index
int64
0
731k
package
stringlengths
2
98
βŒ€
name
stringlengths
1
76
docstring
stringlengths
0
281k
βŒ€
code
stringlengths
4
1.07M
βŒ€
signature
stringlengths
2
42.8k
βŒ€
24,491
aws_lambda_context
LambdaClientContextMobileClient
null
class LambdaClientContextMobileClient: installation_id: str app_title: str app_version_name: str app_version_code: str app_package_name: str
()
24,492
aws_lambda_context
LambdaCognitoIdentity
null
class LambdaCognitoIdentity: cognito_identity_id: str cognito_identity_pool_id: str
()
24,493
aws_lambda_context
LambdaContext
null
class LambdaContext: function_name: str function_version: str invoked_function_arn: str memory_limit_in_mb: int aws_request_id: str log_group_name: str log_stream_name: str identity: LambdaCognitoIdentity client_context: LambdaClientContext @staticmethod def get_remaining_time_in_millis() -> int: return 0
()
24,494
aws_lambda_context
get_remaining_time_in_millis
null
@staticmethod def get_remaining_time_in_millis() -> int: return 0
() -> int
24,495
knockknock.chime_sender
chime_sender
Chime sender wrapper: execute func, send a chime notification with the end status (successfully finished or crashed) at the end. Also send a Chime notification before executing func. `webhook_url`: str The webhook URL to access your chime room. Visit https://docs.aws.amazon.com/chime/latest/dg/webhooks.html for more details. `user_mentions`: List[str] (default=[]) Optional users alias or full email address to notify.
def chime_sender(webhook_url: str, user_mentions: List[str] = []): """ Chime sender wrapper: execute func, send a chime notification with the end status (successfully finished or crashed) at the end. Also send a Chime notification before executing func. `webhook_url`: str The webhook URL to access your chime room. Visit https://docs.aws.amazon.com/chime/latest/dg/webhooks.html for more details. `user_mentions`: List[str] (default=[]) Optional users alias or full email address to notify. """ dump = {} def decorator_sender(func): @functools.wraps(func) def wrapper_sender(*args, **kwargs): start_time = datetime.datetime.now() host_name = socket.gethostname() func_name = func.__name__ # Handling distributed training edge case. # In PyTorch, the launch of `torch.distributed.launch` sets up a RANK environment variable for each process. # This can be used to detect the master process. # See https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py#L211 # Except for errors, only the master process will send notifications. if 'RANK' in os.environ: master_process = (int(os.environ['RANK']) == 0) host_name += ' - RANK: %s' % os.environ['RANK'] else: master_process = True if master_process: contents = [ 'Your training has started 🎬', 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), ' '.join(user_mentions) ] dump['Content'] = '\n'.join(contents) requests.post(url=webhook_url, json=dump) try: value = func(*args, **kwargs) if master_process: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = [ "Your training is complete πŸŽ‰", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'End date: %s' % end_time.strftime(DATE_FORMAT), 'Training duration: %s' % str(elapsed_time) ] try: str_value = str(value) contents.append('Main call returned value: %s' % str_value) except: contents.append('Main call returned value: %s' % "ERROR - Couldn't str the returned value.") contents.append(' '.join(user_mentions)) dump['Content'] = '\n'.join(contents) requests.post(url=webhook_url, json=dump) return value except Exception as ex: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = [ "Your training has crashed ☠️", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'Crash date: %s' % end_time.strftime(DATE_FORMAT), 'Crashed training duration: %s\n\n' % str(elapsed_time), "Here's the error:", '%s\n\n' % ex, "Traceback:", '%s' % traceback.format_exc(), ' '.join(user_mentions) ] dump['Content'] = '\n'.join(contents) requests.post(url=webhook_url, json=dump) raise ex return wrapper_sender return decorator_sender
(webhook_url: str, user_mentions: List[str] = [])
24,496
knockknock.desktop_sender
desktop_sender
null
def desktop_sender(title: str = "knockknock"): def show_notification(text: str, title: str): # Check the OS if platform.system() == "Darwin": subprocess.run(["sh", "-c", "osascript -e 'display notification \"%s\" with title \"%s\"'" % (text, title)]) elif platform.system() == "Linux": subprocess.run(["notify-send", title, text]) elif platform.system() == "Windows": try: from win10toast import ToastNotifier except ImportError as err: print('Error: to use Windows Desktop Notifications, you need to install `win10toast` first. Please run `pip install win10toast==0.9`.') toaster = ToastNotifier() toaster.show_toast(title, text, icon_path=None, duration=5) def decorator_sender(func): @functools.wraps(func) def wrapper_sender(*args, **kwargs): start_time = datetime.datetime.now() host_name = socket.gethostname() func_name = func.__name__ # Handling distributed training edge case. # In PyTorch, the launch of `torch.distributed.launch` sets up a RANK environment variable for each process. # This can be used to detect the master process. # See https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py#L211 # Except for errors, only the master process will send notifications. if 'RANK' in os.environ: master_process = (int(os.environ['RANK']) == 0) host_name += ' - RANK: %s' % os.environ['RANK'] else: master_process = True if master_process: contents = ['Your training has started 🎬', 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT)] text = '\n'.join(contents) show_notification(text, title) try: value = func(*args, **kwargs) if master_process: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training is complete πŸŽ‰", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'End date: %s' % end_time.strftime(DATE_FORMAT), 'Training duration: %s' % str(elapsed_time)] try: str_value = str(value) contents.append('Main call returned value: %s'% str_value) except: contents.append('Main call returned value: %s'% "ERROR - Couldn't str the returned value.") text = '\n'.join(contents) show_notification(text, title) return value except Exception as ex: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training has crashed ☠️", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'Crash date: %s' % end_time.strftime(DATE_FORMAT), 'Crashed training duration: %s\n\n' % str(elapsed_time), "Here's the error:", '%s\n\n' % ex, "Traceback:", '%s' % traceback.format_exc()] text = '\n'.join(contents) show_notification(text, title) raise ex return wrapper_sender return decorator_sender
(title: str = 'knockknock')
24,497
knockknock.dingtalk_sender
dingtalk_sender
DingTalk sender wrapper: execute func, send a DingTalk notification with the end status (sucessfully finished or crashed) at the end. Also send a DingTalk notification before executing func. `webhook_url`: str The webhook URL to access your DingTalk chatroom. Visit https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq for more details. `user_mentions`: List[str] (default=[]) Optional users phone number to notify. Visit https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq for more details. `secret`: str (default='') DingTalk chatroom robot are set with at least one of those three security methods (ip / keyword / secret), the chatroom will only accect messages that: are from authorized ips set by user (ip), contain any keyword set by user (keyword), are posted through a encrypting way (secret). Vist https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq from more details. `keywords`: List[str] (default=[]) see `secret`
def dingtalk_sender(webhook_url: str, user_mentions: List[str] = [], secret: str = '', keywords: List[str] = []): """ DingTalk sender wrapper: execute func, send a DingTalk notification with the end status (sucessfully finished or crashed) at the end. Also send a DingTalk notification before executing func. `webhook_url`: str The webhook URL to access your DingTalk chatroom. Visit https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq for more details. `user_mentions`: List[str] (default=[]) Optional users phone number to notify. Visit https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq for more details. `secret`: str (default='') DingTalk chatroom robot are set with at least one of those three security methods (ip / keyword / secret), the chatroom will only accect messages that: are from authorized ips set by user (ip), contain any keyword set by user (keyword), are posted through a encrypting way (secret). Vist https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq from more details. `keywords`: List[str] (default=[]) see `secret` """ msg_template = { "msgtype": "text", "text": { "content": "" }, "at": { "atMobiles": user_mentions, "isAtAll": False } } def _construct_encrypted_url(): ''' Visit https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq for details ''' timestamp = round(datetime.datetime.now().timestamp() * 1000) secret_enc = secret.encode('utf-8') string_to_sign = '{}\n{}'.format(timestamp, secret) string_to_sign_enc = string_to_sign.encode('utf-8') hmac_code = hmac.new(secret_enc, string_to_sign_enc, digestmod=hashlib.sha256).digest() sign = urllib.parse.quote_plus(base64.b64encode(hmac_code)) encrypted_url = webhook_url + '&timestamp={}'.format(timestamp) \ + '&sign={}'.format(sign) return encrypted_url def decorator_sender(func): @functools.wraps(func) def wrapper_sender(*args, **kwargs): start_time = datetime.datetime.now() host_name = socket.gethostname() func_name = func.__name__ # Handling distributed training edge case. # In PyTorch, the launch of `torch.distributed.launch` sets up a RANK environment variable for each process. # This can be used to detect the master process. # See https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py#L211 # Except for errors, only the master process will send notifications. if 'RANK' in os.environ: master_process = (int(os.environ['RANK']) == 0) host_name += ' - RANK: %s' % os.environ['RANK'] else: master_process = True if master_process: contents = ['Your training has started 🎬', 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT)] contents.extend(['@{}'.format(i) for i in user_mentions]) contents.extend(keywords) msg_template['text']['content'] = '\n'.join(contents) if secret: postto = _construct_encrypted_url() requests.post(postto, json=msg_template) else: requests.post(webhook_url, json=msg_template) try: value = func(*args, **kwargs) if master_process: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training is complete πŸŽ‰", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'End date: %s' % end_time.strftime(DATE_FORMAT), 'Training duration: %s' % str(elapsed_time)] try: str_value = str(value) contents.append('Main call returned value: %s'% str_value) except: contents.append('Main call returned value: %s'% "ERROR - Couldn't str the returned value.") contents.extend(['@{}'.format(i) for i in user_mentions]) contents.extend(keywords) msg_template['text']['content'] = '\n'.join(contents) if secret: postto = _construct_encrypted_url() requests.post(postto, json=msg_template) else: requests.post(webhook_url, json=msg_template) print(msg_template) return value except Exception as ex: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training has crashed ☠️", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'Crash date: %s' % end_time.strftime(DATE_FORMAT), 'Crashed training duration: %s\n\n' % str(elapsed_time), "Here's the error:", '%s\n\n' % ex, "Traceback:", '%s' % traceback.format_exc()] contents.extend(['@{}'.format(i) for i in user_mentions]) contents.extend(keywords) msg_template['text']['content'] = '\n'.join(contents) if secret: postto = _construct_encrypted_url() requests.post(postto, json=msg_template) else: requests.post(webhook_url, json=msg_template) print(msg_template) raise ex return wrapper_sender return decorator_sender
(webhook_url: str, user_mentions: List[str] = [], secret: str = '', keywords: List[str] = [])
24,498
knockknock.discord_sender
discord_sender
Discord sender wrapper: execute func, send a Discord message with the end status (sucessfully finished or crashed) at the end. Also send a Discord message before executing func. `webhook_url`: str The Discord webhook URL for posting messages. Visit https://support.discordapp.com/hc/en-us/articles/228383668-Intro-to-Webhooks to set up your webhook and get your URL.
def discord_sender(webhook_url: str): """ Discord sender wrapper: execute func, send a Discord message with the end status (sucessfully finished or crashed) at the end. Also send a Discord message before executing func. `webhook_url`: str The Discord webhook URL for posting messages. Visit https://support.discordapp.com/hc/en-us/articles/228383668-Intro-to-Webhooks to set up your webhook and get your URL. """ def decorator_sender(func): def send_message(text: str): headers = {'Content-Type': 'application/json'} payload = json.dumps({'content': text}) r = requests.post(url=webhook_url, data=payload, headers=headers) @functools.wraps(func) def wrapper_sender(*args, **kwargs): start_time = datetime.datetime.now() host_name = socket.gethostname() func_name = func.__name__ # Handling distributed training edge case. # In PyTorch, the launch of `torch.distributed.launch` sets up a RANK environment variable for each process. # This can be used to detect the master process. # See https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py#L211 # Except for errors, only the master process will send notifications. if 'RANK' in os.environ: master_process = (int(os.environ['RANK']) == 0) host_name += ' - RANK: %s' % os.environ['RANK'] else: master_process = True if master_process: contents = ['Your training has started 🎬', 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT)] text = '\n'.join(contents) send_message(text=text) try: value = func(*args, **kwargs) if master_process: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training is complete πŸŽ‰", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'End date: %s' % end_time.strftime(DATE_FORMAT), 'Training duration: %s' % str(elapsed_time)] try: str_value = str(value) contents.append('Main call returned value: %s'% str_value) except: contents.append('Main call returned value: %s'% "ERROR - Couldn't str the returned value.") text = '\n'.join(contents) send_message(text=text) return value except Exception as ex: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training has crashed ☠️", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'Crash date: %s' % end_time.strftime(DATE_FORMAT), 'Crashed training duration: %s\n\n' % str(elapsed_time), "Here's the error:", '%s\n\n' % ex, "Traceback:", '%s' % traceback.format_exc()] text = '\n'.join(contents) send_message(text=text) raise ex return wrapper_sender return decorator_sender
(webhook_url: str)
24,499
knockknock.email_sender
email_sender
Email sender wrapper: execute func, send an email with the end status (sucessfully finished or crashed) at the end. Also send an email before executing func. `recipient_emails`: list[str] A list of email addresses to notify. `sender_email`: str (default=None) The email adress to send the messages. If None, use the same address as the first recipient email in `recipient_emails` if length of `recipient_emails` is more than 0.
def email_sender(recipient_emails: list, sender_email: str = None): """ Email sender wrapper: execute func, send an email with the end status (sucessfully finished or crashed) at the end. Also send an email before executing func. `recipient_emails`: list[str] A list of email addresses to notify. `sender_email`: str (default=None) The email adress to send the messages. If None, use the same address as the first recipient email in `recipient_emails` if length of `recipient_emails` is more than 0. """ if sender_email is None and len(recipient_emails) > 0: sender_email = recipient_emails[0] yag_sender = yagmail.SMTP(sender_email) def decorator_sender(func): @functools.wraps(func) def wrapper_sender(*args, **kwargs): start_time = datetime.datetime.now() host_name = socket.gethostname() func_name = func.__name__ # Handling distributed training edge case. # In PyTorch, the launch of `torch.distributed.launch` sets up a RANK environment variable for each process. # This can be used to detect the master process. # See https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py#L211 # Except for errors, only the master process will send notifications. if 'RANK' in os.environ: master_process = (int(os.environ['RANK']) == 0) host_name += ' - RANK: %s' % os.environ['RANK'] else: master_process = True if master_process: contents = ['Your training has started.', 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT)] for i in range(len(recipient_emails)): current_recipient = recipient_emails[i] yag_sender.send(current_recipient, 'Training has started 🎬', contents) try: value = func(*args, **kwargs) if master_process: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training is complete.", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'End date: %s' % end_time.strftime(DATE_FORMAT), 'Training duration: %s' % str(elapsed_time)] try: str_value = str(value) contents.append('Main call returned value: %s'% str_value) except: contents.append('Main call returned value: %s'% "ERROR - Couldn't str the returned value.") for i in range(len(recipient_emails)): current_recipient = recipient_emails[i] yag_sender.send(current_recipient, 'Training has sucessfully finished πŸŽ‰', contents) return value except Exception as ex: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training has crashed.", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'Crash date: %s' % end_time.strftime(DATE_FORMAT), 'Crashed training duration: %s\n\n' % str(elapsed_time), "Here's the error:", '%s\n\n' % ex, "Traceback:", '%s' % traceback.format_exc()] for i in range(len(recipient_emails)): current_recipient = recipient_emails[i] yag_sender.send(current_recipient, 'Training has crashed ☠️', contents) raise ex return wrapper_sender return decorator_sender
(recipient_emails: list, sender_email: Optional[str] = None)
24,500
knockknock.matrix_sender
matrix_sender
Matrix sender wrapper: execute func, send a Matrix message with the end status (sucessfully finished or crashed) at the end. Also send a Matrix message before executing func. `homeserver`: str The homeserver address which was used to register the BOT. It is e.g. 'https://matrix-client.matrix.org'. It can be also looked up in Riot by looking in the riot settings, "Help & About" at the bottom. Specifying the schema (`http` or `https`) is required. `token`: str The access TOKEN of the user that will send the messages. It can be obtained in Riot by looking in the riot settings, "Help & About" , down the bottom is: Access Token:<click to reveal> `room`: str The alias of the room to which messages will be send by the BOT. After creating a room, an alias can be set. In Riot, this can be done by opening the room settings under 'Room Addresses'.
def matrix_sender(homeserver: str, token: str, room: str): """ Matrix sender wrapper: execute func, send a Matrix message with the end status (sucessfully finished or crashed) at the end. Also send a Matrix message before executing func. `homeserver`: str The homeserver address which was used to register the BOT. It is e.g. 'https://matrix-client.matrix.org'. It can be also looked up in Riot by looking in the riot settings, "Help & About" at the bottom. Specifying the schema (`http` or `https`) is required. `token`: str The access TOKEN of the user that will send the messages. It can be obtained in Riot by looking in the riot settings, "Help & About" , down the bottom is: Access Token:<click to reveal> `room`: str The alias of the room to which messages will be send by the BOT. After creating a room, an alias can be set. In Riot, this can be done by opening the room settings under 'Room Addresses'. """ matrix = MatrixHttpApi(homeserver, token=token) room_id = matrix.get_room_id(room) def decorator_sender(func): @functools.wraps(func) def wrapper_sender(*args, **kwargs): start_time = datetime.datetime.now() host_name = socket.gethostname() func_name = func.__name__ # Handling distributed training edge case. # In PyTorch, the launch of `torch.distributed.launch` sets up a RANK environment variable for each process. # This can be used to detect the master process. # See https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py#L211 # Except for errors, only the master process will send notifications. if 'RANK' in os.environ: master_process = (int(os.environ['RANK']) == 0) host_name += ' - RANK: %s' % os.environ['RANK'] else: master_process = True if master_process: contents = ['Your training has started 🎬', 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT)] text = '\n'.join(contents) matrix.send_message(room_id, text) try: value = func(*args, **kwargs) if master_process: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training is complete πŸŽ‰", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'End date: %s' % end_time.strftime(DATE_FORMAT), 'Training duration: %s' % str(elapsed_time)] try: str_value = str(value) contents.append('Main call returned value: %s'% str_value) except: contents.append('Main call returned value: %s'% "ERROR - Couldn't str the returned value.") text = '\n'.join(contents) matrix.send_message(room_id, text) return value except Exception as ex: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training has crashed ☠️", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'Crash date: %s' % end_time.strftime(DATE_FORMAT), 'Crashed training duration: %s\n\n' % str(elapsed_time), "Here's the error:", '%s\n\n' % ex, "Traceback:", '%s' % traceback.format_exc()] text = '\n'.join(contents) matrix.send_message(room_id, text) raise ex return wrapper_sender return decorator_sender
(homeserver: str, token: str, room: str)
24,501
knockknock.rocketchat_sender
rocketchat_sender
RocketChat sender wrapper: execute func, post a RocketChat message with the end status (sucessfully finished or crashed) at the end. Also send a RocketChat message before executing func. `rocketchat_server_url`: str The RocketChat server URL. E.g. rocketchat.yourcompany.com `rocketchat_user_id`: str The RocketChat user id to post messages with (you'll be able to view your user id when you create a personal access token). `rocketchat_auth_token`: str The RocketChat personal access token. Visit https://rocket.chat/docs/developer-guides/rest-api/personal-access-tokens/ for more details. `channel`: str The RocketChat channel to log. `user_mentions`: List[str] (default=[]) Optional list of user names to notify, as comma seperated list. `alias`: str (default="") Optional alias to use for the notification.
def rocketchat_sender(rocketchat_server_url: str, rocketchat_user_id: str, rocketchat_auth_token: str, channel: str, user_mentions: List[str] = [], alias: str = ""): """ RocketChat sender wrapper: execute func, post a RocketChat message with the end status (sucessfully finished or crashed) at the end. Also send a RocketChat message before executing func. `rocketchat_server_url`: str The RocketChat server URL. E.g. rocketchat.yourcompany.com `rocketchat_user_id`: str The RocketChat user id to post messages with (you'll be able to view your user id when you create a personal access token). `rocketchat_auth_token`: str The RocketChat personal access token. Visit https://rocket.chat/docs/developer-guides/rest-api/personal-access-tokens/ for more details. `channel`: str The RocketChat channel to log. `user_mentions`: List[str] (default=[]) Optional list of user names to notify, as comma seperated list. `alias`: str (default="") Optional alias to use for the notification. """ dump = { "alias": alias, "channel": channel, "emoji": ":bell:" } headers = { "Content-type": "application/json", "X-Auth-Token": rocketchat_auth_token, "X-User-Id": rocketchat_user_id } def decorator_sender(func): @functools.wraps(func) def wrapper_sender(*args, **kwargs): webhook_url = urljoin(rocketchat_server_url, "/api/v1/chat.postMessage") start_time = datetime.datetime.now().replace(microsecond=0) host_name = socket.gethostname() func_name = func.__name__ # Handling distributed training edge case. # In PyTorch, the launch of `torch.distributed.launch` sets up a RANK environment variable for each process. # This can be used to detect the master process. # See https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py#L211 # Except for errors, only the master process will send notifications. if "RANK" in os.environ: master_process = (int(os.environ["RANK"]) == 0) host_name += " - RANK: %s" % os.environ["RANK"] else: master_process = True if master_process: contents = ["Your training has **started** :clap: %s" % " ".join(["@" + u for u in user_mentions]), "**Machine name:** %s" % host_name, "**Main call:** %s" % func_name, "**Starting date:** %s" % start_time.strftime( DATE_FORMAT)] dump["text"] = "\n".join(contents) requests.post( url=webhook_url, data=json.dumps(dump), headers=headers) try: value = func(*args, **kwargs) if master_process: end_time = datetime.datetime.now().replace(microsecond=0) elapsed_time = (end_time - start_time) contents = ["Your training is **complete** :tada: %s" % " ".join(["@" + u for u in user_mentions]), "**Machine name:** %s" % host_name, "**Main call:** %s" % func_name, "**Starting date:** %s" % start_time.strftime( DATE_FORMAT), "**End date:** %s" % end_time.strftime( DATE_FORMAT), "**Training duration:** %s" % str(elapsed_time)] try: str_value = str(value) contents.append( "**Main call returned value:** %s" % str_value) except: contents.append("**Main call returned value:** %s" % "ERROR - Couldn't str the returned value.") dump["text"] = "\n".join(contents) requests.post( url=webhook_url, data=json.dumps(dump), headers=headers) return value except Exception as ex: end_time = datetime.datetime.now().replace(microsecond=0) elapsed_time = end_time - start_time contents = ["Your training has **crashed** :skull_crossbones: %s" % " ".join(["@" + u for u in user_mentions]), "**Machine name:** %s" % host_name, "**Main call:** %s" % func_name, "**Starting date:** %s" % start_time.strftime( DATE_FORMAT), "**Crash date:** %s" % end_time.strftime( DATE_FORMAT), "**Crashed training duration:** %s" % str( elapsed_time), "**Error message:**", "\n%s\n" % ex, "**Traceback:**", "\n%s\n" % traceback.format_exc()] dump["text"] = "\n".join(contents) requests.post( url=webhook_url, data=json.dumps(dump), headers=headers) raise ex return wrapper_sender return decorator_sender
(rocketchat_server_url: str, rocketchat_user_id: str, rocketchat_auth_token: str, channel: str, user_mentions: List[str] = [], alias: str = '')
24,502
knockknock.slack_sender
slack_sender
Slack sender wrapper: execute func, send a Slack notification with the end status (sucessfully finished or crashed) at the end. Also send a Slack notification before executing func. `webhook_url`: str The webhook URL to access your slack room. Visit https://api.slack.com/incoming-webhooks#create_a_webhook for more details. `channel`: str The slack room to log. `user_mentions`: List[str] (default=[]) Optional users ids to notify. Visit https://api.slack.com/methods/users.identity for more details.
def slack_sender(webhook_url: str, channel: str, user_mentions: List[str] = []): """ Slack sender wrapper: execute func, send a Slack notification with the end status (sucessfully finished or crashed) at the end. Also send a Slack notification before executing func. `webhook_url`: str The webhook URL to access your slack room. Visit https://api.slack.com/incoming-webhooks#create_a_webhook for more details. `channel`: str The slack room to log. `user_mentions`: List[str] (default=[]) Optional users ids to notify. Visit https://api.slack.com/methods/users.identity for more details. """ dump = { "username": "Knock Knock", "channel": channel, "icon_emoji": ":clapper:", } def decorator_sender(func): @functools.wraps(func) def wrapper_sender(*args, **kwargs): start_time = datetime.datetime.now() host_name = socket.gethostname() func_name = func.__name__ # Handling distributed training edge case. # In PyTorch, the launch of `torch.distributed.launch` sets up a RANK environment variable for each process. # This can be used to detect the master process. # See https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py#L211 # Except for errors, only the master process will send notifications. if 'RANK' in os.environ: master_process = (int(os.environ['RANK']) == 0) host_name += ' - RANK: %s' % os.environ['RANK'] else: master_process = True if master_process: contents = ['Your training has started 🎬', 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT)] contents.append(' '.join(user_mentions)) dump['text'] = '\n'.join(contents) dump['icon_emoji'] = ':clapper:' requests.post(webhook_url, json.dumps(dump)) try: value = func(*args, **kwargs) if master_process: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training is complete πŸŽ‰", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'End date: %s' % end_time.strftime(DATE_FORMAT), 'Training duration: %s' % str(elapsed_time)] try: str_value = str(value) contents.append('Main call returned value: %s'% str_value) except: contents.append('Main call returned value: %s'% "ERROR - Couldn't str the returned value.") contents.append(' '.join(user_mentions)) dump['text'] = '\n'.join(contents) dump['icon_emoji'] = ':tada:' requests.post(webhook_url, json.dumps(dump)) return value except Exception as ex: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training has crashed ☠️", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'Crash date: %s' % end_time.strftime(DATE_FORMAT), 'Crashed training duration: %s\n\n' % str(elapsed_time), "Here's the error:", '%s\n\n' % ex, "Traceback:", '%s' % traceback.format_exc()] contents.append(' '.join(user_mentions)) dump['text'] = '\n'.join(contents) dump['icon_emoji'] = ':skull_and_crossbones:' requests.post(webhook_url, json.dumps(dump)) raise ex return wrapper_sender return decorator_sender
(webhook_url: str, channel: str, user_mentions: List[str] = [])
24,503
knockknock.sms_sender
sms_sender
null
def sms_sender(account_sid: str, auth_token: str, recipient_number: str, sender_number: str): client = Client(account_sid, auth_token) def decorator_sender(func): @functools.wraps(func) def wrapper_sender(*args, **kwargs): start_time = datetime.datetime.now() host_name = socket.gethostname() func_name = func.__name__ # Handling distributed training edge case. # In PyTorch, the launch of `torch.distributed.launch` sets up a RANK environment variable for each process. # This can be used to detect the master process. # See https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py#L211 # Except for errors, only the master process will send notifications. if 'RANK' in os.environ: master_process = (int(os.environ['RANK']) == 0) host_name += ' - RANK: %s' % os.environ['RANK'] else: master_process = True if master_process: contents = ['Your training has started 🎬', 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT)] text = '\n'.join(contents) client.messages.create(body=text, from_=sender_number, to=recipient_number) try: value = func(*args, **kwargs) if master_process: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training is complete πŸŽ‰", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'End date: %s' % end_time.strftime(DATE_FORMAT), 'Training duration: %s' % str(elapsed_time)] try: str_value = str(value) contents.append('Main call returned value: %s'% str_value) except: contents.append('Main call returned value: %s'% "ERROR - Couldn't str the returned value.") text = '\n'.join(contents) client.messages.create(body=text, from_=sender_number, to=recipient_number) return value except Exception as ex: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training has crashed ☠️", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'Crash date: %s' % end_time.strftime(DATE_FORMAT), 'Crashed training duration: %s\n\n' % str(elapsed_time), "Here's the error:", '%s\n\n' % ex, "Traceback:", '%s' % traceback.format_exc()] text = '\n'.join(contents) client.messages.create(body=text, from_=sender_number, to=recipient_number) raise ex return wrapper_sender return decorator_sender
(account_sid: str, auth_token: str, recipient_number: str, sender_number: str)
24,504
knockknock.teams_sender
teams_sender
team sender wrapper: execute func, send a team notification with the end status (sucessfully finished or crashed) at the end. Also send a Slack notification before executing func. `webhook_url`: str The webhook URL to access your slack room. Visit https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/connectors/connectors-using for more details. `user_mentions`: List[str] (default=[]) Optional users ids to notify.
