id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
3266262
<reponame>niyiwei/python-study def countWords(fileName): try: with open(fileName,"r") as fObj: contents = fObj.read() except FileNotFoundError: #pass语句,可以在代码快中使用它来让Python什么都不做 pass # msg = "Sorry, the file "+ fileName + " does not exist."; # print(msg); else: # 计算文件大致包含多少个单词 words = contents.split() numWords = len(words) print("The file "+ fileName + " has about "+ str(numWords)+" words.") # fileName = "alice.txt" # countWords(fileName) fileNames = ['alice.txt', 'siddhartha.txt', 'moby_dick.txt', 'little_woman.txt'] for file in fileNames: countWords(file)
StarcoderdataPython
11821
<reponame>Lisa-pa/SAMAE """Standard test images. """ import os from skimage.io import imread data_dir = os.path.abspath(os.path.dirname(__file__)) __all__ = ['data_dir', 'circle', 'skmuscimg'] def _load(f, as_gray=False): """Load an image file located in the data directory. Parameters ---------- f : string File name. as_gray : bool, optional Whether to convert the image to grayscale. Returns ------- img : ndarray Image loaded from ``data_dir``. """ # importing io is quite slow since it scans all the backends # we lazy import it here return imread(f, as_gray=as_gray) def circle(): """Synthetic image of a circle Returns ------- circle : (xdim, ydim) bool ndarray Circle image. """ return _load(os.path.join(data_dir, "circle.bmp")) def skmuscimg(): """Cropped US image of a musculoskeletal muscle """ return _load(os.path.join(data_dir, "skmuscle.jpg")) def panoimg(): """Panoramic US image of a musculoskeletal muscle """ return _load(os.path.join(data_dir, "panoramic_echo.jpg")) def simpleimg(): """Simple US image of a musculoskeletal muscle """ return _load(os.path.join(data_dir, "simple_echo.jpg")) def downloadFromDropbox(tok, path2file): """Download an image from a Dropbox account. Args: tok (string): access token that connects to the wanted app in Dropbox account path2file (string): Path of the file to download, in the app corresponding to the above token. Output: image (numpy.ndarray): 3-channel color image, with coefficients' type == uint8 Example: 1) Register a new app in the App Console of your Dropbox account. Set up parameters as you want. 2) In Dropbox>Applications>MyApp, import your data. 3) In the settings page of MyApp, generate a token and copy it. It should look like a random string of letters and figures, as below. (!!!This access token can be used to access your account via the API. Don’t share your access token with anyone!!!) > token = '<KEY>' //token not available anymore > path = '/cropped_20181002_153426_image.jpg' > dt = downloadFromDropbox(token, path); """ import dropbox import numpy as np import cv2 dbx = dropbox.Dropbox(tok) try: metadata, file = dbx.files_download(path2file) except dropbox.exceptions.HttpError as err: print('*** HTTP error', err) return None data = np.frombuffer(file.content, np.uint8) image = cv2.imdecode(data, 1) return image
StarcoderdataPython
146019
# Write your frequency_dictionary function here: def frequency_dictionary(words): freqs = {} for word in words: if word not in freqs: freqs[word] = 0 freqs[word] += 1 return freqs # Uncomment these function calls to test your function: print(frequency_dictionary(["apple", "apple", "cat", 1])) # should print {"apple":2, "cat":1, 1:1} print(frequency_dictionary([0,0,0,0,0])) # should print {0:5}
StarcoderdataPython
1785538
<reponame>alitariqbsc06/mmclassification # model settings model = dict( type='ImageClassifier', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(3, ), style='pytorch'), neck=dict(type='GlobalAveragePooling'), head=dict( type='MultiLabelLinearClsHead', num_classes=3, in_channels=2048, loss=#[ dict(type='CrossEntropyLoss', loss_weight=1.0, use_sigmoid=True), # dict(type='LabelSmoothLoss', # loss_weight=1.0, # label_smooth_val=0.1, # num_classes=3,mode='classy_vision') #], #topk=(1, 5), ), train_cfg=dict( augments=[ dict(type='BatchMixup', alpha=0.2, num_classes=3,prob=.5), dict(type='BatchCutMix', alpha=1.0, num_classes=3, prob=.5), ]), )
StarcoderdataPython
3314628
#!/usr/bin/env python # -*- coding: utf-8 -*- # # --- # Flask app factory from: # https://github.com/mattupstate/overholt/blob/master/overholt/factory.py # --- # # MIT License # # Copyright (C) 2013 by <NAME> # Copyright (C) 2014 by <NAME> # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from flask import Flask from os import environ from .helpers import project_name, register_blueprints, slugify def environment(): default_env = 'dev' env_variable = '_'.join([slugify(project_name, '_').upper(), 'ENV']) return environ.get(env_variable, default_env).lower() def create_app(package_name, package_path, settings_override=None): """Returns a :class:`Flask` application instance configured with common functionality for the application platform. :param package_name: application package name :param package_path: application package path :param settings_override: a dictionary of settings to override """ app = Flask(package_name, instance_relative_config=True) def env_settings(module): return '.'.join([module, environment().capitalize()]) app.config.from_object(env_settings('app.settings')) try: app.config.from_object(env_settings('instance.settings')) except ImportError: pass app.config.from_object(settings_override) register_blueprints(app, package_name, package_path) return app
StarcoderdataPython
114925
<gh_stars>0 import pandas as pd import os from scipy.sparse import csr_matrix from scipy.sparse import save_npz from sklearn.neighbors import NearestNeighbors import numpy as np from sklearn.externals import joblib class initalizer: def __init__(self, items_csv_path="../data/new_movies.csv", ratings_csv_path="../data/ratings.csv"): self.path_movies = items_csv_path self.path_ratings = ratings_csv_path self.item_user_matrix_sparse, self.hashmap = self._prep_data() self.model = NearestNeighbors(n_neighbors=20, algorithm='brute', metric='cosine') self.model.fit(self.item_user_matrix_sparse) def _prep_data(self): #reading the data path = os.path.join(self.path_movies) usecols = ['movieId', 'tmdbId', 'title'] dtype = {"movieId": 'int32', 'tmdbId': 'int32', "title": "str"} df_items = pd.read_csv(path, usecols=usecols, dtype=dtype) path = os.path.join(self.path_ratings) usecols = ['userId', 'movieId', 'rating'] dtype = {"userId": 'int32', 'movieId': 'int32', "rating": "float32"} df_ratings = pd.read_csv(path, usecols=usecols, dtype=dtype) #pivot and create item-user matrix item_user_matrix = df_ratings.pivot(index='movieId', columns='userId', values='rating') #filling na's with 0's item_user_matrix = item_user_matrix.fillna(0) #transform the matrix into a scipy sparse matrix to minimize the nagitive impact # on calculation performances item_user_matrix_sparse = csr_matrix(item_user_matrix.values) #create mapper from item, the id to index of the movie in the item_user matrix hashmap = { item: i for i, item in enumerate(list(df_items.set_index('movieId').loc[item_user_matrix.index].tmdbId)) } print(list(df_items.set_index('movieId').loc[item_user_matrix.index].tmdbId)) print(df_items.set_index('movieId').loc[item_user_matrix.index].tmdbId) print(hashmap) print(hashmap.keys()) print(hashmap[862.0]) return item_user_matrix_sparse, hashmap def _save_data(self): """ Save data to the disk 1. hashmap 2. scipy item-user sparse matrix 3. trained model :return: none """ np.save('./hashmap.npy', self.hashmap) save_npz("./matrix.npz", self.item_user_matrix_sparse) joblib.dump(self.model, './model.joblib')
StarcoderdataPython
3335537
<gh_stars>0 # Bot written to play the game using what seems to be the best strategy according to the authors. import MLModifiedSpaceShooter as game import numpy as np def playGame(): game_state = game.GameState() todo = 0 counter = 0 while True: if counter > 12: counter = 0 if todo == 0: todo = 1 else: todo = 0 counter = counter + 1 # shoot action = np.zeros(4) action[2] = 1 game_state.frame_step(action) # shoot action = np.zeros(4) action[2] = 1 game_state.frame_step(action) # move action = np.zeros(4) action[todo] = 1 game_state.frame_step(action) # shoot action = np.zeros(4) action[2] = 1 game_state.frame_step(action) # shoot action = np.zeros(4) action[2] = 1 game_state.frame_step(action) def main(): playGame() if __name__ == "__main__": main()
StarcoderdataPython
1796046
# Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. # http://code.google.com/p/protobuf/ # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This implementation is modified from google's original Protobuf implementation. The original author is: <EMAIL> (<NAME>). Modified by <EMAIL>(onesuper). """ import sys import array import struct from . import errors from . import wire_format class OutputStream(object): """Contains all logic for writing bits, and ToString() to get the result.""" def __init__(self): self._buffer = array.array('B') if sys.version_info < (3, 3): def append_raw_bytes(self, raw_bytes): """Appends raw_bytes to our internal buffer.""" self._buffer.fromstring(raw_bytes) else: def append_raw_bytes(self, raw_bytes): """Appends raw_bytes to our internal buffer.""" self._buffer.frombytes(raw_bytes) def append_little_endian32(self, unsigned_value): """Appends an unsigned 32-bit integer to the internal buffer, in little-endian byte order. """ if not 0 <= unsigned_value <= wire_format.UINT32_MAX: raise errors.EncodeError( 'Unsigned 32-bit out of range: %d' % unsigned_value) self.append_raw_bytes(struct.pack( wire_format.FORMAT_UINT32_LITTLE_ENDIAN, unsigned_value)) def append_little_endian64(self, unsigned_value): """Appends an unsigned 64-bit integer to the internal buffer, in little-endian byte order. """ if not 0 <= unsigned_value <= wire_format.UINT64_MAX: raise errors.EncodeError( 'Unsigned 64-bit out of range: %d' % unsigned_value) self.append_raw_bytes(struct.pack( wire_format.FORMAT_UINT64_LITTLE_ENDIAN, unsigned_value)) def append_varint32(self, value): """Appends a signed 32-bit integer to the internal buffer, encoded as a varint. (Note that a negative varint32 will always require 10 bytes of space.) """ if not wire_format.INT32_MIN <= value <= wire_format.INT32_MAX: raise errors.EncodeError('Value out of range: %d' % value) self.append_varint64(value) def append_var_uint32(self, value): """Appends an unsigned 32-bit integer to the internal buffer, encoded as a varint. """ if not 0 <= value <= wire_format.UINT32_MAX: raise errors.EncodeError('Value out of range: %d' % value) self.append_var_uint64(value) def append_varint64(self, value): """Appends a signed 64-bit integer to the internal buffer, encoded as a varint. """ if not wire_format.INT64_MIN <= value <= wire_format.INT64_MAX: raise errors.EncodeError('Value out of range: %d' % value) if value < 0: value += (1 << 64) self.append_var_uint64(value) def append_var_uint64(self, unsigned_value): """Appends an unsigned 64-bit integer to the internal buffer, encoded as a varint. """ if not 0 <= unsigned_value <= wire_format.UINT64_MAX: raise errors.EncodeError('Value out of range: %d' % unsigned_value) while True: bits = unsigned_value & 0x7f unsigned_value >>= 7 if unsigned_value: bits |= 0x80 self._buffer.append(bits) if not unsigned_value: break if sys.version_info < (3, 3): def tostring(self): """Returns a string containing the bytes in our internal buffer.""" return self._buffer.tostring() else: def tostring(self): """Returns a string containing the bytes in our internal buffer.""" return self._buffer.tobytes() def __len__(self): return len(self._buffer)
StarcoderdataPython
3350939
import torch.nn.functional as F from collections import OrderedDict import numpy as np class InputPadder: """Pads images such that dimensions are divisible by 8 , from RAFT.""" def __init__(self, dims, mode='sintel'): self.ht, self.wd = dims[-2:] pad_ht = (((self.ht // 8) + 1) * 8 - self.ht) % 8 pad_wd = (((self.wd // 8) + 1) * 8 - self.wd) % 8 if mode == 'sintel': self._pad = [ pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2 ] else: self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht] def pad(self, *inputs): return [F.pad(x, self._pad, mode='replicate') for x in inputs] def unpad(self, x): ht, wd = x.shape[-2:] c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]] return x[..., c[0]:c[1], c[2]:c[3]] def fill_order_keys(key, fill_value='_model.', fill_position=7): """fill order_dict keys in checkpoint, by Hao.""" return key[0:fill_position] + fill_value + key[fill_position:] def fix_order_keys(key, delete_value=6): """fix order_dict keys in checkpoint, by Hao.""" return key[0:delete_value] + key[13:] def fix_read_order_keys(key, start_value=7): """fix reading restored ckpt order_dict keys, by Hao.""" return key[start_value:] # CARLA semantic labels camvid_colors = OrderedDict([ ("Unlabeled", np.array([0, 0, 0], dtype=np.uint8)), ("Building", np.array([70, 70, 70], dtype=np.uint8)), ("Fence", np.array([100, 40, 40], dtype=np.uint8)), ("Other", np.array([55, 90, 80], dtype=np.uint8)), ("Pedestrian", np.array([220, 20, 60], dtype=np.uint8)), ("Pole", np.array([153, 153, 153], dtype=np.uint8)), ("RoadLine", np.array([157, 234, 50], dtype=np.uint8)), ("Road", np.array([128, 64, 128], dtype=np.uint8)), ("SideWalk", np.array([244, 35, 232], dtype=np.uint8)), ("Vegetation", np.array([107, 142, 35], dtype=np.uint8)), ("Vehicles", np.array([0, 0, 142], dtype=np.uint8)), ("Wall", np.array([102, 102, 156], dtype=np.uint8)), ("TrafficSign", np.array([220, 220, 0], dtype=np.uint8)), ("Sky", np.array([70, 130, 180], dtype=np.uint8)), ("Ground", np.array([81, 0, 81], dtype=np.uint8)), ("Bridge", np.array([150, 100, 100], dtype=np.uint8)), ("RailTrack", np.array([230, 150, 140], dtype=np.uint8)), ("GroundRail", np.array([180, 165, 180], dtype=np.uint8)), ("TrafficLight", np.array([250, 170, 30], dtype=np.uint8)), ("Static", np.array([110, 190, 160], dtype=np.uint8)), ("Dynamic", np.array([170, 120, 50], dtype=np.uint8)), ("Water", np.array([45, 60, 150], dtype=np.uint8)), ("Terrain", np.array([145, 170, 100], dtype=np.uint8)), ]) def convert_label_to_grayscale(im): out = (np.ones(im.shape[:2]) * 255).astype(np.uint8) for gray_val, (label, rgb) in enumerate(camvid_colors.items()): match_pxls = np.where((im == np.asarray(rgb)).sum(-1) == 3) out[match_pxls] = gray_val assert (out != 255).all(), "rounding errors or missing classes in camvid_colors" return out.astype(np.uint8) def convert_label_to_rgb(im): out = np.zeros((im.shape[0], im.shape[1], 3)).astype(np.uint8) for gray_val, (label, rgb) in enumerate(camvid_colors.items()): match_x, match_y = np.where(im == gray_val) out[match_x, match_y] = rgb return out.astype(np.uint8)
StarcoderdataPython
1642264
<reponame>philippjfr/idom-bokeh from .panel import IDOM __author__ = "idom-team" __version__ = "0.0.1" # DO NOT MODIFY __all__ = ["IDOM"]
StarcoderdataPython
1689153
import requests data = { "chat_id": chat_id, "chat_keypad_type": "Removed", } url = f'https://messengerg2b1.iranlms.ir/v3/{token}/editChatKeypad' response = requests.post(url, data=data) print(response.text)
StarcoderdataPython
115375
<filename>gotime/maps.py import requests import time class BaseMapsApi(object): def __init__(self): pass def format_data(self, key, origin, destination, model=None, now_secs=None): data = {'key': key, 'origin': origin.replace(' ', '+'), 'destination': destination.replace(' ', '+')} if model is not None: data['model'] = model if now_secs is not None: data['now_secs'] = now_secs return data class GoogleMapsApi(BaseMapsApi): config_name = 'google' # See here for API info: # https://developers.google.com/maps/documentation/directions/intro#traffic-model url = 'https://maps.googleapis.com/maps/api/directions/json?' url += 'origin={origin}&destination={destination}' url += '&key={key}&mode=driving&traffic_model={model}' url += '&departure_time={now_secs}' def __init__(self, key=None): super().__init__() if key is None: self.key = 'UNKNOWN' else: self.key = key def query(self, origin, destination): now_secs = str(int(time.time())) data = self.format_data(self.key, origin, destination, TrafficModel.BEST, now_secs) r = requests.get(self.url.format(**data)) if r.status_code != 200: return None, None legs = r.json()['routes'][0]['legs'][0] duration_in_traffic = legs['duration_in_traffic']['value'] seconds = int(duration_in_traffic) steps = len(r.json()['routes'][0]['legs'][0]['steps']) return seconds, steps def get_type(self): return self.config_name class TrafficModel: """ Enum-like class showing the Google Traffic model """ BEST = "best_guess"
StarcoderdataPython
1655217
<gh_stars>1-10 import gitbigfile try: from setuptools import setup kw = { 'install_requires': 'docopt == 0.5.0', } except ImportError: from distutils.core import setup kw = {} setup( name='git-bigfile', version=gitbigfile.__version__, author='<NAME>', author_email='<EMAIL>', license='MIT', description='git-bigfile allows you to use Git with large files without storing the file in Git itself', long_description=open('README.rst').read(), url='https://github.com/beenje/git-bigfile', packages=['gitbigfile'], scripts=['bin/git-bigfile'], classifiers=['Development Status :: 4 - Beta', 'Topic :: Software Development', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Programming Language :: Python'], **kw )
StarcoderdataPython
3368152
<reponame>techthiyanes/textacy import pytest import textacy import textacy.text_stats @pytest.fixture(scope="module") def doc(lang_en): text = "I write code. They wrote books." return textacy.make_spacy_doc(text, lang=lang_en) def test_morph(doc): exp = { "Case": {"Nom": 2}, "Number": {"Sing": 2, "Plur": 2}, "Person": {"1": 1, "3": 1}, "PronType": {"Prs": 2}, "Tense": {"Pres": 1, "Past": 1}, "VerbForm": {"Fin": 2}, "PunctType": {"Peri": 2}, } assert textacy.text_stats.counts.morph(doc) == exp def test_tag(doc): exp = {"PRP": 2, "VBP": 1, "NN": 1, ".": 2, "VBD": 1, "NNS": 1} assert textacy.text_stats.counts.tag(doc) == exp def test_pos(doc): exp = {"PRON": 2, "VERB": 2, "NOUN": 2, "PUNCT": 2} assert textacy.text_stats.counts.pos(doc) == exp def test_dep(doc): exp = {"nsubj": 2, "ROOT": 2, "dobj": 2, "punct": 2} assert textacy.text_stats.counts.dep(doc) == exp
StarcoderdataPython
11952
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Portable library for registering and publishing executions.""" import copy import os from typing import List, Mapping, MutableMapping, Optional, Sequence, cast from absl import logging from tfx import types from tfx.orchestration import metadata from tfx.orchestration.portable.mlmd import execution_lib from tfx.proto.orchestration import execution_result_pb2 from ml_metadata.proto import metadata_store_pb2 def _check_validity(new_artifact: metadata_store_pb2.Artifact, original_artifact: types.Artifact, has_multiple_artifacts: bool) -> None: """Check the validity of new artifact against the original artifact.""" if new_artifact.type_id != original_artifact.type_id: raise RuntimeError('Executor output should not change artifact type.') if has_multiple_artifacts: # If there are multiple artifacts in the executor output, their URIs should # be a direct sub-dir of the system generated URI. if os.path.dirname(new_artifact.uri) != original_artifact.uri: raise RuntimeError( 'When there are multiple artifacts to publish, their URIs ' 'should be direct sub-directories of the URI of the system generated ' 'artifact.') else: # If there is only one output artifact, its URI should not be changed if new_artifact.uri != original_artifact.uri: # TODO(b/175426744): Data Binder will modify the uri. logging.warning( 'When there is one artifact to publish, the URI of it should be ' 'identical to the URI of system generated artifact.') def publish_cached_execution( metadata_handler: metadata.Metadata, contexts: Sequence[metadata_store_pb2.Context], execution_id: int, output_artifacts: Optional[MutableMapping[str, Sequence[types.Artifact]]] = None, ) -> None: """Marks an existing execution as using cached outputs from a previous execution. Args: metadata_handler: A handler to access MLMD. contexts: MLMD contexts to associated with the execution. execution_id: The id of the execution. output_artifacts: Output artifacts of the execution. Each artifact will be linked with the execution through an event with type OUTPUT. """ [execution] = metadata_handler.store.get_executions_by_id([execution_id]) execution.last_known_state = metadata_store_pb2.Execution.CACHED execution_lib.put_execution( metadata_handler, execution, contexts, input_artifacts=None, output_artifacts=output_artifacts) def _set_execution_result_if_not_empty( executor_output: Optional[execution_result_pb2.ExecutorOutput], execution: metadata_store_pb2.Execution) -> bool: """Sets execution result as a custom property of the execution.""" if executor_output and (executor_output.execution_result.result_message or executor_output.execution_result.metadata_details or executor_output.execution_result.code): # TODO(b/190001754): Consider either switching to base64 encoding or using # a proto descriptor pool to circumvent TypeError which may be raised when # converting embedded `Any` protos. try: execution_lib.set_execution_result(executor_output.execution_result, execution) except TypeError: logging.exception( 'Skipped setting execution_result as custom property of the ' 'execution due to error') def publish_succeeded_execution( metadata_handler: metadata.Metadata, execution_id: int, contexts: Sequence[metadata_store_pb2.Context], output_artifacts: Optional[MutableMapping[str, Sequence[types.Artifact]]] = None, executor_output: Optional[execution_result_pb2.ExecutorOutput] = None ) -> Optional[MutableMapping[str, List[types.Artifact]]]: """Marks an existing execution as success. Also publishes the output artifacts produced by the execution. This method will also merge the executor produced info into system generated output artifacts. The `last_know_state` of the execution will be changed to `COMPLETE` and the output artifacts will be marked as `LIVE`. Args: metadata_handler: A handler to access MLMD. execution_id: The id of the execution to mark successful. contexts: MLMD contexts to associated with the execution. output_artifacts: Output artifacts skeleton of the execution, generated by the system. Each artifact will be linked with the execution through an event with type OUTPUT. executor_output: Executor outputs. `executor_output.output_artifacts` will be used to update system-generated output artifacts passed in through `output_artifacts` arg. There are three contraints to the update: 1. The keys in `executor_output.output_artifacts` are expected to be a subset of the system-generated output artifacts dict. 2. An update to a certain key should contains all the artifacts under that key. 3. An update to an artifact should not change the type of the artifact. Returns: The maybe updated output_artifacts, note that only outputs whose key are in executor_output will be updated and others will be untouched. That said, it can be partially updated. Raises: RuntimeError: if the executor output to a output channel is partial. """ output_artifacts = copy.deepcopy(output_artifacts) or {} output_artifacts = cast(MutableMapping[str, List[types.Artifact]], output_artifacts) if executor_output: if not set(executor_output.output_artifacts.keys()).issubset( output_artifacts.keys()): raise RuntimeError( 'Executor output %s contains more keys than output skeleton %s.' % (executor_output, output_artifacts)) for key, artifact_list in output_artifacts.items(): if key not in executor_output.output_artifacts: continue updated_artifact_list = executor_output.output_artifacts[key].artifacts # We assume the original output dict must include at least one output # artifact and all artifacts in the list share the same type. original_artifact = artifact_list[0] # Update the artifact list with what's in the executor output artifact_list.clear() # TODO(b/175426744): revisit this: # 1) Whether multiple output is needed or not after TFX componets # are upgraded. # 2) If multiple output are needed and is a common practice, should we # use driver instead to create the list of output artifact instead # of letting executor to create them. for proto_artifact in updated_artifact_list: _check_validity(proto_artifact, original_artifact, len(updated_artifact_list) > 1) python_artifact = types.Artifact(original_artifact.artifact_type) python_artifact.set_mlmd_artifact(proto_artifact) artifact_list.append(python_artifact) # Marks output artifacts as LIVE. for artifact_list in output_artifacts.values(): for artifact in artifact_list: artifact.mlmd_artifact.state = metadata_store_pb2.Artifact.LIVE [execution] = metadata_handler.store.get_executions_by_id([execution_id]) execution.last_known_state = metadata_store_pb2.Execution.COMPLETE _set_execution_result_if_not_empty(executor_output, execution) execution_lib.put_execution( metadata_handler, execution, contexts, output_artifacts=output_artifacts) return output_artifacts def publish_failed_execution( metadata_handler: metadata.Metadata, contexts: Sequence[metadata_store_pb2.Context], execution_id: int, executor_output: Optional[execution_result_pb2.ExecutorOutput] = None ) -> None: """Marks an existing execution as failed. Args: metadata_handler: A handler to access MLMD. contexts: MLMD contexts to associated with the execution. execution_id: The id of the execution. executor_output: The output of executor. """ [execution] = metadata_handler.store.get_executions_by_id([execution_id]) execution.last_known_state = metadata_store_pb2.Execution.FAILED _set_execution_result_if_not_empty(executor_output, execution) execution_lib.put_execution(metadata_handler, execution, contexts) def publish_internal_execution( metadata_handler: metadata.Metadata, contexts: Sequence[metadata_store_pb2.Context], execution_id: int, output_artifacts: Optional[MutableMapping[str, Sequence[types.Artifact]]] = None ) -> None: """Marks an exeisting execution as as success and links its output to an INTERNAL_OUTPUT event. Args: metadata_handler: A handler to access MLMD. contexts: MLMD contexts to associated with the execution. execution_id: The id of the execution. output_artifacts: Output artifacts of the execution. Each artifact will be linked with the execution through an event with type INTERNAL_OUTPUT. """ [execution] = metadata_handler.store.get_executions_by_id([execution_id]) execution.last_known_state = metadata_store_pb2.Execution.COMPLETE execution_lib.put_execution( metadata_handler, execution, contexts, output_artifacts=output_artifacts, output_event_type=metadata_store_pb2.Event.INTERNAL_OUTPUT) def register_execution( metadata_handler: metadata.Metadata, execution_type: metadata_store_pb2.ExecutionType, contexts: Sequence[metadata_store_pb2.Context], input_artifacts: Optional[MutableMapping[str, Sequence[types.Artifact]]] = None, exec_properties: Optional[Mapping[str, types.Property]] = None, ) -> metadata_store_pb2.Execution: """Registers a new execution in MLMD. Along with the execution: - the input artifacts will be linked to the execution. - the contexts will be linked to both the execution and its input artifacts. Args: metadata_handler: A handler to access MLMD. execution_type: The type of the execution. contexts: MLMD contexts to associated with the execution. input_artifacts: Input artifacts of the execution. Each artifact will be linked with the execution through an event. exec_properties: Execution properties. Will be attached to the execution. Returns: An MLMD execution that is registered in MLMD, with id populated. """ execution = execution_lib.prepare_execution( metadata_handler, execution_type, metadata_store_pb2.Execution.RUNNING, exec_properties) return execution_lib.put_execution( metadata_handler, execution, contexts, input_artifacts=input_artifacts)
StarcoderdataPython
3363769
<reponame>MauroCL75/Gerald<gh_stars>0 """ Introduction ============ Capture, document and manage database schemas. This is the Schema module, it contains one useful class, Schema. This is a super class which is then sub-classed for specific databases (eg. OracleSchema, MySQLSchema, etc). A schema is comprised of collections of tables, views, stored code objects, triggers, sequences and other assorted 'objects' This module is licensed under the BSD License (see LICENSE.txt) This module requires Python 2.3 (and above) and a valid DB-API module To do ===== - change get_ddl method(s) to put different objects in different files like Oracle Designer (one each for tables, constraints, views, code objects) - Table and View dump methods rely on calc_precision function, we really should do away with this - One possible solution is to make Column a class and just implement a dump method for that Possible Future development =========================== - Support the Jakarta Torque schema DTD (http://db.apache.org/torque/schema-reference.html) - Or possibly the Dewdrop DTD (http://dewdrop.sourceforge.net/xmlns/database.xsd) - Change the compare method for the Schema class. Perhaps using the difflib library module? - Change the to_xml methods to use ElementTree elements rather than strings """ __author__ = "<NAME> <<EMAIL>>" __date__ = (2010, 4, 8) __version__ = (0, 4, 1) from decimal import Decimal import os import sys from gerald.utilities.dburi import get_connection from gerald.utilities.Log import get_log if 'TMP' in os.environ: LOG_DIRECTORY = os.environ['TMP'] elif 'HOME' in os.environ: LOG_DIRECTORY = os.environ['HOME'] LOG_FILENAME = os.path.join(LOG_DIRECTORY, 'gerald.log') LOG = get_log('gerald', LOG_FILENAME, 'INFO') # LOG = get_log('gerald', LOG_FILENAME, 'INFO') # LOG = get_log('gerald', LOG_FILENAME, 'DEBUG') class Schema(object): """ A representation of a database schema. A schema is a collection of objects within a database. It is a logical grouping, physical implementation is independent of the schema. This is an abstract class which shouldn't be used directly. It is designed to be sub-classed in database specific modules. These sub-classes will need to implement the _get_schema and __init__ methods A schema will have the following attributes - name. This will be the same as the connectionString - api_version. To indicate when we are change the API - schema. A collection of objects which form this schema. Private attributes - _db. A database connection. Optional, need not be provided by sub-classes. - _cursor. A cursor generated from _db """ def __init__(self, schema_name, connection_string=None, omit_error_objects=False): """ Initialise the schema. @param schema_name: A name for this schema @type schema_name: String @param connection_string: If this is provided then we populate the schema's attributes from the database it connects us to. @type connection_string: String @return: Success or failure @rtype: Boolean """ self.name = schema_name self.api_version = Decimal('1.1') self.omit_error_objects = omit_error_objects self.schema = {} if connection_string: # Connect to the db and suck out the data dictionary information self.connect(connection_string) self.schema = self._get_schema(self._cursor) def connect(self, connection_string): "Connect to a database and set _db and _cursor attributes" LOG.debug('Connecting to %s' % self.name) self._db = get_connection(connection_string) self._cursor = self._db.cursor() LOG.debug('Established connection to %s' % self.name) def _get_schema(self, cursor): "Place holder method to be implemented by child classes" raise NotImplementedError def dump(self, file_name=None, sort=None): """ Output this schema in a nice easy to read format to <file_name>. If a <file_name> isn't provided then we return the stream. We rely on each object to output its own details. @param file_name: The name of a file to dump the output to @type file_name: String @param sort: If this is set the schema objects will be sorted by name @type sort: Boolean @return: Schema contents or, if file_name is specified, nothing @rtype: String """ if file_name: dump_file = open(file_name, 'w') results = ["Schema: %s\n" % self.name] objects = list(self.schema.keys()) if sort: objects.sort() for schema_object in objects: results.append(self.schema[schema_object].dump()) if file_name: dump_file.write('\n'.join(results)) dump_file.close() else: return '\n'.join(results) def to_xml(self, file_name=None): """ Output this schema in XML format to <file_name>. If a <file_name> isn't provided then we return the stream. We rely on each object to produce its own XML fragment which are then combined here. @param file_name: The name of a file to dump the XML to @type file_name: String @return: Schema XML or, if file_name is specified, nothing @rtype: String """ if file_name: xml_file = open(file_name, 'w') results = ['<schema name="%s">' % self.name] for schema_object in list(self.schema.keys()): results.append(self.schema[schema_object].to_xml()) results.append('</schema>') if file_name: xml_file.write('\n'.join(results)) xml_file.close() else: return '\n'.join(results) def get_ddl(self, file_name=None): """ Output the DDL to create this schema to <file_name>. If a <file_name> isn't provided then we return the stream. We rely on each schema object to produce its own DDL statements which are then combined here. @param file_name: The name of a file to dump the XML to @type file_name: String @return: Schema DDL or, if file_name is specified, nothing @rtype: String """ results = [] for schema_object in list(self.schema.keys()): results.append(self.schema[schema_object].get_ddl()) if file_name: ddl_file = open(file_name, 'w') ddl_file.write('\n'.join(results)) ddl_file.close() else: return '\n'.join(results) def __cmp__(self, other_schema): """ Compare this schema with <other_schema> @param other_schema: A schema to be compared to self @type other_schema: An object of a class inherited from schema.Schema @return: 0 if the two schemas are the same, otherwise we return 1 @rtype: Boolean, well Integer really """ # __cmp__ functions return -1 if we are less than schema # 0 if we are the same as schema # 1 if we are greater than schema # If our 'compare' method returns anything there are differences if self.compare(other_schema): return 1 else: return 0 def compare(self, other_schema): """ Calculate the differences between the current schema and <other_schema>. @param other_schema: A schema to be compared to self @type other_schema: An object of a class inherited from schema.Schema @return: The differences between the two schemas @rtype: String """ # I left a note here about difflib, but can't find it. Oh dear. results = [] if not isinstance(other_schema, Schema): results.append('We are not comparing two schemas') else: if list(self.schema.keys()) != list(other_schema.schema.keys()): results.append('The schemas have different objects') for schema_object in list(self.schema.keys()): if schema_object in list(other_schema.schema.keys()): if self.schema[schema_object].__class__ != other_schema.schema[schema_object].__class__: results.append('%s is of different types' % schema_object) results.append('in the two schemas') if self.schema[schema_object] != other_schema.schema[schema_object]: results.append('%s is different ' % schema_object) results.append('in the two schemas') else: results.append('%s is missing ' % schema_object) results.append('in the one schema') return ' '.join(results) def _set_unless_fail(self, schema, key, object_name, object_type, *args): """Try and create object_name in schema taking appropriate action on failure This method is particularly useful if someone (say, Oracle) has broken their own rules and created system objects that trip up Gerald. By setting omit_error_objects to True when creating our schema we can not blow up when finding something that doesn't quite fulfil our expectations. Because we are maintaining compatibility with Python 2.5 we can't access the exception instance so the log message won't necessarily be that useful. """ if (not object_name.isupper()) and ('"' not in object_name): # then this must be a chaotic evil case-sensitive object name object_name = '"%s"' % object_name try: schema[key] = object_type(object_name, *args) except AttributeError: if self.omit_error_objects: LOG.warning("Couldn't get details for %s" % (key, )) else: raise class Table(object): """ A representation of a database table. A table is made up of columns and will have indexes, triggers, constraints, primary and foreign keys. It may also have comments - although this is currently only available in Oracle This is an abstract class which shouldn't be used. It is designed to be sub-classed in database specific modules. The sub-classes will need to implement the L{_get_table} and L{get_ddl} methods They will also need a class method called calc_precision, whose signature will depend on the module A table will have the following attributes - name - columns. A dictionary (keyed on column name) of column dictionaries. These column dictionaries must have the following keys: - sequence. The order of this column in the table. Integer - name. Column name. Text - type. Native data type, will vary by database. Text - length. Maximum length of column. Integer - nullable. Can this column contain NULL values? Boolean These column dictionaries may have the following keys: - precision. Maximum number of digits before the decimal point, only valid for numeric columns. Integer - scale. Maximum number of digits after the decimal point. Integer - default. Default value to be inserted if this column is NULL on insert - special. Only used by MySQL to indicate if a column has auto_increment set. Boolean - comment. Column comment. Text - indexes. A dictionary (keyed on index name) of index dictionaries These index dictionaries must have the following keys: - type. Index type, usually one of 'Unique' or 'Non-Unique'. Text - unique. Flag to indicate if index elements must be unique. Boolean - columns. A sequence of column names in the index. Sequence - constraints. A dictionary (keyed on constraint name) of constraint dictionaries. These dictionaries must have the following keys: - type. One of 'Primary', 'Foreign', 'Check' or 'Unique'. Text - enabled. Is the constraint enabled? Boolean - columns. A sequence of the column names in this constraint. Sequence These constraint dictionaries may have the following keys: - reftable. Reference table (only used for Foreign keys). Text - refcolumns. List of reference columns (only used for Foreign keys). Sequence - triggers. A dictionary of trigger objects keyed on name Optional attributes - tablespace_name, or table_type (for MySQL) - comments. Optional. A text string describing the table - schema. The schema this object lives in """ def __init__(self, table_name, cursor=None, schema=None): """ Initialise a table object. If a value is passed into the cursor parameter then the last thing we do is call L{_get_table}. @param table_name: The name of this table @type table_name: String @param cursor: If this is provided then we use it to call L{_get_table} @type cursor: Database cursor object @param schema: The schema this object is stored in @type schema: String @return: Nothing """ self.name = table_name self.tablespace_name = None self.table_type = None self.columns = {} self.indexes = {} self.constraints = {} self.triggers = {} if schema: self.schema = schema else: self.schema = None if cursor: self._get_table(cursor) def _get_table(self, cursor): """ Query the data dictionary for this table and populate the object attributes Not implemented in this class as its database specific, but present for completeness. @param cursor: A database cursor @type cursor: Database cursor object @return: Nothing """ raise NotImplementedError def dump(self): """ Return the structure of the table in a nice, easy to read, format @return: A description of this table @rtype: String """ # This is pretty, but we could just return the ddl_string outputs = ["Table : %s\n" % self.name] # We show the columns in sequence order, using DSU # DSU = Decorate, Sort, Undecorate - a.k.a Schwartzian transform deco_cols = [ (x['sequence'], x) for x in list(self.columns.values()) ] deco_cols.sort() cols = [ col for seq, col in deco_cols ] for column in cols: outputs.append(" %-30s" % column['name']) if 'length' in column and column['length'] != None: if 'precision' in column and column['precision'] != None: # This column is a numeric data type column_defn = column['type']+self.__class__.calc_precision(column['type'], column['length'], column['precision'], column['scale']) else: # This column is a text data type column_defn = '%s(%d)' % (column['type'], column['length']) else: # This column is a simple data type such as date or boolean column_defn = column['type'] outputs.append(" %-15s " % column_defn) if not column['nullable']: outputs.append(" NOT NULL") if 'special' in column: # Special case for e.g. 'enum' in MySQL outputs.append(' %s' % column['special']) outputs.append("\n") # Constraints please if len(self.constraints) != 0: outputs.append(" Constraints;\n") for constraint_name, constraint in list(self.constraints.items()): outputs.append(" %s, " % constraint_name) outputs.append("%s " % (constraint['type'])) if 'columns' in constraint: outputs.append(": ") outputs.append(', '.join(constraint['columns'])) outputs.append("\n") # Indexes if len(self.indexes) > 0: outputs.append(" Indexes:\n") for index_name, index in list(self.indexes.items()): outputs.append(" %s, " % index_name) outputs.append("%s\n" % index['type']) # Don't check number of columns because there must be at least 1 outputs.append(" Columns: ") outputs.append(", ".join(index['columns'])) outputs.append("\n") # LOG.debug("Table Dump output: " + "".join(outputs)) return "".join(outputs) def get_ddl(self): """ Generate the DDL necessary to create this table Not implemented in this class as its database specific. @return: DDL to create this table @rtype: String """ raise NotImplementedError def to_xml(self): """ Return the structure of this table as an XML document fragment This will be of the form:: <table name="table name"> <tablespace name="tablespace name" /> <column name="name" data-type="data type" sequence="sequence"> <length>x</length> <precision>x</precision> <scale>x</scale> </column> <column ...> <constraint name="constraint name" type="Primary|Foreign|Check"> ... constraint details ... </constraint> <index name="index name" type="index type"> <column name="column name" /> ... other columns ... </index> ... trigger details ... </table> @return: An XML fragment describing this table @rtype: String """ xml_strings = ['<table name="%s">\n' % self.name] if self.tablespace_name: xml_strings.append(' <tablespace name=') xml_strings.append('"%s" />\n' % self.tablespace_name) # Columns for column in self.columns: col_details = self.columns[column] xml_strings.append(' <column name="%s"' % column) xml_strings.append(' data-type="%s"' % col_details['type']) xml_strings.append(' sequence="%d">\n' % col_details['sequence']) # The following statement means we need Python 2.5 and above # pre 2.5 it would be col_details.has_key('length') if 'length' in col_details: xml_strings.append(' <length>') xml_strings.append(str(col_details['length'])) xml_strings.append('</length>\n') if 'precision' in col_details and col_details['precision'] != 0: xml_strings.append(' <precision>') xml_strings.append(str(col_details['precision'])+'</precision>\n') if 'scale' in col_details: xml_strings.append(' <scale>') xml_strings.append(str(col_details['scale'])) xml_strings.append('</scale>\n') xml_strings.append(' </column>\n') # Constraints for constraint, cons_details in list(self.constraints.items()): # Exclude check constraint that start with 'SYS_C' (an Oracle hack) if cons_details['type'] != 'Check' or not constraint.startswith("SYS_C"): xml_strings.append(' <constraint name="%s"' % constraint) xml_strings.append(' type="%s">\n' % cons_details['type']) if cons_details['type'] == 'Check': xml_strings.append(' <details>') xml_strings.append(cons_details['condition']) xml_strings.append('</details>\n') if cons_details['type'] == 'Primary': for column in cons_details['columns']: xml_strings.append(' <column name="%s" />\n' % column) if cons_details['type'] == 'Foreign': xml_strings.append(' <jointable ') xml_strings.append(' name="%s"' % cons_details['reftable']) xml_strings.append(' pk="%s">\n' % cons_details['refpk']) for col_index in range(len(cons_details['columns'])): xml_strings.append(' <constraintcolumn') name = cons_details['columns'][col_index] xml_strings.append(' name="%s"' % name) xml_strings.append(' joincolumn') join_column = cons_details['refcolumns'][col_index] xml_strings.append('="%s" />\n' % join_column) xml_strings.append(' </jointable>\n') xml_strings.append(' </constraint>\n') # Indexes for index in self.indexes: index_details = self.indexes[index] xml_strings.append(' <index name="%s"' % index) xml_strings.append(' type="%s">\n' % index_details['type']) for column in index_details['columns']: xml_strings.append(' <column name="%s" />\n' % column) xml_strings.append(' </index>\n') # Triggers for trigger in self.triggers: xml_strings.append(self.triggers[trigger].to_xml()) xml_strings.append('</table>') return "".join(xml_strings) def __cmp__(self, other_table): """ Compare this table with <other_table> @param other_table: A table to compare this one to @type other_table: An object of a class derived from Schema.Table @return: 0 if the two tables are the same, otherwise we return 1 @rtype: Boolean, well integer really """ # __cmp__ functions return -1 if we are less than schema # 0 if we are the same as schema # 1 if we are greater than schema # If our 'compare' method returns anything there are differences if self.compare(other_table): return 1 else: return 0 def compare(self, other_table): """ Calculate the differences between the current table and <other_table>. @param other_table: Another table to compare to this one @type other_table: An object of a class derived from Schema.Table @return: The differences between the two tables @rtype: String """ response = [] if self.name != other_table.name: response.append('DIFF: Table names: %s and %s' % (self.name, other_table.name)) if self.tablespace_name != other_table.tablespace_name: response.append('DIFF: Tablespace names: %s and %s' % (self.tablespace_name, other_table.tablespace_name)) # Compare columns for column_name in list(self.columns.keys()): if column_name in list(other_table.columns.keys()): if self.columns[column_name] != other_table.columns[column_name]: response.append('DIFF: Definition of %s is different' % column_name) else: response.append('DIFF: Column %s not in %s' % (column_name, other_table.name)) for column_name in list(other_table.columns.keys()): if column_name not in list(self.columns.keys()): response.append('DIFF: Column %s not in %s' % (column_name, self.name)) return "\n".join(response) class View(object): """ A representation of a database view. A View is made up of columns and also has an associated SQL statement. It may also have comments - although this is currently only available in Oracle This is an abstract class which shouldn't be used. It is designed to be sub-classed in database specific modules. The sub-classes will need to implement the L{_get_view} and L{get_ddl} methods A view will have the following mandatory attributes - name - columns. A dictionary (keyed on column name) of Column dictionaries data_type, data_length, data_precision, data_scale, nullable) - sql. The SQL that forms the view - triggers. A dictionary of trigger objects keyed on name A view may have the following optional attributes: - schema. The schema this object lives in """ def __init__(self, view_name, cursor=None, schema=None): """ Initialise a view object. @param view_name: The name of the view @type view_name: String @param cursor: An optional database cursor which, if provided, will be used to populate this object's attributes by calling _getView @type cursor: Database cursor object @param schema: The schema this view lives in @type schema: String @return: Nothing """ self.name = view_name self.type = 'view' # Saves using type() or isinstance self.columns = {} self.sql = '' self.triggers = {} if schema: self.schema = schema else: schema = None if cursor: self._get_view(cursor) def _get_view(self, cursor): """ Query the data dictionary for this view and populate the object attributes Not implemented in this class as it's database specific, but present for completeness. @param cursor: A database cursor @type cursor: Database cursor object @return: Nothing """ raise NotImplementedError def dump(self): """ Output the structure of the view in a nice, easy to read, format @return: A description of this view @rtype: String """ outputs = ["View : %s\n" % self.name] cols = list(self.columns.values()) cols.sort() for column in cols: outputs.append(" %-30s %-12s" % (column['name'], column['type'])) outputs.append("%7s" % self.__class__.calc_precision(column['type'], column['length'], column['precision'], column['scale'])) if not column['nullable']: outputs.append(" NOT NULL") outputs.append("\n") outputs.append("\n") outputs.append(self.sql+"\n") outputs.append("\n") return "".join(outputs) def to_xml(self): """ Return the structure of this view as an XML document fragment This will be of the form:: <view name="view name"> <column name="column name" sequence="numeric indicator of order" /> <column ...> <...