index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
29,939
zeroconf._exceptions
NotRunningException
Exception when an action is called with a zeroconf instance that is not running. The instance may not be running because it was already shutdown or startup has failed in some unexpected way.
class NotRunningException(Error): """Exception when an action is called with a zeroconf instance that is not running. The instance may not be running because it was already shutdown or startup has failed in some unexpected way. """
null
29,940
zeroconf._logger
QuietLogger
null
class QuietLogger: _seen_logs: Dict[str, Union[int, tuple]] = {} @classmethod def log_exception_warning(cls, *logger_data: Any) -> None: exc_info = sys.exc_info() exc_str = str(exc_info[1]) if exc_str not in cls._seen_logs: # log at warning level the first time this is seen cls._seen_logs[exc_str] = exc_info logger = log.warning else: logger = log.debug logger(*(logger_data or ['Exception occurred']), exc_info=True) @classmethod def log_exception_debug(cls, *logger_data: Any) -> None: log_exc_info = False exc_info = sys.exc_info() exc_str = str(exc_info[1]) if exc_str not in cls._seen_logs: # log the trace only on the first time cls._seen_logs[exc_str] = exc_info log_exc_info = True log.debug(*(logger_data or ['Exception occurred']), exc_info=log_exc_info) @classmethod def log_warning_once(cls, *args: Any) -> None: msg_str = args[0] if msg_str not in cls._seen_logs: cls._seen_logs[msg_str] = 0 logger = log.warning else: logger = log.debug cls._seen_logs[msg_str] = cast(int, cls._seen_logs[msg_str]) + 1 logger(*args) @classmethod def log_exception_once(cls, exc: Exception, *args: Any) -> None: msg_str = args[0] if msg_str not in cls._seen_logs: cls._seen_logs[msg_str] = 0 logger = log.warning else: logger = log.debug cls._seen_logs[msg_str] = cast(int, cls._seen_logs[msg_str]) + 1 logger(*args, exc_info=exc)
()
29,941
zeroconf._record_update
RecordUpdate
null
from zeroconf._record_update import RecordUpdate
null
29,942
zeroconf._updates
RecordUpdateListener
Base call for all record listeners. All listeners passed to async_add_listener should use RecordUpdateListener as a base class. In the future it will be required.
from zeroconf._updates import RecordUpdateListener
null
29,943
zeroconf._services.browser
ServiceBrowser
Used to browse for a service of a specific type. The listener object will have its add_service() and remove_service() methods called when this browser discovers changes in the services availability.
from zeroconf._services.browser import ServiceBrowser
(zc: "'Zeroconf'", type_: 'Union[str, list]', handlers: 'Optional[Union[ServiceListener, List[Callable[..., None]]]]' = None, listener: 'Optional[ServiceListener]' = None, addr: 'Optional[str]' = None, port: 'int' = 5353, delay: 'int' = 10000, question_type: 'Optional[DNSQuestionType]' = None) -> 'None'
29,961
zeroconf._services.info
ServiceInfo
Service information. Constructor parameters are as follows: * `type_`: fully qualified service type name * `name`: fully qualified service name * `port`: port that the service runs on * `weight`: weight of the service * `priority`: priority of the service * `properties`: dictionary of properties (or a bytes object holding the contents of the `text` field). converted to str and then encoded to bytes using UTF-8. Keys with `None` values are converted to value-less attributes. * `server`: fully qualified name for service host (defaults to name) * `host_ttl`: ttl used for A/SRV records * `other_ttl`: ttl used for PTR/TXT records * `addresses` and `parsed_addresses`: List of IP addresses (either as bytes, network byte order, or in parsed form as text; at most one of those parameters can be provided) * interface_index: scope_id or zone_id for IPv6 link-local addresses i.e. an identifier of the interface where the peer is connected to
from zeroconf._services.info import ServiceInfo
null
29,962
zeroconf._services
ServiceListener
null
from zeroconf._services import ServiceListener
()
29,963
zeroconf._exceptions
ServiceNameAlreadyRegistered
Exception when a service name is already registered.
class ServiceNameAlreadyRegistered(Error): """Exception when a service name is already registered."""
null
29,964
zeroconf._services.registry
ServiceRegistry
A registry to keep track of services. The registry must only be accessed from the event loop as it is not thread safe.
from zeroconf._services.registry import ServiceRegistry
null
29,965
zeroconf._services
ServiceStateChange
An enumeration.
from zeroconf._services import ServiceStateChange
(value, names=None, *, module=None, qualname=None, type=None, start=1)
29,966
zeroconf._services.__init__
Signal
null
from builtins import type
null
29,968
zeroconf._core
Zeroconf
Implementation of Zeroconf Multicast DNS Service Discovery Supports registration, unregistration, queries and browsing.
class Zeroconf(QuietLogger): """Implementation of Zeroconf Multicast DNS Service Discovery Supports registration, unregistration, queries and browsing. """ def __init__( self, interfaces: InterfacesType = InterfaceChoice.All, unicast: bool = False, ip_version: Optional[IPVersion] = None, apple_p2p: bool = False, ) -> None: """Creates an instance of the Zeroconf class, establishing multicast communications, listening and reaping threads. :param interfaces: :class:`InterfaceChoice` or a list of IP addresses (IPv4 and IPv6) and interface indexes (IPv6 only). IPv6 notes for non-POSIX systems: * `InterfaceChoice.All` is an alias for `InterfaceChoice.Default` on Python versions before 3.8. Also listening on loopback (``::1``) doesn't work, use a real address. :param ip_version: IP versions to support. If `choice` is a list, the default is detected from it. Otherwise defaults to V4 only for backward compatibility. :param apple_p2p: use AWDL interface (only macOS) """ if ip_version is None: ip_version = autodetect_ip_version(interfaces) self.done = False if apple_p2p and sys.platform != 'darwin': raise RuntimeError('Option `apple_p2p` is not supported on non-Apple platforms.') self.unicast = unicast listen_socket, respond_sockets = create_sockets(interfaces, unicast, ip_version, apple_p2p=apple_p2p) log.debug('Listen socket %s, respond sockets %s', listen_socket, respond_sockets) self.engine = AsyncEngine(self, listen_socket, respond_sockets) self.browsers: Dict[ServiceListener, ServiceBrowser] = {} self.registry = ServiceRegistry() self.cache = DNSCache() self.question_history = QuestionHistory() self.out_queue = MulticastOutgoingQueue(self, 0, _AGGREGATION_DELAY) self.out_delay_queue = MulticastOutgoingQueue(self, _ONE_SECOND, _PROTECTED_AGGREGATION_DELAY) self.query_handler = QueryHandler(self) self.record_manager = RecordManager(self) self._notify_futures: Set[asyncio.Future] = set() self.loop: Optional[asyncio.AbstractEventLoop] = None self._loop_thread: Optional[threading.Thread] = None self.start() @property def started(self) -> bool: """Check if the instance has started.""" return bool(not self.done and self.engine.running_event and self.engine.running_event.is_set()) def start(self) -> None: """Start Zeroconf.""" self.loop = get_running_loop() if self.loop: self.engine.setup(self.loop, None) return self._start_thread() def _start_thread(self) -> None: """Start a thread with a running event loop.""" loop_thread_ready = threading.Event() def _run_loop() -> None: self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) self.engine.setup(self.loop, loop_thread_ready) self.loop.run_forever() self._loop_thread = threading.Thread(target=_run_loop, daemon=True) self._loop_thread.start() loop_thread_ready.wait() async def async_wait_for_start(self) -> None: """Wait for start up for actions that require a running Zeroconf instance. Throws NotRunningException if the instance is not running or could not be started. """ if self.done: # If the instance was shutdown from under us, raise immediately raise NotRunningException assert self.engine.running_event is not None await wait_event_or_timeout(self.engine.running_event, timeout=_STARTUP_TIMEOUT) if not self.engine.running_event.is_set() or self.done: raise NotRunningException @property def listeners(self) -> Set[RecordUpdateListener]: return self.record_manager.listeners async def async_wait(self, timeout: float) -> None: """Calling task waits for a given number of milliseconds or until notified.""" loop = self.loop assert loop is not None await wait_for_future_set_or_timeout(loop, self._notify_futures, timeout) def notify_all(self) -> None: """Notifies all waiting threads and notify listeners.""" assert self.loop is not None self.loop.call_soon_threadsafe(self.async_notify_all) def async_notify_all(self) -> None: """Schedule an async_notify_all.""" notify_futures = self._notify_futures if notify_futures: _resolve_all_futures_to_none(notify_futures) def get_service_info( self, type_: str, name: str, timeout: int = 3000, question_type: Optional[DNSQuestionType] = None ) -> Optional[ServiceInfo]: """Returns network's service information for a particular name and type, or None if no service matches by the timeout, which defaults to 3 seconds. :param type_: fully qualified service type name :param name: the name of the service :param timeout: milliseconds to wait for a response :param question_type: The type of questions to ask (DNSQuestionType.QM or DNSQuestionType.QU) """ info = ServiceInfo(type_, name) if info.request(self, timeout, question_type): return info return None def add_service_listener(self, type_: str, listener: ServiceListener) -> None: """Adds a listener for a particular service type. This object will then have its add_service and remove_service methods called when services of that type become available and unavailable.""" self.remove_service_listener(listener) self.browsers[listener] = ServiceBrowser(self, type_, listener) def remove_service_listener(self, listener: ServiceListener) -> None: """Removes a listener from the set that is currently listening.""" if listener in self.browsers: self.browsers[listener].cancel() del self.browsers[listener] def remove_all_service_listeners(self) -> None: """Removes a listener from the set that is currently listening.""" for listener in list(self.browsers): self.remove_service_listener(listener) def register_service( self, info: ServiceInfo, ttl: Optional[int] = None, allow_name_change: bool = False, cooperating_responders: bool = False, strict: bool = True, ) -> None: """Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service. The name of the service may be changed if needed to make it unique on the network. Additionally multiple cooperating responders can register the same service on the network for resilience (if you want this behavior set `cooperating_responders` to `True`). While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `register_service` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( await_awaitable( self.async_register_service(info, ttl, allow_name_change, cooperating_responders, strict) ), self.loop, _REGISTER_TIME * _REGISTER_BROADCASTS, ) async def async_register_service( self, info: ServiceInfo, ttl: Optional[int] = None, allow_name_change: bool = False, cooperating_responders: bool = False, strict: bool = True, ) -> Awaitable: """Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service. The name of the service may be changed if needed to make it unique on the network. Additionally multiple cooperating responders can register the same service on the network for resilience (if you want this behavior set `cooperating_responders` to `True`).""" if ttl is not None: # ttl argument is used to maintain backward compatibility # Setting TTLs via ServiceInfo is preferred info.host_ttl = ttl info.other_ttl = ttl info.set_server_if_missing() await self.async_wait_for_start() await self.async_check_service(info, allow_name_change, cooperating_responders, strict) self.registry.async_add(info) return asyncio.ensure_future(self._async_broadcast_service(info, _REGISTER_TIME, None)) def update_service(self, info: ServiceInfo) -> None: """Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_update_service` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( await_awaitable(self.async_update_service(info)), self.loop, _REGISTER_TIME * _REGISTER_BROADCASTS ) async def async_update_service(self, info: ServiceInfo) -> Awaitable: """Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service.""" self.registry.async_update(info) return asyncio.ensure_future(self._async_broadcast_service(info, _REGISTER_TIME, None)) async def async_get_service_info( self, type_: str, name: str, timeout: int = 3000, question_type: Optional[DNSQuestionType] = None ) -> Optional[AsyncServiceInfo]: """Returns network's service information for a particular name and type, or None if no service matches by the timeout, which defaults to 3 seconds. :param type_: fully qualified service type name :param name: the name of the service :param timeout: milliseconds to wait for a response :param question_type: The type of questions to ask (DNSQuestionType.QM or DNSQuestionType.QU) """ info = AsyncServiceInfo(type_, name) if await info.async_request(self, timeout, question_type): return info return None async def _async_broadcast_service( self, info: ServiceInfo, interval: int, ttl: Optional[int], broadcast_addresses: bool = True, ) -> None: """Send a broadcasts to announce a service at intervals.""" for i in range(_REGISTER_BROADCASTS): if i != 0: await asyncio.sleep(millis_to_seconds(interval)) self.async_send(self.generate_service_broadcast(info, ttl, broadcast_addresses)) def generate_service_broadcast( self, info: ServiceInfo, ttl: Optional[int], broadcast_addresses: bool = True, ) -> DNSOutgoing: """Generate a broadcast to announce a service.""" out = DNSOutgoing(_FLAGS_QR_RESPONSE | _FLAGS_AA) self._add_broadcast_answer(out, info, ttl, broadcast_addresses) return out def generate_service_query(self, info: ServiceInfo) -> DNSOutgoing: # pylint: disable=no-self-use """Generate a query to lookup a service.""" out = DNSOutgoing(_FLAGS_QR_QUERY | _FLAGS_AA) # https://datatracker.ietf.org/doc/html/rfc6762#section-8.1 # Because of the mDNS multicast rate-limiting # rules, the probes SHOULD be sent as "QU" questions with the unicast- # response bit set, to allow a defending host to respond immediately # via unicast, instead of potentially having to wait before replying # via multicast. # # _CLASS_UNIQUE is the "QU" bit out.add_question(DNSQuestion(info.type, _TYPE_PTR, _CLASS_IN | _CLASS_UNIQUE)) out.add_authorative_answer(info.dns_pointer()) return out def _add_broadcast_answer( # pylint: disable=no-self-use self, out: DNSOutgoing, info: ServiceInfo, override_ttl: Optional[int], broadcast_addresses: bool = True, ) -> None: """Add answers to broadcast a service.""" current_time_millis() other_ttl = None if override_ttl is None else override_ttl host_ttl = None if override_ttl is None else override_ttl out.add_answer_at_time(info.dns_pointer(override_ttl=other_ttl), 0) out.add_answer_at_time(info.dns_service(override_ttl=host_ttl), 0) out.add_answer_at_time(info.dns_text(override_ttl=other_ttl), 0) if broadcast_addresses: for record in info.get_address_and_nsec_records(override_ttl=host_ttl): out.add_answer_at_time(record, 0) def unregister_service(self, info: ServiceInfo) -> None: """Unregister a service. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_unregister_service` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( self.async_unregister_service(info), self.loop, _UNREGISTER_TIME * _REGISTER_BROADCASTS ) async def async_unregister_service(self, info: ServiceInfo) -> Awaitable: """Unregister a service.""" info.set_server_if_missing() self.registry.async_remove(info) # If another server uses the same addresses, we do not want to send # goodbye packets for the address records assert info.server_key is not None entries = self.registry.async_get_infos_server(info.server_key) broadcast_addresses = not bool(entries) return asyncio.ensure_future( self._async_broadcast_service(info, _UNREGISTER_TIME, 0, broadcast_addresses) ) def generate_unregister_all_services(self) -> Optional[DNSOutgoing]: """Generate a DNSOutgoing goodbye for all services and remove them from the registry.""" service_infos = self.registry.async_get_service_infos() if not service_infos: return None out = DNSOutgoing(_FLAGS_QR_RESPONSE | _FLAGS_AA) for info in service_infos: self._add_broadcast_answer(out, info, 0) self.registry.async_remove(service_infos) return out async def async_unregister_all_services(self) -> None: """Unregister all registered services. Unlike async_register_service and async_unregister_service, this method does not return a future and is always expected to be awaited since its only called at shutdown. """ # Send Goodbye packets https://datatracker.ietf.org/doc/html/rfc6762#section-10.1 out = self.generate_unregister_all_services() if not out: return for i in range(_REGISTER_BROADCASTS): if i != 0: await asyncio.sleep(millis_to_seconds(_UNREGISTER_TIME)) self.async_send(out) def unregister_all_services(self) -> None: """Unregister all registered services. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_unregister_all_services` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( self.async_unregister_all_services(), self.loop, _UNREGISTER_TIME * _REGISTER_BROADCASTS ) async def async_check_service( self, info: ServiceInfo, allow_name_change: bool, cooperating_responders: bool = False, strict: bool = True, ) -> None: """Checks the network for a unique service name, modifying the ServiceInfo passed in if it is not unique.""" instance_name = instance_name_from_service_info(info, strict=strict) if cooperating_responders: return next_instance_number = 2 next_time = now = current_time_millis() i = 0 while i < _REGISTER_BROADCASTS: # check for a name conflict while self.cache.current_entry_with_name_and_alias(info.type, info.name): if not allow_name_change: raise NonUniqueNameException # change the name and look for a conflict info.name = f'{instance_name}-{next_instance_number}.