def teams_sender(webhook_url: str, user_mentions: List[str] = []): """ team sender wrapper: execute func, send a team notification with the end status (sucessfully finished or crashed) at the end. Also send a Slack notification before executing func. `webhook_url`: str The webhook URL to access your slack room. Visit https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/connectors/connectors-using for more details. `user_mentions`: List[str] (default=[]) Optional users ids to notify. """ dump = { "username": "Knock Knock", "icon_emoji": ":clapper:", } def decorator_sender(func): @functools.wraps(func) def wrapper_sender(*args, **kwargs): start_time = datetime.datetime.now() host_name = socket.gethostname() func_name = func.__name__ # Handling distributed training edge case. # In PyTorch, the launch of `torch.distributed.launch` sets up a RANK environment variable for each process. # This can be used to detect the master process. # See https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py#L211 # Except for errors, only the master process will send notifications. if 'RANK' in os.environ: master_process = (int(os.environ['RANK']) == 0) host_name += ' - RANK: %s' % os.environ['RANK'] else: master_process = True if master_process: contents = ['Your training has started 🎬', 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT)] contents.append(' '.join(user_mentions)) dump['text'] = '\n'.join(contents) dump['icon_emoji'] = ':clapper:' requests.post(webhook_url, json.dumps(dump)) try: value = func(*args, **kwargs) if master_process: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training is complete πŸŽ‰", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime( DATE_FORMAT), 'End date: %s' % end_time.strftime( DATE_FORMAT), 'Training duration: %s' % str(elapsed_time)] try: str_value = str(value) contents.append( 'Main call returned value: %s' % str_value) except: contents.append('Main call returned value: %s' % "ERROR - Couldn't str the returned value.") contents.append(' '.join(user_mentions)) dump['text'] = '\n'.join(contents) dump['icon_emoji'] = ':tada:' requests.post(webhook_url, json.dumps(dump)) return value except Exception as ex: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training has crashed ☠️", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime( DATE_FORMAT), 'Crash date: %s' % end_time.strftime(DATE_FORMAT), 'Crashed training duration: %s\n\n' % str( elapsed_time), "Here's the error:", '%s\n\n' % ex, "Traceback:", '%s' % traceback.format_exc()] contents.append(' '.join(user_mentions)) dump['text'] = '\n'.join(contents) dump['icon_emoji'] = ':skull_and_crossbones:' requests.post(webhook_url, json.dumps(dump)) raise ex return wrapper_sender return decorator_sender
(webhook_url: str, user_mentions: List[str] = [])
24,505
knockknock.telegram_sender
telegram_sender
Telegram sender wrapper: execute func, send a Telegram message with the end status (sucessfully finished or crashed) at the end. Also send a Telegram message before executing func. `token`: str The API access TOKEN required to use the Telegram API. Visit https://core.telegram.org/bots#6-botfather to obtain your TOKEN. `chat_id`: int Your chat room id with your notification BOT. Visit https://api.telegram.org/bot<YourBOTToken>/getUpdates to get your chat_id (start a conversation with your bot by sending a message and get the `int` under message['chat']['id'])
def telegram_sender(token: str, chat_id: int): """ Telegram sender wrapper: execute func, send a Telegram message with the end status (sucessfully finished or crashed) at the end. Also send a Telegram message before executing func. `token`: str The API access TOKEN required to use the Telegram API. Visit https://core.telegram.org/bots#6-botfather to obtain your TOKEN. `chat_id`: int Your chat room id with your notification BOT. Visit https://api.telegram.org/bot<YourBOTToken>/getUpdates to get your chat_id (start a conversation with your bot by sending a message and get the `int` under message['chat']['id']) """ bot = telegram.Bot(token=token) def decorator_sender(func): @functools.wraps(func) def wrapper_sender(*args, **kwargs): start_time = datetime.datetime.now() host_name = socket.gethostname() func_name = func.__name__ # Handling distributed training edge case. # In PyTorch, the launch of `torch.distributed.launch` sets up a RANK environment variable for each process. # This can be used to detect the master process. # See https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py#L211 # Except for errors, only the master process will send notifications. if 'RANK' in os.environ: master_process = (int(os.environ['RANK']) == 0) host_name += ' - RANK: %s' % os.environ['RANK'] else: master_process = True if master_process: contents = ['Your training has started 🎬', 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT)] text = '\n'.join(contents) bot.send_message(chat_id=chat_id, text=text) try: value = func(*args, **kwargs) if master_process: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training is complete πŸŽ‰", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'End date: %s' % end_time.strftime(DATE_FORMAT), 'Training duration: %s' % str(elapsed_time)] try: str_value = str(value) contents.append('Main call returned value: %s'% str_value) except: contents.append('Main call returned value: %s'% "ERROR - Couldn't str the returned value.") text = '\n'.join(contents) bot.send_message(chat_id=chat_id, text=text) return value except Exception as ex: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training has crashed ☠️", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'Crash date: %s' % end_time.strftime(DATE_FORMAT), 'Crashed training duration: %s\n\n' % str(elapsed_time), "Here's the error:", '%s\n\n' % ex, "Traceback:", '%s' % traceback.format_exc()] text = '\n'.join(contents) bot.send_message(chat_id=chat_id, text=text) raise ex return wrapper_sender return decorator_sender
(token: str, chat_id: int)
24,506
knockknock.wechat_sender
wechat_sender
WeChat Work sender wrapper: execute func, send a WeChat Work notification with the end status (sucessfully finished or crashed) at the end. Also send a WeChat Work notification before executing func. To obtain the webhook, add a Group Robot in your WeChat Work Group. Visit https://work.weixin.qq.com/api/doc/90000/90136/91770 for more details. `webhook_url`: str The webhook URL to access your WeChat Work chatroom. Visit https://work.weixin.qq.com/api/doc/90000/90136/91770 for more details. `user_mentions`: List[str] (default=[]) Optional userids to notify (use '@all' for all group members). Visit https://work.weixin.qq.com/api/doc/90000/90136/91770 for more details. `user_mentions_mobile`: List[str] (default=[]) Optional user's phone numbers to notify (use '@all' for all group members). Visit https://work.weixin.qq.com/api/doc/90000/90136/91770 for more details.
def wechat_sender(webhook_url: str, user_mentions: List[str] = [], user_mentions_mobile: List[str] = []): """ WeChat Work sender wrapper: execute func, send a WeChat Work notification with the end status (sucessfully finished or crashed) at the end. Also send a WeChat Work notification before executing func. To obtain the webhook, add a Group Robot in your WeChat Work Group. Visit https://work.weixin.qq.com/api/doc/90000/90136/91770 for more details. `webhook_url`: str The webhook URL to access your WeChat Work chatroom. Visit https://work.weixin.qq.com/api/doc/90000/90136/91770 for more details. `user_mentions`: List[str] (default=[]) Optional userids to notify (use '@all' for all group members). Visit https://work.weixin.qq.com/api/doc/90000/90136/91770 for more details. `user_mentions_mobile`: List[str] (default=[]) Optional user's phone numbers to notify (use '@all' for all group members). Visit https://work.weixin.qq.com/api/doc/90000/90136/91770 for more details. """ msg_template = { "msgtype": "text", "text": { "content": "", "mentioned_list":user_mentions, "mentioned_mobile_list":user_mentions_mobile } } def decorator_sender(func): @functools.wraps(func) def wrapper_sender(*args, **kwargs): start_time = datetime.datetime.now() host_name = socket.gethostname() func_name = func.__name__ # Handling distributed training edge case. # In PyTorch, the launch of `torch.distributed.launch` sets up a RANK environment variable for each process. # This can be used to detect the master process. # See https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py#L211 # Except for errors, only the master process will send notifications. if 'RANK' in os.environ: master_process = (int(os.environ['RANK']) == 0) host_name += ' - RANK: %s' % os.environ['RANK'] else: master_process = True if master_process: contents = ['Your training has started 🎬', 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT)] msg_template['text']['content'] = '\n'.join(contents) requests.post(webhook_url, json=msg_template) try: value = func(*args, **kwargs) if master_process: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training is complete πŸŽ‰", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'End date: %s' % end_time.strftime(DATE_FORMAT), 'Training duration: %s' % str(elapsed_time)] try: str_value = str(value) contents.append('Main call returned value: %s'% str_value) except: contents.append('Main call returned value: %s'% "ERROR - Couldn't str the returned value.") msg_template['text']['content'] = '\n'.join(contents) requests.post(webhook_url, json=msg_template) print(msg_template) return value except Exception as ex: end_time = datetime.datetime.now() elapsed_time = end_time - start_time contents = ["Your training has crashed ☠️", 'Machine name: %s' % host_name, 'Main call: %s' % func_name, 'Starting date: %s' % start_time.strftime(DATE_FORMAT), 'Crash date: %s' % end_time.strftime(DATE_FORMAT), 'Crashed training duration: %s\n\n' % str(elapsed_time), "Here's the error:", '%s\n\n' % ex, "Traceback:", '%s' % traceback.format_exc()] msg_template['text']['content'] = '\n'.join(contents) requests.post(webhook_url, json=msg_template) print(msg_template) raise ex return wrapper_sender return decorator_sender
(webhook_url: str, user_mentions: List[str] = [], user_mentions_mobile: List[str] = [])
24,507
logorestclient.service.logo_service
LogoService
null
class LogoService(TokenService): def __init__(self, credentials): if credentials is None: raise LogoException("Credentials required!") payload = { 'grant_type': credentials['GRANT_TYPE'], 'username': credentials['USER_NAME'], 'firmno': credentials['CLIENT_NUMBER'], 'password': credentials['PASSWORD'] } super().__init__(credentials['REST_URL'], **payload) token = self.token_dict['access_token'] self.headers = { 'Authorization': f'Bearer {token}', 'content-type': 'application/json', 'accept': 'application/json' } def runQuery(self, query): res = self.connect('GET', '/api/v1/queries?tsql=' + query, headers=self.headers) if 'error' in res: raise LogoException(res['error'] + ' ' + res['error_description']) if 'Message' in res and 'ModelState' in res: if '207' in res['ModelState']: raise LogoException(res['ModelState']['207']) if 'LoginError' in res['ModelState']: token_dict = self.retrieve_access_token() self.token_dict = token_dict return self.runQuery(query) if 'count' in res and res['count'] == 0 or len(res['items']) == 0: return return res
(credentials)
24,508
logorestclient.service.logo_service
__init__
null
def __init__(self, credentials): if credentials is None: raise LogoException("Credentials required!") payload = { 'grant_type': credentials['GRANT_TYPE'], 'username': credentials['USER_NAME'], 'firmno': credentials['CLIENT_NUMBER'], 'password': credentials['PASSWORD'] } super().__init__(credentials['REST_URL'], **payload) token = self.token_dict['access_token'] self.headers = { 'Authorization': f'Bearer {token}', 'content-type': 'application/json', 'accept': 'application/json' }
(self, credentials)
24,509
logorestclient.service.http_service
connect
null
def connect(self, method, url, request_body={}, headers=None, is_json=False): if method == 'GET': return self.get_request(self.REST_URL + url, headers) return self.post_request(self.REST_URL + url, request_body, headers, is_json)
(self, method, url, request_body={}, headers=None, is_json=False)
24,510
logorestclient.service.http_service
get_request
null
def get_request(self, url, headers): r = requests.get(url, headers=headers) return self.parse_result(r)
(self, url, headers)
24,511
logorestclient.service.http_service
parse_result
null
@staticmethod def parse_result(r): res = r.text.encode('utf-8') res = Serializer.loads(res) if 'Meta' in res: del res['Meta'] return res
(r)
24,512
logorestclient.service.http_service
post_request
null
def post_request(self, url, request_body, headers, is_json): if is_json is True: request_body = Serializer.dumps(request_body) r = requests.post(url, data=request_body, headers=headers) return self.parse_result(r)
(self, url, request_body, headers, is_json)
24,513
logorestclient.service.token_service
retrieve_access_token
null
def retrieve_access_token(self): res = self.connect('POST', '/api/v1/token', self.payloads) if 'error' in res: raise LogoException(res['error'] + ' ' + res['error_description']) update_token(res) return res
(self)
24,514
logorestclient.service.logo_service
runQuery
null
def runQuery(self, query): res = self.connect('GET', '/api/v1/queries?tsql=' + query, headers=self.headers) if 'error' in res: raise LogoException(res['error'] + ' ' + res['error_description']) if 'Message' in res and 'ModelState' in res: if '207' in res['ModelState']: raise LogoException(res['ModelState']['207']) if 'LoginError' in res['ModelState']: token_dict = self.retrieve_access_token() self.token_dict = token_dict return self.runQuery(query) if 'count' in res and res['count'] == 0 or len(res['items']) == 0: return return res
(self, query)
24,521
schedula.utils.blue
BlueDispatcher
Blueprint object is a blueprint of how to construct or extend a Dispatcher. **------------------------------------------------------------------------** **Example**: Create a BlueDispatcher:: >>> import schedula as sh >>> blue = sh.BlueDispatcher(name='Dispatcher') Add data/function/dispatcher nodes to the dispatcher map as usual:: >>> blue.add_data(data_id='a', default_value=3) <schedula.utils.blue.BlueDispatcher object at ...> >>> @sh.add_function(blue, True, True, outputs=['c']) ... def diff_function(a, b=2): ... return b - a ... >>> blue.add_function(function=max, inputs=['c', 'd'], outputs=['e']) <schedula.utils.blue.BlueDispatcher object at ...> >>> from math import log >>> sub_blue = sh.BlueDispatcher(name='Sub-Dispatcher') >>> sub_blue.add_data(data_id='a', default_value=2).add_function( ... function=log, inputs=['a'], outputs=['b'] ... ) <schedula.utils.blue.BlueDispatcher object at ...> >>> blue.add_dispatcher(sub_blue, ('a',), {'b': 'f'}) <schedula.utils.blue.BlueDispatcher object at ...> You can set the default values as usual:: >>> blue.set_default_value(data_id='c', value=1, initial_dist=6) <schedula.utils.blue.BlueDispatcher object at ...> You can also create a `Blueprint` out of `SubDispatchFunction` and add it to the `Dispatcher` as follow:: >>> func = sh.SubDispatchFunction(sub_blue, 'func', ['a'], ['b']) >>> blue.add_from_lists(fun_list=[ ... dict(function=func, inputs=['a'], outputs=['d']), ... dict(function=func, inputs=['c'], outputs=['g']), ... ]) <schedula.utils.blue.BlueDispatcher object at ...> Finally you can create the dispatcher object using the method `new`: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} :code: >>> dsp = blue.register(memo={}); dsp <schedula.dispatcher.Dispatcher object at ...> Or dispatch, calling the Blueprint object: .. dispatcher:: sol :opt: graph_attr={'ratio': '1'} :code: >>> sol = blue({'a': 1}); sol Solution([('a', 1), ('b', 2), ('c', 1), ('d', 0.0), ('f', 0.0), ('e', 1), ('g', 0.0)])
class BlueDispatcher(Blueprint): """ Blueprint object is a blueprint of how to construct or extend a Dispatcher. **------------------------------------------------------------------------** **Example**: Create a BlueDispatcher:: >>> import schedula as sh >>> blue = sh.BlueDispatcher(name='Dispatcher') Add data/function/dispatcher nodes to the dispatcher map as usual:: >>> blue.add_data(data_id='a', default_value=3) <schedula.utils.blue.BlueDispatcher object at ...> >>> @sh.add_function(blue, True, True, outputs=['c']) ... def diff_function(a, b=2): ... return b - a ... >>> blue.add_function(function=max, inputs=['c', 'd'], outputs=['e']) <schedula.utils.blue.BlueDispatcher object at ...> >>> from math import log >>> sub_blue = sh.BlueDispatcher(name='Sub-Dispatcher') >>> sub_blue.add_data(data_id='a', default_value=2).add_function( ... function=log, inputs=['a'], outputs=['b'] ... ) <schedula.utils.blue.BlueDispatcher object at ...> >>> blue.add_dispatcher(sub_blue, ('a',), {'b': 'f'}) <schedula.utils.blue.BlueDispatcher object at ...> You can set the default values as usual:: >>> blue.set_default_value(data_id='c', value=1, initial_dist=6) <schedula.utils.blue.BlueDispatcher object at ...> You can also create a `Blueprint` out of `SubDispatchFunction` and add it to the `Dispatcher` as follow:: >>> func = sh.SubDispatchFunction(sub_blue, 'func', ['a'], ['b']) >>> blue.add_from_lists(fun_list=[ ... dict(function=func, inputs=['a'], outputs=['d']), ... dict(function=func, inputs=['c'], outputs=['g']), ... ]) <schedula.utils.blue.BlueDispatcher object at ...> Finally you can create the dispatcher object using the method `new`: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} :code: >>> dsp = blue.register(memo={}); dsp <schedula.dispatcher.Dispatcher object at ...> Or dispatch, calling the Blueprint object: .. dispatcher:: sol :opt: graph_attr={'ratio': '1'} :code: >>> sol = blue({'a': 1}); sol Solution([('a', 1), ('b', 2), ('c', 1), ('d', 0.0), ('f', 0.0), ('e', 1), ('g', 0.0)]) """ def __init__(self, dmap=None, name='', default_values=None, raises=False, description='', executor=False): kwargs = { 'dmap': dmap, 'name': name, 'default_values': default_values, 'raises': raises, 'description': description, 'executor': executor } super(BlueDispatcher, self).__init__(**kwargs) def add_data(self, data_id=None, default_value=EMPTY, initial_dist=0.0, wait_inputs=False, wildcard=None, function=None, callback=None, description=None, filters=None, await_result=None, **kwargs): """ Add a single data node to the dispatcher. :param data_id: Data node id. If None will be assigned automatically ('unknown<%d>') not in dmap. :type data_id: str, optional :param default_value: Data node default value. This will be used as input if it is not specified as inputs in the ArciDispatch algorithm. :type default_value: T, optional :param initial_dist: Initial distance in the ArciDispatch algorithm when the data node default value is used. :type initial_dist: float, int, optional :param wait_inputs: If True ArciDispatch algorithm stops on the node until it gets all input estimations. :type wait_inputs: bool, optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param function: Data node estimation function. This can be any function that takes only one dictionary (key=function node id, value=estimation of data node) as input and return one value that is the estimation of the data node. :type function: callable, optional :param callback: Callback function to be called after node estimation. This can be any function that takes only one argument that is the data node estimation output. It does not return anything. :type callback: callable, optional :param description: Data node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_result: If True the Dispatcher waits data results before assigning them to the solution. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Self. :rtype: BlueDispatcher """ kwargs.update({ 'data_id': data_id, 'filters': filters, 'wait_inputs': wait_inputs, 'wildcard': wildcard, 'function': function, 'callback': callback, 'initial_dist': initial_dist, 'default_value': default_value, 'description': description, 'await_result': await_result }) self.deferred.append(('add_data', kwargs)) return self def add_function(self, function_id=None, function=None, inputs=None, outputs=None, input_domain=None, weight=None, inp_weight=None, out_weight=None, description=None, filters=None, await_domain=None, await_result=None, **kwargs): """ Add a single function node to dispatcher. :param function_id: Function node id. If None will be assigned as <fun.__name__>. :type function_id: str, optional :param function: Data node estimation function. :type function: callable, optional :param inputs: Ordered arguments (i.e., data node ids) needed by the function. :type inputs: list, optional :param outputs: Ordered results (i.e., data node ids) returned by the function. :type outputs: list, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the same inputs of the function and returns True if input values satisfy the domain, otherwise False. In this case the dispatch algorithm doesn't pass on the node. :type input_domain: callable, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the function node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, float | int], optional :param out_weight: Edge weights from the function node to data nodes. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type out_weight: dict[str, float | int], optional :param description: Function node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param await_result: If True the Dispatcher waits output results before assigning them to the workflow. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional """ kwargs.update({ 'function_id': function_id, 'inputs': inputs, 'function': function, 'weight': weight, 'input_domain': input_domain, 'filters': filters, 'await_result': await_result, 'await_domain': await_domain, 'out_weight': out_weight, 'description': description, 'outputs': outputs, 'inp_weight': inp_weight }) self.deferred.append(('add_function', kwargs)) return self def add_func(self, function, outputs=None, weight=None, inputs_kwargs=False, inputs_defaults=False, filters=None, input_domain=None, await_domain=None, await_result=None, inp_weight=None, out_weight=None, description=None, inputs=None, function_id=None, **kwargs): """ Add a single function node to dispatcher. :param inputs_kwargs: Do you want to include kwargs as inputs? :type inputs_kwargs: bool :param inputs_defaults: Do you want to set default values? :type inputs_defaults: bool :param function_id: Function node id. If None will be assigned as <fun.__name__>. :type function_id: str, optional :param function: Data node estimation function. :type function: callable, optional :param inputs: Ordered arguments (i.e., data node ids) needed by the function. If None it will take parameters names from function signature. :type inputs: list, optional :param outputs: Ordered results (i.e., data node ids) returned by the function. :type outputs: list, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the same inputs of the function and returns True if input values satisfy the domain, otherwise False. In this case the dispatch algorithm doesn't pass on the node. :type input_domain: callable, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the function node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, float | int], optional :param out_weight: Edge weights from the function node to data nodes. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type out_weight: dict[str, float | int], optional :param description: Function node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param await_result: If True the Dispatcher waits output results before assigning them to the workflow. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Self. :rtype: BlueDispatcher """ kwargs.update({ 'function_id': function_id, 'inputs': inputs, 'function': function, 'weight': weight, 'input_domain': input_domain, 'filters': filters, 'inputs_kwargs': inputs_kwargs, 'inputs_defaults': inputs_defaults, 'await_result': await_result, 'await_domain': await_domain, 'out_weight': out_weight, 'description': description, 'outputs': outputs, 'inp_weight': inp_weight }) self.deferred.append(('add_func', kwargs)) return self def add_dispatcher(self, dsp, inputs=None, outputs=None, dsp_id=None, input_domain=None, weight=None, inp_weight=None, description=None, include_defaults=False, await_domain=None, inputs_prefix='', outputs_prefix='', **kwargs): """ Add a single sub-dispatcher node to dispatcher. :param dsp: Child dispatcher that is added as sub-dispatcher node to the parent dispatcher. :type dsp: BlueDispatcher | Dispatcher | dict[str, list] :param inputs: Inputs mapping. Data node ids from parent dispatcher to child sub-dispatcher. If `None` all child dispatcher nodes are used as inputs. :type inputs: dict[str, str | list[str]] | tuple[str] | (str, ..., dict[str, str | list[str]]) :param outputs: Outputs mapping. Data node ids from child sub-dispatcher to parent dispatcher. If `None` all child dispatcher nodes are used as outputs. :type outputs: dict[str, str | list[str]] | tuple[str] | (str, ..., dict[str, str | list[str]]) :param dsp_id: Sub-dispatcher node id. If None will be assigned as <dsp.name>. :type dsp_id: str, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the a dictionary with the inputs of the sub-dispatcher node and returns True if input values satisfy the domain, otherwise False. .. note:: This function is invoked every time that a data node reach the sub-dispatcher node. :type input_domain: (dict) -> bool, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the sub-dispatcher node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, int | float], optional :param description: Sub-dispatcher node's description. :type description: str, optional :param include_defaults: If True the default values of the sub-dispatcher are added to the current dispatcher. :type include_defaults: bool, optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param inputs_prefix: Add a prefix to parent dispatcher inputs nodes. :type inputs_prefix: str :param outputs_prefix: Add a prefix to parent dispatcher outputs nodes. :type outputs_prefix: str :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Self. :rtype: BlueDispatcher """ kwargs.update({ 'include_defaults': include_defaults, 'await_domain': await_domain, 'weight': weight, 'input_domain': input_domain, 'dsp_id': dsp_id, 'description': description, 'outputs': outputs, 'inputs': inputs, 'inp_weight': inp_weight, 'dsp': dsp, 'inputs_prefix': inputs_prefix, 'outputs_prefix': outputs_prefix }) self.deferred.append(('add_dispatcher', kwargs)) return self def add_from_lists(self, data_list=None, fun_list=None, dsp_list=None): """ Add multiple function and data nodes to dispatcher. :param data_list: It is a list of data node kwargs to be loaded. :type data_list: list[dict], optional :param fun_list: It is a list of function node kwargs to be loaded. :type fun_list: list[dict], optional :param dsp_list: It is a list of sub-dispatcher node kwargs to be loaded. :type dsp_list: list[dict], optional :return: Self. :rtype: BlueDispatcher """ kwargs = { 'data_list': data_list, 'fun_list': fun_list, 'dsp_list': dsp_list } self.deferred.append(('add_from_lists', kwargs)) return self def set_default_value(self, data_id, value=EMPTY, initial_dist=0.0): """ Set the default value of a data node in the dispatcher. :param data_id: Data node id. :type data_id: str :param value: Data node default value. .. note:: If `EMPTY` the previous default value is removed. :type value: T, optional :param initial_dist: Initial distance in the ArciDispatch algorithm when the data node default value is used. :type initial_dist: float, int, optional :return: Self. :rtype: BlueDispatcher """ kw = {'data_id': data_id, 'value': value, 'initial_dist': initial_dist} self.deferred.append(('set_default_value', kw)) return self
(dmap=None, name='', default_values=None, raises=False, description='', executor=False)
24,522
schedula.utils.blue
__call__
Calls the registered Blueprint.