> <sql>SQL text to create the view</sql> </view> @return: An XML fragment describing this view @rtype: String """ xml_strings = ['<view name="%s">\n' % self.name] for column in list(self.columns.values()): xml_strings.append(' <column name="%s"' % column['name']) xml_strings.append(' sequence="%d" />\n' % column['sequence']) xml_strings.append(' <sql>%s</sql>\n' % self.sql) xml_strings.append('</view>\n') return "".join(xml_strings) def get_ddl(self): """ Generate the DDL necessary to create this view Not implemented in this class as its database specific. @return: DDL to create this table @rtype: String """ raise NotImplementedError def __cmp__(self, other_view): """ Compare this view with <other_view> @param other_view: A view to compare this one to @type other_view: An object of a class derived from Schema.View @return: 0 if the two views are the same, otherwise we return 1 @rtype: Boolean, well integer really """ # __cmp__ functions return -1 if we are less than schema # 0 if we are the same as schema # 1 if we are greater than schema # If our 'compare' method returns anything there are differences if self.compare(other_view): return 1 else: return 0 def compare(self, other_view): """ Calculate the differences between this view and <other_view>. @param other_view: Another view to compare to this one @type other_view: An object of a class derived from Schema.View @return: A string describing the differences between the two views """ response = [] if self.name != other_view.name: response.append('DIFF: View names:') response.append('%s and %s' % (self.name, other_view.name)) # Compare columns tv_column_names = [col[1] for col in self.columns] ov_column_names = [col[1] for col in other_view.columns] for column in tv_column_names: if column not in ov_column_names: response.append('DIFF: Column %s' % column) response.append('not in %s' % other_view.name) for column in ov_column_names: if column not in tv_column_names: response.append('DIFF: Column %s' % column) response.append('not in %s' % self.name) return response class Trigger(object): """ A representation of a database trigger. A trigger has triggering events and a SQL statement. A trigger can only exist within the context of a table and thus doesn't need any table references as you can get those from its parent. Apart from the table name, of course, which we need for the get_ddl method. This is an abstract class which shouldn't be used. It is designed to be sub-classed in database specific modules. The sub-classes will need to implement the L{_get_trigger} and L{get_ddl} methods A trigger will have the following attributes - name - scope. 'before', 'after' or 'instead of' - events. A list of the events that cause this trigger to fire - level. Is this a 'row' or 'statement' level trigger? - sql. The SQL that is executed when this trigger is fired """ def __init__(self, trigger_name, cursor=None, schema=None): """ Initialise a trigger object. If a value is passed into the cursor parameter then the last thing we do is call L{_get_trigger}. @param trigger_name: The name of this trigger @type trigger_name: String @param cursor: If this is provided then we use it to call L{_get_trigger} @type cursor: Database cursor object @return: Nothing """ self.name = trigger_name self.table_name = None self.scope = None self.events = [] self.level = None self.sql = None if schema: self.schema = schema else: self.schema = None if cursor: self._get_trigger(cursor) def _get_trigger(self, cursor): """ Query the data dictionary for this trigger and populate the object attributes Not implemented in this class as it's database specific, but present for completeness. @param cursor: A database cursor @type cursor: Database cursor object @return: Nothing """ raise NotImplementedError def dump(self): """ Return the structure of the trigger in a nice, easy to read, format @return: A description of this trigger @rtype: String """ outputs = ["Trigger : %s\n" % self.name] outputs.append(" %s %s " % (self.scope, ','.join(self.events))) if self.level: outputs.append("ON %s\n" % self.level) outputs.append("\n") outputs.append(self.sql+"\n") outputs.append("\n") return "".join(outputs) def to_xml(self): """ Return the structure of this trigger as an XML document fragment This will be of the form:: <trigger name="trigger name"> <scope>trigger scope</scope> <level>trigger level</level> <events>triggering events</events/> <sql>SQL statement that is fired</sql> </trigger> @return: An XML fragment describing this trigger @rtype: String """ xml_strings = [' <trigger name="%s">\n' % self.name] xml_strings.append(' <scope>%s</scope>\n' % self.scope) if self.level: xml_strings.append(' <level>%s</level>\n' % self.level) xml_strings.append(' <events>%s</events>\n' % self.events) xml_strings.append(' <sql>%s</sql>\n' % self.sql) xml_strings.append(' </trigger>\n') return "".join(xml_strings) def get_ddl(self): """ Generate the DDL necessary to create this trigger Not implemented in this class as its database specific @return: DDL to create this trigger @rtype: String """ raise NotImplementedError def __cmp__(self, other_trigger): """ Compare this trigger with <other_trigger> @param other_trigger: A trigger to compare this one to @type other_trigger: An object of a class derived from Schema.Trigger @return: 1 if triggers are different, 0 if they are the same @rtype: Boolean, well integer really """ # __cmp__ functions return -1 if we are less than schema # 0 if we are the same as schema # 1 if we are greater than schema # If our 'compare' method returns anything there are differences if self.compare(other_trigger): return 1 else: return 0 def compare(self, other_trigger): """ Calculate the differences between the current trigger and <other_trigger> @param other_trigger: Another trigger to compare to this one @type other_trigger: An object of a class derived from Schema.Trigger @return: The differences between the two triggers @rtype: String """ response = [] if self.name != other_trigger.name: response.append('DIFF: Trigger names: %s' % self.name) response.append('and %s' % other_trigger.name) # Compare types if self.scope != other_trigger.scope: response.append('DIFF: Trigger %s scope' % self.name) response.append('%s is different to ' % self.scope) response.append('trigger %s ' % other_trigger.name) response.append('scope %s' % other_trigger.scope) # Compare triggering events if self.events != other_trigger.events: response.append('DIFF: Trigger %s' % self.name) response.append(' events %s is ' % self.events) response.append('different to trigger %s' % other_trigger.name) response.append('events %s' % other_trigger.events) # Compare SQL statements if self.sql != other_trigger.sql: response.append('DIFF: Trigger %s ' % self.name) response.append('SQL %s ' % self.sql) response.append('is different to trigger %s ' % other_trigger.name) response.append('SQL %s' % other_trigger.sql) return response class Sequence(object): """ A representation of a database sequence. A sequence is an in memory construct that provides numbers in a sequence. They are generally used to generate primary key values. This is an abstract class which shouldn't be used. It is designed to be sub-classed in database specific modules. The sub-classes will need to implement the L{_get_sequence} and L{get_ddl} methods A sequence will have the following attributes: - name - min_value - max_value - increment_by - curr_value A sequence may have one or more of the following attributes - schema """ def __init__(self, sequence_name, cursor=None, schema=None): """ Initialise a sequence object. If a value is passed into the cursor parameter then the last thing we do is call L{_get_sequence}. @param sequence_name: The name of this sequence @type sequence_name: String @param cursor: If this is provided then we use it to call L{_get_sequence} @type cursor: Database cursor object @param schema: The schema this sequence lives in @type schema: String @return: Nothing """ self.name = sequence_name self.type = 'sequence' # Saves using type() or isinstance self.min_value = None self.max_value = None self.increment_by = None self.curr_value = None if schema: self.schema = schema else: schema = None if cursor: self._get_sequence(cursor) def _get_sequence(self, cursor): """ Query the data dictionary for this sequence and populate the object attributes Not implemented in this class as it's database specific, but present for completeness. @param cursor: A database cursor @type cursor: Database cursor object @return: Nothing """ raise NotImplementedError def dump(self): """ Return the structure of the sequence in a nice, easy to read, format @return: A description of this sequence @rtype: String """ outputs = ["Sequence : %s" % self.name] if self.curr_value: outputs.append(" start : %d" % self.curr_value) outputs.append(" minimum : %d" % self.min_value) outputs.append(" maximum : %d" % self.max_value) if self.increment_by > 1: outputs.append(" increment : %d" % self.increment_by) return "\n".join(outputs) def to_xml(self): """ Return the structure of this sequence as an XML document fragment This will be of the form:: <sequence name="%s"> <start value="%d" /> <minimum value="%d" /> <maximum value="%d" /> <increment value="%d" /> </sequence> @return: An XML fragment describing this sequence @rtype: String """ xml_strings = ['<sequence name="%s">' % self.name] if hasattr(self, 'currval'): xml_strings.append(' <start value="%d" />' % self.curr_value) if self.min_value > 1: xml_strings.append(' <minimum value="%d" />' % self.min_value) try: xml_strings.append(' <maximum value="%d" />' % self.max_value) except OverflowError: None # maxValue is 1.000E+27 which we can't convert to an int if self.increment_by > 1: xml_strings.append(' <increment value="%d" />'% self.increment_by) xml_strings.append('</sequence>') return "".join(xml_strings) def get_ddl(self): """ Generate the DDL necessary to create this sequence Not implemented in this class as it's database specific @return: DDL to create this sequence @rtype: String """ raise NotImplementedError def __cmp__(self, other_sequence): """ Compare this sequence with <other_sequence> @param other_sequence: A sequence to compare this one to @type other_sequence: An object of a class derived from Schema.Sequence @return: 0 if the two sequences are the same, otherwise we return 1 @rtype: Boolean, well integer really """ # __cmp__ functions return -1 if we are less than schema # 0 if we are the same as schema # 1 if we are greater than schema # If our 'compare' method returns anything there are differences if self.compare(other_sequence): return 1 else: return 0 def compare(self, other_sequence): """ Calculate the differences between this sequence and <other_sequence> @param other_sequence: Another sequence to compare to this one @type other_sequence: An object of a class derived from Schema.Sequence @return: The differences between the two sequences @rtype: String """ response = [] if self.name != other_sequence.name: response.append('DIFF: Sequence names: %s' % self.name) response.append('and %s' % other_sequence.name) if self.increment_by != other_sequence.increment_by: response.append('DIFF: Increment interval') response.append('is %d,' % self.increment_by) response.append('for %s' % other_sequence.name) response.append('it is %d' % other_sequence.increment_by) if self.min_value != other_sequence.min_value: response.append('DIFF: Min value is %d' % self.min_value) response.append(' for %s' % other_sequence.name) response.append('it is %d' % other_sequence.min_value) if self.max_value != other_sequence.max_value: response.append('DIFF: Max value is %d' % self.max_value) response.append(', for %s ' % other_sequence.name) response.append('it is %d' % other_sequence.max_value) # The only attribute we don't check is currval, becuase it will be # different in 999 cases out of a 1000 return response class CodeObject(object): """ A representation of a database code object. This is an abstract class which shouldn't be used. It is designed to be sub-classed in database specific modules. The sub-classes will need to implement the L{_get_code_object} and L{get_ddl} methods A code object will have the following attributes - name - object_type (usually one of function, procedure or package) - source code (a sequence of (line number, code) sequences A code object may have one or more of the following attributes: - schema """ def __init__(self, code_object_name, code_object_type, cursor=None, schema=None): """ Initialise a code object. If a value is passed into the cursor parameter then the last thing we do is call L{_get_code_object}. @param code_object_name: The name of this code object @type code_object_name: String @param code_object_type: The type of this code object (function, procedure, etc) @type code_object_type: String @param cursor: If this is provided then we use it to call L{_get_code_object} @type cursor: Database cursor object @param schema: The schema that this object lives in @type schema: String @return: Nothing """ self.name = code_object_name self.object_type = code_object_type self.source = [] if schema: self.schema = schema else: self.schema = None if cursor: self._get_code_object(cursor) def _get_code_object(self, cursor): """ Query the data dictionary for this code object and populate the object attributes Not implemented in this class as it's database specific, but present for completeness. @param cursor: A database cursor @type cursor: Database cursor object @return: Nothing """ raise NotImplementedError def dump(self): """ Return the structure of the code object in a nice, easy to read, format @return: A description of this code object @rtype: String """ outputs = ["Code object : %s" % self.name] outputs.append(" Type : %s" % self.object_type) for source_line in self.source: # Each line is a (line_number, code) pair outputs.append('%d: %s' % source_line) return "".join(outputs) def to_xml(self): """ Return the structure of this code object as an XML document fragment This will be of the form:: <code_object name="%s"> <type value="%s" /> <source> .. The source code to recreate this object .. </source> </code_object> @return: An XML fragment describing this code object @rtype: String """ xml_strings = ['<code_object name="%s">' % self.name] xml_strings.append(' <type value="%s" />' % self.object_type) xml_strings.append(' <source>') for source_line in self.source: xml_strings.append(source_line[1]) xml_strings.append(' </source>') xml_strings.append('</code_object>') return "".join(xml_strings) def get_ddl(self): """ Generate the DDL necessary to create this code object Not implemented in this class as it's database specific @return: DDL to create this code object @rtype: String """ raise NotImplementedError def __cmp__(self, other_code_object): """ Compare this code object with <other_code_object> @param other_code_object : A code object to compare this one to @type other_code_object : An object of a class derived from Schema.CodeObject @return: True if the two sequences are the same, otherwise False @rtype: Boolean """ # If our 'compare' method returns anything there are differences if self.compare(other_code_object): return True else: return False def compare(self, other_code_object): """ Calculate the differences between this code object and <other_code_sequence> @param other_code_object: Another code object to compare to this one @type other_code_object: An object of a class derived from Schema.CodeObject @return: The differences between the two code objects @rtype: String """ response = [] if self.name != other_code_object.name: response.append('DIFF: Code object names: %s' % self.name) response.append('and %s' % other_code_object.name) if self.object_type != other_code_object.object_type: response.append('DIFF: Code object types: %s' % self.object_type) response.append('and %s' % other_code_object.object_type) return response if __name__ == "__main__": print("This module should not be invoked from the command line") sys.exit(1)
StarcoderdataPython
1763971
<reponame>huachao2017/goodsdl # -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2019-05-06 13:54 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('goods', '0065_shelfimage_image_name'), ] operations = [ migrations.AddField( model_name='shelfgoods', name='shelfid', field=models.IntegerField(db_index=True, default=0), ), migrations.AddField( model_name='shelfgoods', name='shopid', field=models.IntegerField(db_index=True, default=0), ), ]
StarcoderdataPython
74180
""" Data access functions --------------------- """ from __future__ import absolute_import from os.path import join as pjoin, basename, dirname import subprocess import tempfile import logging import numpy as np import h5py import rasterio from rasterio.crs import CRS from rasterio.warp import reproject from rasterio.enums import Resampling from wagl.geobox import GriddedGeoBox from wagl.tiling import generate_tiles def get_pixel(filename, lonlat, band=1): """Return a pixel from `filename` at the longitude and latitude given by the tuple `lonlat`. Optionally, the `band` can be specified.""" with rasterio.open(filename) as src: x, y = [int(v) for v in ~src.transform * lonlat] if isinstance(band, list): data = src.read(band, window=((y, y + 1), (x, x + 1))).ravel() else: data = src.read(band, window=((y, y + 1), (x, x + 1))).flat[0] return data def select_acquisitions(acqs_list, fn=(lambda acq: True)): """ Given a list of acquisitions, apply the supplied fn to select the desired acquisitions. """ acqs = [acq for acq in acqs_list if fn(acq)] return acqs def stack_data(acqs_list, fn=(lambda acq: True), window=None, masked=False): """ Given a list of acquisitions, return the data from each acquisition collected in a 3D numpy array (first index is the acquisition number). If window is defined, then the subset contained within the window is returned along with a GriddedGeoBox instance detailing the spatial information associated with that subset. :param acqs_list: The list of acquisitions from which to generate a stack of data. :param window: Defines a subset ((ystart, yend), (xstart, xend)) in array co-ordinates. Default is None. :param masked: Indicates whether or not to return a masked array. Default is False. :return: A 2-tuple containing: * 1. A 3D numpy array (or None) containing the corresponding acquisition data. (None if no data). * 2. A GriddedGeoBox instance specifying the spatial context of the 3D numpy array. Note: All Acquisitions share the same GriddedGeoBox. """ # determine data type and dimensions by reading the first band acqs = acqs_list a, geo_box = acqs[0].data_and_box(window=window, masked=masked) # create the result array, setting datatype based on source type stack_shape = (len(acqs), a.shape[0], a.shape[1]) stack = np.empty(stack_shape, a.dtype) stack[0] = a del a # read remaining aquisitions into it for i in range(1, stack_shape[0]): # can't use this statement because it will cause data to be # resampled. But we want an exception thrown if the user # tries to stack irreqular aquisitions stack[i] = acqs[i].data(window=window, masked=masked) return stack, geo_box def write_img(array, filename, driver='GTiff', geobox=None, nodata=None, tags=None, options=None, cogtif=False, levels=None, resampling=Resampling.nearest): """ Writes a 2D/3D image to disk using rasterio. :param array: A 2D/3D NumPy array. :param filename: A string containing the output file name. :param driver: A string containing a GDAL compliant image driver. Default is 'GTiff'. :param geobox: An instance of a GriddedGeoBox object. :param nodata: A value representing the no data value for the array. :param tags: A dictionary of dataset-level metadata. :param options: A dictionary containing other dataset creation options. See creation options for the respective GDAL formats. :param cogtif: If set to True, override the `driver` keyword with `GTiff` and create a Cloud Optimised GeoTiff. Default is False. See: https://trac.osgeo.org/gdal/wiki/CloudOptimizedGeoTIFF :param levels: If cogtif is set to True, build overviews/pyramids according to levels. Default levels are [2, 4, 8, 16, 32]. :param resampling: If cogtif is set to True, build overviews/pyramids using a resampling method from `rasterio.enums.Resampling`. Default is `Resampling.nearest`. :notes: If array is an instance of a `h5py.Dataset`, then the output file will include blocksizes based on the `h5py.Dataset's` chunks. To override the blocksizes, specify them using the `options` keyword. Eg {'blockxsize': 512, 'blockysize': 512}. If `cogtif` is set to True, the default blocksizes will be 256x256. To override this behaviour, specify them using the `options` keyword. Eg {'blockxsize': 512, 'blockysize': 512}. """ # Get the datatype of the array dtype = array.dtype.name # Check for excluded datatypes excluded_dtypes = ['int64', 'int8', 'uint64'] if dtype in excluded_dtypes: msg = "Datatype not supported: {dt}".format(dt=dtype) raise TypeError(msg) # convert any bools to uin8 if dtype == 'bool': array = np.uint8(array) dtype = 'uint8' ndims = array.ndim dims = array.shape # Get the (z, y, x) dimensions (assuming BSQ interleave) if ndims == 2: samples = dims[1] lines = dims[0] bands = 1 elif ndims == 3: samples = dims[2] lines = dims[1] bands = dims[0] else: logging.error('Input array is not of 2 or 3 dimensions!!!') err = 'Array dimensions: {dims}'.format(dims=ndims) raise IndexError(err) # If we have a geobox, then retrieve the geotransform and projection if geobox is not None: transform = geobox.transform projection = geobox.crs.ExportToWkt() else: transform = None projection = None # override the driver if we are creating a cogtif if cogtif: driver = 'GTiff' # compression predictor choices predictor = {'int8': 2, 'uint8': 2, 'int16': 2, 'uint16': 2, 'int32': 2, 'uint32': 2, 'int64': 2, 'uint64': 2, 'float32': 3, 'float64': 3} kwargs = {'count': bands, 'width': samples, 'height': lines, 'crs': projection, 'transform': transform, 'dtype': dtype, 'driver': driver, 'nodata': nodata, 'predictor': predictor[dtype]} if isinstance(array, h5py.Dataset): # TODO: if array is 3D get x & y chunks if array.chunks[1] == array.shape[1]: # GDAL doesn't like tiled or blocksize options to be set # the same length as the columns (probably true for rows as well) array = array[:] else: y_tile, x_tile = array.chunks tiles = generate_tiles(samples, lines, x_tile, y_tile) # add blocksizes to the creation keywords kwargs['tiled'] = 'yes' kwargs['blockxsize'] = x_tile kwargs['blockysize'] = y_tile # the user can override any derived blocksizes by supplying `options` if options is not None: for key in options: kwargs[key] = options[key] with tempfile.TemporaryDirectory() as tmpdir: out_fname = pjoin(tmpdir, basename(filename)) if cogtif else filename with rasterio.open(out_fname, 'w', **kwargs) as outds: if bands == 1: if isinstance(array, h5py.Dataset): for tile in tiles: idx = (slice(tile[0][0], tile[0][1]), slice(tile[1][0], tile[1][1])) outds.write(array[idx], 1, window=tile) else: outds.write(array, 1) else: if isinstance(array, h5py.Dataset): for tile in tiles: idx = (slice(tile[0][0], tile[0][1]), slice(tile[1][0], tile[1][1])) subs = array[:, idx[0], idx[1]] for i in range(bands): outds.write(subs[i], i + 1, window=tile) else: for i in range(bands): outds.write(array[i], i + 1) if tags is not None: outds.update_tags(**tags) # overviews/pyramids if cogtif: if levels is None: levels = [2, 4, 8, 16, 32] outds.build_overviews(levels, resampling) if cogtif: cmd = ['gdal_translate', '-co', 'TILED=YES', '-co', 'COPY_SRC_OVERVIEWS=YES', '-co', '{}={}'.format('PREDICTOR', predictor[dtype])] for key, value in options.items(): cmd.extend(['-co', '{}={}'.format(key, value)]) cmd.extend([out_fname, filename]) subprocess.check_call(cmd, cwd=dirname(filename)) def read_subset(fname, ul_xy, ur_xy, lr_xy, ll_xy, bands=1): """ Return a 2D or 3D NumPy array subsetted to the given bounding extents. :param fname: A string containing the full file pathname to an image on disk. :param ul_xy: A tuple containing the Upper Left (x,y) co-ordinate pair in real world (map) co-ordinates. Co-ordinate pairs can be (longitude, latitude) or (eastings, northings), but they must be of the same reference as the image of interest. :param ur_xy: A tuple containing the Upper Right (x,y) co-ordinate pair in real world (map) co-ordinates. Co-ordinate pairs can be (longitude, latitude) or (eastings, northings), but they must be of the same reference as the image of interest. :param lr_xy: A tuple containing the Lower Right (x,y) co-ordinate pair in real world (map) co-ordinates. Co-ordinate pairs can be (longitude, latitude) or (eastings, northings), but they must be of the same reference as the image of interest. :param ll_xy: A tuple containing the Lower Left (x,y) co-ordinate pair in real world (map) co-ordinates. Co-ordinate pairs can be (longitude, latitude) or (eastings, northings), but they must be of the same reference as the image of interest. :param bands: Can be an integer of list of integers representing the band(s) to be read from disk. If bands is a list, then the returned subset will be 3D, otherwise the subset will be strictly 2D. :return: A tuple of 3 elements: * 1. 2D or 3D NumPy array containing the image subset. * 2. A list of length 6 containing the GDAL geotransform. * 3. A WKT formatted string representing the co-ordinate reference system (projection). :additional notes: The ending array co-ordinates are increased by +1, i.e. xend = 270 + 1 to account for Python's [inclusive, exclusive) index notation. """ if isinstance(fname, h5py.Dataset): geobox = GriddedGeoBox.from_dataset(fname) prj = fname.attrs['crs_wkt'] else: # Open the file with rasterio.open(fname) as src: # Get the inverse transform of the affine co-ordinate reference geobox = GriddedGeoBox.from_dataset(src) prj = src.crs.wkt # rasterio returns a unicode inv = ~geobox.transform rows, cols = geobox.shape # Convert each map co-ordinate to image/array co-ordinates img_ul_x, img_ul_y = [int(v) for v in inv * ul_xy] img_ur_x, img_ur_y = [int(v) for v in inv * ur_xy] img_lr_x, img_lr_y = [int(v) for v in inv * lr_xy] img_ll_x, img_ll_y = [int(v) for v in inv * ll_xy] # Calculate the min and max array extents # The ending array extents have +1 to account for Python's # [inclusive, exclusive) index notation. xstart = min(img_ul_x, img_ll_x) ystart = min(img_ul_y, img_ur_y) xend = max(img_ur_x, img_lr_x) + 1 yend = max(img_ll_y, img_lr_y) + 1 # Check for out of bounds if (((xstart < 0) or (ystart < 0)) or ((xend -1 > cols) or (yend -1 > rows))): msg = ("Error! Attempt to read a subset that is outside of the" "image domain. Index: ({ys}, {ye}), ({xs}, {xe}))") msg = msg.format(ys=ystart, ye=yend, xs=xstart, xe=xend) raise IndexError(msg) if isinstance(fname, h5py.Dataset): subs = fname[ystart:yend, xstart:xend] else: with rasterio.open(fname) as src: subs = src.read(bands, window=((ystart, yend), (xstart, xend))) # Get the new UL co-ordinates of the array ul_x, ul_y = geobox.transform * (xstart, ystart) geobox_subs = GriddedGeoBox(shape=subs.shape, origin=(ul_x, ul_y), pixelsize=geobox.pixelsize, crs=prj) return (subs, geobox_subs) def reproject_file_to_array(src_filename, src_band=1, dst_geobox=None, resampling=Resampling.nearest): """ Given an image on file, reproject to the desired coordinate reference system. :param src_filename: A string containing the full file path name to the source image on disk. :param src_band: An integer representing the band number to be reprojected. Default is 1, the 1st band. :param dst_geobox: An instance of a GriddedGeoBox object containing the destination parameters such as origin, affine, projection, and array dimensions. :param resampling: An integer representing the resampling method to be used. check rasterio.warp.RESMPLING for more details. Default is 0, nearest neighbour resampling. :return: A NumPy array containing the reprojected result. """ if not isinstance(dst_geobox, GriddedGeoBox): msg = 'dst_geobox must be an instance of a GriddedGeoBox! Type: {}' msg = msg.format(type(dst_geobox)) raise TypeError(msg) with rasterio.open(src_filename) as src: # Define a rasterio band rio_band = rasterio.band(src, src_band) # Define the output NumPy array dst_arr = np.zeros(dst_geobox.shape, dtype=src.dtypes[0]) # Get the rasterio proj4 styled dict prj = CRS.from_string(dst_geobox.crs.ExportToProj4()) reproject(rio_band, dst_arr, dst_transform=dst_geobox.transform, dst_crs=prj, resampling=resampling) return dst_arr def reproject_img_to_img(src_img, src_geobox, dst_geobox, resampling=Resampling.nearest): """ Reprojects an image/array to the desired co-ordinate reference system. :param src_img: A NumPy array containing the source image. :param src_geobox: An instance of a GriddedGeoBox object containing the source parameters such as origin, affine, projection. :param dst_geobox: An instance of a GriddedGeoBox object containing the destination parameters such as origin, affine, projection, and array dimensions. :param resampling: An integer representing the resampling method to be used. check rasterio.warp.RESMPLING for more details. Default is 0, nearest neighbour resampling. :return: A NumPy array containing the reprojected result. """ if not isinstance(dst_geobox, GriddedGeoBox): msg = 'dst_geobox must be an instance of a GriddedGeoBox! Type: {}' msg = msg.format(type(dst_geobox)) raise TypeError(msg) if not isinstance(src_geobox, GriddedGeoBox): msg = 'src_geobox must be an instance of a GriddedGeoBox! Type: {}' msg = msg.format(type(src_geobox)) raise TypeError(msg) # Get the source and destination projections in Proj4 styled dicts src_prj = CRS.from_string(src_geobox.crs.ExportToProj4()) dst_prj = CRS.from_string(dst_geobox.crs.ExportToProj4()) # Get the source and destination transforms src_trans = src_geobox.transform dst_trans = dst_geobox.transform # Define the output NumPy array dst_arr = np.zeros(dst_geobox.shape, dtype=src_img.dtype) reproject(src_img, dst_arr, src_transform=src_trans, src_crs=src_prj, dst_transform=dst_trans, dst_crs=dst_prj, resampling=resampling) return dst_arr def as_array(array, dtype, transpose=False): """ Given an array and dtype, array will be converted to dtype if and only if array.dtype != dtype. If transpose is set to True then array will be transposed before returning. :param array: A NumPy array. :param dtype: The type to return the array as. :type dtype: A NumPy data type (e.g. ``numpy.float32``). :param transpose: If set then array will be transposed before returning. Useful for passing arrays into Fortran routiines. Default is False. :type transpose: Bool. :return: A :py:class:`numpy.ndarry` of type ``dtype`` with the same dimensions as array. """ if array.dtype != dtype: if transpose: return array.astype(dtype).transpose() return array.astype(dtype) if transpose: return array.transpose() return array
StarcoderdataPython
1615004
<filename>dnd.py #!/usr/bin/env python3 import argparse import json from helpers.spells import * from helpers.classes import * def get_args(): parser = argparse.ArgumentParser() parser.add_argument('-c', '--dndclass', help="Get all spells for a certain class") parser.add_argument('-l', '--level', help="Spell level", type=int) parser.add_argument('-s', '--spell', help="Get a specific spell") parser.add_argument('-o', '--output', help="Output file") return parser.parse_args() def main(): arguments = get_args() if arguments.spell is not None: # Get description of a specific spell spell_info = get_spell_info_by_name(arguments.spell.lower()) print(json.dumps(spell_info, indent=2, sort_keys=False)) if arguments.output is not None: with open(arguments.output, "w") as fp: json.dump(spell_info, fp, indent=2, sort_keys=False) exit(0) if arguments.dndclass is not None: spell_list = get_class_spells(arguments.dndclass, arguments.level) print(json.dumps(spell_list, indent=2, sort_keys=True)) if arguments.output is not None: with open(arguments.output, "w") as fp: json.dump({'spells': spell_list}, fp, indent=2, sort_keys=False) exit(0) if __name__ == '__main__': main()
StarcoderdataPython
1707374
import logging import os import requests import json from telegram.ext import Updater, CommandHandler, MessageHandler, Filters, CallbackContext from texts import get_manual_do_membro TOKEN = os.environ['TELEGRAM_TOKEN'] PORT = int(os.environ.get("PORT", "8443")) HEROKU_APP_NAME = os.environ.get("bot-telegram-turing") # Enable logging logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) logger = logging.getLogger(__name__) # /help def send_help(update, context): update.message.reply_text("Comandos: /quant; /nlp; /cv; /rl; /ds; /gpt2; /qa") # Descrição das Areas de foco # /quant def send_quant_describe(update, context): update.message.reply_text('Essa área de foco tem como principal objetivo estudar as aplicações de programação no mercado financeiro, através de determinadas plataformas. Buscamos, juntos, aprender tanto sobre mercado financeiro quanto sobre aplicações e métodos quantitativos utilizados nesse mercado.') # /nlp def send_nlp_describe(update, context): update.message.reply_text('Processamento de Linguagem Natural é uma área da inteligência artificial cujo objetivo é a interpretação e manipulação de linguagens humanas. NLP tem muitas tarefas, algumas se relacionam ao processamento mais imediato dos componentes linguísticos, como a análise sintática, morfossintática (POS Tagging), lematização etc.') # /cv def send_cv_describe(update, context): update.message.reply_text('Em Computer Vision (ou Visão Computacional) trabalhamos principalmente com o processamento de imagens.') # /rl def send_rl_describe(update, context): update.message.reply_text('O Aprendizado por Reforço é uma das áreas mais únicas do Aprendizado de Máquina, fundamentada em ensinar a um agente como agir em um ambiente a partir de suas experiências.') # /ds def send_ds_describe(update, context): update.message.reply_text('Data Science (ou Ciência de Dados) é sobre obter insights ou conhecimento através do estudo e análise de dados') # /start def send_welcome(update, context): update.message.reply_text("Salve, Salve Grupo Turing!") def error(update, context): """Log Errors caused by Updates.""" logger.warning('Update "%s" caused error "%s"', update, context.error) def gpt2_reply(update, context): GPT2_API_URL = "https://api-inference.huggingface.co/models/pierreguillou/gpt2-small-portuguese" payload_input_text = json.dumps(update.message.text) response = requests.post(GPT2_API_URL, payload_input_text) text = str(response.json()[0])[20:-2] update.message.reply_text(text) def turing_qa(update, context): API_URL = "https://api-inference.huggingface.co/models/mrm8488/bert-base-portuguese-cased-finetuned-squad-v1-pt" payload = json.dumps({ "context": get_manual_do_membro(), "question": update.message.text }) response = requests.post(API_URL, payload) update.message.reply_text(response.json()['answer']) def main(): logger.info("Bot started") updater = Updater( TOKEN, use_context=True) dp = updater.dispatcher logger.info("working till here") dp.add_handler(CommandHandler("start", send_welcome)) dp.add_handler(CommandHandler("help", send_help)) dp.add_handler(CommandHandler("quant", send_quant_describe)) dp.add_handler(CommandHandler("nlp", send_nlp_describe)) dp.add_handler(CommandHandler("ds", send_ds_describe)) dp.add_handler(CommandHandler("cv", send_cv_describe)) dp.add_handler(CommandHandler("rl", send_rl_describe)) dp.add_handler(CommandHandler("gpt2", gpt2_reply)) dp.add_handler(CommandHandler("qa", turing_qa)) dp.add_error_handler(error) updater.start_webhook(listen="0.0.0.0", port=PORT, url_path=TOKEN) updater.bot.set_webhook("https://bot-telegram-turing.herokuapp.com/" + TOKEN) logger.info("Listening for messages...") updater.start_polling() updater.idle() if __name__ == '__main__': main()
StarcoderdataPython
3343104
from docsie_universal_importer.providers.base import StorageTreeView, ImporterView from .import_provider import BitbucketProvider storage_view = StorageTreeView.provider_view(BitbucketProvider) importer_view = ImporterView.provider_view(BitbucketProvider)
StarcoderdataPython
1688471
from gna.ui import basecmd from gna.env import env import ROOT import numpy as np import scipy.misc from scipy.stats import poisson import gna.constructors as C class cmd(basecmd): @classmethod def initparser(cls, parser, env): parser.add_argument('--name', required=True) parser.add_argument('--Emin', default=0, type=float) parser.add_argument('--Emax', default=5, type=float) parser.add_argument('--nbins', default=70, type=int) parser.add_argument('--order', default=8) parser.add_argument('--PoissonMean', default=0.2, type=float) parser.add_argument('--PoissonOrder', default=4, type=int) def init(self): ns = env.ns(self.opts.name) ns.reqparameter('BackgroundRate', central=0, sigma=0.1) ns.reqparameter('Mu', central=1, sigma=1) ns.reqparameter('E0', central=2, sigma=0.05) ns.reqparameter('Width', central=0.2, sigma=0.005) edges = np.linspace(self.opts.Emin, self.opts.Emax, self.opts.nbins+1) orders = np.array([self.opts.order]*(len(edges)-1), dtype=int) integrator = ROOT.GaussLegendre(edges, orders, len(orders)) hist = ROOT.GaussLegendreHist(integrator) signal = ROOT.Sum() n = self.opts.PoissonOrder model = {} #ff = np.arange(1,n+1) #ff = 1/scipy.misc.factorial(ff)*np.exp(-self.opts.PoissionMean) #ff_points = C.Points(ff) #print(ff, ff_points) with ns: for i in range(1, n+1): print(i, n) model[i] = ROOT.GaussianPeakWithBackground(i) model[i].rate.E(integrator.points.x) # print(model[i].rate,model[i].rate.rate,ff_points[i]) prod = ROOT.Product() prod.multiply(model[i].rate.rate) poisson_factor = poisson.pmf(i, self.opts.PoissonMean) poisson_factor_prod = C.Points([poisson_factor]) print(type(model[i].rate), poisson_factor, poisson_factor_prod) prod.multiply(poisson_factor_prod) signal.add(prod) hist.hist.f(signal) ns.addobservable('spectrum', hist.hist)
StarcoderdataPython
3256085
<reponame>ZRHonor/pytorch_resnet_cifar10<gh_stars>0 from torch.nn import CrossEntropyLoss from torch import nn import numpy as np import torch class CBCELoss(nn.Module): def __init__(self, lt_factor, num_classes) -> None: super(CBCELoss).__init__() weight = np.linspace(1/lt_factor, 1, num=num_classes) self.ce_loss = CrossEntropyLoss(weight=torch.tensor(weight)) def forward(self, input, target): return self.ce_loss(input, target) class GHMLoss(nn.Module): # TODO complete GHMloss def __init__(self, num_classes) -> None: super(GHMLoss).__init__() pass def forward(self, input, target): return 0 class GroupGHMLoss(nn.Module): # TODO complete GGHMloss def __init__(self) -> None: super(GroupGHMLoss).__init__() pass def forward(self, input, target): return 0 def get_loss_fn(loss_fn, lt_factor, num_classes): if loss_fn == 'CrossEntropyLoss': return eval(loss_fn)().cuda() return 0
StarcoderdataPython
1684176
<filename>lib/galaxy/model/migrate/versions/0080_quota_tables.py """ Migration script to create tables for disk quotas. """ from __future__ import print_function import datetime import logging from sqlalchemy import BigInteger, Boolean, Column, DateTime, ForeignKey, Integer, MetaData, String, Table, TEXT now = datetime.datetime.utcnow log = logging.getLogger(__name__) metadata = MetaData() # Tables to add Quota_table = Table("quota", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("name", String(255), index=True, unique=True), Column("description", TEXT), Column("bytes", BigInteger), Column("operation", String(8)), Column("deleted", Boolean, index=True, default=False)) UserQuotaAssociation_table = Table("user_quota_association", metadata, Column("id", Integer, primary_key=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), Column("quota_id", Integer, ForeignKey("quota.id"), index=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now)) GroupQuotaAssociation_table = Table("group_quota_association", metadata, Column("id", Integer, primary_key=True), Column("group_id", Integer, ForeignKey("galaxy_group.id"), index=True), Column("quota_id", Integer, ForeignKey("quota.id"), index=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now)) DefaultQuotaAssociation_table = Table("default_quota_association", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("type", String(32), index=True, unique=True), Column("quota_id", Integer, ForeignKey("quota.id"), index=True)) def upgrade(migrate_engine): metadata.bind = migrate_engine print(__doc__) metadata.reflect() # Create quota table try: Quota_table.create() except Exception: log.exception("Creating quota table failed.") # Create user_quota_association table try: UserQuotaAssociation_table.create() except Exception: log.exception("Creating user_quota_association table failed.") # Create group_quota_association table try: GroupQuotaAssociation_table.create() except Exception: log.exception("Creating group_quota_association table failed.") # Create default_quota_association table try: DefaultQuotaAssociation_table.create() except Exception: log.exception("Creating default_quota_association table failed.") def downgrade(migrate_engine): metadata.bind = migrate_engine metadata.reflect() # Drop default_quota_association table try: DefaultQuotaAssociation_table.drop() except Exception: log.exception("Dropping default_quota_association table failed.") # Drop group_quota_association table try: GroupQuotaAssociation_table.drop() except Exception: log.exception("Dropping group_quota_association table failed.") # Drop user_quota_association table try: UserQuotaAssociation_table.drop() except Exception: log.exception("Dropping user_quota_association table failed.") # Drop quota table try: Quota_table.drop() except Exception: log.exception("Dropping quota table failed.")
StarcoderdataPython
3394199
from .evaluator import MultiScaleEvaluator
StarcoderdataPython
72016
"""Arithmetic Coding Functions for doing compression using arithmetic coding. http://en.wikipedia.org/wiki/Arithmetic_coding The functions and classes all need predictive models; see model.py """ import math import itertools from seq_predict import CTW def grouper(n, iterable, fillvalue=None): args = [iter(iterable)] * n return itertools.zip_longest(*args, fillvalue=fillvalue) def compress_bits(model, bits): """Compresses a stream of bits into another stream of bits. Requires a prediction model. """ encoder = BinaryArithmeticEncoder(model) for c in itertools.chain.from_iterable((encoder.encode(b) for b in bits)): yield c for c in encoder.flush(): yield c def compress_bytes(model, bytes): """Compresses a stream of bytes into another steam of bytes. Requires a prediction model. """ bits = ((m >> i) & 1 for m in bytes for i in range(8)) cbits = compress_bits(model, bits) for c in (int(''.join(reversed(byte)), 2) for byte in grouper(8, (str(b) for b in cbits), '0')): yield c def decompress_bits(model, bits, msglen): """Decompresses a stream of bits into another stream of bits. Requires the same prediction model (from its original state) that was used for decompression and the number of bits in the message. """ decoder = BinaryArithmeticDecoder(model) nbits = 0 for r in itertools.chain.from_iterable((decoder.decode(b) for b in bits)): yield r nbits += 1 for r in decoder.flush(msglen - nbits): yield r def decompress_bytes(model, bytes, msglen): """Decompresses a stream of bytes into another stream of bytes. Requires the same prediction model (from its original state) that was used for decompression and the number of bytes in the message. """ cbits = ((m >> i) & 1 for m in bytes for i in range(8)) bits = decompress_bits(model, cbits, msglen * 8) for r in (int(''.join(reversed(byte)), 2) for byte in grouper(8, (str(b) for b in bits), '0')): yield r class BinaryArithmeticEncoder: """BinaryArithmeticEncoder An arithmetic encoder for binary data sources. For the theory behind the encoder see http://en.wikipedia.org/wiki/Arithmetic_coding. >>> encoder = BinaryArithmeticEncoder(CTW(8)) See also: BinaryArithmeticDecoder, compress, and compress_bytes """ def __init__(self, model, num_bits = 32): self.model = model self.num_bits = num_bits self._top = 2 ** self.num_bits self._half = self._top // 2 # [0, self._half) is outputs the zero bit self._1_4 = self._half // 2 self._3_4 = self._top - self._1_4 self.low = 0 # Interval is [self.low, self.high) self.high = self._top self.follow_bits = 0 # Opposing bits to follow the next output'd bit self.history = [] def encode(self, symbol): """Encodes a symbol returning a sequence of coded bits. The encoder is stateful and (since it is hopefully compressing the input) it will not return output bits for each input symbol. You will need to flush the encoder to get remaining coded bits after encoding the complete sequence. """ output = [] # Find the split point p_zero = self.model.predict(0, self.history) split = self.low + max(1, int((self.high - self.low) * p_zero)) # 0-interval is [self.low, split) # Update the model self.model.update(symbol, self.history) self.history.append(symbol) # Update the range based on the observed symbol if symbol: self.low = split else: self.high = split # If the range no longer overlaps the midpoint, the next bit is known # also rescale the interval to get back precision # # If the range overlaps the midpoint but not the 1/4 or 3/4 points then # we rescale the interval, but track this with follow bits. If the next # bit to output is a 1, then we already know it's at the low end of the upper # half, so we follow with a 0. Similarly if the next bit is a 0, then # we already know it's at the high end of the lower half, so we follow # with a 1. # If this happens a second time before outputting any bit, then there will # need to be 2 of these follow bits. So we track this by just incrementing # a follow bit counter. # # This is in a loop because the new range may not overlap the new midpoint, # allowing multiple bits to be determined output = [] while True: if self.high <= self._half: output.append(0) output.extend([1] * self.follow_bits) # Add the follow bits self.follow_bits = 0 elif self.low >= self._half: output.append(1) output.extend([0] * self.follow_bits) # Add the follow bits self.follow_bits = 0 self.low -= self._half self.high -= self._half elif self.low >= self._1_4 and self.high <= self._3_4: self.follow_bits += 1 self.low -= self._1_4 self.high -= self._1_4 else: break self.low *= 2 self.high *= 2 return output def flush(self): """Flushes any coded bits in the encoder. Typically called after the entire sequence has been encoded. """ if self.low < self._1_4: output = [0] + [1] * (self.follow_bits + 1) else: output = [1] + [0] * (self.follow_bits + 1) return output class BinaryArithmeticDecoder: def __init__(self, model, num_bits = 32): self.model = model self.num_bits = num_bits self._top = 2 ** self.num_bits self._half = self._top // 2 # [0, self._half) outputs the zero bit self._1_4 = self._half // 2 self._3_4 = self._top - self._1_4 self.low = 0 self.high = 1 # This ensures num_bits are read before decoding self.value = 0 self.history = [] def decode(self, bit): if self.high <= self._half: pass elif self.low >= self._half: self.value -= self._half self.low -= self._half self.high -= self._half elif self.low >= self._1_4 and self.high <= self._3_4: self.value -= self._1_4 self.low -= self._1_4 self.high -= self._1_4 self.low *= 2 self.high *= 2 self.value *= 2 self.value += bit output = [] while (self.low < self._half < self.high and ((self.low < self._1_4 or self.high > self._3_4))): p_zero = self.model.predict(0, self.history) split = self.low + max(1, int((self.high - self.low) * p_zero)) # 0-interval is [self.low, split) symbol = 0 if self.value < split else 1 output.append(symbol) self.model.update(symbol, self.history) self.history.append(symbol) if symbol: self.low = split else: self.high = split return output def flush(self, nbits): output = [] while len(output) < nbits: output += self.decode(0) return output[:nbits]
StarcoderdataPython
3334109
import re from textwrap import dedent, indent import click as cl def run_file(text): """Evaluate a Bayes file.""" global file_vars, env file_vars = {} env = {"__builtins__": {}} # extract code chunks from text, combine, and sort by position chunks = extract_chunks(text) hypotheses = {} # as we insert values, the string will get longer, so we must keep track # of how much we've shifted it offset = 0 # Evaluate each chunk for match in chunks: chunk = dedent(match.group(1)) if chunk.startswith("@"): # block new = run_block(chunk, hypotheses) new = indent(new, " "*4) else: # inline new = run_inline(chunk) # insert evaluated chunk back into text start, end = match.span(1) text = text[:start+offset] + new + text[end+offset:] offset += len(dedent(new)) - len(chunk) return text, hypotheses def run_inline(chunk): """Evaluate a chunk of inline code.""" sides = chunk.split("=") if len(sides) > 1: expr = sides[1] else: expr = sides[0] value = eval(expr, env, file_vars) # save value if len(sides) > 1: varname = sides[0].strip() file_vars[varname] = value if is_num(expr): return chunk else: return f"{chunk} [{value}]" def run_block(chunk, hypotheses): """Evaluate a Bayes block.""" first, *lines, last = chunk.split("\n") kind = first.split(":", 1)[0] if kind == "@priors": new_lines = run_priors(lines, hypotheses) elif kind == "@evidence": new_lines = run_evidence(first, lines, hypotheses) else: raise cl.UsageError(f"Unknown block type '{kind[1:]}.'") new_lines = "\n".join(new_lines) return f"{first}\n{new_lines}\n{last}" def run_priors(lines, hypotheses): """Evaluate a priors block.""" data = {} for line in lines: name, expr = line.split(":") prior = eval(expr, env, file_vars) data[line] = prior hypotheses[name] = [prior] norm = normalize(hypotheses) for i, line in enumerate(lines): if is_num(expr) and norm == 1: continue lines[i] = f"{line} [{data[line] / norm:.6f}]" return lines def run_evidence(first, lines, hypotheses): """Evaluate an evidence block.""" data = {} for line in lines: name, expr = line.split(":") if not name in hypotheses: raise cl.UsageError(f"Unknown hypothesis: '{name}.'") likelihood = eval(expr, env, file_vars) # apply Bayes' rule prior = hypotheses[name][-1] posterior = prior * likelihood data[line] = [prior, likelihood, posterior] hypotheses[name].append(posterior) norm_post = normalize(hypotheses) norm_like = sum([l for _, l, _ in data.values()]) for i, line in enumerate(lines): lines[i] = (f"{line} [{data[line][0]:.6f} " f"=={data[line][1] / norm_like:.6f}==> " f"{data[line][2] / norm_post:.6f}]") return lines def normalize(hypotheses, index=-1): """Normalize probabilities.""" total = 0 for probs in hypotheses.values(): total += probs[index] for probs in hypotheses.values(): probs[index] /= total return total def clean_text(text): """Clear out old evaluations and results from file.""" text = re.sub(r" ?\[[-+]?\d*\.?\d*\]", "", text) text = re.sub("\[([+-]?\d+.?\d*) ==([+-]?\d+.?\d*)==> ([+-]?\d+.?\d*)\]", "", text) return text def extract_chunks(text): """Extract chunks of code from Bayes file.""" inline = re.finditer(r"`([^`]+)`", text) blocks = re.finditer(r"\n((?:^(?: | *\t)+.*\n)+)", text, re.M) chunks = [*inline] + [*blocks] chunks.sort(key=lambda m: m.start()) return chunks def is_num(text): """Check if text can be parsed as a number.""" try: float(text) except: return False else: return True
