index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
8,708
ipaddr
__iter__
null
def __iter__(self): cur = int(self.network) bcast = int(self.broadcast) while cur <= bcast: cur += 1 yield IPAddress(cur - 1, version=self._version)
(self)
8,710
ipaddr
__lt__
null
def __lt__(self, other): if self._version != other._version: raise TypeError('%s and %s are not of the same version' % ( str(self), str(other))) if not isinstance(other, _BaseNet): raise TypeError('%s and %s are not of the same type' % ( str(self), str(other))) if self.network != other.network: return self.network < other.network if self.netmask != other.netmask: return self.netmask < other.netmask return False
(self, other)
8,713
ipaddr
__str__
null
def __str__(self): return '%s/%s' % (str(self.ip), str(self._prefixlen))
(self)
8,715
ipaddr
_get_networks_key
Network-only key function. Returns an object that identifies this address' network and netmask. This function is a suitable "key" argument for sorted() and list.sort().
def _get_networks_key(self): """Network-only key function. Returns an object that identifies this address' network and netmask. This function is a suitable "key" argument for sorted() and list.sort(). """ return (self._version, self.network, self.netmask)
(self)
8,716
ipaddr
_ip_int_from_prefix
Turn the prefix length into a bitwise netmask. Args: prefixlen: An integer, the prefix length. Returns: An integer.
def _ip_int_from_prefix(self, prefixlen): """Turn the prefix length into a bitwise netmask. Args: prefixlen: An integer, the prefix length. Returns: An integer. """ return self._ALL_ONES ^ (self._ALL_ONES >> prefixlen)
(self, prefixlen)
8,719
ipaddr
_prefix_from_ip_int
Return prefix length from a bitwise netmask. Args: ip_int: An integer, the netmask in expanded bitwise format. Returns: An integer, the prefix length. Raises: NetmaskValueError: If the input is not a valid netmask.
def _prefix_from_ip_int(self, ip_int): """Return prefix length from a bitwise netmask. Args: ip_int: An integer, the netmask in expanded bitwise format. Returns: An integer, the prefix length. Raises: NetmaskValueError: If the input is not a valid netmask. """ prefixlen = self._max_prefixlen while prefixlen: if ip_int & 1: break ip_int >>= 1 prefixlen -= 1 if ip_int == (1 << prefixlen) - 1: return prefixlen else: raise NetmaskValueError('Bit pattern does not match /1*0*/')
(self, ip_int)
8,720
ipaddr
_prefix_from_ip_string
Turn a netmask/hostmask string into a prefix length. Args: ip_str: A netmask or hostmask, formatted as an IP address. Returns: The prefix length as an integer. Raises: NetmaskValueError: If the input is not a netmask or hostmask.
def _prefix_from_ip_string(self, ip_str): """Turn a netmask/hostmask string into a prefix length. Args: ip_str: A netmask or hostmask, formatted as an IP address. Returns: The prefix length as an integer. Raises: NetmaskValueError: If the input is not a netmask or hostmask. """ # Parse the netmask/hostmask like an IP address. try: ip_int = self._ip_int_from_string(ip_str) except AddressValueError: raise NetmaskValueError('%s is not a valid netmask' % ip_str) # Try matching a netmask (this would be /1*0*/ as a bitwise regexp). # Note that the two ambiguous cases (all-ones and all-zeroes) are # treated as netmasks. try: return self._prefix_from_ip_int(ip_int) except NetmaskValueError: pass # Invert the bits, and try matching a /0+1+/ hostmask instead. ip_int ^= self._ALL_ONES try: return self._prefix_from_ip_int(ip_int) except NetmaskValueError: raise NetmaskValueError('%s is not a valid netmask' % ip_str)
(self, ip_str)
8,721
ipaddr
_prefix_from_prefix_int
Validate and return a prefix length integer. Args: prefixlen: An integer containing the prefix length. Returns: The input, possibly converted from long to int. Raises: NetmaskValueError: If the input is not an integer, or out of range.
def _prefix_from_prefix_int(self, prefixlen): """Validate and return a prefix length integer. Args: prefixlen: An integer containing the prefix length. Returns: The input, possibly converted from long to int. Raises: NetmaskValueError: If the input is not an integer, or out of range. """ if not isinstance(prefixlen, (int, long)): raise NetmaskValueError('%r is not an integer' % prefixlen) prefixlen = int(prefixlen) if not (0 <= prefixlen <= self._max_prefixlen): raise NetmaskValueError('%d is not a valid prefix length' % prefixlen) return prefixlen
(self, prefixlen)
8,722
ipaddr
_prefix_from_prefix_string
Turn a prefix length string into an integer. Args: prefixlen_str: A decimal string containing the prefix length. Returns: The prefix length as an integer. Raises: NetmaskValueError: If the input is malformed or out of range.
def _prefix_from_prefix_string(self, prefixlen_str): """Turn a prefix length string into an integer. Args: prefixlen_str: A decimal string containing the prefix length. Returns: The prefix length as an integer. Raises: NetmaskValueError: If the input is malformed or out of range. """ try: if not _BaseV4._DECIMAL_DIGITS.issuperset(prefixlen_str): raise ValueError prefixlen = int(prefixlen_str) except ValueError: raise NetmaskValueError('%s is not a valid prefix length' % prefixlen_str) return self._prefix_from_prefix_int(prefixlen)
(self, prefixlen_str)
8,726
ipaddr
iter_subnets
The subnets which join to make the current subnet. In the case that self contains only one IP (self._prefixlen == 32 for IPv4 or self._prefixlen == 128 for IPv6), return a list with just ourself. Args: prefixlen_diff: An integer, the amount the prefix length should be increased by. This should not be set if new_prefix is also set. new_prefix: The desired new prefix length. This must be a larger number (smaller prefix) than the existing prefix. This should not be set if prefixlen_diff is also set. Returns: An iterator of IPv(4|6) objects. Raises: ValueError: The prefixlen_diff is too small or too large. OR prefixlen_diff and new_prefix are both set or new_prefix is a smaller number than the current prefix (smaller number means a larger network)
def iter_subnets(self, prefixlen_diff=1, new_prefix=None): """The subnets which join to make the current subnet. In the case that self contains only one IP (self._prefixlen == 32 for IPv4 or self._prefixlen == 128 for IPv6), return a list with just ourself. Args: prefixlen_diff: An integer, the amount the prefix length should be increased by. This should not be set if new_prefix is also set. new_prefix: The desired new prefix length. This must be a larger number (smaller prefix) than the existing prefix. This should not be set if prefixlen_diff is also set. Returns: An iterator of IPv(4|6) objects. Raises: ValueError: The prefixlen_diff is too small or too large. OR prefixlen_diff and new_prefix are both set or new_prefix is a smaller number than the current prefix (smaller number means a larger network) """ if self._prefixlen == self._max_prefixlen: yield self return if new_prefix is not None: if new_prefix < self._prefixlen: raise ValueError('new prefix must be longer') if prefixlen_diff != 1: raise ValueError('cannot set prefixlen_diff and new_prefix') prefixlen_diff = new_prefix - self._prefixlen if prefixlen_diff < 0: raise ValueError('prefix length diff must be > 0') new_prefixlen = self._prefixlen + prefixlen_diff if new_prefixlen > self._max_prefixlen: raise ValueError( 'prefix length diff %d is invalid for netblock %s' % ( new_prefixlen, str(self))) first = IPNetwork('%s/%s' % (str(self.network), str(self._prefixlen + prefixlen_diff)), version=self._version) yield first current = first while True: broadcast = current.broadcast if broadcast == self.broadcast: return new_addr = IPAddress(int(broadcast) + 1, version=self._version) current = IPNetwork('%s/%s' % (str(new_addr), str(new_prefixlen)), version=self._version) yield current
(self, prefixlen_diff=1, new_prefix=None)
8,727
ipaddr
iterhosts
Generate Iterator over usable hosts in a network. This is like __iter__ except it doesn't return the network or broadcast addresses.
def iterhosts(self): """Generate Iterator over usable hosts in a network. This is like __iter__ except it doesn't return the network or broadcast addresses. """ cur = int(self.network) + 1 bcast = int(self.broadcast) - 1 while cur <= bcast: cur += 1 yield IPAddress(cur - 1, version=self._version)
(self)
8,728
ipaddr
masked
Return the network object with the host bits masked out.
def masked(self): """Return the network object with the host bits masked out.""" return IPNetwork('%s/%d' % (self.network, self._prefixlen), version=self._version)
(self)
8,729
ipaddr
overlaps
Tell if self is partly contained in other.
def overlaps(self, other): """Tell if self is partly contained in other.""" return self.network in other or self.broadcast in other or ( other.network in self or other.broadcast in self)
(self, other)
8,732
ipaddr
IPv6Address
Represent and manipulate single IPv6 Addresses.
class IPv6Address(_BaseV6, _BaseIP): """Represent and manipulate single IPv6 Addresses. """ def __init__(self, address): """Instantiate a new IPv6 address object. Args: address: A string or integer representing the IP Additionally, an integer can be passed, so IPv6Address('2001:4860::') == IPv6Address(42541956101370907050197289607612071936L). or, more generally IPv6Address(IPv6Address('2001:4860::')._ip) == IPv6Address('2001:4860::') Raises: AddressValueError: If address isn't a valid IPv6 address. """ _BaseV6.__init__(self, address) # Efficient copy constructor. if isinstance(address, IPv6Address): self._ip = address._ip return # Efficient constructor from integer. if isinstance(address, (int, long)): self._ip = address if address < 0 or address > self._ALL_ONES: raise AddressValueError(address) return # Constructing from a packed address if isinstance(address, Bytes): try: hi, lo = struct.unpack('!QQ', address) except struct.error: raise AddressValueError(address) # Wrong length. self._ip = (hi << 64) | lo return # Assume input argument to be string or any object representation # which converts into a formatted IP string. addr_str = str(address) self._ip = self._ip_int_from_string(addr_str)
(address)
8,740
ipaddr
__init__
Instantiate a new IPv6 address object. Args: address: A string or integer representing the IP Additionally, an integer can be passed, so IPv6Address('2001:4860::') == IPv6Address(42541956101370907050197289607612071936L). or, more generally IPv6Address(IPv6Address('2001:4860::')._ip) == IPv6Address('2001:4860::') Raises: AddressValueError: If address isn't a valid IPv6 address.
def __init__(self, address): """Instantiate a new IPv6 address object. Args: address: A string or integer representing the IP Additionally, an integer can be passed, so IPv6Address('2001:4860::') == IPv6Address(42541956101370907050197289607612071936L). or, more generally IPv6Address(IPv6Address('2001:4860::')._ip) == IPv6Address('2001:4860::') Raises: AddressValueError: If address isn't a valid IPv6 address. """ _BaseV6.__init__(self, address) # Efficient copy constructor. if isinstance(address, IPv6Address): self._ip = address._ip return # Efficient constructor from integer. if isinstance(address, (int, long)): self._ip = address if address < 0 or address > self._ALL_ONES: raise AddressValueError(address) return # Constructing from a packed address if isinstance(address, Bytes): try: hi, lo = struct.unpack('!QQ', address) except struct.error: raise AddressValueError(address) # Wrong length. self._ip = (hi << 64) | lo return # Assume input argument to be string or any object representation # which converts into a formatted IP string. addr_str = str(address) self._ip = self._ip_int_from_string(addr_str)
(self, address)
8,748
ipaddr
_compress_hextets
Compresses a list of hextets. Compresses a list of strings, replacing the longest continuous sequence of "0" in the list with "" and adding empty strings at the beginning or at the end of the string such that subsequently calling ":".join(hextets) will produce the compressed version of the IPv6 address. Args: hextets: A list of strings, the hextets to compress. Returns: A list of strings.
def _compress_hextets(self, hextets): """Compresses a list of hextets. Compresses a list of strings, replacing the longest continuous sequence of "0" in the list with "" and adding empty strings at the beginning or at the end of the string such that subsequently calling ":".join(hextets) will produce the compressed version of the IPv6 address. Args: hextets: A list of strings, the hextets to compress. Returns: A list of strings. """ best_doublecolon_start = -1 best_doublecolon_len = 0 doublecolon_start = -1 doublecolon_len = 0 for index in range(len(hextets)): if hextets[index] == '0': doublecolon_len += 1 if doublecolon_start == -1: # Start of a sequence of zeros. doublecolon_start = index if doublecolon_len > best_doublecolon_len: # This is the longest sequence of zeros so far. best_doublecolon_len = doublecolon_len best_doublecolon_start = doublecolon_start else: doublecolon_len = 0 doublecolon_start = -1 if best_doublecolon_len > 1: best_doublecolon_end = (best_doublecolon_start + best_doublecolon_len) # For zeros at the end of the address. if best_doublecolon_end == len(hextets): hextets += [''] hextets[best_doublecolon_start:best_doublecolon_end] = [''] # For zeros at the beginning of the address. if best_doublecolon_start == 0: hextets = [''] + hextets return hextets
(self, hextets)
8,749
ipaddr
_explode_shorthand_ip_string
Expand a shortened IPv6 address. Args: ip_str: A string, the IPv6 address. Returns: A string, the expanded IPv6 address.
def _explode_shorthand_ip_string(self): """Expand a shortened IPv6 address. Args: ip_str: A string, the IPv6 address. Returns: A string, the expanded IPv6 address. """ if isinstance(self, _BaseNet): ip_str = str(self.ip) else: ip_str = str(self) ip_int = self._ip_int_from_string(ip_str) parts = [] for i in xrange(self._HEXTET_COUNT): parts.append('%04x' % (ip_int & 0xFFFF)) ip_int >>= 16 parts.reverse() if isinstance(self, _BaseNet): return '%s/%d' % (':'.join(parts), self.prefixlen) return ':'.join(parts)
(self)
8,751
ipaddr
_ip_int_from_string
Turn an IPv6 ip_str into an integer. Args: ip_str: A string, the IPv6 ip_str. Returns: A long, the IPv6 ip_str. Raises: AddressValueError: if ip_str isn't a valid IPv6 Address.
