id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
85243
<reponame>MadeInHaus/django-social from django.contrib import admin from ..models import (FacebookAccount, FacebookMessage, FacebookSearch, TwitterAccount, TwitterMessage, TwitterSearch, RSSAccount, RSSMessage, Message, InstagramAccount, InstagramSearch, InstagramMessage, TwitterSetting, FacebookSetting, InstagramSetting, FacebookPublicAccount, TwitterPublicAccount, InstagramPublicAccount, RSSSetting) from .models import (SingletonAdmin, MessageAdmin, FacebookAccountAdmin, FacebookSearchAdmin, FacebookMessageAdmin, TwitterAccountAdmin, TwitterPublicAccountAdmin, TwitterMessageAdmin, TwitterSearchAdmin, InstagramAccountAdmin, InstagramPublicAccountAdmin, InstagramSearchAdmin, InstagramMessageAdmin, RSSAccountAdmin, RSSMessageAdmin,) admin.site.register(Message, MessageAdmin) admin.site.register(FacebookSetting, SingletonAdmin) admin.site.register(FacebookAccount, FacebookAccountAdmin) admin.site.register(FacebookPublicAccount, FacebookAccountAdmin) admin.site.register(FacebookMessage, FacebookMessageAdmin) admin.site.register(FacebookSearch, FacebookSearchAdmin) admin.site.register(TwitterSetting, SingletonAdmin) admin.site.register(TwitterAccount, TwitterAccountAdmin) admin.site.register(TwitterPublicAccount, TwitterPublicAccountAdmin) admin.site.register(TwitterMessage, TwitterMessageAdmin) admin.site.register(TwitterSearch, TwitterSearchAdmin) admin.site.register(InstagramSetting, SingletonAdmin) admin.site.register(InstagramAccount, InstagramAccountAdmin) admin.site.register(InstagramPublicAccount, InstagramPublicAccountAdmin) admin.site.register(InstagramSearch, InstagramSearchAdmin) admin.site.register(InstagramMessage, InstagramMessageAdmin) admin.site.register(RSSSetting, SingletonAdmin) admin.site.register(RSSAccount, RSSAccountAdmin) admin.site.register(RSSMessage, RSSMessageAdmin)
StarcoderdataPython
1721102
from koala.sequence_id import SequenceId _request_id = SequenceId() _reentrant_id = SequenceId() def set_request_id_seed(seed: int): _request_id.set_seed(seed) def new_request_id() -> int: return _request_id.new_id() def set_reentrant_id_seed(seed: int): _reentrant_id.set_seed(seed) def new_reentrant_id() -> int: return _reentrant_id.new_id()
StarcoderdataPython
79101
import warnings from random import randint from unittest import TestCase from .models import ( ColumnFamilyTestModel, ColumnFamilyIndexedTestModel, ClusterPrimaryKeyModel, ForeignPartitionKeyModel, DictFieldModel ) from .util import ( connect_db, destroy_db, create_model ) class ColumnFamilyModelTestCase(TestCase): def setUp(self): self.connection = connect_db() self.cached_rows = {} ''' Let's create some simple data. ''' create_model( self.connection, ColumnFamilyTestModel ) field_names = [ field.name if field.get_internal_type() != 'AutoField' else None for field in ColumnFamilyTestModel._meta.fields ] field_values = ['foo', 'bar', 'raw', 'awk', 'lik', 'sik', 'dik', 'doc'] self.total_rows = 100 value_index = 0 for x in xrange(self.total_rows): test_data = {} for name in field_names: if not name: continue test_data[name] = field_values[value_index % len(field_values)] value_index += 1 test_data['field_1'] = test_data['field_1'] + str( randint(1000, 9999) ) if test_data['field_1'] in self.cached_rows.keys(): continue created_instance = ColumnFamilyTestModel.objects.create( **test_data ) self.cached_rows[created_instance.pk] = created_instance self.created_instances = len(self.cached_rows) import django django.setup() def tearDown(self): destroy_db(self.connection) def test_token_partition_key_field_value_to_string(self): first_instance = ColumnFamilyTestModel.objects.all()[:1][0] token_field, _, _, _ = ColumnFamilyTestModel._meta.get_field_by_name( 'pk_token' ) result = token_field.value_to_string(first_instance) self.assertIsNotNone(result) class ColumnFamilyTestIndexedQueriesTestCase(TestCase): def setUp(self): self.connection = connect_db() self.cached_rows = {} ''' Let's create some simple data. ''' create_model( self.connection, ColumnFamilyIndexedTestModel ) field_names = [ field.name if field.get_internal_type() != 'AutoField' else None for field in ColumnFamilyIndexedTestModel._meta.fields ] field_values = [ 'foo', 'bar', 'raw', 'awk', 'lik', 'sik', 'dik', 'doc', 'dab' ] high_cardinality_field_values = ['yes', 'no'] self.total_rows = 400 value_index = 0 for x in xrange(self.total_rows): test_data = {} for name in field_names: if not name: continue test_data[name] = field_values[value_index % len(field_values)] test_data['field_4'] = ( high_cardinality_field_values[ value_index % len( high_cardinality_field_values ) ] ) value_index += 1 test_data['field_1'] = test_data['field_1'] + str( randint(1000, 9999) ) if test_data['field_1'] in self.cached_rows.keys(): continue created_instance = ColumnFamilyIndexedTestModel.objects.create( **test_data ) self.cached_rows[created_instance.pk] = created_instance self.created_instances = len(self.cached_rows) import django django.setup() def tearDown(self): destroy_db(self.connection) def test_partial_inefficient_get_query(self): all_results = ColumnFamilyIndexedTestModel.objects.all() all_results = [x for x in all_results] last_result = all_results[-1] last_result.field_3 = 'tool' last_result_indexed_value = last_result.field_4 last_result.save() partial_inefficient_get = ( ColumnFamilyIndexedTestModel.objects.get( field_3='tool', field_4=last_result_indexed_value ) ) self.assertIsNotNone(partial_inefficient_get) self.assertTrue(partial_inefficient_get.pk in self.cached_rows.keys()) class ForeignPartitionKeyModelTestCase(TestCase): def setUp(self): import django django.setup() self.connection = connect_db() create_model( self.connection, ClusterPrimaryKeyModel ) create_model( self.connection, ForeignPartitionKeyModel ) def tearDown(self): destroy_db(self.connection) def test_order_by_efficient(self): rel_instance = ClusterPrimaryKeyModel() rel_instance.auto_populate() rel_instance.save() instances = [] for i in xrange(10): instances.append(ForeignPartitionKeyModel.objects.create( related=rel_instance )) with warnings.catch_warnings(record=True) as w: ordered_query = ForeignPartitionKeyModel.objects.filter( related=rel_instance ).order_by('-created') results = list(ordered_query) self.assertEqual( 0, len(w) ) self.assertEqual( 10, len(results) ) for i in instances: i.delete() all_instances = ForeignPartitionKeyModel.objects.all() self.assertEqual( 0, len(all_instances) ) class TestDictFieldModel(TestCase): def setUp(self): import django django.setup() self.connection = connect_db() create_model( self.connection, DictFieldModel ) def tearDown(self): destroy_db(self.connection) def test_creation(self): instance = DictFieldModel.objects.create( parameters={'key0': 'value0', 'key1': 'value1'} ) self.assertIsNotNone(instance)
StarcoderdataPython
3230009
import time #start = time.perf_counter() import tensorflow as tf import argparse import pickle import os from model import Model from utils import build_dict, build_train_dataset, batch_iter # Uncomment next 2 lines to suppress error and Tensorflow info verbosity. Or change logging levels # tf.logging.set_verbosity(tf.logging.FATAL) # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def add_arguments(parser): parser.add_argument("--num_hidden", type=int, default=150, help="Network size.") parser.add_argument("--num_layers", type=int, default=2, help="Network depth.") parser.add_argument("--beam_width", type=int, default=1, help="Beam width for beam search decoder.") parser.add_argument("--glove", action="store_true", help="Use glove as initial word embedding.") parser.add_argument("--embedding_size", type=int, default=300, help="Word embedding size.") parser.add_argument("--learning_rate", type=float, default=1e-3, help="Learning rate.") parser.add_argument("--batch_size", type=int, default=64, help="Batch size.") parser.add_argument("--num_epochs", type=int, default=20, help="Number of epochs.") parser.add_argument("--keep_prob", type=float, default=0.8, help="Dropout keep prob.") parser.add_argument("--toy", action="store_true", help="Use only 50K samples of data") parser.add_argument("--use_atten", action="store_true", help="Use only 50K samples of data") parser.add_argument("--with_model", action="store_true", help="Continue from previously saved model") parser = argparse.ArgumentParser() add_arguments(parser) args = parser.parse_args() with open("args.pickle", "wb") as f: pickle.dump(args, f) if not os.path.exists("saved_model"): os.mkdir("saved_model") else: if args.with_model: old_model_checkpoint_path = open('saved_model/checkpoint', 'r') old_model_checkpoint_path = "".join(["saved_model/", old_model_checkpoint_path.read().splitlines()[0].split('"')[1] ]) print("Building dictionary...") word_dict, reversed_dict, article_max_len, summary_max_len = build_dict("train", args.toy) print("Loading training dataset...") train_x, train_y = build_train_dataset(word_dict, article_max_len, summary_max_len) with tf.Session() as sess: model = Model(reversed_dict, article_max_len, summary_max_len, args) if args.use_atten: print ("Using Attention") else: print ("Not Using Attention") sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(tf.global_variables()) if 'old_model_checkpoint_path' in globals(): print("Continuing from previous trained model:" , old_model_checkpoint_path , "...") saver.restore(sess, old_model_checkpoint_path ) batches = batch_iter(train_x, train_y, args.batch_size, args.num_epochs) num_batches_per_epoch = (len(train_x) - 1) // args.batch_size + 1 print("\nIteration starts.") print("Number of batches per epoch :", num_batches_per_epoch) for batch_x, batch_y in batches: batch_x_len = list(map(lambda x: len([y for y in x if y != 0]), batch_x)) batch_decoder_input = list(map(lambda x: [word_dict["<s>"]] + list(x), batch_y)) batch_decoder_len = list(map(lambda x: len([y for y in x if y != 0]), batch_decoder_input)) batch_decoder_output = list(map(lambda x: list(x) + [word_dict["</s>"]], batch_y)) batch_decoder_input = list( map(lambda d: d + (summary_max_len - len(d)) * [word_dict["<padding>"]], batch_decoder_input)) batch_decoder_output = list( map(lambda d: d + (summary_max_len - len(d)) * [word_dict["<padding>"]], batch_decoder_output)) train_feed_dict = { model.batch_size: len(batch_x), model.X: batch_x, model.X_len: batch_x_len, model.decoder_input: batch_decoder_input, model.decoder_len: batch_decoder_len, model.decoder_target: batch_decoder_output } _, step, loss = sess.run([model.update, model.global_step, model.loss], feed_dict=train_feed_dict) if step % 1000 == 0: print("step {0}: loss = {1}".format(step, loss)) if step % num_batches_per_epoch == 0: #hours, rem = divmod(time.perf_counter() - start, 3600) #minutes, seconds = divmod(rem, 60) saver.save(sess, "./saved_model/model.ckpt", global_step=step) print(" Epoch {0}: Model is saved.".format(step // num_batches_per_epoch)) #"Elapsed: {:0>2}:{:0>2}:{:05.2f}".format(int(hours),int(minutes),seconds) , "\n")
StarcoderdataPython
1678825
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from .common import DistributedOperatorImplContainer from .common import DistributedOperatorImpl from .common import register_distributed_operator_impl_container from .common import register_distributed_operator_impl from .common import is_elementwise_op from ..utils import is_dim_shard from ..utils import is_dim_replicate from ..utils import is_valid_list_index from ..utils import compute_compatible_dim_mapping from ..utils import compute_compatible_dims_mapping from ..utils import compute_compatible_and_update_dim_mapping from ..dist_attribute import OperatorDistributedAttribute from paddle.fluid import core, unique_name from paddle.fluid.framework import _non_static_mode from paddle.fluid.framework import Program, Parameter, Variable, program_guard from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY from ..process_group import new_process_group from ..utils import _get_comm_group, _get_corresponding_rank from .dist_default import DistributedDefaultImpl0 class DistributedElementwise(DistributedOperatorImplContainer): def __init__(self, op_type): super(DistributedElementwise, self).__init__(op_type) register_distributed_operator_impl_container( DistributedElementwise("elementwise")) # Replicated Elementwise class DistributedElementwiseImpl0(DistributedOperatorImpl): def __init__(self, name): super(DistributedElementwiseImpl0, self).__init__(name) self._forward_implemented = False self._backward_implemented = False def is_input_compatible(self, dist_op): op_desc = dist_op.serial_op.desc if is_elementwise_op(op_desc.type()): return True else: return False def is_output_compatible(self, dist_op): op_desc = dist_op.serial_op.desc op_desc = dist_op.serial_op.desc if is_elementwise_op(op_desc.type()): return True else: return False def is_auto_compatible(self, dist_op): op_desc = dist_op.serial_op.desc op_dist_attr = dist_op.dist_attr dims_mapping_list = [] input_arg_names = op_desc.input_arg_names() max_dims_mapping_len = -1 for arg_name in input_arg_names: dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name) if max_dims_mapping_len < len(dims_mapping): max_dims_mapping_len = len(dims_mapping) dims_mapping_list.append(dims_mapping) output_arg_names = op_desc.output_arg_names() for arg_name in output_arg_names: dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name) assert len(dims_mapping) == max_dims_mapping_len dims_mapping_list.append(dims_mapping) for idx in range(max_dims_mapping_len): dim_mappings = [] for dims_mapping in dims_mapping_list: if idx < len(dims_mapping): dim_mappings.append(dims_mapping[-(idx + 1)]) if not all(dim_mappings[0] == dim_mapping for dim_mapping in dim_mappings): return False return True def update_dims_mapping(self, dist_op): changed = False op_desc = dist_op.serial_op.desc op_dist_attr = dist_op.dist_attr input_arg_names = op_desc.input_arg_names() input_dims_mapping_dict = {} input_dims_mapping_lens = {} max_dims_mapping_len = -1 for arg_name in input_arg_names: dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name) if max_dims_mapping_len < len(dims_mapping): max_dims_mapping_len = len(dims_mapping) input_dims_mapping_dict[arg_name] = dims_mapping input_dims_mapping_lens[arg_name] = len(dims_mapping) dims_mapping_list = [] for arg_name in input_arg_names: if input_dims_mapping_lens[arg_name] < max_dims_mapping_len: new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)] for i in range(input_dims_mapping_lens[arg_name]): new_idx = (max_dims_mapping_len - input_dims_mapping_lens[arg_name]) + i new_dims_mapping[new_idx] = input_dims_mapping_dict[ arg_name][i] dims_mapping_list.append(new_dims_mapping) else: dims_mapping_list.append(input_dims_mapping_dict[arg_name]) output_arg_names = op_desc.output_arg_names() for arg_name in output_arg_names: dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name) assert len(dims_mapping) == max_dims_mapping_len dims_mapping_list.append(dims_mapping) compatible_dims_mapping = compute_compatible_dims_mapping( dims_mapping_list) assert compatible_dims_mapping is not None, "There is no compatible dim mapping." for arg_name in input_arg_names: if input_dims_mapping_lens[arg_name] < max_dims_mapping_len: new_dims_mapping = [ -1 for _ in range(input_dims_mapping_lens[arg_name]) ] for i in range(input_dims_mapping_lens[arg_name]): new_idx = (max_dims_mapping_len - input_dims_mapping_lens[arg_name]) + i new_dims_mapping[i] = compatible_dims_mapping[new_idx] if new_dims_mapping != input_dims_mapping_dict[arg_name]: op_dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping) changed = True else: if compatible_dims_mapping != input_dims_mapping_dict[arg_name]: op_dist_attr.set_input_dims_mapping(arg_name, compatible_dims_mapping) changed = True for arg_name in output_arg_names: dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name) if compatible_dims_mapping != dims_mapping: op_dist_attr.set_output_dims_mapping(arg_name, compatible_dims_mapping) changed = True return changed @staticmethod def forward(ctx, *args, **kwargs): DistributedDefaultImpl0.forward(ctx, *args, **kwargs) @staticmethod def backward(ctx, *args, **kwargs): DistributedDefaultImpl0.backward(ctx, *args, **kwargs) register_distributed_operator_impl( "elementwise", DistributedElementwiseImpl0("replicate_parallel"))
StarcoderdataPython
196446
from bplot import svgbase from bplot import text class Table(svgbase.Container): def __init__(self, insert, size, matrix, rows=None, cols=None, show_value=None, show_rows=None, show_cols=None, value_pos='middle:center', show_grid=None, font_size=10, cell_fill='none', value_fill='black', value_cmap=None, cell_cmap=None, **kwargs ): self.matrix = matrix self.rows = rows self.cols = cols self.show_value = show_value self.value_pos = value_pos self.show_rows = show_rows self.show_cols = show_cols self.show_grid = show_grid self.font_size = font_size self.value_fill = value_fill self.cell_fill = cell_fill self.value_cmap = value_cmap or [] self.cell_cmap = cell_cmap or [] self.ratio_x = ':'.join(['1']*len(self.matrix[0])) self.ratio_y = ':'.join(['1']*len(self.matrix)) super(Table, self).__init__(insert, size, **kwargs) self._render() if rows: self._render_rows() if cols: self._render_cols() def _render(self): rows = self.split(split_ratio=(self.ratio_x, self.ratio_y)) for i, row in enumerate(rows): for j, cell in enumerate(row): if self.show_grid: cell_stroke = 'black' else: cell_stroke = 'white' if self.cell_cmap: cell_fill = self.cell_cmap[i][j] else: cell_fill = self.cell_fill rect = svgbase.Rect((0, 0), cell.size, fill=cell_fill, stroke=cell_stroke) cell.svgobj.add(rect.svgobj) cell.rect = rect v = self.matrix[i][j] if self.value_cmap: value_fill = self.value_cmap[i][j] else: value_fill = self.value_fill if self.show_value: self._set_label(cell, v, show_value=self.show_value, value_pos=self.value_pos, fill=value_fill) self.svgobj.add(cell.svgobj) def _render_rows(self): width = 10 for row in self.rows: w = text.measure_text(''.join(str(x) for x in row), self.font_size) + 2*len(row) if w > width: width = w x, y = self.insert _, height = self.size insert = x - width, y size = width, height container = Table(insert, size, self.rows, show_value=self.show_rows, value_pos='iright:center', font_size=self.font_size, ) self.trows = container def _render_cols(self): height = self.font_size*2 x, y = self.insert width, _ = self.size insert = x, y - height size = width, height container = Table(insert, size, self.cols, show_value=self.show_cols, value_pos='middle:ibottom', font_size=self.font_size, ) self.tcols = container def _set_label(self, cell, v, show_value=None, value_pos='', fill='black', ): try: v = round(v, 2) except Exception: pass if show_value == 'latex': name = v.replace('\\', '').replace('{', '').replace('}', '') size = cell.size[0]*2/3, cell.size[1]*2/3 label = text.LatexText(v, name, (0, 0), size, font_size=self.font_size, fill='black', anchor_object=cell.rect, anchor_pos=value_pos, ) cell.svgobj.add(label.svgobj) return if show_value == 'sign': if v > 0: v = '+' elif v < 0: v = '-' else: v = '0' label = svgbase.Text(v, anchor_object=cell.rect, anchor_pos=value_pos, fill=fill, font_size=self.font_size, ) cell.svgobj.add(label.svgobj)
StarcoderdataPython
1682123
<reponame>grg121/headmouse<filename>camera_opencv.py import sys import keyboard import cv2 import pyautogui from base_camera import BaseCamera import numpy as np # multiple cascades: https://github.com/Itseez/opencv/tree/master/data/haarcascades face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') smile_cascade = cv2.CascadeClassifier('haarcascade_smile.xml') pyautogui.FAILSAFE = False class Camera(BaseCamera): video_source = 0 @staticmethod def set_video_source(source): Camera.video_source = source @staticmethod def frames(): def ClickDown(img,color): cv2.rectangle(img,(0,0),(img.shape[1],img.shape[0]),color,15) # average def Draw(obj, img, color): x, y, w, h = obj cv2.rectangle(img,(x,y),(x+w,y+h),color,2) # average def CenterOf(obj): x, y, w, h = obj px = int(x+w/2) py = int(y+h/2) return px,py camera = cv2.VideoCapture(Camera.video_source) if not camera.isOpened(): raise RuntimeError('Could not start camera.') _, img = camera.read() shape = img.shape center_x = int(shape[1]/2) center_y = int(shape[0]/2) x = y = 0 rate = 15 sensibility = 5 face_buffer = [] while len(face_buffer) < rate: face_buffer.append([0,0,0,0]) while True: # read current frame _, img = camera.read() img = cv2.flip( img, 1 ) grayscale = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) detected_faces = face_cascade.detectMultiScale(grayscale, 1.4, 5) if len(detected_faces) > 0: current_face = max(detected_faces, key=lambda x:x[2]*x[3]) # bigger face detected face_buffer.append(current_face) # keep buffer size to rate del face_buffer[0] Draw(current_face, img, (0,255,255)) x,y,w,h = current_face roi_gray = grayscale[y+int(h/2):y+h, x:x+w] roi_color = img[y+int(h/2):y+h, x:x+w] average_face = np.mean(face_buffer, axis=0) # get average parameters of buffer faces # x,y,w,h Draw(average_face.astype('int'), img, (0,0,255)) px,py = CenterOf(average_face) h, w,_ = img.shape cv2.line(img,(int(w/2),0),(int(w/2),h),(255,123,0),2) cv2.line(img,(0,int(h/2)),(w,int(h/2)),(255,123,0),2) cv2.circle(img,(px,py), 10, (0,255,255), -1) desp_x = int((center_x-px)/sensibility) desp_y = int((center_y-py)/sensibility) font = cv2.FONT_HERSHEY_SIMPLEX # pyautogui.moveRel(-desp_x, -desp_y, duration=0) vel = 10 if desp_x > 0: desp_x = vel if desp_x < 0: desp_x = -vel pyautogui.moveRel(-desp_x, 0 , duration=0) zoom = 1 zoom_limit = 5 if desp_y > zoom_limit : pyautogui.scroll(zoom) if desp_y < -zoom_limit : pyautogui.scroll(-zoom) # encode as a jpeg image and return it yield cv2.imencode('.jpg', img)[1].tobytes()
StarcoderdataPython
1717821
import vdomr as vd from .viewcontainer import ViewContainer from .forestviewcontrolpanel import ForestViewControlPanel import uuid import multiprocessing import traceback import sys import time from mountaintools import client as mt # MEDIUM TODO move tabs between north/south containers # MEDIUM TODO cross-correlograms widget class ForestViewMainWindow(vd.Component): def __init__(self, context): vd.Component.__init__(self) self._context = context self._control_panel = ForestViewControlPanel(self._context) self._view_container_north = ViewContainer() self._view_container_south = ViewContainer() self._view_containers = [self._view_container_north, self._view_container_south] self._control_panel.onLaunchView(self._trigger_launch_view) self._current_view_container = self._view_container_north self._view_container_north.onClick(self._on_click_north) self._view_container_south.onClick(self._on_click_south) # style0 = dict(border='solid 1px gray') self._container_CP = Container(self._control_panel, scroll=True) self._container_VCN = Container(self._view_container_north) self._container_VCS = Container(self._view_container_south) self._container_main = Container(self._container_CP, self._container_VCN, self._container_VCS, position_mode='relative') self._highlight_view_containers() self._size = (1200, 800) vd.devel.loadBootstrap() self._update_sizes() def setSize(self, size): self._size = size self._update_sizes() def size(self): return self._size def _update_sizes(self): width = self._size[0] # width1 = int(min(300, width*0.3)) width1 = 320 width2 = width - width1 - 30 height = self._size[1] height1 = int(height / 2) - 5 height2 = height - height1 - 30 self._container_main.setSize((width, height)) self._container_main.setPosition((0, 0)) self._container_CP.setSize((width1, height - 20)) self._container_CP.setPosition((10, 10)) self._container_VCN.setSize((width2, height1)) self._container_VCN.setPosition((width1 + 20, 10)) self._container_VCS.setSize((width2, height2)) self._container_VCS.setPosition((width1 + 20, height1 + 20)) self._view_container_north.setSize((width2, height1)) self._view_container_south.setSize((width2, height2)) def _highlight_view_containers(self): for VC in [self._view_container_north, self._view_container_south]: VC.setHighlight(VC == self._current_view_container) def _on_click_north(self): self._current_view_container = self._view_container_north self._highlight_view_containers() def _on_click_south(self): self._current_view_container = self._view_container_south self._highlight_view_containers() def _trigger_launch_view(self, view_launcher): if not view_launcher.get('always_open_new', False): for VC in self._view_containers: v = VC.findView(name=view_launcher.get('name', '')) if v: VC.setCurrentView(v) return frame = ViewFrame(view_launcher=view_launcher) self._current_view_container.addView(frame, name=view_launcher.get('name', '')) frame.initialize() def context(self): return self._context def render(self): return self._container_main class TextComponent(vd.Component): def __init__(self): vd.Component.__init__(self) self._text = '' def setText(self, txt): if self._text == txt: return self._text = txt self.refresh() def render(self): return vd.span(self._text) class TitleBar(vd.Component): def __init__(self): vd.Component.__init__(self) self._title = 'TitleBar' self._height = 20 def setTitle(self, title0): if title0 == self._title: return self._title = title0 self.refresh() def height(self): return self._height def render(self): return vd.div(self._title, style={'height': '{}px'.format(self._height), 'font-size': '14px'}) class ViewFrame(vd.Component): def __init__(self, *, view_launcher): vd.Component.__init__(self) self._view_launcher = view_launcher self._connection_to_prepare = None self._prepare_log_text = '' self._prepare_log_text_view = TextComponent() self._title_bar = TitleBar() self._view = None self._size = (100, 100) self._init_process = None self.updateTitle() def setSize(self, size): self._size = size self._update_view_size() def size(self): return self._size def tabLabel(self): if self._view: return self._view.tabLabel() else: return self._view_launcher['label'] + '...' def updateTitle(self): if self._view: if hasattr(self._view, 'title'): title0 = self._view.title() else: title0 = '' else: title0 = 'Preparing: {} ...'.format(self._view_launcher['label']) self._title_bar.setTitle(title0) def initialize(self): view_launcher = self._view_launcher context = view_launcher['context'] opts = view_launcher['opts'] view_class = view_launcher['view_class'] if hasattr(view_class, 'prepareView'): self._connection_to_prepare, connection_to_parent = multiprocessing.Pipe() self._init_process = multiprocessing.Process( target=_prepare_in_worker, args=(view_class, context, opts, connection_to_parent) ) self._init_process.start() self._check_prepare_count = 0 vd.set_timeout(self._check_prepare, 0.1) else: if hasattr(context, 'initialize'): context.initialize() self._view = view_class(context=context, opts=opts) self._update_view_size() self.updateTitle() self.refresh() def cleanup(self): if self._init_process: print('# terminating init process') self._init_process.terminate() if self._view: if hasattr(self._view, 'cleanup'): (getattr(self._view, 'cleanup'))() def render(self): if self._view: X = self._view else: X = vd.components.ScrollArea( vd.div( vd.h3('Preparing...'), vd.pre(self._prepare_log_text_view) ), height=self._size[1] - self._title_bar.height() ) return vd.div(self._title_bar, X) def _update_view_size(self): size = self._size if self._view: self._view.setSize((size[0], size[1] - self._title_bar.height())) def _check_prepare(self): if not self._view: if self._connection_to_prepare.poll(): msg = self._connection_to_prepare.recv() if msg['name'] == 'log': self._prepare_log_text = self._prepare_log_text + msg['text'] self._prepare_log_text_view.setText(self._prepare_log_text) elif msg['name'] == 'result': self._on_prepare_completed(msg['result']) return self._check_prepare_count = self._check_prepare_count + 1 if self._check_prepare_count < 3: timeout = 0.2 elif self._check_prepare_count < 5: timeout = 0.5 elif self._check_prepare_count < 10: timeout = 1 else: timeout = 5 vd.set_timeout(self._check_prepare, timeout) def _on_prepare_completed(self, result): self._init_process = None view_launcher = self._view_launcher context = view_launcher['context'] opts = view_launcher['opts'] view_class = view_launcher['view_class'] if hasattr(context, 'initialize'): context.initialize() self._view = view_class(context=context, opts=opts, prepare_result=result) self._update_view_size() self.refresh() class StdoutSender(): def __init__(self, connection): self._connection = connection self._handler = _StdoutHandler(connection) def __enter__(self): self._old_stdout = sys.stdout self._old_stderr = sys.stderr self._handler.setOtherStdout(self._old_stdout) sys.stdout = self._handler sys.stderr = self._handler return dict() def __exit__(self, exc_type, exc_val, exc_tb): self._handler.send() sys.stdout = self._old_stdout sys.stderr = self._old_stderr class _StdoutHandler(object): def __init__(self, connection): self._connection = connection self._text = '' self._timer = time.time() self._other_stdout = None def write(self, data): if self._other_stdout: self._other_stdout.write(data) self._text = self._text + str(data) elapsed = time.time() - self._timer if elapsed > 5: self.send() self._timer = time.time() def flush(self): if self._other_stdout: self._other_stdout.flush() def setOtherStdout(self, other_stdout): self._other_stdout = other_stdout def send(self): if self._text: self._connection.send(dict(name="log", text=self._text)) self._text = '' def _prepare_in_worker(view_class, context, opts, connection_to_parent): # mt.setDownloadFromConfig(download_from_config) with StdoutSender(connection=connection_to_parent): try: print('***** Preparing...') result0 = view_class.prepareView(context=context, opts=opts) except: traceback.print_exc() raise connection_to_parent.send(dict( name='result', result=result0 )) class Container(vd.Component): def __init__(self, *args, position=(0, 0), size=(0, 0), position_mode='absolute', style=dict(), scroll=False): vd.Component.__init__(self) self._elmt_id = 'Container-' + str(uuid.uuid4()) self._children = list(args) self._position = position self._size = size self._position_mode = position_mode self._style = style self._scroll = scroll def setSize(self, size): js = """ document.getElementById('{elmt_id}').style.width='{width}px'; document.getElementById('{elmt_id}').style.height='{height}px'; """ js = js.replace('{elmt_id}', self._elmt_id) js = js.replace('{width}', str(size[0])) js = js.replace('{height}', str(size[1])) self.executeJavascript(js) def setPosition(self, position): js = """ document.getElementById('{elmt_id}').style.left='{left}px'; document.getElementById('{elmt_id}').style.top='{top}px'; """ js = js.replace('{elmt_id}', self._elmt_id) js = js.replace('{left}', str(position[0])) js = js.replace('{top}', str(position[1])) self.executeJavascript(js) def render(self): style = self._style style['position'] = self._position_mode style['width'] = '{}px'.format(self._size[0]) style['height'] = '{}px'.format(self._size[1]) style['left'] = '{}px'.format(self._position[0]) style['top'] = '{}px'.format(self._position[1]) if self._scroll: style['overflow'] = 'auto' else: style['overflow'] = 'hidden' ret = vd.div( self._children, style=style, id=self._elmt_id ) # if self._scroll: # ret = vd.components.ScrollArea(ret, height=self._size[1]) return ret
StarcoderdataPython
158281
import click from click.testing import CliRunner from cthulhu.bin.cli import main def test_cthulhu(): runner = CliRunner() results = runner.invoke(main, ['--help']) assert results.exit_code == 0 assert "Create a distributed test fixture for use on a Unix-like system." in results.output
StarcoderdataPython
172539
<reponame>mrh1997/headlock<gh_stars>1-10 """ This is for headlock internal use only! """ from typing import Tuple, Callable import abc from collections.abc import ByteString class MemoryManagementError(Exception): """ This exception occurs, when if memory allocation/release failed. """ class AddressSpace: """ An address space provides an interface to running C code at ABI (not API!) layer. This class is only the abstract base class. Descendants have to implement the communication between this python process/machine and some specific kind of "running code" (i.e. an OS user process, an OS kernel or an embedded system running on a remote machine). This class is not responsible to instanciate C code or stop it! The the code has to be loaded somewhere else and a handle/ID has to be passed to the constructor of the subclass. """ def __init__(self): self.bridgepool = {} def _register_memory_block(self, address, len): pass @abc.abstractmethod def find_memory_block(self, address:int) -> Tuple[int, int]: """ returns the start address and the length of the memory block which contains this address. raises ValueError if no containing memory block exists """ @abc.abstractmethod def read_memory(self, address:int, length:int) -> bytes: """ Reads a specific amount of Memory (in bytes) of the address space. The caller has to ensure that the specified memory range is valid, otherwise the connected process could crash """ @abc.abstractmethod def write_memory(self, address:int, data:ByteString): """ Writes a specific amount of Memory (in bytes) to the address space. The caller has to ensure that the specified memory range is valid, otherwise the connected process could crash """ @abc.abstractmethod def alloc_memory(self, length:int) -> int: """ Allocated length bytes of contiguous memory and returns a reference to it. """ @abc.abstractmethod def get_symbol_adr(self, symbol_name:str) -> int: """ returns the address of a specific symbol. Symbol may be a global variable or a function. """ @abc.abstractmethod def get_symbol_name(self, adr:int) -> str: """ returns the name of a symbol or raises ValueError is adr does not refer to a valid C symbol """ @abc.abstractmethod def invoke_c_func(self, func_adr:int, c_sig:str, args_adr:int, retval_adr:int) -> bytes: """ invokes a piece of C code via the bridge for signature of name "c_sig". """ @abc.abstractmethod def create_c_callback(self, c_sig:str, pyfunc:Callable[[int, int], None]) -> int: """ Creates a new C function pointer of signature 'c_sig'. Everytime this function is called, the call is bridged and forwarded to pyfunc. Returns the address of the created C callback. """ @abc.abstractmethod def close(self): """ Close the connection to the addressspace. """
StarcoderdataPython
1771310
<filename>cptm/utils/topics.py import pandas as pd def get_top_topic_words(topics, opinions, t, top=10): """Return dataframe containing top topics and opinions. Parameters t : str - index of topic number top : int - the number of words to store in the dataframe Returns Pandas DataFrame The DataFrame contains top topic words, weights of topic words and for each perspective opinion words and weigths of opinion words. """ t = str(t) topic = topics[t].copy() topic.sort(ascending=False) topic = topic[0:top] df_t = pd.DataFrame(topic) df_t.reset_index(level=0, inplace=True) df_t.columns = ['topic', 'weights_topic'] dfs = [df_t] for p, o in opinions.iteritems(): opinion = o[t].copy() opinion.sort(ascending=False) opinion = opinion[0:top] df_o = pd.DataFrame(opinion) df_o.reset_index(level=0, inplace=True) df_o.columns = ['{}'.format(p), 'weights_{}'.format(p)] dfs.append(df_o) return pd.concat(dfs, axis=1) def topic_str(df, single_line=False, weights=False, opinions=True): if opinions: opinion_labels = [l for l in df.columns if not l.startswith('weights')] else: opinion_labels = [l for l in df.columns if l.startswith('topic')] if not single_line: if not weights: return str(df[opinion_labels]) else: return str(df) else: lines = [] if not weights: for l in opinion_labels: lines.append(u'{}:\t'.format(l)+' '.join(df[l])) else: for l in opinion_labels: zipped = zip(df[l], df['weights_{}'.format(l)]) line = [u'{}*{:.4f}'.format(wo, we) for wo, we in zipped] lines.append(' '.join([u'{}:\t'.format(l)]+line)) return u'\n'.join(lines)
