def adjustBundles(x3ds, x2ds, x2ds_splits, x2ds_labels, Ps, distortions): n_cameras = x2ds_splits.shape[0] - 1 n_points = x3ds.shape[0] printProblemDetails(n_cameras, n_points, x2ds) camera_params = np.float32([matToVec(P, distortion) for P, distortion in zip(Ps, distortions)]) x0 = np.hstack((camera_params.ravel(), x3ds.ravel())) sparsity = bundle_adjustment_sparsity(n_cameras, n_points, x2ds_splits, x2ds_labels) res = sci_opt.least_squares(errorFunction, x0, jac_sparsity=sparsity, verbose=2, x_scale='jac', ftol=1e-10, method='trf', args=(n_cameras, n_points, x2ds_splits, x2ds_labels, x2ds)) X = res.x error = res.fun camera_params = X[:n_cameras * 11].reshape((n_cameras, 11)) Ps, distortions = [], [] for vec in camera_params: P, distortion = vecToMat(vec) Ps.append(P) distortions.append(distortion) return Ps, distortions, X, error class BundleAdjust_Wand(Op.Op): def __init__(self, name='/BundleAdjust_Wand', locations='', frameRange=''): self.fields = [ ('name', 'name', 'name', 'string', name, {}), ('locations', 'locations', 'locations', 'string', locations, {}), ('frameRange', 'Frame range', 'Frame range', 'string', frameRange, {}) ] super(self.__class__, self).__init__(name, self.fields) def cook(self, location, interface, attrs): if not self.useFrame(interface.frame(), attrs['frameRange']): return mats = interface.attr('mats') collect_rx2ds = interface.attr('collect_rx2ds') x2ds_frames = interface.attr('x2ds_frames') x3ds_frames = interface.attr('x3ds_frames') frames = sorted(x3ds_frames.keys()) frameIndex = {frame: fi for fi, frame in enumerate(frames)} x3ds = np.array([x3ds_frames[frame] for frame in frames], dtype=np.float32).reshape(-1, 3) x2ds = collect_rx2ds[0].copy() x2ds_splits = collect_rx2ds[1].copy() x2ds_labels = [] for ci in xrange(len(x2ds_frames)): for fi, frame in enumerate(x2ds_frames[ci]): x2ds_labels.append(5 * frameIndex[frame] + (fi % 5)) assert np.max(x2ds_labels) < x3ds.shape[0] x2ds_labels = np.array(x2ds_labels, dtype=int) Ps = [mat[2] for mat in mats] distortions = [mat[3] for mat in mats] new_Ps, new_distortions, _, _ = adjustBundles(x3ds, x2ds, x2ds_splits, x2ds_labels, Ps, distortions) for i in xrange(len(mats)): new_mat = list(mats[i]) print "\n----\n{}\n{}\n----\n".format(Ps[i], new_Ps[i]) new_mat[2] = new_Ps[i] new_mat[3] = new_distortions[i] print "\n----\n{}\n{}\n----\n".format(distortions[i], new_distortions[i]) mats[i] = tuple(new_mat) interface.setAttr('mats', mats) interface.setAttr('Ps', new_Ps) interface.setAttr('updateMats', True) # Register Ops import Registry Registry.registerOp('Calibrate Cameras', Cameras) Registry.registerOp('Generate Wand Correspondences', WandCorrespondences)
from __future__ import absolute_import from __future__ import print_function from .._abstract.abstract import BaseAGSServer import json ######################################################################## class GlobeServiceLayer(BaseAGSServer): """ Represents a single globe layer """ _url = None _proxy_url = None _proxy_port = None _securityHandler = None _json = None _json_dict = None _extent = None _displayField = None _baseOption = None _name = None _baseID = None _dataType = None _fields = None _cullMode = None _defaultVisibility = None _copyrightText = None _extrusionExpression = None _currentVersion = None _subLayers = None _minDistance = None _type = None _samplingMode = None _maxDistance = None _id = None _layerFolderName = None #---------------------------------------------------------------------- def __init__(self, url, securityHandler=None, proxy_url=None, proxy_port=None, initialize=False): """Constructor""" self._url = url self._securityHandler = securityHandler if self._securityHandler is not None: self._referer_url = securityHandler.referer_url self._proxy_port = proxy_port self._proxy_url = proxy_url if initialize: self.__init() #---------------------------------------------------------------------- def __init(self): """ inializes the properties """ params = { "f" : "json", } json_dict = self._get(self._url, params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) self._json_dict = json_dict self._json = json.dumps(self._json_dict) attributes = [attr for attr in dir(self) if not attr.startswith('__') and \ not attr.startswith('_')] for k,v in json_dict.items(): if k in attributes: setattr(self, "_"+ k, v) else: print (k, " - attribute not implemented for Globe Service Layer.") del k,v #---------------------------------------------------------------------- def __str__(self): """returns object as string""" if self._json is None: self.__init() return self._json #---------------------------------------------------------------------- def __iter__(self): """ returns key/value pair """ attributes = json.loads(str(self)) for att in attributes.items(): yield (att, getattr(self, att)) #---------------------------------------------------------------------- @property def extent(self): """returns the globe layer extent""" if self._extent is None: self.__init() return self._extent #---------------------------------------------------------------------- @property def displayField(self): """returns the layer's display field""" if self._displayField is None: self.__init() return self._displayField #---------------------------------------------------------------------- @property def baseOption(self): """returns the base option""" if self._baseOption is None: self.__init() return self._baseOption #---------------------------------------------------------------------- @property def name(self): """returns the layers' name""" if self._name is None: self.__init() return self._name #---------------------------------------------------------------------- @property def baseID(self): """returns the layers' base ID""" if self._baseID is None: self.__init() return self._baseID #---------------------------------------------------------------------- @property def dataType(self): """returns the data type for the layer""" if self._dataType is None: self.__init() return self._dataType #---------------------------------------------------------------------- @property def fields(self): """returns the fields""" if self._fields is None: self.__init() return self._fields #---------------------------------------------------------------------- @property def cullMode(self): """returns cull mode""" if self._cullMode is None: self.__init() return self._cullMode #---------------------------------------------------------------------- @property def defaultVisibility(self): """returns the defaultVisibility value""" if self._defaultVisibility is None: self.__init() return self._defaultVisibility #---------------------------------------------------------------------- @property def copyrightText(self): """returns the copyright text""" if self._copyrightText is None: self.__init() return self._copyrightText #---------------------------------------------------------------------- @property def extrusionExpression(self): """returns the extrusionExpression value""" if self._extrusionExpression is None: self.__init() return self._extrusionExpression #---------------------------------------------------------------------- @property def currentVersion(self): """returns the currentVersion value""" if self._currentVersion is None: self.__init() return self._currentVersion #---------------------------------------------------------------------- @property def subLayers(self): """returns the subLayers value""" if self._subLayers is None: self.__init() return self._subLayers #---------------------------------------------------------------------- @property def minDistance(self): """returns the min distance value""" if self._minDistance is None: self.__init() return self._minDistance #---------------------------------------------------------------------- @property def type(self): """returns the type""" if self._type is None: self.__init() return self._type #---------------------------------------------------------------------- @property def samplingMode(self): """returns the sampling mode""" if self._samplingMode is None: self.__init() return self._samplingMode #---------------------------------------------------------------------- @property def maxDistance(self): """returns the maximum distance""" if self._maxDistance is None: self.__init() return self._maxDistance #---------------------------------------------------------------------- @property def id(self): """returns the id value""" if self._id is None: self.__init() return self._id #---------------------------------------------------------------------- @property def layerFolderName(self): """returns the layer folder name""" if self._layerFolderName is None: self.__init() return self._layerFolderName ######################################################################## class GlobeService(BaseAGSServer): """ The Globe Service resource represents a globe service published with ArcGIS for Server. The resource provides information about the service such as the service description and the various layers contained in the published globe document. """ _url = None _securityHandler = None _proxy_url = None _proxy_port = None _json = None _json_dict = None _currentVersion = None _layers = None _serviceDescription = None _documentInfo = None #---------------------------------------------------------------------- def __init__(self, url, securityHandler=None, proxy_url=None, proxy_port=None, initialize=False): """Constructor""" self._url = url self._securityHandler = securityHandler self._proxy_url = proxy_url self._proxy_port = proxy_port if initialize: self.__init() #---------------------------------------------------------------------- def __init(self): """ inializes the properties """ params = { "f" : "json", } json_dict = self._get(self._url, params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) self._json_dict = json_dict self._json = json.dumps(self._json_dict) attributes = [attr for attr in dir(self) if not attr.startswith('__') and \ not attr.startswith('_')] for k,v in json_dict.items(): if k in attributes: setattr(self, "_"+ k, v) else: print (k, " - attribute not implemented for Globe Service.") #---------------------------------------------------------------------- def __str__(self): """returns object as string""" if self._json is None: self.__init() return self._json #---------------------------------------------------------------------- def __iter__(self): """ returns key/value pair """ attributes = ["currentVersion", "documentInfo", "layers", "serviceDescription"] for att in attributes: yield [att, getattr(self, att)] #---------------------------------------------------------------------- @property def layers(self): """gets the globe service layers""" if self._layers is None: self.__init() lyrs = [] for lyr in self._layers: lyr['object'] = GlobeServiceLayer(url=self._url + "/%s" % lyr['id'], securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) lyrs.append(lyr) return lyrs #---------------------------------------------------------------------- @property def currentVersion(self): """returns the service current version""" if self._currentVersion is None: self.__init() return self._currentVersion #---------------------------------------------------------------------- @property def serviceDescription(self): """returns the service current version""" if self._serviceDescription is None: self.__init() return self._serviceDescription #---------------------------------------------------------------------- @property def documentInfo(self): """returns the service document information""" if self._documentInfo is None: self.__init() return self._documentInfo
########################################################################## # # Copyright (c) 2012, John Haddon. All rights reserved. # Copyright (c) 2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import unittest import imath import IECore import Gaffer import GafferScene import GafferSceneTest class ScenePlugTest( GafferSceneTest.SceneTestCase ) : def testRunTimeTyped( self ) : p = GafferScene.ScenePlug() self.failUnless( p.isInstanceOf( Gaffer.ValuePlug.staticTypeId() ) ) self.assertEqual( IECore.RunTimeTyped.baseTypeId( p.typeId() ), Gaffer.ValuePlug.staticTypeId() ) def testDynamicSerialisation( self ) : s = Gaffer.ScriptNode() s["n"] = Gaffer.Node() s["n"]["p"] = GafferScene.ScenePlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) ss = s.serialise() s = Gaffer.ScriptNode() s.execute( ss ) def testFullTransform( self ) : translation = imath.M44f().translate( imath.V3f( 1 ) ) scaling = imath.M44f().scale( imath.V3f( 10 ) ) n = GafferSceneTest.CompoundObjectSource() n["in"].setValue( IECore.CompoundObject( { "children" : { "group" : { "transform" : IECore.M44fData( translation ), "children" : { "ball" : { "transform" : IECore.M44fData( scaling ), } } }, }, } ) ) self.assertEqual( n["out"].transform( "/" ), imath.M44f() ) self.assertEqual( n["out"].transform( "/group" ), translation ) self.assertEqual( n["out"].transform( "/group/ball" ), scaling ) self.assertEqual( n["out"].fullTransform( "/" ), imath.M44f() ) self.assertEqual( n["out"].fullTransform( "/group" ), translation ) m = n["out"].fullTransform( "/group/ball" ) self.assertEqual( m.translation(), imath.V3f( 1 ) ) extractedScaling = imath.V3f() m.extractScaling( extractedScaling ) self.assertEqual( extractedScaling, imath.V3f( 10 ) ) self.assertEqual( m, scaling * translation ) def testFullAttributes( self ) : n = GafferSceneTest.CompoundObjectSource() n["in"].setValue( IECore.CompoundObject( { "children" : { "group" : { "attributes" : { "a" : IECore.StringData( "a" ), "b" : IECore.StringData( "b" ), }, "children" : { "ball" : { "attributes" : { "b" : IECore.StringData( "bOverride" ), "c" : IECore.StringData( "c" ), }, } } }, }, } ) ) self.assertEqual( n["out"].fullAttributes( "/group" ), IECore.CompoundObject( { "a" : IECore.StringData( "a" ), "b" : IECore.StringData( "b" ), } ) ) self.assertEqual( n["out"].fullAttributes( "/group/ball" ), IECore.CompoundObject( { "a" : IECore.StringData( "a" ), "b" : IECore.StringData( "bOverride" ), "c" : IECore.StringData( "c" ), } ) ) def testCreateCounterpart( self ) : s1 = GafferScene.ScenePlug( "a", Gaffer.Plug.Direction.Out ) s2 = s1.createCounterpart( "b", Gaffer.Plug.Direction.In ) self.assertEqual( s2.getName(), "b" ) self.assertEqual( s2.getFlags(), s1.getFlags() ) self.assertEqual( s2.direction(), Gaffer.Plug.Direction.In ) def testAccessorOverloads( self ) : p = GafferScene.Plane() self.assertEqual( p["out"].attributes( "/plane" ), p["out"].attributes( IECore.InternedStringVectorData( [ "plane" ] ) ) ) self.assertEqual( p["out"].transform( "/plane" ), p["out"].transform( IECore.InternedStringVectorData( [ "plane" ] ) ) ) self.assertEqual( p["out"].object( "/plane" ), p["out"].object( IECore.InternedStringVectorData( [ "plane" ] ) ) ) self.assertEqual( p["out"].bound( "/plane" ), p["out"].bound( IECore.InternedStringVectorData( [ "plane" ] ) ) ) self.assertEqual( p["out"].childNames( "/plane" ), p["out"].childNames( IECore.InternedStringVectorData( [ "plane" ] ) ) ) self.assertEqual( p["out"].attributesHash( "/plane" ), p["out"].attributesHash( IECore.InternedStringVectorData( [ "plane" ] ) ) ) self.assertEqual( p["out"].transformHash( "/plane" ), p["out"].transformHash( IECore.InternedStringVectorData( [ "plane" ] ) ) ) self.assertEqual( p["out"].objectHash( "/plane" ), p["out"].objectHash( IECore.InternedStringVectorData( [ "plane" ] ) ) ) self.assertEqual( p["out"].boundHash( "/plane" ), p["out"].boundHash( IECore.InternedStringVectorData( [ "plane" ] ) ) ) self.assertEqual( p["out"].childNamesHash( "/plane" ), p["out"].childNamesHash( IECore.InternedStringVectorData( [ "plane" ] ) ) ) self.assertRaises( TypeError, p["out"].boundHash, 10 ) def testBoxPromotion( self ) : b = Gaffer.Box() b["n"] = GafferScene.StandardAttributes() self.assertTrue( Gaffer.PlugAlgo.canPromote( b["n"]["in"] ) ) self.assertTrue( Gaffer.PlugAlgo.canPromote( b["n"]["out"] ) ) i = Gaffer.PlugAlgo.promote( b["n"]["in"] ) o = Gaffer.PlugAlgo.promote( b["n"]["out"] ) self.assertEqual( b["n"]["in"].getInput(), i ) self.assertEqual( o.getInput(), b["n"]["out"] ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( b["n"]["in"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( b["n"]["out"] ) ) def testNoneAsPath( self ) : p = GafferScene.Plane() self.assertRaises( Exception, p["out"].transform, None ) def testStringToPath( self ) : self.assertEqual( GafferScene.ScenePlug.stringToPath( "" ), IECore.InternedStringVectorData() ) self.assertEqual( GafferScene.ScenePlug.stringToPath( "/" ), IECore.InternedStringVectorData() ) self.assertEqual( GafferScene.ScenePlug.stringToPath( "/a" ), IECore.InternedStringVectorData( [ "a" ] ) ) self.assertEqual( GafferScene.ScenePlug.stringToPath( "a" ), IECore.InternedStringVectorData( [ "a" ] ) ) self.assertEqual( GafferScene.ScenePlug.stringToPath( "/a/b" ), IECore.InternedStringVectorData( [ "a", "b" ] ) ) self.assertEqual( GafferScene.ScenePlug.stringToPath( "/a/b/" ), IECore.InternedStringVectorData( [ "a", "b" ] ) ) self.assertEqual( GafferScene.ScenePlug.stringToPath( "//a//b//" ), IECore.InternedStringVectorData( [ "a", "b" ] ) ) self.assertEqual( GafferScene.ScenePlug.stringToPath( "/foo/bar/" ), IECore.InternedStringVectorData( [ "foo", "bar" ] ) ) self.assertEqual( GafferScene.ScenePlug.stringToPath( "foo/bar/" ), IECore.InternedStringVectorData( [ "foo", "bar" ] ) ) def testPathToString( self ) : self.assertEqual( GafferScene.ScenePlug.pathToString( IECore.InternedStringVectorData() ), "/" ) self.assertEqual( GafferScene.ScenePlug.pathToString( IECore.InternedStringVectorData( [ "a" ] ) ), "/a" ) self.assertEqual( GafferScene.ScenePlug.pathToString( IECore.InternedStringVectorData( [ "a", "b" ] ) ), "/a/b" ) def testManyStringToPathCalls( self ) : GafferSceneTest.testManyStringToPathCalls() def testSetPlugs( self ) : p = GafferScene.ScenePlug() self.assertTrue( isinstance( p["setNames"], Gaffer.InternedStringVectorDataPlug ) ) self.assertEqual( p["setNames"].defaultValue(), IECore.InternedStringVectorData() ) self.assertTrue( isinstance( p["set"], Gaffer.PathMatcherDataPlug ) ) self.assertEqual( p["set"].defaultValue(), IECore.PathMatcherData() ) def testGlobalsAccessors( self ) : p = GafferScene.ScenePlug() self.assertEqual( p.globals(), p["globals"].getValue() ) self.assertFalse( p.globals().isSame( p["globals"].getValue() ) ) self.assertTrue( p.globals( _copy = False ).isSame( p["globals"].getValue( _copy = False ) ) ) self.assertEqual( p.setNames(), p["setNames"].getValue() ) self.assertFalse( p.setNames().isSame( p["setNames"].getValue() ) ) self.assertTrue( p.setNames( _copy = False ).isSame( p["setNames"].getValue( _copy = False ) ) ) self.assertEqual( p.globalsHash(), p["globals"].hash() ) self.assertEqual( p.setNamesHash(), p["setNames"].hash() ) if __name__ == "__main__": unittest.main()
""" ============================================================= Online Latent Dirichlet Allocation with variational inference ============================================================= This implementation is modified from Matthew D. Hoffman's onlineldavb code Link: http://matthewdhoffman.com/code/onlineldavb.tar """ # Author: Chyi-Kwei Yau # Author: Matthew D. Hoffman (original onlineldavb implementation) import numpy as np import scipy.sparse as sp from scipy.special import gammaln import warnings from ..base import BaseEstimator, TransformerMixin from ..utils import (check_random_state, check_array, gen_batches, gen_even_slices, _get_n_jobs) from ..utils.validation import check_non_negative from ..utils.extmath import logsumexp from ..externals.joblib import Parallel, delayed from ..externals.six.moves import xrange from ..exceptions import NotFittedError from ._online_lda import (mean_change, _dirichlet_expectation_1d, _dirichlet_expectation_2d) EPS = np.finfo(np.float).eps def _update_doc_distribution(X, exp_topic_word_distr, doc_topic_prior, max_iters, mean_change_tol, cal_sstats, random_state): """E-step: update document-topic distribution. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. exp_topic_word_distr : dense matrix, shape=(n_topics, n_features) Exponential value of expection of log topic word distribution. In the literature, this is `exp(E[log(beta)])`. doc_topic_prior : float Prior of document topic distribution `theta`. max_iters : int Max number of iterations for updating document topic distribution in the E-step. mean_change_tol : float Stopping tolerance for updating document topic distribution in E-setp. cal_sstats : boolean Parameter that indicate to calculate sufficient statistics or not. Set `cal_sstats` to `True` when we need to run M-step. random_state : RandomState instance or None Parameter that indicate how to initialize document topic distribution. Set `random_state` to None will initialize document topic distribution to a constant number. Returns ------- (doc_topic_distr, suff_stats) : `doc_topic_distr` is unnormalized topic distribution for each document. In the literature, this is `gamma`. we can calculate `E[log(theta)]` from it. `suff_stats` is expected sufficient statistics for the M-step. When `cal_sstats == False`, this will be None. """ is_sparse_x = sp.issparse(X) n_samples, n_features = X.shape n_topics = exp_topic_word_distr.shape[0] if random_state: doc_topic_distr = random_state.gamma(100., 0.01, (n_samples, n_topics)) else: doc_topic_distr = np.ones((n_samples, n_topics)) # In the literature, this is `exp(E[log(theta)])` exp_doc_topic = np.exp(_dirichlet_expectation_2d(doc_topic_distr)) # diff on `component_` (only calculate it when `cal_diff` is True) suff_stats = np.zeros(exp_topic_word_distr.shape) if cal_sstats else None if is_sparse_x: X_data = X.data X_indices = X.indices X_indptr = X.indptr for idx_d in xrange(n_samples): if is_sparse_x: ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]] cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]] else: ids = np.nonzero(X[idx_d, :])[0] cnts = X[idx_d, ids] doc_topic_d = doc_topic_distr[idx_d, :] # The next one is a copy, since the inner loop overwrites it. exp_doc_topic_d = exp_doc_topic[idx_d, :].copy() exp_topic_word_d = exp_topic_word_distr[:, ids] # Iterate between `doc_topic_d` and `norm_phi` until convergence for _ in xrange(0, max_iters): last_d = doc_topic_d # The optimal phi_{dwk} is proportional to # exp(E[log(theta_{dk})]) * exp(E[log(beta_{dw})]). norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS doc_topic_d = (exp_doc_topic_d * np.dot(cnts / norm_phi, exp_topic_word_d.T)) # Note: adds doc_topic_prior to doc_topic_d, in-place. _dirichlet_expectation_1d(doc_topic_d, doc_topic_prior, exp_doc_topic_d) if mean_change(last_d, doc_topic_d) < mean_change_tol: break doc_topic_distr[idx_d, :] = doc_topic_d # Contribution of document d to the expected sufficient # statistics for the M step. if cal_sstats: norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS suff_stats[:, ids] += np.outer(exp_doc_topic_d, cnts / norm_phi) return (doc_topic_distr, suff_stats) class LatentDirichletAllocation(BaseEstimator, TransformerMixin): """Latent Dirichlet Allocation with online variational Bayes algorithm .. versionadded:: 0.17 Read more in the :ref:`User Guide <LatentDirichletAllocation>`. Parameters ---------- n_topics : int, optional (default=10) Number of topics. doc_topic_prior : float, optional (default=None) Prior of document topic distribution `theta`. If the value is None, defaults to `1 / n_topics`. In the literature, this is called `alpha`. topic_word_prior : float, optional (default=None) Prior of topic word distribution `beta`. If the value is None, defaults to `1 / n_topics`. In the literature, this is called `eta`. learning_method : 'batch' | 'online', default='online' Method used to update `_component`. Only used in `fit` method. In general, if the data size is large, the online update will be much faster than the batch update. The default learning method is going to be changed to 'batch' in the 0.20 release. Valid options:: 'batch': Batch variational Bayes method. Use all training data in each EM update. Old `components_` will be overwritten in each iteration. 'online': Online variational Bayes method. In each EM update, use mini-batch of training data to update the ``components_`` variable incrementally. The learning rate is controlled by the ``learning_decay`` and the ``learning_offset`` parameters. learning_decay : float, optional (default=0.7) It is a parameter that control learning rate in the online learning method. The value should be set between (0.5, 1.0] to guarantee asymptotic convergence. When the value is 0.0 and batch_size is ``n_samples``, the update method is same as batch learning. In the literature, this is called kappa. learning_offset : float, optional (default=10.) A (positive) parameter that downweights early iterations in online learning. It should be greater than 1.0. In the literature, this is called tau_0. max_iter : integer, optional (default=10) The maximum number of iterations. total_samples : int, optional (default=1e6) Total number of documents. Only used in the `partial_fit` method. batch_size : int, optional (default=128) Number of documents to use in each EM iteration. Only used in online learning. evaluate_every : int optional (default=0) How often to evaluate perplexity. Only used in `fit` method. set it to 0 or negative number to not evalute perplexity in training at all. Evaluating perplexity can help you check convergence in training process, but it will also increase total training time. Evaluating perplexity in every iteration might increase training time up to two-fold. perp_tol : float, optional (default=1e-1) Perplexity tolerance in batch learning. Only used when ``evaluate_every`` is greater than 0. mean_change_tol : float, optional (default=1e-3) Stopping tolerance for updating document topic distribution in E-step. max_doc_update_iter : int (default=100) Max number of iterations for updating document topic distribution in the E-step. n_jobs : int, optional (default=1) The number of jobs to use in the E-step. If -1, all CPUs are used. For ``n_jobs`` below -1, (n_cpus + 1 + n_jobs) are used. verbose : int, optional (default=0) Verbosity level. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- components_ : array, [n_topics, n_features] Variational parameters for topic word distribution. Since the complete conditional for topic word distribution is a Dirichlet, ``components_[i, j]`` can be viewed as pseudocount that represents the number of times word `j` was assigned to topic `i`. It can also be viewed as distribution over the words for each topic after normalization: ``model.components_ / model.components_.sum(axis=1)[:, np.newaxis]``. n_batch_iter_ : int Number of iterations of the EM step. n_iter_ : int Number of passes over the dataset. References ---------- [1] "Online Learning for Latent Dirichlet Allocation", Matthew D. Hoffman, David M. Blei, Francis Bach, 2010 [2] "Stochastic Variational Inference", Matthew D. Hoffman, David M. Blei, Chong Wang, John Paisley, 2013 [3] Matthew D. Hoffman's onlineldavb code. Link: http://matthewdhoffman.com//code/onlineldavb.tar """ def __init__(self, n_topics=10, doc_topic_prior=None, topic_word_prior=None, learning_method=None, learning_decay=.7, learning_offset=10., max_iter=10, batch_size=128, evaluate_every=-1, total_samples=1e6, perp_tol=1e-1, mean_change_tol=1e-3, max_doc_update_iter=100, n_jobs=1, verbose=0, random_state=None): self.n_topics = n_topics self.doc_topic_prior = doc_topic_prior self.topic_word_prior = topic_word_prior self.learning_method = learning_method self.learning_decay = learning_decay self.learning_offset = learning_offset self.max_iter = max_iter self.batch_size = batch_size self.evaluate_every = evaluate_every self.total_samples = total_samples self.perp_tol = perp_tol self.mean_change_tol = mean_change_tol self.max_doc_update_iter = max_doc_update_iter self.n_jobs = n_jobs self.verbose = verbose self.random_state = random_state def _check_params(self): """Check model parameters.""" if self.n_topics <= 0: raise ValueError("Invalid 'n_topics' parameter: %r" % self.n_topics) if self.total_samples <= 0: raise ValueError("Invalid 'total_samples' parameter: %r" % self.total_samples) if self.learning_offset < 0: raise ValueError("Invalid 'learning_offset' parameter: %r" % self.learning_offset) if self.learning_method not in ("batch", "online", None): raise ValueError("Invalid 'learning_method' parameter: %r" % self.learning_method) def _init_latent_vars(self, n_features): """Initialize latent variables.""" self.random_state_ = check_random_state(self.random_state) self.n_batch_iter_ = 1 self.n_iter_ = 0 if self.doc_topic_prior is None: self.doc_topic_prior_ = 1. / self.n_topics else: self.doc_topic_prior_ = self.doc_topic_prior if self.topic_word_prior is None: self.topic_word_prior_ = 1. / self.n_topics else: self.topic_word_prior_ = self.topic_word_prior init_gamma = 100. init_var = 1. / init_gamma # In the literature, this is called `lambda` self.components_ = self.random_state_.gamma( init_gamma, init_var, (self.n_topics, n_features)) # In the literature, this is `exp(E[log(beta)])` self.exp_dirichlet_component_ = np.exp( _dirichlet_expectation_2d(self.components_)) def _e_step(self, X, cal_sstats, random_init, parallel=None): """E-step in EM update. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. cal_sstats : boolean Parameter that indicate whether to calculate sufficient statistics or not. Set ``cal_sstats`` to True when we need to run M-step. random_init : boolean Parameter that indicate whether to initialize document topic distribution randomly in the E-step. Set it to True in training steps. parallel : joblib.Parallel (optional) Pre-initialized instance of joblib.Parallel. Returns ------- (doc_topic_distr, suff_stats) : `doc_topic_distr` is unnormalized topic distribution for each document. In the literature, this is called `gamma`. `suff_stats` is expected sufficient statistics for the M-step. When `cal_sstats == False`, it will be None. """ # Run e-step in parallel random_state = self.random_state_ if random_init else None # TODO: make Parallel._effective_n_jobs public instead? n_jobs = _get_n_jobs(self.n_jobs) if parallel is None: parallel = Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) results = parallel( delayed(_update_doc_distribution)(X[idx_slice, :], self.exp_dirichlet_component_, self.doc_topic_prior_, self.max_doc_update_iter, self.mean_change_tol, cal_sstats, random_state) for idx_slice in gen_even_slices(X.shape[0], n_jobs)) # merge result doc_topics, sstats_list = zip(*results) doc_topic_distr = np.vstack(doc_topics) if cal_sstats: # This step finishes computing the sufficient statistics for the # M-step. suff_stats = np.zeros(self.components_.shape) for sstats in sstats_list: suff_stats += sstats suff_stats *= self.exp_dirichlet_component_ else: suff_stats = None return (doc_topic_distr, suff_stats) def _em_step(self, X, total_samples, batch_update, parallel=None): """EM update for 1 iteration. update `_component` by batch VB or online VB. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. total_samples : integer Total umber of documents. It is only used when batch_update is `False`. batch_update : boolean Parameter that controls updating method. `True` for batch learning, `False` for online learning. parallel : joblib.Parallel Pre-initialized instance of joblib.Parallel Returns ------- doc_topic_distr : array, shape=(n_samples, n_topics) Unnormalized document topic distribution. """ # E-step _, suff_stats = self._e_step(X, cal_sstats=True, random_init=True, parallel=parallel) # M-step if batch_update: self.components_ = self.topic_word_prior_ + suff_stats else: # online update # In the literature, the weight is `rho` weight = np.power(self.learning_offset + self.n_batch_iter_, -self.learning_decay) doc_ratio = float(total_samples) / X.shape[0] self.components_ *= (1 - weight) self.components_ += (weight * (self.topic_word_prior_ + doc_ratio * suff_stats)) # update `component_` related variables self.exp_dirichlet_component_ = np.exp( _dirichlet_expectation_2d(self.components_)) self.n_batch_iter_ += 1 return def _check_non_neg_array(self, X, whom): """check X format check X format and make sure no negative value in X. Parameters ---------- X : array-like or sparse matrix """ X = check_array(X, accept_sparse='csr') check_non_negative(X, whom) return X def partial_fit(self, X, y=None): """Online VB with Mini-Batch update. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- self """ self._check_params() X = self._check_non_neg_array(X, "LatentDirichletAllocation.partial_fit") n_samples, n_features = X.shape batch_size = self.batch_size # initialize parameters or check if not hasattr(self, 'components_'): self._init_latent_vars(n_features) if n_features != self.components_.shape[1]: raise ValueError( "The provided data has %d dimensions while " "the model was trained with feature size %d." % (n_features, self.components_.shape[1])) n_jobs = _get_n_jobs(self.n_jobs) with Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) as parallel: for idx_slice in gen_batches(n_samples, batch_size): self._em_step(X[idx_slice, :], total_samples=self.total_samples, batch_update=False, parallel=parallel) return self def fit(self, X, y=None): """Learn model for the data X with variational Bayes method. When `learning_method` is 'online', use mini-batch update. Otherwise, use batch update. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- self """ self._check_params() X = self._check_non_neg_array(X, "LatentDirichletAllocation.fit") n_samples, n_features = X.shape max_iter = self.max_iter evaluate_every = self.evaluate_every learning_method = self.learning_method if learning_method == None: warnings.warn("The default value for 'learning_method' will be " "changed from 'online' to 'batch' in the release 0.20. " "This warning was introduced in 0.18.", DeprecationWarning) learning_method = 'online' batch_size = self.batch_size # initialize parameters self._init_latent_vars(n_features) # change to perplexity later last_bound = None n_jobs = _get_n_jobs(self.n_jobs) with Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) as parallel: for i in xrange(max_iter): if learning_method == 'online': for idx_slice in gen_batches(n_samples, batch_size): self._em_step(X[idx_slice, :], total_samples=n_samples, batch_update=False, parallel=parallel) else: # batch update self._em_step(X, total_samples=n_samples, batch_update=True, parallel=parallel) # check perplexity if evaluate_every > 0 and (i + 1) % evaluate_every == 0: doc_topics_distr, _ = self._e_step(X, cal_sstats=False, random_init=False, parallel=parallel) bound = self._perplexity_precomp_distr(X, doc_topics_distr, sub_sampling=False) if self.verbose: print('iteration: %d, perplexity: %.4f' % (i + 1, bound)) if last_bound and abs(last_bound - bound) < self.perp_tol: break last_bound = bound self.n_iter_ += 1 # calculate final perplexity value on train set doc_topics_distr, _ = self._e_step(X, cal_sstats=False, random_init=False, parallel=parallel) self.bound_ = self._perplexity_precomp_distr(X, doc_topics_distr, sub_sampling=False) return self def _unnormalized_transform(self, X): """Transform data X according to fitted model. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- doc_topic_distr : shape=(n_samples, n_topics) Document topic distribution for X. """ if not hasattr(self, 'components_'): raise NotFittedError("no 'components_' attribute in model." " Please fit model first.") # make sure feature size is the same in fitted model and in X X = self._check_non_neg_array(X, "LatentDirichletAllocation.transform") n_samples, n_features = X.shape if n_features != self.components_.shape[1]: raise ValueError( "The provided data has %d dimensions while " "the model was trained with feature size %d." % (n_features, self.components_.shape[1])) doc_topic_distr, _ = self._e_step(X, cal_sstats=False, random_init=False) return doc_topic_distr def transform(self, X): """Transform data X according to the fitted model. .. versionchanged:: 0.18 *doc_topic_distr* is now normalized Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- doc_topic_distr : shape=(n_samples, n_topics) Document topic distribution for X. """ doc_topic_distr = self._unnormalized_transform(X) doc_topic_distr /= doc_topic_distr.sum(axis=1)[:, np.newaxis] return doc_topic_distr def _approx_bound(self, X, doc_topic_distr, sub_sampling): """Estimate the variational bound. Estimate the variational bound over "all documents" using only the documents passed in as X. Since log-likelihood of each word cannot be computed directly, we use this bound to estimate it. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. doc_topic_distr : array, shape=(n_samples, n_topics) Document topic distribution. In the literature, this is called gamma. sub_sampling : boolean, optional, (default=False) Compensate for subsampling of documents. It is used in calculate bound in online learning. Returns ------- score : float """ def _loglikelihood(prior, distr, dirichlet_distr, size): # calculate log-likelihood score = np.sum((prior - distr) * dirichlet_distr) score += np.sum(gammaln(distr) - gammaln(prior)) score += np.sum(gammaln(prior * size) - gammaln(np.sum(distr, 1))) return score is_sparse_x = sp.issparse(X) n_samples, n_topics = doc_topic_distr.shape n_features = self.components_.shape[1] score = 0 dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr) dirichlet_component_ = _dirichlet_expectation_2d(self.components_) doc_topic_prior = self.doc_topic_prior_ topic_word_prior = self.topic_word_prior_ if is_sparse_x: X_data = X.data X_indices = X.indices X_indptr = X.indptr # E[log p(docs | theta, beta)] for idx_d in xrange(0, n_samples): if is_sparse_x: ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]] cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]] else: ids = np.nonzero(X[idx_d, :])[0] cnts = X[idx_d, ids] temp = (dirichlet_doc_topic[idx_d, :, np.newaxis] + dirichlet_component_[:, ids]) norm_phi = logsumexp(temp) score += np.dot(cnts, norm_phi) # compute E[log p(theta | alpha) - log q(theta | gamma)] score += _loglikelihood(doc_topic_prior, doc_topic_distr, dirichlet_doc_topic, self.n_topics) # Compensate for the subsampling of the population of documents if sub_sampling: doc_ratio = float(self.total_samples) / n_samples score *= doc_ratio # E[log p(beta | eta) - log q (beta | lambda)] score += _loglikelihood(topic_word_prior, self.components_, dirichlet_component_, n_features) return score def score(self, X, y=None): """Calculate approximate log-likelihood as score. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- score : float Use approximate bound as score. """ X = self._check_non_neg_array(X, "LatentDirichletAllocation.score") doc_topic_distr = self._unnormalized_transform(X) score = self._approx_bound(X, doc_topic_distr, sub_sampling=False) return score def _perplexity_precomp_distr(self, X, doc_topic_distr=None, sub_sampling=False): """Calculate approximate perplexity for data X with ability to accept precomputed doc_topic_distr Perplexity is defined as exp(-1. * log-likelihood per word) Parameters ---------- X : array-like or sparse matrix, [n_samples, n_features] Document word matrix. doc_topic_distr : None or array, shape=(n_samples, n_topics) Document topic distribution. If it is None, it will be generated by applying transform on X. Returns ------- score : float Perplexity score. """ if not hasattr(self, 'components_'): raise NotFittedError("no 'components_' attribute in model." " Please fit model first.") X = self._check_non_neg_array(X, "LatentDirichletAllocation.perplexity") if doc_topic_distr is None: doc_topic_distr = self._unnormalized_transform(X) else: n_samples, n_topics = doc_topic_distr.shape if n_samples != X.shape[0]: raise ValueError("Number of samples in X and doc_topic_distr" " do not match.") if n_topics != self.n_topics: raise ValueError("Number of topics does not match.") current_samples = X.shape[0] bound = self._approx_bound(X, doc_topic_distr, sub_sampling) if sub_sampling: word_cnt = X.sum() * (float(self.total_samples) / current_samples) else: word_cnt = X.sum() perword_bound = bound / word_cnt return np.exp(-1.0 * perword_bound) def perplexity(self, X, doc_topic_distr='deprecated', sub_sampling=False): """Calculate approximate perplexity for data X. Perplexity is defined as exp(-1. * log-likelihood per word) .. versionchanged:: 0.19 *doc_topic_distr* argument has been deprecated and is ignored because user no longer has access to unnormalized distribution Parameters ---------- X : array-like or sparse matrix, [n_samples, n_features] Document word matrix. doc_topic_distr : None or array, shape=(n_samples, n_topics) Document topic distribution. This argument is deprecated and is currently being ignored. .. deprecated:: 0.19 Returns ------- score : float Perplexity score. """ if doc_topic_distr != 'deprecated': warnings.warn("Argument 'doc_topic_distr' is deprecated and is " "being ignored as of 0.19. Support for this " "argument will be removed in 0.21.", DeprecationWarning) return self._perplexity_precomp_distr(X, sub_sampling=sub_sampling)
from epiphany.isa import reg_map def make_zero_operand_factory(opcode): def factory(): return opcode return factory gie16 = make_zero_operand_factory(0b0000000110010010) gid16 = make_zero_operand_factory(0b0000001110010010) nop16 = make_zero_operand_factory(0b0000000110100010) idle16 = make_zero_operand_factory(0b0000000110110010) bkpt16 = make_zero_operand_factory(0b0000000111000010) mbkpt16 = make_zero_operand_factory(0b0000001111000010) sync16 = make_zero_operand_factory(0b0000000111110010) rti16 = make_zero_operand_factory(0b0000000111010010) wand16 = make_zero_operand_factory(0b0000000110000010) unimpl = make_zero_operand_factory(0b00000000000011110000000000001111) def trap16(trap=0): return 0b1111100010 | (trap << 10) def make_arith32_immediate_factory(name): def arith32_immediate(rd=0, rn=0, imm=0): if name == 'add': opcode = 0b0011011 elif name == 'sub': opcode = 0b0111011 else: raise NotImplementedError() return (opcode | ((imm & 7) << 7) | ((rn & 7) << 10) | ((rd & 7) << 13) | ((imm & (0xFF << 3)) << 13) | ((rn & 56) << 23) | ((rd & 56) << 26)) return arith32_immediate add32_immediate = make_arith32_immediate_factory('add') sub32_immediate = make_arith32_immediate_factory('sub') def make_bitwise32_factory(name): def arith32(rd=0, rn=0, rm=0): bits_16_20 = 0b1010 if name == 'add': opcode = 0b0011111 elif name == 'sub': opcode = 0b0111111 elif name == 'and': opcode = 0b1011111 elif name == 'orr': opcode = 0b1111111 elif name == 'eor': opcode = 0b0001111 elif name == 'asr': opcode = 0b1101111 elif name == 'lsr': opcode = 0b1001111 elif name == 'lsl': opcode = 0b0101111 else: raise NotImplementedError() return (opcode | ((rm & 7) << 7) | ((rn & 7) << 10) | ((rd & 7) << 13) | (bits_16_20 << 16) | ((rm & 56) << 20) | ((rn & 56) << 23) | ((rd & 56) << 26)) return arith32 add32 = make_bitwise32_factory('add') sub32 = make_bitwise32_factory('sub') and32 = make_bitwise32_factory('and') orr32 = make_bitwise32_factory('orr') eor32 = make_bitwise32_factory('eor') asr32 = make_bitwise32_factory('asr') lsr32 = make_bitwise32_factory('lsr') lsl32 = make_bitwise32_factory('lsl') def make_bitwise32_immediate_factory(name): def bit32_immediate(rd=0, rn=0, imm=0): if name == 'lsr': opcode = 0b01111 bits_16_20 = 0b0110 elif name == 'lsl': opcode = 0b11111 bits_16_20 = 0b0110 elif name == 'asr': opcode = 0b01111 bits_16_20 = 0b1110 elif name == 'bitr': opcode = 0b11111 bits_16_20 = 0b1110 else: raise NotImplementedError() return (opcode | (imm << 5) | ((rn & 7) << 10) | ((rd & 7) << 13) | (bits_16_20 << 16) | ((rn & 56) << 23) | ((rd & 56) << 26)) return bit32_immediate lsr32_immediate = make_bitwise32_immediate_factory('lsr') lsl32_immediate = make_bitwise32_immediate_factory('lsl') asr32_immediate = make_bitwise32_immediate_factory('asr') bitr32_immediate = make_bitwise32_immediate_factory('bitr') def make_bitwise16_immediate_factory(name): def bit16_immediate(rd=0, rn=0, imm=0): if name == 'lsr': opcode = 0b00110 elif name == 'lsl': opcode = 0b10110 elif name == 'asr': opcode = 0b01110 elif name == 'bitr': # No immediate on pp 81 of reference manual. opcode = 0b11110 else: raise NotImplementedError() return (opcode | (imm << 5) | (rn << 10) | (rd << 13)) return bit16_immediate lsr16_immediate = make_bitwise16_immediate_factory('lsr') lsl16_immediate = make_bitwise16_immediate_factory('lsl') asr16_immediate = make_bitwise16_immediate_factory('asr') bitr16_immediate = make_bitwise16_immediate_factory('bitr') def make_bitwise16_factory(name): def bit16(rd=0, rn=0, rm=0): assert rd <= 0b111 assert rn <= 0b111 assert rm <= 0b111 if name == 'add': opcode = 0b0011010 elif name == 'sub': opcode = 0b0111010 elif name == 'and': opcode = 0b1011010 elif name == 'orr': opcode = 0b1111010 elif name == 'eor': opcode = 0b0001010 elif name == 'asr': opcode = 0b1101010 elif name == 'lsr': opcode = 0b1001010 elif name == 'lsl': opcode = 0b0101010 else: raise NotImplementedError() return (opcode | ((rm & 7) << 7) | ((rn & 7) << 10) | ((rd & 7) << 13)) return bit16 add16 = make_bitwise16_factory('add') sub16 = make_bitwise16_factory('sub') and16 = make_bitwise16_factory('and') orr16 = make_bitwise16_factory('orr') eor16 = make_bitwise16_factory('eor') asr16 = make_bitwise16_factory('asr') lsr16 = make_bitwise16_factory('lsr') lsl16 = make_bitwise16_factory('lsl') def make_arith16_immediate_factory(name): def arith16_immediate(rd=0, rn=0, imm=0): if name == 'add': opcode = 0b0010011 elif name == 'sub': opcode = 0b0110011 else: raise NotImplementedError() return (opcode | ((imm & 7) << 7) | ((rn & 7) << 10) | ((rd & 7) << 13)) return arith16_immediate add16_immediate = make_arith16_immediate_factory('add') sub16_immediate = make_arith16_immediate_factory('sub') def make_jump32_factory(and_link): def jump(rn=0): opcode = 0b0101011111 if and_link else 0b0101001111 bits_16_20 = 0b0010 return (opcode | ((rn & 7) << 10) | (bits_16_20 << 16) | ((rn & 56) << 23)) return jump jr32 = make_jump32_factory(False) jalr32 = make_jump32_factory(True) def make_jump16_factory(and_link): def jump(rn=0): opcode = 0b0101010010 if and_link else 0b0101000010 return (opcode | (rn << 10)) return jump jr16 = make_jump16_factory(False) jalr16 = make_jump16_factory(True) def bcond_factory(is16bit): def bcond(condition=0, imm=0): opcode = 0b0000 if is16bit else 0b1000 return (opcode | (condition << 4) | (imm << 8)) return bcond bcond32 = bcond_factory(False) bcond16 = bcond_factory(True) def make_farith32_factory(name): def farith32(rd=0, rn=0, rm=0): bits_16_20 = 0b0111 if name == 'add': opcode = 0b0001111 elif name == 'sub': opcode = 0b0011111 elif name == 'mul': opcode = 0b0101111 elif name == 'madd': opcode = 0b0111111 elif name == 'msub': opcode = 0b1001111 elif name == 'float': opcode = 0b1011111 elif name == 'fix': opcode = 0b1101111 elif name == 'abs': opcode = 0b1111111 else: raise NotImplementedError() return (opcode | ((rm & 7) << 7) | ((rn & 7) << 10) | ((rd & 7) << 13) | (bits_16_20 << 16) | ((rm & 56) << 20) | ((rn & 56) << 23) | ((rd & 56) << 26)) return farith32 fadd32 = make_farith32_factory('add') fsub32 = make_farith32_factory('sub') fmul32 = make_farith32_factory('mul') fmadd32 = make_farith32_factory('madd') fmsub32 = make_farith32_factory('msub') float32 = make_farith32_factory('float') fix32 = make_farith32_factory('fix') fabs32 = make_farith32_factory('abs') def make_farith16_factory(name): def farith16(rd=0, rn=0, rm=0): if name == 'add': opcode = 0b0000111 elif name == 'sub': opcode = 0b0010111 elif name == 'mul': opcode = 0b0100111 elif name == 'madd': opcode = 0b0110111 elif name == 'msub': opcode = 0b1000111 elif name == 'float': opcode = 0b1010111 elif name == 'fix': opcode = 0b1100111 elif name == 'abs': opcode = 0b1110111 else: raise NotImplementedError() return (opcode | ((rm & 7) << 7) | ((rn & 7) << 10) | ((rd & 7) << 13)) return farith16 fadd16 = make_farith16_factory('add') fsub16 = make_farith16_factory('sub') fmul16 = make_farith16_factory('mul') fmadd16 = make_farith16_factory('madd') fmsub16 = make_farith16_factory('msub') float16 = make_farith16_factory('float') fix16 = make_farith16_factory('fix') fabs16 = make_farith16_factory('abs') def movcond32(condition=0, rd=0, rn=0): opcode = 0b1111 bits_16_20 = 0b0010 return (opcode | (condition << 4) | ((rn & 7) << 10) | ((rd & 7) << 13) | (bits_16_20 << 16) | ((rn & 56) << 23) | ((rd & 56) << 26)) def movcond16(condition, rd=0, rn=0): opcode = 0b0010 bits_9_10 = 0b00 return (opcode | (condition << 4) | (bits_9_10 << 8) | (rn << 10) | (rd << 13)) def make_movimm32(is_t): def mov32_immediate(rd=0, imm=0): opcode = 0b01011 bit28 = 1 if is_t else 0 return (opcode | ((imm & 255) << 5) | ((rd & 7) << 13) | ((imm & 65280) << 12) | (bit28 << 28) | ((rd & 56) << 26)) return mov32_immediate movimm32 = make_movimm32(False) movtimm32 = make_movimm32(True) def make_mov_special_factory(is16bit, is_from): # Note that in the MOV 'special' instructions rd and rn are swapped. # TODO: Find out what M0 and M1 are for. def mov(rd=0, rn=0): rn = (reg_map[rn] - 64) if not is_from else rn rd = (reg_map[rd] - 64) if is_from else rd if is16bit and is_from: opcode = 0b0100010010 elif is16bit and not is_from: opcode = 0b0100000010 elif not is16bit and is_from: opcode = 0b0100011111 elif not is16bit and not is_from: opcode = 0b0100001111 bits_16_20 = 0b0000 if is16bit else 0b0010 return (opcode | ((rn & 7) << 10) | ((rd & 7) << 13) | (bits_16_20 << 16) | ((rn & 56) << 23) | ((rd & 56) << 26)) return mov movts16 = make_mov_special_factory(True, False) movts32 = make_mov_special_factory(False, False) movfs16 = make_mov_special_factory(True, True) movfs32 = make_mov_special_factory(False, True) def movimm16(rd=0, imm=0): opcode = 0b00011 return (opcode | (imm << 5) | (rd << 13)) def ldstrdisp16(rd=0, rn=0, imm=0, bb=0, s=0): # Data size # 00=byte, 01=half-word, 10=word, 11=double-word opcode = 0b0100 return (opcode | (s << 4) | (bb << 5) | ((imm & 7) << 7) | ((rn & 7) << 10) | ((rd & 7) << 13)) def make_ldstrdisp32_factory(with_postmodify): def ldstrdisp32(rd=0, rn=0, sub=0, imm=0, bb=0, s=0): # Data size # 00=byte, 01=half-word, 10=word, 11=double-word opcode = 0b1100 bit25 = 1 if with_postmodify else 0 return (opcode | (s << 4) | (bb << 5) | ((imm & 7) << 7) | ((rn & 7) << 10) | ((rd & 7) << 13) | ((imm & (0xFF << 3)) << 13) | (sub << 24) | (bit25 << 25) | ((rn & 56) << 23) | ((rd & 56) << 26)) return ldstrdisp32 ldstrpmd32 = make_ldstrdisp32_factory(True) ldstrdisp32 = make_ldstrdisp32_factory(False) def make_ldstrindex_factory(is16bit): def ldstrindex(rd=0, rn=0, rm=0, sub=0, bb=0, s=0): # Data size # 00=byte, 01=half-word, 10=word, 11=double-word opcode = 0b0001 if is16bit else 0b1001 bits_22_23 = 0b00 if is16bit: sub &= 0 return (opcode | (s << 4) | (bb << 5) | ((rm & 7) << 7) | ((rn & 7) << 10) | ((rd & 7) << 13) | (sub << 20) | (bits_22_23 << 21) | ((rm & 56) << 20) | ((rn & 56) << 23) | ((rd & 56) << 26)) return ldstrindex ldstrind16 = make_ldstrindex_factory(True) ldstrind32 = make_ldstrindex_factory(False) def make_ldstrpm_factory(is16bit): def ldstrpm(rd=0, rn=0, rm=0, sub=0, bb=0, s=0): # Data size # 00=byte, 01=half-word, 10=word, 11=double-word opcode = 0b0101 if is16bit else 0b1101 bits_22_23 = 0b00 return (opcode | (s << 4) | (bb << 5) | ((rm & 7) << 7) | ((rn & 7) << 10) | ((rd & 7) << 13) | (sub << 20) | (bits_22_23 << 21) | ((rm & 56) << 20) | ((rn & 56) << 23) | ((rd & 56) << 26)) return ldstrpm ldstrpm16 = make_ldstrpm_factory(True) ldstrpm32 = make_ldstrpm_factory(False) def testset32(rd=0, rn=0, rm=0, sub=0, bb=0): opcode = 0b01001 bits_22_23 = 0b01 return (opcode | (bb << 5) | ((rm & 7) << 7) | ((rn & 7) << 10) | ((rd & 7) << 13) | (sub << 20) | (bits_22_23 << 21) | ((rm & 56) << 20) | ((rn & 56) << 23) | ((rd & 56) << 26))
# -*- encoding: utf-8 -*- ''' Hubble Nova plugin for running arbitrary commands and checking the output of those commands This module is deprecated, and must be explicitly enabled in pillar/minion config via the hubblestack:nova:enable_command_module (should be set to True to enable this module). This allows nova to run arbitrary commands via yaml profiles. :maintainer: HubbleStack / basepi :maturity: 2016.7.0 :platform: All :requires: SaltStack Sample YAML data, with inline comments: # Top level key lets the module know it should look at this data command: # Unique ID for this set of audits nodev: data: # 'osfinger' grain, for multiplatform support 'Red Hat Enterprise Linux Server-6': # tag is required tag: CIS-1.1.10 # `commands` is a list of commands with individual flags commands: # Command to be run - 'grep "[[:space:]]/home[[:space:]]" /etc/fstab': # Check the output for this pattern # If match_output not provided, any output will be a match match_output: nodev # Use regex when matching the output (default False) match_output_regex: False # Invert the success criteria. If True, a match will cause failure (default False) fail_if_matched: False - 'mount | grep /home': match_output: nodev match_output_regex: False # Match each line of the output against our pattern # Any that don't match will make the audit fail (default False) match_output_by_line: True - ? | echo 'this is a multi-line' echo 'bash script' echo 'note the special ? syntax' : # Shell through which the script will be run, must be abs path shell: /bin/bash match_output: this # Aggregation strategy for multiple commands. Defaults to 'and', other option is 'or' aggregation: 'and' # Catch-all, if no other osfinger match was found '*': tag: generic_tag commands: - 'grep "[[:space:]]/home[[:space:]]" /etc/fstab': match_output: nodev match_output_regex: False fail_if_matched: False - 'mount | grep /home': match_output: nodev match_output_regex: False match_output_by_line: True aggregation: 'and' # Description will be output with the results description: '/home should be nodev' ''' from __future__ import absolute_import import logging import fnmatch import re import salt.utils log = logging.getLogger(__name__) def __virtual__(): return True def audit(data_list, tags, labels, **kwargs): ''' Run the command audits contained in the data_list ''' # Consume any module_params from kwargs (Setting False as a fallback) debug = kwargs.get('nova_debug', False) cmd_raw = kwargs.get('cmd_raw', False) __data__ = {} for profile, data in data_list: _merge_yaml(__data__, data, profile) __tags__ = _get_tags(__data__) if debug: log.debug('command audit __data__:') log.debug(__data__) log.debug('command audit __tags__:') log.debug(__tags__) ret = {'Success': [], 'Failure': [], 'Controlled': []} if __tags__ and not __salt__['config.get']('hubblestack:nova:enable_command_module', False): ret['Errors'] = ['command module has not been explicitly enabled in ' 'config. Please set hubblestack:nova:enable_command_module ' 'to True in pillar or minion config to allow this module.'] return ret for tag in __tags__: if fnmatch.fnmatch(tag, tags): for tag_data in __tags__[tag]: if 'control' in tag_data: ret['Controlled'].append(tag_data) continue if 'commands' not in tag_data: continue command_results = [] for command_data in tag_data['commands']: for command, command_args in command_data.iteritems(): if 'shell' in command_args: cmd_ret = __salt__['cmd.run'](command, python_shell=True, shell=command_args['shell']) else: cmd_ret = __salt__['cmd.run'](command, python_shell=True) found = False if cmd_ret: if cmd_raw: tag_data['raw'] = cmd_ret found = True if 'match_output' in command_args: if command_args.get('match_output_by_line'): cmd_ret_lines = cmd_ret.splitlines() else: cmd_ret_lines = [cmd_ret] for line in cmd_ret_lines: if command_args.get('match_output_regex'): if not re.match(command_args['match_output'], line): found = False else: # match without regex if command_args['match_output'] not in line: found = False if command_args.get('fail_if_matched'): found = not found command_results.append(found) aggregation = tag_data.get('aggregation', 'and') if aggregation.lower() == 'or': if any(command_results): ret['Success'].append(tag_data) else: ret['Failure'].append(tag_data) else: # assume 'and' if it's not 'or' if all(command_results): ret['Success'].append(tag_data) else: ret['Failure'].append(tag_data) return ret def _merge_yaml(ret, data, profile=None): ''' Merge two yaml dicts together at the command level ''' if 'command' not in ret: ret['command'] = [] if 'command' in data: for key, val in data['command'].iteritems(): if profile and isinstance(val, dict): val['nova_profile'] = profile ret['command'].append({key: val}) return ret def _get_tags(data): ''' Retrieve all the tags for this distro from the yaml ''' ret = {} distro = __grains__.get('osfinger') for audit_dict in data.get('command', []): # command:0 for audit_id, audit_data in audit_dict.iteritems(): # command:0:nodev tags_dict = audit_data.get('data', {}) # command:0:nodev:data tags = None for osfinger in tags_dict: if osfinger == '*': continue osfinger_list = [finger.strip() for finger in osfinger.split(',')] for osfinger_glob in osfinger_list: if fnmatch.fnmatch(distro, osfinger_glob): tags = tags_dict.get(osfinger) break if tags is not None: break # If we didn't find a match, check for a '*' if tags is None: tags = tags_dict.get('*', {}) # command:0:nodev:data:Debian-8 if 'tag' not in tags: tags['tag'] = '' tag = tags['tag'] if tag not in ret: ret[tag] = [] formatted_data = {'tag': tag, 'module': 'command'} formatted_data.update(audit_data) formatted_data.update(tags) formatted_data.pop('data') ret[tag].append(formatted_data) return ret
# vim:set ff=unix expandtab ts=4 sw=4: from typing import Callable, Tuple, Sequence, Set, Dict from functools import lru_cache, _CacheInfo, _lru_cache_wrapper import numpy as np import matplotlib.pyplot as plt import inspect from collections import namedtuple from numbers import Number from scipy.integrate import odeint, quad from scipy.interpolate import lagrange from scipy.optimize import brentq from scipy.stats import norm from string import Template from sympy import ( gcd, diag, lambdify, DiracDelta, solve, Matrix, Symbol, Expr, diff, simplify, eye, ImmutableMatrix ) from sympy.polys.polyerrors import PolynomialError from sympy.core.function import UndefinedFunction, Function, sympify from sympy import Symbol from collections.abc import Iterable import networkx as nx import igraph as ig from frozendict import frozendict from .BlockOde import BlockOde from .myOdeResult import solve_ivp_pwc ALPHA_14C = 1.18e-12 DECAY_RATE_14C_YEARLY = np.log(2) / 5730 DECAY_RATE_14C_DAILY = DECAY_RATE_14C_YEARLY / 365.25 def combine(m1, m2, m1_to_m2, m2_to_m1, intersect=False): m1_sv_set, m1_in_fluxes, m1_out_fluxes, m1_internal_fluxes = m1 m2_sv_set, m2_in_fluxes, m2_out_fluxes, m2_internal_fluxes = m2 intersect_sv_set = m1_sv_set & m2_sv_set if intersect_sv_set and not intersect: raise(ValueError("How to handle pools %s?" % str(intersect_sv_set))) sv_set = m1_sv_set | m2_sv_set # create external in_fluxes in_fluxes = dict() # add all external in_fluxes of m1 for k, v in m1_in_fluxes.items(): if k in in_fluxes.keys(): in_fluxes[k] += v else: in_fluxes[k] = v # remove flux from in_flux if it becomes internal for pool_to in in_fluxes.keys(): for (pool_from, a), flux in m2_to_m1.items(): if a == pool_to: in_fluxes[pool_to] -= flux # add all external in_fluxes of m2 for k, v in m2_in_fluxes.items(): if k in in_fluxes.keys(): in_fluxes[k] += v else: in_fluxes[k] = v # remove flux from in_flux if it becomes internal for pool_to in in_fluxes.keys(): for (pool_from, a), flux in m1_to_m2.items(): if a == pool_to: in_fluxes[pool_to] -= flux # create external out_fluxes out_fluxes = dict() # add all external out_fluxes from m1 for k, v in m1_out_fluxes.items(): if k in out_fluxes.keys(): out_fluxes[k] += v else: out_fluxes[k] = v # remove flux from out_flux if it becomes internal for pool_from in out_fluxes.keys(): for (a, pool_to), flux in m1_to_m2.items(): if a == pool_from: out_fluxes[pool_from] -= flux # add all external out_fluxes from m2 for k, v in m2_out_fluxes.items(): if k in out_fluxes.keys(): out_fluxes[k] += v else: out_fluxes[k] = v # remove flux from out_flux if it becomes internal for pool_from in out_fluxes.keys(): for (a, pool_to), flux in m2_to_m1.items(): if a == pool_from: out_fluxes[pool_from] -= flux # create internal fluxes internal_fluxes = dict() dicts = [m1_internal_fluxes, m2_internal_fluxes, m1_to_m2, m2_to_m1] for d in dicts: for k, v in d.items(): if k in internal_fluxes.keys(): internal_fluxes[k] += v else: internal_fluxes[k] = v # overwrite in_fluxes and out_fluxes for intersection pools for sv in intersect_sv_set: in_fluxes[sv] = intersect[0][sv] out_fluxes[sv] = intersect[1][sv] clean_in_fluxes = {k: v for k, v in in_fluxes.items() if v != 0} clean_out_fluxes = {k: v for k, v in out_fluxes.items() if v != 0} clean_internal_fluxes = {k: v for k, v in internal_fluxes.items() if v != 0} return sv_set, clean_in_fluxes, clean_out_fluxes, clean_internal_fluxes def extract(m, sv_set, ignore_other_pools=False, supersede=False): m_sv_set, m_in_fluxes, m_out_fluxes, m_internal_fluxes = m assert(sv_set.issubset(m_sv_set)) in_fluxes = {pool: flux for pool, flux in m_in_fluxes.items() if pool in sv_set} out_fluxes = {pool: flux for pool, flux in m_out_fluxes.items() if pool in sv_set} internal_fluxes = { (pool_from, pool_to): flux for (pool_from, pool_to), flux in m_internal_fluxes.items() if (pool_from in sv_set) and (pool_to in sv_set) } for (pool_from, pool_to), flux in m_internal_fluxes.items(): # internal flux becomes influx if not ignored if not ignore_other_pools: if (pool_from not in sv_set) and (pool_to in sv_set): if pool_to in in_fluxes.keys(): in_fluxes[pool_to] += flux else: in_fluxes[pool_to] = flux # internal flux becomes outflux if not ignored if not ignore_other_pools: if (pool_from in sv_set) and (pool_to not in sv_set): if pool_from in out_fluxes.keys(): out_fluxes[pool_from] += flux else: out_fluxes[pool_from] = flux # overwrite in_fluxes and out_fluxes if desired if supersede: for sv, flux in supersede[0].items(): in_fluxes[sv] = flux for sv, flux in supersede[1].items(): out_fluxes[sv] = flux for (pool_from, pool_to), flux in supersede[2].items(): internal_fluxes[pool_from, pool_to] = flux clean_in_fluxes = {k: v for k, v in in_fluxes.items() if v != 0} clean_out_fluxes = {k: v for k, v in out_fluxes.items() if v != 0} clean_internal_fluxes = {k: v for k, v in internal_fluxes.items() if v != 0} return sv_set, clean_in_fluxes, clean_out_fluxes, clean_internal_fluxes def nxgraphs( state_vector: Tuple[Symbol], in_fluxes: Dict[Symbol, Expr], internal_fluxes: Dict[Tuple[Symbol, Symbol], Expr], out_fluxes: Dict[Symbol, Expr], ) -> nx.DiGraph: G = nx.DiGraph() node_names = [str(sv) for sv in state_vector] G.add_nodes_from(node_names) in_flux_targets, out_flux_sources = [ [str(k) for k in d.keys()] for d in (in_fluxes, out_fluxes) ] virtual_in_flux_sources = ["virtual_in_" + str(t) for t in in_flux_targets] for n in virtual_in_flux_sources: G.add_node(n, virtual=True) for i in range(len(in_flux_targets)): G.add_edge( virtual_in_flux_sources[i], in_flux_targets[i], expr=in_fluxes[Symbol(in_flux_targets[i])] ) virtual_out_flux_targets = [ "virtual_out_" + str(t) for t in out_flux_sources ] for n in virtual_out_flux_targets: G.add_node(n, virtual=True) for i in range(len(out_flux_sources)): G.add_edge( out_flux_sources[i], virtual_out_flux_targets[i], expr=out_fluxes[Symbol(out_flux_sources[i])] ) #for c in internal_connections: for c in internal_fluxes.keys(): G.add_edge(str(c[0]), str(c[1]),expr=internal_fluxes[c]) return G def igraph_func_plot( Gnx: nx.DiGraph, # note that Gnx has to have a 'virtual' attribute on some verteces node_color_func: Callable[[nx.DiGraph,str],str], edge_color_func: Callable[[nx.DiGraph,str,str],str], ) -> ig.drawing.Plot: G = ig.Graph.from_networkx(Gnx) vertex_size = [1 if v['virtual'] else 50 for v in G.vs] vertex_color= [node_color_func(Gnx,v) for v in Gnx.nodes] vertex_label = [v['_nx_name'] if not v['virtual'] else '' for v in G.vs] edge_color = [edge_color_func(Gnx,s,t) for s, t in Gnx.edges] edge_label= [Gnx.get_edge_data(s,t)['expr'] for s, t in Gnx.edges] layout = G.layout('sugiyama') pl = ig.plot( G, layout=layout, vertex_size=vertex_size, vertex_label=vertex_label, vertex_color=vertex_color, vertex_label_size=9, edge_color=edge_color, edge_label=edge_label, edge_label_size=4, ) return pl def igraph_plot( state_vector: Matrix, in_fluxes: frozendict, internal_fluxes: frozendict, out_fluxes: frozendict ) -> ig.drawing.Plot: Gnx = nxgraphs(state_vector, in_fluxes, internal_fluxes, out_fluxes) def n_color( G: nx.DiGraph, node_name: str ) -> str: return 'grey' def e_color( G: nx.DiGraph, s: str, t: str ) -> str: return "blue" if G.in_degree(s) ==0 else ( 'red' if G.out_degree(t) == 0 else 'black' ) return igraph_func_plot( Gnx, node_color_func=n_color, edge_color_func=e_color ) def igraph_part_plot( state_vector: Tuple[Symbol], in_fluxes: Dict[Symbol, Expr], internal_fluxes: Dict[Tuple[Symbol, Symbol], Expr], out_fluxes: Dict[Symbol, Expr], part_dict: Dict[Set[str], str] ) -> ig.drawing.Plot: Gnx = nxgraphs(state_vector, in_fluxes, internal_fluxes, out_fluxes) def n_color(G,node_name): cs=set({}) for var_set, color in part_dict.items(): var_set_str = frozenset({str(v) for v in var_set}) # we could have multicolored nodes if the variable set overlap # but igraph does not support it cs = cs.union(set({color})) if node_name in var_set_str else cs return 'grey' if len(cs) == 0 else list(cs)[0] def e_color( G: nx.DiGraph, s: str, t: str ) -> str: return "blue" if G.in_degree(s) ==0 else ( 'red' if G.out_degree(t) == 0 else 'black' ) return igraph_func_plot( Gnx, node_color_func=n_color, edge_color_func=e_color ) def to_int_keys_1(flux_by_sym, state_vector): return {list(state_vector).index(k):v for k,v in flux_by_sym.items()} def to_int_keys_2(fluxes_by_sym_tup, state_vector): return{ (list(state_vector).index(k[0]),list(state_vector).index(k[1])):v for k,v in fluxes_by_sym_tup.items() } def in_or_out_flux_tuple( state_vector, in_or_out_fluxes_by_symbol ): keys = in_or_out_fluxes_by_symbol.keys() def f(ind): v = state_vector[ind] return in_or_out_fluxes_by_symbol[v] if v in keys else 0 return Matrix([f(ind) for ind in range(len(state_vector))]) def release_operator_1( out_fluxes_by_index, internal_fluxes_by_index, state_vector ): decomp_rates = [] for pool in range(len(state_vector)): if pool in out_fluxes_by_index.keys(): decomp_flux = out_fluxes_by_index[pool] else: decomp_flux = 0 decomp_flux += sum([flux for (i,j), flux in internal_fluxes_by_index.items() if i == pool]) decomp_rates.append(simplify(decomp_flux/state_vector[pool])) R = diag(*decomp_rates) return R def release_operator_2( out_fluxes_by_symbol, internal_fluxes_by_symbol, state_vector ): return release_operator_1( to_int_keys_1(out_fluxes_by_symbol, state_vector), to_int_keys_2(internal_fluxes_by_symbol,state_vector), state_vector ) def tranfer_operator_1( out_fluxes_by_index, internal_fluxes_by_index, state_vector ): R = release_operator_1( out_fluxes_by_index, internal_fluxes_by_index, state_vector ) # calculate transition operator return transfer_operator_3( internal_fluxes_by_index, R, state_vector ) def transfer_operator_2( out_fluxes_by_symbol, internal_fluxes_by_symbol, state_vector ): return tranfer_operator_1( to_int_keys_1( out_fluxes_by_symbol, state_vector), to_int_keys_2( internal_fluxes_by_symbol, state_vector), state_vector ) def transfer_operator_3( # this is just a shortcut if we know R already internal_fluxes_by_index, release_operator, state_vector ): # calculate transition operator T = -eye(len(state_vector)) for (i, j), flux in internal_fluxes_by_index.items(): T[j, i] = flux/state_vector[i]/release_operator[i, i] return T def compartmental_matrix_1( out_fluxes_by_index, internal_fluxes_by_index, state_vector ): C = -1*release_operator_1( out_fluxes_by_index, internal_fluxes_by_index, state_vector ) for (i, j), flux in internal_fluxes_by_index.items(): C[j, i] = flux/state_vector[i] return C def compartmental_matrix_2( out_fluxes_by_symbol, internal_fluxes_by_symbol, state_vector ): return compartmental_matrix_1( to_int_keys_1( out_fluxes_by_symbol, state_vector), to_int_keys_2( internal_fluxes_by_symbol, state_vector), state_vector ) def in_fluxes_by_index(state_vector, u): return { pool_nr: u[pool_nr] for pool_nr in range(state_vector.rows) } def in_fluxes_by_symbol(state_vector,u): return { state_vector[pool_nr]: u[pool_nr] for pool_nr in range(state_vector.rows) if u[pool_nr] != 0 } def out_fluxes_by_index(state_vector,B): output_fluxes = dict() # calculate outputs for pool in range(state_vector.rows): outp = -sum(B[:, pool]) * state_vector[pool] s_outp = simplify(outp) if s_outp: output_fluxes[pool] = s_outp return output_fluxes def out_fluxes_by_symbol(state_vector,B): fbi = out_fluxes_by_index(state_vector,B) return { state_vector[pool_nr]: flux for pool_nr, flux in fbi.items() } def internal_fluxes_by_index(state_vector,B): # calculate internal fluxes internal_fluxes = dict() pipes = [(i,j) for i in range(state_vector.rows) for j in range(state_vector.rows) if i != j] for pool_from, pool_to in pipes: flux = B[pool_to, pool_from] * state_vector[pool_from] s_flux = simplify(flux) if s_flux: internal_fluxes[(pool_from, pool_to)] = s_flux return internal_fluxes def internal_fluxes_by_symbol(state_vector,B): fbi = internal_fluxes_by_index(state_vector,B) return { (state_vector[tup[0]],state_vector[tup[1]]): flux for tup,flux in fbi.items() } #def fluxes_by_symbol(state_vector, fluxes_by_index): # internal_fluxes, out_fluxes = fluxes_by_index def warning(txt): print('############################################') calling_frame = inspect.getouterframes(inspect.currentframe(), 2) func_name = calling_frame[1][3] print("Warning in function {0}:".format(func_name)) print(txt) def deprecation_warning(txt): print('############################################') calling_frame = inspect.getouterframes(inspect.currentframe(), 2) func_name = calling_frame[1][3] print("The function {0} is deprecated".format(func_name)) print(txt) def flux_dict_string(d, indent=0): s = "" for k, val in d.items(): s += ' '*indent+str(k)+": "+str(val)+"\n" return s def func_subs(t, Func_expr, func, t0): """ returns the function part_func where part_func(_,_,...) =func(_,t=t0,_..) (func partially applied to t0) The position of argument t in the argument list is found by examining the Func_expression argument. Args: t (sympy.symbol): the symbol to be replaced by t0 t0 (value) : the value to which the function will be applied func (function) : a python function Func_exprs (sympy.Function) : An expression for an undefined Function """ assert(isinstance(type(Func_expr), UndefinedFunction)) pos = Func_expr.args.index(t) def frozen(*args): # tuples are immutable L = list(args) L.insert(pos, t0) new_args = tuple(L) return func(*new_args) return frozen def jacobian(vec, state_vec): dim1 = vec.rows dim2 = state_vec.rows return Matrix(dim1, dim2, lambda i, j: diff(vec[i], state_vec[j])) # fixme: test def has_pw(expr): if expr.is_Matrix: for c in list(expr): if has_pw(c): return True return False if expr.is_Piecewise: return True for a in expr.args: if has_pw(a): return True return False def is_DiracDelta(expr): """Check if expr is a Dirac delta function.""" if len(expr.args) != 1: return False arg = expr.args[0] return DiracDelta(arg) == expr def parse_input_function(u_i, time_symbol): """Return an ordered list of jumps in the input function u. Args: u (SymPy expression): input function in :math:`\\dot{x} = B\\,x + u` Returns: ascending list of jumps in u """ impulse_times = [] pieces = [] def rek(expr, imp_t, p): if hasattr(expr, 'args'): for arg in expr.args: if is_DiracDelta(arg): dirac_arg = arg.args[0] zeros = solve(dirac_arg) imp_t += zeros if arg.is_Piecewise: for pw_arg in arg.args: cond = pw_arg[1] # 'if not cond' led to strange behavior if cond != True: # noqa: E712 atoms = cond.args zeros = solve(atoms[0] - atoms[1]) p += zeros rek(arg, imp_t, p) rek(u_i, impulse_times, pieces) impulses = [] impulse_times = sorted(impulse_times) for impulse_time in impulse_times: intensity = u_i.coeff(DiracDelta(impulse_time-time_symbol)) impulses.append({'time': impulse_time, 'intensity': intensity}) jump_times = sorted(pieces + impulse_times) return (impulses, jump_times) def factor_out_from_matrix(M): if has_pw(M): return(1) try: return gcd(list(M)) except(PolynomialError): # print('no factoring out possible') # fixme: does not work if a function of X, t is in the expressios, # we could make it work...if we really wanted to return 1 def numerical_function_from_expression(expr, tup, parameter_dict, func_set): # the function returns a function that given numeric arguments # returns a numeric result. # This is a more specific requirement than a function returned by lambdify # which can still return symbolic # results if the tuple argument to lambdify does not contain all free # symbols of the lambdified expression. # To avoid this case here we check this. expr_par = expr.subs(parameter_dict) ss_expr = expr_par.free_symbols cut_func_set = make_cut_func_set(func_set) ss_allowed = set( [s for s in tup] ) if not(ss_expr.issubset(ss_allowed)): raise Exception( """The following free symbols: {1} of the expression: {0} are not arguments. """.format(ss_expr, ss_expr.difference(ss_allowed)) ) expr_func = lambdify(tup, expr_par, modules=[cut_func_set, 'numpy']) def expr_func_safe_0_over_0(*val): with np.errstate(invalid='raise'): try: res = expr_func(*val) except FloatingPointError as e: if e.args[0] == 'invalid value encountered in double_scalars': with np.errstate(invalid='ignore'): res = expr_func(*val) res = np.nan_to_num(res, copy=False) return res return expr_func_safe_0_over_0 def numerical_rhs( state_vector, time_symbol, rhs, parameter_dict, func_dict ): FL = numerical_function_from_expression( rhs, (time_symbol,)+tuple(state_vector), parameter_dict, func_dict ) # 2.) Write a wrapper that transformes Matrices to numpy.ndarrays and # accepts array instead of the separate arguments for the states) def num_rhs(t, X): Y = np.array([x for x in X]) # Fval = FL(t, *Y) return Fval.reshape(X.shape,) return num_rhs def numerical_array_func( state_vector, time_symbol, # could also be the iteration symbol expr, parameter_dict, func_dict ): FL = numerical_function_from_expression( expr, (time_symbol,)+tuple(state_vector), parameter_dict, func_dict ) # 2.) Write a wrapper that transformes Matrices to numpy.ndarrays and # accepts array instead of the separate arguments for the states) def num_arr_fun(t, X): Y = np.array([x for x in X]) # Fval = FL(t, *Y) return Fval.reshape(expr.shape,) return num_arr_fun def numerical_rhs_old( state_vector, time_symbol, rhs, parameter_dict, func_set, times ): FL = numerical_function_from_expression( rhs, tuple(state_vector) + (time_symbol,), parameter_dict, func_set ) # 2.) Write a wrapper that transformes Matrices numpy.ndarrays and accepts # array instead of the separate arguments for the states) def num_rhs(X, t): Fval = FL(*X, t) return Fval.reshape(X.shape,) def bounded_num_rhs(X, t): # fixme 1: # maybe odeint (or another integrator) # can be told >>not<< to look outside # the interval # fixme 2: # actually the times vector is not the smallest # possible allowed set but the intersection of # all the intervals where the # time dependent functions are defined # this should be tested in init t_max = times[-1] # fixme: we should die hard here, because now we think we can compute # the state transition operator till any time in the future, # but it is actually biased by the fact, that we use the last value # over and over again # and hence assume some "constant" future if t > t_max: res = num_rhs(X, t_max) else: res = num_rhs(X, t) # print('brhs', 't', t, 'X', X, 'res', res) # print('t', t) return res return bounded_num_rhs def numsol_symbolic_system_old( state_vector, time_symbol, rhs, parameter_dict, func_set, start_values, times ): nr_pools = len(state_vector) if times[0] == times[-1]: return start_values.reshape((1, nr_pools)) num_rhs = numerical_rhs_old( state_vector, time_symbol, rhs, parameter_dict, func_set, times ) return odeint(num_rhs, start_values, times, mxstep=10000) def numsol_symbolical_system( state_vector, time_symbol, rhs, parameter_dicts, func_dicts, start_values, times, disc_times=() ): assert(isinstance(parameter_dicts, Iterable)) assert(isinstance(func_dicts, Iterable)) nr_pools = len(state_vector) t_min = times[0] t_max = times[-1] if times[0] == times[-1]: return start_values.reshape((1, nr_pools)) num_rhss = tuple( numerical_rhs( state_vector, time_symbol, rhs, parameter_dict, func_dict ) for parameter_dict, func_dict in zip(parameter_dicts, func_dicts) ) res = solve_ivp_pwc( rhss=num_rhss, t_span=(t_min, t_max), y0=start_values, t_eval=tuple(times), disc_times=disc_times ) # adapt to the old ode_int interface # since our code at the moment expects it values = np.rollaxis(res.y, -1, 0) return (values, res.sol) def arrange_subplots(n): if n <= 3: rows = 1 cols = n if n == 4: rows = 2 cols = 2 if n >= 5: rows = n // 3 if n % 3 != 0: rows += 1 cols = 3 return (rows, cols) def melt(ndarr, identifiers=None): shape = ndarr.shape if identifiers is None: identifiers = [range(shape[dim]) for dim in range(len(shape))] def rek(struct, ids, melted_list, dim): if type(struct) != np.ndarray: melted_list.append(ids + [struct]) else: shape = struct.shape for k in range(shape[0]): rek(struct[k], ids + [identifiers[dim][k]], melted_list, dim+1) melted_list = [] rek(ndarr, [], melted_list, 0) rows = len(melted_list) cols = len(melted_list[0]) melted = np.array(melted_list).reshape((rows, cols)) return melted # fixme: test # compute inverse of CDF at u for quantiles or generation of random variables #def generalized_inverse_CDF(CDF, u, start_dist=1e-4, tol=1e-8): def generalized_inverse_CDF(CDF, u, x1=0.0, tol=1e-8): y1 = -1 def f(a): # print("HR 398", x1, y1, u) return u-CDF(a) x0 = 0.0 y1 = f(x1) if (y1 <= 0): if x1 == 0.0: # print("schon fertig", "\n"*200) return x1 else: x1 = 0.0 y1 = f(x1) if y1 <= 0: return x1 # go so far to the right such that CDF(x1) > u, the bisect in # interval [0, x1] while y1 >= 0: x0 = x1 x1 = x1*2 + 0.1 y1 = f(x1) if np.isnan(y1): res = np.nan else: res, root_results = brentq(f, x0, x1, xtol=tol, full_output=True) if not root_results.converged: print("quantile convegence failed") # if f(res) > tol: res = np.nan # print('gi_res', res) # print('finished', method_f.__name__, 'on [0,', x1, ']') return res # draw a random variable with given CDF def draw_rv(CDF): return generalized_inverse_CDF(CDF, np.random.uniform()) # return function g, such that g(normally distributed sv) is distributed # according to CDF def stochastic_collocation_transform(M, CDF): # collocation points for normal distribution, # taken from Table 10 in Appendix 3 of Grzelak2015SSRN cc_data = { 2: [1], 3: [0.0, 1.7321], 4: [0.7420, 2.3344], 5: [0.0, 1.3556, 2.8570], 6: [0.6167, 1.8892, 3.3243], 7: [0.0, 1.1544, 2.3668, 3.7504], 8: [0.5391, 1.6365, 2.8025, 4.1445], 9: [0.0, 1.0233, 2.0768, 3.2054, 4.5127], 10: [0.4849, 1.4660, 2.8463, 3.5818, 4.8595], # noqa: E131 11: [0.0, 0.9289, 1.8760, 2.8651, 3.9362, 5.1880] # noqa: E131 } if M not in cc_data.keys(): return None cc_points = [-x for x in reversed(cc_data[M]) if x != 0.0] + cc_data[M] cc_points = np.array(cc_points) # print('start computing collocation transform') ys = np.array( [generalized_inverse_CDF(CDF, norm.cdf(x)) for x in cc_points] ) # print('ys', ys) # print('finished computing collocation transform') return lagrange(cc_points, ys) # Metropolis-Hastings sampling for PDFs with nonnegative support # no thinning, no burn-in period def MH_sampling(N, PDF, start=1.0): xvec = np.ndarray((N,)) x = start PDF_x = PDF(x) norm_cdf_x = norm.cdf(x) for i in range(N): xs = -1.0 while xs <= 0: xs = x + np.random.normal() PDF_xs = PDF(xs) A1 = PDF_xs/PDF_x norm_cdf_xs = norm.cdf(xs) A2 = norm_cdf_x/norm_cdf_xs A = A1 * A2 if np.random.uniform() < A: x = xs PDF_x = PDF_xs norm_cdf_x = norm_cdf_xs xvec[i] = x return xvec def save_csv(filename, melted, header): np.savetxt( filename, melted, header=header, delimiter=',', fmt="%10.8f", comments='' ) def load_csv(filename): return np.loadtxt(filename, skiprows=1, delimiter=',') def tup2str(tup): # uses for stoichiometric models string = Template("${f}_${s}").substitute(f=tup[0], s=tup[1]) return(string) # use only every (k_1,k_2,...,k_n)th element of the n-dimensional numpy array # data, # strides is a list of k_j of length n # always inlcude first and last elements def stride(data, strides): if isinstance(strides, int): strides = [strides] index_list = [] for dim in range(data.ndim): n = data.shape[dim] stride = strides[dim] ind = np.arange(0, n, stride).tolist() if (n-1) % stride != 0: ind.append(n-1) index_list.append(ind) return data[np.ix_(*index_list)] def is_compartmental(M): gen = range(M.shape[0]) return all( [ M.is_square, all([M[j, j] <= 0 for j in gen]), all([sum(M[:, j]) <= 0 for j in gen]) ] ) def make_cut_func_set(func_set): def unify_index(expr): # for the case Function('f'):f_numeric if isinstance(expr, UndefinedFunction): res = str(expr) # for the case {f(x, y): f_numeric} f(x, y) elif isinstance(expr, Symbol): res = str(expr) elif isinstance(expr, Function): res = str(type(expr)) elif isinstance(expr, str): expr = sympify(expr) res = unify_index(expr) else: print(type(expr)) raise(TypeError( """ funcset indices should be indexed by instances of sympy.core.functions.UndefinedFunction """ )) return res cut_func_set = {unify_index(key): val for key, val in func_set.items()} return cut_func_set def f_of_t_maker(sol_funcs, ol): def ot(t): sv = [sol_funcs[i](t) for i in range(len(sol_funcs))] tup = tuple(sv) + (t,) res = ol(*tup) return res return ot def const_of_t_maker(const): def const_arr_fun(possible_vec_arg): if isinstance(possible_vec_arg, Number): return const # also a number else: return const*np.ones_like(possible_vec_arg) return const_arr_fun def x_phi_ode( srm, parameter_dicts, func_dicts, x_block_name='x', phi_block_name='phi', disc_times=() ): nr_pools = srm.nr_pools sol_rhss = [] for pd, fd in zip(parameter_dicts, func_dicts): sol_rhs = numerical_rhs( srm.state_vector, srm.time_symbol, srm.F, pd, fd ) sol_rhss.append(sol_rhs) B_sym = srm.compartmental_matrix tup = (srm.time_symbol,) + tuple(srm.state_vector) B_funcs_non_lin = [] for pd, fd in zip(parameter_dicts, func_dicts): B_func_non_lin = numerical_function_from_expression( B_sym, tup, pd, fd ) B_funcs_non_lin.append(B_func_non_lin) def Phi_rhs_maker(B_func_non_lin): def Phi_rhs(t, x, Phi_2d): return np.matmul(B_func_non_lin(t, *x), Phi_2d) return Phi_rhs Phi_rhss = [] for B_func_non_lin in B_funcs_non_lin: Phi_rhss.append(Phi_rhs_maker(B_func_non_lin)) functionss = [] for sol_rhs, Phi_rhs in zip(sol_rhss, Phi_rhss): functions = [ (sol_rhs, [srm.time_symbol.name, x_block_name]), (Phi_rhs, [srm.time_symbol.name, x_block_name, phi_block_name]) ] functionss.append(functions) return BlockOde( time_str=srm.time_symbol.name, block_names_and_shapes=[ (x_block_name, (nr_pools,)), (phi_block_name, (nr_pools, nr_pools,)) ], functionss=functionss, disc_times=disc_times ) def integrate_array_func_for_nested_boundaries( f: Callable[[float], np.ndarray], integrator: Callable[ [ Callable[[float], np.ndarray], float, float ], np.ndarray ], # e.g. array_quad_result tuples: Sequence[Tuple[float, float]] ) -> Sequence[float]: # we assume that the first (a,b) tuple contains the second, # the second the third and so on from outside to inside def compute(f, tuples, results: Sequence[float]): (a_out, b_out), *tail = tuples if len(tail) == 0: # number=quad(f, a_out, b_out)[0] arr = integrator(f, a_out, b_out) else: (a_in, b_in) = tail[0] results = compute(f, tail, results) arr = ( integrator(f, a_out, a_in) + results[0] + integrator(f, b_in, b_out) ) results = [arr] + results return results return compute(f, tuples, []) def array_quad_result( f: Callable[[float], np.ndarray], a: float, b: float, epsrel=1e-3, # epsabs would be a dangerous default *args, **kwargs ) -> np.ndarray: # integrates a vectorvalued function of a single argument # we transform the result array of the function into a one dimensional # vector compute the result for every component # and reshape the result to the form of the integrand test = f(a) n = len(test.flatten()) vec = np.array( [quad( lambda t:f(t).reshape(n,)[i], a, b, *args, epsrel=epsrel, **kwargs )[0] for i in range(n)] ) return vec.reshape(test.shape) def array_integration_by_ode( f: Callable[[float], np.ndarray], a: float, b: float, *args, **kwargs ) -> np.ndarray: # another integrator like array_quad_result test = f(a) n = len(test.flatten()) def rhs(tau, X): # although we do not need X we have to provide a # righthandside s uitable for solve_ivp # avoid overshooting if the solver # tries to look where the integrand might not be defined if tau < a or tau > b: return 0 else: return f(tau).flatten() ys = solve_ivp_pwc( rhss=(rhs,), y0=np.zeros(n), t_span=(a, b) ).y val = ys[:, -1].reshape(test.shape) return val def array_integration_by_values( f: Callable[[float], np.ndarray], taus: np.ndarray, *args, **kwargs, ) -> np.ndarray: # only allow taus as vector assert(len(taus.shape) == 1) assert(len(taus) > 0) test = f(taus[0]) # create a big 2 dimensional array suitable for trapz integrand_vals = np.stack([f(tau).flatten() for tau in taus], 1) vec = np.trapz(y=integrand_vals, x=taus) return vec.reshape(test.shape) def x_phi_tmax(s, t_max, block_ode, x_s, x_block_name, phi_block_name): x_s = np.array(x_s) nr_pools = len(x_s) start_Phi_2d = np.identity(nr_pools) start_blocks = [ (x_block_name, x_s), (phi_block_name, start_Phi_2d) ] blivp = block_ode.blockIvp(start_blocks) return blivp def phi_tmax(s, t_max, block_ode, x_s, x_block_name, phi_block_name): blivp = x_phi_tmax(s, t_max, block_ode, x_s, x_block_name, phi_block_name) phi_func = blivp.block_solve_functions(t_span=(s, t_max))[phi_block_name] return phi_func @lru_cache() def x_tmax(s, t_max, block_ode, x_s, x_block_name, phi_block_name): blivp = x_phi_tmax(s, t_max, block_ode, x_s, x_block_name, phi_block_name) x_func = blivp.block_solve_functions(t_span=(s, t_max))[x_block_name] return x_func _CacheStats = namedtuple( 'CacheStats', ['hitss', 'missess', 'currsizes', 'hitting_ratios'] ) def custom_lru_cache_wrapper(maxsize=None, typed=False, stats=False): if stats: hitss = [] missess = [] currsizes = [] hitting_ratios = [] def decorating_function(user_function): func = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo) def wrapper(*args, **kwargs): nonlocal stats, hitss, missess, currsizes, hitting_ratios result = func(*args, **kwargs) if stats: hitss.append(func.cache_info().hits) missess.append(func.cache_info().misses) currsizes.append(func.cache_info().currsize) hitting_ratios.append( round(hitss[-1]/(hitss[-1]+missess[-1])*100.0, 2) ) return result wrapper.cache_info = func.cache_info if stats: def cache_stats(): nonlocal hitss, missess, currsizes return _CacheStats(hitss, missess, currsizes, hitting_ratios) wrapper.cache_stats = cache_stats def plot_hitss(): nonlocal hitss plt.plot(range(len(hitss)), hitss) plt.title('Hitss') plt.show() wrapper.plot_hitss = plot_hitss def plot_hit_history(): nonlocal hitss plt.scatter( range(len(hitss)-1), np.diff(hitss), s=1, alpha=0.2 ) plt.title('Hit history') plt.show() wrapper.plot_hit_history = plot_hit_history def plot_hitting_ratios(): nonlocal hitss, hitting_ratios plt.plot( range(len(hitss)), hitting_ratios ) plt.title('Hitting ratios') plt.show() wrapper.plot_hitting_ratios = plot_hitting_ratios def plot_currsizes(): nonlocal currsizes plt.plot( range(len(currsizes)), currsizes ) plt.title('Currsizes') plt.show() wrapper.plot_currsizes = plot_currsizes def plot_hitting_ratios_over_currsizes(): nonlocal hitting_ratios, currsizes plt.plot( range(len(hitting_ratios)), [hitting_ratios[i]/currsizes[i] for i in range(len(hitting_ratios))] ) plt.title('Hitting ratios over currsizes') plt.show() wrapper.plot_hitting_ratios_over_currsizes =\ plot_hitting_ratios_over_currsizes def plot_hitting_ratios_vs_currsizes(): nonlocal hitting_ratios, currsizes plt.plot( currsizes, hitting_ratios ) plt.title('Hitting ratios vs currsizes') plt.show() wrapper.plot_hitting_ratios_vs_currsizes =\ plot_hitting_ratios_vs_currsizes def cache_clear(): nonlocal hitss, missess, currsizes hitss = [] missess = [] currsizes = [] func.cache_clear() wrapper.cache_clear = cache_clear return wrapper return decorating_function def print_quantile_error_statisctics(qs_ode, qs_pi): print('ODE :', ['{: 7.2f}'.format(v) for v in qs_ode]) print('Expl. :', ['{: 7.2f}'.format(v) for v in qs_pi]) abs_err = np.abs(qs_ode-qs_pi) print('abs. err. :', ['{: 7.2f}'.format(v) for v in abs_err]) rel_err = np.abs(qs_ode-qs_pi)/qs_pi * 100 print('rel. err. (%):', ['{: 7.2f}'.format(v) for v in rel_err]) print() print('mean abs. err :', '{: 6.2f}'.format(abs_err.mean())) print('mean rel. err (%):', '{: 6.2f}'.format(rel_err.mean())) print('max. abs. err :', '{: 6.2f}'.format(np.max(abs_err))) print('max. rel. err (%):', '{: 6.2f}'.format(np.max(rel_err))) print() def net_Fs_from_discrete_Bs_and_xs(Bs, xs): nr_pools = xs.shape[1] nt = len(Bs) net_Fs = np.zeros((nt, nr_pools, nr_pools)) for k in range(nt): for j in range(nr_pools): for i in range(nr_pools): if i != j: net_Fs[k, i, j] = Bs[k, i, j] * xs[k, j] return net_Fs def net_Rs_from_discrete_Bs_and_xs(Bs, xs, decay_corr=None): nr_pools = xs.shape[1] nt = len(Bs) if decay_corr is None: decay_corr = np.ones((nt,)) net_Rs = np.zeros((nt, nr_pools)) for k in range(nt): for j in range(nr_pools): net_Rs[k, j] = (1-sum(Bs[k, :, j])*decay_corr[k]) * xs[k, j] return net_Rs def net_Us_from_discrete_Bs_and_xs(Bs, xs): nr_pools = xs.shape[1] nt = len(Bs) net_Us = np.zeros((nt, nr_pools)) for k in range(nt): net_Us[k] = xs[k+1] - Bs[k] @ xs[k] return net_Us def check_parameter_dict_complete(model, parameter_dict, func_set): """Check if the parameter set the function set are complete to enable a model run. Args: model (:class:`~.smooth_reservoir_model.SmoothReservoirModel`): The reservoir model on which the model run bases. parameter_dict (dict): ``{x: y}`` with ``x`` being a SymPy symbol and ``y`` being a numerical value. func_set (dict): ``{f: func}`` with ``f`` being a SymPy symbol and ``func`` being a Python function. Defaults to ``dict()``. Returns: free_symbols (set): set of free symbols, parameter_dict is complete if ``free_symbols`` is the empty set """ free_symbols = model.F.subs(parameter_dict).free_symbols # print('fs', free_symbols) free_symbols -= {model.time_symbol} # print(free_symbols) free_symbols -= set(model.state_vector) # print(free_symbols) # remove function names, are given as strings free_names = set([symbol.name for symbol in free_symbols]) func_names = set([key for key in func_set.keys()]) free_names = free_names - func_names return free_names def F_Delta_14C(C12, C14, alpha=None): if alpha is None: alpha = ALPHA_14C C12[C12 == 0] = np.nan return (C14/C12/alpha - 1) * 1000 def densities_to_distributions( densities: Callable[[float],np.ndarray], nr_pools: int )->Callable[[float],np.ndarray]: def distributions(A: np.float) ->np.ndarray: return np.array( [ quad( lambda a:densities(a)[i], -np.inf, A )[0] for i in range(nr_pools) ] ) return distributions def pool_wise_bin_densities_from_smooth_densities_and_index( densities: Callable[[float],np.ndarray], nr_pools: int, dt: float, )->Callable[[int],np.ndarray]: def content(ai:int)->np.ndarray: da = dt return np.array( [ quad( lambda a:densities(a)[i], ai*da, (ai+1)*da )[0] / da for i in range(nr_pools) ] ) return content def pool_wise_bin_densities_from_smooth_densities_and_indices( densities: Callable[[float],np.ndarray], nr_pools: int, dt: float, )->Callable[[np.ndarray],np.ndarray]: bin_density = pool_wise_bin_densities_from_smooth_densities_and_index( densities, nr_pools, dt ) # vectorize it def bin_densities(age_bin_indices: np.ndarray)->np.ndarray: return np.stack( [ bin_density(ai) for ai in age_bin_indices ], axis=1 ) return bin_densities def negative_indicies_to_zero( f: Callable[[np.ndarray],np.ndarray] )->Callable[[np.ndarray],np.ndarray]: def wrapper(age_bin_indices): arr_true = f(age_bin_indices) nr_pools = arr_true.shape[0] return np.stack( [ np.where( age_bin_indices >=0, arr_true[ip,:], 0 ) for ip in range(nr_pools) ] ) return wrapper # make sure that the start age distribution # yields zero for negative ages or indices def p0_maker( start_age_densities_of_bin: Callable[[int],np.ndarray], ): def p0(ai): res = start_age_densities_of_bin(ai) if ai >= 0: return res else: return np.zeros_like(res) return p0 def discrete_time_dict( cont_time: Symbol, delta_t: Symbol, iteration: Symbol )->Dict: return {cont_time: delta_t*iteration} def euler_forward_B_sym( B_sym_cont: Expr, cont_time: Symbol, delta_t: Symbol, iteration: Symbol )-> Expr: B_sym_discrete = B_sym_cont.subs( discrete_time_dict( cont_time, delta_t, iteration ) ) return (B_sym_discrete * delta_t) def euler_forward_net_flux_sym( flux_sym_cont: Expr, cont_time: Symbol, delta_t: Symbol, iteration: Symbol )-> Expr: flux_sym_discrete = flux_sym_cont.subs( discrete_time_dict( cont_time, delta_t, iteration ) ) return flux_sym_discrete * delta_t # fixme mm 2-11-2022 # this function is identical to euler_forward_net_flux_sym and should # be replaced wherever it is called def euler_forward_net_u_sym( u_sym_cont: Expr, cont_time: Symbol, delta_t: Symbol, iteration: Symbol )-> Expr: u_sym_discrete = u_sym_cont.subs( discrete_time_dict( cont_time, delta_t, iteration ) ) return u_sym_discrete * delta_t
from pybrain.datasets import ClassificationDataSet, UnsupervisedDataSet from pybrain.utilities import percentError from pybrain.tools.shortcuts import buildNetwork from pybrain.supervised.trainers import BackpropTrainer from pybrain.structure.modules import SoftmaxLayer from tr_utils import append_to_arr from train_files import TrainFiles import numpy as np import time from SupervisedLearning import SKSupervisedLearning from sklearn.metrics import log_loss from sklearn.svm import SVC from sklearn.cross_validation import train_test_split import matplotlib.pyplot as plt from sklearn.decomposition.pca import PCA def _createDataSet(X, Y, one_based): labels = np.unique(Y) alldata = ClassificationDataSet(X.shape[1], nb_classes = labels.shape[0], class_labels = labels) shift = 1 if one_based else 0 for i in range(X.shape[0]): alldata.addSample(X[i], Y[i] - shift) alldata._convertToOneOfMany() return alldata def _createUnsupervisedDataSet(X): alldata = UnsupervisedDataSet(X.shape[1]) for i in X: alldata.addSample(i) return alldata def createDataSets(X_train, Y_train, X_test, Y_test, one_based = True): """ Creates the data set. Handles one-based classifications (PyBrain uses zero-based ones). """ trndata = _createDataSet(X_train, Y_train, one_based) tstdata = _createDataSet(X_test, Y_test, one_based) return trndata, tstdata def nn_log_loss(fnn, data): proba = fnn.activateOnDataset(data) return log_loss(data['target'], proba) def train(trndata, tstdata, epochs = 100, test_error = 0.2, weight_decay = 0.0001, momentum = 0.5): """ FF neural net """ fnn = buildNetwork(trndata.indim, trndata.indim / 4, trndata.outdim, outclass = SoftmaxLayer) trainer = BackpropTrainer(fnn, trndata, momentum = momentum, weightdecay = weight_decay) epoch_delta = 1 stop = False trnResults = np.array([]) tstResults = np.array([]) totEpochs = np.array([]) trnLogLoss = np.array([]) tstLogLoss = np.array([]) f, (ax1, ax2) = plt.subplots(1, 2, figsize=(15,8)) #hold(True) # overplot on #plt.ion() while not stop: trainer.trainEpochs(epoch_delta) trnresult = percentError( trainer.testOnClassData(), trndata['class'] ) tstresult = percentError( trainer.testOnClassData( dataset=tstdata ), tstdata['class'] ) tstLogLoss = append_to_arr(tstLogLoss, nn_log_loss(fnn, tstdata)) trnLogLoss = append_to_arr(trnLogLoss, nn_log_loss(fnn, trndata)) print "epoch: %4d" % trainer.totalepochs, \ " train error: %5.2f%%" % trnresult, \ " test error: %5.2f%%" % tstresult, \ " test logloss: %2.4f" % tstLogLoss[-1], \ " train logloss: %2.4f" % trnLogLoss[-1] trnResults = append_to_arr(trnResults, trnresult) tstResults = append_to_arr(tstResults, tstresult) totEpochs = append_to_arr(totEpochs, trainer.totalepochs) plt.sca(ax1) plt.cla() ax1.plot(totEpochs, trnResults, label = 'Train') ax1.plot(totEpochs, tstResults, label = 'Test') plt.sca(ax2) plt.cla() ax2.plot(totEpochs, trnLogLoss, label = 'Train') ax2.plot(totEpochs, tstLogLoss, label = 'Test') ax1.legend() ax2.legend() plt.draw() time.sleep(0.1) plt.pause(0.0001) stop = (tstLogLoss[-1] <= test_error or trainer.totalepochs >= epochs) return fnn def predict_nn(trndata, epochs = 300, test_error = 0.0147, weight_decay = 0.0001, momentum = 0.15): """ FF neural net """ fnn = buildNetwork(trndata.indim, trndata.indim / 4, trndata.outdim, outclass = SoftmaxLayer) trainer = BackpropTrainer(fnn, trndata, momentum = momentum, weightdecay = weight_decay) epoch_delta = 1 stop = False totEpochs = np.array([]) trnResults = np.array([]) trnLogLoss = np.array([]) f, (ax1, ax2) = plt.subplots(1, 2, figsize=(15,8)) while not stop: trainer.trainEpochs(epoch_delta) trnresult = percentError( trainer.testOnClassData(), trndata['class'] ) trnLogLoss = append_to_arr(trnLogLoss, nn_log_loss(fnn, trndata)) print "epoch: %4d" % trainer.totalepochs, \ " train error: %5.2f%%" % trnresult, \ " train logloss: %2.4f" % trnLogLoss[-1] trnResults = append_to_arr(trnResults, trnresult) totEpochs = append_to_arr(totEpochs, trainer.totalepochs) plt.sca(ax1) plt.cla() ax1.plot(totEpochs, trnResults, label = 'Train') plt.sca(ax2) plt.cla() ax2.plot(totEpochs, trnLogLoss, label = 'Train') ax1.legend() ax2.legend() plt.draw() time.sleep(0.1) plt.pause(0.0001) stop = (trnLogLoss[-1] <= test_error or trainer.totalepochs >= epochs) return fnn train_path_mix = "/kaggle/malware/train/mix_lbp" train_path_freq = "/kaggle/malware/train/instr_freq" labels_file = "/kaggle/malware/trainLabels.csv" csv_file = "/kaggle/malware/mix_lbp.csv" def do_train(): X, Y, Xt, Yt = TrainFiles.from_csv(csv_file) sl = SKSupervisedLearning(SVC, X, Y, Xt, Yt) sl.fit_standard_scaler() #pca = PCA(250) #pca.fit(np.r_[sl.X_train_scaled, sl.X_test_scaled]) #X_pca = pca.transform(sl.X_train_scaled) #X_pca_test = pca.transform(sl.X_test_scaled) ##construct a dataset for RBM #X_rbm = X[:, 257:] #Xt_rbm = X[:, 257:] #rng = np.random.RandomState(123) #rbm = RBM(X_rbm, n_visible=X_rbm.shape[1], n_hidden=X_rbm.shape[1]/4, numpy_rng=rng) #pretrain_lr = 0.1 #k = 2 #pretraining_epochs = 200 #for epoch in xrange(pretraining_epochs): # rbm.contrastive_divergence(lr=pretrain_lr, k=k) # cost = rbm.get_reconstruction_cross_entropy() # print >> sys.stderr, 'Training epoch %d, cost is ' % epoch, cost trndata, tstdata = createDataSets(X, Y, X_test, Yt) fnn = train(trndata, tstdata, epochs = 1000, test_error = 0.025, momentum = 0.15, weight_decay = 0.0001) def do_predict(X_train, Y_train, X_test): trndata = _createDataSet(X_train, Y_train, one_based = True) tstdata = _createUnsupervisedDataSet(X_test) fnn = predict_nn(trndata) proba = fnn.activateOnDataset(tstdata) def do_train_with_freq(): tf_mix = TrainFiles(train_path = train_path_mix, labels_file = labels_file, test_size = 0.) tf_freq = TrainFiles(train_path = train_path_freq, labels_file = labels_file, test_size = 0.) X_m, Y_m, _, _ = tf_mix.prepare_inputs() X_f, Y_f, _, _ = tf_freq.prepare_inputs() X = np.c_[X_m, X_f] Y = Y_f X, Xt, Y, Yt = train_test_split(X, Y, test_size = 0.1) sl = SKSupervisedLearning(SVC, X, Y, Xt, Yt) sl.fit_standard_scaler() pca = PCA(250) pca.fit(np.r_[sl.X_train_scaled, sl.X_test_scaled]) X_pca = pca.transform(sl.X_train_scaled) X_pca_test = pca.transform(sl.X_test_scaled) #sl.train_params = {'C': 100, 'gamma': 0.0001, 'probability' : True} #print "Start SVM: ", time_now_str() #sl_ll_trn, sl_ll_tst = sl.fit_and_validate() #print "Finish Svm: ", time_now_str() ##construct a dataset for RBM #X_rbm = X[:, 257:] #Xt_rbm = X[:, 257:] #rng = np.random.RandomState(123) #rbm = RBM(X_rbm, n_visible=X_rbm.shape[1], n_hidden=X_rbm.shape[1]/4, numpy_rng=rng) #pretrain_lr = 0.1 #k = 2 #pretraining_epochs = 200 #for epoch in xrange(pretraining_epochs): # rbm.contrastive_divergence(lr=pretrain_lr, k=k) # cost = rbm.get_reconstruction_cross_entropy() # print >> sys.stderr, 'Training epoch %d, cost is ' % epoch, cost trndata, tstdata = createDataSets(X_pca, Y, X_pca_test, Yt) fnn = train(trndata, tstdata, epochs = 1000, test_error = 0.025, momentum = 0.2, weight_decay = 0.0001)
# Copyright 2020 The StackStorm Authors. # Copyright 2019 Extreme Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import mock import six from orquesta import statuses as wf_statuses import st2tests # XXX: actionsensor import depends on config being setup. import st2tests.config as tests_config tests_config.parse_args() from tests.unit import base from local_runner import local_shell_command_runner from st2common.bootstrap import actionsregistrar from st2common.bootstrap import runnersregistrar from st2common.constants import action as ac_const from st2common.models.db import liveaction as lv_db_models from st2common.persistence import execution as ex_db_access from st2common.persistence import liveaction as lv_db_access from st2common.persistence import workflow as wf_db_access from st2common.runners import utils as runners_utils from st2common.services import action as ac_svc from st2common.services import workflows as wf_svc from st2common.transport import liveaction as lv_ac_xport from st2common.transport import workflow as wf_ex_xport from st2common.transport import publishers from st2tests.mocks import liveaction as mock_lv_ac_xport from st2tests.mocks import workflow as mock_wf_ex_xport from st2common.models.db.workflow import WorkflowExecutionDB from st2common.models.db.workflow import TaskExecutionDB from st2common.models.db.execution_queue import ActionExecutionSchedulingQueueItemDB TEST_PACK = "orquesta_tests" TEST_PACK_PATH = ( st2tests.fixturesloader.get_fixtures_packs_base_path() + "/" + TEST_PACK ) PACKS = [ TEST_PACK_PATH, st2tests.fixturesloader.get_fixtures_packs_base_path() + "/core", ] RUNNER_RESULT_FAILED = ( ac_const.LIVEACTION_STATUS_FAILED, {"127.0.0.1": {"hostname": "foobar"}}, {}, ) @mock.patch.object( publishers.CUDPublisher, "publish_update", mock.MagicMock(return_value=None) ) @mock.patch.object( lv_ac_xport.LiveActionPublisher, "publish_create", mock.MagicMock(side_effect=mock_lv_ac_xport.MockLiveActionPublisher.publish_create), ) @mock.patch.object( lv_ac_xport.LiveActionPublisher, "publish_state", mock.MagicMock(side_effect=mock_lv_ac_xport.MockLiveActionPublisher.publish_state), ) @mock.patch.object( wf_ex_xport.WorkflowExecutionPublisher, "publish_create", mock.MagicMock( side_effect=mock_wf_ex_xport.MockWorkflowExecutionPublisher.publish_create ), ) @mock.patch.object( wf_ex_xport.WorkflowExecutionPublisher, "publish_state", mock.MagicMock( side_effect=mock_wf_ex_xport.MockWorkflowExecutionPublisher.publish_state ), ) class OrquestaErrorHandlingTest(st2tests.WorkflowTestCase): ensure_indexes = True ensure_indexes_models = [ WorkflowExecutionDB, TaskExecutionDB, ActionExecutionSchedulingQueueItemDB, ] @classmethod def setUpClass(cls): super(OrquestaErrorHandlingTest, cls).setUpClass() # Register runners. runnersregistrar.register_runners() # Register test pack(s). actions_registrar = actionsregistrar.ActionsRegistrar( use_pack_cache=False, fail_on_failure=True ) for pack in PACKS: actions_registrar.register_from_pack(pack) def test_fail_inspection(self): expected_errors = [ { "type": "content", "message": 'The action "std.noop" is not registered in the database.', "schema_path": r"properties.tasks.patternProperties.^\w+$.properties.action", "spec_path": "tasks.task3.action", }, { "type": "context", "language": "yaql", "expression": "<% ctx().foobar %>", "message": 'Variable "foobar" is referenced before assignment.', "schema_path": r"properties.tasks.patternProperties.^\w+$.properties.input", "spec_path": "tasks.task1.input", }, { "type": "expression", "language": "yaql", "expression": "<% <% succeeded() %>", "message": ( "Parse error: unexpected '<' at " "position 0 of expression '<% succeeded()'" ), "schema_path": ( r"properties.tasks.patternProperties.^\w+$." "properties.next.items.properties.when" ), "spec_path": "tasks.task2.next[0].when", }, { "type": "syntax", "message": ( "[{'cmd': 'echo <% ctx().macro %>'}] is " "not valid under any of the given schemas" ), "schema_path": r"properties.tasks.patternProperties.^\w+$.properties.input.oneOf", "spec_path": "tasks.task2.input", }, ] wf_meta = base.get_wf_fixture_meta_data(TEST_PACK_PATH, "fail-inspection.yaml") lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertIn("errors", lv_ac_db.result) self.assertListEqual(lv_ac_db.result["errors"], expected_errors) def test_fail_input_rendering(self): expected_errors = [ { "type": "error", "message": ( "YaqlEvaluationException: Unable to evaluate expression " "'<% abs(4).value %>'. NoFunctionRegisteredException: " 'Unknown function "#property#value"' ), } ] expected_result = {"output": None, "errors": expected_errors} wf_meta = base.get_wf_fixture_meta_data( TEST_PACK_PATH, "fail-input-rendering.yaml" ) lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Assert action execution for task is not started and workflow failed. wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] tk_ex_dbs = wf_db_access.TaskExecution.query( workflow_execution=str(wf_ex_db.id) ) self.assertEqual(len(tk_ex_dbs), 0) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_fail_vars_rendering(self): expected_errors = [ { "type": "error", "message": ( "YaqlEvaluationException: Unable to evaluate expression " "'<% abs(4).value %>'. NoFunctionRegisteredException: " 'Unknown function "#property#value"' ), } ] expected_result = {"output": None, "errors": expected_errors} wf_meta = base.get_wf_fixture_meta_data( TEST_PACK_PATH, "fail-vars-rendering.yaml" ) lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Assert action execution for task is not started and workflow failed. wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] tk_ex_dbs = wf_db_access.TaskExecution.query( workflow_execution=str(wf_ex_db.id) ) self.assertEqual(len(tk_ex_dbs), 0) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_fail_start_task_action(self): expected_errors = [ { "type": "error", "message": ( "YaqlEvaluationException: Unable to evaluate expression " "'<% ctx().func.value %>'. NoFunctionRegisteredException: " 'Unknown function "#property#value"' ), "task_id": "task1", "route": 0, } ] expected_result = {"output": None, "errors": expected_errors} wf_meta = base.get_wf_fixture_meta_data( TEST_PACK_PATH, "fail-start-task-action.yaml" ) lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Assert action execution for task is not started and workflow failed. wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] tk_ex_dbs = wf_db_access.TaskExecution.query( workflow_execution=str(wf_ex_db.id) ) self.assertEqual(len(tk_ex_dbs), 0) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_fail_start_task_input_expr_eval(self): expected_errors = [ { "type": "error", "message": ( "YaqlEvaluationException: Unable to evaluate expression " "'<% ctx().msg1.value %>'. NoFunctionRegisteredException: " 'Unknown function "#property#value"' ), "task_id": "task1", "route": 0, } ] expected_result = {"output": None, "errors": expected_errors} wf_file = "fail-start-task-input-expr-eval.yaml" wf_meta = base.get_wf_fixture_meta_data(TEST_PACK_PATH, wf_file) lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Assert action execution for task is not started and workflow failed. wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] tk_ex_dbs = wf_db_access.TaskExecution.query( workflow_execution=str(wf_ex_db.id) ) self.assertEqual(len(tk_ex_dbs), 0) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_fail_start_task_input_value_type(self): if six.PY3: msg = "Value \"{'x': 'foobar'}\" must either be a string or None. Got \"dict\"." else: msg = "Value \"{u'x': u'foobar'}\" must either be a string or None. Got \"dict\"." msg = "ValueError: " + msg expected_errors = [ {"type": "error", "message": msg, "task_id": "task1", "route": 0} ] expected_result = {"output": None, "errors": expected_errors} wf_file = "fail-start-task-input-value-type.yaml" wf_meta = base.get_wf_fixture_meta_data(TEST_PACK_PATH, wf_file) wf_input = {"var1": {"x": "foobar"}} lv_ac_db = lv_db_models.LiveActionDB( action=wf_meta["name"], parameters=wf_input ) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Assert workflow and task executions failed. wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) tk_ex_db = wf_db_access.TaskExecution.query( workflow_execution=str(wf_ex_db.id) )[0] self.assertEqual(tk_ex_db.status, wf_statuses.FAILED) self.assertDictEqual(tk_ex_db.result, {"errors": expected_errors}) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_fail_next_task_action(self): expected_errors = [ { "type": "error", "message": ( "YaqlEvaluationException: Unable to evaluate expression " "'<% ctx().func.value %>'. NoFunctionRegisteredException: " 'Unknown function "#property#value"' ), "task_id": "task2", "route": 0, } ] expected_result = {"output": None, "errors": expected_errors} wf_meta = base.get_wf_fixture_meta_data(TEST_PACK_PATH, "fail-task-action.yaml") lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Assert task1 is already completed. wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] tk_ex_db = wf_db_access.TaskExecution.query( workflow_execution=str(wf_ex_db.id) )[0] tk_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk_ex_db.id) )[0] tk_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk_ac_ex_db.liveaction["id"]) self.assertEqual(tk_lv_ac_db.status, ac_const.LIVEACTION_STATUS_SUCCEEDED) # Manually handle action execution completion for task1 which has an error in publish. wf_svc.handle_action_execution_completion(tk_ac_ex_db) # Assert task1 succeeded but workflow failed. tk_ex_db = wf_db_access.TaskExecution.get_by_id(tk_ex_db.id) self.assertEqual(tk_ex_db.status, wf_statuses.SUCCEEDED) wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(wf_ex_db.id) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_fail_next_task_input_expr_eval(self): expected_errors = [ { "type": "error", "message": ( "YaqlEvaluationException: Unable to evaluate expression " "'<% ctx().msg2.value %>'. NoFunctionRegisteredException: " 'Unknown function "#property#value"' ), "task_id": "task2", "route": 0, } ] expected_result = {"output": None, "errors": expected_errors} wf_meta = base.get_wf_fixture_meta_data( TEST_PACK_PATH, "fail-task-input-expr-eval.yaml" ) lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Assert task1 is already completed. wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] tk_ex_db = wf_db_access.TaskExecution.query( workflow_execution=str(wf_ex_db.id) )[0] tk_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk_ex_db.id) )[0] tk_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk_ac_ex_db.liveaction["id"]) self.assertEqual(tk_lv_ac_db.status, ac_const.LIVEACTION_STATUS_SUCCEEDED) # Manually handle action execution completion for task1 which has an error in publish. wf_svc.handle_action_execution_completion(tk_ac_ex_db) # Assert task1 succeeded but workflow failed. tk_ex_db = wf_db_access.TaskExecution.get_by_id(tk_ex_db.id) self.assertEqual(tk_ex_db.status, wf_statuses.SUCCEEDED) wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(wf_ex_db.id) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_fail_next_task_input_value_type(self): if six.PY3: msg = "Value \"{'x': 'foobar'}\" must either be a string or None. Got \"dict\"." else: msg = "Value \"{u'x': u'foobar'}\" must either be a string or None. Got \"dict\"." msg = "ValueError: " + msg expected_errors = [ {"type": "error", "message": msg, "task_id": "task2", "route": 0} ] expected_result = {"output": None, "errors": expected_errors} wf_file = "fail-task-input-value-type.yaml" wf_meta = base.get_wf_fixture_meta_data(TEST_PACK_PATH, wf_file) wf_input = {"var1": {"x": "foobar"}} lv_ac_db = lv_db_models.LiveActionDB( action=wf_meta["name"], parameters=wf_input ) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Assert task1 is already completed and workflow execution is still running. wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] tk1_ex_db = wf_db_access.TaskExecution.query( workflow_execution=str(wf_ex_db.id) )[0] tk1_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk1_ex_db.id) )[0] tk1_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk1_ac_ex_db.liveaction["id"]) self.assertEqual(tk1_lv_ac_db.status, ac_const.LIVEACTION_STATUS_SUCCEEDED) self.assertEqual(wf_ex_db.status, wf_statuses.RUNNING) # Manually handle action execution completion for task1 which has an error in publish. wf_svc.handle_action_execution_completion(tk1_ac_ex_db) # Assert workflow execution and task2 execution failed. wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(str(wf_ex_db.id)) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) tk2_ex_db = wf_db_access.TaskExecution.query(task_id="task2")[0] self.assertEqual(tk2_ex_db.status, wf_statuses.FAILED) self.assertDictEqual(tk2_ex_db.result, {"errors": expected_errors}) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_fail_task_execution(self): expected_errors = [ { "type": "error", "message": "Execution failed. See result for details.", "task_id": "task1", "result": { "stdout": "", "stderr": "boom!", "return_code": 1, "failed": True, "succeeded": False, }, } ] expected_result = {"output": None, "errors": expected_errors} wf_meta = base.get_wf_fixture_meta_data( TEST_PACK_PATH, "fail-task-execution.yaml" ) lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Process task1. wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] tk1_ex_db = wf_db_access.TaskExecution.query( workflow_execution=str(wf_ex_db.id) )[0] tk1_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk1_ex_db.id) )[0] tk1_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk1_ac_ex_db.liveaction["id"]) self.assertEqual(tk1_lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) wf_svc.handle_action_execution_completion(tk1_ac_ex_db) # Assert workflow state and result. wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(str(wf_ex_db.id)) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_fail_task_transition(self): expected_errors = [ { "type": "error", "message": ( "YaqlEvaluationException: Unable to resolve key 'foobar' in expression " "'<% succeeded() and result().foobar %>' from context." ), "task_transition_id": "task2__t0", "task_id": "task1", "route": 0, } ] expected_result = {"output": None, "errors": expected_errors} wf_meta = base.get_wf_fixture_meta_data( TEST_PACK_PATH, "fail-task-transition.yaml" ) lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Assert task1 is already completed. wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] tk_ex_db = wf_db_access.TaskExecution.query( workflow_execution=str(wf_ex_db.id) )[0] tk_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk_ex_db.id) )[0] tk_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk_ac_ex_db.liveaction["id"]) self.assertEqual(tk_lv_ac_db.status, ac_const.LIVEACTION_STATUS_SUCCEEDED) # Manually handle action execution completion for task1 which has an error in publish. wf_svc.handle_action_execution_completion(tk_ac_ex_db) # Assert task1 succeeded but workflow failed. tk_ex_db = wf_db_access.TaskExecution.get_by_id(tk_ex_db.id) self.assertEqual(tk_ex_db.status, wf_statuses.SUCCEEDED) wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(wf_ex_db.id) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_fail_task_publish(self): expected_errors = [ { "type": "error", "message": ( "YaqlEvaluationException: Unable to evaluate expression " "'<% foobar() %>'. NoFunctionRegisteredException: " 'Unknown function "foobar"' ), "task_transition_id": "task2__t0", "task_id": "task1", "route": 0, } ] expected_result = {"output": None, "errors": expected_errors} wf_meta = base.get_wf_fixture_meta_data( TEST_PACK_PATH, "fail-task-publish.yaml" ) lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Assert task1 is already completed. wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] tk_ex_db = wf_db_access.TaskExecution.query( workflow_execution=str(wf_ex_db.id) )[0] tk_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk_ex_db.id) )[0] tk_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk_ac_ex_db.liveaction["id"]) self.assertEqual(tk_lv_ac_db.status, ac_const.LIVEACTION_STATUS_SUCCEEDED) # Manually handle action execution completion for task1 which has an error in publish. wf_svc.handle_action_execution_completion(tk_ac_ex_db) # Assert task1 succeeded but workflow failed. tk_ex_db = wf_db_access.TaskExecution.get_by_id(tk_ex_db.id) self.assertEqual(tk_ex_db.status, wf_statuses.SUCCEEDED) wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(wf_ex_db.id) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_fail_output_rendering(self): expected_errors = [ { "type": "error", "message": ( "YaqlEvaluationException: Unable to evaluate expression " "'<% abs(4).value %>'. NoFunctionRegisteredException: " 'Unknown function "#property#value"' ), } ] expected_result = {"output": None, "errors": expected_errors} wf_meta = base.get_wf_fixture_meta_data( TEST_PACK_PATH, "fail-output-rendering.yaml" ) lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Assert task1 is already completed. wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] tk_ex_db = wf_db_access.TaskExecution.query( workflow_execution=str(wf_ex_db.id) )[0] tk_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk_ex_db.id) )[0] tk_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk_ac_ex_db.liveaction["id"]) self.assertEqual(tk_lv_ac_db.status, ac_const.LIVEACTION_STATUS_SUCCEEDED) # Manually handle action execution completion for task1 which has an error in publish. wf_svc.handle_action_execution_completion(tk_ac_ex_db) # Assert task1 succeeded but workflow failed. tk_ex_db = wf_db_access.TaskExecution.get_by_id(tk_ex_db.id) self.assertEqual(tk_ex_db.status, wf_statuses.SUCCEEDED) wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(wf_ex_db.id) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_output_on_error(self): expected_output = {"progress": 25} expected_errors = [ { "type": "error", "task_id": "task2", "message": "Execution failed. See result for details.", "result": { "failed": True, "return_code": 1, "stderr": "", "stdout": "", "succeeded": False, }, } ] expected_result = {"errors": expected_errors, "output": expected_output} wf_meta = base.get_wf_fixture_meta_data(TEST_PACK_PATH, "output-on-error.yaml") lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] # Assert task1 is already completed and workflow execution is still running. query_filters = {"workflow_execution": str(wf_ex_db.id), "task_id": "task1"} tk1_ex_db = wf_db_access.TaskExecution.query(**query_filters)[0] tk1_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk1_ex_db.id) )[0] tk1_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk1_ac_ex_db.liveaction["id"]) self.assertEqual(tk1_lv_ac_db.status, ac_const.LIVEACTION_STATUS_SUCCEEDED) wf_svc.handle_action_execution_completion(tk1_ac_ex_db) wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(wf_ex_db.id) self.assertEqual(wf_ex_db.status, wf_statuses.RUNNING) # Assert task2 is already completed and workflow execution has failed. query_filters = {"workflow_execution": str(wf_ex_db.id), "task_id": "task2"} tk2_ex_db = wf_db_access.TaskExecution.query(**query_filters)[0] tk2_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk2_ex_db.id) )[0] tk2_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk2_ac_ex_db.liveaction["id"]) self.assertEqual(tk2_lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) wf_svc.handle_action_execution_completion(tk2_ac_ex_db) # Check output and result for expected value(s). wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(wf_ex_db.id) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) self.assertDictEqual(wf_ex_db.output, expected_output) lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual(lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(lv_ac_db.result, expected_result) ac_ex_db = ex_db_access.ActionExecution.get_by_id(str(ac_ex_db.id)) self.assertEqual(ac_ex_db.status, ac_const.LIVEACTION_STATUS_FAILED) self.assertDictEqual(ac_ex_db.result, expected_result) def test_fail_manually(self): wf_meta = base.get_wf_fixture_meta_data(TEST_PACK_PATH, "fail-manually.yaml") lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] # Assert task1 and workflow execution failed due to fail in the task transition. query_filters = {"workflow_execution": str(wf_ex_db.id), "task_id": "task1"} tk1_ex_db = wf_db_access.TaskExecution.query(**query_filters)[0] tk1_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk1_ex_db.id) )[0] tk1_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk1_ac_ex_db.liveaction["id"]) self.assertEqual(tk1_lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) wf_svc.handle_action_execution_completion(tk1_ac_ex_db) wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(wf_ex_db.id) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) # Assert log task is scheduled even though the workflow execution failed manually. query_filters = {"workflow_execution": str(wf_ex_db.id), "task_id": "log"} tk2_ex_db = wf_db_access.TaskExecution.query(**query_filters)[0] tk2_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk2_ex_db.id) )[0] tk2_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk2_ac_ex_db.liveaction["id"]) self.assertEqual(tk2_lv_ac_db.status, ac_const.LIVEACTION_STATUS_SUCCEEDED) wf_svc.handle_action_execution_completion(tk2_ac_ex_db) wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(wf_ex_db.id) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) # Check errors and output. expected_errors = [ { "task_id": "fail", "type": "error", "message": "Execution failed. See result for details.", }, { "task_id": "task1", "type": "error", "message": "Execution failed. See result for details.", "result": { "failed": True, "return_code": 1, "stderr": "", "stdout": "", "succeeded": False, }, }, ] self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) def test_fail_manually_with_recovery_failure(self): wf_file = "fail-manually-with-recovery-failure.yaml" wf_meta = base.get_wf_fixture_meta_data(TEST_PACK_PATH, wf_file) lv_ac_db = lv_db_models.LiveActionDB(action=wf_meta["name"]) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) wf_ex_db = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) )[0] # Assert task1 and workflow execution failed due to fail in the task transition. query_filters = {"workflow_execution": str(wf_ex_db.id), "task_id": "task1"} tk1_ex_db = wf_db_access.TaskExecution.query(**query_filters)[0] tk1_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk1_ex_db.id) )[0] tk1_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk1_ac_ex_db.liveaction["id"]) self.assertEqual(tk1_lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) wf_svc.handle_action_execution_completion(tk1_ac_ex_db) wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(wf_ex_db.id) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) # Assert recover task is scheduled even though the workflow execution failed manually. # The recover task in the workflow is setup to fail. query_filters = {"workflow_execution": str(wf_ex_db.id), "task_id": "recover"} tk2_ex_db = wf_db_access.TaskExecution.query(**query_filters)[0] tk2_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk2_ex_db.id) )[0] tk2_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk2_ac_ex_db.liveaction["id"]) self.assertEqual(tk2_lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) wf_svc.handle_action_execution_completion(tk2_ac_ex_db) wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(wf_ex_db.id) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) # Check errors and output. expected_errors = [ { "task_id": "fail", "type": "error", "message": "Execution failed. See result for details.", }, { "task_id": "recover", "type": "error", "message": "Execution failed. See result for details.", "result": { "failed": True, "return_code": 1, "stderr": "", "stdout": "", "succeeded": False, }, }, { "task_id": "task1", "type": "error", "message": "Execution failed. See result for details.", "result": { "failed": True, "return_code": 1, "stderr": "", "stdout": "", "succeeded": False, }, }, ] self.assertListEqual( self.sort_workflow_errors(wf_ex_db.errors), expected_errors ) @mock.patch.object( runners_utils, "invoke_post_run", mock.MagicMock(return_value=None) ) @mock.patch.object( local_shell_command_runner.LocalShellCommandRunner, "run", mock.MagicMock(side_effect=[RUNNER_RESULT_FAILED]), ) def test_include_result_to_error_log(self): username = "stanley" wf_meta = base.get_wf_fixture_meta_data(TEST_PACK_PATH, "sequential.yaml") wf_input = {"who": "Thanos"} lv_ac_db = lv_db_models.LiveActionDB( action=wf_meta["name"], parameters=wf_input ) lv_ac_db, ac_ex_db = ac_svc.request(lv_ac_db) # Assert action execution is running. lv_ac_db = lv_db_access.LiveAction.get_by_id(str(lv_ac_db.id)) self.assertEqual( lv_ac_db.status, ac_const.LIVEACTION_STATUS_RUNNING, lv_ac_db.result ) wf_ex_dbs = wf_db_access.WorkflowExecution.query( action_execution=str(ac_ex_db.id) ) wf_ex_db = wf_ex_dbs[0] # Assert task1 is already completed. query_filters = {"workflow_execution": str(wf_ex_db.id), "task_id": "task1"} tk1_ex_db = wf_db_access.TaskExecution.query(**query_filters)[0] tk1_ac_ex_db = ex_db_access.ActionExecution.query( task_execution=str(tk1_ex_db.id) )[0] tk1_lv_ac_db = lv_db_access.LiveAction.get_by_id(tk1_ac_ex_db.liveaction["id"]) self.assertEqual(tk1_lv_ac_db.context.get("user"), username) self.assertEqual(tk1_lv_ac_db.status, ac_const.LIVEACTION_STATUS_FAILED) # Action execution result can contain dotted notation so ensure this is tested. result = {"127.0.0.1": {"hostname": "foobar"}} self.assertDictEqual(tk1_lv_ac_db.result, result) # Manually handle action execution completion. wf_svc.handle_action_execution_completion(tk1_ac_ex_db) # Assert task and workflow failed. tk1_ex_db = wf_db_access.TaskExecution.get_by_id(tk1_ex_db.id) self.assertEqual(tk1_ex_db.status, wf_statuses.FAILED) wf_ex_db = wf_db_access.WorkflowExecution.get_by_id(wf_ex_db.id) self.assertEqual(wf_ex_db.status, wf_statuses.FAILED) # Assert result is included in the error log. expected_errors = [ { "message": "Execution failed. See result for details.", "type": "error", "task_id": "task1", "result": {"127.0.0.1": {"hostname": "foobar"}}, } ] self.assertListEqual(wf_ex_db.errors, expected_errors)
import sys import pytz import time import calendar import configparser import cmd from datetime import date, datetime, timedelta from strategy import strategy from exchange import cb_exchange_sim, cb_exchange class runner(cmd.Cmd): def __init__(self): """Create a new runner with provided CLI commands. Default commands are: \n1. exit: quit autotrader \n2. help: display all commands \n3. price: display the most recent bitcoin price \n4. run: start trading on live data \n5. backtest: run a backtest on historic data \n6. load: load a new strategy """ print(" __ _ __ _ __ ") print(" / /_ (_) /__________ _(_)___/ /__ _____") print(" / __ \/ / __/ ___/ __ `/ / __ / _ \/ ___/") print(" / /_/ / / /_/ / / /_/ / / /_/ / __/ / ") print("/_.___/_/\__/_/ \__,_/_/\__,_/\___/_/ ") print("") print("Welcome to bitraider v0.0.4, an algorithmic Bitcoin trader!") cmd.Cmd.__init__(self) self.prompt = '> ' self.intro = "Type a command to get started or type \'help\'" # Init config self.config_path = "settings.ini" self.config = configparser.ConfigParser() try: self.config.read(self.config_path) except Exception as err: print(str(err)) # Set up strategy self.strategies = {} """The currently loaded strategies""" # Try to load a default strategy, if one exists try: default_strategy_module = self.config.get("default_strategy", "module") default_strategy_class = self.config.get("default_strategy", "class") self.load_strategy(default_strategy_module, default_strategy_class) except Exception as err: #print(str(err)) print("No default strategy configured. Run " "\'config default\' to set one") try: self.config.add_section("default_strategy") except: pass self.exchange = cb_exchange_sim(1000, 1) self.accounts = None # Get auth credentials from settings.ini, if they exist, authorize try: self.auth_key = self.config.get("auth", "key") self.auth_secret = self.config.get("auth", "secret") self.auth_password = self.config.get("auth", "password") self.authenticate() except Exception as err: #print(str(err)) print("No authentication configured. Run " "\'config auth\' to set it") try: self.config.add_section("auth") except: pass if self.accounts is not None: print(str(len(self.accounts))+" accounts were found.") for i in range(0, len(self.accounts)): try: print("Account ID: "+str(self.accounts[i]['id'])+" Available Funds: "+str(self.accounts[i]['available'])+" "+str(self.accounts[i]['currency'])+"") except Exception as err: print("Something went wrong while trying to authenticate with the provided credentials. Try running config>auth again.") def do_exit(self, line): sys.exit() def do_price(self, line): self.print_curr_price() def do_run(self, line): self.set_ticker_on() def do_list(self, line): self.list_strategies() def do_config(self, option): """usage: \'config \' [option]""" if option is None: print("error: no cofiguration option specified") else: if option == "auth": if self.accounts is not None: print("Are you sure? Reconfiguring auth will wipe your current auth settings. [y/n]") raw_input = input("> ") if raw_input == "y": self.authenticate_exchage() elif raw_input == "n": print("Exiting to main menu") pass else: self.authenticate_exchange() elif option == "default": print("Type the filename (without .py) containing the class which inherits from bitraider.strategy:") option = input("> ") filename = str(option) self.config.set("default_strategy", "module", filename) print("Type the name of the class within "+str(option)+" representing the strategy to load:") option = input("> ") loaded_strategy = str(option) if self.strategies is not None: if loaded_strategy in self.strategies.keys(): print("Error: "+loaded_strategy+" is already loaded") option = input("> ") loaded_strategy = str(option) self.config.set("default_strategy", "class", loaded_strategy) with open(self.config_path, "wb") as config_file: self.config.write(config_file) self.load_strategy(filename, loaded_strategy) def do_load(self, option): print("Type the filename (without .py) containing the class which inherits from bitraider.strategy:") raw_input = input("> ") filename = str(raw_input) print("Type the name of the class within "+str(raw_input)+" representing the strategy to load:") raw_input = input("> ") loaded_strategy = str(raw_input) self.load_strategy(filename, loaded_strategy) def do_backtest(self, option): strategy_to_backtest = "" print("Enter the class name of the strategy to backtest, or press enter to\n" "backtest on the default strategy.") raw_input = input("> ") if raw_input == "": print("Performing backest on default strategy: "+str(self.config.get("default_strategy" ,"class"))) strategy_to_backtest = str(self.config.get("default_strategy", "class")) else: strategy_to_backtest = str(raw_input) usd = 1000 btc = 1 days_back_in_time = 7 print("Enter the number of days back in time to backtest on: ") raw_input = input("> ") if raw_input == "": print("Performing backtest on default of 7 days.") else: days_back_in_time = float(raw_input) print("Performing backtest on last "+str(days_back_in_time)+" days.") curr_time = datetime.now(tz=self.curr_timezone) start_time = curr_time - timedelta(seconds=86400*days_back_in_time) start_time = start_time.isoformat(' ') end_time = curr_time.isoformat(' ') print("Enter the initial USD amount:") raw_input = input("> ") if raw_input == "": print("Using default starting USD amount of $1,000") else: usd = float(raw_input) print("Using starting USD amount of $"+str(usd)) print("Enter the initial BTC amount:") raw_input = input("> ") if raw_input == "": print("Using default starting BTC amount of 1") else: btc = float(raw_input) print("Using starting BTC amount of "+str(btc)) if strategy_to_backtest is not "": self.strategies[strategy_to_backtest].exchange = cb_exchange_sim(start_usd=usd, start_btc=btc) historic_data = self.strategies[strategy_to_backtest].exchange.get_historic_rates(start_time=start_time, end_time=end_time, granularity=self.strategies[strategy_to_backtest].interval) if type(historic_data) is not list: print("API error: "+str(historic_data.get("message", ""))) print("Unable to backtest") pass else: print("Backtesting from "+str(start_time)+" to "+str(end_time)) print("with "+str(len(historic_data))+" timeslices of length "+str(self.strategies[strategy_to_backtest].interval)+" seconds each") self.strategies[strategy_to_backtest].backtest_strategy(historic_data) def do_optimize(self, line): usd = 1000 btc = 1 days_back_in_time = 7 print("Enter the class name of the strategy to be optimized:") raw_input = input("> ") print(self.strategies.keys()) if raw_input not in self.strategies.keys(): print("Error: not found") pass strategy_to_optimize = raw_input print("Enter the timeframe to optimize for i.e. the time to simulate over:") days_back_in_time = 7 raw_input = input("> ") if raw_input == "": print("Performing optimization for default of last 7 days.") else: days_back_in_time = float(raw_input) print("Performing optimization based on last "+str(days_back_in_time)+" days.") curr_time = datetime.now(tz=self.curr_timezone) start_time = curr_time - timedelta(seconds=86400*days_back_in_time) start_time = start_time.isoformat(' ') end_time = curr_time.isoformat(' ') print("Enter the initial USD amount:") raw_input = input("> ") if raw_input == "": print("Using default starting USD amount of $1,000") else: usd = float(raw_input) print("Using starting USD amount of $"+str(usd)) print("Enter the initial BTC amount:") raw_input = input("> ") if raw_input == "": print("Using default starting BTC amount of 1") else: btc = float(raw_input) print("Using starting BTC amount of "+str(btc)) strategy = strategy_to_optimize strategy_attributes = dir(self.strategies[strategy]) bounds_by_attribute = {} print("Note: strategy interval cannot be optimized due to API restraints") self.strategies[strategy].exchange = cb_exchange_sim(start_usd=usd, start_btc=btc) historic_data = self.strategies[strategy].exchange.get_historic_rates(start_time=start_time, end_time=end_time, granularity=self.strategies[strategy].interval) if type(historic_data) is not list: print("API error: "+str(historic_data.get("message", ""))) print("Unable to optimize. Try changing strategy's interval") pass else: print("Optimizing based on time frame of "+str(start_time)+" to "+str(end_time)) print("with "+str(len(historic_data))+" timeslices of length "+str(self.strategies[strategy].interval)+" seconds each") for attribute in strategy_attributes: if "_" not in str(attribute) and str(attribute) != "interval": # Optimizing for interval would poll API too frequently print("Enter the lower bound for attribute: "+str(attribute)+", or press enter to skip:") raw_input = input("> ") if raw_input == "": pass else: lower_bound = float(raw_input) print("Enter the upper bound for attribute: "+str(attribute)+":") raw_input = input("> ") upper_bound = float(raw_input) print("Enter the granularity of this attribute i.e. how many different values to try:") raw_input = input("> ") granularity = float(raw_input) if upper_bound is not None and lower_bound is not None: bounds_by_attribute[str(attribute)] = {"lower":lower_bound, "upper":upper_bound, "granularity":granularity} #self.strategies[strategy][attribute] = float(lower_bound) attribute_vals_by_id = {} config_id = 0 # Initialize attribute_vals_by id for attribute in bounds_by_attribute.keys(): num_shades_of_attr = int(bounds_by_attribute[attribute].get("granularity")) increment = (float(upper_bound) - float(lower_bound))/num_shades_of_attr attr_val = float(lower_bound) for shade in range(num_shades_of_attr): attribute_vals_by_id[str(config_id)] = {} attribute_vals_by_id[str(config_id)][attribute] = attr_val config_id += 1 # Fill in all possible values for the attributes config_id = 0 for attribute in bounds_by_attribute.keys(): num_shades_of_attr = int(bounds_by_attribute[attribute].get("granularity")) increment = (float(upper_bound) - float(lower_bound))/num_shades_of_attr step = 0 attr_val = float(lower_bound) + (increment*step) for shade in range(num_shades_of_attr): attribute_vals_by_id[str(config_id)][attribute] = attr_val config_id += 1 step += 1 performance_by_id = {} performance_vs_mkt = 0 strategy_performance = 0 mkt_performance = 0 # Change the attribute values for this strategy, updating when the performance is highest for configuration in attribute_vals_by_id.keys(): for attribute in attribute_vals_by_id[configuration]: setattr(self.strategies[strategy], attribute, attribute_vals_by_id[configuration][attribute]) performance_vs_mkt, strategy_performance, mkt_performance = self.strategies[strategy].backtest_strategy(historic_data) performance_by_id[str(configuration)] = performance_vs_mkt best_config = "0" for configuration in performance_by_id.keys(): if performance_by_id[configuration] > performance_by_id[best_config]: best_config = configuration print("The best performing strategy configuration is: "+str(attribute_vals_by_id[best_config])) print("With a performance vs market of: "+str(performance_by_id[best_config])) # End python cmd funtions def authenticate_exchange(self): print("Paste in your CoinbaseExchange API key:") raw_input = input("> ") self.auth_key = raw_input print("Paste in your CoinbaseExchange API secret:") raw_input = input("> ") self.auth_secret = raw_input print("Paste in your CoinbaseExchange API passphrase:") raw_input = input("> ") if raw_input is not "": self.auth_password = raw_input self.config.set("auth", "key", self.auth_key) self.config.set("auth", "secret", self.auth_secret) self.config.set("auth", "password", self.auth_password) with open(self.config_path, "w", encoding='utf-8') as config_file: self.config.write(config_file) self.authenticate() def authenticate(self): #try: self.exchange = cb_exchange(self.auth_key, self.auth_secret, self.auth_password) self.accounts = self.exchange.list_accounts() #except Exception as err: # print("Error! Only unauthorized endpoints are available.") # print("error: "+str(err)) # print("If you would like bitraider to walk you through authentication, enter the commands: \'config\' > \'auth\'") def set_ticker_on(self): strategy = self.strategies[0] start_time = time.time() lower_bound = start_time upper_bound = start_time + strategy.interval elapsed_time = 0.0 last_intervals_trades = [] while True: curr_time = time.time() elapsed_time = curr_time - start_time if elapsed_time % strategy.interval == 0: # if we've reached a new interval, calculate data for the last interval and pass # it onto the strategy latest_trades = self.exchange.get_trades('BTC-USD') interval_data = [] last_intervals_low = 999999999 last_intervals_high = 0.0 last_intervals_close = 0.0 last_intervals_close = 0.0 last_intervals_volume = 0.0 for trade in latest_trades: # starting with the most recent trade, get trades for the last interval datestring = str(trade.get("time"))[:-3] trade_time = float(calendar.timegm(datetime.strptime(datestring, "%Y-%m-%d %H:%M:%S.%f").timetuple())) if trade_time >= lower_bound and trade_time <= upper_bound: last_intervals_trades.append(trade) if float(trade.get('price')) > last_intervals_high: last_intervals_high = float(trade.get('price')) if float(trade.get('price')) < last_intervals_low: last_intervals_low = float(trade.get('price')) last_intervals_volume += float(trade.get('size')) if len(last_intervals_trades) > 0: last_intervals_close = float(last_intervals_trades[0].get('price')) last_intervals_open = float(last_intervals_trades[-1].get('price')) interval_start_time = curr_time - strategy.interval interval_data.extend([interval_start_time, last_intervals_low, last_intervals_high, last_intervals_open, last_intervals_close, last_intervals_volume]) print("last_intervals_trades: "+str(last_intervals_trades)) print("elapsed: "+str(elapsed_time)) last_intervals_trades = [] lower_bound += strategy.interval upper_bound += strategy.interval # Here's where the magic happens: #strategy.trade(interval_data) def run(self): # Time Configuration self.curr_time = time.time() # Seconds since Jan 1st, 1970 self.curr_timezone = pytz.timezone("US/Central") self.cmdloop() def print_curr_price(self): """Print the most recent price.""" print(self.exchange.get_last_trade('BTC-USD')['price']) def load_strategy(self, module, cls): """Load a user-defined strategy from a file. \n`module`: the filename in the current directory containing the strategy class which inherits from bitraider.strategy (does not include .py) \n`cls`: the classname within the file to load """ import_string = module+"."+cls classname = str(cls) _temp = __import__(module) loaded_strategy_ = getattr(_temp, cls) instance_of_loaded_strategy = loaded_strategy_() self.strategies[classname] = instance_of_loaded_strategy print("Loaded strategy: "+str(cls)+" from file: "+str(module)+".py") def run(): my_runner = runner() my_runner.run() if __name__=="__main__": my_runner = runner() my_runner.run()