{info.type}' next_instance_number += 1 service_type_name(info.name, strict=strict) next_time = now i = 0 if now < next_time: await self.async_wait(next_time - now) now = current_time_millis() continue self.async_send(self.generate_service_query(info)) i += 1 next_time += _CHECK_TIME def add_listener( self, listener: RecordUpdateListener, question: Optional[Union[DNSQuestion, List[DNSQuestion]]] ) -> None: """Adds a listener for a given question. The listener will have its update_record method called when information is available to answer the question(s). This function is threadsafe """ assert self.loop is not None self.loop.call_soon_threadsafe(self.record_manager.async_add_listener, listener, question) def remove_listener(self, listener: RecordUpdateListener) -> None: """Removes a listener. This function is threadsafe """ assert self.loop is not None self.loop.call_soon_threadsafe(self.record_manager.async_remove_listener, listener) def async_add_listener( self, listener: RecordUpdateListener, question: Optional[Union[DNSQuestion, List[DNSQuestion]]] ) -> None: """Adds a listener for a given question. The listener will have its update_record method called when information is available to answer the question(s). This function is not threadsafe and must be called in the eventloop. """ self.record_manager.async_add_listener(listener, question) def async_remove_listener(self, listener: RecordUpdateListener) -> None: """Removes a listener. This function is not threadsafe and must be called in the eventloop. """ self.record_manager.async_remove_listener(listener) def send( self, out: DNSOutgoing, addr: Optional[str] = None, port: int = _MDNS_PORT, v6_flow_scope: Union[Tuple[()], Tuple[int, int]] = (), transport: Optional[_WrappedTransport] = None, ) -> None: """Sends an outgoing packet threadsafe.""" assert self.loop is not None self.loop.call_soon_threadsafe(self.async_send, out, addr, port, v6_flow_scope, transport) def async_send( self, out: DNSOutgoing, addr: Optional[str] = None, port: int = _MDNS_PORT, v6_flow_scope: Union[Tuple[()], Tuple[int, int]] = (), transport: Optional[_WrappedTransport] = None, ) -> None: """Sends an outgoing packet.""" if self.done: return # If no transport is specified, we send to all the ones # with the same address family transports = [transport] if transport else self.engine.senders log_debug = log.isEnabledFor(logging.DEBUG) for packet_num, packet in enumerate(out.packets()): if len(packet) > _MAX_MSG_ABSOLUTE: self.log_warning_once("Dropping %r over-sized packet (%d bytes) %r", out, len(packet), packet) return for send_transport in transports: async_send_with_transport( log_debug, send_transport, packet, packet_num, out, addr, port, v6_flow_scope ) def _close(self) -> None: """Set global done and remove all service listeners.""" if self.done: return self.remove_all_service_listeners() self.done = True def _shutdown_threads(self) -> None: """Shutdown any threads.""" self.notify_all() if not self._loop_thread: return assert self.loop is not None shutdown_loop(self.loop) self._loop_thread.join() self._loop_thread = None def close(self) -> None: """Ends the background threads, and prevent this instance from servicing further queries. This method is idempotent and irreversible. """ assert self.loop is not None if self.loop.is_running(): if self.loop == get_running_loop(): log.warning( "unregister_all_services skipped as it does blocking i/o; use AsyncZeroconf with asyncio" ) else: self.unregister_all_services() self._close() self.engine.close() self._shutdown_threads() async def _async_close(self) -> None: """Ends the background threads, and prevent this instance from servicing further queries. This method is idempotent and irreversible. This call only intended to be used by AsyncZeroconf Callers are responsible for unregistering all services before calling this function """ self._close() await self.engine._async_close() # pylint: disable=protected-access self._shutdown_threads() def __enter__(self) -> 'Zeroconf': return self def __exit__( # pylint: disable=useless-return self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType], ) -> Optional[bool]: self.close() return None
(interfaces: Union[Sequence[Union[str, int, Tuple[Tuple[str, int, int], int]]], zeroconf._utils.net.InterfaceChoice] = <InterfaceChoice.All: 2>, unicast: bool = False, ip_version: Optional[zeroconf._utils.net.IPVersion] = None, apple_p2p: bool = False) -> None
29,969
zeroconf._core
__enter__
null
def __enter__(self) -> 'Zeroconf': return self
(self) -> zeroconf._core.Zeroconf
29,970
zeroconf._core
__exit__
null
def __exit__( # pylint: disable=useless-return self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType], ) -> Optional[bool]: self.close() return None
(self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[traceback]) -> Optional[bool]
29,971
zeroconf._core
__init__
Creates an instance of the Zeroconf class, establishing multicast communications, listening and reaping threads. :param interfaces: :class:`InterfaceChoice` or a list of IP addresses (IPv4 and IPv6) and interface indexes (IPv6 only). IPv6 notes for non-POSIX systems: * `InterfaceChoice.All` is an alias for `InterfaceChoice.Default` on Python versions before 3.8. Also listening on loopback (``::1``) doesn't work, use a real address. :param ip_version: IP versions to support. If `choice` is a list, the default is detected from it. Otherwise defaults to V4 only for backward compatibility. :param apple_p2p: use AWDL interface (only macOS)
def __init__( self, interfaces: InterfacesType = InterfaceChoice.All, unicast: bool = False, ip_version: Optional[IPVersion] = None, apple_p2p: bool = False, ) -> None: """Creates an instance of the Zeroconf class, establishing multicast communications, listening and reaping threads. :param interfaces: :class:`InterfaceChoice` or a list of IP addresses (IPv4 and IPv6) and interface indexes (IPv6 only). IPv6 notes for non-POSIX systems: * `InterfaceChoice.All` is an alias for `InterfaceChoice.Default` on Python versions before 3.8. Also listening on loopback (``::1``) doesn't work, use a real address. :param ip_version: IP versions to support. If `choice` is a list, the default is detected from it. Otherwise defaults to V4 only for backward compatibility. :param apple_p2p: use AWDL interface (only macOS) """ if ip_version is None: ip_version = autodetect_ip_version(interfaces) self.done = False if apple_p2p and sys.platform != 'darwin': raise RuntimeError('Option `apple_p2p` is not supported on non-Apple platforms.') self.unicast = unicast listen_socket, respond_sockets = create_sockets(interfaces, unicast, ip_version, apple_p2p=apple_p2p) log.debug('Listen socket %s, respond sockets %s', listen_socket, respond_sockets) self.engine = AsyncEngine(self, listen_socket, respond_sockets) self.browsers: Dict[ServiceListener, ServiceBrowser] = {} self.registry = ServiceRegistry() self.cache = DNSCache() self.question_history = QuestionHistory() self.out_queue = MulticastOutgoingQueue(self, 0, _AGGREGATION_DELAY) self.out_delay_queue = MulticastOutgoingQueue(self, _ONE_SECOND, _PROTECTED_AGGREGATION_DELAY) self.query_handler = QueryHandler(self) self.record_manager = RecordManager(self) self._notify_futures: Set[asyncio.Future] = set() self.loop: Optional[asyncio.AbstractEventLoop] = None self._loop_thread: Optional[threading.Thread] = None self.start()
(self, interfaces: Union[Sequence[Union[str, int, Tuple[Tuple[str, int, int], int]]], zeroconf._utils.net.InterfaceChoice] = <InterfaceChoice.All: 2>, unicast: bool = False, ip_version: Optional[zeroconf._utils.net.IPVersion] = None, apple_p2p: bool = False) -> NoneType
29,972
zeroconf._core
_add_broadcast_answer
Add answers to broadcast a service.
def _add_broadcast_answer( # pylint: disable=no-self-use self, out: DNSOutgoing, info: ServiceInfo, override_ttl: Optional[int], broadcast_addresses: bool = True, ) -> None: """Add answers to broadcast a service.""" current_time_millis() other_ttl = None if override_ttl is None else override_ttl host_ttl = None if override_ttl is None else override_ttl out.add_answer_at_time(info.dns_pointer(override_ttl=other_ttl), 0) out.add_answer_at_time(info.dns_service(override_ttl=host_ttl), 0) out.add_answer_at_time(info.dns_text(override_ttl=other_ttl), 0) if broadcast_addresses: for record in info.get_address_and_nsec_records(override_ttl=host_ttl): out.add_answer_at_time(record, 0)
(self, out: zeroconf._protocol.outgoing.DNSOutgoing, info: zeroconf._services.info.ServiceInfo, override_ttl: Optional[int], broadcast_addresses: bool = True) -> NoneType
29,973
zeroconf._core
_async_broadcast_service
Send a broadcasts to announce a service at intervals.
def update_service(self, info: ServiceInfo) -> None: """Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_update_service` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( await_awaitable(self.async_update_service(info)), self.loop, _REGISTER_TIME * _REGISTER_BROADCASTS )
(self, info: zeroconf._services.info.ServiceInfo, interval: int, ttl: Optional[int], broadcast_addresses: bool = True) -> NoneType
29,974
zeroconf._core
_async_close
Ends the background threads, and prevent this instance from servicing further queries. This method is idempotent and irreversible. This call only intended to be used by AsyncZeroconf Callers are responsible for unregistering all services before calling this function
def close(self) -> None: """Ends the background threads, and prevent this instance from servicing further queries. This method is idempotent and irreversible. """ assert self.loop is not None if self.loop.is_running(): if self.loop == get_running_loop(): log.warning( "unregister_all_services skipped as it does blocking i/o; use AsyncZeroconf with asyncio" ) else: self.unregister_all_services() self._close() self.engine.close() self._shutdown_threads()
(self) -> NoneType
29,975
zeroconf._core
_close
Set global done and remove all service listeners.
def _close(self) -> None: """Set global done and remove all service listeners.""" if self.done: return self.remove_all_service_listeners() self.done = True
(self) -> NoneType
29,976
zeroconf._core
_shutdown_threads
Shutdown any threads.
def _shutdown_threads(self) -> None: """Shutdown any threads.""" self.notify_all() if not self._loop_thread: return assert self.loop is not None shutdown_loop(self.loop) self._loop_thread.join() self._loop_thread = None
(self) -> NoneType
29,977
zeroconf._core
_start_thread
Start a thread with a running event loop.
def _start_thread(self) -> None: """Start a thread with a running event loop.""" loop_thread_ready = threading.Event() def _run_loop() -> None: self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) self.engine.setup(self.loop, loop_thread_ready) self.loop.run_forever() self._loop_thread = threading.Thread(target=_run_loop, daemon=True) self._loop_thread.start() loop_thread_ready.wait()
(self) -> NoneType
29,978
zeroconf._core
add_listener
Adds a listener for a given question. The listener will have its update_record method called when information is available to answer the question(s). This function is threadsafe
def add_listener( self, listener: RecordUpdateListener, question: Optional[Union[DNSQuestion, List[DNSQuestion]]] ) -> None: """Adds a listener for a given question. The listener will have its update_record method called when information is available to answer the question(s). This function is threadsafe """ assert self.loop is not None self.loop.call_soon_threadsafe(self.record_manager.async_add_listener, listener, question)
(self, listener: zeroconf._updates.RecordUpdateListener, question: Union[zeroconf._dns.DNSQuestion, List[zeroconf._dns.DNSQuestion], NoneType]) -> NoneType
29,979
zeroconf._core
add_service_listener
Adds a listener for a particular service type. This object will then have its add_service and remove_service methods called when services of that type become available and unavailable.
def add_service_listener(self, type_: str, listener: ServiceListener) -> None: """Adds a listener for a particular service type. This object will then have its add_service and remove_service methods called when services of that type become available and unavailable.""" self.remove_service_listener(listener) self.browsers[listener] = ServiceBrowser(self, type_, listener)
(self, type_: str, listener: zeroconf._services.ServiceListener) -> NoneType
29,980
zeroconf._core
async_add_listener
Adds a listener for a given question. The listener will have its update_record method called when information is available to answer the question(s). This function is not threadsafe and must be called in the eventloop.
def async_add_listener( self, listener: RecordUpdateListener, question: Optional[Union[DNSQuestion, List[DNSQuestion]]] ) -> None: """Adds a listener for a given question. The listener will have its update_record method called when information is available to answer the question(s). This function is not threadsafe and must be called in the eventloop. """ self.record_manager.async_add_listener(listener, question)
(self, listener: zeroconf._updates.RecordUpdateListener, question: Union[zeroconf._dns.DNSQuestion, List[zeroconf._dns.DNSQuestion], NoneType]) -> NoneType
29,981
zeroconf._core
async_check_service
Checks the network for a unique service name, modifying the ServiceInfo passed in if it is not unique.
def unregister_all_services(self) -> None: """Unregister all registered services. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_unregister_all_services` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( self.async_unregister_all_services(), self.loop, _UNREGISTER_TIME * _REGISTER_BROADCASTS )
(self, info: zeroconf._services.info.ServiceInfo, allow_name_change: bool, cooperating_responders: bool = False, strict: bool = True) -> NoneType
29,982
zeroconf._core
async_get_service_info
Returns network's service information for a particular name and type, or None if no service matches by the timeout, which defaults to 3 seconds. :param type_: fully qualified service type name :param name: the name of the service :param timeout: milliseconds to wait for a response :param question_type: The type of questions to ask (DNSQuestionType.QM or DNSQuestionType.QU)
def update_service(self, info: ServiceInfo) -> None: """Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_update_service` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( await_awaitable(self.async_update_service(info)), self.loop, _REGISTER_TIME * _REGISTER_BROADCASTS )
(self, type_: str, name: str, timeout: int = 3000, question_type: Optional[zeroconf._dns.DNSQuestionType] = None) -> Optional[zeroconf._services.info.AsyncServiceInfo]
29,983
zeroconf._core
async_notify_all
Schedule an async_notify_all.
def async_notify_all(self) -> None: """Schedule an async_notify_all.""" notify_futures = self._notify_futures if notify_futures: _resolve_all_futures_to_none(notify_futures)
(self) -> NoneType
29,984
zeroconf._core
async_register_service
Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service. The name of the service may be changed if needed to make it unique on the network. Additionally multiple cooperating responders can register the same service on the network for resilience (if you want this behavior set `cooperating_responders` to `True`).
def register_service( self, info: ServiceInfo, ttl: Optional[int] = None, allow_name_change: bool = False, cooperating_responders: bool = False, strict: bool = True, ) -> None: """Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service. The name of the service may be changed if needed to make it unique on the network. Additionally multiple cooperating responders can register the same service on the network for resilience (if you want this behavior set `cooperating_responders` to `True`). While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `register_service` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( await_awaitable( self.async_register_service(info, ttl, allow_name_change, cooperating_responders, strict) ), self.loop, _REGISTER_TIME * _REGISTER_BROADCASTS, )
(self, info: zeroconf._services.info.ServiceInfo, ttl: Optional[int] = None, allow_name_change: bool = False, cooperating_responders: bool = False, strict: bool = True) -> Awaitable
29,985
zeroconf._core
async_remove_listener
Removes a listener. This function is not threadsafe and must be called in the eventloop.
def async_remove_listener(self, listener: RecordUpdateListener) -> None: """Removes a listener. This function is not threadsafe and must be called in the eventloop. """ self.record_manager.async_remove_listener(listener)
(self, listener: zeroconf._updates.RecordUpdateListener) -> NoneType
29,986
zeroconf._core
async_send
Sends an outgoing packet.
def async_send( self, out: DNSOutgoing, addr: Optional[str] = None, port: int = _MDNS_PORT, v6_flow_scope: Union[Tuple[()], Tuple[int, int]] = (), transport: Optional[_WrappedTransport] = None, ) -> None: """Sends an outgoing packet.""" if self.done: return # If no transport is specified, we send to all the ones # with the same address family transports = [transport] if transport else self.engine.senders log_debug = log.isEnabledFor(logging.DEBUG) for packet_num, packet in enumerate(out.packets()): if len(packet) > _MAX_MSG_ABSOLUTE: self.log_warning_once("Dropping %r over-sized packet (%d bytes) %r", out, len(packet), packet) return for send_transport in transports: async_send_with_transport( log_debug, send_transport, packet, packet_num, out, addr, port, v6_flow_scope )
(self, out: zeroconf._protocol.outgoing.DNSOutgoing, addr: Optional[str] = None, port: int = 5353, v6_flow_scope: Union[Tuple[()], Tuple[int, int]] = (), transport: Optional[zeroconf._transport._WrappedTransport] = None) -> NoneType
29,987
zeroconf._core
async_unregister_all_services
Unregister all registered services. Unlike async_register_service and async_unregister_service, this method does not return a future and is always expected to be awaited since its only called at shutdown.
def generate_unregister_all_services(self) -> Optional[DNSOutgoing]: """Generate a DNSOutgoing goodbye for all services and remove them from the registry.""" service_infos = self.registry.async_get_service_infos() if not service_infos: return None out = DNSOutgoing(_FLAGS_QR_RESPONSE | _FLAGS_AA) for info in service_infos: self._add_broadcast_answer(out, info, 0) self.registry.async_remove(service_infos) return out
(self) -> NoneType
29,988
zeroconf._core
async_unregister_service
Unregister a service.
def unregister_service(self, info: ServiceInfo) -> None: """Unregister a service. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_unregister_service` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( self.async_unregister_service(info), self.loop, _UNREGISTER_TIME * _REGISTER_BROADCASTS )
(self, info: zeroconf._services.info.ServiceInfo) -> Awaitable
29,989
zeroconf._core
async_update_service
Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service.
def update_service(self, info: ServiceInfo) -> None: """Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_update_service` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( await_awaitable(self.async_update_service(info)), self.loop, _REGISTER_TIME * _REGISTER_BROADCASTS )
(self, info: zeroconf._services.info.ServiceInfo) -> Awaitable
29,990
zeroconf._core
async_wait
Calling task waits for a given number of milliseconds or until notified.
