index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
30,930
networkx.drawing.layout
multipartite_layout
Position nodes in layers of straight lines. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. subset_key : string or dict (default='subset') If a string, the key of node data in G that holds the node subset. If a dict, keyed by layer number to the nodes in that layer/subset. align : string (default='vertical') The alignment of nodes. Vertical or horizontal. scale : number (default: 1) Scale factor for positions. center : array-like or None Coordinate pair around which to center the layout. Returns ------- pos : dict A dictionary of positions keyed by node. Examples -------- >>> G = nx.complete_multipartite_graph(28, 16, 10) >>> pos = nx.multipartite_layout(G) or use a dict to provide the layers of the layout >>> G = nx.Graph([(0, 1), (1, 2), (1, 3), (3, 4)]) >>> layers = {"a": [0], "b": [1], "c": [2, 3], "d": [4]} >>> pos = nx.multipartite_layout(G, subset_key=layers) Notes ----- This algorithm currently only works in two dimensions and does not try to minimize edge crossings. Network does not need to be a complete multipartite graph. As long as nodes have subset_key data, they will be placed in the corresponding layers.
def multipartite_layout(G, subset_key="subset", align="vertical", scale=1, center=None): """Position nodes in layers of straight lines. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. subset_key : string or dict (default='subset') If a string, the key of node data in G that holds the node subset. If a dict, keyed by layer number to the nodes in that layer/subset. align : string (default='vertical') The alignment of nodes. Vertical or horizontal. scale : number (default: 1) Scale factor for positions. center : array-like or None Coordinate pair around which to center the layout. Returns ------- pos : dict A dictionary of positions keyed by node. Examples -------- >>> G = nx.complete_multipartite_graph(28, 16, 10) >>> pos = nx.multipartite_layout(G) or use a dict to provide the layers of the layout >>> G = nx.Graph([(0, 1), (1, 2), (1, 3), (3, 4)]) >>> layers = {"a": [0], "b": [1], "c": [2, 3], "d": [4]} >>> pos = nx.multipartite_layout(G, subset_key=layers) Notes ----- This algorithm currently only works in two dimensions and does not try to minimize edge crossings. Network does not need to be a complete multipartite graph. As long as nodes have subset_key data, they will be placed in the corresponding layers. """ import numpy as np if align not in ("vertical", "horizontal"): msg = "align must be either vertical or horizontal." raise ValueError(msg) G, center = _process_params(G, center=center, dim=2) if len(G) == 0: return {} try: # check if subset_key is dict-like if len(G) != sum(len(nodes) for nodes in subset_key.values()): raise nx.NetworkXError( "all nodes must be in one subset of `subset_key` dict" ) except AttributeError: # subset_key is not a dict, hence a string node_to_subset = nx.get_node_attributes(G, subset_key) if len(node_to_subset) != len(G): raise nx.NetworkXError( f"all nodes need a subset_key attribute: {subset_key}" ) subset_key = nx.utils.groups(node_to_subset) # Sort by layer, if possible try: layers = dict(sorted(subset_key.items())) except TypeError: layers = subset_key pos = None nodes = [] width = len(layers) for i, layer in enumerate(layers.values()): height = len(layer) xs = np.repeat(i, height) ys = np.arange(0, height, dtype=float) offset = ((width - 1) / 2, (height - 1) / 2) layer_pos = np.column_stack([xs, ys]) - offset if pos is None: pos = layer_pos else: pos = np.concatenate([pos, layer_pos]) nodes.extend(layer) pos = rescale_layout(pos, scale=scale) + center if align == "horizontal": pos = pos[:, ::-1] # swap x and y coords pos = dict(zip(nodes, pos)) return pos
(G, subset_key='subset', align='vertical', scale=1, center=None)
30,932
networkx.generators.mycielski
mycielski_graph
Generator for the n_th Mycielski Graph. The Mycielski family of graphs is an infinite set of graphs. :math:`M_1` is the singleton graph, :math:`M_2` is two vertices with an edge, and, for :math:`i > 2`, :math:`M_i` is the Mycielskian of :math:`M_{i-1}`. More information can be found at http://mathworld.wolfram.com/MycielskiGraph.html Parameters ---------- n : int The desired Mycielski Graph. Returns ------- M : graph The n_th Mycielski Graph Notes ----- The first graph in the Mycielski sequence is the singleton graph. The Mycielskian of this graph is not the :math:`P_2` graph, but rather the :math:`P_2` graph with an extra, isolated vertex. The second Mycielski graph is the :math:`P_2` graph, so the first two are hard coded. The remaining graphs are generated using the Mycielski operation.
null
(n, *, backend=None, **backend_kwargs)
30,933
networkx.generators.mycielski
mycielskian
Returns the Mycielskian of a simple, undirected graph G The Mycielskian of graph preserves a graph's triangle free property while increasing the chromatic number by 1. The Mycielski Operation on a graph, :math:`G=(V, E)`, constructs a new graph with :math:`2|V| + 1` nodes and :math:`3|E| + |V|` edges. The construction is as follows: Let :math:`V = {0, ..., n-1}`. Construct another vertex set :math:`U = {n, ..., 2n}` and a vertex, `w`. Construct a new graph, `M`, with vertices :math:`U \bigcup V \bigcup w`. For edges, :math:`(u, v) \in E` add edges :math:`(u, v), (u, v + n)`, and :math:`(u + n, v)` to M. Finally, for all vertices :math:`u \in U`, add edge :math:`(u, w)` to M. The Mycielski Operation can be done multiple times by repeating the above process iteratively. More information can be found at https://en.wikipedia.org/wiki/Mycielskian Parameters ---------- G : graph A simple, undirected NetworkX graph iterations : int The number of iterations of the Mycielski operation to perform on G. Defaults to 1. Must be a non-negative integer. Returns ------- M : graph The Mycielskian of G after the specified number of iterations. Notes ----- Graph, node, and edge data are not necessarily propagated to the new graph.
null
(G, iterations=1, *, backend=None, **backend_kwargs)
30,934
networkx.generators.geometric
navigable_small_world_graph
Returns a navigable small-world graph. A navigable small-world graph is a directed grid with additional long-range connections that are chosen randomly. [...] we begin with a set of nodes [...] that are identified with the set of lattice points in an $n \times n$ square, $\{(i, j): i \in \{1, 2, \ldots, n\}, j \in \{1, 2, \ldots, n\}\}$, and we define the *lattice distance* between two nodes $(i, j)$ and $(k, l)$ to be the number of "lattice steps" separating them: $d((i, j), (k, l)) = |k - i| + |l - j|$. For a universal constant $p >= 1$, the node $u$ has a directed edge to every other node within lattice distance $p$---these are its *local contacts*. For universal constants $q >= 0$ and $r >= 0$ we also construct directed edges from $u$ to $q$ other nodes (the *long-range contacts*) using independent random trials; the $i$th directed edge from $u$ has endpoint $v$ with probability proportional to $[d(u,v)]^{-r}$. -- [1]_ Parameters ---------- n : int The length of one side of the lattice; the number of nodes in the graph is therefore $n^2$. p : int The diameter of short range connections. Each node is joined with every other node within this lattice distance. q : int The number of long-range connections for each node. r : float Exponent for decaying probability of connections. The probability of connecting to a node at lattice distance $d$ is $1/d^r$. dim : int Dimension of grid seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. References ---------- .. [1] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000.
def thresholded_random_geometric_graph( n, radius, theta, dim=2, pos=None, weight=None, p=2, seed=None, *, pos_name="pos", weight_name="weight", ): r"""Returns a thresholded random geometric graph in the unit cube. The thresholded random geometric graph [1] model places `n` nodes uniformly at random in the unit cube of dimensions `dim`. Each node `u` is assigned a weight :math:`w_u`. Two nodes `u` and `v` are joined by an edge if they are within the maximum connection distance, `radius` computed by the `p`-Minkowski distance and the summation of weights :math:`w_u` + :math:`w_v` is greater than or equal to the threshold parameter `theta`. Edges within `radius` of each other are determined using a KDTree when SciPy is available. This reduces the time complexity from :math:`O(n^2)` to :math:`O(n)`. Parameters ---------- n : int or iterable Number of nodes or iterable of nodes radius: float Distance threshold value theta: float Threshold value dim : int, optional Dimension of graph pos : dict, optional A dictionary keyed by node with node positions as values. weight : dict, optional Node weights as a dictionary of numbers keyed by node. p : float, optional (default 2) Which Minkowski distance metric to use. `p` has to meet the condition ``1 <= p <= infinity``. If this argument is not specified, the :math:`L^2` metric (the Euclidean distance metric), p = 2 is used. This should not be confused with the `p` of an Erdős-Rényi random graph, which represents probability. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. pos_name : string, default="pos" The name of the node attribute which represents the position in 2D coordinates of the node in the returned graph. weight_name : string, default="weight" The name of the node attribute which represents the weight of the node in the returned graph. Returns ------- Graph A thresholded random geographic graph, undirected and without self-loops. Each node has a node attribute ``'pos'`` that stores the position of that node in Euclidean space as provided by the ``pos`` keyword argument or, if ``pos`` was not provided, as generated by this function. Similarly, each node has a nodethre attribute ``'weight'`` that stores the weight of that node as provided or as generated. Examples -------- Default Graph: G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1) Custom Graph: Create a thresholded random geometric graph on 50 uniformly distributed nodes where nodes are joined by an edge if their sum weights drawn from a exponential distribution with rate = 5 are >= theta = 0.1 and their Euclidean distance is at most 0.2. Notes ----- This uses a *k*-d tree to build the graph. The `pos` keyword argument can be used to specify node positions so you can create an arbitrary distribution and domain for positions. For example, to use a 2D Gaussian distribution of node positions with mean (0, 0) and standard deviation 2 If weights are not specified they are assigned to nodes by drawing randomly from the exponential distribution with rate parameter :math:`\lambda=1`. To specify weights from a different distribution, use the `weight` keyword argument:: :: >>> import random >>> import math >>> n = 50 >>> pos = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)} >>> w = {i: random.expovariate(5.0) for i in range(n)} >>> G = nx.thresholded_random_geometric_graph(n, 0.2, 0.1, 2, pos, w) References ---------- .. [1] http://cole-maclean.github.io/blog/files/thesis.pdf """ G = nx.empty_graph(n) G.name = f"thresholded_random_geometric_graph({n}, {radius}, {theta}, {dim})" # If no weights are provided, choose them from an exponential # distribution. if weight is None: weight = {v: seed.expovariate(1) for v in G} # If no positions are provided, choose uniformly random vectors in # Euclidean space of the specified dimension. if pos is None: pos = {v: [seed.random() for i in range(dim)] for v in G} # If no distance metric is provided, use Euclidean distance. nx.set_node_attributes(G, weight, weight_name) nx.set_node_attributes(G, pos, pos_name) edges = ( (u, v) for u, v in _geometric_edges(G, radius, p, pos_name) if weight[u] + weight[v] >= theta ) G.add_edges_from(edges) return G
(n, p=1, q=1, r=2, dim=2, seed=None, *, backend=None, **backend_kwargs)
30,935
networkx.algorithms.shortest_paths.weighted
negative_edge_cycle
Returns True if there exists a negative edge cycle anywhere in G. Parameters ---------- G : NetworkX graph weight : string or function If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining `u` to `v` will be ``G.edges[u, v][weight]``). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. heuristic : bool Determines whether to use a heuristic to early detect negative cycles at a negligible cost. In case of graphs with a negative cycle, the performance of detection increases by at least an order of magnitude. Returns ------- negative_cycle : bool True if a negative edge cycle exists, otherwise False. Examples -------- >>> G = nx.cycle_graph(5, create_using=nx.DiGraph()) >>> print(nx.negative_edge_cycle(G)) False >>> G[1][2]["weight"] = -7 >>> print(nx.negative_edge_cycle(G)) True Notes ----- Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. This algorithm uses bellman_ford_predecessor_and_distance() but finds negative cycles on any component by first adding a new node connected to every node, and starting bellman_ford_predecessor_and_distance on that node. It then removes that extra node.
def _dijkstra_multisource( G, sources, weight, pred=None, paths=None, cutoff=None, target=None ): """Uses Dijkstra's algorithm to find shortest weighted paths Parameters ---------- G : NetworkX graph sources : non-empty iterable of nodes Starting nodes for paths. If this is just an iterable containing a single node, then all paths computed by this function will start from that node. If there are two or more nodes in this iterable, the computed paths may begin from any one of the start nodes. weight: function Function with (u, v, data) input that returns that edge's weight or None to indicate a hidden edge pred: dict of lists, optional(default=None) dict to store a list of predecessors keyed by that node If None, predecessors are not stored. paths: dict, optional (default=None) dict to store the path list from source to each node, keyed by node. If None, paths are not stored. target : node label, optional Ending node for path. Search is halted when target is found. cutoff : integer or float, optional Length (sum of edge weights) at which the search is stopped. If cutoff is provided, only return paths with summed weight <= cutoff. Returns ------- distance : dictionary A mapping from node to shortest distance to that node from one of the source nodes. Raises ------ NodeNotFound If any of `sources` is not in `G`. Notes ----- The optional predecessor and path dictionaries can be accessed by the caller through the original pred and paths objects passed as arguments. No need to explicitly return pred or paths. """ G_succ = G._adj # For speed-up (and works for both directed and undirected graphs) push = heappush pop = heappop dist = {} # dictionary of final distances seen = {} # fringe is heapq with 3-tuples (distance,c,node) # use the count c to avoid comparing nodes (may not be able to) c = count() fringe = [] for source in sources: seen[source] = 0 push(fringe, (0, next(c), source)) while fringe: (d, _, v) = pop(fringe) if v in dist: continue # already searched this node. dist[v] = d if v == target: break for u, e in G_succ[v].items(): cost = weight(v, u, e) if cost is None: continue vu_dist = dist[v] + cost if cutoff is not None: if vu_dist > cutoff: continue if u in dist: u_dist = dist[u] if vu_dist < u_dist: raise ValueError("Contradictory paths found:", "negative weights?") elif pred is not None and vu_dist == u_dist: pred[u].append(v) elif u not in seen or vu_dist < seen[u]: seen[u] = vu_dist push(fringe, (vu_dist, next(c), u)) if paths is not None: paths[u] = paths[v] + [u] if pred is not None: pred[u] = [v] elif vu_dist == seen[u]: if pred is not None: pred[u].append(v) # The optional predecessor and path dictionaries can be accessed # by the caller via the pred and paths objects passed as arguments. return dist
(G, weight='weight', heuristic=True, *, backend=None, **backend_kwargs)
30,937
networkx.classes.function
neighbors
Returns an iterator over all neighbors of node n. This function wraps the :func:`G.neighbors <networkx.Graph.neighbors>` function.
def neighbors(G, n): """Returns an iterator over all neighbors of node n. This function wraps the :func:`G.neighbors <networkx.Graph.neighbors>` function. """ return G.neighbors(n)
(G, n)
30,938
networkx.algorithms.flow.networksimplex
network_simplex
Find a minimum cost flow satisfying all demands in digraph G. This is a primal network simplex algorithm that uses the leaving arc rule to prevent cycling. G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node. Parameters ---------- G : NetworkX graph DiGraph on which a minimum cost flow satisfying all demands is to be found. demand : string Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'. capacity : string Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. weight : string Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. Returns ------- flowCost : integer, float Cost of a minimum cost flow satisfying all demands. flowDict : dictionary Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v). Raises ------ NetworkXError This exception is raised if the input graph is not directed or not connected. NetworkXUnfeasible This exception is raised in the following situations: * The sum of the demands is not zero. Then, there is no flow satisfying all demands. * There is no flow satisfying all demand. NetworkXUnbounded This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below. Notes ----- This algorithm is not guaranteed to work if edge weights or demands are floating point numbers (overflows and roundoff errors can cause problems). As a workaround you can use integer numbers by multiplying the relevant edge attributes by a convenient constant factor (eg 100). See also -------- cost_of_flow, max_flow_min_cost, min_cost_flow, min_cost_flow_cost Examples -------- A simple example of a min cost flow problem. >>> G = nx.DiGraph() >>> G.add_node("a", demand=-5) >>> G.add_node("d", demand=5) >>> G.add_edge("a", "b", weight=3, capacity=4) >>> G.add_edge("a", "c", weight=6, capacity=10) >>> G.add_edge("b", "d", weight=1, capacity=9) >>> G.add_edge("c", "d", weight=2, capacity=5) >>> flowCost, flowDict = nx.network_simplex(G) >>> flowCost 24 >>> flowDict {'a': {'b': 4, 'c': 1}, 'd': {}, 'b': {'d': 4}, 'c': {'d': 1}} The mincost flow algorithm can also be used to solve shortest path problems. To find the shortest path between two nodes u and v, give all edges an infinite capacity, give node u a demand of -1 and node v a demand a 1. Then run the network simplex. The value of a min cost flow will be the distance between u and v and edges carrying positive flow will indicate the path. >>> G = nx.DiGraph() >>> G.add_weighted_edges_from( ... [ ... ("s", "u", 10), ... ("s", "x", 5), ... ("u", "v", 1), ... ("u", "x", 2), ... ("v", "y", 1), ... ("x", "u", 3), ... ("x", "v", 5), ... ("x", "y", 2), ... ("y", "s", 7), ... ("y", "v", 6), ... ] ... ) >>> G.add_node("s", demand=-1) >>> G.add_node("v", demand=1) >>> flowCost, flowDict = nx.network_simplex(G) >>> flowCost == nx.shortest_path_length(G, "s", "v", weight="weight") True >>> sorted([(u, v) for u in flowDict for v in flowDict[u] if flowDict[u][v] > 0]) [('s', 'x'), ('u', 'v'), ('x', 'u')] >>> nx.shortest_path(G, "s", "v", weight="weight") ['s', 'x', 'u', 'v'] It is possible to change the name of the attributes used for the algorithm. >>> G = nx.DiGraph() >>> G.add_node("p", spam=-4) >>> G.add_node("q", spam=2) >>> G.add_node("a", spam=-2) >>> G.add_node("d", spam=-1) >>> G.add_node("t", spam=2) >>> G.add_node("w", spam=3) >>> G.add_edge("p", "q", cost=7, vacancies=5) >>> G.add_edge("p", "a", cost=1, vacancies=4) >>> G.add_edge("q", "d", cost=2, vacancies=3) >>> G.add_edge("t", "q", cost=1, vacancies=2) >>> G.add_edge("a", "t", cost=2, vacancies=4) >>> G.add_edge("d", "w", cost=3, vacancies=4) >>> G.add_edge("t", "w", cost=4, vacancies=1) >>> flowCost, flowDict = nx.network_simplex( ... G, demand="spam", capacity="vacancies", weight="cost" ... ) >>> flowCost 37 >>> flowDict {'p': {'q': 2, 'a': 2}, 'q': {'d': 1}, 'a': {'t': 4}, 'd': {'w': 2}, 't': {'q': 1, 'w': 1}, 'w': {}} References ---------- .. [1] Z. Kiraly, P. Kovacs. Efficient implementation of minimum-cost flow algorithms. Acta Universitatis Sapientiae, Informatica 4(1):67--118. 2012. .. [2] R. Barr, F. Glover, D. Klingman. Enhancement of spanning tree labeling procedures for network optimization. INFOR 17(1):16--34. 1979.
null
(G, demand='demand', capacity='capacity', weight='weight', *, backend=None, **backend_kwargs)
30,939
networkx.generators.random_graphs
newman_watts_strogatz_graph
Returns a Newman–Watts–Strogatz small-world graph. Parameters ---------- n : int The number of nodes. k : int Each node is joined with its `k` nearest neighbors in a ring topology. p : float The probability of adding a new edge for each edge. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Notes ----- First create a ring over $n$ nodes [1]_. Then each node in the ring is connected with its $k$ nearest neighbors (or $k - 1$ neighbors if $k$ is odd). Then shortcuts are created by adding new edges as follows: for each edge $(u, v)$ in the underlying "$n$-ring with $k$ nearest neighbors" with probability $p$ add a new edge $(u, w)$ with randomly-chosen existing node $w$. In contrast with :func:`watts_strogatz_graph`, no edges are removed. See Also -------- watts_strogatz_graph References ---------- .. [1] M. E. J. Newman and D. J. Watts, Renormalization group analysis of the small-world network model, Physics Letters A, 263, 341, 1999. https://doi.org/10.1016/S0375-9601(99)00757-4
def dual_barabasi_albert_graph(n, m1, m2, p, seed=None, initial_graph=None): """Returns a random graph using dual Barabási–Albert preferential attachment A graph of $n$ nodes is grown by attaching new nodes each with either $m_1$ edges (with probability $p$) or $m_2$ edges (with probability $1-p$) that are preferentially attached to existing nodes with high degree. Parameters ---------- n : int Number of nodes m1 : int Number of edges to link each new node to existing nodes with probability $p$ m2 : int Number of edges to link each new node to existing nodes with probability $1-p$ p : float The probability of attaching $m_1$ edges (as opposed to $m_2$ edges) seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. initial_graph : Graph or None (default) Initial network for Barabási–Albert algorithm. A copy of `initial_graph` is used. It should be connected for most use cases. If None, starts from an star graph on max(m1, m2) + 1 nodes. Returns ------- G : Graph Raises ------ NetworkXError If `m1` and `m2` do not satisfy ``1 <= m1,m2 < n``, or `p` does not satisfy ``0 <= p <= 1``, or the initial graph number of nodes m0 does not satisfy m1, m2 <= m0 <= n. References ---------- .. [1] N. Moshiri "The dual-Barabasi-Albert model", arXiv:1810.10538. """ if m1 < 1 or m1 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m1 >= 1 and m1 < n, m1 = {m1}, n = {n}" ) if m2 < 1 or m2 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m2 >= 1 and m2 < n, m2 = {m2}, n = {n}" ) if p < 0 or p > 1: raise nx.NetworkXError( f"Dual Barabási–Albert network must have 0 <= p <= 1, p = {p}" ) # For simplicity, if p == 0 or 1, just return BA if p == 1: return barabasi_albert_graph(n, m1, seed) elif p == 0: return barabasi_albert_graph(n, m2, seed) if initial_graph is None: # Default initial graph : empty graph on max(m1, m2) nodes G = star_graph(max(m1, m2)) else: if len(initial_graph) < max(m1, m2) or len(initial_graph) > n: raise nx.NetworkXError( f"Barabási–Albert initial graph must have between " f"max(m1, m2) = {max(m1, m2)} and n = {n} nodes" ) G = initial_graph.copy() # Target nodes for new edges targets = list(G) # List of existing nodes, with nodes repeated once for each adjacent edge repeated_nodes = [n for n, d in G.degree() for _ in range(d)] # Start adding the remaining nodes. source = len(G) while source < n: # Pick which m to use (m1 or m2) if seed.random() < p: m = m1 else: m = m2 # Now choose m unique nodes from the existing nodes # Pick uniformly from repeated_nodes (preferential attachment) targets = _random_subset(repeated_nodes, m, seed) # Add edges to m nodes from the source. G.add_edges_from(zip([source] * m, targets)) # Add one node to the list for each new edge just created. repeated_nodes.extend(targets) # And the new node "source" has m edges to add to the list. repeated_nodes.extend([source] * m) source += 1 return G
(n, k, p, seed=None, *, backend=None, **backend_kwargs)
30,940
networkx.algorithms.assortativity.pairs
node_attribute_xy
Returns iterator of node-attribute pairs for all edges in G. Parameters ---------- G: NetworkX graph attribute: key The node attribute key. nodes: list or iterable (optional) Use only edges that are incident to specified nodes. The default is all nodes. Returns ------- (x, y): 2-tuple Generates 2-tuple of (attribute, attribute) values. Examples -------- >>> G = nx.DiGraph() >>> G.add_node(1, color="red") >>> G.add_node(2, color="blue") >>> G.add_edge(1, 2) >>> list(nx.node_attribute_xy(G, "color")) [('red', 'blue')] Notes ----- For undirected graphs each edge is produced twice, once for each edge representation (u, v) and (v, u), with the exception of self-loop edges which only appear once.
null
(G, attribute, nodes=None, *, backend=None, **backend_kwargs)
30,941
networkx.algorithms.boundary
node_boundary
Returns the node boundary of `nbunch1`. The *node boundary* of a set *S* with respect to a set *T* is the set of nodes *v* in *T* such that for some *u* in *S*, there is an edge joining *u* to *v*. If *T* is not specified, it is assumed to be the set of all nodes not in *S*. Parameters ---------- G : NetworkX graph nbunch1 : iterable Iterable of nodes in the graph representing the set of nodes whose node boundary will be returned. (This is the set *S* from the definition above.) nbunch2 : iterable Iterable of nodes representing the target (or "exterior") set of nodes. (This is the set *T* from the definition above.) If not specified, this is assumed to be the set of all nodes in `G` not in `nbunch1`. Returns ------- set The node boundary of `nbunch1` with respect to `nbunch2`. Examples -------- >>> G = nx.wheel_graph(6) When nbunch2=None: >>> list(nx.node_boundary(G, (3, 4))) [0, 2, 5] When nbunch2 is given: >>> list(nx.node_boundary(G, (3, 4), (0, 1, 5))) [0, 5] Notes ----- Any element of `nbunch` that is not in the graph `G` will be ignored. `nbunch1` and `nbunch2` are usually meant to be disjoint, but in the interest of speed and generality, that is not required here.
null
(G, nbunch1, nbunch2=None, *, backend=None, **backend_kwargs)
30,943
networkx.algorithms.clique
node_clique_number
Returns the size of the largest maximal clique containing each given node. Returns a single or list depending on input nodes. An optional list of cliques can be input if already computed. Parameters ---------- G : NetworkX graph An undirected graph. cliques : list, optional (default=None) A list of cliques, each of which is itself a list of nodes. If not specified, the list of all cliques will be computed using :func:`find_cliques`. Returns ------- int or dict If `nodes` is a single node, returns the size of the largest maximal clique in `G` containing that node. Otherwise return a dict keyed by node to the size of the largest maximal clique containing that node. See Also -------- find_cliques find_cliques yields the maximal cliques of G. It accepts a `nodes` argument which restricts consideration to maximal cliques containing all the given `nodes`. The search for the cliques is optimized for `nodes`.
null
(G, nodes=None, cliques=None, separate_nodes=False, *, backend=None, **backend_kwargs)
30,944
networkx.algorithms.components.connected
node_connected_component
Returns the set of nodes in the component of graph containing node n. Parameters ---------- G : NetworkX Graph An undirected graph. n : node label A node in G Returns ------- comp : set A set of nodes in the component of G containing node n. Raises ------ NetworkXNotImplemented If G is directed. Examples -------- >>> G = nx.Graph([(0, 1), (1, 2), (5, 6), (3, 4)]) >>> nx.node_connected_component(G, 0) # nodes of component that contains node 0 {0, 1, 2} See Also -------- connected_components Notes ----- For undirected graphs only.
null
(G, n, *, backend=None, **backend_kwargs)
30,945
networkx.algorithms.connectivity.connectivity
node_connectivity
Returns node connectivity for a graph or digraph G. Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local node connectivity: the minimum number of nodes that must be removed to break all paths from source to target in G. Parameters ---------- G : NetworkX graph Undirected graph s : node Source node. Optional. Default value: None. t : node Target node. Optional. Default value: None. flow_func : function A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see :meth:`maximum_flow` for details). If flow_func is None, the default maximum flow function (:meth:`edmonds_karp`) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. Returns ------- K : integer Node connectivity of G, or local node connectivity if source and target are provided. Examples -------- >>> # Platonic icosahedral graph is 5-node-connected >>> G = nx.icosahedral_graph() >>> nx.node_connectivity(G) 5 You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm :meth:`shortest_augmenting_path` will usually perform better than the default :meth:`edmonds_karp`, which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. >>> from networkx.algorithms.flow import shortest_augmenting_path >>> nx.node_connectivity(G, flow_func=shortest_augmenting_path) 5 If you specify a pair of nodes (source and target) as parameters, this function returns the value of local node connectivity. >>> nx.node_connectivity(G, 3, 7) 5 If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See :meth:`local_node_connectivity` for details. Notes ----- This is a flow based implementation of node connectivity. The algorithm works by solving $O((n-\delta-1+\delta(\delta-1)/2))$ maximum flow problems on an auxiliary digraph. Where $\delta$ is the minimum degree of G. For details about the auxiliary digraph and the computation of local node connectivity see :meth:`local_node_connectivity`. This implementation is based on algorithm 11 in [1]_. See also -------- :meth:`local_node_connectivity` :meth:`edge_connectivity` :meth:`maximum_flow` :meth:`edmonds_karp` :meth:`preflow_push` :meth:`shortest_augmenting_path` References ---------- .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
@nx._dispatchable def edge_connectivity(G, s=None, t=None, flow_func=None, cutoff=None): r"""Returns the edge connectivity of the graph or digraph G. The edge connectivity is equal to the minimum number of edges that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local edge connectivity: the minimum number of edges that must be removed to break all paths from source to target in G. Parameters ---------- G : NetworkX graph Undirected or directed graph s : node Source node. Optional. Default value: None. t : node Target node. Optional. Default value: None. flow_func : function A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see :meth:`maximum_flow` for details). If flow_func is None, the default maximum flow function (:meth:`edmonds_karp`) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. cutoff : integer, float, or None (default: None) If specified, the maximum flow algorithm will terminate when the flow value reaches or exceeds the cutoff. This only works for flows that support the cutoff parameter (most do) and is ignored otherwise. Returns ------- K : integer Edge connectivity for G, or local edge connectivity if source and target were provided Examples -------- >>> # Platonic icosahedral graph is 5-edge-connected >>> G = nx.icosahedral_graph() >>> nx.edge_connectivity(G) 5 You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm :meth:`shortest_augmenting_path` will usually perform better than the default :meth:`edmonds_karp`, which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. >>> from networkx.algorithms.flow import shortest_augmenting_path >>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path) 5 If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge connectivity. >>> nx.edge_connectivity(G, 3, 7) 5 If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See :meth:`local_edge_connectivity` for details. Notes ----- This is a flow based implementation of global edge connectivity. For undirected graphs the algorithm works by finding a 'small' dominating set of nodes of G (see algorithm 7 in [1]_ ) and computing local maximum flow (see :meth:`local_edge_connectivity`) between an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in [1]_ . For directed graphs, the algorithm does n calls to the maximum flow function. This is an implementation of algorithm 8 in [1]_ . See also -------- :meth:`local_edge_connectivity` :meth:`local_node_connectivity` :meth:`node_connectivity` :meth:`maximum_flow` :meth:`edmonds_karp` :meth:`preflow_push` :meth:`shortest_augmenting_path` :meth:`k_edge_components` :meth:`k_edge_subgraphs` References ---------- .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf """ if (s is not None and t is None) or (s is None and t is not None): raise nx.NetworkXError("Both source and target must be specified.") # Local edge connectivity if s is not None and t is not None: if s not in G: raise nx.NetworkXError(f"node {s} not in graph") if t not in G: raise nx.NetworkXError(f"node {t} not in graph") return local_edge_connectivity(G, s, t, flow_func=flow_func, cutoff=cutoff) # Global edge connectivity # reuse auxiliary digraph and residual network H = build_auxiliary_edge_connectivity(G) R = build_residual_network(H, "capacity") kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R} if G.is_directed(): # Algorithm 8 in [1] if not nx.is_weakly_connected(G): return 0 # initial value for \lambda is minimum degree L = min(d for n, d in G.degree()) nodes = list(G) n = len(nodes) if cutoff is not None: L = min(cutoff, L) for i in range(n): kwargs["cutoff"] = L try: L = min(L, local_edge_connectivity(G, nodes[i], nodes[i + 1], **kwargs)) except IndexError: # last node! L = min(L, local_edge_connectivity(G, nodes[i], nodes[0], **kwargs)) return L else: # undirected # Algorithm 6 in [1] if not nx.is_connected(G): return 0 # initial value for \lambda is minimum degree L = min(d for n, d in G.degree()) if cutoff is not None: L = min(cutoff, L) # A dominating set is \lambda-covering # We need a dominating set with at least two nodes for node in G: D = nx.dominating_set(G, start_with=node) v = D.pop() if D: break else: # in complete graphs the dominating sets will always be of one node # thus we return min degree return L for w in D: kwargs["cutoff"] = L L = min(L, local_edge_connectivity(G, v, w, **kwargs)) return L
(G, s=None, t=None, flow_func=None, *, backend=None, **backend_kwargs)
30,946
networkx.algorithms.assortativity.pairs
node_degree_xy
Generate node degree-degree pairs for edges in G. Parameters ---------- G: NetworkX graph x: string ('in','out') The degree type for source node (directed graphs only). y: string ('in','out') The degree type for target node (directed graphs only). weight: string or None, optional (default=None) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. nodes: list or iterable (optional) Use only edges that are adjacency to specified nodes. The default is all nodes. Returns ------- (x, y): 2-tuple Generates 2-tuple of (degree, degree) values. Examples -------- >>> G = nx.DiGraph() >>> G.add_edge(1, 2) >>> list(nx.node_degree_xy(G, x="out", y="in")) [(1, 1)] >>> list(nx.node_degree_xy(G, x="in", y="out")) [(0, 0)] Notes ----- For undirected graphs each edge is produced twice, once for each edge representation (u, v) and (v, u), with the exception of self-loop edges which only appear once.
