index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
14,213
ipyleaflet.leaflet
MarkerCluster
MarkerCluster class, with Layer as parent class. A cluster of markers that you can put on the map like other layers. Attributes ---------- markers: list, default [] List of markers to include in the cluster. show_coverage_on_hover: bool, default True Mouse over a cluster to show the bounds of its markers. zoom_to_bounds_on_click: bool, default True Click a cluster to zoom in to its bounds. spiderfy_on_max_zoom: bool, default True When you click a cluster at the bottom zoom level, spiderfy it so you can see all of its markers. (Note: the spiderfy occurs at the current zoom level if all items within the cluster are still clustered at the maximum zoom level or at zoom specified by ``disableClusteringAtZoom`` option) remove_outside_visible_bounds: bool, default True Clusters and markers too far from the viewport are removed from the map for performance. animate: bool, default True Smoothly split / merge cluster children when zooming and spiderfying. If L.DomUtil.TRANSITION is false, this option has no effect (no animation is possible). animate_adding_markers: bool, default False If set to true (and animate option is also true) then adding individual markers to the MarkerClusterGroup after it has been added to the map will add the marker and animate it into the cluster. Defaults to false as this gives better performance when bulk adding markers. disable_clustering_at_zoom: int, default 18 Markers will not be clustered at or below this zoom level. Note: you may be interested in disabling ``spiderfyOnMaxZoom`` option when using ``disableClusteringAtZoom``. max_cluster_radius: int, default 80 The maximum radius that a cluster will cover from the central marker (in pixels). Decreasing will make more, smaller clusters. polygon_options: dict, default {} Options to pass when creating the L.Polygon(points, options) to show the bounds of a cluster. Defaults to empty, which lets Leaflet use the default `Path options <https://leafletjs.com/reference.html#path>`_. spider_leg_polyline_options: dict, default {"weight": 1.5, "color": "#222", "opacity": 0.5} Allows you to specify `PolylineOptions <https://leafletjs.com/reference.html#polyline>`_ to style spider legs. spiderfy_distance_multiplier: int, default 1 Scale the distance away from the center that spiderfied markers are placed. Use if you are using big marker icons.
class MarkerCluster(Layer): """MarkerCluster class, with Layer as parent class. A cluster of markers that you can put on the map like other layers. Attributes ---------- markers: list, default [] List of markers to include in the cluster. show_coverage_on_hover: bool, default True Mouse over a cluster to show the bounds of its markers. zoom_to_bounds_on_click: bool, default True Click a cluster to zoom in to its bounds. spiderfy_on_max_zoom: bool, default True When you click a cluster at the bottom zoom level, spiderfy it so you can see all of its markers. (Note: the spiderfy occurs at the current zoom level if all items within the cluster are still clustered at the maximum zoom level or at zoom specified by ``disableClusteringAtZoom`` option) remove_outside_visible_bounds: bool, default True Clusters and markers too far from the viewport are removed from the map for performance. animate: bool, default True Smoothly split / merge cluster children when zooming and spiderfying. If L.DomUtil.TRANSITION is false, this option has no effect (no animation is possible). animate_adding_markers: bool, default False If set to true (and animate option is also true) then adding individual markers to the MarkerClusterGroup after it has been added to the map will add the marker and animate it into the cluster. Defaults to false as this gives better performance when bulk adding markers. disable_clustering_at_zoom: int, default 18 Markers will not be clustered at or below this zoom level. Note: you may be interested in disabling ``spiderfyOnMaxZoom`` option when using ``disableClusteringAtZoom``. max_cluster_radius: int, default 80 The maximum radius that a cluster will cover from the central marker (in pixels). Decreasing will make more, smaller clusters. polygon_options: dict, default {} Options to pass when creating the L.Polygon(points, options) to show the bounds of a cluster. Defaults to empty, which lets Leaflet use the default `Path options <https://leafletjs.com/reference.html#path>`_. spider_leg_polyline_options: dict, default {"weight": 1.5, "color": "#222", "opacity": 0.5} Allows you to specify `PolylineOptions <https://leafletjs.com/reference.html#polyline>`_ to style spider legs. spiderfy_distance_multiplier: int, default 1 Scale the distance away from the center that spiderfied markers are placed. Use if you are using big marker icons. """ _view_name = Unicode("LeafletMarkerClusterView").tag(sync=True) _model_name = Unicode("LeafletMarkerClusterModel").tag(sync=True) markers = Tuple().tag(trait=Instance(Layer), sync=True, **widget_serialization) # Options show_coverage_on_hover = Bool(True).tag(sync=True, o=True) zoom_to_bounds_on_click = Bool(True).tag(sync=True, o=True) spiderfy_on_max_zoom = Bool(True).tag(sync=True, o=True) remove_outside_visible_bounds = Bool(True).tag(sync=True, o=True) animate = Bool(True).tag(sync=True, o=True) animate_adding_markers = Bool(False).tag(sync=True, o=True) disable_clustering_at_zoom = Int(18).tag(sync=True, o=True) max_cluster_radius = Int(80).tag(sync=True, o=True) polygon_options = Dict({}).tag(sync=True, o=True) spider_leg_polyline_options = Dict({"weight": 1.5, "color": "#222", "opacity": 0.5}).tag(sync=True, o=True) spiderfy_distance_multiplier = Int(1).tag(sync=True, o=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
14,278
ipyleaflet.leaflet
MeasureControl
MeasureControl class, with Control as parent class. A control which allows making measurements on the Map. Attributes ---------------------- primary_length_unit: str, default 'feet' Possible values are 'feet', 'meters', 'miles', 'kilometers' or any user defined unit. secondary_length_unit: str, default None Possible values are 'feet', 'meters', 'miles', 'kilometers' or any user defined unit. primary_area_unit: str, default 'acres' Possible values are 'acres', 'hectares', 'sqfeet', 'sqmeters', 'sqmiles' or any user defined unit. secondary_area_unit: str, default None Possible values are 'acres', 'hectares', 'sqfeet', 'sqmeters', 'sqmiles' or any user defined unit. active_color: CSS Color, default '#ABE67E' The color used for current measurements. completed_color: CSS Color, default '#C8F2BE' The color used for the completed measurements.
class MeasureControl(Control): """MeasureControl class, with Control as parent class. A control which allows making measurements on the Map. Attributes ---------------------- primary_length_unit: str, default 'feet' Possible values are 'feet', 'meters', 'miles', 'kilometers' or any user defined unit. secondary_length_unit: str, default None Possible values are 'feet', 'meters', 'miles', 'kilometers' or any user defined unit. primary_area_unit: str, default 'acres' Possible values are 'acres', 'hectares', 'sqfeet', 'sqmeters', 'sqmiles' or any user defined unit. secondary_area_unit: str, default None Possible values are 'acres', 'hectares', 'sqfeet', 'sqmeters', 'sqmiles' or any user defined unit. active_color: CSS Color, default '#ABE67E' The color used for current measurements. completed_color: CSS Color, default '#C8F2BE' The color used for the completed measurements. """ _view_name = Unicode("LeafletMeasureControlView").tag(sync=True) _model_name = Unicode("LeafletMeasureControlModel").tag(sync=True) _length_units = ["feet", "meters", "miles", "kilometers"] _area_units = ["acres", "hectares", "sqfeet", "sqmeters", "sqmiles"] _custom_units_dict = {} _custom_units = Dict().tag(sync=True) primary_length_unit = Enum( values=_length_units, default_value="feet", help="""Possible values are feet, meters, miles, kilometers or any user defined unit""", ).tag(sync=True, o=True) secondary_length_unit = Enum( values=_length_units, default_value=None, allow_none=True, help="""Possible values are feet, meters, miles, kilometers or any user defined unit""", ).tag(sync=True, o=True) primary_area_unit = Enum( values=_area_units, default_value="acres", help="""Possible values are acres, hectares, sqfeet, sqmeters, sqmiles or any user defined unit""", ).tag(sync=True, o=True) secondary_area_unit = Enum( values=_area_units, default_value=None, allow_none=True, help="""Possible values are acres, hectares, sqfeet, sqmeters, sqmiles or any user defined unit""", ).tag(sync=True, o=True) active_color = Color("#ABE67E").tag(sync=True, o=True) completed_color = Color("#C8F2BE").tag(sync=True, o=True) popup_options = Dict( {"className": "leaflet-measure-resultpopup", "autoPanPadding": [10, 10]} ).tag(sync=True, o=True) capture_z_index = Int(10000).tag(sync=True, o=True) def add_length_unit(self, name, factor, decimals=0): """Add a custom length unit. Parameters ---------- name: str The name for your custom unit. factor: float Factor to apply when converting to this unit. Length in meters will be multiplied by this factor. decimals: int, default 0 Number of decimals to round results when using this unit. """ self._length_units.append(name) self._add_unit(name, factor, decimals) def add_area_unit(self, name, factor, decimals=0): """Add a custom area unit. Parameters ---------- name: str The name for your custom unit. factor: float Factor to apply when converting to this unit. Area in sqmeters will be multiplied by this factor. decimals: int, default 0 Number of decimals to round results when using this unit. """ self._area_units.append(name) self._add_unit(name, factor, decimals) def _add_unit(self, name, factor, decimals): self._custom_units_dict[name] = { "factor": factor, "display": name, "decimals": decimals, } self._custom_units = dict(**self._custom_units_dict)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
14,288
ipyleaflet.leaflet
_add_unit
null
def _add_unit(self, name, factor, decimals): self._custom_units_dict[name] = { "factor": factor, "display": name, "decimals": decimals, } self._custom_units = dict(**self._custom_units_dict)
(self, name, factor, decimals)
14,308
ipyleaflet.leaflet
add_area_unit
Add a custom area unit. Parameters ---------- name: str The name for your custom unit. factor: float Factor to apply when converting to this unit. Area in sqmeters will be multiplied by this factor. decimals: int, default 0 Number of decimals to round results when using this unit.
def add_area_unit(self, name, factor, decimals=0): """Add a custom area unit. Parameters ---------- name: str The name for your custom unit. factor: float Factor to apply when converting to this unit. Area in sqmeters will be multiplied by this factor. decimals: int, default 0 Number of decimals to round results when using this unit. """ self._area_units.append(name) self._add_unit(name, factor, decimals)
(self, name, factor, decimals=0)
14,309
ipyleaflet.leaflet
add_length_unit
Add a custom length unit. Parameters ---------- name: str The name for your custom unit. factor: float Factor to apply when converting to this unit. Length in meters will be multiplied by this factor. decimals: int, default 0 Number of decimals to round results when using this unit.
def add_length_unit(self, name, factor, decimals=0): """Add a custom length unit. Parameters ---------- name: str The name for your custom unit. factor: float Factor to apply when converting to this unit. Length in meters will be multiplied by this factor. decimals: int, default 0 Number of decimals to round results when using this unit. """ self._length_units.append(name) self._add_unit(name, factor, decimals)
(self, name, factor, decimals=0)
14,338
ipywidgets.widgets.widget_output
Output
Widget used as a context manager to display output. This widget can capture and display stdout, stderr, and rich output. To use it, create an instance of it and display it. You can then use the widget as a context manager: any output produced while in the context will be captured and displayed in the widget instead of the standard output area. You can also use the .capture() method to decorate a function or a method. Any output produced by the function will then go to the output widget. This is useful for debugging widget callbacks, for example. Example:: import ipywidgets as widgets from IPython.display import display out = widgets.Output() display(out) print('prints to output area') with out: print('prints to output widget') @out.capture() def func(): print('prints to output widget')
class Output(DOMWidget): """Widget used as a context manager to display output. This widget can capture and display stdout, stderr, and rich output. To use it, create an instance of it and display it. You can then use the widget as a context manager: any output produced while in the context will be captured and displayed in the widget instead of the standard output area. You can also use the .capture() method to decorate a function or a method. Any output produced by the function will then go to the output widget. This is useful for debugging widget callbacks, for example. Example:: import ipywidgets as widgets from IPython.display import display out = widgets.Output() display(out) print('prints to output area') with out: print('prints to output widget') @out.capture() def func(): print('prints to output widget') """ _view_name = Unicode('OutputView').tag(sync=True) _model_name = Unicode('OutputModel').tag(sync=True) _view_module = Unicode('@jupyter-widgets/output').tag(sync=True) _model_module = Unicode('@jupyter-widgets/output').tag(sync=True) _view_module_version = Unicode(__jupyter_widgets_output_version__).tag(sync=True) _model_module_version = Unicode(__jupyter_widgets_output_version__).tag(sync=True) msg_id = Unicode('', help="Parent message id of messages to capture").tag(sync=True) outputs = TypedTuple(trait=Dict(), help="The output messages synced from the frontend.").tag(sync=True) __counter = 0 def clear_output(self, *pargs, **kwargs): """ Clear the content of the output widget. Parameters ---------- wait: bool If True, wait to clear the output until new output is available to replace it. Default: False """ with self: clear_output(*pargs, **kwargs) # PY3: Force passing clear_output and clear_kwargs as kwargs def capture(self, clear_output=False, *clear_args, **clear_kwargs): """ Decorator to capture the stdout and stderr of a function. Parameters ---------- clear_output: bool If True, clear the content of the output widget at every new function call. Default: False wait: bool If True, wait to clear the output until new output is available to replace it. This is only used if clear_output is also True. Default: False """ def capture_decorator(func): @wraps(func) def inner(*args, **kwargs): if clear_output: self.clear_output(*clear_args, **clear_kwargs) with self: return func(*args, **kwargs) return inner return capture_decorator def __enter__(self): """Called upon entering output widget context manager.""" self._flush() ip = get_ipython() kernel = None if ip and getattr(ip, "kernel", None) is not None: kernel = ip.kernel elif self.comm is not None and getattr(self.comm, 'kernel', None) is not None: kernel = self.comm.kernel if kernel: parent = None if hasattr(kernel, "get_parent"): parent = kernel.get_parent() elif hasattr(kernel, "_parent_header"): # ipykernel < 6: kernel._parent_header is the parent *request* parent = kernel._parent_header if parent and parent.get("header"): self.msg_id = parent["header"]["msg_id"] self.__counter += 1 def __exit__(self, etype, evalue, tb): """Called upon exiting output widget context manager.""" kernel = None if etype is not None: ip = get_ipython() if ip: kernel = ip ip.showtraceback((etype, evalue, tb), tb_offset=0) elif (self.comm is not None and getattr(self.comm, "kernel", None) is not None and # Check if it's ipykernel getattr(self.comm.kernel, "send_response", None) is not None): kernel = self.comm.kernel kernel.send_response(kernel.iopub_socket, u'error', { u'traceback': ["".join(traceback.format_exception(etype, evalue, tb))], u'evalue': repr(evalue.args), u'ename': etype.__name__ }) self._flush() self.__counter -= 1 if self.__counter == 0: self.msg_id = '' # suppress exceptions when in IPython, since they are shown above, # otherwise let someone else handle it return True if kernel else None def _flush(self): """Flush stdout and stderr buffers.""" sys.stdout.flush() sys.stderr.flush() def _append_stream_output(self, text, stream_name): """Append a stream output.""" self.outputs += ( {'output_type': 'stream', 'name': stream_name, 'text': text}, ) def append_stdout(self, text): """Append text to the stdout stream.""" self._append_stream_output(text, stream_name='stdout') def append_stderr(self, text): """Append text to the stderr stream.""" self._append_stream_output(text, stream_name='stderr') def append_display_data(self, display_object): """Append a display object as an output. Parameters ---------- display_object : IPython.core.display.DisplayObject The object to display (e.g., an instance of `IPython.display.Markdown` or `IPython.display.Image`). """ fmt = InteractiveShell.instance().display_formatter.format data, metadata = fmt(display_object) self.outputs += ( { 'output_type': 'display_data', 'data': data, 'metadata': metadata }, )
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
14,342
ipywidgets.widgets.widget_output
__enter__
Called upon entering output widget context manager.
def __enter__(self): """Called upon entering output widget context manager.""" self._flush() ip = get_ipython() kernel = None if ip and getattr(ip, "kernel", None) is not None: kernel = ip.kernel elif self.comm is not None and getattr(self.comm, 'kernel', None) is not None: kernel = self.comm.kernel if kernel: parent = None if hasattr(kernel, "get_parent"): parent = kernel.get_parent() elif hasattr(kernel, "_parent_header"): # ipykernel < 6: kernel._parent_header is the parent *request* parent = kernel._parent_header if parent and parent.get("header"): self.msg_id = parent["header"]["msg_id"] self.__counter += 1
(self)
14,343
ipywidgets.widgets.widget_output
__exit__
Called upon exiting output widget context manager.
def __exit__(self, etype, evalue, tb): """Called upon exiting output widget context manager.""" kernel = None if etype is not None: ip = get_ipython() if ip: kernel = ip ip.showtraceback((etype, evalue, tb), tb_offset=0) elif (self.comm is not None and getattr(self.comm, "kernel", None) is not None and # Check if it's ipykernel getattr(self.comm.kernel, "send_response", None) is not None): kernel = self.comm.kernel kernel.send_response(kernel.iopub_socket, u'error', { u'traceback': ["".join(traceback.format_exception(etype, evalue, tb))], u'evalue': repr(evalue.args), u'ename': etype.__name__ }) self._flush() self.__counter -= 1 if self.__counter == 0: self.msg_id = '' # suppress exceptions when in IPython, since they are shown above, # otherwise let someone else handle it return True if kernel else None
(self, etype, evalue, tb)
14,350
ipywidgets.widgets.widget_output
_append_stream_output
Append a stream output.
def _append_stream_output(self, text, stream_name): """Append a stream output.""" self.outputs += ( {'output_type': 'stream', 'name': stream_name, 'text': text}, )
(self, text, stream_name)
14,353
ipywidgets.widgets.widget_output
_flush
Flush stdout and stderr buffers.