def _ip_int_from_string(self, ip_str): """Turn an IPv6 ip_str into an integer. Args: ip_str: A string, the IPv6 ip_str. Returns: A long, the IPv6 ip_str. Raises: AddressValueError: if ip_str isn't a valid IPv6 Address. """ parts = ip_str.split(':') # An IPv6 address needs at least 2 colons (3 parts). if len(parts) < 3: raise AddressValueError(ip_str) # If the address has an IPv4-style suffix, convert it to hexadecimal. if '.' in parts[-1]: ipv4_int = IPv4Address(parts.pop())._ip parts.append('%x' % ((ipv4_int >> 16) & 0xFFFF)) parts.append('%x' % (ipv4_int & 0xFFFF)) # An IPv6 address can't have more than 8 colons (9 parts). if len(parts) > self._HEXTET_COUNT + 1: raise AddressValueError(ip_str) # Disregarding the endpoints, find '::' with nothing in between. # This indicates that a run of zeroes has been skipped. try: skip_index, = ( [i for i in xrange(1, len(parts) - 1) if not parts[i]] or [None]) except ValueError: # Can't have more than one '::' raise AddressValueError(ip_str) # parts_hi is the number of parts to copy from above/before the '::' # parts_lo is the number of parts to copy from below/after the '::' if skip_index is not None: # If we found a '::', then check if it also covers the endpoints. parts_hi = skip_index parts_lo = len(parts) - skip_index - 1 if not parts[0]: parts_hi -= 1 if parts_hi: raise AddressValueError(ip_str) # ^: requires ^:: if not parts[-1]: parts_lo -= 1 if parts_lo: raise AddressValueError(ip_str) # :$ requires ::$ parts_skipped = self._HEXTET_COUNT - (parts_hi + parts_lo) if parts_skipped < 1: raise AddressValueError(ip_str) else: # Otherwise, allocate the entire address to parts_hi. The endpoints # could still be empty, but _parse_hextet() will check for that. if len(parts) != self._HEXTET_COUNT: raise AddressValueError(ip_str) parts_hi = len(parts) parts_lo = 0 parts_skipped = 0 try: # Now, parse the hextets into a 128-bit integer. ip_int = long(0) for i in xrange(parts_hi): ip_int <<= 16 ip_int |= self._parse_hextet(parts[i]) ip_int <<= 16 * parts_skipped for i in xrange(-parts_lo, 0): ip_int <<= 16 ip_int |= self._parse_hextet(parts[i]) return ip_int except ValueError: raise AddressValueError(ip_str)
(self, ip_str)
8,752
ipaddr
_parse_hextet
Convert an IPv6 hextet string into an integer. Args: hextet_str: A string, the number to parse. Returns: The hextet as an integer. Raises: ValueError: if the input isn't strictly a hex number from [0..FFFF].
def _parse_hextet(self, hextet_str): """Convert an IPv6 hextet string into an integer. Args: hextet_str: A string, the number to parse. Returns: The hextet as an integer. Raises: ValueError: if the input isn't strictly a hex number from [0..FFFF]. """ # Whitelist the characters, since int() allows a lot of bizarre stuff. if not self._HEX_DIGITS.issuperset(hextet_str): raise ValueError if len(hextet_str) > 4: raise ValueError hextet_int = int(hextet_str, 16) if hextet_int > 0xFFFF: raise ValueError return hextet_int
(self, hextet_str)
8,753
ipaddr
_string_from_ip_int
Turns a 128-bit integer into hexadecimal notation. Args: ip_int: An integer, the IP address. Returns: A string, the hexadecimal representation of the address. Raises: ValueError: The address is bigger than 128 bits of all ones.
def _string_from_ip_int(self, ip_int=None): """Turns a 128-bit integer into hexadecimal notation. Args: ip_int: An integer, the IP address. Returns: A string, the hexadecimal representation of the address. Raises: ValueError: The address is bigger than 128 bits of all ones. """ if not ip_int and ip_int != 0: ip_int = int(self._ip) if ip_int > self._ALL_ONES: raise ValueError('IPv6 address is too large') hex_str = '%032x' % ip_int hextets = [] for x in range(0, 32, 4): hextets.append('%x' % int(hex_str[x:x+4], 16)) hextets = self._compress_hextets(hextets) return ':'.join(hextets)
(self, ip_int=None)
8,754
ipaddr
IPv6Network
This class represents and manipulates 128-bit IPv6 networks. Attributes: [examples for IPv6('2001:658:22A:CAFE:200::1/64')] .ip: IPv6Address('2001:658:22a:cafe:200::1') .network: IPv6Address('2001:658:22a:cafe::') .hostmask: IPv6Address('::ffff:ffff:ffff:ffff') .broadcast: IPv6Address('2001:658:22a:cafe:ffff:ffff:ffff:ffff') .netmask: IPv6Address('ffff:ffff:ffff:ffff::') .prefixlen: 64
class IPv6Network(_BaseV6, _BaseNet): """This class represents and manipulates 128-bit IPv6 networks. Attributes: [examples for IPv6('2001:658:22A:CAFE:200::1/64')] .ip: IPv6Address('2001:658:22a:cafe:200::1') .network: IPv6Address('2001:658:22a:cafe::') .hostmask: IPv6Address('::ffff:ffff:ffff:ffff') .broadcast: IPv6Address('2001:658:22a:cafe:ffff:ffff:ffff:ffff') .netmask: IPv6Address('ffff:ffff:ffff:ffff::') .prefixlen: 64 """ def __init__(self, address, strict=False): """Instantiate a new IPv6 network object. Args: address: The IPv6 network as a string, 2-tuple, or any format supported by the IPv6Address constructor. Strings should be in CIDR format, such as '2001:db8::/32'. The 2-tuple format consists of an (ip, prefixlen), where ip is any format recognized by the IPv6Address constructor, and prefixlen is an integer from 0 through 128. A plain IPv6 address (in any format) will be forwarded to the IPv6Address constructor, with an implied prefixlen of 128. For example, the following inputs are equivalent: IPv6Network('2001:db8::/128') IPv6Network('2001:db8:0:0:0:0:0:0/128') IPv6Network('2001:db8::') IPv6Network(0x20010db8 << 96) IPv6Network(IPv6Address('2001:db8::')) IPv6Network(('2001:db8::', 128)) IPv6Network((0x20010db8 << 96, 128)) IPv6Network((IPv6Address('2001:db8::'), 128)) strict: A boolean. If true, ensure that we have been passed A true network address, eg, 2001:db8::/32 and not an IP address on a network, eg, 2001:db8::1/32. Raises: AddressValueError: If address isn't a valid IPv6 address. NetmaskValueError: If the netmask isn't valid for an IPv6 address. ValueError: If strict was True and a network address was not supplied. """ _BaseNet.__init__(self, address) _BaseV6.__init__(self, address) # Constructing from a single IP address. if isinstance(address, (int, long, Bytes, IPv6Address)): self.ip = IPv6Address(address) self._ip = self.ip._ip self._prefixlen = self._max_prefixlen self.netmask = IPv6Address(self._ALL_ONES) return # Constructing from an (ip, prefixlen) tuple. if isinstance(address, tuple): try: ip, prefixlen = address except ValueError: raise AddressValueError(address) self.ip = IPv6Address(ip) self._ip = self.ip._ip self._prefixlen = self._prefix_from_prefix_int(prefixlen) else: # Assume input argument to be string or any object representation # which converts into a formatted IP prefix string. addr = str(address).split('/') if len(addr) > 2: raise AddressValueError(address) self._ip = self._ip_int_from_string(addr[0]) self.ip = IPv6Address(self._ip) if len(addr) == 2: # This may raise NetmaskValueError self._prefixlen = self._prefix_from_prefix_string(addr[1]) else: self._prefixlen = self._max_prefixlen self.netmask = IPv6Address(self._ip_int_from_prefix(self._prefixlen)) if strict: if self.ip != self.network: raise ValueError('%s has host bits set' % self.ip) if self._prefixlen == (self._max_prefixlen - 1): self.iterhosts = self.__iter__ @property def with_netmask(self): return self.with_prefixlen
(address, strict=False)
8,768
ipaddr
__init__
Instantiate a new IPv6 network object. Args: address: The IPv6 network as a string, 2-tuple, or any format supported by the IPv6Address constructor. Strings should be in CIDR format, such as '2001:db8::/32'. The 2-tuple format consists of an (ip, prefixlen), where ip is any format recognized by the IPv6Address constructor, and prefixlen is an integer from 0 through 128. A plain IPv6 address (in any format) will be forwarded to the IPv6Address constructor, with an implied prefixlen of 128. For example, the following inputs are equivalent: IPv6Network('2001:db8::/128') IPv6Network('2001:db8:0:0:0:0:0:0/128') IPv6Network('2001:db8::') IPv6Network(0x20010db8 << 96) IPv6Network(IPv6Address('2001:db8::')) IPv6Network(('2001:db8::', 128)) IPv6Network((0x20010db8 << 96, 128)) IPv6Network((IPv6Address('2001:db8::'), 128)) strict: A boolean. If true, ensure that we have been passed A true network address, eg, 2001:db8::/32 and not an IP address on a network, eg, 2001:db8::1/32. Raises: AddressValueError: If address isn't a valid IPv6 address. NetmaskValueError: If the netmask isn't valid for an IPv6 address. ValueError: If strict was True and a network address was not supplied.
def __init__(self, address, strict=False): """Instantiate a new IPv6 network object. Args: address: The IPv6 network as a string, 2-tuple, or any format supported by the IPv6Address constructor. Strings should be in CIDR format, such as '2001:db8::/32'. The 2-tuple format consists of an (ip, prefixlen), where ip is any format recognized by the IPv6Address constructor, and prefixlen is an integer from 0 through 128. A plain IPv6 address (in any format) will be forwarded to the IPv6Address constructor, with an implied prefixlen of 128. For example, the following inputs are equivalent: IPv6Network('2001:db8::/128') IPv6Network('2001:db8:0:0:0:0:0:0/128') IPv6Network('2001:db8::') IPv6Network(0x20010db8 << 96) IPv6Network(IPv6Address('2001:db8::')) IPv6Network(('2001:db8::', 128)) IPv6Network((0x20010db8 << 96, 128)) IPv6Network((IPv6Address('2001:db8::'), 128)) strict: A boolean. If true, ensure that we have been passed A true network address, eg, 2001:db8::/32 and not an IP address on a network, eg, 2001:db8::1/32. Raises: AddressValueError: If address isn't a valid IPv6 address. NetmaskValueError: If the netmask isn't valid for an IPv6 address. ValueError: If strict was True and a network address was not supplied. """ _BaseNet.__init__(self, address) _BaseV6.__init__(self, address) # Constructing from a single IP address. if isinstance(address, (int, long, Bytes, IPv6Address)): self.ip = IPv6Address(address) self._ip = self.ip._ip self._prefixlen = self._max_prefixlen self.netmask = IPv6Address(self._ALL_ONES) return # Constructing from an (ip, prefixlen) tuple. if isinstance(address, tuple): try: ip, prefixlen = address except ValueError: raise AddressValueError(address) self.ip = IPv6Address(ip) self._ip = self.ip._ip self._prefixlen = self._prefix_from_prefix_int(prefixlen) else: # Assume input argument to be string or any object representation # which converts into a formatted IP prefix string. addr = str(address).split('/') if len(addr) > 2: raise AddressValueError(address) self._ip = self._ip_int_from_string(addr[0]) self.ip = IPv6Address(self._ip) if len(addr) == 2: # This may raise NetmaskValueError self._prefixlen = self._prefix_from_prefix_string(addr[1]) else: self._prefixlen = self._max_prefixlen self.netmask = IPv6Address(self._ip_int_from_prefix(self._prefixlen)) if strict: if self.ip != self.network: raise ValueError('%s has host bits set' % self.ip) if self._prefixlen == (self._max_prefixlen - 1): self.iterhosts = self.__iter__
(self, address, strict=False)
8,795
ipaddr
NetmaskValueError
A Value Error related to the netmask.
class NetmaskValueError(ValueError): """A Value Error related to the netmask."""
null
8,796
ipaddr
_BaseIP
A generic IP object. This IP class contains the version independent methods which are used by single IP addresses.
class _BaseIP(_IPAddrBase): """A generic IP object. This IP class contains the version independent methods which are used by single IP addresses. """ def __eq__(self, other): try: return (self._ip == other._ip and self._version == other._version) except AttributeError: return NotImplemented def __ne__(self, other): eq = self.__eq__(other) if eq is NotImplemented: return NotImplemented return not eq def __le__(self, other): gt = self.__gt__(other) if gt is NotImplemented: return NotImplemented return not gt def __ge__(self, other): lt = self.__lt__(other) if lt is NotImplemented: return NotImplemented return not lt def __lt__(self, other): if self._version != other._version: raise TypeError('%s and %s are not of the same version' % ( str(self), str(other))) if not isinstance(other, _BaseIP): raise TypeError('%s and %s are not of the same type' % ( str(self), str(other))) if self._ip != other._ip: return self._ip < other._ip return False def __gt__(self, other): if self._version != other._version: raise TypeError('%s and %s are not of the same version' % ( str(self), str(other))) if not isinstance(other, _BaseIP): raise TypeError('%s and %s are not of the same type' % ( str(self), str(other))) if self._ip != other._ip: return self._ip > other._ip return False # Shorthand for Integer addition and subtraction. This is not # meant to ever support addition/subtraction of addresses. def __add__(self, other): if not isinstance(other, int): return NotImplemented return IPAddress(int(self) + other, version=self._version) def __sub__(self, other): if not isinstance(other, int): return NotImplemented return IPAddress(int(self) - other, version=self._version) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, str(self)) def __str__(self): return '%s' % self._string_from_ip_int(self._ip) def __hash__(self): return hash(hex(long(self._ip))) def _get_address_key(self): return (self._version, self) @property def version(self): raise NotImplementedError('BaseIP has no version')
()
8,812
ipaddr
_BaseNet
A generic IP object. This IP class contains the version independent methods which are used by networks.