def __call__(self, *args, **kwargs): """Calls the registered Blueprint.""" return self.register(memo={})(*args, **kwargs)
(self, *args, **kwargs)
24,523
schedula.utils.blue
__getstate__
null
def __getstate__(self): d, keys = self.__dict__, ('args', 'kwargs', 'deferred', 'cls') return {k: d[k] for k in keys if k in d}
(self)
24,524
schedula.utils.blue
__init__
null
def __init__(self, dmap=None, name='', default_values=None, raises=False, description='', executor=False): kwargs = { 'dmap': dmap, 'name': name, 'default_values': default_values, 'raises': raises, 'description': description, 'executor': executor } super(BlueDispatcher, self).__init__(**kwargs)
(self, dmap=None, name='', default_values=None, raises=False, description='', executor=False)
24,525
schedula.utils.blue
_set_cls
null
def _set_cls(self, cls): self.cls = cls return self
(self, cls)
24,526
schedula.utils.blue
add_data
Add a single data node to the dispatcher. :param data_id: Data node id. If None will be assigned automatically ('unknown<%d>') not in dmap. :type data_id: str, optional :param default_value: Data node default value. This will be used as input if it is not specified as inputs in the ArciDispatch algorithm. :type default_value: T, optional :param initial_dist: Initial distance in the ArciDispatch algorithm when the data node default value is used. :type initial_dist: float, int, optional :param wait_inputs: If True ArciDispatch algorithm stops on the node until it gets all input estimations. :type wait_inputs: bool, optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param function: Data node estimation function. This can be any function that takes only one dictionary (key=function node id, value=estimation of data node) as input and return one value that is the estimation of the data node. :type function: callable, optional :param callback: Callback function to be called after node estimation. This can be any function that takes only one argument that is the data node estimation output. It does not return anything. :type callback: callable, optional :param description: Data node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_result: If True the Dispatcher waits data results before assigning them to the solution. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Self. :rtype: BlueDispatcher
def add_data(self, data_id=None, default_value=EMPTY, initial_dist=0.0, wait_inputs=False, wildcard=None, function=None, callback=None, description=None, filters=None, await_result=None, **kwargs): """ Add a single data node to the dispatcher. :param data_id: Data node id. If None will be assigned automatically ('unknown<%d>') not in dmap. :type data_id: str, optional :param default_value: Data node default value. This will be used as input if it is not specified as inputs in the ArciDispatch algorithm. :type default_value: T, optional :param initial_dist: Initial distance in the ArciDispatch algorithm when the data node default value is used. :type initial_dist: float, int, optional :param wait_inputs: If True ArciDispatch algorithm stops on the node until it gets all input estimations. :type wait_inputs: bool, optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param function: Data node estimation function. This can be any function that takes only one dictionary (key=function node id, value=estimation of data node) as input and return one value that is the estimation of the data node. :type function: callable, optional :param callback: Callback function to be called after node estimation. This can be any function that takes only one argument that is the data node estimation output. It does not return anything. :type callback: callable, optional :param description: Data node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_result: If True the Dispatcher waits data results before assigning them to the solution. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Self. :rtype: BlueDispatcher """ kwargs.update({ 'data_id': data_id, 'filters': filters, 'wait_inputs': wait_inputs, 'wildcard': wildcard, 'function': function, 'callback': callback, 'initial_dist': initial_dist, 'default_value': default_value, 'description': description, 'await_result': await_result }) self.deferred.append(('add_data', kwargs)) return self
(self, data_id=None, default_value=empty, initial_dist=0.0, wait_inputs=False, wildcard=None, function=None, callback=None, description=None, filters=None, await_result=None, **kwargs)
24,527
schedula.utils.blue
add_dispatcher
Add a single sub-dispatcher node to dispatcher. :param dsp: Child dispatcher that is added as sub-dispatcher node to the parent dispatcher. :type dsp: BlueDispatcher | Dispatcher | dict[str, list] :param inputs: Inputs mapping. Data node ids from parent dispatcher to child sub-dispatcher. If `None` all child dispatcher nodes are used as inputs. :type inputs: dict[str, str | list[str]] | tuple[str] | (str, ..., dict[str, str | list[str]]) :param outputs: Outputs mapping. Data node ids from child sub-dispatcher to parent dispatcher. If `None` all child dispatcher nodes are used as outputs. :type outputs: dict[str, str | list[str]] | tuple[str] | (str, ..., dict[str, str | list[str]]) :param dsp_id: Sub-dispatcher node id. If None will be assigned as <dsp.name>. :type dsp_id: str, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the a dictionary with the inputs of the sub-dispatcher node and returns True if input values satisfy the domain, otherwise False. .. note:: This function is invoked every time that a data node reach the sub-dispatcher node. :type input_domain: (dict) -> bool, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the sub-dispatcher node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, int | float], optional :param description: Sub-dispatcher node's description. :type description: str, optional :param include_defaults: If True the default values of the sub-dispatcher are added to the current dispatcher. :type include_defaults: bool, optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param inputs_prefix: Add a prefix to parent dispatcher inputs nodes. :type inputs_prefix: str :param outputs_prefix: Add a prefix to parent dispatcher outputs nodes. :type outputs_prefix: str :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Self. :rtype: BlueDispatcher
def add_dispatcher(self, dsp, inputs=None, outputs=None, dsp_id=None, input_domain=None, weight=None, inp_weight=None, description=None, include_defaults=False, await_domain=None, inputs_prefix='', outputs_prefix='', **kwargs): """ Add a single sub-dispatcher node to dispatcher. :param dsp: Child dispatcher that is added as sub-dispatcher node to the parent dispatcher. :type dsp: BlueDispatcher | Dispatcher | dict[str, list] :param inputs: Inputs mapping. Data node ids from parent dispatcher to child sub-dispatcher. If `None` all child dispatcher nodes are used as inputs. :type inputs: dict[str, str | list[str]] | tuple[str] | (str, ..., dict[str, str | list[str]]) :param outputs: Outputs mapping. Data node ids from child sub-dispatcher to parent dispatcher. If `None` all child dispatcher nodes are used as outputs. :type outputs: dict[str, str | list[str]] | tuple[str] | (str, ..., dict[str, str | list[str]]) :param dsp_id: Sub-dispatcher node id. If None will be assigned as <dsp.name>. :type dsp_id: str, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the a dictionary with the inputs of the sub-dispatcher node and returns True if input values satisfy the domain, otherwise False. .. note:: This function is invoked every time that a data node reach the sub-dispatcher node. :type input_domain: (dict) -> bool, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the sub-dispatcher node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, int | float], optional :param description: Sub-dispatcher node's description. :type description: str, optional :param include_defaults: If True the default values of the sub-dispatcher are added to the current dispatcher. :type include_defaults: bool, optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param inputs_prefix: Add a prefix to parent dispatcher inputs nodes. :type inputs_prefix: str :param outputs_prefix: Add a prefix to parent dispatcher outputs nodes. :type outputs_prefix: str :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Self. :rtype: BlueDispatcher """ kwargs.update({ 'include_defaults': include_defaults, 'await_domain': await_domain, 'weight': weight, 'input_domain': input_domain, 'dsp_id': dsp_id, 'description': description, 'outputs': outputs, 'inputs': inputs, 'inp_weight': inp_weight, 'dsp': dsp, 'inputs_prefix': inputs_prefix, 'outputs_prefix': outputs_prefix }) self.deferred.append(('add_dispatcher', kwargs)) return self
(self, dsp, inputs=None, outputs=None, dsp_id=None, input_domain=None, weight=None, inp_weight=None, description=None, include_defaults=False, await_domain=None, inputs_prefix='', outputs_prefix='', **kwargs)
24,528
schedula.utils.blue
add_from_lists
Add multiple function and data nodes to dispatcher. :param data_list: It is a list of data node kwargs to be loaded. :type data_list: list[dict], optional :param fun_list: It is a list of function node kwargs to be loaded. :type fun_list: list[dict], optional :param dsp_list: It is a list of sub-dispatcher node kwargs to be loaded. :type dsp_list: list[dict], optional :return: Self. :rtype: BlueDispatcher
def add_from_lists(self, data_list=None, fun_list=None, dsp_list=None): """ Add multiple function and data nodes to dispatcher. :param data_list: It is a list of data node kwargs to be loaded. :type data_list: list[dict], optional :param fun_list: It is a list of function node kwargs to be loaded. :type fun_list: list[dict], optional :param dsp_list: It is a list of sub-dispatcher node kwargs to be loaded. :type dsp_list: list[dict], optional :return: Self. :rtype: BlueDispatcher """ kwargs = { 'data_list': data_list, 'fun_list': fun_list, 'dsp_list': dsp_list } self.deferred.append(('add_from_lists', kwargs)) return self
(self, data_list=None, fun_list=None, dsp_list=None)
24,529
schedula.utils.blue
add_func
Add a single function node to dispatcher. :param inputs_kwargs: Do you want to include kwargs as inputs? :type inputs_kwargs: bool :param inputs_defaults: Do you want to set default values? :type inputs_defaults: bool :param function_id: Function node id. If None will be assigned as <fun.__name__>. :type function_id: str, optional :param function: Data node estimation function. :type function: callable, optional :param inputs: Ordered arguments (i.e., data node ids) needed by the function. If None it will take parameters names from function signature. :type inputs: list, optional :param outputs: Ordered results (i.e., data node ids) returned by the function. :type outputs: list, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the same inputs of the function and returns True if input values satisfy the domain, otherwise False. In this case the dispatch algorithm doesn't pass on the node. :type input_domain: callable, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the function node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, float | int], optional :param out_weight: Edge weights from the function node to data nodes. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type out_weight: dict[str, float | int], optional :param description: Function node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param await_result: If True the Dispatcher waits output results before assigning them to the workflow. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Self. :rtype: BlueDispatcher
def add_func(self, function, outputs=None, weight=None, inputs_kwargs=False, inputs_defaults=False, filters=None, input_domain=None, await_domain=None, await_result=None, inp_weight=None, out_weight=None, description=None, inputs=None, function_id=None, **kwargs): """ Add a single function node to dispatcher. :param inputs_kwargs: Do you want to include kwargs as inputs? :type inputs_kwargs: bool :param inputs_defaults: Do you want to set default values? :type inputs_defaults: bool :param function_id: Function node id. If None will be assigned as <fun.__name__>. :type function_id: str, optional :param function: Data node estimation function. :type function: callable, optional :param inputs: Ordered arguments (i.e., data node ids) needed by the function. If None it will take parameters names from function signature. :type inputs: list, optional :param outputs: Ordered results (i.e., data node ids) returned by the function. :type outputs: list, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the same inputs of the function and returns True if input values satisfy the domain, otherwise False. In this case the dispatch algorithm doesn't pass on the node. :type input_domain: callable, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the function node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, float | int], optional :param out_weight: Edge weights from the function node to data nodes. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type out_weight: dict[str, float | int], optional :param description: Function node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param await_result: If True the Dispatcher waits output results before assigning them to the workflow. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Self. :rtype: BlueDispatcher """ kwargs.update({ 'function_id': function_id, 'inputs': inputs, 'function': function, 'weight': weight, 'input_domain': input_domain, 'filters': filters, 'inputs_kwargs': inputs_kwargs, 'inputs_defaults': inputs_defaults, 'await_result': await_result, 'await_domain': await_domain, 'out_weight': out_weight, 'description': description, 'outputs': outputs, 'inp_weight': inp_weight }) self.deferred.append(('add_func', kwargs)) return self
(self, function, outputs=None, weight=None, inputs_kwargs=False, inputs_defaults=False, filters=None, input_domain=None, await_domain=None, await_result=None, inp_weight=None, out_weight=None, description=None, inputs=None, function_id=None, **kwargs)
24,530
schedula.utils.blue
add_function
Add a single function node to dispatcher. :param function_id: Function node id. If None will be assigned as <fun.__name__>. :type function_id: str, optional :param function: Data node estimation function. :type function: callable, optional :param inputs: Ordered arguments (i.e., data node ids) needed by the function. :type inputs: list, optional :param outputs: Ordered results (i.e., data node ids) returned by the function. :type outputs: list, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the same inputs of the function and returns True if input values satisfy the domain, otherwise False. In this case the dispatch algorithm doesn't pass on the node. :type input_domain: callable, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the function node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, float | int], optional :param out_weight: Edge weights from the function node to data nodes. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type out_weight: dict[str, float | int], optional :param description: Function node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param await_result: If True the Dispatcher waits output results before assigning them to the workflow. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional
def add_function(self, function_id=None, function=None, inputs=None, outputs=None, input_domain=None, weight=None, inp_weight=None, out_weight=None, description=None, filters=None, await_domain=None, await_result=None, **kwargs): """ Add a single function node to dispatcher. :param function_id: Function node id. If None will be assigned as <fun.__name__>. :type function_id: str, optional :param function: Data node estimation function. :type function: callable, optional :param inputs: Ordered arguments (i.e., data node ids) needed by the function. :type inputs: list, optional :param outputs: Ordered results (i.e., data node ids) returned by the function. :type outputs: list, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the same inputs of the function and returns True if input values satisfy the domain, otherwise False. In this case the dispatch algorithm doesn't pass on the node. :type input_domain: callable, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the function node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, float | int], optional :param out_weight: Edge weights from the function node to data nodes. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type out_weight: dict[str, float | int], optional :param description: Function node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param await_result: If True the Dispatcher waits output results before assigning them to the workflow. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional """ kwargs.update({ 'function_id': function_id, 'inputs': inputs, 'function': function, 'weight': weight, 'input_domain': input_domain, 'filters': filters, 'await_result': await_result, 'await_domain': await_domain, 'out_weight': out_weight, 'description': description, 'outputs': outputs, 'inp_weight': inp_weight }) self.deferred.append(('add_function', kwargs)) return self
(self, function_id=None, function=None, inputs=None, outputs=None, input_domain=None, weight=None, inp_weight=None, out_weight=None, description=None, filters=None, await_domain=None, await_result=None, **kwargs)
24,531
schedula.utils.blue
extend
Extends deferred operations calling each operation of given Blueprints. :param blues: Blueprints or Dispatchers to extend deferred operations. :type blues: Blueprint | schedula.dispatcher.Dispatcher :param memo: A dictionary to cache Blueprints. :type memo: dict[T,Blueprint] :return: Self. :rtype: Blueprint **--------------------------------------------------------------------** Example:: >>> import schedula as sh >>> blue = sh.BlueDispatcher() >>> blue.extend( ... BlueDispatcher().add_func(len, ['length']), ... BlueDispatcher().add_func(callable, ['is_callable']) ... ) <schedula.utils.blue.BlueDispatcher object at ...>
def extend(self, *blues, memo=None): """ Extends deferred operations calling each operation of given Blueprints. :param blues: Blueprints or Dispatchers to extend deferred operations. :type blues: Blueprint | schedula.dispatcher.Dispatcher :param memo: A dictionary to cache Blueprints. :type memo: dict[T,Blueprint] :return: Self. :rtype: Blueprint **--------------------------------------------------------------------** Example:: >>> import schedula as sh >>> blue = sh.BlueDispatcher() >>> blue.extend( ... BlueDispatcher().add_func(len, ['length']), ... BlueDispatcher().add_func(callable, ['is_callable']) ... ) <schedula.utils.blue.BlueDispatcher object at ...> """ memo = {} if memo is None else memo for blue in blues: if isinstance(blue, Dispatcher): blue = blue.blue(memo=memo) for method, kwargs in blue.deferred: getattr(self, method)(**kwargs) return self
(self, *blues, memo=None)
24,532
schedula.utils.blue
register
Creates a :class:`Blueprint.cls` and calls each deferred operation. :param obj: The initialized object with which to call all deferred operations. :type obj: object :param memo: A dictionary to cache registered Blueprints. :type memo: dict[Blueprint,T] :return: The initialized object. :rtype: Blueprint.cls | Blueprint **--------------------------------------------------------------------** Example:: >>> import schedula as sh >>> blue = sh.BlueDispatcher().add_func(len, ['length']) >>> blue.register() <schedula.dispatcher.Dispatcher object at ...>
def register(self, obj=None, memo=None): """ Creates a :class:`Blueprint.cls` and calls each deferred operation. :param obj: The initialized object with which to call all deferred operations. :type obj: object :param memo: A dictionary to cache registered Blueprints. :type memo: dict[Blueprint,T] :return: The initialized object. :rtype: Blueprint.cls | Blueprint **--------------------------------------------------------------------** Example:: >>> import schedula as sh >>> blue = sh.BlueDispatcher().add_func(len, ['length']) >>> blue.register() <schedula.dispatcher.Dispatcher object at ...> """ if memo and self in memo: obj = memo[self] if obj is not None: return obj if obj is None: obj = _safe_call(self.cls, *self.args, memo=memo, **self.kwargs) for method, kwargs in self.deferred: _safe_call(getattr(obj, method), memo=memo, **kwargs) if memo is not None: memo[self] = obj return obj
(self, obj=None, memo=None)
24,533
schedula.utils.blue
set_default_value
Set the default value of a data node in the dispatcher. :param data_id: Data node id. :type data_id: str :param value: Data node default value. .. note:: If `EMPTY` the previous default value is removed. :type value: T, optional :param initial_dist: Initial distance in the ArciDispatch algorithm when the data node default value is used. :type initial_dist: float, int, optional :return: Self. :rtype: BlueDispatcher
def set_default_value(self, data_id, value=EMPTY, initial_dist=0.0): """ Set the default value of a data node in the dispatcher. :param data_id: Data node id. :type data_id: str :param value: Data node default value. .. note:: If `EMPTY` the previous default value is removed. :type value: T, optional :param initial_dist: Initial distance in the ArciDispatch algorithm when the data node default value is used. :type initial_dist: float, int, optional :return: Self. :rtype: BlueDispatcher """ kw = {'data_id': data_id, 'value': value, 'initial_dist': initial_dist} self.deferred.append(('set_default_value', kw)) return self
(self, data_id, value=empty, initial_dist=0.0)
24,534
schedula.utils.blue
Blueprint
Base Blueprint class.
class Blueprint: """Base Blueprint class.""" cls = Dispatcher def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs self.deferred = [] def __getstate__(self): d, keys = self.__dict__, ('args', 'kwargs', 'deferred', 'cls') return {k: d[k] for k in keys if k in d} def _set_cls(self, cls): self.cls = cls return self def register(self, obj=None, memo=None): """ Creates a :class:`Blueprint.cls` and calls each deferred operation. :param obj: The initialized object with which to call all deferred operations. :type obj: object :param memo: A dictionary to cache registered Blueprints. :type memo: dict[Blueprint,T] :return: The initialized object. :rtype: Blueprint.cls | Blueprint **--------------------------------------------------------------------** Example:: >>> import schedula as sh >>> blue = sh.BlueDispatcher().add_func(len, ['length']) >>> blue.register() <schedula.dispatcher.Dispatcher object at ...> """ if memo and self in memo: obj = memo[self] if obj is not None: return obj if obj is None: obj = _safe_call(self.cls, *self.args, memo=memo, **self.kwargs) for method, kwargs in self.deferred: _safe_call(getattr(obj, method), memo=memo, **kwargs) if memo is not None: memo[self] = obj return obj def extend(self, *blues, memo=None): """ Extends deferred operations calling each operation of given Blueprints. :param blues: Blueprints or Dispatchers to extend deferred operations. :type blues: Blueprint | schedula.dispatcher.Dispatcher :param memo: A dictionary to cache Blueprints. :type memo: dict[T,Blueprint] :return: Self. :rtype: Blueprint **--------------------------------------------------------------------** Example:: >>> import schedula as sh >>> blue = sh.BlueDispatcher() >>> blue.extend( ... BlueDispatcher().add_func(len, ['length']), ... BlueDispatcher().add_func(callable, ['is_callable']) ... ) <schedula.utils.blue.BlueDispatcher object at ...> """ memo = {} if memo is None else memo for blue in blues: if isinstance(blue, Dispatcher): blue = blue.blue(memo=memo) for method, kwargs in blue.deferred: getattr(self, method)(**kwargs) return self def __call__(self, *args, **kwargs): """Calls the registered Blueprint.""" return self.register(memo={})(*args, **kwargs)
(*args, **kwargs)
24,537
schedula.utils.blue
__init__
null
def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs self.deferred = []
(self, *args, **kwargs)
24,541
schedula.utils.graph
DiGraph
null
class DiGraph: __slots__ = 'nodes', 'succ', 'pred' def __reduce__(self): return self.__class__, (self.nodes, self.succ) def __init__(self, nodes=None, adj=None): if nodes is None and adj is None: self.nodes = {} self.succ = {} self.pred = {} else: self.succ = {} if adj is None else adj self.pred = pred = {} nds = set() for u, e in self.succ.items(): nds.add(u) for v, attr in e.items(): pred[v] = d = pred.get(v, {}) d[u] = attr nds.add(v) self.nodes = nodes = {} if nodes is None else nodes self.nodes.update({k: {} for k in nds if k not in nodes}) self.succ.update({k: {} for k in nodes if k not in self.succ}) self.pred.update({k: {} for k in nodes if k not in self.pred}) def __getitem__(self, item): return self.succ[item] @property def adj(self): return self.succ def _add_node(self, n, attr): nodes, succ, pred = self.nodes, self.succ, self.pred if n not in nodes: # Add nodes. succ[n] = {} pred[n] = {} nodes[n] = attr elif attr: nodes[n].update(attr) def _remove_node(self, n): nodes, succ, pred = self.nodes, self.succ, self.pred for u in succ[n]: del pred[u][n] for u in pred[n]: del succ[u][n] del nodes[n], succ[n], pred[n] def add_node(self, n, **attr): self._add_node(n, attr) return self def remove_node(self, n): self._remove_node(n) return self def add_nodes_from(self, nodes_for_adding): fn = self.add_node for n in nodes_for_adding: try: fn(n) except TypeError: fn(n[0], **n[1]) return self def remove_nodes_from(self, nodes): fn = self.remove_node for n in nodes: fn(n) return self def _add_edge(self, u, v, attr): succ = self.succ self.add_node(u) self.add_node(v) succ[u][v] = self.pred[v][u] = dd = succ[u].get(v, {}) dd.update(attr) def _add_edge_fw(self, u, v, attr): if v not in self.succ: # Add nodes. self._add_node(v, {}) self._add_edge(u, v, attr) # Add the edge. def add_edge_fw(self, u, v, **attr): self._add_edge_fw(u, v, attr) def add_edge(self, u, v, **attr): self._add_edge(u, v, attr) return self def add_edges_from(self, ebunch_to_add): fn = self.add_edge for e in ebunch_to_add: try: (u, v), attr = e, {} except ValueError: u, v, attr = e fn(u, v, **attr) def remove_edge(self, u, v): del self.succ[u][v], self.pred[v][u] def remove_edges_from(self, ebunch): succ, pred = self.succ, self.pred for e in ebunch: u, v = e[:2] # ignore edge data del succ[u][v], pred[v][u] @property def edges(self): from .dsp import stack_nested_keys return dict(stack_nested_keys(self.succ, depth=2)) def has_edge(self, u, v): try: return v in self.succ[u] except KeyError: return False def subgraph(self, nodes): nodes = {n: attr.copy() for n, attr in self.nodes.items() if n in nodes} adj = {} for u, d in self.succ.items(): if u in nodes: adj[u] = {v: attr.copy() for v, attr in d.items() if v in nodes} return self.__class__(nodes, adj) def copy(self): nodes = {n: attr.copy() for n, attr in self.nodes.items()} adj = {} for u, d in self.succ.items(): adj[u] = {v: attr.copy() for v, attr in d.items()} return self.__class__(nodes, adj)
(nodes=None, adj=None)
24,542
schedula.utils.graph
__getitem__
null
def __getitem__(self, item): return self.succ[item]
(self, item)
24,543
schedula.utils.graph
__init__
null
def __init__(self, nodes=None, adj=None): if nodes is None and adj is None: self.nodes = {} self.succ = {} self.pred = {} else: self.succ = {} if adj is None else adj self.pred = pred = {} nds = set() for u, e in self.succ.items(): nds.add(u) for v, attr in e.items(): pred[v] = d = pred.get(v, {}) d[u] = attr nds.add(v) self.nodes = nodes = {} if nodes is None else nodes self.nodes.update({k: {} for k in nds if k not in nodes}) self.succ.update({k: {} for k in nodes if k not in self.succ}) self.pred.update({k: {} for k in nodes if k not in self.pred})
(self, nodes=None, adj=None)
24,544
schedula.utils.graph
__reduce__
null
def __reduce__(self): return self.__class__, (self.nodes, self.succ)
(self)
24,545
schedula.utils.graph
_add_edge
null
def _add_edge(self, u, v, attr): succ = self.succ self.add_node(u) self.add_node(v) succ[u][v] = self.pred[v][u] = dd = succ[u].get(v, {}) dd.update(attr)
(self, u, v, attr)
24,546
schedula.utils.graph
_add_edge_fw
null
def _add_edge_fw(self, u, v, attr): if v not in self.succ: # Add nodes. self._add_node(v, {}) self._add_edge(u, v, attr) # Add the edge.
