id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
47181
<filename>apimodule/auctionhouse.py import requests def getDumpFile(apiKey): requestUri = "https://eu.api.battle.net/wow/auction/data/azjol-nerub?locale=en_US&apikey=%s" % apiKey r = requests.get(requestUri); jsonData = r.json() try: fileData = jsonData["files"][0] return fileData except: return None return jsonData
StarcoderdataPython
3261542
#Ingresando datos print("Ingrese los kilometros recorridos con su motocicleta:") km=float(input()) print("Ingrese la cantidad de litros que consumió durante su recorrido:") lt=float(input()) print(f"Kilometros rescorridos: {km}") print(f"Litros de combustible gastados: {lt}") print("El consumo por kilometro es de ", km/lt)
StarcoderdataPython
1740043
<reponame>PillarDevelopment/sto import binascii import calendar import datetime from logging import Logger from typing import Optional from eth_account import Account from eth_utils import from_wei, to_bytes from web3 import Web3, HTTPProvider from sto.ethereum.utils import check_good_node_url, check_good_private_key, create_web3 class NodeNotSynced(Exception): pass class NeedMoney(Exception): pass def diagnose(logger: Logger, node_url: str, private_key_hex: str) -> Optional[Exception]: """Run Ethereum connection and account diagnostics. Check that the user has properly configured Ethereum node and private key. Never fails. Exceptions are written to the logger output and returned. """ try: check_good_node_url(node_url) logger.info("Attempting to connect to Ethereum node %s", node_url) web3 = create_web3(node_url) logger.info("Connected to Ethereum node software %s", web3.version.node) block_num = web3.eth.blockNumber d = datetime.datetime.utcnow() unix_time = calendar.timegm(d.utctimetuple()) block_info = web3.eth.getBlock(block_num) last_time = block_info["timestamp"] if last_time == 0: raise NodeNotSynced("Looks like your node has not yet been synced.") ago = unix_time - last_time logger.info("Current Ethereum node block number: %d, last block %d seconds ago - compare this to data on https://etherscan.io", block_num, ago) if ago < 0: raise NodeNotSynced("Last block in the future? Do we have a clock with a wrong timezone somewhere?") if ago > 1800: raise NodeNotSynced("Looks like your node has not received a block for half an hour. It is most likely unsynced at the moment.") check_good_private_key(private_key_hex) logger.info("Using private key %s...", private_key_hex[0:3]) account = Account.privateKeyToAccount(to_bytes(hexstr=private_key_hex)) balance = web3.eth.getBalance(account.address) logger.info("Address %s has ETH balance of %f", account.address, from_wei(balance, "ether")) if balance == 0: raise NeedMoney("Your Ethereum account {} needs to have ETH in order to use this tool".format(account.address)) except Exception as e: logger.error("Diagnostics failure") logger.exception(e) return e
StarcoderdataPython
3323597
__author__ = '(Multiple)' __project__ = "Food-Pantry-Inventory" __creation_date__ = "06/03/2019" from django.test import TestCase from fpiweb.forms import \ BuildPalletForm,\ NewBoxForm from fpiweb.models import Box, BoxType class NewBoxFormTest(TestCase): fixtures = ('BoxType', 'Constraints') def test_save(self): box_type = BoxType.objects.get(box_type_code='Evans') post_data = { 'box_number': '27', 'box_type': box_type.pk, } form = NewBoxForm(post_data) self.assertTrue( form.is_valid(), f"{form.errors} {form.non_field_errors()}", ) form.save(commit=True) box = form.instance self.assertIsNotNone(box) self.assertIsNotNone(box.pk) self.assertEqual(box_type.box_type_qty, box.quantity) class BuildPalletFormTest(TestCase): def test_is_valid__location_not_specified(self): form = BuildPalletForm() self.assertFalse(form.is_valid())
StarcoderdataPython
3352272
# -*- coding:utf-8 -*- class DocumentTraceFile(object): """ """ def __init__(self, tracing_file_path, is_index_file=False): if tracing_file_path: self.file_path = tracing_file_path self.is_index_file = is_index_file else: raise Exception("tracing_file_path is None.")
StarcoderdataPython
169622
<filename>lib/fama/gene_assembler/contig.py """This module describes Contig class""" from collections import defaultdict class Contig: """Contig objects stores data about an assembled contig: sequence, number of mapped reads, list of aligned reads, sizes of alignment etc. Attributes: contig_id (str): contig identifier sequence (str): contig sequence read_count (:obj:defaultdict[str, int]): key is sample identifier, value is count of reads for the sample read_segments (:obj:defaultdict[str, int]): key is sample identifier, value is length of all aligned segments for the sample reads (list of str): identifiers of reads mapped to the contig genes (dict[str,:obj:Gene]): genes predicted in the contig """ def __init__(self, contig_id='', sequence=''): """ Args: contig_id (str): contig identifier sequence (str): contig sequence """ self.contig_id = contig_id self.sequence = sequence self.read_count = defaultdict(int) # Count of reads for each sample self.read_segments = defaultdict(int) # Length of all aligned segments in each sample self.reads = [] self.genes = {} def update_coverage(self, sample, segment_length): """Updates read_count and read_segments attributes""" if sample in self.read_count: self.read_count[sample] += 1 else: self.read_count[sample] = 1 if sample in self.read_segments: self.read_segments[sample] += segment_length else: self.read_segments[sample] = segment_length def get_coverage(self, sample=None): """Returns read coverage for a given sample or total coverage""" result = 0.0 if self.sequence == '': pass elif sample: if sample in self.read_count and sample in self.read_segments: result = self.read_segments[sample] / len(self.sequence) else: result = sum(self.read_segments.values()) / len(self.sequence) return result def add_gene(self, gene): """Adds Gene object to dictionary of genes""" self.genes[gene.gene_id] = gene def get_rpkm(self, sample_readcount, sample=None): """Returns RPKM score for a given sample or all samples""" result = 0.0 try: if sample in self.read_count: result = self.read_count[sample] * 1000000000 / \ len(self.sequence) / sample_readcount elif sample is None: result = len(self.reads) * 1000000000 / len(self.sequence) / \ sample_readcount except ZeroDivisionError: print('ZeroDivisionError for contig', self.contig_id, str(len(self.sequence)), 'bp', sample_readcount, 'reads', 'sample', sample) raise return result def get_rpm(self, sample_readcount, sample=None): """Returns RPM score for a given sample or all samples""" result = 0.0 if sample in self.read_count: result = self.read_count[sample] * 1000000 / sample_readcount elif sample is None: result = len(self.reads) * 1000000 / sample_readcount return result def get_read_count(self, sample=None): """Returns raw read count for a given sample or all samples""" result = 0.0 if sample in self.read_count: result = self.read_count[sample] elif sample is None: result = len(self.reads) return result
StarcoderdataPython
1623122
<filename>src/data_processing/plot/__main__.py #!/usr/bin/python import sys, os sys.path.append('/home/karim/workspace/vscode-python/ADNI_Data_processing/src/data_processing') import config.config_read as rsd import services.tools as tls import io_data.data_acces_file as daf import matplotlib.pyplot as plt import numpy as np #------------------------------------------------------------------------------------------ # Plot slices from the selected ROI #------------------------------------------------------------------------------------------ def get_sag_slices(data_L, data_R, sag_l, sag_r): selected_data_L = data_L[sag_l[0]:sag_l[1], :, :] selected_data_R = data_R[sag_r[0]:sag_r[1], :, :] return selected_data_L, selected_data_R def get_cor_slices(data_L, data_R, cor_l, cor_r): selected_data_L = data_L[:, cor_l[0]:cor_l[1], :] selected_data_R = data_R[:, cor_r[0]:cor_r[1], :] return selected_data_L, selected_data_R def get_axi_slices(data_L, data_R, axi_l, axi_r): selected_data_L = data_L[:, :, axi_l[0]:axi_l[1]] selected_data_R = data_R[:, :, axi_r[0]:axi_r[1]] return selected_data_L, selected_data_R def plot_ROI_all(data_roi_L, data_roi_R, left_dims, right_dims): sag_l, cor_l, axi_l = left_dims sag_r, cor_r, axi_r = right_dims sag_L, sag_R = get_sag_slices(data_roi_L, data_roi_R, sag_l, sag_r) cor_L, cor_R = get_cor_slices(data_roi_L, data_roi_R, cor_l, cor_r) axi_L, axi_R = get_axi_slices(data_roi_L, data_roi_R, axi_l, axi_r) # plot 2D slice from ROI (m-1, m, m+1) for i in range(3): plt.subplot(3, 6, i+1) plt.imshow(sag_L[i, :, :], cmap='gray', origin="lower") plt.subplot(3, 6, 4+i) plt.imshow(sag_R[i, :, :], cmap='gray', origin="lower") plt.subplot(3, 6, 6+i+1) plt.imshow(cor_L[:, i, :], cmap='gray', origin="lower") plt.subplot(3, 6, 6+4+i) plt.imshow(cor_R[:, i, :], cmap='gray', origin="lower") plt.subplot(3, 6, 12+i+1) plt.imshow(axi_L[:, :, i], cmap='gray', origin="lower") plt.subplot(3, 6, 12+4+i) plt.imshow(axi_R[:, :, i], cmap='gray', origin="lower") plt.show() def get_pickle_from_folder(folder): res = [] for root, dirs, files in os.walk(folder): for file in files: if file.endswith('pkl'): res.append(os.path.join(root, file)) return res #------------------------------------------------------------------------------------------ # function::__main__ :: #------------------------------------------------------------------------------------------ def main(): binaries_classes = ['AD-NC', 'AD-MCI', 'MCI-NC'] data_params = rsd.get_all_data_params() root_path = data_params['adni_data_des'] name_cnv = root_path + tls.get_convention_name(data_params) + '/' + str(data_params['ROI_list'][data_params['ROI_selection']] + '/' + data_params['3D_or_2D']) line = name_cnv + '/' + binaries_classes[0] + '/test/' list_files = get_pickle_from_folder(line) for i in list_files: model = daf.read_model(i) print(" HIPP_L : {} - HIPP_R: {} - Vector: {} - Label: {}".format(model.hippLeft.shape, model.hippRight.shape, model.hippMetaDataVector, model.hippLabel)) # print(model) left_dims, right_dims = [[13,16],[13,16],[13,16]], [[13,16],[13,16],[13,16]] plot_ROI_all(model.hippLeft, model.hippRight, left_dims, right_dims) #------------------------------------------------------------------------------------------ # Start ->>>->>> #------------------------------------------------------------------------------------------ if __name__ == '__main__': main()
StarcoderdataPython
1637837
<filename>geometry.py # -*- encoding=utf8 -*- __author__ = "<NAME>" import math def calc_degrees(point1, point2): """ 计算角度 :param point1: :param point2: :return: """ if point1[1] == point2[1]: return 0 if point1[0] == point2[0]: return 90 if point1[0] < point2[0]: left = point1 right = point2 else: left = point2 right = point1 result = math.degrees(math.atan(math.fabs(right[1] - left[1]) / math.fabs(right[0] - left[0]))) return result if left[1] > right[1] else result * -1 def calc_a(degrees_a, hypotenuse): """ 计算直角三角形的A边,相对坐标长度 ∠b * A * * C * * ∠c ******** ∠a B :param degrees_a: A角 :param hypotenuse: 斜边 :return: A边长度 """ return math.sin(math.radians(degrees_a)) * hypotenuse def calc_b(degrees_a, hypotenuse): """ 计算直角三角形的B边 ∠b * A * * C * * ∠c ******** ∠a B :param degrees_a: A角 :param hypotenuse: 斜边 :return: B边长度 """ return math.cos(math.radians(degrees_a)) * hypotenuse def calc_center_point(point_a, point_b): """ 已知两点坐标,计算中间点坐标 :param point_a: A点坐标 :param point_b: B点坐标 :return: 中心点坐标 """ return (point_a[0] + point_b[0]) // 2, \ (point_a[1] + point_b[1]) // 2 def calc_distance(point_a, point_b): """ 计算两点之间的长度 :param point_a: A坐标 :param point_b: B坐标 :return: 两点之间的长度 """ return ((point_a[1] - point_b[1]) ** 2 + (point_a[0] - point_b[0]) ** 2) ** 0.5 def calc_equilateral_triangle_point(point_a, point_b, degrees_a=None, top=True): """ 计算等边三角形第三个点的坐标 :param point_a: A点坐标 :param point_b: B点坐标 :param degrees_a: A与B的夹角 :param top: 第三个点是在上面还是下面,默认上面 :return: C点坐标 """ if not degrees_a: degrees_a = calc_degrees(point_a, point_b) length = calc_distance(point_a, point_b) radians = math.radians(degrees_a + 60) x_base = length * math.cos(radians) y_base = length * math.sin(radians) if top: return point_a[0] + x_base, point_a[1] - y_base else: return point_b[0] - x_base, point_b[1] + y_base def calc_isosceles_right_triangle_point_b(point_a, point_c, top=True): """ 计算等腰直角三角形的B点 ∠a * right_angle_length * * * * ********* ∠b ∠c :param point_a: A点坐标 :param point_c: C点坐标 :param top: B点坐标是否在上面 :return: B点坐标 """ right_angle_length = calc_distance(point_a, point_c) degrees = calc_degrees(point_a, point_c) hypotenuse = (right_angle_length ** 2 * 2) ** 0.5 # A与C点的相对于水平线的夹角 degrees_a_to_c = 45 + degrees if top else 45 - degrees relative_y = calc_a(degrees_a_to_c, hypotenuse) relative_x = calc_b(degrees_a_to_c, hypotenuse) if top: return point_a[0] + relative_x, point_a[1] - relative_y else: return point_a[0] + relative_x, point_a[1] + relative_y
StarcoderdataPython
4804929
import scipy.interpolate import numpy as np import xarray as xr import os import matplotlib.pyplot as plt from regrid import get_ease_coords def read_mask(): """ Returns Northern hemisphere high resolution LOCI mask """ diri = '/oldhome/apbarret/projects/ancillary/masks' fili = 'Nh_loci_land50_coast0km.1441x1441.bin' xdim = 1441 ydim = 1441 mask = np.fromfile( os.path.join(diri, fili), dtype='uint8').reshape(xdim,ydim) # Set mask to 0 for land [0] (and ice [101]) and 1 for ocean [255]. Cells off-globe # are set to NaN newmask = np.where( (mask == 0) | (mask == 101), 0, np.NaN ) newmask = np.where( (mask == 255), 1, newmask ) return newmask def get_input_mask(): """ Returns points (npoints,2) and values (npoints) arrays for BU LOCI mask. """ mask = read_mask() coords = get_ease_coords('Nh') values = mask[ np.isfinite(mask) ].flatten().astype('uint8') points = np.array( [coords[0][ np.isfinite(mask) ].flatten(), coords[1][ np.isfinite(mask) ].flatten()] ).T return points, values def main(verbose=True): if verbose: print ('Getting mask and coordinates') points, values = get_input_mask() if verbose: print ('Getting EASE grid definition') dstCoord = get_ease_coords('Na12') if verbose: print ('Regridding mask') mask = scipy.interpolate.griddata(points, values, dstCoord, method='nearest') np.save('BU_loci_Na12.npy', mask) if __name__ == "__main__": main()
StarcoderdataPython
3332429
<reponame>parada3desu/deepcomparer.py import unittest from deepcomparer import deep_compare class TestCompareTuple(unittest.TestCase): def test_empty_tuple(self): """ Test empty tuple """ data1: tuple = () data2: tuple = () result = deep_compare(data1, data2) self.assertTrue(result) def test_empty_tuple_inside_tuple(self): """ Test empty tuple inside tuple """ data1: tuple = (()) data2: tuple = (()) result = deep_compare(data1, data2) self.assertTrue(result) def test_same_size_tuples_with_different_values_with_many_values(self): """ Test same size tuples with different values """ data1: tuple = (1, 2) data2: tuple = (2, 2, 3) result = deep_compare(data1, data2) self.assertFalse(result) def test_same_size_tuples_with_many_values(self): """ Test same size tuples with different values """ data1: tuple = (1, 2) data2: tuple = (1, 2) result = deep_compare(data1, data2) self.assertTrue(result) def test_empty_tuple_inside_tuple_with_many_values(self): """ Test empty tuple inside tuple """ data1: tuple = ((3, 2), (1, 2)) data2: tuple = ((3, 2), (1, 2)) result = deep_compare(data1, data2) self.assertTrue(result) if __name__ == '__main__': unittest.main()
StarcoderdataPython
120390
from django.db.models import IntegerChoices, TextChoices from django.utils.translation import gettext_lazy as _ class WinterStorageMethod(TextChoices): ON_TRESTLES = "on_trestles", _("On trestles") ON_TRAILER = "on_trailer", _("On a trailer") UNDER_TARP = "under_tarp", _("Under a tarp") class ApplicationStatus(TextChoices): PENDING = "pending", _("Pending") OFFER_GENERATED = "offer_generated", _("Offer generated") OFFER_SENT = "offer_sent", _("Offer sent") NO_SUITABLE_BERTHS = "no_suitable_berths", _("No suitable berths") HANDLED = "handled", _("Handled") REJECTED = "rejected", _("Rejected") EXPIRED = "expired", _("Expired") class ApplicationAreaType(TextChoices): MARKED = "marked", _("Marked") UNMARKED = "unmarked", _("Unmarked") class ApplicationPriority(IntegerChoices): LOW = 0, _("Low") MEDIUM = 1, _("Medium") HIGH = 2, _("High")
StarcoderdataPython
1706183
<filename>BGWpy/core/__init__.py from . import util from .writable import * from .F90io import * from .runscript import * from .task import * from .workflow import *
StarcoderdataPython
3229517
import os import json from django.apps import AppConfig import torch from . import AI class MainConfig(AppConfig): name = 'main' @staticmethod def get_rating(sentence): return AI.get(sentence)
StarcoderdataPython
4815057
<reponame>decached/taylr<filename>lib/exceptions.py class APIException(Exception): """API Exception, which is to be used for all failed responses.""" def __init__(self, code, msg, details=None): self.code = code self.msg = msg self.details = details def __str__(self): return repr({"code": self.code, "msg": self.msg, "details": self.details})
StarcoderdataPython
3397530
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt def main(): L = 10. ne = 30 a = 1. cfl = 0.5 Dmax = L/2. tmax = Dmax/a x = np.linspace(0., L, ne+1) dx = x[1]-x[0] u1 = np.zeros(len(x)) u2 = np.zeros(len(x)) line, = plt.plot(x,u2,'o-') plt.xlabel('x') plt.ylabel('u') plt.ylim(-0.2,1.2) plt.grid(True) plt.draw() t = 0 dt = cfl*dx/a while t<tmax: t+=dt u2[0] = 1. # BC for i in xrange(1,len(x)): u2[i] = u1[i] - cfl * (u1[i]-u1[i-1]) line.set_ydata(u2) plt.title('t = %f' % t) plt.draw() plt.pause(0.001) u1,u2 = u2,u1 if __name__ == "__main__": main() plt.show() #raw_input('<ENTER TO QUIT>')
StarcoderdataPython
3341672
i = int(input()) for x in range(i): n = int(input()) a = map(int,input().split(' ')) a.sort() ans = 0 cur = 1 for y in range(len(a)): if (a[y] >= cur): ans += 1 cur += 1 print("Case #"+str(x+1),ans)
StarcoderdataPython
4835010
from unittest import TestCase class TestSendReceive(TestCase): pass
StarcoderdataPython
125280
from tests.base import DBTestCase from tests.example_app.tables import Manager class TestToDict(DBTestCase): def test_to_dict(self): """ Make sure that `to_dict` works correctly. """ self.insert_row() instance = Manager.objects().first().run_sync() dictionary = instance.to_dict() self.assertEqual(dictionary, {"id": 1, "name": "Guido"}) def test_filter_rows(self): """ Make sure that `to_dict` works correctly with a subset of columns. """ self.insert_row() instance = Manager.objects().first().run_sync() dictionary = instance.to_dict(Manager.name) self.assertEqual(dictionary, {"name": "Guido"}) def test_to_dict_aliases(self): """ Make sure that `to_dict` works correctly with aliases. """ self.insert_row() instance = Manager.objects().first().run_sync() dictionary = instance.to_dict( Manager.id, Manager.name.as_alias("title") ) self.assertEqual(dictionary, {"id": 1, "title": "Guido"})
StarcoderdataPython
3398657
import importlib def python_module_exists(module_name: str) -> bool: spam_spec = importlib.util.find_spec(module_name) return spam_spec is not None
StarcoderdataPython
34714
<gh_stars>0 #!/usr/bin/env python3 import os import sys from shutil import copyfile, move import argparse from glob import glob sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) from Metronome import distributed_execution def generate_astar_configs(domain_paths, domain_type): config_list = [] for domain_path in domain_paths: # strip leading . char from domain domain_path_tmp = domain_path[1:] if domain_path[0] == '.' else domain_path config = dict() config['algorithmName'] = 'A_STAR' config['actionDuration'] = 1 config['domainName'] = domain_type config['terminationType'] = 'EXPANSION' config['lookaheadType'] = 'DYNAMIC' config['commitmentStrategy'] = 'SINGLE' config['heuristicMultiplier'] = 1.0 config['domainPath'] = domain_path_tmp config_list.append(config) return config_list def generate_agrd_configs(domain_paths, domain_type, goals): config_list = [] for domain_path in domain_paths: # strip leading . char from domain domain_path_tmp = domain_path[1:] if domain_path[0] == '.' else domain_path config = dict() config['algorithmName'] = 'NAIVE_OPTIMAL_AGRD' config['actionDuration'] = 1 config['interventionCost'] = 1 config['domainName'] = domain_type config['terminationType'] = 'EXPANSION' config['subjectAlgorithm'] = 'NAIVE_DYNAMIC' config['timeLimit'] = 3600_000_000_000 # 3600 second (60 min) timeout config['maxDepth'] = 1000 config['goalPriors'] = [1 / goals for _ in range(goals)] config['subjectGoal'] = 0 config['domainPath'] = domain_path_tmp config_list.append(config) return config_list def filter_domains(generated_domain_paths, base_domain_name, domain_type='GRID_WORLD', domain_ext='.vw', out_path='./filtered', write=True): this_cwd = os.getcwd() success_index = 0 if not os.path.exists(out_path): os.makedirs(out_path) configs = generate_astar_configs(generated_domain_paths, domain_type) print('Begin filtering of generated domains') os.chdir('../..') results = distributed_execution(configs, this_cwd) os.chdir(this_cwd) success_domains = [] for result in results: if (result['success']): print(f'Domain {result["configuration"]["domainPath"]} is solvable') success_domains.append(result["configuration"]["domainPath"]) if write: new_file_name = os.path.join(out_path, base_domain_name + str(success_index) + domain_ext) print(f'Outputting to {new_file_name}') move('.' + result['configuration']['domainPath'], new_file_name) success_index += 1 else: print(result['errorMessage']) print(f'Domain {result["configuration"]["domainPath"]} was not successfully solved') return success_domains def get_with_default(d, key, default_value=None, default_producer=None): if key not in d: d[key] = default_value if default_producer is None else default_producer() return d[key] def get_with_default_list(d, key): return get_with_default(d, key, default_value=[]) def get_with_default_dict(d, key): return get_with_default(d, key, default_value=dict()) def get_depth_upper_bound(result): most = 0 second_most = 0 idx = 0 while f'Goal_{idx}' in result: cost = result[f'Goal_{idx}'] if cost > most: second_most = most most = cost elif cost > second_most: second_most = cost idx += 1 return second_most def filter_agrd_chunk(config, chunk_instances, inactive_out_dir, followup_out_dir): this_cwd = os.getcwd() base_domain_name = config['base_domain_name'] domain_ext = config['domain_ext'] path_to_instance = { os.path.join( config['source_dir'], filename ): filename for filename in chunk_instances } configs = generate_agrd_configs(path_to_instance.keys(), config['domain_type'], config['num_goals']) os.chdir('../..') results = distributed_execution(configs, this_cwd) os.chdir(this_cwd) successes_by_depth_bound = dict() timeouts_by_depth_bound = dict() for result in results: result['depthUpperBound'] = get_depth_upper_bound(result) instance_path = result["configuration"]["domainPath"] if instance_path[0] != '.': instance_path = '.' + instance_path instance_filename = path_to_instance[instance_path] if result['success'] and result.get('observerIsActive', 0) > 0: print(f'Observer was active in domain {instance_path}') get_with_default_list(successes_by_depth_bound, result['depthUpperBound'])\ .append((instance_path, instance_filename, base_domain_name, domain_ext)) else: if result['success']: print(f'Observer was inactive in domain {instance_path}') move(instance_path, os.path.join(inactive_out_dir, instance_filename)) else: err_msg = result["errorMessage"] print(f'Failed to solve domain {instance_path} with error {err_msg}') lower_err = err_msg.lower() if 'timeout' in lower_err: get_with_default_list(timeouts_by_depth_bound, result['depthUpperBound'])\ .append((instance_path, instance_filename, base_domain_name, domain_ext)) elif 'dead end' in lower_err or 'subject transitioned' in lower_err or 'follow-up' in lower_err: # follow up on instances that fail for reasons that shouldn't happen... move(instance_path, os.path.join(followup_out_dir, instance_filename)) else: move(instance_path, os.path.join(inactive_out_dir, instance_filename)) return successes_by_depth_bound, timeouts_by_depth_bound def move_agrd_filter_results(successes_info_by_depth_bound, timeouts_info_by_depth_bound): """Moves successes to new directory, but only if all instances at the relevant depth bound succeeded""" # loop through timeouts first to purge successes dict meta_files_by_out = dict() for depth_bound, timeout_info in timeouts_info_by_depth_bound.items(): for out_dir, timeout_list in timeout_info.items(): print(f'Moving timeout instances at depth bound {depth_bound} for out dir {out_dir}') timeout_dir = os.path.join(out_dir, 'timeout') meta_file = get_with_default( meta_files_by_out, out_dir, default_producer=lambda: open(os.path.join(out_dir, 'stats.log'), 'w')) success_info = get_with_default_dict(successes_info_by_depth_bound, depth_bound) successes_list = get_with_default_list(success_info, out_dir) num_timeouts = len(timeout_list) num_successes = len(successes_list) total = num_timeouts + num_successes fraction_timeout = float(num_timeouts) / float(total) meta_log_text = f'Depth Bound {depth_bound}: '\ f'{num_successes} successes, {num_timeouts} timeouts, {fraction_timeout} timeout fraction' to_timeout_dir = timeout_list[:] if num_timeouts <= 3 and fraction_timeout <= 0.01: # tolerate up to 3 timeouts up to 1% of instances meta_log_text += ' (ignoring timeouts, writing successes)' else: to_timeout_dir += successes_list success_info[out_dir] = [] # wipe the list so we don't write to success dir later meta_file.write(meta_log_text + '\n') for instance_path, instance_filename, _, _ in to_timeout_dir: move(instance_path, os.path.join(timeout_dir, instance_filename)) for file in meta_files_by_out.values(): file.write('\n=====================================\n\n') success_indices = {} for depth_bound, success_info in successes_info_by_depth_bound.items(): for out_dir, successes_list in success_info.items(): if len(successes_list) == 0: continue print(f'Moving successful instances at depth bound {depth_bound} for out dir {out_dir}') meta_file = get_with_default( meta_files_by_out, out_dir, default_producer=lambda: open(os.path.join(out_dir, 'stats.log'), 'w')) meta_file.write(f'Depth Bound {depth_bound}: {len(successes_list)} successes\n') for instance_path, _, base_domain_name, domain_ext in successes_list: prefix = os.path.join(out_dir, base_domain_name) new_file_path = prefix + str(get_with_default(success_indices, prefix, 0)) + domain_ext success_indices[prefix] += 1 move(instance_path, new_file_path) for file in meta_files_by_out.values(): file.close() def filter_active_observer(domain_configs, chunk_size=1000): """Filter to only those where the observer is active. Dict schema: source_dir: str of the source directory base_domain_name: str prefix for all instance filenames num_instances: number of instances being filtered with this config num_goals: number of goals in each instance (must be same across all instances) domain_type: 'GRID_WORLD', 'LOGISTICS', etc domain_ext: '.vw', '.logistics', etc out_dir: str of the output directory """ successes_info_by_depth_bound = dict() timeouts_info_by_depth_bound = dict() for config in domain_configs: base_domain_name = config['base_domain_name'] domain_ext = config['domain_ext'] out_dir = config['out_dir'] src_dir = config['source_dir'] if src_dir[-1] != '/': src_dir += '/' print(f'Filtering {base_domain_name} instances') timeout_out_dir = os.path.join(out_dir, 'timeout') if not os.path.exists(timeout_out_dir): os.makedirs(timeout_out_dir) inactive_out_dir = os.path.join(out_dir, 'failed') if not os.path.exists(inactive_out_dir): os.makedirs(inactive_out_dir) followup_out_dir = os.path.join(out_dir, 'follow-up') if not os.path.exists(followup_out_dir): os.makedirs(followup_out_dir) domain_instance_filenames = [ filepath[len(src_dir):] for filepath in glob(src_dir + base_domain_name + '*' + domain_ext) ] idx = 0 while len(domain_instance_filenames) > idx: # new_file_path = os.path.join(active_out_dir, base_domain_name + str(success_index) + domain_ext) chunk_instances = domain_instance_filenames[idx:idx + chunk_size] print(f'Begin filtering {base_domain_name} {idx} through ' f'{min(idx + chunk_size - 1, len(domain_instance_filenames) - 1)}') tmp_successes, tmp_failures = filter_agrd_chunk(config, chunk_instances, inactive_out_dir, followup_out_dir) for key, value in tmp_successes.items(): all_success_info = get_with_default_dict(successes_info_by_depth_bound, key) group_success_list = get_with_default_list(all_success_info, out_dir) group_success_list += value for key, value in tmp_failures.items(): all_failure_info = get_with_default_dict(timeouts_info_by_depth_bound, key) group_failure_list = get_with_default_list(all_failure_info, out_dir) group_failure_list += value idx += chunk_size move_agrd_filter_results(successes_info_by_depth_bound, timeouts_info_by_depth_bound) def run_filter_observer(args): domain_identifier = args.domain_identifier configs = [] if domain_identifier == 'uniform': for size in range(7, 11): base_domain_name = f'uniform{size}_{size}-' for goals in range(2, 5): dir_name = f'./gridworld/{goals}goal/filtered' num_instances = len(glob(os.path.join(dir_name, base_domain_name) + '*')) configs.append({ 'source_dir': dir_name, 'base_domain_name': base_domain_name, 'num_instances': num_instances, 'num_goals': goals, 'domain_type': 'GRID_WORLD', 'domain_ext': '.vw', 'out_dir': f'./agrd/uniform/{goals}goal' }) elif domain_identifier == 'rooms': for idx in range(10): base_domain_name = f'64room_tiny_00{idx}-scn' for goals in range(2, 5): dir_name = f'./gridmap/{goals}goal/filtered' num_instances = len(glob(os.path.join(dir_name, base_domain_name) + '*')) configs.append({ 'source_dir': dir_name, 'base_domain_name': base_domain_name, 'num_instances': num_instances, 'num_goals': goals, 'domain_type': 'GRID_WORLD', 'domain_ext': '.vw', 'out_dir': f'./agrd/rooms/{goals}goal' }) elif domain_identifier == 'logistics': pass for locs in range(7, 12): # for locs in range(9, 10): for goals in range(2, 5): # for goals in range(4, 5): base_domain_name = f'geometric_0.4dist_{goals}goal_{locs}loc_3pkg_1trk_' dir_name = f'./logistics/{goals}goal' num_instances = len(glob(os.path.join(dir_name, base_domain_name) + '*')) if num_instances == 0: continue configs.append({ 'source_dir': dir_name, 'base_domain_name': base_domain_name, 'num_instances': num_instances, 'num_goals': goals, 'domain_type': 'LOGISTICS', 'domain_ext': '.logistics', 'out_dir': f'./agrd/logistics/{goals}goal' # 'out_dir': f'./temp/logistics/{goals}goal' }) else: raise Exception(f'Unknown domain identifier: {domain_identifier}') # log_config = { # 'source_dir': './logistics', # 'base_domain_name': 'geometric_0.4dist_3goal_15loc_3pkg_1trk_', # 'num_instances': 2, # 'num_goals': 3, # 'domain_type': 'LOGISTICS', # 'domain_ext': '.logistics', # 'out_dir': './test/logistics' # } filter_active_observer(configs, 1000) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Quick and dirty CLI for filtering AGRD instances by only ' 'those where the observer can actually do something. ' 'To use, edit the file') # AS OF 1/6/20, valid options are 'logistics', 'rooms', 'uniform' parser.add_argument('domain_identifier', type=str, help='String identifier for your set of domains.') run_filter_observer(parser.parse_args())
