Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -11,16 +11,24 @@ size_categories:
|
|
11 |
tags:
|
12 |
- drug discovery
|
13 |
- bioassay
|
14 |
-
dataset_summary:
|
15 |
-
|
|
|
16 |
drug discovery.
|
17 |
-
citation:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
dataset_info:
|
25 |
config_name: MolData
|
26 |
features:
|
@@ -32,7 +40,7 @@ dataset_info:
|
|
32 |
dtype: string
|
33 |
- name: AID
|
34 |
dtype: string
|
35 |
-
- name: Y
|
36 |
dtype: int64
|
37 |
splits:
|
38 |
- name: train
|
@@ -151,4 +159,20 @@ Split and evaluate the catboost model
|
|
151 |
|
152 |
scores = regression_suite.compute(
|
153 |
references=split_featurised_dataset["test"]['Y'],
|
154 |
-
predictions=preds["cat_boost_regressor::Y"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
tags:
|
12 |
- drug discovery
|
13 |
- bioassay
|
14 |
+
dataset_summary: >-
|
15 |
+
A comprehensive disease and target-based dataset with 1.4 million molecules,
|
16 |
+
collected from PubChem to accelerate molecular machine learning for better
|
17 |
drug discovery.
|
18 |
+
citation: |-
|
19 |
+
@article{KeshavarziArshadi2022,
|
20 |
+
title = {MolData, a molecular benchmark for disease and target based machine learning},
|
21 |
+
volume = {14},
|
22 |
+
ISSN = {1758-2946},
|
23 |
+
url = {http://dx.doi.org/10.1186/s13321-022-00590-y},
|
24 |
+
DOI = {10.1186/s13321-022-00590-y},
|
25 |
+
number = {1},
|
26 |
+
journal = {Journal of Cheminformatics},
|
27 |
+
publisher = {Springer Science and Business Media LLC},
|
28 |
+
author = {Keshavarzi Arshadi, Arash and Salem, Milad and Firouzbakht, Arash and Yuan, Jiann Shiun},
|
29 |
+
year = {2022},
|
30 |
+
month = mar
|
31 |
+
}
|
32 |
dataset_info:
|
33 |
config_name: MolData
|
34 |
features:
|
|
|
40 |
dtype: string
|
41 |
- name: AID
|
42 |
dtype: string
|
43 |
+
- name: 'Y'
|
44 |
dtype: int64
|
45 |
splits:
|
46 |
- name: train
|
|
|
159 |
|
160 |
scores = regression_suite.compute(
|
161 |
references=split_featurised_dataset["test"]['Y'],
|
162 |
+
predictions=preds["cat_boost_regressor::Y"])
|
163 |
+
|
164 |
+
|
165 |
+
### Citation
|
166 |
+
@article{KeshavarziArshadi2022,
|
167 |
+
title = {MolData, a molecular benchmark for disease and target based machine learning},
|
168 |
+
volume = {14},
|
169 |
+
ISSN = {1758-2946},
|
170 |
+
url = {http://dx.doi.org/10.1186/s13321-022-00590-y},
|
171 |
+
DOI = {10.1186/s13321-022-00590-y},
|
172 |
+
number = {1},
|
173 |
+
journal = {Journal of Cheminformatics},
|
174 |
+
publisher = {Springer Science and Business Media LLC},
|
175 |
+
author = {Keshavarzi Arshadi, Arash and Salem, Milad and Firouzbakht, Arash and Yuan, Jiann Shiun},
|
176 |
+
year = {2022},
|
177 |
+
month = mar
|
178 |
+
}
|