(self, u, v, attr)
24,547
schedula.utils.graph
_add_node
null
def _add_node(self, n, attr): nodes, succ, pred = self.nodes, self.succ, self.pred if n not in nodes: # Add nodes. succ[n] = {} pred[n] = {} nodes[n] = attr elif attr: nodes[n].update(attr)
(self, n, attr)
24,548
schedula.utils.graph
_remove_node
null
def _remove_node(self, n): nodes, succ, pred = self.nodes, self.succ, self.pred for u in succ[n]: del pred[u][n] for u in pred[n]: del succ[u][n] del nodes[n], succ[n], pred[n]
(self, n)
24,549
schedula.utils.graph
add_edge
null
def add_edge(self, u, v, **attr): self._add_edge(u, v, attr) return self
(self, u, v, **attr)
24,550
schedula.utils.graph
add_edge_fw
null
def add_edge_fw(self, u, v, **attr): self._add_edge_fw(u, v, attr)
(self, u, v, **attr)
24,551
schedula.utils.graph
add_edges_from
null
def add_edges_from(self, ebunch_to_add): fn = self.add_edge for e in ebunch_to_add: try: (u, v), attr = e, {} except ValueError: u, v, attr = e fn(u, v, **attr)
(self, ebunch_to_add)
24,552
schedula.utils.graph
add_node
null
def add_node(self, n, **attr): self._add_node(n, attr) return self
(self, n, **attr)
24,553
schedula.utils.graph
add_nodes_from
null
def add_nodes_from(self, nodes_for_adding): fn = self.add_node for n in nodes_for_adding: try: fn(n) except TypeError: fn(n[0], **n[1]) return self
(self, nodes_for_adding)
24,554
schedula.utils.graph
copy
null
def copy(self): nodes = {n: attr.copy() for n, attr in self.nodes.items()} adj = {} for u, d in self.succ.items(): adj[u] = {v: attr.copy() for v, attr in d.items()} return self.__class__(nodes, adj)
(self)
24,555
schedula.utils.graph
has_edge
null
def has_edge(self, u, v): try: return v in self.succ[u] except KeyError: return False
(self, u, v)
24,556
schedula.utils.graph
remove_edge
null
def remove_edge(self, u, v): del self.succ[u][v], self.pred[v][u]
(self, u, v)
24,557
schedula.utils.graph
remove_edges_from
null
def remove_edges_from(self, ebunch): succ, pred = self.succ, self.pred for e in ebunch: u, v = e[:2] # ignore edge data del succ[u][v], pred[v][u]
(self, ebunch)
24,558
schedula.utils.graph
remove_node
null
def remove_node(self, n): self._remove_node(n) return self
(self, n)
24,559
schedula.utils.graph
remove_nodes_from
null
def remove_nodes_from(self, nodes): fn = self.remove_node for n in nodes: fn(n) return self
(self, nodes)
24,560
schedula.utils.graph
subgraph
null
def subgraph(self, nodes): nodes = {n: attr.copy() for n, attr in self.nodes.items() if n in nodes} adj = {} for u, d in self.succ.items(): if u in nodes: adj[u] = {v: attr.copy() for v, attr in d.items() if v in nodes} return self.__class__(nodes, adj)
(self, nodes)
24,561
schedula.utils.dsp
DispatchPipe
It converts a :class:`~schedula.dispatcher.Dispatcher` into a function. This function takes a sequence of arguments as input of the dispatch. :return: A function that executes the pipe of the given `dsp`, updating its workflow. :rtype: callable .. note:: This wrapper is not thread safe, because it overwrite the solution. .. seealso:: :func:`~schedula.dispatcher.Dispatcher.dispatch`, :func:`~schedula.dispatcher.Dispatcher.shrink_dsp` **Example**: A dispatcher with two functions `max` and `min` and an unresolved cycle (i.e., `a` --> `max` --> `c` --> `min` --> `a`): .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> from schedula import Dispatcher >>> dsp = Dispatcher(name='Dispatcher') >>> dsp.add_function('max', max, inputs=['a', 'b'], outputs=['c']) 'max' >>> def func(x): ... return x - 1 >>> dsp.add_function('x - 1', func, inputs=['c'], outputs=['a']) 'x - 1' Extract a static function node, i.e. the inputs `a` and `b` and the output `a` are fixed:: >>> fun = DispatchPipe(dsp, 'myF', ['a', 'b'], ['a']) >>> fun.__name__ 'myF' >>> fun(2, 1) 1 .. dispatcher:: fun :opt: workflow=True, graph_attr={'ratio': '1'} >>> fun.dsp.name = 'Created function internal' The created function raises a ValueError if un-valid inputs are provided: .. dispatcher:: fun :opt: workflow=True, graph_attr={'ratio': '1'} :code: >>> fun(1, 0) 0
class DispatchPipe(NoSub, SubDispatchPipe): """ It converts a :class:`~schedula.dispatcher.Dispatcher` into a function. This function takes a sequence of arguments as input of the dispatch. :return: A function that executes the pipe of the given `dsp`, updating its workflow. :rtype: callable .. note:: This wrapper is not thread safe, because it overwrite the solution. .. seealso:: :func:`~schedula.dispatcher.Dispatcher.dispatch`, :func:`~schedula.dispatcher.Dispatcher.shrink_dsp` **Example**: A dispatcher with two functions `max` and `min` and an unresolved cycle (i.e., `a` --> `max` --> `c` --> `min` --> `a`): .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> from schedula import Dispatcher >>> dsp = Dispatcher(name='Dispatcher') >>> dsp.add_function('max', max, inputs=['a', 'b'], outputs=['c']) 'max' >>> def func(x): ... return x - 1 >>> dsp.add_function('x - 1', func, inputs=['c'], outputs=['a']) 'x - 1' Extract a static function node, i.e. the inputs `a` and `b` and the output `a` are fixed:: >>> fun = DispatchPipe(dsp, 'myF', ['a', 'b'], ['a']) >>> fun.__name__ 'myF' >>> fun(2, 1) 1 .. dispatcher:: fun :opt: workflow=True, graph_attr={'ratio': '1'} >>> fun.dsp.name = 'Created function internal' The created function raises a ValueError if un-valid inputs are provided: .. dispatcher:: fun :opt: workflow=True, graph_attr={'ratio': '1'} :code: >>> fun(1, 0) 0 """ def __getstate__(self): self._init_workflows(dict.fromkeys(self.inputs or ())) self._reset_sol() state = super(DispatchPipe, self).__getstate__() del state['pipe'] return state def __setstate__(self, d): super(DispatchPipe, self).__setstate__(d) self.pipe = self._set_pipe() def _pipe_append(self): return lambda *args: None def _init_new_solution(self, _sol_name, verbose): from .asy import EXECUTORS EXECUTORS.set_active(id(self._sol)) return self._sol, lambda x: x def _init_workflows(self, inputs): for s in self.solution.sub_sol.values(): s._visited.clear() return super(DispatchPipe, self)._init_workflows(inputs) def _return(self, solution): # noinspection PyBroadException try: solution.result() except Exception: self._callback_pipe_failure() return super(DispatchPipe, self)._return(solution) def _callback_pipe_failure(self): raise DispatcherError("The pipe is not respected.", sol=self.solution) def plot(self, workflow=None, *args, **kwargs): if workflow: return self.solution.plot(*args, **kwargs) return super(DispatchPipe, self).plot(workflow, *args, **kwargs)
null
24,562
schedula.utils.dsp
__call__
null
def __call__(self, *args, _stopper=None, _executor=False, _sol_name=(), _verbose=False, **kw): self.solution, key_map = self._init_new_solution(_sol_name, _verbose) pipe_append = self._pipe_append() self._init_workflows(self._parse_inputs(*args, **kw)) for x, nxt_nds, nxt_dsp in self.pipe: v, s = x[-1] s = key_map(s) pipe_append(x[:2] + ((v, s),)) if not s._set_node_output( v, False, next_nds=nxt_nds, stopper=_stopper, executor=_executor): self._callback_pipe_failure() break for n, vw_d in nxt_dsp: s._set_sub_dsp_node_input(v, n, [], False, vw_d) s._see_remote_link_node(v) # Return outputs sorted. return self._return(self.solution)
(self, *args, _stopper=None, _executor=False, _sol_name=(), _verbose=False, **kw)
24,563
schedula.utils.base
__deepcopy__
null
def __deepcopy__(self, memo): cls = self.__class__ memo[id(self)] = result = cls.__new__(cls) for k, v in self.__dict__.items(): # noinspection PyArgumentList setattr(result, k, copy.deepcopy(v, memo)) return result
(self, memo)
24,564
schedula.utils.dsp
__getstate__
null
def __getstate__(self): self._init_workflows(dict.fromkeys(self.inputs or ())) self._reset_sol() state = super(DispatchPipe, self).__getstate__() del state['pipe'] return state
(self)
24,565
schedula.utils.dsp
__init__
Initializes the Sub-dispatch Function. :param dsp: A dispatcher that identifies the model adopted. :type dsp: schedula.Dispatcher | schedula.utils.blue.BlueDispatcher :param function_id: Function name. :type function_id: str :param inputs: Input data nodes. :type inputs: list[str], iterable :param outputs: Ending data nodes. :type outputs: list[str], iterable, optional :param inputs_dist: Initial distances of input data nodes. :type inputs_dist: dict[str, int | float], optional :param no_domain: Skip the domain check. :type no_domain: bool, optional :param shrink: If True the dispatcher is shrink before the dispatch. :type shrink: bool, optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param output_type: Type of function output: + 'all': a dictionary with all dispatch outputs. + 'list': a list with all outputs listed in `outputs`. + 'dict': a dictionary with any outputs listed in `outputs`. :type output_type: str, optional :param output_type_kw: Extra kwargs to pass to the `selector` function. :type output_type_kw: dict, optional :param first_arg_as_kw: Converts first argument of the __call__ method as `kwargs`. :type output_type_kw: bool
def __init__(self, dsp, function_id=None, inputs=None, outputs=None, inputs_dist=None, no_domain=True, wildcard=True, shrink=True, output_type=None, output_type_kw=None, first_arg_as_kw=False): """ Initializes the Sub-dispatch Function. :param dsp: A dispatcher that identifies the model adopted. :type dsp: schedula.Dispatcher | schedula.utils.blue.BlueDispatcher :param function_id: Function name. :type function_id: str :param inputs: Input data nodes. :type inputs: list[str], iterable :param outputs: Ending data nodes. :type outputs: list[str], iterable, optional :param inputs_dist: Initial distances of input data nodes. :type inputs_dist: dict[str, int | float], optional :param no_domain: Skip the domain check. :type no_domain: bool, optional :param shrink: If True the dispatcher is shrink before the dispatch. :type shrink: bool, optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param output_type: Type of function output: + 'all': a dictionary with all dispatch outputs. + 'list': a list with all outputs listed in `outputs`. + 'dict': a dictionary with any outputs listed in `outputs`. :type output_type: str, optional :param output_type_kw: Extra kwargs to pass to the `selector` function. :type output_type_kw: dict, optional :param first_arg_as_kw: Converts first argument of the __call__ method as `kwargs`. :type output_type_kw: bool """ self.solution = sol = dsp.solution.__class__( dsp, inputs, outputs, wildcard, inputs_dist, True, True, no_domain=no_domain ) sol._run() if shrink: from .alg import _union_workflow, _convert_bfs bfs = _union_workflow(sol) o, bfs = outputs or sol, _convert_bfs(bfs) dsp = dsp._get_dsp_from_bfs(o, bfs_graphs=bfs) super(SubDispatchPipe, self).__init__( dsp, function_id, inputs, outputs=outputs, inputs_dist=inputs_dist, shrink=False, wildcard=wildcard, output_type=output_type, output_type_kw=output_type_kw, first_arg_as_kw=first_arg_as_kw ) self._reset_sol() self.pipe = self._set_pipe()
(self, dsp, function_id=None, inputs=None, outputs=None, inputs_dist=None, no_domain=True, wildcard=True, shrink=True, output_type=None, output_type_kw=None, first_arg_as_kw=False)
24,566
schedula.utils.dsp
__new__
null
def __new__(cls, dsp=None, *args, **kwargs): from .blue import Blueprint if isinstance(dsp, Blueprint): return Blueprint(dsp, *args, **kwargs)._set_cls(cls) return super(SubDispatch, cls).__new__(cls)
(cls, dsp=None, *args, **kwargs)
24,567
schedula.utils.dsp
__setstate__
null
def __setstate__(self, d): super(DispatchPipe, self).__setstate__(d) self.pipe = self._set_pipe()
(self, d)
24,568
schedula.utils.dsp
_callback_pipe_failure
null
def _callback_pipe_failure(self): raise DispatcherError("The pipe is not respected.", sol=self.solution)
(self)
24,569
schedula.utils.dsp
_init_new_solution
null
def _init_new_solution(self, _sol_name, verbose): from .asy import EXECUTORS EXECUTORS.set_active(id(self._sol)) return self._sol, lambda x: x
(self, _sol_name, verbose)
24,570
schedula.utils.dsp
_init_workflows
null
def _init_workflows(self, inputs): for s in self.solution.sub_sol.values(): s._visited.clear() return super(DispatchPipe, self)._init_workflows(inputs)
(self, inputs)
24,571
schedula.utils.dsp
_parse_inputs
null
def _parse_inputs(self, *args, **kw): if self.first_arg_as_kw: for k in sorted(args[0]): if k in kw: msg = 'multiple values for argument %r' raise TypeError(msg % k) from None kw.update(args[0]) args = args[1:] defaults, inputs = self.dsp.default_values, {} for i, k in enumerate(self.inputs or ()): try: inputs[k] = args[i] if k in kw: msg = 'multiple values for argument %r' raise TypeError(msg % k) from None except IndexError: if k in kw: inputs[k] = kw.pop(k) elif k in defaults: inputs[k] = defaults[k]['value'] else: msg = 'missing a required argument: %r' raise TypeError(msg % k) from None if len(inputs) < len(args): raise TypeError('too many positional arguments') from None if self.var_keyword: inputs.update(kw) elif not all(k in inputs for k in kw): k = next(k for k in sorted(kw) if k not in inputs) msg = 'got an unexpected keyword argument %r' raise TypeError(msg % k) from None return inputs
(self, *args, **kw)
24,572
schedula.utils.dsp
_pipe_append
null
def _pipe_append(self): return lambda *args: None
(self)
24,573
schedula.utils.dsp
_reset_sol
null
def _reset_sol(self): self._sol.no_call = True self._sol._init_workflow() self._sol._run() self._sol.no_call = False
(self)
24,574
schedula.utils.dsp
_return
null
def _return(self, solution): # noinspection PyBroadException try: solution.result() except Exception: self._callback_pipe_failure() return super(DispatchPipe, self)._return(solution)
(self, solution)
24,575
schedula.utils.dsp
_set_pipe
null
def _set_pipe(self): def _make_tks(task): v, s = task[-1] if v is START: nxt_nds = s.dsp.dmap[v] else: nxt_nds = s.workflow[v] nxt_dsp = [n for n in nxt_nds if s.nodes[n]['type'] == 'dispatcher'] nxt_dsp = [(n, s._edge_length(s.dmap[v][n], s.nodes[n])) for n in nxt_dsp] return (task[0], task[1], (v, s)), nxt_nds, nxt_dsp return [_make_tks(v['task']) for v in self._sol.pipe.values()]
(self)
24,576
schedula.utils.dsp
blue
Constructs a Blueprint out of the current object. :param memo: A dictionary to cache Blueprints. :type memo: dict[T,schedula.utils.blue.Blueprint] :param depth: Depth of sub-dispatch blue. If negative all levels are bluprinted. :type depth: int, optional :return: A Blueprint of the current object. :rtype: schedula.utils.blue.Blueprint
def blue(self, memo=None, depth=-1): """ Constructs a Blueprint out of the current object. :param memo: A dictionary to cache Blueprints. :type memo: dict[T,schedula.utils.blue.Blueprint] :param depth: Depth of sub-dispatch blue. If negative all levels are bluprinted. :type depth: int, optional :return: A Blueprint of the current object. :rtype: schedula.utils.blue.Blueprint """ if depth == 0: return self depth -= 1 memo = {} if memo is None else memo if self not in memo: import inspect from .blue import Blueprint, _parent_blue keys = tuple(inspect.signature(self.__init__).parameters) memo[self] = Blueprint(**{ k: _parent_blue(v, memo, depth) for k, v in self.__dict__.items() if k in keys })._set_cls(self.__class__) return memo[self]
(self, memo=None, depth=-1)
24,577
schedula.utils.dsp
copy
null
def copy(self): return _copy.deepcopy(self)
(self)
24,578
schedula.utils.base
form
Creates a dispatcher Form Flask app. :param depth: Depth of sub-dispatch API. If negative all levels are configured. :type depth: int, optional :param node_data: Data node attributes to produce API. :type node_data: tuple[str], optional :param node_function: Function node attributes produce API. :type node_function: tuple[str], optional :param directory: Where is the generated Flask app root located? :type directory: str, optional :param sites: A set of :class:`~schedula.utils.drw.Site` to maintain alive the backend server. :type sites: set[~schedula.utils.drw.Site], optional :param run: Run the backend server? :type run: bool, optional :param view: Open the url site with the sys default opener. :type view: bool, optional :param get_context: Function to pass extra data as form context. :type get_context: function | dict, optional :param get_data: Function to initialize the formdata. :type get_data: function | dict, optional :param subsite_idle_timeout: Idle timeout of a debug subsite in seconds. :type subsite_idle_timeout: int, optional :param basic_app_config: Flask app config object. :type basic_app_config: object, optional :param stripe_event_handler: Stripe event handler function. :type stripe_event_handler: function, optional :return: A FormMap or a Site if `sites is None` and `run or view is True`. :rtype: ~schedula.utils.form.FormMap | ~schedula.utils.drw.Site
def form(self, depth=1, node_data=NONE, node_function=NONE, directory=None, sites=None, run=True, view=True, get_context=NONE, get_data=NONE, subsite_idle_timeout=600, basic_app_config=None, stripe_event_handler=lambda event: None): """ Creates a dispatcher Form Flask app. :param depth: Depth of sub-dispatch API. If negative all levels are configured. :type depth: int, optional :param node_data: Data node attributes to produce API. :type node_data: tuple[str], optional :param node_function: Function node attributes produce API. :type node_function: tuple[str], optional :param directory: Where is the generated Flask app root located? :type directory: str, optional :param sites: A set of :class:`~schedula.utils.drw.Site` to maintain alive the backend server. :type sites: set[~schedula.utils.drw.Site], optional :param run: Run the backend server? :type run: bool, optional :param view: Open the url site with the sys default opener. :type view: bool, optional :param get_context: Function to pass extra data as form context. :type get_context: function | dict, optional :param get_data: Function to initialize the formdata. :type get_data: function | dict, optional :param subsite_idle_timeout: Idle timeout of a debug subsite in seconds. :type subsite_idle_timeout: int, optional :param basic_app_config: Flask app config object. :type basic_app_config: object, optional :param stripe_event_handler: Stripe event handler function. :type stripe_event_handler: function, optional :return: A FormMap or a Site if `sites is None` and `run or view is True`. :rtype: ~schedula.utils.form.FormMap | ~schedula.utils.drw.Site """ options = {'node_data': node_data, 'node_function': node_function} options = {k: v for k, v in options.items() if v is not NONE} from .form import FormMap from .sol import Solution obj = self.dsp if isinstance(self, Solution) else self formmap = FormMap() formmap.add_items(obj, workflow=False, depth=depth, **options) formmap.directory = directory formmap.idle_timeout = subsite_idle_timeout formmap.basic_app_config = basic_app_config formmap.stripe_event_handler = stripe_event_handler methods = { 'get_form_context': get_context, 'get_form_data': get_data } for k, v in methods.items(): if v is not NONE: setattr(formmap, f'_{k}', v) if sites is not None or run or view: site = formmap.site(view=view) site = run and not view and site.run() or site if sites is None: return site sites.add(site) return formmap
(self, depth=1, node_data=none, node_function=none, directory=None, sites=None, run=True, view=True, get_context=none, get_data=none, subsite_idle_timeout=600, basic_app_config=None, stripe_event_handler=<function Base.<lambda> at 0x7f49a8302ef0>)
24,579
schedula.utils.base
get_node
Returns a sub node of a dispatcher. :param node_ids: A sequence of node ids or a single node id. The id order identifies a dispatcher sub-level. :type node_ids: str :param node_attr: Output node attr. If the searched node does not have this attribute, all its attributes are returned. When 'auto', returns the "default" attributes of the searched node, which are: - for data node: its output, and if not exists, all its attributes. - for function and sub-dispatcher nodes: the 'function' attribute. When 'description', returns the "description" of the searched node, searching also in function or sub-dispatcher input/output description. When 'output', returns the data node output. When 'default_value', returns the data node default value. When 'value_type', returns the data node value's type. When `None`, returns the node attributes. :type node_attr: str, None, optional :return: Node attributes and its real path. :rtype: (T, (str, ...)) **Example**: .. dispatcher:: o :opt: graph_attr={'ratio': '1'}, depth=-1 >>> import schedula as sh >>> sub_dsp = sh.Dispatcher(name='Sub-dispatcher') >>> def fun(a, b): ... return a + b ... >>> sub_dsp.add_function('a + b', fun, ['a', 'b'], ['c']) 'a + b' >>> dispatch = sh.SubDispatch(sub_dsp, ['c'], output_type='dict') >>> dsp = sh.Dispatcher(name='Dispatcher') >>> dsp.add_function('Sub-dispatcher', dispatch, ['a'], ['b']) 'Sub-dispatcher' >>> o = dsp.dispatch(inputs={'a': {'a': 3, 'b': 1}}) ... Get the sub node output:: >>> dsp.get_node('Sub-dispatcher', 'c') (4, ('Sub-dispatcher', 'c')) >>> dsp.get_node('Sub-dispatcher', 'c', node_attr='type') ('data', ('Sub-dispatcher', 'c')) .. dispatcher:: sub_dsp :opt: workflow=True, graph_attr={'ratio': '1'} :code: >>> sub_dsp, sub_dsp_id = dsp.get_node('Sub-dispatcher')
def get_node(self, *node_ids, node_attr=NONE): """ Returns a sub node of a dispatcher. :param node_ids: A sequence of node ids or a single node id. The id order identifies a dispatcher sub-level. :type node_ids: str :param node_attr: Output node attr. If the searched node does not have this attribute, all its attributes are returned. When 'auto', returns the "default" attributes of the searched node, which are: - for data node: its output, and if not exists, all its attributes. - for function and sub-dispatcher nodes: the 'function' attribute. When 'description', returns the "description" of the searched node, searching also in function or sub-dispatcher input/output description. When 'output', returns the data node output. When 'default_value', returns the data node default value. When 'value_type', returns the data node value's type. When `None`, returns the node attributes. :type node_attr: str, None, optional :return: Node attributes and its real path. :rtype: (T, (str, ...)) **Example**: .. dispatcher:: o :opt: graph_attr={'ratio': '1'}, depth=-1 >>> import schedula as sh >>> sub_dsp = sh.Dispatcher(name='Sub-dispatcher') >>> def fun(a, b): ... return a + b ... >>> sub_dsp.add_function('a + b', fun, ['a', 'b'], ['c']) 'a + b' >>> dispatch = sh.SubDispatch(sub_dsp, ['c'], output_type='dict') >>> dsp = sh.Dispatcher(name='Dispatcher') >>> dsp.add_function('Sub-dispatcher', dispatch, ['a'], ['b']) 'Sub-dispatcher' >>> o = dsp.dispatch(inputs={'a': {'a': 3, 'b': 1}}) ... Get the sub node output:: >>> dsp.get_node('Sub-dispatcher', 'c') (4, ('Sub-dispatcher', 'c')) >>> dsp.get_node('Sub-dispatcher', 'c', node_attr='type') ('data', ('Sub-dispatcher', 'c')) .. dispatcher:: sub_dsp :opt: workflow=True, graph_attr={'ratio': '1'} :code: >>> sub_dsp, sub_dsp_id = dsp.get_node('Sub-dispatcher') """ kw = {} from .sol import Solution if node_attr is NONE: node_attr = 'output' if isinstance(self, Solution) else 'auto' if isinstance(self, Solution): kw['solution'] = self from .alg import get_sub_node dsp = getattr(self, 'dsp', self) # Returns the node. return get_sub_node(dsp, node_ids, node_attr=node_attr, **kw)
(self, *node_ids, node_attr=none)
24,580
schedula.utils.dsp
plot
null
def plot(self, workflow=None, *args, **kwargs): if workflow: return self.solution.plot(*args, **kwargs) return super(DispatchPipe, self).plot(workflow, *args, **kwargs)
(self, workflow=None, *args, **kwargs)
24,581
schedula.utils.base
web
Creates a dispatcher Flask app. :param depth: Depth of sub-dispatch API. If negative all levels are configured. :type depth: int, optional :param node_data: Data node attributes to produce API. :type node_data: tuple[str], optional :param node_function: Function node attributes produce API. :type node_function: tuple[str], optional :param directory: Where is the generated Flask app root located? :type directory: str, optional :param sites: A set of :class:`~schedula.utils.drw.Site` to maintain alive the backend server. :type sites: set[~schedula.utils.drw.Site], optional :param run: Run the backend server? :type run: bool, optional :param subsite_idle_timeout: Idle timeout of a debug subsite in seconds. :type subsite_idle_timeout: int, optional :return: A WebMap. :rtype: ~schedula.utils.web.WebMap Example: From a dispatcher like this: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} :code: >>> from schedula import Dispatcher >>> dsp = Dispatcher(name='Dispatcher') >>> def fun(a): ... return a + 1, a - 1 >>> dsp.add_function('fun', fun, ['a'], ['b', 'c']) 'fun' You can create a web server with the following steps:: >>> print("Starting...\n"); site = dsp.web(); site Starting... Site(WebMap([(Dispatcher, WebMap())]), host='localhost', ...) >>> import requests >>> url = '%s/%s/%s' % (site.url, dsp.name, fun.__name__) >>> requests.post(url, json={'args': (0,)}).json()['return'] [1, -1] >>> site.shutdown() # Remember to shutdown the server. True .. note:: When :class:`~schedula.utils.drw.Site` is garbage collected, the server is shutdown automatically.