StarcoderdataPython
4821915
<filename>app/models/order.py # -*- encoding: utf-8 -*- """ @File : order.py @Time : 2020/4/24 13:53 @Author : Tianjin @Email : <EMAIL> @Software: PyCharm """ from lin.interface import InfoCrud as Base from sqlalchemy import Column, Integer, ForeignKey, Float, Boolean class Order(Base): __tablename__ = "Order" id = Column("id", Integer, primary_key=True, autoincrement=True, comment="订单id") commId = Column("commId", Integer, ForeignKey("Commodity.id"), nullable=False, comment="商品id") money = Column("money", Float, nullable=False, comment="商品金额") payment = Column("payment", Boolean, nullable=False, comment="是否支付") receiving = Column("receiving", Boolean, nullable=False, comment="是否收货") refund = Column("refund", Boolean, nullable=False, comment="是否退款") conut = Column("count", Integer, nullable=False, comment="商品数量")
StarcoderdataPython
1690591
<reponame>martincochran/score-minion #!/usr/bin/env python # # Copyright 2015 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import unittest import test_env_setup import list_id_bimap class ListIdBiMapTest(unittest.TestCase): def testIsomorphism(self): """Verify list is consistent on all known lists.""" for list_id in list_id_bimap.ListIdBiMap.ALL_LISTS: division, age_bracket, league = self._GetListProperties(list_id) self.assertEquals(list_id, self._GetListId(division, age_bracket, league)) def _GetListProperties(self, list_id): """Convenience method to save characters in the test cases. Returns the structured list properties for the given list id. """ return list_id_bimap.ListIdBiMap.GetStructuredPropertiesForList(list_id) def _GetListId(self, division, age_bracket, league): """Convenience method to save characters in the test cases. Returns the list id for the given structured properties. """ return list_id_bimap.ListIdBiMap.GetListId(division, age_bracket, league)
StarcoderdataPython
1781884
from datetime import datetime, timedelta import os import uuid import jwt import json import requests from functools import wraps from urlparse import parse_qs, parse_qsl from urllib import urlencode from flask import Flask, g, send_file, request, redirect, url_for, jsonify, send_from_directory, Response from requests_oauthlib import OAuth1 from jwt import DecodeError, ExpiredSignature import sys from model.user import User from service.waston import RelationshipExtraction, PersonalityInsights import tweepy import facebook as fb from py2neo import Graph, Node, Relationship reload(sys) sys.setdefaultencoding("utf-8") app = Flask(__name__) auth = tweepy.OAuthHandler("VGbGua2zcrvAt8q7rFzYcF7Pp", "<KEY>") auth.set_access_token("<KEY>", "<KEY>") api = tweepy.API(auth) graph = Graph("https://551293319a25f:2nKvJUg3aU5jNdRuRjGdIKEG5Kf5GoP4tyrI8WQc@neo-551293319a25f-364459c455.do-stories.graphstory.com:7473/db/data") #graph = Graph() app = Flask(__name__) app.config.from_pyfile('flaskapp.cfg') relationshipExtration = RelationshipExtraction(user="de7bcf6d-01d9-4226-932f-b283302af6a2", password="<PASSWORD>") personalityInsights = PersonalityInsights(user="0<PASSWORD>", password="<PASSWORD>") profileee = { "id": "sbh", "source": "*UNKNOWN*", "tree": { "children": [ { "children": [ { "category": "personality", "children": [ { "category": "personality", "children": [ { "category": "personality", "id": "Adventurousness", "name": "Adventurousness", "percentage": 0.7160526489554446, "sampling_error": 0.10711332800000001 }, { "category": "personality", "id": "Artistic interests", "name": "Artistic interests", "percentage": 0.3181832458983307, "sampling_error": 0.20641926400000002 }, { "category": "personality", "id": "Emotionality", "name": "Emotionality", "percentage": 0.2515172364058379, "sampling_error": 0.115189568 }, { "category": "personality", "id": "Imagination", "name": "Imagination", "percentage": 0.8641701428422862, "sampling_error": 0.145667632 }, { "category": "personality", "id": "Intellect", "name": "Intellect", "percentage": 0.8908186242106095, "sampling_error": 0.128763392 }, { "category": "personality", "id": "Liberalism", "name": "Authority-challenging", "percentage": 0.898454169007272, "sampling_error": 0.168568352 } ], "id": "Openness", "name": "Openness", "percentage": 0.8507771685899128, "sampling_error": 0.130284112 }, { "category": "personality", "children": [ { "category": "personality", "id": "Achievement striving", "name": "Achievement striving", "percentage": 0.6585127054883937, "sampling_error": 0.13753696 }, { "category": "personality", "id": "Cautiousness", "name": "Cautiousness", "percentage": 0.8063779039161849, "sampling_error": 0.160483392 }, { "category": "personality", "id": "Dutifulness", "name": "Dutifulness", "percentage": 0.3181116384939571, "sampling_error": 0.206189696 }, { "category": "personality", "id": "Orderliness", "name": "Orderliness", "percentage": 0.3165304417521884, "sampling_error": 0.135897936 }, { "category": "personality", "id": "Self-discipline", "name": "Self-discipline", "percentage": 0.3153744839220475, "sampling_error": 0.16816399999999998 }, { "category": "personality", "id": "Self-efficacy", "name": "Self-efficacy", "percentage": 0.7088051511152613, "sampling_error": 0.175623264 } ], "id": "Conscientiousness", "name": "Conscientiousness", "percentage": 0.5435483133388536, "sampling_error": 0.152381088 }, { "category": "personality", "children": [ { "category": "personality", "id": "Activity level", "name": "Activity level", "percentage": 0.35820197882231886, "sampling_error": 0.216853088 }, { "category": "personality", "id": "Assertiveness", "name": "Assertiveness", "percentage": 0.2838920867984583, "sampling_error": 0.208304352 }, { "category": "personality", "id": "Cheerfulness", "name": "Cheerfulness", "percentage": 0.14455233450895522, "sampling_error": 0.16188628800000002 }, { "category": "personality", "id": "Excitement-seeking", "name": "Excitement-seeking", "percentage": 0.17235759199332115, "sampling_error": 0.161049568 }, { "category": "personality", "id": "Friendliness", "name": "Outgoing", "percentage": 0.21600564357324195, "sampling_error": 0.1768172 }, { "category": "personality", "id": "Gregariousness", "name": "Gregariousness", "percentage": 0.13842598921316177, "sampling_error": 0.196135264 } ], "id": "Extraversion", "name": "Extraversion", "percentage": 0.23726267395633333, "sampling_error": 0.18413272 }, { "category": "personality", "children": [ { "category": "personality", "id": "Altruism", "name": "Altruism", "percentage": 0.2754933265004837, "sampling_error": 0.202923504 }, { "category": "personality", "id": "Cooperation", "name": "Cooperation", "percentage": 0.6307012919481465, "sampling_error": 0.188078544 }, { "category": "personality", "id": "Modesty", "name": "Modesty", "percentage": 0.22002846111606778, "sampling_error": 0.195163392 }, { "category": "personality", "id": "Morality", "name": "Uncompromising", "percentage": 0.29521221940977527, "sampling_error": 0.17199344 }, { "category": "personality", "id": "Sympathy", "name": "Sympathy", "percentage": 0.8963908479208201, "sampling_error": 0.20470824 }, { "category": "personality", "id": "Trust", "name": "Trust", "percentage": 0.4465068968715436, "sampling_error": 0.19620072 } ], "id": "Agreeableness", "name": "Agreeableness", "percentage": 0.197592943914049, "sampling_error": 0.17107476800000002 }, { "category": "personality", "children": [ { "category": "personality", "id": "Anger", "name": "Fiery", "percentage": 0.46038608777319856, "sampling_error": 0.107145328 }, { "category": "personality", "id": "Anxiety", "name": "Prone to worry", "percentage": 0.2925613308885644, "sampling_error": 0.120479872 }, { "category": "personality", "id": "Depression", "name": "Melancholy", "percentage": 0.4058642362110278, "sampling_error": 0.14824848 }, { "category": "personality", "id": "Immoderation", "name": "Immoderation", "percentage": 0.16728870664411802, "sampling_error": 0.10801417599999999 }, { "category": "personality", "id": "Self-consciousness", "name": "Self-consciousness", "percentage": 0.5367949472615889, "sampling_error": 0.170005808 }, { "category": "personality", "id": "Vulnerability", "name": "Susceptible to stress", "percentage": 0.41333637268687284, "sampling_error": 0.123342656 } ], "id": "Neuroticism", "name": "Emotional range", "percentage": 0.4782057339658776, "sampling_error": 0.10990580800000001 } ], "id": "Openness_parent", "name": "Openness", "percentage": 0.8507771685899128 } ], "id": "personality", "name": "Big 5 " }, { "children": [ { "category": "needs", "children": [ { "category": "needs", "id": "Challenge", "name": "Challenge", "percentage": 0.9454631311618445, "sampling_error": 0.571675504 }, { "category": "needs", "id": "Closeness", "name": "Closeness", "percentage": 0.37430779536880737, "sampling_error": 0.664986656 }, { "category": "needs", "id": "Curiosity", "name": "Curiosity", "percentage": 0.8974415472114874, "sampling_error": 0.601831648 }, { "category": "needs", "id": "Excitement", "name": "Excitement", "percentage": 0.46240646412915437, "sampling_error": 0.597841328 }, { "category": "needs", "id": "Harmony", "name": "Harmony", "percentage": 0.8769879010128687, "sampling_error": 0.656984848 }, { "category": "needs", "id": "Ideal", "name": "Ideal", "percentage": 0.06182001068498667, "sampling_error": 0.5687984159999999 }, { "category": "needs", "id": "Liberty", "name": "Liberty", "percentage": 0.8842968320182879, "sampling_error": 0.5426626720000001 }, { "category": "needs", "id": "Love", "name": "Love", "percentage": 0.4198132194180422, "sampling_error": 0.695262304 }, { "category": "needs", "id": "Practicality", "name": "Practicality", "percentage": 0.2510956138665641, "sampling_error": 0.632711856 }, { "category": "needs", "id": "Self-expression", "name": "Self-expression", "percentage": 0.8612635859116711, "sampling_error": 0.618786896 }, { "category": "needs", "id": "Stability", "name": "Stability", "percentage": 0.7455088528118455, "sampling_error": 0.6569906719999999 }, { "category": "needs", "id": "Structure", "name": "Structure", "percentage": 0.9856815998415455, "sampling_error": 0.023924848 } ], "id": "Structure_parent", "name": "Structure", "percentage": 0.9856815998415455 } ], "id": "needs", "name": "Needs" }, { "children": [ { "category": "values", "children": [ { "category": "values", "id": "Conservation", "name": "Conservation", "percentage": 0.1590310821416115, "sampling_error": 0.228751744 }, { "category": "values", "id": "Openness to change", "name": "Openness to change", "percentage": 0.5969809255902321, "sampling_error": 0.241299504 }, { "category": "values", "id": "Hedonism", "name": "Hedonism", "percentage": 0.11680072978737648, "sampling_error": 0.234514768 }, { "category": "values", "id": "Self-enhancement", "name": "Self-enhancement", "percentage": 0.7972447610009217, "sampling_error": 0.22006544 }, { "category": "values", "id": "Self-transcendence", "name": "Self-transcendence", "percentage": 0.5762760484207429, "sampling_error": 0.21310896 } ], "id": "Hedonism_parent", "name": "Hedonism", "percentage": 0.11680072978737648 } ], "id": "values", "name": "Values" } ], "id": "r", "name": "root" }, "word_count": 2953 } def create_token(user): payload = { 'sub': user['id'], 'iat': datetime.now(), 'exp': datetime.now() + timedelta(days=14) } token = jwt.encode(payload, app.config['TOKEN_SECRET']) return token.decode('unicode_escape') def parse_token(req): token = req.headers.get('Authorization').split()[1] return jwt.decode(token, app.config['TOKEN_SECRET']) def login_required(f): @wraps(f) def decorated_function(*args, **kwargs): if not request.headers.get('Authorization'): response = jsonify(message='Missing authorization header') response.status_code = 401 return response try: payload = parse_token(request) except DecodeError: response = jsonify(message='Token is invalid') response.status_code = 401 return response except ExpiredSignature: response = jsonify(message='Token has expired') response.status_code = 401 return response g.user_id = payload['sub'] return f(*args, **kwargs) return decorated_function # Routes @app.route('/') def index(): return send_file('static/index.html') @app.route('/barviz') def bar(): return send_file('static/bar.html') @app.route('/api/me') @login_required def me(): user = User().get_user_by_id(graph, g.user_id) return jsonify(User().to_json(user)) @app.route('/api/me/update', methods=['PUT']) @login_required def update_me(): user = User().get_user_by_id(graph, g.user_id) user["email"] = request.json['email'] user["display_name"] = request.json['displayName'] user.push() return jsonify(User().to_json(user)) @app.route('/api/v1/savesearch', methods=['POST']) def save_search(): return jsonify({"message":"cool"}) @app.route('/auth/login', methods=['POST']) def login(): user = User().get_user_by_email(graph, request.json['email']) print(user['password']) if not user or not User().check_password(user, request.json['password']): response = jsonify(message='Wrong Email or Password') response.status_code = 401 return response token = create_token(user) return jsonify(token=token) @app.route('/auth/signup', methods=['POST']) def signup(): user = User().save_user(graph, email=request.json['email'], name=request.json['displayName'], password=request.json['password']) token = create_token(user) return jsonify(token=token) @app.route('/auth/facebook', methods=['POST']) def facebook(): access_token_url = 'https://graph.facebook.com/v2.3/oauth/access_token' graph_api_url = 'https://graph.facebook.com/v2.3/me' params = { 'client_id': request.json['clientId'], 'redirect_uri': request.json['redirectUri'], 'client_secret': app.config['FACEBOOK_SECRET'], 'code': request.json['code'] } # Step 1. Exchange authorization code for access token. r = requests.get(access_token_url, params=params) access_token = dict(parse_qsl(r.text)) token = json.loads(r.text) print token facebook_token = Node("FBToken", access_token=token['access_token'], expires_in=token['expires_in']) # Step 2. Retrieve information about the current user. r = requests.get(graph_api_url, params=token) profile = json.loads(r.text) print profile # Step 3. (optional) Link accounts. if request.headers.get('Authorization'): user = graph.find_one("User", "facebook", profile['id']) if user: response = jsonify(message='There is already a Facebook account that belongs to you') response.status_code = 409 return response payload = parse_token(request) user = User().get_user_by_id(graph, payload['sub']) if not user: response = jsonify(message='User not found') response.status_code = 400 return response u = Node("User", id=str(uuid.uuid4()), email=profile['email'], facebook=profile['id'], display_name=profile['name']) graph.create(u) token = create_token(u) return jsonify(token=token) # Step 4. Create a new account or return an existing one. user = graph.find_one("User", "facebook", profile['id']) if user: token = create_token(user) return jsonify(token=token) u = Node("User", id=str(uuid.uuid4()), email=profile['email'], facebook=profile['id'], display_name=profile['name']) user_facebook_token = Relationship(u, "HAS", facebook_token, since=datetime.now()) graph.create(user_facebook_token) token = create_token(u) return jsonify(token=token) @app.route('/auth/google', methods=['POST']) def google(): access_token_url = 'https://accounts.google.com/o/oauth2/token' people_api_url = 'https://www.googleapis.com/plus/v1/people/me/openIdConnect' payload = dict(client_id=request.json['clientId'], redirect_uri=request.json['redirectUri'], client_secret=app.config['GOOGLE_SECRET'], code=request.json['code'], grant_type='authorization_code') # Step 1. Exchange authorization code for access token. r = requests.post(access_token_url, data=payload) token = json.loads(r.text) headers = {'Authorization': 'Bearer {0}'.format(token['access_token'])} # Step 2. Retrieve information about the current user. r = requests.get(people_api_url, headers=headers) profile = json.loads(r.text) print profile user = graph.find_one("User", "google", profile['sub']) if user: token = create_token(user) return jsonify(token=token) u = Node("User", id=str(uuid.uuid4()), email=profile['email'], google=profile['sub'], display_name=profile['name']) graph.create(u) token = create_token(u) return jsonify(token=token) @app.route('/auth/linkedin', methods=['POST']) def linkedin(): access_token_url = 'https://www.linkedin.com/uas/oauth2/accessToken' people_api_url = 'https://api.linkedin.com/v1/people/~:(id,first-name,last-name,email-address)' payload = dict(client_id=request.json['clientId'], redirect_uri=request.json['redirectUri'], client_secret=app.config['LINKEDIN_SECRET'], code=request.json['code'], grant_type='authorization_code') # Step 1. Exchange authorization code for access token. r = requests.post(access_token_url, data=payload) access_token = json.loads(r.text) params = dict(oauth2_access_token=access_token['access_token'], format='json') # Step 2. Retrieve information about the current user. r = requests.get(people_api_url, params=params) profile = json.loads(r.text) print profile user = graph.find_one("User", 'linkedin', profile['id']) if user: token = create_token(user) return jsonify(token=token) u = Node("User", id=str(uuid.uuid4()), email=profile['emailAddress'], linkedin=profile['id'], display_name=profile['lastName'] + " " + profile['firstName']) graph.create(u) token = create_token(u) return jsonify(token=token) @app.route('/api/v1/getpeople') def searchUser(): users = api.search_users(request.args['name']) return jsonify({'users': [ {'name': user.name, 'description': user.description, 'profile_image_url': user.profile_image_url, 'screen_name': user.screen_name } for user in users ]}) @app.route('/api/v1/gettwitteruser') def searchtwitterUser(): users = api.search_users(request.args['name']) return jsonify({'users': [ user for user in users ]}) @app.route('/api/v1/interests/<screen_name>') def parseInterests(screen_name): # tweets = api.user_timeline(id=screen_name, ) tweets = tweepy.Cursor(api.user_timeline, id=screen_name).items(40) text = "" for tweet in tweets: text += tweet.text + "\n " + "\n" relationship = relationshipExtration.extractRelationship(text) nodes, edges = relationshipExtration.parseMentions(relationship) return jsonify({'nodes': nodes, 'edges': edges}) # @app.route('/api/v1/personality/<screen_name>') # def getPersonaliy(screen_name): # # tweets = api.user_timeline(id=screen_name, ) # tweets = tweepy.Cursor(api.user_timeline, id=screen_name).items(200) # text = "" # for tweet in tweets: # text += tweet.text + "\n " + "\n" # profile = personalityInsights.getProfile(text) # nodes, edges = personalityInsights.flattenPortrait(profile["tree"]) # # return jsonify({'nodes': nodes,'edges': edges}) @app.route('/api/v1/personality') def getPersonaliy(): #nodes, edges = personalityInsights.flattenPortrait(profileee["tree"]) nodes,edges=personalityInsights.flattenPortrait2(profileee["tree"]) #return jsonify({'nodes': nodes,'edges': edges}) return jsonify({'nodes':nodes, 'edges':edges}) @app.route('/api/v1/bar') def getBar(): data= personalityInsights.datadata(profileee["tree"]) return jsonify({'data': data}) @app.route('/api/v1/viz/<screen_name>') def getViz(screen_name): # tweets = api.user_timeline(id=screen_name, ) tweets = tweepy.Cursor(api.user_timeline, id=screen_name).items(200) text = "" for tweet in tweets: text += tweet.text + "\n " + "\n" profile = personalityInsights.getProfile(text) viz = personalityInsights.requestVisualization(profile) return viz @app.route('/api/v1/fbpost') def getfbposts(): graph = fb.GraphAPI( access_token='<KEY>') friends = graph.get_connections(id='me', connection_name='friends') return jsonify({'fiends': friends}) @app.route('/<path:resource>') def serveStaticResource(resource): return send_from_directory('static/', resource) @app.route("/test") def test(): return "<strong>It's Alive!</strong>" if __name__ == '__main__': app.run(host='0.0.0.0',port=80)
StarcoderdataPython
3253383
''' Test the trajectory optimization procedures. ''' import tensorflow as tf class TestTrajOpt(tf.test.TestCase): ''' Test the trajectory optimization procedures. ''' def test_naive_trajopt(self): ''' Test the naive_trajopt function. ''' pass if __name__ == '__main__': tf.test.main()
StarcoderdataPython
1694212
<reponame>incuna/incuna-groups from crispy_forms.bootstrap import FormActions, StrictButton from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout from django import forms from django.core.urlresolvers import reverse_lazy from . import models class BaseAddCommentForm(forms.ModelForm): """A base class for forms that create models inheriting from BaseComment.""" def __init__(self, *args, **kwargs): super(BaseAddCommentForm, self).__init__(*args, **kwargs) self.helper = self.build_helper() def build_helper(self): """An overridable method that creates a crispy_forms layout helper.""" helper = FormHelper() helper.form_class = 'form-horizontal' helper.label_class = 'col-lg-2' helper.field_class = 'col-lg-8' helper.layout = Layout( 'body', FormActions( StrictButton('Post comment', type='submit'), ), ) return helper class Meta: fields = ('body',) class AddTextComment(BaseAddCommentForm): """A form that posts TextComments.""" class Meta(BaseAddCommentForm.Meta): model = models.TextComment class AddTextCommentWithAttachment(BaseAddCommentForm): file = forms.FileField() def build_helper(self): helper = super(AddTextCommentWithAttachment, self).build_helper() helper.layout = Layout( 'body', 'file', FormActions( StrictButton('Upload and post', type='submit'), ), ) return helper class Meta: model = models.TextComment fields = ('body', 'file',) labels = { 'body': 'Comment', 'file': 'Attachment', } class DiscussionCreate(forms.Form): comment = forms.CharField(widget=forms.Textarea) name = forms.CharField(max_length=255) helper = FormHelper() helper.form_class = 'form-horizontal' helper.label_class = 'col-lg-2' helper.field_class = 'col-lg-8' helper.layout = Layout( 'name', 'comment', FormActions( StrictButton('Create Discussion', type='submit'), ), ) class SubscribeForm(forms.Form): subscribe = forms.BooleanField(widget=forms.HiddenInput(), required=False) class Meta: fields = ('subscribe',) def __init__(self, user, instance, url_name, *args, **kwargs): """ Build the layout to reflect the action the form will take. Accepts (and requires) a user and an instance being subscribed to as keyword arguments. """ to_subscribe = not instance.is_subscribed(user) initial_values = kwargs.setdefault('initial', {}) initial_values['subscribe'] = to_subscribe super(SubscribeForm, self).__init__(*args, **kwargs) button_text = 'Subscribe' if to_subscribe else 'Unsubscribe' self.helper = FormHelper() self.helper.form_class = 'form-horizontal' self.helper.layout = Layout( FormActions( StrictButton(button_text, type='submit'), ), ) self.helper.form_action = reverse_lazy(url_name, kwargs={'pk': instance.pk})
StarcoderdataPython
33401
<reponame>celord/mealprep from django import forms from django.forms import ModelForm from .models import Plan class DateInput(forms.DateInput): input_type = "date" class AddPlanForm(ModelForm): class Meta: model = Plan # fields = fields = '__all__' fields = [ "date", "meal", "mealtype", "photo", ] widgets = { "date": DateInput(), # 'comments': Textarea(attrs={'cols': 80, 'rows': 20}), }
StarcoderdataPython
144621
import pytest import torch from torch import nn from daceml.pytorch import DaceModule from daceml.testing import torch_tensors_close @pytest.mark.gpu def test_dropout_fwd_training(): p = 0.5 module = nn.Dropout(p=p).cuda().train() dace_module = DaceModule(module, dummy_inputs=(torch.ones(10, 10).cuda(), ), training=True) # dropout will set some of these to zero test_data = torch.randint(1, 10, (10, 10)).float().cuda() print(test_data) out = dace_module(torch.clone(test_data)) zeroed = out == 0 scale = 1 / (1 - p) torch_tensors_close("output", test_data[~zeroed] * scale, out[~zeroed]) print(out) @pytest.mark.gpu @pytest.mark.parametrize("p", [0, 0.99, 0.6, 0.5]) def test_dropout_bwd(p): module = nn.Dropout(p=p).cuda().train() dace_module = DaceModule(module, dummy_inputs=(torch.ones(10, 10).cuda(), ), backward=True, training=True) test_data = torch.randint(1, 10, (10, 10)).float().cuda() test_data.requires_grad = True dy = torch.rand_like(test_data) out = dace_module(torch.clone(test_data)) zeroed = out == 0 scale = 1 / (1 - p) # check that fwd was correct torch_tensors_close("output", test_data[~zeroed] * scale, out[~zeroed]) out.backward(dy) # check that the gradient is correct: zeros = torch.zeros_like(test_data.grad) # check that zeroed values are zero in the grad torch_tensors_close("grad_zeroed", zeros[zeroed], test_data.grad[zeroed]) # check that non-zeroed values are correct torch_tensors_close("grad_zeroed", dy[~zeroed] * scale, test_data.grad[~zeroed])
StarcoderdataPython
3245897