class _BaseNet(_IPAddrBase): """A generic IP object. This IP class contains the version independent methods which are used by networks. """ def __init__(self, address): self._cache = {} def __repr__(self): return '%s(%r)' % (self.__class__.__name__, str(self)) def iterhosts(self): """Generate Iterator over usable hosts in a network. This is like __iter__ except it doesn't return the network or broadcast addresses. """ cur = int(self.network) + 1 bcast = int(self.broadcast) - 1 while cur <= bcast: cur += 1 yield IPAddress(cur - 1, version=self._version) def __iter__(self): cur = int(self.network) bcast = int(self.broadcast) while cur <= bcast: cur += 1 yield IPAddress(cur - 1, version=self._version) def __getitem__(self, n): network = int(self.network) broadcast = int(self.broadcast) if n >= 0: if network + n > broadcast: raise IndexError return IPAddress(network + n, version=self._version) else: n += 1 if broadcast + n < network: raise IndexError return IPAddress(broadcast + n, version=self._version) def __lt__(self, other): if self._version != other._version: raise TypeError('%s and %s are not of the same version' % ( str(self), str(other))) if not isinstance(other, _BaseNet): raise TypeError('%s and %s are not of the same type' % ( str(self), str(other))) if self.network != other.network: return self.network < other.network if self.netmask != other.netmask: return self.netmask < other.netmask return False def __gt__(self, other): if self._version != other._version: raise TypeError('%s and %s are not of the same version' % ( str(self), str(other))) if not isinstance(other, _BaseNet): raise TypeError('%s and %s are not of the same type' % ( str(self), str(other))) if self.network != other.network: return self.network > other.network if self.netmask != other.netmask: return self.netmask > other.netmask return False def __le__(self, other): gt = self.__gt__(other) if gt is NotImplemented: return NotImplemented return not gt def __ge__(self, other): lt = self.__lt__(other) if lt is NotImplemented: return NotImplemented return not lt def __eq__(self, other): try: return (self._version == other._version and self.network == other.network and int(self.netmask) == int(other.netmask)) except AttributeError: if isinstance(other, _BaseIP): return (self._version == other._version and self._ip == other._ip) def __ne__(self, other): eq = self.__eq__(other) if eq is NotImplemented: return NotImplemented return not eq def __str__(self): return '%s/%s' % (str(self.ip), str(self._prefixlen)) def __hash__(self): return hash(int(self.network) ^ int(self.netmask)) def __contains__(self, other): # always false if one is v4 and the other is v6. if self._version != other._version: return False # dealing with another network. if isinstance(other, _BaseNet): return (self.network <= other.network and self.broadcast >= other.broadcast) # dealing with another address else: return (int(self.network) <= int(other._ip) <= int(self.broadcast)) def overlaps(self, other): """Tell if self is partly contained in other.""" return self.network in other or self.broadcast in other or ( other.network in self or other.broadcast in self) @property def network(self): x = self._cache.get('network') if x is None: x = IPAddress(self._ip & int(self.netmask), version=self._version) self._cache['network'] = x return x @property def broadcast(self): x = self._cache.get('broadcast') if x is None: x = IPAddress(self._ip | int(self.hostmask), version=self._version) self._cache['broadcast'] = x return x @property def hostmask(self): x = self._cache.get('hostmask') if x is None: x = IPAddress(int(self.netmask) ^ self._ALL_ONES, version=self._version) self._cache['hostmask'] = x return x @property def with_prefixlen(self): return '%s/%d' % (str(self.ip), self._prefixlen) @property def with_netmask(self): return '%s/%s' % (str(self.ip), str(self.netmask)) @property def with_hostmask(self): return '%s/%s' % (str(self.ip), str(self.hostmask)) @property def numhosts(self): """Number of hosts in the current subnet.""" return int(self.broadcast) - int(self.network) + 1 @property def version(self): raise NotImplementedError('BaseNet has no version') @property def prefixlen(self): return self._prefixlen def address_exclude(self, other): """Remove an address from a larger block. For example: addr1 = IPNetwork('10.1.1.0/24') addr2 = IPNetwork('10.1.1.0/26') addr1.address_exclude(addr2) = [IPNetwork('10.1.1.64/26'), IPNetwork('10.1.1.128/25')] or IPv6: addr1 = IPNetwork('::1/32') addr2 = IPNetwork('::1/128') addr1.address_exclude(addr2) = [IPNetwork('::0/128'), IPNetwork('::2/127'), IPNetwork('::4/126'), IPNetwork('::8/125'), ... IPNetwork('0:0:8000::/33')] Args: other: An IPvXNetwork object of the same type. Returns: A sorted list of IPvXNetwork objects addresses which is self minus other. Raises: TypeError: If self and other are of difffering address versions, or if other is not a network object. ValueError: If other is not completely contained by self. """ if not self._version == other._version: raise TypeError("%s and %s are not of the same version" % ( str(self), str(other))) if not isinstance(other, _BaseNet): raise TypeError("%s is not a network object" % str(other)) if other not in self: raise ValueError('%s not contained in %s' % (str(other), str(self))) if other == self: return [] ret_addrs = [] # Make sure we're comparing the network of other. other = IPNetwork('%s/%s' % (str(other.network), str(other.prefixlen)), version=other._version) s1, s2 = self.subnet() while s1 != other and s2 != other: if other in s1: ret_addrs.append(s2) s1, s2 = s1.subnet() elif other in s2: ret_addrs.append(s1) s1, s2 = s2.subnet() else: # If we got here, there's a bug somewhere. assert True == False, ('Error performing exclusion: ' 's1: %s s2: %s other: %s' % (str(s1), str(s2), str(other))) if s1 == other: ret_addrs.append(s2) elif s2 == other: ret_addrs.append(s1) else: # If we got here, there's a bug somewhere. assert True == False, ('Error performing exclusion: ' 's1: %s s2: %s other: %s' % (str(s1), str(s2), str(other))) return sorted(ret_addrs, key=_BaseNet._get_networks_key) def compare_networks(self, other): """Compare two IP objects. This is only concerned about the comparison of the integer representation of the network addresses. This means that the host bits aren't considered at all in this method. If you want to compare host bits, you can easily enough do a 'HostA._ip < HostB._ip' Args: other: An IP object. Returns: If the IP versions of self and other are the same, returns: -1 if self < other: eg: IPv4('1.1.1.0/24') < IPv4('1.1.2.0/24') IPv6('1080::200C:417A') < IPv6('1080::200B:417B') 0 if self == other eg: IPv4('1.1.1.1/24') == IPv4('1.1.1.2/24') IPv6('1080::200C:417A/96') == IPv6('1080::200C:417B/96') 1 if self > other eg: IPv4('1.1.1.0/24') > IPv4('1.1.0.0/24') IPv6('1080::1:200C:417A/112') > IPv6('1080::0:200C:417A/112') If the IP versions of self and other are different, returns: -1 if self._version < other._version eg: IPv4('10.0.0.1/24') < IPv6('::1/128') 1 if self._version > other._version eg: IPv6('::1/128') > IPv4('255.255.255.0/24') """ if self._version < other._version: return -1 if self._version > other._version: return 1 # self._version == other._version below here: if self.network < other.network: return -1 if self.network > other.network: return 1 # self.network == other.network below here: if self.netmask < other.netmask: return -1 if self.netmask > other.netmask: return 1 # self.network == other.network and self.netmask == other.netmask return 0 def _get_networks_key(self): """Network-only key function. Returns an object that identifies this address' network and netmask. This function is a suitable "key" argument for sorted() and list.sort(). """ return (self._version, self.network, self.netmask) def _ip_int_from_prefix(self, prefixlen): """Turn the prefix length into a bitwise netmask. Args: prefixlen: An integer, the prefix length. Returns: An integer. """ return self._ALL_ONES ^ (self._ALL_ONES >> prefixlen) def _prefix_from_ip_int(self, ip_int): """Return prefix length from a bitwise netmask. Args: ip_int: An integer, the netmask in expanded bitwise format. Returns: An integer, the prefix length. Raises: NetmaskValueError: If the input is not a valid netmask. """ prefixlen = self._max_prefixlen while prefixlen: if ip_int & 1: break ip_int >>= 1 prefixlen -= 1 if ip_int == (1 << prefixlen) - 1: return prefixlen else: raise NetmaskValueError('Bit pattern does not match /1*0*/') def _prefix_from_prefix_int(self, prefixlen): """Validate and return a prefix length integer. Args: prefixlen: An integer containing the prefix length. Returns: The input, possibly converted from long to int. Raises: NetmaskValueError: If the input is not an integer, or out of range. """ if not isinstance(prefixlen, (int, long)): raise NetmaskValueError('%r is not an integer' % prefixlen) prefixlen = int(prefixlen) if not (0 <= prefixlen <= self._max_prefixlen): raise NetmaskValueError('%d is not a valid prefix length' % prefixlen) return prefixlen def _prefix_from_prefix_string(self, prefixlen_str): """Turn a prefix length string into an integer. Args: prefixlen_str: A decimal string containing the prefix length. Returns: The prefix length as an integer. Raises: NetmaskValueError: If the input is malformed or out of range. """ try: if not _BaseV4._DECIMAL_DIGITS.issuperset(prefixlen_str): raise ValueError prefixlen = int(prefixlen_str) except ValueError: raise NetmaskValueError('%s is not a valid prefix length' % prefixlen_str) return self._prefix_from_prefix_int(prefixlen) def _prefix_from_ip_string(self, ip_str): """Turn a netmask/hostmask string into a prefix length. Args: ip_str: A netmask or hostmask, formatted as an IP address. Returns: The prefix length as an integer. Raises: NetmaskValueError: If the input is not a netmask or hostmask. """ # Parse the netmask/hostmask like an IP address. try: ip_int = self._ip_int_from_string(ip_str) except AddressValueError: raise NetmaskValueError('%s is not a valid netmask' % ip_str) # Try matching a netmask (this would be /1*0*/ as a bitwise regexp). # Note that the two ambiguous cases (all-ones and all-zeroes) are # treated as netmasks. try: return self._prefix_from_ip_int(ip_int) except NetmaskValueError: pass # Invert the bits, and try matching a /0+1+/ hostmask instead. ip_int ^= self._ALL_ONES try: return self._prefix_from_ip_int(ip_int) except NetmaskValueError: raise NetmaskValueError('%s is not a valid netmask' % ip_str) def iter_subnets(self, prefixlen_diff=1, new_prefix=None): """The subnets which join to make the current subnet. In the case that self contains only one IP (self._prefixlen == 32 for IPv4 or self._prefixlen == 128 for IPv6), return a list with just ourself. Args: prefixlen_diff: An integer, the amount the prefix length should be increased by. This should not be set if new_prefix is also set. new_prefix: The desired new prefix length. This must be a larger number (smaller prefix) than the existing prefix. This should not be set if prefixlen_diff is also set. Returns: An iterator of IPv(4|6) objects. Raises: ValueError: The prefixlen_diff is too small or too large. OR prefixlen_diff and new_prefix are both set or new_prefix is a smaller number than the current prefix (smaller number means a larger network) """ if self._prefixlen == self._max_prefixlen: yield self return if new_prefix is not None: if new_prefix < self._prefixlen: raise ValueError('new prefix must be longer') if prefixlen_diff != 1: raise ValueError('cannot set prefixlen_diff and new_prefix') prefixlen_diff = new_prefix - self._prefixlen if prefixlen_diff < 0: raise ValueError('prefix length diff must be > 0') new_prefixlen = self._prefixlen + prefixlen_diff if new_prefixlen > self._max_prefixlen: raise ValueError( 'prefix length diff %d is invalid for netblock %s' % ( new_prefixlen, str(self))) first = IPNetwork('%s/%s' % (str(self.network), str(self._prefixlen + prefixlen_diff)), version=self._version) yield first current = first while True: broadcast = current.broadcast if broadcast == self.broadcast: return new_addr = IPAddress(int(broadcast) + 1, version=self._version) current = IPNetwork('%s/%s' % (str(new_addr), str(new_prefixlen)), version=self._version) yield current def masked(self): """Return the network object with the host bits masked out.""" return IPNetwork('%s/%d' % (self.network, self._prefixlen), version=self._version) def subnet(self, prefixlen_diff=1, new_prefix=None): """Return a list of subnets, rather than an iterator.""" return list(self.iter_subnets(prefixlen_diff, new_prefix)) def supernet(self, prefixlen_diff=1, new_prefix=None): """The supernet containing the current network. Args: prefixlen_diff: An integer, the amount the prefix length of the network should be decreased by. For example, given a /24 network and a prefixlen_diff of 3, a supernet with a /21 netmask is returned. Returns: An IPv4 network object. Raises: ValueError: If self.prefixlen - prefixlen_diff < 0. I.e., you have a negative prefix length. OR If prefixlen_diff and new_prefix are both set or new_prefix is a larger number than the current prefix (larger number means a smaller network) """ if self._prefixlen == 0: return self if new_prefix is not None: if new_prefix > self._prefixlen: raise ValueError('new prefix must be shorter') if prefixlen_diff != 1: raise ValueError('cannot set prefixlen_diff and new_prefix') prefixlen_diff = self._prefixlen - new_prefix if self.prefixlen - prefixlen_diff < 0: raise ValueError( 'current prefixlen is %d, cannot have a prefixlen_diff of %d' % (self.prefixlen, prefixlen_diff)) return IPNetwork('%s/%s' % (str(self.network), str(self.prefixlen - prefixlen_diff)), version=self._version) # backwards compatibility Subnet = subnet Supernet = supernet AddressExclude = address_exclude CompareNetworks = compare_networks Contains = __contains__
(address)
8,826
ipaddr
__init__
null
def __init__(self, address): self._cache = {}
(self, address)
8,848
ipaddr
_BaseV4
Base IPv4 object. The following methods are used by IPv4 objects in both single IP addresses and networks.