def web(self, depth=-1, node_data=NONE, node_function=NONE, directory=None, sites=None, run=True, subsite_idle_timeout=600): """ Creates a dispatcher Flask app. :param depth: Depth of sub-dispatch API. If negative all levels are configured. :type depth: int, optional :param node_data: Data node attributes to produce API. :type node_data: tuple[str], optional :param node_function: Function node attributes produce API. :type node_function: tuple[str], optional :param directory: Where is the generated Flask app root located? :type directory: str, optional :param sites: A set of :class:`~schedula.utils.drw.Site` to maintain alive the backend server. :type sites: set[~schedula.utils.drw.Site], optional :param run: Run the backend server? :type run: bool, optional :param subsite_idle_timeout: Idle timeout of a debug subsite in seconds. :type subsite_idle_timeout: int, optional :return: A WebMap. :rtype: ~schedula.utils.web.WebMap Example: From a dispatcher like this: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} :code: >>> from schedula import Dispatcher >>> dsp = Dispatcher(name='Dispatcher') >>> def fun(a): ... return a + 1, a - 1 >>> dsp.add_function('fun', fun, ['a'], ['b', 'c']) 'fun' You can create a web server with the following steps:: >>> print("Starting...\\n"); site = dsp.web(); site Starting... Site(WebMap([(Dispatcher, WebMap())]), host='localhost', ...) >>> import requests >>> url = '%s/%s/%s' % (site.url, dsp.name, fun.__name__) >>> requests.post(url, json={'args': (0,)}).json()['return'] [1, -1] >>> site.shutdown() # Remember to shutdown the server. True .. note:: When :class:`~schedula.utils.drw.Site` is garbage collected, the server is shutdown automatically. """ options = {'node_data': node_data, 'node_function': node_function} options = {k: v for k, v in options.items() if v is not NONE} from .web import WebMap from .sol import Solution obj = self.dsp if isinstance(self, Solution) else self webmap = WebMap() webmap.add_items(obj, workflow=False, depth=depth, **options) webmap.directory = directory webmap.idle_timeout = subsite_idle_timeout if sites is not None: sites.add(webmap.site(view=run)) elif run: return webmap.site(view=run) return webmap
(self, depth=-1, node_data=none, node_function=none, directory=None, sites=None, run=True, subsite_idle_timeout=600)
24,582
schedula.dispatcher
Dispatcher
It provides a data structure to process a complex system of functions. The scope of this data structure is to compute the shortest workflow between input and output data nodes. A workflow is a sequence of function calls. **------------------------------------------------------------------------** **Example**: As an example, here is a system of equations: :math:`b - a = c` :math:`log(c) = d_{from-log}` :math:`d = (d_{from-log} + d_{initial-guess}) / 2` that will be solved assuming that :math:`a = 0`, :math:`b = 1`, and :math:`d_{initial-guess} = 4`. **Steps** Create an empty dispatcher:: >>> dsp = Dispatcher(name='Dispatcher') Add data nodes to the dispatcher map:: >>> dsp.add_data(data_id='a') 'a' >>> dsp.add_data(data_id='c') 'c' Add a data node with a default value to the dispatcher map:: >>> dsp.add_data(data_id='b', default_value=1) 'b' Add a function node:: >>> def diff_function(a, b): ... return b - a ... >>> dsp.add_function('diff_function', function=diff_function, ... inputs=['a', 'b'], outputs=['c']) 'diff_function' Add a function node with domain:: >>> from math import log ... >>> def log_domain(x): ... return x > 0 ... >>> dsp.add_function('log', function=log, inputs=['c'], outputs=['d'], ... input_domain=log_domain) 'log' Add a data node with function estimation and callback function. - function estimation: estimate one unique output from multiple estimations. - callback function: is invoked after computing the output. >>> def average_fun(kwargs): ... ''' ... Returns the average of node estimations. ... ... :param kwargs: ... Node estimations. ... :type kwargs: dict ... ... :return: ... The average of node estimations. ... :rtype: float ... ''' ... ... x = kwargs.values() ... return sum(x) / len(x) ... >>> def callback_fun(x): ... print('(log(1) + 4) / 2 = %.1f' % x) ... >>> dsp.add_data(data_id='d', default_value=4, wait_inputs=True, ... function=average_fun, callback=callback_fun) 'd' .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> dsp <...> Dispatch the function calls to achieve the desired output data node `d`: .. dispatcher:: outputs :opt: graph_attr={'ratio': '1'} :code: >>> outputs = dsp.dispatch(inputs={'a': 0}, outputs=['d']) (log(1) + 4) / 2 = 2.0 >>> outputs Solution([('a', 0), ('b', 1), ('c', 1), ('d', 2.0)])
class Dispatcher(Base): """ It provides a data structure to process a complex system of functions. The scope of this data structure is to compute the shortest workflow between input and output data nodes. A workflow is a sequence of function calls. **------------------------------------------------------------------------** **Example**: As an example, here is a system of equations: :math:`b - a = c` :math:`log(c) = d_{from-log}` :math:`d = (d_{from-log} + d_{initial-guess}) / 2` that will be solved assuming that :math:`a = 0`, :math:`b = 1`, and :math:`d_{initial-guess} = 4`. **Steps** Create an empty dispatcher:: >>> dsp = Dispatcher(name='Dispatcher') Add data nodes to the dispatcher map:: >>> dsp.add_data(data_id='a') 'a' >>> dsp.add_data(data_id='c') 'c' Add a data node with a default value to the dispatcher map:: >>> dsp.add_data(data_id='b', default_value=1) 'b' Add a function node:: >>> def diff_function(a, b): ... return b - a ... >>> dsp.add_function('diff_function', function=diff_function, ... inputs=['a', 'b'], outputs=['c']) 'diff_function' Add a function node with domain:: >>> from math import log ... >>> def log_domain(x): ... return x > 0 ... >>> dsp.add_function('log', function=log, inputs=['c'], outputs=['d'], ... input_domain=log_domain) 'log' Add a data node with function estimation and callback function. - function estimation: estimate one unique output from multiple estimations. - callback function: is invoked after computing the output. >>> def average_fun(kwargs): ... ''' ... Returns the average of node estimations. ... ... :param kwargs: ... Node estimations. ... :type kwargs: dict ... ... :return: ... The average of node estimations. ... :rtype: float ... ''' ... ... x = kwargs.values() ... return sum(x) / len(x) ... >>> def callback_fun(x): ... print('(log(1) + 4) / 2 = %.1f' % x) ... >>> dsp.add_data(data_id='d', default_value=4, wait_inputs=True, ... function=average_fun, callback=callback_fun) 'd' .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> dsp <...> Dispatch the function calls to achieve the desired output data node `d`: .. dispatcher:: outputs :opt: graph_attr={'ratio': '1'} :code: >>> outputs = dsp.dispatch(inputs={'a': 0}, outputs=['d']) (log(1) + 4) / 2 = 2.0 >>> outputs Solution([('a', 0), ('b', 1), ('c', 1), ('d', 2.0)]) """ def __getstate__(self): state = self.__dict__.copy() state['solution'] = state['solution'].__class__(self) return state def __init__(self, dmap=None, name='', default_values=None, raises=False, description='', executor=False): """ Initializes the dispatcher. :param dmap: A directed graph that stores data & functions parameters. :type dmap: schedula.utils.graph.DiGraph, optional :param name: The dispatcher's name. :type name: str, optional :param default_values: Data node default values. These will be used as input if it is not specified as inputs in the ArciDispatch algorithm. :type default_values: dict[str, dict], optional :param raises: If True the dispatcher interrupt the dispatch when an error occur, otherwise if raises != '' it logs a warning. If a callable is given it will be executed passing the exception to decide to raise or not the exception. :type raises: bool|callable|str, optional :param description: The dispatcher's description. :type description: str, optional :param executor: A pool executor id to dispatch asynchronously or in parallel. There are four default Pool executors to dispatch asynchronously or in parallel: - `async`: execute all functions asynchronously in the same process, - `parallel`: execute all functions in parallel excluding :class:`~schedula.utils.dsp.SubDispatch` functions, - `parallel-pool`: execute all functions in parallel using a process pool excluding :class:`~schedula.utils.dsp.SubDispatch` functions, - `parallel-dispatch`: execute all functions in parallel including :class:`~schedula.utils.dsp.SubDispatch`. :type executor: str, optional """ from .utils.graph import DiGraph #: The directed graph that stores data & functions parameters. self.dmap = dmap or DiGraph() #: The dispatcher's name. self.name = name #: The dispatcher's description. self.__doc__ = description #: The function and data nodes of the dispatcher. self.nodes = self.dmap.nodes #: Data node default values. These will be used as input if it is not #: specified as inputs in the ArciDispatch algorithm. self.default_values = default_values or {} #: If True the dispatcher interrupt the dispatch when an error occur. self.raises = raises #: Pool executor to dispatch asynchronously. self.executor = executor from .utils.sol import Solution #: Last dispatch solution. self.solution = Solution(self) #: Counter to set the node index. self.counter = counter() def copy_structure(self, **kwargs): """ Returns a copy of the Dispatcher structure. :param kwargs: Additional parameters to initialize the new class. :type kwargs: dict :return: A copy of the Dispatcher structure. :rtype: Dispatcher """ kw = { 'description': self.__doc__, 'name': self.name, 'raises': self.raises, 'executor': self.executor } kw.update(kwargs) return self.__class__(**kw) def add_data(self, data_id=None, default_value=EMPTY, initial_dist=0.0, wait_inputs=False, wildcard=None, function=None, callback=None, description=None, filters=None, await_result=None, **kwargs): """ Add a single data node to the dispatcher. :param data_id: Data node id. If None will be assigned automatically ('unknown<%d>') not in dmap. :type data_id: str, optional :param default_value: Data node default value. This will be used as input if it is not specified as inputs in the ArciDispatch algorithm. :type default_value: T, optional :param initial_dist: Initial distance in the ArciDispatch algorithm when the data node default value is used. :type initial_dist: float, int, optional :param wait_inputs: If True ArciDispatch algorithm stops on the node until it gets all input estimations. :type wait_inputs: bool, optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param function: Data node estimation function. This can be any function that takes only one dictionary (key=function node id, value=estimation of data node) as input and return one value that is the estimation of the data node. :type function: callable, optional :param callback: Callback function to be called after node estimation. This can be any function that takes only one argument that is the data node estimation output. It does not return anything. :type callback: callable, optional :param description: Data node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_result: If True the Dispatcher waits data results before assigning them to the solution. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Data node id. :rtype: str .. seealso:: :func:`add_func`, :func:`add_function`, :func:`add_dispatcher`, :func:`add_from_lists` **--------------------------------------------------------------------** **Example**: .. testsetup:: >>> dsp = Dispatcher(name='Dispatcher') Add a data to be estimated or a possible input data node:: >>> dsp.add_data(data_id='a') 'a' Add a data with a default value (i.e., input data node):: >>> dsp.add_data(data_id='b', default_value=1) 'b' Create a data node with function estimation and a default value. - function estimation: estimate one unique output from multiple estimations. - default value: is a default estimation. >>> def min_fun(kwargs): ... ''' ... Returns the minimum value of node estimations. ... ... :param kwargs: ... Node estimations. ... :type kwargs: dict ... ... :return: ... The minimum value of node estimations. ... :rtype: float ... ''' ... ... return min(kwargs.values()) ... >>> dsp.add_data(data_id='c', default_value=2, wait_inputs=True, ... function=min_fun) 'c' Create a data with an unknown id and return the generated id:: >>> dsp.add_data() 'unknown' """ # Set special data nodes. if data_id is START: default_value, description = NONE, START.__doc__ elif data_id is SINK: wait_inputs, function, description = True, bypass, SINK.__doc__ elif data_id is SELF: default_value, description = self, SELF.__doc__ elif data_id is PLOT: from .utils.drw import autoplot_callback, autoplot_function callback, description = callback or autoplot_callback, PLOT.__doc__ function = function or autoplot_function # Base data node attributes. attr_dict = { 'type': 'data', 'wait_inputs': wait_inputs, 'index': (self.counter(),) } if function is not None: # Add function as node attribute. attr_dict['function'] = function if await_result is not None: # Add await_result as node attribute. attr_dict['await_result'] = await_result if callback is not None: # Add callback as node attribute. attr_dict['callback'] = callback if wildcard is not None: # Add wildcard as node attribute. attr_dict['wildcard'] = wildcard if description is not None: # Add description as node attribute. attr_dict['description'] = description if filters: # Add filters as node attribute. attr_dict['filters'] = filters attr_dict.update(kwargs) # Additional attributes. nodes = self.dmap.nodes # Namespace shortcut for speed. if data_id is None: # Search for an unused node id. data_id = get_unused_node_id(self.dmap) # Get an unused node id. # Check if the node id exists as function. elif data_id in nodes and nodes[data_id]['type'] != 'data': raise ValueError('Invalid data id: ' 'override function {}'.format(data_id)) # Add node to the dispatcher map. self.dmap.add_node(data_id, **attr_dict) # Set default value. self.set_default_value(data_id, default_value, initial_dist) return data_id # Return data node id. def add_function(self, function_id=None, function=None, inputs=None, outputs=None, input_domain=None, weight=None, inp_weight=None, out_weight=None, description=None, filters=None, await_domain=None, await_result=None, **kwargs): """ Add a single function node to dispatcher. :param function_id: Function node id. If None will be assigned as <fun.__name__>. :type function_id: str, optional :param function: Data node estimation function. :type function: callable, optional :param inputs: Ordered arguments (i.e., data node ids) needed by the function. :type inputs: list, optional :param outputs: Ordered results (i.e., data node ids) returned by the function. :type outputs: list, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the same inputs of the function and returns True if input values satisfy the domain, otherwise False. In this case the dispatch algorithm doesn't pass on the node. :type input_domain: callable, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the function node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, float | int], optional :param out_weight: Edge weights from the function node to data nodes. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type out_weight: dict[str, float | int], optional :param description: Function node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param await_result: If True the Dispatcher waits output results before assigning them to the workflow. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Function node id. :rtype: str .. seealso:: :func:`add_data`, :func:`add_func`, :func:`add_dispatcher`, :func:`add_from_lists` **--------------------------------------------------------------------** **Example**: .. testsetup:: >>> dsp = Dispatcher(name='Dispatcher') Add a function node:: >>> def my_function(a, b): ... c = a + b ... d = a - b ... return c, d ... >>> dsp.add_function(function=my_function, inputs=['a', 'b'], ... outputs=['c', 'd']) 'my_function' Add a function node with domain:: >>> from math import log >>> def my_log(a, b): ... return log(b - a) ... >>> def my_domain(a, b): ... return a < b ... >>> dsp.add_function(function=my_log, inputs=['a', 'b'], ... outputs=['e'], input_domain=my_domain) 'my_log' """ from .utils.blue import _init function = _init(function) if inputs is None: # Set a dummy input. if START not in self.nodes: self.add_data(START) inputs = [START] # Update inputs. if outputs is None: # Set a dummy output. if SINK not in self.nodes: self.add_data(SINK) outputs = [SINK] # Update outputs. # Get parent function. func = parent_func(function) # Base function node attributes. attr_dict = { 'type': 'function', 'inputs': inputs, 'outputs': outputs, 'function': function, 'wait_inputs': True, 'index': (self.counter(),) } if input_domain: # Add domain as node attribute. attr_dict['input_domain'] = input_domain if await_domain is not None: # Add await_domain as node attribute. attr_dict['await_domain'] = await_domain if await_result is not None: # Add await_result as node attribute. attr_dict['await_result'] = await_result if description is not None: # Add description as node attribute. attr_dict['description'] = description if filters: # Add filters as node attribute. attr_dict['filters'] = filters # Set function name. if function_id is None: try: # Set function name. function_name = func.__name__ except AttributeError as ex: if not func: raise ValueError( 'Invalid function id due to:\n{}'.format(ex) ) function_name = 'unknown' else: function_name = function_id # Get an unused node id. fun_id = get_unused_node_id(self.dmap, initial_guess=function_name) if weight is not None: # Add weight as node attribute. attr_dict['weight'] = weight attr_dict.update(kwargs) # Set additional attributes. # Add node to the dispatcher map. self.dmap.add_node(fun_id, **attr_dict) from .utils.alg import add_func_edges # Add input edges. n_data = add_func_edges(self, fun_id, inputs, inp_weight, True) # Add output edges. add_func_edges(self, fun_id, outputs, out_weight, False, n_data) return fun_id # Return function node id. def add_func(self, function, outputs=None, weight=None, inputs_defaults=False, inputs_kwargs=False, filters=None, input_domain=None, await_domain=None, await_result=None, inp_weight=None, out_weight=None, description=None, inputs=None, function_id=None, **kwargs): """ Add a single function node to dispatcher. :param inputs_kwargs: Do you want to include kwargs as inputs? :type inputs_kwargs: bool :param inputs_defaults: Do you want to set default values? :type inputs_defaults: bool :param function_id: Function node id. If None will be assigned as <fun.__name__>. :type function_id: str, optional :param function: Data node estimation function. :type function: callable, optional :param inputs: Ordered arguments (i.e., data node ids) needed by the function. If None it will take parameters names from function signature. :type inputs: list, optional :param outputs: Ordered results (i.e., data node ids) returned by the function. :type outputs: list, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the same inputs of the function and returns True if input values satisfy the domain, otherwise False. In this case the dispatch algorithm doesn't pass on the node. :type input_domain: callable, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the function node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, float | int], optional :param out_weight: Edge weights from the function node to data nodes. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type out_weight: dict[str, float | int], optional :param description: Function node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param await_result: If True the Dispatcher waits output results before assigning them to the workflow. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Function node id. :rtype: str .. seealso:: :func:`add_func`, :func:`add_function`, :func:`add_dispatcher`, :func:`add_from_lists` **--------------------------------------------------------------------** **Example**: .. dispatcher:: sol :opt: graph_attr={'ratio': '1'} :code: >>> import schedula as sh >>> dsp = sh.Dispatcher(name='Dispatcher') >>> def f(a, b, c, d=3, m=5): ... return (a + b) - c + d - m >>> dsp.add_func(f, outputs=['d']) 'f' >>> dsp.add_func(f, ['m'], inputs_defaults=True, inputs='beal') 'f<0>' >>> dsp.add_func(f, ['i'], inputs_kwargs=True) 'f<1>' >>> def g(a, b, c, *args, d=0): ... return (a + b) * c + d >>> dsp.add_func(g, ['e'], inputs_defaults=True) 'g' >>> sol = dsp({'a': 1, 'b': 3, 'c': 0}); sol Solution([('a', 1), ('b', 3), ('c', 0), ('l', 3), ('d', 2), ('e', 0), ('m', 0), ('i', 6)]) """ from .utils.blue import _init from .utils.dsp import _get_par_args function = _init(function) if inputs is None: inputs = tuple(_get_par_args(function, not inputs_kwargs)) or None function_id = self.add_function( weight=weight, filters=filters, outputs=outputs, function=function, input_domain=input_domain, await_domain=await_domain, inputs=inputs, description=description, out_weight=out_weight, inp_weight=inp_weight, await_result=await_result, function_id=function_id, **kwargs ) if inputs_defaults: for k, v in zip(inputs, _get_par_args(function, False).values()): if v.default is not v.empty: self.set_default_value(k, v._default) return function_id def add_dispatcher(self, dsp, inputs=None, outputs=None, dsp_id=None, input_domain=None, weight=None, inp_weight=None, description=None, include_defaults=False, await_domain=None, inputs_prefix='', outputs_prefix='', **kwargs): """ Add a single sub-dispatcher node to dispatcher. :param dsp: Child dispatcher that is added as sub-dispatcher node to the parent dispatcher. :type dsp: Dispatcher | dict[str, list] :param inputs: Inputs mapping. Data node ids from parent dispatcher to child sub-dispatcher. If `None` all child dispatcher nodes are used as inputs. :type inputs: dict[str, str | list[str]] | tuple[str] | (str, ..., dict[str, str | list[str]]) :param outputs: Outputs mapping. Data node ids from child sub-dispatcher to parent dispatcher. If `None` all child dispatcher nodes are used as outputs. :type outputs: dict[str, str | list[str]] | tuple[str] | (str, ..., dict[str, str | list[str]]) :param dsp_id: Sub-dispatcher node id. If None will be assigned as <dsp.name>. :type dsp_id: str, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the a dictionary with the inputs of the sub-dispatcher node and returns True if input values satisfy the domain, otherwise False. .. note:: This function is invoked every time that a data node reach the sub-dispatcher node. :type input_domain: (dict) -> bool, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the sub-dispatcher node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, int | float], optional :param description: Sub-dispatcher node's description. :type description: str, optional :param include_defaults: If True the default values of the sub-dispatcher are added to the current dispatcher. :type include_defaults: bool, optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param inputs_prefix: Add a prefix to parent dispatcher inputs nodes. :type inputs_prefix: str :param outputs_prefix: Add a prefix to parent dispatcher outputs nodes. :type outputs_prefix: str :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Sub-dispatcher node id. :rtype: str .. seealso:: :func:`add_data`, :func:`add_func`, :func:`add_function`, :func:`add_from_lists` **--------------------------------------------------------------------** **Example**: .. testsetup:: >>> dsp = Dispatcher(name='Dispatcher') Create a sub-dispatcher:: >>> sub_dsp = Dispatcher() >>> sub_dsp.add_function('max', max, ['a', 'b'], ['c']) 'max' Add the sub-dispatcher to the parent dispatcher:: >>> dsp.add_dispatcher(dsp_id='Sub-Dispatcher', dsp=sub_dsp, ... inputs={'A': 'a', 'B': 'b'}, ... outputs={'c': 'C'}) 'Sub-Dispatcher' Add a sub-dispatcher node with domain:: >>> def my_domain(kwargs): ... return kwargs['C'] > 3 ... >>> dsp.add_dispatcher(dsp_id='Sub-Dispatcher with domain', ... dsp=sub_dsp, inputs={'C': 'a', 'D': 'b'}, ... outputs={('c', 'b'): ('E', 'E1')}, ... input_domain=my_domain) 'Sub-Dispatcher with domain' """ from .utils.blue import _init dsp = _init(dsp) if not isinstance(dsp, self.__class__): kw = dsp dsp = self.__class__( name=dsp_id or 'unknown', executor=self.executor ) dsp.add_from_lists(**kw) if not dsp_id: # Get the dsp id. dsp_id = dsp.name or 'unknown' if description is None: # Get description. description = dsp.__doc__ or None if inputs is None: inputs = kk_dict(*(k for k in dsp.data_nodes if k not in { START, SINK, SELF, PLOT, END })) if outputs is None: outputs = kk_dict(*(k for k in dsp.data_nodes if k not in { START, SINK, SELF, PLOT, END })) if not isinstance(inputs, dict): # Create the inputs dict. inputs = kk_dict(*inputs) if not isinstance(outputs, dict): # Create the outputs dict. outputs = kk_dict(*outputs) if inputs_prefix: inputs = {f'{inputs_prefix}{k}': v for k, v in inputs.items()} if outputs_prefix: outputs = {k: f'{outputs_prefix}{v}' for k, v in outputs.items()} inputs = { k: v if isinstance(v, str) else tuple(v) for k, v in inputs.items() } outputs = { k: v if isinstance(v, str) else tuple(v) for k, v in outputs.items() } # Set zero as default input distances. # noinspection PyTypeChecker _weight_from = dict.fromkeys(inputs.keys(), 0.0) _weight_from.update(inp_weight or {}) from .utils.alg import _nodes # Return dispatcher node id. dsp_id = self.add_function( dsp_id, dsp, sorted(_nodes(inputs), key=str), sorted(_nodes(outputs.values()), key=str), input_domain, weight, _weight_from, type='dispatcher', description=description, wait_inputs=False, await_domain=await_domain, **kwargs ) # Set proper inputs. self.nodes[dsp_id]['inputs'] = inputs # Set proper outputs. self.nodes[dsp_id]['outputs'] = outputs if SINK not in dsp.nodes and \ SINK in _nodes(inputs.values()).union(_nodes(outputs)): dsp.add_data(SINK) # Add sink node. # Import default values from sub-dispatcher. if include_defaults: dsp_dfl = dsp.default_values # Namespace shortcut. remove = set() # Set of nodes to remove after the import. # Set default values. for k, v in inputs.items(): if isinstance(v, str): if v in dsp_dfl: self.set_default_value(k, **dsp_dfl.pop(v)) else: if v[0] in dsp_dfl: self.set_default_value(k, **dsp_dfl.pop(v[0])) remove.update(v[1:]) # Remove default values. for k in remove: dsp_dfl.pop(k, None) return dsp_id # Return sub-dispatcher node id. def add_from_lists(self, data_list=None, fun_list=None, dsp_list=None): """ Add multiple function and data nodes to dispatcher. :param data_list: It is a list of data node kwargs to be loaded. :type data_list: list[dict], optional :param fun_list: It is a list of function node kwargs to be loaded. :type fun_list: list[dict], optional :param dsp_list: It is a list of sub-dispatcher node kwargs to be loaded. :type dsp_list: list[dict], optional :returns: - Data node ids. - Function node ids. - Sub-dispatcher node ids. :rtype: (list[str], list[str], list[str]) .. seealso:: :func:`add_data`, :func:`add_func`, :func:`add_function`, :func:`add_dispatcher` **--------------------------------------------------------------------** **Example**: .. testsetup:: >>> dsp = Dispatcher(name='Dispatcher') Define a data list:: >>> data_list = [ ... {'data_id': 'a'}, ... {'data_id': 'b'}, ... {'data_id': 'c'}, ... ] Define a functions list:: >>> def func(a, b): ... return a + b ... >>> fun_list = [ ... {'function': func, 'inputs': ['a', 'b'], 'outputs': ['c']} ... ] Define a sub-dispatchers list:: >>> sub_dsp = Dispatcher(name='Sub-dispatcher') >>> sub_dsp.add_function(function=func, inputs=['e', 'f'], ... outputs=['g']) 'func' >>> >>> dsp_list = [ ... {'dsp_id': 'Sub', 'dsp': sub_dsp, ... 