def _flush(self): """Flush stdout and stderr buffers.""" sys.stdout.flush() sys.stderr.flush()
(self)
14,373
ipywidgets.widgets.widget_output
append_display_data
Append a display object as an output. Parameters ---------- display_object : IPython.core.display.DisplayObject The object to display (e.g., an instance of `IPython.display.Markdown` or `IPython.display.Image`).
def append_display_data(self, display_object): """Append a display object as an output. Parameters ---------- display_object : IPython.core.display.DisplayObject The object to display (e.g., an instance of `IPython.display.Markdown` or `IPython.display.Image`). """ fmt = InteractiveShell.instance().display_formatter.format data, metadata = fmt(display_object) self.outputs += ( { 'output_type': 'display_data', 'data': data, 'metadata': metadata }, )
(self, display_object)
14,374
ipywidgets.widgets.widget_output
append_stderr
Append text to the stderr stream.
def append_stderr(self, text): """Append text to the stderr stream.""" self._append_stream_output(text, stream_name='stderr')
(self, text)
14,375
ipywidgets.widgets.widget_output
append_stdout
Append text to the stdout stream.
def append_stdout(self, text): """Append text to the stdout stream.""" self._append_stream_output(text, stream_name='stdout')
(self, text)
14,377
ipywidgets.widgets.widget_output
capture
Decorator to capture the stdout and stderr of a function. Parameters ---------- clear_output: bool If True, clear the content of the output widget at every new function call. Default: False wait: bool If True, wait to clear the output until new output is available to replace it. This is only used if clear_output is also True. Default: False
def capture(self, clear_output=False, *clear_args, **clear_kwargs): """ Decorator to capture the stdout and stderr of a function. Parameters ---------- clear_output: bool If True, clear the content of the output widget at every new function call. Default: False wait: bool If True, wait to clear the output until new output is available to replace it. This is only used if clear_output is also True. Default: False """ def capture_decorator(func): @wraps(func) def inner(*args, **kwargs): if clear_output: self.clear_output(*clear_args, **clear_kwargs) with self: return func(*args, **kwargs) return inner return capture_decorator
(self, clear_output=False, *clear_args, **clear_kwargs)
14,378
ipywidgets.widgets.widget_output
clear_output
Clear the content of the output widget. Parameters ---------- wait: bool If True, wait to clear the output until new output is available to replace it. Default: False
def clear_output(self, *pargs, **kwargs): """ Clear the content of the output widget. Parameters ---------- wait: bool If True, wait to clear the output until new output is available to replace it. Default: False """ with self: clear_output(*pargs, **kwargs)
(self, *pargs, **kwargs)
14,408
ipyleaflet.leaflet
PMTilesLayer
PMTilesLayer class, with Layer as parent class. PMTiles layer. Attributes ---------- url: string, default "" Url to the PMTiles archive. attribution: string, default "" PMTiles archive attribution. style: dict, default {} CSS Styles to apply to the vector data.
class PMTilesLayer(Layer): """PMTilesLayer class, with Layer as parent class. PMTiles layer. Attributes ---------- url: string, default "" Url to the PMTiles archive. attribution: string, default "" PMTiles archive attribution. style: dict, default {} CSS Styles to apply to the vector data. """ _view_name = Unicode("LeafletPMTilesLayerView").tag(sync=True) _model_name = Unicode("LeafletPMTilesLayerModel").tag(sync=True) url = Unicode().tag(sync=True, o=True) attribution = Unicode().tag(sync=True, o=True) style = Dict().tag(sync=True, o=True) def add_inspector(self): """Add an inspector to the layer.""" self.send({"msg": "add_inspector"})
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
14,438
ipyleaflet.leaflet
add_inspector
Add an inspector to the layer.
def add_inspector(self): """Add an inspector to the layer.""" self.send({"msg": "add_inspector"})
(self)
14,474
ipyleaflet.leaflet
PaneException
Custom PaneException class.
class PaneException(TraitError): """Custom PaneException class.""" pass
null
14,475
ipyleaflet.leaflet
Path
Path abstract class. Path layer. Attributes ---------- stroke: boolean, default True Whether to draw a stroke. color: CSS color, default '#0033FF' CSS color. weight: int, default 5 Weight of the stroke. fill: boolean, default True Whether to fill the path with a flat color. fill_color: CSS color, default None Color used for filling the path shape. If None, the color attribute value is used. fill_opacity: float, default 0.2 Opacity used for filling the path shape. line_cap: string, default "round" A string that defines shape to be used at the end of the stroke. Possible values are 'round', 'butt' or 'square'. line_join: string, default "round" A string that defines shape to be used at the corners of the stroke. Possible values are 'arcs', 'bevel', 'miter', 'miter-clip' or 'round'.
class Path(VectorLayer): """Path abstract class. Path layer. Attributes ---------- stroke: boolean, default True Whether to draw a stroke. color: CSS color, default '#0033FF' CSS color. weight: int, default 5 Weight of the stroke. fill: boolean, default True Whether to fill the path with a flat color. fill_color: CSS color, default None Color used for filling the path shape. If None, the color attribute value is used. fill_opacity: float, default 0.2 Opacity used for filling the path shape. line_cap: string, default "round" A string that defines shape to be used at the end of the stroke. Possible values are 'round', 'butt' or 'square'. line_join: string, default "round" A string that defines shape to be used at the corners of the stroke. Possible values are 'arcs', 'bevel', 'miter', 'miter-clip' or 'round'. """ _view_name = Unicode("LeafletPathView").tag(sync=True) _model_name = Unicode("LeafletPathModel").tag(sync=True) # Options stroke = Bool(True).tag(sync=True, o=True) color = Color("#0033FF").tag(sync=True, o=True) weight = Int(5).tag(sync=True, o=True) fill = Bool(True).tag(sync=True, o=True) fill_color = Color(None, allow_none=True).tag(sync=True, o=True) fill_opacity = Float(0.2).tag(sync=True, o=True) dash_array = Unicode(allow_none=True, default_value=None).tag(sync=True, o=True) line_cap = Enum(values=["round", "butt", "square"], default_value="round").tag( sync=True, o=True ) line_join = Enum( values=["arcs", "bevel", "miter", "miter-clip", "round"], default_value="round" ).tag(sync=True, o=True) pointer_events = Unicode("").tag(sync=True, o=True) opacity = Float(1.0, min=0.0, max=1.0).tag(sync=True, o=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
14,540
ipyleaflet.leaflet
Polygon
Polygon class, with Polyline as parent class. Polygon layer.
class Polygon(Polyline): """Polygon class, with Polyline as parent class. Polygon layer. """ _view_name = Unicode("LeafletPolygonView").tag(sync=True) _model_name = Unicode("LeafletPolygonModel").tag(sync=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
14,605
ipyleaflet.leaflet
Polyline
Polyline abstract class, with Path as parent class. Attributes ---------- locations: list, default [] Locations defining the shape. scaling: boolean, default True Whether you can edit the scale of the shape or not. rotation: boolean, default True Whether you can rotate the shape or not. uniform_scaling: boolean, default False Whether to keep the size ratio when changing the shape scale. smooth_factor: float, default 1. Smoothing intensity. transform: boolean, default False Whether the shape is editable or not. draggable: boolean, default False Whether you can drag the shape on the map or not.
class Polyline(Path): """Polyline abstract class, with Path as parent class. Attributes ---------- locations: list, default [] Locations defining the shape. scaling: boolean, default True Whether you can edit the scale of the shape or not. rotation: boolean, default True Whether you can rotate the shape or not. uniform_scaling: boolean, default False Whether to keep the size ratio when changing the shape scale. smooth_factor: float, default 1. Smoothing intensity. transform: boolean, default False Whether the shape is editable or not. draggable: boolean, default False Whether you can drag the shape on the map or not. """ _view_name = Unicode("LeafletPolylineView").tag(sync=True) _model_name = Unicode("LeafletPolylineModel").tag(sync=True) locations = List().tag(sync=True) scaling = Bool(True).tag(sync=True) rotation = Bool(True).tag(sync=True) uniform_scaling = Bool(False).tag(sync=True) # Options smooth_factor = Float(1.0).tag(sync=True, o=True) no_clip = Bool(True).tag(sync=True, o=True) transform = Bool(False).tag(sync=True, o=True) draggable = Bool(False).tag(sync=True, o=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
14,670
ipyleaflet.leaflet
Popup
Popup class. Popup element that can be placed on the map. Attributes ---------- location: tuple, default (0, 0) The tuple containing the latitude/longitude of the popup. child: object, default None Child widget that the Popup will contain. min_width: int, default 50 Minimum width of the Popup. max_width: int, default 300 Maximum width of the Popup. max_height: int, default None Maximum height of the Popup. auto_pan: boolean, default True Set it to False if you don’t want the map to do panning animation to fit the opened popup. auto_pan_padding: tuple, default (5, 5) keep_in_view: boolean, default False Set it to True if you want to prevent users from panning the popup off of the screen while it is open. close_button: boolean, default True Whether to show a close button or not. auto_close: boolean, default True Whether to automatically close the popup when interacting with another element of the map or not. close_on_escape_key: boolean, default True Whether to close the popup when clicking the escape key or not.
class Popup(UILayer): """Popup class. Popup element that can be placed on the map. Attributes ---------- location: tuple, default (0, 0) The tuple containing the latitude/longitude of the popup. child: object, default None Child widget that the Popup will contain. min_width: int, default 50 Minimum width of the Popup. max_width: int, default 300 Maximum width of the Popup. max_height: int, default None Maximum height of the Popup. auto_pan: boolean, default True Set it to False if you don’t want the map to do panning animation to fit the opened popup. auto_pan_padding: tuple, default (5, 5) keep_in_view: boolean, default False Set it to True if you want to prevent users from panning the popup off of the screen while it is open. close_button: boolean, default True Whether to show a close button or not. auto_close: boolean, default True Whether to automatically close the popup when interacting with another element of the map or not. close_on_escape_key: boolean, default True Whether to close the popup when clicking the escape key or not. """ _view_name = Unicode("LeafletPopupView").tag(sync=True) _model_name = Unicode("LeafletPopupModel").tag(sync=True) location = List(def_loc).tag(sync=True) child = Instance(DOMWidget, allow_none=True, default_value=None).tag( sync=True, **widget_serialization ) # Options min_width = Int(50).tag(sync=True, o=True) max_width = Int(300).tag(sync=True, o=True) max_height = Int(default_value=None, allow_none=True).tag(sync=True, o=True) auto_pan = Bool(True).tag(sync=True, o=True) auto_pan_padding_top_left = List(allow_none=True, default_value=None).tag( sync=True, o=True ) auto_pan_padding_bottom_right = List(allow_none=True, default_value=None).tag( sync=True, o=True ) auto_pan_padding = List([5, 5]).tag(sync=True, o=True) keep_in_view = Bool(False).tag(sync=True, o=True) close_button = Bool(True).tag(sync=True, o=True) auto_close = Bool(True).tag(sync=True, o=True) close_on_escape_key = Bool(True).tag(sync=True, o=True) def open_popup(self, location=None): """Open the popup on the bound map. Parameters ---------- location: list, default to the internal location The location to open the popup at. """ if location is not None: self.location = location self.send( {"msg": "open", "location": self.location if location is None else location} ) def close_popup(self): """Close the popup on the bound map.""" self.send({"msg": "close"})
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
14,702
ipyleaflet.leaflet
close_popup
Close the popup on the bound map.
def close_popup(self): """Close the popup on the bound map.""" self.send({"msg": "close"})
(self)
14,723
ipyleaflet.leaflet
open_popup
Open the popup on the bound map. Parameters ---------- location: list, default to the internal location The location to open the popup at.
def open_popup(self, location=None): """Open the popup on the bound map. Parameters ---------- location: list, default to the internal location The location to open the popup at. """ if location is not None: self.location = location self.send( {"msg": "open", "location": self.location if location is None else location} )
(self, location=None)
14,737
ipyleaflet.leaflet
RasterLayer
Abstract RasterLayer class. Attributes ---------- opacity: float, default 1. Opacity of the layer between 0. (fully transparent) and 1. (fully opaque). visible: boolean, default True Whether the layer is visible or not.
class RasterLayer(Layer): """Abstract RasterLayer class. Attributes ---------- opacity: float, default 1. Opacity of the layer between 0. (fully transparent) and 1. (fully opaque). visible: boolean, default True Whether the layer is visible or not. """ _view_name = Unicode("LeafletRasterLayerView").tag(sync=True) _model_name = Unicode("LeafletRasterLayerModel").tag(sync=True) opacity = Float(1.0, min=0.0, max=1.0).tag(sync=True) visible = Bool(True).tag(sync=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
14,802
ipyleaflet.leaflet
Rectangle
Rectangle class, with Polygon as parent class. Rectangle layer. Attributes ---------- bounds: list, default [] List of SW and NE location tuples. e.g. [(50, 75), (75, 120)].
class Rectangle(Polygon): """Rectangle class, with Polygon as parent class. Rectangle layer. Attributes ---------- bounds: list, default [] List of SW and NE location tuples. e.g. [(50, 75), (75, 120)]. """ _view_name = Unicode("LeafletRectangleView").tag(sync=True) _model_name = Unicode("LeafletRectangleModel").tag(sync=True) bounds = List(help="list of SW and NE location tuples").tag(sync=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
14,867
ipyleaflet.leaflet
ScaleControl
ScaleControl class, with Control as parent class. A control which shows the Map scale. Attributes ---------- max_width: int, default 100 Max width of the control, in pixels. metric: bool, default True Whether to show metric units. imperial: bool, default True Whether to show imperial units.
class ScaleControl(Control): """ScaleControl class, with Control as parent class. A control which shows the Map scale. Attributes ---------- max_width: int, default 100 Max width of the control, in pixels. metric: bool, default True Whether to show metric units. imperial: bool, default True Whether to show imperial units. """ _view_name = Unicode("LeafletScaleControlView").tag(sync=True) _model_name = Unicode("LeafletScaleControlModel").tag(sync=True) max_width = Int(100).tag(sync=True, o=True) metric = Bool(True).tag(sync=True, o=True) imperial = Bool(True).tag(sync=True, o=True) update_when_idle = Bool(False).tag(sync=True, o=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
14,924
ipyleaflet.leaflet
SearchControl
SearchControl class, with Control as parent class. Attributes ---------- url: string, default "" The url used for the search queries. layer: default None The LayerGroup used for search queries. zoom: int, default None The zoom level after moving to searched location, by default zoom level will not change. marker: default Marker() The marker used by the control. found_style: default {‘fillColor’: ‘#3f0’, ‘color’: ‘#0f0’} Style for searched feature when searching in LayerGroup.
class SearchControl(Control): """SearchControl class, with Control as parent class. Attributes ---------- url: string, default "" The url used for the search queries. layer: default None The LayerGroup used for search queries. zoom: int, default None The zoom level after moving to searched location, by default zoom level will not change. marker: default Marker() The marker used by the control. found_style: default {‘fillColor’: ‘#3f0’, ‘color’: ‘#0f0’} Style for searched feature when searching in LayerGroup. """ _view_name = Unicode("LeafletSearchControlView").tag(sync=True) _model_name = Unicode("LeafletSearchControlModel").tag(sync=True) url = Unicode().tag(sync=True, o=True) zoom = Int(default_value=None, allow_none=True).tag(sync=True, o=True) property_name = Unicode("display_name").tag(sync=True, o=True) property_loc = List(["lat", "lon"]).tag(sync=True, o=True) jsonp_param = Unicode("json_callback").tag(sync=True, o=True) auto_type = Bool(False).tag(sync=True, o=True) auto_collapse = Bool(False).tag(sync=True, o=True) animate_location = Bool(False).tag(sync=True, o=True) found_style = Dict(default_value={"fillColor": "#3f0", "color": "#0f0"}).tag( sync=True, o=True ) marker = Instance(Marker, allow_none=True, default_value=None).tag( sync=True, **widget_serialization ) layer = Instance(LayerGroup, allow_none=True, default_value=None).tag( sync=True, **widget_serialization ) _location_found_callbacks = Instance(CallbackDispatcher, ()) def __init__(self, **kwargs): super().__init__(**kwargs) self.on_msg(self._handle_leaflet_event) def _handle_leaflet_event(self, _, content, buffers): if content.get("event", "") == "locationfound": self._location_found_callbacks(**content) def on_feature_found(self, callback, remove=False): """Add a found feature event listener for searching in GeoJSON layer. Parameters ---------- callback : callable Callback function that will be called on found event when searching in GeoJSON layer. remove: boolean Whether to remove this callback or not. Defaults to False. """ self._location_found_callbacks.register_callback(callback, remove=remove) def on_location_found(self, callback, remove=False): """Add a found location event listener. The callback will be called when a search result has been found. Parameters ---------- callback : callable Callback function that will be called on location found event. remove: boolean Whether to remove this callback or not. Defaults to False. """ self._location_found_callbacks.register_callback(callback, remove=remove)
(**kwargs)
14,929
ipyleaflet.leaflet
__init__
null
def __init__(self, **kwargs): super().__init__(**kwargs) self.on_msg(self._handle_leaflet_event)
(self, **kwargs)
14,940
ipyleaflet.leaflet
_handle_leaflet_event
null
def _handle_leaflet_event(self, _, content, buffers): if content.get("event", "") == "locationfound": self._location_found_callbacks(**content)
(self, _, content, buffers)
14,965
ipyleaflet.leaflet
on_feature_found
Add a found feature event listener for searching in GeoJSON layer. Parameters ---------- callback : callable Callback function that will be called on found event when searching in GeoJSON layer. remove: boolean Whether to remove this callback or not. Defaults to False.