null
(G, x='out', y='in', weight=None, nodes=None, *, backend=None, **backend_kwargs)
30,947
networkx.algorithms.connectivity.disjoint_paths
node_disjoint_paths
Computes node disjoint paths between source and target. Node disjoint paths are paths that only share their first and last nodes. The number of node independent paths between two nodes is equal to their local node connectivity. Parameters ---------- G : NetworkX graph s : node Source node. t : node Target node. flow_func : function A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see :meth:`maximum_flow` for details). If flow_func is None, the default maximum flow function (:meth:`edmonds_karp`) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. cutoff : integer or None (default: None) Maximum number of paths to yield. If specified, the maximum flow algorithm will terminate when the flow value reaches or exceeds the cutoff. This only works for flows that support the cutoff parameter (most do) and is ignored otherwise. auxiliary : NetworkX DiGraph Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None. residual : NetworkX DiGraph Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None. Returns ------- paths : generator Generator of node disjoint paths. Raises ------ NetworkXNoPath If there is no path between source and target. NetworkXError If source or target are not in the graph G. Examples -------- We use in this example the platonic icosahedral graph, which has node connectivity 5, thus there are 5 node disjoint paths between any pair of non neighbor nodes. >>> G = nx.icosahedral_graph() >>> len(list(nx.node_disjoint_paths(G, 0, 6))) 5 If you need to compute node disjoint paths between several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity and node cuts, and the residual network for the underlying maximum flow computation. Example of how to compute node disjoint paths reusing the data structures: >>> # You also have to explicitly import the function for >>> # building the auxiliary digraph from the connectivity package >>> from networkx.algorithms.connectivity import build_auxiliary_node_connectivity >>> H = build_auxiliary_node_connectivity(G) >>> # And the function for building the residual network from the >>> # flow package >>> from networkx.algorithms.flow import build_residual_network >>> # Note that the auxiliary digraph has an edge attribute named capacity >>> R = build_residual_network(H, "capacity") >>> # Reuse the auxiliary digraph and the residual network by passing them >>> # as arguments >>> len(list(nx.node_disjoint_paths(G, 0, 6, auxiliary=H, residual=R))) 5 You can also use alternative flow algorithms for computing node disjoint paths. For instance, in dense networks the algorithm :meth:`shortest_augmenting_path` will usually perform better than the default :meth:`edmonds_karp` which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. >>> from networkx.algorithms.flow import shortest_augmenting_path >>> len(list(nx.node_disjoint_paths(G, 0, 6, flow_func=shortest_augmenting_path))) 5 Notes ----- This is a flow based implementation of node disjoint paths. We compute the maximum flow between source and target on an auxiliary directed network. The saturated edges in the residual network after running the maximum flow algorithm correspond to node disjoint paths between source and target in the original network. This function handles both directed and undirected graphs, and can use all flow algorithms from NetworkX flow package. See also -------- :meth:`edge_disjoint_paths` :meth:`node_connectivity` :meth:`maximum_flow` :meth:`edmonds_karp` :meth:`preflow_push` :meth:`shortest_augmenting_path`
null
(G, s, t, flow_func=None, cutoff=None, auxiliary=None, residual=None, *, backend=None, **backend_kwargs)
30,948
networkx.algorithms.cuts
node_expansion
Returns the node expansion of the set `S`. The *node expansion* is the quotient of the size of the node boundary of *S* and the cardinality of *S*. [1] Parameters ---------- G : NetworkX graph S : collection A collection of nodes in `G`. Returns ------- number The node expansion of the set `S`. See also -------- boundary_expansion edge_expansion mixing_expansion References ---------- .. [1] Vadhan, Salil P. "Pseudorandomness." *Foundations and Trends in Theoretical Computer Science* 7.1–3 (2011): 1–336. <https://doi.org/10.1561/0400000010>
null
(G, S, *, backend=None, **backend_kwargs)
30,950
networkx.readwrite.json_graph.node_link
node_link_data
Returns data in node-link format that is suitable for JSON serialization and use in JavaScript documents. Parameters ---------- G : NetworkX graph source : string A string that provides the 'source' attribute name for storing NetworkX-internal graph data. target : string A string that provides the 'target' attribute name for storing NetworkX-internal graph data. name : string A string that provides the 'name' attribute name for storing NetworkX-internal graph data. key : string A string that provides the 'key' attribute name for storing NetworkX-internal graph data. link : string A string that provides the 'link' attribute name for storing NetworkX-internal graph data. Returns ------- data : dict A dictionary with node-link formatted data. Raises ------ NetworkXError If the values of 'source', 'target' and 'key' are not unique. Examples -------- >>> G = nx.Graph([("A", "B")]) >>> data1 = nx.node_link_data(G) >>> data1 {'directed': False, 'multigraph': False, 'graph': {}, 'nodes': [{'id': 'A'}, {'id': 'B'}], 'links': [{'source': 'A', 'target': 'B'}]} To serialize with JSON >>> import json >>> s1 = json.dumps(data1) >>> s1 '{"directed": false, "multigraph": false, "graph": {}, "nodes": [{"id": "A"}, {"id": "B"}], "links": [{"source": "A", "target": "B"}]}' A graph can also be serialized by passing `node_link_data` as an encoder function. The two methods are equivalent. >>> s1 = json.dumps(G, default=nx.node_link_data) >>> s1 '{"directed": false, "multigraph": false, "graph": {}, "nodes": [{"id": "A"}, {"id": "B"}], "links": [{"source": "A", "target": "B"}]}' The attribute names for storing NetworkX-internal graph data can be specified as keyword options. >>> H = nx.gn_graph(2) >>> data2 = nx.node_link_data(H, link="edges", source="from", target="to") >>> data2 {'directed': True, 'multigraph': False, 'graph': {}, 'nodes': [{'id': 0}, {'id': 1}], 'edges': [{'from': 1, 'to': 0}]} Notes ----- Graph, node, and link attributes are stored in this format. Note that attribute keys will be converted to strings in order to comply with JSON. Attribute 'key' is only used for multigraphs. To use `node_link_data` in conjunction with `node_link_graph`, the keyword names for the attributes must match. See Also -------- node_link_graph, adjacency_data, tree_data
def node_link_data( G, *, source="source", target="target", name="id", key="key", link="links", ): """Returns data in node-link format that is suitable for JSON serialization and use in JavaScript documents. Parameters ---------- G : NetworkX graph source : string A string that provides the 'source' attribute name for storing NetworkX-internal graph data. target : string A string that provides the 'target' attribute name for storing NetworkX-internal graph data. name : string A string that provides the 'name' attribute name for storing NetworkX-internal graph data. key : string A string that provides the 'key' attribute name for storing NetworkX-internal graph data. link : string A string that provides the 'link' attribute name for storing NetworkX-internal graph data. Returns ------- data : dict A dictionary with node-link formatted data. Raises ------ NetworkXError If the values of 'source', 'target' and 'key' are not unique. Examples -------- >>> G = nx.Graph([("A", "B")]) >>> data1 = nx.node_link_data(G) >>> data1 {'directed': False, 'multigraph': False, 'graph': {}, 'nodes': [{'id': 'A'}, {'id': 'B'}], 'links': [{'source': 'A', 'target': 'B'}]} To serialize with JSON >>> import json >>> s1 = json.dumps(data1) >>> s1 '{"directed": false, "multigraph": false, "graph": {}, "nodes": [{"id": "A"}, {"id": "B"}], "links": [{"source": "A", "target": "B"}]}' A graph can also be serialized by passing `node_link_data` as an encoder function. The two methods are equivalent. >>> s1 = json.dumps(G, default=nx.node_link_data) >>> s1 '{"directed": false, "multigraph": false, "graph": {}, "nodes": [{"id": "A"}, {"id": "B"}], "links": [{"source": "A", "target": "B"}]}' The attribute names for storing NetworkX-internal graph data can be specified as keyword options. >>> H = nx.gn_graph(2) >>> data2 = nx.node_link_data(H, link="edges", source="from", target="to") >>> data2 {'directed': True, 'multigraph': False, 'graph': {}, 'nodes': [{'id': 0}, {'id': 1}], 'edges': [{'from': 1, 'to': 0}]} Notes ----- Graph, node, and link attributes are stored in this format. Note that attribute keys will be converted to strings in order to comply with JSON. Attribute 'key' is only used for multigraphs. To use `node_link_data` in conjunction with `node_link_graph`, the keyword names for the attributes must match. See Also -------- node_link_graph, adjacency_data, tree_data """ multigraph = G.is_multigraph() # Allow 'key' to be omitted from attrs if the graph is not a multigraph. key = None if not multigraph else key if len({source, target, key}) < 3: raise nx.NetworkXError("Attribute names are not unique.") data = { "directed": G.is_directed(), "multigraph": multigraph, "graph": G.graph, "nodes": [{**G.nodes[n], name: n} for n in G], } if multigraph: data[link] = [ {**d, source: u, target: v, key: k} for u, v, k, d in G.edges(keys=True, data=True) ] else: data[link] = [{**d, source: u, target: v} for u, v, d in G.edges(data=True)] return data
(G, *, source='source', target='target', name='id', key='key', link='links')
30,951
networkx.readwrite.json_graph.node_link
node_link_graph
Returns graph from node-link data format. Useful for de-serialization from JSON. Parameters ---------- data : dict node-link formatted graph data directed : bool If True, and direction not specified in data, return a directed graph. multigraph : bool If True, and multigraph not specified in data, return a multigraph. source : string A string that provides the 'source' attribute name for storing NetworkX-internal graph data. target : string A string that provides the 'target' attribute name for storing NetworkX-internal graph data. name : string A string that provides the 'name' attribute name for storing NetworkX-internal graph data. key : string A string that provides the 'key' attribute name for storing NetworkX-internal graph data. link : string A string that provides the 'link' attribute name for storing NetworkX-internal graph data. Returns ------- G : NetworkX graph A NetworkX graph object Examples -------- Create data in node-link format by converting a graph. >>> G = nx.Graph([("A", "B")]) >>> data = nx.node_link_data(G) >>> data {'directed': False, 'multigraph': False, 'graph': {}, 'nodes': [{'id': 'A'}, {'id': 'B'}], 'links': [{'source': 'A', 'target': 'B'}]} Revert data in node-link format to a graph. >>> H = nx.node_link_graph(data) >>> print(H.edges) [('A', 'B')] To serialize and deserialize a graph with JSON, >>> import json >>> d = json.dumps(node_link_data(G)) >>> H = node_link_graph(json.loads(d)) >>> print(G.edges, H.edges) [('A', 'B')] [('A', 'B')] Notes ----- Attribute 'key' is only used for multigraphs. To use `node_link_data` in conjunction with `node_link_graph`, the keyword names for the attributes must match. See Also -------- node_link_data, adjacency_data, tree_data
null
(data, directed=False, multigraph=True, *, source='source', target='target', name='id', key='key', link='links', backend=None, **backend_kwargs)
30,952
networkx.classes.function
nodes
Returns a NodeView over the graph nodes. This function wraps the :func:`G.nodes <networkx.Graph.nodes>` property.
def nodes(G): """Returns a NodeView over the graph nodes. This function wraps the :func:`G.nodes <networkx.Graph.nodes>` property. """ return G.nodes()
(G)
30,953
networkx.classes.function
nodes_with_selfloops
Returns an iterator over nodes with self loops. A node with a self loop has an edge with both ends adjacent to that node. Returns ------- nodelist : iterator A iterator over nodes with self loops. See Also -------- selfloop_edges, number_of_selfloops Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1, 1) >>> G.add_edge(1, 2) >>> list(nx.nodes_with_selfloops(G)) [1]
def nodes_with_selfloops(G): """Returns an iterator over nodes with self loops. A node with a self loop has an edge with both ends adjacent to that node. Returns ------- nodelist : iterator A iterator over nodes with self loops. See Also -------- selfloop_edges, number_of_selfloops Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1, 1) >>> G.add_edge(1, 2) >>> list(nx.nodes_with_selfloops(G)) [1] """ return (n for n, nbrs in G._adj.items() if n in nbrs)
(G)
30,954
networkx.classes.function
non_edges
Returns the nonexistent edges in the graph. Parameters ---------- graph : NetworkX graph. Graph to find nonexistent edges. Returns ------- non_edges : iterator Iterator of edges that are not in the graph.
def non_edges(graph): """Returns the nonexistent edges in the graph. Parameters ---------- graph : NetworkX graph. Graph to find nonexistent edges. Returns ------- non_edges : iterator Iterator of edges that are not in the graph. """ if graph.is_directed(): for u in graph: for v in non_neighbors(graph, u): yield (u, v) else: nodes = set(graph) while nodes: u = nodes.pop() for v in nodes - set(graph[u]): yield (u, v)
(graph)
30,955
networkx.classes.function
non_neighbors
Returns the non-neighbors of the node in the graph. Parameters ---------- graph : NetworkX graph Graph to find neighbors. node : node The node whose neighbors will be returned. Returns ------- non_neighbors : set Set of nodes in the graph that are not neighbors of the node.
def non_neighbors(graph, node): """Returns the non-neighbors of the node in the graph. Parameters ---------- graph : NetworkX graph Graph to find neighbors. node : node The node whose neighbors will be returned. Returns ------- non_neighbors : set Set of nodes in the graph that are not neighbors of the node. """ return graph._adj.keys() - graph._adj[node].keys() - {node}
(graph, node)
30,956
networkx.algorithms.non_randomness
non_randomness
Compute the non-randomness of graph G. The first returned value nr is the sum of non-randomness values of all edges within the graph (where the non-randomness of an edge tends to be small when the two nodes linked by that edge are from two different communities). The second computed value nr_rd is a relative measure that indicates to what extent graph G is different from random graphs in terms of probability. When it is close to 0, the graph tends to be more likely generated by an Erdos Renyi model. Parameters ---------- G : NetworkX graph Graph must be symmetric, connected, and without self-loops. k : int The number of communities in G. If k is not set, the function will use a default community detection algorithm to set it. weight : string or None, optional (default=None) The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1, i.e., the graph is binary. Returns ------- non-randomness : (float, float) tuple Non-randomness, Relative non-randomness w.r.t. Erdos Renyi random graphs. Raises ------ NetworkXException if the input graph is not connected. NetworkXError if the input graph contains self-loops. Examples -------- >>> G = nx.karate_club_graph() >>> nr, nr_rd = nx.non_randomness(G, 2) >>> nr, nr_rd = nx.non_randomness(G, 2, "weight") Notes ----- This computes Eq. (4.4) and (4.5) in Ref. [1]_. If a weight field is passed, this algorithm will use the eigenvalues of the weighted adjacency matrix to compute Eq. (4.4) and (4.5). References ---------- .. [1] Xiaowei Ying and Xintao Wu, On Randomness Measures for Social Networks, SIAM International Conference on Data Mining. 2009
null
(G, k=None, weight='weight', *, backend=None, **backend_kwargs)
30,957
networkx.generators.nonisomorphic_trees
nonisomorphic_trees
Generates lists of nonisomorphic trees Parameters ---------- order : int order of the desired tree(s) create : one of {"graph", "matrix"} (default="graph") If ``"graph"`` is selected a list of ``Graph`` instances will be returned, if matrix is selected a list of adjacency matrices will be returned. .. deprecated:: 3.3 The `create` argument is deprecated and will be removed in NetworkX version 3.5. In the future, `nonisomorphic_trees` will yield graph instances by default. To generate adjacency matrices, call ``nx.to_numpy_array`` on the output, e.g.:: [nx.to_numpy_array(G) for G in nx.nonisomorphic_trees(N)] Yields ------ list A list of nonisomorphic trees, in one of two formats depending on the value of the `create` parameter: - ``create="graph"``: yields a list of `networkx.Graph` instances - ``create="matrix"``: yields a list of list-of-lists representing adjacency matrices
null
(order, create='graph', *, backend=None, **backend_kwargs)
30,958
networkx.algorithms.cuts
normalized_cut_size
Returns the normalized size of the cut between two sets of nodes. The *normalized cut size* is the cut size times the sum of the reciprocal sizes of the volumes of the two sets. [1] Parameters ---------- G : NetworkX graph S : collection A collection of nodes in `G`. T : collection A collection of nodes in `G`. weight : object Edge attribute key to use as weight. If not specified, edges have weight one. Returns ------- number The normalized cut size between the two sets `S` and `T`. Notes ----- In a multigraph, the cut size is the total weight of edges including multiplicity. See also -------- conductance cut_size edge_expansion volume References ---------- .. [1] David Gleich. *Hierarchical Directed Spectral Graph Partitioning*. <https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20hierarchical%20directed%20spectral.pdf>
null
(G, S, T=None, weight=None, *, backend=None, **backend_kwargs)
30,959
networkx.linalg.laplacianmatrix
normalized_laplacian_matrix
Returns the normalized Laplacian matrix of G. The normalized graph Laplacian is the matrix .. math:: N = D^{-1/2} L D^{-1/2} where `L` is the graph Laplacian and `D` is the diagonal matrix of node degrees [1]_. Parameters ---------- G : graph A NetworkX graph nodelist : list, optional The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). weight : string or None, optional (default='weight') The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. Returns ------- N : SciPy sparse array The normalized Laplacian matrix of G. Notes ----- For MultiGraph, the edges weights are summed. See :func:`to_numpy_array` for other options. If the Graph contains selfloops, D is defined as ``diag(sum(A, 1))``, where A is the adjacency matrix [2]_. This calculation uses the out-degree of the graph `G`. To use the in-degree for calculations instead, use `G.reverse(copy=False)` and take the transpose. For an unnormalized output, use `laplacian_matrix`. Examples -------- >>> import numpy as np >>> edges = [ ... (1, 2), ... (2, 1), ... (2, 4), ... (4, 3), ... (3, 4), ... ] >>> DiG = nx.DiGraph(edges) >>> print(nx.normalized_laplacian_matrix(DiG).toarray()) [[ 1. -0.70710678 0. 0. ] [-0.70710678 1. -0.70710678 0. ] [ 0. 0. 1. -1. ] [ 0. 0. -1. 1. ]] Notice that node 4 is represented by the third column and row. This is because by default the row/column order is the order of `G.nodes` (i.e. the node added order -- in the edgelist, 4 first appears in (2, 4), before node 3 in edge (4, 3).) To control the node order of the matrix, use the `nodelist` argument. >>> print(nx.normalized_laplacian_matrix(DiG, nodelist=[1, 2, 3, 4]).toarray()) [[ 1. -0.70710678 0. 0. ] [-0.70710678 1. 0. -0.70710678] [ 0. 0. 1. -1. ] [ 0. 0. -1. 1. ]] >>> G = nx.Graph(edges) >>> print(nx.normalized_laplacian_matrix(G).toarray()) [[ 1. -0.70710678 0. 0. ] [-0.70710678 1. -0.5 0. ] [ 0. -0.5 1. -0.70710678] [ 0. 0. -0.70710678 1. ]] See Also -------- laplacian_matrix normalized_laplacian_spectrum directed_laplacian_matrix directed_combinatorial_laplacian_matrix References ---------- .. [1] Fan Chung-Graham, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, Number 92, 1997. .. [2] Steve Butler, Interlacing For Weighted Graphs Using The Normalized Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98, March 2007. .. [3] Langville, Amy N., and Carl D. Meyer. Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, 2006.
null
(G, nodelist=None, weight='weight', *, backend=None, **backend_kwargs)
30,960
networkx.linalg.spectrum
normalized_laplacian_spectrum
Return eigenvalues of the normalized Laplacian of G Parameters ---------- G : graph A NetworkX graph weight : string or None, optional (default='weight') The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. Returns ------- evals : NumPy array Eigenvalues Notes ----- For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_array for other options. See Also -------- normalized_laplacian_matrix
null
(G, weight='weight', *, backend=None, **backend_kwargs)
30,961
networkx.generators.classic
null_graph
Returns the Null graph with no nodes or edges. See empty_graph for the use of create_using.
def star_graph(n, create_using=None): """Return the star graph The star graph consists of one center node connected to n outer nodes. .. plot:: >>> nx.draw(nx.star_graph(6)) Parameters ---------- n : int or iterable If an integer, node labels are 0 to n with center 0. If an iterable of nodes, the center is the first. Warning: n is not checked for duplicates and if present the resulting graph may not be as desired. Make sure you have no duplicates. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Notes ----- The graph has n+1 nodes for integer n. So star_graph(3) is the same as star_graph(range(4)). """ n, nodes = n if isinstance(n, numbers.Integral): nodes.append(int(n)) # there should be n+1 nodes G = empty_graph(nodes, create_using) if G.is_directed(): raise NetworkXError("Directed Graph not supported") if len(nodes) > 1: hub, *spokes = nodes G.add_edges_from((hub, node) for node in spokes) return G
(create_using=None, *, backend=None, **backend_kwargs)
30,962
networkx.algorithms.components.attracting
number_attracting_components
Returns the number of attracting components in `G`. Parameters ---------- G : DiGraph, MultiDiGraph The graph to be analyzed. Returns ------- n : int The number of attracting components in G. Raises ------ NetworkXNotImplemented If the input graph is undirected. See Also -------- attracting_components is_attracting_component
null
(G, *, backend=None, **backend_kwargs)
30,963
networkx.algorithms.components.connected
number_connected_components
Returns the number of connected components. Parameters ---------- G : NetworkX graph An undirected graph. Returns ------- n : integer Number of connected components Raises ------ NetworkXNotImplemented If G is directed. Examples -------- >>> G = nx.Graph([(0, 1), (1, 2), (5, 6), (3, 4)]) >>> nx.number_connected_components(G) 3 See Also -------- connected_components number_weakly_connected_components number_strongly_connected_components Notes ----- For undirected graphs only.
null
(G, *, backend=None, **backend_kwargs)
30,964
networkx.algorithms.clique
number_of_cliques
Returns the number of maximal cliques for each node. Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.
def number_of_cliques(G, nodes=None, cliques=None): """Returns the number of maximal cliques for each node. Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed. """ if cliques is None: cliques = list(find_cliques(G)) if nodes is None: nodes = list(G.nodes()) # none, get entire graph if not isinstance(nodes, list): # check for a list v = nodes # assume it is a single value numcliq = len([1 for c in cliques if v in c]) else: numcliq = {} for v in nodes: numcliq[v] = len([1 for c in cliques if v in c]) return numcliq
(G, nodes=None, cliques=None)
30,965
networkx.classes.function
number_of_edges
Returns the number of edges in the graph. This function wraps the :func:`G.number_of_edges <networkx.Graph.number_of_edges>` function.
def number_of_edges(G): """Returns the number of edges in the graph. This function wraps the :func:`G.number_of_edges <networkx.Graph.number_of_edges>` function. """ return G.number_of_edges()
(G)
30,966
networkx.algorithms.isolate
number_of_isolates
Returns the number of isolates in the graph. An *isolate* is a node with no neighbors (that is, with degree zero). For directed graphs, this means no in-neighbors and no out-neighbors. Parameters ---------- G : NetworkX graph Returns ------- int The number of degree zero nodes in the graph `G`.
null
(G, *, backend=None, **backend_kwargs)
30,967
networkx.classes.function
number_of_nodes
Returns the number of nodes in the graph. This function wraps the :func:`G.number_of_nodes <networkx.Graph.number_of_nodes>` function.
def number_of_nodes(G): """Returns the number of nodes in the graph. This function wraps the :func:`G.number_of_nodes <networkx.Graph.number_of_nodes>` function. """ return G.number_of_nodes()
(G)
30,968
networkx.generators.nonisomorphic_trees
number_of_nonisomorphic_trees
Returns the number of nonisomorphic trees Parameters ---------- order : int order of the desired tree(s) Returns ------- length : Number of nonisomorphic graphs for the given order References ----------
null
(order, *, backend=None, **backend_kwargs)
30,969
networkx.classes.function
number_of_selfloops
Returns the number of selfloop edges. A selfloop edge has the same node at both ends. Returns ------- nloops : int The number of selfloops. See Also -------- nodes_with_selfloops, selfloop_edges Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1, 1) >>> G.add_edge(1, 2) >>> nx.number_of_selfloops(G) 1
def number_of_selfloops(G): """Returns the number of selfloop edges. A selfloop edge has the same node at both ends. Returns ------- nloops : int The number of selfloops. See Also -------- nodes_with_selfloops, selfloop_edges Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1, 1) >>> G.add_edge(1, 2) >>> nx.number_of_selfloops(G) 1 """ return sum(1 for _ in nx.selfloop_edges(G))
(G)
30,970
networkx.algorithms.tree.mst
number_of_spanning_trees
Returns the number of spanning trees in `G`. A spanning tree for an undirected graph is a tree that connects all nodes in the graph. For a directed graph, the analog of a spanning tree is called a (spanning) arborescence. The arborescence includes a unique directed path from the `root` node to each other node. The graph must be weakly connected, and the root must be a node that includes all nodes as successors [3]_. Note that to avoid discussing sink-roots and reverse-arborescences, we have reversed the edge orientation from [3]_ and use the in-degree laplacian. This function (when `weight` is `None`) returns the number of spanning trees for an undirected graph and the number of arborescences from a single root node for a directed graph. When `weight` is the name of an edge attribute which holds the weight value of each edge, the function returns the sum over all trees of the multiplicative weight of each tree. That is, the weight of the tree is the product of its edge weights. Kirchoff's Tree Matrix Theorem states that any cofactor of the Laplacian matrix of a graph is the number of spanning trees in the graph. (Here we use cofactors for a diagonal entry so that the cofactor becomes the determinant of the matrix with one row and its matching column removed.) For a weighted Laplacian matrix, the cofactor is the sum across all spanning trees of the multiplicative weight of each tree. That is, the weight of each tree is the product of its edge weights. The theorem is also known as Kirchhoff's theorem [1]_ and the Matrix-Tree theorem [2]_. For directed graphs, a similar theorem (Tutte's Theorem) holds with the cofactor chosen to be the one with row and column removed that correspond to the root. The cofactor is the number of arborescences with the specified node as root. And the weighted version gives the sum of the arborescence weights with root `root`. The arborescence weight is the product of its edge weights. Parameters ---------- G : NetworkX graph root : node A node in the directed graph `G` that has all nodes as descendants. (This is ignored for undirected graphs.) weight : string or None, optional (default=None) The name of the edge attribute holding the edge weight. If `None`, then each edge is assumed to have a weight of 1. Returns ------- Number Undirected graphs: The number of spanning trees of the graph `G`. Or the sum of all spanning tree weights of the graph `G` where the weight of a tree is the product of its edge weights. Directed graphs: The number of arborescences of `G` rooted at node `root`. Or the sum of all arborescence weights of the graph `G` with specified root where the weight of an arborescence is the product of its edge weights. Raises ------ NetworkXPointlessConcept If `G` does not contain any nodes. NetworkXError If the graph `G` is directed and the root node is not specified or is not in G. Examples -------- >>> G = nx.complete_graph(5) >>> round(nx.number_of_spanning_trees(G)) 125 >>> G = nx.Graph() >>> G.add_edge(1, 2, weight=2) >>> G.add_edge(1, 3, weight=1) >>> G.add_edge(2, 3, weight=1) >>> round(nx.number_of_spanning_trees(G, weight="weight")) 5 Notes ----- Self-loops are excluded. Multi-edges are contracted in one edge equal to the sum of the weights. References ---------- .. [1] Wikipedia "Kirchhoff's theorem." https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem .. [2] Kirchhoff, G. R. Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung Galvanischer Ströme geführt wird Annalen der Physik und Chemie, vol. 72, pp. 497-508, 1847. .. [3] Margoliash, J. "Matrix-Tree Theorem for Directed Graphs" https://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Margoliash.pdf
def random_spanning_tree(G, weight=None, *, multiplicative=True, seed=None): """ Sample a random spanning tree using the edges weights of `G`. This function supports two different methods for determining the probability of the graph. If ``multiplicative=True``, the probability is based on the product of edge weights, and if ``multiplicative=False`` it is based on the sum of the edge weight. However, since it is easier to determine the total weight of all spanning trees for the multiplicative version, that is significantly faster and should be used if possible. Additionally, setting `weight` to `None` will cause a spanning tree to be selected with uniform probability. The function uses algorithm A8 in [1]_ . Parameters ---------- G : nx.Graph An undirected version of the original graph. weight : string The edge key for the edge attribute holding edge weight. multiplicative : bool, default=True If `True`, the probability of each tree is the product of its edge weight over the sum of the product of all the spanning trees in the graph. If `False`, the probability is the sum of its edge weight over the sum of the sum of weights for all spanning trees in the graph. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- nx.Graph A spanning tree using the distribution defined by the weight of the tree. References ---------- .. [1] V. Kulkarni, Generating random combinatorial objects, Journal of Algorithms, 11 (1990), pp. 185–207 """ def find_node(merged_nodes, node): """ We can think of clusters of contracted nodes as having one representative in the graph. Each node which is not in merged_nodes is still its own representative. Since a representative can be later contracted, we need to recursively search though the dict to find the final representative, but once we know it we can use path compression to speed up the access of the representative for next time. This cannot be replaced by the standard NetworkX union_find since that data structure will merge nodes with less representing nodes into the one with more representing nodes but this function requires we merge them using the order that contract_edges contracts using. Parameters ---------- merged_nodes : dict The dict storing the mapping from node to representative node The node whose representative we seek Returns ------- The representative of the `node` """ if node not in merged_nodes: return node else: rep = find_node(merged_nodes, merged_nodes[node]) merged_nodes[node] = rep return rep def prepare_graph(): """ For the graph `G`, remove all edges not in the set `V` and then contract all edges in the set `U`. Returns ------- A copy of `G` which has had all edges not in `V` removed and all edges in `U` contracted. """ # The result is a MultiGraph version of G so that parallel edges are # allowed during edge contraction result = nx.MultiGraph(incoming_graph_data=G) # Remove all edges not in V edges_to_remove = set(result.edges()).difference(V) result.remove_edges_from(edges_to_remove) # Contract all edges in U # # Imagine that you have two edges to contract and they share an # endpoint like this: # [0] ----- [1] ----- [2] # If we contract (0, 1) first, the contraction function will always # delete the second node it is passed so the resulting graph would be # [0] ----- [2] # and edge (1, 2) no longer exists but (0, 2) would need to be contracted # in its place now. That is why I use the below dict as a merge-find # data structure with path compression to track how the nodes are merged. merged_nodes = {} for u, v in U: u_rep = find_node(merged_nodes, u) v_rep = find_node(merged_nodes, v) # We cannot contract a node with itself if u_rep == v_rep: continue nx.contracted_nodes(result, u_rep, v_rep, self_loops=False, copy=False) merged_nodes[v_rep] = u_rep return merged_nodes, result def spanning_tree_total_weight(G, weight): """ Find the sum of weights of the spanning trees of `G` using the appropriate `method`. This is easy if the chosen method is 'multiplicative', since we can use Kirchhoff's Tree Matrix Theorem directly. However, with the 'additive' method, this process is slightly more complex and less computationally efficient as we have to find the number of spanning trees which contain each possible edge in the graph. Parameters ---------- G : NetworkX Graph The graph to find the total weight of all spanning trees on. weight : string The key for the weight edge attribute of the graph. Returns ------- float The sum of either the multiplicative or additive weight for all spanning trees in the graph. """ if multiplicative: return nx.total_spanning_tree_weight(G, weight) else: # There are two cases for the total spanning tree additive weight. # 1. There is one edge in the graph. Then the only spanning tree is # that edge itself, which will have a total weight of that edge # itself. if G.number_of_edges() == 1: return G.edges(data=weight).__iter__().__next__()[2] # 2. There are no edges or two or more edges in the graph. Then, we find the # total weight of the spanning trees using the formula in the # reference paper: take the weight of each edge and multiply it by # the number of spanning trees which include that edge. This # can be accomplished by contracting the edge and finding the # multiplicative total spanning tree weight if the weight of each edge # is assumed to be 1, which is conveniently built into networkx already, # by calling total_spanning_tree_weight with weight=None. # Note that with no edges the returned value is just zero. else: total = 0 for u, v, w in G.edges(data=weight): total += w * nx.total_spanning_tree_weight( nx.contracted_edge(G, edge=(u, v), self_loops=False), None ) return total if G.number_of_nodes() < 2: # no edges in the spanning tree return nx.empty_graph(G.nodes) U = set() st_cached_value = 0 V = set(G.edges()) shuffled_edges = list(G.edges()) seed.shuffle(shuffled_edges) for u, v in shuffled_edges: e_weight = G[u][v][weight] if weight is not None else 1 node_map, prepared_G = prepare_graph() G_total_tree_weight = spanning_tree_total_weight(prepared_G, weight) # Add the edge to U so that we can compute the total tree weight # assuming we include that edge # Now, if (u, v) cannot exist in G because it is fully contracted out # of existence, then it by definition cannot influence G_e's Kirchhoff # value. But, we also cannot pick it. rep_edge = (find_node(node_map, u), find_node(node_map, v)) # Check to see if the 'representative edge' for the current edge is # in prepared_G. If so, then we can pick it. if rep_edge in prepared_G.edges: prepared_G_e = nx.contracted_edge( prepared_G, edge=rep_edge, self_loops=False ) G_e_total_tree_weight = spanning_tree_total_weight(prepared_G_e, weight) if multiplicative: threshold = e_weight * G_e_total_tree_weight / G_total_tree_weight else: numerator = ( st_cached_value + e_weight ) * nx.total_spanning_tree_weight(prepared_G_e) + G_e_total_tree_weight denominator = ( st_cached_value * nx.total_spanning_tree_weight(prepared_G) + G_total_tree_weight ) threshold = numerator / denominator else: threshold = 0.0 z = seed.uniform(0.0, 1.0) if z > threshold: # Remove the edge from V since we did not pick it. V.remove((u, v)) else: # Add the edge to U since we picked it. st_cached_value += e_weight U.add((u, v)) # If we decide to keep an edge, it may complete the spanning tree. if len(U) == G.number_of_nodes() - 1: spanning_tree = nx.Graph() spanning_tree.add_edges_from(U) return spanning_tree raise Exception(f"Something went wrong! Only {len(U)} edges in the spanning tree!")
(G, *, root=None, weight=None, backend=None, **backend_kwargs)
30,971
networkx.algorithms.walks
number_of_walks
Returns the number of walks connecting each pair of nodes in `G` A *walk* is a sequence of nodes in which each adjacent pair of nodes in the sequence is adjacent in the graph. A walk can repeat the same edge and go in the opposite direction just as people can walk on a set of paths, but standing still is not counted as part of the walk. This function only counts the walks with `walk_length` edges. Note that the number of nodes in the walk sequence is one more than `walk_length`. The number of walks can grow very quickly on a larger graph and with a larger walk length. Parameters ---------- G : NetworkX graph walk_length : int A nonnegative integer representing the length of a walk. Returns ------- dict A dictionary of dictionaries in which outer keys are source nodes, inner keys are target nodes, and inner values are the number of walks of length `walk_length` connecting those nodes. Raises ------ ValueError If `walk_length` is negative Examples -------- >>> G = nx.Graph([(0, 1), (1, 2)]) >>> walks = nx.number_of_walks(G, 2) >>> walks {0: {0: 1, 1: 0, 2: 1}, 1: {0: 0, 1: 2, 2: 0}, 2: {0: 1, 1: 0, 2: 1}} >>> total_walks = sum(sum(tgts.values()) for _, tgts in walks.items()) You can also get the number of walks from a specific source node using the returned dictionary. For example, number of walks of length 1 from node 0 can be found as follows: >>> walks = nx.number_of_walks(G, 1) >>> walks[0] {0: 0, 1: 1, 2: 0} >>> sum(walks[0].values()) # walks from 0 of length 1 1 Similarly, a target node can also be specified: >>> walks[0][1] 1
null
(G, walk_length, *, backend=None, **backend_kwargs)
30,972
networkx.algorithms.components.strongly_connected
number_strongly_connected_components
Returns number of strongly connected components in graph. Parameters ---------- G : NetworkX graph A directed graph. Returns ------- n : integer Number of strongly connected components Raises ------ NetworkXNotImplemented If G is undirected. Examples -------- >>> G = nx.DiGraph( ... [(0, 1), (1, 2), (2, 0), (2, 3), (4, 5), (3, 4), (5, 6), (6, 3), (6, 7)] ... ) >>> nx.number_strongly_connected_components(G) 3 See Also -------- strongly_connected_components number_connected_components number_weakly_connected_components Notes ----- For directed graphs only.
null
(G, *, backend=None, **backend_kwargs)
30,973
networkx.algorithms.components.weakly_connected
number_weakly_connected_components
Returns the number of weakly connected components in G. Parameters ---------- G : NetworkX graph A directed graph. Returns ------- n : integer Number of weakly connected components Raises ------ NetworkXNotImplemented If G is undirected. Examples -------- >>> G = nx.DiGraph([(0, 1), (2, 1), (3, 4)]) >>> nx.number_weakly_connected_components(G) 2 See Also -------- weakly_connected_components number_connected_components number_strongly_connected_components Notes ----- For directed graphs only.
null
(G, *, backend=None, **backend_kwargs)
30,974
networkx.algorithms.assortativity.correlation
numeric_assortativity_coefficient
Compute assortativity for numerical node attributes. Assortativity measures the similarity of connections in the graph with respect to the given numeric attribute. Parameters ---------- G : NetworkX graph attribute : string Node attribute key. nodes: list or iterable (optional) Compute numeric assortativity only for attributes of nodes in container. The default is all nodes. Returns ------- r: float Assortativity of graph for given attribute Examples -------- >>> G = nx.Graph() >>> G.add_nodes_from([0, 1], size=2) >>> G.add_nodes_from([2, 3], size=3) >>> G.add_edges_from([(0, 1), (2, 3)]) >>> print(nx.numeric_assortativity_coefficient(G, "size")) 1.0 Notes ----- This computes Eq. (21) in Ref. [1]_ , which is the Pearson correlation coefficient of the specified (scalar valued) attribute across edges. References ---------- .. [1] M. E. J. Newman, Mixing patterns in networks Physical Review E, 67 026126, 2003
null
(G, attribute, nodes=None, *, backend=None, **backend_kwargs)
30,979
networkx.generators.small
octahedral_graph
Returns the Platonic Octahedral graph. The octahedral graph is the 6-node 12-edge Platonic graph having the connectivity of the octahedron [1]_. If 6 couples go to a party, and each person shakes hands with every person except his or her partner, then this graph describes the set of handshakes that take place; for this reason it is also called the cocktail party graph [2]_. Parameters ---------- create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Returns ------- G : networkx Graph Octahedral graph References ---------- .. [1] https://mathworld.wolfram.com/OctahedralGraph.html .. [2] https://en.wikipedia.org/wiki/Tur%C3%A1n_graph#Special_cases
def _raise_on_directed(func): """ A decorator which inspects the `create_using` argument and raises a NetworkX exception when `create_using` is a DiGraph (class or instance) for graph generators that do not support directed outputs. """ @wraps(func) def wrapper(*args, **kwargs): if kwargs.get("create_using") is not None: G = nx.empty_graph(create_using=kwargs["create_using"]) if G.is_directed(): raise NetworkXError("Directed Graph not supported") return func(*args, **kwargs) return wrapper
(create_using=None, *, backend=None, **backend_kwargs)
30,980
networkx.algorithms.smallworld
omega
Returns the small-world coefficient (omega) of a graph The small-world coefficient of a graph G is: omega = Lr/L - C/Cl where C and L are respectively the average clustering coefficient and average shortest path length of G. Lr is the average shortest path length of an equivalent random graph and Cl is the average clustering coefficient of an equivalent lattice graph. The small-world coefficient (omega) measures how much G is like a lattice or a random graph. Negative values mean G is similar to a lattice whereas positive values mean G is a random graph. Values close to 0 mean that G has small-world characteristics. Parameters ---------- G : NetworkX graph An undirected graph. niter: integer (optional, default=5) Approximate number of rewiring per edge to compute the equivalent random graph. nrand: integer (optional, default=10) Number of random graphs generated to compute the maximal clustering coefficient (Cr) and average shortest path length (Lr). seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- omega : float The small-world coefficient (omega) Notes ----- The implementation is adapted from the algorithm by Telesford et al. [1]_. References ---------- .. [1] Telesford, Joyce, Hayasaka, Burdette, and Laurienti (2011). "The Ubiquity of Small-World Networks". Brain Connectivity. 1 (0038): 367-75. PMC 3604768. PMID 22432451. doi:10.1089/brain.2011.0038.