StarcoderdataPython
4805275
from delira._debug_mode import get_current_debug_mode, switch_debug_mode, \ set_debug_mode from delira._backends import get_backends, seed_all from ._version import get_versions as _get_versions import warnings warnings.simplefilter('default', DeprecationWarning) warnings.simplefilter('ignore', ImportWarning) __version__ = _get_versions()['version'] del _get_versions
StarcoderdataPython
1621381
from .kitti import KittiDataset from .nuscenes import NuScenesDataset from .lyft import LyftDataset dataset_factory = { "KITTI": KittiDataset, "NUSC": NuScenesDataset, "LYFT": LyftDataset, } def get_dataset(dataset_name): return dataset_factory[dataset_name]
StarcoderdataPython
1762932
<reponame>Mirmik/gxx #!/usr/bin/env python3 #coding: utf-8 from licant.modules import submodule from licant.cxx_modules import application from licant.scripter import scriptq import licant scriptq.execute("../../../gxx.g.py") application("target", sources = ["main.cpp"], mdepends = ["gxx"] ) licant.ex(default = "target")
StarcoderdataPython
3220399
<gh_stars>0 # Software License Agreement (BSD License) # # Copyright (c) 2012, <NAME>, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of <NAME>, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import sys import traceback from collections import deque from threading import Condition, Thread from time import time """ Sits between incoming messages from a subscription, and the outgoing publish method. Provides throttling / buffering capabilities. When the parameters change, the handler may transition to a different kind of handler """ class MessageHandler: def __init__(self, previous_handler=None, publish=None): if previous_handler: self.last_publish = previous_handler.last_publish self.throttle_rate = previous_handler.throttle_rate self.queue_length = previous_handler.queue_length self.publish = previous_handler.publish else: self.last_publish = 0 self.throttle_rate = 0 self.queue_length = 0 self.publish = publish def set_throttle_rate(self, throttle_rate): self.throttle_rate = throttle_rate / 1000.0 return self.transition() def set_queue_length(self, queue_length): self.queue_length = queue_length return self.transition() def time_remaining(self): return max((self.last_publish + self.throttle_rate) - time(), 0) def handle_message(self, msg): self.last_publish = time() self.publish(msg) def transition(self): if self.throttle_rate == 0 and self.queue_length == 0: return self elif self.queue_length == 0: return ThrottleMessageHandler(self) else: return QueueMessageHandler(self) def finish(self, block=True): pass class ThrottleMessageHandler(MessageHandler): def handle_message(self, msg): if self.time_remaining() == 0: MessageHandler.handle_message(self, msg) def transition(self): if self.throttle_rate == 0 and self.queue_length == 0: return MessageHandler(self) elif self.queue_length == 0: return self else: return QueueMessageHandler(self) def finish(self, block=True): pass class QueueMessageHandler(MessageHandler, Thread): def __init__(self, previous_handler): Thread.__init__(self) MessageHandler.__init__(self, previous_handler) self.daemon = True self.queue = deque(maxlen=self.queue_length) self.c = Condition() self.alive = True self.start() def handle_message(self, msg): with self.c: if not self.alive: return should_notify = len(self.queue) == 0 self.queue.append(msg) if should_notify: self.c.notify() def transition(self): if self.throttle_rate == 0 and self.queue_length == 0: self.finish() return MessageHandler(self) elif self.queue_length == 0: self.finish() return ThrottleMessageHandler(self) else: with self.c: old_queue = self.queue self.queue = deque(maxlen=self.queue_length) while len(old_queue) > 0: self.queue.append(old_queue.popleft()) self.c.notify() return self def finish(self, block=True): """If throttle was set to 0, this pushes all buffered messages""" # Notify the thread to finish with self.c: self.alive = False self.c.notify() if block: self.join() def run(self): while self.alive: msg = None with self.c: if len(self.queue) == 0: self.c.wait() else: self.c.wait(self.time_remaining()) if self.alive and self.time_remaining() == 0 and len(self.queue) > 0: msg = self.queue.popleft() if msg is not None: try: MessageHandler.handle_message(self, msg) except Exception: traceback.print_exc(file=sys.stderr) while self.time_remaining() == 0 and len(self.queue) > 0: try: MessageHandler.handle_message(self, self.queue[0]) except Exception: traceback.print_exc(file=sys.stderr)
StarcoderdataPython
1708314
<gh_stars>0 import rpyc class RobotService(rpyc.Service): def __init__(self, robot): super().__init__() self.exposed_robot = robot def on_connect(self, conn): # code that runs when a connection is created # (to init the service, if needed) pass def on_disconnect(self, conn): # code that runs after the connection has already closed # (to finalize the service, if needed) pass def restartSimulation(self): self.exposed_robot.simulationReset() from controller import Supervisor from rpyc.utils.server import ThreadedServer TIME_STEP = 8 robot = Supervisor() service = RobotService(robot) t = ThreadedServer(service, port=18861, protocol_config={'allow_public_attrs': True,}) t.start() while robot.step(TIME_STEP) != -1: pass
StarcoderdataPython
110836
<reponame>excelsimon/AI # -*- coding:utf-8 -*- import re from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.feature_extraction.text import CountVectorizer class LanguageDetector(): def __init__(self,classifier=MultinomialNB()): self.classifier = classifier self.vectorizer = CountVectorizer( lowercase=True, analyzer='char_wb', ngram_range=(1,2), max_features=1000, preprocessor=self._remove_noise ) def _remove_noise(self,document): noise_pattern = re.compile('|'.join(['http\S+', '\@\w+', '\#\w+'])) clean_text = re.sub(noise_pattern, "", document) return clean_text.strip() def features(self,x): return self.vectorizer.transform(x) def fit(self,x,y): self.vectorizer.fit(x) self.classifier.fit(self.features(x),y) def predict(self,x): return self.classifier.predict(self.features([x])) def score(self,x,y): return self.classifier.score(self.features(x),y) data_f = open('language_detector.csv') lines = data_f.readlines() data_f.close() dataset = [(line.strip()[:-3],line.strip()[-2:]) for line in lines] x,y = zip(*dataset) #x,y为list,x包含所有句子,y包含对应标签 x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3) language_detector = LanguageDetector() language_detector.fit(x_train,y_train) print(language_detector.score(x_test,y_test)) print(language_detector.predict('This is an english sentence')) """ output: 0.977941176471 ['en'] """
StarcoderdataPython
132780
<gh_stars>1-10 from pytest import approx def test_consult_for_daiweth(pool_daiweth_30bps, quanto_feed): seconds_agos = [7200, 3600, 600, 0] windows = [3600, 3600, 600] now_idxs = [1, len(seconds_agos)-1, len(seconds_agos)-1] tick_cums, secs_per_liq_cums = pool_daiweth_30bps.observe(seconds_agos) actual_avg_ticks, actual_avg_liqs = quanto_feed.consult(pool_daiweth_30bps, seconds_agos, windows, now_idxs) # calculate expect arithmetic means for ticks and harmonic # mean for liquidity to compare w actuals for i in range(len(windows)): expect_avg_tick = int((tick_cums[now_idxs[i]]-tick_cums[i])/windows[i]) expect_avg_liq = int(windows[i] * ((1 << 160) - 1) / ((secs_per_liq_cums[now_idxs[i]] - secs_per_liq_cums[i]) << 32)) # rel=1e-4 is needed for rounding with ticks assert approx(expect_avg_tick, rel=1e-4) == actual_avg_ticks[i] assert approx(expect_avg_liq) == actual_avg_liqs[i] def test_consult_for_uniweth(pool_uniweth_30bps, inverse_feed): seconds_agos = [7200, 3600, 600, 0] windows = [3600, 3600, 600] now_idxs = [1, len(seconds_agos)-1, len(seconds_agos)-1] tick_cums, secs_per_liq_cums = pool_uniweth_30bps.observe(seconds_agos) actual_avg_ticks, actual_avg_liqs = inverse_feed.consult( pool_uniweth_30bps, seconds_agos, windows, now_idxs) # calculate expect arithmetic means for ticks and harmonic # mean for liquidity to compare w actuals for i in range(len(windows)): expect_avg_tick = int((tick_cums[now_idxs[i]]-tick_cums[i])/windows[i]) expect_avg_liq = int(windows[i] * ((1 << 160) - 1) / ((secs_per_liq_cums[now_idxs[i]] - secs_per_liq_cums[i]) << 32)) # rel=1e-4 is needed for rounding with ticks assert approx(expect_avg_tick, rel=1e-4) == actual_avg_ticks[i] assert approx(expect_avg_liq) == actual_avg_liqs[i]
StarcoderdataPython
183246
''' Hackerrank: https://www.hackerrank.com/challenges/coin-change/problem this solution will get timeout in many test cases however, this solution can get all the combination during computation ''' import sys from collections import Counter, defaultdict sys.setrecursionlimit(10000) memory = defaultdict(list) def recur_getWays(n, c): #print('enter: n='+str(n)) if n < 0: return False, [] elif n == 0: return True, [Counter()] if n in memory.keys(): return True, memory[n] all_combs_count = [] for coin in c: #print('choose coin:'+str(coin)) valid, combs = recur_getWays(n-coin, c) if valid: for comb in combs: comb = comb + Counter({coin:1}) existed = False for existed_comb in all_combs_count: if existed_comb == comb: existed = True break if not existed: all_combs_count.append(comb) #print('memorize: n='+str(n)+' count:'+str(all_combs_count)) memory[n] = all_combs_count return True, all_combs_count def getWays(n, c): # Complete this function valid, combs = recur_getWays(n, c) #print(memory) return len(combs) n, m = input().strip().split(' ') n, m = [int(n), int(m)] c = list(map(int, input().strip().split(' '))) # Print the number of ways of making change for 'n' units using coins having the values given by 'c' ways = getWays(n, c) print(ways)
StarcoderdataPython
1721712
<reponame>coolexplorer/slackbot-buffy<gh_stars>1-10 import logging from constant.k8s_command import k8s_commands, k8s_sub_commands logger = logging.getLogger(__name__) class K8SParser: def __init__(self, k8s, message): self.k8s = k8s self.message = message self.command = self.message[0].lower() self.k8s_command = self.message[1].lower() self.k8s_sub_command = self.message[2].lower() self.params = self.message[3:] self.case_name = "{0}_{1}".format(self.k8s_command, self.k8s_sub_command) self.namespace = None def parse(self): if self.k8s_command in k8s_commands and self.k8s_sub_command in k8s_sub_commands: case = getattr(self, self.case_name, lambda: "case_default") else: logger.error(f'Invalid Command: {self.case_name}') raise Exception('Invalid Command') self._check_params() return case() def _check_params(self): if '-n' in self.params: index = self.params.index('-n') self.namespace = self.params[index + 1] def get_pods(self): return self.k8s.get_pods(self.namespace) def get_deploys(self): return self.k8s.get_deployments(self.namespace) def get_daemons(self): return self.k8s.get_daemon_sets(self.namespace) def get_states(self): return self.k8s.get_stateful_sets(self.namespace) def get_replicas(self): return self.k8s.get_replica_sets(self.namespace) def get_ns(self): return self.k8s.get_namespaces() def get_configmap(self): return self.k8s.get_config_map(self.namespace) def get_secret(self): return self.k8s.get_secret(self.namespace) def get_nodes(self): return self.k8s.get_nodes()
StarcoderdataPython
1634700
import skimage.draw as skd import skimage.io as skio import numpy as np import h5py import itertools import random from typing import List from dataclasses import dataclass, field def default_float(n=1,low=0.0,high=1.0): if n == 1: return field(default_factory = lambda: np.random.uniform(low, high) ) else: return field(default_factory = lambda: np.random.uniform(low, high, n) ) @dataclass class Shape: color: List[float] = default_float(3) size: float = default_float(low=.1,high=.9) x: float = default_float() y: float = default_float() def gen(self, img_size): raise NotImplementedError() @dataclass class RotatableShape(Shape): rotation: float = default_float() class Circle(Shape): def render(self, img_size): radius = int(self.size * 0.5 * min(img_size[0], img_size[1])) r = int(self.y*img_size[0]) c = int(self.x*img_size[1]) return skd.circle(r, c, radius, shape=img_size[:2]) class CircleOutline(Shape): def render(self, img_size): radius = int(self.size * 0.5 * min(img_size[0], img_size[1])) r = int(self.y*img_size[0]) c = int(self.x*img_size[1]) return skd.circle_perimeter(r, c, radius, shape=img_size[:2]) class Square(RotatableShape): def render(self, img_size): r = int(self.y*img_size[0]) c = int(self.x*img_size[1]) th = self.rotation * np.pi hs = int(self.size * 0.5 * min(img_size[0], img_size[1])) rr = [r-hs, r-hs, r+hs, r+hs] cc = [c-hs, c+hs, c+hs, c-hs] rr, cc = rotate_rc(rr, cc, th, r, c) rr,cc = skd.polygon(rr, cc) rr,cc = rr.flatten(), cc.flatten() return rr, cc @dataclass class Rectangle(RotatableShape): aspect: float = default_float(low=0.0,high=1.0) def render(self, img_size): r = int(self.y * img_size[0]) c = int(self.x * img_size[1]) th = self.rotation * np.pi hs = int(self.size * 0.5 * min(img_size[0], img_size[1])) rr = [r-hs, r-hs, r+hs, r+hs] cc = [c-hs*self.aspect, c+hs*self.aspect, c+hs*self.aspect, c-hs*self.aspect] rr, cc = rotate_rc(rr, cc, th, r, c) rr,cc = skd.polygon(rr, cc) rr,cc = rr.flatten(), cc.flatten() return rr, cc @dataclass class Ellipse(RotatableShape): aspect: float = default_float(low=0.0,high=1.0) def render(self, img_size): r = int(self.y * img_size[0]) c = int(self.x * img_size[1]) th = self.rotation * 2 * np.pi - np.pi radius = int(self.size * 0.5 * min(img_size[0], img_size[1])) rr,cc = skd.ellipse(r, c, radius, radius*self.aspect, rotation=th) rr,cc = rr.flatten(), cc.flatten() return rr,cc class Triangle(RotatableShape): def render(self, img_size): r = int(self.y * img_size[0]) c = int(self.x * img_size[1]) th = self.rotation * 2 * np.pi hw = int(self.size * 0.5 * min(img_size[0], img_size[1])) hh = hw*np.sqrt(3) * 0.5 rr = [ r+hw, r, r-hw ] cc = [ c-hh, c+hh, c-hh ] rr, cc = rotate_rc(rr, cc, th, r, c) rr,cc = skd.polygon(rr, cc) rr,cc = rr.flatten(), cc.flatten() return rr, cc SHAPE_CHOICES = [ Circle, Triangle, Rectangle, Ellipse, Square ] def render_shapes(shapes, img_size, bg=None): img = np.zeros(img_size, dtype=np.float32) if bg is None: bg = np.random.random(3) img[:,:,0] = bg[0] img[:,:,1] = bg[1] img[:,:,2] = bg[2] for shape in shapes: rr,cc = shape.render(img_size) rr,cc = crop_rc(rr, cc, img_size) img[rr,cc,:] = shape.color return img def random_shapes(shape, n_min, n_max): n = np.random.randint(n_min, n_max+1) shapes = [ random_shape(shape) for i in range(n) ] shapes.sort(key=lambda s: s.size) shapes = shapes[::-1] return shapes def random_shape(shape=None): if shape is None: shape = random.choice(SHAPE_CHOICES) return shape() def rotate_rc(rr,cc,th,r,c): p = np.array([ rr, cc, np.ones(len(rr)) ]) T1 = np.array([[ 1, 0, -r], [ 0, 1, -c], [ 0, 0, 1 ]]) R = np.array([ [ np.cos(th), -np.sin(th), 0 ], [ np.sin(th), np.cos(th), 0 ], [ 0, 0, 1 ] ]) T2 = np.array([[ 1, 0, r ], [ 0, 1, c ], [ 0, 0, 1 ]]) T = np.dot(T2, np.dot(R, T1)) pt = np.dot(T, p) pt = np.round(pt) return pt[0].astype(int), pt[1].astype(int) def crop_rc(rr, cc, img_size): mask = (rr >= 0) & (rr < img_size[0]) & (cc >= 0) & (cc < img_size[1]) return rr[mask], cc[mask] def render_shape_sets(n, shape, img_sizes, n_min, n_max, dtype=np.float32): img_sets = [ np.zeros([n]+list(img_size), dtype=dtype) for img_size in img_sizes ] for i in range(n): shapes = random_shapes(shape, n_min, n_max) for j in range(len(img_sizes)): img_sets[j][i,:] = render_shapes(shapes, img_sizes[j]) return img_sets if __name__ == "__main__": shp = (512,512,3) im = render_shape_sets(1, None, [shp,shp], 10, 10) import matplotlib.pyplot as plt plt.imshow(im[1][0]) plt.axis('off') plt.show() plt.savefig('test.png')
StarcoderdataPython
59966
<gh_stars>0 ################################# # #Katma değer ciro view # ################################# try: from tkinter import * from tkinter import ttk except ImportError: #for python 2.7+ from Tkinter import * import ttk class kdc_View: def __init__(self,ik): self.status = {0:"Katma Değer Ciro Yerlerde!",1:"Katma Değer Ciro Normal",2:"Katma Değer Ciro Yüksek"} self.ik = ik self.main() def request(self): state = self.ik.calculate(tsm.get(), hmm.get(), bog.get(), sg.get(), sahg.get() ) if(state is not None): state=str(state[0])+" TL "+self.status[state[1]] durum.set(state) def main(self): global tsm #total satış miktar + global hmm #ham madde maliyet - global bog # bakım onarım girder - global sg #sevkiyat gideri - global sahg #satınalınan hizmet gider - global durum root = Tk() root.title("Katma Değer Ciro Hesabı") mainframe = ttk.Frame(root, padding="3 3 12 12") mainframe.grid(column=0, row=0, sticky=(N, W, E, S)) mainframe.columnconfigure(0, weight=1) mainframe.rowconfigure(0, weight=1) tsm = IntVar() hmm = IntVar() bog = IntVar() sg = IntVar() sahg = IntVar() durum = StringVar() #gelir tsm_entry = ttk.Entry(mainframe, width=10, textvariable=tsm) #Giderler hmm_entry = ttk.Entry(mainframe, width=10, textvariable=hmm) bog_entry = ttk.Entry(mainframe, width=10, textvariable=bog) sg_entry = ttk.Entry(mainframe, width=10, textvariable=sg) sahg_entry = ttk.Entry(mainframe, width=10, textvariable=sahg) #gelir Labels ttk.Label(mainframe, text="Toplam Satış Miktarı ").grid(column=1, row=1, sticky=W) tsm_entry.grid(column=2, row=1, sticky=(W, E)) ttk.Label(mainframe, text="------------------------------").grid(column=1, row=2, sticky=(W,E)) ttk.Label(mainframe, text="Gider/Maliyetler").grid(column=2, row=2, sticky=(W,E)) ttk.Label(mainframe, text="------------------------------").grid(column=3, row=2, sticky=(W,E)) #gider Labels ttk.Label(mainframe, text="Hammadde Maliyeti ").grid(column=1, row=3, sticky=W) hmm_entry.grid(column=2, row=3, sticky=(W, E)) ttk.Label(mainframe, text="Bakım Onarım Giderleri ").grid(column=1, row=4, sticky=W) bog_entry.grid(column=2, row=4, sticky=(W, E)) ttk.Label(mainframe, text="Sevkiyat Giderleri ").grid(column=1, row=5, sticky=W) sg_entry.grid(column=2, row=5, sticky=(W, E)) ttk.Label(mainframe, text="Satın Alınan Hizmet Giderleri ").grid(column=1, row=6, sticky=W) sahg_entry.grid(column=2, row=6, sticky=(W, E)) ttk.Button(mainframe, text="Hesapla", command=self.request).grid(column=3, row=7, sticky=W) ttk.Label(mainframe, text="Durum :").grid(column=1, row=7, sticky=E) ttk.Label(mainframe, textvariable=durum).grid(column=2, row=7, sticky=(W, E)) for child in mainframe.winfo_children(): child.grid_configure(padx=5, pady=5) root.bind('<Return>', self.request) root.mainloop()
StarcoderdataPython
3325352
# multi_spect_reg_config.py # Copyright (c) 2020, <NAME>, <NAME>, University of Nevada, Reno. # All rights reserved. import SimpleITK as sitk import os import configparser import numpy as np class camera_parameter_t(): def __init__(self, camera_name, fx, fy, cx, cy, dist_vect): self.camera_name = camera_name self.fx = fx self.fy = fy self.cx = cx self.cy = cy self.dist_vect = np.array(dist_vect) self.camera_matrix = np.array([ [ fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]]) class reg_config_t: def __init__(self, config_file_path, input_dataset_path=None, output_dataset_path=None, failure_dataset_path=None): configDict = configparser.ConfigParser() # read the config file configDict.read(config_file_path) # get the name of the fixed channel self.fixed_channel_name = self.clean_string(configDict['REGISTRATION']['fixed_channel']) self.ordered_channel_names = self.parse_list(configDict['REGISTRATION']['input_channel_order'], str) # check that the fixed channel name is also in the ordered channel names assert self.fixed_channel_name in self.ordered_channel_names # make a list of the moving channel names (all channels except the fixed channel) self.moving_channel_names = list(self.ordered_channel_names) self.moving_channel_names.remove(self.fixed_channel_name) # make a dictionary of the per-channel settings self.channel_param_map_settings = {} for moving_ch_name in self.moving_channel_names: self.channel_param_map_settings[moving_ch_name] = str(configDict['REGISTRATION']["param_map_" + moving_ch_name]) # dataset processing config self.channel_paths = {} # if the config file specifies settings for dataset processing if 'PATHS' in configDict.keys(): self.input_dataset_path = input_dataset_path or str(configDict['PATHS']["INPUT_DATASET_PATH"]) self.output_dataset_path = output_dataset_path or str(configDict['PATHS']["OUTPUT_DATASET_PATH"]) self.failure_dataset_path = failure_dataset_path or str(configDict['PATHS']["OUTPUT_FAILURE_PATH"]) # for each channel build the absolute path for name in self.ordered_channel_names: sub_dir_path = configDict['PATHS'][name+"_SUBDIR"] sub_dir_path = os.path.join(self.input_dataset_path, sub_dir_path) self.channel_paths[name] = sub_dir_path # create a dictionary which maps image IDs to a dictionary which maps channel names to the path of the image for that channel self.img_path_dict = {} self.load_image_dict(self.channel_paths) # get the list of image IDs self.image_ids = list(self.img_path_dict.keys()) self.image_ids.sort() # create output directories if they don't exist if not os.path.exists(self.output_dataset_path): os.mkdir(self.output_dataset_path) if not os.path.exists(self.failure_dataset_path): os.mkdir(self.failure_dataset_path) if self.image_extension == ".tif": for c in self.channel_paths.values(): output_path = os.path.join(self.output_dataset_path, os.path.split(c)[-1]) failure_path = os.path.join(self.failure_dataset_path, os.path.split(c)[-1]) if not os.path.exists(output_path): os.mkdir(output_path) if not os.path.exists(failure_path): os.mkdir(failure_path) # Load Per-Channel Registration Settings self.param_map = {} for ch_name in self.channel_param_map_settings: p_map = self.channel_param_map_settings[ch_name] self.param_map[ch_name] = {} self.param_map[ch_name]['max_alignment_attempts'] = int(configDict[p_map]["max_alignment_attempts"]) self.param_map[ch_name]['metric_num_hist_bins'] = int(configDict[p_map]["metric_num_hist_bins"]) self.param_map[ch_name]['metric_mask_border_size'] = int(configDict[p_map]["metric_mask_border_size"]) self.param_map[ch_name]['metric_sampling_rate_per_level'] = self.parse_list(configDict[p_map]["metric_sampling_rate_per_level"], float) self.param_map[ch_name]['opt_shrink_factors'] = self.parse_list(configDict[p_map]["opt_shrink_factors"], int) self.param_map[ch_name]['opt_scale_sigmas'] = self.parse_list(configDict[p_map]["opt_scale_sigmas"], float) self.param_map[ch_name]['opt_final_metric_min'] = float(configDict[p_map]["opt_final_metric_min"]) self.param_map[ch_name]['evol_epsilon'] = float(configDict[p_map]["evol_epsilon"]) self.param_map[ch_name]['evol_iterations'] = int(configDict[p_map]["evol_iterations"]) self.param_map[ch_name]['evol_init_rad'] = float(configDict[p_map]["evol_init_rad"]) self.param_map[ch_name]['evol_growth_fact'] = float(configDict[p_map]["evol_growth_fact"]) self.param_map[ch_name]['evol_shrink_fact'] = float(configDict[p_map]["evol_shrink_fact"]) # Load Per-Channel Camera Settings self.camera_params = {} for ch_name in self.ordered_channel_names: self.load_cam_config(configDict, ch_name) def load_image_dict(self, data_set_paths_dict): self.img_path_dict = {} for ch_name in self.ordered_channel_names: file_list = os.listdir(data_set_paths_dict[ch_name]) # print("Ch %s found %i files"%(ch_name, len(file_list))) # identify image type if file_list[0].endswith(".jpg"): self.image_extension = ".jpg" elif file_list[0].endswith(".tif") or file_list[0].endswith(".tiff"): self.image_extension = ".tif" else: print(f"Image file {file_list[0]} is not of a supported type. (.jpg, ,tif, .tiff)") raise TypeError for file_name in file_list: img_id = int(list(file_name.split('_'))[1]) #if img_id == 1: # print("Found ID 1 for channel : ", ch_name) if img_id not in self.img_path_dict.keys(): self.img_path_dict[img_id] = {} self.img_path_dict[img_id][ch_name] = os.path.join(data_set_paths_dict[ch_name], file_name) # remove any images which don't have images for all channels bad_image_ids = [] for img_id in self.img_path_dict: if len(self.img_path_dict[img_id].keys()) != len(self.ordered_channel_names): # print("Bad ID : %i, number of keys: %i, number of channels: %i"%(img_id, len(self.img_path_dict[img_id].keys()), len(self.ordered_channel_names))) # print(list(self.img_path_dict[img_id].keys())) bad_image_ids.append(img_id) for img_id in bad_image_ids: del self.img_path_dict[img_id] # get the list of image IDs self.image_ids = list(self.img_path_dict.keys()) def get_img_paths(self, id): paths = self.img_path_dict[id] path_list = [] for ch_name in self.ordered_channel_names: path_list.append(paths[ch_name]) return path_list def load_cam_config(self, configDict, ch_name): cam_name = "CAM_" + str(ch_name) try: fx = float(configDict[cam_name]['fx']) fy = float(configDict[cam_name]['fy']) cx = float(configDict[cam_name]['cx']) cy = float(configDict[cam_name]['cy']) dist_vect = self.parse_list(configDict[cam_name]['dist_vect'], float) self.camera_params[ch_name] = camera_parameter_t(ch_name, fx, fy, cx, cy, dist_vect) except KeyError as e: raise Exception("Error While Parsing Camera Configuration : Config file does not contain key : " + str(e)) def clean_string(self, in_string): in_string = in_string.strip() in_string = in_string.replace('\t', '') in_string = in_string.replace(' ', '') return in_string def parse_list(self, in_string, d_type): in_string = self.clean_string(in_string) string_list = in_string.split(',') result = [] for string in string_list: result.append(d_type(string)) return result
StarcoderdataPython
94690
import pandas as pd df = pd.read_csv("data.csv") df.head() bools_distance = [] for distance in df.Distance: if distance <= 100: bools_distance.append(True) else: bools_distance.append(False) temp_distance = pd.Series(bools_distance) temp_distance.head() distance = df[temp_distance] distance.reset_index(inplace=True, drop=True) distance.head() bools_gravity = [] for gravity in df.Gravity: if gravity <= 350 and gravity >= 150: bools_gravity.append(True) else: bools_gravity.append(False) gravity_support = pd.Series(bools_gravity) gravity_support.head() final_stars = df[gravity_support] final_stars.head() final_stars.shape final_stars.reset_index(inplace=True, drop=True) final_stars.head() final_stars.to_csv("final_data.csv")
StarcoderdataPython
8351
<reponame>haltu/velmu-mpass-demo<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2018-03-20 08:34 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import parler.models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='AuthenticationSource', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('modified_at', models.DateTimeField(auto_now=True)), ('auth_id', models.CharField(max_length=128)), ('icon_url', models.CharField(blank=True, max_length=2048, null=True)), ], options={ 'abstract': False, }, bases=(parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='AuthenticationSourceTranslation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language_code', models.CharField(db_index=True, max_length=15, verbose_name='Language')), ('title', models.CharField(max_length=2048)), ('master', models.ForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='translations', to='mpass.AuthenticationSource')), ], options={ 'managed': True, 'db_table': 'mpass_authenticationsource_translation', 'db_tablespace': '', 'default_permissions': (), 'verbose_name': 'authentication source Translation', }, ), migrations.CreateModel( name='AuthenticationTag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('modified_at', models.DateTimeField(auto_now=True)), ('tag_id', models.CharField(max_length=128)), ], options={ 'abstract': False, }, bases=(parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='AuthenticationTagTranslation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language_code', models.CharField(db_index=True, max_length=15, verbose_name='Language')), ('title', models.CharField(max_length=2048)), ('master', models.ForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='translations', to='mpass.AuthenticationTag')), ], options={ 'managed': True, 'db_table': 'mpass_authenticationtag_translation', 'db_tablespace': '', 'default_permissions': (), 'verbose_name': 'authentication tag Translation', }, ), migrations.AddField( model_name='authenticationsource', name='tags', field=models.ManyToManyField(blank=True, to='mpass.AuthenticationTag'), ), migrations.AlterUniqueTogether( name='authenticationtagtranslation', unique_together=set([('language_code', 'master')]), ), migrations.AlterUniqueTogether( name='authenticationsourcetranslation', unique_together=set([('language_code', 'master')]), ), ]
StarcoderdataPython
3271122
import numpy as np import torch class UnNormalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, imgs): """ Args: tensor (Tensor): Tensor image of size (B, C, H, W) to be normalized. Returns: Tensor: Normalized image. """ if imgs.size(1) == 1: tensor = imgs.mul_(self.std[0]).add_(self.mean[0]) else: tensor = [] for img in imgs: for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) tensor = torch.stack(tensor) # The normalize code -> t.sub_(m).div_(s) return tensor def postprocess_image(imgs): imgs = imgs.squeeze(0) imgs = imgs.cpu().numpy() imgs = np.transpose(imgs, [1, 2, 0]) return imgs
StarcoderdataPython
1753414
# -*- coding:utf-8 -*- mongo_dsn = 'mongodb://root:[email protected]/proxy?authSource=admin' mongo_db = 'proxy' # 抓取代理的站点 crawl_web_site = ['ip66', 'ip181', 'xici'] debug = 1
StarcoderdataPython
1708907
<filename>Method/ontolearn/abstracts.py import logging import random from abc import ABCMeta, abstractmethod, ABC from typing import Set, List, Tuple, Iterable, TypeVar, Generic, ClassVar, Optional, Generator, SupportsFloat import numpy as np import torch from owlapy.model import OWLClassExpression, OWLOntology from owlapy.util import iter_count from .data_struct import Experience from .data_struct import PrepareBatchOfTraining, PrepareBatchOfPrediction from .owlready2.utils import get_full_iri from .utils import read_csv # random.seed(0) # Note: a module should not set the seed _N = TypeVar('_N') #: class AbstractLearningProblem(metaclass=ABCMeta): """Abstract learning problem""" __slots__ = 'kb' kb: 'AbstractKnowledgeBase' @abstractmethod def __init__(self, knowledge_base: 'AbstractKnowledgeBase'): """create a new abstract learning problem Args: knowledge_base: the knowledge base """ self.kb = knowledge_base class AbstractScorer(Generic[_N], metaclass=ABCMeta): """ An abstract class for quality functions. """ __slots__ = 'lp', 'applied' name: ClassVar def __init__(self, learning_problem: AbstractLearningProblem): """Create a new quality function Args: learning_problem: learning problem containing the ideal solution. the score function uses the learning problem and the provided matching instances to calculate the quality score """ self.lp = learning_problem self.applied = 0 @abstractmethod def score(self, instances) -> Tuple[bool, Optional[float]]: """Quality score for a set of instances with regard to the learning problem Args: instances (set): instances to calculate a quality score for Returns: Tuple, first position indicating if the function could be applied, second position the quality value in the range 0.0--1.0 """ pass def apply(self, node: 'AbstractNode', instances) -> bool: """Apply the quality function to a search tree node after calculating the quality score on the given instances Args: node: search tree node to set the quality on instances (set): instances to calculate the quality for Returns: True if the quality function was applied successfully """ assert isinstance(node, AbstractNode) from ontolearn.search import _NodeQuality assert isinstance(node, _NodeQuality) self.applied += 1 ret, q = self.score(instances) if q is not None: node.quality = q return ret def clean(self): """Reset the state of the quality function, for example statistic counters""" self.applied = 0 class AbstractHeuristic(Generic[_N], metaclass=ABCMeta): """Abstract base class for heuristic functions. Heuristic functions can guide the search process.""" __slots__ = 'applied' applied: int @abstractmethod def __init__(self): """Create a new heuristic function""" self.applied = 0 @abstractmethod def apply(self, node: _N, instances=None): """Apply the heuristic on a search tree node and set its heuristic property to the calculated value Args: node: node to set the heuristic on instances (set): set of instances covered by this node """ pass @abstractmethod def clean(self): """Reset the state of the heuristic function, for example statistic counters""" self.applied = 0 _KB = TypeVar('_KB', bound='AbstractKnowledgeBase') #: logger = logging.getLogger(__name__) class BaseRefinement(Generic[_N], metaclass=ABCMeta): """ Base class for Refinement Operators. Let C, D \\in N_c where N_c os a finite set of concepts. * Proposition 3.3 (Complete and Finite Refinement Operators) [1] * ρ(C) = {C ⊓ T} ∪ {D \\| D is not empty AND D \\sqset C} * The operator is finite, * The operator is complete as given a concept C, we can reach an arbitrary concept D such that D subset of C. *) Theoretical Foundations of Refinement Operators [1]. *) Defining a top-down refimenent operator that is a proper is crutial. 