The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
Dataset Card for Voxpopuli
Dataset Summary
VoxPopuli is a large-scale multilingual speech corpus for representation learning, semi-supervised learning and interpretation. The raw data is collected from 2009-2020 European Parliament event recordings. We acknowledge the European Parliament for creating and sharing these materials. This implementation contains transcribed speech data for 18 languages. It also contains 29 hours of transcribed speech data of non-native English intended for research in ASR for accented speech (15 L2 accents)
Example usage
VoxPopuli contains labelled data for 18 languages. To load a specific language pass its name as a config name:
from datasets import load_dataset
voxpopuli_croatian = load_dataset("facebook/voxpopuli", "hr")
To load all the languages in a single dataset use "multilang" config name:
voxpopuli_all = load_dataset("facebook/voxpopuli", "multilang")
To load a specific set of languages, use "multilang" config name and pass a list of required languages to languages
parameter:
voxpopuli_slavic = load_dataset("facebook/voxpopuli", "multilang", languages=["hr", "sk", "sl", "cs", "pl"])
To load accented English data, use "en_accented" config name:
voxpopuli_accented = load_dataset("facebook/voxpopuli", "en_accented")
Note that L2 English subset contains only test
split.
Supported Tasks and Leaderboards
- automatic-speech-recognition: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER).
Accented English subset can also be used for research in ASR for accented speech (15 L2 accents)
Languages
VoxPopuli contains labelled (transcribed) data for 18 languages:
Language | Code | Transcribed Hours | Transcribed Speakers | Transcribed Tokens |
---|---|---|---|---|
Italian | It | 91 | 306 | 757K |
Accented speech transcribed data has 15 various L2 accents:
Accent | Code | Transcribed Hours | Transcribed Speakers |
---|---|---|---|
Italian | en_it | 1.11 | 15 |
Dataset Structure
Data Instances
{
'audio_id': '20180206-0900-PLENARY-15-hr_20180206-16:10:06_5',
'language': 11, # "hr"
'audio': {
'path': '/home/polina/.cache/huggingface/datasets/downloads/extracted/44aedc80bb053f67f957a5f68e23509e9b181cc9e30c8030f110daaedf9c510e/train_part_0/20180206-0900-PLENARY-15-hr_20180206-16:10:06_5.wav',
'array': array([-0.01434326, -0.01055908, 0.00106812, ..., 0.00646973], dtype=float32),
'sampling_rate': 16000
},
'raw_text': '',
'normalized_text': 'poast genitalnog sakaenja ena u europi tek je jedna od manifestacija takve tetne politike.',
'gender': 'female',
'speaker_id': '119431',
'is_gold_transcript': True,
'accent': 'None'
}
Data Fields
audio_id
(string) - id of audio segmentlanguage
(datasets.ClassLabel) - numerical id of audio segmentaudio
(datasets.Audio) - a dictionary containing the path to the audio, the decoded audio array, and the sampling rate. In non-streaming mode (default), the path points to the locally extracted audio. In streaming mode, the path is the relative path of an audio inside its archive (as files are not downloaded and extracted locally).raw_text
(string) - original (orthographic) audio segment textnormalized_text
(string) - normalized audio segment transcriptiongender
(string) - gender of speakerspeaker_id
(string) - id of speakeris_gold_transcript
(bool) - ?accent
(string) - type of accent, for example "en_lt", if applicable, else "None".
Data Splits
All configs (languages) except for accented English contain data in three splits: train, validation and test. Accented English en_accented
config contains only test split.
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
The raw data is collected from youtube
Who are the source language producers?
Speakers are participants of the European Parliament events, many of them are EU officials.
- Downloads last month
- 34