null
(G, niter=5, nrand=10, seed=None, *, backend=None, **backend_kwargs)
30,981
networkx.algorithms.core
onion_layers
Returns the layer of each vertex in an onion decomposition of the graph. The onion decomposition refines the k-core decomposition by providing information on the internal organization of each k-shell. It is usually used alongside the `core numbers`. Parameters ---------- G : NetworkX graph An undirected graph without self loops. Returns ------- od_layers : dictionary A dictionary keyed by node to the onion layer. The layers are contiguous integers starting at 1. Raises ------ NetworkXNotImplemented If `G` is a multigraph or directed graph or if it contains self loops. Examples -------- >>> degrees = [0, 1, 2, 2, 2, 2, 3] >>> H = nx.havel_hakimi_graph(degrees) >>> H.degree DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0}) >>> nx.onion_layers(H) {6: 1, 0: 2, 4: 3, 1: 4, 2: 4, 3: 4, 5: 4} See Also -------- core_number References ---------- .. [1] Multi-scale structure and topological anomaly detection via a new network statistic: The onion decomposition L. Hébert-Dufresne, J. A. Grochow, and A. Allard Scientific Reports 6, 31708 (2016) http://doi.org/10.1038/srep31708 .. [2] Percolation and the effective structure of complex networks A. Allard and L. Hébert-Dufresne Physical Review X 9, 011023 (2019) http://doi.org/10.1103/PhysRevX.9.011023
null
(G, *, backend=None, **backend_kwargs)
30,983
networkx.algorithms.similarity
optimal_edit_paths
Returns all minimum-cost edit paths transforming G1 to G2. Graph edit path is a sequence of node and edge edit operations transforming graph G1 to graph isomorphic to G2. Edit operations include substitutions, deletions, and insertions. Parameters ---------- G1, G2: graphs The two graphs G1 and G2 must be of the same type. node_match : callable A function that returns True if node n1 in G1 and n2 in G2 should be considered equal during matching. The function will be called like node_match(G1.nodes[n1], G2.nodes[n2]). That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs. Ignored if node_subst_cost is specified. If neither node_match nor node_subst_cost are specified then node attributes are not considered. edge_match : callable A function that returns True if the edge attribute dictionaries for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during matching. The function will be called like edge_match(G1[u1][v1], G2[u2][v2]). That is, the function will receive the edge attribute dictionaries of the edges under consideration. Ignored if edge_subst_cost is specified. If neither edge_match nor edge_subst_cost are specified then edge attributes are not considered. node_subst_cost, node_del_cost, node_ins_cost : callable Functions that return the costs of node substitution, node deletion, and node insertion, respectively. The functions will be called like node_subst_cost(G1.nodes[n1], G2.nodes[n2]), node_del_cost(G1.nodes[n1]), node_ins_cost(G2.nodes[n2]). That is, the functions will receive the node attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function node_subst_cost overrides node_match if specified. If neither node_match nor node_subst_cost are specified then default node substitution cost of 0 is used (node attributes are not considered during matching). If node_del_cost is not specified then default node deletion cost of 1 is used. If node_ins_cost is not specified then default node insertion cost of 1 is used. edge_subst_cost, edge_del_cost, edge_ins_cost : callable Functions that return the costs of edge substitution, edge deletion, and edge insertion, respectively. The functions will be called like edge_subst_cost(G1[u1][v1], G2[u2][v2]), edge_del_cost(G1[u1][v1]), edge_ins_cost(G2[u2][v2]). That is, the functions will receive the edge attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function edge_subst_cost overrides edge_match if specified. If neither edge_match nor edge_subst_cost are specified then default edge substitution cost of 0 is used (edge attributes are not considered during matching). If edge_del_cost is not specified then default edge deletion cost of 1 is used. If edge_ins_cost is not specified then default edge insertion cost of 1 is used. upper_bound : numeric Maximum edit distance to consider. Returns ------- edit_paths : list of tuples (node_edit_path, edge_edit_path) node_edit_path : list of tuples (u, v) edge_edit_path : list of tuples ((u1, v1), (u2, v2)) cost : numeric Optimal edit path cost (graph edit distance). When the cost is zero, it indicates that `G1` and `G2` are isomorphic. Examples -------- >>> G1 = nx.cycle_graph(4) >>> G2 = nx.wheel_graph(5) >>> paths, cost = nx.optimal_edit_paths(G1, G2) >>> len(paths) 40 >>> cost 5.0 Notes ----- To transform `G1` into a graph isomorphic to `G2`, apply the node and edge edits in the returned ``edit_paths``. In the case of isomorphic graphs, the cost is zero, and the paths represent different isomorphic mappings (isomorphisms). That is, the edits involve renaming nodes and edges to match the structure of `G2`. See Also -------- graph_edit_distance, optimize_edit_paths References ---------- .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick Martineau. An Exact Graph Edit Distance Algorithm for Solving Pattern Recognition Problems. 4th International Conference on Pattern Recognition Applications and Methods 2015, Jan 2015, Lisbon, Portugal. 2015, <10.5220/0005209202710278>. <hal-01168816> https://hal.archives-ouvertes.fr/hal-01168816
def optimize_edit_paths( G1, G2, node_match=None, edge_match=None, node_subst_cost=None, node_del_cost=None, node_ins_cost=None, edge_subst_cost=None, edge_del_cost=None, edge_ins_cost=None, upper_bound=None, strictly_decreasing=True, roots=None, timeout=None, ): """GED (graph edit distance) calculation: advanced interface. Graph edit path is a sequence of node and edge edit operations transforming graph G1 to graph isomorphic to G2. Edit operations include substitutions, deletions, and insertions. Graph edit distance is defined as minimum cost of edit path. Parameters ---------- G1, G2: graphs The two graphs G1 and G2 must be of the same type. node_match : callable A function that returns True if node n1 in G1 and n2 in G2 should be considered equal during matching. The function will be called like node_match(G1.nodes[n1], G2.nodes[n2]). That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs. Ignored if node_subst_cost is specified. If neither node_match nor node_subst_cost are specified then node attributes are not considered. edge_match : callable A function that returns True if the edge attribute dictionaries for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during matching. The function will be called like edge_match(G1[u1][v1], G2[u2][v2]). That is, the function will receive the edge attribute dictionaries of the edges under consideration. Ignored if edge_subst_cost is specified. If neither edge_match nor edge_subst_cost are specified then edge attributes are not considered. node_subst_cost, node_del_cost, node_ins_cost : callable Functions that return the costs of node substitution, node deletion, and node insertion, respectively. The functions will be called like node_subst_cost(G1.nodes[n1], G2.nodes[n2]), node_del_cost(G1.nodes[n1]), node_ins_cost(G2.nodes[n2]). That is, the functions will receive the node attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function node_subst_cost overrides node_match if specified. If neither node_match nor node_subst_cost are specified then default node substitution cost of 0 is used (node attributes are not considered during matching). If node_del_cost is not specified then default node deletion cost of 1 is used. If node_ins_cost is not specified then default node insertion cost of 1 is used. edge_subst_cost, edge_del_cost, edge_ins_cost : callable Functions that return the costs of edge substitution, edge deletion, and edge insertion, respectively. The functions will be called like edge_subst_cost(G1[u1][v1], G2[u2][v2]), edge_del_cost(G1[u1][v1]), edge_ins_cost(G2[u2][v2]). That is, the functions will receive the edge attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function edge_subst_cost overrides edge_match if specified. If neither edge_match nor edge_subst_cost are specified then default edge substitution cost of 0 is used (edge attributes are not considered during matching). If edge_del_cost is not specified then default edge deletion cost of 1 is used. If edge_ins_cost is not specified then default edge insertion cost of 1 is used. upper_bound : numeric Maximum edit distance to consider. strictly_decreasing : bool If True, return consecutive approximations of strictly decreasing cost. Otherwise, return all edit paths of cost less than or equal to the previous minimum cost. roots : 2-tuple Tuple where first element is a node in G1 and the second is a node in G2. These nodes are forced to be matched in the comparison to allow comparison between rooted graphs. timeout : numeric Maximum number of seconds to execute. After timeout is met, the current best GED is returned. Returns ------- Generator of tuples (node_edit_path, edge_edit_path, cost) node_edit_path : list of tuples (u, v) edge_edit_path : list of tuples ((u1, v1), (u2, v2)) cost : numeric See Also -------- graph_edit_distance, optimize_graph_edit_distance, optimal_edit_paths References ---------- .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick Martineau. An Exact Graph Edit Distance Algorithm for Solving Pattern Recognition Problems. 4th International Conference on Pattern Recognition Applications and Methods 2015, Jan 2015, Lisbon, Portugal. 2015, <10.5220/0005209202710278>. <hal-01168816> https://hal.archives-ouvertes.fr/hal-01168816 """ # TODO: support DiGraph import numpy as np import scipy as sp @dataclass class CostMatrix: C: ... lsa_row_ind: ... lsa_col_ind: ... ls: ... def make_CostMatrix(C, m, n): # assert(C.shape == (m + n, m + n)) lsa_row_ind, lsa_col_ind = sp.optimize.linear_sum_assignment(C) # Fixup dummy assignments: # each substitution i<->j should have dummy assignment m+j<->n+i # NOTE: fast reduce of Cv relies on it # assert len(lsa_row_ind) == len(lsa_col_ind) indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind) subst_ind = [k for k, i, j in indexes if i < m and j < n] indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind) dummy_ind = [k for k, i, j in indexes if i >= m and j >= n] # assert len(subst_ind) == len(dummy_ind) lsa_row_ind[dummy_ind] = lsa_col_ind[subst_ind] + m lsa_col_ind[dummy_ind] = lsa_row_ind[subst_ind] + n return CostMatrix( C, lsa_row_ind, lsa_col_ind, C[lsa_row_ind, lsa_col_ind].sum() ) def extract_C(C, i, j, m, n): # assert(C.shape == (m + n, m + n)) row_ind = [k in i or k - m in j for k in range(m + n)] col_ind = [k in j or k - n in i for k in range(m + n)] return C[row_ind, :][:, col_ind] def reduce_C(C, i, j, m, n): # assert(C.shape == (m + n, m + n)) row_ind = [k not in i and k - m not in j for k in range(m + n)] col_ind = [k not in j and k - n not in i for k in range(m + n)] return C[row_ind, :][:, col_ind] def reduce_ind(ind, i): # assert set(ind) == set(range(len(ind))) rind = ind[[k not in i for k in ind]] for k in set(i): rind[rind >= k] -= 1 return rind def match_edges(u, v, pending_g, pending_h, Ce, matched_uv=None): """ Parameters: u, v: matched vertices, u=None or v=None for deletion/insertion pending_g, pending_h: lists of edges not yet mapped Ce: CostMatrix of pending edge mappings matched_uv: partial vertex edit path list of tuples (u, v) of previously matched vertex mappings u<->v, u=None or v=None for deletion/insertion Returns: list of (i, j): indices of edge mappings g<->h localCe: local CostMatrix of edge mappings (basically submatrix of Ce at cross of rows i, cols j) """ M = len(pending_g) N = len(pending_h) # assert Ce.C.shape == (M + N, M + N) # only attempt to match edges after one node match has been made # this will stop self-edges on the first node being automatically deleted # even when a substitution is the better option if matched_uv is None or len(matched_uv) == 0: g_ind = [] h_ind = [] else: g_ind = [ i for i in range(M) if pending_g[i][:2] == (u, u) or any( pending_g[i][:2] in ((p, u), (u, p), (p, p)) for p, q in matched_uv ) ] h_ind = [ j for j in range(N) if pending_h[j][:2] == (v, v) or any( pending_h[j][:2] in ((q, v), (v, q), (q, q)) for p, q in matched_uv ) ] m = len(g_ind) n = len(h_ind) if m or n: C = extract_C(Ce.C, g_ind, h_ind, M, N) # assert C.shape == (m + n, m + n) # Forbid structurally invalid matches # NOTE: inf remembered from Ce construction for k, i in enumerate(g_ind): g = pending_g[i][:2] for l, j in enumerate(h_ind): h = pending_h[j][:2] if nx.is_directed(G1) or nx.is_directed(G2): if any( g == (p, u) and h == (q, v) or g == (u, p) and h == (v, q) for p, q in matched_uv ): continue else: if any( g in ((p, u), (u, p)) and h in ((q, v), (v, q)) for p, q in matched_uv ): continue if g == (u, u) or any(g == (p, p) for p, q in matched_uv): continue if h == (v, v) or any(h == (q, q) for p, q in matched_uv): continue C[k, l] = inf localCe = make_CostMatrix(C, m, n) ij = [ ( g_ind[k] if k < m else M + h_ind[l], h_ind[l] if l < n else N + g_ind[k], ) for k, l in zip(localCe.lsa_row_ind, localCe.lsa_col_ind) if k < m or l < n ] else: ij = [] localCe = CostMatrix(np.empty((0, 0)), [], [], 0) return ij, localCe def reduce_Ce(Ce, ij, m, n): if len(ij): i, j = zip(*ij) m_i = m - sum(1 for t in i if t < m) n_j = n - sum(1 for t in j if t < n) return make_CostMatrix(reduce_C(Ce.C, i, j, m, n), m_i, n_j) return Ce def get_edit_ops( matched_uv, pending_u, pending_v, Cv, pending_g, pending_h, Ce, matched_cost ): """ Parameters: matched_uv: partial vertex edit path list of tuples (u, v) of vertex mappings u<->v, u=None or v=None for deletion/insertion pending_u, pending_v: lists of vertices not yet mapped Cv: CostMatrix of pending vertex mappings pending_g, pending_h: lists of edges not yet mapped Ce: CostMatrix of pending edge mappings matched_cost: cost of partial edit path Returns: sequence of (i, j): indices of vertex mapping u<->v Cv_ij: reduced CostMatrix of pending vertex mappings (basically Cv with row i, col j removed) list of (x, y): indices of edge mappings g<->h Ce_xy: reduced CostMatrix of pending edge mappings (basically Ce with rows x, cols y removed) cost: total cost of edit operation NOTE: most promising ops first """ m = len(pending_u) n = len(pending_v) # assert Cv.C.shape == (m + n, m + n) # 1) a vertex mapping from optimal linear sum assignment i, j = min( (k, l) for k, l in zip(Cv.lsa_row_ind, Cv.lsa_col_ind) if k < m or l < n ) xy, localCe = match_edges( pending_u[i] if i < m else None, pending_v[j] if j < n else None, pending_g, pending_h, Ce, matched_uv, ) Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h)) # assert Ce.ls <= localCe.ls + Ce_xy.ls if prune(matched_cost + Cv.ls + localCe.ls + Ce_xy.ls): pass else: # get reduced Cv efficiently Cv_ij = CostMatrix( reduce_C(Cv.C, (i,), (j,), m, n), reduce_ind(Cv.lsa_row_ind, (i, m + j)), reduce_ind(Cv.lsa_col_ind, (j, n + i)), Cv.ls - Cv.C[i, j], ) yield (i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls # 2) other candidates, sorted by lower-bound cost estimate other = [] fixed_i, fixed_j = i, j if m <= n: candidates = ( (t, fixed_j) for t in range(m + n) if t != fixed_i and (t < m or t == m + fixed_j) ) else: candidates = ( (fixed_i, t) for t in range(m + n) if t != fixed_j and (t < n or t == n + fixed_i) ) for i, j in candidates: if prune(matched_cost + Cv.C[i, j] + Ce.ls): continue Cv_ij = make_CostMatrix( reduce_C(Cv.C, (i,), (j,), m, n), m - 1 if i < m else m, n - 1 if j < n else n, ) # assert Cv.ls <= Cv.C[i, j] + Cv_ij.ls if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + Ce.ls): continue xy, localCe = match_edges( pending_u[i] if i < m else None, pending_v[j] if j < n else None, pending_g, pending_h, Ce, matched_uv, ) if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls): continue Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h)) # assert Ce.ls <= localCe.ls + Ce_xy.ls if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls + Ce_xy.ls): continue other.append(((i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls)) yield from sorted(other, key=lambda t: t[4] + t[1].ls + t[3].ls) def get_edit_paths( matched_uv, pending_u, pending_v, Cv, matched_gh, pending_g, pending_h, Ce, matched_cost, ): """ Parameters: matched_uv: partial vertex edit path list of tuples (u, v) of vertex mappings u<->v, u=None or v=None for deletion/insertion pending_u, pending_v: lists of vertices not yet mapped Cv: CostMatrix of pending vertex mappings matched_gh: partial edge edit path list of tuples (g, h) of edge mappings g<->h, g=None or h=None for deletion/insertion pending_g, pending_h: lists of edges not yet mapped Ce: CostMatrix of pending edge mappings matched_cost: cost of partial edit path Returns: sequence of (vertex_path, edge_path, cost) vertex_path: complete vertex edit path list of tuples (u, v) of vertex mappings u<->v, u=None or v=None for deletion/insertion edge_path: complete edge edit path list of tuples (g, h) of edge mappings g<->h, g=None or h=None for deletion/insertion cost: total cost of edit path NOTE: path costs are non-increasing """ # debug_print('matched-uv:', matched_uv) # debug_print('matched-gh:', matched_gh) # debug_print('matched-cost:', matched_cost) # debug_print('pending-u:', pending_u) # debug_print('pending-v:', pending_v) # debug_print(Cv.C) # assert list(sorted(G1.nodes)) == list(sorted(list(u for u, v in matched_uv if u is not None) + pending_u)) # assert list(sorted(G2.nodes)) == list(sorted(list(v for u, v in matched_uv if v is not None) + pending_v)) # debug_print('pending-g:', pending_g) # debug_print('pending-h:', pending_h) # debug_print(Ce.C) # assert list(sorted(G1.edges)) == list(sorted(list(g for g, h in matched_gh if g is not None) + pending_g)) # assert list(sorted(G2.edges)) == list(sorted(list(h for g, h in matched_gh if h is not None) + pending_h)) # debug_print() if prune(matched_cost + Cv.ls + Ce.ls): return if not max(len(pending_u), len(pending_v)): # assert not len(pending_g) # assert not len(pending_h) # path completed! # assert matched_cost <= maxcost_value nonlocal maxcost_value maxcost_value = min(maxcost_value, matched_cost) yield matched_uv, matched_gh, matched_cost else: edit_ops = get_edit_ops( matched_uv, pending_u, pending_v, Cv, pending_g, pending_h, Ce, matched_cost, ) for ij, Cv_ij, xy, Ce_xy, edit_cost in edit_ops: i, j = ij # assert Cv.C[i, j] + sum(Ce.C[t] for t in xy) == edit_cost if prune(matched_cost + edit_cost + Cv_ij.ls + Ce_xy.ls): continue # dive deeper u = pending_u.pop(i) if i < len(pending_u) else None v = pending_v.pop(j) if j < len(pending_v) else None matched_uv.append((u, v)) for x, y in xy: len_g = len(pending_g) len_h = len(pending_h) matched_gh.append( ( pending_g[x] if x < len_g else None, pending_h[y] if y < len_h else None, ) ) sortedx = sorted(x for x, y in xy) sortedy = sorted(y for x, y in xy) G = [ (pending_g.pop(x) if x < len(pending_g) else None) for x in reversed(sortedx) ] H = [ (pending_h.pop(y) if y < len(pending_h) else None) for y in reversed(sortedy) ] yield from get_edit_paths( matched_uv, pending_u, pending_v, Cv_ij, matched_gh, pending_g, pending_h, Ce_xy, matched_cost + edit_cost, ) # backtrack if u is not None: pending_u.insert(i, u) if v is not None: pending_v.insert(j, v) matched_uv.pop() for x, g in zip(sortedx, reversed(G)): if g is not None: pending_g.insert(x, g) for y, h in zip(sortedy, reversed(H)): if h is not None: pending_h.insert(y, h) for _ in xy: matched_gh.pop() # Initialization pending_u = list(G1.nodes) pending_v = list(G2.nodes) initial_cost = 0 if roots: root_u, root_v = roots if root_u not in pending_u or root_v not in pending_v: raise nx.NodeNotFound("Root node not in graph.") # remove roots from pending pending_u.remove(root_u) pending_v.remove(root_v) # cost matrix of vertex mappings m = len(pending_u) n = len(pending_v) C = np.zeros((m + n, m + n)) if node_subst_cost: C[0:m, 0:n] = np.array( [ node_subst_cost(G1.nodes[u], G2.nodes[v]) for u in pending_u for v in pending_v ] ).reshape(m, n) if roots: initial_cost = node_subst_cost(G1.nodes[root_u], G2.nodes[root_v]) elif node_match: C[0:m, 0:n] = np.array( [ 1 - int(node_match(G1.nodes[u], G2.nodes[v])) for u in pending_u for v in pending_v ] ).reshape(m, n) if roots: initial_cost = 1 - node_match(G1.nodes[root_u], G2.nodes[root_v]) else: # all zeroes pass # assert not min(m, n) or C[0:m, 0:n].min() >= 0 if node_del_cost: del_costs = [node_del_cost(G1.nodes[u]) for u in pending_u] else: del_costs = [1] * len(pending_u) # assert not m or min(del_costs) >= 0 if node_ins_cost: ins_costs = [node_ins_cost(G2.nodes[v]) for v in pending_v] else: ins_costs = [1] * len(pending_v) # assert not n or min(ins_costs) >= 0 inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1 C[0:m, n : n + m] = np.array( [del_costs[i] if i == j else inf for i in range(m) for j in range(m)] ).reshape(m, m) C[m : m + n, 0:n] = np.array( [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)] ).reshape(n, n) Cv = make_CostMatrix(C, m, n) # debug_print(f"Cv: {m} x {n}") # debug_print(Cv.C) pending_g = list(G1.edges) pending_h = list(G2.edges) # cost matrix of edge mappings m = len(pending_g) n = len(pending_h) C = np.zeros((m + n, m + n)) if edge_subst_cost: C[0:m, 0:n] = np.array( [ edge_subst_cost(G1.edges[g], G2.edges[h]) for g in pending_g for h in pending_h ] ).reshape(m, n) elif edge_match: C[0:m, 0:n] = np.array( [ 1 - int(edge_match(G1.edges[g], G2.edges[h])) for g in pending_g for h in pending_h ] ).reshape(m, n) else: # all zeroes pass # assert not min(m, n) or C[0:m, 0:n].min() >= 0 if edge_del_cost: del_costs = [edge_del_cost(G1.edges[g]) for g in pending_g] else: del_costs = [1] * len(pending_g) # assert not m or min(del_costs) >= 0 if edge_ins_cost: ins_costs = [edge_ins_cost(G2.edges[h]) for h in pending_h] else: ins_costs = [1] * len(pending_h) # assert not n or min(ins_costs) >= 0 inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1 C[0:m, n : n + m] = np.array( [del_costs[i] if i == j else inf for i in range(m) for j in range(m)] ).reshape(m, m) C[m : m + n, 0:n] = np.array( [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)] ).reshape(n, n) Ce = make_CostMatrix(C, m, n) # debug_print(f'Ce: {m} x {n}') # debug_print(Ce.C) # debug_print() maxcost_value = Cv.C.sum() + Ce.C.sum() + 1 if timeout is not None: if timeout <= 0: raise nx.NetworkXError("Timeout value must be greater than 0") start = time.perf_counter() def prune(cost): if timeout is not None: if time.perf_counter() - start > timeout: return True if upper_bound is not None: if cost > upper_bound: return True if cost > maxcost_value: return True if strictly_decreasing and cost >= maxcost_value: return True return False # Now go! done_uv = [] if roots is None else [roots] for vertex_path, edge_path, cost in get_edit_paths( done_uv, pending_u, pending_v, Cv, [], pending_g, pending_h, Ce, initial_cost ): # assert sorted(G1.nodes) == sorted(u for u, v in vertex_path if u is not None) # assert sorted(G2.nodes) == sorted(v for u, v in vertex_path if v is not None) # assert sorted(G1.edges) == sorted(g for g, h in edge_path if g is not None) # assert sorted(G2.edges) == sorted(h for g, h in edge_path if h is not None) # print(vertex_path, edge_path, cost, file = sys.stderr) # assert cost == maxcost_value yield list(vertex_path), list(edge_path), float(cost)
(G1, G2, node_match=None, edge_match=None, node_subst_cost=None, node_del_cost=None, node_ins_cost=None, edge_subst_cost=None, edge_del_cost=None, edge_ins_cost=None, upper_bound=None, *, backend=None, **backend_kwargs)
30,984
networkx.algorithms.similarity
optimize_edit_paths
GED (graph edit distance) calculation: advanced interface. Graph edit path is a sequence of node and edge edit operations transforming graph G1 to graph isomorphic to G2. Edit operations include substitutions, deletions, and insertions. Graph edit distance is defined as minimum cost of edit path. Parameters ---------- G1, G2: graphs The two graphs G1 and G2 must be of the same type. node_match : callable A function that returns True if node n1 in G1 and n2 in G2 should be considered equal during matching. The function will be called like node_match(G1.nodes[n1], G2.nodes[n2]). That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs. Ignored if node_subst_cost is specified. If neither node_match nor node_subst_cost are specified then node attributes are not considered. edge_match : callable A function that returns True if the edge attribute dictionaries for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during matching. The function will be called like edge_match(G1[u1][v1], G2[u2][v2]). That is, the function will receive the edge attribute dictionaries of the edges under consideration. Ignored if edge_subst_cost is specified. If neither edge_match nor edge_subst_cost are specified then edge attributes are not considered. node_subst_cost, node_del_cost, node_ins_cost : callable Functions that return the costs of node substitution, node deletion, and node insertion, respectively. The functions will be called like node_subst_cost(G1.nodes[n1], G2.nodes[n2]), node_del_cost(G1.nodes[n1]), node_ins_cost(G2.nodes[n2]). That is, the functions will receive the node attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function node_subst_cost overrides node_match if specified. If neither node_match nor node_subst_cost are specified then default node substitution cost of 0 is used (node attributes are not considered during matching). If node_del_cost is not specified then default node deletion cost of 1 is used. If node_ins_cost is not specified then default node insertion cost of 1 is used. edge_subst_cost, edge_del_cost, edge_ins_cost : callable Functions that return the costs of edge substitution, edge deletion, and edge insertion, respectively. The functions will be called like edge_subst_cost(G1[u1][v1], G2[u2][v2]), edge_del_cost(G1[u1][v1]), edge_ins_cost(G2[u2][v2]). That is, the functions will receive the edge attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function edge_subst_cost overrides edge_match if specified. If neither edge_match nor edge_subst_cost are specified then default edge substitution cost of 0 is used (edge attributes are not considered during matching). If edge_del_cost is not specified then default edge deletion cost of 1 is used. If edge_ins_cost is not specified then default edge insertion cost of 1 is used. upper_bound : numeric Maximum edit distance to consider. strictly_decreasing : bool If True, return consecutive approximations of strictly decreasing cost. Otherwise, return all edit paths of cost less than or equal to the previous minimum cost. roots : 2-tuple Tuple where first element is a node in G1 and the second is a node in G2. These nodes are forced to be matched in the comparison to allow comparison between rooted graphs. timeout : numeric Maximum number of seconds to execute. After timeout is met, the current best GED is returned. Returns ------- Generator of tuples (node_edit_path, edge_edit_path, cost) node_edit_path : list of tuples (u, v) edge_edit_path : list of tuples ((u1, v1), (u2, v2)) cost : numeric See Also -------- graph_edit_distance, optimize_graph_edit_distance, optimal_edit_paths References ---------- .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick Martineau. An Exact Graph Edit Distance Algorithm for Solving Pattern Recognition Problems. 4th International Conference on Pattern Recognition Applications and Methods 2015, Jan 2015, Lisbon, Portugal. 2015, <10.5220/0005209202710278>. <hal-01168816> https://hal.archives-ouvertes.fr/hal-01168816
def optimize_edit_paths( G1, G2, node_match=None, edge_match=None, node_subst_cost=None, node_del_cost=None, node_ins_cost=None, edge_subst_cost=None, edge_del_cost=None, edge_ins_cost=None, upper_bound=None, strictly_decreasing=True, roots=None, timeout=None, ): """GED (graph edit distance) calculation: advanced interface. Graph edit path is a sequence of node and edge edit operations transforming graph G1 to graph isomorphic to G2. Edit operations include substitutions, deletions, and insertions. Graph edit distance is defined as minimum cost of edit path. Parameters ---------- G1, G2: graphs The two graphs G1 and G2 must be of the same type. node_match : callable A function that returns True if node n1 in G1 and n2 in G2 should be considered equal during matching. The function will be called like node_match(G1.nodes[n1], G2.nodes[n2]). That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs. Ignored if node_subst_cost is specified. If neither node_match nor node_subst_cost are specified then node attributes are not considered. edge_match : callable A function that returns True if the edge attribute dictionaries for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during matching. The function will be called like edge_match(G1[u1][v1], G2[u2][v2]). That is, the function will receive the edge attribute dictionaries of the edges under consideration. Ignored if edge_subst_cost is specified. If neither edge_match nor edge_subst_cost are specified then edge attributes are not considered. node_subst_cost, node_del_cost, node_ins_cost : callable Functions that return the costs of node substitution, node deletion, and node insertion, respectively. The functions will be called like node_subst_cost(G1.nodes[n1], G2.nodes[n2]), node_del_cost(G1.nodes[n1]), node_ins_cost(G2.nodes[n2]). That is, the functions will receive the node attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function node_subst_cost overrides node_match if specified. If neither node_match nor node_subst_cost are specified then default node substitution cost of 0 is used (node attributes are not considered during matching). If node_del_cost is not specified then default node deletion cost of 1 is used. If node_ins_cost is not specified then default node insertion cost of 1 is used. edge_subst_cost, edge_del_cost, edge_ins_cost : callable Functions that return the costs of edge substitution, edge deletion, and edge insertion, respectively. The functions will be called like edge_subst_cost(G1[u1][v1], G2[u2][v2]), edge_del_cost(G1[u1][v1]), edge_ins_cost(G2[u2][v2]). That is, the functions will receive the edge attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function edge_subst_cost overrides edge_match if specified. If neither edge_match nor edge_subst_cost are specified then default edge substitution cost of 0 is used (edge attributes are not considered during matching). If edge_del_cost is not specified then default edge deletion cost of 1 is used. If edge_ins_cost is not specified then default edge insertion cost of 1 is used. upper_bound : numeric Maximum edit distance to consider. strictly_decreasing : bool If True, return consecutive approximations of strictly decreasing cost. Otherwise, return all edit paths of cost less than or equal to the previous minimum cost. roots : 2-tuple Tuple where first element is a node in G1 and the second is a node in G2. These nodes are forced to be matched in the comparison to allow comparison between rooted graphs. timeout : numeric Maximum number of seconds to execute. After timeout is met, the current best GED is returned. Returns ------- Generator of tuples (node_edit_path, edge_edit_path, cost) node_edit_path : list of tuples (u, v) edge_edit_path : list of tuples ((u1, v1), (u2, v2)) cost : numeric See Also -------- graph_edit_distance, optimize_graph_edit_distance, optimal_edit_paths References ---------- .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick Martineau. An Exact Graph Edit Distance Algorithm for Solving Pattern Recognition Problems. 4th International Conference on Pattern Recognition Applications and Methods 2015, Jan 2015, Lisbon, Portugal. 