4.1.3 Achieving Properness [1] *) Figure 4.1 [1] defines of the refinement operator [1] Learning OWL Class Expressions """ __slots__ = 'kb' kb: _KB @abstractmethod def __init__(self, knowledge_base: _KB): """Construct a new base refinement operator Args: knowledge_base: knowledge base to operate on """ self.kb = knowledge_base @abstractmethod def refine(self, *args, **kwargs) -> Iterable[OWLClassExpression]: """Refine a given concept Args: ce (OWLClassExpression): concept to refine Returns: new refined concepts """ pass def len(self, concept: OWLClassExpression) -> int: """The length of a concept Args: concept: concept Returns: length of concept according to some metric configured in the knowledge base """ return self.kb.cl(concept) class AbstractNode(metaclass=ABCMeta): """Abstract search tree node""" __slots__ = () @abstractmethod def __init__(self): """Create an abstract search tree node""" pass def __str__(self): """string representation of node, by default its internal memory address""" addr = hex(id(self)) addr = addr[0:2] + addr[6:-1] return f'{type(self)} at {addr}' class AbstractOEHeuristicNode(metaclass=ABCMeta): """Abstract Node for the CELOEHeuristic heuristic function This node must support quality, horizontal expansion (h_exp), is_root, parent_node and refinement_count """ __slots__ = () @property @abstractmethod def quality(self) -> Optional[float]: pass @property @abstractmethod def h_exp(self) -> int: pass @property @abstractmethod def is_root(self) -> bool: pass @property @abstractmethod def parent_node(self: _N) -> Optional[_N]: pass @property @abstractmethod def refinement_count(self) -> int: pass class AbstractConceptNode(metaclass=ABCMeta): """Abstract search tree node which has a concept""" __slots__ = () @property @abstractmethod def concept(self) -> OWLClassExpression: pass class AbstractKnowledgeBase(metaclass=ABCMeta): """Abstract knowledge base""" __slots__ = () thing: OWLClassExpression @abstractmethod def ontology(self) -> OWLOntology: """The base ontology of this knowledge base""" pass def describe(self) -> None: """Print a short description of the Knowledge Base to the info logger output""" properties_count = iter_count(self.ontology().object_properties_in_signature()) + iter_count( self.ontology().data_properties_in_signature()) logger.info(f'Number of named classes: {iter_count(self.ontology().classes_in_signature())}\n' f'Number of individuals: {self.individuals_count()}\n' f'Number of properties: {properties_count}') @abstractmethod def clean(self) -> None: """This method should reset any caches and statistics in the knowledge base""" raise NotImplementedError @abstractmethod def individuals_count(self) -> int: """Total number of individuals in this knowledge base""" pass @abstractmethod def individuals_set(self, *args, **kwargs) -> Set: """Encode an individual, an iterable of individuals or the individuals that are instances of a given concept into a set. Args: arg (OWLNamedIndividual): individual to encode arg (Iterable[OWLNamedIndividual]): individuals to encode arg (OWLClassExpression): encode individuals that are instances of this concept Returns: encoded set representation of individual(s) """ pass class LBLSearchTree(Generic[_N], metaclass=ABCMeta): """Abstract search tree for the Length based learner""" @abstractmethod def get_most_promising(self) -> _N: """Find most "promising" node in the search tree that should be refined next Returns: most promising search tree node """ pass @abstractmethod def add_node(self, node: _N, parent_node: _N): """Add a node to the search tree Args: node: node to add parent_node: parent of that node """ pass @abstractmethod def clean(self): """Reset the search tree state""" pass @abstractmethod def get_top_n(self, n: int) -> List[_N]: """Retrieve the best n search tree nodes Args: n: maximum number of nodes Returns: list of top n search tree nodes """ pass @abstractmethod def show_search_tree(self, root_concept: OWLClassExpression, heading_step: str): """Debugging function to print the search tree to standard output Args: root_concept: the tree is printed starting from this search tree node heading_step: message to print at top of the output """ pass @abstractmethod def add_root(self, node: _N): """Add the root node to the search tree Args: node: root node to add """ pass class AbstractDrill(ABC): """ Abstract class for Convolutional DQL concept learning """ def __init__(self, path_of_embeddings, reward_func, learning_rate=None, num_episode=None, num_of_sequential_actions=None, max_len_replay_memory=None, representation_mode=None, batch_size=1024, epsilon_decay=None, epsilon_min=None, num_epochs_per_replay=None, num_workers=32): # @TODO refactor the code for the sake of readability self.instance_embeddings = read_csv(path_of_embeddings) self.embedding_dim = self.instance_embeddings.shape[1] self.reward_func = reward_func assert reward_func self.representation_mode = representation_mode assert representation_mode in ['averaging', 'sampling'] # Will be filled by child class self.heuristic_func = None self.num_workers = num_workers # constants self.epsilon = 1 self.learning_rate = learning_rate self.num_episode = num_episode self.num_of_sequential_actions = num_of_sequential_actions self.num_epochs_per_replay = num_epochs_per_replay self.max_len_replay_memory = max_len_replay_memory self.epsilon_decay = epsilon_decay self.epsilon_min = epsilon_min self.batch_size = batch_size if self.learning_rate is None: self.learning_rate = .001 if self.num_episode is None: self.num_episode = 759 if self.max_len_replay_memory is None: self.max_len_replay_memory = 1024 if self.num_of_sequential_actions is None: self.num_of_sequential_actions = 10 if self.epsilon_decay is None: self.epsilon_decay = .001 if self.epsilon_min is None: self.epsilon_min = 0 if self.num_epochs_per_replay is None: self.num_epochs_per_replay = 100 # will be filled self.optimizer = None # torch.optim.Adam(self.model_net.parameters(), lr=self.learning_rate) self.seen_examples = dict() self.emb_pos, self.emb_neg = None, None self.start_time = None self.goal_found = False self.experiences = Experience(maxlen=self.max_len_replay_memory) def default_state_rl(self): self.emb_pos, self.emb_neg = None, None self.goal_found = False self.start_time = None @abstractmethod def init_training(self, *args, **kwargs): """ Initialize training for a given E+,E- and K. @param args: @param kwargs: @return: """ @abstractmethod def terminate_training(self): """ Save weights and training data after training phase. @return: """ def next_node_to_expand(self, t: int = None) -> AbstractNode: """ Return a node that maximizes the heuristic function at time t @param t: @return: """ if self.verbose > 1: self.search_tree.show_search_tree(self.start_class, t) return self.search_tree.get_most_promising() def form_experiences(self, state_pairs: List, rewards: List) -> None: """ Form experiences from a sequence of concepts and corresponding rewards. state_pairs - a list of tuples containing two consecutive states reward - a list of reward. Gamma is 1. Return X - a list of embeddings of current concept, next concept, positive examples, negative examples y - argmax Q value. """ for th, consecutive_states in enumerate(state_pairs): e, e_next = consecutive_states self.experiences.append( (e, e_next, max(rewards[th:]))) # given e, e_next, Q val is the max Q value reachable. def learn_from_replay_memory(self) -> None: """ Learning by replaying memory @return: """ current_state_batch, next_state_batch, q_values = self.experiences.retrieve() current_state_batch = torch.cat(current_state_batch, dim=0) next_state_batch = torch.cat(next_state_batch, dim=0) q_values = torch.Tensor(q_values) try: assert current_state_batch.shape[1] == next_state_batch.shape[1] == self.emb_pos.shape[1] == \ self.emb_neg.shape[1] except AssertionError as e: print(current_state_batch.shape) print(next_state_batch.shape) print(self.emb_pos.shape) print(self.emb_neg.shape) print('Wrong format.') print(e) raise assert current_state_batch.shape[2] == next_state_batch.shape[2] == self.emb_pos.shape[2] == self.emb_neg.shape[ 2] dataset = PrepareBatchOfTraining(current_state_batch=current_state_batch, next_state_batch=next_state_batch, p=self.emb_pos, n=self.emb_neg, q=q_values) num_experience = len(dataset) data_loader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers) print(f'Number of experiences:{num_experience}') print('DQL agent is learning via experience replay') self.heuristic_func.net.train() for m in range(self.num_epochs_per_replay): total_loss = 0 for X, y in data_loader: self.optimizer.zero_grad() # zero the gradient buffers # forward predicted_q = self.heuristic_func.net.forward(X) # loss loss = self.heuristic_func.net.loss(predicted_q, y) total_loss += loss.item() # compute the derivative of the loss w.r.t. the parameters using backpropagation loss.backward() # clip gradients if gradients are killed. =>torch.nn.utils.clip_grad_norm_(self.model.parameters(), 0.5) self.optimizer.step() self.heuristic_func.net.train().eval() def sequence_of_actions(self, root: AbstractNode) -> Tuple[ List[Tuple[AbstractNode, AbstractNode]], List[SupportsFloat]]: """ Perform self.num_of_sequential_actions number of actions (1) Make a sequence of **self.num_of_sequential_actions** actions (1.1) Get next states in a generator and convert them to list (1.2) Exit, if If there is no next state. @TODO Is it possible to 0 next states ?! Nothing should in the set of refinements, shouldn't it ?, i.e. [Nothing] (1.3) Find next state. (1.4) Exit, if next state is **Nothing** (1.5) Compute reward. (1.6) Update current state. (2) Return path_of_concepts, rewards """ assert isinstance(root, AbstractNode) current_state = root path_of_concepts = [] rewards = [] # (1) for _ in range(self.num_of_sequential_actions): # (1.1) next_states = list(self.apply_rho(current_state)) # (1.2) if len(next_states) == 0: # DEAD END assert (len(current_state) + 3) <= self.max_child_length break # (1.3) next_state = self.exploration_exploitation_tradeoff(current_state, next_states) # (1.3) if next_state.concept.str == 'Nothing': # Dead END break # (1.4) path_of_concepts.append((current_state, next_state)) # (1.5) rewards.append(self.reward_func.calculate(current_state, next_state)) # (1.6) current_state = next_state # (2) return path_of_concepts, rewards def update_search(self, concepts, predicted_Q_values): """ @param concepts: @param predicted_Q_values: @return: """ # simple loop. for child_node, pred_Q in zip(concepts, predicted_Q_values): child_node.heuristic = pred_Q self.search_tree.quality_func.apply(child_node) if child_node.quality > 0: # > too weak, ignore. self.search_tree.add(child_node) if child_node.quality == 1: return child_node def apply_rho(self, node: AbstractNode) -> Generator: """ Refine an OWL Class expression \\|= Observing next possible states Computation O(N). 1. Generate concepts by refining a node 1.1. Compute allowed length of refinements 1.2. Convert concepts if concepts do not belong to self.concepts_to_ignore Note that i.str not in self.concepts_to_ignore => O(1) if a set is being used. 3. Return Generator """ assert isinstance(node, AbstractNode) # 1. # (1.1) length = len(node) + 3 if len(node) + 3 <= self.max_child_length else self.max_child_length # (1.2) for i in self.operator.refine(node, maxlength=length): # O(N) if i.str not in self.concepts_to_ignore: # O(1) yield self.operator.get_node(i, parent_node=node) # O(1) def assign_embeddings(self, node: AbstractNode) -> None: assert isinstance(node, AbstractNode) # (1) Detect mode if self.representation_mode == 'averaging': # (2) if input node has not seen before, assign embeddings. if node.embeddings is None: str_idx = [get_full_iri(i).replace('\n', '') for i in node.concept.instances] if len(str_idx) == 0: emb = torch.zeros(self.sample_size, self.instance_embeddings.shape[1]) else: emb = torch.tensor(self.instance_embeddings.loc[str_idx].values, dtype=torch.float32) emb = torch.mean(emb, dim=0) emb = emb.view(1, self.sample_size, self.instance_embeddings.shape[1]) node.embeddings = emb else: """ Embeddings already assigned.""" try: assert node.embeddings.shape == (1, self.sample_size, self.instance_embeddings.shape[1]) except AssertionError as e: print(e) print(node) print(node.embeddings.shape) print((1, self.sample_size, self.instance_embeddings.shape[1])) raise elif self.representation_mode == 'sampling': if node.embeddings is None: str_idx = [get_full_iri(i).replace('\n', '') for i in node.concept.instances] if len(str_idx) >= self.sample_size: sampled_str_idx = random.sample(str_idx, self.sample_size) emb = torch.tensor(self.instance_embeddings.loc[sampled_str_idx].values, dtype=torch.float32) else: num_rows_to_fill = self.sample_size - len(str_idx) emb = torch.tensor(self.instance_embeddings.loc[str_idx].values, dtype=torch.float32) emb = torch.cat((torch.zeros(num_rows_to_fill, self.instance_embeddings.shape[1]), emb)) emb = emb.view(1, self.sample_size, self.instance_embeddings.shape[1]) node.embeddings = emb else: """ Embeddings already assigned.""" try: assert node.embeddings.shape == (1, self.sample_size, self.instance_embeddings.shape[1]) except AssertionError: print(node) print(self.sample_size) print(node.embeddings.shape) print((1, self.sample_size, self.instance_embeddings.shape[1])) raise ValueError else: raise ValueError # @todo remove this testing in experiments. if torch.isnan(node.embeddings).any() or torch.isinf(node.embeddings).any(): # No individual contained in the input concept. # Sanity checking. raise ValueError def save_weights(self): """ Save pytorch weights. @return: """ # Save model. torch.save(self.heuristic_func.net.state_dict(), self.storage_path + '/{0}.pth'.format(self.heuristic_func.name)) def rl_learning_loop(self, pos_uri: Set[str], neg_uri: Set[str]) -> List[float]: """ RL agent learning loop over learning problem defined @param pos_uri: A set of URIs indicating E^+ @param neg_uri: A set of URIs indicating E^- Computation 1. Initialize training 2. Learning loop: Stopping criteria ***self.num_episode** OR ***self.epsilon < self.epsilon_min*** 2.1. Perform sequence of actions 2.2. Decrease exploration rate 2.3. Form experiences 2.4. Experience Replay 2.5. Return sum of actions @return: List of sum of rewards per episode. """ # (1) self.init_training(pos_uri=pos_uri, neg_uri=neg_uri) root = self.operator.get_node(self.start_class, root=True) # (2) Assign embeddings of root/first state. self.assign_embeddings(root) sum_of_rewards_per_actions = [] log_every_n_episodes = int(self.num_episode * .1) + 1 # (2) for th in range(self.num_episode): # (2.1) sequence_of_states, rewards = self.sequence_of_actions(root) if th % log_every_n_episodes == 0: self.logger.info( '{0}.th iter. SumOfRewards: {1:.2f}\tEpsilon:{2:.2f}\t|ReplayMem.|:{3}'.format(th, sum(rewards), self.epsilon, len( self.experiences))) # (2.2) self.epsilon -= self.epsilon_decay if self.epsilon < self.epsilon_min: break # (2.3) self.form_experiences(sequence_of_states, rewards) # (2.4) if th % self.num_epochs_per_replay == 0 and len(self.experiences) > 1: self.learn_from_replay_memory() sum_of_rewards_per_actions.append(sum(rewards)) return sum_of_rewards_per_actions def exploration_exploitation_tradeoff(self, current_state: AbstractNode, next_states: List[AbstractNode]) -> AbstractNode: """ Exploration vs Exploitation tradeoff at finding next state. (1) Exploration (2) Exploitation """ if np.random.random() < self.epsilon: next_state = random.choice(next_states) self.assign_embeddings(next_state) else: next_state = self.exploitation(current_state, next_states) return next_state def exploitation(self, current_state: AbstractNode, next_states: List[AbstractNode]) -> AbstractNode: """ Find next node that is assigned with highest predicted Q value. (1) Predict Q values : predictions.shape => torch.Size([n, 1]) where n = len(next_states) (2) Find the index of max value in predictions (3) Use the index to obtain next state. (4) Return next state. """ predictions: torch.Tensor = self.predict_Q(current_state, next_states) argmax_id = int(torch.argmax(predictions)) next_state = next_states[argmax_id] """ # Sanity checking print('#'*10) for s, q in zip(next_states, predictions): print(s, q) print('#'*10) print(next_state,f'\t {torch.max(predictions)}') """ return next_state def predict_Q(self, current_state: AbstractNode, next_states: List[AbstractNode]) -> torch.Tensor: """ Predict promise of next states given current state. @param current_state: @param next_states: @return: predicted Q values. """ self.assign_embeddings(current_state) assert len(next_states) > 0 with torch.no_grad(): self.heuristic_func.net.eval() # create batch batch. next_state_batch = [] for _ in next_states: self.assign_embeddings(_) next_state_batch.append(_.embeddings) next_state_batch = torch.cat(next_state_batch, dim=0) ds = PrepareBatchOfPrediction(current_state.embeddings, next_state_batch, self.emb_pos, self.emb_neg) predictions = self.heuristic_func.net.forward(ds.get_all()) return predictions def train(self, dataset: Iterable[Tuple[str, Set, Set]], relearn_ratio: int = 2): """ Train RL agent on learning problems with relearn_ratio. @param dataset: An iterable containing training data. Each item corresponds to a tuple of string representation of target concept, a set of positive examples in the form of URIs amd a set of negative examples in the form of URIs, respectively. @param relearn_ratio: An integer indicating the number of times dataset is iterated. # @TODO determine Big-O Computation 1. Dataset and relearn_ratio loops: Learn each problem relearn_ratio times, 2. Learning loop 3. Take post process action that implemented by subclass. @return: self """ # We need a better way of login, self.logger.info('Training starts.') print(f'Training starts.\nNumber of learning problem:{len(dataset)},\t Relearn ratio:{relearn_ratio}') counter = 1 # 1. for _ in range(relearn_ratio): for (alc_concept_str, positives, negatives) in dataset: self.logger.info( 'Goal Concept:{0}\tE^+:[{1}] \t E^-:[{2}]'.format(alc_concept_str, len(positives), len(negatives))) # 2. print(f'RL training on {counter}.th learning problem starts') sum_of_rewards_per_actions = self.rl_learning_loop(pos_uri=positives, neg_uri=negatives) print(f'Sum of Rewards in first 3 trajectory:{sum_of_rewards_per_actions[:3]}') print(f'Sum of Rewards in last 3 trajectory:{sum_of_rewards_per_actions[:3]}') self.seen_examples.setdefault(counter, dict()).update( {'Concept': alc_concept_str, 'Positives': list(positives), 'Negatives': list(negatives)}) counter += 1 if counter % 100 == 0: self.save_weights() # 3. return self.terminate_training()
StarcoderdataPython
3289204
glossary = { 'integer': 'is colloquially defined as a number that can be written without a fractional component.\n', 'iterate': 'is the repetition of a process in order to generate a sequence of outcomes.\n', 'indentation': 'is an empty space at the beginning of a line that groups particular blocks of code.\n', 'concatinate': 'is the operation of joining character strings end-to-end.\n', 'boolean': 'is a logical data type that can have only the values True or False.\n', } print(f"Integer: {glossary.get('integer')}\n") print(f"Iterate: {glossary.get('iterate')}\n") print(f"Indentation: {glossary.get('indentation')}\n") print(f"Concatinate: {glossary.get('concatinate')}\n") print(f"Boolean: {glossary.get('boolean')}\n")
StarcoderdataPython
3368731
from django.db import models from import_common.core import matchuj_wydawce from .base import BasePBNMongoDBModel from bpp.models import LinkDoPBNMixin, const class PublisherManager(models.Manager): def official(self): return self.exclude(mniswId=None) class Publisher(LinkDoPBNMixin, BasePBNMongoDBModel): objects = PublisherManager() url_do_pbn = const.LINK_PBN_DO_WYDAWCY atrybut_dla_url_do_pbn = "pk" class Meta: verbose_name = "Wydawca w PBN API" verbose_name_plural = "Wydawcy w PBN API" pull_up_on_save = ["publisherName", "mniswId"] publisherName = models.TextField(null=True, blank=True, db_index=True) mniswId = models.IntegerField(null=True, blank=True, db_index=True) def __str__(self): return f"{self.publisherName}, MNISW ID: {self.mniswId or '-'}" @property def points(self): return self.current_version["object"]["points"] def rekord_w_bpp(self): from bpp.models import Wydawca try: return Wydawca.objects.get(pbn_uid_id=self.pk) except Wydawca.DoesNotExist: pass def matchuj_wydawce(self): return matchuj_wydawce(self.publisherName, self.pk)
StarcoderdataPython
159328
import re def sort_urls(url_list,reverse=True): return sorted(url_list, key=lambda k: k['bandwidth'], reverse=reverse) def name_checker(name): name = name.replace("'", "") name = re.findall(r"([\w\d-]+)", name) return ' '.join([x for x in name])
StarcoderdataPython
90950
<filename>fig/falcon/__init__.py from .api import FalconAPI from .models import Event from .stream import StreamManagementThread __all__ = ['Event', 'FalconAPI', 'StreamManagementThread']
StarcoderdataPython
1604779
# -*- coding: utf-8 -*- """ Created on Tue May 29 15:33:14 2018 @author: jonatha.costa """ import requests from bs4 import BeautifulSoup import pandas as pd import datetime import re import numpy as np from readability import Document import requests from readability.readability import Document import time def get_date(k): soup = BeautifulSoup(k,'lxml') date = soup.findAll("span",{'class':'date-display-single'})[0] date = date.text try: date = datetime.datetime.strptime(date, "%d/%m/%Y").strftime('%Y-%m-%d') except ValueError: date = datetime.datetime.strptime(date, "%Y-%m-%dT%H:%M:%S").strftime('%Y-%m-%d') return(date) def get_manchete(k): soup = BeautifulSoup(k, 'lxml') #manchete = soup.findAll('h1',{'class':'content-head__title'}) manchete = soup.findAll('h1',{'property':'na:headline'}) try: manchete_ok = manchete[0].text except IndexError: page_content = Document(k) manchete_ok = page_content.title() return(manchete_ok) def boilerpipe_api_article_extract(k): soup = BeautifulSoup(k, 'lxml') text = soup.find_all('p') texto = "" for news in range(len(text)): #print('concatenate part '+ str(news) + ' of ' + str(len(text))) aux = text[news].text texto = texto + aux return(texto) url1_base = 'https://www.cartacapital.com.br/@@search?advanced_search=False&b_start:int=' url2_base = '&created.query:date:list:record=1970/01/02%2000%3A00%3A00%20GMT%2B0&created.range:record=min&portal_type:list=ExternalBlogEntry&portal_type:list=Person&portal_type:list=collective.nitf.content&sort_on=&pt_toggle=%23&SearchableText=a' page = 0 df_links = pd.DataFrame(columns = ["links_brutos","html"]) url_extract = url1_base + str(page) + url2_base r = requests.get(url_extract) while(r.status_code == 200): print("get page:" + str(page)) url_extract = url1_base + str(page) + url2_base r = requests.get(url_extract) soup = BeautifulSoup(r.content, 'lxml') html = soup teste = soup.findAll('a') time.sleep(1) for i in range(len(teste)-2): if('https://www.cartacapital.com.br' in teste[i].attrs['href'] and '/@@search?' not in teste[i].attrs['href']): df_links = df_links.append({'links_brutos': teste[i].attrs['href'], 'html': html },ignore_index=True) page = page + 1 df_links = df_links.drop_duplicates() df_links = df_links.reset_index(drop=True )
StarcoderdataPython
73686
<reponame>suamin/nemex<gh_stars>1-10 """ Nemex module. Classes: - Nemex """ import time from .data import EntitiesDictionary from .utils import * from .similarities import Verify from .faerie import Faerie logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) logger = logging.getLogger(__name__) class Nemex: """Nemex class. The Nemex class performs approximate 'Named Entity Matching and Extraction' based on the 'Faerie' algorithm. Parameters ---------- list_or_file_entities : {list, str} List or file with entities. char : bool If true, performs character-based similarity instead of token-based. q : int Size of q-grams. special_char : str Special character for substitution of space character. unique : bool If true, preserves order with uniqueness. lower : bool If true, converts document to lower case. similarity : str Similarity method. t : int Similarity threshold. pruner : str Pruning method. verify : bool If true, verify candidates. """ def __init__(self, list_or_file_entities, char: bool = Default.CHAR, q: int = Default.TOKEN_THRESH, special_char: str = Default.SPECIAL_CHAR, unique: bool = Default.UNIQUE, lower: bool = Default.LOWER, similarity: str = Default.SIMILARITY, t: int = Default.SIM_THRESH_CHAR, pruner: str = Default.PRUNER, verify: bool = Default.VERIFY ) -> None: # character-level if char: if similarity not in Sim.CHAR_BASED: raise ValueError("Change similarity method to 'edit_dist' or 'edit_sim' for character level.") if similarity == Sim.EDIT_DIST: t = int(t) if not t >= 1: raise ValueError("Edit distance threshold must be >= 1") else: if not (0. < t <= 1.0): raise ValueError("Similarity score should be in (0, 1]") q = int(q) if not q >= 1: raise ValueError("q-gram must be at least 1") # token-level else: if similarity in Sim.CHAR_BASED: raise ValueError("Change similarity method to 'cosine', 'dice' or 'jaccard' for token level.") if not (0. < t <= 1.0): raise ValueError("Similarity score should be in (0, 1]") # tokenizer self.tokenizer = Tokenizer(char, q, special_char, unique, lower) self.char = char # log start logger.info("Building entities dictionary ...") T = time.time() # create entity dictionary if isinstance(list_or_file_entities, list): self.E = EntitiesDictionary.from_list(list_or_file_entities, self.tokenizer.tokenize) elif isinstance(list_or_file_entities, str): # else it is file of tsv id\tent lines or just text of ent lines self.E = EntitiesDictionary.from_tsv_file(list_or_file_entities, self.tokenizer.tokenize) else: logger.error("Bad input type.") logger.error("Expected `list` or `str`, but got ", type(list_or_file_entities)) exit(0) # caching self.cache_ent_repr = dict() # log end T = time.time() - T logger.info("Building dictionary took {} seconds.".format(int(T))) # setup model self.faerie = Faerie(self.E, similarity=similarity, t=t, q=q, pruner=pruner) self.verify = verify return def __call__(self, document: str, valid_only: bool = True) -> dict: """Executes the Nemex algorithm. Parameters ---------- document : str Text document. valid_only : bool If true, return only as valid verified substrings. Returns ------- Dictionary with document and match list. """ # check doc type assert isinstance(document, str), "Expected a string as document." # tokenize doc_tokens = self.tokenizer.tokenize(document) # char-based if self.char: doc_tokens_str = qgrams_to_char(doc_tokens).replace(self.tokenizer.special_char, " ") # token-based else: doc_tokens_str = " ".join(doc_tokens) # init spans spans = tokens_to_whitespace_char_spans(doc_tokens) # init output output = {"document": doc_tokens_str, "matches": list()} # returns pair of <entity index, (start, end) positions in doc_tokens> for e, (i, j) in self.faerie(doc_tokens): match_tokens = doc_tokens[i:j+1] match_span = spans[i:j+1] if len(match_span) == 1: start, end = match_span[0] else: start, end = match_span[0][0], match_span[-1][1] # char-based if self.char: q = self.tokenizer.q start, end = start - (i * q), end - (j * q) match = doc_tokens_str[start:end] if e not in self.cache_ent_repr: entity = qgrams_to_char(self.E[e].tokens).replace(self.tokenizer.special_char, " ") self.cache_ent_repr[e] = entity else: entity = self.cache_ent_repr[e] output["matches"].append({ "entity": [entity, self.E[e].id], "span": [start, end], "match": match, "score": None, "valid": None }) # verify if self.verify: valid, score = Verify.check(match, entity, self.faerie.similarity, self.faerie.t) output["matches"][-1]["score"] = score output["matches"][-1]["valid"] = valid # return only valid matches if valid_only and not valid: del output["matches"][-1] # token-based else: # end = spans[j][-1] match = doc_tokens_str[start:end] if e not in self.cache_ent_repr: entity = " ".join(self.E[e].tokens) self.cache_ent_repr[e] = entity else: entity = self.cache_ent_repr[e] output["matches"].append({ "entity": [entity, self.E[e].id], "span": [start, end], "match": match, "score": None, "valid": None }) # verify if self.verify: valid, score = Verify.check( match_tokens, self.E[e].tokens, self.faerie.similarity, self.faerie.t ) output["matches"][-1]["score"] = score output["matches"][-1]["valid"] = valid # return only valid matches if valid_only and not valid: del output["matches"][-1] return output
StarcoderdataPython
4807833
#!/usr/bin/env python print "hello World, Welcome to python"
StarcoderdataPython
1771626
"""ExpNushellxLpt.py Definition for namedtuple representation of a set of *.lpt file data from running NuShellX on Magnus, Heiko, or normal-ordered interactions """ from __future__ import print_function, division, unicode_literals from collections import namedtuple # noinspection PyClassHasNoInit class ExpNushellxLpt(namedtuple('ExpNushellxLpt', ['Z', 'int'])): """Exp definition for *.nushellx_lpt files Z: proton number int: interaction type (e.g. 'usdb', 'sd-shell...', 'fit-gen...') """ __slots__ = () def __str__(self): return str(tuple(self._asdict().values())).replace(', None', '')
StarcoderdataPython
129978
<gh_stars>0 # # Copyright 2012 New Dream Network, LLC (DreamHost) # # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Utils for publishers """ import hashlib import hmac from oslo.config import cfg import six from ceilometer import utils METER_PUBLISH_OPTS = [ cfg.StrOpt('metering_secret', secret=True, default='change this or be hacked', help='Secret value for signing metering messages.', deprecated_opts=[cfg.DeprecatedOpt("metering_secret", "DEFAULT"), cfg.DeprecatedOpt("metering_secret", "publisher_rpc")] ), ] def register_opts(config): """Register the options for publishing metering messages.""" config.register_opts(METER_PUBLISH_OPTS, group="publisher") register_opts(cfg.CONF) def compute_signature(message, secret): """Return the signature for a message dictionary.""" digest_maker = hmac.new(secret, '', hashlib.sha256) for name, value in utils.recursive_keypairs(message): if name == 'message_signature': # Skip any existing signature value, which would not have # been part of the original message. continue digest_maker.update(name) digest_maker.update(six.text_type(value).encode('utf-8')) return digest_maker.hexdigest() def besteffort_compare_digest(first, second): """Returns True if both string inputs are equal, otherwise False. This function should take a constant amount of time regardless of how many characters in the strings match. """ # NOTE(sileht): compare_digest method protected for timing-attacks # exists since python >= 2.7.7 and python >= 3.3 # this a bit less-secure python fallback version # taken from https://github.com/openstack/python-keystoneclient/blob/ # master/keystoneclient/middleware/memcache_crypt.py#L88 if len(first) != len(second): return False result = 0 if six.PY3 and isinstance(first, bytes) and isinstance(second, bytes): for x, y in zip(first, second): result |= x ^ y else: for x, y in zip(first, second): result |= ord(x) ^ ord(y) return result == 0 if hasattr(hmac, 'compare_digest'): compare_digest = hmac.compare_digest else: compare_digest = besteffort_compare_digest def verify_signature(message, secret): """Check the signature in the message. Message is verified against the value computed from the rest of the contents. """ old_sig = message.get('message_signature', '') new_sig = compute_signature(message, secret) if isinstance(old_sig, six.text_type): try: old_sig = old_sig.encode('ascii') except UnicodeDecodeError: return False return compare_digest(new_sig, old_sig) def meter_message_from_counter(sample, secret): """Make a metering message ready to be published or stored. Returns a dictionary containing a metering message for a notification message and a Sample instance. """ msg = {'source': sample.source, 'counter_name': sample.name, 'counter_type': sample.type, 'counter_unit': sample.unit, 'counter_volume': sample.volume, 'user_id': sample.user_id, 'project_id': sample.project_id, 'resource_id': sample.resource_id, 'timestamp': sample.timestamp, 'resource_metadata': sample.resource_metadata, 'message_id': sample.id, } msg['message_signature'] = compute_signature(msg, secret) return msg
StarcoderdataPython
159819
import os import json path = "P2S2/" example = {} example["labels"] = ["Background","Vegetation","Organ","Don't know"] example["models"] = [] dirs = [item for item in os.listdir(path) if os.path.isdir(os.path.join(path,item))] print(dirs) for dir_ in dirs: if dir_ == "images": example["imageURLs"] = ["data/images/"+item for item in os.listdir(os.path.join(path,"images")) if item.endswith(".png")] elif dir_ =="annotations": example["annotationURLs"] = ["data/annotations/"+item for item in os.listdir(os.path.join(path,"annotations")) if item.endswith(".png")] else: example["models"].append(dir_) with open(path+'example.json', 'w') as fp: json.dump(example, fp)
StarcoderdataPython
1603061
""" Tyes for storage nodes. """ import os import re class Cache: """ Data structure to handle cache operations Operations: get(filename: str) -> str | None set(filename: str, content: str) -> None """ def __init__(self, cache_folder='cache'): self.path = f'./{cache_folder}' if not os.path.exists(self.path): os.makedirs(self.path) def get(self, filename: str) -> str: filename = re.sub('https?://', '', filename) filename = re.sub(r'\?|/', '_', filename) try: with open(os.path.join(self.path, filename), 'r') as fd: return fd.read() except FileNotFoundError: return None def set(self, filename: str, content: str): filename = re.sub('https?://', '', filename) filename = re.sub(r'\?|/', '_', filename) with open(os.path.join(self.path, filename), 'w') as fd: fd.write(content) def __iter__(self): for file in os.listdir(self.path): with open(f'{self.path}/{file}') as fd: content = fd.read() yield (file, content) if __name__ == '__main__': cache = Cache() for file, content in cache: print(file, content)
StarcoderdataPython
151286