""" Base classes for writing management commands (named commands which can be executed through ``django-admin.py`` or ``manage.py``). """ import os import sys from optparse import make_option, OptionParser import django from django.core.exceptions import ImproperlyConfigured from django.core.management.color import color_style, no_style from django.utils.encoding import force_str from django.utils.six import StringIO class CommandError(Exception): """ Exception class indicating a problem while executing a management command. If this exception is raised during the execution of a management command, it will be caught and turned into a nicely-printed error message to the appropriate output stream (i.e., stderr); as a result, raising this exception (with a sensible description of the error) is the preferred way to indicate that something has gone wrong in the execution of a command. """ pass def handle_default_options(options): """ Include any default options that all commands should accept here so that ManagementUtility can handle them before searching for user commands. """ if options.settings: os.environ['DJANGO_SETTINGS_MODULE'] = options.settings if options.pythonpath: sys.path.insert(0, options.pythonpath) class OutputWrapper(object): """ Wrapper around stdout/stderr """ def __init__(self, out, style_func=None, ending='\n'): self._out = out self.style_func = None if hasattr(out, 'isatty') and out.isatty(): self.style_func = style_func self.ending = ending def __getattr__(self, name): return getattr(self._out, name) def write(self, msg, style_func=None, ending=None): ending = self.ending if ending is None else ending if ending and not msg.endswith(ending): msg += ending style_func = [f for f in (style_func, self.style_func, lambda x:x) if f is not None][0] self._out.write(force_str(style_func(msg))) class BaseCommand(object): """ The base class from which all management commands ultimately derive. Use this class if you want access to all of the mechanisms which parse the command-line arguments and work out what code to call in response; if you don't need to change any of that behavior, consider using one of the subclasses defined in this file. If you are interested in overriding/customizing various aspects of the command-parsing and -execution behavior, the normal flow works as follows: 1. ``django-admin.py`` or ``manage.py`` loads the command class and calls its ``run_from_argv()`` method. 2. The ``run_from_argv()`` method calls ``create_parser()`` to get an ``OptionParser`` for the arguments, parses them, performs any environment changes requested by options like ``pythonpath``, and then calls the ``execute()`` method, passing the parsed arguments. 3. The ``execute()`` method attempts to carry out the command by calling the ``handle()`` method with the parsed arguments; any output produced by ``handle()`` will be printed to standard output and, if the command is intended to produce a block of SQL statements, will be wrapped in ``BEGIN`` and ``COMMIT``. 4. If ``handle()`` or ``execute()`` raised any exception (e.g. ``CommandError``), ``run_from_argv()`` will instead print an error message to ``stderr``. Thus, the ``handle()`` method is typically the starting point for subclasses; many built-in commands and command types either place all of their logic in ``handle()``, or perform some additional parsing work in ``handle()`` and then delegate from it to more specialized methods as needed. Several attributes affect behavior at various steps along the way: ``args`` A string listing the arguments accepted by the command, suitable for use in help messages; e.g., a command which takes a list of application names might set this to '<appname appname ...>'. ``can_import_settings`` A boolean indicating whether the command needs to be able to import Django settings; if ``True``, ``execute()`` will verify that this is possible before proceeding. Default value is ``True``. ``help`` A short description of the command, which will be printed in help messages. ``option_list`` This is the list of ``optparse`` options which will be fed into the command's ``OptionParser`` for parsing arguments. ``output_transaction`` A boolean indicating whether the command outputs SQL statements; if ``True``, the output will automatically be wrapped with ``BEGIN;`` and ``COMMIT;``. Default value is ``False``. ``requires_model_validation`` A boolean; if ``True``, validation of installed models will be performed prior to executing the command. Default value is ``True``. To validate an individual application's models rather than all applications' models, call ``self.validate(app)`` from ``handle()``, where ``app`` is the application's Python module. ``leave_locale_alone`` A boolean indicating whether the locale set in settings should be preserved during the execution of the command instead of being forcibly set to 'en-us'. Default value is ``False``. Make sure you know what you are doing if you decide to change the value of this option in your custom command if it creates database content that is locale-sensitive and such content shouldn't contain any translations (like it happens e.g. with django.contrim.auth permissions) as making the locale differ from the de facto default 'en-us' might cause unintended effects. This option can't be False when the can_import_settings option is set to False too because attempting to set the locale needs access to settings. This condition will generate a CommandError. """ # Metadata about this command. option_list = ( make_option('-v', '--verbosity', action='store', dest='verbosity', default='1', type='choice', choices=['0', '1', '2', '3'], help='Verbosity level; 0=minimal output, 1=normal output, 2=verbose output, 3=very verbose output'), make_option('--settings', help='The Python path to a settings module, e.g. "myproject.settings.main". If this isn\'t provided, the DJANGO_SETTINGS_MODULE environment variable will be used.'), make_option('--pythonpath', help='A directory to add to the Python path, e.g. "/home/djangoprojects/myproject".'), make_option('--traceback', action='store_true', help='Raise on exception'), make_option('--no-color', action='store_true', dest='no_color', default=False, help="Don't colorize the command output."), ) help = '' args = '' # Configuration shortcuts that alter various logic. can_import_settings = True requires_model_validation = True output_transaction = False # Whether to wrap the output in a "BEGIN; COMMIT;" leave_locale_alone = False def __init__(self): self.style = color_style() def get_version(self): """ Return the Django version, which should be correct for all built-in Django commands. User-supplied commands should override this method. """ return django.get_version() def usage(self, subcommand): """ Return a brief description of how to use this command, by default from the attribute ``self.help``. """ usage = '%%prog %s [options] %s' % (subcommand, self.args) if self.help: return '%s\n\n%s' % (usage, self.help) else: return usage def create_parser(self, prog_name, subcommand): """ Create and return the ``OptionParser`` which will be used to parse the arguments to this command. """ return OptionParser(prog=prog_name, usage=self.usage(subcommand), version=self.get_version(), option_list=self.option_list) def print_help(self, prog_name, subcommand): """ Print the help message for this command, derived from ``self.usage()``. """ parser = self.create_parser(prog_name, subcommand) parser.print_help() def run_from_argv(self, argv): """ Set up any environment changes requested (e.g., Python path and Django settings), then run this command. If the command raises a ``CommandError``, intercept it and print it sensibly to stderr. If the ``--traceback`` option is present or the raised ``Exception`` is not ``CommandError``, raise it. """ parser = self.create_parser(argv[0], argv[1]) options, args = parser.parse_args(argv[2:]) handle_default_options(options) try: self.execute(*args, **options.__dict__) except Exception as e: if options.traceback or not isinstance(e, CommandError): raise # self.stderr is not guaranteed to be set here stderr = getattr(self, 'stderr', OutputWrapper(sys.stderr, self.style.ERROR)) stderr.write('%s: %s' % (e.__class__.__name__, e)) sys.exit(1) def execute(self, *args, **options): """ Try to execute this command, performing model validation if needed (as controlled by the attribute ``self.requires_model_validation``, except if force-skipped). """ self.stdout = OutputWrapper(options.get('stdout', sys.stdout)) if options.get('no_color'): self.style = no_style() self.stderr = OutputWrapper(options.get('stderr', sys.stderr)) else: self.stderr = OutputWrapper(options.get('stderr', sys.stderr), self.style.ERROR) if self.can_import_settings: from django.conf import settings saved_locale = None if not self.leave_locale_alone: # Only mess with locales if we can assume we have a working # settings file, because django.utils.translation requires settings # (The final saying about whether the i18n machinery is active will be # found in the value of the USE_I18N setting) if not self.can_import_settings: raise CommandError("Incompatible values of 'leave_locale_alone' " "(%s) and 'can_import_settings' (%s) command " "options." % (self.leave_locale_alone, self.can_import_settings)) # Switch to US English, because django-admin.py creates database # content like permissions, and those shouldn't contain any # translations. from django.utils import translation saved_locale = translation.get_language() translation.activate('en-us') try: if self.requires_model_validation and not options.get('skip_validation'): self.validate() output = self.handle(*args, **options) if output: if self.output_transaction: # This needs to be imported here, because it relies on # settings. from django.db import connections, DEFAULT_DB_ALIAS connection = connections[options.get('database', DEFAULT_DB_ALIAS)] if connection.ops.start_transaction_sql(): self.stdout.write(self.style.SQL_KEYWORD(connection.ops.start_transaction_sql())) self.stdout.write(output) if self.output_transaction: self.stdout.write('\n' + self.style.SQL_KEYWORD("COMMIT;")) finally: if saved_locale is not None: translation.activate(saved_locale) def validate(self, app=None, display_num_errors=False): """ Validates the given app, raising CommandError for any errors. If app is None, then this will validate all installed apps. """ from django.core.management.validation import get_validation_errors s = StringIO() num_errors = get_validation_errors(s, app) if num_errors: s.seek(0) error_text = s.read() raise CommandError("One or more models did not validate:\n%s" % error_text) if display_num_errors: self.stdout.write("%s error%s found" % (num_errors, '' if num_errors == 1 else 's')) def handle(self, *args, **options): """ The actual logic of the command. Subclasses must implement this method. """ raise NotImplementedError() class AppCommand(BaseCommand): """ A management command which takes one or more installed application names as arguments, and does something with each of them. Rather than implementing ``handle()``, subclasses must implement ``handle_app()``, which will be called once for each application. """ args = '<appname appname ...>' def handle(self, *app_labels, **options): from django.db import models if not app_labels: raise CommandError('Enter at least one appname.') try: app_list = [models.get_app(app_label) for app_label in app_labels] except (ImproperlyConfigured, ImportError) as e: raise CommandError("%s. Are you sure your INSTALLED_APPS setting is correct?" % e) output = [] for app in app_list: app_output = self.handle_app(app, **options) if app_output: output.append(app_output) return '\n'.join(output) def handle_app(self, app, **options): """ Perform the command's actions for ``app``, which will be the Python module corresponding to an application name given on the command line. """ raise NotImplementedError() class LabelCommand(BaseCommand): """ A management command which takes one or more arbitrary arguments (labels) on the command line, and does something with each of them. Rather than implementing ``handle()``, subclasses must implement ``handle_label()``, which will be called once for each label. If the arguments should be names of installed applications, use ``AppCommand`` instead. """ args = '<label label ...>' label = 'label' def handle(self, *labels, **options): if not labels: raise CommandError('Enter at least one %s.' % self.label) output = [] for label in labels: label_output = self.handle_label(label, **options) if label_output: output.append(label_output) return '\n'.join(output) def handle_label(self, label, **options): """ Perform the command's actions for ``label``, which will be the string as given on the command line. """ raise NotImplementedError() class NoArgsCommand(BaseCommand): """ A command which takes no arguments on the command line. Rather than implementing ``handle()``, subclasses must implement ``handle_noargs()``; ``handle()`` itself is overridden to ensure no arguments are passed to the command. Attempting to pass arguments will raise ``CommandError``. """ args = '' def handle(self, *args, **options): if args: raise CommandError("Command doesn't accept any arguments") return self.handle_noargs(**options) def handle_noargs(self, **options): """ Perform this command's actions. """ raise NotImplementedError()
# Copyright 2015 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import division import os import sys import csv import re import logging from ctypes import c_int32 from collections import defaultdict import argparse from wlauto.utils.trace_cmd import TraceCmdTrace, TRACE_MARKER_START, TRACE_MARKER_STOP logger = logging.getLogger('power') UNKNOWN_FREQUENCY = -1 INIT_CPU_FREQ_REGEX = re.compile(r'CPU (?P<cpu>\d+) FREQUENCY: (?P<freq>\d+) kHZ') class CorePowerTransitionEvent(object): kind = 'transition' __slots__ = ['timestamp', 'cpu_id', 'frequency', 'idle_state'] def __init__(self, timestamp, cpu_id, frequency=None, idle_state=None): if (frequency is None) == (idle_state is None): raise ValueError('Power transition must specify a frequency or an idle_state, but not both.') self.timestamp = timestamp self.cpu_id = cpu_id self.frequency = frequency self.idle_state = idle_state def __str__(self): return 'cpu {} @ {} -> freq: {} idle: {}'.format(self.cpu_id, self.timestamp, self.frequency, self.idle_state) def __repr__(self): return 'CPTE(c:{} t:{} f:{} i:{})'.format(self.cpu_id, self.timestamp, self.frequency, self.idle_state) class CorePowerDroppedEvents(object): kind = 'dropped_events' __slots__ = ['cpu_id'] def __init__(self, cpu_id): self.cpu_id = cpu_id def __str__(self): return 'DROPPED EVENTS on CPU{}'.format(self.cpu_id) __repr__ = __str__ class TraceMarkerEvent(object): kind = 'marker' __slots__ = ['name'] def __init__(self, name): self.name = name def __str__(self): return 'MARKER: {}'.format(self.name) class CpuPowerState(object): __slots__ = ['frequency', 'idle_state'] @property def is_idling(self): return self.idle_state is not None and self.idle_state >= 0 @property def is_active(self): return self.idle_state == -1 def __init__(self, frequency=None, idle_state=None): self.frequency = frequency self.idle_state = idle_state def __str__(self): return 'CP(f:{} i:{})'.format(self.frequency, self.idle_state) __repr__ = __str__ class SystemPowerState(object): __slots__ = ['timestamp', 'cpus'] @property def num_cores(self): return len(self.cpus) def __init__(self, num_cores): self.timestamp = None self.cpus = [] for _ in xrange(num_cores): self.cpus.append(CpuPowerState()) def copy(self): new = SystemPowerState(self.num_cores) new.timestamp = self.timestamp for i, c in enumerate(self.cpus): new.cpus[i].frequency = c.frequency new.cpus[i].idle_state = c.idle_state return new def __str__(self): return 'SP(t:{} Cs:{})'.format(self.timestamp, self.cpus) __repr__ = __str__ class PowerStateProcessor(object): """ This takes a stream of power transition events and yields a timeline stream of system power states. """ @property def cpu_states(self): return self.power_state.cpus @property def current_time(self): return self.power_state.timestamp @current_time.setter def current_time(self, value): self.power_state.timestamp = value def __init__(self, core_clusters, num_idle_states, first_cluster_state=sys.maxint, first_system_state=sys.maxint, wait_for_start_marker=False): self.power_state = SystemPowerState(len(core_clusters)) self.requested_states = defaultdict(lambda: -1) # cpu_id -> requeseted state self.wait_for_start_marker = wait_for_start_marker self._saw_start_marker = False idle_state_domains = build_idle_domains(core_clusters, num_states=num_idle_states, first_cluster_state=first_cluster_state, first_system_state=first_system_state) # This tells us what other cpus we need to update when we see an idle # state transition event self.idle_related_cpus = defaultdict(list) # (cpu, idle_state) --> relate_cpus_list for state_id, idle_state_domain in enumerate(idle_state_domains): for cpu_group in idle_state_domain: for cpu in cpu_group: related = set(cpu_group) - set([cpu]) self.idle_related_cpus[(cpu, state_id)] = related def process(self, event_stream): for event in event_stream: next_state = self.update_power_state(event) if self._saw_start_marker or not self.wait_for_start_marker: yield next_state def update_power_state(self, event): """ Update the tracked power state based on the specified event and return updated power state. """ if event.kind == 'transition': self._process_transition(event) elif event.kind == 'dropped_events': self._process_dropped_events(event) elif event.kind == 'marker': if event.name == 'START': self._saw_start_marker = True elif event.name == 'STOP': self._saw_start_marker = False else: raise ValueError('Unexpected event type: {}'.format(event.kind)) return self.power_state.copy() def _process_transition(self, event): self.current_time = event.timestamp if event.idle_state is None: self.cpu_states[event.cpu_id].frequency = event.frequency else: if event.idle_state == -1: self._process_idle_exit(event) else: self._process_idle_entry(event) def _process_dropped_events(self, event): self.cpu_states[event.cpu_id].frequency = None old_idle_state = self.cpu_states[event.cpu_id].idle_state self.cpu_states[event.cpu_id].idle_state = None related_ids = self.idle_related_cpus[(event.cpu_id, old_idle_state)] for rid in related_ids: self.cpu_states[rid].idle_state = None def _process_idle_entry(self, event): if self.cpu_states[event.cpu_id].is_idling: raise ValueError('Got idle state entry event for an idling core: {}'.format(event)) self._try_transition_to_idle_state(event.cpu_id, event.idle_state) def _process_idle_exit(self, event): if self.cpu_states[event.cpu_id].is_active: raise ValueError('Got idle state exit event for an active core: {}'.format(event)) self.requested_states.pop(event.cpu_id, None) # remove outstanding request if there is one old_state = self.cpu_states[event.cpu_id].idle_state self.cpu_states[event.cpu_id].idle_state = -1 if self.cpu_states[event.cpu_id].frequency is None: self.cpu_states[event.cpu_id].frequency = UNKNOWN_FREQUENCY related_ids = self.idle_related_cpus[(event.cpu_id, old_state)] if old_state is not None: new_state = old_state - 1 for rid in related_ids: if self.cpu_states[rid].idle_state > new_state: self._try_transition_to_idle_state(rid, new_state) def _try_transition_to_idle_state(self, cpu_id, idle_state): related_ids = self.idle_related_cpus[(cpu_id, idle_state)] idle_state = idle_state # Tristate: True - can transition, False - can't transition, # None - unknown idle state on at least one related cpu transition_check = self._can_enter_state(related_ids, idle_state) if not transition_check: # If we can't enter an idle state right now, record that we've # requested it, so that we may enter it later (once all related # cpus also want a state at least as deep). self.requested_states[cpu_id] = idle_state if transition_check is None: # Unknown state on a related cpu means we're not sure whether we're # entering requested state or a shallower one self.cpu_states[cpu_id].idle_state = None return # Keep trying shallower states until all related while not self._can_enter_state(related_ids, idle_state): idle_state -= 1 related_ids = self.idle_related_cpus[(cpu_id, idle_state)] self.cpu_states[cpu_id].idle_state = idle_state for rid in related_ids: self.cpu_states[rid].idle_state = idle_state if self.requested_states[rid] == idle_state: del self.requested_states[rid] # request satisfied, so remove def _can_enter_state(self, related_ids, state): """ This is a tri-state check. Returns ``True`` if related cpu states allow transition into this state, ``False`` if related cpu states don't allow transition into this state, and ``None`` if at least one of the related cpus is in an unknown state (so the decision of whether a transition is possible cannot be made). """ for rid in related_ids: rid_requested_state = self.requested_states[rid] rid_current_state = self.cpu_states[rid].idle_state if rid_current_state is None: return None if rid_current_state < state and rid_requested_state < state: return False return True def stream_cpu_power_transitions(events): for event in events: if event.name == 'cpu_idle': state = c_int32(event.state).value yield CorePowerTransitionEvent(event.timestamp, event.cpu_id, idle_state=state) elif event.name == 'cpu_frequency': yield CorePowerTransitionEvent(event.timestamp, event.cpu_id, frequency=event.state) elif event.name == 'DROPPED EVENTS DETECTED': yield CorePowerDroppedEvents(event.cpu_id) elif event.name == 'print': if TRACE_MARKER_START in event.text: yield TraceMarkerEvent('START') elif TRACE_MARKER_STOP in event.text: yield TraceMarkerEvent('STOP') else: match = INIT_CPU_FREQ_REGEX.search(event.text) if match: yield CorePowerTransitionEvent(event.timestamp, int(match.group('cpu')), frequency=int(match.group('freq'))) def gather_core_states(system_state_stream, freq_dependent_idle_states=None): # NOQA if freq_dependent_idle_states is None: freq_dependent_idle_states = [0] for system_state in system_state_stream: core_states = [] for cpu in system_state.cpus: if cpu.idle_state == -1: core_states.append((-1, cpu.frequency)) elif cpu.idle_state in freq_dependent_idle_states: if cpu.frequency is not None: core_states.append((cpu.idle_state, cpu.frequency)) else: core_states.append((None, None)) else: core_states.append((cpu.idle_state, None)) yield (system_state.timestamp, core_states) class PowerStateTimeline(object): def __init__(self, filepath, core_names, idle_state_names): self.filepath = filepath self.idle_state_names = idle_state_names self._wfh = open(filepath, 'w') self.writer = csv.writer(self._wfh) if core_names: headers = ['ts'] + ['{} CPU{}'.format(c, i) for i, c in enumerate(core_names)] self.writer.writerow(headers) def update(self, timestamp, core_states): # NOQA row = [timestamp] for idle_state, frequency in core_states: if frequency is None: if idle_state is None or idle_state == -1: row.append(None) else: row.append(self.idle_state_names[idle_state]) else: # frequency is not None if idle_state == -1: if frequency == UNKNOWN_FREQUENCY: frequency = 'Running (Unknown Hz)' row.append(frequency) elif idle_state is None: row.append(None) else: if frequency == UNKNOWN_FREQUENCY: frequency = 'Unknown Hz' row.append('{} ({})'.format(self.idle_state_names[idle_state], frequency)) self.writer.writerow(row) def report(self): self._wfh.close() class ParallelStats(object): def __init__(self, core_clusters, use_ratios=False): self.clusters = defaultdict(set) self.use_ratios = use_ratios for i, clust in enumerate(core_clusters): self.clusters[clust].add(i) self.clusters['all'] = set(range(len(core_clusters))) self.first_timestamp = None self.last_timestamp = None self.previous_states = None self.parallel_times = defaultdict(lambda: defaultdict(int)) self.running_times = defaultdict(int) def update(self, timestamp, core_states): if self.last_timestamp is not None: delta = timestamp - self.last_timestamp active_cores = [i for i, c in enumerate(self.previous_states) if c and c[0] == -1] for cluster, cluster_cores in self.clusters.iteritems(): clust_active_cores = len(cluster_cores.intersection(active_cores)) self.parallel_times[cluster][clust_active_cores] += delta if clust_active_cores: self.running_times[cluster] += delta else: # initial update self.first_timestamp = timestamp self.last_timestamp = timestamp self.previous_states = core_states def report(self): # NOQA if self.last_timestamp is None: return None report = ParallelReport() total_time = self.last_timestamp - self.first_timestamp for cluster in sorted(self.parallel_times): running_time = self.running_times[cluster] for n in xrange(len(self.clusters[cluster]) + 1): time = self.parallel_times[cluster][n] time_pc = time / total_time if not self.use_ratios: time_pc *= 100 if n: if running_time: running_time_pc = time / running_time else: running_time_pc = 0 if not self.use_ratios: running_time_pc *= 100 else: running_time_pc = 0 precision = self.use_ratios and 3 or 1 fmt = '{{:.{}f}}'.format(precision) report.add([cluster, n, fmt.format(time), fmt.format(time_pc), fmt.format(running_time_pc), ]) return report class ParallelReport(object): def __init__(self): self.values = [] def add(self, value): self.values.append(value) def write(self, filepath): with open(filepath, 'w') as wfh: writer = csv.writer(wfh) writer.writerow(['cluster', 'number_of_cores', 'total_time', '%time', '%running_time']) writer.writerows(self.values) class PowerStateStats(object): def __init__(self, core_names, idle_state_names=None, use_ratios=False): self.core_names = core_names self.idle_state_names = idle_state_names self.use_ratios = use_ratios self.first_timestamp = None self.last_timestamp = None self.previous_states = None self.cpu_states = defaultdict(lambda: defaultdict(int)) def update(self, timestamp, core_states): # NOQA if self.last_timestamp is not None: delta = timestamp - self.last_timestamp for cpu, (idle, freq) in enumerate(self.previous_states): if idle == -1 and freq is not None: state = '{:07}KHz'.format(freq) elif freq: if self.idle_state_names: state = '{}-{:07}KHz'.format(self.idle_state_names[idle], freq) else: state = 'idle{}-{:07}KHz'.format(idle, freq) elif idle not in (None, -1): if self.idle_state_names: state = self.idle_state_names[idle] else: state = 'idle{}'.format(idle) else: state = 'unkown' self.cpu_states[cpu][state] += delta else: # initial update self.first_timestamp = timestamp self.last_timestamp = timestamp self.previous_states = core_states def report(self): if self.last_timestamp is None: return None total_time = self.last_timestamp - self.first_timestamp state_stats = defaultdict(lambda: [None] * len(self.core_names)) for cpu, states in self.cpu_states.iteritems(): for state in states: time = states[state] time_pc = time / total_time if not self.use_ratios: time_pc *= 100 state_stats[state][cpu] = time_pc precision = self.use_ratios and 3 or 1 return PowerStateStatsReport(state_stats, self.core_names, precision) class PowerStateStatsReport(object): def __init__(self, state_stats, core_names, precision=2): self.state_stats = state_stats self.core_names = core_names self.precision = precision def write(self, filepath): with open(filepath, 'w') as wfh: writer = csv.writer(wfh) headers = ['state'] + ['{} CPU{}'.format(c, i) for i, c in enumerate(self.core_names)] writer.writerow(headers) for state in sorted(self.state_stats): stats = self.state_stats[state] fmt = '{{:.{}f}}'.format(self.precision) writer.writerow([state] + [fmt.format(s if s is not None else 0) for s in stats]) class CpuUtilisationTimeline(object): def __init__(self, filepath, core_names, max_freq_list): self.filepath = filepath self._wfh = open(filepath, 'w') self.writer = csv.writer(self._wfh) if core_names: headers = ['ts'] + ['{} CPU{}'.format(c, i) for i, c in enumerate(core_names)] self.writer.writerow(headers) self._max_freq_list = max_freq_list def update(self, timestamp, core_states): # NOQA row = [timestamp] for core, [idle_state, frequency] in enumerate(core_states): if idle_state == -1: if frequency == UNKNOWN_FREQUENCY: frequency = 0 elif idle_state is None: frequency = 0 else: frequency = 0 if core < len(self._max_freq_list): frequency /= float(self._max_freq_list[core]) row.append(frequency) else: logger.warning('Unable to detect max frequency for this core. Cannot log utilisation value') self.writer.writerow(row) def report(self): self._wfh.close() def build_idle_domains(core_clusters, # NOQA num_states, first_cluster_state=None, first_system_state=None): """ Returns a list of idle domain groups (one for each idle state). Each group is a list of domains, and a domain is a list of cpu ids for which that idle state is common. E.g. [[[0], [1], [2]], [[0, 1], [2]], [[0, 1, 2]]] This defines three idle states for a machine with three cores. The first idle state has three domains with one core in each domain; the second state has two domains, with cores 0 and 1 sharing one domain; the final state has only one domain shared by all cores. This mapping created based on the assumptions - The device is an SMP or a big.LITTLE-like system with cores in one or more clusters (for SMP systems, all cores are considered to be in a "cluster"). - Idle domain correspend to either individual cores, individual custers, or the compute subsystem as a whole. - Cluster states are always deeper (higher index) than core states, and system states are always deeper than cluster states. parameters: :core_clusters: a list indicating cluster "ID" of the corresponing core, e.g. ``[0, 0, 1]`` represents a three-core machines with cores 0 and 1 on cluster 0, and core 2 on cluster 1. :num_states: total number of idle states on a device. :first_cluster_state: the ID of the first idle state shared by all cores in a cluster :first_system_state: the ID of the first idle state shared by all cores. """ if first_cluster_state is None: first_cluster_state = sys.maxint if first_system_state is None: first_system_state = sys.maxint all_cpus = range(len(core_clusters)) cluster_cpus = defaultdict(list) for cpu, cluster in enumerate(core_clusters): cluster_cpus[cluster].append(cpu) cluster_domains = [cluster_cpus[c] for c in sorted(cluster_cpus)] core_domains = [[c] for c in all_cpus] idle_state_domains = [] for state_id in xrange(num_states): if state_id >= first_system_state: idle_state_domains.append([all_cpus]) elif state_id >= first_cluster_state: idle_state_domains.append(cluster_domains) else: idle_state_domains.append(core_domains) return idle_state_domains def report_power_stats(trace_file, idle_state_names, core_names, core_clusters, num_idle_states, first_cluster_state=sys.maxint, first_system_state=sys.maxint, use_ratios=False, timeline_csv_file=None, filter_trace=False, cpu_utilisation=None, max_freq_list=None): # pylint: disable=too-many-locals trace = TraceCmdTrace(filter_markers=filter_trace) ps_processor = PowerStateProcessor(core_clusters, num_idle_states=num_idle_states, first_cluster_state=first_cluster_state, first_system_state=first_system_state, wait_for_start_marker=not filter_trace) reporters = [ ParallelStats(core_clusters, use_ratios), PowerStateStats(core_names, idle_state_names, use_ratios) ] if timeline_csv_file: reporters.append(PowerStateTimeline(timeline_csv_file, core_names, idle_state_names)) if cpu_utilisation: if max_freq_list: reporters.append(CpuUtilisationTimeline(cpu_utilisation, core_names, max_freq_list)) else: logger.warning('Maximum frequencies not found. Cannot normalise. Skipping CPU Utilisation Timeline') event_stream = trace.parse(trace_file, names=['cpu_idle', 'cpu_frequency', 'print']) transition_stream = stream_cpu_power_transitions(event_stream) power_state_stream = ps_processor.process(transition_stream) core_state_stream = gather_core_states(power_state_stream) for timestamp, states in core_state_stream: for reporter in reporters: reporter.update(timestamp, states) reports = [] for reporter in reporters: report = reporter.report() if report: reports.append(report) return reports def main(): # pylint: disable=unbalanced-tuple-unpacking args = parse_arguments() parallel_report, powerstate_report = report_power_stats( trace_file=args.infile, idle_state_names=args.idle_state_names, core_names=args.core_names, core_clusters=args.core_clusters, num_idle_states=args.num_idle_states, first_cluster_state=args.first_cluster_state, first_system_state=args.first_system_state, use_ratios=args.ratios, timeline_csv_file=args.timeline_file, filter_trace=(not args.no_trace_filter), cpu_utilisation=args.cpu_utilisation, max_freq_list=args.max_freq_list, ) parallel_report.write(os.path.join(args.output_directory, 'parallel.csv')) powerstate_report.write(os.path.join(args.output_directory, 'cpustate.csv')) class SplitListAction(argparse.Action): def __init__(self, option_strings, dest, nargs=None, **kwargs): if nargs is not None: raise ValueError('nargs not allowed') super(SplitListAction, self).__init__(option_strings, dest, **kwargs) def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, [v.strip() for v in values.split(',')]) def parse_arguments(): # NOQA parser = argparse.ArgumentParser(description=""" Produce CPU power activity statistics reports from power trace. """) parser.add_argument('infile', metavar='TRACEFILE', help=''' Path to the trace file to parse. This must be in the format generated by "trace-cmd report" command. ''') parser.add_argument('-d', '--output-directory', default='.', help=''' Output directory where reports will be placed. ''') parser.add_argument('-F', '--no-trace-filter', action='store_true', default=False, help=''' Normally, only the trace between begin and end marker is used. This disables the filtering so the entire trace file is considered. ''') parser.add_argument('-c', '--core-names', action=SplitListAction, help=''' Comma-separated list of core names for the device on which the trace was collected. ''') parser.add_argument('-C', '--core-clusters', action=SplitListAction, default=[], help=''' Comma-separated list of core cluster IDs for the device on which the trace was collected. If not specified, this will be generated from core names on the assumption that all cores with the same name are on the same cluster. ''') parser.add_argument('-i', '--idle-state-names', action=SplitListAction, help=''' Comma-separated list of idle state names. The number of names must match --num-idle-states if that was explicitly specified. ''') parser.add_argument('-n', '--num-idle-states', type=int, help=''' number of idle states on the device ''') parser.add_argument('-q', '--first-cluster-state', type=int, help=''' ID of the first cluster state. Must be < --num-idle-states. ''') parser.add_argument('-s', '--first-system-state', type=int, help=''' ID of the first system state. Must be < --numb-idle-states, and > --first-cluster-state. ''') parser.add_argument('-R', '--ratios', action='store_true', help=''' By default proportional values will be reported as percentages, if this flag is enabled, they will be reported as ratios instead. ''') parser.add_argument('-t', '--timeline-file', metavar='FILE', help=''' A timeline of core power states will be written to the specified file in CSV format. ''') parser.add_argument('-u', '--cpu-utilisation', metavar='FILE', help=''' A timeline of cpu(s) utilisation will be written to the specified file in CSV format. ''') parser.add_argument('-m', '--max-freq-list', action=SplitListAction, default=[], help=''' Comma-separated list of core maximum frequencies for the device on which the trace was collected. Only required if --cpu-utilisation is set. This is used to normalise the frequencies to obtain percentage utilisation. ''') args = parser.parse_args() if not args.core_names: raise ValueError('core names must be specified using -c or --core-names') if not args.core_clusters: logger.debug('core clusters not specified, inferring from core names') core_cluster_map = {} core_clusters = [] current_cluster = 0 for cn in args.core_names: if cn not in core_cluster_map: core_cluster_map[cn] = current_cluster current_cluster += 1 core_clusters.append(core_cluster_map[cn]) args.core_clusters = core_clusters if not args.num_idle_states and args.idle_state_names: args.num_idle_states = len(args.idle_state_names) elif args.num_idle_states and not args.idle_state_names: args.idle_state_names = ['idle{}'.format(i) for i in xrange(args.num_idle_states)] elif args.num_idle_states and args.idle_state_names: if len(args.idle_state_names) != args.num_idle_states: raise ValueError('Number of idle state names does not match --num-idle-states') else: raise ValueError('Either --num-idle-states or --idle-state-names must be specified') if not args.first_cluster_state and len(set(args.core_clusters)) > 1: if args.first_system_state: logger.debug('First cluster idle state not specified; state previous to first system state') args.first_cluster_state = args.first_system_state - 1 else: logger.debug('First cluster idle state not specified; assuming last available state') args.first_cluster_state = args.num_idle_states - 1 return args if __name__ == '__main__': main()
"""Utilities for working with fastq files. """ from itertools import izip, product import os import random import gzip from Bio import SeqIO from bcbio.distributed import objectstore from bcbio.distributed.transaction import file_transaction from bcbio.log import logger from bcbio import utils from bcbio.utils import open_possible_gzip from bcbio.pipeline import config_utils from bcbio.provenance import do @utils.memoize_outfile(stem=".groom") def groom(in_file, data, in_qual="illumina", out_dir=None, out_file=None): """ Grooms a FASTQ file from Illumina 1.3/1.5 quality scores into sanger format, if it is not already in that format. """ seqtk = config_utils.get_program("seqtk", data["config"]) if in_qual == "fastq-sanger": logger.info("%s is already in Sanger format." % in_file) return out_file with file_transaction(out_file) as tmp_out_file: cmd = "{seqtk} seq -Q64 {in_file} | gzip > {tmp_out_file}".format(**locals()) do.run(cmd, "Converting %s to Sanger format." % in_file) return out_file @utils.memoize_outfile(stem=".fixed") def filter_single_reads_by_length(in_file, quality_format, min_length=20, out_file=None): """ removes reads from a fastq file which are shorter than a minimum length """ logger.info("Removing reads in %s thare are less than %d bases." % (in_file, min_length)) in_iterator = SeqIO.parse(in_file, quality_format) out_iterator = (record for record in in_iterator if len(record.seq) > min_length) with file_transaction(out_file) as tmp_out_file: with open(tmp_out_file, "w") as out_handle: SeqIO.write(out_iterator, out_handle, quality_format) return out_file def filter_reads_by_length(fq1, fq2, quality_format, min_length=20): """ removes reads from a pair of fastq files that are shorter than a minimum length. removes both ends of a read if one end falls below the threshold while maintaining the order of the reads """ logger.info("Removing reads in %s and %s that " "are less than %d bases." % (fq1, fq2, min_length)) fq1_out = utils.append_stem(fq1, ".fixed") fq2_out = utils.append_stem(fq2, ".fixed") fq1_single = utils.append_stem(fq1, ".singles") fq2_single = utils.append_stem(fq2, ".singles") if all(map(utils.file_exists, [fq1_out, fq2_out, fq2_single, fq2_single])): return [fq1_out, fq2_out] fq1_in = SeqIO.parse(fq1, quality_format) fq2_in = SeqIO.parse(fq2, quality_format) out_files = [fq1_out, fq2_out, fq1_single, fq2_single] with file_transaction(out_files) as tmp_out_files: fq1_out_handle = open(tmp_out_files[0], "w") fq2_out_handle = open(tmp_out_files[1], "w") fq1_single_handle = open(tmp_out_files[2], "w") fq2_single_handle = open(tmp_out_files[3], "w") for fq1_record, fq2_record in izip(fq1_in, fq2_in): if len(fq1_record.seq) >= min_length and len(fq2_record.seq) >= min_length: fq1_out_handle.write(fq1_record.format(quality_format)) fq2_out_handle.write(fq2_record.format(quality_format)) else: if len(fq1_record.seq) > min_length: fq1_single_handle.write(fq1_record.format(quality_format)) if len(fq2_record.seq) > min_length: fq2_single_handle.write(fq2_record.format(quality_format)) fq1_out_handle.close() fq2_out_handle.close() fq1_single_handle.close() fq2_single_handle.close() return [fq1_out, fq2_out] def rstrip_extra(fname): """Strip extraneous, non-discriminative filename info from the end of a file. """ to_strip = ("_R", "_", "fastq", ".", "-") while fname.endswith(to_strip): for x in to_strip: if fname.endswith(x): fname = fname[:len(fname) - len(x)] break return fname def combine_pairs(input_files): """ calls files pairs if they are completely the same except for one has _1 and the other has _2 returns a list of tuples of pairs or singles. From bipy.utils (https://github.com/roryk/bipy/blob/master/bipy/utils.py) Adjusted to allow different input paths or extensions for matching files. """ PAIR_FILE_IDENTIFIERS = set(["1", "2"]) pairs = [] used = set([]) for in_file in input_files: if in_file in used: continue for comp_file in input_files: if comp_file in used or comp_file == in_file: continue a = rstrip_extra(utils.splitext_plus(os.path.basename(in_file))[0]) b = rstrip_extra(utils.splitext_plus(os.path.basename(comp_file))[0]) if len(a) != len(b): continue s = dif(a,b) if len(s) > 1: continue #there is only 1 difference if (a[s[0]] in PAIR_FILE_IDENTIFIERS and b[s[0]] in PAIR_FILE_IDENTIFIERS): # if the 1/2 isn't the last digit before a separator, skip # this skips stuff like 2P 2A, often denoting replicates, not # read pairings if len(b) > (s[0] + 1): if (b[s[0]+1] not in ("_", "-", ".")): continue # if the 1/2 is not a separator or prefaced with R, skip if b[s[0]- 1] in ("R", "_", "-", "."): used.add(in_file) used.add(comp_file) if b[s[0]] == "2": pairs.append([in_file, comp_file]) else: pairs.append([comp_file, in_file]) break if in_file not in used: pairs.append([in_file]) used.add(in_file) return pairs def dif(a, b): """ copy from http://stackoverflow.com/a/8545526 """ return [i for i in range(len(a)) if a[i] != b[i]] def is_fastq(in_file, bzip=True): fastq_ends = [".txt", ".fq", ".fastq"] zip_ends = [".gzip", ".gz"] if bzip: zip_ends += [".bz2", ".bzip2"] base, first_ext = os.path.splitext(in_file) second_ext = os.path.splitext(base)[1] if first_ext in fastq_ends: return True elif (second_ext, first_ext) in product(fastq_ends, zip_ends): return True else: return False def downsample(f1, f2, data, N, quick=False): """ get N random headers from a fastq file without reading the whole thing into memory modified from: http://www.biostars.org/p/6544/ quick=True will just grab the first N reads rather than do a true downsampling """ if quick: rand_records = range(N) else: records = sum(1 for _ in open(f1)) / 4 N = records if N > records else N rand_records = sorted(random.sample(xrange(records), N)) fh1 = open_possible_gzip(f1) fh2 = open_possible_gzip(f2) if f2 else None outf1 = os.path.splitext(f1)[0] + ".subset" + os.path.splitext(f1)[1] outf2 = os.path.splitext(f2)[0] + ".subset" + os.path.splitext(f2)[1] if f2 else None if utils.file_exists(outf1): if not outf2: return outf1, outf2 elif utils.file_exists(outf2): return outf1, outf2 out_files = (outf1, outf2) if outf2 else (outf1) with file_transaction(out_files) as tx_out_files: if isinstance(tx_out_files, basestring): tx_out_f1 = tx_out_files else: tx_out_f1, tx_out_f2 = tx_out_files sub1 = open_possible_gzip(tx_out_f1, "w") sub2 = open_possible_gzip(tx_out_f2, "w") if outf2 else None rec_no = - 1 for rr in rand_records: while rec_no < rr: rec_no += 1 for i in range(4): fh1.readline() if fh2: for i in range(4): fh2.readline() for i in range(4): sub1.write(fh1.readline()) if sub2: sub2.write(fh2.readline()) rec_no += 1 fh1.close() sub1.close() if f2: fh2.close() sub2.close() return outf1, outf2 def estimate_read_length(fastq_file, quality_format="fastq-sanger", nreads=1000): """ estimate average read length of a fastq file """ in_handle = SeqIO.parse(open_fastq(fastq_file), quality_format) read = in_handle.next() average = len(read.seq) for _ in range(nreads): try: average = (average + len(in_handle.next().seq)) / 2 except StopIteration: break in_handle.close() return average def estimate_maximum_read_length(fastq_file, quality_format="fastq-sanger", nreads=1000): """ estimate average read length of a fastq file """ in_handle = SeqIO.parse(open_fastq(fastq_file), quality_format) lengths = [] for _ in range(nreads): try: lengths.append(len(in_handle.next().seq)) except StopIteration: break in_handle.close() return max(lengths) def open_fastq(in_file): """ open a fastq file, using gzip if it is gzipped """ if objectstore.is_remote(in_file): return objectstore.open(in_file) _, ext = os.path.splitext(in_file) if ext == ".gz": return gzip.open(in_file, 'rb') if ext in [".fastq", ".fq"]: return open(in_file, 'r') # default to just opening it return open(in_file, "r")
# from globibot.lib.helpers import formatting as f from tornado.httpclient import AsyncHTTPClient from tornado.platform.asyncio import to_asyncio_future from asyncio import sleep, wait from time import time as now import os.path import random import json class Utils: async def fetch(url): client = AsyncHTTPClient() tornado_future = client.fetch(url) future = to_asyncio_future(tornado_future) response = await future return response.body class Fetch: DATA_FILE = lambda name: os.path.join('./plugins/trivia/data', name) def read_json(file_name): def reader(): with open(Fetch.DATA_FILE(file_name), 'r') as f: return json.load(f) return reader class Pick: def random_collection(dataset): random.shuffle(dataset) index = 0 def pick(): nonlocal index item = dataset[index] index += 1 if index >= len(dataset): index = 0 random.shuffle(dataset) return item return pick def random_dict_item(dataset): return Pick.random_collection(list(dataset.items())) class Query: def timed(delay): # async def query(read_message): # messages = [] # answered = set() # start = now() # while True: # timeout = delay - (now() - start) # if timeout <= 0: # return messages # message_set, _ = await wait((read_message(), ), timeout=timeout) # try: # message_task = next(iter(message_set)) # message = message_task.result() # except StopIteration: # pass # else: # if message.author.id not in answered: # messages.append(message) # answered.add(message.author.id) async def query(): await sleep(delay) return query def readable_concat(collection): comma_string = ', '.join(collection[:-1]) return ' and '.join(e for e in (comma_string, collection[-1]) if e) def time_diff(delta): return delta.seconds + (delta.microseconds / 1000000) class Resolve: def fastest(answers, to_find, skill): winning_answers = [ answer for answer in answers if answer.clean_content.strip().lower() == to_find ] if not winning_answers: return None, 'Nobody found in time, the answer was: `{}`'.format(to_find) else: fastest_answer, *other_answers = winning_answers winners_mention = readable_concat([ answer.author.mention for answer in winning_answers ]) message = ( '{} found the correct answer! It was: `{}`' .format(winners_mention, to_find) ) if other_answers: other_times = ' - '.join( '{} `+{:.3f}`'.format( answer.author.mention, time_diff(answer.timestamp - fastest_answer.timestamp) ) for answer in other_answers ) detail = ( '{} was the fastest to answer though\n{}' .format(fastest_answer.author.mention, other_times) ) message += '\n{}'.format(detail) conclusion = ( '{} killed everyone else with superior {} skills' .format(fastest_answer.author.mention, skill) ) return fastest_answer.author, '{}\n{}'.format(message, conclusion) def closest_int(answers, to_find, within, skill): def is_integral(s): try: int(s) except: return False else: return True valid_answers = [ answer for answer in answers if is_integral(answer.clean_content.strip()) ] try: closest_diff = min( abs(to_find - int(answer.clean_content.strip())) for answer in valid_answers ) closest_diff = min(within, closest_diff) except ValueError: return None, 'Nobody found in time, the answer was: `{}`'.format(to_find) winning_answers = [ answer for answer in valid_answers if abs(to_find - int(answer.clean_content.strip())) == closest_diff ] if not winning_answers: return None, 'Nobody found in time, the answer was: `{}`'.format(to_find) else: fastest_answer, *other_answers = winning_answers winners_mention = readable_concat([ answer.author.mention for answer in winning_answers ]) detail = ( 'found the correct answer' if closest_diff == 0 else '{} close'.format('were' if other_answers else 'was') ) message = ( '{} {}! It was: `{}`' .format(winners_mention, detail, to_find) ) if other_answers: other_times = ' - '.join( '{} `+{:.3f}`'.format( answer.author.mention, time_diff(answer.timestamp - fastest_answer.timestamp) ) for answer in other_answers ) detail = ( '{} was the fastest to answer though\n{}' .format(fastest_answer.author.mention, other_times) ) message += '\n{}'.format(detail) conclusion = ( '{} killed everyone else with superior {} skills' .format(fastest_answer.author.mention, skill) ) return fastest_answer.author, '{}\n{}'.format(message, conclusion)
"""Multiprocessing ready entry points for sample analysis. """ from bcbio import heterogeneity, structural, utils, chipseq, upload from bcbio.bam import callable from bcbio.cwl import create as cwl_create from bcbio.rnaseq import (sailfish) from bcbio.ngsalign import alignprep from bcbio.pipeline import (archive, disambiguate, qcsummary, sample, main, shared, variation, run_info, rnaseq) from bcbio.variation import (bamprep, bedutils, coverage, genotype, ensemble, joint, multi, population, recalibrate, validate, vcfutils) @utils.map_wrap def run_sailfish(*args): return sailfish.run_sailfish(*args) @utils.map_wrap def prepare_sample(*args): return sample.prepare_sample(*args) @utils.map_wrap def prepare_bcbio_samples(*args): return sample.prepare_bcbio_samples(*args) @utils.map_wrap def trim_sample(*args): return sample.trim_sample(*args) @utils.map_wrap def process_alignment(*args): return sample.process_alignment(*args) @utils.map_wrap def postprocess_alignment(*args): return sample.postprocess_alignment(*args) @utils.map_wrap def prep_samples(*args): return sample.prep_samples(*args) @utils.map_wrap def prep_align_inputs(*args): return alignprep.create_inputs(*args) @utils.map_wrap def merge_sample(*args): return sample.merge_sample(*args) @utils.map_wrap def delayed_bam_merge(*args): return sample.delayed_bam_merge(*args) @utils.map_wrap def piped_bamprep(*args): return bamprep.piped_bamprep(*args) @utils.map_wrap def prep_recal(*args): return recalibrate.prep_recal(*args) @utils.map_wrap def split_variants_by_sample(*args): return multi.split_variants_by_sample(*args) @utils.map_wrap def postprocess_variants(*args): return variation.postprocess_variants(*args) @utils.map_wrap def pipeline_summary(*args): return qcsummary.pipeline_summary(*args) @utils.map_wrap def qsignature_summary(*args): return qcsummary.qsignature_summary(*args) @utils.map_wrap def generate_transcript_counts(*args): return rnaseq.generate_transcript_counts(*args) @utils.map_wrap def run_cufflinks(*args): return rnaseq.run_cufflinks(*args) @utils.map_wrap def run_stringtie_expression(*args): return rnaseq.run_stringtie_expression(*args) @utils.map_wrap def run_express(*args): return rnaseq.run_express(*args) @utils.map_wrap def run_dexseq(*args): return rnaseq.run_dexseq(*args) @utils.map_wrap def run_rnaseq_variant_calling(*args): return rnaseq.run_rnaseq_variant_calling(*args) @utils.map_wrap def run_rnaseq_joint_genotyping(*args): return rnaseq.run_rnaseq_joint_genotyping(*args) @utils.map_wrap def combine_bam(*args): return shared.combine_bam(*args) @utils.map_wrap def variantcall_sample(*args): return genotype.variantcall_sample(*args) @utils.map_wrap def combine_variant_files(*args): return vcfutils.combine_variant_files(*args) @utils.map_wrap def concat_variant_files(*args): return vcfutils.concat_variant_files(*args) @utils.map_wrap def merge_variant_files(*args): return vcfutils.merge_variant_files(*args) @utils.map_wrap def detect_sv(*args): return structural.detect_sv(*args) @utils.map_wrap def heterogeneity_estimate(*args): return heterogeneity.estimate(*args) @utils.map_wrap def finalize_sv(*args): return structural.finalize_sv(*args) @utils.map_wrap def combine_calls(*args): return ensemble.combine_calls(*args) @utils.map_wrap def prep_gemini_db(*args): return population.prep_gemini_db(*args) @utils.map_wrap def combine_bed(*args): return bedutils.combine(*args) @utils.map_wrap def calc_callable_loci(*args): return callable.calc_callable_loci(*args) @utils.map_wrap def combine_sample_regions(*args): return callable.combine_sample_regions(*args) @utils.map_wrap def compare_to_rm(*args): return validate.compare_to_rm(*args) @utils.map_wrap def coverage_summary(*args): return coverage.summary(*args) @utils.map_wrap def run_disambiguate(*args): return disambiguate.run(*args) @utils.map_wrap def disambiguate_split(*args): return disambiguate.split(*args) @utils.map_wrap def disambiguate_merge_extras(*args): return disambiguate.merge_extras(*args) @utils.map_wrap def clean_chipseq_alignment(*args): return chipseq.clean_chipseq_alignment(*args) @utils.map_wrap def archive_to_cram(*args): return archive.to_cram(*args) @utils.map_wrap def square_batch_region(*args): return joint.square_batch_region(*args) @utils.map_wrap def cufflinks_assemble(*args): return rnaseq.cufflinks_assemble(*args) @utils.map_wrap def cufflinks_merge(*args): return rnaseq.cufflinks_merge(*args) @utils.map_wrap def organize_samples(*args): return run_info.organize(*args) @utils.map_wrap def prep_system(*args): return run_info.prep_system(*args) @utils.map_wrap def upload_samples(*args): return upload.from_sample(*args) @utils.map_wrap def upload_samples_project(*args): return upload.project_from_sample(*args) @utils.map_wrap def create_cwl(*args): return cwl_create.from_world(*args) @utils.map_wrap def run_main(*args): work_dir, ready_config_file, systemconfig, fcdir, parallel, samples = args return main.run_main(work_dir, run_info_yaml=ready_config_file, config_file=systemconfig, fc_dir=fcdir, parallel=parallel, samples=samples)
# coding: utf-8 from pyramid.view import view_config from dogpile.cache import make_region from analytics.control_manager import base_data_manager from citedby.custom_query import journal_titles cache_region = make_region(name='views_ajax_cache') @view_config(route_name='bibliometrics_document_received_citations', request_method='GET', renderer='jsonp') @base_data_manager def bibliometrics_document_received_citations(request): data = request.data_manager code = request.GET.get('code', '') data = request.stats.bibliometrics.document_received_citations(code) return data @view_config(route_name='bibliometrics_journal_jcr_eigen_factor_chart', request_method='GET', renderer='jsonp') @base_data_manager def bibliometrics_journal_jcr_eigen_factor_chart(request): data = request.data_manager data = request.stats.bibliometrics.jcr_eigen_factor(data['selected_journal_code']) return request.chartsconfig.bibliometrics_jcr_eigen_factor(data) @view_config(route_name='bibliometrics_journal_jcr_received_citations_chart', request_method='GET', renderer='jsonp') @base_data_manager def bibliometrics_journal_jcr_received_citations_chart(request): data = request.data_manager data = request.stats.bibliometrics.jcr_received_citations(data['selected_journal_code']) return request.chartsconfig.bibliometrics_jcr_received_citations(data) @view_config(route_name='bibliometrics_journal_jcr_average_impact_factor_percentile_chart', request_method='GET', renderer='jsonp') @base_data_manager def bibliometrics_journal_jcr_average_impact_factor_percentile_chart(request): data = request.data_manager data = request.stats.bibliometrics.jcr_average_impact_factor_percentile(data['selected_journal_code']) return request.chartsconfig.bibliometrics_jcr_average_impact_factor_percentile(data) @view_config(route_name='bibliometrics_journal_jcr_impact_factor_chart', request_method='GET', renderer='jsonp') @base_data_manager def bibliometrics_journal_jcr_impact_factor_chart(request): data = request.data_manager data = request.stats.bibliometrics.jcr_impact_factor(data['selected_journal_code']) return request.chartsconfig.bibliometrics_jcr_impact_factor(data) @view_config(route_name='bibliometrics_journal_google_h5m5_chart', request_method='GET', renderer='jsonp') @base_data_manager def bibliometrics_journal_google_h5m5_chart(request): data = request.data_manager data = request.stats.bibliometrics.google_h5m5(data['selected_journal_code']) return request.chartsconfig.bibliometrics_google_h5m5(data) @view_config(route_name='usage_report_chart', request_method='GET', renderer='jsonp') @base_data_manager def usage_report_chart(request): data = request.data_manager api_version = request.GET.get('api_version', 'v2') range_start = request.GET.get('range_start', None) range_end = request.GET.get('range_end', None) report_code = request.GET.get('report_code', 'tr_j1') selected_code = data['selected_code'] selected_collection_code = data['selected_collection_code'] data_chart = request.stats.usage.get_usage_report( issn = selected_code, collection = selected_collection_code, begin_date = range_start, end_date = range_end, report_code = report_code, api_version = api_version, ) return request.chartsconfig.usage_report(data_chart) @view_config(route_name='bibliometrics_journal_cited_and_citing_years_heat', request_method='GET', renderer='jsonp') @base_data_manager def bibliometrics_journal_cited_and_citing_years_heat(request): data = request.data_manager titles = request.GET.get('titles', None) titles = titles.split('||') if titles else [] if data['selected_journal_code']: journal = request.stats.articlemeta.journal(code=data['selected_journal_code']) titles.append(journal.title) titles.append(journal.abbreviated_title) titles.extend(x['title'] for x in journal_titles.load(data['selected_journal_code']).get('should', []) if x['title'] not in titles) data = request.stats.bibliometrics.cited_and_citing_years_heat( data['selected_journal_code'], titles ) return request.chartsconfig.bibliometrics_cited_and_citing_years_heat(data) @view_config(route_name='bibliometrics_journal_impact_factor_chart', request_method='GET', renderer='jsonp') @base_data_manager def bibliometrics_journal_impact_factor_chart(request): data = request.data_manager titles = request.GET.get('titles', None) titles = titles.split('||') if titles else [] if data['selected_journal_code']: journal = request.stats.articlemeta.journal(code=data['selected_journal_code']) titles.append(journal.title) titles.append(journal.abbreviated_title) titles.extend(x['title'] for x in journal_titles.load(data['selected_journal_code']).get('should', []) if x['title'] not in titles) data = request.stats.impact_factor_chart(data['selected_journal_code'], data['selected_collection_code'], titles, py_range=data['py_range']) return request.chartsconfig.bibliometrics_impact_factor(data) @view_config(route_name='bibliometrics_journal_received_self_and_granted_citation_chart', request_method='GET', renderer='jsonp') @base_data_manager def bibliometrics_journal_received_self_and_granted_citation_chart(request): data = request.data_manager titles = request.GET.get('titles', None) titles = titles.split('||') if titles else [] if data['selected_journal_code']: journal = request.stats.articlemeta.journal(code=data['selected_journal_code']) titles.append(journal.title) titles.append(journal.abbreviated_title) titles.extend(x['title'] for x in journal_titles.load(data['selected_journal_code']).get('should', []) if x['title'] not in titles) data = request.stats.received_self_and_granted_citation_chart(data['selected_journal_code'], data['selected_collection_code'], titles, py_range=data['py_range']) return request.chartsconfig.bibliometrics_journal_received_self_and_granted_citation_chart(data) @view_config(route_name='publication_article_references', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_references(request): data = request.data_manager chart_data = request.stats.publication.general('article', 'citations', data['selected_code'], data['selected_collection_code'], py_range=data['py_range'], sa_scope=data['sa_scope'], la_scope=data['la_scope'], size=40, sort_term='asc') return request.chartsconfig.publication_article_references(chart_data) @view_config(route_name='publication_article_authors', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_authors(request): data = request.data_manager chart_data = request.stats.publication.general('article', 'authors', data['selected_code'], data['selected_collection_code'], py_range=data['py_range'], sa_scope=data['sa_scope'], la_scope=data['la_scope'], size=0, sort_term='asc') return request.chartsconfig.publication_article_authors(chart_data) @view_config(route_name='publication_article_affiliations_map', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_affiliations_map(request): data = request.data_manager chart_data = request.stats.publication.general('article', 'aff_countries', data['selected_code'], data['selected_collection_code'], py_range=data['py_range'], sa_scope=data['sa_scope'], la_scope=data['la_scope']) return request.chartsconfig.publication_article_affiliations_map(chart_data) @view_config(route_name='publication_article_affiliations', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_affiliations(request): data = request.data_manager chart_data = request.stats.publication.general('article', 'aff_countries', data['selected_code'], data['selected_collection_code'], py_range=data['py_range'], sa_scope=data['sa_scope'], la_scope=data['la_scope'], size=20) return request.chartsconfig.publication_article_affiliations(chart_data) @view_config(route_name='publication_article_affiliations_publication_year', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_affiliations_publication_year(request): data = request.data_manager chart_data = request.stats.publication.affiliations_by_publication_year(data['selected_code'], data['selected_collection_code'], data['py_range'], data['sa_scope'], data['la_scope']) return request.chartsconfig.publication_article_affiliations_by_publication_year(chart_data) @view_config(route_name='publication_article_year', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_year(request): data = request.data_manager data_chart = request.stats.publication.general('article', 'publication_year', data['selected_code'], data['selected_collection_code'], py_range=data['py_range'], sa_scope=data['sa_scope'], la_scope=data['la_scope'], size=0, sort_term='desc') return request.chartsconfig.publication_article_year(data_chart) @view_config(route_name='publication_article_languages', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_languages(request): data = request.data_manager data_chart = request.stats.publication.general('article', 'languages', data['selected_code'], data['selected_collection_code'], py_range=data['py_range'], sa_scope=data['sa_scope'], la_scope=data['la_scope']) return request.chartsconfig.publication_article_languages(data_chart) @view_config(route_name='publication_article_languages_publication_year', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_languages_publication_year(request): data = request.data_manager data_chart = request.stats.publication.languages_by_publication_year(data['selected_code'], data['selected_collection_code'], data['py_range'], data['sa_scope'], la_scope=data['la_scope']) return request.chartsconfig.publication_article_languages_by_publication_year(data_chart) @view_config(route_name='publication_journal_status', request_method='GET', renderer='jsonp') @base_data_manager def publication_journal_status(request): data = request.data_manager result = request.stats.publication.general('journal', 'status', data['selected_code'], data['selected_collection_code'], sa_scope=data['sa_scope']) return request.chartsconfig.publication_journal_status(result) @view_config(route_name='publication_journal_status_detailde', request_method='GET', renderer='jsonp') @base_data_manager def publication_journal_status_detailde(request): data = request.data_manager return request.stats.publication.journals_status_detailde(data['selected_collection_code']) @view_config(route_name='publication_journal_year', request_method='GET', renderer='jsonp') @base_data_manager def publication_journal_year(request): data = request.data_manager data_chart = request.stats.publication.general('journal', 'included_at_year', data['selected_code'], data['selected_collection_code'], sa_scope=data['sa_scope'], size=0, sort_term='asc') return request.chartsconfig.publication_journal_year(data_chart) @view_config(route_name='publication_article_citable_documents', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_citable_documents(request): data = request.data_manager data_chart = request.stats.publication.citable_documents(data['selected_code'], data['selected_collection_code'], py_range=data['py_range']) return request.chartsconfig.publication_article_citable_documents(data_chart) @view_config(route_name='publication_article_subject_areas', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_subject_areas(request): data = request.data_manager data_chart = request.stats.publication.general('article', 'subject_areas', data['selected_code'], data['selected_collection_code'], py_range=data['py_range'], sa_scope=data['sa_scope'], la_scope=data['la_scope']) return request.chartsconfig.publication_article_subject_areas(data_chart) @view_config(route_name='publication_article_subject_areas_publication_year', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_subject_areas_publication_year(request): data = request.data_manager data_chart = request.stats.publication.subject_areas_by_publication_year(data['selected_code'], data['selected_collection_code'], data['py_range'], data['sa_scope'], la_scope=data['la_scope']) return request.chartsconfig.publication_article_subject_areas_by_publication_year(data_chart) @view_config(route_name='publication_article_document_type', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_document_type(request): data = request.data_manager data_chart = request.stats.publication.general('article', 'document_type', data['selected_code'], data['selected_collection_code'], py_range=data['py_range'], sa_scope=data['sa_scope'], la_scope=data['la_scope']) return request.chartsconfig.publication_article_document_type(data_chart) @view_config(route_name='publication_article_document_type_publication_year', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_document_type_publication_year(request): data = request.data_manager data_chart = request.stats.publication.document_type_by_publication_year(data['selected_code'], data['selected_collection_code'], data['py_range'], data['sa_scope'], la_scope=data['la_scope']) return request.chartsconfig.publication_article_document_type_by_publication_year(data_chart) @view_config(route_name='publication_article_licenses_publication_year', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_licenses_publication_year(request): data = request.data_manager data_chart = request.stats.publication.lincenses_by_publication_year(data['selected_code'], data['selected_collection_code'], data['py_range'], data['sa_scope'], data['la_scope']) return request.chartsconfig.publication_article_licenses_by_publication_year(data_chart) @view_config(route_name='publication_article_licenses', request_method='GET', renderer='jsonp') @base_data_manager def publication_article_licenses(request): data = request.data_manager data_chart = request.stats.publication.general('article', 'license', data['selected_code'], data['selected_collection_code'], py_range=data['py_range'], sa_scope=data['sa_scope']) return request.chartsconfig.publication_article_licenses(data_chart) @view_config(route_name='publication_journal_subject_areas', request_method='GET', renderer='jsonp') @base_data_manager def publication_journal_subject_areas(request): data = request.data_manager data_chart = request.stats.publication.general('journal', 'subject_areas', data['selected_code'], data['selected_collection_code'], sa_scope=data['sa_scope']) return request.chartsconfig.publication_journal_subject_areas(data_chart) @view_config(route_name='publication_journal_licenses', request_method='GET', renderer='jsonp') @base_data_manager def publication_journal_licenses(request): data = request.data_manager data_chart = request.stats.publication.general('journal', 'license', data['selected_code'], data['selected_collection_code'], sa_scope=data['sa_scope']) return request.chartsconfig.publication_journal_licenses(data_chart) @view_config(route_name='publication_size', request_method='GET', renderer='jsonp') @base_data_manager def publication_size(request): data = request.data_manager field = request.GET.get('field', None) data = request.stats.publication.collection_size(data['selected_code'], data['selected_collection_code'], field, data['py_range'], data['sa_scope'], data['la_scope']) return data @view_config(route_name='accesses_bymonthandyear', request_method='GET', renderer='jsonp') @base_data_manager def bymonthandyear(request): data = request.data_manager range_start = request.GET.get('range_start', None) range_end = request.GET.get('range_end', None) data_chart = request.stats.access.access_by_month_and_year(data['selected_code'], data['selected_collection_code'], data['py_range'], data['sa_scope'], data['la_scope'], range_start, range_end) return request.chartsconfig.bymonthandyear(data_chart) @view_config(route_name='accesses_bydocumenttype', request_method='GET', renderer='jsonp') @base_data_manager def documenttype(request): data = request.data_manager range_start = request.GET.get('range_start', None) range_end = request.GET.get('range_end', None) data_chart = request.stats.access.access_by_document_type(data['selected_code'], data['selected_collection_code'], data['py_range'], data['sa_scope'], data['la_scope'], range_start, range_end) return request.chartsconfig.documenttype(data_chart) @view_config(route_name='accesses_lifetime', request_method='GET', renderer='jsonp') @base_data_manager def lifetime(request): data = request.data_manager range_start = request.GET.get('range_start', None) range_end = request.GET.get('range_end', None) data_chart = request.stats.access.access_lifetime(data['selected_code'], data['selected_collection_code'], data['py_range'], data['sa_scope'], data['la_scope'], range_start, range_end) return request.chartsconfig.lifetime(data_chart) @view_config(route_name='accesses_heat', request_method='GET', renderer='jsonp') @base_data_manager def accesses_heat(request): data = request.data_manager range_start = request.GET.get('range_start', None) range_end = request.GET.get('range_end', None) data = request.stats.access.access_heat(data['selected_code'], data['selected_collection_code'], data['py_range'], data['sa_scope'], data['la_scope'], range_start, range_end) return request.chartsconfig.access_heat(data)
''' Implementation of Gaussian Mixture Models. Author : Aleyna Kara(@karalleyna) ''' import superimport import jax.numpy as jnp from jax import vmap, value_and_grad, jit from jax.lax import scan from jax.random import PRNGKey, uniform, split, permutation from jax.nn import softmax import distrax from distrax._src.utils import jittable import tensorflow_probability as tfp from mixture_lib import MixtureSameFamily import matplotlib.pyplot as plt import itertools from jax.experimental import optimizers opt_init, opt_update, get_params = optimizers.adam(5e-2) class GMM(jittable.Jittable): def __init__(self, mixing_coeffs, means, covariances): ''' Initializes Gaussian Mixture Model Parameters ---------- mixing_coeffs : array means : array variances : array ''' self.model = (mixing_coeffs, means, covariances) @property def mixing_coeffs(self): return self._model.mixture_distribution.probs @property def means(self): return self._model.components_distribution.loc @property def covariances(self): return self._model.components_distribution.covariance() @property def model(self): return self._model @model.setter def model(self, value): mixing_coeffs, means, covariances = value components_distribution = distrax.as_distribution( tfp.substrates.jax.distributions.MultivariateNormalFullCovariance(loc=means, covariance_matrix=covariances, validate_args=True)) self._model = MixtureSameFamily(mixture_distribution=distrax.Categorical(probs=mixing_coeffs), components_distribution=components_distribution) def expected_log_likelihood(self, observations): ''' Calculates expected log likelihood Parameters ---------- observations : array(N, seq_len) Dataset Returns ------- * int Log likelihood ''' return jnp.sum(self._model.log_prob(observations)) def responsibility(self, observations, comp_dist_idx): ''' Computes responsibilities, or posterior probability p(z_{comp_dist_idx}|x) Parameters ---------- observations : array(N, seq_len) Dataset comp_dist_idx : int Index which specifies the specific mixing distribution component Returns ------- * array Responsibilities ''' return self._model.posterior_marginal(observations).prob(comp_dist_idx) def responsibilities(self, observations): ''' Computes responsibilities, or posterior probability p(z|x) Parameters ---------- observations : array(N, seq_len) Dataset Returns ------- * array Responsibilities ''' return self.model.posterior_marginal(observations).probs def _m_step(self, observations, S, eta): ''' Maximization step Parameters ---------- observations : array(N, seq_len) Dataset S : array A prior p(theta) is defined over the parameters to find MAP solutions eta : int Returns ------- * array Mixing coefficients * array Means * array Covariances ''' n_obs, n_comp = observations.shape def m_step_per_gaussian(responsibility): effective_prob = responsibility.sum() mean = (responsibility[:, None] * observations).sum(axis=0) / effective_prob centralized_observations = (observations - mean) covariance = responsibility[:, None, None] * jnp.einsum("ij, ik->ikj", centralized_observations, centralized_observations) covariance = covariance.sum(axis=0) if eta is None: covariance = covariance / effective_prob else: covariance = (S + covariance) / (eta + effective_prob + n_comp + 2) mixing_coeff = effective_prob / n_obs return (mixing_coeff, mean, covariance) mixing_coeffs, means, covariances = vmap(m_step_per_gaussian, in_axes=(1))(self.responsibilities(observations)) return mixing_coeffs, means, covariances def _add_final_values_to_history(self, history, observations): ''' Appends the final values of log likelihood, mixing coefficients, means, variances and responsibilities into the history Parameters ---------- history : tuple Consists of values of log likelihood, mixing coefficients, means, variances and responsibilities, which are found per iteration observations : array(N, seq_len) Dataset Returns ------- * array Mean loss values found per iteration * array Mixing coefficients found per iteration * array Means of Gaussian distribution found per iteration * array Covariances of Gaussian distribution found per iteration * array Responsibilites found per iteration ''' ll_hist, mix_dist_probs_hist, comp_dist_loc_hist, comp_dist_cov_hist, responsibility_hist = history ll_hist = jnp.append(ll_hist, self.expected_log_likelihood(observations)) mix_dist_probs_hist = jnp.vstack([mix_dist_probs_hist, self.mixing_coeffs]) comp_dist_loc_hist = jnp.vstack([comp_dist_loc_hist, self.means[None, :]]) comp_dist_cov_hist = jnp.vstack([comp_dist_cov_hist, self.covariances[None, :]]) responsibility_hist = jnp.vstack([responsibility_hist, jnp.array([self.responsibility(observations, 0)])]) history = (ll_hist, mix_dist_probs_hist, comp_dist_loc_hist, comp_dist_cov_hist, responsibility_hist) return history def fit_em(self, observations, num_of_iters, S=None, eta=None): ''' Fits the model using em algorithm. Parameters ---------- observations : array(N, seq_len) Dataset num_of_iters : int The number of iterations the training process takes place S : array A prior p(theta) is defined over the parameters to find MAP solutions eta : int Returns ------- * array Mean loss values found per iteration * array Mixing coefficients found per iteration * array Means of Gaussian distribution found per iteration * array Covariances of Gaussian distribution found per iteration * array Responsibilites found per iteration ''' initial_mixing_coeffs = self.mixing_coeffs initial_means = self.means initial_covariances = self.covariances iterations = jnp.arange(num_of_iters) def train_step(params, i): self.model = params log_likelihood = self.expected_log_likelihood(observations) responsibility = self.responsibility(observations, 0) mixing_coeffs, means, covariances = self._m_step(observations, S, eta) return (mixing_coeffs, means, covariances), (log_likelihood, *params, responsibility) initial_params = (initial_mixing_coeffs, initial_means, initial_covariances) final_params, history = scan(train_step, initial_params, iterations) self.model = final_params history = self._add_final_values_to_history(history, observations) return history def _make_minibatches(self, observations, batch_size, rng_key): ''' Creates minibatches consists of the random permutations of the given observation sequences Parameters ---------- observations : array(N, seq_len) Dataset batch_size : int The number of observation sequences that will be included in each minibatch rng_key : array Random key of shape (2,) and dtype uint32 Returns ------- * array(num_batches, batch_size, max_len) Minibatches ''' num_train = len(observations) perm = permutation(rng_key, num_train) def create_mini_batch(batch_idx): return observations[batch_idx] num_batches = num_train // batch_size batch_indices = perm.reshape((num_batches, -1)) minibatches = vmap(create_mini_batch)(batch_indices) return minibatches def _transform_to_covariance_matrix(self, sq_mat): ''' Takes the upper triangular matrix of the given matrix and then multiplies it by its transpose https://ericmjl.github.io/notes/stats-ml/estimating-a-multivariate-gaussians-parameters-by-gradient-descent/ Parameters ---------- sq_mat : array Square matrix Returns ------- * array ''' U = jnp.triu(sq_mat) U_T = jnp.transpose(U) return jnp.dot(U_T, U) def loss_fn(self, params, batch): """ Calculates expected mean negative loglikelihood. Parameters ---------- params : tuple Consists of mixing coefficients' logits, means and variances of the Gaussian distributions respectively. batch : array The subset of observations Returns ------- * int Negative log likelihood """ mixing_coeffs, means, untransormed_cov = params cov_matrix = vmap(self._transform_to_covariance_matrix)(untransormed_cov) self.model = (softmax(mixing_coeffs), means, cov_matrix) return -self.expected_log_likelihood(batch) / len(batch) def update(self, i, opt_state, batch): ''' Updates the optimizer state after taking derivative i : int The current iteration opt_state : jax.experimental.optimizers.OptimizerState The current state of the parameters batch : array The subset of observations Returns ------- * jax.experimental.optimizers.OptimizerState The updated state * int Loss value calculated on the current batch ''' params = get_params(opt_state) loss, grads = value_and_grad(self.loss_fn)(params, batch) return opt_update(i, grads, opt_state), loss def fit_sgd(self, observations, batch_size, rng_key=None, optimizer=None, num_epochs=3): ''' Finds the parameters of Gaussian Mixture Model using gradient descent algorithm with the given hyperparameters. Parameters ---------- observations : array The observation sequences which Bernoulli Mixture Model is trained on batch_size : int The size of the batch rng_key : array Random key of shape (2,) and dtype uint32 optimizer : jax.experimental.optimizers.Optimizer Optimizer to be used num_epochs : int The number of epoch the training process takes place Returns ------- * array Mean loss values found per epoch * array Mixing coefficients found per epoch * array Means of Gaussian distribution found per epoch * array Covariances of Gaussian distribution found per epoch * array Responsibilites found per epoch ''' global opt_init, opt_update, get_params if rng_key is None: rng_key = PRNGKey(0) if optimizer is not None: opt_init, opt_update, get_params = optimizer opt_state = opt_init((softmax(self.mixing_coeffs), self.means, self.covariances)) itercount = itertools.count() def epoch_step(opt_state, key): def train_step(opt_state, batch): opt_state, loss = self.update(next(itercount), opt_state, batch) return opt_state, loss batches = self._make_minibatches(observations, batch_size, key) opt_state, losses = scan(train_step, opt_state, batches) params = get_params(opt_state) mixing_coeffs, means, untransormed_cov = params cov_matrix = vmap(self._transform_to_covariance_matrix)(untransormed_cov) self.model = (softmax(mixing_coeffs), means, cov_matrix) responsibilities = self.responsibilities(observations) return opt_state, (losses.mean(), *params, responsibilities) epochs = split(rng_key, num_epochs) opt_state, history = scan(epoch_step, opt_state, epochs) params = get_params(opt_state) mixing_coeffs, means, untransormed_cov = params cov_matrix = vmap(self._transform_to_covariance_matrix)(untransormed_cov) self.model = (softmax(mixing_coeffs), means, cov_matrix) return history def plot(self, observations, means=None, covariances=None, responsibilities=None, step=0.01, cmap="viridis", colors=None, ax=None): ''' Plots Gaussian Mixture Model. Parameters ---------- observations : array Dataset means : array covariances : array responsibilities : array step: float Step size of the grid for the density contour. cmap : str ax : array ''' means = self.means if means is None else means covariances = self.covariances if covariances is None else covariances responsibilities = self.model.posterior_marginal(observations).probs if responsibilities is None \ else responsibilities colors = uniform(PRNGKey(100), (means.shape[0], 3)) if colors is None else colors ax = ax if ax is not None else plt.subplots()[1] min_x, min_y = observations.min(axis=0) max_x, max_y = observations.max(axis=0) xs, ys = jnp.meshgrid(jnp.arange(min_x, max_x, step), jnp.arange(min_y, max_y, step)) grid = jnp.vstack([xs.ravel(), ys.ravel()]).T def multivariate_normal(mean, cov): ''' Initializes multivariate normal distribution with the given mean and covariance. Note that the pdf has the same precision with its parameters' dtype. ''' return tfp.substrates.jax.distributions.MultivariateNormalFullCovariance(loc=mean, covariance_matrix=cov) for (means, cov), color in zip(zip(means, covariances), colors): normal_dist = multivariate_normal(means, cov) density = normal_dist.prob(grid).reshape(xs.shape) ax.contour(xs, ys, density, levels=1, colors=color, linewidths=5) ax.scatter(*observations.T, alpha=0.7, c=responsibilities, cmap=cmap, s=10) ax.set_xlim(min_x, max_x) ax.set_ylim(min_y, max_y)
from __future__ import unicode_literals from django_shares.constants import Status from django_shares.models import Share from django_testing.testcases.users import SingleUserTestCase from django_testing.user_utils import create_user from test_models.models import TestSharedObjectModel from test_models.models import TestSharedObjectModel2 class ShareTests(SingleUserTestCase): def setUp(self): """Run once per test.""" super(ShareTests, self).setUp() self.shared_user = create_user() def tearDown(self): super(ShareTests, self).tearDown() self.shared_user.delete() def test_add_for_user(self): """Share a user object with a another user.""" share = Share.objects.create_for_user(created_user=self.user, for_user=self.user, shared_object=self.shared_user) self.assertEqual(share.shared_object, self.shared_user) def test_create_for_non_user(self): """Test for creating an object share with with an unknown user.""" first_name = 'Jimmy' last_name = 'Buffet' email = '[email protected]' message = 'Share with me.' status = Status.PENDING share = Share.objects.create_for_non_user(created_user=self.user, shared_object=self.shared_user, first_name=first_name, last_name=last_name, email=email, message=message, status=status) self.assertEqual(share.first_name, first_name) self.assertEqual(share.last_name, last_name) self.assertEqual(share.email, email) self.assertEqual(share.status, status) self.assertEqual(share.message, message) def test_get_for_user(self): """Get shares for user.""" user = create_user() share = Share.objects.create_for_user(created_user=self.user, for_user=user, shared_object=self.shared_user) shares = Share.objects.get_for_user(user=user) self.assertEqual(len(shares), 1) self.assertEqual(shares[0], share) def test_get_for_user_id(self): """Get shares for a user id.""" user = create_user() share = Share.objects.create_for_user(created_user=self.user, for_user=user, shared_object=self.shared_user) shares = Share.objects.get_for_user_id(user_id=user.id) self.assertEqual(len(shares), 1) self.assertEqual(shares[0], share) def test_get_email(self): """Get shares by email.""" user = create_user() share = Share.objects.create_for_user(created_user=self.user, for_user=user, shared_object=self.shared_user) shares = Share.objects.get_by_email(email=user.email) self.assertEqual(len(shares), 1) self.assertEqual(shares[0], share) def test_get_by_token(self): """Get a share by token.""" # self.assertEqual(self.car.shares, []) share = Share.objects.create_for_user(created_user=self.user, for_user=self.user, shared_object=self.shared_user) share_db = Share.objects.get_by_token(token=share.token) self.assertEqual(share, share_db) def test_get_by_shared_object(self): """Get shares for a shared object.""" shared_object = create_user() share = Share.objects.create_for_user(created_user=self.user, for_user=self.user, shared_object=shared_object) shares = Share.objects.get_by_shared_object(obj=shared_object) self.assertEqual(len(shares), 1) self.assertEqual(shares[0], share) def test_get_by_shared_objects(self): """Get shares for a shared objects.""" obj_1 = TestSharedObjectModel.objects.create() obj_2 = TestSharedObjectModel2.objects.create() user_2 = create_user() share_user_1_obj_1 = Share.objects.create_for_user( created_user=self.user, for_user=self.user, shared_object=obj_1 ) share_user_1_obj_2 = Share.objects.create_for_user( created_user=self.user, for_user=self.user, shared_object=obj_2 ) share_user_2_obj_1 = Share.objects.create_for_user( created_user=user_2, for_user=user_2, shared_object=obj_1 ) share_user_2_obj_2 = Share.objects.create_for_user( created_user=user_2, for_user=user_2, shared_object=obj_2 ) shares = list(Share.objects.get_by_shared_objects(objs=[obj_1, obj_2])) self.assertEqual(len(shares), 4) self.assertTrue(share_user_1_obj_1 in shares) self.assertTrue(share_user_1_obj_2 in shares) self.assertTrue(share_user_2_obj_1 in shares) self.assertTrue(share_user_2_obj_2 in shares) shares = Share.objects.get_by_shared_objects( objs=[obj_1, obj_2], for_user=user_2 ) self.assertEqual(len(shares), 2) self.assertTrue(share_user_2_obj_1 in shares) self.assertTrue(share_user_2_obj_2 in shares) def test_accept_share(self): """Test for accepting share.""" share = Share.objects.create_for_user(created_user=self.user, for_user=self.user, shared_object=self.shared_user) self.assertEqual(share.status, Status.PENDING) first_name = 'Test first name' share.accept(first_name=first_name) self.assertEqual(share.status, Status.ACCEPTED) self.assertEqual(share.first_name, first_name) def test_decline_share(self): """Test for accepting share.""" share = Share.objects.create_for_user(created_user=self.user, for_user=self.user, shared_object=self.shared_user) share.decline() self.assertEqual(share.status, Status.DECLINED) def test_inactivate(self): """Test for inactivating a share.""" share = Share.objects.create_for_user(created_user=self.user, for_user=self.user, shared_object=self.shared_user) share.inactivate() self.assertEqual(share.status, Status.INACTIVE) def test_is_accepted(self): """Test the is_accepted method.""" share = Share(status=Status.ACCEPTED) self.assertTrue(share.is_accepted()) def test_is_pending(self): """Test the is_pending method.""" share = Share(status=Status.PENDING) self.assertTrue(share.is_pending()) def test_is_declined(self): """Test the is_declined method.""" share = Share(status=Status.DECLINED) self.assertTrue(share.is_declined()) def test_copy(self): """Test for inactivating a share.""" share = Share.objects.create_for_user(created_user=self.user, for_user=self.user, shared_object=self.shared_user) share_copy = share.copy() self.assertNotEqual(share.token, share_copy.token) def test_get_full_name_for_user(self): """Test get full name for a share for existing user.""" first_name = 'John' last_name = 'Doe' user_2 = create_user(first_name=first_name, last_name=last_name) share = Share.objects.create_for_user(created_user=user_2, for_user=user_2, shared_object=self.shared_user) self.assertEqual(share.get_full_name(), '{0} {1}'.format(first_name, last_name)) def test_get_full_name_for_non_user(self): """Test get full name for a share for non user.""" first_name = 'John' last_name = 'Doe' share = Share.objects.create_for_non_user(created_user=self.user, email='[email protected]', first_name=first_name, last_name=last_name, shared_object=self.shared_user) self.assertEqual(share.get_full_name(), '{0} {1}'.format(first_name, last_name)) def test_get_first_name(self): """Test get first name for a share.""" first_name = 'John' share = Share(first_name=first_name) self.assertEqual(share.get_first_name(), first_name) def test_get_last_name(self): """Test get last name for a share.""" last_name = 'Doe' share = Share(last_name=last_name) self.assertEqual(share.get_last_name(), last_name) def test_create_many(self): """Test for creating many objects at once. This is different from bulk_create. See ``create_many`` doc. """ user = create_user() obj_1 = TestSharedObjectModel.objects.create() obj_2 = TestSharedObjectModel.objects.create() obj_3 = TestSharedObjectModel.objects.create() objs = [obj_1, obj_2, obj_3] # There shouldn't be any shares here. self.assertEqual(obj_1.shares.count(), 0) self.assertEqual(obj_2.shares.count(), 0) self.assertEqual(obj_3.shares.count(), 0) ShareClass = TestSharedObjectModel.get_share_class() shares = ShareClass.objects.create_many(objs=objs, for_user=user, created_user=user, status=Status.ACCEPTED) self.assertEqual(obj_1.shares.count(), 1) self.assertEqual(obj_2.shares.count(), 1) self.assertEqual(obj_3.shares.count(), 1) def test_create_many_prevent_duplicate_share(self): """Test the ``create_many`` method that ensure no duplicate shares are created for a single user. """ user = create_user() obj_1 = TestSharedObjectModel.objects.create() obj_1.shares.create_for_user(for_user=user, created_user=user, status=Status.ACCEPTED) self.assertEqual(obj_1.shares.count(), 1) obj_2 = TestSharedObjectModel.objects.create() obj_3 = TestSharedObjectModel.objects.create() objs = [obj_1, obj_2, obj_3] ShareClass = TestSharedObjectModel.get_share_class() shares = ShareClass.objects.create_many(objs=objs, for_user=user, created_user=user, status=Status.ACCEPTED) self.assertEqual(obj_1.shares.count(), 1) self.assertEqual(obj_2.shares.count(), 1) self.assertEqual(obj_3.shares.count(), 1)
import re import sys import uuid import copy import types import datetime import RefinerUtils from pandajedi.jedicore import Interaction from pandajedi.jedicore import JediException from pandajedi.jedicore.JediTaskSpec import JediTaskSpec from pandajedi.jedicore.JediDatasetSpec import JediDatasetSpec from pandajedi.jedicore.JediFileSpec import JediFileSpec from pandaserver.taskbuffer import EventServiceUtils # base class for task refine class TaskRefinerBase (object): # constructor def __init__(self,taskBufferIF,ddmIF): self.ddmIF = ddmIF self.taskBufferIF = taskBufferIF self.initializeRefiner(None) self.refresh() # refresh def refresh(self): self.siteMapper = self.taskBufferIF.getSiteMapper() # initialize def initializeRefiner(self,tmpLog): self.taskSpec = None self.inMasterDatasetSpec = [] self.inSecDatasetSpecList = [] self.outDatasetSpecList = [] self.outputTemplateMap = {} self.jobParamsTemplate = None self.cloudName = None self.siteName = None self.tmpLog = tmpLog self.updatedTaskParams = None self.unmergeMasterDatasetSpec = {} self.unmergeDatasetSpecMap = {} self.oldTaskStatus = None self.unknownDatasetList = [] # set jobParamsTemplate def setJobParamsTemplate(self,jobParamsTemplate): self.jobParamsTemplate = jobParamsTemplate # extract common parameters def extractCommon(self,jediTaskID,taskParamMap,workQueueMapper,splitRule): # make task spec taskSpec = JediTaskSpec() taskSpec.jediTaskID = jediTaskID taskSpec.taskName = taskParamMap['taskName'] taskSpec.userName = taskParamMap['userName'] taskSpec.vo = taskParamMap['vo'] taskSpec.prodSourceLabel = taskParamMap['prodSourceLabel'] taskSpec.taskPriority = taskParamMap['taskPriority'] taskSpec.currentPriority = taskSpec.taskPriority taskSpec.architecture = taskParamMap['architecture'] taskSpec.transUses = taskParamMap['transUses'] taskSpec.transHome = taskParamMap['transHome'] taskSpec.transPath = taskParamMap['transPath'] taskSpec.processingType = taskParamMap['processingType'] taskSpec.taskType = taskParamMap['taskType'] taskSpec.splitRule = splitRule taskSpec.startTime = datetime.datetime.utcnow() if taskParamMap.has_key('workingGroup'): taskSpec.workingGroup = taskParamMap['workingGroup'] if taskParamMap.has_key('countryGroup'): taskSpec.countryGroup = taskParamMap['countryGroup'] if taskParamMap.has_key('ticketID'): taskSpec.ticketID = taskParamMap['ticketID'] if taskParamMap.has_key('ticketSystemType'): taskSpec.ticketSystemType = taskParamMap['ticketSystemType'] if taskParamMap.has_key('reqID'): taskSpec.reqID = taskParamMap['reqID'] else: taskSpec.reqID = jediTaskID if taskParamMap.has_key('coreCount'): taskSpec.coreCount = taskParamMap['coreCount'] else: taskSpec.coreCount = 1 if taskParamMap.has_key('walltime'): taskSpec.walltime = taskParamMap['walltime'] else: taskSpec.walltime = 0 if not taskParamMap.has_key('walltimeUnit'): # force to set NULL so that retried tasks get data from scouts again taskSpec.forceUpdate('walltimeUnit') if taskParamMap.has_key('outDiskCount'): taskSpec.outDiskCount = taskParamMap['outDiskCount'] else: taskSpec.outDiskCount = 0 if 'outDiskUnit' in taskParamMap: taskSpec.outDiskUnit = taskParamMap['outDiskUnit'] if taskParamMap.has_key('workDiskCount'): taskSpec.workDiskCount = taskParamMap['workDiskCount'] else: taskSpec.workDiskCount = 0 if taskParamMap.has_key('workDiskUnit'): taskSpec.workDiskUnit = taskParamMap['workDiskUnit'] if taskParamMap.has_key('ramCount'): taskSpec.ramCount = taskParamMap['ramCount'] else: taskSpec.ramCount = 0 if taskParamMap.has_key('ramUnit'): taskSpec.ramUnit = taskParamMap['ramUnit'] if taskParamMap.has_key('baseRamCount'): taskSpec.baseRamCount = taskParamMap['baseRamCount'] else: taskSpec.baseRamCount = 0 # HS06 stuff if 'cpuTimeUnit' in taskParamMap: taskSpec.cpuTimeUnit = taskParamMap['cpuTimeUnit'] if 'cpuTime' in taskParamMap: taskSpec.cpuTime = taskParamMap['cpuTime'] if 'cpuEfficiency' in taskParamMap: taskSpec.cpuEfficiency = taskParamMap['cpuEfficiency'] else: # 90% of cpu efficiency by default taskSpec.cpuEfficiency = 90 if 'baseWalltime' in taskParamMap: taskSpec.baseWalltime = taskParamMap['baseWalltime'] else: # 10min of offset by default taskSpec.baseWalltime = 10*60 # for merge if 'mergeRamCount' in taskParamMap: taskSpec.mergeRamCount = taskParamMap['mergeRamCount'] if 'mergeCoreCount' in taskParamMap: taskSpec.mergeCoreCount = taskParamMap['mergeCoreCount'] # scout if not taskParamMap.has_key('skipScout') and not taskSpec.isPostScout(): taskSpec.setUseScout(True) # cloud if taskParamMap.has_key('cloud'): self.cloudName = taskParamMap['cloud'] taskSpec.cloud = self.cloudName else: # set dummy to force update taskSpec.cloud = 'dummy' taskSpec.cloud = None # site if taskParamMap.has_key('site'): self.siteName = taskParamMap['site'] taskSpec.site = self.siteName else: # set dummy to force update taskSpec.site = 'dummy' taskSpec.site = None # nucleus if 'nucleus' in taskParamMap: taskSpec.nucleus = taskParamMap['nucleus'] # preset some parameters for job cloning if 'useJobCloning' in taskParamMap: # set implicit parameters if not 'nEventsPerWorker' in taskParamMap: taskParamMap['nEventsPerWorker'] = 1 if not 'nSitesPerJob' in taskParamMap: taskParamMap['nSitesPerJob'] = 2 if not 'nEsConsumers' in taskParamMap: taskParamMap['nEsConsumers'] = taskParamMap['nSitesPerJob'] # event service flag if 'useJobCloning' in taskParamMap: taskSpec.eventService = 2 elif taskParamMap.has_key('nEventsPerWorker'): taskSpec.eventService = 1 else: taskSpec.eventService = 0 # ttcr: requested time to completion if taskParamMap.has_key('ttcrTimestamp'): try: # get rid of the +00:00 timezone string and parse the timestamp taskSpec.ttcRequested = datetime.datetime.strptime(taskParamMap['ttcrTimestamp'].split('+')[0], '%Y-%m-%d %H:%M:%S.%f') except (IndexError, ValueError): pass # goal if 'goal' in taskParamMap: try: taskSpec.goal = int(float(taskParamMap['goal'])*10) if taskSpec.goal >= 1000: taskSpec.goal = None except: pass # campaign if taskParamMap.has_key('campaign'): taskSpec.campaign = taskParamMap['campaign'] # request type if 'requestType' in taskParamMap: taskSpec.requestType = taskParamMap['requestType'] self.taskSpec = taskSpec # set split rule if 'tgtNumEventsPerJob' in taskParamMap: # set nEventsPerJob not respect file boundaries when nFilesPerJob is not used if not 'nFilesPerJob' in taskParamMap: self.setSplitRule(None,taskParamMap['tgtNumEventsPerJob'],JediTaskSpec.splitRuleToken['nEventsPerJob']) self.setSplitRule(taskParamMap,'nFilesPerJob', JediTaskSpec.splitRuleToken['nFilesPerJob']) self.setSplitRule(taskParamMap,'nEventsPerJob', JediTaskSpec.splitRuleToken['nEventsPerJob']) self.setSplitRule(taskParamMap,'nGBPerJob', JediTaskSpec.splitRuleToken['nGBPerJob']) self.setSplitRule(taskParamMap,'nMaxFilesPerJob', JediTaskSpec.splitRuleToken['nMaxFilesPerJob']) self.setSplitRule(taskParamMap,'nEventsPerWorker', JediTaskSpec.splitRuleToken['nEventsPerWorker']) self.setSplitRule(taskParamMap,'useLocalIO', JediTaskSpec.splitRuleToken['useLocalIO']) self.setSplitRule(taskParamMap,'disableAutoRetry', JediTaskSpec.splitRuleToken['disableAutoRetry']) self.setSplitRule(taskParamMap,'nEsConsumers', JediTaskSpec.splitRuleToken['nEsConsumers']) self.setSplitRule(taskParamMap,'waitInput', JediTaskSpec.splitRuleToken['waitInput']) self.setSplitRule(taskParamMap,'addNthFieldToLFN', JediTaskSpec.splitRuleToken['addNthFieldToLFN']) self.setSplitRule(taskParamMap,'scoutSuccessRate', JediTaskSpec.splitRuleToken['scoutSuccessRate']) self.setSplitRule(taskParamMap,'t1Weight', JediTaskSpec.splitRuleToken['t1Weight']) self.setSplitRule(taskParamMap,'maxAttemptES', JediTaskSpec.splitRuleToken['maxAttemptES']) self.setSplitRule(taskParamMap,'nSitesPerJob', JediTaskSpec.splitRuleToken['nSitesPerJob']) self.setSplitRule(taskParamMap,'nJumboJobs', JediTaskSpec.splitRuleToken['nJumboJobs']) self.setSplitRule(taskParamMap,'nEventsPerMergeJob', JediTaskSpec.splitRuleToken['nEventsPerMergeJob']) self.setSplitRule(taskParamMap,'nFilesPerMergeJob', JediTaskSpec.splitRuleToken['nFilesPerMergeJob']) self.setSplitRule(taskParamMap,'nGBPerMergeJob', JediTaskSpec.splitRuleToken['nGBPerMergeJob']) self.setSplitRule(taskParamMap,'nMaxFilesPerMergeJob', JediTaskSpec.splitRuleToken['nMaxFilesPerMergeJob']) if taskParamMap.has_key('loadXML'): self.setSplitRule(None,3,JediTaskSpec.splitRuleToken['loadXML']) self.setSplitRule(None,4,JediTaskSpec.splitRuleToken['groupBoundaryID']) if taskParamMap.has_key('pfnList'): self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['pfnList']) if taskParamMap.has_key('noWaitParent') and taskParamMap['noWaitParent'] == True: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['noWaitParent']) if 'respectLB' in taskParamMap: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['respectLB']) if taskParamMap.has_key('reuseSecOnDemand'): self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['reuseSecOnDemand']) if 'ddmBackEnd' in taskParamMap: self.taskSpec.setDdmBackEnd(taskParamMap['ddmBackEnd']) if 'disableReassign' in taskParamMap: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['disableReassign']) if 'allowPartialFinish' in taskParamMap: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['allowPartialFinish']) if 'useExhausted' in taskParamMap: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['useExhausted']) if 'useRealNumEvents' in taskParamMap: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['useRealNumEvents']) if 'ipConnectivity' in taskParamMap: self.taskSpec.setIpConnectivity(taskParamMap['ipConnectivity']) if 'altStageOut' in taskParamMap: self.taskSpec.setAltStageOut(taskParamMap['altStageOut']) if 'allowInputLAN' in taskParamMap: self.taskSpec.setAllowInputLAN(taskParamMap['allowInputLAN']) if 'runUntilClosed' in taskParamMap: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['runUntilClosed']) if 'stayOutputOnSite' in taskParamMap: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['stayOutputOnSite']) if 'useJobCloning' in taskParamMap: scValue = EventServiceUtils.getJobCloningValue(taskParamMap['useJobCloning']) self.setSplitRule(None,scValue,JediTaskSpec.splitRuleToken['useJobCloning']) if 'failWhenGoalUnreached' in taskParamMap and taskParamMap['failWhenGoalUnreached'] == True: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['failGoalUnreached']) if 'switchEStoNormal' in taskParamMap: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['switchEStoNormal']) if 'nEventsPerRange' in taskParamMap: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['dynamicNumEvents']) if 'allowInputWAN' in taskParamMap and taskParamMap['allowInputWAN'] == True: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['allowInputWAN']) if 'putLogToOS' in taskParamMap and taskParamMap['putLogToOS'] == True: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['putLogToOS']) if 'mergeEsOnOS' in taskParamMap and taskParamMap['mergeEsOnOS'] == True: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['mergeEsOnOS']) if 'writeInputToFile' in taskParamMap and taskParamMap['writeInputToFile'] == True: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['writeInputToFile']) if 'useFileAsSourceLFN' in taskParamMap and taskParamMap['useFileAsSourceLFN'] == True: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['useFileAsSourceLFN']) if 'ignoreMissingInDS' in taskParamMap and taskParamMap['ignoreMissingInDS'] == True: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['ignoreMissingInDS']) # work queue workQueue = None if 'workQueueName' in taskParamMap: # work queue is specified workQueue = workQueueMapper.getQueueWithName(taskSpec.vo,taskSpec.prodSourceLabel,taskParamMap['workQueueName']) if workQueue is None: # get work queue based on task attributes workQueue,tmpStr = workQueueMapper.getQueueWithSelParams(taskSpec.vo, taskSpec.prodSourceLabel, processingType=taskSpec.processingType, workingGroup=taskSpec.workingGroup, coreCount=taskSpec.coreCount, site=taskSpec.site, eventService=taskSpec.eventService, splitRule=taskSpec.splitRule, campaign=taskSpec.campaign) if workQueue is None: errStr = 'workqueue is undefined for vo={0} label={1} '.format(taskSpec.vo,taskSpec.prodSourceLabel) errStr += 'processingType={0} workingGroup={1} coreCount={2} eventService={3} '.format(taskSpec.processingType, taskSpec.workingGroup, taskSpec.coreCount, taskSpec.eventService) errStr += 'splitRule={0} campaign={1}'.format(taskSpec.splitRule,taskSpec.campaign) raise RuntimeError,errStr self.taskSpec.workQueue_ID = workQueue.queue_id # Initialize the global share gshare = None if 'gshare' in taskParamMap and self.taskBufferIF.is_valid_share(taskParamMap['gshare']): # work queue is specified gshare = taskParamMap['gshare'] else: # get share based on definition gshare = self.taskBufferIF.get_share_for_task(self.taskSpec) if gshare is None: gshare = 'No match' # errStr = 'share is undefined for vo={0} label={1} '.format(taskSpec.vo,taskSpec.prodSourceLabel) # errStr += 'workingGroup={0} campaign={1} '.format(taskSpec.workingGroup, taskSpec.campaign) # raise RuntimeError,errStr self.taskSpec.gshare = gshare # return return # basic refinement procedure def doBasicRefine(self,taskParamMap): # get input/output/log dataset specs nIn = 0 nOutMap = {} if isinstance(taskParamMap['log'],dict): itemList = taskParamMap['jobParameters'] + [taskParamMap['log']] else: itemList = taskParamMap['jobParameters'] + taskParamMap['log'] # pseudo input if taskParamMap.has_key('noInput') and taskParamMap['noInput'] == True: tmpItem = {} tmpItem['type'] = 'template' tmpItem['value'] = '' tmpItem['dataset'] = 'pseudo_dataset' tmpItem['param_type'] = 'pseudo_input' itemList = [tmpItem] + itemList # random seed if RefinerUtils.useRandomSeed(taskParamMap): tmpItem = {} tmpItem['type'] = 'template' tmpItem['value'] = '' tmpItem['dataset'] = 'RNDMSEED' tmpItem['param_type'] = 'random_seed' itemList.append(tmpItem) # loop over all items allDsList = [] for tmpItem in itemList: # look for datasets if tmpItem['type'] == 'template' and tmpItem.has_key('dataset'): # avoid duplication if not tmpItem['dataset'] in allDsList: allDsList.append(tmpItem['dataset']) else: continue datasetSpec = JediDatasetSpec() datasetSpec.datasetName = tmpItem['dataset'] datasetSpec.jediTaskID = self.taskSpec.jediTaskID datasetSpec.type = tmpItem['param_type'] if tmpItem.has_key('container'): datasetSpec.containerName = tmpItem['container'] if tmpItem.has_key('token'): datasetSpec.storageToken = tmpItem['token'] if tmpItem.has_key('destination'): datasetSpec.destination = tmpItem['destination'] if tmpItem.has_key('attributes'): datasetSpec.setDatasetAttribute(tmpItem['attributes']) if tmpItem.has_key('ratio'): datasetSpec.setDatasetAttribute('ratio={0}'.format(tmpItem['ratio'])) if tmpItem.has_key('eventRatio'): datasetSpec.setEventRatio(tmpItem['eventRatio']) if tmpItem.has_key('check'): datasetSpec.setDatasetAttribute('cc') if tmpItem.has_key('usedup'): datasetSpec.setDatasetAttribute('ud') if tmpItem.has_key('random'): datasetSpec.setDatasetAttribute('rd') if tmpItem.has_key('reusable'): datasetSpec.setDatasetAttribute('ru') if tmpItem.has_key('offset'): datasetSpec.setOffset(tmpItem['offset']) if tmpItem.has_key('allowNoOutput'): datasetSpec.allowNoOutput() if tmpItem.has_key('nFilesPerJob'): datasetSpec.setNumFilesPerJob(tmpItem['nFilesPerJob']) if tmpItem.has_key('num_records'): datasetSpec.setNumRecords(tmpItem['num_records']) if 'transient' in tmpItem: datasetSpec.setTransient(tmpItem['transient']) datasetSpec.vo = self.taskSpec.vo datasetSpec.nFiles = 0 datasetSpec.nFilesUsed = 0 datasetSpec.nFilesFinished = 0 datasetSpec.nFilesFailed = 0 datasetSpec.nFilesOnHold = 0 datasetSpec.nEvents = 0 datasetSpec.nEventsUsed = 0 datasetSpec.nEventsToBeUsed = 0 datasetSpec.status = 'defined' if datasetSpec.type in JediDatasetSpec.getInputTypes() + ['random_seed']: datasetSpec.streamName = RefinerUtils.extractStreamName(tmpItem['value']) if not tmpItem.has_key('expandedList'): tmpItem['expandedList'] = [] # dataset names could be comma-concatenated datasetNameList = datasetSpec.datasetName.split(',') # datasets could be added by incexec incexecDS = 'dsFor{0}'.format(datasetSpec.streamName) # remove /XYZ incexecDS = incexecDS.split('/')[0] if taskParamMap.has_key(incexecDS): for tmpDatasetName in taskParamMap[incexecDS].split(','): if not tmpDatasetName in datasetNameList: datasetNameList.append(tmpDatasetName) # loop over all dataset names inDatasetSpecList = [] for datasetName in datasetNameList: # skip empty if datasetName == '': continue # expand if datasetSpec.isPseudo() or datasetSpec.type in ['random_seed'] or datasetName == 'DBR_LATEST': # pseudo input tmpDatasetNameList = [datasetName] elif tmpItem.has_key('expand') and tmpItem['expand'] == True: # expand dataset container tmpDatasetNameList = self.ddmIF.getInterface(self.taskSpec.vo).expandContainer(datasetName) else: # normal dataset name tmpDatasetNameList = self.ddmIF.getInterface(self.taskSpec.vo).listDatasets(datasetName) for elementDatasetName in tmpDatasetNameList: if nIn > 0 or not elementDatasetName in tmpItem['expandedList']: tmpItem['expandedList'].append(elementDatasetName) inDatasetSpec = copy.copy(datasetSpec) inDatasetSpec.datasetName = elementDatasetName inDatasetSpec.containerName = datasetName inDatasetSpecList.append(inDatasetSpec) # empty input if inDatasetSpecList == [] and self.oldTaskStatus != 'rerefine': errStr = 'doBasicRefine : unknown input dataset "{0}"'.format(datasetSpec.datasetName) self.taskSpec.setErrDiag(errStr) if not datasetSpec.datasetName in self.unknownDatasetList: self.unknownDatasetList.append(datasetSpec.datasetName) raise JediException.UnknownDatasetError,errStr # set master flag for inDatasetSpec in inDatasetSpecList: if nIn == 0: # master self.inMasterDatasetSpec.append(inDatasetSpec) else: # secondary self.inSecDatasetSpecList.append(inDatasetSpec) nIn += 1 continue if datasetSpec.type in ['output','log']: if not nOutMap.has_key(datasetSpec.type): nOutMap[datasetSpec.type] = 0 # make stream name datasetSpec.streamName = "{0}{1}".format(datasetSpec.type.upper(),nOutMap[datasetSpec.type]) nOutMap[datasetSpec.type] += 1 # set attribute for event service if self.taskSpec.useEventService() and taskParamMap.has_key('objectStore') and datasetSpec.type in ['output']: datasetSpec.setObjectStore(taskParamMap['objectStore']) # extract output filename template and change the value field outFileTemplate,tmpItem['value'] = RefinerUtils.extractReplaceOutFileTemplate(tmpItem['value'], datasetSpec.streamName) # make output template if outFileTemplate != None: if tmpItem.has_key('offset'): offsetVal = 1 + tmpItem['offset'] else: offsetVal = 1 outTemplateMap = {'jediTaskID' : self.taskSpec.jediTaskID, 'serialNr' : offsetVal, 'streamName' : datasetSpec.streamName, 'filenameTemplate' : outFileTemplate, 'outtype' : datasetSpec.type, } if self.outputTemplateMap.has_key(datasetSpec.outputMapKey()): # multiple files are associated to the same output datasets self.outputTemplateMap[datasetSpec.outputMapKey()].append(outTemplateMap) # don't insert the same output dataset continue self.outputTemplateMap[datasetSpec.outputMapKey()] = [outTemplateMap] # append self.outDatasetSpecList.append(datasetSpec) # make unmerged dataset if taskParamMap.has_key('mergeOutput') and taskParamMap['mergeOutput'] == True: umDatasetSpec = JediDatasetSpec() umDatasetSpec.datasetName = 'panda.um.' + datasetSpec.datasetName umDatasetSpec.jediTaskID = self.taskSpec.jediTaskID umDatasetSpec.storageToken = 'TOMERGE' umDatasetSpec.vo = datasetSpec.vo umDatasetSpec.type = "tmpl_trn_" + datasetSpec.type umDatasetSpec.nFiles = 0 umDatasetSpec.nFilesUsed = 0 umDatasetSpec.nFilesToBeUsed = 0 umDatasetSpec.nFilesFinished = 0 umDatasetSpec.nFilesFailed = 0 umDatasetSpec.nFilesOnHold = 0 umDatasetSpec.status = 'defined' umDatasetSpec.streamName = datasetSpec.streamName if datasetSpec.isAllowedNoOutput(): umDatasetSpec.allowNoOutput() # ratio if datasetSpec.getRatioToMaster() > 1: umDatasetSpec.setDatasetAttribute('ratio={0}'.format(datasetSpec.getRatioToMaster())) # make unmerged output template if outFileTemplate != None: umOutTemplateMap = {'jediTaskID' : self.taskSpec.jediTaskID, 'serialNr' : 1, 'streamName' : umDatasetSpec.streamName, 'outtype' : datasetSpec.type, } # append temporary name if taskParamMap.has_key('umNameAtEnd') and taskParamMap['umNameAtEnd'] == True: # append temporary name at the end umOutTemplateMap['filenameTemplate'] = outFileTemplate + '.panda.um' else: umOutTemplateMap['filenameTemplate'] = 'panda.um.' + outFileTemplate if self.outputTemplateMap.has_key(umDatasetSpec.outputMapKey()): # multiple files are associated to the same output datasets self.outputTemplateMap[umDatasetSpec.outputMapKey()].append(umOutTemplateMap) # don't insert the same output dataset continue self.outputTemplateMap[umDatasetSpec.outputMapKey()] = [umOutTemplateMap] # use log as master for merging if datasetSpec.type == 'log': self.unmergeMasterDatasetSpec[datasetSpec.outputMapKey()] = umDatasetSpec else: # append self.unmergeDatasetSpecMap[datasetSpec.outputMapKey()] = umDatasetSpec # set attributes for merging if taskParamMap.has_key('mergeOutput') and taskParamMap['mergeOutput'] == True: self.setSplitRule(None,1,JediTaskSpec.splitRuleToken['mergeOutput']) # make job parameters rndmSeedOffset = None firstEventOffset = None jobParameters = '' for tmpItem in taskParamMap['jobParameters']: if tmpItem.has_key('value'): # hidden parameter if tmpItem.has_key('hidden') and tmpItem['hidden'] == True: continue # add tags for ES-only parameters esOnly = False if 'es_only' in tmpItem and tmpItem['es_only'] == True: esOnly = True if esOnly: jobParameters += '<PANDA_ES_ONLY>' jobParameters += '{0}'.format(tmpItem['value']) if esOnly: jobParameters += '</PANDA_ES_ONLY>' # padding if tmpItem.has_key('padding') and tmpItem['padding'] == False: pass else: jobParameters += ' ' # get offset for random seed and first event if tmpItem['type'] == 'template' and tmpItem['param_type'] == 'number': if '${RNDMSEED}' in tmpItem['value']: if tmpItem.has_key('offset'): rndmSeedOffset = tmpItem['offset'] else: rndmSeedOffset = 0 elif '${FIRSTEVENT}' in tmpItem['value']: if tmpItem.has_key('offset'): firstEventOffset = tmpItem['offset'] jobParameters = jobParameters[:-1] # append parameters for event service merging if necessary esmergeParams = self.getParamsForEventServiceMerging(taskParamMap) if esmergeParams != None: jobParameters += esmergeParams self.setJobParamsTemplate(jobParameters) # set random seed offset if rndmSeedOffset != None: self.setSplitRule(None,rndmSeedOffset,JediTaskSpec.splitRuleToken['randomSeed']) if firstEventOffset != None: self.setSplitRule(None,firstEventOffset,JediTaskSpec.splitRuleToken['firstEvent']) # return return # replace placeholder with dict provided by prepro job def replacePlaceHolders(self,paramItem,placeHolderName,newValue): if isinstance(paramItem,types.DictType): # loop over all dict params for tmpParName,tmpParVal in paramItem.iteritems(): if tmpParVal == placeHolderName: # replace placeholder paramItem[tmpParName] = newValue elif isinstance(tmpParVal,types.DictType) or \ isinstance(tmpParVal,types.ListType): # recursive execution self.replacePlaceHolders(tmpParVal,placeHolderName,newValue) elif isinstance(paramItem,types.ListType): # loop over all list items for tmpItem in paramItem: self.replacePlaceHolders(tmpItem,placeHolderName,newValue) # refinement procedure for preprocessing def doPreProRefine(self,taskParamMap): # no preprocessing if not taskParamMap.has_key('preproSpec'): return None,taskParamMap # already preprocessed if self.taskSpec.checkPreProcessed(): # get replaced task params tmpStat,tmpJsonStr = self.taskBufferIF.getPreprocessMetadata_JEDI(self.taskSpec.jediTaskID) try: # replace placeholders replaceParams = RefinerUtils.decodeJSON(tmpJsonStr) self.tmpLog.debug("replace placeholders with "+str(replaceParams)) for tmpKey,tmpVal in replaceParams.iteritems(): self.replacePlaceHolders(taskParamMap,tmpKey,tmpVal) except: errtype,errvalue = sys.exc_info()[:2] self.tmpLog.error('{0} failed to get additional task params with {1}:{2}'.format(self.__class__.__name__, errtype.__name__,errvalue)) return False,taskParamMap # succeeded self.updatedTaskParams = taskParamMap return None,taskParamMap # make dummy dataset to keep track of preprocessing datasetSpec = JediDatasetSpec() datasetSpec.datasetName = 'panda.pp.in.{0}.{1}'.format(uuid.uuid4(),self.taskSpec.jediTaskID) datasetSpec.jediTaskID = self.taskSpec.jediTaskID datasetSpec.type = 'pp_input' datasetSpec.vo = self.taskSpec.vo datasetSpec.nFiles = 1 datasetSpec.nFilesUsed = 0 datasetSpec.nFilesToBeUsed = 1 datasetSpec.nFilesFinished = 0 datasetSpec.nFilesFailed = 0 datasetSpec.nFilesOnHold = 0 datasetSpec.status = 'ready' self.inMasterDatasetSpec.append(datasetSpec) # make file fileSpec = JediFileSpec() fileSpec.jediTaskID = datasetSpec.jediTaskID fileSpec.type = datasetSpec.type fileSpec.status = 'ready' fileSpec.lfn = 'pseudo_lfn' fileSpec.attemptNr = 0 fileSpec.maxAttempt = 3 fileSpec.keepTrack = 1 datasetSpec.addFile(fileSpec) # make log dataset logDatasetSpec = JediDatasetSpec() logDatasetSpec.datasetName = 'panda.pp.log.{0}.{1}'.format(uuid.uuid4(),self.taskSpec.jediTaskID) logDatasetSpec.jediTaskID = self.taskSpec.jediTaskID logDatasetSpec.type = 'tmpl_pp_log' logDatasetSpec.streamName = 'PP_LOG' logDatasetSpec.vo = self.taskSpec.vo logDatasetSpec.nFiles = 0 logDatasetSpec.nFilesUsed = 0 logDatasetSpec.nFilesToBeUsed = 0 logDatasetSpec.nFilesFinished = 0 logDatasetSpec.nFilesFailed = 0 logDatasetSpec.nFilesOnHold = 0 logDatasetSpec.status = 'defined' self.outDatasetSpecList.append(logDatasetSpec) # make output template for log outTemplateMap = {'jediTaskID' : self.taskSpec.jediTaskID, 'serialNr' : 1, 'streamName' : logDatasetSpec.streamName, 'filenameTemplate' : "{0}._${{SN}}.log.tgz".format(logDatasetSpec.datasetName), 'outtype' : re.sub('^tmpl_','',logDatasetSpec.type), } self.outputTemplateMap[logDatasetSpec.outputMapKey()] = [outTemplateMap] # set split rule to use preprocessing self.taskSpec.setPrePro() # set task status self.taskSpec.status = 'topreprocess' # return return True,taskParamMap # set split rule def setSplitRule(self,taskParamMap,keyName,valName): if taskParamMap != None: if not taskParamMap.has_key(keyName): return tmpStr = '{0}={1}'.format(valName,taskParamMap[keyName]) else: tmpStr = '{0}={1}'.format(valName,keyName) if self.taskSpec.splitRule in [None,'']: self.taskSpec.splitRule = tmpStr else: tmpMatch = re.search(valName+'=(-*\d+)',self.taskSpec.splitRule) if tmpMatch == None: # append self.taskSpec.splitRule += ',{0}'.format(tmpStr) else: # replace self.taskSpec.splitRule = re.sub(valName+'=(-*\d+)', tmpStr, self.taskSpec.splitRule) return # get parameters for event service merging def getParamsForEventServiceMerging(self,taskParamMap): # no event service if not self.taskSpec.useEventService(): return None # extract parameters transPath = 'UnDefined' jobParameters = 'UnDefined' if taskParamMap.has_key('esmergeSpec'): if taskParamMap['esmergeSpec'].has_key('transPath'): transPath = taskParamMap['esmergeSpec']['transPath'] if taskParamMap['esmergeSpec'].has_key('jobParameters'): jobParameters = taskParamMap['esmergeSpec']['jobParameters'] # return return '<PANDA_ESMERGE_TRF>'+transPath+'</PANDA_ESMERGE_TRF>'+'<PANDA_ESMERGE_JOBP>'+jobParameters+'</PANDA_ESMERGE_JOBP>' Interaction.installSC(TaskRefinerBase)