def on_feature_found(self, callback, remove=False): """Add a found feature event listener for searching in GeoJSON layer. Parameters ---------- callback : callable Callback function that will be called on found event when searching in GeoJSON layer. remove: boolean Whether to remove this callback or not. Defaults to False. """ self._location_found_callbacks.register_callback(callback, remove=remove)
(self, callback, remove=False)
14,966
ipyleaflet.leaflet
on_location_found
Add a found location event listener. The callback will be called when a search result has been found. Parameters ---------- callback : callable Callback function that will be called on location found event. remove: boolean Whether to remove this callback or not. Defaults to False.
def on_location_found(self, callback, remove=False): """Add a found location event listener. The callback will be called when a search result has been found. Parameters ---------- callback : callable Callback function that will be called on location found event. remove: boolean Whether to remove this callback or not. Defaults to False. """ self._location_found_callbacks.register_callback(callback, remove=remove)
(self, callback, remove=False)
14,984
ipyleaflet.leaflet
SplitMapControl
SplitMapControl class, with Control as parent class. A control which allows comparing layers by splitting the map in two. Attributes ---------- left_layer: Layer or list of Layers The left layer(s) for comparison. right_layer: Layer or list of Layers The right layer(s) for comparison.
class SplitMapControl(Control): """SplitMapControl class, with Control as parent class. A control which allows comparing layers by splitting the map in two. Attributes ---------- left_layer: Layer or list of Layers The left layer(s) for comparison. right_layer: Layer or list of Layers The right layer(s) for comparison. """ _view_name = Unicode("LeafletSplitMapControlView").tag(sync=True) _model_name = Unicode("LeafletSplitMapControlModel").tag(sync=True) left_layer = Union((Instance(Layer), List(Instance(Layer)))).tag( sync=True, **widget_serialization ) right_layer = Union((Instance(Layer), List(Instance(Layer)))).tag( sync=True, **widget_serialization ) @default("left_layer") def _default_left_layer(self): # TODO: Shouldn't this be None? return TileLayer() @default("right_layer") def _default_right_layer(self): # TODO: Shouldn't this be None? return TileLayer() def __init__(self, **kwargs): super(SplitMapControl, self).__init__(**kwargs) self.on_msg(self._handle_leaflet_event) def _handle_leaflet_event(self, _, content, buffers): if content.get("event", "") == "dividermove": event = content.get("event") # TODO: Add x trait? self.x = event.x
(**kwargs)
14,989
ipyleaflet.leaflet
__init__
null
def __init__(self, **kwargs): super(SplitMapControl, self).__init__(**kwargs) self.on_msg(self._handle_leaflet_event)
(self, **kwargs)
15,000
ipyleaflet.leaflet
_handle_leaflet_event
null
def _handle_leaflet_event(self, _, content, buffers): if content.get("event", "") == "dividermove": event = content.get("event") # TODO: Add x trait? self.x = event.x
(self, _, content, buffers)
15,042
ipywidgets.widgets.widget_style
Style
Style specification
class Style(Widget): """Style specification""" _model_name = Unicode('StyleModel').tag(sync=True) _view_name = Unicode('StyleView').tag(sync=True) _view_module = Unicode('@jupyter-widgets/base').tag(sync=True) _view_module_version = Unicode(__jupyter_widgets_base_version__).tag(sync=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
15,099
ipyleaflet.leaflet
TileLayer
TileLayer class. Tile service layer. Attributes ---------- url: string, default "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png" Url to the tiles service. min_zoom: int, default 0 The minimum zoom level down to which this layer will be displayed (inclusive). max_zoom: int, default 18 The maximum zoom level up to which this layer will be displayed (inclusive). min_native_zoom: int, default None Minimum zoom number the tile source has available. If it is specified, the tiles on all zoom levels lower than min_native_zoom will be loaded from min_native_zoom level and auto-scaled. max_native_zoom: int, default None Maximum zoom number the tile source has available. If it is specified, the tiles on all zoom levels higher than max_native_zoom will be loaded from max_native_zoom level and auto-scaled. bounds: list or None, default None List of SW and NE location tuples. e.g. [(50, 75), (75, 120)]. tile_size: int, default 256 Tile sizes for this tile service. attribution: string, default None. Tiles service attribution. no_wrap: boolean, default False Whether the layer is wrapped around the antimeridian. tms: boolean, default False If true, inverses Y axis numbering for tiles (turn this on for TMS services). zoom_offset: int, default 0 The zoom number used in tile URLs will be offset with this value. show_loading: boolean, default False Whether to show a spinner when tiles are loading. loading: boolean, default False (dynamically updated) Whether the tiles are currently loading. detect_retina: boolean, default False opacity: float, default 1.0 visible: boolean, default True
class TileLayer(RasterLayer): """TileLayer class. Tile service layer. Attributes ---------- url: string, default "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png" Url to the tiles service. min_zoom: int, default 0 The minimum zoom level down to which this layer will be displayed (inclusive). max_zoom: int, default 18 The maximum zoom level up to which this layer will be displayed (inclusive). min_native_zoom: int, default None Minimum zoom number the tile source has available. If it is specified, the tiles on all zoom levels lower than min_native_zoom will be loaded from min_native_zoom level and auto-scaled. max_native_zoom: int, default None Maximum zoom number the tile source has available. If it is specified, the tiles on all zoom levels higher than max_native_zoom will be loaded from max_native_zoom level and auto-scaled. bounds: list or None, default None List of SW and NE location tuples. e.g. [(50, 75), (75, 120)]. tile_size: int, default 256 Tile sizes for this tile service. attribution: string, default None. Tiles service attribution. no_wrap: boolean, default False Whether the layer is wrapped around the antimeridian. tms: boolean, default False If true, inverses Y axis numbering for tiles (turn this on for TMS services). zoom_offset: int, default 0 The zoom number used in tile URLs will be offset with this value. show_loading: boolean, default False Whether to show a spinner when tiles are loading. loading: boolean, default False (dynamically updated) Whether the tiles are currently loading. detect_retina: boolean, default False opacity: float, default 1.0 visible: boolean, default True """ _view_name = Unicode("LeafletTileLayerView").tag(sync=True) _model_name = Unicode("LeafletTileLayerModel").tag(sync=True) bottom = Bool(True).tag(sync=True) url = Unicode("https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png").tag(sync=True) min_zoom = Int(0).tag(sync=True, o=True) max_zoom = Int(18).tag(sync=True, o=True) min_native_zoom = Int(default_value=None, allow_none=True).tag(sync=True, o=True) max_native_zoom = Int(default_value=None, allow_none=True).tag(sync=True, o=True) bounds = List( default_value=None, allow_none=True, help="list of SW and NE location tuples" ).tag(sync=True, o=True) tile_size = Int(256).tag(sync=True, o=True) attribution = Unicode(default_value=None, allow_none=True).tag(sync=True, o=True) detect_retina = Bool(False).tag(sync=True, o=True) no_wrap = Bool(False).tag(sync=True, o=True) tms = Bool(False).tag(sync=True, o=True) zoom_offset = Int(0).tag(sync=True, o=True) show_loading = Bool(False).tag(sync=True) loading = Bool(False, read_only=True).tag(sync=True) _load_callbacks = Instance(CallbackDispatcher, ()) def __init__(self, **kwargs): super(TileLayer, self).__init__(**kwargs) self.on_msg(self._handle_leaflet_event) def _handle_leaflet_event(self, _, content, buffers): if content.get("event", "") == "load": self._load_callbacks(**content) def on_load(self, callback, remove=False): """Add a load event listener. Parameters ---------- callback : callable Callback function that will be called when the tiles have finished loading. remove: boolean Whether to remove this callback or not. Defaults to False. """ self._load_callbacks.register_callback(callback, remove=remove) def redraw(self): """Force redrawing the tiles. This is especially useful when you are sure the server updated the tiles and you need to refresh the layer. """ self.send({"msg": "redraw"})
(**kwargs)
15,167
traitlets.traitlets
TraitError
null
class TraitError(Exception): pass
null
15,168
traitlets.traitlets
Tuple
An instance of a Python tuple.
class Tuple(Container[t.Tuple[t.Any, ...]]): """An instance of a Python tuple.""" klass = tuple _cast_types = (list,) def __init__(self, *traits: t.Any, **kwargs: t.Any) -> None: """Create a tuple from a list, set, or tuple. Create a fixed-type tuple with Traits: ``t = Tuple(Int(), Str(), CStr())`` would be length 3, with Int,Str,CStr for each element. If only one arg is given and it is not a Trait, it is taken as default_value: ``t = Tuple((1, 2, 3))`` Otherwise, ``default_value`` *must* be specified by keyword. Parameters ---------- *traits : TraitTypes [ optional ] the types for restricting the contents of the Tuple. If unspecified, types are not checked. If specified, then each positional argument corresponds to an element of the tuple. Tuples defined with traits are of fixed length. default_value : SequenceType [ optional ] The default value for the Tuple. Must be list/tuple/set, and will be cast to a tuple. If ``traits`` are specified, ``default_value`` must conform to the shape and type they specify. **kwargs Other kwargs passed to `Container` """ default_value = kwargs.pop("default_value", Undefined) # allow Tuple((values,)): if len(traits) == 1 and default_value is Undefined and not is_trait(traits[0]): default_value = traits[0] traits = () if default_value is None and not kwargs.get("allow_none", False): # improve backward-compatibility for possible subclasses # specifying default_value=None as default, # keeping 'unspecified' behavior (i.e. empty container) warn( f"Specifying {self.__class__.__name__}(default_value=None)" " for no default is deprecated in traitlets 5.0.5." " Use default_value=Undefined", DeprecationWarning, stacklevel=2, ) default_value = Undefined if default_value is Undefined: args: t.Any = () elif default_value is None: # default_value back on kwargs for super() to handle args = () kwargs["default_value"] = None elif isinstance(default_value, self._valid_defaults): args = (default_value,) else: raise TypeError(f"default value of {self.__class__.__name__} was {default_value}") self._traits = [] for trait in traits: if isinstance(trait, type): warn( "Traits should be given as instances, not types (for example, `Int()`, not `Int`)" " Passing types is deprecated in traitlets 4.1.", DeprecationWarning, stacklevel=2, ) trait = trait() self._traits.append(trait) if self._traits and (default_value is None or default_value is Undefined): # don't allow default to be an empty container if length is specified args = None super(Container, self).__init__(klass=self.klass, args=args, **kwargs) def item_from_string(self, s: str, index: int) -> t.Any: # type:ignore[override] """Cast a single item from a string Evaluated when parsing CLI configuration from a string """ if not self._traits or index >= len(self._traits): # return s instead of raising index error # length errors will be raised later on validation return s return self._traits[index].from_string(s) def validate_elements(self, obj: t.Any, value: t.Any) -> t.Any: if not self._traits: # nothing to validate return value if len(value) != len(self._traits): e = ( "The '%s' trait of %s instance requires %i elements, but a value of %s was specified." % (self.name, class_of(obj), len(self._traits), repr_type(value)) ) raise TraitError(e) validated = [] for trait, v in zip(self._traits, value): try: v = trait._validate(obj, v) except TraitError as error: self.error(obj, v, error) else: validated.append(v) return tuple(validated) def class_init(self, cls: type[t.Any], name: str | None) -> None: for trait in self._traits: if isinstance(trait, TraitType): trait.class_init(cls, None) super(Container, self).class_init(cls, name) def subclass_init(self, cls: type[t.Any]) -> None: for trait in self._traits: if isinstance(trait, TraitType): trait.subclass_init(cls) # explicitly not calling super().subclass_init(cls) # to opt out of instance_init
(*traits: 't.Any', **kwargs: 't.Any') -> 'None'
15,170
traitlets.traitlets
__init__
Create a tuple from a list, set, or tuple. Create a fixed-type tuple with Traits: ``t = Tuple(Int(), Str(), CStr())`` would be length 3, with Int,Str,CStr for each element. If only one arg is given and it is not a Trait, it is taken as default_value: ``t = Tuple((1, 2, 3))`` Otherwise, ``default_value`` *must* be specified by keyword. Parameters ---------- *traits : TraitTypes [ optional ] the types for restricting the contents of the Tuple. If unspecified, types are not checked. If specified, then each positional argument corresponds to an element of the tuple. Tuples defined with traits are of fixed length. default_value : SequenceType [ optional ] The default value for the Tuple. Must be list/tuple/set, and will be cast to a tuple. If ``traits`` are specified, ``default_value`` must conform to the shape and type they specify. **kwargs Other kwargs passed to `Container`
def __init__(self, *traits: t.Any, **kwargs: t.Any) -> None: """Create a tuple from a list, set, or tuple. Create a fixed-type tuple with Traits: ``t = Tuple(Int(), Str(), CStr())`` would be length 3, with Int,Str,CStr for each element. If only one arg is given and it is not a Trait, it is taken as default_value: ``t = Tuple((1, 2, 3))`` Otherwise, ``default_value`` *must* be specified by keyword. Parameters ---------- *traits : TraitTypes [ optional ] the types for restricting the contents of the Tuple. If unspecified, types are not checked. If specified, then each positional argument corresponds to an element of the tuple. Tuples defined with traits are of fixed length. default_value : SequenceType [ optional ] The default value for the Tuple. Must be list/tuple/set, and will be cast to a tuple. If ``traits`` are specified, ``default_value`` must conform to the shape and type they specify. **kwargs Other kwargs passed to `Container` """ default_value = kwargs.pop("default_value", Undefined) # allow Tuple((values,)): if len(traits) == 1 and default_value is Undefined and not is_trait(traits[0]): default_value = traits[0] traits = () if default_value is None and not kwargs.get("allow_none", False): # improve backward-compatibility for possible subclasses # specifying default_value=None as default, # keeping 'unspecified' behavior (i.e. empty container) warn( f"Specifying {self.__class__.__name__}(default_value=None)" " for no default is deprecated in traitlets 5.0.5." " Use default_value=Undefined", DeprecationWarning, stacklevel=2, ) default_value = Undefined if default_value is Undefined: args: t.Any = () elif default_value is None: # default_value back on kwargs for super() to handle args = () kwargs["default_value"] = None elif isinstance(default_value, self._valid_defaults): args = (default_value,) else: raise TypeError(f"default value of {self.__class__.__name__} was {default_value}") self._traits = [] for trait in traits: if isinstance(trait, type): warn( "Traits should be given as instances, not types (for example, `Int()`, not `Int`)" " Passing types is deprecated in traitlets 4.1.", DeprecationWarning, stacklevel=2, ) trait = trait() self._traits.append(trait) if self._traits and (default_value is None or default_value is Undefined): # don't allow default to be an empty container if length is specified args = None super(Container, self).__init__(klass=self.klass, args=args, **kwargs)
(self, *traits: Any, **kwargs: Any) -> NoneType
15,177
traitlets.traitlets
class_init
null
def class_init(self, cls: type[t.Any], name: str | None) -> None: for trait in self._traits: if isinstance(trait, TraitType): trait.class_init(cls, None) super(Container, self).class_init(cls, name)
(self, cls: type[typing.Any], name: str | None) -> NoneType
15,189
traitlets.traitlets
item_from_string
Cast a single item from a string Evaluated when parsing CLI configuration from a string
def item_from_string(self, s: str, index: int) -> t.Any: # type:ignore[override] """Cast a single item from a string Evaluated when parsing CLI configuration from a string """ if not self._traits or index >= len(self._traits): # return s instead of raising index error # length errors will be raised later on validation return s return self._traits[index].from_string(s)
(self, s: str, index: int) -> Any
15,193
traitlets.traitlets
subclass_init
null
def subclass_init(self, cls: type[t.Any]) -> None: for trait in self._traits: if isinstance(trait, TraitType): trait.subclass_init(cls) # explicitly not calling super().subclass_init(cls) # to opt out of instance_init
(self, cls: type[typing.Any]) -> NoneType
15,196
traitlets.traitlets
validate_elements
null
def validate_elements(self, obj: t.Any, value: t.Any) -> t.Any: if not self._traits: # nothing to validate return value if len(value) != len(self._traits): e = ( "The '%s' trait of %s instance requires %i elements, but a value of %s was specified." % (self.name, class_of(obj), len(self._traits), repr_type(value)) ) raise TraitError(e) validated = [] for trait, v in zip(self._traits, value): try: v = trait._validate(obj, v) except TraitError as error: self.error(obj, v, error) else: validated.append(v) return tuple(validated)
(self, obj: Any, value: Any) -> Any
15,197
ipyleaflet.leaflet
UILayer
Abstract UILayer class.
class UILayer(Layer): """Abstract UILayer class.""" _view_name = Unicode("LeafletUILayerView").tag(sync=True) _model_name = Unicode("LeafletUILayerModel").tag(sync=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
15,262
traitlets.traitlets
Unicode
A trait for unicode strings.
