Datasets:
version: 1.0.0
license: cc-by-nc-4.0
task_categories:
- tabular-regression
language:
- en
tags:
- IUPAC
- pKa
pretty_name: IUPAC_pKa
size_categories:
- 10K<n<100K
dataset_summary: >-
Curated dataset of pKa values digitized from three IUPAC reference books with
10,624 uniqe molecules.
citation: https://doi.org/10.5281/zenodo.7236453
dataset_info:
- config_name: IUPAC_pKa
features:
- name: unique_ID
dtype: string
- name: SMILES
dtype: string
- name: InChI
dtype: string
- name: pka_type
dtype: string
- name: 'Y'
dtype: float64
- name: T
dtype: string
- name: remarks
dtype: string
- name: method
dtype: string
- name: assessment
dtype: string
- name: ref
dtype: string
- name: ref_remarks
dtype: string
- name: entry_remarks
dtype: string
- name: original_IUPAC_names
dtype: string
- name: name_contributors
dtype: string
- name: num_name_contributors
dtype: int64
- name: original_IUPAC_nicknames
dtype: string
- name: source
dtype: string
- name: pressure
dtype: string
- name: acidity_label
dtype: string
- name: original_T
dtype: string
- name: solvent
dtype: string
- name: ClusterNo
dtype: int64
- name: MolCount
dtype: int64
- name: group
dtype: string
splits:
- name: train
num_bytes: 6849049
num_examples: 18168
- name: test
num_bytes: 2191280
num_examples: 6054
download_size: 1465758
dataset_size: 9040329
- config_name: default
features:
- name: unique_ID
dtype: string
- name: SMILES
dtype: string
- name: InChI
dtype: string
- name: pka_type
dtype: string
- name: 'Y'
dtype: float64
- name: T
dtype: string
- name: remarks
dtype: string
- name: method
dtype: string
- name: assessment
dtype: string
- name: ref
dtype: string
- name: ref_remarks
dtype: string
- name: entry_remarks
dtype: string
- name: original_IUPAC_names
dtype: string
- name: name_contributors
dtype: string
- name: num_name_contributors
dtype: int64
- name: original_IUPAC_nicknames
dtype: string
- name: source
dtype: string
- name: pressure
dtype: string
- name: acidity_label
dtype: string
- name: original_T
dtype: string
- name: solvent
dtype: string
- name: ClusterNo
dtype: int64
- name: MolCount
dtype: int64
- name: group
dtype: string
splits:
- name: train
num_bytes: 6849049
num_examples: 18168
- name: test
num_bytes: 2191280
num_examples: 6054
download_size: 1465758
dataset_size: 9040329
configs:
- config_name: IUPAC_pKa
data_files:
- split: train
path: IUPAC_pKa/train-*
- split: test
path: IUPAC_pKa/test-*
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
IUPAC_pKa
IUPAC_pKa dataset contains high-confidence pKa values digitized from three IUPAC reference books, with chemical identifiers (SMILES, InChI) and metadata on acidity, temperature, solvent, and measurement methods. The dataset consists of 24,222 rows corresponding to 10,624 uniqe molecules. This is a mirror of the Official Github repo where the dataset v2_2 was uploaded.
Preprocessing
We utilized the raw data uploaded on Github and performed several preprocessing:
- Sanitize the molecules using RDKit and MolVS (standardize SMILES format)
- Rename the columns
- Split the dataset (train, test, validation)
If you would like to try these processes with the original dataset, please follow the instructions in the preprocessing script file located in our IUPAC_pKa repository.
Data splits
The original IUPAC_pKa dataset does not define splits, so here we have used the 'Realistic Split' method described in Martin et al., 2018.
Quickstart Usage
Load a dataset in python
Each subset can be loaded into python using the Huggingface datasets library.
First, from the command line install the datasets
library
$ pip install datasets
then, from within python load the datasets library
>>> import datasets
and load the IUPAC_pKa
datasets, e.g.,
>>> IUPAC_pKa = datasets.load_dataset('maomlab/IUPAC_pKa')
README.md: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5.06k/5.06k [00:00<00:00, 771kB/s]
train-00000-of-00001.parquet: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 947k/947k [00:00<00:00, 34.0MB/s]
test-00000-of-00001.parquet: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 519k/519k [00:00<00:00, 23.5MB/s]
Generating train split: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18168/18168 [00:00<00:00, 260823.23 examples/s]
Generating test split: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 6054/6054 [00:00<00:00, 231724.00 examples/s]
and inspecting the loaded dataset
>>> IUPAC_pKa
DatasetDict({
train: Dataset({
features: ['unique_ID', 'SMILES', 'InChI', 'pka_type', 'Y', 'T', 'remarks', 'method', 'assessment', 'ref', 'ref_remarks', 'entry_remarks', 'original_IUPAC_names', 'name_contributors', 'num_name_contributors', 'original_IUPAC_nicknames', 'source', 'pressure', 'acidity_label', 'original_T', 'solvent', 'ClusterNo', 'MolCount', 'group'],
num_rows: 18168
})
test: Dataset({
features: ['unique_ID', 'SMILES', 'InChI', 'pka_type', 'Y', 'T', 'remarks', 'method', 'assessment', 'ref', 'ref_remarks', 'entry_remarks', 'original_IUPAC_names', 'name_contributors', 'num_name_contributors', 'original_IUPAC_nicknames', 'source', 'pressure', 'acidity_label', 'original_T', 'solvent', 'ClusterNo', 'MolCount', 'group'],
num_rows: 6054
})
})
Use a dataset to train a model
One way to use the dataset is through the MolFlux package developed by Exscientia.
First, from the command line, install MolFlux
library with catboost
and rdkit
support
pip install 'molflux[catboost,rdkit]'
then load, featurize, split, fit, and evaluate the catboost model
import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite
split_dataset = load_dataset('maomlab/IUPAC_pKa')
split_featurised_dataset = featurise_dataset(
split_dataset,
column = "SMILES",
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
model = load_model_from_dict({
"name": "cat_boost_regressor",
"config": {
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
"y_features": ['Y']}})
model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])
regression_suite = load_suite("regression")
scores = regression_suite.compute(
references=split_featurised_dataset["test"]['Y'],
predictions=preds["cat_boost_regressor::Y"])
Citation
Zheng, Jonathan W. and Lafontant-Joseph, Olivier. (2024) IUPAC Digitized pKa Dataset, v2.2. Copyright Β© 2024 International Union of Pure and Applied Chemistry (IUPAC), The dataset is reproduced by permission of IUPAC and is licensed under a CC BY-NC 4.0. Access at https://doi.org/10.5281/zenodo.7236453.