""" rewrite of lambdify - This stuff is not stable at all. It is for internal use in the new plotting module. It may (will! see the Q'n'A in the source) be rewritten. It's completely self contained. Especially it does not use lambdarepr. It does not aim to replace the current lambdify. Most importantly it will never ever support anything else than sympy expressions (no Matrices, dictionaries and so on). """ from __future__ import print_function, division import re from sympy import Symbol, NumberSymbol, I, zoo, oo from sympy.core.compatibility import exec_ from sympy.utilities.iterables import numbered_symbols # We parse the expression string into a tree that identifies functions. Then # we translate the names of the functions and we translate also some strings # that are not names of functions (all this according to translation # dictionaries). # If the translation goes to another module (like numpy) the # module is imported and 'func' is translated to 'module.func'. # If a function can not be translated, the inner nodes of that part of the # tree are not translated. So if we have Integral(sqrt(x)), sqrt is not # translated to np.sqrt and the Integral does not crash. # A namespace for all this is generated by crawling the (func, args) tree of # the expression. The creation of this namespace involves many ugly # workarounds. # The namespace consists of all the names needed for the sympy expression and # all the name of modules used for translation. Those modules are imported only # as a name (import numpy as np) in order to keep the namespace small and # manageable. # Please, if there is a bug, do not try to fix it here! Rewrite this by using # the method proposed in the last Q'n'A below. That way the new function will # work just as well, be just as simple, but it wont need any new workarounds. # If you insist on fixing it here, look at the workarounds in the function # sympy_expression_namespace and in lambdify. # Q: Why are you not using python abstract syntax tree? # A: Because it is more complicated and not much more powerful in this case. # Q: What if I have Symbol('sin') or g=Function('f')? # A: You will break the algorithm. We should use srepr to defend against this? # The problem with Symbol('sin') is that it will be printed as 'sin'. The # parser will distinguish it from the function 'sin' because functions are # detected thanks to the opening parenthesis, but the lambda expression won't # understand the difference if we have also the sin function. # The solution (complicated) is to use srepr and maybe ast. # The problem with the g=Function('f') is that it will be printed as 'f' but in # the global namespace we have only 'g'. But as the same printer is used in the # constructor of the namespace there will be no problem. # Q: What if some of the printers are not printing as expected? # A: The algorithm wont work. You must use srepr for those cases. But even # srepr may not print well. All problems with printers should be considered # bugs. # Q: What about _imp_ functions? # A: Those are taken care for by evalf. A special case treatment will work # faster but it's not worth the code complexity. # Q: Will ast fix all possible problems? # A: No. You will always have to use some printer. Even srepr may not work in # some cases. But if the printer does not work, that should be considered a # bug. # Q: Is there same way to fix all possible problems? # A: Probably by constructing our strings ourself by traversing the (func, # args) tree and creating the namespace at the same time. That actually sounds # good. from sympy.external import import_module import warnings #TODO debuging output class vectorized_lambdify(object): """ Return a sufficiently smart, vectorized and lambdified function. Returns only reals. This function uses experimental_lambdify to created a lambdified expression ready to be used with numpy. Many of the functions in sympy are not implemented in numpy so in some cases we resort to python cmath or even to evalf. The following translations are tried: only numpy complex - on errors raised by sympy trying to work with ndarray: only python cmath and then vectorize complex128 When using python cmath there is no need for evalf or float/complex because python cmath calls those. This function never tries to mix numpy directly with evalf because numpy does not understand sympy Float. If this is needed one can use the float_wrap_evalf/complex_wrap_evalf options of experimental_lambdify or better one can be explicit about the dtypes that numpy works with. Check numpy bug http://projects.scipy.org/numpy/ticket/1013 to know what types of errors to expect. """ def __init__(self, args, expr): self.args = args self.expr = expr self.lambda_func = experimental_lambdify(args, expr, use_np=True) self.vector_func = self.lambda_func self.failure = False def __call__(self, *args): np = import_module('numpy') np_old_err = np.seterr(invalid='raise') try: temp_args = (np.array(a, dtype=np.complex) for a in args) results = self.vector_func(*temp_args) results = np.ma.masked_where( np.abs(results.imag) > 1e-7 * np.abs(results), results.real, copy=False) except Exception as e: #DEBUG: print 'Error', type(e), e if ((isinstance(e, TypeError) and 'unhashable type: \'numpy.ndarray\'' in str(e)) or (isinstance(e, ValueError) and ('Invalid limits given:' in str(e) or 'negative dimensions are not allowed' in str(e) # XXX or 'sequence too large; must be smaller than 32' in str(e)))): # XXX # Almost all functions were translated to numpy, but some were # left as sympy functions. They recieved an ndarray as an # argument and failed. # sin(ndarray(...)) raises "unhashable type" # Integral(x, (x, 0, ndarray(...))) raises "Invalid limits" # other ugly exceptions that are not well understood (marked with XXX) # TODO: Cleanup the ugly special cases marked with xxx above. # Solution: use cmath and vectorize the final lambda. self.lambda_func = experimental_lambdify( self.args, self.expr, use_python_cmath=True) self.vector_func = np.vectorize( self.lambda_func, otypes=[np.complex]) results = self.vector_func(*args) results = np.ma.masked_where( np.abs(results.imag) > 1e-7 * np.abs(results), results.real, copy=False) else: # Complete failure. One last try with no translations, only # wrapping in complex((...).evalf()) and returning the real # part. if self.failure: raise e else: self.failure = True self.lambda_func = experimental_lambdify( self.args, self.expr, use_evalf=True, complex_wrap_evalf=True) self.vector_func = np.vectorize( self.lambda_func, otypes=[np.complex]) results = self.vector_func(*args) results = np.ma.masked_where( np.abs(results.imag) > 1e-7 * np.abs(results), results.real, copy=False) warnings.warn('The evaluation of the expression is' ' problematic. We are trying a failback method' ' that may still work. Please report this as a bug.') finally: np.seterr(**np_old_err) return results class lambdify(object): """Returns the lambdified function. This function uses experimental_lambdify to create a lambdified expression. It uses cmath to lambdify the expression. If the function is not implemented in python cmath, python cmath calls evalf on those functions. """ def __init__(self, args, expr): self.args = args self.expr = expr self.lambda_func = experimental_lambdify(args, expr, use_evalf=True, use_python_cmath=True) self.failure = False def __call__(self, args): args = complex(args) try: #The result can be sympy.Float. Hence wrap it with complex type. result = complex(self.lambda_func(args)) if abs(result.imag) > 1e-7 * abs(result): return None else: return result.real except Exception as e: # The exceptions raised by sympy, cmath are not consistent and # hence it is not possible to specify all the exceptions that # are to be caught. Presently there are no cases for which the code # reaches this block other than ZeroDivisionError and complex # comparision. Also the exception is caught only once. If the # exception repeats itself, # then it is not caught and the corresponding error is raised. # XXX: Remove catching all exceptions once the plotting module # is heavily tested. if isinstance(e, ZeroDivisionError): return None elif isinstance(e, TypeError) and ('no ordering relation is' ' defined for complex numbers' in str(e)): self.lambda_func = experimental_lambdify(self.args, self.expr, use_evalf=True, use_python_math=True) result = self.lambda_func(args.real) return result else: if self.failure: raise e #Failure #Try wrapping it with complex(..).evalf() self.failure = True self.lambda_func = experimental_lambdify(self.args, self.expr, use_evalf=True, complex_wrap_evalf=True) result = self.lambda_func(args) warnings.warn('The evaluation of the expression is' ' problematic. We are trying a failback method' ' that may still work. Please report this as a bug.') if abs(result.imag) > 1e-7 * abs(result): return None else: return result.real def experimental_lambdify(*args, **kwargs): l = Lambdifier(*args, **kwargs) return l.lambda_func class Lambdifier(object): def __init__(self, args, expr, print_lambda=False, use_evalf=False, float_wrap_evalf=False, complex_wrap_evalf=False, use_np=False, use_python_math=False, use_python_cmath=False, use_interval=False): self.print_lambda = print_lambda self.use_evalf = use_evalf self.float_wrap_evalf = float_wrap_evalf self.complex_wrap_evalf = complex_wrap_evalf self.use_np = use_np self.use_python_math = use_python_math self.use_python_cmath = use_python_cmath self.use_interval = use_interval # Constructing the argument string # - check if not all([isinstance(a, Symbol) for a in args]): raise ValueError('The arguments must be Symbols.') # - use numbered symbols syms = numbered_symbols(exclude=expr.free_symbols) newargs = [next(syms) for i in args] expr = expr.xreplace(dict(zip(args, newargs))) argstr = ', '.join([str(a) for a in newargs]) del syms, newargs, args # Constructing the translation dictionaries and making the translation self.dict_str = self.get_dict_str() self.dict_fun = self.get_dict_fun() exprstr = str(expr) newexpr = self.tree2str_translate(self.str2tree(exprstr)) # Constructing the namespaces namespace = {} namespace.update(self.sympy_atoms_namespace(expr)) namespace.update(self.sympy_expression_namespace(expr)) # XXX Workaround # Ugly workaround because Pow(a,Half) prints as sqrt(a) # and sympy_expression_namespace can not catch it. from sympy import sqrt namespace.update({'sqrt': sqrt}) # End workaround. if use_python_math: namespace.update({'math': __import__('math')}) if use_python_cmath: namespace.update({'cmath': __import__('cmath')}) if use_np: try: namespace.update({'np': __import__('numpy')}) except ImportError: raise ImportError( 'experimental_lambdify failed to import numpy.') if use_interval: namespace.update({'imath': __import__( 'sympy.plotting.intervalmath', fromlist=['intervalmath'])}) namespace.update({'math': __import__('math')}) # Construct the lambda if self.print_lambda: print(newexpr) eval_str = 'lambda %s : ( %s )' % (argstr, newexpr) exec_("from __future__ import division; MYNEWLAMBDA = %s" % eval_str, namespace) self.lambda_func = namespace['MYNEWLAMBDA'] ############################################################################## # Dicts for translating from sympy to other modules ############################################################################## ### # builtins ### # Functions with different names in builtins builtin_functions_different = { 'Min': 'min', 'Max': 'max', 'Abs': 'abs', } # Strings that should be translated builtin_not_functions = { 'I': '1j', 'oo': '1e400', } ### # numpy ### # Functions that are the same in numpy numpy_functions_same = [ 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'exp', 'log', 'sqrt', 'floor', 'conjugate', ] # Functions with different names in numpy numpy_functions_different = { "acos": "arccos", "acosh": "arccosh", "arg": "angle", "asin": "arcsin", "asinh": "arcsinh", "atan": "arctan", "atan2": "arctan2", "atanh": "arctanh", "ceiling": "ceil", "im": "imag", "ln": "log", "Max": "amax", "Min": "amin", "re": "real", "Abs": "abs", } # Strings that should be translated numpy_not_functions = { 'pi': 'np.pi', 'oo': 'np.inf', 'E': 'np.e', } ### # python math ### # Functions that are the same in math math_functions_same = [ 'sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'atan2', 'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh', 'exp', 'log', 'erf', 'sqrt', 'floor', 'factorial', 'gamma', ] # Functions with different names in math math_functions_different = { 'ceiling': 'ceil', 'ln': 'log', 'loggamma': 'lgamma' } # Strings that should be translated math_not_functions = { 'pi': 'math.pi', 'E': 'math.e', } ### # python cmath ### # Functions that are the same in cmath cmath_functions_same = [ 'sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh', 'exp', 'log', 'sqrt', ] # Functions with different names in cmath cmath_functions_different = { 'ln': 'log', 'arg': 'phase', } # Strings that should be translated cmath_not_functions = { 'pi': 'cmath.pi', 'E': 'cmath.e', } ### # intervalmath ### interval_not_functions = { 'pi': 'math.pi', 'E': 'math.e' } interval_functions_same = [ 'sin', 'cos', 'exp', 'tan', 'atan', 'log', 'sqrt', 'cosh', 'sinh', 'tanh', 'floor', 'acos', 'asin', 'acosh', 'asinh', 'atanh', 'Abs', 'And', 'Or' ] interval_functions_different = { 'Min': 'imin', 'Max': 'imax', 'ceiling': 'ceil', } ### # mpmath, etc ### #TODO ### # Create the final ordered tuples of dictionaries ### # For strings def get_dict_str(self): dict_str = dict(self.builtin_not_functions) if self.use_np: dict_str.update(self.numpy_not_functions) if self.use_python_math: dict_str.update(self.math_not_functions) if self.use_python_cmath: dict_str.update(self.cmath_not_functions) if self.use_interval: dict_str.update(self.interval_not_functions) return dict_str # For functions def get_dict_fun(self): dict_fun = dict(self.builtin_functions_different) if self.use_np: for s in self.numpy_functions_same: dict_fun[s] = 'np.' + s for k, v in self.numpy_functions_different.items(): dict_fun[k] = 'np.' + v if self.use_python_math: for s in self.math_functions_same: dict_fun[s] = 'math.' + s for k, v in self.math_functions_different.items(): dict_fun[k] = 'math.' + v if self.use_python_cmath: for s in self.cmath_functions_same: dict_fun[s] = 'cmath.' + s for k, v in self.cmath_functions_different.items(): dict_fun[k] = 'cmath.' + v if self.use_interval: for s in self.interval_functions_same: dict_fun[s] = 'imath.' + s for k, v in self.interval_functions_different.items(): dict_fun[k] = 'imath.' + v return dict_fun ############################################################################## # The translator functions, tree parsers, etc. ############################################################################## def str2tree(self, exprstr): """Converts an expression string to a tree. Functions are represented by ('func_name(', tree_of_arguments). Other expressions are (head_string, mid_tree, tail_str). Expressions that do not contain functions are directly returned. Examples: >>> from sympy.abc import x, y, z >>> from sympy import Integral, sin >>> from sympy.plotting.experimental_lambdify import Lambdifier >>> str2tree = Lambdifier([x], x).str2tree >>> str2tree(str(Integral(x, (x, 1, y)))) ('', ('Integral(', 'x, (x, 1, y)'), ')') >>> str2tree(str(x+y)) 'x + y' >>> str2tree(str(x+y*sin(z)+1)) ('x + y*', ('sin(', 'z'), ') + 1') >>> str2tree('sin(y*(y + 1.1) + (sin(y)))') ('', ('sin(', ('y*(y + 1.1) + (', ('sin(', 'y'), '))')), ')') """ #matches the first 'function_name(' first_par = re.search(r'(\w+\()', exprstr) if first_par is None: return exprstr else: start = first_par.start() end = first_par.end() head = exprstr[:start] func = exprstr[start:end] tail = exprstr[end:] count = 0 for i, c in enumerate(tail): if c == '(': count += 1 elif c == ')': count -= 1 if count == -1: break func_tail = self.str2tree(tail[:i]) tail = self.str2tree(tail[i:]) return (head, (func, func_tail), tail) @classmethod def tree2str(cls, tree): """Converts a tree to string without translations. Examples: >>> from sympy.abc import x, y, z >>> from sympy import Integral, sin >>> from sympy.plotting.experimental_lambdify import Lambdifier >>> str2tree = Lambdifier([x], x).str2tree >>> tree2str = Lambdifier([x], x).tree2str >>> tree2str(str2tree(str(x+y*sin(z)+1))) 'x + y*sin(z) + 1' """ if isinstance(tree, str): return tree else: return ''.join(map(cls.tree2str, tree)) def tree2str_translate(self, tree): """Converts a tree to string with translations. Function names are translated by translate_func. Other strings are translated by translate_str. """ if isinstance(tree, str): return self.translate_str(tree) elif isinstance(tree, tuple) and len(tree) == 2: return self.translate_func(tree[0][:-1], tree[1]) else: return ''.join([self.tree2str_translate(t) for t in tree]) def translate_str(self, estr): """Translate substrings of estr using in order the dictionaries in dict_tuple_str.""" for pattern, repl in self.dict_str.items(): estr = re.sub(pattern, repl, estr) return estr def translate_func(self, func_name, argtree): """Translate function names and the tree of arguments. If the function name is not in the dictionaries of dict_tuple_fun then the function is surrounded by a float((...).evalf()). The use of float is necessary as np.<function>(sympy.Float(..)) raises an error.""" if func_name in self.dict_fun: new_name = self.dict_fun[func_name] argstr = self.tree2str_translate(argtree) return new_name + '(' + argstr else: template = '(%s(%s)).evalf(' if self.use_evalf else '%s(%s' if self.float_wrap_evalf: template = 'float(%s)' % template elif self.complex_wrap_evalf: template = 'complex(%s)' % template return template % (func_name, self.tree2str(argtree)) ############################################################################## # The namespace constructors ############################################################################## @classmethod def sympy_expression_namespace(cls, expr): """Traverses the (func, args) tree of an expression and creates a sympy namespace. All other modules are imported only as a module name. That way the namespace is not poluted and rests quite small. It probably causes much more variable lookups and so it takes more time, but there are no tests on that for the moment.""" if expr is None: return {} else: funcname = str(expr.func) # XXX Workaround # Here we add an ugly workaround because str(func(x)) # is not always the same as str(func). Eg # >>> str(Integral(x)) # "Integral(x)" # >>> str(Integral) # "<class 'sympy.integrals.integrals.Integral'>" # >>> str(sqrt(x)) # "sqrt(x)" # >>> str(sqrt) # "<function sqrt at 0x3d92de8>" # >>> str(sin(x)) # "sin(x)" # >>> str(sin) # "sin" # Either one of those can be used but not all at the same time. # The code considers the sin example as the right one. regexlist = [ r'<class \'sympy[\w.]*?.([\w]*)\'>$', # the example Integral r'<function ([\w]*) at 0x[\w]*>$', # the example sqrt ] for r in regexlist: m = re.match(r, funcname) if m is not None: funcname = m.groups()[0] # End of the workaround # XXX debug: print funcname args_dict = {} for a in expr.args: if (isinstance(a, Symbol) or isinstance(a, NumberSymbol) or a in [I, zoo, oo]): continue else: args_dict.update(cls.sympy_expression_namespace(a)) args_dict.update({funcname: expr.func}) return args_dict @staticmethod def sympy_atoms_namespace(expr): """For no real reason this function is separated from sympy_expression_namespace. It can be moved to it.""" atoms = expr.atoms(Symbol, NumberSymbol, I, zoo, oo) d = {} for a in atoms: # XXX debug: print 'atom:' + str(a) d[str(a)] = a return d
# Authors: Chris Holdgraf <[email protected]> # # License: BSD (3-clause) import os.path as op import pytest import numpy as np from numpy import einsum from numpy.fft import rfft, irfft from numpy.testing import assert_array_equal, assert_allclose, assert_equal from mne.utils import requires_sklearn, run_tests_if_main from mne.decoding import ReceptiveField, TimeDelayingRidge from mne.decoding.receptive_field import (_delay_time_series, _SCORERS, _times_to_delays, _delays_to_slice) from mne.decoding.time_delaying_ridge import (_compute_reg_neighbors, _compute_corrs) data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(data_dir, 'test_raw.fif') event_name = op.join(data_dir, 'test-eve.fif') tmin, tmax = -0.1, 0.5 event_id = dict(aud_l=1, vis_l=3) # Loading raw data n_jobs_test = (1, 'cuda') def test_compute_reg_neighbors(): """Test fast calculation of laplacian regularizer.""" for reg_type in ( ('ridge', 'ridge'), ('ridge', 'laplacian'), ('laplacian', 'ridge'), ('laplacian', 'laplacian')): for n_ch_x, n_delays in ( (1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 2), (2, 3), (3, 2), (3, 3), (2, 4), (4, 2), (3, 4), (4, 3), (4, 4), (5, 4), (4, 5), (5, 5), (20, 9), (9, 20)): for normed in (True, False): reg_direct = _compute_reg_neighbors( n_ch_x, n_delays, reg_type, 'direct', normed=normed) reg_csgraph = _compute_reg_neighbors( n_ch_x, n_delays, reg_type, 'csgraph', normed=normed) assert_allclose( reg_direct, reg_csgraph, atol=1e-7, err_msg='%s: %s' % (reg_type, (n_ch_x, n_delays))) @requires_sklearn def test_rank_deficiency(): """Test signals that are rank deficient.""" # See GH#4253 from sklearn.linear_model import Ridge N = 256 fs = 1. tmin, tmax = -50, 100 reg = 0.1 rng = np.random.RandomState(0) eeg = rng.randn(N, 1) eeg *= 100 eeg = rfft(eeg, axis=0) eeg[N // 4:] = 0 # rank-deficient lowpass eeg = irfft(eeg, axis=0) win = np.hanning(N // 8) win /= win.mean() y = np.apply_along_axis(np.convolve, 0, eeg, win, mode='same') y += rng.randn(*y.shape) * 100 for est in (Ridge(reg), reg): rf = ReceptiveField(tmin, tmax, fs, estimator=est, patterns=True) rf.fit(eeg, y) pred = rf.predict(eeg) assert_equal(y.shape, pred.shape) corr = np.corrcoef(y.ravel(), pred.ravel())[0, 1] assert corr > 0.995 def test_time_delay(): """Test that time-delaying w/ times and samples works properly.""" # Explicit delays + sfreq X = np.random.RandomState(0).randn(1000, 2) assert (X == 0).sum() == 0 # need this for later test_tlims = [ ((1, 2), 1), ((1, 1), 1), ((0, 2), 1), ((0, 1), 1), ((0, 0), 1), ((-1, 2), 1), ((-1, 1), 1), ((-1, 0), 1), ((-1, -1), 1), ((-2, 2), 1), ((-2, 1), 1), ((-2, 0), 1), ((-2, -1), 1), ((-2, -1), 1), ((0, .2), 10), ((-.1, .1), 10)] for (tmin, tmax), isfreq in test_tlims: # sfreq must be int/float with pytest.raises(TypeError, match='`sfreq` must be an instance of'): _delay_time_series(X, tmin, tmax, sfreq=[1]) # Delays must be int/float with pytest.raises(TypeError, match='.*complex.*'): _delay_time_series(X, np.complex128(tmin), tmax, 1) # Make sure swapaxes works start, stop = int(round(tmin * isfreq)), int(round(tmax * isfreq)) + 1 n_delays = stop - start X_delayed = _delay_time_series(X, tmin, tmax, isfreq) assert_equal(X_delayed.shape, (1000, 2, n_delays)) # Make sure delay slice is correct delays = _times_to_delays(tmin, tmax, isfreq) assert_array_equal(delays, np.arange(start, stop)) keep = _delays_to_slice(delays) expected = np.where((X_delayed != 0).all(-1).all(-1))[0] got = np.arange(len(X_delayed))[keep] assert_array_equal(got, expected) assert X_delayed[keep].shape[-1] > 0 assert (X_delayed[keep] == 0).sum() == 0 del_zero = int(round(-tmin * isfreq)) for ii in range(-2, 3): idx = del_zero + ii err_msg = '[%s,%s] (%s): %s %s' % (tmin, tmax, isfreq, ii, idx) if 0 <= idx < X_delayed.shape[-1]: if ii == 0: assert_array_equal(X_delayed[:, :, idx], X, err_msg=err_msg) elif ii < 0: # negative delay assert_array_equal(X_delayed[:ii, :, idx], X[-ii:, :], err_msg=err_msg) assert_array_equal(X_delayed[ii:, :, idx], 0.) else: assert_array_equal(X_delayed[ii:, :, idx], X[:-ii, :], err_msg=err_msg) assert_array_equal(X_delayed[:ii, :, idx], 0.) @pytest.mark.parametrize('n_jobs', n_jobs_test) @requires_sklearn def test_receptive_field_basic(n_jobs): """Test model prep and fitting.""" from sklearn.linear_model import Ridge # Make sure estimator pulling works mod = Ridge() rng = np.random.RandomState(1337) # Test the receptive field model # Define parameters for the model and simulate inputs + weights tmin, tmax = -10., 0 n_feats = 3 rng = np.random.RandomState(0) X = rng.randn(10000, n_feats) w = rng.randn(int((tmax - tmin) + 1) * n_feats) # Delay inputs and cut off first 4 values since they'll be cut in the fit X_del = np.concatenate( _delay_time_series(X, tmin, tmax, 1.).transpose(2, 0, 1), axis=1) y = np.dot(X_del, w) # Fit the model and test values feature_names = ['feature_%i' % ii for ii in [0, 1, 2]] rf = ReceptiveField(tmin, tmax, 1, feature_names, estimator=mod, patterns=True) rf.fit(X, y) assert_array_equal(rf.delays_, np.arange(tmin, tmax + 1)) y_pred = rf.predict(X) assert_allclose(y[rf.valid_samples_], y_pred[rf.valid_samples_], atol=1e-2) scores = rf.score(X, y) assert scores > .99 assert_allclose(rf.coef_.T.ravel(), w, atol=1e-3) # Make sure different input shapes work rf.fit(X[:, np.newaxis:], y[:, np.newaxis]) rf.fit(X, y[:, np.newaxis]) with pytest.raises(ValueError, match='If X has 3 .* y must have 2 or 3'): rf.fit(X[..., np.newaxis], y) with pytest.raises(ValueError, match='X must be shape'): rf.fit(X[:, 0], y) with pytest.raises(ValueError, match='X and y do not have the same n_epo'): rf.fit(X[:, np.newaxis], np.tile(y[:, np.newaxis, np.newaxis], [1, 2, 1])) with pytest.raises(ValueError, match='X and y do not have the same n_tim'): rf.fit(X, y[:-2]) with pytest.raises(ValueError, match='n_features in X does not match'): rf.fit(X[:, :1], y) # auto-naming features feature_names = ['feature_%s' % ii for ii in [0, 1, 2]] rf = ReceptiveField(tmin, tmax, 1, estimator=mod, feature_names=feature_names) assert_equal(rf.feature_names, feature_names) rf = ReceptiveField(tmin, tmax, 1, estimator=mod) rf.fit(X, y) assert_equal(rf.feature_names, None) # Float becomes ridge rf = ReceptiveField(tmin, tmax, 1, ['one', 'two', 'three'], estimator=0) str(rf) # repr works before fit rf.fit(X, y) assert isinstance(rf.estimator_, TimeDelayingRidge) str(rf) # repr works after fit rf = ReceptiveField(tmin, tmax, 1, ['one'], estimator=0) rf.fit(X[:, [0]], y) str(rf) # repr with one feature # Should only accept estimators or floats with pytest.raises(ValueError, match='`estimator` must be a float or'): ReceptiveField(tmin, tmax, 1, estimator='foo').fit(X, y) with pytest.raises(ValueError, match='`estimator` must be a float or'): ReceptiveField(tmin, tmax, 1, estimator=np.array([1, 2, 3])).fit(X, y) with pytest.raises(ValueError, match='tmin .* must be at most tmax'): ReceptiveField(5, 4, 1).fit(X, y) # scorers for key, val in _SCORERS.items(): rf = ReceptiveField(tmin, tmax, 1, ['one'], estimator=0, scoring=key, patterns=True) rf.fit(X[:, [0]], y) y_pred = rf.predict(X[:, [0]]).T.ravel()[:, np.newaxis] assert_allclose(val(y[:, np.newaxis], y_pred, multioutput='raw_values'), rf.score(X[:, [0]], y), rtol=1e-2) with pytest.raises(ValueError, match='inputs must be shape'): _SCORERS['corrcoef'](y.ravel(), y_pred, multioutput='raw_values') # Need correct scorers with pytest.raises(ValueError, match='scoring must be one of'): ReceptiveField(tmin, tmax, 1., scoring='foo').fit(X, y) @pytest.mark.parametrize('n_jobs', n_jobs_test) def test_time_delaying_fast_calc(n_jobs): """Test time delaying and fast calculations.""" X = np.array([[1, 2, 3], [5, 7, 11]]).T # all negative smin, smax = 1, 2 X_del = _delay_time_series(X, smin, smax, 1.) # (n_times, n_features, n_delays) -> (n_times, n_features * n_delays) X_del.shape = (X.shape[0], -1) expected = np.array([[0, 1, 2], [0, 0, 1], [0, 5, 7], [0, 0, 5]]).T assert_allclose(X_del, expected) Xt_X = np.dot(X_del.T, X_del) expected = [[5, 2, 19, 10], [2, 1, 7, 5], [19, 7, 74, 35], [10, 5, 35, 25]] assert_allclose(Xt_X, expected) x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0] assert_allclose(x_xt, expected) # all positive smin, smax = -2, -1 X_del = _delay_time_series(X, smin, smax, 1.) X_del.shape = (X.shape[0], -1) expected = np.array([[3, 0, 0], [2, 3, 0], [11, 0, 0], [7, 11, 0]]).T assert_allclose(X_del, expected) Xt_X = np.dot(X_del.T, X_del) expected = [[9, 6, 33, 21], [6, 13, 22, 47], [33, 22, 121, 77], [21, 47, 77, 170]] assert_allclose(Xt_X, expected) x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0] assert_allclose(x_xt, expected) # both sides smin, smax = -1, 1 X_del = _delay_time_series(X, smin, smax, 1.) X_del.shape = (X.shape[0], -1) expected = np.array([[2, 3, 0], [1, 2, 3], [0, 1, 2], [7, 11, 0], [5, 7, 11], [0, 5, 7]]).T assert_allclose(X_del, expected) Xt_X = np.dot(X_del.T, X_del) expected = [[13, 8, 3, 47, 31, 15], [8, 14, 8, 29, 52, 31], [3, 8, 5, 11, 29, 19], [47, 29, 11, 170, 112, 55], [31, 52, 29, 112, 195, 112], [15, 31, 19, 55, 112, 74]] assert_allclose(Xt_X, expected) x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0] assert_allclose(x_xt, expected) # slightly harder to get the non-Toeplitz correction correct X = np.array([[1, 2, 3, 5]]).T smin, smax = 0, 3 X_del = _delay_time_series(X, smin, smax, 1.) X_del.shape = (X.shape[0], -1) expected = np.array([[1, 2, 3, 5], [0, 1, 2, 3], [0, 0, 1, 2], [0, 0, 0, 1]]).T assert_allclose(X_del, expected) Xt_X = np.dot(X_del.T, X_del) expected = [[39, 23, 13, 5], [23, 14, 8, 3], [13, 8, 5, 2], [5, 3, 2, 1]] assert_allclose(Xt_X, expected) x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0] assert_allclose(x_xt, expected) # even worse X = np.array([[1, 2, 3], [5, 7, 11]]).T smin, smax = 0, 2 X_del = _delay_time_series(X, smin, smax, 1.) X_del.shape = (X.shape[0], -1) expected = np.array([[1, 2, 3], [0, 1, 2], [0, 0, 1], [5, 7, 11], [0, 5, 7], [0, 0, 5]]).T assert_allclose(X_del, expected) Xt_X = np.dot(X_del.T, X_del) expected = np.array([[14, 8, 3, 52, 31, 15], [8, 5, 2, 29, 19, 10], [3, 2, 1, 11, 7, 5], [52, 29, 11, 195, 112, 55], [31, 19, 7, 112, 74, 35], [15, 10, 5, 55, 35, 25]]) assert_allclose(Xt_X, expected) x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0] assert_allclose(x_xt, expected) # And a bunch of random ones for good measure rng = np.random.RandomState(0) X = rng.randn(25, 3) y = np.empty((25, 2)) vals = (0, -1, 1, -2, 2, -11, 11) for smax in vals: for smin in vals: if smin > smax: continue for ii in range(X.shape[1]): kernel = rng.randn(smax - smin + 1) kernel -= np.mean(kernel) y[:, ii % y.shape[-1]] = np.convolve(X[:, ii], kernel, 'same') x_xt, x_yt, n_ch_x, _, _ = _compute_corrs(X, y, smin, smax + 1) X_del = _delay_time_series(X, smin, smax, 1., fill_mean=False) x_yt_true = einsum('tfd,to->ofd', X_del, y) x_yt_true = np.reshape(x_yt_true, (x_yt_true.shape[0], -1)).T assert_allclose(x_yt, x_yt_true, atol=1e-7, err_msg=(smin, smax)) X_del.shape = (X.shape[0], -1) x_xt_true = np.dot(X_del.T, X_del).T assert_allclose(x_xt, x_xt_true, atol=1e-7, err_msg=(smin, smax)) @pytest.mark.parametrize('n_jobs', n_jobs_test) @requires_sklearn def test_receptive_field_1d(n_jobs): """Test that the fast solving works like Ridge.""" from sklearn.linear_model import Ridge rng = np.random.RandomState(0) x = rng.randn(500, 1) for delay in range(-2, 3): y = np.zeros(500) slims = [(-2, 4)] if delay == 0: y[:] = x[:, 0] elif delay < 0: y[:delay] = x[-delay:, 0] slims += [(-4, -1)] else: y[delay:] = x[:-delay, 0] slims += [(1, 2)] for ndim in (1, 2): y.shape = (y.shape[0],) + (1,) * (ndim - 1) for slim in slims: smin, smax = slim lap = TimeDelayingRidge(smin, smax, 1., 0.1, 'laplacian', fit_intercept=False, n_jobs=n_jobs) for estimator in (Ridge(alpha=0.), Ridge(alpha=0.1), 0., 0.1, lap): for offset in (-100, 0, 100): model = ReceptiveField(smin, smax, 1., estimator=estimator, n_jobs=n_jobs) use_x = x + offset model.fit(use_x, y) if estimator is lap: continue # these checks are too stringent assert_allclose(model.estimator_.intercept_, -offset, atol=1e-1) assert_array_equal(model.delays_, np.arange(smin, smax + 1)) expected = (model.delays_ == delay).astype(float) expected = expected[np.newaxis] # features if y.ndim == 2: expected = expected[np.newaxis] # outputs assert_equal(model.coef_.ndim, ndim + 1) assert_allclose(model.coef_, expected, atol=1e-3) start = model.valid_samples_.start or 0 stop = len(use_x) - (model.valid_samples_.stop or 0) assert stop - start >= 495 assert_allclose( model.predict(use_x)[model.valid_samples_], y[model.valid_samples_], atol=1e-2) score = np.mean(model.score(use_x, y)) assert score > 0.9999 @pytest.mark.parametrize('n_jobs', n_jobs_test) @requires_sklearn def test_receptive_field_nd(n_jobs): """Test multidimensional support.""" from sklearn.linear_model import Ridge # multidimensional rng = np.random.RandomState(3) x = rng.randn(1000, 3) y = np.zeros((1000, 2)) smin, smax = 0, 5 # This is a weird assignment, but it's just a way to distribute some # unique values at various delays, and "expected" explains how they # should appear in the resulting RF for ii in range(1, 5): y[ii:, ii % 2] += (-1) ** ii * ii * x[:-ii, ii % 3] y -= np.mean(y, axis=0) x -= np.mean(x, axis=0) x_off = x + 1e3 expected = [ [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 2, 0, 0, 0]], [[0, 0, 0, -3, 0, 0], [0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], ] tdr_l = TimeDelayingRidge(smin, smax, 1., 0.1, 'laplacian', n_jobs=n_jobs) tdr_nc = TimeDelayingRidge(smin, smax, 1., 0.1, n_jobs=n_jobs, edge_correction=False) for estimator, atol in zip((Ridge(alpha=0.), 0., 0.01, tdr_l, tdr_nc), (1e-3, 1e-3, 1e-3, 5e-3, 5e-2)): model = ReceptiveField(smin, smax, 1., estimator=estimator) model.fit(x, y) assert_array_equal(model.delays_, np.arange(smin, smax + 1)) assert_allclose(model.coef_, expected, atol=atol) tdr = TimeDelayingRidge(smin, smax, 1., 0.01, reg_type='foo', n_jobs=n_jobs) model = ReceptiveField(smin, smax, 1., estimator=tdr) with pytest.raises(ValueError, match='reg_type entries must be one of'): model.fit(x, y) tdr = TimeDelayingRidge(smin, smax, 1., 0.01, reg_type=['laplacian'], n_jobs=n_jobs) model = ReceptiveField(smin, smax, 1., estimator=tdr) with pytest.raises(ValueError, match='reg_type must have two elements'): model.fit(x, y) model = ReceptiveField(smin, smax, 1, estimator=tdr, fit_intercept=False) with pytest.raises(ValueError, match='fit_intercept'): model.fit(x, y) # Now check the intercept_ tdr = TimeDelayingRidge(smin, smax, 1., 0., n_jobs=n_jobs) tdr_no = TimeDelayingRidge(smin, smax, 1., 0., fit_intercept=False, n_jobs=n_jobs) for estimator in (Ridge(alpha=0.), tdr, Ridge(alpha=0., fit_intercept=False), tdr_no): # first with no intercept in the data model = ReceptiveField(smin, smax, 1., estimator=estimator) model.fit(x, y) assert_allclose(model.estimator_.intercept_, 0., atol=1e-7, err_msg=repr(estimator)) assert_allclose(model.coef_, expected, atol=1e-3, err_msg=repr(estimator)) y_pred = model.predict(x) assert_allclose(y_pred[model.valid_samples_], y[model.valid_samples_], atol=1e-2, err_msg=repr(estimator)) score = np.mean(model.score(x, y)) assert score > 0.9999 # now with an intercept in the data model.fit(x_off, y) if estimator.fit_intercept: val = [-6000, 4000] itol = 0.5 ctol = 5e-4 else: val = itol = 0. ctol = 2. assert_allclose(model.estimator_.intercept_, val, atol=itol, err_msg=repr(estimator)) assert_allclose(model.coef_, expected, atol=ctol, rtol=ctol, err_msg=repr(estimator)) if estimator.fit_intercept: ptol = 1e-2 stol = 0.999999 else: ptol = 10 stol = 0.6 y_pred = model.predict(x_off)[model.valid_samples_] assert_allclose(y_pred, y[model.valid_samples_], atol=ptol, err_msg=repr(estimator)) score = np.mean(model.score(x_off, y)) assert score > stol, estimator model = ReceptiveField(smin, smax, 1., fit_intercept=False) model.fit(x_off, y) assert_allclose(model.estimator_.intercept_, 0., atol=1e-7) score = np.mean(model.score(x_off, y)) assert score > 0.6 def _make_data(n_feats, n_targets, n_samples, tmin, tmax): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_feats) w = rng.randn(int((tmax - tmin) + 1) * n_feats, n_targets) # Delay inputs X_del = np.concatenate( _delay_time_series(X, tmin, tmax, 1.).transpose(2, 0, 1), axis=1) y = np.dot(X_del, w) return X, y @requires_sklearn def test_inverse_coef(): """Test inverse coefficients computation.""" from sklearn.linear_model import Ridge tmin, tmax = 0., 10. n_feats, n_targets, n_samples = 3, 2, 1000 n_delays = int((tmax - tmin) + 1) # Check coefficient dims, for all estimator types X, y = _make_data(n_feats, n_targets, n_samples, tmin, tmax) tdr = TimeDelayingRidge(tmin, tmax, 1., 0.1, 'laplacian') for estimator in (0., 0.01, Ridge(alpha=0.), tdr): rf = ReceptiveField(tmin, tmax, 1., estimator=estimator, patterns=True) rf.fit(X, y) inv_rf = ReceptiveField(tmin, tmax, 1., estimator=estimator, patterns=True) inv_rf.fit(y, X) assert_array_equal(rf.coef_.shape, rf.patterns_.shape, (n_targets, n_feats, n_delays)) assert_array_equal(inv_rf.coef_.shape, inv_rf.patterns_.shape, (n_feats, n_targets, n_delays)) # we should have np.dot(patterns.T,coef) ~ np.eye(n) c0 = rf.coef_.reshape(n_targets, n_feats * n_delays) c1 = rf.patterns_.reshape(n_targets, n_feats * n_delays) assert_allclose(np.dot(c0, c1.T), np.eye(c0.shape[0]), atol=0.2) @requires_sklearn def test_linalg_warning(): """Test that warnings are issued when no regularization is applied.""" from sklearn.linear_model import Ridge n_feats, n_targets, n_samples = 5, 60, 50 X, y = _make_data(n_feats, n_targets, n_samples, tmin, tmax) for estimator in (0., Ridge(alpha=0.)): rf = ReceptiveField(tmin, tmax, 1., estimator=estimator) with pytest.warns((RuntimeWarning, UserWarning), match='[Singular|scipy.linalg.solve]'): rf.fit(y, X) run_tests_if_main()
""" Equivalent layer processing. Use the classes here to estimate an equivalent layer from potential field data. Then you can use the estimated layer to perform tranformations (gridding, continuation, derivation, reduction to the pole, etc.) by forward modeling the layer. Use :mod:`fatiando.gravmag.sphere` for forward modeling. **Algorithms** * :class:`~fatiando.gravmag.eqlayer.EQLGravity` and :class:`~fatiando.gravmag.eqlayer.EQLTotalField`: The classic (space domain) equivalent layer as formulated in Li and Oldenburg (2010) or Oliveira Jr. et al (2012). Doesn't have wavelet compression or other tweaks. * :class:`~fatiando.gravmag.eqlayer.PELGravity` and :class:`~fatiando.gravmag.eqlayer.PELTotalField`: The polynomial equivalent layer of Oliveira Jr. et al (2012). A fast and memory efficient algorithm. Both of these require special regularization (:class:`~fatiando.gravmag.eqlayer.PELSmoothness`). **References** Li, Y., and D. W. Oldenburg (2010), Rapid construction of equivalent sources using wavelets, Geophysics, 75(3), L51-L59, doi:10.1190/1.3378764. Oliveira Jr., V. C., V. C. F. Barbosa, and L. Uieda (2012), Polynomial equivalent layer, Geophysics, 78(1), G1-G13, doi:10.1190/geo2012-0196.1. ---- """ from __future__ import division from future.builtins import super, range import numpy import scipy.sparse from . import sphere as kernel from ..utils import dircos, safe_dot from ..inversion import Misfit, Smoothness class EQLBase(Misfit): """ Base class for the classic equivalent layer. """ def __init__(self, x, y, z, data, grid): super().__init__(data=data, nparams=len(grid), islinear=True) self.x = x self.y = y self.z = z self.grid = grid def predicted(self, p): """ Calculate the data predicted by a given parameter vector. Parameters: * p : 1d-array (optional) The parameter vector with the estimated physical properties of the layer. If not given, will use the value calculated by ``.fit()``. Returns: * result : 1d-array The predicted data vector. """ return safe_dot(self.jacobian(p), p) class EQLGravity(EQLBase): """ Estimate an equivalent layer from gravity data. .. note:: Assumes x = North, y = East, z = Down. Parameters: * x, y, z : 1d-arrays The x, y, z coordinates of each data point. * data : 1d-array The gravity data at each point. * grid : :class:`~fatiando.mesher.PointGrid` The sources in the equivalent layer. Will invert for the density of each point in the grid. * field : string Which gravitational field is the data. Options are: ``'gz'`` (gravity anomaly), ``'gxx'``, ``'gxy'``, ..., ``'gzz'`` (gravity gradient tensor). Defaults to ``'gz'``. """ def __init__(self, x, y, z, data, grid, field='gz'): super().__init__(x, y, z, data, grid) self.field = field def jacobian(self, p): """ Calculate the Jacobian matrix for a given parameter vector. """ x = self.x y = self.y z = self.z func = getattr(kernel, self.field) jac = numpy.empty((self.ndata, self.nparams), dtype=numpy.float) for i, c in enumerate(self.grid): jac[:, i] = func(x, y, z, [c], dens=1.) return jac class EQLTotalField(EQLBase): """ Estimate an equivalent layer from total field magnetic anomaly data. .. note:: Assumes x = North, y = East, z = Down. Parameters: * x, y, z : 1d-arrays The x, y, z coordinates of each data point. * data : 1d-array The total field anomaly data at each point. * inc, dec : floats The inclination and declination of the inducing field * grid : :class:`~fatiando.mesher.PointGrid` The sources in the equivalent layer. Will invert for the magnetization intensity of each point in the grid. * sinc, sdec : None or floats The inclination and declination of the equivalent layer. Use these if there is remanent magnetization and the total magnetization of the layer if different from the induced magnetization. If there is only induced magnetization, use None """ def __init__(self, x, y, z, data, inc, dec, grid, sinc=None, sdec=None): super().__init__(x, y, z, data, grid) self.inc, self.dec = inc, dec self.sinc = sinc if sinc is not None else inc self.sdec = sdec if sdec is not None else dec def jacobian(self, p): """ Calculate the Jacobian matrix for a given parameter vector. """ x = self.x y = self.y z = self.z inc, dec = self.inc, self.dec mag = dircos(self.sinc, self.sdec) jac = numpy.empty((self.ndata, self.nparams), dtype=float) for i, c in enumerate(self.grid): jac[:, i] = kernel.tf(x, y, z, [c], inc, dec, pmag=mag) return jac class PELBase(EQLBase): """ Base class for the Polynomial Equivalent Layer. .. note:: Overloads *fit* to convert the estimated coefficients to physical properties. The coefficients are stored in the ``coeffs_`` attribute. """ def __init__(self, x, y, z, data, grid, windows, degree): super().__init__(x, y, z, data, grid) self.nparams = windows[0]*windows[1]*ncoeffs(degree) self.windows = windows self.degree = degree def fmt_estimate(self, coefs): """ Convert the estimated polynomial coefficients to physical property values along the layer. Parameters: * coefs : 1d-array The estimated parameter vector with the polynomial coefficients Returns: * estimate : 1d-array The converted physical property values along the layer. """ ny, nx = self.windows pergrid = ncoeffs(self.degree) estimate = numpy.empty(self.grid.shape, dtype=float) grids = self.grid.split(self.windows) k = 0 ystart = 0 gny, gnx = grids[0].shape for i in range(ny): yend = ystart + gny xstart = 0 for j in range(nx): xend = xstart + gnx g = grids[k] bk = _bkmatrix(g, self.degree) window_coefs = coefs[k * pergrid:(k + 1) * pergrid] window_props = safe_dot(bk, window_coefs).reshape(g.shape) estimate[ystart:yend, xstart:xend] = window_props xstart = xend k += 1 ystart = yend self.coeffs_ = coefs return estimate.ravel() def _bkmatrix(grid, degree): """ Make the Bk polynomial coefficient matrix for a given PointGrid. This matrix converts the coefficients into physical property values. Parameters: * grid : :class:`~fatiando.mesher.PointGrid` The sources in the equivalent layer * degree : int The degree of the bivariate polynomial Returns: * bk : 2d-array The matrix Examples: >>> from fatiando.mesher import PointGrid >>> grid = PointGrid((0, 1, 0, 2), 10, (2, 2)) >>> print _bkmatrix(grid, 2) [[ 1. 0. 0. 0. 0. 0.] [ 1. 2. 0. 4. 0. 0.] [ 1. 0. 1. 0. 0. 1.] [ 1. 2. 1. 4. 2. 1.]] >>> print _bkmatrix(grid, 1) [[ 1. 0. 0.] [ 1. 2. 0.] [ 1. 0. 1.] [ 1. 2. 1.]] >>> print _bkmatrix(grid, 3) [[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 1. 2. 0. 4. 0. 0. 8. 0. 0. 0.] [ 1. 0. 1. 0. 0. 1. 0. 0. 0. 1.] [ 1. 2. 1. 4. 2. 1. 8. 4. 2. 1.]] """ bmatrix = numpy.transpose( [(grid.x**i)*(grid.y**j) for l in range(1, degree + 2) for i, j in zip(range(l), range(l - 1, -1, -1))]) return bmatrix def ncoeffs(degree): """ Calculate the number of coefficients in a bivarite polynomail. Parameters: * degree : int The degree of the polynomial Returns: * n : int The number of coefficients Examples: >>> ncoeffs(1) 3 >>> ncoeffs(2) 6 >>> ncoeffs(3) 10 >>> ncoeffs(4) 15 """ return sum(range(1, degree + 2)) class PELGravity(PELBase): """ Estimate a polynomial equivalent layer from gravity data. .. note:: Assumes x = North, y = East, z = Down. Parameters: * x, y, z : 1d-arrays The x, y, z coordinates of each data point. * data : 1d-array The gravity data at each point. * grid : :class:`~fatiando.mesher.PointGrid` The sources in the equivalent layer. Will invert for the density of each point in the grid. * windows : tuple = (ny, nx) The number of windows that the layer will be divided in the y and x directions, respectively * degree : int The degree of the bivariate polynomials used in each window of the PEL * field : string Which gravitational field is the data. Options are: ``'gz'`` (gravity anomaly), ``'gxx'``, ``'gxy'``, ..., ``'gzz'`` (gravity gradient tensor). Defaults to ``'gz'``. """ def __init__(self, x, y, z, data, grid, windows, degree, field='gz'): super().__init__(x, y, z, data, grid, windows, degree) self.field = field def jacobian(self, p): """ Calculate the Jacobian matrix for a given parameter vector. """ x = self.x y = self.y z = self.z func = getattr(kernel, self.field) grids = self.grid.split(self.windows) pergrid = ncoeffs(self.degree) jac = numpy.empty((self.ndata, self.nparams), dtype=float) gk = numpy.empty((self.ndata, grids[0].size), dtype=float) for i, grid in enumerate(grids): bk = _bkmatrix(grid, self.degree) for k, c in enumerate(grid): gk[:, k] = func(x, y, z, [c], dens=1.) jac[:, i*pergrid:(i + 1)*pergrid] = safe_dot(gk, bk) return jac class PELTotalField(PELBase): """ Estimate a polynomial equivalent layer from magnetic total field anomaly. .. note:: Assumes x = North, y = East, z = Down. Parameters: * x, y, z : 1d-arrays The x, y, z coordinates of each data point. * data : 1d-array The total field magnetic anomaly data at each point. * inc, dec : floats The inclination and declination of the inducing field * grid : :class:`~fatiando.mesher.PointGrid` The sources in the equivalent layer. Will invert for the magnetization intensity of each point in the grid. * windows : tuple = (ny, nx) The number of windows that the layer will be divided in the y and x directions, respectively * degree : int The degree of the bivariate polynomials used in each window of the PEL * sinc, sdec : None or floats The inclination and declination of the equivalent layer. Use these if there is remanent magnetization and the total magnetization of the layer if different from the induced magnetization. If there is only induced magnetization, use None """ def __init__(self, x, y, z, data, inc, dec, grid, windows, degree, sinc=None, sdec=None): super().__init__(x, y, z, data, grid, windows, degree) self.inc, self.dec = inc, dec self.sinc = sinc if sinc is not None else inc self.sdec = sdec if sdec is not None else dec def jacobian(self, p): """ Calculate the Jacobian matrix for a given parameter vector. """ x = self.x y = self.y z = self.z inc, dec = self.inc, self.dec mag = dircos(self.sinc, self.sdec) grids = self.grid.split(self.windows) pergrid = ncoeffs(self.degree) jac = numpy.empty((self.ndata, self.nparams), dtype=float) gk = numpy.empty((self.ndata, grids[0].size), dtype=float) for i, grid in enumerate(grids): bk = _bkmatrix(grid, self.degree) for k, c in enumerate(grid): gk[:, k] = kernel.tf(x, y, z, [c], inc, dec, pmag=mag) jac[:, i*pergrid:(i + 1)*pergrid] = safe_dot(gk, bk) return jac class PELSmoothness(Smoothness): """ Regularization to "join" neighboring windows in the PEL. Use this with :class:`~fatiando.gravmag.eqlayer.PELGravity` and :class:`~fatiando.gravmag.eqlayer.PELTotalField`. Parameters passed to PELSmoothness must be the same as passed to the PEL solvers. Parameters: * grid : :class:`~fatiando.mesher.PointGrid` The sources in the equivalent layer. * windows : tuple = (ny, nx) The number of windows that the layer will be divided in the y and x directions, respectively. * degree : int The degree of the bivariate polynomials used in each window of the PEL See the docstring of :class:`~fatiando.gravmag.eqlayer.PELGravity` for an example usage. """ def __init__(self, grid, windows, degree): super().__init__(_pel_fdmatrix(windows, grid, degree)) def _pel_fdmatrix(windows, grid, degree): """ Makes the finite difference matrix for PEL smoothness. """ ny, nx = windows grids = grid.split(windows) gsize = grids[0].size gny, gnx = grids[0].shape nderivs = (nx - 1) * grid.shape[0] + (ny - 1) * grid.shape[1] rmatrix = scipy.sparse.lil_matrix((nderivs, grid.size)) deriv = 0 # derivatives in x for k in range(0, len(grids) - ny): bottom = k * gsize + gny * (gnx - 1) top = (k + ny) * gsize for i in range(gny): rmatrix[deriv, bottom + i] = -1. rmatrix[deriv, top + 1] = 1. deriv += 1 # derivatives in y for k in range(0, len(grids)): if (k + 1) % ny == 0: continue right = k * gsize + gny - 1 left = (k + 1) * gsize for i in range(gnx): rmatrix[deriv, right + i * gny] = -1. rmatrix[deriv, left + i * gny] = 1. deriv += 1 rmatrix = rmatrix.tocsr() # Make the RB matrix because R is for the sources, B converts it to # coefficients. pergrid = ncoeffs(degree) ncoefs = len(grids) * pergrid fdmatrix = numpy.empty((nderivs, ncoefs), dtype=float) st = 0 for i, g in enumerate(grids): bk = _bkmatrix(g, degree) en = st + g.size fdmatrix[:, i*pergrid:(i + 1)*pergrid] = safe_dot(rmatrix[:, st:en], bk) st = en return fdmatrix
from activities.models import Message from categories.models import Category, Keyword from constance import config from employees.models import Employee, Location, Position, Role from events.models import Event, EventActivity from stars.models import Badge from django.conf import settings from django.contrib.sites.models import Site from django.db.models import Q from django.shortcuts import get_list_or_404, get_object_or_404 from rest_framework.exceptions import APIException from rest_framework.permissions import IsAdminUser, IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from rest_framework import status from .serializers import CategorySerializer, KeywordSerializer, BadgeSerializer from .serializers import EmployeeSerializer, EmployeeTopSerializer from .serializers import LocationSerializer, PositionSerializer, RoleSerializer from .serializers import EventSerializer, EventActivitySerializer from .serializers import MessageSerializer, SiteInfoSerializer from .pagination import AdministratorPagination class BadgeList(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, format=None): """ List all badges --- serializer: administrator.serializers.BadgeSerializer parameters: - name: pagination required: false type: string paramType: query """ badges = get_list_or_404(Badge) if request.GET.get('pagination'): pagination = request.GET.get('pagination') if pagination == 'true': paginator = AdministratorPagination() results = paginator.paginate_queryset(badges, request) serializer = BadgeSerializer(results, many=True) return paginator.get_paginated_response(serializer.data) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = BadgeSerializer(badges, many=True) return Response(serializer.data, status=status.HTTP_200_OK) def post(self, request, format=None): """ Create new badge --- serializer: administrator.serializers.BadgeSerializer """ serializer = BadgeSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class BagdeDetail(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, badge_id, format=None): """ Get badge details """ badge = get_object_or_404(Badge, pk=badge_id) serializer = BadgeSerializer(badge) return Response(serializer.data) def put(self, request, badge_id, format=None): """ Edit badge --- serializer: administrator.serializers.BadgeSerializer """ badge = get_object_or_404(Badge, pk=badge_id) serializer = BadgeSerializer(badge, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, badge_id, format=None): """ Delete badge (inactive badge, you should edit is_active attribute to revert this change) --- serializer: administrator.serializers.BadgeSerializer """ badge = get_object_or_404(Badge, pk=badge_id) badge.is_active = False badge.save() serializer = BadgeSerializer(badge) return Response(serializer.data, status=status.HTTP_202_ACCEPTED) class CategoryList(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, format=None): """ List all categories --- parameters: - name: pagination required: false type: string paramType: query """ categories = get_list_or_404(Category) if request.GET.get('pagination'): pagination = request.GET.get('pagination') if pagination == 'true': paginator = AdministratorPagination() results = paginator.paginate_queryset(categories, request) serializer = CategorySerializer(results, many=True) return paginator.get_paginated_response(serializer.data) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = CategorySerializer(categories, many=True) return Response(serializer.data, status=status.HTTP_400_BAD_REQUEST) def post(self, request, format=None): """ Create new category --- serializer: administrator.serializers.CategorySerializer """ serializer = CategorySerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class CategoryDetail(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, category_id, format=None): """ Get category details """ category = get_object_or_404(Category, pk=category_id) serializer = CategorySerializer(category) return Response(serializer.data) def put(self, request, category_id, format=None): """ Edit category --- serializer: administrator.serializers.CategorySerializer """ category = get_object_or_404(Category, pk=category_id) serializer = CategorySerializer(category, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, category_id, format=None): """ Delete category (inactive category, you should edit is_active attribute to revert this change) --- serializer: administrator.serializers.CategorySerializer """ category = get_object_or_404(Category, pk=category_id) category.is_active = False category.save() serializer = CategorySerializer(category) return Response(serializer.data, status=status.HTTP_202_ACCEPTED) class EmployeeList(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, format=None): """ List all employees --- serializer: administrator.serializers.EmployeeSerializer parameters: - name: pagination required: false type: string paramType: query """ employees = get_list_or_404(Employee) if request.GET.get('pagination'): pagination = request.GET.get('pagination') if pagination == 'true': paginator = AdministratorPagination() results = paginator.paginate_queryset(employees, request) serializer = EmployeeSerializer(results, many=True) return paginator.get_paginated_response(serializer.data) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = EmployeeSerializer(employees, many=True) return Response(serializer.data, status=status.HTTP_200_OK) class EmployeeTopList(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, kind, format=None): """ List all employees --- serializer: administrator.serializers.EmployeeSerializer parameters: - name: pagination required: false type: string paramType: query - name: quantity required: false type: string paramType: query """ employee_list = Employee.objects.filter(is_active=True, is_base_profile_complete=True).order_by('-' + kind) if request.GET.get('quantity'): try: quantity = request.GET.get('quantity') employee_list = employee_list[:quantity] except Exception as e: raise APIException(e) if request.GET.get('pagination'): pagination = request.GET.get('pagination') if pagination == 'true': paginator = AdministratorPagination() results = paginator.paginate_queryset(employee_list, request) serializer = EmployeeTopSerializer(results, many=True) return paginator.get_paginated_response(serializer.data) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = EmployeeTopSerializer(employee_list, many=True) return Response(serializer.data, status=status.HTTP_200_OK) class EventList(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, format=None): """ List all events --- serializer: administrator.serializers.EventSerializer parameters: - name: pagination required: false type: string paramType: query """ events = get_list_or_404(Event) if request.GET.get('pagination'): pagination = request.GET.get('pagination') if pagination == 'true': paginator = AdministratorPagination() results = paginator.paginate_queryset(events, request) serializer = EventSerializer(results, many=True) return paginator.get_paginated_response(serializer.data) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = EventSerializer(events, many=True) return Response(serializer.data, status=status.HTTP_200_OK) def post(self, request, format=None): """ Create new event --- serializer: administrator.serializers.EventSerializer """ serializer = EventSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class EventDetail(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, event_id, format=None): """ Get event details --- serializer: administrator.serializers.EventSerializer """ event = get_object_or_404(Event, pk=event_id) serializer = EventSerializer(event) return Response(serializer.data) def put(self, request, event_id, format=None): """ Edit event --- serializer: administrator.serializers.EventSerializer """ event = get_object_or_404(Category, pk=event_id) serializer = EventSerializer(event, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, event_id, format=None): """ Delete event (inactive event, you should edit is_active attribute to revert this change) --- serializer: administrator.serializers.EventSerializer """ event = get_object_or_404(Event, pk=event_id) event.is_active = False event.save() serializer = EventSerializer(event) return Response(serializer.data, status=status.HTTP_202_ACCEPTED) class EventActivityList(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, event_id, format=None): """ List all activities for an event --- serializer: administrator.serializers.EventActivitySerializer parameters: - name: pagination required: false type: string paramType: query """ event = get_object_or_404(Event, pk=event_id) activities = EventActivity.objects.filter(event=event) if request.GET.get('pagination'): pagination = request.GET.get('pagination') if pagination == 'true': paginator = AdministratorPagination() results = paginator.paginate_queryset(activities, request) serializer = EventActivitySerializer(results, many=True) return paginator.get_paginated_response(serializer.data) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = EventActivitySerializer(activities, many=True) return Response(serializer.data, status=status.HTTP_200_OK) class EventActivityDetail(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, event_id, news_id, format=None): """ Get event activity detail --- serializer: administrator.serializers.EventActivitySerializer """ event = get_object_or_404(Event, pk=event_id) activity = get_object_or_404(EventActivity, event=event, pk=news_id) serializer = EventActivitySerializer(activity) return Response(serializer.data) def delete(self, request, event_id, news_id, format=None): """ Delete event activity (you cannot revert this change) """ event = get_object_or_404(Event, pk=event_id) activity = get_object_or_404(EventActivity, event=event, pk=news_id) activity.delete() return Response(status=status.HTTP_204_NO_CONTENT) class KeywordList(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, format=None): """ List all keywords (tags, skills) or result list if you use ?search=term%of%search --- parameters: - name: search required: false type: string paramType: query - name: pagination required: false type: string paramType: query """ if request.GET.get('search'): request_terms = request.GET.get('search') search_terms_array = request_terms.split() initial_term = search_terms_array[0] keywords = Keyword.objects.filter(Q(name__icontains=initial_term)) if len(search_terms_array) > 1: for term in range(1, len(search_terms_array)): keywords = keywords.filter(Q(name__icontains=search_terms_array[term])) else: keywords = get_list_or_404(Keyword) if request.GET.get('pagination'): pagination = request.GET.get('pagination') if pagination == 'true': paginator = AdministratorPagination() results = paginator.paginate_queryset(keywords, request) serializer = KeywordSerializer(results, many=True) return paginator.get_paginated_response(serializer.data) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = KeywordSerializer(keywords, many=True) return Response(serializer.data, status=status.HTTP_200_OK) def post(self, request, format=None): """ Create new keyword (tag, skill) --- serializer: administrator.serializers.KeywordSerializer """ serializer = KeywordSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class KeywordDetail(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, keyword_id, format=None): """ Get keyword detail """ keyword = get_object_or_404(Keyword, pk=keyword_id) serializer = KeywordSerializer(keyword) return Response(serializer.data) def put(self, request, keyword_id, format=None): """ Edit keyword --- serializer: administrator.serializers.KeywordSerializer """ keyword = get_object_or_404(Keyword, pk=keyword_id) serializer = KeywordSerializer(keyword, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, keyword_id, format=None): """ Delete keyword (inactive keyword, you should edit is_active attribute to revert this change) --- serializer: administrator.serializers.KeywordSerializer """ keyword = get_object_or_404(Keyword, pk=keyword_id) keyword.is_active = False keyword.save() serializer = KeywordSerializer(keyword) return Response(serializer.data, status=status.HTTP_202_ACCEPTED) class LocationList(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, format=None): """ List all employee positions --- serializer: administrator.serializers.LocationSerializer parameters: - name: pagination required: false type: string paramType: query """ locations = get_list_or_404(Location) if request.GET.get('pagination'): pagination = request.GET.get('pagination') if pagination == 'true': paginator = AdministratorPagination() results = paginator.paginate_queryset(locations, request) serializer = LocationSerializer(results, many=True) return paginator.get_paginated_response(serializer.data) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = LocationSerializer(locations, many=True) return Response(serializer.data, status=status.HTTP_200_OK) def post(self, request, format=None): """ Create new location --- serializer: administrator.serializers.LocationSerializer """ serializer = LocationSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class LocationDetail(APIView): permission_classes = (IsAuthenticated, IsAdminUser) def get(self, request, location_id, format=None): """ Get location detail """ location = get_object_or_404(Location, pk=location_id) serializer = LocationSerializer(location) return Response(serializer.data) def put(self, request, location_id, format=None): """ Edit location --- serializer: administrator.serializers.LocationSerializer """ location = get_object_or_404(Location, pk=location_id) serializer = LocationSerializer(location, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, location_id, format=None): """ Deactivate location, you should edit is_active attribute to revert this change --- serializer: administrator.serializers.LocationSerializer """ location = get_object_or_404(Location, pk=location_id) location.is_active = False location.save() serializer = LocationSerializer(location) return Response(serializer.data, status=status.HTTP_202_ACCEPTED) class MessageList(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, format=None): """ List all messages --- serializer: administrator.serializers.MessageSerializer parameters: - name: pagination required: false type: string paramType: query """ messages = get_list_or_404(Message) if request.GET.get('pagination'): pagination = request.GET.get('pagination') if pagination == 'true': paginator = AdministratorPagination() results = paginator.paginate_queryset(messages, request) serializer = MessageSerializer(results, many=True) return paginator.get_paginated_response(serializer.data) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = MessageSerializer(messages, many=True) return Response(serializer.data, status=status.HTTP_200_OK) class MessageDetail(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, message_id, format=None): """ Get message detail --- serializer: administrator.serializers.MessageSerializer """ message = get_object_or_404(Message, pk=message_id) serializer = MessageSerializer(message) return Response(serializer.data) def delete(self, request, message_id, format=None): """ Delete message (you cannot revert this change) --- serializer: administrator.serializers.MessageSerializer """ message = get_object_or_404(Event, pk=message_id) message.delete() return Response(status=status.HTTP_204_NO_CONTENT) class MessageListFromEmployee(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, employee_id, format=None): """ List all messages from employee --- serializer: administrator.serializers.MessageSerializer parameters: - name: pagination required: false type: string paramType: query """ employee = get_object_or_404(Employee, pk=employee_id) messages = get_list_or_404(Message, from_user=employee) if request.GET.get('pagination'): pagination = request.GET.get('pagination') if pagination == 'true': paginator = AdministratorPagination() results = paginator.paginate_queryset(messages, request) serializer = MessageSerializer(results, many=True) return paginator.get_paginated_response(serializer.data) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = MessageSerializer(messages, many=True) return Response(serializer.data, status=status.HTTP_200_OK) class PositionList(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, format=None): """ List all employee positions --- serializer: administrator.serializers.PositionSerializer parameters: - name: pagination required: false type: string paramType: query """ positions = get_list_or_404(Position) if request.GET.get('pagination'): pagination = request.GET.get('pagination') if pagination == 'true': paginator = AdministratorPagination() results = paginator.paginate_queryset(positions, request) serializer = PositionSerializer(results, many=True) return paginator.get_paginated_response(serializer.data) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = PositionSerializer(positions, many=True) return Response(serializer.data, status=status.HTTP_200_OK) def post(self, request, format=None): """ Create new position --- serializer: administrator.serializers.PositionSerializer """ serializer = PositionSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class PositionDetail(APIView): permission_classes = (IsAuthenticated, IsAdminUser) def get(self, request, position_id, format=None): """ Get position detail """ position = get_object_or_404(Position, pk=position_id) serializer = PositionSerializer(position) return Response(serializer.data) def put(self, request, position_id, format=None): """ Edit position --- serializer: administrator.serializers.PositionSerializer """ position = get_object_or_404(Position, pk=position_id) serializer = PositionSerializer(position, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, position_id, format=None): """ Deactivate position, you should edit is_active attribute to revert this change --- serializer: administrator.serializers.PositionSerializer """ position = get_object_or_404(Position, pk=position_id) position.is_active = False position.save() serializer = PositionSerializer(position) return Response(serializer.data, status=status.HTTP_202_ACCEPTED) class RoleList(APIView): permission_classes = (IsAuthenticated, IsAdminUser) def get(self, request, format=None): """ List all roles --- serializer: administrator.serializers.RoleSerializer parameters: - name: pagination required: false type: string paramType: query """ roles = get_list_or_404(Role) if request.GET.get('pagination'): pagination = request.GET.get('pagination') if pagination == 'true': paginator = AdministratorPagination() results = paginator.paginate_queryset(roles, request) serializer = RoleSerializer(results, many=True) return paginator.get_paginated_response(serializer.data) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: serializer = RoleSerializer(roles, many=True) return Response(serializer.data, status=status.HTTP_200_OK) def post(self, request, format=None): """ Create new Role --- serializer: administrator.serializers.RoleSerializer """ serializer = RoleSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class RoleDetail(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def get(self, request, role_id, format=None): """ Get role detail --- serializer: administrator.serializers.RoleSerializer """ role = get_object_or_404(Role, pk=role_id) serializer = RoleSerializer(role) return Response(serializer.data) def put(self, request, role_id, format=None): """ Edit role --- serializer: administrator.serializers.RoleSerializer """ role = get_object_or_404(Role, pk=role_id) serializer = RoleSerializer(role, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, role_id, format=None): """ Delete role, you should edit is_active to revert this change. --- serializer: administrator.serializers.RoleSerializer """ role = get_object_or_404(Role, pk=role_id) role.is_active = False role.save() serializer = RoleSerializer(role) return Response(serializer.data, status=status.HTTP_202_ACCEPTED) class ObjectsDelete(APIView): permission_classes = (IsAdminUser, IsAuthenticated) def delete(self, request, id, kind, format=None): """ WARNING: Force delete """ if kind == 'badge': kind = get_object_or_404(Badge, pk=id) elif kind == 'category': kind = get_object_or_404(Category, pk=id) elif kind == 'event': kind = get_object_or_404(Event, pk=id) elif kind == 'keyword': kind = get_object_or_404(Keyword, pk=id) elif kind == 'location': kind = get_object_or_404(Location, pk=id) elif kind == 'position': kind = get_object_or_404(Position, pk=id) elif kind == 'role': kind = get_object_or_404(Role, pk=id) else: return Response(status=status.HTTP_404_NOT_FOUND) kind.delete() return Response(status=status.HTTP_204_NO_CONTENT) class SiteInfoDetail(APIView): def get(self, request, format=None): """ Get site info --- serializer: administrator.serializers.SiteInfoSerializer """ email_domain = settings.EMAIL_DOMAIN_LIST[0] current_site = Site.objects.get_current() version = config.VERSION data = {'site': current_site.domain, 'email_domain': email_domain, 'backend_version': version} serializer = SiteInfoSerializer(data) return Response(serializer.data, status=status.HTTP_200_OK)
'''gradient/Jacobian of normal and t loglikelihood use chain rule normal derivative wrt mu, sigma and beta new version: loc-scale distributions, derivative wrt loc, scale also includes "standardized" t distribution (for use in GARCH) TODO: * use sympy for derivative of loglike wrt shape parameters it works for df of t distribution dlog(gamma(a))da = polygamma(0,a) check polygamma is available in scipy.special * get loc-scale example to work with mean = X*b * write some full unit test examples A: josef-pktd ''' import numpy as np from scipy import special from scipy.special import gammaln def norm_lls(y, params): '''normal loglikelihood given observations and mean mu and variance sigma2 Parameters ---------- y : array, 1d normally distributed random variable params: array, (nobs, 2) array of mean, variance (mu, sigma2) with observations in rows Returns ------- lls : array contribution to loglikelihood for each observation ''' mu, sigma2 = params.T lls = -0.5*(np.log(2*np.pi) + np.log(sigma2) + (y-mu)**2/sigma2) return lls def norm_lls_grad(y, params): '''Jacobian of normal loglikelihood wrt mean mu and variance sigma2 Parameters ---------- y : array, 1d normally distributed random variable params: array, (nobs, 2) array of mean, variance (mu, sigma2) with observations in rows Returns ------- grad : array (nobs, 2) derivative of loglikelihood for each observation wrt mean in first column, and wrt variance in second column Notes ----- this is actually the derivative wrt sigma not sigma**2, but evaluated with parameter sigma2 = sigma**2 ''' mu, sigma2 = params.T dllsdmu = (y-mu)/sigma2 dllsdsigma2 = ((y-mu)**2/sigma2 - 1)/np.sqrt(sigma2) return np.column_stack((dllsdmu, dllsdsigma2)) def mean_grad(x, beta): '''gradient/Jacobian for d (x*beta)/ d beta ''' return x def normgrad(y, x, params): '''Jacobian of normal loglikelihood wrt mean mu and variance sigma2 Parameters ---------- y : array, 1d normally distributed random variable with mean x*beta, and variance sigma2 x : array, 2d explanatory variables, observation in rows, variables in columns params: array_like, (nvars + 1) array of coefficients and variance (beta, sigma2) Returns ------- grad : array (nobs, 2) derivative of loglikelihood for each observation wrt mean in first column, and wrt scale (sigma) in second column assume params = (beta, sigma2) Notes ----- TODO: for heteroscedasticity need sigma to be a 1d array ''' beta = params[:-1] sigma2 = params[-1]*np.ones((len(y),1)) dmudbeta = mean_grad(x, beta) mu = np.dot(x, beta) #print beta, sigma2 params2 = np.column_stack((mu,sigma2)) dllsdms = norm_lls_grad(y,params2) grad = np.column_stack((dllsdms[:,:1]*dmudbeta, dllsdms[:,:1])) return grad def tstd_lls(y, params, df): '''t loglikelihood given observations and mean mu and variance sigma2 = 1 Parameters ---------- y : array, 1d normally distributed random variable params: array, (nobs, 2) array of mean, variance (mu, sigma2) with observations in rows df : integer degrees of freedom of the t distribution Returns ------- lls : array contribution to loglikelihood for each observation Notes ----- parameterized for garch ''' mu, sigma2 = params.T df = df*1.0 #lls = gammaln((df+1)/2.) - gammaln(df/2.) - 0.5*np.log((df-2)*np.pi) #lls -= (df+1)/2. * np.log(1. + (y-mu)**2/(df-2.)/sigma2) + 0.5 * np.log(sigma2) lls = gammaln((df+1)/2.) - gammaln(df/2.) - 0.5*np.log((df-2)*np.pi) lls -= (df+1)/2. * np.log(1. + (y-mu)**2/(df-2)/sigma2) + 0.5 * np.log(sigma2) return lls def norm_dlldy(y): '''derivative of log pdf of standard normal with respect to y ''' return -y def ts_dlldy(y, df): '''derivative of log pdf of standardized (?) t with respect to y Notes ----- parameterized for garch, with mean 0 and variance 1 ''' #(df+1)/2. / (1 + y**2/(df-2.)) * 2.*y/(df-2.) #return -(df+1)/(df-2.) / (1 + y**2/(df-2.)) * y return -(df+1)/(df) / (1 + y**2/(df)) * y def tstd_pdf(x, df): '''pdf for standardized (not standard) t distribution, variance is one ''' r = np.array(df*1.0) Px = np.exp(special.gammaln((r+1)/2.)-special.gammaln(r/2.))/np.sqrt((r-2)*pi) Px /= (1+(x**2)/(r-2))**((r+1)/2.) return Px def ts_lls(y, params, df): '''t loglikelihood given observations and mean mu and variance sigma2 = 1 Parameters ---------- y : array, 1d normally distributed random variable params: array, (nobs, 2) array of mean, variance (mu, sigma2) with observations in rows df : integer degrees of freedom of the t distribution Returns ------- lls : array contribution to loglikelihood for each observation Notes ----- parameterized for garch normalized/rescaled so that sigma2 is the variance >>> df = 10; sigma = 1. >>> stats.t.stats(df, loc=0., scale=sigma.*np.sqrt((df-2.)/df)) (array(0.0), array(1.0)) >>> sigma = np.sqrt(2.) >>> stats.t.stats(df, loc=0., scale=sigma*np.sqrt((df-2.)/df)) (array(0.0), array(2.0)) ''' print y, params, df mu, sigma2 = params.T df = df*1.0 #lls = gammaln((df+1)/2.) - gammaln(df/2.) - 0.5*np.log((df-2)*np.pi) #lls -= (df+1)/2. * np.log(1. + (y-mu)**2/(df-2.)/sigma2) + 0.5 * np.log(sigma2) lls = gammaln((df+1)/2.) - gammaln(df/2.) - 0.5*np.log((df)*np.pi) lls -= (df+1.)/2. * np.log(1. + (y-mu)**2/(df)/sigma2) + 0.5 * np.log(sigma2) return lls def ts_dlldy(y, df): '''derivative of log pdf of standard t with respect to y Parameters ---------- y : array_like data points of random variable at which loglike is evaluated df : array_like degrees of freedom,shape parameters of log-likelihood function of t distribution Returns ------- dlldy : array derivative of loglikelihood wrt random variable y evaluated at the points given in y Notes ----- with mean 0 and scale 1, but variance is df/(df-2) ''' df = df*1. #(df+1)/2. / (1 + y**2/(df-2.)) * 2.*y/(df-2.) #return -(df+1)/(df-2.) / (1 + y**2/(df-2.)) * y return -(df+1)/(df) / (1 + y**2/(df)) * y def tstd_dlldy(y, df): '''derivative of log pdf of standardized t with respect to y Parameters ---------- y : array_like data points of random variable at which loglike is evaluated df : array_like degrees of freedom,shape parameters of log-likelihood function of t distribution Returns ------- dlldy : array derivative of loglikelihood wrt random variable y evaluated at the points given in y Notes ----- parameterized for garch, standardized to variance=1 ''' #(df+1)/2. / (1 + y**2/(df-2.)) * 2.*y/(df-2.) return -(df+1)/(df-2.) / (1 + y**2/(df-2.)) * y #return (df+1)/(df) / (1 + y**2/(df)) * y def locscale_grad(y, loc, scale, dlldy, *args): '''derivative of log-likelihood with respect to location and scale Parameters ---------- y : array_like data points of random variable at which loglike is evaluated loc : float location parameter of distribution scale : float scale parameter of distribution dlldy : function derivative of loglikelihood fuction wrt. random variable x args : array_like shape parameters of log-likelihood function Returns ------- dlldloc : array derivative of loglikelihood wrt location evaluated at the points given in y dlldscale : array derivative of loglikelihood wrt scale evaluated at the points given in y ''' yst = (y-loc)/scale #ystandardized dlldloc = -dlldy(yst, *args) / scale dlldscale = -1./scale - dlldy(yst, *args) * (y-loc)/scale**2 return dlldloc, dlldscale if __name__ == '__main__': verbose = 0 if verbose: sig = 0.1 beta = np.ones(2) rvs = np.random.randn(10,3) x = rvs[:,1:] y = np.dot(x,beta) + sig*rvs[:,0] params = [1,1,1] print normgrad(y, x, params) dllfdbeta = (y-np.dot(x, beta))[:,None]*x #for sigma = 1 print dllfdbeta print locscale_grad(y, np.dot(x, beta), 1, norm_dlldy) print (y-np.dot(x, beta)) from scipy import stats, misc def llt(y,loc,scale,df): return np.log(stats.t.pdf(y, df, loc=loc, scale=scale)) def lltloc(loc,y,scale,df): return np.log(stats.t.pdf(y, df, loc=loc, scale=scale)) def lltscale(scale,y,loc,df): return np.log(stats.t.pdf(y, df, loc=loc, scale=scale)) def llnorm(y,loc,scale): return np.log(stats.norm.pdf(y, loc=loc, scale=scale)) def llnormloc(loc,y,scale): return np.log(stats.norm.pdf(y, loc=loc, scale=scale)) def llnormscale(scale,y,loc): return np.log(stats.norm.pdf(y, loc=loc, scale=scale)) if verbose: print '\ngradient of t' print misc.derivative(llt, 1, dx=1e-6, n=1, args=(0,1,10), order=3) print 't ', locscale_grad(1, 0, 1, tstd_dlldy, 10) print 'ts', locscale_grad(1, 0, 1, ts_dlldy, 10) print misc.derivative(llt, 1.5, dx=1e-10, n=1, args=(0,1,20), order=3), print 'ts', locscale_grad(1.5, 0, 1, ts_dlldy, 20) print misc.derivative(llt, 1.5, dx=1e-10, n=1, args=(0,2,20), order=3), print 'ts', locscale_grad(1.5, 0, 2, ts_dlldy, 20) print misc.derivative(llt, 1.5, dx=1e-10, n=1, args=(1,2,20), order=3), print 'ts', locscale_grad(1.5, 1, 2, ts_dlldy, 20) print misc.derivative(lltloc, 1, dx=1e-10, n=1, args=(1.5,2,20), order=3), print misc.derivative(lltscale, 2, dx=1e-10, n=1, args=(1.5,1,20), order=3) y,loc,scale,df = 1.5, 1, 2, 20 print 'ts', locscale_grad(y,loc,scale, ts_dlldy, 20) print misc.derivative(lltloc, loc, dx=1e-10, n=1, args=(y,scale,df), order=3), print misc.derivative(lltscale, scale, dx=1e-10, n=1, args=(y,loc,df), order=3) print '\ngradient of norm' print misc.derivative(llnorm, 1, dx=1e-6, n=1, args=(0,1), order=3) print locscale_grad(1, 0, 1, norm_dlldy) y,loc,scale = 1.5, 1, 2 print 'ts', locscale_grad(y,loc,scale, norm_dlldy) print misc.derivative(llnormloc, loc, dx=1e-10, n=1, args=(y,scale), order=3), print misc.derivative(llnormscale, scale, dx=1e-10, n=1, args=(y,loc), order=3) y,loc,scale = 1.5, 0, 1 print 'ts', locscale_grad(y,loc,scale, norm_dlldy) print misc.derivative(llnormloc, loc, dx=1e-10, n=1, args=(y,scale), order=3), print misc.derivative(llnormscale, scale, dx=1e-10, n=1, args=(y,loc), order=3) #print 'still something wrong with handling of scale and variance' #looks ok now print '\nloglike of t' print tstd_lls(1, np.array([0,1]), 100), llt(1,0,1,100), 'differently standardized' print tstd_lls(1, np.array([0,1]), 10), llt(1,0,1,10), 'differently standardized' print ts_lls(1, np.array([0,1]), 10), llt(1,0,1,10) print tstd_lls(1, np.array([0,1.*10./8.]), 10), llt(1.,0,1.,10) print ts_lls(1, np.array([0,1]), 100), llt(1,0,1,100) print tstd_lls(1, np.array([0,1]), 10), llt(1,0,1.*np.sqrt(8/10.),10) from numpy.testing import assert_almost_equal params =[(0, 1), (1.,1.), (0.,2.), ( 1., 2.)] yt = np.linspace(-2.,2.,11) for loc,scale in params: dlldlo = misc.derivative(llnormloc, loc, dx=1e-10, n=1, args=(yt,scale), order=3) dlldsc = misc.derivative(llnormscale, scale, dx=1e-10, n=1, args=(yt,loc), order=3) gr = locscale_grad(yt, loc, scale, norm_dlldy) assert_almost_equal(dlldlo, gr[0], 5, err_msg='deriv loc') assert_almost_equal(dlldsc, gr[1], 5, err_msg='deriv scale') for df in [3, 10, 100]: for loc,scale in params: dlldlo = misc.derivative(lltloc, loc, dx=1e-10, n=1, args=(yt,scale,df), order=3) dlldsc = misc.derivative(lltscale, scale, dx=1e-10, n=1, args=(yt,loc,df), order=3) gr = locscale_grad(yt, loc, scale, ts_dlldy, df) assert_almost_equal(dlldlo, gr[0], 4, err_msg='deriv loc') assert_almost_equal(dlldsc, gr[1], 4, err_msg='deriv scale') assert_almost_equal(ts_lls(yt, np.array([loc, scale**2]), df), llt(yt,loc,scale,df), 5, err_msg='loglike') assert_almost_equal(tstd_lls(yt, np.array([loc, scale**2]), df), llt(yt,loc,scale*np.sqrt((df-2.)/df),df), 5, err_msg='loglike')
"""Redis transport.""" from __future__ import absolute_import, unicode_literals import numbers import socket from bisect import bisect from collections import namedtuple from contextlib import contextmanager from time import time from vine import promise from kombu.exceptions import InconsistencyError, VersionMismatch from kombu.five import Empty, values, string_t from kombu.log import get_logger from kombu.utils.compat import register_after_fork from kombu.utils.eventio import poll, READ, ERR from kombu.utils.encoding import bytes_to_str from kombu.utils.json import loads, dumps from kombu.utils.objects import cached_property from kombu.utils.scheduling import cycle_by_name from kombu.utils.url import _parse_url from kombu.utils.uuid import uuid from kombu.utils.compat import _detect_environment from . import virtual try: import redis except ImportError: # pragma: no cover redis = None # noqa try: from redis import sentinel except ImportError: # pragma: no cover sentinel = None # noqa logger = get_logger('kombu.transport.redis') crit, warn = logger.critical, logger.warn DEFAULT_PORT = 6379 DEFAULT_DB = 0 PRIORITY_STEPS = [0, 3, 6, 9] error_classes_t = namedtuple('error_classes_t', ( 'connection_errors', 'channel_errors', )) NO_ROUTE_ERROR = """ Cannot route message for exchange {0!r}: Table empty or key no longer exists. Probably the key ({1!r}) has been removed from the Redis database. """ # This implementation may seem overly complex, but I assure you there is # a good reason for doing it this way. # # Consuming from several connections enables us to emulate channels, # which means we can have different service guarantees for individual # channels. # # So we need to consume messages from multiple connections simultaneously, # and using epoll means we don't have to do so using multiple threads. # # Also it means we can easily use PUBLISH/SUBSCRIBE to do fanout # exchanges (broadcast), as an alternative to pushing messages to fanout-bound # queues manually. def get_redis_error_classes(): """Return tuple of redis error classes.""" from redis import exceptions # This exception suddenly changed name between redis-py versions if hasattr(exceptions, 'InvalidData'): DataError = exceptions.InvalidData else: DataError = exceptions.DataError return error_classes_t( (virtual.Transport.connection_errors + ( InconsistencyError, socket.error, IOError, OSError, exceptions.ConnectionError, exceptions.AuthenticationError, exceptions.TimeoutError)), (virtual.Transport.channel_errors + ( DataError, exceptions.InvalidResponse, exceptions.ResponseError)), ) def get_redis_ConnectionError(): """Return the redis ConnectionError exception class.""" from redis import exceptions return exceptions.ConnectionError class MutexHeld(Exception): """Raised when another party holds the lock.""" @contextmanager def Mutex(client, name, expire): """The Redis lock implementation (probably shaky).""" lock_id = uuid() i_won = client.setnx(name, lock_id) try: if i_won: client.expire(name, expire) yield else: if not client.ttl(name): client.expire(name, expire) raise MutexHeld() finally: if i_won: try: with client.pipeline(True) as pipe: pipe.watch(name) if pipe.get(name) == lock_id: pipe.multi() pipe.delete(name) pipe.execute() pipe.unwatch() except redis.WatchError: pass def _after_fork_cleanup_channel(channel): channel._after_fork() class QoS(virtual.QoS): """Redis Ack Emulation.""" restore_at_shutdown = True def __init__(self, *args, **kwargs): super(QoS, self).__init__(*args, **kwargs) self._vrestore_count = 0 def append(self, message, delivery_tag): delivery = message.delivery_info EX, RK = delivery['exchange'], delivery['routing_key'] # TODO: Remove this once we soley on Redis-py 3.0.0+ if redis.VERSION[0] >= 3: # Redis-py changed the format of zadd args in v3.0.0 zadd_args = [{delivery_tag: time()}] else: zadd_args = [time(), delivery_tag] with self.pipe_or_acquire() as pipe: pipe.zadd(self.unacked_index_key, *zadd_args) \ .hset(self.unacked_key, delivery_tag, dumps([message._raw, EX, RK])) \ .execute() super(QoS, self).append(message, delivery_tag) def restore_unacked(self, client=None): with self.channel.conn_or_acquire(client) as client: for tag in self._delivered: self.restore_by_tag(tag, client=client) self._delivered.clear() def ack(self, delivery_tag): self._remove_from_indices(delivery_tag).execute() super(QoS, self).ack(delivery_tag) def reject(self, delivery_tag, requeue=False): if requeue: self.restore_by_tag(delivery_tag, leftmost=True) self.ack(delivery_tag) @contextmanager def pipe_or_acquire(self, pipe=None, client=None): if pipe: yield pipe else: with self.channel.conn_or_acquire(client) as client: yield client.pipeline() def _remove_from_indices(self, delivery_tag, pipe=None): with self.pipe_or_acquire(pipe) as pipe: return pipe.zrem(self.unacked_index_key, delivery_tag) \ .hdel(self.unacked_key, delivery_tag) def restore_visible(self, start=0, num=10, interval=10): self._vrestore_count += 1 if (self._vrestore_count - 1) % interval: return with self.channel.conn_or_acquire() as client: ceil = time() - self.visibility_timeout try: with Mutex(client, self.unacked_mutex_key, self.unacked_mutex_expire): env = _detect_environment() if env == 'gevent': ceil = time() visible = client.zrevrangebyscore( self.unacked_index_key, ceil, 0, start=num and start, num=num, withscores=True) for tag, score in visible or []: self.restore_by_tag(tag, client) except MutexHeld: pass def restore_by_tag(self, tag, client=None, leftmost=False): with self.channel.conn_or_acquire(client) as client: with client.pipeline() as pipe: p, _, _ = self._remove_from_indices( tag, pipe.hget(self.unacked_key, tag)).execute() if p: M, EX, RK = loads(bytes_to_str(p)) # json is unicode self.channel._do_restore_message(M, EX, RK, client, leftmost) @cached_property def unacked_key(self): return self.channel.unacked_key @cached_property def unacked_index_key(self): return self.channel.unacked_index_key @cached_property def unacked_mutex_key(self): return self.channel.unacked_mutex_key @cached_property def unacked_mutex_expire(self): return self.channel.unacked_mutex_expire @cached_property def visibility_timeout(self): return self.channel.visibility_timeout class MultiChannelPoller(object): """Async I/O poller for Redis transport.""" eventflags = READ | ERR #: Set by :meth:`get` while reading from the socket. _in_protected_read = False #: Set of one-shot callbacks to call after reading from socket. after_read = None def __init__(self): # active channels self._channels = set() # file descriptor -> channel map. self._fd_to_chan = {} # channel -> socket map self._chan_to_sock = {} # poll implementation (epoll/kqueue/select) self.poller = poll() # one-shot callbacks called after reading from socket. self.after_read = set() def close(self): for fd in values(self._chan_to_sock): try: self.poller.unregister(fd) except (KeyError, ValueError): pass self._channels.clear() self._fd_to_chan.clear() self._chan_to_sock.clear() def add(self, channel): self._channels.add(channel) def discard(self, channel): self._channels.discard(channel) def _on_connection_disconnect(self, connection): try: self.poller.unregister(connection._sock) except (AttributeError, TypeError): pass def _register(self, channel, client, type): if (channel, client, type) in self._chan_to_sock: self._unregister(channel, client, type) if client.connection._sock is None: # not connected yet. client.connection.connect() sock = client.connection._sock self._fd_to_chan[sock.fileno()] = (channel, type) self._chan_to_sock[(channel, client, type)] = sock self.poller.register(sock, self.eventflags) def _unregister(self, channel, client, type): self.poller.unregister(self._chan_to_sock[(channel, client, type)]) def _client_registered(self, channel, client, cmd): if getattr(client, 'connection', None) is None: client.connection = client.connection_pool.get_connection('_') return (client.connection._sock is not None and (channel, client, cmd) in self._chan_to_sock) def _register_BRPOP(self, channel): """Enable BRPOP mode for channel.""" ident = channel, channel.client, 'BRPOP' if not self._client_registered(channel, channel.client, 'BRPOP'): channel._in_poll = False self._register(*ident) if not channel._in_poll: # send BRPOP channel._brpop_start() def _register_LISTEN(self, channel): """Enable LISTEN mode for channel.""" if not self._client_registered(channel, channel.subclient, 'LISTEN'): channel._in_listen = False self._register(channel, channel.subclient, 'LISTEN') if not channel._in_listen: channel._subscribe() # send SUBSCRIBE def on_poll_start(self): for channel in self._channels: if channel.active_queues: # BRPOP mode? if channel.qos.can_consume(): self._register_BRPOP(channel) if channel.active_fanout_queues: # LISTEN mode? self._register_LISTEN(channel) def on_poll_init(self, poller): self.poller = poller for channel in self._channels: return channel.qos.restore_visible( num=channel.unacked_restore_limit, ) def maybe_restore_messages(self): for channel in self._channels: if channel.active_queues: # only need to do this once, as they are not local to channel. return channel.qos.restore_visible( num=channel.unacked_restore_limit, ) def on_readable(self, fileno): chan, type = self._fd_to_chan[fileno] if chan.qos.can_consume(): chan.handlers[type]() def handle_event(self, fileno, event): if event & READ: return self.on_readable(fileno), self elif event & ERR: chan, type = self._fd_to_chan[fileno] chan._poll_error(type) def get(self, callback, timeout=None): self._in_protected_read = True try: for channel in self._channels: if channel.active_queues: # BRPOP mode? if channel.qos.can_consume(): self._register_BRPOP(channel) if channel.active_fanout_queues: # LISTEN mode? self._register_LISTEN(channel) events = self.poller.poll(timeout) if events: for fileno, event in events: ret = self.handle_event(fileno, event) if ret: return # - no new data, so try to restore messages. # - reset active redis commands. self.maybe_restore_messages() raise Empty() finally: self._in_protected_read = False while self.after_read: try: fun = self.after_read.pop() except KeyError: break else: fun() @property def fds(self): return self._fd_to_chan class Channel(virtual.Channel): """Redis Channel.""" QoS = QoS _client = None _subclient = None _closing = False supports_fanout = True keyprefix_queue = '_kombu.binding.%s' keyprefix_fanout = '/{db}.' sep = '\x06\x16' _in_poll = False _in_listen = False _fanout_queues = {} ack_emulation = True unacked_key = 'unacked' unacked_index_key = 'unacked_index' unacked_mutex_key = 'unacked_mutex' unacked_mutex_expire = 300 # 5 minutes unacked_restore_limit = None visibility_timeout = 3600 # 1 hour priority_steps = PRIORITY_STEPS socket_timeout = None socket_connect_timeout = None socket_keepalive = None socket_keepalive_options = None max_connections = 10 #: Transport option to disable fanout keyprefix. #: Can also be string, in which case it changes the default #: prefix ('/{db}.') into to something else. The prefix must #: include a leading slash and a trailing dot. #: #: Enabled by default since Kombu 4.x. #: Disable for backwards compatibility with Kombu 3.x. fanout_prefix = True #: If enabled the fanout exchange will support patterns in routing #: and binding keys (like a topic exchange but using PUB/SUB). #: #: Enabled by default since Kombu 4.x. #: Disable for backwards compatibility with Kombu 3.x. fanout_patterns = True #: Order in which we consume from queues. #: #: Can be either string alias, or a cycle strategy class #: #: - ``round_robin`` #: (:class:`~kombu.utils.scheduling.round_robin_cycle`). #: #: Make sure each queue has an equal opportunity to be consumed from. #: #: - ``sorted`` #: (:class:`~kombu.utils.scheduling.sorted_cycle`). #: #: Consume from queues in alphabetical order. #: If the first queue in the sorted list always contains messages, #: then the rest of the queues will never be consumed from. #: #: - ``priority`` #: (:class:`~kombu.utils.scheduling.priority_cycle`). #: #: Consume from queues in original order, so that if the first #: queue always contains messages, the rest of the queues #: in the list will never be consumed from. #: #: The default is to consume from queues in round robin. queue_order_strategy = 'round_robin' _async_pool = None _pool = None from_transport_options = ( virtual.Channel.from_transport_options + ('ack_emulation', 'unacked_key', 'unacked_index_key', 'unacked_mutex_key', 'unacked_mutex_expire', 'visibility_timeout', 'unacked_restore_limit', 'fanout_prefix', 'fanout_patterns', 'socket_timeout', 'socket_connect_timeout', 'socket_keepalive', 'socket_keepalive_options', 'queue_order_strategy', 'max_connections', 'priority_steps') # <-- do not add comma here! ) connection_class = redis.Connection if redis else None def __init__(self, *args, **kwargs): super_ = super(Channel, self) super_.__init__(*args, **kwargs) if not self.ack_emulation: # disable visibility timeout self.QoS = virtual.QoS self._queue_cycle = cycle_by_name(self.queue_order_strategy)() self.Client = self._get_client() self.ResponseError = self._get_response_error() self.active_fanout_queues = set() self.auto_delete_queues = set() self._fanout_to_queue = {} self.handlers = {'BRPOP': self._brpop_read, 'LISTEN': self._receive} if self.fanout_prefix: if isinstance(self.fanout_prefix, string_t): self.keyprefix_fanout = self.fanout_prefix else: # previous versions did not set a fanout, so cannot enable # by default. self.keyprefix_fanout = '' # Evaluate connection. try: self.client.ping() except Exception: self._disconnect_pools() raise self.connection.cycle.add(self) # add to channel poller. # copy errors, in case channel closed but threads still # are still waiting for data. self.connection_errors = self.connection.connection_errors if register_after_fork is not None: register_after_fork(self, _after_fork_cleanup_channel) def _after_fork(self): self._disconnect_pools() def _disconnect_pools(self): pool = self._pool async_pool = self._async_pool self._async_pool = self._pool = None if pool is not None: pool.disconnect() if async_pool is not None: async_pool.disconnect() def _on_connection_disconnect(self, connection): if self._in_poll is connection: self._in_poll = None if self._in_listen is connection: self._in_listen = None if self.connection and self.connection.cycle: self.connection.cycle._on_connection_disconnect(connection) def _do_restore_message(self, payload, exchange, routing_key, client=None, leftmost=False): with self.conn_or_acquire(client) as client: try: try: payload['headers']['redelivered'] = True except KeyError: pass for queue in self._lookup(exchange, routing_key): (client.lpush if leftmost else client.rpush)( queue, dumps(payload), ) except Exception: crit('Could not restore message: %r', payload, exc_info=True) def _restore(self, message, leftmost=False): if not self.ack_emulation: return super(Channel, self)._restore(message) tag = message.delivery_tag with self.conn_or_acquire() as client: with client.pipeline() as pipe: P, _ = pipe.hget(self.unacked_key, tag) \ .hdel(self.unacked_key, tag) \ .execute() if P: M, EX, RK = loads(bytes_to_str(P)) # json is unicode self._do_restore_message(M, EX, RK, client, leftmost) def _restore_at_beginning(self, message): return self._restore(message, leftmost=True) def basic_consume(self, queue, *args, **kwargs): if queue in self._fanout_queues: exchange, _ = self._fanout_queues[queue] self.active_fanout_queues.add(queue) self._fanout_to_queue[exchange] = queue ret = super(Channel, self).basic_consume(queue, *args, **kwargs) # Update fair cycle between queues. # # We cycle between queues fairly to make sure that # each queue is equally likely to be consumed from, # so that a very busy queue will not block others. # # This works by using Redis's `BRPOP` command and # by rotating the most recently used queue to the # and of the list. See Kombu github issue #166 for # more discussion of this method. self._update_queue_cycle() return ret def basic_cancel(self, consumer_tag): # If we are busy reading messages we may experience # a race condition where a message is consumed after # canceling, so we must delay this operation until reading # is complete (Issue celery/celery#1773). connection = self.connection if connection: if connection.cycle._in_protected_read: return connection.cycle.after_read.add( promise(self._basic_cancel, (consumer_tag,)), ) return self._basic_cancel(consumer_tag) def _basic_cancel(self, consumer_tag): try: queue = self._tag_to_queue[consumer_tag] except KeyError: return try: self.active_fanout_queues.remove(queue) except KeyError: pass else: self._unsubscribe_from(queue) try: exchange, _ = self._fanout_queues[queue] self._fanout_to_queue.pop(exchange) except KeyError: pass ret = super(Channel, self).basic_cancel(consumer_tag) self._update_queue_cycle() return ret def _get_publish_topic(self, exchange, routing_key): if routing_key and self.fanout_patterns: return ''.join([self.keyprefix_fanout, exchange, '/', routing_key]) return ''.join([self.keyprefix_fanout, exchange]) def _get_subscribe_topic(self, queue): exchange, routing_key = self._fanout_queues[queue] return self._get_publish_topic(exchange, routing_key) def _subscribe(self): keys = [self._get_subscribe_topic(queue) for queue in self.active_fanout_queues] if not keys: return c = self.subclient if c.connection._sock is None: c.connection.connect() self._in_listen = c.connection c.psubscribe(keys) def _unsubscribe_from(self, queue): topic = self._get_subscribe_topic(queue) c = self.subclient if c.connection and c.connection._sock: c.unsubscribe([topic]) def _handle_message(self, client, r): if bytes_to_str(r[0]) == 'unsubscribe' and r[2] == 0: client.subscribed = False return if bytes_to_str(r[0]) == 'pmessage': type, pattern, channel, data = r[0], r[1], r[2], r[3] else: type, pattern, channel, data = r[0], None, r[1], r[2] return { 'type': type, 'pattern': pattern, 'channel': channel, 'data': data, } def _receive(self): c = self.subclient ret = [] try: ret.append(self._receive_one(c)) except Empty: pass if c.connection is not None: while c.connection.can_read(timeout=0): ret.append(self._receive_one(c)) return any(ret) def _receive_one(self, c): response = None try: response = c.parse_response() except self.connection_errors: self._in_listen = None raise if response is not None: payload = self._handle_message(c, response) if bytes_to_str(payload['type']).endswith('message'): channel = bytes_to_str(payload['channel']) if payload['data']: if channel[0] == '/': _, _, channel = channel.partition('.') try: message = loads(bytes_to_str(payload['data'])) except (TypeError, ValueError): warn('Cannot process event on channel %r: %s', channel, repr(payload)[:4096], exc_info=1) raise Empty() exchange = channel.split('/', 1)[0] self.connection._deliver( message, self._fanout_to_queue[exchange]) return True def _brpop_start(self, timeout=1): queues = self._queue_cycle.consume(len(self.active_queues)) if not queues: return keys = [self._q_for_pri(queue, pri) for pri in self.priority_steps for queue in queues] + [timeout or 0] self._in_poll = self.client.connection self.client.connection.send_command('BRPOP', *keys) def _brpop_read(self, **options): try: try: dest__item = self.client.parse_response(self.client.connection, 'BRPOP', **options) except self.connection_errors: # if there's a ConnectionError, disconnect so the next # iteration will reconnect automatically. self.client.connection.disconnect() raise if dest__item: dest, item = dest__item dest = bytes_to_str(dest).rsplit(self.sep, 1)[0] self._queue_cycle.rotate(dest) self.connection._deliver(loads(bytes_to_str(item)), dest) return True else: raise Empty() finally: self._in_poll = None def _poll_error(self, type, **options): if type == 'LISTEN': self.subclient.parse_response() else: self.client.parse_response(self.client.connection, type) def _get(self, queue): with self.conn_or_acquire() as client: for pri in self.priority_steps: item = client.rpop(self._q_for_pri(queue, pri)) if item: return loads(bytes_to_str(item)) raise Empty() def _size(self, queue): with self.conn_or_acquire() as client: with client.pipeline() as pipe: for pri in self.priority_steps: pipe = pipe.llen(self._q_for_pri(queue, pri)) sizes = pipe.execute() return sum(size for size in sizes if isinstance(size, numbers.Integral)) def _q_for_pri(self, queue, pri): pri = self.priority(pri) return '%s%s%s' % ((queue, self.sep, pri) if pri else (queue, '', '')) def priority(self, n): steps = self.priority_steps return steps[bisect(steps, n) - 1] def _put(self, queue, message, **kwargs): """Deliver message.""" pri = self._get_message_priority(message, reverse=False) with self.conn_or_acquire() as client: client.lpush(self._q_for_pri(queue, pri), dumps(message)) def _put_fanout(self, exchange, message, routing_key, **kwargs): """Deliver fanout message.""" with self.conn_or_acquire() as client: client.publish( self._get_publish_topic(exchange, routing_key), dumps(message), ) def _new_queue(self, queue, auto_delete=False, **kwargs): if auto_delete: self.auto_delete_queues.add(queue) def _queue_bind(self, exchange, routing_key, pattern, queue): if self.typeof(exchange).type == 'fanout': # Mark exchange as fanout. self._fanout_queues[queue] = ( exchange, routing_key.replace('#', '*'), ) with self.conn_or_acquire() as client: client.sadd(self.keyprefix_queue % (exchange,), self.sep.join([routing_key or '', pattern or '', queue or ''])) def _delete(self, queue, exchange, routing_key, pattern, *args, **kwargs): self.auto_delete_queues.discard(queue) with self.conn_or_acquire(client=kwargs.get('client')) as client: client.srem(self.keyprefix_queue % (exchange,), self.sep.join([routing_key or '', pattern or '', queue or ''])) with client.pipeline() as pipe: for pri in self.priority_steps: pipe = pipe.delete(self._q_for_pri(queue, pri)) pipe.execute() def _has_queue(self, queue, **kwargs): with self.conn_or_acquire() as client: with client.pipeline() as pipe: for pri in self.priority_steps: pipe = pipe.exists(self._q_for_pri(queue, pri)) return any(pipe.execute()) def get_table(self, exchange): key = self.keyprefix_queue % exchange with self.conn_or_acquire() as client: values = client.smembers(key) if not values: raise InconsistencyError(NO_ROUTE_ERROR.format(exchange, key)) return [tuple(bytes_to_str(val).split(self.sep)) for val in values] def _purge(self, queue): with self.conn_or_acquire() as client: with client.pipeline() as pipe: for pri in self.priority_steps: priq = self._q_for_pri(queue, pri) pipe = pipe.llen(priq).delete(priq) sizes = pipe.execute() return sum(sizes[::2]) def close(self): self._closing = True if not self.closed: # remove from channel poller. self.connection.cycle.discard(self) # delete fanout bindings client = self.__dict__.get('client') # only if property cached if client is not None: for queue in self._fanout_queues: if queue in self.auto_delete_queues: self.queue_delete(queue, client=client) self._disconnect_pools() self._close_clients() super(Channel, self).close() def _close_clients(self): # Close connections for attr in 'client', 'subclient': try: client = self.__dict__[attr] connection, client.connection = client.connection, None connection.disconnect() except (KeyError, AttributeError, self.ResponseError): pass def _prepare_virtual_host(self, vhost): if not isinstance(vhost, numbers.Integral): if not vhost or vhost == '/': vhost = DEFAULT_DB elif vhost.startswith('/'): vhost = vhost[1:] try: vhost = int(vhost) except ValueError: raise ValueError( 'Database is int between 0 and limit - 1, not {0}'.format( vhost, )) return vhost def _filter_tcp_connparams(self, socket_keepalive=None, socket_keepalive_options=None, **params): return params def _connparams(self, asynchronous=False): conninfo = self.connection.client connparams = { 'host': conninfo.hostname or '127.0.0.1', 'port': conninfo.port or self.connection.default_port, 'virtual_host': conninfo.virtual_host, 'password': conninfo.password, 'max_connections': self.max_connections, 'socket_timeout': self.socket_timeout, 'socket_connect_timeout': self.socket_connect_timeout, 'socket_keepalive': self.socket_keepalive, 'socket_keepalive_options': self.socket_keepalive_options, } if conninfo.ssl: # Connection(ssl={}) must be a dict containing the keys: # 'ssl_cert_reqs', 'ssl_ca_certs', 'ssl_certfile', 'ssl_keyfile' try: connparams.update(conninfo.ssl) connparams['connection_class'] = redis.SSLConnection except TypeError: pass host = connparams['host'] if '://' in host: scheme, _, _, _, password, path, query = _parse_url(host) if scheme == 'socket': connparams = self._filter_tcp_connparams(**connparams) connparams.update({ 'connection_class': redis.UnixDomainSocketConnection, 'path': '/' + path}, **query) connparams.pop('socket_connect_timeout', None) connparams.pop('socket_keepalive', None) connparams.pop('socket_keepalive_options', None) connparams['password'] = password connparams.pop('host', None) connparams.pop('port', None) connparams['db'] = self._prepare_virtual_host( connparams.pop('virtual_host', None)) channel = self connection_cls = ( connparams.get('connection_class') or self.connection_class ) if asynchronous: class Connection(connection_cls): def disconnect(self): # NOTE: see celery issue #3898 # redis-py Connection shutdown()s the socket # which causes all copies of file descriptor # to become unusable, however close() only # affect process-local copies of fds. # So we just override Connection's disconnect method. self._parser.on_disconnect() channel._on_connection_disconnect(self) if self._sock is None: return try: # self._sock.shutdown(socket.SHUT_RDWR) self._sock.close() except socket.error: pass self._sock = None connection_cls = Connection connparams['connection_class'] = connection_cls return connparams def _create_client(self, asynchronous=False): if asynchronous: return self.Client(connection_pool=self.async_pool) return self.Client(connection_pool=self.pool) def _get_pool(self, asynchronous=False): params = self._connparams(asynchronous=asynchronous) self.keyprefix_fanout = self.keyprefix_fanout.format(db=params['db']) return redis.ConnectionPool(**params) def _get_client(self): if redis.VERSION < (2, 10, 5): raise VersionMismatch( 'Redis transport requires redis-py versions 2.10.5 or later. ' 'You have {0.__version__}'.format(redis)) return redis.StrictRedis @contextmanager def conn_or_acquire(self, client=None): if client: yield client else: yield self._create_client() @property def pool(self): if self._pool is None: self._pool = self._get_pool() return self._pool @property def async_pool(self): if self._async_pool is None: self._async_pool = self._get_pool(asynchronous=True) return self._async_pool @cached_property def client(self): """Client used to publish messages, BRPOP etc.""" return self._create_client(asynchronous=True) @cached_property def subclient(self): """Pub/Sub connection used to consume fanout queues.""" client = self._create_client(asynchronous=True) return client.pubsub() def _update_queue_cycle(self): self._queue_cycle.update(self.active_queues) def _get_response_error(self): from redis import exceptions return exceptions.ResponseError @property def active_queues(self): """Set of queues being consumed from (excluding fanout queues).""" return {queue for queue in self._active_queues if queue not in self.active_fanout_queues} class Transport(virtual.Transport): """Redis Transport.""" Channel = Channel polling_interval = None # disable sleep between unsuccessful polls. default_port = DEFAULT_PORT driver_type = 'redis' driver_name = 'redis' implements = virtual.Transport.implements.extend( asynchronous=True, exchange_type=frozenset(['direct', 'topic', 'fanout']) ) def __init__(self, *args, **kwargs): if redis is None: raise ImportError('Missing redis library (pip install redis)') super(Transport, self).__init__(*args, **kwargs) # Get redis-py exceptions. self.connection_errors, self.channel_errors = self._get_errors() # All channels share the same poller. self.cycle = MultiChannelPoller() def driver_version(self): return redis.__version__ def register_with_event_loop(self, connection, loop): cycle = self.cycle cycle.on_poll_init(loop.poller) cycle_poll_start = cycle.on_poll_start add_reader = loop.add_reader on_readable = self.on_readable def _on_disconnect(connection): if connection._sock: loop.remove(connection._sock) cycle._on_connection_disconnect = _on_disconnect def on_poll_start(): cycle_poll_start() [add_reader(fd, on_readable, fd) for fd in cycle.fds] loop.on_tick.add(on_poll_start) loop.call_repeatedly(10, cycle.maybe_restore_messages) def on_readable(self, fileno): """Handle AIO event for one of our file descriptors.""" self.cycle.on_readable(fileno) def _get_errors(self): """Utility to import redis-py's exceptions at runtime.""" return get_redis_error_classes() class SentinelChannel(Channel): """Channel with explicit Redis Sentinel knowledge. Broker url is supposed to look like: sentinel://0.0.0.0:26379;sentinel://0.0.0.0:26380/... where each sentinel is separated by a `;`. Other arguments for the sentinel should come from the transport options (see :method:`Celery.connection` which is in charge of creating the `Connection` object). You must provide at least one option in Transport options: * `master_name` - name of the redis group to poll """ from_transport_options = Channel.from_transport_options + ( 'master_name', 'min_other_sentinels', 'sentinel_kwargs') connection_class = sentinel.SentinelManagedConnection if sentinel else None def _sentinel_managed_pool(self, asynchronous=False): connparams = self._connparams(asynchronous) additional_params = connparams.copy() additional_params.pop('host', None) additional_params.pop('port', None) connection_list = [] for url in self.connection.client.alt: if url and 'sentinel://' in url: connection_list.append(url.split('/')[2].split(':')) sentinel_inst = sentinel.Sentinel( connection_list, min_other_sentinels=getattr(self, 'min_other_sentinels', 0), sentinel_kwargs=getattr(self, 'sentinel_kwargs', None), **additional_params) master_name = getattr(self, 'master_name', None) return sentinel_inst.master_for( master_name, self.Client, ).connection_pool def _get_pool(self, asynchronous=False): return self._sentinel_managed_pool(asynchronous) class SentinelTransport(Transport): """Redis Sentinel Transport.""" default_port = 26379 Channel = SentinelChannel
XXXXXXXXX XXXXX XXXXXX XXXXXX XXXXX XXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXX X XXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XX XXXXXX XXXX XXX XXXX XXXXX XXXXXXX XX XXX XX X XXXXXXXXXXXX XXXXXXX X XXXXXXXXXXXXXXXXXXXXXX X XXXXXX XXXXXX XXXXXXX X XXXXX X XX XXXX XX XXXXXXX XXX XXX XXXXX XX XXX XXX XXXXXXX XXXX XX XXX XXXX XX XXX XX X XXXXXXXXXXXXX XXXX XXXXXXXXXXX XXXXXXXXXXXXXX XXXX XXXXXXXXXXX X XXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX X XXX XXXXX X XXXXXXXXXXXXXXXXXXXXXXXX X XXXXXXXX XXXXXXXX XXXXXXXX XXXXX XXXXXXXXXXXXXXX XXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXX XXXX X XX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XX X XX XXXXXXXXX XXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXX XXXXXXXXXXXXXXXXXX XXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXXXXXXXX XXXXXXX XXXXXXX XXXXX XXX XXXXXXXXXXXX XXX XX XXXX XXXX XXXXXXXXXXX XXXXXXXXXX XX XXXXXXXXXX XX XXXX XXXX XXXX XXXXX XXXXXXX XX XXXXXXX XXXXXXXXXXXXXX XXX XXXXXXXXX XXXX XXXXXXXXXX XXXXXXXXXXXX XX XXX XXXXXXXX XXXXXXXXXX XXXXXXX XXXX XXX XXXXX XXXXX XX XXXXXXXXXXX XX XXXX XXXXXXX XX XXXXX XXXXXXXXX XX XXXXX XX XXX XXXXXXXXXXX XXXXXXXXXX XXXX XXX XXX X XXXXXXX XXXXXX XX XXXXXXX XX XXXX XXXXXXXXX XXXXXX XXXXXX XXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXX XXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXXXXXXXX XXXXX XXXXXXXX XXXXXXX XXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXXXXXXXX XXXXX XXXXXXXX XXXXXXXX XXX XXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXX XXXXX XXXX XXXXXXXXXXXXX XXXX XXXXXXXXXXX XXXXXX XXXXXXXXXX XXXXX XXXXX XX XXXX XX XXXXXXXXXX XXX XXXXX XXXXX XX XXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X XXX XXXXX X XXXXXXXXXXXXXXXXXXXXXXXX X XXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXX XXXXX XXXXXXXXXXXXXXX XXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXX XXXX X XX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XX X XXXXXXXXX XXXXX XXXXXXXX XX XXX XXXXX XXXXX XXX XXXXXXXXX XXXXXXXXXX XXXXXXX XXXXX XXX XXXXXX XXX XXX XX XXXX XXXXXXXXXXXX XXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXX XXXX XXXXXXXXXXXXXX XXXXXX XXXX XXXXX XXXXX XX XXX XXX XXXX XXXXX XXXXXXXX XXXXXX XX XXX XXXX XXXXXXXX XX XXXXXXXXXXXXXXX XXXXXX XXXX XXXXXXXXXXXX XXXXX XXXXXXX XXXXXXX XXXX X XXXXXX XXX XX XXXXXXXXXX XXX XXXXXX XXXX XX XXXXXX XXXX XXX XXXXXXX XXXXX XXXXXXXX XX XXXXX XX XXXXXXXXX XXXXXXX XXX XXXXXX XXX XXXXXXXXXX XXX XXXX XX XXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXX XXXX XXX XXXX XXXXX XXXXXXX XX XXX XX X XXXXXXXXXXXX XXXXXXX X XXXXXXXXXXXXXXXXXXXXXX X XXXXXX XXXXXX XXXXXXX X XXXXX X XX XXXX XX XXXXXXX XXX XXX XXXXX XX XXX XXX XXXXXXX XXXX XX XXX XXXX XX XXX XX X XXXXXXXXXXXXX XXXX XXXXXXXXXXX XXXXXXXXXXXXXX XXXX XXXXXXXXXXX XXXXXXXX XXXXXX XXXXXX XXXXXXXXX XXX XXXXXXX XXXXX XXX XXXXXX XXX XXX XX XXXX XXXXXXX XX XXXXXXX XXX XXXXXXX XX XXX XXXXXXXXXX XXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXX XXXX XXXXXXXXXXXXX XXXXXXX XXXXX XXXXX XXXX XX XXXXX XXX XXXXXX XXXX XXXX XXX XXXX XXXXXX XX XXXXX XXXXXX XXXX XXXX XXXX XXXXXX XXXXXXXXXXXXX XX XXX XXXXXXXXXX XXXX XX XXXXXXXXXXX XXXXXX XXXX XXXXXXXXXXXX XXXXXX XXXXXX XXXX XX XXXXXXX XXX XXXXXXXXXXX XXXXXXXXXX XXX XXXX XXXXX XX XXXXX XXXXXX XXXXXX XXXX XXXX XXXX XX XXXX XX XXXXXXX XXXXXX XXXXX XXXX XXXXXXXXXXX XXXXXXXXXX XXXXXXX XXX XX XXXXXXX XX XXX XXXXXXXXX XXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX XXXXXXXXX XX XXX XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXX XXXXXXXXXX XXXXXX XXXXXXXXX XXXX XXXXXXXXXXXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXXXXXXXXX XXXXXXXXX XXXXXXXXXXXXX XXXX XXXXXXXXXXXX XXXX XXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXX XXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXX XXXXX XXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXX XXXXXX XXXXXX XXXX XXXXXXXXXXXXXXXXX XXXXXXXXX XXXXX XX XXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXX XXXX XXXXXXXXXXX XXXXX XXX XXX XXXXXXXXXX XXX XXXXXXXXXXXX XXXXXXXXXXXXX XXXXX XXX X XXXX XXXXX XX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXX XXX XXXXXXXXXXXX XX XXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX XXX XXXXXXX XX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXX XXXXXXXXXXXXX XXXXXXXXXX XX XXXXXXXX XXXXX XXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXX XXXXXX XXXXXX XXXXXXXXXX XXXXXXX XXXXXXX