class Unicode(TraitType[G, S]): """A trait for unicode strings.""" default_value = "" info_text = "a unicode string" if t.TYPE_CHECKING: @t.overload def __init__( self: Unicode[str, str | bytes], default_value: str | Sentinel = ..., allow_none: Literal[False] = ..., read_only: bool | None = ..., help: str | None = ..., config: t.Any = ..., **kwargs: t.Any, ) -> None: ... @t.overload def __init__( self: Unicode[str | None, str | bytes | None], default_value: str | Sentinel | None = ..., allow_none: Literal[True] = ..., read_only: bool | None = ..., help: str | None = ..., config: t.Any = ..., **kwargs: t.Any, ) -> None: ... def __init__( self: Unicode[str | None, str | bytes | None], default_value: str | Sentinel | None = ..., allow_none: bool = ..., read_only: bool | None = ..., help: str | None = ..., config: t.Any = ..., **kwargs: t.Any, ) -> None: ... def validate(self, obj: t.Any, value: t.Any) -> G: if isinstance(value, str): return t.cast(G, value) if isinstance(value, bytes): try: return t.cast(G, value.decode("ascii", "strict")) except UnicodeDecodeError as e: msg = "Could not decode {!r} for unicode trait '{}' of {} instance." raise TraitError(msg.format(value, self.name, class_of(obj))) from e self.error(obj, value) def from_string(self, s: str) -> G: if self.allow_none and s == "None": return t.cast(G, None) s = os.path.expanduser(s) if len(s) >= 2: # handle deprecated "1" for c in ('"', "'"): if s[0] == s[-1] == c: old_s = s s = s[1:-1] warn( "Supporting extra quotes around strings is deprecated in traitlets 5.0. " f"You can use {s!r} instead of {old_s!r} if you require traitlets >=5.", DeprecationWarning, stacklevel=2, ) return t.cast(G, s) def subclass_init(self, cls: type[t.Any]) -> None: pass # fully opt out of instance_init
(default_value: Any = traitlets.Undefined, allow_none: bool = False, read_only: bool = None, help: 'str | None' = None, config: 't.Any' = None, **kwargs: 't.Any') -> 'None'
15,284
traitlets.traitlets
validate
null
def validate(self, obj: t.Any, value: t.Any) -> G: if isinstance(value, str): return t.cast(G, value) if isinstance(value, bytes): try: return t.cast(G, value.decode("ascii", "strict")) except UnicodeDecodeError as e: msg = "Could not decode {!r} for unicode trait '{}' of {} instance." raise TraitError(msg.format(value, self.name, class_of(obj))) from e self.error(obj, value)
(self, obj: Any, value: Any) -> ~G
15,285
traitlets.traitlets
Union
A trait type representing a Union type.
class Union(TraitType[t.Any, t.Any]): """A trait type representing a Union type.""" def __init__(self, trait_types: t.Any, **kwargs: t.Any) -> None: """Construct a Union trait. This trait allows values that are allowed by at least one of the specified trait types. A Union traitlet cannot have metadata on its own, besides the metadata of the listed types. Parameters ---------- trait_types : sequence The list of trait types of length at least 1. **kwargs Extra kwargs passed to `TraitType` Notes ----- Union([Float(), Bool(), Int()]) attempts to validate the provided values with the validation function of Float, then Bool, and finally Int. Parsing from string is ambiguous for container types which accept other collection-like literals (e.g. List accepting both `[]` and `()` precludes Union from ever parsing ``Union([List(), Tuple()])`` as a tuple; you can modify behaviour of too permissive container traits by overriding ``_literal_from_string_pairs`` in subclasses. Similarly, parsing unions of numeric types is only unambiguous if types are provided in order of increasing permissiveness, e.g. ``Union([Int(), Float()])`` (since floats accept integer-looking values). """ self.trait_types = list(trait_types) self.info_text = " or ".join([tt.info() for tt in self.trait_types]) super().__init__(**kwargs) def default(self, obj: t.Any = None) -> t.Any: default = super().default(obj) for trait in self.trait_types: if default is Undefined: default = trait.default(obj) else: break return default def class_init(self, cls: type[HasTraits], name: str | None) -> None: for trait_type in reversed(self.trait_types): trait_type.class_init(cls, None) super().class_init(cls, name) def subclass_init(self, cls: type[t.Any]) -> None: for trait_type in reversed(self.trait_types): trait_type.subclass_init(cls) # explicitly not calling super().subclass_init(cls) # to opt out of instance_init def validate(self, obj: t.Any, value: t.Any) -> t.Any: with obj.cross_validation_lock: for trait_type in self.trait_types: try: v = trait_type._validate(obj, value) # In the case of an element trait, the name is None if self.name is not None: setattr(obj, "_" + self.name + "_metadata", trait_type.metadata) return v except TraitError: continue self.error(obj, value) def __or__(self, other: t.Any) -> Union: if isinstance(other, Union): return Union(self.trait_types + other.trait_types) else: return Union([*self.trait_types, other]) def from_string(self, s: str) -> t.Any: for trait_type in self.trait_types: try: v = trait_type.from_string(s) return trait_type.validate(None, v) except (TraitError, ValueError): continue return super().from_string(s)
(trait_types: 't.Any', **kwargs: 't.Any') -> 'None'
15,287
traitlets.traitlets
__init__
Construct a Union trait. This trait allows values that are allowed by at least one of the specified trait types. A Union traitlet cannot have metadata on its own, besides the metadata of the listed types. Parameters ---------- trait_types : sequence The list of trait types of length at least 1. **kwargs Extra kwargs passed to `TraitType` Notes ----- Union([Float(), Bool(), Int()]) attempts to validate the provided values with the validation function of Float, then Bool, and finally Int. Parsing from string is ambiguous for container types which accept other collection-like literals (e.g. List accepting both `[]` and `()` precludes Union from ever parsing ``Union([List(), Tuple()])`` as a tuple; you can modify behaviour of too permissive container traits by overriding ``_literal_from_string_pairs`` in subclasses. Similarly, parsing unions of numeric types is only unambiguous if types are provided in order of increasing permissiveness, e.g. ``Union([Int(), Float()])`` (since floats accept integer-looking values).
def __init__(self, trait_types: t.Any, **kwargs: t.Any) -> None: """Construct a Union trait. This trait allows values that are allowed by at least one of the specified trait types. A Union traitlet cannot have metadata on its own, besides the metadata of the listed types. Parameters ---------- trait_types : sequence The list of trait types of length at least 1. **kwargs Extra kwargs passed to `TraitType` Notes ----- Union([Float(), Bool(), Int()]) attempts to validate the provided values with the validation function of Float, then Bool, and finally Int. Parsing from string is ambiguous for container types which accept other collection-like literals (e.g. List accepting both `[]` and `()` precludes Union from ever parsing ``Union([List(), Tuple()])`` as a tuple; you can modify behaviour of too permissive container traits by overriding ``_literal_from_string_pairs`` in subclasses. Similarly, parsing unions of numeric types is only unambiguous if types are provided in order of increasing permissiveness, e.g. ``Union([Int(), Float()])`` (since floats accept integer-looking values). """ self.trait_types = list(trait_types) self.info_text = " or ".join([tt.info() for tt in self.trait_types]) super().__init__(**kwargs)
(self, trait_types: Any, **kwargs: Any) -> NoneType
15,288
traitlets.traitlets
__or__
null
def __or__(self, other: t.Any) -> Union: if isinstance(other, Union): return Union(self.trait_types + other.trait_types) else: return Union([*self.trait_types, other])
(self, other: Any) -> traitlets.traitlets.Union
15,292
traitlets.traitlets
class_init
null
def class_init(self, cls: type[HasTraits], name: str | None) -> None: for trait_type in reversed(self.trait_types): trait_type.class_init(cls, None) super().class_init(cls, name)
(self, cls: type[traitlets.traitlets.HasTraits], name: str | None) -> NoneType
15,293
traitlets.traitlets
default
null
def default(self, obj: t.Any = None) -> t.Any: default = super().default(obj) for trait in self.trait_types: if default is Undefined: default = trait.default(obj) else: break return default
(self, obj: Optional[Any] = None) -> Any
15,296
traitlets.traitlets
from_string
null
def from_string(self, s: str) -> t.Any: for trait_type in self.trait_types: try: v = trait_type.from_string(s) return trait_type.validate(None, v) except (TraitError, ValueError): continue return super().from_string(s)
(self, s: str) -> Any
15,305
traitlets.traitlets
subclass_init
null
def subclass_init(self, cls: type[t.Any]) -> None: for trait_type in reversed(self.trait_types): trait_type.subclass_init(cls) # explicitly not calling super().subclass_init(cls) # to opt out of instance_init
(self, cls: type[typing.Any]) -> NoneType
15,307
traitlets.traitlets
validate
null
def validate(self, obj: t.Any, value: t.Any) -> t.Any: with obj.cross_validation_lock: for trait_type in self.trait_types: try: v = trait_type._validate(obj, value) # In the case of an element trait, the name is None if self.name is not None: setattr(obj, "_" + self.name + "_metadata", trait_type.metadata) return v except TraitError: continue self.error(obj, value)
(self, obj: Any, value: Any) -> Any
15,308
ipyleaflet.leaflet
VectorLayer
VectorLayer abstract class.
class VectorLayer(Layer): """VectorLayer abstract class.""" _view_name = Unicode("LeafletVectorLayerView").tag(sync=True) _model_name = Unicode("LeafletVectorLayerModel").tag(sync=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
15,373
ipyleaflet.leaflet
VectorTileLayer
VectorTileLayer class, with Layer as parent class. Vector tile layer. Attributes ---------- url: string, default "" Url to the vector tile service. attribution: string, default "" Vector tile service attribution. vector_tile_layer_styles: dict, default {} CSS Styles to apply to the vector data.
class VectorTileLayer(Layer): """VectorTileLayer class, with Layer as parent class. Vector tile layer. Attributes ---------- url: string, default "" Url to the vector tile service. attribution: string, default "" Vector tile service attribution. vector_tile_layer_styles: dict, default {} CSS Styles to apply to the vector data. """ _view_name = Unicode("LeafletVectorTileLayerView").tag(sync=True) _model_name = Unicode("LeafletVectorTileLayerModel").tag(sync=True) url = Unicode().tag(sync=True, o=True) attribution = Unicode().tag(sync=True, o=True) vector_tile_layer_styles = Dict().tag(sync=True, o=True) def redraw(self): """Force redrawing the tiles. This is especially useful when you are sure the server updated the tiles and you need to refresh the layer. """ self.send({"msg": "redraw"})
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
15,439
ipyleaflet.leaflet
VideoOverlay
VideoOverlay class. Video layer from a local or remote video file. Attributes ---------- url: string, default "" Url to the local or remote video file. bounds: list, default [0., 0] SW and NE corners of the video. attribution: string, default "" Video attribution.
class VideoOverlay(RasterLayer): """VideoOverlay class. Video layer from a local or remote video file. Attributes ---------- url: string, default "" Url to the local or remote video file. bounds: list, default [0., 0] SW and NE corners of the video. attribution: string, default "" Video attribution. """ _view_name = Unicode("LeafletVideoOverlayView").tag(sync=True) _model_name = Unicode("LeafletVideoOverlayModel").tag(sync=True) url = Unicode().tag(sync=True) bounds = List([def_loc, def_loc], help="SW and NE corners of the image").tag( sync=True ) # Options attribution = Unicode().tag(sync=True, o=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
15,504
ipyleaflet.leaflet
WKTLayer
WKTLayer class. Layer created from a local WKT file or WKT string input. Attributes ---------- path: string, default "" file path of local WKT file. wkt_string: string, default "" WKT string.
class WKTLayer(GeoJSON): """WKTLayer class. Layer created from a local WKT file or WKT string input. Attributes ---------- path: string, default "" file path of local WKT file. wkt_string: string, default "" WKT string. """ path = Unicode("") wkt_string = Unicode("") def __init__(self, **kwargs): super().__init__(**kwargs) self.data = self._get_data() @observe("path", "wkt_string", "style", "style_callback") def _update_data(self, change): self.data = self._get_data() def _get_data(self): try: from shapely import geometry, wkt except ImportError: raise RuntimeError( "The WKTLayer needs shapely to be installed, please run `pip install shapely`" ) if self.path: with open(self.path) as f: parsed_wkt = wkt.load(f) elif self.wkt_string: parsed_wkt = wkt.loads(self.wkt_string) else: raise ValueError("Please provide either WKT file path or WKT string") geo = geometry.mapping(parsed_wkt) if geo["type"] == "GeometryCollection": features = [ {"geometry": g, "properties": {}, "type": "Feature"} for g in geo["geometries"] ] feature_collection = {"type": "FeatureCollection", "features": features} return feature_collection else: feature = {"geometry": geo, "properties": {}, "type": "Feature"} return feature
(**kwargs)
15,509
ipyleaflet.leaflet
__init__
null
def __init__(self, **kwargs): super().__init__(**kwargs) self.data = self._get_data()
(self, **kwargs)
15,518
ipyleaflet.leaflet
_get_data
null
def _get_data(self): try: from shapely import geometry, wkt except ImportError: raise RuntimeError( "The WKTLayer needs shapely to be installed, please run `pip install shapely`" ) if self.path: with open(self.path) as f: parsed_wkt = wkt.load(f) elif self.wkt_string: parsed_wkt = wkt.loads(self.wkt_string) else: raise ValueError("Please provide either WKT file path or WKT string") geo = geometry.mapping(parsed_wkt) if geo["type"] == "GeometryCollection": features = [ {"geometry": g, "properties": {}, "type": "Feature"} for g in geo["geometries"] ] feature_collection = {"type": "FeatureCollection", "features": features} return feature_collection else: feature = {"geometry": geo, "properties": {}, "type": "Feature"} return feature
(self)
15,580
ipyleaflet.leaflet
WMSLayer
WMSLayer class, with TileLayer as a parent class. Attributes ---------- layers: string, default "" Comma-separated list of WMS layers to show. styles: string, default "" Comma-separated list of WMS styles format: string, default "image/jpeg" WMS image format (use `'image/png'` for layers with transparency). transparent: boolean, default False If true, the WMS service will return images with transparency. crs: dict, default ipyleaflet.projections.EPSG3857 Projection used for this WMS service.