'inputs': {'a': 'e', 'b': 'f'}, 'outputs': {'g': 'c'}}, ... ] Add function and data nodes to dispatcher:: >>> dsp.add_from_lists(data_list, fun_list, dsp_list) (['a', 'b', 'c'], ['func'], ['Sub']) """ if data_list: # Add data nodes. data_ids = [self.add_data(**v) for v in data_list] # Data ids. else: data_ids = [] if fun_list: # Add function nodes. fun_ids = [self.add_function(**v) for v in fun_list] # Func ids. else: fun_ids = [] if dsp_list: # Add dispatcher nodes. dsp_ids = [self.add_dispatcher(**v) for v in dsp_list] # Dsp ids. else: dsp_ids = [] # Return data, function, and sub-dispatcher node ids. return data_ids, fun_ids, dsp_ids def set_default_value(self, data_id, value=EMPTY, initial_dist=0.0): """ Set the default value of a data node in the dispatcher. :param data_id: Data node id. :type data_id: str :param value: Data node default value. .. note:: If `EMPTY` the previous default value is removed. :type value: T, optional :param initial_dist: Initial distance in the ArciDispatch algorithm when the data node default value is used. :type initial_dist: float, int, optional **--------------------------------------------------------------------** **Example**: A dispatcher with a data node named `a`:: >>> import schedula as sh >>> dsp = sh.Dispatcher(name='Dispatcher') ... >>> dsp.add_data(data_id='a') 'a' Add a default value to `a` node:: >>> dsp.set_default_value('a', value='value of the data') >>> list(sorted(dsp.default_values['a'].items())) [('initial_dist', 0.0), ('value', 'value of the data')] Remove the default value of `a` node:: >>> dsp.set_default_value('a', value=sh.EMPTY) >>> dsp.default_values {} """ try: if self.dmap.nodes[data_id]['type'] == 'data': # Is data node? if value is EMPTY: self.default_values.pop(data_id, None) # Remove default. else: # Add default. self.default_values[data_id] = { 'value': value, 'initial_dist': initial_dist } return except KeyError: pass raise ValueError('Input error: %s is not a data node' % data_id) def get_sub_dsp(self, nodes_bunch, edges_bunch=None): """ Returns the sub-dispatcher induced by given node and edge bunches. The induced sub-dispatcher contains the available nodes in nodes_bunch and edges between those nodes, excluding those that are in edges_bunch. The available nodes are non isolated nodes and function nodes that have all inputs and at least one output. :param nodes_bunch: A container of node ids which will be iterated through once. :type nodes_bunch: list[str], iterable :param edges_bunch: A container of edge ids that will be removed. :type edges_bunch: list[(str, str)], iterable, optional :return: A dispatcher. :rtype: Dispatcher .. seealso:: :func:`get_sub_dsp_from_workflow` .. note:: The sub-dispatcher edge or node attributes just point to the original dispatcher. So changes to the node or edge structure will not be reflected in the original dispatcher map while changes to the attributes will. **--------------------------------------------------------------------** **Example**: A dispatcher with a two functions `fun1` and `fun2`: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> dsp = Dispatcher(name='Dispatcher') >>> dsp.add_function(function_id='fun1', inputs=['a', 'b'], ... outputs=['c', 'd']) 'fun1' >>> dsp.add_function(function_id='fun2', inputs=['a', 'd'], ... outputs=['c', 'e']) 'fun2' Get the sub-dispatcher induced by given nodes bunch:: >>> sub_dsp = dsp.get_sub_dsp(['a', 'c', 'd', 'e', 'fun2']) .. dispatcher:: sub_dsp :opt: graph_attr={'ratio': '1'} >>> sub_dsp.name = 'Sub-Dispatcher' """ # Get real paths. nodes_bunch = [self.get_node(u)[1][0] for u in nodes_bunch] # Define an empty dispatcher. sub_dsp = self.copy_structure( dmap=self.dmap.subgraph(nodes_bunch) ) # Namespace shortcuts for speed. nodes, succ = sub_dsp.nodes, sub_dsp.dmap.succ dmap_dv, dmap_rm_edge = self.default_values, sub_dsp.dmap.remove_edge dmap_rm_node = sub_dsp.dmap.remove_node # Remove function nodes that has not whole inputs available. for u in nodes_bunch: n = nodes[u].get('inputs', None) # Function inputs. # No all inputs if n is not None and any(k not in nodes_bunch for k in n): dmap_rm_node(u) # Remove function node. # Remove edges that are not in edges_bunch. if edges_bunch is not None: for e in edges_bunch: # Iterate sub-graph edges. dmap_rm_edge(*e) # Remove edge. # Remove function node with no outputs. sub_dsp.dmap.remove_nodes_from([ u for u, n in sub_dsp.dmap.nodes.items() if n['type'] == 'function' and not succ[u] # No outputs. ]) # Remove isolate nodes from sub-graph. sub_dsp.dmap.remove_nodes_from([ u for u, v in sub_dsp.dmap.pred.items() if not (v or succ[u]) ]) # Set default values. sub_dsp.default_values = {k: dmap_dv[k] for k in dmap_dv if k in nodes} return sub_dsp # Return the sub-dispatcher. def get_sub_dsp_from_workflow( self, sources, graph=None, reverse=False, add_missing=False, check_inputs=True, blockers=None, wildcard=False, _update_links=True, avoid_cycles=False): """ Returns the sub-dispatcher induced by the workflow from sources. The induced sub-dispatcher of the dsp contains the reachable nodes and edges evaluated with breadth-first-search on the workflow graph from source nodes. :param sources: Source nodes for the breadth-first-search. A container of nodes which will be iterated through once. :type sources: list[str], iterable :param graph: A directed graph where evaluate the breadth-first-search. :type graph: schedula.utils.graph.DiGraph, optional :param reverse: If True the workflow graph is assumed as reversed. :type reverse: bool, optional :param add_missing: If True, missing function' inputs are added to the sub-dispatcher. :type add_missing: bool, optional :param check_inputs: If True the missing function' inputs are not checked. :type check_inputs: bool, optional :param blockers: Nodes to not be added to the queue. :type blockers: set[str], iterable, optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param _update_links: If True, it updates remote links of the extracted dispatcher. :type _update_links: bool, optional :return: A sub-dispatcher. :rtype: Dispatcher .. seealso:: :func:`get_sub_dsp` .. note:: The sub-dispatcher edge or node attributes just point to the original dispatcher. So changes to the node or edge structure will not be reflected in the original dispatcher map while changes to the attributes will. **--------------------------------------------------------------------** **Example**: A dispatcher with a function `fun` and a node `a` with a default value: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> dsp = Dispatcher(name='Dispatcher') >>> dsp.add_data(data_id='a', default_value=1) 'a' >>> dsp.add_function(function_id='fun1', inputs=['a', 'b'], ... outputs=['c', 'd']) 'fun1' >>> dsp.add_function(function_id='fun2', inputs=['e'], ... outputs=['c']) 'fun2' Dispatch with no calls in order to have a workflow:: >>> o = dsp.dispatch(inputs=['a', 'b'], no_call=True) Get sub-dispatcher from workflow inputs `a` and `b`:: >>> sub_dsp = dsp.get_sub_dsp_from_workflow(['a', 'b']) .. dispatcher:: sub_dsp :opt: graph_attr={'ratio': '1'} >>> sub_dsp.name = 'Sub-Dispatcher' Get sub-dispatcher from a workflow output `c`:: >>> sub_dsp = dsp.get_sub_dsp_from_workflow(['c'], reverse=True) .. dispatcher:: sub_dsp :opt: graph_attr={'ratio': '1'} >>> sub_dsp.name = 'Sub-Dispatcher (reverse workflow)' """ # Define an empty dispatcher map. sub_dsp = self.copy_structure() if not graph: # Set default graph. graph = self.solution.workflow # Visited nodes used as queue. family = {} # Namespace shortcuts for speed. nodes, dmap_nodes = sub_dsp.dmap.nodes, self.dmap.nodes dlt_val, dsp_dlt_val = sub_dsp.default_values, self.default_values if not reverse: # Namespace shortcuts for speed. neighbors, dmap_succ = graph.succ, self.dmap.succ succ, pred = sub_dsp.dmap.succ, sub_dsp.dmap.pred # noinspection PyUnusedLocal def _check_node_inputs(c, p): if c == START: return True node_attr = dmap_nodes[c] if node_attr['type'] == 'function': if all(k in family for k in node_attr['inputs']): _set_node_attr(c) # namespace shortcuts for speed s_pred = pred[c] for p in node_attr['inputs']: # add attributes to both representations of edge succ[p][c] = s_pred[p] = dmap_succ[p][c] elif not check_inputs or add_missing: _set_node_attr(c) # namespace shortcuts for speed s_pred = pred[c] if add_missing: for p in node_attr['inputs']: if p not in family: _set_node_attr(p, add2family=False) succ[p][c] = s_pred[p] = dmap_succ[p][c] for p in node_attr['inputs']: if p in family: # add attributes to both representations of edge succ[p][c] = s_pred[p] = dmap_succ[p][c] return False return True return False else: # Namespace shortcuts for speed. neighbors, dmap_succ = graph.pred, self.dmap.pred pred, succ = sub_dsp.dmap.succ, sub_dsp.dmap.pred def _check_node_inputs(c, p): if c == START: try: node_attr = dmap_nodes[p] return node_attr['type'] == 'data' except KeyError: return True if avoid_cycles: node_attr = dmap_nodes[c] if node_attr['type'] == 'function': return any(k in family for k in node_attr['inputs']) return False from collections import deque queue = deque([]) blockers = set(blockers or ()) # Function to set node attributes. def _set_node_attr(n, add2family=True, block=False): # Set node attributes. nodes[n] = dmap_nodes[n] # Add node in the adjacency matrix. succ[n], pred[n] = ({}, {}) if n in dsp_dlt_val: dlt_val[n] = dsp_dlt_val[n] # Set the default value. if add2family: # Append a new parent to the family. family[n] = () if block and n in blockers else neighbors[n] queue.append(n) # Set initial node attributes. for s in sorted(sources): if s in dmap_nodes and s in graph.nodes: _set_node_attr(s, block=not (wildcard and s in blockers)) # Start breadth-first-search. while queue: parent = queue.popleft() # Namespace shortcuts for speed. nbrs, dmap_nbrs = succ[parent], dmap_succ[parent] # Iterate parent's children. for child in sorted(family[parent], key=str): if _check_node_inputs(child, parent): continue if child not in family: _set_node_attr(child, block=True) # Set node attributes. # Add attributes to both representations of edge: u-v and v-u. nbrs[child] = pred[child][parent] = dmap_nbrs[child] if _update_links: from .utils.alg import _update_io, _get_sub_out, _get_sub_inp succ, pred = sub_dsp.dmap.succ, sub_dsp.dmap.pred for k, a in sub_dsp.sub_dsp_nodes.items(): nodes[k] = a = a.copy() inp, out = _get_sub_inp(a, pred[k]), _get_sub_out(a, succ[k]) a['function'] = a['function'].get_sub_dsp_from_workflow( sources=out.union(inp), graph=a['function'].dmap, reverse=True, blockers=inp, wildcard=True ) i, o = _update_io(a, pred[k], succ[k]) # Unreachable nodes. msg = 'Sub-dsp {} missing: inp {}, out {}' assert not i and not o, msg.format(k, i, o) return sub_dsp # Return the sub-dispatcher map. @property def data_nodes(self): """ Returns all data nodes of the dispatcher. :return: All data nodes of the dispatcher. :rtype: dict[str, dict] """ return {k: v for k, v in self.nodes.items() if v['type'] == 'data'} @property def function_nodes(self): """ Returns all function nodes of the dispatcher. :return: All data function of the dispatcher. :rtype: dict[str, dict] """ return {k: v for k, v in self.nodes.items() if v['type'] == 'function'} @property def sub_dsp_nodes(self): """ Returns all sub-dispatcher nodes of the dispatcher. :return: All sub-dispatcher nodes of the dispatcher. :rtype: dict[str, dict] """ return { k: v for k, v in self.nodes.items() if v['type'] == 'dispatcher' } def copy(self): """ Returns a deepcopy of the Dispatcher. :return: A copy of the Dispatcher. :rtype: Dispatcher Example:: >>> dsp = Dispatcher() >>> dsp is dsp.copy() False """ return copy.deepcopy(self) # Return the copy of the Dispatcher. def blue(self, memo=None, depth=-1): """ Constructs a BlueDispatcher out of the current object. :param memo: A dictionary to cache Blueprints. :type memo: dict[T,schedula.utils.blue.Blueprint] :param depth: Depth of sub-dispatch blue. If negative all levels are bluprinted. :type depth: int, optional :return: A BlueDispatcher of the current object. :rtype: schedula.utils.blue.BlueDispatcher """ if depth == 0: return self depth -= 1 memo = {} if memo is None else memo if self in memo: return memo[self] from .utils.dsp import map_list from .utils.blue import BlueDispatcher, _parent_blue memo[self] = blue = BlueDispatcher( executor=self.executor, name=self.name, raises=self.raises, description=self.__doc__ ) dfl = self.default_values key_map_data = ['data_id', {'value': 'default_value'}] pred, succ = self.dmap.pred, self.dmap.succ def _set_weight(n, r, d): d = {i: j['weight'] for i, j in d.items() if 'weight' in j} if d: r[n] = d for k, v in sorted(self.nodes.items(), key=lambda x: x[1]['index']): v = v.copy() t = v.pop('type') del v['index'] if t == 'data': method = 'add_data' v.update(map_list(key_map_data, k, dfl.get(k, {}))) elif t in ('function', 'dispatcher'): method = 'add_%s' % t if t == 'dispatcher': t = 'dsp' v['%s_id' % t] = k del v['wait_inputs'] _set_weight('inp_weight', v, pred[k]) _set_weight('out_weight', v, succ[k]) if 'function' in v: v[t] = _parent_blue(v.pop('function'), memo, depth) blue.deferred.append((method, v)) return blue def extend(self, *blues, memo=None): """ Extends Dispatcher calling each deferred operation of given Blueprints. :param blues: Blueprints or Dispatchers to extend deferred operations. :type blues: Blueprint | schedula.dispatcher.Dispatcher :param memo: A dictionary to cache Blueprints and Dispatchers. :type memo: dict[T,schedula.utils.blue.Blueprint|Dispatcher] :return: Self. :rtype: Dispatcher **--------------------------------------------------------------------** **Example**: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} :code: >>> import schedula as sh >>> dsp = sh.Dispatcher() >>> dsp.add_func(callable, ['is_callable']) 'callable' >>> blue = sh.BlueDispatcher().add_func(len, ['length']) >>> dsp = sh.Dispatcher().extend(dsp, blue) """ from .utils.blue import BlueDispatcher as Blue return Blue().extend(*blues, memo=memo).register(self, memo=memo) def dispatch(self, inputs=None, outputs=None, inputs_dist=None, wildcard=False, no_call=False, shrink=False, rm_unused_nds=False, select_output_kw=None, _wait_in=None, stopper=None, executor=False, sol_name=(), verbose=False): """ Evaluates the minimum workflow and data outputs of the dispatcher model from given inputs. :param inputs: Input data values. :type inputs: dict[str, T], list[str], iterable, optional :param outputs: Ending data nodes. :type outputs: list[str], iterable, optional :param inputs_dist: Initial distances of input data nodes. :type inputs_dist: dict[str, int | float], optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param no_call: If True data node estimation function is not used and the input values are not used. :type no_call: bool, optional :param shrink: If True the dispatcher is shrink before the dispatch. .. seealso:: :func:`shrink_dsp` :type shrink: bool, optional :param rm_unused_nds: If True unused function and sub-dispatcher nodes are removed from workflow. :type rm_unused_nds: bool, optional :param select_output_kw: Kwargs of selector function to select specific outputs. :type select_output_kw: dict, optional :param _wait_in: Override wait inputs. :type _wait_in: dict, optional :param stopper: A semaphore to abort the dispatching. :type stopper: multiprocess.Event, optional :param executor: A pool executor id to dispatch asynchronously or in parallel. :type executor: str, optional :param sol_name: Solution name. :type sol_name: tuple[str], optional :param verbose: If True the dispatcher will log start and end of each function. :type verbose: str, optional :return: Dictionary of estimated data node outputs. :rtype: schedula.utils.sol.Solution **--------------------------------------------------------------------** **Example**: A dispatcher with a function :math:`log(b - a)` and two data `a` and `b` with default values: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> dsp = Dispatcher(name='Dispatcher') >>> dsp.add_data(data_id='a', default_value=0) 'a' >>> dsp.add_data(data_id='b', default_value=5) 'b' >>> dsp.add_data(data_id='d', default_value=1) 'd' >>> from math import log >>> def my_log(a, b): ... return log(b - a) >>> def my_domain(a, b): ... return a < b >>> dsp.add_function('log(b - a)', function=my_log, ... inputs=['c', 'd'], ... outputs=['e'], input_domain=my_domain) 'log(b - a)' >>> dsp.add_function('min', function=min, inputs=['a', 'b'], ... outputs=['c']) 'min' Dispatch without inputs. The default values are used as inputs: .. dispatcher:: outputs :opt: graph_attr={'ratio': '1'} :code: >>> outputs = dsp.dispatch() >>> outputs Solution([('a', 0), ('b', 5), ('d', 1), ('c', 0), ('e', 0.0)]) Dispatch until data node `c` is estimated: .. dispatcher:: outputs :opt: graph_attr={'ratio': '1'} :code: >>> outputs = dsp.dispatch(outputs=['c']) >>> outputs Solution([('a', 0), ('b', 5), ('c', 0)]) Dispatch with one inputs. The default value of `a` is not used as inputs: .. dispatcher:: outputs :opt: graph_attr={'ratio': '1'} :code: >>> outputs = dsp.dispatch(inputs={'a': 3}) >>> outputs Solution([('a', 3), ('b', 5), ('d', 1), ('c', 3)]) """ dsp = self if not no_call: if shrink: # Pre shrink. dsp = self.shrink_dsp(inputs, outputs, inputs_dist, wildcard) elif outputs: dsp = self.get_sub_dsp_from_workflow( outputs, self.dmap, reverse=True, blockers=inputs, wildcard=wildcard ) # Initialize. self.solution = sol = self.solution.__class__( dsp, inputs, outputs, wildcard, inputs_dist, no_call, rm_unused_nds, _wait_in, full_name=sol_name, verbose=verbose ) # Dispatch. sol._run(stopper=stopper, executor=executor) if select_output_kw: return selector(dictionary=sol, **select_output_kw) # Return the evaluated data outputs. return sol def __call__(self, *args, **kwargs): return self.dispatch(*args, **kwargs) def shrink_dsp(self, inputs=None, outputs=None, inputs_dist=None, wildcard=True): """ Returns a reduced dispatcher. :param inputs: Input data nodes. :type inputs: list[str], iterable, optional :param outputs: Ending data nodes. :type outputs: list[str], iterable, optional :param inputs_dist: Initial distances of input data nodes. :type inputs_dist: dict[str, int | float], optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :return: A sub-dispatcher. :rtype: Dispatcher .. seealso:: :func:`dispatch` **--------------------------------------------------------------------** **Example**: A dispatcher like this: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> dsp = Dispatcher(name='Dispatcher') >>> functions = [ ... { ... 'function_id': 'fun1', ... 'inputs': ['a', 'b'], ... 'outputs': ['c'] ... }, ... { ... 'function_id': 'fun2', ... 'inputs': ['b', 'd'], ... 'outputs': ['e'] ... }, ... { ... 'function_id': 'fun3', ... 'function': min, ... 'inputs': ['d', 'f'], ... 'outputs': ['g'] ... }, ... { ... 'function_id': 'fun4', ... 'function': max, ... 'inputs': ['a', 'b'], ... 'outputs': ['g'] ... }, ... { ... 'function_id': 'fun5', ... 'function': max, ... 'inputs': ['d', 'e'], ... 'outputs': ['c', 'f'] ... }, ... ] >>> dsp.add_from_lists(fun_list=functions) ([], [...]) Get the sub-dispatcher induced by dispatching with no calls from inputs `a`, `b`, and `c` to outputs `c`, `e`, and `f`:: >>> shrink_dsp = dsp.shrink_dsp(inputs=['a', 'b', 'd'], ... outputs=['c', 'f']) .. dispatcher:: shrink_dsp :opt: graph_attr={'ratio': '1'} >>> shrink_dsp.name = 'Sub-Dispatcher' """ bfs = None if inputs: # Get all data nodes no wait inputs. wait_in = self._get_wait_in(flag=False) # Evaluate the workflow graph without invoking functions. o = self.dispatch( inputs, outputs, inputs_dist, wildcard, True, False, True, _wait_in=wait_in ) data_nodes = self.data_nodes # Get data nodes. from .utils.alg import _union_workflow, _convert_bfs bfs = _union_workflow(o) # bfg edges. # Set minimum initial distances. if inputs_dist: inputs_dist = combine_dicts(o.dist, inputs_dist) else: inputs_dist = o.dist # Set data nodes to wait inputs. wait_in = self._get_wait_in(flag=True) while True: # Start shrinking loop. # Evaluate the workflow graph without invoking functions. o = self.dispatch( inputs, outputs, inputs_dist, wildcard, True, False, False, _wait_in=wait_in ) _union_workflow(o, bfs=bfs) # Update bfs. n_d, status = o._remove_wait_in() # Remove wait input flags. if not status: break # Stop iteration. # Update inputs. inputs = n_d.intersection(data_nodes).union(inputs) # Update outputs and convert bfs in DiGraphs. outputs, bfs = outputs or o, _convert_bfs(bfs) elif not outputs: return self.copy_structure() # Empty Dispatcher. # Get sub dispatcher breadth-first-search graph. dsp = self._get_dsp_from_bfs(outputs, bfs_graphs=bfs) return dsp # Return the shrink sub dispatcher. def _get_dsp_from_bfs(self, outputs, bfs_graphs=None): """ Returns the sub-dispatcher induced by the workflow from outputs. :param outputs: Ending data nodes. :type outputs: list[str], iterable, optional :param bfs_graphs: A dictionary with directed graphs where evaluate the breadth-first-search. :type bfs_graphs: dict[str | Token, schedula.utils.graph.DiGraph | dict] :return: A sub-dispatcher :rtype: Dispatcher """ bfs = bfs_graphs[NONE] if bfs_graphs is not None else self.dmap # Get sub dispatcher breadth-first-search graph. dsp = self.get_sub_dsp_from_workflow( sources=outputs, graph=bfs, reverse=True, _update_links=False ) # Namespace shortcuts. succ, nodes, pred = dsp.dmap.succ, dsp.nodes, dsp.dmap.pred rm_edges, nds = dsp.dmap.remove_edges_from, dsp.data_nodes from .utils.alg import _nodes, _get_sub_out, _update_io for n in dsp.sub_dsp_nodes: a = nodes[n] = nodes[n].copy() bfs = bfs_graphs[n] if bfs_graphs is not None else None out = _get_sub_out(a, succ[n]) if 'input_domain' in a: out.update(_nodes(a['inputs'].values())) a['function'] = a['function']._get_dsp_from_bfs(out, bfs) i, o = _update_io(a, pred[n], succ[n]) # Unreachable nodes. rm_edges({(u, n) for u in i}.union(((n, u) for u in o))) return dsp @staticmethod def _edge_length(edge, node_out): """ Returns the edge length. The edge length is edge weight + destination node weight. :param edge: Edge attributes. :type edge: dict[str, int | float] :param node_out: Node attributes. :type node_out: dict[str, int | float] :return: Edge length. :rtype: float, int """ return edge.get('weight', 1) + node_out.get('weight', 0) # Length. def _get_wait_in(self, flag=True, all_domain=True): """ Set `wait_inputs` flags for data nodes that: - are estimated from functions with a domain function, and - are waiting inputs. :param flag: Value to be set. If None `wait_inputs` are just cleaned. :type flag: bool, None, optional :param all_domain: Set `wait_inputs` flags for data nodes that are estimated from functions with a domain function. :type all_domain: bool, optional """ wait_in = {} for n, a in self.data_nodes.items(): if n is not SINK and a['wait_inputs']: wait_in[n] = flag if all_domain: for a in self.function_nodes.values(): if 'input_domain' in a: wait_in.update(dict.fromkeys(a['outputs'], flag)) for n, a in self.sub_dsp_nodes.items(): if 'function' in a: dsp = a['function'] wait_in[dsp] = w = dsp._get_wait_in(flag=flag) if 'input_domain' not in a: o = a['outputs'] w = [v for k, v in o.items() if k in w] wait_in.update(dict.fromkeys(w, flag)) if 'input_domain' in a: wait_in[n] = flag wait_in.update(dict.fromkeys(a['outputs'].values(), flag)) return wait_in
(dmap=None, name='', default_values=None, raises=False, description='', executor=False)
24,583
schedula.dispatcher
__call__
null
def __call__(self, *args, **kwargs): return self.dispatch(*args, **kwargs)
(self, *args, **kwargs)
24,585
schedula.dispatcher
__getstate__
null
def __getstate__(self): state = self.__dict__.copy() state['solution'] = state['solution'].__class__(self) return state
(self)
24,586
schedula.dispatcher
__init__
Initializes the dispatcher. :param dmap: A directed graph that stores data & functions parameters. :type dmap: schedula.utils.graph.DiGraph, optional :param name: The dispatcher's name. :type name: str, optional :param default_values: Data node default values. These will be used as input if it is not specified as inputs in the ArciDispatch algorithm. :type default_values: dict[str, dict], optional :param raises: If True the dispatcher interrupt the dispatch when an error occur, otherwise if raises != '' it logs a warning. If a callable is given it will be executed passing the exception to decide to raise or not the exception. :type raises: bool|callable|str, optional :param description: The dispatcher's description. :type description: str, optional :param executor: A pool executor id to dispatch asynchronously or in parallel. There are four default Pool executors to dispatch asynchronously or in parallel: - `async`: execute all functions asynchronously in the same process, - `parallel`: execute all functions in parallel excluding :class:`~schedula.utils.dsp.SubDispatch` functions, - `parallel-pool`: execute all functions in parallel using a process pool excluding :class:`~schedula.utils.dsp.SubDispatch` functions, - `parallel-dispatch`: execute all functions in parallel including :class:`~schedula.utils.dsp.SubDispatch`. :type executor: str, optional
def __init__(self, dmap=None, name='', default_values=None, raises=False, description='', executor=False): """ Initializes the dispatcher. :param dmap: A directed graph that stores data & functions parameters. :type dmap: schedula.utils.graph.DiGraph, optional :param name: The dispatcher's name. :type name: str, optional :param default_values: Data node default values. These will be used as input if it is not specified as inputs in the ArciDispatch algorithm. :type default_values: dict[str, dict], optional :param raises: If True the dispatcher interrupt the dispatch when an error occur, otherwise if raises != '' it logs a warning. If a callable is given it will be executed passing the exception to decide to raise or not the exception. :type raises: bool|callable|str, optional :param description: The dispatcher's description. :type description: str, optional :param executor: A pool executor id to dispatch asynchronously or in parallel. There are four default Pool executors to dispatch asynchronously or in parallel: - `async`: execute all functions asynchronously in the same process, - `parallel`: execute all functions in parallel excluding :class:`~schedula.utils.dsp.SubDispatch` functions, - `parallel-pool`: execute all functions in parallel using a process pool excluding :class:`~schedula.utils.dsp.SubDispatch` functions, - `parallel-dispatch`: execute all functions in parallel including :class:`~schedula.utils.dsp.SubDispatch`. :type executor: str, optional """ from .utils.graph import DiGraph #: The directed graph that stores data & functions parameters. self.dmap = dmap or DiGraph() #: The dispatcher's name. self.name = name #: The dispatcher's description. self.__doc__ = description #: The function and data nodes of the dispatcher. self.nodes = self.dmap.nodes #: Data node default values. These will be used as input if it is not #: specified as inputs in the ArciDispatch algorithm. self.default_values = default_values or {} #: If True the dispatcher interrupt the dispatch when an error occur. self.raises = raises #: Pool executor to dispatch asynchronously. self.executor = executor from .utils.sol import Solution #: Last dispatch solution. self.solution = Solution(self) #: Counter to set the node index. self.counter = counter()
(self, dmap=None, name='', default_values=None, raises=False, description='', executor=False)
24,587
schedula.utils.base
__new__
null
def __new__(cls, *args, **kwargs): return super(Base, cls).__new__(cls)
(cls, *args, **kwargs)
24,588
schedula.dispatcher
_edge_length
Returns the edge length. The edge length is edge weight + destination node weight. :param edge: Edge attributes. :type edge: dict[str, int | float] :param node_out: Node attributes. :type node_out: dict[str, int | float] :return: Edge length. :rtype: float, int
@staticmethod def _edge_length(edge, node_out): """ Returns the edge length. The edge length is edge weight + destination node weight. :param edge: Edge attributes. :type edge: dict[str, int | float] :param node_out: Node attributes. :type node_out: dict[str, int | float] :return: Edge length. :rtype: float, int """ return edge.get('weight', 1) + node_out.get('weight', 0) # Length.