# MIT License # # Copyright (c) 2018 Image & Vision Computing Lab, Institute of Information Science, Academia Sinica # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ==================================================================================================== import numpy as np import sys np.set_printoptions(threshold=np.nan) from read_bin import load_bin,load_txt def weight_loader(config): MERGER_NAME = config.net task1,task2 = MERGER_NAME.split("_") PATH = config.weight_dir # Load Vgg Well-trained conv_num = 2 all_num = 4 sound_w = [] sound_b = [] PATH_M1 = PATH + config.net + '/' + task1 + '/' w1_name = load_txt(PATH_M1 + "/weight.txt") b1_name = load_txt(PATH_M1 + "/bias.txt") for i in range(conv_num): sound_w.append(load_bin(PATH_M1 + w1_name[i]).transpose(2,3,1,0)) sound_b.append(load_bin(PATH_M1 + b1_name[i])) for i in range(conv_num,all_num): sound_w.append(load_bin(PATH_M1 + w1_name[i]).transpose(1,0)) sound_b.append(load_bin(PATH_M1 + b1_name[i])) sound_w[2] = sound_w[2].reshape(64,8,8,1024).transpose(1,2,0,3).reshape(4096,1024) #caffe(ch*h*w,out) -> tensorflow(h*w*ch,out) # Load ZF Well-trained conv_num = 2 all_num = 4 fashion_w = [] fashion_b = [] PATH_M2 = PATH + config.net + '/' + task2 + '/' w2_name = load_txt(PATH_M2 + "/weight.txt") b2_name = load_txt(PATH_M2 + "/bias.txt") for i in range(conv_num): fashion_w.append(load_bin(PATH_M2 + w2_name[i]).transpose(2,3,1,0)) fashion_b.append(load_bin(PATH_M2 + b2_name[i])) for i in range(conv_num,all_num): fashion_w.append(load_bin(PATH_M2 + w2_name[i]).transpose(1,0)) fashion_b.append(load_bin(PATH_M2 + b2_name[i])) fashion_w[2] = fashion_w[2].reshape(64,8,8,1024).transpose(1,2,0,3).reshape(4096,1024) #caffe(ch*h*w,out) -> tensorflow(h*w*ch,out) # Load Merged Model conv_num = 2 all_num = 3 M_codebook = [] M1_index = [] M2_index = [] PATH_MERGE = config.merger_dir c_name = load_txt(PATH_MERGE + 'merged_codebook.txt') i1_name = load_txt(PATH_MERGE + 'model1.txt') i2_name = load_txt(PATH_MERGE + 'model2.txt') for i in range(conv_num): M_codebook.append(load_bin(PATH_MERGE + c_name[i])) M1_index.append(np.array(load_bin(PATH_MERGE + i1_name[i],data_type="uint8")-1,dtype=np.int32)) M1_index[i] = M1_index[i].transpose(3,1,2,0).reshape([M1_index[i].shape[3],M1_index[i].shape[1]*M1_index[i].shape[2]*M1_index[i].shape[0]]) M2_index.append(np.array(load_bin(PATH_MERGE + i2_name[i],data_type="uint8")-1,dtype=np.int32)) M2_index[i] = M2_index[i].transpose(3,1,2,0).reshape([M2_index[i].shape[3],M2_index[i].shape[1]*M2_index[i].shape[2]*M2_index[i].shape[0]]) for i in range(conv_num,all_num): M_codebook.append(load_bin(PATH_MERGE + c_name[i])) M1_index.append(np.array(load_bin(PATH_MERGE + i1_name[i],data_type="uint8")-1,dtype=np.int32)) M1_index[i] = M1_index[i].transpose(1,0) M2_index.append(np.array(load_bin(PATH_MERGE + i2_name[i],data_type="uint8")-1,dtype=np.int32)) M2_index[i] = M2_index[i].transpose(1,0) M1_output_layer = load_bin(PATH_MERGE + 'M1_outputlayer.bin').transpose(1,0) M2_output_layer = load_bin(PATH_MERGE + 'M2_outputlayer.bin').transpose(1,0) print('----- Codebook Parameter Setting -----') print('Codebook subspace: [%3d, %3d, %3d]'%(M_codebook[0].shape[2],M_codebook[1].shape[2],M_codebook[2].shape[2])) print('Codeworkd numbers : [%3d, %3d, %3d]'%(M_codebook[0].shape[1],M_codebook[1].shape[1],M_codebook[2].shape[1])) print('Max Iteration : %d'%config.max_step) sys.stdout.write('Learning Rate : ') print(config.lr_rate) print('Batch Size : %d'%config.batch_size) return M_codebook,sound_w,sound_b,M1_index,M1_output_layer,fashion_w,fashion_b,M2_index,M2_output_layer
StarcoderdataPython
4812275
<gh_stars>0 from ast import arg from wifipumpkin3.core.common.terminal import ExtensionUI from wifipumpkin3.core.utility.printer import ( setcolor, display_messages, display_tabulate, ) # This file is part of the wifipumpkin3 Open Source Project. # wifipumpkin3 is licensed under the Apache 2.0. # Copyright 2020 P0cL4bs Team - <NAME> (mh4x0f) # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class Dhcpconf(ExtensionUI): """ show/choise dhcp server configuration """ Name = "dhcpconf" def __init__(self, parse_args=None, root=None): self.parse_args = parse_args self.root = root self.register_command("do_dhcpconf", self.do_dhcpconf) self.register_command("help_dhcpconf", self.help_dhcpconf) self.ip_class = ["Class-A-Address","Class-B-Address", "Class-C-Address"] super(Dhcpconf, self).__init__(parse_args=self.parse_args, root=self.root) def help_dhcpconf(self): self.show_help_command("help_dhcpconf_command") def do_dhcpconf(self, args): """ap: show/choise dhcp server configuration """ status_ap = self.root.conf.get("accesspoint", "status_ap", format=bool) if args: try: id_dhcp_option = int(args.split()[0]) selected_id_option = self.ip_class[id_dhcp_option] for key in self.root.conf.get_all_childname(selected_id_option): self.root.conf.set("dhcp", key,self.root.conf.get(selected_id_option, key)) if status_ap: print(display_messages("OBS: this settings require restart the AP",error=True)) return except Exception: return print( display_messages( "the parameter id {} was not found.".format( setcolor(args, color="orange") ), error=True, ) ) headers_table, output_table = ( ["Id","Class", "IP address range", "Netmask" , "Router"], [], ) print(display_messages("DHCP Server Option:", info=True, sublime=True)) for ip_class in self.ip_class: output_table.append( [ self.ip_class.index(ip_class), ip_class.split("-")[1], self.root.conf.get(ip_class,"range"), self.root.conf.get(ip_class, "netmask"), self.root.conf.get(ip_class, "router"), ]) display_tabulate(headers_table, output_table, tablefmt="presto", newline=False) print(display_messages("DHCP Server Settings:", info=True, sublime=True)) for config in self.root.conf.get_all_childname("dhcp"): print( " {}={}".format(setcolor(config, color="purple"), self.root.conf.get("dhcp", config)) ) print("\n")
StarcoderdataPython
1684945
import socket from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP import json import logging from ery4z_toolbox.utils import get_random_string, AESCipher class Client: """General purpose client usable with the provided server class. It support RSA and AES encryption depending on the server parameter. """ def __init__( self, ip="127.0.0.1", key=None, port=1233, logger=None, auto_encrypt=False ): """Creator of the class Args: ip (str, optional): Server ip address. Defaults to "127.0.0.1". key (rsa export, optional): RSA key in order to intialize the AES, if not provided they are generated Automaticaly. Defaults to None. port (int, optional): Server port. Defaults to 1233. logger (logger, optional): Optionnal Logger object overiding created ones. Defaults to None. auto_encrypt (bool, optional): Automaticaly generate RSA and AES encrypted channel. Defaults to False. """ self.__host = ip self.__port = port self.last_packet = "" if auto_encrypt: RSAkey = RSA.generate(1024) k = RSAkey.exportKey("PEM") p = RSAkey.publickey().exportKey("PEM") key = [k, p] if key is not None: if type(key) == list: self.__my_private = key[0] self.__my_public = key[1] else: self.__my_private = key self.__my_public = None self.__decryptor = PKCS1_OAEP.new(RSA.import_key(self.__private)) else: self.__my_private = None self.__my_public = None self.__decryptor = None self._is_encrypted = False self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.__encryptor = None self._logger = logger if logger is None: self.setup_default_logger() def __force_auto_encrypt(self): RSAkey = RSA.generate(1024) k = RSAkey.exportKey("PEM") p = RSAkey.publickey().exportKey("PEM") key = [k, p] if key is not None: if type(key) == list: self.__my_private = key[0] self.__my_public = key[1] else: self.__my_private = key self.__my_public = None self.__decryptor = PKCS1_OAEP.new(RSA.import_key(self.__my_private)) else: self.__my_private = None self.__my_public = None self.__decryptor = None def setup_default_logger(self): logger = logging.getLogger("client") if logger.hasHandlers(): logger.handlers.clear() logger.setLevel(logging.INFO) fh = logging.FileHandler("client.log") fh.setLevel(logging.INFO) sh = logging.StreamHandler() sh.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s | %(levelname)s | %(message)s") fh.setFormatter(formatter) sh.setFormatter(formatter) logger.addHandler(fh) logger.addHandler(sh) self._logger = logger def connect(self): """Connect to the server Returns: int: Error code if so """ try: self.socket.connect((self.__host, self.__port)) except socket.error as e: self._logger.error(str(e)) return 0 self._logger.info(f"Connected to {self.__host}:{self.__port}") protocol_message = self.socket.recv(1024)[:-1].decode("utf-8") self._logger.info(f"Received protocol message : {protocol_message}") protocol_dict = json.loads(protocol_message) try: if protocol_dict["encryption"] == 1: self._is_encrypted = True self.__public_key = protocol_dict["public_key"] except KeyError: pass if self._is_encrypted and (self.__public_key is not None): self.__encryptor = PKCS1_OAEP.new(RSA.import_key(self.__public_key)) self._is_encrypted = True else: self._is_encrypted = False if self._is_encrypted: if self.__my_private == None: self.__force_auto_encrypt() protocol_message = json.dumps( {"encryption": 1, "public_key": self.__my_public.decode("utf-8")} ) self.socket.send(str.encode(protocol_message) + b"\0") else: protocol_message = json.dumps({"encryption": 0, "public_key": ""}) self.socket.send(str.encode(protocol_message) + b"\0") # Establishing AES channel if self._is_encrypted: AES_protocol_message = self.socket.recv(1024)[:-1] data = self.__decryptor.decrypt(AES_protocol_message).decode("utf-8") data = json.loads(data) AES_key = data["AES_key"] self.AES_manager = AESCipher(KEY=AES_key) self._logger.debug(f"Received message : 'AES_Key_Hidden'") def send(self, message): """Send the provided message to the server Args: message (str): Message to be sent to the server. """ self._logger.info(f"Sending message : {message[:10]}...{message[-10:]}") if self._is_encrypted: n = 24 message += "\1" chunks = [message[i : i + n] for i in range(0, len(message), n)] chunk_index = 0 while chunk_index < len(chunks): chunk = chunks[chunk_index] self._logger.debug(f"Client send: {chunk}") encrypted = self.AES_manager.encrypt(chunk) self.socket.sendall(encrypted + b"\0") if self.__receive_ack(): chunk_index += 1 else: self.socket.sendall(bytes(message, "utf-8") + b"\0") while not self.__receive_ack(): self.socket.sendall(bytes(message, "utf-8") + b"\0") def __send_ack(self): self._logger.debug(f"Client sending ack") message = json.dumps({"method": "ack"}) if self._is_encrypted: encrypted = self.AES_manager.encrypt(message + "\1") self.socket.sendall(encrypted + b"\0") else: self.socket.sendall(bytes(message + "\1", "utf-8") + b"\0") def __receive_ack(self): self._logger.debug(f"Client waiting for ack") encoded_data = b"" r = False while not encoded_data.endswith(b"\0"): self.socket.settimeout(2.0) try: recv_data = self.socket.recv(1024) except Exception: r = True self.socket.settimeout(None) if r: return False encoded_data = encoded_data + recv_data encoded_data = encoded_data[:-1] self._logger.debug(f"Client received raw: {encoded_data}") if self._is_encrypted: trame = self.AES_manager.decrypt(encoded_data).decode("utf-8")[:-1] else: trame = encoded_data.decode("utf-8")[:-1] try: data = json.loads(trame) except Exception as e: return False else: if data["method"] == "ack": return True else: return False def receive(self): """Receive a message from the server Returns: string: Message from the server (usualy json string ready to be loaded) """ stop = False if self._is_encrypted: data = "" while not data.endswith("\1"): encoded_data = b"" while not encoded_data.endswith(b"\0"): recv_data = self.socket.recv(1024) encoded_data = encoded_data + recv_data if not recv_data: stop = True break if stop: return 0 encoded_data = encoded_data[:-1] self._logger.debug(f"Client received raw: {encoded_data}") n_d = self.AES_manager.decrypt(encoded_data).decode("utf-8") self._logger.debug(f"Client received: {n_d}") if n_d != self.last_packet: data += n_d self.last_packet = n_d self.__send_ack() data = data[:-1] self._logger.info(f"Received message : {data[:10]}...{data[-10:]}") else: got_one = False while not got_one: data = b"" while not data.endswith(b"\0"): recv_data = self.socket.recv(2048) data = data + recv_data if not recv_data: stop = True break if stop: break data = data[:-1] data = data.decode("utf-8") if data != self.last_packet: self.last_packet = data got_one = True self.__send_ack() self._logger.info(f"Client received message : {data[:10]}...{data[-10:]}") return data def disconnect(self): """Disconnect from the server.""" self._logger.info(f"Connection with {self.__host}:{self.__port} closed") self.socket.close() def __del__(self): self.disconnect() if __name__ == "__main__": myClient = Client() myClient.connect() while True: message = input("To send: ") data = {} myClient.send(message) response = myClient.receive() print(response) if message == "close": break
StarcoderdataPython
3283866
# Copyright (c) 2003-2013 LOGILAB S.A. (Paris, FRANCE). # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """Plain text reporters: :text: the default one grouping messages by module :colorized: an ANSI colorized text reporter """ from __future__ import print_function import warnings from logilab.common.ureports import TextWriter from logilab.common.textutils import colorize_ansi from pylint.interfaces import IReporter from pylint.reporters import BaseReporter import six TITLE_UNDERLINES = ['', '=', '-', '.'] class TextReporter(BaseReporter): """reports messages and layouts in plain text""" __implements__ = IReporter name = 'text' extension = 'txt' line_format = '{C}:{line:3d},{column:2d}: {msg} ({symbol})' def __init__(self, output=None): BaseReporter.__init__(self, output) self._modules = set() self._template = None def on_set_current_module(self, module, filepath): self._template = six.text_type(self.linter.config.msg_template or self.line_format) def write_message(self, msg): """Convenience method to write a formated message with class default template""" self.writeln(msg.format(self._template)) def handle_message(self, msg): """manage message of different type and in the context of path""" if msg.module not in self._modules: if msg.module: self.writeln('************* Module %s' % msg.module) self._modules.add(msg.module) else: self.writeln('************* ') self.write_message(msg) def _display(self, layout): """launch layouts display""" print(file=self.out) TextWriter().format(layout, self.out) class ParseableTextReporter(TextReporter): """a reporter very similar to TextReporter, but display messages in a form recognized by most text editors : <filename>:<linenum>:<msg> """ name = 'parseable' line_format = '{path}:{line}: [{msg_id}({symbol}), {obj}] {msg}' def __init__(self, output=None): warnings.warn('%s output format is deprecated. This is equivalent ' 'to --msg-template=%s' % (self.name, self.line_format)) TextReporter.__init__(self, output) class VSTextReporter(ParseableTextReporter): """Visual studio text reporter""" name = 'msvs' line_format = '{path}({line}): [{msg_id}({symbol}){obj}] {msg}' class ColorizedTextReporter(TextReporter): """Simple TextReporter that colorizes text output""" name = 'colorized' COLOR_MAPPING = { "I" : ("green", None), 'C' : (None, "bold"), 'R' : ("magenta", "bold, italic"), 'W' : ("blue", None), 'E' : ("red", "bold"), 'F' : ("red", "bold, underline"), 'S' : ("yellow", "inverse"), # S stands for module Separator } def __init__(self, output=None, color_mapping=None): TextReporter.__init__(self, output) self.color_mapping = color_mapping or \ dict(ColorizedTextReporter.COLOR_MAPPING) def _get_decoration(self, msg_id): """Returns the tuple color, style associated with msg_id as defined in self.color_mapping """ try: return self.color_mapping[msg_id[0]] except KeyError: return None, None def handle_message(self, msg): """manage message of different types, and colorize output using ansi escape codes """ if msg.module not in self._modules: color, style = self._get_decoration('S') if msg.module: modsep = colorize_ansi('************* Module %s' % msg.module, color, style) else: modsep = colorize_ansi('************* %s' % msg.module, color, style) self.writeln(modsep) self._modules.add(msg.module) color, style = self._get_decoration(msg.C) msg = msg._replace( **{attr: colorize_ansi(getattr(msg, attr), color, style) for attr in ('msg', 'symbol', 'category', 'C')}) self.write_message(msg) def register(linter): """Register the reporter classes with the linter.""" linter.register_reporter(TextReporter) linter.register_reporter(ParseableTextReporter) linter.register_reporter(VSTextReporter) linter.register_reporter(ColorizedTextReporter)
StarcoderdataPython
143065
# -*- coding: utf-8 -*- import os.path as op import psutil def _abspath(path): return op.abspath(op.expanduser(path)) def gather_notebooks(): """ Gather processes of IPython Notebook Return ------ notes : list of dict each dict has following keys: "pid", "cwd", and "port" Raises ------ RuntimeError - No IPython Notebook servers are found """ notes = [] for p in psutil.process_iter(): name = p.name().lower() if not (name.startswith("ipython") or name.startswith("python")): continue if "notebook" not in p.cmdline(): continue for net in p.connections(kind="inet4"): if net.status != "LISTEN": continue _, port = net.laddr break notes.append({ "pid": p.pid, "cwd": p.cwd(), "port": port, }) if not notes: raise RuntimeError("No IPython Notebook servers are found") return notes def resolve_url(ipynb_path, notebooks=None): """ Return valid URL for .ipynb Parameters ---------- ipynb_path : str path of existing .ipynb file Raises ------ RuntimeError - Existing notebook servers do not start on the parent directory of .ipynb file. """ ipynb_path = _abspath(ipynb_path) if not op.exists(ipynb_path): raise RuntimeError("Notebook {} is not found.".format(ipynb_path)) if not notebooks: notebooks = gather_notebooks() for note in notebooks: cwd = note["cwd"] if cwd.endswith("/"): cwd = cwd[:-1] if not ipynb_path.startswith(cwd): continue note["postfix"] = ipynb_path[len(cwd) + 1:] # remove '/' return "http://localhost:{port}/notebooks/{postfix}".format(**note) raise RuntimeError("No valid Notebook found. " "Please start notebook server first.")
StarcoderdataPython
3371443
import httpx from fastapi import APIRouter, HTTPException from fastapi.requests import Request from fastapi.responses import JSONResponse, Response from httpx import HTTPError from app.log import logger from settings import conf router = APIRouter() timeout = httpx.Timeout(30) client = httpx.AsyncClient(timeout=timeout) @router.post("/{data_product:path}", tags=["data_product"]) async def route_identities(data_product: str, request: Request) -> Response: url = f"{conf.PRODUCT_GATEWAY_URL}/{data_product}" if request.url.query: url += f"?{request.url.query}" json_payload = await request.json() logger.debug("Fetching Data Product", url=url) try: resp = await client.post(url, json=json_payload) except HTTPError: logger.exception("Failed to fetch Data Product from the Product Gateway") raise HTTPException(status_code=502) return JSONResponse(resp.json(), status_code=resp.status_code)
StarcoderdataPython
1648691
"""Pack the modules contained in the controller directory.""" from typing import Tuple, Dict, List, Any, Union ResponseTuple = Tuple[Union[Dict[str, List[Dict[str, Any]]], str, Dict[str, Any]], int]
StarcoderdataPython
107937
<filename>dbcut/sqlalchemy_utils.py # -*- coding: utf-8 -*- # This module comes from the sqlalchemy-utils package # These functions have been slightly patched to support sqlalchemy 1.4+ import os from copy import copy import sqlalchemy as sa from sqlalchemy.engine.interfaces import Dialect from sqlalchemy.engine.url import make_url from sqlalchemy.exc import OperationalError, ProgrammingError from sqlalchemy.orm.exc import UnmappedInstanceError from sqlalchemy.orm.session import object_session from sqlalchemy.pool import NullPool def get_bind(obj): """ Return the bind for given SQLAlchemy Engine / Connection / declarative model object. :param obj: SQLAlchemy Engine / Connection / declarative model object :: from sqlalchemy_utils import get_bind get_bind(session) # Connection object get_bind(user) """ if hasattr(obj, "bind"): conn = obj.bind else: try: conn = object_session(obj).bind except UnmappedInstanceError: conn = obj if not hasattr(conn, "execute"): raise TypeError( "This method accepts only Session, Engine, Connection and " "declarative model objects." ) return conn def quote(mixed, ident): """ Conditionally quote an identifier. :: from sqlalchemy_utils import quote engine = create_engine('sqlite:///:memory:') quote(engine, 'order') # '"order"' quote(engine, 'some_other_identifier') # 'some_other_identifier' :param mixed: SQLAlchemy Session / Connection / Engine / Dialect object. :param ident: identifier to conditionally quote """ if isinstance(mixed, Dialect): dialect = mixed else: dialect = get_bind(mixed).dialect return dialect.preparer(dialect).quote(ident) def database_exists(url): """Check if a database exists. :param url: A SQLAlchemy engine URL. Performs backend-specific testing to quickly determine if a database exists on the server. :: database_exists('postgresql://postgres@localhost/name') #=> False create_database('postgresql://postgres@localhost/name') database_exists('postgresql://postgres@localhost/name') #=> True Supports checking against a constructed URL as well. :: engine = create_engine('postgresql://postgres@localhost/name') database_exists(engine.url) #=> False create_database(engine.url) database_exists(engine.url) #=> True """ url = copy(make_url(url)) database = url.database dialect_name = url.get_dialect().name def _sqlite_file_exists(database): if not os.path.isfile(database) or os.path.getsize(database) < 100: return False with open(database, "rb") as f: header = f.read(100) return header[:16] == b"SQLite format 3\x00" if dialect_name == "postgresql": text = "SELECT 1 FROM pg_database WHERE datname='%s'" % database for db in (database, "postgres", "template1", "template0", None): url = _set_url_database(url, database=db) engine = sa.create_engine(url, poolclass=NullPool) try: return bool(_get_scalar_result(engine, text)) except (ProgrammingError, OperationalError): pass return False elif dialect_name == "mysql": url = _set_url_database(url, database=None) engine = sa.create_engine(url, poolclass=NullPool) text = ( "SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA " "WHERE SCHEMA_NAME = '%s'" % database ) return bool(_get_scalar_result(engine, text)) elif dialect_name == "sqlite": url = _set_url_database(url, database=None) engine = sa.create_engine(url, poolclass=NullPool) if database: return database == ":memory:" or _sqlite_file_exists(database) else: # The default SQLAlchemy database is in memory, # and :memory is not required, thus we should support that use-case return True else: text = "SELECT 1" try: engine = sa.create_engine(url, poolclass=NullPool) return bool(_get_scalar_result(engine, text)) except (ProgrammingError, OperationalError): return False def create_database(url, encoding="utf8", template=None): """Issue the appropriate CREATE DATABASE statement. :param url: A SQLAlchemy engine URL. :param encoding: The encoding to create the database as. :param template: The name of the template from which to create the new database. At the moment only supported by PostgreSQL driver. To create a database, you can pass a simple URL that would have been passed to ``create_engine``. :: create_database('postgresql://postgres@localhost/name') You may also pass the url from an existing engine. :: create_database(engine.url) Has full support for mysql, postgres, and sqlite. In theory, other database engines should be supported. """ url = copy(make_url(url)) database = url.database dialect_name = url.get_dialect().name dialect_driver = url.get_dialect().driver if dialect_name == "postgres": url = _set_url_database(url, database="postgres") elif dialect_name == "mssql": url = _set_url_database(url, database="master") elif not dialect_name == "sqlite": url = _set_url_database(url, database=None) if dialect_name == "mssql" and dialect_driver in {"pymssql", "pyodbc"}: engine = sa.create_engine(url, connect_args={"autocommit": True}) elif dialect_name == "postgresql" and dialect_driver in { "asyncpg", "pg8000", "psycopg2", "psycopg2cffi", }: engine = sa.create_engine(url, isolation_level="AUTOCOMMIT") else: engine = sa.create_engine(url) if dialect_name == "postgresql": if not template: template = "template1" text = "CREATE DATABASE {0} ENCODING '{1}' TEMPLATE {2}".format( quote(engine, database), encoding, quote(engine, template) ) with engine.connect() as connection: connection.execute(text) elif dialect_name == "mysql": text = "CREATE DATABASE {0} CHARACTER SET = '{1}'".format( quote(engine, database), encoding ) with engine.connect() as connection: connection.execute(text) elif dialect_name == "sqlite" and database != ":memory:": if database: with engine.connect() as connection: connection.execute("CREATE TABLE DB(id int);") connection.execute("DROP TABLE DB;") else: text = "CREATE DATABASE {0}".format(quote(engine, database)) with engine.connect() as connection: connection.execute(text) engine.dispose() def drop_database(url): """Issue the appropriate DROP DATABASE statement. :param url: A SQLAlchemy engine URL. Works similar to the :ref:`create_database` method in that both url text and a constructed url are accepted. :: drop_database('postgresql://postgres@localhost/name') drop_database(engine.url) """ url = copy(make_url(url)) database = url.database dialect_name = url.get_dialect().name dialect_driver = url.get_dialect().driver if dialect_name == "postgres": url = _set_url_database(url, database="postgres") elif dialect_name == "mssql": url = _set_url_database(url, database="master") elif not dialect_name == "sqlite": url = _set_url_database(url, database=None) if dialect_name == "mssql" and dialect_driver in {"pymssql", "pyodbc"}: engine = sa.create_engine(url, connect_args={"autocommit": True}) elif dialect_name == "postgresql" and dialect_driver in { "asyncpg", "pg8000", "psycopg2", "psycopg2cffi", }: engine = sa.create_engine(url, isolation_level="AUTOCOMMIT") else: engine = sa.create_engine(url) if dialect_name == "sqlite" and database != ":memory:": if database: os.remove(database) elif dialect_name == "postgresql": with engine.connect() as connection: # Disconnect all users from the database we are dropping. version = connection.dialect.server_version_info pid_column = "pid" if (version >= (9, 2)) else "procpid" text = """ SELECT pg_terminate_backend(pg_stat_activity.%(pid_column)s) FROM pg_stat_activity WHERE pg_stat_activity.datname = '%(database)s' AND %(pid_column)s <> pg_backend_pid(); """ % { "pid_column": pid_column, "database": database, } connection.execute(text) # Drop the database. text = "DROP DATABASE {0}".format(quote(connection, database)) connection.execute(text) else: text = "DROP DATABASE {0}".format(quote(engine, database)) with engine.connect() as connection: connection.execute(text) engine.dispose() def _set_url_database(url: sa.engine.url.URL, database): if hasattr(sa.engine, "URL"): ret = sa.engine.URL.create( drivername=url.drivername, username=url.username, password=<PASSWORD>.password, host=url.host, port=url.port, database=database, query=url.query, ) else: # SQLAlchemy <1.4 url.database = database ret = url assert ret.database == database, ret return ret def _get_scalar_result(engine, sql): with engine.connect() as conn: return conn.scalar(sql)
StarcoderdataPython
3335873