class _BaseV4(object): """Base IPv4 object. The following methods are used by IPv4 objects in both single IP addresses and networks. """ # Equivalent to 255.255.255.255 or 32 bits of 1's. _ALL_ONES = (2**IPV4LENGTH) - 1 _DECIMAL_DIGITS = frozenset('0123456789') def __init__(self, address): self._version = 4 self._max_prefixlen = IPV4LENGTH def _explode_shorthand_ip_string(self): return str(self) def _ip_int_from_string(self, ip_str): """Turn the given IP string into an integer for comparison. Args: ip_str: A string, the IP ip_str. Returns: The IP ip_str as an integer. Raises: AddressValueError: if ip_str isn't a valid IPv4 Address. """ octets = ip_str.split('.') if len(octets) != 4: raise AddressValueError(ip_str) packed_ip = 0 for oc in octets: try: packed_ip = (packed_ip << 8) | self._parse_octet(oc) except ValueError: raise AddressValueError(ip_str) return packed_ip def _parse_octet(self, octet_str): """Convert a decimal octet into an integer. Args: octet_str: A string, the number to parse. Returns: The octet as an integer. Raises: ValueError: if the octet isn't strictly a decimal from [0..255]. """ # Whitelist the characters, since int() allows a lot of bizarre stuff. if not self._DECIMAL_DIGITS.issuperset(octet_str): raise ValueError octet_int = int(octet_str, 10) # Disallow leading zeroes, because no clear standard exists on # whether these should be interpreted as decimal or octal. if octet_int > 255 or (octet_str[0] == '0' and len(octet_str) > 1): raise ValueError return octet_int def _string_from_ip_int(self, ip_int): """Turns a 32-bit integer into dotted decimal notation. Args: ip_int: An integer, the IP address. Returns: The IP address as a string in dotted decimal notation. """ octets = [] for _ in xrange(4): octets.insert(0, str(ip_int & 0xFF)) ip_int >>= 8 return '.'.join(octets) @property def max_prefixlen(self): return self._max_prefixlen @property def packed(self): """The binary representation of this address.""" return v4_int_to_packed(self._ip) @property def version(self): return self._version @property def is_reserved(self): """Test if the address is otherwise IETF reserved. Returns: A boolean, True if the address is within the reserved IPv4 Network range. """ return self in IPv4Network('240.0.0.0/4') @property def is_private(self): """Test if this address is allocated for private networks. Returns: A boolean, True if the address is reserved per RFC 1918. """ return (self in IPv4Network('10.0.0.0/8') or self in IPv4Network('172.16.0.0/12') or self in IPv4Network('192.168.0.0/16')) @property def is_multicast(self): """Test if the address is reserved for multicast use. Returns: A boolean, True if the address is multicast. See RFC 3171 for details. """ return self in IPv4Network('224.0.0.0/4') @property def is_unspecified(self): """Test if the address is unspecified. Returns: A boolean, True if this is the unspecified address as defined in RFC 5735 3. """ return self in IPv4Network('0.0.0.0') @property def is_loopback(self): """Test if the address is a loopback address. Returns: A boolean, True if the address is a loopback per RFC 3330. """ return self in IPv4Network('127.0.0.0/8') @property def is_link_local(self): """Test if the address is reserved for link-local. Returns: A boolean, True if the address is link-local per RFC 3927. """ return self in IPv4Network('169.254.0.0/16')
(address)
8,849
ipaddr
__init__
null
def __init__(self, address): self._version = 4 self._max_prefixlen = IPV4LENGTH
(self, address)
8,854
ipaddr
_BaseV6
Base IPv6 object. The following methods are used by IPv6 objects in both single IP addresses and networks.
class _BaseV6(object): """Base IPv6 object. The following methods are used by IPv6 objects in both single IP addresses and networks. """ _ALL_ONES = (2**IPV6LENGTH) - 1 _HEXTET_COUNT = 8 _HEX_DIGITS = frozenset('0123456789ABCDEFabcdef') def __init__(self, address): self._version = 6 self._max_prefixlen = IPV6LENGTH def _ip_int_from_string(self, ip_str): """Turn an IPv6 ip_str into an integer. Args: ip_str: A string, the IPv6 ip_str. Returns: A long, the IPv6 ip_str. Raises: AddressValueError: if ip_str isn't a valid IPv6 Address. """ parts = ip_str.split(':') # An IPv6 address needs at least 2 colons (3 parts). if len(parts) < 3: raise AddressValueError(ip_str) # If the address has an IPv4-style suffix, convert it to hexadecimal. if '.' in parts[-1]: ipv4_int = IPv4Address(parts.pop())._ip parts.append('%x' % ((ipv4_int >> 16) & 0xFFFF)) parts.append('%x' % (ipv4_int & 0xFFFF)) # An IPv6 address can't have more than 8 colons (9 parts). if len(parts) > self._HEXTET_COUNT + 1: raise AddressValueError(ip_str) # Disregarding the endpoints, find '::' with nothing in between. # This indicates that a run of zeroes has been skipped. try: skip_index, = ( [i for i in xrange(1, len(parts) - 1) if not parts[i]] or [None]) except ValueError: # Can't have more than one '::' raise AddressValueError(ip_str) # parts_hi is the number of parts to copy from above/before the '::' # parts_lo is the number of parts to copy from below/after the '::' if skip_index is not None: # If we found a '::', then check if it also covers the endpoints. parts_hi = skip_index parts_lo = len(parts) - skip_index - 1 if not parts[0]: parts_hi -= 1 if parts_hi: raise AddressValueError(ip_str) # ^: requires ^:: if not parts[-1]: parts_lo -= 1 if parts_lo: raise AddressValueError(ip_str) # :$ requires ::$ parts_skipped = self._HEXTET_COUNT - (parts_hi + parts_lo) if parts_skipped < 1: raise AddressValueError(ip_str) else: # Otherwise, allocate the entire address to parts_hi. The endpoints # could still be empty, but _parse_hextet() will check for that. if len(parts) != self._HEXTET_COUNT: raise AddressValueError(ip_str) parts_hi = len(parts) parts_lo = 0 parts_skipped = 0 try: # Now, parse the hextets into a 128-bit integer. ip_int = long(0) for i in xrange(parts_hi): ip_int <<= 16 ip_int |= self._parse_hextet(parts[i]) ip_int <<= 16 * parts_skipped for i in xrange(-parts_lo, 0): ip_int <<= 16 ip_int |= self._parse_hextet(parts[i]) return ip_int except ValueError: raise AddressValueError(ip_str) def _parse_hextet(self, hextet_str): """Convert an IPv6 hextet string into an integer. Args: hextet_str: A string, the number to parse. Returns: The hextet as an integer. Raises: ValueError: if the input isn't strictly a hex number from [0..FFFF]. """ # Whitelist the characters, since int() allows a lot of bizarre stuff. if not self._HEX_DIGITS.issuperset(hextet_str): raise ValueError if len(hextet_str) > 4: raise ValueError hextet_int = int(hextet_str, 16) if hextet_int > 0xFFFF: raise ValueError return hextet_int def _compress_hextets(self, hextets): """Compresses a list of hextets. Compresses a list of strings, replacing the longest continuous sequence of "0" in the list with "" and adding empty strings at the beginning or at the end of the string such that subsequently calling ":".join(hextets) will produce the compressed version of the IPv6 address. Args: hextets: A list of strings, the hextets to compress. Returns: A list of strings. """ best_doublecolon_start = -1 best_doublecolon_len = 0 doublecolon_start = -1 doublecolon_len = 0 for index in range(len(hextets)): if hextets[index] == '0': doublecolon_len += 1 if doublecolon_start == -1: # Start of a sequence of zeros. doublecolon_start = index if doublecolon_len > best_doublecolon_len: # This is the longest sequence of zeros so far. best_doublecolon_len = doublecolon_len best_doublecolon_start = doublecolon_start else: doublecolon_len = 0 doublecolon_start = -1 if best_doublecolon_len > 1: best_doublecolon_end = (best_doublecolon_start + best_doublecolon_len) # For zeros at the end of the address. if best_doublecolon_end == len(hextets): hextets += [''] hextets[best_doublecolon_start:best_doublecolon_end] = [''] # For zeros at the beginning of the address. if best_doublecolon_start == 0: hextets = [''] + hextets return hextets def _string_from_ip_int(self, ip_int=None): """Turns a 128-bit integer into hexadecimal notation. Args: ip_int: An integer, the IP address. Returns: A string, the hexadecimal representation of the address. Raises: ValueError: The address is bigger than 128 bits of all ones. """ if not ip_int and ip_int != 0: ip_int = int(self._ip) if ip_int > self._ALL_ONES: raise ValueError('IPv6 address is too large') hex_str = '%032x' % ip_int hextets = [] for x in range(0, 32, 4): hextets.append('%x' % int(hex_str[x:x+4], 16)) hextets = self._compress_hextets(hextets) return ':'.join(hextets) def _explode_shorthand_ip_string(self): """Expand a shortened IPv6 address. Args: ip_str: A string, the IPv6 address. Returns: A string, the expanded IPv6 address. """ if isinstance(self, _BaseNet): ip_str = str(self.ip) else: ip_str = str(self) ip_int = self._ip_int_from_string(ip_str) parts = [] for i in xrange(self._HEXTET_COUNT): parts.append('%04x' % (ip_int & 0xFFFF)) ip_int >>= 16 parts.reverse() if isinstance(self, _BaseNet): return '%s/%d' % (':'.join(parts), self.prefixlen) return ':'.join(parts) @property def max_prefixlen(self): return self._max_prefixlen @property def packed(self): """The binary representation of this address.""" return v6_int_to_packed(self._ip) @property def version(self): return self._version @property def is_multicast(self): """Test if the address is reserved for multicast use. Returns: A boolean, True if the address is a multicast address. See RFC 2373 2.7 for details. """ return self in IPv6Network('ff00::/8') @property def is_reserved(self): """Test if the address is otherwise IETF reserved. Returns: A boolean, True if the address is within one of the reserved IPv6 Network ranges. """ return (self in IPv6Network('::/8') or self in IPv6Network('100::/8') or self in IPv6Network('200::/7') or self in IPv6Network('400::/6') or self in IPv6Network('800::/5') or self in IPv6Network('1000::/4') or self in IPv6Network('4000::/3') or self in IPv6Network('6000::/3') or self in IPv6Network('8000::/3') or self in IPv6Network('A000::/3') or self in IPv6Network('C000::/3') or self in IPv6Network('E000::/4') or self in IPv6Network('F000::/5') or self in IPv6Network('F800::/6') or self in IPv6Network('FE00::/9')) @property def is_unspecified(self): """Test if the address is unspecified. Returns: A boolean, True if this is the unspecified address as defined in RFC 2373 2.5.2. """ return self._ip == 0 and getattr(self, '_prefixlen', 128) == 128 @property def is_loopback(self): """Test if the address is a loopback address. Returns: A boolean, True if the address is a loopback address as defined in RFC 2373 2.5.3. """ return self._ip == 1 and getattr(self, '_prefixlen', 128) == 128 @property def is_link_local(self): """Test if the address is reserved for link-local. Returns: A boolean, True if the address is reserved per RFC 4291. """ return self in IPv6Network('fe80::/10') @property def is_site_local(self): """Test if the address is reserved for site-local. Note that the site-local address space has been deprecated by RFC 3879. Use is_private to test if this address is in the space of unique local addresses as defined by RFC 4193. Returns: A boolean, True if the address is reserved per RFC 3513 2.5.6. """ return self in IPv6Network('fec0::/10') @property def is_private(self): """Test if this address is allocated for private networks. Returns: A boolean, True if the address is reserved per RFC 4193. """ return self in IPv6Network('fc00::/7') @property def ipv4_mapped(self): """Return the IPv4 mapped address. Returns: If the IPv6 address is a v4 mapped address, return the IPv4 mapped address. Return None otherwise. """ if (self._ip >> 32) != 0xFFFF: return None return IPv4Address(self._ip & 0xFFFFFFFF) @property def teredo(self): """Tuple of embedded teredo IPs. Returns: Tuple of the (server, client) IPs or None if the address doesn't appear to be a teredo address (doesn't start with 2001::/32) """ if (self._ip >> 96) != 0x20010000: return None return (IPv4Address((self._ip >> 64) & 0xFFFFFFFF), IPv4Address(~self._ip & 0xFFFFFFFF)) @property def sixtofour(self): """Return the IPv4 6to4 embedded address. Returns: The IPv4 6to4-embedded address if present or None if the address doesn't appear to contain a 6to4 embedded address. """ if (self._ip >> 112) != 0x2002: return None return IPv4Address((self._ip >> 80) & 0xFFFFFFFF)
(address)
8,855
ipaddr
__init__
null
def __init__(self, address): self._version = 6 self._max_prefixlen = IPV6LENGTH
(self, address)
8,861
ipaddr
_IPAddrBase
The mother class.
class _IPAddrBase(object): """The mother class.""" def __index__(self): return self._ip def __int__(self): return self._ip def __hex__(self): return hex(self._ip) @property def exploded(self): """Return the longhand version of the IP address as a string.""" return self._explode_shorthand_ip_string() @property def compressed(self): """Return the shorthand version of the IP address as a string.""" return str(self)
()
8,865
ipaddr
_collapse_address_list_recursive
Loops through the addresses, collapsing concurrent netblocks. Example: ip1 = IPv4Network('1.1.0.0/24') ip2 = IPv4Network('1.1.1.0/24') ip3 = IPv4Network('1.1.2.0/24') ip4 = IPv4Network('1.1.3.0/24') ip5 = IPv4Network('1.1.4.0/24') ip6 = IPv4Network('1.1.0.1/22') _collapse_address_list_recursive([ip1, ip2, ip3, ip4, ip5, ip6]) -> [IPv4Network('1.1.0.0/22'), IPv4Network('1.1.4.0/24')] This shouldn't be called directly; it is called via collapse_address_list([]). Args: addresses: A list of IPv4Network's or IPv6Network's Returns: A list of IPv4Network's or IPv6Network's depending on what we were passed.