(edge, node_out)
24,589
schedula.dispatcher
_get_dsp_from_bfs
Returns the sub-dispatcher induced by the workflow from outputs. :param outputs: Ending data nodes. :type outputs: list[str], iterable, optional :param bfs_graphs: A dictionary with directed graphs where evaluate the breadth-first-search. :type bfs_graphs: dict[str | Token, schedula.utils.graph.DiGraph | dict] :return: A sub-dispatcher :rtype: Dispatcher
def _get_dsp_from_bfs(self, outputs, bfs_graphs=None): """ Returns the sub-dispatcher induced by the workflow from outputs. :param outputs: Ending data nodes. :type outputs: list[str], iterable, optional :param bfs_graphs: A dictionary with directed graphs where evaluate the breadth-first-search. :type bfs_graphs: dict[str | Token, schedula.utils.graph.DiGraph | dict] :return: A sub-dispatcher :rtype: Dispatcher """ bfs = bfs_graphs[NONE] if bfs_graphs is not None else self.dmap # Get sub dispatcher breadth-first-search graph. dsp = self.get_sub_dsp_from_workflow( sources=outputs, graph=bfs, reverse=True, _update_links=False ) # Namespace shortcuts. succ, nodes, pred = dsp.dmap.succ, dsp.nodes, dsp.dmap.pred rm_edges, nds = dsp.dmap.remove_edges_from, dsp.data_nodes from .utils.alg import _nodes, _get_sub_out, _update_io for n in dsp.sub_dsp_nodes: a = nodes[n] = nodes[n].copy() bfs = bfs_graphs[n] if bfs_graphs is not None else None out = _get_sub_out(a, succ[n]) if 'input_domain' in a: out.update(_nodes(a['inputs'].values())) a['function'] = a['function']._get_dsp_from_bfs(out, bfs) i, o = _update_io(a, pred[n], succ[n]) # Unreachable nodes. rm_edges({(u, n) for u in i}.union(((n, u) for u in o))) return dsp
(self, outputs, bfs_graphs=None)
24,590
schedula.dispatcher
_get_wait_in
Set `wait_inputs` flags for data nodes that: - are estimated from functions with a domain function, and - are waiting inputs. :param flag: Value to be set. If None `wait_inputs` are just cleaned. :type flag: bool, None, optional :param all_domain: Set `wait_inputs` flags for data nodes that are estimated from functions with a domain function. :type all_domain: bool, optional
def _get_wait_in(self, flag=True, all_domain=True): """ Set `wait_inputs` flags for data nodes that: - are estimated from functions with a domain function, and - are waiting inputs. :param flag: Value to be set. If None `wait_inputs` are just cleaned. :type flag: bool, None, optional :param all_domain: Set `wait_inputs` flags for data nodes that are estimated from functions with a domain function. :type all_domain: bool, optional """ wait_in = {} for n, a in self.data_nodes.items(): if n is not SINK and a['wait_inputs']: wait_in[n] = flag if all_domain: for a in self.function_nodes.values(): if 'input_domain' in a: wait_in.update(dict.fromkeys(a['outputs'], flag)) for n, a in self.sub_dsp_nodes.items(): if 'function' in a: dsp = a['function'] wait_in[dsp] = w = dsp._get_wait_in(flag=flag) if 'input_domain' not in a: o = a['outputs'] w = [v for k, v in o.items() if k in w] wait_in.update(dict.fromkeys(w, flag)) if 'input_domain' in a: wait_in[n] = flag wait_in.update(dict.fromkeys(a['outputs'].values(), flag)) return wait_in
(self, flag=True, all_domain=True)
24,591
schedula.dispatcher
add_data
Add a single data node to the dispatcher. :param data_id: Data node id. If None will be assigned automatically ('unknown<%d>') not in dmap. :type data_id: str, optional :param default_value: Data node default value. This will be used as input if it is not specified as inputs in the ArciDispatch algorithm. :type default_value: T, optional :param initial_dist: Initial distance in the ArciDispatch algorithm when the data node default value is used. :type initial_dist: float, int, optional :param wait_inputs: If True ArciDispatch algorithm stops on the node until it gets all input estimations. :type wait_inputs: bool, optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param function: Data node estimation function. This can be any function that takes only one dictionary (key=function node id, value=estimation of data node) as input and return one value that is the estimation of the data node. :type function: callable, optional :param callback: Callback function to be called after node estimation. This can be any function that takes only one argument that is the data node estimation output. It does not return anything. :type callback: callable, optional :param description: Data node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_result: If True the Dispatcher waits data results before assigning them to the solution. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Data node id. :rtype: str .. seealso:: :func:`add_func`, :func:`add_function`, :func:`add_dispatcher`, :func:`add_from_lists` **--------------------------------------------------------------------** **Example**: .. testsetup:: >>> dsp = Dispatcher(name='Dispatcher') Add a data to be estimated or a possible input data node:: >>> dsp.add_data(data_id='a') 'a' Add a data with a default value (i.e., input data node):: >>> dsp.add_data(data_id='b', default_value=1) 'b' Create a data node with function estimation and a default value. - function estimation: estimate one unique output from multiple estimations. - default value: is a default estimation. >>> def min_fun(kwargs): ... ''' ... Returns the minimum value of node estimations. ... ... :param kwargs: ... Node estimations. ... :type kwargs: dict ... ... :return: ... The minimum value of node estimations. ... :rtype: float ... ''' ... ... return min(kwargs.values()) ... >>> dsp.add_data(data_id='c', default_value=2, wait_inputs=True, ... function=min_fun) 'c' Create a data with an unknown id and return the generated id:: >>> dsp.add_data() 'unknown'
def add_data(self, data_id=None, default_value=EMPTY, initial_dist=0.0, wait_inputs=False, wildcard=None, function=None, callback=None, description=None, filters=None, await_result=None, **kwargs): """ Add a single data node to the dispatcher. :param data_id: Data node id. If None will be assigned automatically ('unknown<%d>') not in dmap. :type data_id: str, optional :param default_value: Data node default value. This will be used as input if it is not specified as inputs in the ArciDispatch algorithm. :type default_value: T, optional :param initial_dist: Initial distance in the ArciDispatch algorithm when the data node default value is used. :type initial_dist: float, int, optional :param wait_inputs: If True ArciDispatch algorithm stops on the node until it gets all input estimations. :type wait_inputs: bool, optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param function: Data node estimation function. This can be any function that takes only one dictionary (key=function node id, value=estimation of data node) as input and return one value that is the estimation of the data node. :type function: callable, optional :param callback: Callback function to be called after node estimation. This can be any function that takes only one argument that is the data node estimation output. It does not return anything. :type callback: callable, optional :param description: Data node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_result: If True the Dispatcher waits data results before assigning them to the solution. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Data node id. :rtype: str .. seealso:: :func:`add_func`, :func:`add_function`, :func:`add_dispatcher`, :func:`add_from_lists` **--------------------------------------------------------------------** **Example**: .. testsetup:: >>> dsp = Dispatcher(name='Dispatcher') Add a data to be estimated or a possible input data node:: >>> dsp.add_data(data_id='a') 'a' Add a data with a default value (i.e., input data node):: >>> dsp.add_data(data_id='b', default_value=1) 'b' Create a data node with function estimation and a default value. - function estimation: estimate one unique output from multiple estimations. - default value: is a default estimation. >>> def min_fun(kwargs): ... ''' ... Returns the minimum value of node estimations. ... ... :param kwargs: ... Node estimations. ... :type kwargs: dict ... ... :return: ... The minimum value of node estimations. ... :rtype: float ... ''' ... ... return min(kwargs.values()) ... >>> dsp.add_data(data_id='c', default_value=2, wait_inputs=True, ... function=min_fun) 'c' Create a data with an unknown id and return the generated id:: >>> dsp.add_data() 'unknown' """ # Set special data nodes. if data_id is START: default_value, description = NONE, START.__doc__ elif data_id is SINK: wait_inputs, function, description = True, bypass, SINK.__doc__ elif data_id is SELF: default_value, description = self, SELF.__doc__ elif data_id is PLOT: from .utils.drw import autoplot_callback, autoplot_function callback, description = callback or autoplot_callback, PLOT.__doc__ function = function or autoplot_function # Base data node attributes. attr_dict = { 'type': 'data', 'wait_inputs': wait_inputs, 'index': (self.counter(),) } if function is not None: # Add function as node attribute. attr_dict['function'] = function if await_result is not None: # Add await_result as node attribute. attr_dict['await_result'] = await_result if callback is not None: # Add callback as node attribute. attr_dict['callback'] = callback if wildcard is not None: # Add wildcard as node attribute. attr_dict['wildcard'] = wildcard if description is not None: # Add description as node attribute. attr_dict['description'] = description if filters: # Add filters as node attribute. attr_dict['filters'] = filters attr_dict.update(kwargs) # Additional attributes. nodes = self.dmap.nodes # Namespace shortcut for speed. if data_id is None: # Search for an unused node id. data_id = get_unused_node_id(self.dmap) # Get an unused node id. # Check if the node id exists as function. elif data_id in nodes and nodes[data_id]['type'] != 'data': raise ValueError('Invalid data id: ' 'override function {}'.format(data_id)) # Add node to the dispatcher map. self.dmap.add_node(data_id, **attr_dict) # Set default value. self.set_default_value(data_id, default_value, initial_dist) return data_id # Return data node id.
(self, data_id=None, default_value=empty, initial_dist=0.0, wait_inputs=False, wildcard=None, function=None, callback=None, description=None, filters=None, await_result=None, **kwargs)
24,592
schedula.dispatcher
add_dispatcher
Add a single sub-dispatcher node to dispatcher. :param dsp: Child dispatcher that is added as sub-dispatcher node to the parent dispatcher. :type dsp: Dispatcher | dict[str, list] :param inputs: Inputs mapping. Data node ids from parent dispatcher to child sub-dispatcher. If `None` all child dispatcher nodes are used as inputs. :type inputs: dict[str, str | list[str]] | tuple[str] | (str, ..., dict[str, str | list[str]]) :param outputs: Outputs mapping. Data node ids from child sub-dispatcher to parent dispatcher. If `None` all child dispatcher nodes are used as outputs. :type outputs: dict[str, str | list[str]] | tuple[str] | (str, ..., dict[str, str | list[str]]) :param dsp_id: Sub-dispatcher node id. If None will be assigned as <dsp.name>. :type dsp_id: str, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the a dictionary with the inputs of the sub-dispatcher node and returns True if input values satisfy the domain, otherwise False. .. note:: This function is invoked every time that a data node reach the sub-dispatcher node. :type input_domain: (dict) -> bool, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the sub-dispatcher node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, int | float], optional :param description: Sub-dispatcher node's description. :type description: str, optional :param include_defaults: If True the default values of the sub-dispatcher are added to the current dispatcher. :type include_defaults: bool, optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param inputs_prefix: Add a prefix to parent dispatcher inputs nodes. :type inputs_prefix: str :param outputs_prefix: Add a prefix to parent dispatcher outputs nodes. :type outputs_prefix: str :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Sub-dispatcher node id. :rtype: str .. seealso:: :func:`add_data`, :func:`add_func`, :func:`add_function`, :func:`add_from_lists` **--------------------------------------------------------------------** **Example**: .. testsetup:: >>> dsp = Dispatcher(name='Dispatcher') Create a sub-dispatcher:: >>> sub_dsp = Dispatcher() >>> sub_dsp.add_function('max', max, ['a', 'b'], ['c']) 'max' Add the sub-dispatcher to the parent dispatcher:: >>> dsp.add_dispatcher(dsp_id='Sub-Dispatcher', dsp=sub_dsp, ... inputs={'A': 'a', 'B': 'b'}, ... outputs={'c': 'C'}) 'Sub-Dispatcher' Add a sub-dispatcher node with domain:: >>> def my_domain(kwargs): ... return kwargs['C'] > 3 ... >>> dsp.add_dispatcher(dsp_id='Sub-Dispatcher with domain', ... dsp=sub_dsp, inputs={'C': 'a', 'D': 'b'}, ... outputs={('c', 'b'): ('E', 'E1')}, ... input_domain=my_domain) 'Sub-Dispatcher with domain'
def add_dispatcher(self, dsp, inputs=None, outputs=None, dsp_id=None, input_domain=None, weight=None, inp_weight=None, description=None, include_defaults=False, await_domain=None, inputs_prefix='', outputs_prefix='', **kwargs): """ Add a single sub-dispatcher node to dispatcher. :param dsp: Child dispatcher that is added as sub-dispatcher node to the parent dispatcher. :type dsp: Dispatcher | dict[str, list] :param inputs: Inputs mapping. Data node ids from parent dispatcher to child sub-dispatcher. If `None` all child dispatcher nodes are used as inputs. :type inputs: dict[str, str | list[str]] | tuple[str] | (str, ..., dict[str, str | list[str]]) :param outputs: Outputs mapping. Data node ids from child sub-dispatcher to parent dispatcher. If `None` all child dispatcher nodes are used as outputs. :type outputs: dict[str, str | list[str]] | tuple[str] | (str, ..., dict[str, str | list[str]]) :param dsp_id: Sub-dispatcher node id. If None will be assigned as <dsp.name>. :type dsp_id: str, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the a dictionary with the inputs of the sub-dispatcher node and returns True if input values satisfy the domain, otherwise False. .. note:: This function is invoked every time that a data node reach the sub-dispatcher node. :type input_domain: (dict) -> bool, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the sub-dispatcher node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, int | float], optional :param description: Sub-dispatcher node's description. :type description: str, optional :param include_defaults: If True the default values of the sub-dispatcher are added to the current dispatcher. :type include_defaults: bool, optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param inputs_prefix: Add a prefix to parent dispatcher inputs nodes. :type inputs_prefix: str :param outputs_prefix: Add a prefix to parent dispatcher outputs nodes. :type outputs_prefix: str :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Sub-dispatcher node id. :rtype: str .. seealso:: :func:`add_data`, :func:`add_func`, :func:`add_function`, :func:`add_from_lists` **--------------------------------------------------------------------** **Example**: .. testsetup:: >>> dsp = Dispatcher(name='Dispatcher') Create a sub-dispatcher:: >>> sub_dsp = Dispatcher() >>> sub_dsp.add_function('max', max, ['a', 'b'], ['c']) 'max' Add the sub-dispatcher to the parent dispatcher:: >>> dsp.add_dispatcher(dsp_id='Sub-Dispatcher', dsp=sub_dsp, ... inputs={'A': 'a', 'B': 'b'}, ... outputs={'c': 'C'}) 'Sub-Dispatcher' Add a sub-dispatcher node with domain:: >>> def my_domain(kwargs): ... return kwargs['C'] > 3 ... >>> dsp.add_dispatcher(dsp_id='Sub-Dispatcher with domain', ... dsp=sub_dsp, inputs={'C': 'a', 'D': 'b'}, ... outputs={('c', 'b'): ('E', 'E1')}, ... input_domain=my_domain) 'Sub-Dispatcher with domain' """ from .utils.blue import _init dsp = _init(dsp) if not isinstance(dsp, self.__class__): kw = dsp dsp = self.__class__( name=dsp_id or 'unknown', executor=self.executor ) dsp.add_from_lists(**kw) if not dsp_id: # Get the dsp id. dsp_id = dsp.name or 'unknown' if description is None: # Get description. description = dsp.__doc__ or None if inputs is None: inputs = kk_dict(*(k for k in dsp.data_nodes if k not in { START, SINK, SELF, PLOT, END })) if outputs is None: outputs = kk_dict(*(k for k in dsp.data_nodes if k not in { START, SINK, SELF, PLOT, END })) if not isinstance(inputs, dict): # Create the inputs dict. inputs = kk_dict(*inputs) if not isinstance(outputs, dict): # Create the outputs dict. outputs = kk_dict(*outputs) if inputs_prefix: inputs = {f'{inputs_prefix}{k}': v for k, v in inputs.items()} if outputs_prefix: outputs = {k: f'{outputs_prefix}{v}' for k, v in outputs.items()} inputs = { k: v if isinstance(v, str) else tuple(v) for k, v in inputs.items() } outputs = { k: v if isinstance(v, str) else tuple(v) for k, v in outputs.items() } # Set zero as default input distances. # noinspection PyTypeChecker _weight_from = dict.fromkeys(inputs.keys(), 0.0) _weight_from.update(inp_weight or {}) from .utils.alg import _nodes # Return dispatcher node id. dsp_id = self.add_function( dsp_id, dsp, sorted(_nodes(inputs), key=str), sorted(_nodes(outputs.values()), key=str), input_domain, weight, _weight_from, type='dispatcher', description=description, wait_inputs=False, await_domain=await_domain, **kwargs ) # Set proper inputs. self.nodes[dsp_id]['inputs'] = inputs # Set proper outputs. self.nodes[dsp_id]['outputs'] = outputs if SINK not in dsp.nodes and \ SINK in _nodes(inputs.values()).union(_nodes(outputs)): dsp.add_data(SINK) # Add sink node. # Import default values from sub-dispatcher. if include_defaults: dsp_dfl = dsp.default_values # Namespace shortcut. remove = set() # Set of nodes to remove after the import. # Set default values. for k, v in inputs.items(): if isinstance(v, str): if v in dsp_dfl: self.set_default_value(k, **dsp_dfl.pop(v)) else: if v[0] in dsp_dfl: self.set_default_value(k, **dsp_dfl.pop(v[0])) remove.update(v[1:]) # Remove default values. for k in remove: dsp_dfl.pop(k, None) return dsp_id # Return sub-dispatcher node id.
(self, dsp, inputs=None, outputs=None, dsp_id=None, input_domain=None, weight=None, inp_weight=None, description=None, include_defaults=False, await_domain=None, inputs_prefix='', outputs_prefix='', **kwargs)
24,593
schedula.dispatcher
add_from_lists
Add multiple function and data nodes to dispatcher. :param data_list: It is a list of data node kwargs to be loaded. :type data_list: list[dict], optional :param fun_list: It is a list of function node kwargs to be loaded. :type fun_list: list[dict], optional :param dsp_list: It is a list of sub-dispatcher node kwargs to be loaded. :type dsp_list: list[dict], optional :returns: - Data node ids. - Function node ids. - Sub-dispatcher node ids. :rtype: (list[str], list[str], list[str]) .. seealso:: :func:`add_data`, :func:`add_func`, :func:`add_function`, :func:`add_dispatcher` **--------------------------------------------------------------------** **Example**: .. testsetup:: >>> dsp = Dispatcher(name='Dispatcher') Define a data list:: >>> data_list = [ ... {'data_id': 'a'}, ... {'data_id': 'b'}, ... {'data_id': 'c'}, ... ] Define a functions list:: >>> def func(a, b): ... return a + b ... >>> fun_list = [ ... {'function': func, 'inputs': ['a', 'b'], 'outputs': ['c']} ... ] Define a sub-dispatchers list:: >>> sub_dsp = Dispatcher(name='Sub-dispatcher') >>> sub_dsp.add_function(function=func, inputs=['e', 'f'], ... outputs=['g']) 'func' >>> >>> dsp_list = [ ... {'dsp_id': 'Sub', 'dsp': sub_dsp, ... 'inputs': {'a': 'e', 'b': 'f'}, 'outputs': {'g': 'c'}}, ... ] Add function and data nodes to dispatcher:: >>> dsp.add_from_lists(data_list, fun_list, dsp_list) (['a', 'b', 'c'], ['func'], ['Sub'])
def add_from_lists(self, data_list=None, fun_list=None, dsp_list=None): """ Add multiple function and data nodes to dispatcher. :param data_list: It is a list of data node kwargs to be loaded. :type data_list: list[dict], optional :param fun_list: It is a list of function node kwargs to be loaded. :type fun_list: list[dict], optional :param dsp_list: It is a list of sub-dispatcher node kwargs to be loaded. :type dsp_list: list[dict], optional :returns: - Data node ids. - Function node ids. - Sub-dispatcher node ids. :rtype: (list[str], list[str], list[str]) .. seealso:: :func:`add_data`, :func:`add_func`, :func:`add_function`, :func:`add_dispatcher` **--------------------------------------------------------------------** **Example**: .. testsetup:: >>> dsp = Dispatcher(name='Dispatcher') Define a data list:: >>> data_list = [ ... {'data_id': 'a'}, ... {'data_id': 'b'}, ... {'data_id': 'c'}, ... ] Define a functions list:: >>> def func(a, b): ... return a + b ... >>> fun_list = [ ... {'function': func, 'inputs': ['a', 'b'], 'outputs': ['c']} ... ] Define a sub-dispatchers list:: >>> sub_dsp = Dispatcher(name='Sub-dispatcher') >>> sub_dsp.add_function(function=func, inputs=['e', 'f'], ... outputs=['g']) 'func' >>> >>> dsp_list = [ ... {'dsp_id': 'Sub', 'dsp': sub_dsp, ... 'inputs': {'a': 'e', 'b': 'f'}, 'outputs': {'g': 'c'}}, ... ] Add function and data nodes to dispatcher:: >>> dsp.add_from_lists(data_list, fun_list, dsp_list) (['a', 'b', 'c'], ['func'], ['Sub']) """ if data_list: # Add data nodes. data_ids = [self.add_data(**v) for v in data_list] # Data ids. else: data_ids = [] if fun_list: # Add function nodes. fun_ids = [self.add_function(**v) for v in fun_list] # Func ids. else: fun_ids = [] if dsp_list: # Add dispatcher nodes. dsp_ids = [self.add_dispatcher(**v) for v in dsp_list] # Dsp ids. else: dsp_ids = [] # Return data, function, and sub-dispatcher node ids. return data_ids, fun_ids, dsp_ids
(self, data_list=None, fun_list=None, dsp_list=None)
24,594
schedula.dispatcher
add_func
Add a single function node to dispatcher. :param inputs_kwargs: Do you want to include kwargs as inputs? :type inputs_kwargs: bool :param inputs_defaults: Do you want to set default values? :type inputs_defaults: bool :param function_id: Function node id. If None will be assigned as <fun.__name__>. :type function_id: str, optional :param function: Data node estimation function. :type function: callable, optional :param inputs: Ordered arguments (i.e., data node ids) needed by the function. If None it will take parameters names from function signature. :type inputs: list, optional :param outputs: Ordered results (i.e., data node ids) returned by the function. :type outputs: list, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the same inputs of the function and returns True if input values satisfy the domain, otherwise False. In this case the dispatch algorithm doesn't pass on the node. :type input_domain: callable, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the function node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, float | int], optional :param out_weight: Edge weights from the function node to data nodes. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type out_weight: dict[str, float | int], optional :param description: Function node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param await_result: If True the Dispatcher waits output results before assigning them to the workflow. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Function node id. :rtype: str .. seealso:: :func:`add_func`, :func:`add_function`, :func:`add_dispatcher`, :func:`add_from_lists` **--------------------------------------------------------------------** **Example**: .. dispatcher:: sol :opt: graph_attr={'ratio': '1'} :code: >>> import schedula as sh >>> dsp = sh.Dispatcher(name='Dispatcher') >>> def f(a, b, c, d=3, m=5): ... return (a + b) - c + d - m >>> dsp.add_func(f, outputs=['d']) 'f' >>> dsp.add_func(f, ['m'], inputs_defaults=True, inputs='beal') 'f<0>' >>> dsp.add_func(f, ['i'], inputs_kwargs=True) 'f<1>' >>> def g(a, b, c, *args, d=0): ... return (a + b) * c + d >>> dsp.add_func(g, ['e'], inputs_defaults=True) 'g' >>> sol = dsp({'a': 1, 'b': 3, 'c': 0}); sol Solution([('a', 1), ('b', 3), ('c', 0), ('l', 3), ('d', 2), ('e', 0), ('m', 0), ('i', 6)])
def add_func(self, function, outputs=None, weight=None, inputs_defaults=False, inputs_kwargs=False, filters=None, input_domain=None, await_domain=None, await_result=None, inp_weight=None, out_weight=None, description=None, inputs=None, function_id=None, **kwargs): """ Add a single function node to dispatcher. :param inputs_kwargs: Do you want to include kwargs as inputs? :type inputs_kwargs: bool :param inputs_defaults: Do you want to set default values? :type inputs_defaults: bool :param function_id: Function node id. If None will be assigned as <fun.__name__>. :type function_id: str, optional :param function: Data node estimation function. :type function: callable, optional :param inputs: Ordered arguments (i.e., data node ids) needed by the function. If None it will take parameters names from function signature. :type inputs: list, optional :param outputs: Ordered results (i.e., data node ids) returned by the function. :type outputs: list, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the same inputs of the function and returns True if input values satisfy the domain, otherwise False. In this case the dispatch algorithm doesn't pass on the node. :type input_domain: callable, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the function node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, float | int], optional :param out_weight: Edge weights from the function node to data nodes. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type out_weight: dict[str, float | int], optional :param description: Function node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param await_result: If True the Dispatcher waits output results before assigning them to the workflow. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Function node id. :rtype: str .. seealso:: :func:`add_func`, :func:`add_function`, :func:`add_dispatcher`, :func:`add_from_lists` **--------------------------------------------------------------------** **Example**: .. dispatcher:: sol :opt: graph_attr={'ratio': '1'} :code: >>> import schedula as sh >>> dsp = sh.Dispatcher(name='Dispatcher') >>> def f(a, b, c, d=3, m=5): ... return (a + b) - c + d - m >>> dsp.add_func(f, outputs=['d']) 'f' >>> dsp.add_func(f, ['m'], inputs_defaults=True, inputs='beal') 'f<0>' >>> dsp.add_func(f, ['i'], inputs_kwargs=True) 'f<1>' >>> def g(a, b, c, *args, d=0): ... return (a + b) * c + d >>> dsp.add_func(g, ['e'], inputs_defaults=True) 'g' >>> sol = dsp({'a': 1, 'b': 3, 'c': 0}); sol Solution([('a', 1), ('b', 3), ('c', 0), ('l', 3), ('d', 2), ('e', 0), ('m', 0), ('i', 6)]) """ from .utils.blue import _init from .utils.dsp import _get_par_args function = _init(function) if inputs is None: inputs = tuple(_get_par_args(function, not inputs_kwargs)) or None function_id = self.add_function( weight=weight, filters=filters, outputs=outputs, function=function, input_domain=input_domain, await_domain=await_domain, inputs=inputs, description=description, out_weight=out_weight, inp_weight=inp_weight, await_result=await_result, function_id=function_id, **kwargs ) if inputs_defaults: for k, v in zip(inputs, _get_par_args(function, False).values()): if v.default is not v.empty: self.set_default_value(k, v._default) return function_id
(self, function, outputs=None, weight=None, inputs_defaults=False, inputs_kwargs=False, filters=None, input_domain=None, await_domain=None, await_result=None, inp_weight=None, out_weight=None, description=None, inputs=None, function_id=None, **kwargs)
24,595
schedula.dispatcher
add_function
Add a single function node to dispatcher. :param function_id: Function node id. If None will be assigned as <fun.__name__>. :type function_id: str, optional :param function: Data node estimation function. :type function: callable, optional :param inputs: Ordered arguments (i.e., data node ids) needed by the function. :type inputs: list, optional :param outputs: Ordered results (i.e., data node ids) returned by the function. :type outputs: list, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the same inputs of the function and returns True if input values satisfy the domain, otherwise False. In this case the dispatch algorithm doesn't pass on the node. :type input_domain: callable, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the function node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, float | int], optional :param out_weight: Edge weights from the function node to data nodes. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type out_weight: dict[str, float | int], optional :param description: Function node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param await_result: If True the Dispatcher waits output results before assigning them to the workflow. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Function node id. :rtype: str .. seealso:: :func:`add_data`, :func:`add_func`, :func:`add_dispatcher`, :func:`add_from_lists` **--------------------------------------------------------------------** **Example**: .. testsetup:: >>> dsp = Dispatcher(name='Dispatcher') Add a function node:: >>> def my_function(a, b): ... c = a + b ... d = a - b ... return c, d ... >>> dsp.add_function(function=my_function, inputs=['a', 'b'], ... outputs=['c', 'd']) 'my_function' Add a function node with domain:: >>> from math import log >>> def my_log(a, b): ... return log(b - a) ... >>> def my_domain(a, b): ... return a < b ... >>> dsp.add_function(function=my_log, inputs=['a', 'b'], ... outputs=['e'], input_domain=my_domain) 'my_log'
def add_function(self, function_id=None, function=None, inputs=None, outputs=None, input_domain=None, weight=None, inp_weight=None, out_weight=None, description=None, filters=None, await_domain=None, await_result=None, **kwargs): """ Add a single function node to dispatcher. :param function_id: Function node id. If None will be assigned as <fun.__name__>. :type function_id: str, optional :param function: Data node estimation function. :type function: callable, optional :param inputs: Ordered arguments (i.e., data node ids) needed by the function. :type inputs: list, optional :param outputs: Ordered results (i.e., data node ids) returned by the function. :type outputs: list, optional :param input_domain: A function that checks if input values satisfy the function domain. This can be any function that takes the same inputs of the function and returns True if input values satisfy the domain, otherwise False. In this case the dispatch algorithm doesn't pass on the node. :type input_domain: callable, optional :param weight: Node weight. It is a weight coefficient that is used by the dispatch algorithm to estimate the minimum workflow. :type weight: float, int, optional :param inp_weight: Edge weights from data nodes to the function node. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type inp_weight: dict[str, float | int], optional :param out_weight: Edge weights from the function node to data nodes. It is a dictionary (key=data node id) with the weight coefficients used by the dispatch algorithm to estimate the minimum workflow. :type out_weight: dict[str, float | int], optional :param description: Function node's description. :type description: str, optional :param filters: A list of functions that are invoked after the invocation of the main function. :type filters: list[function], optional :param await_domain: If True the Dispatcher waits all input results before executing the `input_domain` function. If a number is defined this is used as `timeout` for `Future.result` method [default: True]. Note this is used when asynchronous or parallel execution is enable. :type await_domain: bool|int|float, optional :param await_result: If True the Dispatcher waits output results before assigning them to the workflow. If a number is defined this is used as `timeout` for `Future.result` method [default: False]. Note this is used when asynchronous or parallel execution is enable. :type await_result: bool|int|float, optional :param kwargs: Set additional node attributes using key=value. :type kwargs: keyword arguments, optional :return: Function node id. :rtype: str .. seealso:: :func:`add_data`, :func:`add_func`, :func:`add_dispatcher`, :func:`add_from_lists` **--------------------------------------------------------------------** **Example**: .. testsetup:: >>> dsp = Dispatcher(name='Dispatcher') Add a function node:: >>> def my_function(a, b): ... c = a + b ... d = a - b ... return c, d ... >>> dsp.add_function(function=my_function, inputs=['a', 'b'], ... outputs=['c', 'd']) 'my_function' Add a function node with domain:: >>> from math import log >>> def my_log(a, b): ... return log(b - a) ... >>> def my_domain(a, b): ... return a < b ... >>> dsp.add_function(function=my_log, inputs=['a', 'b'], ... outputs=['e'], input_domain=my_domain) 'my_log' """ from .utils.blue import _init function = _init(function) if inputs is None: # Set a dummy input. if START not in self.nodes: self.add_data(START) inputs = [START] # Update inputs. if outputs is None: # Set a dummy output. if SINK not in self.nodes: self.add_data(SINK) outputs = [SINK] # Update outputs. # Get parent function. func = parent_func(function) # Base function node attributes. attr_dict = { 'type': 'function', 'inputs': inputs, 'outputs': outputs, 'function': function, 'wait_inputs': True, 'index': (self.counter(),) } if input_domain: # Add domain as node attribute. attr_dict['input_domain'] = input_domain if await_domain is not None: # Add await_domain as node attribute. attr_dict['await_domain'] = await_domain if await_result is not None: # Add await_result as node attribute. attr_dict['await_result'] = await_result if description is not None: # Add description as node attribute. attr_dict['description'] = description if filters: # Add filters as node attribute. attr_dict['filters'] = filters # Set function name. if function_id is None: try: # Set function name. function_name = func.__name__ except AttributeError as ex: if not func: raise ValueError( 'Invalid function id due to:\n{}'.format(ex) ) function_name = 'unknown' else: function_name = function_id # Get an unused node id. fun_id = get_unused_node_id(self.dmap, initial_guess=function_name) if weight is not None: # Add weight as node attribute. attr_dict['weight'] = weight attr_dict.update(kwargs) # Set additional attributes. # Add node to the dispatcher map. self.dmap.add_node(fun_id, **attr_dict) from .utils.alg import add_func_edges # Add input edges. n_data = add_func_edges(self, fun_id, inputs, inp_weight, True) # Add output edges. add_func_edges(self, fun_id, outputs, out_weight, False, n_data) return fun_id # Return function node id.