StarcoderdataPython
10950
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import DEPS CONFIG_CTX = DEPS['gclient'].CONFIG_CTX ChromiumGitURL = DEPS['gclient'].config.ChromiumGitURL @CONFIG_CTX() def v8(c): soln = c.solutions.add() soln.name = 'v8' soln.url = ChromiumGitURL(c, 'v8', 'v8') c.got_revision_reverse_mapping['got_revision'] = 'v8' # Needed to get the testers to properly sync the right revision. # TODO(infra): Upload full buildspecs for every build to isolate and then use # them instead of this gclient garbage. c.parent_got_revision_mapping['parent_got_revision'] = 'got_revision' p = c.patch_projects p['icu'] = ('v8/third_party/icu', 'HEAD') @CONFIG_CTX(includes=['v8']) def dynamorio(c): soln = c.solutions.add() soln.name = 'dynamorio' soln.url = ChromiumGitURL(c, 'external', 'dynamorio') @CONFIG_CTX(includes=['v8']) def llvm_compiler_rt(c): c.solutions[0].custom_deps['v8/third_party/llvm/projects/compiler-rt'] = ( ChromiumGitURL(c, 'external', 'llvm.org', 'compiler-rt')) @CONFIG_CTX() def node_js(c): soln = c.solutions.add() soln.name = 'node.js' soln.url = ChromiumGitURL(c, 'external', 'github.com', 'v8', 'node') soln.revision = 'vee-eight-lkgr:HEAD' c.got_revision_reverse_mapping['got_node_js_revision'] = soln.name @CONFIG_CTX(includes=['v8']) def v8_valgrind(c): c.solutions[0].custom_deps['v8/third_party/valgrind'] = ( ChromiumGitURL(c, 'chromium', 'deps', 'valgrind', 'binaries'))
StarcoderdataPython
128401
<gh_stars>1-10 import os import subprocess from nmigen.build import * from nmigen.vendor.lattice_ecp5 import * from nmigen_boards.resources import * from ..gateware.ft600 import FT600Resource __all__ = ["KilsythPlatform"] class KilsythPlatform(LatticeECP5Platform): device = "LFE5U-45F" package = "BG381" speed = 6 default_clk = "clk16" resources = [ Resource("clk16", 0, Pins("G3", dir="i"), Clock(16e6), Attrs(GLOBAL=True, IO_TYPE="LVCMOS33")), *LEDResources(pins="A9 B9 B10 A10 A11 C10 B11 C11", invert=False, attrs=Attrs(IO_TYPE="LVCMOS33")), FT600Resource(0, clk="H2", data="P4 P3 P2 P1 N4 N3 N2 N1 M3 M1 L3 L2 L1 K4 K3 K2", be="K1 J5", rd_n="M4", wr_n="J1", gpio1="G5", txe_n="J4", rxf_n="J3", oe_n="H1", ) ] connectors = [] def toolchain_program(self, products, name): openocd = os.environ.get("OPENOCD", "openocd") interface = os.environ.get("INTERFACE", "SiPEED") if interface == "SiPEED" or interface == "busblaster": if interface == "SiPEED": args = ["-c", """ interface ftdi ftdi_vid_pid 0x0403 0x6010 ftdi_layout_init 0x0018 0x05fb ftdi_layout_signal nSRST -data 0x0010 """] elif interface == "busblaster": args = ["-f", "interface/ftdi/dp_busblaster.cfg"] with products.extract("{}.svf".format(name)) as vector_filename: subprocess.check_call([openocd, *args, "-c", "transport select jtag; adapter_khz 10000; init; svf -quiet {}; exit".format(vector_filename) ]) else: raise Exception("Unsupported interface")
StarcoderdataPython
4803505
<filename>src/api/filters/FilterScopes.py class FilterScopes: filter_scopes = { 'user:read': ['name', 'email'], 'manager': ['name', 'email', 'password'] } def filter(self, response): if 'error' in response: return response token = self.get_token() scopes = token['scopes'].split(',') filtered_response = {} for scope in scopes: if scope in self.filter_scopes: if isinstance(response, dict): return self.filter_dict(response, scope) elif isinstance(response, list): return self.filter_list(response, scope) return filtered_response def filter_dict(self, response, scope): filtered_response = {} for key, value in response.items(): if key in self.filter_scopes[scope]: filtered_response.update({key: value}) return filtered_response def filter_list(self, response, scope): filtered_response = {} for elem in response: for key, value in elem.items(): if key in self.filter_scopes[scope]: filtered_response.update({key: value}) return filtered_response
StarcoderdataPython
3276066
<reponame>RoastVeg/cports pkgname = "xbitmaps" pkgver = "1.1.2" pkgrel = 0 build_style = "gnu_configure" hostmakedepends = ["pkgconf"] pkgdesc = "Common X11 bitmaps" maintainer = "q66 <<EMAIL>>" license = "MIT" url = "https://xorg.freedesktop.org" source = f"$(XORG_SITE)/data/{pkgname}-{pkgver}.tar.bz2" sha256 = "b9f0c71563125937776c8f1f25174ae9685314cbd130fb4c2efce811981e07ee" def post_install(self): self.install_license("COPYING")
StarcoderdataPython
3314917
<filename>multiband_melgan/utils.py def repeat(iterable): while True: for x in iterable: yield x
StarcoderdataPython
114019
<reponame>damnit/pymite # -*- coding: utf-8 -*- # File: test_daily_adapter.py """ daily adapter test module. """ import urllib.request from .conftest import mock_urlopen, _get_url from pymite.adapters import Daily def test_daily_setup(libfactory): """ Test tracker setup. """ factory = libfactory.daily_adapter assert factory is not None daily = Daily(factory.realm, factory.apikey) assert daily.adapter == 'daily' def test_daily_at(monkeypatch, libfactory): daily = libfactory.daily_adapter at_data = [ {'time_entry': {}}, {'time_entry': {}} ] urlopen_at = mock_urlopen(at_data) monkeypatch.setattr(urllib.request, 'urlopen', urlopen_at) at = daily.at('2015', '2', '2') assert at == list(map(lambda x: x['time_entry'], at_data)) assert len(at) == len(at_data) def test_daily_at_url(monkeypatch, libfactory): d = libfactory.daily_adapter monkeypatch.setattr(Daily, '_get', _get_url('time_entry')) url = d.at(2015, 2, 2)['api'] assert url == 'https://foo.mite.yo.lk/daily/2015/2/2.json' url = d.at(2015, '2', '02')['api'] assert url == 'https://foo.mite.yo.lk/daily/2015/2/2.json' def test_daily_today(monkeypatch, libfactory): daily = libfactory.daily_adapter today_data = [ {'time_entry': {}}, {'time_entry': {}} ] urlopen_today = mock_urlopen(today_data) monkeypatch.setattr(urllib.request, 'urlopen', urlopen_today) at = daily.today() assert at == list(map(lambda x: x['time_entry'], today_data)) assert len(at) == len(today_data) def test_daily_today_url(monkeypatch, libfactory): d = libfactory.daily_adapter monkeypatch.setattr(Daily, '_get', _get_url('time_entry')) url = d.today()['api'] assert url == 'https://foo.mite.yo.lk/daily.json' # vim: set ft=python ts=4 sw=4 expandtab :
StarcoderdataPython
1681566
<filename>nahamconctf/2021/ngrocket/client.py #!/usr/bin/env python3 import time from pwn import * target = b'HOST:PORT' while True: conn = remote('challenge.nahamcon.com', 0) conn.recv() conn.recv() conn.send(target) data = conn.recvuntil(b'ngrocket') print(data) conn.close() time.sleep(0.1) local = remote('localhost', 4444) local.send(data) local.close()
StarcoderdataPython
3253558
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2017-08-30 13:35 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('frontend', '0024_measure_tags'), ('frontend', '0028_prescription_net_cost'), ] operations = [ ]
StarcoderdataPython
3245653
<gh_stars>1-10 from enum import Enum from json import loads from typing import List, Dict import numpy as np from tdw.tdw_utils import TDWUtils from tdw.output_data import OutputData, Bounds, Raycast, SegmentationColors, Magnebot from magnebot.arm import Arm from magnebot.util import get_data from magnebot.ik.orientation_mode import OrientationMode from magnebot.ik.target_orientation import TargetOrientation from magnebot.action_status import ActionStatus from magnebot.magnebot_static import MagnebotStatic from magnebot.magnebot_dynamic import MagnebotDynamic from magnebot.image_frequency import ImageFrequency from magnebot.actions.ik_motion import IKMotion from magnebot.paths import CONVEX_SIDES_PATH class _GraspStatus(Enum): getting_bounds = 1, spherecasting = 2 raycasting = 4 grasping = 8 class Grasp(IKMotion): """ Try to grasp a target object. The action ends when either the Magnebot grasps the object, can't grasp it, or fails arm articulation. """ # A list of indices of convex sides per object. See: `_BOUNDS_SIDES`. _CONVEX_SIDES: Dict[str, List[int]] = loads(CONVEX_SIDES_PATH.read_text(encoding="utf-8")) # The order of bounds sides. The values in `_CONVEX_SIDES` correspond to indices in this list. _BOUNDS_SIDES: List[str] = ["left", "right", "front", "back", "top", "bottom"] def __init__(self, target: int, arm: Arm, orientation_mode: OrientationMode, target_orientation: TargetOrientation, dynamic: MagnebotDynamic): """ :param target: The ID of the target object. :param arm: [The arm used for this action.](../arm.md) :param orientation_mode: [The orientation mode.](../ik/orientation_mode.md) :param target_orientation: [The target orientation.](../ik/target_orientation.md) :param dynamic: [The dynamic Magnebot data.](../magnebot_dynamic.md) """ super().__init__(arm=arm, orientation_mode=orientation_mode, target_orientation=target_orientation, dynamic=dynamic) self._target: int = target self._grasp_status: _GraspStatus = _GraspStatus.getting_bounds self._target_bounds: Dict[str, np.array] = dict() self._target_name: str = "" self._target_position: np.array = np.array([0, 0, 0]) def get_initialization_commands(self, resp: List[bytes], static: MagnebotStatic, dynamic: MagnebotDynamic, image_frequency: ImageFrequency) -> List[dict]: # This Magnebot is already holding the object. if self._target in dynamic.held[Arm.left] or self._target in dynamic.held[Arm.right]: self.status = ActionStatus.success return [] # Check if another Magnebot is holding the object. for i in range(len(resp) - 1): r_id = OutputData.get_data_type_id(resp[i]) if r_id == "magn": magnebot = Magnebot(resp[i]) if magnebot.get_id() != static.robot_id: if self._target in magnebot.get_held_left() or self._target in magnebot.get_held_right(): self.status = ActionStatus.held_by_other return [] commands = super().get_initialization_commands(resp=resp, static=static, dynamic=dynamic, image_frequency=image_frequency) commands.extend([{"$type": "set_magnet_targets", "arm": self._arm.name, "targets": [self._target], "id": static.robot_id}, {"$type": "send_bounds", "frequency": "once"}, {"$type": "send_segmentation_colors", "frequency": "once"}]) return commands def get_end_commands(self, resp: List[bytes], static: MagnebotStatic, dynamic: MagnebotDynamic, image_frequency: ImageFrequency) -> List[dict]: commands = super().get_end_commands(resp=resp, static=static, dynamic=dynamic, image_frequency=image_frequency) commands.append({"$type": "set_magnet_targets", "arm": self._arm.name, "targets": [], "id": static.robot_id}) return commands def get_ongoing_commands(self, resp: List[bytes], static: MagnebotStatic, dynamic: MagnebotDynamic) -> List[dict]: if self._is_success(resp=resp, static=static, dynamic=dynamic): self.status = ActionStatus.success return [] elif self._grasp_status == _GraspStatus.grasping: return self._evaluate_arm_articulation(resp=resp, static=static, dynamic=dynamic) elif self._grasp_status == _GraspStatus.getting_bounds: # Get the segmentation color data and get the object name. segmentation_colors = get_data(resp=resp, d_type=SegmentationColors) for i in range(segmentation_colors.get_num()): if segmentation_colors.get_object_id(i) == self._target: self._target_name = segmentation_colors.get_object_name(i).lower() break # Get the bounds data and spherecast to the center. bounds = get_data(resp=resp, d_type=Bounds) for i in range(bounds.get_num()): if bounds.get_id(i) == self._target: self._target_bounds = {"left": np.array(bounds.get_left(i)), "right": np.array(bounds.get_right(i)), "front": np.array(bounds.get_front(i)), "back": np.array(bounds.get_back(i)), "top": np.array(bounds.get_top(i)), "bottom": np.array(bounds.get_bottom(i)), "center": np.array(bounds.get_center(i))} self._grasp_status = _GraspStatus.spherecasting return [{"$type": "send_spherecast", "radius": 0.2, "origin": TDWUtils.array_to_vector3(dynamic.joints[static.magnets[self._arm]].position), "destination": TDWUtils.array_to_vector3(bounds.get_center(0)), "id": static.robot_id}] raise Exception(f"No bounds data: {resp}") elif self._grasp_status == _GraspStatus.spherecasting: magnet_position = dynamic.joints[static.magnets[self._arm]].position # Get the nearest spherecasted point. nearest_distance = np.inf nearest_position = np.array([0, 0, 0]) got_raycast_point = False for i in range(len(resp) - 1): r_id = OutputData.get_data_type_id(resp[i]) if r_id == "rayc": raycast = Raycast(resp[i]) if raycast.get_raycast_id() == static.robot_id: # Ignore raycasts that didn't hit the target. if not raycast.get_hit() or not raycast.get_hit_object() or raycast.get_object_id() != self._target: continue got_raycast_point = True point = np.array(raycast.get_point()) raycast_distance = np.linalg.norm(point - magnet_position) if raycast_distance < nearest_distance: nearest_distance = raycast_distance nearest_position = point # We found a good target! if got_raycast_point: self._target_position = self._absolute_to_relative(position=nearest_position, dynamic=dynamic) self._set_start_arm_articulation_commands(static=static, dynamic=dynamic) self._grasp_status = _GraspStatus.grasping return self._evaluate_arm_articulation(resp=resp, static=static, dynamic=dynamic) # Try to get a target from cached bounds data. else: # If we haven't cached the bounds for this object, just return all of the sides. if self._target_name not in Grasp._CONVEX_SIDES: sides = list(self._target_bounds.values())[:-1] else: # Get only the convex sides of the object using cached data. sides: List[np.array] = list() for i, side in enumerate(Grasp._BOUNDS_SIDES): if i in Grasp._CONVEX_SIDES[self._target_name]: sides.append(self._target_bounds[side]) # If there are no valid bounds sides, aim for the center and hope for the best. if len(sides) == 0: self._target_position = self._absolute_to_relative(position=self._target_bounds["center"], dynamic=dynamic) self._set_start_arm_articulation_commands(static=static, dynamic=dynamic) self._grasp_status = _GraspStatus.grasping return self._evaluate_arm_articulation(resp=resp, static=static, dynamic=dynamic) else: # If the object is higher up than the magnet, remove the lowest side. if self._target_bounds["center"][1] > magnet_position[1] and len(sides) > 1: lowest: int = -1 y = np.inf for i in range(len(sides)): if sides[i][1] < y: lowest = i y = sides[i][1] del sides[lowest] # Get the closest side to the magnet. nearest_side: np.array = sides[0] d = np.inf for side in sides: dd = np.linalg.norm(side - magnet_position) if dd < d: nearest_side = side d = dd self._grasp_status = _GraspStatus.raycasting return [{"$type": "send_raycast", "origin": TDWUtils.array_to_vector3(nearest_side), "destination": TDWUtils.array_to_vector3(self._target_bounds["center"]), "id": static.robot_id}] elif self._grasp_status == _GraspStatus.raycasting: for i in range(len(resp) - 1): r_id = OutputData.get_data_type_id(resp[i]) if r_id == "rayc": raycast = Raycast(resp[i]) if raycast.get_raycast_id() == static.robot_id: # If the raycast hit the object, aim for that point. if raycast.get_hit() and raycast.get_hit_object() and raycast.get_object_id() == self._target: self._target_position = self._absolute_to_relative(dynamic=dynamic, position=np.array(raycast.get_point())) self._set_start_arm_articulation_commands(static=static, dynamic=dynamic) self._grasp_status = _GraspStatus.grasping return self._evaluate_arm_articulation(resp=resp, static=static, dynamic=dynamic) else: self._target_position = self._absolute_to_relative(position=self._target_bounds["center"], dynamic=dynamic) self._set_start_arm_articulation_commands(static=static, dynamic=dynamic) self._grasp_status = _GraspStatus.grasping return self._evaluate_arm_articulation(resp=resp, static=static, dynamic=dynamic) self._target_position = self._absolute_to_relative(position=self._target_bounds["center"], dynamic=dynamic) self._set_start_arm_articulation_commands(static=static, dynamic=dynamic) self._grasp_status = _GraspStatus.grasping return self._evaluate_arm_articulation(resp=resp, static=static, dynamic=dynamic) else: raise Exception(self._grasp_status) def _get_fail_status(self) -> ActionStatus: return ActionStatus.failed_to_grasp def _is_success(self, resp: List[bytes], static: MagnebotStatic, dynamic: MagnebotDynamic) -> bool: return self._target in dynamic.held[self._arm] def _get_ik_target_position(self) -> np.array: return self._target_position
StarcoderdataPython
38183
<gh_stars>0 import numpy as np import matplotlib.pyplot as plt from scipy.stats import binned_statistic def var_correct(qso, rest_ranges=None, zq_range=[1.6, 4.], fit_model=True, savefile=False): """ Corrections to the vriance assigned to the pixels by the pipeline Notes: 1. Scaling spectra doesn't affect this estimate 2. If the spectra changes by a lot(isn't flat), it will lead to underestimates of eta """ if rest_ranges is None: rest_ranges = [[1350, 1360], [1470, 1480]] zq_ind = np.where((qso.zq > zq_range[0]) & (qso.zq <= zq_range[1]) & (qso.sn > 5))[0] # restframe ranges over which to analyze # currently this allows for only a single bin if np.asarray(rest_ranges).ndim == 1: raise TypeError("Please provide the ranges as two dimensional array") lambda_mean, eta = [], [] for ranges in rest_ranges: ind_set = (qso.wl > ranges[0]) & (qso.wl <= ranges[1]) # create local flux and ivar matrices loc_flux = qso.flux[zq_ind[:, None], ind_set] loc_ivar = qso.ivar[zq_ind[:, None], ind_set] # mask to select pixels that provide information ivar_mask = loc_ivar > 0 # sum of good pixels along each spectra where num is greater than 10 num = np.sum(ivar_mask, 1) num_ind = num > 10 # chi-square along each spectra # eta = N / sum((f_i - mu)^2 / sigma_i^2) mu = np.average(loc_flux[num_ind], weights=loc_ivar[num_ind], axis=1) chisq = np.sum(( loc_flux[num_ind] - mu[:, None]) ** 2 * loc_ivar[num_ind], axis=1) lambda_obs = np.array((np.mat(qso.wl[ind_set]).T * np.mat(1 + qso.zq[zq_ind][num_ind]))).T # mean of observed wavelength spanned along each spectra lambda_mean += list(np.average(lambda_obs, weights=ivar_mask[num_ind], axis=1)) # eta values along each spectra eta += list(num[num_ind] / chisq) # binned statistic with scipy y, bin_edges, __ = binned_statistic(lambda_mean, eta, statistic='mean', bins=100) bin_width = (bin_edges[1] - bin_edges[0]) X = bin_edges[1:] - bin_width/2 # plot the results if specified fig, ax = plt.subplots(1) ax.plot(X, y, '+', color='k', markersize=8) # fit a simple piecewise function to the data if fit_model: popt1 = np.polyfit(X[X < 5850], y[X < 5850], deg=1) popt2 = np.polyfit(X[X > 5850], y[X > 5850], deg=2) xline1 = np.linspace(3500, 5850, 100) ax.plot(xline1, np.polyval(popt1, xline1), '-r') xline2 = np.linspace(5850, 7500, 100) ax.plot(xline2, np.polyval(popt2, xline2), '--r') ax.set_xlabel(r'$\lambda_\mathrm{obs} [\mathrm{\AA}]$') plt.show() if savefile: np.savetxt("var_correct.txt", list(popt1) + list(popt2)) def calibrate(wl, spec, ivar, zq, rest_range, norm_min, norm_max, savetag, plotit=False): """ Obtain flux calibration vector by doing optical depth analysis redwards of Lyman-Alpha Only the shape is estimated, the overall normalization is unconstrained """ # Collect relevant indices over restframe r_ind = [] for j in range(len(rest_range)): foo = np.where((wl > rest_range[j][0]) & (wl < rest_range[j][1]))[0] r_ind = np.concatenate((r_ind, foo)) rInd = r_ind.astype(int) # Obtain the corresponding data matrices lam_obs = np.array(np.mat(wl[rInd]).T * np.mat(1 + zq)).T cflux, civar = spec[:, rInd], ivar[:, rInd] # Scale to the same baseline # this will introduce addtional errors that we are neglecting nValue = np.zeros(len(rInd)) for i in range(len(rInd)): blah = np.where((lam_obs[:, i] > norm_min) & (lam_obs[:, i] < norm_max) & (civar[:, i] > 0))[0] nValue[i] = np.average(cflux[:, i][blah], weights=civar[:, i][blah]) # Scale fluxes and ivars accordingly NormFlux = cflux / nValue NormIvar = civar * nValue ** 2 pixObs = np.ravel(lam_obs) pixFlux, pixIvar = np.ravel(NormFlux), np.ravel(NormIvar) # Controls the smoothing of the results ObsBin = np.arange(3500, 7000, 3) # Correction vector Cvec = np.zeros(len(ObsBin) - 1) for k in range(len(Cvec)): bInd = np.where((pixObs > ObsBin[k]) & (pixObs <= ObsBin[k + 1]) & (pixIvar > 0) & np.isfinite(pixFlux))[0] if len(bInd) > 5: Cvec[k] = np.average(pixFlux[bInd], weights=pixIvar[bInd]) Lvec = (ObsBin[1:] + ObsBin[:-1])/2. if plotit: plt.figure() good = Cvec != 0 plt.plot(Lvec[good], Cvec[good], '-k', lw=0.6) plt.xlabel(r'$\lambda_{obs}$') plt.ylabel(r'$Correction$') # plt.xlim(1.8 , 3) plt.ylim(0.9, 1.1) plt.axhline(1, c='r') plt.show() if savetag is not None: np.savetxt('../Data/calibration' + savetag + '.dat', [Lvec[good], Cvec[good]]) # EOF
StarcoderdataPython
1714904
<filename>scripts/dataex_list_user_preferences.py #!/usr/bin/env python3 import json import click import requests from yaspin import yaspin from dataexclient.auth import auth from dataexclient import auth_helper from dataexclient.utils import check_error, check_output_format from dataexclient.config import GET_REGION_PREFERENCE_URL, GET_POINT_PREFERENCE_URL @click.command() @click.option('--preference_type', '-pt' ,required=True, help='choose either region or point',type=click.Choice(['region', 'point'], case_sensitive=False)) def main(preference_type): payload = dict() auth_obj = auth() cred = auth_obj.get_auth() payload['username'] = cred['username'] if preference_type == 'region': url = GET_REGION_PREFERENCE_URL type = 'regions' else: url = GET_POINT_PREFERENCE_URL type = 'points' headers = { 'Content-Type': 'application/json', 'Authorization': auth_helper.get_token(), } with yaspin(text="Downloading...", color="yellow") as spinner: response = requests.post(url, headers=headers, data=json.dumps(payload)) if response.status_code == 200: data = response.json() if check_error(data): spinner.fail("💥 ") else: spinner.text = "Done" spinner.ok("✅") check_output_format(data[type], output_format='table') else: print(response.status_code) spinner.fail("💥 ") if __name__=='__main__': main()
StarcoderdataPython
1656898
# Generated by Django 2.2.6 on 2021-04-13 11:04 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('control', '0039_auto_20201203_0057'), ] operations = [ migrations.AlterUniqueTogether( name='agentadmin', unique_together={('ip', 'name')}, ), ]
StarcoderdataPython
1687703
#!/usr/bin/python3 import unittest from pypcep.pcep_parser import parse_pcep, PCEPMessageType PCEP_OPEN_MSG = [ '0x20', '0x01', '0x00', '0x50', '0x01', '0x10', '0x00', '0x4c', '0x20', '0x1e', '0x78', '0x01', '0x00', '0x10', '0x00', '0x04', '0x00', '0x00', '0x01', '0xc5', '0x00', '0x18', '0x00', '0x10', '0xfc', '0x01', '0xff', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x1a', '0x00', '0x04', '0x00', '0x00', '0x00', '0x0b', '0x00', '0x65', '0x00', '0x04', '0x00', '0x00', '0x00', '0x00', '0x00', '0x06', '0x00', '0x02', '0x00', '0x00', '0x00', '0x00', '0x00', '0x72', '0x00', '0x04', '0x00', '0x00', '0x00', '0x02', '0x00', '0x67', '0x00', '0x02', '0x00', '0x00', '0x00', '0x00'] PCEP_CLOSE_MSG = [ '0x20', '0x07', '0x00', '0x0c', '0x0f', '0x10', '0x00', '0x08', '0x00', '0x00', '0x00', '0x02'] PCEP_KEEPALIVE_MSG = [ '0x20', '0x02', '0x00', '0x04'] PCEP_NOTIFICATION_MSG = [ '0x20', '0x05', '0x00', '0x0c', '0x0c', '0x10', '0x00', '0x08', '0x00', '0x00', '0x02', '0x01'] PCEP_LSP_STATE_REPORT_MSG = [ '0x20', '0x0a', '0x00', '0x10', '0x20', '0x12', '0x00', '0x08', '0x00', '0x00', '0x00', '0x00', '0x07', '0x10', '0x00', '0x04'] class ParsePCEPTestCase(unittest.TestCase): def _test_bytes(self, msg): return bytes([int(i, 16) for i in msg]) def test_parse_keepalive(self): keepalive_msg_bytes = self._test_bytes(PCEP_KEEPALIVE_MSG) keepalive_msg = parse_pcep(keepalive_msg_bytes) self.assertEqual(1, keepalive_msg.header.pcep_version) self.assertEqual(PCEPMessageType.KEEPALIVE, PCEPMessageType(keepalive_msg.header.pcep_type)) def test_parse_open(self): open_msg_bytes = self._test_bytes(PCEP_OPEN_MSG) open_msg = parse_pcep(open_msg_bytes) self.assertEqual(1, open_msg.header.pcep_version) self.assertEqual(PCEPMessageType.OPEN, PCEPMessageType(open_msg.header.pcep_type)) objs = open_msg.pcep_objs self.assertEqual(1, len(objs)) obj = objs[0] self.assertEqual(1, obj.obj_fields['version']) self.assertEqual(1, obj.obj_fields['sid']) self.assertEqual(30, obj.obj_fields['keepalive']) self.assertEqual(120, obj.obj_fields['deadtime']) tlvs = obj.obj_fields['tlvs'] self.assertEqual(7, len(tlvs)) def test_parse_close(self): close_msg_bytes = self._test_bytes(PCEP_CLOSE_MSG) close_msg = parse_pcep(close_msg_bytes) self.assertEqual(1, close_msg.header.pcep_version) self.assertEqual(PCEPMessageType.CLOSE, PCEPMessageType(close_msg.header.pcep_type)) self.assertEqual(2, close_msg.pcep_objs[0].obj_fields['reason']) def test_parse_notification(self): notification_msg_bytes = self._test_bytes(PCEP_NOTIFICATION_MSG) notification_msg = parse_pcep(notification_msg_bytes) self.assertEqual(1, notification_msg.header.pcep_version) self.assertEqual(PCEPMessageType.NOTIFICATION, PCEPMessageType(notification_msg.header.pcep_type)) self.assertEqual(0, notification_msg.pcep_objs[0].obj_fields['reserved']) def test_parse_lsp_state_report(self): lsp_state_report_msg_bytes = self._test_bytes(PCEP_LSP_STATE_REPORT_MSG) lsp_state_report_msg = parse_pcep(lsp_state_report_msg_bytes) self.assertEqual(1, lsp_state_report_msg.header.pcep_version) self.assertEqual(PCEPMessageType.LSP_STATE_REPORT, PCEPMessageType(lsp_state_report_msg.header.pcep_type))
StarcoderdataPython
1762081
<gh_stars>1-10 from django.contrib.auth.models import User from django.db import models from django_extensions.db.fields import AutoSlugField from apps.government.models import Government from apps.core.models import BaseData from apps.contacts.models import Contact from datetime import datetime from django.utils import timezone class AgencyManager(models.Manager): def all_them(self): return super(AgencyManager, self).get_query_set().filter(deprecated__isnull=True).prefetch_related("government", "creator") def get_query_set(self): return super(AgencyManager, self).get_query_set().filter(deprecated__isnull=True, hidden=False).prefetch_related("government", "creator") class Agency(BaseData): name = models.CharField(max_length=255) slug = AutoSlugField(populate_from=('name', ), overwrite=False) government = models.ForeignKey(Government) contacts = models.ManyToManyField(Contact, blank=True, null=True, related_name='agency_related_contacts') objects = AgencyManager() creator = models.ForeignKey(User, null = True) hidden = models.BooleanField(default = False) pub_contact_cnt = models.IntegerField(default=0) editor_contact_cnt = models.IntegerField(default=0) class Meta: verbose_name_plural = 'Agencies' def __unicode__(self): return self.name def has_editable_contact(self, usr): for contact in self.contacts.all(): if contact.creator == usr: return True return False @property def late_requests(self): """ How many requests have FAILED to meet their deadlines? """ num_late_requests = 0 for r in self.related_agencies.all(): if r.is_late_naive: num_late_requests += 1 return num_late_requests @property def average_time_outstanding(self): days_late = 0 for r in self.related_agencies.all(): days_late += r.time_outstanding return days_late def save(self, *args, **kw): if self.pk is not None: self.pub_contact_cnt = self.contacts.filter(hidden=False).count() self.editor_contact_cnt = self.contacts.all().count() else: self.pub_contact_cnt = 0 self.editor_contact_cnt = 0 super(Agency, self).save(*args, **kw)
StarcoderdataPython
3234805
<filename>ldndc2nc/extra.py # -*- coding: utf-8 -*- """ldndc2nc.extra: extra module within the ldndc2nc package.""" import logging import os from pkg_resources import Requirement, resource_filename import shutil import string import numpy as np import param import yaml log = logging.getLogger(__name__) def enum(*sequential, **named): enums = dict(zip(sequential, range(len(sequential))), **named) return type('Enum', (), enums) def _copy_default_config(): """ copy default conf file to user dir """ #TODO somewhat redundand, merge with set_config code fname = resource_filename( Requirement.parse("ldndc2nc"), "ldndc2nc/data/ldndc2nc.conf") shutil.copyfile(fname, os.path.join( os.path.expanduser("~"), "ldndc2nc.conf")) def _find_config(): """ look for cfgFile in the default locations """ cfgFile = None locations = [os.curdir, os.path.expanduser("~"), "/etc/ldndc2nc", os.environ.get("LDNDC2NC_CONF")] locations = [x for x in locations if x is not None] for loc in locations: f = os.path.join(loc, "ldndc2nc.conf") if os.path.isfile(f): cfgFile = f break return cfgFile def _parse_config(cfgFile): """ read yaml config file and modify special properties""" with open(cfgFile, 'r') as ymlfile: cfg = yaml.load(ymlfile) for k, vs in cfg['variables'].items(): vs_new = [] for v in vs: def is_multipart_item(x): return ';' in x if is_multipart_item(v): x = v.split(';') vs_new.append((x[0], x[1:])) else: vs_new.append(v) cfg['variables'][k] = vs_new return cfg def parse_config(cfg, section=None): """ parse config data structure, return data of required section """ def is_valid_section(s): valid_sections = ['info', 'project', 'variables', 'refdata'] return s in valid_sections cfg_data = None if is_valid_section(section): try: cfg_data = cfg[section] except KeyError: log.critical(cfg.keys()) log.critical("Section <%s> not found in config" % section) exit(1) else: log.critical("Section <%s> not a valid name" % section) exit(1) return cfg_data def get_config(cfgFile=None): """ locate and read config file """ cfg = None locations = [] def cfgfile_exists(cfgFile): return cfgFile != None if cfgfile_exists(cfgFile): if not os.path.isfile(cfgFile): log.critical("Specified configuration file not found.") exit(1) else: cfgFile = _find_config() if not cfgfile_exists(cfgFile): log.info("Copying config file") _copy_default_config() cfgFile = _find_config() cfg = _parse_config(cfgFile) return cfg def set_config(cfg): """ write cfg file to user dir """ fname = os.path.join(os.path.expanduser("~"), 'ldndc2nc.conf') with open(fname, 'w') as f: f.write(yaml.dump(cfg, default_flow_style=False)) class RefDataBuilder(param.Parameterized): lonmin = param.Number(None, bounds=(-180, 180), doc="min longitude") latmin = param.Number(None, bounds=(-90, 90), doc="min latitude") lonmax = param.Number(None, bounds=(-180, 180), doc="max longitude") latmax = param.Number(None, bounds=(-90, 90), doc="max latitude") local = param.Boolean(False, doc="number ids for regional subset") formula = param.String(default='continuous') res = param.Number(None, bounds=(0, 5), doc="cell resolution in degrees") i_shift = 0 j_shift = 0 def __init__(self, cfg): _cfg = parse_config(cfg, section='refdata') try: self.lonmin, self.latmin, self.lonmax, self.latmax = _cfg['bbox'] except Exception as e: log.critical(str(e)) try: self.res = _cfg['res'] except Exception as e: log.critical("No <res> statement in refdata") exit(1) try: self.local = _cfg['local'] except Exception as e: log.debug("No <local> statement in refdata: using 'global'") try: formula = _cfg['formula'] formula = self._check_formula(formula) self.formula = formula except: log.debug("No <formula> statement in refdata: using 'continuous'") # we work with cell centers cell_half = self.res * 0.5 self.lons = np.arange(self.lonmin + cell_half, self.lonmax, self.res) self.lats = np.arange(self.latmin + cell_half, self.latmax, self.res) self.globlons = np.arange(-180 + cell_half, 180, self.res) self.globlats = np.arange(-90 + cell_half, 90, self.res) if not self.local: # compute shift of local bbox in respect to global domain m_lon = self._find_nearest(self.globlons, self.lons[0]) m_lat = self._find_nearest(self.globlats, self.lats[::-1][0]) self.i_shift = np.where(self.globlons == m_lon)[0] self.j_shift = np.where(self.globlats[::-1] == m_lat)[0] def _check_formula(formula_str): """ check norefdata formula given in conf file """ valid_chars = "xyij0123456789+*^" safe_method = [] formula_str = string.lower(string.replace(formula_str, '^', '**')) for c in formula_str: if c in valid_chars: formula_str_validated.append(c) return ''.join(formula_str_validated) def _compute_formula_cid(self, j, i): """ calculate cellid based on formula """ i += self.i_shift j += self.j_shift return eval(self.rd.formula, {'__builtins__': None}, {}) def _compute_continuous_cid(self, j, i): """ calculate continuous cellid """ if self.local: i_len = len(self.lons) else: i_len = len(self.globlons) return (j + self.j_shift) * i_len + (i + self.i_shift) def _find_nearest(self, array, value): """ locate closest value match """ idx = (np.abs(array - value)).argmin() return array.flat[idx] def build(self): """ actually populate cellid array """ cell_ids = np.empty((len(self.lats), len(self.lons)), np.int64) for j, lat in enumerate(self.lats): for i, lon in enumerate(self.lons): if self.formula != 'continuous': cid = self._compute_formula_cid(j, i) else: cid = self._compute_continuous_cid(j, i) cell_ids[j, i] = cid return (cell_ids, self.lats, self.lons) def create_refdata(cfg): """ produce refdata using info from cfg file :param: yaml cfg :return: cell_ids, lats, lons :rtype: tuple """ rdb = RefDataBuilder(cfg) cell_ids = rdb.build()
StarcoderdataPython
3224778
#!/usr/bin/env python # encoding: utf-8 """ @version: v1.0 @author: xag @license: Apache Licence @contact: <EMAIL> @site: http://www.xingag.top @software: PyCharm @file: views.py @time: 2018/7/23 21:20 @description:TODO """ import qiniu from flask import ( Blueprint, jsonify ) bp = Blueprint('common', __name__, url_prefix='/c') # 获取七牛云的uptoken【通过AK和SK】,并以json的格式返回 @bp.route('/uptoken/') def uptoken(): AccessKey = "<KEY>" SecretKey = "<KEY>" q = qiniu.Auth(AccessKey, SecretKey) # 参数:仓库名 bucket = "flask" token = q.upload_token(bucket) print(token) # 返回给前端JSON格式的数据【注意:键值必须是uptoken,否则使用七牛云的JS SDK就获取不成功了】 return jsonify({'uptoken': token})
StarcoderdataPython
3380831
import pytest from metrics_layer.core.model.project import AccessDeniedOrDoesNotExistException @pytest.mark.query def test_query_no_join_with_limit(connection): query = connection.get_sql_query(metrics=["total_item_revenue"], dimensions=["channel"], limit=499) correct = ( "SELECT order_lines.sales_channel as order_lines_channel," "SUM(order_lines.revenue) as order_lines_total_item_revenue " "FROM analytics.order_line_items order_lines GROUP BY order_lines.sales_channel " "ORDER BY order_lines_total_item_revenue DESC LIMIT 499;" ) assert query == correct @pytest.mark.query def test_alias_only_query(connection): metric = connection.get_metric(metric_name="total_item_revenue") query = metric.sql_query(query_type="SNOWFLAKE", alias_only=True) assert query == "SUM(order_lines_total_item_revenue)" @pytest.mark.query def test_alias_only_query_number(connection): metric = connection.get_metric(metric_name="line_item_aov") query = metric.sql_query(query_type="SNOWFLAKE", alias_only=True) assert query == "(SUM(order_lines_total_item_revenue)) / (COUNT(orders_number_of_orders))" @pytest.mark.query def test_alias_only_query_symmetric_average_distinct(connection): metric = connection.get_metric(metric_name="average_order_revenue") query = metric.sql_query(query_type="SNOWFLAKE", alias_only=True) correct = ( "(COALESCE(CAST((SUM(DISTINCT (CAST(FLOOR(COALESCE(order_lines_average_order_revenue, 0) " "* (1000000 * 1.0)) AS DECIMAL(38,0))) + (TO_NUMBER(MD5(order_lines_order_id), " "'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') % 1.0e27)::NUMERIC(38, 0)) " "- SUM(DISTINCT (TO_NUMBER(MD5(order_lines_order_id), 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') " "% 1.0e27)::NUMERIC(38, 0))) AS DOUBLE PRECISION) / CAST((1000000*1.0) AS " "DOUBLE PRECISION), 0) / NULLIF(COUNT(DISTINCT CASE WHEN (order_lines_average_order_revenue) " "IS NOT NULL THEN order_lines_order_id ELSE NULL END), 0))" ) assert query == correct @pytest.mark.query def test_query_no_join_average_distinct(connection): query = connection.get_sql_query(metrics=["average_order_revenue"], dimensions=["channel"]) correct = ( "SELECT order_lines.sales_channel as order_lines_channel,(COALESCE(CAST((SUM(DISTINCT " "(CAST(FLOOR(COALESCE(order_lines.order_total, 0) * (1000000 * 1.0)) AS DECIMAL(38,0))) " "+ (TO_NUMBER(MD5(order_lines.order_unique_id), 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') " "% 1.0e27)::NUMERIC(38, 0)) - SUM(DISTINCT (TO_NUMBER(MD5(order_lines.order_unique_id), " "'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') % 1.0e27)::NUMERIC(38, 0))) AS DOUBLE PRECISION) " "/ CAST((1000000*1.0) AS DOUBLE PRECISION), 0) / NULLIF(COUNT(DISTINCT CASE WHEN " "(order_lines.order_total) IS NOT NULL THEN order_lines.order_unique_id ELSE NULL END), 0)) " "as order_lines_average_order_revenue FROM analytics.order_line_items order_lines " "GROUP BY order_lines.sales_channel ORDER BY order_lines_average_order_revenue DESC;" ) assert query == correct @pytest.mark.query def test_query_single_join(connection): query = connection.get_sql_query(metrics=["total_item_revenue"], dimensions=["channel", "new_vs_repeat"]) correct = ( "SELECT order_lines.sales_channel as order_lines_channel," "orders.new_vs_repeat as orders_new_vs_repeat," "SUM(order_lines.revenue) as order_lines_total_item_revenue FROM " "analytics.order_line_items order_lines LEFT JOIN analytics.orders orders ON " "order_lines.order_unique_id=orders.id GROUP BY order_lines.sales_channel,orders.new_vs_repeat " "ORDER BY order_lines_total_item_revenue DESC;" ) assert query == correct @pytest.mark.query def test_query_single_dimension(connection): query = connection.get_sql_query(metrics=[], dimensions=["new_vs_repeat"]) correct = ( "SELECT orders.new_vs_repeat as orders_new_vs_repeat FROM " "analytics.order_line_items order_lines LEFT JOIN analytics.orders orders ON " "order_lines.order_unique_id=orders.id GROUP BY orders.new_vs_repeat " "ORDER BY orders_new_vs_repeat ASC;" ) assert query == correct @pytest.mark.query def test_query_single_dimension_with_comment(connection): query = connection.get_sql_query(metrics=["total_item_revenue"], dimensions=["parent_channel"]) correct = ( "SELECT CASE\n--- parent channel\nWHEN order_lines.sales_channel ilike '%social%' then " "'Social'\nELSE 'Not Social'\nEND as order_lines_parent_channel," "SUM(order_lines.revenue) as order_lines_total_item_revenue " "FROM analytics.order_line_items order_lines GROUP BY CASE\n--- parent channel\nWHEN " "order_lines.sales_channel ilike '%social%' then 'Social'\nELSE 'Not Social'\nEND " "ORDER BY order_lines_total_item_revenue DESC;" ) assert query == correct @pytest.mark.query def test_query_single_dimension_with_multi_filter(connection): query = connection.get_sql_query(metrics=["total_item_costs"], dimensions=["channel"]) correct = ( "SELECT order_lines.sales_channel as order_lines_channel,SUM(case when order_lines.product_name" "='Portable Charger' and order_lines.product_name IN ('Portable Charger','Dual Charger') " "and orders.revenue * 100>100 then order_lines.item_costs end) " "as order_lines_total_item_costs FROM analytics.order_line_items order_lines LEFT JOIN " "analytics.orders orders ON order_lines.order_unique_id=orders.id " "GROUP BY order_lines.sales_channel ORDER BY order_lines_total_item_costs DESC;" ) assert query == correct @pytest.mark.query def test_query_single_dimension_sa_duration(connection): query = connection.get_sql_query(metrics=["average_days_between_orders"], dimensions=["product_name"]) correct = ( "SELECT order_lines.product_name as order_lines_product_name,(COALESCE(CAST((SUM(DISTINCT " "(CAST(FLOOR(COALESCE(DATEDIFF('DAY', orders.previous_order_date, orders.order_date), 0) " "* (1000000 * 1.0)) AS DECIMAL(38,0))) + (TO_NUMBER(MD5(orders.id), " "'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') % 1.0e27)::NUMERIC(38, 0)) " "- SUM(DISTINCT (TO_NUMBER(MD5(orders.id), 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') " "% 1.0e27)::NUMERIC(38, 0))) AS DOUBLE PRECISION) / CAST((1000000*1.0) AS DOUBLE PRECISION), 0) " "/ NULLIF(COUNT(DISTINCT CASE WHEN (DATEDIFF('DAY', orders.previous_order_date, " "orders.order_date)) IS NOT NULL THEN orders.id " "ELSE NULL END), 0)) as orders_average_days_between_orders " "FROM analytics.order_line_items order_lines LEFT JOIN analytics.orders orders " "ON order_lines.order_unique_id=orders.id GROUP BY order_lines.product_name " "ORDER BY orders_average_days_between_orders DESC;" ) assert query == correct @pytest.mark.query def test_functional_pk_resolve_one_to_many(connection): query = connection.get_sql_query( metrics=["discount_usd"], dimensions=["country"], explore_name="discounts_only", ) correct = ( "SELECT discounts.country as discounts_country," "SUM(discount_detail.total_usd) as discount_detail_discount_usd " "FROM analytics_live.discounts discounts " "LEFT JOIN analytics.discount_detail discount_detail " "ON discounts.discount_id=discount_detail.discount_id " "GROUP BY discounts.country ORDER BY discount_detail_discount_usd DESC;" ) assert query == correct @pytest.mark.query def test_ensure_join_fields_are_respected(connection): with pytest.raises(AccessDeniedOrDoesNotExistException) as exc_info: connection.get_explore("order_lines_all") connection.get_sql_query( metrics=["discount_usd"], dimensions=["discount_promo_name"], explore_name="discounts_only", ) assert exc_info.value @pytest.mark.query def test_query_single_join_count(connection): query = connection.get_sql_query( metrics=["order_lines.count"], dimensions=["channel", "new_vs_repeat"], explore_name="order_lines_all", ) correct = ( "SELECT order_lines.sales_channel as order_lines_channel," "orders.new_vs_repeat as orders_new_vs_repeat," "COUNT(order_lines.order_line_id) as order_lines_count FROM " "analytics.order_line_items order_lines LEFT JOIN analytics.orders orders ON " "order_lines.order_unique_id=orders.id GROUP BY order_lines.sales_channel,orders.new_vs_repeat " "ORDER BY order_lines_count DESC;" ) assert query == correct @pytest.mark.query def test_query_single_join_metric_with_sub_field(connection): query = connection.get_sql_query( metrics=["line_item_aov"], dimensions=["channel"], ) correct = ( "SELECT order_lines.sales_channel as order_lines_channel,(SUM(order_lines.revenue)) " "/ (NULLIF(COUNT(DISTINCT CASE WHEN (orders.id) IS NOT NULL " "THEN orders.id ELSE NULL END), 0)) as order_lines_line_item_aov " "FROM analytics.order_line_items order_lines LEFT JOIN analytics.orders orders " "ON order_lines.order_unique_id=orders.id GROUP BY order_lines.sales_channel " "ORDER BY order_lines_line_item_aov DESC;" ) assert query == correct @pytest.mark.query def test_query_single_join_with_forced_additional_join(connection): query = connection.get_sql_query( metrics=["avg_rainfall"], dimensions=["discount_promo_name"], query_type="BIGQUERY", ) correct = ( "SELECT discount_detail.promo_name as discount_detail_discount_promo_name,(COALESCE(CAST((" "SUM(DISTINCT (CAST(FLOOR(COALESCE(country_detail.rain, 0) * (1000000 * 1.0)) AS FLOAT64))" " + CAST(FARM_FINGERPRINT(CAST(country_detail.country AS STRING)) AS BIGNUMERIC)) - SUM(DISTINCT " "CAST(FARM_FINGERPRINT(CAST(country_detail.country AS STRING)) AS BIGNUMERIC))) AS FLOAT64) " "/ CAST((1000000*1.0) AS FLOAT64), 0) / NULLIF(COUNT(DISTINCT CASE WHEN " "(country_detail.rain) IS NOT NULL THEN country_detail.country ELSE NULL END), " "0)) as country_detail_avg_rainfall FROM analytics.order_line_items order_lines " "LEFT JOIN analytics.orders orders ON order_lines.order_unique_id=orders.id " "LEFT JOIN analytics_live.discounts discounts ON orders.id=discounts.order_id " "LEFT JOIN analytics.discount_detail discount_detail " "ON discounts.discount_id=discount_detail.discount_id " "AND DATE_TRUNC(CAST(discounts.order_date as DATE), WEEK) is not null " "LEFT JOIN (SELECT * FROM ANALYTICS.COUNTRY_DETAIL) as country_detail " "ON discounts.country=country_detail.country and CAST(DATE_TRUNC(CAST(order_lines.order_date " "as DATE), DAY) AS TIMESTAMP) is not null GROUP BY discount_detail.promo_name;" ) assert query == correct @pytest.mark.query def test_query_single_join_select_args(connection): query = connection.get_sql_query( metrics=["total_item_revenue"], dimensions=["channel", "new_vs_repeat"], select_raw_sql=[ "CAST(new_vs_repeat = 'Repeat' AS INT) as group_1", "CAST(date_created > '2021-04-02' AS INT) as period", ], ) correct = ( "SELECT order_lines.sales_channel as order_lines_channel," "orders.new_vs_repeat as orders_new_vs_repeat," "SUM(order_lines.revenue) as order_lines_total_item_revenue," "CAST(new_vs_repeat = 'Repeat' AS INT) as group_1," "CAST(date_created > '2021-04-02' AS INT) as period FROM " "analytics.order_line_items order_lines LEFT JOIN analytics.orders orders ON " "order_lines.order_unique_id=orders.id GROUP BY order_lines.sales_channel,orders.new_vs_repeat," "CAST(new_vs_repeat = 'Repeat' AS INT),CAST(date_created > '2021-04-02' AS INT) " "ORDER BY order_lines_total_item_revenue DESC;" ) assert query == correct @pytest.mark.query def test_query_single_join_with_case_raw_sql(connection): query = connection.get_sql_query( metrics=["total_item_revenue"], dimensions=["is_on_sale_sql", "new_vs_repeat"], ) correct = ( "SELECT CASE WHEN order_lines.product_name ilike '%sale%' then TRUE else FALSE end " "as order_lines_is_on_sale_sql,orders.new_vs_repeat as orders_new_vs_repeat," "SUM(order_lines.revenue) as order_lines_total_item_revenue FROM " "analytics.order_line_items order_lines LEFT JOIN analytics.orders orders " "ON order_lines.order_unique_id=orders.id GROUP BY CASE WHEN order_lines.product_name " "ilike '%sale%' then TRUE else FALSE end,orders.new_vs_repeat " "ORDER BY order_lines_total_item_revenue DESC;" ) assert query == correct @pytest.mark.query def test_query_single_join_with_case(connection): query = connection.get_sql_query( metrics=["total_item_revenue"], dimensions=["is_on_sale_case", "new_vs_repeat"], ) correct = ( "SELECT case when order_lines.product_name ilike '%sale%' then 'On sale' else 'Not on sale' end " # noqa "as order_lines_is_on_sale_case,orders.new_vs_repeat as orders_new_vs_repeat," "SUM(order_lines.revenue) as order_lines_total_item_revenue FROM " "analytics.order_line_items order_lines LEFT JOIN analytics.orders orders " "ON order_lines.order_unique_id=orders.id GROUP BY case when order_lines.product_name " "ilike '%sale%' then 'On sale' else 'Not on sale' end,orders.new_vs_repeat " "ORDER BY order_lines_total_item_revenue DESC;" ) assert query == correct @pytest.mark.query def test_query_single_join_with_tier(connection): query = connection.get_sql_query( metrics=["total_item_revenue"], dimensions=["order_tier", "new_vs_repeat"], ) tier_case_query = "case when order_lines.revenue < 0 then 'Below 0' when order_lines.revenue >= 0 " tier_case_query += "and order_lines.revenue < 20 then '[0,20)' when order_lines.revenue >= 20 and " tier_case_query += "order_lines.revenue < 50 then '[20,50)' when order_lines.revenue >= 50 and " tier_case_query += "order_lines.revenue < 100 then '[50,100)' when order_lines.revenue >= 100 and " tier_case_query += "order_lines.revenue < 300 then '[100,300)' when order_lines.revenue >= 300 " tier_case_query += "then '[300,inf)' else 'Unknown' end" correct = ( f"SELECT {tier_case_query} as order_lines_order_tier,orders.new_vs_repeat as orders_new_vs_repeat," "SUM(order_lines.revenue) as order_lines_total_item_revenue FROM " "analytics.order_line_items order_lines LEFT JOIN analytics.orders orders " f"ON order_lines.order_unique_id=orders.id GROUP BY {tier_case_query},orders.new_vs_repeat " "ORDER BY order_lines_total_item_revenue DESC;" ) assert query == correct @pytest.mark.query def test_query_single_join_with_filter(connection): query = connection.get_sql_query( metrics=["number_of_email_purchased_items"], dimensions=["channel", "new_vs_repeat"], ) correct = ( "SELECT order_lines.sales_channel as order_lines_channel," "orders.new_vs_repeat as orders_new_vs_repeat," "COUNT(case when order_lines.sales_channel='Email' then order_lines.order_id end) " "as order_lines_number_of_email_purchased_items FROM analytics.order_line_items " "order_lines LEFT JOIN analytics.orders orders ON order_lines.order_unique_id=orders.id" " GROUP BY order_lines.sales_channel,orders.new_vs_repeat " "ORDER BY order_lines_number_of_email_purchased_items DESC;" ) assert query == correct @pytest.mark.query def test_query_multiple_join(connection): query = connection.get_sql_query( metrics=["total_item_revenue"], dimensions=["region", "new_vs_repeat"], ) correct = ( "SELECT customers.region as customers_region,orders.new_vs_repeat as orders_new_vs_repeat," "SUM(order_lines.revenue) as order_lines_total_item_revenue FROM " "analytics.order_line_items order_lines " "LEFT JOIN analytics.orders orders ON order_lines.order_unique_id=orders.id " "LEFT JOIN analytics.customers customers ON order_lines.customer_id=customers.customer_id " "GROUP BY customers.region,orders.new_vs_repeat ORDER BY order_lines_total_item_revenue DESC;" ) assert query == correct @pytest.mark.query def test_query_multiple_join_with_duration(connection): query = connection.get_sql_query( metrics=["total_sessions"], dimensions=["months_between_orders"], ) correct = ( "SELECT DATEDIFF('MONTH', orders.previous_order_date, orders.order_date) as orders_months_between_orders," # noqa "COALESCE(CAST((SUM(DISTINCT (CAST(FLOOR(COALESCE(case when customers.is_churned=false then " "customers.total_sessions end, 0) * (1000000 * 1.0)) AS DECIMAL(38,0))) " "+ (TO_NUMBER(MD5(case when customers.is_churned=false then customers.customer_id end), 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') % 1.0e27)::NUMERIC(38, 0)) " # noqa "- SUM(DISTINCT (TO_NUMBER(MD5(case when customers.is_churned=false then customers.customer_id end), 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') " # noqa "% 1.0e27)::NUMERIC(38, 0))) AS DOUBLE PRECISION) / CAST((1000000*1.0) AS DOUBLE PRECISION), 0) " "as customers_total_sessions " "FROM analytics.order_line_items order_lines " "LEFT JOIN analytics.orders orders ON order_lines.order_unique_id=orders.id " "LEFT JOIN analytics.customers customers ON order_lines.customer_id=customers.customer_id " "GROUP BY DATEDIFF('MONTH', orders.previous_order_date, orders.order_date) " "ORDER BY customers_total_sessions DESC;" ) assert query == correct @pytest.mark.query def test_query_multiple_join_where_dict(connection): query = connection.get_sql_query( metrics=["total_item_revenue"], dimensions=["region", "new_vs_repeat"], where=[{"field": "region", "expression": "not_equal_to", "value": "West"}], ) correct = ( "SELECT customers.region as customers_region,orders.new_vs_repeat as orders_new_vs_repeat," "SUM(order_lines.revenue) as order_lines_total_item_revenue FROM " "analytics.order_line_items order_lines " "LEFT JOIN analytics.orders orders ON order_lines.order_unique_id=orders.id " "LEFT JOIN analytics.customers customers ON order_lines.customer_id=customers.customer_id " "WHERE customers.region<>'West' " "GROUP BY customers.region,orders.new_vs_repeat ORDER BY order_lines_total_item_revenue DESC;" ) assert query == correct @pytest.mark.query def test_query_multiple_join_where_literal(connection): query = connection.get_sql_query( metrics=["total_item_revenue"], dimensions=["region", "new_vs_repeat"], where="first_order_week > '2021-07-12'", ) correct = ( "SELECT customers.region as customers_region,orders.new_vs_repeat as orders_new_vs_repeat," "SUM(order_lines.revenue) as order_lines_total_item_revenue FROM " "analytics.order_line_items order_lines " "LEFT JOIN analytics.orders orders ON order_lines.order_unique_id=orders.id " "LEFT JOIN analytics.customers customers ON order_lines.customer_id=customers.customer_id " "WHERE DATE_TRUNC('WEEK', CAST(customers.first_order_date as DATE)) > '2021-07-12' " "GROUP BY customers.region,orders.new_vs_repeat ORDER BY order_lines_total_item_revenue DESC;" ) assert query == correct @pytest.mark.query def test_query_multiple_join_having_dict(connection): query = connection.get_sql_query( metrics=["total_item_revenue"], dimensions=["region", "new_vs_repeat"], having=[{"field": "total_item_revenue", "expression": "greater_than", "value": -12}], ) correct = ( "SELECT customers.region as customers_region,orders.new_vs_repeat as orders_new_vs_repeat," "SUM(order_lines.revenue) as order_lines_total_item_revenue FROM " "analytics.order_line_items order_lines " "LEFT JOIN analytics.orders orders ON order_lines.order_unique_id=orders.id " "LEFT JOIN analytics.customers customers ON order_lines.customer_id=customers.customer_id " "GROUP BY customers.region,orders.new_vs_repeat HAVING SUM(order_lines.revenue)>-12 " "ORDER BY order_lines_total_item_revenue DESC;" ) assert query == correct @pytest.mark.query def test_query_multiple_join_having_literal(connection): query = connection.get_sql_query( metrics=["total_item_revenue"], dimensions=["region", "new_vs_repeat"], having="total_item_revenue > -12", ) correct = ( "SELECT customers.region as customers_region,orders.new_vs_repeat as orders_new_vs_repeat," "SUM(order_lines.revenue) as order_lines_total_item_revenue FROM " "analytics.order_line_items order_lines " "LEFT JOIN analytics.orders orders ON order_lines.order_unique_id=orders.id " "LEFT JOIN analytics.customers customers ON order_lines.customer_id=customers.customer_id " "GROUP BY customers.region,orders.new_vs_repeat HAVING (SUM(order_lines.revenue)) > -12 " "ORDER BY order_lines_total_item_revenue DESC;" ) assert query == correct @pytest.mark.query def test_query_multiple_join_order_by_literal(connection): query = connection.get_sql_query( metrics=["total_item_revenue"], dimensions=["region", "new_vs_repeat"], order_by="total_item_revenue", ) correct = ( "SELECT customers.region as customers_region,orders.new_vs_repeat as orders_new_vs_repeat," "SUM(order_lines.revenue) as order_lines_total_item_revenue FROM " "analytics.order_line_items order_lines " "LEFT JOIN analytics.orders orders ON order_lines.order_unique_id=orders.id " "LEFT JOIN analytics.customers customers ON order_lines.customer_id=customers.customer_id " "GROUP BY customers.region,orders.new_vs_repeat ORDER BY total_item_revenue ASC;" ) assert query == correct @pytest.mark.query def test_query_multiple_join_all(connection): query = connection.get_sql_query( metrics=["total_item_revenue"], dimensions=["region", "new_vs_repeat"], where=[{"field": "region", "expression": "not_equal_to", "value": "West"}], having=[{"field": "total_item_revenue", "expression": "greater_than", "value": -12}], order_by=[{"field": "total_item_revenue", "sort": "asc"}], ) correct = ( "SELECT customers.region as customers_region,orders.new_vs_repeat as orders_new_vs_repeat," "SUM(order_lines.revenue) as order_lines_total_item_revenue FROM " "analytics.order_line_items order_lines " "LEFT JOIN analytics.orders orders ON order_lines.order_unique_id=orders.id " "LEFT JOIN analytics.customers customers ON order_lines.customer_id=customers.customer_id " "WHERE customers.region<>'West' " "GROUP BY customers.region,orders.new_vs_repeat HAVING SUM(order_lines.revenue)>-12 " "ORDER BY total_item_revenue ASC;" ) assert query == correct @pytest.mark.query def test_query_single_join_count_and_filter(connection): query = connection.get_sql_query( metrics=["new_order_count"], dimensions=["channel"], ) correct = ( "SELECT order_lines.sales_channel as order_lines_channel,COUNT(DISTINCT(" "case when orders.new_vs_repeat='New' then orders.id end)) " "as orders_new_order_count FROM analytics.order_line_items order_lines " "LEFT JOIN analytics.orders orders ON order_lines.order_unique_id=orders.id " "GROUP BY order_lines.sales_channel ORDER BY orders_new_order_count DESC;" ) assert query == correct @pytest.mark.query def test_query_number_measure_w_dimension_reference(connection): query = connection.get_sql_query( metrics=["ending_on_hand_qty"], dimensions=["product_name"], ) correct = ( "SELECT order_lines.product_name as order_lines_product_name," "split_part(listagg((order_lines.inventory_qty), ',') within group " "(order by (DATE_TRUNC('DAY', order_lines.order_date)) desc), ',', 0)::int " "as order_lines_ending_on_hand_qty " "FROM analytics.order_line_items order_lines GROUP BY order_lines.product_name " "ORDER BY order_lines_ending_on_hand_qty DESC;" ) assert query == correct @pytest.mark.query @pytest.mark.parametrize("bool_value", ["True", "False"]) def test_query_bool_and_date_filter(connection, bool_value): query = connection.get_sql_query( metrics=["total_item_revenue"], dimensions=["channel"], where=[ {"field": "is_churned", "expression": "equal_to", "value": bool_value}, {"field": "order_lines.order_date", "expression": "greater_than", "value": "2022-04-03"}, ], ) if bool_value == "True": negation = "" else: negation = "NOT " correct = ( "SELECT order_lines.sales_channel as order_lines_channel,SUM(order_lines.revenue) " "as order_lines_total_item_revenue FROM analytics.order_line_items order_lines " "LEFT JOIN analytics.customers customers ON order_lines.customer_id=customers.customer_id " f"WHERE {negation}customers.is_churned AND DATE_TRUNC('DAY', order_lines.order_date)>'2022-04-03' " "GROUP BY order_lines.sales_channel ORDER BY order_lines_total_item_revenue DESC;" ) assert query == correct @pytest.mark.query def test_cross_join(connection): query = connection.get_sql_query( metrics=["sessions.number_of_sessions"], explore_name="discounts_only", ) correct = ( "SELECT NULLIF(COUNT(DISTINCT CASE WHEN (sessions.id) IS NOT NULL THEN " " sessions.id ELSE NULL END), 0) as sessions_number_of_sessions " "FROM analytics_live.discounts discounts CROSS JOIN analytics.sessions sessions " "ORDER BY sessions_number_of_sessions DESC;" ) assert query == correct