from flask import render_template, request, current_app, g, redirect, url_for from maintain_frontend.decorators import requires_permission from maintain_frontend.constants.permissions import Permissions from maintain_frontend.view_modify_lon.validation.cancel_lon_validator import CancelLonValidator from maintain_frontend.dependencies.storage_api.storage_api_service import StorageAPIService from maintain_frontend.add_lon.services import process_lon_documents from maintain_frontend.dependencies.audit_api.audit_api import AuditAPIService from maintain_frontend.dependencies.maintain_api.maintain_api_service import MaintainApiService from maintain_frontend.dependencies.search_api.local_land_charge_service import LocalLandChargeService from maintain_frontend.exceptions import UploadDocumentError from maintain_frontend.services.charge_services import get_lon_by_charge_id from datetime import date import json def register_routes(bp): bp.add_url_rule('/<charge_id>', view_func=cancel_get, methods=['GET']) bp.add_url_rule('/<charge_id>', view_func=cancel_post, methods=['POST']) bp.add_url_rule('/<charge_id>/confirmation', view_func=confirm, methods=['GET', 'POST']) bp.add_url_rule('/<charge_id>/charge-cancelled', view_func=charge_cancelled, methods=['GET']) # Cancel LON start Page @requires_permission([Permissions.cancel_lon]) def cancel_get(charge_id): # Retrieve Charge local_land_charge_service = LocalLandChargeService(current_app.config) display_id, charge_item = get_lon_by_charge_id(charge_id, local_land_charge_service) return render_template('cancel_lon.html', charge_id=display_id) # Cancel LON start Page @requires_permission([Permissions.cancel_lon]) def cancel_post(charge_id): local_land_charge_service = LocalLandChargeService(current_app.config) display_id, charge_item = get_lon_by_charge_id(charge_id, local_land_charge_service) cancel_options = request.form.getlist('cancel-options') form_b = request.files.get('form-b-cancel-lon-file-input') court_order = request.files.get('court-order-cancel-lon-file-input') current_app.logger.info("Running validation") validation_error_builder = CancelLonValidator.validate(request.form, request.files) if validation_error_builder.errors: current_app.logger.warning("Validation errors occurred") return render_template('cancel_lon.html', charge_id=display_id, validation_errors=validation_error_builder.errors, validation_summary_heading=validation_error_builder.summary_heading_text, request_body=request.form), 400 files_to_upload = {} if "Form B" in cancel_options and form_b: files_to_upload['form-b'] = ('form_b.pdf', form_b, form_b.content_type) if "Court Order" in cancel_options and court_order: files_to_upload['court-order'] = ("court_order.pdf", court_order, court_order.content_type) if files_to_upload: upload_files(files_to_upload, charge_item, charge_id) charge_item.end_date = date.today() g.session.add_lon_charge_state = charge_item g.session.commit() return redirect(url_for('cancel_lon.confirm', charge_id=charge_id)) def upload_files(files, charge_item, charge_id): storage_api_service = StorageAPIService(current_app.config) subdirectory = charge_item.documents_filed['form-a'][0]['subdirectory'] upload_response = storage_api_service.save_files(files, process_lon_documents.bucket(), [subdirectory], True) if upload_response.status_code == 400: raise UploadDocumentError("Virus scan failed. Upload a new document.", url_for('cancel_lon.cancel_get', charge_id=charge_id)) new_documents_filed = upload_response.json() merged_docs = charge_item.documents_filed.copy() merged_docs.update(new_documents_filed) charge_item.documents_filed = merged_docs # Cancel LON start Page @requires_permission([Permissions.cancel_lon]) def confirm(charge_id): local_land_charge_service = LocalLandChargeService(current_app.config) display_id, charge_item = get_lon_by_charge_id(charge_id, local_land_charge_service) if request.method == 'GET': return render_template('cancel_lon_confirm.html', charge_id=display_id, charge_item=charge_item, geometry=json.dumps(charge_item.geometry)) if request.method == 'POST': current_app.logger.info("Cancelling Charge - {}".format(display_id)) AuditAPIService.audit_event("Cancelling charge", supporting_info={'id': display_id}) MaintainApiService.update_charge(g.session.add_lon_charge_state) # This is required because if the render_template is called from this post method then the flow won't be able # to return to the confirmation page if the user goes to the feedback form from the confirmation page return redirect(url_for('cancel_lon.charge_cancelled', charge_id=display_id)) # Cancel LON confirmed Page @requires_permission([Permissions.cancel_lon]) def charge_cancelled(charge_id): return render_template('charge_cancelled.html', charge_id=charge_id)
StarcoderdataPython
1642931
<filename>proj_issues/mcbv/edit.py<gh_stars>1-10 from django.forms import models as model_forms from django.core.exceptions import ImproperlyConfigured from django.http import HttpResponseRedirect from django.utils.encoding import force_text from django.db import models from django.contrib import messages from django.utils.functional import curry from django.forms.formsets import formset_factory, BaseFormSet, all_valid from django.forms.models import modelformset_factory from base import TemplateResponseMixin, ContextMixin, View from detail import SingleObjectMixin, SingleObjectTemplateResponseMixin, BaseDetailView, DetailView from list import MultipleObjectMixin, ListView class FormMixin(ContextMixin): """ A mixin that provides a way to show and handle a form in a request. """ initial = {} form_class = None success_url = None form_kwarg_user = False # provide request user to form def get_initial(self): """ Returns the initial data to use for forms on this view. """ return self.initial.copy() def get_form_class(self): """ Returns the form class to use in this view """ return self.form_class def get_form(self, form_class=None): """ Returns an instance of the form to be used in this view. """ form_class = form_class or self.get_form_class() return form_class(**self.get_form_kwargs()) def get_form_kwargs(self): """ Returns the keyword arguments for instantiating the form. """ kwargs = {'initial': self.get_initial()} if self.form_kwarg_user: kwargs['user'] = self.request.user if self.request.method in ('POST', 'PUT'): kwargs.update({ 'data': self.request.POST, 'files': self.request.FILES, }) return kwargs def get_success_url(self): """ Returns the supplied success URL. """ if self.success_url: # Forcing possible reverse_lazy evaluation url = force_text(self.success_url) else: raise ImproperlyConfigured( "No URL to redirect to. Provide a success_url.") return url def form_valid(self, form): """ If the form is valid, redirect to the supplied URL. """ return HttpResponseRedirect(self.get_success_url()) def form_invalid(self, form): """ If the form or modelform are invalid, re-render the context data with the data-filled form and errors. """ return self.get_context_data(form=form) class FormSetMixin(FormMixin): """A mixin that provides a way to show and handle a formset in a request.""" formset_form_class = None formset_initial = {} formset_class = BaseFormSet extra = 0 can_delete = False # ignore_get_args = ("page", ) # TODO this may be better moved to the form class? formset_kwarg_user = False # provide request user to form success_url = None def get_formset_initial(self): return self.formset_initial.copy() def get_formset_class(self): return self.formset_class def get_formset_form_class(self): return self.formset_form_class def get_formset(self, form_class=None): form_class = form_class or self.formset_form_class kwargs = dict() Formset = formset_factory(form_class, extra=self.extra, can_delete=self.can_delete) if self.form_kwarg_user: kwargs["user"] = self.user Formset.form = staticmethod(curry(form_class, **kwargs)) return Formset(**self.get_formset_kwargs()) def get_formset_kwargs(self): kwargs = dict(initial=self.get_formset_initial()) if self.formset_kwarg_user: kwargs["user"] = self.request.user if self.request.method in ('POST', 'PUT'): kwargs.update({ 'data': self.request.POST, 'files': self.request.FILES, }) return kwargs def get_success_url(self): if self.success_url: # Forcing possible reverse_lazy evaluation url = force_text(self.success_url) else: raise ImproperlyConfigured( "No URL to redirect to. Provide a success_url.") return url def formset_valid(self, formset): for form in formset: if form.has_changed(): if form.cleaned_data.get("DELETE"): self.process_delete(form) else: self.process_form(form) return HttpResponseRedirect(self.get_success_url()) def process_form(self, form): form.save() def process_delete(self, form): """Process checked 'delete' box.""" pass def formset_invalid(self, formset): return self.get_context_data(formset=formset) class ModelFormSetMixin(FormSetMixin): formset_model = None formset_queryset = None def get_formset_queryset(self): if self.formset_queryset is not None: queryset = self.formset_queryset if hasattr(queryset, '_clone'): queryset = queryset._clone() elif self.formset_model is not None: queryset = self.formset_model._default_manager.all() else: raise ImproperlyConfigured("'%s' must define 'formset_queryset' or 'formset_model'" % self.__class__.__name__) return queryset def get_formset(self, form_class=None): form_class = form_class or self.formset_form_class kwargs = dict() Formset = modelformset_factory(self.formset_model, extra=self.extra, can_delete=self.can_delete) if self.form_kwarg_user: kwargs["user"] = self.user Formset.form = staticmethod(curry(form_class, **kwargs)) return Formset(**self.get_formset_kwargs()) def get_formset_kwargs(self): kwargs = { 'initial' : self.get_formset_initial(), 'queryset' : self.get_formset_queryset(), } if self.formset_kwarg_user: kwargs["user"] = self.request.user if self.request.method in ('POST', 'PUT'): kwargs.update({ 'data': self.request.POST, 'files': self.request.FILES, }) return kwargs def process_delete(self, form): """Process checked 'delete' box.""" form.instance.delete() class ModelFormMixin(FormMixin, SingleObjectMixin): """ A mixin that provides a way to show and handle a modelform in a request. """ form_model = None modelform_class = None modelform_queryset = None modelform_context_object_name = None modelform_pk_url_kwarg = 'mfpk' modelform_valid_msg = None def get_modelform_class(self): """Returns the form class to use in this view.""" if self.modelform_class: return self.modelform_class else: if self.form_model is not None: # If a model has been explicitly provided, use it model = self.form_model elif hasattr(self, 'modelform_object') and self.modelform_object is not None: # If this view is operating on a single object, use # the class of that object model = self.modelform_object.__class__ else: # Try to get a queryset and extract the model class # from that model = self.get_modelform_queryset().model return model_forms.modelform_factory(model) def get_modelform(self, form_class=None): form_class = form_class or self.get_modelform_class() return form_class(**self.get_modelform_kwargs()) def get_modelform_kwargs(self): """Returns the keyword arguments for instantiating the form.""" kwargs = super(ModelFormMixin, self).get_form_kwargs() kwargs.update({'instance': self.modelform_object}) return kwargs def get_success_url(self): """Returns the supplied URL.""" if self.success_url: url = self.success_url % self.modelform_object.__dict__ else: try: url = self.modelform_object.get_absolute_url() except AttributeError: raise ImproperlyConfigured( "No URL to redirect to. Either provide a url or define" " a get_absolute_url method on the Model.") return url def modelform_valid(self, modelform): self.modelform_object = modelform.save() if self.modelform_valid_msg: messages.info(self.request, self.modelform_valid_msg) return HttpResponseRedirect(self.get_success_url()) def modelform_invalid(self, modelform): return self.get_context_data(modelform=modelform) def get_modelform_context_data(self, **kwargs): """ If an object has been supplied, inject it into the context with the supplied modelform_context_object_name name. """ context = {} obj = self.modelform_object if obj: context['modelform_object'] = obj if self.modelform_context_object_name: context[self.modelform_context_object_name] = obj elif isinstance(obj, models.Model): context[obj._meta.object_name.lower()] = obj context.update(kwargs) return context def get_modelform_object(self, queryset=None): return self.get_object( queryset or self.get_modelform_queryset(), self.modelform_pk_url_kwarg ) def get_modelform_queryset(self): if self.modelform_queryset: return self.modelform_queryset._clone() else: return self.get_queryset(self.form_model) class ProcessFormView(View): """ A mixin that renders a form on GET and processes it on POST. """ def form_get(self, request, *args, **kwargs): """ Handles GET requests and instantiates a blank version of the form. """ return self.get_context_data( form=self.get_form() ) def formset_get(self, request, *args, **kwargs): return self.get_context_data( formset=self.get_formset() ) def modelform_get(self, request, *args, **kwargs): """ Handles GET requests and instantiates a blank version of the form. """ return self.get_modelform_context_data( modelform=self.get_modelform() ) def post(self, request, *args, **kwargs): """ Handles POST requests, instantiating a form instance with the passed POST variables and then checked for validity. """ form = formset = modelform = None if isinstance(self, DetailView): self.detail_object = self.get_detail_object() if isinstance(self, ListView): self.object_list = self.get_list_queryset() if isinstance(self, FormView): form = self.get_form() if isinstance(self, (FormSetView, ModelFormSetView)): formset = self.get_formset() if isinstance(self, UpdateView): self.update_post(request, *args, **kwargs) modelform = self.get_modelform() if isinstance(self, CreateView): self.create_post(request, *args, **kwargs) modelform = self.get_modelform() if (not form or form and form.is_valid()) and \ (not modelform or modelform and modelform.is_valid()) and \ (not formset or formset and formset.is_valid()): if isinstance(self, FormView) : resp = self.form_valid(form) if isinstance(self, (FormSetView, ModelFormSetView)) : resp = self.formset_valid(formset) if isinstance(self, (UpdateView, CreateView)) : resp = self.modelform_valid(modelform) return resp else: context = self.get_context_data() update = context.update if isinstance(self, FormView) : update(self.form_invalid(form)) if isinstance(self, (FormSetView, ModelFormSetView)) : update(self.formset_invalid(formset)) if isinstance(self, (UpdateView, CreateView)) : update(self.modelform_invalid(modelform)) return self.render_to_response(context) # PUT is a valid HTTP verb for creating (with a known URL) or editing an # object, note that browsers only support POST for now. def put(self, *args, **kwargs): return self.post(*args, **kwargs) class BaseFormView(FormMixin, ProcessFormView): """ A base view for displaying a form """ class FormView(TemplateResponseMixin, BaseFormView): """ A view for displaying a form, and rendering a template response. """ class BaseFormSetView(FormSetMixin, ProcessFormView): """A base view for displaying a formset.""" class FormSetView(TemplateResponseMixin, BaseFormSetView): """A view for displaying a formset, and rendering a template response.""" class BaseModelFormSetView(ModelFormSetMixin, ProcessFormView): """A base view for displaying a modelformset.""" class ModelFormSetView(TemplateResponseMixin, BaseModelFormSetView): """A view for displaying a modelformset, and rendering a template response.""" class BaseCreateView(ModelFormMixin, ProcessFormView): """ Base view for creating an new object instance. Using this base class requires subclassing to provide a response mixin. """ def create_get(self, request, *args, **kwargs): self.modelform_object = None return self.modelform_get(request, *args, **kwargs) def create_post(self, request, *args, **kwargs): self.modelform_object = None class CreateView(SingleObjectTemplateResponseMixin, BaseCreateView): """ View for creating a new object instance, with a response rendered by template. """ template_name_suffix = '_modelform' def get_template_names(self): return self._get_template_names(self.modelform_object, self.form_model) class BaseUpdateView(ModelFormMixin, ProcessFormView): """ Base view for updating an existing object. Using this base class requires subclassing to provide a response mixin. """ def update_get(self, request, *args, **kwargs): self.modelform_object = self.get_modelform_object() return self.modelform_get(request, *args, **kwargs) def update_post(self, request, *args, **kwargs): self.modelform_object = self.get_modelform_object() class UpdateView(SingleObjectTemplateResponseMixin, BaseUpdateView): """ View for updating an object, with a response rendered by template. """ template_name_suffix = '_modelform' def get_template_names(self): return self._get_template_names(self.modelform_object, self.form_model) class CreateUpdateView(CreateView): """Update object if modelform_pk_url_kwarg is in kwargs, otherwise create it.""" modelform_create_class = None def get_modelform_class(self): if self.modelform_pk_url_kwarg in self.kwargs: return self.modelform_class else: return self.modelform_create_class def create_get(self, request, *args, **kwargs): if self.modelform_pk_url_kwarg in self.kwargs: self.modelform_object = self.get_modelform_object() return self.modelform_get(request, *args, **kwargs) else: return super(CreateUpdateView, self).create_get(request, *args, **kwargs) def create_post(self, request, *args, **kwargs): if self.modelform_pk_url_kwarg in self.kwargs: self.modelform_object = self.get_modelform_object() else: super(CreateUpdateView, self).create_post(request, *args, **kwargs) class DeletionMixin(object): """ A mixin providing the ability to delete objects """ success_url = None def delete(self, request, *args, **kwargs): """ Calls the delete() method on the fetched object and then redirects to the success URL. """ self.modelform_object = self.get_modelform_object() self.modelform_object.delete() return HttpResponseRedirect(self.get_success_url()) # Add support for browsers which only accept GET and POST for now. def post(self, *args, **kwargs): return self.delete(*args, **kwargs) def get_success_url(self): if self.success_url: return self.success_url else: raise ImproperlyConfigured( "No URL to redirect to. Provide a success_url.") class BaseDeleteView(DeletionMixin, BaseDetailView): """ Base view for deleting an object. Using this base class requires subclassing to provide a response mixin. """ class DeleteView(SingleObjectTemplateResponseMixin, BaseDeleteView): """ View for deleting an object retrieved with `self.get_object()`, with a response rendered by template. """ template_name_suffix = '_confirm_delete'
StarcoderdataPython
1637738
from pkg_resources import get_distribution __version__ = get_distribution('behave_http').version
StarcoderdataPython
1769795
_auther_ = 'Harry' _date_ = '2/1/2018 9:56 PM'
StarcoderdataPython
3233416
<reponame>Tapawingo/FreeTakServer<filename>FreeTAKServer/model/Enumerations/connectionTypes.py ####################################################### # # connectionTypes.py # Python implementation of the Enumeration connectionTypes # Generated by Enterprise Architect # Created on: 07-Dec-2021 7:23:24 PM # Original author: natha # ####################################################### from enum import Enum class ConnectionTypes(Enum): TCP = "TCP" SSL = "SSL" UDP = "UDP" PROTO = "PROTO"
StarcoderdataPython
3323416
<reponame>MuriloChaves/prova-de-conceito # -*- coding: utf-8 -*- # Importa bibliotecas necessárias from PIL import Image import os def main(): ''' Função principal que, realiza todo o escopo de código da conversão. ''' # Abre a imagem e realiza a conversão imagem = Image.open('./data/doguinho.png').convert('LA') # Imprime a imagem imagem.show() # Criando repositório de saída if not os.path.exists('./saida'): os.mkdir('./saida') # Salva a imagem imagem.save('./saida/doguinho_cinza.png') pass if __name__ == '__main__': main()
StarcoderdataPython
23885
<gh_stars>1-10 #!/usr/bin/env python import sys import matplotlib import numpy as np import random import itertools import socket import sklearn.metrics from scipy.optimize import minimize from scipy.optimize import Bounds from sklearn import preprocessing from sklearn.preprocessing import OneHotEncoder from sklearn.utils.random import sample_without_replacement np.set_printoptions(precision=4) np.set_printoptions(threshold=sys.maxsize) np.set_printoptions(linewidth=300) np.set_printoptions(suppress=True) class opt_gaussian(): def __init__(self, X, Y, Y_kernel='linear', σₓ=None, Γ=None): # X=data, Y=label, σ_type='ℍ', or 'maxKseparation' ń = X.shape[0] ð = X.shape[1] self.Y_kernel = Y_kernel if ń > 300: # Down sample first samples = sample_without_replacement(n_population=ń, n_samples=300) X = X[samples,:] Y = Y[samples] ń = X.shape[0] Γ = None if Y_kernel == 'linear': σᵧ = 1 if Γ is None: self.Ⅱᵀ = np.ones((ń,ń)) ńᒾ = ń*ń Yₒ = OneHotEncoder(categories='auto', sparse=False).fit_transform(np.reshape(Y,(len(Y),1))) self.Kᵧ = Kᵧ = Yₒ.dot(Yₒ.T) ṉ = np.sum(Kᵧ) HKᵧ = self.Kᵧ - np.mean(self.Kᵧ, axis=0) # equivalent to Γ = Ⲏ.dot(Kᵧ).dot(Ⲏ) self.Γ = HKᵧH = (HKᵧ.T - np.mean(HKᵧ.T, axis=0)).T else: self.Γ = Γ elif Y_kernel == 'Gaussian': Ðᵧ = sklearn.metrics.pairwise.pairwise_distances(Y) σᵧ = np.median(Ðᵧ) self.Ðᵧᒾ = (-Ðᵧ*Ðᵧ)/2 Ðₓ = sklearn.metrics.pairwise.pairwise_distances(X) if σₓ is None: σₓ = np.median(Ðₓ) self.Ðₓᒾ = (-Ðₓ*Ðₓ)/2 self.σ = [σₓ, σᵧ] def minimize_H(self): self.result = minimize(self.ℍ, self.σ, method='L-BFGS-B', options={'gtol': 1e-5, 'disp': False}, bounds=Bounds(0.05, 100000)) if self.result.x[0] < 0.01: self.result.x[0] = 0.01 def ℍ(self, σ): [σₓ, σᵧ] = σ Kₓ = np.exp(self.Ðₓᒾ/(σₓ*σₓ)) if self.Y_kernel == 'linear': Γ = self.Γ elif self.Y_kernel == 'Gaussian': Kᵧ = np.exp(self.Ðᵧᒾ/(σᵧ*σᵧ)) HKᵧ = Kᵧ - np.mean(Kᵧ, axis=0) # equivalent to Γ = Ⲏ.dot(Kᵧ).dot(Ⲏ) Γ = HKᵧH = (HKᵧ.T - np.mean(HKᵧ.T, axis=0)).T loss = -np.sum(Kₓ*Γ) return loss def get_opt_σ(X,Y, Y_kernel='Gaussian'): optimizer = opt_gaussian(X,Y, Y_kernel=Y_kernel) optimizer.minimize_H() return optimizer.result def get_opt_σ_via_random(X,Y, Y_kernel='Gaussian'): optimizer = opt_gaussian(X,Y, Y_kernel=Y_kernel) opt = 0 opt_σ = 0 for m in range(1000): σ = (7*np.random.rand(2)).tolist() new_opt = -optimizer.ℍ(σ) if opt < new_opt: opt = new_opt opt_σ = σ print('Random Result ') print('\tbest_σ : ', opt_σ) print('\tmax_HSIC : ' , opt) if __name__ == "__main__": data_name = 'wine' X = np.loadtxt('../dataset/' + data_name + '.csv', delimiter=',', dtype=np.float64) Y = np.loadtxt('../dataset/' + data_name + '_label.csv', delimiter=',', dtype=np.int32) X = preprocessing.scale(X) optimized_results = get_opt_σ(X,Y, Y_kernel='linear') best_σ = optimized_results.x max_HSIC = -optimized_results.fun print('Optimized Result ') print('\tbest_σ [σₓ, σᵧ]: ', best_σ) print('\tmax_HSIC : ' , max_HSIC) optimized_results = get_opt_σ_via_random(X,Y, Y_kernel='linear')
StarcoderdataPython
1741899
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from datetime import datetime from dateutil.relativedelta import relativedelta from psycopg2 import IntegrityError from odoo import fields from odoo.exceptions import AccessError, ValidationError, UserError from odoo.tools import mute_logger, test_reports from odoo.addons.hr_holidays.tests.common import TestHrHolidaysBase class TestHolidaysFlow(TestHrHolidaysBase): @mute_logger('odoo.addons.base.models.ir_model', 'odoo.models') def test_00_leave_request_flow_unlimited(self): """ Testing leave request flow: unlimited type of leave request """ Requests = self.env['hr.leave'] HolidaysStatus = self.env['hr.leave.type'] # HrManager creates some holiday statuses HolidayStatusManagerGroup = HolidaysStatus.with_user(self.user_hrmanager_id) HolidayStatusManagerGroup.create({ 'name': 'WithMeetingType', 'allocation_type': 'no', }) self.holidays_status_hr = HolidayStatusManagerGroup.create({ 'name': 'NotLimitedHR', 'allocation_type': 'no', 'validation_type': 'hr', 'validity_start': False, }) self.holidays_status_manager = HolidayStatusManagerGroup.create({ 'name': 'NotLimitedManager', 'allocation_type': 'no', 'validation_type': 'manager', 'validity_start': False, }) HolidaysEmployeeGroup = Requests.with_user(self.user_employee_id) # Employee creates a leave request in a no-limit category hr manager only hol1_employee_group = HolidaysEmployeeGroup.create({ 'name': 'Hol11', 'employee_id': self.employee_emp_id, 'holiday_status_id': self.holidays_status_hr.id, 'date_from': (datetime.today() - relativedelta(days=1)), 'date_to': datetime.today(), 'number_of_days': 1, }) hol1_user_group = hol1_employee_group.with_user(self.user_hruser_id) hol1_manager_group = hol1_employee_group.with_user(self.user_hrmanager_id) self.assertEqual(hol1_user_group.state, 'confirm', 'hr_holidays: newly created leave request should be in confirm state') # HrUser validates the employee leave request -> should work hol1_user_group.action_approve() self.assertEqual(hol1_manager_group.state, 'validate', 'hr_holidays: validated leave request should be in validate state') # Employee creates a leave request in a no-limit category department manager only hol12_employee_group = HolidaysEmployeeGroup.create({ 'name': 'Hol12', 'employee_id': self.employee_emp_id, 'holiday_status_id': self.holidays_status_manager.id, 'date_from': (datetime.today() + relativedelta(days=12)), 'date_to': (datetime.today() + relativedelta(days=13)), 'number_of_days': 1, }) hol12_user_group = hol12_employee_group.with_user(self.user_hruser_id) hol12_manager_group = hol12_employee_group.with_user(self.user_hrmanager_id) self.assertEqual(hol12_user_group.state, 'confirm', 'hr_holidays: newly created leave request should be in confirm state') # HrManager validate the employee leave request hol12_manager_group.action_approve() self.assertEqual(hol1_user_group.state, 'validate', 'hr_holidays: validates leave request should be in validate state') @mute_logger('odoo.addons.base.models.ir_model', 'odoo.models') def test_01_leave_request_flow_limited(self): """ Testing leave request flow: limited type of leave request """ Requests = self.env['hr.leave'] Allocations = self.env['hr.leave.allocation'] HolidaysStatus = self.env['hr.leave.type'] def _check_holidays_status(holiday_status, ml, lt, rl, vrl): self.assertEqual(holiday_status.max_leaves, ml, 'hr_holidays: wrong type days computation') self.assertEqual(holiday_status.leaves_taken, lt, 'hr_holidays: wrong type days computation') self.assertEqual(holiday_status.remaining_leaves, rl, 'hr_holidays: wrong type days computation') self.assertEqual(holiday_status.virtual_remaining_leaves, vrl, 'hr_holidays: wrong type days computation') # HrManager creates some holiday statuses HolidayStatusManagerGroup = HolidaysStatus.with_user(self.user_hrmanager_id) HolidayStatusManagerGroup.create({ 'name': 'WithMeetingType', 'allocation_type': 'no', 'validity_start': False, }) self.holidays_status_limited = HolidayStatusManagerGroup.create({ 'name': 'Limited', 'allocation_type': 'fixed', 'validation_type': 'both', 'validity_start': False, }) HolidaysEmployeeGroup = Requests.with_user(self.user_employee_id) # HrUser allocates some leaves to the employee aloc1_user_group = Allocations.with_user(self.user_hruser_id).create({ 'name': 'Days for limited category', 'employee_id': self.employee_emp_id, 'holiday_status_id': self.holidays_status_limited.id, 'number_of_days': 2, }) # HrUser validates the first step aloc1_user_group.action_approve() # HrManager validates the second step aloc1_user_group.with_user(self.user_hrmanager_id).action_validate() # Checks Employee has effectively some days left hol_status_2_employee_group = self.holidays_status_limited.with_user(self.user_employee_id) _check_holidays_status(hol_status_2_employee_group, 2.0, 0.0, 2.0, 2.0) # Employee creates a leave request in the limited category, now that he has some days left hol2 = HolidaysEmployeeGroup.create({ 'name': 'Hol22', 'employee_id': self.employee_emp_id, 'holiday_status_id': self.holidays_status_limited.id, 'date_from': (datetime.today() + relativedelta(days=2)).strftime('%Y-%m-%d %H:%M'), 'date_to': (datetime.today() + relativedelta(days=3)), 'number_of_days': 1, }) hol2_user_group = hol2.with_user(self.user_hruser_id) # Check left days: - 1 virtual remaining day hol_status_2_employee_group.invalidate_cache() _check_holidays_status(hol_status_2_employee_group, 2.0, 0.0, 2.0, 1.0) # HrManager validates the first step hol2_user_group.with_user(self.user_hrmanager_id).action_approve() self.assertEqual(hol2.state, 'validate1', 'hr_holidays: first validation should lead to validate1 state') # HrManager validates the second step hol2_user_group.with_user(self.user_hrmanager_id).action_validate() self.assertEqual(hol2.state, 'validate', 'hr_holidays: second validation should lead to validate state') # Check left days: - 1 day taken _check_holidays_status(hol_status_2_employee_group, 2.0, 1.0, 1.0, 1.0) # HrManager finds an error: he refuses the leave request hol2.with_user(self.user_hrmanager_id).action_refuse() self.assertEqual(hol2.state, 'refuse', 'hr_holidays: refuse should lead to refuse state') # Check left days: 2 days left again hol_status_2_employee_group.invalidate_cache(['max_leaves']) _check_holidays_status(hol_status_2_employee_group, 2.0, 0.0, 2.0, 2.0) self.assertEqual(hol2.state, 'refuse', 'hr_holidays: hr_user should not be able to reset a refused leave request') # HrManager resets the request hol2_manager_group = hol2.with_user(self.user_hrmanager_id) hol2_manager_group.action_draft() self.assertEqual(hol2.state, 'draft', 'hr_holidays: resetting should lead to draft state') employee_id = self.ref('hr.employee_admin') # cl can be of maximum 20 days for employee_admin hol3_status = self.env.ref('hr_holidays.holiday_status_cl').with_context(employee_id=employee_id) # I assign the dates in the holiday request for 1 day hol3 = Requests.create({ 'name': 'Sick Time Off', 'holiday_status_id': hol3_status.id, 'date_from': datetime.today().strftime('%Y-%m-10 10:00:00'), 'date_to': datetime.today().strftime('%Y-%m-11 19:00:00'), 'employee_id': employee_id, 'number_of_days': 1, }) # I find a small mistake on my leave request to I click on "Refuse" button to correct a mistake. hol3.action_refuse() self.assertEqual(hol3.state, 'refuse', 'hr_holidays: refuse should lead to refuse state') # I again set to draft and then confirm. hol3.action_draft() self.assertEqual(hol3.state, 'draft', 'hr_holidays: resetting should lead to draft state') hol3.action_confirm() self.assertEqual(hol3.state, 'confirm', 'hr_holidays: confirming should lead to confirm state') # I validate the holiday request by clicking on "To Approve" button. hol3.action_approve() hol3.action_validate() self.assertEqual(hol3.state, 'validate', 'hr_holidays: validation should lead to validate state') # Check left days for casual leave: 19 days left _check_holidays_status(hol3_status, 20.0, 1.0, 19.0, 19.0) def test_10_leave_summary_reports(self): # Print the HR Holidays(Summary Employee) Report through the wizard ctx = { 'model': 'hr.employee', 'active_ids': [self.ref('hr.employee_admin'), self.ref('hr.employee_qdp'), self.ref('hr.employee_al')] } data_dict = { 'date_from': datetime.today().strftime('%Y-%m-01'), 'emp': [(6, 0, [self.ref('hr.employee_admin'), self.ref('hr.employee_qdp'), self.ref('hr.employee_al')])], 'holiday_type': 'Approved' } self.env.company.external_report_layout_id = self.env.ref('web.external_layout_standard').id test_reports.try_report_action(self.env.cr, self.env.uid, 'action_hr_holidays_summary_employee', wiz_data=data_dict, context=ctx, our_module='hr_holidays') def test_sql_constraint_dates(self): # The goal is mainly to verify that a human friendly # error message is triggered if the date_from is after # date_to. Coming from a bug due to the new ORM 13.0 leave_vals = { 'name': 'Sick Time Off', 'holiday_status_id': self.env.ref('hr_holidays.holiday_status_cl').id, 'date_from': datetime.today().strftime('%Y-%m-11 19:00:00'), 'date_to': datetime.today().strftime('%Y-%m-10 10:00:00'), 'employee_id': self.ref('hr.employee_admin'), 'number_of_days': 1, } with mute_logger('odoo.sql_db'): with self.assertRaises(IntegrityError): with self.cr.savepoint(): self.env['hr.leave'].create(leave_vals) leave_vals = { 'name': 'Sick Time Off', 'holiday_status_id': self.env.ref('hr_holidays.holiday_status_cl').id, 'date_from': datetime.today().strftime('%Y-%m-10 10:00:00'), 'date_to': datetime.today().strftime('%Y-%m-11 19:00:00'), 'employee_id': self.ref('hr.employee_admin'), 'number_of_days': 1, } leave = self.env['hr.leave'].create(leave_vals) with mute_logger('odoo.sql_db'): with self.assertRaises(IntegrityError): # No ValidationError with self.cr.savepoint(): leave.write({ 'date_from': datetime.today().strftime('%Y-%m-11 19:00:00'), 'date_to': datetime.today().strftime('%Y-%m-10 10:00:00'), })