(self, function_id=None, function=None, inputs=None, outputs=None, input_domain=None, weight=None, inp_weight=None, out_weight=None, description=None, filters=None, await_domain=None, await_result=None, **kwargs)
24,596
schedula.dispatcher
blue
Constructs a BlueDispatcher out of the current object. :param memo: A dictionary to cache Blueprints. :type memo: dict[T,schedula.utils.blue.Blueprint] :param depth: Depth of sub-dispatch blue. If negative all levels are bluprinted. :type depth: int, optional :return: A BlueDispatcher of the current object. :rtype: schedula.utils.blue.BlueDispatcher
def blue(self, memo=None, depth=-1): """ Constructs a BlueDispatcher out of the current object. :param memo: A dictionary to cache Blueprints. :type memo: dict[T,schedula.utils.blue.Blueprint] :param depth: Depth of sub-dispatch blue. If negative all levels are bluprinted. :type depth: int, optional :return: A BlueDispatcher of the current object. :rtype: schedula.utils.blue.BlueDispatcher """ if depth == 0: return self depth -= 1 memo = {} if memo is None else memo if self in memo: return memo[self] from .utils.dsp import map_list from .utils.blue import BlueDispatcher, _parent_blue memo[self] = blue = BlueDispatcher( executor=self.executor, name=self.name, raises=self.raises, description=self.__doc__ ) dfl = self.default_values key_map_data = ['data_id', {'value': 'default_value'}] pred, succ = self.dmap.pred, self.dmap.succ def _set_weight(n, r, d): d = {i: j['weight'] for i, j in d.items() if 'weight' in j} if d: r[n] = d for k, v in sorted(self.nodes.items(), key=lambda x: x[1]['index']): v = v.copy() t = v.pop('type') del v['index'] if t == 'data': method = 'add_data' v.update(map_list(key_map_data, k, dfl.get(k, {}))) elif t in ('function', 'dispatcher'): method = 'add_%s' % t if t == 'dispatcher': t = 'dsp' v['%s_id' % t] = k del v['wait_inputs'] _set_weight('inp_weight', v, pred[k]) _set_weight('out_weight', v, succ[k]) if 'function' in v: v[t] = _parent_blue(v.pop('function'), memo, depth) blue.deferred.append((method, v)) return blue
(self, memo=None, depth=-1)
24,597
schedula.dispatcher
copy
Returns a deepcopy of the Dispatcher. :return: A copy of the Dispatcher. :rtype: Dispatcher Example:: >>> dsp = Dispatcher() >>> dsp is dsp.copy() False
def copy(self): """ Returns a deepcopy of the Dispatcher. :return: A copy of the Dispatcher. :rtype: Dispatcher Example:: >>> dsp = Dispatcher() >>> dsp is dsp.copy() False """ return copy.deepcopy(self) # Return the copy of the Dispatcher.
(self)
24,598
schedula.dispatcher
copy_structure
Returns a copy of the Dispatcher structure. :param kwargs: Additional parameters to initialize the new class. :type kwargs: dict :return: A copy of the Dispatcher structure. :rtype: Dispatcher
def copy_structure(self, **kwargs): """ Returns a copy of the Dispatcher structure. :param kwargs: Additional parameters to initialize the new class. :type kwargs: dict :return: A copy of the Dispatcher structure. :rtype: Dispatcher """ kw = { 'description': self.__doc__, 'name': self.name, 'raises': self.raises, 'executor': self.executor } kw.update(kwargs) return self.__class__(**kw)
(self, **kwargs)
24,599
schedula.dispatcher
dispatch
Evaluates the minimum workflow and data outputs of the dispatcher model from given inputs. :param inputs: Input data values. :type inputs: dict[str, T], list[str], iterable, optional :param outputs: Ending data nodes. :type outputs: list[str], iterable, optional :param inputs_dist: Initial distances of input data nodes. :type inputs_dist: dict[str, int | float], optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param no_call: If True data node estimation function is not used and the input values are not used. :type no_call: bool, optional :param shrink: If True the dispatcher is shrink before the dispatch. .. seealso:: :func:`shrink_dsp` :type shrink: bool, optional :param rm_unused_nds: If True unused function and sub-dispatcher nodes are removed from workflow. :type rm_unused_nds: bool, optional :param select_output_kw: Kwargs of selector function to select specific outputs. :type select_output_kw: dict, optional :param _wait_in: Override wait inputs. :type _wait_in: dict, optional :param stopper: A semaphore to abort the dispatching. :type stopper: multiprocess.Event, optional :param executor: A pool executor id to dispatch asynchronously or in parallel. :type executor: str, optional :param sol_name: Solution name. :type sol_name: tuple[str], optional :param verbose: If True the dispatcher will log start and end of each function. :type verbose: str, optional :return: Dictionary of estimated data node outputs. :rtype: schedula.utils.sol.Solution **--------------------------------------------------------------------** **Example**: A dispatcher with a function :math:`log(b - a)` and two data `a` and `b` with default values: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> dsp = Dispatcher(name='Dispatcher') >>> dsp.add_data(data_id='a', default_value=0) 'a' >>> dsp.add_data(data_id='b', default_value=5) 'b' >>> dsp.add_data(data_id='d', default_value=1) 'd' >>> from math import log >>> def my_log(a, b): ... return log(b - a) >>> def my_domain(a, b): ... return a < b >>> dsp.add_function('log(b - a)', function=my_log, ... inputs=['c', 'd'], ... outputs=['e'], input_domain=my_domain) 'log(b - a)' >>> dsp.add_function('min', function=min, inputs=['a', 'b'], ... outputs=['c']) 'min' Dispatch without inputs. The default values are used as inputs: .. dispatcher:: outputs :opt: graph_attr={'ratio': '1'} :code: >>> outputs = dsp.dispatch() >>> outputs Solution([('a', 0), ('b', 5), ('d', 1), ('c', 0), ('e', 0.0)]) Dispatch until data node `c` is estimated: .. dispatcher:: outputs :opt: graph_attr={'ratio': '1'} :code: >>> outputs = dsp.dispatch(outputs=['c']) >>> outputs Solution([('a', 0), ('b', 5), ('c', 0)]) Dispatch with one inputs. The default value of `a` is not used as inputs: .. dispatcher:: outputs :opt: graph_attr={'ratio': '1'} :code: >>> outputs = dsp.dispatch(inputs={'a': 3}) >>> outputs Solution([('a', 3), ('b', 5), ('d', 1), ('c', 3)])
def dispatch(self, inputs=None, outputs=None, inputs_dist=None, wildcard=False, no_call=False, shrink=False, rm_unused_nds=False, select_output_kw=None, _wait_in=None, stopper=None, executor=False, sol_name=(), verbose=False): """ Evaluates the minimum workflow and data outputs of the dispatcher model from given inputs. :param inputs: Input data values. :type inputs: dict[str, T], list[str], iterable, optional :param outputs: Ending data nodes. :type outputs: list[str], iterable, optional :param inputs_dist: Initial distances of input data nodes. :type inputs_dist: dict[str, int | float], optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param no_call: If True data node estimation function is not used and the input values are not used. :type no_call: bool, optional :param shrink: If True the dispatcher is shrink before the dispatch. .. seealso:: :func:`shrink_dsp` :type shrink: bool, optional :param rm_unused_nds: If True unused function and sub-dispatcher nodes are removed from workflow. :type rm_unused_nds: bool, optional :param select_output_kw: Kwargs of selector function to select specific outputs. :type select_output_kw: dict, optional :param _wait_in: Override wait inputs. :type _wait_in: dict, optional :param stopper: A semaphore to abort the dispatching. :type stopper: multiprocess.Event, optional :param executor: A pool executor id to dispatch asynchronously or in parallel. :type executor: str, optional :param sol_name: Solution name. :type sol_name: tuple[str], optional :param verbose: If True the dispatcher will log start and end of each function. :type verbose: str, optional :return: Dictionary of estimated data node outputs. :rtype: schedula.utils.sol.Solution **--------------------------------------------------------------------** **Example**: A dispatcher with a function :math:`log(b - a)` and two data `a` and `b` with default values: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> dsp = Dispatcher(name='Dispatcher') >>> dsp.add_data(data_id='a', default_value=0) 'a' >>> dsp.add_data(data_id='b', default_value=5) 'b' >>> dsp.add_data(data_id='d', default_value=1) 'd' >>> from math import log >>> def my_log(a, b): ... return log(b - a) >>> def my_domain(a, b): ... return a < b >>> dsp.add_function('log(b - a)', function=my_log, ... inputs=['c', 'd'], ... outputs=['e'], input_domain=my_domain) 'log(b - a)' >>> dsp.add_function('min', function=min, inputs=['a', 'b'], ... outputs=['c']) 'min' Dispatch without inputs. The default values are used as inputs: .. dispatcher:: outputs :opt: graph_attr={'ratio': '1'} :code: >>> outputs = dsp.dispatch() >>> outputs Solution([('a', 0), ('b', 5), ('d', 1), ('c', 0), ('e', 0.0)]) Dispatch until data node `c` is estimated: .. dispatcher:: outputs :opt: graph_attr={'ratio': '1'} :code: >>> outputs = dsp.dispatch(outputs=['c']) >>> outputs Solution([('a', 0), ('b', 5), ('c', 0)]) Dispatch with one inputs. The default value of `a` is not used as inputs: .. dispatcher:: outputs :opt: graph_attr={'ratio': '1'} :code: >>> outputs = dsp.dispatch(inputs={'a': 3}) >>> outputs Solution([('a', 3), ('b', 5), ('d', 1), ('c', 3)]) """ dsp = self if not no_call: if shrink: # Pre shrink. dsp = self.shrink_dsp(inputs, outputs, inputs_dist, wildcard) elif outputs: dsp = self.get_sub_dsp_from_workflow( outputs, self.dmap, reverse=True, blockers=inputs, wildcard=wildcard ) # Initialize. self.solution = sol = self.solution.__class__( dsp, inputs, outputs, wildcard, inputs_dist, no_call, rm_unused_nds, _wait_in, full_name=sol_name, verbose=verbose ) # Dispatch. sol._run(stopper=stopper, executor=executor) if select_output_kw: return selector(dictionary=sol, **select_output_kw) # Return the evaluated data outputs. return sol
(self, inputs=None, outputs=None, inputs_dist=None, wildcard=False, no_call=False, shrink=False, rm_unused_nds=False, select_output_kw=None, _wait_in=None, stopper=None, executor=False, sol_name=(), verbose=False)
24,600
schedula.dispatcher
extend
Extends Dispatcher calling each deferred operation of given Blueprints. :param blues: Blueprints or Dispatchers to extend deferred operations. :type blues: Blueprint | schedula.dispatcher.Dispatcher :param memo: A dictionary to cache Blueprints and Dispatchers. :type memo: dict[T,schedula.utils.blue.Blueprint|Dispatcher] :return: Self. :rtype: Dispatcher **--------------------------------------------------------------------** **Example**: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} :code: >>> import schedula as sh >>> dsp = sh.Dispatcher() >>> dsp.add_func(callable, ['is_callable']) 'callable' >>> blue = sh.BlueDispatcher().add_func(len, ['length']) >>> dsp = sh.Dispatcher().extend(dsp, blue)
def extend(self, *blues, memo=None): """ Extends Dispatcher calling each deferred operation of given Blueprints. :param blues: Blueprints or Dispatchers to extend deferred operations. :type blues: Blueprint | schedula.dispatcher.Dispatcher :param memo: A dictionary to cache Blueprints and Dispatchers. :type memo: dict[T,schedula.utils.blue.Blueprint|Dispatcher] :return: Self. :rtype: Dispatcher **--------------------------------------------------------------------** **Example**: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} :code: >>> import schedula as sh >>> dsp = sh.Dispatcher() >>> dsp.add_func(callable, ['is_callable']) 'callable' >>> blue = sh.BlueDispatcher().add_func(len, ['length']) >>> dsp = sh.Dispatcher().extend(dsp, blue) """ from .utils.blue import BlueDispatcher as Blue return Blue().extend(*blues, memo=memo).register(self, memo=memo)
(self, *blues, memo=None)
24,603
schedula.dispatcher
get_sub_dsp
Returns the sub-dispatcher induced by given node and edge bunches. The induced sub-dispatcher contains the available nodes in nodes_bunch and edges between those nodes, excluding those that are in edges_bunch. The available nodes are non isolated nodes and function nodes that have all inputs and at least one output. :param nodes_bunch: A container of node ids which will be iterated through once. :type nodes_bunch: list[str], iterable :param edges_bunch: A container of edge ids that will be removed. :type edges_bunch: list[(str, str)], iterable, optional :return: A dispatcher. :rtype: Dispatcher .. seealso:: :func:`get_sub_dsp_from_workflow` .. note:: The sub-dispatcher edge or node attributes just point to the original dispatcher. So changes to the node or edge structure will not be reflected in the original dispatcher map while changes to the attributes will. **--------------------------------------------------------------------** **Example**: A dispatcher with a two functions `fun1` and `fun2`: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> dsp = Dispatcher(name='Dispatcher') >>> dsp.add_function(function_id='fun1', inputs=['a', 'b'], ... outputs=['c', 'd']) 'fun1' >>> dsp.add_function(function_id='fun2', inputs=['a', 'd'], ... outputs=['c', 'e']) 'fun2' Get the sub-dispatcher induced by given nodes bunch:: >>> sub_dsp = dsp.get_sub_dsp(['a', 'c', 'd', 'e', 'fun2']) .. dispatcher:: sub_dsp :opt: graph_attr={'ratio': '1'} >>> sub_dsp.name = 'Sub-Dispatcher'
def get_sub_dsp(self, nodes_bunch, edges_bunch=None): """ Returns the sub-dispatcher induced by given node and edge bunches. The induced sub-dispatcher contains the available nodes in nodes_bunch and edges between those nodes, excluding those that are in edges_bunch. The available nodes are non isolated nodes and function nodes that have all inputs and at least one output. :param nodes_bunch: A container of node ids which will be iterated through once. :type nodes_bunch: list[str], iterable :param edges_bunch: A container of edge ids that will be removed. :type edges_bunch: list[(str, str)], iterable, optional :return: A dispatcher. :rtype: Dispatcher .. seealso:: :func:`get_sub_dsp_from_workflow` .. note:: The sub-dispatcher edge or node attributes just point to the original dispatcher. So changes to the node or edge structure will not be reflected in the original dispatcher map while changes to the attributes will. **--------------------------------------------------------------------** **Example**: A dispatcher with a two functions `fun1` and `fun2`: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> dsp = Dispatcher(name='Dispatcher') >>> dsp.add_function(function_id='fun1', inputs=['a', 'b'], ... outputs=['c', 'd']) 'fun1' >>> dsp.add_function(function_id='fun2', inputs=['a', 'd'], ... outputs=['c', 'e']) 'fun2' Get the sub-dispatcher induced by given nodes bunch:: >>> sub_dsp = dsp.get_sub_dsp(['a', 'c', 'd', 'e', 'fun2']) .. dispatcher:: sub_dsp :opt: graph_attr={'ratio': '1'} >>> sub_dsp.name = 'Sub-Dispatcher' """ # Get real paths. nodes_bunch = [self.get_node(u)[1][0] for u in nodes_bunch] # Define an empty dispatcher. sub_dsp = self.copy_structure( dmap=self.dmap.subgraph(nodes_bunch) ) # Namespace shortcuts for speed. nodes, succ = sub_dsp.nodes, sub_dsp.dmap.succ dmap_dv, dmap_rm_edge = self.default_values, sub_dsp.dmap.remove_edge dmap_rm_node = sub_dsp.dmap.remove_node # Remove function nodes that has not whole inputs available. for u in nodes_bunch: n = nodes[u].get('inputs', None) # Function inputs. # No all inputs if n is not None and any(k not in nodes_bunch for k in n): dmap_rm_node(u) # Remove function node. # Remove edges that are not in edges_bunch. if edges_bunch is not None: for e in edges_bunch: # Iterate sub-graph edges. dmap_rm_edge(*e) # Remove edge. # Remove function node with no outputs. sub_dsp.dmap.remove_nodes_from([ u for u, n in sub_dsp.dmap.nodes.items() if n['type'] == 'function' and not succ[u] # No outputs. ]) # Remove isolate nodes from sub-graph. sub_dsp.dmap.remove_nodes_from([ u for u, v in sub_dsp.dmap.pred.items() if not (v or succ[u]) ]) # Set default values. sub_dsp.default_values = {k: dmap_dv[k] for k in dmap_dv if k in nodes} return sub_dsp # Return the sub-dispatcher.
(self, nodes_bunch, edges_bunch=None)
24,604
schedula.dispatcher
get_sub_dsp_from_workflow
Returns the sub-dispatcher induced by the workflow from sources. The induced sub-dispatcher of the dsp contains the reachable nodes and edges evaluated with breadth-first-search on the workflow graph from source nodes. :param sources: Source nodes for the breadth-first-search. A container of nodes which will be iterated through once. :type sources: list[str], iterable :param graph: A directed graph where evaluate the breadth-first-search. :type graph: schedula.utils.graph.DiGraph, optional :param reverse: If True the workflow graph is assumed as reversed. :type reverse: bool, optional :param add_missing: If True, missing function' inputs are added to the sub-dispatcher. :type add_missing: bool, optional :param check_inputs: If True the missing function' inputs are not checked. :type check_inputs: bool, optional :param blockers: Nodes to not be added to the queue. :type blockers: set[str], iterable, optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param _update_links: If True, it updates remote links of the extracted dispatcher. :type _update_links: bool, optional :return: A sub-dispatcher. :rtype: Dispatcher .. seealso:: :func:`get_sub_dsp` .. note:: The sub-dispatcher edge or node attributes just point to the original dispatcher. So changes to the node or edge structure will not be reflected in the original dispatcher map while changes to the attributes will. **--------------------------------------------------------------------** **Example**: A dispatcher with a function `fun` and a node `a` with a default value: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> dsp = Dispatcher(name='Dispatcher') >>> dsp.add_data(data_id='a', default_value=1) 'a' >>> dsp.add_function(function_id='fun1', inputs=['a', 'b'], ... outputs=['c', 'd']) 'fun1' >>> dsp.add_function(function_id='fun2', inputs=['e'], ... outputs=['c']) 'fun2' Dispatch with no calls in order to have a workflow:: >>> o = dsp.dispatch(inputs=['a', 'b'], no_call=True) Get sub-dispatcher from workflow inputs `a` and `b`:: >>> sub_dsp = dsp.get_sub_dsp_from_workflow(['a', 'b']) .. dispatcher:: sub_dsp :opt: graph_attr={'ratio': '1'} >>> sub_dsp.name = 'Sub-Dispatcher' Get sub-dispatcher from a workflow output `c`:: >>> sub_dsp = dsp.get_sub_dsp_from_workflow(['c'], reverse=True) .. dispatcher:: sub_dsp :opt: graph_attr={'ratio': '1'} >>> sub_dsp.name = 'Sub-Dispatcher (reverse workflow)'
def get_sub_dsp_from_workflow( self, sources, graph=None, reverse=False, add_missing=False, check_inputs=True, blockers=None, wildcard=False, _update_links=True, avoid_cycles=False): """ Returns the sub-dispatcher induced by the workflow from sources. The induced sub-dispatcher of the dsp contains the reachable nodes and edges evaluated with breadth-first-search on the workflow graph from source nodes. :param sources: Source nodes for the breadth-first-search. A container of nodes which will be iterated through once. :type sources: list[str], iterable :param graph: A directed graph where evaluate the breadth-first-search. :type graph: schedula.utils.graph.DiGraph, optional :param reverse: If True the workflow graph is assumed as reversed. :type reverse: bool, optional :param add_missing: If True, missing function' inputs are added to the sub-dispatcher. :type add_missing: bool, optional :param check_inputs: If True the missing function' inputs are not checked. :type check_inputs: bool, optional :param blockers: Nodes to not be added to the queue. :type blockers: set[str], iterable, optional :param wildcard: If True, when the data node is used as input and target in the ArciDispatch algorithm, the input value will be used as input for the connected functions, but not as output. :type wildcard: bool, optional :param _update_links: If True, it updates remote links of the extracted dispatcher. :type _update_links: bool, optional :return: A sub-dispatcher. :rtype: Dispatcher .. seealso:: :func:`get_sub_dsp` .. note:: The sub-dispatcher edge or node attributes just point to the original dispatcher. So changes to the node or edge structure will not be reflected in the original dispatcher map while changes to the attributes will. **--------------------------------------------------------------------** **Example**: A dispatcher with a function `fun` and a node `a` with a default value: .. dispatcher:: dsp :opt: graph_attr={'ratio': '1'} >>> dsp = Dispatcher(name='Dispatcher') >>> dsp.add_data(data_id='a', default_value=1) 'a' >>> dsp.add_function(function_id='fun1', inputs=['a', 'b'], ... outputs=['c', 'd']) 'fun1' >>> dsp.add_function(function_id='fun2', inputs=['e'], ... outputs=['c']) 'fun2' Dispatch with no calls in order to have a workflow:: >>> o = dsp.dispatch(inputs=['a', 'b'], no_call=True) Get sub-dispatcher from workflow inputs `a` and `b`:: >>> sub_dsp = dsp.get_sub_dsp_from_workflow(['a', 'b']) .. dispatcher:: sub_dsp :opt: graph_attr={'ratio': '1'} >>> sub_dsp.name = 'Sub-Dispatcher' Get sub-dispatcher from a workflow output `c`:: >>> sub_dsp = dsp.get_sub_dsp_from_workflow(['c'], reverse=True) .. dispatcher:: sub_dsp :opt: graph_attr={'ratio': '1'} >>> sub_dsp.name = 'Sub-Dispatcher (reverse workflow)' """ # Define an empty dispatcher map. sub_dsp = self.copy_structure() if not graph: # Set default graph. graph = self.solution.workflow # Visited nodes used as queue. family = {} # Namespace shortcuts for speed. nodes, dmap_nodes = sub_dsp.dmap.nodes, self.dmap.nodes dlt_val, dsp_dlt_val = sub_dsp.default_values, self.default_values if not reverse: # Namespace shortcuts for speed. neighbors, dmap_succ = graph.succ, self.dmap.succ succ, pred = sub_dsp.dmap.succ, sub_dsp.dmap.pred # noinspection PyUnusedLocal def _check_node_inputs(c, p): if c == START: return True node_attr = dmap_nodes[c] if node_attr['type'] == 'function': if all(k in family for k in node_attr['inputs']): _set_node_attr(c) # namespace shortcuts for speed s_pred = pred[c] for p in node_attr['inputs']: # add attributes to both representations of edge succ[p][c] = s_pred[p] = dmap_succ[p][c] elif not check_inputs or add_missing: _set_node_attr(c) # namespace shortcuts for speed s_pred = pred[c] if add_missing: for p in node_attr['inputs']: if p not in family: _set_node_attr(p, add2family=False) succ[p][c] = s_pred[p] = dmap_succ[p][c] for p in node_attr['inputs']: if p in family: # add attributes to both representations of edge succ[p][c] = s_pred[p] = dmap_succ[p][c] return False return True return False else: # Namespace shortcuts for speed. neighbors, dmap_succ = graph.pred, self.dmap.pred pred, succ = sub_dsp.dmap.succ, sub_dsp.dmap.pred def _check_node_inputs(c, p): if c == START: try: node_attr = dmap_nodes[p] return node_attr['type'] == 'data' except KeyError: return True if avoid_cycles: node_attr = dmap_nodes[c] if node_attr['type'] == 'function': return any(k in family for k in node_attr['inputs']) return False from collections import deque queue = deque([]) blockers = set(blockers or ()) # Function to set node attributes. def _set_node_attr(n, add2family=True, block=False): # Set node attributes. nodes[n] = dmap_nodes[n] # Add node in the adjacency matrix. succ[n], pred[n] = ({}, {}) if n in dsp_dlt_val: dlt_val[n] = dsp_dlt_val[n] # Set the default value. if add2family: # Append a new parent to the family. family[n] = () if block and n in blockers else neighbors[n] queue.append(n) # Set initial node attributes. for s in sorted(sources): if s in dmap_nodes and s in graph.nodes: _set_node_attr(s, block=not (wildcard and s in blockers)) # Start breadth-first-search. while queue: parent = queue.popleft() # Namespace shortcuts for speed. nbrs, dmap_nbrs = succ[parent], dmap_succ[parent] # Iterate parent's children. for child in sorted(family[parent], key=str): if _check_node_inputs(child, parent): continue if child not in family: _set_node_attr(child, block=True) # Set node attributes. # Add attributes to both representations of edge: u-v and v-u. nbrs[child] = pred[child][parent] = dmap_nbrs[child] if _update_links: from .utils.alg import _update_io, _get_sub_out, _get_sub_inp succ, pred = sub_dsp.dmap.succ, sub_dsp.dmap.pred for k, a in sub_dsp.sub_dsp_nodes.items(): nodes[k] = a = a.copy() inp, out = _get_sub_inp(a, pred[k]), _get_sub_out(a, succ[k]) a['function'] = a['function'].get_sub_dsp_from_workflow( sources=out.union(inp), graph=a['function'].dmap, reverse=True, blockers=inp, wildcard=True ) i, o = _update_io(a, pred[k], succ[k]) # Unreachable nodes. msg = 'Sub-dsp {} missing: inp {}, out {}' assert not i and not o, msg.format(k, i, o) return sub_dsp # Return the sub-dispatcher map.
(self, sources, graph=None, reverse=False, add_missing=False, check_inputs=True, blockers=None, wildcard=False, _update_links=True, avoid_cycles=False)