index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
16,266
plum.bitfields
__rsub__
null
def __rsub__(self, other): return int.__rsub__(self.__value__, other)
(self, other)
16,267
plum.bitfields
__rtruediv__
null
def __rtruediv__(self, other): return int.__rtruediv__(self.__value__, other)
(self, other)
16,268
plum.bitfields
__rxor__
null
def __rxor__(self, other): return int.__rxor__(self.__value__, other)
(self, other)
16,269
plum.bitfields
__setattr__
null
def __setattr__(self, key, value): if key.startswith("__") or key in self.__fields__: super().__setattr__(key, value) else: raise AttributeError(f"{type(self).__name__!r} has no attribute {key!r}")
(self, key, value)
16,270
plum.bitfields
__setitem__
null
def __setitem__(self, index, value): bits = self[:] nbits = len(bits) bits[index] = value if len(bits) != nbits: raise ValueError("slice and value not same length") i = 0 mask = 1 for bit in bits: if bit: i |= mask mask <<= 1 self.__value__ = i
(self, index, value)
16,271
plum.bitfields
__sub__
null
def __sub__(self, other): return int.__sub__(self.__value__, other)
(self, other)
16,272
plum.bitfields
__truediv__
null
def __truediv__(self, other): return int.__truediv__(self.__value__, other)
(self, other)
16,273
plum.bitfields
__xor__
null
def __xor__(self, other): return int.__xor__(self.__value__, other)
(self, other)
16,274
plum.bitfields
asdict
Return bit field values in dictionary form. :returns: bit field names/values :rtype: dict
def asdict(self): """Return bit field values in dictionary form. :returns: bit field names/values :rtype: dict """ return {name: getattr(self, name) for name in self.__fields__}
(self)
16,275
plum.data
ipack
Pack instance as bytes. :raises: ``PackError`` if type error, value error, etc.
def ipack(self) -> bytes: """Pack instance as bytes. :raises: ``PackError`` if type error, value error, etc. """ pieces: List[bytes] = [] try: # None -> dump self.__pack__(self, pieces, None) except Exception as exc: # do it over to include dump in exception message self.ipack_and_dump() raise exceptions.ImplementationError() from exc # pragma: no cover return b"".join(pieces)
(self) -> bytes
16,276
plum.data
ipack_and_dump
Pack instance as bytes and produce bytes summary. :raises: ``PackError`` if type error, value error, etc.
def ipack_and_dump(self) -> Tuple[bytes, _dump.Dump]: """Pack instance as bytes and produce bytes summary. :raises: ``PackError`` if type error, value error, etc. """ dmp = _dump.Dump() pieces: List[bytes] = [] try: self.__pack__(self, pieces, dmp.add_record(fmt=type(self).name)) except Exception as exc: raise exceptions.PackError(dump=dmp, exception=exc) from exc return b"".join(pieces), dmp
(self) -> Tuple[bytes, plum.dump.Dump]
16,277
exif._datatypes
FlashMode
Flash mode of the camera.
class FlashMode(IntFlag): """Flash mode of the camera.""" UNKNOWN = 0 COMPULSORY_FLASH_FIRING = 1 COMPULSORY_FLASH_SUPPRESSION = 2 AUTO_MODE = 3
(value, names=None, *, module=None, qualname=None, type=None, start=1)
16,278
exif._datatypes
FlashReturn
Flash status of returned light.
class FlashReturn(IntFlag): """Flash status of returned light.""" NO_STROBE_RETURN_DETECTION_FUNCTION = 0 RESERVED = 1 STROBE_RETURN_LIGHT_DETECTED = 2 STROBE_RETURN_LIGHT_NOT_DETECTED = 3
(value, names=None, *, module=None, qualname=None, type=None, start=1)
16,279
exif._constants
GpsAltitudeRef
Altitude used as the reference altitude.
class GpsAltitudeRef(IntEnum): """Altitude used as the reference altitude.""" ABOVE_SEA_LEVEL = 0 """Above Sea Level""" BELOW_SEA_LEVEL = 1 """Below Sea Level"""
(value, names=None, *, module=None, qualname=None, type=None, start=1)
16,280
exif._image
Image
Image EXIF metadata interface class. :param img_file: image file with EXIF metadata :type image_file: str (file path), bytes (already-read contents), or File
class Image: """Image EXIF metadata interface class. :param img_file: image file with EXIF metadata :type image_file: str (file path), bytes (already-read contents), or File """ def _parse_segments(self, img_bytes: bytes) -> None: cursor = 0 # Traverse hexadecimal string until EXIF APP1 segment found. while img_bytes[cursor : cursor + len(ExifMarkers.APP1)] != ExifMarkers.APP1: cursor += len(ExifMarkers.APP1) if cursor > len(img_bytes): self._has_exif = False cursor = 2 # should theoretically go after SOI marker (if adding) break self._segments["preceding"] = img_bytes[:cursor] app1_start_index = cursor if self._has_exif: # Determine the expected length of the APP1 segment. app1_len = uint16.unpack( img_bytes[app1_start_index + 2 : app1_start_index + 4] ) cursor += app1_len + 2 # skip APP1 marker and all data # If the expected length stops early, keep traversing until another section is found. while img_bytes[cursor : cursor + 1] != ExifMarkers.SEG_PREFIX: cursor += 1 # raise IOError("no subsequent EXIF segment found, is this an EXIF-encoded JPEG?") if cursor > len(img_bytes): self._has_exif = False break if self._has_exif: # Instantiate an APP1 segment object to create an EXIF tag interface. self._segments["APP1"] = App1MetaData(img_bytes[app1_start_index:cursor]) self._segments["succeeding"] = img_bytes[cursor:] else: # Store the remainder of the image so that it can be reconstructed when exporting. self._segments["succeeding"] = img_bytes[app1_start_index:] def __init__( self, img_file: Union[BinaryIO, bytes, str], # pylint: disable=unsubscriptable-object ) -> None: self._has_exif = True self._segments: Dict[ str, Union[App1MetaData, bytes] # pylint: disable=unsubscriptable-object ] = {} if hasattr(img_file, "read"): img_bytes = img_file.read() # type: ignore elif isinstance(img_file, bytes): img_bytes = img_file elif os.path.isfile(img_file): # type: ignore with open(img_file, "rb") as file_descriptor: # type: ignore img_bytes = file_descriptor.read() else: # pragma: no cover raise ValueError("expected file object, file path as str, or bytes") self._parse_segments(img_bytes) def __dir__(self) -> List[str]: members = [ "delete", "delete_all", "get", "get_all", "get_file", "get_thumbnail", "has_exif", "list_all", "_segments", ] if self._has_exif: assert isinstance(self._segments["APP1"], App1MetaData) members += self._segments["APP1"].get_tag_list() return members def __getattr__(self, item): return getattr(self._segments["APP1"], item) def __setattr__(self, key, value): try: ATTRIBUTE_ID_MAP[key.lower()] except KeyError: super(Image, self).__setattr__(key, value) else: if not self._has_exif: self._segments["APP1"] = App1MetaData(generate_empty_app1_bytes()) self._has_exif = True setattr(self._segments["APP1"], key.lower(), value) def __delattr__(self, item): try: ATTRIBUTE_ID_MAP[item] except KeyError: super(Image, self).__delattr__(item) else: delattr(self._segments["APP1"], item) def __getitem__(self, item): return self.__getattr__(item) def __setitem__(self, key, value): self.__setattr__(key, value) def __delitem__(self, key): self.__delattr__(key) def delete(self, attribute: str) -> None: """Remove the specified attribute from the image. :param attribute: image EXIF attribute name """ delattr(self, attribute) def delete_all(self) -> None: """Remove all EXIF tags from the image.""" for _ in range( 2 ): # iterate twice to delete thumbnail tags the second time around assert isinstance(self._segments["APP1"], App1MetaData) for tag in self._segments["APP1"].get_tag_list(): if not tag in ["_exif_ifd_pointer", "_gps_ifd_pointer", "exif_version"]: try: delattr(self, tag) except AttributeError: warnings.warn("could not delete tag " + tag, RuntimeWarning) self._parse_segments(self.get_file()) def get(self, attribute: str, default: Any = None) -> Any: """Return the value of the specified tag. If the attribute is not available or set, return the value specified by the ``default`` keyword argument. :param attribute: image EXIF attribute name :param default: return value if attribute does not exist :returns: tag value if present, ``default`` otherwise :rtype: corresponding Python type """ try: retval = getattr(self, attribute) except (AttributeError, NotImplementedError): retval = default return retval def get_all(self) -> Dict[str, Any]: """Return dictionary containing all EXIF tag values keyed by tag name.""" all_tags = {} for tag_name in self.list_all(): try: tag_value = getattr(self, tag_name) except Exception: # pylint: disable=broad-except logger.warning("unable to read tag %r", tag_name) else: all_tags[tag_name] = tag_value return all_tags def get_file(self) -> bytes: """Generate equivalent binary file contents. :returns: image binary with EXIF metadata """ assert isinstance(self._segments["preceding"], bytes) img_bytes = self._segments["preceding"] if self._has_exif: assert isinstance(self._segments["APP1"], App1MetaData) img_bytes += self._segments["APP1"].get_segment_bytes() assert isinstance(self._segments["succeeding"], bytes) img_bytes += self._segments["succeeding"] return img_bytes def get_thumbnail(self) -> bytes: """Extract thumbnail binary contained in EXIF metadata. :returns: thumbnail binary :raises RuntimeError: image does not contain thumbnail """ thumbnail_bytes = None try: app1_segment = self._segments["APP1"] except KeyError: pass else: assert isinstance(app1_segment, App1MetaData) thumbnail_bytes = app1_segment.thumbnail_bytes if not thumbnail_bytes: raise RuntimeError("image does not contain thumbnail") return thumbnail_bytes @property def has_exif(self) -> bool: """Report whether or not the image currently has EXIF metadata.""" return self._has_exif def list_all(self) -> List[str]: """List all EXIF tags contained in the image.""" tags_list = [] if self._has_exif: assert isinstance(self._segments["APP1"], App1MetaData) tags_list += self._segments["APP1"].get_tag_list(include_unknown=False) return tags_list def set(self, attribute: str, value) -> None: """Set the value of the specified attribute. :param attribute: image EXIF attribute name :param value: tag value :type value: corresponding Python type """ setattr(self, attribute, value)
(img_file: Union[BinaryIO, bytes, str]) -> None
16,281
exif._image
__delattr__
null
def __delattr__(self, item): try: ATTRIBUTE_ID_MAP[item] except KeyError: super(Image, self).__delattr__(item) else: delattr(self._segments["APP1"], item)
(self, item)
16,282
exif._image
__delitem__
null
def __delitem__(self, key): self.__delattr__(key)
(self, key)
16,283
exif._image
__dir__
null
def __dir__(self) -> List[str]: members = [ "delete", "delete_all", "get", "get_all", "get_file", "get_thumbnail", "has_exif", "list_all", "_segments", ] if self._has_exif: assert isinstance(self._segments["APP1"], App1MetaData) members += self._segments["APP1"].get_tag_list() return members
(self) -> List[str]
16,284
exif._image
__getattr__
null
def __getattr__(self, item): return getattr(self._segments["APP1"], item)
(self, item)
16,285
exif._image
__getitem__
null
def __getitem__(self, item): return self.__getattr__(item)
(self, item)
16,286
exif._image
__init__
null
def __init__( self, img_file: Union[BinaryIO, bytes, str], # pylint: disable=unsubscriptable-object ) -> None: self._has_exif = True self._segments: Dict[ str, Union[App1MetaData, bytes] # pylint: disable=unsubscriptable-object ] = {} if hasattr(img_file, "read"): img_bytes = img_file.read() # type: ignore elif isinstance(img_file, bytes): img_bytes = img_file elif os.path.isfile(img_file): # type: ignore with open(img_file, "rb") as file_descriptor: # type: ignore img_bytes = file_descriptor.read() else: # pragma: no cover raise ValueError("expected file object, file path as str, or bytes") self._parse_segments(img_bytes)
(self, img_file: Union[BinaryIO, bytes, str]) -> NoneType
16,287
exif._image
__setattr__
null
def __setattr__(self, key, value): try: ATTRIBUTE_ID_MAP[key.lower()] except KeyError: super(Image, self).__setattr__(key, value) else: if not self._has_exif: self._segments["APP1"] = App1MetaData(generate_empty_app1_bytes()) self._has_exif = True setattr(self._segments["APP1"], key.lower(), value)
(self, key, value)
16,288
exif._image
__setitem__
null
def __setitem__(self, key, value): self.__setattr__(key, value)
(self, key, value)
16,289
exif._image
_parse_segments
null
def _parse_segments(self, img_bytes: bytes) -> None: cursor = 0 # Traverse hexadecimal string until EXIF APP1 segment found. while img_bytes[cursor : cursor + len(ExifMarkers.APP1)] != ExifMarkers.APP1: cursor += len(ExifMarkers.APP1) if cursor > len(img_bytes): self._has_exif = False cursor = 2 # should theoretically go after SOI marker (if adding) break self._segments["preceding"] = img_bytes[:cursor] app1_start_index = cursor if self._has_exif: # Determine the expected length of the APP1 segment. app1_len = uint16.unpack( img_bytes[app1_start_index + 2 : app1_start_index + 4] ) cursor += app1_len + 2 # skip APP1 marker and all data # If the expected length stops early, keep traversing until another section is found. while img_bytes[cursor : cursor + 1] != ExifMarkers.SEG_PREFIX: cursor += 1 # raise IOError("no subsequent EXIF segment found, is this an EXIF-encoded JPEG?") if cursor > len(img_bytes): self._has_exif = False break if self._has_exif: # Instantiate an APP1 segment object to create an EXIF tag interface. self._segments["APP1"] = App1MetaData(img_bytes[app1_start_index:cursor]) self._segments["succeeding"] = img_bytes[cursor:] else: # Store the remainder of the image so that it can be reconstructed when exporting. self._segments["succeeding"] = img_bytes[app1_start_index:]
(self, img_bytes: bytes) -> NoneType
16,290
exif._image
delete
Remove the specified attribute from the image. :param attribute: image EXIF attribute name
def delete(self, attribute: str) -> None: """Remove the specified attribute from the image. :param attribute: image EXIF attribute name """ delattr(self, attribute)
(self, attribute: str) -> NoneType
16,291
exif._image
delete_all
Remove all EXIF tags from the image.