StarcoderdataPython
4820307
<reponame>sanger-tol/weskit-api # Copyright (c) 2021. Berlin Institute of Health (BIH) and Deutsches Krebsforschungszentrum (DKFZ). # # Distributed under the MIT License. Full text at # # https://gitlab.com/one-touch-pipeline/weskit/api/-/blob/master/LICENSE # # Authors: The WESkit Team import uuid import pytest from pymongo import MongoClient from weskit.classes.Run import Run from weskit.classes.RunStatus import RunStatus mock_run_data = { "run_id": str(uuid.uuid4()), "run_status": "INITIALIZING", "request_time": None, "user_id": "test_id", "request": { "workflow_url": "", "workflow_params": '{"text":"hello_world"}' }, } @pytest.mark.integration def test_create_and_load_run(database_container): new_run = Run(mock_run_data) new_run.status = RunStatus.RUNNING client = MongoClient(database_container.get_connection_url()) db = client["WES"] collection = db["test_runs"] collection.insert_one(dict(new_run)) data = collection.find() for x in data: load_run = Run(x) if load_run.id == new_run.id: assert dict(load_run) == dict(new_run) def test_create_run_fails(): with pytest.raises(Exception): Run({})
StarcoderdataPython
1757992
<reponame>Julio-Yanes/NiMARE import os import pathlib import click from nilearn.image import resample_to_img from nilearn.masking import apply_mask from ..base import MetaResult from ..meta.ibma import rfx_glm from ..meta.cbma import Peaks2MapsKernel from ..io import convert_sleuth_to_dataset n_iters_default = 10000 @click.command(name='peaks2maps', short_help='Permutation-based meta-analysis of coordinates ' 'that uses deep learning to reconstruct the original ' 'maps.', help='Method for performing coordinate-based meta-analysis that ' 'uses a pretrained deep neural network to reconstruct ' 'unthresholded maps from peak coordinates. The reconstructed ' 'maps are evaluated for statistical significance using a ' 'permutation-based approach with Family Wise Error multiple ' 'comparison correction.') @click.argument('sleuth_file', type=click.Path(exists=True)) @click.option('--output_dir', help="Where to put the output maps.") @click.option('--output_prefix', help="Common prefix for output maps.") @click.option('--n_iters', default=n_iters_default, show_default=True, help="Number of iterations for permutation testing.") def peaks2maps_workflow(sleuth_file, output_dir=None, output_prefix=None, n_iters=n_iters_default): click.echo("Loading coordinates...") dset = convert_sleuth_to_dataset(sleuth_file) click.echo("Reconstructing unthresholded maps...") k = Peaks2MapsKernel(resample_to_mask=False) imgs = k.transform(dset, masked=False) mask_img = resample_to_img(dset.mask, imgs[0], interpolation='nearest') z_data = apply_mask(imgs, mask_img) click.echo("Estimating the null distribution...") res = rfx_glm(z_data, null='empirical', n_iters=n_iters) res = MetaResult('rfx_glm', maps=res, mask=mask_img) if output_dir is None: output_dir = os.path.dirname(os.path.abspath(sleuth_file)) else: pathlib.Path(output_dir).mkdir(parents=True, exist_ok=True) if output_prefix is None: base = os.path.basename(sleuth_file) output_prefix, _ = os.path.splitext(base) output_prefix += '_' click.echo("Saving output maps...") res.save_maps(output_dir=output_dir, prefix=output_prefix)
StarcoderdataPython
1707155
from .modeconvo import ModeConvo class ModeTalkWin3(ModeConvo): pass
StarcoderdataPython
38054
<reponame>kevin-ci/advent-of-code-2020<gh_stars>0 import re input = """iyr:2010 ecl:gry hgt:181cm pid:591597745 byr:1920 hcl:#6b5442 eyr:2029 cid:123 cid:223 byr:1927 hgt:177cm hcl:#602927 iyr:2016 pid:404183620 ecl:amb eyr:2020 byr:1998 ecl:hzl cid:178 hcl:#a97842 iyr:2014 hgt:166cm pid:594143498 eyr:2030 ecl:hzl pid:795349208 iyr:2018 eyr:2024 hcl:#de745c hgt:157cm hgt:159cm pid:364060467 eyr:2025 byr:1978 iyr:2018 cid:117 ecl:hzl hcl:#18171d hcl:#cfa07d ecl:amb iyr:2012 hgt:182cm cid:338 eyr:2020 pid:374679609 byr:1925 eyr:2021 byr:1981 hcl:#623a2f cid:195 iyr:2010 pid:579769934 ecl:grn hgt:192cm byr:1970 ecl:oth eyr:2025 pid:409994798 iyr:2018 hgt:189cm hgt:153cm pid:817651329 iyr:2019 eyr:2029 hcl:#623a2f byr:1920 ecl:gry iyr:2011 ecl:amb hcl:#a97842 byr:1965 pid:648375525 eyr:2028 hgt:177cm cid:287 iyr:2012 pid:369979235 hcl:#c0946f ecl:amb hgt:178cm byr:1927 ecl:brn hgt:178cm eyr:2026 hcl:#efcc98 iyr:2011 pid:770851101 eyr:2028 ecl:oth cid:298 byr:1943 hgt:168cm iyr:2018 hcl:#ceb3a1 pid:116783406 eyr:2027 hgt:175cm hcl:#733820 ecl:gry cid:349 iyr:2017 byr:1960 pid:257797292 cid:66 ecl:amb eyr:2030 iyr:2026 byr:2024 hcl:a22966 hgt:179cm pid:155cm eyr:2023 hcl:#c0946f pid:081232570 ecl:hzl iyr:2010 hgt:158cm byr:1969 byr:1958 ecl:grn hcl:#ceb3a1 hgt:173cm pid:600039004 cid:107 iyr:2012 eyr:2027 ecl:amb pid:021066381 hcl:#ceb3a1 byr:1982 iyr:2017 hgt:167cm eyr:2025 cid:61 hcl:#341e13 cid:268 pid:358390884 hgt:188cm byr:1961 iyr:2014 eyr:2027 ecl:blu ecl:brn eyr:2020 pid:607203641 hcl:#fffffd iyr:2011 byr:1962 hgt:156cm iyr:2018 hcl:#b6652a byr:1942 ecl:blu eyr:2029 hgt:154cm pid:649263319 ecl:oth hgt:73in iyr:2012 hcl:#888785 eyr:2020 pid:147939289 byr:1961 ecl:oth iyr:2015 hgt:189cm hcl:#341e13 pid:686943691 eyr:2023 byr:1987 pid:568844323 eyr:2023 byr:1921 hgt:167cm cid:154 hcl:#b6652a ecl:gry iyr:2020 eyr:2023 byr:1994 iyr:1937 hgt:177cm hcl:#c0946f pid:686240814 cid:231 ecl:#a8ba32 hcl:#b6652a byr:1946 pid:543383899 iyr:2013 hgt:153cm ecl:hzl cid:238 eyr:2023 eyr:2028 ecl:blu hgt:154cm cid:252 pid:196374590 byr:1987 iyr:2011 hcl:#7d3b0c iyr:2013 ecl:amb cid:187 hgt:187cm pid:593027548 byr:1963 eyr:2024 hcl:#fffffd pid:588211492 hgt:156cm iyr:2021 eyr:2021 ecl:gry hcl:z byr:1928 ecl:amb hcl:#888785 hgt:180cm eyr:2022 byr:1923 pid:490291639 cid:173 iyr:2015 iyr:2014 cid:211 pid:404157420 hcl:#602927 ecl:oth byr:1946 eyr:2030 hgt:175cm hcl:z byr:2026 pid:61805448 hgt:125 iyr:2025 eyr:2028 hgt:156cm hcl:#341e13 cid:103 ecl:amb iyr:2017 byr:1937 pid:320691739 hgt:185cm pid:440489464 byr:1929 ecl:amb iyr:2011 eyr:2021 cid:327 hcl:#341e13 byr:1988 ecl:grn pid:062728732 iyr:2013 hgt:181cm hcl:#18171d eyr:2026 pid:000647617 eyr:2029 byr:1937 ecl:gry hcl:#e8eff3 hgt:164cm cid:151 iyr:2016 hgt:179cm byr:1949 eyr:2029 pid:459190453 ecl:grn iyr:2020 hcl:#c0946f hgt:160cm pid:476613532 cid:190 iyr:2016 hcl:#4657e5 byr:1929 eyr:2028 ecl:grn eyr:2027 byr:1982 hcl:#18171d pid:630408328 cid:65 iyr:2020 hgt:161cm pid:752776254 hcl:#888785 hgt:189cm eyr:2027 iyr:2020 ecl:hzl cid:194 byr:1934 iyr:2015 hgt:167cm byr:1977 eyr:2021 hcl:#14564f pid:504471386 ecl:oth hgt:84 pid:168cm hcl:8532fb eyr:2023 iyr:2012 ecl:xry byr:2008 cid:288 cid:323 eyr:2024 iyr:2019 pid:495737304 byr:1966 hcl:#7d3b0c ecl:hzl hgt:73in iyr:2020 byr:1953 ecl:hzl hcl:#efcc98 hgt:174cm eyr:2026 pid:546906638 pid:839249028 hcl:z byr:2024 hgt:145 eyr:2034 iyr:2021 ecl:#891c47 eyr:2036 ecl:#89d2ae cid:183 byr:2014 hcl:b3af0f pid:12086913 iyr:1981 hgt:61cm ecl:brn eyr:2030 pid:083487445 byr:1929 hcl:z iyr:2021 hgt:182 cid:318 eyr:2020 pid:188609216 hcl:#341e13 iyr:2012 hgt:179cm eyr:2029 hcl:#888785 pid:704026565 hgt:173cm iyr:2020 ecl:blu byr:1950 cid:237 ecl:grn eyr:2030 byr:1961 pid:695808266 iyr:2012 cid:56 hgt:155cm iyr:2011 ecl:amb byr:1986 pid:243061330 hgt:163cm eyr:2021 eyr:2030 hcl:#623a2f hgt:170cm ecl:hzl pid:694575319 iyr:2011 byr:1939 iyr:2014 pid:184152121 hcl:#c0946f hgt:163cm eyr:2028 byr:1992 cid:114 ecl:hzl hgt:75in cid:233 hcl:#866857 pid:269157261 iyr:2020 byr:1973 eyr:2029 hgt:174cm hcl:#f86751 iyr:2016 pid:904779190 ecl:brn eyr:2024 byr:1950 cid:123 iyr:2019 eyr:2030 pid:402585706 ecl:brn byr:1995 hcl:#4ff7fa hgt:65in ecl:grn eyr:2029 pid:083364259 iyr:2013 cid:50 byr:1938 hgt:187cm hcl:#a97842 hcl:#6b5442 cid:101 iyr:2011 ecl:amb eyr:2029 byr:1963 pid:664573740 eyr:2025 hcl:#602927 hgt:188cm iyr:2019 pid:521514539 byr:1940 ecl:gry hcl:dc0449 eyr:1981 pid:188cm cid:151 iyr:1979 hgt:61cm ecl:dne byr:2028 iyr:2017 byr:1924 hgt:163cm eyr:2024 hcl:#ceb3a1 pid:424127124 ecl:amb eyr:2039 pid:7837217107 hcl:z byr:2005 iyr:1989 ecl:#d95f4d hgt:190in ecl:#329eb1 cid:178 hgt:192 eyr:2020 iyr:2012 hcl:#602927 byr:2028 pid:7175349420 ecl:gry byr:1931 hgt:162cm iyr:2014 eyr:2030 cid:50 hcl:#cfa07d pid:653585396 eyr:2025 hgt:177cm ecl:gry hcl:#efcc98 iyr:2015 byr:1942 pid:388475446 hcl:#efcc98 ecl:grn hgt:185cm byr:1921 pid:253592171 eyr:2031 cid:220 iyr:2024 byr:1950 hgt:158cm ecl:gry iyr:2015 hcl:#18171d eyr:2023 pid:151cm byr:1957 hcl:z eyr:2026 ecl:grn iyr:1971 hgt:192in pid:5479810865 hgt:161cm pid:473851111 iyr:2018 ecl:brn byr:1982 eyr:2029 pid:136216608 byr:1958 cid:226 eyr:2023 hcl:#866857 iyr:2017 ecl:hzl hgt:159cm byr:1993 hcl:#866857 hgt:169cm pid:488392920 cid:109 iyr:2017 ecl:oth eyr:2029 cid:248 ecl:amb eyr:2025 iyr:2017 byr:1951 hcl:#ceb3a1 pid:731763175 hgt:162cm hcl:#835e79 eyr:2021 ecl:oth pid:617055193 byr:1997 iyr:2010 hgt:173cm eyr:2024 pid:257895944 hcl:#ceb3a1 hgt:165cm ecl:oth iyr:2020 byr:1958 pid:438580092 ecl:grt byr:2025 hcl:z iyr:2000 eyr:1952 cid:271 hgt:170in iyr:2010 hcl:#6b5442 hgt:156cm eyr:2026 ecl:grn pid:409793041 byr:1941 pid:076486440 hgt:177cm hcl:#888785 ecl:blu iyr:2017 eyr:2029 eyr:2028 ecl:amb hgt:186cm hcl:#1d5836 pid:563307670 iyr:2019 byr:1950 byr:1939 ecl:hzl hgt:193cm pid:329759796 hcl:#cfa07d eyr:2025 iyr:2011 cid:73 byr:1995 hgt:188cm eyr:2028 ecl:blu iyr:2016 hcl:#888785 pid:459613739 cid:115 hcl:#623a2f eyr:2021 cid:197 hgt:187cm ecl:oth byr:1969 iyr:2010 pid:385660251 hgt:192cm cid:143 byr:1995 hcl:#fffffd iyr:2017 ecl:oth eyr:2020 pid:087661720 ecl:oth byr:1994 hgt:183cm eyr:2020 iyr:2020 pid:448389966 cid:92 hcl:#866857 pid:088166852 hgt:155cm cid:307 byr:1940 hcl:#7d3b0c ecl:#af542f eyr:2023 iyr:2014 byr:2026 eyr:2039 hcl:5449b3 ecl:hzl hgt:176in iyr:1962 pid:177cm iyr:2020 ecl:amb hgt:164cm hcl:#c0946f pid:931543453 eyr:2024 byr:2001 iyr:2010 eyr:2023 hgt:188cm hcl:#866857 ecl:hzl pid:866631112 byr:1997 byr:1958 hgt:184cm cid:117 hcl:#7d3b0c iyr:2019 pid:615734013 eyr:2028 ecl:gry hgt:86 iyr:1935 ecl:grt pid:#af8e67 eyr:2031 byr:2018 hcl:6a2940 hgt:73in eyr:2022 pid:580461358 byr:1962 cid:129 iyr:2015 hcl:#7d3b0c iyr:2019 hcl:#b6652a hgt:172cm ecl:blu pid:077121198 eyr:2021 byr:1995 hcl:#ceb3a1 cid:253 iyr:2015 hgt:177cm byr:1973 ecl:hzl pid:311289324 eyr:2025 iyr:2017 hcl:#efcc98 cid:57 byr:1940 ecl:blu eyr:2025 hgt:157cm pid:827480048 eyr:2028 hgt:189cm iyr:2016 byr:1978 ecl:hzl pid:127497651 cid:87 hcl:#623a2f hcl:#341e13 byr:2015 ecl:brn hgt:187in pid:82075551 eyr:1936 cid:200 iyr:1939 ecl:grn byr:1962 iyr:2011 hgt:169cm pid:661559147 hcl:#623a2f eyr:2023 ecl:gry hcl:#efcc98 eyr:2009 byr:2028 hgt:170in cid:129 pid:161cm iyr:2018 pid:098090405 hcl:#623a2f byr:1943 ecl:hzl hgt:152cm iyr:2013 eyr:2029 pid:495271053 iyr:2011 ecl:gry hcl:#623a2f cid:285 byr:1925 eyr:2024 hgt:187cm cid:306 hgt:73in iyr:2010 hcl:#448fd7 byr:1946 ecl:grn pid:137146932 eyr:2021 eyr:2020 hgt:159cm cid:90 iyr:2010 ecl:brn hcl:#341e13 byr:1955 hcl:#18171d iyr:2017 ecl:amb pid:168517472 eyr:2021 hgt:181cm byr:1942 cid:325 eyr:2022 pid:947158470 byr:1994 iyr:2019 ecl:grn hgt:172cm hcl:#ec63ce iyr:2011 pid:243339529 ecl:amb hgt:169cm byr:1967 eyr:2025 hcl:#b6652a pid:664966826 eyr:2036 iyr:2015 byr:1972 hgt:68in hcl:z ecl:#038105 eyr:2021 pid:236054221 hgt:179cm hcl:#b6652a iyr:2020 ecl:blu ecl:grn iyr:2010 pid:870519416 byr:1945 hcl:#a97842 hgt:176cm eyr:2030 hcl:#3318db eyr:2022 byr:1966 ecl:grn iyr:2013 cid:349 hgt:168cm pid:827688488 pid:124116963 hcl:#866857 eyr:2026 iyr:2013 ecl:grn byr:1983 hgt:183cm iyr:2017 byr:1993 hcl:#18171d ecl:utc hgt:68in cid:168 eyr:2030 pid:#2fd9f2 ecl:blu cid:134 eyr:2025 pid:588957573 iyr:2017 hgt:151cm byr:1942 hcl:#4280c1 hcl:#51b593 iyr:2013 ecl:amb pid:668244584 cid:282 byr:1936 eyr:1985 hgt:161cm pid:494051052 hgt:185cm byr:1996 eyr:2028 iyr:2018 ecl:amb hcl:#efcc98 ecl:brn eyr:2025 iyr:2011 hgt:163cm hcl:#a97842 byr:1989 pid:557549000 pid:828235468 cid:55 iyr:2010 byr:1926 eyr:2029 hgt:153cm hcl:#cfa07d ecl:blu hgt:158cm iyr:2015 pid:957913612 ecl:grn eyr:2020 byr:1984 cid:76 hcl:#6b5442 ecl:amb eyr:2020 pid:596116320 byr:1936 hcl:#cfa07d hgt:165cm cid:86 iyr:2014 iyr:2012 cid:278 hcl:#602927 eyr:2020 ecl:hzl hgt:176cm byr:1987 pid:594817909 iyr:2011 byr:1929 pid:073211525 eyr:2022 hgt:188cm ecl:blu hcl:#733820 hcl:#602927 hgt:187cm pid:706155322 cid:203 ecl:brn byr:1952 iyr:2017 eyr:2020 hcl:bcb5f7 byr:2002 eyr:2029 pid:850069752 iyr:2019 ecl:hzl hgt:167cm hcl:#b6652a hgt:72in iyr:2013 ecl:grn eyr:2024 byr:1920 cid:114 pid:983486664 byr:1931 iyr:2020 pid:182737852 hgt:162cm ecl:grn hcl:#888785 eyr:2028 eyr:2035 byr:1962 iyr:2012 cid:120 ecl:xry hgt:61cm hcl:ce89a8 pid:335540582 pid:#05153d iyr:1990 eyr:1927 hgt:71cm byr:2019 cid:346 ecl:#e38688 hcl:c6abd9 ecl:#cd58d8 pid:166cm iyr:2012 hcl:0d1b02 hgt:68 eyr:1958 pid:976419172 byr:1922 cid:345 hcl:#6b5442 iyr:2010 eyr:2026 ecl:grn hgt:155cm ecl:gry hcl:#1bbadc hgt:168cm eyr:2028 byr:1984 cid:179 iyr:2013 pid:706186218 ecl:blu hgt:188cm pid:764775319 byr:1936 hcl:#7d3b0c iyr:2020 hcl:#623a2f iyr:2012 pid:382832140 ecl:gry eyr:2026 cid:350 hgt:165cm byr:1968 hcl:0b87a1 byr:2020 pid:4365879329 cid:110 ecl:grn eyr:2032 hgt:155cm iyr:2018 hgt:193cm eyr:2029 hcl:#733820 pid:081071142 byr:1929 ecl:oth ecl:brn eyr:2023 pid:876924536 cid:165 hcl:#efcc98 hgt:151cm byr:1972 iyr:2020 hgt:186cm eyr:2022 ecl:grn byr:1972 pid:997639611 hcl:#ceb3a1 iyr:2013 byr:1926 pid:808460262 iyr:2012 eyr:2031 hcl:#a97842 ecl:amb hgt:190cm hgt:163cm hcl:#ceb3a1 eyr:2028 ecl:grn byr:1944 pid:381144425 iyr:2012 hcl:#95a232 pid:015229624 byr:1947 iyr:2013 hgt:66cm ecl:gry eyr:2027 hcl:z byr:1965 iyr:2013 hgt:157cm ecl:#8b12fb cid:246 pid:283039791 eyr:2023 ecl:gry byr:1950 hcl:#623a2f cid:276 iyr:2013 eyr:2030 pid:798610943 hgt:189in eyr:2030 cid:52 hcl:#fffffd pid:041625574 ecl:amb iyr:2016 byr:1944 hgt:191cm byr:1995 iyr:2015 cid:221 pid:279080024 eyr:2022 hgt:181cm ecl:brn hcl:#888785 hcl:z ecl:blu iyr:1970 eyr:2022 hgt:193cm pid:#540e31 cid:95 byr:1952 hcl:z eyr:2024 ecl:hzl byr:2028 cid:323 pid:1949331457 hgt:69 eyr:2030 hcl:#866857 cid:173 iyr:2017 hgt:190cm byr:1941 ecl:blu pid:269015932 hcl:#b6652a iyr:2018 eyr:2022 ecl:brn hgt:185cm pid:456195468 hcl:#6b5442 hgt:188cm iyr:2019 byr:1966 cid:298 pid:050653473 ecl:gry eyr:2028 cid:208 ecl:amb eyr:2023 hgt:176cm byr:1971 hcl:#7d3b0c pid:650190272 iyr:2018 hgt:68in pid:615309584 iyr:2011 byr:1950 hcl:#efcc98 ecl:oth eyr:2024 eyr:2022 iyr:2011 hcl:#623a2f ecl:amb byr:1955 hgt:190cm pid:244918527 iyr:2013 hcl:#ceb3a1 eyr:2029 hgt:164cm ecl:oth byr:1928 pid:337615663 hcl:#ceb3a1 pid:#ae7eea byr:2027 cid:254 hgt:125 iyr:1940 ecl:zzz pid:033663619 iyr:2012 byr:1989 eyr:2030 ecl:hzl hcl:#b6652a hgt:154cm hgt:175cm byr:1929 pid:100788192 ecl:#92b14c iyr:1940 hcl:#ceb3a1 eyr:2033 eyr:2029 pid:357835141 ecl:oth iyr:2019 hcl:#866857 hgt:154cm byr:1954 pid:895992818 byr:1965 iyr:2017 hcl:#efcc98 ecl:amb hgt:153cm eyr:2025 byr:1928 ecl:amb hgt:168cm pid:346938111 eyr:2025 iyr:2014 hcl:#cfa07d hcl:#b6652a pid:825661608 eyr:2020 iyr:2019 byr:1974 hgt:180cm ecl:amb byr:1970 hgt:159cm hcl:#733820 pid:101838832 iyr:2015 eyr:2027 ecl:blu byr:1941 ecl:amb eyr:2024 pid:015890498 hgt:175cm iyr:2018 hcl:#cfa07d hgt:67in pid:404983369 eyr:2023 iyr:2018 byr:1974 hcl:#602927 ecl:blu byr:1957 hcl:#fcc940 pid:615831236 iyr:2018 eyr:2020 ecl:brn hgt:181cm cid:218 hcl:#fffffd ecl:grn pid:271614109 eyr:2028 hgt:184cm byr:1974 iyr:2015 ecl:#e45ee0 pid:151cm cid:127 iyr:2014 byr:2022 hcl:973bc1 eyr:2033 hgt:181in hcl:#6b5442 pid:502739402 eyr:2020 byr:1926 ecl:brn iyr:2010 ecl:xry hgt:169cm byr:2023 iyr:1973 pid:4137668 eyr:2037 hcl:z ecl:#3a8c46 hcl:43730a pid:57210146 eyr:2031 cid:117 iyr:2013 byr:2010 hcl:#341e13 cid:237 hgt:150cm iyr:2016 byr:1967 ecl:blu pid:674080319 eyr:2024 iyr:2011 hcl:#866857 pid:111247018 byr:1920 hgt:192in ecl:#8bf268 eyr:2021 iyr:2022 hcl:z ecl:gry hgt:159cm pid:#88e8df byr:2026 eyr:2032 cid:221 hgt:156cm eyr:2026 ecl:blu hcl:#192dea cid:280 pid:788808021 byr:1980 iyr:2013 hgt:156in byr:2024 hcl:4e4dd6 eyr:2030 iyr:2028 pid:35683378 ecl:#3a9fba pid:081236370 cid:150 hcl:d15b43 byr:2029 hgt:118 iyr:2026 eyr:2038 ecl:grt eyr:2034 pid:186cm ecl:utc cid:300 iyr:2009 byr:2018 hcl:163913 hgt:74cm ecl:hzl pid:249858519 byr:1936 hgt:182cm cid:343 iyr:2013 eyr:2030 hcl:#7d3b0c cid:168 ecl:hzl hgt:174cm iyr:2020 pid:446135799 hcl:#888785 eyr:2024 byr:1998 pid:545342162 hcl:#5cd3bd cid:126 eyr:2024 iyr:2012 ecl:grn pid:104835585 byr:1989 hcl:#733820 ecl:oth eyr:2024 iyr:2017 hgt:180cm hgt:184cm byr:2001 pid:199216567 ecl:gry eyr:2022 cid:185 hcl:#7d3b0c iyr:2019 byr:1996 eyr:2022 pid:503963080 ecl:grn iyr:2010 hcl:#fffffd eyr:2030 iyr:2017 pid:472300557 hcl:#a97842 ecl:grn hgt:190cm byr:1994 ecl:#2a8a59 eyr:2027 iyr:2015 byr:2021 hgt:158cm pid:365979521 hcl:z cid:242 ecl:gry iyr:2020 hcl:#866857 pid:363851353 cid:319 hgt:154cm eyr:2027 byr:1953 ecl:grn hgt:165cm eyr:2026 pid:443722683 hcl:#341e13 iyr:2018 byr:1923 byr:1920 ecl:blu cid:193 hgt:153cm hcl:#341e13 iyr:2010 pid:934896568 eyr:2021 eyr:2025 pid:524699651 cid:92 hcl:#602927 byr:1999 iyr:2011 ecl:brn hgt:164cm eyr:2030 pid:739947771 iyr:2018 byr:1990 hgt:185cm hcl:#602927 ecl:gry byr:1967 ecl:amb iyr:2020 hcl:#341e13 hgt:165cm pid:681478012 eyr:2028 pid:807715479 ecl:blu byr:1955 eyr:1972 iyr:2018 hcl:#a97842 hgt:151 pid:635008585 cid:97 hgt:186cm hcl:#b6652a iyr:2015 eyr:2020 ecl:gry byr:1959 iyr:2017 cid:155 byr:1999 pid:550276277 hcl:#18171d eyr:2020 hgt:164cm ecl:amb byr:1977 hcl:#6b5442 ecl:grn iyr:2012 hgt:156cm eyr:2028 pid:125635376 hgt:65in pid:042700658 byr:1962 iyr:2020 hcl:#888785 eyr:2021 ecl:gry ecl:blu iyr:2017 hcl:#efcc98 pid:447451869 hgt:176cm byr:1958 eyr:2024 ecl:amb hgt:155cm eyr:2022 hcl:#efcc98 pid:614496034 byr:1957 iyr:2016 cid:99 eyr:2020 ecl:amb iyr:2017 hgt:163cm pid:128207503 byr:1977 hcl:#866857 ecl:amb cid:342 eyr:2026 hgt:172cm pid:317675262 byr:1942 hcl:#a97842 iyr:2010 ecl:grn pid:077163993 hgt:187cm hcl:#341e13 iyr:2012 byr:1934 eyr:2024 pid:423538706 hgt:156cm ecl:oth hcl:#341e13 iyr:2016 eyr:2028 iyr:2030 ecl:#faff64 byr:2012 pid:734434105 hgt:164in hcl:z eyr:2023 hgt:150in iyr:2016 pid:173cm hcl:db675a cid:219 eyr:2032 byr:1958 ecl:xry pid:087437383 eyr:2025 hgt:178cm ecl:gry byr:1954 cid:227 hcl:#fffffd iyr:2018 pid:152cm iyr:2030 eyr:2030 byr:2010 hcl:z hgt:155cm ecl:amb byr:1934 hcl:#341e13 hgt:167cm pid:#7356dd ecl:amb iyr:2011 eyr:2030 cid:123 eyr:2027 byr:2005 hgt:173cm cid:174 hcl:#ceb3a1 iyr:2018 ecl:amb pid:179cm iyr:2019 ecl:grn eyr:2023 hgt:162cm pid:649681621 hcl:#4ee6d2 byr:1955 hgt:165cm byr:1929 ecl:blu pid:839016251 iyr:2017 hcl:#c0946f eyr:2020 eyr:2020 iyr:2017 hcl:#c7ed42 ecl:blu byr:1928 hgt:74in pid:112604496 eyr:2026 hgt:184 cid:113 byr:1933 pid:952646285 iyr:2019 hcl:#fffffd ecl:gry pid:455008820 byr:1982 eyr:2030 ecl:gry iyr:2020 cid:103 hcl:#733820 hgt:184cm hcl:#733820 iyr:2020 hgt:182cm ecl:grn cid:226 pid:081011361 eyr:2022 byr:1995 iyr:1999 hcl:#18171d pid:9252198900 ecl:amb byr:1999 hgt:175cm eyr:2021 iyr:2020 hgt:165cm ecl:blu eyr:2023 pid:760213482 byr:1968 hcl:#c0946f pid:242381670 ecl:amb hgt:172cm byr:1980 eyr:2020 iyr:2014 hcl:#866857 byr:2021 pid:#a94a22 hcl:#cfa07d iyr:1969 eyr:2030 ecl:zzz hgt:76cm ecl:oth cid:168 byr:1954 pid:079481919 eyr:2025 hcl:#c0946f hgt:172cm hgt:171cm eyr:2030 byr:1969 cid:170 pid:164128658 ecl:amb hcl:#c2265e iyr:2019 byr:1983 cid:163 eyr:2020 pid:232659795 iyr:2013 hcl:#888785 hgt:162cm ecl:blu ecl:gry hcl:#7d3b0c pid:001171231 eyr:2020 byr:1935 hgt:160cm iyr:2011 iyr:2012 hcl:#a97842 eyr:2029 pid:809880438 hgt:164cm cid:83 byr:1961 ecl:hzl cid:288 eyr:2027 hgt:181cm byr:1955 iyr:2020 ecl:oth pid:754135833 hcl:#c0946f iyr:2012 pid:053980893 cid:54 byr:1961 ecl:gry hcl:#602927 eyr:2020 hgt:167cm iyr:2013 eyr:2025 hgt:176cm pid:169006156 cid:270 ecl:oth byr:2001 cid:244 pid:914067457 iyr:2017 byr:1926 hcl:#733820 ecl:brn hgt:187cm eyr:2030 ecl:oth byr:1942 hgt:176cm iyr:2020 eyr:2027 hcl:#efcc98 pid:688816242 hgt:177cm hcl:#efcc98 eyr:2030 pid:888703414 iyr:2010 byr:1973 ecl:gry cid:257 eyr:2030 ecl:brn pid:359774824 byr:1988 hcl:#6b5442 iyr:2013 hgt:187cm iyr:2011 hgt:173cm cid:290 byr:2000 ecl:gry hcl:#7d3b0c pid:743371399 eyr:2029 cid:162 eyr:1920 byr:2010 pid:#69d6ba hgt:74 hcl:z ecl:#d256f3 iyr:1933 pid:435518624 byr:1938 eyr:2027 iyr:2016 hcl:#18171d hgt:161cm ecl:gry ecl:gry eyr:2027 hcl:#7d3b0c hgt:170cm pid:928345976 iyr:2020 hcl:#5f4023 ecl:blu pid:024527693 eyr:1932 iyr:2023 hgt:154cm byr:1948 cid:284 iyr:2011 byr:1920 eyr:2024 ecl:blu hgt:153cm hcl:#602927 pid:005741906 iyr:2029 hgt:108 byr:2029 hcl:c8b25d pid:522512400 eyr:2038 ecl:zzz cid:163 pid:371295649 eyr:2022 ecl:hzl iyr:2019 hgt:153cm byr:1961 hcl:z eyr:2027 iyr:2020 pid:619653661 byr:1968 hcl:#b6652a cid:62 ecl:hzl hgt:186cm iyr:1931 pid:565552342 ecl:#af97bb hcl:c92cd6 eyr:1931 byr:2025 hgt:184in hgt:187cm ecl:grn byr:1954 cid:145 iyr:2016 hcl:#efcc98 eyr:2030 pid:202254357 cid:177 iyr:2013 byr:1926 hcl:#efcc98 pid:298693475 hgt:181cm eyr:2023 ecl:dne byr:2014 cid:255 iyr:1951 hgt:72in hcl:#efcc98 eyr:2039 pid:135688013 ecl:grn byr:2019 eyr:1971 pid:#a95cb4 hcl:#ceb3a1 ecl:#6f919c hgt:193cm iyr:2012 pid:497726268 ecl:grn eyr:2025 hcl:#efcc98 iyr:2019 hgt:170cm byr:1970 byr:1939 hcl:#18171d cid:250 iyr:2011 ecl:blu pid:216607711 hgt:158cm eyr:2029 byr:1937 eyr:1931 hcl:#5ee898 pid:#876b1a hgt:190cm cid:277 ecl:#5f0f80 iyr:2013 ecl:oth hgt:191cm eyr:2025 byr:1978 pid:271136754 hcl:#888785 iyr:2012 hcl:#6b5442 iyr:2015 byr:1958 pid:510020331 hgt:158cm eyr:2024 ecl:blu byr:1998 cid:142 eyr:2026 iyr:2015 hcl:#733820 pid:671943334 hgt:186cm ecl:oth eyr:2025 ecl:brn hcl:#7d3b0c pid:000803215 byr:1947 iyr:2017 hgt:168cm cid:230 pid:612432109 hgt:186cm byr:1963 ecl:hzl iyr:2019 eyr:2027 hcl:#efcc98 cid:148 hcl:#c0946f pid:846986027 eyr:2025 byr:1941 cid:154 hgt:158cm iyr:2012 ecl:brn ecl:gry hgt:186cm iyr:2015 hcl:#602927 byr:1923 eyr:2023 pid:48544569 pid:857428120 hgt:158cm hcl:#e4a267 iyr:2014 eyr:2020 byr:1975 ecl:blu ecl:blu pid:559783197 byr:1935 cid:119 iyr:2017 hgt:157cm hcl:#6b5442 eyr:2020 ecl:oth pid:724332293 hcl:#602927 cid:77 iyr:2019 byr:2001 hgt:192cm eyr:2024 ecl:hzl eyr:2031 hcl:#efcc98 byr:2011 cid:280 iyr:2017 pid:377875085 hgt:172cm byr:1947 hgt:174cm ecl:amb iyr:2018 cid:94 hcl:#a97842 eyr:2026 pid:286225332 hgt:85 ecl:xry eyr:2033 iyr:1952 pid:92902290 hcl:a6f86d byr:2013 byr:1935 hcl:#c0946f pid:368741489 ecl:blu eyr:2020 hgt:164cm iyr:2018 cid:196 pid:718568707 ecl:oth byr:2003 hcl:#a97842 iyr:2010 hgt:168cm eyr:2025 cid:261 hcl:#6b5442 pid:675429853 hgt:62in ecl:grn iyr:2016 eyr:2027 byr:1932 byr:1978 pid:080846464 hcl:#ceb3a1 ecl:gry iyr:2015 hgt:190cm eyr:2029 pid:1756319674 iyr:2010 byr:1998 hcl:#866857 cid:259 eyr:2025 hgt:73in ecl:hzl eyr:2035 hcl:z hgt:61cm pid:3267812127 cid:230 byr:2029 iyr:2028 ecl:lzr hgt:161cm ecl:hzl byr:1934 iyr:2011 eyr:2025 hcl:#cfa07d pid:354474868 pid:727482965 hcl:#623a2f iyr:2010 hgt:156cm eyr:2020 cid:68 ecl:grn byr:1950 pid:040800697 hgt:186cm hcl:#341e13 iyr:2030 ecl:hzl byr:1937 eyr:2020 iyr:2013 byr:1928 pid:752644096 eyr:2030 hgt:191cm ecl:hzl cid:93 hcl:#a97842 pid:022267155 hcl:#cfa07d eyr:2026 ecl:hzl hgt:187cm iyr:2014 cid:347 hgt:73in eyr:2021 pid:054367702 ecl:amb hcl:#18171d byr:1965 iyr:2020 cid:267 eyr:2022 cid:140 pid:189859171 byr:1984 iyr:2020 ecl:brn hgt:166cm hcl:#623a2f byr:1971 iyr:2015 hgt:168cm eyr:2020 pid:650970816 hcl:#341e13 ecl:grn cid:168 hcl:#c0946f byr:1948 hgt:189cm pid:868785851 cid:194 ecl:amb eyr:2024 iyr:2011 eyr:2040 byr:2030 hcl:afde59 hgt:172cm pid:72468598 iyr:1990 cid:165 ecl:#896a8e iyr:2009 hcl:#6b5442 eyr:2028 cid:53 ecl:hzl hgt:165cm byr:1999 pid:844037301 cid:281 eyr:2022 iyr:2020 byr:1976 hgt:176cm hcl:#6b5442 ecl:amb pid:755280305 hgt:154cm iyr:2013 pid:059284139 byr:1992 cid:215 ecl:blu eyr:2025 hcl:#b6652a ecl:grn cid:308 hgt:187cm pid:009080324 eyr:2027 iyr:2012 byr:1955 pid:083241291 hcl:#7c1810 eyr:2030 iyr:2019 byr:1950 ecl:brn hgt:72in cid:148 byr:1953 hcl:#623a2f pid:076848285 hgt:175cm iyr:2017 eyr:2022 ecl:oth iyr:2020 hgt:160cm eyr:2028 cid:312 ecl:brn hcl:#888785 pid:681067688 byr:1986 iyr:1972 cid:170 eyr:2023 pid:21811501 ecl:#17c6e8 hgt:158in byr:2015 hcl:5b7956 pid:720571739 cid:304 byr:1951 hgt:191cm eyr:2025 hcl:#341e13 iyr:2011 eyr:2020 ecl:blu hcl:#cfa07d pid:097863725 hgt:150cm byr:1951 cid:143 iyr:2013 eyr:2027 iyr:2019 ecl:#a0eeca hcl:#c0946f pid:724783488 byr:1943 cid:282 hgt:124 byr:2012 iyr:2013 eyr:2036 hcl:z hgt:97 pid:#677847 ecl:dne pid:341708492 hgt:190cm byr:1988 hcl:#888785 ecl:hzl iyr:2015 eyr:2029 iyr:2020 byr:1968 ecl:gry eyr:2030 hcl:#1976b0 cid:127 pid:701862616 hgt:161cm""" inputs = [i for i in input.split("\n\n")] """one""" requirements = ['ecl', 'pid', 'eyr', 'hcl', 'byr', 'iyr', 'hgt'] total = len(inputs) valid = [] #tacked on for part 2 for i in inputs: for r in requirements: if r not in i: total -= 1 break elif r == requirements[-1]: #tacked on for part 2 valid.append(i) print(total) """two""" eye_colours = ['amb', 'blu', 'brn', 'gry', 'grn', 'hzl', 'oth'] valid_count = 0 def is_valid(entry): e_dict = {} for e in entry: e = e.split(':') e_dict[e[0]] = e[1] if all(keys in e_dict for keys in requirements): if int(e_dict['byr']) < 1920 or int(e_dict['byr']) > 2002: return False if int(e_dict['iyr']) < 2010 or int(e_dict['iyr']) > 2020: return False if int(e_dict['eyr']) < 2020 or int(e_dict['eyr']) > 2030: return False if 'cm' in e_dict["hgt"]: hgt = int(e_dict["hgt"].replace('cm', '')) if hgt < 150 or hgt > 193: return False elif 'in' in e_dict["hgt"]: hgt = int(e_dict["hgt"].replace('in', '')) if hgt < 59 or hgt > 76: return False else: return False if not re.match('#[0-9a-f]{6}$', e_dict["hcl"]): return False if e_dict["ecl"] not in eye_colours: return False if not re.match('[0-9]{9}$', e_dict["pid"]): return False return True return False for v in valid: v = v.replace(' ', '\n') v = v.split('\n') if is_valid(v): valid_count += 1 print(valid_count)
StarcoderdataPython
173479
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_cointegration_detection [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_cointegration_detection&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=s_cointegration_detection). # + import numpy as np import pandas as pd import matplotlib.pyplot as plt from arpym.estimation import cointegration_fp, fit_var1 from arpym.tools import add_logo # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_cointegration_detection-parameters) t_in = 1260 # length of the in-sample time series (days) t_ = 2268 # length of the complete series (in and out-of-sample) (days) u = 0.35 # coefficient of linear combination l_select = 3 # selected eigenvector # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_cointegration_detection-implementation-step00): Load data # + tau = np.array([1, 2, 3, 5, 7, 10]) path = '../../../databases/global-databases/fixed-income/db_yields' x = pd.read_csv(path + '/data.csv', header=0, index_col=0) x = x[tau.astype(float).astype(str)].tail(t_).values # - # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_cointegration_detection-implementation-step01): Select the in-sample and out-of-sample series # + x_in = x[:t_in, :] # in-sample series x_out = x[t_in:, :] # out-of-sample series # - # ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_cointegration_detection-implementation-step02): Cointegrated eigenvectors # + c_hat, _ = cointegration_fp(x_in) # - # ## [Step 3](https://www.arpm.co/lab/redirect.php?permalink=s_cointegration_detection-implementation-step03): In sample and out-of-sample cointegrated series # + # store cointegrated vectors c_hat_sel = np.zeros((c_hat.shape[0], 3)) c_hat_sel[:, 0] = c_hat[:, l_select+1] c_hat_sel[:, 1] = c_hat[:, l_select] c_hat_sel[:, 2] = (1 - u) * c_hat[:, l_select + 1] + u * \ c_hat[:, l_select] # in-sample cointegrated series (basis points) y_in = x_in @ c_hat_sel * 10000 # out-of-sample cointegrated series (basis points) y_out = x_out @ c_hat_sel * 10000 # - # ## [Step 4](https://www.arpm.co/lab/redirect.php?permalink=s_cointegration_detection-implementation-step04): AR(1) long term parameters # + exp_infty = np.zeros(3) sd_infty = np.zeros(3) tau_halflife = np.zeros(3) for k in range(3): # AR1 fit b_hat, mu_hat_epsi, sig2_hat_epsi = fit_var1(y_in[:, [k]]) # long-run expectation exp_infty[k] = mu_hat_epsi / (1 - b_hat) # long-run standard deviation sd_infty[k] = np.sqrt(sig2_hat_epsi / (1 - b_hat ** 2)) # half life tau_halflife[k] = -np.log(2) / np.log(abs(b_hat)) # - # ## Plots # + plt.style.use('arpm') for k in range(3): fig = plt.figure() min_y = min(min(y_in[:, k]), min(y_out[:, k])) max_y = max(max(y_in[:, k]), max(y_out[:, k])) t = np.arange(t_)/252 plt.axis([0, t[-1], min_y, max_y]) plt.xlabel('time (years)') plt.ylabel('basis points') plt.xticks() plt.yticks() insample = plt.plot(t[:t_in], y_in[:, k], color='k', linewidth=1) outofsample = plt.plot(t[t_in:], y_out[:, k], color='b', linewidth=1) expect = plt.plot(t, np.tile(exp_infty[k], t_), color='g') up_sd = plt.plot(t, np.tile(exp_infty[k] + 2 * sd_infty[k], t_), color='r') plt.plot(t, np.tile(exp_infty[k] - 2 * sd_infty[k], t_), color='r') plt.legend(handles=[insample[0], expect[0], up_sd[0], outofsample[0]], labels=['In-Sample', 'In-Sample Mean', '+/- 2 In-Sample St. Dev', 'Out-of-Sample'], loc=2) if k == 0: plt.title(('Series = {index}-th Eigvect. In-Sample Mean-Reversion ' + 'Half-Life = ' + ' {halflife:.0f} days.').format(index=l_select, halflife=tau_halflife[k])) elif k == 1: plt.title(('Series = {index}-th Eigvect. In-Sample Mean-Reversion ' + 'Half-Life = ' + ' {halflife:.0f} days.').format(index=l_select+1, halflife=tau_halflife[k])) else: plt.title(('Series = {a:1.2f} x {index}-th Eigvect. + ' + '{a2:1.2f} x {index2}-th Eigvect.' + '\nIn-Sample Mean-Reversion Half-Life ' + '= {halflife:.0f} days.').format(a=np.sqrt(1-u**2), index=l_select, a2=u**2, index2=l_select+1, halflife=tau_halflife[k])) add_logo(fig) plt.tight_layout()
StarcoderdataPython
3269976
""" do book related things with other users """ from django.apps import apps from django.db import models, IntegrityError, transaction from django.db.models import Q from bookwyrm.settings import DOMAIN from .base_model import BookWyrmModel from . import fields from .relationship import UserBlocks class Group(BookWyrmModel): """A group of users""" name = fields.CharField(max_length=100) user = fields.ForeignKey("User", on_delete=models.CASCADE) description = fields.TextField(blank=True, null=True) privacy = fields.PrivacyField() def get_remote_id(self): """don't want the user to be in there in this case""" return f"https://{DOMAIN}/group/{self.id}" @classmethod def followers_filter(cls, queryset, viewer): """Override filter for "followers" privacy level to allow non-following group members to see the existence of group-curated lists""" return queryset.exclude( ~Q( # user is not a group member Q(user__followers=viewer) | Q(user=viewer) | Q(memberships__user=viewer) ), privacy="followers", # and the status of the group is followers only ) @classmethod def direct_filter(cls, queryset, viewer): """Override filter for "direct" privacy level to allow group members to see the existence of groups and group lists""" return queryset.exclude(~Q(memberships__user=viewer), privacy="direct") class GroupMember(models.Model): """Users who are members of a group""" created_date = models.DateTimeField(auto_now_add=True) updated_date = models.DateTimeField(auto_now=True) group = models.ForeignKey( "Group", on_delete=models.CASCADE, related_name="memberships" ) user = models.ForeignKey( "User", on_delete=models.CASCADE, related_name="memberships" ) class Meta: """Users can only have one membership per group""" constraints = [ models.UniqueConstraint(fields=["group", "user"], name="unique_membership") ] def save(self, *args, **kwargs): """don't let a user invite someone who blocked them""" # blocking in either direction is a no-go if UserBlocks.objects.filter( Q( user_subject=self.group.user, user_object=self.user, ) | Q( user_subject=self.user, user_object=self.group.user, ) ).exists(): raise IntegrityError() # accepts and requests are handled by the GroupMemberInvitation model super().save(*args, **kwargs) @classmethod def from_request(cls, join_request): """converts a join request into a member relationship""" # remove the invite join_request.delete() # make a group member return cls.objects.create( user=join_request.user, group=join_request.group, ) @classmethod def remove(cls, owner, user): """remove a user from a group""" memberships = cls.objects.filter(group__user=owner, user=user).all() for member in memberships: member.delete() class GroupMemberInvitation(models.Model): """adding a user to a group requires manual confirmation""" created_date = models.DateTimeField(auto_now_add=True) group = models.ForeignKey( "Group", on_delete=models.CASCADE, related_name="user_invitations" ) user = models.ForeignKey( "User", on_delete=models.CASCADE, related_name="group_invitations" ) class Meta: """Users can only have one outstanding invitation per group""" constraints = [ models.UniqueConstraint(fields=["group", "user"], name="unique_invitation") ] def save(self, *args, **kwargs): """make sure the membership doesn't already exist""" # if there's an invitation for a membership that already exists, accept it # without changing the local database state if GroupMember.objects.filter(user=self.user, group=self.group).exists(): self.accept() return # blocking in either direction is a no-go if UserBlocks.objects.filter( Q( user_subject=self.group.user, user_object=self.user, ) | Q( user_subject=self.user, user_object=self.group.user, ) ).exists(): raise IntegrityError() # make an invitation super().save(*args, **kwargs) # now send the invite model = apps.get_model("bookwyrm.Notification", require_ready=True) notification_type = "INVITE" model.objects.create( user=self.user, related_user=self.group.user, related_group=self.group, notification_type=notification_type, ) @transaction.atomic def accept(self): """turn this request into the real deal""" GroupMember.from_request(self) model = apps.get_model("bookwyrm.Notification", require_ready=True) # tell the group owner model.objects.create( user=self.group.user, related_user=self.user, related_group=self.group, notification_type="ACCEPT", ) # let the other members know about it for membership in self.group.memberships.all(): member = membership.user if member not in (self.user, self.group.user): model.objects.create( user=member, related_user=self.user, related_group=self.group, notification_type="JOIN", ) def reject(self): """generate a Reject for this membership request""" self.delete()
StarcoderdataPython
197024
import numpy as np from numpy import linalg from gym import utils import os from gym.envs.mujoco import mujoco_env import math #from gym_reinmav.envs.mujoco import MujocoQuadEnv # For testing whether a number is close to zero _FLOAT_EPS = np.finfo(np.float64).eps _EPS4 = _FLOAT_EPS * 4.0 class BallBouncingQuadEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self): #xml_path = os.path.join(os.path.dirname(__file__), "./assets", 'half_cheetah.xml') self.avg_rwd=-3.0 #obtained from eprewmean self.gamma=0.99 #ppo2 default setting value self.log_cnt=0 mujoco_env.MujocoEnv.__init__(self, 'ball_bouncing_quad.xml', 5) utils.EzPickle.__init__(self) def step(self, action): mass=self.get_mass() #print("mass=",mass[1]) #temp_thrust= #action[0] += mass[1]*9.81 #gravity compensation, 0.4*9.81=3.92 #print("gamma=",self.gamma) act_min=[3.5,-0.5,-0.7,-0.03] act_max=[30,0.5,0.7,0.03] # #action = np.clip(action, a_min=-np.inf, a_max=np.inf) action = np.clip(action, a_min=act_min, a_max=act_max) self.do_simulation(action, self.frame_skip) ob = self._get_obs() pos = ob[0:3] #R = ob[3:12] #lin_vel = ob[12:15] #ang_vel= ob[15:18] quat = ob[3:7] lin_vel = ob[7:10] ang_vel = ob[10:13] #R=self.quat2mat(quat.transpose()) #rpy = self.RotToRPY(R) #print("rpy(degrees) =",np.rad2deg(rpy)) reward_ctrl = - 0.1e-3 * np.sum(np.square(action)) reward_position = -linalg.norm(pos) * 1e-2 reward_linear_velocity = -linalg.norm(lin_vel) * 0.1e-3 reward_angular_velocity = -linalg.norm(ang_vel) * 0.1e-3 reward_alive = 1e-2 reward = reward_ctrl+reward_position+reward_linear_velocity+reward_angular_velocity+reward_alive done= abs(pos[2]) >50 \ or abs(pos[0]) > 50.0 \ or abs(pos[1]) > 50.0 # print("status=",status) print("pos=",pos) info = { 'rwp': reward_position, 'rwlv': reward_linear_velocity, 'rwav': reward_angular_velocity, 'rwctrl': reward_ctrl, 'obx': pos[0], 'oby': pos[1], 'obz': pos[2], 'obvx': lin_vel[0], 'obvy': lin_vel[1], 'obvz': lin_vel[2], } # retOb= np.concatenate([ # pos,R.flat,lin_vel,ang_vel]) if done: reward = self.avg_rwd / (1-self.gamma)*2#-13599.99 #print("terminated reward=",reward) #return retOb, reward, done, info if (self.log_cnt==1e4): print("x={},y={},z={}\n".format(pos[0],pos[1],pos[2])) print("thrust={}, dx={}, dy={}, dz={}".format(action[0],action[1],action[2],action[3])) self.log_cnt=0 else: self.log_cnt=self.log_cnt+1 return ob, reward, done, info def _get_obs(self): # pos = self.sim.data.qpos*1e-1 # vel = self.sim.data.qvel*1e-2 pos = self.sim.data.qpos*1e-0 vel = self.sim.data.qvel*1e-0 return np.concatenate([pos.flat,vel.flat]) def reset_model(self): # pos = self.np_random.uniform(size=3, low=-20, high=20) # quat = self.np_random.uniform(size=4, low=-1, high=1) # linVel = self.np_random.uniform(size=3, low=-2, high=2) # angVel = self.np_random.uniform(size=3, low=-0.5, high=0.5) # qpos = np.concatenate([pos,quat]) # qvel = np.concatenate([linVel,angVel]) qpos = self.init_qpos + self.np_random.uniform(size=self.model.nq, low=-0.1, high=0.1) qvel = self.init_qvel + self.np_random.uniform(size=self.model.nv, low=-0.05, high=0.05) #qpos[0:3] += self.np_random.uniform(low=-5, high=5, size=3) #qpos = self.init_qpos #qpos[0:3] = qpos[0:3]+self.np_random.uniform(size=3, low=-10, high=10) #ob[3:12] = self.np_random.uniform(size=9, low=-1, high=1) #qvel += self.np_random.uniform(size=6, low=-0.5, high=0.5) #qvel[0:3] = self.np_random.uniform(size=3, low=-2, high=2) #qvel[3:6] = self.np_random.uniform(size=3, low=-0.5, high=0.5) self.set_state(qpos, qvel) observation = self._get_obs(); return observation def viewer_setup(self): v = self.viewer v.cam.trackbodyid = 0 v.cam.distance = self.model.stat.extent * 4 def get_mass(self): mass = np.expand_dims(self.model.body_mass, axis=1) return mass #stealed from rotations.py def quat2mat(self,quat): """ Convert Quaternion to Rotation matrix. See rotation.py for notes """ quat = np.asarray(quat, dtype=np.float64) assert quat.shape[-1] == 4, "Invalid shape quat {}".format(quat) w, x, y, z = quat[..., 0], quat[..., 1], quat[..., 2], quat[..., 3] Nq = np.sum(quat * quat, axis=-1) s = 2.0 / Nq X, Y, Z = x * s, y * s, z * s wX, wY, wZ = w * X, w * Y, w * Z xX, xY, xZ = x * X, x * Y, x * Z yY, yZ, zZ = y * Y, y * Z, z * Z mat = np.empty(quat.shape[:-1] + (3, 3), dtype=np.float64) mat[..., 0, 0] = 1.0 - (yY + zZ) mat[..., 0, 1] = xY - wZ mat[..., 0, 2] = xZ + wY mat[..., 1, 0] = xY + wZ mat[..., 1, 1] = 1.0 - (xX + zZ) mat[..., 1, 2] = yZ - wX mat[..., 2, 0] = xZ - wY mat[..., 2, 1] = yZ + wX mat[..., 2, 2] = 1.0 - (xX + yY) return np.where((Nq > _FLOAT_EPS)[..., np.newaxis, np.newaxis], mat, np.eye(3)) def RotToRPY(self,R): R=R.reshape(3,3) #to remove the last dimension i.e., 3,3,1 phi = math.asin(R[1,2]) psi = math.atan2(-R[1,0]/math.cos(phi),R[1,1]/math.cos(phi)) theta = math.atan2(-R[0,2]/math.cos(phi),R[2,2]/math.cos(phi)) return phi,theta,psi # def __init__(self, xml_name="quadrotor_quat.xml"): # super(MujocoQuadQuaternionEnv, self).__init__(xml_name=xml_name) # def step(self, action): # goal_pos = np.array([0.0, 0.0, 1.0]) # alive_bonus = 1e1 # xposbefore = self.sim.data.qpos[0] # self.do_simulation(action, self.frame_skip) # xposafter = self.sim.data.qpos[0] # ob = self._get_obs() # pos = ob[0:3] # quat = ob[3:7] # lin_vel = ob[7:10] # ang_vel= ob[10:13] # lin_acc = ob[13:16] # ang_acc = ob[16:19] # #print("step a=",a) # #reward_position = -linalg.norm(pos-goal_pos) * 0.2e-1 # reward_position = -linalg.norm(pos) * 0.2e-1 # reward_linear_velocity = -linalg.norm(lin_vel) * 1e-3 # reward_angular_velocity = -linalg.norm(ang_vel) * 1e-1 # reward_action = -linalg.norm(action)+np.sum(action)*1e-1 # reward_alive = alive_bonus # # reward = reward_position \ # # + reward_linear_velocity \ # # + reward_angular_velocity \ # # + reward_action \ # # + reward_alive # reward_ctrl = - 0.1 * np.square(action).sum() # reward_run = (xposafter - xposbefore)/self.dt # #print("r_ctrl=",reward_ctrl) # #print("r_run=",reward_run) # reward = reward_ctrl + reward_run # # notdone = np.isfinite(ob).all() \ # # and pos[2] > 0.3 \ # # and abs(pos[0]) < 2.0 \ # # and abs(pos[1]) < 2.0 # notdone = np.isfinite(ob).all() \ # and abs(pos[0]) < 2.0 \ # and abs(pos[1]) < 2.0 # # info = { # # 'rp': reward_position, # # 'rlv': reward_linear_velocity, # # 'rav': reward_angular_velocity, # # 'ra': reward_action, # # 'rlive': reward_alive, # # } # # info = { # # 'rp': reward_position, # # 'rlv': reward_linear_velocity, # # 'rav': reward_ctrl, # # 'ra': reward_action, # # 'rlive': reward_run, # # } # info=dict(reward_run=reward_run, reward_ctrl=reward_ctrl) # #if done=True indicates the episode has terminated and it's time to reset the environment. (For example, perhaps the pole tipped too far, or you lost your last life.) https://gym.openai.com/docs/ # #done = not notdone # done = False # return ob, reward, done, info # def reset_model(self): # #If reset, then we add some variations to the initial state that will be exploited for the next ep. The low and high bounds empirically set. # qpos=self.init_qpos # qvel=self.init_qvel # qpos[0:3] +=self.np_random.uniform(size=3, low=-0.1, high=0.1) # qvel[0:3] +=self.np_random.uniform(size=3, low=-0.01, high=0.01) # self.set_state(qpos, qvel) # return self._get_obs() # def clip_action(self, action): # """ # clip action to [0, inf] # :param action: # :return: clipped action # """ # act_min=[0,-0.5,-0.5,-0.5] # act_max=[7,0.5,0.5,0.5] # #action = np.clip(action, a_min=-np.inf, a_max=np.inf) # action = np.clip(action, a_min=act_min, a_max=act_max) # return action
StarcoderdataPython
1689866
<reponame>PENGUINLIONG/tinyspv from re import match HEADERS = [] op_names = [] with open("./include/tinyspv/spirv/unified1/spirv.hpp") as f: lines = [x.strip() for x in f.readlines()] for line in lines: if not line.startswith("//"): break HEADERS += [line] for line in lines: if "Alias" in line: continue m = match(r"Op([A-Za-z0-9]+) = [0-9]+,", line) if m: op_names += [m[1]] with open("./src/tinyspv/spirv/unified1/opcode2str.cpp", "w") as f: src = HEADERS + [ "#include \"tinyspv/spirv/unified1/opcode2str.hpp\"", "namespace tinyspv {", "const char* opcode2str(int opcode) {", " switch (opcode) {", ] src += [f" case Op::Op{x}: return \"{x}\";" for x in op_names] src += [ " default: return nullptr;", "}", "}", "} // namespace tinyspv", "", ] f.write('\n'.join(src)) with open("./include/tinyspv/spirv/unified1/opcode2str.hpp", "w") as f: src = HEADERS + [ "#pragma once", "#include \"tinyspv/spirv/unified1/spirv.hpp\"", "namespace tinyspv {", "extern const char* opcode2str(int opcode);", "} // namespace tinyspv", "", ] f.write('\n'.join(src))