StarcoderdataPython
3320746
<gh_stars>0 from abc import ABC, abstractmethod from django.conf import settings from django.core.cache import cache class BaseExcelClass(ABC): """ Base excel class will be use as abstract class for making interface between the excel and csv file(flat file) to update into server data base as django model. Accept file only are excel and CSV along. .. notes:: Try not use pandas function directly as possible """ def __init__(self, user_id): pass @abstractmethod def read_excel(self, name, **kargs): """Read the given file using name from in the server. :param name: [file name of the data contains] :type name: [str] """ pass @abstractmethod def read_csv(self, name, **kargs): """Read the given file using name from in the server. :param name: [file name of the data contains] :type name: [str] """ pass @abstractmethod def data(self): """This method return the data of the read part. """ pass @abstractmethod def mapping_fields(self, options): """ Convert Field is a function that help mapping the field(columns of excel) with :model: `packages.ItemsList`. @params options it is a dict() object """ pass @abstractmethod def paytm_process(self): pass @abstractmethod def insert_db(self, user_id): """ Inserting the value of excel into db of :model: `packages.ItemsList`. """ temp = "%s%d" % (settings.BM_CURRENT_USER_UPLOAD_NAME, user_id) if cache.get(temp): cache.set( settings.BM_CURRENT_USER_UPLOAD_NAME + user_id, user_id, settings.BM_CURRENT_USER_UPLOAD_CACHE_TIMEOUT, ) @abstractmethod def get_info(self): pass @abstractmethod def api_name(self): pass class BaseExcelInterFaceException(Exception): pass
StarcoderdataPython
133084
from py_pdf_term._common.data import Term from py_pdf_term.tokenizer import Token from py_pdf_term.tokenizer.langs import JapaneseTokenClassifier from ..base import BaseJapaneseCandidateTermFilter class JapaneseProperNounFilter(BaseJapaneseCandidateTermFilter): def __init__(self) -> None: self._classifier = JapaneseTokenClassifier() def is_candidate(self, scoped_term: Term) -> bool: return not self._is_region_or_person(scoped_term) def _is_region_or_person(self, scoped_term: Term) -> bool: def is_region_or_person_token(token: Token) -> bool: return ( ( token.pos == "名詞" and token.category == "固有名詞" and token.subcategory in {"人名", "地名"} ) or self._classifier.is_modifying_particle(token) or self._classifier.is_connector_symbol(token) ) return all(map(is_region_or_person_token, scoped_term.tokens))
StarcoderdataPython
1798426
# -*- coding: utf-8 -*- from django.db import models from django.conf import settings from tinymce.models import HTMLField EnhancedTextField = HTMLField if 'tinymce' in settings.INSTALLED_APPS else models.TextField
StarcoderdataPython
65804
import pytest from tests.common.helpers.assertions import pytest_require from tests.common.fixtures.conn_graph_facts import conn_graph_facts,\ fanout_graph_facts from tests.common.ixia.ixia_fixtures import ixia_api_serv_ip, ixia_api_serv_port,\ ixia_api_serv_user, ixia_api_serv_passwd, ixia_api, ixia_testbed from tests.common.ixia.qos_fixtures import prio_dscp_map, all_prio_list, lossless_prio_list,\ lossy_prio_list from files.helper import run_pfc_test @pytest.mark.topology("tgen") def test_pfc_pause_single_lossless_prio(ixia_api, ixia_testbed, conn_graph_facts, fanout_graph_facts, duthosts, rand_one_dut_hostname, enum_dut_portname_oper_up, enum_dut_lossless_prio, all_prio_list, prio_dscp_map): """ Test if PFC can pause a single lossless priority Args: ixia_api (pytest fixture): IXIA session ixia_testbed (pytest fixture): L2/L3 config of a T0 testbed conn_graph_facts (pytest fixture): connection graph fanout_graph_facts (pytest fixture): fanout graph duthosts (pytest fixture): list of DUTs rand_one_dut_hostname (str): hostname of DUT enum_dut_portname_oper_up (str): name of port to test, e.g., 's6100-1|Ethernet0' enum_dut_lossless_prio (str): name of lossless priority to test, e.g., 's6100-1|3' all_prio_list (pytest fixture): list of all the priorities prio_dscp_map (pytest fixture): priority vs. DSCP map (key = priority). Returns: None """ dut_hostname, dut_port = enum_dut_portname_oper_up.split('|') dut_hostname2, lossless_prio = enum_dut_lossless_prio.split('|') pytest_require(rand_one_dut_hostname == dut_hostname == dut_hostname2, "Priority and port are not mapped to the expected DUT") duthost = duthosts[rand_one_dut_hostname] lossless_prio = int(lossless_prio) pause_prio_list = [lossless_prio] test_prio_list = [lossless_prio] bg_prio_list = [p for p in all_prio_list] bg_prio_list.remove(lossless_prio) run_pfc_test(api=ixia_api, testbed_config=ixia_testbed, conn_data=conn_graph_facts, fanout_data=fanout_graph_facts, duthost=duthost, dut_port=dut_port, global_pause=False, pause_prio_list=pause_prio_list, test_prio_list=test_prio_list, bg_prio_list=bg_prio_list, prio_dscp_map=prio_dscp_map, test_traffic_pause=True) def test_pfc_pause_multi_lossless_prio(ixia_api, ixia_testbed, conn_graph_facts, fanout_graph_facts, duthosts, rand_one_dut_hostname, enum_dut_portname_oper_up, lossless_prio_list, lossy_prio_list, prio_dscp_map): """ Test if PFC can pause multiple lossless priorities Args: ixia_api (pytest fixture): IXIA session ixia_testbed (pytest fixture): L2/L3 config of a T0 testbed conn_graph_facts (pytest fixture): connection graph fanout_graph_facts (pytest fixture): fanout graph duthosts (pytest fixture): list of DUTs rand_one_dut_hostname (str): hostname of DUT enum_dut_portname_oper_up (str): name of port to test, e.g., 's6100-1|Ethernet0' lossless_prio_list (pytest fixture): list of all the lossless priorities lossy_prio_list (pytest fixture): list of all the lossy priorities prio_dscp_map (pytest fixture): priority vs. DSCP map (key = priority). Returns: None """ dut_hostname, dut_port = enum_dut_portname_oper_up.split('|') pytest_require(rand_one_dut_hostname == dut_hostname, "Port is not mapped to the expected DUT") duthost = duthosts[rand_one_dut_hostname] pause_prio_list = lossless_prio_list test_prio_list = lossless_prio_list bg_prio_list = lossy_prio_list run_pfc_test(api=ixia_api, testbed_config=ixia_testbed, conn_data=conn_graph_facts, fanout_data=fanout_graph_facts, duthost=duthost, dut_port=dut_port, global_pause=False, pause_prio_list=pause_prio_list, test_prio_list=test_prio_list, bg_prio_list=bg_prio_list, prio_dscp_map=prio_dscp_map, test_traffic_pause=True)
StarcoderdataPython
3335672
<reponame>UbiOps/command-line-interface import ubiops as api from datetime import datetime, timedelta from ubiops_cli.utils import init_client, get_current_project from ubiops_cli.src.helpers.formatting import print_item, format_logs_reference, format_logs_oneline, parse_datetime, \ print_list, format_json, format_datetime from ubiops_cli.src.helpers.options import * @click.group("logs", short_help="View your logs") def commands(): """View your logs.""" pass @commands.command("list", short_help="List logs") @DEPLOYMENT_NAME_OPTIONAL @DEPLOYMENT_VERSION_OPTIONAL @PIPELINE_NAME_OPTIONAL @PIPELINE_VERSION_OPTIONAL @PIPELINE_OBJECT_NAME @BUILD_ID_OPTIONAL @REQUEST_ID_OPTIONAL @PIPELINE_REQUEST_ID_OPTIONAL @SYSTEM @START_DATE @START_LOG @DATE_RANGE @LIMIT @LOGS_FORMATS def logs_list(deployment_name, deployment_version_name, pipeline_name, pipeline_version_name, pipeline_object_name, request_id, pipeline_request_id, build_id, system, start_date, start_log, date_range, limit, format_): """Get the logs of your project. Use the command options as filters. """ project_name = get_current_project(error=True) client = init_client() filters = {} if deployment_name: filters['deployment_name'] = deployment_name if deployment_version_name: filters['deployment_version'] = deployment_version_name if pipeline_name: filters['pipeline_name'] = pipeline_name if pipeline_version_name: filters['pipeline_version'] = pipeline_version_name if pipeline_object_name: filters['pipeline_object_name'] = pipeline_object_name if build_id: filters['build_id'] = build_id if request_id: filters['deployment_request_id'] = request_id if pipeline_request_id: filters['pipeline_request_id'] = pipeline_request_id if system is not None: filters['system'] = system if start_date is not None: try: start_date = format_datetime(parse_datetime(start_date), fmt='%Y-%m-%dT%H:%M:%SZ') except ValueError: raise Exception("Failed to parse start_date. Please use iso-format, " "for example, '2020-01-01T00:00:00.000000Z'") elif start_date is None and start_log is None: start_date = str(datetime.now()) log_filters = api.LogsCreate(filters=filters, date=start_date, id=start_log, date_range=date_range, limit=limit) logs = client.projects_log_list(project_name=project_name, data=log_filters) client.api_client.close() if format_ == 'json': click.echo(format_json(logs)) return if len(logs) > 0: if format_ == 'oneline': lines = format_logs_oneline(logs) elif format_ == 'reference': lines = format_logs_reference(logs) elif format_ == 'extended': lines = format_logs_reference( logs, extended=['deployment_request_id', 'pipeline_request_id', 'deployment_name', 'deployment_version', 'pipeline_name', 'pipeline_version', 'pipeline_object_name', 'build_id'] ) else: lines = format_logs_reference(logs) click.echo_via_pager(lines) elif start_date: starting_point = parse_datetime(start_date).isoformat() if date_range > 0: end_point = (parse_datetime(start_date) + timedelta(seconds=date_range)).isoformat() else: end_point = (parse_datetime(start_date) - timedelta(seconds=abs(date_range))).isoformat() click.echo("No logs found between <%s> and <%s>" % (starting_point, end_point)) @commands.command("get", short_help="Get details of a log") @LOG_ID @GET_FORMATS def logs_get(log_id, format_): """ \b Get more details of a log: - date - deployment_name - deployment_version_name - pipeline_name - pipeline_version_name - pipeline_object_name - request_id - pipeline_request_id - system (boolean) """ project_name = get_current_project(error=True) client = init_client() log_filters = api.LogsCreate(filters={}, id=log_id, limit=1) log = client.projects_log_list(project_name=project_name, data=log_filters)[0] client.api_client.close() print_item( log, row_attrs=['id', 'date', 'log'], required_front=['id', 'date', 'system'], optional=['deployment_request_id', 'pipeline_request_id', 'deployment_name', 'deployment_version', 'pipeline_name', 'pipeline_version', 'pipeline_object_name', 'build_id'], required_end=['log'], rename={'deployment_version': 'deployment_version_name', 'pipeline_version': 'pipeline_version_name'}, fmt=format_ ) @click.group(["audit_events", "audit"], short_help="View your audit events") def audit_events(): """View your audit events.""" pass @audit_events.command("list", short_help="List audit events") @DEPLOYMENT_NAME_OPTIONAL @PIPELINE_NAME_OPTIONAL @AUDIT_LIMIT @OFFSET @AUDIT_ACTION @LIST_FORMATS def audit_list(deployment_name, pipeline_name, format_, **kwargs): """List the audit events. Use the command options as filters. """ project_name = get_current_project(error=True) client = init_client() if deployment_name and pipeline_name: raise Exception("Please, filter either on deployment or pipeline name, not both") elif deployment_name: events = client.deployment_audit_events_list(project_name=project_name, deployment_name=deployment_name, **kwargs) elif pipeline_name: events = client.pipeline_audit_events_list(project_name=project_name, pipeline_name=pipeline_name, **kwargs) else: events = client.project_audit_events_list(project_name=project_name, **kwargs) client.api_client.close() print_list(events, ['date', 'action', 'user', 'event'], fmt=format_, pager=len(events) > 10)
StarcoderdataPython
1672847
<gh_stars>0 import pandas as pd import argparse import sys parser = argparse.ArgumentParser(description='Reformats a met-office weather data file. Input data has one row per year and one column per month. Output data has a date column and a value column.') parser.add_argument('data_file',metavar='DATA_FILE', help='Data file containing met office weather stats.') def get_month_data(month_data): """Takes a two column DataFrame and returns a one column DataFrame where the index is a pandas period""" # Each pair of columns contains data for a specific month. What month is this? month = month_data.columns[0] # Given a year, return a Period object representing this month in that year def get_period(year): return pd.Period('{0} {1}'.format(month,year)) # Change the index of the dataframe to be the monthly period month_data.index = map(get_period, full_data.iloc[:,2]) # Rename the columns month_data.columns = ['value', 'year'] month_data.index.name = 'month' # Remove the year column, we don't need it anymore. return month_data.drop('year', axis=1) def unstack_data(full_data): """ Takes a dataframe with monthly columns and yearly rows. Returns a single column dataframe where each row is a specific month of a specific year. """ # Loop over columns of the DataFrame in groups of 2 # and feed them to get_month_data monthly_data = [ get_month_data(full_data.iloc[:, i:i+2]) for i in range(1,25,2)] # Add all the data for the individual months together unstacked_data = pd.concat(monthly_data) return unstacked_data.sort() if __name__ == '__main__': args = parser.parse_args() full_data = pd.read_csv(args.data_file, delim_whitespace=True, skiprows=7) unstacked_data = unstack_data(full_data) # Write the new dataframe to stdout try: unstacked_data.to_csv(sys.stdout) # Don't fall over if we pipe the output to head except IOError: pass
StarcoderdataPython
3253754
import b class C(object): def foo(self): b = B()
StarcoderdataPython
1789082
<gh_stars>0 # -*- coding: utf-8 -*- """ Created on Sat May 25 14:23:16 2019 @author: Sikander """ import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from dateutil.relativedelta import relativedelta from datetime import datetime import pickle from scipy.spatial.distance import jensenshannon from scipy.stats import entropy import networkx as nx from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator from sklearn.decomposition import PCA import pandas as pd import matplotlib as mpl from matplotlib import cm #PRELIMINARY created = {2005: 5916, 2006: 7934, 2007: 11402, 2008: 11176, 2009: 14611, 2010: 18027, 2011: 14872, 2012: 7382, 2013: 5519, 2014: 10264, 2015: 10311, 2016: 8254} dob = {1970: 57, 1971: 50, 1972: 42, 1973: 46, 1974: 47, 1975: 64, 1976: 49, 1977: 52, 1978: 54, 1979: 61, 1980: 64, 1981: 61, 1982: 77, 1983: 70, 1984: 71, 1985: 88, 1986: 83, 1987: 75, 1988: 79, 1989: 82, 1990: 98, 1991: 69, 1992: 79, 1993: 59, 1994: 62, 1995: 59, 1996: 42, 1997: 37, 1998: 31, 1999: 24, 2000: 15, 2001: 14, 2002: 4, 2003: 7, 2004: 2, 2005: 3, 2006: 2, 2007: 6, 2008: 3, 2009: 3, 2010: 2, 2011: 2, 2012: 3, 2013: 7} eptype = {'A Person Living with Epilepsy': 1693, 'A Parent of a Child with Epilepsy': 329, 'A Family Member or Caregiver': 143, 'Healthcare Professional': 83} control = {'Not controlled': 982, 'Controlled': 799} country = {'BD': 4, 'FR': 1, 'DK': 1, 'MZ': 1, 'HR': 1, 'TR': 5, 'BO': 1, 'JP': 1, 'BT': 1, 'CH': 3, 'DZ': 3, 'MK': 1, 'BR': 3, 'CO': 2, 'GR': 2, 'PR': 3, 'RU': 1, 'LB': 1, 'PT': 3, 'NO': 6, 'TT': 1, 'AF': 1, 'DE': 3, 'NG': 3, 'TN': 1, 'EE': 1, 'NZ': 14, 'LU': 1, 'LR': 1, 'LS': 1, 'TH': 2, 'PE': 1, 'NP': 5, 'PK': 10, 'AT': 1, 'RO': 2, 'EG': 3, 'PL': 1, 'EC': 1, 'BE': 1, 'GT': 1, 'AE': 4, 'VE': 2, 'CM': 1, 'CL': 1, 'IQ': 1, 'BH': 1, 'CA': 88, 'IR': 2, 'ZA': 16, 'VN': 6, 'AL': 1, 'GG': 1, 'CY': 2, 'AR': 4, 'AU': 32, 'IL': 3, 'IN': 53, 'BA': 1, 'NL': 3, 'ID': 2, 'IE': 5, 'PH': 15, 'ES': 4, 'GH': 1, 'MA': 2, 'KE': 2, 'SG': 2, 'ZM': 1, 'GE': 2, 'QA': 2, 'MT': 1, 'SI': 1, 'BW': 2, 'TZ': 2, 'IT': 1, 'HN': 1, 'UG': 1, 'SD': 2, 'UA': 4, 'MX': 8, 'SE': 3, 'GB': 124} #PRELIMINARY 2 us_states = {'WA': 45, 'DE': 13, 'DC': 9, 'WI': 33, 'WV': 13, 'HI': 5, 'FL': 110, 'WY': 3, 'NH': 11, 'NJ': 51, 'NM': 16, 'TX': 179, 'LA': 30, 'NC': 54, 'ND': 2, 'NE': 10, 'TN': 49, 'NY': 107, 'PA': 77, 'AK': 4, 'NV': 20, 'VA': 55, 'CO': 53, 'CA': 184, 'AL': 30, 'AR': 15, 'VT': 3, 'IL': 81, 'GA': 48, 'IN': 31, 'IA': 18, 'OK': 24, 'AZ': 43, 'ID': 14, 'CT': 22, 'ME': 11, 'MD': 44, 'MA': 53, 'OH': 65, 'UT': 21, 'MO': 37, 'MN': 26, 'MI': 50, 'RI': 10, 'KS': 16, 'MT': 12, 'MS': 14, 'PR': 4, 'SC': 41, 'KY': 20, 'OR': 29, 'SD': 8} us_st_pop = {'WA': 7.54, 'DE': 0.967, 'DC': 0.702, 'WI': 5.81, 'WV': 1.81, 'HI': 1.42, 'FL': 21.3, 'WY': 0.578, 'NH': 1.36, 'NJ': 8.91, 'NM': 2.1, 'TX': 27.8, 'LA': 4.66, 'NC': 10.4, 'ND': 0.76, 'NE': 3.03, 'TN': 6.77, 'NY': 19.5, 'PA': 12.8, 'AK': 0.737, 'NV': 3.03, 'VA': 8.52, 'CO': 5.7, 'CA': 39.6, 'AL': 4.89, 'AR': 3.01, 'VT': 0.626, 'IL': 12.7, 'GA': 10.5, 'IN': 6.69, 'IA': 3.12, 'OK': 3.94, 'AZ': 7.17, 'ID': 1.75, 'CT': 3.57, 'ME': 1.34, 'MD': 6.04, 'MA': 6.9, 'OH': 11.7, 'UT': 3.16, 'MO': 6.13, 'MN': 5.61, 'MI': 10.0, 'RI': 1.06, 'KS': 2.91, 'MT': 1.06, 'MS': 2.99, 'PR': 3.2, 'SC': 5.08, 'KY': 4.47, 'OR': 4.19, 'SD': 0.882} norm_state_demo = {'WA': 5.968169761273209,'DE': 13.44364012409514,'DC': 12.820512820512821, 'WI': 5.679862306368331, 'WV': 7.18232044198895, 'HI': 3.5211267605633805, 'FL': 5.164319248826291, 'WY': 5.190311418685122, 'NH': 8.088235294117647, 'NJ': 5.723905723905724, 'NM': 7.619047619047619, 'TX': 6.438848920863309, 'LA': 6.437768240343347, 'NC': 5.1923076923076925, 'ND': 2.6315789473684212, 'NE': 3.3003300330033007, 'TN': 7.237813884785821, 'NY': 5.487179487179487, 'PA': 6.015625, 'AK': 5.4274084124830395, 'NV': 6.6006600660066015, 'VA': 6.455399061032864, 'CO': 9.298245614035087, 'CA': 4.646464646464646, 'AL': 6.134969325153374, 'AR': 4.983388704318937, 'VT': 4.792332268370607, 'IL': 6.377952755905512, 'GA': 4.571428571428571, 'IN': 4.633781763826606, 'IA': 5.769230769230769, 'OK': 6.091370558375635, 'AZ': 5.99721059972106, 'ID': 8.0, 'CT': 6.162464985994398, 'ME': 8.208955223880597, 'MD': 7.28476821192053, 'MA': 7.6811594202898545, 'OH': 5.555555555555556, 'UT': 6.6455696202531644, 'MO': 6.035889070146819, 'MN': 4.634581105169341, 'MI': 5.0, 'RI': 9.433962264150942, 'KS': 5.498281786941581, 'MT': 11.320754716981131, 'MS': 4.682274247491638, 'PR': 1.25, 'SC': 8.070866141732283, 'KY': 4.47427293064877, 'OR': 6.921241050119331, 'SD': 9.070294784580499} uk_countries = {'England': 41, 'Northern Ireland': 2, 'Scotland': 11, 'Wales': 5} ca_provinces = {'ON': 32, 'AB': 9, 'NL': 1, 'MB': 5, 'NB': 2, 'BC': 16, 'SK': 5, 'QC': 3, 'NS': 2} in_states = {'Telangana': 5, 'Karnataka': 5, 'Haryana': 2, 'Andhra Pradesh': 2, 'Gujarat': 2, 'Kerala': 1, 'Uttrakhand': 1, 'Maharashtra': 7, 'Tamil Nadu': 5, 'Delhi': 7, 'Rajasthan': 2, 'West Bengal': 2, 'Jammu & Kashmir': 2, 'Uttar Pradesh': 2, 'Madhya Pradesh': 1, 'Chandigarh': 1, 'Assam': 1, 'Punjab': 1} au_states = {'VIC': 7, 'WA': 2, 'TAS': 1, 'ACT': 1, 'QLD': 7, 'SA': 2, 'NSW': 3} #LEVEL OF ENGAGEMENT num_posts = {1: 12314, 2: 4009, 3: 1963, 4: 1114, 5: 679, 6: 476, 7: 369, 8: 273, 9: 218, 10: 147, 11: 133, 12: 105, 13: 88, 14: 87, 15: 76, 16: 71, 17: 50, 18: 55, 19: 31, 20: 46, 21: 30, 22: 28, 23: 32, 24: 32, 25: 20, 26: 29, 27: 20, 28: 18, 29: 16, 30: 15, 31: 19, 32: 11, 33: 14, 34: 10, 35: 5, 36: 12, 37: 5,38: 10, 39: 7, 40: 8, 41: 11, 42: 7, 43: 5, 44: 5, 45: 4, 46: 5, 47: 4, 48: 10, 49: 7, 50: 5, 51: 5, 52: 4, 53: 3, 54: 7, 55: 1, 56: 2, 57: 3, 58: 9, 59: 4, 60: 2, 61: 3, 62: 3, 63: 1, 64: 4, 65: 4, 66: 3, 67: 2, 68: 1, 69: 4, 70: 5, 71: 4, 72: 4, 73: 3, 74: 1, 75: 1, 76: 5, 77: 1, 78: 1, 79: 1, 80: 2, 81: 4, 82: 1, 83: 1, 84: 2, 85: 5, 86: 3, 87: 1, 88: 1, 89: 1, 90: 2, 93: 1, 94: 2, 95: 2, 96: 1, 97: 2, 99: 2, 100: 1, 101: 1, 103: 2, 104: 1, 105: 2, 106: 1, 108: 3, 109: 1, 111: 3, 113: 3, 116: 1, 117: 1, 118: 1, 119: 1, 122: 3, 124: 1, 125: 1, 129: 1, 131: 1, 132: 1, 133: 2, 137: 3, 140: 3, 141: 1, 143: 1, 144: 3, 145: 2, 148: 1, 152: 1, 154: 1, 158: 1, 160: 1, 162: 1, 169: 1, 172: 1, 175: 1, 183: 1, 184: 1, 187: 1, 193: 1, 194: 1, 198: 1, 200: 1, 201: 1, 205: 1, 211: 1, 215: 1, 217: 1, 220: 1, 221: 1, 229: 1, 233: 1, 253: 1, 255: 1, 259: 1, 268: 1, 269: 1, 271: 1, 277: 2, 278: 1, 283: 1, 284: 1, 285: 1, 336: 1, 349: 1, 350: 1, 353: 1, 360: 1, 395: 1, 399: 1, 413: 1, 457: 1, 568: 1, 605: 1, 655: 1, 692: 1, 698: 1, 713: 1, 734: 1, 918: 1, 1022: 1, 1034: 1, 1091: 1, 1195: 1, 1528: 1, 1609: 1, 4284: 1} num_chats = {1: 329, 2: 133, 3: 66, 4: 69, 5: 53, 6: 56, 7: 35, 8: 37, 9: 30, 10: 31, 11: 29, 12: 24, 13: 20, 14: 28, 15: 22, 16: 30, 17: 27, 18: 26, 19: 20, 20: 28, 21: 22, 22: 22, 23: 22, 24: 13, 25: 18, 26: 22, 27: 15, 28: 21, 29: 16, 30: 16, 31: 10, 32: 12, 33: 15, 34: 12, 35: 15, 36: 12, 37: 12, 38: 11, 39: 12, 40: 11, 41: 6, 42: 8, 43: 10, 44: 7, 45: 11, 46: 5, 47: 6, 48: 6, 49: 8, 50: 7, 51: 8, 52: 6, 53: 2, 54: 4, 55: 4, 56: 4, 57: 3, 58: 6, 59: 4, 60: 4, 61: 7, 62: 2, 63: 6, 64: 4, 65: 9, 66: 4, 67: 4, 68: 4, 69: 1, 70: 5, 71: 2, 72: 6, 73: 4, 74: 1, 75: 6, 76: 3} #MEMBER TYPE ANALYSIS created_PLE = {2016: 239, 2005: 7, 2006: 4, 2007: 19, 2008: 23, 2009: 31, 2010: 42, 2011: 51, 2012: 48, 2013: 59, 2014: 485, 2015: 685} created_PCE = {2016: 43, 2009: 4, 2010: 3, 2011: 9, 2012: 2, 2013: 10, 2014: 102, 2015: 156} created_FMC = {2016: 20, 2008: 2, 2009: 1, 2010: 2, 2011: 2, 2012: 2, 2013: 1, 2014: 42, 2015: 71} created_HP = {2016: 14, 2008: 1, 2009: 4, 2011: 1, 2012: 1, 2013: 3, 2014: 19, 2015: 40} dob_PLE = {1970: 35, 1971: 34, 1972: 27, 1973: 27, 1974: 32, 1975: 44, 1976: 33, 1977: 24, 1978: 32, 1979: 36, 1980: 36, 1981: 38, 1982: 51, 1983: 52, 1984: 37, 1985: 56, 1986: 63, 1987: 46, 1988: 57, 1989: 50, 1990: 55, 1991: 47, 1992: 58, 1993: 47, 1994: 44, 1995: 41, 1996: 29, 1997: 28, 1998: 23, 1999: 20, 2000: 5, 2001: 10, 2002: 2, 2006: 2, 2007: 2, 2009: 1, 2012: 1, 2014: 41, 2015: 44, 2016: 15} dob_PCE = {1970: 11, 1971: 4, 1972: 8, 1973: 10, 1974: 7, 1975: 12, 1976: 8, 1977: 15, 1978: 12, 1979: 11, 1980: 9, 1981: 6, 1982: 12, 1983: 7, 1984: 8, 1985: 9, 1986: 5, 1987: 9, 1988: 5, 1989: 7, 1990: 6, 1991: 5, 1992: 3, 1993: 2, 1994: 1, 1995: 4, 1996: 1, 1999: 1, 2001: 1, 2002: 1, 2003: 5, 2004: 1, 2005: 3, 2007: 2, 2008: 3, 2009: 1, 2010: 2, 2011: 2, 2012: 2, 2013: 2, 2014: 16, 2015: 21, 2016: 7} dob_FMC = {1970: 3, 1971: 3, 1972: 1, 1973: 2, 1974: 2, 1975: 1, 1976: 1, 1977: 3, 1978: 1, 1979: 5, 1981: 1, 1982: 2, 1983: 3, 1985: 4, 1986: 2, 1987: 2, 1988: 4, 1989: 5, 1990: 8, 1991: 5, 1992: 4, 1993: 2, 1994: 6, 1996: 1, 1999: 1, 2000: 1, 2003: 1, 2004: 1, 2013: 1, 2014: 7, 2015: 10, 2016: 1} dob_HP = {1970: 3, 1971: 3, 1972: 1, 1973: 2, 1974: 2, 1975: 1, 1976: 1, 1977: 3, 1978: 1, 1979: 5, 1981: 1, 1982: 2, 1983: 3, 1985: 4, 1986: 2, 1987: 2, 1988: 4, 1989: 5, 1990: 8, 1991: 5, 1992: 4, 1993: 2, 1994: 6, 1996: 1, 1999: 1, 2000: 1, 2003: 1, 2004: 1, 2013: 1, 2014: 7, 2015: 10, 2016: 1} #TIMELINES chats_tl_top = np.delete(np.load("chats_tl_top.npy"), -1, 1) chats_tl_all = np.load("chats_tl_all.npy") chats_tl_wkly = np.load("chats_tl_wkly.npy") forums_tl_top = np.delete(np.load("forums_tl_top.npy"), -1, 1) forums_tl_all = np.load("forums_tl_all.npy") forums_tl_wkly = np.load("forums_tl_wkly.npy") chats_range = ['7-2014','8-2014','9-2014','10-2014','11-2014','12-2014','1-2015','2-2015','3-2015'] forums_range = ['2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015', '2016'] forums_ticks = [2, 14, 26, 38, 50, 62, 74, 86, 98, 110, 122, 134] #TOP USERS {uid: #posts/chats} usrs_chats = {124741: 3159,142931: 3188,206786: 3234, 91813: 3614, 133186: 3632, 102710: 3699, 74879: 3753, 226796: 3846, 123406: 3906, 103467: 4204, 93147: 4258, 168131: 4631, 117586: 4719, 153391: 5356, 203441: 5358, 123996: 6112, 87564: 7539, 95416: 7711, 44294: 10456, 98914: 11613, 188006: 14238, 90109: 17011, 94861: 18854, 23487: 20288, 214556: 22108, 40886: 45498} usrs_forums = {13600: 336,2495: 349,12416: 350,39104: 353, 22834: 360, 15797: 395, 70585: 399, 16756: 413, 26464: 457, 33641: 568, 3421: 605, 1837: 655, 42622: 692, 43851: 698, 10112: 713, 27976: 734, 53211: 918, 13993: 1022, 2731: 1034, 1998: 1091, 40321: 1195, 51501: 1528, 101498: 1609, 0: 4284} #FORUM topics forum_topics = {u'Fundraising and Awareness': 118, u'Products, Resources, Helpful Links': 588, u'Women With Epilepsy': 6309, u'Teens Speak Up! ': 3, u'Insurance Issues': 425, u'Medication Issues': 17723, u'Epilepsy: Insights & Strategies': 178, u'Corner Booth': 3504, u'Living With Epilepsy - Adults': 34304, u'Men With Epilepsy': 947, u'Surgery and Devices': 4124, u'Lennox Gastaut Syndrome': 8, u'Veterans with seizures': 115, u'Family & Friends': 4730, u'Share Your #DareTo Go The Distance Story': 31, u'Parents & Caregivers': 7025, u'Epilepsy.com Help': 1755, u'Athletes vs Epilepsy Goal Posts': 1, u'Epilepsy and College ': 90, u'New to Epilepsy.com': 14876, u'Living With Epilepsy - Youth': 3843, u'Creative Corner': 251, u'Diagnostic Dilemmas and Testing': 5190, u'Complementary Therapies': 1674, u'Teen Zone': 2113, u'My Epilepsy Diary': 674, u'In Memoriam': 7, u'Advocate for Epilepsy': 465, u'Infantile Spasms & Tuberous Sclerosis': 4} #Tagging results topics_dct = {'Fundraising and Awareness': 2003194, 'Products, Resources, Helpful Links': 2003130, 'Women With Epilepsy': 2003119, 'Teens Speak Up!': 2010661, 'Insurance Issues': 2003133, 'Medication Issues': 2003121, 'Insights & Strategies': 2003197, 'Share Your #DareTo Go The Distance Story': 2036596, 'Living With Epilepsy - Adults': 2003117, 'Men With Epilepsy': 2003129, 'Surgery and Devices': 2003122, 