def delete_all(self) -> None: """Remove all EXIF tags from the image.""" for _ in range( 2 ): # iterate twice to delete thumbnail tags the second time around assert isinstance(self._segments["APP1"], App1MetaData) for tag in self._segments["APP1"].get_tag_list(): if not tag in ["_exif_ifd_pointer", "_gps_ifd_pointer", "exif_version"]: try: delattr(self, tag) except AttributeError: warnings.warn("could not delete tag " + tag, RuntimeWarning) self._parse_segments(self.get_file())
(self) -> NoneType
16,292
exif._image
get
Return the value of the specified tag. If the attribute is not available or set, return the value specified by the ``default`` keyword argument. :param attribute: image EXIF attribute name :param default: return value if attribute does not exist :returns: tag value if present, ``default`` otherwise :rtype: corresponding Python type
def get(self, attribute: str, default: Any = None) -> Any: """Return the value of the specified tag. If the attribute is not available or set, return the value specified by the ``default`` keyword argument. :param attribute: image EXIF attribute name :param default: return value if attribute does not exist :returns: tag value if present, ``default`` otherwise :rtype: corresponding Python type """ try: retval = getattr(self, attribute) except (AttributeError, NotImplementedError): retval = default return retval
(self, attribute: str, default: Optional[Any] = None) -> Any
16,293
exif._image
get_all
Return dictionary containing all EXIF tag values keyed by tag name.
def get_all(self) -> Dict[str, Any]: """Return dictionary containing all EXIF tag values keyed by tag name.""" all_tags = {} for tag_name in self.list_all(): try: tag_value = getattr(self, tag_name) except Exception: # pylint: disable=broad-except logger.warning("unable to read tag %r", tag_name) else: all_tags[tag_name] = tag_value return all_tags
(self) -> Dict[str, Any]
16,294
exif._image
get_file
Generate equivalent binary file contents. :returns: image binary with EXIF metadata
def get_file(self) -> bytes: """Generate equivalent binary file contents. :returns: image binary with EXIF metadata """ assert isinstance(self._segments["preceding"], bytes) img_bytes = self._segments["preceding"] if self._has_exif: assert isinstance(self._segments["APP1"], App1MetaData) img_bytes += self._segments["APP1"].get_segment_bytes() assert isinstance(self._segments["succeeding"], bytes) img_bytes += self._segments["succeeding"] return img_bytes
(self) -> bytes
16,295
exif._image
get_thumbnail
Extract thumbnail binary contained in EXIF metadata. :returns: thumbnail binary :raises RuntimeError: image does not contain thumbnail
def get_thumbnail(self) -> bytes: """Extract thumbnail binary contained in EXIF metadata. :returns: thumbnail binary :raises RuntimeError: image does not contain thumbnail """ thumbnail_bytes = None try: app1_segment = self._segments["APP1"] except KeyError: pass else: assert isinstance(app1_segment, App1MetaData) thumbnail_bytes = app1_segment.thumbnail_bytes if not thumbnail_bytes: raise RuntimeError("image does not contain thumbnail") return thumbnail_bytes
(self) -> bytes
16,296
exif._image
list_all
List all EXIF tags contained in the image.
def list_all(self) -> List[str]: """List all EXIF tags contained in the image.""" tags_list = [] if self._has_exif: assert isinstance(self._segments["APP1"], App1MetaData) tags_list += self._segments["APP1"].get_tag_list(include_unknown=False) return tags_list
(self) -> List[str]
16,297
exif._image
set
Set the value of the specified attribute. :param attribute: image EXIF attribute name :param value: tag value :type value: corresponding Python type
def set(self, attribute: str, value) -> None: """Set the value of the specified attribute. :param attribute: image EXIF attribute name :param value: tag value :type value: corresponding Python type """ setattr(self, attribute, value)
(self, attribute: str, value) -> NoneType
16,298
exif._constants
LightSource
Class of the program used by the camera to set exposure when the picture is taken.
class LightSource(IntEnum): """Class of the program used by the camera to set exposure when the picture is taken.""" UNKNOWN = 0 """Unknown""" DAYLIGHT = 1 """Daylight""" FLUORESCENT = 2 """Fluorescent""" TUNGSTEN = 3 """Tungsten (Incandescent Light)""" FLASH = 4 """Flash""" FINE_WEATHER = 9 """Fine Weather""" CLOUDY_WEATHER = 10 """Cloudy Weather""" SHADE = 11 """Shade""" DAYLIGHT_FLUORESCENT = 12 """Daylight Fluorescent (D 5700 - 7100K)""" DAY_WHITE_FLUORESCENT = 13 """Day White Fluorescent (N 4600 - 5400K)""" COOL_WHITE_FLUORESCENT = 14 """Cool White Fluorescent (W 3900 - 4500K)""" WHITE_FLUORESCENT = 15 """White Fluorescent (WW 3200 - 3700K)""" STANDARD_LIGHT_A = 17 """Standard Light A""" STANDARD_LIGHT_B = 18 """Standard Light B""" STANDARD_LIGHT_C = 19 """Standard Light C""" D55 = 20 """D55""" D65 = 21 """D65""" D75 = 22 """D75""" D50 = 23 """D50""" ISO_STUDIO_TUNGSTEN = 24 """ISO Studio Tungsten""" OTHER = 255 """Other Light Source"""
(value, names=None, *, module=None, qualname=None, type=None, start=1)
16,299
exif._constants
MeteringMode
Metering mode.
class MeteringMode(IntEnum): """Metering mode.""" UNKNOWN = 0 """Unknown""" AVERAGE = 1 """Average""" CENTER_WEIGHTED_AVERAGE = 2 """Center Weighted Average""" SPOT = 3 """Spot""" MULTI_SPOT = 4 """Multi Spot""" PATTERN = 5 """Pattern""" PARTIAL = 6 """Partial""" OTHER = 255 """Other"""
(value, names=None, *, module=None, qualname=None, type=None, start=1)
16,300
exif._constants
Orientation
Image orientation in terms of rows and columns.
class Orientation(IntEnum): """Image orientation in terms of rows and columns.""" TOP_LEFT = 1 """The 0th row is at the visual top of the image and the 0th column is the visual left-hand side.""" TOP_RIGHT = 2 """The 0th row is at the visual top of the image and the 0th column is the visual right-hand side.""" BOTTOM_RIGHT = 3 """The 0th row is at the visual bottom of the image and the 0th column is the visual right-hand side.""" BOTTOM_LEFT = 4 """The 0th row is at the visual bottom of the image and the 0th column is the visual left-hand side.""" LEFT_TOP = 5 """The 0th row is the visual left-hand side of the image and the 0th column is the visual top.""" RIGHT_TOP = 6 """The 0th row is the visual right-hand side of the image and the 0th column is the visual bottom.""" RIGHT_BOTTOM = 7 """The 0th row is the visual right-hand side of the image and the 0th column is the visual bottom.""" LEFT_BOTTOM = 8 """The 0th row is the visual left-hand side of the image and the 0th column is the visual bottom."""
(value, names=None, *, module=None, qualname=None, type=None, start=1)
16,301
exif._constants
ResolutionUnit
Unit for measuring X resolution and Y resolution tags.
class ResolutionUnit(IntEnum): """Unit for measuring X resolution and Y resolution tags.""" INCHES = 2 """Inches or Unknown""" CENTIMETERS = 3 """Centimeters"""
(value, names=None, *, module=None, qualname=None, type=None, start=1)
16,302
exif._constants
Saturation
Saturation processing applied by camera.
class Saturation(IntEnum): """Saturation processing applied by camera.""" NORMAL = 0 """Normal Saturation""" LOW = 1 """Low Saturation""" HIGH = 2 """High Saturation"""
(value, names=None, *, module=None, qualname=None, type=None, start=1)
16,303
exif._constants
SceneCaptureType
Type of scene that was shot or the mode in which the image was shot.
class SceneCaptureType(IntEnum): """Type of scene that was shot or the mode in which the image was shot.""" STANDARD = 0 """Standard""" LANDSCAPE = 1 """Landscape""" PORTRAIT = 2 """Portrait""" NIGHT_SCENE = 3 """Night Scene"""
(value, names=None, *, module=None, qualname=None, type=None, start=1)
16,304
exif._constants
SensingMethod
Image sensor type on the camera or input device.
class SensingMethod(IntEnum): """Image sensor type on the camera or input device.""" NOT_DEFINED = 1 """Not Defined""" ONE_CHIP_COLOR_AREA_SENSOR = 2 """One-Chip Color Area Sensor""" TWO_CHIP_COLOR_AREA_SENSOR = 3 """Two-Chip Color Area Sensor""" THREE_CHIP_COLOR_AREA_SENSOR = 4 """Three-Chip Color Area Sensor""" COLOR_SEQUENTIAL_AREA_SENSOR = 5 """Color Sequential Area Sensor""" TRILINEAR_SENSOR = 7 """Trilinear Sensor""" COLOR_SEQUENTIAL_LINEAR_SENSOR = 8 """Color Sequential Linear Sensor"""
(value, names=None, *, module=None, qualname=None, type=None, start=1)
16,305
exif._constants
Sharpness
Sharpness processing applied by camera.
class Sharpness(IntEnum): """Sharpness processing applied by camera.""" NORMAL = 0 """Normal""" SOFT = 1 """Soft""" HARD = 2 """Hard"""
(value, names=None, *, module=None, qualname=None, type=None, start=1)
16,306
exif._constants
WhiteBalance
White balance mode set when the image was shot.
class WhiteBalance(IntEnum): """White balance mode set when the image was shot.""" AUTO = 0 """Auto White Balance""" MANUAL = 1 """Manual White Balance"""
(value, names=None, *, module=None, qualname=None, type=None, start=1)
16,315
generator_oj_problem
getAppDirectory
null
def getAppDirectory() -> pathlib.Path: return pathlib.Path(__file__).parent.resolve()
() -> pathlib.Path
16,316
generator_oj_problem
getWorkingDirectory
null
def getWorkingDirectory() -> pathlib.Path: return pathlib.Path(os.getcwd()).resolve()
() -> pathlib.Path
16,319
presidio_analyzer.analysis_explanation
AnalysisExplanation
Hold tracing information to explain why PII entities were identified as such. :param recognizer: name of recognizer that made the decision :param original_score: recognizer's confidence in result :param pattern_name: name of pattern (if decision was made by a PatternRecognizer) :param pattern: regex pattern that was applied (if PatternRecognizer) :param validation_result: result of a validation (e.g. checksum) :param textual_explanation: Free text for describing a decision of a logic or model
class AnalysisExplanation: """ Hold tracing information to explain why PII entities were identified as such. :param recognizer: name of recognizer that made the decision :param original_score: recognizer's confidence in result :param pattern_name: name of pattern (if decision was made by a PatternRecognizer) :param pattern: regex pattern that was applied (if PatternRecognizer) :param validation_result: result of a validation (e.g. checksum) :param textual_explanation: Free text for describing a decision of a logic or model """ def __init__( self, recognizer: str, original_score: float, pattern_name: str = None, pattern: str = None, validation_result: float = None, textual_explanation: str = None, regex_flags: int = None, ): self.recognizer = recognizer self.pattern_name = pattern_name self.pattern = pattern self.original_score = original_score self.score = original_score self.textual_explanation = textual_explanation self.score_context_improvement = 0 self.supportive_context_word = "" self.validation_result = validation_result self.regex_flags = regex_flags def __repr__(self): """Create string representation of the object.""" return str(self.__dict__) def set_improved_score(self, score: float) -> None: """Update the score and calculate the difference from the original score.""" self.score = score self.score_context_improvement = self.score - self.original_score def set_supportive_context_word(self, word: str) -> None: """Set the context word which helped increase the score.""" self.supportive_context_word = word def append_textual_explanation_line(self, text: str) -> None: """Append a new line to textual_explanation field.""" if self.textual_explanation is None: self.textual_explanation = text else: self.textual_explanation = "{}\n{}".format(self.textual_explanation, text) def to_dict(self) -> Dict: """ Serialize self to dictionary. :return: a dictionary """ return self.__dict__
(recognizer: str, original_score: float, pattern_name: str = None, pattern: str = None, validation_result: float = None, textual_explanation: str = None, regex_flags: int = None)
16,320
presidio_analyzer.analysis_explanation
__init__
null
def __init__( self, recognizer: str, original_score: float, pattern_name: str = None, pattern: str = None, validation_result: float = None, textual_explanation: str = None, regex_flags: int = None, ): self.recognizer = recognizer self.pattern_name = pattern_name self.pattern = pattern self.original_score = original_score self.score = original_score self.textual_explanation = textual_explanation self.score_context_improvement = 0 self.supportive_context_word = "" self.validation_result = validation_result self.regex_flags = regex_flags
(self, recognizer: str, original_score: float, pattern_name: Optional[str] = None, pattern: Optional[str] = None, validation_result: Optional[float] = None, textual_explanation: Optional[str] = None, regex_flags: Optional[int] = None)
16,321
presidio_analyzer.analysis_explanation
__repr__
Create string representation of the object.
def __repr__(self): """Create string representation of the object.""" return str(self.__dict__)
(self)
16,322
presidio_analyzer.analysis_explanation
append_textual_explanation_line
Append a new line to textual_explanation field.
def append_textual_explanation_line(self, text: str) -> None: """Append a new line to textual_explanation field.""" if self.textual_explanation is None: self.textual_explanation = text else: self.textual_explanation = "{}\n{}".format(self.textual_explanation, text)
(self, text: str) -> NoneType
16,323
presidio_analyzer.analysis_explanation
set_improved_score
Update the score and calculate the difference from the original score.
def set_improved_score(self, score: float) -> None: """Update the score and calculate the difference from the original score.""" self.score = score self.score_context_improvement = self.score - self.original_score
(self, score: float) -> NoneType
16,324
presidio_analyzer.analysis_explanation
set_supportive_context_word
Set the context word which helped increase the score.