import numpy as np from menpo.visualize.base import Renderer # The colour map used for all lines and markers GLOBAL_CMAP = 'jet' class MatplotlibRenderer(Renderer): r""" Abstract class for rendering visualizations using Matplotlib. Parameters ---------- figure_id : `int` or ``None`` A figure id or ``None``. ``None`` assumes we maintain the Matplotlib state machine and use `plt.gcf()`. new_figure : `bool` If ``True``, it creates a new figure to render on. """ def __init__(self, figure_id, new_figure): super(MatplotlibRenderer, self).__init__(figure_id, new_figure) # Set up data for saving self._supported_ext = self.figure.canvas.get_supported_filetypes().keys() # Create the extensions map, have to add . in front of the extensions # and map every extension to the savefig method n_ext = len(self._supported_ext) func_list = [lambda obj, fp, **kwargs: self.figure.savefig(fp, **obj)] * n_ext self._extensions_map = dict(zip(['.' + s for s in self._supported_ext], func_list)) def get_figure(self): r""" Gets the figure specified by the combination of ``self.figure_id`` and ``self.new_figure``. If ``self.figure_id == None`` then ``plt.gcf()`` is used. ``self.figure_id`` is also set to the correct id of the figure if a new figure is created. Returns ------- figure : Matplotlib figure object The figure we will be rendering on. """ import matplotlib.pyplot as plt if self.new_figure or self.figure_id is not None: self.figure = plt.figure(self.figure_id) else: self.figure = plt.gcf() self.figure_id = self.figure.number return self.figure def save_figure(self, filename, format='png', dpi=None, face_colour='w', edge_colour='w', orientation='portrait', paper_type='letter', transparent=False, pad_inches=0.1, overwrite=False): r""" Method for saving the figure of the current `figure_id` to file. Parameters ---------- filename : `str` or `file`-like object The string path or file-like object to save the figure at/into. format : `str` The format to use. This must match the file path if the file path is a `str`. dpi : `int` > 0 or ``None``, optional The resolution in dots per inch. face_colour : See Below, optional The face colour of the figure rectangle. Example options :: {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``} or ``(3, )`` `ndarray` or `list` of len 3 edge_colour : See Below, optional The edge colour of the figure rectangle. Example options :: {``r``, ``g``, ``b``, ``c``, ``m``, ``k``, ``w``} or ``(3, )`` `ndarray` or `list` of len 3 orientation : {``portrait``, ``landscape``}, optional The page orientation. paper_type : See Below, optional The type of the paper. Example options :: {``letter``, ``legal``, ``executive``, ``ledger``, ``a0`` through ``a10``, ``b0` through ``b10``} transparent : `bool`, optional If ``True``, the axes patches will all be transparent; the figure patch will also be transparent unless `face_colour` and/or `edge_colour` are specified. This is useful, for example, for displaying a plot on top of a coloured background on a web page. The transparency of these patches will be restored to their original values upon exit of this function. pad_inches : `float`, optional Amount of padding around the figure. overwrite : `bool`, optional If ``True``, the file will be overwritten if it already exists. """ from menpo.io.output.base import _export save_fig_args = {'dpi': dpi, 'facecolour': face_colour, 'edgecolour': edge_colour, 'orientation': orientation, 'papertype': paper_type, 'format': format, 'transparent': transparent, 'pad_inches': pad_inches, 'bbox_inches': 'tight', 'frameon': None} # Use the export code so that we have a consistent interface _export(save_fig_args, filename, self._extensions_map, format, overwrite=overwrite) def save_figure_widget(self): r""" Method for saving the figure of the current ``figure_id`` to file using `menpowidgets.base.save_matplotlib_figure` widget. """ from menpowidgets import save_matplotlib_figure save_matplotlib_figure(self) class MatplotlibSubplots(object): def _subplot_layout(self, num_subplots): if num_subplots < 2: return [1, 1] while self._is_prime(num_subplots) and num_subplots > 4: num_subplots += 1 p = self._factor(num_subplots) if len(p) == 1: p.insert(0, 1) return p while len(p) > 2: if len(p) >= 4: p[0] = p[0] * p[-2] p[1] = p[1] * p[-1] del p[-2:] else: p[0] = p[0] * p[1] del p[1] p.sort() # Reformat if the column/row ratio is too large: we want a roughly # square design while (p[1] / p[0]) > 2.5: p = self._subplot_layout(num_subplots + 1) return p def _factor(self, n): gaps = [1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6] length, cycle = 11, 3 f, fs, next_ind = 2, [], 0 while f * f <= n: while n % f == 0: fs.append(f) n /= f f += gaps[next_ind] next_ind += 1 if next_ind == length: next_ind = cycle if n > 1: fs.append(n) return fs def _is_prime(self, n): if n == 2 or n == 3: return True if n < 2 or n % 2 == 0: return False if n < 9: return True if n % 3 == 0: return False r = int(n ** 0.5) f = 5 while f <= r: if n % f == 0: return False if n % (f + 2) == 0: return False f += 6 return True def _parse_cmap(cmap_name=None, image_shape_len=3): import matplotlib.cm as cm if cmap_name is not None: return cm.get_cmap(cmap_name) else: if image_shape_len == 2: # Single channels are viewed in Gray by default return cm.gray else: return None def _parse_axes_limits(min_x, max_x, min_y, max_y, axes_x_limits, axes_y_limits): if isinstance(axes_x_limits, int): axes_x_limits = float(axes_x_limits) if isinstance(axes_y_limits, int): axes_y_limits = float(axes_y_limits) if isinstance(axes_x_limits, float): pad = (max_x - min_x) * axes_x_limits axes_x_limits = [min_x - pad, max_x + pad] if isinstance(axes_y_limits, float): pad = (max_y - min_y) * axes_y_limits axes_y_limits = [min_y - pad, max_y + pad] return axes_x_limits, axes_y_limits def _set_axes_options(ax, render_axes=True, inverted_y_axis=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, axes_x_label=None, axes_y_label=None, title=None): if render_axes: # render axes ax.set_axis_on() # set font options for l in (ax.get_xticklabels() + ax.get_yticklabels()): l.set_fontsize(axes_font_size) l.set_fontname(axes_font_name) l.set_fontstyle(axes_font_style) l.set_fontweight(axes_font_weight) # set ticks if axes_x_ticks is not None: ax.set_xticks(axes_x_ticks) if axes_y_ticks is not None: ax.set_yticks(axes_y_ticks) # set labels and title if axes_x_label is None: axes_x_label = '' if axes_y_label is None: axes_y_label = '' if title is None: title = '' ax.set_xlabel( axes_x_label, fontsize=axes_font_size, fontname=axes_font_name, fontstyle=axes_font_style, fontweight=axes_font_weight) ax.set_ylabel( axes_y_label, fontsize=axes_font_size, fontname=axes_font_name, fontstyle=axes_font_style, fontweight=axes_font_weight) ax.set_title( title, fontsize=axes_font_size, fontname=axes_font_name, fontstyle=axes_font_style, fontweight=axes_font_weight) else: # do not render axes ax.set_axis_off() # also remove the ticks to get rid of the white area ax.set_xticks([]) ax.set_yticks([]) # set axes limits if axes_x_limits is not None: ax.set_xlim(np.sort(axes_x_limits)) if axes_y_limits is None: axes_y_limits = ax.get_ylim() if inverted_y_axis: ax.set_ylim(np.sort(axes_y_limits)[::-1]) else: ax.set_ylim(np.sort(axes_y_limits)) def _set_grid_options(render_grid=True, grid_line_style='--', grid_line_width=2): import matplotlib.pyplot as plt if render_grid: plt.grid('on', linestyle=grid_line_style, linewidth=grid_line_width) else: plt.grid('off') def _set_figure_size(fig, figure_size=(10, 8)): if figure_size is not None: fig.set_size_inches(np.asarray(figure_size)) def _set_numbering(ax, centers, render_numbering=True, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k'): if render_numbering: for k, p in enumerate(centers): ax.annotate( str(k), xy=(p[0], p[1]), horizontalalignment=numbers_horizontal_align, verticalalignment=numbers_vertical_align, size=numbers_font_size, family=numbers_font_name, fontstyle=numbers_font_style, fontweight=numbers_font_weight, color=numbers_font_colour) def _set_legend(ax, legend_handles, render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False): if render_legend: # Options related to legend's font prop = {'family': legend_font_name, 'size': legend_font_size, 'style': legend_font_style, 'weight': legend_font_weight} # Render legend ax.legend( handles=legend_handles, title=legend_title, prop=prop, loc=legend_location, bbox_to_anchor=legend_bbox_to_anchor, borderaxespad=legend_border_axes_pad, ncol=legend_n_columns, columnspacing=legend_horizontal_spacing, labelspacing=legend_vertical_spacing, frameon=legend_border, borderpad=legend_border_padding, shadow=legend_shadow, fancybox=legend_rounded_corners, markerscale=legend_marker_scale) class MatplotlibImageViewer2d(MatplotlibRenderer): def __init__(self, figure_id, new_figure, image): super(MatplotlibImageViewer2d, self).__init__(figure_id, new_figure) self.image = image self.axes_list = [] def render(self, interpolation='bilinear', cmap_name=None, alpha=1., render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 8)): import matplotlib.pyplot as plt # parse colour map argument cmap = _parse_cmap(cmap_name=cmap_name, image_shape_len=len(self.image.shape)) # parse axes limits axes_x_limits, axes_y_limits = _parse_axes_limits( 0., self.image.shape[1], 0., self.image.shape[0], axes_x_limits, axes_y_limits) # render image plt.imshow(self.image, cmap=cmap, interpolation=interpolation, alpha=alpha) # store axes object ax = plt.gca() self.axes_list = [ax] # set axes options _set_axes_options( ax, render_axes=render_axes, inverted_y_axis=True, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits, axes_x_ticks=axes_x_ticks, axes_y_ticks=axes_y_ticks) # set figure size _set_figure_size(self.figure, figure_size) return self class MatplotlibImageSubplotsViewer2d(MatplotlibRenderer, MatplotlibSubplots): def __init__(self, figure_id, new_figure, image): super(MatplotlibImageSubplotsViewer2d, self).__init__(figure_id, new_figure) self.image = image self.num_subplots = self.image.shape[2] self.plot_layout = self._subplot_layout(self.num_subplots) self.axes_list = [] def render(self, interpolation='bilinear', cmap_name=None, alpha=1., render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 8)): import matplotlib.pyplot as plt # parse colour map argument cmap = _parse_cmap(cmap_name=cmap_name, image_shape_len=2) # parse axes limits axes_x_limits, axes_y_limits = _parse_axes_limits( 0., self.image.shape[1], 0., self.image.shape[0], axes_x_limits, axes_y_limits) p = self.plot_layout for i in range(self.image.shape[2]): # create subplot and append the axes object ax = plt.subplot(p[0], p[1], 1 + i) self.axes_list.append(ax) # render image plt.imshow(self.image[:, :, i], cmap=cmap, interpolation=interpolation, alpha=alpha) # set axes options _set_axes_options( ax, render_axes=render_axes, inverted_y_axis=True, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits, axes_x_ticks=axes_x_ticks, axes_y_ticks=axes_y_ticks) # set figure size _set_figure_size(self.figure, figure_size) return self class MatplotlibPointGraphViewer2d(MatplotlibRenderer): def __init__(self, figure_id, new_figure, points, edges): super(MatplotlibPointGraphViewer2d, self).__init__(figure_id, new_figure) self.points = points self.edges = edges def render(self, image_view=False, render_lines=True, line_colour='r', line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=5, marker_face_colour='r', marker_edge_colour='k', marker_edge_width=1., render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 8), label=None): from matplotlib import collections as mc import matplotlib.pyplot as plt # Flip x and y for viewing if points are tied to an image points = self.points[:, ::-1] if image_view else self.points # parse axes limits min_x, min_y = np.min(points, axis=0) max_x, max_y = np.max(points, axis=0) axes_x_limits, axes_y_limits = _parse_axes_limits( min_x, max_x, min_y, max_y, axes_x_limits, axes_y_limits) # get current axes object ax = plt.gca() # Check if graph has edges to be rendered (for example a PointCloud # won't have any edges) if render_lines and np.array(self.edges).shape[0] > 0: # Get edges to be rendered lines = zip(points[self.edges[:, 0], :], points[self.edges[:, 1], :]) # Draw line objects lc = mc.LineCollection(lines, colors=line_colour, linestyles=line_style, linewidths=line_width, cmap=GLOBAL_CMAP, label=label) ax.add_collection(lc) # If a label is defined, it should only be applied to the lines, of # a PointGraph, which represent each one of the labels, unless a # PointCloud is passed in. label = None ax.autoscale() if render_markers: plt.plot(points[:, 0], points[:, 1], linewidth=0, markersize=marker_size, marker=marker_style, markeredgewidth=marker_edge_width, markeredgecolor=marker_edge_colour, markerfacecolor=marker_face_colour, label=label) # set numbering _set_numbering(ax, points, render_numbering=render_numbering, numbers_horizontal_align=numbers_horizontal_align, numbers_vertical_align=numbers_vertical_align, numbers_font_name=numbers_font_name, numbers_font_size=numbers_font_size, numbers_font_style=numbers_font_style, numbers_font_weight=numbers_font_weight, numbers_font_colour=numbers_font_colour) # set axes options _set_axes_options( ax, render_axes=render_axes, inverted_y_axis=image_view, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits, axes_x_ticks=axes_x_ticks, axes_y_ticks=axes_y_ticks) # set equal aspect ratio ax.set_aspect('equal', adjustable='box') # set figure size _set_figure_size(self.figure, figure_size) return self class MatplotlibLandmarkViewer2d(MatplotlibRenderer): def __init__(self, figure_id, new_figure, group, pointcloud, labels_to_masks): super(MatplotlibLandmarkViewer2d, self).__init__(figure_id, new_figure) self.group = group self.pointcloud = pointcloud self.labels_to_masks = labels_to_masks def render(self, image_view=False, render_lines=True, line_colour='r', line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=5, marker_face_colour='r', marker_edge_colour='k', marker_edge_width=1., render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 8)): import matplotlib.lines as mlines from menpo.shape import TriMesh from menpo.shape.graph import PointGraph import matplotlib.pyplot as plt # Regarding the labels colours, we may get passed either no colours (in # which case we generate random colours) or a single colour to colour # all the labels with # TODO: All marker and line options could be defined as lists... n_labels = len(self.labels_to_masks) line_colour = _check_colours_list( render_lines, line_colour, n_labels, 'Must pass a list of line colours with length n_labels or a single ' 'line colour for all labels.') marker_face_colour = _check_colours_list( render_markers, marker_face_colour, n_labels, 'Must pass a list of marker face colours with length n_labels or ' 'a single marker face colour for all labels.') marker_edge_colour = _check_colours_list( render_markers, marker_edge_colour, n_labels, 'Must pass a list of marker edge colours with length n_labels or ' 'a single marker edge colour for all labels.') # check axes limits if image_view: min_y, min_x = np.min(self.pointcloud.points, axis=0) max_y, max_x = np.max(self.pointcloud.points, axis=0) else: min_x, min_y = np.min(self.pointcloud.points, axis=0) max_x, max_y = np.max(self.pointcloud.points, axis=0) axes_x_limits, axes_y_limits = _parse_axes_limits( min_x, max_x, min_y, max_y, axes_x_limits, axes_y_limits) # get pointcloud of each label sub_pointclouds = self._build_sub_pointclouds() # initialize legend_handles list legend_handles = [] # for each pointcloud for i, (label, pc) in enumerate(sub_pointclouds): # render pointcloud pc.view(figure_id=self.figure_id, image_view=image_view, render_lines=render_lines, line_colour=line_colour[i], line_style=line_style, line_width=line_width, render_markers=render_markers, marker_style=marker_style, marker_size=marker_size, marker_face_colour=marker_face_colour[i], marker_edge_colour=marker_edge_colour[i], marker_edge_width=marker_edge_width, render_numbering=render_numbering, numbers_horizontal_align=numbers_horizontal_align, numbers_vertical_align=numbers_vertical_align, numbers_font_name=numbers_font_name, numbers_font_size=numbers_font_size, numbers_font_style=numbers_font_style, numbers_font_weight=numbers_font_weight, numbers_font_colour=numbers_font_colour, render_axes=render_axes, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits, axes_x_ticks=axes_x_ticks, axes_y_ticks=axes_y_ticks, figure_size=None) # set legend entry if render_legend: tmp_line = 'None' if (render_lines and (isinstance(pc, PointGraph) or isinstance(pc, TriMesh))): tmp_line = line_style tmp_marker = marker_style if render_markers else 'None' legend_handles.append( mlines.Line2D([], [], linewidth=line_width, linestyle=tmp_line, color=line_colour[i], marker=tmp_marker, markersize=marker_size ** 0.5, markeredgewidth=marker_edge_width, markeredgecolor=marker_edge_colour[i], markerfacecolor=marker_face_colour[i], label='{0}: {1}'.format(self.group, label))) # set legend _set_legend(plt.gca(), legend_handles, render_legend=render_legend, legend_title=legend_title, legend_font_name=legend_font_name, legend_font_style=legend_font_style, legend_font_size=legend_font_size, legend_font_weight=legend_font_weight, legend_marker_scale=legend_marker_scale, legend_location=legend_location, legend_bbox_to_anchor=legend_bbox_to_anchor, legend_border_axes_pad=legend_border_axes_pad, legend_n_columns=legend_n_columns, legend_horizontal_spacing=legend_horizontal_spacing, legend_vertical_spacing=legend_vertical_spacing, legend_border=legend_border, legend_border_padding=legend_border_padding, legend_shadow=legend_shadow, legend_rounded_corners=legend_rounded_corners) # set figure size _set_figure_size(self.figure, figure_size) # If no limits are set then ensure that all sub-pointclouds fit in the # view if axes_x_limits is None and axes_y_limits is None: plt.autoscale() return self def _build_sub_pointclouds(self): sub_pointclouds = [] for label, indices in self.labels_to_masks.items(): mask = self.labels_to_masks[label] sub_pointclouds.append((label, self.pointcloud.from_mask(mask))) return sub_pointclouds class MatplotlibAlignmentViewer2d(MatplotlibRenderer): def __init__(self, figure_id, new_figure, alignment_transform): super(MatplotlibAlignmentViewer2d, self).__init__(figure_id, new_figure) self.alignment_transform = alignment_transform def render(self, image=False, **kwargs): r""" Visualize how points are affected by the warp in 2 dimensions. """ import matplotlib.pyplot as plt source = self.alignment_transform.source.points target = self.alignment_transform.target.points # a factor by which the minimum and maximum x and y values of the warp # will be increased by. x_margin_factor, y_margin_factor = 0.5, 0.5 # the number of x and y samples to take n_x, n_y = 50, 50 # {x y}_{min max} is the actual bounds on either source or target # landmarks x_min, y_min = np.vstack( [target.min(0), source.min(0)]).min(0) x_max, y_max = np.vstack( [target.max(0), source.max(0)]).max(0) x_margin = x_margin_factor * (x_max - x_min) y_margin = y_margin_factor * (y_max - y_min) # {x y}_{min max}_m is the bound once it has been grown by the factor # of the spread in that dimension x_min_m = x_min - x_margin x_max_m = x_max + x_margin y_min_m = y_min - y_margin y_max_m = y_max + y_margin # build sample points for the selected region x = np.linspace(x_min_m, x_max_m, n_x) y = np.linspace(y_min_m, y_max_m, n_y) xx, yy = np.meshgrid(x, y) sample_points = np.concatenate( [xx.reshape([-1, 1]), yy.reshape([-1, 1])], axis=1) warped_points = self.alignment_transform.apply(sample_points) delta = warped_points - sample_points # plot the sample points result x, y, = 0, 1 if image: # if we are overlaying points onto an image, # we have to account for the fact that axis 0 is typically # called 'y' and axis 1 is typically called 'x'. Flip them here x, y = y, x plt.quiver(sample_points[:, x], sample_points[:, y], delta[:, x], delta[:, y]) delta = target - source # plot how the landmarks move from source to target plt.quiver(source[:, x], source[:, y], delta[:, x], delta[:, y], angles='xy', scale_units='xy', scale=1) # rescale to the bounds plt.xlim((x_min_m, x_max_m)) plt.ylim((y_min_m, y_max_m)) if image: # if we are overlaying points on an image, axis0 (the 'y' axis) # is flipped. plt.gca().invert_yaxis() return self class MatplotlibGraphPlotter(MatplotlibRenderer): def __init__(self, figure_id, new_figure, x_axis, y_axis, title=None, legend_entries=None, x_label=None, y_label=None, x_axis_limits=None, y_axis_limits=None, x_axis_ticks=None, y_axis_ticks=None): super(MatplotlibGraphPlotter, self).__init__(figure_id, new_figure) self.x_axis = x_axis self.y_axis = y_axis if legend_entries is None: legend_entries = ['Curve {}'.format(i) for i in range(len(y_axis))] self.legend_entries = legend_entries self.title = title self.x_label = x_label self.y_label = y_label self.x_axis_ticks = x_axis_ticks self.y_axis_ticks = y_axis_ticks # parse axes limits min_x = np.min(x_axis) max_x = np.max(x_axis) min_y = np.min([np.min(l) for l in y_axis]) max_y = np.max([np.max(l) for l in y_axis]) self.x_axis_limits, self.y_axis_limits = _parse_axes_limits( min_x, max_x, min_y, max_y, x_axis_limits, y_axis_limits) def render(self, render_lines=True, line_colour='r', line_style='-', line_width=1, render_markers=True, marker_style='o', marker_size=6, marker_face_colour='r', marker_edge_colour='k', marker_edge_width=1., render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', figure_size=(10, 8), render_grid=True, grid_line_style='--', grid_line_width=1): import matplotlib.pyplot as plt # Check the viewer options that can be different for each plotted curve n_curves = len(self.y_axis) render_lines = _check_render_flag(render_lines, n_curves, 'Must pass a list of different ' 'render_lines flag for each curve or ' 'a single render_lines flag for all ' 'curves.') render_markers = _check_render_flag(render_markers, n_curves, 'Must pass a list of different ' 'render_markers flag for each ' 'curve or a single render_markers ' 'flag for all curves.') line_colour = _check_colours_list( True, line_colour, n_curves, 'Must pass a list of line colours with length n_curves or a single ' 'line colour for all curves.') line_style = _check_colours_list( True, line_style, n_curves, 'Must pass a list of line styles with length n_curves or a single ' 'line style for all curves.') line_width = _check_colours_list( True, line_width, n_curves, 'Must pass a list of line widths with length n_curves or a single ' 'line width for all curves.') marker_style = _check_colours_list( True, marker_style, n_curves, 'Must pass a list of marker styles with length n_curves or a ' 'single marker style for all curves.') marker_size = _check_colours_list( True, marker_size, n_curves, 'Must pass a list of marker sizes with length n_curves or a single ' 'marker size for all curves.') marker_face_colour = _check_colours_list( True, marker_face_colour, n_curves, 'Must pass a list of marker face colours with length n_curves or a ' 'single marker face colour for all curves.') marker_edge_colour = _check_colours_list( True, marker_edge_colour, n_curves, 'Must pass a list of marker edge colours with length n_curves or a ' 'single marker edge colour for all curves.') marker_edge_width = _check_colours_list( True, marker_edge_width, n_curves, 'Must pass a list of marker edge widths with length n_curves or a ' 'single marker edge width for all curves.') # plot all curves ax = plt.gca() for i, y in enumerate(self.y_axis): linestyle = line_style[i] if not render_lines[i]: linestyle = 'None' marker = marker_style[i] if not render_markers[i]: marker = 'None' plt.plot(self.x_axis, y, color=line_colour[i], linestyle=linestyle, linewidth=line_width[i], marker=marker, markeredgecolor=marker_edge_colour[i], markerfacecolor=marker_face_colour[i], markeredgewidth=marker_edge_width[i], markersize=marker_size[i], label=self.legend_entries[i]) # set legend _set_legend(ax, legend_handles=None, render_legend=render_legend, legend_title=legend_title, legend_font_name=legend_font_name, legend_font_style=legend_font_style, legend_font_size=legend_font_size, legend_font_weight=legend_font_weight, legend_marker_scale=legend_marker_scale, legend_location=legend_location, legend_bbox_to_anchor=legend_bbox_to_anchor, legend_border_axes_pad=legend_border_axes_pad, legend_n_columns=legend_n_columns, legend_horizontal_spacing=legend_horizontal_spacing, legend_vertical_spacing=legend_vertical_spacing, legend_border=legend_border, legend_border_padding=legend_border_padding, legend_shadow=legend_shadow, legend_rounded_corners=legend_rounded_corners) # set axes options _set_axes_options( ax, render_axes=render_axes, inverted_y_axis=False, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, axes_x_limits=self.x_axis_limits, axes_y_limits=self.y_axis_limits, axes_x_ticks=self.x_axis_ticks, axes_y_ticks=self.y_axis_ticks, axes_x_label=self.x_label, axes_y_label=self.y_label, title=self.title) # set grid options _set_grid_options(render_grid=render_grid, grid_line_style=grid_line_style, grid_line_width=grid_line_width) # set figure size _set_figure_size(self.figure, figure_size) return self class MatplotlibMultiImageViewer2d(MatplotlibRenderer): def __init__(self, figure_id, new_figure, image_list): super(MatplotlibMultiImageViewer2d, self).__init__(figure_id, new_figure) self.image_list = image_list def render(self, interval=50, **kwargs): import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.animation as animation if len(self.image_list[0].shape) == 2: # Single channels are viewed in Gray _ax = plt.imshow(self.image_list[0], cmap=cm.Greys_r, **kwargs) else: _ax = plt.imshow(self.image_list[0], **kwargs) def init(): return _ax, def animate(j): _ax.set_data(self.image_list[j]) return _ax, self._ani = animation.FuncAnimation(self.figure, animate, init_func=init, frames=len(self.image_list), interval=interval, blit=True) return self class MatplotlibMultiImageSubplotsViewer2d(MatplotlibRenderer, MatplotlibSubplots): def __init__(self, figure_id, new_figure, image_list): super(MatplotlibMultiImageSubplotsViewer2d, self).__init__(figure_id, new_figure) self.image_list = image_list self.num_subplots = self.image_list[0].shape[2] self.plot_layout = self._subplot_layout(self.num_subplots) def render(self, interval=50, **kwargs): import matplotlib.cm as cm import matplotlib.animation as animation import matplotlib.pyplot as plt p = self.plot_layout _axs = [] for i in range(self.image_list[0].shape[2]): plt.subplot(p[0], p[1], 1 + i) # Hide the x and y labels plt.axis('off') _ax = plt.imshow(self.image_list[0][:, :, i], cmap=cm.Greys_r, **kwargs) _axs.append(_ax) def init(): return _axs def animate(j): for k, _ax in enumerate(_axs): _ax.set_data(self.image_list[j][:, :, k]) return _axs self._ani = animation.FuncAnimation(self.figure, animate, init_func=init, frames=len(self.image_list), interval=interval, blit=True) return self def sample_colours_from_colourmap(n_colours, colour_map): import matplotlib.pyplot as plt cm = plt.get_cmap(colour_map) return [cm(1.*i/n_colours)[:3] for i in range(n_colours)] def _check_colours_list(render_flag, colours_list, n_objects, error_str): if render_flag: if colours_list is None: # sample colours from jet colour map colours_list = sample_colours_from_colourmap(n_objects, GLOBAL_CMAP) if isinstance(colours_list, list): if len(colours_list) == 1: colours_list *= n_objects elif len(colours_list) != n_objects: raise ValueError(error_str) else: colours_list = [colours_list] * n_objects else: colours_list = [None] * n_objects return colours_list def _check_render_flag(render_flag, n_objects, error_str): if isinstance(render_flag, bool): render_flag = [render_flag] * n_objects elif isinstance(render_flag, list): if len(render_flag) == 1: render_flag *= n_objects elif len(render_flag) != n_objects: raise ValueError(error_str) else: raise ValueError(error_str) return render_flag
from __future__ import unicode_literals from collections import OrderedDict, defaultdict from copy import copy import nose from xvalidator.element import Element, NameSpace, create_element, \ get_result_tag, Document, create_document nameSpaces = [ NameSpace(prefix='xsi', uri='http://www.w3.org/2001/XMLSchema-instance'), NameSpace(prefix='spirit', uri='http://www.spiritconsortium.org/XMLSchema/SPIRIT/1685-2009'), NameSpace(prefix='', uri='http://www.spiritconsortium.org/XMLSchema/SPIRIT/1685-2009'), ] def test_element_pass(): el = Element('test') assert el.tag == 'test' def test_element_repr(): id_string = str('ID42') actual = repr(Element('tagName', value=[1, 2, 3], attributes=dict(id=id_string), path='/root-0,name')) expected = 'Element(tag=\'tagName\', attributes={\'id\': \'ID42\'}, ' \ 'path="/root-0,name", value=[1, 2, 3])' nose.tools.eq_(actual, str(expected)) def test_element_str(): actual = str(Element('tagName', value=[1, 2, 3], attributes=dict(id='ID42'), path='/root-0,name')) nose.tools.eq_(actual, '<tagName>') def test_get_result_key_pass(): actual = get_result_tag('spirit:name') nose.tools.eq_(actual, 'spirit:name') def test_create_element_root_only(): el = create_element('root', {}, nameSpaces) nose.tools.eq_(el, Element('root', value=[], path='/root-0,')) def test_create_element_attribute_text_pass(): value = OrderedDict([('text', OrderedDict([('@attr', '42'), ('#text', 'root value')]))]) el = create_element('root', value, nameSpaces) nose.tools.eq_(el, Element(tag='root', path="/root-0,", value=[ Element(tag='text', attributes=OrderedDict([('attr', '42')]), path="/root-0,/text-0,", value='root value')])) register = OrderedDict([('@id', 'ID6'), ('name', 'reg6'), ('addressOffset', '0'), ('size', '2'), ('access', 'writeOnce'), ('reset', OrderedDict([('value', '0')]))]) def test_create_element_one_level(): el = create_element('register', register, nameSpaces) register_element = Element(tag='register', attributes=OrderedDict([ ('id', 'ID6')]), path="/register-0,reg6", value=[ Element(tag='name', path="/register-0,reg6/name-0,", value='reg6'), Element(tag='addressOffset', path="/register-0,reg6/addressOffset-0,", value='0'), Element(tag='size', path="/register-0,reg6/size-0,", value='2'), Element(tag='access', path="/register-0,reg6/access-0,", value='writeOnce'), Element(tag='reset', path="/register-0,reg6/reset-0,", value=[ Element(tag='value', path="/register-0,reg6/reset-0,/value-0,", value='0')])]) nose.tools.eq_(el, register_element) def test_create_element_two_levels(): register_copy = copy(register) field10 = OrderedDict( [('@id', 'ID10'), ('name', 'field10'), ('bitOffset', '0'), ('bitWidth', '2'), ('volatile', 'false')]) field11 = OrderedDict( [('@id', 'ID11'), ('name', 'field11'), ('bitOffset', '2'), ('bitWidth', '4'), ('volatile', 'true')]) register_copy['field'] = [field10, field11] el = create_element('register', register_copy, nameSpaces) expected = [ Element(tag='field', attributes=OrderedDict([('id', 'ID10')]), path="/register-0,reg6/field-0,field10", value=[ Element(tag='name', path="/register-0,reg6/field-0,field10/name-0,", value='field10'), Element(tag='bitOffset', path="/register-0,reg6/field-0,field10/bitOffset-0,", value='0'), Element(tag='bitWidth', path="/register-0,reg6/field-0,field10/bitWidth-0,", value='2'), Element(tag='volatile', path="/register-0,reg6/field-0,field10/volatile-0,", value='false')]), Element(tag='field', attributes=OrderedDict([('id', 'ID11')]), path="/register-0,reg6/field-1,field11", value=[ Element(tag='name', path="/register-0,reg6/field-1,field11/name-0,", value='field11'), Element(tag='bitOffset', path="/register-0,reg6/field-1,field11/bitOffset-0,", value='2'), Element(tag='bitWidth', path="/register-0,reg6/field-1,field11/bitWidth-0,", value='4'), Element(tag='volatile', path="/register-0,reg6/field-1,field11/volatile-0,", value='true')])] nose.tools.eq_(el.value[5:], expected) def test_create_element_stats(): register_copy = copy(register) field10 = OrderedDict([ ('@id', 'ID10'), ('name', 'field10'), ('bitOffset', '0'), ('bitWidth', '2'), ('volatile', 'false')]) field11 = OrderedDict([ ('@id', 'ID11'), ('name', 'field11'), ('bitOffset', '2'), ('bitWidth', '4'), ('volatile', 'true')]) register_copy['field'] = [field10, field11] stats = defaultdict(int) create_element('register', register_copy, nameSpaces, stats=stats) expected_stats = {'reset': 1, 'bitOffset': 2, 'name': 3, 'bitWidth': 2, 'field.@id': 2, 'register.@id': 1, 'register': 1, 'addressOffset': 1, 'value': 1, 'access': 1, 'field': 2, 'volatile': 2, 'size': 1} nose.tools.eq_(stats, expected_stats) def test_create_element_stats_simple_value_list(): stats = defaultdict(int) test = OrderedDict([('multiple', [1, 2, 3])]) create_element('test', test, nameSpaces, path='/', stats=stats) nose.tools.eq_(stats, {'multiple': 1, 'test': 1}) def test_create_document(): register_copy = copy(register) register_copy['@xmlns'] = 'http://www.spiritconsortium.org/XMLSchema/SPIRIT/1685-2009' field10 = OrderedDict([ ('@id', 'ID10'), ('name', 'field10'), ('bitOffset', '0'), ('bitWidth', '2'), ('volatile', 'false')]) field11 = OrderedDict([ ('@id', 'ID11'), ('name', 'field11'), ('bitOffset', '2'), ('bitWidth', '4'), ('volatile', 'true')]) register_copy['field'] = [field10, field11] doc = create_document('test_elements.py: register', OrderedDict( [('register', register_copy)])) expected_stats = {'reset': 1, 'bitOffset': 2, 'name': 3, 'bitWidth': 2, 'field.@id': 2, 'register.@id': 1, 'register': 1, 'addressOffset': 1, 'value': 1, 'access': 1, 'field': 2, 'volatile': 2, 'size': 1} nose.tools.eq_(doc.stats, expected_stats) def test_element_to_dict_pass(): element = Element('test', value=False) actual = element.to_dict nose.tools.eq_(actual, 'false') def test_element_to_dict_list_pass(): element = Element('test', value=[1, 2.0, 'name']) actual = element.to_dict nose.tools.eq_(actual, ['1', '2.0', 'name']) def test_element_to_dict_attribute_no_value_pass(): element = Element('test', attributes={'valid': False}) actual = element.to_dict nose.tools.eq_(actual, OrderedDict([('@valid', 'false')])) def test_element_to_dict_attribute_value_empty_list_pass(): element = Element('test', value=[], attributes={'valid': False}) actual = element.to_dict nose.tools.eq_(actual, OrderedDict([('@valid', 'false')])) def test_element_to_dict_id_attribute_pass(): element = Element('test', value=True, attributes={'id': 'ID42'}) actual = element.to_dict nose.tools.eq_(actual, OrderedDict([('@id', 'ID42'), ('#text', 'true')])) def test_element_to_dict_three_levels_mix_ns_prefix_pass(): level2 = Element('post:level2', value='level2Name') level1 = Element('pre:level1', value=[level2]) root = Element('parent', value=[level1]) actual = root.to_dict nose.tools.eq_(actual, OrderedDict([ ('pre:level1', OrderedDict([('post:level2', 'level2Name')]))])) def test_element_to_dict_two_levels_three_children_pass(): child0 = Element('pre:child', value='childName1') child1 = Element('pre:child', value='childName2') child2 = Element('pre:child', value='childName3') parent = Element('pre:parent', value=[child0, child1, child2]) actual = parent.to_dict nose.tools.eq_(actual, OrderedDict([ ('pre:child', ['childName1', 'childName2', 'childName3'])])) def test_document_to_dict_two_levels_three_children_pass(): child0 = Element('xsi:child', value='childName1') child1 = Element('xsi:child', value='childName2') child2 = Element('xsi:child', value='childName3') root = Element('test:parent', value=[child0, child1, child2]) doc = Document('test', [nameSpaces[0]], root) actual = doc.to_dict nose.tools.eq_(actual, OrderedDict([ ('test:parent', OrderedDict([ ('@xmlns:xsi', 'http://www.w3.org/2001/XMLSchema-instance'), ('xsi:child', ['childName1', 'childName2', 'childName3']) ]))])) def test_document_to_dict_two_levels_empty_ns_prefix_pass(): child = Element('child', value='childName1') root = Element('prefix:parent', value=[child]) doc = Document('test', [nameSpaces[2]], root) actual = doc.to_dict nose.tools.eq_(actual, OrderedDict([ ('prefix:parent', OrderedDict([ ('@xmlns', 'http://www.spiritconsortium.org/XMLSchema/SPIRIT/1685-2009'), ('child', 'childName1') ]))])) def test_document_to_dict_two_levels_round_trip_pass(): p = '/xsi:parent-0,/xsi:child-' child = Element('xsi:child', value='childName1', path=p + '0,') root = Element('xsi:parent', value=[child], path='/xsi:parent-0,') stats = defaultdict(int) stats['xsi:parent'] = 1 stats['xsi:child'] = 1 doc = Document('test', [nameSpaces[0]], root, stats=stats) xml_dict = doc.to_dict doc_new = create_document('test', xml_dict) nose.tools.eq_(doc.__dict__.items(), doc_new.__dict__.items()) def test_document_to_dict_two_levels_top_attribute_round_trip_pass(): p = '/xsi:parent-0,/xsi:child-' child = Element('xsi:child', value='childName1', path=p + '0,') root = Element('xsi:parent', value=[child], path='/xsi:parent-0,') stats = defaultdict(int) stats['xsi:parent'] = 1 stats['xsi:child'] = 1 stats['xsi:parent.@id'] = 1 doc = Document('test', [nameSpaces[0]], root, stats=stats, attributes=OrderedDict([('id', 'ID42')]) ) xml_dict = doc.to_dict doc_new = create_document('test', xml_dict) nose.tools.eq_(doc.__dict__.items(), doc_new.__dict__.items())
#!/usr/bin/env python # Copyright 2021, Kay Hayen, mailto:[email protected] # # Python test originally created or extracted from other peoples work. The # parts from me are licensed as below. It is at least Free Software where # it's copied from other people. In these cases, that will normally be # indicated. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Runner for standalone program tests of Nuitka. These tests aim at showing that one specific module works in standalone mode, trying to find issues with that packaging. """ import os import sys # Find nuitka package relative to us. The replacement is for POSIX python # and Windows paths on command line. sys.path.insert( 0, os.path.normpath( os.path.join( os.path.dirname(os.path.abspath(__file__.replace("\\", os.sep))), "..", ".." ) ), ) # isort:start from nuitka.freezer.RuntimeTracing import getRuntimeTraceOfLoadedFiles from nuitka.tools.testing.Common import ( checkLoadedFileAccesses, checkRequirements, compareWithCPython, createSearchMode, decideFilenameVersionSkip, displayFileContents, displayFolderContents, displayRuntimeTraces, reportSkip, setup, test_logger, ) from nuitka.utils.FileOperations import removeDirectory from nuitka.utils.Timing import TimerReport from nuitka.utils.Utils import getOS def displayError(dirname, filename): assert dirname is None dist_path = filename[:-3] + ".dist" displayFolderContents("dist folder", dist_path) inclusion_log_path = filename[:-3] + ".py.inclusion.log" displayFileContents("inclusion log", inclusion_log_path) def main(): # Complex stuff, even more should become common code or project options though. # pylint: disable=too-many-branches,too-many-statements python_version = setup(needs_io_encoding=True) search_mode = createSearchMode() for filename in sorted(os.listdir(".")): if not filename.endswith(".py"): continue if not decideFilenameVersionSkip(filename): continue active = search_mode.consider(dirname=None, filename=filename) if not active: test_logger.info("Skipping %s" % filename) continue extra_flags = [ "expect_success", "--standalone", "remove_output", # Cache the CPython results for re-use, they will normally not change. "cpython_cache", # To understand what is slow. "timing", ] # skip each test if their respective requirements are not met requirements_met, error_message = checkRequirements(filename) if not requirements_met: reportSkip(error_message, ".", filename) continue if filename == "Urllib3Using.py" and os.name == "nt": reportSkip( "Socket module early import not working on Windows currently", ".", filename, ) continue if "Idna" in filename: # For the warnings of Python2. if python_version < (3,): extra_flags.append("ignore_stderr") if filename == "CtypesUsing.py": extra_flags.append("plugin_disable:pylint-warnings") if filename == "GtkUsing.py": # Don't test on platforms not supported by current Debian testing, and # which should be considered irrelevant by now. if python_version < (2, 7): reportSkip("irrelevant Python version", ".", filename) continue # For the warnings. extra_flags.append("ignore_warnings") if filename.startswith("Win"): if os.name != "nt": reportSkip("Windows only test", ".", filename) continue if filename == "TkInterUsing.py": if getOS() == "Darwin": reportSkip("Not working macOS yet", ".", filename) continue if getOS() == "Windows": reportSkip("Can hang on Windows CI.", ".", filename) continue # For the plug-in information. extra_flags.append("plugin_enable:tk-inter") if filename == "FlaskUsing.py": # For the warnings. extra_flags.append("ignore_warnings") if filename == "NumpyUsing.py": # TODO: Disabled for now. reportSkip("numpy.test not fully working yet", ".", filename) continue if filename == "PandasUsing.py": extra_flags.append("plugin_enable:numpy") extra_flags.append("plugin_disable:pylint-warnings") extra_flags.append("plugin_disable:pyqt5") extra_flags.append("plugin_disable:pyside2") extra_flags.append("plugin_disable:pyside6") if filename == "PmwUsing.py": extra_flags.append("plugin_enable:pmw-freezer") if filename == "OpenGLUsing.py": # For the warnings. extra_flags.append("ignore_warnings") if filename == "GlfwUsing.py": # For the warnings. extra_flags.append("plugin_enable:glfw") extra_flags.append("plugin_enable:numpy") if filename == "PasslibUsing.py": # For the warnings. extra_flags.append("ignore_warnings") if filename == "Win32ComUsing.py": # For the warnings. extra_flags.append("ignore_warnings") if filename.startswith(("PySide2", "PySide6", "PyQt5", "PyQt6")): # Don't test on platforms not supported by current Debian testing, and # which should be considered irrelevant by now. if python_version < (2, 7) or ((3,) <= python_version < (3, 7)): reportSkip("irrelevant Python version", ".", filename) continue # For the plug-in information if filename.startswith("PySide2"): extra_flags.append("plugin_enable:pyside6") elif filename.startswith("PySide6"): extra_flags.append("plugin_enable:pyside6") elif filename.startswith("PyQt5"): extra_flags.append("plugin_enable:pyqt5") elif filename.startswith("PyQt6"): extra_flags.append("plugin_enable:pyqt6") test_logger.info( "Consider output of standalone mode compiled program: %s" % filename ) # First compare so we know the program behaves identical. compareWithCPython( dirname=None, filename=filename, extra_flags=extra_flags, search_mode=search_mode, needs_2to3=False, on_error=displayError, ) # Second check if glibc libraries haven't been accidentally # shipped with the standalone executable found_glibc_libs = [] for dist_filename in os.listdir(os.path.join(filename[:-3] + ".dist")): if os.path.basename(dist_filename).startswith( ( "ld-linux-x86-64.so", "libc.so.", "libpthread.so.", "libm.so.", "libdl.so.", "libBrokenLocale.so.", "libSegFault.so", "libanl.so.", "libcidn.so.", "libcrypt.so.", "libmemusage.so", "libmvec.so.", "libnsl.so.", "libnss_compat.so.", "libnss_db.so.", "libnss_dns.so.", "libnss_files.so.", "libnss_hesiod.so.", "libnss_nis.so.", "libnss_nisplus.so.", "libpcprofile.so", "libresolv.so.", "librt.so.", "libthread_db-1.0.so", "libthread_db.so.", "libutil.so.", ) ): found_glibc_libs.append(dist_filename) if found_glibc_libs: test_logger.warning( "Should not ship glibc libraries with the standalone executable (found %s)" % found_glibc_libs ) sys.exit(1) binary_filename = os.path.join( filename[:-3] + ".dist", filename[:-3] + (".exe" if os.name == "nt" else "") ) # Then use "strace" on the result. with TimerReport( "Determining run time loaded files took %.2f", logger=test_logger ): loaded_filenames = getRuntimeTraceOfLoadedFiles( logger=test_logger, command=[binary_filename] ) illegal_accesses = checkLoadedFileAccesses( loaded_filenames=loaded_filenames, current_dir=os.getcwd() ) if illegal_accesses: displayError(None, filename) displayRuntimeTraces(test_logger, binary_filename) test_logger.warning( "Should not access these file(s): '%r'." % illegal_accesses ) search_mode.onErrorDetected(1) removeDirectory(filename[:-3] + ".dist", ignore_errors=True) search_mode.finish() if __name__ == "__main__": main()
"""Factory functions for asymmetric cryptography. @sort: generateRSAKey, parseXMLKey, parsePEMKey, parseAsPublicKey, parseAsPrivateKey """ from compat import * from RSAKey import RSAKey from Python_RSAKey import Python_RSAKey import cryptomath if cryptomath.m2cryptoLoaded: from OpenSSL_RSAKey import OpenSSL_RSAKey if cryptomath.pycryptoLoaded: from PyCrypto_RSAKey import PyCrypto_RSAKey # ************************************************************************** # Factory Functions for RSA Keys # ************************************************************************** def generateRSAKey(bits, implementations=["openssl", "python"]): """Generate an RSA key with the specified bit length. @type bits: int @param bits: Desired bit length of the new key's modulus. @rtype: L{tlslite.utils.RSAKey.RSAKey} @return: A new RSA private key. """ for implementation in implementations: if implementation == "openssl" and cryptomath.m2cryptoLoaded: return OpenSSL_RSAKey.generate(bits) elif implementation == "python": return Python_RSAKey.generate(bits) raise ValueError("No acceptable implementations") def parseXMLKey(s, private=False, public=False, implementations=["python"]): """Parse an XML-format key. The XML format used here is specific to tlslite and cryptoIDlib. The format can store the public component of a key, or the public and private components. For example:: <publicKey xmlns="http://trevp.net/rsa"> <n>4a5yzB8oGNlHo866CAspAC47M4Fvx58zwK8pou... <e>Aw==</e> </publicKey> <privateKey xmlns="http://trevp.net/rsa"> <n>4a5yzB8oGNlHo866CAspAC47M4Fvx58zwK8pou... <e>Aw==</e> <d>JZ0TIgUxWXmL8KJ0VqyG1V0J3ern9pqIoB0xmy... <p>5PreIj6z6ldIGL1V4+1C36dQFHNCQHJvW52GXc... <q>/E/wDit8YXPCxx126zTq2ilQ3IcW54NJYyNjiZ... <dP>mKc+wX8inDowEH45Qp4slRo1YveBgExKPROu6... <dQ>qDVKtBz9lk0shL5PR3ickXDgkwS576zbl2ztB... <qInv>j6E8EA7dNsTImaXexAmLA1DoeArsYeFAInr... </privateKey> @type s: str @param s: A string containing an XML public or private key. @type private: bool @param private: If True, a L{SyntaxError} will be raised if the private key component is not present. @type public: bool @param public: If True, the private key component (if present) will be discarded, so this function will always return a public key. @rtype: L{tlslite.utils.RSAKey.RSAKey} @return: An RSA key. @raise SyntaxError: If the key is not properly formatted. """ for implementation in implementations: if implementation == "python": key = Python_RSAKey.parseXML(s) break else: raise ValueError("No acceptable implementations") return _parseKeyHelper(key, private, public) #Parse as an OpenSSL or Python key def parsePEMKey(s, private=False, public=False, passwordCallback=None, implementations=["openssl", "python"]): """Parse a PEM-format key. The PEM format is used by OpenSSL and other tools. The format is typically used to store both the public and private components of a key. For example:: -----BEGIN RSA PRIVATE KEY----- MIICXQIBAAKBgQDYscuoMzsGmW0pAYsmyHltxB2TdwHS0dImfjCMfaSDkfLdZY5+ dOWORVns9etWnr194mSGA1F0Pls/VJW8+cX9+3vtJV8zSdANPYUoQf0TP7VlJxkH dSRkUbEoz5bAAs/+970uos7n7iXQIni+3erUTdYEk2iWnMBjTljfgbK/dQIDAQAB AoGAJHoJZk75aKr7DSQNYIHuruOMdv5ZeDuJvKERWxTrVJqE32/xBKh42/IgqRrc esBN9ZregRCd7YtxoL+EVUNWaJNVx2mNmezEznrc9zhcYUrgeaVdFO2yBF1889zO gCOVwrO8uDgeyj6IKa25H6c1N13ih/o7ZzEgWbGG+ylU1yECQQDv4ZSJ4EjSh/Fl aHdz3wbBa/HKGTjC8iRy476Cyg2Fm8MZUe9Yy3udOrb5ZnS2MTpIXt5AF3h2TfYV VoFXIorjAkEA50FcJmzT8sNMrPaV8vn+9W2Lu4U7C+K/O2g1iXMaZms5PC5zV5aV CKXZWUX1fq2RaOzlbQrpgiolhXpeh8FjxwJBAOFHzSQfSsTNfttp3KUpU0LbiVvv i+spVSnA0O4rq79KpVNmK44Mq67hsW1P11QzrzTAQ6GVaUBRv0YS061td1kCQHnP wtN2tboFR6lABkJDjxoGRvlSt4SOPr7zKGgrWjeiuTZLHXSAnCY+/hr5L9Q3ZwXG 6x6iBdgLjVIe4BZQNtcCQQDXGv/gWinCNTN3MPWfTW/RGzuMYVmyBFais0/VrgdH h1dLpztmpQqfyH/zrBXQ9qL/zR4ojS6XYneO/U18WpEe -----END RSA PRIVATE KEY----- To generate a key like this with OpenSSL, run:: openssl genrsa 2048 > key.pem This format also supports password-encrypted private keys. TLS Lite can only handle password-encrypted private keys when OpenSSL and M2Crypto are installed. In this case, passwordCallback will be invoked to query the user for the password. @type s: str @param s: A string containing a PEM-encoded public or private key. @type private: bool @param private: If True, a L{SyntaxError} will be raised if the private key component is not present. @type public: bool @param public: If True, the private key component (if present) will be discarded, so this function will always return a public key. @type passwordCallback: callable @param passwordCallback: This function will be called, with no arguments, if the PEM-encoded private key is password-encrypted. The callback should return the password string. If the password is incorrect, SyntaxError will be raised. If no callback is passed and the key is password-encrypted, a prompt will be displayed at the console. @rtype: L{tlslite.utils.RSAKey.RSAKey} @return: An RSA key. @raise SyntaxError: If the key is not properly formatted. """ for implementation in implementations: if implementation == "openssl" and cryptomath.m2cryptoLoaded: key = OpenSSL_RSAKey.parse(s, passwordCallback) break elif implementation == "python": key = Python_RSAKey.parsePEM(s) break else: raise ValueError("No acceptable implementations") return _parseKeyHelper(key, private, public) def _parseKeyHelper(key, private, public): if private: if not key.hasPrivateKey(): raise SyntaxError("Not a private key!") if public: return _createPublicKey(key) if private: if hasattr(key, "d"): return _createPrivateKey(key) else: return key return key def parseAsPublicKey(s): """Parse an XML or PEM-formatted public key. @type s: str @param s: A string containing an XML or PEM-encoded public or private key. @rtype: L{tlslite.utils.RSAKey.RSAKey} @return: An RSA public key. @raise SyntaxError: If the key is not properly formatted. """ try: return parsePEMKey(s, public=True) except: return parseXMLKey(s, public=True) def parsePrivateKey(s): """Parse an XML or PEM-formatted private key. @type s: str @param s: A string containing an XML or PEM-encoded private key. @rtype: L{tlslite.utils.RSAKey.RSAKey} @return: An RSA private key. @raise SyntaxError: If the key is not properly formatted. """ try: return parsePEMKey(s, private=True) except: return parseXMLKey(s, private=True) def _createPublicKey(key): """ Create a new public key. Discard any private component, and return the most efficient key possible. """ if not isinstance(key, RSAKey): raise AssertionError() return _createPublicRSAKey(key.n, key.e) def _createPrivateKey(key): """ Create a new private key. Return the most efficient key possible. """ if not isinstance(key, RSAKey): raise AssertionError() if not key.hasPrivateKey(): raise AssertionError() return _createPrivateRSAKey(key.n, key.e, key.d, key.p, key.q, key.dP, key.dQ, key.qInv) def _createPublicRSAKey(n, e, implementations = ["openssl", "pycrypto", "python"]): for implementation in implementations: if implementation == "openssl" and cryptomath.m2cryptoLoaded: return OpenSSL_RSAKey(n, e) elif implementation == "pycrypto" and cryptomath.pycryptoLoaded: return PyCrypto_RSAKey(n, e) elif implementation == "python": return Python_RSAKey(n, e) raise ValueError("No acceptable implementations") def _createPrivateRSAKey(n, e, d, p, q, dP, dQ, qInv, implementations = ["pycrypto", "python"]): for implementation in implementations: if implementation == "pycrypto" and cryptomath.pycryptoLoaded: return PyCrypto_RSAKey(n, e, d, p, q, dP, dQ, qInv) elif implementation == "python": return Python_RSAKey(n, e, d, p, q, dP, dQ, qInv) raise ValueError("No acceptable implementations")
#!/usr/bin/env python # Copyright JS Foundation and other contributors, http://js.foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import os import re import shutil import subprocess import sys import util def get_platform_cmd_prefix(): if sys.platform == 'win32': return ['cmd', '/S', '/C'] return ['python2'] # The official test262.py isn't python3 compatible, but has python shebang. def get_arguments(): execution_runtime = os.environ.get('RUNTIME', '') parser = argparse.ArgumentParser() parser.add_argument('--runtime', metavar='FILE', default=execution_runtime, help='Execution runtime (e.g. qemu)') parser.add_argument('--engine', metavar='FILE', required=True, help='JerryScript binary to run tests with') parser.add_argument('--test-dir', metavar='DIR', required=True, help='Directory contains test262 test suite') group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--es51', action='store_true', help='Run test262 ES5.1 version') group.add_argument('--es2015', default=False, const='default', nargs='?', choices=['default', 'all', 'update'], help='Run test262 - ES2015. default: all tests except excludelist, ' + 'all: all tests, update: all tests and update excludelist') group.add_argument('--esnext', default=False, const='default', nargs='?', choices=['default', 'all', 'update'], help='Run test262 - ES.next. default: all tests except excludelist, ' + 'all: all tests, update: all tests and update excludelist') parser.add_argument('--test262-test-list', metavar='LIST', help='Add a comma separated list of tests or directories to run in test262 test suite') args = parser.parse_args() if args.es2015: args.test_dir = os.path.join(args.test_dir, 'es2015') args.test262_harness_dir = os.path.abspath(os.path.dirname(__file__)) args.test262_git_hash = 'fd44cd73dfbce0b515a2474b7cd505d6176a9eb5' args.excludelist_path = os.path.join('tests', 'test262-es6-excludelist.xml') elif args.esnext: args.test_dir = os.path.join(args.test_dir, 'esnext') args.test262_harness_dir = os.path.abspath(os.path.dirname(__file__)) args.test262_git_hash = '281eb10b2844929a7c0ac04527f5b42ce56509fd' args.excludelist_path = os.path.join('tests', 'test262-esnext-excludelist.xml') else: args.test_dir = os.path.join(args.test_dir, 'es51') args.test262_harness_dir = args.test_dir args.test262_git_hash = 'es5-tests' args.mode = args.es2015 or args.esnext return args def prepare_test262_test_suite(args): if os.path.isdir(os.path.join(args.test_dir, '.git')): return 0 return_code = subprocess.call(['git', 'clone', '--no-checkout', 'https://github.com/tc39/test262.git', args.test_dir]) if return_code: print('Cloning test262 repository failed.') return return_code return_code = subprocess.call(['git', 'checkout', args.test262_git_hash], cwd=args.test_dir) assert not return_code, 'Cloning test262 repository failed - invalid git revision.' if args.es51: path_to_remove = os.path.join(args.test_dir, 'test', 'suite', 'bestPractice') if os.path.isdir(path_to_remove): shutil.rmtree(path_to_remove) path_to_remove = os.path.join(args.test_dir, 'test', 'suite', 'intl402') if os.path.isdir(path_to_remove): shutil.rmtree(path_to_remove) return 0 def update_exclude_list(args): print("=== Summary - updating excludelist ===\n") passing_tests = set() failing_tests = set() new_passing_tests = set() with open(os.path.join(os.path.dirname(args.engine), 'test262.report'), 'r') as report_file: for line in report_file: match = re.match('(=== )?(.*) (?:failed|passed) in (?:non-strict|strict)', line) if match: (unexpected, test) = match.groups() test = test.replace('\\', '/') if unexpected: failing_tests.add(test + '.js') else: passing_tests.add(test + '.js') # Tests pass in strict-mode but fail in non-strict-mode (or vice versa) should be considered as failures passing_tests = passing_tests - failing_tests with open(args.excludelist_path, 'r+') as exclude_file: lines = exclude_file.readlines() exclude_file.seek(0) exclude_file.truncate() # Skip the last line "</excludeList>" to be able to insert new failing tests. for line in lines[:-1]: match = re.match(r" <test id=\"(\S*)\">", line) if match: test = match.group(1) if test in failing_tests: failing_tests.remove(test) exclude_file.write(line) elif test in passing_tests: new_passing_tests.add(test) else: exclude_file.write(line) else: exclude_file.write(line) if failing_tests: print("New failing tests added to the excludelist") for test in sorted(failing_tests): exclude_file.write(' <test id="' + test + '"><reason></reason></test>\n') print(" " + test) print("") exclude_file.write('</excludeList>\n') if new_passing_tests: print("New passing tests removed from the excludelist") for test in sorted(new_passing_tests): print(" " + test) print("") if failing_tests or new_passing_tests: print("Excludelist was updated succesfully.") return 1 print("Excludelist was already up-to-date.") return 0 def main(args): return_code = prepare_test262_test_suite(args) if return_code: return return_code if sys.platform == 'win32': original_timezone = util.get_timezone() util.set_sighdl_to_reset_timezone(original_timezone) util.set_timezone('Pacific Standard Time') command = (args.runtime + ' ' + args.engine).strip() if args.es2015 or args.esnext: try: subprocess.check_output(["timeout", "--version"]) command = "timeout 5 " + command except subprocess.CalledProcessError: pass kwargs = {} if sys.version_info.major >= 3: kwargs['errors'] = 'ignore' if args.es51: test262_harness_path = os.path.join(args.test262_harness_dir, 'tools/packaging/test262.py') else: test262_harness_path = os.path.join(args.test262_harness_dir, 'test262-harness.py') test262_command = get_platform_cmd_prefix() + \ [test262_harness_path, '--command', command, '--tests', args.test_dir, '--summary'] if 'excludelist_path' in args and args.mode == 'default': test262_command.extend(['--exclude-list', args.excludelist_path]) if args.test262_test_list: test262_command.extend(args.test262_test_list.split(',')) proc = subprocess.Popen(test262_command, universal_newlines=True, stdout=subprocess.PIPE, **kwargs) return_code = 1 with open(os.path.join(os.path.dirname(args.engine), 'test262.report'), 'w') as output_file: counter = 0 summary_found = False summary_end_found = False while True: output = proc.stdout.readline() if not output: break output_file.write(output) if output.startswith('=== Summary ==='): summary_found = True print('') if summary_found: if not summary_end_found: print(output, end='') if not output.strip(): summary_end_found = True if 'All tests succeeded' in output: return_code = 0 elif re.search('in (non-)?strict mode', output): counter += 1 if (counter % 100) == 0: print(".", end='') if (counter % 5000) == 0: print(" Executed %d tests." % counter) proc.wait() if sys.platform == 'win32': util.set_timezone(original_timezone) if args.mode == 'update': return_code = update_exclude_list(args) return return_code if __name__ == "__main__": sys.exit(main(get_arguments()))
#!/usr/bin/env python2 # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import os import sys import json import urllib2 import functools import subprocess from sparktestsupport import SPARK_HOME, ERROR_CODES from sparktestsupport.shellutils import run_cmd def print_err(msg): """ Given a set of arguments, will print them to the STDERR stream """ print(msg, file=sys.stderr) def post_message_to_github(msg, ghprb_pull_id): print("Attempting to post to Github...") url = "https://api.github.com/repos/apache/spark/issues/" + ghprb_pull_id + "/comments" github_oauth_key = os.environ["GITHUB_OAUTH_KEY"] posted_message = json.dumps({"body": msg}) request = urllib2.Request(url, headers={ "Authorization": "token %s" % github_oauth_key, "Content-Type": "application/json" }, data=posted_message) try: response = urllib2.urlopen(request) if response.getcode() == 201: print(" > Post successful.") except urllib2.HTTPError as http_e: print_err("Failed to post message to Github.") print_err(" > http_code: %s" % http_e.code) print_err(" > api_response: %s" % http_e.read()) print_err(" > data: %s" % posted_message) except urllib2.URLError as url_e: print_err("Failed to post message to Github.") print_err(" > urllib2_status: %s" % url_e.reason[1]) print_err(" > data: %s" % posted_message) def pr_message(build_display_name, build_url, ghprb_pull_id, short_commit_hash, commit_url, msg, post_msg=''): # align the arguments properly for string formatting str_args = (build_display_name, msg, build_url, ghprb_pull_id, short_commit_hash, commit_url, str(' ' + post_msg + '.') if post_msg else '.') return '**[Test build %s %s](%stestReport)** for PR %s at commit [`%s`](%s)%s' % str_args def run_pr_checks(pr_tests, ghprb_actual_commit, sha1): """ Executes a set of pull request checks to ease development and report issues with various components such as style, linting, dependencies, compatibilities, etc. @return a list of messages to post back to Github """ # Ensure we save off the current HEAD to revert to current_pr_head = run_cmd(['git', 'rev-parse', 'HEAD'], return_output=True).strip() pr_results = list() for pr_test in pr_tests: test_name = pr_test + '.sh' pr_results.append(run_cmd(['bash', os.path.join(SPARK_HOME, 'dev', 'tests', test_name), ghprb_actual_commit, sha1], return_output=True).rstrip()) # Ensure, after each test, that we're back on the current PR run_cmd(['git', 'checkout', '-f', current_pr_head]) return pr_results def run_tests(tests_timeout): """ Runs the `dev/run-tests` script and responds with the correct error message under the various failure scenarios. @return a tuple containing the test result code and the result note to post to Github """ test_result_code = subprocess.Popen(['timeout', tests_timeout, os.path.join(SPARK_HOME, 'dev', 'run-tests')]).wait() failure_note_by_errcode = { 1: 'executing the `dev/run-tests` script', # error to denote run-tests script failures ERROR_CODES["BLOCK_GENERAL"]: 'some tests', ERROR_CODES["BLOCK_RAT"]: 'RAT tests', ERROR_CODES["BLOCK_SCALA_STYLE"]: 'Scala style tests', ERROR_CODES["BLOCK_JAVA_STYLE"]: 'Java style tests', ERROR_CODES["BLOCK_PYTHON_STYLE"]: 'Python style tests', ERROR_CODES["BLOCK_R_STYLE"]: 'R style tests', ERROR_CODES["BLOCK_DOCUMENTATION"]: 'to generate documentation', ERROR_CODES["BLOCK_BUILD"]: 'to build', ERROR_CODES["BLOCK_BUILD_TESTS"]: 'build dependency tests', ERROR_CODES["BLOCK_MIMA"]: 'MiMa tests', ERROR_CODES["BLOCK_SPARK_UNIT_TESTS"]: 'Spark unit tests', ERROR_CODES["BLOCK_PYSPARK_UNIT_TESTS"]: 'PySpark unit tests', ERROR_CODES["BLOCK_PYSPARK_PIP_TESTS"]: 'PySpark pip packaging tests', ERROR_CODES["BLOCK_SPARKR_UNIT_TESTS"]: 'SparkR unit tests', ERROR_CODES["BLOCK_TIMEOUT"]: 'from timeout after a configured wait of \`%s\`' % ( tests_timeout) } if test_result_code == 0: test_result_note = ' * This patch passes all tests.' else: note = failure_note_by_errcode.get( test_result_code, "due to an unknown error code, %s" % test_result_code) test_result_note = ' * This patch **fails %s**.' % note return [test_result_code, test_result_note] def main(): # Important Environment Variables # --- # $ghprbActualCommit # This is the hash of the most recent commit in the PR. # The merge-base of this and master is the commit from which the PR was branched. # $sha1 # If the patch merges cleanly, this is a reference to the merge commit hash # (e.g. "origin/pr/2606/merge"). # If the patch does not merge cleanly, it is equal to $ghprbActualCommit. # The merge-base of this and master in the case of a clean merge is the most recent commit # against master. ghprb_pull_id = os.environ["ghprbPullId"] ghprb_actual_commit = os.environ["ghprbActualCommit"] ghprb_pull_title = os.environ["ghprbPullTitle"] sha1 = os.environ["sha1"] # Marks this build as a pull request build. os.environ["AMP_JENKINS_PRB"] = "true" # Switch to a Maven-based build if the PR title contains "test-maven": if "test-maven" in ghprb_pull_title: os.environ["AMPLAB_JENKINS_BUILD_TOOL"] = "maven" # Switch the Hadoop profile based on the PR title: if "test-hadoop2.6" in ghprb_pull_title: os.environ["AMPLAB_JENKINS_BUILD_PROFILE"] = "hadoop2.6" if "test-hadoop2.7" in ghprb_pull_title: os.environ["AMPLAB_JENKINS_BUILD_PROFILE"] = "hadoop2.7" build_display_name = os.environ["BUILD_DISPLAY_NAME"] build_url = os.environ["BUILD_URL"] commit_url = "https://github.com/apache/spark/commit/" + ghprb_actual_commit # GitHub doesn't auto-link short hashes when submitted via the API, unfortunately. :( short_commit_hash = ghprb_actual_commit[0:7] # format: http://linux.die.net/man/1/timeout # must be less than the timeout configured on Jenkins (currently 400m) tests_timeout = "340m" # Array to capture all test names to run on the pull request. These tests are represented # by their file equivalents in the dev/tests/ directory. # # To write a PR test: # * the file must reside within the dev/tests directory # * be an executable bash script # * accept three arguments on the command line, the first being the Github PR long commit # hash, the second the Github SHA1 hash, and the final the current PR hash # * and, lastly, return string output to be included in the pr message output that will # be posted to Github pr_tests = [ "pr_merge_ability", "pr_public_classes" ] # `bind_message_base` returns a function to generate messages for Github posting github_message = functools.partial(pr_message, build_display_name, build_url, ghprb_pull_id, short_commit_hash, commit_url) # post start message post_message_to_github(github_message('has started'), ghprb_pull_id) pr_check_results = run_pr_checks(pr_tests, ghprb_actual_commit, sha1) test_result_code, test_result_note = run_tests(tests_timeout) # post end message result_message = github_message('has finished') result_message += '\n' + test_result_note + '\n' result_message += '\n'.join(pr_check_results) post_message_to_github(result_message, ghprb_pull_id) sys.exit(test_result_code) if __name__ == "__main__": main()
# -*- coding: utf-8 -*- # Copyright 2021 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """AWS IAM Functionality""" import datetime import json import os from typing import TYPE_CHECKING, Optional, Tuple from libcloudforensics import errors from libcloudforensics import logging_utils from libcloudforensics.providers.aws.internal import common if TYPE_CHECKING: # TYPE_CHECKING is always False at runtime, therefore it is safe to ignore # the following cyclic import, as it it only used for type hints from libcloudforensics.providers.aws.internal import account # pylint: disable=cyclic-import logging_utils.SetUpLogger(__name__) logger = logging_utils.GetLogger(__name__) IAM_POLICY_DIR = './iampolicies' # Policy allowing an instance to image a volume EBS_COPY_POLICY_DOC = 'ebs_copy_to_s3_policy.json' # Policy doc to allow EC2 to assume the role. Necessary for instance profiles EC2_ASSUME_ROLE_POLICY_DOC = 'ec2_assume_role_policy.json' # Policy to deny all session tokens generated after a date IAM_DENY_ALL_AFTER_TOKEN_ISSUE_DATE = 'revoke_old_sessions.json' class IAM: """Class that represents AWS IAM services""" def __init__(self, aws_account: 'account.AWSAccount') -> None: """Initialize the AWS IAM client object. Args: aws_account (AWSAccount): An AWS account object. """ self.aws_account = aws_account self.client = self.aws_account.ClientApi(common.IAM_SERVICE) def CheckInstanceProfileExists(self, profile_name: str) -> bool: """Check if an instance role exists. Args: profile_name (str): Instance profile name. Returns: bool: True if the Instance Profile exists, false otherwise. """ try: self.client.get_instance_profile(InstanceProfileName=profile_name) return True except self.client.exceptions.NoSuchEntityException: return False def CreatePolicy(self, name: str, policy_doc: str) -> Tuple[str, bool]: """Creates an IAM policy using the name and policy doc passed in. If the policy exists already, return the Arn of the existing policy. Args: name (str): Name for the policy policy_doc (str): IAM Policy document as a json string. Returns: Tuple[str, bool]: A tuple containing: str: The policy Amazon Resource Name (ARN). bool: True if the policy was created, False if it existed already. Raises: ResourceNotFoundError: If the policy failed creation due to already existing, but then could not be found """ logger.info('Creating IAM policy {0:s}'.format(name)) try: policy = self.client.create_policy( PolicyName=name, PolicyDocument=policy_doc) return str(policy['Policy']['Arn']), True except self.client.exceptions.EntityAlreadyExistsException as exception: logger.info('Policy exists already, using existing') policies = self.client.list_policies(Scope='Local') while True: for policy in policies['Policies']: if policy['PolicyName'] == name: return str(policy['Arn']), False if not policies['IsTruncated']: # If we reached here it means the policy was deleted between the # creation failure and lookup # pylint: disable=line-too-long raise errors.ResourceNotFoundError('Could not locate policy with name {0:s} after creation failure due to EntityAlreadyExistsException' # pylint: enable=line-too-long .format(name), __name__) from exception policies = self.client.list_policies( Scope='Local', Marker=policies['Marker']) def DeletePolicy(self, arn: str) -> None: """Deletes the IAM policy with the given name. Args: name (str): The ARN of the policy to delete. """ logger.info('Deleting IAM policy {0:s}'.format(arn)) try: self.client.delete_policy(PolicyArn=arn) except self.client.exceptions.NoSuchEntityException: logger.info('IAM policy {0:s} did not exist'.format(arn)) def CreateInstanceProfile(self, name: str) -> Tuple[str, bool]: """Create an EC2 instance Profile. If the profile exists already, returns the Arn of the existing. Args: name (str): The name of the instance profile. Returns: Tuple[str, bool]: A tuple containing: str: The instance profile Amazon Resource Name (ARN). bool: True if the instance profile was created, False if it existed already. Raises: ResourceNotFoundError: If the profile failed creation due to already existing, but then could not be found """ logger.info('Creating IAM Instance Profile {0:s}'.format(name)) try: profile = self.client.create_instance_profile(InstanceProfileName=name) return str(profile['InstanceProfile']['Arn']), True except self.client.exceptions.EntityAlreadyExistsException as exception: logger.info('Instance Profile exists already, using existing') profiles = self.client.list_instance_profiles() while True: for profile in profiles['InstanceProfiles']: if profile['InstanceProfileName'] == name: return str(profile['Arn']), False if not profiles['IsTruncated']: # If we reached here it means the profile was deleted between the # creation failure and lookup # pylint: disable=line-too-long raise errors.ResourceNotFoundError('Could not locate instance profile with name {0:s} after creation failure due to EntityAlreadyExistsException' # pylint: enable=line-too-long .format(name), __name__) from exception profiles = self.client.list_instance_profiles(Marker=profiles['Marker']) def DeleteInstanceProfile(self, profile_name: str) -> None: """Deletes an instance profile. Args: profile_name (str): The name of the instance profile to delete. """ logger.info('Deleting instance profile {0:s}'.format(profile_name)) try: self.client.delete_instance_profile(InstanceProfileName=profile_name) except self.client.exceptions.NoSuchEntityException: logger.info('IAM role {0:s} did not exist'.format(profile_name)) def CreateRole(self, name: str, assume_role_policy_doc: str) \ -> Tuple[str, bool]: """Create an AWS IAM role. If it exists, return the existing. Args; name (str): The name of the role. assume_role_policy_doc (str): Assume Role policy doc. Returns: Tuple[str, bool]: A tuple str: The Arn of the role. bool: True if the role was created, false if it existed already. Raises: ResourceNotFoundError: If the role failed creation due to already existing, but then could not be found """ logger.info('Creating IAM Role {0:s}'.format(name)) try: role = self.client.create_role(RoleName=name, AssumeRolePolicyDocument=assume_role_policy_doc) return str(role['Role']['Arn']), True except self.client.exceptions.EntityAlreadyExistsException as exception: logger.info('Role exists already, using existing') roles = self.client.list_roles() while True: for role in roles['Roles']: if role['RoleName'] == name: return str(role['Arn']), False if not roles['IsTruncated']: # If we reached here it means the role was deleted between the # creation failure and lookup # pylint: disable=line-too-long raise errors.ResourceNotFoundError('Could not locate role with name {0:s} after creation failure due to EntityAlreadyExistsException' # pylint: enable=line-too-long .format(name), __name__) from exception roles = self.client.list_roles(Marker=roles['Marker']) def DeleteRole(self, role_name: str) -> None: """Delete an IAM role. Args: role_name (str): The name of the role to delete. """ logger.info('Deleting IAM role {0:s}'.format(role_name)) try: self.client.delete_role(RoleName=role_name) except self.client.exceptions.NoSuchEntityException: logger.info('IAM role {0:s} did not exist'.format(role_name)) def AttachPolicyToRole(self, policy_arn: str, role_name: str) -> None: """Attaches an IAM policy to an IAM role. Args: policy_arn (str): The Policy Arn. role_name (str): The Role Name. """ logger.info('Attaching policy {0:s} to role {1:s}' .format(policy_arn, role_name)) try: self.client.attach_role_policy(RoleName=role_name, PolicyArn=policy_arn) except Exception as e: raise errors.ResourceNotFoundError( 'Attaching policy {0:s} to role {1:s} failed' .format(policy_arn, role_name), __name__) from e def DetachPolicyFromRole(self, policy_arn: str, role_name :str) -> None: """Detach a policy from a role. Args: policy_arn (str): The Arn of the policy to remove. role_name (str): The name of the role. """ logger.info('Detaching policy {0:s} from role {1:s}' .format(policy_arn, role_name)) try: self.client.detach_role_policy( RoleName=role_name, PolicyArn=policy_arn) except self.client.exceptions.NoSuchEntityException: pass # It doesn't matter if this fails. def AttachInstanceProfileToRole(self, instance_profile_name: str, role_name: str) -> None: """Attach a role to an instance profile. Args: instance_profile_name: The name fo the instance profile. role_name: The role name. """ logger.info('Attaching role {0:s} to instance profile {1:s}' .format(role_name, instance_profile_name)) try: self.client.add_role_to_instance_profile( InstanceProfileName=instance_profile_name, RoleName=role_name) except self.client.exceptions.LimitExceededException: # pylint: disable=line-too-long logger.info('Instance profile {0:s} already has a role attached. Proceeding on assumption this is the correct attachment' # pylint: enable=line-too-long .format(instance_profile_name)) def DetachInstanceProfileFromRole(self, role_name: str, profile_name: str) \ -> None: """Detach a role from an instance profile. Args: role_name (str): The name of the role. profile_name (str): The name of the instance profile. """ logger.info('Detaching role {0:s} from instance profile {1:s}' .format(role_name, profile_name)) try: self.client.remove_role_from_instance_profile( InstanceProfileName=profile_name, RoleName=role_name) except self.client.exceptions.NoSuchEntityException: pass # It doesn't matter if this fails. def RevokeOldSessionsForRole(self, role_name: str) -> None: """Revoke old session tokens for a role. This is achieved by adding an inline policy to the role, Deny *:* on the condition of TokenIssueTime. Args: role_name (str): The role name to act on. """ now = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.000Z") policy = json.loads(ReadPolicyDoc(IAM_DENY_ALL_AFTER_TOKEN_ISSUE_DATE)) policy['Statement'][0]['Condition']['DateLessThan']['aws:TokenIssueTime']\ = now policy = json.dumps(policy) try: self.client.put_role_policy( RoleName=role_name, PolicyName='RevokeOldSessions', PolicyDocument=policy ) except self.client.exceptions.ClientError as exception: raise errors.ResourceNotFoundError( 'Could not add inline policy to IAM role {0:s}: {1!s}'.format( role_name, exception), __name__) from exception def ReadPolicyDoc(filename: str) -> str: """Read and return the IAM policy doc at filename. Args: filename (str): the name of the policy file in the iampolicies directory. Returns: str: The policy doc. Raises: OSError: If the policy file cannot be opened, read or closed. """ try: policy_path = os.path.join( os.path.dirname(os.path.realpath(__file__)), IAM_POLICY_DIR, filename) with open(policy_path, encoding='utf-8') as policy_doc: return policy_doc.read() except OSError as exception: raise OSError( 'Could not open/read/close the policy doc {0:s}: {1:s}'.format( policy_path, str(exception))) from exception
################################################################################ # # Copyright 2015 Crown copyright (c) # Land Information New Zealand and the New Zealand Government. # All rights reserved # # This program is released under the terms of the 3 clause BSD license. See the # LICENSE file for more information. # ################################################################################ from datetime import datetime as DT #from functools import wraps import os import sys import re import logging import threading from AimsApi import AimsApi from AimsUtility import FeedRef,ActionType,ApprovalType,GroupActionType,GroupApprovalType,UserActionType,FeatureType,FeedType,SupplementalHack from AimsUtility import AimsException from Const import ENABLE_ENTITY_EVALUATION,MERGE_RESPONSE,MERGE_EXCLUDE,MAX_FEATURE_COUNT from Address import Entity, EntityValidation, EntityAddress from AimsLogging import Logger from FeatureFactory import FeatureFactory from Observable import Observable aimslog = None class DataUpdaterSelectionException(AimsException):pass class DataUpdater(Observable): '''Mantenence thread comtrolling data updates and api interaction. Instantiates an amisapi instance with wrappers for initialisation of local data store and change/resolution feed updating ''' #et = FeatureType.ADDRESS #ft = FeedType.FEATURES address = None pno = 0 changeId = 0 global aimslog aimslog = Logger.setup() getfeat = None def __init__(self,params,queue): '''DataUpdater base initialiser. @param params: List of configuration parameters @type params: List<?> @param queue: Response queue @type queues: Queue.Queue ''' super(DataUpdater,self).__init__() self.ref,self.conf,self.factory = params self.queue = queue #self._stop = threading.Event() self.api = AimsApi(self.conf) def setup(self,etft,sw,ne,pno): '''Parameter setup. @param etft: Feed/Feature identifier @type etft: FeedRef @param sw: South-West corner, coordinate value pair @type sw: List<Double>{2} @param ne: North-East corner, coordinate value pair @type ne: List<Double>{2} @param pno: Feed page number @type pno: Integer ''' self.etft = etft self.sw,self.ne = sw,ne self.pno = pno def run(self): '''Main updater run method fetching single page of addresses from API''' aimslog.info('GET.{} {} - Page{}'.format(self.ref,self.etft,self.pno)) featlist = [] #for page in self.api.getOnePage(self.etft,self.sw,self.ne,self.pno): # featlist.append(self.processPage(page,self.etft)) ce,pages = self.api.getOnePage(self.etft,self.sw,self.ne,self.pno) if any(ce.values()): aimslog.error('Single-page request failure {}'.format(ce)) if pages.has_key('entities'): for page in pages['entities']: featlist.append(self.processPage(page,self.etft)) else: aimslog.error('Single-page response missing entities') self.queue.put(featlist) self.notify(self.ref) def processPage(self,page,etft): '''Process an individual page. If page is resolution type optionally re-query at individual level @param page: Processed results from pno request @type page: Dict<?> @param etft: Feed/Feature identifier @type etft: FeedRef ''' if etft.ft == FeedType.RESOLUTIONFEED and ENABLE_ENTITY_EVALUATION: cid = self.cid(page) ce,feat = self.api.getOneFeature(etft,cid) if any(ce.values()): aimslog.error('Single-feature request failure {}'.format(ce)) if feat == {u'class': [u'error']}: #if the pno request returns the not-supposed-to-happen error, it gets special treatment aimslog.error('Invalid API response {}'.format(feat)) #return self.factory.get(model=pno['properties']) else: return self._processEntity(feat,cid,etft) else: #just return the main feedlevel address objects return self.factory.get(model=page['properties']) def _processEntity(self,feat,cid,etft): '''Identify and select group, address or entity processing for a reolutionfeed feature @param feat: dict representation of feature before object processing @type feat: Dict @param cid: Change ID or group change ID @type cid: Integer @param etft: Feed/Feature identifier @type etft: FeedRef @return: Instantiated feature object ''' if feat['class'][0] == 'validation': return self._processValidationEntity(feat) #e = EntityValidation.getInstance(feat)# self.getEntityInstance() #------------------------------- # Resolution Group elif feat['class'][0] == 'resolutiongroup': return self._processResolutionGroup(feat,cid,etft) # Address List elif feat['class'][0] == 'addressresolution': return self._processAddressResolution(feat) #-------------------------------- # Simple Entity object else: return self._processSimpleEntity(self.factory.get,feat) def _processValidationEntity(self,feat): '''Wraps call to validation entity instantiator @param feat: dict representation of feature before object processing @type feat: Dict @return: Instantiated validation Entity ''' return EntityValidation.getInstance(feat) def _processAddressEntity(self,feat): '''Processes feature data into address object @param feat: dict representation of feature before object processing @type feat: Dict @return: Instantiated Address entity ''' #return EntityAddress.getInstance(feat) return self._processSimpleEntity(FeatureFactory.getInstance(FeedRef((FeatureType.ADDRESS,FeedType.RESOLUTIONFEED))).get,feat) def _processSimpleEntity(self,fact,feat): '''Default processor for generic entities but the same as address resolution processor (below). @param fact: Link to factory, object instantiation method @type fact: <Function> @param feat: dict representation of feature before object processing @type feat: Dict @return: Instantiated Address entity ''' featurelist = [] a = fact(model=feat['properties']) if feat.has_key('entities'): for e in feat['entities']: featurelist.append(self._populateEntity(e)) a._setEntities(featurelist) return a def _processAddressResolution(self,feat): '''Processes entries in the addressresolution entities list @param feat: dict representation of feature before object processing @type feat: Dict @return: Instantiated Address entity ''' featurelist = [] a = self.factory.get(model=feat['properties']) for e in feat['entities']: featurelist.append(self._populateEntity(e)) a._setEntities(featurelist) return a def _processResolutionGroup(self,feat,cid,etft): '''Processes the res-address objects in a res-group. Subsequently populates the sub entities as feature-addresses. @param feat: dict representation of feature before object processing @type feat: Dict @param cid: Change ID or group change ID @type cid: Integer @param etft: Feed/Feature identifier @type etft: FeedRef @return: Instantiated feature object ''' featurelist = [] g = self.factory.get(model=feat['properties'])#group #HACK subst cid for cid+count string ce,feat2 = self.api.getOneFeature(etft,'{}/address?count={}'.format(cid,MAX_FEATURE_COUNT))#group entity/adr list if any(ce.values()): aimslog.error('Single-feature request failure {}'.format(ce)) etft2 = FeedRef((FeatureType.ADDRESS,FeedType.RESOLUTIONFEED)) factory2 = FeatureFactory.getInstance(etft2) for f in feat2['entities']: a = factory2.get(model=f['properties']) elist2 = [] for e in f['entities']: elist2.append(self._populateEntity(e)) a._setEntities(elist2) featurelist.append(a) g._setEntities(featurelist) return g def _populateEntity(self,ent): '''Selects type and instantiates appropriate entity object. @param ent: dict representation of feature before object processing @type ent: Dict ''' if ent['class'][0] == 'validation': return self._processValidationEntity(ent) elif ent['class'][0] == 'address': ###res factory might work here instead #etft3 = FeedRef((FeatureType.ADDRESS,FeedType.FEATURES)) #factory3 = FeatureFactory.getInstance(etft3) #return factory3.get(model=e['properties']) return self._processAddressEntity(ent) else: return Entity.getInstance(ent) @staticmethod def getInstance(etft): '''Based on the provided FeedRef this getInstance returns a group,address or user updater object @param etft: Feed/Feature identifier @type etft: FeedRef ''' if etft.et == FeatureType.GROUPS: return DataUpdaterGroup elif etft.et == FeatureType.ADDRESS: return DataUpdaterAddress elif etft.et == FeatureType.USERS: return DataUpdaterUser else: raise DataUpdaterSelectionException('Select Address,Groups or Users') def stop(self): self._stop.set() def stopped(self): return self._stop.isSet() def close(self): aimslog.info('Queue {} stopped'.format(self.queue.qsize())) self.queue.task_done() #executed by subclass def cid(self,_): pass #--------------------------------------------------------------- #simple subclasses to assign getaddress/getgroup function class DataUpdaterAddress(DataUpdater): '''Dataupdater subclass for Address objects''' def __init__(self,params,queue): '''Initialises Address DataUpdater @param params: List of configuration parameters @type params: List<?> @param queue: Response queue @type queues: Queue.Queue ''' super(DataUpdaterAddress,self).__init__(params,queue) def cid(self,f): return f['properties']['changeId'] # def getEntityInstance(self,ref): # return EntityValidation(ref) class DataUpdaterGroup(DataUpdater): '''Dataupdater subclass for Group objects''' def __init__(self,params,queue): '''Initialises Group DataUpdater @param params: List of configuration parameters @type params: List<?> @param queue: Response queue @type queues: Queue.Queue ''' super(DataUpdaterGroup,self).__init__(params,queue) def cid(self,f): return f['properties']['changeGroupId'] # def getEntityInstance(self,ref): # return EntityAddress(ref) class DataUpdaterUser(DataUpdater): '''Dataupdater subclass for User objects''' def __init__(self,params,queue): '''Initialises User DataUpdater @param params: List of configuration parameters @type params: List<?> @param queue: Response queue @type queues: Queue.Queue ''' super(DataUpdaterUser,self).__init__(params,queue) #TODO Consolidate group/address + action/approve subclasses. might be enough variation to retain seperate classes #NOTES variables incl; oft=FF/RF,id=addressId/changeId/groupChangeId, action=approve/action/groupaction class DataUpdaterDRC(DataUpdater): '''Super class for DRC DataUpdater classes''' #instantiated in subclass oft,etft,identifier,payload,actiontype,action,agu,at,build,requestId = 10*(None,) def version(self): '''Quick self checker for existing version number to save additional request I{This functionality is under development in the API} ''' return self.agu._version if hasattr(self.agu,'_version') and self.agu._version else self._version() def _version(self): '''Function to read AIMS version value from single Feature pages @return: Integer. Feature version number ''' _,cid = SupplementalHack.strip(self.identifier) ce,jc = self.api.getOneFeature(FeedRef((self.etft.et,self.oft)),cid) if any(ce.values()): aimslog.error('Single-feature request failure {}'.format(ce)) if jc['properties'].has_key('version'): return jc['properties']['version'] else: #WORKAROUND aimslog.warn('No version number available for address/groupId={}'.format(self.identifier)) return 1 def run(self): '''One pass run method to intercat with APi and return sincel page results - Call appropriate API method - Parse response Entities and attach to feature - Attach error messages and request ID - Merge response object with request object - Put featre on output queue - Notify listeners ''' aimslog.info('DUr.{} {} - AGU{}'.format(self.ref,self.actiontype.reverse[self.at],self.agu)) payload = self.factory.convert(self.agu,self.at) err,resp = self.action(self.at,payload,self.identifier) featurelist = [] feature = self.factory.get(model=resp['properties']) if hasattr(resp,'entities'): for e in resp['entities']: featurelist.append(self._populateEntity(e)) feature._setEntities(featurelist) #feature = self.processPage(feature,self.etft) #print 'feature',feature if err: feature.setErrors(err) if self.requestId: feature.setRequestId(self.requestId) if MERGE_RESPONSE: aimslog.info('Merge req/res for {}'.format(self.agu)) self.agu.setVersion(None) self.agu.merge(feature,MERGE_EXCLUDE) self.queue.put(self.agu) else: self.queue.put(feature) self.notify(self.ref) class DataUpdaterAction(DataUpdaterDRC): '''DataUpdater class for Address Action requests on the changefeed''' #et = FeatureType.ADDRESS #ft = FeedType.CHANGEFEED oft = FeedType.FEATURES def setup(self,etft,aat,address,_): '''Set Address Action specific parameters @param etft: Validation Entity feedref @type etft: FeedRef @param aat: Action type for this address @type aat: ActionType @param address: Address object detailing action changes @type address: Address ''' self.etft = etft self.at = aat self.agu = address self.identifier = self.agu.getAddressId() self.requestId = self.agu.getRequestId() if aat != ActionType.ADD: self.agu.setVersion(self.version()) #run actions self.actiontype = ActionType self.action = self.api.addressAction class DataUpdaterApproval(DataUpdaterDRC): '''DataUpdater class for Address Approval requests on the resolutionfeed''' #et = FeatureType.ADDRESS #ft = FeedType.RESOLUTIONFEED oft = FeedType.RESOLUTIONFEED def setup(self,etft,aat,address,_): '''Set Address Approval specific parameters @param etft: Validation Entity feedref @type etft: FeedRef @param aat: Approval type for this address @type aat: ApprovalType @param address: Address object detailing approval action @type address: Address ''' self.etft = etft self.at = aat self.agu = address self.identifier = self.agu.getChangeId() self.requestId = self.agu.getRequestId() self.agu.setVersion(self.version()) #run actions self.actiontype = ApprovalType self.action = self.api.addressApprove class DataUpdaterGroupAction(DataUpdaterDRC): '''DataUpdater class for Group Action requests on the changefeed''' #et = FeatureType.ADDRESS #ft = FeedType.CHANGEFEED oft = FeedType.FEATURES def setup(self,etft,gat,group,_): '''Set Group Action specific parameters @param etft: Validation Entity feedref @type etft: FeedRef @param gat: Group action type for this address @type gat: GroupActionType @param address: Address object detailing action changes @type address: Address ''' self.etft = etft self.at = gat self.agu = group self.identifier = self.agu.getChangeGroupId() self.requestId = self.agu.getRequestId() self.agu.setVersion(self.version()) #run actions self.actiontype = GroupActionType self.action = self.api.groupAction class DataUpdaterGroupApproval(DataUpdaterDRC): '''DataUpdater class for Group Approval requests on the resolutionfeed''' #et = FeatureType.ADDRESS #ft = FeedType.CHANGEFEED oft = FeedType.RESOLUTIONFEED def setup(self,etft,gat,group,_): '''Set Group Approval specific parameters @param etft: Validation Entity feedref @type etft: FeedRef @param gat: Group approval type for this address @type gat: GroupApprovalType @param address: Address object detailing approval action @type address: Address ''' self.etft = etft self.at = gat self.agu = group self.identifier = self.agu.getChangeGroupId() self.requestId = self.agu.getRequestId() self.agu.setVersion(self.version()) #run actions self.actiontype = GroupApprovalType self.action = self.api.groupApprove class DataUpdaterUserAction(DataUpdaterDRC): '''DataUpdater class for User Action requests on the adminfeed''' #et = FeatureType.ADDRESS #ft = FeedType.CHANGEFEED oft = FeedType.ADMIN def setup(self,etft,uat,user,_): '''Set User specific parameters @param etft: Validation Entity feedref @type etft: FeedRef @param uat: User action type for this user @type uat: UserActionType @param user: User object detailing admin action @type user: User ''' self.etft = etft self.at = uat self.agu = user self.identifier = self.agu.getUserId() self.requestId = self.agu.getRequestId() #self.agu.setVersion(self.version()) #run actions self.actiontype = UserActionType self.action = self.api.userAction
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ctc_ops.ctc_decoder_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numpy as np from six.moves import zip_longest from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import ctc_ops from tensorflow.python.platform import test def grouper(iterable, n, fillvalue=None): """Collect data into fixed-length chunks or blocks.""" # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx args = [iter(iterable)] * n return zip_longest(fillvalue=fillvalue, *args) def flatten(list_of_lists): """Flatten one level of nesting.""" return itertools.chain.from_iterable(list_of_lists) class CTCGreedyDecoderTest(test.TestCase): def _testCTCDecoder(self, decoder, inputs, seq_lens, log_prob_truth, decode_truth, expected_err_re=None, **decoder_args): inputs_t = [ops.convert_to_tensor(x) for x in inputs] # convert inputs_t into a [max_time x batch_size x depth] tensor # from a len time python list of [batch_size x depth] tensors inputs_t = array_ops.stack(inputs_t) with self.cached_session(use_gpu=False) as sess: decoded_list, log_probability = decoder( inputs_t, sequence_length=seq_lens, **decoder_args) decoded_unwrapped = list( flatten([(st.indices, st.values, st.dense_shape) for st in decoded_list])) if expected_err_re is None: outputs = sess.run(decoded_unwrapped + [log_probability]) # Group outputs into (ix, vals, shape) tuples output_sparse_tensors = list(grouper(outputs[:-1], 3)) output_log_probability = outputs[-1] # Check the number of decoded outputs (top_paths) match self.assertEqual(len(output_sparse_tensors), len(decode_truth)) # For each SparseTensor tuple, compare (ix, vals, shape) for out_st, truth_st, tf_st in zip(output_sparse_tensors, decode_truth, decoded_list): self.assertAllEqual(out_st[0], truth_st[0]) # ix self.assertAllEqual(out_st[1], truth_st[1]) # vals self.assertAllEqual(out_st[2], truth_st[2]) # shape # Compare the shapes of the components with the truth. The # `None` elements are not known statically. self.assertEqual([None, truth_st[0].shape[1]], tf_st.indices.get_shape().as_list()) self.assertEqual([None], tf_st.values.get_shape().as_list()) self.assertShapeEqual(truth_st[2], tf_st.dense_shape) # Make sure decoded probabilities match self.assertAllClose(output_log_probability, log_prob_truth, atol=1e-6) else: with self.assertRaisesOpError(expected_err_re): sess.run(decoded_unwrapped + [log_probability]) @test_util.run_deprecated_v1 def testCTCGreedyDecoder(self): """Test two batch entries - best path decoder.""" max_time_steps = 6 # depth == 4 seq_len_0 = 4 input_prob_matrix_0 = np.asarray( [ [1.0, 0.0, 0.0, 0.0], # t=0 [0.0, 0.0, 0.4, 0.6], # t=1 [0.0, 0.0, 0.4, 0.6], # t=2 [0.0, 0.9, 0.1, 0.0], # t=3 [0.0, 0.0, 0.0, 0.0], # t=4 (ignored) [0.0, 0.0, 0.0, 0.0] ], # t=5 (ignored) dtype=np.float32) input_log_prob_matrix_0 = np.log(input_prob_matrix_0) seq_len_1 = 5 # dimensions are time x depth input_prob_matrix_1 = np.asarray( [ [0.1, 0.9, 0.0, 0.0], # t=0 [0.0, 0.9, 0.1, 0.0], # t=1 [0.0, 0.0, 0.1, 0.9], # t=2 [0.0, 0.9, 0.1, 0.1], # t=3 [0.9, 0.1, 0.0, 0.0], # t=4 [0.0, 0.0, 0.0, 0.0] # t=5 (ignored) ], dtype=np.float32) input_log_prob_matrix_1 = np.log(input_prob_matrix_1) # len max_time_steps array of batch_size x depth matrices inputs = np.array([ np.vstack( [input_log_prob_matrix_0[t, :], input_log_prob_matrix_1[t, :]]) for t in range(max_time_steps) ]) # batch_size length vector of sequence_lengths seq_lens = np.array([seq_len_0, seq_len_1], dtype=np.int32) # batch_size length vector of negative log probabilities log_prob_truth = np.array([ np.sum(-np.log([1.0, 0.6, 0.6, 0.9])), np.sum(-np.log([0.9, 0.9, 0.9, 0.9, 0.9])) ], np.float32)[:, np.newaxis] # decode_truth: one SparseTensor (ix, vals, shape) decode_truth = [ ( np.array( [ [0, 0], # batch 0, 2 outputs [0, 1], [1, 0], # batch 1, 3 outputs [1, 1], [1, 2] ], dtype=np.int64), np.array( [ 0, # batch 0, 2 values 1, 1, # batch 1, 3 values 1, 0 ], dtype=np.int64), # shape is batch x max_decoded_length np.array([2, 3], dtype=np.int64)), ] # Test without defining blank_index self._testCTCDecoder(ctc_ops.ctc_greedy_decoder, inputs, seq_lens, log_prob_truth, decode_truth) # Shift blank_index to be somewhere in the middle of inputs blank_index = 2 inputs = np.concatenate( (inputs[:, :, :blank_index], inputs[:, :, -1:], inputs[:, :, blank_index:-1]), axis=2) # Test positive value in blank_index self._testCTCDecoder( ctc_ops.ctc_greedy_decoder, inputs, seq_lens, log_prob_truth, decode_truth, blank_index=2) # Test negative value in blank_index self._testCTCDecoder( ctc_ops.ctc_greedy_decoder, inputs, seq_lens, log_prob_truth, decode_truth, blank_index=-2) @test_util.run_deprecated_v1 def testCTCDecoderBeamSearch(self): """Test one batch, two beams - hibernating beam search.""" # max_time_steps == 8 depth = 6 seq_len_0 = 5 input_prob_matrix_0 = np.asarray( [ [0.30999, 0.309938, 0.0679938, 0.0673362, 0.0708352, 0.173908], [0.215136, 0.439699, 0.0370931, 0.0393967, 0.0381581, 0.230517], [0.199959, 0.489485, 0.0233221, 0.0251417, 0.0233289, 0.238763], [0.279611, 0.452966, 0.0204795, 0.0209126, 0.0194803, 0.20655], [0.51286, 0.288951, 0.0243026, 0.0220788, 0.0219297, 0.129878], # Random entry added in at time=5 [0.155251, 0.164444, 0.173517, 0.176138, 0.169979, 0.160671] ], dtype=np.float32) # Add arbitrary offset - this is fine input_prob_matrix_0 = input_prob_matrix_0 + 2.0 # len max_time_steps array of batch_size x depth matrices inputs = ([ input_prob_matrix_0[t, :][np.newaxis, :] for t in range(seq_len_0) ] # Pad to max_time_steps = 8 + 2 * [np.zeros( (1, depth), dtype=np.float32)]) # batch_size length vector of sequence_lengths seq_lens = np.array([seq_len_0], dtype=np.int32) # batch_size length vector of log probabilities log_prob_truth = np.array( [ -5.811451, # output beam 0 -6.63339 # output beam 1 ], np.float32)[np.newaxis, :] # decode_truth: two SparseTensors, (ix, values, shape) decode_truth = [ # beam 0, batch 0, two outputs decoded (np.array( [[0, 0], [0, 1]], dtype=np.int64), np.array( [1, 0], dtype=np.int64), np.array( [1, 2], dtype=np.int64)), # beam 1, batch 0, one output decoded (np.array( [[0, 0]], dtype=np.int64), np.array( [1], dtype=np.int64), np.array( [1, 1], dtype=np.int64)), ] # Test correct decoding. self._testCTCDecoder( ctc_ops.ctc_beam_search_decoder, inputs, seq_lens, log_prob_truth, decode_truth, beam_width=2, top_paths=2) # Requesting more paths than the beam width allows. with self.assertRaisesRegex(errors.InvalidArgumentError, (".*requested more paths than the beam " "width.*")): self._testCTCDecoder( ctc_ops.ctc_beam_search_decoder, inputs, seq_lens, log_prob_truth, decode_truth, beam_width=2, top_paths=3) if __name__ == "__main__": test.main()
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os import re import time from datetime import datetime from django.forms.formsets import formset_factory from django.http import HttpResponse from django.utils.functional import wraps from django.utils.translation import ugettext as _ from django.core.urlresolvers import reverse from django.shortcuts import redirect from desktop.conf import TIME_ZONE from desktop.lib.django_util import JsonResponse, render from desktop.lib.json_utils import JSONEncoderForHTML from desktop.lib.exceptions_renderable import PopupException from desktop.lib.i18n import smart_str, smart_unicode from desktop.lib.rest.http_client import RestException from desktop.lib.view_util import format_duration_in_millis from desktop.log.access import access_warn from desktop.models import Document, Document2 from hadoop.fs.hadoopfs import Hdfs from liboozie.oozie_api import get_oozie from liboozie.credentials import Credentials from liboozie.submission2 import Submission from oozie.conf import OOZIE_JOBS_COUNT, ENABLE_CRON_SCHEDULING, ENABLE_V2 from oozie.forms import RerunForm, ParameterForm, RerunCoordForm, RerunBundleForm, UpdateCoordinatorForm from oozie.models import Workflow as OldWorkflow, Job, utc_datetime_format, Bundle, Coordinator, get_link, History as OldHistory from oozie.models2 import History, Workflow, WORKFLOW_NODE_PROPERTIES from oozie.settings import DJANGO_APPS from oozie.utils import convert_to_server_timezone def get_history(): if ENABLE_V2.get(): return History else: return OldHistory def get_workflow(): if ENABLE_V2.get(): return Workflow else: return OldWorkflow LOG = logging.getLogger(__name__) """ Permissions: A Workflow/Coordinator/Bundle can: * be accessed only by its owner or a superuser or by a user with 'dashboard_jobs_access' permissions * be submitted/modified only by its owner or a superuser Permissions checking happens by calling: * check_job_access_permission() * check_job_edition_permission() """ def _get_workflows(user): return [{ 'name': workflow.name, 'owner': workflow.owner.username, 'value': workflow.uuid, 'id': workflow.id } for workflow in [d.content_object for d in Document.objects.get_docs(user, Document2, extra='workflow2')] ] def manage_oozie_jobs(request, job_id, action): if request.method != 'POST': raise PopupException(_('Use a POST request to manage an Oozie job.')) job = check_job_access_permission(request, job_id) check_job_edition_permission(job, request.user) response = {'status': -1, 'data': ''} try: oozie_api = get_oozie(request.user) params = None if action == 'change': pause_time_val = request.POST.get('pause_time') if request.POST.get('clear_pause_time') == 'true': pause_time_val = '' end_time_val = request.POST.get('end_time') if end_time_val: end_time_val = convert_to_server_timezone(end_time_val, TIME_ZONE.get()) if pause_time_val: pause_time_val = convert_to_server_timezone(pause_time_val, TIME_ZONE.get()) params = {'value': 'endtime=%s' % (end_time_val) + ';' 'pausetime=%s' % (pause_time_val) + ';' 'concurrency=%s' % (request.POST.get('concurrency'))} elif action == 'ignore': oozie_api = get_oozie(request.user, api_version="v2") params = { 'type': 'action', 'scope': ','.join(job.aggreate(request.POST.get('actions').split())), } response['data'] = oozie_api.job_control(job_id, action, parameters=params) response['status'] = 0 if 'notification' in request.POST: request.info(_(request.POST.get('notification'))) except RestException, ex: ex_message = ex.message if ex._headers.get('oozie-error-message'): ex_message = ex._headers.get('oozie-error-message') msg = "Error performing %s on Oozie job %s: %s." % (action, job_id, ex_message) LOG.exception(msg) response['data'] = _(msg) return JsonResponse(response) def bulk_manage_oozie_jobs(request): if request.method != 'POST': raise PopupException(_('Use a POST request to manage the Oozie jobs.')) response = {'status': -1, 'data': ''} if 'job_ids' in request.POST and 'action' in request.POST: jobs = request.POST.get('job_ids').split() response = {'totalRequests': len(jobs), 'totalErrors': 0, 'messages': ''} oozie_api = get_oozie(request.user) for job_id in jobs: job = check_job_access_permission(request, job_id) check_job_edition_permission(job, request.user) try: oozie_api.job_control(job_id, request.POST.get('action')) except RestException, ex: LOG.exception("Error performing bulk operation for job_id=%s", job_id) response['totalErrors'] = response['totalErrors'] + 1 response['messages'] += str(ex) return JsonResponse(response) def show_oozie_error(view_func): def decorate(request, *args, **kwargs): try: return view_func(request, *args, **kwargs) except RestException, ex: LOG.exception("Error communicating with Oozie in %s", view_func.__name__) detail = ex._headers.get('oozie-error-message', ex) if 'Max retries exceeded with url' in str(detail) or 'Connection refused' in str(detail): detail = _('The Oozie server is not running') raise PopupException(_('An error occurred with Oozie.'), detail=detail) return wraps(view_func)(decorate) @show_oozie_error def list_oozie_workflows(request): kwargs = {'cnt': OOZIE_JOBS_COUNT.get(), 'filters': []} if not has_dashboard_jobs_access(request.user): kwargs['filters'].append(('user', request.user.username)) oozie_api = get_oozie(request.user) if request.GET.get('format') == 'json': just_sla = request.GET.get('justsla') == 'true' if request.GET.get('startcreatedtime'): kwargs['filters'].extend([('startcreatedtime', request.GET.get('startcreatedtime'))]) if request.GET.get('offset'): kwargs['offset'] = request.GET.get('offset') json_jobs = [] total_jobs = 0 if request.GET.getlist('status'): kwargs['filters'].extend([('status', status) for status in request.GET.getlist('status')]) wf_list = oozie_api.get_workflows(**kwargs) json_jobs = wf_list.jobs total_jobs = wf_list.total if request.GET.get('type') == 'progress': json_jobs = [oozie_api.get_job(job.id) for job in json_jobs] response = massaged_oozie_jobs_for_json(json_jobs, request.user, just_sla) response['total_jobs'] = total_jobs return JsonResponse(response, encoder=JSONEncoderForHTML) return render('dashboard/list_oozie_workflows.mako', request, { 'user': request.user, 'jobs': [], 'has_job_edition_permission': has_job_edition_permission, }) @show_oozie_error def list_oozie_coordinators(request): kwargs = {'cnt': OOZIE_JOBS_COUNT.get(), 'filters': []} if not has_dashboard_jobs_access(request.user): kwargs['filters'].append(('user', request.user.username)) oozie_api = get_oozie(request.user) enable_cron_scheduling = ENABLE_CRON_SCHEDULING.get() if request.GET.get('format') == 'json': if request.GET.get('offset'): kwargs['offset'] = request.GET.get('offset') json_jobs = [] total_jobs = 0 if request.GET.getlist('status'): kwargs['filters'].extend([('status', status) for status in request.GET.getlist('status')]) co_list = oozie_api.get_coordinators(**kwargs) json_jobs = co_list.jobs total_jobs = co_list.total if request.GET.get('type') == 'progress': json_jobs = [oozie_api.get_coordinator(job.id) for job in json_jobs] response = massaged_oozie_jobs_for_json(json_jobs, request.user) response['total_jobs'] = total_jobs return JsonResponse(response, encoder=JSONEncoderForHTML) return render('dashboard/list_oozie_coordinators.mako', request, { 'jobs': [], 'has_job_edition_permission': has_job_edition_permission, 'enable_cron_scheduling': enable_cron_scheduling, }) @show_oozie_error def list_oozie_bundles(request): kwargs = {'cnt': OOZIE_JOBS_COUNT.get(), 'filters': []} if not has_dashboard_jobs_access(request.user): kwargs['filters'].append(('user', request.user.username)) oozie_api = get_oozie(request.user) if request.GET.get('format') == 'json': if request.GET.get('offset'): kwargs['offset'] = request.GET.get('offset') json_jobs = [] total_jobs = 0 if request.GET.getlist('status'): kwargs['filters'].extend([('status', status) for status in request.GET.getlist('status')]) bundle_list = oozie_api.get_bundles(**kwargs) json_jobs = bundle_list.jobs total_jobs = bundle_list.total if request.GET.get('type') == 'progress': json_jobs = [oozie_api.get_coordinator(job.id) for job in json_jobs] response = massaged_oozie_jobs_for_json(json_jobs, request.user) response['total_jobs'] = total_jobs return JsonResponse(response, encoder=JSONEncoderForHTML) return render('dashboard/list_oozie_bundles.mako', request, { 'jobs': [], 'has_job_edition_permission': has_job_edition_permission, }) @show_oozie_error def list_oozie_workflow(request, job_id): oozie_workflow = check_job_access_permission(request, job_id) oozie_coordinator = None if request.GET.get('coordinator_job_id'): oozie_coordinator = check_job_access_permission(request, request.GET.get('coordinator_job_id')) oozie_bundle = None if request.GET.get('bundle_job_id'): oozie_bundle = check_job_access_permission(request, request.GET.get('bundle_job_id')) if oozie_coordinator is not None: setattr(oozie_workflow, 'oozie_coordinator', oozie_coordinator) if oozie_bundle is not None: setattr(oozie_workflow, 'oozie_bundle', oozie_bundle) oozie_parent = oozie_workflow.get_parent_job_id() if oozie_parent: oozie_parent = check_job_access_permission(request, oozie_parent) workflow_data = None credentials = None doc = None hue_workflow = None workflow_graph = 'MISSING' # default to prevent loading the graph tab for deleted workflows full_node_list = None if ENABLE_V2.get(): try: # To update with the new History document model hue_coord = get_history().get_coordinator_from_config(oozie_workflow.conf_dict) hue_workflow = (hue_coord and hue_coord.workflow) or get_history().get_workflow_from_config(oozie_workflow.conf_dict) if hue_coord and hue_coord.workflow: hue_coord.workflow.document.doc.get().can_read_or_exception(request.user) if hue_workflow: hue_workflow.document.doc.get().can_read_or_exception(request.user) if hue_workflow: workflow_graph = '' full_node_list = hue_workflow.nodes workflow_id = hue_workflow.id wid = { 'id': workflow_id } doc = Document2.objects.get(type='oozie-workflow2', **wid) new_workflow = get_workflow()(document=doc) workflow_data = new_workflow.get_data() credentials = Credentials() else: # For workflows submitted from CLI or deleted in the editor # Until better parsing in https://issues.cloudera.org/browse/HUE-2659 workflow_graph, full_node_list = OldWorkflow.gen_status_graph_from_xml(request.user, oozie_workflow) except: LOG.exception("Error generating full page for running workflow %s" % job_id) else: history = get_history().cross_reference_submission_history(request.user, job_id) hue_coord = history and history.get_coordinator() or get_history().get_coordinator_from_config(oozie_workflow.conf_dict) hue_workflow = (hue_coord and hue_coord.workflow) or (history and history.get_workflow()) or get_history().get_workflow_from_config(oozie_workflow.conf_dict) if hue_coord and hue_coord.workflow: Job.objects.can_read_or_exception(request, hue_coord.workflow.id) if hue_workflow: Job.objects.can_read_or_exception(request, hue_workflow.id) if hue_workflow: workflow_graph = hue_workflow.gen_status_graph(oozie_workflow) full_node_list = hue_workflow.node_list else: workflow_graph, full_node_list = get_workflow().gen_status_graph_from_xml(request.user, oozie_workflow) parameters = oozie_workflow.conf_dict.copy() for action in oozie_workflow.actions: action.oozie_coordinator = oozie_coordinator action.oozie_bundle = oozie_bundle if request.GET.get('format') == 'json': return_obj = { 'id': oozie_workflow.id, 'status': oozie_workflow.status, 'progress': oozie_workflow.get_progress(full_node_list), 'graph': workflow_graph, 'actions': massaged_workflow_actions_for_json(oozie_workflow.get_working_actions(), oozie_coordinator, oozie_bundle) } return JsonResponse(return_obj, encoder=JSONEncoderForHTML) oozie_slas = [] if oozie_workflow.has_sla: oozie_api = get_oozie(request.user, api_version="v2") params = { 'id': oozie_workflow.id, 'parent_id': oozie_workflow.id } oozie_slas = oozie_api.get_oozie_slas(**params) return render('dashboard/list_oozie_workflow.mako', request, { 'oozie_workflow': oozie_workflow, 'oozie_coordinator': oozie_coordinator, 'oozie_bundle': oozie_bundle, 'oozie_parent': oozie_parent, 'oozie_slas': oozie_slas, 'hue_workflow': hue_workflow, 'hue_coord': hue_coord, 'parameters': parameters, 'has_job_edition_permission': has_job_edition_permission, 'workflow_graph': workflow_graph, 'layout_json': json.dumps(workflow_data['layout'], cls=JSONEncoderForHTML) if workflow_data else '', 'workflow_json': json.dumps(workflow_data['workflow'], cls=JSONEncoderForHTML) if workflow_data else '', 'credentials_json': json.dumps(credentials.credentials.keys(), cls=JSONEncoderForHTML) if credentials else '', 'workflow_properties_json': json.dumps(WORKFLOW_NODE_PROPERTIES, cls=JSONEncoderForHTML), 'doc1_id': doc.doc.get().id if doc else -1, 'subworkflows_json': json.dumps(_get_workflows(request.user), cls=JSONEncoderForHTML), 'can_edit_json': json.dumps(doc is None or doc.doc.get().is_editable(request.user)) }) @show_oozie_error def list_oozie_coordinator(request, job_id): kwargs = {'cnt': 50, 'filters': []} kwargs['offset'] = request.GET.get('offset', 1) if request.GET.getlist('status'): kwargs['filters'].extend([('status', status) for status in request.GET.getlist('status')]) oozie_coordinator = check_job_access_permission(request, job_id, **kwargs) # Cross reference the submission history (if any) coordinator = get_history().get_coordinator_from_config(oozie_coordinator.conf_dict) try: if not ENABLE_V2.get(): coordinator = get_history().objects.get(oozie_job_id=job_id).job.get_full_node() except: LOG.exception("Ignoring error getting oozie job coordinator for job_id=%s", job_id) oozie_bundle = None if request.GET.get('bundle_job_id'): try: oozie_bundle = check_job_access_permission(request, request.GET.get('bundle_job_id')) except: LOG.exception("Ignoring error getting oozie bundle for job_id=%s", job_id) if request.GET.get('format') == 'json': actions = massaged_coordinator_actions_for_json(oozie_coordinator, oozie_bundle) return_obj = { 'id': oozie_coordinator.id, 'status': oozie_coordinator.status, 'progress': oozie_coordinator.get_progress(), 'nextTime': format_time(oozie_coordinator.nextMaterializedTime), 'endTime': format_time(oozie_coordinator.endTime), 'actions': actions, 'total_actions': oozie_coordinator.total } return JsonResponse(return_obj, encoder=JSONEncoderForHTML) oozie_slas = [] if oozie_coordinator.has_sla: oozie_api = get_oozie(request.user, api_version="v2") params = { 'id': oozie_coordinator.id, 'parent_id': oozie_coordinator.id } oozie_slas = oozie_api.get_oozie_slas(**params) enable_cron_scheduling = ENABLE_CRON_SCHEDULING.get() update_coord_form = UpdateCoordinatorForm(oozie_coordinator=oozie_coordinator) return render('dashboard/list_oozie_coordinator.mako', request, { 'oozie_coordinator': oozie_coordinator, 'oozie_slas': oozie_slas, 'coordinator': coordinator, 'oozie_bundle': oozie_bundle, 'has_job_edition_permission': has_job_edition_permission, 'enable_cron_scheduling': enable_cron_scheduling, 'update_coord_form': update_coord_form, }) @show_oozie_error def list_oozie_bundle(request, job_id): oozie_bundle = check_job_access_permission(request, job_id) # Cross reference the submission history (if any) bundle = None try: if ENABLE_V2.get(): bundle = get_history().get_bundle_from_config(oozie_bundle.conf_dict) else: bundle = get_history().objects.get(oozie_job_id=job_id).job.get_full_node() except: LOG.exception("Ignoring error getting oozie job bundle for job_id=%s", job_id) if request.GET.get('format') == 'json': return_obj = { 'id': oozie_bundle.id, 'status': oozie_bundle.status, 'progress': oozie_bundle.get_progress(), 'endTime': format_time(oozie_bundle.endTime), 'actions': massaged_bundle_actions_for_json(oozie_bundle) } return HttpResponse(json.dumps(return_obj).replace('\\\\', '\\'), content_type="application/json") return render('dashboard/list_oozie_bundle.mako', request, { 'oozie_bundle': oozie_bundle, 'bundle': bundle, 'has_job_edition_permission': has_job_edition_permission, }) @show_oozie_error def list_oozie_workflow_action(request, action): try: action = get_oozie(request.user).get_action(action) workflow = check_job_access_permission(request, action.id.split('@')[0]) except RestException, ex: msg = _("Error accessing Oozie action %s.") % (action,) LOG.exception(msg) raise PopupException(msg, detail=ex.message) oozie_coordinator = None if request.GET.get('coordinator_job_id'): oozie_coordinator = check_job_access_permission(request, request.GET.get('coordinator_job_id')) oozie_bundle = None if request.GET.get('bundle_job_id'): oozie_bundle = check_job_access_permission(request, request.GET.get('bundle_job_id')) workflow.oozie_coordinator = oozie_coordinator workflow.oozie_bundle = oozie_bundle oozie_parent = workflow.get_parent_job_id() if oozie_parent: oozie_parent = check_job_access_permission(request, oozie_parent) return render('dashboard/list_oozie_workflow_action.mako', request, { 'action': action, 'workflow': workflow, 'oozie_coordinator': oozie_coordinator, 'oozie_bundle': oozie_bundle, 'oozie_parent': oozie_parent, }) @show_oozie_error def get_oozie_job_log(request, job_id): oozie_api = get_oozie(request.user, api_version="v2") check_job_access_permission(request, job_id) kwargs = {'logfilter' : []} if request.GET.get('format') == 'json': if request.GET.get('recent'): kwargs['logfilter'].extend([('recent', val) for val in request.GET.get('recent').split(':')]) if request.GET.get('limit'): kwargs['logfilter'].extend([('limit', request.GET.get('limit'))]) if request.GET.get('loglevel'): kwargs['logfilter'].extend([('loglevel', request.GET.get('loglevel'))]) if request.GET.get('text'): kwargs['logfilter'].extend([('text', request.GET.get('text'))]) status_resp = oozie_api.get_job_status(job_id) log = oozie_api.get_job_log(job_id, **kwargs) return_obj = { 'id': job_id, 'status': status_resp['status'], 'log': log, } return JsonResponse(return_obj, encoder=JSONEncoderForHTML) @show_oozie_error def list_oozie_info(request): api = get_oozie(request.user) configuration = api.get_configuration() oozie_status = api.get_oozie_status() instrumentation = {} metrics = {} if 'org.apache.oozie.service.MetricsInstrumentationService' in [c.strip() for c in configuration.get('oozie.services.ext', '').split(',')]: api2 = get_oozie(request.user, api_version="v2") metrics = api2.get_metrics() else: instrumentation = api.get_instrumentation() return render('dashboard/list_oozie_info.mako', request, { 'instrumentation': instrumentation, 'metrics': metrics, 'configuration': configuration, 'oozie_status': oozie_status, }) @show_oozie_error def list_oozie_sla(request): oozie_api = get_oozie(request.user, api_version="v2") if request.method == 'POST': params = {} job_name = request.POST.get('job_name') if re.match('.*-oozie-oozi-[WCB]', job_name): params['id'] = job_name params['parent_id'] = job_name else: params['app_name'] = job_name if 'useDates' in request.POST: if request.POST.get('start'): params['nominal_start'] = request.POST.get('start') if request.POST.get('end'): params['nominal_end'] = request.POST.get('end') oozie_slas = oozie_api.get_oozie_slas(**params) else: oozie_slas = [] # or get latest? if request.REQUEST.get('format') == 'json': massaged_slas = [] for sla in oozie_slas: massaged_slas.append(massaged_sla_for_json(sla, request)) return HttpResponse(json.dumps({'oozie_slas': massaged_slas}), content_type="text/json") configuration = oozie_api.get_configuration() show_slas_hint = 'org.apache.oozie.sla.service.SLAService' not in configuration.get('oozie.services.ext', '') return render('dashboard/list_oozie_sla.mako', request, { 'oozie_slas': oozie_slas, 'show_slas_hint': show_slas_hint }) def massaged_sla_for_json(sla, request): massaged_sla = { 'slaStatus': sla['slaStatus'], 'id': sla['id'], 'appType': sla['appType'], 'appName': sla['appName'], 'appUrl': get_link(sla['id']), 'user': sla['user'], 'nominalTime': sla['nominalTime'], 'expectedStart': sla['expectedStart'], 'actualStart': sla['actualStart'], 'expectedEnd': sla['expectedEnd'], 'actualEnd': sla['actualEnd'], 'jobStatus': sla['jobStatus'], 'expectedDuration': sla['expectedDuration'], 'actualDuration': sla['actualDuration'], 'lastModified': sla['lastModified'] } return massaged_sla @show_oozie_error def sync_coord_workflow(request, job_id): ParametersFormSet = formset_factory(ParameterForm, extra=0) job = check_job_access_permission(request, job_id) check_job_edition_permission(job, request.user) hue_coord = get_history().get_coordinator_from_config(job.conf_dict) hue_wf = (hue_coord and hue_coord.workflow) or get_history().get_workflow_from_config(job.conf_dict) wf_application_path = job.conf_dict.get('wf_application_path') and Hdfs.urlsplit(job.conf_dict['wf_application_path'])[2] or '' coord_application_path = job.conf_dict.get('oozie.coord.application.path') and Hdfs.urlsplit(job.conf_dict['oozie.coord.application.path'])[2] or '' properties = hue_coord and hue_coord.properties and dict([(param['name'], param['value']) for param in hue_coord.properties]) or None if request.method == 'POST': params_form = ParametersFormSet(request.POST) if params_form.is_valid(): mapping = dict([(param['name'], param['value']) for param in params_form.cleaned_data]) # Update workflow params in coordinator hue_coord.clear_workflow_params() properties = dict([(param['name'], param['value']) for param in hue_coord.properties]) # Deploy WF XML submission = Submission(user=request.user, job=hue_wf, fs=request.fs, jt=request.jt, properties=properties) submission._create_file(wf_application_path, hue_wf.XML_FILE_NAME, hue_wf.to_xml(mapping=properties), do_as=True) # Deploy Coordinator XML job.conf_dict.update(mapping) submission = Submission(user=request.user, job=hue_coord, fs=request.fs, jt=request.jt, properties=job.conf_dict, oozie_id=job.id) submission._create_file(coord_application_path, hue_coord.XML_FILE_NAME, hue_coord.to_xml(mapping=job.conf_dict), do_as=True) # Server picks up deployed Coordinator XML changes after running 'update' action submission.update_coord() request.info(_('Successfully updated Workflow definition')) return redirect(reverse('oozie:list_oozie_coordinator', kwargs={'job_id': job_id})) else: request.error(_('Invalid submission form: %s' % params_form.errors)) else: new_params = hue_wf and hue_wf.find_all_parameters() or [] new_params = dict([(param['name'], param['value']) for param in new_params]) # Set previous values if properties: new_params = dict([(key, properties[key]) if key in properties.keys() else (key, new_params[key]) for key, value in new_params.iteritems()]) initial_params = ParameterForm.get_initial_params(new_params) params_form = ParametersFormSet(initial=initial_params) popup = render('editor2/submit_job_popup.mako', request, { 'params_form': params_form, 'name': _('Job'), 'header': _('Sync Workflow definition?'), 'action': reverse('oozie:sync_coord_workflow', kwargs={'job_id': job_id}) }, force_template=True).content return JsonResponse(popup, safe=False) @show_oozie_error def rerun_oozie_job(request, job_id, app_path): ParametersFormSet = formset_factory(ParameterForm, extra=0) oozie_workflow = check_job_access_permission(request, job_id) check_job_edition_permission(oozie_workflow, request.user) if request.method == 'POST': rerun_form = RerunForm(request.POST, oozie_workflow=oozie_workflow) params_form = ParametersFormSet(request.POST) if sum([rerun_form.is_valid(), params_form.is_valid()]) == 2: args = {} if request.POST['rerun_form_choice'] == 'fail_nodes': args['fail_nodes'] = 'true' else: args['skip_nodes'] = ','.join(rerun_form.cleaned_data['skip_nodes']) args['deployment_dir'] = app_path mapping = dict([(param['name'], param['value']) for param in params_form.cleaned_data]) _rerun_workflow(request, job_id, args, mapping) request.info(_('Workflow re-running.')) return redirect(reverse('oozie:list_oozie_workflow', kwargs={'job_id': job_id})) else: request.error(_('Invalid submission form: %s %s' % (rerun_form.errors, params_form.errors))) else: rerun_form = RerunForm(oozie_workflow=oozie_workflow) initial_params = ParameterForm.get_initial_params(oozie_workflow.conf_dict) params_form = ParametersFormSet(initial=initial_params) popup = render('dashboard/rerun_job_popup.mako', request, { 'rerun_form': rerun_form, 'params_form': params_form, 'action': reverse('oozie:rerun_oozie_job', kwargs={'job_id': job_id, 'app_path': app_path}), }, force_template=True).content return JsonResponse(popup, safe=False) def _rerun_workflow(request, oozie_id, run_args, mapping): try: submission = Submission(user=request.user, fs=request.fs, jt=request.jt, properties=mapping, oozie_id=oozie_id) job_id = submission.rerun(**run_args) return job_id except RestException, ex: msg = _("Error re-running workflow %s.") % (oozie_id,) LOG.exception(msg) raise PopupException(msg, detail=ex._headers.get('oozie-error-message', ex)) @show_oozie_error def rerun_oozie_coordinator(request, job_id, app_path): oozie_coordinator = check_job_access_permission(request, job_id) check_job_edition_permission(oozie_coordinator, request.user) ParametersFormSet = formset_factory(ParameterForm, extra=0) if request.method == 'POST': params_form = ParametersFormSet(request.POST) rerun_form = RerunCoordForm(request.POST, oozie_coordinator=oozie_coordinator) if sum([rerun_form.is_valid(), params_form.is_valid()]) == 2: args = {} args['deployment_dir'] = app_path params = { 'type': 'action', 'scope': ','.join(oozie_coordinator.aggreate(rerun_form.cleaned_data['actions'])), 'refresh': rerun_form.cleaned_data['refresh'], 'nocleanup': rerun_form.cleaned_data['nocleanup'], } properties = dict([(param['name'], param['value']) for param in params_form.cleaned_data]) _rerun_coordinator(request, job_id, args, params, properties) request.info(_('Coordinator re-running.')) return redirect(reverse('oozie:list_oozie_coordinator', kwargs={'job_id': job_id})) else: request.error(_('Invalid submission form: %s') % smart_unicode(rerun_form.errors)) return list_oozie_coordinator(request, job_id) else: rerun_form = RerunCoordForm(oozie_coordinator=oozie_coordinator) initial_params = ParameterForm.get_initial_params(oozie_coordinator.conf_dict) params_form = ParametersFormSet(initial=initial_params) popup = render('dashboard/rerun_coord_popup.mako', request, { 'rerun_form': rerun_form, 'params_form': params_form, 'action': reverse('oozie:rerun_oozie_coord', kwargs={'job_id': job_id, 'app_path': app_path}), }, force_template=True).content return JsonResponse(popup, safe=False) def _rerun_coordinator(request, oozie_id, args, params, properties): try: submission = Submission(user=request.user, fs=request.fs, jt=request.jt, oozie_id=oozie_id, properties=properties) job_id = submission.rerun_coord(params=params, **args) return job_id except RestException, ex: msg = _("Error re-running coordinator %s.") % (oozie_id,) LOG.exception(msg) raise PopupException(msg, detail=ex._headers.get('oozie-error-message', ex)) @show_oozie_error def rerun_oozie_bundle(request, job_id, app_path): oozie_bundle = check_job_access_permission(request, job_id) check_job_edition_permission(oozie_bundle, request.user) ParametersFormSet = formset_factory(ParameterForm, extra=0) if request.method == 'POST': params_form = ParametersFormSet(request.POST) rerun_form = RerunBundleForm(request.POST, oozie_bundle=oozie_bundle) if sum([rerun_form.is_valid(), params_form.is_valid()]) == 2: args = {} args['deployment_dir'] = app_path params = { 'coord-scope': ','.join(rerun_form.cleaned_data['coordinators']), 'refresh': rerun_form.cleaned_data['refresh'], 'nocleanup': rerun_form.cleaned_data['nocleanup'], } if rerun_form.cleaned_data['start'] and rerun_form.cleaned_data['end']: date = { 'date-scope': '%(start)s::%(end)s' % { 'start': utc_datetime_format(rerun_form.cleaned_data['start']), 'end': utc_datetime_format(rerun_form.cleaned_data['end']) } } params.update(date) properties = dict([(param['name'], param['value']) for param in params_form.cleaned_data]) _rerun_bundle(request, job_id, args, params, properties) request.info(_('Bundle re-running.')) return redirect(reverse('oozie:list_oozie_bundle', kwargs={'job_id': job_id})) else: request.error(_('Invalid submission form: %s' % (rerun_form.errors,))) return list_oozie_bundle(request, job_id) else: rerun_form = RerunBundleForm(oozie_bundle=oozie_bundle) initial_params = ParameterForm.get_initial_params(oozie_bundle.conf_dict) params_form = ParametersFormSet(initial=initial_params) popup = render('dashboard/rerun_bundle_popup.mako', request, { 'rerun_form': rerun_form, 'params_form': params_form, 'action': reverse('oozie:rerun_oozie_bundle', kwargs={'job_id': job_id, 'app_path': app_path}), }, force_template=True).content return JsonResponse(popup, safe=False) def _rerun_bundle(request, oozie_id, args, params, properties): try: submission = Submission(user=request.user, fs=request.fs, jt=request.jt, oozie_id=oozie_id, properties=properties) job_id = submission.rerun_bundle(params=params, **args) return job_id except RestException, ex: msg = _("Error re-running bundle %s.") % (oozie_id,) LOG.exception(msg) raise PopupException(msg, detail=ex._headers.get('oozie-error-message', ex)) def submit_external_job(request, application_path): ParametersFormSet = formset_factory(ParameterForm, extra=0) if request.method == 'POST': params_form = ParametersFormSet(request.POST) if params_form.is_valid(): mapping = dict([(param['name'], param['value']) for param in params_form.cleaned_data]) mapping['dryrun'] = request.POST.get('dryrun_checkbox') == 'on' application_name = os.path.basename(application_path) application_class = Bundle if application_name == 'bundle.xml' else Coordinator if application_name == 'coordinator.xml' else get_workflow() mapping[application_class.get_application_path_key()] = application_path try: submission = Submission(request.user, fs=request.fs, jt=request.jt, properties=mapping) job_id = submission.run(application_path) except RestException, ex: detail = ex._headers.get('oozie-error-message', ex) if 'Max retries exceeded with url' in str(detail): detail = '%s: %s' % (_('The Oozie server is not running'), detail) LOG.exception(smart_str(detail)) raise PopupException(_("Error submitting job %s") % (application_path,), detail=detail) request.info(_('Oozie job submitted')) view = 'list_oozie_bundle' if application_name == 'bundle.xml' else 'list_oozie_coordinator' if application_name == 'coordinator.xml' else 'list_oozie_workflow' return redirect(reverse('oozie:%s' % view, kwargs={'job_id': job_id})) else: request.error(_('Invalid submission form: %s' % params_form.errors)) else: parameters = Submission(request.user, fs=request.fs, jt=request.jt).get_external_parameters(application_path) initial_params = ParameterForm.get_initial_params(parameters) params_form = ParametersFormSet(initial=initial_params) popup = render('editor/submit_job_popup.mako', request, { 'params_form': params_form, 'name': _('Job'), 'action': reverse('oozie:submit_external_job', kwargs={'application_path': application_path}), 'show_dryrun': os.path.basename(application_path) != 'bundle.xml' }, force_template=True).content return JsonResponse(popup, safe=False) def massaged_workflow_actions_for_json(workflow_actions, oozie_coordinator, oozie_bundle): actions = [] for action in workflow_actions: if oozie_coordinator is not None: setattr(action, 'oozie_coordinator', oozie_coordinator) if oozie_bundle is not None: setattr(action, 'oozie_bundle', oozie_bundle) massaged_action = { 'id': action.id, 'log': action.get_absolute_log_url(), 'url': action.get_absolute_url(), 'name': action.name, 'type': action.type, 'status': action.status, 'externalIdUrl': action.get_external_id_url(), 'externalId': action.externalId, 'startTime': format_time(action.startTime), 'endTime': format_time(action.endTime), 'retries': action.retries, 'errorCode': action.errorCode, 'errorMessage': action.errorMessage, 'transition': action.transition, 'data': action.data, } actions.append(massaged_action) return actions def massaged_coordinator_actions_for_json(coordinator, oozie_bundle): coordinator_id = coordinator.id coordinator_actions = coordinator.get_working_actions() actions = [] related_job_ids = [] related_job_ids.append('coordinator_job_id=%s' % coordinator_id) if oozie_bundle is not None: related_job_ids.append('bundle_job_id=%s' %oozie_bundle.id) for action in coordinator_actions: massaged_action = { 'id': action.id, 'url': action.externalId and reverse('oozie:list_oozie_workflow', kwargs={'job_id': action.externalId}) + '?%s' % '&'.join(related_job_ids) or '', 'number': action.actionNumber, 'type': action.type, 'status': action.status, 'externalId': action.externalId or '-', 'externalIdUrl': action.externalId and reverse('oozie:list_oozie_workflow_action', kwargs={'action': action.externalId}) or '', 'nominalTime': format_time(action.nominalTime), 'title': action.title, 'createdTime': format_time(action.createdTime), 'lastModifiedTime': format_time(action.lastModifiedTime), 'errorCode': action.errorCode, 'errorMessage': action.errorMessage, 'missingDependencies': action.missingDependencies } actions.append(massaged_action) # Sorting for Oozie < 4.1 backward compatibility actions.sort(key=lambda k: k['number'], reverse=True) return actions def massaged_bundle_actions_for_json(bundle): bundle_actions = bundle.get_working_actions() actions = [] for action in bundle_actions: massaged_action = { 'id': action.coordJobId, 'url': action.coordJobId and reverse('oozie:list_oozie_coordinator', kwargs={'job_id': action.coordJobId}) + '?bundle_job_id=%s' % bundle.id or '', 'name': action.coordJobName, 'type': action.type, 'status': action.status, 'externalId': action.coordExternalId or '-', 'frequency': action.frequency, 'timeUnit': action.timeUnit, 'nextMaterializedTime': action.nextMaterializedTime, 'concurrency': action.concurrency, 'pauseTime': action.pauseTime, 'user': action.user, 'acl': action.acl, 'timeOut': action.timeOut, 'coordJobPath': action.coordJobPath, 'executionPolicy': action.executionPolicy, 'startTime': action.startTime, 'endTime': action.endTime, 'lastAction': action.lastAction } actions.insert(0, massaged_action) return actions def format_time(st_time): if st_time is None: return '-' elif type(st_time) == time.struct_time: return time.strftime("%a, %d %b %Y %H:%M:%S", st_time) else: return st_time def catch_unicode_time(u_time): if type(u_time) == time.struct_time: return u_time else: return datetime.timetuple(datetime.strptime(u_time, '%a, %d %b %Y %H:%M:%S %Z')) def massaged_oozie_jobs_for_json(oozie_jobs, user, just_sla=False): jobs = [] for job in oozie_jobs: if not just_sla or (just_sla and job.has_sla) and job.appName != 'pig-app-hue-script': last_modified_time_millis = hasattr(job, 'lastModTime') and job.lastModTime and (time.time() - time.mktime(job.lastModTime)) * 1000 or 0 duration_millis = job.endTime and job.startTime and ((time.mktime(job.endTime) - time.mktime(job.startTime)) * 1000) or 0 massaged_job = { 'id': job.id, 'lastModTime': hasattr(job, 'lastModTime') and job.lastModTime and format_time(job.lastModTime) or None, 'lastModTimeInMillis': last_modified_time_millis, 'lastModTimeFormatted': last_modified_time_millis and format_duration_in_millis(last_modified_time_millis) or None, 'kickoffTime': hasattr(job, 'kickoffTime') and job.kickoffTime and format_time(job.kickoffTime) or '', 'kickoffTimeInMillis': hasattr(job, 'kickoffTime') and job.kickoffTime and time.mktime(catch_unicode_time(job.kickoffTime)) or 0, 'nextMaterializedTime': hasattr(job, 'nextMaterializedTime') and job.nextMaterializedTime and format_time(job.nextMaterializedTime) or '', 'nextMaterializedTimeInMillis': hasattr(job, 'nextMaterializedTime') and job.nextMaterializedTime and time.mktime(job.nextMaterializedTime) or 0, 'timeOut': hasattr(job, 'timeOut') and job.timeOut or None, 'endTime': job.endTime and format_time(job.endTime) or None, 'pauseTime': hasattr(job, 'pauseTime') and job.pauseTime and format_time(job.endTime) or None, 'concurrency': hasattr(job, 'concurrency') and job.concurrency or None, 'endTimeInMillis': job.endTime and time.mktime(job.endTime) or 0, 'status': job.status, 'isRunning': job.is_running(), 'duration': duration_millis and format_duration_in_millis(duration_millis) or None, 'durationInMillis': duration_millis, 'appName': job.appName, 'progress': job.get_progress(), 'user': job.user, 'absoluteUrl': job.get_absolute_url(), 'canEdit': has_job_edition_permission(job, user), 'killUrl': reverse('oozie:manage_oozie_jobs', kwargs={'job_id':job.id, 'action':'kill'}), 'suspendUrl': reverse('oozie:manage_oozie_jobs', kwargs={'job_id':job.id, 'action':'suspend'}), 'resumeUrl': reverse('oozie:manage_oozie_jobs', kwargs={'job_id':job.id, 'action':'resume'}), 'created': hasattr(job, 'createdTime') and job.createdTime and format_time(job.createdTime) or '', 'createdInMillis': hasattr(job, 'createdTime') and job.createdTime and time.mktime(catch_unicode_time(job.createdTime)) or 0, 'startTime': hasattr(job, 'startTime') and format_time(job.startTime) or None, 'startTimeInMillis': hasattr(job, 'startTime') and job.startTime and time.mktime(job.startTime) or 0, 'run': hasattr(job, 'run') and job.run or 0, 'frequency': hasattr(job, 'frequency') and Coordinator.CRON_MAPPING.get(job.frequency, job.frequency) or None, 'timeUnit': hasattr(job, 'timeUnit') and job.timeUnit or None, 'parentUrl': hasattr(job, 'parentId') and job.parentId and get_link(job.parentId) or '', 'submittedManually': hasattr(job, 'parentId') and _submitted_manually(job, user) } jobs.append(massaged_job) return { 'jobs': jobs } def check_job_access_permission(request, job_id, **kwargs): """ Decorator ensuring that the user has access to the job submitted to Oozie. Arg: Oozie 'workflow', 'coordinator' or 'bundle' ID. Return: the Oozie workflow, coordinator or bundle or raise an exception Notice: its gets an id in input and returns the full object in output (not an id). """ if job_id is not None: oozie_api = get_oozie(request.user) if job_id.endswith('W'): get_job = oozie_api.get_job elif job_id.endswith('C'): get_job = oozie_api.get_coordinator else: get_job = oozie_api.get_bundle try: if job_id.endswith('C'): oozie_job = get_job(job_id, **kwargs) else: oozie_job = get_job(job_id) except RestException, ex: msg = _("Error accessing Oozie job %s.") % (job_id,) LOG.exception(msg) raise PopupException(msg, detail=ex._headers['oozie-error-message', '']) if request.user.is_superuser \ or oozie_job.user == request.user.username \ or has_dashboard_jobs_access(request.user): return oozie_job else: message = _("Permission denied. %(username)s does not have the permissions to access job %(id)s.") % \ {'username': request.user.username, 'id': oozie_job.id} access_warn(request, message) raise PopupException(message) def check_job_edition_permission(oozie_job, user): if has_job_edition_permission(oozie_job, user): return oozie_job else: message = _("Permission denied. %(username)s does not have the permissions to modify job %(id)s.") % \ {'username': user.username, 'id': oozie_job.id} raise PopupException(message) def has_job_edition_permission(oozie_job, user): return user.is_superuser or oozie_job.user == user.username def has_dashboard_jobs_access(user): return user.is_superuser or user.has_hue_permission(action="dashboard_jobs_access", app=DJANGO_APPS[0]) def _submitted_manually(job, user): parent_id = job.parentId if not parent_id: return True if 'C@' in parent_id: return False oozie_api = get_oozie(user) if parent_id.endswith('W'): get_job = oozie_api.get_job elif parent_id.endswith('C'): get_job = oozie_api.get_coordinator else: get_job = oozie_api.get_bundle try: job = get_job(parent_id) except: LOG.exception('failed to get job') return True return _submitted_manually(job, user)