StarcoderdataPython
62290
# -*- coding: utf-8 -*- import re from mattermost_bot.bot import respond_to @respond_to('(.*) added to the channel by (.*)', re.IGNORECASE) def added_to_channel(message, myname, channel_admin): message.reply('Hi, %s. I am %s. Glad to join this channel :) ' % (channel_admin, myname)) added_to_channel.__doc__ = "Response when added to a channel"
StarcoderdataPython
3318739
from securitytxt.parsers.textparsers.comment_line_parser import CommentLineParser from securitytxt.parsers.textparsers.field_line_parser import FieldLineParser from securitytxt.parsers.textparsers.signed_text_parser import SignedTextParser from securitytxt.securitytxt import SecurityTXT class FileParser: """Takes a security.txt file and parses it. Creating an object of the parser immediately parses the given file. Attributes: securitytxt: the resulting securitytxt after parsing. Public methods: None Raises: :raises AttributeError: if the format of the file is invalid. """ def __init__(self, text: str): """ Initialize SecurityTXT and run the parser to fill this object :param text: The text to parse :raises AttributeError: if the file does not has an incorrect format. """ self.securitytxt: SecurityTXT = SecurityTXT(raw=text) self._parse(text) def _parse(self, text) -> SecurityTXT: """ The function to parse the security.txt file. It follows the ABNF grammar specified in section 5 of the draft RFC :param text: The text to parse :return: The SecurityTXT object representing the file :raises AttributeError: if the file does not has an incorrect format. """ # Grammar: body = signed / unsigned text = self._normalize(text) self._parse_signed(text) if SignedTextParser.is_signed_text(text) else self._parse_unsigned(text) return self.securitytxt def _normalize(self, text: str) -> str: """ Normalize the text for further processing. For example, replacing CRLF by LF :param text: The text to normalize :return: The normalized text """ return text.replace('\r\n', '\n') def _parse_signed(self, signed_text: str) -> None: """ Parse a signed text and set the values in the securitytxt attribute :param signed_text: the signed text to parse :raises AttributeError: if the signed_text is not a valid signed file. """ signed_text_parser = SignedTextParser(signed_text) self.securitytxt.signature = signed_text_parser.signature self._parse_unsigned(signed_text_parser.unsigned_text) def _parse_unsigned(self, unsigned_text: str) -> None: """ Parse an unsigned security.txt file :param unsigned_text: the unsigned text to parse """ for line in unsigned_text.splitlines(): self._parse_line(line) def _parse_line(self, line: str) -> None: """ Parse a line in a security.txt file :param line: a line from the file """ if FieldLineParser.is_field(line): self._parse_field(line) elif CommentLineParser.is_comment(line): self._parse_comment(line) def _parse_field(self, line: str) -> None: """ Parse a field line :param line: The line to parse """ try: field = FieldLineParser(line) self.securitytxt.add_field(field.key, field.value) except AttributeError: pass def _parse_comment(self, line: str) -> None: """ Parse a comment :param line: The comment """ comment = CommentLineParser(line) self.securitytxt.comments.append(comment.comment)
StarcoderdataPython
3212393
from .BidirectionalLSTM import BidirectionalLSTM
StarcoderdataPython
3222810
"""Functions for evaluating the cifar10 CNN model.""" import tensorflow as tf from cifar10_input import Cifar10Data def evaluation(logits, labels): """ Evaluates image inference model. :param logits: A tensor of shape [BATCH_SIZE, NUM_CLASS], float32, each row represents an image inference :param labels: A tensor of shape [BATCH_SIZE], int32 or int64, the true id value of the image :return: Accuracy of image inference model. """ correct = tf.nn.in_top_k(logits, labels, 1) return tf.reduce_mean(tf.cast(correct, tf.float32)) def mass_evaluation(cifar10_data_obj, sess, eval_op, loss_op, images_pl, labels_pl, keep_prob_pl, is_test_pl): """ Split massive testing images evaluation to 1000 images per-step due to the memory size limit of GPU :param cifar10_data_obj: Object of Cifar10Data. :param sess: :param eval_op: :param loss_op: :param images_pl: :param labels_pl: :param keep_prob_pl: :param is_test_pl: :return: Scalars of accuracy and loss """ a = 0.0 c = 0.0 step = 0 has_next = True cifar10_data_obj.init_testing_batch() while has_next: step = step + 1 has_next, testing_image, testing_label = cifar10_data_obj.next_testing_batch(100) feed_dict = {images_pl: testing_image, labels_pl: testing_label, keep_prob_pl: 1.0, is_test_pl: True} a_temp, c_temp = sess.run([eval_op, loss_op], feed_dict=feed_dict) a += a_temp c += c_temp a /= step c /= step return a, c
StarcoderdataPython
4835369
<reponame>sethmlarson/selectors2<filename>tests/support.py import os import signal import socket import threading import time __all__ = [ "get_time", "resource", "socketpair", "AlarmMixin", "TimerMixin" ] # Tolerance values for timer/speed fluctuations. TOLERANCE = 0.5 # Detect whether we're running on Travis or AppVeyor. This # is used to skip some verification points inside of tests to # not randomly fail our CI due to wild timer/speed differences. TRAVIS_CI = "TRAVIS" in os.environ APPVEYOR = "APPVEYOR" in os.environ try: # Python 2.x doesn't define time.perf_counter. from time import perf_counter as get_time except ImportError: from time import time as get_time try: # Python 2.6 doesn't have the resource module. import resource except ImportError: resource = None if hasattr(socket, 'socketpair'): # Since Python 3.5, socket.socketpair() is now also available on Windows socketpair = socket.socketpair else: # Replacement for socket.socketpair() def socketpair(family=socket.AF_INET, type=socket.SOCK_STREAM, proto=0): """A socket pair usable as a self-pipe, for Windows. Origin: https://gist.github.com/4325783, by <NAME>. Public domain. """ if family == socket.AF_INET: host = '127.0.0.1' elif family == socket.AF_INET6: host = '::1' else: raise ValueError("Only AF_INET and AF_INET6 socket address " "families are supported") if type != socket.SOCK_STREAM: raise ValueError("Only SOCK_STREAM socket type is supported") if proto != 0: raise ValueError("Only protocol zero is supported") # We create a connected TCP socket. Note the trick with setblocking(0) # that prevents us from having to create a thread. lsock = socket.socket(family, type, proto) try: lsock.bind((host, 0)) lsock.listen(1) # On IPv6, ignore flow_info and scope_id addr, port = lsock.getsockname()[:2] csock = socket.socket(family, type, proto) try: csock.setblocking(False) try: csock.connect((addr, port)) except (OSError, socket.error): pass csock.setblocking(True) ssock, _ = lsock.accept() except: csock.close() raise finally: lsock.close() return ssock, csock class AlarmThread(threading.Thread): def __init__(self, timeout): super(AlarmThread, self).__init__(group=None) self.setDaemon(True) self.timeout = timeout self.canceled = False def cancel(self): self.canceled = True def run(self): time.sleep(self.timeout) if not self.canceled: os.kill(os.getpid(), signal.SIGALRM) class AlarmMixin(object): alarm_thread = None def _begin_alarm_thread(self, timeout): if not hasattr(signal, "SIGALRM"): self.skipTest("Platform doesn't have signal.SIGALRM") self.addCleanup(self._cancel_alarm_thread) self.alarm_thread = AlarmThread(timeout) self.alarm_thread.start() def _cancel_alarm_thread(self): if self.alarm_thread is not None: self.alarm_thread.cancel() self.alarm_thread.join(0.0) self.alarm_thread = None def set_alarm(self, duration, handler): sigalrm_handler = signal.signal(signal.SIGALRM, handler) self.addCleanup(signal.signal, signal.SIGALRM, sigalrm_handler) self._begin_alarm_thread(duration) class TimerContext(object): def __init__(self, testcase, lower=None, upper=None): self.testcase = testcase self.lower = lower self.upper = upper self.start_time = None self.end_time = None def __enter__(self): self.start_time = get_time() def __exit__(self, *args, **kwargs): self.end_time = get_time() total_time = self.end_time - self.start_time # Skip timing on CI due to flakiness. if TRAVIS_CI or APPVEYOR: return if self.lower is not None: self.testcase.assertGreaterEqual(total_time, self.lower * (1.0 - TOLERANCE)) if self.upper is not None: self.testcase.assertLessEqual(total_time, self.upper * (1.0 + TOLERANCE)) class TimerMixin(object): def assertTakesTime(self, lower=None, upper=None): return TimerContext(self, lower=lower, upper=upper)
StarcoderdataPython
3290430
from c2d_clang2c_ast import * from typing import List, Dict, Set import copy class UnaryExtractorNodeLister(NodeVisitor): def __init__(self): self.nodes: List[UnOp] = [] def visit_UnOp(self, node: UnOp): if node.op in ["++", "--"]: self.nodes.append(node) return self.generic_visit(node) def visit_ForStmt(self, node: ForStmt): return self.generic_visit(node.body[0]) def visit_BasicBlock(self, node: BasicBlock): return class UnaryExtractor(NodeTransformer): def __init__(self, count=0): self.count = count def visit_ForStmt(self, node: ForStmt): return ForStmt(init=node.init, body=self.generic_visit(node.body[0]), cond=node.cond, iter=node.iter) def visit_UnOp(self, node: UnOp): if node.op in ["++", "--"]: self.count = self.count + 1 return DeclRefExpr(name="tmp_unop_result" + str(self.count - 1)) else: return node def visit_BasicBlock(self, node: BasicBlock): newbody = [] for child in node.body: lister = UnaryExtractorNodeLister() lister.visit(child) res = lister.nodes post = [] tmp_count = self.count if res is not None: for i in range(0, len(res)): if res[i] in node.body: #print("SKIPPING!") continue tmp_name = "tmp_unop_result" + str(tmp_count) newbody.append( DeclStmt(vardecl=[ VarDecl( name=tmp_name, type=Int(), init=res[i].lvalue) ])) if res[i].postfix: post.append(res[i]) else: newbody.append( BinOp(op="=", lvalue=DeclRefExpr(name=tmp_name), rvalue=res[i])) tmp_count = tmp_count + 1 if isinstance(child, UnOp): newbody.append( UnOp(op=child.op, lvalue=self.visit(child.lvalue))) else: newbody.append(self.visit(child)) for i in post: newbody.append(i) return BasicBlock(body=newbody) class IndicesExtractorNodeLister(NodeVisitor): def __init__(self): self.nodes: List[ArraySubscriptExpr] = [] def visit_ArraySubscriptExpr(self, node: ArraySubscriptExpr): #if not isinstance(node.index,IntLiteral): self.nodes.append(node) return self.generic_visit(node) def visit_BasicBlock(self, node: BasicBlock): return class IndicesExtractor(NodeTransformer): def __init__(self, count=0): self.count = count def visit_ArraySubscriptExpr(self, node: ArraySubscriptExpr): #if isinstance(node.index,IntLiteral): # return node if not hasattr(self, "count"): self.count = 0 else: self.count = self.count + 1 tmp = self.count return ArraySubscriptExpr( name=node.name, indices=node.indices, type=node.type, unprocessed_name=self.visit(node.unprocessed_name), index=DeclRefExpr(name="tmp_index_" + str(tmp - 1), type=Int())) def visit_BasicBlock(self, node: BasicBlock): newbody = [] for child in node.body: # res = [node for node in Node.walk(child) if isinstance(node, ArraySubscriptExpr)] lister = IndicesExtractorNodeLister() lister.visit(child) res = lister.nodes temp = self.count if res is not None: for i in range(0, len(res)): tmp_name = "tmp_index_" + str(temp) temp = temp + 1 newbody.append( DeclStmt(vardecl=[VarDecl(name=tmp_name, type=Int())])) newbody.append( BinOp(op="=", lvalue=DeclRefExpr(name=tmp_name), rvalue=res[i].index)) newbody.append(self.visit(child)) return BasicBlock(body=newbody) class InitExtractorNodeLister(NodeVisitor): def __init__(self): self.nodes: List[VarDecl] = [] def visit_ForStmt(self, node: ForStmt): return def visit_VarDecl(self, node: VarDecl): if hasattr(node, "init"): self.nodes.append(node) return self.generic_visit(node) def visit_BasicBlock(self, node: BasicBlock): return class InsertMissingBasicBlocks(NodeTransformer): def insert_missing_block(self, body): assert isinstance(body, list) if isinstance(body[0], BasicBlock): return body return [BasicBlock(body=body)] def visit_ForStmt(self, node: ForStmt): node.body = self.insert_missing_block(node.body) return self.generic_visit(node) def visit_DoStmt(self, node: DoStmt): node.body = self.insert_missing_block(node.body) return self.generic_visit(node) def visit_WhileStmt(self, node: WhileStmt): node.body = self.insert_missing_block(node.body) return self.generic_visit(node) def visit_IfStmt(self, node: IfStmt): node.body_if = self.insert_missing_block(node.body_if) if hasattr(node, "body_else"): node.body_else = self.insert_missing_block(node.body_else) return self.generic_visit(node) class InitExtractor(NodeTransformer): def __init__(self, count=0): self.count = count def visit_BasicBlock(self, node: BasicBlock): newbody = [] for child in node.body: # res = [node for node in Node.walk(child) if isinstance(node, ArraySubscriptExpr)] lister = InitExtractorNodeLister() lister.visit(child) res = lister.nodes temp = self.count newbody.append(self.visit(child)) if res is not None: for i in range(0, len(res)): #print(res[i].name) newbody.append( BinOp(op="=", lvalue=DeclRefExpr(name=res[i].name), rvalue=res[i].init)) return BasicBlock(body=newbody) class CallExtractorNodeLister(NodeVisitor): def __init__(self): self.nodes: List[CallExpr] = [] def visit_ForStmt(self, node: ForStmt): return def visit_CallExpr(self, node: CallExpr): if node.name.name not in ["malloc", "expf", "powf", "sqrt", "cbrt"]: self.nodes.append(node) return self.generic_visit(node) def visit_BasicBlock(self, node: BasicBlock): return class CallExtractor(NodeTransformer): def __init__(self, count=0): self.count = count def visit_CallExpr(self, node: CallExpr): #if isinstance(node.index,IntLiteral): # return node if not hasattr(self, "count"): self.count = 0 else: self.count = self.count + 1 tmp = self.count if node.name.name in ["malloc", "expf", "powf", "sqrt", "cbrt"]: return node return DeclRefExpr(name="tmp_call_" + str(tmp - 1)) def visit_BasicBlock(self, node: BasicBlock): newbody = [] for child in node.body: # res = [node for node in Node.walk(child) if isinstance(node, ArraySubscriptExpr)] lister = CallExtractorNodeLister() lister.visit(child) res = lister.nodes for i in res: if i == child: res.pop(res.index(i)) temp = self.count if res is not None: for i in range(0, len(res)): print("CALL:", res[i].name) newbody.append( DeclStmt(vardecl=[ VarDecl(name="tmp_call_" + str(temp), type=res[i].type) ])) newbody.append( BinOp(op="=", lvalue=DeclRefExpr(name="tmp_call_" + str(temp), type=res[i].type), rvalue=res[i])) if isinstance(child, CallExpr): new_args = [] for i in child.args: new_args.append(self.visit(i)) new_child = CallExpr(type=child.type, name=child.name, args=new_args) newbody.append(new_child) else: newbody.append(self.visit(child)) return BasicBlock(body=newbody) class CondExtractorNodeLister(NodeVisitor): def __init__(self): self.nodes: List[Node] = [] def visit_ForStmt(self, node: ForStmt): return def visit_IfStmt(self, node: IfStmt): self.nodes.append(node.cond[0]) def visit_BasicBlock(self, node: BasicBlock): return class CondExtractor(NodeTransformer): def __init__(self, count=0): self.count = count def visit_IfStmt(self, node: IfStmt): if not hasattr(self, "count"): self.count = 0 else: self.count = self.count + 1 tmp = self.count cond = [ BinOp(op="!=", lvalue=DeclRefExpr(name="tmp_if_" + str(tmp - 1)), rvalue=IntLiteral(value="0")) ] body_if = [self.visit(node.body_if[0])] if hasattr(node, "body_else"): body_else = [self.visit(node.body_else[0])] return IfStmt(cond=cond, body_if=body_if, body_else=body_else) else: return IfStmt(cond=cond, body_if=body_if) def visit_BasicBlock(self, node: BasicBlock): newbody = [] for child in node.body: lister = CondExtractorNodeLister() lister.visit(child) res = lister.nodes temp = self.count if res is not None: for i in range(0, len(res)): newbody.append( DeclStmt(vardecl=[ VarDecl(name="tmp_if_" + str(temp), type=Int()) ])) newbody.append( BinOp(op="=", lvalue=DeclRefExpr(name="tmp_if_" + str(temp)), rvalue=res[i])) newbody.append(self.visit(child)) return BasicBlock(body=newbody) class ForDeclarerNodeLister(NodeVisitor): def __init__(self): self.nodes: List[Node] = [] def visit_ForStmt(self, node: ForStmt): if isinstance(node.init[0], BinOp):# for(int i=0;) for (i=0;) self.nodes.append(node.init[0]) def visit_BasicBlock(self, node: BasicBlock): return class ForDeclarer(NodeTransformer): def __init__(self): self.count = 0 self.name_mapping = {} def visit_BasicBlock(self, node: BasicBlock): # make sure name mapping gets reverted properly when exiting contexts prev = self.name_mapping.copy() newbody = [] for child in node.body: lister = ForDeclarerNodeLister() lister.visit(child) res = lister.nodes if res is not None: for i in range(0, len(res)): #print("FOREXTRABINOP") newbody.append(res[i]) newbody.append(self.visit(child)) self.name_mapping = prev return BasicBlock(body=newbody) def visit_DeclRefExpr(self, node: DeclRefExpr): if self.name_mapping.get(node.name) is None: return node else: return DeclRefExpr(name=self.name_mapping[node.name]) def visit_ForStmt(self, node: ForStmt): if isinstance(node.body, list): node.body = node.body[0] if isinstance(node.init[0], BinOp): self.count = self.count + 1 assert isinstance( node.init[0].lvalue, DeclRefExpr), "expecting lvalue of binop to be a declRefExpr" self.name_mapping[node.init[0].lvalue.name] = "tmp_for_" + str( self.count) return ForStmt(init=[ DeclStmt(vardecl=[ VarDecl(name="tmp_for_" + str(self.count), type=Int(), init=node.init[0].rvalue) ]) ], cond=[self.generic_visit(node.cond[0])], body=[self.generic_visit(node.body)], iter=[self.generic_visit(node.iter[0])]) elif isinstance(node.init[0], DeclStmt): return self.generic_visit(node) class UnaryToBinary(NodeTransformer): def visit_UnOp(self, node: UnOp): if node.op == "++": return BinOp(op="=", lvalue=node.lvalue, rvalue=BinOp(op="+", lvalue=node.lvalue, rvalue=IntLiteral(value="1"))) elif node.op == "--": return BinOp(op="=", lvalue=node.lvalue, rvalue=BinOp(op="-", lvalue=node.lvalue, rvalue=IntLiteral(value="1"))) else: return self.generic_visit(node) class CompoundToBinary(NodeTransformer): def visit_CompoundAssignOp(self, node: CompoundAssignOp): newop = (node.op).replace("=", "") return BinOp(op="=", lvalue=node.lvalue, rvalue=BinOp(op=newop, lvalue=node.lvalue, rvalue=node.rvalue)) class UnaryReferenceAndPointerRemover(NodeTransformer): def visit_UnOp(self, node: UnOp): if node.op == "*" or node.op == "&": return self.generic_visit(node.lvalue) else: return self.generic_visit(node) class FindOutputNodesVisitor(NodeVisitor): def __init__(self): self.nodes: List[DeclRefExpr] = [] def visit_BinOp(self, node: BinOp): if node.op == "=": if isinstance(node.lvalue, DeclRefExpr): self.nodes.append(node.lvalue) if isinstance(node.lvalue, UnOp): if node.lvalue.op == "*": if isinstance(node.lvalue.lvalue, DeclRefExpr): self.nodes.append(node.lvalue.lvalue) if isinstance(node.lvalue.lvalue, ArraySubscriptExpr): tmp = node.lvalue.lvalue while isinstance(tmp, ArraySubscriptExpr): tmp = tmp.unprocessed_name if isinstance(tmp, DeclRefExpr): self.nodes.append(tmp) if isinstance(node.lvalue, ArraySubscriptExpr): tmp = node.lvalue while isinstance(tmp, ArraySubscriptExpr): tmp = tmp.unprocessed_name if isinstance(tmp, DeclRefExpr): self.nodes.append(tmp) self.visit(node.rvalue) #def visit_TernaryExpr(self, node: TernaryExpr): # used_vars_condition = [node for node in walk(node.cond) if isinstance(node, DeclRefExpr)] # used_vars_left = [node for node in walk(node.left) if isinstance(node, DeclRefExpr)] # used_vars_right = [node for node in walk(node.right) if isinstance(node, DeclRefExpr)] # self.nodes = self.nodes + used_vars_condition class FindInputNodesVisitor(NodeVisitor): def __init__(self): self.nodes: List[DeclRefExpr] = [] def visit_DeclRefExpr(self, node: DeclRefExpr): self.nodes.append(node) def visit_BinOp(self, node: BinOp): if node.op == "=": if isinstance(node.lvalue, DeclRefExpr): pass if isinstance(node.lvalue, ArraySubscriptExpr): tmp = node.lvalue while isinstance(tmp, ArraySubscriptExpr): self.visit(tmp.index) tmp = tmp.unprocessed_name if isinstance(tmp, DeclRefExpr): pass else: self.visit(node.lvalue) self.visit(node.rvalue) class FunctionLister(NodeVisitor): def __init__(self) -> None: self.function_names: Set[str] = set() self.defined_function_names: Set[str] = set() self.undefined_function_names: Set[str] = set() def visit_AST(self, node: AST): self.generic_visit(node) self.undefined_function_names = self.function_names.difference( self.defined_function_names) def visit_FuncDecl(self, node: FuncDecl): self.function_names.add(node.name) if node.body is not None and node.body != []: self.defined_function_names.add(node.name) def is_defined(self, function_name: str) -> bool: return function_name in self.defined_function_names def is_declared(self, function_name: str) -> bool: return function_name in self.function_names class MoveReturnValueToArguments(NodeTransformer): """ expects: no class method calls """ def visit_AST(self, node: AST) -> None: self.function_lister = FunctionLister() self.function_lister.visit(node) return self.generic_visit(node) def visit_FuncDecl(self, node: FuncDecl): if self.function_lister.is_defined(node.name): if not isinstance(node.result_type, Void): #node.args.append(ParmDecl(name = "c2d_retval", type = Pointer(pointee_type = node.result_type), lineno = node.lineno)) node.args.append( ParmDecl(name="c2d_retval", type=node.result_type, lineno=node.lineno)) node.result_type = Void() return self.generic_visit(node) def visit_CallExpr(self, node: CallExpr): if self.function_lister.is_defined(node.name.name): if not isinstance(node.type, Void): node.args.append( DeclRefExpr(name="NULL", type=Pointer(pointee_type=Void()))) node.type = Void() return self.generic_visit(node) def visit_BinOp(self, node: BinOp): if isinstance(node.rvalue, CallExpr): if self.function_lister.is_defined(node.rvalue.name.name): #reference = UnOp(lvalue = node.lvalue, op = "&", postfix = False, type = Pointer(pointee_type = node.lvalue.type)) reference = node.lvalue node.rvalue.args.append(reference) return self.generic_visit(node.rvalue) return self.generic_visit(node) def visit_RetStmt(self, node: RetStmt): if hasattr(node, "ret_expr"): return_type = node.ret_expr.type #left = UnOp(op = "*", postfix = False, type = Pointer(pointee_type = return_type), # lvalue = DeclRefExpr(name = "c2d_retval", type = return_type)) # TODO: implement using pointers left = DeclRefExpr(name="c2d_retval", type=return_type) assignment = BinOp(op="=", lvalue=left, rvalue=node.ret_expr, type=return_type) return [assignment, RetStmt()] return self.generic_visit(node) class FlattenStructs(NodeTransformer): def __init__(self) -> None: self.structdefs: Dict[str, StructDecl] = {} def struct_is_defined(self, struct_name): return struct_name in self.structdefs.keys() def visit_AST(self, node: AST): self.structdefs = {sd.name: sd for sd in node.structdefs} return self.generic_visit(node) def visit_StructDecl(self, node: StructDecl): replacement_fields = [] for field in node.fields: if field.type.is_struct_like(): nested_struct_name = field.type.get_chain_end().name if self.struct_is_defined(nested_struct_name): nested_struct_fields = self.structdefs[ nested_struct_name].fields for nested_field in nested_struct_fields: replacement_fields.append( FieldDecl(name=field.name + "_" + nested_field.name, type=field.type.inject_type( nested_field.type))) else: replacement_fields.append(field) else: replacement_fields.append(field) return StructDecl(name=node.name, fields=replacement_fields) class ReplaceStructDeclStatements(NodeTransformer): def __init__(self): self.structdefs: Dict[str, StructDecl] = {} def struct_is_defined(self, struct_name): return struct_name in self.structdefs.keys() def get_struct(self, struct_name: str): return self.structdefs.get(struct_name) def get_field_replacement_name(self, struct_type_name: str, struct_variable_name: str, field_name: str): return "c2d_struct_" + struct_type_name + "_" + struct_variable_name + "_" + field_name def split_struct_type(self, struct_like_type, var_name) -> Dict[str, Tuple[str, Type]]: if isinstance(struct_like_type, Struct): if not self.struct_is_defined(struct_like_type.name): return None defined_struct = self.get_struct(struct_like_type.name) return { field.name: (self.get_field_replacement_name(defined_struct.name, var_name, field.name), field.type) for field in defined_struct.fields } if isinstance(struct_like_type, ConstantArray): splits = self.split_struct_type(struct_like_type.element_type, var_name) if splits is not None: return { field_name: (split_name + "_arr", ConstantArray(size=struct_like_type.size, element_type=split_type)) for (field_name, (split_name, split_type)) in splits.items() } else: return None if isinstance(struct_like_type, Pointer): splits = self.split_struct_type(struct_like_type.pointee_type, var_name) if splits is not None: return { field_name: (split_name + "_ptr", Pointer(pointee_type=split_type)) for (field_name, (split_name, split_type)) in splits.items() } else: return None raise Exception("split_struct_type expects struct like type") def replace_container_expr(self, container_expr: Expression, desired_field: str): if isinstance(container_expr, DeclRefExpr): replacement_name, replacement_type = self.split_struct_type( container_expr.type, container_expr.name)[desired_field] return DeclRefExpr(name=replacement_name, type=replacement_type) if isinstance(container_expr, ArraySubscriptExpr): replacement = copy.deepcopy(container_expr) replacement.unprocessed_name = self.replace_container_expr( container_expr.unprocessed_name, desired_field) replacement.type = replacement.unprocessed_name.type.element_type return replacement if isinstance(container_expr, MemberRefExpr): replacement = copy.deepcopy(container_expr) replacement.name += "_" + desired_field return self.visit(replacement) if isinstance(container_expr, UnOp): replacement = copy.deepcopy(container_expr) replacement.lvalue = self.replace_container_expr( container_expr.lvalue, desired_field) replacement.type = container_expr.type.inject_type( replacement.lvalue.type) return replacement raise Exception("cannot replace container expression: ", container_expr) def visit_AST(self, node: AST): self.structdefs = {sd.name: sd for sd in node.structdefs} return self.generic_visit(node) def visit_DeclRefExpr(self, node: DeclRefExpr): if hasattr(node, "type") and node.type.is_struct_like(): splits = self.split_struct_type(node.type, node.name) if splits is not None: return [ DeclRefExpr(name=n, type=t) for (n, t) in splits.values() ] return self.generic_visit(node) def visit_BinOp(self, node: BinOp): if hasattr(node.lvalue, "type") and hasattr(node.rvalue, "type"): if node.lvalue.type.is_struct_like(): if node.lvalue.type == node.rvalue.type: struct = node.lvalue.type.get_chain_end() if node.op == "=": replacement_statements = [] fields = self.get_struct(struct.name).fields if fields is not None: for f in fields: l_member_ref = MemberRefExpr( name=f.name, type=node.lvalue.type.inject_type(f.type), containerexpr=node.lvalue) r_member_ref = MemberRefExpr( name=f.name, type=node.rvalue.type.inject_type(f.type), containerexpr=node.rvalue) binop = BinOp(op="=", type=f.type, lvalue=l_member_ref, rvalue=r_member_ref) replacement_statements.append(binop) return [ self.visit(s) for s in replacement_statements ] return self.generic_visit(node) def visit_VarDecl(self, node: VarDecl): if node.type.is_struct_like(): splits = self.split_struct_type(node.type, node.name) if splits is not None: return [VarDecl(name=n, type=t) for (n, t) in splits.values()] return self.generic_visit(node) def visit_DeclStmt(self, node: DeclStmt): replacement_stmts = [] for var_decl in node.vardecl: replacement_var_decls = self.as_list(self.visit(var_decl)) replacement_stmts += [ DeclStmt(vardecl=[vd]) for vd in replacement_var_decls ] return replacement_stmts def visit_MemberRefExpr(self, node: MemberRefExpr): if hasattr(node.containerexpr, "type") and node.containerexpr.type.is_struct_like(): struct_like_type = node.containerexpr.type.get_chain_end() if self.struct_is_defined(struct_like_type.name): return self.replace_container_expr(node.containerexpr, node.name) return self.generic_visit(node) def visit_ParmDecl(self, node: ParmDecl): if node.type.is_struct_like(): splits = self.split_struct_type(node.type, node.name) return [ParmDecl(name=n, type=t) for (n, t) in splits.values()] return self.generic_visit(node) class CXXClassToStruct(NodeTransformer): def __init__(self): self.replacement_structs: List[StructDecl] = [] self.exported_functions: List[FuncDecl] = [] def get_class_type_replacement_name(self, class_name): return "c2d_class_as_struct_" + class_name def get_class_type_replacement(self, class_like_type) -> Type: if isinstance(class_like_type, Class): return Struct(name=self.get_class_type_replacement_name( class_like_type.name)) if isinstance(class_like_type, Pointer): t = self.get_class_type_replacement(class_like_type.pointee_type) if t is not None: return Pointer(pointee_type=t) if isinstance(class_like_type, ConstantArray): t = self.get_class_type_replacement(class_like_type.element_type) if t is not None: return ConstantArray(size=class_like_type.size, element_type=t) return None def is_class_like(self, type) -> bool: if isinstance(type, ConstantArray): return self.is_class_like(type.element_type) if isinstance(type, Pointer): return self.is_class_like(type.pointee_type) return isinstance(type, Class) def get_class_variable_replacement_name(self, var_name): return var_name def get_method_replacement_name(self, method_name, class_name): return "c2d_" + class_name + "_method_" + method_name def visit_AST(self, node: AST): transformed_ast = self.generic_visit(node) transformed_ast.structdefs += self.replacement_structs transformed_ast.funcdefs += self.exported_functions return transformed_ast def visit_ClassDecl(self, node: ClassDecl): replacement_struct = StructDecl( name=self.get_class_type_replacement_name(node.name), fields=node.fields) self.replacement_structs.append(replacement_struct) self.generic_visit(node) return None def visit_CXXMethod(self, node: CXXMethod): if node.body is None: return None node = self.generic_visit(node) replacement_struct_name = self.get_class_type_replacement_name( node.parent_class_type.name) this_arg = ParmDecl( name="c2d_this", type=Pointer(pointee_type=Struct(name=replacement_struct_name))) replacement_function_name = self.get_method_replacement_name( node.name, node.parent_class_type.name) replacement_function = FuncDecl(name=replacement_function_name, args=[this_arg] + node.args, body=node.body) self.exported_functions.append(replacement_function) return None def visit_MemberRefExpr(self, node: MemberRefExpr): """ Replace any class field accesses with accesses to their replacement struct """ node = self.generic_visit(node) return node def visit_DeclRefExpr(self, node: DeclRefExpr): """ Replace any references to a class declaration with references to their replacement struct """ if hasattr(node, "type") and self.is_class_like(node.type): replacement_struct_type = self.get_class_type_replacement( node.type) return DeclRefExpr(name=self.get_class_variable_replacement_name( node.name), type=replacement_struct_type) return self.generic_visit(node) def visit_VarDecl(self, node: VarDecl): if self.is_class_like(node.type): replacement_struct_type = self.get_class_type_replacement( node.type) return VarDecl(name=self.get_class_variable_replacement_name( node.name), type=replacement_struct_type) return self.generic_visit(node) def visit_CXXThisExpr(self, node: CXXThisExpr): replacement_struct_name = self.get_class_type_replacement_name( node.type.pointee_type.name) return DeclRefExpr( name="c2d_this", type=Pointer(pointee_type=Struct(name=replacement_struct_name))) def visit_CallExpr(self, node: CallExpr): """ Replace any method calls with calls to their exported counterparts. """ if isinstance(node.name, MemberRefExpr): mrefexpr = node.name containerexpr = mrefexpr.containerexpr #direct member ref expression: class_var.method() if hasattr(containerexpr, "type") and isinstance( containerexpr.type, Class): replacement_function_name = self.get_method_replacement_name( mrefexpr.name, containerexpr.type.name) first_argument = UnOp(lvalue=self.visit(containerexpr), op="&", postfix=False) return CallExpr(name=replacement_function_name, args=[first_argument] + [self.visit(a) for a in node.args]) #indirect member ref expression: class_var->method() if hasattr(containerexpr, "type") and isinstance( containerexpr.type, Pointer): if isinstance(containerexpr.type.pointee_type, Class): replacement_function_name = self.get_method_replacement_name( mrefexpr.name, containerexpr.type.pointee_type.name) first_argument = self.visit(containerexpr) return CallExpr(name=replacement_function_name, args=[first_argument] + [self.visit(a) for a in node.args]) return self.generic_visit(node)
StarcoderdataPython
164605
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import frappe from frappe.utils import cstr, getdate from frappe import _ from erpnext.stock.utils import get_valid_serial_nos from erpnext.utilities.transaction_base import TransactionBase class InstallationNote(TransactionBase): def __init__(self, *args, **kwargs): super(InstallationNote, self).__init__(*args, **kwargs) self.status_updater = [{ 'source_dt': 'Installation Note Item', 'target_dt': 'Delivery Note Item', 'target_field': 'installed_qty', 'target_ref_field': 'qty', 'join_field': 'prevdoc_detail_docname', 'target_parent_dt': 'Delivery Note', 'target_parent_field': 'per_installed', 'source_field': 'qty', 'percent_join_field': 'prevdoc_docname', 'status_field': 'installation_status', 'keyword': 'Installed', 'overflow_type': 'installation' }] def validate(self): self.validate_installation_date() self.check_item_table() from erpnext.controllers.selling_controller import check_active_sales_items check_active_sales_items(self) def is_serial_no_added(self, item_code, serial_no): has_serial_no = frappe.db.get_value("Item", item_code, "has_serial_no") if has_serial_no == 1 and not serial_no: frappe.throw(_("Serial No is mandatory for Item {0}").format(item_code)) elif has_serial_no != 1 and cstr(serial_no).strip(): frappe.throw(_("Item {0} is not a serialized Item").format(item_code)) def is_serial_no_exist(self, item_code, serial_no): for x in serial_no: if not frappe.db.exists("Serial No", x): frappe.throw(_("Serial No {0} does not exist").format(x)) def get_prevdoc_serial_no(self, prevdoc_detail_docname): serial_nos = frappe.db.get_value("Delivery Note Item", prevdoc_detail_docname, "serial_no") return get_valid_serial_nos(serial_nos) def is_serial_no_match(self, cur_s_no, prevdoc_s_no, prevdoc_docname): for sr in cur_s_no: if sr not in prevdoc_s_no: frappe.throw(_("Serial No {0} does not belong to Delivery Note {1}").format(sr, prevdoc_docname)) def validate_serial_no(self): prevdoc_s_no, sr_list = [], [] for d in self.get('items'): self.is_serial_no_added(d.item_code, d.serial_no) if d.serial_no: sr_list = get_valid_serial_nos(d.serial_no, d.qty, d.item_code) self.is_serial_no_exist(d.item_code, sr_list) prevdoc_s_no = self.get_prevdoc_serial_no(d.prevdoc_detail_docname) if prevdoc_s_no: self.is_serial_no_match(sr_list, prevdoc_s_no, d.prevdoc_docname) def validate_installation_date(self): for d in self.get('items'): if d.prevdoc_docname: d_date = frappe.db.get_value("Delivery Note", d.prevdoc_docname, "posting_date") if d_date > getdate(self.inst_date): frappe.throw(_("Installation date cannot be before delivery date for Item {0}").format(d.item_code)) def check_item_table(self): if not(self.get('items')): frappe.throw(_("Please pull items from Delivery Note")) def on_update(self): frappe.db.set(self, 'status', 'Draft') def on_submit(self): self.validate_serial_no() self.update_prevdoc_status() frappe.db.set(self, 'status', 'Submitted') def on_cancel(self): self.update_prevdoc_status() frappe.db.set(self, 'status', 'Cancelled')
StarcoderdataPython
86370
<filename>setup.py from setuptools import setup, find_packages REQUIRED_PYTHON = (3, 6, 4) EXCLUDE_FROM_PACKAGES = [] try: with open('LICENSE.txt', 'r') as f: _license = f.read() except: _license = '' try: with open('README.md', 'r') as f: _readme = f.read() except: _readme = '' setup( name='financePy', python_requires='>={}.{}'.format(*REQUIRED_PYTHON), packages=find_packages(exclude=EXCLUDE_FROM_PACKAGES), version='0.1', description='', author='<NAME>', author_email='<EMAIL>', license=_license, long_description=_readme, url='no', download_url='https://github.com/MichelangeloConserva/prova/releases', install_requires=['lxml','setuptools', 'pandas', 'requests','quandl','bs4','xlrd','scipy','selenium','matplotlib','html5lib==0.9999999'], )
StarcoderdataPython
1610820
class ConsumeException(Exception): def __init__(self, message): self.__message = message def __str__(self): return repr(self.__message) def get_message(self): return self.__message
StarcoderdataPython
1721731
<filename>projects/democv/calibrate.py import numpy as np import cv2 # termination criteria criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((8*6,3), np.float32) objp[:,:2] = np.mgrid[0:6,0:8].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. cap = cv2.VideoCapture(1) img_ = None while True: ret, img = cap.read() if img is None: print('Failed to get image') continue img = cv2.resize(img, None, fx=0.5, fy=0.5) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) img_ = gray # Find the chess board corners ret, corners = cv2.findChessboardCorners(gray, (6, 8)) if ret == True: print('Found chessboard.') objpoints.append(objp) corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) imgpoints.append(corners2) # Draw and display the corners img = cv2.drawChessboardCorners(img, (6, 8), corners2,ret) cv2.imshow('img',img) ch = cv2.waitKey(1) if ch == 27: break cv2.destroyAllWindows() # Find the calibration parameters. rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_.shape[::-1],None,None) print(camera_matrix)
StarcoderdataPython
1791262
<reponame>lunduniversity/schoolprog-satellite temps = [] with open("data_april_2017_lund.txt", "r") as f: # print(f.read().split("\n")[:-1]) temps = list(map(lambda x: float(x.split()[3]), f.read().split("\n")[:-1])) print(temps) with open("temps_april_2017_lund.txt", "w") as f: for i in range(len(temps)): if(i < len(temps)-1): f.write(str(temps[i]) + "\n") else: f.write(str(temps[i]))
StarcoderdataPython
1739010
<reponame>hujingguang/Archery # -*- coding: UTF-8 -*- """ @author: hhyo、yyukai @license: Apache Licence @file: redis.py @time: 2019/03/26 """ import re import redis import logging import traceback from common.utils.timer import FuncTimer from . import EngineBase from .models import ResultSet, ReviewSet, ReviewResult __author__ = 'hhyo' logger = logging.getLogger('default') class RedisEngine(EngineBase): def get_connection(self, db_name=None): db_name = db_name or 0 return redis.Redis(host=self.host, port=self.port, db=db_name, password=<PASSWORD>, encoding_errors='ignore', decode_responses=True) @property def name(self): return 'Redis' @property def info(self): return 'Redis engine' def get_all_databases(self): """ 获取数据库列表 :return: """ result = ResultSet(full_sql='CONFIG GET databases') conn = self.get_connection() rows = conn.config_get('databases')['databases'] db_list = [str(x) for x in range(int(rows))] result.rows = db_list return result def query_check(self, db_name=None, sql='', limit_num=0): """提交查询前的检查""" result = {'msg': '', 'bad_query': True, 'filtered_sql': sql, 'has_star': False} safe_cmd = ["scan", "exists", "ttl", "pttl", "type", "get", "mget", "strlen", "hgetall", "hexists", "hget", "hmget", "hkeys", "hvals", "smembers", "scard", "sdiff", "sunion", "sismember", "llen", "lrange", "lindex"] # 命令校验,仅可以执行safe_cmd内的命令 for cmd in safe_cmd: if re.match(fr'^{cmd}', sql.strip(), re.I): result['bad_query'] = False break if result['bad_query']: result['msg'] = "禁止执行该命令!" return result def query(self, db_name=None, sql='', limit_num=0, close_conn=True): """返回 ResultSet """ result_set = ResultSet(full_sql=sql) try: conn = self.get_connection(db_name=db_name) rows = conn.execute_command(sql) result_set.column_list = ['Result'] if isinstance(rows, list): if re.match(fr'^scan', sql.strip(), re.I): keys = [[row] for row in rows[1]] keys.insert(0, rows[0]) result_set.rows = tuple(keys) result_set.affected_rows = len(rows[1]) else: result_set.rows = tuple([row] for row in rows) result_set.affected_rows = len(rows) else: result_set.rows = tuple([[rows]]) result_set.affected_rows = 1 if rows else 0 if limit_num > 0: result_set.rows = result_set.rows[0:limit_num] except Exception as e: logger.warning(f"Redis命令执行报错,语句:{sql}, 错误信息:{traceback.format_exc()}") result_set.error = str(e) return result_set def filter_sql(self, sql='', limit_num=0): return sql.strip() def query_masking(self, db_name=None, sql='', resultset=None): """不做脱敏""" return resultset def execute_check(self, db_name=None, sql=''): """上线单执行前的检查, 返回Review set""" check_result = ReviewSet(full_sql=sql) split_sql = [cmd.strip() for cmd in sql.split('\n') if cmd.strip()] line = 1 for cmd in split_sql: result = ReviewResult(id=line, errlevel=0, stagestatus='Audit completed', errormessage='None', sql=cmd, affected_rows=0, execute_time=0, ) check_result.rows += [result] line += 1 return check_result def execute_workflow(self, workflow): """执行上线单,返回Review set""" sql = workflow.sqlworkflowcontent.sql_content split_sql = [cmd.strip() for cmd in sql.split('\n') if cmd.strip()] execute_result = ReviewSet(full_sql=sql) line = 1 cmd = None try: conn = self.get_connection(db_name=workflow.db_name) for cmd in split_sql: with FuncTimer() as t: conn.execute_command(cmd) execute_result.rows.append(ReviewResult( id=line, errlevel=0, stagestatus='Execute Successfully', errormessage='None', sql=cmd, affected_rows=0, execute_time=t.cost, )) line += 1 except Exception as e: logger.warning(f"Redis命令执行报错,语句:{cmd or sql}, 错误信息:{traceback.format_exc()}") # 追加当前报错语句信息到执行结果中 execute_result.error = str(e) execute_result.rows.append(ReviewResult( id=line, errlevel=2, stagestatus='Execute Failed', errormessage=f'异常信息:{e}', sql=cmd, affected_rows=0, execute_time=0, )) line += 1 # 报错语句后面的语句标记为审核通过、未执行,追加到执行结果中 for statement in split_sql[line - 1:]: execute_result.rows.append(ReviewResult( id=line, errlevel=0, stagestatus='Audit completed', errormessage=f'前序语句失败, 未执行', sql=statement, affected_rows=0, execute_time=0, )) line += 1 return execute_result
StarcoderdataPython
1685110
<filename>yuntu/models.py from django.db import models class Index(models.Model): master_title = models.CharField(max_length=50) slave_title = models.CharField(max_length=200) about_us_string = models.TextField() contact_us_address = models.CharField(max_length=500) contact_us_email = models.CharField(max_length=200) def __unicode__(self): return self.master_title class FeatureMatrix(models.Model): feature_name = models.CharField(max_length=200) yuntu_app = models.CharField(max_length=100) replay_app = models.CharField(max_length=100) meipai_app = models.CharField(max_length=100) weishi_app = models.CharField(max_length=100) xiaoying_app = models.CharField(max_length=100) imovie_app = models.CharField(max_length=100) hyperlapse_app = models.CharField(max_length=100) weipai_app = models.CharField(max_length=100) wopai_app = models.CharField(max_length=100) yowo_app = models.CharField(max_length=100) musemage_app = models.CharField(max_length=100) def __unicode__(self): return self.feature_name class SubscribedEmail(models.Model): subscribed_email_address = models.EmailField(null=False, blank=False) subscribed_date_time = models.DateTimeField(auto_now_add=True) notified = models.BooleanField(default=False) def __unicode__(self): return self.subscribed_email_address
StarcoderdataPython
4838401
import factory from factory import Faker from factory.django import DjangoModelFactory from ..models import Agency, Correspondence, RecordRequest, RecordRequestFile class AgencyFactory(DjangoModelFactory): class Meta: model = Agency name = Faker("company") class RecordRequestFactory(DjangoModelFactory): class Meta: model = RecordRequest agency = factory.SubFactory(AgencyFactory) class CorrespondenceFactory(DjangoModelFactory): class Meta: model = Correspondence contact_address = factory.Faker("email") request = factory.SubFactory(RecordRequestFactory) class RecordRequestFileFactory(DjangoModelFactory): class Meta: model = RecordRequestFile request = factory.SubFactory(RecordRequestFactory) title = Faker("file_name") file = factory.django.FileField()
StarcoderdataPython
3276967
<reponame>jim/documenters-aggregator<filename>tests/test_chi_school_community_action_council.py<gh_stars>0 from datetime import datetime import pytest from freezegun import freeze_time from tests.utils import file_response from city_scrapers.spiders.chi_school_community_action_council import Chi_school_community_action_councilSpider freezer = freeze_time('2018-06-01 12:00:01') freezer.start() test_response = file_response('files/chi_school_community_action_council_CAC.html', url='http://cps.edu/FACE/Pages/CAC.aspx') spider = Chi_school_community_action_councilSpider() parsed_items = [item for item in spider.parse(test_response) if isinstance(item, dict)] current_month_number = datetime.today().month freezer.stop() def test_num_items(): assert len(parsed_items) == (13 - current_month_number)*8 def test_name(): assert parsed_items[0]['name'] == 'Austin Community Action Council' def test_start_time(): assert parsed_items[0]['start_time'].isoformat() == '2018-06-12T17:30:00' def test_end_time(): assert parsed_items[0]['end_time'].isoformat() == '2018-06-12T20:30:00' # def test_id(): # assert parsed_items[0]['id'] == \ # 'chi_school_community_action_council/201805081730/x/austin_community_action_council' def test_location(): assert parsed_items[0]['location'] == { 'url': None, 'name': ' <NAME> ', 'address': '5101 W Harrison St.', 'coordinates': { 'latitude': None, 'longitude': None, }, } @pytest.mark.parametrize('item', parsed_items) def test_description(item): assert item['description'] == "Community Action Councils, or CACs, consist of 25-30 voting members who are " \ "directly involved in developing a strategic plan for educational success within " \ "their communities. CAC members include parents; elected officials; faith-based " \ "institutions, health care and community-based organizations; Local School" \ " Council (LSC) members; business leaders; educators and school administrators; " \ "staff members from Chicago's Sister Agencies; community residents; " \ "and students. There are nine CACs across Chicago. Each works to empower the " \ "community they serve to lead the improvement of local quality education." @pytest.mark.parametrize('item', parsed_items) def test_sources(item): assert item['sources'] == [{'url': 'http://cps.edu/FACE/Pages/CAC.aspx', 'note': ''}] @pytest.mark.parametrize('item', parsed_items) def test_timezone(item): assert item['timezone'] == 'America/Chicago' @pytest.mark.parametrize('item', parsed_items) def test_all_day(item): assert item['all_day'] is False @pytest.mark.parametrize('item', parsed_items) def test_classification(item): assert item['classification'] == 'Education' @pytest.mark.parametrize('item', parsed_items) def test__type(item): assert parsed_items[0]['_type'] == 'event'
StarcoderdataPython
3205906