def set_supportive_context_word(self, word: str) -> None: """Set the context word which helped increase the score.""" self.supportive_context_word = word
(self, word: str) -> NoneType
16,325
presidio_analyzer.analysis_explanation
to_dict
Serialize self to dictionary. :return: a dictionary
def to_dict(self) -> Dict: """ Serialize self to dictionary. :return: a dictionary """ return self.__dict__
(self) -> Dict
16,326
presidio_analyzer.analyzer_engine
AnalyzerEngine
Entry point for Presidio Analyzer. Orchestrating the detection of PII entities and all related logic. :param registry: instance of type RecognizerRegistry :param nlp_engine: instance of type NlpEngine (for example SpacyNlpEngine) :param app_tracer: instance of type AppTracer, used to trace the logic used during each request for interpretability reasons. :param log_decision_process: bool, defines whether the decision process within the analyzer should be logged or not. :param default_score_threshold: Minimum confidence value for detected entities to be returned :param supported_languages: List of possible languages this engine could be run on. Used for loading the right NLP models and recognizers for these languages. :param context_aware_enhancer: instance of type ContextAwareEnhancer for enhancing confidence score based on context words, (LemmaContextAwareEnhancer will be created by default if None passed)
class AnalyzerEngine: """ Entry point for Presidio Analyzer. Orchestrating the detection of PII entities and all related logic. :param registry: instance of type RecognizerRegistry :param nlp_engine: instance of type NlpEngine (for example SpacyNlpEngine) :param app_tracer: instance of type AppTracer, used to trace the logic used during each request for interpretability reasons. :param log_decision_process: bool, defines whether the decision process within the analyzer should be logged or not. :param default_score_threshold: Minimum confidence value for detected entities to be returned :param supported_languages: List of possible languages this engine could be run on. Used for loading the right NLP models and recognizers for these languages. :param context_aware_enhancer: instance of type ContextAwareEnhancer for enhancing confidence score based on context words, (LemmaContextAwareEnhancer will be created by default if None passed) """ def __init__( self, registry: RecognizerRegistry = None, nlp_engine: NlpEngine = None, app_tracer: AppTracer = None, log_decision_process: bool = False, default_score_threshold: float = 0, supported_languages: List[str] = None, context_aware_enhancer: Optional[ContextAwareEnhancer] = None, ): if not supported_languages: supported_languages = ["en"] if not nlp_engine: logger.info("nlp_engine not provided, creating default.") provider = NlpEngineProvider() nlp_engine = provider.create_engine() if not registry: logger.info("registry not provided, creating default.") registry = RecognizerRegistry() if not app_tracer: app_tracer = AppTracer() self.app_tracer = app_tracer self.supported_languages = supported_languages self.nlp_engine = nlp_engine if not self.nlp_engine.is_loaded(): self.nlp_engine.load() self.registry = registry # load all recognizers if not registry.recognizers: registry.load_predefined_recognizers( nlp_engine=self.nlp_engine, languages=self.supported_languages ) self.log_decision_process = log_decision_process self.default_score_threshold = default_score_threshold if not context_aware_enhancer: logger.debug( "context aware enhancer not provided, creating default" + " lemma based enhancer." ) context_aware_enhancer = LemmaContextAwareEnhancer() self.context_aware_enhancer = context_aware_enhancer def get_recognizers(self, language: Optional[str] = None) -> List[EntityRecognizer]: """ Return a list of PII recognizers currently loaded. :param language: Return the recognizers supporting a given language. :return: List of [Recognizer] as a RecognizersAllResponse """ if not language: languages = self.supported_languages else: languages = [language] recognizers = [] for language in languages: logger.info(f"Fetching all recognizers for language {language}") recognizers.extend( self.registry.get_recognizers(language=language, all_fields=True) ) return list(set(recognizers)) def get_supported_entities(self, language: Optional[str] = None) -> List[str]: """ Return a list of the entities that can be detected. :param language: Return only entities supported in a specific language. :return: List of entity names """ recognizers = self.get_recognizers(language=language) supported_entities = [] for recognizer in recognizers: supported_entities.extend(recognizer.get_supported_entities()) return list(set(supported_entities)) def analyze( self, text: str, language: str, entities: Optional[List[str]] = None, correlation_id: Optional[str] = None, score_threshold: Optional[float] = None, return_decision_process: Optional[bool] = False, ad_hoc_recognizers: Optional[List[EntityRecognizer]] = None, context: Optional[List[str]] = None, allow_list: Optional[List[str]] = None, nlp_artifacts: Optional[NlpArtifacts] = None, ) -> List[RecognizerResult]: """ Find PII entities in text using different PII recognizers for a given language. :param text: the text to analyze :param language: the language of the text :param entities: List of PII entities that should be looked for in the text. If entities=None then all entities are looked for. :param correlation_id: cross call ID for this request :param score_threshold: A minimum value for which to return an identified entity :param return_decision_process: Whether the analysis decision process steps returned in the response. :param ad_hoc_recognizers: List of recognizers which will be used only for this specific request. :param context: List of context words to enhance confidence score if matched with the recognized entity's recognizer context :param allow_list: List of words that the user defines as being allowed to keep in the text :param nlp_artifacts: precomputed NlpArtifacts :return: an array of the found entities in the text :example: >>> from presidio_analyzer import AnalyzerEngine >>> # Set up the engine, loads the NLP module (spaCy model by default) >>> # and other PII recognizers >>> analyzer = AnalyzerEngine() >>> # Call analyzer to get results >>> results = analyzer.analyze(text='My phone number is 212-555-5555', entities=['PHONE_NUMBER'], language='en') # noqa D501 >>> print(results) [type: PHONE_NUMBER, start: 19, end: 31, score: 0.85] """ all_fields = not entities recognizers = self.registry.get_recognizers( language=language, entities=entities, all_fields=all_fields, ad_hoc_recognizers=ad_hoc_recognizers, ) if all_fields: # Since all_fields=True, list all entities by iterating # over all recognizers entities = self.get_supported_entities(language=language) # run the nlp pipeline over the given text, store the results in # a NlpArtifacts instance if not nlp_artifacts: nlp_artifacts = self.nlp_engine.process_text(text, language) if self.log_decision_process: self.app_tracer.trace( correlation_id, "nlp artifacts:" + nlp_artifacts.to_json() ) results = [] for recognizer in recognizers: # Lazy loading of the relevant recognizers if not recognizer.is_loaded: recognizer.load() recognizer.is_loaded = True # analyze using the current recognizer and append the results current_results = recognizer.analyze( text=text, entities=entities, nlp_artifacts=nlp_artifacts ) if current_results: # add recognizer name to recognition metadata inside results # if not exists self.__add_recognizer_id_if_not_exists(current_results, recognizer) results.extend(current_results) results = self._enhance_using_context( text, results, nlp_artifacts, recognizers, context ) if self.log_decision_process: self.app_tracer.trace( correlation_id, json.dumps([str(result.to_dict()) for result in results]), ) # Remove duplicates or low score results results = EntityRecognizer.remove_duplicates(results) results = self.__remove_low_scores(results, score_threshold) if allow_list: results = self._remove_allow_list(results, allow_list, text) if not return_decision_process: results = self.__remove_decision_process(results) return results def _enhance_using_context( self, text: str, raw_results: List[RecognizerResult], nlp_artifacts: NlpArtifacts, recognizers: List[EntityRecognizer], context: Optional[List[str]] = None, ) -> List[RecognizerResult]: """ Enhance confidence score using context words. :param text: The actual text that was analyzed :param raw_results: Recognizer results which didn't take context into consideration :param nlp_artifacts: The nlp artifacts contains elements such as lemmatized tokens for better accuracy of the context enhancement process :param recognizers: the list of recognizers :param context: list of context words """ results = [] for recognizer in recognizers: recognizer_results = [ r for r in raw_results if r.recognition_metadata[RecognizerResult.RECOGNIZER_IDENTIFIER_KEY] == recognizer.id ] other_recognizer_results = [ r for r in raw_results if r.recognition_metadata[RecognizerResult.RECOGNIZER_IDENTIFIER_KEY] != recognizer.id ] # enhance score using context in recognizer level if implemented recognizer_results = recognizer.enhance_using_context( text=text, # each recognizer will get access to all recognizer results # to allow related entities contex enhancement raw_recognizer_results=recognizer_results, other_raw_recognizer_results=other_recognizer_results, nlp_artifacts=nlp_artifacts, context=context, ) results.extend(recognizer_results) # Update results in case surrounding words or external context are relevant to # the context words. results = self.context_aware_enhancer.enhance_using_context( text=text, raw_results=results, nlp_artifacts=nlp_artifacts, recognizers=recognizers, context=context, ) return results def __remove_low_scores( self, results: List[RecognizerResult], score_threshold: float = None ) -> List[RecognizerResult]: """ Remove results for which the confidence is lower than the threshold. :param results: List of RecognizerResult :param score_threshold: float value for minimum possible confidence :return: List[RecognizerResult] """ if score_threshold is None: score_threshold = self.default_score_threshold new_results = [result for result in results if result.score >= score_threshold] return new_results @staticmethod def _remove_allow_list( results: List[RecognizerResult], allow_list: List[str], text: str ) -> List[RecognizerResult]: """ Remove results which are part of the allow list. :param results: List of RecognizerResult :param allow_list: list of allowed terms :param text: the text to analyze :return: List[RecognizerResult] """ new_results = [] for result in results: word = text[result.start : result.end] # if the word is not specified to be allowed, keep in the PII entities if word not in allow_list: new_results.append(result) return new_results @staticmethod def __add_recognizer_id_if_not_exists( results: List[RecognizerResult], recognizer: EntityRecognizer ) -> None: """Ensure recognition metadata with recognizer id existence. Ensure recognizer result list contains recognizer id inside recognition metadata dictionary, and if not create it. recognizer_id is needed for context aware enhancement. :param results: List of RecognizerResult :param recognizer: Entity recognizer """ for result in results: if not result.recognition_metadata: result.recognition_metadata = dict() if ( RecognizerResult.RECOGNIZER_IDENTIFIER_KEY not in result.recognition_metadata ): result.recognition_metadata[ RecognizerResult.RECOGNIZER_IDENTIFIER_KEY ] = recognizer.id if RecognizerResult.RECOGNIZER_NAME_KEY not in result.recognition_metadata: result.recognition_metadata[ RecognizerResult.RECOGNIZER_NAME_KEY ] = recognizer.name @staticmethod def __remove_decision_process( results: List[RecognizerResult], ) -> List[RecognizerResult]: """Remove decision process / analysis explanation from response.""" for result in results: result.analysis_explanation = None return results
(registry: presidio_analyzer.recognizer_registry.RecognizerRegistry = None, nlp_engine: presidio_analyzer.nlp_engine.nlp_engine.NlpEngine = None, app_tracer: presidio_analyzer.app_tracer.AppTracer = None, log_decision_process: bool = False, default_score_threshold: float = 0, supported_languages: List[str] = None, context_aware_enhancer: Optional[presidio_analyzer.context_aware_enhancers.context_aware_enhancer.ContextAwareEnhancer] = None)
16,327
presidio_analyzer.analyzer_engine
__add_recognizer_id_if_not_exists
Ensure recognition metadata with recognizer id existence. Ensure recognizer result list contains recognizer id inside recognition metadata dictionary, and if not create it. recognizer_id is needed for context aware enhancement. :param results: List of RecognizerResult :param recognizer: Entity recognizer
@staticmethod def __add_recognizer_id_if_not_exists( results: List[RecognizerResult], recognizer: EntityRecognizer ) -> None: """Ensure recognition metadata with recognizer id existence. Ensure recognizer result list contains recognizer id inside recognition metadata dictionary, and if not create it. recognizer_id is needed for context aware enhancement. :param results: List of RecognizerResult :param recognizer: Entity recognizer """ for result in results: if not result.recognition_metadata: result.recognition_metadata = dict() if ( RecognizerResult.RECOGNIZER_IDENTIFIER_KEY not in result.recognition_metadata ): result.recognition_metadata[ RecognizerResult.RECOGNIZER_IDENTIFIER_KEY ] = recognizer.id if RecognizerResult.RECOGNIZER_NAME_KEY not in result.recognition_metadata: result.recognition_metadata[ RecognizerResult.RECOGNIZER_NAME_KEY ] = recognizer.name
(results: List[presidio_analyzer.recognizer_result.RecognizerResult], recognizer: presidio_analyzer.entity_recognizer.EntityRecognizer) -> NoneType
16,328
presidio_analyzer.analyzer_engine
__remove_decision_process
Remove decision process / analysis explanation from response.
