Datasets:

Modalities:
3D
Text
Formats:
csv
Size:
< 1K
Libraries:
Datasets
pandas
License:
SpatialLM-Testset / README.md
ysmao's picture
Update README.md
3a5c44d verified
---
license: cc-by-nc-4.0
configs:
- config_name: default
data_files:
- split: test
path: "test.csv"
---
# SpatialLM Testset
We provide a test set of 107 preprocessed point clouds and their corresponding GT layouts, point clouds are reconstructed from RGB videos using [MASt3R-SLAM](https://github.com/rmurai0610/MASt3R-SLAM). SpatialLM-Testset is quite challenging compared to prior clean RGBD scan datasets due to the noises and occlusions in the point clouds reconstructed from monocular RGB videos.
<table style="table-layout: fixed;">
<tr>
<td style="text-align: center; vertical-align: middle; width: 25%"> <img src="./figures/a.jpg" alt="exmaple a" width="100%" style="display: block;"></td>
<td style="text-align: center; vertical-align: middle; width: 25%"> <img src="./figures/b.jpg" alt="exmaple b" width="100%" style="display: block;"></td>
<td style="text-align: center; vertical-align: middle; width: 25%"> <img src="./figures/c.jpg" alt="exmaple c" width="100%" style="display: block;"></td>
<td style="text-align: center; vertical-align: middle; width: 25%"> <img src="./figures/d.jpg" alt="exmaple d" width="100%" style="display: block;"></td>
</tr>
</tr>
</table>
## Folder Structure
Outlines of the dataset files:
```bash
project-root/
├── pcd/*.ply # Reconstructed point cloud PLY files
├── layout/*.txt # GT FloorPlan Layout
├── benchmark_categories.tsv # Category mappings for evaluation
└── test.csv # Metadata CSV file with columns id, pcd, layout
```
## Usage
Use the [SpatialLM code base](https://github.com/manycore-research/SpatialLM/tree/main) for reading the point cloud and layout data.
```python
from spatiallm import Layout
from spatiallm.pcd import load_o3d_pcd
# Load Point Cloud
point_cloud = load_o3d_pcd(args.point_cloud)
# Load Layout
with open(args.layout, "r") as f:
layout_content = f.read()
layout = Layout(layout_content)
```
## Visualization
Use `rerun` to visualize the point cloud and the GT structured 3D layout output:
```bash
python visualize.py --point_cloud pcd/scene0000_00.ply --layout layout/scene0000_00.txt --save scene0000_00.rrd
rerun scene0000_00.rrd
```