class WMSLayer(TileLayer): """WMSLayer class, with TileLayer as a parent class. Attributes ---------- layers: string, default "" Comma-separated list of WMS layers to show. styles: string, default "" Comma-separated list of WMS styles format: string, default "image/jpeg" WMS image format (use `'image/png'` for layers with transparency). transparent: boolean, default False If true, the WMS service will return images with transparency. crs: dict, default ipyleaflet.projections.EPSG3857 Projection used for this WMS service. """ _view_name = Unicode("LeafletWMSLayerView").tag(sync=True) _model_name = Unicode("LeafletWMSLayerModel").tag(sync=True) # Options layers = Unicode().tag(sync=True, o=True) styles = Unicode().tag(sync=True, o=True) format = Unicode("image/jpeg").tag(sync=True, o=True) transparent = Bool(False).tag(sync=True, o=True) crs = Dict(default_value=projections.EPSG3857).tag(sync=True) uppercase = Bool(False).tag(sync=True, o=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
15,648
ipywidgets.widgets.widget
Widget
null
class Widget(LoggingHasTraits): #------------------------------------------------------------------------- # Class attributes #------------------------------------------------------------------------- _widget_construction_callback = None _control_comm = None @_staticproperty def widgets(): # Because this is a static attribute, it will be accessed when initializing this class. In that case, since a user # did not explicitly try to use this attribute, we do not want to throw a deprecation warning. # So we check if the thing calling this static property is one of the known initialization functions in traitlets. frame = _get_frame(2) if not (frame.f_code.co_filename == TRAITLETS_FILE and (frame.f_code.co_name in ('getmembers', 'setup_instance', 'setup_class'))): deprecation("Widget.widgets is deprecated.") return _instances @_staticproperty def _active_widgets(): # Because this is a static attribute, it will be accessed when initializing this class. In that case, since a user # did not explicitly try to use this attribute, we do not want to throw a deprecation warning. # So we check if the thing calling this static property is one of the known initialization functions in traitlets. frame = _get_frame(2) if not (frame.f_code.co_filename == TRAITLETS_FILE and (frame.f_code.co_name in ('getmembers', 'setup_instance', 'setup_class'))): deprecation("Widget._active_widgets is deprecated.") return _instances @_staticproperty def _widget_types(): # Because this is a static attribute, it will be accessed when initializing this class. In that case, since a user # did not explicitly try to use this attribute, we do not want to throw a deprecation warning. # So we check if the thing calling this static property is one of the known initialization functions in traitlets. frame = _get_frame(2) if not (frame.f_code.co_filename == TRAITLETS_FILE and (frame.f_code.co_name in ('getmembers', 'setup_instance', 'setup_class'))): deprecation("Widget._widget_types is deprecated.") return _registry @_staticproperty def widget_types(): # Because this is a static attribute, it will be accessed when initializing this class. In that case, since a user # did not explicitly try to use this attribute, we do not want to throw a deprecation warning. # So we check if the thing calling this static property is one of the known initialization functions in traitlets. frame = _get_frame(2) if not (frame.f_code.co_filename == TRAITLETS_FILE and (frame.f_code.co_name in ('getmembers', 'setup_instance', 'setup_class'))): deprecation("Widget.widget_types is deprecated.") return _registry @classmethod def close_all(cls): for widget in list(_instances.values()): widget.close() @staticmethod def on_widget_constructed(callback): """Registers a callback to be called when a widget is constructed. The callback must have the following signature: callback(widget)""" Widget._widget_construction_callback = callback @staticmethod def _call_widget_constructed(widget): """Static method, called when a widget is constructed.""" if Widget._widget_construction_callback is not None and callable(Widget._widget_construction_callback): Widget._widget_construction_callback(widget) @classmethod def handle_control_comm_opened(cls, comm, msg): """ Class method, called when the comm-open message on the "jupyter.widget.control" comm channel is received """ version = msg.get('metadata', {}).get('version', '') if version.split('.')[0] != CONTROL_PROTOCOL_VERSION_MAJOR: raise ValueError("Incompatible widget control protocol versions: received version %r, expected version %r"%(version, __control_protocol_version__)) cls._control_comm = comm cls._control_comm.on_msg(cls._handle_control_comm_msg) @classmethod def _handle_control_comm_msg(cls, msg): # This shouldn't happen unless someone calls this method manually if cls._control_comm is None: raise RuntimeError('Control comm has not been properly opened') data = msg['content']['data'] method = data['method'] if method == 'request_states': # Send back the full widgets state cls.get_manager_state() widgets = _instances.values() full_state = {} drop_defaults = False for widget in widgets: full_state[widget.model_id] = { 'model_name': widget._model_name, 'model_module': widget._model_module, 'model_module_version': widget._model_module_version, 'state': widget.get_state(drop_defaults=drop_defaults), } full_state, buffer_paths, buffers = _remove_buffers(full_state) cls._control_comm.send(dict( method='update_states', states=full_state, buffer_paths=buffer_paths ), buffers=buffers) else: raise RuntimeError('Unknown front-end to back-end widget control msg with method "%s"' % method) @staticmethod def handle_comm_opened(comm, msg): """Static method, called when a widget is constructed.""" version = msg.get('metadata', {}).get('version', '') if version.split('.')[0] != PROTOCOL_VERSION_MAJOR: raise ValueError("Incompatible widget protocol versions: received version %r, expected version %r"%(version, __protocol_version__)) data = msg['content']['data'] state = data['state'] # Find the widget class to instantiate in the registered widgets widget_class = _registry.get(state['_model_module'], state['_model_module_version'], state['_model_name'], state['_view_module'], state['_view_module_version'], state['_view_name']) widget = widget_class(comm=comm) if 'buffer_paths' in data: _put_buffers(state, data['buffer_paths'], msg['buffers']) widget.set_state(state) @staticmethod def get_manager_state(drop_defaults=False, widgets=None): """Returns the full state for a widget manager for embedding :param drop_defaults: when True, it will not include default value :param widgets: list with widgets to include in the state (or all widgets when None) :return: """ state = {} if widgets is None: widgets = _instances.values() for widget in widgets: state[widget.model_id] = widget._get_embed_state(drop_defaults=drop_defaults) return {'version_major': 2, 'version_minor': 0, 'state': state} def _get_embed_state(self, drop_defaults=False): state = { 'model_name': self._model_name, 'model_module': self._model_module, 'model_module_version': self._model_module_version } model_state, buffer_paths, buffers = _remove_buffers(self.get_state(drop_defaults=drop_defaults)) state['state'] = model_state if len(buffers) > 0: state['buffers'] = [{'encoding': 'base64', 'path': p, 'data': standard_b64encode(d).decode('ascii')} for p, d in zip(buffer_paths, buffers)] return state def get_view_spec(self): return dict(version_major=2, version_minor=0, model_id=self._model_id) #------------------------------------------------------------------------- # Traits #------------------------------------------------------------------------- _model_name = Unicode('WidgetModel', help="Name of the model.", read_only=True).tag(sync=True) _model_module = Unicode('@jupyter-widgets/base', help="The namespace for the model.", read_only=True).tag(sync=True) _model_module_version = Unicode(__jupyter_widgets_base_version__, help="A semver requirement for namespace version containing the model.", read_only=True).tag(sync=True) _view_name = Unicode(None, allow_none=True, help="Name of the view.").tag(sync=True) _view_module = Unicode(None, allow_none=True, help="The namespace for the view.").tag(sync=True) _view_module_version = Unicode('', help="A semver requirement for the namespace version containing the view.").tag(sync=True) _view_count = Int(None, allow_none=True, help="EXPERIMENTAL: The number of views of the model displayed in the frontend. This attribute is experimental and may change or be removed in the future. None signifies that views will not be tracked. Set this to 0 to start tracking view creation/deletion.").tag(sync=True) comm = Any(allow_none=True) keys = List(help="The traits which are synced.") @default('keys') def _default_keys(self): return [name for name in self.traits(sync=True)] _property_lock = Dict() _holding_sync = False _states_to_send = Set() _msg_callbacks = Instance(CallbackDispatcher, ()) #------------------------------------------------------------------------- # (Con/de)structor #------------------------------------------------------------------------- def __init__(self, **kwargs): """Public constructor""" self._model_id = kwargs.pop('model_id', None) super().__init__(**kwargs) Widget._call_widget_constructed(self) self.open() def __copy__(self): raise NotImplementedError("Widgets cannot be copied; custom implementation required") def __deepcopy__(self, memo): raise NotImplementedError("Widgets cannot be copied; custom implementation required") def __del__(self): """Object disposal""" self.close() #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- def open(self): """Open a comm to the frontend if one isn't already open.""" if self.comm is None: state, buffer_paths, buffers = _remove_buffers(self.get_state()) args = dict(target_name='jupyter.widget', data={'state': state, 'buffer_paths': buffer_paths}, buffers=buffers, metadata={'version': __protocol_version__} ) if self._model_id is not None: args['comm_id'] = self._model_id self.comm = comm.create_comm(**args) @observe('comm') def _comm_changed(self, change): """Called when the comm is changed.""" if change['new'] is None: return self._model_id = self.model_id self.comm.on_msg(self._handle_msg) _instances[self.model_id] = self @property def model_id(self): """Gets the model id of this widget. If a Comm doesn't exist yet, a Comm will be created automagically.""" return self.comm.comm_id #------------------------------------------------------------------------- # Methods #------------------------------------------------------------------------- def close(self): """Close method. Closes the underlying comm. When the comm is closed, all of the widget views are automatically removed from the front-end.""" if self.comm is not None: _instances.pop(self.model_id, None) self.comm.close() self.comm = None self._repr_mimebundle_ = None def send_state(self, key=None): """Sends the widget state, or a piece of it, to the front-end, if it exists. Parameters ---------- key : unicode, or iterable (optional) A single property's name or iterable of property names to sync with the front-end. """ state = self.get_state(key=key) if len(state) > 0: if self._property_lock: # we need to keep this dict up to date with the front-end values for name, value in state.items(): if name in self._property_lock: self._property_lock[name] = value state, buffer_paths, buffers = _remove_buffers(state) msg = {'method': 'update', 'state': state, 'buffer_paths': buffer_paths} self._send(msg, buffers=buffers) def get_state(self, key=None, drop_defaults=False): """Gets the widget state, or a piece of it. Parameters ---------- key : unicode or iterable (optional) A single property's name or iterable of property names to get. Returns ------- state : dict of states metadata : dict metadata for each field: {key: metadata} """ if key is None: keys = self.keys elif isinstance(key, str): keys = [key] elif isinstance(key, Iterable): keys = key else: raise ValueError("key must be a string, an iterable of keys, or None") state = {} traits = self.traits() for k in keys: to_json = self.trait_metadata(k, 'to_json', self._trait_to_json) value = to_json(getattr(self, k), self) if not drop_defaults or not self._compare(value, traits[k].default_value): state[k] = value return state def _is_numpy(self, x): return x.__class__.__name__ == 'ndarray' and x.__class__.__module__ == 'numpy' def _compare(self, a, b): if self._is_numpy(a) or self._is_numpy(b): import numpy as np return np.array_equal(a, b) else: return a == b def set_state(self, sync_data): """Called when a state is received from the front-end.""" # Send an echo update message immediately if JUPYTER_WIDGETS_ECHO: echo_state = {} for attr, value in sync_data.items(): if attr in self.keys and self.trait_metadata(attr, 'echo_update', default=True): echo_state[attr] = value if echo_state: echo_state, echo_buffer_paths, echo_buffers = _remove_buffers(echo_state) msg = { 'method': 'echo_update', 'state': echo_state, 'buffer_paths': echo_buffer_paths, } self._send(msg, buffers=echo_buffers) # The order of these context managers is important. Properties must # be locked when the hold_trait_notification context manager is # released and notifications are fired. with self._lock_property(**sync_data), self.hold_trait_notifications(): for name in sync_data: if name in self.keys: from_json = self.trait_metadata(name, 'from_json', self._trait_from_json) self.set_trait(name, from_json(sync_data[name], self)) def send(self, content, buffers=None): """Sends a custom msg to the widget model in the front-end. Parameters ---------- content : dict Content of the message to send. buffers : list of binary buffers Binary buffers to send with message """ self._send({"method": "custom", "content": content}, buffers=buffers) def on_msg(self, callback, remove=False): """(Un)Register a custom msg receive callback. Parameters ---------- callback: callable callback will be passed three arguments when a message arrives:: callback(widget, content, buffers) remove: bool True if the callback should be unregistered.""" self._msg_callbacks.register_callback(callback, remove=remove) def add_traits(self, **traits): """Dynamically add trait attributes to the Widget.""" super().add_traits(**traits) for name, trait in traits.items(): if trait.get_metadata('sync'): self.keys.append(name) self.send_state(name) def notify_change(self, change): """Called when a property has changed.""" # Send the state to the frontend before the user-registered callbacks # are called. name = change['name'] if self.comm is not None and getattr(self.comm, 'kernel', True) is not None: # Make sure this isn't information that the front-end just sent us. if name in self.keys and self._should_send_property(name, getattr(self, name)): # Send new state to front-end self.send_state(key=name) super().notify_change(change) def __repr__(self): return self._gen_repr_from_keys(self._repr_keys()) #------------------------------------------------------------------------- # Support methods #------------------------------------------------------------------------- @contextmanager def _lock_property(self, **properties): """Lock a property-value pair. The value should be the JSON state of the property. NOTE: This, in addition to the single lock for all state changes, is flawed. In the future we may want to look into buffering state changes back to the front-end.""" self._property_lock = properties try: yield finally: self._property_lock = {} @contextmanager def hold_sync(self): """Hold syncing any state until the outermost context manager exits""" if self._holding_sync is True: yield else: try: self._holding_sync = True yield finally: self._holding_sync = False self.send_state(self._states_to_send) self._states_to_send.clear() def _should_send_property(self, key, value): """Check the property lock (property_lock)""" to_json = self.trait_metadata(key, 'to_json', self._trait_to_json) if key in self._property_lock: # model_state, buffer_paths, buffers split_value = _remove_buffers({ key: to_json(value, self)}) split_lock = _remove_buffers({ key: self._property_lock[key]}) # A roundtrip conversion through json in the comparison takes care of # idiosyncracies of how python data structures map to json, for example # tuples get converted to lists. if (jsonloads(jsondumps(split_value[0])) == split_lock[0] and split_value[1] == split_lock[1] and _buffer_list_equal(split_value[2], split_lock[2])): if self._holding_sync: self._states_to_send.discard(key) return False if self._holding_sync: self._states_to_send.add(key) return False else: return True # Event handlers @_show_traceback def _handle_msg(self, msg): """Called when a msg is received from the front-end""" data = msg['content']['data'] method = data['method'] if method == 'update': if 'state' in data: state = data['state'] if 'buffer_paths' in data: _put_buffers(state, data['buffer_paths'], msg['buffers']) self.set_state(state) # Handle a state request. elif method == 'request_state': self.send_state() # Handle a custom msg from the front-end. elif method == 'custom': if 'content' in data: self._handle_custom_msg(data['content'], msg['buffers']) # Catch remainder. else: self.log.error('Unknown front-end to back-end widget msg with method "%s"' % method) def _handle_custom_msg(self, content, buffers): """Called when a custom msg is received.""" self._msg_callbacks(self, content, buffers) @staticmethod def _trait_to_json(x, self): """Convert a trait value to json.""" return x @staticmethod def _trait_from_json(x, self): """Convert json values to objects.""" return x def _repr_mimebundle_(self, **kwargs): plaintext = repr(self) if len(plaintext) > 110: plaintext = plaintext[:110] + '…' data = { 'text/plain': plaintext, } if self._view_name is not None: # The 'application/vnd.jupyter.widget-view+json' mimetype has not been registered yet. # See the registration process and naming convention at # http://tools.ietf.org/html/rfc6838 # and the currently registered mimetypes at # http://www.iana.org/assignments/media-types/media-types.xhtml. data['application/vnd.jupyter.widget-view+json'] = { 'version_major': 2, 'version_minor': 0, 'model_id': self._model_id } return data def _send(self, msg, buffers=None): """Sends a message to the model in the front-end.""" if self.comm is not None and (self.comm.kernel is not None if hasattr(self.comm, "kernel") else True): self.comm.send(data=msg, buffers=buffers) def _repr_keys(self): traits = self.traits() for key in sorted(self.keys): # Exclude traits that start with an underscore if key[0] == '_': continue # Exclude traits who are equal to their default value value = getattr(self, key) trait = traits[key] if self._compare(value, trait.default_value): continue elif (isinstance(trait, (Container, Dict)) and trait.default_value == Undefined and (value is None or len(value) == 0)): # Empty container, and dynamic default will be empty continue yield key def _gen_repr_from_keys(self, keys): class_name = self.__class__.__name__ signature = ', '.join( '{}={!r}'.format(key, getattr(self, key)) for key in keys ) return '{}({})'.format(class_name, signature)
(**kwargs)
15,705
ipyleaflet.leaflet
WidgetControl
WidgetControl class, with Control as parent class. A control that contains any DOMWidget instance. Attributes ---------- widget: DOMWidget The widget to put inside of the control. It can be any widget, even coming from a third-party library like bqplot.
class WidgetControl(Control): """WidgetControl class, with Control as parent class. A control that contains any DOMWidget instance. Attributes ---------- widget: DOMWidget The widget to put inside of the control. It can be any widget, even coming from a third-party library like bqplot. """ _view_name = Unicode("LeafletWidgetControlView").tag(sync=True) _model_name = Unicode("LeafletWidgetControlModel").tag(sync=True) widget = Instance(DOMWidget).tag(sync=True, **widget_serialization) max_width = Int(default_value=None, allow_none=True).tag(sync=True) min_width = Int(default_value=None, allow_none=True).tag(sync=True) max_height = Int(default_value=None, allow_none=True).tag(sync=True) min_height = Int(default_value=None, allow_none=True).tag(sync=True) transparent_bg = Bool(False).tag(sync=True, o=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
15,762
ipyleaflet.leaflet
ZoomControl
ZoomControl class, with Control as parent class. A control which contains buttons for zooming in/out the Map. Attributes ---------- zoom_in_text: str, default '+' Text to put in the zoom-in button. zoom_in_title: str, default 'Zoom in' Title to put in the zoom-in button, this is shown when the mouse is over the button. zoom_out_text: str, default '-' Text to put in the zoom-out button. zoom_out_title: str, default 'Zoom out' Title to put in the zoom-out button, this is shown when the mouse is over the button.
class ZoomControl(Control): """ZoomControl class, with Control as parent class. A control which contains buttons for zooming in/out the Map. Attributes ---------- zoom_in_text: str, default '+' Text to put in the zoom-in button. zoom_in_title: str, default 'Zoom in' Title to put in the zoom-in button, this is shown when the mouse is over the button. zoom_out_text: str, default '-' Text to put in the zoom-out button. zoom_out_title: str, default 'Zoom out' Title to put in the zoom-out button, this is shown when the mouse is over the button. """ _view_name = Unicode("LeafletZoomControlView").tag(sync=True) _model_name = Unicode("LeafletZoomControlModel").tag(sync=True) zoom_in_text = Unicode("+").tag(sync=True, o=True) zoom_in_title = Unicode("Zoom in").tag(sync=True, o=True) zoom_out_text = Unicode("-").tag(sync=True, o=True) zoom_out_title = Unicode("Zoom out").tag(sync=True, o=True)
(*args: 't.Any', **kwargs: 't.Any') -> 't.Any'
15,821
ipyleaflet.leaflet
basemap_to_tiles
Turn a basemap into a TileLayer object. Parameters ---------- basemap : class:`xyzservices.lib.TileProvider` or Dict Basemap description coming from ipyleaflet.basemaps. day: string If relevant for the chosen basemap, you can specify the day for the tiles in the "%Y-%m-%d" format. Defaults to yesterday's date. kwargs: key-word arguments Extra key-word arguments to pass to the TileLayer constructor.
def basemap_to_tiles(basemap, day=yesterday, **kwargs): """Turn a basemap into a TileLayer object. Parameters ---------- basemap : class:`xyzservices.lib.TileProvider` or Dict Basemap description coming from ipyleaflet.basemaps. day: string If relevant for the chosen basemap, you can specify the day for the tiles in the "%Y-%m-%d" format. Defaults to yesterday's date. kwargs: key-word arguments Extra key-word arguments to pass to the TileLayer constructor. """ if isinstance(basemap, xyzservices.lib.TileProvider): url = basemap.build_url(time=day) elif isinstance(basemap, dict): url = basemap.get("url", "") else: raise ValueError("Invalid basemap type") return TileLayer( url=url, max_zoom=basemap.get("max_zoom", 18), min_zoom=basemap.get("min_zoom", 1), attribution=basemap.get("html_attribution", "") or basemap.get("attribution", ""), name=basemap.get("name", ""), **kwargs, )
(basemap, day='2024-05-11', **kwargs)
15,824
traitlets.traitlets
default
A decorator which assigns a dynamic default for a Trait on a HasTraits object. Parameters ---------- name The str name of the Trait on the object whose default should be generated. Notes ----- Unlike observers and validators which are properties of the HasTraits instance, default value generators are class-level properties. Besides, default generators are only invoked if they are registered in subclasses of `this_type`. :: class A(HasTraits): bar = Int() @default('bar') def get_bar_default(self): return 11 class B(A): bar = Float() # This trait ignores the default generator defined in # the base class A class C(B): @default('bar') def some_other_default(self): # This default generator should not be return 3.0 # ignored since it is defined in a # class derived from B.a.this_class.