@property def listeners(self) -> Set[RecordUpdateListener]: return self.record_manager.listeners
(self, timeout: float) -> NoneType
29,991
zeroconf._core
async_wait_for_start
Wait for start up for actions that require a running Zeroconf instance. Throws NotRunningException if the instance is not running or could not be started.
def _start_thread(self) -> None: """Start a thread with a running event loop.""" loop_thread_ready = threading.Event() def _run_loop() -> None: self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) self.engine.setup(self.loop, loop_thread_ready) self.loop.run_forever() self._loop_thread = threading.Thread(target=_run_loop, daemon=True) self._loop_thread.start() loop_thread_ready.wait()
(self) -> NoneType
29,992
zeroconf._core
close
Ends the background threads, and prevent this instance from servicing further queries. This method is idempotent and irreversible.
def close(self) -> None: """Ends the background threads, and prevent this instance from servicing further queries. This method is idempotent and irreversible. """ assert self.loop is not None if self.loop.is_running(): if self.loop == get_running_loop(): log.warning( "unregister_all_services skipped as it does blocking i/o; use AsyncZeroconf with asyncio" ) else: self.unregister_all_services() self._close() self.engine.close() self._shutdown_threads()
(self) -> NoneType
29,993
zeroconf._core
generate_service_broadcast
Generate a broadcast to announce a service.
def generate_service_broadcast( self, info: ServiceInfo, ttl: Optional[int], broadcast_addresses: bool = True, ) -> DNSOutgoing: """Generate a broadcast to announce a service.""" out = DNSOutgoing(_FLAGS_QR_RESPONSE | _FLAGS_AA) self._add_broadcast_answer(out, info, ttl, broadcast_addresses) return out
(self, info: zeroconf._services.info.ServiceInfo, ttl: Optional[int], broadcast_addresses: bool = True) -> zeroconf._protocol.outgoing.DNSOutgoing
29,994
zeroconf._core
generate_service_query
Generate a query to lookup a service.
def generate_service_query(self, info: ServiceInfo) -> DNSOutgoing: # pylint: disable=no-self-use """Generate a query to lookup a service.""" out = DNSOutgoing(_FLAGS_QR_QUERY | _FLAGS_AA) # https://datatracker.ietf.org/doc/html/rfc6762#section-8.1 # Because of the mDNS multicast rate-limiting # rules, the probes SHOULD be sent as "QU" questions with the unicast- # response bit set, to allow a defending host to respond immediately # via unicast, instead of potentially having to wait before replying # via multicast. # # _CLASS_UNIQUE is the "QU" bit out.add_question(DNSQuestion(info.type, _TYPE_PTR, _CLASS_IN | _CLASS_UNIQUE)) out.add_authorative_answer(info.dns_pointer()) return out
(self, info: zeroconf._services.info.ServiceInfo) -> zeroconf._protocol.outgoing.DNSOutgoing
29,995
zeroconf._core
generate_unregister_all_services
Generate a DNSOutgoing goodbye for all services and remove them from the registry.
def generate_unregister_all_services(self) -> Optional[DNSOutgoing]: """Generate a DNSOutgoing goodbye for all services and remove them from the registry.""" service_infos = self.registry.async_get_service_infos() if not service_infos: return None out = DNSOutgoing(_FLAGS_QR_RESPONSE | _FLAGS_AA) for info in service_infos: self._add_broadcast_answer(out, info, 0) self.registry.async_remove(service_infos) return out
(self) -> Optional[zeroconf._protocol.outgoing.DNSOutgoing]
29,996
zeroconf._core
get_service_info
Returns network's service information for a particular name and type, or None if no service matches by the timeout, which defaults to 3 seconds. :param type_: fully qualified service type name :param name: the name of the service :param timeout: milliseconds to wait for a response :param question_type: The type of questions to ask (DNSQuestionType.QM or DNSQuestionType.QU)
def get_service_info( self, type_: str, name: str, timeout: int = 3000, question_type: Optional[DNSQuestionType] = None ) -> Optional[ServiceInfo]: """Returns network's service information for a particular name and type, or None if no service matches by the timeout, which defaults to 3 seconds. :param type_: fully qualified service type name :param name: the name of the service :param timeout: milliseconds to wait for a response :param question_type: The type of questions to ask (DNSQuestionType.QM or DNSQuestionType.QU) """ info = ServiceInfo(type_, name) if info.request(self, timeout, question_type): return info return None
(self, type_: str, name: str, timeout: int = 3000, question_type: Optional[zeroconf._dns.DNSQuestionType] = None) -> Optional[zeroconf._services.info.ServiceInfo]
29,997
zeroconf._core
notify_all
Notifies all waiting threads and notify listeners.
def notify_all(self) -> None: """Notifies all waiting threads and notify listeners.""" assert self.loop is not None self.loop.call_soon_threadsafe(self.async_notify_all)
(self) -> NoneType
29,998
zeroconf._core
register_service
Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service. The name of the service may be changed if needed to make it unique on the network. Additionally multiple cooperating responders can register the same service on the network for resilience (if you want this behavior set `cooperating_responders` to `True`). While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `register_service` cannot be completed.
def register_service( self, info: ServiceInfo, ttl: Optional[int] = None, allow_name_change: bool = False, cooperating_responders: bool = False, strict: bool = True, ) -> None: """Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service. The name of the service may be changed if needed to make it unique on the network. Additionally multiple cooperating responders can register the same service on the network for resilience (if you want this behavior set `cooperating_responders` to `True`). While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `register_service` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( await_awaitable( self.async_register_service(info, ttl, allow_name_change, cooperating_responders, strict) ), self.loop, _REGISTER_TIME * _REGISTER_BROADCASTS, )
(self, info: zeroconf._services.info.ServiceInfo, ttl: Optional[int] = None, allow_name_change: bool = False, cooperating_responders: bool = False, strict: bool = True) -> NoneType
29,999
zeroconf._core
remove_all_service_listeners
Removes a listener from the set that is currently listening.
def remove_all_service_listeners(self) -> None: """Removes a listener from the set that is currently listening.""" for listener in list(self.browsers): self.remove_service_listener(listener)
(self) -> NoneType
30,000
zeroconf._core
remove_listener
Removes a listener. This function is threadsafe
def remove_listener(self, listener: RecordUpdateListener) -> None: """Removes a listener. This function is threadsafe """ assert self.loop is not None self.loop.call_soon_threadsafe(self.record_manager.async_remove_listener, listener)
(self, listener: zeroconf._updates.RecordUpdateListener) -> NoneType
30,001
zeroconf._core
remove_service_listener
Removes a listener from the set that is currently listening.
def remove_service_listener(self, listener: ServiceListener) -> None: """Removes a listener from the set that is currently listening.""" if listener in self.browsers: self.browsers[listener].cancel() del self.browsers[listener]
(self, listener: zeroconf._services.ServiceListener) -> NoneType
30,002
zeroconf._core
send
Sends an outgoing packet threadsafe.
def send( self, out: DNSOutgoing, addr: Optional[str] = None, port: int = _MDNS_PORT, v6_flow_scope: Union[Tuple[()], Tuple[int, int]] = (), transport: Optional[_WrappedTransport] = None, ) -> None: """Sends an outgoing packet threadsafe.""" assert self.loop is not None self.loop.call_soon_threadsafe(self.async_send, out, addr, port, v6_flow_scope, transport)
(self, out: zeroconf._protocol.outgoing.DNSOutgoing, addr: Optional[str] = None, port: int = 5353, v6_flow_scope: Union[Tuple[()], Tuple[int, int]] = (), transport: Optional[zeroconf._transport._WrappedTransport] = None) -> NoneType
30,003
zeroconf._core
start
Start Zeroconf.
def start(self) -> None: """Start Zeroconf.""" self.loop = get_running_loop() if self.loop: self.engine.setup(self.loop, None) return self._start_thread()
(self) -> NoneType
30,004
zeroconf._core
unregister_all_services
Unregister all registered services. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_unregister_all_services` cannot be completed.
def unregister_all_services(self) -> None: """Unregister all registered services. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_unregister_all_services` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( self.async_unregister_all_services(), self.loop, _UNREGISTER_TIME * _REGISTER_BROADCASTS )
(self) -> NoneType
30,005
zeroconf._core
unregister_service
Unregister a service. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_unregister_service` cannot be completed.
def unregister_service(self, info: ServiceInfo) -> None: """Unregister a service. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_unregister_service` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( self.async_unregister_service(info), self.loop, _UNREGISTER_TIME * _REGISTER_BROADCASTS )
(self, info: zeroconf._services.info.ServiceInfo) -> NoneType
30,006
zeroconf._core
update_service
Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_update_service` cannot be completed.
def update_service(self, info: ServiceInfo) -> None: """Registers service information to the network with a default TTL. Zeroconf will then respond to requests for information for that service. While it is not expected during normal operation, this function may raise EventLoopBlocked if the underlying call to `async_update_service` cannot be completed. """ assert self.loop is not None run_coro_with_timeout( await_awaitable(self.async_update_service(info)), self.loop, _REGISTER_TIME * _REGISTER_BROADCASTS )
(self, info: zeroconf._services.info.ServiceInfo) -> NoneType
30,007
zeroconf._services.types
ZeroconfServiceTypes
Return all of the advertised services on any local networks
class ZeroconfServiceTypes(ServiceListener): """ Return all of the advertised services on any local networks """ def __init__(self) -> None: """Keep track of found services in a set.""" self.found_services: Set[str] = set() def add_service(self, zc: Zeroconf, type_: str, name: str) -> None: """Service added.""" self.found_services.add(name) def update_service(self, zc: Zeroconf, type_: str, name: str) -> None: """Service updated.""" def remove_service(self, zc: Zeroconf, type_: str, name: str) -> None: """Service removed.""" @classmethod def find( cls, zc: Optional[Zeroconf] = None, timeout: Union[int, float] = 5, interfaces: InterfacesType = InterfaceChoice.All, ip_version: Optional[IPVersion] = None, ) -> Tuple[str, ...]: """ Return all of the advertised services on any local networks. :param zc: Zeroconf() instance. Pass in if already have an instance running or if non-default interfaces are needed :param timeout: seconds to wait for any responses :param interfaces: interfaces to listen on. :param ip_version: IP protocol version to use. :return: tuple of service type strings """ local_zc = zc or Zeroconf(interfaces=interfaces, ip_version=ip_version) listener = cls() browser = ServiceBrowser(local_zc, _SERVICE_TYPE_ENUMERATION_NAME, listener=listener) # wait for responses time.sleep(timeout) browser.cancel() # close down anything we opened if zc is None: local_zc.close() return tuple(sorted(listener.found_services))
() -> None
30,008
zeroconf._services.types
__init__
Keep track of found services in a set.
def __init__(self) -> None: """Keep track of found services in a set.""" self.found_services: Set[str] = set()
(self) -> NoneType
30,009
zeroconf._services.types
add_service
Service added.
def add_service(self, zc: Zeroconf, type_: str, name: str) -> None: """Service added.""" self.found_services.add(name)
(self, zc: zeroconf._core.Zeroconf, type_: str, name: str) -> NoneType
30,010
zeroconf._services.types
remove_service
Service removed.
def remove_service(self, zc: Zeroconf, type_: str, name: str) -> None: """Service removed."""
(self, zc: zeroconf._core.Zeroconf, type_: str, name: str) -> NoneType
30,011
zeroconf._services.types
update_service
Service updated.
def update_service(self, zc: Zeroconf, type_: str, name: str) -> None: """Service updated."""
(self, zc: zeroconf._core.Zeroconf, type_: str, name: str) -> NoneType
30,027
zeroconf._utils.net
add_multicast_member
null
def add_multicast_member( listen_socket: socket.socket, interface: Union[str, Tuple[Tuple[str, int, int], int]], ) -> bool: # This is based on assumptions in normalize_interface_choice is_v6 = isinstance(interface, tuple) err_einval = {errno.EINVAL} if sys.platform == 'win32': # No WSAEINVAL definition in typeshed err_einval |= {cast(Any, errno).WSAEINVAL} # pylint: disable=no-member log.debug('Adding %r (socket %d) to multicast group', interface, listen_socket.fileno()) try: if is_v6: try: mdns_addr6_bytes = socket.inet_pton(socket.AF_INET6, _MDNS_ADDR6) except OSError: log.info( 'Unable to translate IPv6 address when adding %s to multicast group, ' 'this can happen if IPv6 is disabled on the system', interface, ) return False iface_bin = struct.pack('@I', cast(int, interface[1])) _value = mdns_addr6_bytes + iface_bin listen_socket.setsockopt(_IPPROTO_IPV6, socket.IPV6_JOIN_GROUP, _value) else: _value = socket.inet_aton(_MDNS_ADDR) + socket.inet_aton(cast(str, interface)) listen_socket.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, _value) except OSError as e: _errno = get_errno(e) if _errno == errno.EADDRINUSE: log.info( 'Address in use when adding %s to multicast group, ' 'it is expected to happen on some systems', interface, ) return False if _errno == errno.EADDRNOTAVAIL: log.info( 'Address not available when adding %s to multicast ' 'group, it is expected to happen on some systems', interface, ) return False if _errno in err_einval: log.info('Interface of %s does not support multicast, ' 'it is expected in WSL', interface) return False if _errno == errno.ENOPROTOOPT: log.info( 'Failed to set socket option on %s, this can happen if ' 'the network adapter is in a disconnected state', interface, ) return False if is_v6 and _errno == errno.ENODEV: log.info( 'Address in use when adding %s to multicast group, ' 'it is expected to happen when the device does not have ipv6', interface, ) return False raise return True
(listen_socket: socket.socket, interface: Union[str, Tuple[Tuple[str, int, int], int]]) -> bool
30,028
zeroconf._utils.net
autodetect_ip_version
Auto detect the IP version when it is not provided.
def autodetect_ip_version(interfaces: InterfacesType) -> IPVersion: """Auto detect the IP version when it is not provided.""" if isinstance(interfaces, list): has_v6 = any( isinstance(i, int) or (isinstance(i, str) and ipaddress.ip_address(i).version == 6) for i in interfaces ) has_v4 = any(isinstance(i, str) and ipaddress.ip_address(i).version == 4 for i in interfaces) if has_v4 and has_v6: return IPVersion.All if has_v6: return IPVersion.V6Only return IPVersion.V4Only
(interfaces: Union[Sequence[Union[str, int, Tuple[Tuple[str, int, int], int]]], zeroconf._utils.net.InterfaceChoice]) -> zeroconf._utils.net.IPVersion
30,030
zeroconf._utils.net
create_sockets
null
def create_sockets( interfaces: InterfacesType = InterfaceChoice.All, unicast: bool = False, ip_version: IPVersion = IPVersion.V4Only, apple_p2p: bool = False, ) -> Tuple[Optional[socket.socket], List[socket.socket]]: if unicast: listen_socket = None else: listen_socket = new_socket(ip_version=ip_version, apple_p2p=apple_p2p, bind_addr=('',)) normalized_interfaces = normalize_interface_choice(interfaces, ip_version) # If we are using InterfaceChoice.Default we can use # a single socket to listen and respond. if not unicast and interfaces is InterfaceChoice.Default: for i in normalized_interfaces: add_multicast_member(cast(socket.socket, listen_socket), i) return listen_socket, [cast(socket.socket, listen_socket)] respond_sockets = [] for i in normalized_interfaces: if not unicast: if add_multicast_member(cast(socket.socket, listen_socket), i): respond_socket = new_respond_socket(i, apple_p2p=apple_p2p) else: respond_socket = None else: respond_socket = new_socket( port=0, ip_version=ip_version, apple_p2p=apple_p2p, bind_addr=i[0] if isinstance(i, tuple) else (i,), ) if respond_socket is not None: respond_sockets.append(respond_socket) return listen_socket, respond_sockets
(interfaces: Union[Sequence[Union[str, int, Tuple[Tuple[str, int, int], int]]], zeroconf._utils.net.InterfaceChoice] = <InterfaceChoice.All: 2>, unicast: bool = False, ip_version: zeroconf._utils.net.IPVersion = <IPVersion.V4Only: 1>, apple_p2p: bool = False) -> Tuple[Optional[socket.socket], List[socket.socket]]
30,031
zeroconf._utils.net
get_all_addresses
null
def get_all_addresses() -> List[str]: return list({addr.ip for iface in ifaddr.get_adapters() for addr in iface.ips if addr.is_IPv4})
() -> List[str]
30,032
zeroconf._utils.net
get_all_addresses_v6
null
def get_all_addresses_v6() -> List[Tuple[Tuple[str, int, int], int]]: # IPv6 multicast uses positive indexes for interfaces # TODO: What about multi-address interfaces? return list( {(addr.ip, iface.index) for iface in ifaddr.get_adapters() for addr in iface.ips if addr.is_IPv6} )
() -> List[Tuple[Tuple[str, int, int], int]]
30,034
pawl.linkedin
Linkedin
The Linkedin class provides convenient access to Linkedin's API.