2015, <10.5220/0005209202710278>. <hal-01168816> https://hal.archives-ouvertes.fr/hal-01168816 """ # TODO: support DiGraph import numpy as np import scipy as sp @dataclass class CostMatrix: C: ... lsa_row_ind: ... lsa_col_ind: ... ls: ... def make_CostMatrix(C, m, n): # assert(C.shape == (m + n, m + n)) lsa_row_ind, lsa_col_ind = sp.optimize.linear_sum_assignment(C) # Fixup dummy assignments: # each substitution i<->j should have dummy assignment m+j<->n+i # NOTE: fast reduce of Cv relies on it # assert len(lsa_row_ind) == len(lsa_col_ind) indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind) subst_ind = [k for k, i, j in indexes if i < m and j < n] indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind) dummy_ind = [k for k, i, j in indexes if i >= m and j >= n] # assert len(subst_ind) == len(dummy_ind) lsa_row_ind[dummy_ind] = lsa_col_ind[subst_ind] + m lsa_col_ind[dummy_ind] = lsa_row_ind[subst_ind] + n return CostMatrix( C, lsa_row_ind, lsa_col_ind, C[lsa_row_ind, lsa_col_ind].sum() ) def extract_C(C, i, j, m, n): # assert(C.shape == (m + n, m + n)) row_ind = [k in i or k - m in j for k in range(m + n)] col_ind = [k in j or k - n in i for k in range(m + n)] return C[row_ind, :][:, col_ind] def reduce_C(C, i, j, m, n): # assert(C.shape == (m + n, m + n)) row_ind = [k not in i and k - m not in j for k in range(m + n)] col_ind = [k not in j and k - n not in i for k in range(m + n)] return C[row_ind, :][:, col_ind] def reduce_ind(ind, i): # assert set(ind) == set(range(len(ind))) rind = ind[[k not in i for k in ind]] for k in set(i): rind[rind >= k] -= 1 return rind def match_edges(u, v, pending_g, pending_h, Ce, matched_uv=None): """ Parameters: u, v: matched vertices, u=None or v=None for deletion/insertion pending_g, pending_h: lists of edges not yet mapped Ce: CostMatrix of pending edge mappings matched_uv: partial vertex edit path list of tuples (u, v) of previously matched vertex mappings u<->v, u=None or v=None for deletion/insertion Returns: list of (i, j): indices of edge mappings g<->h localCe: local CostMatrix of edge mappings (basically submatrix of Ce at cross of rows i, cols j) """ M = len(pending_g) N = len(pending_h) # assert Ce.C.shape == (M + N, M + N) # only attempt to match edges after one node match has been made # this will stop self-edges on the first node being automatically deleted # even when a substitution is the better option if matched_uv is None or len(matched_uv) == 0: g_ind = [] h_ind = [] else: g_ind = [ i for i in range(M) if pending_g[i][:2] == (u, u) or any( pending_g[i][:2] in ((p, u), (u, p), (p, p)) for p, q in matched_uv ) ] h_ind = [ j for j in range(N) if pending_h[j][:2] == (v, v) or any( pending_h[j][:2] in ((q, v), (v, q), (q, q)) for p, q in matched_uv ) ] m = len(g_ind) n = len(h_ind) if m or n: C = extract_C(Ce.C, g_ind, h_ind, M, N) # assert C.shape == (m + n, m + n) # Forbid structurally invalid matches # NOTE: inf remembered from Ce construction for k, i in enumerate(g_ind): g = pending_g[i][:2] for l, j in enumerate(h_ind): h = pending_h[j][:2] if nx.is_directed(G1) or nx.is_directed(G2): if any( g == (p, u) and h == (q, v) or g == (u, p) and h == (v, q) for p, q in matched_uv ): continue else: if any( g in ((p, u), (u, p)) and h in ((q, v), (v, q)) for p, q in matched_uv ): continue if g == (u, u) or any(g == (p, p) for p, q in matched_uv): continue if h == (v, v) or any(h == (q, q) for p, q in matched_uv): continue C[k, l] = inf localCe = make_CostMatrix(C, m, n) ij = [ ( g_ind[k] if k < m else M + h_ind[l], h_ind[l] if l < n else N + g_ind[k], ) for k, l in zip(localCe.lsa_row_ind, localCe.lsa_col_ind) if k < m or l < n ] else: ij = [] localCe = CostMatrix(np.empty((0, 0)), [], [], 0) return ij, localCe def reduce_Ce(Ce, ij, m, n): if len(ij): i, j = zip(*ij) m_i = m - sum(1 for t in i if t < m) n_j = n - sum(1 for t in j if t < n) return make_CostMatrix(reduce_C(Ce.C, i, j, m, n), m_i, n_j) return Ce def get_edit_ops( matched_uv, pending_u, pending_v, Cv, pending_g, pending_h, Ce, matched_cost ): """ Parameters: matched_uv: partial vertex edit path list of tuples (u, v) of vertex mappings u<->v, u=None or v=None for deletion/insertion pending_u, pending_v: lists of vertices not yet mapped Cv: CostMatrix of pending vertex mappings pending_g, pending_h: lists of edges not yet mapped Ce: CostMatrix of pending edge mappings matched_cost: cost of partial edit path Returns: sequence of (i, j): indices of vertex mapping u<->v Cv_ij: reduced CostMatrix of pending vertex mappings (basically Cv with row i, col j removed) list of (x, y): indices of edge mappings g<->h Ce_xy: reduced CostMatrix of pending edge mappings (basically Ce with rows x, cols y removed) cost: total cost of edit operation NOTE: most promising ops first """ m = len(pending_u) n = len(pending_v) # assert Cv.C.shape == (m + n, m + n) # 1) a vertex mapping from optimal linear sum assignment i, j = min( (k, l) for k, l in zip(Cv.lsa_row_ind, Cv.lsa_col_ind) if k < m or l < n ) xy, localCe = match_edges( pending_u[i] if i < m else None, pending_v[j] if j < n else None, pending_g, pending_h, Ce, matched_uv, ) Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h)) # assert Ce.ls <= localCe.ls + Ce_xy.ls if prune(matched_cost + Cv.ls + localCe.ls + Ce_xy.ls): pass else: # get reduced Cv efficiently Cv_ij = CostMatrix( reduce_C(Cv.C, (i,), (j,), m, n), reduce_ind(Cv.lsa_row_ind, (i, m + j)), reduce_ind(Cv.lsa_col_ind, (j, n + i)), Cv.ls - Cv.C[i, j], ) yield (i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls # 2) other candidates, sorted by lower-bound cost estimate other = [] fixed_i, fixed_j = i, j if m <= n: candidates = ( (t, fixed_j) for t in range(m + n) if t != fixed_i and (t < m or t == m + fixed_j) ) else: candidates = ( (fixed_i, t) for t in range(m + n) if t != fixed_j and (t < n or t == n + fixed_i) ) for i, j in candidates: if prune(matched_cost + Cv.C[i, j] + Ce.ls): continue Cv_ij = make_CostMatrix( reduce_C(Cv.C, (i,), (j,), m, n), m - 1 if i < m else m, n - 1 if j < n else n, ) # assert Cv.ls <= Cv.C[i, j] + Cv_ij.ls if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + Ce.ls): continue xy, localCe = match_edges( pending_u[i] if i < m else None, pending_v[j] if j < n else None, pending_g, pending_h, Ce, matched_uv, ) if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls): continue Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h)) # assert Ce.ls <= localCe.ls + Ce_xy.ls if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls + Ce_xy.ls): continue other.append(((i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls)) yield from sorted(other, key=lambda t: t[4] + t[1].ls + t[3].ls) def get_edit_paths( matched_uv, pending_u, pending_v, Cv, matched_gh, pending_g, pending_h, Ce, matched_cost, ): """ Parameters: matched_uv: partial vertex edit path list of tuples (u, v) of vertex mappings u<->v, u=None or v=None for deletion/insertion pending_u, pending_v: lists of vertices not yet mapped Cv: CostMatrix of pending vertex mappings matched_gh: partial edge edit path list of tuples (g, h) of edge mappings g<->h, g=None or h=None for deletion/insertion pending_g, pending_h: lists of edges not yet mapped Ce: CostMatrix of pending edge mappings matched_cost: cost of partial edit path Returns: sequence of (vertex_path, edge_path, cost) vertex_path: complete vertex edit path list of tuples (u, v) of vertex mappings u<->v, u=None or v=None for deletion/insertion edge_path: complete edge edit path list of tuples (g, h) of edge mappings g<->h, g=None or h=None for deletion/insertion cost: total cost of edit path NOTE: path costs are non-increasing """ # debug_print('matched-uv:', matched_uv) # debug_print('matched-gh:', matched_gh) # debug_print('matched-cost:', matched_cost) # debug_print('pending-u:', pending_u) # debug_print('pending-v:', pending_v) # debug_print(Cv.C) # assert list(sorted(G1.nodes)) == list(sorted(list(u for u, v in matched_uv if u is not None) + pending_u)) # assert list(sorted(G2.nodes)) == list(sorted(list(v for u, v in matched_uv if v is not None) + pending_v)) # debug_print('pending-g:', pending_g) # debug_print('pending-h:', pending_h) # debug_print(Ce.C) # assert list(sorted(G1.edges)) == list(sorted(list(g for g, h in matched_gh if g is not None) + pending_g)) # assert list(sorted(G2.edges)) == list(sorted(list(h for g, h in matched_gh if h is not None) + pending_h)) # debug_print() if prune(matched_cost + Cv.ls + Ce.ls): return if not max(len(pending_u), len(pending_v)): # assert not len(pending_g) # assert not len(pending_h) # path completed! # assert matched_cost <= maxcost_value nonlocal maxcost_value maxcost_value = min(maxcost_value, matched_cost) yield matched_uv, matched_gh, matched_cost else: edit_ops = get_edit_ops( matched_uv, pending_u, pending_v, Cv, pending_g, pending_h, Ce, matched_cost, ) for ij, Cv_ij, xy, Ce_xy, edit_cost in edit_ops: i, j = ij # assert Cv.C[i, j] + sum(Ce.C[t] for t in xy) == edit_cost if prune(matched_cost + edit_cost + Cv_ij.ls + Ce_xy.ls): continue # dive deeper u = pending_u.pop(i) if i < len(pending_u) else None v = pending_v.pop(j) if j < len(pending_v) else None matched_uv.append((u, v)) for x, y in xy: len_g = len(pending_g) len_h = len(pending_h) matched_gh.append( ( pending_g[x] if x < len_g else None, pending_h[y] if y < len_h else None, ) ) sortedx = sorted(x for x, y in xy) sortedy = sorted(y for x, y in xy) G = [ (pending_g.pop(x) if x < len(pending_g) else None) for x in reversed(sortedx) ] H = [ (pending_h.pop(y) if y < len(pending_h) else None) for y in reversed(sortedy) ] yield from get_edit_paths( matched_uv, pending_u, pending_v, Cv_ij, matched_gh, pending_g, pending_h, Ce_xy, matched_cost + edit_cost, ) # backtrack if u is not None: pending_u.insert(i, u) if v is not None: pending_v.insert(j, v) matched_uv.pop() for x, g in zip(sortedx, reversed(G)): if g is not None: pending_g.insert(x, g) for y, h in zip(sortedy, reversed(H)): if h is not None: pending_h.insert(y, h) for _ in xy: matched_gh.pop() # Initialization pending_u = list(G1.nodes) pending_v = list(G2.nodes) initial_cost = 0 if roots: root_u, root_v = roots if root_u not in pending_u or root_v not in pending_v: raise nx.NodeNotFound("Root node not in graph.") # remove roots from pending pending_u.remove(root_u) pending_v.remove(root_v) # cost matrix of vertex mappings m = len(pending_u) n = len(pending_v) C = np.zeros((m + n, m + n)) if node_subst_cost: C[0:m, 0:n] = np.array( [ node_subst_cost(G1.nodes[u], G2.nodes[v]) for u in pending_u for v in pending_v ] ).reshape(m, n) if roots: initial_cost = node_subst_cost(G1.nodes[root_u], G2.nodes[root_v]) elif node_match: C[0:m, 0:n] = np.array( [ 1 - int(node_match(G1.nodes[u], G2.nodes[v])) for u in pending_u for v in pending_v ] ).reshape(m, n) if roots: initial_cost = 1 - node_match(G1.nodes[root_u], G2.nodes[root_v]) else: # all zeroes pass # assert not min(m, n) or C[0:m, 0:n].min() >= 0 if node_del_cost: del_costs = [node_del_cost(G1.nodes[u]) for u in pending_u] else: del_costs = [1] * len(pending_u) # assert not m or min(del_costs) >= 0 if node_ins_cost: ins_costs = [node_ins_cost(G2.nodes[v]) for v in pending_v] else: ins_costs = [1] * len(pending_v) # assert not n or min(ins_costs) >= 0 inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1 C[0:m, n : n + m] = np.array( [del_costs[i] if i == j else inf for i in range(m) for j in range(m)] ).reshape(m, m) C[m : m + n, 0:n] = np.array( [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)] ).reshape(n, n) Cv = make_CostMatrix(C, m, n) # debug_print(f"Cv: {m} x {n}") # debug_print(Cv.C) pending_g = list(G1.edges) pending_h = list(G2.edges) # cost matrix of edge mappings m = len(pending_g) n = len(pending_h) C = np.zeros((m + n, m + n)) if edge_subst_cost: C[0:m, 0:n] = np.array( [ edge_subst_cost(G1.edges[g], G2.edges[h]) for g in pending_g for h in pending_h ] ).reshape(m, n) elif edge_match: C[0:m, 0:n] = np.array( [ 1 - int(edge_match(G1.edges[g], G2.edges[h])) for g in pending_g for h in pending_h ] ).reshape(m, n) else: # all zeroes pass # assert not min(m, n) or C[0:m, 0:n].min() >= 0 if edge_del_cost: del_costs = [edge_del_cost(G1.edges[g]) for g in pending_g] else: del_costs = [1] * len(pending_g) # assert not m or min(del_costs) >= 0 if edge_ins_cost: ins_costs = [edge_ins_cost(G2.edges[h]) for h in pending_h] else: ins_costs = [1] * len(pending_h) # assert not n or min(ins_costs) >= 0 inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1 C[0:m, n : n + m] = np.array( [del_costs[i] if i == j else inf for i in range(m) for j in range(m)] ).reshape(m, m) C[m : m + n, 0:n] = np.array( [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)] ).reshape(n, n) Ce = make_CostMatrix(C, m, n) # debug_print(f'Ce: {m} x {n}') # debug_print(Ce.C) # debug_print() maxcost_value = Cv.C.sum() + Ce.C.sum() + 1 if timeout is not None: if timeout <= 0: raise nx.NetworkXError("Timeout value must be greater than 0") start = time.perf_counter() def prune(cost): if timeout is not None: if time.perf_counter() - start > timeout: return True if upper_bound is not None: if cost > upper_bound: return True if cost > maxcost_value: return True if strictly_decreasing and cost >= maxcost_value: return True return False # Now go! done_uv = [] if roots is None else [roots] for vertex_path, edge_path, cost in get_edit_paths( done_uv, pending_u, pending_v, Cv, [], pending_g, pending_h, Ce, initial_cost ): # assert sorted(G1.nodes) == sorted(u for u, v in vertex_path if u is not None) # assert sorted(G2.nodes) == sorted(v for u, v in vertex_path if v is not None) # assert sorted(G1.edges) == sorted(g for g, h in edge_path if g is not None) # assert sorted(G2.edges) == sorted(h for g, h in edge_path if h is not None) # print(vertex_path, edge_path, cost, file = sys.stderr) # assert cost == maxcost_value yield list(vertex_path), list(edge_path), float(cost)
(G1, G2, node_match=None, edge_match=None, node_subst_cost=None, node_del_cost=None, node_ins_cost=None, edge_subst_cost=None, edge_del_cost=None, edge_ins_cost=None, upper_bound=None, strictly_decreasing=True, roots=None, timeout=None, *, backend=None, **backend_kwargs)
30,985
networkx.algorithms.similarity
optimize_graph_edit_distance
Returns consecutive approximations of GED (graph edit distance) between graphs G1 and G2. Graph edit distance is a graph similarity measure analogous to Levenshtein distance for strings. It is defined as minimum cost of edit path (sequence of node and edge edit operations) transforming graph G1 to graph isomorphic to G2. Parameters ---------- G1, G2: graphs The two graphs G1 and G2 must be of the same type. node_match : callable A function that returns True if node n1 in G1 and n2 in G2 should be considered equal during matching. The function will be called like node_match(G1.nodes[n1], G2.nodes[n2]). That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs. Ignored if node_subst_cost is specified. If neither node_match nor node_subst_cost are specified then node attributes are not considered. edge_match : callable A function that returns True if the edge attribute dictionaries for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during matching. The function will be called like edge_match(G1[u1][v1], G2[u2][v2]). That is, the function will receive the edge attribute dictionaries of the edges under consideration. Ignored if edge_subst_cost is specified. If neither edge_match nor edge_subst_cost are specified then edge attributes are not considered. node_subst_cost, node_del_cost, node_ins_cost : callable Functions that return the costs of node substitution, node deletion, and node insertion, respectively. The functions will be called like node_subst_cost(G1.nodes[n1], G2.nodes[n2]), node_del_cost(G1.nodes[n1]), node_ins_cost(G2.nodes[n2]). That is, the functions will receive the node attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function node_subst_cost overrides node_match if specified. If neither node_match nor node_subst_cost are specified then default node substitution cost of 0 is used (node attributes are not considered during matching). If node_del_cost is not specified then default node deletion cost of 1 is used. If node_ins_cost is not specified then default node insertion cost of 1 is used. edge_subst_cost, edge_del_cost, edge_ins_cost : callable Functions that return the costs of edge substitution, edge deletion, and edge insertion, respectively. The functions will be called like edge_subst_cost(G1[u1][v1], G2[u2][v2]), edge_del_cost(G1[u1][v1]), edge_ins_cost(G2[u2][v2]). That is, the functions will receive the edge attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function edge_subst_cost overrides edge_match if specified. If neither edge_match nor edge_subst_cost are specified then default edge substitution cost of 0 is used (edge attributes are not considered during matching). If edge_del_cost is not specified then default edge deletion cost of 1 is used. If edge_ins_cost is not specified then default edge insertion cost of 1 is used. upper_bound : numeric Maximum edit distance to consider. Returns ------- Generator of consecutive approximations of graph edit distance. Examples -------- >>> G1 = nx.cycle_graph(6) >>> G2 = nx.wheel_graph(7) >>> for v in nx.optimize_graph_edit_distance(G1, G2): ... minv = v >>> minv 7.0 See Also -------- graph_edit_distance, optimize_edit_paths References ---------- .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick Martineau. An Exact Graph Edit Distance Algorithm for Solving Pattern Recognition Problems. 4th International Conference on Pattern Recognition Applications and Methods 2015, Jan 2015, Lisbon, Portugal. 2015, <10.5220/0005209202710278>. <hal-01168816> https://hal.archives-ouvertes.fr/hal-01168816
def optimize_edit_paths( G1, G2, node_match=None, edge_match=None, node_subst_cost=None, node_del_cost=None, node_ins_cost=None, edge_subst_cost=None, edge_del_cost=None, edge_ins_cost=None, upper_bound=None, strictly_decreasing=True, roots=None, timeout=None, ): """GED (graph edit distance) calculation: advanced interface. Graph edit path is a sequence of node and edge edit operations transforming graph G1 to graph isomorphic to G2. Edit operations include substitutions, deletions, and insertions. Graph edit distance is defined as minimum cost of edit path. Parameters ---------- G1, G2: graphs The two graphs G1 and G2 must be of the same type. node_match : callable A function that returns True if node n1 in G1 and n2 in G2 should be considered equal during matching. The function will be called like node_match(G1.nodes[n1], G2.nodes[n2]). That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs. Ignored if node_subst_cost is specified. If neither node_match nor node_subst_cost are specified then node attributes are not considered. edge_match : callable A function that returns True if the edge attribute dictionaries for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during matching. The function will be called like edge_match(G1[u1][v1], G2[u2][v2]). That is, the function will receive the edge attribute dictionaries of the edges under consideration. Ignored if edge_subst_cost is specified. If neither edge_match nor edge_subst_cost are specified then edge attributes are not considered. node_subst_cost, node_del_cost, node_ins_cost : callable Functions that return the costs of node substitution, node deletion, and node insertion, respectively. The functions will be called like node_subst_cost(G1.nodes[n1], G2.nodes[n2]), node_del_cost(G1.nodes[n1]), node_ins_cost(G2.nodes[n2]). That is, the functions will receive the node attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function node_subst_cost overrides node_match if specified. If neither node_match nor node_subst_cost are specified then default node substitution cost of 0 is used (node attributes are not considered during matching). If node_del_cost is not specified then default node deletion cost of 1 is used. If node_ins_cost is not specified then default node insertion cost of 1 is used. edge_subst_cost, edge_del_cost, edge_ins_cost : callable Functions that return the costs of edge substitution, edge deletion, and edge insertion, respectively. The functions will be called like edge_subst_cost(G1[u1][v1], G2[u2][v2]), edge_del_cost(G1[u1][v1]), edge_ins_cost(G2[u2][v2]). That is, the functions will receive the edge attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function edge_subst_cost overrides edge_match if specified. If neither edge_match nor edge_subst_cost are specified then default edge substitution cost of 0 is used (edge attributes are not considered during matching). If edge_del_cost is not specified then default edge deletion cost of 1 is used. If edge_ins_cost is not specified then default edge insertion cost of 1 is used. upper_bound : numeric Maximum edit distance to consider. strictly_decreasing : bool If True, return consecutive approximations of strictly decreasing cost. Otherwise, return all edit paths of cost less than or equal to the previous minimum cost. roots : 2-tuple Tuple where first element is a node in G1 and the second is a node in G2. These nodes are forced to be matched in the comparison to allow comparison between rooted graphs. timeout : numeric Maximum number of seconds to execute. After timeout is met, the current best GED is returned. Returns ------- Generator of tuples (node_edit_path, edge_edit_path, cost) node_edit_path : list of tuples (u, v) edge_edit_path : list of tuples ((u1, v1), (u2, v2)) cost : numeric See Also -------- graph_edit_distance, optimize_graph_edit_distance, optimal_edit_paths References ---------- .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick Martineau. An Exact Graph Edit Distance Algorithm for Solving Pattern Recognition Problems. 4th International Conference on Pattern Recognition Applications and Methods 2015, Jan 2015, Lisbon, Portugal. 2015, <10.5220/0005209202710278>. <hal-01168816> https://hal.archives-ouvertes.fr/hal-01168816 """ # TODO: support DiGraph import numpy as np import scipy as sp @dataclass class CostMatrix: C: ... lsa_row_ind: ... lsa_col_ind: ... ls: ... def make_CostMatrix(C, m, n): # assert(C.shape == (m + n, m + n)) lsa_row_ind, lsa_col_ind = sp.optimize.linear_sum_assignment(C) # Fixup dummy assignments: # each substitution i<->j should have dummy assignment m+j<->n+i # NOTE: fast reduce of Cv relies on it # assert len(lsa_row_ind) == len(lsa_col_ind) indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind) subst_ind = [k for k, i, j in indexes if i < m and j < n] indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind) dummy_ind = [k for k, i, j in indexes if i >= m and j >= n] # assert len(subst_ind) == len(dummy_ind) lsa_row_ind[dummy_ind] = lsa_col_ind[subst_ind] + m lsa_col_ind[dummy_ind] = lsa_row_ind[subst_ind] + n return CostMatrix( C, lsa_row_ind, lsa_col_ind, C[lsa_row_ind, lsa_col_ind].sum() ) def extract_C(C, i, j, m, n): # assert(C.shape == (m + n, m + n)) row_ind = [k in i or k - m in j for k in range(m + n)] col_ind = [k in j or k - n in i for k in range(m + n)] return C[row_ind, :][:, col_ind] def reduce_C(C, i, j, m, n): # assert(C.shape == (m + n, m + n)) row_ind = [k not in i and k - m not in j for k in range(m + n)] col_ind = [k not in j and k - n not in i for k in range(m + n)] return C[row_ind, :][:, col_ind] def reduce_ind(ind, i): # assert set(ind) == set(range(len(ind))) rind = ind[[k not in i for k in ind]] for k in set(i): rind[rind >= k] -= 1 return rind def match_edges(u, v, pending_g, pending_h, Ce, matched_uv=None): """ Parameters: u, v: matched vertices, u=None or v=None for deletion/insertion pending_g, pending_h: lists of edges not yet mapped Ce: CostMatrix of pending edge mappings matched_uv: partial vertex edit path list of tuples (u, v) of previously matched vertex mappings u<->v, u=None or v=None for deletion/insertion Returns: list of (i, j): indices of edge mappings g<->h localCe: local CostMatrix of edge mappings (basically submatrix of Ce at cross of rows i, cols j) """ M = len(pending_g) N = len(pending_h) # assert Ce.C.shape == (M + N, M + N) # only attempt to match edges after one node match has been made # this will stop self-edges on the first node being automatically deleted # even when a substitution is the better option if matched_uv is None or len(matched_uv) == 0: g_ind = [] h_ind = [] else: g_ind = [ i for i in range(M) if pending_g[i][:2] == (u, u) or any( pending_g[i][:2] in ((p, u), (u, p), (p, p)) for p, q in matched_uv ) ] h_ind = [ j for j in range(N) if pending_h[j][:2] == (v, v) or any( pending_h[j][:2] in ((q, v), (v, q), (q, q)) for p, q in matched_uv ) ] m = len(g_ind) n = len(h_ind) if m or n: C = extract_C(Ce.C, g_ind, h_ind, M, N) # assert C.shape == (m + n, m + n) # Forbid structurally invalid matches # NOTE: inf remembered from Ce construction for k, i in enumerate(g_ind): g = pending_g[i][:2] for l, j in enumerate(h_ind): h = pending_h[j][:2] if nx.is_directed(G1) or nx.is_directed(G2): if any( g == (p, u) and h == (q, v) or g == (u, p) and h == (v, q) for p, q in matched_uv ): continue else: if any( g in ((p, u), (u, p)) and h in ((q, v), (v, q)) for p, q in matched_uv ): continue if g == (u, u) or any(g == (p, p) for p, q in matched_uv): continue if h == (v, v) or any(h == (q, q) for p, q in matched_uv): continue C[k, l] = inf localCe = make_CostMatrix(C, m, n) ij = [ ( g_ind[k] if k < m else M + h_ind[l], h_ind[l] if l < n else N + g_ind[k], ) for k, l in zip(localCe.lsa_row_ind, localCe.lsa_col_ind) if k < m or l < n ] else: ij = [] localCe = CostMatrix(np.empty((0, 0)), [], [], 0) return ij, localCe def reduce_Ce(Ce, ij, m, n): if len(ij): i, j = zip(*ij) m_i = m - sum(1 for t in i if t < m) n_j = n - sum(1 for t in j if t < n) return make_CostMatrix(reduce_C(Ce.C, i, j, m, n), m_i, n_j) return Ce def get_edit_ops( matched_uv, pending_u, pending_v, Cv, pending_g, pending_h, Ce, matched_cost ): """ Parameters: matched_uv: partial vertex edit path list of tuples (u, v) of vertex mappings u<->v, u=None or v=None for deletion/insertion pending_u, pending_v: lists of vertices not yet mapped Cv: CostMatrix of pending vertex mappings pending_g, pending_h: lists of edges not yet mapped Ce: CostMatrix of pending edge mappings matched_cost: cost of partial edit path Returns: sequence of (i, j): indices of vertex mapping u<->v Cv_ij: reduced CostMatrix of pending vertex mappings (basically Cv with row i, col j removed) list of (x, y): indices of edge mappings g<->h Ce_xy: reduced CostMatrix of pending edge mappings (basically Ce with rows x, cols y removed) cost: total cost of edit operation NOTE: most promising ops first """ m = len(pending_u) n = len(pending_v) # assert Cv.C.shape == (m + n, m + n) # 1) a vertex mapping from optimal linear sum assignment i, j = min( (k, l) for k, l in zip(Cv.lsa_row_ind, Cv.lsa_col_ind) if k < m or l < n ) xy, localCe = match_edges( pending_u[i] if i < m else None, pending_v[j] if j < n else None, pending_g, pending_h, Ce, matched_uv, ) Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h)) # assert Ce.ls <= localCe.ls + Ce_xy.ls if prune(matched_cost + Cv.ls + localCe.ls + Ce_xy.ls): pass else: # get reduced Cv efficiently Cv_ij = CostMatrix( reduce_C(Cv.C, (i,), (j,), m, n), reduce_ind(Cv.lsa_row_ind, (i, m + j)), reduce_ind(Cv.lsa_col_ind, (j, n + i)), Cv.ls - Cv.C[i, j], ) yield (i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls # 2) other candidates, sorted by lower-bound cost estimate other = [] fixed_i, fixed_j = i, j if m <= n: candidates = ( (t, fixed_j) for t in range(m + n) if t != fixed_i and (t < m or t == m + fixed_j) ) else: candidates = ( (fixed_i, t) for t in range(m + n) if t != fixed_j and (t < n or t == n + fixed_i) ) for i, j in candidates: if prune(matched_cost + Cv.C[i, j] + Ce.ls): continue Cv_ij = make_CostMatrix( reduce_C(Cv.C, (i,), (j,), m, n), m - 1 if i < m else m, n - 1 if j < n else n, ) # assert Cv.ls <= Cv.C[i, j] + Cv_ij.ls if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + Ce.ls): continue xy, localCe = match_edges( pending_u[i] if i < m else None, pending_v[j] if j < n else None, pending_g, pending_h, Ce, matched_uv, ) if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls): continue Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h)) # assert Ce.ls <= localCe.ls + Ce_xy.ls if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls + Ce_xy.ls): continue other.append(((i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls)) yield from sorted(other, key=lambda t: t[4] + t[1].ls + t[3].ls) def get_edit_paths( matched_uv, pending_u, pending_v, Cv, matched_gh, pending_g, pending_h, Ce, matched_cost, ): """ Parameters: matched_uv: partial vertex edit path list of tuples (u, v) of vertex mappings u<->v, u=None or v=None for deletion/insertion pending_u, pending_v: lists of vertices not yet mapped Cv: CostMatrix of pending vertex mappings matched_gh: partial edge edit path list of tuples (g, h) of edge mappings g<->h, g=None or h=None for deletion/insertion pending_g, pending_h: lists of edges not yet mapped Ce: CostMatrix of pending edge mappings matched_cost: cost of partial edit path Returns: sequence of (vertex_path, edge_path, cost) vertex_path: complete vertex edit path list of tuples (u, v) of vertex mappings u<->v, u=None or v=None for deletion/insertion edge_path: complete edge edit path list of tuples (g, h) of edge mappings g<->h, g=None or h=None for deletion/insertion cost: total cost of edit path NOTE: path costs are non-increasing """ # debug_print('matched-uv:', matched_uv) # debug_print('matched-gh:', matched_gh) # debug_print('matched-cost:', matched_cost) # debug_print('pending-u:', pending_u) # debug_print('pending-v:', pending_v) # debug_print(Cv.C) # assert list(sorted(G1.nodes)) == list(sorted(list(u for u, v in matched_uv if u is not None) + pending_u)) # assert list(sorted(G2.nodes)) == list(sorted(list(v for u, v in matched_uv if v is not None) + pending_v)) # debug_print('pending-g:', pending_g) # debug_print('pending-h:', pending_h) # debug_print(Ce.C) # assert list(sorted(G1.edges)) == list(sorted(list(g for g, h in matched_gh if g is not None) + pending_g)) # assert list(sorted(G2.edges)) == list(sorted(list(h for g, h in matched_gh if h is not None) + pending_h)) # debug_print() if prune(matched_cost + Cv.ls + Ce.ls): return if not max(len(pending_u), len(pending_v)): # assert not len(pending_g) # assert not len(pending_h) # path completed! # assert matched_cost <= maxcost_value nonlocal maxcost_value maxcost_value = min(maxcost_value, matched_cost) yield matched_uv, matched_gh, matched_cost else: edit_ops = get_edit_ops( matched_uv, pending_u, pending_v, Cv, pending_g, pending_h, Ce, matched_cost, ) for ij, Cv_ij, xy, Ce_xy, edit_cost in edit_ops: i, j = ij # assert Cv.C[i, j] + sum(Ce.C[t] for t in xy) == edit_cost if prune(matched_cost + edit_cost + Cv_ij.ls + Ce_xy.ls): continue # dive deeper u = pending_u.pop(i) if i < len(pending_u) else None v = pending_v.pop(j) if j < len(pending_v) else None matched_uv.append((u, v)) for x, y in xy: len_g = len(pending_g) len_h = len(pending_h) matched_gh.append( ( pending_g[x] if x < len_g else None, pending_h[y] if y < len_h else None, ) ) sortedx = sorted(x for x, y in xy) sortedy = sorted(y for x, y in xy) G = [ (pending_g.pop(x) if x < len(pending_g) else None) for x in reversed(sortedx) ] H = [ (pending_h.pop(y) if y < len(pending_h) else None) for y in reversed(sortedy) ] yield from get_edit_paths( matched_uv, pending_u, pending_v, Cv_ij, matched_gh, pending_g, pending_h, Ce_xy, matched_cost + edit_cost, ) # backtrack if u is not None: pending_u.insert(i, u) if v is not None: pending_v.insert(j, v) matched_uv.pop() for x, g in zip(sortedx, reversed(G)): if g is not None: pending_g.insert(x, g) for y, h in zip(sortedy, reversed(H)): if h is not None: pending_h.insert(y, h) for _ in xy: matched_gh.pop() # Initialization pending_u = list(G1.nodes) pending_v = list(G2.nodes) initial_cost = 0 if roots: root_u, root_v = roots if root_u not in pending_u or root_v not in pending_v: raise nx.NodeNotFound("Root node not in graph.") # remove roots from pending pending_u.remove(root_u) pending_v.remove(root_v) # cost matrix of vertex mappings m = len(pending_u) n = len(pending_v) C = np.zeros((m + n, m + n)) if node_subst_cost: C[0:m, 0:n] = np.array( [ node_subst_cost(G1.nodes[u], G2.nodes[v]) for u in pending_u for v in pending_v ] ).reshape(m, n) if roots: initial_cost = node_subst_cost(G1.nodes[root_u], G2.nodes[root_v]) elif node_match: C[0:m, 0:n] = np.array( [ 1 - int(node_match(G1.nodes[u], G2.nodes[v])) for u in pending_u for v in pending_v ] ).reshape(m, n) if roots: initial_cost = 1 - node_match(G1.nodes[root_u], G2.nodes[root_v]) else: # all zeroes pass # assert not min(m, n) or C[0:m, 0:n].min() >= 0 if node_del_cost: del_costs = [node_del_cost(G1.nodes[u]) for u in pending_u] else: del_costs = [1] * len(pending_u) # assert not m or min(del_costs) >= 0 if node_ins_cost: ins_costs = [node_ins_cost(G2.nodes[v]) for v in pending_v] else: ins_costs = [1] * len(pending_v) # assert not n or min(ins_costs) >= 0 inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1 C[0:m, n : n + m] = np.array( [del_costs[i] if i == j else inf for i in range(m) for j in range(m)] ).reshape(m, m) C[m : m + n, 0:n] = np.array( [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)] ).reshape(n, n) Cv = make_CostMatrix(C, m, n) # debug_print(f"Cv: {m} x {n}") # debug_print(Cv.C) pending_g = list(G1.edges) pending_h = list(G2.edges) # cost matrix of edge mappings m = len(pending_g) n = len(pending_h) C = np.zeros((m + n, m + n)) if edge_subst_cost: C[0:m, 0:n] = np.array( [ edge_subst_cost(G1.edges[g], G2.edges[h]) for g in pending_g for h in pending_h ] ).reshape(m, n) elif edge_match: C[0:m, 0:n] = np.array( [ 1 - int(edge_match(G1.edges[g], G2.edges[h])) for g in pending_g for h in pending_h ] ).reshape(m, n) else: # all zeroes pass # assert not min(m, n) or C[0:m, 0:n].min() >= 0 if edge_del_cost: del_costs = [edge_del_cost(G1.edges[g]) for g in pending_g] else: del_costs = [1] * len(pending_g) # assert not m or min(del_costs) >= 0 if edge_ins_cost: ins_costs = [edge_ins_cost(G2.edges[h]) for h in pending_h] else: ins_costs = [1] * len(pending_h) # assert not n or min(ins_costs) >= 0 inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1 C[0:m, n : n + m] = np.array( [del_costs[i] if i == j else inf for i in range(m) for j in range(m)] ).reshape(m, m) C[m : m + n, 0:n] = np.array( [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)] ).reshape(n, n) Ce = make_CostMatrix(C, m, n) # debug_print(f'Ce: {m} x {n}') # debug_print(Ce.C) # debug_print() maxcost_value = Cv.C.sum() + Ce.C.sum() + 1 if timeout is not None: if timeout <= 0: raise nx.NetworkXError("Timeout value must be greater than 0") start = time.perf_counter() def prune(cost): if timeout is not None: if time.perf_counter() - start > timeout: return True if upper_bound is not None: if cost > upper_bound: return True if cost > maxcost_value: return True if strictly_decreasing and cost >= maxcost_value: return True return False # Now go! done_uv = [] if roots is None else [roots] for vertex_path, edge_path, cost in get_edit_paths( done_uv, pending_u, pending_v, Cv, [], pending_g, pending_h, Ce, initial_cost ): # assert sorted(G1.nodes) == sorted(u for u, v in vertex_path if u is not None) # assert sorted(G2.nodes) == sorted(v for u, v in vertex_path if v is not None) # assert sorted(G1.edges) == sorted(g for g, h in edge_path if g is not None) # assert sorted(G2.edges) == sorted(h for g, h in edge_path if h is not None) # print(vertex_path, edge_path, cost, file = sys.stderr) # assert cost == maxcost_value yield list(vertex_path), list(edge_path), float(cost)
(G1, G2, node_match=None, edge_match=None, node_subst_cost=None, node_del_cost=None, node_ins_cost=None, edge_subst_cost=None, edge_del_cost=None, edge_ins_cost=None, upper_bound=None, *, backend=None, **backend_kwargs)
30,986
networkx.algorithms.centrality.degree_alg
out_degree_centrality
Compute the out-degree centrality for nodes. The out-degree centrality for a node v is the fraction of nodes its outgoing edges are connected to. Parameters ---------- G : graph A NetworkX graph Returns ------- nodes : dictionary Dictionary of nodes with out-degree centrality as values. Raises ------ NetworkXNotImplemented If G is undirected. Examples -------- >>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)]) >>> nx.out_degree_centrality(G) {0: 1.0, 1: 0.6666666666666666, 2: 0.0, 3: 0.0} See Also -------- degree_centrality, in_degree_centrality Notes ----- The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G. For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible.
null
(G, *, backend=None, **backend_kwargs)
30,987
networkx.algorithms.reciprocity
overall_reciprocity
Compute the reciprocity for the whole graph. See the doc of reciprocity for the definition. Parameters ---------- G : graph A networkx graph
null
(G, *, backend=None, **backend_kwargs)
30,988
networkx.algorithms.link_analysis.pagerank_alg
pagerank
Returns the PageRank of the nodes in the graph. PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages. Parameters ---------- G : graph A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge. alpha : float, optional Damping parameter for PageRank, default=0.85. personalization: dict, optional The "personalization vector" consisting of a dictionary with a key some subset of graph nodes and personalization value each of those. At least one personalization value must be non-zero. If not specified, a nodes personalization value will be zero. By default, a uniform distribution is used. max_iter : integer, optional Maximum number of iterations in power method eigenvalue solver. tol : float, optional Error tolerance used to check convergence in power method solver. The iteration will stop after a tolerance of ``len(G) * tol`` is reached. nstart : dictionary, optional Starting value of PageRank iteration for each node. weight : key, optional Edge data key to use as weight. If None weights are set to 1. dangling: dict, optional The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified). This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict. Returns ------- pagerank : dictionary Dictionary of nodes with PageRank as value Examples -------- >>> G = nx.DiGraph(nx.path_graph(4)) >>> pr = nx.pagerank(G, alpha=0.9) Notes ----- The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after an error tolerance of ``len(G) * tol`` has been reached. If the number of iterations exceed `max_iter`, a :exc:`networkx.exception.PowerIterationFailedConvergence` exception is raised. The PageRank algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs by converting each edge in the directed graph to two edges. See Also -------- google_matrix Raises ------ PowerIterationFailedConvergence If the algorithm fails to converge to the specified tolerance within the specified number of iterations of the power iteration method. References ---------- .. [1] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html .. [2] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking: Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
null
(G, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, nstart=None, weight='weight', dangling=None, *, backend=None, **backend_kwargs)
30,992
networkx.generators.expanders
paley_graph
Returns the Paley $\frac{(p-1)}{2}$ -regular graph on $p$ nodes. The returned graph is a graph on $\mathbb{Z}/p\mathbb{Z}$ with edges between $x$ and $y$ if and only if $x-y$ is a nonzero square in $\mathbb{Z}/p\mathbb{Z}$. If $p \equiv 1 \pmod 4$, $-1$ is a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore $x-y$ is a square if and only if $y-x$ is also a square, i.e the edges in the Paley graph are symmetric. If $p \equiv 3 \pmod 4$, $-1$ is not a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore either $x-y$ or $y-x$ is a square in $\mathbb{Z}/p\mathbb{Z}$ but not both. Note that a more general definition of Paley graphs extends this construction to graphs over $q=p^n$ vertices, by using the finite field $F_q$ instead of $\mathbb{Z}/p\mathbb{Z}$. This construction requires to compute squares in general finite fields and is not what is implemented here (i.e `paley_graph(25)` does not return the true Paley graph associated with $5^2$). Parameters ---------- p : int, an odd prime number. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Returns ------- G : graph The constructed directed graph. Raises ------ NetworkXError If the graph is a multigraph. References ---------- Chapter 13 in B. Bollobas, Random Graphs. Second edition. Cambridge Studies in Advanced Mathematics, 73. Cambridge University Press, Cambridge (2001).