@staticmethod def __remove_decision_process( results: List[RecognizerResult], ) -> List[RecognizerResult]: """Remove decision process / analysis explanation from response.""" for result in results: result.analysis_explanation = None return results
(results: List[presidio_analyzer.recognizer_result.RecognizerResult]) -> List[presidio_analyzer.recognizer_result.RecognizerResult]
16,329
presidio_analyzer.analyzer_engine
__remove_low_scores
Remove results for which the confidence is lower than the threshold. :param results: List of RecognizerResult :param score_threshold: float value for minimum possible confidence :return: List[RecognizerResult]
def __remove_low_scores( self, results: List[RecognizerResult], score_threshold: float = None ) -> List[RecognizerResult]: """ Remove results for which the confidence is lower than the threshold. :param results: List of RecognizerResult :param score_threshold: float value for minimum possible confidence :return: List[RecognizerResult] """ if score_threshold is None: score_threshold = self.default_score_threshold new_results = [result for result in results if result.score >= score_threshold] return new_results
(self, results: List[presidio_analyzer.recognizer_result.RecognizerResult], score_threshold: Optional[float] = None) -> List[presidio_analyzer.recognizer_result.RecognizerResult]
16,330
presidio_analyzer.analyzer_engine
__init__
null
def __init__( self, registry: RecognizerRegistry = None, nlp_engine: NlpEngine = None, app_tracer: AppTracer = None, log_decision_process: bool = False, default_score_threshold: float = 0, supported_languages: List[str] = None, context_aware_enhancer: Optional[ContextAwareEnhancer] = None, ): if not supported_languages: supported_languages = ["en"] if not nlp_engine: logger.info("nlp_engine not provided, creating default.") provider = NlpEngineProvider() nlp_engine = provider.create_engine() if not registry: logger.info("registry not provided, creating default.") registry = RecognizerRegistry() if not app_tracer: app_tracer = AppTracer() self.app_tracer = app_tracer self.supported_languages = supported_languages self.nlp_engine = nlp_engine if not self.nlp_engine.is_loaded(): self.nlp_engine.load() self.registry = registry # load all recognizers if not registry.recognizers: registry.load_predefined_recognizers( nlp_engine=self.nlp_engine, languages=self.supported_languages ) self.log_decision_process = log_decision_process self.default_score_threshold = default_score_threshold if not context_aware_enhancer: logger.debug( "context aware enhancer not provided, creating default" + " lemma based enhancer." ) context_aware_enhancer = LemmaContextAwareEnhancer() self.context_aware_enhancer = context_aware_enhancer
(self, registry: Optional[presidio_analyzer.recognizer_registry.RecognizerRegistry] = None, nlp_engine: Optional[presidio_analyzer.nlp_engine.nlp_engine.NlpEngine] = None, app_tracer: Optional[presidio_analyzer.app_tracer.AppTracer] = None, log_decision_process: bool = False, default_score_threshold: float = 0, supported_languages: Optional[List[str]] = None, context_aware_enhancer: Optional[presidio_analyzer.context_aware_enhancers.context_aware_enhancer.ContextAwareEnhancer] = None)
16,331
presidio_analyzer.analyzer_engine
_enhance_using_context
Enhance confidence score using context words. :param text: The actual text that was analyzed :param raw_results: Recognizer results which didn't take context into consideration :param nlp_artifacts: The nlp artifacts contains elements such as lemmatized tokens for better accuracy of the context enhancement process :param recognizers: the list of recognizers :param context: list of context words
def _enhance_using_context( self, text: str, raw_results: List[RecognizerResult], nlp_artifacts: NlpArtifacts, recognizers: List[EntityRecognizer], context: Optional[List[str]] = None, ) -> List[RecognizerResult]: """ Enhance confidence score using context words. :param text: The actual text that was analyzed :param raw_results: Recognizer results which didn't take context into consideration :param nlp_artifacts: The nlp artifacts contains elements such as lemmatized tokens for better accuracy of the context enhancement process :param recognizers: the list of recognizers :param context: list of context words """ results = [] for recognizer in recognizers: recognizer_results = [ r for r in raw_results if r.recognition_metadata[RecognizerResult.RECOGNIZER_IDENTIFIER_KEY] == recognizer.id ] other_recognizer_results = [ r for r in raw_results if r.recognition_metadata[RecognizerResult.RECOGNIZER_IDENTIFIER_KEY] != recognizer.id ] # enhance score using context in recognizer level if implemented recognizer_results = recognizer.enhance_using_context( text=text, # each recognizer will get access to all recognizer results # to allow related entities contex enhancement raw_recognizer_results=recognizer_results, other_raw_recognizer_results=other_recognizer_results, nlp_artifacts=nlp_artifacts, context=context, ) results.extend(recognizer_results) # Update results in case surrounding words or external context are relevant to # the context words. results = self.context_aware_enhancer.enhance_using_context( text=text, raw_results=results, nlp_artifacts=nlp_artifacts, recognizers=recognizers, context=context, ) return results
(self, text: str, raw_results: List[presidio_analyzer.recognizer_result.RecognizerResult], nlp_artifacts: presidio_analyzer.nlp_engine.nlp_artifacts.NlpArtifacts, recognizers: List[presidio_analyzer.entity_recognizer.EntityRecognizer], context: Optional[List[str]] = None) -> List[presidio_analyzer.recognizer_result.RecognizerResult]
16,332
presidio_analyzer.analyzer_engine
_remove_allow_list
Remove results which are part of the allow list. :param results: List of RecognizerResult :param allow_list: list of allowed terms :param text: the text to analyze :return: List[RecognizerResult]
@staticmethod def _remove_allow_list( results: List[RecognizerResult], allow_list: List[str], text: str ) -> List[RecognizerResult]: """ Remove results which are part of the allow list. :param results: List of RecognizerResult :param allow_list: list of allowed terms :param text: the text to analyze :return: List[RecognizerResult] """ new_results = [] for result in results: word = text[result.start : result.end] # if the word is not specified to be allowed, keep in the PII entities if word not in allow_list: new_results.append(result) return new_results
(results: List[presidio_analyzer.recognizer_result.RecognizerResult], allow_list: List[str], text: str) -> List[presidio_analyzer.recognizer_result.RecognizerResult]
16,333
presidio_analyzer.analyzer_engine
analyze
Find PII entities in text using different PII recognizers for a given language. :param text: the text to analyze :param language: the language of the text :param entities: List of PII entities that should be looked for in the text. If entities=None then all entities are looked for. :param correlation_id: cross call ID for this request :param score_threshold: A minimum value for which to return an identified entity :param return_decision_process: Whether the analysis decision process steps returned in the response. :param ad_hoc_recognizers: List of recognizers which will be used only for this specific request. :param context: List of context words to enhance confidence score if matched with the recognized entity's recognizer context :param allow_list: List of words that the user defines as being allowed to keep in the text :param nlp_artifacts: precomputed NlpArtifacts :return: an array of the found entities in the text :example: >>> from presidio_analyzer import AnalyzerEngine >>> # Set up the engine, loads the NLP module (spaCy model by default) >>> # and other PII recognizers >>> analyzer = AnalyzerEngine() >>> # Call analyzer to get results >>> results = analyzer.analyze(text='My phone number is 212-555-5555', entities=['PHONE_NUMBER'], language='en') # noqa D501 >>> print(results) [type: PHONE_NUMBER, start: 19, end: 31, score: 0.85]
def analyze( self, text: str, language: str, entities: Optional[List[str]] = None, correlation_id: Optional[str] = None, score_threshold: Optional[float] = None, return_decision_process: Optional[bool] = False, ad_hoc_recognizers: Optional[List[EntityRecognizer]] = None, context: Optional[List[str]] = None, allow_list: Optional[List[str]] = None, nlp_artifacts: Optional[NlpArtifacts] = None, ) -> List[RecognizerResult]: """ Find PII entities in text using different PII recognizers for a given language. :param text: the text to analyze :param language: the language of the text :param entities: List of PII entities that should be looked for in the text. If entities=None then all entities are looked for. :param correlation_id: cross call ID for this request :param score_threshold: A minimum value for which to return an identified entity :param return_decision_process: Whether the analysis decision process steps returned in the response. :param ad_hoc_recognizers: List of recognizers which will be used only for this specific request. :param context: List of context words to enhance confidence score if matched with the recognized entity's recognizer context :param allow_list: List of words that the user defines as being allowed to keep in the text :param nlp_artifacts: precomputed NlpArtifacts :return: an array of the found entities in the text :example: >>> from presidio_analyzer import AnalyzerEngine >>> # Set up the engine, loads the NLP module (spaCy model by default) >>> # and other PII recognizers >>> analyzer = AnalyzerEngine() >>> # Call analyzer to get results >>> results = analyzer.analyze(text='My phone number is 212-555-5555', entities=['PHONE_NUMBER'], language='en') # noqa D501 >>> print(results) [type: PHONE_NUMBER, start: 19, end: 31, score: 0.85] """ all_fields = not entities recognizers = self.registry.get_recognizers( language=language, entities=entities, all_fields=all_fields, ad_hoc_recognizers=ad_hoc_recognizers, ) if all_fields: # Since all_fields=True, list all entities by iterating # over all recognizers entities = self.get_supported_entities(language=language) # run the nlp pipeline over the given text, store the results in # a NlpArtifacts instance if not nlp_artifacts: nlp_artifacts = self.nlp_engine.process_text(text, language) if self.log_decision_process: self.app_tracer.trace( correlation_id, "nlp artifacts:" + nlp_artifacts.to_json() ) results = [] for recognizer in recognizers: # Lazy loading of the relevant recognizers if not recognizer.is_loaded: recognizer.load() recognizer.is_loaded = True # analyze using the current recognizer and append the results current_results = recognizer.analyze( text=text, entities=entities, nlp_artifacts=nlp_artifacts ) if current_results: # add recognizer name to recognition metadata inside results # if not exists self.__add_recognizer_id_if_not_exists(current_results, recognizer) results.extend(current_results) results = self._enhance_using_context( text, results, nlp_artifacts, recognizers, context ) if self.log_decision_process: self.app_tracer.trace( correlation_id, json.dumps([str(result.to_dict()) for result in results]), ) # Remove duplicates or low score results results = EntityRecognizer.remove_duplicates(results) results = self.__remove_low_scores(results, score_threshold) if allow_list: results = self._remove_allow_list(results, allow_list, text) if not return_decision_process: results = self.__remove_decision_process(results) return results
(self, text: str, language: str, entities: Optional[List[str]] = None, correlation_id: Optional[str] = None, score_threshold: Optional[float] = None, return_decision_process: Optional[bool] = False, ad_hoc_recognizers: Optional[List[presidio_analyzer.entity_recognizer.EntityRecognizer]] = None, context: Optional[List[str]] = None, allow_list: Optional[List[str]] = None, nlp_artifacts: Optional[presidio_analyzer.nlp_engine.nlp_artifacts.NlpArtifacts] = None) -> List[presidio_analyzer.recognizer_result.RecognizerResult]
16,334
presidio_analyzer.analyzer_engine
get_recognizers
Return a list of PII recognizers currently loaded. :param language: Return the recognizers supporting a given language. :return: List of [Recognizer] as a RecognizersAllResponse
def get_recognizers(self, language: Optional[str] = None) -> List[EntityRecognizer]: """ Return a list of PII recognizers currently loaded. :param language: Return the recognizers supporting a given language. :return: List of [Recognizer] as a RecognizersAllResponse """ if not language: languages = self.supported_languages else: languages = [language] recognizers = [] for language in languages: logger.info(f"Fetching all recognizers for language {language}") recognizers.extend( self.registry.get_recognizers(language=language, all_fields=True) ) return list(set(recognizers))
(self, language: Optional[str] = None) -> List[presidio_analyzer.entity_recognizer.EntityRecognizer]
16,335
presidio_analyzer.analyzer_engine
get_supported_entities
Return a list of the entities that can be detected. :param language: Return only entities supported in a specific language. :return: List of entity names
def get_supported_entities(self, language: Optional[str] = None) -> List[str]: """ Return a list of the entities that can be detected. :param language: Return only entities supported in a specific language. :return: List of entity names """ recognizers = self.get_recognizers(language=language) supported_entities = [] for recognizer in recognizers: supported_entities.extend(recognizer.get_supported_entities()) return list(set(supported_entities))
(self, language: Optional[str] = None) -> List[str]
16,336
presidio_analyzer.analyzer_request
AnalyzerRequest
Analyzer request data. :param req_data: A request dictionary with the following fields: text: the text to analyze language: the language of the text entities: List of PII entities that should be looked for in the text. If entities=None then all entities are looked for. correlation_id: cross call ID for this request score_threshold: A minimum value for which to return an identified entity log_decision_process: Should the decision points within the analysis be logged return_decision_process: Should the decision points within the analysis returned as part of the response
class AnalyzerRequest: """ Analyzer request data. :param req_data: A request dictionary with the following fields: text: the text to analyze language: the language of the text entities: List of PII entities that should be looked for in the text. If entities=None then all entities are looked for. correlation_id: cross call ID for this request score_threshold: A minimum value for which to return an identified entity log_decision_process: Should the decision points within the analysis be logged return_decision_process: Should the decision points within the analysis returned as part of the response """ def __init__(self, req_data: Dict): self.text = req_data.get("text") self.language = req_data.get("language") self.entities = req_data.get("entities") self.correlation_id = req_data.get("correlation_id") self.score_threshold = req_data.get("score_threshold") self.return_decision_process = req_data.get("return_decision_process") ad_hoc_recognizers = req_data.get("ad_hoc_recognizers") self.ad_hoc_recognizers = [] if ad_hoc_recognizers: self.ad_hoc_recognizers = [ PatternRecognizer.from_dict(rec) for rec in ad_hoc_recognizers ] self.context = req_data.get("context")
(req_data: Dict)
16,337
presidio_analyzer.analyzer_request
__init__
null
def __init__(self, req_data: Dict): self.text = req_data.get("text") self.language = req_data.get("language") self.entities = req_data.get("entities") self.correlation_id = req_data.get("correlation_id") self.score_threshold = req_data.get("score_threshold") self.return_decision_process = req_data.get("return_decision_process") ad_hoc_recognizers = req_data.get("ad_hoc_recognizers") self.ad_hoc_recognizers = [] if ad_hoc_recognizers: self.ad_hoc_recognizers = [ PatternRecognizer.from_dict(rec) for rec in ad_hoc_recognizers ] self.context = req_data.get("context")
(self, req_data: Dict)
16,338
presidio_analyzer.batch_analyzer_engine
BatchAnalyzerEngine
Batch analysis of documents (tables, lists, dicts). Wrapper class to run Presidio Analyzer Engine on multiple values, either lists/iterators of strings, or dictionaries. :param: analyzer_engine: AnalyzerEngine instance to use for handling the values in those collections.