class Linkedin: """The Linkedin class provides convenient access to Linkedin's API.""" def __init__( self, access_token=None, client_id=None, client_secret=None, redirect_uri="http://localhost:8000", token_manager=None, ): assert access_token or ( client_id and client_secret ), "Either client_id and client_secret or an access token is required." self._core = self._authorized_core = None # TODO - Abstract these values for security self._client_id = client_id self._client_secret = client_secret self._redirect_uri = redirect_uri # TODO END self._services = None self._token_manager = token_manager self._map_services() self._prepare_core() self.auth = service.Auth(self, None) self.current_user = service.Me(linkedin=self, _data=None) self.current_user_id = self._set_linkedin_user_id() self.reactions = service.Reactions(linkedin=self, _data=None) def _prepare_core(self, requestor_class=None, requestor_kwargs=None): requestor_class = requestor_class or Requestor requestor_kwargs = requestor_kwargs or {} requestor = requestor_class() self._prepare_core_authenticator(requestor) def _prepare_core_authenticator(self, requestor): authenticator = Authenticator( requestor, self._client_id, self._client_secret, self._redirect_uri ) self._prepare_core_authorizer(authenticator) def _prepare_core_authorizer(self, authenticator: Authenticator): if self._token_manager is not None: self._token_manager.linkedin = self authorizer = Authorizer( authenticator, post_access_callback=self._token_manager.post_access_callback, pre_access_callback=self._token_manager.pre_access_callback, ) else: # TODO - Add error handling authorizer = Authorizer(authenticator) self._core = self._authorized_core = session(authorizer) def _map_services(self): service_mappings = { "Me": service.Me, "Reactions": service.Reactions, } self._services = service_mappings @staticmethod def _parse_service_request(data: Optional[Union[Dict[str, Any], List[Any], bool]]): # TODO - Restructure data for ease of use with python/utf-8 return data def _service_request( self, data: Optional[Union[Dict[str, Union[str, Any]], bytes, IO, str]] = None, json=None, method: str = "", params: Optional[Union[str, Dict[str, str]]] = None, path: str = "", ) -> Any: """Run a request through mapped services. :param data: Dictionary, bytes, or file-like object to send in the body of the request (default: None). :param json: JSON-serializable object to send in the body of the request with a Content-Type header of application/json (default: None). If ``json`` is provided, ``data`` should not be. :param method: The HTTP method (e.g., GET, POST, PUT, DELETE). :param params: The query parameters to add to the request (default: None). :param path: The path to fetch. """ return self._parse_service_request( data=self._core.request( data=data, json=json, method=method, params=params, path=path, ) ) def get( self, path: str, params: Optional[Union[str, Dict[str, Union[str, int]]]] = None, ): """Return parsed objects returned from a GET request to ``path``. :param path: The path to fetch. :param params: The query parameters to add to the request (default: None). """ return self._service_request(method="GET", params=params, path=path) def post( self, path: str, data: Optional[Union[Dict[str, Union[str, Any]], bytes, IO, str]] = None, params: Optional[Union[str, Dict[str, Union[str, int]]]] = None, json=None, ): return self._service_request( data=data, json=json, method="POST", params=params, path=path, ) def _set_linkedin_user_id(self): if self._authorized_core._authorizer.access_token is None: return self.current_user.basic_profile()["id"] return None
(access_token=None, client_id=None, client_secret=None, redirect_uri='http://localhost:8000', token_manager=None)
30,035
pawl.linkedin
__init__
null
def __init__( self, access_token=None, client_id=None, client_secret=None, redirect_uri="http://localhost:8000", token_manager=None, ): assert access_token or ( client_id and client_secret ), "Either client_id and client_secret or an access token is required." self._core = self._authorized_core = None # TODO - Abstract these values for security self._client_id = client_id self._client_secret = client_secret self._redirect_uri = redirect_uri # TODO END self._services = None self._token_manager = token_manager self._map_services() self._prepare_core() self.auth = service.Auth(self, None) self.current_user = service.Me(linkedin=self, _data=None) self.current_user_id = self._set_linkedin_user_id() self.reactions = service.Reactions(linkedin=self, _data=None)
(self, access_token=None, client_id=None, client_secret=None, redirect_uri='http://localhost:8000', token_manager=None)
30,036
pawl.linkedin
_map_services
null
def _map_services(self): service_mappings = { "Me": service.Me, "Reactions": service.Reactions, } self._services = service_mappings
(self)
30,037
pawl.linkedin
_parse_service_request
null
@staticmethod def _parse_service_request(data: Optional[Union[Dict[str, Any], List[Any], bool]]): # TODO - Restructure data for ease of use with python/utf-8 return data
(data: Union[Dict[str, Any], List[Any], bool, NoneType])
30,038
pawl.linkedin
_prepare_core
null
def _prepare_core(self, requestor_class=None, requestor_kwargs=None): requestor_class = requestor_class or Requestor requestor_kwargs = requestor_kwargs or {} requestor = requestor_class() self._prepare_core_authenticator(requestor)
(self, requestor_class=None, requestor_kwargs=None)
30,039
pawl.linkedin
_prepare_core_authenticator
null
def _prepare_core_authenticator(self, requestor): authenticator = Authenticator( requestor, self._client_id, self._client_secret, self._redirect_uri ) self._prepare_core_authorizer(authenticator)
(self, requestor)
30,040
pawl.linkedin
_prepare_core_authorizer
null
def _prepare_core_authorizer(self, authenticator: Authenticator): if self._token_manager is not None: self._token_manager.linkedin = self authorizer = Authorizer( authenticator, post_access_callback=self._token_manager.post_access_callback, pre_access_callback=self._token_manager.pre_access_callback, ) else: # TODO - Add error handling authorizer = Authorizer(authenticator) self._core = self._authorized_core = session(authorizer)
(self, authenticator: pawl.core.auth.Authenticator)
30,041
pawl.linkedin
_service_request
Run a request through mapped services. :param data: Dictionary, bytes, or file-like object to send in the body of the request (default: None). :param json: JSON-serializable object to send in the body of the request with a Content-Type header of application/json (default: None). If ``json`` is provided, ``data`` should not be. :param method: The HTTP method (e.g., GET, POST, PUT, DELETE). :param params: The query parameters to add to the request (default: None). :param path: The path to fetch.
def _service_request( self, data: Optional[Union[Dict[str, Union[str, Any]], bytes, IO, str]] = None, json=None, method: str = "", params: Optional[Union[str, Dict[str, str]]] = None, path: str = "", ) -> Any: """Run a request through mapped services. :param data: Dictionary, bytes, or file-like object to send in the body of the request (default: None). :param json: JSON-serializable object to send in the body of the request with a Content-Type header of application/json (default: None). If ``json`` is provided, ``data`` should not be. :param method: The HTTP method (e.g., GET, POST, PUT, DELETE). :param params: The query parameters to add to the request (default: None). :param path: The path to fetch. """ return self._parse_service_request( data=self._core.request( data=data, json=json, method=method, params=params, path=path, ) )
(self, data: Union[Dict[str, Union[str, Any]], bytes, IO, str, NoneType] = None, json=None, method: str = '', params: Union[str, Dict[str, str], NoneType] = None, path: str = '') -> Any
30,042
pawl.linkedin
_set_linkedin_user_id
null
def _set_linkedin_user_id(self): if self._authorized_core._authorizer.access_token is None: return self.current_user.basic_profile()["id"] return None
(self)
30,043
pawl.linkedin
get
Return parsed objects returned from a GET request to ``path``. :param path: The path to fetch. :param params: The query parameters to add to the request (default: None).
def get( self, path: str, params: Optional[Union[str, Dict[str, Union[str, int]]]] = None, ): """Return parsed objects returned from a GET request to ``path``. :param path: The path to fetch. :param params: The query parameters to add to the request (default: None). """ return self._service_request(method="GET", params=params, path=path)
(self, path: str, params: Union[str, Dict[str, Union[str, int]], NoneType] = None)
30,044
pawl.linkedin
post
null
def post( self, path: str, data: Optional[Union[Dict[str, Union[str, Any]], bytes, IO, str]] = None, params: Optional[Union[str, Dict[str, Union[str, int]]]] = None, json=None, ): return self._service_request( data=data, json=json, method="POST", params=params, path=path, )
(self, path: str, data: Union[Dict[str, Union[str, Any]], bytes, IO, str, NoneType] = None, params: Union[str, Dict[str, Union[str, int]], NoneType] = None, json=None)
30,051
pfzy.match
fuzzy_match
Fuzzy find the needle within list of haystacks and get matched results with matching index. Note: The `key` argument is optional when the provided `haystacks` argument is a list of :class:`str`. It will be given a default key `value` if not present. Warning: The `key` argument is required when provided `haystacks` argument is a list of :class:`dict`. If not present, :class:`TypeError` will be raised. Args: needle: String to search within the `haystacks`. haystacks: List of haystack/longer strings to be searched. key: If `haystacks` is a list of dictionary, provide the key that can obtain the haystack value to search. batch_size: Number of entry to be processed together. scorer (Callable[[str, str], SCORE_indices]): Desired scorer to use. Currently only :func:`~pfzy.score.fzy_scorer` and :func:`~pfzy.score.substr_scorer` is supported. Raises: TypeError: When the argument `haystacks` is :class:`list` of :class:`dict` and the `key` argument is missing, :class:`TypeError` will be raised. Returns: List of matching `haystacks` with additional key indices and score. Examples: >>> import asyncio >>> asyncio.run(fuzzy_match("ab", ["acb", "acbabc"])) [{'value': 'acbabc', 'indices': [3, 4]}, {'value': 'acb', 'indices': [0, 2]}]
result.sort(key=lambda x: x["score"], reverse=True)
(needle: str, haystacks: List[Union[str, Dict[str, Any]]], key: str = '', batch_size: int = 4096, scorer: Optional[Callable[[str, str], Tuple[float, Optional[List[int]]]]] = None) -> List[Dict[str, Any]]
30,052
pfzy.score
fzy_scorer
Use fzy matching algorithem to match needle against haystack. Note: The `fzf` unordered search is not supported for performance concern. When the provided `needle` is not a subsequence of `haystack` at all, then `(-inf, None)` is returned. See Also: https://github.com/jhawthorn/fzy/blob/master/src/match.c Args: needle: Substring to find in haystack. haystack: String to be searched and scored against. Returns: A tuple of matching score with a list of matching indices. Examples: >>> fzy_scorer("ab", "acb") (0.89, [0, 2]) >>> fzy_scorer("ab", "acbabc") (0.98, [3, 4]) >>> fzy_scorer("ab", "wc") (-inf, None)
def fzy_scorer(needle: str, haystack: str) -> SCORE_INDICES: """Use fzy matching algorithem to match needle against haystack. Note: The `fzf` unordered search is not supported for performance concern. When the provided `needle` is not a subsequence of `haystack` at all, then `(-inf, None)` is returned. See Also: https://github.com/jhawthorn/fzy/blob/master/src/match.c Args: needle: Substring to find in haystack. haystack: String to be searched and scored against. Returns: A tuple of matching score with a list of matching indices. Examples: >>> fzy_scorer("ab", "acb") (0.89, [0, 2]) >>> fzy_scorer("ab", "acbabc") (0.98, [3, 4]) >>> fzy_scorer("ab", "wc") (-inf, None) """ if _subsequence(needle, haystack): return _score(needle, haystack) else: return SCORE_MIN, None
(needle: str, haystack: str) -> Tuple[float, Optional[List[int]]]
30,055
pfzy.score
substr_scorer
Match needle against haystack using :meth:`str.find`. Note: Scores may be negative but the higher the score, the higher the match rank. `-inf` score means no match found. See Also: https://github.com/aslpavel/sweep.py/blob/3f4a179b708059c12b9e5d76d1eb3c70bf2caadc/sweep.py#L837 Args: needle: Substring to find in haystack. haystack: String to be searched and scored against. Returns: A tuple of matching score with a list of matching indices. Example: >>> substr_scorer("ab", "awsab") (-1.3, [3, 4]) >>> substr_scorer("ab", "abc") (0.5, [0, 1]) >>> substr_scorer("ab", "iop") (-inf, None) >>> substr_scorer("ab", "asdafswabc") (-1.6388888888888888, [7, 8]) >>> substr_scorer(" ", "asdf") (0, [])
def substr_scorer(needle: str, haystack: str) -> SCORE_INDICES: """Match needle against haystack using :meth:`str.find`. Note: Scores may be negative but the higher the score, the higher the match rank. `-inf` score means no match found. See Also: https://github.com/aslpavel/sweep.py/blob/3f4a179b708059c12b9e5d76d1eb3c70bf2caadc/sweep.py#L837 Args: needle: Substring to find in haystack. haystack: String to be searched and scored against. Returns: A tuple of matching score with a list of matching indices. Example: >>> substr_scorer("ab", "awsab") (-1.3, [3, 4]) >>> substr_scorer("ab", "abc") (0.5, [0, 1]) >>> substr_scorer("ab", "iop") (-inf, None) >>> substr_scorer("ab", "asdafswabc") (-1.6388888888888888, [7, 8]) >>> substr_scorer(" ", "asdf") (0, []) """ indices = [] offset = 0 needle, haystack = needle.lower(), haystack.lower() for needle in needle.split(" "): if not needle: continue offset = haystack.find(needle, offset) if offset < 0: return SCORE_MIN, None needle_len = len(needle) indices.extend(range(offset, offset + needle_len)) offset += needle_len if not indices: return 0, indices return ( -(indices[-1] + 1 - indices[0]) + 2 / (indices[0] + 1) + 1 / (indices[-1] + 1), indices, )
(needle: str, haystack: str) -> Tuple[float, Optional[List[int]]]
30,057
networkx.exception
AmbiguousSolution
Raised if more than one valid solution exists for an intermediary step of an algorithm. In the face of ambiguity, refuse the temptation to guess. This may occur, for example, when trying to determine the bipartite node sets in a disconnected bipartite graph when computing bipartite matchings.