def default(name: str) -> DefaultHandler: """A decorator which assigns a dynamic default for a Trait on a HasTraits object. Parameters ---------- name The str name of the Trait on the object whose default should be generated. Notes ----- Unlike observers and validators which are properties of the HasTraits instance, default value generators are class-level properties. Besides, default generators are only invoked if they are registered in subclasses of `this_type`. :: class A(HasTraits): bar = Int() @default('bar') def get_bar_default(self): return 11 class B(A): bar = Float() # This trait ignores the default generator defined in # the base class A class C(B): @default('bar') def some_other_default(self): # This default generator should not be return 3.0 # ignored since it is defined in a # class derived from B.a.this_class. """ if not isinstance(name, str): raise TypeError("Trait name must be a string or All, not %r" % name) return DefaultHandler(name)
(name: str) -> traitlets.traitlets.DefaultHandler
15,825
IPython.core.display_functions
display
Display a Python object in all frontends. By default all representations will be computed and sent to the frontends. Frontends can decide which representation is used and how. In terminal IPython this will be similar to using :func:`print`, for use in richer frontends see Jupyter notebook examples with rich display logic. Parameters ---------- *objs : object The Python objects to display. raw : bool, optional Are the objects to be displayed already mimetype-keyed dicts of raw display data, or Python objects that need to be formatted before display? [default: False] include : list, tuple or set, optional A list of format type strings (MIME types) to include in the format data dict. If this is set *only* the format types included in this list will be computed. exclude : list, tuple or set, optional A list of format type strings (MIME types) to exclude in the format data dict. If this is set all format types will be computed, except for those included in this argument. metadata : dict, optional A dictionary of metadata to associate with the output. mime-type keys in this dictionary will be associated with the individual representation formats, if they exist. transient : dict, optional A dictionary of transient data to associate with the output. Data in this dict should not be persisted to files (e.g. notebooks). display_id : str, bool optional Set an id for the display. This id can be used for updating this display area later via update_display. If given as `True`, generate a new `display_id` clear : bool, optional Should the output area be cleared before displaying anything? If True, this will wait for additional output before clearing. [default: False] **kwargs : additional keyword-args, optional Additional keyword-arguments are passed through to the display publisher. Returns ------- handle: DisplayHandle Returns a handle on updatable displays for use with :func:`update_display`, if `display_id` is given. Returns :any:`None` if no `display_id` is given (default). Examples -------- >>> class Json(object): ... def __init__(self, json): ... self.json = json ... def _repr_pretty_(self, pp, cycle): ... import json ... pp.text(json.dumps(self.json, indent=2)) ... def __repr__(self): ... return str(self.json) ... >>> d = Json({1:2, 3: {4:5}}) >>> print(d) {1: 2, 3: {4: 5}} >>> display(d) { "1": 2, "3": { "4": 5 } } >>> def int_formatter(integer, pp, cycle): ... pp.text('I'*integer) >>> plain = get_ipython().display_formatter.formatters['text/plain'] >>> plain.for_type(int, int_formatter) <function _repr_pprint at 0x...> >>> display(7-5) II >>> del plain.type_printers[int] >>> display(7-5) 2 See Also -------- :func:`update_display` Notes ----- In Python, objects can declare their textual representation using the `__repr__` method. IPython expands on this idea and allows objects to declare other, rich representations including: - HTML - JSON - PNG - JPEG - SVG - LaTeX A single object can declare some or all of these representations; all are handled by IPython's display system. The main idea of the first approach is that you have to implement special display methods when you define your class, one for each representation you want to use. Here is a list of the names of the special methods and the values they must return: - `_repr_html_`: return raw HTML as a string, or a tuple (see below). - `_repr_json_`: return a JSONable dict, or a tuple (see below). - `_repr_jpeg_`: return raw JPEG data, or a tuple (see below). - `_repr_png_`: return raw PNG data, or a tuple (see below). - `_repr_svg_`: return raw SVG data as a string, or a tuple (see below). - `_repr_latex_`: return LaTeX commands in a string surrounded by "$", or a tuple (see below). - `_repr_mimebundle_`: return a full mimebundle containing the mapping from all mimetypes to data. Use this for any mime-type not listed above. The above functions may also return the object's metadata alonside the data. If the metadata is available, the functions will return a tuple containing the data and metadata, in that order. If there is no metadata available, then the functions will return the data only. When you are directly writing your own classes, you can adapt them for display in IPython by following the above approach. But in practice, you often need to work with existing classes that you can't easily modify. You can refer to the documentation on integrating with the display system in order to register custom formatters for already existing types (:ref:`integrating_rich_display`). .. versionadded:: 5.4 display available without import .. versionadded:: 6.1 display available without import Since IPython 5.4 and 6.1 :func:`display` is automatically made available to the user without import. If you are using display in a document that might be used in a pure python context or with older version of IPython, use the following import at the top of your file:: from IPython.display import display
def display( *objs, include=None, exclude=None, metadata=None, transient=None, display_id=None, raw=False, clear=False, **kwargs, ): """Display a Python object in all frontends. By default all representations will be computed and sent to the frontends. Frontends can decide which representation is used and how. In terminal IPython this will be similar to using :func:`print`, for use in richer frontends see Jupyter notebook examples with rich display logic. Parameters ---------- *objs : object The Python objects to display. raw : bool, optional Are the objects to be displayed already mimetype-keyed dicts of raw display data, or Python objects that need to be formatted before display? [default: False] include : list, tuple or set, optional A list of format type strings (MIME types) to include in the format data dict. If this is set *only* the format types included in this list will be computed. exclude : list, tuple or set, optional A list of format type strings (MIME types) to exclude in the format data dict. If this is set all format types will be computed, except for those included in this argument. metadata : dict, optional A dictionary of metadata to associate with the output. mime-type keys in this dictionary will be associated with the individual representation formats, if they exist. transient : dict, optional A dictionary of transient data to associate with the output. Data in this dict should not be persisted to files (e.g. notebooks). display_id : str, bool optional Set an id for the display. This id can be used for updating this display area later via update_display. If given as `True`, generate a new `display_id` clear : bool, optional Should the output area be cleared before displaying anything? If True, this will wait for additional output before clearing. [default: False] **kwargs : additional keyword-args, optional Additional keyword-arguments are passed through to the display publisher. Returns ------- handle: DisplayHandle Returns a handle on updatable displays for use with :func:`update_display`, if `display_id` is given. Returns :any:`None` if no `display_id` is given (default). Examples -------- >>> class Json(object): ... def __init__(self, json): ... self.json = json ... def _repr_pretty_(self, pp, cycle): ... import json ... pp.text(json.dumps(self.json, indent=2)) ... def __repr__(self): ... return str(self.json) ... >>> d = Json({1:2, 3: {4:5}}) >>> print(d) {1: 2, 3: {4: 5}} >>> display(d) { "1": 2, "3": { "4": 5 } } >>> def int_formatter(integer, pp, cycle): ... pp.text('I'*integer) >>> plain = get_ipython().display_formatter.formatters['text/plain'] >>> plain.for_type(int, int_formatter) <function _repr_pprint at 0x...> >>> display(7-5) II >>> del plain.type_printers[int] >>> display(7-5) 2 See Also -------- :func:`update_display` Notes ----- In Python, objects can declare their textual representation using the `__repr__` method. IPython expands on this idea and allows objects to declare other, rich representations including: - HTML - JSON - PNG - JPEG - SVG - LaTeX A single object can declare some or all of these representations; all are handled by IPython's display system. The main idea of the first approach is that you have to implement special display methods when you define your class, one for each representation you want to use. Here is a list of the names of the special methods and the values they must return: - `_repr_html_`: return raw HTML as a string, or a tuple (see below). - `_repr_json_`: return a JSONable dict, or a tuple (see below). - `_repr_jpeg_`: return raw JPEG data, or a tuple (see below). - `_repr_png_`: return raw PNG data, or a tuple (see below). - `_repr_svg_`: return raw SVG data as a string, or a tuple (see below). - `_repr_latex_`: return LaTeX commands in a string surrounded by "$", or a tuple (see below). - `_repr_mimebundle_`: return a full mimebundle containing the mapping from all mimetypes to data. Use this for any mime-type not listed above. The above functions may also return the object's metadata alonside the data. If the metadata is available, the functions will return a tuple containing the data and metadata, in that order. If there is no metadata available, then the functions will return the data only. When you are directly writing your own classes, you can adapt them for display in IPython by following the above approach. But in practice, you often need to work with existing classes that you can't easily modify. You can refer to the documentation on integrating with the display system in order to register custom formatters for already existing types (:ref:`integrating_rich_display`). .. versionadded:: 5.4 display available without import .. versionadded:: 6.1 display available without import Since IPython 5.4 and 6.1 :func:`display` is automatically made available to the user without import. If you are using display in a document that might be used in a pure python context or with older version of IPython, use the following import at the top of your file:: from IPython.display import display """ from IPython.core.interactiveshell import InteractiveShell if not InteractiveShell.initialized(): # Directly print objects. print(*objs) return if transient is None: transient = {} if metadata is None: metadata={} if display_id: if display_id is True: display_id = _new_id() transient['display_id'] = display_id if kwargs.get('update') and 'display_id' not in transient: raise TypeError('display_id required for update_display') if transient: kwargs['transient'] = transient if not objs and display_id: # if given no objects, but still a request for a display_id, # we assume the user wants to insert an empty output that # can be updated later objs = [{}] raw = True if not raw: format = InteractiveShell.instance().display_formatter.format if clear: clear_output(wait=True) for obj in objs: if raw: publish_display_data(data=obj, metadata=metadata, **kwargs) else: format_dict, md_dict = format(obj, include=include, exclude=exclude) if not format_dict: # nothing to display (e.g. _ipython_display_ took over) continue if metadata: # kwarg-specified metadata gets precedence _merge(md_dict, metadata) publish_display_data(data=format_dict, metadata=md_dict, **kwargs) if display_id: return DisplayHandle(display_id)
(*objs, include=None, exclude=None, metadata=None, transient=None, display_id=None, raw=False, clear=False, **kwargs)
15,826
ipywidgets.embed
embed_minimal_html
Write a minimal HTML file with widget views embedded. Parameters ---------- fp: filename or file-like object The file to write the HTML output to. views: widget or collection of widgets or None The widgets to include views for. If None, all DOMWidgets are included (not just the displayed ones). title: title of the html page. template: Template in which to embed the widget state. This should be a Python string with placeholders `{title}` and `{snippet}`. The `{snippet}` placeholder will be replaced by all the widgets. drop_defaults: boolean Whether to drop default values from the widget states. state: dict or None (default) The state to include. When set to None, the state of all widgets know to the widget manager is included. Otherwise it uses the passed state directly. This allows for end users to include a smaller state, under the responsibility that this state is sufficient to reconstruct the embedded views. indent: integer, string or None The indent to use for the JSON state dump. See `json.dumps` for full description. embed_url: string or None Allows for overriding the URL used to fetch the widget manager for the embedded code. This defaults (None) to a `jsDelivr` CDN url. requirejs: boolean (True) Enables the requirejs-based embedding, which allows for custom widgets. If True, the embed_url should point to an AMD module. cors: boolean (True) If True avoids sending user credentials while requesting the scripts. When opening an HTML file from disk, some browsers may refuse to load the scripts.
@doc_subst(_doc_snippets) def embed_minimal_html(fp, views, title='IPyWidget export', template=None, **kwargs): """Write a minimal HTML file with widget views embedded. Parameters ---------- fp: filename or file-like object The file to write the HTML output to. {views_attribute} title: title of the html page. template: Template in which to embed the widget state. This should be a Python string with placeholders `{{title}}` and `{{snippet}}`. The `{{snippet}}` placeholder will be replaced by all the widgets. {embed_kwargs} """ snippet = embed_snippet(views, **kwargs) values = { 'title': title, 'snippet': snippet, } if template is None: template = html_template html_code = template.format(**values) # Check if fp is writable: if hasattr(fp, 'write'): fp.write(html_code) else: # Assume fp is a filename: with open(fp, "w") as f: f.write(html_code)
(fp, views, title='IPyWidget export', template=None, **kwargs)
15,827
ipywidgets.widgets.interaction
interactive
A VBox container containing a group of interactive widgets tied to a function. Parameters ---------- __interact_f : function The function to which the interactive widgets are tied. The `**kwargs` should match the function signature. __options : dict A dict of options. Currently, the only supported keys are ``"manual"`` (defaults to ``False``), ``"manual_name"`` (defaults to ``"Run Interact"``) and ``"auto_display"`` (defaults to ``False``). **kwargs : various, optional An interactive widget is created for each keyword argument that is a valid widget abbreviation. Note that the first two parameters intentionally start with a double underscore to avoid being mixed up with keyword arguments passed by ``**kwargs``.
class interactive(VBox): """ A VBox container containing a group of interactive widgets tied to a function. Parameters ---------- __interact_f : function The function to which the interactive widgets are tied. The `**kwargs` should match the function signature. __options : dict A dict of options. Currently, the only supported keys are ``"manual"`` (defaults to ``False``), ``"manual_name"`` (defaults to ``"Run Interact"``) and ``"auto_display"`` (defaults to ``False``). **kwargs : various, optional An interactive widget is created for each keyword argument that is a valid widget abbreviation. Note that the first two parameters intentionally start with a double underscore to avoid being mixed up with keyword arguments passed by ``**kwargs``. """ def __init__(self, __interact_f, __options={}, **kwargs): VBox.__init__(self, _dom_classes=['widget-interact']) self.result = None self.args = [] self.kwargs = {} self.f = f = __interact_f self.clear_output = kwargs.pop('clear_output', True) self.manual = __options.get("manual", False) self.manual_name = __options.get("manual_name", "Run Interact") self.auto_display = __options.get("auto_display", False) new_kwargs = self.find_abbreviations(kwargs) # Before we proceed, let's make sure that the user has passed a set of args+kwargs # that will lead to a valid call of the function. This protects against unspecified # and doubly-specified arguments. try: check_argspec(f) except TypeError: # if we can't inspect, we can't validate pass else: getcallargs(f, **{n:v for n,v,_ in new_kwargs}) # Now build the widgets from the abbreviations. self.kwargs_widgets = self.widgets_from_abbreviations(new_kwargs) # This has to be done as an assignment, not using self.children.append, # so that traitlets notices the update. We skip any objects (such as fixed) that # are not DOMWidgets. c = [w for w in self.kwargs_widgets if isinstance(w, DOMWidget)] # If we are only to run the function on demand, add a button to request this. if self.manual: self.manual_button = Button(description=self.manual_name) c.append(self.manual_button) self.out = Output() c.append(self.out) self.children = c # Wire up the widgets # If we are doing manual running, the callback is only triggered by the button # Otherwise, it is triggered for every trait change received # On-demand running also suppresses running the function with the initial parameters if self.manual: self.manual_button.on_click(self.update) # Also register input handlers on text areas, so the user can hit return to # invoke execution. for w in self.kwargs_widgets: if isinstance(w, Text): w.continuous_update = False w.observe(self.update, names='value') else: for widget in self.kwargs_widgets: widget.observe(self.update, names='value') self.update() # Callback function def update(self, *args): """ Call the interact function and update the output widget with the result of the function call. Parameters ---------- *args : ignored Required for this method to be used as traitlets callback. """ self.kwargs = {} if self.manual: self.manual_button.disabled = True try: show_inline_matplotlib_plots() with self.out: if self.clear_output: clear_output(wait=True) for widget in self.kwargs_widgets: value = widget.get_interact_value() self.kwargs[widget._kwarg] = value self.result = self.f(**self.kwargs) show_inline_matplotlib_plots() if self.auto_display and self.result is not None: display(self.result) except Exception as e: ip = get_ipython() if ip is None: self.log.warning("Exception in interact callback: %s", e, exc_info=True) else: ip.showtraceback() finally: if self.manual: self.manual_button.disabled = False # Find abbreviations def signature(self): return signature(self.f) def find_abbreviations(self, kwargs): """Find the abbreviations for the given function and kwargs. Return (name, abbrev, default) tuples. """ new_kwargs = [] try: sig = self.signature() except (ValueError, TypeError): # can't inspect, no info from function; only use kwargs return [ (key, value, value) for key, value in kwargs.items() ] for param in sig.parameters.values(): for name, value, default in _yield_abbreviations_for_parameter(param, kwargs): if value is empty: raise ValueError('cannot find widget or abbreviation for argument: {!r}'.format(name)) new_kwargs.append((name, value, default)) return new_kwargs # Abbreviations to widgets def widgets_from_abbreviations(self, seq): """Given a sequence of (name, abbrev, default) tuples, return a sequence of Widgets.""" result = [] for name, abbrev, default in seq: if isinstance(abbrev, Widget) and (not isinstance(abbrev, ValueWidget)): raise TypeError("{!r} is not a ValueWidget".format(abbrev)) widget = self.widget_from_abbrev(abbrev, default) if widget is None: raise ValueError("{!r} cannot be transformed to a widget".format(abbrev)) if not hasattr(widget, "description") or not widget.description: widget.description = name widget._kwarg = name result.append(widget) return result @classmethod def widget_from_abbrev(cls, abbrev, default=empty): """Build a ValueWidget instance given an abbreviation or Widget.""" if isinstance(abbrev, ValueWidget) or isinstance(abbrev, fixed): return abbrev if isinstance(abbrev, tuple): widget = cls.widget_from_tuple(abbrev) if default is not empty: try: widget.value = default except Exception: # ignore failure to set default pass return widget # Try single value widget = cls.widget_from_single_value(abbrev) if widget is not None: return widget # Something iterable (list, dict, generator, ...). Note that str and # tuple should be handled before, that is why we check this case last. if isinstance(abbrev, Iterable): widget = cls.widget_from_iterable(abbrev) if default is not empty: try: widget.value = default except Exception: # ignore failure to set default pass return widget # No idea... return None @staticmethod def widget_from_single_value(o): """Make widgets from single values, which can be used as parameter defaults.""" if isinstance(o, str): return Text(value=str(o)) elif isinstance(o, bool): return Checkbox(value=o) elif isinstance(o, Integral): min, max, value = _get_min_max_value(None, None, o) return IntSlider(value=o, min=min, max=max) elif isinstance(o, Real): min, max, value = _get_min_max_value(None, None, o) return FloatSlider(value=o, min=min, max=max) else: return None @staticmethod def widget_from_tuple(o): """Make widgets from a tuple abbreviation.""" if _matches(o, (Real, Real)): min, max, value = _get_min_max_value(o[0], o[1]) if all(isinstance(_, Integral) for _ in o): cls = IntSlider else: cls = FloatSlider return cls(value=value, min=min, max=max) elif _matches(o, (Real, Real, Real)): step = o[2] if step <= 0: raise ValueError("step must be >= 0, not %r" % step) min, max, value = _get_min_max_value(o[0], o[1], step=step) if all(isinstance(_, Integral) for _ in o): cls = IntSlider else: cls = FloatSlider return cls(value=value, min=min, max=max, step=step) @staticmethod def widget_from_iterable(o): """Make widgets from an iterable. This should not be done for a string or tuple.""" # Dropdown expects a dict or list, so we convert an arbitrary # iterable to either of those. if isinstance(o, (list, dict)): return Dropdown(options=o) elif isinstance(o, Mapping): return Dropdown(options=list(o.items())) else: return Dropdown(options=list(o)) # Return a factory for interactive functions @classmethod def factory(cls): options = dict(manual=False, auto_display=True, manual_name="Run Interact") return _InteractFactory(cls, options)
(_interactive__interact_f, _interactive__options={}, **kwargs)
15,832
ipywidgets.widgets.interaction
__init__
null
def __init__(self, __interact_f, __options={}, **kwargs): VBox.__init__(self, _dom_classes=['widget-interact']) self.result = None self.args = [] self.kwargs = {} self.f = f = __interact_f self.clear_output = kwargs.pop('clear_output', True) self.manual = __options.get("manual", False) self.manual_name = __options.get("manual_name", "Run Interact") self.auto_display = __options.get("auto_display", False) new_kwargs = self.find_abbreviations(kwargs) # Before we proceed, let's make sure that the user has passed a set of args+kwargs # that will lead to a valid call of the function. This protects against unspecified # and doubly-specified arguments. try: check_argspec(f) except TypeError: # if we can't inspect, we can't validate pass else: getcallargs(f, **{n:v for n,v,_ in new_kwargs}) # Now build the widgets from the abbreviations. self.kwargs_widgets = self.widgets_from_abbreviations(new_kwargs) # This has to be done as an assignment, not using self.children.append, # so that traitlets notices the update. We skip any objects (such as fixed) that # are not DOMWidgets. c = [w for w in self.kwargs_widgets if isinstance(w, DOMWidget)] # If we are only to run the function on demand, add a button to request this. if self.manual: self.manual_button = Button(description=self.manual_name) c.append(self.manual_button) self.out = Output() c.append(self.out) self.children = c # Wire up the widgets # If we are doing manual running, the callback is only triggered by the button # Otherwise, it is triggered for every trait change received # On-demand running also suppresses running the function with the initial parameters if self.manual: self.manual_button.on_click(self.update) # Also register input handlers on text areas, so the user can hit return to # invoke execution. for w in self.kwargs_widgets: if isinstance(w, Text): w.continuous_update = False w.observe(self.update, names='value') else: for widget in self.kwargs_widgets: widget.observe(self.update, names='value') self.update()
(self, _interactive__interact_f, _interactive__options={}, **kwargs)
15,860
ipywidgets.widgets.interaction
find_abbreviations
Find the abbreviations for the given function and kwargs. Return (name, abbrev, default) tuples.