def _collapse_address_list_recursive(addresses): """Loops through the addresses, collapsing concurrent netblocks. Example: ip1 = IPv4Network('1.1.0.0/24') ip2 = IPv4Network('1.1.1.0/24') ip3 = IPv4Network('1.1.2.0/24') ip4 = IPv4Network('1.1.3.0/24') ip5 = IPv4Network('1.1.4.0/24') ip6 = IPv4Network('1.1.0.1/22') _collapse_address_list_recursive([ip1, ip2, ip3, ip4, ip5, ip6]) -> [IPv4Network('1.1.0.0/22'), IPv4Network('1.1.4.0/24')] This shouldn't be called directly; it is called via collapse_address_list([]). Args: addresses: A list of IPv4Network's or IPv6Network's Returns: A list of IPv4Network's or IPv6Network's depending on what we were passed. """ ret_array = [] optimized = False for cur_addr in addresses: if not ret_array: ret_array.append(cur_addr) continue if cur_addr in ret_array[-1]: optimized = True elif cur_addr == ret_array[-1].supernet().subnet()[1]: ret_array.append(ret_array.pop().supernet()) optimized = True else: ret_array.append(cur_addr) if optimized: return _collapse_address_list_recursive(ret_array) return ret_array
(addresses)
8,866
ipaddr
_count_righthand_zero_bits
Count the number of zero bits on the right hand side. Args: number: an integer. bits: maximum number of bits to count. Returns: The number of zero bits on the right hand side of the number.
def _count_righthand_zero_bits(number, bits): """Count the number of zero bits on the right hand side. Args: number: an integer. bits: maximum number of bits to count. Returns: The number of zero bits on the right hand side of the number. """ if number == 0: return bits for i in range(bits): if (number >> i) % 2: return i
(number, bits)
8,867
ipaddr
_find_address_range
Find a sequence of addresses. Args: addresses: a list of IPv4 or IPv6 addresses. Returns: A tuple containing the first and last IP addresses in the sequence, and the index of the last IP address in the sequence.
def _find_address_range(addresses): """Find a sequence of addresses. Args: addresses: a list of IPv4 or IPv6 addresses. Returns: A tuple containing the first and last IP addresses in the sequence, and the index of the last IP address in the sequence. """ first = last = addresses[0] last_index = 0 for ip in addresses[1:]: if ip._ip == last._ip + 1: last = ip last_index += 1 else: break return (first, last, last_index)
(addresses)
8,868
ipaddr
_get_prefix_length
Get the number of leading bits that are same for two numbers. Args: number1: an integer. number2: another integer. bits: the maximum number of bits to compare. Returns: The number of leading bits that are the same for two numbers.
def _get_prefix_length(number1, number2, bits): """Get the number of leading bits that are same for two numbers. Args: number1: an integer. number2: another integer. bits: the maximum number of bits to compare. Returns: The number of leading bits that are the same for two numbers. """ for i in range(bits): if number1 >> i == number2 >> i: return bits - i return 0
(number1, number2, bits)
8,870
ipaddr
get_mixed_type_key
Return a key suitable for sorting between networks and addresses. Address and Network objects are not sortable by default; they're fundamentally different so the expression IPv4Address('1.1.1.1') <= IPv4Network('1.1.1.1/24') doesn't make any sense. There are some times however, where you may wish to have ipaddr sort these for you anyway. If you need to do this, you can use this function as the key= argument to sorted(). Args: obj: either a Network or Address object. Returns: appropriate key.
def get_mixed_type_key(obj): """Return a key suitable for sorting between networks and addresses. Address and Network objects are not sortable by default; they're fundamentally different so the expression IPv4Address('1.1.1.1') <= IPv4Network('1.1.1.1/24') doesn't make any sense. There are some times however, where you may wish to have ipaddr sort these for you anyway. If you need to do this, you can use this function as the key= argument to sorted(). Args: obj: either a Network or Address object. Returns: appropriate key. """ if isinstance(obj, _BaseNet): return obj._get_networks_key() elif isinstance(obj, _BaseIP): return obj._get_address_key() return NotImplemented
(obj)
8,873
ipaddr
summarize_address_range
Summarize a network range given the first and last IP addresses. Example: >>> summarize_address_range(IPv4Address('1.1.1.0'), IPv4Address('1.1.1.130')) [IPv4Network('1.1.1.0/25'), IPv4Network('1.1.1.128/31'), IPv4Network('1.1.1.130/32')] Args: first: the first IPv4Address or IPv6Address in the range. last: the last IPv4Address or IPv6Address in the range. Returns: The address range collapsed to a list of IPv4Network's or IPv6Network's. Raise: TypeError: If the first and last objects are not IP addresses. If the first and last objects are not the same version. ValueError: If the last object is not greater than the first. If the version is not 4 or 6.
def summarize_address_range(first, last): """Summarize a network range given the first and last IP addresses. Example: >>> summarize_address_range(IPv4Address('1.1.1.0'), IPv4Address('1.1.1.130')) [IPv4Network('1.1.1.0/25'), IPv4Network('1.1.1.128/31'), IPv4Network('1.1.1.130/32')] Args: first: the first IPv4Address or IPv6Address in the range. last: the last IPv4Address or IPv6Address in the range. Returns: The address range collapsed to a list of IPv4Network's or IPv6Network's. Raise: TypeError: If the first and last objects are not IP addresses. If the first and last objects are not the same version. ValueError: If the last object is not greater than the first. If the version is not 4 or 6. """ if not (isinstance(first, _BaseIP) and isinstance(last, _BaseIP)): raise TypeError('first and last must be IP addresses, not networks') if first.version != last.version: raise TypeError("%s and %s are not of the same version" % ( str(first), str(last))) if first > last: raise ValueError('last IP address must be greater than first') networks = [] if first.version == 4: ip = IPv4Network elif first.version == 6: ip = IPv6Network else: raise ValueError('unknown IP version') ip_bits = first._max_prefixlen first_int = first._ip last_int = last._ip while first_int <= last_int: nbits = _count_righthand_zero_bits(first_int, ip_bits) current = None while nbits >= 0: addend = 2**nbits - 1 current = first_int + addend nbits -= 1 if current <= last_int: break prefix = _get_prefix_length(first_int, current, ip_bits) net = ip('%s/%d' % (str(first), prefix)) networks.append(net) if current == ip._ALL_ONES: break first_int = current + 1 first = IPAddress(first_int, version=first._version) return networks
(first, last)
8,875
ipaddr
v4_int_to_packed
The binary representation of this address. Args: address: An integer representation of an IPv4 IP address. Returns: The binary representation of this address. Raises: ValueError: If the integer is too large to be an IPv4 IP address.
def v4_int_to_packed(address): """The binary representation of this address. Args: address: An integer representation of an IPv4 IP address. Returns: The binary representation of this address. Raises: ValueError: If the integer is too large to be an IPv4 IP address. """ if address > _BaseV4._ALL_ONES: raise ValueError('Address too large for IPv4') return Bytes(struct.pack('!I', address))
(address)
8,876
ipaddr
v6_int_to_packed
The binary representation of this address. Args: address: An integer representation of an IPv6 IP address. Returns: The binary representation of this address.
def v6_int_to_packed(address): """The binary representation of this address. Args: address: An integer representation of an IPv6 IP address. Returns: The binary representation of this address. """ return Bytes(struct.pack('!QQ', address >> 64, address & (2**64 - 1)))
(address)
8,877
builtins
range
range(stop) -> range object range(start, stop[, step]) -> range object Return an object that produces a sequence of integers from start (inclusive) to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1. start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3. These are exactly the valid indices for a list of 4 elements. When step is given, it specifies the increment (or decrement).
from builtins import range
null
8,879
sentencepiece
ImmutableNBestSentencePieceText
null
class ImmutableNBestSentencePieceText(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _sentencepiece.ImmutableNBestSentencePieceText_swiginit(self, _sentencepiece.new_ImmutableNBestSentencePieceText()) __swig_destroy__ = _sentencepiece.delete_ImmutableNBestSentencePieceText def _nbests_size(self): return _sentencepiece.ImmutableNBestSentencePieceText__nbests_size(self) def _nbests(self, index): return _sentencepiece.ImmutableNBestSentencePieceText__nbests(self, index) def SerializeAsString(self): return _sentencepiece.ImmutableNBestSentencePieceText_SerializeAsString(self) class ImmutableSentencePieceTextIterator: def __init__(self, proto): self.proto = proto self.len = self.proto._nbests_size() def __len__(self): return self.len def __getitem__(self, index): if isinstance(index, slice): return [self.proto._nbests(i) for i in range(self.len)][index.start:index.stop:index.step] if index < 0: index = index + self.len if index < 0 or index >= self.len: raise IndexError('nbests index is out of range') return self.proto._nbests(index) def __str__(self): return '\n'.join(['nbests {{\n{}}}'.format(str(x)) for x in self]) __repr__ = __str__ @property def nbests(self): return ImmutableNBestSentencePieceText.ImmutableSentencePieceTextIterator(self) def __eq__(self, other): return self.SerializeAsString() == other.SerializeAsString() def __hash__(self): return hash(self.SerializeAsString()) def __str__(self): return '\n'.join(['nbests {{\n{}}}'.format(str(x)) for x in self.nbests]) __repr__ = __str__
()
8,880
sentencepiece
SerializeAsString
null
def SerializeAsString(self): return _sentencepiece.ImmutableNBestSentencePieceText_SerializeAsString(self)
(self)
8,881
sentencepiece
__eq__
null
def __eq__(self, other): return self.SerializeAsString() == other.SerializeAsString()
(self, other)
8,882
sentencepiece
__hash__
null
def __hash__(self): return hash(self.SerializeAsString())
(self)
8,883
sentencepiece
__init__
null
def __init__(self): _sentencepiece.ImmutableNBestSentencePieceText_swiginit(self, _sentencepiece.new_ImmutableNBestSentencePieceText())
(self)
8,884
sentencepiece
__str__
null
def __str__(self): return '\n'.join(['nbests {{\n{}}}'.format(str(x)) for x in self.nbests])
(self)
8,886
sentencepiece
_nbests
null
def _nbests(self, index): return _sentencepiece.ImmutableNBestSentencePieceText__nbests(self, index)
(self, index)
8,887
sentencepiece
_nbests_size
null
def _nbests_size(self): return _sentencepiece.ImmutableNBestSentencePieceText__nbests_size(self)
(self)
8,888
sentencepiece
ImmutableSentencePieceText
null
class ImmutableSentencePieceText(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _sentencepiece.ImmutableSentencePieceText_swiginit(self, _sentencepiece.new_ImmutableSentencePieceText()) __swig_destroy__ = _sentencepiece.delete_ImmutableSentencePieceText def _pieces_size(self): return _sentencepiece.ImmutableSentencePieceText__pieces_size(self) def _pieces(self, index): return _sentencepiece.ImmutableSentencePieceText__pieces(self, index) def _text(self): return _sentencepiece.ImmutableSentencePieceText__text(self) def _score(self): return _sentencepiece.ImmutableSentencePieceText__score(self) def SerializeAsString(self): return _sentencepiece.ImmutableSentencePieceText_SerializeAsString(self) def _text_as_bytes(self): return _sentencepiece.ImmutableSentencePieceText__text_as_bytes(self) text = property(_text) text_as_bytes = property(_text_as_bytes) score = property(_score) class ImmutableSentencePieceIterator: def __init__(self, proto): self.proto = proto self.len = self.proto._pieces_size() def __len__(self): return self.len def __getitem__(self, index): if isinstance(index, slice): return [self.proto._pieces(i) for i in range(self.len)][index.start:index.stop:index.step] if index < 0: index = index + self.len if index < 0 or index >= self.len: raise IndexError('piece index is out of range') return self.proto._pieces(index) def __str__(self): return '\n'.join(['pieces {{\n{}}}'.format(str(x)) for x in self]) __repr__ = __str__ @property def pieces(self): return ImmutableSentencePieceText.ImmutableSentencePieceIterator(self) def __eq__(self, other): return self.SerializeAsString() == other.SerializeAsString() def __hash__(self): return hash(self.SerializeAsString()) def __str__(self): return ('text: \"{}\"\n' 'score: {}\n' '{}').format(self.text, self.score, '\n'.join(['pieces {{\n{}}}'.format(str(x)) for x in self.pieces])) __repr__ = __str__
()
8,889
sentencepiece
SerializeAsString
null
def SerializeAsString(self): return _sentencepiece.ImmutableSentencePieceText_SerializeAsString(self)
(self)
8,892
sentencepiece
__init__
null
def __init__(self): _sentencepiece.ImmutableSentencePieceText_swiginit(self, _sentencepiece.new_ImmutableSentencePieceText())
(self)
8,893
sentencepiece
__str__
null
def __str__(self): return ('text: \"{}\"\n' 'score: {}\n' '{}').format(self.text, self.score, '\n'.join(['pieces {{\n{}}}'.format(str(x)) for x in self.pieces]))
(self)
8,895
sentencepiece
_pieces
null
def _pieces(self, index): return _sentencepiece.ImmutableSentencePieceText__pieces(self, index)
(self, index)
8,896
sentencepiece
_pieces_size
null
def _pieces_size(self): return _sentencepiece.ImmutableSentencePieceText__pieces_size(self)
(self)
8,897
sentencepiece
_score
null
def _score(self): return _sentencepiece.ImmutableSentencePieceText__score(self)
(self)
8,898
sentencepiece
_text
null
def _text(self): return _sentencepiece.ImmutableSentencePieceText__text(self)
(self)
8,899
sentencepiece
_text_as_bytes
null
def _text_as_bytes(self): return _sentencepiece.ImmutableSentencePieceText__text_as_bytes(self)
(self)
8,900
sentencepiece
ImmutableSentencePieceText_ImmutableSentencePiece
null
class ImmutableSentencePieceText_ImmutableSentencePiece(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece_swiginit(self, _sentencepiece.new_ImmutableSentencePieceText_ImmutableSentencePiece()) __swig_destroy__ = _sentencepiece.delete_ImmutableSentencePieceText_ImmutableSentencePiece def _piece(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__piece(self) def _surface(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__surface(self) def _id(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__id(self) def _begin(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__begin(self) def _end(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__end(self) def _surface_as_bytes(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__surface_as_bytes(self) def _piece_as_bytes(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__piece_as_bytes(self) piece = property(_piece) piece_as_bytes = property(_piece_as_bytes) surface = property(_surface) surface_as_bytes = property(_surface_as_bytes) id = property(_id) begin = property(_begin) end = property(_end) def __str__(self): return ('piece: \"{}\"\n' 'id: {}\n' 'surface: \"{}\"\n' 'begin: {}\n' 'end: {}\n').format(self.piece, self.id, self.surface, self.begin, self.end) def __eq__(self, other): return self.piece == other.piece and self.id == other.id and self.surface == other.surface and self.begin == other.begin and self.end == other.end def __hash__(self): return hash(str(self)) __repr__ = __str__
()
8,901
sentencepiece
__eq__
null
def __eq__(self, other): return self.piece == other.piece and self.id == other.id and self.surface == other.surface and self.begin == other.begin and self.end == other.end
(self, other)
8,902
sentencepiece
__hash__
null
def __hash__(self): return hash(str(self))
(self)
8,903
sentencepiece
__init__
null
def __init__(self): _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece_swiginit(self, _sentencepiece.new_ImmutableSentencePieceText_ImmutableSentencePiece())
(self)
8,904
sentencepiece
__str__
null