null
(p, create_using=None, *, backend=None, **backend_kwargs)
30,993
networkx.algorithms.similarity
panther_similarity
Returns the Panther similarity of nodes in the graph `G` to node ``v``. Panther is a similarity metric that says "two objects are considered to be similar if they frequently appear on the same paths." [1]_. Parameters ---------- G : NetworkX graph A NetworkX graph source : node Source node for which to find the top `k` similar other nodes k : int (default = 5) The number of most similar nodes to return. path_length : int (default = 5) How long the randomly generated paths should be (``T`` in [1]_) c : float (default = 0.5) A universal positive constant used to scale the number of sample random paths to generate. delta : float (default = 0.1) The probability that the similarity $S$ is not an epsilon-approximation to (R, phi), where $R$ is the number of random paths and $\phi$ is the probability that an element sampled from a set $A \subseteq D$, where $D$ is the domain. eps : float or None (default = None) The error bound. Per [1]_, a good value is ``sqrt(1/|E|)``. Therefore, if no value is provided, the recommended computed value will be used. weight : string or None, optional (default="weight") The name of an edge attribute that holds the numerical value used as a weight. If None then each edge has weight 1. Returns ------- similarity : dictionary Dictionary of nodes to similarity scores (as floats). Note: the self-similarity (i.e., ``v``) will not be included in the returned dictionary. So, for ``k = 5``, a dictionary of top 4 nodes and their similarity scores will be returned. Raises ------ NetworkXUnfeasible If `source` is an isolated node. NodeNotFound If `source` is not in `G`. Notes ----- The isolated nodes in `G` are ignored. Examples -------- >>> G = nx.star_graph(10) >>> sim = nx.panther_similarity(G, 0) References ---------- .. [1] Zhang, J., Tang, J., Ma, C., Tong, H., Jing, Y., & Li, J. Panther: Fast top-k similarity search on large networks. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Vol. 2015-August, pp. 1445–1454). Association for Computing Machinery. https://doi.org/10.1145/2783258.2783267.
def optimize_edit_paths( G1, G2, node_match=None, edge_match=None, node_subst_cost=None, node_del_cost=None, node_ins_cost=None, edge_subst_cost=None, edge_del_cost=None, edge_ins_cost=None, upper_bound=None, strictly_decreasing=True, roots=None, timeout=None, ): """GED (graph edit distance) calculation: advanced interface. Graph edit path is a sequence of node and edge edit operations transforming graph G1 to graph isomorphic to G2. Edit operations include substitutions, deletions, and insertions. Graph edit distance is defined as minimum cost of edit path. Parameters ---------- G1, G2: graphs The two graphs G1 and G2 must be of the same type. node_match : callable A function that returns True if node n1 in G1 and n2 in G2 should be considered equal during matching. The function will be called like node_match(G1.nodes[n1], G2.nodes[n2]). That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs. Ignored if node_subst_cost is specified. If neither node_match nor node_subst_cost are specified then node attributes are not considered. edge_match : callable A function that returns True if the edge attribute dictionaries for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during matching. The function will be called like edge_match(G1[u1][v1], G2[u2][v2]). That is, the function will receive the edge attribute dictionaries of the edges under consideration. Ignored if edge_subst_cost is specified. If neither edge_match nor edge_subst_cost are specified then edge attributes are not considered. node_subst_cost, node_del_cost, node_ins_cost : callable Functions that return the costs of node substitution, node deletion, and node insertion, respectively. The functions will be called like node_subst_cost(G1.nodes[n1], G2.nodes[n2]), node_del_cost(G1.nodes[n1]), node_ins_cost(G2.nodes[n2]). That is, the functions will receive the node attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function node_subst_cost overrides node_match if specified. If neither node_match nor node_subst_cost are specified then default node substitution cost of 0 is used (node attributes are not considered during matching). If node_del_cost is not specified then default node deletion cost of 1 is used. If node_ins_cost is not specified then default node insertion cost of 1 is used. edge_subst_cost, edge_del_cost, edge_ins_cost : callable Functions that return the costs of edge substitution, edge deletion, and edge insertion, respectively. The functions will be called like edge_subst_cost(G1[u1][v1], G2[u2][v2]), edge_del_cost(G1[u1][v1]), edge_ins_cost(G2[u2][v2]). That is, the functions will receive the edge attribute dictionaries as inputs. The functions are expected to return positive numeric values. Function edge_subst_cost overrides edge_match if specified. If neither edge_match nor edge_subst_cost are specified then default edge substitution cost of 0 is used (edge attributes are not considered during matching). If edge_del_cost is not specified then default edge deletion cost of 1 is used. If edge_ins_cost is not specified then default edge insertion cost of 1 is used. upper_bound : numeric Maximum edit distance to consider. strictly_decreasing : bool If True, return consecutive approximations of strictly decreasing cost. Otherwise, return all edit paths of cost less than or equal to the previous minimum cost. roots : 2-tuple Tuple where first element is a node in G1 and the second is a node in G2. These nodes are forced to be matched in the comparison to allow comparison between rooted graphs. timeout : numeric Maximum number of seconds to execute. After timeout is met, the current best GED is returned. Returns ------- Generator of tuples (node_edit_path, edge_edit_path, cost) node_edit_path : list of tuples (u, v) edge_edit_path : list of tuples ((u1, v1), (u2, v2)) cost : numeric See Also -------- graph_edit_distance, optimize_graph_edit_distance, optimal_edit_paths References ---------- .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick Martineau. An Exact Graph Edit Distance Algorithm for Solving Pattern Recognition Problems. 4th International Conference on Pattern Recognition Applications and Methods 2015, Jan 2015, Lisbon, Portugal. 2015, <10.5220/0005209202710278>. <hal-01168816> https://hal.archives-ouvertes.fr/hal-01168816 """ # TODO: support DiGraph import numpy as np import scipy as sp @dataclass class CostMatrix: C: ... lsa_row_ind: ... lsa_col_ind: ... ls: ... def make_CostMatrix(C, m, n): # assert(C.shape == (m + n, m + n)) lsa_row_ind, lsa_col_ind = sp.optimize.linear_sum_assignment(C) # Fixup dummy assignments: # each substitution i<->j should have dummy assignment m+j<->n+i # NOTE: fast reduce of Cv relies on it # assert len(lsa_row_ind) == len(lsa_col_ind) indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind) subst_ind = [k for k, i, j in indexes if i < m and j < n] indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind) dummy_ind = [k for k, i, j in indexes if i >= m and j >= n] # assert len(subst_ind) == len(dummy_ind) lsa_row_ind[dummy_ind] = lsa_col_ind[subst_ind] + m lsa_col_ind[dummy_ind] = lsa_row_ind[subst_ind] + n return CostMatrix( C, lsa_row_ind, lsa_col_ind, C[lsa_row_ind, lsa_col_ind].sum() ) def extract_C(C, i, j, m, n): # assert(C.shape == (m + n, m + n)) row_ind = [k in i or k - m in j for k in range(m + n)] col_ind = [k in j or k - n in i for k in range(m + n)] return C[row_ind, :][:, col_ind] def reduce_C(C, i, j, m, n): # assert(C.shape == (m + n, m + n)) row_ind = [k not in i and k - m not in j for k in range(m + n)] col_ind = [k not in j and k - n not in i for k in range(m + n)] return C[row_ind, :][:, col_ind] def reduce_ind(ind, i): # assert set(ind) == set(range(len(ind))) rind = ind[[k not in i for k in ind]] for k in set(i): rind[rind >= k] -= 1 return rind def match_edges(u, v, pending_g, pending_h, Ce, matched_uv=None): """ Parameters: u, v: matched vertices, u=None or v=None for deletion/insertion pending_g, pending_h: lists of edges not yet mapped Ce: CostMatrix of pending edge mappings matched_uv: partial vertex edit path list of tuples (u, v) of previously matched vertex mappings u<->v, u=None or v=None for deletion/insertion Returns: list of (i, j): indices of edge mappings g<->h localCe: local CostMatrix of edge mappings (basically submatrix of Ce at cross of rows i, cols j) """ M = len(pending_g) N = len(pending_h) # assert Ce.C.shape == (M + N, M + N) # only attempt to match edges after one node match has been made # this will stop self-edges on the first node being automatically deleted # even when a substitution is the better option if matched_uv is None or len(matched_uv) == 0: g_ind = [] h_ind = [] else: g_ind = [ i for i in range(M) if pending_g[i][:2] == (u, u) or any( pending_g[i][:2] in ((p, u), (u, p), (p, p)) for p, q in matched_uv ) ] h_ind = [ j for j in range(N) if pending_h[j][:2] == (v, v) or any( pending_h[j][:2] in ((q, v), (v, q), (q, q)) for p, q in matched_uv ) ] m = len(g_ind) n = len(h_ind) if m or n: C = extract_C(Ce.C, g_ind, h_ind, M, N) # assert C.shape == (m + n, m + n) # Forbid structurally invalid matches # NOTE: inf remembered from Ce construction for k, i in enumerate(g_ind): g = pending_g[i][:2] for l, j in enumerate(h_ind): h = pending_h[j][:2] if nx.is_directed(G1) or nx.is_directed(G2): if any( g == (p, u) and h == (q, v) or g == (u, p) and h == (v, q) for p, q in matched_uv ): continue else: if any( g in ((p, u), (u, p)) and h in ((q, v), (v, q)) for p, q in matched_uv ): continue if g == (u, u) or any(g == (p, p) for p, q in matched_uv): continue if h == (v, v) or any(h == (q, q) for p, q in matched_uv): continue C[k, l] = inf localCe = make_CostMatrix(C, m, n) ij = [ ( g_ind[k] if k < m else M + h_ind[l], h_ind[l] if l < n else N + g_ind[k], ) for k, l in zip(localCe.lsa_row_ind, localCe.lsa_col_ind) if k < m or l < n ] else: ij = [] localCe = CostMatrix(np.empty((0, 0)), [], [], 0) return ij, localCe def reduce_Ce(Ce, ij, m, n): if len(ij): i, j = zip(*ij) m_i = m - sum(1 for t in i if t < m) n_j = n - sum(1 for t in j if t < n) return make_CostMatrix(reduce_C(Ce.C, i, j, m, n), m_i, n_j) return Ce def get_edit_ops( matched_uv, pending_u, pending_v, Cv, pending_g, pending_h, Ce, matched_cost ): """ Parameters: matched_uv: partial vertex edit path list of tuples (u, v) of vertex mappings u<->v, u=None or v=None for deletion/insertion pending_u, pending_v: lists of vertices not yet mapped Cv: CostMatrix of pending vertex mappings pending_g, pending_h: lists of edges not yet mapped Ce: CostMatrix of pending edge mappings matched_cost: cost of partial edit path Returns: sequence of (i, j): indices of vertex mapping u<->v Cv_ij: reduced CostMatrix of pending vertex mappings (basically Cv with row i, col j removed) list of (x, y): indices of edge mappings g<->h Ce_xy: reduced CostMatrix of pending edge mappings (basically Ce with rows x, cols y removed) cost: total cost of edit operation NOTE: most promising ops first """ m = len(pending_u) n = len(pending_v) # assert Cv.C.shape == (m + n, m + n) # 1) a vertex mapping from optimal linear sum assignment i, j = min( (k, l) for k, l in zip(Cv.lsa_row_ind, Cv.lsa_col_ind) if k < m or l < n ) xy, localCe = match_edges( pending_u[i] if i < m else None, pending_v[j] if j < n else None, pending_g, pending_h, Ce, matched_uv, ) Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h)) # assert Ce.ls <= localCe.ls + Ce_xy.ls if prune(matched_cost + Cv.ls + localCe.ls + Ce_xy.ls): pass else: # get reduced Cv efficiently Cv_ij = CostMatrix( reduce_C(Cv.C, (i,), (j,), m, n), reduce_ind(Cv.lsa_row_ind, (i, m + j)), reduce_ind(Cv.lsa_col_ind, (j, n + i)), Cv.ls - Cv.C[i, j], ) yield (i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls # 2) other candidates, sorted by lower-bound cost estimate other = [] fixed_i, fixed_j = i, j if m <= n: candidates = ( (t, fixed_j) for t in range(m + n) if t != fixed_i and (t < m or t == m + fixed_j) ) else: candidates = ( (fixed_i, t) for t in range(m + n) if t != fixed_j and (t < n or t == n + fixed_i) ) for i, j in candidates: if prune(matched_cost + Cv.C[i, j] + Ce.ls): continue Cv_ij = make_CostMatrix( reduce_C(Cv.C, (i,), (j,), m, n), m - 1 if i < m else m, n - 1 if j < n else n, ) # assert Cv.ls <= Cv.C[i, j] + Cv_ij.ls if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + Ce.ls): continue xy, localCe = match_edges( pending_u[i] if i < m else None, pending_v[j] if j < n else None, pending_g, pending_h, Ce, matched_uv, ) if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls): continue Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h)) # assert Ce.ls <= localCe.ls + Ce_xy.ls if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls + Ce_xy.ls): continue other.append(((i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls)) yield from sorted(other, key=lambda t: t[4] + t[1].ls + t[3].ls) def get_edit_paths( matched_uv, pending_u, pending_v, Cv, matched_gh, pending_g, pending_h, Ce, matched_cost, ): """ Parameters: matched_uv: partial vertex edit path list of tuples (u, v) of vertex mappings u<->v, u=None or v=None for deletion/insertion pending_u, pending_v: lists of vertices not yet mapped Cv: CostMatrix of pending vertex mappings matched_gh: partial edge edit path list of tuples (g, h) of edge mappings g<->h, g=None or h=None for deletion/insertion pending_g, pending_h: lists of edges not yet mapped Ce: CostMatrix of pending edge mappings matched_cost: cost of partial edit path Returns: sequence of (vertex_path, edge_path, cost) vertex_path: complete vertex edit path list of tuples (u, v) of vertex mappings u<->v, u=None or v=None for deletion/insertion edge_path: complete edge edit path list of tuples (g, h) of edge mappings g<->h, g=None or h=None for deletion/insertion cost: total cost of edit path NOTE: path costs are non-increasing """ # debug_print('matched-uv:', matched_uv) # debug_print('matched-gh:', matched_gh) # debug_print('matched-cost:', matched_cost) # debug_print('pending-u:', pending_u) # debug_print('pending-v:', pending_v) # debug_print(Cv.C) # assert list(sorted(G1.nodes)) == list(sorted(list(u for u, v in matched_uv if u is not None) + pending_u)) # assert list(sorted(G2.nodes)) == list(sorted(list(v for u, v in matched_uv if v is not None) + pending_v)) # debug_print('pending-g:', pending_g) # debug_print('pending-h:', pending_h) # debug_print(Ce.C) # assert list(sorted(G1.edges)) == list(sorted(list(g for g, h in matched_gh if g is not None) + pending_g)) # assert list(sorted(G2.edges)) == list(sorted(list(h for g, h in matched_gh if h is not None) + pending_h)) # debug_print() if prune(matched_cost + Cv.ls + Ce.ls): return if not max(len(pending_u), len(pending_v)): # assert not len(pending_g) # assert not len(pending_h) # path completed! # assert matched_cost <= maxcost_value nonlocal maxcost_value maxcost_value = min(maxcost_value, matched_cost) yield matched_uv, matched_gh, matched_cost else: edit_ops = get_edit_ops( matched_uv, pending_u, pending_v, Cv, pending_g, pending_h, Ce, matched_cost, ) for ij, Cv_ij, xy, Ce_xy, edit_cost in edit_ops: i, j = ij # assert Cv.C[i, j] + sum(Ce.C[t] for t in xy) == edit_cost if prune(matched_cost + edit_cost + Cv_ij.ls + Ce_xy.ls): continue # dive deeper u = pending_u.pop(i) if i < len(pending_u) else None v = pending_v.pop(j) if j < len(pending_v) else None matched_uv.append((u, v)) for x, y in xy: len_g = len(pending_g) len_h = len(pending_h) matched_gh.append( ( pending_g[x] if x < len_g else None, pending_h[y] if y < len_h else None, ) ) sortedx = sorted(x for x, y in xy) sortedy = sorted(y for x, y in xy) G = [ (pending_g.pop(x) if x < len(pending_g) else None) for x in reversed(sortedx) ] H = [ (pending_h.pop(y) if y < len(pending_h) else None) for y in reversed(sortedy) ] yield from get_edit_paths( matched_uv, pending_u, pending_v, Cv_ij, matched_gh, pending_g, pending_h, Ce_xy, matched_cost + edit_cost, ) # backtrack if u is not None: pending_u.insert(i, u) if v is not None: pending_v.insert(j, v) matched_uv.pop() for x, g in zip(sortedx, reversed(G)): if g is not None: pending_g.insert(x, g) for y, h in zip(sortedy, reversed(H)): if h is not None: pending_h.insert(y, h) for _ in xy: matched_gh.pop() # Initialization pending_u = list(G1.nodes) pending_v = list(G2.nodes) initial_cost = 0 if roots: root_u, root_v = roots if root_u not in pending_u or root_v not in pending_v: raise nx.NodeNotFound("Root node not in graph.") # remove roots from pending pending_u.remove(root_u) pending_v.remove(root_v) # cost matrix of vertex mappings m = len(pending_u) n = len(pending_v) C = np.zeros((m + n, m + n)) if node_subst_cost: C[0:m, 0:n] = np.array( [ node_subst_cost(G1.nodes[u], G2.nodes[v]) for u in pending_u for v in pending_v ] ).reshape(m, n) if roots: initial_cost = node_subst_cost(G1.nodes[root_u], G2.nodes[root_v]) elif node_match: C[0:m, 0:n] = np.array( [ 1 - int(node_match(G1.nodes[u], G2.nodes[v])) for u in pending_u for v in pending_v ] ).reshape(m, n) if roots: initial_cost = 1 - node_match(G1.nodes[root_u], G2.nodes[root_v]) else: # all zeroes pass # assert not min(m, n) or C[0:m, 0:n].min() >= 0 if node_del_cost: del_costs = [node_del_cost(G1.nodes[u]) for u in pending_u] else: del_costs = [1] * len(pending_u) # assert not m or min(del_costs) >= 0 if node_ins_cost: ins_costs = [node_ins_cost(G2.nodes[v]) for v in pending_v] else: ins_costs = [1] * len(pending_v) # assert not n or min(ins_costs) >= 0 inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1 C[0:m, n : n + m] = np.array( [del_costs[i] if i == j else inf for i in range(m) for j in range(m)] ).reshape(m, m) C[m : m + n, 0:n] = np.array( [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)] ).reshape(n, n) Cv = make_CostMatrix(C, m, n) # debug_print(f"Cv: {m} x {n}") # debug_print(Cv.C) pending_g = list(G1.edges) pending_h = list(G2.edges) # cost matrix of edge mappings m = len(pending_g) n = len(pending_h) C = np.zeros((m + n, m + n)) if edge_subst_cost: C[0:m, 0:n] = np.array( [ edge_subst_cost(G1.edges[g], G2.edges[h]) for g in pending_g for h in pending_h ] ).reshape(m, n) elif edge_match: C[0:m, 0:n] = np.array( [ 1 - int(edge_match(G1.edges[g], G2.edges[h])) for g in pending_g for h in pending_h ] ).reshape(m, n) else: # all zeroes pass # assert not min(m, n) or C[0:m, 0:n].min() >= 0 if edge_del_cost: del_costs = [edge_del_cost(G1.edges[g]) for g in pending_g] else: del_costs = [1] * len(pending_g) # assert not m or min(del_costs) >= 0 if edge_ins_cost: ins_costs = [edge_ins_cost(G2.edges[h]) for h in pending_h] else: ins_costs = [1] * len(pending_h) # assert not n or min(ins_costs) >= 0 inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1 C[0:m, n : n + m] = np.array( [del_costs[i] if i == j else inf for i in range(m) for j in range(m)] ).reshape(m, m) C[m : m + n, 0:n] = np.array( [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)] ).reshape(n, n) Ce = make_CostMatrix(C, m, n) # debug_print(f'Ce: {m} x {n}') # debug_print(Ce.C) # debug_print() maxcost_value = Cv.C.sum() + Ce.C.sum() + 1 if timeout is not None: if timeout <= 0: raise nx.NetworkXError("Timeout value must be greater than 0") start = time.perf_counter() def prune(cost): if timeout is not None: if time.perf_counter() - start > timeout: return True if upper_bound is not None: if cost > upper_bound: return True if cost > maxcost_value: return True if strictly_decreasing and cost >= maxcost_value: return True return False # Now go! done_uv = [] if roots is None else [roots] for vertex_path, edge_path, cost in get_edit_paths( done_uv, pending_u, pending_v, Cv, [], pending_g, pending_h, Ce, initial_cost ): # assert sorted(G1.nodes) == sorted(u for u, v in vertex_path if u is not None) # assert sorted(G2.nodes) == sorted(v for u, v in vertex_path if v is not None) # assert sorted(G1.edges) == sorted(g for g, h in edge_path if g is not None) # assert sorted(G2.edges) == sorted(h for g, h in edge_path if h is not None) # print(vertex_path, edge_path, cost, file = sys.stderr) # assert cost == maxcost_value yield list(vertex_path), list(edge_path), float(cost)
(G, source, k=5, path_length=5, c=0.5, delta=0.1, eps=None, weight='weight', *, backend=None, **backend_kwargs)
30,994
networkx.generators.small
pappus_graph
Returns the Pappus graph. The Pappus graph is a cubic symmetric distance-regular graph with 18 nodes and 27 edges. It is Hamiltonian and can be represented in LCF notation as [5,7,-7,7,-7,-5]^3 [1]_. Returns ------- G : networkx Graph Pappus graph References ---------- .. [1] https://en.wikipedia.org/wiki/Pappus_graph
def sedgewick_maze_graph(create_using=None): """ Return a small maze with a cycle. This is the maze used in Sedgewick, 3rd Edition, Part 5, Graph Algorithms, Chapter 18, e.g. Figure 18.2 and following [1]_. Nodes are numbered 0,..,7 Parameters ---------- create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Returns ------- G : networkx Graph Small maze with a cycle References ---------- .. [1] Figure 18.2, Chapter 18, Graph Algorithms (3rd Ed), Sedgewick """ G = empty_graph(0, create_using) G.add_nodes_from(range(8)) G.add_edges_from([[0, 2], [0, 7], [0, 5]]) G.add_edges_from([[1, 7], [2, 6]]) G.add_edges_from([[3, 4], [3, 5]]) G.add_edges_from([[4, 5], [4, 7], [4, 6]]) G.name = "Sedgewick Maze" return G
(*, backend=None, **backend_kwargs)
30,995
networkx.readwrite.adjlist
parse_adjlist
Parse lines of a graph adjacency list representation. Parameters ---------- lines : list or iterator of strings Input data in adjlist format create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. nodetype : Python type, optional Convert nodes to this type. comments : string, optional Marker for comment lines delimiter : string, optional Separator for node labels. The default is whitespace. Returns ------- G: NetworkX graph The graph corresponding to the lines in adjacency list format. Examples -------- >>> lines = ["1 2 5", "2 3 4", "3 5", "4", "5"] >>> G = nx.parse_adjlist(lines, nodetype=int) >>> nodes = [1, 2, 3, 4, 5] >>> all(node in G for node in nodes) True >>> edges = [(1, 2), (1, 5), (2, 3), (2, 4), (3, 5)] >>> all((u, v) in G.edges() or (v, u) in G.edges() for (u, v) in edges) True See Also -------- read_adjlist
null
(lines, comments='#', delimiter=None, create_using=None, nodetype=None, *, backend=None, **backend_kwargs)
30,996
networkx.readwrite.edgelist
parse_edgelist
Parse lines of an edge list representation of a graph. Parameters ---------- lines : list or iterator of strings Input data in edgelist format comments : string, optional Marker for comment lines. Default is `'#'`. To specify that no character should be treated as a comment, use ``comments=None``. delimiter : string, optional Separator for node labels. Default is `None`, meaning any whitespace. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. nodetype : Python type, optional Convert nodes to this type. Default is `None`, meaning no conversion is performed. data : bool or list of (label,type) tuples If `False` generate no edge data or if `True` use a dictionary representation of edge data or a list tuples specifying dictionary key names and types for edge data. Returns ------- G: NetworkX Graph The graph corresponding to lines Examples -------- Edgelist with no data: >>> lines = ["1 2", "2 3", "3 4"] >>> G = nx.parse_edgelist(lines, nodetype=int) >>> list(G) [1, 2, 3, 4] >>> list(G.edges()) [(1, 2), (2, 3), (3, 4)] Edgelist with data in Python dictionary representation: >>> lines = ["1 2 {'weight': 3}", "2 3 {'weight': 27}", "3 4 {'weight': 3.0}"] >>> G = nx.parse_edgelist(lines, nodetype=int) >>> list(G) [1, 2, 3, 4] >>> list(G.edges(data=True)) [(1, 2, {'weight': 3}), (2, 3, {'weight': 27}), (3, 4, {'weight': 3.0})] Edgelist with data in a list: >>> lines = ["1 2 3", "2 3 27", "3 4 3.0"] >>> G = nx.parse_edgelist(lines, nodetype=int, data=(("weight", float),)) >>> list(G) [1, 2, 3, 4] >>> list(G.edges(data=True)) [(1, 2, {'weight': 3.0}), (2, 3, {'weight': 27.0}), (3, 4, {'weight': 3.0})] See Also -------- read_weighted_edgelist
null
(lines, comments='#', delimiter=None, create_using=None, nodetype=None, data=True, *, backend=None, **backend_kwargs)
30,997
networkx.readwrite.gml
parse_gml
Parse GML graph from a string or iterable. Parameters ---------- lines : string or iterable of strings Data in GML format. label : string, optional If not None, the parsed nodes will be renamed according to node attributes indicated by `label`. Default value: 'label'. destringizer : callable, optional A `destringizer` that recovers values stored as strings in GML. If it cannot convert a string to a value, a `ValueError` is raised. Default value : None. Returns ------- G : NetworkX graph The parsed graph. Raises ------ NetworkXError If the input cannot be parsed. See Also -------- write_gml, read_gml Notes ----- This stores nested GML attributes as dictionaries in the NetworkX graph, node, and edge attribute structures. GML files are stored using a 7-bit ASCII encoding with any extended ASCII characters (iso8859-1) appearing as HTML character entities. Without specifying a `stringizer`/`destringizer`, the code is capable of writing `int`/`float`/`str`/`dict`/`list` data as required by the GML specification. For writing other data types, and for reading data other than `str` you need to explicitly supply a `stringizer`/`destringizer`. For additional documentation on the GML file format, please see the `GML url <https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297&L=1>`_. See the module docstring :mod:`networkx.readwrite.gml` for more details.
def generate_gml(G, stringizer=None): r"""Generate a single entry of the graph `G` in GML format. Parameters ---------- G : NetworkX graph The graph to be converted to GML. stringizer : callable, optional A `stringizer` which converts non-int/non-float/non-dict values into strings. If it cannot convert a value into a string, it should raise a `ValueError` to indicate that. Default value: None. Returns ------- lines: generator of strings Lines of GML data. Newlines are not appended. Raises ------ NetworkXError If `stringizer` cannot convert a value into a string, or the value to convert is not a string while `stringizer` is None. See Also -------- literal_stringizer Notes ----- Graph attributes named 'directed', 'multigraph', 'node' or 'edge', node attributes named 'id' or 'label', edge attributes named 'source' or 'target' (or 'key' if `G` is a multigraph) are ignored because these attribute names are used to encode the graph structure. GML files are stored using a 7-bit ASCII encoding with any extended ASCII characters (iso8859-1) appearing as HTML character entities. Without specifying a `stringizer`/`destringizer`, the code is capable of writing `int`/`float`/`str`/`dict`/`list` data as required by the GML specification. For writing other data types, and for reading data other than `str` you need to explicitly supply a `stringizer`/`destringizer`. For additional documentation on the GML file format, please see the `GML url <https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297&L=1>`_. See the module docstring :mod:`networkx.readwrite.gml` for more details. Examples -------- >>> G = nx.Graph() >>> G.add_node("1") >>> print("\n".join(nx.generate_gml(G))) graph [ node [ id 0 label "1" ] ] >>> G = nx.MultiGraph([("a", "b"), ("a", "b")]) >>> print("\n".join(nx.generate_gml(G))) graph [ multigraph 1 node [ id 0 label "a" ] node [ id 1 label "b" ] edge [ source 0 target 1 key 0 ] edge [ source 0 target 1 key 1 ] ] """ valid_keys = re.compile("^[A-Za-z][0-9A-Za-z_]*$") def stringize(key, value, ignored_keys, indent, in_list=False): if not isinstance(key, str): raise NetworkXError(f"{key!r} is not a string") if not valid_keys.match(key): raise NetworkXError(f"{key!r} is not a valid key") if not isinstance(key, str): key = str(key) if key not in ignored_keys: if isinstance(value, int | bool): if key == "label": yield indent + key + ' "' + str(value) + '"' elif value is True: # python bool is an instance of int yield indent + key + " 1" elif value is False: yield indent + key + " 0" # GML only supports signed 32-bit integers elif value < -(2**31) or value >= 2**31: yield indent + key + ' "' + str(value) + '"' else: yield indent + key + " " + str(value) elif isinstance(value, float): text = repr(value).upper() # GML matches INF to keys, so prepend + to INF. Use repr(float(*)) # instead of string literal to future proof against changes to repr. if text == repr(float("inf")).upper(): text = "+" + text else: # GML requires that a real literal contain a decimal point, but # repr may not output a decimal point when the mantissa is # integral and hence needs fixing. epos = text.rfind("E") if epos != -1 and text.find(".", 0, epos) == -1: text = text[:epos] + "." + text[epos:] if key == "label": yield indent + key + ' "' + text + '"' else: yield indent + key + " " + text elif isinstance(value, dict): yield indent + key + " [" next_indent = indent + " " for key, value in value.items(): yield from stringize(key, value, (), next_indent) yield indent + "]" elif isinstance(value, tuple) and key == "label": yield indent + key + f" \"({','.join(repr(v) for v in value)})\"" elif isinstance(value, list | tuple) and key != "label" and not in_list: if len(value) == 0: yield indent + key + " " + f'"{value!r}"' if len(value) == 1: yield indent + key + " " + f'"{LIST_START_VALUE}"' for val in value: yield from stringize(key, val, (), indent, True) else: if stringizer: try: value = stringizer(value) except ValueError as err: raise NetworkXError( f"{value!r} cannot be converted into a string" ) from err if not isinstance(value, str): raise NetworkXError(f"{value!r} is not a string") yield indent + key + ' "' + escape(value) + '"' multigraph = G.is_multigraph() yield "graph [" # Output graph attributes if G.is_directed(): yield " directed 1" if multigraph: yield " multigraph 1" ignored_keys = {"directed", "multigraph", "node", "edge"} for attr, value in G.graph.items(): yield from stringize(attr, value, ignored_keys, " ") # Output node data node_id = dict(zip(G, range(len(G)))) ignored_keys = {"id", "label"} for node, attrs in G.nodes.items(): yield " node [" yield " id " + str(node_id[node]) yield from stringize("label", node, (), " ") for attr, value in attrs.items(): yield from stringize(attr, value, ignored_keys, " ") yield " ]" # Output edge data ignored_keys = {"source", "target"} kwargs = {"data": True} if multigraph: ignored_keys.add("key") kwargs["keys"] = True for e in G.edges(**kwargs): yield " edge [" yield " source " + str(node_id[e[0]]) yield " target " + str(node_id[e[1]]) if multigraph: yield from stringize("key", e[2], (), " ") for attr, value in e[-1].items(): yield from stringize(attr, value, ignored_keys, " ") yield " ]" yield "]"
(lines, label='label', destringizer=None, *, backend=None, **backend_kwargs)
30,998
networkx.readwrite.graphml
parse_graphml
Read graph in GraphML format from string. Parameters ---------- graphml_string : string String containing graphml information (e.g., contents of a graphml file). node_type: Python type (default: str) Convert node ids to this type edge_key_type: Python type (default: int) Convert graphml edge ids to this type. Multigraphs use id as edge key. Non-multigraphs add to edge attribute dict with name "id". force_multigraph : bool (default: False) If True, return a multigraph with edge keys. If False (the default) return a multigraph when multiedges are in the graph. Returns ------- graph: NetworkX graph If no parallel edges are found a Graph or DiGraph is returned. Otherwise a MultiGraph or MultiDiGraph is returned. Examples -------- >>> G = nx.path_graph(4) >>> linefeed = chr(10) # linefeed = >>> s = linefeed.join(nx.generate_graphml(G)) >>> H = nx.parse_graphml(s) Notes ----- Default node and edge attributes are not propagated to each node and edge. They can be obtained from `G.graph` and applied to node and edge attributes if desired using something like this: >>> default_color = G.graph["node_default"]["color"] # doctest: +SKIP >>> for node, data in G.nodes(data=True): # doctest: +SKIP ... if "color" not in data: ... data["color"] = default_color >>> default_color = G.graph["edge_default"]["color"] # doctest: +SKIP >>> for u, v, data in G.edges(data=True): # doctest: +SKIP ... if "color" not in data: ... data["color"] = default_color This implementation does not support mixed graphs (directed and unidirected edges together), hypergraphs, nested graphs, or ports. For multigraphs the GraphML edge "id" will be used as the edge key. If not specified then they "key" attribute will be used. If there is no "key" attribute a default NetworkX multigraph edge key will be provided.