import copy import torch.nn as nn from models.glt_models import LinearClassifier from models.resnet_blocks import BasicBlock, Bottleneck, DownsampleConv2d from models.svdo_layers import LinearSVDO, Conv2dSVDO class SequentialSparsifier(nn.Module): def __init__(self, pretrained_model): super(SequentialSparsifier, self).__init__() self.model = nn.ModuleList() for module in pretrained_model: self.model.append(self.__get_sparse_layer(module)) self.train_mask = [False for _ in range(len(pretrained_model))] @classmethod def __get_sparse_layer(cls, dense_layer): if isinstance(dense_layer, nn.Linear): sparse_layer = LinearSVDO(dense_layer.in_features, dense_layer.out_features, dense_layer.bias is not None) sparse_layer.weight.data = dense_layer.weight.data.clone() if dense_layer.bias is not None: sparse_layer.bias.data = dense_layer.bias.data.clone() return sparse_layer elif isinstance(dense_layer, nn.Conv2d): sparse_layer = Conv2dSVDO(dense_layer.in_channels, dense_layer.out_channels, dense_layer.kernel_size, stride=dense_layer.stride, padding=dense_layer.padding, dilation=dense_layer.dilation, groups=dense_layer.groups, bias=dense_layer.bias is not None) sparse_layer.weight.data = dense_layer.weight.data.clone() if dense_layer.bias is not None: sparse_layer.bias.data = dense_layer.bias.data.clone() return sparse_layer elif isinstance(dense_layer, DownsampleConv2d): sparse_layer = DownsampleConv2d(dense_layer.in_channels, dense_layer.out_channels, stride=dense_layer.stride, sparse=True) sparse_layer.conv = cls.__get_sparse_layer(dense_layer.conv) return sparse_layer elif isinstance(dense_layer, BasicBlock): sparse_layer = BasicBlock(dense_layer.in_channels, dense_layer.out_channels, stride=dense_layer.stride, sparse=True) sparse_layer.conv_1 = cls.__get_sparse_layer(dense_layer.conv_1) sparse_layer.conv_2 = cls.__get_sparse_layer(dense_layer.conv_2) if dense_layer.shortcut is not None: sparse_layer.shortcut = cls.__get_sparse_layer(dense_layer.shortcut) sparse_layer.bn_1 = copy.copy(dense_layer.bn_1) sparse_layer.bn_2 = copy.copy(dense_layer.bn_2) return sparse_layer elif isinstance(dense_layer, Bottleneck): sparse_layer = Bottleneck(dense_layer.in_channels, dense_layer.out_channels, stride=dense_layer.stride, sparse=True) sparse_layer.conv_1 = cls.__get_sparse_layer(dense_layer.conv_1) sparse_layer.conv_2 = cls.__get_sparse_layer(dense_layer.conv_2) sparse_layer.conv_3 = cls.__get_sparse_layer(dense_layer.conv_3) if dense_layer.shortcut is not None: sparse_layer.shortcut = cls.__get_sparse_layer(dense_layer.shortcut) sparse_layer.bn_1 = copy.copy(dense_layer.bn_1) sparse_layer.bn_2 = copy.copy(dense_layer.bn_2) sparse_layer.bn_3 = copy.copy(dense_layer.bn_3) return sparse_layer elif isinstance(dense_layer, LinearClassifier): sparse_layer = LinearClassifier(dense_layer.in_channels, num_classes=dense_layer.num_classes, sparse=True) sparse_layer.linear = cls.__get_sparse_layer(dense_layer.linear) sparse_layer.bn = copy.copy(dense_layer.bn) return sparse_layer else: return copy.copy(dense_layer) @classmethod def __get_dense_layer(cls, sparse_layer): if isinstance(sparse_layer, LinearSVDO): dense_layer = nn.Linear(sparse_layer.in_features, sparse_layer.out_features, sparse_layer.bias is not None) dense_layer.weight.data = sparse_layer.weight.data.clone() dense_layer.weight.data *= (sparse_layer.log_alpha.data < sparse_layer.threshold).float() if sparse_layer.bias is not None: dense_layer.bias.data = sparse_layer.bias.data.clone() return dense_layer elif isinstance(sparse_layer, Conv2dSVDO): dense_layer = nn.Conv2d(sparse_layer.in_channels, sparse_layer.out_channels, sparse_layer.kernel_size, stride=sparse_layer.stride, padding=sparse_layer.padding, dilation=sparse_layer.dilation, groups=sparse_layer.groups, bias=sparse_layer.bias is not None) dense_layer.weight.data = sparse_layer.weight.data.clone() dense_layer.weight.data *= (sparse_layer.log_alpha.data < sparse_layer.threshold).float() if sparse_layer.bias is not None: dense_layer.bias.data = sparse_layer.bias.data.clone() return dense_layer elif isinstance(sparse_layer, DownsampleConv2d): if not sparse_layer.sparse: return copy.copy(sparse_layer) dense_layer = DownsampleConv2d(sparse_layer.in_channels, sparse_layer.out_channels, stride=sparse_layer.stride, sparse=False) dense_layer.conv = cls.__get_dense_layer(sparse_layer.conv) return dense_layer elif isinstance(sparse_layer, BasicBlock): if not sparse_layer.sparse: return copy.copy(sparse_layer) dense_layer = BasicBlock(sparse_layer.in_channels, sparse_layer.out_channels, stride=sparse_layer.stride, sparse=False) dense_layer.conv_1 = cls.__get_dense_layer(sparse_layer.conv_1) dense_layer.conv_2 = cls.__get_dense_layer(sparse_layer.conv_2) if sparse_layer.shortcut is not None: dense_layer.shortcut = cls.__get_dense_layer(sparse_layer.shortcut) dense_layer.bn_1 = copy.copy(sparse_layer.bn_1) dense_layer.bn_2 = copy.copy(sparse_layer.bn_2) return dense_layer elif isinstance(sparse_layer, Bottleneck): if not sparse_layer.sparse: return copy.copy(sparse_layer) dense_layer = Bottleneck(sparse_layer.in_channels, sparse_layer.out_channels, stride=sparse_layer.stride, sparse=False) dense_layer.conv_1 = cls.__get_dense_layer(sparse_layer.conv_1) dense_layer.conv_2 = cls.__get_dense_layer(sparse_layer.conv_2) dense_layer.conv_3 = cls.__get_dense_layer(sparse_layer.conv_3) if sparse_layer.shortcut is not None: dense_layer.shortcut = cls.__get_dense_layer(sparse_layer.shortcut) dense_layer.bn_1 = copy.copy(sparse_layer.bn_1) dense_layer.bn_2 = copy.copy(sparse_layer.bn_2) dense_layer.bn_3 = copy.copy(sparse_layer.bn_3) return dense_layer elif isinstance(sparse_layer, LinearClassifier): if not sparse_layer.sparse: return copy.copy(sparse_layer) dense_layer = LinearClassifier(sparse_layer.in_channels, num_classes=sparse_layer.num_classes, sparse=False) dense_layer.linear = cls.__get_dense_layer(sparse_layer.linear) dense_layer.bn = copy.copy(sparse_layer.bn) return dense_layer else: return copy.copy(sparse_layer) def update_mask(self, new_mask): self.train_mask = new_mask def set_gradient_flow(self): for module, train_flag in zip(self.model, self.train_mask): module.train(mode=train_flag) for parameter in module.parameters(): parameter.requires_grad = train_flag def finalize_blocks(self, finalize_mask): for i in range(len(self.train_mask)): if self.train_mask[i]: self.model[i] = self.__get_dense_layer(self.model[i]) def forward(self, x): out = x for module in self.model: out = module(out) return out def kl_divergence(self): total_kl = 0.0 for module, train_flag in zip(self.model, self.train_mask): if train_flag: total_kl = total_kl + module.kl_divergence() return total_kl
StarcoderdataPython
1742266
# Copyright 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import enum import errno import json import os import pprint import time from abc import ABCMeta, abstractmethod, abstractproperty from collections import namedtuple import numpy as np import click class GoldenOutputNotAvailableError(Exception): pass class NoCorrectnessDesired(Exception): pass class ExtrasNeeded(Exception): def __init__(self, extras): super(ExtrasNeeded, self).__init__( 'Missing needed packages for benchmark; to fix, pip install {}'.format( ' '.join(extras))) self.extras = extras class FrontendCommand(click.Command): def __init__(self, networks, *args, **kwargs): super(FrontendCommand, self).__init__(*args, **kwargs) self.__networks = networks def format_epilog(self, ctx, formatter): with formatter.section('Supported Networks'): formatter.write_text(', '.join(self.__networks)) class Precision(enum.Enum): TRAINING = 0.2 INFERENCE = 5e-04 class StopWatch(object): def __init__(self, use_callgrind): self._start = None self._stop = None self._use_callgrind = use_callgrind self._callgrind_active = False self._total = 0.0 def start_outer(self): # Like start(), but does not turn on callgrind. self._start = time.time() def start(self): self._start = time.time() if self._use_callgrind: os.system('callgrind_control --instr=on {}'.format(os.getpid())) self._callgrind_active = True def stop(self): if self._start is not None: stop = time.time() self._total += stop - self._start self._start = None if self._callgrind_active: self._callgrind_active = False os.system('callgrind_control --instr=off {}'.format(os.getpid())) def elapsed(self): return self._total class Output(object): def __init__(self): self.contents = None self.precision = 'untested' class Params( namedtuple('Params', [ 'batch_size', 'epochs', 'examples', 'warmups', 'network_name', 'backend_name', 'backend_opts', 'learn_phase' ])): """Parameters applied to a network during benchmarking.""" __slots__ = () @property def epoch_size(self): return self.examples // self.epochs class ExplicitParamBuilder(object): """Builds Params for an explicit benchmark run.""" def __init__(self, batch_size, epochs, examples, warmups=32, learn_phase=None): if not examples: examples = 1024 self.params = Params(batch_size, epochs, examples, warmups, None, None, None, learn_phase) def __call__(self, frontend, backend_name, network_names): if not network_names: raise click.UsageError('No networks specified; did you mean to add --blanket-run?') for network_name in network_names: params = self.params._replace(network_name=network_name, backend_name=backend_name) yield params class BlanketParamBuilder(object): """Builds Params for a blanket benchmark run.""" def __init__(self, epochs, learn_phase=None): self.params = Params(None, epochs, 256, 32, None, None, None, learn_phase=learn_phase) def __call__(self, frontend, backend_name, network_names): if network_names: raise click.UsageError( 'Networks specified with --blanket-run; choose one or the other') for network_name in frontend.network_names: for batch_size in frontend.blanket_batch_sizes: params = self.params._replace(network_name=network_name, batch_size=batch_size, backend_name=backend_name) yield params class ConsoleReporter(object): def __init__(self): self.configuration = {} def report(self, params, results, output): print(results) def complete(self): pass class ExplicitReporter(object): """Handles reports for an explicit benchmark run.""" def __init__(self, result_dir): self.result_dir = result_dir self.configuration = {} def report(self, params, results, output): try: os.makedirs(self.result_dir) except OSError as ex: if ex.errno != errno.EEXIST: click.echo(ex) return pprint.pprint(results) with open(os.path.join(self.result_dir, 'result.json'), 'w') as out: json.dump(results, out) if isinstance(output, np.ndarray): np.save(os.path.join(self.result_dir, 'result.npy'), output) def complete(self): pass class BlanketReporter(object): """Handles reports for a blanket benchmark run.""" def __init__(self, result_dir): self.result_dir = result_dir self.outputs = {} self.configuration = {} self.configuration['frontend'] = None self.configuration['backend'] = None self.configuration['train'] = False self.configuration['blanket_run'] = True def report(self, params, results, output): composite_str = ":".join( [params.backend_name, params.network_name, str(params.batch_size)]) self.outputs[composite_str] = {'results': dict(results)} def complete(self): self.outputs['run_configuration'] = self.configuration try: os.makedirs(self.result_dir) except OSError as ex: if ex.errno != errno.EEXIST: click.echo(ex) return with open( os.path.join( self.result_dir, '{}-{}-report.json'.format(self.configuration['backend'], self.configuration['frontend'])), 'w') as out: json.dump(self.outputs, out, sort_keys=True, indent=2) def _inner_run(reports, frontend, network_names, params, warmup, callgrind, print_stacktraces, tile=None): import plaidbench.cli as pb model = frontend.model(params) click.secho('Running {0} examples with {1}, batch size {2}, on backend {3}'.format( params.examples, params.network_name, params.batch_size, params.backend_name), fg='magenta') benchmark_results = {} model_output = None if params.examples % params.batch_size != 0: raise ValueError('The number of examples must be divisible by the batch size.') try: model.validate() model.setup() exec_stop_watch = StopWatch(callgrind) compile_stop_watch = StopWatch(callgrind) click.echo('Compiling network...', nl=False) compile_stop_watch.start_outer() model.compile() compile_stop_watch.stop() model_output, overrides = model.run(once=True) if tile: click.echo(' Saving Tile to {}...'.format(tile), nl=False) model.model.predict_function._invoker.save(tile) # Run a few more warmups -- this seems to improve the variability of the # benchmark results. if warmup: click.echo(' Warming up...', nl=False) model.run(warmup=True) click.echo(' Running...') exec_stop_watch.start_outer() _, overrides = model.run() exec_stop_watch.stop() # Record stopwatch times execution_duration = overrides.get('time', exec_stop_watch.elapsed()) exec_per_example = overrides.get('lastExecTimeInNS', execution_duration / params.examples) compile_duration = compile_stop_watch.elapsed() flops = overrides.get('flops', None) gflops = None if flops: gflops = (flops / 10.0**9 / exec_per_example) benchmark_results['GFLOP/s'] = gflops benchmark_results['flops'] = flops benchmark_results['compile_duration'] = compile_duration benchmark_results['duration_per_example'] = exec_per_example benchmark_results['tile_duration_per_example'] = exec_per_example benchmark_results['examples'] = params.examples benchmark_results['batch_size'] = params.batch_size benchmark_results['model'] = params.network_name benchmark_results['backend'] = params.backend_name resstr = 'Example finished, elapsed: {:.3f}s (compile), {:.3f}s (execution)\n'.format( compile_duration, execution_duration) if gflops: resstr += ', {:.2f} (GFLOP/s)'.format(gflops) click.secho(resstr, fg='cyan', bold=True) print( "-----------------------------------------------------------------------------------------" ) print("%-20s %-25s %-20s" % ("Network Name", "Inference Latency", "Time / FPS")) print( "-----------------------------------------------------------------------------------------" ) print("%-20s %-25s %-20s" % (params.network_name, "%.2f ms" % (exec_per_example * 1000), "%.2f ms / %.2f fps" % (exec_per_example * 1000, 1.0 / exec_per_example))) (golden_output, precision) = model.golden_output() (correct, max_error, max_abs_error, fail_ratio) = Runner._check_correctness(golden_output, model_output, precision.value) benchmark_results['correct'] = correct benchmark_results['max_error'] = float(max_error) benchmark_results['max_abs_error'] = float(max_abs_error) benchmark_results['fail_ratio'] = fail_ratio if correct: status = 'PASS' else: status = 'FAIL' click.secho('Correctness: {}, max_error: {}, max_abs_error: {}, fail_ratio: {}'.format( status, max_error, max_abs_error, fail_ratio), fg='green' if status == 'PASS' else 'red') except GoldenOutputNotAvailableError: click.echo('Correctness: untested. Could not find golden data to compare against.') except NoCorrectnessDesired: pass # Error handling except Exception as ex: # click.echo statements click.echo(ex) click.echo('Set --print-stacktraces to see the entire traceback') # Record error benchmark_results['exception'] = str(ex) if print_stacktraces: raise finally: reports.append((params, benchmark_results, model_output)) class Runner(object): """Runs an ML benchmark.""" def __init__(self, param_builder=ExplicitParamBuilder(1, 2, 1024), reporter=ConsoleReporter()): """Initializes the benchmark runner. Args: param_builder ((frontend, [str])->((Model, Params)...)): A callable that takes a frontend and a list of network names, and returns a sequence of (Model, Params) tuples describing the benchmarks to be run. reporter (Reporter): Handles benchmark reports. """ self.verbose = False self.result_dir = None self.callgrind = False self.param_builder = param_builder self.print_stacktraces = False self.reporter = reporter self.warmup = True self.timeout_secs = None self.tile = None def run(self, frontend, backend_name, network_names): """Runs a set of benchmarks. Args: frontend (Frontend): The interface to the ML frontend. network_names ([str]): The names of the networks to benchmark. """ self.reporter.configuration['frontend'] = frontend.name self.reporter.configuration['backend'] = backend_name self.reporter.configuration['example_size'] = self.param_builder.params.examples reports = [] try: for params in self.param_builder(frontend, backend_name, network_names): _inner_run( reports, frontend, network_names, params, self.warmup, self.callgrind, self.print_stacktraces, self.tile, ) except KeyboardInterrupt: click.secho("Aborting all runs...", fg="red") finally: # Reporter's gonna report for report in reports: self.reporter.report(*report) self.reporter.complete() return 0 @staticmethod def _check_correctness(base_output, cur_output, precision): # TODO: Parameterize relative and absolute error tolerance correct = np.allclose(base_output, cur_output, rtol=precision, atol=1e-06) # This duplicates allclose calculation for more detailed report relative_error = ((precision * np.absolute(base_output - cur_output)) / (1e-06 + precision * np.absolute(cur_output))) max_error = np.amax(relative_error) max_abs_error = np.amax(np.absolute(base_output - cur_output)) correct_entries = 0 incorrect_entries = 0 for x in np.nditer(relative_error): if x > precision: incorrect_entries += 1 else: correct_entries += 1 try: fail_ratio = incorrect_entries / float(correct_entries + incorrect_entries) except ZeroDivisionError: fail_ratio = 'Undefined' return (correct, max_error, max_abs_error, fail_ratio) class Frontend(object): """An abstract interface to an ML frontend.""" __metaclass__ = ABCMeta def __init__(self, network_names): # Need to POPT this for pickling for windows self.network_names = list(network_names) self.configuration = {} @property def name(self): raise NotImplementedError() @property def init_args(self): return (self.network_names,) @property def blanket_batch_sizes(self): return [1] @abstractmethod def model(self, params): """Returns a model built from the specified parameters. Args: params (Params): The parameters to use for the model. """ pass class Model(object): """An abstract interface to an ML model.""" __metaclass__ = ABCMeta @abstractmethod def setup(self): """Prepares a model to run benchmarks. This call gives an implementation to perform any setup/initialization actions that should not be included in the benchmark, e.g. downloading data files and other filesystem operations. """ pass @abstractmethod def compile(self): """Compiles a model for repeated use. This call should be used by the implementation to construct an in-memory optimized form of the model, suitable for repeated use. The implementation should not actually run the model; when compile() returns, the benchmarking infrastructure will issue an explicit call to run() to warm all relevant caches as part of the compilation measurement. """ pass @abstractmethod def run(self, once, warmup): """Runs the model, e.g. performing an inference or training batch. Args: once (Boolean): If True, runs with a number of examples equal to the batch size. This is used in the very first run of a network for network compilation timing. warmup (Boolean): If True, uses the warmup parameter to determine the number of examples. This is used to prepare the graphics card and other variable-performance elements for the main timing run, ensuring that they dedicate the necessary resources to accurately time a heavy workload, without taking the time needed to run a full set of examples. Returns: The model outputs - if inference, the inference output; if training, the training loss. """ pass def validate(self): """An optional hook for the model to use to validate its parameters.""" pass @abstractmethod def golden_output(self): """The golden model output. Returns: (ndarray, Precision) - The golden model output. Throws: GoldenOutputNotAvailableError - If the golden output is unavailable for this model. """
StarcoderdataPython
3253645
from django.apps import AppConfig from cmsplugin_text_ng.type_registry import register_type class CmsPluginTextNgConfig(AppConfig): name = 'cmsplugin_text_ng' verbose_name = "Django Cms Plugin Text-NG" def ready(self): from cmsplugin_text_ng.models import TextNGVariableText register_type('text', TextNGVariableText)
StarcoderdataPython
1688740
from mrjob.job import MRJob class MRCcounter(MRJob): def mapper(self, key, value): for phrase in value.split('.')[:-1]: yield 'phrase', 1 for word in phrase.split(' '): yield 'word', 1 yield 'characters', len(word) def reducer(self, key, values): yield key, sum(values) if __name__=='__main__': MRCcounter.run()
StarcoderdataPython
1667408
# !/usr/bin/env python # -*-coding:utf8 -*- """ Front controller """ class Dispatcher(object): frontcontroller = None module = "default" controller = "default" action = "index" isDispatched = False def __init__(self, frontcontroller): """ """ self.frontcontroller = frontcontroller def dispatch(self): if self.isDispatched == False: controllerFile = "modules.%s.controllers.%s" % (self.module, self.controller) controller = __import__(controllerFile) controller = controller.getInstance() eval("controller.%s.Action()" % self.action) def getInstance(frontcontroller): return Dispatcher(frontcontroller)
StarcoderdataPython
3332295
from __future__ import print_function import itertools import os import sys from functools import wraps from ruskit import cli NO_RETRY = -1 COLOR_MAP = { "red": 31, "green": 32, "yellow": 33, "blue": 34, "purple": 35 } def echo(*values, **kwargs): end = kwargs.get("end", '\n') color = kwargs.get("color", None) bold = 0 if kwargs.get("bold", False) is False else 1 disable = kwargs.get("diable", False) if disable: return msg = ' '.join(str(v) for v in values) + end if not color or os.getenv("ANSI_COLORS_DISABLED") is not None: sys.stdout.write(msg) else: color_prefix = "\033[{};{}m".format(bold, COLOR_MAP[color]) color_suffix = "\033[0m" sys.stdout.write(color_prefix + msg + color_suffix) sys.stdout.flush() def divide(n, m): """Divide integer n to m chunks """ avg = int(n / m) remain = n - m * avg data = list(itertools.repeat(avg, m)) for i in range(len(data)): if not remain: break data[i] += 1 remain -= 1 return data def spread(nodes, n): """Distrubute master instances in different nodes { "192.168.0.1": [node1, node2], "192.168.0.2": [node3, node4], "192.168.0.3": [node5, node6] } => [node1, node3, node5] """ target = [] while len(target) < n and nodes: for ip, node_group in list(nodes.items()): if not node_group: nodes.pop(ip) continue target.append(node_group.pop(0)) if len(target) >= n: break return target class RuskitException(Exception): pass class InvalidNewNode(RuskitException): pass def check_new_nodes(new_nodes, old_nodes=None): if old_nodes is None: old_nodes = [] versions = set(n.info()['redis_version'] for n in old_nodes) for instance in new_nodes: info = instance.info() if not info.get("cluster_enabled"): raise InvalidNewNode("cluster not enabled") if instance.cluster_info()["cluster_known_nodes"] != 1: raise InvalidNewNode( "node {}:{} belong to other cluster".format( instance.host, instance.port)) if info.get("db0"): raise InvalidNewNode("data exists in db0 of {}".format(instance)) versions.add(info['redis_version']) if len(versions) != 1: raise InvalidNewNode( "multiple versions found: {}".format(list(versions))) def timeout_argument(func): from .cluster import ClusterNode @cli.argument('--timeout', type=int) @wraps(func) def _wrapper(*arguments): if len(arguments) == 1: args = arguments[0] elif len(arguments) == 2: ctx, args = arguments else: raise Exception('invalid arguments') ClusterNode.socket_timeout = args.timeout return func(*arguments) return _wrapper
StarcoderdataPython
3225098
<filename>python_tests/test_input.py from __future__ import print_function import dynet as dy import numpy as np input_vals = np.arange(81) squared_norm = (input_vals**2).sum() shapes = [(81,), (3, 27), (3, 3, 9), (3, 3, 3, 3)] for i in range(4): # Not batched dy.renew_cg() input_tensor = input_vals.reshape(shapes[i]) x = dy.inputTensor(input_tensor) assert (x.dim()[0] == shapes[i] and x.dim()[1] == 1),"Dimension mismatch : {} : ({}, {})".format(x.dim(), shapes[i],1) assert (x.npvalue() == input_tensor).all(), "Expression value different from initial value" assert dy.squared_norm(x).scalar_value() == squared_norm, "Value mismatch" # Batched dy.renew_cg() xb = dy.inputTensor(input_tensor, batched=True) assert (xb.dim()[0] == (shapes[i][:-1] if i>0 else (1,)) and xb.dim()[1] == shapes[i][-1]), "Dimension mismatch with batch size : {} : ({}, {})".format(xb.dim(), (shapes[i][:-1] if i>0 else 1),shapes[i][-1]) assert (xb.npvalue() == input_tensor).all(), "Batched expression value different from initial value" assert dy.sum_batches(dy.squared_norm(xb)).scalar_value() == squared_norm, "Value mismatch" # Batched with list dy.renew_cg() xb = dy.inputTensor([np.asarray(x).transpose() for x in input_tensor.transpose()]) assert (xb.dim()[0] == (shapes[i][:-1] if i>0 else (1,)) and xb.dim()[1] == shapes[i][-1]) , "Dimension mismatch with batch size : {} : ({}, {})".format(xb.dim(), (shapes[i][:-1] if i>0 else 1),shapes[i][-1]) assert (xb.npvalue() == input_tensor).all(), "Batched expression value different from initial value" assert dy.sum_batches(dy.squared_norm(xb)).scalar_value() == squared_norm, "Value mismatch" caught = False try: dy.renew_cg() x = dy.inputTensor("This is not a tensor", batched=True) except TypeError: caught = True assert caught, "Exception wasn't caught"
StarcoderdataPython
3297995
<reponame>davidbarkhuizen/pytxt2html<gh_stars>1-10 source_file_path = '/home/mage/Downloads/c0.txt' template = '''<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>{{title}}</title> </head> <body class='bodyStyle'>{{body}}</body> <style>{{style}}</style> </html>''' br = '<br>' title = 'c0' style = ''' .bodyStyle { background: black; color: white; margin-left: 20%; margin-right: 20%; font-size: large; } ''' src_file_string = None with open(source_file_path) as source_file: src_file_string = source_file.read() src_file_string = src_file_string.replace('\r', '') body = src_file_string.replace('\n\n', br) body = body.replace('\t', br + '&emsp;'*3) html = template.replace('{{body}}', body) html = html.replace('{{title}}', title) html = html.replace('{{style}}', style) dest_file_path = source_file_path + '.html' with open(dest_file_path, 'tw') as dest_file: dest_file.write(html)
StarcoderdataPython
34468
<reponame>verycourt/Elections #!/usr/bin/python # encoding=utf8 import sys reload(sys) sys.setdefaultencoding('utf8') import requests from bs4 import BeautifulSoup import numpy as np import pandas as pd import warnings import dateparser import datetime import time import json from json import encoder encoder.FLOAT_REPR = lambda o: format(o, '.1f') warnings.filterwarnings('ignore') URL = "https://fr.wikipedia.org/wiki/Liste_de_sondages_sur_l'%C3%A9lection_pr%C3%A9sidentielle_fran%C3%A7aise_de_2017#2016" path1 = "/var/www/html/1ertour/" path2 = "/var/www/html/2ndtour/" '''dicoTableMois = {4:"Janvier 2016", 5:"Février 2016", 6:"Mars 2016", 7:"Avril 2016", 8:"Mai 2016", 9:"Juin 2016",\ 10:"Juillet 2016", 11:"Septembre 2016", 12:"Octobre 2016", 13:"Novembre 2016", 14:"Décembre 2016", \ 15:"Janvier 2017", 16:"Février 2017"} ''' dicoTableMois = {0:"Mars 2017", 1:"Février 2017", 2:"Janvier 2017"} dico_couleurs_candidats = {u"<NAME>":"#CC0066", u"<NAME>":"#CC3399",u"<NAME>":"#008000", u"<NAME>":"#A9A9A9", u"<NAME>":"#FF6600", u"<NAME>":"#3399FF", u"<NAME>":"#FF9999", u"<NAME>":"#CC0000", u"<NAME>":"#FF0000", u"<NAME>":"#FF6699", u"<NAME>":"#000080", u"<NAME>":"#CC0033", u"<NAME>":"#0000CC", u"<NAME>":"#66CC00", u"<NAME>":"#990033", u"<NAME>":"#FF0066", u"<NAME>":"#339900"} dico_candidat_parti = {u"<NAME>":"PS",u"<NAME>":"PS",u"<NAME>":"eelv", u"<NAME>" : "En Marche", u"<NAME>" : "MoDem", u"<NAME>":"Les Républicains", u"<NAME>" : "PS", u"<NAME>" : "sp", u"<NAME>" : "Parti de Gauche", u"<NAME>":"PS",u"<NAME>":"FN", u"<NAME>":"lutte ouvriere", u"<NAME>":"Debout La France", u"<NAME>":"empty", u"<NAME>":"NPA", u"<NAME>":"ps", u"<NAME>":"eelv"} def loadHTML(URL): resultats = requests.get(URL) return BeautifulSoup(resultats.text, 'html.parser') def loadPandas(URL): tables = loadHTML(URL).findAll("table") dfF = pd.DataFrame() dfFs = pd.DataFrame() #Pour chaque table de wikipedia : for idx, table in enumerate(tables) : lignes = table.findAll("tr") #On récupère le nom de chaque colonne : colonnes = [] for elem in lignes[0].findAll("th"): if elem.find("a") is None : if elem.text != u'Autres candidats': colonnes.append(elem.text) else : if(elem.find("a").text != ""): colonnes.append(elem.find("a").text) for elem in lignes[1].findAll("th"): if elem.find("a") is not None : colonnes.append(elem.find("a").text) if len(colonnes) < 7: for elem in lignes[2].findAll("th"): a=3 colonnes.append(elem.text) #On crée un pandas dataframe pour stocker nos table : df = pd.DataFrame(columns = colonnes) #print(len(colonnes)) nbRowspan = 0 rowspan = [] rowspanMil = [] #our chaque ligne de notre table : for j,ligne in enumerate(lignes[2:]): line = list(np.zeros(len(colonnes))) line = ["/" for item in line] #lorsque certains éléments de notre tableau occupent plusieurs lignes for i,item in enumerate(rowspanMil): if item[0] > 1 : line[item[1]] = item[2] item[0] -= 1 for i,elem in enumerate(ligne.findAll("td")): try: while line[i] != "/": i+=1 except: continue if elem.has_attr("rowspan"): nbRowspan = int(elem["rowspan"]) if nbRowspan >1: try : rowspanMil.append([nbRowspan, i, float(elem.text.replace("%", "").replace(",",".").replace("<",""))]) except Exception as e : rowspanMil.append([nbRowspan, i, (elem.text.replace("%", "").replace(",",".").replace("<",""))]) try: line[i] = (float(elem.text.replace("%", "").replace(",",".").replace("<",""))) except Exception as e : line[i] = (elem.text.replace("%", "").replace(",",".").replace("<","")) if len(line) > len(colonnes) - 3 : df.loc[j] = line #print(df) try : df = df[df["Date"] != "/"] except: continue if idx >= 0 and idx <= 2: df["Date"] = df["Date"].map(lambda x : x.lower().replace(dicoTableMois[idx].lower()[:-5],"")) df["Date"] = df["Date"].map(lambda x : x+" "+dicoTableMois[idx]) #2ème tour : if len(colonnes) < 7 : dfFs = dfFs.append(df) #1er tour : elif idx >= 0 and idx <= 2: dfF = dfF.append(df.ix[1:]) return (dfF, dfFs) dfF, dfFs = loadPandas(URL) ####################################################################### ########################### 1er tour ################################## ####################################################################### dfF = dfF.replace(to_replace=["-", "–"], value=" ") dfF = dfF[dfF["Pourrait changer d'avis"]!="/"] dfF["Pourrait changer d'avis"] = dfF["Pourrait changer d'avis"].map(lambda x : (str(x).split("[")[0].strip())) dfF["Pourrait changer d'avis"] = dfF["Pourrait changer d'avis"].map(lambda x : 0 if x == "nan" or x == "" else float(x[:2])) notCandidats = [u"Date", u"Sondeur", u"Échantillon"] anciensCandidats = [u"<NAME>", u"<NAME>", u"<NAME>", u"<NAME>", u"Eva Joly", u"<NAME>", u"<NAME>", u"<NAME>"] for col in dfF.columns: if col not in notCandidats: dfF[col] = dfF[col].map(lambda x: x if isinstance(x, float) else np.nan) dfF2 = dfF for col in anciensCandidats: if col in dfF2.columns : dfF2 = dfF2[dfF2[col].isnull()] dfF2 = dfF2.drop(col, axis=1) dfF2["Pourrait changer d'avis"] = dfF2["Pourrait changer d'avis"].map(lambda x : np.nan if x==0 else x) #print(dfF) dfF3 = dfF2 dfF3["Date"] = dfF3["Date"].map(lambda x : x.replace("1er", "1").replace("fév.", "")) dfF3["Date"] = dfF3["Date"].map(lambda x : ' '.join(x.split())) dfF3["Date"] = dfF3["Date"].map(lambda x : x if len(x.split(" ")) < 4 else " ".join(x.split(" ")[-3:])) dfF3["Date"] = dfF3["Date"].map(lambda x : dateparser.parse(x).date()) dfF3 = dfF3.groupby(["Date"]).mean().reset_index() dfF3 = dfF3.sort_values('Date', ascending=1) def dateToString(date): if len(str(date.month))==1: month = "0"+str(date.month) else : month = str(date.month) if len(str(date.day))==1: day = "0"+str(date.day) else : day = str(date.day) return str(date.year)+month+day dfF3 = dfF3.round(2) dfF3 = dfF3[dfF3["Date"] > datetime.date(year=2017,month=01,day=01)] dfF4 = dfF3 #dfF4 = dfF4.drop([u"<NAME>", u"<NAME>", u"<NAME>", u"<NAME>"], axis=1) for col in dfF4.columns: if col not in [u"<NAME>", u"<NAME>", u"Date", u"<NAME>",\ u"<NAME>", u"<NAME>", u"<NAME>"]: dfF4 = dfF4.drop(col, axis=1) dfF5 = dfF4 dfF4["date"] = dfF4["Date"].map(lambda x: dateToString(x)) dfF4 = dfF4.drop("Date", axis=1) dfF4 = dfF4.set_index("date") dfF4 = dfF4.dropna(axis=1, how='all') dfF4 = dfF4.dropna(axis=0, how='all') # --- To json --- # dfF5 = dfF5.dropna(axis=1, how='all') dfF5 = dfF5.dropna(axis=0, how='all') dfF5 = dfF5.set_index("Date") #dfF5.to_csv("table_agrege.csv") dfF5 = pd.read_csv("table_agrege.csv", encoding="utf-8") dfF5["Date"] = pd.to_datetime(dfF5["Date"]) dfF5 = dfF5.groupby(["Date", "date"]).mean().reset_index() dfF5.set_index("Date", inplace=True) print(dfF5) idx = pd.date_range(min(dfF5.index), max(dfF5.index)) dfF5 = dfF5.reindex(idx, fill_value="null") ######################## # Agrégats sur 6 jours # ######################## dfF5 = dfF5.drop("date", axis=1) dfF5 = dfF5.replace(to_replace=["null"], value=np.nan) diffDaysLast = (datetime.datetime.now()-max(dfF5.index).to_datetime()).days #dfF5.index = dfF5.index.map(lambda x : x.to_datetime() + datetime.timedelta(days=diffDaysLast)) #dfF5 = dfF5.map(lambda x : ) lastsondages = max(dfF5.index) to_add = (max(dfF5.index) - (max(dfF5.groupby(pd.TimeGrouper('6D')).mean().index))).days dfF5.index = dfF5.index.map(lambda x : (x + datetime.timedelta(days=to_add)) ) dfF5 = dfF5.groupby(pd.TimeGrouper('6D')).mean() #dfF5 = dfF5.index.map(lambda x : x.to_datetime() + datetime.timedelta(days=6)) for col in dfF5.columns : dfF5[col] = np.round(dfF5[col], 1) print(dfF5) to_json = [] dico_sondage = {} dico_sondage["id"] = 1 dico_sondage["refresh"] = {} dfF5 = dfF5.fillna("null") dico_sondage["refresh"]["last"] = time.mktime((lastsondages.to_datetime()).timetuple()) dico_sondage["refresh"]["dayInterval"] = 6 dico_sondage["title"] = "Agrégation des sondages pour le 1er tour de 11 instituts*" dico_sondage["legende"] = "* Les données de ce graphique sont les moyennes des sondages d'intentions de vote de 11 instituts sur six jours. \ Plus précisément, pour chaque jour affiché, il fait la moyenne sur les six derniers jours. \ Les instituts sont : Ifop-Fiducial, OpinionWay, CSA, Future Thinking - SSI, BVA, Odoxa, Harris Interactive, TNS Sofres, Cevipof Ipsos-Sopra Steria, Elabe, Dedicated Research." dico_sondage["unit"] = "%" dico_sondage["dataset"] = [] for col in dfF5.columns: #On garde les candidats demandés : dico_temp = {} dico_temp["title"] = col if col in dico_candidat_parti.keys(): dico_temp["subtitle"] = dico_candidat_parti[col] else : dico_temp["subtitle"] = "" if col in dico_couleurs_candidats.keys(): dico_temp["color"] = dico_couleurs_candidats[col] else : dico_temp["color"] = "#ffffff" dico_temp["data"] = list(dfF5[col]) dico_sondage["dataset"].append(dico_temp) to_json.append(dico_sondage) #dfF4.to_csv(path+"sondages1er.csv", sep="\t", encoding='utf-8') #dfF4.to_json(path1+"pollster1.json", force_ascii=False) dfF4.to_csv(path1+"sondages1er.csv", sep="\t", encoding='utf-8') dfF4.to_csv(path1+"data.tsv", sep="\t", encoding='utf-8') dfF4.to_csv("data.tsv", sep="\t", encoding='utf-8') #print(dfF3[["<NAME>", "Date"]]) ####################################################################### ########################### 2nd tour ################################## ####################################################################### dfFs2 = dfFs dfFs2["Date"] = dfFs2["Date"].map(lambda x : x if len(x)>5 else np.nan) dfFs2 = dfFs2[dfFs2["Date"].notnull()] dfFs2["Date"] = dfFs2["Date"].map(lambda x : x.replace(u"-", " ").replace(u"–", " ")) dfFs2["Date"] = dfFs2["Date"].map(lambda x : x if len(x.split(" ")) < 4 else " ".join(x.split(" ")[-3:])) dfFs2["Date"] = dfFs2["Date"].map(lambda x : dateparser.parse(x).date()) #dfFs2 = dfFs2.set_index(["Date"]) #dfFs2.index = pd.to_datetime(dfFs2.index) notCandidats = [u"Date", u"Sondeur", u"Échantillon"] def dateToString2(date): if len(str(date.month))==1: month = "0"+str(date.month) else : month = str(date.month) if len(str(date.day))==1: day = "0"+str(date.day) else : day = str(date.day) return day+"/"+month+"/"+str(date.year) def getDuel(df, nom1, nom2): return df[[nom1, nom2, "date"]].set_index("date").dropna(axis=0, how='any') for col in dfFs2.columns: if col not in notCandidats: if col != "Abstention, blanc ou nul": dfFs2[col] = dfFs2[col].map(lambda x: x if isinstance(x, float) else np.nan) else : dfFs2[col] = dfFs2[col].map(lambda x: x if isinstance(x, float) else 0) #dfFs2["Date"] = pd.to_datetime(dfFs2["Date"]) #dfFs2 = dfFs2.groupby(dfFs2["Date"].dt.month).mean() #dfFs2 = dfFs2.reset_index() dfFs2["date"] = dfFs2["Date"].map(lambda x: dateToString2(x)) dfFs2 = dfFs2.drop("Date", axis=1) getDuel(dfFs2, u"<NAME>", u"<NAME>").to_csv(path2+"mlpVSff.tsv", sep="\t", encoding="utf-8") getDuel(dfFs2, u"<NAME>", u"<NAME>").to_csv(path2+"mlpVSmv.tsv", sep="\t", encoding='utf-8') getDuel(dfFs2, u"<NAME>", u"<NAME>").to_csv(path2+"mlpVSem.tsv", sep="\t", encoding='utf-8') getDuel(dfFs2, u"<NAME>", u"<NAME>").to_csv(path2+"emvsff.tsv", sep="\t", encoding="utf-8") ''' getDuel(dfFs2, u"<NAME>", u"<NAME>").to_json(path2+"mlpVSmv.json", force_ascii=False) getDuel(dfFs2, u"<NAME>", u"<NAME>").to_json(path2+"mlpVSff.json", force_ascii=False) getDuel(dfFs2, u"<NAME>", u"<NAME>").to_json(path2+"mlpVSem.json", force_ascii=False) getDuel(dfFs2, u"<NAME>", u"<NAME>").to_json(path2+"emvsff.json", force_ascii=False) ''' dfFs2.to_csv(path2+"sondages2e.csv", encoding='utf-8') #dfFs2.to_json(path2+"sondages2e.json") print("Done")
StarcoderdataPython
50039
<reponame>Chicone/SSM-VPR<filename>ssmbase.py # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'ssm.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(1262, 783) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(MainWindow.sizePolicy().hasHeightForWidth()) MainWindow.setSizePolicy(sizePolicy) MainWindow.setUnifiedTitleAndToolBarOnMac(True) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setMinimumSize(QtCore.QSize(1200, 730)) self.centralwidget.setObjectName("centralwidget") self.groupBox_7 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_7.setGeometry(QtCore.QRect(590, 299, 671, 411)) self.groupBox_7.setObjectName("groupBox_7") self.queryGroupBox = QtWidgets.QGroupBox(self.centralwidget) self.queryGroupBox.setGeometry(QtCore.QRect(590, 30, 224, 231)) self.queryGroupBox.setStyleSheet("") self.queryGroupBox.setObjectName("queryGroupBox") self.scrollArea = QtWidgets.QScrollArea(self.queryGroupBox) self.scrollArea.setGeometry(QtCore.QRect(0, 20, 221, 211)) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.scrollArea.sizePolicy().hasHeightForWidth()) self.scrollArea.setSizePolicy(sizePolicy) self.scrollArea.setWidgetResizable(True) self.scrollArea.setObjectName("scrollArea") self.scrollAreaWidgetContents = QtWidgets.QWidget() self.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 219, 209)) self.scrollAreaWidgetContents.setObjectName("scrollAreaWidgetContents") self.queryImageLabel = QtWidgets.QLabel(self.scrollAreaWidgetContents) self.queryImageLabel.setGeometry(QtCore.QRect(0, 0, 224, 224)) self.queryImageLabel.setText("") self.queryImageLabel.setObjectName("queryImageLabel") self.scrollArea.setWidget(self.scrollAreaWidgetContents) self.stage1_groupBox = QtWidgets.QGroupBox(self.centralwidget) self.stage1_groupBox.setEnabled(True) self.stage1_groupBox.setGeometry(QtCore.QRect(30, 30, 161, 411)) self.stage1_groupBox.setContextMenuPolicy(QtCore.Qt.DefaultContextMenu) self.stage1_groupBox.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "\n" "") self.stage1_groupBox.setObjectName("stage1_groupBox") self.imageSizeGroupBox_s1 = QtWidgets.QGroupBox(self.stage1_groupBox) self.imageSizeGroupBox_s1.setGeometry(QtCore.QRect(10, 30, 141, 101)) self.imageSizeGroupBox_s1.setMaximumSize(QtCore.QSize(160, 16777215)) self.imageSizeGroupBox_s1.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "") self.imageSizeGroupBox_s1.setObjectName("imageSizeGroupBox_s1") self.imageWidthLineEdit_s1 = QtWidgets.QLineEdit(self.imageSizeGroupBox_s1) self.imageWidthLineEdit_s1.setGeometry(QtCore.QRect(60, 30, 41, 27)) self.imageWidthLineEdit_s1.setAutoFillBackground(False) self.imageWidthLineEdit_s1.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.imageWidthLineEdit_s1.setReadOnly(False) self.imageWidthLineEdit_s1.setPlaceholderText("") self.imageWidthLineEdit_s1.setObjectName("imageWidthLineEdit_s1") self.imageHeightLineEdit_s1 = QtWidgets.QLineEdit(self.imageSizeGroupBox_s1) self.imageHeightLineEdit_s1.setGeometry(QtCore.QRect(60, 65, 41, 27)) self.imageHeightLineEdit_s1.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.imageHeightLineEdit_s1.setReadOnly(False) self.imageHeightLineEdit_s1.setObjectName("imageHeightLineEdit_s1") self.label = QtWidgets.QLabel(self.imageSizeGroupBox_s1) self.label.setGeometry(QtCore.QRect(10, 30, 80, 30)) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(self.imageSizeGroupBox_s1) self.label_2.setGeometry(QtCore.QRect(7, 70, 66, 16)) self.label_2.setObjectName("label_2") self.label_3 = QtWidgets.QLabel(self.imageSizeGroupBox_s1) self.label_3.setGeometry(QtCore.QRect(110, 30, 21, 30)) self.label_3.setObjectName("label_3") self.label_4 = QtWidgets.QLabel(self.imageSizeGroupBox_s1) self.label_4.setGeometry(QtCore.QRect(110, 70, 30, 20)) self.label_4.setObjectName("label_4") self.groupBox_2 = QtWidgets.QGroupBox(self.stage1_groupBox) self.groupBox_2.setGeometry(QtCore.QRect(10, 140, 141, 151)) self.groupBox_2.setMaximumSize(QtCore.QSize(160, 16777215)) self.groupBox_2.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "") self.groupBox_2.setObjectName("groupBox_2") self.vggRadioButton = QtWidgets.QRadioButton(self.groupBox_2) self.vggRadioButton.setGeometry(QtCore.QRect(20, 30, 115, 22)) self.vggRadioButton.setObjectName("vggRadioButton") self.netvladRadioButton = QtWidgets.QRadioButton(self.groupBox_2) self.netvladRadioButton.setGeometry(QtCore.QRect(20, 122, 115, 20)) self.netvladRadioButton.setObjectName("netvladRadioButton") self.resnetRadioButton = QtWidgets.QRadioButton(self.groupBox_2) self.resnetRadioButton.setGeometry(QtCore.QRect(20, 60, 115, 22)) self.resnetRadioButton.setObjectName("resnetRadioButton") self.googlenetRadioButton = QtWidgets.QRadioButton(self.groupBox_2) self.googlenetRadioButton.setGeometry(QtCore.QRect(20, 90, 115, 22)) self.googlenetRadioButton.setObjectName("googlenetRadioButton") self.groupBox_8 = QtWidgets.QGroupBox(self.stage1_groupBox) self.groupBox_8.setGeometry(QtCore.QRect(10, 300, 141, 100)) self.groupBox_8.setMaximumSize(QtCore.QSize(160, 16777215)) self.groupBox_8.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "") self.groupBox_8.setObjectName("groupBox_8") self.pcaDimLineEdit_s1 = QtWidgets.QLineEdit(self.groupBox_8) self.pcaDimLineEdit_s1.setGeometry(QtCore.QRect(80, 20, 51, 27)) self.pcaDimLineEdit_s1.setAutoFillBackground(False) self.pcaDimLineEdit_s1.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.pcaDimLineEdit_s1.setReadOnly(False) self.pcaDimLineEdit_s1.setPlaceholderText("") self.pcaDimLineEdit_s1.setObjectName("pcaDimLineEdit_s1") self.label_21 = QtWidgets.QLabel(self.groupBox_8) self.label_21.setGeometry(QtCore.QRect(10, 20, 80, 30)) self.label_21.setObjectName("label_21") self.label_22 = QtWidgets.QLabel(self.groupBox_8) self.label_22.setGeometry(QtCore.QRect(10, 50, 80, 30)) self.label_22.setObjectName("label_22") self.pcaSamplesLineEdit_s1 = QtWidgets.QLineEdit(self.groupBox_8) self.pcaSamplesLineEdit_s1.setGeometry(QtCore.QRect(80, 50, 51, 27)) self.pcaSamplesLineEdit_s1.setAutoFillBackground(False) self.pcaSamplesLineEdit_s1.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.pcaSamplesLineEdit_s1.setReadOnly(False) self.pcaSamplesLineEdit_s1.setPlaceholderText("") self.pcaSamplesLineEdit_s1.setObjectName("pcaSamplesLineEdit_s1") self.groupBox_3 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_3.setGeometry(QtCore.QRect(30, 460, 531, 131)) self.groupBox_3.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "\n" "") self.groupBox_3.setObjectName("groupBox_3") self.btnLoadReference = QtWidgets.QPushButton(self.groupBox_3) self.btnLoadReference.setGeometry(QtCore.QRect(20, 24, 101, 27)) self.btnLoadReference.setObjectName("btnLoadReference") self.btnLoadTest = QtWidgets.QPushButton(self.groupBox_3) self.btnLoadTest.setGeometry(QtCore.QRect(20, 60, 101, 27)) self.btnLoadTest.setObjectName("btnLoadTest") self.btnLoadGroungTruth = QtWidgets.QPushButton(self.groupBox_3) self.btnLoadGroungTruth.setGeometry(QtCore.QRect(20, 96, 101, 27)) self.btnLoadGroungTruth.setObjectName("btnLoadGroungTruth") self.refOkLabel = QtWidgets.QLabel(self.groupBox_3) self.refOkLabel.setGeometry(QtCore.QRect(130, 30, 391, 17)) font = QtGui.QFont() font.setPointSize(9) font.setItalic(True) self.refOkLabel.setFont(font) self.refOkLabel.setText("") self.refOkLabel.setObjectName("refOkLabel") self.testOkLabel = QtWidgets.QLabel(self.groupBox_3) self.testOkLabel.setGeometry(QtCore.QRect(130, 66, 391, 17)) font = QtGui.QFont() font.setPointSize(9) font.setItalic(True) self.testOkLabel.setFont(font) self.testOkLabel.setText("") self.testOkLabel.setObjectName("testOkLabel") self.groundTruthOkLabel = QtWidgets.QLabel(self.groupBox_3) self.groundTruthOkLabel.setGeometry(QtCore.QRect(130, 103, 391, 17)) font = QtGui.QFont() font.setPointSize(9) font.setItalic(True) self.groundTruthOkLabel.setFont(font) self.groundTruthOkLabel.setText("") self.groundTruthOkLabel.setObjectName("groundTruthOkLabel") self.groupBox_4 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_4.setGeometry(QtCore.QRect(30, 610, 161, 111)) self.groupBox_4.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "\n" "") self.groupBox_4.setObjectName("groupBox_4") self.btnCreateDB = QtWidgets.QPushButton(self.groupBox_4) self.btnCreateDB.setGeometry(QtCore.QRect(30, 30, 91, 27)) self.btnCreateDB.setObjectName("btnCreateDB") self.btnRecognition = QtWidgets.QPushButton(self.groupBox_4) self.btnRecognition.setGeometry(QtCore.QRect(30, 70, 91, 27)) self.btnRecognition.setObjectName("btnRecognition") self.textBrowser = QtWidgets.QTextBrowser(self.centralwidget) self.textBrowser.setGeometry(QtCore.QRect(590, 320, 671, 401)) font = QtGui.QFont() font.setFamily("Monospace") font.setPointSize(8) self.textBrowser.setFont(font) self.textBrowser.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "\n" "") self.textBrowser.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOn) self.textBrowser.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByKeyboard|QtCore.Qt.LinksAccessibleByMouse|QtCore.Qt.TextBrowserInteraction|QtCore.Qt.TextSelectableByKeyboard|QtCore.Qt.TextSelectableByMouse) self.textBrowser.setObjectName("textBrowser") self.outputGroupBox = QtWidgets.QGroupBox(self.centralwidget) self.outputGroupBox.setGeometry(QtCore.QRect(810, 30, 224, 231)) self.outputGroupBox.setStyleSheet("") self.outputGroupBox.setObjectName("outputGroupBox") self.scrollArea_4 = QtWidgets.QScrollArea(self.outputGroupBox) self.scrollArea_4.setGeometry(QtCore.QRect(0, 20, 221, 211)) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.scrollArea_4.sizePolicy().hasHeightForWidth()) self.scrollArea_4.setSizePolicy(sizePolicy) self.scrollArea_4.setWidgetResizable(True) self.scrollArea_4.setObjectName("scrollArea_4") self.scrollAreaWidgetContents_4 = QtWidgets.QWidget() self.scrollAreaWidgetContents_4.setGeometry(QtCore.QRect(0, 0, 219, 209)) self.scrollAreaWidgetContents_4.setObjectName("scrollAreaWidgetContents_4") self.outputImageLabel = QtWidgets.QLabel(self.scrollAreaWidgetContents_4) self.outputImageLabel.setGeometry(QtCore.QRect(0, 0, 224, 224)) self.outputImageLabel.setText("") self.outputImageLabel.setObjectName("outputImageLabel") self.scrollArea_4.setWidget(self.scrollAreaWidgetContents_4) self.referenceGroupBox = QtWidgets.QGroupBox(self.centralwidget) self.referenceGroupBox.setGeometry(QtCore.QRect(1030, 30, 224, 231)) self.referenceGroupBox.setStyleSheet("") self.referenceGroupBox.setObjectName("referenceGroupBox") self.scrollArea_6 = QtWidgets.QScrollArea(self.referenceGroupBox) self.scrollArea_6.setGeometry(QtCore.QRect(0, 20, 221, 211)) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.scrollArea_6.sizePolicy().hasHeightForWidth()) self.scrollArea_6.setSizePolicy(sizePolicy) self.scrollArea_6.setWidgetResizable(True) self.scrollArea_6.setObjectName("scrollArea_6") self.scrollAreaWidgetContents_6 = QtWidgets.QWidget() self.scrollAreaWidgetContents_6.setGeometry(QtCore.QRect(0, 0, 219, 209)) self.scrollAreaWidgetContents_6.setObjectName("scrollAreaWidgetContents_6") self.referenceImageLabel = QtWidgets.QLabel(self.scrollAreaWidgetContents_6) self.referenceImageLabel.setGeometry(QtCore.QRect(1, 0, 224, 224)) self.referenceImageLabel.setText("") self.referenceImageLabel.setObjectName("referenceImageLabel") self.scrollArea_6.setWidget(self.scrollAreaWidgetContents_6) self.groupBox_5 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_5.setGeometry(QtCore.QRect(400, 610, 161, 111)) self.groupBox_5.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "\n" "") self.groupBox_5.setObjectName("groupBox_5") self.btnPause = QtWidgets.QPushButton(self.groupBox_5) self.btnPause.setGeometry(QtCore.QRect(30, 30, 91, 27)) self.btnPause.setObjectName("btnPause") self.btnStop = QtWidgets.QPushButton(self.groupBox_5) self.btnStop.setGeometry(QtCore.QRect(30, 70, 91, 27)) self.btnStop.setObjectName("btnStop") self.stage2_groupBox = QtWidgets.QGroupBox(self.centralwidget) self.stage2_groupBox.setGeometry(QtCore.QRect(210, 30, 161, 411)) self.stage2_groupBox.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "\n" "") self.stage2_groupBox.setObjectName("stage2_groupBox") self.groupBox_10 = QtWidgets.QGroupBox(self.stage2_groupBox) self.groupBox_10.setGeometry(QtCore.QRect(10, 30, 141, 101)) self.groupBox_10.setMaximumSize(QtCore.QSize(160, 16777215)) self.groupBox_10.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "\n" "") self.groupBox_10.setObjectName("groupBox_10") self.imageWidthLineEdit_s2 = QtWidgets.QLineEdit(self.groupBox_10) self.imageWidthLineEdit_s2.setGeometry(QtCore.QRect(60, 29, 41, 27)) self.imageWidthLineEdit_s2.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.imageWidthLineEdit_s2.setReadOnly(False) self.imageWidthLineEdit_s2.setPlaceholderText("") self.imageWidthLineEdit_s2.setObjectName("imageWidthLineEdit_s2") self.imageHeightLineEdit_s2 = QtWidgets.QLineEdit(self.groupBox_10) self.imageHeightLineEdit_s2.setGeometry(QtCore.QRect(60, 63, 41, 30)) self.imageHeightLineEdit_s2.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.imageHeightLineEdit_s2.setReadOnly(False) self.imageHeightLineEdit_s2.setObjectName("imageHeightLineEdit_s2") self.label_8 = QtWidgets.QLabel(self.groupBox_10) self.label_8.setGeometry(QtCore.QRect(10, 30, 80, 30)) self.label_8.setObjectName("label_8") self.label_9 = QtWidgets.QLabel(self.groupBox_10) self.label_9.setGeometry(QtCore.QRect(7, 70, 66, 16)) self.label_9.setObjectName("label_9") self.label_10 = QtWidgets.QLabel(self.groupBox_10) self.label_10.setGeometry(QtCore.QRect(110, 30, 21, 30)) self.label_10.setObjectName("label_10") self.label_13 = QtWidgets.QLabel(self.groupBox_10) self.label_13.setGeometry(QtCore.QRect(110, 66, 30, 31)) self.label_13.setObjectName("label_13") self.groupBox_9 = QtWidgets.QGroupBox(self.stage2_groupBox) self.groupBox_9.setGeometry(QtCore.QRect(10, 140, 141, 151)) self.groupBox_9.setMaximumSize(QtCore.QSize(160, 16777215)) self.groupBox_9.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "") self.groupBox_9.setObjectName("groupBox_9") self.vggRadioButton_s2 = QtWidgets.QRadioButton(self.groupBox_9) self.vggRadioButton_s2.setGeometry(QtCore.QRect(20, 30, 115, 22)) self.vggRadioButton_s2.setObjectName("vggRadioButton_s2") self.resnetRadioButton_s2 = QtWidgets.QRadioButton(self.groupBox_9) self.resnetRadioButton_s2.setGeometry(QtCore.QRect(20, 60, 115, 22)) self.resnetRadioButton_s2.setObjectName("resnetRadioButton_s2") self.googlenetRadioButton_s2 = QtWidgets.QRadioButton(self.groupBox_9) self.googlenetRadioButton_s2.setGeometry(QtCore.QRect(20, 90, 115, 22)) self.googlenetRadioButton_s2.setObjectName("googlenetRadioButton_s2") self.groupBox_11 = QtWidgets.QGroupBox(self.stage2_groupBox) self.groupBox_11.setGeometry(QtCore.QRect(10, 300, 141, 100)) self.groupBox_11.setMaximumSize(QtCore.QSize(160, 16777215)) self.groupBox_11.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "") self.groupBox_11.setObjectName("groupBox_11") self.pcaDimLineEdit_s2 = QtWidgets.QLineEdit(self.groupBox_11) self.pcaDimLineEdit_s2.setGeometry(QtCore.QRect(80, 20, 51, 27)) self.pcaDimLineEdit_s2.setAutoFillBackground(False) self.pcaDimLineEdit_s2.