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import contextlib import re import sys # NOTE: this module doesn't import sublime module so we can mock view/region etc in tests LIST_ENTRY_BEGIN_RE = re.compile( r"""^( \s+[*] | \s*[-+] | \s*[0-9]+[.] | \s[a-zA-Z][.] )\s+ (?: (?P<tick_box>\[[- xX]\]) \s )? """, re.VERBOSE ) HEADLINE_RE = re.compile( '^([*]+) \s+' # STARS group 1 '(?: ([A-Za-z0-9]+)\s+ )?' # KEYWORD group 2 '(?: \[[#]([a-zA-Z])\]\s+)?' # PRIORITY group 3 '(.*?)' # TITLE -- match in nongreedy fashion group 4 '\s* (:(?: [a-zA-Z0-9_@#]+ :)+)? \s*$', # TAGS group 5 re.VERBOSE ) CONTROL_LINE_RE = re.compile( "^\#\+" # prefix "([A-Z_]+) :" # key "\s* (.*)", # value re.VERBOSE ) BEGIN_SRC_RE = re.compile( r"^\s*\#\+BEGIN_SRC\b.*$" ) END_SRC_RE = re.compile( r"^\s*\#\+END_SRC\b.*$" ) BEGIN_EXAMPLE_RE = re.compile( r"^\s*\#\+BEGIN_EXAMPLE\b.*$" ) END_EXAMPLE_RE = re.compile( r"^\s*\#\+END_EXAMPLE\b.*$" ) COLON_LINE_EXAMPLE_RE = re.compile( r"^\s*:.*$" ) KEYWORD_SET = frozenset(["TODO", "DONE"]) def is_point_within_region(point, region): return region.a <= point < region.b def line_is_list_entry_begin(line_text): return LIST_ENTRY_BEGIN_RE.match(line_text) def line_is_headline(line_text): return HEADLINE_RE.match(line_text) def iter_tree_depth_first(node): for child in node.children: for n in iter_tree_depth_first(child): yield n yield node def find_child_containing_point(node, point): if not is_point_within_region(point, node.region): return None while node.children: for child in node.children: if is_point_within_region(point, child.region): node = child break else: return node return node def sibling(node, offset, sibling_type_filter=None): if node.parent is None: return None siblings = node.parent.children if sibling_type_filter: siblings = [s for s in siblings if isinstance(s, sibling_type_filter)] idx = siblings.index(node) if idx == -1: raise AssertionError("Cannot find node in the list of its parent children") if 0 <= idx + offset < len(siblings): return siblings[idx + offset] return None def next_sibling(node, sibling_type_filter=None): return sibling(node, 1, sibling_type_filter) def prev_sibling(node, sibling_type_filter=None): return sibling(node, -1, sibling_type_filter) def view_full_lines(view, region): # NOTE: line ending might be either '\r\n' or '\n' # TODO: test this function line_region_list = view.lines(region) for i in range(len(line_region_list) - 1): line_region_list[i].b = line_region_list[i+1].a if line_region_list: line_region_list[-1].b = view.size() return line_region_list def parse_org_document_new(view, region): builder = OrgTreeBuilder(view) parser_input = ParserInput(view, region) parse_global_scope(parser_input, builder) return builder.finish() class OrgViewNode(object): def __init__(self, view, parent): self.children = [] self.parent = parent if self.parent: self.parent.children.append(self) self.region = None self.view = view def text(self): return self.view.substr(self.region) def __repr__(self): text = _node_text(self) if len(text) > 55: text = "{} ... {}".format(text[:25], text[-25:]) attrs = self._debug_attrs() if attrs != "": attrs += ", " return "{cls}({attrs}{str_repr})".format(cls=type(self).__name__, attrs=attrs, str_repr=repr(text)) def _debug_attrs(self): return "" def debug_print(self, indent=None, file=None): if file is None: file = sys.stdout if indent is None: indent = 0 indent_str = " " * indent file.write(indent_str + repr(self) + "\n") for c in self.children: c.debug_print(indent+2) if indent == 0: file.flush() class OrgRoot(OrgViewNode): node_type = "root" def __init__(self, view): super(OrgRoot, self).__init__(view, None) class OrgSection(OrgViewNode): node_type = "section" def __init__(self, view, parent, level): super(OrgSection, self).__init__(view, parent) self.level = level def _debug_attrs(self): return "level={}".format(self.level) class OrgHeadline(OrgViewNode): node_type = "headline" def __init__(self, view, parent, level): super(OrgHeadline, self).__init__(view, parent) self.level = level def _debug_attrs(self): return "level={}".format(self.level) class OrgSrcBlock(OrgViewNode): node_type = "src_block" def org_headline_get_text(headline: OrgHeadline): line = headline.view.substr(headline.region) m = HEADLINE_RE.match(line) assert m is not None keyword = m.group(2) title_begin = m.start(4) title_end = m.end(4) if keyword is not None and keyword not in KEYWORD_SET: title_begin = m.start(2) return line[title_begin:title_end] def org_headline_get_tag_list(headline: OrgHeadline): line = headline.view.substr(headline.region) m = HEADLINE_RE.match(line) assert m is not None tag_group = m.group(5) if tag_group is not None: return tag_group.strip(':').split(':') return [] class OrgList(OrgViewNode): node_type = "list" def __init__(self, view, parent, indent): super(OrgList, self).__init__(view, parent) self.indent = indent class OrgListEntry(OrgViewNode): node_type = "list_entry" def __init__(self, view, parent, indent, match): super(OrgListEntry, self).__init__(view, parent) self.indent = indent self.tick_offset = None if match.group("tick_box") is not None: self.tick_offset = match.start("tick_box") + 1 class OrgControlLine(OrgViewNode): node_type = "control_line" def __init__(self, view, parent): super(OrgControlLine, self).__init__(view, parent) def org_list_entry_get_tick_position(node: OrgListEntry): if node.region is None: raise ValueError("OrgListEntry region is unknown") elif node.tick_offset is None: return None return node.region.a + node.tick_offset def org_control_line_get_key_value(control_line: OrgControlLine): line = control_line.view.substr(control_line.region) m = CONTROL_LINE_RE.match(line) assert m is not None return m.group(1), m.group(2) class OrgTreeBuilder: def __init__(self, view): self._root = OrgRoot(view) section = OrgSection(view, self._root, 0) self._stack = [self._root, section] self._context_stack = [2] def top(self): return self._stack[-1] def pop(self): self._stack.pop() def push(self, node): self._stack.append(node) def finish(self): self._stack = None return self._root @contextlib.contextmanager def push_context(self): curlen = len(self._stack) self._context_stack.append(curlen) yield self._context_stack.pop() if len(self._stack) > curlen: del self._stack[curlen:] def is_context_empty(self): return len(self._stack) <= self._context_stack[-1] class ParserInput: def __init__(self, view, region): self._full_line_region_list = view_full_lines(view, region) self._idx = 0 self.view = view def get_current_line_region(self): if self._idx < len(self._full_line_region_list): return self._full_line_region_list[self._idx] else: return None def next_line(self): self._idx += 1 def parse_global_scope(parser_input: ParserInput, builder: OrgTreeBuilder): view = parser_input.view while parser_input.get_current_line_region() is not None: region = parser_input.get_current_line_region() line = view.substr(region) line = line.rstrip('\n') m = HEADLINE_RE.match(line) if m is not None: headline_level = len(m.group(1)) assert headline_level > 0 while ( not isinstance(builder.top(), OrgSection) or builder.top().level >= headline_level ): builder.pop() new_section = OrgSection(view, builder.top(), headline_level) headline = OrgHeadline(view, new_section, headline_level) builder.push(new_section) _extend_region(headline, region) parser_input.next_line() continue m = LIST_ENTRY_BEGIN_RE.match(line) if m is not None: with builder.push_context(): parse_list(parser_input, builder) continue m = BEGIN_SRC_RE.match(line) if m is not None: with builder.push_context(): parse_example_block(parser_input, builder, BEGIN_SRC_RE, END_SRC_RE) continue m = BEGIN_EXAMPLE_RE.match(line) if m is not None: with builder.push_context(): parse_example_block(parser_input, builder, BEGIN_EXAMPLE_RE, END_EXAMPLE_RE) continue m = COLON_LINE_EXAMPLE_RE.match(line) if m is not None: with builder.push_context(): parse_example_block(parser_input, builder, COLON_LINE_EXAMPLE_RE, None) m = CONTROL_LINE_RE.match(line) if m is not None: control_line = OrgControlLine(view, builder.top()) _extend_region(control_line, region) parser_input.next_line() continue _extend_region(builder.top(), region) parser_input.next_line() continue def parse_list(parser_input: ParserInput, builder: OrgTreeBuilder): view = parser_input.view empty_lines = 0 while parser_input.get_current_line_region() is not None: region = parser_input.get_current_line_region() line = view.substr(region) if line.startswith("*"): break line_is_empty = not bool(line.strip()) if line_is_empty: empty_lines += 1 if empty_lines >= 2: return parser_input.next_line() continue else: empty_lines = 0 indent = _calc_indent(line) m = LIST_ENTRY_BEGIN_RE.match(line) if m is not None: while ( isinstance(builder.top(), OrgList) and builder.top().indent > indent or isinstance(builder.top(), OrgListEntry) and builder.top().indent >= indent ): builder.pop() if ( not isinstance(builder.top(), OrgList) or builder.top().indent < indent ): builder.push(OrgList(view, builder.top(), indent)) builder.push(OrgListEntry(view, builder.top(), indent, m)) _extend_region(builder.top(), region) parser_input.next_line() continue while ( not builder.is_context_empty() and not ( isinstance(builder.top(), OrgListEntry) and builder.top().indent < indent ) ): builder.pop() if builder.is_context_empty(): return assert isinstance(builder.top(), OrgListEntry) _extend_region(builder.top(), region) parser_input.next_line() def parse_example_block(parser_input: ParserInput, builder: OrgTreeBuilder, begin_re, end_re): view = parser_input.view region = parser_input.get_current_line_region() if region is None: return line = view.substr(region) m = begin_re.match(line) if m is None: return src_block = OrgSrcBlock(view, builder.top()) builder.push(src_block) _extend_region(src_block, region) parser_input.next_line() while True: region = parser_input.get_current_line_region() if region is None: return line = view.substr(region) _extend_region(src_block, region) parser_input.next_line() if end_re is None: m = begin_re.match(line) if m is None: break else: m = end_re.match(line) if m is not None: break builder.pop() # # Details # def _calc_indent(line): indent = 0 for c in line: if c == ' ': indent += 1 else: break return indent def _extend_region(node, region): # we don't want to be dependent on region class so we'll derive region class from runtime region_cls = type(region) while node: if node.region is None: node.region = region else: new_region = region_cls(node.region.a, region.b) node.region = new_region node = node.parent def _node_text(node): return node.view.substr(node.region) if __name__ == '__main__': import unittest import mock_sublime class TestListParsing(unittest.TestCase): def test_simple_list(self): view = mock_sublime.View( " - some list item\n" " - another list item\n" ) parser = OrgListParser(view) for region in view.sp_iter_all_line_regions(): result = parser.try_push_line(region) self.assertTrue(result) result = parser.finish() self.assertEqual(len(result.children), 1) self.assertEqual(len(result.children[0].children), 2) self.assertEqual(_node_text(result.children[0].children[0]), " - some list item") self.assertEqual(_node_text(result.children[0].children[1]), " - another list item") def test_simple_list_with_child(self): view = mock_sublime.View( " - parent 1\n" " - child\n" " - parent 2\n" ) result = parse_org_document_new(view, mock_sublime.Region(0, view.size())) self.assertEqual(len(result.children), 1) self.assertEqual(len(result.children[0].children), 2) self.assertEqual(_node_text(result.children[0].children[0]), " - parent 1\n - child") self.assertEqual(len(result.children[0].children[0].children), 1) self.assertEqual(_node_text(result.children[0].children[0].children[0]), " - child") self.assertEqual(_node_text(result.children[0].children[1]), " - parent 2") def test_list_with_text(self): view = mock_sublime.View( " - parent 1\n" " 1111\n" " * child 1\n" " 2222\n" " * child 2\n" " 3333\n" " * child 3\n" " 4444\n" " - parent 2\n" " 5555\n" ) parser = OrgListParser(view) for region in view.sp_iter_all_line_regions(): result = parser.try_push_line(region) self.assertTrue(result) result = parser.finish() self.assertEqual(len(result.children), 1) self.assertEqual(len(result.children[0].children), 2) parent1, parent2 = result.children[0].children self.assertEqual( _node_text(parent1), " - parent 1\n" " 1111\n" " * child 1\n" " 2222\n" " * child 2\n" " 3333\n" " * child 3\n" " 4444" ) self.assertEqual(len(parent1.children), 3) for num, child_lst in enumerate(parent1.children, 1): self.assertEqual(len(child_lst.children), 1) child_entry, = child_lst.children self.assertEqual(_node_text(child_entry), " * child {}".format(num)) class GlobalScopeParsing(unittest.TestCase): def test_headline_parsing(self): view = mock_sublime.View( "* This is org headline\n" "** TODO headline 2\n" "*** DONE headline 3\n" "**** TODO [#b] headline 4\n" "** UNDONE HEADLINE 5\n" "** UNDONE [#a] HeAdLiNe 6\n" "*** more headlines 7 :tag1:tag2:\n" ) root = parse_org_document_new(view, mock_sublime.Region(0, view.size())) headline_item_list = [] for item in iter_tree_depth_first(root): if isinstance(item, OrgHeadline): headline_item_list.append(( org_headline_get_text(item), item.level, org_headline_get_tag_list(item) )) self.assertEqual(headline_item_list, [ ("This is org headline", 1, []), ("headline 2", 2, []), ("headline 3", 3, []), ("headline 4", 4, []), ("UNDONE HEADLINE 5", 2, []), ("UNDONE [#a] HeAdLiNe 6", 2, []), ("more headlines 7", 3, ["tag1", "tag2"]), ]) def test_control_line_parsing(self): view = mock_sublime.View( "#+ARCHIVE: foo\n" "#+BAR: QUX\n" "#+GG: once upon a time...\n" "#+BEGIN_SRC\n" "#+END_SRC\n" ) root = parse_org_document_new(view, mock_sublime.Region(0, view.size())) all_control_key_value_list = [] for item in iter_tree_depth_first(root): if isinstance(item, OrgControlLine): all_control_key_value_list.append(org_control_line_get_key_value(item)) self.assertEqual(all_control_key_value_list, [ ("ARCHIVE", "foo"), ("BAR", "QUX"), ("GG", "once upon a time..."), ]) unittest.main()
StarcoderdataPython
1799861
#!/usr/bin/python3 """ Application loader. Handles: - flaskenv loading - requirement updates for all plugins/macros and main application (if network is available) - database upgrade - loading WSGI server in production mode """ if __name__ == "__main__": from sys import path path.append('webapi') # Load .flaskenv from os.path import isfile if isfile('.flaskenv'): from libs.basics.system import load_export_file load_export_file('.flaskenv') # Pre-load config from libs.config import Config config = Config() # Install python packages from libs.basics.network import is_up if is_up("8.8.8.8") or is_up("1.1.1.1"): from sys import executable from subprocess import check_call from os import listdir from os.path import isfile, join check_call([executable, '-m', 'pip', 'install', '--upgrade', 'pip', 'wheel']) check_call([executable, '-m', 'pip', 'install', '--upgrade', '-r', 'requirements.txt']) blueprint_path = config.get('webapi', 'plugin_path') for blueprint in listdir(blueprint_path): requirements_path = join(blueprint_path, blueprint, 'requirements.txt') if isfile(requirements_path): check_call([executable, '-m', 'pip', 'install', '--upgrade', '-r', requirements_path]) macro_path = config.get('webapi', 'macro_path') for macro in listdir(macro_path): requirements_path = join(macro_path, macro, 'requirements.txt') if isfile(requirements_path): check_call([executable, '-m', 'pip', 'install', '--upgrade', '-r', requirements_path]) else: print("Internet not reachable") # Create application from webapi import create_app webapi = create_app() # Start application from os import getenv if getenv('FLASK_ENV') == 'development': webapi.run( host=getenv('FLASK_RUN_HOST', '0.0.0.0'), port=int(getenv('FLASK_RUN_PORT', '5000')), debug=bool(getenv('FLASK_DEBUG', True)) ) else: from waitress import serve serve( webapi, host=getenv('FLASK_RUN_HOST', '0.0.0.0'), port=int(getenv('FLASK_RUN_PORT', '5000')) )
StarcoderdataPython
1725547
import numpy as np from datashader.composite import add, saturate, over, source src = np.array([[0x00000000, 0x00ffffff, 0xffffffff], [0x7dff0000, 0x7d00ff00, 0x7d0000ff], [0xffff0000, 0xff000000, 0x3a3b3c3d]], dtype='uint32') clear = np.uint32(0) clear_white = np.uint32(0x00ffffff) white = np.uint32(0xffffffff) blue = np.uint32(0xffff0000) half_blue = np.uint32(0x7dff0000) half_purple = np.uint32(0x7d7d007d) def test_source(): o = src.copy() o[0, :2] = clear np.testing.assert_equal(source(src, clear), o) o[0, :2] = clear_white np.testing.assert_equal(source(src, clear_white), o) o[0, :2] = half_blue np.testing.assert_equal(source(src, half_blue), o) def test_over(): o = src.copy() o[0, 1] = 0 np.testing.assert_equal(over(src, clear), o) np.testing.assert_equal(over(src, clear_white), o) o = np.array([[0xffffffff, 0xffffffff, 0xffffffff], [0xffff8282, 0xff82ff82, 0xff8282ff], [0xffff0000, 0xff000000, 0xffd2d2d2]]) np.testing.assert_equal(over(src, white), o) o = np.array([[0xffff0000, 0xffff0000, 0xffffffff], [0xffff0000, 0xff827d00, 0xff82007d], [0xffff0000, 0xff000000, 0xffd20d0d]]) np.testing.assert_equal(over(src, blue), o) o = np.array([[0x7dff0000, 0x7dff0000, 0xffffffff], [0xbcff0000, 0xbc56a800, 0xbc5600a8], [0xffff0000, 0xff000000, 0x9ab51616]]) np.testing.assert_equal(over(src, half_blue), o) o = np.array([[0x7d7d007d, 0x7d7d007d, 0xffffffff], [0xbcd3002a, 0xbc2aa82a, 0xbc2a00d3], [0xffff0000, 0xff000000, 0x9a641664]]) np.testing.assert_equal(over(src, half_purple), o) def test_add(): o = src.copy() o[0, 1] = 0 np.testing.assert_equal(add(src, clear), o) np.testing.assert_equal(add(src, clear_white), o) o = np.array([[0xffffffff, 0xffffffff, 0xffffffff], [0xffffffff, 0xffffffff, 0xffffffff], [0xffffffff, 0xffffffff, 0xffffffff]]) np.testing.assert_equal(add(src, white), o) o = np.array([[0xffff0000, 0xffff0000, 0xffffffff], [0xffff0000, 0xffff7d00, 0xffff007d], [0xffff0000, 0xffff0000, 0xffff0d0d]]) np.testing.assert_equal(add(src, blue), o) o = np.array([[0x7dff0000, 0x7dff0000, 0xffffffff], [0xfaff0000, 0xfa7f7f00, 0xfa7f007f], [0xffff0000, 0xff7d0000, 0xb7c01313]]) np.testing.assert_equal(add(src, half_blue), o) o = np.array([[0x7d7d007d, 0x7d7d007d, 0xffffffff], [0xfabe003e, 0xfa3e7f3e, 0xfa3e00be], [0xffff003d, 0xff3d003d, 0xb7681368]]) np.testing.assert_equal(add(src, half_purple), o) def test_saturate(): o = src.copy() o[0, 1] = 0 np.testing.assert_equal(saturate(src, clear), o) np.testing.assert_equal(saturate(src, clear_white), o) o = np.full((3, 3), white, dtype='uint32') np.testing.assert_equal(saturate(src, white), o) o = np.full((3, 3), blue, dtype='uint32') np.testing.assert_equal(saturate(src, blue), o) o = np.array([[0x7dff0000, 0x7dff0000, 0xffff8282], [0xfaff0000, 0xfa7f7f00, 0xfa7f007f], [0xffff0000, 0xff7d0000, 0xb7c01313]]) np.testing.assert_equal(saturate(src, half_blue), o) o = np.array([[0x7d7d007d, 0x7d7d007d, 0xffbf82bf], [0xfabe003e, 0xfa3e7f3e, 0xfa3e00be], [0xffbf003d, 0xff3d003d, 0xb7681368]]) np.testing.assert_equal(saturate(src, half_purple), o)
StarcoderdataPython
51224
import sys import asyncio import zmq import zmq.asyncio from zmq.auth import Authenticator from zmq.auth.thread import _inherit_docstrings, ThreadAuthenticator, \ AuthenticationThread # Copying code from zqm classes since no way to inject these dependencies class MultiZapAuthenticator(Authenticator): """ `Authenticator` supports only one ZAP socket in a single process, this lets you have multiple ZAP sockets """ count = 0 def __init__(self, context=None, encoding='utf-8', log=None): MultiZapAuthenticator.count += 1 super().__init__(context=context, encoding=encoding, log=log) def start(self): """Create and bind the ZAP socket""" self.zap_socket = self.context.socket(zmq.REP) self.zap_socket.linger = 1 zapLoc = 'inproc://zeromq.zap.{}'.format(MultiZapAuthenticator.count) self.zap_socket.bind(zapLoc) self.log.debug('Starting ZAP at {}'.format(zapLoc)) def stop(self): """Close the ZAP socket""" if self.zap_socket: self.log.debug( 'Stopping ZAP at {}'.format(self.zap_socket.LAST_ENDPOINT)) super().stop() @_inherit_docstrings class ThreadMultiZapAuthenticator(ThreadAuthenticator): def start(self): """Start the authentication thread""" # create a socket to communicate with auth thread. self.pipe = self.context.socket(zmq.PAIR) self.pipe.linger = 1 self.pipe.bind(self.pipe_endpoint) authenticator = MultiZapAuthenticator(self.context, encoding=self.encoding, log=self.log) self.thread = AuthenticationThread(self.context, self.pipe_endpoint, encoding=self.encoding, log=self.log, authenticator=authenticator) self.thread.start() # Event.wait:Changed in version 2.7: Previously, the method always returned None. if sys.version_info < (2, 7): self.thread.started.wait(timeout=10) else: if not self.thread.started.wait(timeout=10): raise RuntimeError("Authenticator thread failed to start") class AsyncioAuthenticator(MultiZapAuthenticator): """ZAP authentication for use in the asyncio IO loop""" def __init__(self, context=None, loop=None): super().__init__(context) self.loop = loop or asyncio.get_event_loop() self.__poller = None self.__task = None # TODO: Remove this commented method later # @asyncio.coroutine # def __handle_zap(self): # while True: # events = yield from self.__poller.poll() # if self.zap_socket in dict(events): # msg = yield from self.zap_socket.recv_multipart() # self.handle_zap_message(msg) async def __handle_zap(self): while True: events = await self.__poller.poll() if self.zap_socket in dict(events): msg = await self.zap_socket.recv_multipart() self.handle_zap_message(msg) def start(self): """Start ZAP authentication""" super().start() self.__poller = zmq.asyncio.Poller() self.__poller.register(self.zap_socket, zmq.POLLIN) self.__task = asyncio.ensure_future(self.__handle_zap()) def stop(self): """Stop ZAP authentication""" if self.__task: self.__task.cancel() if self.__poller: self.__poller.unregister(self.zap_socket) self.__poller = None super().stop()
StarcoderdataPython
3270380
<filename>quidel/tests/test_handle_wip_sensor.py import unittest from delphi_quidel.handle_wip_sensor import add_prefix from delphi_quidel.constants import SENSORS class MyTestCase(unittest.TestCase): def test_handle_wip_sensor(self): # Test wip_signal = True, Add prefix to all signals sensors = list(SENSORS.keys()) signal_names = add_prefix(sensors, True, prefix="wip_") assert all(s.startswith("wip_") for s in signal_names) # Test wip_signal = list, Add prefix to signal list signal_names = add_prefix(sensors, [sensors[0]], prefix="wip_") assert signal_names[0].startswith("wip_") assert all(not s.startswith("wip_") for s in signal_names[1:]) # Test wip_signal = False, Add prefix to unpublished signals signal_names = add_prefix(["xyzzy", sensors[0]], False, prefix="wip_") assert signal_names[0].startswith("wip_") assert all(not s.startswith("wip_") for s in signal_names[1:]) if __name__ == '__main__': unittest.main()
StarcoderdataPython
27163
<reponame>raimota/Gerador-Validador-CPF_CNPJ<filename>app/models/forms.py from flask_wtf import FlaskForm from wtforms import StringField from wtforms.validators import DataRequired class Campos(FlaskForm): es = StringField('es')
StarcoderdataPython
1608751
<gh_stars>0 import sys, csv, getopt, codecs, datetime from collections import OrderedDict class Day(object): def __init__(self, date, distance): self.date = date self.distance = distance def csv_day(self): return [self.date, self.distance] def get_date(entry): date_str = entry.split(';')[1] date = datetime.datetime.strptime(date_str, "%m/%d/%y").date() return date def get_distance(entry): return float(entry.split(';')[2]) def parse_csv(inputfile): reader = csv.reader(codecs.open(inputfile,'rU','utf-16')) journal = {} for line in reader: distance = 0 if len(line) == 1: continue date = get_date(line[0]) try: distance = get_distance(line[4]) except: pass if date in journal: journal[date].distance += distance else: journal[date] = Day(date, distance) return journal def main(argv): inputfile = '' outputfile = '' verbose = False try: opts, args = getopt.getopt(argv,"hi:o:",["ifile=","ofile="]) except getopt.GetoptError: print 'tripcsv.py -i <inputfile> -o <outputfile>' sys.exit(2) for opt, arg in opts: if opt == '-h': print 'tripcsv.py -i <inputfile> -o <outputfile>' sys.exit() elif opt in ("-i", "--ifile"): inputfile = arg elif opt in ("-o", "--ofile"): outputfile = arg output = parse_csv(inputfile) if verbose: for date, entry in output.items(): print date, ": ", entry.displayDay() else: print "Date,Distance" for date, entry in OrderedDict(sorted(output.items(), key=lambda t: t[0])).items(): csv_day = entry.csv_day() if csv_day != None: #idk why print "{0},{1}".format(csv_day[0], csv_day[1]) if __name__ == "__main__": main(sys.argv[1:])
StarcoderdataPython
3352533
from unittest import TestCase from Cuenta import Cuenta class TestCuenta(TestCase): def test_depositar(self): C = Cuenta("Mayorquin", "0", 0.0) self.assertEqual(C.depositar(5000), 5000) def test_retirar(self): C= Cuenta("mayorquin", "0", 500.00) self.assertEqual(C.retirar(200), 300)
StarcoderdataPython
114799
# This file implements spiking neural networks as described # in the work: # <NAME>, Coarse scale representation of spiking neural networks: # backpropagation through spikes and applications to neuromorphic hardware, # International Conference on Neuromorphic Systems (ICONS), 2020 import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import numpy as np import math as m from spikingnet import SpikingLayer, SpikingVextLayer, poisson_spikes class SpikingShallowNetwork(nn.Module): def __init__(self, Nin, Nout, Nsp, t1, beta=5, scale=1): super(SpikingShallowNetwork, self).__init__() self.Nsp = Nsp self.Nout = Nout self.Nin = Nin self.l1 = nn.Linear(self.Nin, self.Nout, bias=None) # torch.nn.init.constant_(self.l1.weight, 0.0005) self.sl = SpikingLayer(t1, beta=beta) self.scale = scale def forward(self, x, device): x = x.view(-1, 28*28) s = torch.zeros(x.shape[0], self.Nout).to(device) v = torch.zeros(x.shape[0], self.Nout).to(device) nsp = torch.zeros(x.shape[0], self.Nout).to(device) for i in range(self.Nsp): xi = poisson_spikes(x, self.scale).to(device) xi = self.l1(xi) s, v = self.sl(xi, s, v) nsp += s return nsp class SpikingHiddenNetwork(nn.Module): def __init__(self, Nin, Nhid, Nout, Nsp, t1, t2, beta=5, scale=1): super(SpikingHiddenNetwork, self).__init__() self.Nsp = Nsp self.Nhid = Nhid self.Nout = Nout self.l1 = nn.Linear(Nin, self.Nhid) self.l2 = nn.Linear(self.Nhid, self.Nout, bias=None) self.sl1 = SpikingLayer(t1, beta=beta) self.sl2 = SpikingLayer(t2, beta=beta) self.scale = scale def forward(self, x, device): x = x.view(-1, 28*28) s1 = torch.zeros(x.shape[0], self.Nhid).to(device) v1 = torch.zeros(x.shape[0], self.Nhid).to(device) s2 = torch.zeros(x.shape[0], self.Nout).to(device) v2 = torch.zeros(x.shape[0], self.Nout).to(device) nsp = torch.zeros(x.shape[0], self.Nout).to(device) for i in range(self.Nsp): xi = poisson_spikes(x, self.scale).to(device) s1, v1 = self.sl1(self.l1(xi), s1, v1) xi = self.l2(s1) s2, v2 = self.sl2(xi, s2, v2) nsp += s2 return nsp class SpikingConvNetwork(nn.Module): def __init__(self, Nin, Nout, Nsp, t1, t2, beta=5, scale=1): super(SpikingConvNetwork, self).__init__() self.Nsp = Nsp self.Nout = Nout self.Nin = Nin self.Nhid = 784 self.conv1 = nn.Conv2d(1, 4, (5,5), stride=2, padding=2) self.l1 = nn.Linear(self.Nhid, self.Nout, bias=None) self.sl1 = SpikingLayer(t1, beta=beta) self.sl2 = SpikingLayer(t2, beta=beta) self.scale = scale def forward(self, x, device): s1 = torch.zeros(x.shape[0], self.Nhid).to(device) v1 = torch.zeros(x.shape[0], self.Nhid).to(device) s2 = torch.zeros(x.shape[0], self.Nout).to(device) v2 = torch.zeros(x.shape[0], self.Nout).to(device) nsp = torch.zeros(x.shape[0], self.Nout).to(device) for i in range(self.Nsp): xi = poisson_spikes(x, self.scale).to(device) xi = self.conv1(xi) xi = xi.view(xi.shape[0],-1) s1, v1 = self.sl1(xi, s1, v1) xi2 = self.l1(s1) s2, v2 = self.sl2(xi2, s2, v2) nsp += s2 return nsp class SpikingConvNetwork2(nn.Module): def __init__(self, Nin, Nout, Nsp, t1, t2, beta=5, scale=1): super(SpikingConvNetwork2, self).__init__() self.Nsp = Nsp self.Nout = Nout self.Nin = Nin self.Nhid1 = Nin self.Nhid2 = 600 self.scale = scale self.conv1 = nn.Conv2d(1, 4, (5,5), stride=2, padding=2) self.l1 = nn.Linear(self.Nhid2, self.Nout, bias=None) self.conv2 = nn.Conv2d(4, 6, (5,5), stride=1, padding=0) self.sl1 = SpikingLayer(t1, beta=beta) self.sl2 = SpikingLayer(t1, beta=beta) self.sl3 = SpikingLayer(t2, beta=beta) def forward(self, x, device): s1 = torch.zeros(x.shape[0], 4, 14, 14).to(device) v1 = torch.zeros(x.shape[0], 4, 14, 14).to(device) s2 = torch.zeros(x.shape[0], 6, 10, 10).to(device) v2 = torch.zeros(x.shape[0], 6, 10, 10).to(device) s3 = torch.zeros(x.shape[0], self.Nout).to(device) v3 = torch.zeros(x.shape[0], self.Nout).to(device) nsp = torch.zeros(x.shape[0], self.Nout).to(device) for i in range(self.Nsp): xi = poisson_spikes(x,self.scale).to(device) xi = self.conv1(xi) s1, v1 = self.sl1(xi, s1, v1) xi = self.conv2(s1) s2, v2 = self.sl2(xi, s2, v2) xi = s2.view(s2.shape[0],-1) xi2 = self.l1(xi) s3, v3 = self.sl3(xi2, s3, v3) nsp += s3 return nsp class SpikingLeNet5(nn.Module): def __init__(self, Nsp, t1, t2, beta=5, scale=1): self.Nsp = Nsp super(SpikingLeNet5, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True) self.max_pool_1 = nn.MaxPool2d(kernel_size=2) self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True) self.max_pool_2 = nn.MaxPool2d(kernel_size=2) self.fc1 = nn.Linear(16*5*5, 120, bias=False) self.fc2 = nn.Linear(120,84, bias=False) self.fc3 = nn.Linear(84,10, bias=False) self.sl1 = SpikingLayer(t1, beta=beta) self.sl2 = SpikingLayer(t1, beta=beta) self.sl3 = SpikingLayer(t2, beta=beta) self.sl4 = SpikingLayer(t2, beta=beta) self.sl5 = SpikingLayer(t2, beta=beta) self.scale = scale def build_x(self, x): xi = torch.zeros_like(x) xout = torch.rand_like(x) xout[xout>self.scale*x] = 0.0 xout[xout>0] = 1.0 return xout def forward(self, x, device): s1 = torch.zeros(x.shape[0], 6, 28, 28).to(device) v1 = torch.zeros(x.shape[0], 6, 28, 28).to(device) s2 = torch.zeros(x.shape[0], 16, 10, 10).to(device) v2 = torch.zeros(x.shape[0], 16, 10, 10).to(device) s3 = torch.zeros(x.shape[0], 120).to(device) v3 = torch.zeros(x.shape[0], 120).to(device) s4 = torch.zeros(x.shape[0], 84).to(device) v4 = torch.zeros(x.shape[0], 84).to(device) s5 = torch.zeros(x.shape[0], 10).to(device) v5 = torch.zeros(x.shape[0], 10).to(device) nsp = torch.zeros(x.shape[0], 10).to(device) for i in range(self.Nsp): xi = self.build_x(x).to(device) xi = self.conv1(xi) s1, v1 = self.sl1(xi, s1, v1) xi = self.max_pool_1(s1) xi = self.conv2(xi) s2, v2 = self.sl2(xi, s2, v2) xi = self.max_pool_2(s2) xi = xi.view(xi.shape[0],-1) xi = self.fc1(xi) s3, v3 = self.sl3(xi, s3, v3) xi = self.fc2(s3) s4, v4 = self.sl4(xi, s4, v4) xi = self.fc3(s4) s5, v5 = self.sl5(xi, s5, v5) nsp += s5 return nsp class SpikingLeNet5const(nn.Module): def __init__(self, Nsp, t0, t1, t2, beta=5, scale=1): self.Nsp = Nsp super(SpikingLeNet5const, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True) self.max_pool_1 = nn.MaxPool2d(kernel_size=2) self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True) self.max_pool_2 = nn.MaxPool2d(kernel_size=2) self.fc1 = nn.Linear(16*5*5, 120, bias=False) self.fc2 = nn.Linear(120,84, bias=False) self.fc3 = nn.Linear(84,10, bias=False) self.sl0 = SpikingVextLayer(t0, beta=beta) self.sl1 = SpikingLayer(t1, beta=beta) self.sl2 = SpikingLayer(t1, beta=beta) self.sl3 = SpikingLayer(t2, beta=beta) self.sl4 = SpikingLayer(t2, beta=beta) self.sl5 = SpikingLayer(t2, beta=beta) self.scale = scale def build_x(self, x): xi = torch.zeros_like(x) xout = torch.rand_like(x) xout[xout>self.scale*x] = 0.0 xout[xout>0] = 1.0 return xout def forward(self, x, device): s0 = torch.zeros(x.shape[0], 1, 28, 28).to(device) v0 = torch.zeros(x.shape[0], 1, 28, 28).to(device) s1 = torch.zeros(x.shape[0], 6, 28, 28).to(device) v1 = torch.zeros(x.shape[0], 6, 28, 28).to(device) s2 = torch.zeros(x.shape[0], 16, 10, 10).to(device) v2 = torch.zeros(x.shape[0], 16, 10, 10).to(device) s3 = torch.zeros(x.shape[0], 120).to(device) v3 = torch.zeros(x.shape[0], 120).to(device) s4 = torch.zeros(x.shape[0], 84).to(device) v4 = torch.zeros(x.shape[0], 84).to(device) s5 = torch.zeros(x.shape[0], 10).to(device) v5 = torch.zeros(x.shape[0], 10).to(device) nsp = torch.zeros(x.shape[0], 10).to(device) for i in range(self.Nsp): s0, v0 = self.sl0(x, s0, v0) xi = self.conv1(s0) s1, v1 = self.sl1(xi, s1, v1) xi = self.max_pool_1(s1) xi = self.conv2(xi) s2, v2 = self.sl2(xi, s2, v2) xi = self.max_pool_2(s2) xi = xi.view(xi.shape[0],-1) xi = self.fc1(xi) s3, v3 = self.sl3(xi, s3, v3) xi = self.fc2(s3) s4, v4 = self.sl4(xi, s4, v4) xi = self.fc3(s4) s5, v5 = self.sl5(xi, s5, v5) nsp += s5 return nsp def train(args, model, device, train_loader, optimizer, epoch, scale=4): model.train() Nsp = model.Nsp for batch_idx, (data, target) in enumerate(train_loader): bsize = target.shape[0] optimizer.zero_grad() mtarget = target mdata = data data, mtarget = mdata.to(device), mtarget.to(device) output = scale*(model(data, device)-0.5*model.Nsp) loss = F.cross_entropy(output, mtarget) loss.backward() optimizer.step() if batch_idx % 5 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # print(output) def test(args, model, device, test_loader, scale=4): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: mtarget = target mdata = data data, mtarget = mdata.to(device), mtarget.to(device) output = scale*(model(data, device)-0.5*model.Nsp) test_loss += F.cross_entropy(output, mtarget).item() pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred).to(device)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) return 100. * correct / len(test_loader.dataset) def train_mse(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): bsize = target.shape[0] optimizer.zero_grad() mtarget = torch.zeros(target.shape[0],10) for i in range(target.shape[0]): mtarget[i,target[i]]= args.spikes data, target = data.to(device), mtarget.to(device) output = model(data, device) loss = F.mse_loss(output, target) loss.backward() optimizer.step() if batch_idx % 5 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # print(output) def test_mse(args, model, device, test_loader): model.eval() Nst = model.Nsp test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: mtarget = torch.zeros(target.shape[0],10) for i in range(target.shape[0]): mtarget[i,target[i]]= args.spikes data, mtarget = data.to(device), mtarget.to(device) output = model(data, device) test_loss += F.mse_loss(output, mtarget, reduction='sum').item() # sum up batch loss pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.view_as(pred).to(device)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) return 100. * correct / len(test_loader.dataset) def main(): # Training settings parser = argparse.ArgumentParser(description='SpikingNet example') parser.add_argument('name', metavar='N', type=str, nargs=1, help='filename') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.001)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dataset', type=int, default=0, metavar='N', help='dataset: mnist-0 fashionmnist-1') parser.add_argument('--length', type=int, default=8, metavar='N', help='length: (default: 8)') parser.add_argument('--leakage1', type=int, default=4, metavar='N', help='leakage2: (default: 4)') parser.add_argument('--leakage2', type=int, default=4, metavar='N', help='leakage1: (default: 4)') parser.add_argument('--leakage0', type=int, default=4, metavar='N', help='leakage0: (default: 4)') parser.add_argument('--beta', type=float, default=5.0, metavar='N', help='beta: (default: 5.0)') parser.add_argument('--scale', type=float, default=1.0, metavar='N', help='scale: (default: 1.0)') parser.add_argument('--cost', type=int, default=1, metavar='N', help='cost function 0 - xent, 1 - mse: (default: 1)') parser.add_argument('--spikes', type=int, default=4, metavar='N', help='# output spikes in mse: (default: 4)') parser.add_argument('--model', type=int, default=0, metavar='N', help='model: shallow-0 hidden-1 conv1-2 conv2-3 \ Lenet5-4 Lenet5const-5') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} if args.dataset == 1: train_loader = torch.utils.data.DataLoader( datasets.FashionMNIST('fashionMNIST', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor() ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.FashionMNIST('fashionMNIST', train=False, transform=transforms.Compose([ transforms.ToTensor()])), batch_size=args.test_batch_size, shuffle=True, **kwargs) else: train_loader = torch.utils.data.DataLoader( datasets.MNIST('MNIST', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor() ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('MNIST', train=False, transform=transforms.Compose([ transforms.ToTensor() ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) if args.model == 0: model = SpikingShallowNetwork(784, 10, args.length, args.leakage1, beta=args.beta, scale=args.scale).to(device) elif args.model == 1: model = SpikingHiddenNetwork(784, 10, 30, args.length, args.leakage1, args.leakage2, beta=args.beta, scale=args.scale).to(device) elif args.model == 2: model = SpikingConvNetwork(784, 10, args.length, args.leakage1, args.leakage2, beta=args.beta, scale=args.scale).to(device) elif args.model == 3: model = SpikingConvNetwork2(784, 10, args.length, args.leakage1, args.leakage2, beta=args.beta, scale=args.scale).to(device) elif args.model == 4: model = SpikingLeNet5(args.length, args.leakage1, args.leakage2, beta=args.beta, scale=args.scale).to(device) elif args.model == 5: model = SpikingLeNet5const(args.length, args.leakage0, args.leakage1, args.leakage2, beta=args.beta, scale=args.scale).to(device) if args.cost == 0: trainf = train testf = test else: trainf = train_mse testf = test_mse optimizer = optim.Adam(model.parameters(), lr=args.lr*8/args.length) data = [] for epoch in range(1, args.epochs + 1): trainf(args, model, device, train_loader, optimizer, epoch) result = testf(args, model, device, test_loader) data.append([epoch, result]) data = np.array(data) # condstring = "%d_%d_%d_%d_%d" % (args.length, args.leakage0, args.leakage1, args.leakage2, args.dataset) condstring = "%d_%d_%d_%d" % (args.length, args.leakage1, args.beta, args.dataset) filename = args.name[0] + "_" + condstring + ".npy" filemode = args.name[0] + "_" + condstring + ".pt" np.save(filename, data) torch.save(model.state_dict(), filemode) if __name__ == '__main__': main()
StarcoderdataPython
1781807
from abc import ABC, abstractmethod class Debuggable(ABC): """ The Debuggable "mixin" marks a class as having the debug_str method, allowing other functions to print this information when needed. """ @abstractmethod def debug_str(self): """A debug string is used for providing better error messages during both parsing and at runtime."""
