|
--- |
|
version: 1.0.0 |
|
license: cc-by-sa-4.0 |
|
task_categories: |
|
- tabular-classification |
|
language: |
|
- en |
|
pretty_name: MolData |
|
size_categories: |
|
- 1M<n<10M |
|
tags: |
|
- drug discovery |
|
- bioassay |
|
dataset_summary: A comprehensive disease and target-based dataset with roughly 170 million drug screening results from 1.4 million |
|
unique molecules and 600 assays which are collected from PubChem to accelerate molecular machine learning for better drug discovery. |
|
citation: "@article{KeshavarziArshadi2022,\n title = {MolData, a molecular benchmark\ |
|
\ for disease and target based machine learning},\n volume = {14},\n ISSN = {1758-2946},\n\ |
|
\ url = {http://dx.doi.org/10.1186/s13321-022-00590-y},\n DOI = {10.1186/s13321-022-00590-y},\n\ |
|
\ number = {1},\n journal = {Journal of Cheminformatics},\n publisher = {Springer\ |
|
\ Science and Business Media LLC},\n author = {Keshavarzi Arshadi, Arash and Salem,\ |
|
\ Milad and Firouzbakht, Arash and Yuan, Jiann Shiun},\n year = {2022},\n month\ |
|
\ = mar \n}" |
|
dataset_info: |
|
- config_name: MolData |
|
features: |
|
- name: SMILES |
|
dtype: string |
|
- name: PUBCHEM_CID |
|
dtype: int64 |
|
- name: split |
|
dtype: string |
|
- name: AID |
|
dtype: string |
|
- name: Y |
|
dtype: int64 |
|
description: 'Binary classification (0/1) ' |
|
splits: |
|
- name: train |
|
num_bytes: 12634275804 |
|
num_examples: 138547273 |
|
- name: test |
|
num_bytes: 1578698654 |
|
num_examples: 17069726 |
|
- name: validation |
|
num_bytes: 1254512486 |
|
num_examples: 12728449 |
|
download_size: 5293486933 |
|
dataset_size: 15467486944 |
|
- config_name: default |
|
features: |
|
- name: SMILES |
|
dtype: string |
|
- name: PUBCHEM_CID |
|
dtype: int64 |
|
- name: split |
|
dtype: string |
|
- name: AID |
|
dtype: string |
|
- name: Y |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 12634275804 |
|
num_examples: 138547273 |
|
- name: test |
|
num_bytes: 1578698654 |
|
num_examples: 17069726 |
|
- name: validation |
|
num_bytes: 1254512486 |
|
num_examples: 12728449 |
|
download_size: 5293486933 |
|
dataset_size: 15467486944 |
|
configs: |
|
- config_name: MolData |
|
data_files: |
|
- split: train |
|
path: MolData/train-* |
|
- split: test |
|
path: MolData/test-* |
|
- split: validation |
|
path: MolData/validation-* |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
- split: validation |
|
path: data/validation-* |
|
--- |
|
|
|
# MolData |
|
|
|
[MolData](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-022-00590-y) is a comprehensive disease and target-based dataset collected from PubChem. |
|
The dataset contains 1.4 million unique molecules, and it is one the largest efforts to date for democratizing the molecular machine learning. |
|
This is a mirror of the [Official Github repo](https://github.com/LumosBio/MolData/tree/main/Data) where the dataset was uploaded in 2021. |
|
|
|
|
|
## Preprocessing |
|
|
|
We utilized the raw data uploaded on [Github](https://github.com/LumosBio/MolData) and performed several preprocessing: |
|
1. Sanitize the molecules using RDKit and MolVS (standardize SMILES format) |
|
2. Formatting (from wide form to long form) |
|
3. Rename the columns |
|
4. Split the dataset (train, test, validation) |
|
|
|
If you would like to try these processes with the original dataset, |
|
please follow the instructions in the [preprocessing script](https://huggingface.co/datasets/maomlab/MolData/blob/main/MolData_preprocessing.py) file located in our MolData repository. |
|
|
|
|
|
|
|
## Quickstart Usage |
|
|
|
### Load a dataset in python |
|
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library. |
|
First, from the command line install the `datasets` library |
|
|
|
$ pip install datasets |
|
|
|
then, from within python load the datasets library |
|
|
|
>>> import datasets |
|
|
|
and load the `MolData` datasets, e.g., |
|
|
|
>>> MolData = datasets.load_dataset("maomlab/MolData", name = "MolData") |
|
Generating train split: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 138547273/138547273 [02:07<00:00, 1088043.12 examples/s] |
|
Generating test split: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 17069726/17069726 [00:16<00:00, 1037407.67 examples/s] |
|
Generating validation split: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12728449/12728449 [00:11<00:00, 1093675.24 examples/s] |
|
|
|
and inspecting the loaded dataset |
|
|
|
>>> MolData |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'], |
|
num_rows: 138547273 |
|
}) |
|
test: Dataset({ |
|
features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'], |
|
num_rows: 17069726 |
|
}) |
|
validation: Dataset({ |
|
features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'], |
|
num_rows: 12728449 |
|
}) |
|
}) |
|
|
|
### Use a dataset to train a model |
|
One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia. |
|
First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support |
|
|
|
pip install 'molflux[catboost,rdkit]' |
|
|
|
then load, featurize, split, fit, and evaluate the catboost model |
|
|
|
import json |
|
from datasets import load_dataset |
|
from molflux.datasets import featurise_dataset |
|
from molflux.features import load_from_dicts as load_representations_from_dicts |
|
from molflux.splits import load_from_dict as load_split_from_dict |
|
from molflux.modelzoo import load_from_dict as load_model_from_dict |
|
from molflux.metrics import load_suite |
|
|
|
Split and evaluate the catboost model |
|
|
|
split_dataset = load_dataset('maomlab/MolData', name = 'MolData') |
|
|
|
split_featurised_dataset = featurise_dataset( |
|
split_dataset, |
|
column = "SMILES", |
|
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}])) |
|
|
|
model = load_model_from_dict({ |
|
"name": "cat_boost_classifier", |
|
"config": { |
|
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'], |
|
"y_features": ['Y']}}) |
|
|
|
model.train(split_featurised_dataset["train"]) |
|
preds = model.predict(split_featurised_dataset["test"]) |
|
|
|
classification_suite = load_suite("classification") |
|
|
|
scores = classification_suite.compute( |
|
references=split_featurised_dataset["test"]['Y'], |
|
predictions=preds["cat_boost_classifier::Y"]) |
|
|
|
|
|
### Citation |
|
@article{KeshavarziArshadi2022, |
|
title = {MolData, a molecular benchmark for disease and target based machine learning}, |
|
volume = {14}, |
|
ISSN = {1758-2946}, |
|
url = {http://dx.doi.org/10.1186/s13321-022-00590-y}, |
|
DOI = {10.1186/s13321-022-00590-y}, |
|
number = {1}, |
|
journal = {Journal of Cheminformatics}, |
|
publisher = {Springer Science and Business Media LLC}, |
|
author = {Keshavarzi Arshadi, Arash and Salem, Milad and Firouzbakht, Arash and Yuan, Jiann Shiun}, |
|
year = {2022}, |
|
month = mar |
|
} |