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.pcaDimLineEdit_s2.setReadOnly(False) self.pcaDimLineEdit_s2.setPlaceholderText("") self.pcaDimLineEdit_s2.setObjectName("pcaDimLineEdit_s2") self.label_23 = QtWidgets.QLabel(self.groupBox_11) self.label_23.setGeometry(QtCore.QRect(10, 20, 80, 30)) self.label_23.setObjectName("label_23") self.label_24 = QtWidgets.QLabel(self.groupBox_11) self.label_24.setGeometry(QtCore.QRect(10, 50, 80, 30)) self.label_24.setObjectName("label_24") self.pcaSamplesLineEdit_s2 = QtWidgets.QLineEdit(self.groupBox_11) self.pcaSamplesLineEdit_s2.setGeometry(QtCore.QRect(80, 50, 51, 27)) self.pcaSamplesLineEdit_s2.setAutoFillBackground(False) self.pcaSamplesLineEdit_s2.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.pcaSamplesLineEdit_s2.setReadOnly(False) self.pcaSamplesLineEdit_s2.setPlaceholderText("") self.pcaSamplesLineEdit_s2.setObjectName("pcaSamplesLineEdit_s2") self.groupBox_6 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_6.setGeometry(QtCore.QRect(220, 610, 161, 111)) self.groupBox_6.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "\n" "") self.groupBox_6.setObjectName("groupBox_6") self.btnSaveOutput = QtWidgets.QPushButton(self.groupBox_6) self.btnSaveOutput.setGeometry(QtCore.QRect(30, 30, 91, 27)) self.btnSaveOutput.setObjectName("btnSaveOutput") self.btnPRcurves = QtWidgets.QPushButton(self.groupBox_6) self.btnPRcurves.setGeometry(QtCore.QRect(30, 70, 91, 27)) self.btnPRcurves.setObjectName("btnPRcurves") self.groupBox_12 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_12.setGeometry(QtCore.QRect(390, 30, 171, 221)) self.groupBox_12.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "") self.groupBox_12.setObjectName("groupBox_12") self.label_17 = QtWidgets.QLabel(self.groupBox_12) self.label_17.setGeometry(QtCore.QRect(10, 65, 111, 30)) self.label_17.setObjectName("label_17") self.frameTolLineEdit = QtWidgets.QLineEdit(self.groupBox_12) self.frameTolLineEdit.setGeometry(QtCore.QRect(125, 65, 38, 27)) self.frameTolLineEdit.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.frameTolLineEdit.setObjectName("frameTolLineEdit") self.candidatesLineEdit = QtWidgets.QLineEdit(self.groupBox_12) self.candidatesLineEdit.setGeometry(QtCore.QRect(125, 31, 38, 27)) self.candidatesLineEdit.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.candidatesLineEdit.setObjectName("candidatesLineEdit") self.label_18 = QtWidgets.QLabel(self.groupBox_12) self.label_18.setGeometry(QtCore.QRect(10, 32, 81, 30)) self.label_18.setObjectName("label_18") self.prevFramesLineEdit = QtWidgets.QLineEdit(self.groupBox_12) self.prevFramesLineEdit.setGeometry(QtCore.QRect(125, 100, 38, 27)) self.prevFramesLineEdit.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.prevFramesLineEdit.setObjectName("prevFramesLineEdit") self.label_5 = QtWidgets.QLabel(self.groupBox_12) self.label_5.setGeometry(QtCore.QRect(10, 100, 111, 31)) self.label_5.setText("Frame corr. (FC)") self.label_5.setObjectName("label_5") self.gpuGroupBox = QtWidgets.QGroupBox(self.centralwidget) self.gpuGroupBox.setGeometry(QtCore.QRect(390, 310, 171, 131)) self.gpuGroupBox.setStyleSheet("QGroupBox {\n" " border: 1px solid gray;\n" " border-radius: 9px;\n" " margin-top: 0.5em;\n" "}\n" "\n" "QGroupBox::title {\n" " subcontrol-origin: margin;\n" " left: 3px;\n" " padding: 3 0 3 0;\n" "}\n" "") self.gpuGroupBox.setObjectName("gpuGroupBox") self.label_12 = QtWidgets.QLabel(self.gpuGroupBox) self.label_12.setGeometry(QtCore.QRect(10, 80, 111, 31)) self.label_12.setText("Max. candidates ") self.label_12.setObjectName("label_12") self.gpuCandLineEdit = QtWidgets.QLineEdit(self.gpuGroupBox) self.gpuCandLineEdit.setGeometry(QtCore.QRect(125, 80, 38, 27)) self.gpuCandLineEdit.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.gpuCandLineEdit.setObjectName("gpuCandLineEdit") self.loadDbOnGpuCheckBox = QtWidgets.QCheckBox(self.gpuGroupBox) self.loadDbOnGpuCheckBox.setGeometry(QtCore.QRect(10, 40, 141, 22)) self.loadDbOnGpuCheckBox.setObjectName("loadDbOnGpuCheckBox") self.useGpuCheckBox = QtWidgets.QCheckBox(self.centralwidget) self.useGpuCheckBox.setGeometry(QtCore.QRect(390, 280, 96, 22)) self.useGpuCheckBox.setObjectName("useGpuCheckBox") MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.menuBar = QtWidgets.QMenuBar(MainWindow) self.menuBar.setGeometry(QtCore.QRect(0, 0, 1262, 25)) self.menuBar.setObjectName("menuBar") self.menuAbout = QtWidgets.QMenu(self.menuBar) self.menuAbout.setObjectName("menuAbout") MainWindow.setMenuBar(self.menuBar) self.actionOpen = QtWidgets.QAction(MainWindow) self.actionOpen.setObjectName("actionOpen") self.actionSpectrogram = QtWidgets.QAction(MainWindow) self.actionSpectrogram.setObjectName("actionSpectrogram") self.actionFrequency_Map = QtWidgets.QAction(MainWindow) self.actionFrequency_Map.setObjectName("actionFrequency_Map") self.actionSave_path = QtWidgets.QAction(MainWindow) self.actionSave_path.setObjectName("actionSave_path") self.actionAbout = QtWidgets.QAction(MainWindow) self.actionAbout.setObjectName("actionAbout") self.menuAbout.addAction(self.actionAbout) self.menuBar.addAction(self.menuAbout.menuAction()) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Visual Place Recognition interface")) self.groupBox_7.setTitle(_translate("MainWindow", "Console")) self.queryGroupBox.setTitle(_translate("MainWindow", "Query")) self.stage1_groupBox.setTitle(_translate("MainWindow", "STAGE I ")) self.imageSizeGroupBox_s1.setTitle(_translate("MainWindow", "Image size")) self.imageWidthLineEdit_s1.setText(_translate("MainWindow", "224")) self.imageHeightLineEdit_s1.setText(_translate("MainWindow", "224")) self.label.setText(_translate("MainWindow", "Width")) self.label_2.setText(_translate("MainWindow", "Height")) self.label_3.setText(_translate("MainWindow", "px")) self.label_4.setText(_translate("MainWindow", "px")) self.groupBox_2.setTitle(_translate("MainWindow", "Method")) self.vggRadioButton.setText(_translate("MainWindow", "VGG16")) self.netvladRadioButton.setText(_translate("MainWindow", "NetVLAD")) self.resnetRadioButton.setText(_translate("MainWindow", "ResNet")) self.googlenetRadioButton.setText(_translate("MainWindow", "GoogLeNet")) self.groupBox_8.setTitle(_translate("MainWindow", "PCA")) self.pcaDimLineEdit_s1.setText(_translate("MainWindow", "125")) self.label_21.setText(_translate("MainWindow", "Dim.")) self.label_22.setText(_translate("MainWindow", "Samples")) self.pcaSamplesLineEdit_s1.setText(_translate("MainWindow", "10000")) self.groupBox_3.setTitle(_translate("MainWindow", "Select files")) self.btnLoadReference.setText(_translate("MainWindow", "Reference dir")) self.btnLoadTest.setText(_translate("MainWindow", "Test dir")) self.btnLoadGroungTruth.setText(_translate("MainWindow", "Ground truth")) self.groupBox_4.setTitle(_translate("MainWindow", "Run")) self.btnCreateDB.setText(_translate("MainWindow", "Create DB")) self.btnRecognition.setText(_translate("MainWindow", "Recognition")) self.textBrowser.setHtml(_translate("MainWindow", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'Monospace\'; font-size:8pt; font-weight:400; font-style:normal;\">\n" "<p style=\"-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-family:\'Ubuntu\'; font-size:11pt;\"><br /></p></body></html>")) self.outputGroupBox.setTitle(_translate("MainWindow", "Recognized")) self.referenceGroupBox.setTitle(_translate("MainWindow", "Ground truth")) self.groupBox_5.setTitle(_translate("MainWindow", "Controls")) self.btnPause.setText(_translate("MainWindow", "Pause")) self.btnStop.setText(_translate("MainWindow", "Stop")) self.stage2_groupBox.setTitle(_translate("MainWindow", "STAGE II ")) self.groupBox_10.setTitle(_translate("MainWindow", "Image size")) self.imageWidthLineEdit_s2.setText(_translate("MainWindow", "224")) self.imageHeightLineEdit_s2.setText(_translate("MainWindow", "224")) self.label_8.setText(_translate("MainWindow", "Width")) self.label_9.setText(_translate("MainWindow", "Height")) self.label_10.setText(_translate("MainWindow", "px")) self.label_13.setText(_translate("MainWindow", "px")) self.groupBox_9.setTitle(_translate("MainWindow", "Method")) self.vggRadioButton_s2.setText(_translate("MainWindow", "VGG16")) self.resnetRadioButton_s2.setText(_translate("MainWindow", "ResNet")) self.googlenetRadioButton_s2.setText(_translate("MainWindow", "GoogLeNet")) self.groupBox_11.setTitle(_translate("MainWindow", "PCA")) self.pcaDimLineEdit_s2.setText(_translate("MainWindow", "100")) self.label_23.setText(_translate("MainWindow", "Dim.")) self.label_24.setText(_translate("MainWindow", "Samples")) self.pcaSamplesLineEdit_s2.setText(_translate("MainWindow", "10000")) self.groupBox_6.setTitle(_translate("MainWindow", "Output")) self.btnSaveOutput.setText(_translate("MainWindow", "Save ")) self.btnPRcurves.setText(_translate("MainWindow", "PR curves")) self.groupBox_12.setTitle(_translate("MainWindow", "Hyperparameters")) self.label_17.setText(_translate("MainWindow", "Frame tol.")) self.frameTolLineEdit.setText(_translate("MainWindow", "2")) self.candidatesLineEdit.setText(_translate("MainWindow", "50")) self.label_18.setText(_translate("MainWindow", "Candidates")) self.prevFramesLineEdit.setText(_translate("MainWindow", "2")) self.gpuGroupBox.setTitle(_translate("MainWindow", "GPU Options")) self.gpuCandLineEdit.setText(_translate("MainWindow", "2")) self.loadDbOnGpuCheckBox.setText(_translate("MainWindow", "Load DB on GPU")) self.useGpuCheckBox.setText(_translate("MainWindow", "Use GPU")) self.menuAbout.setTitle(_translate("MainWindow", "Help")) self.actionOpen.setText(_translate("MainWindow", "Open Video")) self.actionSpectrogram.setText(_translate("MainWindow", "Spectrogram")) self.actionFrequency_Map.setText(_translate("MainWindow", "Frequency Map")) self.actionSave_path.setText(_translate("MainWindow", "Save to directory")) self.actionAbout.setText(_translate("MainWindow", "About"))
StarcoderdataPython
1696677
from plenum.test.node_request.helper import sdk_ensure_pool_functional from plenum.test.helper import sdk_send_random_and_check, sdk_send_random_requests, \ sdk_eval_timeout, sdk_get_and_check_replies from plenum.test.node_catchup.helper import ensure_all_nodes_have_same_data from plenum.test.pool_transactions.helper import sdk_add_new_nym, \ prepare_new_node_data, prepare_node_request, sdk_sign_and_send_prepared_request from plenum.test.test_node import checkProtocolInstanceSetup from plenum.test.view_change.helper import ensure_view_change from plenum.test.conftest import tdirWithPoolTxns from plenum.test.pool_transactions.conftest import sdk_node_theta_added from plenum.test.primary_selection.conftest import sdk_one_node_added from plenum.test.batching_3pc.conftest import tconf def test_different_ledger_request_interleave(tconf, looper, txnPoolNodeSet, sdk_one_node_added, tdir, tdirWithPoolTxns, allPluginsPath, sdk_pool_handle, sdk_wallet_client, sdk_wallet_steward): """ Send pool and domain ledger requests such that they interleave, and do view change in between and verify the pool is functional """ new_node = sdk_one_node_added sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_client, 2) ensure_all_nodes_have_same_data(looper, txnPoolNodeSet) # Send domain ledger requests but don't wait for replies requests = sdk_send_random_requests(looper, sdk_pool_handle, sdk_wallet_client, 2) # Add another node by sending pool ledger request _, new_theta = sdk_node_theta_added(looper, txnPoolNodeSet, tdir, tconf, sdk_pool_handle, sdk_wallet_steward, allPluginsPath, name='new_theta') # Send more domain ledger requests but don't wait for replies requests.extend(sdk_send_random_requests(looper, sdk_pool_handle, sdk_wallet_client, 3)) # Do view change without waiting for replies ensure_view_change(looper, nodes=txnPoolNodeSet) checkProtocolInstanceSetup(looper, txnPoolNodeSet, retryWait=1) # Make sure all requests are completed total_timeout = sdk_eval_timeout(len(requests), len(txnPoolNodeSet)) sdk_get_and_check_replies(looper, requests, timeout=total_timeout) sdk_ensure_pool_functional(looper, txnPoolNodeSet, sdk_wallet_client, sdk_pool_handle) new_steward_wallet, steward_did = sdk_add_new_nym(looper, sdk_pool_handle, sdk_wallet_steward, 'another_ste', role='STEWARD') # Send another pool ledger request (NODE) but don't wait for completion of # request next_node_name = 'next_node' sigseed, verkey, bls_key, nodeIp, nodePort, clientIp, clientPort = \ prepare_new_node_data(tconf, tdir, next_node_name) node_req = looper.loop.run_until_complete( prepare_node_request(next_node_name, steward_did, clientIp, clientPort, nodeIp, nodePort, bls_key, sigseed)) sdk_wallet = (new_steward_wallet, steward_did) request_couple = sdk_sign_and_send_prepared_request(looper, sdk_wallet, sdk_pool_handle, node_req) # Send more domain ledger requests but don't wait for replies request_couples = [request_couple, * sdk_send_random_requests(looper, sdk_pool_handle, sdk_wallet_client, 5)] # Make sure all requests are completed total_timeout = sdk_eval_timeout(len(request_couples), len(txnPoolNodeSet)) sdk_get_and_check_replies(looper, request_couples, timeout=total_timeout) # Make sure pool is functional sdk_ensure_pool_functional(looper, txnPoolNodeSet, sdk_wallet_client, sdk_pool_handle)
StarcoderdataPython
3207127
<reponame>ngi-nix/liberaforms """ This file is part of LiberaForms. # SPDX-FileCopyrightText: 2021 LiberaForms.org # SPDX-License-Identifier: AGPL-3.0-or-later """ import os import pytest from liberaforms.models.user import User from liberaforms.models.formuser import FormUser from .utils import login, logout class TestFormAdminSettings(): def test_disable_form(self, client, anon_client, users, forms): """ Tests disable form Test permissions """ form_id = forms['test_form'].id url = f"/admin/forms/toggle-public/{form_id}" response = anon_client.get( url, follow_redirects=True ) assert response.status_code == 200 html = response.data.decode() assert '<!-- site_index_page -->' in html login(client, users['editor']) response = client.get( url, follow_redirects=True ) assert response.status_code == 200 html = response.data.decode() assert '<!-- site_index_page -->' in html logout(client) login(client, users['admin']) response = client.get( url, follow_redirects=True ) assert response.status_code == 200 html = response.data.decode() assert '<!-- inspect_form_page -->' in html assert forms['test_form'].adminPreferences['public'] == False assert forms['test_form'].is_public() == False response = anon_client.get( f"/{forms['test_form'].slug}", follow_redirects=True ) assert response.status_code == 404 html = response.data.decode() assert '<!-- page_not_found_404 -->' in html forms['test_form'].adminPreferences['public'] = True forms['test_form'].save() def test_change_author(self, client, anon_client, forms, users): """ Tests nonexistent username and valid username Tests permission """ form_id = forms['test_form'].id url = f"/admin/forms/change-author/{form_id}" response = anon_client.get( url, follow_redirects=True ) assert response.status_code == 200 assert '<!-- site_index_page -->' in response.data.decode() login(client, users['editor']) response = client.get( url, follow_redirects=True ) assert response.status_code == 200 assert '<!-- site_index_page -->' in response.data.decode() logout(client) login(client, users['admin']) response = client.get( url, follow_redirects=True ) assert response.status_code == 200 assert '<!-- change_author_page -->' in response.data.decode() initial_author = forms['test_form'].author assert FormUser.find(form_id=forms['test_form'].id, user_id=forms['test_form'].author_id) != None nonexistent_username = "nonexistent" response = client.post( url, data = { "old_author_username": initial_author.username, "new_author_username": nonexistent_username, }, follow_redirects=False ) assert response.status_code == 200 html = response.data.decode() assert '<!-- change_author_page -->' in html assert '<div class="warning flash_message">' in html # TODO. Test change author to the alread existing author #assert g.current.username != initial_author.username # we use the dummy_1 user to be the new author dummy_1 = User.find(username=users['dummy_1']['username']) response = client.post( url, data = { "old_author_username": initial_author.username, "new_author_username": dummy_1.username, }, follow_redirects=True ) assert response.status_code == 200 html = response.data.decode() assert '<div class="success flash_message">' in html assert '<!-- inspect_form_page -->' in html assert forms['test_form'].author.id == dummy_1.id assert FormUser.find(form_id=forms['test_form'].id, user_id=dummy_1.id) != None # reset author to initial value to continue testing response = client.post( url, data = { "old_author_username": dummy_1.username, "new_author_username": initial_author.username, } ) # Note: dummy_1 is now an editor
StarcoderdataPython
1733603
<filename>styn/tests/build_scripts/annotation_misuse_2.py from styn import chore @chore() def clean(): pass # Should be marked as chore. def html(): pass # References a non chore. @chore(clean, html) def android(): pass
StarcoderdataPython
141425
import dash import dash as html import dash as dcc from dash import dash_table from dash.dependencies import Input, Output import plotly.graph_objs as go import pandas as pd import datetime import mysql.connector import os,io #================================================================================================== # Fill out your info about TwitterAPI and AWS(if you want to run it on EC2) config = {***} mysql_info = {'DB_HOST':config['DB_HOST'] , 'DB_NAME': config['DB_NAME'], 'DB_USER': config['DB_USER'], 'DB_PASSWORD': config['DB_PASSWORD'] , 'CHARSET': config['CHARSET']} mydb = mysql.connector.connect(host=mysql_info['DB_HOST'],port=3306, db=mysql_info['DB_NAME'],user=mysql_info['DB_USER'], passwd=<PASSWORD>['<PASSWORD>'],charset=mysql_info['CHARSET']) sql = "SELECT * FROM all_data" cursor = mydb.cursor() cursor.execute(sql) rows = cursor.fetchall() mydb.close() cursor.close() df = pd.DataFrame(list(rows)) columns = {0: 'tweet_id', 1: 'day_id', 2:'text', 3:'created_at', 4:'user_friends', 5:'user_followers', 6:'retweet_count', 7:'favorite_count', 8:'AWS', 9:'happy', 10:'sad', 11:'disgust', 12:'angry', 13:'surprise', 14:'day', 15:'risk'} df = df.rename(columns = columns) #================================================================================================== #================================================================================================================= #全体データ #df = pd.read_csv('tweet_data.csv') today = datetime.date.today() yesterday = today - datetime.timedelta(1) day_yesterday = df[df['day_id'].dt.date == yesterday] day_today = df[df['day_id'].dt.date == today] day_yesterday = day_yesterday.copy() day_today = day_today.copy() #datetime型に変換 day_yesterday['day_id'] = pd.to_datetime(day_yesterday['day_id']) day_today['day_id'] = pd.to_datetime(day_today['day_id']) #本日の総ツイート数 day_yesterday_TweetCou = len(day_yesterday) day_today_TweetCou = len(day_today) #本日の総ツイート人数 day_yesterday_TweetNum = len(day_yesterday.groupby(['tweet_id']).count()) day_today_TweetNum = len(day_today.groupby(['tweet_id']).count()) #本日の最高リツイート数 day_yesterday_ReTweetMax = day_yesterday['retweet_count'].max() day_today_ReTweetMax = day_today['retweet_count'].max() #本日の最高ファボ数 day_yesterday_FavMax = day_yesterday['favorite_count'].max() day_today_FavMax = day_today['favorite_count'].max() #tweetポジネガグラフ #ポジネガ判定(データのそれぞれのcountについて) day_today_po = day_today['AWS'][day_today['AWS'] == 'NEGATIVE'].count() day_today_ne = day_today['AWS'][day_today['AWS'] == 'POSITIVE'].count() colors = ['orange', '#dd1e35'] fig1 = go.Figure() fig1.add_trace(go.Pie(labels=['POSITIVE', 'NEGATIVE'], values=[day_today_po,day_today_ne], marker=dict(colors=colors), hoverinfo='label+value+percent', textinfo='label+value', #hole=7, #rotation=45 )) #================================================================================================================= layout = go.Layout( title={'text': 'Total Cases: ', 'y': 0.93, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'}, titlefont={'color': 'white', 'size': 20}, font=dict(family='sans-serif', color='white', size=12), hovermode='closest', paper_bgcolor='#1f2c56', plot_bgcolor='#1f2c56', legend={'orientation': 'h', 'bgcolor': '#1f2c56', 'xanchor': 'center', 'x': 0.5, 'y': -0.7} ) data1 = go.Pie(labels=['NEGATIVE', 'POSITIVE'], values=[day_today_po,day_today_ne], marker=dict(colors=colors), hoverinfo='label+value+percent', textinfo='label+value', #hole=7, #rotation=45 ) fig1 = go.Figure(data=data1, layout=layout) df['day_id'] = pd.to_datetime(df['day_id']) df_co = df.groupby('day_id', as_index=False).count() data2 = go.Bar(x=df_co['day_id'], y=df_co['text'], name='Tweet推移', marker=dict(color='orange'), hoverinfo='text') fig2 = go.Figure(data=data2, layout=layout) #================================================================================================================= def generate_table(dataframe, max_rows=10): return html.Table( # Header [html.Tr([html.Th(col) for col in dataframe.columns])] + # Body [html.Tr([ html.Td(dataframe.iloc[i][col]) for col in dataframe.columns ]) for i in range(min(len(dataframe), max_rows))] ) rank = day_today.sort_values('risk', ascending=False)[:5] rank = rank[['text', 'risk']] #================================================================================================================= app = dash.Dash(__name__, title='Falminf App', assets_folder='static', assets_url_path='static' ,meta_tags=[{"name": "viewport", "content": "width=device-width"}]) app.layout = html.Div([ html.Div([ html.Div([ html.Img(src=app.get_asset_url('log3.jpg'), id = 'corona-image', style={'height': '60px', 'width': 'auto', 'margin-bottom': '25px'}) ], className='one-third column'), html.Div([ html.Div([ html.H3('学研SNS動向', style={'margin-bottom': '0px', 'color': 'white'}), html.H5('炎上リスク監視', style={'margin-bottom': '0px', 'color': 'white'}) ]) ], className='one-half column', id = 'title'), html.Div([ html.H6('Last Updated: ' + str(day_today['day_id'].iloc[1].strftime('%B, %d, %Y')) , style={'color': 'orange'}) ], className='one-third column', id = 'title1') ], id = 'header', className= 'row flex-display', style={'margin-bottom': '25px'}), html.Div([ html.Div([ html.H6(children='本日のツイート数', style={'textAlign': 'center', 'color': 'white'}), html.P(f"{day_today_TweetCou:,.0f}", style={'textAlign': 'center', 'color': 'orange', 'fontSize': 40}), html.P('new: ' + f"{day_today_TweetCou - day_yesterday_TweetCou:,.0f}" + ' (' + str(round(((day_today_TweetCou - day_yesterday_TweetCou) / (day_today_TweetCou)) *100, 2)) + '%)', style={'textAlign': 'center', 'color': 'orange', 'fontsize': 15, 'margin-top': '-18px'}) ], className='card_container three columns'), html.Div([ html.H6(children='ツイート人数', style={'textAlign': 'center', 'color': 'white'}), html.P(f"{day_today_TweetNum:,.0f}", style={'textAlign': 'center', 'color': '#dd1e35', 'fontSize': 40}), html.P('new: ' + f"{day_today_TweetNum - day_yesterday_TweetNum:,.0f}" + ' (' + str(round(((day_today_TweetNum - day_yesterday_TweetNum) / day_today_TweetNum) * 100, 2)) + '%)', style={'textAlign': 'center', 'color': '#dd1e35', 'fontSize': 15, 'margin-top': '-18px'}) ], className='card_container three columns'), html.Div([ html.H6(children='最高リツート数', style={'textAlign': 'center', 'color': 'white'}), html.P(f"{day_today_ReTweetMax:,.0f}", style={'textAlign': 'center', 'color': 'green', 'fontSize': 40}), html.P('new: ' + f"{day_today_ReTweetMax - day_yesterday_ReTweetMax:,.0f}" + ' (' + str(round(((day_today_ReTweetMax - day_yesterday_ReTweetMax) / day_today_ReTweetMax) * 100, 2)) + '%)', style={'textAlign': 'center', 'color': 'green', 'fontSize': 15, 'margin-top': '-18px'}) ], className='card_container three columns'), html.Div([ html.H6(children='最高ファボ数', style={'textAlign': 'center', 'color': 'white'}), html.P(f"{day_today_FavMax:,.0f}", style={'textAlign': 'center', 'color': '#e55467', 'fontSize': 40}), html.P('new: ' + f"{day_today_FavMax - day_yesterday_FavMax:,.0f}" + ' (' + str(round(((day_today_FavMax - day_yesterday_FavMax) / day_today_FavMax) * 100, 2)) + '%)', style={'textAlign': 'center', 'color': '#e55467', 'fontSize': 15, 'margin-top': '-18px'}) ], className='card_container three columns'), ], className='row flex display'), ##select countryに関して詳細に記載する ##select countryのデザイン(style.css)の詳細に関して記載する. html.Div([ html.Div([ dcc.Graph(id = 'pie_chart', figure=fig1, config={'displayModeBar': 'hover'}, style={'background-color': 'rgba(255,0,0,0.5)'}) ], className='create_container four columns'), html.Div([ dcc.Graph(id = 'line_chart', figure=fig2, config={'displayModeBar': 'hover'}) ], className='create_container five columns'), ],className='row flex-display'), #html.Div(children=[ # html.H6(children='リスク評価ランキング', # style={'textAlign': 'center','color': 'white'}), # generate_table(day4) #]) dash_table.DataTable( id='table', columns=[ {"name": i, "id": i} for i in rank.columns], data=rank.to_dict("rows") ) ], id = 'mainContainer',style={'display': 'flex', 'flex-direction': 'column'}) server = app.server if __name__ == '__main__': app.run_server(debug=True)
StarcoderdataPython
119322
<reponame>amirmallaei/recipe-app-api from django.test import TestCase from django.contrib.auth import get_user_model from django.urls import reverse from rest_framework.test import APIClient from rest_framework import status CREATE_USER_URL = reverse('user:create') TOKEN_URL = reverse('user:token') ME_URL = reverse('user:me') def create_user(**params): return get_user_model().objects.create_user(**params) class PublicUserApiTests(TestCase): """test the user API public""" def setUp(self): self.client = APIClient() def test_create_valid_user_success(self): """test creating user with valud payload successful""" payload = { 'email': '<EMAIL>', 'password': '<PASSWORD>', 'name': 'Amir test' } res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) user = get_user_model().objects.get(**res.data) self.assertTrue(user.check_password(payload['password'])) self.assertNotIn('password', res.data) def test_user_exists(self): """check if user exist""" payload = {'email': '<EMAIL>', 'password': '<PASSWORD>', } create_user(**payload) res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_password_too_short(self): """password must be at least 5 char""" payload = {'email': '<EMAIL>', 'password': 'ts', } res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) user_exists = get_user_model().objects.filter( email=payload['email']).exists() self.assertFalse(user_exists) def test_create_token_for_user(self): """test a token is created for th user""" payload = {'email': '<EMAIL>', 'password': '<PASSWORD>'} create_user(**payload) res = self.client.post(TOKEN_URL, payload) self.assertIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_200_OK) def test_create_token_invalid_credintial(self): """test that token is not created if invalid credintioals are given""" create_user(email='<EMAIL>', password="<PASSWORD>") payload = {'email': '<EMAIL>', 'password': '<PASSWORD>'} res = self.client.post(TOKEN_URL, payload) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_no_user(self): """test that token is not created if user does not exist""" payload = {'email': '<EMAIL>', 'password': '<PASSWORD>'} res = self.client.post(TOKEN_URL, payload) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_missing_fields(self): """password are required""" res = self.client.post(TOKEN_URL, {'email': 'amir', 'password': ''}) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_retrieve_user_unathorized(self): """test that authentication is required for user""" res = self.client.get(ME_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateUserApiTests(TestCase): """test api requests that requre authentication""" def setUp(self): self.user = create_user( email='<EMAIL>', password='<PASSWORD>', name='amir' ) self.client = APIClient() self.client.force_authenticate(user=self.user) def test_retrieve_profile_success(self): """test to retrieve profile for logged in users""" res = self.client.get(ME_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, { 'name': self.user.name, 'email': self.user.email, }) def test_post_not_allowed(self): """test that post is not allowed on the me url""" res = self.client.post(ME_URL, {}) self.assertEqual(res.status_code, status.HTTP_405_METHOD_NOT_ALLOWED) def test_update_user_profile(self): """test updating profile updating for logged in user""" payload = {'name': 'new name', 'password': '<PASSWORD>'} res = self.client.patch(ME_URL, payload) self.user.refresh_from_db() self.assertEqual(self.user.name, payload['name']) self.assertTrue(self.user.check_password(payload['password'])) self.assertEqual(res.status_code, status.HTTP_200_OK)
StarcoderdataPython
1743316
<reponame>pyccel/psydac # coding: utf-8 import sys import os import importlib import inspect import numpy as np from functools import lru_cache from mpi4py import MPI from sympy import Mul, Tuple from sympy import Mod as sy_Mod, Abs, Range, Symbol, Max from sympy import Function, Integer from psydac.pyccel.ast.core import Variable, IndexedVariable from psydac.pyccel.ast.core import For from psydac.pyccel.ast.core import Slice, String from psydac.pyccel.ast.datatypes import NativeInteger from psydac.pyccel.ast.core import ValuedArgument from psydac.pyccel.ast.core import Assign from psydac.pyccel.ast.core import AugAssign from psydac.pyccel.ast.core import Product from psydac.pyccel.ast.core import FunctionDef from psydac.pyccel.ast.core import FunctionCall from psydac.pyccel.ast.core import Import from psydac.api.ast.nodes import FloorDiv from psydac.api.ast.utilities import variables, math_atoms_as_str from psydac.api.ast.utilities import build_pyccel_types_decorator from psydac.fem.splines import SplineSpace from psydac.fem.tensor import TensorFemSpace from psydac.fem.vector import ProductFemSpace from psydac.api.ast.basic import SplBasic from psydac.api.printing import pycode from psydac.api.settings import PSYDAC_BACKENDS, PSYDAC_DEFAULT_FOLDER from psydac.api.utilities import mkdir_p, touch_init_file, random_string, write_code #============================================================================== def variable_to_sympy(x): if isinstance(x, Variable) and isinstance(x.dtype, NativeInteger): x = Symbol(x.name, integer=True) return x #============================================================================== def compute_diag_len(p, md, mc, return_padding=False): n = ((np.ceil((p+1)/mc)-1)*md).astype('int') ep = np.minimum(0, n-p) n = n-ep + p+1 if return_padding: return n.astype('int'), (-ep).astype('int') else: return n.astype('int') def Mod(a,b): if b == 1: return Integer(0) else: return sy_Mod(a,b) @lru_cache(maxsize=32) class LinearOperatorDot(SplBasic): def __new__(cls, ndim, **kwargs): return SplBasic.__new__(cls, 'dot', name='lo_dot', prefix='lo_dot') def __init__(self, ndim, **kwargs): backend = dict(kwargs.pop('backend')) code = self._initialize(ndim, backend=backend, **kwargs) self._arguments = dict((str(a.name),a) for a in code.arguments) self._code = code self._folder = self._initialize_folder() self._generate_code(backend=backend) self._compile(backend=backend) @property def func(self): return self._func @property def arguments(self): return self._arguments @property def code(self): return self._code @property def folder(self): return self._folder def _initialize(self, ndim, **kwargs): nrows = kwargs.pop('nrows', variables('n1:%s'%(ndim+1), 'int')) nrows_extra = kwargs.pop('nrows_extra', variables('ne1:%s'%(ndim+1), 'int')) starts = kwargs.pop('starts', variables('s1:%s'%(ndim+1), 'int')) indices1 = variables('i1:%s'%(ndim+1), 'int') bb = variables('b1:%s'%(ndim+1), 'int') indices2 = variables('k1:%s'%(ndim+1), 'int') v = variables('v','real') x, out = variables('x, out','real',cls=IndexedVariable, rank=ndim) mat = variables('mat','real',cls=IndexedVariable, rank=2*ndim) backend = kwargs.pop('backend', None) pads = kwargs.pop('pads') gpads = kwargs.pop('gpads') cm = kwargs.pop('cm') dm = kwargs.pop('dm') ndiags, _ = list(zip(*[compute_diag_len(p,mj,mi, return_padding=True) for p,mi,mj in zip(pads,cm,dm)])) inits = [Assign(b,p*m+p+1-n-Mod(s,m)) for b,p,m,n,s in zip(bb, gpads, dm, ndiags, starts) if not isinstance(p*m+p+1-n-Mod(s,m),(int,np.int64, Integer))] bb = [b if not isinstance(p*m+p+1-n-Mod(s,m),(int,np.int64, Integer)) else p*m+p+1-n-Mod(s,m) for b,p,m,n,s in zip(bb, gpads, dm, ndiags, starts)] body = [] ranges = [Range(variable_to_sympy(n)) for n in ndiags] target = Product(*ranges) diff = [variable_to_sympy(gp-p) for gp,p in zip(gpads, pads)] v1 = x[tuple(b-d+FloorDiv((i1+Mod(s,mj)),mi)*mj + i2 for i1,mi,mj,b,s,d,i2 in zip(indices1,cm,dm,bb,starts,diff,indices2))] v2 = mat[tuple(i+m*j for i,j,m in zip(indices1,gpads,cm))+ tuple(indices2)] v3 = out[tuple(i+m*j for i,j,m in zip(indices1,gpads,cm))] body = [AugAssign(v,'+' ,Mul(v2, v1))] # Decompose fused loop over Cartesian product of multiple ranges # into nested loops, each over a single range if ndim > 1: for i,j in zip(indices2[::-1], target.args[::-1]): body = [For(i,j, body)] else: body = [For(indices2, target, body)] body.insert(0,Assign(v, 0.0)) body.append(Assign(v3,v)) ranges = [Range(variable_to_sympy(i)) for i in nrows] target = Product(*ranges) # Decompose fused loop over Cartesian product of multiple ranges # into nested loops, each over a single range if ndim > 1: for i,j in zip(indices1[::-1], target.args[::-1]): body = [For(i,j, body)] else: body = [For(indices1, target, body)] nrowscopy = list(nrows).copy() nrows = list(nrows) for dim in range(ndim): if nrows_extra[dim] == 0:continue v1 = [b-d+FloorDiv((i1+(nrows[dim] if dim==x else 0)+Mod(s,mj)),mi)*mj + i2 for x,i1,mi,mj,b,s,d,i2 in zip(range(ndim), indices1,cm,dm,bb,starts,diff,indices2)] v2 = [i+m*j for i,j,m in zip(indices1,gpads,cm)] v2[dim] += nrows[dim] v3 = v2 v1 = x[tuple(v1)] v2 = mat[tuple(v2)+ indices2] v3 = out[tuple(v3)] rows = list(nrows) rows[dim] = nrows_extra[dim] ranges = [variable_to_sympy(n) for n in ndiags] ranges[dim] -= variable_to_sympy(indices1[dim]) + 1 ranges = [ind if i>=dim else ind - Max(0, variable_to_sympy(d1)+1-variable_to_sympy(r)) for i,(ind,d1,r) in enumerate(zip(ranges, indices1, nrowscopy)) ] ranges = [Range(i) for i in ranges] target = Product(*ranges) for_body = [AugAssign(v, '+',Mul(v1,v2))] # Decompose fused loop over Cartesian product of multiple ranges # into nested loops, each over a single range if ndim > 1: for i,j in zip(indices2[::-1], target.args[::-1]): for_body = [For(i,j, for_body)] else: for_body = [For(indices2, target, for_body)] for_body.insert(0,Assign(v, 0.0)) for_body.append(Assign(v3,v)) ranges = [Range(variable_to_sympy(i)) for i in rows] target = Product(*ranges) # Decompose fused loop over Cartesian product of multiple ranges # into nested loops, each over a single range if ndim > 1: for i,j in zip(indices1[::-1], target.args[::-1]): for_body = [For(i,j, for_body)] body += for_body else: body += [For(indices1, target, for_body)] nrows[dim] += nrows_extra[dim] body = inits + body func_args = (mat, x, out) if isinstance(starts[0], Variable): func_args = func_args + tuple(starts) if isinstance(nrowscopy[0], Variable): func_args = func_args + tuple(nrowscopy) if isinstance(nrows_extra[0], Variable): func_args = func_args + tuple(nrows_extra) decorators = {} header = None imports = [] if backend: if backend['name'] == 'pyccel': a = [String(str(i)) for i in build_pyccel_types_decorator(func_args)] decorators = {'types': Function('types')(*a)} elif backend['name'] == 'numba': decorators = {'njit': Function('njit')(ValuedArgument(Symbol('fastmath'), backend['fastmath']))} elif backend['name'] == 'pythran': header = build_pythran_types_header(name, func_args) func = FunctionDef(self.name, list(func_args), [], body, imports=imports, decorators=decorators) return func def _initialize_folder(self, folder=None): # ... if folder is None: basedir = os.getcwd() folder = PSYDAC_DEFAULT_FOLDER folder = os.path.join( basedir, folder ) # ... add __init__ to all directories to be able to touch_init_file('__pycache__') for root, dirs, files in os.walk(folder): touch_init_file(root) # ... else: raise NotImplementedError('user output folder not yet available') folder = os.path.abspath( folder ) mkdir_p(folder) # ... return folder def _generate_code(self, backend=None): code = '' tag = random_string( 8 ) if backend and backend['name'] == 'pyccel': imports = 'from pyccel.decorators import types' elif backend and backend['name'] == 'numba': imports = 'from numba import njit' else: imports = '' if MPI.COMM_WORLD.rank == 0: modname = 'dependencies_{}'.format(tag) code = '{imports}\n{code}'.format(imports=imports, code=pycode.pycode(self.code)) write_code(modname+ '.py', code, folder = self.folder) else: modname = None self._modname = MPI.COMM_WORLD.bcast( modname, root=0 ) def _compile(self, backend=None): module_name = self._modname sys.path.append(self.folder) package = importlib.import_module( module_name ) sys.path.remove(self.folder) if backend and backend['name'] == 'pyccel': package = self._compile_pyccel(package, backend) self._func = getattr(package, 'lo_dot') def _compile_pyccel(self, mod, backend, verbose=False): # ... convert python to fortran using pyccel compiler = backend['compiler'] fflags = backend['flags'] _PYCCEL_FOLDER = backend['folder'] from pyccel.epyccel import epyccel fmod = epyccel(mod, compiler = compiler, fflags = fflags, comm = MPI.COMM_WORLD, bcast = True, folder = _PYCCEL_FOLDER, verbose = verbose) return fmod @lru_cache(maxsize=32) class TransposeOperator(SplBasic): def __new__(cls, ndim, **kwargs): return SplBasic.__new__(cls, 'transpose', name='lo_transpose', prefix='lo_transpose') def __init__(self, ndim, **kwargs): self.ndim = ndim backend = dict(kwargs.pop('backend')) self._code = inspect.getsource(_transpose[ndim]) self._args_dtype = _args_dtype[ndim] self._folder = self._initialize_folder() self._generate_code(backend=backend) self._compile(backend=backend) @property def func(self): return self._func @property def arguments(self): return self._arguments @property def code(self): return self._code @property def folder(self): return self._folder def _initialize_folder(self, folder=None): # ... if folder is None: basedir = os.getcwd() folder = PSYDAC_DEFAULT_FOLDER folder = os.path.join( basedir, folder ) # ... add __init__ to all directories to be able to touch_init_file('__pycache__') for root, dirs, files in os.walk(folder): touch_init_file(root) # ... else: raise NotImplementedError('user output folder not yet available') folder = os.path.abspath( folder ) mkdir_p(folder) # ... return folder def _generate_code(self, backend=None): dec = '' code = self._code tag = random_string( 8 ) if backend and backend['name'] == 'pyccel': import pyccel from packaging import version if version.parse(pyccel.__version__) < version.parse('1.1.0'): # Add @types decorator due the minimum required Pyccel version 0.10.1 imports = 'from pyccel.decorators import types' dec = '@types({})'.format(','.join(self._args_dtype)) else: imports = '' dec = '' elif backend and backend['name'] == 'numba': imports = 'from numba import njit' dec = '@njit(fastmath={})'.format(backend['fastmath']) else: imports = '' if MPI.COMM_WORLD.rank == 0: modname = 'dependencies_{}'.format(tag) code = '{imports}\n{dec}\n{code}'.format(imports=imports, dec=dec, code=code) write_code(modname+ '.py', code, folder = self.folder) else: modname = None self._modname = MPI.COMM_WORLD.bcast( modname, root=0 ) def _compile(self, backend=None): module_name = self._modname sys.path.append(self.folder) package = importlib.import_module( module_name ) sys.path.remove(self.folder) if backend and backend['name'] == 'pyccel': package = self._compile_pyccel(package, backend) self._func = getattr(package, 'transpose_{}d'.format(self.ndim)) def _compile_pyccel(self, mod, backend, verbose=False): # ... convert python to fortran using pyccel compiler = backend['compiler'] fflags = backend['flags'] _PYCCEL_FOLDER = backend['folder'] from pyccel.epyccel import epyccel fmod = epyccel(mod, compiler = compiler, fflags = fflags, comm = MPI.COMM_WORLD, bcast = True, folder = _PYCCEL_FOLDER, verbose = verbose) return fmod class VectorDot(SplBasic): def __new__(cls, ndim, backend=None): obj = SplBasic.__new__(cls, 'dot', name='v_dot', prefix='v_dot') obj._ndim = ndim obj._backend = backend obj._func = obj._initilize() return obj @property def ndim(self): return self._ndim @property def func(self): return self._func @property def backend(self): return self._backend def _initialize(self): ndim = self.ndim indices = variables('i1:%s'%(ndim+1),'int') dims = variables('n1:%s'%(ndim+1),'int') pads = variables('p1:%s'%(ndim+1),'int') out = variables('out','real') x1,x2 = variables('x1, x2','real',rank=ndim,cls=IndexedVariable) body = [] ranges = [Range(p,n-p) for n,p in zip(dims,pads)] target = Product(*ranges) v1 = x1[indices] v2 = x2[indices] body = [AugAssign(out,'+' ,Mul(v1,v2))] body = [For(indices, target, body)] body.insert(0,Assign(out, 0.0)) body.append(Return(out)) func_args = (x1, x2) + pads + dims self._imports = [Import('itertools', 'product')] decorators = {} header = None if self.backend['name'] == 'pyccel': decorators = {'types': build_pyccel_types_decorator(func_args), 'external':[]} elif self.backend['name'] == 'numba': decorators = {'jit':[]} elif self.backend['name'] == 'pythran': header = build_pythran_types_header(self.name, func_args) return FunctionDef(self.name, list(func_args), [], body, decorators=decorators,header=header) #======================================================================================================== def transpose_1d( M:'float[:,:]', Mt:'float[:,:]', n1:int, nc1:int, gp1:int, p1:int, dm1:int, cm1:int, nd1:int, ndT1:int, si1:int, sk1:int, sl1:int): d1 = gp1-p1 for x1 in range(n1): j1 = dm1*gp1 + x1 for l1 in range(nd1): i1 = si1 + cm1*(x1//dm1) + l1 + d1 k1 = sk1 + x1%dm1-dm1*(l1//cm1) if k1<ndT1 and k1>-1 and l1<nd1 and i1<nc1: Mt[j1, l1+sl1] = M[i1, k1] # ... def transpose_2d( M:'float[:,:,:,:]', Mt:'float[:,:,:,:]', n1:int, n2:int, nc1:int, nc2:int, gp1:int, gp2:int, p1:int, p2:int, dm1:int, dm2:int, cm1:int, cm2:int, nd1:int, nd2:int, ndT1:int, ndT2:int, si1:int, si2:int, sk1:int, sk2:int, sl1:int, sl2:int): d1 = gp1-p1 d2 = gp2-p2 for x1 in range(n1): for x2 in range(n2): j1 = dm1*gp1 + x1 j2 = dm2*gp2 + x2 for l1 in range(nd1): for l2 in range(nd2): i1 = si1 + cm1*(x1//dm1) + l1 + d1 i2 = si2 + cm2*(x2//dm2) + l2 + d2 k1 = sk1 + x1%dm1-dm1*(l1//cm1) k2 = sk2 + x2%dm2-dm2*(l2//cm2) if k1<ndT1 and k1>-1 and k2<ndT2 and k2>-1\ and l1<nd1 and l2<nd2 and i1<nc1 and i2<nc2: Mt[j1,j2, l1+sl1,l2+sl2] = M[i1,i2, k1,k2] # ... def transpose_3d( M:'float[:,:,:,:,:,:]', Mt:'float[:,:,:,:,:,:]', n1:int, n2:int, n3:int, nc1:int, nc2:int, nc3:int, gp1:int, gp2:int, gp3:int, p1:int, p2:int, p3:int, dm1:int, dm2:int, dm3:int, cm1:int, cm2:int, cm3:int, nd1:int, nd2:int, nd3:int, ndT1:int, ndT2:int, ndT3:int, si1:int, si2:int, si3:int, sk1:int, sk2:int, sk3:int, sl1:int, sl2:int, sl3:int): d1 = gp1-p1 d2 = gp2-p2 d3 = gp3-p3 for x1 in range(n1): for x2 in range(n2): for x3 in range(n3): j1 = dm1*gp1 + x1 j2 = dm2*gp2 + x2 j3 = dm3*gp3 + x3 for l1 in range(nd1): for l2 in range(nd2): for l3 in range(nd3): i1 = si1 + cm1*(x1//dm1) + l1 + d1 i2 = si2 + cm2*(x2//dm2) + l2 + d2 i3 = si3 + cm3*(x3//dm3) + l3 + d3 k1 = sk1 + x1%dm1-dm1*(l1//cm1) k2 = sk2 + x2%dm2-dm2*(l2//cm2) k3 = sk3 + x3%dm3-dm3*(l3//cm3) if k1<ndT1 and k1>-1 and k2<ndT2 and k2>-1 and k3<ndT3 and k3>-1\ and l1<nd1 and l2<nd2 and l3<nd3 and i1<nc1 and i2<nc2 and i3<nc3: Mt[j1,j2,j3, l1 + sl1,l2 + sl2,l3 + sl3] = M[i1,i2,i3, k1,k2,k3] _transpose = {1:transpose_1d,2:transpose_2d, 3:transpose_3d} _args_dtype = {1:[repr('float[:,:]')]*2 + ['int']*11,2:[repr('float[:,:,:,:]')]*2 + ['int']*22, 3:[repr('float[:,:,:,:,:,:]')]*2 + ['int']*33}
StarcoderdataPython
3357257
""" Genetic Programming for Quant Author: UePG Reference: [1] https://gplearn.readthedocs.io/en/stable/ [2] <NAME>, "Genetic Programming", 1992. """ __version__ = "0.1.4" __all__ = ["Function", "Fitness", "Backtester", "SymbolicRegressor"]
StarcoderdataPython
1719276
<reponame>mingkaic/tenncor import re import logging from tools.gen.plugin_base import PluginBase from tools.gen.file_rep import FileRep from plugins.template import build_template from plugins.apis import api_header from plugins.common import order_classes, reference_classes from plugins.cformat.funcs import render_defn as cfrender from plugins.pformat.clas import render as crender from plugins.pformat.funcs import render as frender, process_modname, pybindt _header_template = ''' // type to replace template arguments in pybind using {pybind} = {pybind_type}; //>>> ^ pybind, pybind_type ''' _source_template = ''' #define STRINGIFY(X) #X namespace py = pybind11; //>>> global_decs {global_decs} //>>> modname PYBIND11_MODULE({modname}, m_{modname}) {{ m_{modname}.doc() = "pybind for {modname} api"; #ifdef VERSION_INFO m_{modname}.attr("__version__") = STRINGIFY(VERSION_INFO); #else m_{modname}.attr("__version__") = "dev"; #endif //>>> input_defs {input_defs} #ifdef CUSTOM_PYBIND_EXT //>>> modname CUSTOM_PYBIND_EXT(m_{modname}) #endif //>>> content {content} }} ''' _content_template = ''' //>>> class_defs {class_defs} //>>> global_defs {global_defs} //>>> func_defs {func_defs} ''' def render_pyglobal_decl(mems): out = [] for mem in mems: assert('name' in mem and 'type' in mem) affix = '' if 'decl' in mem: out.append(cfrender({ 'name': 'py_' + mem['name'] + '_global', 'out': { 'type': mem['type'] + '&', 'val': mem['decl'] } })) else: if 'val' in mem: affix = '= ' + mem['val'] out.append(' '.join([mem['type'], mem['name'], affix + ';'])) return out def render_pyclasses(classes, ext_path, mod, namespace): classes = reference_classes(classes, ext_path) class_defs = dict() class_inputs = dict() for clas in classes: class_def, cinputs = crender(clas, mod, namespace) cname = clas['name'] class_defs[cname] = class_def class_inputs.update(cinputs) order = order_classes(classes) return [class_defs[clas] for clas in order], class_inputs def render_pyglobal(mem, mod): global_tmpl = '{mod}.attr("{name}") = &{val};' name = mem['name'] if 'decl' in mem: val = 'py_' + name + '_global()' else: val = name return global_tmpl.format(mod=mod, name=name, val=val) def render_pyapi(api, ext_path, mod, ns=''): _submodule_def = 'py::module m_{submod} = {mod}.def_submodule("{submod}", "A submodule of \'{mod}\'");' global_decls = [] content_lines = [] input_types = dict() if 'namespaces' in api: for ns in api['namespaces']: namespace = ns['name'] sub_decls, sub_content, sub_inputs = render_pyapi( ns['content'], ext_path, 'm_' + namespace, ns + '::' + namespace) global_decls += sub_decls content_lines += [_submodule_def.format(submod=namespace, mod=mod)] + sub_content input_types.update(sub_inputs) global_mems = api.get('pyglobal', []) funcs = api.get('funcs', []) classes = api.get('classes', []) funcs = list(filter(lambda f: not f.get('pyignores', False), funcs)) global_decls += render_pyglobal_decl(global_mems) class_content, class_inputs = render_pyclasses(classes, ext_path, mod, ns) content_lines += class_content input_types.update(class_inputs) content_lines += [render_pyglobal(mem, mod) for mem in global_mems] for f in funcs: fcontent, finputs = frender(f, mod, ns) content_lines.append(fcontent) input_types.update(finputs) return global_decls, content_lines, input_types _plugin_id = 'PYBINDER' _pyapi_header = 'pyapi.hpp' @PluginBase.register class PyAPIsPlugin: def plugin_id(self): return _plugin_id def process(self, generated_files, arguments, **kwargs): plugin_key = 'api' if plugin_key not in arguments: logging.warning( 'no relevant arguments found for plugin %s', _plugin_id) return api = arguments[plugin_key] bindtype = api.get('pybind_type', 'double') generated_files[_pyapi_header] = FileRep( _header_template.format(pybind=pybindt, pybind_type=bindtype), user_includes=['"tenncor/eteq/etens.hpp"'], internal_refs=[]) # split modules by top-level namespaces modname = api['pybind_module'] ignore_types = [process_modname(dtype) for dtype in api.get('pyignore_type', [])] + [process_modname(pybindt)] assert('ext_path' in kwargs) ext_path = kwargs['ext_path'] decls, content_lines, input_types = render_pyapi(api, ext_path, 'm_' + modname) src_file = 'pyapi_{}.cpp'.format(modname) generated_files[src_file] = FileRep( _source_template.format( modname=modname, input_defs='\n'.join([input_types[input_mod] for input_mod in input_types if input_mod not in ignore_types]), global_decs='\n'.join(decls), content='\n\n'.join(content_lines)), user_includes=[ '"pybind11/pybind11.h"', '"pybind11/stl.h"', '"pybind11/operators.h"', ] + api.get('pybind_includes', []), internal_refs=[_pyapi_header, api_header]) return generated_files
StarcoderdataPython
1790251
import numpy as np import pandas as pd def compute_sprns_array(cells_file, spk_f_names, f_out_r, t_start, t_stop, bin_size): cells_db = pd.read_csv(cells_file, sep=' ') t_bins = np.arange(t_start, t_stop, bin_size) r_data = np.zeros( (len(cells_db.index), t_bins[:-1].size) ) t = np.array([]) gids = np.array([]) for f_name in spk_f_names: print 'Processing file %s.' % (f_name) data = np.genfromtxt(f_name, delimiter=' ') if (data.size == 0): t_tmp = np.array([]) gids_tmp = np.array([]) elif (data.size == 2): t_tmp = np.array([data[0]]) gids_tmp = np.array([data[1]]) else: t_tmp = data[:, 0] gids_tmp = data[:, 1] t = np.concatenate( (t, t_tmp) ) gids = np.concatenate( (gids, gids_tmp) ) for k_t, t_bin in enumerate(t_bins[:-1]): print 'Computing rates in bins; working on bin %d of %d.' % (k_t, t_bins[:-1].size) ind = np.intersect1d( np.where(t >= t_bin), np.where(t < (t_bin + bin_size)) ) t_tmp = t[ind] gids_tmp = gids[ind] df = pd.DataFrame( {'gid': gids_tmp, 't': t_tmp} ) df_tmp = df.groupby('gid').count() * 1000.0 / bin_size # Time is in ms and rate is in Hz. df_tmp.columns = ['rates'] for gid in df_tmp.index: r_data[gid, k_t] = df_tmp['rates'].loc[gid] np.save(f_out_r, r_data)
StarcoderdataPython
157670