'Lennox Gastaut Syndrome': 2008441, 'Veterans with seizures': 2003180, 'Family & Friends': 2003118, 'Corner Booth': 2003123, 'Parents & Caregivers': 2003131, 'Epilepsy.com Help': 2003127, 'Athletes vs Epilepsy Goal Posts': 2044536, 'Epilepsy and College': 2003304, 'New to Epilepsy.com': 2003125, 'Living With Epilepsy - Youth': 2003128, 'Creative Corner': 2003134, 'Diagnostic Dilemmas and Testing': 2003126, 'Complementary Therapies': 2003124, 'Teen Zone': 2003120, 'My Epilepsy Diary': 2003228, 'In Memoriam': 2014491, 'Advocate for Epilepsy': 2003132, 'Infantile Spasms & Tuberous Sclerosis': 2008446} #{'Topic name': (Mathced posts, Total Posts)} topics_match = {'Fundraising and Awareness': (77, 118), 'Products, Resources, Helpful Links': (416, 588), 'Women With Epilepsy': (5664, 6309), 'Insurance Issues': (273, 425), 'Medication Issues': (15831, 17723), 'Share Your #DareTo Go The Distance Story': (24, 31), 'Living With Epilepsy - Adults': (28293, 34304), 'Men With Epilepsy': (796, 947), 'Surgery and Devices': (3671, 4124), 'Lennox Gastaut Syndrome': (4, 8), 'Veterans with seizures': (94, 115), 'Teens Speak Up!': (2, 3), 'Family & Friends': (3912, 4730), 'Epilepsy and College': (64, 90), 'Insights & Strategies': (145, 178), 'Corner Booth': (1667, 3504), 'Parents & Caregivers': (6173, 7025), 'Epilepsy.com Help': (1049, 1755), 'Athletes vs Epilepsy Goal Posts': (1, 1), 'New to Epilepsy.com': (12978, 14876), 'Living With Epilepsy - Youth': (3345, 3843), 'Creative Corner': (142, 251), 'Diagnostic Dilemmas and Testing': (4498, 5190), 'Complementary Therapies': (1421, 1674), 'Teen Zone': (1674, 2113), 'My Epilepsy Diary': (525, 674), 'In Memoriam': (7, 7), 'Advocate for Epilepsy': (350, 465), 'Infantile Spasms & Tuberous Sclerosis': (4, 4)} #TAGGING ANALYSIS matchesperchat = pickle.load(open('tag_analysis/matchesperpost_c.pkl', 'rb')) matchesperpost = pickle.load(open('tag_analysis/matchesperpost_p.pkl', 'rb')) matchesperuser_c = pickle.load(open('tag_analysis/matchesperuser_c.pkl', 'rb')) matchesperuser_p = pickle.load(open('tag_analysis/matchesperuser_p.pkl', 'rb')) matchpostperuse_c = pickle.load(open('tag_analysis/matchpostsperuser_c.pkl', 'rb')) matchpostperuse_p = pickle.load(open('tag_analysis/matchpostsperuser_p.pkl', 'rb')) parents_c = pickle.load(open('tag_analysis/parents_c.pkl', 'rb')) parents_p = pickle.load(open('tag_analysis/parents_p.pkl', 'rb')) types_c = pickle.load(open('tag_analysis/types_c.pkl', 'rb')) types_p = pickle.load(open('tag_analysis/types_p.pkl', 'rb')) #COMENTIONS double_menchies = pickle.load(open('double_mentions.pkl', 'rb')) #TF_IDF topic_number_dct = pickle.load(open('TF-IDF/topic_number_dct.pkl', 'rb')) def barchart(dct, title, yscale, xtrot=None): plt.figure() plt.bar(dct.keys(), dct.values(), align='center', orientation='h') if xtrot: plt.xticks(rotation='vertical') plt.ylabel("Count", fontsize=18) plt.yscale(yscale) plt.title(title, fontsize=24) #plt.gcf().subplots_adjust(bottom=0.25) #May not need plt.show() def horiz_bar(dct, title, xlabel, ylabel): y_pos = np.arange(len(dct)) plt.figure() vals = [v for v in dct.values()] keys = [k for k in dct.keys()] plt.barh(y_pos, vals, align='center') plt.yticks(y_pos, keys) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.show() def histo(dct, bins, title, yscale): plt.figure() dat = [] for k in dct: dat += dct[k]*[k] plt.hist(dat, bins=bins) plt.yscale(yscale) plt.title(title, fontsize=24) plt.ylabel("Count", fontsize=18) plt.show() def samplesize(dct): size = 0 for k in dct: size += dct[k] return size def tally(dct, key): if key in dct: dct[key] += 1 else: dct[key] = 1 def sortkeys(dct, order=False): nd = dict() for key in sorted(dct.keys(), reverse=order): nd[key] = dct[key] return nd def sortvals(dct, order=False): nd = dict() for k in sorted(dct, key=dct.get, reverse=order): nd[k] = dct[k] return nd def topitems(dct, top): count = 0 nd = dict() for key in dct.keys(): count += 1 if count <= top: nd[key] = dct[key] return nd def monthsInRange(beg, end): result = [] beg = datetime.strptime(beg, '%Y-%m-%d %H:%M:%S') end = datetime.strptime(end, '%Y-%m-%d %H:%M:%S') while beg < end: result.append(str(beg.month) + '-' + str(beg.year)) beg += relativedelta(months=1) result.append(str(end.month) + '-' + str(end.year)) return result def visualizeTimeline(tl_arr, name, usrnum, clim, labels, ticks=None): plasma_cm = cm.get_cmap('plasma', 512) newcmp = ListedColormap(plasma_cm(np.linspace(0.25, 1, 1000))) plt.matshow(tl_arr, cmap=newcmp, aspect="auto") plt.clim(0, clim) plt.colorbar().set_label(label=name + ' per month', size=18) plt.title("Visualization of Top " + usrnum + " Timelines", fontsize=24) if ticks: plt.xticks(ticks, labels) else: plt.xticks(range(len(labels)), labels) plt.xlabel('Month', fontsize=16) plt.ylabel('Users', fontsize=16) plt.show() def tot_usage(tl_arr, name, labels=None, ticks=None): #total month-by-month activity usg = np.sum(tl_arr, axis=0) plt.figure() plt.plot([i for i in range(len(usg))], usg) # if ticks: # plt.xticks(ticks, labels) # else: # plt.xticks(range(len(labels)), labels) plt.title("Total usage over time - " + name) plt.xlabel('Month', fontsize=16) plt.ylabel('Number of ' + name, fontsize=16) plt.show() def indiv_usg(tl_arr, name): #total and consecutive month-by-month activity for each user total = dict() consecutive = dict() for user in tl_arr: tot_eng = 0 cons_eng = [] counter = 0 for mth in user: if mth == 0: cons_eng.append(counter) counter = 0 else: counter += 1 tot_eng += 1 tally(total, tot_eng) cons = 0 if len(cons_eng) == 0: cons = tot_eng else: cons = max(cons_eng) tally(consecutive, cons) histo(total, 105, name + " - Total Months of Engagement", 'log') plt.ylabel("Number of users") plt.xlabel("Total months of engagement per user", fontsize=18) histo(consecutive, 50, name + " - Consecutive Months of Engagement", 'log') plt.ylabel("Number of users") plt.xlabel("Consecutive months of engagement per user", fontsize=18) def compareTermRank(t1, t2): lst1 = [] lst2 = [] for k in t1: if k in t2: lst1.append(t1[k]) lst2.append(t2[k]) else: lst1.append(t1[k]) lst2.append(0) for k in t2: if k not in t1: lst1.append(0) lst2.append(t2[k]) else: continue js = jensenshannon(lst1, lst2) kl = entropy(lst1, lst2) print("Jensen-Shannon divergence: " + str(js)) print("Kullback-Leibler divergence: " + str(kl))
StarcoderdataPython
3319676
<gh_stars>0 """Create Flask application object. This module creates the Flask appliaction object so that each module can import it safely and the __name__ variable will always resolve to the correct package. """ from flask import Flask from flask_cors import CORS, cross_origin APP = Flask(__name__) CORS(APP) APP.config.update( REMOTE_HOSTS=['192.168.0.11', '192.168.0.12', '192.168.0.13'], REMOTE_HOST_USERNAME='pi', REMOTE_IMAGE_DIRECTORY='/home/pi/elephant_vending_machine/images' ) # Circular imports are bad, but views are not used here, only imported, so it's OK # pylint: disable=wrong-import-position import elephant_vending_machine.views
StarcoderdataPython
3289351
from .fplEntity import FplEntity class FplDailyUsageSensor(FplEntity): def __init__(self, coordinator, config, account): super().__init__(coordinator, config, account, "Daily Usage") @property def state(self): data = self.getData("daily_usage") try: self._state = data[-1]["cost"] except: pass return self._state def defineAttributes(self): """Return the state attributes.""" data = self.getData("daily_usage") attributes = {} attributes["friendly_name"] = "Daily Usage" attributes["device_class"] = "monetary" attributes["state_class"] = "total_increasing" attributes["unit_of_measurement"] = "$" if data is not None: if ( (len(data) > 0) and (data[-1] is not None) and (data[-1]["readTime"] is not None) ): attributes["date"] = data[-1]["readTime"] if ( (len(data) > 1) and (data[-2] is not None) and (data[-2]["readTime"] is not None) ): attributes["last_reset"] = data[-2]["readTime"] return attributes @property def icon(self): return "mdi:currency-usd" class FplDailyUsageKWHSensor(FplEntity): def __init__(self, coordinator, config, account): super().__init__(coordinator, config, account, "Daily Usage KWH") @property def state(self): data = self.getData("daily_usage") try: self._state = data[-1]["usage"] except: pass return self._state def defineAttributes(self): """Return the state attributes.""" data = self.getData("daily_usage") attributes = {} attributes["friendly_name"] = "Daily Usage" attributes["device_class"] = "energy" attributes["state_class"] = "total_increasing" attributes["unit_of_measurement"] = "kWh" if data is not None: if ( (len(data) > 0) and (data[-1] is not None) and (data[-1]["readTime"] is not None) ): attributes["date"] = data[-1]["readTime"] if ( (len(data) > 1) and (data[-2] is not None) and (data[-2]["readTime"] is not None) ): attributes["last_reset"] = data[-2]["readTime"] return attributes @property def icon(self): return "mdi:flash" class FplDailyReceivedKWHSensor(FplEntity): def __init__(self, coordinator, config, account): super().__init__(coordinator, config, account, "Daily Received KWH") @property def state(self): data = self.getData("daily_usage") try: self._state = data[-1]["netReceivedKwh"] except: pass return self._state def defineAttributes(self): """Return the state attributes.""" data = self.getData("daily_usage") attributes = {} attributes["friendly_name"] = "Daily Return to Grid" attributes["device_class"] = "energy" attributes["state_class"] = "total_increasing" attributes["unit_of_measurement"] = "kWh" if data is not None: if ( (len(data) > 0) and (data[-1] is not None) and (data[-1]["readTime"] is not None) ): attributes["date"] = data[-1]["readTime"] if ( (len(data) > 1) and (data[-2] is not None) and (data[-2]["readTime"] is not None) ): attributes["last_reset"] = data[-2]["readTime"] return attributes @property def icon(self): return "mdi:flash" class FplDailyDeliveredKWHSensor(FplEntity): def __init__(self, coordinator, config, account): super().__init__(coordinator, config, account, "Daily Delivered KWH") @property def state(self): data = self.getData("daily_usage") try: self._state = data[-1]["netDeliveredKwh"] except: pass return self._state def defineAttributes(self): """Return the state attributes.""" data = self.getData("daily_usage") attributes = {} attributes["friendly_name"] = "Daily Consumption" attributes["device_class"] = "energy" attributes["state_class"] = "total_increasing" attributes["unit_of_measurement"] = "kWh" if data is not None: if ( (len(data) > 0) and (data[-1] is not None) and (data[-1]["readTime"] is not None) ): attributes["date"] = data[-1]["readTime"] if ( (len(data) > 1) and (data[-2] is not None) and (data[-2]["readTime"] is not None) ): attributes["last_reset"] = data[-2]["readTime"] return attributes @property def icon(self): return "mdi:flash"
StarcoderdataPython
1678476
<filename>terrascript/chef/r.py # terrascript/chef/r.py import terrascript class chef_acl(terrascript.Resource): pass class chef_client(terrascript.Resource): pass class chef_cookbook(terrascript.Resource): pass class chef_data_bag(terrascript.Resource): pass class chef_data_bag_item(terrascript.Resource): pass class chef_environment(terrascript.Resource): pass class chef_node(terrascript.Resource): pass class chef_role(terrascript.Resource): pass
StarcoderdataPython
1745839
<reponame>jhanley634/changepoint #! /usr/bin/env python # Copyright 2021 <NAME>. MIT licensed. from numpy.polynomial import Polynomial from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error from sklearn.preprocessing import PolynomialFeatures import matplotlib.pyplot as plt import numpy as np import pandas as pd def arr(a): """Input should be a 1-dimensional vector.""" return np.array(a).reshape(-1, 1) # This is a 2-D array, with single column. def pnomial(x, a=0, b=3, c=4, d=5): return a * x**3 + b * x**2 + c * x + d def get_curve(lo=0, hi=100, n_samples=1000, sigma=2e3): df = pd.DataFrame(dict(x=np.linspace(lo, hi, n_samples))) df['y'] = df.x.apply(pnomial) + sigma * np.random.standard_normal(n_samples) return df def main(): # training (fitting) df = get_curve() np_model = Polynomial.fit(df.x, df.y, 2) # np stmt 1 print(type(np_model), np_model) poly_features = PolynomialFeatures(degree=2, include_bias=False) x_poly = poly_features.fit_transform(arr(df.x)) lin_reg = LinearRegression() lin_reg.fit(x_poly, df.y) print(lin_reg.intercept_, lin_reg.coef_) # inference df = get_curve(-300, 500) np_pred = list(map(np_model, df.x)) # np stmt 2 x = arr(df.x) x = poly_features.transform(x) pred = lin_reg.predict(x) mae = mean_absolute_error(arr(df.y), pred) print("MAE:", mae) print(type(pred)) df['pred'] = np.array(pred) df['delta'] = df.y - df.pred print(df) fig, ax = plt.subplots() ax.plot(df.x, df.y, label='signal') ax.plot(df.x, pred, label='predicted') # ax.plot(df.x, np_pred, label='predicted by NP') # overwritten by pred pixels diff = max(map(abs, np_pred - pred)) assert diff < 1e-6, diff ax.legend(loc='upper left') plt.show() if __name__ == '__main__': main()
StarcoderdataPython
3314037
""" Definition of TreeNode: class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None """ class Solution: """ @param: A: an integer array @return: A tree node """ def sortedArrayToBST(self, A): return self.buildTree(A,0,len(A)-1) def buildTree(self,A,start,end): if(start>end): return None mid = (start+end) >> 1 node = TreeNode(A[mid]) node.left = self.buildTree(A,start,mid-1) node.right = self.buildTree(A,mid+1,end) return node
StarcoderdataPython
3274505
<filename>extraction.py<gh_stars>0 from flask_wtf import FlaskForm from wtforms import SubmitField from flask import make_response import mysql.connector import pandas as pd import time from pprint import pprint class DownloadCSVData: def __init__(self): try: mydb = mysql.connector.connect(host="host",user="user", passwd="password", database="db") mycursor = mydb.cursor() sql = "SELECT * FROM goxipdb.members" mycursor.execute(sql) self.data = pd.DataFrame(mycursor.fetchall()) self.columns = mycursor.column_names except mysql.connector.Error as err: print("Something went wrong: {}".format(err)) finally: mycursor.close() mydb.close() def __call__(self): df = self.data df.columns = self.columns #pprint(df) file_name = time.strftime('%Y%m%d', time.localtime(time.time())) + '.csv' response = make_response(df.to_csv(index = False)) response.headers["Content-Disposition"] = "attachment; filename=%s" %file_name response.headers["Content-type"] = "text/csv" return response class Submit(FlaskForm): submit = SubmitField('')
StarcoderdataPython
40489
from unittest import TestCase from src.stack import StackWithMaxValue class TestStackWithMaxValue(TestCase): def test_push(self): stack = StackWithMaxValue() stack.push(1) stack.push(2) stack.push(3) self.assertEqual([1, 2, 3], stack.as_list()) def test_pop(self): stack = StackWithMaxValue() stack.push(1) self.assertEqual(1, stack.pop()) with self.assertRaises(IndexError): stack.pop() self.assertEqual([], stack.as_list()) def test_peek(self): stack = StackWithMaxValue() stack.push(1) self.assertEqual(1, stack.peek()) self.assertEqual([1], stack.as_list()) stack.pop() with self.assertRaises(IndexError): stack.peek() def test_is_empty(self): stack = StackWithMaxValue() self.assertTrue(stack.is_empty()) stack.push(1) self.assertFalse(stack.is_empty()) def test_maximum(self): stack = StackWithMaxValue() stack.push(1) stack.push(2) self.assertEqual(2, stack.maximum()) stack.pop() self.assertEqual(1, stack.maximum())
StarcoderdataPython
4832375
<reponame>canance/signpi-server<filename>frontend/urls.py # Author: <NAME> <<EMAIL>> # Revision: 6 February 2016 # # Copyright 2016 Coastal Carolina University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^cast/', views.cast, name='cast'), url(r'^change/', views.change, name='change'), url(r'^create_device/', views.create_device, name="create_device"), url(r'^create_device_group', views.create_device_group, name='create_device_group'), url(r'^devices/', views.devices, name='devices'), url(r'^device_groups/', views.device_groups, name='device_groups'), url(r'^edit_device/(?P<dev>\d+)/$', views.edit_device, name='edit_device'), url(r'^slideshows/', views.slideshows, name="slideshows"), url(r'^slideshow/(?P<name>.*)/$', views.get_slideshow, name="slideshow"), url(r'^slideshow_json/(?P<name>.*)/$', views.get_slideshow_json, name="slideshow_json"), url(r'^streams/', views.streams, name="streams"), url(r'^create_slideshow/', views.create_slideshow, name="create_slideshow"), url(r'^create_stream/', views.create_stream, name="create_stream"), url(r'^delete_slideshow/(?P<name>.*)/$', views.delete_slideshow, name="delete_slideshow"), url(r'^edit_slideshow/(?P<name>.*)/$', views.edit_slideshow, name='edit_slideshow'), url(r'^delete_stream/(?P<name>.*)/$', views.delete_stream, name="delete_stream"), url(r'^edit_stream/(?P<name>.*)/$', views.edit_stream, name='edit_stream'), url(r'^edit_device_group/(?P<grp>\d+)/$', views.edit_device_group, name='edit_device_group'), ]
StarcoderdataPython
4814641
import torch.utils.data as data import numpy as np import os, sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) import data_transforms from .io import IO import json from .build import DATASETS # References: # - https://github.com/hzxie/GRNet/blob/master/utils/data_loaders.py @DATASETS.register_module() class KITTI(data.Dataset): def __init__(self, config): self.cloud_path = config.CLOUD_PATH self.bbox_path = config.BBOX_PATH self.category_file = config.CATEGORY_FILE_PATH self.npoints = config.N_POINTS self.subset = config.subset assert self.subset == 'test' self.dataset_categories = [] with open(self.category_file) as f: self.dataset_categories = json.loads(f.read()) self.transforms = data_transforms.Compose([{ 'callback': 'NormalizeObjectPose', 'parameters': { 'input_keys': { 'ptcloud': 'partial_cloud', 'bbox': 'bounding_box' } }, 'objects': ['partial_cloud', 'bounding_box'] }, { 'callback': 'RandomSamplePoints', 'parameters': { 'n_points': 2048 }, 'objects': ['partial_cloud'] }, { 'callback': 'ToTensor', 'objects': ['partial_cloud', 'bounding_box'] }]) self.file_list = self._get_file_list(self.subset) def _get_file_list(self, subset): """Prepare file list for the dataset""" file_list = [] for dc in self.dataset_categories: samples = dc[subset] for s in samples: file_list.append({ 'taxonomy_id': dc['taxonomy_id'], 'model_id': s, 'partial_cloud_path': self.cloud_path % s, 'bounding_box_path': self.bbox_path % s, }) return file_list def __len__(self): return len(self.file_list) def __getitem__(self, idx): sample = self.file_list[idx] data = {} for ri in ['partial_cloud', 'bounding_box']: file_path = sample['%s_path' % ri] data[ri] = IO.get(file_path).astype(np.float32) if self.transforms is not None: data = self.transforms(data) return sample['taxonomy_id'], sample['model_id'], data['partial_cloud']
StarcoderdataPython
160534
from django.shortcuts import render from django.http import HttpResponse from .forms import SubscribeForm from products.models import * # Create your views here. def landing_view(request): name = "landing_view" form = SubscribeForm(request.POST or None) if request.method == "POST" and form.is_valid(): data = form.changed_data new_form = form.save() return render(request, 'landing/landing.html', locals()) def home(request): products_images = ProductImage.objects.filter(is_active=True, is_main=True, product__is_active=True) products_images_popular = products_images.filter(product__category__id=5) products_images_men = products_images.filter(product__category__id=6) products_images_different = products_images.filter(product__category__id=7) return render(request, 'landing/home.html', locals())
StarcoderdataPython
1618798
<reponame>BupyeongHealer/SAMSUNG_SAIDALAB_RLCustom # Copyright (C) 2019 SAMSUNG SDS <<EMAIL>> # # This code is distribued under the terms and conditions from the MIT License (MIT). # # Authors : <NAME>, <NAME>, <NAME>, <NAME> from core.common.agent import Agent from core.common.util import * import math class PPOAgent(Agent): def __init__(self, state_size, action_size, continuous, actor, critic, discount_factor=0.99, loss_clipping=0.2, epochs=10, noise=1.0, entropy_loss=1e-3, buffer_size=256, batch_size=64, **kwargs): """ Constructor for PPO with clipped loss #Arguments state_size(integer): Number of state size action_size(integer): Number of action space continuous(bool): True if action space is continuous type actor(Keras Model): network for actor critic(Keras Model): network for critic discount_factor(float): discount reward factor loss_clipping(float): hyper parameter for loss clipping, in PPO paper, 0.2 is recommended. epochs(integer): hyper parameter noise(float): hyper parameter entropy_loss : hyper parameter buffer_size : hyper parameter batch_size : hyper parameter #Return None """ super(PPOAgent, self).__init__(**kwargs) self.action_size = action_size self.state_szie = state_size self.continuous = continuous self.critic = critic self.actor = actor self.episode = 0 self.discount_factor = discount_factor self.loss_clipping = loss_clipping # Only implemented clipping for the surrogate loss, paper said it was best self.epochs = epochs self.noise = noise # Exploration noise self.entropy_loss = entropy_loss self.buffer_size = buffer_size self.batch_size = batch_size self.dummy_action,self.dummy_value = np.zeros((1, action_size)), np.zeros((1, 1)) self.observation = None self.reward = [] self.reward_over_time = [] self.gradient_steps = 0 self.batch = [[], [], [], []] self.tmp_batch = [[], [], []] def reset_env(self): self.reward = [] def discounted_reward(self): for j in range(len(self.reward) - 2, -1, -1): self.reward[j] += self.reward[j + 1] * self.discount_factor def forward(self, observation): self.observation = observation self.tmp_batch[0].append(observation) if self.continuous: p = self.actor.predict([self.observation.reshape(1, self.state_szie), self.dummy_value, self.dummy_action]) action = action_matrix = p[0] + np.random.normal(loc=0, scale=self.noise, size=p[0].shape) self.tmp_batch[1].append(action_matrix) self.tmp_batch[2].append(p) return action, action_matrix, p else: state = np.reshape(self.observation, [1, self.state_szie]) p = self.actor.predict([state, self.dummy_value, self.dummy_action]) action = np.random.choice(self.action_size, p=np.nan_to_num(p[0])) action_matrix = np.zeros(self.action_size) action_matrix[action] = 1 self.tmp_batch[1].append(action_matrix) self.tmp_batch[2].append(p) return [action] def backward(self, reward, terminal): if self.train_mode is False: return self.reward.append(reward) if terminal: self.discounted_reward() for i in range(len(self.tmp_batch[0])): obs, action, pred = self.tmp_batch[0][i], self.tmp_batch[1][i], self.tmp_batch[2][i] r = self.reward[i] self.batch[0].append(obs) self.batch[1].append(action) self.batch[2].append(pred) self.batch[3].append(r) self.tmp_batch = [[], [], []] self.reset_env() if len(self.batch[0]) >= self.buffer_size: obs, action, pred, reward = np.array(self.batch[0]), np.array(self.batch[1]), np.array(self.batch[2]), np.reshape( np.array(self.batch[3]), (len(self.batch[3]), 1)) self.batch = [[], [], [], []] pred = np.reshape(pred, (pred.shape[0], pred.shape[2])) obs, action, pred, reward = obs[:self.buffer_size], action[:self.buffer_size], \ pred[:self.buffer_size], reward[:self.buffer_size] pred_values = self.critic.predict(obs) self.gradient_steps += 1 # Calculate Loss advantage = reward - pred_values old_prediction = pred advantage = (advantage - advantage.mean()) / advantage.std() actor_loss = self.actor.fit([obs, advantage, old_prediction], [action], batch_size=self.batch_size, shuffle=True, epochs=self.epochs, verbose=False) critic_loss = self.critic.fit([obs], [reward], batch_size=self.batch_size, shuffle=True, epochs=self.epochs, verbose=False) def compile(self, optimizer, metrics=[]): """ # Argument optimizer (object) : [0] = actor optimizer, [1] = critic optimizer metrics (Tensor) : [0] = Keras Tensor as an advantage , [1] = Keras Tensor as an old_prediction # Return None """ # Compile actor model advantage = metrics[0] old_prediction = metrics[1] if self.continuous: self.actor.compile(optimizer=optimizer[0], loss=[self.proximal_policy_optimization_loss_continuous( advantage=advantage, old_prediction=old_prediction)]) else: self.actor.compile(optimizer=optimizer[0], loss=[self.proximal_policy_optimization_loss( advantage=advantage, old_prediction=old_prediction)]) self.actor.summary() #Compile critic model self.critic.compile(optimizer=optimizer[1], loss='mse') self.compiled=True def proximal_policy_optimization_loss(self, advantage, old_prediction): def loss(y_true, y_pred): prob = y_true * y_pred old_prob = y_true * old_prediction r = prob / (old_prob + 1e-10) return -K.mean(K.minimum(r * advantage, K.clip(r, min_value=1 - self.loss_clipping, max_value=1 + self.loss_clipping) * advantage) + self.entropy_loss * ( prob * K.log(prob + 1e-10))) return loss def proximal_policy_optimization_loss_continuous(self, advantage, old_prediction): def loss(y_true, y_pred): var = K.square(self.noise) pi = math.pi denom = K.sqrt(2 * pi * var) prob_num = K.exp(- K.square(y_true - y_pred) / (2 * var)) old_prob_num = K.exp(- K.square(y_true - old_prediction) / (2 * var)) prob = prob_num / denom old_prob = old_prob_num / denom r = prob / (old_prob + 1e-10) return -K.mean(K.minimum(r * advantage, K.clip(r, min_value=1 - self.loss_clipping, max_value=1 + self.loss_clipping) * advantage)) return loss def load_weights(self, file_path, filename): self.actor.load_weights(file_path[0]) self.critic.load_weights(file_path[1]) def save_weights(self, filepath, filename=None, overwrite=False): algorithm_critic_name = '_critic_' algorithm_actor_name = '_actor_' critic_filepath = filepath + os.path.sep + filename + algorithm_critic_name + yyyymmdd24hhmmss() + '.' + 'h5f' actor_filepath = filepath + os.path.sep + filename + algorithm_actor_name + yyyymmdd24hhmmss() + '.' + 'h5f' self.critic.save_weights(critic_filepath, overwrite) print('{} file is saved as a critic model for evaluation'.format(critic_filepath)) self.actor.save_weights(actor_filepath, overwrite) print('{} file is saved as a actor model for evaluation'.format(actor_filepath)) return [actor_filepath, critic_filepath]
StarcoderdataPython
1799631
