Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -91,26 +91,27 @@ then, from within python load the datasets library
|
|
91 |
and load the `MolData` datasets, e.g.,
|
92 |
|
93 |
>>> MolData = datasets.load_dataset("maomlab/MolData")
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
Generating test split: 100%|ββββββββββ| 594/594 [00:00<00:00, 12705.92βexamples/s]
|
98 |
-
Generating train split: 100%|ββββββββββ| 1788/1788 [00:00<00:00, 43895.91βexamples/s]
|
99 |
|
100 |
and inspecting the loaded dataset
|
101 |
|
102 |
>>> MolData
|
103 |
-
MolData
|
104 |
DatasetDict({
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
})
|
109 |
-
train: Dataset({
|
110 |
-
features: ['SMILES', 'Y'],
|
111 |
-
num_rows: 1788
|
112 |
-
})
|
113 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
### Use a dataset to train a model
|
116 |
One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia.
|
|
|
91 |
and load the `MolData` datasets, e.g.,
|
92 |
|
93 |
>>> MolData = datasets.load_dataset("maomlab/MolData")
|
94 |
+
Generating train split: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 138547273/138547273 [02:07<00:00, 1088043.12 examples/s]
|
95 |
+
Generating test split: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 17069726/17069726 [00:16<00:00, 1037407.67 examples/s]
|
96 |
+
Generating validation split: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12728449/12728449 [00:11<00:00, 1093675.24 examples/s]
|
|
|
|
|
97 |
|
98 |
and inspecting the loaded dataset
|
99 |
|
100 |
>>> MolData
|
|
|
101 |
DatasetDict({
|
102 |
+
train: Dataset({
|
103 |
+
features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'],
|
104 |
+
num_rows: 138547273
|
|
|
|
|
|
|
|
|
|
|
105 |
})
|
106 |
+
test: Dataset({
|
107 |
+
features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'],
|
108 |
+
num_rows: 17069726
|
109 |
+
})
|
110 |
+
validation: Dataset({
|
111 |
+
features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'],
|
112 |
+
num_rows: 12728449
|
113 |
+
})
|
114 |
+
})
|
115 |
|
116 |
### Use a dataset to train a model
|
117 |
One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia.
|