class BatchAnalyzerEngine: """ Batch analysis of documents (tables, lists, dicts). Wrapper class to run Presidio Analyzer Engine on multiple values, either lists/iterators of strings, or dictionaries. :param: analyzer_engine: AnalyzerEngine instance to use for handling the values in those collections. """ def __init__(self, analyzer_engine: Optional[AnalyzerEngine] = None): self.analyzer_engine = analyzer_engine if not analyzer_engine: self.analyzer_engine = AnalyzerEngine() def analyze_iterator( self, texts: Iterable[Union[str, bool, float, int]], language: str, **kwargs, ) -> List[List[RecognizerResult]]: """ Analyze an iterable of strings. :param texts: An list containing strings to be analyzed. :param language: Input language :param kwargs: Additional parameters for the `AnalyzerEngine.analyze` method. """ # validate types texts = self._validate_types(texts) # Process the texts as batch for improved performance nlp_artifacts_batch: Iterator[ Tuple[str, NlpArtifacts] ] = self.analyzer_engine.nlp_engine.process_batch( texts=texts, language=language ) list_results = [] for text, nlp_artifacts in nlp_artifacts_batch: results = self.analyzer_engine.analyze( text=str(text), nlp_artifacts=nlp_artifacts, language=language, **kwargs ) list_results.append(results) return list_results def analyze_dict( self, input_dict: Dict[str, Union[Any, Iterable[Any]]], language: str, keys_to_skip: Optional[List[str]] = None, **kwargs, ) -> Iterator[DictAnalyzerResult]: """ Analyze a dictionary of keys (strings) and values/iterable of values. Non-string values are returned as is. :param input_dict: The input dictionary for analysis :param language: Input language :param keys_to_skip: Keys to ignore during analysis :param kwargs: Additional keyword arguments for the `AnalyzerEngine.analyze` method. Use this to pass arguments to the analyze method, such as `ad_hoc_recognizers`, `context`, `return_decision_process`. See `AnalyzerEngine.analyze` for the full list. """ context = [] if "context" in kwargs: context = kwargs["context"] del kwargs["context"] if not keys_to_skip: keys_to_skip = [] for key, value in input_dict.items(): if not value or key in keys_to_skip: yield DictAnalyzerResult(key=key, value=value, recognizer_results=[]) continue # skip this key as requested # Add the key as an additional context specific_context = context[:] specific_context.append(key) if type(value) in (str, int, bool, float): results: List[RecognizerResult] = self.analyzer_engine.analyze( text=str(value), language=language, context=[key], **kwargs ) elif isinstance(value, dict): new_keys_to_skip = self._get_nested_keys_to_skip(key, keys_to_skip) results = self.analyze_dict( input_dict=value, language=language, context=specific_context, keys_to_skip=new_keys_to_skip, **kwargs, ) elif isinstance(value, Iterable): # Recursively iterate nested dicts results: List[List[RecognizerResult]] = self.analyze_iterator( texts=value, language=language, context=specific_context, **kwargs, ) else: raise ValueError(f"type {type(value)} is unsupported.") yield DictAnalyzerResult(key=key, value=value, recognizer_results=results) @staticmethod def _validate_types(value_iterator: Iterable[Any]) -> Iterator[Any]: for val in value_iterator: if val and not type(val) in (int, float, bool, str): err_msg = ( "Analyzer.analyze_iterator only works " "on primitive types (int, float, bool, str). " "Lists of objects are not yet supported." ) logger.error(err_msg) raise ValueError(err_msg) yield val @staticmethod def _get_nested_keys_to_skip(key, keys_to_skip): new_keys_to_skip = [ k.replace(f"{key}.", "") for k in keys_to_skip if k.startswith(key) ] return new_keys_to_skip
(analyzer_engine: Optional[presidio_analyzer.analyzer_engine.AnalyzerEngine] = None)
16,339
presidio_analyzer.batch_analyzer_engine
__init__
null
def __init__(self, analyzer_engine: Optional[AnalyzerEngine] = None): self.analyzer_engine = analyzer_engine if not analyzer_engine: self.analyzer_engine = AnalyzerEngine()
(self, analyzer_engine: Optional[presidio_analyzer.analyzer_engine.AnalyzerEngine] = None)
16,340
presidio_analyzer.batch_analyzer_engine
_get_nested_keys_to_skip
null
@staticmethod def _get_nested_keys_to_skip(key, keys_to_skip): new_keys_to_skip = [ k.replace(f"{key}.", "") for k in keys_to_skip if k.startswith(key) ] return new_keys_to_skip
(key, keys_to_skip)
16,341
presidio_analyzer.batch_analyzer_engine
_validate_types
null
@staticmethod def _validate_types(value_iterator: Iterable[Any]) -> Iterator[Any]: for val in value_iterator: if val and not type(val) in (int, float, bool, str): err_msg = ( "Analyzer.analyze_iterator only works " "on primitive types (int, float, bool, str). " "Lists of objects are not yet supported." ) logger.error(err_msg) raise ValueError(err_msg) yield val
(value_iterator: Iterable[Any]) -> Iterator[Any]
16,342
presidio_analyzer.batch_analyzer_engine
analyze_dict
Analyze a dictionary of keys (strings) and values/iterable of values. Non-string values are returned as is. :param input_dict: The input dictionary for analysis :param language: Input language :param keys_to_skip: Keys to ignore during analysis :param kwargs: Additional keyword arguments for the `AnalyzerEngine.analyze` method. Use this to pass arguments to the analyze method, such as `ad_hoc_recognizers`, `context`, `return_decision_process`. See `AnalyzerEngine.analyze` for the full list.
def analyze_dict( self, input_dict: Dict[str, Union[Any, Iterable[Any]]], language: str, keys_to_skip: Optional[List[str]] = None, **kwargs, ) -> Iterator[DictAnalyzerResult]: """ Analyze a dictionary of keys (strings) and values/iterable of values. Non-string values are returned as is. :param input_dict: The input dictionary for analysis :param language: Input language :param keys_to_skip: Keys to ignore during analysis :param kwargs: Additional keyword arguments for the `AnalyzerEngine.analyze` method. Use this to pass arguments to the analyze method, such as `ad_hoc_recognizers`, `context`, `return_decision_process`. See `AnalyzerEngine.analyze` for the full list. """ context = [] if "context" in kwargs: context = kwargs["context"] del kwargs["context"] if not keys_to_skip: keys_to_skip = [] for key, value in input_dict.items(): if not value or key in keys_to_skip: yield DictAnalyzerResult(key=key, value=value, recognizer_results=[]) continue # skip this key as requested # Add the key as an additional context specific_context = context[:] specific_context.append(key) if type(value) in (str, int, bool, float): results: List[RecognizerResult] = self.analyzer_engine.analyze( text=str(value), language=language, context=[key], **kwargs ) elif isinstance(value, dict): new_keys_to_skip = self._get_nested_keys_to_skip(key, keys_to_skip) results = self.analyze_dict( input_dict=value, language=language, context=specific_context, keys_to_skip=new_keys_to_skip, **kwargs, ) elif isinstance(value, Iterable): # Recursively iterate nested dicts results: List[List[RecognizerResult]] = self.analyze_iterator( texts=value, language=language, context=specific_context, **kwargs, ) else: raise ValueError(f"type {type(value)} is unsupported.") yield DictAnalyzerResult(key=key, value=value, recognizer_results=results)
(self, input_dict: Dict[str, Union[Any, Iterable[Any]]], language: str, keys_to_skip: Optional[List[str]] = None, **kwargs) -> Iterator[presidio_analyzer.dict_analyzer_result.DictAnalyzerResult]
16,343
presidio_analyzer.batch_analyzer_engine
analyze_iterator
Analyze an iterable of strings. :param texts: An list containing strings to be analyzed. :param language: Input language :param kwargs: Additional parameters for the `AnalyzerEngine.analyze` method.
def analyze_iterator( self, texts: Iterable[Union[str, bool, float, int]], language: str, **kwargs, ) -> List[List[RecognizerResult]]: """ Analyze an iterable of strings. :param texts: An list containing strings to be analyzed. :param language: Input language :param kwargs: Additional parameters for the `AnalyzerEngine.analyze` method. """ # validate types texts = self._validate_types(texts) # Process the texts as batch for improved performance nlp_artifacts_batch: Iterator[ Tuple[str, NlpArtifacts] ] = self.analyzer_engine.nlp_engine.process_batch( texts=texts, language=language ) list_results = [] for text, nlp_artifacts in nlp_artifacts_batch: results = self.analyzer_engine.analyze( text=str(text), nlp_artifacts=nlp_artifacts, language=language, **kwargs ) list_results.append(results) return list_results
(self, texts: Iterable[Union[str, bool, float, int]], language: str, **kwargs) -> List[List[presidio_analyzer.recognizer_result.RecognizerResult]]
16,344
presidio_analyzer.context_aware_enhancers.context_aware_enhancer
ContextAwareEnhancer
A class representing an abstract context aware enhancer. Context words might enhance confidence score of a recognized entity, ContextAwareEnhancer is an abstract class to be inherited by a context aware enhancer logic. :param context_similarity_factor: How much to enhance confidence of match entity :param min_score_with_context_similarity: Minimum confidence score :param context_prefix_count: how many words before the entity to match context :param context_suffix_count: how many words after the entity to match context
class ContextAwareEnhancer: """ A class representing an abstract context aware enhancer. Context words might enhance confidence score of a recognized entity, ContextAwareEnhancer is an abstract class to be inherited by a context aware enhancer logic. :param context_similarity_factor: How much to enhance confidence of match entity :param min_score_with_context_similarity: Minimum confidence score :param context_prefix_count: how many words before the entity to match context :param context_suffix_count: how many words after the entity to match context """ MIN_SCORE = 0 MAX_SCORE = 1.0 def __init__( self, context_similarity_factor: float, min_score_with_context_similarity: float, context_prefix_count: int, context_suffix_count: int, ): self.context_similarity_factor = context_similarity_factor self.min_score_with_context_similarity = min_score_with_context_similarity self.context_prefix_count = context_prefix_count self.context_suffix_count = context_suffix_count @abstractmethod def enhance_using_context( self, text: str, raw_results: List[RecognizerResult], nlp_artifacts: NlpArtifacts, recognizers: List[EntityRecognizer], context: Optional[List[str]] = None, ) -> List[RecognizerResult]: """ Update results in case surrounding words are relevant to the context words. Using the surrounding words of the actual word matches, look for specific strings that if found contribute to the score of the result, improving the confidence that the match is indeed of that PII entity type :param text: The actual text that was analyzed :param raw_results: Recognizer results which didn't take context into consideration :param nlp_artifacts: The nlp artifacts contains elements such as lemmatized tokens for better accuracy of the context enhancement process :param recognizers: the list of recognizers :param context: list of context words """ return raw_results
(context_similarity_factor: float, min_score_with_context_similarity: float, context_prefix_count: int, context_suffix_count: int)
16,345
presidio_analyzer.context_aware_enhancers.context_aware_enhancer
__init__
null
def __init__( self, context_similarity_factor: float, min_score_with_context_similarity: float, context_prefix_count: int, context_suffix_count: int, ): self.context_similarity_factor = context_similarity_factor self.min_score_with_context_similarity = min_score_with_context_similarity self.context_prefix_count = context_prefix_count self.context_suffix_count = context_suffix_count
(self, context_similarity_factor: float, min_score_with_context_similarity: float, context_prefix_count: int, context_suffix_count: int)
16,346
presidio_analyzer.context_aware_enhancers.context_aware_enhancer
enhance_using_context
Update results in case surrounding words are relevant to the context words. Using the surrounding words of the actual word matches, look for specific strings that if found contribute to the score of the result, improving the confidence that the match is indeed of that PII entity type :param text: The actual text that was analyzed :param raw_results: Recognizer results which didn't take context into consideration :param nlp_artifacts: The nlp artifacts contains elements such as lemmatized tokens for better accuracy of the context enhancement process :param recognizers: the list of recognizers :param context: list of context words
@abstractmethod def enhance_using_context( self, text: str, raw_results: List[RecognizerResult], nlp_artifacts: NlpArtifacts, recognizers: List[EntityRecognizer], context: Optional[List[str]] = None, ) -> List[RecognizerResult]: """ Update results in case surrounding words are relevant to the context words. Using the surrounding words of the actual word matches, look for specific strings that if found contribute to the score of the result, improving the confidence that the match is indeed of that PII entity type :param text: The actual text that was analyzed :param raw_results: Recognizer results which didn't take context into consideration :param nlp_artifacts: The nlp artifacts contains elements such as lemmatized tokens for better accuracy of the context enhancement process :param recognizers: the list of recognizers :param context: list of context words """ return raw_results
(self, text: str, raw_results: List[presidio_analyzer.recognizer_result.RecognizerResult], nlp_artifacts: presidio_analyzer.nlp_engine.nlp_artifacts.NlpArtifacts, recognizers: List[presidio_analyzer.entity_recognizer.EntityRecognizer], context: Optional[List[str]] = None) -> List[presidio_analyzer.recognizer_result.RecognizerResult]
16,347
presidio_analyzer.dict_analyzer_result
DictAnalyzerResult
Data class for holding the output of the Presidio Analyzer on dictionaries. :param key: key in dictionary :param value: value to run analysis on (either string or list of strings) :param recognizer_results: Analyzer output for one value. Could be either: - A list of recognizer results if the input is one string - A list of lists of recognizer results, if the input is a list of strings. - An iterator of a DictAnalyzerResult, if the input is a dictionary. In this case the recognizer_results would be the iterator of the DictAnalyzerResults next level in the dictionary.