def add_graph_element(self, G): """ Serialize graph G in GraphML to the stream. """ if G.is_directed(): default_edge_type = "directed" else: default_edge_type = "undirected" graphid = G.graph.pop("id", None) if graphid is None: graph_element = self._xml.element("graph", edgedefault=default_edge_type) else: graph_element = self._xml.element( "graph", edgedefault=default_edge_type, id=graphid ) # gather attributes types for the whole graph # to find the most general numeric format needed. # Then pass through attributes to create key_id for each. graphdata = { k: v for k, v in G.graph.items() if k not in ("node_default", "edge_default") } node_default = G.graph.get("node_default", {}) edge_default = G.graph.get("edge_default", {}) # Graph attributes for k, v in graphdata.items(): self.attribute_types[(str(k), "graph")].add(type(v)) for k, v in graphdata.items(): element_type = self.get_xml_type(self.attr_type(k, "graph", v)) self.get_key(str(k), element_type, "graph", None) # Nodes and data for node, d in G.nodes(data=True): for k, v in d.items(): self.attribute_types[(str(k), "node")].add(type(v)) for node, d in G.nodes(data=True): for k, v in d.items(): T = self.get_xml_type(self.attr_type(k, "node", v)) self.get_key(str(k), T, "node", node_default.get(k)) # Edges and data if G.is_multigraph(): for u, v, ekey, d in G.edges(keys=True, data=True): for k, v in d.items(): self.attribute_types[(str(k), "edge")].add(type(v)) for u, v, ekey, d in G.edges(keys=True, data=True): for k, v in d.items(): T = self.get_xml_type(self.attr_type(k, "edge", v)) self.get_key(str(k), T, "edge", edge_default.get(k)) else: for u, v, d in G.edges(data=True): for k, v in d.items(): self.attribute_types[(str(k), "edge")].add(type(v)) for u, v, d in G.edges(data=True): for k, v in d.items(): T = self.get_xml_type(self.attr_type(k, "edge", v)) self.get_key(str(k), T, "edge", edge_default.get(k)) # Now add attribute keys to the xml file for key in self.xml: self._xml.write(key, pretty_print=self._prettyprint) # The incremental_writer writes each node/edge as it is created incremental_writer = IncrementalElement(self._xml, self._prettyprint) with graph_element: self.add_attributes("graph", incremental_writer, graphdata, {}) self.add_nodes(G, incremental_writer) # adds attributes too self.add_edges(G, incremental_writer) # adds attributes too
(graphml_string, node_type=<class 'str'>, edge_key_type=<class 'int'>, force_multigraph=False, *, backend=None, **backend_kwargs)
30,999
networkx.readwrite.leda
parse_leda
Read graph in LEDA format from string or iterable. Parameters ---------- lines : string or iterable Data in LEDA format. Returns ------- G : NetworkX graph Examples -------- G=nx.parse_leda(string) References ---------- .. [1] http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
null
(lines, *, backend=None, **backend_kwargs)
31,000
networkx.readwrite.multiline_adjlist
parse_multiline_adjlist
Parse lines of a multiline adjacency list representation of a graph. Parameters ---------- lines : list or iterator of strings Input data in multiline adjlist format create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. nodetype : Python type, optional Convert nodes to this type. edgetype : Python type, optional Convert edges to this type. comments : string, optional Marker for comment lines delimiter : string, optional Separator for node labels. The default is whitespace. Returns ------- G: NetworkX graph The graph corresponding to the lines in multiline adjacency list format. Examples -------- >>> lines = [ ... "1 2", ... "2 {'weight':3, 'name': 'Frodo'}", ... "3 {}", ... "2 1", ... "5 {'weight':6, 'name': 'Saruman'}", ... ] >>> G = nx.parse_multiline_adjlist(iter(lines), nodetype=int) >>> list(G) [1, 2, 3, 5]
null
(lines, comments='#', delimiter=None, create_using=None, nodetype=None, edgetype=None, *, backend=None, **backend_kwargs)
31,001
networkx.readwrite.pajek
parse_pajek
Parse Pajek format graph from string or iterable. Parameters ---------- lines : string or iterable Data in Pajek format. Returns ------- G : NetworkX graph See Also -------- read_pajek
null
(lines, *, backend=None, **backend_kwargs)
31,002
networkx.generators.duplication
partial_duplication_graph
Returns a random graph using the partial duplication model. Parameters ---------- N : int The total number of nodes in the final graph. n : int The number of nodes in the initial clique. p : float The probability of joining each neighbor of a node to the duplicate node. Must be a number in the between zero and one, inclusive. q : float The probability of joining the source node to the duplicate node. Must be a number in the between zero and one, inclusive. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Notes ----- A graph of nodes is grown by creating a fully connected graph of size `n`. The following procedure is then repeated until a total of `N` nodes have been reached. 1. A random node, *u*, is picked and a new node, *v*, is created. 2. For each neighbor of *u* an edge from the neighbor to *v* is created with probability `p`. 3. An edge from *u* to *v* is created with probability `q`. This algorithm appears in [1]. This implementation allows the possibility of generating disconnected graphs. References ---------- .. [1] Knudsen Michael, and Carsten Wiuf. "A Markov chain approach to randomly grown graphs." Journal of Applied Mathematics 2008. <https://doi.org/10.1155/2008/190836>
null
(N, n, p, q, seed=None, *, backend=None, **backend_kwargs)
31,003
networkx.algorithms.tree.mst
partition_spanning_tree
Find a spanning tree while respecting a partition of edges. Edges can be flagged as either `INCLUDED` which are required to be in the returned tree, `EXCLUDED`, which cannot be in the returned tree and `OPEN`. This is used in the SpanningTreeIterator to create new partitions following the algorithm of Sörensen and Janssens [1]_. Parameters ---------- G : undirected graph An undirected graph. minimum : bool (default: True) Determines whether the returned tree is the minimum spanning tree of the partition of the maximum one. weight : str Data key to use for edge weights. partition : str The key for the edge attribute containing the partition data on the graph. Edges can be included, excluded or open using the `EdgePartition` enum. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. Returns ------- G : NetworkX Graph A minimum spanning tree using all of the included edges in the graph and none of the excluded edges. References ---------- .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning trees in order of increasing cost, Pesquisa Operacional, 2005-08, Vol. 25 (2), p. 219-229, https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en
def random_spanning_tree(G, weight=None, *, multiplicative=True, seed=None): """ Sample a random spanning tree using the edges weights of `G`. This function supports two different methods for determining the probability of the graph. If ``multiplicative=True``, the probability is based on the product of edge weights, and if ``multiplicative=False`` it is based on the sum of the edge weight. However, since it is easier to determine the total weight of all spanning trees for the multiplicative version, that is significantly faster and should be used if possible. Additionally, setting `weight` to `None` will cause a spanning tree to be selected with uniform probability. The function uses algorithm A8 in [1]_ . Parameters ---------- G : nx.Graph An undirected version of the original graph. weight : string The edge key for the edge attribute holding edge weight. multiplicative : bool, default=True If `True`, the probability of each tree is the product of its edge weight over the sum of the product of all the spanning trees in the graph. If `False`, the probability is the sum of its edge weight over the sum of the sum of weights for all spanning trees in the graph. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- nx.Graph A spanning tree using the distribution defined by the weight of the tree. References ---------- .. [1] V. Kulkarni, Generating random combinatorial objects, Journal of Algorithms, 11 (1990), pp. 185–207 """ def find_node(merged_nodes, node): """ We can think of clusters of contracted nodes as having one representative in the graph. Each node which is not in merged_nodes is still its own representative. Since a representative can be later contracted, we need to recursively search though the dict to find the final representative, but once we know it we can use path compression to speed up the access of the representative for next time. This cannot be replaced by the standard NetworkX union_find since that data structure will merge nodes with less representing nodes into the one with more representing nodes but this function requires we merge them using the order that contract_edges contracts using. Parameters ---------- merged_nodes : dict The dict storing the mapping from node to representative node The node whose representative we seek Returns ------- The representative of the `node` """ if node not in merged_nodes: return node else: rep = find_node(merged_nodes, merged_nodes[node]) merged_nodes[node] = rep return rep def prepare_graph(): """ For the graph `G`, remove all edges not in the set `V` and then contract all edges in the set `U`. Returns ------- A copy of `G` which has had all edges not in `V` removed and all edges in `U` contracted. """ # The result is a MultiGraph version of G so that parallel edges are # allowed during edge contraction result = nx.MultiGraph(incoming_graph_data=G) # Remove all edges not in V edges_to_remove = set(result.edges()).difference(V) result.remove_edges_from(edges_to_remove) # Contract all edges in U # # Imagine that you have two edges to contract and they share an # endpoint like this: # [0] ----- [1] ----- [2] # If we contract (0, 1) first, the contraction function will always # delete the second node it is passed so the resulting graph would be # [0] ----- [2] # and edge (1, 2) no longer exists but (0, 2) would need to be contracted # in its place now. That is why I use the below dict as a merge-find # data structure with path compression to track how the nodes are merged. merged_nodes = {} for u, v in U: u_rep = find_node(merged_nodes, u) v_rep = find_node(merged_nodes, v) # We cannot contract a node with itself if u_rep == v_rep: continue nx.contracted_nodes(result, u_rep, v_rep, self_loops=False, copy=False) merged_nodes[v_rep] = u_rep return merged_nodes, result def spanning_tree_total_weight(G, weight): """ Find the sum of weights of the spanning trees of `G` using the appropriate `method`. This is easy if the chosen method is 'multiplicative', since we can use Kirchhoff's Tree Matrix Theorem directly. However, with the 'additive' method, this process is slightly more complex and less computationally efficient as we have to find the number of spanning trees which contain each possible edge in the graph. Parameters ---------- G : NetworkX Graph The graph to find the total weight of all spanning trees on. weight : string The key for the weight edge attribute of the graph. Returns ------- float The sum of either the multiplicative or additive weight for all spanning trees in the graph. """ if multiplicative: return nx.total_spanning_tree_weight(G, weight) else: # There are two cases for the total spanning tree additive weight. # 1. There is one edge in the graph. Then the only spanning tree is # that edge itself, which will have a total weight of that edge # itself. if G.number_of_edges() == 1: return G.edges(data=weight).__iter__().__next__()[2] # 2. There are no edges or two or more edges in the graph. Then, we find the # total weight of the spanning trees using the formula in the # reference paper: take the weight of each edge and multiply it by # the number of spanning trees which include that edge. This # can be accomplished by contracting the edge and finding the # multiplicative total spanning tree weight if the weight of each edge # is assumed to be 1, which is conveniently built into networkx already, # by calling total_spanning_tree_weight with weight=None. # Note that with no edges the returned value is just zero. else: total = 0 for u, v, w in G.edges(data=weight): total += w * nx.total_spanning_tree_weight( nx.contracted_edge(G, edge=(u, v), self_loops=False), None ) return total if G.number_of_nodes() < 2: # no edges in the spanning tree return nx.empty_graph(G.nodes) U = set() st_cached_value = 0 V = set(G.edges()) shuffled_edges = list(G.edges()) seed.shuffle(shuffled_edges) for u, v in shuffled_edges: e_weight = G[u][v][weight] if weight is not None else 1 node_map, prepared_G = prepare_graph() G_total_tree_weight = spanning_tree_total_weight(prepared_G, weight) # Add the edge to U so that we can compute the total tree weight # assuming we include that edge # Now, if (u, v) cannot exist in G because it is fully contracted out # of existence, then it by definition cannot influence G_e's Kirchhoff # value. But, we also cannot pick it. rep_edge = (find_node(node_map, u), find_node(node_map, v)) # Check to see if the 'representative edge' for the current edge is # in prepared_G. If so, then we can pick it. if rep_edge in prepared_G.edges: prepared_G_e = nx.contracted_edge( prepared_G, edge=rep_edge, self_loops=False ) G_e_total_tree_weight = spanning_tree_total_weight(prepared_G_e, weight) if multiplicative: threshold = e_weight * G_e_total_tree_weight / G_total_tree_weight else: numerator = ( st_cached_value + e_weight ) * nx.total_spanning_tree_weight(prepared_G_e) + G_e_total_tree_weight denominator = ( st_cached_value * nx.total_spanning_tree_weight(prepared_G) + G_total_tree_weight ) threshold = numerator / denominator else: threshold = 0.0 z = seed.uniform(0.0, 1.0) if z > threshold: # Remove the edge from V since we did not pick it. V.remove((u, v)) else: # Add the edge to U since we picked it. st_cached_value += e_weight U.add((u, v)) # If we decide to keep an edge, it may complete the spanning tree. if len(U) == G.number_of_nodes() - 1: spanning_tree = nx.Graph() spanning_tree.add_edges_from(U) return spanning_tree raise Exception(f"Something went wrong! Only {len(U)} edges in the spanning tree!")
(G, minimum=True, weight='weight', partition='partition', ignore_nan=False, *, backend=None, **backend_kwargs)
31,004
networkx.generators.classic
path_graph
Returns the Path graph `P_n` of linearly connected nodes. .. plot:: >>> nx.draw(nx.path_graph(5)) Parameters ---------- n : int or iterable If an integer, nodes are 0 to n - 1. If an iterable of nodes, in the order they appear in the path. Warning: n is not checked for duplicates and if present the resulting graph may not be as desired. Make sure you have no duplicates. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated.
def star_graph(n, create_using=None): """Return the star graph The star graph consists of one center node connected to n outer nodes. .. plot:: >>> nx.draw(nx.star_graph(6)) Parameters ---------- n : int or iterable If an integer, node labels are 0 to n with center 0. If an iterable of nodes, the center is the first. Warning: n is not checked for duplicates and if present the resulting graph may not be as desired. Make sure you have no duplicates. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Notes ----- The graph has n+1 nodes for integer n. So star_graph(3) is the same as star_graph(range(4)). """ n, nodes = n if isinstance(n, numbers.Integral): nodes.append(int(n)) # there should be n+1 nodes G = empty_graph(nodes, create_using) if G.is_directed(): raise NetworkXError("Directed Graph not supported") if len(nodes) > 1: hub, *spokes = nodes G.add_edges_from((hub, node) for node in spokes) return G
(n, create_using=None, *, backend=None, **backend_kwargs)
31,005
networkx.classes.function
path_weight
Returns total cost associated with specified path and weight Parameters ---------- G : graph A NetworkX graph. path: list A list of node labels which defines the path to traverse weight: string A string indicating which edge attribute to use for path cost Returns ------- cost: int or float An integer or a float representing the total cost with respect to the specified weight of the specified path Raises ------ NetworkXNoPath If the specified edge does not exist.
def path_weight(G, path, weight): """Returns total cost associated with specified path and weight Parameters ---------- G : graph A NetworkX graph. path: list A list of node labels which defines the path to traverse weight: string A string indicating which edge attribute to use for path cost Returns ------- cost: int or float An integer or a float representing the total cost with respect to the specified weight of the specified path Raises ------ NetworkXNoPath If the specified edge does not exist. """ multigraph = G.is_multigraph() cost = 0 if not nx.is_path(G, path): raise nx.NetworkXNoPath("path does not exist") for node, nbr in nx.utils.pairwise(path): if multigraph: cost += min(v[weight] for v in G._adj[node][nbr].values()) else: cost += G._adj[node][nbr][weight] return cost
(G, path, weight)
31,007
networkx.algorithms.centrality.percolation
percolation_centrality
Compute the percolation centrality for nodes. Percolation centrality of a node $v$, at a given time, is defined as the proportion of ‘percolated paths’ that go through that node. This measure quantifies relative impact of nodes based on their topological connectivity, as well as their percolation states. Percolation states of nodes are used to depict network percolation scenarios (such as during infection transmission in a social network of individuals, spreading of computer viruses on computer networks, or transmission of disease over a network of towns) over time. In this measure usually the percolation state is expressed as a decimal between 0.0 and 1.0. When all nodes are in the same percolated state this measure is equivalent to betweenness centrality. Parameters ---------- G : graph A NetworkX graph. attribute : None or string, optional (default='percolation') Name of the node attribute to use for percolation state, used if `states` is None. If a node does not set the attribute the state of that node will be set to the default value of 1. If all nodes do not have the attribute all nodes will be set to 1 and the centrality measure will be equivalent to betweenness centrality. states : None or dict, optional (default=None) Specify percolation states for the nodes, nodes as keys states as values. weight : None or string, optional (default=None) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. The weight of an edge is treated as the length or distance between the two sides. Returns ------- nodes : dictionary Dictionary of nodes with percolation centrality as the value. See Also -------- betweenness_centrality Notes ----- The algorithm is from Mahendra Piraveenan, Mikhail Prokopenko, and Liaquat Hossain [1]_ Pair dependencies are calculated and accumulated using [2]_ For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes. References ---------- .. [1] Mahendra Piraveenan, Mikhail Prokopenko, Liaquat Hossain Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053095 .. [2] Ulrik Brandes: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. https://doi.org/10.1080/0022250X.2001.9990249
null
(G, attribute='percolation', states=None, weight=None, *, backend=None, **backend_kwargs)
31,008
networkx.algorithms.distance_measures
periphery
Returns the periphery of the graph G. The periphery is the set of nodes with eccentricity equal to the diameter. Parameters ---------- G : NetworkX graph A graph e : eccentricity dictionary, optional A precomputed dictionary of eccentricities. weight : string, function, or None If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining `u` to `v` will be ``G.edges[u, v][weight]``). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. If this is None, every edge has weight/distance/cost 1. Weights stored as floating point values can lead to small round-off errors in distances. Use integer weights to avoid this. Weights should be positive, since they are distances. Returns ------- p : list List of nodes in periphery Examples -------- >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)]) >>> nx.periphery(G) [2, 5] See Also -------- barycenter center
def effective_graph_resistance(G, weight=None, invert_weight=True): """Returns the Effective graph resistance of G. Also known as the Kirchhoff index. The effective graph resistance is defined as the sum of the resistance distance of every node pair in G [1]_. If weight is not provided, then a weight of 1 is used for all edges. The effective graph resistance of a disconnected graph is infinite. Parameters ---------- G : NetworkX graph A graph weight : string or None, optional (default=None) The edge data key used to compute the effective graph resistance. If None, then each edge has weight 1. invert_weight : boolean (default=True) Proper calculation of resistance distance requires building the Laplacian matrix with the reciprocal of the weight. Not required if the weight is already inverted. Weight cannot be zero. Returns ------- RG : float The effective graph resistance of `G`. Raises ------ NetworkXNotImplemented If `G` is a directed graph. NetworkXError If `G` does not contain any nodes. Examples -------- >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)]) >>> round(nx.effective_graph_resistance(G), 10) 10.25 Notes ----- The implementation is based on Theorem 2.2 in [2]_. Self-loops are ignored. Multi-edges are contracted in one edge with weight equal to the harmonic sum of the weights. References ---------- .. [1] Wolfram "Kirchhoff Index." https://mathworld.wolfram.com/KirchhoffIndex.html .. [2] W. Ellens, F. M. Spieksma, P. Van Mieghem, A. Jamakovic, R. E. Kooij. Effective graph resistance. Lin. Alg. Appl. 435:2491-2506, 2011. """ import numpy as np if len(G) == 0: raise nx.NetworkXError("Graph G must contain at least one node.") # Disconnected graphs have infinite Effective graph resistance if not nx.is_connected(G): return float("inf") # Invert weights G = G.copy() if invert_weight and weight is not None: if G.is_multigraph(): for u, v, k, d in G.edges(keys=True, data=True): d[weight] = 1 / d[weight] else: for u, v, d in G.edges(data=True): d[weight] = 1 / d[weight] # Get Laplacian eigenvalues mu = np.sort(nx.laplacian_spectrum(G, weight=weight)) # Compute Effective graph resistance based on spectrum of the Laplacian # Self-loops are ignored return float(np.sum(1 / mu[1:]) * G.number_of_nodes())
(G, e=None, usebounds=False, weight=None, *, backend=None, **backend_kwargs)
31,009
networkx.generators.small
petersen_graph
Returns the Petersen graph. The Peterson graph is a cubic, undirected graph with 10 nodes and 15 edges [1]_. Julius Petersen constructed the graph as the smallest counterexample against the claim that a connected bridgeless cubic graph has an edge colouring with three colours [2]_. Parameters ---------- create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Returns ------- G : networkx Graph Petersen graph References ---------- .. [1] https://en.wikipedia.org/wiki/Petersen_graph .. [2] https://www.win.tue.nl/~aeb/drg/graphs/Petersen.html
def _raise_on_directed(func): """ A decorator which inspects the `create_using` argument and raises a NetworkX exception when `create_using` is a DiGraph (class or instance) for graph generators that do not support directed outputs. """ @wraps(func) def wrapper(*args, **kwargs): if kwargs.get("create_using") is not None: G = nx.empty_graph(create_using=kwargs["create_using"]) if G.is_directed(): raise NetworkXError("Directed Graph not supported") return func(*args, **kwargs) return wrapper
(create_using=None, *, backend=None, **backend_kwargs)
31,011
networkx.drawing.layout
planar_layout
Position nodes without edge intersections. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. If G is of type nx.PlanarEmbedding, the positions are selected accordingly. scale : number (default: 1) Scale factor for positions. center : array-like or None Coordinate pair around which to center the layout. dim : int Dimension of layout. Returns ------- pos : dict A dictionary of positions keyed by node Raises ------ NetworkXException If G is not planar Examples -------- >>> G = nx.path_graph(4) >>> pos = nx.planar_layout(G)
def planar_layout(G, scale=1, center=None, dim=2): """Position nodes without edge intersections. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. If G is of type nx.PlanarEmbedding, the positions are selected accordingly. scale : number (default: 1) Scale factor for positions. center : array-like or None Coordinate pair around which to center the layout. dim : int Dimension of layout. Returns ------- pos : dict A dictionary of positions keyed by node Raises ------ NetworkXException If G is not planar Examples -------- >>> G = nx.path_graph(4) >>> pos = nx.planar_layout(G) """ import numpy as np if dim != 2: raise ValueError("can only handle 2 dimensions") G, center = _process_params(G, center, dim) if len(G) == 0: return {} if isinstance(G, nx.PlanarEmbedding): embedding = G else: is_planar, embedding = nx.check_planarity(G) if not is_planar: raise nx.NetworkXException("G is not planar.") pos = nx.combinatorial_embedding_to_pos(embedding) node_list = list(embedding) pos = np.vstack([pos[x] for x in node_list]) pos = pos.astype(np.float64) pos = rescale_layout(pos, scale=scale) + center return dict(zip(node_list, pos))
(G, scale=1, center=None, dim=2)
31,013
networkx.generators.community
planted_partition_graph
Returns the planted l-partition graph. This model partitions a graph with n=l*k vertices in l groups with k vertices each. Vertices of the same group are linked with a probability p_in, and vertices of different groups are linked with probability p_out. Parameters ---------- l : int Number of groups k : int Number of vertices in each group p_in : float probability of connecting vertices within a group p_out : float probability of connected vertices between groups seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. directed : bool,optional (default=False) If True return a directed graph Returns ------- G : NetworkX Graph or DiGraph planted l-partition graph Raises ------ NetworkXError If `p_in`, `p_out` are not in `[0, 1]` Examples -------- >>> G = nx.planted_partition_graph(4, 3, 0.5, 0.1, seed=42) See Also -------- random_partition_model References ---------- .. [1] A. Condon, R.M. Karp, Algorithms for graph partitioning on the planted partition model, Random Struct. Algor. 18 (2001) 116-140. .. [2] Santo Fortunato 'Community Detection in Graphs' Physical Reports Volume 486, Issue 3-5 p. 75-174. https://arxiv.org/abs/0906.0612
def _generate_communities(degree_seq, community_sizes, mu, max_iters, seed): """Returns a list of sets, each of which represents a community. ``degree_seq`` is the degree sequence that must be met by the graph. ``community_sizes`` is the community size distribution that must be met by the generated list of sets. ``mu`` is a float in the interval [0, 1] indicating the fraction of intra-community edges incident to each node. ``max_iters`` is the number of times to try to add a node to a community. This must be greater than the length of ``degree_seq``, otherwise this function will always fail. If the number of iterations exceeds this value, :exc:`~networkx.exception.ExceededMaxIterations` is raised. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. The communities returned by this are sets of integers in the set {0, ..., *n* - 1}, where *n* is the length of ``degree_seq``. """ # This assumes the nodes in the graph will be natural numbers. result = [set() for _ in community_sizes] n = len(degree_seq) free = list(range(n)) for i in range(max_iters): v = free.pop() c = seed.choice(range(len(community_sizes))) # s = int(degree_seq[v] * (1 - mu) + 0.5) s = round(degree_seq[v] * (1 - mu)) # If the community is large enough, add the node to the chosen # community. Otherwise, return it to the list of unaffiliated # nodes. if s < community_sizes[c]: result[c].add(v) else: free.append(v) # If the community is too big, remove a node from it. if len(result[c]) > community_sizes[c]: free.append(result[c].pop()) if not free: return result msg = "Could not assign communities; try increasing min_community" raise nx.ExceededMaxIterations(msg)
(l, k, p_in, p_out, seed=None, directed=False, *, backend=None, **backend_kwargs)
31,015
networkx.algorithms.operators.product
power
Returns the specified power of a graph. The $k$th power of a simple graph $G$, denoted $G^k$, is a graph on the same set of nodes in which two distinct nodes $u$ and $v$ are adjacent in $G^k$ if and only if the shortest path distance between $u$ and $v$ in $G$ is at most $k$. Parameters ---------- G : graph A NetworkX simple graph object. k : positive integer The power to which to raise the graph `G`. Returns ------- NetworkX simple graph `G` to the power `k`. Raises ------ ValueError If the exponent `k` is not positive. NetworkXNotImplemented If `G` is not a simple graph. Examples -------- The number of edges will never decrease when taking successive powers: >>> G = nx.path_graph(4) >>> list(nx.power(G, 2).edges) [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)] >>> list(nx.power(G, 3).edges) [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)] The `k` th power of a cycle graph on *n* nodes is the complete graph on *n* nodes, if `k` is at least ``n // 2``: >>> G = nx.cycle_graph(5) >>> H = nx.complete_graph(5) >>> nx.is_isomorphic(nx.power(G, 2), H) True >>> G = nx.cycle_graph(8) >>> H = nx.complete_graph(8) >>> nx.is_isomorphic(nx.power(G, 4), H) True References ---------- .. [1] J. A. Bondy, U. S. R. Murty, *Graph Theory*. Springer, 2008. Notes ----- This definition of "power graph" comes from Exercise 3.1.6 of *Graph Theory* by Bondy and Murty [1]_.
null
(G, k, *, backend=None, **backend_kwargs)
31,016
networkx.generators.random_graphs
powerlaw_cluster_graph
Holme and Kim algorithm for growing graphs with powerlaw degree distribution and approximate average clustering. Parameters ---------- n : int the number of nodes m : int the number of random edges to add for each new node p : float, Probability of adding a triangle after adding a random edge seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Notes ----- The average clustering has a hard time getting above a certain cutoff that depends on `m`. This cutoff is often quite low. The transitivity (fraction of triangles to possible triangles) seems to decrease with network size. It is essentially the Barabási–Albert (BA) growth model with an extra step that each random edge is followed by a chance of making an edge to one of its neighbors too (and thus a triangle). This algorithm improves on BA in the sense that it enables a higher average clustering to be attained if desired. It seems possible to have a disconnected graph with this algorithm since the initial `m` nodes may not be all linked to a new node on the first iteration like the BA model. Raises ------ NetworkXError If `m` does not satisfy ``1 <= m <= n`` or `p` does not satisfy ``0 <= p <= 1``. References ---------- .. [1] P. Holme and B. J. Kim, "Growing scale-free networks with tunable clustering", Phys. Rev. E, 65, 026107, 2002.
def dual_barabasi_albert_graph(n, m1, m2, p, seed=None, initial_graph=None): """Returns a random graph using dual Barabási–Albert preferential attachment A graph of $n$ nodes is grown by attaching new nodes each with either $m_1$ edges (with probability $p$) or $m_2$ edges (with probability $1-p$) that are preferentially attached to existing nodes with high degree. Parameters ---------- n : int Number of nodes m1 : int Number of edges to link each new node to existing nodes with probability $p$ m2 : int Number of edges to link each new node to existing nodes with probability $1-p$ p : float The probability of attaching $m_1$ edges (as opposed to $m_2$ edges) seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. initial_graph : Graph or None (default) Initial network for Barabási–Albert algorithm. A copy of `initial_graph` is used. It should be connected for most use cases. If None, starts from an star graph on max(m1, m2) + 1 nodes. Returns ------- G : Graph Raises ------ NetworkXError If `m1` and `m2` do not satisfy ``1 <= m1,m2 < n``, or `p` does not satisfy ``0 <= p <= 1``, or the initial graph number of nodes m0 does not satisfy m1, m2 <= m0 <= n. References ---------- .. [1] N. Moshiri "The dual-Barabasi-Albert model", arXiv:1810.10538. """ if m1 < 1 or m1 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m1 >= 1 and m1 < n, m1 = {m1}, n = {n}" ) if m2 < 1 or m2 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m2 >= 1 and m2 < n, m2 = {m2}, n = {n}" ) if p < 0 or p > 1: raise nx.NetworkXError( f"Dual Barabási–Albert network must have 0 <= p <= 1, p = {p}" ) # For simplicity, if p == 0 or 1, just return BA if p == 1: return barabasi_albert_graph(n, m1, seed) elif p == 0: return barabasi_albert_graph(n, m2, seed) if initial_graph is None: # Default initial graph : empty graph on max(m1, m2) nodes G = star_graph(max(m1, m2)) else: if len(initial_graph) < max(m1, m2) or len(initial_graph) > n: raise nx.NetworkXError( f"Barabási–Albert initial graph must have between " f"max(m1, m2) = {max(m1, m2)} and n = {n} nodes" ) G = initial_graph.copy() # Target nodes for new edges targets = list(G) # List of existing nodes, with nodes repeated once for each adjacent edge repeated_nodes = [n for n, d in G.degree() for _ in range(d)] # Start adding the remaining nodes. source = len(G) while source < n: # Pick which m to use (m1 or m2) if seed.random() < p: m = m1 else: m = m2 # Now choose m unique nodes from the existing nodes # Pick uniformly from repeated_nodes (preferential attachment) targets = _random_subset(repeated_nodes, m, seed) # Add edges to m nodes from the source. G.add_edges_from(zip([source] * m, targets)) # Add one node to the list for each new edge just created. repeated_nodes.extend(targets) # And the new node "source" has m edges to add to the list. repeated_nodes.extend([source] * m) source += 1 return G
(n, m, p, seed=None, *, backend=None, **backend_kwargs)
31,017
networkx.algorithms.shortest_paths.unweighted
predecessor
Returns dict of predecessors for the path from source to all nodes in G. Parameters ---------- G : NetworkX graph source : node label Starting node for path target : node label, optional Ending node for path. If provided only predecessors between source and target are returned cutoff : integer, optional Depth to stop the search. Only paths of length <= cutoff are returned. return_seen : bool, optional (default=None) Whether to return a dictionary, keyed by node, of the level (number of hops) to reach the node (as seen during breadth-first-search). Returns ------- pred : dictionary Dictionary, keyed by node, of predecessors in the shortest path. (pred, seen): tuple of dictionaries If `return_seen` argument is set to `True`, then a tuple of dictionaries is returned. The first element is the dictionary, keyed by node, of predecessors in the shortest path. The second element is the dictionary, keyed by node, of the level (number of hops) to reach the node (as seen during breadth-first-search). Examples -------- >>> G = nx.path_graph(4) >>> list(G) [0, 1, 2, 3] >>> nx.predecessor(G, 0) {0: [], 1: [0], 2: [1], 3: [2]} >>> nx.predecessor(G, 0, return_seen=True) ({0: [], 1: [0], 2: [1], 3: [2]}, {0: 0, 1: 1, 2: 2, 3: 3})
null
(G, source, target=None, cutoff=None, return_seen=None, *, backend=None, **backend_kwargs)
31,018
networkx.algorithms.link_prediction
preferential_attachment
Compute the preferential attachment score of all node pairs in ebunch. Preferential attachment score of `u` and `v` is defined as .. math:: |\Gamma(u)| |\Gamma(v)| where $\Gamma(u)$ denotes the set of neighbors of $u$. Parameters ---------- G : graph NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) Preferential attachment score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all nonexistent edges in the graph will be used. Default value: None. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their preferential attachment score. Raises ------ NetworkXNotImplemented If `G` is a `DiGraph`, a `Multigraph` or a `MultiDiGraph`. NodeNotFound If `ebunch` has a node that is not in `G`. Examples -------- >>> G = nx.complete_graph(5) >>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)]) >>> for u, v, p in preds: ... print(f"({u}, {v}) -> {p}") (0, 1) -> 16 (2, 3) -> 16 References ---------- .. [1] D. Liben-Nowell, J. Kleinberg. The Link Prediction Problem for Social Networks (2004). http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
null
(G, ebunch=None, *, backend=None, **backend_kwargs)
31,019
networkx.generators.trees
prefix_tree
Creates a directed prefix tree from a list of paths. Usually the paths are described as strings or lists of integers. A "prefix tree" represents the prefix structure of the strings. Each node represents a prefix of some string. The root represents the empty prefix with children for the single letter prefixes which in turn have children for each double letter prefix starting with the single letter corresponding to the parent node, and so on. More generally the prefixes do not need to be strings. A prefix refers to the start of a sequence. The root has children for each one element prefix and they have children for each two element prefix that starts with the one element sequence of the parent, and so on. Note that this implementation uses integer nodes with an attribute. Each node has an attribute "source" whose value is the original element of the path to which this node corresponds. For example, suppose `paths` consists of one path: "can". Then the nodes `[1, 2, 3]` which represent this path have "source" values "c", "a" and "n". All the descendants of a node have a common prefix in the sequence/path associated with that node. From the returned tree, the prefix for each node can be constructed by traversing the tree up to the root and accumulating the "source" values along the way. The root node is always `0` and has "source" attribute `None`. The root is the only node with in-degree zero. The nil node is always `-1` and has "source" attribute `"NIL"`. The nil node is the only node with out-degree zero. Parameters ---------- paths: iterable of paths An iterable of paths which are themselves sequences. Matching prefixes among these sequences are identified with nodes of the prefix tree. One leaf of the tree is associated with each path. (Identical paths are associated with the same leaf of the tree.) Returns ------- tree: DiGraph A directed graph representing an arborescence consisting of the prefix tree generated by `paths`. Nodes are directed "downward", from parent to child. A special "synthetic" root node is added to be the parent of the first node in each path. A special "synthetic" leaf node, the "nil" node `-1`, is added to be the child of all nodes representing the last element in a path. (The addition of this nil node technically makes this not an arborescence but a directed acyclic graph; removing the nil node makes it an arborescence.) Notes ----- The prefix tree is also known as a *trie*. Examples -------- Create a prefix tree from a list of strings with common prefixes:: >>> paths = ["ab", "abs", "ad"] >>> T = nx.prefix_tree(paths) >>> list(T.edges) [(0, 1), (1, 2), (1, 4), (2, -1), (2, 3), (3, -1), (4, -1)] The leaf nodes can be obtained as predecessors of the nil node:: >>> root, NIL = 0, -1 >>> list(T.predecessors(NIL)) [2, 3, 4] To recover the original paths that generated the prefix tree, traverse up the tree from the node `-1` to the node `0`:: >>> recovered = [] >>> for v in T.predecessors(NIL): ... prefix = "" ... while v != root: ... prefix = str(T.nodes[v]["source"]) + prefix ... v = next(T.predecessors(v)) # only one predecessor ... recovered.append(prefix) >>> sorted(recovered) ['ab', 'abs', 'ad']
def random_unlabeled_rooted_tree(n, *, number_of_trees=None, seed=None): """Returns a number of unlabeled rooted trees uniformly at random Returns one or more (depending on `number_of_trees`) unlabeled rooted trees with `n` nodes drawn uniformly at random. Parameters ---------- n : int The number of nodes number_of_trees : int or None (default) If not None, this number of trees is generated and returned. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- :class:`networkx.Graph` or list of :class:`networkx.Graph` A single `networkx.Graph` (or a list thereof, if `number_of_trees` is specified) with nodes in the set {0, …, *n* - 1}. The "root" graph attribute identifies the root of the tree. Notes ----- The trees are generated using the "RANRUT" algorithm from [1]_. The algorithm needs to compute some counting functions that are relatively expensive: in case several trees are needed, it is advisable to use the `number_of_trees` optional argument to reuse the counting functions. Raises ------ NetworkXPointlessConcept If `n` is zero (because the null graph is not a tree). References ---------- .. [1] Nijenhuis, Albert, and Wilf, Herbert S. "Combinatorial algorithms: for computers and calculators." Academic Press, 1978. https://doi.org/10.1016/C2013-0-11243-3 """ if n == 0: raise nx.NetworkXPointlessConcept("the null graph is not a tree") cache_trees = [0, 1] # initial cache of number of rooted trees if number_of_trees is None: return _to_nx(*_random_unlabeled_rooted_tree(n, cache_trees, seed), root=0) return [ _to_nx(*_random_unlabeled_rooted_tree(n, cache_trees, seed), root=0) for i in range(number_of_trees) ]
(paths, *, backend=None, **backend_kwargs)
31,020
networkx.generators.trees
prefix_tree_recursive
Recursively creates a directed prefix tree from a list of paths. The original recursive version of prefix_tree for comparison. It is the same algorithm but the recursion is unrolled onto a stack. Usually the paths are described as strings or lists of integers. A "prefix tree" represents the prefix structure of the strings. Each node represents a prefix of some string. The root represents the empty prefix with children for the single letter prefixes which in turn have children for each double letter prefix starting with the single letter corresponding to the parent node, and so on. More generally the prefixes do not need to be strings. A prefix refers to the start of a sequence. The root has children for each one element prefix and they have children for each two element prefix that starts with the one element sequence of the parent, and so on. Note that this implementation uses integer nodes with an attribute. Each node has an attribute "source" whose value is the original element of the path to which this node corresponds. For example, suppose `paths` consists of one path: "can". Then the nodes `[1, 2, 3]` which represent this path have "source" values "c", "a" and "n". All the descendants of a node have a common prefix in the sequence/path associated with that node. From the returned tree, ehe prefix for each node can be constructed by traversing the tree up to the root and accumulating the "source" values along the way. The root node is always `0` and has "source" attribute `None`. The root is the only node with in-degree zero. The nil node is always `-1` and has "source" attribute `"NIL"`. The nil node is the only node with out-degree zero. Parameters ---------- paths: iterable of paths An iterable of paths which are themselves sequences. Matching prefixes among these sequences are identified with nodes of the prefix tree. One leaf of the tree is associated with each path. (Identical paths are associated with the same leaf of the tree.) Returns ------- tree: DiGraph A directed graph representing an arborescence consisting of the prefix tree generated by `paths`. Nodes are directed "downward", from parent to child. A special "synthetic" root node is added to be the parent of the first node in each path. A special "synthetic" leaf node, the "nil" node `-1`, is added to be the child of all nodes representing the last element in a path. (The addition of this nil node technically makes this not an arborescence but a directed acyclic graph; removing the nil node makes it an arborescence.) Notes ----- The prefix tree is also known as a *trie*. Examples -------- Create a prefix tree from a list of strings with common prefixes:: >>> paths = ["ab", "abs", "ad"] >>> T = nx.prefix_tree(paths) >>> list(T.edges) [(0, 1), (1, 2), (1, 4), (2, -1), (2, 3), (3, -1), (4, -1)] The leaf nodes can be obtained as predecessors of the nil node. >>> root, NIL = 0, -1 >>> list(T.predecessors(NIL)) [2, 3, 4] To recover the original paths that generated the prefix tree, traverse up the tree from the node `-1` to the node `0`:: >>> recovered = [] >>> for v in T.predecessors(NIL): ... prefix = "" ... while v != root: ... prefix = str(T.nodes[v]["source"]) + prefix ... v = next(T.predecessors(v)) # only one predecessor ... recovered.append(prefix) >>> sorted(recovered) ['ab', 'abs', 'ad']