# Copyright 2018 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from typing import List, Optional, Set from unittest import skip from pants.backend.codegen.thrift.java.java_thrift_library import JavaThriftLibrary from pants.backend.jvm.targets.java_library import JavaLibrary from pants.backend.jvm.targets.jvm_app import JvmApp from pants.backend.jvm.targets.jvm_binary import JvmBinary from pants.backend.jvm.targets.scala_library import ScalaLibrary from pants.backend.python.targets.python_library import PythonLibrary from pants.build_graph.build_file_aliases import BuildFileAliases from pants.build_graph.resources import Resources from pants.build_graph.target import Target from pants.rules.core import filedeps from pants.testutil.goal_rule_test_base import GoalRuleTestBase class FileDepsTest(GoalRuleTestBase): goal_cls = filedeps.Filedeps @classmethod def rules(cls): return super().rules() + filedeps.rules() @classmethod def alias_groups(cls) -> BuildFileAliases: return BuildFileAliases( targets={ "target": Target, "resources": Resources, "java_library": JavaLibrary, "java_thrift_library": JavaThriftLibrary, "jvm_app": JvmApp, "jvm_binary": JvmBinary, "scala_library": ScalaLibrary, "python_library": PythonLibrary, }, ) def create_python_library( self, path: str, *, sources: Optional[List[str]] = None, dependencies: Optional[List[str]] = None ) -> None: self.create_library( path=path, target_type="python_library", name="target", sources=sources or [], dependencies=dependencies or [], ) def assert_filedeps( self, *, targets: List[str], expected: Set[str], globs: bool = False ) -> None: args = ["--no-filedeps2-absolute"] if globs: args.append("--filedeps2-globs") self.assert_console_output(*expected, args=args + targets) def test_no_target(self) -> None: self.assert_filedeps(targets=[], expected=set()) def test_one_target_no_source(self) -> None: self.add_to_build_file("some/target", target="target()") self.assert_filedeps(targets=["some/target"], expected={"some/target/BUILD"}) def test_one_target_one_source(self) -> None: self.create_python_library("some/target", sources=["file.py"]) self.assert_filedeps( targets=["some/target"], expected={"some/target/BUILD", "some/target/file.py"} ) def test_one_target_multiple_source(self) -> None: self.create_python_library("some/target", sources=["file1.py", "file2.py"]) self.assert_filedeps( targets=["some/target"], expected={"some/target/BUILD", "some/target/file1.py", "some/target/file2.py"}, ) def test_one_target_no_source_one_dep(self) -> None: self.create_python_library("dep/target", sources=["file.py"]) self.create_python_library("some/target", dependencies=["dep/target"]) self.assert_filedeps( targets=["some/target"], expected={"some/target/BUILD", "dep/target/BUILD", "dep/target/file.py"}, ) def test_one_target_one_source_with_dep(self) -> None: self.create_python_library("dep/target", sources=["file.py"]) self.create_python_library("some/target", sources=["file.py"], dependencies=["dep/target"]) self.assert_filedeps( targets=["some/target"], expected={ "some/target/BUILD", "some/target/file.py", "dep/target/BUILD", "dep/target/file.py", }, ) def test_multiple_targets_one_source(self) -> None: self.create_python_library("some/target", sources=["file.py"]) self.create_python_library("other/target", sources=["file.py"]) self.assert_filedeps( targets=["some/target", "other/target"], expected={ "some/target/BUILD", "some/target/file.py", "other/target/BUILD", "other/target/file.py", }, ) def test_multiple_targets_one_source_with_dep(self) -> None: self.create_python_library("dep1/target", sources=["file.py"]) self.create_python_library("dep2/target", sources=["file.py"]) self.create_python_library("some/target", sources=["file.py"], dependencies=["dep1/target"]) self.create_python_library( "other/target", sources=["file.py"], dependencies=["dep2/target"] ) self.assert_filedeps( targets=["some/target", "other/target"], expected={ "some/target/BUILD", "some/target/file.py", "other/target/BUILD", "other/target/file.py", "dep1/target/BUILD", "dep1/target/file.py", "dep2/target/BUILD", "dep2/target/file.py", }, ) def test_multiple_targets_one_source_overlapping(self) -> None: self.create_python_library("dep/target", sources=["file.py"]) self.create_python_library("some/target", sources=["file.py"], dependencies=["dep/target"]) self.create_python_library("other/target", sources=["file.py"], dependencies=["dep/target"]) self.assert_filedeps( targets=["some/target", "other/target"], expected={ "some/target/BUILD", "some/target/file.py", "other/target/BUILD", "other/target/file.py", "dep/target/BUILD", "dep/target/file.py", }, ) def test_globs(self) -> None: self.create_files("some/target", ["test1.py", "test2.py"]) self.add_to_build_file("some/target", target="target(name='target', sources=['test*.py'])") self.assert_filedeps( targets=["some/target"], expected={"some/target/BUILD", "some/target/test*.py"}, globs=True, ) def test_build_with_file_ext(self) -> None: self.create_file("some/target/BUILD.ext", contents="target()") self.assert_filedeps(targets=["some/target"], expected={"some/target/BUILD.ext"}) def test_resources(self) -> None: self.create_resources("src/resources", "data", "data.json") self.assert_filedeps( targets=["src/resources:data"], expected={"src/resources/BUILD", "src/resources/data.json"}, ) @skip( "V2 does not yet hydrate java_sources for scala_library targets. Once this happens, " "we must teach filedeps.py to check the target_adaptor for java_sources." ) def test_scala_with_java_sources(self) -> None: self.create_file("src/java/j.java") self.create_file("src/scala/s.scala") self.add_to_build_file( "src/java", target="java_library(sources=['j.java'], dependencies=['src/scala'])" ) self.add_to_build_file( "src/scala", target="scala_library(sources=['s.scala'], java_sources=['src/java'])" ) expected = {"src/java/BUILD", "src/java/j.java", "src/scala/BUILD", "src/scala/s.scala"} self.assert_filedeps(targets=["src/java"], expected=expected) self.assert_filedeps(targets=["src/scala"], expected=expected) def test_filter_out_synthetic_targets(self) -> None: self.create_library( path="src/thrift/storage", target_type="java_thrift_library", name="storage", sources=["data_types.thrift"], ) java_lib = self.create_library( path="src/java/lib", target_type="java_library", name="lib", sources=["lib1.java"], dependencies=["src/thrift/storage"], ) self.create_file(".pants.d/gen/thrift/java/storage/Angle.java") synthetic_java_lib = self.make_target( spec=".pants.d/gen/thrift/java/storage", target_type=JavaLibrary, derived_from=self.target("src/thrift/storage"), sources=["Angle.java"], ) java_lib.inject_dependency(synthetic_java_lib.address) self.assert_filedeps( targets=["src/java/lib"], expected={ "src/java/lib/BUILD", "src/java/lib/lib1.java", "src/thrift/storage/BUILD", "src/thrift/storage/data_types.thrift", }, ) @skip( "V2 does not yet hydrate bundles or binary attributes for jvm_app. After this is added," "we must add similar logic to the V1 filedeps goal for jvm_apps." ) def test_jvm_app(self) -> None: self.create_library( path="src/thrift/storage", target_type="java_thrift_library", name="storage", sources=["data_types.thrift"], ) self.create_library( path="src/java/lib", target_type="java_library", name="lib", sources=["lib1.java"], dependencies=["src/thrift/storage"], ) self.create_library( path="src/java/bin", target_type="jvm_binary", name="bin", sources=["main.java"], dependencies=["src/java/lib"], ) self.create_file("project/config/app.yaml") self.create_library( path="project", target_type="jvm_app", name="app", ) self.assert_filedeps( targets=["project:app"], expected={ "project/BUILD", "project/config/app.yaml", "src/java/bin/BUILD", "src/java/bin/main.java", "src/java/lib/BUILD", "src/java/lib/lib1.java", "src/thrift/storage/BUILD" "src/thrift/storage/data_types.thrift", }, )
# Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functional tests for modules/review/review.py.""" __author__ = [ '[email protected] (John Cox)', ] import types from models import models from models import student_work from modules.review import domain from modules.review import peer from modules.review import review as review_module from tests.functional import actions from google.appengine.ext import db class ManagerTest(actions.TestBase): """Tests for review.Manager.""" def setUp(self): super(ManagerTest, self).setUp() self.reviewee = models.Student(key_name='[email protected]') self.reviewee_key = self.reviewee.put() self.reviewer = models.Student(key_name='[email protected]') self.reviewer_key = self.reviewer.put() self.unit_id = '1' self.submission_key = db.Key.from_path( student_work.Submission.kind(), student_work.Submission.key_name( reviewee_key=self.reviewee_key, unit_id=self.unit_id)) def test_add_reviewer_adds_new_step_and_summary(self): step_key = review_module.Manager.add_reviewer( self.unit_id, self.submission_key, self.reviewee_key, self.reviewer_key) step = db.get(step_key) summary = db.get(step.review_summary_key) self.assertEqual(domain.ASSIGNER_KIND_HUMAN, step.assigner_kind) self.assertEqual(self.reviewee_key, step.reviewee_key) self.assertEqual(self.reviewer_key, step.reviewer_key) self.assertEqual(domain.REVIEW_STATE_ASSIGNED, step.state) self.assertEqual(self.submission_key, step.submission_key) self.assertEqual(self.unit_id, step.unit_id) self.assertEqual(1, summary.assigned_count) self.assertEqual(0, summary.completed_count) self.assertEqual(0, summary.expired_count) self.assertEqual(self.reviewee_key, summary.reviewee_key) self.assertEqual(self.submission_key, summary.submission_key) self.assertEqual(self.unit_id, summary.unit_id) def test_add_reviewer_existing_raises_assertion_when_summary_missing(self): missing_key = db.Key.from_path( peer.ReviewSummary.kind(), 'no_summary_found_for_key') peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=missing_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() self.assertRaises( AssertionError, review_module.Manager.add_reviewer, self.unit_id, self.submission_key, self.reviewee_key, self.reviewer_key) def test_add_reviewer_existing_raises_transition_error_when_assigned(self): summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() self.assertRaises( domain.TransitionError, review_module.Manager.add_reviewer, self.unit_id, self.submission_key, self.reviewee_key, self.reviewer_key) def test_add_reviewer_existing_raises_transition_error_when_completed(self): summary_key = peer.ReviewSummary( completed_count=1, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_COMPLETED, unit_id=self.unit_id ).put() self.assertRaises( domain.TransitionError, review_module.Manager.add_reviewer, self.unit_id, self.submission_key, self.reviewee_key, self.reviewer_key) def test_add_reviewer_unremoved_existing_changes_expired_to_assigned(self): summary_key = peer.ReviewSummary( expired_count=1, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() review_module.Manager.add_reviewer( self.unit_id, self.submission_key, self.reviewee_key, self.reviewer_key) step, summary = db.get([step_key, summary_key]) self.assertEqual(domain.ASSIGNER_KIND_HUMAN, step.assigner_kind) self.assertEqual(domain.REVIEW_STATE_ASSIGNED, step.state) self.assertFalse(step.removed) self.assertEqual(1, summary.assigned_count) self.assertEqual(0, summary.expired_count) def test_add_reviewer_removed_unremoves_assigned_step(self): summary_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() review_module.Manager.add_reviewer( self.unit_id, self.submission_key, self.reviewee_key, self.reviewer_key) step, summary = db.get([step_key, summary_key]) self.assertEqual(domain.ASSIGNER_KIND_HUMAN, step.assigner_kind) self.assertEqual(domain.REVIEW_STATE_ASSIGNED, step.state) self.assertFalse(step.removed) self.assertEqual(1, summary.assigned_count) def test_add_reviewer_removed_unremoves_completed_step(self): summary_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_COMPLETED, unit_id=self.unit_id ).put() review_module.Manager.add_reviewer( self.unit_id, self.submission_key, self.reviewee_key, self.reviewer_key) step, summary = db.get([step_key, summary_key]) self.assertEqual(domain.ASSIGNER_KIND_HUMAN, step.assigner_kind) self.assertEqual(domain.REVIEW_STATE_COMPLETED, step.state) self.assertFalse(step.removed) self.assertEqual(1, summary.completed_count) def test_add_reviewer_removed_unremoves_and_assigns_expired_step(self): summary_key = peer.ReviewSummary( expired_count=1, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() review_module.Manager.add_reviewer( self.unit_id, self.submission_key, self.reviewee_key, self.reviewer_key) step, summary = db.get([step_key, summary_key]) self.assertEqual(domain.ASSIGNER_KIND_HUMAN, step.assigner_kind) self.assertEqual(domain.REVIEW_STATE_ASSIGNED, step.state) self.assertFalse(step.removed) self.assertEqual(1, summary.assigned_count) self.assertEqual(0, summary.expired_count) def test_delete_reviewer_marks_step_removed_and_decrements_summary(self): summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() step, summary = db.get([step_key, summary_key]) self.assertFalse(step.removed) self.assertEqual(1, summary.assigned_count) deleted_key = review_module.Manager.delete_reviewer(step_key) step, summary = db.get([step_key, summary_key]) self.assertEqual(step_key, deleted_key) self.assertTrue(step.removed) self.assertEqual(0, summary.assigned_count) def test_delete_reviewer_raises_key_error_when_step_missing(self): self.assertRaises( KeyError, review_module.Manager.delete_reviewer, db.Key.from_path(peer.ReviewStep.kind(), 'missing_step_key')) def test_delete_reviewer_raises_key_error_when_summary_missing(self): missing_key = db.Key.from_path( peer.ReviewSummary.kind(), 'missing_review_summary_key') step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=missing_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() self.assertRaises( KeyError, review_module.Manager.delete_reviewer, step_key) def test_delete_reviewer_raises_removed_error_if_already_removed(self): summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() self.assertRaises( domain.RemovedError, review_module.Manager.delete_reviewer, step_key) def test_expire_review_raises_key_error_when_step_missing(self): self.assertRaises( KeyError, review_module.Manager.expire_review, db.Key.from_path(peer.ReviewStep.kind(), 'missing_step_key')) def test_expire_review_raises_key_error_when_summary_missing(self): missing_key = db.Key.from_path( peer.ReviewSummary.kind(), 'missing_review_summary_key') step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=missing_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() self.assertRaises( KeyError, review_module.Manager.expire_review, step_key) def test_expire_review_raises_transition_error_when_state_completed(self): summary_key = peer.ReviewSummary( completed=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_COMPLETED, unit_id=self.unit_id ).put() self.assertRaises( domain.TransitionError, review_module.Manager.expire_review, step_key) def test_expire_review_raises_transition_error_when_state_expired(self): summary_key = peer.ReviewSummary( expired_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() self.assertRaises( domain.TransitionError, review_module.Manager.expire_review, step_key) def test_expire_review_raises_removed_error_when_step_removed(self): summary_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() self.assertRaises( domain.RemovedError, review_module.Manager.expire_review, step_key) def test_expire_review_transitions_state_and_updates_summary(self): summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() step, summary = db.get([step_key, summary_key]) self.assertEqual(1, summary.assigned_count) self.assertEqual(0, summary.expired_count) self.assertEqual(domain.REVIEW_STATE_ASSIGNED, step.state) expired_key = review_module.Manager.expire_review(step_key) step, summary = db.get([expired_key, summary_key]) self.assertEqual(0, summary.assigned_count) self.assertEqual(1, summary.expired_count) self.assertEqual(domain.REVIEW_STATE_EXPIRED, step.state) def test_expire_old_reviews_for_unit_expires_found_reviews(self): summary_key = peer.ReviewSummary( assigned_count=2, completed_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() first_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() second_reviewee_key = models.Student( key_name='[email protected]').put() second_submission_key = student_work.Submission( reviewee_key=second_reviewee_key, unit_id=self.unit_id).put() second_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=second_reviewee_key, reviewer_key=self.reviewer_key, submission_key=second_submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() review_module.Manager.expire_old_reviews_for_unit(0, self.unit_id) first_step, second_step, summary = db.get( [first_step_key, second_step_key, summary_key]) self.assertEqual( [domain.REVIEW_STATE_EXPIRED, domain.REVIEW_STATE_EXPIRED], [step.state for step in [first_step, second_step]]) self.assertEqual(0, summary.assigned_count) self.assertEqual(2, summary.expired_count) def test_expire_old_reviews_skips_errors_and_continues_processing(self): # Create and bind a function that we can swap in to generate a query # that will pick up bad results so we can tell that we skip them. query_containing_unprocessable_entities = peer.ReviewStep.all( keys_only=True) query_fn = types.MethodType( lambda x, y, z: query_containing_unprocessable_entities, review_module.Manager(), review_module.Manager) self.swap( review_module.Manager, 'get_expiry_query', query_fn) summary_key = peer.ReviewSummary( assigned_count=1, completed_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() processable_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() second_reviewee_key = models.Student( key_name='[email protected]').put() second_submission_key = student_work.Submission( reviewee_key=second_reviewee_key, unit_id=self.unit_id).put() error_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=second_reviewee_key, reviewer_key=self.reviewer_key, submission_key=second_submission_key, state=domain.REVIEW_STATE_COMPLETED, unit_id=self.unit_id ).put() review_module.Manager.expire_old_reviews_for_unit(0, self.unit_id) processed_step, error_step, summary = db.get( [processable_step_key, error_step_key, summary_key]) self.assertEqual(domain.REVIEW_STATE_COMPLETED, error_step.state) self.assertEqual(domain.REVIEW_STATE_EXPIRED, processed_step.state) self.assertEqual(0, summary.assigned_count) self.assertEqual(1, summary.completed_count) self.assertEqual(1, summary.expired_count) def test_get_assignment_candidates_query_filters_and_orders_correctly(self): unused_wrong_unit_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=str(int(self.unit_id) + 1) ).put() second_reviewee_key = models.Student( key_name='[email protected]').put() second_submission_key = student_work.Submission( reviewee_key=second_reviewee_key, unit_id=self.unit_id).put() older_assigned_and_completed_key = peer.ReviewSummary( assigned_count=1, completed_count=1, reviewee_key=second_reviewee_key, submission_key=second_submission_key, unit_id=self.unit_id ).put() third_reviewee_key = models.Student( key_name='[email protected]').put() third_submission_key = student_work.Submission( reviewee_key=third_reviewee_key, unit_id=self.unit_id).put() younger_assigned_and_completed_key = peer.ReviewSummary( assigned_count=1, completed_count=1, reviewee_key=third_reviewee_key, submission_key=third_submission_key, unit_id=self.unit_id ).put() fourth_reviewee_key = models.Student( key_name='[email protected]').put() fourth_submission_key = student_work.Submission( reviewee_key=fourth_reviewee_key, unit_id=self.unit_id).put() completed_but_not_assigned_key = peer.ReviewSummary( assigned_count=0, completed_count=1, reviewee_key=fourth_reviewee_key, submission_key=fourth_submission_key, unit_id=self.unit_id ).put() fifth_reviewee_key = models.Student( key_name='[email protected]').put() fifth_submission_key = student_work.Submission( reviewee_key=fifth_reviewee_key, unit_id=self.unit_id).put() assigned_but_not_completed_key = peer.ReviewSummary( assigned_count=1, completed_count=0, reviewee_key=fifth_reviewee_key, submission_key=fifth_submission_key, unit_id=self.unit_id ).put() results = review_module.Manager.get_assignment_candidates_query( self.unit_id).fetch(5) self.assertEqual([ assigned_but_not_completed_key, completed_but_not_assigned_key, older_assigned_and_completed_key, younger_assigned_and_completed_key ], [r.key() for r in results]) def test_get_expiry_query_filters_and_orders_correctly(self): summary_key = peer.ReviewSummary( assigned_count=2, completed_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() unused_completed_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_COMPLETED, unit_id=self.unit_id ).put() second_reviewee_key = models.Student( key_name='[email protected]').put() second_submission_key = student_work.Submission( reviewee_key=second_reviewee_key, unit_id=self.unit_id).put() unused_removed_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=second_reviewee_key, reviewer_key=self.reviewer_key, submission_key=second_submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() third_reviewee_key = models.Student( key_name='[email protected]').put() third_submission_key = student_work.Submission( reviewee_key=third_reviewee_key, unit_id=self.unit_id).put() unused_other_unit_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=third_reviewee_key, reviewer_key=self.reviewer_key, submission_key=third_submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=str(int(self.unit_id) + 1) ).put() fourth_reviewee_key = models.Student( key_name='[email protected]').put() fourth_submission_key = student_work.Submission( reviewee_key=fourth_reviewee_key, unit_id=self.unit_id).put() first_assigned_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=fourth_reviewee_key, reviewer_key=self.reviewer_key, submission_key=fourth_submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() fifth_reviewee_key = models.Student( key_name='[email protected]').put() fifth_submission_key = student_work.Submission( reviewee_key=fifth_reviewee_key, unit_id=self.unit_id).put() second_assigned_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=fifth_reviewee_key, reviewer_key=self.reviewer_key, submission_key=fifth_submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() zero_review_window_query = review_module.Manager.get_expiry_query( 0, self.unit_id) future_review_window_query = review_module.Manager.get_expiry_query( 1, self.unit_id) self.assertEqual( [first_assigned_step_key, second_assigned_step_key], zero_review_window_query.fetch(3)) # No items are > 1 minute old, so we expect an empty result set. self.assertEqual(None, future_review_window_query.get()) def test_get_new_review_creates_step_and_updates_summary(self): summary_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() summary = db.get(summary_key) self.assertEqual(0, summary.assigned_count) step_key = review_module.Manager.get_new_review( self.unit_id, self.reviewer_key) step, summary = db.get([step_key, summary_key]) self.assertEqual(domain.ASSIGNER_KIND_AUTO, step.assigner_kind) self.assertEqual(summary.key(), step.review_summary_key) self.assertEqual(self.reviewee_key, step.reviewee_key) self.assertEqual(self.reviewer_key, step.reviewer_key) self.assertEqual(domain.REVIEW_STATE_ASSIGNED, step.state) self.assertEqual(self.submission_key, step.submission_key) self.assertEqual(self.unit_id, step.unit_id) self.assertEqual(1, summary.assigned_count) def test_get_new_review_raises_key_error_when_summary_missing(self): summary_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() # Create and bind a function that we can swap in to pick the review # candidate but as a side effect delete the review summary, causing a # the lookup by key to fail. def pick_and_remove(unused_cls, candidates): db.delete(summary_key) return candidates[0] fn = types.MethodType( pick_and_remove, review_module.Manager(), review_module.Manager) self.swap( review_module.Manager, '_choose_assignment_candidate', fn) self.assertRaises( KeyError, review_module.Manager.get_new_review, self.unit_id, self.reviewer_key) def test_get_new_review_raises_not_assignable_when_already_assigned(self): summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() unused_already_assigned_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() self.assertRaises( domain.NotAssignableError, review_module.Manager.get_new_review, self.unit_id, self.reviewer_key) def test_get_new_review_raises_not_assignable_when_already_completed(self): summary_key = peer.ReviewSummary( completed=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() already_completed_unremoved_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_COMPLETED, unit_id=self.unit_id ).put() self.assertRaises( domain.NotAssignableError, review_module.Manager.get_new_review, self.unit_id, self.reviewer_key) db.delete(already_completed_unremoved_step_key) unused_already_completed_removed_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_COMPLETED, unit_id=self.unit_id ).put() self.assertRaises( domain.NotAssignableError, review_module.Manager.get_new_review, self.unit_id, self.reviewer_key) def test_get_new_review_raises_not_assignable_when_review_is_for_self(self): peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewer_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() self.assertRaises( domain.NotAssignableError, review_module.Manager.get_new_review, self.unit_id, self.reviewer_key) def test_get_new_review_raises_not_assignable_when_no_candidates(self): self.assertRaises( domain.NotAssignableError, review_module.Manager.get_new_review, self.unit_id, self.reviewer_key) def test_get_new_review_raises_not_assignable_when_retry_limit_hit(self): higher_priority_summary = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id) higher_priority_summary_key = higher_priority_summary.put() second_reviewee_key = models.Student( key_name='[email protected]').put() second_submission_key = student_work.Submission( reviewee_key=second_reviewee_key, unit_id=self.unit_id).put() lower_priority_summary_key = peer.ReviewSummary( completed_count=1, reviewee_key=second_reviewee_key, submission_key=second_submission_key, unit_id=self.unit_id ).put() self.assertEqual( # Ensure we'll process higher priority first. [higher_priority_summary_key, lower_priority_summary_key], [c.key() for c in review_module.Manager.get_assignment_candidates_query( self.unit_id).fetch(2)]) # Create and bind a function that we can swap in to pick the review # candidate but as a side-effect updates the highest priority candidate # so we'll skip it and retry. def pick_and_update(unused_cls, candidates): db.put(higher_priority_summary) return candidates[0] fn = types.MethodType( pick_and_update, review_module.Manager(), review_module.Manager) self.swap( review_module.Manager, '_choose_assignment_candidate', fn) self.assertRaises( domain.NotAssignableError, review_module.Manager.get_new_review, self.unit_id, self.reviewer_key, max_retries=0) def test_get_new_review_raises_not_assignable_when_summary_updated(self): summary = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id) summary.put() # Create and bind a function that we can swap in to pick the review # candidate but as a side-effect updates the summary so we'll reject it # as a candidate. def pick_and_update(unused_cls, candidates): db.put(summary) return candidates[0] fn = types.MethodType( pick_and_update, review_module.Manager(), review_module.Manager) self.swap( review_module.Manager, '_choose_assignment_candidate', fn) self.assertRaises( domain.NotAssignableError, review_module.Manager.get_new_review, self.unit_id, self.reviewer_key) def test_get_new_review_reassigns_removed_assigned_step(self): summary_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() unused_already_assigned_removed_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() step_key = review_module.Manager.get_new_review( self.unit_id, self.reviewer_key) step, summary = db.get([step_key, summary_key]) self.assertEqual(domain.ASSIGNER_KIND_AUTO, step.assigner_kind) self.assertFalse(step.removed) self.assertEqual(domain.REVIEW_STATE_ASSIGNED, step.state) self.assertEqual(1, summary.assigned_count) def test_get_new_review_reassigns_removed_expired_step(self): summary_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() unused_already_expired_removed_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() step_key = review_module.Manager.get_new_review( self.unit_id, self.reviewer_key) step, summary = db.get([step_key, summary_key]) self.assertEqual(domain.ASSIGNER_KIND_AUTO, step.assigner_kind) self.assertFalse(step.removed) self.assertEqual(domain.REVIEW_STATE_ASSIGNED, step.state) self.assertEqual(1, summary.assigned_count) self.assertEqual(0, summary.expired_count) def test_get_new_review_retries_successfully(self): higher_priority_summary = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id) higher_priority_summary_key = higher_priority_summary.put() second_reviewee_key = models.Student( key_name='[email protected]').put() second_submission_key = student_work.Submission( reviewee_key=second_reviewee_key, unit_id=self.unit_id).put() lower_priority_summary_key = peer.ReviewSummary( completed_count=1, reviewee_key=second_reviewee_key, submission_key=second_submission_key, unit_id=self.unit_id ).put() self.assertEqual( # Ensure we'll process higher priority first. [higher_priority_summary_key, lower_priority_summary_key], [c.key() for c in review_module.Manager.get_assignment_candidates_query( self.unit_id).fetch(2)]) # Create and bind a function that we can swap in to pick the review # candidate but as a side-effect updates the highest priority candidate # so we'll skip it and retry. def pick_and_update(unused_cls, candidates): db.put(higher_priority_summary) return candidates[0] fn = types.MethodType( pick_and_update, review_module.Manager(), review_module.Manager) self.swap( review_module.Manager, '_choose_assignment_candidate', fn) step_key = review_module.Manager.get_new_review( self.unit_id, self.reviewer_key) step = db.get(step_key) self.assertEqual(lower_priority_summary_key, step.review_summary_key) def test_get_review_step_keys_by_returns_list_of_keys(self): summary_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() matching_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() non_matching_reviewer = models.Student(key_name='[email protected]') non_matching_reviewer_key = non_matching_reviewer.put() unused_non_matching_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=non_matching_reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() self.assertEqual( [matching_step_key], review_module.Manager.get_review_step_keys_by( self.unit_id, self.reviewer_key)) def test_get_review_step_keys_by_returns_keys_in_sorted_order(self): summary_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() first_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() second_reviewee_key = models.Student( key_name='[email protected]').put() second_submission_key = student_work.Submission( reviewee_key=second_reviewee_key, unit_id=self.unit_id).put() second_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=second_reviewee_key, reviewer_key=self.reviewer_key, submission_key=second_submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() self.assertEqual( [first_step_key, second_step_key], review_module.Manager.get_review_step_keys_by( self.unit_id, self.reviewer_key)) def test_get_review_step_keys_by_returns_empty_list_when_no_matches(self): summary_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() non_matching_reviewer = models.Student(key_name='[email protected]') non_matching_reviewer_key = non_matching_reviewer.put() unused_non_matching_step_different_reviewer_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=non_matching_reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id, ).put() unused_non_matching_step_different_unit_id_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=str(int(self.unit_id) + 1), ).put() self.assertEqual( [], review_module.Manager.get_review_step_keys_by( self.unit_id, self.reviewer_key)) def test_get_review_steps_by_keys(self): summary_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() second_reviewer_key = models.Student( key_name='[email protected]').put() missing_step_key = db.Key.from_path( peer.ReviewStep.kind(), peer.ReviewStep.key_name( self.submission_key, second_reviewer_key)) model_objects = db.get([step_key, missing_step_key]) domain_objects = review_module.Manager.get_review_steps_by_keys( [step_key, missing_step_key]) model_step, model_miss = model_objects domain_step, domain_miss = domain_objects self.assertEqual(2, len(model_objects)) self.assertEqual(2, len(domain_objects)) self.assertIsNone(model_miss) self.assertIsNone(domain_miss) self.assertEqual(model_step.assigner_kind, domain_step.assigner_kind) self.assertEqual(model_step.change_date, domain_step.change_date) self.assertEqual(model_step.create_date, domain_step.create_date) self.assertEqual(model_step.key(), domain_step.key) self.assertEqual(model_step.removed, domain_step.removed) self.assertEqual(model_step.review_key, domain_step.review_key) self.assertEqual( model_step.review_summary_key, domain_step.review_summary_key) self.assertEqual(model_step.reviewee_key, domain_step.reviewee_key) self.assertEqual(model_step.reviewer_key, domain_step.reviewer_key) self.assertEqual(model_step.state, domain_step.state) self.assertEqual(model_step.submission_key, domain_step.submission_key) self.assertEqual(model_step.unit_id, domain_step.unit_id) def test_get_reviews_by_keys(self): review_key = student_work.Review( contents='contents', reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, unit_id=self.unit_id ).put() missing_review_key = db.Key.from_path( student_work.Review.kind(), student_work.Review.key_name( str(int(self.unit_id) + 1), self.reviewee_key, self.reviewer_key)) model_objects = db.get([review_key, missing_review_key]) domain_objects = review_module.Manager.get_reviews_by_keys( [review_key, missing_review_key]) model_review, model_miss = model_objects domain_review, domain_miss = domain_objects self.assertEqual(2, len(model_objects)) self.assertEqual(2, len(domain_objects)) self.assertIsNone(model_miss) self.assertIsNone(domain_miss) self.assertEqual(model_review.contents, domain_review.contents) self.assertEqual(model_review.key(), domain_review.key) def test_get_submission_and_review_step_keys_no_steps(self): student_work.Submission( reviewee_key=self.reviewee_key, unit_id=self.unit_id).put() peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() self.assertEqual( (self.submission_key, []), review_module.Manager.get_submission_and_review_step_keys( self.unit_id, self.reviewee_key)) def test_get_submission_and_review_step_keys_with_steps(self): student_work.Submission( reviewee_key=self.reviewee_key, unit_id=self.unit_id).put() summary_key = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() matching_step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() non_matching_reviewee_key = models.Student( key_name='[email protected]').put() non_matching_submission_key = student_work.Submission( contents='contents2', reviewee_key=non_matching_reviewee_key, unit_id=self.unit_id).put() unused_non_matching_step_different_submission_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_AUTO, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=non_matching_reviewee_key, reviewer_key=self.reviewer_key, submission_key=non_matching_submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() self.assertEqual( (self.submission_key, [matching_step_key]), review_module.Manager.get_submission_and_review_step_keys( self.unit_id, self.reviewee_key)) def test_get_submission_and_review_step_keys_returns_none_on_miss(self): self.assertIsNone( review_module.Manager.get_submission_and_review_step_keys( self.unit_id, self.reviewee_key)) def test_get_submissions_by_keys(self): submission_key = student_work.Submission( contents='contents', reviewee_key=self.reviewee_key, unit_id=self.unit_id).put() missing_submission_key = db.Key.from_path( student_work.Submission.kind(), student_work.Submission.key_name( str(int(self.unit_id) + 1), self.reviewee_key)) domain_models = db.get([submission_key, missing_submission_key]) domain_objects = review_module.Manager.get_submissions_by_keys( [submission_key, missing_submission_key]) model_submission, model_miss = domain_models domain_submission, domain_miss = domain_objects self.assertEqual(2, len(domain_models)) self.assertEqual(2, len(domain_objects)) self.assertIsNone(model_miss) self.assertIsNone(domain_miss) self.assertEqual(model_submission.contents, domain_submission.contents) self.assertEqual(model_submission.key(), domain_submission.key) def test_start_review_process_for_succeeds(self): key = review_module.Manager.start_review_process_for( self.unit_id, self.submission_key, self.reviewee_key) summary = db.get(key) self.assertEqual(self.reviewee_key, summary.reviewee_key) self.assertEqual(self.submission_key, summary.submission_key) self.assertEqual(self.unit_id, summary.unit_id) def test_start_review_process_for_throws_if_already_started(self): collision = peer.ReviewSummary( reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id) collision.put() self.assertRaises( domain.ReviewProcessAlreadyStartedError, review_module.Manager.start_review_process_for, self.unit_id, self.submission_key, self.reviewee_key) def test_write_review_raises_constraint_error_if_key_but_no_review(self): summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() self.assertRaises( domain.ConstraintError, review_module.Manager.write_review, step_key, 'payload') def test_write_review_raises_constraint_error_if_no_summary(self): missing_summary_key = db.Key.from_path( peer.ReviewSummary.kind(), peer.ReviewSummary.key_name(self.submission_key)) review_key = student_work.Review( contents='contents', reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, unit_id=self.unit_id).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, review_key=review_key, review_summary_key=missing_summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() self.assertRaises( domain.ConstraintError, review_module.Manager.write_review, step_key, 'payload') def test_write_review_raises_key_error_if_no_step(self): bad_step_key = db.Key.from_path(peer.ReviewStep.kind(), 'missing') self.assertRaises( KeyError, review_module.Manager.write_review, bad_step_key, 'payload') def test_write_review_raises_removed_error_if_step_removed(self): summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, removed=True, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() self.assertRaises( domain.RemovedError, review_module.Manager.write_review, step_key, 'payload') def test_write_review_raises_transition_error_if_step_completed(self): summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, review_key=db.Key.from_path(student_work.Review.kind(), 'review'), review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_COMPLETED, unit_id=self.unit_id ).put() self.assertRaises( domain.TransitionError, review_module.Manager.write_review, step_key, 'payload') def test_write_review_with_mark_completed_false(self): summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() review_key = student_work.Review( contents='old_contents', reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, unit_id=self.unit_id).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, review_key=review_key, review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() updated_step_key = review_module.Manager.write_review( step_key, 'new_contents', mark_completed=False) self.assertEqual(step_key, updated_step_key) step, summary = db.get([updated_step_key, summary_key]) updated_review = db.get(step.review_key) self.assertEqual(1, summary.assigned_count) self.assertEqual(0, summary.completed_count) self.assertEqual(domain.REVIEW_STATE_ASSIGNED, step.state) self.assertEqual('new_contents', updated_review.contents) def test_write_review_with_no_review_mark_completed_false(self): summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() self.assertIsNone(db.get(step_key).review_key) updated_step_key = review_module.Manager.write_review( step_key, 'contents', mark_completed=False) self.assertEqual(step_key, updated_step_key) step, summary = db.get([updated_step_key, summary_key]) updated_review = db.get(step.review_key) self.assertEqual(1, summary.assigned_count) self.assertEqual(0, summary.completed_count) self.assertEqual(domain.REVIEW_STATE_ASSIGNED, step.state) self.assertEqual(step.review_key, updated_review.key()) self.assertEqual('contents', updated_review.contents) def test_write_review_with_no_review_mark_completed_true(self): summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() self.assertIsNone(db.get(step_key).review_key) updated_step_key = review_module.Manager.write_review( step_key, 'contents') self.assertEqual(step_key, updated_step_key) step, summary = db.get([updated_step_key, summary_key]) updated_review = db.get(step.review_key) self.assertEqual(0, summary.assigned_count) self.assertEqual(1, summary.completed_count) self.assertEqual(domain.REVIEW_STATE_COMPLETED, step.state) self.assertEqual(step.review_key, updated_review.key()) self.assertEqual('contents', updated_review.contents) def test_write_review_with_state_assigned_and_mark_completed_true(self): summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() review_key = student_work.Review( contents='old_contents', reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, unit_id=self.unit_id).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, review_key=review_key, review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() updated_step_key = review_module.Manager.write_review( step_key, 'new_contents') self.assertEqual(step_key, updated_step_key) step, summary = db.get([updated_step_key, summary_key]) updated_review = db.get(step.review_key) self.assertEqual(0, summary.assigned_count) self.assertEqual(1, summary.completed_count) self.assertEqual(domain.REVIEW_STATE_COMPLETED, step.state) self.assertEqual('new_contents', updated_review.contents) def test_write_review_with_state_expired_and_mark_completed_true(self): summary_key = peer.ReviewSummary( expired_count=1, reviewee_key=self.reviewee_key, submission_key=self.submission_key, unit_id=self.unit_id ).put() review_key = student_work.Review( contents='old_contents', reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, unit_id=self.unit_id).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, review_key=review_key, review_summary_key=summary_key, reviewee_key=self.reviewee_key, reviewer_key=self.reviewer_key, submission_key=self.submission_key, state=domain.REVIEW_STATE_EXPIRED, unit_id=self.unit_id ).put() updated_step_key = review_module.Manager.write_review( step_key, 'new_contents') self.assertEqual(step_key, updated_step_key) step, summary = db.get([updated_step_key, summary_key]) updated_review = db.get(step.review_key) self.assertEqual(1, summary.completed_count) self.assertEqual(0, summary.expired_count) self.assertEqual(domain.REVIEW_STATE_COMPLETED, step.state) self.assertEqual('new_contents', updated_review.contents) def test_write_review_with_two_students_creates_different_reviews(self): reviewee1 = models.Student(key_name='[email protected]') reviewee1_key = reviewee1.put() reviewee2 = models.Student(key_name='[email protected]') reviewee2_key = reviewee2.put() submission1_key = db.Key.from_path( student_work.Submission.kind(), student_work.Submission.key_name( reviewee_key=reviewee1_key, unit_id=self.unit_id)) submission2_key = db.Key.from_path( student_work.Submission.kind(), student_work.Submission.key_name( reviewee_key=reviewee2_key, unit_id=self.unit_id)) summary1_key = peer.ReviewSummary( assigned_count=1, reviewee_key=reviewee1_key, submission_key=submission1_key, unit_id=self.unit_id ).put() step1_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, review_summary_key=summary1_key, reviewee_key=reviewee1_key, reviewer_key=self.reviewer_key, submission_key=submission1_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() self.assertIsNone(db.get(step1_key).review_key) updated_step1_key = review_module.Manager.write_review( step1_key, 'contents1', mark_completed=False) self.assertEqual(step1_key, updated_step1_key) summary2_key = peer.ReviewSummary( assigned_count=1, reviewee_key=reviewee2_key, submission_key=submission2_key, unit_id=self.unit_id ).put() step2_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, review_summary_key=summary2_key, reviewee_key=reviewee2_key, reviewer_key=self.reviewer_key, submission_key=submission2_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=self.unit_id ).put() self.assertIsNone(db.get(step2_key).review_key) updated_step2_key = review_module.Manager.write_review( step2_key, 'contents2', mark_completed=False) self.assertEqual(step2_key, updated_step2_key) step1, summary1 = db.get([updated_step1_key, summary1_key]) updated_review = db.get(step1.review_key) self.assertEqual(1, summary1.assigned_count) self.assertEqual(0, summary1.completed_count) self.assertEqual(domain.REVIEW_STATE_ASSIGNED, step1.state) self.assertEqual(step1.review_key, updated_review.key()) self.assertEqual('contents1', updated_review.contents) step2, summary2 = db.get([updated_step2_key, summary2_key]) updated_review = db.get(step2.review_key) self.assertEqual(1, summary2.assigned_count) self.assertEqual(0, summary2.completed_count) self.assertEqual(domain.REVIEW_STATE_ASSIGNED, step2.state) self.assertEqual(step2.review_key, updated_review.key()) self.assertEqual('contents2', updated_review.contents)
# Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import mimetypes import os import socket from swift import gettext_ as _ from random import shuffle from time import time import itertools import functools import sys from eventlet import Timeout from swift import __canonical_version__ as swift_version from swift.common import constraints from swift.common.storage_policy import POLICIES from swift.common.ring import Ring from swift.common.utils import cache_from_env, get_logger, \ get_remote_client, split_path, config_true_value, generate_trans_id, \ affinity_key_function, affinity_locality_predicate, list_from_csv, \ register_swift_info from swift.common.constraints import check_utf8, valid_api_version from swift.proxy.controllers import AccountController, ContainerController, \ ObjectControllerRouter, InfoController, MigrationController from swift.proxy.controllers.base import get_container_info from swift.common.swob import HTTPBadRequest, HTTPForbidden, \ HTTPMethodNotAllowed, HTTPNotFound, HTTPPreconditionFailed, \ HTTPServerError, HTTPException, Request, HTTPServiceUnavailable from swift.common.exceptions import APIVersionError #mjw dedupe from swift.dedupe.deduplication import ChunkStore, InformationDatabase # List of entry points for mandatory middlewares. # # Fields: # # "name" (required) is the entry point name from setup.py. # # "after_fn" (optional) a function that takes a PipelineWrapper object as its # single argument and returns a list of middlewares that this middleware # should come after. Any middlewares in the returned list that are not present # in the pipeline will be ignored, so you can safely name optional middlewares # to come after. For example, ["catch_errors", "bulk"] would install this # middleware after catch_errors and bulk if both were present, but if bulk # were absent, would just install it after catch_errors. required_filters = [ {'name': 'catch_errors'}, {'name': 'gatekeeper', 'after_fn': lambda pipe: (['catch_errors'] if pipe.startswith('catch_errors') else [])}, {'name': 'dlo', 'after_fn': lambda _junk: [ 'staticweb', 'tempauth', 'keystoneauth', 'catch_errors', 'gatekeeper', 'proxy_logging']}, {'name': 'versioned_writes', 'after_fn': lambda _junk: [ 'staticweb', 'tempauth', 'keystoneauth', 'catch_errors', 'gatekeeper', 'proxy_logging']}] class Application(object): """WSGI application for the proxy server.""" def __init__(self, conf, memcache=None, logger=None, account_ring=None, container_ring=None): if conf is None: conf = {} if logger is None: self.logger = get_logger(conf, log_route='proxy-server') else: self.logger = logger self._error_limiting = {} #mjwtom: deduplication self.deduplication = config_true_value(conf.get('deduplication', 'false')) if self.deduplication: self.chunk_store = ChunkStore(conf, self) self.info_database = InformationDatabase(conf) self.fixed_chunk = config_true_value(conf.get('fixed_chunk', 'false')) self.chunk_size = int(conf.get('chunk_size', 4096)) swift_dir = conf.get('swift_dir', '/etc/swift') self.swift_dir = swift_dir self.node_timeout = int(conf.get('node_timeout', 10)) self.recoverable_node_timeout = int( conf.get('recoverable_node_timeout', self.node_timeout)) self.conn_timeout = float(conf.get('conn_timeout', 0.5)) self.client_timeout = int(conf.get('client_timeout', 60)) self.put_queue_depth = int(conf.get('put_queue_depth', 10)) self.object_chunk_size = int(conf.get('object_chunk_size', 65536)) self.client_chunk_size = int(conf.get('client_chunk_size', 65536)) self.trans_id_suffix = conf.get('trans_id_suffix', '') self.post_quorum_timeout = float(conf.get('post_quorum_timeout', 0.5)) self.error_suppression_interval = \ int(conf.get('error_suppression_interval', 60)) self.error_suppression_limit = \ int(conf.get('error_suppression_limit', 10)) self.recheck_container_existence = \ int(conf.get('recheck_container_existence', 60)) self.recheck_account_existence = \ int(conf.get('recheck_account_existence', 60)) self.allow_account_management = \ config_true_value(conf.get('allow_account_management', 'no')) self.object_post_as_copy = \ config_true_value(conf.get('object_post_as_copy', 'true')) self.container_ring = container_ring or Ring(swift_dir, ring_name='container') self.account_ring = account_ring or Ring(swift_dir, ring_name='account') # ensure rings are loaded for all configured storage policies for policy in POLICIES: policy.load_ring(swift_dir) self.obj_controller_router = ObjectControllerRouter() self.memcache = memcache mimetypes.init(mimetypes.knownfiles + [os.path.join(swift_dir, 'mime.types')]) self.account_autocreate = \ config_true_value(conf.get('account_autocreate', 'no')) self.auto_create_account_prefix = ( conf.get('auto_create_account_prefix') or '.') self.expiring_objects_account = self.auto_create_account_prefix + \ (conf.get('expiring_objects_account_name') or 'expiring_objects') self.expiring_objects_container_divisor = \ int(conf.get('expiring_objects_container_divisor') or 86400) self.max_containers_per_account = \ int(conf.get('max_containers_per_account') or 0) self.max_containers_whitelist = [ a.strip() for a in conf.get('max_containers_whitelist', '').split(',') if a.strip()] self.deny_host_headers = [ host.strip() for host in conf.get('deny_host_headers', '').split(',') if host.strip()] self.log_handoffs = config_true_value(conf.get('log_handoffs', 'true')) self.cors_allow_origin = [ a.strip() for a in conf.get('cors_allow_origin', '').split(',') if a.strip()] self.strict_cors_mode = config_true_value( conf.get('strict_cors_mode', 't')) self.node_timings = {} self.timing_expiry = int(conf.get('timing_expiry', 300)) self.sorting_method = conf.get('sorting_method', 'shuffle').lower() self.max_large_object_get_time = float( conf.get('max_large_object_get_time', '86400')) value = conf.get('request_node_count', '2 * replicas').lower().split() if len(value) == 1: rnc_value = int(value[0]) self.request_node_count = lambda replicas: rnc_value elif len(value) == 3 and value[1] == '*' and value[2] == 'replicas': rnc_value = int(value[0]) self.request_node_count = lambda replicas: rnc_value * replicas else: raise ValueError( 'Invalid request_node_count value: %r' % ''.join(value)) try: self._read_affinity = read_affinity = conf.get('read_affinity', '') self.read_affinity_sort_key = affinity_key_function(read_affinity) except ValueError as err: # make the message a little more useful raise ValueError("Invalid read_affinity value: %r (%s)" % (read_affinity, err.message)) try: write_affinity = conf.get('write_affinity', '') self.write_affinity_is_local_fn \ = affinity_locality_predicate(write_affinity) except ValueError as err: # make the message a little more useful raise ValueError("Invalid write_affinity value: %r (%s)" % (write_affinity, err.message)) value = conf.get('write_affinity_node_count', '2 * replicas').lower().split() if len(value) == 1: wanc_value = int(value[0]) self.write_affinity_node_count = lambda replicas: wanc_value elif len(value) == 3 and value[1] == '*' and value[2] == 'replicas': wanc_value = int(value[0]) self.write_affinity_node_count = \ lambda replicas: wanc_value * replicas else: raise ValueError( 'Invalid write_affinity_node_count value: %r' % ''.join(value)) # swift_owner_headers are stripped by the account and container # controllers; we should extend header stripping to object controller # when a privileged object header is implemented. swift_owner_headers = conf.get( 'swift_owner_headers', 'x-container-read, x-container-write, ' 'x-container-sync-key, x-container-sync-to, ' 'x-account-meta-temp-url-key, x-account-meta-temp-url-key-2, ' 'x-container-meta-temp-url-key, x-container-meta-temp-url-key-2, ' 'x-account-access-control') self.swift_owner_headers = [ name.strip().title() for name in swift_owner_headers.split(',') if name.strip()] # Initialization was successful, so now apply the client chunk size # parameter as the default read / write buffer size for the network # sockets. # # NOTE WELL: This is a class setting, so until we get set this on a # per-connection basis, this affects reading and writing on ALL # sockets, those between the proxy servers and external clients, and # those between the proxy servers and the other internal servers. # # ** Because it affects the client as well, currently, we use the # client chunk size as the govenor and not the object chunk size. socket._fileobject.default_bufsize = self.client_chunk_size self.expose_info = config_true_value( conf.get('expose_info', 'yes')) self.disallowed_sections = list_from_csv( conf.get('disallowed_sections', 'swift.valid_api_versions')) self.admin_key = conf.get('admin_key', None) register_swift_info( version=swift_version, strict_cors_mode=self.strict_cors_mode, policies=POLICIES.get_policy_info(), allow_account_management=self.allow_account_management, account_autocreate=self.account_autocreate, **constraints.EFFECTIVE_CONSTRAINTS) def check_config(self): """ Check the configuration for possible errors """ if self._read_affinity and self.sorting_method != 'affinity': self.logger.warn("sorting_method is set to '%s', not 'affinity'; " "read_affinity setting will have no effect." % self.sorting_method) def get_object_ring(self, policy_idx): """ Get the ring object to use to handle a request based on its policy. :param policy_idx: policy index as defined in swift.conf :returns: appropriate ring object """ return POLICIES.get_object_ring(policy_idx, self.swift_dir) def get_controller(self, req): """ Get the controller to handle a request. :param req: the request :returns: tuple of (controller class, path dictionary) :raises: ValueError (thrown by split_path) if given invalid path """ if req.path == '/info': d = dict(version=None, expose_info=self.expose_info, disallowed_sections=self.disallowed_sections, admin_key=self.admin_key) return InfoController, d #mjw: MigrationController is the only one deals with disk failure if req.method == 'DISK_FAILURE': version, account, device = split_path(req.path, 1, 3, True) d = dict(version=version, account_name=account, device = device) return MigrationController, d version, account, container, obj = split_path(req.path, 1, 4, True) d = dict(version=version, account_name=account, container_name=container, object_name=obj) if account and not valid_api_version(version): raise APIVersionError('Invalid path') if obj and container and account: info = get_container_info(req.environ, self) policy_index = req.headers.get('X-Backend-Storage-Policy-Index', info['storage_policy']) policy = POLICIES.get_by_index(policy_index) if not policy: # This indicates that a new policy has been created, # with rings, deployed, released (i.e. deprecated = # False), used by a client to create a container via # another proxy that was restarted after the policy # was released, and is now cached - all before this # worker was HUPed to stop accepting new # connections. There should never be an "unknown" # index - but when there is - it's probably operator # error and hopefully temporary. raise HTTPServiceUnavailable('Unknown Storage Policy') return self.obj_controller_router[policy], d elif container and account: return ContainerController, d elif account and not container and not obj: return AccountController, d return None, d def __call__(self, env, start_response): """ WSGI entry point. Wraps env in swob.Request object and passes it down. :param env: WSGI environment dictionary :param start_response: WSGI callable """ try: if self.memcache is None: self.memcache = cache_from_env(env, True) req = self.update_request(Request(env)) return self.handle_request(req)(env, start_response) except UnicodeError: err = HTTPPreconditionFailed( request=req, body='Invalid UTF8 or contains NULL') return err(env, start_response) except (Exception, Timeout): start_response('500 Server Error', [('Content-Type', 'text/plain')]) return ['Internal server error.\n'] def update_request(self, req): if 'x-storage-token' in req.headers and \ 'x-auth-token' not in req.headers: req.headers['x-auth-token'] = req.headers['x-storage-token'] return req def handle_request(self, req): """ Entry point for proxy server. Should return a WSGI-style callable (such as swob.Response). :param req: swob.Request object """ try: self.logger.set_statsd_prefix('proxy-server') if req.content_length and req.content_length < 0: self.logger.increment('errors') return HTTPBadRequest(request=req, body='Invalid Content-Length') try: if not check_utf8(req.path_info): self.logger.increment('errors') return HTTPPreconditionFailed( request=req, body='Invalid UTF8 or contains NULL') except UnicodeError: self.logger.increment('errors') return HTTPPreconditionFailed( request=req, body='Invalid UTF8 or contains NULL') try: controller, path_parts = self.get_controller(req) p = req.path_info if isinstance(p, unicode): p = p.encode('utf-8') except APIVersionError: self.logger.increment('errors') return HTTPBadRequest(request=req) except ValueError: self.logger.increment('errors') return HTTPNotFound(request=req) if not controller: self.logger.increment('errors') return HTTPPreconditionFailed(request=req, body='Bad URL') if self.deny_host_headers and \ req.host.split(':')[0] in self.deny_host_headers: return HTTPForbidden(request=req, body='Invalid host header') self.logger.set_statsd_prefix('proxy-server.' + controller.server_type.lower()) controller = controller(self, **path_parts) if 'swift.trans_id' not in req.environ: # if this wasn't set by an earlier middleware, set it now trans_id_suffix = self.trans_id_suffix trans_id_extra = req.headers.get('x-trans-id-extra') if trans_id_extra: trans_id_suffix += '-' + trans_id_extra[:32] trans_id = generate_trans_id(trans_id_suffix) req.environ['swift.trans_id'] = trans_id self.logger.txn_id = trans_id req.headers['x-trans-id'] = req.environ['swift.trans_id'] controller.trans_id = req.environ['swift.trans_id'] self.logger.client_ip = get_remote_client(req) try: handler = getattr(controller, req.method) getattr(handler, 'publicly_accessible') except AttributeError: allowed_methods = getattr(controller, 'allowed_methods', set()) return HTTPMethodNotAllowed( request=req, headers={'Allow': ', '.join(allowed_methods)}) old_authorize = None if 'swift.authorize' in req.environ: # We call authorize before the handler, always. If authorized, # we remove the swift.authorize hook so isn't ever called # again. If not authorized, we return the denial unless the # controller's method indicates it'd like to gather more # information and try again later. resp = req.environ['swift.authorize'](req) if not resp and not req.headers.get('X-Copy-From-Account') \ and not req.headers.get('Destination-Account'): # No resp means authorized, no delayed recheck required. old_authorize = req.environ['swift.authorize'] else: # Response indicates denial, but we might delay the denial # and recheck later. If not delayed, return the error now. if not getattr(handler, 'delay_denial', None): return resp # Save off original request method (GET, POST, etc.) in case it # gets mutated during handling. This way logging can display the # method the client actually sent. req.environ['swift.orig_req_method'] = req.method try: if old_authorize: req.environ.pop('swift.authorize', None) return handler(req) finally: if old_authorize: req.environ['swift.authorize'] = old_authorize except HTTPException as error_response: return error_response except (Exception, Timeout): self.logger.exception(_('ERROR Unhandled exception in request')) return HTTPServerError(request=req) def sort_nodes(self, nodes): ''' Sorts nodes in-place (and returns the sorted list) according to the configured strategy. The default "sorting" is to randomly shuffle the nodes. If the "timing" strategy is chosen, the nodes are sorted according to the stored timing data. ''' # In the case of timing sorting, shuffling ensures that close timings # (ie within the rounding resolution) won't prefer one over another. # Python's sort is stable (http://wiki.python.org/moin/HowTo/Sorting/) shuffle(nodes) if self.sorting_method == 'timing': now = time() def key_func(node): timing, expires = self.node_timings.get(node['ip'], (-1.0, 0)) return timing if expires > now else -1.0 nodes.sort(key=key_func) elif self.sorting_method == 'affinity': nodes.sort(key=self.read_affinity_sort_key) return nodes def set_node_timing(self, node, timing): if self.sorting_method != 'timing': return now = time() timing = round(timing, 3) # sort timings to the millisecond self.node_timings[node['ip']] = (timing, now + self.timing_expiry) def _error_limit_node_key(self, node): return "{ip}:{port}/{device}".format(**node) def error_limited(self, node): """ Check if the node is currently error limited. :param node: dictionary of node to check :returns: True if error limited, False otherwise """ now = time() node_key = self._error_limit_node_key(node) error_stats = self._error_limiting.get(node_key) if error_stats is None or 'errors' not in error_stats: return False if 'last_error' in error_stats and error_stats['last_error'] < \ now - self.error_suppression_interval: self._error_limiting.pop(node_key, None) return False limited = error_stats['errors'] > self.error_suppression_limit if limited: self.logger.debug( _('Node error limited %(ip)s:%(port)s (%(device)s)'), node) return limited def error_limit(self, node, msg): """ Mark a node as error limited. This immediately pretends the node received enough errors to trigger error suppression. Use this for errors like Insufficient Storage. For other errors use :func:`error_occurred`. :param node: dictionary of node to error limit :param msg: error message """ node_key = self._error_limit_node_key(node) error_stats = self._error_limiting.setdefault(node_key, {}) error_stats['errors'] = self.error_suppression_limit + 1 error_stats['last_error'] = time() self.logger.error(_('%(msg)s %(ip)s:%(port)s/%(device)s'), {'msg': msg, 'ip': node['ip'], 'port': node['port'], 'device': node['device']}) def _incr_node_errors(self, node): node_key = self._error_limit_node_key(node) error_stats = self._error_limiting.setdefault(node_key, {}) error_stats['errors'] = error_stats.get('errors', 0) + 1 error_stats['last_error'] = time() def error_occurred(self, node, msg): """ Handle logging, and handling of errors. :param node: dictionary of node to handle errors for :param msg: error message """ self._incr_node_errors(node) self.logger.error(_('%(msg)s %(ip)s:%(port)s/%(device)s'), {'msg': msg, 'ip': node['ip'], 'port': node['port'], 'device': node['device']}) def iter_nodes(self, ring, partition, node_iter=None): """ Yields nodes for a ring partition, skipping over error limited nodes and stopping at the configurable number of nodes. If a node yielded subsequently gets error limited, an extra node will be yielded to take its place. Note that if you're going to iterate over this concurrently from multiple greenthreads, you'll want to use a swift.common.utils.GreenthreadSafeIterator to serialize access. Otherwise, you may get ValueErrors from concurrent access. (You also may not, depending on how logging is configured, the vagaries of socket IO and eventlet, and the phase of the moon.) :param ring: ring to get yield nodes from :param partition: ring partition to yield nodes for :param node_iter: optional iterable of nodes to try. Useful if you want to filter or reorder the nodes. """ part_nodes = ring.get_part_nodes(partition) if node_iter is None: node_iter = itertools.chain(part_nodes, ring.get_more_nodes(partition)) num_primary_nodes = len(part_nodes) # Use of list() here forcibly yanks the first N nodes (the primary # nodes) from node_iter, so the rest of its values are handoffs. primary_nodes = self.sort_nodes( list(itertools.islice(node_iter, num_primary_nodes))) handoff_nodes = node_iter nodes_left = self.request_node_count(len(primary_nodes)) log_handoffs_threshold = nodes_left - len(primary_nodes) for node in primary_nodes: if not self.error_limited(node): yield node if not self.error_limited(node): nodes_left -= 1 if nodes_left <= 0: return handoffs = 0 for node in handoff_nodes: if not self.error_limited(node): handoffs += 1 if self.log_handoffs and handoffs > log_handoffs_threshold: self.logger.increment('handoff_count') self.logger.warning( 'Handoff requested (%d)' % handoffs) if handoffs - log_handoffs_threshold == len(primary_nodes): self.logger.increment('handoff_all_count') yield node if not self.error_limited(node): nodes_left -= 1 if nodes_left <= 0: return def exception_occurred(self, node, typ, additional_info, **kwargs): """ Handle logging of generic exceptions. :param node: dictionary of node to log the error for :param typ: server type :param additional_info: additional information to log """ self._incr_node_errors(node) if 'level' in kwargs: log = functools.partial(self.logger.log, kwargs.pop('level')) if 'exc_info' not in kwargs: kwargs['exc_info'] = sys.exc_info() else: log = self.logger.exception log(_('ERROR with %(type)s server %(ip)s:%(port)s/%(device)s' ' re: %(info)s'), {'type': typ, 'ip': node['ip'], 'port': node['port'], 'device': node['device'], 'info': additional_info}, **kwargs) def modify_wsgi_pipeline(self, pipe): """ Called during WSGI pipeline creation. Modifies the WSGI pipeline context to ensure that mandatory middleware is present in the pipeline. :param pipe: A PipelineWrapper object """ pipeline_was_modified = False for filter_spec in reversed(required_filters): filter_name = filter_spec['name'] if filter_name not in pipe: afters = filter_spec.get('after_fn', lambda _junk: [])(pipe) insert_at = 0 for after in afters: try: insert_at = max(insert_at, pipe.index(after) + 1) except ValueError: # not in pipeline; ignore it pass self.logger.info( 'Adding required filter %s to pipeline at position %d' % (filter_name, insert_at)) ctx = pipe.create_filter(filter_name) pipe.insert_filter(ctx, index=insert_at) pipeline_was_modified = True if pipeline_was_modified: self.logger.info("Pipeline was modified. New pipeline is \"%s\".", pipe) else: self.logger.debug("Pipeline is \"%s\"", pipe) def app_factory(global_conf, **local_conf): """paste.deploy app factory for creating WSGI proxy apps.""" conf = global_conf.copy() conf.update(local_conf) app = Application(conf) app.check_config() return app
import os import signal import asyncio import subprocess import shlex import sys import psutil import argparse import socket import logging class KillerUDPServer( asyncio.DatagramProtocol, ): def __init__( self, async_loop, killer, ): super().__init__() self.async_loop = async_loop self.killer = killer def connection_made( self, transport, ): self.transport = transport udp_port = self.transport._sock.getsockname()[1] sys.stdout.write(str(udp_port) + '\n') sys.stdout.flush() def datagram_received( self, data, addr, ): if data == b'start': self.killer.start() elif data == b'stop': self.killer.stop() elif data == b'reset': self.killer.reset() elif data == b'shutdown': logging.getLogger('asyncio').disabled = True sys.exit(1) class Killer: def __init__( self, async_loop, pid_to_kill, sleep_interval, soft_timeout, hard_timeout, critical_timeout, ): self.pid_to_kill = pid_to_kill self.async_loop = async_loop self.sleep_interval = sleep_interval self.time_elapsed = 0.0 self.soft_timeout = soft_timeout self.hard_timeout = hard_timeout self.critical_timeout = critical_timeout self.soft_timeout_signal = signal.SIGINT self.hard_timeout_signal = signal.SIGABRT self.critical_timeout_signal = signal.SIGTERM self.kill_loop_task = async_loop.create_task( coro=self.kill_loop(), ) self.running = False async def kill_loop( self, ): while True: if not psutil.pid_exists( pid=self.pid_to_kill, ): sys.exit(1) if self.running: if self.soft_timeout != 0 and self.time_elapsed >= self.soft_timeout: self.kill_process( pid=self.pid_to_kill, signal=self.soft_timeout_signal, ) if self.hard_timeout != 0 and self.time_elapsed >= self.hard_timeout: self.kill_process( pid=self.pid_to_kill, signal=self.hard_timeout_signal, ) if self.critical_timeout != 0 and self.time_elapsed >= self.critical_timeout: self.kill_process( pid=self.pid_to_kill, signal=self.critical_timeout_signal, ) self.time_elapsed += self.sleep_interval await asyncio.sleep( delay=self.sleep_interval, loop=self.async_loop, ) def kill_process( self, pid, signal, ): try: os.kill(pid, signal) except Exception as exception: print(repr(exception)) def start( self, ): self.running = True def stop( self, ): self.running = False def reset( self, ): self.time_elapsed = 0.0 class KillerClient: def __init__( self, port, ): self.port = port self.killer_socker = socket.socket( family=socket.AF_INET, type=socket.SOCK_DGRAM, ) self.address = ( '127.0.0.1', self.port, ) def start( self, ): self.killer_socker.sendto(b'start', self.address) def stop( self, ): self.killer_socker.sendto(b'stop', self.address) def reset( self, ): self.killer_socker.sendto(b'reset', self.address) def shutdown( self, ): self.killer_socker.sendto(b'shutdown', self.address) def __del__( self, ): self.shutdown() @staticmethod def create_a_killer( pid_to_kill, sleep_interval, soft_timeout, hard_timeout, critical_timeout, ): killer_process = subprocess.Popen( args=shlex.split( s='python3 -m killer --pid-to-kill {pid_to_kill} --sleep-interval {sleep_interval} --soft-timeout {soft_timeout} --hard-timeout {hard_timeout} --critical-timeout {critical_timeout}'.format( pid_to_kill=pid_to_kill, sleep_interval=sleep_interval, soft_timeout=soft_timeout, hard_timeout=hard_timeout, critical_timeout=critical_timeout, ), ), cwd=os.path.join( os.path.dirname( p=os.path.realpath( filename=__file__, ), ), ), stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, bufsize=1, universal_newlines=True, ) port = killer_process.stdout.readline() killer_process.stdout.close() killer_client = KillerClient( port=int(port), ) return killer_client def main(): parser = argparse.ArgumentParser( description='Process Killer', ) parser.add_argument( '--pid-to-kill', help='pid to kill on timeouts', type=int, required=True, dest='pid_to_kill', ) parser.add_argument( '--sleep-interval', help='time to sleep between checks', type=float, required=True, dest='sleep_interval', ) parser.add_argument( '--soft-timeout', help='soft timeout', type=float, required=True, dest='soft_timeout', ) parser.add_argument( '--hard-timeout', help='hard timeout', type=float, required=True, dest='hard_timeout', ) parser.add_argument( '--critical-timeout', help='critical timeout', type=float, required=True, dest='critical_timeout', ) args = parser.parse_args() async_loop = asyncio.new_event_loop() killer_obj = Killer( async_loop=async_loop, pid_to_kill=args.pid_to_kill, sleep_interval=args.sleep_interval, soft_timeout=args.soft_timeout, hard_timeout=args.hard_timeout, critical_timeout=args.critical_timeout, ) killer_udp_server_endpoint = async_loop.create_datagram_endpoint( protocol_factory=lambda: KillerUDPServer(async_loop, killer_obj), local_addr=( '127.0.0.1', 0, ), ) async_loop.run_until_complete(killer_udp_server_endpoint) async_loop.run_forever() async_loop.close() if __name__ == '__main__': main()
# Copyright (c) 2012-2013 Paul Tagliamonte <[email protected]> # Copyright (c) 2013 Leo Cavaille <[email protected]> # Copyright (c) 2014 Jon Severinsson <[email protected]> # Copyright (c) 2014-2015 Clement Schreiner <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from SimpleXMLRPCServer import SimpleXMLRPCServer from SimpleXMLRPCServer import SimpleXMLRPCRequestHandler from sqlalchemy.sql import exists from debile.utils.log import start_logging from debile.master.utils import session from debile.master.orm import Person, Builder, Job from debile.master.interface import NAMESPACE, DebileMasterInterface import SocketServer import signal import hashlib import logging import logging.handlers import os.path import ssl def check_shutdown(): with session() as s: shutdown = not s.query(exists().where( (Job.assigned_at != None) & (Job.finished_at == None)) ).scalar() if shutdown: raise SystemExit(0) class DebileMasterAuthMixIn(SimpleXMLRPCRequestHandler): def authenticate(self): cert = self.connection.getpeercert(True) fingerprint = hashlib.sha1(cert).hexdigest().upper() NAMESPACE.machine = NAMESPACE.session.query(Builder).filter_by( ssl=fingerprint ).first() NAMESPACE.user = NAMESPACE.session.query(Person).filter_by( ssl=fingerprint ).first() return NAMESPACE.machine or NAMESPACE.user def parse_request(self, *args): if SimpleXMLRPCRequestHandler.parse_request(self, *args): if self.authenticate(): return True else: self.send_error(401, 'Authentication failed') return False def handle_one_request(self): try: with session() as s: NAMESPACE.session = s SimpleXMLRPCRequestHandler.handle_one_request(self) finally: NAMESPACE.session = None NAMESPACE.machine = None NAMESPACE.user = None if DebileMasterInterface.shutdown_request: check_shutdown() class DebileMasterSimpleAuthMixIn(SimpleXMLRPCRequestHandler): def authenticate(self): client_address, _ = self.client_address NAMESPACE.machine = NAMESPACE.session.query(Builder).filter_by( ip=client_address ).first() NAMESPACE.user = NAMESPACE.session.query(Person).filter_by( ip=client_address ).first() return NAMESPACE.machine or NAMESPACE.user def parse_request(self, *args): if SimpleXMLRPCRequestHandler.parse_request(self, *args): if self.authenticate(): return True else: self.send_error(401, 'Authentication failed') return False def handle_one_request(self): try: with session() as s: NAMESPACE.session = s SimpleXMLRPCRequestHandler.handle_one_request(self) finally: NAMESPACE.session = None NAMESPACE.machine = None NAMESPACE.user = None if DebileMasterInterface.shutdown_request: check_shutdown() class SimpleAsyncXMLRPCServer(SocketServer.ThreadingMixIn, DebileMasterSimpleAuthMixIn): pass class AsyncXMLRPCServer(SocketServer.ThreadingMixIn, DebileMasterAuthMixIn): pass class SimpleAuthXMLRPCServer(SimpleXMLRPCServer): def __init__(self, addr, requestHandler=SimpleXMLRPCRequestHandler, bind_and_activate=True, allow_none=False): SimpleXMLRPCServer.__init__(self, addr, requestHandler=requestHandler, bind_and_activate=bind_and_activate, allow_none=allow_none) class SecureXMLRPCServer(SimpleXMLRPCServer): def __init__( self, addr, keyfile, certfile, ca_certs, requestHandler=SimpleXMLRPCRequestHandler, logRequests=True, allow_none=False, encoding=None, bind_and_activate=True ): SimpleXMLRPCServer.__init__(self, addr, requestHandler=requestHandler, logRequests=logRequests, allow_none=allow_none, encoding=encoding, bind_and_activate=False) cert_reqs = (ssl.CERT_NONE if ca_certs is None else ssl.CERT_REQUIRED) self.socket = ssl.wrap_socket(self.socket, keyfile=keyfile, certfile=certfile, ca_certs=ca_certs, cert_reqs=cert_reqs, ssl_version=ssl.PROTOCOL_TLSv1) if bind_and_activate: self.server_bind() self.server_activate() def serve(server_addr, port, auth_method, keyfile=None, certfile=None, ssl_keyring=None, pgp_keyring=None): logger = logging.getLogger('debile') logger.info("Serving on `{server_addr}' on port `{port}'".format(**locals())) logger.info("Authentication method: {0}".format(auth_method)) if auth_method == 'ssl': logger.info("Using keyfile=`{keyfile}', certfile=`{certfile}', " "ssl_keyring=`{ssl_keyring}'".format(**locals())) logger.info("Using pgp_keyring=`{pgp_keyring}'".format(**locals())) server = None if auth_method == 'simple': server = SimpleAuthXMLRPCServer((server_addr, port), requestHandler=SimpleAsyncXMLRPCServer, allow_none=True) else: server = SecureXMLRPCServer((server_addr, port), keyfile, certfile, ca_certs=ssl_keyring, requestHandler=AsyncXMLRPCServer, allow_none=True) server.register_introspection_functions() server.register_instance(DebileMasterInterface(ssl_keyring, pgp_keyring)) server.serve_forever() def system_exit_handler(signum, frame): raise SystemExit(1) def shutdown_request_handler(signum, frame): DebileMasterInterface.shutdown_request = True check_shutdown() def main(args, config): start_logging(args) signal.signal(signal.SIGQUIT, system_exit_handler) signal.signal(signal.SIGABRT, system_exit_handler) signal.signal(signal.SIGTERM, system_exit_handler) signal.signal(signal.SIGHUP, signal.SIG_IGN) signal.signal(signal.SIGUSR1, shutdown_request_handler) logger = logging.getLogger('debile') if not os.path.isfile(config['keyrings']['pgp']): logger.info("Can not find pgp keyring `{file}'".format(file=config['keyrings']['pgp'])) if args.auth_method == 'ssl': if not os.path.isfile(config['xmlrpc']['keyfile']): logger.error("Can not find ssl keyfile `{file}'".format(file=config['xmlrpc']['keyfile'])) if not os.path.isfile(config['xmlrpc']['certfile']): logger.error("Can not find ssl certfile `{file}'".format(file=config['xmlrpc']['certfile'])) if not os.path.isfile(config['keyrings']['ssl']): logger.error("Can not find ssl keyring `{file}'".format(file=config['keyrings']['ssl'])) serve(config['xmlrpc']['addr'], config['xmlrpc']['port'], args.auth_method, config['xmlrpc'].get('keyfile'), config['xmlrpc'].get('certfile'), config['keyrings'].get('ssl'), config["keyrings"].get('pgp'))
from statsmodels.compat.python import range, lrange, lmap, lzip, zip_longest import numpy as np from statsmodels.iolib.table import SimpleTable from statsmodels.iolib.tableformatting import (gen_fmt, fmt_2, fmt_params, fmt_base, fmt_2cols) #from statsmodels.iolib.summary2d import summary_params_2dflat #from summary2d import summary_params_2dflat def forg(x, prec=3): if prec == 3: #for 3 decimals if (abs(x) >= 1e4) or (abs(x) < 1e-4): return '%9.3g' % x else: return '%9.3f' % x elif prec == 4: if (abs(x) >= 1e4) or (abs(x) < 1e-4): return '%10.4g' % x else: return '%10.4f' % x else: raise NotImplementedError def summary(self, yname=None, xname=None, title=0, alpha=.05, returns='text', model_info=None): """ Parameters ----------- yname : string optional, Default is `Y` xname : list of strings optional, Default is `X.#` for # in p the number of regressors Confidance interval : (0,1) not implimented title : string optional, Defualt is 'Generalized linear model' returns : string 'text', 'table', 'csv', 'latex', 'html' Returns ------- Defualt : returns='print' Prints the summarirized results Option : returns='text' Prints the summarirized results Option : returns='table' SimpleTable instance : summarizing the fit of a linear model. Option : returns='csv' returns a string of csv of the results, to import into a spreadsheet Option : returns='latex' Not implimented yet Option : returns='HTML' Not implimented yet Examples (needs updating) -------- >>> import statsmodels as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> ols_results = sm.OLS(data.endog, data.exog).results >>> print ols_results.summary() ... Notes ----- conf_int calculated from normal dist. """ import time as time #TODO Make sure all self.model.__class__.__name__ are listed model_types = {'OLS' : 'Ordinary least squares', 'GLS' : 'Generalized least squares', 'GLSAR' : 'Generalized least squares with AR(p)', 'WLS' : 'Weigthed least squares', 'RLM' : 'Robust linear model', 'GLM' : 'Generalized linear model' } model_methods = {'OLS' : 'Least Squares', 'GLS' : 'Least Squares', 'GLSAR' : 'Least Squares', 'WLS' : 'Least Squares', 'RLM' : '?', 'GLM' : '?' } if title==0: title = model_types[self.model.__class__.__name__] if yname is None: try: yname = self.model.endog_names except AttributeError: yname = 'y' if xname is None: try: xname = self.model.exog_names except AttributeError: xname = ['var_%d' % i for i in range(len(self.params))] time_now = time.localtime() time_of_day = [time.strftime("%H:%M:%S", time_now)] date = time.strftime("%a, %d %b %Y", time_now) modeltype = self.model.__class__.__name__ #dist_family = self.model.family.__class__.__name__ nobs = self.nobs df_model = self.df_model df_resid = self.df_resid #General part of the summary table, Applicable to all? models #------------------------------------------------------------ #TODO: define this generically, overwrite in model classes #replace definition of stubs data by single list #e.g. gen_left = [('Model type:', [modeltype]), ('Date:', [date]), ('Dependent Variable:', yname), #What happens with multiple names? ('df model', [df_model]) ] gen_stubs_left, gen_data_left = zip_longest(*gen_left) #transpose row col gen_title = title gen_header = None ## gen_stubs_left = ('Model type:', ## 'Date:', ## 'Dependent Variable:', ## 'df model' ## ) ## gen_data_left = [[modeltype], ## [date], ## yname, #What happens with multiple names? ## [df_model] ## ] gen_table_left = SimpleTable(gen_data_left, gen_header, gen_stubs_left, title = gen_title, txt_fmt = gen_fmt ) gen_stubs_right = ('Method:', 'Time:', 'Number of Obs:', 'df resid' ) gen_data_right = ([modeltype], #was dist family need to look at more time_of_day, [nobs], [df_resid] ) gen_table_right = SimpleTable(gen_data_right, gen_header, gen_stubs_right, title = gen_title, txt_fmt = gen_fmt ) gen_table_left.extend_right(gen_table_right) general_table = gen_table_left #Parameters part of the summary table #------------------------------------ #Note: this is not necessary since we standardized names, only t versus normal tstats = {'OLS' : self.t(), 'GLS' : self.t(), 'GLSAR' : self.t(), 'WLS' : self.t(), 'RLM' : self.t(), 'GLM' : self.t() } prob_stats = {'OLS' : self.pvalues, 'GLS' : self.pvalues, 'GLSAR' : self.pvalues, 'WLS' : self.pvalues, 'RLM' : self.pvalues, 'GLM' : self.pvalues } #Dictionary to store the header names for the parameter part of the #summary table. look up by modeltype alp = str((1-alpha)*100)+'%' param_header = { 'OLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'GLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'GLSAR' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'WLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'GLM' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], #glm uses t-distribution 'RLM' : ['coef', 'std err', 'z', 'P>|z|', alp + ' Conf. Interval'] #checke z } params_stubs = xname params = self.params conf_int = self.conf_int(alpha) std_err = self.bse exog_len = lrange(len(xname)) tstat = tstats[modeltype] prob_stat = prob_stats[modeltype] # Simpletable should be able to handle the formating params_data = lzip(["%#6.4g" % (params[i]) for i in exog_len], ["%#6.4f" % (std_err[i]) for i in exog_len], ["%#6.4f" % (tstat[i]) for i in exog_len], ["%#6.4f" % (prob_stat[i]) for i in exog_len], ["(%#5g, %#5g)" % tuple(conf_int[i]) for i in \ exog_len] ) parameter_table = SimpleTable(params_data, param_header[modeltype], params_stubs, title = None, txt_fmt = fmt_2, #gen_fmt, ) #special table #------------- #TODO: exists in linear_model, what about other models #residual diagnostics #output options #-------------- #TODO: JP the rest needs to be fixed, similar to summary in linear_model def ols_printer(): """ print summary table for ols models """ table = str(general_table)+'\n'+str(parameter_table) return table def ols_to_csv(): """ exports ols summary data to csv """ pass def glm_printer(): table = str(general_table)+'\n'+str(parameter_table) return table pass printers = {'OLS': ols_printer, 'GLM' : glm_printer } if returns=='print': try: return printers[modeltype]() except KeyError: return printers['OLS']() def _getnames(self, yname=None, xname=None): '''extract names from model or construct names ''' if yname is None: if hasattr(self.model, 'endog_names') and ( not self.model.endog_names is None): yname = self.model.endog_names else: yname = 'y' if xname is None: if hasattr(self.model, 'exog_names') and ( not self.model.exog_names is None): xname = self.model.exog_names else: xname = ['var_%d' % i for i in range(len(self.params))] return yname, xname def summary_top(results, title=None, gleft=None, gright=None, yname=None, xname=None): '''generate top table(s) TODO: this still uses predefined model_methods ? allow gleft, gright to be 1 element tuples instead of filling with None? ''' #change of names ? gen_left, gen_right = gleft, gright #time and names are always included import time time_now = time.localtime() time_of_day = [time.strftime("%H:%M:%S", time_now)] date = time.strftime("%a, %d %b %Y", time_now) yname, xname = _getnames(results, yname=yname, xname=xname) #create dictionary with default #use lambdas because some values raise exception if they are not available #alternate spellings are commented out to force unique labels default_items = dict([ ('Dependent Variable:', lambda: [yname]), ('Dep. Variable:', lambda: [yname]), ('Model:', lambda: [results.model.__class__.__name__]), #('Model type:', lambda: [results.model.__class__.__name__]), ('Date:', lambda: [date]), ('Time:', lambda: time_of_day), ('Number of Obs:', lambda: [results.nobs]), #('No. of Observations:', lambda: ["%#6d" % results.nobs]), ('No. Observations:', lambda: ["%#6d" % results.nobs]), #('Df model:', lambda: [results.df_model]), ('Df Model:', lambda: ["%#6d" % results.df_model]), #TODO: check when we have non-integer df ('Df Residuals:', lambda: ["%#6d" % results.df_resid]), #('Df resid:', lambda: [results.df_resid]), #('df resid:', lambda: [results.df_resid]), #check capitalization ('Log-Likelihood:', lambda: ["%#8.5g" % results.llf]) #doesn't exist for RLM - exception #('Method:', lambda: [???]), #no default for this ]) if title is None: title = results.model.__class__.__name__ + 'Regression Results' if gen_left is None: #default: General part of the summary table, Applicable to all? models gen_left = [('Dep. Variable:', None), ('Model type:', None), ('Date:', None), ('No. Observations:', None), ('Df model:', None), ('Df resid:', None)] try: llf = results.llf gen_left.append(('Log-Likelihood', None)) except: #AttributeError, NotImplementedError pass gen_right = [] gen_title = title gen_header = None #needed_values = [k for k,v in gleft + gright if v is None] #not used anymore #replace missing (None) values with default values gen_left_ = [] for item, value in gen_left: if value is None: value = default_items[item]() #let KeyErrors raise exception gen_left_.append((item, value)) gen_left = gen_left_ if gen_right: gen_right_ = [] for item, value in gen_right: if value is None: value = default_items[item]() #let KeyErrors raise exception gen_right_.append((item, value)) gen_right = gen_right_ #check missing_values = [k for k,v in gen_left + gen_right if v is None] assert missing_values == [], missing_values #pad both tables to equal number of rows if gen_right: if len(gen_right) < len(gen_left): #fill up with blank lines to same length gen_right += [(' ', ' ')] * (len(gen_left) - len(gen_right)) elif len(gen_right) > len(gen_left): #fill up with blank lines to same length, just to keep it symmetric gen_left += [(' ', ' ')] * (len(gen_right) - len(gen_left)) #padding in SimpleTable doesn't work like I want #force extra spacing and exact string length in right table gen_right = [('%-21s' % (' '+k), v) for k,v in gen_right] gen_stubs_right, gen_data_right = zip_longest(*gen_right) #transpose row col gen_table_right = SimpleTable(gen_data_right, gen_header, gen_stubs_right, title = gen_title, txt_fmt = fmt_2cols #gen_fmt ) else: gen_table_right = [] #because .extend_right seems works with [] #moved below so that we can pad if needed to match length of gen_right #transpose rows and columns, `unzip` gen_stubs_left, gen_data_left = zip_longest(*gen_left) #transpose row col gen_table_left = SimpleTable(gen_data_left, gen_header, gen_stubs_left, title = gen_title, txt_fmt = fmt_2cols ) gen_table_left.extend_right(gen_table_right) general_table = gen_table_left return general_table #, gen_table_left, gen_table_right def summary_params(results, yname=None, xname=None, alpha=.05, use_t=True, skip_header=False, title=None): '''create a summary table for the parameters Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) skip_headers : bool If false (default), then the header row is added. If true, then no header row is added. Returns ------- params_table : SimpleTable instance ''' #Parameters part of the summary table #------------------------------------ #Note: this is not necessary since we standardized names, only t versus normal if isinstance(results, tuple): #for multivariate endog #TODO: check whether I don't want to refactor this #we need to give parameter alpha to conf_int results, params, std_err, tvalues, pvalues, conf_int = results else: params = results.params std_err = results.bse tvalues = results.tvalues #is this sometimes called zvalues pvalues = results.pvalues conf_int = results.conf_int(alpha) #Dictionary to store the header names for the parameter part of the #summary table. look up by modeltype alp = str((1-alpha)*100)+'%' if use_t: param_header = ['coef', 'std err', 't', 'P>|t|', '[' + alp + ' Conf. Int.]'] else: param_header = ['coef', 'std err', 'z', 'P>|z|', '[' + alp + ' Conf. Int.]'] if skip_header: param_header = None _, xname = _getnames(results, yname=yname, xname=xname) params_stubs = xname exog_idx = lrange(len(xname)) #center confidence intervals if they are unequal lengths # confint = ["(%#6.3g, %#6.3g)" % tuple(conf_int[i]) for i in \ # exog_idx] confint = ["%s %s" % tuple(lmap(forg, conf_int[i])) for i in \ exog_idx] len_ci = lmap(len, confint) max_ci = max(len_ci) min_ci = min(len_ci) if min_ci < max_ci: confint = [ci.center(max_ci) for ci in confint] #explicit f/g formatting, now uses forg, f or g depending on values # params_data = lzip(["%#6.4g" % (params[i]) for i in exog_idx], # ["%#6.4f" % (std_err[i]) for i in exog_idx], # ["%#6.3f" % (tvalues[i]) for i in exog_idx], # ["%#6.3f" % (pvalues[i]) for i in exog_idx], # confint ## ["(%#6.3g, %#6.3g)" % tuple(conf_int[i]) for i in \ ## exog_idx] # ) params_data = lzip([forg(params[i], prec=4) for i in exog_idx], [forg(std_err[i]) for i in exog_idx], [forg(tvalues[i]) for i in exog_idx], ["%#6.3f" % (pvalues[i]) for i in exog_idx], confint # ["(%#6.3g, %#6.3g)" % tuple(conf_int[i]) for i in \ # exog_idx] ) parameter_table = SimpleTable(params_data, param_header, params_stubs, title = title, txt_fmt = fmt_params #gen_fmt #fmt_2, #gen_fmt, ) return parameter_table def summary_params_frame(results, yname=None, xname=None, alpha=.05, use_t=True): '''create a summary table for the parameters Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) skip_headers : bool If false (default), then the header row is added. If true, then no header row is added. Returns ------- params_table : SimpleTable instance ''' #Parameters part of the summary table #------------------------------------ #Note: this is not necessary since we standardized names, only t versus normal if isinstance(results, tuple): #for multivariate endog #TODO: check whether I don't want to refactor this #we need to give parameter alpha to conf_int results, params, std_err, tvalues, pvalues, conf_int = results else: params = results.params std_err = results.bse tvalues = results.tvalues #is this sometimes called zvalues pvalues = results.pvalues conf_int = results.conf_int(alpha) #Dictionary to store the header names for the parameter part of the #summary table. look up by modeltype alp = str((1-alpha)*100)+'%' if use_t: param_header = ['coef', 'std err', 't', 'P>|t|', 'Conf. Int. Low', 'Conf. Int. Upp.'] else: param_header = ['coef', 'std err', 'z', 'P>|z|', 'Conf. Int. Low', 'Conf. Int. Upp.'] _, xname = _getnames(results, yname=yname, xname=xname) #------------------ from pandas import DataFrame table = np.column_stack((params, std_err, tvalues, pvalues, conf_int)) return DataFrame(table, columns=param_header, index=xname) def summary_params_2d(result, extras=None, endog_names=None, exog_names=None, title=None): '''create summary table of regression parameters with several equations This allows interleaving of parameters with bse and/or tvalues Parameters ---------- result : result instance the result instance with params and attributes in extras extras : list of strings additional attributes to add below a parameter row, e.g. bse or tvalues endog_names : None or list of strings names for rows of the parameter array (multivariate endog) exog_names : None or list of strings names for columns of the parameter array (exog) alpha : float level for confidence intervals, default 0.95 title : None or string Returns ------- tables : list of SimpleTable this contains a list of all seperate Subtables table_all : SimpleTable the merged table with results concatenated for each row of the parameter array ''' if endog_names is None: #TODO: note the [1:] is specific to current MNLogit endog_names = ['endog_%d' % i for i in np.unique(result.model.endog)[1:]] if exog_names is None: exog_names = ['var%d' %i for i in range(len(result.params))] #TODO: check formatting options with different values #res_params = [['%10.4f'%item for item in row] for row in result.params] res_params = [[forg(item, prec=4) for item in row] for row in result.params] if extras: #not None or non-empty #maybe this should be a simple triple loop instead of list comprehension? #below_list = [[['%10s' % ('('+('%10.3f'%v).strip()+')') extras_list = [[['%10s' % ('(' + forg(v, prec=3).strip() + ')') for v in col] for col in getattr(result, what)] for what in extras ] data = lzip(res_params, *extras_list) data = [i for j in data for i in j] #flatten stubs = lzip(endog_names, *[['']*len(endog_names)]*len(extras)) stubs = [i for j in stubs for i in j] #flatten #return SimpleTable(data, headers=exog_names, stubs=stubs) else: data = res_params stubs = endog_names # return SimpleTable(data, headers=exog_names, stubs=stubs, # data_fmts=['%10.4f']) import copy txt_fmt = copy.deepcopy(fmt_params) txt_fmt.update(dict(data_fmts = ["%s"]*result.params.shape[1])) return SimpleTable(data, headers=exog_names, stubs=stubs, title=title, # data_fmts = ["%s"]), txt_fmt = txt_fmt) def summary_params_2dflat(result, endog_names=None, exog_names=None, alpha=0.05, use_t=True, keep_headers=True, endog_cols=False): #skip_headers2=True): '''summary table for parameters that are 2d, e.g. multi-equation models Parameters ---------- result : result instance the result instance with params, bse, tvalues and conf_int endog_names : None or list of strings names for rows of the parameter array (multivariate endog) exog_names : None or list of strings names for columns of the parameter array (exog) alpha : float level for confidence intervals, default 0.95 use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) keep_headers : bool If true (default), then sub-tables keep their headers. If false, then only the first headers are kept, the other headerse are blanked out endog_cols : bool If false (default) then params and other result statistics have equations by rows. If true, then equations are assumed to be in columns. Not implemented yet. Returns ------- tables : list of SimpleTable this contains a list of all seperate Subtables table_all : SimpleTable the merged table with results concatenated for each row of the parameter array ''' res = result params = res.params if params.ndim == 2: # we've got multiple equations n_equ = params.shape[1] if not len(endog_names) == params.shape[1]: raise ValueError('endog_names has wrong length') else: if not len(endog_names) == len(params): raise ValueError('endog_names has wrong length') n_equ = 1 #VAR doesn't have conf_int #params = res.params.T # this is a convention for multi-eq models if not isinstance(endog_names, list): #this might be specific to multinomial logit type, move? if endog_names is None: endog_basename = 'endog' else: endog_basename = endog_names #TODO: note, the [1:] is specific to current MNLogit endog_names = res.model.endog_names[1:] #check if we have the right length of names tables = [] for eq in range(n_equ): restup = (res, res.params[:,eq], res.bse[:,eq], res.tvalues[:,eq], res.pvalues[:,eq], res.conf_int(alpha)[eq]) #not used anymore in current version # if skip_headers2: # skiph = (row != 0) # else: # skiph = False skiph = False tble = summary_params(restup, yname=endog_names[eq], xname=exog_names, alpha=alpha, use_t=use_t, skip_header=skiph) tables.append(tble) #add titles, they will be moved to header lines in table_extend for i in range(len(endog_names)): tables[i].title = endog_names[i] table_all = table_extend(tables, keep_headers=keep_headers) return tables, table_all def table_extend(tables, keep_headers=True): '''extend a list of SimpleTables, adding titles to header of subtables This function returns the merged table as a deepcopy, in contrast to the SimpleTable extend method. Parameters ---------- tables : list of SimpleTable instances keep_headers : bool If true, then all headers are kept. If falls, then the headers of subtables are blanked out. Returns ------- table_all : SimpleTable merged tables as a single SimpleTable instance ''' from copy import deepcopy for ii, t in enumerate(tables[:]): #[1:]: t = deepcopy(t) #move title to first cell of header #TODO: check if we have multiline headers if t[0].datatype == 'header': t[0][0].data = t.title t[0][0]._datatype = None t[0][0].row = t[0][1].row if not keep_headers and (ii > 0): for c in t[0][1:]: c.data = '' #add separating line and extend tables if ii == 0: table_all = t else: r1 = table_all[-1] r1.add_format('txt', row_dec_below='-') table_all.extend(t) table_all.title = None return table_all def summary_return(tables, return_fmt='text'): ######## Return Summary Tables ######## # join table parts then print if return_fmt == 'text': strdrop = lambda x: str(x).rsplit('\n',1)[0] #convert to string drop last line return '\n'.join(lmap(strdrop, tables[:-1]) + [str(tables[-1])]) elif return_fmt == 'tables': return tables elif return_fmt == 'csv': return '\n'.join(map(lambda x: x.as_csv(), tables)) elif return_fmt == 'latex': #TODO: insert \hline after updating SimpleTable import copy table = copy.deepcopy(tables[0]) del table[-1] for part in tables[1:]: table.extend(part) return table.as_latex_tabular() elif return_fmt == 'html': return "\n".join(table.as_html() for table in tables) else: raise ValueError('available output formats are text, csv, latex, html') class Summary(object): '''class to hold tables for result summary presentation Construction does not take any parameters. Tables and text can be added with the `add_` methods. Attributes ---------- tables : list of tables Contains the list of SimpleTable instances, horizontally concatenated tables are not saved separately. extra_txt : string extra lines that are added to the text output, used for warnings and explanations. ''' def __init__(self): self.tables = [] self.extra_txt = None def __str__(self): return self.as_text() def __repr__(self): #return '<' + str(type(self)) + '>\n"""\n' + self.__str__() + '\n"""' return str(type(self)) + '\n"""\n' + self.__str__() + '\n"""' def _repr_html_(self): '''Display as HTML in IPython notebook.''' return self.as_html() def add_table_2cols(self, res, title=None, gleft=None, gright=None, yname=None, xname=None): '''add a double table, 2 tables with one column merged horizontally Parameters ---------- res : results instance some required information is directly taken from the result instance title : string or None if None, then a default title is used. gleft : list of tuples elements for the left table, tuples are (name, value) pairs If gleft is None, then a default table is created gright : list of tuples or None elements for the right table, tuples are (name, value) pairs yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" Returns ------- None : tables are attached ''' table = summary_top(res, title=title, gleft=gleft, gright=gright, yname=yname, xname=xname) self.tables.append(table) def add_table_params(self, res, yname=None, xname=None, alpha=.05, use_t=True): '''create and add a table for the parameter estimates Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) Returns ------- None : table is attached ''' if res.params.ndim == 1: table = summary_params(res, yname=yname, xname=xname, alpha=alpha, use_t=use_t) elif res.params.ndim == 2: # _, table = summary_params_2dflat(res, yname=yname, xname=xname, # alpha=alpha, use_t=use_t) _, table = summary_params_2dflat(res, endog_names=yname, exog_names=xname, alpha=alpha, use_t=use_t) else: raise ValueError('params has to be 1d or 2d') self.tables.append(table) def add_extra_txt(self, etext): '''add additional text that will be added at the end in text format Parameters ---------- etext : string string with lines that are added to the text output. ''' self.extra_txt = '\n'.join(etext) def as_text(self): '''return tables as string Returns ------- txt : string summary tables and extra text as one string ''' txt = summary_return(self.tables, return_fmt='text') if not self.extra_txt is None: txt = txt + '\n\n' + self.extra_txt return txt def as_latex(self): '''return tables as string Returns ------- latex : string summary tables and extra text as string of Latex Notes ----- This currently merges tables with different number of columns. It is recommended to use `as_latex_tabular` directly on the individual tables. ''' return summary_return(self.tables, return_fmt='latex') def as_csv(self): '''return tables as string Returns ------- csv : string concatenated summary tables in comma delimited format ''' return summary_return(self.tables, return_fmt='csv') def as_html(self): '''return tables as string Returns ------- html : string concatenated summary tables in HTML format ''' return summary_return(self.tables, return_fmt='html') if __name__ == "__main__": import statsmodels.api as sm data = sm.datasets.longley.load() data.exog = sm.add_constant(data.exog) res = sm.OLS(data.endog, data.exog).fit() #summary(
# -*- coding: utf-8 -*- """ Pdb debugger class. Modified from the standard pdb.Pdb class to avoid including readline, so that the command line completion of other programs which include this isn't damaged. In the future, this class will be expanded with improvements over the standard pdb. The code in this file is mainly lifted out of cmd.py in Python 2.2, with minor changes. Licensing should therefore be under the standard Python terms. For details on the PSF (Python Software Foundation) standard license, see: http://www.python.org/2.2.3/license.html""" #***************************************************************************** # # This file is licensed under the PSF license. # # Copyright (C) 2001 Python Software Foundation, www.python.org # Copyright (C) 2005-2006 Fernando Perez. <[email protected]> # # #***************************************************************************** from __future__ import print_function import bdb import functools import linecache import sys from IPython import get_ipython from IPython.utils import PyColorize, ulinecache from IPython.utils import coloransi, io, py3compat from IPython.core.excolors import exception_colors from IPython.testing.skipdoctest import skip_doctest # See if we can use pydb. has_pydb = False prompt = 'ipdb> ' #We have to check this directly from sys.argv, config struct not yet available if '--pydb' in sys.argv: try: import pydb if hasattr(pydb.pydb, "runl") and pydb.version>'1.17': # Version 1.17 is broken, and that's what ships with Ubuntu Edgy, so we # better protect against it. has_pydb = True except ImportError: print("Pydb (http://bashdb.sourceforge.net/pydb/) does not seem to be available") if has_pydb: from pydb import Pdb as OldPdb #print "Using pydb for %run -d and post-mortem" #dbg prompt = 'ipydb> ' else: from pdb import Pdb as OldPdb # Allow the set_trace code to operate outside of an ipython instance, even if # it does so with some limitations. The rest of this support is implemented in # the Tracer constructor. def BdbQuit_excepthook(et, ev, tb, excepthook=None): """Exception hook which handles `BdbQuit` exceptions. All other exceptions are processed using the `excepthook` parameter. """ if et==bdb.BdbQuit: print('Exiting Debugger.') elif excepthook is not None: excepthook(et, ev, tb) else: # Backwards compatibility. Raise deprecation warning? BdbQuit_excepthook.excepthook_ori(et,ev,tb) def BdbQuit_IPython_excepthook(self,et,ev,tb,tb_offset=None): print('Exiting Debugger.') class Tracer(object): """Class for local debugging, similar to pdb.set_trace. Instances of this class, when called, behave like pdb.set_trace, but providing IPython's enhanced capabilities. This is implemented as a class which must be initialized in your own code and not as a standalone function because we need to detect at runtime whether IPython is already active or not. That detection is done in the constructor, ensuring that this code plays nicely with a running IPython, while functioning acceptably (though with limitations) if outside of it. """ @skip_doctest def __init__(self,colors=None): """Create a local debugger instance. Parameters ---------- colors : str, optional The name of the color scheme to use, it must be one of IPython's valid color schemes. If not given, the function will default to the current IPython scheme when running inside IPython, and to 'NoColor' otherwise. Examples -------- :: from IPython.core.debugger import Tracer; debug_here = Tracer() Later in your code:: debug_here() # -> will open up the debugger at that point. Once the debugger activates, you can use all of its regular commands to step through code, set breakpoints, etc. See the pdb documentation from the Python standard library for usage details. """ ip = get_ipython() if ip is None: # Outside of ipython, we set our own exception hook manually sys.excepthook = functools.partial(BdbQuit_excepthook, excepthook=sys.excepthook) def_colors = 'NoColor' try: # Limited tab completion support import readline readline.parse_and_bind('tab: complete') except ImportError: pass else: # In ipython, we use its custom exception handler mechanism def_colors = ip.colors ip.set_custom_exc((bdb.BdbQuit,), BdbQuit_IPython_excepthook) if colors is None: colors = def_colors # The stdlib debugger internally uses a modified repr from the `repr` # module, that limits the length of printed strings to a hardcoded # limit of 30 characters. That much trimming is too aggressive, let's # at least raise that limit to 80 chars, which should be enough for # most interactive uses. try: try: from reprlib import aRepr # Py 3 except ImportError: from repr import aRepr # Py 2 aRepr.maxstring = 80 except: # This is only a user-facing convenience, so any error we encounter # here can be warned about but can be otherwise ignored. These # printouts will tell us about problems if this API changes import traceback traceback.print_exc() self.debugger = Pdb(colors) def __call__(self): """Starts an interactive debugger at the point where called. This is similar to the pdb.set_trace() function from the std lib, but using IPython's enhanced debugger.""" self.debugger.set_trace(sys._getframe().f_back) def decorate_fn_with_doc(new_fn, old_fn, additional_text=""): """Make new_fn have old_fn's doc string. This is particularly useful for the ``do_...`` commands that hook into the help system. Adapted from from a comp.lang.python posting by Duncan Booth.""" def wrapper(*args, **kw): return new_fn(*args, **kw) if old_fn.__doc__: wrapper.__doc__ = old_fn.__doc__ + additional_text return wrapper def _file_lines(fname): """Return the contents of a named file as a list of lines. This function never raises an IOError exception: if the file can't be read, it simply returns an empty list.""" try: outfile = open(fname) except IOError: return [] else: out = outfile.readlines() outfile.close() return out class Pdb(OldPdb): """Modified Pdb class, does not load readline.""" def __init__(self,color_scheme='NoColor',completekey=None, stdin=None, stdout=None): # Parent constructor: if has_pydb and completekey is None: OldPdb.__init__(self,stdin=stdin,stdout=io.stdout) else: OldPdb.__init__(self,completekey,stdin,stdout) self.prompt = prompt # The default prompt is '(Pdb)' # IPython changes... self.is_pydb = has_pydb self.shell = get_ipython() if self.shell is None: # No IPython instance running, we must create one from IPython.terminal.interactiveshell import \ TerminalInteractiveShell self.shell = TerminalInteractiveShell.instance() if self.is_pydb: # interactiveshell.py's ipalias seems to want pdb's checkline # which located in pydb.fn import pydb.fns self.checkline = lambda filename, lineno: \ pydb.fns.checkline(self, filename, lineno) self.curframe = None self.do_restart = self.new_do_restart self.old_all_completions = self.shell.Completer.all_completions self.shell.Completer.all_completions=self.all_completions self.do_list = decorate_fn_with_doc(self.list_command_pydb, OldPdb.do_list) self.do_l = self.do_list self.do_frame = decorate_fn_with_doc(self.new_do_frame, OldPdb.do_frame) self.aliases = {} # Create color table: we copy the default one from the traceback # module and add a few attributes needed for debugging self.color_scheme_table = exception_colors() # shorthands C = coloransi.TermColors cst = self.color_scheme_table cst['NoColor'].colors.breakpoint_enabled = C.NoColor cst['NoColor'].colors.breakpoint_disabled = C.NoColor cst['Linux'].colors.breakpoint_enabled = C.LightRed cst['Linux'].colors.breakpoint_disabled = C.Red cst['LightBG'].colors.breakpoint_enabled = C.LightRed cst['LightBG'].colors.breakpoint_disabled = C.Red self.set_colors(color_scheme) # Add a python parser so we can syntax highlight source while # debugging. self.parser = PyColorize.Parser() def set_colors(self, scheme): """Shorthand access to the color table scheme selector method.""" self.color_scheme_table.set_active_scheme(scheme) def interaction(self, frame, traceback): self.shell.set_completer_frame(frame) while True: try: OldPdb.interaction(self, frame, traceback) except KeyboardInterrupt: self.shell.write('\n' + self.shell.get_exception_only()) break else: break def new_do_up(self, arg): OldPdb.do_up(self, arg) self.shell.set_completer_frame(self.curframe) do_u = do_up = decorate_fn_with_doc(new_do_up, OldPdb.do_up) def new_do_down(self, arg): OldPdb.do_down(self, arg) self.shell.set_completer_frame(self.curframe) do_d = do_down = decorate_fn_with_doc(new_do_down, OldPdb.do_down) def new_do_frame(self, arg): OldPdb.do_frame(self, arg) self.shell.set_completer_frame(self.curframe) def new_do_quit(self, arg): if hasattr(self, 'old_all_completions'): self.shell.Completer.all_completions=self.old_all_completions # Pdb sets readline delimiters, so set them back to our own if self.shell.readline is not None: self.shell.readline.set_completer_delims(self.shell.readline_delims) return OldPdb.do_quit(self, arg) do_q = do_quit = decorate_fn_with_doc(new_do_quit, OldPdb.do_quit) def new_do_restart(self, arg): """Restart command. In the context of ipython this is exactly the same thing as 'quit'.""" self.msg("Restart doesn't make sense here. Using 'quit' instead.") return self.do_quit(arg) def postloop(self): self.shell.set_completer_frame(None) def print_stack_trace(self): try: for frame_lineno in self.stack: self.print_stack_entry(frame_lineno, context = 5) except KeyboardInterrupt: pass def print_stack_entry(self,frame_lineno,prompt_prefix='\n-> ', context = 3): #frame, lineno = frame_lineno print(self.format_stack_entry(frame_lineno, '', context), file=io.stdout) # vds: >> frame, lineno = frame_lineno filename = frame.f_code.co_filename self.shell.hooks.synchronize_with_editor(filename, lineno, 0) # vds: << def format_stack_entry(self, frame_lineno, lprefix=': ', context = 3): try: import reprlib # Py 3 except ImportError: import repr as reprlib # Py 2 ret = [] Colors = self.color_scheme_table.active_colors ColorsNormal = Colors.Normal tpl_link = u'%s%%s%s' % (Colors.filenameEm, ColorsNormal) tpl_call = u'%s%%s%s%%s%s' % (Colors.vName, Colors.valEm, ColorsNormal) tpl_line = u'%%s%s%%s %s%%s' % (Colors.lineno, ColorsNormal) tpl_line_em = u'%%s%s%%s %s%%s%s' % (Colors.linenoEm, Colors.line, ColorsNormal) frame, lineno = frame_lineno return_value = '' if '__return__' in frame.f_locals: rv = frame.f_locals['__return__'] #return_value += '->' return_value += reprlib.repr(rv) + '\n' ret.append(return_value) #s = filename + '(' + `lineno` + ')' filename = self.canonic(frame.f_code.co_filename) link = tpl_link % py3compat.cast_unicode(filename) if frame.f_code.co_name: func = frame.f_code.co_name else: func = "<lambda>" call = '' if func != '?': if '__args__' in frame.f_locals: args = reprlib.repr(frame.f_locals['__args__']) else: args = '()' call = tpl_call % (func, args) # The level info should be generated in the same format pdb uses, to # avoid breaking the pdbtrack functionality of python-mode in *emacs. if frame is self.curframe: ret.append('> ') else: ret.append(' ') ret.append(u'%s(%s)%s\n' % (link,lineno,call)) start = lineno - 1 - context//2 lines = ulinecache.getlines(filename) start = min(start, len(lines) - context) start = max(start, 0) lines = lines[start : start + context] for i,line in enumerate(lines): show_arrow = (start + 1 + i == lineno) linetpl = (frame is self.curframe or show_arrow) \ and tpl_line_em \ or tpl_line ret.append(self.__format_line(linetpl, filename, start + 1 + i, line, arrow = show_arrow) ) return ''.join(ret) def __format_line(self, tpl_line, filename, lineno, line, arrow = False): bp_mark = "" bp_mark_color = "" scheme = self.color_scheme_table.active_scheme_name new_line, err = self.parser.format2(line, 'str', scheme) if not err: line = new_line bp = None if lineno in self.get_file_breaks(filename): bps = self.get_breaks(filename, lineno) bp = bps[-1] if bp: Colors = self.color_scheme_table.active_colors bp_mark = str(bp.number) bp_mark_color = Colors.breakpoint_enabled if not bp.enabled: bp_mark_color = Colors.breakpoint_disabled numbers_width = 7 if arrow: # This is the line with the error pad = numbers_width - len(str(lineno)) - len(bp_mark) if pad >= 3: marker = '-'*(pad-3) + '-> ' elif pad == 2: marker = '> ' elif pad == 1: marker = '>' else: marker = '' num = '%s%s' % (marker, str(lineno)) line = tpl_line % (bp_mark_color + bp_mark, num, line) else: num = '%*s' % (numbers_width - len(bp_mark), str(lineno)) line = tpl_line % (bp_mark_color + bp_mark, num, line) return line def list_command_pydb(self, arg): """List command to use if we have a newer pydb installed""" filename, first, last = OldPdb.parse_list_cmd(self, arg) if filename is not None: self.print_list_lines(filename, first, last) def print_list_lines(self, filename, first, last): """The printing (as opposed to the parsing part of a 'list' command.""" try: Colors = self.color_scheme_table.active_colors ColorsNormal = Colors.Normal tpl_line = '%%s%s%%s %s%%s' % (Colors.lineno, ColorsNormal) tpl_line_em = '%%s%s%%s %s%%s%s' % (Colors.linenoEm, Colors.line, ColorsNormal) src = [] if filename == "<string>" and hasattr(self, "_exec_filename"): filename = self._exec_filename for lineno in range(first, last+1): line = ulinecache.getline(filename, lineno) if not line: break if lineno == self.curframe.f_lineno: line = self.__format_line(tpl_line_em, filename, lineno, line, arrow = True) else: line = self.__format_line(tpl_line, filename, lineno, line, arrow = False) src.append(line) self.lineno = lineno print(''.join(src), file=io.stdout) except KeyboardInterrupt: pass def do_list(self, arg): self.lastcmd = 'list' last = None if arg: try: x = eval(arg, {}, {}) if type(x) == type(()): first, last = x first = int(first) last = int(last) if last < first: # Assume it's a count last = first + last else: first = max(1, int(x) - 5) except: print('*** Error in argument:', repr(arg)) return elif self.lineno is None: first = max(1, self.curframe.f_lineno - 5) else: first = self.lineno + 1 if last is None: last = first + 10 self.print_list_lines(self.curframe.f_code.co_filename, first, last) # vds: >> lineno = first filename = self.curframe.f_code.co_filename self.shell.hooks.synchronize_with_editor(filename, lineno, 0) # vds: << do_l = do_list def do_pdef(self, arg): """Print the call signature for any callable object. The debugger interface to %pdef""" namespaces = [('Locals', self.curframe.f_locals), ('Globals', self.curframe.f_globals)] self.shell.find_line_magic('pdef')(arg, namespaces=namespaces) def do_pdoc(self, arg): """Print the docstring for an object. The debugger interface to %pdoc.""" namespaces = [('Locals', self.curframe.f_locals), ('Globals', self.curframe.f_globals)] self.shell.find_line_magic('pdoc')(arg, namespaces=namespaces) def do_pfile(self, arg): """Print (or run through pager) the file where an object is defined. The debugger interface to %pfile. """ namespaces = [('Locals', self.curframe.f_locals), ('Globals', self.curframe.f_globals)] self.shell.find_line_magic('pfile')(arg, namespaces=namespaces) def do_pinfo(self, arg): """Provide detailed information about an object. The debugger interface to %pinfo, i.e., obj?.""" namespaces = [('Locals', self.curframe.f_locals), ('Globals', self.curframe.f_globals)] self.shell.find_line_magic('pinfo')(arg, namespaces=namespaces) def do_pinfo2(self, arg): """Provide extra detailed information about an object. The debugger interface to %pinfo2, i.e., obj??.""" namespaces = [('Locals', self.curframe.f_locals), ('Globals', self.curframe.f_globals)] self.shell.find_line_magic('pinfo2')(arg, namespaces=namespaces) def do_psource(self, arg): """Print (or run through pager) the source code for an object.""" namespaces = [('Locals', self.curframe.f_locals), ('Globals', self.curframe.f_globals)] self.shell.find_line_magic('psource')(arg, namespaces=namespaces) def checkline(self, filename, lineno): """Check whether specified line seems to be executable. Return `lineno` if it is, 0 if not (e.g. a docstring, comment, blank line or EOF). Warning: testing is not comprehensive. """ ####################################################################### # XXX Hack! Use python-2.5 compatible code for this call, because with # all of our changes, we've drifted from the pdb api in 2.6. For now, # changing: # #line = linecache.getline(filename, lineno, self.curframe.f_globals) # to: # line = linecache.getline(filename, lineno) # # does the trick. But in reality, we need to fix this by reconciling # our updates with the new Pdb APIs in Python 2.6. # # End hack. The rest of this method is copied verbatim from 2.6 pdb.py ####################################################################### if not line: print('End of file', file=self.stdout) return 0 line = line.strip() # Don't allow setting breakpoint at a blank line if (not line or (line[0] == '#') or (line[:3] == '"""') or line[:3] == "'''"): print('*** Blank or comment', file=self.stdout) return 0 return lineno
# Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Nova common internal object model""" import collections import contextlib import copy import datetime import functools import traceback import netaddr from oslo_log import log as logging import oslo_messaging as messaging from oslo_utils import timeutils from oslo_versionedobjects import base as ovoo_base import six from nova import context from nova import exception from nova.i18n import _, _LE from nova import objects from nova.objects import fields as obj_fields from nova.openstack.common import versionutils from nova import utils LOG = logging.getLogger('object') def get_attrname(name): """Return the mangled name of the attribute's underlying storage.""" return '_' + name def make_class_properties(cls): # NOTE(danms/comstud): Inherit fields from super classes. # mro() returns the current class first and returns 'object' last, so # those can be skipped. Also be careful to not overwrite any fields # that already exist. And make sure each cls has its own copy of # fields and that it is not sharing the dict with a super class. cls.fields = dict(cls.fields) for supercls in cls.mro()[1:-1]: if not hasattr(supercls, 'fields'): continue for name, field in supercls.fields.items(): if name not in cls.fields: cls.fields[name] = field for name, field in cls.fields.iteritems(): if not isinstance(field, obj_fields.Field): raise exception.ObjectFieldInvalid( field=name, objname=cls.obj_name()) def getter(self, name=name): attrname = get_attrname(name) if not hasattr(self, attrname): self.obj_load_attr(name) return getattr(self, attrname) def setter(self, value, name=name, field=field): attrname = get_attrname(name) field_value = field.coerce(self, name, value) if field.read_only and hasattr(self, attrname): # Note(yjiang5): _from_db_object() may iterate # every field and write, no exception in such situation. if getattr(self, attrname) != field_value: raise exception.ReadOnlyFieldError(field=name) else: return self._changed_fields.add(name) try: return setattr(self, attrname, field_value) except Exception: attr = "%s.%s" % (self.obj_name(), name) LOG.exception(_LE('Error setting %(attr)s'), {'attr': attr}) raise def deleter(self, name=name): attrname = get_attrname(name) if not hasattr(self, attrname): raise AttributeError('No such attribute `%s' % name) delattr(self, get_attrname(name)) setattr(cls, name, property(getter, setter, deleter)) class NovaObjectMetaclass(type): """Metaclass that allows tracking of object classes.""" # NOTE(danms): This is what controls whether object operations are # remoted. If this is not None, use it to remote things over RPC. indirection_api = None def __init__(cls, names, bases, dict_): if not hasattr(cls, '_obj_classes'): # This means this is a base class using the metaclass. I.e., # the 'NovaObject' class. cls._obj_classes = collections.defaultdict(list) return def _vers_tuple(obj): return tuple([int(x) for x in obj.VERSION.split(".")]) # Add the subclass to NovaObject._obj_classes. If the # same version already exists, replace it. Otherwise, # keep the list with newest version first. make_class_properties(cls) obj_name = cls.obj_name() for i, obj in enumerate(cls._obj_classes[obj_name]): if cls.VERSION == obj.VERSION: cls._obj_classes[obj_name][i] = cls # Update nova.objects with this newer class. setattr(objects, obj_name, cls) break if _vers_tuple(cls) > _vers_tuple(obj): # Insert before. cls._obj_classes[obj_name].insert(i, cls) if i == 0: # Later version than we've seen before. Update # nova.objects. setattr(objects, obj_name, cls) break else: cls._obj_classes[obj_name].append(cls) # Either this is the first time we've seen the object or it's # an older version than anything we'e seen. Update nova.objects # only if it's the first time we've seen this object name. if not hasattr(objects, obj_name): setattr(objects, obj_name, cls) # These are decorators that mark an object's method as remotable. # If the metaclass is configured to forward object methods to an # indirection service, these will result in making an RPC call # instead of directly calling the implementation in the object. Instead, # the object implementation on the remote end will perform the # requested action and the result will be returned here. def remotable_classmethod(fn): """Decorator for remotable classmethods.""" @functools.wraps(fn) def wrapper(cls, context, *args, **kwargs): if NovaObject.indirection_api: result = NovaObject.indirection_api.object_class_action( context, cls.obj_name(), fn.