class DictAnalyzerResult: """ Data class for holding the output of the Presidio Analyzer on dictionaries. :param key: key in dictionary :param value: value to run analysis on (either string or list of strings) :param recognizer_results: Analyzer output for one value. Could be either: - A list of recognizer results if the input is one string - A list of lists of recognizer results, if the input is a list of strings. - An iterator of a DictAnalyzerResult, if the input is a dictionary. In this case the recognizer_results would be the iterator of the DictAnalyzerResults next level in the dictionary. """ key: str value: Union[str, List[str], dict] recognizer_results: Union[ List[RecognizerResult], List[List[RecognizerResult]], Iterator["DictAnalyzerResult"], ]
(key: str, value: Union[str, List[str], dict], recognizer_results: Union[List[presidio_analyzer.recognizer_result.RecognizerResult], List[List[presidio_analyzer.recognizer_result.RecognizerResult]], Iterator[presidio_analyzer.dict_analyzer_result.DictAnalyzerResult]]) -> None
16,348
presidio_analyzer.dict_analyzer_result
__eq__
null
from dataclasses import dataclass from typing import List, Union, Iterator from presidio_analyzer import RecognizerResult @dataclass class DictAnalyzerResult: """ Data class for holding the output of the Presidio Analyzer on dictionaries. :param key: key in dictionary :param value: value to run analysis on (either string or list of strings) :param recognizer_results: Analyzer output for one value. Could be either: - A list of recognizer results if the input is one string - A list of lists of recognizer results, if the input is a list of strings. - An iterator of a DictAnalyzerResult, if the input is a dictionary. In this case the recognizer_results would be the iterator of the DictAnalyzerResults next level in the dictionary. """ key: str value: Union[str, List[str], dict] recognizer_results: Union[ List[RecognizerResult], List[List[RecognizerResult]], Iterator["DictAnalyzerResult"], ]
(self, other)
16,351
presidio_analyzer.entity_recognizer
EntityRecognizer
A class representing an abstract PII entity recognizer. EntityRecognizer is an abstract class to be inherited by Recognizers which hold the logic for recognizing specific PII entities. EntityRecognizer exposes a method called enhance_using_context which can be overridden in case a custom context aware enhancement is needed in derived class of a recognizer. :param supported_entities: the entities supported by this recognizer (for example, phone number, address, etc.) :param supported_language: the language supported by this recognizer. The supported langauge code is iso6391Name :param name: the name of this recognizer (optional) :param version: the recognizer current version :param context: a list of words which can help boost confidence score when they appear in context of the matched entity
class EntityRecognizer: """ A class representing an abstract PII entity recognizer. EntityRecognizer is an abstract class to be inherited by Recognizers which hold the logic for recognizing specific PII entities. EntityRecognizer exposes a method called enhance_using_context which can be overridden in case a custom context aware enhancement is needed in derived class of a recognizer. :param supported_entities: the entities supported by this recognizer (for example, phone number, address, etc.) :param supported_language: the language supported by this recognizer. The supported langauge code is iso6391Name :param name: the name of this recognizer (optional) :param version: the recognizer current version :param context: a list of words which can help boost confidence score when they appear in context of the matched entity """ MIN_SCORE = 0 MAX_SCORE = 1.0 def __init__( self, supported_entities: List[str], name: str = None, supported_language: str = "en", version: str = "0.0.1", context: Optional[List[str]] = None, ): self.supported_entities = supported_entities if name is None: self.name = self.__class__.__name__ # assign class name as name else: self.name = name self._id = f"{self.name}_{id(self)}" self.supported_language = supported_language self.version = version self.is_loaded = False self.context = context if context else [] self.load() logger.info("Loaded recognizer: %s", self.name) self.is_loaded = True @property def id(self): """Return a unique identifier of this recognizer.""" return self._id @abstractmethod def load(self) -> None: """ Initialize the recognizer assets if needed. (e.g. machine learning models) """ @abstractmethod def analyze( self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts ) -> List[RecognizerResult]: """ Analyze text to identify entities. :param text: The text to be analyzed :param entities: The list of entities this recognizer is able to detect :param nlp_artifacts: A group of attributes which are the result of an NLP process over the input text. :return: List of results detected by this recognizer. """ return None def enhance_using_context( self, text: str, raw_recognizer_results: List[RecognizerResult], other_raw_recognizer_results: List[RecognizerResult], nlp_artifacts: NlpArtifacts, context: Optional[List[str]] = None, ) -> List[RecognizerResult]: """Enhance confidence score using context of the entity. Override this method in derived class in case a custom logic is needed, otherwise return value will be equal to raw_results. in case a result score is boosted, derived class need to update result.recognition_metadata[RecognizerResult.IS_SCORE_ENHANCED_BY_CONTEXT_KEY] :param text: The actual text that was analyzed :param raw_recognizer_results: This recognizer's results, to be updated based on recognizer specific context. :param other_raw_recognizer_results: Other recognizer results matched in the given text to allow related entity context enhancement :param nlp_artifacts: The nlp artifacts contains elements such as lemmatized tokens for better accuracy of the context enhancement process :param context: list of context words """ return raw_recognizer_results def get_supported_entities(self) -> List[str]: """ Return the list of entities this recognizer can identify. :return: A list of the supported entities by this recognizer """ return self.supported_entities def get_supported_language(self) -> str: """ Return the language this recognizer can support. :return: A list of the supported language by this recognizer """ return self.supported_language def get_version(self) -> str: """ Return the version of this recognizer. :return: The current version of this recognizer """ return self.version def to_dict(self) -> Dict: """ Serialize self to dictionary. :return: a dictionary """ return_dict = { "supported_entities": self.supported_entities, "supported_language": self.supported_language, "name": self.name, "version": self.version, } return return_dict @classmethod def from_dict(cls, entity_recognizer_dict: Dict) -> "EntityRecognizer": """ Create EntityRecognizer from a dict input. :param entity_recognizer_dict: Dict containing keys and values for instantiation """ return cls(**entity_recognizer_dict) @staticmethod def remove_duplicates(results: List[RecognizerResult]) -> List[RecognizerResult]: """ Remove duplicate results. Remove duplicates in case the two results have identical start and ends and types. :param results: List[RecognizerResult] :return: List[RecognizerResult] """ results = list(set(results)) results = sorted(results, key=lambda x: (-x.score, x.start, -(x.end - x.start))) filtered_results = [] for result in results: if result.score == 0: continue to_keep = result not in filtered_results # equals based comparison if to_keep: for filtered in filtered_results: # If result is contained in one of the other results if ( result.contained_in(filtered) and result.entity_type == filtered.entity_type ): to_keep = False break if to_keep: filtered_results.append(result) return filtered_results
(supported_entities: List[str], name: str = None, supported_language: str = 'en', version: str = '0.0.1', context: Optional[List[str]] = None)
16,352
presidio_analyzer.entity_recognizer
__init__
null
def __init__( self, supported_entities: List[str], name: str = None, supported_language: str = "en", version: str = "0.0.1", context: Optional[List[str]] = None, ): self.supported_entities = supported_entities if name is None: self.name = self.__class__.__name__ # assign class name as name else: self.name = name self._id = f"{self.name}_{id(self)}" self.supported_language = supported_language self.version = version self.is_loaded = False self.context = context if context else [] self.load() logger.info("Loaded recognizer: %s", self.name) self.is_loaded = True
(self, supported_entities: List[str], name: Optional[str] = None, supported_language: str = 'en', version: str = '0.0.1', context: Optional[List[str]] = None)
16,353
presidio_analyzer.entity_recognizer
analyze
Analyze text to identify entities. :param text: The text to be analyzed :param entities: The list of entities this recognizer is able to detect :param nlp_artifacts: A group of attributes which are the result of an NLP process over the input text. :return: List of results detected by this recognizer.
@abstractmethod def analyze( self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts ) -> List[RecognizerResult]: """ Analyze text to identify entities. :param text: The text to be analyzed :param entities: The list of entities this recognizer is able to detect :param nlp_artifacts: A group of attributes which are the result of an NLP process over the input text. :return: List of results detected by this recognizer. """ return None
(self, text: str, entities: List[str], nlp_artifacts: presidio_analyzer.nlp_engine.nlp_artifacts.NlpArtifacts) -> List[presidio_analyzer.recognizer_result.RecognizerResult]
16,354
presidio_analyzer.entity_recognizer
enhance_using_context
Enhance confidence score using context of the entity. Override this method in derived class in case a custom logic is needed, otherwise return value will be equal to raw_results. in case a result score is boosted, derived class need to update result.recognition_metadata[RecognizerResult.IS_SCORE_ENHANCED_BY_CONTEXT_KEY] :param text: The actual text that was analyzed :param raw_recognizer_results: This recognizer's results, to be updated based on recognizer specific context. :param other_raw_recognizer_results: Other recognizer results matched in the given text to allow related entity context enhancement :param nlp_artifacts: The nlp artifacts contains elements such as lemmatized tokens for better accuracy of the context enhancement process :param context: list of context words
def enhance_using_context( self, text: str, raw_recognizer_results: List[RecognizerResult], other_raw_recognizer_results: List[RecognizerResult], nlp_artifacts: NlpArtifacts, context: Optional[List[str]] = None, ) -> List[RecognizerResult]: """Enhance confidence score using context of the entity. Override this method in derived class in case a custom logic is needed, otherwise return value will be equal to raw_results. in case a result score is boosted, derived class need to update result.recognition_metadata[RecognizerResult.IS_SCORE_ENHANCED_BY_CONTEXT_KEY] :param text: The actual text that was analyzed :param raw_recognizer_results: This recognizer's results, to be updated based on recognizer specific context. :param other_raw_recognizer_results: Other recognizer results matched in the given text to allow related entity context enhancement :param nlp_artifacts: The nlp artifacts contains elements such as lemmatized tokens for better accuracy of the context enhancement process :param context: list of context words """ return raw_recognizer_results
(self, text: str, raw_recognizer_results: List[presidio_analyzer.recognizer_result.RecognizerResult], other_raw_recognizer_results: List[presidio_analyzer.recognizer_result.RecognizerResult], nlp_artifacts: presidio_analyzer.nlp_engine.nlp_artifacts.NlpArtifacts, context: Optional[List[str]] = None) -> List[presidio_analyzer.recognizer_result.RecognizerResult]
16,355
presidio_analyzer.entity_recognizer
get_supported_entities
Return the list of entities this recognizer can identify. :return: A list of the supported entities by this recognizer
def get_supported_entities(self) -> List[str]: """ Return the list of entities this recognizer can identify. :return: A list of the supported entities by this recognizer """ return self.supported_entities
(self) -> List[str]
16,356
presidio_analyzer.entity_recognizer
get_supported_language
Return the language this recognizer can support. :return: A list of the supported language by this recognizer
def get_supported_language(self) -> str: """ Return the language this recognizer can support. :return: A list of the supported language by this recognizer """ return self.supported_language
(self) -> str
16,357
presidio_analyzer.entity_recognizer
get_version
Return the version of this recognizer. :return: The current version of this recognizer
def get_version(self) -> str: """ Return the version of this recognizer. :return: The current version of this recognizer """ return self.version
(self) -> str
16,358
presidio_analyzer.entity_recognizer
load
Initialize the recognizer assets if needed. (e.g. machine learning models)
@abstractmethod def load(self) -> None: """ Initialize the recognizer assets if needed. (e.g. machine learning models) """
(self) -> NoneType
16,359
presidio_analyzer.entity_recognizer
remove_duplicates
Remove duplicate results. Remove duplicates in case the two results have identical start and ends and types. :param results: List[RecognizerResult] :return: List[RecognizerResult]
@staticmethod def remove_duplicates(results: List[RecognizerResult]) -> List[RecognizerResult]: """ Remove duplicate results. Remove duplicates in case the two results have identical start and ends and types. :param results: List[RecognizerResult] :return: List[RecognizerResult] """ results = list(set(results)) results = sorted(results, key=lambda x: (-x.score, x.start, -(x.end - x.start))) filtered_results = [] for result in results: if result.score == 0: continue to_keep = result not in filtered_results # equals based comparison if to_keep: for filtered in filtered_results: # If result is contained in one of the other results if ( result.contained_in(filtered) and result.entity_type == filtered.entity_type ): to_keep = False break if to_keep: filtered_results.append(result) return filtered_results
(results: List[presidio_analyzer.recognizer_result.RecognizerResult]) -> List[presidio_analyzer.recognizer_result.RecognizerResult]
16,360
presidio_analyzer.entity_recognizer
to_dict
Serialize self to dictionary. :return: a dictionary
def to_dict(self) -> Dict: """ Serialize self to dictionary. :return: a dictionary """ return_dict = { "supported_entities": self.supported_entities, "supported_language": self.supported_language, "name": self.name, "version": self.version, } return return_dict
(self) -> Dict
16,361
presidio_analyzer.context_aware_enhancers.lemma_context_aware_enhancer
LemmaContextAwareEnhancer
A class representing a lemma based context aware enhancer logic. Context words might enhance confidence score of a recognized entity, LemmaContextAwareEnhancer is an implementation of Lemma based context aware logic, it compares spacy lemmas of each word in context of the matched entity to given context and the recognizer context words, if matched it enhance the recognized entity confidence score by a given factor. :param context_similarity_factor: How much to enhance confidence of match entity :param min_score_with_context_similarity: Minimum confidence score :param context_prefix_count: how many words before the entity to match context :param context_suffix_count: how many words after the entity to match context
class LemmaContextAwareEnhancer(ContextAwareEnhancer): """ A class representing a lemma based context aware enhancer logic. Context words might enhance confidence score of a recognized entity, LemmaContextAwareEnhancer is an implementation of Lemma based context aware logic, it compares spacy lemmas of each word in context of the matched entity to given context and the recognizer context words, if matched it enhance the recognized entity confidence score by a given factor. :param context_similarity_factor: How much to enhance confidence of match entity :param min_score_with_context_similarity: Minimum confidence score :param context_prefix_count: how many words before the entity to match context :param context_suffix_count: how many words after the entity to match context """ def __init__( self, context_similarity_factor: float = 0.35, min_score_with_context_similarity: float = 0.4, context_prefix_count: int = 5, context_suffix_count: int = 0, ): super().