<gh_stars>0 # -*- coding: utf-8 -*- # # Copyright 2015-2020 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """RESTCall class to store the REST API call definitions """ from __future__ import absolute_import import pprint import json import bigml.api from bigml.constants import RENAMED_RESOURCES from bigml.resourcehandler import get_resource_type INDENT = 4 * " " def sort_lists(dict_structure): """Sorts the lists in a dict_structure """ if dict_structure is not None and isinstance(dict_structure, dict): for key, value in dict_structure.items(): if value is not None: if isinstance(value, list): dict_structure[key] = sorted(value) elif isinstance(value, dict): sort_lists(dict_structure[key]) return dict_structure def resource_alias(resource_id, alias): """Returns the alias if found """ if isinstance(resource_id, basestring): return alias.get(resource_id, '"%s"' % resource_id) elif isinstance(resource_id, list): alias_names = [] for resource_id_id in resource_id: alias_names.append( alias.get(resource_id_id, '"%s"' % resource_id_id)) return repr(alias_names) def to_whizzml(args): """Transforming dict syntax to whizzml argument syntax """ whizzml_args = [] if isinstance(args, list): return "[%s]" % " ".join([to_whizzml(arg) for arg in args]) if isinstance(args, dict): for arg, value in args.items(): whizzml_args.append("%s %s" % (json.dumps(arg), to_whizzml(value))) return "{%s}" % " ".join(whizzml_args) return json.dumps(args) class RESTCall(object): """Object to store the REST call definition """ def __init__(self, action, origins=None, args=None, resource_id=None, resource_type=None, suffix=None, name=None): """Constructor for the REST call definition resource_id: ID for the generated resource action: ["create" | "update" | "get"] origins: list of resouce IDs for the origin resources args: dict for the rest of arguments """ self.action = action self.origins = [resource_id] if origins is None and \ action == "update" else origins self.args = args or {} input_data = self.args.get("input_data") if input_data: del self.args["input_data"] self.input_data = input_data self.resource_id = resource_id self.resource_type = resource_type self.suffix = suffix if resource_id and not resource_type: self.resource_type = bigml.api.get_resource_type(self.resource_id) else: self.resource_type = resource_type self.name = name def reify(self, language=None, alias=None): """REST call command line language: computing language to write the output in alias: list of aliases for the related resources (e.g {"source/55c4de8d1fa89c2dc70012d0": "source1"} will cause the references to "source/55c4de8d1fa89c2dc70012d0" to be renamed as "source1") """ out = "" if not language: out += "\n\n" out += "resource ID: %s\n" % self.resource_id out += "action: %s\n" % self.action out += "origins: %s\n" % self.origins out += "args: %s\n" % self.args out += "input data: %s\n" % self.input_data return out else: try: reify_handler = getattr(self, "reify_%s" % language) except AttributeError: reify_handler = self.reify return reify_handler( alias=alias) def reify_python(self, alias=None): """REST call command line in python. See ``reify`` method. """ resource_type = get_resource_type(self.resource_id) resource_name = resource_alias(self.resource_id, alias) resource_method_suffix = RENAMED_RESOURCES.get( resource_type, resource_type) origin_names = [resource_alias(resource_id, alias) for resource_id in self.origins] arguments = ", ".join(origin_names) if self.suffix: arguments = "%s%s" % (arguments, self.suffix) if self.input_data: arguments = "%s, \\\n%s%s" % ( \ arguments, INDENT, pprint.pformat(self.input_data).replace("\n", "\n%s" % INDENT)) if self.args: sort_lists(self.args) arguments = "%s, \\\n%s%s" % (arguments, \ INDENT, \ pprint.pformat(self.args).replace( \ "\n", "\n%s" % INDENT)) out = "%s = api.%s_%s(%s)\napi.ok(%s)\n\n" % ( resource_name, self.action, resource_method_suffix, arguments, resource_name) return out def reify_whizzml(self, alias=None): """ Whizzml command for the REST call """ name = self.name if self.name else resource_alias( \ self.resource_id, alias) args = self.origin_attributes() arguments = to_whizzml(args) for resource_id, name in alias.items(): arguments = arguments.replace('"%s"' % resource_id, name) command = "(%s-and-wait-%s %s)" % ( \ self.action, self.resource_type, arguments) return command def origin_attributes(self): """ Add as arguments the origin attributes """ args = {} args.update(self.args) origin_types = [] if isinstance(self.origins, basestring): origin_types.append(bigml.api.get_resource_type(self.origins)) else: for origin in self.origins: origin_types.append(bigml.api.get_resource_type(origin)) if self.resource_type == "source": args.update({"remote": self.origins[0]}) return args if self.resource_type == "dataset" and origin_types[0] == "source": args.update({"source": self.origins[0]}) return args if self.resource_type == "dataset" and origin_types[0] == "cluster": args.update({"cluster": self.origins[0]}) return args if (self.resource_type == "dataset" and len(origin_types) < 2 and origin_types[0] == "dataset"): args.update({"origin_dataset": self.origins[0]}) return args if self.resource_type == "dataset": args.update({"origin_datasets": self.origins}) return args if self.resource_type == "model" and origin_types[0] == "cluster": args.update({"cluster": self.origins[0]}) return args if (self.resource_type == "model" and len(origin_types) < 2 and origin_types[0] == "dataset"): args.update({"dataset": self.origins[0]}) return args if self.resource_type == "model": args.update({"datasets": self.origins}) return args if (self.resource_type == "ensemble" and len(origin_types) < 2 and origin_types[0] == "dataset"): args.update({"dataset": self.origins[0]}) return args if self.resource_type == "ensemble": args.update({"datasets": self.origins}) return args if (self.resource_type == "cluster" and len(origin_types) < 2 and origin_types[0] == "dataset"): args.update({"dataset": self.origins[0]}) return args if self.resource_type == "cluster": args.update({"datasets": self.origins}) return args if (self.resource_type == "anomaly" and len(origin_types) < 2 and origin_types[0] == "dataset"): args.update({"dataset": self.origins[0]}) return args if self.resource_type == "anomaly": args.update({"datasets": self.origins}) return args if self.resource_type == "evaluation": args.update({origin_types[0]: self.origins[0], "dataset": self.origins[1]}) return args if (self.resource_type == "correlation" and len(origin_types) < 2 and origin_types[0] == "dataset"): args.update({"dataset": self.origins[0]}) return args if (self.resource_type == "statisticaltest" and len(origin_types) < 2 and origin_types[0] == "dataset"): args.update({"dataset": self.origins[0]}) return args if self.resource_type == "batchprediction": args.update({origin_types[0]: self.origins[0], "dataset": self.origins[1]}) return args if self.resource_type == "batchcentroid": args.update({origin_types[0]: self.origins[0], "dataset": self.origins[1]}) return args if self.resource_type == "batchanomalyscore": args.update({origin_types[0]: self.origins[0], "dataset": self.origins[1]}) return args if self.resource_type == "prediction": args.update({origin_types[0]: self.origins[0], "input_data": self.input_data}) return args if self.resource_type == "centroid": args.update({origin_types[0]: self.origins[0], "input_data": self.input_data}) return args if self.resource_type == "anomalyscore": args.update({origin_types[0]: self.origins[0], "input_data": self.input_data}) return args
StarcoderdataPython
4833156
<gh_stars>0 # -------------------------------------------------------------------------- # # MyCSPath # mycspath.py # author: <NAME> # # -------------------------------------------------------------------------- from flask import Flask, request, make_response, redirect, url_for from flask import render_template, session from database import Database, Profiles, Paths from CASClient import CASClient app = Flask(__name__, template_folder='.') # generated by os.urandom(24) SECRET_KEY = os.urandom(24) app.secret_key = SECRET_KEY # connect to database database = Database() profiles = Profiles() paths = Paths() #db_tags = Tags() #db_langs = Languages() # TESTING # database = Database() # results = session.query(database) # tags = [] # tags.append("design") # tags.append("systems") # filtered_results = database.filter_tags(tags) # results = [] # prerequisites = [] # for result in filtered_results: # results.append(result) # for result in filtered_results: # prerequisites.append(result.prerequisites) # unordered_path = database.make_bundles(results, prerequisites) # for bundle in unordered_path: # print(bundle.course) # print(bundle.prereqs) @app.route('/') @app.route('/index') def landing(): html = render_template('index.html') response = make_response(html) return response @app.route('/home', methods=['GET', 'POST']) def home(): casauth = CASClient() netid = casauth.authenticate().rstrip() #netid = "test" # get list of tags from db """ results = db_tags.setup() tags = [] for result in results: tags.append(result.tag) tags.remove('applications') tags.remove('systems') tags.remove('theory') tags.sort() # create columns num_tags = len(tags) col_len = int(num_tags/3) i = 0 tags1 = [] tags2 = [] tags3 = [] while i < num_tags: j = 0 while j < col_len: tags1.append(tags[i]) j+=1 i+=1 j = 0 while j < col_len: tags2.append(tags[i]) j+=1 i+=1 j = 0 while j < (num_tags - (2*col_len)): tags3.append(tags[i]) j+=1 i+=1 # get list of languages from db results = db_langs.setup() langs = [] for result in results: langs.append(result.lang) # create columns num_langs = len(langs) col_len = int(num_langs/2) i = 0 langs1 = [] langs2 = [] while i < num_langs: j = 0 while j < col_len: langs1.append(langs[i]) j+=1 i+=1 j = 0 while j < (num_langs - col_len): langs2.append(langs[i]) j+=1 i+=1 """ tags1 = ['3D modeling', 'GUI programming', 'NLP', 'NP-completeness', 'animation', 'architecture', 'art', 'artificial intelligence', 'assembly language', 'astronomy', 'astrophysics', 'bioengineering', 'biology', 'business', 'chemistry', 'compilers', 'computation', 'computer architecture', 'computer vision', 'cryptocurrencies and blockchains', 'cryptography', 'data science/analysis', 'data structures'] tags2 = ['database programming', 'deep learning', 'design', 'distributed systems', 'ecology', 'economics', 'electrical engineering', 'energy', 'environmental systems', 'finance', 'functional programming', 'general programming', 'geometry', 'graphics', 'healthcare', 'image processing', 'intellectual property', 'language', 'linear algebra', 'machine language', 'machine learning', 'mathematics', 'mechanical & aerospace engineering'] tags3 = ['music', 'nanofabrication', 'network programming', 'networking', 'neuroscience', 'neural networks', 'operating systems', 'optics', 'optimization', 'physics', 'politics', 'probability', 'processors', 'psychology', 'public policy', 'quantitative modeling', 'quantum computing', 'robotics', 'security', 'server design', 'startups', 'statistics', 'system design', 'translation', 'web programming'] langs1 = ['AJAX', 'AMPL', 'C', 'C++', 'ChucK', 'CSS', 'EES', 'Flask', 'Go', 'HTML', 'Java', 'JavaScript', 'Jinja2', 'Julia'] langs2 = ['Machine Language', 'Mathematica', 'MATLAB', 'Max/MSP', 'OCalm', 'OpenFst', 'PHP', 'Python', 'R', 'SQL', 'Stata', 'Verilog', 'WEKA', 'Wolfram Language'] html = render_template('home.html', netid=netid, tags1=tags1, tags2=tags2, tags3=tags3, langs1=langs1, langs2=langs2) response = make_response(html) return response @app.route('/courseinfo') def courseinfo(): casauth = CASClient() netid = casauth.authenticate().rstrip() results = database.setup() html = render_template('courseinfo.html', results=results) response = make_response(html) return response @app.route('/results', methods=['GET', 'POST']) def results(): casauth = CASClient() netid = casauth.authenticate().rstrip() if request.method == 'POST': langs = request.form.getlist('lang') tags = request.form.getlist('tag') if not (len(langs) or len(tags)): results = database.get_all() total = 0 msg = "Looks like you didn't select any filters, so here is our complete list of courses." else: results_tags = database.filter_tags(tags) results_langs = database.filter_langs(langs) results = database.merge_results(results_langs, results_tags) msg = "The following courses matched at least one of your selections!" html = render_template('results.html', results=results, msg=msg) response = make_response(html) return response @app.route('/path', methods=['GET', 'POST']) def path(): casauth = CASClient() netid = casauth.authenticate().rstrip() if request.method == 'POST': courses = request.form.getlist('courses') prereqs = request.form.getlist('prereqs') for course in courses: print(course) for pq in prereqs: print(pq) result_list = database.make_result_list(courses) for result in result_list: print(result.course) bundles = database.make_bundles(result_list, prereqs) for bundle in bundles: print(bundle.course) print(bundle.prereqs) new_bundles = database.remove_duplicate_prereqs(bundles) for bundle in new_bundles: print(bundle.course) print("------------") print(bundle.prereqs) print("\n") more_bundles = database.remove_duplicate_courses(new_bundles) for bundle in more_bundles: print(bundle.course) print("------------") print(bundle.prereqs) print("\n") html = render_template('path.html', bundles=bundles) response = make_response(html) return response @app.route('/about') def about(): casauth = CASClient() netid = casauth.authenticate().rstrip() html = render_template('about.html') response = make_response(html) return response @app.route('/tutorial') def tutorial(): casauth = CASClient() netid = casauth.authenticate().rstrip() html = render_template('tutorial.html') response = make_response(html) return response @app.route('/saved', methods=['GET', 'POST']) def saved(): casauth = CASClient() netid = casauth.authenticate().rstrip() #netid = 'test' # add new path to db if request.method == 'POST': path = request.form.getlist('dragged') title = request.form.get('title') print(title) for item in path: print(item) print("here") paths.add_to_dict(netid, title, path) # render saved paths on page result = paths.get_row(netid) current_dict = {} if result is not None: current_dict = result.paths for title, path in current_dict.items(): print(title + ":") print("------------") for course in path: print(course) html = render_template('saved.html', current_dict=current_dict) response = make_response(html) return response @app.route('/delete_path', methods=['GET', 'POST']) def delete_path(): casauth = CASClient() netid = casauth.authenticate().rstrip() #netid = 'test' if request.method == 'POST': # get title of path to remove title = request.form.get('title') print("title: " + title) # get row in db matching current netid row = paths.get_row(netid) current_dict = row.paths # remove paths.remove_row(row) print("row removed") # update removed = current_dict.pop(title, None) print(removed) paths.add_row(netid, current_dict) return redirect('/saved') @app.route('/profile') def profile(): casauth = CASClient() netid = casauth.authenticate().rstrip() #netid = "test" if not profiles.check_exists(netid): html = render_template('profile.html') response = make_response(html) return response else: profile = profiles.get_row(netid) html = render_template('profile_saved.html', profile=profile) response = make_response(html) return response @app.route('/profile_saved', methods=['GET', 'POST']) def profile_saved(): casauth = CASClient() netid = casauth.authenticate().rstrip() #netid = "test" if request.method == 'POST': btn_type = request.form.get('btn_type') if btn_type == 'Save': # get fields from edit form name = request.form.get('Name') print(name) class_yr = request.form.get('Class Year') degree = request.form.get('Degree') concentration = request.form.get('Concentration') goals = request.form.get('Goals') # remove existing row if profiles.check_exists(netid): profile = profiles.get_row(netid) profiles.remove_row(profile) # add updated row profiles.add_profile(netid, name, class_yr, degree, concentration, goals) # get new row profile = profiles.get_row(netid) html = render_template('profile_saved.html', profile=profile) response = make_response(html) return response @app.route('/edit_profile', methods=['GET', 'POST']) def edit_profile(): casauth = CASClient() netid = casauth.authenticate().rstrip() #netid = "test" if request.method == 'POST': profile = profiles.get_row(netid) html = render_template('edit_profile.html', profile=profile) response = make_response(html) return response # from https://stackabuse.com/deploying-a-flask-application-to-heroku/ if __name__ == '__main__': app.run()
StarcoderdataPython
1722213
"""Kick off for training A3C agent training""" import argparse import datetime from stable_baselines.common.policies import MlpPolicy, FeedForwardPolicy from stable_baselines.common.vec_env import DummyVecEnv, SubprocVecEnv from stable_baselines import PPO2 from loveletter.env import LoveLetterEnv from loveletter.arena import Arena from loveletter.agents.random import AgentRandom from loveletter.agents.tf_agent import TFAgent from loveletter.agents.agent import Agent from loveletter.trainers.a3c_model import ActorCritic from loveletter.trainers.a3c_train import train from loveletter.trainers.a3c_test import test parser = argparse.ArgumentParser(description='RL for Love Letter') parser.add_argument('--lr', type=float, default=0.0001, metavar='LR', help='learning rate (default: 0.0001)') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--num-processes', type=int, default=4, metavar='N', help='how many training processes to use (default: 4)') parser.add_argument('--num-steps', type=int, default=20, metavar='NS', help='number of forward steps for update (default: 20)') parser.add_argument('--total-steps', type=int, default=1e6, metavar='NS', help='number of total steps (default: 1M)') parser.add_argument('--save-name', metavar='FN', default='default_model', help='path/prefix for the filename to save shared model\'s parameters') parser.add_argument('--load-name', default=None, metavar='SN', help='path/prefix for the filename to load shared model\'s parameters') parser.add_argument('--log-dir', default="./tensorboard/", metavar='path', help='path to the tensorboard log directory') class CustomPolicy(FeedForwardPolicy): def __init__(self, *args, **kwargs): super(CustomPolicy, self).__init__(*args, **kwargs, net_arch=[512, dict(pi=[256, 128], vf=[256, 128])], feature_extraction="mlp") if __name__ == '__main__': args = parser.parse_args() if args.load_name: env = SubprocVecEnv([lambda: LoveLetterEnv(TFAgent(args.load_name, args.seed + i)) for i in range(args.num_processes)]) else: env = SubprocVecEnv([lambda: LoveLetterEnv(AgentRandom(args.seed + i)) for i in range(args.num_processes)]) model = PPO2(CustomPolicy, env, verbose=0, tensorboard_log=args.log_dir, learning_rate=args.lr, n_steps=args.num_steps, nminibatches=5) if args.load_name: model.load(args.load_name) model.learn(total_timesteps=int(args.total_steps), callback=None, log_interval=1000, tb_log_name='PPO2 %s' % datetime.datetime.now().strftime('%H-%M-%S')) model.save(args.save_name)
StarcoderdataPython
37182
<gh_stars>1-10 import math from pomagma.compiler.expressions import Expression_1 from pomagma.compiler.util import log_sum_exp, memoize_make, set_with def assert_in(element, set_): assert element in set_, (element, set_) def assert_not_in(element, set_): assert element not in set_, (element, set_) def assert_subset(subset, set_): assert subset <= set_, (subset, set_) OBJECT_COUNT = 1e4 # optimize for this many obs LOGIC_COST = OBJECT_COUNT / 64.0 # perform logic on 64-bit words LOG_OBJECT_COUNT = math.log(OBJECT_COUNT) UNKNOWN = Expression_1('UNKNOWN') def add_costs(costs): return (log_sum_exp(*(LOG_OBJECT_COUNT * c for c in costs)) / LOG_OBJECT_COUNT) class Plan(object): __slots__ = ['_args', '_cost', '_rank'] def __init__(self, *args): self._args = args self._cost = None self._rank = None @property def cost(self): if self._cost is None: self._cost = math.log(self.op_count()) / LOG_OBJECT_COUNT return self._cost @property def rank(self): if self._rank is None: s = repr(self) self._rank = self.cost, len(s), s return self._rank def __lt__(self, other): return self.rank < other.rank def permute_symbols(self, perm): return self.__class__.make(*( a.permute_symbols(perm) for a in self._args )) @memoize_make class Iter(Plan): __slots__ = ['_repr', 'var', 'body', 'tests', 'lets', 'stack'] def __init__(self, var, body): Plan.__init__(self, var, body) assert var.is_var(), var assert isinstance(body, Plan), body self._repr = None self.var = var self.body = body self.tests = [] self.lets = {} self.stack = set() self.optimize() def add_test(self, test): assert isinstance(test, Test), 'add_test arg is not a Test' self.tests.append(test.expr) self.stack.add(test) def add_let(self, let): assert isinstance(let, Let), 'add_let arg is not a Let' assert let.var not in self.lets, 'add_let var is not in Iter.lets' self.lets[let.var] = let.expr self.stack.add(let) def __repr__(self): if self._repr is None: # Optimized: # tests = ['if {}'.format(t) for t in self.tests] # lets = ['let {}'.format(l) for l in sorted(self.lets.iterkeys())] # self._repr = 'for {0}: {1}'.format( # ' '.join([str(self.var)] + tests + lets), # self.body) self._repr = 'for {}: {}'.format(self.var, self.body) return self._repr def validate(self, bound): assert_not_in(self.var, bound) bound = set_with(bound, self.var) for test in self.tests: assert_subset(test.vars, bound) for var, expr in self.lets.iteritems(): assert_subset(expr.vars, bound) assert_not_in(var, bound) self.body.validate(bound) def op_count(self, stack=None): logic_cost = LOGIC_COST * (len(self.tests) + len(self.lets)) object_count = OBJECT_COUNT for test_or_let in self.stack: object_count *= test_or_let.prob() let_cost = len(self.lets) body_cost = self.body.op_count(stack=self.stack) return logic_cost + object_count * (let_cost + body_cost) def optimize(self): node = self.body new_lets = set() while isinstance(node, Test) or isinstance(node, Let): if isinstance(node, Let): new_lets.add(node.var) expr = node.expr while expr.name == 'UNKNOWN': expr = expr.args[0] optimizable = ( self.var in expr.vars and expr.vars.isdisjoint(new_lets) and sum(1 for arg in expr.args if self.var == arg) == 1 and sum(1 for arg in expr.args if self.var in arg.vars) == 1 and (isinstance(node, Let) or expr.is_rel()) ) if optimizable: if isinstance(node, Test): self.add_test(node) else: self.add_let(node) node = node.body # TODO injective function inverse need not be iterated @memoize_make class IterInvInjective(Plan): __slots__ = ['fun', 'value', 'var', 'body'] def __init__(self, fun, body): Plan.__init__(self, fun, body) assert fun.arity == 'InjectiveFunction' self.fun = fun.name self.value = fun.var (self.var,) = fun.args self.body = body def __repr__(self): return 'for {0} {1}: {2}'.format(self.fun, self.var, self.body) def validate(self, bound): assert_in(self.value, bound) assert_not_in(self.var, bound) self.body.validate(set_with(bound, self.var)) def op_count(self, stack=None): return 4.0 + 0.5 * self.body.op_count() # amortized @memoize_make class IterInvBinary(Plan): __slots__ = ['fun', 'value', 'var1', 'var2', 'body'] def __init__(self, fun, body): Plan.__init__(self, fun, body) assert fun.arity in ['BinaryFunction', 'SymmetricFunction'] self.fun = fun.name self.value = fun.var self.var1, self.var2 = fun.args self.body = body def __repr__(self): return 'for {0} {1} {2}: {3}'.format( self.fun, self.var1, self.var2, self.body) def validate(self, bound): assert_in(self.value, bound) assert_not_in(self.var1, bound) assert_not_in(self.var2, bound) self.body.validate(set_with(bound, self.var1, self.var2)) def op_count(self, stack=None): return 4.0 + 0.25 * OBJECT_COUNT * self.body.op_count() # amortized @memoize_make class IterInvBinaryRange(Plan): __slots__ = ['fun', 'value', 'var1', 'var2', 'lhs_fixed', 'body'] def __init__(self, fun, fixed, body): Plan.__init__(self, fun, fixed, body) assert fun.arity in ['BinaryFunction', 'SymmetricFunction'] self.fun = fun.name self.value = fun.var self.var1, self.var2 = fun.args assert self.var1 != self.var2 assert self.var1 == fixed or self.var2 == fixed self.lhs_fixed = (fixed == self.var1) self.body = body def __repr__(self): if self.lhs_fixed: return 'for {0} ({1}) {2}: {3}'.format( self.fun, self.var1, self.var2, self.body) else: return 'for {0} {1} ({2}): {3}'.format( self.fun, self.var1, self.var2, self.body) def validate(self, bound): assert self.value in bound if self.lhs_fixed: assert_in(self.var1, bound) assert_not_in(self.var2, bound) self.body.validate(set_with(bound, self.var2)) else: assert_in(self.var2, bound) assert_not_in(self.var1, bound) self.body.validate(set_with(bound, self.var1)) def op_count(self, stack=None): return 4.0 + 0.5 * self.body.op_count() # amortized @memoize_make class Let(Plan): __slots__ = ['var', 'expr', 'body'] def __init__(self, expr, body): Plan.__init__(self, expr, body) assert isinstance(body, Plan) assert expr.is_fun() self.var = expr.var self.expr = expr self.body = body def __repr__(self): return 'let {0}: {1}'.format(self.var, self.body) def validate(self, bound): assert_subset(self.expr.vars, bound) assert_not_in(self.var, bound) self.body.validate(set_with(bound, self.var)) __probs = {'NullaryFunction': 0.9} def prob(self): return self.__probs.get(self.expr.arity, 0.1) def op_count(self, stack=None): if stack and self in stack: return self.body.op_count(stack=stack) else: return 1.0 + self.prob() * self.body.op_count(stack=stack) @memoize_make class Test(Plan): __slots__ = ['expr', 'body'] def __init__(self, expr, body): Plan.__init__(self, expr, body) assert not expr.is_var() assert isinstance(body, Plan) self.expr = expr self.body = body def __repr__(self): return 'if {0}: {1}'.format(self.expr, self.body) def validate(self, bound): assert_subset(self.expr.vars, bound) self.body.validate(bound) __probs = {'NLESS': 0.9} def prob(self): return self.__probs.get(self.expr.name, 0.1) def op_count(self, stack=None): if stack and self in stack: return self.body.op_count(stack=stack) else: return 1.0 + self.prob() * self.body.op_count(stack=stack) @memoize_make class Ensure(Plan): __slots__ = ['expr'] def __init__(self, expr): Plan.__init__(self, expr) assert expr.args, ('expr is not compound', expr) self.expr = expr def __repr__(self): return 'ensure {0}'.format(self.expr) def validate(self, bound): assert_subset(self.expr.vars, bound) def op_count(self, stack=None): fun_count = 0 if self.expr.name == 'EQUATION': for arg in self.expr.args: if arg.is_fun(): fun_count += 1 return [1.0, 1.0 + 0.5 * 1.0, 2.0 + 0.75 * 1.0][fun_count]
StarcoderdataPython
4815384
import psycopg2 from app import app from pgdatabase import PgDatabase @app.route('/') @app.route('/index') def index(): return "This is the Index Page" @app.route('/master') def mastercheck(): try: db = PgDatabase() my_list = db.query("SHOW transaction_read_only") my_string = ''.join(my_list) if my_string=='off': ret_string='MASTER' else: ret_string='READONLY' db.close() return ret_string except Exception as e: print e return [] @app.route('/slave') def slavecheck(): try: db = PgDatabase() my_list = db.query("SELECT pg_is_in_recovery()::text") my_string = ''.join(my_list) if my_string=='true': ret_string='SLAVE' else: ret_string='NOTSLAVE' db.close() return ret_string except Exception as e: print e return [] @app.route('/status') def statuscheck(): masterstat = mastercheck() slavestat = slavecheck() initalstat = 'UNKNOWN' if masterstat == 'MASTER' and slavestat == 'NOTSLAVE': return masterstat elif masterstat == 'READONLY' and slavestat == 'SLAVE': return slavestat else: return initialstat
StarcoderdataPython
1787778
<filename>thelma/tools/parsers/rackscanning.py """ This file is part of the TheLMA (THe Laboratory Management Application) project. See LICENSE.txt for licensing, CONTRIBUTORS.txt for contributor information. .. currentmodule:: thelma.entities.rack General ....... This parser deals with rack scanning output files. These file contain the tube barcodes for each position of a 96-well tube rack in TXT format. Composition of Source Files ........................... * The first line contains the marker \'Date & time of Trace = \' plus a time stamp in format %d %b %Y %I:%M:%S %p (for key see `Timestamp Parsing Key`_). *Example:* :: Date & time of Trace = 23 Aug 2012 01:42:01 PM * The second line contains the marker \'Rack Base Name:\' plus the 8-digit rack barcode of the scanned rack (always starting with \'0\', see also: :attr:`RACK_BARCODE_REGEXP`). *Example:* :: Rack Base Name: 02498606 * The following list the rack positions and the scanned barcodes. Each line contains one data pair, the values are separated by \';\'. The first element of the line is the rack position label (with a two-digit column number, see also :attr:`RACK_POSITION_REGEXP`). The second element is either the tube barcode or the marker \'No TrakMate\' if the position is empty. *Example:* :: A01; 1034998087 A02; No TrakMate Timestamp Parsing Key ..................... According to `http://docs.python.org/library/datetime.html` (23rd Aug 2012): %b - Locale's abbreviated month name. %s - Day of the month as a decimal number [1, 31]. %I - Hour (12-hour clock) as a decimal number [01,12]. %M - Minute as a decimal number [00,59]. %S - Second as a decimal number [00,61]. %p - Locale's equivalent of either AM or PM. %Y - Year with century as a decimal number. AAB """ from datetime import datetime from thelma.tools.parsers.base import TxtFileParser from thelma.utils import as_utc_time __docformat__ = "reStructuredText en" __all__ = ['RackScanningParser'] class RackScanningParser(TxtFileParser): """ Parses a rack scanning output file. """ NAME = 'Rack Scanning Output File Parser' #: Marks the time stamp line. TIMESTAMP_MARKER = 'Date & time of Trace =' #: Marks the rack barcode line. RACK_BARCODE_MARKER = 'Rack Base Name:' #: The format of the timestamp. TIMESTAMP_FORMAT = '%d %b %Y %I:%M:%S %p' #: Placeholder that is used if there is no tube at a position. NO_TUBE_PLACEHOLDER = 'No TrakMate' #: The line break character used. LINEBREAK_CHAR = '\r\n' #: The character used to separate the values of a barcode position line. SEPARATOR = ';' def __init__(self, stream, parent=None): TxtFileParser.__init__(self, stream, parent=parent) #: The timestamp parsed from the file. self.timestamp = None #: The barcode of the rack to parse. self.rack_barcode = None #: The tube barcode (or None) for each label found (labels are #: validated before storage). self.position_map = None def reset(self): """ Reset all parser values except for initialisation values. """ TxtFileParser.reset(self) self.timestamp = None self.rack_barcode = None self.position_map = dict() def run(self): """ Runs the parser. """ self.reset() self.add_info('Start parsing ...') self.has_run = True self._split_into_lines() if not self.has_errors(): self.__parse_timestamp() if not self.has_errors(): self.__parse_rack_barcode() if not self.has_errors(): self.__parse_position_data() if not self.has_errors(): self.add_info('Parsing completed.') def __parse_timestamp(self): """ Parses the timestamp. """ self.add_debug('Parse timestamp ...') for line in self._lines: if self.TIMESTAMP_MARKER in line: datestr = line.split(self.TIMESTAMP_MARKER)[1].strip() try: self.timestamp = \ as_utc_time(datetime.strptime(datestr, self.TIMESTAMP_FORMAT)) except ValueError as errmsg: self.add_error(errmsg) break if self.timestamp is None: msg = 'Unable do find time stamp!' self.add_error(msg) def __parse_rack_barcode(self): """ Parses the rack barcode. """ self.add_debug('Parse rack barcode ...') for line in self._lines: if self.RACK_BARCODE_MARKER in line: self.rack_barcode = line.split(self.RACK_BARCODE_MARKER)[1].\ strip() break if self.rack_barcode is None: msg = 'Unable to find rack barcode!' self.add_error(msg) def __parse_position_data(self): """ Parses the position data. """ self.add_debug('Parse position data ...') for i in range(len(self._lines)): if self.has_errors(): break line = self._lines[i] if len(line) < 1: continue if self.TIMESTAMP_MARKER in line: continue if self.RACK_BARCODE_MARKER in line: continue msg = 'Unexpected content in line %i: %s' % (i + 1, line) if not self.SEPARATOR in line: self.add_error(msg) tokens = line.split(self.SEPARATOR) if not len(tokens) == 2: self.add_error(msg) if self.has_errors(): continue pos_label = tokens[0].strip() if self.position_map.has_key(pos_label): msg = 'Duplicate position label "%s"' % (pos_label) self.add_error(msg) if self.has_errors(): continue tube_barcode = tokens[1].strip() if tube_barcode == self.NO_TUBE_PLACEHOLDER: tube_barcode = None self.position_map[pos_label] = tube_barcode