__name__, cls.VERSION, args, kwargs) else: result = fn(cls, context, *args, **kwargs) if isinstance(result, NovaObject): result._context = context return result # NOTE(danms): Make this discoverable wrapper.remotable = True wrapper.original_fn = fn return classmethod(wrapper) # See comment above for remotable_classmethod() # # Note that this will use either the provided context, or the one # stashed in the object. If neither are present, the object is # "orphaned" and remotable methods cannot be called. def remotable(fn): """Decorator for remotable object methods.""" @functools.wraps(fn) def wrapper(self, *args, **kwargs): if args and isinstance(args[0], context.RequestContext): raise exception.ObjectActionError( action=fn.__name__, reason='Calling remotables with context is deprecated') if self._context is None: raise exception.OrphanedObjectError(method=fn.__name__, objtype=self.obj_name()) if NovaObject.indirection_api: updates, result = NovaObject.indirection_api.object_action( self._context, self, fn.__name__, args, kwargs) for key, value in updates.iteritems(): if key in self.fields: field = self.fields[key] # NOTE(ndipanov): Since NovaObjectSerializer will have # deserialized any object fields into objects already, # we do not try to deserialize them again here. if isinstance(value, NovaObject): setattr(self, key, value) else: setattr(self, key, field.from_primitive(self, key, value)) self.obj_reset_changes() self._changed_fields = set(updates.get('obj_what_changed', [])) return result else: return fn(self, *args, **kwargs) wrapper.remotable = True wrapper.original_fn = fn return wrapper @six.add_metaclass(NovaObjectMetaclass) class NovaObject(object): """Base class and object factory. This forms the base of all objects that can be remoted or instantiated via RPC. Simply defining a class that inherits from this base class will make it remotely instantiatable. Objects should implement the necessary "get" classmethod routines as well as "save" object methods as appropriate. """ # Object versioning rules # # Each service has its set of objects, each with a version attached. When # a client attempts to call an object method, the server checks to see if # the version of that object matches (in a compatible way) its object # implementation. If so, cool, and if not, fail. # # This version is allowed to have three parts, X.Y.Z, where the .Z element # is reserved for stable branch backports. The .Z is ignored for the # purposes of triggering a backport, which means anything changed under # a .Z must be additive and non-destructive such that a node that knows # about X.Y can consider X.Y.Z equivalent. VERSION = '1.0' # The fields present in this object as key:field pairs. For example: # # fields = { 'foo': fields.IntegerField(), # 'bar': fields.StringField(), # } fields = {} obj_extra_fields = [] # Table of sub-object versioning information # # This contains a list of version mappings, by the field name of # the subobject. The mappings must be in order of oldest to # newest, and are tuples of (my_version, subobject_version). A # request to backport this object to $my_version will cause the # subobject to be backported to $subobject_version. # # obj_relationships = { # 'subobject1': [('1.2', '1.1'), ('1.4', '1.2')], # 'subobject2': [('1.2', '1.0')], # } # # In the above example: # # - If we are asked to backport our object to version 1.3, # subobject1 will be backported to version 1.1, since it was # bumped to version 1.2 when our version was 1.4. # - If we are asked to backport our object to version 1.5, # no changes will be made to subobject1 or subobject2, since # they have not changed since version 1.4. # - If we are asked to backlevel our object to version 1.1, we # will remove both subobject1 and subobject2 from the primitive, # since they were not added until version 1.2. obj_relationships = {} def __init__(self, context=None, **kwargs): self._changed_fields = set() self._context = context for key in kwargs.keys(): setattr(self, key, kwargs[key]) def __repr__(self): return '%s(%s)' % ( self.obj_name(), ','.join(['%s=%s' % (name, (self.obj_attr_is_set(name) and field.stringify(getattr(self, name)) or '<?>')) for name, field in sorted(self.fields.items())])) @classmethod def obj_name(cls): """Return a canonical name for this object which will be used over the wire for remote hydration. """ return cls.__name__ @classmethod def obj_class_from_name(cls, objname, objver): """Returns a class from the registry based on a name and version.""" if objname not in cls._obj_classes: LOG.error(_LE('Unable to instantiate unregistered object type ' '%(objtype)s'), dict(objtype=objname)) raise exception.UnsupportedObjectError(objtype=objname) # NOTE(comstud): If there's not an exact match, return the highest # compatible version. The objects stored in the class are sorted # such that highest version is first, so only set compatible_match # once below. compatible_match = None for objclass in cls._obj_classes[objname]: if objclass.VERSION == objver: return objclass if (not compatible_match and versionutils.is_compatible(objver, objclass.VERSION)): compatible_match = objclass if compatible_match: return compatible_match # As mentioned above, latest version is always first in the list. latest_ver = cls._obj_classes[objname][0].VERSION raise exception.IncompatibleObjectVersion(objname=objname, objver=objver, supported=latest_ver) @classmethod def _obj_from_primitive(cls, context, objver, primitive): self = cls() self._context = context self.VERSION = objver objdata = primitive['nova_object.data'] changes = primitive.get('nova_object.changes', []) for name, field in self.fields.items(): if name in objdata: setattr(self, name, field.from_primitive(self, name, objdata[name])) self._changed_fields = set([x for x in changes if x in self.fields]) return self @classmethod def obj_from_primitive(cls, primitive, context=None): """Object field-by-field hydration.""" if primitive['nova_object.namespace'] != 'nova': # NOTE(danms): We don't do anything with this now, but it's # there for "the future" raise exception.UnsupportedObjectError( objtype='%s.%s' % (primitive['nova_object.namespace'], primitive['nova_object.name'])) objname = primitive['nova_object.name'] objver = primitive['nova_object.version'] objclass = cls.obj_class_from_name(objname, objver) return objclass._obj_from_primitive(context, objver, primitive) def __deepcopy__(self, memo): """Efficiently make a deep copy of this object.""" # NOTE(danms): A naive deepcopy would copy more than we need, # and since we have knowledge of the volatile bits of the # object, we can be smarter here. Also, nested entities within # some objects may be uncopyable, so we can avoid those sorts # of issues by copying only our field data. nobj = self.__class__() nobj._context = self._context for name in self.fields: if self.obj_attr_is_set(name): nval = copy.deepcopy(getattr(self, name), memo) setattr(nobj, name, nval) nobj._changed_fields = set(self._changed_fields) return nobj def obj_clone(self): """Create a copy.""" return copy.deepcopy(self) def obj_calculate_child_version(self, target_version, child): """Calculate the appropriate version for a child object. This is to be used when backporting an object for an older client. A sub-object will need to be backported to a suitable version for the client as well, and this method will calculate what that version should be, based on obj_relationships. :param target_version: Version this object is being backported to :param child: The child field for which the appropriate version is to be calculated :returns: None if the child should be omitted from the backport, otherwise, the version to which the child should be backported """ target_version = utils.convert_version_to_tuple(target_version) for index, versions in enumerate(self.obj_relationships[child]): my_version, child_version = versions my_version = utils.convert_version_to_tuple(my_version) if target_version < my_version: if index == 0: # We're backporting to a version from before this # subobject was added: delete it from the primitive. return None else: # We're in the gap between index-1 and index, so # backport to the older version return self.obj_relationships[child][index - 1][1] elif target_version == my_version: # This is the first mapping that satisfies the # target_version request: backport the object. return child_version # No need to backport, as far as we know, so return the latest # version of the sub-object we know about return self.obj_relationships[child][-1][1] def _obj_make_obj_compatible(self, primitive, target_version, field): """Backlevel a sub-object based on our versioning rules. This is responsible for backporting objects contained within this object's primitive according to a set of rules we maintain about version dependencies between objects. This requires that the obj_relationships table in this object is correct and up-to-date. :param:primitive: The primitive version of this object :param:target_version: The version string requested for this object :param:field: The name of the field in this object containing the sub-object to be backported """ def _do_backport(to_version): obj = getattr(self, field) if obj is None: return if isinstance(obj, NovaObject): if to_version != primitive[field]['nova_object.version']: obj.obj_make_compatible( primitive[field]['nova_object.data'], to_version) primitive[field]['nova_object.version'] = to_version elif isinstance(obj, list): for i, element in enumerate(obj): element.obj_make_compatible( primitive[field][i]['nova_object.data'], to_version) primitive[field][i]['nova_object.version'] = to_version child_version = self.obj_calculate_child_version(target_version, field) if child_version is None: del primitive[field] else: _do_backport(child_version) def obj_make_compatible(self, primitive, target_version): """Make an object representation compatible with a target version. This is responsible for taking the primitive representation of an object and making it suitable for the given target_version. This may mean converting the format of object attributes, removing attributes that have been added since the target version, etc. In general: - If a new version of an object adds a field, this routine should remove it for older versions. - If a new version changed or restricted the format of a field, this should convert it back to something a client knowing only of the older version will tolerate. - If an object that this object depends on is bumped, then this object should also take a version bump. Then, this routine should backlevel the dependent object (by calling its obj_make_compatible()) if the requested version of this object is older than the version where the new dependent object was added. :param:primitive: The result of self.obj_to_primitive() :param:target_version: The version string requested by the recipient of the object :raises: nova.exception.UnsupportedObjectError if conversion is not possible for some reason """ for key, field in self.fields.items(): if not isinstance(field, (obj_fields.ObjectField, obj_fields.ListOfObjectsField)): continue if not self.obj_attr_is_set(key): continue if key not in self.obj_relationships: # NOTE(danms): This is really a coding error and shouldn't # happen unless we miss something raise exception.ObjectActionError( action='obj_make_compatible', reason='No rule for %s' % key) self._obj_make_obj_compatible(primitive, target_version, key) def obj_to_primitive(self, target_version=None): """Simple base-case dehydration. This calls to_primitive() for each item in fields. """ primitive = dict() for name, field in self.fields.items(): if self.obj_attr_is_set(name): primitive[name] = field.to_primitive(self, name, getattr(self, name)) if target_version: self.obj_make_compatible(primitive, target_version) obj = {'nova_object.name': self.obj_name(), 'nova_object.namespace': 'nova', 'nova_object.version': target_version or self.VERSION, 'nova_object.data': primitive} if self.obj_what_changed(): obj['nova_object.changes'] = list(self.obj_what_changed()) return obj def obj_set_defaults(self, *attrs): if not attrs: attrs = [name for name, field in self.fields.items() if field.default != obj_fields.UnspecifiedDefault] for attr in attrs: default = copy.deepcopy(self.fields[attr].default) if default is obj_fields.UnspecifiedDefault: raise exception.ObjectActionError( action='set_defaults', reason='No default set for field %s' % attr) if not self.obj_attr_is_set(attr): setattr(self, attr, default) def obj_load_attr(self, attrname): """Load an additional attribute from the real object. This should use self._conductor, and cache any data that might be useful for future load operations. """ raise NotImplementedError( _("Cannot load '%s' in the base class") % attrname) def save(self, context): """Save the changed fields back to the store. This is optional for subclasses, but is presented here in the base class for consistency among those that do. """ raise NotImplementedError(_('Cannot save anything in the base class')) def obj_what_changed(self): """Returns a set of fields that have been modified.""" changes = set(self._changed_fields) for field in self.fields: if (self.obj_attr_is_set(field) and isinstance(getattr(self, field), NovaObject) and getattr(self, field).obj_what_changed()): changes.add(field) return changes def obj_get_changes(self): """Returns a dict of changed fields and their new values.""" changes = {} for key in self.obj_what_changed(): changes[key] = getattr(self, key) return changes def obj_reset_changes(self, fields=None, recursive=False): """Reset the list of fields that have been changed. :param fields: List of fields to reset, or "all" if None. :param recursive: Call obj_reset_changes(recursive=True) on any sub-objects within the list of fields being reset. NOTE: This is NOT "revert to previous values" NOTE: Specifying fields on recursive resets will only be honored at the top level. Everything below the top will reset all. """ if recursive: for field in self.obj_get_changes(): # Ignore fields not in requested set (if applicable) if fields and field not in fields: continue # Skip any fields that are unset if not self.obj_attr_is_set(field): continue value = getattr(self, field) # Don't reset nulled fields if value is None: continue # Reset straight Object and ListOfObjects fields if isinstance(self.fields[field], obj_fields.ObjectField): value.obj_reset_changes(recursive=True) elif isinstance(self.fields[field], obj_fields.ListOfObjectsField): for thing in value: thing.obj_reset_changes(recursive=True) if fields: self._changed_fields -= set(fields) else: self._changed_fields.clear() def obj_attr_is_set(self, attrname): """Test object to see if attrname is present. Returns True if the named attribute has a value set, or False if not. Raises AttributeError if attrname is not a valid attribute for this object. """ if attrname not in self.obj_fields: raise AttributeError( _("%(objname)s object has no attribute '%(attrname)s'") % {'objname': self.obj_name(), 'attrname': attrname}) return hasattr(self, get_attrname(attrname)) @property def obj_fields(self): return self.fields.keys() + self.obj_extra_fields # NOTE(danms): This is nova-specific, so don't copy this to o.vo @contextlib.contextmanager def obj_alternate_context(self, context): original_context = self._context self._context = context try: yield finally: self._context = original_context @contextlib.contextmanager def obj_as_admin(self): """Context manager to make an object call as an admin. This temporarily modifies the context embedded in an object to be elevated() and restores it after the call completes. Example usage: with obj.obj_as_admin(): obj.save() """ if self._context is None: raise exception.OrphanedObjectError(method='obj_as_admin', objtype=self.obj_name()) original_context = self._context self._context = self._context.elevated() try: yield finally: self._context = original_context class NovaObjectDictCompat(ovoo_base.VersionedObjectDictCompat): pass class NovaTimestampObject(object): """Mixin class for db backed objects with timestamp fields. Sqlalchemy models that inherit from the oslo_db TimestampMixin will include these fields and the corresponding objects will benefit from this mixin. """ fields = { 'created_at': obj_fields.DateTimeField(nullable=True), 'updated_at': obj_fields.DateTimeField(nullable=True), } class NovaPersistentObject(object): """Mixin class for Persistent objects. This adds the fields that we use in common for most persistent objects. """ fields = { 'created_at': obj_fields.DateTimeField(nullable=True), 'updated_at': obj_fields.DateTimeField(nullable=True), 'deleted_at': obj_fields.DateTimeField(nullable=True), 'deleted': obj_fields.BooleanField(default=False), } class ObjectListBase(object): """Mixin class for lists of objects. This mixin class can be added as a base class for an object that is implementing a list of objects. It adds a single field of 'objects', which is the list store, and behaves like a list itself. It supports serialization of the list of objects automatically. """ fields = { 'objects': obj_fields.ListOfObjectsField('NovaObject'), } # This is a dictionary of my_version:child_version mappings so that # we can support backleveling our contents based on the version # requested of the list object. child_versions = {} def __init__(self, *args, **kwargs): super(ObjectListBase, self).__init__(*args, **kwargs) if 'objects' not in kwargs: self.objects = [] self._changed_fields.discard('objects') def __iter__(self): """List iterator interface.""" return iter(self.objects) def __len__(self): """List length.""" return len(self.objects) def __getitem__(self, index): """List index access.""" if isinstance(index, slice): new_obj = self.__class__() new_obj.objects = self.objects[index] # NOTE(danms): We must be mixed in with a NovaObject! new_obj.obj_reset_changes() new_obj._context = self._context return new_obj return self.objects[index] def __contains__(self, value): """List membership test.""" return value in self.objects def count(self, value): """List count of value occurrences.""" return self.objects.count(value) def index(self, value): """List index of value.""" return self.objects.index(value) def sort(self, cmp=None, key=None, reverse=False): self.objects.sort(cmp=cmp, key=key, reverse=reverse) def obj_make_compatible(self, primitive, target_version): primitives = primitive['objects'] child_target_version = self.child_versions.get(target_version, '1.0') for index, item in enumerate(self.objects): self.objects[index].obj_make_compatible( primitives[index]['nova_object.data'], child_target_version) primitives[index]['nova_object.version'] = child_target_version def obj_what_changed(self): changes = set(self._changed_fields) for child in self.objects: if child.obj_what_changed(): changes.add('objects') return changes class NovaObjectSerializer(messaging.NoOpSerializer): """A NovaObject-aware Serializer. This implements the Oslo Serializer interface and provides the ability to serialize and deserialize NovaObject entities. Any service that needs to accept or return NovaObjects as arguments or result values should pass this to its RPCClient and RPCServer objects. """ @property def conductor(self): if not hasattr(self, '_conductor'): from nova import conductor self._conductor = conductor.API() return self._conductor def _process_object(self, context, objprim): try: objinst = NovaObject.obj_from_primitive(objprim, context=context) except exception.IncompatibleObjectVersion as e: objver = objprim['nova_object.version'] if objver.count('.') == 2: # NOTE(danms): For our purposes, the .z part of the version # should be safe to accept without requiring a backport objprim['nova_object.version'] = \ '.'.join(objver.split('.')[:2]) return self._process_object(context, objprim) objinst = self.conductor.object_backport(context, objprim, e.kwargs['supported']) return objinst def _process_iterable(self, context, action_fn, values): """Process an iterable, taking an action on each value. :param:context: Request context :param:action_fn: Action to take on each item in values :param:values: Iterable container of things to take action on :returns: A new container of the same type (except set) with items from values having had action applied. """ iterable = values.__class__ if issubclass(iterable, dict): return iterable(**{k: action_fn(context, v) for k, v in six.iteritems(values)}) else: # NOTE(danms, gibi) A set can't have an unhashable value inside, # such as a dict. Convert the set to list, which is fine, since we # can't send them over RPC anyway. We convert it to list as this # way there will be no semantic change between the fake rpc driver # used in functional test and a normal rpc driver. if iterable == set: iterable = list return iterable([action_fn(context, value) for value in values]) def serialize_entity(self, context, entity): if isinstance(entity, (tuple, list, set, dict)): entity = self._process_iterable(context, self.serialize_entity, entity) elif (hasattr(entity, 'obj_to_primitive') and callable(entity.obj_to_primitive)): entity = entity.obj_to_primitive() return entity def deserialize_entity(self, context, entity): if isinstance(entity, dict) and 'nova_object.name' in entity: entity = self._process_object(context, entity) elif isinstance(entity, (tuple, list, set, dict)): entity = self._process_iterable(context, self.deserialize_entity, entity) return entity def obj_to_primitive(obj): """Recursively turn an object into a python primitive. A NovaObject becomes a dict, and anything that implements ObjectListBase becomes a list. """ if isinstance(obj, ObjectListBase): return [obj_to_primitive(x) for x in obj] elif isinstance(obj, NovaObject): result = {} for key in obj.obj_fields: if obj.obj_attr_is_set(key) or key in obj.obj_extra_fields: result[key] = obj_to_primitive(getattr(obj, key)) return result elif isinstance(obj, netaddr.IPAddress): return str(obj) elif isinstance(obj, netaddr.IPNetwork): return str(obj) else: return obj def obj_make_list(context, list_obj, item_cls, db_list, **extra_args): """Construct an object list from a list of primitives. This calls item_cls._from_db_object() on each item of db_list, and adds the resulting object to list_obj. :param:context: Request context :param:list_obj: An ObjectListBase object :param:item_cls: The NovaObject class of the objects within the list :param:db_list: The list of primitives to convert to objects :param:extra_args: Extra arguments to pass to _from_db_object() :returns: list_obj """ list_obj.objects = [] for db_item in db_list: item = item_cls._from_db_object(context, item_cls(), db_item, **extra_args) list_obj.objects.append(item) list_obj._context = context list_obj.obj_reset_changes() return list_obj def serialize_args(fn): """Decorator that will do the arguments serialization before remoting.""" def wrapper(obj, *args, **kwargs): args = [timeutils.strtime(at=arg) if isinstance(arg, datetime.datetime) else arg for arg in args] for k, v in kwargs.iteritems(): if k == 'exc_val' and v: kwargs[k] = str(v) elif k == 'exc_tb' and v and not isinstance(v, six.string_types): kwargs[k] = ''.join(traceback.format_tb(v)) elif isinstance(v, datetime.datetime): kwargs[k] = timeutils.strtime(at=v) if hasattr(fn, '__call__'): return fn(obj, *args, **kwargs) # NOTE(danms): We wrap a descriptor, so use that protocol return fn.__get__(None, obj)(*args, **kwargs) # NOTE(danms): Make this discoverable wrapper.remotable = getattr(fn, 'remotable', False) wrapper.original_fn = fn return (functools.wraps(fn)(wrapper) if hasattr(fn, '__call__') else classmethod(wrapper))
# STANDARD LIB from urlparse import urlparse # LIBRARIES from django.contrib.auth import get_user_model, get_user, BACKEND_SESSION_KEY from django.contrib.sessions.middleware import SessionMiddleware from django.core.exceptions import ValidationError from django.http import HttpRequest from django.test import TestCase from django.test.utils import override_settings from django.contrib.auth.models import AnonymousUser from django.contrib.auth.hashers import make_password from google.appengine.api import users # DJANGAE from djangae.contrib.gauth.datastore.models import GaeDatastoreUser, Group, get_permission_choices from djangae.contrib.gauth.datastore.backends import AppEngineUserAPIBackend from djangae.contrib.gauth.middleware import AuthenticationMiddleware from djangae.contrib.gauth.settings import AUTHENTICATION_BACKENDS from djangae.contrib.gauth.utils import get_switch_accounts_url from djangae.contrib import sleuth class BackendTests(TestCase): """ Tests for the AppEngineUserAPIBackend auth backend. """ def test_invalid_credentials_cause_typeerror(self): """ If the `authenticate` method is passed credentials which it doesn't understand then Django expects it to raise a TypeError. """ backend = AppEngineUserAPIBackend() credentials = {'username': 'ted', 'password': 'secret'} self.assertRaises(TypeError, backend.authenticate, **credentials) @override_settings(DJANGAE_CREATE_UNKNOWN_USER=True) def test_authenticate_creates_user_object(self): """ If `authenticate` is called with valid credentials then a User object should be created """ User = get_user_model() self.assertEqual(User.objects.count(), 0) email = '[email protected]' google_user = users.User(email, _user_id='111111111100000000001') backend = AppEngineUserAPIBackend() user = backend.authenticate(google_user=google_user,) self.assertEqual(user.email, '[email protected]') # Domain is lower cased self.assertEqual(user.email_lower, email.lower()) self.assertEqual(User.objects.count(), 1) # Calling authenticate again with the same credentials should not create another user user2 = backend.authenticate(google_user=google_user) self.assertEqual(user.pk, user2.pk) @override_settings(DJANGAE_CREATE_UNKNOWN_USER=True) def test_user_pre_creation_create_unknown(self): """ User objects for Google-Accounts-based users should be able to be pre-created in DB and then matched by email address when they log in - even if unknown users are allowed. """ User = get_user_model() backend = AppEngineUserAPIBackend() email = '[email protected]' # Pre-create our user User.objects.pre_create_google_user(email) # Now authenticate this user via the Google Accounts API google_user = users.User(email=email, _user_id='111111111100000000001') user = backend.authenticate(google_user=google_user) # Check things self.assertEqual(user.email, email) self.assertIsNotNone(user.last_login) self.assertFalse(user.has_usable_password()) @override_settings(DJANGAE_CREATE_UNKNOWN_USER=False) def test_user_pre_creation_no_create_unknown(self): """ User objects for Google-Accounts-based users should be able to be pre-created in DB and then matched by email address when they log in - even if unknown users are not allowed. """ User = get_user_model() backend = AppEngineUserAPIBackend() email = '[email protected]' # Pre-create our user User.objects.pre_create_google_user(email) # Now authenticate this user via the Google Accounts API google_user = users.User(email=email, _user_id='111111111100000000001') user = backend.authenticate(google_user=google_user) # Check things self.assertEqual(user.email, email) self.assertIsNotNone(user.last_login) self.assertFalse(user.has_usable_password()) def test_user_pre_created_users_are_authenticated_case_insensitively(self): """ When a user is pre-created their email address may not have been saved with the same upper/lower case-ness as that which they end up logging in with. So the matching needs to be done case insensitively. """ User = get_user_model() backend = AppEngineUserAPIBackend() email = '[email protected]' # Pre-create our user User.objects.pre_create_google_user(email) # Now authenticate this user via the Google Accounts API google_user = users.User(email='[email protected]', _user_id='111111111100000000001') user = backend.authenticate(google_user=google_user) # Check things self.assertEqual(user.username, '111111111100000000001') # We expect the email address to have been updated to the one which they logged in with self.assertEqual(user.email, google_user.email()) self.assertIsNotNone(user.last_login) self.assertFalse(user.has_usable_password()) @override_settings(DJANGAE_CREATE_UNKNOWN_USER=True) def test_user_id_switch(self): """ Users sometimes login with the same email, but a different google user id. We handle those cases by blanking out the email on the old user object and creating a new one with the new user id. """ email = '[email protected]' old_user = users.User(email=email, _user_id='111111111100000000001') new_user = users.User(email=email, _user_id='111111111100000000002') User = get_user_model() backend = AppEngineUserAPIBackend() # Authenticate 1st time, creating the user user1 = backend.authenticate(google_user=old_user) self.assertEqual(user1.email, email) self.assertTrue(user1.username.endswith('1')) self.assertEqual(1, User.objects.count()) # Now another user logs in using the same email user2 = backend.authenticate(google_user=new_user) self.assertEqual(user2.email, email) self.assertTrue(user2.username.endswith('2')) self.assertEqual(2, User.objects.count()) # The old account is kept around, but the email is blanked user1 = User.objects.get(pk=user1.pk) self.assertEqual(user1.email, "") @override_settings(DJANGAE_FORCE_USER_PRE_CREATION=True) def test_force_user_pre_creation(self): User = get_user_model() self.assertEqual(User.objects.count(), 0) google_user = users.User('[email protected]', _user_id='111111111100000000001') backend = AppEngineUserAPIBackend() self.assertIsNone(backend.authenticate(google_user=google_user,)) self.assertEqual(User.objects.count(), 0) # superusers don't need pre-creation of User object. self.assertEqual(User.objects.count(), 0) with sleuth.switch('google.appengine.api.users.is_current_user_admin', lambda: True): user = backend.authenticate(google_user=google_user,) self.assertEqual(User.objects.count(), 1) self.assertEquals(User.objects.get(), user) @override_settings(DJANGAE_CREATE_UNKNOWN_USER=True) def test_user_creation_race_condition(self): """ If a user double clicks a 'login' button or something, causing 2 threads to be authenticating the same user at the same time, ensure it doesn't die. """ email = "[email protected]" user_id = "111111111100000000001" original_user_get = get_user_model().objects.get def crazy_user_get_patch(*args, **kwargs): """ Patch for User.objects.get which simulates another thread creating the same user immedidately after this is called (by doing it as part of this function). """ User = get_user_model() try: return original_user_get(*args, **kwargs) # We patched .get() except User.DoesNotExist: # This is horrible, but... the backend first tries get() by username and then tries # get() by email, and we only want to create our user after that second call if kwargs.keys() != ['username']: User.objects.create_user(username=user_id, email=email) raise backend = AppEngineUserAPIBackend() google_user = users.User(email, _user_id=user_id) user_class_path = "djangae.contrib.gauth.datastore.models.GaeDatastoreUser.objects.get" with sleuth.switch(user_class_path, crazy_user_get_patch): backend.authenticate(google_user) @override_settings(AUTHENTICATION_BACKENDS=AUTHENTICATION_BACKENDS) class MiddlewareTests(TestCase): """ Tests for the AuthenticationMiddleware. """ @override_settings(DJANGAE_CREATE_UNKNOWN_USER=True) def test_login(self): def _get_current_user(): return users.User('[email protected]', _user_id='111111111100000000001') request = HttpRequest() SessionMiddleware().process_request(request) # Make the damn sessions work request.session[BACKEND_SESSION_KEY] = 'djangae.contrib.gauth.datastore.backends.AppEngineUserAPIBackend' middleware = AuthenticationMiddleware() # Check that we're not logged in already user = get_user(request) self.assertFalse(user.is_authenticated()) # Check that running the middleware when the Google users API doesn't know the current # user still leaves us as an anonymous users. with sleuth.switch('djangae.contrib.gauth.middleware.users.get_current_user', lambda: None): middleware.process_request(request) # Check that the middleware successfully logged us in user = get_user(request) self.assertFalse(user.is_authenticated()) # Now check that when the Google users API *does* know who we are, that we are logged in. with sleuth.switch('djangae.contrib.gauth.middleware.users.get_current_user', _get_current_user): middleware.process_request(request) # Check that the middleware successfully logged us in user = get_user(request) self.assertTrue(user.is_authenticated()) self.assertEqual(user.email, '[email protected]') self.assertEqual(user.username, '111111111100000000001') @override_settings(DJANGAE_CREATE_UNKNOWN_USER=True) def test_account_switch(self): user1 = users.User('[email protected]', _user_id='111111111100000000001') user2 = users.User('[email protected]', _user_id='222222222200000000002') request = HttpRequest() SessionMiddleware().process_request(request) # Make the damn sessions work request.session[BACKEND_SESSION_KEY] = 'djangae.contrib.gauth.datastore.backends.AppEngineUserAPIBackend' middleware = AuthenticationMiddleware() with sleuth.switch('djangae.contrib.gauth.middleware.users.get_current_user', lambda: user1): middleware.process_request(request) self.assertEqual(user1.user_id(), request.user.username) with sleuth.switch('djangae.contrib.gauth.middleware.users.get_current_user', lambda: user2): middleware.process_request(request) self.assertEqual(user2.user_id(), request.user.username) @override_settings(DJANGAE_CREATE_UNKNOWN_USER=True) def test_user_id_switch(self): """ Users sometimes login with the same email, but a different google user id. We handle those cases by blanking out the email on the old user object and creating a new one with the new user id. """ email = '[email protected]' user1 = users.User(email, _user_id='111111111100000000001') user2 = users.User(email, _user_id='222222222200000000002') User = get_user_model() request = HttpRequest() SessionMiddleware().process_request(request) # Make the damn sessions work request.session[BACKEND_SESSION_KEY] = 'djangae.contrib.gauth.datastore.backends.AppEngineUserAPIBackend' middleware = AuthenticationMiddleware() with sleuth.switch('djangae.contrib.gauth.middleware.users.get_current_user', lambda: user1): middleware.process_request(request) self.assertEqual(1, User.objects.count()) django_user1 = request.user self.assertEqual(user1.user_id(), django_user1.username) self.assertEqual(user1.email(), django_user1.email) with sleuth.switch('djangae.contrib.gauth.middleware.users.get_current_user', lambda: user2): middleware.process_request(request) self.assertEqual(2, User.objects.count()) django_user2 = request.user self.assertEqual(user2.user_id(), django_user2.username) self.assertEqual(user2.email(), django_user2.email) django_user1 = User.objects.get(pk=django_user1.pk) self.assertEqual(django_user1.email, "") @override_settings(DJANGAE_FORCE_USER_PRE_CREATION=True) def test_force_user_pre_creation(self): email = '[email protected]' user1 = users.User(email, _user_id='111111111100000000001') with sleuth.switch('djangae.contrib.gauth.middleware.users.get_current_user', lambda: user1): request = HttpRequest() SessionMiddleware().process_request(request) # Make the damn sessions work middleware = AuthenticationMiddleware() middleware.process_request(request) # We expect request.user to be AnonymousUser(), because there was no User object in the DB # and so with pre-creation required, authentication should have failed self.assertTrue(isinstance(request.user, AnonymousUser)) @override_settings( AUTH_USER_MODEL='djangae.GaeDatastoreUser', AUTHENTICATION_BACKENDS=('djangae.contrib.gauth.datastore.backends.AppEngineUserAPIBackend',) ) class CustomPermissionsUserModelBackendTest(TestCase): """ Tests for the ModelBackend using the CustomPermissionsUser model. As with the ExtensionUser test, this isn't a perfect test, because both the User and CustomPermissionsUser are synchronized to the database, which wouldn't ordinary happen in production. """ UserModel = GaeDatastoreUser def setUp(self): # Fix Django so that we can use our custom user model. # TODO: Submit a fix to Django to allow override_settings(AUTH_USER_MODEL='something') to # work, even if the project has already set AUTH_USER_MODEL to a custom user super(CustomPermissionsUserModelBackendTest, self).setUp() GaeDatastoreUser.objects = GaeDatastoreUser._default_manager GaeDatastoreUser.base_manager_name = 'objects' self.user = GaeDatastoreUser.objects.create( username='test1', email='[email protected]', password=make_password(None), is_active=True, ) self.superuser = GaeDatastoreUser.objects.create( username='test2', email='[email protected]', is_superuser=True, password=make_password(None), is_active=True, ) def tearDown(self): GaeDatastoreUser.objects.all().delete() super(CustomPermissionsUserModelBackendTest, self).tearDown() def test_has_perm(self): user = self.UserModel.objects.get(pk=self.user.pk) self.assertEqual(user.has_perm('auth.test'), False) user.is_staff = True user.save() self.assertEqual(user.has_perm('auth.test'), False) user.is_superuser = True user.save() self.assertEqual(user.has_perm('auth.test'), True) user.is_staff = False user.is_superuser = False user.save() self.assertEqual(user.has_perm('auth.test'), False) user.is_staff = True user.is_superuser = True user.is_active = False user.save() self.assertEqual(user.has_perm('auth.test'), False) def test_custom_perms(self): user = self.UserModel.objects.get(pk=self.user.pk) user.user_permissions = ['auth.test'] user.save() # reloading user to purge the _perm_cache user = self.UserModel.objects.get(pk=self.user.pk) self.assertEqual(user.get_all_permissions() == set(['auth.test']), True) self.assertEqual(user.get_group_permissions(), set([])) self.assertEqual(user.has_module_perms('Group'), False) self.assertEqual(user.has_module_perms('auth'), True) user.user_permissions.extend(['auth.test2', 'auth.test3']) user.save() user = self.UserModel.objects.get(pk=self.user.pk) self.assertEqual(user.get_all_permissions(), set(['auth.test2', 'auth.test', 'auth.test3'])) self.assertEqual(user.has_perm('test'), False) self.assertEqual(user.has_perm('auth.test'), True) self.assertEqual(user.has_perms(['auth.test2', 'auth.test3']), True) group = Group.objects.create(name='test_group') group.permissions = ['auth.test_group'] group.save() user.groups = [group] user.save() user = self.UserModel.objects.get(pk=self.user.pk) exp = set(['auth.test2', 'auth.test', 'auth.test3', 'auth.test_group']) self.assertEqual(user.get_all_permissions(), exp) self.assertEqual(user.get_group_permissions(), set(['auth.test_group'])) self.assertEqual(user.has_perms(['auth.test3', 'auth.test_group']), True) user = AnonymousUser() self.assertEqual(user.has_perm('test'), False) self.assertEqual(user.has_perms(['auth.test2', 'auth.test3']), False) def test_has_no_object_perm(self): """Regressiontest for #12462""" user = self.UserModel.objects.get(pk=self.user.pk) user.user_permissions = ['auth.test'] user.save() self.assertEqual(user.has_perm('auth.test', 'object'), False) self.assertEqual(user.get_all_permissions('object'), set([])) self.assertEqual(user.has_perm('auth.test'), True) self.assertEqual(user.get_all_permissions(), set(['auth.test'])) def test_get_all_superuser_permissions(self): """A superuser has all permissions. Refs #14795.""" user = self.UserModel.objects.get(pk=self.superuser.pk) self.assertEqual(len(user.get_all_permissions()), len(get_permission_choices())) @override_settings( AUTH_USER_MODEL='djangae.GaeDatastoreUser', AUTHENTICATION_BACKENDS=('djangae.contrib.gauth.datastore.backends.AppEngineUserAPIBackend',) ) class SwitchAccountsTests(TestCase): """ Tests for the switch accounts functionality. """ @override_settings(DJANGAE_CREATE_UNKNOWN_USER=True) def test_switch_accounts(self): gcu = 'djangae.contrib.gauth.middleware.users.get_current_user' final_destination = '/death/' # there's no escaping it switch_accounts_url = get_switch_accounts_url(next=final_destination) any_url = '/_ah/warmup' jekyll = users.User(email='[email protected]', _user_id='1') hyde = users.User(email='[email protected]', _user_id='2') # we start our scenario with the user logged in with sleuth.switch(gcu, lambda: jekyll): response = self.client.get(any_url) # Check that the user is logged in expected_user_query = GaeDatastoreUser.objects.filter(username=jekyll.user_id()) self.assertEqual(len(expected_user_query), 1) self.assertEqual(int(self.client._session()['_auth_user_id']), expected_user_query[0].pk) # Now call the switch_accounts view, which should give us a redirect to the login page response = self.client.get(switch_accounts_url, follow=False) self.assertEqual(response.status_code, 302) self.assertEqual(response['location'], users.create_login_url(switch_accounts_url)) # In tests, we don't have dev_appserver fired up, so we can't actually call the login # URL, but let's suppose that the user wasn't logged into multiple accounts at once # and so the login page redirected us straight back to the switch_accounts view. # It should detect this, and should now redirect us to the log*out* URL with a # destination of the log*in* URL response = self.client.get(switch_accounts_url) self.assertEqual(response.status_code, 302) self.assertEqual( response['location'], users.create_logout_url(users.create_login_url(switch_accounts_url)) ) # And now we have to emulate the scenario that we have now logged in with a different # account, so re-mock that with sleuth.switch(gcu, lambda: hyde): # Now that we're logged in as a different user, we expect request.user to get set to # the equivalent Django user and to be redirected to our final destination response = self.client.get(switch_accounts_url) redirect_path = urlparse(response['location']).path # it has the host name as well self.assertEqual(redirect_path, final_destination) expected_user_query = GaeDatastoreUser.objects.filter(username=hyde.user_id()) self.assertEqual(len(expected_user_query), 1) self.assertEqual(int(self.client._session()['_auth_user_id']), expected_user_query[0].pk) class ModelTests(TestCase): def test_email_uniqueness_validation_raised_correctly(self): """ GaeAbstractBaseUser has an `email_lower` field whcih is unique, but it's really a proxy for uniqueness on the `email` field. """ no_pass = make_password(None) User = get_user_model() user1 = User.objects.create_user("111111111111111111111", email="[email protected]", password=no_pass) user2 = User(username="111111111111111111112", email="[email protected]", password=no_pass) # We expect the second user to have a unique violation on the `email_lower` field, but it # should be attached to the (editable) `email` field try: user2.full_clean() except ValidationError as e: self.assertTrue("email" in e.error_dict) self.assertFalse("email_lower" in e.error_dict) # We should still be able to edit the existing user though user1.email = "[email protected]" user1.full_clean()
from collections import defaultdict from datetime import date, datetime, timedelta import json import time from django import http from django.conf import settings from django.core.cache import cache from django.core.exceptions import PermissionDenied from django.db.models import Q from django.shortcuts import get_object_or_404, redirect, render from django.utils.datastructures import SortedDict from django.views.decorators.cache import never_cache from tower import ugettext as _ import amo from abuse.models import AbuseReport from access import acl from addons.decorators import addon_view, addon_view_factory from addons.models import Addon, Version from amo.decorators import json_view, post_required from amo.utils import paginate from amo.urlresolvers import reverse from devhub.models import ActivityLog, AddonLog, CommentLog from editors import forms from editors.models import (AddonCannedResponse, EditorSubscription, EventLog, PerformanceGraph, ReviewerScore, ViewFastTrackQueue, ViewFullReviewQueue, ViewPendingQueue, ViewPreliminaryQueue, ViewQueue, ViewUnlistedFullReviewQueue, ViewUnlistedPendingQueue, ViewUnlistedPreliminaryQueue) from editors.helpers import (ViewFastTrackQueueTable, ViewFullReviewQueueTable, ViewPendingQueueTable, ViewPreliminaryQueueTable, ViewUnlistedFullReviewQueueTable, ViewUnlistedPendingQueueTable, ViewUnlistedPreliminaryQueueTable) from reviews.forms import ReviewFlagFormSet from reviews.models import Review, ReviewFlag from users.models import UserProfile from zadmin.models import get_config, set_config from .decorators import (addons_reviewer_required, any_reviewer_required, unlisted_addons_reviewer_required) def context(**kw): ctx = dict(motd=get_config('editors_review_motd'), queue_counts=queue_counts(), unlisted_queue_counts=queue_counts(unlisted=True)) ctx.update(kw) return ctx @addons_reviewer_required def eventlog(request): form = forms.EventLogForm(request.GET) eventlog = ActivityLog.objects.editor_events() if form.is_valid(): if form.cleaned_data['start']: eventlog = eventlog.filter(created__gte=form.cleaned_data['start']) if form.cleaned_data['end']: eventlog = eventlog.filter(created__lt=form.cleaned_data['end']) if form.cleaned_data['filter']: eventlog = eventlog.filter(action=form.cleaned_data['filter'].id) pager = amo.utils.paginate(request, eventlog, 50) data = context(form=form, pager=pager) return render(request, 'editors/eventlog.html', data) @addons_reviewer_required def eventlog_detail(request, id): log = get_object_or_404(ActivityLog.objects.editor_events(), pk=id) review = None # I really cannot express the depth of the insanity incarnate in # our logging code... if len(log.arguments) > 1 and isinstance(log.arguments[1], Review): review = log.arguments[1] is_admin = acl.action_allowed(request, 'ReviewerAdminTools', 'View') can_undelete = review and review.deleted and ( is_admin or request.user.pk == log.user.pk) if request.method == 'POST': # A Form seems overkill for this. if request.POST['action'] == 'undelete': if not can_undelete: raise PermissionDenied ReviewerScore.award_moderation_points( log.user, review.addon, review.id, undo=True) review.undelete() return redirect('editors.eventlog.detail', id) data = context(log=log, can_undelete=can_undelete) return render(request, 'editors/eventlog_detail.html', data) @any_reviewer_required def home(request): if (not acl.action_allowed(request, 'Addons', 'Review') and acl.action_allowed(request, 'Personas', 'Review')): return http.HttpResponseRedirect(reverse('editors.themes.home')) durations = (('new', _('New Add-ons (Under 5 days)')), ('med', _('Passable (5 to 10 days)')), ('old', _('Overdue (Over 10 days)'))) progress, percentage = _editor_progress() unlisted_progress, unlisted_percentage = _editor_progress(unlisted=True) reviews_max_display = getattr(settings, 'EDITOR_REVIEWS_MAX_DISPLAY', 5) reviews_total = ActivityLog.objects.total_reviews()[:reviews_max_display] reviews_monthly = ( ActivityLog.objects.monthly_reviews()[:reviews_max_display]) reviews_total_count = ActivityLog.objects.user_approve_reviews( request.user).count() reviews_monthly_count = ( ActivityLog.objects.current_month_user_approve_reviews( request.user).count()) # Try to read user position from retrieved reviews. # If not available, query for it. reviews_total_position = ( ActivityLog.objects.user_position(reviews_total, request.user) or ActivityLog.objects.total_reviews_user_position(request.user)) reviews_monthly_position = ( ActivityLog.objects.user_position(reviews_monthly, request.user) or ActivityLog.objects.monthly_reviews_user_position(request.user)) data = context( reviews_total=reviews_total, reviews_monthly=reviews_monthly, reviews_total_count=reviews_total_count, reviews_monthly_count=reviews_monthly_count, reviews_total_position=reviews_total_position, reviews_monthly_position=reviews_monthly_position, new_editors=EventLog.new_editors(), eventlog=ActivityLog.objects.editor_events()[:6], progress=progress, unlisted_progress=unlisted_progress, percentage=percentage, unlisted_percentage=unlisted_percentage, durations=durations, reviews_max_display=reviews_max_display) return render(request, 'editors/home.html', data) def _editor_progress(unlisted=False): """Return the progress (number of add-ons still unreviewed for a given period of time) and the percentage (out of all add-ons of that type).""" types = ['nominated', 'prelim', 'pending'] progress = {'new': queue_counts(types, days_max=4, unlisted=unlisted), 'med': queue_counts(types, days_min=5, days_max=10, unlisted=unlisted), 'old': queue_counts(types, days_min=11, unlisted=unlisted)} # Return the percent of (p)rogress out of (t)otal. def pct(p, t): return (p / float(t)) * 100 if p > 0 else 0 percentage = {} for t in types: total = progress['new'][t] + progress['med'][t] + progress['old'][t] percentage[t] = {} for duration in ('new', 'med', 'old'): percentage[t][duration] = pct(progress[duration][t], total) return (progress, percentage) @addons_reviewer_required def performance(request, user_id=False): user = request.amo_user editors = _recent_editors() is_admin = (acl.action_allowed(request, 'Admin', '%') or acl.action_allowed(request, 'ReviewerAdminTools', 'View')) if is_admin and user_id: try: user = UserProfile.objects.get(pk=user_id) except UserProfile.DoesNotExist: pass # Use request.amo_user from above. monthly_data = _performance_by_month(user.id) performance_total = _performance_total(monthly_data) # Incentive point breakdown. today = date.today() month_ago = today - timedelta(days=30) year_ago = today - timedelta(days=365) point_total = ReviewerScore.get_total(user) totals = ReviewerScore.get_breakdown(user) months = ReviewerScore.get_breakdown_since(user, month_ago) years = ReviewerScore.get_breakdown_since(user, year_ago) def _sum(iter, types): return sum(s.total for s in iter if s.atype in types) breakdown = { 'month': { 'addons': _sum(months, amo.GROUP_TYPE_ADDON), 'themes': _sum(months, amo.GROUP_TYPE_THEME), }, 'year': { 'addons': _sum(years, amo.GROUP_TYPE_ADDON), 'themes': _sum(years, amo.GROUP_TYPE_THEME), }, 'total': { 'addons': _sum(totals, amo.GROUP_TYPE_ADDON), 'themes': _sum(totals, amo.GROUP_TYPE_THEME), } } data = context(monthly_data=json.dumps(monthly_data), performance_month=performance_total['month'], performance_year=performance_total['year'], breakdown=breakdown, point_total=point_total, editors=editors, current_user=user, is_admin=is_admin, is_user=(request.amo_user.id == user.id)) return render(request, 'editors/performance.html', data) def _recent_editors(days=90): since_date = datetime.now() - timedelta(days=days) editors = (UserProfile.objects .filter(activitylog__action__in=amo.LOG_REVIEW_QUEUE, activitylog__created__gt=since_date) .order_by('display_name') .distinct()) return editors def _performance_total(data): # TODO(gkoberger): Fix this so it's the past X, rather than this X to date. # (ex: March 15-April 15, not April 1 - April 15) total_yr = dict(usercount=0, teamamt=0, teamcount=0, teamavg=0) total_month = dict(usercount=0, teamamt=0, teamcount=0, teamavg=0) current_year = datetime.now().year for k, val in data.items(): if k.startswith(str(current_year)): total_yr['usercount'] = total_yr['usercount'] + val['usercount'] total_yr['teamamt'] = total_yr['teamamt'] + val['teamamt'] total_yr['teamcount'] = total_yr['teamcount'] + val['teamcount'] current_label_month = datetime.now().isoformat()[:7] if current_label_month in data: total_month = data[current_label_month] return dict(month=total_month, year=total_yr) def _performance_by_month(user_id, months=12, end_month=None, end_year=None): monthly_data = SortedDict() now = datetime.now() if not end_month: end_month = now.month if not end_year: end_year = now.year end_time = time.mktime((end_year, end_month + 1, 1, 0, 0, 0, 0, 0, -1)) start_time = time.mktime((end_year, end_month + 1 - months, 1, 0, 0, 0, 0, 0, -1)) sql = (PerformanceGraph.objects .filter_raw('log_activity.created >=', date.fromtimestamp(start_time).isoformat()) .filter_raw('log_activity.created <', date.fromtimestamp(end_time).isoformat())) for row in sql.all(): label = row.approval_created.isoformat()[:7] if label not in monthly_data: xaxis = row.approval_created.strftime('%b %Y') monthly_data[label] = dict(teamcount=0, usercount=0, teamamt=0, label=xaxis) monthly_data[label]['teamamt'] = monthly_data[label]['teamamt'] + 1 monthly_data_count = monthly_data[label]['teamcount'] monthly_data[label]['teamcount'] = monthly_data_count + row.total if row.user_id == user_id: user_count = monthly_data[label]['usercount'] monthly_data[label]['usercount'] = user_count + row.total # Calculate averages for i, vals in monthly_data.items(): average = round(vals['teamcount'] / float(vals['teamamt']), 1) monthly_data[i]['teamavg'] = str(average) # floats aren't valid json return monthly_data @addons_reviewer_required def motd(request): form = None if acl.action_allowed(request, 'AddonReviewerMOTD', 'Edit'): form = forms.MOTDForm( initial={'motd': get_config('editors_review_motd')}) data = context(form=form) return render(request, 'editors/motd.html', data) @addons_reviewer_required @post_required def save_motd(request): if not acl.action_allowed(request, 'AddonReviewerMOTD', 'Edit'): raise PermissionDenied form = forms.MOTDForm(request.POST) if form.is_valid(): set_config('editors_review_motd', form.cleaned_data['motd']) return redirect(reverse('editors.motd')) data = context(form=form) return render(request, 'editors/motd.html', data) def _queue(request, TableObj, tab, qs=None, unlisted=False): if qs is None: qs = TableObj.Meta.model.objects.all() if request.GET: search_form = forms.QueueSearchForm(request.GET) if search_form.is_valid(): qs = search_form.filter_qs(qs) else: search_form = forms.QueueSearchForm() order_by = request.GET.get('sort', TableObj.default_order_by()) order_by = TableObj.translate_sort_cols(order_by) table = TableObj(data=qs, order_by=order_by) default = 100 per_page = request.GET.get('per_page', default) try: per_page = int(per_page) except ValueError: per_page = default if per_page <= 0 or per_page > 200: per_page = default page = paginate(request, table.rows, per_page=per_page) table.set_page(page) return render(request, 'editors/queue.html', context(table=table, page=page, tab=tab, search_form=search_form, point_types=amo.REVIEWED_AMO, unlisted=unlisted)) def queue_counts(type=None, unlisted=False, **kw): def construct_query(query_type, days_min=None, days_max=None): def apply_query(query, *args): query = query.having(*args) return query query = query_type.objects if days_min: query = apply_query(query, 'waiting_time_days >=', days_min) if days_max: query = apply_query(query, 'waiting_time_days <=', days_max) return query.count counts = {'pending': construct_query(ViewPendingQueue, **kw), 'nominated': construct_query(ViewFullReviewQueue, **kw), 'prelim': construct_query(ViewPreliminaryQueue, **kw), 'fast_track': construct_query(ViewFastTrackQueue, **kw), 'moderated': ( Review.objects.filter(reviewflag__isnull=False, editorreview=1).count)} if unlisted: counts = { 'pending': construct_query(ViewUnlistedPendingQueue, **kw), 'nominated': construct_query(ViewUnlistedFullReviewQueue, **kw), 'prelim': construct_query(ViewUnlistedPreliminaryQueue, **kw)} rv = {} if isinstance(type, basestring): return counts[type]() for k, v in counts.items(): if not isinstance(type, list) or k in type: rv[k] = v() return rv @addons_reviewer_required def queue(request): return redirect(reverse('editors.queue_pending')) @addons_reviewer_required def queue_nominated(request): return _queue(request, ViewFullReviewQueueTable, 'nominated') @addons_reviewer_required def queue_pending(request): return _queue(request, ViewPendingQueueTable, 'pending') @addons_reviewer_required def queue_prelim(request): return _queue(request, ViewPreliminaryQueueTable, 'prelim') @addons_reviewer_required def queue_fast_track(request): return _queue(request, ViewFastTrackQueueTable, 'fast_track') @addons_reviewer_required def queue_moderated(request): rf = (Review.objects.exclude(Q(addon__isnull=True) | Q(reviewflag__isnull=True)) .filter(editorreview=1) .order_by('reviewflag__created')) page = paginate(request, rf, per_page=20) flags = dict(ReviewFlag.FLAGS) reviews_formset = ReviewFlagFormSet(request.POST or None, queryset=page.object_list, request=request) if request.method == 'POST': if reviews_formset.is_valid(): reviews_formset.save() else: amo.messages.error( request, ' '.join(e.as_text() or _('An unknown error occurred') for e in reviews_formset.errors)) return redirect(reverse('editors.queue_moderated')) return render(request, 'editors/queue.html', context(reviews_formset=reviews_formset, tab='moderated', page=page, flags=flags, search_form=None, point_types=amo.REVIEWED_AMO)) @unlisted_addons_reviewer_required def unlisted_queue(request): return redirect(reverse('editors.unlisted_queue_pending')) @unlisted_addons_reviewer_required def unlisted_queue_nominated(request): return _queue(request, ViewUnlistedFullReviewQueueTable, 'nominated', unlisted=True) @unlisted_addons_reviewer_required def unlisted_queue_pending(request): return _queue(request, ViewUnlistedPendingQueueTable, 'pending', unlisted=True) @unlisted_addons_reviewer_required def unlisted_queue_prelim(request): return _queue(request, ViewUnlistedPreliminaryQueueTable, 'prelim', unlisted=True) @addons_reviewer_required @post_required @json_view def application_versions_json(request): app_id = request.POST['application_id'] f = forms.QueueSearchForm() return {'choices': f.version_choices_for_app_id(app_id)} @addons_reviewer_required @addon_view_factory(qs=Addon.with_unlisted.all) def review(request, addon): if not addon.is_listed and not acl.check_unlisted_addons_reviewer(request): raise http.Http404 version = addon.latest_version if not settings.ALLOW_SELF_REVIEWS and addon.has_author(request.amo_user): amo.messages.warning(request, _('Self-reviews are not allowed.')) return redirect(reverse('editors.queue')) form = forms.get_review_form(request.POST or None, request=request, addon=addon, version=version) queue_type = (form.helper.review_type if form.helper.review_type != 'preliminary' else 'prelim') if addon.is_listed: redirect_url = reverse('editors.queue_%s' % queue_type) else: redirect_url = reverse('editors.unlisted_queue_%s' % queue_type) is_admin = acl.action_allowed(request, 'Addons', 'Edit') if request.method == 'POST' and form.is_valid(): form.helper.process() if form.cleaned_data.get('notify'): EditorSubscription.objects.get_or_create(user=request.amo_user, addon=addon) if form.cleaned_data.get('adminflag') and is_admin: addon.update(admin_review=False) amo.messages.success(request, _('Review successfully processed.')) return redirect(redirect_url) canned = AddonCannedResponse.objects.all() actions = form.helper.actions.items() statuses = [amo.STATUS_PUBLIC, amo.STATUS_LITE, amo.STATUS_LITE_AND_NOMINATED] try: show_diff = (addon.versions.exclude(id=version.id) .filter(files__isnull=False, created__lt=version.created, files__status__in=statuses) .latest()) except Version.DoesNotExist: show_diff = None # The actions we should show a minimal form from. actions_minimal = [k for (k, a) in actions if not a.get('minimal')] # We only allow the user to check/uncheck files for "pending" allow_unchecking_files = form.helper.review_type == "pending" versions = (Version.objects.filter(addon=addon) .exclude(files__status=amo.STATUS_BETA) .order_by('-created') .transform(Version.transformer_activity) .transform(Version.transformer)) class PseudoVersion(object): def __init__(self): self.all_activity = [] all_files = () approvalnotes = None compatible_apps_ordered = () releasenotes = None status = 'Deleted', @property def created(self): return self.all_activity[0].created @property def version(self): return (self.all_activity[0].activity_log .details.get('version', '[deleted]')) # Grab review history for deleted versions of this add-on comments = (CommentLog.objects .filter(activity_log__action__in=amo.LOG_REVIEW_QUEUE, activity_log__versionlog=None, activity_log__addonlog__addon=addon) .order_by('created') .select_related('activity_log')) comment_versions = defaultdict(PseudoVersion) for c in comments: c.version = c.activity_log.details.get('version', c.created) comment_versions[c.version].all_activity.append(c) all_versions = comment_versions.values() all_versions.extend(versions) all_versions.sort(key=lambda v: v.created, reverse=True) pager = amo.utils.paginate(request, all_versions, 10) num_pages = pager.paginator.num_pages count = pager.paginator.count try: flags = ViewQueue.objects.get(id=addon.id).flags except ViewQueue.DoesNotExist: flags = [] user_changes_actions = [ amo.LOG.ADD_USER_WITH_ROLE.id, amo.LOG.CHANGE_USER_WITH_ROLE.id, amo.LOG.REMOVE_USER_WITH_ROLE.id] user_changes_log = AddonLog.objects.filter( activity_log__action__in=user_changes_actions, addon=addon).order_by('id') ctx = context(version=version, addon=addon, pager=pager, num_pages=num_pages, count=count, flags=flags, form=form, canned=canned, is_admin=is_admin, show_diff=show_diff, allow_unchecking_files=allow_unchecking_files, actions=actions, actions_minimal=actions_minimal, whiteboard_form=forms.WhiteboardForm(instance=addon), user_changes=user_changes_log, unlisted=not addon.is_listed) return render(request, 'editors/review.html', ctx) @never_cache @json_view @addons_reviewer_required def review_viewing(request): if 'addon_id' not in request.POST: return {} addon_id = request.POST['addon_id'] user_id = request.amo_user.id current_name = '' is_user = 0 key = '%s:review_viewing:%s' % (settings.CACHE_PREFIX, addon_id) interval = amo.EDITOR_VIEWING_INTERVAL # Check who is viewing. currently_viewing = cache.get(key) # If nobody is viewing or current user is, set current user as viewing if not currently_viewing or currently_viewing == user_id: # We want to save it for twice as long as the ping interval, # just to account for latency and the like. cache.set(key, user_id, interval * 2) currently_viewing = user_id current_name = request.amo_user.name is_user = 1 else: current_name = UserProfile.objects.get(pk=currently_viewing).name return {'current': currently_viewing, 'current_name': current_name, 'is_user': is_user, 'interval_seconds': interval} @never_cache @json_view @addons_reviewer_required def queue_viewing(request): if 'addon_ids' not in request.POST: return {} viewing = {} user_id = request.amo_user.id for addon_id in request.POST['addon_ids'].split(','): addon_id = addon_id.strip() key = '%s:review_viewing:%s' % (settings.CACHE_PREFIX, addon_id) currently_viewing = cache.get(key) if currently_viewing and currently_viewing != user_id: viewing[addon_id] = (UserProfile.objects .get(id=currently_viewing) .display_name) return viewing @json_view @addons_reviewer_required def queue_version_notes(request, addon_id): addon = get_object_or_404(Addon, pk=addon_id) version = addon.latest_version return {'releasenotes': unicode(version.releasenotes), 'approvalnotes': version.approvalnotes} @addons_reviewer_required def reviewlog(request): data = request.GET.copy() if not data.get('start') and not data.get('end'): today = date.today() data['start'] = date(today.year, today.month, 1) form = forms.ReviewLogForm(data) approvals = ActivityLog.objects.review_queue() if not acl.check_unlisted_addons_reviewer(request): # Display logs related to unlisted add-ons only to senior reviewers. approvals = approvals.filter(addonlog__addon__is_listed=True) if form.is_valid(): data = form.cleaned_data if data['start']: approvals = approvals.filter(created__gte=data['start']) if data['end']: approvals = approvals.filter(created__lt=data['end']) if data['search']: term = data['search'] approvals = approvals.filter( Q(commentlog__comments__icontains=term) | Q(addonlog__addon__name__localized_string__icontains=term) | Q(user__display_name__icontains=term) | Q(user__username__icontains=term)).distinct() pager = amo.utils.paginate(request, approvals, 50) ad = { amo.LOG.APPROVE_VERSION.id: _('was approved'), amo.LOG.PRELIMINARY_VERSION.id: _('given preliminary review'), amo.LOG.REJECT_VERSION.id: _('rejected'), amo.LOG.ESCALATE_VERSION.id: _( 'escalated', 'editors_review_history_nominated_adminreview'), amo.LOG.REQUEST_INFORMATION.id: _('needs more information'), amo.LOG.REQUEST_SUPER_REVIEW.id: _('needs super review'), amo.LOG.COMMENT_VERSION.id: _('commented'), } data = context(form=form, pager=pager, ACTION_DICT=ad) return render(request, 'editors/reviewlog.html', data) @addons_reviewer_required @addon_view def abuse_reports(request, addon): reports = AbuseReport.objects.filter(addon=addon).order_by('-created') total = reports.count() reports = amo.utils.paginate(request, reports) data = context(addon=addon, reports=reports, total=total) return render(request, 'editors/abuse_reports.html', data) @addons_reviewer_required def leaderboard(request): return render(request, 'editors/leaderboard.html', context(**{ 'scores': ReviewerScore.all_users_by_score(), })) @addons_reviewer_required @addon_view_factory(qs=Addon.with_unlisted.all) def whiteboard(request, addon): form = forms.WhiteboardForm(request.POST or None, instance=addon) if form.is_valid(): addon = form.save() return redirect('editors.review', addon.pk) raise PermissionDenied
# Author: Gael Varoquaux # License: BSD 3 clause import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.base import BaseEstimator, clone, is_classifier from sklearn.svm import SVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.utils import deprecated ############################################################################# # A few test classes class MyEstimator(BaseEstimator): def __init__(self, l1=0, empty=None): self.l1 = l1 self.empty = empty class K(BaseEstimator): def __init__(self, c=None, d=None): self.c = c self.d = d class T(BaseEstimator): def __init__(self, a=None, b=None): self.a = a self.b = b class DeprecatedAttributeEstimator(BaseEstimator): def __init__(self, a=None, b=None): self.a = a if b is not None: DeprecationWarning("b is deprecated and renamed 'a'") self.a = b @property @deprecated("Parameter 'b' is deprecated and renamed to 'a'") def b(self): return self._b class Buggy(BaseEstimator): " A buggy estimator that does not set its parameters right. " def __init__(self, a=None): self.a = 1 class NoEstimator(object): def __init__(self): pass def fit(self, X=None, y=None): return self def predict(self, X=None): return None class VargEstimator(BaseEstimator): """Sklearn estimators shouldn't have vargs.""" def __init__(self, *vargs): pass ############################################################################# # The tests def test_clone(): # Tests that clone creates a correct deep copy. # We create an estimator, make a copy of its original state # (which, in this case, is the current state of the estimator), # and check that the obtained copy is a correct deep copy. from sklearn.feature_selection import SelectFpr, f_classif selector = SelectFpr(f_classif, alpha=0.1) new_selector = clone(selector) assert_true(selector is not new_selector) assert_equal(selector.get_params(), new_selector.get_params()) selector = SelectFpr(f_classif, alpha=np.zeros((10, 2))) new_selector = clone(selector) assert_true(selector is not new_selector) def test_clone_2(): # Tests that clone doesn't copy everything. # We first create an estimator, give it an own attribute, and # make a copy of its original state. Then we check that the copy doesn't # have the specific attribute we manually added to the initial estimator. from sklearn.feature_selection import SelectFpr, f_classif selector = SelectFpr(f_classif, alpha=0.1) selector.own_attribute = "test" new_selector = clone(selector) assert_false(hasattr(new_selector, "own_attribute")) def test_clone_buggy(): # Check that clone raises an error on buggy estimators. buggy = Buggy() buggy.a = 2 assert_raises(RuntimeError, clone, buggy) no_estimator = NoEstimator() assert_raises(TypeError, clone, no_estimator) varg_est = VargEstimator() assert_raises(RuntimeError, clone, varg_est) def test_clone_empty_array(): # Regression test for cloning estimators with empty arrays clf = MyEstimator(empty=np.array([])) clf2 = clone(clf) assert_array_equal(clf.empty, clf2.empty) clf = MyEstimator(empty=sp.csr_matrix(np.array([[0]]))) clf2 = clone(clf) assert_array_equal(clf.empty.data, clf2.empty.data) def test_repr(): # Smoke test the repr of the base estimator. my_estimator = MyEstimator() repr(my_estimator) test = T(K(), K()) assert_equal( repr(test), "T(a=K(c=None, d=None), b=K(c=None, d=None))" ) some_est = T(a=["long_params"] * 1000) assert_equal(len(repr(some_est)), 415) def test_str(): # Smoke test the str of the base estimator my_estimator = MyEstimator() str(my_estimator) def test_get_params(): test = T(K(), K()) assert_true('a__d' in test.get_params(deep=True)) assert_true('a__d' not in test.get_params(deep=False)) test.set_params(a__d=2) assert_true(test.a.d == 2) assert_raises(ValueError, test.set_params, a__a=2) def test_get_params_deprecated(): # deprecated attribute should not show up as params est = DeprecatedAttributeEstimator(a=1) assert_true('a' in est.get_params()) assert_true('a' in est.get_params(deep=True)) assert_true('a' in est.get_params(deep=False)) assert_true('b' not in est.get_params()) assert_true('b' not in est.get_params(deep=True)) assert_true('b' not in est.get_params(deep=False)) def test_is_classifier(): svc = SVC() assert_true(is_classifier(svc)) assert_true(is_classifier(GridSearchCV(svc, {'C': [0.1, 1]}))) assert_true(is_classifier(Pipeline([('svc', svc)]))) assert_true(is_classifier(Pipeline([('svc_cv', GridSearchCV(svc, {'C': [0.1, 1]}))]))) def test_set_params(): # test nested estimator parameter setting clf = Pipeline([("svc", SVC())]) # non-existing parameter in svc assert_raises(ValueError, clf.set_params, svc__stupid_param=True) # non-existing parameter of pipeline assert_raises(ValueError, clf.set_params, svm__stupid_param=True) # we don't currently catch if the things in pipeline are estimators # bad_pipeline = Pipeline([("bad", NoEstimator())]) # assert_raises(AttributeError, bad_pipeline.set_params, # bad__stupid_param=True) def test_score_sample_weight(): from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn import datasets rng = np.random.RandomState(0) # test both ClassifierMixin and RegressorMixin estimators = [DecisionTreeClassifier(max_depth=2), DecisionTreeRegressor(max_depth=2)] sets = [datasets.load_iris(), datasets.load_boston()] for est, ds in zip(estimators, sets): est.fit(ds.data, ds.target) # generate random sample weights sample_weight = rng.randint(1, 10, size=len(ds.target)) # check that the score with and without sample weights are different assert_not_equal(est.score(ds.data, ds.target), est.score(ds.data, ds.target, sample_weight=sample_weight), msg="Unweighted and weighted scores " "are unexpectedly equal")
import json from contextlib import contextmanager from django.contrib import admin from django.contrib.admin.tests import AdminSeleniumTestCase from django.contrib.admin.views.autocomplete import AutocompleteJsonView from django.contrib.auth.models import Permission, User from django.contrib.contenttypes.models import ContentType from django.http import Http404 from django.test import RequestFactory, override_settings from django.urls import reverse, reverse_lazy from .admin import AnswerAdmin, QuestionAdmin from .models import Answer, Author, Authorship, Book, Question from .tests import AdminViewBasicTestCase PAGINATOR_SIZE = AutocompleteJsonView.paginate_by class AuthorAdmin(admin.ModelAdmin): ordering = ['id'] search_fields = ['id'] class AuthorshipInline(admin.TabularInline): model = Authorship autocomplete_fields = ['author'] class BookAdmin(admin.ModelAdmin): inlines = [AuthorshipInline] site = admin.AdminSite(name='autocomplete_admin') site.register(Question, QuestionAdmin) site.register(Answer, AnswerAdmin) site.register(Author, AuthorAdmin) site.register(Book, BookAdmin) class AutocompleteJsonViewTests(AdminViewBasicTestCase): as_view_args = {'model_admin': QuestionAdmin(Question, site)} factory = RequestFactory() url = reverse_lazy('autocomplete_admin:admin_views_question_autocomplete') @classmethod def setUpTestData(cls): cls.user = User.objects.create_user( username='user', password='secret', email='[email protected]', is_staff=True, ) super().setUpTestData() def test_success(self): q = Question.objects.create(question='Is this a question?') request = self.factory.get(self.url, {'term': 'is'}) request.user = self.superuser response = AutocompleteJsonView.as_view(**self.as_view_args)(request) self.assertEqual(response.status_code, 200) data = json.loads(response.content.decode('utf-8')) self.assertEqual(data, { 'results': [{'id': str(q.pk), 'text': q.question}], 'pagination': {'more': False}, }) def test_must_be_logged_in(self): response = self.client.get(self.url, {'term': ''}) self.assertEqual(response.status_code, 200) self.client.logout() response = self.client.get(self.url, {'term': ''}) self.assertEqual(response.status_code, 302) def test_has_view_or_change_permission_required(self): """ Users require the change permission for the related model to the autocomplete view for it. """ request = self.factory.get(self.url, {'term': 'is'}) self.user.is_staff = True self.user.save() request.user = self.user response = AutocompleteJsonView.as_view(**self.as_view_args)(request) self.assertEqual(response.status_code, 403) self.assertJSONEqual(response.content.decode('utf-8'), {'error': '403 Forbidden'}) for permission in ('view', 'change'): with self.subTest(permission=permission): self.user.user_permissions.clear() p = Permission.objects.get( content_type=ContentType.objects.get_for_model(Question), codename='%s_question' % permission, ) self.user.user_permissions.add(p) request.user = User.objects.get(pk=self.user.pk) response = AutocompleteJsonView.as_view(**self.as_view_args)(request) self.assertEqual(response.status_code, 200) def test_search_use_distinct(self): """ Searching across model relations use QuerySet.distinct() to avoid duplicates. """ q1 = Question.objects.create(question='question 1') q2 = Question.objects.create(question='question 2') q2.related_questions.add(q1) q3 = Question.objects.create(question='question 3') q3.related_questions.add(q1) request = self.factory.get(self.url, {'term': 'question'}) request.user = self.superuser class DistinctQuestionAdmin(QuestionAdmin): search_fields = ['related_questions__question', 'question'] model_admin = DistinctQuestionAdmin(Question, site) response = AutocompleteJsonView.as_view(model_admin=model_admin)(request) self.assertEqual(response.status_code, 200) data = json.loads(response.content.decode('utf-8')) self.assertEqual(len(data['results']), 3) def test_missing_search_fields(self): class EmptySearchAdmin(QuestionAdmin): search_fields = [] model_admin = EmptySearchAdmin(Question, site) msg = 'EmptySearchAdmin must have search_fields for the autocomplete_view.' with self.assertRaisesMessage(Http404, msg): model_admin.autocomplete_view(self.factory.get(self.url)) def test_get_paginator(self): """Search results are paginated.""" Question.objects.bulk_create(Question(question=str(i)) for i in range(PAGINATOR_SIZE + 10)) model_admin = QuestionAdmin(Question, site) model_admin.ordering = ['pk'] # The first page of results. request = self.factory.get(self.url, {'term': ''}) request.user = self.superuser response = AutocompleteJsonView.as_view(model_admin=model_admin)(request) self.assertEqual(response.status_code, 200) data = json.loads(response.content.decode('utf-8')) self.assertEqual(data, { 'results': [{'id': str(q.pk), 'text': q.question} for q in Question.objects.all()[:PAGINATOR_SIZE]], 'pagination': {'more': True}, }) # The second page of results. request = self.factory.get(self.url, {'term': '', 'page': '2'}) request.user = self.superuser response = AutocompleteJsonView.as_view(model_admin=model_admin)(request) self.assertEqual(response.status_code, 200) data = json.loads(response.content.decode('utf-8')) self.assertEqual(data, { 'results': [{'id': str(q.pk), 'text': q.question} for q in Question.objects.all()[PAGINATOR_SIZE:]], 'pagination': {'more': False}, }) @override_settings(ROOT_URLCONF='admin_views.urls') class SeleniumTests(AdminSeleniumTestCase): available_apps = ['admin_views'] + AdminSeleniumTestCase.available_apps def setUp(self): self.superuser = User.objects.create_superuser( username='super', password='secret', email='[email protected]', ) self.admin_login(username='super', password='secret', login_url=reverse('autocomplete_admin:index')) @contextmanager def select2_ajax_wait(self, timeout=10): from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.support import expected_conditions as ec yield with self.disable_implicit_wait(): try: loading_element = self.selenium.find_element_by_css_selector( 'li.select2-results__option.loading-results' ) except NoSuchElementException: pass else: self.wait_until(ec.staleness_of(loading_element), timeout=timeout) def test_select(self): from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import Select self.selenium.get(self.live_server_url + reverse('autocomplete_admin:admin_views_answer_add')) elem = self.selenium.find_element_by_css_selector('.select2-selection') elem.click() # Open the autocomplete dropdown. results = self.selenium.find_element_by_css_selector('.select2-results') self.assertTrue(results.is_displayed()) option = self.selenium.find_element_by_css_selector('.select2-results__option') self.assertEqual(option.text, 'No results found') elem.click() # Close the autocomplete dropdown. q1 = Question.objects.create(question='Who am I?') Question.objects.bulk_create(Question(question=str(i)) for i in range(PAGINATOR_SIZE + 10)) elem.click() # Reopen the dropdown now that some objects exist. result_container = self.selenium.find_element_by_css_selector('.select2-results') self.assertTrue(result_container.is_displayed()) results = result_container.find_elements_by_css_selector('.select2-results__option') # PAGINATOR_SIZE results and "Loading more results". self.assertEqual(len(results), PAGINATOR_SIZE + 1) search = self.selenium.find_element_by_css_selector('.select2-search__field') # Load next page of results by scrolling to the bottom of the list. with self.select2_ajax_wait(): for _ in range(len(results)): search.send_keys(Keys.ARROW_DOWN) results = result_container.find_elements_by_css_selector('.select2-results__option') # All objects are now loaded. self.assertEqual(len(results), PAGINATOR_SIZE + 11) # Limit the results with the search field. with self.select2_ajax_wait(): search.send_keys('Who') # Ajax request is delayed. self.assertTrue(result_container.is_displayed()) results = result_container.find_elements_by_css_selector('.select2-results__option') self.assertEqual(len(results), PAGINATOR_SIZE + 12) self.assertTrue(result_container.is_displayed()) results = result_container.find_elements_by_css_selector('.select2-results__option') self.assertEqual(len(results), 1) # Select the result. search.send_keys(Keys.RETURN) select = Select(self.selenium.find_element_by_id('id_question')) self.assertEqual(select.first_selected_option.get_attribute('value'), str(q1.pk)) def test_select_multiple(self): from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import Select self.selenium.get(self.live_server_url + reverse('autocomplete_admin:admin_views_question_add')) elem = self.selenium.find_element_by_css_selector('.select2-selection') elem.click() # Open the autocomplete dropdown. results = self.selenium.find_element_by_css_selector('.select2-results') self.assertTrue(results.is_displayed()) option = self.selenium.find_element_by_css_selector('.select2-results__option') self.assertEqual(option.text, 'No results found') elem.click() # Close the autocomplete dropdown. Question.objects.create(question='Who am I?') Question.objects.bulk_create(Question(question=str(i)) for i in range(PAGINATOR_SIZE + 10)) elem.click() # Reopen the dropdown now that some objects exist. result_container = self.selenium.find_element_by_css_selector('.select2-results') self.assertTrue(result_container.is_displayed()) results = result_container.find_elements_by_css_selector('.select2-results__option') self.assertEqual(len(results), PAGINATOR_SIZE + 1) search = self.selenium.find_element_by_css_selector('.select2-search__field') # Load next page of results by scrolling to the bottom of the list. with self.select2_ajax_wait(): for _ in range(len(results)): search.send_keys(Keys.ARROW_DOWN) results = result_container.find_elements_by_css_selector('.select2-results__option') self.assertEqual(len(results), 31) # Limit the results with the search field. with self.select2_ajax_wait(): search.send_keys('Who') # Ajax request is delayed. self.assertTrue(result_container.is_displayed()) results = result_container.find_elements_by_css_selector('.select2-results__option') self.assertEqual(len(results), 32) self.assertTrue(result_container.is_displayed()) results = result_container.find_elements_by_css_selector('.select2-results__option') self.assertEqual(len(results), 1) # Select the result. search.send_keys(Keys.RETURN) # Reopen the dropdown and add the first result to the selection. elem.click() search.send_keys(Keys.ARROW_DOWN) search.send_keys(Keys.RETURN) select = Select(self.selenium.find_element_by_id('id_related_questions')) self.assertEqual(len(select.all_selected_options), 2) def test_inline_add_another_widgets(self): def assertNoResults(row): elem = row.find_element_by_css_selector('.select2-selection') elem.click() # Open the autocomplete dropdown. results = self.selenium.find_element_by_css_selector('.select2-results') self.assertTrue(results.is_displayed()) option = self.selenium.find_element_by_css_selector('.select2-results__option') self.assertEqual(option.text, 'No results found') # Autocomplete works in rows present when the page loads. self.selenium.get(self.live_server_url + reverse('autocomplete_admin:admin_views_book_add')) rows = self.selenium.find_elements_by_css_selector('.dynamic-authorship_set') self.assertEqual(len(rows), 3) assertNoResults(rows[0]) # Autocomplete works in rows added using the "Add another" button. self.selenium.find_element_by_link_text('Add another Authorship').click() rows = self.selenium.find_elements_by_css_selector('.dynamic-authorship_set') self.assertEqual(len(rows), 4) assertNoResults(rows[-1])
from __future__ import unicode_literals import datetime from decimal import Decimal from django.core.exceptions import FieldDoesNotExist, FieldError from django.db.models import ( Sum, Count, F, Value, Func, IntegerField, BooleanField, CharField) from django.test import TestCase from django.utils import six from .models import Author, Book, Store, DepartmentStore, Company, Employee def cxOracle_513_py3_bug(func): """ cx_Oracle versions up to and including 5.1.3 have a bug with respect to string handling under Python3 (essentially, they treat Python3 strings as Python2 strings rather than unicode). This makes some tests here fail under Python 3 -- so we mark them as expected failures. See https://code.djangoproject.com/ticket/23843, in particular comment 6, which points to https://bitbucket.org/anthony_tuininga/cx_oracle/issue/6/ """ from unittest import expectedFailure from django.db import connection if connection.vendor == 'oracle' and six.PY3 and connection.Database.version <= '5.1.3': return expectedFailure(func) else: return func class NonAggregateAnnotationTestCase(TestCase): fixtures = ["annotations.json"] def test_basic_annotation(self): books = Book.objects.annotate( is_book=Value(1, output_field=IntegerField())) for book in books: self.assertEqual(book.is_book, 1) def test_basic_f_annotation(self): books = Book.objects.annotate(another_rating=F('rating')) for book in books: self.assertEqual(book.another_rating, book.rating) def test_joined_annotation(self): books = Book.objects.select_related('publisher').annotate( num_awards=F('publisher__num_awards')) for book in books: self.assertEqual(book.num_awards, book.publisher.num_awards) def test_annotate_with_aggregation(self): books = Book.objects.annotate( is_book=Value(1, output_field=IntegerField()), rating_count=Count('rating')) for book in books: self.assertEqual(book.is_book, 1) self.assertEqual(book.rating_count, 1) def test_aggregate_over_annotation(self): agg = Author.objects.annotate(other_age=F('age')).aggregate(otherage_sum=Sum('other_age')) other_agg = Author.objects.aggregate(age_sum=Sum('age')) self.assertEqual(agg['otherage_sum'], other_agg['age_sum']) def test_filter_annotation(self): books = Book.objects.annotate( is_book=Value(1, output_field=IntegerField()) ).filter(is_book=1) for book in books: self.assertEqual(book.is_book, 1) def test_filter_annotation_with_f(self): books = Book.objects.annotate( other_rating=F('rating') ).filter(other_rating=3.5) for book in books: self.assertEqual(book.other_rating, 3.5) def test_filter_annotation_with_double_f(self): books = Book.objects.annotate( other_rating=F('rating') ).filter(other_rating=F('rating')) for book in books: self.assertEqual(book.other_rating, book.rating) def test_filter_agg_with_double_f(self): books = Book.objects.annotate( sum_rating=Sum('rating') ).filter(sum_rating=F('sum_rating')) for book in books: self.assertEqual(book.sum_rating, book.rating) def test_filter_wrong_annotation(self): with six.assertRaisesRegex(self, FieldError, "Cannot resolve keyword .*"): list(Book.objects.annotate( sum_rating=Sum('rating') ).filter(sum_rating=F('nope'))) def test_update_with_annotation(self): book_preupdate = Book.objects.get(pk=2) Book.objects.annotate(other_rating=F('rating') - 1).update(rating=F('other_rating')) book_postupdate = Book.objects.get(pk=2) self.assertEqual(book_preupdate.rating - 1, book_postupdate.rating) def test_annotation_with_m2m(self): books = Book.objects.annotate(author_age=F('authors__age')).filter(pk=1).order_by('author_age') self.assertEqual(books[0].author_age, 34) self.assertEqual(books[1].author_age, 35) def test_annotation_reverse_m2m(self): books = Book.objects.annotate( store_name=F('store__name')).filter( name='Practical Django Projects').order_by( 'store_name') self.assertQuerysetEqual( books, [ 'Amazon.com', 'Books.com', 'Mamma and Pappa\'s Books' ], lambda b: b.store_name ) def test_values_annotation(self): """ Annotations can reference fields in a values clause, and contribute to an existing values clause. """ # annotate references a field in values() qs = Book.objects.values('rating').annotate(other_rating=F('rating') - 1) book = qs.get(pk=1) self.assertEqual(book['rating'] - 1, book['other_rating']) # filter refs the annotated value book = qs.get(other_rating=4) self.assertEqual(book['other_rating'], 4) # can annotate an existing values with a new field book = qs.annotate(other_isbn=F('isbn')).get(other_rating=4) self.assertEqual(book['other_rating'], 4) self.assertEqual(book['other_isbn'], '155860191') def test_defer_annotation(self): """ Deferred attributes can be referenced by an annotation, but they are not themselves deferred, and cannot be deferred. """ qs = Book.objects.defer('rating').annotate(other_rating=F('rating') - 1) with self.assertNumQueries(2): book = qs.get(other_rating=4) self.assertEqual(book.rating, 5) self.assertEqual(book.other_rating, 4) with six.assertRaisesRegex(self, FieldDoesNotExist, "\w has no field named u?'other_rating'"): book = qs.defer('other_rating').get(other_rating=4) def test_mti_annotations(self): """ Fields on an inherited model can be referenced by an annotated field. """ d = DepartmentStore.objects.create( name='Angus & Robinson', original_opening=datetime.date(2014, 3, 8), friday_night_closing=datetime.time(21, 00, 00), chain='Westfield' ) books = Book.objects.filter(rating__gt=4) for b in books: d.books.add(b) qs = DepartmentStore.objects.annotate( other_name=F('name'), other_chain=F('chain'), is_open=Value(True, BooleanField()), book_isbn=F('books__isbn') ).order_by('book_isbn').filter(chain='Westfield') self.assertQuerysetEqual( qs, [ ('Angus & Robinson', 'Westfield', True, '155860191'), ('Angus & Robinson', 'Westfield', True, '159059725') ], lambda d: (d.other_name, d.other_chain, d.is_open, d.book_isbn) ) def test_column_field_ordering(self): """ Test that columns are aligned in the correct order for resolve_columns. This test will fail on mysql if column ordering is out. Column fields should be aligned as: 1. extra_select 2. model_fields 3. annotation_fields 4. model_related_fields """ store = Store.objects.first() Employee.objects.create(id=1, first_name='Max', manager=True, last_name='Paine', store=store, age=23, salary=Decimal(50000.00)) Employee.objects.create(id=2, first_name='Buffy', manager=False, last_name='Summers', store=store, age=18, salary=Decimal(40000.00)) qs = Employee.objects.extra( select={'random_value': '42'} ).select_related('store').annotate( annotated_value=Value(17, output_field=IntegerField()) ) rows = [ (1, 'Max', True, 42, 'Paine', 23, Decimal(50000.00), store.name, 17), (2, 'Buffy', False, 42, 'Summers', 18, Decimal(40000.00), store.name, 17) ] self.assertQuerysetEqual( qs.order_by('id'), rows, lambda e: ( e.id, e.first_name, e.manager, e.random_value, e.last_name, e.age, e.salary, e.store.name, e.annotated_value)) def test_column_field_ordering_with_deferred(self): store = Store.objects.first() Employee.objects.create(id=1, first_name='Max', manager=True, last_name='Paine', store=store, age=23, salary=Decimal(50000.00)) Employee.objects.create(id=2, first_name='Buffy', manager=False, last_name='Summers', store=store, age=18, salary=Decimal(40000.00)) qs = Employee.objects.extra( select={'random_value': '42'} ).select_related('store').annotate( annotated_value=Value(17, output_field=IntegerField()) ) rows = [ (1, 'Max', True, 42, 'Paine', 23, Decimal(50000.00), store.name, 17), (2, 'Buffy', False, 42, 'Summers', 18, Decimal(40000.00), store.name, 17) ] # and we respect deferred columns! self.assertQuerysetEqual( qs.defer('age').order_by('id'), rows, lambda e: ( e.id, e.first_name, e.manager, e.random_value, e.last_name, e.age, e.salary, e.store.name, e.annotated_value)) @cxOracle_513_py3_bug def test_custom_functions(self): Company(name='Apple', motto=None, ticker_name='APPL', description='Beautiful Devices').save() Company(name='Django Software Foundation', motto=None, ticker_name=None, description=None).save() Company(name='Google', motto='Do No Evil', ticker_name='GOOG', description='Internet Company').save() Company(name='Yahoo', motto=None, ticker_name=None, description='Internet Company').save() qs = Company.objects.annotate( tagline=Func( F('motto'), F('ticker_name'), F('description'), Value('No Tag'), function='COALESCE') ).order_by('name') self.assertQuerysetEqual( qs, [ ('Apple', 'APPL'), ('Django Software Foundation', 'No Tag'), ('Google', 'Do No Evil'), ('Yahoo', 'Internet Company') ], lambda c: (c.name, c.tagline) ) @cxOracle_513_py3_bug def test_custom_functions_can_ref_other_functions(self): Company(name='Apple', motto=None, ticker_name='APPL', description='Beautiful Devices').save() Company(name='Django Software Foundation', motto=None, ticker_name=None, description=None).save() Company(name='Google', motto='Do No Evil', ticker_name='GOOG', description='Internet Company').save() Company(name='Yahoo', motto=None, ticker_name=None, description='Internet Company').save() class Lower(Func): function = 'LOWER' qs = Company.objects.annotate( tagline=Func( F('motto'), F('ticker_name'), F('description'), Value('No Tag'), function='COALESCE') ).annotate( tagline_lower=Lower(F('tagline'), output_field=CharField()) ).order_by('name') # LOWER function supported by: # oracle, postgres, mysql, sqlite, sqlserver self.assertQuerysetEqual( qs, [ ('Apple', 'APPL'.lower()), ('Django Software Foundation', 'No Tag'.lower()), ('Google', 'Do No Evil'.lower()), ('Yahoo', 'Internet Company'.lower()) ], lambda c: (c.name, c.tagline_lower) )
# -*- coding: utf-8 -*- import logging import itertools import math import httplib as http from modularodm import Q from flask import request from framework import utils from framework import sentry from framework.auth.core import User from framework.flask import redirect # VOL-aware redirect from framework.routing import proxy_url from framework.exceptions import HTTPError from framework.auth.forms import SignInForm from framework.forms import utils as form_utils from framework.guid.model import GuidStoredObject from framework.auth.forms import RegistrationForm from framework.auth.forms import ResetPasswordForm from framework.auth.forms import ForgotPasswordForm from framework.auth.decorators import collect_auth from framework.auth.decorators import must_be_logged_in from website.models import Guid from website.models import Node from website.util import rubeus from website.project import model from website.util import web_url_for from website.util import permissions from website.project import new_dashboard from website.settings import ALL_MY_PROJECTS_ID from website.settings import ALL_MY_REGISTRATIONS_ID logger = logging.getLogger(__name__) def _rescale_ratio(auth, nodes): """Get scaling denominator for log lists across a sequence of nodes. :param nodes: Nodes :return: Max number of logs """ if not nodes: return 0 counts = [ len(node.logs) for node in nodes if node.can_view(auth) ] if counts: return float(max(counts)) return 0.0 def _render_node(node, auth=None): """ :param node: :return: """ perm = None # NOTE: auth.user may be None if viewing public project while not # logged in if auth and auth.user and node.get_permissions(auth.user): perm_list = node.get_permissions(auth.user) perm = permissions.reduce_permissions(perm_list) return { 'title': node.title, 'id': node._primary_key, 'url': node.url, 'api_url': node.api_url, 'primary': node.primary, 'date_modified': utils.iso8601format(node.date_modified), 'category': node.category, 'permissions': perm, # A string, e.g. 'admin', or None } def _render_nodes(nodes, auth=None): """ :param nodes: :return: """ ret = { 'nodes': [ _render_node(node, auth) for node in nodes ], 'rescale_ratio': _rescale_ratio(auth, nodes), } return ret @collect_auth def index(auth): """Redirect to dashboard if user is logged in, else show homepage. """ if auth.user: return redirect(web_url_for('dashboard')) return {} def find_dashboard(user): dashboard_folder = user.node__contributed.find( Q('is_dashboard', 'eq', True) ) if dashboard_folder.count() == 0: new_dashboard(user) dashboard_folder = user.node__contributed.find( Q('is_dashboard', 'eq', True) ) return dashboard_folder[0] @must_be_logged_in def get_dashboard(auth, nid=None, **kwargs): user = auth.user if nid is None: node = find_dashboard(user) dashboard_projects = [rubeus.to_project_root(node, auth, **kwargs)] return_value = {'data': dashboard_projects} elif nid == ALL_MY_PROJECTS_ID: return_value = {'data': get_all_projects_smart_folder(**kwargs)} elif nid == ALL_MY_REGISTRATIONS_ID: return_value = {'data': get_all_registrations_smart_folder(**kwargs)} else: node = Node.load(nid) dashboard_projects = rubeus.to_project_hgrid(node, auth, **kwargs) return_value = {'data': dashboard_projects} return_value['timezone'] = user.timezone return_value['locale'] = user.locale return return_value @must_be_logged_in def get_all_projects_smart_folder(auth, **kwargs): # TODO: Unit tests user = auth.user contributed = user.node__contributed nodes = contributed.find( Q('category', 'eq', 'project') & Q('is_deleted', 'eq', False) & Q('is_registration', 'eq', False) & Q('is_folder', 'eq', False) & # parent is not in the nodes list Q('__backrefs.parent.node.nodes', 'eq', None) ).sort('-title') parents_to_exclude = contributed.find( Q('category', 'eq', 'project') & Q('is_deleted', 'eq', False) & Q('is_registration', 'eq', False) & Q('is_folder', 'eq', False) ) comps = contributed.find( Q('is_folder', 'eq', False) & # parent is not in the nodes list Q('__backrefs.parent.node.nodes', 'nin', parents_to_exclude.get_keys()) & # is not in the nodes list Q('_id', 'nin', nodes.get_keys()) & # exclude deleted nodes Q('is_deleted', 'eq', False) & # exclude registrations Q('is_registration', 'eq', False) ) return_value = [rubeus.to_project_root(node, auth, **kwargs) for node in comps] return_value.extend([rubeus.to_project_root(node, auth, **kwargs) for node in nodes]) return return_value @must_be_logged_in def get_all_registrations_smart_folder(auth, **kwargs): # TODO: Unit tests user = auth.user contributed = user.node__contributed nodes = contributed.find( Q('category', 'eq', 'project') & Q('is_deleted', 'eq', False) & Q('is_registration', 'eq', True) & Q('is_folder', 'eq', False) & # parent is not in the nodes list Q('__backrefs.parent.node.nodes', 'eq', None) ).sort('-title') parents_to_exclude = contributed.find( Q('category', 'eq', 'project') & Q('is_deleted', 'eq', False) & Q('is_registration', 'eq', True) & Q('is_folder', 'eq', False) ) comps = contributed.find( Q('is_folder', 'eq', False) & # parent is not in the nodes list Q('__backrefs.parent.node.nodes', 'nin', parents_to_exclude.get_keys()) & # is not in the nodes list Q('_id', 'nin', nodes.get_keys()) & # exclude deleted nodes Q('is_deleted', 'eq', False) & # exclude registrations Q('is_registration', 'eq', True) ) return_value = [rubeus.to_project_root(comp, auth, **kwargs) for comp in comps] return_value.extend([rubeus.to_project_root(node, auth, **kwargs) for node in nodes]) return return_value @must_be_logged_in def get_dashboard_nodes(auth): """Get summary information about the current user's dashboard nodes. :param-query no_components: Exclude components from response. NOTE: By default, components will only be shown if the current user is contributor on a comonent but not its parent project. This query parameter forces ALL components to be excluded from the request. :param-query permissions: Filter upon projects for which the current user has the specified permissions. Examples: 'write', 'admin' """ user = auth.user contributed = user.node__contributed # nodes user contributed to nodes = contributed.find( Q('category', 'eq', 'project') & Q('is_deleted', 'eq', False) & Q('is_registration', 'eq', False) & Q('is_folder', 'eq', False) ) # TODO: Store truthy values in a named constant available site-wide if request.args.get('no_components') not in [True, 'true', 'True', '1', 1]: comps = contributed.find( # components only Q('category', 'ne', 'project') & # parent is not in the nodes list Q('__backrefs.parent.node.nodes', 'nin', nodes.get_keys()) & # exclude deleted nodes Q('is_deleted', 'eq', False) & # exclude registrations Q('is_registration', 'eq', False) ) else: comps = [] nodes = list(nodes) + list(comps) if request.args.get('permissions'): perm = request.args['permissions'].strip().lower() if perm not in permissions.PERMISSIONS: raise HTTPError(http.BAD_REQUEST, dict( message_short='Invalid query parameter', message_long='{0} is not in {1}'.format(perm, permissions.PERMISSIONS) )) response_nodes = [node for node in nodes if node.has_permission(user, permission=perm)] else: response_nodes = nodes return _render_nodes(response_nodes, auth) @must_be_logged_in def dashboard(auth): user = auth.user dashboard_folder = find_dashboard(user) dashboard_id = dashboard_folder._id return {'addons_enabled': user.get_addon_names(), 'dashboard_id': dashboard_id, } def paginate(items, total, page, size): start = page * size paginated_items = itertools.islice(items, start, start + size) pages = math.ceil(total / float(size)) return paginated_items, pages @must_be_logged_in def watched_logs_get(**kwargs): user = kwargs['auth'].user try: page = int(request.args.get('page', 0)) except ValueError: raise HTTPError(http.BAD_REQUEST, data=dict( message_long='Invalid value for "page".' )) try: size = int(request.args.get('size', 10)) except ValueError: raise HTTPError(http.BAD_REQUEST, data=dict( message_long='Invalid value for "size".' )) total = sum(1 for x in user.get_recent_log_ids()) paginated_logs, pages = paginate(user.get_recent_log_ids(), total, page, size) logs = (model.NodeLog.load(id) for id in paginated_logs) return { "logs": [serialize_log(log) for log in logs], "total": total, "pages": pages, "page": page } def serialize_log(node_log, anonymous=False): '''Return a dictionary representation of the log.''' return { 'id': str(node_log._primary_key), 'user': node_log.user.serialize() if isinstance(node_log.user, User) else {'fullname': node_log.foreign_user}, 'contributors': [node_log._render_log_contributor(c) for c in node_log.params.get("contributors", [])], 'api_key': node_log.api_key.label if node_log.api_key else '', 'action': node_log.action, 'params': node_log.params, 'date': utils.iso8601format(node_log.date), 'node': node_log.node.serialize() if node_log.node else None, 'anonymous': anonymous } def reproducibility(): return redirect('/ezcuj/wiki') def registration_form(): return form_utils.jsonify(RegistrationForm(prefix='register')) def signin_form(): return form_utils.jsonify(SignInForm()) def forgot_password_form(): return form_utils.jsonify(ForgotPasswordForm(prefix='forgot_password')) def reset_password_form(): return form_utils.jsonify(ResetPasswordForm()) # GUID ### def _build_guid_url(base, suffix=None): url = '/'.join([ each.strip('/') for each in [base, suffix] if each ]) return u'/{0}/'.format(url) def resolve_guid(guid, suffix=None): """Load GUID by primary key, look up the corresponding view function in the routing table, and return the return value of the view function without changing the URL. :param str guid: GUID primary key :param str suffix: Remainder of URL after the GUID :return: Return value of proxied view function """ # Look up GUID guid_object = Guid.load(guid) if guid_object: # verify that the object is a GuidStoredObject descendant. If a model # was once a descendant but that relationship has changed, it's # possible to have referents that are instances of classes that don't # have a redirect_mode attribute or otherwise don't behave as # expected. if not isinstance(guid_object.referent, GuidStoredObject): sentry.log_message( 'Guid `{}` resolved to non-guid object'.format(guid) ) raise HTTPError(http.NOT_FOUND) referent = guid_object.referent if referent is None: logger.error('Referent of GUID {0} not found'.format(guid)) raise HTTPError(http.NOT_FOUND) if not referent.deep_url: raise HTTPError(http.NOT_FOUND) url = _build_guid_url(referent.deep_url, suffix) return proxy_url(url) # GUID not found; try lower-cased and redirect if exists guid_object_lower = Guid.load(guid.lower()) if guid_object_lower: return redirect( _build_guid_url(guid.lower(), suffix) ) # GUID not found raise HTTPError(http.NOT_FOUND)
""" Base IO code for all datasets """ # Copyright (c) 2007 David Cournapeau <[email protected]> # 2010 Fabian Pedregosa <[email protected]> # 2010 Olivier Grisel <[email protected]> # License: Simplified BSD import os import csv import shutil from os import environ from os.path import dirname from os.path import join from os.path import exists from os.path import expanduser from os.path import isdir from os import listdir from os import makedirs import numpy as np from ..utils import check_random_state class Bunch(dict): """Container object for datasets: dictionary-like object that exposes its keys as attributes.""" def __init__(self, **kwargs): dict.__init__(self, kwargs) self.__dict__ = self def get_data_home(data_home=None): """Return the path of the scikit-learn data dir. This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'scikit_learn_data' in the user home folder. Alternatively, it can be set by the 'SCIKIT_LEARN_DATA' environment variable or programatically by giving an explit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. """ if data_home is None: data_home = environ.get('SCIKIT_LEARN_DATA', join('~', 'scikit_learn_data')) data_home = expanduser(data_home) if not exists(data_home): makedirs(data_home) return data_home def clear_data_home(data_home=None): """Delete all the content of the data home cache.""" data_home = get_data_home(data_home) shutil.rmtree(data_home) def load_files(container_path, description=None, categories=None, load_content=True, shuffle=True, random_state=0): """Load text files with categories as subfolder names. Individual samples are assumed to be files stored a two levels folder structure such as the following: container_folder/ category_1_folder/ file_1.txt file_2.txt ... file_42.txt category_2_folder/ file_43.txt file_44.txt ... The folder names are used has supervised signal label names. The indivial file names are not important. This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if load_content is false it does not try to load the files in memory. To use utf-8 text files in a scikit-learn classification or clustering algorithm you will first need to use the `sklearn.features.text` module to build a feature extraction transformer that suits your problem. Similar feature extractors should be build for other kind of unstructured data input such as images, audio, video, ... Parameters ---------- container_path : string or unicode Path to the main folder holding one subfolder per category description: string or unicode, optional (default=None) A paragraph describing the characteristic of the dataset: its source, reference, etc. categories : A collection of strings or None, optional (default=None) If None (default), load all the categories. If not None, list of category names to load (other categories ignored). load_content : boolean, optional (default=True) Whether to load or not the content of the different files. If true a 'data' attribute containing the text information is present in the data structure returned. If not, a filenames attribute gives the path to the files. shuffle : bool, optional (default=True) Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state : int, RandomState instance or None, optional (default=0) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: either data, the raw text data to learn, or 'filenames', the files holding it, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. """ target = [] target_names = [] filenames = [] folders = [f for f in sorted(listdir(container_path)) if isdir(join(container_path, f))] if categories is not None: folders = [f for f in folders if f in categories] for label, folder in enumerate(folders): target_names.append(folder) folder_path = join(container_path, folder) documents = [join(folder_path, d) for d in sorted(listdir(folder_path))] target.extend(len(documents) * [label]) filenames.extend(documents) # convert to array for fancy indexing filenames = np.array(filenames) target = np.array(target) if shuffle: random_state = check_random_state(random_state) indices = np.arange(filenames.shape[0]) random_state.shuffle(indices) filenames = filenames[indices] target = target[indices] if load_content: data = [open(filename).read() for filename in filenames] return Bunch(data=data, filenames=filenames, target_names=target_names, target=target, DESCR=description) return Bunch(filenames=filenames, target_names=target_names, target=target, DESCR=description) def load_iris(): """Load and return the iris dataset (classification). The iris dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class 50 Samples total 150 Dimensionality 4 Features real, positive ================= ============== Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'target_names', the meaning of the labels, 'feature_names', the meaning of the features, and 'DESCR', the full description of the dataset. Examples -------- Let's say you are interested in the samples 10, 25, and 50, and want to know their class name. >>> from sklearn.datasets import load_iris >>> data = load_iris() >>> data.target[[10, 25, 50]] array([0, 0, 1]) >>> list(data.target_names) ['setosa', 'versicolor', 'virginica'] """ module_path = dirname(__file__) data_file = csv.reader(open(join(module_path, 'data', 'iris.csv'))) fdescr = open(join(module_path, 'descr', 'iris.rst')) temp = data_file.next() n_samples = int(temp[0]) n_features = int(temp[1]) target_names = np.array(temp[2:]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=np.int) for i, ir in enumerate(data_file): data[i] = np.asarray(ir[:-1], dtype=np.float) target[i] = np.asarray(ir[-1], dtype=np.int) return Bunch(data=data, target=target, target_names=target_names, DESCR=fdescr.read(), feature_names=['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']) def load_digits(n_class=10): """Load and return the digits dataset (classification). Each datapoint is a 8x8 image of a digit. ================= ============== Classes 10 Samples per class ~180 Samples total 1797 Dimensionality 64 Features integers 0-16 ================= ============== Parameters ---------- n_class : integer, between 0 and 10, optional (default=10) The number of classes to return. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'images', the images corresponding to each sample, 'target', the classification labels for each sample, 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Examples -------- To load the data and visualize the images:: >>> from sklearn.datasets import load_digits >>> digits = load_digits() >>> digits.data.shape (1797, 64) >>> import pylab as pl #doctest: +SKIP >>> pl.gray() #doctest: +SKIP >>> pl.matshow(digits.images[0]) #doctest: +SKIP >>> pl.show() #doctest: +SKIP """ module_path = dirname(__file__) data = np.loadtxt(join(module_path, 'data', 'digits.csv.gz'), delimiter=',') descr = open(join(module_path, 'descr', 'digits.rst')).read() target = data[:, -1] flat_data = data[:, :-1] images = flat_data.view() images.shape = (-1, 8, 8) if n_class < 10: idx = target < n_class flat_data, target = flat_data[idx], target[idx] images = images[idx] return Bunch(data=flat_data, target=target.astype(np.int), target_names=np.arange(10), images=images, DESCR=descr) def load_diabetes(): """Load and return the diabetes dataset (regression). ============== ================== Samples total 442 Dimensionality 10 Features real, -.2 < x < .2 Targets integer 25 - 346 ============== ================== Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn and 'target', the regression target for each sample. """ base_dir = join(dirname(__file__), 'data') data = np.loadtxt(join(base_dir, 'diabetes_data.csv.gz')) target = np.loadtxt(join(base_dir, 'diabetes_target.csv.gz')) return Bunch(data=data, target=target) def load_linnerud(): """Load and return the linnerud dataset (multivariate regression). Samples total: 20 Dimensionality: 3 for both data and targets Features: integer Targets: integer Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data' and 'targets', the two multivariate datasets, with 'data' corresponding to the exercise and 'targets' corresponding to the physiological measurements, as well as 'feature_names' and 'target_names'. """ base_dir = join(dirname(__file__), 'data/') # Read data data_exercise = np.loadtxt(base_dir + 'linnerud_exercise.csv', skiprows=1) data_physiological = np.loadtxt(base_dir + 'linnerud_physiological.csv', skiprows=1) # Read header with open(base_dir + 'linnerud_exercise.csv') as f: header_exercise = f.readline().split() with open(base_dir + 'linnerud_physiological.csv') as f: header_physiological = f.readline().split() with open(dirname(__file__) + '/descr/linnerud.rst') as f: descr = f.read() return Bunch(data=data_exercise, feature_names=header_exercise, target=data_physiological, target_names=header_physiological, DESCR=descr) def load_boston(): """Load and return the boston house-prices dataset (regression). ============== ============== Samples total 506 Dimensionality 13 Features real, positive Targets real 5. - 50. ============== ============== Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the regression targets, 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Examples -------- >>> from sklearn.datasets import load_boston >>> boston = load_boston() >>> boston.data.shape (506, 13) """ module_path = dirname(__file__) data_file = csv.reader(open(join(module_path, 'data', 'boston_house_prices.csv'))) fdescr = open(join(module_path, 'descr', 'boston_house_prices.rst')) temp = data_file.next() n_samples = int(temp[0]) n_features = int(temp[1]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,)) temp = data_file.next() # names of features feature_names = np.array(temp) for i, d in enumerate(data_file): data[i] = np.asarray(d[:-1], dtype=np.float) target[i] = np.asarray(d[-1], dtype=np.float) return Bunch(data=data, target=target, feature_names=feature_names, DESCR=fdescr.read()) def load_sample_images(): """Load sample images for image manipulation. Loads both, ``china`` and ``flower``. Returns ------- data : Bunch Dictionary-like object with the following attributes : 'images', the two sample images, 'filenames', the file names for the images, and 'DESCR' the full description of the dataset. Examples -------- To load the data and visualize the images: >>> from sklearn.datasets import load_sample_images >>> dataset = load_sample_images() #doctest: +SKIP >>> len(dataset.images) #doctest: +SKIP 2 >>> first_img_data = dataset.images[0] #doctest: +SKIP >>> first_img_data.shape #doctest: +SKIP (427, 640, 3) >>> first_img_data.dtype #doctest: +SKIP dtype('uint8') """ # Try to import imread from scipy. We do this lazily here to prevent # this module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: raise ImportError("The Python Imaging Library (PIL) " "is required to load data from jpeg files") module_path = join(dirname(__file__), "images") with open(join(module_path, 'README.txt')) as f: descr = f.read() filenames = [join(module_path, filename) for filename in os.listdir(module_path) if filename.endswith(".jpg")] # Load image data for each image in the source folder. images = [imread(filename) for filename in filenames] return Bunch(images=images, filenames=filenames, DESCR=descr) def load_sample_image(image_name): """Load the numpy array of a single sample image Parameters ----------- image_name: {`china.jpg`, `flower.jpg`} The name of the sample image loaded Returns ------- img: 3D array The image as a numpy array: height x width x color Examples --------- >>> from sklearn.datasets import load_sample_image >>> china = load_sample_image('china.jpg') # doctest: +SKIP >>> china.dtype # doctest: +SKIP dtype('uint8') >>> china.shape # doctest: +SKIP (427, 640, 3) >>> flower = load_sample_image('flower.jpg') # doctest: +SKIP >>> flower.dtype # doctest: +SKIP dtype('uint8') >>> flower.shape # doctest: +SKIP (427, 640, 3) """ images = load_sample_images() index = None for i, filename in enumerate(images.filenames): if filename.endswith(image_name): index = i break if index is None: raise AttributeError("Cannot find sample image: %s" % image_name) return images.images[index]