StarcoderdataPython
51479
from django.core.exceptions import PermissionDenied from django.utils import timezone from .models import Item from datetime import datetime def active_auction(function): def wrap(request, *args, **kwargs): item = Item.objects.get(slug=kwargs['slug']) if item.end_of_auction > timezone.now(): return function(request, *args, **kwargs) else: raise PermissionDenied wrap.__doc__ = function.__doc__ wrap.__name__ = function.__name__ return wrap
StarcoderdataPython
1647960
<filename>python/hash_tailored_audience_file.py #!/usr/bin/env python """ Copyright (C) 2014-2016 Twitter Inc and other contributors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import csv import re import hashlib import sys def setup(args, flags): """Sets up arguments and flags for processing hashes. Args: args: named to setup type, infile and outfile Returns: boolean: true or false """ if args.type == 'MOBILEDEVICEID': # mobile device IDs can be a mixture of IDFA, ADID and ANDROID in a single file flags['regex'] = re.compile('^[a-z0-9][a-z0-9\-]+[a-z0-9]$') elif args.type == 'IDFA': # flags['uppercase'] = True flags['regex'] = re.compile('^[a-z0-9][a-z0-9\-]+[a-z0-9]$') elif args.type == 'ADID': flags['regex'] = re.compile('^[a-z0-9][a-z0-9\-]+[a-z0-9]$') elif args.type == 'ANDROID': flags['regex'] = re.compile('^[a-z0-9]+$') elif args.type == 'EMAIL': flags['regex'] = re.compile('^[a-z0-9][a-z0-9_\-\.\+]+\@[a-z0-9][a-z0-9\.]+[a-z]$') elif args.type == 'PHONE' or args.type == 'TWITTERID': flags['dropleadingzeros'] = True flags['regex'] = re.compile('^\d+$') elif args.type == 'TWITTERSCREENNAME': flags['dropleadingat'] = True flags['regex'] = re.compile('^[a-z0-9_]+$') else: # There is an invalid type. print ("ERROR: invalid type") return False # Flags should be correctly set if so return a true value return True def hashFile(args, flags): """Hashes the file based on the params setup in args. Args: args: named to setup type, infile and outfile Returns: dict: {"written": N, "skipped": N} """ skipped = 0 written = 0 if args.infile.name.endswith(".csv"): csv_file = True reader = csv.reader(args.infile, dialect='excel') else: csv_file = False reader = args.infile for text in reader: if not csv_file: text = [text] for line in text: if not line: break line = line.rstrip() # Remove whitespace line = ''.join(line.split()) # Set case if flags['uppercase']: line = line.upper() else: line = line.lower() # Drop leading '@' if flags['dropleadingat']: line = line.lstrip('@') # Drop leading zeros if flags['dropleadingzeros']: line = line.lstrip('0') if flags['regex'].match(line) is None: skipped += 1 continue if debug: print ("\t" + line) hashed = hashlib.sha256(line).hexdigest() args.outfile.write(hashed + "\n") written += 1 # Close --infile and --outfile args.infile.close() args.outfile.close() hash_info = {"written": written, "skipped": skipped} return hash_info if __name__ == "__main__": debug = False parser = argparse.ArgumentParser(description='Hash the contents of a file for TA upload.') aud_types = ['MOBILEDEVICEID', 'IDFA', 'ADID', 'ANDROID', 'EMAIL', 'PHONE', 'TWITTERID', 'TWITTERSCREENNAME'] # Set the type. parser.add_argument('--type', required=True, metavar='TWITTERID', help='source data type.', choices=aud_types) # parse --infile e.g. the in location of the file. parser.add_argument('--infile', required=True, type=argparse.FileType('rU'), metavar='/path/to/source.txt', help='input file to parse.') # parse --outfile e.g. the location of the file parser.add_argument('--outfile', required=True, type=argparse.FileType('w'), metavar='/path/to/output.txt', help='file to write output.') # Parse the arguments from the command to the variable args. args = parser.parse_args() # Setup a dictionary with Flags flags = {'uppercase': False, 'dropleadingzeros': False, 'dropleadingat': False} # If setup is correctly configured.. if setup(args, flags) is True: # Run the hashFile function with the variables hashed_info = hashFile(args, flags) print ("Written:\t" + str(hashed_info['written'])) print ("Skipped:\t" + str(hashed_info['skipped'])) # Exit sys.exit()
StarcoderdataPython
3342551
# desafio 15 c = float(input('Digite a temperatura em ºC: ')) f = (c*9/5)+32 k = c+273.15 print('A temperatura é de {}ºF e {}K' .format(f, k)) # desafio 15 km = float(input('Digite quantos Km o carro percorreu: ')) dias = float(input('Digite por quantos dias alugou o carro: ')) aluguel = (dias*60)+(km*0.15) print('O valor a pagar é de R${:.2f}' .format(aluguel))
StarcoderdataPython
3339271
from setuptools import setup setup( version="0.0.2", name="dblpbib", packages=["dblpbib"], description="Download all bibtex references for provided author", author="<NAME>", author_email="<EMAIL>", entry_points = { 'console_scripts': [ 'dblpbib = dblpbib:main', ], }, install_requires=["requests"], )
StarcoderdataPython
3237630
<filename>training/views.py from django.contrib import messages from django.http import HttpResponseRedirect from django.shortcuts import render # Create your views here. from django.urls import reverse from ems_admin.decorators import log_activity from ems_auth.decorators import hr_required from organisation_details.decorators import organisationdetail_required from settings.selectors import get_all_currencies, get_currency from training.models import Training, TrainingSchedule from training.selectors import get_all_training_schedules, get_applicant_trainings, \ get_training_schedule, get_pending_training_applications, get_training_application from training.services import approve_training_application_service, reject_training_application_service @organisationdetail_required @log_activity def user_training_page(request): applicant = request.user.solitonuser.employee if request.POST: programme = request.POST.get('programme') institution = request.POST.get('institution') duration = request.POST.get('duration') cost = request.POST.get('cost') start_date = request.POST.get('start_date') end_date = request.POST.get('end_date') business_case = request.POST.get('business_case') objectives = request.POST.get('objectives') preparations = request.POST.get('preparations') skills = request.POST.get('skills') knowledge = request.POST.get('knowledge') currency_id = request.POST.get('currency_id') currency = get_currency(currency_id) Training.objects.create( applicant=applicant, programme=programme, institution=institution, duration=duration, cost=cost, start_date=start_date, end_date=end_date, business_case=business_case, objectives=objectives, preparations=preparations, skills=skills, knowledge=knowledge, currency=currency ) return HttpResponseRedirect(reverse(user_training_page)) currencies = get_all_currencies() trainings = get_applicant_trainings(applicant) context = { "training_page": "active", "currencies": currencies, "trainings": trainings } return render(request, 'training/user_training.html', context) @hr_required @log_activity def schedule_training_page(request): if request.POST: programme = request.POST.get('programme') duration = request.POST.get('duration') venue = request.POST.get('venue') purpose = request.POST.get('purpose') date = request.POST.get('date') TrainingSchedule.objects.create( programme=programme, duration=duration, venue=venue, purpose=purpose, date=date ) return HttpResponseRedirect(reverse(schedule_training_page)) training_schedules = get_all_training_schedules() context = { "training_page": "active", "training_schedules": training_schedules } return render(request, 'training/schedule_training.html', context) @hr_required @log_activity def edit_training_schedule(request, training_schedule_id): if request.POST: programme = request.POST.get('programme') duration = request.POST.get('duration') venue = request.POST.get('venue') purpose = request.POST.get('purpose') date = request.POST.get('date') transaction_schedules = TrainingSchedule.objects.filter(id=training_schedule_id) transaction_schedules.update( programme=programme, duration=duration, venue=venue, purpose=purpose, date=date ) return HttpResponseRedirect(reverse(schedule_training_page)) training_schedule = get_training_schedule(training_schedule_id) context = { "training_page": "active", "training_schedule": training_schedule } return render(request, "training/edit_training_schedule.html", context) @hr_required @log_activity def delete_training_schedule(request, training_schedule_id): training_schedule = get_training_schedule(training_schedule_id) training_schedule.delete() return HttpResponseRedirect(reverse(schedule_training_page)) @hr_required @log_activity def training_schedules_page(request): training_schedules = get_all_training_schedules() context = { "training_page": "active", "training_schedules": training_schedules } return render(request, 'training/training_schedules.html', context) @hr_required @organisationdetail_required @log_activity def approve_training_page(request): approver = request.user pending_applications = get_pending_training_applications(approver) context = { "training_page": "active", "pending_applications": pending_applications } return render(request, 'training/approve_training_applications.html', context) @log_activity def approve_training_application(request, training_application_id): approver = request.user training_application = get_training_application(training_application_id) approved_training_application = approve_training_application_service(approver, training_application) if approved_training_application: messages.success(request, "You approved %s's training application" % approved_training_application.applicant) else: messages.error(request, "You are not associated to any role on the system") return HttpResponseRedirect(reverse('approve_training_page')) @log_activity def reject_training_application(request, training_application_id): rejecter = request.user training_application = get_training_application(training_application_id) rejected_training_application = reject_training_application_service(rejecter, training_application) if rejected_training_application: messages.success(request, "You rejected %s's training application" % rejected_training_application.applicant) else: messages.error(request, "You are not associated to any role on the system") return HttpResponseRedirect(reverse('approve_overtime_page'))
StarcoderdataPython
3206085
import json import logging from io import StringIO from urllib import parse from bottle import abort from devmine.lib.composition import rank from devmine.app.controllers.application_controller import ( ApplicationController, enable_cors ) class SearchController(ApplicationController): """Class for handling search query.""" def query(self, db, q): """Return search result as a JSON string""" enable_cors() try: io = StringIO(parse.unquote(q)) feature_weights = json.load(io) ranking, elsapsed_time = rank(db, feature_weights) except: logging.exception('SearchController:query') abort(400, 'Malformed JSON query') sorted_ranking = sorted( ranking, key=lambda user: user['rank'], reverse=True) results = {'results': sorted_ranking[:100], 'elapsed_time': "%0.9f" % (elsapsed_time)} return json.dumps(results)
StarcoderdataPython
181770
from edge.command.common.precommand_check import check_gcloud_authenticated, check_project_exists, check_billing_enabled from edge.config import GCProjectConfig, StorageBucketConfig, EdgeConfig from edge.enable_api import enable_service_api from edge.exception import EdgeException from edge.gcloud import is_authenticated, get_gcloud_account, get_gcloud_project, get_gcloud_region, get_gcp_regions, \ project_exists, is_billing_enabled from edge.state import EdgeState from edge.storage import setup_storage from edge.tui import TUI, StepTUI, SubStepTUI, TUIStatus, qmark from edge.versions import get_gcloud_version, Version, get_kubectl_version, get_helm_version from edge.path import get_model_dvc_pipeline import questionary def edge_init(): success_title = "Initialised successfully" success_message = f""" What's next? We suggest you proceed with: Commit the new vertex:edge configuration to git: git add edge.yaml && git commit -m "Initialise vertex:edge" Configure an experiment tracker (optional): ./edge.sh experiments init Configure data version control: ./edge.sh dvc init Train and deploy a model (see 'Training a model' section of the README for more details): ./edge.sh model init dvc repro {get_model_dvc_pipeline()} ./edge.sh model deploy Happy herding! 🐏 """.strip() failure_title = "Initialisation failed" failure_message = "See the errors above. See README for more details." with TUI( "Initialising vertex:edge", success_title, success_message, failure_title, failure_message ) as tui: with StepTUI(message="Checking your local environment", emoji="🖥️") as step: with SubStepTUI("Checking gcloud version") as sub_step: gcloud_version = get_gcloud_version() expected_gcloud_version_string = "2021.05.21" expected_gcloud_version = Version.from_string(expected_gcloud_version_string) if not gcloud_version.is_at_least(expected_gcloud_version): raise EdgeException( f"We found gcloud version {str(gcloud_version)}, " f"but we require at least {str(expected_gcloud_version)}. " "Update gcloud by running `gcloud components update`." ) try: gcloud_alpha_version = get_gcloud_version("alpha") expected_gcloud_alpha_version_string = "2021.06.00" expected_gcloud_alpha_version = Version.from_string(expected_gcloud_alpha_version_string) if not gcloud_alpha_version.is_at_least(expected_gcloud_alpha_version): raise EdgeException( f"We found gcloud alpha component version {str(gcloud_alpha_version)}, " f"but we require at least {str(expected_gcloud_alpha_version)}. " "Update gcloud by running `gcloud components update`." ) except KeyError: raise EdgeException( f"We couldn't find the gcloud alpha components, " f"please install these by running `gcloud components install alpha`" ) with SubStepTUI("Checking kubectl version") as sub_step: kubectl_version = get_kubectl_version() expected_kubectl_version_string = "v1.19.0" expected_kubectl_version = Version.from_string(expected_kubectl_version_string) if not kubectl_version.is_at_least(expected_kubectl_version): raise EdgeException( f"We found gcloud version {str(kubectl_version)}, " f"but we require at least {str(expected_kubectl_version)}. " "Please visit https://kubernetes.io/docs/tasks/tools/ for installation instructions." ) with SubStepTUI("Checking helm version") as sub_step: helm_version = get_helm_version() expected_helm_version_string = "v3.5.2" expected_helm_version = Version.from_string(expected_helm_version_string) if not helm_version.is_at_least(expected_helm_version): raise EdgeException( f"We found gcloud version {str(helm_version)}, " f"but we require at least {str(expected_helm_version)}. " "Please visit https://helm.sh/docs/intro/install/ for installation instructions." ) with StepTUI(message="Checking your GCP environment", emoji="☁️") as step: check_gcloud_authenticated() with SubStepTUI(message="Verifying GCloud configuration") as sub_step: gcloud_account = get_gcloud_account() if gcloud_account is None or gcloud_account == "": raise EdgeException( "gcloud account is unset. " "Run `gcloud auth login && gcloud auth application-default login` to authenticate " "with the correct account" ) gcloud_project = get_gcloud_project() if gcloud_project is None or gcloud_project == "": raise EdgeException( "gcloud project id is unset. " "Run `gcloud config set project $PROJECT_ID` to set the correct project id" ) gcloud_region = get_gcloud_region() if gcloud_region is None or gcloud_region == "": raise EdgeException( "gcloud region is unset. " "Run `gcloud config set compute/region $REGION` to set the correct region" ) sub_step.update(status=TUIStatus.NEUTRAL) sub_step.set_dirty() if not questionary.confirm(f"Is this the correct GCloud account: {gcloud_account}", qmark=qmark).ask(): raise EdgeException( "Run `gcloud auth login && gcloud auth application-default login` to authenticate " "with the correct account" ) if not questionary.confirm(f"Is this the correct project id: {gcloud_project}", qmark=qmark).ask(): raise EdgeException("Run `gcloud config set project <project_id>` to set the correct project id") if not questionary.confirm(f"Is this the correct region: {gcloud_region}", qmark=qmark).ask(): raise EdgeException("Run `gcloud config set compute/region <region>` to set the correct region") with SubStepTUI(f"{gcloud_region} is available on Vertex AI") as sub_step: if gcloud_region not in get_gcp_regions(gcloud_project): formatted_regions = "\n ".join(get_gcp_regions(gcloud_project)) raise EdgeException( "Vertex AI only works in certain regions. " "Please choose one of the following by running `gcloud config set compute/region <region>`:\n" f" {formatted_regions}" ) gcloud_config = GCProjectConfig( project_id=gcloud_project, region=gcloud_region, ) check_project_exists(gcloud_project) check_billing_enabled(gcloud_project) with StepTUI(message="Initialising Google Storage and vertex:edge state file", emoji="💾") as step: with SubStepTUI("Enabling Storage API") as sub_step: enable_service_api("storage-component.googleapis.com", gcloud_project) with SubStepTUI("Configuring Google Storage bucket", status=TUIStatus.NEUTRAL) as sub_step: sub_step.set_dirty() storage_bucket_name = questionary.text( "Now you need to choose a name for a storage bucket that will be used for data version control, " "model assets and keeping track of the vertex:edge state\n " "NOTE: Storage bucket names must be unique and follow certain conventions. " "Please see the following guidelines for more information " "https://cloud.google.com/storage/docs/naming-buckets." "\n Enter Storage bucket name to use: ", qmark=qmark ).ask().strip() if storage_bucket_name is None or storage_bucket_name == "": raise EdgeException("Storage bucket name is required") storage_config = StorageBucketConfig( bucket_name=storage_bucket_name, dvc_store_directory="dvcstore", vertex_jobs_directory="vertex", ) storage_state = setup_storage(gcloud_project, gcloud_region, storage_bucket_name) _state = EdgeState( storage=storage_state ) _config = EdgeConfig( google_cloud_project=gcloud_config, storage_bucket=storage_config, ) skip_saving_state = False with SubStepTUI("Checking if vertex:edge state file exists") as sub_step: if EdgeState.exists(_config): sub_step.update( "The state file already exists. " "This means that vertex:edge has already been initialised using this storage bucket.", status=TUIStatus.WARNING ) sub_step.set_dirty() if not questionary.confirm( f"Do you want to delete the state and start over (this action is destructive!)", qmark=qmark, default=False, ).ask(): skip_saving_state = True if skip_saving_state: with SubStepTUI("Saving state file skipped", status=TUIStatus.WARNING) as sub_step: pass else: with SubStepTUI("Saving state file") as sub_step: _state.save(_config) with StepTUI(message="Saving configuration", emoji="⚙️") as step: with SubStepTUI("Saving configuration to edge.yaml") as sub_step: _config.save("./edge.yaml")
StarcoderdataPython
1635170
''' Написать функцию maxfun(), которая принимает переменное число параметров — числовую последовательность S, функцию F1 и, возможно, ещё несколько функций F2 … Fn. Возвращает она ту из функций Fi, сумма значений которой на всех элементах S наибольшая. Если таких функций больше одной, возвращается Fi с наибольшим i. Input: from math import * print(maxfun(range(-2,10), sin, cos, exp)(1)) Output: 2.718281828459045 ''' from math import * def maxfun(S, *F): return F[max(enumerate(sum(f(x) for x in S) for f in F), key=lambda x: x[1])[0]]
StarcoderdataPython
3359149
# Generated by Django 3.0.3 on 2020-09-05 08:06 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('wallet', '0019_position_current_value'), ] operations = [ migrations.RenameField( model_name='position', old_name='current_value', new_name='total_networth', ), ]
StarcoderdataPython
3257501
import asyncio from enum import Enum from sspq import * from argparse import ArgumentParser, ArgumentTypeError class OrderedEnum(Enum): def __ge__(self, other): if self.__class__ is other.__class__: return self.value >= other.value return NotImplemented def __gt__(self, other): if self.__class__ is other.__class__: return self.value > other.value return NotImplemented def __le__(self, other): if self.__class__ is other.__class__: return self.value <= other.value return NotImplemented def __lt__(self, other): if self.__class__ is other.__class__: return self.value < other.value return NotImplemented class LogLevel(OrderedEnum): FAIL = '1' WARN = '2' INFO = '3' DBUG = '4' @classmethod def parse(cls, string: str) -> super: _string = string.lower() if _string == 'fail': return cls.FAIL if _string == 'warn': return cls.WARN if _string == 'info': return cls.INFO if _string == 'dbug': return cls.DBUG raise ArgumentTypeError(string + ' is NOT a valid loglevel') class Server_Client(): """ This represents a client connected to a server. """ def __init__(self, reader: asyncio.StreamReader, writer: asyncio.StreamWriter): self.reader = reader self.writer = writer self.address = writer.get_extra_info('peername') self.message = None self.disconnected = False self.message_event = asyncio.Event() def get_user_handler(log_level: LogLevel=LogLevel.INFO, retry_override: int=None): async def user_handler(reader, writer): client = Server_Client(reader=reader, writer=writer) if log_level >= LogLevel.INFO: print(f'User {client.address} connected') while True: try: msg = await read_message(client.reader) except MessageException as e: if log_level >= LogLevel.WARN: print(f'User {client.address} disconnected because: {e}') client.disconnected = True client.message_event.set() client.writer.close() return except EOFError: if log_level >= LogLevel.INFO: print(f'User {client.address} disconnected') client.disconnected = True client.message_event.set() client.writer.close() return if msg.type == MessageType.SEND: if log_level >= LogLevel.DBUG: print('Recieved: ' + msg.payload.decode()) if retry_override is not None: msg.retries = retry_override await message_queue.put(msg) elif msg.type == MessageType.RECEIVE: if client.message is not None: if log_level >= LogLevel.WARN: print('Receive Message is going to be dropped because client need to confirm his message.') continue if log_level >= LogLevel.DBUG: print('User{} wants to receive'.format(str(client.address))) client.message_event.clear() await client_queue.put(client) elif msg.type == MessageType.CONFIRM: if client.message is None: if log_level >= LogLevel.WARN: print('Confirm Message is going to be dropped because client has no message to confirm.') continue if log_level >= LogLevel.DBUG: print('User{} confirms message'.format(str(client.address))) client.message = None client.message_event.set() await asyncio.sleep(0) elif msg.type == MessageType.DEAD_RECEIVE: if client.message is not None: if log_level >= LogLevel.WARN: print('Dead-Receive Message is going to be dropped because client need to confirm his message.') continue if log_level >= LogLevel.DBUG: print('User{} wants to dead receive'.format(str(client.address))) client.message_event.clear() await dead_letter_client_queue.put(client) else: if log_level >= LogLevel.WARN: print('Received unknown packet:\n' + msg.encode().decode()) await asyncio.sleep(0) return user_handler async def message_handler(message: Message, client: Server_Client): client.message = message await message.send(client.writer) await client.message_event.wait() if client.message is not None: if client.message.retries == 0: if not NDLQ: await dead_letter_queue.put(client.message) else: if client.message.retries != 255: client.message.retries -= 1 await message_queue.put(client.message) async def queue_handler(loop): while True: msg = await message_queue.get() client = await client_queue.get() while client.disconnected: client = await client_queue.get() asyncio.ensure_future(message_handler(msg, client), loop=loop) async def dead_letter_handler(message: Message, client: Server_Client): client.message = message await message.send(client.writer) await client.message_event.wait() if client.message is not None: await dead_letter_queue.put(message) async def dead_letter_queue_handler(loop, active: bool=True): while True: if active: msg = await dead_letter_queue.get() client = await dead_letter_client_queue.get() while client.disconnected: client = await dead_letter_client_queue.get() asyncio.ensure_future(dead_letter_handler(msg, client), loop=loop) else: client = await dead_letter_client_queue.get() await Message(type=MessageType.NO_RECEIVE).send(client.writer) # Entry Point if __name__ == "__main__": # Setup argparse parser = ArgumentParser(description='SSPQ Server - Super Simple Python Queue Server', add_help=True) parser.add_argument('--host', action='store', default='127.0.0.1', required=False, help='Set the host address. Use 0.0.0.0 to make the server public', dest='host', metavar='<address>') parser.add_argument('-p', '--port', action='store', default=SSPQ_PORT, type=int, required=False, help='Set the port the server listens to', dest='port', metavar='<port>') parser.add_argument('-ll', '--loglevel', action='store', default='info', type=LogLevel.parse, choices=[ LogLevel.FAIL, LogLevel.WARN, LogLevel.INFO, LogLevel.DBUG ], required=False, help='Set the appropriate log level for the output on stdout. Possible values are: [ fail | warn | info | dbug ]', dest='log_level', metavar='<level>') parser.add_argument('-ndlq', '--no-dead-letter-queue', action='store_true', required=False, help='Flag to dissable the dead letter queueing, failed packages are then simply dropped after the retries run out.', dest='ndlq') parser.add_argument('-r', '--force-retries', action='store', type=int, choices=range(0, 256), required=False, help='This overrides the retry values of all incoming packets to the given value. Values between 0 and 254 are possible retry values if 255 is used all packages are infinitely retried.', dest='retry', metavar='[0-255]') parser.add_argument('-v', '--version', action='version', version='%(prog)s v1.0.0') args = parser.parse_args() NDLQ = args.ndlq # Setup asyncio & queues loop = asyncio.get_event_loop() message_queue = asyncio.Queue() client_queue = asyncio.Queue() dead_letter_queue = asyncio.Queue() dead_letter_client_queue = asyncio.Queue() coro = asyncio.start_server(get_user_handler(log_level=args.log_level, retry_override=args.retry), args.host, args.port, loop=loop) server = loop.run_until_complete(coro) queue_worker = asyncio.ensure_future(queue_handler(loop=loop), loop=loop) dead_letter_queue_worker = asyncio.ensure_future(dead_letter_queue_handler(loop=loop, active=(not args.ndlq)), loop=loop) # Serve requests until Ctrl+C is pressed print(f'Serving on {server.sockets[0].getsockname()}') try: loop.run_forever() except KeyboardInterrupt: pass # Close the server server.close() queue_worker.cancel() dead_letter_queue_worker.cancel() loop.run_until_complete(server.wait_closed()) loop.close()
StarcoderdataPython
1622722
<filename>test/orm/test_lazytest1.py import sqlalchemy as sa from sqlalchemy.test import testing from sqlalchemy import Integer, String, ForeignKey from sqlalchemy.test.schema import Table from sqlalchemy.test.schema import Column from sqlalchemy.orm import mapper, relation, create_session from test.orm import _base class LazyTest(_base.MappedTest): @classmethod def define_tables(cls, metadata): Table('infos', metadata, Column('pk', Integer, primary_key=True), Column('info', String(128))) Table('data', metadata, Column('data_pk', Integer, primary_key=True), Column('info_pk', Integer, ForeignKey('infos.pk')), Column('timeval', Integer), Column('data_val', String(128))) Table('rels', metadata, Column('rel_pk', Integer, primary_key=True), Column('info_pk', Integer, ForeignKey('infos.pk')), Column('start', Integer), Column('finish', Integer)) @classmethod @testing.resolve_artifact_names def insert_data(cls): infos.insert().execute( {'pk':1, 'info':'pk_1_info'}, {'pk':2, 'info':'pk_2_info'}, {'pk':3, 'info':'pk_3_info'}, {'pk':4, 'info':'pk_4_info'}, {'pk':5, 'info':'pk_5_info'}) rels.insert().execute( {'rel_pk':1, 'info_pk':1, 'start':10, 'finish':19}, {'rel_pk':2, 'info_pk':1, 'start':100, 'finish':199}, {'rel_pk':3, 'info_pk':2, 'start':20, 'finish':29}, {'rel_pk':4, 'info_pk':3, 'start':13, 'finish':23}, {'rel_pk':5, 'info_pk':5, 'start':15, 'finish':25}) data.insert().execute( {'data_pk':1, 'info_pk':1, 'timeval':11, 'data_val':'11_data'}, {'data_pk':2, 'info_pk':1, 'timeval':9, 'data_val':'9_data'}, {'data_pk':3, 'info_pk':1, 'timeval':13, 'data_val':'13_data'}, {'data_pk':4, 'info_pk':2, 'timeval':23, 'data_val':'23_data'}, {'data_pk':5, 'info_pk':2, 'timeval':13, 'data_val':'13_data'}, {'data_pk':6, 'info_pk':1, 'timeval':15, 'data_val':'15_data'}) @testing.resolve_artifact_names def testone(self): """A lazy load which has multiple join conditions. Including two that are against the same column in the child table. """ class Information(object): pass class Relation(object): pass class Data(object): pass session = create_session() mapper(Data, data) mapper(Relation, rels, properties={ 'datas': relation(Data, primaryjoin=sa.and_( rels.c.info_pk == data.c.info_pk, data.c.timeval >= rels.c.start, data.c.timeval <= rels.c.finish), foreign_keys=[data.c.info_pk])}) mapper(Information, infos, properties={ 'rels': relation(Relation) }) info = session.query(Information).get(1) assert info assert len(info.rels) == 2 assert len(info.rels[0].datas) == 3
StarcoderdataPython
135611
from test_support import verbose, verify import sys import new class Eggs: def get_yolks(self): return self.yolks print 'new.module()' m = new.module('Spam') if verbose: print m m.Eggs = Eggs sys.modules['Spam'] = m import Spam def get_more_yolks(self): return self.yolks + 3 print 'new.classobj()' C = new.classobj('Spam', (Spam.Eggs,), {'get_more_yolks': get_more_yolks}) if verbose: print C print 'new.instance()' c = new.instance(C, {'yolks': 3}) if verbose: print c o = new.instance(C) verify(o.__dict__ == {}, "new __dict__ should be empty") del o o = new.instance(C, None) verify(o.__dict__ == {}, "new __dict__ should be empty") del o def break_yolks(self): self.yolks = self.yolks - 2 print 'new.instancemethod()' im = new.instancemethod(break_yolks, c, C) if verbose: print im verify(c.get_yolks() == 3 and c.get_more_yolks() == 6, 'Broken call of hand-crafted class instance') im() verify(c.get_yolks() == 1 and c.get_more_yolks() == 4, 'Broken call of hand-crafted instance method') # It's unclear what the semantics should be for a code object compiled at # module scope, but bound and run in a function. In CPython, `c' is global # (by accident?) while in Jython, `c' is local. The intent of the test # clearly is to make `c' global, so let's be explicit about it. codestr = ''' global c a = 1 b = 2 c = a + b ''' ccode = compile(codestr, '<string>', 'exec') # Jython doesn't have a __builtins__, so use a portable alternative import __builtin__ g = {'c': 0, '__builtins__': __builtin__} # this test could be more robust print 'new.function()' func = new.function(ccode, g) if verbose: print func func() verify(g['c'] == 3, 'Could not create a proper function object') # bogus test of new.code() # Note: Jython will never have new.code() if hasattr(new, 'code'): print 'new.code()' d = new.code(3, 3, 3, 3, codestr, (), (), (), "<string>", "<name>", 1, "", (), ()) # test backwards-compatibility version with no freevars or cellvars d = new.code(3, 3, 3, 3, codestr, (), (), (), "<string>", "<name>", 1, "") if verbose: print d
StarcoderdataPython
141563
<reponame>84KaliPleXon3/micropython-esp32 # Calling an inherited classmethod class Base: @classmethod def foo(cls): print(cls.__name__) try: Base.__name__ except AttributeError: import sys print("SKIP") sys.exit() class Sub(Base): pass Sub.foo() # overriding a member and accessing it via a classmethod class A(object): foo = 0 @classmethod def bar(cls): print(cls.foo) def baz(self): print(self.foo) class B(A): foo = 1 B.bar() # class calling classmethod B().bar() # instance calling classmethod B().baz() # instance calling normal method
StarcoderdataPython
54633
<gh_stars>1-10 from __future__ import annotations import typing from dsalgo.algebra.abstract.abstract_structure import Monoid from dsalgo.number_theory.floor_sqrt import floor_sqrt S = typing.TypeVar("S") class SqrtDecomposition(typing.Generic[S]): def __init__(self, monoid: Monoid[S], arr: list[S]) -> None: n = len(arr) sqrt = floor_sqrt(n) num_buckets = (n + sqrt - 1) // sqrt buckets = [monoid.e() for _ in range(num_buckets)] data_size = sqrt * num_buckets data = [monoid.e() for _ in range(data_size)] data[:n] = arr.copy() for i in range(num_buckets): for j in range(sqrt * i, sqrt * (i + 1)): buckets[i] = monoid.op(buckets[i], data[j]) self.__data = data self.__buckets = buckets self.__sqrt = sqrt self.__original_size = n self.__monoid = monoid def __len__(self) -> int: return self.__original_size def __setitem__(self, i: int, x: S) -> None: assert 0 <= i < len(self) self.__data[i] = x idx = i // self.__sqrt self.__buckets[idx] = self.__monoid.e() for j in range(self.__sqrt * idx, self.__sqrt * (idx + 1)): self.__buckets[idx] = self.__monoid.op( self.__buckets[idx], self.__data[j], ) def __getitem__(self, i: int) -> S: assert 0 <= i < len(self) return self.__data[i] def get(self, left: int, right: int) -> S: assert 0 <= left <= right <= len(self) v = self.__monoid.e() for i in range(len(self.__buckets)): if left >= self.__sqrt * (i + 1): continue if right <= self.__sqrt * i: break if left <= self.__sqrt * i and self.__sqrt * (i + 1) <= right: v = self.__monoid.op(v, self.__buckets[i]) continue for j in range(self.__sqrt * i, self.__sqrt * (i + 1)): if j < left: continue if j >= right: break v = self.__monoid.op(v, self.__data[j]) return v # a = list(range(10)) # m = Monoid[int](op=lambda x, y: x + y, e=lambda: 0) # sd = SqrtDecomposition[int](m, a) # print(sd.get(1, 10))
StarcoderdataPython
136455
import boto3 import sure # noqa # pylint: disable=unused-import from moto import mock_guardduty @mock_guardduty def test_create_detector(): client = boto3.client("guardduty", region_name="us-east-1") response = client.create_detector( Enable=True, ClientToken="745645734574758463758", FindingPublishingFrequency="ONE_HOUR", DataSources={"S3Logs": {"Enable": True}}, Tags={}, ) response.should.have.key("DetectorId") response["DetectorId"].shouldnt.equal(None) @mock_guardduty def test_create_detector_with_minimal_params(): client = boto3.client("guardduty", region_name="us-east-1") response = client.create_detector(Enable=True) response.should.have.key("DetectorId") response["DetectorId"].shouldnt.equal(None) @mock_guardduty def test_list_detectors_initial(): client = boto3.client("guardduty", region_name="us-east-1") response = client.list_detectors() response.should.have.key("DetectorIds").equals([]) @mock_guardduty def test_list_detectors(): client = boto3.client("guardduty", region_name="us-east-1") d1 = client.create_detector( Enable=True, ClientToken="745645734574758463758", FindingPublishingFrequency="ONE_HOUR", DataSources={"S3Logs": {"Enable": True}}, Tags={}, )["DetectorId"] d2 = client.create_detector(Enable=False,)["DetectorId"] response = client.list_detectors() response.should.have.key("DetectorIds") set(response["DetectorIds"]).should.equal({d1, d2})
StarcoderdataPython
3210914
from setuptools import setup setup(name='kfn', version='0.1', description='Kubeflow notebook component builder', url='https://github.com/bartgras/kf-notebook-component', author='<NAME>', author_email='<EMAIL>', license='MIT', packages=['kfn', 'kfn.test'], install_requires=[ 'kfp', 'papermill', 'jupytext', 'nbconvert' ], zip_safe=False)
StarcoderdataPython
33106
<filename>dynamicserialize/dstypes/gov/noaa/nws/ncep/common/dataplugin/gempak/request/Station.py # File auto-generated against equivalent DynamicSerialize Java class # # SOFTWARE HISTORY # # Date Ticket# Engineer Description # ------------ ---------- ----------- -------------------------- # Sep 16, 2016 pmoyer Generated import numpy class Station(object): def __init__(self): self.elevation = None self.state = None self.stationId = None self.longitude = None self.latitude = None self.wmoIndex = None self.country = None def getElevation(self): return self.elevation def setElevation(self, elevation): self.elevation = elevation def getState(self): return self.state def setState(self, state): self.state = state def getStationId(self): return self.stationId def setStationId(self, stationId): self.stationId = stationId def getLongitude(self): return self.longitude def setLongitude(self, longitude): self.longitude = numpy.float64(longitude) def getLatitude(self): return self.latitude def setLatitude(self, latitude): self.latitude = numpy.float64(latitude) def getWmoIndex(self): return self.wmoIndex def setWmoIndex(self, wmoIndex): self.wmoIndex = wmoIndex def getCountry(self): return self.country def setCountry(self, country): self.country = country