def random_unlabeled_rooted_tree(n, *, number_of_trees=None, seed=None): """Returns a number of unlabeled rooted trees uniformly at random Returns one or more (depending on `number_of_trees`) unlabeled rooted trees with `n` nodes drawn uniformly at random. Parameters ---------- n : int The number of nodes number_of_trees : int or None (default) If not None, this number of trees is generated and returned. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- :class:`networkx.Graph` or list of :class:`networkx.Graph` A single `networkx.Graph` (or a list thereof, if `number_of_trees` is specified) with nodes in the set {0, …, *n* - 1}. The "root" graph attribute identifies the root of the tree. Notes ----- The trees are generated using the "RANRUT" algorithm from [1]_. The algorithm needs to compute some counting functions that are relatively expensive: in case several trees are needed, it is advisable to use the `number_of_trees` optional argument to reuse the counting functions. Raises ------ NetworkXPointlessConcept If `n` is zero (because the null graph is not a tree). References ---------- .. [1] Nijenhuis, Albert, and Wilf, Herbert S. "Combinatorial algorithms: for computers and calculators." Academic Press, 1978. https://doi.org/10.1016/C2013-0-11243-3 """ if n == 0: raise nx.NetworkXPointlessConcept("the null graph is not a tree") cache_trees = [0, 1] # initial cache of number of rooted trees if number_of_trees is None: return _to_nx(*_random_unlabeled_rooted_tree(n, cache_trees, seed), root=0) return [ _to_nx(*_random_unlabeled_rooted_tree(n, cache_trees, seed), root=0) for i in range(number_of_trees) ]
(paths, *, backend=None, **backend_kwargs)
31,022
networkx.algorithms.bipartite.projection
projected_graph
Returns the projection of B onto one of its node sets. Returns the graph G that is the projection of the bipartite graph B onto the specified nodes. They retain their attributes and are connected in G if they have a common neighbor in B. Parameters ---------- B : NetworkX graph The input graph should be bipartite. nodes : list or iterable Nodes to project onto (the "bottom" nodes). multigraph: bool (default=False) If True return a multigraph where the multiple edges represent multiple shared neighbors. They edge key in the multigraph is assigned to the label of the neighbor. Returns ------- Graph : NetworkX graph or multigraph A graph that is the projection onto the given nodes. Examples -------- >>> from networkx.algorithms import bipartite >>> B = nx.path_graph(4) >>> G = bipartite.projected_graph(B, [1, 3]) >>> list(G) [1, 3] >>> list(G.edges()) [(1, 3)] If nodes `a`, and `b` are connected through both nodes 1 and 2 then building a multigraph results in two edges in the projection onto [`a`, `b`]: >>> B = nx.Graph() >>> B.add_edges_from([("a", 1), ("b", 1), ("a", 2), ("b", 2)]) >>> G = bipartite.projected_graph(B, ["a", "b"], multigraph=True) >>> print([sorted((u, v)) for u, v in G.edges()]) [['a', 'b'], ['a', 'b']] Notes ----- No attempt is made to verify that the input graph B is bipartite. Returns a simple graph that is the projection of the bipartite graph B onto the set of nodes given in list nodes. If multigraph=True then a multigraph is returned with an edge for every shared neighbor. Directed graphs are allowed as input. The output will also then be a directed graph with edges if there is a directed path between the nodes. The graph and node properties are (shallow) copied to the projected graph. See :mod:`bipartite documentation <networkx.algorithms.bipartite>` for further details on how bipartite graphs are handled in NetworkX. See Also -------- is_bipartite, is_bipartite_node_set, sets, weighted_projected_graph, collaboration_weighted_projected_graph, overlap_weighted_projected_graph, generic_weighted_projected_graph
null
(B, nodes, multigraph=False, *, backend=None, **backend_kwargs)
31,023
networkx.algorithms.centrality.group
prominent_group
Find the prominent group of size $k$ in graph $G$. The prominence of the group is evaluated by the group betweenness centrality. Group betweenness centrality of a group of nodes $C$ is the sum of the fraction of all-pairs shortest paths that pass through any vertex in $C$ .. math:: c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)} where $V$ is the set of nodes, $\sigma(s, t)$ is the number of shortest $(s, t)$-paths, and $\sigma(s, t|C)$ is the number of those paths passing through some node in group $C$. Note that $(s, t)$ are not members of the group ($V-C$ is the set of nodes in $V$ that are not in $C$). Parameters ---------- G : graph A NetworkX graph. k : int The number of nodes in the group. normalized : bool, optional (default=True) If True, group betweenness is normalized by ``1/((|V|-|C|)(|V|-|C|-1))`` where ``|V|`` is the number of nodes in G and ``|C|`` is the number of nodes in C. weight : None or string, optional (default=None) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. The weight of an edge is treated as the length or distance between the two sides. endpoints : bool, optional (default=False) If True include the endpoints in the shortest path counts. C : list or set, optional (default=None) list of nodes which won't be candidates of the prominent group. greedy : bool, optional (default=False) Using a naive greedy algorithm in order to find non-optimal prominent group. For scale free networks the results are negligibly below the optimal results. Raises ------ NodeNotFound If node(s) in C are not present in G. Returns ------- max_GBC : float The group betweenness centrality of the prominent group. max_group : list The list of nodes in the prominent group. See Also -------- betweenness_centrality, group_betweenness_centrality Notes ----- Group betweenness centrality is described in [1]_ and its importance discussed in [3]_. The algorithm is described in [2]_ and is based on techniques mentioned in [4]_. The number of nodes in the group must be a maximum of ``n - 2`` where ``n`` is the total number of nodes in the graph. For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes. The total number of paths between source and target is counted differently for directed and undirected graphs. Directed paths between "u" and "v" are counted as two possible paths (one each direction) while undirected paths between "u" and "v" are counted as one path. Said another way, the sum in the expression above is over all ``s != t`` for directed graphs and for ``s < t`` for undirected graphs. References ---------- .. [1] M G Everett and S P Borgatti: The Centrality of Groups and Classes. Journal of Mathematical Sociology. 23(3): 181-201. 1999. http://www.analytictech.com/borgatti/group_centrality.htm .. [2] Rami Puzis, Yuval Elovici, and Shlomi Dolev: "Finding the Most Prominent Group in Complex Networks" AI communications 20(4): 287-296, 2007. https://www.researchgate.net/profile/Rami_Puzis2/publication/220308855 .. [3] Sourav Medya et. al.: Group Centrality Maximization via Network Design. SIAM International Conference on Data Mining, SDM 2018, 126–134. https://sites.cs.ucsb.edu/~arlei/pubs/sdm18.pdf .. [4] Rami Puzis, Yuval Elovici, and Shlomi Dolev. "Fast algorithm for successive computation of group betweenness centrality." https://journals.aps.org/pre/pdf/10.1103/PhysRevE.76.056709
null
(G, k, weight=None, C=None, endpoints=False, normalized=True, greedy=False, *, backend=None, **backend_kwargs)
31,024
networkx.algorithms.minors.contraction
quotient_graph
Returns the quotient graph of `G` under the specified equivalence relation on nodes. Parameters ---------- G : NetworkX graph The graph for which to return the quotient graph with the specified node relation. partition : function, or dict or list of lists, tuples or sets If a function, this function must represent an equivalence relation on the nodes of `G`. It must take two arguments *u* and *v* and return True exactly when *u* and *v* are in the same equivalence class. The equivalence classes form the nodes in the returned graph. If a dict of lists/tuples/sets, the keys can be any meaningful block labels, but the values must be the block lists/tuples/sets (one list/tuple/set per block), and the blocks must form a valid partition of the nodes of the graph. That is, each node must be in exactly one block of the partition. If a list of sets, the list must form a valid partition of the nodes of the graph. That is, each node must be in exactly one block of the partition. edge_relation : Boolean function with two arguments This function must represent an edge relation on the *blocks* of the `partition` of `G`. It must take two arguments, *B* and *C*, each one a set of nodes, and return True exactly when there should be an edge joining block *B* to block *C* in the returned graph. If `edge_relation` is not specified, it is assumed to be the following relation. Block *B* is related to block *C* if and only if some node in *B* is adjacent to some node in *C*, according to the edge set of `G`. node_data : function This function takes one argument, *B*, a set of nodes in `G`, and must return a dictionary representing the node data attributes to set on the node representing *B* in the quotient graph. If None, the following node attributes will be set: * 'graph', the subgraph of the graph `G` that this block represents, * 'nnodes', the number of nodes in this block, * 'nedges', the number of edges within this block, * 'density', the density of the subgraph of `G` that this block represents. edge_data : function This function takes two arguments, *B* and *C*, each one a set of nodes, and must return a dictionary representing the edge data attributes to set on the edge joining *B* and *C*, should there be an edge joining *B* and *C* in the quotient graph (if no such edge occurs in the quotient graph as determined by `edge_relation`, then the output of this function is ignored). If the quotient graph would be a multigraph, this function is not applied, since the edge data from each edge in the graph `G` appears in the edges of the quotient graph. weight : string or None, optional (default="weight") The name of an edge attribute that holds the numerical value used as a weight. If None then each edge has weight 1. relabel : bool If True, relabel the nodes of the quotient graph to be nonnegative integers. Otherwise, the nodes are identified with :class:`frozenset` instances representing the blocks given in `partition`. create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Returns ------- NetworkX graph The quotient graph of `G` under the equivalence relation specified by `partition`. If the partition were given as a list of :class:`set` instances and `relabel` is False, each node will be a :class:`frozenset` corresponding to the same :class:`set`. Raises ------ NetworkXException If the given partition is not a valid partition of the nodes of `G`. Examples -------- The quotient graph of the complete bipartite graph under the "same neighbors" equivalence relation is `K_2`. Under this relation, two nodes are equivalent if they are not adjacent but have the same neighbor set. >>> G = nx.complete_bipartite_graph(2, 3) >>> same_neighbors = lambda u, v: (u not in G[v] and v not in G[u] and G[u] == G[v]) >>> Q = nx.quotient_graph(G, same_neighbors) >>> K2 = nx.complete_graph(2) >>> nx.is_isomorphic(Q, K2) True The quotient graph of a directed graph under the "same strongly connected component" equivalence relation is the condensation of the graph (see :func:`condensation`). This example comes from the Wikipedia article *`Strongly connected component`_*. >>> G = nx.DiGraph() >>> edges = [ ... "ab", ... "be", ... "bf", ... "bc", ... "cg", ... "cd", ... "dc", ... "dh", ... "ea", ... "ef", ... "fg", ... "gf", ... "hd", ... "hf", ... ] >>> G.add_edges_from(tuple(x) for x in edges) >>> components = list(nx.strongly_connected_components(G)) >>> sorted(sorted(component) for component in components) [['a', 'b', 'e'], ['c', 'd', 'h'], ['f', 'g']] >>> >>> C = nx.condensation(G, components) >>> component_of = C.graph["mapping"] >>> same_component = lambda u, v: component_of[u] == component_of[v] >>> Q = nx.quotient_graph(G, same_component) >>> nx.is_isomorphic(C, Q) True Node identification can be represented as the quotient of a graph under the equivalence relation that places the two nodes in one block and each other node in its own singleton block. >>> K24 = nx.complete_bipartite_graph(2, 4) >>> K34 = nx.complete_bipartite_graph(3, 4) >>> C = nx.contracted_nodes(K34, 1, 2) >>> nodes = {1, 2} >>> is_contracted = lambda u, v: u in nodes and v in nodes >>> Q = nx.quotient_graph(K34, is_contracted) >>> nx.is_isomorphic(Q, C) True >>> nx.is_isomorphic(Q, K24) True The blockmodeling technique described in [1]_ can be implemented as a quotient graph. >>> G = nx.path_graph(6) >>> partition = [{0, 1}, {2, 3}, {4, 5}] >>> M = nx.quotient_graph(G, partition, relabel=True) >>> list(M.edges()) [(0, 1), (1, 2)] Here is the sample example but using partition as a dict of block sets. >>> G = nx.path_graph(6) >>> partition = {0: {0, 1}, 2: {2, 3}, 4: {4, 5}} >>> M = nx.quotient_graph(G, partition, relabel=True) >>> list(M.edges()) [(0, 1), (1, 2)] Partitions can be represented in various ways: 0. a list/tuple/set of block lists/tuples/sets 1. a dict with block labels as keys and blocks lists/tuples/sets as values 2. a dict with block lists/tuples/sets as keys and block labels as values 3. a function from nodes in the original iterable to block labels 4. an equivalence relation function on the target iterable As `quotient_graph` is designed to accept partitions represented as (0), (1) or (4) only, the `equivalence_classes` function can be used to get the partitions in the right form, in order to call `quotient_graph`. .. _Strongly connected component: https://en.wikipedia.org/wiki/Strongly_connected_component References ---------- .. [1] Patrick Doreian, Vladimir Batagelj, and Anuska Ferligoj. *Generalized Blockmodeling*. Cambridge University Press, 2004.
null
(G, partition, edge_relation=None, node_data=None, edge_data=None, weight='weight', relabel=False, create_using=None, *, backend=None, **backend_kwargs)
31,025
networkx.algorithms.link_prediction
ra_index_soundarajan_hopcroft
Compute the resource allocation index of all node pairs in ebunch using community information. For two nodes $u$ and $v$, this function computes the resource allocation index considering only common neighbors belonging to the same community as $u$ and $v$. Mathematically, .. math:: \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{f(w)}{|\Gamma(w)|} where $f(w)$ equals 1 if $w$ belongs to the same community as $u$ and $v$ or 0 otherwise and $\Gamma(u)$ denotes the set of neighbors of $u$. Parameters ---------- G : graph A NetworkX undirected graph. ebunch : iterable of node pairs, optional (default = None) The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all nonexistent edges in the graph will be used. Default value: None. community : string, optional (default = 'community') Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. Returns ------- piter : iterator An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their score. Raises ------ NetworkXNotImplemented If `G` is a `DiGraph`, a `Multigraph` or a `MultiDiGraph`. NetworkXAlgorithmError If no community information is available for a node in `ebunch` or in `G` (if `ebunch` is `None`). NodeNotFound If `ebunch` has a node that is not in `G`. Examples -------- >>> G = nx.Graph() >>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) >>> G.nodes[0]["community"] = 0 >>> G.nodes[1]["community"] = 0 >>> G.nodes[2]["community"] = 1 >>> G.nodes[3]["community"] = 0 >>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)]) >>> for u, v, p in preds: ... print(f"({u}, {v}) -> {p:.8f}") (0, 3) -> 0.50000000 References ---------- .. [1] Sucheta Soundarajan and John Hopcroft. Using community information to improve the precision of link prediction methods. In Proceedings of the 21st international conference companion on World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608. http://doi.acm.org/10.1145/2187980.2188150
null
(G, ebunch=None, community='community', *, backend=None, **backend_kwargs)
31,026
networkx.algorithms.distance_measures
radius
Returns the radius of the graph G. The radius is the minimum eccentricity. Parameters ---------- G : NetworkX graph A graph e : eccentricity dictionary, optional A precomputed dictionary of eccentricities. weight : string, function, or None If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining `u` to `v` will be ``G.edges[u, v][weight]``). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. If this is None, every edge has weight/distance/cost 1. Weights stored as floating point values can lead to small round-off errors in distances. Use integer weights to avoid this. Weights should be positive, since they are distances. Returns ------- r : integer Radius of graph Examples -------- >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)]) >>> nx.radius(G) 2
def effective_graph_resistance(G, weight=None, invert_weight=True): """Returns the Effective graph resistance of G. Also known as the Kirchhoff index. The effective graph resistance is defined as the sum of the resistance distance of every node pair in G [1]_. If weight is not provided, then a weight of 1 is used for all edges. The effective graph resistance of a disconnected graph is infinite. Parameters ---------- G : NetworkX graph A graph weight : string or None, optional (default=None) The edge data key used to compute the effective graph resistance. If None, then each edge has weight 1. invert_weight : boolean (default=True) Proper calculation of resistance distance requires building the Laplacian matrix with the reciprocal of the weight. Not required if the weight is already inverted. Weight cannot be zero. Returns ------- RG : float The effective graph resistance of `G`. Raises ------ NetworkXNotImplemented If `G` is a directed graph. NetworkXError If `G` does not contain any nodes. Examples -------- >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)]) >>> round(nx.effective_graph_resistance(G), 10) 10.25 Notes ----- The implementation is based on Theorem 2.2 in [2]_. Self-loops are ignored. Multi-edges are contracted in one edge with weight equal to the harmonic sum of the weights. References ---------- .. [1] Wolfram "Kirchhoff Index." https://mathworld.wolfram.com/KirchhoffIndex.html .. [2] W. Ellens, F. M. Spieksma, P. Van Mieghem, A. Jamakovic, R. E. Kooij. Effective graph resistance. Lin. Alg. Appl. 435:2491-2506, 2011. """ import numpy as np if len(G) == 0: raise nx.NetworkXError("Graph G must contain at least one node.") # Disconnected graphs have infinite Effective graph resistance if not nx.is_connected(G): return float("inf") # Invert weights G = G.copy() if invert_weight and weight is not None: if G.is_multigraph(): for u, v, k, d in G.edges(keys=True, data=True): d[weight] = 1 / d[weight] else: for u, v, d in G.edges(data=True): d[weight] = 1 / d[weight] # Get Laplacian eigenvalues mu = np.sort(nx.laplacian_spectrum(G, weight=weight)) # Compute Effective graph resistance based on spectrum of the Laplacian # Self-loops are ignored return float(np.sum(1 / mu[1:]) * G.number_of_nodes())
(G, e=None, usebounds=False, weight=None, *, backend=None, **backend_kwargs)
31,028
networkx.generators.random_clustered
random_clustered_graph
Generate a random graph with the given joint independent edge degree and triangle degree sequence. This uses a configuration model-like approach to generate a random graph (with parallel edges and self-loops) by randomly assigning edges to match the given joint degree sequence. The joint degree sequence is a list of pairs of integers of the form $[(d_{1,i}, d_{1,t}), \dotsc, (d_{n,i}, d_{n,t})]$. According to this list, vertex $u$ is a member of $d_{u,t}$ triangles and has $d_{u, i}$ other edges. The number $d_{u,t}$ is the *triangle degree* of $u$ and the number $d_{u,i}$ is the *independent edge degree*. Parameters ---------- joint_degree_sequence : list of integer pairs Each list entry corresponds to the independent edge degree and triangle degree of a node. create_using : NetworkX graph constructor, optional (default MultiGraph) Graph type to create. If graph instance, then cleared before populated. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- G : MultiGraph A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence. Raises ------ NetworkXError If the independent edge degree sequence sum is not even or the triangle degree sequence sum is not divisible by 3. Notes ----- As described by Miller [1]_ (see also Newman [2]_ for an equivalent description). A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the independent degree sequence does not have an even sum or the triangle degree sequence sum is not divisible by 3. This configuration model-like construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. This "finite-size effect" decreases as the size of the graph increases. References ---------- .. [1] Joel C. Miller. "Percolation and epidemics in random clustered networks". In: Physical review. E, Statistical, nonlinear, and soft matter physics 80 (2 Part 1 August 2009). .. [2] M. E. J. Newman. "Random Graphs with Clustering". In: Physical Review Letters 103 (5 July 2009) Examples -------- >>> deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)] >>> G = nx.random_clustered_graph(deg) To remove parallel edges: >>> G = nx.Graph(G) To remove self loops: >>> G.remove_edges_from(nx.selfloop_edges(G))
null
(joint_degree_sequence, create_using=None, seed=None, *, backend=None, **backend_kwargs)
31,029
networkx.generators.cographs
random_cograph
Returns a random cograph with $2 ^ n$ nodes. A cograph is a graph containing no path on four vertices. Cographs or $P_4$-free graphs can be obtained from a single vertex by disjoint union and complementation operations. This generator starts off from a single vertex and performs disjoint union and full join operations on itself. The decision on which operation will take place is random. Parameters ---------- n : int The order of the cograph. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- G : A random graph containing no path on four vertices. See Also -------- full_join union References ---------- .. [1] D.G. Corneil, H. Lerchs, L.Stewart Burlingham, "Complement reducible graphs", Discrete Applied Mathematics, Volume 3, Issue 3, 1981, Pages 163-174, ISSN 0166-218X.
null
(n, seed=None, *, backend=None, **backend_kwargs)
31,030
networkx.generators.degree_seq
random_degree_sequence_graph
Returns a simple random graph with the given degree sequence. If the maximum degree $d_m$ in the sequence is $O(m^{1/4})$ then the algorithm produces almost uniform random graphs in $O(m d_m)$ time where $m$ is the number of edges. Parameters ---------- sequence : list of integers Sequence of degrees seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. tries : int, optional Maximum number of tries to create a graph Returns ------- G : Graph A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in the sequence. Raises ------ NetworkXUnfeasible If the degree sequence is not graphical. NetworkXError If a graph is not produced in specified number of tries See Also -------- is_graphical, configuration_model Notes ----- The generator algorithm [1]_ is not guaranteed to produce a graph. References ---------- .. [1] Moshen Bayati, Jeong Han Kim, and Amin Saberi, A sequential algorithm for generating random graphs. Algorithmica, Volume 58, Number 4, 860-910, DOI: 10.1007/s00453-009-9340-1 Examples -------- >>> sequence = [1, 2, 2, 3] >>> G = nx.random_degree_sequence_graph(sequence, seed=42) >>> sorted(d for n, d in G.degree()) [1, 2, 2, 3]
def generate(self): # remaining_degree is mapping from int->remaining degree self.remaining_degree = dict(enumerate(self.degree)) # add all nodes to make sure we get isolated nodes self.graph = nx.Graph() self.graph.add_nodes_from(self.remaining_degree) # remove zero degree nodes for n, d in list(self.remaining_degree.items()): if d == 0: del self.remaining_degree[n] if len(self.remaining_degree) > 0: # build graph in three phases according to how many unmatched edges self.phase1() self.phase2() self.phase3() return self.graph
(sequence, seed=None, tries=10, *, backend=None, **backend_kwargs)
31,031
networkx.generators.geometric
random_geometric_graph
Returns a random geometric graph in the unit cube of dimensions `dim`. The random geometric graph model places `n` nodes uniformly at random in the unit cube. Two nodes are joined by an edge if the distance between the nodes is at most `radius`. Edges are determined using a KDTree when SciPy is available. This reduces the time complexity from $O(n^2)$ to $O(n)$. Parameters ---------- n : int or iterable Number of nodes or iterable of nodes radius: float Distance threshold value dim : int, optional Dimension of graph pos : dict, optional A dictionary keyed by node with node positions as values. p : float, optional Which Minkowski distance metric to use. `p` has to meet the condition ``1 <= p <= infinity``. If this argument is not specified, the :math:`L^2` metric (the Euclidean distance metric), p = 2 is used. This should not be confused with the `p` of an Erdős-Rényi random graph, which represents probability. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. pos_name : string, default="pos" The name of the node attribute which represents the position in 2D coordinates of the node in the returned graph. Returns ------- Graph A random geometric graph, undirected and without self-loops. Each node has a node attribute ``'pos'`` that stores the position of that node in Euclidean space as provided by the ``pos`` keyword argument or, if ``pos`` was not provided, as generated by this function. Examples -------- Create a random geometric graph on twenty nodes where nodes are joined by an edge if their distance is at most 0.1:: >>> G = nx.random_geometric_graph(20, 0.1) Notes ----- This uses a *k*-d tree to build the graph. The `pos` keyword argument can be used to specify node positions so you can create an arbitrary distribution and domain for positions. For example, to use a 2D Gaussian distribution of node positions with mean (0, 0) and standard deviation 2:: >>> import random >>> n = 20 >>> pos = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)} >>> G = nx.random_geometric_graph(n, 0.2, pos=pos) References ---------- .. [1] Penrose, Mathew, *Random Geometric Graphs*, Oxford Studies in Probability, 5, 2003.
def thresholded_random_geometric_graph( n, radius, theta, dim=2, pos=None, weight=None, p=2, seed=None, *, pos_name="pos", weight_name="weight", ): r"""Returns a thresholded random geometric graph in the unit cube. The thresholded random geometric graph [1] model places `n` nodes uniformly at random in the unit cube of dimensions `dim`. Each node `u` is assigned a weight :math:`w_u`. Two nodes `u` and `v` are joined by an edge if they are within the maximum connection distance, `radius` computed by the `p`-Minkowski distance and the summation of weights :math:`w_u` + :math:`w_v` is greater than or equal to the threshold parameter `theta`. Edges within `radius` of each other are determined using a KDTree when SciPy is available. This reduces the time complexity from :math:`O(n^2)` to :math:`O(n)`. Parameters ---------- n : int or iterable Number of nodes or iterable of nodes radius: float Distance threshold value theta: float Threshold value dim : int, optional Dimension of graph pos : dict, optional A dictionary keyed by node with node positions as values. weight : dict, optional Node weights as a dictionary of numbers keyed by node. p : float, optional (default 2) Which Minkowski distance metric to use. `p` has to meet the condition ``1 <= p <= infinity``. If this argument is not specified, the :math:`L^2` metric (the Euclidean distance metric), p = 2 is used. This should not be confused with the `p` of an Erdős-Rényi random graph, which represents probability. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. pos_name : string, default="pos" The name of the node attribute which represents the position in 2D coordinates of the node in the returned graph. weight_name : string, default="weight" The name of the node attribute which represents the weight of the node in the returned graph. Returns ------- Graph A thresholded random geographic graph, undirected and without self-loops. Each node has a node attribute ``'pos'`` that stores the position of that node in Euclidean space as provided by the ``pos`` keyword argument or, if ``pos`` was not provided, as generated by this function. Similarly, each node has a nodethre attribute ``'weight'`` that stores the weight of that node as provided or as generated. Examples -------- Default Graph: G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1) Custom Graph: Create a thresholded random geometric graph on 50 uniformly distributed nodes where nodes are joined by an edge if their sum weights drawn from a exponential distribution with rate = 5 are >= theta = 0.1 and their Euclidean distance is at most 0.2. Notes ----- This uses a *k*-d tree to build the graph. The `pos` keyword argument can be used to specify node positions so you can create an arbitrary distribution and domain for positions. For example, to use a 2D Gaussian distribution of node positions with mean (0, 0) and standard deviation 2 If weights are not specified they are assigned to nodes by drawing randomly from the exponential distribution with rate parameter :math:`\lambda=1`. To specify weights from a different distribution, use the `weight` keyword argument:: :: >>> import random >>> import math >>> n = 50 >>> pos = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)} >>> w = {i: random.expovariate(5.0) for i in range(n)} >>> G = nx.thresholded_random_geometric_graph(n, 0.2, 0.1, 2, pos, w) References ---------- .. [1] http://cole-maclean.github.io/blog/files/thesis.pdf """ G = nx.empty_graph(n) G.name = f"thresholded_random_geometric_graph({n}, {radius}, {theta}, {dim})" # If no weights are provided, choose them from an exponential # distribution. if weight is None: weight = {v: seed.expovariate(1) for v in G} # If no positions are provided, choose uniformly random vectors in # Euclidean space of the specified dimension. if pos is None: pos = {v: [seed.random() for i in range(dim)] for v in G} # If no distance metric is provided, use Euclidean distance. nx.set_node_attributes(G, weight, weight_name) nx.set_node_attributes(G, pos, pos_name) edges = ( (u, v) for u, v in _geometric_edges(G, radius, p, pos_name) if weight[u] + weight[v] >= theta ) G.add_edges_from(edges) return G
(n, radius, dim=2, pos=None, p=2, seed=None, *, pos_name='pos', backend=None, **backend_kwargs)
31,033
networkx.generators.internet_as_graphs
random_internet_as_graph
Generates a random undirected graph resembling the Internet AS network Parameters ---------- n: integer in [1000, 10000] Number of graph nodes seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- G: Networkx Graph object A randomly generated undirected graph Notes ----- This algorithm returns an undirected graph resembling the Internet Autonomous System (AS) network, it uses the approach by Elmokashfi et al. [1]_ and it grants the properties described in the related paper [1]_. Each node models an autonomous system, with an attribute 'type' specifying its kind; tier-1 (T), mid-level (M), customer (C) or content-provider (CP). Each edge models an ADV communication link (hence, bidirectional) with attributes: - type: transit|peer, the kind of commercial agreement between nodes; - customer: <node id>, the identifier of the node acting as customer ('none' if type is peer). References ---------- .. [1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
null
(n, seed=None, *, backend=None, **backend_kwargs)
31,034
networkx.generators.directed
random_k_out_graph
Returns a random `k`-out graph with preferential attachment. A random `k`-out graph with preferential attachment is a multidigraph generated by the following algorithm. 1. Begin with an empty digraph, and initially set each node to have weight `alpha`. 2. Choose a node `u` with out-degree less than `k` uniformly at random. 3. Choose a node `v` from with probability proportional to its weight. 4. Add a directed edge from `u` to `v`, and increase the weight of `v` by one. 5. If each node has out-degree `k`, halt, otherwise repeat from step 2. For more information on this model of random graph, see [1]. Parameters ---------- n : int The number of nodes in the returned graph. k : int The out-degree of each node in the returned graph. alpha : float A positive :class:`float` representing the initial weight of each vertex. A higher number means that in step 3 above, nodes will be chosen more like a true uniformly random sample, and a lower number means that nodes are more likely to be chosen as their in-degree increases. If this parameter is not positive, a :exc:`ValueError` is raised. self_loops : bool If True, self-loops are allowed when generating the graph. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- :class:`~networkx.classes.MultiDiGraph` A `k`-out-regular multidigraph generated according to the above algorithm. Raises ------ ValueError If `alpha` is not positive. Notes ----- The returned multidigraph may not be strongly connected, or even weakly connected. References ---------- [1]: Peterson, Nicholas R., and Boris Pittel. "Distance between two random `k`-out digraphs, with and without preferential attachment." arXiv preprint arXiv:1311.5961 (2013). <https://arxiv.org/abs/1311.5961>
null
(n, k, alpha, self_loops=True, seed=None, *, backend=None, **backend_kwargs)
31,035
networkx.generators.random_graphs
random_kernel_graph
Returns an random graph based on the specified kernel. The algorithm chooses each of the $[n(n-1)]/2$ possible edges with probability specified by a kernel $\kappa(x,y)$ [1]_. The kernel $\kappa(x,y)$ must be a symmetric (in $x,y$), non-negative, bounded function. Parameters ---------- n : int The number of nodes kernel_integral : function Function that returns the definite integral of the kernel $\kappa(x,y)$, $F(y,a,b) := \int_a^b \kappa(x,y)dx$ kernel_root: function (optional) Function that returns the root $b$ of the equation $F(y,a,b) = r$. If None, the root is found using :func:`scipy.optimize.brentq` (this requires SciPy). seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Notes ----- The kernel is specified through its definite integral which must be provided as one of the arguments. If the integral and root of the kernel integral can be found in $O(1)$ time then this algorithm runs in time $O(n+m)$ where m is the expected number of edges [2]_. The nodes are set to integers from $0$ to $n-1$. Examples -------- Generate an Erdős–Rényi random graph $G(n,c/n)$, with kernel $\kappa(x,y)=c$ where $c$ is the mean expected degree. >>> def integral(u, w, z): ... return c * (z - w) >>> def root(u, w, r): ... return r / c + w >>> c = 1 >>> graph = nx.random_kernel_graph(1000, integral, root) See Also -------- gnp_random_graph expected_degree_graph References ---------- .. [1] Bollobás, Béla, Janson, S. and Riordan, O. "The phase transition in inhomogeneous random graphs", *Random Structures Algorithms*, 31, 3--122, 2007. .. [2] Hagberg A, Lemons N (2015), "Fast Generation of Sparse Random Kernel Graphs". PLoS ONE 10(9): e0135177, 2015. doi:10.1371/journal.pone.0135177
def dual_barabasi_albert_graph(n, m1, m2, p, seed=None, initial_graph=None): """Returns a random graph using dual Barabási–Albert preferential attachment A graph of $n$ nodes is grown by attaching new nodes each with either $m_1$ edges (with probability $p$) or $m_2$ edges (with probability $1-p$) that are preferentially attached to existing nodes with high degree. Parameters ---------- n : int Number of nodes m1 : int Number of edges to link each new node to existing nodes with probability $p$ m2 : int Number of edges to link each new node to existing nodes with probability $1-p$ p : float The probability of attaching $m_1$ edges (as opposed to $m_2$ edges) seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. initial_graph : Graph or None (default) Initial network for Barabási–Albert algorithm. A copy of `initial_graph` is used. It should be connected for most use cases. If None, starts from an star graph on max(m1, m2) + 1 nodes. Returns ------- G : Graph Raises ------ NetworkXError If `m1` and `m2` do not satisfy ``1 <= m1,m2 < n``, or `p` does not satisfy ``0 <= p <= 1``, or the initial graph number of nodes m0 does not satisfy m1, m2 <= m0 <= n. References ---------- .. [1] N. Moshiri "The dual-Barabasi-Albert model", arXiv:1810.10538. """ if m1 < 1 or m1 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m1 >= 1 and m1 < n, m1 = {m1}, n = {n}" ) if m2 < 1 or m2 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m2 >= 1 and m2 < n, m2 = {m2}, n = {n}" ) if p < 0 or p > 1: raise nx.NetworkXError( f"Dual Barabási–Albert network must have 0 <= p <= 1, p = {p}" ) # For simplicity, if p == 0 or 1, just return BA if p == 1: return barabasi_albert_graph(n, m1, seed) elif p == 0: return barabasi_albert_graph(n, m2, seed) if initial_graph is None: # Default initial graph : empty graph on max(m1, m2) nodes G = star_graph(max(m1, m2)) else: if len(initial_graph) < max(m1, m2) or len(initial_graph) > n: raise nx.NetworkXError( f"Barabási–Albert initial graph must have between " f"max(m1, m2) = {max(m1, m2)} and n = {n} nodes" ) G = initial_graph.copy() # Target nodes for new edges targets = list(G) # List of existing nodes, with nodes repeated once for each adjacent edge repeated_nodes = [n for n, d in G.degree() for _ in range(d)] # Start adding the remaining nodes. source = len(G) while source < n: # Pick which m to use (m1 or m2) if seed.random() < p: m = m1 else: m = m2 # Now choose m unique nodes from the existing nodes # Pick uniformly from repeated_nodes (preferential attachment) targets = _random_subset(repeated_nodes, m, seed) # Add edges to m nodes from the source. G.add_edges_from(zip([source] * m, targets)) # Add one node to the list for each new edge just created. repeated_nodes.extend(targets) # And the new node "source" has m edges to add to the list. repeated_nodes.extend([source] * m) source += 1 return G
(n, kernel_integral, kernel_root=None, seed=None, *, backend=None, **backend_kwargs)
31,036
networkx.generators.trees
random_labeled_rooted_forest
Returns a labeled rooted forest with `n` nodes. The returned forest is chosen uniformly at random using a generalization of Prüfer sequences [1]_ in the form described in [2]_. Parameters ---------- n : int The number of nodes. seed : random_state See :ref:`Randomness<randomness>`. Returns ------- :class:`networkx.Graph` A `networkx.Graph` with integer nodes 0 <= node <= `n` - 1. The "roots" graph attribute is a set of integers containing the roots. References ---------- .. [1] Knuth, Donald E. "Another Enumeration of Trees." Canadian Journal of Mathematics, 20 (1968): 1077-1086. https://doi.org/10.4153/CJM-1968-104-8 .. [2] Rubey, Martin. "Counting Spanning Trees". Diplomarbeit zur Erlangung des akademischen Grades Magister der Naturwissenschaften an der Formal- und Naturwissenschaftlichen Fakultät der Universität Wien. Wien, May 2000.
def random_unlabeled_rooted_tree(n, *, number_of_trees=None, seed=None): """Returns a number of unlabeled rooted trees uniformly at random Returns one or more (depending on `number_of_trees`) unlabeled rooted trees with `n` nodes drawn uniformly at random. Parameters ---------- n : int The number of nodes number_of_trees : int or None (default) If not None, this number of trees is generated and returned. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- :class:`networkx.Graph` or list of :class:`networkx.Graph` A single `networkx.Graph` (or a list thereof, if `number_of_trees` is specified) with nodes in the set {0, …, *n* - 1}. The "root" graph attribute identifies the root of the tree. Notes ----- The trees are generated using the "RANRUT" algorithm from [1]_. The algorithm needs to compute some counting functions that are relatively expensive: in case several trees are needed, it is advisable to use the `number_of_trees` optional argument to reuse the counting functions. Raises ------ NetworkXPointlessConcept If `n` is zero (because the null graph is not a tree). References ---------- .. [1] Nijenhuis, Albert, and Wilf, Herbert S. "Combinatorial algorithms: for computers and calculators." Academic Press, 1978. https://doi.org/10.1016/C2013-0-11243-3 """ if n == 0: raise nx.NetworkXPointlessConcept("the null graph is not a tree") cache_trees = [0, 1] # initial cache of number of rooted trees if number_of_trees is None: return _to_nx(*_random_unlabeled_rooted_tree(n, cache_trees, seed), root=0) return [ _to_nx(*_random_unlabeled_rooted_tree(n, cache_trees, seed), root=0) for i in range(number_of_trees) ]
(n, *, seed=None, backend=None, **backend_kwargs)
31,037
networkx.generators.trees
random_labeled_rooted_tree
Returns a labeled rooted tree with `n` nodes. The returned tree is chosen uniformly at random from all labeled rooted trees. Parameters ---------- n : int The number of nodes seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- :class:`networkx.Graph` A `networkx.Graph` with integer nodes 0 <= node <= `n` - 1. The root of the tree is selected uniformly from the nodes. The "root" graph attribute identifies the root of the tree. Notes ----- This function returns the result of :func:`random_labeled_tree` with a randomly selected root. Raises ------ NetworkXPointlessConcept If `n` is zero (because the null graph is not a tree).