def __str__(self): return ('piece: \"{}\"\n' 'id: {}\n' 'surface: \"{}\"\n' 'begin: {}\n' 'end: {}\n').format(self.piece, self.id, self.surface, self.begin, self.end)
(self)
8,906
sentencepiece
_begin
null
def _begin(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__begin(self)
(self)
8,907
sentencepiece
_end
null
def _end(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__end(self)
(self)
8,908
sentencepiece
_id
null
def _id(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__id(self)
(self)
8,909
sentencepiece
_piece
null
def _piece(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__piece(self)
(self)
8,910
sentencepiece
_piece_as_bytes
null
def _piece_as_bytes(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__piece_as_bytes(self)
(self)
8,911
sentencepiece
_surface
null
def _surface(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__surface(self)
(self)
8,912
sentencepiece
_surface_as_bytes
null
def _surface_as_bytes(self): return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__surface_as_bytes(self)
(self)
8,913
sentencepiece
SentencePieceNormalizer
null
class SentencePieceNormalizer(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _sentencepiece.SentencePieceNormalizer_swiginit(self, _sentencepiece.new_SentencePieceNormalizer()) __swig_destroy__ = _sentencepiece.delete_SentencePieceNormalizer def LoadFromSerializedProto(self, serialized): return _sentencepiece.SentencePieceNormalizer_LoadFromSerializedProto(self, serialized) def LoadFromRuleTSV(self, filename): return _sentencepiece.SentencePieceNormalizer_LoadFromRuleTSV(self, filename) def LoadFromRuleName(self, name): return _sentencepiece.SentencePieceNormalizer_LoadFromRuleName(self, name) def serialized_model_proto(self): return _sentencepiece.SentencePieceNormalizer_serialized_model_proto(self) def LoadFromFile(self, arg): return _sentencepiece.SentencePieceNormalizer_LoadFromFile(self, arg) def _Normalize(self, text): return _sentencepiece.SentencePieceNormalizer__Normalize(self, text) def _NormalizeWithOffsets(self, text): return _sentencepiece.SentencePieceNormalizer__NormalizeWithOffsets(self, text) def _SetProtoField(self, name, value): return _sentencepiece.SentencePieceNormalizer__SetProtoField(self, name, value) def Init(self, model_file=None, model_proto=None, rule_tsv=None, rule_name=None, add_dummy_prefix=False, escape_whitespaces=False, remove_extra_whitespaces=False): """Initialzie sentencePieceNormalizer. Args: model_file: The sentencepiece model file path. model_proto: The sentencepiece model serialized proto. rule_tsv: The normalization rule file in TSV format. rule_name: Pre-defined normalization name. add_dummy_prefix: add dummy prefix. escape_whitespaces: escape whitespaces. remove_extra_whitespaces: remove extra whitespaces. """ _sentencepiece_normalizer_init_native(self) if model_file: status = self.LoadFromFile(model_file) elif model_proto: status = self.LoadFromSerializedProto(model_proto) elif rule_tsv: status = self.LoadFromRuleTSV(rule_tsv) elif rule_name: status = self.LoadFromRuleName(rule_name) else: raise RuntimeError('no model is specified') if status: self._SetProtoField('add_dummy_prefix', add_dummy_prefix) self._SetProtoField('escape_whitespaces', escape_whitespaces) self._SetProtoField('remove_extra_whitespaces', remove_extra_whitespaces) def Normalize(self, input, with_offsets=None): def _normalize(text): if with_offsets: return self._NormalizeWithOffsets(text) return self._Normalize(text) if type(input) is list: return [_normalize(x) for x in input] return _normalize(input) def __getstate__(self): return self.serialized_model_proto() def __setstate__(self, serialized_model_proto): self.__init__() self.LoadFromSerializedProto(serialized_model_proto)
(model_file=None, model_proto=None, rule_tsv=None, rule_name=None, add_dummy_prefix=False, escape_whitespaces=False, remove_extra_whitespaces=False)
8,914
sentencepiece
Init
Initialzie sentencePieceNormalizer. Args: model_file: The sentencepiece model file path. model_proto: The sentencepiece model serialized proto. rule_tsv: The normalization rule file in TSV format. rule_name: Pre-defined normalization name. add_dummy_prefix: add dummy prefix. escape_whitespaces: escape whitespaces. remove_extra_whitespaces: remove extra whitespaces.
def Init(self, model_file=None, model_proto=None, rule_tsv=None, rule_name=None, add_dummy_prefix=False, escape_whitespaces=False, remove_extra_whitespaces=False): """Initialzie sentencePieceNormalizer. Args: model_file: The sentencepiece model file path. model_proto: The sentencepiece model serialized proto. rule_tsv: The normalization rule file in TSV format. rule_name: Pre-defined normalization name. add_dummy_prefix: add dummy prefix. escape_whitespaces: escape whitespaces. remove_extra_whitespaces: remove extra whitespaces. """ _sentencepiece_normalizer_init_native(self) if model_file: status = self.LoadFromFile(model_file) elif model_proto: status = self.LoadFromSerializedProto(model_proto) elif rule_tsv: status = self.LoadFromRuleTSV(rule_tsv) elif rule_name: status = self.LoadFromRuleName(rule_name) else: raise RuntimeError('no model is specified') if status: self._SetProtoField('add_dummy_prefix', add_dummy_prefix) self._SetProtoField('escape_whitespaces', escape_whitespaces) self._SetProtoField('remove_extra_whitespaces', remove_extra_whitespaces)
(self, model_file=None, model_proto=None, rule_tsv=None, rule_name=None, add_dummy_prefix=False, escape_whitespaces=False, remove_extra_whitespaces=False)
8,915
sentencepiece
LoadFromFile
null
def LoadFromFile(self, arg): return _sentencepiece.SentencePieceNormalizer_LoadFromFile(self, arg)
(self, arg)
8,916
sentencepiece
LoadFromRuleName
null
def LoadFromRuleName(self, name): return _sentencepiece.SentencePieceNormalizer_LoadFromRuleName(self, name)
(self, name)
8,917
sentencepiece
LoadFromRuleTSV
null
def LoadFromRuleTSV(self, filename): return _sentencepiece.SentencePieceNormalizer_LoadFromRuleTSV(self, filename)
(self, filename)
8,918
sentencepiece
LoadFromSerializedProto
null
def LoadFromSerializedProto(self, serialized): return _sentencepiece.SentencePieceNormalizer_LoadFromSerializedProto(self, serialized)
(self, serialized)
8,919
sentencepiece
Normalize
null
def Normalize(self, input, with_offsets=None): def _normalize(text): if with_offsets: return self._NormalizeWithOffsets(text) return self._Normalize(text) if type(input) is list: return [_normalize(x) for x in input] return _normalize(input)
(self, input, with_offsets=None)
8,920
sentencepiece
_Normalize
null
def _Normalize(self, text): return _sentencepiece.SentencePieceNormalizer__Normalize(self, text)
(self, text)
8,921
sentencepiece
_NormalizeWithOffsets
null
def _NormalizeWithOffsets(self, text): return _sentencepiece.SentencePieceNormalizer__NormalizeWithOffsets(self, text)
(self, text)
8,922
sentencepiece
_SetProtoField
null
def _SetProtoField(self, name, value): return _sentencepiece.SentencePieceNormalizer__SetProtoField(self, name, value)
(self, name, value)
8,923
sentencepiece
__getstate__
null
def __getstate__(self): return self.serialized_model_proto()
(self)
8,925
sentencepiece
_swig_repr
null
def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except __builtin__.Exception: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
(self)
8,926
sentencepiece
__setstate__
null
def __setstate__(self, serialized_model_proto): self.__init__() self.LoadFromSerializedProto(serialized_model_proto)
(self, serialized_model_proto)
8,933
sentencepiece
serialized_model_proto
null
def serialized_model_proto(self): return _sentencepiece.SentencePieceNormalizer_serialized_model_proto(self)
(self)
8,934
sentencepiece
SentencePieceProcessor
null
class SentencePieceProcessor(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _sentencepiece.SentencePieceProcessor_swiginit(self, _sentencepiece.new_SentencePieceProcessor()) __swig_destroy__ = _sentencepiece.delete_SentencePieceProcessor def LoadFromSerializedProto(self, serialized): return _sentencepiece.SentencePieceProcessor_LoadFromSerializedProto(self, serialized) def SetEncodeExtraOptions(self, extra_option): return _sentencepiece.SentencePieceProcessor_SetEncodeExtraOptions(self, extra_option) def SetDecodeExtraOptions(self, extra_option): return _sentencepiece.SentencePieceProcessor_SetDecodeExtraOptions(self, extra_option) def SetVocabulary(self, valid_vocab): return _sentencepiece.SentencePieceProcessor_SetVocabulary(self, valid_vocab) def ResetVocabulary(self): return _sentencepiece.SentencePieceProcessor_ResetVocabulary(self) def LoadVocabulary(self, filename, threshold): return _sentencepiece.SentencePieceProcessor_LoadVocabulary(self, filename, threshold) def CalculateEntropy(self, *args): return _sentencepiece.SentencePieceProcessor_CalculateEntropy(self, *args) def GetPieceSize(self): return _sentencepiece.SentencePieceProcessor_GetPieceSize(self) def PieceToId(self, piece): return _sentencepiece.SentencePieceProcessor_PieceToId(self, piece) def IdToPiece(self, id): return _sentencepiece.SentencePieceProcessor_IdToPiece(self, id) def GetScore(self, id): return _sentencepiece.SentencePieceProcessor_GetScore(self, id) def IsUnknown(self, id): return _sentencepiece.SentencePieceProcessor_IsUnknown(self, id) def IsControl(self, id): return _sentencepiece.SentencePieceProcessor_IsControl(self, id) def IsUnused(self, id): return _sentencepiece.SentencePieceProcessor_IsUnused(self, id) def IsByte(self, id): return _sentencepiece.SentencePieceProcessor_IsByte(self, id) def unk_id(self): return _sentencepiece.SentencePieceProcessor_unk_id(self) def bos_id(self): return _sentencepiece.SentencePieceProcessor_bos_id(self) def eos_id(self): return _sentencepiece.SentencePieceProcessor_eos_id(self) def pad_id(self): return _sentencepiece.SentencePieceProcessor_pad_id(self) def serialized_model_proto(self): return _sentencepiece.SentencePieceProcessor_serialized_model_proto(self) def LoadFromFile(self, arg): return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg) def _EncodeAsIds(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__EncodeAsIds(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) def _EncodeAsPieces(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__EncodeAsPieces(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) def _EncodeAsSerializedProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__EncodeAsSerializedProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) def _EncodeAsImmutableProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__EncodeAsImmutableProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) def _EncodeAsIdsBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__EncodeAsIdsBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) def _EncodeAsPiecesBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__EncodeAsPiecesBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) def _EncodeAsSerializedProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__EncodeAsSerializedProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) def _EncodeAsImmutableProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__EncodeAsImmutableProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) def _DecodeIds(self, ids): return _sentencepiece.SentencePieceProcessor__DecodeIds(self, ids) def _DecodeIdsAsBytes(self, ids): return _sentencepiece.SentencePieceProcessor__DecodeIdsAsBytes(self, ids) def _DecodePieces(self, pieces): return _sentencepiece.SentencePieceProcessor__DecodePieces(self, pieces) def _DecodeIdsAsSerializedProto(self, ids): return _sentencepiece.SentencePieceProcessor__DecodeIdsAsSerializedProto(self, ids) def _DecodePiecesAsSerializedProto(self, pieces): return _sentencepiece.SentencePieceProcessor__DecodePiecesAsSerializedProto(self, pieces) def _DecodeIdsAsImmutableProto(self, ids): return _sentencepiece.SentencePieceProcessor__DecodeIdsAsImmutableProto(self, ids) def _DecodePiecesAsImmutableProto(self, pieces): return _sentencepiece.SentencePieceProcessor__DecodePiecesAsImmutableProto(self, pieces) def _DecodeIdsBatch(self, ins, num_threads): return _sentencepiece.SentencePieceProcessor__DecodeIdsBatch(self, ins, num_threads) def _DecodeIdsAsBytesBatch(self, ins, num_threads): return _sentencepiece.SentencePieceProcessor__DecodeIdsAsBytesBatch(self, ins, num_threads) def _DecodeIdsAsSerializedProtoBatch(self, ins, num_threads): return _sentencepiece.SentencePieceProcessor__DecodeIdsAsSerializedProtoBatch(self, ins, num_threads) def _DecodeIdsAsImmutableProtoBatch(self, ins, num_threads): return _sentencepiece.SentencePieceProcessor__DecodeIdsAsImmutableProtoBatch(self, ins, num_threads) def _DecodePiecesBatch(self, ins, num_threads): return _sentencepiece.SentencePieceProcessor__DecodePiecesBatch(self, ins, num_threads) def _DecodePiecesAsSerializedProtoBatch(self, ins, num_threads): return _sentencepiece.SentencePieceProcessor__DecodePiecesAsSerializedProtoBatch(self, ins, num_threads) def _DecodePiecesAsImmutableProtoBatch(self, ins, num_threads): return _sentencepiece.SentencePieceProcessor__DecodePiecesAsImmutableProtoBatch(self, ins, num_threads) def _NBestEncodeAsIds(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__NBestEncodeAsIds(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece) def _NBestEncodeAsPieces(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__NBestEncodeAsPieces(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece) def _NBestEncodeAsSerializedProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__NBestEncodeAsSerializedProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece) def _NBestEncodeAsImmutableProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__NBestEncodeAsImmutableProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece) def _SampleEncodeAndScoreAsIds(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsIds(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece) def _SampleEncodeAndScoreAsPieces(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsPieces(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece) def _SampleEncodeAndScoreAsSerializedProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsSerializedProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece) def _SampleEncodeAndScoreAsImmutableProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece): return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsImmutableProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece) def _Normalize(self, text): return _sentencepiece.SentencePieceProcessor__Normalize(self, text) def _NormalizeWithOffsets(self, text): return _sentencepiece.SentencePieceProcessor__NormalizeWithOffsets(self, text) def _CalculateEntropy(self, text, alpha): return _sentencepiece.SentencePieceProcessor__CalculateEntropy(self, text, alpha) def _CalculateEntropyBatch(self, ins, alpha, num_threads): return _sentencepiece.SentencePieceProcessor__CalculateEntropyBatch(self, ins, alpha, num_threads) def _OverrideNormalizerSpec(self, args): return _sentencepiece.SentencePieceProcessor__OverrideNormalizerSpec(self, args) def Init(self, model_file=None, model_proto=None, out_type=int, add_bos=False, add_eos=False, reverse=False, emit_unk_piece=False, enable_sampling=False, nbest_size=-1, alpha=0.1, num_threads=-1): """Initialzie sentencepieceProcessor. Args: model_file: The sentencepiece model file path. model_proto: The sentencepiece model serialized proto. out_type: output type. int or str. add_bos: Add <s> to the result (Default = false) add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled). reverse: Reverses the tokenized sequence (Default = false) emit_unk_piece: Emits the unk literal string (Default = false) nbest_size: sampling parameters for unigram. Invalid in BPE-Dropout. nbest_size = {0,1}: No sampling is performed. nbest_size > 1: samples from the nbest_size results. nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. alpha: Soothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. num_threads: number of threads in batch processing (Default = -1, auto-detected) """ _sentencepiece_processor_init_native(self) self._out_type = out_type self._add_bos = add_bos self._add_eos = add_eos self._reverse = reverse self._emit_unk_piece = emit_unk_piece self._enable_sampling = enable_sampling self._nbest_size = nbest_size self._alpha = alpha self._num_threads = num_threads if model_file or model_proto: self.Load(model_file=model_file, model_proto=model_proto) def Encode(self, input, out_type=None, add_bos=None, add_eos=None, reverse=None, emit_unk_piece=None, enable_sampling=None, nbest_size=None, alpha=None, num_threads=None): """Encode text input to segmented ids or tokens. Args: input: input string. accepsts list of string. out_type: output type. int or str. add_bos: Add <s> to the result (Default = false) add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled). reverse: Reverses the tokenized sequence (Default = false) emit_unk_piece: Emits the unk literal string (Default = false) nbest_size: sampling parameters for unigram. Invalid in BPE-Dropout. nbest_size = {0,1}: No sampling is performed. nbest_size > 1: samples from the nbest_size results. nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. alpha: Soothing parameter for unigram sampling, and merge probability for BPE-dropout (probablity 'p' in BPE-dropout paper). num_threads: the number of threads used in the batch processing (Default = -1). """ if out_type is None: out_type = self._out_type if add_bos is None: add_bos = self._add_bos if add_eos is None: add_eos = self._add_eos if reverse is None: reverse = self._reverse if emit_unk_piece is None: emit_unk_piece = self._emit_unk_piece if enable_sampling is None: enable_sampling = self._enable_sampling if nbest_size is None: nbest_size = self._nbest_size if alpha is None: alpha = self._alpha if num_threads is None: num_threads = self._num_threads if enable_sampling == True and (nbest_size is None or nbest_size == 0 or nbest_size == 1 or alpha is None): raise RuntimeError( 'When enable_sampling is True, We must specify "nbest_size > 1" or "nbest_size = -1", ' 'and "alpha". "nbest_size" is enabled only on unigram mode ignored in BPE-dropout. ' 'when "nbest_size = -1" , this method samples from all candidates on the lattice ' 'instead of nbest segmentations.' ) if num_threads is None or type(num_threads) is not int: raise RuntimeError('num_threads must be int') if type(input) is list: if out_type is int: return self._EncodeAsIdsBatch(input, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type is str: return self._EncodeAsPiecesBatch(input, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type == 'serialized_proto' or out_type == 'proto': return self._EncodeAsSerializedProtoBatch(input, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type == 'immutable_proto': return self._EncodeAsImmutableProtoBatch(input, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type is int: return self._EncodeAsIds(input, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type is str: return self._EncodeAsPieces(input, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type == 'serialized_proto' or out_type == 'proto': return self._EncodeAsSerializedProto(input, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type == 'immutable_proto': return self._EncodeAsImmutableProto(input, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) raise RuntimeError('unknown out_type={}'.format(out_type)) return None def EncodeAsPieces(self, input, **kwargs): return self.Encode(input=input, out_type=str, **kwargs) def EncodeAsIds(self, input, **kwargs): return self.Encode(input=input, out_type=int, **kwargs) def EncodeAsSerializedProto(self, input, **kwargs): return self.Encode(input=input, out_type='serialized_proto', **kwargs) def EncodeAsImmutableProto(self, input, **kwargs): return self.Encode(input=input, out_type='immutable_proto', **kwargs) def SampleEncodeAsPieces(self, input, nbest_size=None, alpha=None, **kwargs): return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha, out_type=str, enable_sampling=True, **kwargs) def SampleEncodeAsIds(self, input, nbest_size=None, alpha=None,**kwargs): return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha, out_type=int, enable_sampling=True, **kwargs) def SampleEncodeAsSerializedProto(self, input, nbest_size=None, alpha=None, **kwargs): return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha, out_type='serialized_proto', enable_sampling=True, **kwargs) def SampleEncodeAsImmutableProto(self, input, nbest_size=None, alpha=None, **kwargs): return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha, out_type='immutable_proto', enable_sampling=True, **kwargs) def NBestEncode(self, input, out_type=None, add_bos=None, add_eos=None, reverse=None, emit_unk_piece=None, nbest_size=None): """NBestEncode text input to segmented ids or tokens. Args: input: input string. accepsts list of string. out_type: output type. int or str. add_bos: Add <s> to the result (Default = false) add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled). reverse: Reverses the tokenized sequence (Default = false) emit_unk_piece: Emits the unk literal string (Default = false) nbest_size: nbest size """ if out_type is None: out_type = self._out_type if add_bos is None: add_bos = self._add_bos if add_eos is None: add_eos = self._add_eos if reverse is None: reverse = self._reverse if emit_unk_piece is None: emit_unk_piece = self._emit_unk_piece if nbest_size is None: nbest_size = self._nbest_size if nbest_size <= 0: nbest_size=1 def _encode(text): if out_type is int: return self._NBestEncodeAsIds(text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece) if out_type is str: return self._NBestEncodeAsPieces(text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece) if out_type == 'serialized_proto' or out_type == 'proto': return self._NBestEncodeAsSerializedProto(text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece) if out_type == 'immutable_proto': return self._NBestEncodeAsImmutableProto(text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece) raise RuntimeError('unknown out_type') if type(input) is list: return [_encode(n) for n in input] return _encode(input) def NBestEncodeAsPieces(self, input, nbest_size=None, **kwargs): return self.NBestEncode(input=input, nbest_size=nbest_size, out_type=str, **kwargs) def NBestEncodeAsIds(self, input, nbest_size=None, **kwargs): return self.NBestEncode(input=input, nbest_size=nbest_size, out_type=int, **kwargs) def NBestEncodeAsSerializedProto(self, input, nbest_size=None, **kwargs): return self.NBestEncode(input=input, nbest_size=nbest_size, out_type='serialized_proto', **kwargs) def NBestEncodeAsImmutableProto(self, input, nbest_size=None, **kwargs): return self.NBestEncode(input=input, nbest_size=nbest_size, out_type='immutable_proto', **kwargs) def SampleEncodeAndScore(self, input, out_type=None, add_bos=None, add_eos=None, reverse=None, emit_unk_piece=None, num_samples=None, alpha=None, wor=None, include_best=None): """SampleEncodeAndScore text input to segmented ids or tokens. Args: input: input string. accepsts list of string. out_type: output type. int or str or 'serialized_proto' or 'immutable_proto' add_bos: Add <s> to the result (Default = false) add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled). reverse: Reverses the tokenized sequence (Default = false) emit_unk_piece: Emits the unk literal string (Default = false) num_samples: How many samples to return (Default = 1) alpha: inverse temperature for sampling wor: whether to sample without replacement (Default = false) include_best: whether to include the best tokenization, requires wor=True (Default = false) """ if out_type is None: out_type = self._out_type if add_bos is None: add_bos = self._add_bos if add_eos is None: add_eos = self._add_eos if reverse is None: reverse = self._reverse if emit_unk_piece is None: emit_unk_piece = self._emit_unk_piece if num_samples is None: num_samples = 1 if alpha is None: alpha = 1. if wor is None: wor = False if include_best is None: include_best = False if num_samples <= 0: raise RuntimeError('num_examples must be positive') if include_best and not wor: raise RuntimeError('When include_best is True, We must specify "wor = True".') def _encode(text): if out_type is int: return self._SampleEncodeAndScoreAsIds(text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece) if out_type is str: return self._SampleEncodeAndScoreAsPieces(text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece) if out_type == 'serialized_proto' or out_type == 'proto': return self._SampleEncodeAndScoreAsSerializedProto(text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece) if out_type == 'immutable_proto': return self._SampleEncodeAndScoreAsImmutableProto(text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece) raise RuntimeError('unknown output type') if type(input) is list: return [_encode(n) for n in input] return _encode(input) def SampleEncodeAndScoreAsPieces(self, input, num_samples=None, alpha=None, **kwargs): return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha, out_type=str, **kwargs) def SampleEncodeAndScoreAsIds(self, input, num_samples=None, alpha=None, **kwargs): return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha, out_type=int, **kwargs) def SampleEncodeAndScoreAsSerializedProto(self, input, num_samples=None, alpha=None, **kwargs): return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha, out_type='serialized_proto', **kwargs) def SampleEncodeAndScoreAsImmutableProto(self, input, num_samples=None, alpha=None, **kwargs): return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha, out_type='immutable_proto', **kwargs) def Decode(self, input, out_type=str, num_threads=None): """Decode processed id or token sequences. Args: out_type: output type. str, bytes or 'serialized_proto' or 'immutable_proto' (Default = str) num_threads: the number of threads used in the batch processing (Default = -1). """ if num_threads is None: num_threads = self._num_threads if num_threads is None or type(num_threads) is not int: raise RuntimeError('num_threads must be int') if not input: return '' if out_type is str: if type(input) is int: return self._DecodeIds([input]) if type(input) is str: return self._DecodePieces([input]) if type(input) is list: if len(input) == 0 or type(input[0]) is int: return self._DecodeIds(input) if type(input[0]) is str: return self._DecodePieces(input) if type(input[0]) is list: if len(input[0]) == 0 or type(input[0][0]) is int: return self._DecodeIdsBatch(input, num_threads) if type(input[0][0]) is str: return self._DecodePiecesBatch(input, num_threads) if out_type is bytes: if type(input) is int: return self._DecodeIdsAsBytes([input]) if type(input) is str: return self._DecodePieces([input]) if type(input) is list: if len(input) == 0 or type(input[0]) is int: return self._DecodeIdsAsBytes(input) if type(input[0]) is str: return self._DecodePieces(input) if type(input[0]) is list: if len(input[0]) == 0 or type(input[0][0]) is int: return self._DecodeIdsAsBytesBatch(input, num_threads) if type(input[0][0]) is str: return self._DecodePiecesBatch(input, num_threads) if out_type == 'serialized_proto': if type(input) is int: return self._DecodeIdsAsSerializedProto([input]) if type(input) is str: return self._DecodePiecesAsSerializedProto([input]) if type(input) is list: if len(input) == 0 or type(input[0]) is int: return self._DecodeIdsAsSerializedProto(input) if type(input[0]) is str: return self._DecodePiecesAsSerializedProto(input) if type(input[0]) is list: if len(input[0]) == 0 or type(input[0][0]) is int: return self._DecodeIdsAsSerializedProtoBatch(input, num_threads) if type(input[0][0]) is str: return self._DecodePiecesAsSerializedProtoBatch(input, num_threads) if out_type == 'immutable_proto': if type(input) is int: return self._DecodeIdsAsImmutableProto([input]) if type(input) is str: return self._DecodePiecesAsImmutableProto([input]) if type(input) is list: if len(input) == 0 or type(input[0]) is int: return self._DecodeIdsAsImmutableProto(input) if type(input[0]) is str: return self._DecodePiecesAsImmutableProto(input) if type(input[0]) is list: if len(input[0]) == 0 or type(input[0][0]) is int: return self._DecodeIdsAsImmutableProtoBatch(input, num_threads) if type(input[0][0]) is str: return self._DecodePiecesAsImmutableProtoBatch(input, num_threads) raise RuntimeError('unknown output or input type') return None def DecodePieces(self, input, out_type=str, **kwargs): return self.Decode(input=input, out_type=out_type, **kwargs) def DecodeIds(self, input, out_type=str, **kwargs): return self.Decode(input=input, out_type=out_type, **kwargs) def DecodePiecesAsSerializedProto(self, input, out_type='serialized_proto', **kwargs): return self.Decode(input=input, out_type=out_type, **kwargs) def DecodeIdsAsSerializedProto(self, input, out_type='serialized_proto', **kwargs): return self.Decode(input=input, out_type=out_type, **kwargs) def DecodePiecesAsImmutableProto(self, input, out_type='immutable_proto', **kwargs): return self.Decode(input=input, out_type=out_type, **kwargs) def DecodeIdsAsImmutableProto(self, input, out_type='immutable_proto', **kwargs): return self.Decode(input=input, out_type=out_type, **kwargs) def CalculateEntropy(self, input, alpha, num_threads=None): """Calculate sentence entropy""" if type(input) is list: if num_threads is None: num_threads = self._num_threads if num_threads is None or type(num_threads) is not int: raise RuntimeError('num_threads must be int') return self._CalculateEntropyBatch(input, alpha, num_threads) return self._CalculateEntropy(input, alpha) def Normalize(self, input, with_offsets=None): def _normalize(text): if with_offsets: return self._NormalizeWithOffsets(text) return self._Normalize(text) if type(input) is list: return [_normalize(x) for x in input] return _normalize(input) def OverrideNormalizerSpec(self, **kwargs): new_kwargs = {} for key, value in kwargs.items(): new_kwargs[key] = str(value) return self._OverrideNormalizerSpec(new_kwargs) def piece_size(self): return self.GetPieceSize() def vocab_size(self): return self.GetPieceSize() def __getstate__(self): return self.serialized_model_proto() def __setstate__(self, serialized_model_proto): self.__init__() self.LoadFromSerializedProto(serialized_model_proto) def __len__(self): return self.GetPieceSize() def __getitem__(self, piece): return self.PieceToId(piece) def Load(self, model_file=None, model_proto=None): """Overwride SentencePieceProcessor.Load to support both model_file and model_proto. Args: model_file: The sentencepiece model file path. model_proto: The sentencepiece model serialized proto. Either `model_file` or `model_proto` must be set. """ if model_file and model_proto: raise RuntimeError('model_file and model_proto must be exclusive.') if model_proto: return self.LoadFromSerializedProto(model_proto) return self.LoadFromFile(model_file)
(model_file=None, model_proto=None, out_type=<class 'int'>, add_bos=False, add_eos=False, reverse=False, emit_unk_piece=False, enable_sampling=False, nbest_size=-1, alpha=0.1, num_threads=-1)
8,935
sentencepiece
CalculateEntropy
Calculate sentence entropy
def CalculateEntropy(self, input, alpha, num_threads=None): """Calculate sentence entropy""" if type(input) is list: if num_threads is None: num_threads = self._num_threads if num_threads is None or type(num_threads) is not int: raise RuntimeError('num_threads must be int') return self._CalculateEntropyBatch(input, alpha, num_threads) return self._CalculateEntropy(input, alpha)
(self, input, alpha, num_threads=None)
8,936
sentencepiece
Decode
Decode processed id or token sequences. Args: out_type: output type. str, bytes or 'serialized_proto' or 'immutable_proto' (Default = str) num_threads: the number of threads used in the batch processing (Default = -1).