StarcoderdataPython
1653817
# coding=utf-8 import re import logging import base64 import os import datetime from openerp.http import request import openerp from .. import client _logger = logging.getLogger(__name__) def get_img_data(pic_url): import requests headers = { 'Accept': 'textml,application/xhtml+xml,application/xml;q=0.9,image/webp,/;q=0.8', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.8,en;q=0.6,zh-TW;q=0.4', 'Cache-Control': 'no-cache', 'Host': 'mmbiz.qpic.cn', 'Pragma': 'no-cache', 'Connection': 'keep-alive', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36', } r = requests.get(pic_url,headers=headers,timeout=50) return r.content def main(robot): def input_handle(message, session): from .. import client entry = client.wxenv(request.env) client = entry serviceid = message.target openid = message.source mtype = message.type _logger.info('>>> wx msg: %s'%message.__dict__) if message.id==entry.OPENID_LAST.get(openid): _logger.info('>>> 重复的微信消息') return entry.OPENID_LAST[openid] = message.id origin_content = '' attachment_ids = [] if mtype=='image': pic_url = message.img media_id = message.__dict__.get('MediaId','') _logger.info(pic_url) _data = get_img_data(pic_url) _filename = datetime.datetime.now().strftime("%m%d%H%M%S") + os.path.basename(pic_url) attachment = request.env['ir.attachment'].sudo().create({ 'name': '__wx_image|%s'%media_id, 'datas': base64.encodestring(_data), 'datas_fname': _filename, 'res_model': 'mail.compose.message', 'res_id': int(0) }) attachment_ids.append(attachment.id) elif mtype in ['voice']: media_id = message.media_id media_format = message.format r = client.wxclient.download_media(media_id) _filename = '%s.%s'%(media_id,media_format) _data = r.content attachment = request.env['ir.attachment'].sudo().create({ 'name': '__wx_voice|%s'%message.media_id, 'datas': base64.encodestring(_data), 'datas_fname': _filename, 'res_model': 'mail.compose.message', 'res_id': int(0) }) attachment_ids.append(attachment.id) elif mtype=='location': origin_content = '对方发送位置: %s 纬度为:%s 经度为:%s'%(message.label, message.location[0], message.location[1]) elif mtype=='text': origin_content = message.content content = origin_content.lower() rs = request.env()['wx.autoreply'].sudo().search([]) for rc in rs: _key = rc.key.lower() if rc.type==1: if content==_key: ret_msg = rc.action.get_wx_reply() return entry.create_reply(ret_msg, message) elif rc.type==2: if _key in content: ret_msg = rc.action.get_wx_reply() return entry.create_reply(ret_msg, message) elif rc.type==3: try: flag = re.compile(_key).match(content) except:flag=False if flag: ret_msg = rc.action.get_wx_reply() return entry.create_reply(ret_msg, message) #客服对话 uuid, record_uuid = entry.get_uuid_from_openid(openid) ret_msg = '' cr, uid, context, db = request.cr, request.uid or openerp.SUPERUSER_ID, request.context, request.db if not uuid: rs = request.env['wx.user'].sudo().search( [('openid', '=', openid)] ) if not rs.exists(): info = client.wxclient.get_user_info(openid) info['group_id'] = '' wx_user = request.env['wx.user'].sudo().create(info) else: wx_user = rs[0] anonymous_name = wx_user.nickname channel = request.env.ref('oejia_wx.channel_wx') channel_id = channel.id session_info, ret_msg = request.env["im_livechat.channel"].create_mail_channel(channel_id, anonymous_name, content, record_uuid) if session_info: uuid = session_info['uuid'] entry.create_uuid_for_openid(openid, uuid) if not record_uuid: wx_user.update_last_uuid(uuid) if uuid: message_type = "message" message_content = origin_content request_uid = request.session.uid or openerp.SUPERUSER_ID author_id = False # message_post accept 'False' author_id, but not 'None' if request.session.uid: author_id = request.env['res.users'].sudo().browse(request.session.uid).partner_id.id mail_channel = request.env["mail.channel"].sudo(request_uid).search([('uuid', '=', uuid)], limit=1) msg = mail_channel.sudo(request_uid).with_context(mail_create_nosubscribe=True).message_post(author_id=author_id, email_from=mail_channel.anonymous_name, body=message_content, message_type='comment', subtype='mail.mt_comment', content_subtype='plaintext',attachment_ids=attachment_ids) if ret_msg: return entry.create_reply(ret_msg, message) robot.add_handler(input_handle, type='text') robot.add_handler(input_handle, type='image') robot.add_handler(input_handle, type='voice') robot.add_handler(input_handle, type='location')
StarcoderdataPython
3222004
<gh_stars>1-10 # -*- coding: utf-8 -*- # @Time : 2020/8/4 下午5:25 # @Author : 司云中 # @File : seckill.py # @Software: Pycharm import uuid from rest_framework.generics import GenericAPIView class SecKillOperation(GenericAPIView): """秒杀活动""" # serializer_class = SecKillSerializer
StarcoderdataPython
1781411
<gh_stars>0 import sys import fileinput import re import pandas as pd import numpy as np import csv Lookup_gene={} for each_line_of_text in list(fileinput.FileInput('Homo_sapiens.GRCh37.75.gtf')): Ensembl_name = re.findall(r'ENSG+[0-9]{11}',each_line_of_text) HUGO_name = re.findall(r'gene_name\s"(.*?)"',each_line_of_text) if(len(Ensembl_name) is not 0 or len(HUGO_name) is not 0): Lookup_gene.setdefault(Ensembl_name[0], HUGO_name[0]) fileinput.close() index = 0 if (len(sys.argv) > 2): df = pd.read_csv(sys.argv[2]) column_num = int(sys.argv[1][2:])-1 else: df = pd.read_csv(sys.argv[1]) column_num = 0 for line in list(df.iloc[:,1]): Ensembl = re.findall(r'ENSG+[0-9]{11}',line) if(len(Ensembl) is not 0): try: hugo_name = Lookup_gene[Ensembl[0]] df.replace(df.iloc[index,column_num],hugo_name, inplace=True) except KeyError as e: df.replace(df.iloc[index,column_num],'unknown', inplace=True) index += 1 fileinput.close() print(df.to_csv(quoting=csv.QUOTE_NONNUMERIC,index=False, line_terminator='\n'))
StarcoderdataPython
130266
<filename>django_orm/postgresql/sql/aggregates.py<gh_stars>1-10 # -*- coding: utf-8 -*- from django.db.models.sql import aggregates from django.db import models class ArrayLength(aggregates.Aggregate): sql_function = 'array_length' sql_template = '%(function)s(%(field)s, 1)' is_computed = True def __init__(self, col, source=None, is_summary=False, **extra): _sum = extra.pop('sum', False) if _sum: self.sql_template = "sum(%s)" % self.sql_template super(ArrayLength, self).__init__(col, source, is_summary=True, **extra)
StarcoderdataPython
1611225
import unittest from bolt.core.command import Command, RegexCommand, ParseCommand from bolt.discord.events import MessageCreate from bolt.discord.models.message import Message class TestCommand(unittest.TestCase): def dummycallback(self): pass def test_command_matches(self): command = Command("test command", self.dummycallback) self.assertTrue(command.matches("test command")) def test_command_not_matches(self): command = Command("test command", self.dummycallback) self.assertFalse(command.matches("test")) def test_command_args_kwargs(self): command = Command("test command", self.dummycallback) args, kwargs = command.parse("test command") self.assertListEqual(args, []) self.assertDictEqual(kwargs, {}) def test_change_trigger(self): command = Command("test command", self.dummycallback, trigger="?!") self.assertTrue(command.matches("?!test command")) def test_invoke(self): def dummycallback(event): return True event = MessageCreate() event.message = Message.marshal({"id": "1", "channel_id": "2", "content": "!test"}) command = Command("test command", dummycallback, trigger="!") self.assertTrue(command.invoke(event)) class TestRegexCommand(unittest.TestCase): def dummycallback(self): pass def test_command_matches(self): command = RegexCommand("^test command$", self.dummycallback) self.assertTrue(command.matches("test command")) def test_command_not_matches(self): command = RegexCommand("^test command$", self.dummycallback) self.assertFalse(command.matches(" test commanding")) self.assertFalse(command.matches("test commanding")) def test_command_args_kwargs(self): command = RegexCommand("^test command ([0-9]+)$", self.dummycallback) args, kwargs = command.parse("test command 1234") self.assertListEqual(args, ['1234']) self.assertDictEqual(kwargs, {}) def test_change_trigger(self): command = RegexCommand("test command", self.dummycallback, trigger="?!") self.assertTrue(command.matches("?!test command")) class TestParseCommand(unittest.TestCase): def dummycallback(self): pass def test_command_matches(self): command = ParseCommand("test command", self.dummycallback) self.assertTrue(command.matches("test command")) def test_command_not_matches(self): command = ParseCommand("test command", self.dummycallback) self.assertFalse(command.matches(" test commanding")) self.assertFalse(command.matches("test commanding")) def test_command_kwargs(self): command = ParseCommand("test command {fake_id:d}", self.dummycallback) args, kwargs = command.parse("test command 1234") self.assertListEqual(args, []) self.assertDictEqual(kwargs, {"fake_id": 1234}) def test_command_args(self): command = ParseCommand("test command {:d}", self.dummycallback) args, kwargs = command.parse("test command 1234") self.assertListEqual(args, [1234]) self.assertDictEqual(kwargs, {}) def test_command_args_kwargs(self): command = ParseCommand("test command {:d} {fake_thing}", self.dummycallback) args, kwargs = command.parse("test command 1234 mortimer") self.assertListEqual(args, [1234]) self.assertDictEqual(kwargs, {"fake_thing": "mortimer"}) def test_change_trigger(self): command = ParseCommand("test command", self.dummycallback, trigger="?!") self.assertTrue(command.matches("?!test command"))
StarcoderdataPython
1619389
# K-means Clustering # Importing the librabies import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv("Mall_Customers.csv") X = dataset.iloc[:,[3,4]].values # Using the elbow method to find optimal number of clusters from sklearn.cluster import KMeans wcss = [] for i in range(1,11): kmeans = KMeans(n_clusters = i, init="k-means++", max_iter = 300, n_init = 10, random_state = 0) kmeans.fit(X) wcss.append(kmeans.inertia_) plt.figure("Use elbow method to find optimal number of clusters") plt.plot(range(1,11), wcss) plt.title("The Elbow Method") plt.xlabel("Number of clusters") plt.ylabel("wcss") # "wcss" = "Within Cluster Sum of Squares" plt.show() # Appling the k-means to the dataset # "n_cluster" parameter value decided by graph (elbow method) kmeans = KMeans(n_clusters = 5, init="k-means++", max_iter = 300, n_init = 10, random_state = 0) y_kmeans = kmeans.fit_predict(X) # Visualizing the clusters plt.figure("Visualizing the different clusters") plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = "Careful") plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = "Standard") plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = "Target") plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', label = "Careless") plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = 'magenta', label = "Sensible") plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], s = 300, c = 'yellow', label="Centroids") plt.title("Cluster of clients") plt.xlabel("Annual Income (k$)") plt.ylabel("Spending Score(1-100)") plt.legend() plt.show()
StarcoderdataPython
3284628
class InstanceReferenceGeometry(GeometryBase,IDisposable,ISerializable): """ InstanceReferenceGeometry(instanceDefinitionId: Guid,transform: Transform) """ def ConstructConstObject(self,*args): """ ConstructConstObject(self: CommonObject,parentObject: object,subobject_index: int) """ pass def Dispose(self): """ Dispose(self: CommonObject,disposing: bool) """ pass def NonConstOperation(self,*args): """ NonConstOperation(self: CommonObject) """ pass def OnSwitchToNonConst(self,*args): """ OnSwitchToNonConst(self: GeometryBase) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,instanceDefinitionId,transform): """ __new__(cls: type,instanceDefinitionId: Guid,transform: Transform) """ pass ParentIdefId=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: ParentIdefId(self: InstanceReferenceGeometry) -> Guid """ Xform=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: Xform(self: InstanceReferenceGeometry) -> Transform """
StarcoderdataPython
1604354
Nome = str(input('Digite o seu nome: ')).strip() print('analizando o seu nome...') print('Seu nome em maiuscula é: ', Nome.upper()) print('Seu nome em minuscula é: ', Nome.lower()) print('Seu nome possui {} letras'.format(len(Nome) - Nome.count(' '))) print('Seu primeiro nome é {} e possui {} letras'.format(Nome[:Nome.find(' ')], Nome.find(' ')))
StarcoderdataPython
4826555
import uuid from pyramid import httpexceptions from pyramid.settings import asbool from pyramid.security import NO_PERMISSION_REQUIRED, Authenticated from kinto.core import get_user_info as core_get_user_info from kinto.core.errors import raise_invalid from kinto.core.events import ACTIONS from kinto.core.storage.exceptions import UnicityError from kinto.core.utils import build_request, reapply_cors, hmac_digest, instance_uri, view_lookup from kinto.authorization import RouteFactory from kinto.views.buckets import Bucket from kinto.views.collections import Collection def create_bucket(request, bucket_id): """Create a bucket if it doesn't exists.""" bucket_put = request.method.lower() == "put" and request.path.endswith("buckets/default") # Do nothing if current request will already create the bucket. if bucket_put: return # Do not intent to create multiple times per request (e.g. in batch). already_created = request.bound_data.setdefault("buckets", {}) if bucket_id in already_created: return bucket_uri = instance_uri(request, "bucket", id=bucket_id) bucket = resource_create_object(request=request, resource_cls=Bucket, uri=bucket_uri) already_created[bucket_id] = bucket def create_collection(request, bucket_id): # Do nothing if current request does not involve a collection. subpath = request.matchdict.get("subpath") if not (subpath and subpath.rstrip("/").startswith("collections/")): return collection_id = subpath.split("/")[1] collection_uri = instance_uri(request, "collection", bucket_id=bucket_id, id=collection_id) # Do not intent to create multiple times per request (e.g. in batch). already_created = request.bound_data.setdefault("collections", {}) if collection_uri in already_created: return # Do nothing if current request will already create the collection. collection_put = request.method.lower() == "put" and request.path.endswith(collection_id) if collection_put: return collection = resource_create_object( request=request, resource_cls=Collection, uri=collection_uri ) already_created[collection_uri] = collection def resource_create_object(request, resource_cls, uri): """Implicitly create a resource (or fail silently). In the default bucket, the bucket and collection are implicitly created. This helper creates one of those resources using a simulated request and context that is appropriate for the resource. Also runs create events as though the resource were created in a subrequest. If the resource already exists, do nothing. """ resource_name, matchdict = view_lookup(request, uri) # Build a fake request, mainly used to populate the create events that # will be triggered by the resource. fakerequest = build_request(request, {"method": "PUT", "path": uri}) fakerequest.matchdict = matchdict fakerequest.bound_data = request.bound_data fakerequest.authn_type = request.authn_type fakerequest.selected_userid = request.selected_userid fakerequest.errors = request.errors fakerequest.current_resource_name = resource_name obj_id = matchdict["id"] # Fake context, required to instantiate a resource. context = RouteFactory(fakerequest) context.resource_name = resource_name resource = resource_cls(fakerequest, context) # Check that provided id is valid for this resource. if not resource.model.id_generator.match(obj_id): error_details = {"location": "path", "description": "Invalid {} id".format(resource_name)} raise_invalid(resource.request, **error_details) data = {"id": obj_id} try: obj = resource.model.create_record(data) except UnicityError as e: # The record already exists; skip running events return e.record # Since the current request is not a resource (but a straight Service), # we simulate a request on a resource. # This will be used in the resource event payload. resource.postprocess(obj, action=ACTIONS.CREATE) return obj def default_bucket(request): if request.method.lower() == "options": path = request.path.replace("default", "unknown") subrequest = build_request(request, {"method": "OPTIONS", "path": path}) return request.invoke_subrequest(subrequest) if Authenticated not in request.effective_principals: # Pass through the forbidden_view_config raise httpexceptions.HTTPForbidden() settings = request.registry.settings if asbool(settings["readonly"]): raise httpexceptions.HTTPMethodNotAllowed() bucket_id = request.default_bucket_id # Implicit object creations. # Make sure bucket exists create_bucket(request, bucket_id) # Make sure the collection exists create_collection(request, bucket_id) path = request.path.replace("/buckets/default", "/buckets/{}".format(bucket_id)) querystring = request.url[(request.url.index(request.path) + len(request.path)) :] try: # If 'id' is provided as 'default', replace with actual bucket id. body = request.json body["data"]["id"] = body["data"]["id"].replace("default", bucket_id) except Exception: body = request.body or {"data": {}} subrequest = build_request( request, {"method": request.method, "path": path + querystring, "body": body} ) subrequest.bound_data = request.bound_data try: response = request.invoke_subrequest(subrequest) except httpexceptions.HTTPException as error: is_redirect = error.status_code < 400 if error.content_type == "application/json" or is_redirect: response = reapply_cors(subrequest, error) else: # Ask the upper level to format the error. raise error return response def default_bucket_id(request): settings = request.registry.settings secret = settings["userid_hmac_secret"] # Build the user unguessable bucket_id UUID from its user_id digest = hmac_digest(secret, request.prefixed_userid) return str(uuid.UUID(digest[:32])) def get_user_info(request): user_info = {**core_get_user_info(request), "bucket": request.default_bucket_id} return user_info def includeme(config): # Redirect default to the right endpoint config.add_view(default_bucket, route_name="default_bucket", permission=NO_PERMISSION_REQUIRED) config.add_view( default_bucket, route_name="default_bucket_collection", permission=NO_PERMISSION_REQUIRED ) config.add_route("default_bucket_collection", "/buckets/default/{subpath:.*}") config.add_route("default_bucket", "/buckets/default") # Provide helpers config.add_request_method(default_bucket_id, reify=True) # Override kinto.core default user info config.add_request_method(get_user_info) config.add_api_capability( "default_bucket", description="The default bucket is an alias for a personal" " bucket where collections are created implicitly.", url="https://kinto.readthedocs.io/en/latest/api/1.x/" "buckets.html#personal-bucket-default", )
StarcoderdataPython
1627275
epochs = 50 class_weight={0:1.,1:1} batch_size=8
StarcoderdataPython
3277116
<filename>migrations/versions/f017a3d88213_added_set_table.py<gh_stars>0 """Added Set table Revision ID: f017a3d88213 Revises: <PASSWORD> Create Date: 2017-12-05 23:09:29.667000 """ # revision identifiers, used by Alembic. revision = 'f017a3<PASSWORD>' down_revision = '<PASSWORD>' from alembic import op import sqlalchemy as sa def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('set', sa.Column('id', sa.Text(), nullable=False), sa.Column('author_id', sa.Integer(), nullable=False), sa.Column('name', sa.Text(), nullable=True), sa.Column('description', sa.Text(), nullable=True), sa.Column('definition', sa.Text(), nullable=True), sa.Column('parent', sa.Integer(), nullable=True), sa.Column('permissions', sa.Integer(), nullable=True), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.ForeignKeyConstraint(['author_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id', 'author_id') ) op.create_index(op.f('ix_set_permissions'), 'set', ['permissions'], unique=False) op.create_index(op.f('ix_set_timestamp'), 'set', ['timestamp'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_set_timestamp'), table_name='set') op.drop_index(op.f('ix_set_permissions'), table_name='set') op.drop_table('set') # ### end Alembic commands ###
StarcoderdataPython
1670661
<reponame>q0w/snug import json import snug BASE = 'https://api.github.com' class repo(snug.Query[dict]): """a repository lookup by owner and name""" def __init__(self, name, owner): self.name, self.owner = name, owner def __iter__(self): request = snug.GET(BASE + f'/repos/{self.owner}/{self.name}') return json.loads((yield request).content) def star(self) -> snug.Query[bool]: """star this repo""" req = snug.PUT(BASE + f'/user/starred/{self.owner}/{self.name}') return (yield req).status_code == 204 @snug.related class issue(snug.Query[dict]): """get an issue in this repo""" def __init__(self, repo, number): self.repo, self.number = repo, number def __iter__(self): request = snug.GET( BASE + f'repos/{self.repo.owner}/' f'{self.repo.name}/issues/{self.number}') return json.loads((yield request).content) def comments(self, since: datetime) -> snug.Query[list]: """retrieve comments for this issue""" request = snug.GET( BASE + f'repos/{self.issue.repo.owner}/{self.issue.repo.name}/' f'issues/{self.issue.number}/comments', params={'since': since.strftime('%Y-%m-%dT%H:%M:%SZ')}) return json.loads((yield request).content)
StarcoderdataPython
1714613
<gh_stars>10-100 ### Copyright (C) 2017 NVIDIA Corporation. All rights reserved. ### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). from .base_options import BaseOptions class BothOptions(BaseOptions): def initialize(self): BaseOptions.initialize(self) # for displays self.parser.add_argument('--display_freq', type=int, default=100, help='frequency of showing training results on screen') self.parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console') self.parser.add_argument('--save_latest_freq', type=int, default=1000, help='frequency of saving the latest results') self.parser.add_argument('--save_epoch_freq', type=int, default=50, help='frequency of saving checkpoints at the end of epochs') self.parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/') self.parser.add_argument('--debug', action='store_true', help='only do one epoch and displays at each iteration') # for training self.parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') self.parser.add_argument('--load_pretrain', type=str, default='', help='load the pretrained model from the specified location') self.parser.add_argument('--which_epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') self.parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') self.parser.add_argument('--niter', type=int, default=100, help='# of iter at starting learning rate') self.parser.add_argument('--niter_decay', type=int, default=0, help='# of iter to linearly decay learning rate to zero') self.parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam') self.parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam') # for discriminators self.parser.add_argument('--num_D', type=int, default=2, help='number of discriminators to use') self.parser.add_argument('--n_layers_D', type=int, default=3, help='only used if which_model_netD==n_layers') self.parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer') self.parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss') self.parser.add_argument('--no_ganFeat_loss', action='store_true', help='if specified, do *not* use discriminator feature matching loss') self.parser.add_argument('--no_vgg_loss', action='store_true', help='if specified, do *not* use VGG feature matching loss') self.parser.add_argument('--no_lsgan', action='store_true', help='do *not* use least square GAN, if false, use vanilla GAN') self.parser.add_argument('--pool_size', type=int, default=0, help='the size of image buffer that stores previously generated images') self.parser.add_argument('--ntest', type=int, default=float("inf"), help='# of test examples.') self.parser.add_argument('--results_dir', type=str, default='results', help='saves results here.') self.parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images') self.parser.add_argument('--how_many', type=int, default=50, help='how many test images to run') self.parser.add_argument('--cluster_path', type=str, default='features_clustered_010.npy', help='the path for clustered results of encoded features') self.parser.add_argument('--use_encoded_image', action='store_true', help='if specified, encode the real image to get the feature map') self.parser.add_argument("--export_onnx", type=str, help="export ONNX model to a given file") self.parser.add_argument("--engine", type=str, help="run serialized TRT engine") self.parser.add_argument("--onnx", type=str, help="run ONNX model via TRT") # My stuff for launch.py to work self.parser.add_argument("--isTrain", type=bool, help="Training Script or Not") self.parser.add_argument("--mode", type=str, help="Train, Meta-Train, Finetune") self.parser.add_argument("--k", type=int, help="Number of images to finetune on") self.parser.add_argument("--T", type=int, help="Number of iterations to finetune on") self.parser.add_argument("--train_dataset", type=str, help="Train Dataset specified with all txtfiles") self.parser.add_argument("--test_dataset", type=str, help="Test Dataset specified with all txtfiles") self.parser.add_argument("--model_checkpoints", type=str, help="Model_checkpoint directory ") self.parser.add_argument('--model_list', nargs='+', help='Pass in visualizations that you want to complete') self.parser.add_argument('--start_FT_vid', type=int, default= 1, help="Which video from 1-8 that we should start training from") self.parser.add_argument('--meta_iter', type=int, help='Pass the number of meta-iterations') self.parser.add_argument('--start_meta_iter', type=int, default = 0, help='Pass the number of meta-iterations') self.parser.add_argument('--init_weights', type=bool, default=False, help="Determine whether or not to upload pretrained weights for meta-learning") self.parser.add_argument('--save_meta_iter', type=int, default=25, help="Determine whether or not to upload pretrained weights for meta-learning") self.parser.add_argument('--test_meta_iter', type=int, default=300, help="Determine whether or not to upload pretrained weights for meta-learning") self.parser.add_argument('--epsilon', type=float, default=0.1, help = "Meta Learning Rate as detailed in Reptile paper") self.parser.add_argument('--only_generator', type=bool, default=False, help="Only train the meta-generator") self.parser.add_argument('--one_vid', type=int, default=0, help="Only train the meta-generator")
StarcoderdataPython
152964
""" GitLab API: https://docs.gitlab.com/ee/api/instance_level_ci_variables.html https://docs.gitlab.com/ee/api/project_level_variables.html https://docs.gitlab.com/ee/api/group_level_variables.html """ import re import pytest import responses from gitlab.v4.objects import GroupVariable, ProjectVariable, Variable key = "TEST_VARIABLE_1" value = "TEST_1" new_value = "TEST_2" variable_content = { "key": key, "variable_type": "env_var", "value": value, "protected": False, "masked": True, } variables_url = re.compile( r"http://localhost/api/v4/(((groups|projects)/1)|(admin/ci))/variables" ) variables_key_url = re.compile( rf"http://localhost/api/v4/(((groups|projects)/1)|(admin/ci))/variables/{key}" ) @pytest.fixture def resp_list_variables(): with responses.RequestsMock() as rsps: rsps.add( method=responses.GET, url=variables_url, json=[variable_content], content_type="application/json", status=200, ) yield rsps @pytest.fixture def resp_get_variable(): with responses.RequestsMock() as rsps: rsps.add( method=responses.GET, url=variables_key_url, json=variable_content, content_type="application/json", status=200, ) yield rsps @pytest.fixture def resp_create_variable(): with responses.RequestsMock() as rsps: rsps.add( method=responses.POST, url=variables_url, json=variable_content, content_type="application/json", status=200, ) yield rsps @pytest.fixture def resp_update_variable(): updated_content = dict(variable_content) updated_content["value"] = new_value with responses.RequestsMock() as rsps: rsps.add( method=responses.PUT, url=variables_key_url, json=updated_content, content_type="application/json", status=200, ) yield rsps @pytest.fixture def resp_delete_variable(no_content): with responses.RequestsMock() as rsps: rsps.add( method=responses.DELETE, url=variables_key_url, json=no_content, content_type="application/json", status=204, ) yield rsps def test_list_instance_variables(gl, resp_list_variables): variables = gl.variables.list() assert isinstance(variables, list) assert isinstance(variables[0], Variable) assert variables[0].value == value def test_get_instance_variable(gl, resp_get_variable): variable = gl.variables.get(key) assert isinstance(variable, Variable) assert variable.value == value def test_create_instance_variable(gl, resp_create_variable): variable = gl.variables.create({"key": key, "value": value}) assert isinstance(variable, Variable) assert variable.value == value def test_update_instance_variable(gl, resp_update_variable): variable = gl.variables.get(key, lazy=True) variable.value = new_value variable.save() assert variable.value == new_value def test_delete_instance_variable(gl, resp_delete_variable): variable = gl.variables.get(key, lazy=True) variable.delete() def test_list_project_variables(project, resp_list_variables): variables = project.variables.list() assert isinstance(variables, list) assert isinstance(variables[0], ProjectVariable) assert variables[0].value == value def test_get_project_variable(project, resp_get_variable): variable = project.variables.get(key) assert isinstance(variable, ProjectVariable) assert variable.value == value def test_create_project_variable(project, resp_create_variable): variable = project.variables.create({"key": key, "value": value}) assert isinstance(variable, ProjectVariable) assert variable.value == value def test_update_project_variable(project, resp_update_variable): variable = project.variables.get(key, lazy=True) variable.value = new_value variable.save() assert variable.value == new_value def test_delete_project_variable(project, resp_delete_variable): variable = project.variables.get(key, lazy=True) variable.delete() def test_list_group_variables(group, resp_list_variables): variables = group.variables.list() assert isinstance(variables, list) assert isinstance(variables[0], GroupVariable) assert variables[0].value == value def test_get_group_variable(group, resp_get_variable): variable = group.variables.get(key) assert isinstance(variable, GroupVariable) assert variable.value == value def test_create_group_variable(group, resp_create_variable): variable = group.variables.create({"key": key, "value": value}) assert isinstance(variable, GroupVariable) assert variable.value == value def test_update_group_variable(group, resp_update_variable): variable = group.variables.get(key, lazy=True) variable.value = new_value variable.save() assert variable.value == new_value def test_delete_group_variable(group, resp_delete_variable): variable = group.variables.get(key, lazy=True) variable.delete()
StarcoderdataPython
115893
<gh_stars>0 # 7652413 import euler N = 7 m = 0 d = '123456789' for i in xrange(euler.product(xrange(1, N + 1))): v = [] dd = list(d) for j in xrange(N): v.append(dd.pop(i % (N - j))) i /= (N - j) vv = int(''.join(v)) if euler.is_prime(vv) and vv > m: m = vv print m
StarcoderdataPython
1769513
from typing import Any, Tuple import numba as nb import numpy as np from nptyping import NDArray from .definitions import LatticeState, gathered_order_parameters from .tensor_tools import SQRT2, SQRT6, SQRT16, dot10, ten6_to_mat @nb.njit(nb.int32(nb.float32), cache=True) def biaxial_ordering(lam: float) -> int: if lam < (SQRT16 - 1e-3): return 1 if lam > (SQRT16 + 1e-3): return -1 if abs(lam - SQRT16) < 1e-3: return 0 return -100 @nb.njit(nb.types.UniTuple(nb.float32, 3)(nb.float32[:], nb.float32[:], nb.float32), cache=True) def _q0q2w(mt20: NDArray[(6,), np.float32], mt22: NDArray[(6,), np.float32], lam: np.float32 ) -> Tuple[np.float32, np.float32, np.float32]: m_q = mt20 + lam * SQRT2 * mt22 m_q = ten6_to_mat(m_q) ev = np.linalg.eigvalsh(m_q) i = np.argsort(ev**2)[::-1] wn, wm, wl = ev[i] nq0 = 1 nq2 = 1 o = biaxial_ordering(lam) if o == 1 or o == 0: nq0 = 1 / (SQRT6 / 3) nq2 = 1 / SQRT2 if o == -1: nq0 = 1 / (SQRT6 / 3 * 2) nq2 = 1 / SQRT2 q0 = wn * nq0 q2 = (wl - wm) * nq2 w = (q0**3 - 3 * q0 * q2**2) / (q0**2 + q2**2)**(3 / 2) return q0, q2, w @nb.njit(nb.float32(nb.float32[:]), cache=True) def _d322(mt32: NDArray[(10,), np.float32]) -> np.float32: return np.sqrt(dot10(mt32, mt32)) @nb.jit(nopython=False, forceobj=True, parallel=True) def calculate_order_parameters(state: LatticeState) -> NDArray[(Any,), Any]: """Calculate instantaneous order parameters after the `LatticeState` has been updated.""" avg = state.lattice_averages[0] q0, q2, w = _q0q2w(avg['t20'], avg['t22'], float(state.parameters.lam)) energy = avg['energy'] p = avg['p'] d322 = _d322(avg['t32']) return np.array([ (energy, q0, q2, w, p, d322) ], dtype=gathered_order_parameters)
StarcoderdataPython
1760351
import haiku as hk import jax import jax.numpy as jnp import numpy as np from functools import partial import optax from jax.experimental.maps import mesh from jax.experimental import PartitionSpec from jax.experimental.pjit import pjit from clip_model import TextCLIP import clip_jax def cfg_encode_text(config, tokens): clip = TextCLIP( # the same as orig, except context_length = 77 - 2 (special tokens) embed_dim = 512, context_length = 75, vocab_size = 49408, # can possibly vary rotary_dims = config["rotary_dims"], transformer_width = config["d_model"], transformer_heads = config["n_heads"], transformer_layers = config["layers"]) return clip.encode_text(tokens) def pmap_batch(batch): """Splits the first axis of `arr` evenly across the number of devices.""" per_device_batch_size = batch.shape[0] // jax.device_count() batch = batch[:per_device_batch_size * jax.device_count()] # trim the rest of the batch return batch.reshape(jax.device_count(), per_device_batch_size, *batch.shape[1:]) class ClipTrainer: def __init__(self, config): self.config = config optimizer = config["optimizer"] _, clip_target, _, _ = clip_jax.load('ViT-B/32', "cpu") encode_text = partial(cfg_encode_text,config) clip_init_fn = hk.transform(hk.experimental.optimize_rng_use(encode_text)).init def init(key, xs): params = clip_init_fn(key, tokens = xs) opt_state = optimizer.init(params) return { "params": params, "step": np.array(0), "opt_state": opt_state } key = hk.PRNGSequence(42) x = jax.random.randint(next(key), (jax.local_device_count(),75), 0, 49408) clip_apply_fn = hk.without_apply_rng(hk.transform(encode_text)).apply def train_loss(params, x, y): return jnp.mean(jnp.square(clip_apply_fn(params, x) - clip_target(y))) @partial(jax.pmap, axis_name='dp') def eval_pmap(params, x, y): loss = train_loss(params, x, y) return jax.lax.pmean(loss, axis_name='dp') @partial(jax.pmap, axis_name='dp') def train_pmap(params, opt_state, x, y): val_grad_fn = jax.value_and_grad(train_loss) loss, grad = val_grad_fn(params, x, y) grads = jax.lax.pmean(grad, axis_name='dp') loss = jax.lax.pmean(loss, axis_name='dp') updates, opt_state = optimizer.update(grad, opt_state, params) params = optax.apply_updates(params, updates) return loss, params, opt_state self.train_pmap = train_pmap self.eval_pmap = eval_pmap self.state = init(next(key), x) self.eval_weights = None param_count = hk.data_structures.tree_size(self.state['params']) print(f"Total parameters: {param_count}") def train(self, sample): obs, target = map(pmap_batch, (sample["obs"], sample["target"])) loss, params, opt_state = self.train_pmap(self.state["params"], self.state["opt_state"], obs, target) self.state = { "params": params, "step": self.state["step"] + 1, "opt_state": opt_state, } return np.array(loss).mean() def eval(self, sample): obs, target = map(pmap_batch, (sample["obs"], sample["target"])) loss = self.eval_pmap(self.state["params"], obs, target) return np.array(loss).mean()