def find_abbreviations(self, kwargs): """Find the abbreviations for the given function and kwargs. Return (name, abbrev, default) tuples. """ new_kwargs = [] try: sig = self.signature() except (ValueError, TypeError): # can't inspect, no info from function; only use kwargs return [ (key, value, value) for key, value in kwargs.items() ] for param in sig.parameters.values(): for name, value, default in _yield_abbreviations_for_parameter(param, kwargs): if value is empty: raise ValueError('cannot find widget or abbreviation for argument: {!r}'.format(name)) new_kwargs.append((name, value, default)) return new_kwargs
(self, kwargs)
15,881
ipywidgets.widgets.interaction
signature
null
def signature(self): return signature(self.f)
(self)
15,890
ipywidgets.widgets.interaction
update
Call the interact function and update the output widget with the result of the function call. Parameters ---------- *args : ignored Required for this method to be used as traitlets callback.
def update(self, *args): """ Call the interact function and update the output widget with the result of the function call. Parameters ---------- *args : ignored Required for this method to be used as traitlets callback. """ self.kwargs = {} if self.manual: self.manual_button.disabled = True try: show_inline_matplotlib_plots() with self.out: if self.clear_output: clear_output(wait=True) for widget in self.kwargs_widgets: value = widget.get_interact_value() self.kwargs[widget._kwarg] = value self.result = self.f(**self.kwargs) show_inline_matplotlib_plots() if self.auto_display and self.result is not None: display(self.result) except Exception as e: ip = get_ipython() if ip is None: self.log.warning("Exception in interact callback: %s", e, exc_info=True) else: ip.showtraceback() finally: if self.manual: self.manual_button.disabled = False
(self, *args)
15,891
ipywidgets.widgets.interaction
widget_from_iterable
Make widgets from an iterable. This should not be done for a string or tuple.
@staticmethod def widget_from_iterable(o): """Make widgets from an iterable. This should not be done for a string or tuple.""" # Dropdown expects a dict or list, so we convert an arbitrary # iterable to either of those. if isinstance(o, (list, dict)): return Dropdown(options=o) elif isinstance(o, Mapping): return Dropdown(options=list(o.items())) else: return Dropdown(options=list(o))
(o)
15,892
ipywidgets.widgets.interaction
widget_from_single_value
Make widgets from single values, which can be used as parameter defaults.
@staticmethod def widget_from_single_value(o): """Make widgets from single values, which can be used as parameter defaults.""" if isinstance(o, str): return Text(value=str(o)) elif isinstance(o, bool): return Checkbox(value=o) elif isinstance(o, Integral): min, max, value = _get_min_max_value(None, None, o) return IntSlider(value=o, min=min, max=max) elif isinstance(o, Real): min, max, value = _get_min_max_value(None, None, o) return FloatSlider(value=o, min=min, max=max) else: return None
(o)
15,893
ipywidgets.widgets.interaction
widget_from_tuple
Make widgets from a tuple abbreviation.
@staticmethod def widget_from_tuple(o): """Make widgets from a tuple abbreviation.""" if _matches(o, (Real, Real)): min, max, value = _get_min_max_value(o[0], o[1]) if all(isinstance(_, Integral) for _ in o): cls = IntSlider else: cls = FloatSlider return cls(value=value, min=min, max=max) elif _matches(o, (Real, Real, Real)): step = o[2] if step <= 0: raise ValueError("step must be >= 0, not %r" % step) min, max, value = _get_min_max_value(o[0], o[1], step=step) if all(isinstance(_, Integral) for _ in o): cls = IntSlider else: cls = FloatSlider return cls(value=value, min=min, max=max, step=step)
(o)
15,894
ipywidgets.widgets.interaction
widgets_from_abbreviations
Given a sequence of (name, abbrev, default) tuples, return a sequence of Widgets.
def widgets_from_abbreviations(self, seq): """Given a sequence of (name, abbrev, default) tuples, return a sequence of Widgets.""" result = [] for name, abbrev, default in seq: if isinstance(abbrev, Widget) and (not isinstance(abbrev, ValueWidget)): raise TypeError("{!r} is not a ValueWidget".format(abbrev)) widget = self.widget_from_abbrev(abbrev, default) if widget is None: raise ValueError("{!r} cannot be transformed to a widget".format(abbrev)) if not hasattr(widget, "description") or not widget.description: widget.description = name widget._kwarg = name result.append(widget) return result
(self, seq)
15,897
traitlets.traitlets
link
Link traits from different objects together so they remain in sync. Parameters ---------- source : (object / attribute name) pair target : (object / attribute name) pair transform: iterable with two callables (optional) Data transformation between source and target and target and source. Examples -------- >>> class X(HasTraits): ... value = Int() >>> src = X(value=1) >>> tgt = X(value=42) >>> c = link((src, "value"), (tgt, "value")) Setting source updates target objects: >>> src.value = 5 >>> tgt.value 5
class link: """Link traits from different objects together so they remain in sync. Parameters ---------- source : (object / attribute name) pair target : (object / attribute name) pair transform: iterable with two callables (optional) Data transformation between source and target and target and source. Examples -------- >>> class X(HasTraits): ... value = Int() >>> src = X(value=1) >>> tgt = X(value=42) >>> c = link((src, "value"), (tgt, "value")) Setting source updates target objects: >>> src.value = 5 >>> tgt.value 5 """ updating = False def __init__(self, source: t.Any, target: t.Any, transform: t.Any = None) -> None: _validate_link(source, target) self.source, self.target = source, target self._transform, self._transform_inv = transform if transform else (lambda x: x,) * 2 self.link() def link(self) -> None: try: setattr( self.target[0], self.target[1], self._transform(getattr(self.source[0], self.source[1])), ) finally: self.source[0].observe(self._update_target, names=self.source[1]) self.target[0].observe(self._update_source, names=self.target[1]) @contextlib.contextmanager def _busy_updating(self) -> t.Any: self.updating = True try: yield finally: self.updating = False def _update_target(self, change: t.Any) -> None: if self.updating: return with self._busy_updating(): setattr(self.target[0], self.target[1], self._transform(change.new)) if getattr(self.source[0], self.source[1]) != change.new: raise TraitError( f"Broken link {self}: the source value changed while updating " "the target." ) def _update_source(self, change: t.Any) -> None: if self.updating: return with self._busy_updating(): setattr(self.source[0], self.source[1], self._transform_inv(change.new)) if getattr(self.target[0], self.target[1]) != change.new: raise TraitError( f"Broken link {self}: the target value changed while updating " "the source." ) def unlink(self) -> None: self.source[0].unobserve(self._update_target, names=self.source[1]) self.target[0].unobserve(self._update_source, names=self.target[1])
(source: 't.Any', target: 't.Any', transform: 't.Any' = None) -> 'None'
15,898
traitlets.traitlets
__init__
null
def __init__(self, source: t.Any, target: t.Any, transform: t.Any = None) -> None: _validate_link(source, target) self.source, self.target = source, target self._transform, self._transform_inv = transform if transform else (lambda x: x,) * 2 self.link()
(self, source: Any, target: Any, transform: Optional[Any] = None) -> NoneType
15,899
traitlets.traitlets
_busy_updating
null
def _validate_link(*tuples: t.Any) -> None: """Validate arguments for traitlet link functions""" for tup in tuples: if not len(tup) == 2: raise TypeError( "Each linked traitlet must be specified as (HasTraits, 'trait_name'), not %r" % t ) obj, trait_name = tup if not isinstance(obj, HasTraits): raise TypeError("Each object must be HasTraits, not %r" % type(obj)) if trait_name not in obj.traits(): raise TypeError(f"{obj!r} has no trait {trait_name!r}")
(self) -> Any
15,900
traitlets.traitlets
_update_source
null
def _update_source(self, change: t.Any) -> None: if self.updating: return with self._busy_updating(): setattr(self.source[0], self.source[1], self._transform_inv(change.new)) if getattr(self.target[0], self.target[1]) != change.new: raise TraitError( f"Broken link {self}: the target value changed while updating " "the source." )
(self, change: Any) -> NoneType
15,901
traitlets.traitlets
_update_target
null
def _update_target(self, change: t.Any) -> None: if self.updating: return with self._busy_updating(): setattr(self.target[0], self.target[1], self._transform(change.new)) if getattr(self.source[0], self.source[1]) != change.new: raise TraitError( f"Broken link {self}: the source value changed while updating " "the target." )
(self, change: Any) -> NoneType
15,902
traitlets.traitlets
link
null
def link(self) -> None: try: setattr( self.target[0], self.target[1], self._transform(getattr(self.source[0], self.source[1])), ) finally: self.source[0].observe(self._update_target, names=self.source[1]) self.target[0].observe(self._update_source, names=self.target[1])
(self) -> NoneType
15,903
traitlets.traitlets
unlink
null
def unlink(self) -> None: self.source[0].unobserve(self._update_target, names=self.source[1]) self.target[0].unobserve(self._update_source, names=self.target[1])
(self) -> NoneType
15,904
traitlets.traitlets
observe
A decorator which can be used to observe Traits on a class. The handler passed to the decorator will be called with one ``change`` dict argument. The change dictionary at least holds a 'type' key and a 'name' key, corresponding respectively to the type of notification and the name of the attribute that triggered the notification. Other keys may be passed depending on the value of 'type'. In the case where type is 'change', we also have the following keys: * ``owner`` : the HasTraits instance * ``old`` : the old value of the modified trait attribute * ``new`` : the new value of the modified trait attribute * ``name`` : the name of the modified trait attribute. Parameters ---------- *names The str names of the Traits to observe on the object. type : str, kwarg-only The type of event to observe (e.g. 'change')
def observe(*names: Sentinel | str, type: str = "change") -> ObserveHandler: """A decorator which can be used to observe Traits on a class. The handler passed to the decorator will be called with one ``change`` dict argument. The change dictionary at least holds a 'type' key and a 'name' key, corresponding respectively to the type of notification and the name of the attribute that triggered the notification. Other keys may be passed depending on the value of 'type'. In the case where type is 'change', we also have the following keys: * ``owner`` : the HasTraits instance * ``old`` : the old value of the modified trait attribute * ``new`` : the new value of the modified trait attribute * ``name`` : the name of the modified trait attribute. Parameters ---------- *names The str names of the Traits to observe on the object. type : str, kwarg-only The type of event to observe (e.g. 'change') """ if not names: raise TypeError("Please specify at least one trait name to observe.") for name in names: if name is not All and not isinstance(name, str): raise TypeError("trait names to observe must be strings or All, not %r" % name) return ObserveHandler(names, type=type)
(*names: traitlets.utils.sentinel.Sentinel | str, type: str = 'change') -> traitlets.traitlets.ObserveHandler
15,907
traitlets.traitlets
validate
A decorator to register cross validator of HasTraits object's state when a Trait is set. The handler passed to the decorator must have one ``proposal`` dict argument. The proposal dictionary must hold the following keys: * ``owner`` : the HasTraits instance * ``value`` : the proposed value for the modified trait attribute * ``trait`` : the TraitType instance associated with the attribute Parameters ---------- *names The str names of the Traits to validate. Notes ----- Since the owner has access to the ``HasTraits`` instance via the 'owner' key, the registered cross validator could potentially make changes to attributes of the ``HasTraits`` instance. However, we recommend not to do so. The reason is that the cross-validation of attributes may run in arbitrary order when exiting the ``hold_trait_notifications`` context, and such changes may not commute.
def validate(*names: Sentinel | str) -> ValidateHandler: """A decorator to register cross validator of HasTraits object's state when a Trait is set. The handler passed to the decorator must have one ``proposal`` dict argument. The proposal dictionary must hold the following keys: * ``owner`` : the HasTraits instance * ``value`` : the proposed value for the modified trait attribute * ``trait`` : the TraitType instance associated with the attribute Parameters ---------- *names The str names of the Traits to validate. Notes ----- Since the owner has access to the ``HasTraits`` instance via the 'owner' key, the registered cross validator could potentially make changes to attributes of the ``HasTraits`` instance. However, we recommend not to do so. The reason is that the cross-validation of attributes may run in arbitrary order when exiting the ``hold_trait_notifications`` context, and such changes may not commute. """ if not names: raise TypeError("Please specify at least one trait name to validate.") for name in names: if name is not All and not isinstance(name, str): raise TypeError("trait names to validate must be strings or All, not %r" % name) return ValidateHandler(names)
(*names: traitlets.utils.sentinel.Sentinel | str) -> traitlets.traitlets.ValidateHandler
15,908
ipyleaflet.leaflet
wait_for_change
null
def wait_for_change(widget, value): future = asyncio.Future() def get_value(change): future.set_result(change.new) widget.unobserve(get_value, value) widget.observe(get_value, value) return future
(widget, value)
15,911
hypothesis.core
given
A decorator for turning a test function that accepts arguments into a randomized test. This is the main entry point to Hypothesis.