__init__( context_similarity_factor=context_similarity_factor, min_score_with_context_similarity=min_score_with_context_similarity, context_prefix_count=context_prefix_count, context_suffix_count=context_suffix_count, ) def enhance_using_context( self, text: str, raw_results: List[RecognizerResult], nlp_artifacts: NlpArtifacts, recognizers: List[EntityRecognizer], context: Optional[List[str]] = None, ) -> List[RecognizerResult]: """ Update results in case the lemmas of surrounding words or input context words are identical to the context words. Using the surrounding words of the actual word matches, look for specific strings that if found contribute to the score of the result, improving the confidence that the match is indeed of that PII entity type :param text: The actual text that was analyzed :param raw_results: Recognizer results which didn't take context into consideration :param nlp_artifacts: The nlp artifacts contains elements such as lemmatized tokens for better accuracy of the context enhancement process :param recognizers: the list of recognizers :param context: list of context words """ # noqa D205 D400 # create a deep copy of the results object, so we can manipulate it results = copy.deepcopy(raw_results) # create recognizer context dictionary recognizers_dict = {recognizer.id: recognizer for recognizer in recognizers} # Create empty list in None or lowercase all context words in the list if not context: context = [] else: context = [word.lower() for word in context] # Sanity if nlp_artifacts is None: logger.warning("NLP artifacts were not provided") return results for result in results: recognizer = None # get recognizer matching the result, if found. if ( result.recognition_metadata and RecognizerResult.RECOGNIZER_IDENTIFIER_KEY in result.recognition_metadata.keys() ): recognizer = recognizers_dict.get( result.recognition_metadata[ RecognizerResult.RECOGNIZER_IDENTIFIER_KEY ] ) if not recognizer: logger.debug( "Recognizer name not found as part of the " "recognition_metadata dict in the RecognizerResult. " ) continue # skip recognizer result if the recognizer doesn't support # context enhancement if not recognizer.context: logger.debug( "recognizer '%s' does not support context enhancement", recognizer.name, ) continue # skip context enhancement if already boosted by recognizer level if result.recognition_metadata.get( RecognizerResult.IS_SCORE_ENHANCED_BY_CONTEXT_KEY ): logger.debug("result score already boosted, skipping") continue # extract lemmatized context from the surrounding of the match word = text[result.start : result.end] surrounding_words = self._extract_surrounding_words( nlp_artifacts=nlp_artifacts, word=word, start=result.start ) # combine other sources of context with surrounding words surrounding_words.extend(context) supportive_context_word = self._find_supportive_word_in_context( surrounding_words, recognizer.context ) if supportive_context_word != "": result.score += self.context_similarity_factor result.score = max(result.score, self.min_score_with_context_similarity) result.score = min(result.score, ContextAwareEnhancer.MAX_SCORE) # Update the explainability object with context information # helped to improve the score result.analysis_explanation.set_supportive_context_word( supportive_context_word ) result.analysis_explanation.set_improved_score(result.score) return results @staticmethod def _find_supportive_word_in_context( context_list: List[str], recognizer_context_list: List[str] ) -> str: """ Find words in the text which are relevant for context evaluation. A word is considered a supportive context word if there's exact match between a keyword in context_text and any keyword in context_list. :param context_list words before and after the matched entity within a specified window size :param recognizer_context_list a list of words considered as context keywords manually specified by the recognizer's author """ word = "" # If the context list is empty, no need to continue if context_list is None or recognizer_context_list is None: return word for predefined_context_word in recognizer_context_list: # result == true only if any of the predefined context words # is found exactly or as a substring in any of the collected # context words result = next( ( True for keyword in context_list if predefined_context_word in keyword ), False, ) if result: logger.debug("Found context keyword '%s'", predefined_context_word) word = predefined_context_word break return word def _extract_surrounding_words( self, nlp_artifacts: NlpArtifacts, word: str, start: int ) -> List[str]: """Extract words surrounding another given word. The text from which the context is extracted is given in the nlp doc. :param nlp_artifacts: An abstraction layer which holds different items which are the result of a NLP pipeline execution on a given text :param word: The word to look for context around :param start: The start index of the word in the original text """ if not nlp_artifacts.tokens: logger.info("Skipping context extraction due to lack of NLP artifacts") # if there are no nlp artifacts, this is ok, we can # extract context and we return a valid, yet empty # context return [""] # Get the already prepared words in the given text, in their # LEMMATIZED version lemmatized_keywords = nlp_artifacts.keywords # since the list of tokens is not necessarily aligned # with the actual index of the match, we look for the # token index which corresponds to the match token_index = self._find_index_of_match_token( word, start, nlp_artifacts.tokens, nlp_artifacts.tokens_indices ) # index i belongs to the PII entity, take the preceding n words # and the successing m words into a context list backward_context = self._add_n_words_backward( token_index, self.context_prefix_count, nlp_artifacts.lemmas, lemmatized_keywords, ) forward_context = self._add_n_words_forward( token_index, self.context_suffix_count, nlp_artifacts.lemmas, lemmatized_keywords, ) context_list = [] context_list.extend(backward_context) context_list.extend(forward_context) context_list = list(set(context_list)) logger.debug("Context list is: %s", " ".join(context_list)) return context_list @staticmethod def _find_index_of_match_token( word: str, start: int, tokens, tokens_indices: List[int] # noqa ANN001 ) -> int: found = False # we use the known start index of the original word to find the actual # token at that index, we are not checking for equivilance since the # token might be just a substring of that word (e.g. for phone number # 555-124564 the first token might be just '555' or for a match like ' # rocket' the actual token will just be 'rocket' hence the misalignment # of indices) # Note: we are iterating over the original tokens (not the lemmatized) i = -1 for i, token in enumerate(tokens, 0): # Either we found a token with the exact location, or # we take a token which its characters indices covers # the index we are looking for. if (tokens_indices[i] == start) or (start < tokens_indices[i] + len(token)): # found the interesting token, the one that around it # we take n words, we save the matching lemma found = True break if not found: raise ValueError( "Did not find word '" + word + "' " "in the list of tokens although it " "is expected to be found" ) return i @staticmethod def _add_n_words( index: int, n_words: int, lemmas: List[str], lemmatized_filtered_keywords: List[str], is_backward: bool, ) -> List[str]: """ Prepare a string of context words. Return a list of words which surrounds a lemma at a given index. The words will be collected only if exist in the filtered array :param index: index of the lemma that its surrounding words we want :param n_words: number of words to take :param lemmas: array of lemmas :param lemmatized_filtered_keywords: the array of filtered lemmas from the original sentence, :param is_backward: if true take the preceeding words, if false, take the successing words """ i = index context_words = [] # The entity itself is no interest to us...however we want to # consider it anyway for cases were it is attached with no spaces # to an interesting context word, so we allow it and add 1 to # the number of collected words # collect at most n words (in lower case) remaining = n_words + 1 while 0 <= i < len(lemmas) and remaining > 0: lower_lemma = lemmas[i].lower() if lower_lemma in lemmatized_filtered_keywords: context_words.append(lower_lemma) remaining -= 1 i = i - 1 if is_backward else i + 1 return context_words def _add_n_words_forward( self, index: int, n_words: int, lemmas: List[str], lemmatized_filtered_keywords: List[str], ) -> List[str]: return self._add_n_words( index, n_words, lemmas, lemmatized_filtered_keywords, False ) def _add_n_words_backward( self, index: int, n_words: int, lemmas: List[str], lemmatized_filtered_keywords: List[str], ) -> List[str]: return self._add_n_words( index, n_words, lemmas, lemmatized_filtered_keywords, True )
(context_similarity_factor: float = 0.35, min_score_with_context_similarity: float = 0.4, context_prefix_count: int = 5, context_suffix_count: int = 0)
16,362
presidio_analyzer.context_aware_enhancers.lemma_context_aware_enhancer
__init__
null
def __init__( self, context_similarity_factor: float = 0.35, min_score_with_context_similarity: float = 0.4, context_prefix_count: int = 5, context_suffix_count: int = 0, ): super().__init__( context_similarity_factor=context_similarity_factor, min_score_with_context_similarity=min_score_with_context_similarity, context_prefix_count=context_prefix_count, context_suffix_count=context_suffix_count, )
(self, context_similarity_factor: float = 0.35, min_score_with_context_similarity: float = 0.4, context_prefix_count: int = 5, context_suffix_count: int = 0)
16,363
presidio_analyzer.context_aware_enhancers.lemma_context_aware_enhancer
_add_n_words
Prepare a string of context words. Return a list of words which surrounds a lemma at a given index. The words will be collected only if exist in the filtered array :param index: index of the lemma that its surrounding words we want :param n_words: number of words to take :param lemmas: array of lemmas :param lemmatized_filtered_keywords: the array of filtered lemmas from the original sentence, :param is_backward: if true take the preceeding words, if false, take the successing words
@staticmethod def _add_n_words( index: int, n_words: int, lemmas: List[str], lemmatized_filtered_keywords: List[str], is_backward: bool, ) -> List[str]: """ Prepare a string of context words. Return a list of words which surrounds a lemma at a given index. The words will be collected only if exist in the filtered array :param index: index of the lemma that its surrounding words we want :param n_words: number of words to take :param lemmas: array of lemmas :param lemmatized_filtered_keywords: the array of filtered lemmas from the original sentence, :param is_backward: if true take the preceeding words, if false, take the successing words """ i = index context_words = [] # The entity itself is no interest to us...however we want to # consider it anyway for cases were it is attached with no spaces # to an interesting context word, so we allow it and add 1 to # the number of collected words # collect at most n words (in lower case) remaining = n_words + 1 while 0 <= i < len(lemmas) and remaining > 0: lower_lemma = lemmas[i].lower() if lower_lemma in lemmatized_filtered_keywords: context_words.append(lower_lemma) remaining -= 1 i = i - 1 if is_backward else i + 1 return context_words
(index: int, n_words: int, lemmas: List[str], lemmatized_filtered_keywords: List[str], is_backward: bool) -> List[str]
16,364
presidio_analyzer.context_aware_enhancers.lemma_context_aware_enhancer
_add_n_words_backward
null
def _add_n_words_backward( self, index: int, n_words: int, lemmas: List[str], lemmatized_filtered_keywords: List[str], ) -> List[str]: return self._add_n_words( index, n_words, lemmas, lemmatized_filtered_keywords, True )
(self, index: int, n_words: int, lemmas: List[str], lemmatized_filtered_keywords: List[str]) -> List[str]
16,365
presidio_analyzer.context_aware_enhancers.lemma_context_aware_enhancer
_add_n_words_forward
null
def _add_n_words_forward( self, index: int, n_words: int, lemmas: List[str], lemmatized_filtered_keywords: List[str], ) -> List[str]: return self._add_n_words( index, n_words, lemmas, lemmatized_filtered_keywords, False )
(self, index: int, n_words: int, lemmas: List[str], lemmatized_filtered_keywords: List[str]) -> List[str]
16,366
presidio_analyzer.context_aware_enhancers.lemma_context_aware_enhancer
_extract_surrounding_words
Extract words surrounding another given word. The text from which the context is extracted is given in the nlp doc. :param nlp_artifacts: An abstraction layer which holds different items which are the result of a NLP pipeline execution on a given text :param word: The word to look for context around :param start: The start index of the word in the original text
def _extract_surrounding_words( self, nlp_artifacts: NlpArtifacts, word: str, start: int ) -> List[str]: """Extract words surrounding another given word. The text from which the context is extracted is given in the nlp doc. :param nlp_artifacts: An abstraction layer which holds different items which are the result of a NLP pipeline execution on a given text :param word: The word to look for context around :param start: The start index of the word in the original text """ if not nlp_artifacts.tokens: logger.info("Skipping context extraction due to lack of NLP artifacts") # if there are no nlp artifacts, this is ok, we can # extract context and we return a valid, yet empty # context return [""] # Get the already prepared words in the given text, in their # LEMMATIZED version lemmatized_keywords = nlp_artifacts.keywords # since the list of tokens is not necessarily aligned # with the actual index of the match, we look for the # token index which corresponds to the match token_index = self._find_index_of_match_token( word, start, nlp_artifacts.tokens, nlp_artifacts.tokens_indices ) # index i belongs to the PII entity, take the preceding n words # and the successing m words into a context list backward_context = self._add_n_words_backward( token_index, self.context_prefix_count, nlp_artifacts.lemmas, lemmatized_keywords, ) forward_context = self._add_n_words_forward( token_index, self.context_suffix_count, nlp_artifacts.lemmas, lemmatized_keywords, ) context_list = [] context_list.extend(backward_context) context_list.extend(forward_context) context_list = list(set(context_list)) logger.debug("Context list is: %s", " ".join(context_list)) return context_list
(self, nlp_artifacts: presidio_analyzer.nlp_engine.nlp_artifacts.NlpArtifacts, word: str, start: int) -> List[str]
16,367
presidio_analyzer.context_aware_enhancers.lemma_context_aware_enhancer
_find_index_of_match_token
null
@staticmethod def _find_index_of_match_token( word: str, start: int, tokens, tokens_indices: List[int] # noqa ANN001 ) -> int: found = False # we use the known start index of the original word to find the actual # token at that index, we are not checking for equivilance since the # token might be just a substring of that word (e.g. for phone number # 555-124564 the first token might be just '555' or for a match like ' # rocket' the actual token will just be 'rocket' hence the misalignment # of indices) # Note: we are iterating over the original tokens (not the lemmatized) i = -1 for i, token in enumerate(tokens, 0): # Either we found a token with the exact location, or # we take a token which its characters indices covers # the index we are looking for. if (tokens_indices[i] == start) or (start < tokens_indices[i] + len(token)): # found the interesting token, the one that around it # we take n words, we save the matching lemma found = True break if not found: raise ValueError( "Did not find word '" + word + "' " "in the list of tokens although it " "is expected to be found" ) return i
(word: str, start: int, tokens, tokens_indices: List[int]) -> int
16,368
presidio_analyzer.context_aware_enhancers.lemma_context_aware_enhancer
_find_supportive_word_in_context
Find words in the text which are relevant for context evaluation. A word is considered a supportive context word if there's exact match between a keyword in context_text and any keyword in context_list. :param context_list words before and after the matched entity within a specified window size :param recognizer_context_list a list of words considered as context keywords manually specified by the recognizer's author
@staticmethod def _find_supportive_word_in_context( context_list: List[str], recognizer_context_list: List[str] ) -> str: """ Find words in the text which are relevant for context evaluation. A word is considered a supportive context word if there's exact match between a keyword in context_text and any keyword in context_list. :param context_list words before and after the matched entity within a specified window size :param recognizer_context_list a list of words considered as context keywords manually specified by the recognizer's author """ word = "" # If the context list is empty, no need to continue if context_list is None or recognizer_context_list is None: return word for predefined_context_word in recognizer_context_list: # result == true only if any of the predefined context words # is found exactly or as a substring in any of the collected # context words result = next( ( True for keyword in context_list if predefined_context_word in keyword ), False, ) if result: logger.debug("Found context keyword '%s'", predefined_context_word) word = predefined_context_word break return word
(context_list: List[str], recognizer_context_list: List[str]) -> str
16,369
presidio_analyzer.context_aware_enhancers.lemma_context_aware_enhancer
enhance_using_context
Update results in case the lemmas of surrounding words or input context words are identical to the context words. Using the surrounding words of the actual word matches, look for specific strings that if found contribute to the score of the result, improving the confidence that the match is indeed of that PII entity type :param text: The actual text that was analyzed :param raw_results: Recognizer results which didn't take context into consideration :param nlp_artifacts: The nlp artifacts contains elements such as lemmatized tokens for better accuracy of the context enhancement process :param recognizers: the list of recognizers :param context: list of context words
def enhance_using_context( self, text: str, raw_results: List[RecognizerResult], nlp_artifacts: NlpArtifacts, recognizers: List[EntityRecognizer], context: Optional[List[str]] = None, ) -> List[RecognizerResult]: """ Update results in case the lemmas of surrounding words or input context words are identical to the context words. Using the surrounding words of the actual word matches, look for specific strings that if found contribute to the score of the result, improving the confidence that the match is indeed of that PII entity type :param text: The actual text that was analyzed :param raw_results: Recognizer results which didn't take context into consideration :param nlp_artifacts: The nlp artifacts contains elements such as lemmatized tokens for better accuracy of the context enhancement process :param recognizers: the list of recognizers :param context: list of context words """ # noqa D205 D400 # create a deep copy of the results object, so we can manipulate it results = copy.deepcopy(raw_results) # create recognizer context dictionary recognizers_dict = {recognizer.id: recognizer for recognizer in recognizers} # Create empty list in None or lowercase all context words in the list if not context: context = [] else: context = [word.lower() for word in context] # Sanity if nlp_artifacts is None: logger.warning("NLP artifacts were not provided") return results for result in results: recognizer = None # get recognizer matching the result, if found. if ( result.recognition_metadata and RecognizerResult.RECOGNIZER_IDENTIFIER_KEY in result.recognition_metadata.keys() ): recognizer = recognizers_dict.get( result.recognition_metadata[ RecognizerResult.RECOGNIZER_IDENTIFIER_KEY ] ) if not recognizer: logger.debug( "Recognizer name not found as part of the " "recognition_metadata dict in the RecognizerResult. " ) continue # skip recognizer result if the recognizer doesn't support # context enhancement if not recognizer.context: logger.debug( "recognizer '%s' does not support context enhancement", recognizer.name, ) continue # skip context enhancement if already boosted by recognizer level if result.recognition_metadata.get( RecognizerResult.IS_SCORE_ENHANCED_BY_CONTEXT_KEY ): logger.debug("result score already boosted, skipping") continue # extract lemmatized context from the surrounding of the match word = text[result.start : result.end] surrounding_words = self._extract_surrounding_words( nlp_artifacts=nlp_artifacts, word=word, start=result.start ) # combine other sources of context with surrounding words surrounding_words.extend(context) supportive_context_word = self._find_supportive_word_in_context( surrounding_words, recognizer.context ) if supportive_context_word != "": result.score += self.context_similarity_factor result.score = max(result.score, self.min_score_with_context_similarity) result.score = min(result.score, ContextAwareEnhancer.MAX_SCORE) # Update the explainability object with context information # helped to improve the score result.analysis_explanation.set_supportive_context_word( supportive_context_word ) result.analysis_explanation.set_improved_score(result.score) return results
(self, text: str, raw_results: List[presidio_analyzer.recognizer_result.RecognizerResult], nlp_artifacts: presidio_analyzer.nlp_engine.nlp_artifacts.NlpArtifacts, recognizers: List[presidio_analyzer.entity_recognizer.EntityRecognizer], context: Optional[List[str]] = None) -> List[presidio_analyzer.recognizer_result.RecognizerResult]
16,370
presidio_analyzer.local_recognizer
LocalRecognizer
PII entity recognizer which runs on the same process as the AnalyzerEngine.