StarcoderdataPython
3384229
# Copyright (c) 2013 <NAME> <<EMAIL>> # This file is part of SimpleGUITk - https://github.com/dholm/simpleguitk # See the file 'COPYING' for copying permission. from .frame import create_frame from .image import get_height from .image import get_width from .image import load_image from .input import KEY_MAP from .timers import create_timer
StarcoderdataPython
142865
import pytest from frameioclient import FrameioClient @pytest.fixture def frameioclient(token): return FrameioClient("aaaabbbbccccddddeeee")
StarcoderdataPython
1676894
# food1 = 'rau muong' # food2 = 'ca vien chien' # food3 = 'pho' # food4 = 'suon xao chua ngot' # food5 = 'rau' menu = ['rau muong', 'ca vien chien', 'pho','suong xao chua ngot','rau'] # seperator # print(*menu, sep=', ') #pythonic # # menu.append('bun cha') # # print(*menu, sep=', ') # print(len(menu)) # print(menu[-1]) menu[0] = 'rau ma' print(*menu, sep=', ')
StarcoderdataPython
3282836
<reponame>ozgurgunes/django-manifest<filename>tests/data_dicts.py # -*- coding: utf-8 -*- """ Manifest Data Dicts for Tests """ from django.utils.translation import ugettext_lazy as _ from manifest import defaults LOGIN_FORM = { "invalid": [ # No identification. { "data": {"identification": "", "password": "<PASSWORD>"}, "error": ( "identification", [_("Please enter your username or email address.")], ), }, # No password. { "data": {"identification": "john", "password": ""}, "error": ("password", [_("This field is required.")]), }, # Wrong user. { "data": {"identification": "johnn", "password": "<PASSWORD>"}, "error": ( "__all__", [_("Please check your identification and password.")], ), }, # Wrong password. { "data": {"identification": "john", "password": "<PASSWORD>"}, "error": ( "__all__", [_("Please check your identification and password.")], ), }, ], "valid": [ {"identification": "john", "password": "<PASSWORD>"}, {"identification": "<EMAIL>", "password": "<PASSWORD>"}, ], } LOGIN_SERIALIZER = { "invalid": [ # No identification. { "data": {"identification": "", "password": "<PASSWORD>"}, "error": ("identification", [_("This field may not be blank.")]), }, # No password. { "data": {"identification": "john", "password": ""}, "error": ("password", [_("This field may not be blank.")]), }, # Wrong user. { "data": {"identification": "johnn", "password": "<PASSWORD>"}, "error": ( "non_field_errors", [_("Please check your identification and password.")], ), }, # Wrong password. { "data": {"identification": "john", "password": "<PASSWORD>"}, "error": ( "non_field_errors", [_("Please check your identification and password.")], ), }, ], "valid": [ {"identification": "john", "password": "<PASSWORD>"}, {"identification": "<EMAIL>", "password": "<PASSWORD>"}, ], } REGISTER_FORM = { "invalid": [ # Non-alphanumeric username. { "data": { "username": "foo@bar", "email": "<EMAIL>", "password": "<PASSWORD>", "password2": "<PASSWORD>", "tos": "on", }, "error": ( "username", [ _( "Username must contain only letters, " "numbers and underscores." ) ], ), }, # Passwords are not same. { "data": { "username": "foo2bar", "email": "<EMAIL>", "password1": "<PASSWORD>", "password2": "<PASSWORD>", "tos": "on", }, "error": ( "password2", [_("The two password fields didn’t match.")], ), }, # Already taken username. { "data": { "username": "john", "email": "<EMAIL>", "password1": "<PASSWORD>", "password2": "<PASSWORD>", "tos": "on", }, "error": ( "username", [_("A user with that username already exists.")], ), }, # Already taken email. { "data": { "username": "johndoe", "email": "<EMAIL>", "password": "<PASSWORD>", "password2": "<PASSWORD>", "tos": "on", }, "error": ( "email", [ _( "This email address is already in use. " "Please supply a different email." ) ], ), }, # Forbidden username. { "data": { "username": "test", "email": "<EMAIL>", "password": "<PASSWORD>", "password2": "<PASSWORD>", "tos": "on", }, "error": ("username", [_("This username is not allowed.")]), }, ], "valid": [ { "username": "alice", "email": "<EMAIL>", "password1": "<PASSWORD>", "password2": "<PASSWORD>", "tos": "on", } ], } REGISTER_SERIALIZER = { "invalid": [ # Non-alphanumeric username. { "data": { "username": "foo@bar", "email": "<EMAIL>", "password": "<PASSWORD>", "password2": "<PASSWORD>", "tos": "on", }, "error": ( "username", [ _( "Username must contain only letters, " "numbers and underscores." ) ], ), }, # Passwords are not same. { "data": { "username": "foo2bar", "email": "<EMAIL>", "password1": "<PASSWORD>", "password2": "<PASSWORD>", "tos": "on", }, "error": ( "password1", [_("The two password fields didn’t match.")], ), }, # Already taken username. { "data": { "username": "john", "email": "<EMAIL>", "password1": "<PASSWORD>", "password2": "<PASSWORD>", "tos": "on", }, "error": ( "username", [_("A user with that username already exists.")], ), }, # Already taken email. { "data": { "username": "johndoe", "email": "<EMAIL>", "password": "<PASSWORD>", "password2": "<PASSWORD>", "tos": "on", }, "error": ( "email", [ _( "This email address is already in use. " "Please supply a different email." ) ], ), }, # Forbidden username. { "data": { "username": "test", "email": "<EMAIL>", "password": "<PASSWORD>", "password2": "<PASSWORD>", "tos": "on", }, "error": ("username", [_("This username is not allowed.")]), }, ], "valid": [ { "username": "foobar", "email": "<EMAIL>", "password1": "<PASSWORD>", "password2": "<PASSWORD>", "tos": "on", } ], } PROFILE_UPDATE_FORM = { "invalid": [ # Invalid name. { "data": { "first_name": "", "last_name": "", "gender": "M", "birth_date": "1970-01-01", }, "error": ("first_name", [_("This field is required.")]), }, # Invalid gender. { "data": { "first_name": "John", "last_name": "Smith", "gender": "", "birth_date": "1970-01-01", }, "error": ("gender", [_("This field is required.")]), }, # Invalid birth date. { "data": { "first_name": "John", "last_name": "Smith", "gender": "M", "birth_date": "", }, "error": ("birth_date", [_("This field is required.")]), }, ], "valid": [ { "first_name": "John", "last_name": "Smith", "gender": "M", "birth_date": "1970-01-01", }, { "first_name": "Jane", "last_name": "Smith", "gender": "F", "birth_date": "1970-01-01", }, ], } PROFILE_UPDATE_SERIALIZER = { "invalid": [ # Invalid name. { "data": { "first_name": "", "last_name": "", "gender": "M", "birth_date": "01/01/1970", }, "error": ("first_name", [_("This field may not be blank.")]), }, # Invalid gender. { "data": { "first_name": "John", "last_name": "Smith", "gender": "", "birth_date": "01/01/1970", }, "error": ("gender", [_('"" is not a valid choice.')]), }, ], "valid": [ { "first_name": "John", "last_name": "Smith", "gender": "M", "birth_date": "01/01/1970", }, { "first_name": "Jane", "last_name": "Smith", "gender": "F", "birth_date": "01/01/1970", }, ], } EMAIL_CHANGE_FORM = { "invalid": [ # No change in e-mail address. { "data": {"email": "<EMAIL>"}, "error": ( "email", [_("You're already known under this email address.")], ), }, # An e-mail address used by another user. { "data": {"email": "<EMAIL>"}, "error": ( "email", [ _( "This email address is already in use. " "Please supply a different email." ) ], ), }, ], "valid": [{"email": "<EMAIL>"}], } EMAIL_CHANGE_SERIALIZER = { "invalid": [ # No change in e-mail address. { "data": {"email": "<EMAIL>"}, "error": ( "email", [_("You're already known under this email address.")], ), }, # An e-mail address used by another. { "data": {"email": "<EMAIL>"}, "error": ( "email", [ _( "This email address is already in use. " "Please supply a different email." ) ], ), }, ], "valid": [{"email": "<EMAIL>"}], } REGION_UPDATE_FORM = { "invalid": [ # Invalid timezone. { "data": {"timezone": "test1", "locale": "tr"}, "error": ( "timezone", [ _( "Select a valid choice. " "test1 is not one of the available choices." ) ], ), }, # Invalid locale. { "data": {"timezone": "Europe/Istanbul", "locale": "test2"}, "error": ( "locale", [ _( "Select a valid choice. " "test2 is not one of the available choices." ) ], ), }, ], "valid": [ {"timezone": "Europe/Istanbul", "locale": "tr"}, {"timezone": "UTC", "locale": "en"}, ], } REGION_UPDATE_SERIALIZER = { "invalid": [ # Invalid timezone. { "data": {"timezone": "test1", "locale": "tr"}, "error": ("timezone", [_('"test1" is not a valid choice.')]), }, # Invalid locale. { "data": {"timezone": "Europe/Istanbul", "locale": "test2"}, "error": ("locale", [_('"test2" is not a valid choice.')]), }, ], "valid": [ {"timezone": "Europe/Istanbul", "locale": "tr"}, {"timezone": "UTC", "locale": "en"}, ], } PASSWORD_RESET_SERIALIZER = { "invalid": [ # No email. { "data": {"email": ""}, "error": ("email", [_("This field may not be blank.")]), }, # Invalid email. { "data": {"email": "test.com"}, "error": ("email", [_("Enter a valid email address.")]), }, ], "valid": [{"email": "<EMAIL>"}], } PASSWORD_CHANGE_FORM = { "invalid": [ # Wrong old password. { "data": { "old_password": "<PASSWORD>", "new_password1": "<PASSWORD>", "new_password2": "<PASSWORD>", }, "error": ( "old_password", [ _( "Your old password was entered incorrectly. " "Please enter it again." ) ], ), }, # Invalid email. { "data": { "old_password": "<PASSWORD>", "new_password1": "<PASSWORD>", "new_password2": "<PASSWORD>", }, "error": ( "new_password2", [_("The two password fields didn’t match.")], ), }, ], "valid": [ { "old_password": "<PASSWORD>", "new_password1": "<PASSWORD>", "new_password2": "<PASSWORD>", } ], } PASSWORD_CHANGE_SERIALIZER = { "invalid": [ # Wrong old password. { "data": { "old_password": "<PASSWORD>", "new_password1": "<PASSWORD>", "new_password2": "<PASSWORD>", }, "error": ( "old_password", [ _( "Your old password was entered incorrectly. " "Please enter it again." ) ], ), }, # Invalid email. { "data": { "old_password": "<PASSWORD>", "new_password1": "<PASSWORD>", "new_password2": "<PASSWORD>", }, "error": ( "new_password2", [_("The two password fields didn’t match.")], ), }, ], "valid": [ { "old_password": "<PASSWORD>", "new_password1": "<PASSWORD>", "new_password2": "<PASSWORD>", } ], } def picture_upload_form(self): return { "invalid": [ { "data": {"picture": None}, "error": ("picture", [_("This field is required.")]), }, { "data": {"picture": object}, "error": ( "picture", [ _( "No file was submitted. " "Check the encoding type on the form." ) ], ), }, ], "invalid_file_size": { "data": {"picture": self.raw_image_file}, "error": ("picture", [_("Image size is too big.")]), }, "invalid_file_type": { "data": { "picture": self.get_raw_file( self.create_image(".tiff", "TIFF") ) }, "error": ( "picture", [_("%s only." % defaults.MANIFEST_PICTURE_FORMATS)], ), }, "invalid_file_extension": { "data": { "picture": self.get_raw_file(self.create_image(".svg", "TIFF")) }, "error": ("picture", [_("File extension “svg” is not allowed.")]), }, "valid": [{"picture": self.raw_image_file}], } def picture_upload_serializer(self): return { "invalid": [ { "data": {"picture": None}, "error": ("picture", [_("This field may not be null.")]), }, { "data": {"picture": object}, "error": ( "picture", [ _( "The submitted data was not a file. " "Check the encoding type on the form." ) ], ), }, ], "invalid_file_size": { "data": {"picture": self.image_file}, "error": ( "picture", [ _( "The submitted data was not a file. " "Check the encoding type on the form." ) ], ), }, "invalid_file_type": { "data": { "picture": self.get_raw_file( self.create_image(".tiff", "TIFF") ) }, "error": ( "picture", [_("%s only." % defaults.MANIFEST_PICTURE_FORMATS)], ), }, "invalid_file_extension": { "data": { "picture": self.get_raw_file(self.create_image(".svg", "TIFF")) }, "error": ("picture", [_("File extension “svg” is not allowed.")]), }, "valid": [{"picture": self.raw_image_file}], }
StarcoderdataPython
3310900
<reponame>kdmoreira/python_solutions<gh_stars>0 def sync(schedule_list): """This function returns the union of a set of schedules.""" sync_schedule = set() for schedule in schedule_list: sync_schedule = sync_schedule | schedule return sync_schedule schedules = [{'1234', '2345', '3456'}, {'4567', '5678', '6789'}, {'7890', '890'}] union = sync(schedules) print(union)
StarcoderdataPython
1618166
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Module that contains Plot Twist proxy mesh validator implementation """ from __future__ import print_function, division, absolute_import __author__ = "<NAME>" __license__ = "MIT" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" import pyblish.api import tpDcc import artellapipe class SelectVerticesWithoutVertexColors(pyblish.api.Action): label = 'Select Vertices without Vertex Colors' on = 'failed' def process(self, context, plugin): assert tpDcc.is_maya(), 'Select Vertices without Vertex Color Action is only available in Maya!' vertices_without_vertex_colors = context.data.get('vertices_without_vertex_colors', None) assert vertices_without_vertex_colors, 'No vertices without vertex colors to select' vertices_to_select = list() for shape_node, vertices_ids in vertices_without_vertex_colors.items(): for vertex_id in vertices_ids: vertices_to_select.append('{}.vtx[{}]'.format(shape_node, vertex_id)) assert vertices_to_select, 'No vertices to select' tpDcc.Dcc.select_object(vertices_to_select) class ValidatePlotTwistProxyMesh(pyblish.api.ContextPlugin): """ Checks if modeling file has a valid proxy mesh """ label = 'General - Check Proxy' order = pyblish.api.ValidatorOrder hosts = ['maya'] families = ['proxy'] optional = False actions = [SelectVerticesWithoutVertexColors] def process(self, context): assert tpDcc.is_maya(), 'Validate Proxy Mesh is only available in Maya!' from tpDcc.dccs.maya.core import node, api root_group_name = artellapipe.NamesMgr().solve_name('root_group') proxy_group_name = artellapipe.NamesMgr().solve_name('proxy_group') geo_group_name = artellapipe.NamesMgr().solve_name('geo_group') proxy_geo = artellapipe.NamesMgr().solve_name('proxy_geo') proxy_geo_parent = '{}|{}|{}'.format(root_group_name, proxy_group_name, geo_group_name) assert proxy_geo and tpDcc.Dcc.object_exists( proxy_geo), 'Proxy geo "{}" does not exist in current scene!'.format(proxy_geo) assert proxy_geo_parent and tpDcc.Dcc.object_exists( proxy_geo_parent), 'Proxy geo parent "{}" does not exists in current scene!'.format(proxy_geo_parent) proxy_prefix = proxy_geo.split('_')[0] proxy_geos = tpDcc.Dcc.list_nodes('{}_*'.format(proxy_prefix), node_type='transform') or list() assert len(proxy_geos) == 1, 'Invalid number ({}) of proxy geometries found in current scene: {}'.format( len(proxy_geos), proxy_geos) proxy_geo = proxy_geos[0] proxy_geo_shapes = tpDcc.Dcc.list_shapes(proxy_geo) assert proxy_geo_shapes, 'No sahpes found in proxy geo geometry!' # We check that all vertex colors have vertices_without_vertex_colors = dict() for proxy_shape in proxy_geo_shapes: proxy_shape_node = node.get_mobject(proxy_shape) proxy_shape_vtx_it = api.IterateVertices(proxy_shape_node) proxy_shape_vertex_colors = proxy_shape_vtx_it.get_vertex_colors(skip_vertices_without_vertex_colors=False) for vtx_id, vtx_color in proxy_shape_vertex_colors.items(): if vtx_color: continue if proxy_shape not in vertices_without_vertex_colors: vertices_without_vertex_colors[proxy_shape] = list() vertices_without_vertex_colors[proxy_shape].append(vtx_id) if vertices_without_vertex_colors: context.data['vertices_without_vertex_colors'] = vertices_without_vertex_colors assert not vertices_without_vertex_colors, 'Some vertices of the proxy shapes have no vertex color ' \ 'applied to them: {}!'.format(vertices_without_vertex_colors)
StarcoderdataPython
1771916
import os from typing import Dict, List, Tuple import numpy as np import tensorflow as tf from model.conll_dataset import CoNLLDataset from .data_utils import get_chunks, pad_words, pad_chars from .general_utils import Progbar class NERModel: """Specialized class of Model for NER""" def __init__(self, config): self.config = config self.logger = config.logger """Define placeholders = entries to computational graph""" batch_size, sentence_length, word_length = None, None, None self.word_ids = tf.placeholder(tf.int32, shape=[batch_size, sentence_length], name="word_ids") self.sequence_lengths = tf.placeholder(tf.int32, shape=[batch_size], name="sequence_lengths") self.char_ids = tf.placeholder(tf.int32, shape=[batch_size, sentence_length, word_length], name="char_ids") self.word_lengths = tf.placeholder(tf.int32, shape=[batch_size, sentence_length], name="word_lengths") self.labels = tf.placeholder(tf.int32, shape=[batch_size, sentence_length], name="labels") # hyper parameters self.dropout = tf.placeholder(dtype=tf.float32, shape=[], name="dropout") self.lr = tf.placeholder(dtype=tf.float32, shape=[], name="lr") """ Defines self.word_embeddings If self.config.embeddings is not None and is a np array initialized with pre-trained word vectors, the word embeddings is just a look-up and we don't train the vectors. Otherwise, a random matrix with the correct shape is initialized. """ with tf.variable_scope("words"): if self.config.embeddings is None: self.logger.info("WARNING: randomly initializing word vectors") _word_embeddings = tf.get_variable( name="_word_embeddings", dtype=tf.float32, shape=[len(self.config.vocab_words), self.config.dim_word]) else: _word_embeddings = tf.Variable( initial_value=self.config.embeddings, trainable=self.config.train_embeddings, name="_word_embeddings", dtype=tf.float32) word_embeddings = tf.nn.embedding_lookup(params=_word_embeddings, ids=self.word_ids, name="word_embeddings") with tf.variable_scope("chars"): if self.config.use_chars: # get char embeddings matrix _char_embeddings = tf.get_variable( name="_char_embeddings", dtype=tf.float32, shape=[len(self.config.vocab_chars), self.config.dim_char]) char_embeddings = tf.nn.embedding_lookup(params=_char_embeddings, ids=self.char_ids, name="char_embeddings") # put the time dimension on axis=1 # bi lstm on chars batch_size, sentence_length, word_length, char_dim = shapes(char_embeddings) _outputs, _output_states = tf.nn.bidirectional_dynamic_rnn( cell_fw=tf.contrib.rnn.LSTMCell(num_units=self.config.hidden_size_char, state_is_tuple=True), cell_bw=tf.contrib.rnn.LSTMCell(num_units=self.config.hidden_size_char, state_is_tuple=True), inputs=tf.reshape(char_embeddings, shape=[batch_size * sentence_length, word_length, self.config.dim_char]), sequence_length=tf.reshape(self.word_lengths, shape=[batch_size * sentence_length]), dtype=tf.float32) # read and concat output _output_state_fw, _output_state_bw = _output_states _, output_fw = _output_state_fw _, output_bw = _output_state_bw # shape = (batch size, max sentence length, char hidden size) output = tf.reshape(tensor=tf.concat([output_fw, output_bw], axis=-1), shape=[batch_size, sentence_length, 2 * self.config.hidden_size_char]) word_embeddings = tf.concat([word_embeddings, output], axis=-1) word_embeddings = tf.nn.dropout(word_embeddings, self.dropout) """ Defines self.logits For each word in each sentence of the batch, it corresponds to a vector of scores, of dimension equal to the number of tags. """ with tf.variable_scope("bi-lstm"): (output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn( cell_fw=tf.contrib.rnn.LSTMCell(self.config.hidden_size_lstm), cell_bw=tf.contrib.rnn.LSTMCell(self.config.hidden_size_lstm), inputs=word_embeddings, sequence_length=self.sequence_lengths, dtype=tf.float32) output = tf.nn.dropout(x=tf.concat([output_fw, output_bw], axis=-1), keep_prob=self.dropout) with tf.variable_scope("proj"): pred = tf.matmul(a=tf.reshape(output, [-1, 2 * self.config.hidden_size_lstm]), b=tf.get_variable("W", dtype=tf.float32, shape=[2 * self.config.hidden_size_lstm, len(self.config.vocab_tags)])) \ + tf.get_variable("b", shape=[len(self.config.vocab_tags)], dtype=tf.float32, initializer=tf.zeros_initializer()) nsteps = tf.shape(output)[1] self.logits = tf.reshape(pred, [-1, nsteps, len(self.config.vocab_tags)]) """ Defines self.labels_pred This op is defined only in the case where we don't use a CRF since in that case we can make the prediction "in the graph" (thanks to tf functions in other words). With theCRF, as the inference is coded in python and not in pure tensroflow, we have to make the prediciton outside the graph. """ if not self.config.use_crf: self.labels_pred = tf.cast(tf.argmax(self.logits, axis=-1), tf.int32) """Defines the loss""" if self.config.use_crf: log_likelihood, self.trans_params = tf.contrib.crf.crf_log_likelihood(self.logits, self.labels, self.sequence_lengths) self.loss = tf.reduce_mean(-log_likelihood) else: losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.labels) self.loss = tf.reduce_mean(tf.boolean_mask(tensor=losses, mask=tf.sequence_mask(self.sequence_lengths))) # for tensorboard tf.summary.scalar("loss", self.loss) """Defines self.train_op that performs an update on a batch""" with tf.variable_scope("train_step"): _lr_m = self.config.lr_method.lower() # lower to make sure if _lr_m == 'adam': # sgd method optimizer = tf.train.AdamOptimizer(self.lr) elif _lr_m == 'adagrad': optimizer = tf.train.AdagradOptimizer(self.lr) elif _lr_m == 'sgd': optimizer = tf.train.GradientDescentOptimizer(self.lr) elif _lr_m == 'rmsprop': optimizer = tf.train.RMSPropOptimizer(self.lr) else: raise NotImplementedError("Unknown method {}".format(_lr_m)) if self.config.clip > 0: # gradient clipping if clip is positive grads, vs = zip(*optimizer.compute_gradients(self.loss)) grads, gnorm = tf.clip_by_global_norm(grads, self.config.clip) self.train_op = optimizer.apply_gradients(zip(grads, vs)) else: self.train_op = optimizer.minimize(self.loss) """Defines self.sess and initialize the variables""" self.logger.info("Initializing tf session") self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.saver = tf.train.Saver() def train(self, train: CoNLLDataset, dev: CoNLLDataset) -> None: """Performs training with early stopping and lr exponential decay Args: train: dataset that yields tuple of (sentences, tags) dev: dataset """ best_score = 0 nepoch_no_imprv = 0 # for early stopping self.add_summary() # tensorboard for epoch in range(self.config.nepochs): self.logger.info("Epoch {:} out of {:}".format(epoch + 1, self.config.nepochs)) score = self.run_epoch(train, dev, epoch) self.config.lr *= self.config.lr_decay # decay learning rate # early stopping and saving best parameters if score >= best_score: nepoch_no_imprv = 0 best_score = score self.save_session() self.logger.info("- new best score!") else: nepoch_no_imprv += 1 if nepoch_no_imprv >= self.config.nepoch_no_imprv: self.logger.info("- early stopping {} epochs without improvement".format(nepoch_no_imprv)) break def run_epoch(self, train: CoNLLDataset, dev: CoNLLDataset, epoch: int) -> int: """Performs one complete pass over the train set and evaluate on dev Args: train: dataset that yields tuple of sentences, tags dev: dataset epoch: (int) index of the current epoch Returns: f1: (python float), score to select model on, higher is better """ # progbar stuff for logging batch_size = self.config.batch_size nbatches = (len(train) + batch_size - 1) // batch_size prog = Progbar(target=nbatches) # iterate over dataset for i, (words, labels) in enumerate(train.get_minibatches(batch_size)): fd, _ = self.get_feed_dict(words, labels, self.config.lr, self.config.dropout) _, train_loss, summary = self.sess.run([self.train_op, self.loss, self.merged], feed_dict=fd) prog.update(i + 1, [("train loss", train_loss)]) # tensorboard if i % 10 == 0: self.file_writer.add_summary(summary, epoch * nbatches + i) metrics = self.run_evaluate(dev) msg = " - ".join(["{} {:04.2f}".format(k, v) for k, v in metrics.items()]) self.logger.info(msg) return metrics["f1"] def evaluate(self, test: CoNLLDataset) -> None: """Evaluate model on test set Args: test: instance of class Dataset """ self.logger.info("Testing model over test set") metrics = self.run_evaluate(test) self.logger.info(msg=" - ".join(["{} {:04.2f}".format(k, v) for k, v in metrics.items()])) def run_evaluate(self, test: CoNLLDataset) -> Dict[str, int]: """Evaluates performance on test set Args: test: dataset that yields tuple of (sentences, tags) Returns: metrics: (dict) metrics["acc"] = 98.4, ... """ accs = [] correct_preds, total_correct, total_preds = 0., 0., 0. for words, labels in test.get_minibatches(self.config.batch_size): labels_pred, sequence_lengths = self.predict_batch(words) for lab, lab_pred, length in zip(labels, labels_pred, sequence_lengths): lab = lab[:length] lab_pred = lab_pred[:length] accs += [a == b for (a, b) in zip(lab, lab_pred)] lab_chunks = set(get_chunks(lab, self.config.vocab_tags)) lab_pred_chunks = set(get_chunks(lab_pred, self.config.vocab_tags)) correct_preds += len(lab_chunks & lab_pred_chunks) total_preds += len(lab_pred_chunks) total_correct += len(lab_chunks) p = correct_preds / total_preds if correct_preds > 0 else 0 r = correct_preds / total_correct if correct_preds > 0 else 0 f1 = 2 * p * r / (p + r) if correct_preds > 0 else 0 acc = np.mean(accs) return {"acc": 100 * acc, "f1": 100 * f1} def predict(self, words_raw: List[str]) -> List[str]: """Returns list of tags Args: words_raw: list of words (string), just one sentence (no batch) Returns: preds: list of tags (string), one for each word in the sentence """ words = [self.config.processing_word(w) for w in words_raw] if type(words[0]) == tuple: words = zip(*words) idx_to_tag = {idx: tag for tag, idx in self.config.vocab_tags.items()} pred_ids, _ = self.predict_batch([words]) preds = [idx_to_tag[idx] for idx in list(pred_ids[0])] return preds def predict_batch(self, sentences: List[List[int]]) -> Tuple[List[List[int]], int]: """ Args: sentences: list of sentences Returns: labels_pred: list of labels for each sentence sequence_length """ fd, sequence_lengths = self.get_feed_dict(sentences, dropout=1.0) if self.config.use_crf: # get tag scores and transition params of CRF viterbi_sequences = [] logits, trans_params = self.sess.run([self.logits, self.trans_params], feed_dict=fd) # iterate over the sentences because no batching in vitervi_decode for logit, sequence_length in zip(logits, sequence_lengths): logit = logit[:sequence_length] # keep only the valid steps viterbi_seq, viterbi_score = tf.contrib.crf.viterbi_decode(logit, trans_params) viterbi_sequences += [viterbi_seq] return viterbi_sequences, sequence_lengths else: labels_pred = self.sess.run(self.labels_pred, feed_dict=fd) return labels_pred, sequence_lengths def get_feed_dict(self, sentences: List[List[int]], labels: List[List[int]] = None, lr: float = None, dropout: float = None) -> Tuple[Dict, int]: """Given some data, pad it and build a feed dictionary Args: sentences: list of sentences. A sentence is a list of ids of a list of words. A word is a list of ids labels: list of ids lr: (float) learning rate dropout: (float) keep prob Returns: dict {placeholder: value} """ # perform padding of the given data if self.config.use_chars: char_ids, word_ids = zip(*sentences) char_ids, word_lengths = pad_chars(char_ids) word_ids, sequence_lengths = pad_words(word_ids) else: word_ids, sequence_lengths = pad_words(sentences) # build feed dictionary feed = {} feed[self.word_ids] = word_ids feed[self.sequence_lengths] = sequence_lengths if self.config.use_chars: feed[self.char_ids] = char_ids feed[self.word_lengths] = word_lengths if labels is not None: labels, _ = pad_words(labels) feed[self.labels] = labels if lr is not None: feed[self.lr] = lr if dropout is not None: feed[self.dropout] = dropout return feed, sequence_lengths def reinitialize_weights(self, scope_name): """Reinitializes the weights of a given layer""" variables = tf.contrib.framework.get_variables(scope_name) init = tf.variables_initializer(variables) self.sess.run(init) def restore_session(self, dir_model): """Reload weights into session Args: sess: tf.Session() dir_model: dir with weights """ self.logger.info("Reloading the latest trained model...") self.saver.restore(self.sess, dir_model) def save_session(self): """Saves session = weights""" if not os.path.exists(self.config.dir_model): os.makedirs(self.config.dir_model) self.saver.save(self.sess, self.config.dir_model) def close_session(self): """Closes the session""" self.sess.close() def add_summary(self): """Defines variables for Tensorboard Args: dir_output: (string) where the results are written """ self.merged = tf.summary.merge_all() self.file_writer = tf.summary.FileWriter(self.config.dir_output, self.sess.graph) def shapes(tensor): shape = tf.shape(tensor) return [shape[i] for i in range(shape.get_shape()[0])]
StarcoderdataPython
3390274
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- # OpenData DWD FX Radar processing tool # Author: <NAME> # v0: First test version to read in FX binary data and create first static plot # v1: Included automatic download of latest image and further improvements # v2: Splittet program into single functions for better code structure # --> not yet finished, has to be done # Load necessary python modules import numpy as np from datetime import datetime from sys import argv # Define user inputs temp_folder = '/work/bm0834/u233139/DWDRadar/temp/' # Static link for debug options #infile_fx = '/work/bm0834/u233139/DWDRadar/FXLATEST_000_MF002' # Static link for debug options #infile_fx = temp_folder+"FXLATEST_000_MF002" # Latest image update option infile_fx = sys.argv[1] # Option for argument input plot_path = sys.argv[2] # Option for argument input #plot_path = '/work/bm0834/u233139/DWDRadar/plots/' # Static link for debug options # Define DWD FX Radar download function def download_dwd_radar(latest): "This function downloads latest DWD radar file." ## Download latest radar image to temporary directory # Check if temporary folder exists otherwise create one import os import urllib if not os.path.exists(temp_folder): os.makedirs(temp_folder) # Download file if latest == 1: latest_fx_file = urllib.URLopener() latest_fx_file.retrieve("https://opendata.dwd.de/weather/radar/composit/fx/FXLATEST_000_MF002", temp_folder+"FXLATEST_000_MF002") else: print "Error, no other function implemented yet." return 1 # If everything runs without errors, return 0 return 0 # Define DWD FX Radar processing function def process_dwd_radar(infile_fx): "This function process DWD radar file." ### Read and process DWD FX data ### ## Documentation about DWD OpenData FX format is found at: ## https://www.dwd.de/DE/leistungen/radarprodukte/formatbeschreibung_fxdaten.pdf ### Read header information and binary data with open(infile_fx, 'r') as f: f.seek(0, 0) # Set reading cursor to start of file file_data = f.read() # Read all lines and store to object h_line = file_data.split('\x03', 1)[0] # Read header information till first ETX fx_bin_data = file_data.split('\x03', 1)[1] # Binary data is stored after header ETX # Process header information and save variables prod_type = h_line[0:2] # Product type (FX) meas_time = h_line[2:8] # Measurement time UTC (DDhhmm) meas_date = h_line[13:17] # Measurement date (MMYY) byte_len = np.int(h_line[19:26]) # Product length in bytes intv_min = np.int(h_line[51:55]) # Intervall length in minutes dim_x = np.int(h_line[57:61]) # Number of Pixels (x-direction) dim_y = np.int(h_line[62:66]) # Number of Pixels (y-direction) # Convert header time information to python time object datetime_meas = datetime.strptime(meas_date+'-'+meas_time, '%m%y-%d%H%M') # Read binary data from buffer variable and clean buffer fx_data = np.frombuffer(fx_bin_data, dtype='<i2').copy() del file_data # Set missing values according to file format specs. fx_data[fx_data > 4095] = 0 # Data handling for optimized postprocessing fx_data = np.asfarray(fx_data) # Convert data to float fx_data = fx_data.reshape(dim_x, dim_y) # Reshape vector to array # Convert pixel to dBz values fx_data = fx_data/10.0 fx_data = (fx_data/2.0) - 32.5 # Set all values below to NaN, non physical values fx_data[fx_data < 0.0] = np.nan # If everything runs without errors, return dictonary with variables return {'dim_x': dim_x, 'dim_y': dim_y, 'datetime_meas': datetime_meas, 'fx_data': fx_data} # Define DWD FX Radar radar grid function def create_radar_grid(dim_x, dim_y): "This function downloads latest DWD radar file." ### Geolocation of pixels # Creating array for positions grid_pos = np.empty((dim_x, dim_y,)) grid_pos[:] = np.nan # Reference for Coordinates Calculation see: # https://www.dwd.de/DE/leistungen/radolan/radolan_info/radolan_radvor_op_komposit_format_pdf.pdf?__blob=publicationFile&v=7 # page 13 and following # Set constants earthRadius = 6370.04 # km junctionNorth = 60.0 # N junctionEast = 10.0 # E # Equidistant cartesian coordinates dx_dist = 1.0 # km dy_dist = 1.0 # km # Coordinates of corners of cartesian grid lowerleft_x = -523.4622 lowerleft_y = -4658.645 lowerright_x = 376.5378 lowerright_y = -4658.645 upperright_x = 376.5378 upperright_y = -3758.645 upperleft_x = -523.4622 upperleft_y = -3758.645 # Create x and y equidistant vectors x_cord_cart = np.arange(lowerleft_x,lowerright_x,dx_dist) y_cord_cart = np.arange(lowerleft_y,upperleft_y,dy_dist) # Convert cartesian coordinates to lat lon coordinates x_vec_cord = np.rad2deg( np.arctan(-x_cord_cart[0:900]/y_cord_cart[0]) + np.deg2rad( junctionEast ) ) # see p.13, formula 1.4a y_vec_cord = np.rad2deg( np.arcsin(( \ ((earthRadius**2) * ((1+np.sin(np.deg2rad(junctionNorth)))**2) - ( (x_cord_cart[0:900]**2) + (y_cord_cart[0:900]**2))) / \ ((earthRadius**2) * ((1+np.sin(np.deg2rad(junctionNorth)))**2) + ( (x_cord_cart[0:900]**2) + (y_cord_cart[0:900]**2))) )) ) # Create meshgrid to have coordinates matrix xm_ll, ym_ll = np.meshgrid(x_vec_cord, y_vec_cord) # If everything runs without errors, return dictonary with grid variables return {'xm_ll': xm_ll, 'ym_ll': ym_ll} # Define DWD FX Radar plot function function def plot_dwd_radar(xm_ll, ym_ll, fx_data, datetime_meas, plot_path, temp_folder): "This function gets DWD radar and grid information and creates a plot." # Import map data for plotting ### Plot DWD Open Radardata on a map import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap # Create formatted time string time_string = datetime.strftime(datetime_meas, '%d/%m/%Y %H:%M UTC') time_file = datetime.strftime(datetime_meas, '%d%m%Y_%H%M') # Create new figure fig = plt.figure(num=None, facecolor='w', edgecolor='k') plt.contourf(xm_ll, ym_ll, fx_data, interpolation='none') plt.title("Rain at: "+time_string, fontweight="bold", size=18) map = Basemap(llcrnrlon=3.5,llcrnrlat=46.5,urcrnrlon=15.5,urcrnrlat=55.5, resolution='i') map.drawcoastlines() map.drawcountries() lat_ticks = [55.0,53.0,51.0,49.0,47.0] map.drawparallels(lat_ticks, labels=[1,0,0,0], linewidth=0.0) lon_ticks = [4.0,6.0,8.0,10.0,12.0,14.0] map.drawmeridians(lon_ticks, labels=[0,0,0,1], linewidth=0.0) # Insert colorbar cbar = plt.colorbar() cbar.set_label('Radar reflectivity (dBz)') # Save plot to file plt.savefig(plot_path + 'DWD_OpenData_FX_5min_precip_'+ time_file + '.png', dpi=100, format='png') plt.close() #plt.show() # Clean temporary directory import os os.remove(temp_folder+"FXLATEST_000_MF002") # If everything runs without errors, return 0 return 0 # Main control function def main(): # Define parameters print "Starting DWD OpenData Radar FX plot generation..." # Download latest Radar file radar_download = download_dwd_radar(1) # 1 = latest radar image # Process Radar file radar_process = process_dwd_radar(infile_fx) # Generate DWD RADOLAN grid #print(radar_process["dim_x"], radar_process["dim_y"]) # Debug option for grid size radar_grid = create_radar_grid(radar_process["dim_x"], radar_process["dim_y"]) # Generate latest DWD FX Radar plot radar_plot = plot_dwd_radar(radar_grid["xm_ll"], radar_grid["ym_ll"], radar_process["fx_data"], \ radar_process["datetime_meas"], plot_path, temp_folder) # End of main # Call main routine main() print "Finished processing DWD OpenData for radar."