def given( *_given_arguments: Union[SearchStrategy[Any], EllipsisType], **_given_kwargs: Union[SearchStrategy[Any], EllipsisType], ) -> Callable[ [Callable[..., Optional[Coroutine[Any, Any, None]]]], Callable[..., None] ]: """A decorator for turning a test function that accepts arguments into a randomized test. This is the main entry point to Hypothesis. """ def run_test_as_given(test): if inspect.isclass(test): # Provide a meaningful error to users, instead of exceptions from # internals that assume we're dealing with a function. raise InvalidArgument("@given cannot be applied to a class.") given_arguments = tuple(_given_arguments) given_kwargs = dict(_given_kwargs) original_sig = get_signature(test) if given_arguments == (Ellipsis,) and not given_kwargs: # user indicated that they want to infer all arguments given_kwargs = { p.name: Ellipsis for p in original_sig.parameters.values() if p.kind in (p.POSITIONAL_OR_KEYWORD, p.KEYWORD_ONLY) } given_arguments = () check_invalid = is_invalid_test( test, original_sig, given_arguments, given_kwargs ) # If the argument check found problems, return a dummy test function # that will raise an error if it is actually called. if check_invalid is not None: return check_invalid # Because the argument check succeeded, we can convert @given's # positional arguments into keyword arguments for simplicity. if given_arguments: assert not given_kwargs posargs = [ p.name for p in original_sig.parameters.values() if p.kind is p.POSITIONAL_OR_KEYWORD ] given_kwargs = dict(list(zip(posargs[::-1], given_arguments[::-1]))[::-1]) # These have been converted, so delete them to prevent accidental use. del given_arguments new_signature = new_given_signature(original_sig, given_kwargs) # Use type information to convert "infer" arguments into appropriate strategies. if ... in given_kwargs.values(): hints = get_type_hints(test) for name in [name for name, value in given_kwargs.items() if value is ...]: if name not in hints: return _invalid( f"passed {name}=... for {test.__name__}, but {name} has " "no type annotation", test=test, given_kwargs=given_kwargs, ) given_kwargs[name] = st.from_type(hints[name]) prev_self = Unset = object() @impersonate(test) @define_function_signature(test.__name__, test.__doc__, new_signature) def wrapped_test(*arguments, **kwargs): # Tell pytest to omit the body of this function from tracebacks __tracebackhide__ = True test = wrapped_test.hypothesis.inner_test if getattr(test, "is_hypothesis_test", False): raise InvalidArgument( f"You have applied @given to the test {test.__name__} more than " "once, which wraps the test several times and is extremely slow. " "A similar effect can be gained by combining the arguments " "of the two calls to given. For example, instead of " "@given(booleans()) @given(integers()), you could write " "@given(booleans(), integers())" ) settings = wrapped_test._hypothesis_internal_use_settings random = get_random_for_wrapped_test(test, wrapped_test) arguments, kwargs, stuff = process_arguments_to_given( wrapped_test, arguments, kwargs, given_kwargs, new_signature.parameters ) if ( inspect.iscoroutinefunction(test) and get_executor(stuff.selfy) is default_executor ): # See https://github.com/HypothesisWorks/hypothesis/issues/3054 # If our custom executor doesn't handle coroutines, or we return an # awaitable from a non-async-def function, we just rely on the # return_value health check. This catches most user errors though. raise InvalidArgument( "Hypothesis doesn't know how to run async test functions like " f"{test.__name__}. You'll need to write a custom executor, " "or use a library like pytest-asyncio or pytest-trio which can " "handle the translation for you.\n See https://hypothesis." "readthedocs.io/en/latest/details.html#custom-function-execution" ) runner = stuff.selfy if isinstance(stuff.selfy, TestCase) and test.__name__ in dir(TestCase): msg = ( f"You have applied @given to the method {test.__name__}, which is " "used by the unittest runner but is not itself a test." " This is not useful in any way." ) fail_health_check(settings, msg, HealthCheck.not_a_test_method) if bad_django_TestCase(runner): # pragma: no cover # Covered by the Django tests, but not the pytest coverage task raise InvalidArgument( "You have applied @given to a method on " f"{type(runner).__qualname__}, but this " "class does not inherit from the supported versions in " "`hypothesis.extra.django`. Use the Hypothesis variants " "to ensure that each example is run in a separate " "database transaction." ) if settings.database is not None: nonlocal prev_self # Check selfy really is self (not e.g. a mock) before we health-check cur_self = ( stuff.selfy if getattr(type(stuff.selfy), test.__name__, None) is wrapped_test else None ) if prev_self is Unset: prev_self = cur_self elif cur_self is not prev_self: msg = ( f"The method {test.__qualname__} was called from multiple " "different executors. This may lead to flaky tests and " "nonreproducible errors when replaying from database." ) fail_health_check(settings, msg, HealthCheck.differing_executors) state = StateForActualGivenExecution( stuff, test, settings, random, wrapped_test ) reproduce_failure = wrapped_test._hypothesis_internal_use_reproduce_failure # If there was a @reproduce_failure decorator, use it to reproduce # the error (or complain that we couldn't). Either way, this will # always raise some kind of error. if reproduce_failure is not None: expected_version, failure = reproduce_failure if expected_version != __version__: raise InvalidArgument( "Attempting to reproduce a failure from a different " "version of Hypothesis. This failure is from %s, but " "you are currently running %r. Please change your " "Hypothesis version to a matching one." % (expected_version, __version__) ) try: state.execute_once( ConjectureData.for_buffer(decode_failure(failure)), print_example=True, is_final=True, ) raise DidNotReproduce( "Expected the test to raise an error, but it " "completed successfully." ) except StopTest: raise DidNotReproduce( "The shape of the test data has changed in some way " "from where this blob was defined. Are you sure " "you're running the same test?" ) from None except UnsatisfiedAssumption: raise DidNotReproduce( "The test data failed to satisfy an assumption in the " "test. Have you added it since this blob was generated?" ) from None # There was no @reproduce_failure, so start by running any explicit # examples from @example decorators. errors = list( execute_explicit_examples( state, wrapped_test, arguments, kwargs, original_sig ) ) if errors: # If we're not going to report multiple bugs, we would have # stopped running explicit examples at the first failure. assert len(errors) == 1 or state.settings.report_multiple_bugs # If an explicit example raised a 'skip' exception, ensure it's never # wrapped up in an exception group. Because we break out of the loop # immediately on finding a skip, if present it's always the last error. if isinstance(errors[-1][1], skip_exceptions_to_reraise()): # Covered by `test_issue_3453_regression`, just in a subprocess. del errors[:-1] # pragma: no cover _raise_to_user(errors, state.settings, [], " in explicit examples") # If there were any explicit examples, they all ran successfully. # The next step is to use the Conjecture engine to run the test on # many different inputs. ran_explicit_examples = Phase.explicit in state.settings.phases and getattr( wrapped_test, "hypothesis_explicit_examples", () ) SKIP_BECAUSE_NO_EXAMPLES = unittest.SkipTest( "Hypothesis has been told to run no examples for this test." ) if not ( Phase.reuse in settings.phases or Phase.generate in settings.phases ): if not ran_explicit_examples: raise SKIP_BECAUSE_NO_EXAMPLES return try: if isinstance(runner, TestCase) and hasattr(runner, "subTest"): subTest = runner.subTest try: runner.subTest = types.MethodType(fake_subTest, runner) state.run_engine() finally: runner.subTest = subTest else: state.run_engine() except BaseException as e: # The exception caught here should either be an actual test # failure (or BaseExceptionGroup), or some kind of fatal error # that caused the engine to stop. generated_seed = wrapped_test._hypothesis_internal_use_generated_seed with local_settings(settings): if not (state.failed_normally or generated_seed is None): if running_under_pytest: report( f"You can add @seed({generated_seed}) to this test or " f"run pytest with --hypothesis-seed={generated_seed} " "to reproduce this failure." ) else: report( f"You can add @seed({generated_seed}) to this test to " "reproduce this failure." ) # The dance here is to avoid showing users long tracebacks # full of Hypothesis internals they don't care about. # We have to do this inline, to avoid adding another # internal stack frame just when we've removed the rest. # # Using a variable for our trimmed error ensures that the line # which will actually appear in tracebacks is as clear as # possible - "raise the_error_hypothesis_found". the_error_hypothesis_found = e.with_traceback( None if isinstance(e, BaseExceptionGroup) else get_trimmed_traceback() ) raise the_error_hypothesis_found if not (ran_explicit_examples or state.ever_executed): raise SKIP_BECAUSE_NO_EXAMPLES def _get_fuzz_target() -> ( Callable[[Union[bytes, bytearray, memoryview, BinaryIO]], Optional[bytes]] ): # Because fuzzing interfaces are very performance-sensitive, we use a # somewhat more complicated structure here. `_get_fuzz_target()` is # called by the `HypothesisHandle.fuzz_one_input` property, allowing # us to defer our collection of the settings, random instance, and # reassignable `inner_test` (etc) until `fuzz_one_input` is accessed. # # We then share the performance cost of setting up `state` between # many invocations of the target. We explicitly force `deadline=None` # for performance reasons, saving ~40% the runtime of an empty test. test = wrapped_test.hypothesis.inner_test settings = Settings( parent=wrapped_test._hypothesis_internal_use_settings, deadline=None ) random = get_random_for_wrapped_test(test, wrapped_test) _args, _kwargs, stuff = process_arguments_to_given( wrapped_test, (), {}, given_kwargs, new_signature.parameters ) assert not _args assert not _kwargs state = StateForActualGivenExecution( stuff, test, settings, random, wrapped_test ) digest = function_digest(test) # We track the minimal-so-far example for each distinct origin, so # that we track log-n instead of n examples for long runs. In particular # it means that we saturate for common errors in long runs instead of # storing huge volumes of low-value data. minimal_failures: dict = {} def fuzz_one_input( buffer: Union[bytes, bytearray, memoryview, BinaryIO] ) -> Optional[bytes]: # This inner part is all that the fuzzer will actually run, # so we keep it as small and as fast as possible. if isinstance(buffer, io.IOBase): buffer = buffer.read(BUFFER_SIZE) assert isinstance(buffer, (bytes, bytearray, memoryview)) data = ConjectureData.for_buffer(buffer) try: state.execute_once(data) except (StopTest, UnsatisfiedAssumption): return None except BaseException: buffer = bytes(data.buffer) known = minimal_failures.get(data.interesting_origin) if settings.database is not None and ( known is None or sort_key(buffer) <= sort_key(known) ): settings.database.save(digest, buffer) minimal_failures[data.interesting_origin] = buffer raise return bytes(data.buffer) fuzz_one_input.__doc__ = HypothesisHandle.fuzz_one_input.__doc__ return fuzz_one_input # After having created the decorated test function, we need to copy # over some attributes to make the switch as seamless as possible. for attrib in dir(test): if not (attrib.startswith("_") or hasattr(wrapped_test, attrib)): setattr(wrapped_test, attrib, getattr(test, attrib)) wrapped_test.is_hypothesis_test = True if hasattr(test, "_hypothesis_internal_settings_applied"): # Used to check if @settings is applied twice. wrapped_test._hypothesis_internal_settings_applied = True wrapped_test._hypothesis_internal_use_seed = getattr( test, "_hypothesis_internal_use_seed", None ) wrapped_test._hypothesis_internal_use_settings = ( getattr(test, "_hypothesis_internal_use_settings", None) or Settings.default ) wrapped_test._hypothesis_internal_use_reproduce_failure = getattr( test, "_hypothesis_internal_use_reproduce_failure", None ) wrapped_test.hypothesis = HypothesisHandle(test, _get_fuzz_target, given_kwargs) return wrapped_test return run_test_as_given
(*_given_arguments: Union[hypothesis.strategies.SearchStrategy[Any], ellipsis], **_given_kwargs: Union[hypothesis.strategies.SearchStrategy[Any], ellipsis]) -> Callable[[Callable[..., Optional[Coroutine[Any, Any, NoneType]]]], Callable[..., NoneType]]
15,912
d8s_hypothesis.hypothesis_wrapper
hypothesis_get_strategy_results
Return the given n of results from the given hypothesis strategy. For a list of hypothesis strategies, see: https://hypothesis.readthedocs.io/en/latest/data.html.
def hypothesis_get_strategy_results(strategy, *args, n: int = 10, **kwargs): """Return the given n of results from the given hypothesis strategy. For a list of hypothesis strategies, see: https://hypothesis.readthedocs.io/en/latest/data.html. """ class A: # pylint: disable=R0903 def __init__(self): self.l = [] # noqa:E741 @given(strategy(*args)) @settings(max_examples=n, **kwargs) def a(self, value): """.""" self.l.append(value) obj = A() obj.a() # pylint: disable=E1120 return obj.l
(strategy, *args, n: int = 10, **kwargs)
15,914
hypothesis
settings
A settings object configures options including verbosity, runtime controls, persistence, determinism, and more. Default values are picked up from the settings.default object and changes made there will be picked up in newly created settings.
from hypothesis import settings
(parent: Optional[ForwardRef('settings')] = None, *, max_examples: int = not_set, derandomize: bool = not_set, database: Optional[ForwardRef('ExampleDatabase')] = not_set, verbosity: 'Verbosity' = not_set, phases: Collection[ForwardRef('Phase')] = not_set, stateful_step_count: int = not_set, report_multiple_bugs: bool = not_set, suppress_health_check: Collection[ForwardRef('HealthCheck')] = not_set, deadline: Union[int, float, datetime.timedelta, NoneType] = not_set, print_blob: bool = not_set, backend: str = not_set) -> None
15,915
hypothesis._settings
__call__
Make the settings object (self) an attribute of the test. The settings are later discovered by looking them up on the test itself.
def __call__(self, test: T) -> T: """Make the settings object (self) an attribute of the test. The settings are later discovered by looking them up on the test itself. """ # Aliasing as Any avoids mypy errors (attr-defined) when accessing and # setting custom attributes on the decorated function or class. _test: Any = test # Using the alias here avoids a mypy error (return-value) later when # ``test`` is returned, because this check results in type refinement. if not callable(_test): raise InvalidArgument( "settings objects can be called as a decorator with @given, " f"but decorated {test=} is not callable." ) if inspect.isclass(test): from hypothesis.stateful import RuleBasedStateMachine if issubclass(_test, RuleBasedStateMachine): attr_name = "_hypothesis_internal_settings_applied" if getattr(test, attr_name, False): raise InvalidArgument( "Applying the @settings decorator twice would " "overwrite the first version; merge their arguments " "instead." ) setattr(test, attr_name, True) _test.TestCase.settings = self return test # type: ignore else: raise InvalidArgument( "@settings(...) can only be used as a decorator on " "functions, or on subclasses of RuleBasedStateMachine." ) if hasattr(_test, "_hypothesis_internal_settings_applied"): # Can't use _hypothesis_internal_use_settings as an indicator that # @settings was applied, because @given also assigns that attribute. descr = get_pretty_function_description(test) raise InvalidArgument( f"{descr} has already been decorated with a settings object.\n" f" Previous: {_test._hypothesis_internal_use_settings!r}\n" f" This: {self!r}" ) _test._hypothesis_internal_use_settings = self _test._hypothesis_internal_settings_applied = True return test
(self, test: ~T) -> ~T
15,916
hypothesis._settings
__getattr__
null
def __getattr__(self, name): if name in all_settings: return all_settings[name].default else: raise AttributeError(f"settings has no attribute {name}")
(self, name)
15,917
hypothesis._settings
__init__
null
def __init__( self, parent: Optional["settings"] = None, *, # This looks pretty strange, but there's good reason: we want Mypy to detect # bad calls downstream, but not to freak out about the `= not_set` part even # though it's not semantically valid to pass that as an argument value. # The intended use is "like **kwargs, but more tractable for tooling". max_examples: int = not_set, # type: ignore derandomize: bool = not_set, # type: ignore database: Optional["ExampleDatabase"] = not_set, # type: ignore verbosity: "Verbosity" = not_set, # type: ignore phases: Collection["Phase"] = not_set, # type: ignore stateful_step_count: int = not_set, # type: ignore report_multiple_bugs: bool = not_set, # type: ignore suppress_health_check: Collection["HealthCheck"] = not_set, # type: ignore deadline: Union[int, float, datetime.timedelta, None] = not_set, # type: ignore print_blob: bool = not_set, # type: ignore backend: str = not_set, # type: ignore ) -> None: if parent is not None: check_type(settings, parent, "parent") if derandomize not in (not_set, False): if database not in (not_set, None): # type: ignore raise InvalidArgument( "derandomize=True implies database=None, so passing " f"{database=} too is invalid." ) database = None defaults = parent or settings.default if defaults is not None: for setting in all_settings.values(): value = locals()[setting.name] if value is not_set: object.__setattr__( self, setting.name, getattr(defaults, setting.name) ) else: object.__setattr__(self, setting.name, setting.validator(value))
(self, parent: Optional[ForwardRef('settings')] = None, *, max_examples: int = not_set, derandomize: bool = not_set, database: Optional[ForwardRef('ExampleDatabase')] = not_set, verbosity: 'Verbosity' = not_set, phases: Collection[ForwardRef('Phase')] = not_set, stateful_step_count: int = not_set, report_multiple_bugs: bool = not_set, suppress_health_check: Collection[ForwardRef('HealthCheck')] = not_set, deadline: Union[int, float, datetime.timedelta, NoneType] = not_set, print_blob: bool = not_set, backend: str = not_set) -> None
15,918
hypothesis._settings
__repr__
null
def __repr__(self): from hypothesis.internal.conjecture.data import AVAILABLE_PROVIDERS bits = sorted( f"{name}={getattr(self, name)!r}" for name in all_settings if (name != "backend" or len(AVAILABLE_PROVIDERS) > 1) # experimental ) return "settings({})".format(", ".join(bits))
(self)
15,919
hypothesis._settings
__setattr__
null
def __setattr__(self, name, value): raise AttributeError("settings objects are immutable")
(self, name, value)
15,920
hypothesis._settings
get_profile
Return the profile with the given name.
@staticmethod def get_profile(name: str) -> "settings": """Return the profile with the given name.""" check_type(str, name, "name") try: return settings._profiles[name] except KeyError: raise InvalidArgument(f"Profile {name!r} is not registered") from None
(name: str) -> hypothesis.settings
15,921
hypothesis._settings
load_profile
Loads in the settings defined in the profile provided. If the profile does not exist, InvalidArgument will be raised. Any setting not defined in the profile will be the library defined default for that setting.
@staticmethod def load_profile(name: str) -> None: """Loads in the settings defined in the profile provided. If the profile does not exist, InvalidArgument will be raised. Any setting not defined in the profile will be the library defined default for that setting. """ check_type(str, name, "name") settings._current_profile = name settings._assign_default_internal(settings.get_profile(name))
(name: str) -> NoneType
15,922
hypothesis._settings
register_profile
Registers a collection of values to be used as a settings profile. Settings profiles can be loaded by name - for example, you might create a 'fast' profile which runs fewer examples, keep the 'default' profile, and create a 'ci' profile that increases the number of examples and uses a different database to store failures. The arguments to this method are exactly as for :class:`~hypothesis.settings`: optional ``parent`` settings, and keyword arguments for each setting that will be set differently to parent (or settings.default, if parent is None).
@staticmethod def register_profile( name: str, parent: Optional["settings"] = None, **kwargs: Any, ) -> None: """Registers a collection of values to be used as a settings profile. Settings profiles can be loaded by name - for example, you might create a 'fast' profile which runs fewer examples, keep the 'default' profile, and create a 'ci' profile that increases the number of examples and uses a different database to store failures. The arguments to this method are exactly as for :class:`~hypothesis.settings`: optional ``parent`` settings, and keyword arguments for each setting that will be set differently to parent (or settings.default, if parent is None). """ check_type(str, name, "name") settings._profiles[name] = settings(parent=parent, **kwargs)
(name: str, parent: Optional[hypothesis.settings] = None, **kwargs: Any) -> NoneType
15,923
hypothesis._settings
show_changed
null
def show_changed(self): bits = [] for name, setting in all_settings.items(): value = getattr(self, name) if value != setting.default: bits.append(f"{name}={value!r}") return ", ".join(sorted(bits, key=len))
(self)