# -*- coding: utf-8 -*- """ Copyright (C) 2017 Sebastian Golasch (plugin.video.netflix) Copyright (C) 2019 Stefano Gottardo - @CastagnaIT (original implementation module) Sharable database access and functions SPDX-License-Identifier: MIT See LICENSES/MIT.md for more information. """ from __future__ import absolute_import, division, unicode_literals from datetime import datetime import resources.lib.common as common import resources.lib.database.db_base_mysql as db_base_mysql import resources.lib.database.db_base_sqlite as db_base_sqlite import resources.lib.database.db_utils as db_utils def get_shareddb_class(use_mysql=False): # Dynamically sets the inherit class base_class = db_base_mysql.MySQLDatabase if use_mysql else db_base_sqlite.SQLiteDatabase class NFSharedDatabase(base_class): def __init__(self): if use_mysql: super(NFSharedDatabase, self).__init__() # pylint: disable=no-value-for-parameter else: super(NFSharedDatabase, self).__init__(db_utils.SHARED_DB_FILENAME) def get_value(self, key, default_value=None, table=db_utils.TABLE_SHARED_APP_CONF, data_type=None): # pylint: disable=useless-super-delegation return super(NFSharedDatabase, self).get_value(key, default_value, table, data_type) def get_values(self, key, default_value=None, table=db_utils.TABLE_SHARED_APP_CONF): # pylint: disable=useless-super-delegation return super(NFSharedDatabase, self).get_values(key, default_value, table) def set_value(self, key, value, table=db_utils.TABLE_SHARED_APP_CONF): # pylint: disable=useless-super-delegation super(NFSharedDatabase, self).set_value(key, value, table) def delete_key(self, key, table=db_utils.TABLE_SHARED_APP_CONF): # pylint: disable=useless-super-delegation super(NFSharedDatabase, self).delete_key(key, table) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def set_profile(self, guid, sort_order): """Update or Insert a profile""" # Update or insert approach, # if there is no updated row then insert new one (no id changes) if self.is_mysql_database: query = db_utils.mysql_insert_or_update('profiles', ['Guid'], ['SortOrder']) self._execute_non_query(query, (guid, sort_order), multi=True) else: data = db_utils.sql_filtered_update('profiles', ['SortOrder'], ['Guid'], [sort_order, guid]) cur = self._execute_query(data[0], data[1]) if cur.rowcount == 0: data = db_utils.sql_filtered_insert('profiles', ['Guid', 'SortOrder'], [guid, sort_order]) self._execute_non_query(data[0], data[1]) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def delete_profile(self, guid): query = 'DELETE FROM profiles WHERE Guid = ?' self._execute_non_query(query, (guid,)) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def get_movie_filepath(self, movieid, default_value=None): """Get movie filepath for given id""" query = 'SELECT FilePath FROM video_lib_movies WHERE MovieID = ?' cur = self._execute_query(query, (movieid,)) result = cur.fetchone() return result[0] if result else default_value @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def get_episode_filepath(self, tvshowid, seasonid, episodeid, default_value=None): """Get movie filepath for given id""" query =\ ('SELECT FilePath FROM video_lib_episodes ' 'INNER JOIN video_lib_seasons ' 'ON video_lib_episodes.SeasonID = video_lib_seasons.SeasonID ' 'WHERE video_lib_seasons.TvShowID = ? AND ' 'video_lib_seasons.SeasonID = ? AND ' 'video_lib_episodes.EpisodeID = ?') cur = self._execute_query(query, (tvshowid, seasonid, episodeid)) result = cur.fetchone() return result[0] if result is not None else default_value @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def get_all_episodes_ids_and_filepath_from_tvshow(self, tvshowid): """Get all episodes IDs and filepaths for given id""" cur = self.get_cursor_for_dict_results() query =\ ('SELECT video_lib_episodes.FilePath, video_lib_seasons.TvShowID, ' 'video_lib_episodes.SeasonID, video_lib_episodes.EpisodeID ' 'FROM video_lib_episodes ' 'INNER JOIN video_lib_seasons ' 'ON video_lib_episodes.SeasonID = video_lib_seasons.SeasonID ' 'WHERE video_lib_seasons.TvShowID = ?') cur = self._execute_query(query, (tvshowid,), cur) return cur.fetchall() @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def get_all_episodes_ids_and_filepath_from_season(self, tvshowid, seasonid): """Get all episodes IDs and filepaths for given id""" cur = self.get_cursor_for_dict_results() query =\ ('SELECT video_lib_episodes.FilePath, video_lib_seasons.TvShowID, ' 'video_lib_episodes.SeasonID, video_lib_episodes.EpisodeID ' 'FROM video_lib_episodes ' 'INNER JOIN video_lib_seasons ' 'ON video_lib_episodes.SeasonID = video_lib_seasons.SeasonID ' 'WHERE video_lib_seasons.TvShowID = ? AND ' 'video_lib_seasons.SeasonID = ?') cur = self._execute_query(query, (tvshowid, seasonid), cur) return cur.fetchall() @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def get_random_episode_filepath_from_tvshow(self, tvshowid, default_value=None): """Get random episode filepath of a show of a given id""" rand_func_name = 'RAND()' if self.is_mysql_database else 'RANDOM()' query =\ ('SELECT FilePath FROM video_lib_episodes ' 'INNER JOIN video_lib_seasons ' 'ON video_lib_episodes.SeasonID = video_lib_seasons.SeasonID ' 'WHERE video_lib_seasons.TvShowID = ? ' 'ORDER BY {} LIMIT 1').format(rand_func_name) cur = self._execute_query(query, (tvshowid,)) result = cur.fetchone() return result[0] if result is not None else default_value @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def get_random_episode_filepath_from_season(self, tvshowid, seasonid, default_value=None): """Get random episode filepath of a show of a given id""" rand_func_name = 'RAND()' if self.is_mysql_database else 'RANDOM()' query =\ ('SELECT FilePath FROM video_lib_episodes ' 'INNER JOIN video_lib_seasons ' 'ON video_lib_episodes.SeasonID = video_lib_seasons.SeasonID ' 'WHERE video_lib_seasons.TvShowID = ? AND video_lib_seasons.SeasonID = ? ' 'ORDER BY {} LIMIT 1').format(rand_func_name) cur = self._execute_query(query, (tvshowid, seasonid)) result = cur.fetchone() return result[0] if result is not None else default_value @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def get_all_video_id_list(self): """Get all the ids of movies and tvshows contained in the library""" cur = self.get_cursor_for_list_results() query = ('SELECT MovieID FROM video_lib_movies ' 'UNION ' 'SELECT TvShowID FROM video_lib_tvshows') cur = self._execute_query(query, cursor=cur) return self.return_rows_as_list(cur) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def get_tvshows_id_list(self, enum_vid_prop=None, prop_value=None): """ Get all the ids of tvshows contained in the library :param enum_vid_prop: Optional: use db_utils.VidLibProp :param prop_value: Optional: value as filter :return: list of tvshows ids """ cur = self.get_cursor_for_list_results() if enum_vid_prop and prop_value: query = ('SELECT TvShowID FROM video_lib_tvshows ' 'WHERE ' + enum_vid_prop + ' = ?') cur = self._execute_query(query, (str(prop_value),), cur) else: query = 'SELECT TvShowID FROM video_lib_tvshows' cur = self._execute_query(query, cursor=cur) return self.return_rows_as_list(cur) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def get_movies_id_list(self): """Get all the ids of movies contained in the library""" cur = self.get_cursor_for_list_results() query = 'SELECT MovieID FROM video_lib_movies' cur = self._execute_query(query, cursor=cur) return self.return_rows_as_list(cur) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def movie_id_exists(self, movieid): """Return True if a movie id exists""" query = 'SELECT EXISTS(SELECT 1 FROM video_lib_movies WHERE MovieID = ?)' cur = self._execute_query(query, (movieid,)) return bool(cur.fetchone()[0]) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def tvshow_id_exists(self, tvshowid): """Return True if a tvshow id exists""" query = 'SELECT EXISTS(SELECT 1 FROM video_lib_tvshows WHERE TvShowID = ?)' cur = self._execute_query(query, (tvshowid,)) return bool(cur.fetchone()[0]) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def season_id_exists(self, tvshowid, seasonid): """Return True if a tvshow season id exists""" query =\ ('SELECT EXISTS(' 'SELECT 1 FROM video_lib_seasons ' 'INNER JOIN video_lib_tvshows ' 'ON video_lib_seasons.TvShowID = video_lib_tvshows.TvShowID ' 'WHERE video_lib_tvshows.TvShowID = ? AND video_lib_seasons.SeasonID = ?)') cur = self._execute_query(query, (tvshowid, seasonid)) return bool(cur.fetchone()[0]) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def episode_id_exists(self, tvshowid, seasonid, episodeid): """Return True if a tvshow episode id exists""" query =\ ('SELECT EXISTS(' 'SELECT 1 FROM video_lib_episodes ' 'INNER JOIN video_lib_seasons ' 'ON video_lib_episodes.SeasonID = video_lib_seasons.SeasonID ' 'INNER JOIN video_lib_tvshows ' 'ON video_lib_seasons.TvShowID = video_lib_tvshows.TvShowID ' 'WHERE video_lib_tvshows.TvShowID = ? AND ' 'video_lib_seasons.SeasonID = ? AND ' 'video_lib_episodes.EpisodeID = ?)') cur = self._execute_query(query, (tvshowid, seasonid, episodeid)) return bool(cur.fetchone()[0]) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def set_movie(self, movieid, file_path, nfo_export): """Update or insert a movie""" # Update or insert approach, if there is no updated row then insert new one if self.is_mysql_database: query = db_utils.mysql_insert_or_update('video_lib_movies', ['MovieID'], ['FilePath', 'NfoExport']) self._execute_non_query(query, (movieid, file_path, str(nfo_export)), multi=True) else: update_query = ('UPDATE video_lib_movies SET FilePath = ?, NfoExport = ? ' 'WHERE MovieID = ?') cur = self._execute_query(update_query, (file_path, str(nfo_export), movieid)) if cur.rowcount == 0: insert_query = ('INSERT INTO video_lib_movies (MovieID, FilePath, NfoExport) ' 'VALUES (?, ?, ?)') self._execute_non_query(insert_query, (movieid, file_path, str(nfo_export))) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def set_tvshow(self, tvshowid, nfo_export, exclude_update): """Update or insert a tvshow""" # Update or insert approach, if there is no updated row then insert new one if self.is_mysql_database: query = db_utils.mysql_insert_or_update('video_lib_tvshows', ['TvShowID'], ['ExcludeUpdate', 'NfoExport']) self._execute_non_query(query, (tvshowid, str(exclude_update), str(nfo_export)), multi=True) else: update_query = ('UPDATE video_lib_tvshows SET NfoExport = ?, ExcludeUpdate = ? ' 'WHERE TvShowID = ?') cur = self._execute_query(update_query, (str(nfo_export), str(exclude_update), tvshowid)) if cur.rowcount == 0: insert_query = \ ('INSERT INTO video_lib_tvshows (TvShowID, NfoExport, ExcludeUpdate) ' 'VALUES (?, ?, ?)') self._execute_non_query(insert_query, (tvshowid, str(nfo_export), str(exclude_update))) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def insert_season(self, tvshowid, seasonid): """Insert a season if not exists""" if not self.season_id_exists(tvshowid, seasonid): insert_query = ('INSERT INTO video_lib_seasons (TvShowID, SeasonID) ' 'VALUES (?, ?)') self._execute_non_query(insert_query, (tvshowid, seasonid)) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def insert_episode(self, tvshowid, seasonid, episodeid, file_path): """Insert a episode if not exists""" if not self.episode_id_exists(tvshowid, seasonid, episodeid): insert_query = ('INSERT INTO video_lib_episodes (SeasonID, EpisodeID, FilePath) ' 'VALUES (?, ?, ?)') self._execute_non_query(insert_query, (seasonid, episodeid, file_path)) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def delete_movie(self, movieid): """Delete a movie from database""" query = 'DELETE FROM video_lib_movies WHERE MovieID = ?' self._execute_query(query, (movieid,)) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def delete_tvshow(self, tvshowid): """Delete a tvshow from database""" query = 'DELETE FROM video_lib_tvshows WHERE TvShowID = ?' self._execute_query(query, (tvshowid,)) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def delete_season(self, tvshowid, seasonid): """Delete a season from database""" query = 'DELETE FROM video_lib_seasons WHERE TvShowID = ? AND SeasonID = ?' self._execute_query(query, (tvshowid, seasonid)) # if there are no other seasons, delete the tvshow query = 'SELECT EXISTS(SELECT 1 FROM video_lib_seasons WHERE TvShowID = ?)' cur = self._execute_query(query, (tvshowid,)) if not bool(cur.fetchone()[0]): self.delete_tvshow(tvshowid) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def delete_episode(self, tvshowid, seasonid, episodeid): """Delete a episode from database""" query = 'DELETE FROM video_lib_episodes WHERE SeasonID = ? AND EpisodeID = ?' self._execute_query(query, (seasonid, episodeid)) # if there are no other episodes, delete the season query = 'SELECT EXISTS(SELECT 1 FROM video_lib_episodes WHERE SeasonID = ?)' cur = self._execute_query(query, (seasonid,)) if not bool(cur.fetchone()[0]): self.delete_season(tvshowid, seasonid) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def get_tvshow_property(self, tvshowid, enum_vid_prop, default_value=None, data_type=None): """ Read the value of the specified property :param tvshowid: id of tvshow :param enum_vid_prop: Use a enum value of db_utils.VidLibProp :param default_value: When key do not exist return this default value :param data_type: OPTIONAL Used to set data type conversion only when default_value is None :return: the property value """ query = 'SELECT ' + enum_vid_prop + ' FROM video_lib_tvshows WHERE TvShowID = ?' cur = self._execute_query(query, (tvshowid,)) result = cur.fetchone() if default_value is not None: data_type = type(default_value) elif data_type is None: data_type = str return common.convert_from_string(result[0], data_type) \ if result is not None else default_value @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def set_tvshow_property(self, tvshowid, enum_vid_prop, value): update_query = ('UPDATE video_lib_tvshows ' 'SET ' + enum_vid_prop + ' = ? WHERE TvShowID = ?') value = common.convert_to_string(value) self._execute_query(update_query, (value, tvshowid)) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def get_watched_status(self, profile_guid, videoid, default_value=None, data_type=None): """Get override watched status value of a given id stored to current profile""" query = 'SELECT Value FROM watched_status_override WHERE ProfileGuid = ? AND VideoID = ?' cur = self._execute_query(query, (profile_guid, videoid)) result = cur.fetchone() if default_value is not None: data_type = type(default_value) elif data_type is None: data_type = str return common.convert_from_string(result[0], data_type) \ if result is not None else default_value @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def set_watched_status(self, profile_guid, videoid, value): """Update or insert the watched status override value to current profile""" # Update or insert approach, if there is no updated row then insert new one value = common.convert_to_string(value) if self.is_mysql_database: query = db_utils.mysql_insert_or_update('watched_status_override', ['ProfileGuid', 'VideoID'], ['Value']) self._execute_non_query(query, (profile_guid, videoid, value), multi=True) else: update_query = ('UPDATE watched_status_override ' 'SET Value = ? ' 'WHERE ProfileGuid = ? AND VideoID = ?') cur = self._execute_query(update_query, (value, profile_guid, videoid)) if cur.rowcount == 0: insert_query = ('INSERT INTO watched_status_override ' '(ProfileGuid, VideoID, Value) ' 'VALUES (?, ?, ?)') self._execute_non_query(insert_query, (profile_guid, videoid, value)) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def delete_watched_status(self, profile_guid, videoid): """Delete a watched status override from database""" query = 'DELETE FROM watched_status_override WHERE ProfileGuid = ? AND VideoID = ?' self._execute_query(query, (profile_guid, videoid)) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def get_stream_continuity(self, profile_guid, videoid, default_value=None, data_type=None): """Get stream continuity value of a given id stored to current profile""" query = 'SELECT Value FROM stream_continuity WHERE ProfileGuid = ? AND VideoID = ?' cur = self._execute_query(query, (profile_guid, videoid)) result = cur.fetchone() if default_value is not None: data_type = type(default_value) elif data_type is None: data_type = str return common.convert_from_string(result[0], data_type) \ if result is not None else default_value @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def set_stream_continuity(self, profile_guid, videoid, value): """Update or insert a stream continuity value to current profile""" # Update or insert approach, if there is no updated row then insert new one value = common.convert_to_string(value) date_last_modified = common.convert_to_string(datetime.now()) if self.is_mysql_database: query = db_utils.mysql_insert_or_update('stream_continuity', ['ProfileGuid', 'VideoID'], ['Value', 'DateLastModified']) self._execute_non_query(query, (profile_guid, videoid, value, date_last_modified), multi=True) else: update_query = ('UPDATE stream_continuity ' 'SET Value = ?, DateLastModified = ? ' 'WHERE ProfileGuid = ? AND VideoID = ?') cur = self._execute_query(update_query, (value, date_last_modified, profile_guid, videoid)) if cur.rowcount == 0: insert_query = ('INSERT INTO stream_continuity ' '(ProfileGuid, VideoID, Value, DateLastModified) ' 'VALUES (?, ?, ?, ?)') self._execute_non_query(insert_query, (profile_guid, videoid, value, date_last_modified)) @db_base_mysql.handle_connection @db_base_sqlite.handle_connection def purge_library(self): """Delete all records from library tables""" query = 'DELETE FROM video_lib_movies' self._execute_non_query(query) query = 'DELETE FROM video_lib_episodes' self._execute_non_query(query) query = 'DELETE FROM video_lib_seasons' self._execute_non_query(query) query = 'DELETE FROM video_lib_tvshows' self._execute_non_query(query) return NFSharedDatabase
""" Various bayesian regression """ # Authors: V. Michel, F. Pedregosa, A. Gramfort # License: BSD 3 clause from math import log import numpy as np from scipy import linalg from scipy.linalg import pinvh from .base import LinearModel, _rescale_data from ..base import RegressorMixin from ..utils.extmath import fast_logdet from ..utils import check_X_y ############################################################################### # BayesianRidge regression class BayesianRidge(LinearModel, RegressorMixin): """Bayesian ridge regression. Fit a Bayesian ridge model. See the Notes section for details on this implementation and the optimization of the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300. Should be greater than or equal to 1. tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6 alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6 alpha_init : float Initial value for alpha (precision of the noise). If not set, alpha_init is 1/Var(y). .. versionadded:: 0.22 lambda_init : float Initial value for lambda (precision of the weights). If not set, lambda_init is 1. .. versionadded:: 0.22 compute_score : boolean, optional If True, compute the log marginal likelihood at each iteration of the optimization. Default is False. fit_intercept : boolean, optional, default True Whether to calculate the intercept for this model. The intercept is not treated as a probabilistic parameter and thus has no associated variance. If set to False, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features,) Coefficients of the regression model (mean of distribution). intercept_ : float Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated precision of the noise. lambda_ : float Estimated precision of the weights. sigma_ : array, shape = (n_features, n_features) Estimated variance-covariance matrix of the weights. scores_ : array, shape = (n_iter_ + 1,) If computed_score is True, value of the log marginal likelihood (to be maximized) at each iteration of the optimization. The array starts with the value of the log marginal likelihood obtained for the initial values of alpha and lambda and ends with the value obtained for the estimated alpha and lambda. n_iter_ : int The actual number of iterations to reach the stopping criterion. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) BayesianRidge() >>> clf.predict([[1, 1]]) array([1.]) Notes ----- There exist several strategies to perform Bayesian ridge regression. This implementation is based on the algorithm described in Appendix A of (Tipping, 2001) where updates of the regularization parameters are done as suggested in (MacKay, 1992). Note that according to A New View of Automatic Relevance Determination (Wipf and Nagarajan, 2008) these update rules do not guarantee that the marginal likelihood is increasing between two consecutive iterations of the optimization. References ---------- D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems, Vol. 4, No. 3, 1992. M. E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine, Journal of Machine Learning Research, Vol. 1, 2001. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, alpha_init=None, lambda_init=None, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.alpha_init = alpha_init self.lambda_init = lambda_init self.compute_score = compute_score self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.verbose = verbose def fit(self, X, y, sample_weight=None): """Fit the model Parameters ---------- X : numpy array of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples] Target values. Will be cast to X's dtype if necessary sample_weight : numpy array of shape [n_samples] Individual weights for each sample .. versionadded:: 0.20 parameter *sample_weight* support to BayesianRidge. Returns ------- self : returns an instance of self. """ if self.n_iter < 1: raise ValueError('n_iter should be greater than or equal to 1.' ' Got {!r}.'.format(self.n_iter)) X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) if sample_weight is not None: # Sample weight can be implemented via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) self.X_offset_ = X_offset_ self.X_scale_ = X_scale_ n_samples, n_features = X.shape # Initialization of the values of the parameters eps = np.finfo(np.float64).eps # Add `eps` in the denominator to omit division by zero if `np.var(y)` # is zero alpha_ = self.alpha_init lambda_ = self.lambda_init if alpha_ is None: alpha_ = 1. / (np.var(y) + eps) if lambda_ is None: lambda_ = 1. verbose = self.verbose lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 self.scores_ = list() coef_old_ = None XT_y = np.dot(X.T, y) U, S, Vh = linalg.svd(X, full_matrices=False) eigen_vals_ = S ** 2 # Convergence loop of the bayesian ridge regression for iter_ in range(self.n_iter): # update posterior mean coef_ based on alpha_ and lambda_ and # compute corresponding rmse coef_, rmse_ = self._update_coef_(X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_) if self.compute_score: # compute the log marginal likelihood s = self._log_marginal_likelihood(n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_) self.scores_.append(s) # Update alpha and lambda according to (MacKay, 1992) gamma_ = np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_)) lambda_ = ((gamma_ + 2 * lambda_1) / (np.sum(coef_ ** 2) + 2 * lambda_2)) alpha_ = ((n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)) # Check for convergence if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Convergence after ", str(iter_), " iterations") break coef_old_ = np.copy(coef_) self.n_iter_ = iter_ + 1 # return regularization parameters and corresponding posterior mean, # log marginal likelihood and posterior covariance self.alpha_ = alpha_ self.lambda_ = lambda_ self.coef_, rmse_ = self._update_coef_(X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_) if self.compute_score: # compute the log marginal likelihood s = self._log_marginal_likelihood(n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_) self.scores_.append(s) self.scores_ = np.array(self.scores_) # posterior covariance is given by 1/alpha_ * scaled_sigma_ scaled_sigma_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis]) self.sigma_ = (1. / alpha_) * scaled_sigma_ self._set_intercept(X_offset_, y_offset_, X_scale_) return self def predict(self, X, return_std=False): """Predict using the linear model. In addition to the mean of the predictive distribution, also its standard deviation can be returned. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. return_std : boolean, optional Whether to return the standard deviation of posterior prediction. Returns ------- y_mean : array, shape = (n_samples,) Mean of predictive distribution of query points. y_std : array, shape = (n_samples,) Standard deviation of predictive distribution of query points. """ y_mean = self._decision_function(X) if return_std is False: return y_mean else: if self.normalize: X = (X - self.X_offset_) / self.X_scale_ sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1) y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_)) return y_mean, y_std def _update_coef_(self, X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_): """Update posterior mean and compute corresponding rmse. Posterior mean is given by coef_ = scaled_sigma_ * X.T * y where scaled_sigma_ = (lambda_/alpha_ * np.eye(n_features) + np.dot(X.T, X))^-1 """ if n_samples > n_features: coef_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis]) coef_ = np.dot(coef_, XT_y) else: coef_ = np.dot(X.T, np.dot( U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T)) coef_ = np.dot(coef_, y) rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) return coef_, rmse_ def _log_marginal_likelihood(self, n_samples, n_features, eigen_vals, alpha_, lambda_, coef, rmse): """Log marginal likelihood.""" alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 # compute the log of the determinant of the posterior covariance. # posterior covariance is given by # sigma = (lambda_ * np.eye(n_features) + alpha_ * np.dot(X.T, X))^-1 if n_samples > n_features: logdet_sigma = - np.sum(np.log(lambda_ + alpha_ * eigen_vals)) else: logdet_sigma = np.full(n_features, lambda_, dtype=np.array(lambda_).dtype) logdet_sigma[:n_samples] += alpha_ * eigen_vals logdet_sigma = - np.sum(np.log(logdet_sigma)) score = lambda_1 * log(lambda_) - lambda_2 * lambda_ score += alpha_1 * log(alpha_) - alpha_2 * alpha_ score += 0.5 * (n_features * log(lambda_) + n_samples * log(alpha_) - alpha_ * rmse - lambda_ * np.sum(coef ** 2) + logdet_sigma - n_samples * log(2 * np.pi)) return score ############################################################################### # ARD (Automatic Relevance Determination) regression class ARDRegression(LinearModel, RegressorMixin): """Bayesian ARD regression. Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization) Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300 tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False. threshold_lambda : float, optional threshold for removing (pruning) weights with high precision from the computation. Default is 1.e+4. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True. If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.ARDRegression() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ARDRegression() >>> clf.predict([[1, 1]]) array([1.]) Notes ----- For an example, see :ref:`examples/linear_model/plot_ard.py <sphx_glr_auto_examples_linear_model_plot_ard.py>`. References ---------- D. J. C. MacKay, Bayesian nonlinear modeling for the prediction competition, ASHRAE Transactions, 1994. R. Salakhutdinov, Lecture notes on Statistical Machine Learning, http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15 Their beta is our ``self.alpha_`` Their alpha is our ``self.lambda_`` ARD is a little different than the slide: only dimensions/features for which ``self.lambda_ < self.threshold_lambda`` are kept and the rest are discarded. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, threshold_lambda=1.e+4, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.threshold_lambda = threshold_lambda self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the ARDRegression model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers). Will be cast to X's dtype if necessary Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True, ensure_min_samples=2) n_samples, n_features = X.shape coef_ = np.zeros(n_features) X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X) # Launch the convergence loop keep_lambda = np.ones(n_features, dtype=bool) lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 verbose = self.verbose # Initialization of the values of the parameters eps = np.finfo(np.float64).eps # Add `eps` in the denominator to omit division by zero if `np.var(y)` # is zero alpha_ = 1. / (np.var(y) + eps) lambda_ = np.ones(n_features) self.scores_ = list() coef_old_ = None # Compute sigma and mu (using Woodbury matrix identity) def update_sigma(X, alpha_, lambda_, keep_lambda, n_samples): sigma_ = pinvh(np.eye(n_samples) / alpha_ + np.dot(X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1]), X[:, keep_lambda].T)) sigma_ = np.dot(sigma_, X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1])) sigma_ = - np.dot(np.reshape(1. / lambda_[keep_lambda], [-1, 1]) * X[:, keep_lambda].T, sigma_) sigma_.flat[::(sigma_.shape[1] + 1)] += 1. / lambda_[keep_lambda] return sigma_ def update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_): coef_[keep_lambda] = alpha_ * np.dot( sigma_, np.dot(X[:, keep_lambda].T, y)) return coef_ # Iterative procedure of ARDRegression for iter_ in range(self.n_iter): sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda, n_samples) coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_) # Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_) lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) / ((coef_[keep_lambda]) ** 2 + 2. * lambda_2)) alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) / (rmse_ + 2. * alpha_2)) # Prune the weights with a precision over a threshold keep_lambda = lambda_ < self.threshold_lambda coef_[~keep_lambda] = 0 # Compute the objective function if self.compute_score: s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) + np.sum(np.log(lambda_))) s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum()) self.scores_.append(s) # Check for convergence if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Converged after %s iterations" % iter_) break coef_old_ = np.copy(coef_) # update sigma and mu using updated parameters from the last iteration sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda, n_samples) coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_) self.coef_ = coef_ self.alpha_ = alpha_ self.sigma_ = sigma_ self.lambda_ = lambda_ self._set_intercept(X_offset_, y_offset_, X_scale_) return self def predict(self, X, return_std=False): """Predict using the linear model. In addition to the mean of the predictive distribution, also its standard deviation can be returned. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. return_std : boolean, optional Whether to return the standard deviation of posterior prediction. Returns ------- y_mean : array, shape = (n_samples,) Mean of predictive distribution of query points. y_std : array, shape = (n_samples,) Standard deviation of predictive distribution of query points. """ y_mean = self._decision_function(X) if return_std is False: return y_mean else: if self.normalize: X = (X - self.X_offset_) / self.X_scale_ X = X[:, self.lambda_ < self.threshold_lambda] sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1) y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_)) return y_mean, y_std
import time import logging import torch import numpy as np from eight_mile.progress import create_progress_bar from eight_mile.utils import listify from baseline.utils import get_model_file, get_metric_cmp, convert_seq2seq_golds, convert_seq2seq_preds from baseline.train import Trainer, create_trainer, register_trainer, register_training_func from eight_mile.pytorch.optz import OptimizerManager from eight_mile.bleu import bleu from baseline.model import create_model_for from torch.utils.data import DataLoader logger = logging.getLogger('baseline') @register_trainer(task='seq2seq', name='default') class Seq2SeqTrainerPyTorch(Trainer): def __init__(self, model, **kwargs): super().__init__() if type(model) is dict: checkpoint = kwargs.get('checkpoint') if checkpoint: model['checkpoint'] = checkpoint model = create_model_for('seq2seq', **model) self.clip = float(kwargs.get('clip', 5)) self.model = model self.optimizer = OptimizerManager(self.model, **kwargs) self._input = model.make_input self._predict = model.predict self.tgt_rlut = kwargs['tgt_rlut'] self.gpus = kwargs.get('gpus', 1) self.bleu_n_grams = int(kwargs.get("bleu_n_grams", 4)) self.label_smoothing = kwargs.get("label_smoothing") if self.gpus > 0: self.crit = model.create_loss(label_smooth=self.label_smoothing).cuda() if self.gpus > 1: self.model = torch.nn.DataParallel(model).cuda() else: self.model.cuda() else: logger.warning("Requested training on CPU. This will be slow.") self.crit = model.create_loss() self.nsteps = kwargs.get('nsteps', 500) @staticmethod def _num_toks(tgt_lens): return torch.sum(tgt_lens).item() @staticmethod def _acc(preds, golds): """Calculate the accuracy of exact matching between preds and golds. This metric is particularly useful when using Seq2SeqModel for prediction.""" total = len(preds) correct = 0 for pred, gold in zip(preds, golds): if pred == gold[0]: correct += 1 return float(correct)/total def save(self, model_file): self._get_pytorch_model().save(model_file) def _get_pytorch_model(self): return self.model.module if self.gpus > 1 else self.model def calc_metrics(self, agg, norm): metrics = super().calc_metrics(agg, norm) metrics['perplexity'] = np.exp(metrics['avg_loss']) return metrics def test(self, vs, reporting_fns, phase, **kwargs): if phase == 'Test': return self._evaluate(vs, reporting_fns, **kwargs) self.model.eval() total_loss = total_toks = 0 steps = len(vs) self.valid_epochs += 1 preds = [] golds = [] start = time.perf_counter() pg = create_progress_bar(steps) for batch_dict in pg(vs): input_ = self._input(batch_dict) tgt = input_['tgt'] tgt_lens = input_['tgt_len'] pred = self.model(input_) loss = self.crit(pred, tgt) toks = self._num_toks(tgt_lens) total_loss += loss.item() * toks total_toks += toks greedy_preds = [p[0] for p in self._predict(input_, beam=1, make_input=False)[0]] preds.extend(convert_seq2seq_preds(greedy_preds, self.tgt_rlut)) golds.extend(convert_seq2seq_golds(tgt.cpu().numpy(), tgt_lens, self.tgt_rlut)) metrics = self.calc_metrics(total_loss, total_toks) metrics['bleu'] = bleu(preds, golds, self.bleu_n_grams)[0] metrics['acc'] = self._acc(preds, golds) self.report( self.valid_epochs, metrics, start, phase, 'EPOCH', reporting_fns ) return metrics def _evaluate(self, es, reporting_fns, **kwargs): self.model.eval() pg = create_progress_bar(len(es)) preds = [] golds = [] start = time.perf_counter() for batch_dict in pg(es): tgt = batch_dict['tgt'] tgt_lens = batch_dict['tgt_lengths'] pred = [p[0] for p in self._predict(batch_dict, numpy_to_tensor=False, **kwargs)[0]] preds.extend(convert_seq2seq_preds(pred, self.tgt_rlut)) golds.extend(convert_seq2seq_golds(tgt, tgt_lens, self.tgt_rlut)) metrics = {'bleu': bleu(preds, golds, self.bleu_n_grams)[0]} metrics['acc'] = self._acc(preds, golds) self.report( 0, metrics, start, 'Test', 'EPOCH', reporting_fns ) return metrics def train(self, ts, reporting_fns): self.model.train() epoch_loss = 0 epoch_toks = 0 start = time.perf_counter() self.nstep_start = start for batch_dict in ts: self.optimizer.zero_grad() input_ = self._input(batch_dict) tgt = input_['tgt'] pred = self.model(input_) loss = self.crit(pred, tgt) loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.clip) self.optimizer.step() tgt_lens = batch_dict['tgt_lengths'] tok_count = self._num_toks(tgt_lens) reporting_loss = loss.item() * tok_count epoch_loss += reporting_loss epoch_toks += tok_count self.nstep_agg += reporting_loss self.nstep_div += tok_count if (self.optimizer.global_step + 1) % self.nsteps == 0: metrics = self.calc_metrics(self.nstep_agg, self.nstep_div) metrics['lr'] = self.optimizer.current_lr self.report( self.optimizer.global_step + 1, metrics, self.nstep_start, 'Train', 'STEP', reporting_fns, self.nsteps ) self.reset_nstep() metrics = self.calc_metrics(epoch_loss, epoch_toks) metrics['lr'] = self.optimizer.current_lr self.train_epochs += 1 self.report( self.train_epochs, metrics, start, 'Train', 'EPOCH', reporting_fns ) return metrics @register_training_func('seq2seq') def fit(model_params, ts, vs, es=None, **kwargs): do_early_stopping = bool(kwargs.get('do_early_stopping', True)) epochs = int(kwargs.get('epochs', 20)) model_file = get_model_file('seq2seq', 'pytorch', kwargs.get('basedir')) num_loader_workers = int(kwargs.get('num_loader_workers', 0)) pin_memory = bool(kwargs.get('pin_memory', True)) if not isinstance(ts, DataLoader): ts = DataLoader(ts, num_workers=num_loader_workers, batch_size=None, pin_memory=pin_memory) if not isinstance(vs, DataLoader): vs = DataLoader(vs, batch_size=None, pin_memory=pin_memory) if es and not isinstance(es, DataLoader): es = DataLoader(es, batch_size=None, pin_memory=pin_memory) best_metric = 0 if do_early_stopping: early_stopping_metric = kwargs.get('early_stopping_metric', 'perplexity') early_stopping_cmp, best_metric = get_metric_cmp(early_stopping_metric, kwargs.get('early_stopping_cmp')) patience = kwargs.get('patience', epochs) logger.info('Doing early stopping on [%s] with patience [%d]', early_stopping_metric, patience) reporting_fns = listify(kwargs.get('reporting', [])) logger.info('reporting %s', reporting_fns) after_train_fn = kwargs.get('after_train_fn', None) trainer = create_trainer(model_params, **kwargs) last_improved = 0 for epoch in range(epochs): trainer.train(ts, reporting_fns) if after_train_fn is not None: after_train_fn(trainer.model) test_metrics = trainer.test(vs, reporting_fns, phase='Valid') if do_early_stopping is False: trainer.save(model_file) elif early_stopping_cmp(test_metrics[early_stopping_metric], best_metric): last_improved = epoch best_metric = test_metrics[early_stopping_metric] logger.info('New best %.3f', best_metric) trainer.save(model_file) elif (epoch - last_improved) > patience: logger.info('Stopping due to persistent failures to improve') break if do_early_stopping is True: logger.info('Best performance on %s: %.3f at epoch %d', early_stopping_metric, best_metric, last_improved) if es is not None: model = torch.load(model_file) trainer = create_trainer(model, **kwargs) test_metrics = trainer.test(es, reporting_fns, phase='Test') return test_metrics
import datetime import logging from pyon.agent.simple_agent import SimpleResourceAgent from pyon.core.exception import Unauthorized, NotFound from pyon.public import log from pyon.net.endpoint import Publisher from interface.objects import AgentCommand from ion.agents.cei.util import looping_call try: from eeagent.core import EEAgentCore from eeagent.beatit import make_beat_msg from eeagent.execute import get_exe_factory from eeagent.eeagent_exceptions import EEAgentUnauthorizedException from pidantic.pidantic_exceptions import PIDanticExecutionException except ImportError: EEAgentCore = None # noqa """ @package ion.agents.cei.execution_engine_agent @file ion/agents/cei/execution_engine_agent.py @author Patrick Armstrong @brief Pyon port of EEAgent """ DEFAULT_HEARTBEAT = 5 class ExecutionEngineAgent(SimpleResourceAgent): """Agent to manage processes on a worker """ def __init__(self): log.debug("ExecutionEngineAgent init") SimpleResourceAgent.__init__(self) def on_init(self): if not EEAgentCore: msg = "EEAgentCore isn't available. Use autolaunch.cfg buildout" log.error(msg) self.heartbeat_thread = None return log.debug("ExecutionEngineAgent Pyon on_init") launch_type_name = self.CFG.eeagent.launch_type.name if not launch_type_name: # TODO: Fail fast here? log.error("No launch_type.name specified") self._factory = get_exe_factory( launch_type_name, self.CFG, pyon_container=self.container, log=log) # TODO: Allow other core class? self.core = EEAgentCore(self.CFG, self._factory, log) interval = float(self.CFG.eeagent.get('heartbeat', DEFAULT_HEARTBEAT)) if interval > 0: self.heartbeater = HeartBeater( self.CFG, self._factory, self.resource_id, self, log=log) self.heartbeater.poll() self.heartbeat_thread, self._heartbeat_thread_event = looping_call(0.1, self.heartbeater.poll) else: self.heartbeat_thread = None self._heartbeat_thread_event = None def on_quit(self): if self._heartbeat_thread_event is not None: self._heartbeat_thread_event.set() self.heartbeat_thread.join() self.heartbeat_thread.kill() # just in case self._factory.terminate() def rcmd_launch_process(self, u_pid, round, run_type, parameters): try: self.core.launch_process(u_pid, round, run_type, parameters) except EEAgentUnauthorizedException, e: raise Unauthorized(e.message) except PIDanticExecutionException, e: raise NotFound(e.message) def rcmd_terminate_process(self, u_pid, round): self.core.terminate_process(u_pid, round) def rcmd_restart_process(self, u_pid, round): self.core.restart_process(u_pid, round) def rcmd_cleanup_process(self, u_pid, round): self.core.cleanup(u_pid, round) def rcmd_dump_state(self): return make_beat_msg(self.core._process_managers_map, self.CFG) class HeartBeater(object): def __init__(self, CFG, factory, process_id, process, log=logging): self._log = log self._log.log(logging.DEBUG, "Starting the heartbeat thread") self._CFG = CFG self._res = None self._interval = float(CFG.eeagent.heartbeat) self._res = None self._done = False self._started = False self._factory = factory self.process = process self.process_id = process_id self._pd_name = CFG.eeagent.get('heartbeat_queue', 'heartbeat_queue') self._publisher = Publisher(to_name=self._pd_name) self._factory.set_state_change_callback( self._state_change_callback, None) self._first_beat() def _first_beat(self): self._beat_time = datetime.datetime.now() def _next_beat(self, now): self._beat_time = now + datetime.timedelta(seconds=self._interval) def _state_change_callback(self, user_arg): # on state change set the beat time to now self._beat_time = datetime.datetime.now() @property def _eea_started(self): """_eea_started We must ensure that the eea is listening before heartbeating to the PD. If the eea isn't listening, the PD's reply will be lost. So we must ensure that the Pyon process's listeners are created, and are ready """ if self._started: return True if len(self.process._process.listeners) > 0 and all(self.process._process.heartbeat()): self._log.debug( "eeagent heartbeat started because len(self.process._process.listeners) > 0 (%s) " "and all(self.process._process.heartbeat()) == True (%s)" % ( len(self.process._process.listeners), str(self.process._process.heartbeat()))) self._started = True return True else: return False def poll(self): if not self._eea_started: return now = datetime.datetime.now() if now > self._beat_time: self._next_beat(now) self.beat() def beat(self): try: beat = make_beat_msg(self._factory, self._CFG) message = dict( beat=beat, eeagent_id=self.process_id, resource_id=self._CFG.agent.resource_id) if self._log.isEnabledFor(logging.DEBUG): processes = beat.get('processes') if processes is not None: processes_str = "processes=%d" % len(processes) else: processes_str = "" self._log.debug("Sending heartbeat to %s %s", self._pd_name, processes_str) self._publisher.publish(message) except Exception: self._log.exception("beat failed") class ExecutionEngineAgentClient(object): def __init__(self, agent_client, timeout=30): self.client = agent_client self.timeout = timeout def launch_process(self, u_pid, round, run_type, parameters): args = [u_pid, round, run_type, parameters] cmd = AgentCommand(command='launch_process', args=args) return self.client.execute(cmd, timeout=self.timeout) def terminate_process(self, u_pid, round): args = [u_pid, round] cmd = AgentCommand(command='terminate_process', args=args) return self.client.execute(cmd, timeout=self.timeout) def restart_process(self, u_pid, round): args = [u_pid, round] cmd = AgentCommand(command='restart_process', args=args) return self.client.execute(cmd, timeout=self.timeout) def cleanup_process(self, u_pid, round): args = [u_pid, round] cmd = AgentCommand(command='cleanup_process', args=args) return self.client.execute(cmd, timeout=self.timeout) def dump_state(self): cmd = AgentCommand(command='dump_state', args=[]) return self.client.execute(cmd, timeout=self.timeout)
"""SCons.Script.SConscript This module defines the Python API provided to SConscript and SConstruct files. """ # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from __future__ import division __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" import SCons import SCons.Action import SCons.Builder import SCons.Defaults import SCons.Environment import SCons.Errors import SCons.Node import SCons.Node.Alias import SCons.Node.FS import SCons.Platform import SCons.SConf import SCons.Script.Main import SCons.Tool import SCons.Util import collections import os import os.path import re import sys import traceback # The following variables used to live in this module. Some # SConscript files out there may have referred to them directly as # SCons.Script.SConscript.*. This is now supported by some special # handling towards the bottom of the SConscript.__init__.py module. #Arguments = {} #ArgList = [] #BuildTargets = TargetList() #CommandLineTargets = [] #DefaultTargets = [] class SConscriptReturn(Exception): pass launch_dir = os.path.abspath(os.curdir) GlobalDict = None # global exports set by Export(): global_exports = {} # chdir flag sconscript_chdir = 1 def get_calling_namespaces(): """Return the locals and globals for the function that called into this module in the current call stack.""" try: 1//0 except ZeroDivisionError: # Don't start iterating with the current stack-frame to # prevent creating reference cycles (f_back is safe). frame = sys.exc_info()[2].tb_frame.f_back # Find the first frame that *isn't* from this file. This means # that we expect all of the SCons frames that implement an Export() # or SConscript() call to be in this file, so that we can identify # the first non-Script.SConscript frame as the user's local calling # environment, and the locals and globals dictionaries from that # frame as the calling namespaces. See the comment below preceding # the DefaultEnvironmentCall block for even more explanation. while frame.f_globals.get("__name__") == __name__: frame = frame.f_back return frame.f_locals, frame.f_globals def compute_exports(exports): """Compute a dictionary of exports given one of the parameters to the Export() function or the exports argument to SConscript().""" loc, glob = get_calling_namespaces() retval = {} try: for export in exports: if SCons.Util.is_Dict(export): retval.update(export) else: try: retval[export] = loc[export] except KeyError: retval[export] = glob[export] except KeyError, x: raise SCons.Errors.UserError("Export of non-existent variable '%s'"%x) return retval class Frame(object): """A frame on the SConstruct/SConscript call stack""" def __init__(self, fs, exports, sconscript): self.globals = BuildDefaultGlobals() self.retval = None self.prev_dir = fs.getcwd() self.exports = compute_exports(exports) # exports from the calling SConscript # make sure the sconscript attr is a Node. if isinstance(sconscript, SCons.Node.Node): self.sconscript = sconscript elif sconscript == '-': self.sconscript = None else: self.sconscript = fs.File(str(sconscript)) # the SConstruct/SConscript call stack: call_stack = [] # For documentation on the methods in this file, see the scons man-page def Return(*vars, **kw): retval = [] try: fvars = SCons.Util.flatten(vars) for var in fvars: for v in var.split(): retval.append(call_stack[-1].globals[v]) except KeyError, x: raise SCons.Errors.UserError("Return of non-existent variable '%s'"%x) if len(retval) == 1: call_stack[-1].retval = retval[0] else: call_stack[-1].retval = tuple(retval) stop = kw.get('stop', True) if stop: raise SConscriptReturn stack_bottom = '% Stack boTTom %' # hard to define a variable w/this name :) def _SConscript(fs, *files, **kw): top = fs.Top sd = fs.SConstruct_dir.rdir() exports = kw.get('exports', []) # evaluate each SConscript file results = [] for fn in files: call_stack.append(Frame(fs, exports, fn)) old_sys_path = sys.path try: SCons.Script.sconscript_reading = SCons.Script.sconscript_reading + 1 if fn == "-": exec sys.stdin in call_stack[-1].globals else: if isinstance(fn, SCons.Node.Node): f = fn else: f = fs.File(str(fn)) _file_ = None # Change directory to the top of the source # tree to make sure the os's cwd and the cwd of # fs match so we can open the SConscript. fs.chdir(top, change_os_dir=1) if f.rexists(): actual = f.rfile() _file_ = open(actual.get_abspath(), "r") elif f.srcnode().rexists(): actual = f.srcnode().rfile() _file_ = open(actual.get_abspath(), "r") elif f.has_src_builder(): # The SConscript file apparently exists in a source # code management system. Build it, but then clear # the builder so that it doesn't get built *again* # during the actual build phase. f.build() f.built() f.builder_set(None) if f.exists(): _file_ = open(f.get_abspath(), "r") if _file_: # Chdir to the SConscript directory. Use a path # name relative to the SConstruct file so that if # we're using the -f option, we're essentially # creating a parallel SConscript directory structure # in our local directory tree. # # XXX This is broken for multiple-repository cases # where the SConstruct and SConscript files might be # in different Repositories. For now, cross that # bridge when someone comes to it. try: src_dir = kw['src_dir'] except KeyError: ldir = fs.Dir(f.dir.get_path(sd)) else: ldir = fs.Dir(src_dir) if not ldir.is_under(f.dir): # They specified a source directory, but # it's above the SConscript directory. # Do the sensible thing and just use the # SConcript directory. ldir = fs.Dir(f.dir.get_path(sd)) try: fs.chdir(ldir, change_os_dir=sconscript_chdir) except OSError: # There was no local directory, so we should be # able to chdir to the Repository directory. # Note that we do this directly, not through # fs.chdir(), because we still need to # interpret the stuff within the SConscript file # relative to where we are logically. fs.chdir(ldir, change_os_dir=0) os.chdir(actual.dir.get_abspath()) # Append the SConscript directory to the beginning # of sys.path so Python modules in the SConscript # directory can be easily imported. sys.path = [ f.dir.get_abspath() ] + sys.path # This is the magic line that actually reads up # and executes the stuff in the SConscript file. # The locals for this frame contain the special # bottom-of-the-stack marker so that any # exceptions that occur when processing this # SConscript can base the printed frames at this # level and not show SCons internals as well. call_stack[-1].globals.update({stack_bottom:1}) old_file = call_stack[-1].globals.get('__file__') try: del call_stack[-1].globals['__file__'] except KeyError: pass try: try: exec _file_ in call_stack[-1].globals except SConscriptReturn: pass finally: if old_file is not None: call_stack[-1].globals.update({__file__:old_file}) else: SCons.Warnings.warn(SCons.Warnings.MissingSConscriptWarning, "Ignoring missing SConscript '%s'" % f.path) finally: SCons.Script.sconscript_reading = SCons.Script.sconscript_reading - 1 sys.path = old_sys_path frame = call_stack.pop() try: fs.chdir(frame.prev_dir, change_os_dir=sconscript_chdir) except OSError: # There was no local directory, so chdir to the # Repository directory. Like above, we do this # directly. fs.chdir(frame.prev_dir, change_os_dir=0) rdir = frame.prev_dir.rdir() rdir._create() # Make sure there's a directory there. try: os.chdir(rdir.get_abspath()) except OSError, e: # We still couldn't chdir there, so raise the error, # but only if actions are being executed. # # If the -n option was used, the directory would *not* # have been created and we should just carry on and # let things muddle through. This isn't guaranteed # to work if the SConscript files are reading things # from disk (for example), but it should work well # enough for most configurations. if SCons.Action.execute_actions: raise e results.append(frame.retval) # if we only have one script, don't return a tuple if len(results) == 1: return results[0] else: return tuple(results) def SConscript_exception(file=sys.stderr): """Print an exception stack trace just for the SConscript file(s). This will show users who have Python errors where the problem is, without cluttering the output with all of the internal calls leading up to where we exec the SConscript.""" exc_type, exc_value, exc_tb = sys.exc_info() tb = exc_tb while tb and stack_bottom not in tb.tb_frame.f_locals: tb = tb.tb_next if not tb: # We did not find our exec statement, so this was actually a bug # in SCons itself. Show the whole stack. tb = exc_tb stack = traceback.extract_tb(tb) try: type = exc_type.__name__ except AttributeError: type = str(exc_type) if type[:11] == "exceptions.": type = type[11:] file.write('%s: %s:\n' % (type, exc_value)) for fname, line, func, text in stack: file.write(' File "%s", line %d:\n' % (fname, line)) file.write(' %s\n' % text) def annotate(node): """Annotate a node with the stack frame describing the SConscript file and line number that created it.""" tb = sys.exc_info()[2] while tb and stack_bottom not in tb.tb_frame.f_locals: tb = tb.tb_next if not tb: # We did not find any exec of an SConscript file: what?! raise SCons.Errors.InternalError("could not find SConscript stack frame") node.creator = traceback.extract_stack(tb)[0] # The following line would cause each Node to be annotated using the # above function. Unfortunately, this is a *huge* performance hit, so # leave this disabled until we find a more efficient mechanism. #SCons.Node.Annotate = annotate class SConsEnvironment(SCons.Environment.Base): """An Environment subclass that contains all of the methods that are particular to the wrapper SCons interface and which aren't (or shouldn't be) part of the build engine itself. Note that not all of the methods of this class have corresponding global functions, there are some private methods. """ # # Private methods of an SConsEnvironment. # def _exceeds_version(self, major, minor, v_major, v_minor): """Return 1 if 'major' and 'minor' are greater than the version in 'v_major' and 'v_minor', and 0 otherwise.""" return (major > v_major or (major == v_major and minor > v_minor)) def _get_major_minor_revision(self, version_string): """Split a version string into major, minor and (optionally) revision parts. This is complicated by the fact that a version string can be something like 3.2b1.""" version = version_string.split(' ')[0].split('.') v_major = int(version[0]) v_minor = int(re.match('\d+', version[1]).group()) if len(version) >= 3: v_revision = int(re.match('\d+', version[2]).group()) else: v_revision = 0 return v_major, v_minor, v_revision def _get_SConscript_filenames(self, ls, kw): """ Convert the parameters passed to SConscript() calls into a list of files and export variables. If the parameters are invalid, throws SCons.Errors.UserError. Returns a tuple (l, e) where l is a list of SConscript filenames and e is a list of exports. """ exports = [] if len(ls) == 0: try: dirs = kw["dirs"] except KeyError: raise SCons.Errors.UserError("Invalid SConscript usage - no parameters") if not SCons.Util.is_List(dirs): dirs = [ dirs ] dirs = list(map(str, dirs)) name = kw.get('name', 'SConscript') files = [os.path.join(n, name) for n in dirs] elif len(ls) == 1: files = ls[0] elif len(ls) == 2: files = ls[0] exports = self.Split(ls[1]) else: raise SCons.Errors.UserError("Invalid SConscript() usage - too many arguments") if not SCons.Util.is_List(files): files = [ files ] if kw.get('exports'): exports.extend(self.Split(kw['exports'])) variant_dir = kw.get('variant_dir') or kw.get('build_dir') if variant_dir: if len(files) != 1: raise SCons.Errors.UserError("Invalid SConscript() usage - can only specify one SConscript with a variant_dir") duplicate = kw.get('duplicate', 1) src_dir = kw.get('src_dir') if not src_dir: src_dir, fname = os.path.split(str(files[0])) files = [os.path.join(str(variant_dir), fname)] else: if not isinstance(src_dir, SCons.Node.Node): src_dir = self.fs.Dir(src_dir) fn = files[0] if not isinstance(fn, SCons.Node.Node): fn = self.fs.File(fn) if fn.is_under(src_dir): # Get path relative to the source directory. fname = fn.get_path(src_dir) files = [os.path.join(str(variant_dir), fname)] else: files = [fn.abspath] kw['src_dir'] = variant_dir self.fs.VariantDir(variant_dir, src_dir, duplicate) return (files, exports) # # Public methods of an SConsEnvironment. These get # entry points in the global name space so they can be called # as global functions. # def Configure(self, *args, **kw): if not SCons.Script.sconscript_reading: raise SCons.Errors.UserError("Calling Configure from Builders is not supported.") kw['_depth'] = kw.get('_depth', 0) + 1 return SCons.Environment.Base.Configure(self, *args, **kw) def Default(self, *targets): SCons.Script._Set_Default_Targets(self, targets) def EnsureSConsVersion(self, major, minor, revision=0): """Exit abnormally if the SCons version is not late enough.""" # split string to avoid replacement during build process if SCons.__version__ == '__' + 'VERSION__': SCons.Warnings.warn(SCons.Warnings.DevelopmentVersionWarning, "EnsureSConsVersion is ignored for development version") return scons_ver = self._get_major_minor_revision(SCons.__version__) if scons_ver < (major, minor, revision): if revision: scons_ver_string = '%d.%d.%d' % (major, minor, revision) else: scons_ver_string = '%d.%d' % (major, minor) print "SCons %s or greater required, but you have SCons %s" % \ (scons_ver_string, SCons.__version__) sys.exit(2) def EnsurePythonVersion(self, major, minor): """Exit abnormally if the Python version is not late enough.""" if sys.version_info < (major, minor): v = sys.version.split()[0] print "Python %d.%d or greater required, but you have Python %s" %(major,minor,v) sys.exit(2) def Exit(self, value=0): sys.exit(value) def Export(self, *vars, **kw): for var in vars: global_exports.update(compute_exports(self.Split(var))) global_exports.update(kw) def GetLaunchDir(self): global launch_dir return launch_dir def GetOption(self, name): name = self.subst(name) return SCons.Script.Main.GetOption(name) def Help(self, text): text = self.subst(text, raw=1) SCons.Script.HelpFunction(text) def Import(self, *vars): try: frame = call_stack[-1] globals = frame.globals exports = frame.exports for var in vars: var = self.Split(var) for v in var: if v == '*': globals.update(global_exports) globals.update(exports) else: if v in exports: globals[v] = exports[v] else: globals[v] = global_exports[v] except KeyError,x: raise SCons.Errors.UserError("Import of non-existent variable '%s'"%x) def SConscript(self, *ls, **kw): if 'build_dir' in kw: msg = """The build_dir keyword has been deprecated; use the variant_dir keyword instead.""" SCons.Warnings.warn(SCons.Warnings.DeprecatedBuildDirWarning, msg) def subst_element(x, subst=self.subst): if SCons.Util.is_List(x): x = list(map(subst, x)) else: x = subst(x) return x ls = list(map(subst_element, ls)) subst_kw = {} for key, val in kw.items(): if SCons.Util.is_String(val): val = self.subst(val) elif SCons.Util.is_List(val): result = [] for v in val: if SCons.Util.is_String(v): v = self.subst(v) result.append(v) val = result subst_kw[key] = val files, exports = self._get_SConscript_filenames(ls, subst_kw) subst_kw['exports'] = exports return _SConscript(self.fs, *files, **subst_kw) def SConscriptChdir(self, flag): global sconscript_chdir sconscript_chdir = flag def SetOption(self, name, value): name = self.subst(name) SCons.Script.Main.SetOption(name, value) # # # SCons.Environment.Environment = SConsEnvironment def Configure(*args, **kw): if not SCons.Script.sconscript_reading: raise SCons.Errors.UserError("Calling Configure from Builders is not supported.") kw['_depth'] = 1 return SCons.SConf.SConf(*args, **kw) # It's very important that the DefaultEnvironmentCall() class stay in this # file, with the get_calling_namespaces() function, the compute_exports() # function, the Frame class and the SConsEnvironment.Export() method. # These things make up the calling stack leading up to the actual global # Export() or SConscript() call that the user issued. We want to allow # users to export local variables that they define, like so: # # def func(): # x = 1 # Export('x') # # To support this, the get_calling_namespaces() function assumes that # the *first* stack frame that's not from this file is the local frame # for the Export() or SConscript() call. _DefaultEnvironmentProxy = None def get_DefaultEnvironmentProxy(): global _DefaultEnvironmentProxy if not _DefaultEnvironmentProxy: default_env = SCons.Defaults.DefaultEnvironment() _DefaultEnvironmentProxy = SCons.Environment.NoSubstitutionProxy(default_env) return _DefaultEnvironmentProxy class DefaultEnvironmentCall(object): """A class that implements "global function" calls of Environment methods by fetching the specified method from the DefaultEnvironment's class. Note that this uses an intermediate proxy class instead of calling the DefaultEnvironment method directly so that the proxy can override the subst() method and thereby prevent expansion of construction variables (since from the user's point of view this was called as a global function, with no associated construction environment).""" def __init__(self, method_name, subst=0): self.method_name = method_name if subst: self.factory = SCons.Defaults.DefaultEnvironment else: self.factory = get_DefaultEnvironmentProxy def __call__(self, *args, **kw): env = self.factory() method = getattr(env, self.method_name) return method(*args, **kw) def BuildDefaultGlobals(): """ Create a dictionary containing all the default globals for SConstruct and SConscript files. """ global GlobalDict if GlobalDict is None: GlobalDict = {} import SCons.Script d = SCons.Script.__dict__ def not_a_module(m, d=d, mtype=type(SCons.Script)): return not isinstance(d[m], mtype) for m in filter(not_a_module, dir(SCons.Script)): GlobalDict[m] = d[m] return GlobalDict.copy() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
# Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base constants and handlers.""" import base64 import Cookie import datetime import hmac import json import logging import os import sys import time import traceback import urllib import urlparse import jinja2 import webapp2 from google.appengine.api import users from core import counters from core.domain import config_domain from core.domain import config_services from core.domain import obj_services from core.domain import rights_manager from core.domain import rte_component_registry from core.domain import user_services from core.platform import models import feconf import jinja_utils import utils current_user_services = models.Registry.import_current_user_services() (user_models,) = models.Registry.import_models([models.NAMES.user]) ONE_DAY_AGO_IN_SECS = -24 * 60 * 60 DEFAULT_CSRF_SECRET = 'oppia csrf secret' CSRF_SECRET = config_domain.ConfigProperty( 'oppia_csrf_secret', {'type': 'unicode'}, 'Text used to encrypt CSRF tokens.', DEFAULT_CSRF_SECRET) SITE_NAME = config_domain.ConfigProperty( 'site_name', {'type': 'unicode'}, 'The site name', 'SITE_NAME') BEFORE_END_HEAD_TAG_HOOK = config_domain.ConfigProperty( 'before_end_head_tag_hook', { 'type': 'unicode', 'ui_config': { 'rows': 7, }, }, 'Code to insert just before the closing </head> tag in all pages.', '') BEFORE_END_BODY_TAG_HOOK = config_domain.ConfigProperty( 'before_end_body_tag_hook', { 'type': 'unicode', 'ui_config': { 'rows': 7, }, }, 'Code to insert just before the closing </body> tag in all pages.', '') SIDEBAR_MENU_ADDITIONAL_LINKS = config_domain.ConfigProperty( 'sidebar_menu_additional_links', { 'type': 'list', 'items': { 'type': 'dict', 'properties': [{ 'name': 'name', 'description': 'Text of the menu item', 'schema': {'type': 'unicode'}, }, { 'name': 'link', 'description': 'The link to open in a new tab', 'schema': {'type': 'unicode'}, }, { 'name': 'icon_filename', 'description': ( 'Filename of the menu icon (in /images/sidebar)'), 'schema': {'type': 'unicode'}, }] } }, 'Additional links to show in the sidebar menu.', default_value=[{ 'name': 'Blog', 'link': 'http://site/blog/url', 'icon_filename': 'comment.png', }]) SITE_FEEDBACK_FORM_URL = config_domain.ConfigProperty( 'site_feedback_form_url', {'type': 'unicode'}, 'Site feedback form URL (leave blank if there is no such form)', '') SHARING_OPTIONS = config_domain.ConfigProperty( 'sharing_options', { 'type': 'dict', 'properties': [{ 'name': 'gplus', 'schema': { 'type': 'bool', } }, { 'name': 'facebook', 'schema': { 'type': 'bool', } }, { 'name': 'twitter', 'schema': { 'type': 'bool', } }] }, 'Sharing options to display in the editor view', default_value={ 'gplus': False, 'facebook': False, 'twitter': False, }) SOCIAL_MEDIA_BUTTONS = config_domain.ConfigProperty( 'social_media_buttons', { 'type': 'list', 'items': { 'type': 'dict', 'properties': [{ 'name': 'link', 'description': 'The link to open in a new tab', 'schema': {'type': 'unicode'}, }, { 'name': 'icon_filename', 'description': ( 'Filename of the social media icon (in /images/social)'), 'schema': {'type': 'unicode'}, }] } }, 'Links and icon filenames for the social media buttons in the sidebar.', []) DISABLED_EXPLORATIONS = config_domain.ConfigProperty( 'disabled_explorations', { 'type': 'list', 'items': { 'type': 'unicode' } }, 'IDs of explorations which should not be displayable in either the ' 'learner or editor views', []) def require_user(handler): """Decorator that checks if a user is associated to the current session.""" def test_login(self, **kwargs): """Checks if the user for the current session is logged in.""" if not self.user_id: self.redirect(current_user_services.create_login_url( self.request.uri)) return return handler(self, **kwargs) return test_login def require_moderator(handler): """Decorator that checks if the current user is a moderator.""" def test_is_moderator(self, **kwargs): """Check that the user is a moderator.""" if not self.user_id: self.redirect(current_user_services.create_login_url( self.request.uri)) return if not rights_manager.Actor(self.user_id).is_moderator(): raise self.UnauthorizedUserException( 'You do not have the credentials to access this page.') return handler(self, **kwargs) return test_is_moderator def require_fully_signed_up(handler): """Decorator that checks if the user is logged in and has completed the signup process. If any of these checks fail, an UnauthorizedUserException is raised. """ def test_registered_as_editor(self, **kwargs): """Check that the user has registered as an editor.""" if (not self.user_id or self.username in config_domain.BANNED_USERNAMES.value or not user_services.has_fully_registered(self.user_id)): raise self.UnauthorizedUserException( 'You do not have the credentials to access this page.') return handler(self, **kwargs) return test_registered_as_editor def _clear_login_cookies(response_headers): # AppEngine sets the ACSID cookie for http:// and the SACSID cookie # for https:// . We just unset both below. cookie = Cookie.SimpleCookie() for cookie_name in ['ACSID', 'SACSID']: cookie = Cookie.SimpleCookie() cookie[cookie_name] = '' cookie[cookie_name]['expires'] = ( datetime.datetime.utcnow() + datetime.timedelta(seconds=ONE_DAY_AGO_IN_SECS) ).strftime('%a, %d %b %Y %H:%M:%S GMT') response_headers.add_header(*cookie.output().split(': ', 1)) class LogoutPage(webapp2.RequestHandler): def get(self): """Logs the user out, and returns them to a specified page or the home page. """ # The str conversion is needed, otherwise an InvalidResponseError # asking for the 'Location' header value to be str instead of # 'unicode' will result. url_to_redirect_to = str(self.request.get('return_url') or '/') _clear_login_cookies(self.response.headers) if feconf.DEV_MODE: self.redirect(users.create_logout_url(url_to_redirect_to)) else: self.redirect(url_to_redirect_to) class BaseHandler(webapp2.RequestHandler): """Base class for all Oppia handlers.""" # Whether to check POST and PUT payloads for CSRF tokens prior to # processing them. Can be overridden by subclasses if this check is # not necessary. REQUIRE_PAYLOAD_CSRF_CHECK = True # Specific page name to use as a key for generating CSRF tokens. This name # must be overwritten by subclasses. This represents both the source # page name and the destination page name. # TODO(sll): A weakness of the current approach is that the source and # destination page names have to be the same. Consider fixing this. PAGE_NAME_FOR_CSRF = '' # Whether to redirect requests corresponding to a logged-in user who has # not completed signup in to the signup page. This ensures that logged-in # users have agreed to the latest terms. REDIRECT_UNFINISHED_SIGNUPS = True @webapp2.cached_property def jinja2_env(self): return jinja_utils.get_jinja_env(feconf.FRONTEND_TEMPLATES_DIR) def __init__(self, request, response): # pylint: disable=super-init-not-called # Set self.request, self.response and self.app. self.initialize(request, response) self.start_time = datetime.datetime.utcnow() # Initializes the return dict for the handlers. self.values = {} self.user = current_user_services.get_current_user() self.user_id = current_user_services.get_user_id( self.user) if self.user else None self.username = None self.has_seen_editor_tutorial = False self.partially_logged_in = False self.values['profile_picture_data_url'] = None if self.user_id: email = current_user_services.get_user_email(self.user) user_settings = user_services.get_or_create_user( self.user_id, email) self.values['user_email'] = user_settings.email if (self.REDIRECT_UNFINISHED_SIGNUPS and not user_services.has_fully_registered(self.user_id)): _clear_login_cookies(self.response.headers) self.partially_logged_in = True self.user_id = None else: self.username = user_settings.username self.values['username'] = self.username self.values['profile_picture_data_url'] = ( user_settings.profile_picture_data_url) if user_settings.last_started_state_editor_tutorial: self.has_seen_editor_tutorial = True self.is_moderator = rights_manager.Actor(self.user_id).is_moderator() self.is_admin = rights_manager.Actor(self.user_id).is_admin() self.is_super_admin = ( current_user_services.is_current_user_super_admin()) self.values['is_moderator'] = self.is_moderator self.values['is_admin'] = self.is_admin self.values['is_super_admin'] = self.is_super_admin if self.request.get('payload'): self.payload = json.loads(self.request.get('payload')) else: self.payload = None def unescape_state_name(self, escaped_state_name): """Unescape a state name that is encoded with encodeURIComponent.""" return urllib.unquote(escaped_state_name).decode('utf-8') def dispatch(self): """Overrides dispatch method in webapp2 superclass.""" # If the request is to the old demo server, redirect it permanently to # the new demo server. if self.request.uri.startswith('https://oppiaserver.appspot.com'): self.redirect('https://oppiatestserver.appspot.com', True) return # In DEV_MODE, clearing cookies does not log out the user, so we # force-clear them by redirecting to the logout URL. if feconf.DEV_MODE and self.partially_logged_in: self.redirect(users.create_logout_url(self.request.uri)) return if self.payload and self.REQUIRE_PAYLOAD_CSRF_CHECK: try: if not self.PAGE_NAME_FOR_CSRF: raise Exception('No CSRF page name specified for this ' 'handler.') csrf_token = self.request.get('csrf_token') if not csrf_token: raise Exception( 'Missing CSRF token. Changes were not saved. ' 'Please report this bug.') is_csrf_token_valid = CsrfTokenManager.is_csrf_token_valid( self.user_id, self.PAGE_NAME_FOR_CSRF, csrf_token) if not is_csrf_token_valid: raise self.UnauthorizedUserException( 'Your session has expired, and unfortunately your ' 'changes cannot be saved. Please refresh the page.') except Exception as e: logging.error( '%s: page name %s, payload %s', e, self.PAGE_NAME_FOR_CSRF, self.payload) return self.handle_exception(e, self.app.debug) super(BaseHandler, self).dispatch() def get(self, *args, **kwargs): # pylint: disable=unused-argument """Base method to handle GET requests.""" raise self.PageNotFoundException def post(self, *args): # pylint: disable=unused-argument """Base method to handle POST requests.""" raise self.PageNotFoundException def put(self, *args): # pylint: disable=unused-argument """Base method to handle PUT requests.""" raise self.PageNotFoundException def delete(self, *args): # pylint: disable=unused-argument """Base method to handle DELETE requests.""" raise self.PageNotFoundException def render_json(self, values): self.response.content_type = 'application/javascript; charset=utf-8' self.response.headers['Content-Disposition'] = ( 'attachment; filename="oppia-attachment.txt"') self.response.headers['Strict-Transport-Security'] = ( 'max-age=31536000; includeSubDomains') self.response.headers['X-Content-Type-Options'] = 'nosniff' json_output = json.dumps(values, cls=utils.JSONEncoderForHTML) self.response.write('%s%s' % (feconf.XSSI_PREFIX, json_output)) # Calculate the processing time of this request. duration = datetime.datetime.utcnow() - self.start_time processing_time = duration.seconds + duration.microseconds / 1E6 counters.JSON_RESPONSE_TIME_SECS.inc(increment=processing_time) counters.JSON_RESPONSE_COUNT.inc() def render_template( self, filename, values=None, iframe_restriction='DENY', redirect_url_on_logout=None): if values is None: values = self.values scheme, netloc, path, _, _ = urlparse.urlsplit(self.request.uri) values.update({ 'ALL_LANGUAGE_CODES': feconf.ALL_LANGUAGE_CODES, 'BEFORE_END_HEAD_TAG_HOOK': jinja2.utils.Markup( BEFORE_END_HEAD_TAG_HOOK.value), 'BEFORE_END_BODY_TAG_HOOK': jinja2.utils.Markup( BEFORE_END_BODY_TAG_HOOK.value), 'CAN_SEND_ANALYTICS_EVENTS': feconf.CAN_SEND_ANALYTICS_EVENTS, 'DEFAULT_LANGUAGE_CODE': feconf.ALL_LANGUAGE_CODES[0]['code'], 'DEV_MODE': feconf.DEV_MODE, 'DOMAIN_URL': '%s://%s' % (scheme, netloc), 'ACTIVITY_STATUS_PRIVATE': ( rights_manager.ACTIVITY_STATUS_PRIVATE), 'ACTIVITY_STATUS_PUBLIC': ( rights_manager.ACTIVITY_STATUS_PUBLIC), 'ACTIVITY_STATUS_PUBLICIZED': ( rights_manager.ACTIVITY_STATUS_PUBLICIZED), 'FULL_URL': '%s://%s/%s' % (scheme, netloc, path), 'INVALID_NAME_CHARS': feconf.INVALID_NAME_CHARS, # TODO(sll): Consider including the obj_editor html directly as # part of the base HTML template? 'OBJECT_EDITORS_JS': jinja2.utils.Markup( obj_services.get_all_object_editor_js_templates()), 'RTE_COMPONENT_SPECS': ( rte_component_registry.Registry.get_all_specs()), 'SHOW_CUSTOM_PAGES': feconf.SHOW_CUSTOM_PAGES, 'SIDEBAR_MENU_ADDITIONAL_LINKS': ( SIDEBAR_MENU_ADDITIONAL_LINKS.value), 'SITE_FEEDBACK_FORM_URL': SITE_FEEDBACK_FORM_URL.value, 'SITE_NAME': SITE_NAME.value, 'SOCIAL_MEDIA_BUTTONS': SOCIAL_MEDIA_BUTTONS.value, 'SYSTEM_USERNAMES': feconf.SYSTEM_USERNAMES, 'user_is_logged_in': user_services.has_fully_registered( self.user_id), }) if 'meta_name' not in values: values['meta_name'] = 'Personalized Online Learning from Oppia' if 'meta_description' not in values: values['meta_description'] = ( 'Oppia is a free, open-source learning platform. Join the ' 'community to create or try an exploration today!') if redirect_url_on_logout is None: redirect_url_on_logout = self.request.uri if self.user_id: values['logout_url'] = ( current_user_services.create_logout_url( redirect_url_on_logout)) else: values['login_url'] = ( current_user_services.create_login_url(self.request.uri)) # Create a new csrf token for inclusion in HTML responses. This assumes # that tokens generated in one handler will be sent back to a handler # with the same page name. values['csrf_token'] = '' if self.REQUIRE_PAYLOAD_CSRF_CHECK and self.PAGE_NAME_FOR_CSRF: values['csrf_token'] = CsrfTokenManager.create_csrf_token( self.user_id, self.PAGE_NAME_FOR_CSRF) self.response.cache_control.no_cache = True self.response.cache_control.must_revalidate = True self.response.headers['Strict-Transport-Security'] = ( 'max-age=31536000; includeSubDomains') self.response.headers['X-Content-Type-Options'] = 'nosniff' if iframe_restriction is not None: if iframe_restriction in ['SAMEORIGIN', 'DENY']: self.response.headers['X-Frame-Options'] = iframe_restriction else: raise Exception( 'Invalid X-Frame-Options: %s' % iframe_restriction) self.response.expires = 'Mon, 01 Jan 1990 00:00:00 GMT' self.response.pragma = 'no-cache' self.response.write(self.jinja2_env.get_template( filename).render(**values)) # Calculate the processing time of this request. duration = datetime.datetime.utcnow() - self.start_time processing_time = duration.seconds + duration.microseconds / 1E6 counters.HTML_RESPONSE_TIME_SECS.inc(increment=processing_time) counters.HTML_RESPONSE_COUNT.inc() def _render_exception(self, error_code, values): assert error_code in [400, 401, 404, 500] values['code'] = error_code # This checks if the response should be JSON or HTML. if self.payload is not None: self.render_json(values) else: self.values.update(values) self.render_template( 'error/error.html', iframe_restriction=None) def handle_exception(self, exception, unused_debug_mode): """Overwrites the default exception handler.""" logging.info(''.join(traceback.format_exception(*sys.exc_info()))) logging.error('Exception raised: %s', exception) if isinstance(exception, self.PageNotFoundException): logging.error('Invalid URL requested: %s', self.request.uri) self.error(404) self._render_exception(404, { 'error': 'Could not find the page %s.' % self.request.uri}) return if isinstance(exception, self.NotLoggedInException): self.redirect( current_user_services.create_login_url(self.request.uri)) return if isinstance(exception, self.UnauthorizedUserException): self.error(401) self._render_exception(401, {'error': unicode(exception)}) return if isinstance(exception, self.InvalidInputException): self.error(400) self._render_exception(400, {'error': unicode(exception)}) return if isinstance(exception, self.InternalErrorException): self.error(500) self._render_exception(500, {'error': unicode(exception)}) return self.error(500) self._render_exception(500, {'error': unicode(exception)}) class UnauthorizedUserException(Exception): """Error class for unauthorized access.""" class NotLoggedInException(Exception): """Error class for users that are not logged in (error code 401).""" class InvalidInputException(Exception): """Error class for invalid input on the user side (error code 400).""" class PageNotFoundException(Exception): """Error class for a page not found error (error code 404).""" class InternalErrorException(Exception): """Error class for an internal server side error (error code 500).""" class Error404Handler(BaseHandler): """Handles 404 errors.""" REQUIRE_PAYLOAD_CSRF_CHECK = False class CsrfTokenManager(object): """Manages page/user tokens in memcache to protect against CSRF.""" # Max age of the token (48 hours). _CSRF_TOKEN_AGE_SECS = 60 * 60 * 48 # Default user id for non-logged-in users. _USER_ID_DEFAULT = 'non_logged_in_user' @classmethod def init_csrf_secret(cls): """Verify that non-default CSRF secret exists; creates one if not.""" # Any non-default value is fine. if CSRF_SECRET.value and CSRF_SECRET.value != DEFAULT_CSRF_SECRET: return # Initialize to random value. config_services.set_property( feconf.SYSTEM_COMMITTER_ID, CSRF_SECRET.name, base64.urlsafe_b64encode(os.urandom(20))) @classmethod def _create_token(cls, user_id, page_name, issued_on): """Creates a digest (string representation) of a token.""" cls.init_csrf_secret() # The token has 4 parts: hash of the actor user id, hash of the page # name, hash of the time issued and plain text of the time issued. if user_id is None: user_id = cls._USER_ID_DEFAULT # Round time to seconds. issued_on = long(issued_on) digester = hmac.new(str(CSRF_SECRET.value)) digester.update(str(user_id)) digester.update(':') digester.update(str(page_name)) digester.update(':') digester.update(str(issued_on)) digest = digester.digest() token = '%s/%s' % (issued_on, base64.urlsafe_b64encode(digest)) return token @classmethod def _get_current_time(cls): return time.time() @classmethod def create_csrf_token(cls, user_id, page_name): if not page_name: raise Exception('Cannot create CSRF token if page name is empty.') return cls._create_token(user_id, page_name, cls._get_current_time()) @classmethod def is_csrf_token_valid(cls, user_id, page_name, token): """Validate a given CSRF token with the CSRF secret in memcache.""" try: parts = token.split('/') if len(parts) != 2: return False issued_on = long(parts[0]) age = cls._get_current_time() - issued_on if age > cls._CSRF_TOKEN_AGE_SECS: return False authentic_token = cls._create_token(user_id, page_name, issued_on) if authentic_token == token: return True return False except Exception: return False
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2013 Netease Corporation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Tests for availability zones """ from oslo.config import cfg from nova import availability_zones as az from nova import context from nova import db from nova import test from nova.tests.api.openstack import fakes CONF = cfg.CONF CONF.import_opt('internal_service_availability_zone', 'nova.availability_zones') CONF.import_opt('default_availability_zone', 'nova.availability_zones') class AvailabilityZoneTestCases(test.TestCase): """Test case for aggregate based availability zone.""" def setUp(self): super(AvailabilityZoneTestCases, self).setUp() self.host = 'me' self.availability_zone = 'nova-test' self.default_az = CONF.default_availability_zone self.default_in_az = CONF.internal_service_availability_zone self.context = context.get_admin_context() self.agg = self._create_az('az_agg', self.availability_zone) def tearDown(self): db.aggregate_delete(self.context, self.agg['id']) super(AvailabilityZoneTestCases, self).tearDown() def _create_az(self, agg_name, az_name): agg_meta = {'name': agg_name} agg = db.aggregate_create(self.context, agg_meta) metadata = {'availability_zone': az_name} db.aggregate_metadata_add(self.context, agg['id'], metadata) return agg def _update_az(self, aggregate, az_name): metadata = {'availability_zone': az_name} db.aggregate_update(self.context, aggregate['id'], metadata) def _create_service_with_topic(self, topic, host, disabled=False): values = { 'binary': 'bin', 'host': host, 'topic': topic, 'disabled': disabled, } return db.service_create(self.context, values) def _destroy_service(self, service): return db.service_destroy(self.context, service['id']) def _add_to_aggregate(self, service, aggregate): return db.aggregate_host_add(self.context, aggregate['id'], service['host']) def _delete_from_aggregate(self, service, aggregate): return db.aggregate_host_delete(self.context, aggregate['id'], service['host']) def test_set_availability_zone_compute_service(self): """Test for compute service get right availability zone.""" service = self._create_service_with_topic('compute', self.host) services = db.service_get_all(self.context) # The service is not add into aggregate, so confirm it is default # availability zone. new_service = az.set_availability_zones(self.context, services)[0] self.assertEquals(new_service['availability_zone'], self.default_az) # The service is added into aggregate, confirm return the aggregate # availability zone. self._add_to_aggregate(service, self.agg) new_service = az.set_availability_zones(self.context, services)[0] self.assertEquals(new_service['availability_zone'], self.availability_zone) self._destroy_service(service) def test_set_availability_zone_not_compute_service(self): """Test not compute service get right availability zone.""" service = self._create_service_with_topic('network', self.host) services = db.service_get_all(self.context) new_service = az.set_availability_zones(self.context, services)[0] self.assertEquals(new_service['availability_zone'], self.default_in_az) self._destroy_service(service) def test_get_host_availability_zone(self): """Test get right availability zone by given host.""" self.assertEquals(self.default_az, az.get_host_availability_zone(self.context, self.host)) service = self._create_service_with_topic('compute', self.host) self._add_to_aggregate(service, self.agg) self.assertEquals(self.availability_zone, az.get_host_availability_zone(self.context, self.host)) def test_update_host_availability_zone(self): """Test availability zone could be update by given host.""" service = self._create_service_with_topic('compute', self.host) # Create a new aggregate with an AZ and add the host to the AZ az_name = 'az1' agg_az1 = self._create_az('agg-az1', az_name) self._add_to_aggregate(service, agg_az1) self.assertEquals(az_name, az.get_host_availability_zone(self.context, self.host)) # Update AZ new_az_name = 'az2' self._update_az(agg_az1, new_az_name) self.assertEquals(new_az_name, az.get_host_availability_zone(self.context, self.host)) def test_delete_host_availability_zone(self): """Test availability zone could be deleted successfully.""" service = self._create_service_with_topic('compute', self.host) # Create a new aggregate with an AZ and add the host to the AZ az_name = 'az1' agg_az1 = self._create_az('agg-az1', az_name) self._add_to_aggregate(service, agg_az1) self.assertEquals(az_name, az.get_host_availability_zone(self.context, self.host)) # Delete the AZ via deleting the aggregate self._delete_from_aggregate(service, agg_az1) self.assertEquals(self.default_az, az.get_host_availability_zone(self.context, self.host)) def test_get_availability_zones(self): """Test get_availability_zones.""" # get_availability_zones returns two lists, zones with at least one # enabled services, and zones with no enabled services. # Use the following test data: # # zone host enabled # nova-test host1 Yes # nova-test host2 No # nova-test2 host3 Yes # nova-test3 host4 No # <default> host5 No agg2 = self._create_az('agg-az2', 'nova-test2') agg3 = self._create_az('agg-az3', 'nova-test3') service1 = self._create_service_with_topic('compute', 'host1', disabled=False) service2 = self._create_service_with_topic('compute', 'host2', disabled=True) service3 = self._create_service_with_topic('compute', 'host3', disabled=False) service4 = self._create_service_with_topic('compute', 'host4', disabled=True) self._create_service_with_topic('compute', 'host5', disabled=True) self._add_to_aggregate(service1, self.agg) self._add_to_aggregate(service2, self.agg) self._add_to_aggregate(service3, agg2) self._add_to_aggregate(service4, agg3) zones, not_zones = az.get_availability_zones(self.context) self.assertEquals(zones, ['nova-test', 'nova-test2']) self.assertEquals(not_zones, ['nova-test3', 'nova']) def test_get_instance_availability_zone_default_value(self): """Test get right availability zone by given an instance.""" fake_inst_id = 162 fake_inst = fakes.stub_instance(fake_inst_id, host=self.host) self.assertEqual(self.default_az, az.get_instance_availability_zone(self.context, fake_inst)) def test_get_instance_availability_zone_from_aggregate(self): """Test get availability zone from aggregate by given an instance.""" host = 'host170' service = self._create_service_with_topic('compute', host) self._add_to_aggregate(service, self.agg) fake_inst_id = 174 fake_inst = fakes.stub_instance(fake_inst_id, host=host) self.assertEqual(self.availability_zone, az.get_instance_availability_zone(self.context, fake_inst))
__author__ = 'Kris & Christian' from django.utils import unittest from django.test.client import Client from django.test.client import RequestFactory from django.test import TestCase from app.models import * from app.views import * from django.contrib.auth.models import User import json #class MyFuncTestCase(unittest.TestCase): # def testBasic(self): # a = ['larry', 'curly', 'moe'] # self.assertEqual(my_func(a, 0), 'larry') # self.assertEqual(my_func(a, 1), 'curly') class GetTests(unittest.TestCase): c = Client() # def testLoginOK(self): # response = self.c.get('/mynode/') # self.assertEqual(response.status_code, 200) def testRegistrationOK(self): response = self.c.get('/mynode/register/') self.assertEqual(response.status_code, 200) def testAuthOK(self): self.username = 'test' self.email = '[email protected]' self.password = 'test' user = User.objects.create_user(self.username, self.email, self.password) Users.objects.create(user = user) login = self.c.login(username=self.username, password=self.password) self.assertEqual(login, True) response = self.c.get('/mynode/profile/') self.assertEqual(response.status_code, 200) response = self.c.get('/mynode/stream/') self.assertEqual(response.status_code, 200) response = self.c.get('/mynode/friends/') self.assertEqual(response.status_code, 200) #Looks like we had a few of the same tests Christian class testRunner(TestCase): def setUp(self): self.factory = RequestFactory() self.user = User.objects.create_user( username="admin", email="[email protected]", password="password", first_name="Admin", last_name="Person") self.app_user = Users.objects.create(user=self.user, git_url="topched") self.post = Post.objects.create(author=self.user, content="My first post") self.post_id = self.post.id def test_github_feed(self): url = "http://api.github.com/users/topched" resp = self.client.get(url) print resp def test_match_friends_from_list(self): tempUser1 = User.objects.create_user( username="testPerson1", email="[email protected]", password="password", first_name="Test", last_name="Person") temp_appUser1 = Users.objects.create(user=tempUser1, git_url="test.git") tempUser2 = User.objects.create_user( username="testPerson2", email="[email protected]", password="password", first_name="Test", last_name="Person") temp_appUser2 = Users.objects.create(user=tempUser2, git_url="test.git") tempUser3 = User.objects.create_user( username="testPerson3", email="[email protected]", password="password", first_name="Test", last_name="Person") temp_appUser3 = Users.objects.create(user=tempUser3, git_url="test.git") tempUser4 = User.objects.create_user( username="testPerson4", email="[email protected]", password="password", first_name="Test", last_name="Person") temp_appUser4 = Users.objects.create(user=tempUser4, git_url="test.git") url = '/mynode/friends/friend/create/' #admin sends friend request to tempuser1 self.client.login(username='admin', password='password') self.client.post(url,{'receiver_display_name': tempUser1.username}) self.assertEquals(len(Friend.objects.all()), 1) #tempuser1 accepts the friend request self.client.login(username=tempUser1.username, password='password') url1 = '/mynode/friends/' + str(self.user.id) + '/confirm/' self.client.post(url1) self.assertEquals(len(Friend.objects.all()), 2) #admin sends friend request to tempuser2 self.client.login(username='admin', password='password') self.client.post(url, {'receiver_display_name': tempUser2.username}) self.assertEquals(len(Friend.objects.all()), 3) #tempuser2 accepts friend request self.client.login(username=tempUser2.username, password='password') url2 = '/mynode/friends/' + str(self.user.id) + '/confirm/' self.client.post(url2) self.assertEquals(len(Friend.objects.all()), 4) #Are they friends using the api # tmpUrl = "/service/friends" + self.app_user.uuid + "/" + temp_appUser1.uuid # resp = self.client.get(tmpUrl) # print resp.content #json request to send send_json = {} send_json['query'] = "friends" send_json['author'] = self.app_user.uuid send_json['authors'] = [temp_appUser1.uuid, temp_appUser2.uuid, temp_appUser3.uuid, temp_appUser4.uuid] #send the post url3 = "/service/friends/" + self.app_user.uuid resp = self.client.post(url3, data=json.dumps(send_json), content_type="application/json") expectedJson = {} expectedJson['query'] = 'friends' expectedJson['author'] = self.app_user.uuid #TODO return proper values in api expectedJson['friends'] = [temp_appUser1.uuid, temp_appUser2.uuid] #compare response to expected return_vals = json.loads(resp.content) self.assertEquals(expectedJson, return_vals) #send a request with no results send_json = {} send_json['query'] = 'friends' send_json['author'] = temp_appUser4.uuid send_json['authors'] = [self.app_user.uuid, temp_appUser1.uuid, temp_appUser2.uuid, temp_appUser3.uuid] url4 = "/service/friends/" + temp_appUser4.uuid resp = self.client.post(url4, json.dumps(send_json), content_type="application/json") expectedJson = {} expectedJson['query'] = 'friends' expectedJson['author'] = temp_appUser4.uuid expectedJson['friends'] = [] return_vals = json.loads(resp.content) self.assertEquals(expectedJson, return_vals) def test_create_and_confirm_friendship(self): tempUser = User.objects.create_user( username="testPerson", email="[email protected]", password="password", first_name="Test", last_name="Person") temp_appUser = Users.objects.create(user=tempUser, git_url="test.git") friends = Friend.objects.all() start = len(friends) url = '/mynode/friends/friend/create/' self.client.login(username='admin', password='password') #print tempUser.username self.client.post( url, {'receiver_display_name': tempUser.username}) friends = Friend.objects.all() end = len(friends) #follow created self.assertEqual(start, end-1) #Admin sends friend request self.assertEqual(friends[0].requester,self.user) #TempUser receives request self.assertEqual(friends[0].receiver,tempUser) #friendship should not be accepted yet self.assertEqual(friends[0].accepted,0) url1 = '/mynode/friends/' + str(self.user.id) + '/confirm/' #login and accept friend request self.client.login(username='testPerson', password='password') resp2 = self.client.post(url1) friends = Friend.objects.all() self.assertEquals(len(friends), 2) self.assertEquals(friends[0].accepted, 1) self.assertEquals(friends[1].accepted, 1) def test_create_user(self): resp = self.client.get('/mynode/register', follow=True) self.assertEqual(resp.status_code, 200) tmp = User.objects.all() start = len(tmp) resp = self.client.post( '/mynode/register/', {'username':'someUser', 'email':'[email protected]', 'pwd':'password', 'surname':'some', 'lastname':'user', 'git':'fake.git'}) tmp = User.objects.all() end = len(tmp) #Created exactly one new user self.assertEqual(end, start+1) #Check to make sure the user was created correctly self.assertEqual(tmp[end-1].username,'someUser') def test_create_post(self): posts = Post.objects.all() self.client.login(username='admin',password='password') resp = self.client.post( '/mynode/stream/post/create/', {'content': 'My second post', 'title': 'My test title', 'content-type': 1, 'visibility':1} ) tmp = Post.objects.all() #Exactly 2 posts after creating a new one self.assertEqual(len(tmp),2) #Make sure the post contains the correct info self.assertEqual(tmp[1].content, "My second post") def test_delete_post(self): PostToDelete = Post.objects.create(author=self.user,content="A post to delete") self.client.login(username='admin',password='password') posts = Post.objects.all() start = len(posts) url = '/mynode/stream/post/' + str(PostToDelete.id) + '/delete/' resp = self.client.post(url) tmp = Post.objects.all() #Make sure exactly one post was deleted self.assertEqual(len(tmp), start-1) def test_create_comment(self): self.client.login(username='admin',password='password') tmp = Comment.objects.all() start = len(tmp) url = '/mynode/stream/post/' + str(self.post_id) + '/comments/' resp = self.client.post( url, {'parent_post':self.post_id, 'author':self.user, 'content':'My first comment'}) tmp = Comment.objects.all() end = len(tmp) #Make sure exactly one comment was added self.assertEqual(start+1,end) val = tmp[end-1].content #Make sure the comment contains the correct info self.assertEqual(val, 'My first comment') def test_get_stream(self): #No logged in user - should redirect to login resp = self.client.get('/mynode/stream/', follow=True) self.assertRedirects(resp, '/mynode/login/') #Logged user should return the stream page self.client.login(username='admin', password='password') resp = self.client.get('/mynode/stream/') self.assertEqual(resp.status_code, 200) self.assertTemplateUsed(resp, 'stream_page.html') def test_get_profile(self): #No logged in user - should redirect resp = self.client.get('/mynode/profile/', follow=True) self.assertRedirects(resp, '/mynode/login/') #Logged in user should return profile page self.client.login(username='admin', password='password') resp = self.client.get('/mynode/profile/') self.assertEqual(resp.status_code, 200) self.assertTemplateUsed(resp, 'profile_page.html') def test_get_friends(self): #No logged in user - should redirect resp = self.client.get('/mynode/friends/', follow=True) self.assertRedirects(resp, '/mynode/login/') #Logged in user should return friends page self.client.login(username='admin', password='password') resp = self.client.get('/mynode/friends/') self.assertEqual(resp.status_code, 200) self.assertTemplateUsed(resp, 'friend_page.html') def test_get_admin(self): #Logged in user self.client.login(username='admin', password='password') resp = self.client.get('/admin/') self.assertEqual(resp.status_code, 200) # def test_post_to_api(self): # #Logged in user # tempUser1 = User.objects.create_user( # username="testPerson1", # email="[email protected]", # password="password", # first_name="Test", # last_name="Person") # tempUser1.save() # self.client.login(username='testPerson1', password='password') # post = Post.objects.create(id=100,author=tempUser1) # post.save() # resp = self.client.put('/service/posts/' + str(post.id), # json.dumps({'content': '1', 'title': 'My test title', 'content-type': 1, 'visibility':1})) # print resp # self.assertEqual(Post.objects.get(id=post.id).content, '1') #not sure why this test doesnt work # def test_root_redirect(self): # # #General root redirection # resp = self.client.get('/') # self.assertRedirects(resp, '/mynode/login/')
#!/usr/bin/env python import sys import os import pmagpy.pmag as pmag def main(): """ NAME make_magic_plots.py DESCRIPTION inspects magic directory for available plots. SYNTAX make_magic_plots.py [command line options] INPUT magic files OPTIONS -h prints help message and quits -f FILE specifies input file name -fmt [png,eps,svg,jpg,pdf] specify format, default is png """ dirlist = ['./'] dir_path = os.getcwd() names = os.listdir(dir_path) for n in names: if 'Location' in n: dirlist.append(n) if '-fmt' in sys.argv: ind = sys.argv.index("-fmt") fmt = sys.argv[ind+1] else: fmt = 'png' if '-f' in sys.argv: ind = sys.argv.index("-f") filelist = [sys.argv[ind+1]] else: filelist = os.listdir(dir_path) if '-h' in sys.argv: print(main.__doc__) sys.exit() for loc in dirlist: print('working on: ', loc) os.chdir(loc) # change working directories to each location crd = 's' if 'er_samples.txt' in filelist: # find coordinate systems samps, file_type = pmag.magic_read( 'er_samples.txt') # read in data # get all none blank sample orientations Srecs = pmag.get_dictitem(samps, 'sample_azimuth', '', 'F') if len(Srecs) > 0: crd = 'g' if 'magic_measurements.txt' in filelist: # start with measurement data print('working on measurements data') data, file_type = pmag.magic_read( 'magic_measurements.txt') # read in data if loc == './': # get all the blank location names from data file data = pmag.get_dictitem(data, 'er_location_name', '', 'T') # looking for zeq_magic possibilities # get all none blank method codes AFZrecs = pmag.get_dictitem( data, 'magic_method_codes', 'LT-AF-Z', 'has') # get all none blank method codes TZrecs = pmag.get_dictitem( data, 'magic_method_codes', 'LT-T-Z', 'has') # get all none blank method codes MZrecs = pmag.get_dictitem( data, 'magic_method_codes', 'LT-M-Z', 'has') # get all dec measurements Drecs = pmag.get_dictitem(data, 'measurement_dec', '', 'F') # get all dec measurements Irecs = pmag.get_dictitem(data, 'measurement_inc', '', 'F') Mkeys = ['measurement_magnitude', 'measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass'] for key in Mkeys: Mrecs = pmag.get_dictitem( data, key, '', 'F') # get intensity data if len(Mrecs) > 0: break # potential for stepwise demag curves if len(AFZrecs) > 0 or len(TZrecs) > 0 or len(MZrecs) > 0 and len(Drecs) > 0 and len(Irecs) > 0 and len(Mrecs) > 0: print('zeq_magic.py -fsp pmag_specimens.txt -sav -fmt ' + fmt+' -crd '+crd) os.system('zeq_magic.py -sav -fmt '+fmt+' -crd '+crd) # looking for thellier_magic possibilities if len(pmag.get_dictitem(data, 'magic_method_codes', 'LP-PI-TRM', 'has')) > 0: print('thellier_magic.py -fsp pmag_specimens.txt -sav -fmt '+fmt) os.system('thellier_magic.py -sav -fmt '+fmt) # looking for hysteresis possibilities if len(pmag.get_dictitem(data, 'magic_method_codes', 'LP-HYS', 'has')) > 0: # find hyst experiments print('quick_hyst.py -sav -fmt '+fmt) os.system('quick_hyst.py -sav -fmt '+fmt) if 'pmag_results.txt' in filelist: # start with measurement data data, file_type = pmag.magic_read( 'pmag_results.txt') # read in data print('number of datapoints: ', len(data)) if loc == './': # get all the concatenated location names from data file data = pmag.get_dictitem(data, 'er_location_names', ':', 'has') print('number of datapoints: ', len(data), loc) print('working on pmag_results directions') SiteDIs = pmag.get_dictitem( data, 'average_dec', "", 'F') # find decs print('number of directions: ', len(SiteDIs)) SiteDIs = pmag.get_dictitem( SiteDIs, 'average_inc', "", 'F') # find decs and incs print('number of directions: ', len(SiteDIs)) # only individual results - not poles SiteDIs = pmag.get_dictitem(SiteDIs, 'data_type', 'i', 'has') print('number of directions: ', len(SiteDIs)) # tilt corrected coordinates SiteDIs_t = pmag.get_dictitem( SiteDIs, 'tilt_correction', '100', 'T') print('number of directions: ', len(SiteDIs)) if len(SiteDIs_t) > 0: print('eqarea_magic.py -sav -crd t -fmt '+fmt) os.system('eqarea_magic.py -sav -crd t -fmt '+fmt) elif len(SiteDIs) > 0 and 'tilt_correction' not in SiteDIs[0].keys(): print('eqarea_magic.py -sav -fmt '+fmt) os.system('eqarea_magic.py -sav -fmt '+fmt) else: SiteDIs_g = pmag.get_dictitem( SiteDIs, 'tilt_correction', '0', 'T') # geographic coordinates if len(SiteDIs_g) > 0: print('eqarea_magic.py -sav -crd g -fmt '+fmt) os.system('eqarea_magic.py -sav -crd g -fmt '+fmt) else: SiteDIs_s = pmag.get_dictitem( SiteDIs, 'tilt_correction', '-1', 'T') # sample coordinates if len(SiteDIs_s) > 0: print('eqarea_magic.py -sav -crd s -fmt '+fmt) os.system('eqarea_magic.py -sav -crd s -fmt '+fmt) else: SiteDIs_x = pmag.get_dictitem( SiteDIs, 'tilt_correction', '', 'T') # no coordinates if len(SiteDIs_x) > 0: print('eqarea_magic.py -sav -fmt '+fmt) os.system('eqarea_magic.py -sav -fmt '+fmt) print('working on pmag_results VGP map') VGPs = pmag.get_dictitem( SiteDIs, 'vgp_lat', "", 'F') # are there any VGPs? if len(VGPs) > 0: # YES! os.system( 'vgpmap_magic.py -prj moll -res c -sym ro 5 -sav -fmt png') print('working on pmag_results intensities') os.system( 'magic_select.py -f pmag_results.txt -key data_type i T -F tmp.txt') os.system( 'magic_select.py -f tmp.txt -key average_int 0. has -F tmp1.txt') os.system( "grab_magic_key.py -f tmp1.txt -key average_int | awk '{print $1*1e6}' >tmp2.txt") data, file_type = pmag.magic_read('tmp1.txt') # read in data locations = pmag.get_dictkey(data, 'er_location_names', "") histfile = 'LO:_'+locations[0]+'_intensities_histogram:_.'+fmt os.system( "histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F " + histfile) print( "histplot.py -b 1 -xlab 'Intensity (uT)' -sav -f tmp2.txt -F " + histfile) os.system('rm tmp*.txt') if 'rmag_hysteresis.txt' in filelist: # start with measurement data print('working on rmag_hysteresis') data, file_type = pmag.magic_read( 'rmag_hysteresis.txt') # read in data if loc == './': # get all the blank location names from data file data = pmag.get_dictitem(data, 'er_location_name', '', 'T') hdata = pmag.get_dictitem(data, 'hysteresis_bcr', '', 'F') hdata = pmag.get_dictitem(hdata, 'hysteresis_mr_moment', '', 'F') hdata = pmag.get_dictitem(hdata, 'hysteresis_ms_moment', '', 'F') # there are data for a dayplot hdata = pmag.get_dictitem(hdata, 'hysteresis_bc', '', 'F') if len(hdata) > 0: print('dayplot_magic.py -sav -fmt '+fmt) os.system('dayplot_magic.py -sav -fmt '+fmt) # if 'er_sites.txt' in filelist: # start with measurement data # print 'working on er_sites' #os.system('basemap_magic.py -sav -fmt '+fmt) if 'rmag_anisotropy.txt' in filelist: # do anisotropy plots if possible print('working on rmag_anisotropy') data, file_type = pmag.magic_read( 'rmag_anisotropy.txt') # read in data if loc == './': # get all the blank location names from data file data = pmag.get_dictitem(data, 'er_location_name', '', 'T') # get specimen coordinates sdata = pmag.get_dictitem( data, 'anisotropy_tilt_correction', '-1', 'T') # get specimen coordinates gdata = pmag.get_dictitem( data, 'anisotropy_tilt_correction', '0', 'T') # get specimen coordinates tdata = pmag.get_dictitem( data, 'anisotropy_tilt_correction', '100', 'T') if len(sdata) > 3: print('aniso_magic.py -x -B -crd s -sav -fmt '+fmt) os.system('aniso_magic.py -x -B -crd s -sav -fmt '+fmt) if len(gdata) > 3: os.system('aniso_magic.py -x -B -crd g -sav -fmt '+fmt) if len(tdata) > 3: os.system('aniso_magic.py -x -B -crd t -sav -fmt '+fmt) if loc != './': os.chdir('..') # change working directories to each location if __name__ == "__main__": main()
""" This module tests the TssList class """ import unittest from datetime import date, datetime import json import numpy as np from thymus.timeseries import Timeseries from thymus.tsslist import TssList class TestTssList(unittest.TestCase): """ This class tests the class TssList. """ def setUp(self): # three timeseries self.ts = Timeseries() self.ts.key = "Test Key" self.ts.columns = ["F1"] start_date = datetime(2015, 12, 31).toordinal() self.ts.dseries = start_date + np.arange(10) self.ts.tseries = np.arange(10) self.ts.make_arrays() # longer timeseries self.ts_long = Timeseries() self.ts.columns = ["F1"] start_date = datetime(2015, 12, 31).toordinal() self.ts_long.dseries = start_date + np.arange(20) self.ts_long.tseries = np.arange(20) self.ts_long.make_arrays() # shorter timeseries with no columns self.ts_short = Timeseries() start_date = datetime(2015, 12, 31).toordinal() self.ts_short.dseries = start_date + np.arange(5) self.ts_short.tseries = np.arange(5) self.ts_short.make_arrays() self.tss = TssList([self.ts, self.ts_long, self.ts_short]) def test_class_init_(self): """Test class initialization.""" self.assertEqual(len(self.tss), 3) tss = TssList() self.assertEqual(len(tss), 0) tss.append(Timeseries()) tss.append(Timeseries()) tss.append(Timeseries()) self.assertEqual(len(tss), 3) # initialize with something other than a list # could expand this to verifying the contents of the list self.assertRaises(ValueError, TssList, 3) # from tuple tss = TssList((Timeseries(), Timeseries(), Timeseries())) def test_tsslist_min_date(self): """Tests min date """ self.assertEqual(self.tss.min_date(), self.ts.start_date("datetime")) tmp_ts0 = Timeseries() tmp_ts0.dseries = datetime(2014, 12, 31).toordinal() + np.arange(10) tmp_ts0.tseries = np.arange(10) tmp_ts0.make_arrays() self.tss.append(tmp_ts0) self.assertEqual(self.tss.min_date(), date(2014, 12, 31)) tss = TssList() self.assertIsNone(tss.min_date()) def test_tsslist_max_date(self): """Tests max date """ self.assertEqual(self.tss.max_date(), date(2016, 1, 19)) tmp_ts0 = Timeseries() tmp_ts0.dseries = datetime(2018, 12, 31).toordinal() - np.arange(10) tmp_ts0.tseries = np.arange(10) tmp_ts0.make_arrays() self.tss.append(tmp_ts0) self.assertEqual(self.tss.max_date(), date(2018, 12, 31)) tss = TssList() self.assertIsNone(tss.max_date()) def test_tsslist_combine(self): """ A batch of tests combining columns to one timeseries. Tests check to see whether the parameters are passed down properly to each timeseries. """ # combine(self, discard=True, pad=None) ts_new = self.tss.combine(discard=True, pad=None) # shape corresponds to the shortest length self.assertEqual( ts_new.tseries.shape[0], self.ts_short.tseries.shape[0] ) self.assertEqual(ts_new.tseries.shape[1], 3) # combine(self, discard=False, pad=0) ts_new = self.tss.combine(discard=False, pad=0) # shape corresponds to the longest length self.assertEqual( ts_new.tseries.shape[0], self.ts_long.tseries.shape[0] ) self.assertEqual(ts_new.tseries.shape[1], 3) # test instance of single timeseries in list, should return a clone tsslist = TssList([self.ts]) ts_new = tsslist.combine() self.assertNotEqual(ts_new, self.ts) self.assertListEqual(ts_new.tseries.tolist(), self.ts.tseries.tolist()) self.assertListEqual(ts_new.dseries.tolist(), self.ts.dseries.tolist()) def test_tsslist_get_values(self): """ Tests the ability to locate the correct row of data. """ date1 = datetime(2016, 1, 4) # existing date within date series date2 = datetime(2016, 1, 16) # date falling on a weekend # get data from existing date self.assertTupleEqual(self.tss.get_values(date=date1), (4.0, 4.0, 4.0)) # attempt to get data from date not present, with notify self.assertRaises(ValueError, self.tss.get_values, date2, notify=True) # attempt to get data from date not present, no notify self.assertTupleEqual( self.tss.get_values(date=date2), (None, 16.0, None) ) def test_clone(self): """Verifies that a copy is made.""" tss = self.tss.clone() # is it a separate object for i, ts_new in enumerate(tss): ts_orig = self.tss[i] self.assertIsInstance(ts_orig, Timeseries) self.assertNotEqual(ts_new, ts_orig) # do the characteristics match up? self.assertEqual(len(tss), 3) ts_orig = self.tss[0] ts_copy = tss[0] self.assertEqual(ts_copy.key, ts_orig.key) self.assertEqual(ts_copy.frequency, ts_orig.frequency) self.assertTrue(np.array_equal(ts_copy.tseries, ts_orig.tseries)) self.assertTrue(np.array_equal(ts_copy.dseries, ts_orig.dseries)) self.assertListEqual(ts_copy.columns, ts_orig.columns) self.assertEqual(ts_copy.end_of_period, ts_orig.end_of_period) ts_orig = self.tss[1] ts_copy = tss[1] self.assertEqual(ts_copy.key, ts_orig.key) self.assertEqual(ts_copy.frequency, ts_orig.frequency) self.assertTrue(np.array_equal(ts_copy.tseries, ts_orig.tseries)) self.assertTrue(np.array_equal(ts_copy.dseries, ts_orig.dseries)) self.assertEqual(ts_copy.columns, ts_orig.columns) self.assertEqual(ts_copy.end_of_period, ts_orig.end_of_period) ts_orig = self.tss[2] ts_copy = tss[2] self.assertEqual(ts_copy.key, ts_orig.key) self.assertEqual(ts_copy.frequency, ts_orig.frequency) self.assertTrue(np.array_equal(ts_copy.tseries, ts_orig.tseries)) self.assertTrue(np.array_equal(ts_copy.dseries, ts_orig.dseries)) self.assertEqual(ts_copy.columns, ts_orig.columns) self.assertEqual(ts_copy.end_of_period, ts_orig.end_of_period) def test_as_dict(self): "Can it return a dict from the list?" self.assertTrue(ValueError, self.tss.as_dict) test_dict = {} for i in range(len(self.tss)): ts = self.tss[i] ts.key = "key_%i" % (i) test_dict[ts.key] = ts self.assertDictEqual(self.tss.as_dict(), test_dict) tss = TssList() # no key ts = Timeseries() ts.tseries = np.arange(5) ts.dseries = [date.today().toordinal() + i for i in range(5)] ts.make_arrays() tss.append(ts) self.assertRaises(ValueError, tss.as_dict) def test_to_json(self): """ This function tests sending a TssList to a json format. Using a cheap assumption that since it is simply a list, that as long as the timeseries are converted, the list is what is needed to check. More needs to be checked. """ json_str = self.tss.to_json() self.assertIsInstance(json.loads(json_str), list) def test_from_json(self): """ This function tests building back a tsslist from json fmt string. This relies heavily on the test for Timeseries.from_json. """ json_str = self.tss.to_json() tsslist = TssList() tsslist.from_json(json_str) self.assertEqual(len(tsslist), 3) # did it come back in the right order? self.assertTupleEqual(tsslist[0].shape(), self.ts.shape()) self.assertTupleEqual(tsslist[1].shape(), self.ts_long.shape()) self.assertTupleEqual(tsslist[2].shape(), self.ts_short.shape()) def test_tsslist_do_func(self): """Placeholder for future function.""" pass if __name__ == "__main__": unittest.main()
# This file is part of beets. # Copyright 2013, Adrian Sampson. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Tests for the album art fetchers.""" import os import shutil import responses import _common from _common import unittest from beetsplug import fetchart from beets.autotag import AlbumInfo, AlbumMatch from beets import library from beets import importer from beets import config class FetchImageTest(_common.TestCase): @responses.activate def run(self, *args, **kwargs): super(FetchImageTest, self).run(*args, **kwargs) def mock_response(self, content_type): responses.add(responses.GET, 'http://example.com', content_type=content_type) def test_invalid_type_returns_none(self): self.mock_response('image/watercolour') artpath = fetchart._fetch_image('http://example.com') self.assertEqual(artpath, None) def test_jpeg_type_returns_path(self): self.mock_response('image/jpeg') artpath = fetchart._fetch_image('http://example.com') self.assertNotEqual(artpath, None) class FSArtTest(_common.TestCase): def setUp(self): super(FSArtTest, self).setUp() self.dpath = os.path.join(self.temp_dir, 'arttest') os.mkdir(self.dpath) def test_finds_jpg_in_directory(self): _common.touch(os.path.join(self.dpath, 'a.jpg')) fn = fetchart.art_in_path(self.dpath, ('art',), False) self.assertEqual(fn, os.path.join(self.dpath, 'a.jpg')) def test_appropriately_named_file_takes_precedence(self): _common.touch(os.path.join(self.dpath, 'a.jpg')) _common.touch(os.path.join(self.dpath, 'art.jpg')) fn = fetchart.art_in_path(self.dpath, ('art',), False) self.assertEqual(fn, os.path.join(self.dpath, 'art.jpg')) def test_non_image_file_not_identified(self): _common.touch(os.path.join(self.dpath, 'a.txt')) fn = fetchart.art_in_path(self.dpath, ('art',), False) self.assertEqual(fn, None) def test_cautious_skips_fallback(self): _common.touch(os.path.join(self.dpath, 'a.jpg')) fn = fetchart.art_in_path(self.dpath, ('art',), True) self.assertEqual(fn, None) def test_empty_dir(self): fn = fetchart.art_in_path(self.dpath, ('art',), True) self.assertEqual(fn, None) class CombinedTest(_common.TestCase): ASIN = 'xxxx' MBID = 'releaseid' AMAZON_URL = 'http://images.amazon.com/images/P/{0}.01.LZZZZZZZ.jpg'.format(ASIN) AAO_URL = 'http://www.albumart.org/index_detail.php?asin={0}'.format(ASIN) CAA_URL = 'http://coverartarchive.org/release/{0}/front-500.jpg'.format(MBID) def setUp(self): super(CombinedTest, self).setUp() self.dpath = os.path.join(self.temp_dir, 'arttest') os.mkdir(self.dpath) # Set up configuration. fetchart.FetchArtPlugin() @responses.activate def run(self, *args, **kwargs): super(CombinedTest, self).run(*args, **kwargs) def mock_response(self, url, content_type='image/jpeg'): responses.add(responses.GET, url, content_type=content_type) def test_main_interface_returns_amazon_art(self): self.mock_response(self.AMAZON_URL) album = _common.Bag(asin=self.ASIN) artpath = fetchart.art_for_album(album, None) self.assertNotEqual(artpath, None) def test_main_interface_returns_none_for_missing_asin_and_path(self): album = _common.Bag() artpath = fetchart.art_for_album(album, None) self.assertEqual(artpath, None) def test_main_interface_gives_precedence_to_fs_art(self): _common.touch(os.path.join(self.dpath, 'art.jpg')) self.mock_response(self.AMAZON_URL) album = _common.Bag(asin=self.ASIN) artpath = fetchart.art_for_album(album, [self.dpath]) self.assertEqual(artpath, os.path.join(self.dpath, 'art.jpg')) def test_main_interface_falls_back_to_amazon(self): self.mock_response(self.AMAZON_URL) album = _common.Bag(asin=self.ASIN) artpath = fetchart.art_for_album(album, [self.dpath]) self.assertNotEqual(artpath, None) self.assertFalse(artpath.startswith(self.dpath)) def test_main_interface_tries_amazon_before_aao(self): self.mock_response(self.AMAZON_URL) album = _common.Bag(asin=self.ASIN) fetchart.art_for_album(album, [self.dpath]) self.assertEqual(len(responses.calls), 1) self.assertEqual(responses.calls[0].request.url, self.AMAZON_URL) def test_main_interface_falls_back_to_aao(self): self.mock_response(self.AMAZON_URL, content_type='text/html') album = _common.Bag(asin=self.ASIN) fetchart.art_for_album(album, [self.dpath]) self.assertEqual(responses.calls[-1].request.url, self.AAO_URL) def test_main_interface_uses_caa_when_mbid_available(self): self.mock_response(self.CAA_URL) album = _common.Bag(mb_albumid=self.MBID, asin=self.ASIN) artpath = fetchart.art_for_album(album, None) self.assertNotEqual(artpath, None) self.assertEqual(len(responses.calls), 1) self.assertEqual(responses.calls[0].request.url, self.CAA_URL) def test_local_only_does_not_access_network(self): album = _common.Bag(mb_albumid=self.MBID, asin=self.ASIN) artpath = fetchart.art_for_album(album, [self.dpath], local_only=True) self.assertEqual(artpath, None) self.assertEqual(len(responses.calls), 0) def test_local_only_gets_fs_image(self): _common.touch(os.path.join(self.dpath, 'art.jpg')) album = _common.Bag(mb_albumid=self.MBID, asin=self.ASIN) artpath = fetchart.art_for_album(album, [self.dpath], None, local_only=True) self.assertEqual(artpath, os.path.join(self.dpath, 'art.jpg')) self.assertEqual(len(responses.calls), 0) class AAOTest(_common.TestCase): ASIN = 'xxxx' AAO_URL = 'http://www.albumart.org/index_detail.php?asin={0}'.format(ASIN) @responses.activate def run(self, *args, **kwargs): super(AAOTest, self).run(*args, **kwargs) def mock_response(self, url, body): responses.add(responses.GET, url, body=body, content_type='text/html', match_querystring=True) def test_aao_scraper_finds_image(self): body = """ <br /> <a href="TARGET_URL" title="View larger image" class="thickbox" style="color: #7E9DA2; text-decoration:none;"> <img src="http://www.albumart.org/images/zoom-icon.jpg" alt="View larger image" width="17" height="15" border="0"/></a> """ self.mock_response(self.AAO_URL, body) res = fetchart.aao_art(self.ASIN) self.assertEqual(res, 'TARGET_URL') def test_aao_scraper_returns_none_when_no_image_present(self): self.mock_response(self.AAO_URL, 'blah blah') res = fetchart.aao_art(self.ASIN) self.assertEqual(res, None) class ArtImporterTest(_common.TestCase): def setUp(self): super(ArtImporterTest, self).setUp() # Mock the album art fetcher to always return our test file. self.art_file = os.path.join(self.temp_dir, 'tmpcover.jpg') _common.touch(self.art_file) self.old_afa = fetchart.art_for_album self.afa_response = self.art_file def art_for_album(i, p, maxwidth=None, local_only=False): return self.afa_response fetchart.art_for_album = art_for_album # Test library. self.libpath = os.path.join(self.temp_dir, 'tmplib.blb') self.libdir = os.path.join(self.temp_dir, 'tmplib') os.mkdir(self.libdir) os.mkdir(os.path.join(self.libdir, 'album')) itempath = os.path.join(self.libdir, 'album', 'test.mp3') shutil.copyfile(os.path.join(_common.RSRC, 'full.mp3'), itempath) self.lib = library.Library(self.libpath) self.i = _common.item() self.i.path = itempath self.album = self.lib.add_album([self.i]) self.lib._connection().commit() # The plugin and import configuration. self.plugin = fetchart.FetchArtPlugin() self.session = _common.import_session(self.lib) # Import task for the coroutine. self.task = importer.ImportTask(None, None, [self.i]) self.task.is_album = True self.task.album = self.album info = AlbumInfo( album = 'some album', album_id = 'albumid', artist = 'some artist', artist_id = 'artistid', tracks = [], ) self.task.set_choice(AlbumMatch(0, info, {}, set(), set())) def tearDown(self): self.lib._connection().close() super(ArtImporterTest, self).tearDown() fetchart.art_for_album = self.old_afa def _fetch_art(self, should_exist): """Execute the fetch_art coroutine for the task and return the album's resulting artpath. ``should_exist`` specifies whether to assert that art path was set (to the correct value) or or that the path was not set. """ # Execute the two relevant parts of the importer. self.plugin.fetch_art(self.session, self.task) self.plugin.assign_art(self.session, self.task) artpath = self.lib.albums()[0].artpath if should_exist: self.assertEqual(artpath, os.path.join(os.path.dirname(self.i.path), 'cover.jpg')) self.assertExists(artpath) else: self.assertEqual(artpath, None) return artpath def test_fetch_art(self): assert not self.lib.albums()[0].artpath self._fetch_art(True) def test_art_not_found(self): self.afa_response = None self._fetch_art(False) def test_no_art_for_singleton(self): self.task.is_album = False self._fetch_art(False) def test_leave_original_file_in_place(self): self._fetch_art(True) self.assertExists(self.art_file) def test_delete_original_file(self): config['import']['delete'] = True self._fetch_art(True) self.assertNotExists(self.art_file) def test_move_original_file(self): config['import']['move'] = True self._fetch_art(True) self.assertNotExists(self.art_file) def test_do_not_delete_original_if_already_in_place(self): artdest = os.path.join(os.path.dirname(self.i.path), 'cover.jpg') shutil.copyfile(self.art_file, artdest) self.afa_response = artdest self._fetch_art(True) def suite(): return unittest.TestLoader().loadTestsFromName(__name__) if __name__ == '__main__': unittest.main(defaultTest='suite')
""" Download interface for the data stored in coop database (alldata) This is called from /request/coop/fe.phtml """ import datetime import zipfile from io import BytesIO, StringIO import pandas as pd import psycopg2.extras from paste.request import parse_formvars from pyiem.network import Table as NetworkTable from pyiem.util import get_dbconn, utc, get_dbconnstr from metpy.units import units from sqlalchemy import text DEGC = units.degC DEGF = units.degF EXL = "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" def f2c(val): """Convert F to C.""" return (val * DEGF).to(DEGC).m def get_scenario_period(ctx): """Compute the inclusive start and end dates to fetch scenario data for Arguments: ctx dictionary context this app was called with """ sts = datetime.date(ctx["scenario_year"], ctx["ets"].month, ctx["ets"].day) ets = datetime.date(ctx["scenario_year"], 12, 31) return sts, ets def get_database(): """Get database""" return get_dbconn("coop") def sane_date(year, month, day): """Attempt to account for usage of days outside of the bounds for a given month""" # Calculate the last date of the given month nextmonth = datetime.date(year, month, 1) + datetime.timedelta(days=35) lastday = nextmonth.replace(day=1) - datetime.timedelta(days=1) return datetime.date(year, month, min(day, lastday.day)) def get_cgi_dates(form): """Figure out which dates are requested via the form, we shall attempt to account for invalid dates provided!""" y1 = int(form.get("year1")) m1 = int(form.get("month1")) d1 = int(form.get("day1")) y2 = int(form.get("year2")) m2 = int(form.get("month2")) d2 = int(form.get("day2")) ets = sane_date(y2, m2, d2) archive_end = datetime.date.today() - datetime.timedelta(days=1) if ets > archive_end: ets = archive_end return [sane_date(y1, m1, d1), ets] def get_cgi_stations(form): """Figure out which stations the user wants, return a list of them""" reqlist = form.getall("station[]") if not reqlist: reqlist = form.getall("stations") if not reqlist: return [] if "_ALL" in reqlist: network = form.get("network") nt = NetworkTable(network, only_online=False) return nt.sts.keys() return reqlist def do_apsim(ctx): """ [weather.met.weather] latitude = 42.1 (DECIMAL DEGREES) tav = 9.325084 (oC) ! annual average ambient temperature amp = 29.57153 (oC) ! annual amplitude in mean monthly temperature year day radn maxt mint rain () () (MJ/m^2) (oC) (oC) (mm) 1986 1 7.38585 0.8938889 -7.295556 0 """ if len(ctx["stations"]) > 1: return ( "ERROR: APSIM output is only " "permitted for one station at a time." ).encode("ascii") dbconn = get_database() cursor = dbconn.cursor(cursor_factory=psycopg2.extras.DictCursor) station = ctx["stations"][0] table = get_tablename(ctx["stations"]) network = f"{station[:2]}CLIMATE" nt = NetworkTable(network, only_online=False) thisyear = datetime.datetime.now().year extra = {} if ctx["scenario"] == "yes": sts = datetime.datetime(int(ctx["scenario_year"]), 1, 1) ets = datetime.datetime(int(ctx["scenario_year"]), 12, 31) febtest = datetime.date(thisyear, 3, 1) - datetime.timedelta(days=1) sdaylimit = "" if febtest.day == 28: sdaylimit = " and sday != '0229'" cursor.execute( f""" SELECT day, high, low, precip, 1 as doy, coalesce(narr_srad, merra_srad, hrrr_srad) as srad from {table} WHERE station = %s and day >= %s and day <= %s {sdaylimit}""", (ctx["stations"][0], sts, ets), ) for row in cursor: ts = row[0].replace(year=thisyear) extra[ts] = row extra[ts]["doy"] = int(ts.strftime("%j")) if febtest not in extra: feb28 = datetime.date(thisyear, 2, 28) extra[febtest] = extra[feb28] sio = StringIO() sio.write("! Iowa Environmental Mesonet -- NWS Cooperative Data\n") sio.write(f"! Created: {utc():%d %b %Y %H:%M:%S} UTC\n") sio.write("! Contact: daryl herzmann [email protected] 515-294-5978\n") sio.write("! Station: %s %s\n" % (station, nt.sts[station]["name"])) sio.write("! Data Period: %s - %s\n" % (ctx["sts"], ctx["ets"])) if ctx["scenario"] == "yes": sio.write( "! !SCENARIO DATA! inserted after: %s replicating year: %s\n" % (ctx["ets"], ctx["scenario_year"]) ) sio.write("[weather.met.weather]\n") sio.write( "latitude = %.1f (DECIMAL DEGREES)\n" % (nt.sts[station]["lat"],) ) # Compute average temperature! cursor.execute( "SELECT avg((high+low)/2) as avgt from ncei_climate91 " "WHERE station = %s", (nt.sts[station]["ncei91"],), ) row = cursor.fetchone() sio.write( "tav = %.3f (oC) ! annual average ambient temperature\n" % (f2c(row["avgt"]),) ) # Compute the annual amplitude in temperature cursor.execute( """ select max(avg) as h, min(avg) as l from (SELECT extract(month from valid) as month, avg((high+low)/2.) from ncei_climate91 WHERE station = %s GROUP by month) as foo """, (nt.sts[station]["ncei91"],), ) row = cursor.fetchone() sio.write( ("amp = %.3f (oC) ! annual amplitude in mean monthly temperature\n") % (f2c(row["h"]) - f2c(row["l"]),) ) sio.write( """year day radn maxt mint rain () () (MJ/m^2) (oC) (oC) (mm)\n""" ) if ctx.get("hayhoe_model") is not None: cursor.execute( """ SELECT day, high, low, precip, extract(doy from day) as doy, 0 as srad from hayhoe_daily WHERE station = %s and day >= %s and scenario = %s and model = %s ORDER by day ASC """, ( ctx["stations"][0], ctx["sts"], ctx["hayhoe_scenario"], ctx["hayhoe_model"], ), ) else: cursor.execute( f""" SELECT day, high, low, precip, extract(doy from day) as doy, coalesce(narr_srad, merra_srad, hrrr_srad) as srad from {table} WHERE station = %s and day >= %s and day <= %s and high is not null and low is not null and precip is not null ORDER by day ASC """, (station, ctx["sts"], ctx["ets"]), ) for row in cursor: srad = -99 if row["srad"] is None else row["srad"] sio.write( ("%4s %10.0f %10.3f %10.1f %10.1f %10.2f\n") % ( row["day"].year, int(row["doy"]), srad, f2c(row["high"]), f2c(row["low"]), row["precip"] * 25.4, ) ) if extra: dec31 = datetime.date(thisyear, 12, 31) now = row["day"] while now <= dec31: row = extra[now] srad = -99 if row["srad"] is None else row["srad"] sio.write( ("%4s %10.0f %10.3f %10.1f %10.1f %10.2f\n") % ( now.year, int(row["doy"]), srad, f2c(row["high"]), f2c(row["low"]), row["precip"] * 25.4, ) ) now += datetime.timedelta(days=1) return sio.getvalue().encode("ascii") def do_century(ctx): """Materialize the data in Century Format * Century format (precip cm, avg high C, avg low C) prec 1980 2.60 6.40 0.90 1.00 0.70 0.00 tmin 1980 14.66 12.10 7.33 -0.89 -5.45 -7.29 tmax 1980 33.24 30.50 27.00 18.37 11.35 9.90 prec 1981 12.00 7.20 0.60 4.90 1.10 0.30 tmin 1981 14.32 12.48 8.17 0.92 -3.25 -8.90 tmax 1981 30.84 28.71 27.02 16.84 12.88 6.82 """ if len(ctx["stations"]) > 1: return ( "ERROR: Century output is only " "permitted for one station at a time." ).encode("ascii") station = ctx["stations"][0] network = "%sCLIMATE" % (station[:2],) nt = NetworkTable(network, only_online=False) dbconn = get_database() cursor = dbconn.cursor(cursor_factory=psycopg2.extras.DictCursor) # Automatically set dates to start and end of year to make output clean sts = datetime.date(ctx["sts"].year, 1, 1) ets = datetime.date(ctx["ets"].year, 12, 31) if ets >= datetime.date.today(): ets = datetime.date.today() - datetime.timedelta(days=1) table = get_tablename(ctx["stations"]) thisyear = datetime.datetime.now().year cursor.execute( """ WITH scenario as ( SELECT """ + str(thisyear) + """::int as year, month, high, low, precip from """ + table + """ WHERE station = %s and day > %s and day <= %s and sday != '0229' ), obs as ( select year, month, high, low, precip from """ + table + """ WHERE station = %s and day >= %s and day <= %s ), data as ( SELECT * from obs UNION select * from scenario ) SELECT year, month, avg(high) as tmax, avg(low) as tmin, sum(precip) as prec from data GROUP by year, month """, (station, ctx["scenario_sts"], ctx["scenario_ets"], station, sts, ets), ) data = {} for row in cursor: if row["year"] not in data: data[row["year"]] = {} for mo in range(1, 13): data[row["year"]][mo] = {"prec": -99, "tmin": -99, "tmax": -99} data[row["year"]][row["month"]] = { "prec": (row["prec"] * units("inch")).to(units("mm")).m, "tmin": f2c(row["tmin"]), "tmax": f2c(row["tmax"]), } sio = StringIO() sio.write("# Iowa Environmental Mesonet -- NWS Cooperative Data\n") sio.write(f"# Created: {utc():%d %b %Y %H:%M:%S} UTC\n") sio.write("# Contact: daryl herzmann [email protected] 515-294-5978\n") sio.write("# Station: %s %s\n" % (station, nt.sts[station]["name"])) sio.write("# Data Period: %s - %s\n" % (sts, ets)) if ctx["scenario"] == "yes": sio.write( "# !SCENARIO DATA! inserted after: %s replicating year: %s\n" % (ctx["ets"], ctx["scenario_year"]) ) idxs = ["prec", "tmin", "tmax"] for year in range(sts.year, ets.year + 1): for idx in idxs: sio.write( ( "%s %s%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f%7.2f" "%7.2f%7.2f%7.2f%7.2f%7.2f\n" ) % ( idx, year, data[year][1][idx], data[year][2][idx], data[year][3][idx], data[year][4][idx], data[year][5][idx], data[year][6][idx], data[year][7][idx], data[year][8][idx], data[year][9][idx], data[year][10][idx], data[year][11][idx], data[year][12][idx], ) ) return sio.getvalue().encode("ascii") def do_daycent(ctx): """Materialize data for daycent Daily Weather Data File (use extra weather drivers = 0): > 1 1 1990 1 7.040 -10.300 0.000 NOTES: Column 1 - Day of month, 1-31 Column 2 - Month of year, 1-12 Column 3 - Year Column 4 - Day of the year, 1-366 Column 5 - Maximum temperature for day, degrees C Column 6 - Minimum temperature for day, degrees C Column 7 - Precipitation for day, centimeters """ if len(ctx["stations"]) > 1: return ( "ERROR: Daycent output is only " "permitted for one station at a time." ).encode("ascii") dbconn = get_database() cursor = dbconn.cursor(cursor_factory=psycopg2.extras.DictCursor) table = get_tablename(ctx["stations"]) extra = {} thisyear = datetime.datetime.now().year if ctx["scenario"] == "yes": sts = datetime.datetime(int(ctx["scenario_year"]), 1, 1) ets = datetime.datetime(int(ctx["scenario_year"]), 12, 31) febtest = datetime.date(thisyear, 3, 1) - datetime.timedelta(days=1) sdaylimit = "" if febtest.day == 28: sdaylimit = " and sday != '0229'" cursor.execute( """ SELECT day, high, low, precip from """ + table + """ WHERE station = %s and day >= %s and day <= %s """ + sdaylimit + """ """, (ctx["stations"][0], sts, ets), ) for row in cursor: ts = row[0].replace(year=thisyear) extra[ts] = row if febtest not in extra: feb28 = datetime.date(thisyear, 2, 28) extra[febtest] = extra[feb28] if ctx.get("hayhoe_model") is not None: cursor.execute( """ SELECT day, high, low, precip, extract(doy from day) as doy from hayhoe_daily WHERE station = %s and day >= %s and scenario = %s and model = %s ORDER by day ASC """, ( ctx["stations"][0], ctx["sts"], ctx["hayhoe_scenario"], ctx["hayhoe_model"], ), ) else: cursor.execute( """ SELECT day, high, low, precip, extract(doy from day) as doy from """ + table + """ WHERE station = %s and day >= %s and day <= %s ORDER by day ASC """, (ctx["stations"][0], ctx["sts"], ctx["ets"]), ) sio = StringIO() sio.write("Daily Weather Data File (use extra weather drivers = 0):\n\n") for row in cursor: sio.write( ("%s %s %s %s %.2f %.2f %.2f\n") % ( row["day"].day, row["day"].month, row["day"].year, int(row["doy"]), f2c(row["high"]), f2c(row["low"]), (row["precip"] * units("inch")).to(units("cm")).m, ) ) if extra: dec31 = datetime.date(thisyear, 12, 31) now = row["day"] while now <= dec31: row = extra[now] sio.write( ("%s %s %s %s %.2f %.2f %.2f\n") % ( now.day, now.month, now.year, int(now.strftime("%j")), f2c(row["high"]), f2c(row["low"]), (row["precip"] * units("inch")).to(units("cm")).m, ) ) now += datetime.timedelta(days=1) return sio.getvalue().encode("ascii") def get_tablename(stations): """Figure out the table that has the data for these stations""" states = [] for sid in stations: if sid[:2] not in states: states.append(sid[:2]) if len(states) == 1: return "alldata_%s" % (states[0],) return "alldata" def get_stationtable(stations): """Figure out our station table!""" states = [] networks = [] for sid in stations: if sid[:2] not in states: states.append(sid[:2]) networks.append("%sCLIMATE" % (sid[:2],)) return NetworkTable(networks, only_online=False) def do_simple(ctx): """Generate Simple output""" dbconn = get_database() cursor = dbconn.cursor(cursor_factory=psycopg2.extras.DictCursor) table = get_tablename(ctx["stations"]) nt = get_stationtable(ctx["stations"]) thisyear = datetime.datetime.now().year if len(ctx["stations"]) == 1: ctx["stations"].append("X") limitrowcount = "LIMIT 1048000" if ctx["what"] == "excel" else "" sql = f""" WITH scenario as ( SELECT station, high, low, precip, snow, snowd, narr_srad, temp_estimated, precip_estimated, merra_srad, merra_srad_cs, hrrr_srad, to_char(('{thisyear}-'||month||'-'||extract(day from day))::date, 'YYYY/mm/dd') as day, extract(doy from day) as doy, gddxx(50, 86, high, low) as gdd_50_86, gddxx(40, 86, high, low) as gdd_40_86, round((5.0/9.0 * (high - 32.0))::numeric,1) as highc, round((5.0/9.0 * (low - 32.0))::numeric,1) as lowc, round((precip * 25.4)::numeric,1) as precipmm from {table} WHERE station IN {str(tuple(ctx["stations"]))} and day >= %s and day <= %s ), obs as ( SELECT station, high, low, precip, snow, snowd, narr_srad, temp_estimated, precip_estimated, merra_srad, merra_srad_cs, hrrr_srad, to_char(day, 'YYYY/mm/dd') as day, extract(doy from day) as doy, gddxx(50, 86, high, low) as gdd_50_86, gddxx(40, 86, high, low) as gdd_40_86, round((5.0/9.0 * (high - 32.0))::numeric,1) as highc, round((5.0/9.0 * (low - 32.0))::numeric,1) as lowc, round((precip * 25.4)::numeric,1) as precipmm from {table} WHERE station IN {str(tuple(ctx["stations"]))} and day >= %s and day <= %s ), total as ( SELECT * from obs UNION SELECT * from scenario ) SELECT * from total ORDER by day ASC {limitrowcount}""" args = (ctx["scenario_sts"], ctx["scenario_ets"], ctx["sts"], ctx["ets"]) cols = ["station", "station_name", "day", "doy"] if ctx["inclatlon"] == "yes": cols.insert(2, "lat") cols.insert(3, "lon") cols = cols + ctx["myvars"] if ctx["what"] == "excel": # Do the excel logic df = pd.read_sql(sql, get_dbconnstr("coop"), params=args) # Convert day into a python date type df["day"] = pd.to_datetime(df["day"]).dt.date def _gs(x, y): return nt.sts[x][y] df["station_name"] = [_gs(x, "name") for x in df["station"]] if "lat" in cols: df["lat"] = [_gs(x, "lat") for x in df["station"]] df["lon"] = [_gs(x, "lon") for x in df["station"]] bio = BytesIO() df.to_excel(bio, columns=cols, index=False, engine="openpyxl") return bio.getvalue() cursor.execute(sql, args) sio = StringIO() sio.write("# Iowa Environmental Mesonet -- NWS Cooperative Data\n") sio.write(f"# Created: {utc():%d %b %Y %H:%M:%S} UTC\n") sio.write("# Contact: daryl herzmann [email protected] 515-294-5978\n") sio.write("# Data Period: %s - %s\n" % (ctx["sts"], ctx["ets"])) if ctx["scenario"] == "yes": sio.write( "# !SCENARIO DATA! inserted after: %s replicating year: %s\n" % (ctx["ets"], ctx["scenario_year"]) ) p = {"comma": ",", "tab": "\t", "space": " "} d = p[ctx["delim"]] sio.write(d.join(cols) + "\r\n") for row in cursor: sid = row["station"] dc = row.copy() dc["station_name"] = nt.sts[sid]["name"] dc["lat"] = "%.4f" % (nt.sts[sid]["lat"],) dc["lon"] = "%.4f" % (nt.sts[sid]["lon"],) dc["doy"] = "%.0f" % (dc["doy"],) res = [] for n in cols: res.append(str(dc[n])) sio.write((d.join(res)).replace("None", "M") + "\r\n") return sio.getvalue().encode("ascii") def do_salus(ctx): """Generate SALUS StationID, Year, DOY, SRAD, Tmax, Tmin, Rain, DewP, Wind, Par, dbnum CTRL, 1981, 1, 5.62203, 2.79032, -3.53361, 5.43766, NaN, NaN, NaN, 2 CTRL, 1981, 2, 3.1898, 1.59032, -6.83361, 1.38607, NaN, NaN, NaN, 3 """ if len(ctx["stations"]) > 1: return ( "ERROR: SALUS output is only " "permitted for one station at a time." ).encode("ascii") dbconn = get_database() cursor = dbconn.cursor(cursor_factory=psycopg2.extras.DictCursor) scenario_year = 2030 asts = datetime.date(2030, 1, 1) if ctx["scenario"] == "yes": # Tricky! scenario_year = ctx["scenario_year"] today = datetime.date.today() asts = datetime.date(scenario_year, today.month, today.day) table = get_tablename(ctx["stations"]) station = ctx["stations"][0] thisyear = datetime.datetime.now().year cursor.execute( f""" WITH scenario as ( SELECT ('{thisyear}-'||month||'-'||extract(day from day))::date as day, high, low, precip, station, coalesce(narr_srad, merra_srad, hrrr_srad) as srad from {table} WHERE station = %s and day >= %s and year = %s ), obs as ( SELECT day, high, low, precip, station, coalesce(narr_srad, merra_srad, hrrr_srad) as srad from {table} WHERE station = %s and day >= %s and day <= %s ORDER by day ASC ), total as ( SELECT *, extract(doy from day) as doy from obs UNION SELECT * from scenario ) SELECT * from total ORDER by day ASC """, (station, asts, scenario_year, station, ctx["sts"], ctx["ets"]), ) sio = StringIO() sio.write( ( "StationID, Year, DOY, SRAD, Tmax, Tmin, Rain, DewP, " "Wind, Par, dbnum\n" ) ) for i, row in enumerate(cursor): srad = -99 if row["srad"] is None else row["srad"] sio.write( ("%s, %s, %s, %.4f, %.2f, %.2f, %.2f, , , , %s\n") % ( station[:4], row["day"].year, int(row["doy"]), srad, f2c(row["high"]), f2c(row["low"]), row["precip"] * 25.4, i + 2, ) ) return sio.getvalue().encode("ascii") def do_dndc(ctx): """Process DNDC * One file per year! named StationName / StationName_YYYY.txt * julian day, tmax C , tmin C, precip cm seperated by space """ dbconn = get_database() cursor = dbconn.cursor(cursor_factory=psycopg2.extras.DictCursor) table = get_tablename(ctx["stations"]) nt = get_stationtable(ctx["stations"]) if len(ctx["stations"]) == 1: ctx["stations"].append("X") scenario_year = 2030 asts = datetime.date(2030, 1, 1) if ctx["scenario"] == "yes": # Tricky! scenario_year = ctx["scenario_year"] today = datetime.date.today() asts = datetime.date(scenario_year, today.month, today.day) thisyear = datetime.datetime.now().year cursor.execute( f""" WITH scenario as ( SELECT ('{thisyear}-'||month||'-'||extract(day from day))::date as day, high, low, precip, station from {table} WHERE station IN %s and day >= %s and year = %s), obs as ( SELECT day, high, low, precip, station from {table} WHERE station IN %s and day >= %s and day <= %s), total as ( SELECT *, extract(doy from day) as doy from obs UNION SELECT *, extract(doy from day) as doy from scenario ) SELECT * from total ORDER by day ASC """, ( tuple(ctx["stations"]), asts, scenario_year, tuple(ctx["stations"]), ctx["sts"], ctx["ets"], ), ) zipfiles = {} for row in cursor: station = row["station"] sname = nt.sts[station]["name"].replace(" ", "_") fn = f"{sname}/{sname}_{row['day'].year}.txt" if fn not in zipfiles: zipfiles[fn] = "" zipfiles[fn] += ("%s %.2f %.2f %.2f\n") % ( int(row["doy"]), f2c(row["high"]), f2c(row["low"]), row["precip"] * 2.54, ) sio = BytesIO() with zipfile.ZipFile(sio, "a") as zf: for fn, fp in zipfiles.items(): zf.writestr(fn, fp) return sio.getvalue() def do_swat(ctx): """SWAT Two files, one for precip [mm] and one for hi and low temperature [C] """ table = get_tablename(ctx["stations"]) if len(ctx["stations"]) == 1: ctx["stations"].append("X") scenario_year = 2030 asts = datetime.date(2030, 1, 1) if ctx["scenario"] == "yes": # Tricky! scenario_year = ctx["scenario_year"] today = datetime.date.today() asts = datetime.date(scenario_year, today.month, today.day) thisyear = datetime.datetime.now().year df = pd.read_sql( text( f""" WITH scenario as ( SELECT ('{thisyear}-'||month||'-'||extract(day from day))::date as day, high, low, precip, station from {table} WHERE station IN :sids and day >= :asts and year = :scenario_year), obs as ( SELECT day, high, low, precip, station from {table} WHERE station IN :sids and day >= :sts and day <= :ets), total as ( SELECT *, extract(doy from day) as doy from obs UNION SELECT *, extract(doy from day) as doy from scenario ) SELECT * from total ORDER by day ASC """ ), get_dbconnstr("coop"), params={ "sids": tuple(ctx["stations"]), "asts": asts, "scenario_year": scenario_year, "sts": ctx["sts"], "ets": ctx["ets"], }, index_col=None, ) df["tmax"] = f2c(df["high"].values) df["tmin"] = f2c(df["low"].values) df["pcpn"] = (df["precip"].values * units("inch")).to(units("mm")).m zipfiles = {} for station, df2 in df.groupby(by="station"): pcpfn = f"swatfiles/{station}.pcp" tmpfn = f"swatfiles/{station}.tmp" zipfiles[pcpfn] = "IEM COOP %s\n\n\n\n" % (station,) zipfiles[tmpfn] = "IEM COOP %s\n\n\n\n" % (station,) for _i, row in df2.iterrows(): zipfiles[pcpfn] += "%s%03i%5.1f\n" % ( row["day"].year, row["doy"], row["pcpn"], ) zipfiles[tmpfn] += ("%s%03i%5.1f%5.1f\n") % ( row["day"].year, row["doy"], row["tmax"], row["tmin"], ) sio = BytesIO() with zipfile.ZipFile(sio, "a") as zf: for fn, fp in zipfiles.items(): zf.writestr(fn, fp) return sio.getvalue() def application(environ, start_response): """go main go""" form = parse_formvars(environ) ctx = {} ctx["stations"] = get_cgi_stations(form) if not ctx["stations"]: start_response( "500 Internal Server Error", [("Content-type", "text/plain")] ) return [b"No stations were specified for the request."] ctx["sts"], ctx["ets"] = get_cgi_dates(form) ctx["myvars"] = form.getall("vars[]") # Model specification trumps vars[] if form.get("model") is not None: ctx["myvars"] = [form.get("model")] ctx["what"] = form.get("what", "view") ctx["delim"] = form.get("delim", "comma") ctx["inclatlon"] = form.get("gis", "no") ctx["scenario"] = form.get("scenario", "no") ctx["hayhoe_scenario"] = form.get("hayhoe_scenario") ctx["hayhoe_model"] = form.get("hayhoe_model") ctx["scenario_year"] = 2099 if ctx["scenario"] == "yes": ctx["scenario_year"] = int(form.get("scenario_year", 2099)) ctx["scenario_sts"], ctx["scenario_ets"] = get_scenario_period(ctx) # TODO: this code stinks and is likely buggy headers = [] if ( "apsim" in ctx["myvars"] or "daycent" in ctx["myvars"] or "century" in ctx["myvars"] ): headers.append(("Content-type", "text/plain")) elif "dndc" not in ctx["myvars"] and ctx["what"] != "excel": if ctx["what"] == "download": headers.append(("Content-type", "application/octet-stream")) dlfn = "changeme.txt" if len(ctx["stations"]) < 10: dlfn = "%s.txt" % ("_".join(ctx["stations"]),) headers.append( ("Content-Disposition", "attachment; filename=%s" % (dlfn,)) ) else: headers.append(("Content-type", "text/plain")) elif "dndc" in ctx["myvars"]: headers.append(("Content-type", "application/octet-stream")) headers.append( ("Content-Disposition", "attachment; filename=dndc.zip") ) elif "swat" in ctx["myvars"]: headers.append(("Content-type", "application/octet-stream")) headers.append( ("Content-Disposition", "attachment; filename=swatfiles.zip") ) elif ctx["what"] == "excel": headers.append(("Content-type", EXL)) headers.append( ("Content-Disposition", "attachment; filename=nwscoop.xlsx") ) start_response("200 OK", headers) # OK, now we fret if "daycent" in ctx["myvars"]: res = do_daycent(ctx) elif "century" in ctx["myvars"]: res = do_century(ctx) elif "apsim" in ctx["myvars"]: res = do_apsim(ctx) elif "dndc" in ctx["myvars"]: res = do_dndc(ctx) elif "salus" in ctx["myvars"]: res = do_salus(ctx) elif "swat" in ctx["myvars"]: res = do_swat(ctx) else: res = do_simple(ctx) return [res] def test_sane_date(): """Test our sane_date() method""" assert sane_date(2000, 9, 31) == datetime.date(2000, 9, 30) assert sane_date(2000, 2, 31) == datetime.date(2000, 2, 29) assert sane_date(2000, 1, 15) == datetime.date(2000, 1, 15)