def Decode(self, input, out_type=str, num_threads=None): """Decode processed id or token sequences. Args: out_type: output type. str, bytes or 'serialized_proto' or 'immutable_proto' (Default = str) num_threads: the number of threads used in the batch processing (Default = -1). """ if num_threads is None: num_threads = self._num_threads if num_threads is None or type(num_threads) is not int: raise RuntimeError('num_threads must be int') if not input: return '' if out_type is str: if type(input) is int: return self._DecodeIds([input]) if type(input) is str: return self._DecodePieces([input]) if type(input) is list: if len(input) == 0 or type(input[0]) is int: return self._DecodeIds(input) if type(input[0]) is str: return self._DecodePieces(input) if type(input[0]) is list: if len(input[0]) == 0 or type(input[0][0]) is int: return self._DecodeIdsBatch(input, num_threads) if type(input[0][0]) is str: return self._DecodePiecesBatch(input, num_threads) if out_type is bytes: if type(input) is int: return self._DecodeIdsAsBytes([input]) if type(input) is str: return self._DecodePieces([input]) if type(input) is list: if len(input) == 0 or type(input[0]) is int: return self._DecodeIdsAsBytes(input) if type(input[0]) is str: return self._DecodePieces(input) if type(input[0]) is list: if len(input[0]) == 0 or type(input[0][0]) is int: return self._DecodeIdsAsBytesBatch(input, num_threads) if type(input[0][0]) is str: return self._DecodePiecesBatch(input, num_threads) if out_type == 'serialized_proto': if type(input) is int: return self._DecodeIdsAsSerializedProto([input]) if type(input) is str: return self._DecodePiecesAsSerializedProto([input]) if type(input) is list: if len(input) == 0 or type(input[0]) is int: return self._DecodeIdsAsSerializedProto(input) if type(input[0]) is str: return self._DecodePiecesAsSerializedProto(input) if type(input[0]) is list: if len(input[0]) == 0 or type(input[0][0]) is int: return self._DecodeIdsAsSerializedProtoBatch(input, num_threads) if type(input[0][0]) is str: return self._DecodePiecesAsSerializedProtoBatch(input, num_threads) if out_type == 'immutable_proto': if type(input) is int: return self._DecodeIdsAsImmutableProto([input]) if type(input) is str: return self._DecodePiecesAsImmutableProto([input]) if type(input) is list: if len(input) == 0 or type(input[0]) is int: return self._DecodeIdsAsImmutableProto(input) if type(input[0]) is str: return self._DecodePiecesAsImmutableProto(input) if type(input[0]) is list: if len(input[0]) == 0 or type(input[0][0]) is int: return self._DecodeIdsAsImmutableProtoBatch(input, num_threads) if type(input[0][0]) is str: return self._DecodePiecesAsImmutableProtoBatch(input, num_threads) raise RuntimeError('unknown output or input type') return None
(self, input, out_type=<class 'str'>, num_threads=None)
8,937
sentencepiece
DecodeIds
null
def DecodeIds(self, input, out_type=str, **kwargs): return self.Decode(input=input, out_type=out_type, **kwargs)
(self, input, out_type=<class 'str'>, **kwargs)
8,938
sentencepiece
DecodeIdsAsImmutableProto
null
def DecodeIdsAsImmutableProto(self, input, out_type='immutable_proto', **kwargs): return self.Decode(input=input, out_type=out_type, **kwargs)
(self, input, out_type='immutable_proto', **kwargs)
8,939
sentencepiece
DecodeIdsAsSerializedProto
null
def DecodeIdsAsSerializedProto(self, input, out_type='serialized_proto', **kwargs): return self.Decode(input=input, out_type=out_type, **kwargs)
(self, input, out_type='serialized_proto', **kwargs)
8,940
sentencepiece
DecodePieces
null
def DecodePieces(self, input, out_type=str, **kwargs): return self.Decode(input=input, out_type=out_type, **kwargs)
(self, input, out_type=<class 'str'>, **kwargs)
8,941
sentencepiece
DecodePiecesAsImmutableProto
null
def DecodePiecesAsImmutableProto(self, input, out_type='immutable_proto', **kwargs): return self.Decode(input=input, out_type=out_type, **kwargs)
(self, input, out_type='immutable_proto', **kwargs)
8,942
sentencepiece
DecodePiecesAsSerializedProto
null
def DecodePiecesAsSerializedProto(self, input, out_type='serialized_proto', **kwargs): return self.Decode(input=input, out_type=out_type, **kwargs)
(self, input, out_type='serialized_proto', **kwargs)
8,944
sentencepiece
Encode
Encode text input to segmented ids or tokens. Args: input: input string. accepsts list of string. out_type: output type. int or str. add_bos: Add <s> to the result (Default = false) add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled). reverse: Reverses the tokenized sequence (Default = false) emit_unk_piece: Emits the unk literal string (Default = false) nbest_size: sampling parameters for unigram. Invalid in BPE-Dropout. nbest_size = {0,1}: No sampling is performed. nbest_size > 1: samples from the nbest_size results. nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. alpha: Soothing parameter for unigram sampling, and merge probability for BPE-dropout (probablity 'p' in BPE-dropout paper). num_threads: the number of threads used in the batch processing (Default = -1).
def Encode(self, input, out_type=None, add_bos=None, add_eos=None, reverse=None, emit_unk_piece=None, enable_sampling=None, nbest_size=None, alpha=None, num_threads=None): """Encode text input to segmented ids or tokens. Args: input: input string. accepsts list of string. out_type: output type. int or str. add_bos: Add <s> to the result (Default = false) add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled). reverse: Reverses the tokenized sequence (Default = false) emit_unk_piece: Emits the unk literal string (Default = false) nbest_size: sampling parameters for unigram. Invalid in BPE-Dropout. nbest_size = {0,1}: No sampling is performed. nbest_size > 1: samples from the nbest_size results. nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. alpha: Soothing parameter for unigram sampling, and merge probability for BPE-dropout (probablity 'p' in BPE-dropout paper). num_threads: the number of threads used in the batch processing (Default = -1). """ if out_type is None: out_type = self._out_type if add_bos is None: add_bos = self._add_bos if add_eos is None: add_eos = self._add_eos if reverse is None: reverse = self._reverse if emit_unk_piece is None: emit_unk_piece = self._emit_unk_piece if enable_sampling is None: enable_sampling = self._enable_sampling if nbest_size is None: nbest_size = self._nbest_size if alpha is None: alpha = self._alpha if num_threads is None: num_threads = self._num_threads if enable_sampling == True and (nbest_size is None or nbest_size == 0 or nbest_size == 1 or alpha is None): raise RuntimeError( 'When enable_sampling is True, We must specify "nbest_size > 1" or "nbest_size = -1", ' 'and "alpha". "nbest_size" is enabled only on unigram mode ignored in BPE-dropout. ' 'when "nbest_size = -1" , this method samples from all candidates on the lattice ' 'instead of nbest segmentations.' ) if num_threads is None or type(num_threads) is not int: raise RuntimeError('num_threads must be int') if type(input) is list: if out_type is int: return self._EncodeAsIdsBatch(input, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type is str: return self._EncodeAsPiecesBatch(input, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type == 'serialized_proto' or out_type == 'proto': return self._EncodeAsSerializedProtoBatch(input, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type == 'immutable_proto': return self._EncodeAsImmutableProtoBatch(input, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type is int: return self._EncodeAsIds(input, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type is str: return self._EncodeAsPieces(input, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type == 'serialized_proto' or out_type == 'proto': return self._EncodeAsSerializedProto(input, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) if out_type == 'immutable_proto': return self._EncodeAsImmutableProto(input, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) raise RuntimeError('unknown out_type={}'.format(out_type)) return None
(self, input, out_type=None, add_bos=None, add_eos=None, reverse=None, emit_unk_piece=None, enable_sampling=None, nbest_size=None, alpha=None, num_threads=None)
8,945
sentencepiece
EncodeAsIds
null
def EncodeAsIds(self, input, **kwargs): return self.Encode(input=input, out_type=int, **kwargs)
(self, input, **kwargs)
8,946
sentencepiece
EncodeAsImmutableProto
null
def EncodeAsImmutableProto(self, input, **kwargs): return self.Encode(input=input, out_type='immutable_proto', **kwargs)
(self, input, **kwargs)
8,947
sentencepiece
EncodeAsPieces
null
def EncodeAsPieces(self, input, **kwargs): return self.Encode(input=input, out_type=str, **kwargs)
(self, input, **kwargs)
8,948
sentencepiece
EncodeAsSerializedProto
null
def EncodeAsSerializedProto(self, input, **kwargs): return self.Encode(input=input, out_type='serialized_proto', **kwargs)
(self, input, **kwargs)
8,949
sentencepiece
GetPieceSize
null
def GetPieceSize(self): return _sentencepiece.SentencePieceProcessor_GetPieceSize(self)
(self)
8,950
sentencepiece
_batched_func
null
def _batchnize(classname, name): """Enables batch request for the method classname.name.""" func = getattr(classname, name, None) def _func(v, n): if type(n) is int and (n < 0 or n >= v.piece_size()): raise IndexError('piece id is out of range.') return func(v, n) def _batched_func(self, arg): if type(arg) is list: return [_func(self, n) for n in arg] else: return _func(self, arg) setattr(classname, name, _batched_func)
(self, arg)
8,952
sentencepiece
Init
Initialzie sentencepieceProcessor. Args: model_file: The sentencepiece model file path. model_proto: The sentencepiece model serialized proto. out_type: output type. int or str. add_bos: Add <s> to the result (Default = false) add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled). reverse: Reverses the tokenized sequence (Default = false) emit_unk_piece: Emits the unk literal string (Default = false) nbest_size: sampling parameters for unigram. Invalid in BPE-Dropout. nbest_size = {0,1}: No sampling is performed. nbest_size > 1: samples from the nbest_size results. nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. alpha: Soothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. num_threads: number of threads in batch processing (Default = -1, auto-detected)
def Init(self, model_file=None, model_proto=None, out_type=int, add_bos=False, add_eos=False, reverse=False, emit_unk_piece=False, enable_sampling=False, nbest_size=-1, alpha=0.1, num_threads=-1): """Initialzie sentencepieceProcessor. Args: model_file: The sentencepiece model file path. model_proto: The sentencepiece model serialized proto. out_type: output type. int or str. add_bos: Add <s> to the result (Default = false) add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled). reverse: Reverses the tokenized sequence (Default = false) emit_unk_piece: Emits the unk literal string (Default = false) nbest_size: sampling parameters for unigram. Invalid in BPE-Dropout. nbest_size = {0,1}: No sampling is performed. nbest_size > 1: samples from the nbest_size results. nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. alpha: Soothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. num_threads: number of threads in batch processing (Default = -1, auto-detected) """ _sentencepiece_processor_init_native(self) self._out_type = out_type self._add_bos = add_bos self._add_eos = add_eos self._reverse = reverse self._emit_unk_piece = emit_unk_piece self._enable_sampling = enable_sampling self._nbest_size = nbest_size self._alpha = alpha self._num_threads = num_threads if model_file or model_proto: self.Load(model_file=model_file, model_proto=model_proto)
(self, model_file=None, model_proto=None, out_type=<class 'int'>, add_bos=False, add_eos=False, reverse=False, emit_unk_piece=False, enable_sampling=False, nbest_size=-1, alpha=0.1, num_threads=-1)