StarcoderdataPython
4837181
<filename>wavespectra/plot.py import numpy as np import xarray as xr from wavespectra.core.attributes import attrs LOG_FACTOR = 1e3 RADII_FREQ_TICKS_LOG = np.array([0.05, 0.1, 0.2, 0.3, 0.4]) RADII_FREQ_TICKS_LIN = np.arange(0.1, 1.1, 0.1) RADII_PER_TICKS_LOG = (np.array([20, 10, 5, 3, 2])) RADII_PER_TICKS_LIN = np.arange(5, 30, 5) CBAR_TICKS = [1e-2, 1e-1, 1e0] LOG_CONTOUR_LEVELS = np.logspace(np.log10(0.005), np.log10(1), 14) SUPPORTED_KIND = ["pcolormesh", "contourf", "contour"] class WavePlot: """Plot spectra in polar axis. Args: - darr (DataArray): Wavespectra DataArray. - kind (str): Plot kind, one of (`contourf`, `contour`, `pcolormesh`). - normalised (bool): Show efth normalised between 0 and 1. - logradius (bool): Set log radii. - as_period (bool): Set radii as wave period instead of frequency. - rmin (float): Minimum value to clip the radius axis. - rmax (float): Maximum value to clip the radius axis. - show_theta_labels (bool): Show direction tick labels. - show_radii_labels (bool): Show radii tick labels. - radii_ticks (array): Tick values for radii. - radii_labels_angle (float): Polar angle at which radii labels are positioned. - radii_labels_size (float): Fontsize for radii labels. - cbar_ticks (array): Tick values for colorbar. - cmap (str, obj): Colormap to use. - efth_min (float): Clip energy density below this value. - clean_axis (bool): Remove radii and theta axis lines for clean view. - kwargs: All extra kwargs are passed to the plotting method defined by `kind`. Returns: - pobj: The xarray object returned by calling `da.plot.{kind}(**kwargs)`. """ def __init__( self, darr, kind="contourf", normalised=True, logradius=True, as_period=False, rmin=None, rmax=None, show_theta_labels=True, show_radii_labels=True, radii_ticks=None, radii_labels_angle=22.5, radii_labels_size=8, cbar_ticks=None, cmap="RdBu_r", extend="neither", efth_min=1e-3, clean_axis=False, **kwargs, ): self.kind = kind self.normalised = normalised self.logradius = logradius self.as_period = as_period self.show_theta_labels = show_theta_labels self.show_radii_labels = show_radii_labels self.radii_labels_angle = radii_labels_angle self.radii_labels_size = radii_labels_size self.cmap = cmap self.extend = extend self.efth_min = efth_min self.clean_axis = clean_axis # Attributes set based on other attributes self._darr = darr self._rmin = rmin self._rmax = rmax self._radii_ticks = radii_ticks self._cbar_ticks = cbar_ticks self._kwargs = kwargs self._validate() def __repr__(self): s = f"<Waveplot {self.kind}>" for attr in ["normalised", "logradius", "as_period"]: if getattr(self, attr): s = s.replace(">", f" {attr.split('_')[-1]}>") return s def __call__(self): """Execute plotting method.""" # kwargs for polar axis default_subplot_kws = { "projection": self._kwargs.pop("projection", "polar"), "theta_direction": self._kwargs.pop("theta_direction", -1), "theta_offset": self._kwargs.pop("theta_offset", np.deg2rad(90)), } subplot_kws = {**default_subplot_kws, **self._kwargs.pop("subplot_kws", {})} # Call plotting function pobj = getattr(self.darr.plot, self.kind)( subplot_kws=subplot_kws, **self.kwargs ) # Adjusting axes if isinstance(pobj, xr.plot.facetgrid.FacetGrid): axes = list(pobj.axes.ravel()) cbar = pobj.cbar else: axes = [pobj.axes] cbar = pobj.colorbar for ax in axes: ax.set_rgrids( radii=self.radii_ticks, labels=self.radii_ticklabels, angle=self.radii_labels_angle, size=self.radii_labels_size, ) ax.set_rmax(self.rmax) ax.set_rmin(self.rmin) # Disable labels as they are drawn on top of ticks ax.set_xlabel("") ax.set_ylabel("") # Disable or not tick labels if self.show_theta_labels is False: ax.set_xticklabels("") if self.show_radii_labels is False: ax.set_yticklabels("") # Clean axis if self.clean_axis: ax.set_rticks([]) ax.set_xticks([]) # Adjusting colorbar if cbar is not None: cbar.set_ticks(self.cbar_ticks) return pobj @property def dname(self): return attrs.DIRNAME @property def fname(self): return attrs.FREQNAME @property def darr(self): # Define polar coordinates _darr = self._polar_dir(self._darr) # Overwrite attributes for labels _darr = self._set_labels(_darr) # Normalise if self.normalised: _darr = (_darr - _darr.min()) / (_darr.max() - _darr.min()) # Set lowest value for masking if self.efth_min is not None: _darr = _darr.where(_darr >= self.efth_min, self.efth_min) # Convert frequencis to periods if self.as_period: _darr = self._to_period(_darr) # Set log10 radii if self.logradius: _darr = self._to_logradius(_darr) return _darr @property def rmin(self): """The radius centre.""" if self._rmin is None: return float(self.darr[self.fname].min()) if self.logradius and self._rmin > 0: return np.log10(self._rmin * LOG_FACTOR) else: return self._rmin @property def rmax(self): """The radius edge.""" if self._rmax is None: return float(self.darr[self.fname].max()) if self.logradius and self._rmax > 0: return np.log10(self._rmax * LOG_FACTOR) else: return self._rmax @property def cbar_ticks(self): """Colorbar ticks.""" if self._cbar_ticks is None and self.normalised and "contour" in self.kind and "levels" not in self._kwargs: self._cbar_ticks = CBAR_TICKS return self._cbar_ticks @property def radii_ticks(self): """Tick locations for the radii axis.""" radii_ticks = self._radii_ticks # Assign default values if self._radii_ticks is None: if self.logradius: if self.as_period: radii_ticks = RADII_PER_TICKS_LOG else: radii_ticks = RADII_FREQ_TICKS_LOG else: if self.as_period: radii_ticks = RADII_PER_TICKS_LIN else: radii_ticks = RADII_FREQ_TICKS_LIN # Ensure numpy array radii_ticks = np.array(radii_ticks) # Taking the log10 if logradius is True if self.logradius: radii_ticks = np.log10(radii_ticks * LOG_FACTOR) # Raise ValueError if radii ticks are not within (rmin, rmax) if self.rmin >= radii_ticks.max() or self.rmax <= radii_ticks.min(): if self.logradius: ticks = 10 ** radii_ticks / LOG_FACTOR rmin = 10 ** self.rmin / LOG_FACTOR rmax = 10 ** self.rmax / LOG_FACTOR else: ticks = radii_ticks rmin = self.rmin rmax = self.rmax raise ValueError( f"radii_ticks '{ticks}' outside the bounds defined by 'rmin={rmin}', " f"'rmax={rmax}', perhaps you are trying to define frequency radii " "ticks on period radii or vice-versa?" ) # Clipping to radii limits radii_ticks = np.unique(radii_ticks.clip(self.rmin, self.rmax)) return radii_ticks @property def radii_ticklabels(self): """Tick labels for the radii axis.""" units = self.darr[self.fname].attrs.get("units", "Hz") if self.logradius: ticks = 10 ** self.radii_ticks / 1000 else: ticks = self.radii_ticks ticklabels = [f"{v:g}" for v in ticks] ticklabels[-1] = ticklabels[-1] + units return ticklabels @property def kwargs(self): _kwargs = {**self._kwargs, **{"x": self.dname, "y": self.fname}} if "colors" not in self._kwargs: _kwargs.update({"cmap": self.cmap}) if "contour" in self.kind: _kwargs.update({"extend": self.extend}) if self.normalised and "contour" in self.kind and "levels" not in _kwargs: _kwargs.update({"levels": LOG_CONTOUR_LEVELS}) return _kwargs def _validate(self): """Validate input arguments.""" if self.kind not in SUPPORTED_KIND: raise NotImplementedError( f"Wavespectra only supports the following kinds: {SUPPORTED_KIND}" ) def _polar_dir(self, darray): """Sort, wrap and convert directions to radians for polar plot.""" # Sort directions darray = darray.sortby(self.dname) if self.kind not in ["pcolor", "pcolormesh"]: # Close circle if not pcolor type (pcolor already closes it) if darray[self.dname][0] % 360 != darray[self.dname][-1] % 360: dd = np.diff(darray[self.dname]).mean() closure = darray.isel(**{self.dname: 0}) closure = closure.assign_coords( {self.dname: darray[self.dname][-1] + dd} ) darray = xr.concat((darray, closure), dim=self.dname) # Convert to radians darray = darray.assign_coords({self.dname: np.deg2rad(darray[self.dname])}) return darray def _set_labels(self, darr): """Redefine attributes to show in plot labels.""" darr[self.fname].attrs["standard_name"] = "Wave frequency ($Hz$)" darr[self.dname].attrs["standard_name"] = "Wave direction ($degree$)" if self.normalised: darr.attrs["standard_name"] = "Normalised Energy Density" darr.attrs["units"] = "" else: darr.attrs["standard_name"] = "Energy Density" darr.attrs["units"] = "$m^{2}s/deg$" return darr def _to_period(self, darr): darr = darr.assign_coords({self.fname: 1 / darr[self.fname]}) darr[self.fname].attrs.update( {"standard_name": "sea_surface_wave_period", "units": "s"} ) return darr def _to_logradius(self, darr): fattrs = darr[self.fname].attrs dattrs = darr[self.dname].attrs sattrs = darr.attrs freqs = np.log10(darr.freq * LOG_FACTOR) freqs = freqs.where(np.isfinite(freqs), 0) darr = darr.assign_coords({self.fname: freqs}) darr.attrs = sattrs darr[self.fname].attrs = fattrs darr[self.dname].attrs = dattrs return darr def polar_plot(*args, **kargs): """Plot spectra in polar axis. Args: - darr (DataArray): Wavespectra DataArray. - kind (str): Plot kind, one of (`contourf`, `contour`, `pcolormesh`). - normalised (bool): Show efth normalised between 0 and 1. - logradius (bool): Set log radii. - as_period (bool): Set radii as wave period instead of frequency. - rmin (float): Minimum value to clip the radius axis. - rmax (float): Maximum value to clip the radius axis. - show_theta_labels (bool): Show direction tick labels. - show_radii_labels (bool): Show radii tick labels. - radii_ticks (array): Tick values for radii. - radii_labels_angle (float): Polar angle at which radii labels are positioned. - radii_labels_size (float): Fontsize for radii labels. - cbar_ticks (array): Tick values for colorbar. - cmap (str, obj): Colormap to use. - efth_min (float): Clip energy density below this value. - kwargs: All extra kwargs are passed to the plotting method defined by `kind`. Returns: - pobj: The xarray object returned by calling `da.plot.{kind}(**kwargs)`. """ wp = WavePlot(*args, **kargs) return wp()
StarcoderdataPython
1679902
<reponame>PMARINA/Canvas-Autograder """Handles getting assignments from Canvas API. Reference for Canvas: https://canvas.instructure.com/doc/api/assignments.html#method.assignments_api.index """ from typing import Dict from typing import List from requests import Response import Canvas_Request def process_assignments( content: Response, assignments: List[Dict], section_id: str = "", ) -> None: """Add all assignments from response to list. Args: content (Response): response object from the api call assignments (List[Dict]): Add all assignments found to this list section_id (str): If you want to only add assignments from a single section. Defaults to "". """ def is_section_with_gradable(sec_info: Dict) -> bool: """Return if the section filter will select this section and if the section has any gradable assignments. Args: sec_info (Dict): The dict containing the section string and number of gradable submissions Returns: bool: If the assignment has your section with gradable assignments """ if sec_info["section_id"] == section_id: if sec_info["needs_grading_count"] > 0: return True return False content_dict: Dict = content.json() for assignment in content_dict: if not section_id: if assignment["needs_grounding_count"] > 0: assignments.append(assignment) else: for sec_info in assignment["needs_grading_count_by_section"]: if is_section_with_gradable(sec_info): assignments.append(assignment) def get_all_assignments(course_id: str, section_id: str = "") -> List[Dict]: """Return all assignments in the course, and optionally, filters by section_id. Args: course_id (str): The course id for which you wish to acquire assignments section_id (str): The section id you wish to filter by ("" for no filtering) Raises: Exception: If no gradable assignments are found... Returns: List[Dict]: A list of all assignments that match your query. See Canvas API for details of dict. """ assignments: List[Dict] = [] r: Response if not section_id: r = Canvas_Request.get_endpoint(f"courses/{course_id}/assignments") else: section_urlquery = "needs_grading_count_by_section=True" url: str = f"courses/{course_id}/assignments?{section_urlquery}" r = Canvas_Request.get_endpoint(url) process_assignments(r, assignments, section_id) while r.links["current"]["url"] != r.links["last"]["url"]: r = Canvas_Request.get(r.links["next"]["url"]) process_assignments(r, assignments, section_id) if len(assignments) == 0: errmsg = ( "No gradable assignments found under your Canvas user." " Are you a 'ta' or 'teacher'?" ) raise Exception(errmsg) return assignments
StarcoderdataPython
1644064
<reponame>hdoto/asterisk-mirror<filename>asterisk_mirror/main.py # -*- coding: utf-8 -*- import uuid import signal from threading import Thread, Event, Timer from typing import List from importlib import import_module from asterisk_mirror.config import AsteriskConfig from asterisk_mirror.stepper import Stepper from asterisk_mirror.logics import MorseLogic, YearLogic, FlucLogic # innner methods def _merge_dict(source: str, destination: str): for key, value in source.items(): if isinstance(value, dict): node = destination.setdefault(key, {}) _merge_dict(value, node) else: destination[key] = value return destination # AsteriskMirror class AsteriskMirror: def __init__(self): # configurations config = AsteriskConfig() self.stop_event = Event() self.main_thread = None self.timer_thread = None self.stepper = Stepper([config.get('System.step_pin', int), config.get('System.direction_pin', int), config.get('System.enable_pin', int)]) self.transition = config.get('System.transition', int) self.logics = [] self.logic_index = -1 # load and append logics module = import_module('asterisk_mirror.logics') for logic_str in config.get('System.logics').split(','): logic_cls = getattr(module, logic_str.strip()) logic = logic_cls(self.stepper) self.logics.append(logic) print("AsteriskMirror [", "transition:", self.transition, "]") def start(self): if self.main_thread is not None: print("AsteriskMirror: already started.") return print ("AsteriskMirror: starting...") # renew threads if self.timer_thread is not None: self.stop_event.set() self.timer_thread = Thread(target=self.timer_run) self.stop_event.clear() self.main_thread = Thread(target=self.run) # start threads self.main_thread.start() self.timer_thread.start() def stop(self): print("AsteriskMirror: stopping...") self.stop_event.set() self.stepper.exit() self.timer_thread = None self.main_thread = None def timer_run(self): while not self.stop_event.is_set(): # set a new index of logics self.logic_index = (self.logic_index+1)%len(self.logics) print("AsteriskMirror: changes logic:", self.logics[self.logic_index]) # interrupt stepper thread and main thread self.stepper.interrupt() self.stop_event.wait(self.transition) def run(self): #print("AsteriskMirror.run starting...") while not self.stop_event.is_set(): if self.logic_index >= 0 and len(self.logics) > 0: logic = self.logics[self.logic_index] logic.run() else: # wait until a right logic-index will be set self.stop_event.wait(1) # main def main(): AsteriskConfig() mirror = AsteriskMirror() mirror.start() # handles SIGINT(ctrl-c) and SIGTERM def handler(signal, frame): mirror.stop() signal.signal(signal.SIGINT, handler) signal.signal(signal.SIGTERM, handler) if __name__ == '__main__': main()
StarcoderdataPython
1648131
<filename>lib/model/faster_rcnn/faster_rcnn.py #encoding=utf-8 import random import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torchvision.models as models from torch.autograd import Variable import numpy as np from model.utils.config import cfg from model.rpn.rpn import _RPN from model.roi_layers import ROIAlign, ROIPool # from model.roi_pooling.modules.roi_pool import _RoIPooling # from model.roi_align.modules.roi_align import RoIAlignAvg from model.rpn.proposal_target_layer_cascade import _ProposalTargetLayer import time import pdb from model.utils.net_utils import _smooth_l1_loss, _crop_pool_layer, _affine_grid_gen, _affine_theta class _fasterRCNN(nn.Module): """ faster RCNN """ def __init__(self, classes, class_agnostic): super(_fasterRCNN, self).__init__() self.classes = classes self.n_classes = len(classes) self.class_agnostic = class_agnostic # loss self.RCNN_loss_cls = 0 self.RCNN_loss_bbox = 0 # define rpn self.RCNN_rpn = _RPN(self.dout_base_model) self.RCNN_proposal_target = _ProposalTargetLayer(self.n_classes) # self.RCNN_roi_pool = _RoIPooling(cfg.POOLING_SIZE, cfg.POOLING_SIZE, 1.0/16.0) # self.RCNN_roi_align = RoIAlignAvg(cfg.POOLING_SIZE, cfg.POOLING_SIZE, 1.0/16.0) self.RCNN_roi_pool = ROIPool((cfg.POOLING_SIZE, cfg.POOLING_SIZE), 1.0/16.0) self.RCNN_roi_align = ROIAlign((cfg.POOLING_SIZE, cfg.POOLING_SIZE), 1.0/16.0, 0) self.lamda = 0.8 self.G_cls_feat = torch.zeros(self.n_classes, 4096).cuda() self.not_first = False self.label = torch.eye(self.n_classes, self.n_classes).cuda() # for i in range(self.n_classes): # self.label[i] = i def forward(self, im_data, im_info, gt_boxes, num_boxes): batch_size = im_data.size(0) im_info = im_info.data gt_boxes = gt_boxes.data num_boxes = num_boxes.data # feed image data to base model to obtain base feature map base_feat = self.RCNN_base(im_data) # base_feat = base_feat1.detach() # if it is training phrase, then use ground trubut bboxes for refining if self.training: # feed base feature map tp RPN to obtain rois self.RCNN_rpn.train() rois, rpn_loss_cls, rpn_loss_bbox = self.RCNN_rpn(base_feat, im_info, gt_boxes, num_boxes) self.RCNN_rpn.eval() rois1, rpn_loss_cls1, rpn_loss_bbox1 = self.RCNN_rpn(base_feat, im_info, gt_boxes, num_boxes) # pdb.set_trace() roi_data = self.RCNN_proposal_target(rois, gt_boxes, num_boxes) rois, rois_label, rois_target, rois_inside_ws, rois_outside_ws = roi_data rois_label = Variable(rois_label.view(-1).long()) rois_target = Variable(rois_target.view(-1, rois_target.size(2))) rois_inside_ws = Variable(rois_inside_ws.view(-1, rois_inside_ws.size(2))) rois_outside_ws = Variable(rois_outside_ws.view(-1, rois_outside_ws.size(2))) else: rois, rpn_loss_cls, rpn_loss_bbox = self.RCNN_rpn(base_feat, im_info, gt_boxes, num_boxes) rois1, rpn_loss_cls1, rpn_loss_bbox1 = self.RCNN_rpn(base_feat, im_info, gt_boxes, num_boxes) rois_label = None rois_target = None rois_inside_ws = None rois_outside_ws = None rpn_loss_cls = 0 rpn_loss_bbox = 0 rois = Variable(rois) rois1 = Variable(rois1) # do roi pooling based on predicted rois if cfg.POOLING_MODE == 'align': pooled_feat1 = self.RCNN_roi_align(base_feat, rois1.view(-1, 5).detach()) pooled_feat = self.RCNN_roi_align(base_feat, rois.view(-1, 5).detach()) elif cfg.POOLING_MODE == 'pool': pooled_feat1 = self.RCNN_roi_pool(base_feat, rois1.view(-1,5).detach()) pooled_feat = self.RCNN_roi_pool(base_feat, rois.view(-1, 5).detach()) # pdb.set_trace() # feed pooled features to top model pooled_feat = self._head_to_tail(pooled_feat) pooled_feat1 = self._head_to_tail(pooled_feat1) # compute bbox offset bbox_pred = self.RCNN_bbox_pred(pooled_feat) if self.training and not self.class_agnostic: # pdb.set_trace() # select the corresponding columns according to roi labels bbox_pred_view = bbox_pred.view(bbox_pred.size(0), int(bbox_pred.size(1) / 4), 4) bbox_pred_select = torch.gather(bbox_pred_view, 1, rois_label.view(rois_label.size(0), 1, 1).expand(rois_label.size(0), 1, 4)) bbox_pred = bbox_pred_select.squeeze(1) # compute object classification probability cls_score = self.RCNN_cls_score(pooled_feat) cls_prob = F.softmax(cls_score, 1) cls_score1 = self.RCNN_cls_score(pooled_feat1) cls_prob1 = F.softmax(cls_score1, 1) cls_loss_cls, cls_entropy_loss, sim_loss_cls = self.fun(cls_prob1.detach(), cls_score1, pooled_feat1) RCNN_loss_cls = 0 RCNN_loss_bbox = 0 if self.training: # classification loss RCNN_loss_cls = F.cross_entropy(cls_score, rois_label) # bounding box regression L1 loss RCNN_loss_bbox = _smooth_l1_loss(bbox_pred, rois_target, rois_inside_ws, rois_outside_ws) cls_prob = cls_prob.view(batch_size, rois.size(1), -1) bbox_pred = bbox_pred.view(batch_size, rois.size(1), -1) return rois, cls_prob, bbox_pred, rpn_loss_cls, rpn_loss_bbox, RCNN_loss_cls, RCNN_loss_bbox, rois_label, cls_loss_cls, cls_entropy_loss, sim_loss_cls#, pooled_feat def _init_weights(self): def normal_init(m, mean, stddev, truncated=False): """ weight initalizer: truncated normal and random normal. """ # x is a parameter if truncated: m.weight.data.normal_().fmod_(2).mul_(stddev).add_(mean) # not a perfect approximation else: m.weight.data.normal_(mean, stddev) m.bias.data.zero_() normal_init(self.RCNN_rpn.RPN_Conv, 0, 0.01, cfg.TRAIN.TRUNCATED) normal_init(self.RCNN_rpn.RPN_cls_score, 0, 0.01, cfg.TRAIN.TRUNCATED) normal_init(self.RCNN_rpn.RPN_bbox_pred, 0, 0.01, cfg.TRAIN.TRUNCATED) normal_init(self.RCNN_cls_score, 0, 0.01, cfg.TRAIN.TRUNCATED) normal_init(self.RCNN_bbox_pred, 0, 0.001, cfg.TRAIN.TRUNCATED) def create_architecture(self): self._init_modules() self._init_weights() def fun(self, cls_prob, cls_score, pooled_feat): region_prob_sum = 1/(torch.t(cls_prob).sum(1)) region_prob_weight = region_prob_sum.unsqueeze(1).expand(cls_prob.size(1), cls_prob.size(0)).mul(torch.t(cls_prob)) cls_feat = torch.mm(region_prob_weight, pooled_feat) if self.not_first: alpha = ((cls_feat.mul(self.G_cls_feat).sum(1)/(torch.norm(cls_feat, 2, 1).mul(torch.norm(self.G_cls_feat, 2, 1)))).unsqueeze(1)+1)/2 else: alpha = torch.ones(self.n_classes,1).cuda() self.not_first = True self.G_cls_feat = cls_feat.mul(alpha.detach())+(self.G_cls_feat.detach()).mul(1-alpha.detach()) # pdb.set_trace() sim_cls_score = torch.mm(pooled_feat, torch.t(self.G_cls_feat.detach()))/torch.mm(torch.norm(pooled_feat, 2, 1).unsqueeze(1), torch.norm(self.G_cls_feat.detach(), 2, 1).unsqueeze(0)) sim_label = (10 * sim_cls_score + cls_prob).max(1)[1] sim_loss_cls = F.cross_entropy(cls_score, sim_label.detach()) cls_cls_score = self.RCNN_cls_score(self.G_cls_feat) cls_cls_prob = (F.softmax(cls_cls_score, 1)>(1.0/self.n_classes)).float() cls_loss_cls = -F.log_softmax(cls_cls_score, 1).mul(self.label).mul(cls_cls_prob.detach()).sum(0).sum(0) / cls_cls_score.size(0)#goodcls.sum(0) # pdb.set_trace() cls_entropy_loss = self.entropy_loss(cls_score) return cls_loss_cls, cls_entropy_loss, sim_loss_cls def entropy_loss(self, score): #pdb.set_trace() num = -F.log_softmax(score, 1).mul(F.softmax(score, 1)).sum(0).sum(0)/score.size(0) return num #reason_function def reason_run(self, pooled_feat, cls_score, cls_prob, rois): reason_feat, mask = self.reason(pooled_feat.detach(), cls_score.detach(), rois.detach()) reason_score = self.RCNN_cls_score(reason_feat) reason_prob = F.softmax(reason_score, 1) right_region = mask.byte().squeeze(1).mul(reason_prob.max(1)[1] == cls_prob.max(1)[1]) cls_score = cls_score + right_region.float().unsqueeze(1).expand(reason_score.size(0), reason_score.size(1)).mul(reason_score) right_inds = torch.nonzero(right_region > 0).view(-1).detach() right_score = cls_score[right_inds] fake_label = cls_prob.max(1)[1][right_inds] def reason(self, pooled_feat, cls_score, rois): # 提取batch大小,候选区域个数,类别数目; B,R,C # train:4,256,101; test:1,300,101 batch_size = rois.size(0) region_num = rois.size(1) fea_num = pooled_feat.size(1) # pdb.set_trace() mask = self.back_goodinds(cls_score, batch_size*region_num) mask_cls_score = cls_score.mul(mask.expand(batch_size*region_num, cls_score.size(1))) raw_region_box = torch.cuda.FloatTensor(rois.data[:, :, 1:5]) trs_region_box = self.__transform_box(raw_region_box) # raw_region_box) # 分离B,R,调整大小为B*R*C temp_feat = pooled_feat.view(batch_size, region_num, -1) temp_score = mask_cls_score.view(batch_size, region_num, -1) temp_mask = mask.view(batch_size, region_num, -1) # pdb.set_trace() # 新建一个全零B*R*C,用于存储每张图片的推理结果 temp0 = torch.zeros(batch_size, region_num, fea_num).cuda() for i in range(batch_size): # 使用nms筛选重复框得到一个R*1的mask # pdb.set_trace() region_fea = temp_feat[i, :, :] # region_score = temp_score[i, :, :] region_mask = temp_mask[i, :, :] A_spread = self.__Build_spread(trs_region_box[i, :, :], region_num, region_mask) spread_reason_fea = torch.mm(A_spread, region_fea) # norm = 1.0 / (spread_reason_fea.sum(1) + 0.0001).unsqueeze(1).expand(region_num, fea_num) # 50 # spread_reason_fea = spread_reason_fea.mul(norm) choose_fea = spread_reason_fea # 0.07 # pdb.set_trace() # 将每张图片的推理结果保存到temp3中 temp0[i, :, :] = temp0[i, :, :] + choose_fea reason_feat = temp0.view(batch_size*region_num, -1) return reason_feat, mask def __Build_spread(self, region_box, region_num, mask): # 坐标扩展为3维,并转置,用于计算区域之间的距离 expand1_region_box = region_box.unsqueeze(2) expand_region_box = expand1_region_box.expand(region_num, 4, region_num) transpose_region_box = expand_region_box.transpose(0, 2) # 跟据每个区域的w和h,计算每个区域的传播范围 spread_distance = torch.sqrt(torch.pow(region_box[:, 2], 2) + torch.pow(region_box[:, 3], 2)) expand_spread_distance = (self.lamda * spread_distance).expand(region_num, region_num) # 根据每个区域的x和y,计算区域之间的距离 region_distance = torch.sqrt( torch.pow((expand_region_box[:, 0, :] - transpose_region_box[:, 0, :]), 2) + torch.pow( (expand_region_box[:, 1, :] - transpose_region_box[:, 1, :]), 2)) # A = F.relu(expand_spread_distance-region_distance) # 根据传播范围和距离,计算传播矩阵的权值 A = F.relu(1 - region_distance / expand_spread_distance) # pdb.set_trace() #mask_w = torch.t(mask).expand(region_num, region_num) mask_w = torch.mm(mask, torch.t(mask)) # 不接受来自自己的推理信息 self_w = 1 - torch.eye(region_num, region_num).cuda() A = A.mul(self_w).mul(mask_w) weight = 1.0/(A.sum(1)+0.001).unsqueeze(1).expand(region_num, region_num) return A.mul(weight) def __transform_box(self, region_box): new_region_box = torch.zeros((region_box.size(0), region_box.size(1), 4)).cuda() new_region_box[:, :, 0] = 0.5 * (region_box[:, :, 0] + region_box[:, :, 2]) new_region_box[:, :, 1] = 0.5 * (region_box[:, :, 1] + region_box[:, :, 3]) new_region_box[:, :, 2] = region_box[:, :, 2] - region_box[:, :, 0] new_region_box[:, :, 3] = region_box[:, :, 3] - region_box[:, :, 1] return new_region_box def back_goodinds(self, region_fea, region_num): mask = (region_fea.max(1)[1]>0).float().unsqueeze(1) return mask
StarcoderdataPython
138470
""" sentry.cache.django ~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import from django.core.cache import cache from .base import BaseCache class DjangoCache(BaseCache): def set(self, key, value, timeout, version=None): cache.set(key, value, timeout, version=version or self.version) def delete(self, key, version=None): cache.delete(key, version=version or self.version) def get(self, key, version=None): return cache.get(key, version=version or self.version)
StarcoderdataPython
1787381
<filename>Scripts/simulation/global_policies/global_policy_tuning.py<gh_stars>0 # uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\global_policies\global_policy_tuning.py # Compiled at: 2019-04-27 02:11:59 # Size of source mod 2**32: 8678 bytes from date_and_time import TimeSpan from display_snippet_tuning import DisplaySnippet from elements import SleepElement from event_testing.resolver import SingleSimResolver from event_testing.test_events import TestEvent from global_policies.global_policy_effects import GlobalPolicyEffectVariants from global_policies.global_policy_enums import GlobalPolicyProgressEnum, GlobalPolicyTokenType from interactions.utils.loot import LootActions from sims4.localization import TunableLocalizedStringFactory, LocalizationHelperTuning from sims4.tuning.tunable import TunableList, TunableRange import services, sims4 logger = sims4.log.Logger('Global Policy Tuning', default_owner='shipark') class GlobalPolicy(DisplaySnippet): GLOBAL_POLICY_TOKEN_NON_ACTIVE = TunableLocalizedStringFactory(description='\n Display string that appears when trying to use a Global Policy Token\n referencing a non-active Global Policy.\n ') INSTANCE_TUNABLES = {'decay_days':TunableRange(description='\n The number of days it will take for the global policy to revert to\n not-complete. Decay begins when the policy is completed.\n ', tunable_type=int, default=5, minimum=0), 'progress_initial_value':TunableRange(description='\n The initial value of global policy progress. Progress begins when\n the policy is first set to in-progress.\n ', tunable_type=int, default=0, minimum=0), 'progress_max_value':TunableRange(description='\n The max value of global policy progress. Once the policy progress\n reaches the max threshold, global policy state becomes complete.\n ', tunable_type=int, default=100, minimum=1), 'loot_on_decay':TunableList(description='\n A list of loot actions that will be run when the policy decays.\n ', tunable=LootActions.TunableReference(description='\n The loot action will target the active Sim.\n ')), 'loot_on_complete':TunableList(description='\n A list of loot actions that will be run when the policy is complete.\n ', tunable=LootActions.TunableReference(description='\n The loot action will target the active Sim.\n ')), 'global_policy_effects':TunableList(description='\n Actions to apply when the global policy is enacted.\n ', tunable=GlobalPolicyEffectVariants(description='\n The action to apply.\n '))} @classmethod def _verify_tuning_callback(cls): if cls.progress_max_value < cls.progress_initial_value: logger.error('Global Policy {} has a max value less than the initial value. This is not allowed.', cls) def __init__(self, progress_initial_value=None, **kwargs): (super().__init__)(**kwargs) self._progress_state = GlobalPolicyProgressEnum.NOT_STARTED self._progress_value = 0 self.decay_handler = None self.end_time_from_load = 0 @property def progress_state(self): return self._progress_state @property def progress_value(self): return self._progress_value def pre_load(self, global_policy_data): self.set_progress_state((GlobalPolicyProgressEnum(global_policy_data.progress_state)), from_load=True) self.set_progress_value((global_policy_data.progress_value), from_load=True) if global_policy_data.decay_days != 0: self.end_time_from_load = global_policy_data.decay_days def set_progress_state(self, progress_enum, from_load=False): old_state = self._progress_state self._progress_state = progress_enum if old_state != self._progress_state: if not from_load: services.get_event_manager().process_event((TestEvent.GlobalPolicyProgress), custom_keys=(type(self), self)) def set_progress_value(self, new_value, from_load=False): self._progress_value = new_value if not from_load: self._process_new_value(new_value) return self.progress_state def _process_new_value--- This code section failed: --- L. 154 0 LOAD_FAST 'new_value' 2 LOAD_FAST 'self' 4 LOAD_ATTR progress_initial_value 6 COMPARE_OP <= 8 POP_JUMP_IF_FALSE 70 'to 70' 10 LOAD_FAST 'self' 12 LOAD_ATTR progress_state 14 LOAD_GLOBAL GlobalPolicyProgressEnum 16 LOAD_ATTR NOT_STARTED 18 COMPARE_OP != 20 POP_JUMP_IF_FALSE 70 'to 70' L. 155 22 LOAD_FAST 'self' 24 LOAD_METHOD set_progress_state 26 LOAD_GLOBAL GlobalPolicyProgressEnum 28 LOAD_ATTR NOT_STARTED 30 CALL_METHOD_1 1 '1 positional argument' 32 POP_TOP L. 156 34 LOAD_CONST None 36 LOAD_FAST 'self' 38 STORE_ATTR decay_handler L. 157 40 SETUP_LOOP 158 'to 158' 42 LOAD_FAST 'self' 44 LOAD_ATTR global_policy_effects 46 GET_ITER 48 FOR_ITER 66 'to 66' 50 STORE_FAST 'effect' L. 158 52 LOAD_FAST 'effect' 54 LOAD_METHOD turn_off 56 LOAD_FAST 'self' 58 LOAD_ATTR guid64 60 CALL_METHOD_1 1 '1 positional argument' 62 POP_TOP 64 JUMP_BACK 48 'to 48' 66 POP_BLOCK 68 JUMP_FORWARD 158 'to 158' 70_0 COME_FROM 20 '20' 70_1 COME_FROM 8 '8' L. 159 70 LOAD_FAST 'new_value' 72 LOAD_FAST 'self' 74 LOAD_ATTR progress_max_value 76 COMPARE_OP >= 78 POP_JUMP_IF_FALSE 134 'to 134' 80 LOAD_FAST 'self' 82 LOAD_ATTR progress_state 84 LOAD_GLOBAL GlobalPolicyProgressEnum 86 LOAD_ATTR COMPLETE 88 COMPARE_OP != 90 POP_JUMP_IF_FALSE 134 'to 134' L. 160 92 LOAD_FAST 'self' 94 LOAD_METHOD set_progress_state 96 LOAD_GLOBAL GlobalPolicyProgressEnum 98 LOAD_ATTR COMPLETE 100 CALL_METHOD_1 1 '1 positional argument' 102 POP_TOP L. 161 104 SETUP_LOOP 158 'to 158' 106 LOAD_FAST 'self' 108 LOAD_ATTR global_policy_effects 110 GET_ITER 112 FOR_ITER 130 'to 130' 114 STORE_FAST 'effect' L. 162 116 LOAD_FAST 'effect' 118 LOAD_METHOD turn_on 120 LOAD_FAST 'self' 122 LOAD_ATTR guid64 124 CALL_METHOD_1 1 '1 positional argument' 126 POP_TOP 128 JUMP_BACK 112 'to 112' 130 POP_BLOCK 132 JUMP_FORWARD 158 'to 158' 134_0 COME_FROM 90 '90' 134_1 COME_FROM 78 '78' L. 163 134 LOAD_FAST 'self' 136 LOAD_ATTR progress_state 138 LOAD_GLOBAL GlobalPolicyProgressEnum 140 LOAD_ATTR IN_PROGRESS 142 COMPARE_OP != 144 POP_JUMP_IF_FALSE 158 'to 158' L. 164 146 LOAD_FAST 'self' 148 LOAD_METHOD set_progress_state 150 LOAD_GLOBAL GlobalPolicyProgressEnum 152 LOAD_ATTR IN_PROGRESS 154 CALL_METHOD_1 1 '1 positional argument' 156 POP_TOP 158_0 COME_FROM 144 '144' 158_1 COME_FROM 132 '132' 158_2 COME_FROM_LOOP 104 '104' 158_3 COME_FROM 68 '68' 158_4 COME_FROM_LOOP 40 '40' Parse error at or near `COME_FROM_LOOP' instruction at offset 158_2 def apply_policy_loot_to_active_sim(self, loot_list, resolver=None): if resolver is None: resolver = SingleSimResolver(services.active_sim_info()) for loot_action in loot_list: loot_action.apply_to_resolver(resolver) def decay_policy(self, timeline): yield timeline.run_child(SleepElement(TimeSpan.ZERO)) services.global_policy_service().set_global_policy_progress(self, self.progress_initial_value) self.decay_handler = None self.apply_policy_loot_to_active_sim(self.loot_on_decay) @classmethod def get_non_active_display(cls, token_data): if token_data.token_property == GlobalPolicyTokenType.NAME: return LocalizationHelperTuning.get_raw_text(token_data.global_policy.display_name()) if token_data.token_property == GlobalPolicyTokenType.PROGRESS: return LocalizationHelperTuning.get_raw_text(cls.GLOBAL_POLICY_TOKEN_NON_ACTIVE()) logger.error('Invalid Global Policy Property {} tuned on the Global Policy token.'.format(token_data.property)) def get_active_policy_display(self, token_data): if token_data.token_property == GlobalPolicyTokenType.NAME: return LocalizationHelperTuning.get_raw_text(self.display_name()) if token_data.token_property == GlobalPolicyTokenType.PROGRESS: progress_percentage_str = str(int(round(float(self.progress_value) / float(self.progress_max_value), 2) * 100)) return LocalizationHelperTuning.get_raw_text(progress_percentage_str) logger.error('Invalid Global Policy Property {} tuned on the Global Policy token.'.format(token_data.property))
StarcoderdataPython
3250777
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = "<NAME>" import symjax.tensor as T import matplotlib.pyplot as plt from symjax.viz import compute_graph x = T.random.randn((10,), name="x") y = T.random.randn((10,), name="y") z = T.random.randn((10,), name="z") w = T.Variable(T.ones(1), name="w") out = (x + y).sum() * w + z.sum() graph = compute_graph(out) graph.draw("file.png", prog="dot") import matplotlib.image as mpimg img = mpimg.imread("file.png") plt.figure(figsize=(15, 5)) imgplot = plt.imshow(img) plt.xticks() plt.yticks() plt.tight_layout()
StarcoderdataPython
4838340
<reponame>abael/ScrapyFrontera # -*- coding: utf-8 -*- from __future__ import absolute_import from tests.backends import BackendSequenceTest, TEST_SITES from frontera.utils.tester import DownloaderSimulator, BaseDownloaderSimulator from six.moves.urllib.parse import urlparse class DFSOverusedBackendTest(BackendSequenceTest): EXPECTED_SEQUENCES = { "SEQUENCE_01_A": [ 'https://www.a.com', 'http://b.com', 'http://www.a.com/2', 'http://www.a.com/2/1', 'http://www.a.com/3', 'http://www.a.com/2/1/3', 'http://www.a.com/2/4/1', 'http://www.a.net', 'http://b.com/2', 'http://test.cloud.c.com', 'http://cloud.c.com', 'http://test.cloud.c.com/2', 'http://b.com/entries?page=2', 'http://www.a.com/2/4/2' ], "SEQUENCE_02_A": [ 'https://www.a.com', 'http://b.com', 'http://www.a.com/2', 'http://www.a.com/2/1', 'http://www.a.com/3', 'http://www.a.com/2/1/3', 'http://www.a.com/2/4/1', 'http://www.a.com/2/4/2', 'http://www.a.net', 'http://b.com/2', 'http://test.cloud.c.com', 'http://cloud.c.com', 'http://test.cloud.c.com/2', 'http://b.com/entries?page=2' ] } def test_sequence1(self): sequence = self.get_sequence(TEST_SITES['SITE_09'], max_next_requests=5, downloader_simulator=DownloaderSimulator(rate=1)) assert len(sequence) == 7 all_domains = set() for requests, iteration, dl_info in sequence: overused_keys = set(dl_info['overused_keys']) for r in requests: url = urlparse(r.url) all_domains.add(url.hostname) if not overused_keys: continue assert url.hostname not in overused_keys assert overused_keys.issubset(all_domains)
StarcoderdataPython
199296
<reponame>alentoghostflame/StupidAlentoBot<filename>mmo_module/mmo.py from mmo_module.mmo_data import GuildMMOConfig, UserMMOConfig, BasicMMODataStorage, CharacterSaveData from alento_bot import BaseModule, StorageManager from mmo_module import mmo_admin, mmo_user, text from mmo_module.mmo_controller import MMOServer, MMOBattleManager from discord.ext import commands from datetime import datetime from typing import Dict class MMOModule(BaseModule): def __init__(self, *args): BaseModule.__init__(self, *args) # noinspection PyArgumentList self.storage.caches.register_cache("basic_mmo_data", BasicMMODataStorage(self.storage.config)) self.storage.users.register_data_name("mmo_char_save", CharacterSaveData) self.storage.guilds.register_data_name("mmo_config", GuildMMOConfig) self.storage.users.register_data_name("mmo_config", UserMMOConfig) self.mmo_server: MMOServer = MMOServer(self.storage) self.add_cog(MMOAdmin(self.storage, self.mmo_server)) self.add_cog(MMOUser(self.bot, self.storage, self.mmo_server)) class MMOUser(commands.Cog, name="MMO User"): def __init__(self, bot: commands.Bot, storage: StorageManager, mmo_server: MMOServer): self.bot: commands.Bot = bot self.storage: StorageManager = storage self.mmo_server: MMOServer = mmo_server self.mmo_battle: MMOBattleManager = MMOBattleManager(self.mmo_server) self._change_class_cooldowns: Dict[int, datetime] = dict() @commands.group(name="mmo", brief=text.MMO_BRIEF, invoke_without_command=True) async def mmo_user(self, context: commands.Context): if context.message.content.strip().lower() == f"{context.prefix}{context.command.name}": await context.send_help(context.command) else: await context.send(text.INVALID_COMMAND) @mmo_user.command(name="enable", brief=text.MMO_ENABLE_BRIEF) async def mmo_enable(self, context: commands.Context): await mmo_user.enable(self.mmo_server, context) @mmo_user.command(name="disable", brief=text.MMO_DISABLE_BRIEF) async def mmo_disable(self, context: commands.Context): await mmo_user.disable(self.mmo_server, context) @mmo_user.command(name="status", brief=text.MMO_STATUS_BRIEF) async def mmo_status(self, context: commands.Context): await mmo_user.status(self.mmo_server, context) @mmo_user.command(name="battle", brief=text.MMO_BATTLE_BRIEF) async def mmo_battle(self, context: commands.Context): if self.mmo_server.user.enabled(context.author.id): await self.mmo_battle.create_battle(context) else: await context.send(mmo_user.text.MMO_CURRENTLY_DISABLED) @mmo_user.command("attack", brief=text.MMO_ATTACK_BRIEF) async def mmo_attack(self, context: commands.Context, attack_name="Default Attack"): await self.mmo_battle.attack(context, attack_name) @mmo_user.group("char", brief=text.MMO_CHAR_BRIEF, invoke_without_command=True) async def mmo_char(self, context: commands.Context): if context.message.content.strip().lower() == f"{context.prefix}mmo char": await context.send_help(context.command) else: await context.send(text.INVALID_COMMAND) @mmo_char.group("class", brief=text.MMO_CHAR_CLASS_BRIEF, invoke_without_command=True) async def mmo_char_class(self, context: commands.Context, class_name: str = None): if context.message.content.strip().lower() == f"{context.prefix}mmo char class": await context.send_help(context.command) else: await mmo_user.set_class(self.mmo_server, self._change_class_cooldowns, context, class_name) @mmo_char_class.command("list", brief=text.MMO_CHAR_CLASS_LIST_BRIEF) async def mmo_char_class_list(self, context: commands.Context): await mmo_user.send_class_display(self.mmo_server, context) @mmo_char.command("name", brief=text.MMO_CHAR_NAME_BRIEF) async def mmo_char_name(self, context: commands.Context, new_name: str): await mmo_user.set_character_name(self.mmo_server, context, new_name) @mmo_char.command("attack", brief=text.MMO_CHAR_ATTACK_BRIEF) async def mmo_char_attack(self, context: commands.Context, new_attack: str): await mmo_user.set_default_attack(self.mmo_server, context, new_attack) @mmo_user.command("spells", brief=text.MMO_SPELLS_BRIEF) async def mmo_spells(self, context: commands.Context): await mmo_user.send_ability_display(self.mmo_server, context) class MMOAdmin(commands.Cog, name="MMO Admin"): def __init__(self, storage: StorageManager, mmo_server: MMOServer): self.storage = storage self.mmo_server: MMOServer = mmo_server @commands.group(name="mmoa", brief=text.MMOA_BRIEF, invoke_without_command=True) async def mmoa(self, context: commands.Context): if context.message.content.strip() == f"{context.prefix}{context.command.name}": await context.send_help(context.command) else: await context.send(text.INVALID_COMMAND) @mmoa.command(name="enable", brief=text.MMOA_ENABLE_BRIEF) async def mmoa_enable(self, context: commands.Context): await mmo_admin.enable(self.mmo_server, context) @mmoa.command(name="disable", brief=text.MMOA_DISABLE_BRIEF) async def mmoa_disable(self, context: commands.Context): await mmo_admin.disable(self.mmo_server, context)
StarcoderdataPython