class AmbiguousSolution(NetworkXException): """Raised if more than one valid solution exists for an intermediary step of an algorithm. In the face of ambiguity, refuse the temptation to guess. This may occur, for example, when trying to determine the bipartite node sets in a disconnected bipartite graph when computing bipartite matchings. """
null
30,058
networkx.algorithms.tree.branchings
ArborescenceIterator
Iterate over all spanning arborescences of a graph in either increasing or decreasing cost. Notes ----- This iterator uses the partition scheme from [1]_ (included edges, excluded edges and open edges). It generates minimum spanning arborescences using a modified Edmonds' Algorithm which respects the partition of edges. For arborescences with the same weight, ties are broken arbitrarily. References ---------- .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning trees in order of increasing cost, Pesquisa Operacional, 2005-08, Vol. 25 (2), p. 219-229, https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en
class ArborescenceIterator: """ Iterate over all spanning arborescences of a graph in either increasing or decreasing cost. Notes ----- This iterator uses the partition scheme from [1]_ (included edges, excluded edges and open edges). It generates minimum spanning arborescences using a modified Edmonds' Algorithm which respects the partition of edges. For arborescences with the same weight, ties are broken arbitrarily. References ---------- .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning trees in order of increasing cost, Pesquisa Operacional, 2005-08, Vol. 25 (2), p. 219-229, https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en """ @dataclass(order=True) class Partition: """ This dataclass represents a partition and stores a dict with the edge data and the weight of the minimum spanning arborescence of the partition dict. """ mst_weight: float partition_dict: dict = field(compare=False) def __copy__(self): return ArborescenceIterator.Partition( self.mst_weight, self.partition_dict.copy() ) def __init__(self, G, weight="weight", minimum=True, init_partition=None): """ Initialize the iterator Parameters ---------- G : nx.DiGraph The directed graph which we need to iterate trees over weight : String, default = "weight" The edge attribute used to store the weight of the edge minimum : bool, default = True Return the trees in increasing order while true and decreasing order while false. init_partition : tuple, default = None In the case that certain edges have to be included or excluded from the arborescences, `init_partition` should be in the form `(included_edges, excluded_edges)` where each edges is a `(u, v)`-tuple inside an iterable such as a list or set. """ self.G = G.copy() self.weight = weight self.minimum = minimum self.method = ( minimum_spanning_arborescence if minimum else maximum_spanning_arborescence ) # Randomly create a key for an edge attribute to hold the partition data self.partition_key = ( "ArborescenceIterators super secret partition attribute name" ) if init_partition is not None: partition_dict = {} for e in init_partition[0]: partition_dict[e] = nx.EdgePartition.INCLUDED for e in init_partition[1]: partition_dict[e] = nx.EdgePartition.EXCLUDED self.init_partition = ArborescenceIterator.Partition(0, partition_dict) else: self.init_partition = None def __iter__(self): """ Returns ------- ArborescenceIterator The iterator object for this graph """ self.partition_queue = PriorityQueue() self._clear_partition(self.G) # Write the initial partition if it exists. if self.init_partition is not None: self._write_partition(self.init_partition) mst_weight = self.method( self.G, self.weight, partition=self.partition_key, preserve_attrs=True, ).size(weight=self.weight) self.partition_queue.put( self.Partition( mst_weight if self.minimum else -mst_weight, {} if self.init_partition is None else self.init_partition.partition_dict, ) ) return self def __next__(self): """ Returns ------- (multi)Graph The spanning tree of next greatest weight, which ties broken arbitrarily. """ if self.partition_queue.empty(): del self.G, self.partition_queue raise StopIteration partition = self.partition_queue.get() self._write_partition(partition) next_arborescence = self.method( self.G, self.weight, partition=self.partition_key, preserve_attrs=True, ) self._partition(partition, next_arborescence) self._clear_partition(next_arborescence) return next_arborescence def _partition(self, partition, partition_arborescence): """ Create new partitions based of the minimum spanning tree of the current minimum partition. Parameters ---------- partition : Partition The Partition instance used to generate the current minimum spanning tree. partition_arborescence : nx.Graph The minimum spanning arborescence of the input partition. """ # create two new partitions with the data from the input partition dict p1 = self.Partition(0, partition.partition_dict.copy()) p2 = self.Partition(0, partition.partition_dict.copy()) for e in partition_arborescence.edges: # determine if the edge was open or included if e not in partition.partition_dict: # This is an open edge p1.partition_dict[e] = nx.EdgePartition.EXCLUDED p2.partition_dict[e] = nx.EdgePartition.INCLUDED self._write_partition(p1) try: p1_mst = self.method( self.G, self.weight, partition=self.partition_key, preserve_attrs=True, ) p1_mst_weight = p1_mst.size(weight=self.weight) p1.mst_weight = p1_mst_weight if self.minimum else -p1_mst_weight self.partition_queue.put(p1.__copy__()) except nx.NetworkXException: pass p1.partition_dict = p2.partition_dict.copy() def _write_partition(self, partition): """ Writes the desired partition into the graph to calculate the minimum spanning tree. Also, if one incoming edge is included, mark all others as excluded so that if that vertex is merged during Edmonds' algorithm we cannot still pick another of that vertex's included edges. Parameters ---------- partition : Partition A Partition dataclass describing a partition on the edges of the graph. """ for u, v, d in self.G.edges(data=True): if (u, v) in partition.partition_dict: d[self.partition_key] = partition.partition_dict[(u, v)] else: d[self.partition_key] = nx.EdgePartition.OPEN nx._clear_cache(self.G) for n in self.G: included_count = 0 excluded_count = 0 for u, v, d in self.G.in_edges(nbunch=n, data=True): if d.get(self.partition_key) == nx.EdgePartition.INCLUDED: included_count += 1 elif d.get(self.partition_key) == nx.EdgePartition.EXCLUDED: excluded_count += 1 # Check that if there is an included edges, all other incoming ones # are excluded. If not fix it! if included_count == 1 and excluded_count != self.G.in_degree(n) - 1: for u, v, d in self.G.in_edges(nbunch=n, data=True): if d.get(self.partition_key) != nx.EdgePartition.INCLUDED: d[self.partition_key] = nx.EdgePartition.EXCLUDED def _clear_partition(self, G): """ Removes partition data from the graph """ for u, v, d in G.edges(data=True): if self.partition_key in d: del d[self.partition_key] nx._clear_cache(self.G)
(G, weight='weight', minimum=True, init_partition=None)
30,059
networkx.algorithms.tree.branchings
__init__
Initialize the iterator Parameters ---------- G : nx.DiGraph The directed graph which we need to iterate trees over weight : String, default = "weight" The edge attribute used to store the weight of the edge minimum : bool, default = True Return the trees in increasing order while true and decreasing order while false. init_partition : tuple, default = None In the case that certain edges have to be included or excluded from the arborescences, `init_partition` should be in the form `(included_edges, excluded_edges)` where each edges is a `(u, v)`-tuple inside an iterable such as a list or set.
def __init__(self, G, weight="weight", minimum=True, init_partition=None): """ Initialize the iterator Parameters ---------- G : nx.DiGraph The directed graph which we need to iterate trees over weight : String, default = "weight" The edge attribute used to store the weight of the edge minimum : bool, default = True Return the trees in increasing order while true and decreasing order while false. init_partition : tuple, default = None In the case that certain edges have to be included or excluded from the arborescences, `init_partition` should be in the form `(included_edges, excluded_edges)` where each edges is a `(u, v)`-tuple inside an iterable such as a list or set. """ self.G = G.copy() self.weight = weight self.minimum = minimum self.method = ( minimum_spanning_arborescence if minimum else maximum_spanning_arborescence ) # Randomly create a key for an edge attribute to hold the partition data self.partition_key = ( "ArborescenceIterators super secret partition attribute name" ) if init_partition is not None: partition_dict = {} for e in init_partition[0]: partition_dict[e] = nx.EdgePartition.INCLUDED for e in init_partition[1]: partition_dict[e] = nx.EdgePartition.EXCLUDED self.init_partition = ArborescenceIterator.Partition(0, partition_dict) else: self.init_partition = None
(self, G, weight='weight', minimum=True, init_partition=None)
30,060
networkx.algorithms.tree.branchings
__iter__
Returns ------- ArborescenceIterator The iterator object for this graph
def __iter__(self): """ Returns ------- ArborescenceIterator The iterator object for this graph """ self.partition_queue = PriorityQueue() self._clear_partition(self.G) # Write the initial partition if it exists. if self.init_partition is not None: self._write_partition(self.init_partition) mst_weight = self.method( self.G, self.weight, partition=self.partition_key, preserve_attrs=True, ).size(weight=self.weight) self.partition_queue.put( self.Partition( mst_weight if self.minimum else -mst_weight, {} if self.init_partition is None else self.init_partition.partition_dict, ) ) return self
(self)
30,061
networkx.algorithms.tree.branchings
__next__
Returns ------- (multi)Graph The spanning tree of next greatest weight, which ties broken arbitrarily.
def __next__(self): """ Returns ------- (multi)Graph The spanning tree of next greatest weight, which ties broken arbitrarily. """ if self.partition_queue.empty(): del self.G, self.partition_queue raise StopIteration partition = self.partition_queue.get() self._write_partition(partition) next_arborescence = self.method( self.G, self.weight, partition=self.partition_key, preserve_attrs=True, ) self._partition(partition, next_arborescence) self._clear_partition(next_arborescence) return next_arborescence
(self)
30,062
networkx.algorithms.tree.branchings
_clear_partition
Removes partition data from the graph
def _clear_partition(self, G): """ Removes partition data from the graph """ for u, v, d in G.edges(data=True): if self.partition_key in d: del d[self.partition_key] nx._clear_cache(self.G)
(self, G)
30,063
networkx.algorithms.tree.branchings
_partition
Create new partitions based of the minimum spanning tree of the current minimum partition. Parameters ---------- partition : Partition The Partition instance used to generate the current minimum spanning tree. partition_arborescence : nx.Graph The minimum spanning arborescence of the input partition.
def _partition(self, partition, partition_arborescence): """ Create new partitions based of the minimum spanning tree of the current minimum partition. Parameters ---------- partition : Partition The Partition instance used to generate the current minimum spanning tree. partition_arborescence : nx.Graph The minimum spanning arborescence of the input partition. """ # create two new partitions with the data from the input partition dict p1 = self.Partition(0, partition.partition_dict.copy()) p2 = self.Partition(0, partition.partition_dict.copy()) for e in partition_arborescence.edges: # determine if the edge was open or included if e not in partition.partition_dict: # This is an open edge p1.partition_dict[e] = nx.EdgePartition.EXCLUDED p2.partition_dict[e] = nx.EdgePartition.INCLUDED self._write_partition(p1) try: p1_mst = self.method( self.G, self.weight, partition=self.partition_key, preserve_attrs=True, ) p1_mst_weight = p1_mst.size(weight=self.weight) p1.mst_weight = p1_mst_weight if self.minimum else -p1_mst_weight self.partition_queue.put(p1.__copy__()) except nx.NetworkXException: pass p1.partition_dict = p2.partition_dict.copy()
(self, partition, partition_arborescence)
30,064
networkx.algorithms.tree.branchings
_write_partition
Writes the desired partition into the graph to calculate the minimum spanning tree. Also, if one incoming edge is included, mark all others as excluded so that if that vertex is merged during Edmonds' algorithm we cannot still pick another of that vertex's included edges. Parameters ---------- partition : Partition A Partition dataclass describing a partition on the edges of the graph.
def _write_partition(self, partition): """ Writes the desired partition into the graph to calculate the minimum spanning tree. Also, if one incoming edge is included, mark all others as excluded so that if that vertex is merged during Edmonds' algorithm we cannot still pick another of that vertex's included edges. Parameters ---------- partition : Partition A Partition dataclass describing a partition on the edges of the graph. """ for u, v, d in self.G.edges(data=True): if (u, v) in partition.partition_dict: d[self.partition_key] = partition.partition_dict[(u, v)] else: d[self.partition_key] = nx.EdgePartition.OPEN nx._clear_cache(self.G) for n in self.G: included_count = 0 excluded_count = 0 for u, v, d in self.G.in_edges(nbunch=n, data=True): if d.get(self.partition_key) == nx.EdgePartition.INCLUDED: included_count += 1 elif d.get(self.partition_key) == nx.EdgePartition.EXCLUDED: excluded_count += 1 # Check that if there is an included edges, all other incoming ones # are excluded. If not fix it! if included_count == 1 and excluded_count != self.G.in_degree(n) - 1: for u, v, d in self.G.in_edges(nbunch=n, data=True): if d.get(self.partition_key) != nx.EdgePartition.INCLUDED: d[self.partition_key] = nx.EdgePartition.EXCLUDED
(self, partition)
30,065
networkx.classes.digraph
DiGraph
Base class for directed graphs. A DiGraph stores nodes and edges with optional data, or attributes. DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. By convention `None` is not used as a node. Edges are represented as links between nodes with optional key/value attributes. Parameters ---------- incoming_graph_data : input graph (optional, default: None) Data to initialize graph. If None (default) an empty graph is created. The data can be any format that is supported by the to_networkx_graph() function, currently including edge list, dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy sparse matrix, or PyGraphviz graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- Graph MultiGraph MultiDiGraph Examples -------- Create an empty graph structure (a "null graph") with no nodes and no edges. >>> G = nx.DiGraph() G can be grown in several ways. **Nodes:** Add one node at a time: >>> G.add_node(1) Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). >>> G.add_nodes_from([2, 3]) >>> G.add_nodes_from(range(100, 110)) >>> H = nx.path_graph(10) >>> G.add_nodes_from(H) In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. >>> G.add_node(H) **Edges:** G can also be grown by adding edges. Add one edge, >>> G.add_edge(1, 2) a list of edges, >>> G.add_edges_from([(1, 2), (1, 3)]) or a collection of edges, >>> G.add_edges_from(H.edges) If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist. **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. >>> G = nx.DiGraph(day="Friday") >>> G.graph {'day': 'Friday'} Add node attributes using add_node(), add_nodes_from() or G.nodes >>> G.add_node(1, time="5pm") >>> G.add_nodes_from([3], time="2pm") >>> G.nodes[1] {'time': '5pm'} >>> G.nodes[1]["room"] = 714 >>> del G.nodes[1]["room"] # remove attribute >>> list(G.nodes(data=True)) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edges. >>> G.add_edge(1, 2, weight=4.7) >>> G.add_edges_from([(3, 4), (4, 5)], color="red") >>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})]) >>> G[1][2]["weight"] = 4.7 >>> G.edges[1, 2]["weight"] = 4 Warning: we protect the graph data structure by making `G.edges[1, 2]` a read-only dict-like structure. However, you can assign to attributes in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change data attributes: `G.edges[1, 2]['weight'] = 4` (For multigraphs: `MG.edges[u, v, key][name] = value`). **Shortcuts:** Many common graph features allow python syntax to speed reporting. >>> 1 in G # check if node in graph True >>> [n for n in G if n < 3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 Often the best way to traverse all edges of a graph is via the neighbors. The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()` >>> for n, nbrsdict in G.adjacency(): ... for nbr, eattr in nbrsdict.items(): ... if "weight" in eattr: ... # Do something useful with the edges ... pass But the edges reporting object is often more convenient: >>> for u, v, weight in G.edges(data="weight"): ... if weight is not None: ... # Do something useful with the edges ... pass **Reporting:** Simple graph information is obtained using object-attributes and methods. Reporting usually provides views instead of containers to reduce memory usage. The views update as the graph is updated similarly to dict-views. The objects `nodes`, `edges` and `adj` provide access to data attributes via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration (e.g. `nodes.items()`, `nodes.data('color')`, `nodes.data('color', default='blue')` and similarly for `edges`) Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. For details on these and other miscellaneous methods, see below. **Subclasses (Advanced):** The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency information keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge data keyed by neighbor. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed by attribute names. Each of these three dicts can be replaced in a subclass by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, edge_attr_dict_factory and graph_attr_dict_factory. node_dict_factory : function, (default: dict) Factory function to be used to create the dict containing node attributes, keyed by node id. It should require no arguments and return a dict-like object node_attr_dict_factory: function, (default: dict) Factory function to be used to create the node attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object adjlist_outer_dict_factory : function, (default: dict) Factory function to be used to create the outer-most dict in the data structure that holds adjacency info keyed by node. It should require no arguments and return a dict-like object. adjlist_inner_dict_factory : function, optional (default: dict) Factory function to be used to create the adjacency list dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object edge_attr_dict_factory : function, optional (default: dict) Factory function to be used to create the edge attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object. graph_attr_dict_factory : function, (default: dict) Factory function to be used to create the graph attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object. Typically, if your extension doesn't impact the data structure all methods will inherited without issue except: `to_directed/to_undirected`. By default these methods create a DiGraph/Graph class and you probably want them to create your extension of a DiGraph/Graph. To facilitate this we define two class variables that you can set in your subclass. to_directed_class : callable, (default: DiGraph or MultiDiGraph) Class to create a new graph structure in the `to_directed` method. If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. to_undirected_class : callable, (default: Graph or MultiGraph) Class to create a new graph structure in the `to_undirected` method. If `None`, a NetworkX class (Graph or MultiGraph) is used. **Subclassing Example** Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes. >>> class ThinGraph(nx.Graph): ... all_edge_dict = {"weight": 1} ... ... def single_edge_dict(self): ... return self.all_edge_dict ... ... edge_attr_dict_factory = single_edge_dict >>> G = ThinGraph() >>> G.add_edge(2, 1) >>> G[2][1] {'weight': 1} >>> G.add_edge(2, 2) >>> G[2][1] is G[2][2] True