from django.http import Http404 from django.utils.translation import gettext as _ from django.views.generic import DetailView, ListView from django.views.generic.detail import SingleObjectMixin from taggit.models import Tag from ..core.views import PaginatedListView from .models import Account, Photo, Photoset, User class PhotosOrderMixin(object): """ For pages which list Photos and can change the order they're viewed in. Can have 'order' in the GET string, with values of 'uploaded' or 'taken'. Adds an 'order' key to the context_data, with value of 'uploaded'/'taken'. """ def get_ordering(self): args = self.request.GET if "order" in args and args["order"] == "taken": return "-taken_time" else: return "-post_time" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["order"] = ( "uploaded" if self.get_ordering() == "-post_time" else "taken" ) return context def get_queryset(self): """Order by -taken_time or -post_time. If ordering by taken_time, exclude Photos where taken_unknown = True. """ queryset = super().get_queryset() # Not sure why we need to repeat some of this from # ListView.get_queryset() here, but the UserDetail page, for one, # wasn't ordering by taken_time without this. ordering = self.get_ordering() if ordering: if ordering == "-taken_time": # Exclude where we don't know the taken time. queryset = queryset.filter(taken_unknown=False) import six if isinstance(ordering, six.string_types): ordering = (ordering,) queryset = queryset.order_by(*ordering) return queryset class HomeView(PhotosOrderMixin, PaginatedListView): template_name = "flickr/home.html" paginate_by = 48 queryset = Photo.public_photo_objects def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["account_list"] = Account.objects.all() return context def get_queryset(self): """ Adding the prefetch_related() to self.queryset caused some tests to fail for some reason. """ queryset = super().get_queryset() return queryset.prefetch_related("user") class PhotosetListView(ListView): template_name = "flickr/photoset_list.html" queryset = Photoset.objects.all().prefetch_related("primary_photo", "user") def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["photoset_list"] = context["object_list"] context["account_list"] = Account.objects.all() return context class SingleUserMixin(SingleObjectMixin): """Used for views that need data about a User based on nsid in the URL, and its Account if it has one. """ slug_field = "nsid" slug_url_kwarg = "nsid" def get(self, request, *args, **kwargs): self.object = self.get_object(queryset=User.objects.all()) return super().get(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["flickr_user"] = self.object try: context["account"] = Account.objects.get(user=self.object) except Account.DoesNotExist: context["account"] = None return context class UserDetailView(PhotosOrderMixin, SingleUserMixin, PaginatedListView): """A single Flickr User and its Photos. The user might have an Account associated with it, or might not. """ template_name = "flickr/user_detail.html" paginate_by = 48 queryset = Photo.public_objects def get_queryset(self): "All public Photos from this Account." queryset = super().get_queryset() return queryset.filter(user=self.object).prefetch_related("user") def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["photo_list"] = context["object_list"] return context class PhotoDetailView(DetailView): """Show a single Photo. It might be posted by one of the Accounts, or might be a Photo by someone else, favorited. """ model = Photo slug_field = "flickr_id" slug_url_kwarg = "flickr_id" def get_object(self, queryset=None): """Do standard DetailView.get_object(), but return 404 if the Photo is private, OR if the URL's user NSID doesn't match the photo's.""" obj = super().get_object(queryset) if obj.is_private or obj.user.nsid != self.kwargs["nsid"]: raise Http404( _("No %(verbose_name)s found matching the query") % {"verbose_name": obj._meta.verbose_name} ) return obj def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["flickr_user"] = context["photo"].user # We can show favorited Photos; they won't have an associated Account. try: context["account"] = Account.objects.get(user=context["flickr_user"]) except Account.DoesNotExist: context["account"] = None return context class TagListView(ListView): template_name = "flickr/tag_list.html" context_object_name = "tag_list" def get_queryset(self): return Photo.tags.most_common()[:100] def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["account_list"] = Account.objects.all() return context class TagDetailView(PhotosOrderMixin, SingleObjectMixin, PaginatedListView): "All Photos with a certain tag from all Accounts" template_name = "flickr/tag_detail.html" allow_empty = False queryset = Photo.public_objects.prefetch_related("user") def get(self, request, *args, **kwargs): self.object = self.get_object(queryset=Tag.objects.all()) return super().get(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["tag"] = self.object context["account_list"] = Account.objects.all() context["photo_list"] = context["object_list"] return context def get_queryset(self): """Show all the public Photos associated with this tag.""" queryset = super().get_queryset() return queryset.filter(tags__slug__in=[self.object.slug]) class UserTagDetailView(PhotosOrderMixin, SingleUserMixin, PaginatedListView): "All Photos with a certain Tag from one User" template_name = "flickr/user_tag_detail.html" allow_empty = False queryset = Photo.public_objects.prefetch_related("user") def get(self, request, *args, **kwargs): self.tag_object = self.get_tag_object() return super().get(request, *args, **kwargs) def get_tag_object(self): """Custom method for fetching the Tag.""" try: obj = Tag.objects.get(slug=self.kwargs["tag_slug"]) except Tag.DoesNotExist: raise Http404(_("No Tags found matching the query")) return obj def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["tag"] = self.tag_object context["photo_list"] = context["object_list"] return context def get_queryset(self): """Show all the public Photos associated with this user.""" queryset = super().get_queryset() return queryset.filter( user=self.object, tags__slug__in=[self.kwargs["tag_slug"]] ) class UserPhotosetListView(SingleUserMixin, ListView): template_name = "flickr/user_photoset_list.html" queryset = Photoset.objects.all().prefetch_related("primary_photo", "user") def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["photoset_list"] = context["object_list"] return context def get_queryset(self): """Show all Photosets associated with this user.""" queryset = super().get_queryset() return queryset.filter(user=self.object) class PhotosetDetailView(PhotosOrderMixin, SingleUserMixin, PaginatedListView): template_name = "flickr/photoset_detail.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) # NOTE: photoset.objects.all() will return PRIVATE photos too. # You probably don't want to do that. context["photoset"] = self.photoset_object context["photo_list"] = context["object_list"] return context def get_queryset(self): """Show all the public Photos in this Photoset.""" self.photoset_object = self.get_photoset_object() return self.photoset_object.public_photos() def get_photoset_object(self): """Custom method for fetching the Photoset.""" try: obj = Photoset.objects.get( user=self.object, flickr_id=self.kwargs["flickr_id"] ) except Photoset.DoesNotExist: raise Http404(_("No Photosets found matching the query")) return obj
from cloudify.decorators import workflow from cloudify.workflows import ctx from cloudify.workflows import tasks as workflow_tasks from utils import set_state_task from utils import operation_task from utils import link_tasks from utils import CustomContext from utils import generate_native_node_workflows from utils import _get_all_nodes from utils import _get_all_nodes_instances from utils import _get_all_modified_node_instances from utils import is_host_node from workflow import WfStartEvent from workflow import build_pre_event # subworkflow 'install' for host 'Compute' def install_host_compute(ctx, graph, custom_context): custom_context.register_native_delegate_wf_step('Compute', 'Compute_install') generate_native_node_workflows(ctx, graph, custom_context, 'install') # subworkflow 'uninstall' for host 'Compute' def uninstall_host_compute(ctx, graph, custom_context): custom_context.register_native_delegate_wf_step('Compute', 'Compute_uninstall') generate_native_node_workflows(ctx, graph, custom_context, 'uninstall') def install_host(ctx, graph, custom_context, compute): options = {} options['Compute'] = install_host_compute options[compute](ctx, graph, custom_context) def uninstall_host(ctx, graph, custom_context, compute): options = {} options['Compute'] = uninstall_host_compute options[compute](ctx, graph, custom_context) @workflow def a4c_install(**kwargs): graph = ctx.graph_mode() nodes = _get_all_nodes(ctx) instances = _get_all_nodes_instances(ctx) custom_context = CustomContext(ctx, instances, nodes) ctx.internal.send_workflow_event(event_type='a4c_workflow_started', message=build_pre_event(WfStartEvent('install'))) _a4c_install(ctx, graph, custom_context) return graph.execute() @workflow def a4c_uninstall(**kwargs): graph = ctx.graph_mode() nodes = _get_all_nodes(ctx) instances = _get_all_nodes_instances(ctx) custom_context = CustomContext(ctx, instances, nodes) ctx.internal.send_workflow_event(event_type='a4c_workflow_started', message=build_pre_event(WfStartEvent('uninstall'))) _a4c_uninstall(ctx, graph, custom_context) return graph.execute() def _a4c_install(ctx, graph, custom_context): # following code can be pasted in src/test/python/workflows/tasks.py for simulation custom_context.register_native_delegate_wf_step('NetPub', 'NetPub_install') custom_context.register_native_delegate_wf_step('Compute', 'Compute_install') generate_native_node_workflows(ctx, graph, custom_context, 'install') def _a4c_uninstall(ctx, graph, custom_context): # following code can be pasted in src/test/python/workflows/tasks.py for simulation custom_context.register_native_delegate_wf_step('Compute', 'Compute_uninstall') custom_context.register_native_delegate_wf_step('NetPub', 'NetPub_uninstall') generate_native_node_workflows(ctx, graph, custom_context, 'uninstall') def _get_scaling_group_name_from_node_id(ctx, node_id): scaling_groups=ctx.deployment.scaling_groups for group_name, scaling_group in ctx.deployment.scaling_groups.iteritems(): for member in scaling_group['members']: if member == node_id: ctx.logger.info("Node {} found in scaling group {}".format(node_id, group_name)) return group_name return None @workflow def a4c_scale(ctx, node_id, delta, scale_compute, **kwargs): delta = int(delta) scalable_entity_name = _get_scaling_group_name_from_node_id(ctx, node_id) scaling_group = ctx.deployment.scaling_groups.get(scalable_entity_name) if scalable_entity_name: curr_num_instances = scaling_group['properties']['current_instances'] planned_num_instances = curr_num_instances + delta scale_id = scalable_entity_name else: scaled_node = ctx.get_node(scalable_entity_name) if not scaled_node: raise ValueError("Node {0} doesn't exist".format(scalable_entity_name)) if not is_host_node(scaled_node): raise ValueError("Node {0} is not a host. This workflow can only scale hosts".format(scalable_entity_name)) if delta == 0: ctx.logger.info('delta parameter is 0, so no scaling will take place.') return curr_num_instances = scaled_node.number_of_instances planned_num_instances = curr_num_instances + delta scale_id = scaled_node.id if planned_num_instances < 1: raise ValueError('Provided delta: {0} is illegal. current number of' 'instances of node/group {1} is {2}' .format(delta, scalable_entity_name, curr_num_instances)) modification = ctx.deployment.start_modification({ scale_id: { 'instances': planned_num_instances } }) ctx.logger.info('Deployment modification started. [modification_id={0} : {1}]'.format(modification.id, dir(modification))) try: if delta > 0: ctx.logger.info('Scaling host/group {0} adding {1} instances'.format(scalable_entity_name, delta)) added_and_related = _get_all_nodes(modification.added) added = _get_all_modified_node_instances(added_and_related, 'added') graph = ctx.graph_mode() ctx.internal.send_workflow_event(event_type='a4c_workflow_started', message=build_pre_event(WfStartEvent('scale', 'install'))) custom_context = CustomContext(ctx, added, added_and_related) install_host(ctx, graph, custom_context, node_id) try: graph.execute() except: ctx.logger.error('Scale failed. Uninstalling node/group {0}'.format(scalable_entity_name)) graph = ctx.internal.task_graph for task in graph.tasks_iter(): graph.remove_task(task) try: custom_context = CustomContext(ctx, added, added_and_related) uninstall_host(ctx, graph, custom_context, scalable_entity_name) graph.execute() except: ctx.logger.error('Node {0} uninstallation following scale failure has failed'.format(scalable_entity_name)) raise else: ctx.logger.info('Unscaling host/group {0} removing {1} instances'.format(scalable_entity_name, delta)) removed_and_related = _get_all_nodes(modification.removed) removed = _get_all_modified_node_instances(removed_and_related, 'removed') graph = ctx.graph_mode() ctx.internal.send_workflow_event(event_type='a4c_workflow_started', message=build_pre_event(WfStartEvent('scale', 'uninstall'))) custom_context = CustomContext(ctx, removed, removed_and_related) uninstall_host(ctx, graph, custom_context, node_id) try: graph.execute() except: ctx.logger.error('Unscale failed.') raise except: ctx.logger.warn('Rolling back deployment modification. [modification_id={0}]'.format(modification.id)) try: modification.rollback() except: ctx.logger.warn('Deployment modification rollback failed. The ' 'deployment model is most likely in some corrupted' ' state.' '[modification_id={0}]'.format(modification.id)) raise raise else: try: modification.finish() except: ctx.logger.warn('Deployment modification finish failed. The ' 'deployment model is most likely in some corrupted' ' state.' '[modification_id={0}]'.format(modification.id)) raise @workflow def a4c_heal( ctx, node_instance_id, diagnose_value='Not provided', **kwargs): """Reinstalls the whole subgraph of the system topology The subgraph consists of all the nodes that are hosted in the failing node's compute and the compute itself. Additionally it unlinks and establishes appropriate relationships :param ctx: cloudify context :param node_id: failing node's id :param diagnose_value: diagnosed reason of failure """ ctx.logger.info("Starting 'heal' workflow on {0}, Diagnosis: {1}" .format(node_instance_id, diagnose_value)) failing_node = ctx.get_node_instance(node_instance_id) host_instance_id = failing_node._node_instance.host_id failing_node_host = ctx.get_node_instance(host_instance_id) node_id = failing_node_host.node_id subgraph_node_instances = failing_node_host.get_contained_subgraph() added_and_related = _get_all_nodes(ctx) try: graph = ctx.graph_mode() ctx.internal.send_workflow_event(event_type='a4c_workflow_started', message=build_pre_event(WfStartEvent('heal', 'uninstall'))) custom_context = CustomContext(ctx, subgraph_node_instances, added_and_related) uninstall_host(ctx, graph, custom_context, node_id) graph.execute() except: ctx.logger.error('Uninstall while healing failed.') graph = ctx.internal.task_graph for task in graph.tasks_iter(): graph.remove_task(task) ctx.internal.send_workflow_event(event_type='a4c_workflow_started', message=build_pre_event(WfStartEvent('heal', 'install'))) custom_context = CustomContext(ctx, subgraph_node_instances, added_and_related) install_host(ctx, graph, custom_context, node_id) graph.execute() #following code can be pasted in src/test/python/workflows/context.py for simulation #def _build_nodes(ctx): #types = [] #types.append('alien.cloudify.aws.nodes.Compute') #types.append('tosca.nodes.Compute') #types.append('tosca.nodes.Root') #node_Compute = _build_node(ctx, 'Compute', types, 1) #types = [] #types.append('alien.nodes.aws.PublicNetwork') #types.append('alien.nodes.PublicNetwork') #types.append('tosca.nodes.Network') #types.append('tosca.nodes.Root') #node_NetPub = _build_node(ctx, 'NetPub', types, 1) #_add_relationship(node_Compute, node_NetPub)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np import time import os import cProfile, pstats, StringIO import paddle import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.profiler as profiler from recordio_converter import imagenet_train, imagenet_test def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'): conv1 = fluid.layers.conv2d( input=input, filter_size=filter_size, num_filters=ch_out, stride=stride, padding=padding, act=None, bias_attr=False) return fluid.layers.batch_norm(input=conv1, act=act) def shortcut(input, ch_out, stride): ch_in = input.shape[1] # if args.data_format == 'NCHW' else input.shape[-1] if ch_in != ch_out: return conv_bn_layer(input, ch_out, 1, stride, 0, None) else: return input def basicblock(input, ch_out, stride): short = shortcut(input, ch_out, stride) conv1 = conv_bn_layer(input, ch_out, 3, stride, 1) conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None) return fluid.layers.elementwise_add(x=short, y=conv2, act='relu') def bottleneck(input, ch_out, stride): short = shortcut(input, ch_out * 4, stride) conv1 = conv_bn_layer(input, ch_out, 1, stride, 0) conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1) conv3 = conv_bn_layer(conv2, ch_out * 4, 1, 1, 0, act=None) return fluid.layers.elementwise_add(x=short, y=conv3, act='relu') def layer_warp(block_func, input, ch_out, count, stride): res_out = block_func(input, ch_out, stride) for i in range(1, count): res_out = block_func(res_out, ch_out, 1) return res_out def resnet_imagenet(input, class_dim, depth=50, data_format='NCHW'): cfg = { 18: ([2, 2, 2, 1], basicblock), 34: ([3, 4, 6, 3], basicblock), 50: ([3, 4, 6, 3], bottleneck), 101: ([3, 4, 23, 3], bottleneck), 152: ([3, 8, 36, 3], bottleneck) } stages, block_func = cfg[depth] conv1 = conv_bn_layer(input, ch_out=64, filter_size=7, stride=2, padding=3) pool1 = fluid.layers.pool2d( input=conv1, pool_type='avg', pool_size=3, pool_stride=2) res1 = layer_warp(block_func, pool1, 64, stages[0], 1) res2 = layer_warp(block_func, res1, 128, stages[1], 2) res3 = layer_warp(block_func, res2, 256, stages[2], 2) res4 = layer_warp(block_func, res3, 512, stages[3], 2) pool2 = fluid.layers.pool2d( input=res4, pool_size=7, pool_type='avg', pool_stride=1, global_pooling=True) out = fluid.layers.fc(input=pool2, size=class_dim, act='softmax') return out def resnet_cifar10(input, class_dim, depth=32, data_format='NCHW'): assert (depth - 2) % 6 == 0 n = (depth - 2) // 6 conv1 = conv_bn_layer( input=input, ch_out=16, filter_size=3, stride=1, padding=1) res1 = layer_warp(basicblock, conv1, 16, n, 1) res2 = layer_warp(basicblock, res1, 32, n, 2) res3 = layer_warp(basicblock, res2, 64, n, 2) pool = fluid.layers.pool2d( input=res3, pool_size=8, pool_type='avg', pool_stride=1) out = fluid.layers.fc(input=pool, size=class_dim, act='softmax') return out def get_model(args): model = resnet_cifar10 if args.data_set == "cifar10": class_dim = 10 if args.data_format == 'NCHW': dshape = [3, 32, 32] else: dshape = [32, 32, 3] model = resnet_cifar10 train_reader = paddle.dataset.cifar.train10() test_reader = paddle.dataset.cifar.test10() elif args.data_set == "flowers": class_dim = 102 if args.data_format == 'NCHW': dshape = [3, 224, 224] else: dshape = [224, 224, 3] model = resnet_imagenet train_reader = paddle.dataset.flowers.train() test_reader = paddle.dataset.flowers.test() elif args.data_set == "imagenet": class_dim = 1000 if args.data_format == 'NCHW': dshape = [3, 224, 224] else: dshape = [224, 224, 3] model = resnet_imagenet if not args.data_path: raise Exception( "Must specify --data_path when training with imagenet") train_reader = imagenet_train(args.data_path) test_reader = imagenet_test(args.data_path) if args.use_reader_op: filelist = [ os.path.join(args.data_path, f) for f in os.listdir(args.data_path) ] data_file = fluid.layers.open_files( filenames=filelist, shapes=[[-1] + dshape, (-1, 1)], lod_levels=[0, 0], dtypes=["float32", "int64"], thread_num=args.gpus, pass_num=args.pass_num) data_file = fluid.layers.double_buffer( fluid.layers.batch( data_file, batch_size=args.batch_size)) input, label = fluid.layers.read_file(data_file) else: input = fluid.layers.data(name='data', shape=dshape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') if args.device == 'CPU' and args.cpus > 1: places = fluid.layers.get_places(args.cpus) pd = fluid.layers.ParallelDo(places) with pd.do(): predict = model(pd.read_input(input), class_dim) label = pd.read_input(label) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) batch_acc = fluid.layers.accuracy(input=predict, label=label) pd.write_output(avg_cost) pd.write_output(batch_acc) avg_cost, batch_acc = pd() avg_cost = fluid.layers.mean(avg_cost) batch_acc = fluid.layers.mean(batch_acc) else: predict = model(input, class_dim) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) batch_acc = fluid.layers.accuracy(input=predict, label=label) inference_program = fluid.default_main_program().clone() with fluid.program_guard(inference_program): inference_program = fluid.io.get_inference_program( target_vars=[batch_acc]) optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9) batched_train_reader = paddle.batch( train_reader if args.no_random else paddle.reader.shuffle( train_reader, buf_size=5120), batch_size=args.batch_size * args.gpus, drop_last=True) batched_test_reader = paddle.batch( test_reader, batch_size=args.batch_size, drop_last=True) return avg_cost, inference_program, optimizer, batched_train_reader,\ batched_test_reader, batch_acc
"""Blocking and non-blocking HTTP client interfaces. This module defines a common interface shared by two implementations, ``simple_httpclient`` and ``curl_httpclient``. Applications may either instantiate their chosen implementation class directly or use the `AsyncHTTPClient` class from this module, which selects an implementation that can be overridden with the `AsyncHTTPClient.configure` method. The default implementation is ``simple_httpclient``, and this is expected to be suitable for most users' needs. However, some applications may wish to switch to ``curl_httpclient`` for reasons such as the following: * ``curl_httpclient`` has some features not found in ``simple_httpclient``, including support for HTTP proxies and the ability to use a specified network interface. * ``curl_httpclient`` is more likely to be compatible with sites that are not-quite-compliant with the HTTP spec, or sites that use little-exercised features of HTTP. * ``curl_httpclient`` is faster. * ``curl_httpclient`` was the default prior to Tornado 2.0. Note that if you are using ``curl_httpclient``, it is highly recommended that you use a recent version of ``libcurl`` and ``pycurl``. Currently the minimum supported version is 7.18.2, and the recommended version is 7.21.1 or newer. """ from __future__ import absolute_import, division, print_function, with_statement import functools import time import weakref from tornado.concurrent import TracebackFuture from tornado.escape import utf8 from tornado import httputil, stack_context from tornado.ioloop import IOLoop from tornado.util import Configurable class HTTPClient(object): """A blocking HTTP client. This interface is provided for convenience and testing; most applications that are running an IOLoop will want to use `AsyncHTTPClient` instead. Typical usage looks like this:: http_client = httpclient.HTTPClient() try: response = http_client.fetch("http://www.google.com/") print response.body except httpclient.HTTPError as e: print "Error:", e http_client.close() """ def __init__(self, async_client_class=None, **kwargs): self._io_loop = IOLoop() if async_client_class is None: async_client_class = AsyncHTTPClient self._async_client = async_client_class(self._io_loop, **kwargs) self._closed = False def __del__(self): self.close() def close(self): """Closes the HTTPClient, freeing any resources used.""" if not self._closed: self._async_client.close() self._io_loop.close() self._closed = True def fetch(self, request, **kwargs): """Executes a request, returning an `HTTPResponse`. The request may be either a string URL or an `HTTPRequest` object. If it is a string, we construct an `HTTPRequest` using any additional kwargs: ``HTTPRequest(request, **kwargs)`` If an error occurs during the fetch, we raise an `HTTPError`. """ response = self._io_loop.run_sync(functools.partial( self._async_client.fetch, request, **kwargs)) response.rethrow() return response class AsyncHTTPClient(Configurable): """An non-blocking HTTP client. Example usage:: def handle_request(response): if response.error: print "Error:", response.error else: print response.body http_client = AsyncHTTPClient() http_client.fetch("http://www.google.com/", handle_request) The constructor for this class is magic in several respects: It actually creates an instance of an implementation-specific subclass, and instances are reused as a kind of pseudo-singleton (one per `.IOLoop`). The keyword argument ``force_instance=True`` can be used to suppress this singleton behavior. Constructor arguments other than ``io_loop`` and ``force_instance`` are deprecated. The implementation subclass as well as arguments to its constructor can be set with the static method `configure()` """ @classmethod def configurable_base(cls): return AsyncHTTPClient @classmethod def configurable_default(cls): from tornado.simple_httpclient import SimpleAsyncHTTPClient return SimpleAsyncHTTPClient @classmethod def _async_clients(cls): attr_name = '_async_client_dict_' + cls.__name__ if not hasattr(cls, attr_name): setattr(cls, attr_name, weakref.WeakKeyDictionary()) return getattr(cls, attr_name) def __new__(cls, io_loop=None, force_instance=False, **kwargs): io_loop = io_loop or IOLoop.current() if io_loop in cls._async_clients() and not force_instance: return cls._async_clients()[io_loop] instance = super(AsyncHTTPClient, cls).__new__(cls, io_loop=io_loop, **kwargs) if not force_instance: cls._async_clients()[io_loop] = instance return instance def initialize(self, io_loop, defaults=None): self.io_loop = io_loop self.defaults = dict(HTTPRequest._DEFAULTS) if defaults is not None: self.defaults.update(defaults) def close(self): """Destroys this HTTP client, freeing any file descriptors used. This method is **not needed in normal use** due to the way that `AsyncHTTPClient` objects are transparently reused. ``close()`` is generally only necessary when either the `.IOLoop` is also being closed, or the ``force_instance=True`` argument was used when creating the `AsyncHTTPClient`. No other methods may be called on the `AsyncHTTPClient` after ``close()``. """ if self._async_clients().get(self.io_loop) is self: del self._async_clients()[self.io_loop] def fetch(self, request, callback=None, **kwargs): """Executes a request, asynchronously returning an `HTTPResponse`. The request may be either a string URL or an `HTTPRequest` object. If it is a string, we construct an `HTTPRequest` using any additional kwargs: ``HTTPRequest(request, **kwargs)`` This method returns a `.Future` whose result is an `HTTPResponse`. The ``Future`` wil raise an `HTTPError` if the request returned a non-200 response code. If a ``callback`` is given, it will be invoked with the `HTTPResponse`. In the callback interface, `HTTPError` is not automatically raised. Instead, you must check the response's ``error`` attribute or call its `~HTTPResponse.rethrow` method. """ if not isinstance(request, HTTPRequest): request = HTTPRequest(url=request, **kwargs) # We may modify this (to add Host, Accept-Encoding, etc), # so make sure we don't modify the caller's object. This is also # where normal dicts get converted to HTTPHeaders objects. request.headers = httputil.HTTPHeaders(request.headers) request = _RequestProxy(request, self.defaults) future = TracebackFuture() if callback is not None: callback = stack_context.wrap(callback) def handle_future(future): exc = future.exception() if isinstance(exc, HTTPError) and exc.response is not None: response = exc.response elif exc is not None: response = HTTPResponse( request, 599, error=exc, request_time=time.time() - request.start_time) else: response = future.result() self.io_loop.add_callback(callback, response) future.add_done_callback(handle_future) def handle_response(response): if response.error: future.set_exception(response.error) else: future.set_result(response) self.fetch_impl(request, handle_response) return future def fetch_impl(self, request, callback): raise NotImplementedError() @classmethod def configure(cls, impl, **kwargs): """Configures the `AsyncHTTPClient` subclass to use. ``AsyncHTTPClient()`` actually creates an instance of a subclass. This method may be called with either a class object or the fully-qualified name of such a class (or ``None`` to use the default, ``SimpleAsyncHTTPClient``) If additional keyword arguments are given, they will be passed to the constructor of each subclass instance created. The keyword argument ``max_clients`` determines the maximum number of simultaneous `~AsyncHTTPClient.fetch()` operations that can execute in parallel on each `.IOLoop`. Additional arguments may be supported depending on the implementation class in use. Example:: AsyncHTTPClient.configure("tornado.curl_httpclient.CurlAsyncHTTPClient") """ super(AsyncHTTPClient, cls).configure(impl, **kwargs) class HTTPRequest(object): """HTTP client request object.""" # Default values for HTTPRequest parameters. # Merged with the values on the request object by AsyncHTTPClient # implementations. _DEFAULTS = dict( connect_timeout=20.0, request_timeout=20.0, follow_redirects=True, max_redirects=5, use_gzip=True, proxy_password='', allow_nonstandard_methods=False, validate_cert=True) def __init__(self, url, method="GET", headers=None, body=None, auth_username=None, auth_password=None, auth_mode=None, connect_timeout=None, request_timeout=None, if_modified_since=None, follow_redirects=None, max_redirects=None, user_agent=None, use_gzip=None, network_interface=None, streaming_callback=None, header_callback=None, prepare_curl_callback=None, proxy_host=None, proxy_port=None, proxy_type=None, proxy_username=None, proxy_password=None, allow_nonstandard_methods=None, validate_cert=None, ca_certs=None, allow_ipv6=None, client_key=None, client_cert=None): r"""All parameters except ``url`` are optional. :arg string url: URL to fetch :arg string method: HTTP method, e.g. "GET" or "POST" :arg headers: Additional HTTP headers to pass on the request :arg body: HTTP body to pass on the request :type headers: `~tornado.httputil.HTTPHeaders` or `dict` :arg string auth_username: Username for HTTP authentication :arg string auth_password: Password for HTTP authentication :arg string auth_mode: Authentication mode; default is "basic". Allowed values are implementation-defined; ``curl_httpclient`` supports "basic" and "digest"; ``simple_httpclient`` only supports "basic" :arg float connect_timeout: Timeout for initial connection in seconds :arg float request_timeout: Timeout for entire request in seconds :arg if_modified_since: Timestamp for ``If-Modified-Since`` header :type if_modified_since: `datetime` or `float` :arg bool follow_redirects: Should redirects be followed automatically or return the 3xx response? :arg int max_redirects: Limit for ``follow_redirects`` :arg string user_agent: String to send as ``User-Agent`` header :arg bool use_gzip: Request gzip encoding from the server :arg string network_interface: Network interface to use for request. ``curl_httpclient`` only; see note below. :arg callable streaming_callback: If set, ``streaming_callback`` will be run with each chunk of data as it is received, and ``HTTPResponse.body`` and ``HTTPResponse.buffer`` will be empty in the final response. :arg callable header_callback: If set, ``header_callback`` will be run with each header line as it is received (including the first line, e.g. ``HTTP/1.0 200 OK\r\n``, and a final line containing only ``\r\n``. All lines include the trailing newline characters). ``HTTPResponse.headers`` will be empty in the final response. This is most useful in conjunction with ``streaming_callback``, because it's the only way to get access to header data while the request is in progress. :arg callable prepare_curl_callback: If set, will be called with a ``pycurl.Curl`` object to allow the application to make additional ``setopt`` calls. :arg string proxy_host: proxy hostname. To use proxies, ``proxy_host`` and ``proxy_port`` must be set; ``proxy_username`` and ``proxy_pass`` are optional. Proxies are currently only supported with ``curl_httpclient``. :arg int proxy_port: proxy port :arg string proxy_type: Available options for this are CURLPROXY_HTTP, CURLPROXY_HTTP_1_0, CURLPROXY_SOCKS4, CURLPROXY_SOCKS5, CURLPROXY_SOCKS4A and CURLPROXY_SOCKS5_HOSTNAME. The HTTP type is default. :arg string proxy_username: HTTP proxy username :arg string proxy_password: HTTP proxy password :arg bool allow_nonstandard_methods: Allow unknown values for ``method`` argument? :arg bool validate_cert: For HTTPS requests, validate the server's certificate? :arg string ca_certs: filename of CA certificates in PEM format, or None to use defaults. See note below when used with ``curl_httpclient``. :arg bool allow_ipv6: Use IPv6 when available? Default is false in ``simple_httpclient`` and true in ``curl_httpclient`` :arg string client_key: Filename for client SSL key, if any. See note below when used with ``curl_httpclient``. :arg string client_cert: Filename for client SSL certificate, if any. See note below when used with ``curl_httpclient``. .. note:: When using ``curl_httpclient`` certain options may be inherited by subsequent fetches because ``pycurl`` does not allow them to be cleanly reset. This applies to the ``ca_certs``, ``client_key``, ``client_cert``, and ``network_interface`` arguments. If you use these options, you should pass them on every request (you don't have to always use the same values, but it's not possible to mix requests that specify these options with ones that use the defaults). .. versionadded:: 3.1 The ``auth_mode`` argument. """ # Note that some of these attributes go through property setters # defined below. self.headers = headers if if_modified_since: self.headers["If-Modified-Since"] = httputil.format_timestamp( if_modified_since) self.proxy_host = proxy_host self.proxy_port = proxy_port self.proxy_type = proxy_type self.proxy_username = proxy_username self.proxy_password = proxy_password self.url = url self.method = method self.body = body self.auth_username = auth_username self.auth_password = auth_password self.auth_mode = auth_mode self.connect_timeout = connect_timeout self.request_timeout = request_timeout self.follow_redirects = follow_redirects self.max_redirects = max_redirects self.user_agent = user_agent self.use_gzip = use_gzip self.network_interface = network_interface self.streaming_callback = streaming_callback self.header_callback = header_callback self.prepare_curl_callback = prepare_curl_callback self.allow_nonstandard_methods = allow_nonstandard_methods self.validate_cert = validate_cert self.ca_certs = ca_certs self.allow_ipv6 = allow_ipv6 self.client_key = client_key self.client_cert = client_cert self.start_time = time.time() @property def headers(self): return self._headers @headers.setter def headers(self, value): if value is None: self._headers = httputil.HTTPHeaders() else: self._headers = value @property def body(self): return self._body @body.setter def body(self, value): self._body = utf8(value) @property def streaming_callback(self): return self._streaming_callback @streaming_callback.setter def streaming_callback(self, value): self._streaming_callback = stack_context.wrap(value) @property def header_callback(self): return self._header_callback @header_callback.setter def header_callback(self, value): self._header_callback = stack_context.wrap(value) @property def prepare_curl_callback(self): return self._prepare_curl_callback @prepare_curl_callback.setter def prepare_curl_callback(self, value): self._prepare_curl_callback = stack_context.wrap(value) class HTTPResponse(object): """HTTP Response object. Attributes: * request: HTTPRequest object * code: numeric HTTP status code, e.g. 200 or 404 * reason: human-readable reason phrase describing the status code (with curl_httpclient, this is a default value rather than the server's actual response) * headers: `tornado.httputil.HTTPHeaders` object * effective_url: final location of the resource after following any redirects * buffer: ``cStringIO`` object for response body * body: response body as string (created on demand from ``self.buffer``) * error: Exception object, if any * request_time: seconds from request start to finish * time_info: dictionary of diagnostic timing information from the request. Available data are subject to change, but currently uses timings available from http://curl.haxx.se/libcurl/c/curl_easy_getinfo.html, plus ``queue``, which is the delay (if any) introduced by waiting for a slot under `AsyncHTTPClient`'s ``max_clients`` setting. """ def __init__(self, request, code, headers=None, buffer=None, effective_url=None, error=None, request_time=None, time_info=None, reason=None): if isinstance(request, _RequestProxy): self.request = request.request else: self.request = request self.code = code self.reason = reason or httputil.responses.get(code, "Unknown") if headers is not None: self.headers = headers else: self.headers = httputil.HTTPHeaders() self.buffer = buffer self._body = None if effective_url is None: self.effective_url = request.url else: self.effective_url = effective_url if error is None: if self.code < 200 or self.code >= 300: self.error = HTTPError(self.code, response=self) else: self.error = None else: self.error = error self.request_time = request_time self.time_info = time_info or {} def _get_body(self): if self.buffer is None: return None elif self._body is None: self._body = self.buffer.getvalue() return self._body body = property(_get_body) def rethrow(self): """If there was an error on the request, raise an `HTTPError`.""" if self.error: raise self.error def __repr__(self): args = ",".join("%s=%r" % i for i in sorted(self.__dict__.items())) return "%s(%s)" % (self.__class__.__name__, args) class HTTPError(Exception): """Exception thrown for an unsuccessful HTTP request. Attributes: * ``code`` - HTTP error integer error code, e.g. 404. Error code 599 is used when no HTTP response was received, e.g. for a timeout. * ``response`` - `HTTPResponse` object, if any. Note that if ``follow_redirects`` is False, redirects become HTTPErrors, and you can look at ``error.response.headers['Location']`` to see the destination of the redirect. """ def __init__(self, code, message=None, response=None): self.code = code message = message or httputil.responses.get(code, "Unknown") self.response = response Exception.__init__(self, "HTTP %d: %s" % (self.code, message)) class _RequestProxy(object): """Combines an object with a dictionary of defaults. Used internally by AsyncHTTPClient implementations. """ def __init__(self, request, defaults): self.request = request self.defaults = defaults def __getattr__(self, name): request_attr = getattr(self.request, name) if request_attr is not None: return request_attr elif self.defaults is not None: return self.defaults.get(name, None) else: return None def main(): from tornado.options import define, options, parse_command_line define("print_headers", type=bool, default=False) define("print_body", type=bool, default=True) define("follow_redirects", type=bool, default=True) define("validate_cert", type=bool, default=True) args = parse_command_line() client = HTTPClient() for arg in args: try: response = client.fetch(arg, follow_redirects=options.follow_redirects, validate_cert=options.validate_cert, ) except HTTPError as e: if e.response is not None: response = e.response else: raise if options.print_headers: print(response.headers) if options.print_body: print(response.body) client.close() if __name__ == "__main__": main()
""" Tests for the blaze interface to the pipeline api. """ from __future__ import division from collections import OrderedDict from datetime import timedelta, time from itertools import product, chain import warnings import blaze as bz from datashape import dshape, var, Record from nose_parameterized import parameterized import numpy as np from numpy.testing.utils import assert_array_almost_equal from odo import odo import pandas as pd from pandas.util.testing import assert_frame_equal from toolz import keymap, valmap, concatv from toolz.curried import operator as op from zipline.assets.synthetic import make_simple_equity_info from zipline.errors import UnsupportedPipelineOutput from zipline.pipeline import Pipeline, CustomFactor from zipline.pipeline.data import DataSet, BoundColumn, Column from zipline.pipeline.engine import SimplePipelineEngine from zipline.pipeline.loaders.blaze import ( from_blaze, BlazeLoader, NoMetaDataWarning, ) from zipline.pipeline.loaders.blaze.core import ( ExprData, NonPipelineField, ) from zipline.testing import ( ZiplineTestCase, parameter_space, tmp_asset_finder, ) from zipline.testing.fixtures import WithAssetFinder from zipline.testing.predicates import assert_equal, assert_isidentical from zipline.utils.numpy_utils import float64_dtype, int64_dtype nameof = op.attrgetter('name') dtypeof = op.attrgetter('dtype') asset_infos = ( (make_simple_equity_info( tuple(map(ord, 'ABC')), pd.Timestamp(0), pd.Timestamp('2015'), ),), (make_simple_equity_info( tuple(map(ord, 'ABCD')), pd.Timestamp(0), pd.Timestamp('2015'), ),), ) simple_asset_info = asset_infos[0][0] with_extra_sid = parameterized.expand(asset_infos) with_ignore_sid = parameterized.expand( product(chain.from_iterable(asset_infos), [True, False]) ) def _utc_localize_index_level_0(df): """``tz_localize`` the first level of a multiindexed dataframe to utc. Mutates df in place. """ idx = df.index df.index = pd.MultiIndex.from_product( (idx.levels[0].tz_localize('utc'), idx.levels[1]), names=idx.names, ) return df class BlazeToPipelineTestCase(WithAssetFinder, ZiplineTestCase): START_DATE = pd.Timestamp(0) END_DATE = pd.Timestamp('2015') @classmethod def init_class_fixtures(cls): super(BlazeToPipelineTestCase, cls).init_class_fixtures() cls.dates = dates = pd.date_range('2014-01-01', '2014-01-03') dates = cls.dates.repeat(3) cls.df = df = pd.DataFrame({ 'sid': cls.ASSET_FINDER_EQUITY_SIDS * 3, 'value': (0., 1., 2., 1., 2., 3., 2., 3., 4.), 'int_value': (0, 1, 2, 1, 2, 3, 2, 3, 4), 'asof_date': dates, 'timestamp': dates, }) cls.dshape = dshape(""" var * { sid: ?int64, value: ?float64, int_value: ?int64, asof_date: datetime, timestamp: datetime } """) cls.macro_df = df[df.sid == 65].drop('sid', axis=1) dshape_ = OrderedDict(cls.dshape.measure.fields) del dshape_['sid'] cls.macro_dshape = var * Record(dshape_) cls.garbage_loader = BlazeLoader() cls.missing_values = {'int_value': 0} cls.value_dshape = dshape("""var * { sid: ?int64, value: float64, asof_date: datetime, timestamp: datetime, }""") def test_tabular(self): name = 'expr' expr = bz.data(self.df, name=name, dshape=self.dshape) ds = from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) self.assertEqual(ds.__name__, name) self.assertTrue(issubclass(ds, DataSet)) self.assertIs(ds.value.dtype, float64_dtype) self.assertIs(ds.int_value.dtype, int64_dtype) self.assertTrue(np.isnan(ds.value.missing_value)) self.assertEqual(ds.int_value.missing_value, 0) # test memoization self.assertIs( from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ), ds, ) def test_column(self): exprname = 'expr' expr = bz.data(self.df, name=exprname, dshape=self.dshape) value = from_blaze( expr.value, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) self.assertEqual(value.name, 'value') self.assertIsInstance(value, BoundColumn) self.assertIs(value.dtype, float64_dtype) # test memoization self.assertIs( from_blaze( expr.value, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ), value, ) self.assertIs( from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ).value, value, ) # test the walk back up the tree self.assertIs( from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ), value.dataset, ) self.assertEqual(value.dataset.__name__, exprname) def test_missing_asof(self): expr = bz.data( self.df.loc[:, ['sid', 'value', 'timestamp']], name='expr', dshape="""var * { sid: int64, value: float64, timestamp: datetime, }""", ) with self.assertRaises(TypeError) as e: from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', ) self.assertIn("'asof_date'", str(e.exception)) self.assertIn(repr(str(expr.dshape.measure)), str(e.exception)) def test_missing_timestamp(self): expr = bz.data( self.df.loc[:, ['sid', 'value', 'asof_date']], name='expr', dshape="""var * { sid: int64, value: float64, asof_date: datetime, }""", ) loader = BlazeLoader() from_blaze( expr, loader=loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', ) self.assertEqual(len(loader), 1) exprdata, = loader.values() assert_isidentical( exprdata.expr, bz.transform(expr, timestamp=expr.asof_date), ) def test_from_blaze_no_resources_dataset_expr(self): expr = bz.symbol('expr', self.dshape) with self.assertRaises(ValueError) as e: from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) assert_equal( str(e.exception), 'no resources provided to compute expr', ) @parameter_space(metadata={'deltas', 'checkpoints'}) def test_from_blaze_no_resources_metadata_expr(self, metadata): expr = bz.data(self.df, name='expr', dshape=self.dshape) metadata_expr = bz.symbol('metadata', self.dshape) with self.assertRaises(ValueError) as e: from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, **{metadata: metadata_expr} ) assert_equal( str(e.exception), 'no resources provided to compute %s' % metadata, ) def test_from_blaze_mixed_resources_dataset_expr(self): expr = bz.data(self.df, name='expr', dshape=self.dshape) with self.assertRaises(ValueError) as e: from_blaze( expr, resources={expr: self.df}, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) assert_equal( str(e.exception), 'explicit and implicit resources provided to compute expr', ) @parameter_space(metadata={'deltas', 'checkpoints'}) def test_from_blaze_mixed_resources_metadata_expr(self, metadata): expr = bz.symbol('expr', self.dshape) metadata_expr = bz.data(self.df, name=metadata, dshape=self.dshape) with self.assertRaises(ValueError) as e: from_blaze( expr, resources={metadata_expr: self.df}, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, **{metadata: metadata_expr} ) assert_equal( str(e.exception), 'explicit and implicit resources provided to compute %s' % metadata, ) @parameter_space(deltas={True, False}, checkpoints={True, False}) def test_auto_metadata(self, deltas, checkpoints): select_level = op.getitem(('ignore', 'raise')) m = {'ds': self.df} if deltas: m['ds_deltas'] = pd.DataFrame(columns=self.df.columns), if checkpoints: m['ds_checkpoints'] = pd.DataFrame(columns=self.df.columns), expr = bz.data( m, dshape=var * Record((k, self.dshape.measure) for k in m), ) loader = BlazeLoader() ds = from_blaze( expr.ds, loader=loader, missing_values=self.missing_values, no_deltas_rule=select_level(deltas), no_checkpoints_rule=select_level(checkpoints), ) self.assertEqual(len(loader), 1) exprdata = loader[ds] self.assertTrue(exprdata.expr.isidentical(expr.ds)) if deltas: self.assertTrue(exprdata.deltas.isidentical(expr.ds_deltas)) else: self.assertIsNone(exprdata.deltas) if checkpoints: self.assertTrue( exprdata.checkpoints.isidentical(expr.ds_checkpoints), ) else: self.assertIsNone(exprdata.checkpoints) @parameter_space(deltas={True, False}, checkpoints={True, False}) def test_auto_metadata_fail_warn(self, deltas, checkpoints): select_level = op.getitem(('ignore', 'warn')) with warnings.catch_warnings(record=True) as ws: warnings.simplefilter('always') loader = BlazeLoader() expr = bz.data(self.df, dshape=self.dshape) from_blaze( expr, loader=loader, no_deltas_rule=select_level(deltas), no_checkpoints_rule=select_level(checkpoints), missing_values=self.missing_values, ) self.assertEqual(len(ws), deltas + checkpoints) for w in ws: w = w.message self.assertIsInstance(w, NoMetaDataWarning) self.assertIn(str(expr), str(w)) @parameter_space(deltas={True, False}, checkpoints={True, False}) def test_auto_metadata_fail_raise(self, deltas, checkpoints): if not (deltas or checkpoints): # not a real case return select_level = op.getitem(('ignore', 'raise')) loader = BlazeLoader() expr = bz.data(self.df, dshape=self.dshape) with self.assertRaises(ValueError) as e: from_blaze( expr, loader=loader, no_deltas_rule=select_level(deltas), no_checkpoints_rule=select_level(checkpoints), ) self.assertIn(str(expr), str(e.exception)) def test_non_pipeline_field(self): expr = bz.data( [], dshape=""" var * { a: complex, asof_date: datetime, timestamp: datetime, }""", ) ds = from_blaze( expr, loader=self.garbage_loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', ) with self.assertRaises(AttributeError): ds.a self.assertIsInstance( object.__getattribute__(ds, 'a'), NonPipelineField, ) def test_cols_with_all_missing_vals(self): """ Tests that when there is no known data, we get output where the columns have the right dtypes and the right missing values filled in. input (self.df): Empty DataFrame Columns: [sid, float_value, str_value, int_value, bool_value, dt_value, asof_date, timestamp] Index: [] output (expected) str_value float_value int_value 2014-01-01 Equity(65 [A]) None NaN 0 Equity(66 [B]) None NaN 0 Equity(67 [C]) None NaN 0 2014-01-02 Equity(65 [A]) None NaN 0 Equity(66 [B]) None NaN 0 Equity(67 [C]) None NaN 0 2014-01-03 Equity(65 [A]) None NaN 0 Equity(66 [B]) None NaN 0 Equity(67 [C]) None NaN 0 dt_value bool_value 2014-01-01 Equity(65 [A]) NaT False Equity(66 [B]) NaT False Equity(67 [C]) NaT False 2014-01-02 Equity(65 [A]) NaT False Equity(66 [B]) NaT False Equity(67 [C]) NaT False 2014-01-03 Equity(65 [A]) NaT False Equity(66 [B]) NaT False Equity(67 [C]) NaT False """ df = pd.DataFrame(columns=['sid', 'float_value', 'str_value', 'int_value', 'bool_value', 'dt_value', 'asof_date', 'timestamp']) expr = bz.data( df, dshape=""" var * { sid: int64, float_value: float64, str_value: string, int_value: int64, bool_value: bool, dt_value: datetime, asof_date: datetime, timestamp: datetime, }""", ) fields = OrderedDict(expr.dshape.measure.fields) expected = pd.DataFrame({ "str_value": np.array([None, None, None, None, None, None, None, None, None], dtype='object'), "float_value": np.array([np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN], dtype='float64'), "int_value": np.array([0, 0, 0, 0, 0, 0, 0, 0, 0], dtype='int64'), "bool_value": np.array([False, False, False, False, False, False, False, False, False], dtype='bool'), "dt_value": [pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT], }, columns=['str_value', 'float_value', 'int_value', 'bool_value', 'dt_value'], index=pd.MultiIndex.from_product( (self.dates, self.asset_finder.retrieve_all( self.ASSET_FINDER_EQUITY_SIDS )) ) ) self._test_id( df, var * Record(fields), expected, self.asset_finder, ('float_value', 'str_value', 'int_value', 'bool_value', 'dt_value'), ) def test_cols_with_some_missing_vals(self): """ Tests the following: 1) Forward filling replaces missing values correctly for the data types supported in pipeline. 2) We don't forward fill when the missing value is the actual value we got for a date in the case of int/bool columns. 3) We get the correct type of missing value in the output. input (self.df): asof_date bool_value dt_value float_value int_value sid 0 2014-01-01 True 2011-01-01 0 1 65 1 2014-01-03 True 2011-01-02 1 2 66 2 2014-01-01 True 2011-01-03 2 3 67 3 2014-01-02 False NaT NaN 0 67 str_value timestamp 0 a 2014-01-01 1 b 2014-01-03 2 c 2014-01-01 3 None 2014-01-02 output (expected) str_value float_value int_value bool_value 2014-01-01 Equity(65 [A]) a 0 1 True Equity(66 [B]) None NaN 0 False Equity(67 [C]) c 2 3 True 2014-01-02 Equity(65 [A]) a 0 1 True Equity(66 [B]) None NaN 0 False Equity(67 [C]) c 2 0 False 2014-01-03 Equity(65 [A]) a 0 1 True Equity(66 [B]) b 1 2 True Equity(67 [C]) c 2 0 False dt_value 2014-01-01 Equity(65 [A]) 2011-01-01 Equity(66 [B]) NaT Equity(67 [C]) 2011-01-03 2014-01-02 Equity(65 [A]) 2011-01-01 Equity(66 [B]) NaT Equity(67 [C]) 2011-01-03 2014-01-03 Equity(65 [A]) 2011-01-01 Equity(66 [B]) 2011-01-02 Equity(67 [C]) 2011-01-03 """ dates = (self.dates[0], self.dates[-1], self.dates[0], self.dates[1]) df = pd.DataFrame({ 'sid': self.ASSET_FINDER_EQUITY_SIDS[:-1] + (self.ASSET_FINDER_EQUITY_SIDS[-1],)*2, 'float_value': (0., 1., 2., np.NaN), 'str_value': ("a", "b", "c", None), 'int_value': (1, 2, 3, 0), 'bool_value': (True, True, True, False), 'dt_value': (pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.NaT), 'asof_date': dates, 'timestamp': dates, }) expr = bz.data( df, dshape=""" var * { sid: int64, float_value: float64, str_value: string, int_value: int64, bool_value: bool, dt_value: datetime, asof_date: datetime, timestamp: datetime, }""", ) fields = OrderedDict(expr.dshape.measure.fields) expected = pd.DataFrame({ "str_value": np.array(["a", None, "c", "a", None, "c", "a", "b", "c"], dtype='object'), "float_value": np.array([0, np.NaN, 2, 0, np.NaN, 2, 0, 1, 2], dtype='float64'), "int_value": np.array([1, 0, 3, 1, 0, 0, 1, 2, 0], dtype='int64'), "bool_value": np.array([True, False, True, True, False, False, True, True, False], dtype='bool'), "dt_value": [pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03')], }, columns=['str_value', 'float_value', 'int_value', 'bool_value', 'dt_value'], index=pd.MultiIndex.from_product( (self.dates, self.asset_finder.retrieve_all( self.ASSET_FINDER_EQUITY_SIDS )) ) ) self._test_id( df, var * Record(fields), expected, self.asset_finder, ('float_value', 'str_value', 'int_value', 'bool_value', 'dt_value'), ) def test_complex_expr(self): expr = bz.data(self.df, dshape=self.dshape, name='expr') # put an Add in the table expr_with_add = bz.transform(expr, value=expr.value + 1) # test that we can have complex expressions with no metadata from_blaze( expr_with_add, deltas=None, checkpoints=None, loader=self.garbage_loader, missing_values=self.missing_values, no_checkpoints_rule='ignore', ) with self.assertRaises(TypeError) as e: # test that we cannot create a single column from a non field from_blaze( expr.value + 1, # put an Add in the column deltas=None, checkpoints=None, loader=self.garbage_loader, missing_values=self.missing_values, no_checkpoints_rule='ignore', ) assert_equal( str(e.exception), "expression 'expr.value + 1' was array-like but not a simple field" " of some larger table", ) deltas = bz.data( pd.DataFrame(columns=self.df.columns), dshape=self.dshape, name='deltas', ) checkpoints = bz.data( pd.DataFrame(columns=self.df.columns), dshape=self.dshape, name='checkpoints', ) # test that we can have complex expressions with explicit metadata from_blaze( expr_with_add, deltas=deltas, checkpoints=checkpoints, loader=self.garbage_loader, missing_values=self.missing_values, ) with self.assertRaises(TypeError) as e: # test that we cannot create a single column from a non field # even with explicit metadata from_blaze( expr.value + 1, deltas=deltas, checkpoints=checkpoints, loader=self.garbage_loader, missing_values=self.missing_values, ) assert_equal( str(e.exception), "expression 'expr.value + 1' was array-like but not a simple field" " of some larger table", ) def _test_id(self, df, dshape, expected, finder, add): expr = bz.data(df, name='expr', dshape=dshape) loader = BlazeLoader() ds = from_blaze( expr, loader=loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) p = Pipeline() for a in add: p.add(getattr(ds, a).latest, a) dates = self.dates result = SimplePipelineEngine( loader, dates, finder, ).run_pipeline(p, dates[0], dates[-1]) assert_frame_equal( result.sort_index(axis=1), _utc_localize_index_level_0(expected.sort_index(axis=1)), check_dtype=False, ) def _test_id_macro(self, df, dshape, expected, finder, add, dates=None): if dates is None: dates = self.dates expr = bz.data(df, name='expr', dshape=dshape) loader = BlazeLoader() ds = from_blaze( expr, loader=loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) p = Pipeline() macro_inputs = [] for column_name in add: column = getattr(ds, column_name) macro_inputs.append(column) with self.assertRaises(UnsupportedPipelineOutput): # Single column output terms cannot be added to a pipeline. p.add(column.latest, column_name) class UsesMacroInputs(CustomFactor): inputs = macro_inputs window_length = 1 def compute(self, today, assets, out, *inputs): e = expected.loc[today] for i, input_ in enumerate(inputs): # Each macro input should only have one column. assert input_.shape == (self.window_length, 1) assert_equal(input_[0, 0], e[i]) # Run the pipeline with our custom factor. Assertions about the # expected macro data are made in the `compute` function of our custom # factor above. p.add(UsesMacroInputs(), 'uses_macro_inputs') engine = SimplePipelineEngine(loader, dates, finder) engine.run_pipeline(p, dates[0], dates[-1]) def test_custom_query_time_tz(self): df = self.df.copy() df['timestamp'] = ( pd.DatetimeIndex(df['timestamp'], tz='EST') + timedelta(hours=8, minutes=44) ).tz_convert('utc').tz_localize(None) df.ix[3:5, 'timestamp'] = pd.Timestamp('2014-01-01 13:45') expr = bz.data(df, name='expr', dshape=self.dshape) loader = BlazeLoader(data_query_time=time(8, 45), data_query_tz='EST') ds = from_blaze( expr, loader=loader, no_deltas_rule='ignore', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) p = Pipeline() p.add(ds.value.latest, 'value') p.add(ds.int_value.latest, 'int_value') dates = self.dates result = SimplePipelineEngine( loader, dates, self.asset_finder, ).run_pipeline(p, dates[0], dates[-1]) expected = df.drop('asof_date', axis=1) expected['timestamp'] = expected['timestamp'].dt.normalize().astype( 'datetime64[ns]', ).dt.tz_localize('utc') expected.ix[3:5, 'timestamp'] += timedelta(days=1) expected.set_index(['timestamp', 'sid'], inplace=True) expected.index = pd.MultiIndex.from_product(( expected.index.levels[0], self.asset_finder.retrieve_all(expected.index.levels[1]), )) assert_frame_equal(result, expected, check_dtype=False) def test_id(self): """ input (self.df): asof_date sid timestamp int_value value 0 2014-01-01 65 2014-01-01 0 0 1 2014-01-01 66 2014-01-01 1 1 2 2014-01-01 67 2014-01-01 2 2 3 2014-01-02 65 2014-01-02 1 1 4 2014-01-02 66 2014-01-02 2 2 5 2014-01-02 67 2014-01-02 3 3 6 2014-01-03 65 2014-01-03 2 2 7 2014-01-03 66 2014-01-03 3 3 8 2014-01-03 67 2014-01-03 4 4 output (expected) int_value value 2014-01-01 Equity(65 [A]) 0 0 Equity(66 [B]) 1 1 Equity(67 [C]) 2 2 2014-01-02 Equity(65 [A]) 1 1 Equity(66 [B]) 2 2 Equity(67 [C]) 3 3 2014-01-03 Equity(65 [A]) 2 2 Equity(66 [B]) 3 3 Equity(67 [C]) 4 4 """ expected = self.df.drop('asof_date', axis=1).set_index( ['timestamp', 'sid'], ) expected.index = pd.MultiIndex.from_product(( expected.index.levels[0], self.asset_finder.retrieve_all(expected.index.levels[1]), )) self._test_id( self.df, self.dshape, expected, self.asset_finder, ('int_value', 'value',) ) def test_id_with_asof_date(self): """ input (self.df): asof_date sid timestamp int_value value 0 2014-01-01 65 2014-01-01 0 0 1 2014-01-01 66 2014-01-01 1 1 2 2014-01-01 67 2014-01-01 2 2 3 2014-01-02 65 2014-01-02 1 1 4 2014-01-02 66 2014-01-02 2 2 5 2014-01-02 67 2014-01-02 3 3 6 2014-01-03 65 2014-01-03 2 2 7 2014-01-03 66 2014-01-03 3 3 8 2014-01-03 67 2014-01-03 4 4 output (expected) asof_date 2014-01-01 Equity(65 [A]) 2014-01-01 Equity(66 [B]) 2014-01-01 Equity(67 [C]) 2014-01-01 2014-01-02 Equity(65 [A]) 2014-01-02 Equity(66 [B]) 2014-01-02 Equity(67 [C]) 2014-01-02 2014-01-03 Equity(65 [A]) 2014-01-03 Equity(66 [B]) 2014-01-03 Equity(67 [C]) 2014-01-03 """ expected = self.df.drop(['value', 'int_value'], axis=1).set_index( ['timestamp', 'sid'], ) expected.index = pd.MultiIndex.from_product(( expected.index.levels[0], self.asset_finder.retrieve_all(expected.index.levels[1]), )) self._test_id( self.df, self.dshape, expected, self.asset_finder, ('asof_date',) ) def test_id_ffill_out_of_window(self): """ input (df): asof_date timestamp sid other value 0 2013-12-22 2013-12-22 65 0 0 1 2013-12-22 2013-12-22 66 NaN 1 2 2013-12-22 2013-12-22 67 2 NaN 3 2013-12-23 2013-12-23 65 NaN 1 4 2013-12-23 2013-12-23 66 2 NaN 5 2013-12-23 2013-12-23 67 3 3 6 2013-12-24 2013-12-24 65 2 NaN 7 2013-12-24 2013-12-24 66 3 3 8 2013-12-24 2013-12-24 67 NaN 4 output (expected): other value 2014-01-01 Equity(65 [A]) 2 1 Equity(66 [B]) 3 3 Equity(67 [C]) 3 4 2014-01-02 Equity(65 [A]) 2 1 Equity(66 [B]) 3 3 Equity(67 [C]) 3 4 2014-01-03 Equity(65 [A]) 2 1 Equity(66 [B]) 3 3 Equity(67 [C]) 3 4 """ dates = self.dates.repeat(3) - timedelta(days=10) df = pd.DataFrame({ 'sid': self.ASSET_FINDER_EQUITY_SIDS * 3, 'value': (0, 1, np.nan, 1, np.nan, 3, np.nan, 3, 4), 'other': (0, np.nan, 2, np.nan, 2, 3, 2, 3, np.nan), 'asof_date': dates, 'timestamp': dates, }) fields = OrderedDict(self.dshape.measure.fields) fields['other'] = fields['value'] expected = pd.DataFrame( np.array([[2, 1], [3, 3], [3, 4], [2, 1], [3, 3], [3, 4], [2, 1], [3, 3], [3, 4]]), columns=['other', 'value'], index=pd.MultiIndex.from_product( (self.dates, self.asset_finder.retrieve_all( self.ASSET_FINDER_EQUITY_SIDS )), ), ) self._test_id( df, var * Record(fields), expected, self.asset_finder, ('value', 'other'), ) def test_id_multiple_columns(self): """ input (df): asof_date sid timestamp value other 0 2014-01-01 65 2014-01-01 0 1 1 2014-01-01 66 2014-01-01 1 2 2 2014-01-01 67 2014-01-01 2 3 3 2014-01-02 65 2014-01-02 1 2 4 2014-01-02 66 2014-01-02 2 3 5 2014-01-02 67 2014-01-02 3 4 6 2014-01-03 65 2014-01-03 2 3 7 2014-01-03 66 2014-01-03 3 4 8 2014-01-03 67 2014-01-03 4 5 output (expected): value other 2014-01-01 Equity(65 [A]) 0 1 Equity(66 [B]) 1 2 Equity(67 [C]) 2 3 2014-01-02 Equity(65 [A]) 1 2 Equity(66 [B]) 2 3 Equity(67 [C]) 3 4 2014-01-03 Equity(65 [A]) 2 3 Equity(66 [B]) 3 4 Equity(67 [C]) 4 5 """ df = self.df.copy() df['other'] = df.value + 1 fields = OrderedDict(self.dshape.measure.fields) fields['other'] = fields['value'] expected = df.drop('asof_date', axis=1).set_index( ['timestamp', 'sid'], ).sort_index(axis=1) expected.index = pd.MultiIndex.from_product(( expected.index.levels[0], self.asset_finder.retrieve_all(expected.index.levels[1]), )) self._test_id( df, var * Record(fields), expected, self.asset_finder, ('value', 'int_value', 'other'), ) def test_id_macro_dataset(self): """ input (self.macro_df) asof_date timestamp value 0 2014-01-01 2014-01-01 0 3 2014-01-02 2014-01-02 1 6 2014-01-03 2014-01-03 2 output (expected): value 2014-01-01 0 2014-01-02 1 2014-01-03 2 """ expected = pd.DataFrame( data=[[0], [1], [2]], columns=['value'], index=self.dates, ) self._test_id_macro( self.macro_df, self.macro_dshape, expected, self.asset_finder, ('value',), ) def test_id_ffill_out_of_window_macro_dataset(self): """ input (df): asof_date timestamp other value 0 2013-12-22 2013-12-22 NaN 0 1 2013-12-23 2013-12-23 1 NaN 2 2013-12-24 2013-12-24 NaN NaN output (expected): other value 2014-01-01 1 0 2014-01-02 1 0 2014-01-03 1 0 """ dates = self.dates - timedelta(days=10) df = pd.DataFrame({ 'value': (0, np.nan, np.nan), 'other': (np.nan, 1, np.nan), 'asof_date': dates, 'timestamp': dates, }) fields = OrderedDict(self.macro_dshape.measure.fields) fields['other'] = fields['value'] expected = pd.DataFrame( data=[[0, 1], [0, 1], [0, 1]], columns=['other', 'value'], index=self.dates, ) self._test_id_macro( df, var * Record(fields), expected, self.asset_finder, ('value', 'other'), ) def test_id_macro_dataset_multiple_columns(self): """ input (df): asof_date timestamp other value 0 2014-01-01 2014-01-01 1 0 3 2014-01-02 2014-01-02 2 1 6 2014-01-03 2014-01-03 3 2 output (expected): other value 2014-01-01 1 0 2014-01-02 2 1 2014-01-03 3 2 """ df = self.macro_df.copy() df['other'] = df.value + 1 fields = OrderedDict(self.macro_dshape.measure.fields) fields['other'] = fields['value'] with tmp_asset_finder(equities=simple_asset_info) as finder: expected = pd.DataFrame( data=[[0, 1], [1, 2], [2, 3]], columns=['value', 'other'], index=self.dates, dtype=np.float64, ) self._test_id_macro( df, var * Record(fields), expected, finder, ('value', 'other'), ) def test_id_take_last_in_group(self): T = pd.Timestamp df = pd.DataFrame( columns=['asof_date', 'timestamp', 'sid', 'other', 'value'], data=[ [T('2014-01-01'), T('2014-01-01 00'), 65, 0, 0], [T('2014-01-01'), T('2014-01-01 01'), 65, 1, np.nan], [T('2014-01-01'), T('2014-01-01 00'), 66, np.nan, np.nan], [T('2014-01-01'), T('2014-01-01 01'), 66, np.nan, 1], [T('2014-01-01'), T('2014-01-01 00'), 67, 2, np.nan], [T('2014-01-01'), T('2014-01-01 01'), 67, np.nan, np.nan], [T('2014-01-02'), T('2014-01-02 00'), 65, np.nan, np.nan], [T('2014-01-02'), T('2014-01-02 01'), 65, np.nan, 1], [T('2014-01-02'), T('2014-01-02 00'), 66, np.nan, np.nan], [T('2014-01-02'), T('2014-01-02 01'), 66, 2, np.nan], [T('2014-01-02'), T('2014-01-02 00'), 67, 3, 3], [T('2014-01-02'), T('2014-01-02 01'), 67, 3, 3], [T('2014-01-03'), T('2014-01-03 00'), 65, 2, np.nan], [T('2014-01-03'), T('2014-01-03 01'), 65, 2, np.nan], [T('2014-01-03'), T('2014-01-03 00'), 66, 3, 3], [T('2014-01-03'), T('2014-01-03 01'), 66, np.nan, np.nan], [T('2014-01-03'), T('2014-01-03 00'), 67, np.nan, np.nan], [T('2014-01-03'), T('2014-01-03 01'), 67, np.nan, 4], ], ) fields = OrderedDict(self.dshape.measure.fields) fields['other'] = fields['value'] expected = pd.DataFrame( columns=['other', 'value'], data=[ [1, 0], # 2014-01-01 Equity(65 [A]) [np.nan, 1], # Equity(66 [B]) [2, np.nan], # Equity(67 [C]) [1, 1], # 2014-01-02 Equity(65 [A]) [2, 1], # Equity(66 [B]) [3, 3], # Equity(67 [C]) [2, 1], # 2014-01-03 Equity(65 [A]) [3, 3], # Equity(66 [B]) [3, 3], # Equity(67 [C]) ], index=pd.MultiIndex.from_product( (self.dates, self.asset_finder.retrieve_all( self.ASSET_FINDER_EQUITY_SIDS )), ), ) self._test_id( df, var * Record(fields), expected, self.asset_finder, ('value', 'other'), ) def test_id_take_last_in_group_macro(self): """ output (expected): other value 2014-01-01 NaN 1 2014-01-02 1 2 2014-01-03 2 2 """ T = pd.Timestamp df = pd.DataFrame( columns=['asof_date', 'timestamp', 'other', 'value'], data=[ [T('2014-01-01'), T('2014-01-01 00'), np.nan, 1], [T('2014-01-01'), T('2014-01-01 01'), np.nan, np.nan], [T('2014-01-02'), T('2014-01-02 00'), 1, np.nan], [T('2014-01-02'), T('2014-01-02 01'), np.nan, 2], [T('2014-01-03'), T('2014-01-03 00'), 2, np.nan], [T('2014-01-03'), T('2014-01-03 01'), 3, 3], ], ) fields = OrderedDict(self.macro_dshape.measure.fields) fields['other'] = fields['value'] expected = pd.DataFrame( data=[[np.nan, 1], # 2014-01-01 [1, 2], # 2014-01-02 [2, 2]], # 2014-01-03 columns=['other', 'value'], index=self.dates, ) self._test_id_macro( df, var * Record(fields), expected, self.asset_finder, ('other', 'value'), ) def _run_pipeline(self, expr, deltas, checkpoints, expected_views, expected_output, finder, calendar, start, end, window_length, compute_fn, apply_deltas_adjustments=True): loader = BlazeLoader() ds = from_blaze( expr, deltas, checkpoints, apply_deltas_adjustments=apply_deltas_adjustments, loader=loader, no_deltas_rule='raise', no_checkpoints_rule='ignore', missing_values=self.missing_values, ) p = Pipeline() # prevent unbound locals issue in the inner class window_length_ = window_length class TestFactor(CustomFactor): inputs = ds.value, window_length = window_length_ def compute(self, today, assets, out, data): assert_array_almost_equal( data, expected_views[today], err_msg=str(today), ) out[:] = compute_fn(data) p.add(TestFactor(), 'value') result = SimplePipelineEngine( loader, calendar, finder, ).run_pipeline(p, start, end) assert_frame_equal( result, _utc_localize_index_level_0(expected_output), check_dtype=False, ) @with_ignore_sid def test_deltas(self, asset_info, add_extra_sid): df = self.df.copy() if add_extra_sid: extra_sid_df = pd.DataFrame({ 'asof_date': self.dates, 'timestamp': self.dates, 'sid': (ord('E'),) * 3, 'value': (3., 4., 5.,), 'int_value': (3, 4, 5), }) df = df.append(extra_sid_df, ignore_index=True) expr = bz.data(df, name='expr', dshape=self.dshape) deltas = bz.data(df, dshape=self.dshape) deltas = bz.data( odo( bz.transform( deltas, value=deltas.value + 10, timestamp=deltas.timestamp + timedelta(days=1), ), pd.DataFrame, ), name='delta', dshape=self.dshape, ) expected_views = keymap(pd.Timestamp, { '2014-01-02': np.array([[10.0, 11.0, 12.0], [1.0, 2.0, 3.0]]), '2014-01-03': np.array([[11.0, 12.0, 13.0], [2.0, 3.0, 4.0]]), '2014-01-04': np.array([[12.0, 13.0, 14.0], [12.0, 13.0, 14.0]]), }) nassets = len(asset_info) if nassets == 4: expected_views = valmap( lambda view: np.c_[view, [np.nan, np.nan]], expected_views, ) with tmp_asset_finder(equities=asset_info) as finder: expected_output = pd.DataFrame( list(concatv([12] * nassets, [13] * nassets, [14] * nassets)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(asset_info.index), )), columns=('value',), ) dates = self.dates dates = dates.insert(len(dates), dates[-1] + timedelta(days=1)) self._run_pipeline( expr, deltas, None, expected_views, expected_output, finder, calendar=dates, start=dates[1], end=dates[-1], window_length=2, compute_fn=np.nanmax, ) @with_extra_sid def test_deltas_only_one_delta_in_universe(self, asset_info): expr = bz.data(self.df, name='expr', dshape=self.dshape) deltas = pd.DataFrame({ 'sid': [65, 66], 'asof_date': [self.dates[1], self.dates[0]], 'timestamp': [self.dates[2], self.dates[1]], 'value': [10, 11], }) deltas = bz.data(deltas, name='deltas', dshape=self.dshape) expected_views = keymap(pd.Timestamp, { '2014-01-02': np.array([[0.0, 11.0, 2.0], [1.0, 2.0, 3.0]]), '2014-01-03': np.array([[10.0, 2.0, 3.0], [2.0, 3.0, 4.0]]), '2014-01-04': np.array([[2.0, 3.0, 4.0], [2.0, 3.0, 4.0]]), }) nassets = len(asset_info) if nassets == 4: expected_views = valmap( lambda view: np.c_[view, [np.nan, np.nan]], expected_views, ) with tmp_asset_finder(equities=asset_info) as finder: expected_output = pd.DataFrame( columns=[ 'value', ], data=np.array([11, 10, 4]).repeat(len(asset_info.index)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(asset_info.index), )), ) dates = self.dates dates = dates.insert(len(dates), dates[-1] + timedelta(days=1)) self._run_pipeline( expr, deltas, None, expected_views, expected_output, finder, calendar=dates, start=dates[1], end=dates[-1], window_length=2, compute_fn=np.nanmax, ) def test_deltas_macro(self): expr = bz.data(self.macro_df, name='expr', dshape=self.macro_dshape) deltas = bz.data( self.macro_df.iloc[:-1], name='deltas', dshape=self.macro_dshape, ) deltas = bz.transform( deltas, value=deltas.value + 10, timestamp=deltas.timestamp + timedelta(days=1), ) nassets = len(simple_asset_info) expected_views = keymap(pd.Timestamp, { '2014-01-02': np.array([[10.0], [1.0]]), '2014-01-03': np.array([[11.0], [2.0]]), }) with tmp_asset_finder(equities=simple_asset_info) as finder: expected_output = pd.DataFrame( list(concatv([10] * nassets, [11] * nassets)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(simple_asset_info.index), )), columns=('value',), ) dates = self.dates self._run_pipeline( expr, deltas, None, expected_views, expected_output, finder, calendar=dates, start=dates[1], end=dates[-1], window_length=2, compute_fn=np.nanmax, ) @with_extra_sid def test_novel_deltas(self, asset_info): base_dates = pd.DatetimeIndex([ pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-04') ]) repeated_dates = base_dates.repeat(3) baseline = pd.DataFrame({ 'sid': self.ASSET_FINDER_EQUITY_SIDS * 2, 'value': (0., 1., 2., 1., 2., 3.), 'int_value': (0, 1, 2, 1, 2, 3), 'asof_date': repeated_dates, 'timestamp': repeated_dates, }) expr = bz.data(baseline, name='expr', dshape=self.dshape) deltas = bz.data( odo( bz.transform( expr, value=expr.value + 10, timestamp=expr.timestamp + timedelta(days=1), ), pd.DataFrame, ), name='delta', dshape=self.dshape, ) expected_views_all_deltas = keymap(pd.Timestamp, { '2014-01-03': np.array([[10.0, 11.0, 12.0], [10.0, 11.0, 12.0], [10.0, 11.0, 12.0]]), '2014-01-06': np.array([[10.0, 11.0, 12.0], [10.0, 11.0, 12.0], [11.0, 12.0, 13.0]]), }) # The only novel delta is on 2014-01-05, because it modifies a # baseline data point that occurred on 2014-01-04, which is on a # Saturday. The other delta, occurring on 2014-01-02, is seen after # we already see the baseline data it modifies, and so it is a # non-novel delta. Thus, the only delta seen in the expected view for # novel deltas is on 2014-01-06 at (2, 0), (2, 1), and (2, 2). expected_views_novel_deltas = keymap(pd.Timestamp, { '2014-01-03': np.array([[0.0, 1.0, 2.0], [0.0, 1.0, 2.0], [0.0, 1.0, 2.0]]), '2014-01-06': np.array([[0.0, 1.0, 2.0], [0.0, 1.0, 2.0], [11.0, 12.0, 13.0]]), }) def get_fourth_asset_view(expected_views, window_length): return valmap( lambda view: np.c_[view, [np.nan] * window_length], expected_views, ) if len(asset_info) == 4: expected_views_all_deltas = get_fourth_asset_view( expected_views_all_deltas, window_length=3 ) expected_views_novel_deltas = get_fourth_asset_view( expected_views_novel_deltas, window_length=3 ) expected_output_buffer_all_deltas = [ 10, 11, 12, np.nan, 11, 12, 13, np.nan ] expected_output_buffer_novel_deltas = [ 0, 1, 2, np.nan, 11, 12, 13, np.nan ] else: expected_output_buffer_all_deltas = [ 10, 11, 12, 11, 12, 13 ] expected_output_buffer_novel_deltas = [ 0, 1, 2, 11, 12, 13 ] cal = pd.DatetimeIndex([ pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-02'), pd.Timestamp('2014-01-03'), # omitting the 4th and 5th to simulate a weekend pd.Timestamp('2014-01-06'), ]) with tmp_asset_finder(equities=asset_info) as finder: expected_output_all_deltas = pd.DataFrame( expected_output_buffer_all_deltas, index=pd.MultiIndex.from_product(( sorted(expected_views_all_deltas.keys()), finder.retrieve_all(asset_info.index), )), columns=('value',), ) expected_output_novel_deltas = pd.DataFrame( expected_output_buffer_novel_deltas, index=pd.MultiIndex.from_product(( sorted(expected_views_novel_deltas.keys()), finder.retrieve_all(asset_info.index), )), columns=('value',), ) it = ( ( True, expected_views_all_deltas, expected_output_all_deltas ), ( False, expected_views_novel_deltas, expected_output_novel_deltas ) ) for apply_deltas_adjs, expected_views, expected_output in it: self._run_pipeline( expr, deltas, None, expected_views, expected_output, finder, calendar=cal, start=cal[2], end=cal[-1], window_length=3, compute_fn=op.itemgetter(-1), apply_deltas_adjustments=apply_deltas_adjs, ) def test_novel_deltas_macro(self): base_dates = pd.DatetimeIndex([ pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-04') ]) baseline = pd.DataFrame({ 'value': (0., 1.), 'asof_date': base_dates, 'timestamp': base_dates, }) expr = bz.data(baseline, name='expr', dshape=self.macro_dshape) deltas = bz.data(baseline, name='deltas', dshape=self.macro_dshape) deltas = bz.transform( deltas, value=deltas.value + 10, timestamp=deltas.timestamp + timedelta(days=1), ) nassets = len(simple_asset_info) expected_views_all_deltas = keymap(pd.Timestamp, { '2014-01-03': np.array([[10.0], [10.0], [10.0]]), '2014-01-06': np.array([[10.0], [10.0], [11.0]]), }) # The only novel delta is on 2014-01-05, because it modifies a # baseline data point that occurred on 2014-01-04, which is on a # Saturday. The other delta, occurring on 2014-01-02, is seen after # we already see the baseline data it modifies, and so it is a # non-novel delta. Thus, the only delta seen in the expected view for # novel deltas is on 2014-01-06 at (2, 0). expected_views_novel_deltas = keymap(pd.Timestamp, { '2014-01-03': np.array([[0.0], [0.0], [0.0]]), '2014-01-06': np.array([[0.0], [0.0], [11.0]]), }) cal = pd.DatetimeIndex([ pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-02'), pd.Timestamp('2014-01-03'), # omitting the 4th and 5th to simulate a weekend pd.Timestamp('2014-01-06'), ]) def get_expected_output(expected_views, values, asset_info): return pd.DataFrame( list(concatv(*([value] * nassets for value in values))), index=pd.MultiIndex.from_product( (sorted(expected_views.keys()), finder.retrieve_all(asset_info.index),) ), columns=('value',), ) with tmp_asset_finder(equities=simple_asset_info) as finder: expected_output_all_deltas = get_expected_output( expected_views_all_deltas, [10, 11], simple_asset_info, ) expected_output_novel_deltas = get_expected_output( expected_views_novel_deltas, [0, 11], simple_asset_info, ) it = ( ( True, expected_views_all_deltas, expected_output_all_deltas ), ( False, expected_views_novel_deltas, expected_output_novel_deltas ) ) for apply_deltas_adjs, expected_views, expected_output in it: self._run_pipeline( expr, deltas, None, expected_views, expected_output, finder, calendar=cal, start=cal[2], end=cal[-1], window_length=3, compute_fn=op.itemgetter(-1), apply_deltas_adjustments=apply_deltas_adjs, ) def _test_checkpoints_macro(self, checkpoints, ffilled_value=-1.0): """Simple checkpoints test that accepts a checkpoints dataframe and the expected value for 2014-01-03 for macro datasets. The underlying data has value -1.0 on 2014-01-01 and 1.0 on 2014-01-04. Parameters ---------- checkpoints : pd.DataFrame The checkpoints data. ffilled_value : float, optional The value to be read on the third, if not provided, it will be the value in the base data that will be naturally ffilled there. """ dates = pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-04') baseline = pd.DataFrame({ 'value': [-1.0, 1.0], 'asof_date': dates, 'timestamp': dates, }) nassets = len(simple_asset_info) expected_views = keymap(pd.Timestamp, { '2014-01-03': np.array([[ffilled_value]]), '2014-01-04': np.array([[1.0]]), }) with tmp_asset_finder(equities=simple_asset_info) as finder: expected_output = pd.DataFrame( list(concatv([ffilled_value] * nassets, [1.0] * nassets)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(simple_asset_info.index), )), columns=('value',), ) self._run_pipeline( bz.data(baseline, name='expr', dshape=self.macro_dshape), None, bz.data( checkpoints, name='expr_checkpoints', dshape=self.macro_dshape, ), expected_views, expected_output, finder, calendar=pd.date_range('2014-01-01', '2014-01-04'), start=pd.Timestamp('2014-01-03'), end=dates[-1], window_length=1, compute_fn=op.itemgetter(-1), ) def test_checkpoints_macro(self): ffilled_value = 0.0 checkpoints_ts = pd.Timestamp('2014-01-02') checkpoints = pd.DataFrame({ 'value': [ffilled_value], 'asof_date': checkpoints_ts, 'timestamp': checkpoints_ts, }) self._test_checkpoints_macro(checkpoints, ffilled_value) def test_empty_checkpoints_macro(self): empty_checkpoints = pd.DataFrame({ 'value': [], 'asof_date': [], 'timestamp': [], }) self._test_checkpoints_macro(empty_checkpoints) def test_checkpoints_out_of_bounds_macro(self): # provide two checkpoints, one before the data in the base table # and one after, these should not affect the value on the third dates = pd.to_datetime(['2013-12-31', '2014-01-05']) checkpoints = pd.DataFrame({ 'value': [-2, 2], 'asof_date': dates, 'timestamp': dates, }) self._test_checkpoints_macro(checkpoints) def _test_checkpoints(self, checkpoints, ffilled_values=None): """Simple checkpoints test that accepts a checkpoints dataframe and the expected value for 2014-01-03. The underlying data has value -1.0 on 2014-01-01 and 1.0 on 2014-01-04. Parameters ---------- checkpoints : pd.DataFrame The checkpoints data. ffilled_value : float, optional The value to be read on the third, if not provided, it will be the value in the base data that will be naturally ffilled there. """ nassets = len(simple_asset_info) dates = pd.to_datetime(['2014-01-01', '2014-01-04']) dates_repeated = np.tile(dates, nassets) values = np.arange(nassets) + 1 values = np.hstack((values[::-1], values)) baseline = pd.DataFrame({ 'sid': np.tile(simple_asset_info.index, 2), 'value': values, 'asof_date': dates_repeated, 'timestamp': dates_repeated, }) if ffilled_values is None: ffilled_values = baseline.value.iloc[:nassets] updated_values = baseline.value.iloc[nassets:] expected_views = keymap(pd.Timestamp, { '2014-01-03': [ffilled_values], '2014-01-04': [updated_values], }) with tmp_asset_finder(equities=simple_asset_info) as finder: expected_output = pd.DataFrame( list(concatv(ffilled_values, updated_values)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(simple_asset_info.index), )), columns=('value',), ) self._run_pipeline( bz.data(baseline, name='expr', dshape=self.value_dshape), None, bz.data( checkpoints, name='expr_checkpoints', dshape=self.value_dshape, ), expected_views, expected_output, finder, calendar=pd.date_range('2014-01-01', '2014-01-04'), start=pd.Timestamp('2014-01-03'), end=dates[-1], window_length=1, compute_fn=op.itemgetter(-1), ) def test_checkpoints(self): nassets = len(simple_asset_info) ffilled_values = (np.arange(nassets, dtype=np.float64) + 1) * 10 dates = [pd.Timestamp('2014-01-02')] * nassets checkpoints = pd.DataFrame({ 'sid': simple_asset_info.index, 'value': ffilled_values, 'asof_date': dates, 'timestamp': dates, }) self._test_checkpoints(checkpoints, ffilled_values) def test_empty_checkpoints(self): checkpoints = pd.DataFrame({ 'sid': [], 'value': [], 'asof_date': [], 'timestamp': [], }) self._test_checkpoints(checkpoints) def test_checkpoints_out_of_bounds(self): nassets = len(simple_asset_info) # provide two sets of checkpoints, one before the data in the base # table and one after, these should not affect the value on the third dates = pd.to_datetime(['2013-12-31', '2014-01-05']) dates_repeated = np.tile(dates, nassets) ffilled_values = (np.arange(nassets) + 2) * 10 ffilled_values = np.hstack((ffilled_values[::-1], ffilled_values)) checkpoints = pd.DataFrame({ 'sid': np.tile(simple_asset_info.index, 2), 'value': ffilled_values, 'asof_date': dates_repeated, 'timestamp': dates_repeated, }) self._test_checkpoints(checkpoints) def test_id_take_last_in_group_sorted(self): """ input asof_date timestamp other value 2014-01-03 2014-01-04 00 3 3 2014-01-02 2014-01-04 00 2 2 output (expected): other value 2014-01-02 NaN NaN 2014-01-03 NaN NaN 2014-01-06 3 3 """ dates = pd.DatetimeIndex([ pd.Timestamp('2014-01-02'), pd.Timestamp('2014-01-03'), pd.Timestamp('2014-01-06'), ]) T = pd.Timestamp df = pd.DataFrame( columns=['asof_date', 'timestamp', 'other', 'value'], data=[ # asof-dates are flipped in terms of order so that if we # don't sort on asof-date before getting the last in group, # we will get the wrong result. [T('2014-01-03'), T('2014-01-04 00'), 3, 3], [T('2014-01-02'), T('2014-01-04 00'), 2, 2], ], ) fields = OrderedDict(self.macro_dshape.measure.fields) fields['other'] = fields['value'] expected = pd.DataFrame( data=[[np.nan, np.nan], # 2014-01-02 [np.nan, np.nan], # 2014-01-03 [3, 3]], # 2014-01-06 columns=['other', 'value'], index=dates, ) self._test_id_macro( df, var * Record(fields), expected, self.asset_finder, ('other', 'value'), dates=dates, ) class MiscTestCase(ZiplineTestCase): def test_exprdata_repr(self): strd = set() class BadRepr(object): """A class which cannot be repr'd. """ def __init__(self, name): self._name = name def __repr__(self): # pragma: no cover raise AssertionError('ayy') def __str__(self): strd.add(self) return self._name assert_equal( repr(ExprData( expr=BadRepr('expr'), deltas=BadRepr('deltas'), checkpoints=BadRepr('checkpoints'), odo_kwargs={'a': 'b'}, )), "ExprData(expr='expr', deltas='deltas'," " checkpoints='checkpoints', odo_kwargs={'a': 'b'}, " "apply_deltas_adjustments=True)", ) def test_blaze_loader_repr(self): assert_equal(repr(BlazeLoader()), '<BlazeLoader: {}>') def test_blaze_loader_lookup_failure(self): class D(DataSet): c = Column(dtype='float64') with self.assertRaises(KeyError) as e: BlazeLoader()(D.c) assert_equal(str(e.exception), 'D.c::float64')
from rpython.rtyper.lltypesystem import lltype, llmemory, rffi, rstr from rpython.rtyper import rclass from rpython.rtyper.lltypesystem.lloperation import llop from rpython.rtyper.llinterp import LLInterpreter from rpython.rtyper.annlowlevel import llhelper, MixLevelHelperAnnotator from rpython.rtyper.llannotation import lltype_to_annotation from rpython.rlib.objectmodel import we_are_translated, specialize from rpython.jit.metainterp import history, compile from rpython.jit.codewriter import heaptracker, longlong from rpython.jit.backend.model import AbstractCPU from rpython.jit.backend.llsupport import symbolic, jitframe from rpython.jit.backend.llsupport.symbolic import WORD, unroll_basic_sizes from rpython.jit.backend.llsupport.descr import ( get_size_descr, get_field_descr, get_array_descr, get_call_descr, get_interiorfield_descr, FieldDescr, ArrayDescr, CallDescr, InteriorFieldDescr, FLAG_POINTER, FLAG_FLOAT) from rpython.jit.backend.llsupport.memcpy import memset_fn from rpython.jit.backend.llsupport import asmmemmgr, codemap from rpython.rlib.unroll import unrolling_iterable class AbstractLLCPU(AbstractCPU): from rpython.jit.metainterp.typesystem import llhelper as ts HAS_CODEMAP = False done_with_this_frame_descr_int = None # overridden by pyjitpl.py done_with_this_frame_descr_float = None done_with_this_frame_descr_ref = None done_with_this_frame_descr_void = None exit_frame_with_exception_descr_ref = None vector_extension = False vector_register_size = 0 # in bytes vector_horizontal_operations = False vector_pack_slots = False def __init__(self, rtyper, stats, opts, translate_support_code=False, gcdescr=None): assert type(opts) is not bool self.opts = opts from rpython.jit.backend.llsupport.gc import get_ll_description AbstractCPU.__init__(self) self.rtyper = rtyper self.stats = stats self.translate_support_code = translate_support_code if translate_support_code and rtyper is not None: translator = rtyper.annotator.translator self.remove_gctypeptr = translator.config.translation.gcremovetypeptr else: translator = None self.gc_ll_descr = get_ll_description(gcdescr, translator, rtyper) # support_guard_gc_type indicates if a gc type of an object can be read. # In some states (boehm or x86 untranslated) the type is not known just yet, # because there are cases where it is not guarded. The precise place where it's not # is while inlining short preamble. self.supports_guard_gc_type = self.gc_ll_descr.supports_guard_gc_type if translator and translator.config.translation.gcremovetypeptr: self.vtable_offset = None else: self.vtable_offset, _ = symbolic.get_field_token(rclass.OBJECT, 'typeptr', translate_support_code) self.subclassrange_min_offset, _ = symbolic.get_field_token( rclass.OBJECT_VTABLE, 'subclassrange_min', translate_support_code) if translate_support_code: self._setup_exception_handling_translated() else: self._setup_exception_handling_untranslated() self.asmmemmgr = asmmemmgr.AsmMemoryManager() if self.HAS_CODEMAP: self.codemap = codemap.CodemapStorage() self._setup_frame_realloc(translate_support_code) ad = self.gc_ll_descr.getframedescrs(self).arraydescr self.signedarraydescr = ad # the same as normal JITFRAME, however with an array of pointers self.refarraydescr = ArrayDescr(ad.basesize, ad.itemsize, ad.lendescr, FLAG_POINTER) if WORD == 4: self.floatarraydescr = ArrayDescr(ad.basesize, ad.itemsize * 2, ad.lendescr, FLAG_FLOAT) else: self.floatarraydescr = ArrayDescr(ad.basesize, ad.itemsize, ad.lendescr, FLAG_FLOAT) self.setup() self._debug_errno_container = lltype.malloc( rffi.CArray(lltype.Signed), 7, flavor='raw', zero=True, track_allocation=False) def getarraydescr_for_frame(self, type): if type == history.FLOAT: descr = self.floatarraydescr elif type == history.REF: descr = self.refarraydescr else: descr = self.signedarraydescr return descr def setup(self): pass def finish_once(self): if self.HAS_CODEMAP: self.codemap.finish_once() def compile_loop(self, inputargs, operations, looptoken, jd_id=0, unique_id=0, log=True, name='', logger=None): return self.assembler.assemble_loop(jd_id, unique_id, logger, name, inputargs, operations, looptoken, log=log) def stitch_bridge(self, faildescr, target): self.assembler.stitch_bridge(faildescr, target) def _setup_frame_realloc(self, translate_support_code): FUNC_TP = lltype.Ptr(lltype.FuncType([llmemory.GCREF, lltype.Signed], llmemory.GCREF)) base_ofs = self.get_baseofs_of_frame_field() def realloc_frame(frame, size): try: if not we_are_translated(): assert not self._exception_emulator[0] frame = lltype.cast_opaque_ptr(jitframe.JITFRAMEPTR, frame) if size > frame.jf_frame_info.jfi_frame_depth: # update the frame_info size, which is for whatever reason # not up to date frame.jf_frame_info.update_frame_depth(base_ofs, size) new_frame = jitframe.JITFRAME.allocate(frame.jf_frame_info) frame.jf_forward = new_frame i = 0 while i < len(frame.jf_frame): new_frame.jf_frame[i] = frame.jf_frame[i] frame.jf_frame[i] = 0 i += 1 new_frame.jf_savedata = frame.jf_savedata new_frame.jf_guard_exc = frame.jf_guard_exc # all other fields are empty llop.gc_writebarrier(lltype.Void, new_frame) return lltype.cast_opaque_ptr(llmemory.GCREF, new_frame) except Exception, e: print "Unhandled exception", e, "in realloc_frame" return lltype.nullptr(llmemory.GCREF.TO) def realloc_frame_crash(frame, size): print "frame", frame, "size", size return lltype.nullptr(llmemory.GCREF.TO) if not translate_support_code: fptr = llhelper(FUNC_TP, realloc_frame) else: FUNC = FUNC_TP.TO args_s = [lltype_to_annotation(ARG) for ARG in FUNC.ARGS] s_result = lltype_to_annotation(FUNC.RESULT) mixlevelann = MixLevelHelperAnnotator(self.rtyper) graph = mixlevelann.getgraph(realloc_frame, args_s, s_result) fptr = mixlevelann.graph2delayed(graph, FUNC) mixlevelann.finish() self.realloc_frame = heaptracker.adr2int(llmemory.cast_ptr_to_adr(fptr)) if not translate_support_code: fptr = llhelper(FUNC_TP, realloc_frame_crash) else: FUNC = FUNC_TP.TO args_s = [lltype_to_annotation(ARG) for ARG in FUNC.ARGS] s_result = lltype_to_annotation(FUNC.RESULT) mixlevelann = MixLevelHelperAnnotator(self.rtyper) graph = mixlevelann.getgraph(realloc_frame_crash, args_s, s_result) fptr = mixlevelann.graph2delayed(graph, FUNC) mixlevelann.finish() self.realloc_frame_crash = heaptracker.adr2int(llmemory.cast_ptr_to_adr(fptr)) def _setup_exception_handling_untranslated(self): # for running un-translated only, all exceptions occurring in the # llinterpreter are stored in '_exception_emulator', which is then # read back by the machine code reading at the address given by # pos_exception() and pos_exc_value(). _exception_emulator = lltype.malloc(rffi.CArray(lltype.Signed), 2, zero=True, flavor='raw', immortal=True) self._exception_emulator = _exception_emulator def _store_exception(lle): self._last_exception = lle # keepalive tp_i = rffi.cast(lltype.Signed, lle.args[0]) v_i = rffi.cast(lltype.Signed, lle.args[1]) _exception_emulator[0] = tp_i _exception_emulator[1] = v_i self.debug_ll_interpreter = LLInterpreter(self.rtyper) self.debug_ll_interpreter._store_exception = _store_exception def pos_exception(): return rffi.cast(lltype.Signed, _exception_emulator) def pos_exc_value(): return (rffi.cast(lltype.Signed, _exception_emulator) + rffi.sizeof(lltype.Signed)) self.pos_exception = pos_exception self.pos_exc_value = pos_exc_value self.insert_stack_check = lambda: (0, 0, 0) def _setup_exception_handling_translated(self): def pos_exception(): addr = llop.get_exception_addr(llmemory.Address) return heaptracker.adr2int(addr) def pos_exc_value(): addr = llop.get_exc_value_addr(llmemory.Address) return heaptracker.adr2int(addr) from rpython.rlib import rstack STACK_CHECK_SLOWPATH = lltype.Ptr(lltype.FuncType([lltype.Signed], lltype.Void)) def insert_stack_check(): endaddr = rstack._stack_get_end_adr() lengthaddr = rstack._stack_get_length_adr() f = llhelper(STACK_CHECK_SLOWPATH, rstack.stack_check_slowpath) slowpathaddr = rffi.cast(lltype.Signed, f) return endaddr, lengthaddr, slowpathaddr self.pos_exception = pos_exception self.pos_exc_value = pos_exc_value self.insert_stack_check = insert_stack_check def grab_exc_value(self, deadframe): deadframe = lltype.cast_opaque_ptr(jitframe.JITFRAMEPTR, deadframe) return deadframe.jf_guard_exc def set_savedata_ref(self, deadframe, data): deadframe = lltype.cast_opaque_ptr(jitframe.JITFRAMEPTR, deadframe) deadframe.jf_savedata = data def get_savedata_ref(self, deadframe): deadframe = lltype.cast_opaque_ptr(jitframe.JITFRAMEPTR, deadframe) return deadframe.jf_savedata def free_loop_and_bridges(self, compiled_loop_token): AbstractCPU.free_loop_and_bridges(self, compiled_loop_token) blocks = compiled_loop_token.asmmemmgr_blocks if blocks is not None: compiled_loop_token.asmmemmgr_blocks = None for rawstart, rawstop in blocks: self.gc_ll_descr.freeing_block(rawstart, rawstop) self.asmmemmgr.free(rawstart, rawstop) if self.HAS_CODEMAP: self.codemap.free_asm_block(rawstart, rawstop) def force(self, addr_of_force_token): frame = rffi.cast(jitframe.JITFRAMEPTR, addr_of_force_token) frame = frame.resolve() frame.jf_descr = frame.jf_force_descr return lltype.cast_opaque_ptr(llmemory.GCREF, frame) def make_execute_token(self, *ARGS): # The JIT backend must generate functions with the following # signature: it takes the jitframe and the threadlocal_addr # as arguments, and it returns the (possibly reallocated) jitframe. # The backend can optimize OS_THREADLOCALREF_GET calls to return a # field of this threadlocal_addr, but only if 'translate_support_code': # in untranslated tests, threadlocal_addr is a dummy container # for errno tests only. FUNCPTR = lltype.Ptr(lltype.FuncType([llmemory.GCREF, llmemory.Address], llmemory.GCREF)) lst = [(i, history.getkind(ARG)[0]) for i, ARG in enumerate(ARGS)] kinds = unrolling_iterable(lst) def execute_token(executable_token, *args): clt = executable_token.compiled_loop_token assert len(args) == clt._debug_nbargs # addr = executable_token._ll_function_addr func = rffi.cast(FUNCPTR, addr) #llop.debug_print(lltype.Void, ">>>> Entering", addr) frame_info = clt.frame_info frame = self.gc_ll_descr.malloc_jitframe(frame_info) ll_frame = lltype.cast_opaque_ptr(llmemory.GCREF, frame) locs = executable_token.compiled_loop_token._ll_initial_locs prev_interpreter = None # help flow space if not self.translate_support_code: prev_interpreter = LLInterpreter.current_interpreter LLInterpreter.current_interpreter = self.debug_ll_interpreter try: for i, kind in kinds: arg = args[i] num = locs[i] if kind == history.INT: self.set_int_value(ll_frame, num, arg) elif kind == history.FLOAT: self.set_float_value(ll_frame, num, arg) else: assert kind == history.REF self.set_ref_value(ll_frame, num, arg) if self.translate_support_code: ll_threadlocal_addr = llop.threadlocalref_addr( llmemory.Address) else: ll_threadlocal_addr = rffi.cast(llmemory.Address, self._debug_errno_container) llop.gc_writebarrier(lltype.Void, ll_frame) ll_frame = func(ll_frame, ll_threadlocal_addr) finally: if not self.translate_support_code: LLInterpreter.current_interpreter = prev_interpreter #llop.debug_print(lltype.Void, "<<<< Back") return ll_frame return execute_token # ------------------- helpers and descriptions -------------------- @staticmethod def _cast_int_to_gcref(x): # dangerous! only use if you are sure no collection could occur # between reading the integer and casting it to a pointer return rffi.cast(llmemory.GCREF, x) @staticmethod def cast_gcref_to_int(x): return rffi.cast(lltype.Signed, x) @staticmethod def cast_int_to_adr(x): return rffi.cast(llmemory.Address, x) @staticmethod def cast_adr_to_int(x): return rffi.cast(lltype.Signed, x) @specialize.arg(2) def cast_int_to_ptr(self, x, TYPE): return rffi.cast(TYPE, x) def sizeof(self, S, vtable=lltype.nullptr(rclass.OBJECT_VTABLE)): return get_size_descr(self.gc_ll_descr, S, vtable) def fielddescrof(self, STRUCT, fieldname): return get_field_descr(self.gc_ll_descr, STRUCT, fieldname) def unpack_fielddescr(self, fielddescr): assert isinstance(fielddescr, FieldDescr) return fielddescr.offset unpack_fielddescr._always_inline_ = True def unpack_fielddescr_size(self, fielddescr): assert isinstance(fielddescr, FieldDescr) ofs = fielddescr.offset size = fielddescr.field_size sign = fielddescr.is_field_signed() return ofs, size, sign unpack_fielddescr_size._always_inline_ = True @specialize.memo() def arraydescrof(self, A): return get_array_descr(self.gc_ll_descr, A) def interiorfielddescrof(self, A, fieldname, arrayfieldname=None): return get_interiorfield_descr(self.gc_ll_descr, A, fieldname, arrayfieldname) def unpack_arraydescr(self, arraydescr): assert isinstance(arraydescr, ArrayDescr) return arraydescr.basesize unpack_arraydescr._always_inline_ = True def unpack_arraydescr_size(self, arraydescr): assert isinstance(arraydescr, ArrayDescr) ofs = arraydescr.basesize size = arraydescr.itemsize sign = arraydescr.is_item_signed() return ofs, size, sign unpack_arraydescr_size._always_inline_ = True def calldescrof(self, FUNC, ARGS, RESULT, extrainfo): return get_call_descr(self.gc_ll_descr, ARGS, RESULT, extrainfo) def calldescrof_dynamic(self, cif_description, extrainfo): from rpython.jit.backend.llsupport import ffisupport return ffisupport.get_call_descr_dynamic(self, cif_description, extrainfo) def _calldescr_dynamic_for_tests(self, atypes, rtype, abiname='FFI_DEFAULT_ABI'): from rpython.jit.backend.llsupport import ffisupport return ffisupport.calldescr_dynamic_for_tests(self, atypes, rtype, abiname) def get_latest_descr(self, deadframe): deadframe = lltype.cast_opaque_ptr(jitframe.JITFRAMEPTR, deadframe) descr = deadframe.jf_descr res = history.AbstractDescr.show(self, descr) assert isinstance(res, history.AbstractFailDescr) return res def _decode_pos(self, deadframe, index): descr = self.get_latest_descr(deadframe) return rffi.cast(lltype.Signed, descr.rd_locs[index]) * WORD @specialize.arg(2) def get_value_direct(self, deadframe, tp, index): if tp == 'i': return self.get_int_value_direct(deadframe, index * WORD) elif tp == 'r': return self.get_ref_value_direct(deadframe, index * WORD) elif tp == 'f': return self.get_float_value_direct(deadframe, index * WORD) else: assert False def get_int_value(self, deadframe, index): pos = self._decode_pos(deadframe, index) return self.get_int_value_direct(deadframe, pos) def get_int_value_direct(self, deadframe, pos): descr = self.gc_ll_descr.getframedescrs(self).arraydescr ofs = self.unpack_arraydescr(descr) return self.read_int_at_mem(deadframe, pos + ofs, WORD, 1) def get_ref_value(self, deadframe, index): pos = self._decode_pos(deadframe, index) return self.get_ref_value_direct(deadframe, pos) def get_ref_value_direct(self, deadframe, pos): descr = self.gc_ll_descr.getframedescrs(self).arraydescr ofs = self.unpack_arraydescr(descr) return self.read_ref_at_mem(deadframe, pos + ofs) def get_float_value(self, deadframe, index): pos = self._decode_pos(deadframe, index) return self.get_float_value_direct(deadframe, pos) def get_float_value_direct(self, deadframe, pos): descr = self.gc_ll_descr.getframedescrs(self).arraydescr ofs = self.unpack_arraydescr(descr) return self.read_float_at_mem(deadframe, pos + ofs) # ____________________ RAW PRIMITIVES ________________________ @specialize.argtype(1) def read_int_at_mem(self, gcref, ofs, size, sign): for STYPE, UTYPE, itemsize in unroll_basic_sizes: if size == itemsize: if sign: val = llop.raw_load(STYPE, gcref, ofs) val = rffi.cast(lltype.Signed, val) else: val = llop.raw_load(UTYPE, gcref, ofs) val = rffi.cast(lltype.Signed, val) return val else: raise NotImplementedError("size = %d" % size) @specialize.argtype(1) def write_int_at_mem(self, gcref, ofs, size, newvalue): for TYPE, _, itemsize in unroll_basic_sizes: if size == itemsize: newvalue = rffi.cast(TYPE, newvalue) llop.raw_store(lltype.Void, gcref, ofs, newvalue) return else: raise NotImplementedError("size = %d" % size) @specialize.argtype(1) def read_ref_at_mem(self, gcref, ofs): return llop.raw_load(llmemory.GCREF, gcref, ofs) # non-@specialized: must only be called with llmemory.GCREF def write_ref_at_mem(self, gcref, ofs, newvalue): llop.raw_store(lltype.Void, gcref, ofs, newvalue) # the write barrier is implied above @specialize.argtype(1) def read_float_at_mem(self, gcref, ofs): return llop.raw_load(longlong.FLOATSTORAGE, gcref, ofs) @specialize.argtype(1) def write_float_at_mem(self, gcref, ofs, newvalue): llop.raw_store(lltype.Void, gcref, ofs, newvalue) # ____________________________________________________________ def set_int_value(self, newframe, index, value): """ Note that we keep index multiplied by WORD here mostly for completeness with get_int_value and friends """ descr = self.gc_ll_descr.getframedescrs(self).arraydescr ofs = self.unpack_arraydescr(descr) self.write_int_at_mem(newframe, ofs + index, WORD, value) def set_ref_value(self, newframe, index, value): descr = self.gc_ll_descr.getframedescrs(self).arraydescr ofs = self.unpack_arraydescr(descr) self.write_ref_at_mem(newframe, ofs + index, value) def set_float_value(self, newframe, index, value): descr = self.gc_ll_descr.getframedescrs(self).arraydescr ofs = self.unpack_arraydescr(descr) self.write_float_at_mem(newframe, ofs + index, value) @specialize.arg(1) def get_ofs_of_frame_field(self, name): descrs = self.gc_ll_descr.getframedescrs(self) ofs = self.unpack_fielddescr(getattr(descrs, name)) return ofs def get_baseofs_of_frame_field(self): descrs = self.gc_ll_descr.getframedescrs(self) base_ofs = self.unpack_arraydescr(descrs.arraydescr) return base_ofs # ____________________________________________________________ def check_is_object(self, gcptr): """Check if the given, non-null gcptr refers to an rclass.OBJECT or not at all (an unrelated GcStruct or a GcArray). Only usable in the llgraph backend, or after translation of a real backend.""" assert self.supports_guard_gc_type return self.gc_ll_descr.check_is_object(gcptr) def get_actual_typeid(self, gcptr): """Fetch the actual typeid of the given gcptr, as an integer. Only usable in the llgraph backend, or after translation of a real backend.""" assert self.supports_guard_gc_type return self.gc_ll_descr.get_actual_typeid(gcptr) # ____________________________________________________________ def bh_arraylen_gc(self, array, arraydescr): assert isinstance(arraydescr, ArrayDescr) ofs = arraydescr.lendescr.offset return self.read_int_at_mem(array, ofs, WORD, 1) @specialize.argtype(1) def bh_getarrayitem_gc_i(self, gcref, itemindex, arraydescr): ofs, size, sign = self.unpack_arraydescr_size(arraydescr) return self.read_int_at_mem(gcref, ofs + itemindex * size, size, sign) def bh_getarrayitem_gc_r(self, gcref, itemindex, arraydescr): ofs = self.unpack_arraydescr(arraydescr) return self.read_ref_at_mem(gcref, itemindex * WORD + ofs) @specialize.argtype(1) def bh_getarrayitem_gc_f(self, gcref, itemindex, arraydescr): ofs = self.unpack_arraydescr(arraydescr) fsize = rffi.sizeof(longlong.FLOATSTORAGE) return self.read_float_at_mem(gcref, itemindex * fsize + ofs) @specialize.argtype(1) def bh_setarrayitem_gc_i(self, gcref, itemindex, newvalue, arraydescr): ofs, size, sign = self.unpack_arraydescr_size(arraydescr) self.write_int_at_mem(gcref, ofs + itemindex * size, size, newvalue) def bh_setarrayitem_gc_r(self, gcref, itemindex, newvalue, arraydescr): ofs = self.unpack_arraydescr(arraydescr) self.write_ref_at_mem(gcref, itemindex * WORD + ofs, newvalue) @specialize.argtype(1) def bh_setarrayitem_gc_f(self, gcref, itemindex, newvalue, arraydescr): ofs = self.unpack_arraydescr(arraydescr) fsize = rffi.sizeof(longlong.FLOATSTORAGE) self.write_float_at_mem(gcref, ofs + itemindex * fsize, newvalue) bh_setarrayitem_raw_i = bh_setarrayitem_gc_i bh_setarrayitem_raw_f = bh_setarrayitem_gc_f bh_getarrayitem_raw_i = bh_getarrayitem_gc_i bh_getarrayitem_raw_f = bh_getarrayitem_gc_f def bh_getinteriorfield_gc_i(self, gcref, itemindex, descr): assert isinstance(descr, InteriorFieldDescr) ofs, size, _ = self.unpack_arraydescr_size(descr.arraydescr) fldofs, fldsize, sign = self.unpack_fielddescr_size(descr.fielddescr) ofs += itemindex * size + fldofs return self.read_int_at_mem(gcref, ofs, fldsize, sign) def bh_getinteriorfield_gc_r(self, gcref, itemindex, descr): assert isinstance(descr, InteriorFieldDescr) ofs, size, _ = self.unpack_arraydescr_size(descr.arraydescr) ofs += descr.fielddescr.offset fullofs = itemindex * size + ofs return self.read_ref_at_mem(gcref, fullofs) def bh_getinteriorfield_gc_f(self, gcref, itemindex, descr): assert isinstance(descr, InteriorFieldDescr) ofs, size, _ = self.unpack_arraydescr_size(descr.arraydescr) ofs += descr.fielddescr.offset fullofs = itemindex * size + ofs return self.read_float_at_mem(gcref, fullofs) def bh_setinteriorfield_gc_i(self, gcref, itemindex, newvalue, descr): assert isinstance(descr, InteriorFieldDescr) ofs, size, _ = self.unpack_arraydescr_size(descr.arraydescr) fldofs, fldsize, _ = self.unpack_fielddescr_size(descr.fielddescr) ofs += itemindex * size + fldofs self.write_int_at_mem(gcref, ofs, fldsize, newvalue) def bh_setinteriorfield_gc_r(self, gcref, itemindex, newvalue, descr): assert isinstance(descr, InteriorFieldDescr) ofs, size, _ = self.unpack_arraydescr_size(descr.arraydescr) ofs += itemindex * size + descr.fielddescr.offset self.write_ref_at_mem(gcref, ofs, newvalue) def bh_setinteriorfield_gc_f(self, gcref, itemindex, newvalue, descr): assert isinstance(descr, InteriorFieldDescr) ofs, size, _ = self.unpack_arraydescr_size(descr.arraydescr) ofs += itemindex * size + descr.fielddescr.offset self.write_float_at_mem(gcref, ofs, newvalue) def bh_strlen(self, string): s = lltype.cast_opaque_ptr(lltype.Ptr(rstr.STR), string) return len(s.chars) def bh_unicodelen(self, string): u = lltype.cast_opaque_ptr(lltype.Ptr(rstr.UNICODE), string) return len(u.chars) def bh_strgetitem(self, string, index): s = lltype.cast_opaque_ptr(lltype.Ptr(rstr.STR), string) return ord(s.chars[index]) def bh_unicodegetitem(self, string, index): u = lltype.cast_opaque_ptr(lltype.Ptr(rstr.UNICODE), string) return ord(u.chars[index]) @specialize.argtype(1) def bh_getfield_gc_i(self, struct, fielddescr): ofs, size, sign = self.unpack_fielddescr_size(fielddescr) if isinstance(lltype.typeOf(struct), lltype.Ptr): fielddescr.check_correct_type(struct) return self.read_int_at_mem(struct, ofs, size, sign) @specialize.argtype(1) def bh_getfield_gc_r(self, struct, fielddescr): ofs = self.unpack_fielddescr(fielddescr) if isinstance(lltype.typeOf(struct), lltype.Ptr): fielddescr.check_correct_type(struct) return self.read_ref_at_mem(struct, ofs) @specialize.argtype(1) def bh_getfield_gc_f(self, struct, fielddescr): ofs = self.unpack_fielddescr(fielddescr) if isinstance(lltype.typeOf(struct), lltype.Ptr): fielddescr.check_correct_type(struct) return self.read_float_at_mem(struct, ofs) bh_getfield_raw_i = bh_getfield_gc_i bh_getfield_raw_r = bh_getfield_gc_r bh_getfield_raw_f = bh_getfield_gc_f @specialize.argtype(1) def bh_setfield_gc_i(self, struct, newvalue, fielddescr): ofs, size, _ = self.unpack_fielddescr_size(fielddescr) if isinstance(lltype.typeOf(struct), lltype.Ptr): fielddescr.check_correct_type(struct) self.write_int_at_mem(struct, ofs, size, newvalue) def bh_setfield_gc_r(self, struct, newvalue, fielddescr): ofs = self.unpack_fielddescr(fielddescr) if isinstance(lltype.typeOf(struct), lltype.Ptr): fielddescr.check_correct_type(struct) self.write_ref_at_mem(struct, ofs, newvalue) @specialize.argtype(1) def bh_setfield_gc_f(self, struct, newvalue, fielddescr): ofs = self.unpack_fielddescr(fielddescr) if isinstance(lltype.typeOf(struct), lltype.Ptr): fielddescr.check_correct_type(struct) self.write_float_at_mem(struct, ofs, newvalue) bh_setfield_raw_i = bh_setfield_gc_i bh_setfield_raw_f = bh_setfield_gc_f def bh_raw_store_i(self, addr, offset, newvalue, descr): ofs, size, _ = self.unpack_arraydescr_size(descr) assert ofs == 0 # otherwise, 'descr' is not a raw length-less array self.write_int_at_mem(addr, offset, size, newvalue) def bh_raw_store_f(self, addr, offset, newvalue, descr): self.write_float_at_mem(addr, offset, newvalue) def bh_raw_load_i(self, addr, offset, descr): ofs, size, sign = self.unpack_arraydescr_size(descr) assert ofs == 0 # otherwise, 'descr' is not a raw length-less array return self.read_int_at_mem(addr, offset, size, sign) def bh_raw_load_f(self, addr, offset, descr): return self.read_float_at_mem(addr, offset) def bh_new(self, sizedescr): return self.gc_ll_descr.gc_malloc(sizedescr) def bh_new_with_vtable(self, sizedescr): res = self.gc_ll_descr.gc_malloc(sizedescr) if self.vtable_offset is not None: self.write_int_at_mem(res, self.vtable_offset, WORD, sizedescr.get_vtable()) return res def bh_new_raw_buffer(self, size): return lltype.malloc(rffi.CCHARP.TO, size, flavor='raw') def bh_classof(self, struct): struct = lltype.cast_opaque_ptr(rclass.OBJECTPTR, struct) result_adr = llmemory.cast_ptr_to_adr(struct.typeptr) return heaptracker.adr2int(result_adr) def bh_new_array(self, length, arraydescr): return self.gc_ll_descr.gc_malloc_array(length, arraydescr) bh_new_array_clear = bh_new_array def bh_newstr(self, length): return self.gc_ll_descr.gc_malloc_str(length) def bh_newunicode(self, length): return self.gc_ll_descr.gc_malloc_unicode(length) def bh_strsetitem(self, string, index, newvalue): s = lltype.cast_opaque_ptr(lltype.Ptr(rstr.STR), string) s.chars[index] = chr(newvalue) def bh_unicodesetitem(self, string, index, newvalue): u = lltype.cast_opaque_ptr(lltype.Ptr(rstr.UNICODE), string) u.chars[index] = unichr(newvalue) def bh_copystrcontent(self, src, dst, srcstart, dststart, length): src = lltype.cast_opaque_ptr(lltype.Ptr(rstr.STR), src) dst = lltype.cast_opaque_ptr(lltype.Ptr(rstr.STR), dst) rstr.copy_string_contents(src, dst, srcstart, dststart, length) def bh_copyunicodecontent(self, src, dst, srcstart, dststart, length): src = lltype.cast_opaque_ptr(lltype.Ptr(rstr.UNICODE), src) dst = lltype.cast_opaque_ptr(lltype.Ptr(rstr.UNICODE), dst) rstr.copy_unicode_contents(src, dst, srcstart, dststart, length) def bh_call_i(self, func, args_i, args_r, args_f, calldescr): assert isinstance(calldescr, CallDescr) if not we_are_translated(): calldescr.verify_types(args_i, args_r, args_f, history.INT + 'S') return calldescr.call_stub_i(func, args_i, args_r, args_f) def bh_call_r(self, func, args_i, args_r, args_f, calldescr): assert isinstance(calldescr, CallDescr) if not we_are_translated(): calldescr.verify_types(args_i, args_r, args_f, history.REF) return calldescr.call_stub_r(func, args_i, args_r, args_f) def bh_call_f(self, func, args_i, args_r, args_f, calldescr): assert isinstance(calldescr, CallDescr) if not we_are_translated(): calldescr.verify_types(args_i, args_r, args_f, history.FLOAT + 'L') return calldescr.call_stub_f(func, args_i, args_r, args_f) def bh_call_v(self, func, args_i, args_r, args_f, calldescr): assert isinstance(calldescr, CallDescr) if not we_are_translated(): calldescr.verify_types(args_i, args_r, args_f, history.VOID) # the 'i' return value is ignored (and nonsense anyway) calldescr.call_stub_i(func, args_i, args_r, args_f) final_descr_rd_locs = [rffi.cast(rffi.USHORT, 0)] history.BasicFinalDescr.rd_locs = final_descr_rd_locs compile._DoneWithThisFrameDescr.rd_locs = final_descr_rd_locs
############################################################################### # # The MIT License (MIT) # # Copyright (c) Crossbar.io Technologies GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ############################################################################### from unittest.mock import Mock from autobahn.util import wildcards2patterns from autobahn.twisted.websocket import WebSocketServerFactory from autobahn.twisted.websocket import WebSocketServerProtocol from autobahn.twisted.websocket import WebSocketClientProtocol from autobahn.websocket.types import TransportDetails from autobahn.websocket.types import ConnectingRequest from twisted.python.failure import Failure from twisted.internet.error import ConnectionDone, ConnectionAborted, \ ConnectionLost from twisted.trial import unittest try: from twisted.internet.testing import StringTransport except ImportError: from twisted.test.proto_helpers import StringTransport from autobahn.testutil import FakeTransport class ExceptionHandlingTests(unittest.TestCase): """ Tests that we format various exception variations properly during connectionLost """ def setUp(self): self.factory = WebSocketServerFactory() self.proto = WebSocketServerProtocol() self.proto.factory = self.factory self.proto.log = Mock() def tearDown(self): for call in [ self.proto.autoPingPendingCall, self.proto.autoPingTimeoutCall, self.proto.openHandshakeTimeoutCall, self.proto.closeHandshakeTimeoutCall, ]: if call is not None: call.cancel() def test_connection_done(self): # pretend we connected self.proto._connectionMade() self.proto.connectionLost(Failure(ConnectionDone())) messages = ' '.join([str(x[1]) for x in self.proto.log.mock_calls]) self.assertTrue('closed cleanly' in messages) def test_connection_aborted(self): # pretend we connected self.proto._connectionMade() self.proto.connectionLost(Failure(ConnectionAborted())) messages = ' '.join([str(x[1]) for x in self.proto.log.mock_calls]) self.assertTrue(' aborted ' in messages) def test_connection_lost(self): # pretend we connected self.proto._connectionMade() self.proto.connectionLost(Failure(ConnectionLost())) messages = ' '.join([str(x[1]) for x in self.proto.log.mock_calls]) self.assertTrue(' was lost ' in messages) def test_connection_lost_arg(self): # pretend we connected self.proto._connectionMade() self.proto.connectionLost(Failure(ConnectionLost("greetings"))) messages = ' '.join([str(x[1]) + str(x[2]) for x in self.proto.log.mock_calls]) self.assertTrue(' was lost ' in messages) self.assertTrue('greetings' in messages) class Hixie76RejectionTests(unittest.TestCase): """ Hixie-76 should not be accepted by an Autobahn server. """ def test_handshake_fails(self): """ A handshake from a client only supporting Hixie-76 will fail. """ t = FakeTransport() f = WebSocketServerFactory() p = WebSocketServerProtocol() p.factory = f p.transport = t # from http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76 http_request = b"GET /demo HTTP/1.1\r\nHost: example.com\r\nConnection: Upgrade\r\nSec-WebSocket-Key2: 12998 5 Y3 1 .P00\r\nSec-WebSocket-Protocol: sample\r\nUpgrade: WebSocket\r\nSec-WebSocket-Key1: 4 @1 46546xW%0l 1 5\r\nOrigin: http://example.com\r\n\r\n^n:ds[4U" p.openHandshakeTimeout = 0 p._connectionMade() p.data = http_request p.processHandshake() self.assertIn(b"HTTP/1.1 400", t._written) self.assertIn(b"Hixie76 protocol not supported", t._written) class WebSocketOriginMatching(unittest.TestCase): """ Test that we match Origin: headers properly, when asked to """ def setUp(self): self.factory = WebSocketServerFactory() self.factory.setProtocolOptions( allowedOrigins=['127.0.0.1:*', '*.example.com:*'] ) self.proto = WebSocketServerProtocol() self.proto.transport = StringTransport() self.proto.factory = self.factory self.proto.failHandshake = Mock() self.proto._connectionMade() def tearDown(self): for call in [ self.proto.autoPingPendingCall, self.proto.autoPingTimeoutCall, self.proto.openHandshakeTimeoutCall, self.proto.closeHandshakeTimeoutCall, ]: if call is not None: call.cancel() def test_match_full_origin(self): self.proto.data = b"\r\n".join([ b'GET /ws HTTP/1.1', b'Host: www.example.com', b'Sec-WebSocket-Version: 13', b'Origin: http://www.example.com.malicious.com', b'Sec-WebSocket-Extensions: permessage-deflate', b'Sec-WebSocket-Key: tXAxWFUqnhi86Ajj7dRY5g==', b'Connection: keep-alive, Upgrade', b'Upgrade: websocket', b'\r\n', # last string doesn't get a \r\n from join() ]) self.proto.consumeData() self.assertTrue(self.proto.failHandshake.called, "Handshake should have failed") arg = self.proto.failHandshake.mock_calls[0][1][0] self.assertTrue('not allowed' in arg) def test_match_wrong_scheme_origin(self): # some monkey-business since we already did this in setUp, but # we want a different set of matching origins self.factory.setProtocolOptions( allowedOrigins=['http://*.example.com:*'] ) self.proto.allowedOriginsPatterns = self.factory.allowedOriginsPatterns self.proto.allowedOrigins = self.factory.allowedOrigins # the actual test self.factory.isSecure = False self.proto.data = b"\r\n".join([ b'GET /ws HTTP/1.1', b'Host: www.example.com', b'Sec-WebSocket-Version: 13', b'Origin: https://www.example.com', b'Sec-WebSocket-Extensions: permessage-deflate', b'Sec-WebSocket-Key: tXAxWFUqnhi86Ajj7dRY5g==', b'Connection: keep-alive, Upgrade', b'Upgrade: websocket', b'\r\n', # last string doesn't get a \r\n from join() ]) self.proto.consumeData() self.assertTrue(self.proto.failHandshake.called, "Handshake should have failed") arg = self.proto.failHandshake.mock_calls[0][1][0] self.assertTrue('not allowed' in arg) def test_match_origin_secure_scheme(self): self.factory.isSecure = True self.factory.port = 443 self.proto.data = b"\r\n".join([ b'GET /ws HTTP/1.1', b'Host: www.example.com', b'Sec-WebSocket-Version: 13', b'Origin: https://www.example.com', b'Sec-WebSocket-Extensions: permessage-deflate', b'Sec-WebSocket-Key: tXAxWFUqnhi86Ajj7dRY5g==', b'Connection: keep-alive, Upgrade', b'Upgrade: websocket', b'\r\n', # last string doesn't get a \r\n from join() ]) self.proto.consumeData() self.assertFalse(self.proto.failHandshake.called, "Handshake should have succeeded") def test_match_origin_documentation_example(self): """ Test the examples from the docs """ self.factory.setProtocolOptions( allowedOrigins=['*://*.example.com:*'] ) self.factory.isSecure = True self.factory.port = 443 self.proto.data = b"\r\n".join([ b'GET /ws HTTP/1.1', b'Host: www.example.com', b'Sec-WebSocket-Version: 13', b'Origin: http://www.example.com', b'Sec-WebSocket-Extensions: permessage-deflate', b'Sec-WebSocket-Key: tXAxWFUqnhi86Ajj7dRY5g==', b'Connection: keep-alive, Upgrade', b'Upgrade: websocket', b'\r\n', # last string doesn't get a \r\n from join() ]) self.proto.consumeData() self.assertFalse(self.proto.failHandshake.called, "Handshake should have succeeded") def test_match_origin_examples(self): """ All the example origins from RFC6454 (3.2.1) """ # we're just testing the low-level function here... from autobahn.websocket.protocol import _is_same_origin, _url_to_origin policy = wildcards2patterns(['*example.com:*']) # should parametrize test ... for url in ['http://example.com/', 'http://example.com:80/', 'http://example.com/path/file', 'http://example.com/;semi=true', # 'http://example.com./', '//example.com/', 'http://@example.com']: self.assertTrue(_is_same_origin(_url_to_origin(url), 'http', 80, policy), url) def test_match_origin_counter_examples(self): """ All the example 'not-same' origins from RFC6454 (3.2.1) """ # we're just testing the low-level function here... from autobahn.websocket.protocol import _is_same_origin, _url_to_origin policy = wildcards2patterns(['example.com']) for url in ['http://ietf.org/', 'http://example.org/', 'https://example.com/', 'http://example.com:8080/', 'http://www.example.com/']: self.assertFalse(_is_same_origin(_url_to_origin(url), 'http', 80, policy)) def test_match_origin_edge(self): # we're just testing the low-level function here... from autobahn.websocket.protocol import _is_same_origin, _url_to_origin policy = wildcards2patterns(['http://*example.com:80']) self.assertTrue( _is_same_origin(_url_to_origin('http://example.com:80'), 'http', 80, policy) ) self.assertFalse( _is_same_origin(_url_to_origin('http://example.com:81'), 'http', 81, policy) ) self.assertFalse( _is_same_origin(_url_to_origin('https://example.com:80'), 'http', 80, policy) ) def test_origin_from_url(self): from autobahn.websocket.protocol import _url_to_origin # basic function self.assertEqual( _url_to_origin('http://example.com'), ('http', 'example.com', 80) ) # should lower-case scheme self.assertEqual( _url_to_origin('hTTp://example.com'), ('http', 'example.com', 80) ) def test_origin_file(self): from autobahn.websocket.protocol import _url_to_origin self.assertEqual('null', _url_to_origin('file:///etc/passwd')) def test_origin_null(self): from autobahn.websocket.protocol import _is_same_origin, _url_to_origin self.assertEqual('null', _url_to_origin('null')) self.assertFalse( _is_same_origin(_url_to_origin('null'), 'http', 80, []) ) self.assertFalse( _is_same_origin(_url_to_origin('null'), 'https', 80, []) ) self.assertFalse( _is_same_origin(_url_to_origin('null'), '', 80, []) ) self.assertFalse( _is_same_origin(_url_to_origin('null'), None, 80, []) ) class WebSocketXForwardedFor(unittest.TestCase): """ Test that (only) a trusted X-Forwarded-For can replace the peer address. """ def setUp(self): self.factory = WebSocketServerFactory() self.factory.setProtocolOptions( trustXForwardedFor=2 ) self.proto = WebSocketServerProtocol() self.proto.transport = StringTransport() self.proto.factory = self.factory self.proto.failHandshake = Mock() self.proto._connectionMade() def tearDown(self): for call in [ self.proto.autoPingPendingCall, self.proto.autoPingTimeoutCall, self.proto.openHandshakeTimeoutCall, self.proto.closeHandshakeTimeoutCall, ]: if call is not None: call.cancel() def test_trusted_addresses(self): self.proto.data = b"\r\n".join([ b'GET /ws HTTP/1.1', b'Host: www.example.com', b'Origin: http://www.example.com', b'Sec-WebSocket-Version: 13', b'Sec-WebSocket-Extensions: permessage-deflate', b'Sec-WebSocket-Key: tXAxWFUqnhi86Ajj7dRY5g==', b'Connection: keep-alive, Upgrade', b'Upgrade: websocket', b'X-Forwarded-For: 1.2.3.4, 2.3.4.5, 111.222.33.44', b'\r\n', # last string doesn't get a \r\n from join() ]) self.proto.consumeData() self.assertEquals( self.proto.peer, "2.3.4.5", "The second address in X-Forwarded-For should have been picked as the peer address") class OnConnectingTests(unittest.TestCase): """ Tests related to onConnecting callback These tests are testing generic behavior, but are somewhat tied to 'a framework' so we're just testing using Twisted-specifics here. """ def test_on_connecting_client_fails(self): class TestProto(WebSocketClientProtocol): state = None wasClean = True log = Mock() def onConnecting(self, transport_details): raise RuntimeError("bad stuff") from autobahn.testutil import FakeTransport proto = TestProto() proto.transport = FakeTransport() d = proto.startHandshake() self.successResultOf(d) # error is ignored # ... but error should be logged self.assertTrue(len(proto.log.mock_calls) > 0) self.assertIn( "bad stuff", str(proto.log.mock_calls[0]), ) def test_on_connecting_client_success(self): class TestProto(WebSocketClientProtocol): state = None wasClean = True perMessageCompressionOffers = [] version = 18 openHandshakeTimeout = 5 log = Mock() def onConnecting(self, transport_details): return ConnectingRequest( host="example.com", port=443, resource="/ws", ) from autobahn.test import FakeTransport proto = TestProto() proto.transport = FakeTransport() proto.factory = Mock() proto._connectionMade() d = proto.startHandshake() req = self.successResultOf(d) self.assertEqual("example.com", req.host) self.assertEqual(443, req.port) self.assertEqual("/ws", req.resource) def test_str_transport(self): details = TransportDetails( peer="example.com", is_secure=False, secure_channel_id={}, ) # we can str() this and it doesn't fail str(details) def test_str_connecting(self): req = ConnectingRequest(host="example.com", port="1234", resource="/ws") # we can str() this and it doesn't fail str(req)