def random_unlabeled_rooted_tree(n, *, number_of_trees=None, seed=None): """Returns a number of unlabeled rooted trees uniformly at random Returns one or more (depending on `number_of_trees`) unlabeled rooted trees with `n` nodes drawn uniformly at random. Parameters ---------- n : int The number of nodes number_of_trees : int or None (default) If not None, this number of trees is generated and returned. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- :class:`networkx.Graph` or list of :class:`networkx.Graph` A single `networkx.Graph` (or a list thereof, if `number_of_trees` is specified) with nodes in the set {0, …, *n* - 1}. The "root" graph attribute identifies the root of the tree. Notes ----- The trees are generated using the "RANRUT" algorithm from [1]_. The algorithm needs to compute some counting functions that are relatively expensive: in case several trees are needed, it is advisable to use the `number_of_trees` optional argument to reuse the counting functions. Raises ------ NetworkXPointlessConcept If `n` is zero (because the null graph is not a tree). References ---------- .. [1] Nijenhuis, Albert, and Wilf, Herbert S. "Combinatorial algorithms: for computers and calculators." Academic Press, 1978. https://doi.org/10.1016/C2013-0-11243-3 """ if n == 0: raise nx.NetworkXPointlessConcept("the null graph is not a tree") cache_trees = [0, 1] # initial cache of number of rooted trees if number_of_trees is None: return _to_nx(*_random_unlabeled_rooted_tree(n, cache_trees, seed), root=0) return [ _to_nx(*_random_unlabeled_rooted_tree(n, cache_trees, seed), root=0) for i in range(number_of_trees) ]
(n, *, seed=None, backend=None, **backend_kwargs)
31,038
networkx.generators.trees
random_labeled_tree
Returns a labeled tree on `n` nodes chosen uniformly at random. Generating uniformly distributed random Prüfer sequences and converting them into the corresponding trees is a straightforward method of generating uniformly distributed random labeled trees. This function implements this method. Parameters ---------- n : int The number of nodes, greater than zero. seed : random_state Indicator of random number generation state. See :ref:`Randomness<randomness>` Returns ------- :class:`networkx.Graph` A `networkx.Graph` with nodes in the set {0, …, *n* - 1}. Raises ------ NetworkXPointlessConcept If `n` is zero (because the null graph is not a tree).
def random_unlabeled_rooted_tree(n, *, number_of_trees=None, seed=None): """Returns a number of unlabeled rooted trees uniformly at random Returns one or more (depending on `number_of_trees`) unlabeled rooted trees with `n` nodes drawn uniformly at random. Parameters ---------- n : int The number of nodes number_of_trees : int or None (default) If not None, this number of trees is generated and returned. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- :class:`networkx.Graph` or list of :class:`networkx.Graph` A single `networkx.Graph` (or a list thereof, if `number_of_trees` is specified) with nodes in the set {0, …, *n* - 1}. The "root" graph attribute identifies the root of the tree. Notes ----- The trees are generated using the "RANRUT" algorithm from [1]_. The algorithm needs to compute some counting functions that are relatively expensive: in case several trees are needed, it is advisable to use the `number_of_trees` optional argument to reuse the counting functions. Raises ------ NetworkXPointlessConcept If `n` is zero (because the null graph is not a tree). References ---------- .. [1] Nijenhuis, Albert, and Wilf, Herbert S. "Combinatorial algorithms: for computers and calculators." Academic Press, 1978. https://doi.org/10.1016/C2013-0-11243-3 """ if n == 0: raise nx.NetworkXPointlessConcept("the null graph is not a tree") cache_trees = [0, 1] # initial cache of number of rooted trees if number_of_trees is None: return _to_nx(*_random_unlabeled_rooted_tree(n, cache_trees, seed), root=0) return [ _to_nx(*_random_unlabeled_rooted_tree(n, cache_trees, seed), root=0) for i in range(number_of_trees) ]
(n, *, seed=None, backend=None, **backend_kwargs)
31,039
networkx.drawing.layout
random_layout
Position nodes uniformly at random in the unit square. For every node, a position is generated by choosing each of dim coordinates uniformly at random on the interval [0.0, 1.0). NumPy (http://scipy.org) is required for this function. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. center : array-like or None Coordinate pair around which to center the layout. dim : int Dimension of layout. seed : int, RandomState instance or None optional (default=None) Set the random state for deterministic node layouts. If int, `seed` is the seed used by the random number generator, if numpy.random.RandomState instance, `seed` is the random number generator, if None, the random number generator is the RandomState instance used by numpy.random. Returns ------- pos : dict A dictionary of positions keyed by node Examples -------- >>> G = nx.lollipop_graph(4, 3) >>> pos = nx.random_layout(G)
def spectral_layout(G, weight="weight", scale=1, center=None, dim=2): """Position nodes using the eigenvectors of the graph Laplacian. Using the unnormalized Laplacian, the layout shows possible clusters of nodes which are an approximation of the ratio cut. If dim is the number of dimensions then the positions are the entries of the dim eigenvectors corresponding to the ascending eigenvalues starting from the second one. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. weight : string or None optional (default='weight') The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1. scale : number (default: 1) Scale factor for positions. center : array-like or None Coordinate pair around which to center the layout. dim : int Dimension of layout. Returns ------- pos : dict A dictionary of positions keyed by node Examples -------- >>> G = nx.path_graph(4) >>> pos = nx.spectral_layout(G) Notes ----- Directed graphs will be considered as undirected graphs when positioning the nodes. For larger graphs (>500 nodes) this will use the SciPy sparse eigenvalue solver (ARPACK). """ # handle some special cases that break the eigensolvers import numpy as np G, center = _process_params(G, center, dim) if len(G) <= 2: if len(G) == 0: pos = np.array([]) elif len(G) == 1: pos = np.array([center]) else: pos = np.array([np.zeros(dim), np.array(center) * 2.0]) return dict(zip(G, pos)) try: # Sparse matrix if len(G) < 500: # dense solver is faster for small graphs raise ValueError A = nx.to_scipy_sparse_array(G, weight=weight, dtype="d") # Symmetrize directed graphs if G.is_directed(): A = A + np.transpose(A) pos = _sparse_spectral(A, dim) except (ImportError, ValueError): # Dense matrix A = nx.to_numpy_array(G, weight=weight) # Symmetrize directed graphs if G.is_directed(): A += A.T pos = _spectral(A, dim) pos = rescale_layout(pos, scale=scale) + center pos = dict(zip(G, pos)) return pos
(G, center=None, dim=2, seed=None)
31,040
networkx.generators.random_graphs
random_lobster
Returns a random lobster graph. A lobster is a tree that reduces to a caterpillar when pruning all leaf nodes. A caterpillar is a tree that reduces to a path graph when pruning all leaf nodes; setting `p2` to zero produces a caterpillar. This implementation iterates on the probabilities `p1` and `p2` to add edges at levels 1 and 2, respectively. Graphs are therefore constructed iteratively with uniform randomness at each level rather than being selected uniformly at random from the set of all possible lobsters. Parameters ---------- n : int The expected number of nodes in the backbone p1 : float Probability of adding an edge to the backbone p2 : float Probability of adding an edge one level beyond backbone seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Raises ------ NetworkXError If `p1` or `p2` parameters are >= 1 because the while loops would never finish.
def dual_barabasi_albert_graph(n, m1, m2, p, seed=None, initial_graph=None): """Returns a random graph using dual Barabási–Albert preferential attachment A graph of $n$ nodes is grown by attaching new nodes each with either $m_1$ edges (with probability $p$) or $m_2$ edges (with probability $1-p$) that are preferentially attached to existing nodes with high degree. Parameters ---------- n : int Number of nodes m1 : int Number of edges to link each new node to existing nodes with probability $p$ m2 : int Number of edges to link each new node to existing nodes with probability $1-p$ p : float The probability of attaching $m_1$ edges (as opposed to $m_2$ edges) seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. initial_graph : Graph or None (default) Initial network for Barabási–Albert algorithm. A copy of `initial_graph` is used. It should be connected for most use cases. If None, starts from an star graph on max(m1, m2) + 1 nodes. Returns ------- G : Graph Raises ------ NetworkXError If `m1` and `m2` do not satisfy ``1 <= m1,m2 < n``, or `p` does not satisfy ``0 <= p <= 1``, or the initial graph number of nodes m0 does not satisfy m1, m2 <= m0 <= n. References ---------- .. [1] N. Moshiri "The dual-Barabasi-Albert model", arXiv:1810.10538. """ if m1 < 1 or m1 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m1 >= 1 and m1 < n, m1 = {m1}, n = {n}" ) if m2 < 1 or m2 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m2 >= 1 and m2 < n, m2 = {m2}, n = {n}" ) if p < 0 or p > 1: raise nx.NetworkXError( f"Dual Barabási–Albert network must have 0 <= p <= 1, p = {p}" ) # For simplicity, if p == 0 or 1, just return BA if p == 1: return barabasi_albert_graph(n, m1, seed) elif p == 0: return barabasi_albert_graph(n, m2, seed) if initial_graph is None: # Default initial graph : empty graph on max(m1, m2) nodes G = star_graph(max(m1, m2)) else: if len(initial_graph) < max(m1, m2) or len(initial_graph) > n: raise nx.NetworkXError( f"Barabási–Albert initial graph must have between " f"max(m1, m2) = {max(m1, m2)} and n = {n} nodes" ) G = initial_graph.copy() # Target nodes for new edges targets = list(G) # List of existing nodes, with nodes repeated once for each adjacent edge repeated_nodes = [n for n, d in G.degree() for _ in range(d)] # Start adding the remaining nodes. source = len(G) while source < n: # Pick which m to use (m1 or m2) if seed.random() < p: m = m1 else: m = m2 # Now choose m unique nodes from the existing nodes # Pick uniformly from repeated_nodes (preferential attachment) targets = _random_subset(repeated_nodes, m, seed) # Add edges to m nodes from the source. G.add_edges_from(zip([source] * m, targets)) # Add one node to the list for each new edge just created. repeated_nodes.extend(targets) # And the new node "source" has m edges to add to the list. repeated_nodes.extend([source] * m) source += 1 return G
(n, p1, p2, seed=None, *, backend=None, **backend_kwargs)
31,041
networkx.generators.community
random_partition_graph
Returns the random partition graph with a partition of sizes. A partition graph is a graph of communities with sizes defined by s in sizes. Nodes in the same group are connected with probability p_in and nodes of different groups are connected with probability p_out. Parameters ---------- sizes : list of ints Sizes of groups p_in : float probability of edges with in groups p_out : float probability of edges between groups directed : boolean optional, default=False Whether to create a directed graph seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- G : NetworkX Graph or DiGraph random partition graph of size sum(gs) Raises ------ NetworkXError If p_in or p_out is not in [0,1] Examples -------- >>> G = nx.random_partition_graph([10, 10, 10], 0.25, 0.01) >>> len(G) 30 >>> partition = G.graph["partition"] >>> len(partition) 3 Notes ----- This is a generalization of the planted-l-partition described in [1]_. It allows for the creation of groups of any size. The partition is store as a graph attribute 'partition'. References ---------- .. [1] Santo Fortunato 'Community Detection in Graphs' Physical Reports Volume 486, Issue 3-5 p. 75-174. https://arxiv.org/abs/0906.0612
def _generate_communities(degree_seq, community_sizes, mu, max_iters, seed): """Returns a list of sets, each of which represents a community. ``degree_seq`` is the degree sequence that must be met by the graph. ``community_sizes`` is the community size distribution that must be met by the generated list of sets. ``mu`` is a float in the interval [0, 1] indicating the fraction of intra-community edges incident to each node. ``max_iters`` is the number of times to try to add a node to a community. This must be greater than the length of ``degree_seq``, otherwise this function will always fail. If the number of iterations exceeds this value, :exc:`~networkx.exception.ExceededMaxIterations` is raised. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. The communities returned by this are sets of integers in the set {0, ..., *n* - 1}, where *n* is the length of ``degree_seq``. """ # This assumes the nodes in the graph will be natural numbers. result = [set() for _ in community_sizes] n = len(degree_seq) free = list(range(n)) for i in range(max_iters): v = free.pop() c = seed.choice(range(len(community_sizes))) # s = int(degree_seq[v] * (1 - mu) + 0.5) s = round(degree_seq[v] * (1 - mu)) # If the community is large enough, add the node to the chosen # community. Otherwise, return it to the list of unaffiliated # nodes. if s < community_sizes[c]: result[c].add(v) else: free.append(v) # If the community is too big, remove a node from it. if len(result[c]) > community_sizes[c]: free.append(result[c].pop()) if not free: return result msg = "Could not assign communities; try increasing min_community" raise nx.ExceededMaxIterations(msg)
(sizes, p_in, p_out, seed=None, directed=False, *, backend=None, **backend_kwargs)
31,042
networkx.generators.random_graphs
random_powerlaw_tree
Returns a tree with a power law degree distribution. Parameters ---------- n : int The number of nodes. gamma : float Exponent of the power law. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. tries : int Number of attempts to adjust the sequence to make it a tree. Raises ------ NetworkXError If no valid sequence is found within the maximum number of attempts. Notes ----- A trial power law degree sequence is chosen and then elements are swapped with new elements from a powerlaw distribution until the sequence makes a tree (by checking, for example, that the number of edges is one smaller than the number of nodes).
def dual_barabasi_albert_graph(n, m1, m2, p, seed=None, initial_graph=None): """Returns a random graph using dual Barabási–Albert preferential attachment A graph of $n$ nodes is grown by attaching new nodes each with either $m_1$ edges (with probability $p$) or $m_2$ edges (with probability $1-p$) that are preferentially attached to existing nodes with high degree. Parameters ---------- n : int Number of nodes m1 : int Number of edges to link each new node to existing nodes with probability $p$ m2 : int Number of edges to link each new node to existing nodes with probability $1-p$ p : float The probability of attaching $m_1$ edges (as opposed to $m_2$ edges) seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. initial_graph : Graph or None (default) Initial network for Barabási–Albert algorithm. A copy of `initial_graph` is used. It should be connected for most use cases. If None, starts from an star graph on max(m1, m2) + 1 nodes. Returns ------- G : Graph Raises ------ NetworkXError If `m1` and `m2` do not satisfy ``1 <= m1,m2 < n``, or `p` does not satisfy ``0 <= p <= 1``, or the initial graph number of nodes m0 does not satisfy m1, m2 <= m0 <= n. References ---------- .. [1] N. Moshiri "The dual-Barabasi-Albert model", arXiv:1810.10538. """ if m1 < 1 or m1 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m1 >= 1 and m1 < n, m1 = {m1}, n = {n}" ) if m2 < 1 or m2 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m2 >= 1 and m2 < n, m2 = {m2}, n = {n}" ) if p < 0 or p > 1: raise nx.NetworkXError( f"Dual Barabási–Albert network must have 0 <= p <= 1, p = {p}" ) # For simplicity, if p == 0 or 1, just return BA if p == 1: return barabasi_albert_graph(n, m1, seed) elif p == 0: return barabasi_albert_graph(n, m2, seed) if initial_graph is None: # Default initial graph : empty graph on max(m1, m2) nodes G = star_graph(max(m1, m2)) else: if len(initial_graph) < max(m1, m2) or len(initial_graph) > n: raise nx.NetworkXError( f"Barabási–Albert initial graph must have between " f"max(m1, m2) = {max(m1, m2)} and n = {n} nodes" ) G = initial_graph.copy() # Target nodes for new edges targets = list(G) # List of existing nodes, with nodes repeated once for each adjacent edge repeated_nodes = [n for n, d in G.degree() for _ in range(d)] # Start adding the remaining nodes. source = len(G) while source < n: # Pick which m to use (m1 or m2) if seed.random() < p: m = m1 else: m = m2 # Now choose m unique nodes from the existing nodes # Pick uniformly from repeated_nodes (preferential attachment) targets = _random_subset(repeated_nodes, m, seed) # Add edges to m nodes from the source. G.add_edges_from(zip([source] * m, targets)) # Add one node to the list for each new edge just created. repeated_nodes.extend(targets) # And the new node "source" has m edges to add to the list. repeated_nodes.extend([source] * m) source += 1 return G
(n, gamma=3, seed=None, tries=100, *, backend=None, **backend_kwargs)
31,043
networkx.generators.random_graphs
random_powerlaw_tree_sequence
Returns a degree sequence for a tree with a power law distribution. Parameters ---------- n : int, The number of nodes. gamma : float Exponent of the power law. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. tries : int Number of attempts to adjust the sequence to make it a tree. Raises ------ NetworkXError If no valid sequence is found within the maximum number of attempts. Notes ----- A trial power law degree sequence is chosen and then elements are swapped with new elements from a power law distribution until the sequence makes a tree (by checking, for example, that the number of edges is one smaller than the number of nodes).
def dual_barabasi_albert_graph(n, m1, m2, p, seed=None, initial_graph=None): """Returns a random graph using dual Barabási–Albert preferential attachment A graph of $n$ nodes is grown by attaching new nodes each with either $m_1$ edges (with probability $p$) or $m_2$ edges (with probability $1-p$) that are preferentially attached to existing nodes with high degree. Parameters ---------- n : int Number of nodes m1 : int Number of edges to link each new node to existing nodes with probability $p$ m2 : int Number of edges to link each new node to existing nodes with probability $1-p$ p : float The probability of attaching $m_1$ edges (as opposed to $m_2$ edges) seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. initial_graph : Graph or None (default) Initial network for Barabási–Albert algorithm. A copy of `initial_graph` is used. It should be connected for most use cases. If None, starts from an star graph on max(m1, m2) + 1 nodes. Returns ------- G : Graph Raises ------ NetworkXError If `m1` and `m2` do not satisfy ``1 <= m1,m2 < n``, or `p` does not satisfy ``0 <= p <= 1``, or the initial graph number of nodes m0 does not satisfy m1, m2 <= m0 <= n. References ---------- .. [1] N. Moshiri "The dual-Barabasi-Albert model", arXiv:1810.10538. """ if m1 < 1 or m1 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m1 >= 1 and m1 < n, m1 = {m1}, n = {n}" ) if m2 < 1 or m2 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m2 >= 1 and m2 < n, m2 = {m2}, n = {n}" ) if p < 0 or p > 1: raise nx.NetworkXError( f"Dual Barabási–Albert network must have 0 <= p <= 1, p = {p}" ) # For simplicity, if p == 0 or 1, just return BA if p == 1: return barabasi_albert_graph(n, m1, seed) elif p == 0: return barabasi_albert_graph(n, m2, seed) if initial_graph is None: # Default initial graph : empty graph on max(m1, m2) nodes G = star_graph(max(m1, m2)) else: if len(initial_graph) < max(m1, m2) or len(initial_graph) > n: raise nx.NetworkXError( f"Barabási–Albert initial graph must have between " f"max(m1, m2) = {max(m1, m2)} and n = {n} nodes" ) G = initial_graph.copy() # Target nodes for new edges targets = list(G) # List of existing nodes, with nodes repeated once for each adjacent edge repeated_nodes = [n for n, d in G.degree() for _ in range(d)] # Start adding the remaining nodes. source = len(G) while source < n: # Pick which m to use (m1 or m2) if seed.random() < p: m = m1 else: m = m2 # Now choose m unique nodes from the existing nodes # Pick uniformly from repeated_nodes (preferential attachment) targets = _random_subset(repeated_nodes, m, seed) # Add edges to m nodes from the source. G.add_edges_from(zip([source] * m, targets)) # Add one node to the list for each new edge just created. repeated_nodes.extend(targets) # And the new node "source" has m edges to add to the list. repeated_nodes.extend([source] * m) source += 1 return G
(n, gamma=3, seed=None, tries=100, *, backend=None, **backend_kwargs)
31,044
networkx.algorithms.smallworld
random_reference
Compute a random graph by swapping edges of a given graph. Parameters ---------- G : graph An undirected graph with 4 or more nodes. niter : integer (optional, default=1) An edge is rewired approximately `niter` times. connectivity : boolean (optional, default=True) When True, ensure connectivity for the randomized graph. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- G : graph The randomized graph. Raises ------ NetworkXError If there are fewer than 4 nodes or 2 edges in `G` Notes ----- The implementation is adapted from the algorithm by Maslov and Sneppen (2002) [1]_. References ---------- .. [1] Maslov, Sergei, and Kim Sneppen. "Specificity and stability in topology of protein networks." Science 296.5569 (2002): 910-913.
null
(G, niter=1, connectivity=True, seed=None, *, backend=None, **backend_kwargs)
31,045
networkx.generators.expanders
random_regular_expander_graph
Returns a random regular expander graph on $n$ nodes with degree $d$. An expander graph is a sparse graph with strong connectivity properties. [1]_ More precisely the returned graph is a $(n, d, \lambda)$-expander with $\lambda = 2 \sqrt{d - 1} + \epsilon$, close to the Alon-Boppana bound. [2]_ In the case where $\epsilon = 0$ it returns a Ramanujan graph. A Ramanujan graph has spectral gap almost as large as possible, which makes them excellent expanders. [3]_ Parameters ---------- n : int The number of nodes. d : int The degree of each node. epsilon : int, float, default=0 max_tries : int, (default: 100) The number of allowed loops, also used in the maybe_regular_expander utility seed : (default: None) Seed used to set random number generation state. See :ref`Randomness<randomness>`. Raises ------ NetworkXError If max_tries is reached Examples -------- >>> G = nx.random_regular_expander_graph(20, 4) >>> nx.is_regular_expander(G) True Notes ----- This loops over `maybe_regular_expander` and can be slow when $n$ is too big or $\epsilon$ too small. See Also -------- maybe_regular_expander is_regular_expander References ---------- .. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph .. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound .. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph
null
(n, d, *, epsilon=0, create_using=None, max_tries=100, seed=None, backend=None, **backend_kwargs)
31,046
networkx.generators.random_graphs
random_regular_graph
Returns a random $d$-regular graph on $n$ nodes. A regular graph is a graph where each node has the same number of neighbors. The resulting graph has no self-loops or parallel edges. Parameters ---------- d : int The degree of each node. n : integer The number of nodes. The value of $n \times d$ must be even. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Notes ----- The nodes are numbered from $0$ to $n - 1$. Kim and Vu's paper [2]_ shows that this algorithm samples in an asymptotically uniform way from the space of random graphs when $d = O(n^{1 / 3 - \epsilon})$. Raises ------ NetworkXError If $n \times d$ is odd or $d$ is greater than or equal to $n$. References ---------- .. [1] A. Steger and N. Wormald, Generating random regular graphs quickly, Probability and Computing 8 (1999), 377-396, 1999. https://doi.org/10.1017/S0963548399003867 .. [2] Jeong Han Kim and Van H. Vu, Generating random regular graphs, Proceedings of the thirty-fifth ACM symposium on Theory of computing, San Diego, CA, USA, pp 213--222, 2003. http://portal.acm.org/citation.cfm?id=780542.780576
def dual_barabasi_albert_graph(n, m1, m2, p, seed=None, initial_graph=None): """Returns a random graph using dual Barabási–Albert preferential attachment A graph of $n$ nodes is grown by attaching new nodes each with either $m_1$ edges (with probability $p$) or $m_2$ edges (with probability $1-p$) that are preferentially attached to existing nodes with high degree. Parameters ---------- n : int Number of nodes m1 : int Number of edges to link each new node to existing nodes with probability $p$ m2 : int Number of edges to link each new node to existing nodes with probability $1-p$ p : float The probability of attaching $m_1$ edges (as opposed to $m_2$ edges) seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. initial_graph : Graph or None (default) Initial network for Barabási–Albert algorithm. A copy of `initial_graph` is used. It should be connected for most use cases. If None, starts from an star graph on max(m1, m2) + 1 nodes. Returns ------- G : Graph Raises ------ NetworkXError If `m1` and `m2` do not satisfy ``1 <= m1,m2 < n``, or `p` does not satisfy ``0 <= p <= 1``, or the initial graph number of nodes m0 does not satisfy m1, m2 <= m0 <= n. References ---------- .. [1] N. Moshiri "The dual-Barabasi-Albert model", arXiv:1810.10538. """ if m1 < 1 or m1 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m1 >= 1 and m1 < n, m1 = {m1}, n = {n}" ) if m2 < 1 or m2 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m2 >= 1 and m2 < n, m2 = {m2}, n = {n}" ) if p < 0 or p > 1: raise nx.NetworkXError( f"Dual Barabási–Albert network must have 0 <= p <= 1, p = {p}" ) # For simplicity, if p == 0 or 1, just return BA if p == 1: return barabasi_albert_graph(n, m1, seed) elif p == 0: return barabasi_albert_graph(n, m2, seed) if initial_graph is None: # Default initial graph : empty graph on max(m1, m2) nodes G = star_graph(max(m1, m2)) else: if len(initial_graph) < max(m1, m2) or len(initial_graph) > n: raise nx.NetworkXError( f"Barabási–Albert initial graph must have between " f"max(m1, m2) = {max(m1, m2)} and n = {n} nodes" ) G = initial_graph.copy() # Target nodes for new edges targets = list(G) # List of existing nodes, with nodes repeated once for each adjacent edge repeated_nodes = [n for n, d in G.degree() for _ in range(d)] # Start adding the remaining nodes. source = len(G) while source < n: # Pick which m to use (m1 or m2) if seed.random() < p: m = m1 else: m = m2 # Now choose m unique nodes from the existing nodes # Pick uniformly from repeated_nodes (preferential attachment) targets = _random_subset(repeated_nodes, m, seed) # Add edges to m nodes from the source. G.add_edges_from(zip([source] * m, targets)) # Add one node to the list for each new edge just created. repeated_nodes.extend(targets) # And the new node "source" has m edges to add to the list. repeated_nodes.extend([source] * m) source += 1 return G
(d, n, seed=None, *, backend=None, **backend_kwargs)
31,047
networkx.generators.random_graphs
random_shell_graph
Returns a random shell graph for the constructor given. Parameters ---------- constructor : list of three-tuples Represents the parameters for a shell, starting at the center shell. Each element of the list must be of the form `(n, m, d)`, where `n` is the number of nodes in the shell, `m` is the number of edges in the shell, and `d` is the ratio of inter-shell (next) edges to intra-shell edges. If `d` is zero, there will be no intra-shell edges, and if `d` is one there will be all possible intra-shell edges. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Examples -------- >>> constructor = [(10, 20, 0.8), (20, 40, 0.8)] >>> G = nx.random_shell_graph(constructor)
def dual_barabasi_albert_graph(n, m1, m2, p, seed=None, initial_graph=None): """Returns a random graph using dual Barabási–Albert preferential attachment A graph of $n$ nodes is grown by attaching new nodes each with either $m_1$ edges (with probability $p$) or $m_2$ edges (with probability $1-p$) that are preferentially attached to existing nodes with high degree. Parameters ---------- n : int Number of nodes m1 : int Number of edges to link each new node to existing nodes with probability $p$ m2 : int Number of edges to link each new node to existing nodes with probability $1-p$ p : float The probability of attaching $m_1$ edges (as opposed to $m_2$ edges) seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. initial_graph : Graph or None (default) Initial network for Barabási–Albert algorithm. A copy of `initial_graph` is used. It should be connected for most use cases. If None, starts from an star graph on max(m1, m2) + 1 nodes. Returns ------- G : Graph Raises ------ NetworkXError If `m1` and `m2` do not satisfy ``1 <= m1,m2 < n``, or `p` does not satisfy ``0 <= p <= 1``, or the initial graph number of nodes m0 does not satisfy m1, m2 <= m0 <= n. References ---------- .. [1] N. Moshiri "The dual-Barabasi-Albert model", arXiv:1810.10538. """ if m1 < 1 or m1 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m1 >= 1 and m1 < n, m1 = {m1}, n = {n}" ) if m2 < 1 or m2 >= n: raise nx.NetworkXError( f"Dual Barabási–Albert must have m2 >= 1 and m2 < n, m2 = {m2}, n = {n}" ) if p < 0 or p > 1: raise nx.NetworkXError( f"Dual Barabási–Albert network must have 0 <= p <= 1, p = {p}" ) # For simplicity, if p == 0 or 1, just return BA if p == 1: return barabasi_albert_graph(n, m1, seed) elif p == 0: return barabasi_albert_graph(n, m2, seed) if initial_graph is None: # Default initial graph : empty graph on max(m1, m2) nodes G = star_graph(max(m1, m2)) else: if len(initial_graph) < max(m1, m2) or len(initial_graph) > n: raise nx.NetworkXError( f"Barabási–Albert initial graph must have between " f"max(m1, m2) = {max(m1, m2)} and n = {n} nodes" ) G = initial_graph.copy() # Target nodes for new edges targets = list(G) # List of existing nodes, with nodes repeated once for each adjacent edge repeated_nodes = [n for n, d in G.degree() for _ in range(d)] # Start adding the remaining nodes. source = len(G) while source < n: # Pick which m to use (m1 or m2) if seed.random() < p: m = m1 else: m = m2 # Now choose m unique nodes from the existing nodes # Pick uniformly from repeated_nodes (preferential attachment) targets = _random_subset(repeated_nodes, m, seed) # Add edges to m nodes from the source. G.add_edges_from(zip([source] * m, targets)) # Add one node to the list for each new edge just created. repeated_nodes.extend(targets) # And the new node "source" has m edges to add to the list. repeated_nodes.extend([source] * m) source += 1 return G
(constructor, seed=None, *, backend=None, **backend_kwargs)
31,048
networkx.algorithms.tree.mst
random_spanning_tree
Sample a random spanning tree using the edges weights of `G`. This function supports two different methods for determining the probability of the graph. If ``multiplicative=True``, the probability is based on the product of edge weights, and if ``multiplicative=False`` it is based on the sum of the edge weight. However, since it is easier to determine the total weight of all spanning trees for the multiplicative version, that is significantly faster and should be used if possible. Additionally, setting `weight` to `None` will cause a spanning tree to be selected with uniform probability. The function uses algorithm A8 in [1]_ . Parameters ---------- G : nx.Graph An undirected version of the original graph. weight : string The edge key for the edge attribute holding edge weight. multiplicative : bool, default=True If `True`, the probability of each tree is the product of its edge weight over the sum of the product of all the spanning trees in the graph. If `False`, the probability is the sum of its edge weight over the sum of the sum of weights for all spanning trees in the graph. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- nx.Graph A spanning tree using the distribution defined by the weight of the tree. References ---------- .. [1] V. Kulkarni, Generating random combinatorial objects, Journal of Algorithms, 11 (1990), pp. 185–207
def random_spanning_tree(G, weight=None, *, multiplicative=True, seed=None): """ Sample a random spanning tree using the edges weights of `G`. This function supports two different methods for determining the probability of the graph. If ``multiplicative=True``, the probability is based on the product of edge weights, and if ``multiplicative=False`` it is based on the sum of the edge weight. However, since it is easier to determine the total weight of all spanning trees for the multiplicative version, that is significantly faster and should be used if possible. Additionally, setting `weight` to `None` will cause a spanning tree to be selected with uniform probability. The function uses algorithm A8 in [1]_ . Parameters ---------- G : nx.Graph An undirected version of the original graph. weight : string The edge key for the edge attribute holding edge weight. multiplicative : bool, default=True If `True`, the probability of each tree is the product of its edge weight over the sum of the product of all the spanning trees in the graph. If `False`, the probability is the sum of its edge weight over the sum of the sum of weights for all spanning trees in the graph. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- nx.Graph A spanning tree using the distribution defined by the weight of the tree. References ---------- .. [1] V. Kulkarni, Generating random combinatorial objects, Journal of Algorithms, 11 (1990), pp. 185–207 """ def find_node(merged_nodes, node): """ We can think of clusters of contracted nodes as having one representative in the graph. Each node which is not in merged_nodes is still its own representative. Since a representative can be later contracted, we need to recursively search though the dict to find the final representative, but once we know it we can use path compression to speed up the access of the representative for next time. This cannot be replaced by the standard NetworkX union_find since that data structure will merge nodes with less representing nodes into the one with more representing nodes but this function requires we merge them using the order that contract_edges contracts using. Parameters ---------- merged_nodes : dict The dict storing the mapping from node to representative node The node whose representative we seek Returns ------- The representative of the `node` """ if node not in merged_nodes: return node else: rep = find_node(merged_nodes, merged_nodes[node]) merged_nodes[node] = rep return rep def prepare_graph(): """ For the graph `G`, remove all edges not in the set `V` and then contract all edges in the set `U`. Returns ------- A copy of `G` which has had all edges not in `V` removed and all edges in `U` contracted. """ # The result is a MultiGraph version of G so that parallel edges are # allowed during edge contraction result = nx.MultiGraph(incoming_graph_data=G) # Remove all edges not in V edges_to_remove = set(result.edges()).difference(V) result.remove_edges_from(edges_to_remove) # Contract all edges in U # # Imagine that you have two edges to contract and they share an # endpoint like this: # [0] ----- [1] ----- [2] # If we contract (0, 1) first, the contraction function will always # delete the second node it is passed so the resulting graph would be # [0] ----- [2] # and edge (1, 2) no longer exists but (0, 2) would need to be contracted # in its place now. That is why I use the below dict as a merge-find # data structure with path compression to track how the nodes are merged. merged_nodes = {} for u, v in U: u_rep = find_node(merged_nodes, u) v_rep = find_node(merged_nodes, v) # We cannot contract a node with itself if u_rep == v_rep: continue nx.contracted_nodes(result, u_rep, v_rep, self_loops=False, copy=False) merged_nodes[v_rep] = u_rep return merged_nodes, result def spanning_tree_total_weight(G, weight): """ Find the sum of weights of the spanning trees of `G` using the appropriate `method`. This is easy if the chosen method is 'multiplicative', since we can use Kirchhoff's Tree Matrix Theorem directly. However, with the 'additive' method, this process is slightly more complex and less computationally efficient as we have to find the number of spanning trees which contain each possible edge in the graph. Parameters ---------- G : NetworkX Graph The graph to find the total weight of all spanning trees on. weight : string The key for the weight edge attribute of the graph. Returns ------- float The sum of either the multiplicative or additive weight for all spanning trees in the graph. """ if multiplicative: return nx.total_spanning_tree_weight(G, weight) else: # There are two cases for the total spanning tree additive weight. # 1. There is one edge in the graph. Then the only spanning tree is # that edge itself, which will have a total weight of that edge # itself. if G.number_of_edges() == 1: return G.edges(data=weight).__iter__().__next__()[2] # 2. There are no edges or two or more edges in the graph. Then, we find the # total weight of the spanning trees using the formula in the # reference paper: take the weight of each edge and multiply it by # the number of spanning trees which include that edge. This # can be accomplished by contracting the edge and finding the # multiplicative total spanning tree weight if the weight of each edge # is assumed to be 1, which is conveniently built into networkx already, # by calling total_spanning_tree_weight with weight=None. # Note that with no edges the returned value is just zero. else: total = 0 for u, v, w in G.edges(data=weight): total += w * nx.total_spanning_tree_weight( nx.contracted_edge(G, edge=(u, v), self_loops=False), None ) return total if G.number_of_nodes() < 2: # no edges in the spanning tree return nx.empty_graph(G.nodes) U = set() st_cached_value = 0 V = set(G.edges()) shuffled_edges = list(G.edges()) seed.shuffle(shuffled_edges) for u, v in shuffled_edges: e_weight = G[u][v][weight] if weight is not None else 1 node_map, prepared_G = prepare_graph() G_total_tree_weight = spanning_tree_total_weight(prepared_G, weight) # Add the edge to U so that we can compute the total tree weight # assuming we include that edge # Now, if (u, v) cannot exist in G because it is fully contracted out # of existence, then it by definition cannot influence G_e's Kirchhoff # value. But, we also cannot pick it. rep_edge = (find_node(node_map, u), find_node(node_map, v)) # Check to see if the 'representative edge' for the current edge is # in prepared_G. If so, then we can pick it. if rep_edge in prepared_G.edges: prepared_G_e = nx.contracted_edge( prepared_G, edge=rep_edge, self_loops=False ) G_e_total_tree_weight = spanning_tree_total_weight(prepared_G_e, weight) if multiplicative: threshold = e_weight * G_e_total_tree_weight / G_total_tree_weight else: numerator = ( st_cached_value + e_weight ) * nx.total_spanning_tree_weight(prepared_G_e) + G_e_total_tree_weight denominator = ( st_cached_value * nx.total_spanning_tree_weight(prepared_G) + G_total_tree_weight ) threshold = numerator / denominator else: threshold = 0.0 z = seed.uniform(0.0, 1.0) if z > threshold: # Remove the edge from V since we did not pick it. V.remove((u, v)) else: # Add the edge to U since we picked it. st_cached_value += e_weight U.add((u, v)) # If we decide to keep an edge, it may complete the spanning tree. if len(U) == G.number_of_nodes() - 1: spanning_tree = nx.Graph() spanning_tree.add_edges_from(U) return spanning_tree raise Exception(f"Something went wrong! Only {len(U)} edges in the spanning tree!")
(G, weight=None, *, multiplicative=True, seed=None, backend=None, **backend_kwargs)