class DiGraph(Graph): """ Base class for directed graphs. A DiGraph stores nodes and edges with optional data, or attributes. DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. By convention `None` is not used as a node. Edges are represented as links between nodes with optional key/value attributes. Parameters ---------- incoming_graph_data : input graph (optional, default: None) Data to initialize graph. If None (default) an empty graph is created. The data can be any format that is supported by the to_networkx_graph() function, currently including edge list, dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy sparse matrix, or PyGraphviz graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- Graph MultiGraph MultiDiGraph Examples -------- Create an empty graph structure (a "null graph") with no nodes and no edges. >>> G = nx.DiGraph() G can be grown in several ways. **Nodes:** Add one node at a time: >>> G.add_node(1) Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). >>> G.add_nodes_from([2, 3]) >>> G.add_nodes_from(range(100, 110)) >>> H = nx.path_graph(10) >>> G.add_nodes_from(H) In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. >>> G.add_node(H) **Edges:** G can also be grown by adding edges. Add one edge, >>> G.add_edge(1, 2) a list of edges, >>> G.add_edges_from([(1, 2), (1, 3)]) or a collection of edges, >>> G.add_edges_from(H.edges) If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist. **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. >>> G = nx.DiGraph(day="Friday") >>> G.graph {'day': 'Friday'} Add node attributes using add_node(), add_nodes_from() or G.nodes >>> G.add_node(1, time="5pm") >>> G.add_nodes_from([3], time="2pm") >>> G.nodes[1] {'time': '5pm'} >>> G.nodes[1]["room"] = 714 >>> del G.nodes[1]["room"] # remove attribute >>> list(G.nodes(data=True)) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edges. >>> G.add_edge(1, 2, weight=4.7) >>> G.add_edges_from([(3, 4), (4, 5)], color="red") >>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})]) >>> G[1][2]["weight"] = 4.7 >>> G.edges[1, 2]["weight"] = 4 Warning: we protect the graph data structure by making `G.edges[1, 2]` a read-only dict-like structure. However, you can assign to attributes in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change data attributes: `G.edges[1, 2]['weight'] = 4` (For multigraphs: `MG.edges[u, v, key][name] = value`). **Shortcuts:** Many common graph features allow python syntax to speed reporting. >>> 1 in G # check if node in graph True >>> [n for n in G if n < 3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 Often the best way to traverse all edges of a graph is via the neighbors. The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()` >>> for n, nbrsdict in G.adjacency(): ... for nbr, eattr in nbrsdict.items(): ... if "weight" in eattr: ... # Do something useful with the edges ... pass But the edges reporting object is often more convenient: >>> for u, v, weight in G.edges(data="weight"): ... if weight is not None: ... # Do something useful with the edges ... pass **Reporting:** Simple graph information is obtained using object-attributes and methods. Reporting usually provides views instead of containers to reduce memory usage. The views update as the graph is updated similarly to dict-views. The objects `nodes`, `edges` and `adj` provide access to data attributes via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration (e.g. `nodes.items()`, `nodes.data('color')`, `nodes.data('color', default='blue')` and similarly for `edges`) Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. For details on these and other miscellaneous methods, see below. **Subclasses (Advanced):** The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency information keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge data keyed by neighbor. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed by attribute names. Each of these three dicts can be replaced in a subclass by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, edge_attr_dict_factory and graph_attr_dict_factory. node_dict_factory : function, (default: dict) Factory function to be used to create the dict containing node attributes, keyed by node id. It should require no arguments and return a dict-like object node_attr_dict_factory: function, (default: dict) Factory function to be used to create the node attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object adjlist_outer_dict_factory : function, (default: dict) Factory function to be used to create the outer-most dict in the data structure that holds adjacency info keyed by node. It should require no arguments and return a dict-like object. adjlist_inner_dict_factory : function, optional (default: dict) Factory function to be used to create the adjacency list dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object edge_attr_dict_factory : function, optional (default: dict) Factory function to be used to create the edge attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object. graph_attr_dict_factory : function, (default: dict) Factory function to be used to create the graph attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object. Typically, if your extension doesn't impact the data structure all methods will inherited without issue except: `to_directed/to_undirected`. By default these methods create a DiGraph/Graph class and you probably want them to create your extension of a DiGraph/Graph. To facilitate this we define two class variables that you can set in your subclass. to_directed_class : callable, (default: DiGraph or MultiDiGraph) Class to create a new graph structure in the `to_directed` method. If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. to_undirected_class : callable, (default: Graph or MultiGraph) Class to create a new graph structure in the `to_undirected` method. If `None`, a NetworkX class (Graph or MultiGraph) is used. **Subclassing Example** Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes. >>> class ThinGraph(nx.Graph): ... all_edge_dict = {"weight": 1} ... ... def single_edge_dict(self): ... return self.all_edge_dict ... ... edge_attr_dict_factory = single_edge_dict >>> G = ThinGraph() >>> G.add_edge(2, 1) >>> G[2][1] {'weight': 1} >>> G.add_edge(2, 2) >>> G[2][1] is G[2][2] True """ _adj = _CachedPropertyResetterAdjAndSucc() # type: ignore[assignment] _succ = _adj # type: ignore[has-type] _pred = _CachedPropertyResetterPred() def __init__(self, incoming_graph_data=None, **attr): """Initialize a graph with edges, name, or graph attributes. Parameters ---------- incoming_graph_data : input graph (optional, default: None) Data to initialize graph. If None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a 2D NumPy array, a SciPy sparse array, or a PyGraphviz graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- convert Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G = nx.Graph(name="my graph") >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges >>> G = nx.Graph(e) Arbitrary graph attribute pairs (key=value) may be assigned >>> G = nx.Graph(e, day="Friday") >>> G.graph {'day': 'Friday'} """ self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes self._node = self.node_dict_factory() # dictionary for node attr # We store two adjacency lists: # the predecessors of node n are stored in the dict self._pred # the successors of node n are stored in the dict self._succ=self._adj self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict successor self._pred = self.adjlist_outer_dict_factory() # predecessor # Note: self._succ = self._adj # successor self.__networkx_cache__ = {} # attempt to load graph with data if incoming_graph_data is not None: convert.to_networkx_graph(incoming_graph_data, create_using=self) # load graph attributes (must be after convert) self.graph.update(attr) @cached_property def adj(self): """Graph adjacency object holding the neighbors of each node. This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets the color of the edge `(3, 2)` to `"blue"`. Iterating over G.adj behaves like a dict. Useful idioms include `for nbr, datadict in G.adj[n].items():`. The neighbor information is also provided by subscripting the graph. So `for nbr, foovalue in G[node].data('foo', default=1):` works. For directed graphs, `G.adj` holds outgoing (successor) info. """ return AdjacencyView(self._succ) @cached_property def succ(self): """Graph adjacency object holding the successors of each node. This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edge-data-dict. So `G.succ[3][2]['color'] = 'blue'` sets the color of the edge `(3, 2)` to `"blue"`. Iterating over G.succ behaves like a dict. Useful idioms include `for nbr, datadict in G.succ[n].items():`. A data-view not provided by dicts also exists: `for nbr, foovalue in G.succ[node].data('foo'):` and a default can be set via a `default` argument to the `data` method. The neighbor information is also provided by subscripting the graph. So `for nbr, foovalue in G[node].data('foo', default=1):` works. For directed graphs, `G.adj` is identical to `G.succ`. """ return AdjacencyView(self._succ) @cached_property def pred(self): """Graph adjacency object holding the predecessors of each node. This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edge-data-dict. So `G.pred[2][3]['color'] = 'blue'` sets the color of the edge `(3, 2)` to `"blue"`. Iterating over G.pred behaves like a dict. Useful idioms include `for nbr, datadict in G.pred[n].items():`. A data-view not provided by dicts also exists: `for nbr, foovalue in G.pred[node].data('foo'):` A default can be set via a `default` argument to the `data` method. """ return AdjacencyView(self._pred) def add_node(self, node_for_adding, **attr): """Add a single node `node_for_adding` and update node attributes. Parameters ---------- node_for_adding : node A node can be any hashable Python object except None. attr : keyword arguments, optional Set or change node attributes using key=value. See Also -------- add_nodes_from Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 Use keywords set/change node attributes: >>> G.add_node(1, size=10) >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649)) Notes ----- A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. """ if node_for_adding not in self._succ: if node_for_adding is None: raise ValueError("None cannot be a node") self._succ[node_for_adding] = self.adjlist_inner_dict_factory() self._pred[node_for_adding] = self.adjlist_inner_dict_factory() attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory() attr_dict.update(attr) else: # update attr even if node already exists self._node[node_for_adding].update(attr) nx._clear_cache(self) def add_nodes_from(self, nodes_for_adding, **attr): """Add multiple nodes. Parameters ---------- nodes_for_adding : iterable container A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. attr : keyword arguments, optional (default= no attributes) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments. See Also -------- add_node Notes ----- When adding nodes from an iterator over the graph you are changing, a `RuntimeError` can be raised with message: `RuntimeError: dictionary changed size during iteration`. This happens when the graph's underlying dictionary is modified during iteration. To avoid this error, evaluate the iterator into a separate object, e.g. by using `list(iterator_of_nodes)`, and pass this object to `G.add_nodes_from`. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(), key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] Use keywords to update specific node attributes for every node. >>> G.add_nodes_from([1, 2], size=10) >>> G.add_nodes_from([3, 4], weight=0.4) Use (node, attrdict) tuples to update attributes for specific nodes. >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})]) >>> G.nodes[1]["size"] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.nodes[1]["size"] 11 Evaluate an iterator over a graph if using it to modify the same graph >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)]) >>> # wrong way - will raise RuntimeError >>> # G.add_nodes_from(n + 1 for n in G.nodes) >>> # correct way >>> G.add_nodes_from(list(n + 1 for n in G.nodes)) """ for n in nodes_for_adding: try: newnode = n not in self._node newdict = attr except TypeError: n, ndict = n newnode = n not in self._node newdict = attr.copy() newdict.update(ndict) if newnode: if n is None: raise ValueError("None cannot be a node") self._succ[n] = self.adjlist_inner_dict_factory() self._pred[n] = self.adjlist_inner_dict_factory() self._node[n] = self.node_attr_dict_factory() self._node[n].update(newdict) nx._clear_cache(self) def remove_node(self, n): """Remove node n. Removes the node n and all adjacent edges. Attempting to remove a nonexistent node will raise an exception. Parameters ---------- n : node A node in the graph Raises ------ NetworkXError If n is not in the graph. See Also -------- remove_nodes_from Examples -------- >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> list(G.edges) [(0, 1), (1, 2)] >>> G.remove_node(1) >>> list(G.edges) [] """ try: nbrs = self._succ[n] del self._node[n] except KeyError as err: # NetworkXError if n not in self raise NetworkXError(f"The node {n} is not in the digraph.") from err for u in nbrs: del self._pred[u][n] # remove all edges n-u in digraph del self._succ[n] # remove node from succ for u in self._pred[n]: del self._succ[u][n] # remove all edges n-u in digraph del self._pred[n] # remove node from pred nx._clear_cache(self) def remove_nodes_from(self, nodes): """Remove multiple nodes. Parameters ---------- nodes : iterable container A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. See Also -------- remove_node Notes ----- When removing nodes from an iterator over the graph you are changing, a `RuntimeError` will be raised with message: `RuntimeError: dictionary changed size during iteration`. This happens when the graph's underlying dictionary is modified during iteration. To avoid this error, evaluate the iterator into a separate object, e.g. by using `list(iterator_of_nodes)`, and pass this object to `G.remove_nodes_from`. Examples -------- >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = list(G.nodes) >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> list(G.nodes) [] Evaluate an iterator over a graph if using it to modify the same graph >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)]) >>> # this command will fail, as the graph's dict is modified during iteration >>> # G.remove_nodes_from(n for n in G.nodes if n < 2) >>> # this command will work, since the dictionary underlying graph is not modified >>> G.remove_nodes_from(list(n for n in G.nodes if n < 2)) """ for n in nodes: try: succs = self._succ[n] del self._node[n] for u in succs: del self._pred[u][n] # remove all edges n-u in digraph del self._succ[n] # now remove node for u in self._pred[n]: del self._succ[u][n] # remove all edges n-u in digraph del self._pred[n] # now remove node except KeyError: pass # silent failure on remove nx._clear_cache(self) def add_edge(self, u_of_edge, v_of_edge, **attr): """Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by directly accessing the edge's attribute dictionary. See examples below. Parameters ---------- u_of_edge, v_of_edge : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edges_from : add a collection of edges Notes ----- Adding an edge that already exists updates the edge data. Many NetworkX algorithms designed for weighted graphs use an edge attribute (by default `weight`) to hold a numerical value. Examples -------- The following all add the edge e=(1, 2) to graph G: >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1, 2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1, 2)]) # add edges from iterable container Associate data to edges using keywords: >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) For non-string attribute keys, use subscript notation. >>> G.add_edge(1, 2) >>> G[1][2].update({0: 5}) >>> G.edges[1, 2].update({0: 5}) """ u, v = u_of_edge, v_of_edge # add nodes if u not in self._succ: if u is None: raise ValueError("None cannot be a node") self._succ[u] = self.adjlist_inner_dict_factory() self._pred[u] = self.adjlist_inner_dict_factory() self._node[u] = self.node_attr_dict_factory() if v not in self._succ: if v is None: raise ValueError("None cannot be a node") self._succ[v] = self.adjlist_inner_dict_factory() self._pred[v] = self.adjlist_inner_dict_factory() self._node[v] = self.node_attr_dict_factory() # add the edge datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) datadict.update(attr) self._succ[u][v] = datadict self._pred[v][u] = datadict nx._clear_cache(self) def add_edges_from(self, ebunch_to_add, **attr): """Add all the edges in ebunch_to_add. Parameters ---------- ebunch_to_add : container of edges Each edge given in the container will be added to the graph. The edges must be given as 2-tuples (u, v) or 3-tuples (u, v, d) where d is a dictionary containing edge data. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edge : add a single edge add_weighted_edges_from : convenient way to add weighted edges Notes ----- Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments. When adding edges from an iterator over the graph you are changing, a `RuntimeError` can be raised with message: `RuntimeError: dictionary changed size during iteration`. This happens when the graph's underlying dictionary is modified during iteration. To avoid this error, evaluate the iterator into a separate object, e.g. by using `list(iterator_of_edges)`, and pass this object to `G.add_edges_from`. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples >>> e = zip(range(0, 3), range(1, 4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 Associate data to edges >>> G.add_edges_from([(1, 2), (2, 3)], weight=3) >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898") Evaluate an iterator over a graph if using it to modify the same graph >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) >>> # Grow graph by one new node, adding edges to all existing nodes. >>> # wrong way - will raise RuntimeError >>> # G.add_edges_from(((5, n) for n in G.nodes)) >>> # right way - note that there will be no self-edge for node 5 >>> G.add_edges_from(list((5, n) for n in G.nodes)) """ for e in ebunch_to_add: ne = len(e) if ne == 3: u, v, dd = e elif ne == 2: u, v = e dd = {} else: raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.") if u not in self._succ: if u is None: raise ValueError("None cannot be a node") self._succ[u] = self.adjlist_inner_dict_factory() self._pred[u] = self.adjlist_inner_dict_factory() self._node[u] = self.node_attr_dict_factory() if v not in self._succ: if v is None: raise ValueError("None cannot be a node") self._succ[v] = self.adjlist_inner_dict_factory() self._pred[v] = self.adjlist_inner_dict_factory() self._node[v] = self.node_attr_dict_factory() datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) datadict.update(attr) datadict.update(dd) self._succ[u][v] = datadict self._pred[v][u] = datadict nx._clear_cache(self) def remove_edge(self, u, v): """Remove the edge between u and v. Parameters ---------- u, v : nodes Remove the edge between nodes u and v. Raises ------ NetworkXError If there is not an edge between u and v. See Also -------- remove_edges_from : remove a collection of edges Examples -------- >>> G = nx.Graph() # or DiGraph, etc >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.remove_edge(0, 1) >>> e = (1, 2) >>> G.remove_edge(*e) # unpacks e from an edge tuple >>> e = (2, 3, {"weight": 7}) # an edge with attribute data >>> G.remove_edge(*e[:2]) # select first part of edge tuple """ try: del self._succ[u][v] del self._pred[v][u] except KeyError as err: raise NetworkXError(f"The edge {u}-{v} not in graph.") from err nx._clear_cache(self) def remove_edges_from(self, ebunch): """Remove all edges specified in ebunch. Parameters ---------- ebunch: list or container of edge tuples Each edge given in the list or container will be removed from the graph. The edges can be: - 2-tuples (u, v) edge between u and v. - 3-tuples (u, v, k) where k is ignored. See Also -------- remove_edge : remove a single edge Notes ----- Will fail silently if an edge in ebunch is not in the graph. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> ebunch = [(1, 2), (2, 3)] >>> G.remove_edges_from(ebunch) """ for e in ebunch: u, v = e[:2] # ignore edge data if u in self._succ and v in self._succ[u]: del self._succ[u][v] del self._pred[v][u] nx._clear_cache(self) def has_successor(self, u, v): """Returns True if node u has successor v. This is true if graph has the edge u->v. """ return u in self._succ and v in self._succ[u] def has_predecessor(self, u, v): """Returns True if node u has predecessor v. This is true if graph has the edge u<-v. """ return u in self._pred and v in self._pred[u] def successors(self, n): """Returns an iterator over successor nodes of n. A successor of n is a node m such that there exists a directed edge from n to m. Parameters ---------- n : node A node in the graph Raises ------ NetworkXError If n is not in the graph. See Also -------- predecessors Notes ----- neighbors() and successors() are the same. """ try: return iter(self._succ[n]) except KeyError as err: raise NetworkXError(f"The node {n} is not in the digraph.") from err # digraph definitions neighbors = successors def predecessors(self, n): """Returns an iterator over predecessor nodes of n. A predecessor of n is a node m such that there exists a directed edge from m to n. Parameters ---------- n : node A node in the graph Raises ------ NetworkXError If n is not in the graph. See Also -------- successors """ try: return iter(self._pred[n]) except KeyError as err: raise NetworkXError(f"The node {n} is not in the digraph.") from err @cached_property def edges(self): """An OutEdgeView of the DiGraph as G.edges or G.edges(). edges(self, nbunch=None, data=False, default=None) The OutEdgeView provides set-like operations on the edge-tuples as well as edge attribute lookup. When called, it also provides an EdgeDataView object which allows control of access to edge attributes (but does not provide set-like operations). Hence, `G.edges[u, v]['color']` provides the value of the color attribute for edge `(u, v)` while `for (u, v, c) in G.edges.data('color', default='red'):` iterates through all the edges yielding the color attribute with default `'red'` if no color attribute exists. Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges from these nodes. data : string or bool, optional (default=False) The edge attribute returned in 3-tuple (u, v, ddict[data]). If True, return edge attribute dict in 3-tuple (u, v, ddict). If False, return 2-tuple (u, v). default : value, optional (default=None) Value used for edges that don't have the requested attribute. Only relevant if data is not True or False. Returns ------- edges : OutEdgeView A view of edge attributes, usually it iterates over (u, v) or (u, v, d) tuples of edges, but can also be used for attribute lookup as `edges[u, v]['foo']`. See Also -------- in_edges, out_edges Notes ----- Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. Examples -------- >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> nx.add_path(G, [0, 1, 2]) >>> G.add_edge(2, 3, weight=5) >>> [e for e in G.edges] [(0, 1), (1, 2), (2, 3)] >>> G.edges.data() # default data is {} (empty dict) OutEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]) >>> G.edges.data("weight", default=1) OutEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)]) >>> G.edges([0, 2]) # only edges originating from these nodes OutEdgeDataView([(0, 1), (2, 3)]) >>> G.edges(0) # only edges from node 0 OutEdgeDataView([(0, 1)]) """ return OutEdgeView(self) # alias out_edges to edges @cached_property def out_edges(self): return OutEdgeView(self) out_edges.__doc__ = edges.__doc__ @cached_property def in_edges(self): """A view of the in edges of the graph as G.in_edges or G.in_edges(). in_edges(self, nbunch=None, data=False, default=None): Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. data : string or bool, optional (default=False) The edge attribute returned in 3-tuple (u, v, ddict[data]). If True, return edge attribute dict in 3-tuple (u, v, ddict). If False, return 2-tuple (u, v). default : value, optional (default=None) Value used for edges that don't have the requested attribute. Only relevant if data is not True or False. Returns ------- in_edges : InEdgeView or InEdgeDataView A view of edge attributes, usually it iterates over (u, v) or (u, v, d) tuples of edges, but can also be used for attribute lookup as `edges[u, v]['foo']`. Examples -------- >>> G = nx.DiGraph() >>> G.add_edge(1, 2, color="blue") >>> G.in_edges() InEdgeView([(1, 2)]) >>> G.in_edges(nbunch=2) InEdgeDataView([(1, 2)]) See Also -------- edges """ return InEdgeView(self) @cached_property def degree(self): """A DegreeView for the Graph as G.degree or G.degree(). The node degree is the number of edges adjacent to the node. The weighted node degree is the sum of the edge weights for edges incident to that node. This object provides an iterator for (node, degree) as well as lookup for the degree for a single node. Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. weight : string or None, optional (default=None) The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- DiDegreeView or int If multiple nodes are requested (the default), returns a `DiDegreeView` mapping nodes to their degree. If a single node is requested, returns the degree of the node as an integer. See Also -------- in_degree, out_degree Examples -------- >>> G = nx.DiGraph() # or MultiDiGraph >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.degree(0) # node 0 with degree 1 1 >>> list(G.degree([0, 1, 2])) [(0, 1), (1, 2), (2, 2)] """ return DiDegreeView(self) @cached_property def in_degree(self): """An InDegreeView for (node, in_degree) or in_degree for single node. The node in_degree is the number of edges pointing to the node. The weighted node degree is the sum of the edge weights for edges incident to that node. This object provides an iteration over (node, in_degree) as well as lookup for the degree for a single node. Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. weight : string or None, optional (default=None) The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- If a single node is requested deg : int In-degree of the node OR if multiple nodes are requested nd_iter : iterator The iterator returns two-tuples of (node, in-degree). See Also -------- degree, out_degree Examples -------- >>> G = nx.DiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.in_degree(0) # node 0 with degree 0 0 >>> list(G.in_degree([0, 1, 2])) [(0, 0), (1, 1), (2, 1)] """ return InDegreeView(self) @cached_property def out_degree(self): """An OutDegreeView for (node, out_degree) The node out_degree is the number of edges pointing out of the node. The weighted node degree is the sum of the edge weights for edges incident to that node. This object provides an iterator over (node, out_degree) as well as lookup for the degree for a single node. Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. weight : string or None, optional (default=None) The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- If a single node is requested deg : int Out-degree of the node OR if multiple nodes are requested nd_iter : iterator The iterator returns two-tuples of (node, out-degree). See Also -------- degree, in_degree Examples -------- >>> G = nx.DiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.out_degree(0) # node 0 with degree 1 1 >>> list(G.out_degree([0, 1, 2])) [(0, 1), (1, 1), (2, 1)] """ return OutDegreeView(self) def clear(self): """Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear() >>> list(G.nodes) [] >>> list(G.edges) [] """ self._succ.clear() self._pred.clear() self._node.clear() self.graph.clear() nx._clear_cache(self) def clear_edges(self): """Remove all edges from the graph without altering nodes. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear_edges() >>> list(G.nodes) [0, 1, 2, 3] >>> list(G.edges) [] """ for predecessor_dict in self._pred.values(): predecessor_dict.clear() for successor_dict in self._succ.values(): successor_dict.clear() nx._clear_cache(self) def is_multigraph(self): """Returns True if graph is a multigraph, False otherwise.""" return False def is_directed(self): """Returns True if graph is directed, False otherwise.""" return True def to_undirected(self, reciprocal=False, as_view=False): """Returns an undirected representation of the digraph. Parameters ---------- reciprocal : bool (optional) If True only keep edges that appear in both directions in the original digraph. as_view : bool (optional, default=False) If True return an undirected view of the original directed graph. Returns ------- G : Graph An undirected graph with the same name and nodes and with edge (u, v, data) if either (u, v, data) or (v, u, data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired. See Also -------- Graph, copy, add_edge, add_edges_from Notes ----- If edges in both directions (u, v) and (v, u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge(). This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, https://docs.python.org/3/library/copy.html. Warning: If you have subclassed DiGraph to use dict-like objects in the data structure, those changes do not transfer to the Graph created by this method. Examples -------- >>> G = nx.path_graph(2) # or MultiGraph, etc >>> H = G.to_directed() >>> list(H.edges) [(0, 1), (1, 0)] >>> G2 = H.to_undirected() >>> list(G2.edges) [(0, 1)] """ graph_class = self.to_undirected_class() if as_view is True: return nx.graphviews.generic_graph_view(self, graph_class) # deepcopy when not a view G = graph_class() G.graph.update(deepcopy(self.graph)) G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) if reciprocal is True: G.add_edges_from( (u, v, deepcopy(d)) for u, nbrs in self._adj.items() for v, d in nbrs.items() if v in self._pred[u] ) else: G.add_edges_from( (u, v, deepcopy(d)) for u, nbrs in self._adj.items() for v, d in nbrs.items() ) return G def reverse(self, copy=True): """Returns the reverse of the graph. The reverse is a graph with the same nodes and edges but with the directions of the edges reversed. Parameters ---------- copy : bool optional (default=True) If True, return a new DiGraph holding the reversed edges. If False, the reverse graph is created using a view of the original graph. """ if copy: H = self.__class__() H.graph.update(deepcopy(self.graph)) H.add_nodes_from((n, deepcopy(d)) for n, d in self.nodes.items()) H.add_edges_from((v, u, deepcopy(d)) for u, v, d in self.edges(data=True)) return H return nx.reverse_view(self)
(incoming_graph_data=None, **attr)
30,066
networkx.classes.graph
__contains__
Returns True if n is a node, False otherwise. Use: 'n in G'. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> 1 in G True
def __contains__(self, n): """Returns True if n is a node, False otherwise. Use: 'n in G'. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> 1 in G True """ try: return n in self._node except TypeError: return False
(self, n)
30,067
networkx.classes.graph
__getitem__
Returns a dict of neighbors of node n. Use: 'G[n]'. Parameters ---------- n : node A node in the graph. Returns ------- adj_dict : dictionary The adjacency dictionary for nodes connected to n. Notes ----- G[n] is the same as G.adj[n] and similar to G.neighbors(n) (which is an iterator over G.adj[n]) Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G[0] AtlasView({1: {}})
def __getitem__(self, n): """Returns a dict of neighbors of node n. Use: 'G[n]'. Parameters ---------- n : node A node in the graph. Returns ------- adj_dict : dictionary The adjacency dictionary for nodes connected to n. Notes ----- G[n] is the same as G.adj[n] and similar to G.neighbors(n) (which is an iterator over G.adj[n]) Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G[0] AtlasView({1: {}}) """ return self.adj[n]
(self, n)
30,068
networkx.classes.digraph
__init__
Initialize a graph with edges, name, or graph attributes. Parameters ---------- incoming_graph_data : input graph (optional, default: None) Data to initialize graph. If None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a 2D NumPy array, a SciPy sparse array, or a PyGraphviz graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- convert Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G = nx.Graph(name="my graph") >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges >>> G = nx.Graph(e) Arbitrary graph attribute pairs (key=value) may be assigned >>> G = nx.Graph(e, day="Friday") >>> G.graph {'day': 'Friday'}
def __init__(self, incoming_graph_data=None, **attr): """Initialize a graph with edges, name, or graph attributes. Parameters ---------- incoming_graph_data : input graph (optional, default: None) Data to initialize graph. If None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a 2D NumPy array, a SciPy sparse array, or a PyGraphviz graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- convert Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G = nx.Graph(name="my graph") >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges >>> G = nx.Graph(e) Arbitrary graph attribute pairs (key=value) may be assigned >>> G = nx.Graph(e, day="Friday") >>> G.graph {'day': 'Friday'} """ self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes self._node = self.node_dict_factory() # dictionary for node attr # We store two adjacency lists: # the predecessors of node n are stored in the dict self._pred # the successors of node n are stored in the dict self._succ=self._adj self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict successor self._pred = self.adjlist_outer_dict_factory() # predecessor # Note: self._succ = self._adj # successor self.__networkx_cache__ = {} # attempt to load graph with data if incoming_graph_data is not None: convert.to_networkx_graph(incoming_graph_data, create_using=self) # load graph attributes (must be after convert) self.graph.update(attr)
(self, incoming_graph_data=None, **attr)
30,069
networkx.classes.graph
__iter__
Iterate over the nodes. Use: 'for n in G'. Returns ------- niter : iterator An iterator over all nodes in the graph. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [n for n in G] [0, 1, 2, 3] >>> list(G) [0, 1, 2, 3]
def __iter__(self): """Iterate over the nodes. Use: 'for n in G'. Returns ------- niter : iterator An iterator over all nodes in the graph. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [n for n in G] [0, 1, 2, 3] >>> list(G) [0, 1, 2, 3] """ return iter(self._node)
(self)
30,070
networkx.classes.graph
__len__
Returns the number of nodes in the graph. Use: 'len(G)'. Returns ------- nnodes : int The number of nodes in the graph. See Also -------- number_of_nodes: identical method order: identical method Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> len(G) 4
def __len__(self): """Returns the number of nodes in the graph. Use: 'len(G)'. Returns ------- nnodes : int The number of nodes in the graph. See Also -------- number_of_nodes: identical method order: identical method Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> len(G) 4 """ return len(self._node)
(self)
30,071
networkx.classes.graph
__str__
Returns a short summary of the graph. Returns ------- info : string Graph information including the graph name (if any), graph type, and the number of nodes and edges. Examples -------- >>> G = nx.Graph(name="foo") >>> str(G) "Graph named 'foo' with 0 nodes and 0 edges" >>> G = nx.path_graph(3) >>> str(G) 'Graph with 3 nodes and 2 edges'
def __str__(self): """Returns a short summary of the graph. Returns ------- info : string Graph information including the graph name (if any), graph type, and the number of nodes and edges. Examples -------- >>> G = nx.Graph(name="foo") >>> str(G) "Graph named 'foo' with 0 nodes and 0 edges" >>> G = nx.path_graph(3) >>> str(G) 'Graph with 3 nodes and 2 edges' """ return "".join( [ type(self).__name__, f" named {self.name!r}" if self.name else "", f" with {self.number_of_nodes()} nodes and {self.number_of_edges()} edges", ] )
(self)
30,072
networkx.classes.digraph
add_edge
Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by directly accessing the edge's attribute dictionary. See examples below. Parameters ---------- u_of_edge, v_of_edge : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edges_from : add a collection of edges Notes ----- Adding an edge that already exists updates the edge data. Many NetworkX algorithms designed for weighted graphs use an edge attribute (by default `weight`) to hold a numerical value. Examples -------- The following all add the edge e=(1, 2) to graph G: >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1, 2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1, 2)]) # add edges from iterable container Associate data to edges using keywords: >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) For non-string attribute keys, use subscript notation. >>> G.add_edge(1, 2) >>> G[1][2].update({0: 5}) >>> G.edges[1, 2].update({0: 5})
def add_edge(self, u_of_edge, v_of_edge, **attr): """Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by directly accessing the edge's attribute dictionary. See examples below. Parameters ---------- u_of_edge, v_of_edge : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edges_from : add a collection of edges Notes ----- Adding an edge that already exists updates the edge data. Many NetworkX algorithms designed for weighted graphs use an edge attribute (by default `weight`) to hold a numerical value. Examples -------- The following all add the edge e=(1, 2) to graph G: >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1, 2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1, 2)]) # add edges from iterable container Associate data to edges using keywords: >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) For non-string attribute keys, use subscript notation. >>> G.add_edge(1, 2) >>> G[1][2].update({0: 5}) >>> G.edges[1, 2].update({0: 5}) """ u, v = u_of_edge, v_of_edge # add nodes if u not in self._succ: if u is None: raise ValueError("None cannot be a node") self._succ[u] = self.adjlist_inner_dict_factory() self._pred[u] = self.adjlist_inner_dict_factory() self._node[u] = self.node_attr_dict_factory() if v not in self._succ: if v is None: raise ValueError("None cannot be a node") self._succ[v] = self.adjlist_inner_dict_factory() self._pred[v] = self.adjlist_inner_dict_factory() self._node[v] = self.node_attr_dict_factory() # add the edge datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) datadict.update(attr) self._succ[u][v] = datadict self._pred[v][u] = datadict nx._clear_cache(self)
(self, u_of_edge, v_of_edge, **attr)
30,073
networkx.classes.digraph
add_edges_from
Add all the edges in ebunch_to_add. Parameters ---------- ebunch_to_add : container of edges Each edge given in the container will be added to the graph. The edges must be given as 2-tuples (u, v) or 3-tuples (u, v, d) where d is a dictionary containing edge data. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edge : add a single edge add_weighted_edges_from : convenient way to add weighted edges Notes ----- Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments. When adding edges from an iterator over the graph you are changing, a `RuntimeError` can be raised with message: `RuntimeError: dictionary changed size during iteration`. This happens when the graph's underlying dictionary is modified during iteration. To avoid this error, evaluate the iterator into a separate object, e.g. by using `list(iterator_of_edges)`, and pass this object to `G.add_edges_from`. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples >>> e = zip(range(0, 3), range(1, 4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 Associate data to edges >>> G.add_edges_from([(1, 2), (2, 3)], weight=3) >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898") Evaluate an iterator over a graph if using it to modify the same graph >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) >>> # Grow graph by one new node, adding edges to all existing nodes. >>> # wrong way - will raise RuntimeError >>> # G.add_edges_from(((5, n) for n in G.nodes)) >>> # right way - note that there will be no self-edge for node 5 >>> G.add_edges_from(list((5, n) for n in G.nodes))
def add_edges_from(self, ebunch_to_add, **attr): """Add all the edges in ebunch_to_add. Parameters ---------- ebunch_to_add : container of edges Each edge given in the container will be added to the graph. The edges must be given as 2-tuples (u, v) or 3-tuples (u, v, d) where d is a dictionary containing edge data. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edge : add a single edge add_weighted_edges_from : convenient way to add weighted edges Notes ----- Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments. When adding edges from an iterator over the graph you are changing, a `RuntimeError` can be raised with message: `RuntimeError: dictionary changed size during iteration`. This happens when the graph's underlying dictionary is modified during iteration. To avoid this error, evaluate the iterator into a separate object, e.g. by using `list(iterator_of_edges)`, and pass this object to `G.add_edges_from`. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples >>> e = zip(range(0, 3), range(1, 4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 Associate data to edges >>> G.add_edges_from([(1, 2), (2, 3)], weight=3) >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898") Evaluate an iterator over a graph if using it to modify the same graph >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) >>> # Grow graph by one new node, adding edges to all existing nodes. >>> # wrong way - will raise RuntimeError >>> # G.add_edges_from(((5, n) for n in G.nodes)) >>> # right way - note that there will be no self-edge for node 5 >>> G.add_edges_from(list((5, n) for n in G.nodes)) """ for e in ebunch_to_add: ne = len(e) if ne == 3: u, v, dd = e elif ne == 2: u, v = e dd = {} else: raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.") if u not in self._succ: if u is None: raise ValueError("None cannot be a node") self._succ[u] = self.adjlist_inner_dict_factory() self._pred[u] = self.adjlist_inner_dict_factory() self._node[u] = self.node_attr_dict_factory() if v not in self._succ: if v is None: raise ValueError("None cannot be a node") self._succ[v] = self.adjlist_inner_dict_factory() self._pred[v] = self.adjlist_inner_dict_factory() self._node[v] = self.node_attr_dict_factory() datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) datadict.update(attr) datadict.update(dd) self._succ[u][v] = datadict self._pred[v][u] = datadict nx._clear_cache(self)
(self, ebunch_to_add, **attr)
30,074
networkx.classes.digraph
add_node
Add a single node `node_for_adding` and update node attributes. Parameters ---------- node_for_adding : node A node can be any hashable Python object except None. attr : keyword arguments, optional Set or change node attributes using key=value. See Also -------- add_nodes_from Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 Use keywords set/change node attributes: >>> G.add_node(1, size=10) >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649)) Notes ----- A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables.