class LocalRecognizer(ABC, EntityRecognizer): """PII entity recognizer which runs on the same process as the AnalyzerEngine."""
(supported_entities: List[str], name: str = None, supported_language: str = 'en', version: str = '0.0.1', context: Optional[List[str]] = None)
16,380
presidio_analyzer.pattern
Pattern
A class that represents a regex pattern. :param name: the name of the pattern :param regex: the regex pattern to detect :param score: the pattern's strength (values varies 0-1)
class Pattern: """ A class that represents a regex pattern. :param name: the name of the pattern :param regex: the regex pattern to detect :param score: the pattern's strength (values varies 0-1) """ def __init__(self, name: str, regex: str, score: float): self.name = name self.regex = regex self.score = score self.compiled_regex = None self.compiled_with_flags = None def to_dict(self) -> Dict: """ Turn this instance into a dictionary. :return: a dictionary """ return_dict = {"name": self.name, "score": self.score, "regex": self.regex} return return_dict @classmethod def from_dict(cls, pattern_dict: Dict) -> "Pattern": """ Load an instance from a dictionary. :param pattern_dict: a dictionary holding the pattern's parameters :return: a Pattern instance """ return cls(**pattern_dict) def __repr__(self): """Return string representation of instance.""" return json.dumps(self.to_dict()) def __str__(self): """Return string representation of instance.""" return json.dumps(self.to_dict())
(name: str, regex: str, score: float)
16,381
presidio_analyzer.pattern
__init__
null
def __init__(self, name: str, regex: str, score: float): self.name = name self.regex = regex self.score = score self.compiled_regex = None self.compiled_with_flags = None
(self, name: str, regex: str, score: float)
16,382
presidio_analyzer.pattern
__repr__
Return string representation of instance.
def __repr__(self): """Return string representation of instance.""" return json.dumps(self.to_dict())
(self)
16,383
presidio_analyzer.pattern
__str__
Return string representation of instance.
def __str__(self): """Return string representation of instance.""" return json.dumps(self.to_dict())
(self)
16,384
presidio_analyzer.pattern
to_dict
Turn this instance into a dictionary. :return: a dictionary
def to_dict(self) -> Dict: """ Turn this instance into a dictionary. :return: a dictionary """ return_dict = {"name": self.name, "score": self.score, "regex": self.regex} return return_dict
(self) -> Dict
16,385
presidio_analyzer.pattern_recognizer
PatternRecognizer
PII entity recognizer using regular expressions or deny-lists. :param patterns: A list of patterns to detect :param deny_list: A list of words to detect, in case our recognizer uses a predefined list of words (deny list) :param context: list of context words :param deny_list_score: confidence score for a term identified using a deny-list :param global_regex_flags: regex flags to be used in regex matching, including deny-lists.
class PatternRecognizer(LocalRecognizer): """ PII entity recognizer using regular expressions or deny-lists. :param patterns: A list of patterns to detect :param deny_list: A list of words to detect, in case our recognizer uses a predefined list of words (deny list) :param context: list of context words :param deny_list_score: confidence score for a term identified using a deny-list :param global_regex_flags: regex flags to be used in regex matching, including deny-lists. """ def __init__( self, supported_entity: str, name: str = None, supported_language: str = "en", patterns: List[Pattern] = None, deny_list: List[str] = None, context: List[str] = None, deny_list_score: float = 1.0, global_regex_flags: Optional[int] = re.DOTALL | re.MULTILINE | re.IGNORECASE, version: str = "0.0.1", ): if not supported_entity: raise ValueError("Pattern recognizer should be initialized with entity") if not patterns and not deny_list: raise ValueError( "Pattern recognizer should be initialized with patterns" " or with deny list" ) super().__init__( supported_entities=[supported_entity], supported_language=supported_language, name=name, version=version, ) if patterns is None: self.patterns = [] else: self.patterns = patterns self.context = context self.deny_list_score = deny_list_score self.global_regex_flags = global_regex_flags if deny_list: deny_list_pattern = self._deny_list_to_regex(deny_list) self.patterns.append(deny_list_pattern) self.deny_list = deny_list else: self.deny_list = [] def load(self): # noqa D102 pass def analyze( self, text: str, entities: List[str], nlp_artifacts: Optional[NlpArtifacts] = None, regex_flags: Optional[int] = None, ) -> List[RecognizerResult]: """ Analyzes text to detect PII using regular expressions or deny-lists. :param text: Text to be analyzed :param entities: Entities this recognizer can detect :param nlp_artifacts: Output values from the NLP engine :param regex_flags: regex flags to be used in regex matching :return: """ results = [] if self.patterns: pattern_result = self.__analyze_patterns(text, regex_flags) results.extend(pattern_result) return results def _deny_list_to_regex(self, deny_list: List[str]) -> Pattern: """ Convert a list of words to a matching regex. To be analyzed by the analyze method as any other regex patterns. :param deny_list: the list of words to detect :return:the regex of the words for detection """ # Escape deny list elements as preparation for regex escaped_deny_list = [re.escape(element) for element in deny_list] regex = r"(?:^|(?<=\W))(" + "|".join(escaped_deny_list) + r")(?:(?=\W)|$)" return Pattern(name="deny_list", regex=regex, score=self.deny_list_score) def validate_result(self, pattern_text: str) -> Optional[bool]: """ Validate the pattern logic e.g., by running checksum on a detected pattern. :param pattern_text: the text to validated. Only the part in text that was detected by the regex engine :return: A bool indicating whether the validation was successful. """ return None def invalidate_result(self, pattern_text: str) -> Optional[bool]: """ Logic to check for result invalidation by running pruning logic. For example, each SSN number group should not consist of all the same digits. :param pattern_text: the text to validated. Only the part in text that was detected by the regex engine :return: A bool indicating whether the result is invalidated """ return None @staticmethod def build_regex_explanation( recognizer_name: str, pattern_name: str, pattern: str, original_score: float, validation_result: bool, regex_flags: int, ) -> AnalysisExplanation: """ Construct an explanation for why this entity was detected. :param recognizer_name: Name of recognizer detecting the entity :param pattern_name: Regex pattern name which detected the entity :param pattern: Regex pattern logic :param original_score: Score given by the recognizer :param validation_result: Whether validation was used and its result :param regex_flags: Regex flags used in the regex matching :return: Analysis explanation """ explanation = AnalysisExplanation( recognizer=recognizer_name, original_score=original_score, pattern_name=pattern_name, pattern=pattern, validation_result=validation_result, regex_flags=regex_flags, ) return explanation def __analyze_patterns( self, text: str, flags: int = None ) -> List[RecognizerResult]: """ Evaluate all patterns in the provided text. Including words in the provided deny-list :param text: text to analyze :param flags: regex flags :return: A list of RecognizerResult """ flags = flags if flags else self.global_regex_flags results = [] for pattern in self.patterns: match_start_time = datetime.datetime.now() # Compile regex if flags differ from flags the regex was compiled with if not pattern.compiled_regex or pattern.compiled_with_flags != flags: pattern.compiled_with_flags = flags pattern.compiled_regex = re.compile(pattern.regex, flags=flags) matches = pattern.compiled_regex.finditer(text) match_time = datetime.datetime.now() - match_start_time logger.debug( "--- match_time[%s]: %s.%s seconds", pattern.name, match_time.seconds, match_time.microseconds, ) for match in matches: start, end = match.span() current_match = text[start:end] # Skip empty results if current_match == "": continue score = pattern.score validation_result = self.validate_result(current_match) description = self.build_regex_explanation( self.name, pattern.name, pattern.regex, score, validation_result, flags, ) pattern_result = RecognizerResult( entity_type=self.supported_entities[0], start=start, end=end, score=score, analysis_explanation=description, recognition_metadata={ RecognizerResult.RECOGNIZER_NAME_KEY: self.name, RecognizerResult.RECOGNIZER_IDENTIFIER_KEY: self.id, }, ) if validation_result is not None: if validation_result: pattern_result.score = EntityRecognizer.MAX_SCORE else: pattern_result.score = EntityRecognizer.MIN_SCORE invalidation_result = self.invalidate_result(current_match) if invalidation_result is not None and invalidation_result: pattern_result.score = EntityRecognizer.MIN_SCORE if pattern_result.score > EntityRecognizer.MIN_SCORE: results.append(pattern_result) # Update analysis explanation score following validation or invalidation description.score = pattern_result.score results = EntityRecognizer.remove_duplicates(results) return results def to_dict(self) -> Dict: """Serialize instance into a dictionary.""" return_dict = super().to_dict() return_dict["patterns"] = [pat.to_dict() for pat in self.patterns] return_dict["deny_list"] = self.deny_list return_dict["context"] = self.context return_dict["supported_entity"] = return_dict["supported_entities"][0] del return_dict["supported_entities"] return return_dict @classmethod def from_dict(cls, entity_recognizer_dict: Dict) -> "PatternRecognizer": """Create instance from a serialized dict.""" patterns = entity_recognizer_dict.get("patterns") if patterns: patterns_list = [Pattern.from_dict(pat) for pat in patterns] entity_recognizer_dict["patterns"] = patterns_list return cls(**entity_recognizer_dict)
(supported_entity: str, name: str = None, supported_language: str = 'en', patterns: List[presidio_analyzer.pattern.Pattern] = None, deny_list: List[str] = None, context: List[str] = None, deny_list_score: float = 1.0, global_regex_flags: Optional[int] = regex.I|regex.M|regex.S, version: str = '0.0.1')
16,386
presidio_analyzer.pattern_recognizer
__analyze_patterns
Evaluate all patterns in the provided text. Including words in the provided deny-list :param text: text to analyze :param flags: regex flags :return: A list of RecognizerResult
def __analyze_patterns( self, text: str, flags: int = None ) -> List[RecognizerResult]: """ Evaluate all patterns in the provided text. Including words in the provided deny-list :param text: text to analyze :param flags: regex flags :return: A list of RecognizerResult """ flags = flags if flags else self.global_regex_flags results = [] for pattern in self.patterns: match_start_time = datetime.datetime.now() # Compile regex if flags differ from flags the regex was compiled with if not pattern.compiled_regex or pattern.compiled_with_flags != flags: pattern.compiled_with_flags = flags pattern.compiled_regex = re.compile(pattern.regex, flags=flags) matches = pattern.compiled_regex.finditer(text) match_time = datetime.datetime.now() - match_start_time logger.debug( "--- match_time[%s]: %s.%s seconds", pattern.name, match_time.seconds, match_time.microseconds, ) for match in matches: start, end = match.span() current_match = text[start:end] # Skip empty results if current_match == "": continue score = pattern.score validation_result = self.validate_result(current_match) description = self.build_regex_explanation( self.name, pattern.name, pattern.regex, score, validation_result, flags, ) pattern_result = RecognizerResult( entity_type=self.supported_entities[0], start=start, end=end, score=score, analysis_explanation=description, recognition_metadata={ RecognizerResult.RECOGNIZER_NAME_KEY: self.name, RecognizerResult.RECOGNIZER_IDENTIFIER_KEY: self.id, }, ) if validation_result is not None: if validation_result: pattern_result.score = EntityRecognizer.MAX_SCORE else: pattern_result.score = EntityRecognizer.MIN_SCORE invalidation_result = self.invalidate_result(current_match) if invalidation_result is not None and invalidation_result: pattern_result.score = EntityRecognizer.MIN_SCORE if pattern_result.score > EntityRecognizer.MIN_SCORE: results.append(pattern_result) # Update analysis explanation score following validation or invalidation description.score = pattern_result.score results = EntityRecognizer.remove_duplicates(results) return results
(self, text: str, flags: Optional[int] = None) -> List[presidio_analyzer.recognizer_result.RecognizerResult]