<filename>queues/queues_two_stacks.py class Stack: def __init__(self): self.data = [] def pop(self): if self.is_empty(): return None val = self.data[len(self.data)-1] self.data = self.data[:len(self.data)-1] return val def peek(self): if self.is_empty(): return None return self.data[len(self.data)-1] def push(self, val): self.data.append(val) def is_empty(self): return len(self.data) == 0 class Queue: def __init__(self): self.in_stack = Stack() self.out_stack = Stack() def enqueue(self, val): self.in_stack.push(val) def dequeue(self): if self.out_stack.is_empty(): if self.in_stack.is_empty(): return None while self.in_stack.is_empty() == False: self.out_stack.push(self.in_stack.pop()) return self.out_stack.pop() def peek(self): if self.out_stack.is_empty(): if self.in_stack.is_empty(): return None while self.in_stack.is_empty() == False: self.out_stack.push(self.in_stack.pop()) return self.out_stack.peek() def is_empty(self): return self.in_stack.is_empty() and self.out_stack.is_empty def print_queue(q): s = "[" for i in range(0, len(q.out_stack.data)): s += str(q.out_stack.data[i]) if i < len(q.out_stack.data)-1: s += ", " for i in range(0, len(q.in_stack.data)): s += str(q.in_stack.data[i]) if i < len(q.in_stack.data)-1: s += ", " s += "]" print(s) queue = Queue() queue.enqueue(1) queue.enqueue(2) queue.enqueue(3) # should print [1, 2, 3] print_queue(queue) v = queue.dequeue() # should print [2, 3] print_queue(queue) v = queue.dequeue() # should print [3] print_queue(queue) queue.enqueue(4) queue.enqueue(5) queue.enqueue(6) v = queue.dequeue() # should print [4, 5, 6] print_queue(queue) v = queue.dequeue() v = queue.dequeue() v = queue.dequeue() print_queue(queue) v = queue.dequeue() print_queue(queue)
StarcoderdataPython
1697370
<reponame>jgurtowski/pbcore_python from nose.tools import assert_equal, assert_true, assert_false from pbcore import data from pbcore.io import FastaReader, FastaWriter, FastaRecord from StringIO import StringIO class TestFastaRecord: def setup(self): self.name = "chr1|blah|blah" self.sequence = "GATTACA" * 20 self.expected__str__ = \ ">chr1|blah|blah\n" \ "GATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATT\n" \ "ACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAG\n" \ "ATTACAGATTACAGATTACA" self.record = FastaRecord(self.name, self.sequence) def test__init__(self): assert_equal(self.name, self.record.name) assert_equal(self.sequence, self.record.sequence) def test__str__(self): assert_equal(self.expected__str__, str(self.record)) def test_fromString(self): recordFromString = FastaRecord.fromString(self.expected__str__) assert_equal(self.name, recordFromString.name) assert_equal(self.sequence, recordFromString.sequence) def test_md5(self): assert_equal("67fc75ce599ed0ca1fc8ed2dcbccc95d", self.record.md5) def test_eq(self): name = 'r1' seq = 'ACGT' r1 = FastaRecord(name, seq) r2 = FastaRecord(name, seq) assert_true(r1 == r2) def test_not_equal(self): r1 = FastaRecord('r1', 'ACGT') r2 = FastaRecord('r2', 'ACGT') r3 = FastaRecord('r1', 'ACGT') assert_true(r1 != r2) assert_false(r1 != r3) class TestFastaReader: def test_readFasta(self): f = FastaReader(data.getFasta()) entries = list(f) assert_equal(48, len(entries)) assert_equal("ref000001|EGFR_Exon_2", entries[0].name) assert_equal("TTTCTTCCAGTTTGCCAAGGCACGAGTAACAAGCTCACGCAGTTGGGCACTTT" "TGAAGATCATTTTCTCAGCCTCCAGAGGATGTTCAATAACTGTGAGGTGGTCC" "TTGGGAATTTGGAAATTACCTATGTGCAGAGGAATTATGATCTTTCCTTCTTA" "AAGGTTGGTGACTTTGATTTTCCT", entries[0].sequence) assert_equal("e3912e9ceacd6538ede8c1b2adda7423", entries[0].md5) def test_dosLineEndingsFasta(self): f = FastaReader(data.getDosFormattedFasta()) entries = list(f) for e in entries: assert_true("\r" not in e.name) assert_equal(16, len(e.sequence)) class TestFastaWriter: def setup(self): self.fasta1 = StringIO( ">chr1|blah|blah\n" \ "GATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATT\n" \ "ACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAG\n" \ "ATTACAGATTACAGATTACA\n") self.fasta2 = StringIO(self.fasta1.getvalue() + "\n" + \ ">chr2|blah|blah\n" \ "GATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATT\n" \ "ACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAGATTACAG\n" \ "ATTACAGATTACAGATTACA\n") def test_writeFasta1(self): f = StringIO() w = FastaWriter(f) for record in FastaReader(self.fasta1): w.writeRecord(record) assert_equal(self.fasta1.getvalue(), f.getvalue()) def test_writeFasta2(self): f = StringIO() w = FastaWriter(f) for record in FastaReader(self.fasta1): w.writeRecord(record.name, record.sequence) assert_equal(self.fasta1.getvalue(), f.getvalue())
StarcoderdataPython
1607674
#IMPORTING REQUIRED MODULES import mysql.connector import datetime import pyautogui #CONNECTING TO DB AND CREATING CURSOR OBJECT mycon = mysql.connector.connect(user='root',passwd='',host='localhost',database='hotel_management') cursor = mycon.cursor() #DEFINING GLOBAL VARIABLES NEEDED global action global count count = 0 #DEFINING NEEDED FUNCTIONS #Checkin def add_customer(): try: fName = str(input("ENTER CUSTOMER NAME : ")) Phone_Number = str(input("ENTER PHONE NUMBER : ")) customer_id = str(input("CUSTOMER ID TYPE : ")) id_number = str(input("ID NUMBER : ")) room_id = str(input("SELECT ONE ROOM OUT OF " + rooms_available() + " : ")) cursor.execute("INSERT INTO customers(fName,Phone_Number,customer_id,id_number,room_id) VALUE('{}',{},'{}','{}',{});".format(fName,Phone_Number,customer_id,id_number,room_id)) mycon.commit() cursor.execute("SELECT Sr_No FROM customers WHERE fName = '{}' AND Phone_Number = {};".format(fName,Phone_Number)) data = cursor.fetchone() Sr_No = data[0] cursor.execute("UPDATE rooms SET Occupied_by_customer = {} WHERE room_id = {};".format(Sr_No,room_id)) cursor.execute("UPDATE rooms SET availabilty = 'Booked' WHERE room_id = {};".format(room_id)) mycon.commit() print("Customer has been succesfully added to database.") except: print("There was an error in making new entry. Please try again") add_customer() #returns a string made of available rooms def rooms_available(): cursor.execute("SELECT room_id FROM rooms WHERE availabilty = 'available';") data = cursor.fetchall() rooms = '' for room in data: for r in room: rooms = rooms + str(r) + ' ' return rooms #to search database for customer name,phone number and their id, of the customer currently staying in the room def customer_info_based_on_room(): try: room_id = str(input("Enter room number : ")) cursor.execute("SELECT fName,Phone_Number,id_number FROM customers WHERE room_id = {} AND doc IS NULL".format(room_id)) record = cursor.fetchone() if record is not None: name = record[0] phone = record[1] id_num = record[2] print("{} is staying in room {}. \nHis phone number is {}. \nHis id number is {}.".format(name,room_id,phone,id_num)) elif room_id in ['1001','1002','1003','1004','1005','1006','1007','1008','1009','1010']: print("No one is staying in room {}".format(room_id)) else: print("No such room exists") customer_info_based_on_room() except: print("There was an error in finding information. Please try again") customer_info_based_on_room() #checkout def checkout(): try: name = str(input("ENTER NAME OF CUSTOMER ABOUT TO CHECKOUT : ")) cursor.execute("SELECT Sr_No,fName,doa,doc,room_id FROM customers WHERE fName = '{}' AND doc IS NULL;".format(name)) record = cursor.fetchone() if record is not None: Sr_No = record[0] name = record[1] doa = record[2] room_id = record[4] make_bill(Sr_No,name,doa,room_id) cursor.execute("UPDATE customers SET doc = CURRENT_TIMESTAMP() WHERE Sr_No = {}".format(Sr_No)) cursor.execute("UPDATE rooms SET Occupied_by_customer = NULL, availabilty = 'available' WHERE room_id = {};".format(room_id)) mycon.commit() else: print("Customer {} is not staying here right now".format(name)) checkout() except: print("There was an error in checkout. Please try again") checkout() #makes bill and adds to table bills def make_bill(Sr_No,name,doa,room_id): cursor.execute("SELECT cost_pernight FROM rooms WHERE room_id = {}".format(room_id)) record = cursor.fetchone() cost = record[0] doc = datetime.datetime.today() days = (doc-doa).days amount = days * cost cursor.execute("SELECT bill_id FROM bills") last_bill_id = cursor.fetchall()[-1][0] number = int(last_bill_id[2:5]) + 1 no_of_zeros = 3-len(str(number)) new_bill_id = 'AA' + '0'*no_of_zeros + str(number) payment_method = str(input("ENTER PAYMENT METHOD : ")) discount = amount / 10 cursor.execute("INSERT INTO bills(Bill_id,customer_name,Sr_No,amount,discount,payment_method) VALUE('{}','{}',{},{},{},'{}');".format(new_bill_id,name,Sr_No,amount,discount,payment_method)) print("Bill has been created successfully.\nBill id is {} \nAmount to be paid is {}".format(new_bill_id,amount-discount)) #searches table for room if currently staying, or else for phone number and id def info_based_on_customer_name(): try: name = str(input("ENTER CUSTOMER NAME : ")) phone = input("ENTER PHONE NUMBER(not necessary) : ") if phone == '': cursor.execute("SELECT Sr_No,customer_id,id_number,doa,doc,room_id FROM customers WHERE fName = '{}'".format(name)) data = cursor.fetchall() if data != []: customer_id = data[0][1] id_number = data[0][2] room_id = data[0][5] if data[-1][4] is None: print("Customer {} is currently staying in room {}. \nHis {} number is {}.".format(name,room_id,customer_id,id_number) ) else: times = len(data) print("Customer {} has stayed {} times. \nHis {} number is {}.".format(name,times,customer_id,id_number)) else: print("No such customer exists") #info_based_on_customer_name() else: cursor.execute("SELECT Sr_No,customer_id,id_number,doa,doc,room_id FROM customers WHERE fName = '{}' AND Phone_number = {}".format(name,phone)) data = cursor.fetchall() if data != []: customer_id = data[0][1] id_number = data[0][2] room_id = data[0][5] if data[-1][4] is None: print("Customer {} is currently staying in room {}. \nHis {} number is {}.".format(name,room_id,customer_id,id_number) ) else: times = len(data) print("Customer {} has stayed {} times. \nHis {} number is {}.".format(name,times,customer_id,id_number)) else: print("No such customer exists") info_based_on_customer_name() except: print("There was an error in searching database. Please try again") info_based_on_customer_name() #calculates sum of total money intake and discount given def money_made(): cursor.execute("SELECT SUM(ALL net_to_be_paid),SUM(ALL discount) FROM bills;") data = cursor.fetchall() money = data[0][0] discount = data[0][1] print("The cash inflow is \u20B9{} since the hotel's opening, after giving \u20B9{} as discount.".format(money,discount)) #takes input for choice of action def input_action(): global action try: action = int(input("Please select one action from list above(enter the number associated with action)")) if action not in [1,2,3,4,5,6,7]: print("Not a valid option, please select again") input_action() except: print("Not a valid option, please select again.") input_action() #prints a lot of new line characters to make previous printed lines go up, and gives a clear screen to print more to def clear_screen(): print("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n") #scrolls up so that the heading of main menu appear always as first line on screen def scroll(): global count if count != 1: pyautogui.keyDown('ctrl') pyautogui.press('down', presses = 27) pyautogui.keyUp('ctrl') #The Main Menu of the program that controls everything def main_menu(): global action global count print("#################~~-*-*-*-*-WELCOME TO HOTEL PLAZA-*-*-*-*-~~#################",end = '\n\n\n\n') print("Following are what this program can do -----") print("1. Add new customer(CheckIn)") print("2. CheckOut") print("3. Search for available rooms") print("4. Search for a customer's information staying in some room") print("5. Search for room and id information based on customer name and/or phone number") print("6. Calculate lifetime money intake for the hotel") print("7. Exit Program") print("================================================================================================================") count += 1 scroll() input_action() if action == 1: add_customer() input() clear_screen() main_menu() elif action == 2: checkout() input() clear_screen() main_menu() elif action == 3: print("Following rooms are available --") print(rooms_available()) input() clear_screen() main_menu() elif action == 4: customer_info_based_on_room() input() clear_screen() main_menu() elif action == 5: info_based_on_customer_name() input() clear_screen() main_menu() elif action == 6: money_made() input() clear_screen() main_menu() elif action == 7: mycon.close() #CALLING THE MAIN MENU main_menu()
StarcoderdataPython
1690555
<reponame>dpleshkov/programming-class class Furniture: def __init__(self, name, width, height, material, quantity): self.name = name self.width = width self.height = height self.material = material self.quantity = quantity
StarcoderdataPython
1670610
# IMPORTS from flask import Flask, jsonify, request import logging.handlers import datetime from mongoSetup import Patient from pymodm import errors from pymodm import connect # FLASK SERVER SETUP app = Flask(__name__) formatter = logging.Formatter( "[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s") handler = logging.handlers.RotatingFileHandler( 'app.log', maxBytes=1024 * 1024) handler.setFormatter(formatter) handler.setLevel("DEBUG") app.logger.addHandler(handler) # SERVER ENDPOINTS @app.route("/api/new_patient", methods=["POST"]) def post_new_patient(): """ Registers a new patient with the server, and allows for future heart rate measurements from the patient. The JSON request received should be a dictionary with the following key-value pairs: "patient_id" : int representing patient's ID number "attending_email" : String representing attending physician's email "user_age" : float representing patient's age in years :return: A tuple of length 2. The second entry is always the HTTP status code. If no errors raised, the first entry is a patient data dictionary serialized as JSON, containing patient ID, attending physician's email, and patient's age. Otherwise, it is an error message serialized as JSON. """ patient_data = request.get_json() try: cleared_patient_data = check_patient_data(patient_data) except KeyError: return jsonify("Error 400: Patient data dictionary missing keys."), 400 except ValueError: return jsonify("Error 400: Invalid entry in patient data dict."), 400 except TypeError: return jsonify("Error 400: Attending email not of type String."), 400 patient = Patient(cleared_patient_data["patient_id"], attending_email=cleared_patient_data["attending_email"], age=cleared_patient_data["user_age"], heart_rates=["begin"], timestamps=["begin"]) patient.save() return jsonify(cleared_patient_data), 200 @app.route("/api/heart_rate", methods=["POST"]) def post_heart_rate(): """ Posts a patient's heart rate to the server along with his/her ID. The JSON request received should be a dictionary with the following key-value pairs: "patient_id" : int representing patient's ID number "heart_rate" : float representing current heart rate measurement :return: A tuple of length 2. The second entry is always the HTTP status code. If no errors raised, the first entry is a patient data dictionary serialized as JSON, containing patient ID, heart rate, and timestamp. Otherwise, it is an error message serialized as JSON. """ heart_rate = request.get_json() try: cleared_heart_rate = check_heart_rate(heart_rate) cleared_heart_rate["timestamp"] = str(datetime.datetime.now()) except KeyError: return jsonify("Error 400: Patient data dictionary missing keys."), 400 except ValueError: return jsonify("Error 400: Invalid entry in patient data dict."), 400 try: patient = Patient.objects.raw({"_id": cleared_heart_rate["patient_id"] }).first() except errors.DoesNotExist: return jsonify("Error 404: Patient with the requested ID does not " "exist."), 404 hrs = patient.heart_rates if "begin" in hrs: patient.heart_rates = [cleared_heart_rate["heart_rate"]] else: hrs.append(cleared_heart_rate["heart_rate"]) patient.heart_rates = hrs tss = patient.timestamps if "begin" in tss: patient.timestamps = [cleared_heart_rate["timestamp"]] else: tss.append(cleared_heart_rate["timestamp"]) patient.timestamps = tss patient.save() return jsonify(cleared_heart_rate), 200 @app.route("/api/status/<patient_id>", methods=["GET"]) def get_status(patient_id): """ Returns whether the patient is currently tachycardic based on the previously available heart rate, as well as a timestamp of the most recent heart rate. :param patient_id: int representing the patient's ID number :return: A tuple of length 2. The second entry is always the HTTP status code. If no errors raised, the first entry is a patient data dictionary serialized as JSON, containing a String detailing whether or not the patient's heart rate is tachycardic and a String representing a timestamp of the most recent measurement. Otherwise, it is an error message serialized as JSON. """ patient_id = int(patient_id) try: patient = Patient.objects.raw({"_id": patient_id}).first() except errors.DoesNotExist: return jsonify("Error 404: Patient with the requested ID does not " "exist."), 404 try: hrs = patient.heart_rates newest_hr = hrs[len(hrs)-1] tss = patient.timestamps newest_timestamp = tss[len(tss)-1] if newest_hr == "begin" or newest_timestamp == "begin": raise ValueError except IndexError: return jsonify("Error 400: No heart rates have been entered yet."), 400 except ValueError: return jsonify("Error 400: No heart rates have been entered yet."), 400 age = patient.age status = is_tachycardic(newest_hr, age) return jsonify({"Tachycardia status": status, "Timestamp": newest_timestamp}), 200 @app.route("/api/heart_rate/<patient_id>", methods=["GET"]) def get_heart_rates(patient_id): """ Returns all previous heart rate measurements for the patient. :param patient_id: int representing the patient's ID number :return: A tuple of length 2. The second entry is always the HTTP status code. If no errors raised, the first entry is a list of heart rates serialized as JSON. Otherwise, it is an error message serialized as JSON. """ patient_id = int(patient_id) try: patient = Patient.objects.raw({"_id": patient_id}).first() except errors.DoesNotExist: return jsonify("Error 404: Patient with the requested ID does not " "exist."), 404 if type(patient.heart_rates[0]) == str: return jsonify("Error 400: No heart rates have been entered yet."), 400 return jsonify(patient.heart_rates), 200 @app.route("/api/heart_rate/average/<patient_id>", methods=["GET"]) def get_heart_rate_avg(patient_id): """ Returns the average of all previous heart rate measurements for the patient. :param patient_id: int representing the patient's ID number :return: A tuple of length 2. The second entry is always the HTTP status code. If no errors raised, the first entry is a float representing the average of the patient's past HR measurements, serialized as JSON. Otherwise, it is an error message serialized as JSON. """ patient_id = int(patient_id) try: patient = Patient.objects.raw({"_id": patient_id}).first() except errors.DoesNotExist: return jsonify("Error 404: Patient with the requested ID does not " "exist."), 404 try: hrs = patient.heart_rates avg_hr = sum(hrs)/len(hrs) except ZeroDivisionError: return jsonify("Error 400: No heart rates have been entered yet."), 400 except ValueError: return jsonify("Error 400: No heart rates have been entered yet."), 400 except TypeError: return jsonify("Error 400: No heart rates have been entered yet."), 400 return jsonify(avg_hr), 200 @app.route("/api/heart_rate/interval_average", methods=["POST"]) def get_heart_rate_interval_avg(): """ Returns the average of all previous heart rate measurements for the patient from the inputted timestamp onwards. The JSON request received should be a dictionary with the following key-value pairs: "patient_id" : int representing patient's ID number "heart_rate_average_since" : String representing timestamp :return: A tuple of length 2. The second entry is always the HTTP status code. If no errors raised, the first entry is a float representing the average of the patient's past HR measurements in the specified interval, serialized as JSON. Otherwise, it is an error message serialized as JSON. """ avg_request_dict = request.get_json() try: cleared = check_avg_request_dict(avg_request_dict) except KeyError: return jsonify("Error 400: Patient data dictionary missing keys."), 400 except ValueError: return jsonify("Error 400: Invalid entry in patient data dict."), 400 except TypeError: return jsonify("Error 400: Timestamp not of type String."), 400 try: patient = Patient.objects.raw({"_id": cleared["patient_id"]}).first() except errors.DoesNotExist: return jsonify("Error 404: Patient with the requested ID does not " "exist."), 404 start_index = -999 try: for index, ts in enumerate(patient.timestamps): if ts >= cleared["heart_rate_average_since"]: start_index = index break if start_index == -999: return jsonify("Error 400: No heart rates have been entered " "past that date and time."), 400 hrs = patient.heart_rates[start_index:] avg_hr = sum(hrs)/len(hrs) except ZeroDivisionError: return jsonify("Error 400: No heart rates have been entered past that " "date and time."), 400 return jsonify(avg_hr), 200 # HELPER FUNCTIONS def check_patient_data(patient_data): """ Checks to see that the input for the /api/new_patient endpoint is valid, i.e. a dictionary with the correct key-value pairs and types. :param patient_data: The inputted patient data :return: The input, if no exceptions are thrown """ if "patient_id" not in patient_data or "attending_email" not in \ patient_data or "user_age" not in patient_data: app.logger.error("A key is missing from the patient data dictionary.") raise KeyError if None in patient_data.values(): app.logger.error("One of the fields is empty.") raise ValueError for value in patient_data.values(): if type(value) == bool: app.logger.error("Boolean detected where it shouldn't be.") raise ValueError patient_id = int(patient_data["patient_id"]) if type(patient_id) != int: app.logger.error("Patient ID not a number") raise ValueError if type(patient_data["attending_email"]) != str: app.logger.error("Attending email not a String") raise TypeError if "@" not in patient_data["attending_email"] or "." not in \ patient_data["attending_email"]: app.logger.error("Email address missing a special character " "('@' or '.')") raise ValueError patient_age = float(patient_data["user_age"]) if type(patient_age) != float: app.logger.error("Patient age not a number") raise ValueError if patient_age < 0: app.logger.error("Patient age invalid") raise ValueError try: if len(patient_data) > 3: raise ValueError except ValueError: app.logger.warning("Too many keys in dictionary. Check user input to " "save space.") patient_data["patient_id"] = patient_id patient_data["user_age"] = patient_age return patient_data def check_heart_rate(patient_data): """ Checks to see that the input for the /api/heart_rate endpoint is valid, i.e. a dictionary with the correct key-value pairs and types. :param patient_data: The inputted patient data :return: The input, if no exceptions are thrown """ if "patient_id" not in patient_data or "heart_rate" not in \ patient_data: app.logger.error("A key is missing from the patient data dictionary.") raise KeyError if None in patient_data.values(): app.logger.error("One of the fields is empty.") raise ValueError for value in patient_data.values(): if type(value) == bool: app.logger.error("Boolean detected where it shouldn't be.") raise ValueError patient_id = int(patient_data["patient_id"]) if type(patient_id) != int: app.logger.error("Patient ID not a number") raise ValueError heart_rate = float(patient_data["heart_rate"]) if type(heart_rate) != float: app.logger.error("Heart rate not a number") raise ValueError if heart_rate < 0: app.logger.error("Invalid heart rate") raise ValueError try: if len(patient_data) > 2: raise ValueError except ValueError: app.logger.warning("Too many keys in dictionary. Check user input to " "save space.") patient_data["patient_id"] = patient_id patient_data["heart_rate"] = heart_rate return patient_data def check_avg_request_dict(patient_data): """ Checks to see that the input for the /api/heart_rate/interval_average endpoint is valid, i.e. a dictionary with the correct key-value pairs and types. :param patient_data: The inputted patient data :return: The input, if no exceptions are thrown """ if "patient_id" not in patient_data or "heart_rate_average_since" not in \ patient_data: app.logger.error("A key is missing from the patient data dictionary.") raise KeyError if None in patient_data.values(): app.logger.error("One of the fields is empty.") raise ValueError for value in patient_data.values(): if type(value) == bool: app.logger.error("Boolean detected where it shouldn't be.") raise ValueError patient_id = int(patient_data["patient_id"]) if type(patient_id) != int: app.logger.error("Patient ID not a number") raise ValueError if type(patient_data["heart_rate_average_since"]) != str: app.logger.error("Timestamp not a String") raise TypeError if "-" not in patient_data["heart_rate_average_since"] or \ ":" not in patient_data["heart_rate_average_since"] or \ "." not in patient_data["heart_rate_average_since"]: app.logger.error("Timestamp not correctly formatted") raise ValueError try: if len(patient_data) > 2: raise ValueError except ValueError: app.logger.warning("Too many keys in dictionary. Check user input to " "save space.") patient_data["patient_id"] = patient_id return patient_data def is_tachycardic(heart_rate, age): """ Checks to see if a patient's heart rate is tachycardic based on his/her age. :param heart_rate: Float representing the patient's heart rate :param age: Float representing the patient's age in years :return: Boolean representing tachycardia status of patient """ if 1/365 <= age < 3/365: if heart_rate > 159: return True else: return False elif 3/365 <= age < 7/365: if heart_rate > 166: return True else: return False elif 7/365 <= age < 28/365: if heart_rate > 182: return True else: return False elif 28/365 <= age < 90/365: if heart_rate > 179: return True else: return False elif 90/365 <= age < 150/365: if heart_rate > 186: return True else: return False elif 150/365 <= age < 1: if heart_rate > 169: return True else: return False elif 1 <= age < 3: if heart_rate > 151: return True else: return False elif 3 <= age < 5: if heart_rate > 137: return True else: return False elif 5 <= age < 8: if heart_rate > 133: return True else: return False elif 8 <= age < 12: if heart_rate > 130: return True else: return False elif 12 <= age < 16: if heart_rate > 119: return True else: return False else: if heart_rate > 100: return True else: return False # INSTRUCTIONS FOR CALLING DRIVER if __name__ == "__main__": connect("mongodb://abg28:<EMAIL>:25253/bme590") app.run(host="0.0.0.0")
StarcoderdataPython
1795837
<gh_stars>1-10 import hashlib, json from collections import OrderedDict class MerkleTree: def __init__(self, listoftransaction=None): self.listoftransaction = listoftransaction self.ordered_transaction = OrderedDict() def create(self): listoftransaction = self.listoftransaction past_transaction = self.ordered_transaction temp_transaction = [] for index in range(0, len(listoftransaction), 2): current = listoftransaction[index] if index + 1 != len(listoftransaction): current_right = listoftransaction[index + 1] else: current_right = '' current_hash = current if current_right != '': current_right_hash = current_right past_transaction[listoftransaction[index]] = current_hash if current_right != '': past_transaction[listoftransaction[index + 1]] = current_right_hash if current_right != '': temp_transaction.append(current_hash + current_right_hash) else: temp_transaction.append(current_hash) if len(listoftransaction) != 1: self.listoftransaction = temp_transaction self.ordered_transaction = past_transaction self.create() def Get_ordered_transacion(self): return self.ordered_transaction def Get_Root_node(self): last_key = list(self.ordered_transaction.keys())[-1] return self.ordered_transaction[last_key] def calculateMerkleRoot(self, txs): tx_hashes = [] for tx in txs: tx_hashes.append(tx.hash) # transaction = ['t1', 't2', 't3', 't4'] self.listoftransaction = tx_hashes self.create() past_transaction = self.Get_ordered_transacion() return self.Get_Root_node()
StarcoderdataPython
4840926
<filename>test/test_admin_host.py<gh_stars>1-10 #!/usr/bin/env python # # ___INFO__MARK_BEGIN__ ####################################################################################### # Copyright 2016-2021 Univa Corporation (acquired and owned by Altair Engineering Inc.) # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. # # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. ####################################################################################### # ___INFO__MARK_END__ # from nose import SkipTest from .utils import needs_uge from .utils import create_config_file from uge.api.qconf_api import QconfApi from uge.config.config_manager import ConfigManager from uge.log.log_manager import LogManager from uge.exceptions.object_not_found import ObjectNotFound from uge.exceptions.object_already_exists import ObjectAlreadyExists from uge.exceptions.authorization_error import AuthorizationError create_config_file() API = QconfApi() CONFIG_MANAGER = ConfigManager.get_instance() LOG_MANAGER = LogManager.get_instance() @needs_uge def test_list_ahosts(): try: hl = API.list_ahosts() assert(hl is not None) except ObjectNotFound as ex: raise SkipTest('There are no configured UGE admin hosts.') def test_object_already_exists(): try: try: hl = API.list_ahosts() API.add_ahosts([hl[0]]) assert(False) except ObjectNotFound as ex: raise SkipTest('There are no configured UGE admin hosts.') except ObjectAlreadyExists as ex: # ok pass def test_delete_and_add_ahosts(): try: hl = API.list_ahosts() host_name = None for h in hl: if h != CONFIG_MANAGER['host']: host_name = h break if not host_name: raise SkipTest('Could not find UGE admin host that could be removed.') try: hl2 = API.delete_ahosts([host_name]) assert(hl2.data.count(host_name) == 0) except AuthorizationError as ex: raise SkipTest('Skip master host warning %s.' % str(ex)) hl3 = API.add_ahosts(host_name) assert(hl3.data.count(host_name) == 1) except ObjectNotFound as ex: raise SkipTest('There are no configured UGE admin hosts.')
StarcoderdataPython
1709680
<filename>services/evaluation/ocr_evaluation_service.py<gh_stars>1-10 import os from typing import List, Dict import csv import torch from scipy import spatial import numpy as np from entities.batch_representation import BatchRepresentation from enums.evaluation_type import EvaluationType from enums.metric_type import MetricType from enums.run_type import RunType from overrides import overrides from services.evaluation.base_evaluation_service import BaseEvaluationService from services.arguments.postocr_characters_arguments_service import PostOCRCharactersArgumentsService from services.vocabulary_service import VocabularyService from services.metrics_service import MetricsService from services.file_service import FileService from services.process.ocr_character_process_service import OCRCharacterProcessService from services.data_service import DataService class OCREvaluationService(BaseEvaluationService): def __init__( self, arguments_service: PostOCRCharactersArgumentsService, vocabulary_service: VocabularyService, process_service: OCRCharacterProcessService, metrics_service: MetricsService, file_service: FileService, data_service: DataService): super().__init__() self._vocabulary_service = vocabulary_service self._process_service = process_service self._metrics_service = metrics_service self._file_service = file_service self._arguments_service = arguments_service self._data_service = data_service (self._input_strings, self._input_target_strings, self._original_edit_distances, self._original_levenshtein_distance_sum, self._original_histogram) = (None, None, None, None, None) self.final_results = [] @overrides def evaluate_batch( self, output: torch.Tensor, batch_input: BatchRepresentation, evaluation_types: List[EvaluationType], batch_index: int) -> Dict[EvaluationType, List]: """Evaluates the generated output based on the chosen evaluation types :param output: the generated output from the model :type output: torch.Tensor :param evaluation_types: list of different types of evaluations that should be performed :type evaluation_types: List[EvaluationType] :return: a dictionary with evaluation scores for every type :rtype: Dict[EvaluationType, List] """ if self._input_strings is None: (self._input_strings, self._input_target_strings, self._original_edit_distances, self._original_levenshtein_distance_sum, self._original_histogram) = self._process_service.calculate_data_statistics(run_type=RunType.Test, log_summaries=False) _, _, predictions = output predictions = predictions.cpu().detach().numpy() targets = batch_input.targets[:, 1:].cpu().detach().numpy() predicted_characters = [] target_characters = [] for i in range(targets.shape[0]): indices = np.array( (targets[i] != self._vocabulary_service.pad_token), dtype=bool) predicted_characters.append(predictions[i]) target_characters.append(targets[i][indices]) evaluation = {} predicted_strings = [self._vocabulary_service.ids_to_string( x, exclude_special_tokens=True, cut_after_end_token=True) for x in predicted_characters] target_strings = [self._vocabulary_service.ids_to_string( x, exclude_special_tokens=True) for x in target_characters] if EvaluationType.JaccardSimilarity in evaluation_types: jaccard_score = np.mean([self._metrics_service.calculate_jaccard_similarity( target_strings[i], predicted_strings[i]) for i in range(len(predicted_strings))]) evaluation[EvaluationType.JaccardSimilarity] = [jaccard_score] if EvaluationType.LevenshteinEditDistanceImprovement in evaluation_types: predicted_levenshtein_distances = [ self._metrics_service.calculate_levenshtein_distance( predicted_string, target_string) for predicted_string, target_string in zip(predicted_strings, target_strings) ] evaluation[EvaluationType.LevenshteinEditDistanceImprovement] = predicted_levenshtein_distances indices_order = [ self._input_target_strings.index(target_string) for target_string in target_strings ] input_strings = [self._input_strings[i] for i in indices_order] input_distances = [ self._original_edit_distances[i] for i in indices_order] for x in zip(input_strings, predicted_strings, target_strings, input_distances, predicted_levenshtein_distances): self.final_results.append(x) return evaluation @overrides def save_results(self, evaluation: Dict[EvaluationType, List]): edit_distances = evaluation[EvaluationType.LevenshteinEditDistanceImprovement] jaccard_similarities = evaluation[EvaluationType.JaccardSimilarity] predicted_edit_sum = sum(edit_distances) original_edit_sum = self._original_levenshtein_distance_sum improvement_percentage = ( 1 - (float(predicted_edit_sum) / original_edit_sum)) * 100 checkpoints_path = self._file_service.combine_path( self._file_service.get_checkpoints_path(), 'output', create_if_missing=True) pickle_filename = f'output-{self._arguments_service.checkpoint_name}' self._data_service.save_python_obj( { 'original-edit-distances': self._original_edit_distances, 'edit-distances': edit_distances, 'jaccard-similarities': jaccard_similarities }, path=checkpoints_path, name=pickle_filename, print_success=False) csv_file_path = os.path.join( checkpoints_path, f'output-{self._arguments_service.checkpoint_name}.csv') with open(csv_file_path, 'w', encoding='utf-8', newline='') as output_file: csv_writer = csv.DictWriter(output_file, fieldnames=[ 'Input', 'Prediction', 'Target', 'Input edit distance', 'Predicted edit distance', 'Difference']) csv_writer.writeheader() for result in self.final_results: csv_writer.writerow({ 'Input': result[0], 'Prediction': result[1], 'Target': result[2], 'Input edit distance': result[3], 'Predicted edit distance': result[4], 'Difference': (result[3] - result[4]) }) csv_writer.writerow( {'Input': f'Improvement percentage: {improvement_percentage}'}) print(f'Improvement percentage: {improvement_percentage}') return True
StarcoderdataPython
1783206
/home/runner/.cache/pip/pool/5b/9f/71/72b1957fed5e77d1644200b1816d1df5ada510d6b11d4a58540676c34d
StarcoderdataPython
186501
import unittest from osm_export_tool.sources import Overpass from osm_export_tool.mapping import Mapping class TestMappingToOverpass(unittest.TestCase): def test_mapping(self): y = ''' buildings: types: - points select: - column1 where: column2 IS NOT NULL other1: types: - points - polygons select: - column1 - irrelevant where: column2 IS NOT NULL AND column3 IN ('foo','bar') other2: types: - lines select: - column5:key ''' mapping = Mapping(y) nodes, ways, relations = Overpass.filters(mapping) self.assertCountEqual(nodes,["['column3'~'foo|bar']","['column2']"]) # force quoting of strings to handle keys with colons self.assertCountEqual(ways,["['column5:key']","['column3'~'foo|bar']","['column2']"]) self.assertCountEqual(relations,["['column3'~'foo|bar']","['column2']"]) class TestSQLToOverpass(unittest.TestCase): def test_basic(self): s = Overpass.sql("name = 'somename'") self.assertEqual(s,["['name'='somename']"]) s = Overpass.sql("level > 4") self.assertEqual(s,["['level']"]) def test_basic_list(self): s = Overpass.sql("name IN ('val1','val2')") self.assertEqual(s,["['name'~'val1|val2']"]) def test_whitespace(self): s = Overpass.sql("name = 'some value'") self.assertEqual(s,["['name'='some value']"]) def test_notnull(self): s = Overpass.sql("name is not null") self.assertEqual(s,["['name']"]) def test_and_or(self): s = Overpass.sql("name1 = 'foo' or name2 = 'bar'") self.assertEqual(s,["['name1'='foo']","['name2'='bar']"]) s = Overpass.sql("(name1 = 'foo' and name2 = 'bar') or name3 = 'baz'") self.assertEqual(s,["['name1'='foo']","['name2'='bar']","['name3'='baz']"])
StarcoderdataPython
1692044
<filename>Algorithm1B.py ''' Copyright (c) 2020 <NAME> (<NAME> @file Algorithm1B.py @date 2020/03/08 @brief Lane detection application @license This project is released under the BSD-3-Clause license. ''' import numpy as np import cv2 ''' @brief Application which detects and overlays road lanes in a video stream ''' class Algorithm1B: #K = np.array([]) # Camera intrinsic matrix #distortionCoeffs = np.array([]) # Camera distortion coefficients cropFactor = 0 # 0-1 value that represents percentage to crop from the top of a frame to isolate lanes cropLineY = 0 # cropFactor value in terms of pixels from the top of the frame frame = np.array([]) laneMask = np.array([]) #yellowHSVLowBound = np.array([10, 70, 200]) #yellowHSVUpperBound = np.array([65, 180, 255]) yellowHSVLowBound = np.array([10, 30, 140]) yellowHSVUpperBound = np.array([30, 255, 255]) #yellowHSVLowBound = np.array([10, 0, 200]) #yellowHSVUpperBound = np.array([30, 75, 255]) #whiteHSVLowBound = np.array([0, 0, 190]) #whiteHSVUpperBound = np.array([170, 25, 255]) whiteHSVLowBound = np.array([0, 0, 208]) whiteHSVUpperBound = np.array([255, 75, 255]) def __init__(self, cropFactor=0.6): #self.K = K #self.distortionCoeffs = distortionCoeffs self.cropFactor = cropFactor ''' @brief Undistort an image, remove noise and crop to ROI @param @return ''' def prepareImage(self, frame): h = frame.shape[0] w = frame.shape[1] #newK, _ = cv2.getOptimalNewCameraMatrix(self.K, self.distortionCoeffs, (w, h), 0, (w, h)) #undistortedFrame = cv2.undistort(frame, self.K, self.distortionCoeffs, None, newK) #self.frame = undistortedFrame self.frame = frame blurredFrame = cv2.GaussianBlur(self.frame, (5,5), 0) self.cropLineY = int(self.cropFactor*h) croppedFrame = blurredFrame[self.cropLineY:h, :, :] return croppedFrame ''' @brief Determine the lane line equations from a frame @param @return ''' def getLaneLines(self, frame): hsvFrame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) yellowMask = cv2.inRange(hsvFrame, self.yellowHSVLowBound, self.yellowHSVUpperBound) whiteMask = cv2.inRange(hsvFrame, self.whiteHSVLowBound, self.whiteHSVUpperBound) self.laneMask = yellowMask | whiteMask lines = cv2.HoughLinesP(self.laneMask, 1, np.pi / 180, 50) lineParams = [] if (lines is not None and len(lines) > 1): for i in range(0, len(lines)): for x1,y1,x2,y2 in lines[i]: #cv2.line(undistortedFrame,(x1,y1+cropLineY),(x2,y2+cropLineY),(0,0,255),2) if (y2 != y1 and x2 != x1): m = (y2-y1) / (x2-x1) b = y1 - m*x1 if (np.isnan(m) == False and np.isnan(b) == False): lineParams.append([m,b]) else: continue lineParams = np.array(lineParams) if (len(lineParams) <= 1): return lineParams # Define criteria = ( type, max_iter = 10 , epsilon = 1.0 ) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) # Set flags (Just to avoid line break in the code) flags = cv2.KMEANS_RANDOM_CENTERS # Apply KMeans lineParams = np.float32(lineParams) _, _, centers = cv2.kmeans(lineParams, 2, None, criteria, 10, flags) m1 = centers[0,0] m2 = centers[1,0] b1 = centers[0,1] + self.cropLineY b2 = centers[1,1] + self.cropLineY laneParams = np.array([[m1, b1], [m2, b2]]) return laneParams ''' @brief Display the lane lines, lane mesh and drivetrajectory angle on the frame @param @return ''' def visualization(self, laneParams): if (len(laneParams) <= 1): return self.frame h = self.frame.shape[0] w = self.frame.shape[1] m1 = laneParams[0,0] m2 = laneParams[1,0] b1 = laneParams[0,1] b2 = laneParams[1,1] y1 = h y2 = self.cropLineY y3 = h y4 = self.cropLineY x1 = int((y1 - b1) / m1) x2 = int((y2 - b1) / m1) x3 = int((y3 - b2) / m2) x4 = int((y4 - b2) / m2) outputFrame = self.frame.copy() # Draw lane lines cv2.line(outputFrame, (x1,y1), (x2,y2), color=(0,255,0), thickness=3) cv2.line(outputFrame, (x3,y3), (x4,y4), color=(0,255,0), thickness=3) # Create a translucent mesh over the lane overlay = outputFrame.copy() laneMesh = np.array([[x1,y1], [x2,y2], [x4,y4], [x3,y3]]) cv2.fillPoly(overlay, [laneMesh], color=(0, 0, 255)) cv2.addWeighted(src1=overlay, alpha=0.5, \ src2=outputFrame, beta=0.5, \ dst=outputFrame, gamma=0) # Calculate the centerline angle and display the driving trajectory laneAngle1 = np.degrees(np.arctan(m1)) laneAngle2 = np.degrees(np.arctan(m2)) if (laneAngle1 < 0): laneAngle1 = laneAngle1 + 180 if (laneAngle2 < 0): laneAngle2 = laneAngle2 + 180 centerlineAngle = (laneAngle1 + laneAngle2) / 2 textOverlay = 'Drive Trajectory: ' \ + str(round(centerlineAngle - 90)) \ + ' degrees from center' cv2.putText(outputFrame, textOverlay, (10,30), \ cv2.FONT_HERSHEY_SIMPLEX, 1, \ color=(0,0,255), thickness=3) scale = 1000 / w # percent of original size dim = (int(w * scale), int(h * scale)) dimCropped = (int(self.laneMask.shape[1] * scale), int(self.laneMask.shape[0] * scale)) ''' cv2.imshow("Frame", cv2.resize(outputFrame, dim)) cv2.imshow("Mask", cv2.resize(self.laneMask, dimCropped)) cv2.waitKey(0) ''' # Create binary image of lane binaryImage = np.zeros((self.frame.shape[0], self.frame.shape[1])) cv2.fillPoly(binaryImage, [laneMesh], color=(255, 255, 255)) return outputFrame, binaryImage.astype('uint8') def detectLane(self, frame): preparedFrame = self.prepareImage(frame) laneParams = self.getLaneLines(preparedFrame) outputFrame, binaryImage = self.visualization(laneParams) return binaryImage if __name__ == '__main__': ''' K = np.array([[9.037596e+02, 0.000000e+00, 6.957519e+02], [0.000000e+00, 9.019653e+02, 2.242509e+02], [0.000000e+00, 0.000000e+00, 1.000000e+00]]) distortionCoeffs = np.array([-3.639558e-01, 1.788651e-01, 6.029694e-04, -3.922424e-04, -5.382460e-02]) K = np.array([[1.15422732e+03, 0.00000000e+00, 6.71627794e+02], [0.00000000e+00, 1.14818221e+03, 3.86046312e+02], [0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) distortionCoeffs = np.array([-2.42565104e-01, -4.77893070e-02, -1.31388084e-03, -8.79107779e-05, 2.20573263e-02]) ''' # How much to crop a frame from the top to isolate the road cropFactor = 0.5 # Run application laneDetector = Algorithm1B(cropFactor) frame = cv2.imread('sampleLane2.png') laneDetector.detectLane(frame) # preparedFrame = laneDetector.prepareImage(frame) # laneParams = laneDetector.getLaneLines(preparedFrame) # outputFrame = laneDetector.visualization(laneParams)
StarcoderdataPython
3213806
<gh_stars>1-10 import unittest from translate.factory import get_translator youdao = get_translator('youdao') class YoudaoTest(unittest.TestCase): def test_query(self): youdao.query('hello') self.assertTrue('发音' in youdao.format()) self.assertTrue('helˈō' in youdao.format()) self.assertTrue('həˈləʊ' in youdao.format()) self.assertTrue('英汉翻译' in youdao.format()) self.assertTrue('表示问候, 惊奇或唤起注意时的用语' in youdao.format()) self.assertTrue('网络释义' in youdao.format(1)) self.assertTrue('Hello Kitty' in youdao.format(1))
StarcoderdataPython
192448
n#!/usr/bin/env python # Copyright (c) 2014-2016 <NAME> # Permission is hereby granted, free of charge, to any person # obtaining a COPY of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os, sys, codecs, re from HTMLParser import HTMLParser from htmlentitydefs import name2codepoint import fontforge cps = set(); # create a subclass and override the handler methods class MyHTMLParser(HTMLParser): def __init__(self): HTMLParser.__init__(self) self.outdata = u"" def handle_data(self, data): data = re.sub(r"[\t\r\n ]+", " ", data); self.outdata += data def handle_entityref(self, name): try: c = unichr(name2codepoint[name]) except KeyError: if (name == 'apos'): c = unichr(8217) #c = unichr(39) else: c = "" self.outdata += c def get_results(self): return self.outdata for dtuple in os.walk(sys.argv[1]): d, ds, fs = dtuple for f in fs: if (f.lower().endswith('.xhtml') or f.lower().endswith('.html') or f.lower().endswith('.xml')): path = os.path.join(d, f) parser = MyHTMLParser() inp = codecs.open(path, encoding='utf-8') for line in inp: parser.feed(line) parser.close() print parser.get_results(); for c in parser.get_results(): cps.add(c) for fontfile in sys.argv[2:]: font = fontforge.open(fontfile) font.selection.none() for c in list(cps): font.selection.select(("unicode", "more"), ord(c)) font.selection.invert() font.clear() os.rename(fontfile, fontfile + ".bak") font.generate(fontfile)
StarcoderdataPython
3269562
<reponame>chechir/doors import datetime import re import numpy as np import pandas as pd import pytz def get_day_of_year(dates): return _get_timestamp_attribute(dates, "dayofyear") def get_day_of_week(dates): return pd.Series(dates).apply(lambda x: x.weekday()).values def get_hour(dates): return _get_timestamp_attribute(dates, "hour") def get_month(dates): return _get_timestamp_attribute(dates, "month") def get_week(dates): return _get_timestamp_attribute(dates, "week") def _get_timestamp_attribute(dates, attr): timestamps = pd.Series(dates) result = timestamps.apply(lambda x: getattr(x, attr)).values return result def utc_to_bst(dt): dt = pytz.timezone("utc").localize(dt) bst_dt = dt.astimezone(pytz.timezone("Europe/London")) return bst_dt def extract_timestamp(string): regex_expression = "[1-2][0-9]{1,7}_[0-9]{1,6}" result = re.search(regex_expression, string) if result: timestamp = result.group(0) else: raise ValueError("no timestamp found.") return timestamp def replace_timestamp(string): timestamp = extract_timestamp(string) new_string = string.replace(timestamp, get_timestamp()) return new_string def get_diff_in_days(dates, add_init=False): """ Gives the difference in days for datetime64 objects """ diff_date = np.diff(dates) delta_minutes = diff_date.astype("timedelta64[m]") / np.timedelta64(1, "m") delta_days = 1.0 * delta_minutes / (60 * 24) if add_init: delta_days = np.concatenate([[np.nan], delta_days]) return delta_days def cum_diff_years(dates, init=0): """ Calculates cumulative difference in years betweeon dates[i] and date[] """ experience_days = np.empty(len(dates)) experience_days[1:] = np.cumsum(get_diff_in_days(dates)) experience_days[0] = init experience_years = experience_days / 365 return experience_years def get_months(dates): return dates.astype("datetime64[M]").astype(int) % 12 + 1 def get_datetime_now(): return datetime.datetime.utcnow() def get_datetime_end_of_day(): now = get_datetime_now() return datetime.datetime(now.year, now.month, now.day, 23, 59, 59) def get_datetime_start_of_month(): this_morning = get_datetime_this_morning() start_of_month = this_morning.replace(day=1) return start_of_month def get_datetime_this_morning(): now = get_datetime_now() this_morning = datetime.datetime(year=now.year, month=now.month, day=now.day) return this_morning def get_datetime_tomorrow_morning(): this_morning = get_datetime_this_morning() tomorrow = this_morning + datetime.timedelta(days=1) return tomorrow def get_datetime_yesterday_morning(): this_morning = get_datetime_this_morning() tomorrow = this_morning - datetime.timedelta(days=1) return tomorrow def get_datetime_last_week(): this_morning = get_datetime_this_morning() tomorrow = this_morning - datetime.timedelta(days=7) return tomorrow def round_datetime64(v, to="s"): # can replace this with v.astype('datetime64[{}]'.format(to)) if to == "s": decimals = -9 elif to == "m": decimals = -10 else: assert isinstance(to, int), "Unexpected to." decimals = to return np.round(v.astype(np.int64), decimals).astype("datetime64[ns]") def get_timestamp(time_format="%Y%m%d_%H%M%S"): """ Returns a timestamp by checking the date and time at the moment. """ return str(datetime.datetime.utcnow().strftime(time_format)) def is_datetime(v): return "datetime" in str(v.dtype) def get_all_dates_in_range(start_date, end_date=None): if end_date is None: end_date = datetime.datetime.now().date() assert isinstance(start_date, datetime.date) assert isinstance(end_date, datetime.date) n_days = (end_date - start_date).days + 1 # include the max date all_days = [start_date + datetime.timedelta(n) for n in range(n_days)] return all_days def get_season(day_number): day_spring_start = 80 day_summer_start = 172 day_autumn_start = 264 day_winter_start = 356 if (day_number < day_spring_start) | (day_number >= day_winter_start): return "winter" if day_number < day_summer_start: return "spring" if day_number < day_autumn_start: return "summer" if day_number < day_winter_start: return "autumn"
StarcoderdataPython