def add_node(self, node_for_adding, **attr): """Add a single node `node_for_adding` and update node attributes. Parameters ---------- node_for_adding : node A node can be any hashable Python object except None. attr : keyword arguments, optional Set or change node attributes using key=value. See Also -------- add_nodes_from Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 Use keywords set/change node attributes: >>> G.add_node(1, size=10) >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649)) Notes ----- A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. """ if node_for_adding not in self._succ: if node_for_adding is None: raise ValueError("None cannot be a node") self._succ[node_for_adding] = self.adjlist_inner_dict_factory() self._pred[node_for_adding] = self.adjlist_inner_dict_factory() attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory() attr_dict.update(attr) else: # update attr even if node already exists self._node[node_for_adding].update(attr) nx._clear_cache(self)
(self, node_for_adding, **attr)
30,075
networkx.classes.digraph
add_nodes_from
Add multiple nodes. Parameters ---------- nodes_for_adding : iterable container A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. attr : keyword arguments, optional (default= no attributes) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments. See Also -------- add_node Notes ----- When adding nodes from an iterator over the graph you are changing, a `RuntimeError` can be raised with message: `RuntimeError: dictionary changed size during iteration`. This happens when the graph's underlying dictionary is modified during iteration. To avoid this error, evaluate the iterator into a separate object, e.g. by using `list(iterator_of_nodes)`, and pass this object to `G.add_nodes_from`. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(), key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] Use keywords to update specific node attributes for every node. >>> G.add_nodes_from([1, 2], size=10) >>> G.add_nodes_from([3, 4], weight=0.4) Use (node, attrdict) tuples to update attributes for specific nodes. >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})]) >>> G.nodes[1]["size"] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.nodes[1]["size"] 11 Evaluate an iterator over a graph if using it to modify the same graph >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)]) >>> # wrong way - will raise RuntimeError >>> # G.add_nodes_from(n + 1 for n in G.nodes) >>> # correct way >>> G.add_nodes_from(list(n + 1 for n in G.nodes))
def add_nodes_from(self, nodes_for_adding, **attr): """Add multiple nodes. Parameters ---------- nodes_for_adding : iterable container A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. attr : keyword arguments, optional (default= no attributes) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments. See Also -------- add_node Notes ----- When adding nodes from an iterator over the graph you are changing, a `RuntimeError` can be raised with message: `RuntimeError: dictionary changed size during iteration`. This happens when the graph's underlying dictionary is modified during iteration. To avoid this error, evaluate the iterator into a separate object, e.g. by using `list(iterator_of_nodes)`, and pass this object to `G.add_nodes_from`. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(), key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] Use keywords to update specific node attributes for every node. >>> G.add_nodes_from([1, 2], size=10) >>> G.add_nodes_from([3, 4], weight=0.4) Use (node, attrdict) tuples to update attributes for specific nodes. >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})]) >>> G.nodes[1]["size"] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.nodes[1]["size"] 11 Evaluate an iterator over a graph if using it to modify the same graph >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)]) >>> # wrong way - will raise RuntimeError >>> # G.add_nodes_from(n + 1 for n in G.nodes) >>> # correct way >>> G.add_nodes_from(list(n + 1 for n in G.nodes)) """ for n in nodes_for_adding: try: newnode = n not in self._node newdict = attr except TypeError: n, ndict = n newnode = n not in self._node newdict = attr.copy() newdict.update(ndict) if newnode: if n is None: raise ValueError("None cannot be a node") self._succ[n] = self.adjlist_inner_dict_factory() self._pred[n] = self.adjlist_inner_dict_factory() self._node[n] = self.node_attr_dict_factory() self._node[n].update(newdict) nx._clear_cache(self)
(self, nodes_for_adding, **attr)
30,076
networkx.classes.graph
add_weighted_edges_from
Add weighted edges in `ebunch_to_add` with specified weight attr Parameters ---------- ebunch_to_add : container of edges Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u, v, w) where w is a number. weight : string, optional (default= 'weight') The attribute name for the edge weights to be added. attr : keyword arguments, optional (default= no attributes) Edge attributes to add/update for all edges. See Also -------- add_edge : add a single edge add_edges_from : add multiple edges Notes ----- Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored. When adding edges from an iterator over the graph you are changing, a `RuntimeError` can be raised with message: `RuntimeError: dictionary changed size during iteration`. This happens when the graph's underlying dictionary is modified during iteration. To avoid this error, evaluate the iterator into a separate object, e.g. by using `list(iterator_of_edges)`, and pass this object to `G.add_weighted_edges_from`. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0, 1, 3.0), (1, 2, 7.5)]) Evaluate an iterator over edges before passing it >>> G = nx.Graph([(1, 2), (2, 3), (3, 4)]) >>> weight = 0.1 >>> # Grow graph by one new node, adding edges to all existing nodes. >>> # wrong way - will raise RuntimeError >>> # G.add_weighted_edges_from(((5, n, weight) for n in G.nodes)) >>> # correct way - note that there will be no self-edge for node 5 >>> G.add_weighted_edges_from(list((5, n, weight) for n in G.nodes))
def add_weighted_edges_from(self, ebunch_to_add, weight="weight", **attr): """Add weighted edges in `ebunch_to_add` with specified weight attr Parameters ---------- ebunch_to_add : container of edges Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u, v, w) where w is a number. weight : string, optional (default= 'weight') The attribute name for the edge weights to be added. attr : keyword arguments, optional (default= no attributes) Edge attributes to add/update for all edges. See Also -------- add_edge : add a single edge add_edges_from : add multiple edges Notes ----- Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored. When adding edges from an iterator over the graph you are changing, a `RuntimeError` can be raised with message: `RuntimeError: dictionary changed size during iteration`. This happens when the graph's underlying dictionary is modified during iteration. To avoid this error, evaluate the iterator into a separate object, e.g. by using `list(iterator_of_edges)`, and pass this object to `G.add_weighted_edges_from`. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0, 1, 3.0), (1, 2, 7.5)]) Evaluate an iterator over edges before passing it >>> G = nx.Graph([(1, 2), (2, 3), (3, 4)]) >>> weight = 0.1 >>> # Grow graph by one new node, adding edges to all existing nodes. >>> # wrong way - will raise RuntimeError >>> # G.add_weighted_edges_from(((5, n, weight) for n in G.nodes)) >>> # correct way - note that there will be no self-edge for node 5 >>> G.add_weighted_edges_from(list((5, n, weight) for n in G.nodes)) """ self.add_edges_from(((u, v, {weight: d}) for u, v, d in ebunch_to_add), **attr) nx._clear_cache(self)
(self, ebunch_to_add, weight='weight', **attr)
30,077
networkx.classes.graph
adjacency
Returns an iterator over (node, adjacency dict) tuples for all nodes. For directed graphs, only outgoing neighbors/adjacencies are included. Returns ------- adj_iter : iterator An iterator over (node, adjacency dictionary) for all nodes in the graph. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [(n, nbrdict) for n, nbrdict in G.adjacency()] [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
def adjacency(self): """Returns an iterator over (node, adjacency dict) tuples for all nodes. For directed graphs, only outgoing neighbors/adjacencies are included. Returns ------- adj_iter : iterator An iterator over (node, adjacency dictionary) for all nodes in the graph. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [(n, nbrdict) for n, nbrdict in G.adjacency()] [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})] """ return iter(self._adj.items())
(self)
30,078
networkx.classes.digraph
clear
Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear() >>> list(G.nodes) [] >>> list(G.edges) []
def clear(self): """Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear() >>> list(G.nodes) [] >>> list(G.edges) [] """ self._succ.clear() self._pred.clear() self._node.clear() self.graph.clear() nx._clear_cache(self)
(self)
30,079
networkx.classes.digraph
clear_edges
Remove all edges from the graph without altering nodes. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear_edges() >>> list(G.nodes) [0, 1, 2, 3] >>> list(G.edges) []
def clear_edges(self): """Remove all edges from the graph without altering nodes. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear_edges() >>> list(G.nodes) [0, 1, 2, 3] >>> list(G.edges) [] """ for predecessor_dict in self._pred.values(): predecessor_dict.clear() for successor_dict in self._succ.values(): successor_dict.clear() nx._clear_cache(self)
(self)
30,080
networkx.classes.graph
copy
Returns a copy of the graph. The copy method by default returns an independent shallow copy of the graph and attributes. That is, if an attribute is a container, that container is shared by the original an the copy. Use Python's `copy.deepcopy` for new containers. If `as_view` is True then a view is returned instead of a copy. Notes ----- All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four types of copies of a graph that people might want. Deepcopy -- A "deepcopy" copies the graph structure as well as all data attributes and any objects they might contain. The entire graph object is new so that changes in the copy do not affect the original object. (see Python's copy.deepcopy) Data Reference (Shallow) -- For a shallow copy the graph structure is copied but the edge, node and graph attribute dicts are references to those in the original graph. This saves time and memory but could cause confusion if you change an attribute in one graph and it changes the attribute in the other. NetworkX does not provide this level of shallow copy. Independent Shallow -- This copy creates new independent attribute dicts and then does a shallow copy of the attributes. That is, any attributes that are containers are shared between the new graph and the original. This is exactly what `dict.copy()` provides. You can obtain this style copy using: >>> G = nx.path_graph(5) >>> H = G.copy() >>> H = G.copy(as_view=False) >>> H = nx.Graph(G) >>> H = G.__class__(G) Fresh Data -- For fresh data, the graph structure is copied while new empty data attribute dicts are created. The resulting graph is independent of the original and it has no edge, node or graph attributes. Fresh copies are not enabled. Instead use: >>> H = G.__class__() >>> H.add_nodes_from(G) >>> H.add_edges_from(G.edges) View -- Inspired by dict-views, graph-views act like read-only versions of the original graph, providing a copy of the original structure without requiring any memory for copying the information. See the Python copy module for more information on shallow and deep copies, https://docs.python.org/3/library/copy.html. Parameters ---------- as_view : bool, optional (default=False) If True, the returned graph-view provides a read-only view of the original graph without actually copying any data. Returns ------- G : Graph A copy of the graph. See Also -------- to_directed: return a directed copy of the graph. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> H = G.copy()
def copy(self, as_view=False): """Returns a copy of the graph. The copy method by default returns an independent shallow copy of the graph and attributes. That is, if an attribute is a container, that container is shared by the original an the copy. Use Python's `copy.deepcopy` for new containers. If `as_view` is True then a view is returned instead of a copy. Notes ----- All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four types of copies of a graph that people might want. Deepcopy -- A "deepcopy" copies the graph structure as well as all data attributes and any objects they might contain. The entire graph object is new so that changes in the copy do not affect the original object. (see Python's copy.deepcopy) Data Reference (Shallow) -- For a shallow copy the graph structure is copied but the edge, node and graph attribute dicts are references to those in the original graph. This saves time and memory but could cause confusion if you change an attribute in one graph and it changes the attribute in the other. NetworkX does not provide this level of shallow copy. Independent Shallow -- This copy creates new independent attribute dicts and then does a shallow copy of the attributes. That is, any attributes that are containers are shared between the new graph and the original. This is exactly what `dict.copy()` provides. You can obtain this style copy using: >>> G = nx.path_graph(5) >>> H = G.copy() >>> H = G.copy(as_view=False) >>> H = nx.Graph(G) >>> H = G.__class__(G) Fresh Data -- For fresh data, the graph structure is copied while new empty data attribute dicts are created. The resulting graph is independent of the original and it has no edge, node or graph attributes. Fresh copies are not enabled. Instead use: >>> H = G.__class__() >>> H.add_nodes_from(G) >>> H.add_edges_from(G.edges) View -- Inspired by dict-views, graph-views act like read-only versions of the original graph, providing a copy of the original structure without requiring any memory for copying the information. See the Python copy module for more information on shallow and deep copies, https://docs.python.org/3/library/copy.html. Parameters ---------- as_view : bool, optional (default=False) If True, the returned graph-view provides a read-only view of the original graph without actually copying any data. Returns ------- G : Graph A copy of the graph. See Also -------- to_directed: return a directed copy of the graph. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> H = G.copy() """ if as_view is True: return nx.graphviews.generic_graph_view(self) G = self.__class__() G.graph.update(self.graph) G.add_nodes_from((n, d.copy()) for n, d in self._node.items()) G.add_edges_from( (u, v, datadict.copy()) for u, nbrs in self._adj.items() for v, datadict in nbrs.items() ) return G
(self, as_view=False)
30,081
networkx.classes.graph
edge_subgraph
Returns the subgraph induced by the specified edges. The induced subgraph contains each edge in `edges` and each node incident to any one of those edges. Parameters ---------- edges : iterable An iterable of edges in this graph. Returns ------- G : Graph An edge-induced subgraph of this graph with the same edge attributes. Notes ----- The graph, edge, and node attributes in the returned subgraph view are references to the corresponding attributes in the original graph. The view is read-only. To create a full graph version of the subgraph with its own copy of the edge or node attributes, use:: G.edge_subgraph(edges).copy() Examples -------- >>> G = nx.path_graph(5) >>> H = G.edge_subgraph([(0, 1), (3, 4)]) >>> list(H.nodes) [0, 1, 3, 4] >>> list(H.edges) [(0, 1), (3, 4)]
def edge_subgraph(self, edges): """Returns the subgraph induced by the specified edges. The induced subgraph contains each edge in `edges` and each node incident to any one of those edges. Parameters ---------- edges : iterable An iterable of edges in this graph. Returns ------- G : Graph An edge-induced subgraph of this graph with the same edge attributes. Notes ----- The graph, edge, and node attributes in the returned subgraph view are references to the corresponding attributes in the original graph. The view is read-only. To create a full graph version of the subgraph with its own copy of the edge or node attributes, use:: G.edge_subgraph(edges).copy() Examples -------- >>> G = nx.path_graph(5) >>> H = G.edge_subgraph([(0, 1), (3, 4)]) >>> list(H.nodes) [0, 1, 3, 4] >>> list(H.edges) [(0, 1), (3, 4)] """ return nx.edge_subgraph(self, edges)
(self, edges)
30,082
networkx.classes.graph
get_edge_data
Returns the attribute dictionary associated with edge (u, v). This is identical to `G[u][v]` except the default is returned instead of an exception if the edge doesn't exist. Parameters ---------- u, v : nodes default: any Python object (default=None) Value to return if the edge (u, v) is not found. Returns ------- edge_dict : dictionary The edge attribute dictionary. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G[0][1] {} Warning: Assigning to `G[u][v]` is not permitted. But it is safe to assign attributes `G[u][v]['foo']` >>> G[0][1]["weight"] = 7 >>> G[0][1]["weight"] 7 >>> G[1][0]["weight"] 7 >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.get_edge_data(0, 1) # default edge data is {} {} >>> e = (0, 1) >>> G.get_edge_data(*e) # tuple form {} >>> G.get_edge_data("a", "b", default=0) # edge not in graph, return 0 0
def get_edge_data(self, u, v, default=None): """Returns the attribute dictionary associated with edge (u, v). This is identical to `G[u][v]` except the default is returned instead of an exception if the edge doesn't exist. Parameters ---------- u, v : nodes default: any Python object (default=None) Value to return if the edge (u, v) is not found. Returns ------- edge_dict : dictionary The edge attribute dictionary. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G[0][1] {} Warning: Assigning to `G[u][v]` is not permitted. But it is safe to assign attributes `G[u][v]['foo']` >>> G[0][1]["weight"] = 7 >>> G[0][1]["weight"] 7 >>> G[1][0]["weight"] 7 >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.get_edge_data(0, 1) # default edge data is {} {} >>> e = (0, 1) >>> G.get_edge_data(*e) # tuple form {} >>> G.get_edge_data("a", "b", default=0) # edge not in graph, return 0 0 """ try: return self._adj[u][v] except KeyError: return default
(self, u, v, default=None)