StarcoderdataPython
1751872
import pytest @pytest.mark.bare def test_import(): from pytsammalex import clld from pytsammalex import lexibank assert clld and lexibank
StarcoderdataPython
141062
def rpn_eval(tokens): def op(symbol, a, b): return { '+': lambda a, b: a + b, '-': lambda a, b: a - b, '*': lambda a, b: a * b, '/': lambda a, b: a / b }[symbol](a, b) stack = [] for token in tokens: if isinstance(token, float): stack.append(token) else: a = stack.pop() b = stack.pop() stack.append( op(token, a, b) ) return stack.pop() """ Reverse Polish Notation Four-function calculator with input given in Reverse Polish Notation (RPN). Input: A list of values and operators encoded as floats and strings Precondition: all( isinstance(token, float) or token in ('+', '-', '*', '/') for token in tokens ) Example: >>> rpn_eval([3.0, 5.0, '+', 2.0, '/']) 4.0 """
StarcoderdataPython
3065
from setuptools import setup setup( name="greek-utils", version="0.2", description="various utilities for processing Ancient Greek", license="MIT", url="http://github.com/jtauber/greek-utils", author="<NAME>", author_email="<EMAIL>", packages=["greekutils"], classifiers=[ "Development Status :: 3 - Alpha", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Topic :: Text Processing", "Topic :: Text Processing :: Linguistic", "Topic :: Utilities", ], )
StarcoderdataPython
1763450
<reponame>MayborodaPavel/testPlatform from django.contrib.auth.models import AbstractUser from django.db import models from django.urls import reverse_lazy class User(AbstractUser): username = models.CharField(max_length=150, blank=True, null=True) email = models.EmailField(unique=True, max_length=255) dob = models.DateField(blank=True, null=True) info = models.TextField(blank=True, null=True) avatar = models.ImageField(blank=True, null=True, upload_to='avatars') USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['username'] def __str__(self): return self.email def get_absolute_url(self): return reverse_lazy('accounts:profile')
StarcoderdataPython
3270311
<filename>src/kdmukai/specterext/bitcoinreserve/client.py import json import logging import requests from decimal import Decimal from flask import current_app as app from werkzeug.wrappers import auth from kdmukai.specterext.bitcoinreserve.service import BitcoinReserveService logger = logging.getLogger(__name__) class BitcoinReserveApiException(Exception): pass def authenticated_request( endpoint: str, method: str = "GET", json_payload: dict = {} ) -> dict: logger.debug(f"{method} endpoint: {endpoint}") api_token = BitcoinReserveService.get_api_credentials().get("api_token") # Must explicitly set User-Agent; Swan firewall blocks all requests with "python". auth_header = { "User-Agent": "Specter Desktop", "Authorization": "Token " + api_token, } url = url=app.config.get("BITCOIN_RESERVE_API_URL") + endpoint logger.debug(url) logger.debug(auth_header) try: response = requests.request( method=method, url=url, headers=auth_header, json=json_payload, ) if response.status_code != 200: raise BitcoinReserveApiException(f"{response.status_code}: {response.text}") print(json.dumps(response.json(), indent=4)) return response.json() except Exception as e: # TODO: tighten up expected Exceptions logger.exception(e) logger.error( f"endpoint: {endpoint} | method: {method} | payload: {json.dumps(json_payload, indent=4)}" ) logger.error(f"{response.status_code}: {response.text}") raise e """ "User Balance": /user/balance/ EXAMPLE: curl -X GET http://46.101.227.39/user/balance/ OUTPUT: { "balance_eur": "0.00000000" } """ def get_fiat_balances(): return authenticated_request("/user/balance") """ "Create Quote": /user/order/quote/ EXAMPLE: curl -d '{"fiat_currency":"EUR", "fiat_deliver_amount":"10000", "withdrawal_address":"bc1qjg53lww9jrm506dj0g0szmk4pxt6f55x8dncuv", "withdrawal_method":"ONCHAIN"}' -H "Content-Type: application/json" -X POST http://46.101.227.39/user/order/quote/ OUTPUT: { "quote_id": "9b787187-1fc2-475d-b495-0b9df5ed270e", "bitcoin_receive_amount": 0.26516569, "trade_fee_currency": "EUR", "trade_fee_amount": 195.0, "expiration_time_utc": 1641867612.480406 } """ def create_quote( fiat_amount: Decimal, withdrawal_address: str, fiat_currency: str = "EUR" ): return authenticated_request( "/user/order/quote", method="POST", json_payload={ "fiat_currency": fiat_currency, "fiat_deliver_amount": fiat_amount, "withdrawal_address": withdrawal_address, "withdrawal_method": "ONCHAIN", }, ) """ "Confirm Order": /user/order/confirm/ EXAMPLE: curl -d '{"quote_id":"9b787187-1fc2-475d-b495-0b9df5ed270e"}' -H "Content-Type: application/json" -X POST http://46.101.227.39/user/order/confirm/ OUTPUT: { "order_id": "d9160a5a-e23f-4f76-9327-330e2afda736", "order_status": "COMPLETE", "bitcoin_receive_amount": 0.26516569, "trade_fee_currency": "EUR", "trade_fee_amount": 195.0, "withdrawal_address": "bc1qjg53lww9jrm506dj0g0szmk4pxt6f55x8dncuv", "withdrawal_status": "INITIATED", "withdrawal_method": "ONCHAIN", "withdrawal_fee": 0.0, "withdrawal_eta": 1641953991.115419 } """ def confirm_order(quote_id: str): return authenticated_request( "/user/order/confirm", method="POST", json_payload={"quote_id": quote_id} ) """ "Order Status": /user/order/status/ EXAMPLE: curl -d '{"order_id":"d9160a5a-e23f-4f76-9327-330e2afda736"}' -H "Content-Type: application/json" -X GET http://46.101.227.39/user/order/status/ OUTPUT: { "order_status": "COMPLETE", "bitcoin_receive_amount": 0.26516569, "quote_id": "9b787187-1fc2-475d-b495-0b9df5ed270e", "trade_fee_currency": "EUR", "trade_fee_amount": 195.0, "withdrawals": { "withdrawal_number": 0, "withdrawal_status": "INITIATED", "withdrawal_address": "bc1qjg53lww9jrm506dj0g0szmk4pxt6f55x8dncuv", "withdrawal_method": "ONCHAIN", "withdrawal_fee": 0.0, "withdrawal_eta": 1641953991.115419, "withdrawal_identifier": null } } """ def get_order_status(order_id: str): return authenticated_request( "/user/order/status", method="GET", json_payload={"order_id": order_id} ) def get_transactions(page_num: int = 0) -> list: """ First entry is the summary data: [ { "total_transaction_count": 29, "page": 0 }, { "transaction_id": "1f88faf0-dfc4-410e-9163-7371f9aa9e30", "transaction_status": "DONE", "transaction_type": "WITHDRAWAL", "transaction_time": "2022-01-18 05:28:35.068650", "in_currency": null, "in_amount": "None", "out_currency": "SATS", "out_amount": "28838.00000000" }, {...}, ] """ return authenticated_request(f"/api/user/transactions/{page_num}") def get_transaction(transaction_id: str) -> dict: """ { "transaction_type": "MARKET BUY", "transaction_id": "31ffc3b6-9b9f-41db-ad6d-b636b69ae63d", "transaction_status": "COMPLETE", "sats_bought": "147810", "fiat_spent": "50.00", "fiat_currency": "EUR", "withdrawals": { "transaction_type": "WITHDRAWAL", "transaction_id": "a9ab0eca-eb9a-4e6e-a692-8531356dd674", "withdrawal_serial_number": 0, "withdrawal_status": "DONE", "withdrawal_address": "bc1qsst0m3pn9adnl68wuhd9h727eu09rnn0nqes2u", "withdrawal_fee": "0", "withdrawal_currency": "SATS", "withdrawal_identifier": "ab4be723b1b11334fde4317c54fad91d583a1570958f78a486a3d4b4d32d7bc1" } } """ return authenticated_request(f"/api/user/transaction/{transaction_id}")
StarcoderdataPython
85571
<filename>python/testData/paramInfo/NoArgsException.py<gh_stars>0 def function(param, param1): pass def result(): pass function(result<arg1>(), result())
StarcoderdataPython
36911
import logging from parsl.monitoring.handler import DatabaseHandler from parsl.monitoring.handler import RemoteHandler from parsl.utils import RepresentationMixin class NullHandler(logging.Handler): """Setup default logging to /dev/null since this is library.""" def emit(self, record): pass class MonitoringStore(RepresentationMixin): def __init__(self, host=None, port=None, logging_server_host='localhost', logging_server_port=9595): """ Parameters ---------- host : str The hostname for running the visualization interface. port : int The port for the visualization interface. logging_server_host : str The hostname for the logging server. logging_server_port : int The port for the logging server. """ self.host = host self.port = port self.logging_server_host = logging_server_host self.logging_server_port = logging_server_port class Database(MonitoringStore, RepresentationMixin): def __init__(self, connection_string=None, **kwargs): """ Initializes a monitoring configuration class. Parameters ---------- connection_string : str, optional Database connection string that defines how to connect to the database. If not set, DFK init will use a sqlite3 database inside the rundir. """ super().__init__(**kwargs) self.connection_string = connection_string class VisualizationServer(RepresentationMixin): def __init__(self, host='http://localhost', port=8899): """ Parameters ---------- host : str The hostname for running the visualization interface. port : int The port for the visualization interface """ self.host = host self.port = port class Monitoring(RepresentationMixin): """ This is a config class for monitoring. """ def __init__(self, store=None, visualization_server=None, monitoring_interval=15, workflow_name=None, version='1.0.0'): """ Initializes a monitoring configuration class. Parameters ---------- monitoring_interval : float, optional The amount of time in seconds to sleep in between resource monitoring logs per task. workflow_name : str, optional Name to record as the workflow base name, defaults to the name of the parsl script file if left as None. version : str, optional Optional workflow identification to distinguish between workflows with the same name, not used internally only for display to user. Example ------- .. code-block:: python import parsl from parsl.config import Config from parsl.executors.threads import ThreadPoolExecutor from parsl.monitoring.db_logger import MonitoringConfig config = Config( executors=[ThreadPoolExecutor()], monitoring_config=MonitoringConfig( MonitoringStore=DatabaseStore( connection_string='sqlite///monitoring.db' ) VisualizationInterface=VisualizationInterface( host='http:localhost' port='9999' ) ) ) parsl.load(config) """ self.store = store self.visualization_server = visualization_server self.version = version self.monitoring_interval = monitoring_interval self.workflow_name = workflow_name # for now just set this to none but can be used to present the dashboard location to user self.dashboard_link = None def get_parsl_logger( logger_name='parsl_monitor_logger', is_logging_server=False, monitoring_config=None, **kwargs): """ Parameters ---------- logger_name : str, optional Name of the logger to use. Prevents adding repeat handlers or incorrect handlers is_logging_server : Bool, optional Used internally to determine which handler to return when using local db logging monitoring_config : MonitoringConfig, optional Pass in a logger class object to use for generating loggers. Returns ------- logging.logger object Raises ------ OptionalModuleMissing """ logger = logging.getLogger(logger_name) if monitoring_config is None: logger.addHandler(NullHandler()) return logger if monitoring_config.store is None: raise ValueError('No MonitoringStore defined') if is_logging_server: # add a handler that will take logs being received on the server and log them to the store handler = DatabaseHandler(monitoring_config.store.connection_string) # use the specific name generated by the server or the monitor wrapper logger = logging.getLogger(logger_name) logger.setLevel(logging.INFO) logger.addHandler(handler) else: # add a handler that will pass logs to the logging server handler = RemoteHandler(monitoring_config.store.logging_server_host, monitoring_config.store.logging_server_port) # use the specific name generated by the server or the monitor wrapper logger = logging.getLogger(logger_name) logger.setLevel(logging.INFO) logger.addHandler(handler) return logger
StarcoderdataPython
3384543
<gh_stars>0 from django.shortcuts import render from .models import Coins from rest_framework import viewsets from rest_framework import permissions, generics from .serializers import CoinsSerializer # Create your views here. class CoinViewSet(viewsets.ModelViewSet): queryset = Coins.objects.all() serializer_class = CoinsSerializer class UpdateCoin(generics.UpdateAPIView): queryset = Coins.objects.all() serializer_class = CoinsSerializer class GetCoins(generics.ListAPIView): serializer_class = CoinsSerializer def get_queryset(self): username = self.kwargs['pk'] return Coins.objects.filter(username=username)
StarcoderdataPython
3213194
<gh_stars>1-10 import os import json import logging import numpy from osgeo import gdal from ground_surveyor import gsconfig def pick_best_pile_layer(pile_md_filename, selection_options): pile_md = json.load(open(pile_md_filename)) best_i = -1 best_value = 0 target_field = selection_options.get('order_field', 'normalized_sharpness') cc_threshold = selection_options.get('cross_correlation_threshold', None) small_cc_threshold = selection_options.get( 'small_cross_correlation_threshold', None) zero_threshold = selection_options.get('zero_threshold', None) for i in range(len(pile_md['sharpness'])): if cc_threshold is not None: cc_raw = pile_md['cross_correlation_raw'][i] if cc_raw < cc_threshold: continue if small_cc_threshold is not None: small_cc = pile_md['cross_correlation_small'][i] if small_cc < small_cc_threshold: continue if zero_threshold is not None and pile_md['n_pixel_at_zero_intensity'][i] > zero_threshold: continue if target_field == 'normalized_sharpness': target_value = pile_md['sharpness'][i] \ / pile_md['intensity_median'][i] else: target_value = pile_md[target_field] if target_value > best_value: best_value = target_value best_i = i # If nothing met the threshold, try again without the threshold. if best_i == -1 and cc_threshold is not None: for i in range(len(pile_md['sharpness'])): if zero_threshold is not None and pile_md['n_pixel_at_zero_intensity'][i] > zero_threshold: continue if target_field == 'normalized_sharpness': target_value = pile_md['sharpness'][i] \ / pile_md['intensity_median'][i] else: target_value = pile_md[target_field] if target_value > best_value: best_value = target_value best_i = i logging.debug('Picked input metatile %d for pile %s with %s value of %s.', best_i, os.path.basename(pile_md_filename)[:15], target_field, best_value) return best_i def get_pile_layer(pile_md_filename, i_file): raw_filename = pile_md_filename.replace('_datacube_metadata.json', '_raw.tif') raw_ds = gdal.Open(raw_filename) return raw_ds.GetRasterBand(i_file+1).ReadAsArray() def merge_pile_into_mosaic(mosaic_ds, pile_md_filename, selected_i, selected_img, processing_options): pile_parts = os.path.basename(pile_md_filename).split('_')[0:3] assert pile_parts[0] == 'uf' uf_i = int(pile_parts[1]) uf_j = int(pile_parts[2]) if processing_options.get('normalize_intensity',False): pile_md = json.load(open(pile_md_filename)) selected_img = selected_img * 1000.0 \ / pile_md['intensity_median'][selected_i] mosaic_ds.GetRasterBand(1).WriteArray( selected_img, uf_i * 256, uf_j * 256) alpha_band = mosaic_ds.GetRasterBand(mosaic_ds.RasterCount) if alpha_band.GetColorInterpretation() == gdal.GCI_AlphaBand: if alpha_band.DataType == gdal.GDT_UInt16: opaque = 65535 else: opaque = 255 alpha_band.WriteArray( numpy.ones(selected_img.shape) * opaque, uf_i * 256, uf_j * 256) def make_metatile(pile_directory): mosaic_filename = os.path.join(pile_directory,'mosaic.tif') mosaic_ds = gdal.GetDriverByName('GTiff').Create( mosaic_filename, 4096, 4096, 1, gdal.GDT_UInt16) # TODO: Try to add georeferencing... return mosaic_filename, mosaic_ds def mosaic_metatile(pile_directory, selection_options, processing_options={}): mosaic_filename, mosaic_ds = make_metatile(pile_directory) counter = 0 for filename in os.listdir(pile_directory): if (not filename.startswith('uf_')) or (not filename.endswith('_metadata.json')): continue pile_md_filename = os.path.join(pile_directory, filename) i_file = pick_best_pile_layer(pile_md_filename, selection_options) if i_file >= 0: selected_img = get_pile_layer(pile_md_filename, i_file) merge_pile_into_mosaic(mosaic_ds, pile_md_filename, i_file, selected_img, processing_options) counter += 1 logging.info('%d piles contributed to making %s.', counter, mosaic_filename) return mosaic_filename
StarcoderdataPython
3316182
import math import numpy as np from .gazebo_env import GazeboEnv import logging logger = logging.getLogger("gymfc") class AttitudeFlightControlEnv(GazeboEnv): def compute_reward(self): """ Compute the reward """ return -np.clip(np.sum(np.abs(self.error))/(self.omega_bounds[1]*3), 0, 1) def sample_target(self): """ Sample a random angular velocity """ return self.np_random.uniform(self.omega_bounds[0], self.omega_bounds[1], size=3) class GyroErrorFeedbackEnv(AttitudeFlightControlEnv): def __init__(self, world="attitude-iris.world", omega_bounds = [-math.pi, math.pi], max_sim_time = 1., motor_count = 4, memory_size=1,): self.omega_bounds = omega_bounds self.max_sim_time = max_sim_time self.memory_size = memory_size self.motor_count = motor_count self.observation_history = [] super(GyroErrorFeedbackEnv, self).__init__(motor_count = motor_count, world=world) self.omega_target = self.sample_target() def step(self, action): action = np.clip(action, self.action_space.low, self.action_space.high) # Step the sim self.obs = self.step_sim(action) self.error = self.omega_target - self.obs.angular_velocity_rpy self.observation_history.append(np.concatenate([self.error])) state = self.state() done = self.sim_time >= self.max_sim_time reward = self.compute_reward() info = {"sim_time": self.sim_time, "sp": self.omega_target, "current_rpy": self.omega_actual} return state, reward, done, info ############ class StabilizeFlightControlEnv(GazeboEnv): def compute_reward(self): """ Compute the reward """ return -np.clip(np.sum(np.abs(self.error))/(self.omega_bounds[1]*3), 0, 1) def sample_target(self): """ Sample a random angular velocity """ return self.np_random.uniform(self.omega_bounds[0], self.omega_bounds[1], size=3) class StabilizeEnv(StabilizeFlightControlEnv): def __init__(self, world="attitude-iris.world", omega_bounds=[-math.pi, math.pi], max_sim_time=1., motor_count=4, memory_size=1, ): self.omega_bounds = omega_bounds self.max_sim_time = max_sim_time self.memory_size = memory_size self.motor_count = motor_count self.observation_history = [] super(StabilizeEnv, self).__init__(motor_count=motor_count, world=world) self.omega_target = self.sample_target() def step(self, action): action = np.clip(action, self.action_space.low, self.action_space.high) # Step the sim self.obs = self.step_sim(action) self.error = self.omega_target - self.obs.angular_velocity_rpy self.observation_history.append(np.concatenate([self.error])) state = self.state() done = self.sim_time >= self.max_sim_time reward = self.compute_reward() info = {"sim_time": self.sim_time, "sp": self.omega_target, "current_rpy": self.omega_actual} return state, reward, done, info def state(self): """ Get the current state """ # The newest will be at the end of the array memory = np.array(self.observation_history[-self.memory_size:]) return np.pad(memory.ravel(), ( (3 * self.memory_size) - memory.size, 0), 'constant', constant_values=(0)) def reset(self): self.observation_history = [] return super(StabilizeEnv, self).reset() ############# class GyroErrorESCVelocityFeedbackEnv(GazeboEnv): def __init__(self, world="attitude-iris.world", omega_bounds =[-math.pi, math.pi], max_sim_time = 1., motor_count = 4, memory_size=1,): self.omega_bounds = omega_bounds self.max_sim_time = max_sim_time self.memory_size = memory_size self.motor_count = motor_count self.observation_history = [] super(GyroErrorESCVelocityFeedbackEnv, self).__init__(motor_count = motor_count, world=world) self.omega_target = self.sample_target() def step(self, action): action = np.clip(action, self.action_space.low, self.action_space.high) # Step the sim self.obs = self.step_sim(action) self.error = self.omega_target - self.obs.angular_velocity_rpy self.observation_history.append(np.concatenate([self.error, self.obs.motor_velocity])) state = self.state() done = self.sim_time >= self.max_sim_time reward = self.compute_reward() info = {"sim_time": self.sim_time, "sp": self.omega_target, "current_rpy": self.omega_actual} return state, reward, done, info def compute_reward(self): """ Compute the reward """ return -np.clip(np.sum(np.abs(self.error))/(self.omega_bounds[1]*3), 0, 1) def sample_target(self): """ Sample a random angular velocity """ return self.np_random.uniform(self.omega_bounds[0], self.omega_bounds[1], size=3) def state(self): """ Get the current state """ # The newest will be at the end of the array memory = np.array(self.observation_history[-self.memory_size:]) return np.pad(memory.ravel(), (( (3+self.motor_count) * self.memory_size) - memory.size, 0), 'constant', constant_values=(0)) def reset(self): self.observation_history = [] return super(GyroErrorESCVelocityFeedbackEnv, self).reset() class GyroErrorESCVelocityFeedbackContinuousEnv(GyroErrorESCVelocityFeedbackEnv): def __init__(self, command_time_off=[], command_time_on=[], **kwargs): self.command_time_off = command_time_off self.command_time_on = command_time_on self.command_off_time = None super(GyroErrorESCVelocityFeedbackContinuousEnv, self).__init__(**kwargs) def step(self, action): """ Sample a random angular velocity """ ret = super(GyroErrorESCVelocityFeedbackContinuousEnv, self).step(action) # Update the target angular velocity if not self.command_off_time: self.command_off_time = self.np_random.uniform(*self.command_time_on) elif self.sim_time >= self.command_off_time: # Issue new command # Commands are executed as pulses, always returning to center if (self.omega_target == np.zeros(3)).all(): self.omega_target = self.sample_target() self.command_off_time = self.sim_time + self.np_random.uniform(*self.command_time_on) else: self.omega_target = np.zeros(3) self.command_off_time = self.sim_time + self.np_random.uniform(*self.command_time_off) return ret
StarcoderdataPython
136510
import logging, os logging.disable(logging.WARNING) os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" import tensorflow as tf from tensorflow.keras import models from tensorflow.keras import layers from tensorflow.keras.layers import BatchNormalization, Conv2D, UpSampling2D, MaxPooling2D, Dropout from tensorflow.keras.optimizers import SGD, Adam, Adagrad from tensorflow.keras import backend as K import numpy as np from numpy.random import seed from datetime import datetime from datetime import timedelta import pickle import os import os.path import math import argparse def accuracy05(y_true, y_pred): tp = tf.reduce_sum(tf.cast(tf.math.logical_and(y_true>0.5,y_pred>0.5), tf.float32)) tn = tf.reduce_sum(tf.cast(tf.math.logical_and(tf.math.logical_not(y_true>0.5),tf.math.logical_not(y_pred>0.5)), tf.float32)) return (tp+tn)/tf.cast(tf.size(y_true), tf.float32) def precision05(y_true, y_pred): tp = tf.reduce_sum(tf.cast(tf.math.logical_and(y_true>0.5,y_pred>0.5), tf.float32)) total_pred = tf.reduce_sum(tf.cast(y_pred>0.5, tf.float32)) return tp/(total_pred+K.epsilon()) def recall05(y_true, y_pred): tp = tf.reduce_sum(tf.cast(tf.math.logical_and(y_true>0.5,y_pred>0.5), tf.float32)) total_true = tf.reduce_sum(tf.cast(y_true>0.5, tf.float32)) return tp/(total_true+K.epsilon()) def accuracy1(y_true, y_pred): tp = tf.reduce_sum(tf.cast(tf.math.logical_and(y_true>1,y_pred>1), tf.float32)) tn = tf.reduce_sum(tf.cast(tf.math.logical_and(tf.math.logical_not(y_true>1),tf.math.logical_not(y_pred>1)), tf.float32)) return (tp+tn)/tf.cast(tf.size(y_true), tf.float32) def precision1(y_true, y_pred): tp = tf.reduce_sum(tf.cast(tf.math.logical_and(y_true>1,y_pred>1), tf.float32)) #fp = tf.reduce_sum(tf.cast(tf.math.logical_and(tf.math.logical_not(y_true>1),y_pred>1), tf.float64)) total_pred = tf.reduce_sum(tf.cast(y_pred>1, tf.float32)) #if tf.math.less(total_pred, tf.constant([1.])): # return 0. return tp/(total_pred+K.epsilon()) def recall1(y_true, y_pred): tp = tf.reduce_sum(tf.cast(tf.math.logical_and(y_true>1,y_pred>1), tf.float32)) #fn = tf.reduce_sum(tf.cast(tf.math.logical_and(tf.math.logical_not(y_pred>1),y_true>1), tf.float64)) total_true = tf.reduce_sum(tf.cast(y_true>1, tf.float32)) #if tf.math.less(total_true, tf.constant([1.])): # return 0. return tp/(total_true+K.epsilon()) def accuracy5(y_true, y_pred): tp = tf.reduce_sum(tf.cast(tf.math.logical_and(y_true>5,y_pred>5), tf.float32)) tn = tf.reduce_sum(tf.cast(tf.math.logical_and(tf.math.logical_not(y_true>5),tf.math.logical_not(y_pred>5)), tf.float32)) return (tp+tn)/tf.cast(tf.size(y_true), tf.float32) def precision5(y_true, y_pred): tp = tf.reduce_sum(tf.cast(tf.math.logical_and(y_true>5,y_pred>5), tf.float32)) #fp = tf.reduce_sum(tf.cast(tf.math.logical_and(tf.math.logical_not(y_true>5),y_pred>5), tf.float64)) total_pred = tf.reduce_sum(tf.cast(y_pred>5, tf.float32)) #if tf.math.less(total_pred, tf.constant([1.])): # return 0. return tp/(total_pred+K.epsilon()) def recall5(y_true, y_pred): tp = tf.reduce_sum(tf.cast(tf.math.logical_and(y_true>5,y_pred>5), tf.float32)) #fn = tf.reduce_sum(tf.cast(tf.math.logical_and(tf.math.logical_not(y_pred>5),y_true>5), tf.float64)) total_true = tf.reduce_sum(tf.cast(y_true>5, tf.float32)) #if tf.math.less(total_true, tf.constant([1.])): # return 0. return tp/(total_true+K.epsilon()) def accuracy10(y_true, y_pred): tp = tf.reduce_sum(tf.cast(tf.math.logical_and(y_true>10,y_pred>10), tf.float32)) tn = tf.reduce_sum(tf.cast(tf.math.logical_and(tf.math.logical_not(y_true>10),tf.math.logical_not(y_pred>10)), tf.float32)) return (tp+tn)/tf.cast(tf.size(y_true), tf.float32) def precision10(y_true, y_pred): tp = tf.reduce_sum(tf.cast(tf.math.logical_and(y_true>10,y_pred>10), tf.float32)) #fp = tf.reduce_sum(tf.cast(tf.math.logical_and(tf.math.logical_not(y_true>10),y_pred>10), tf.float64)) total_pred = tf.reduce_sum(tf.cast(y_pred>10, tf.float32)) #if tf.math.less(total_pred, tf.constant([1.])): # return 0. return tp/(total_pred+K.epsilon()) def recall10(y_true, y_pred): tp = tf.reduce_sum(tf.cast(tf.math.logical_and(y_true>10,y_pred>10), tf.float32)) #fn = tf.reduce_sum(tf.cast(tf.math.logical_and(tf.math.logical_not(y_pred>10),y_true>10), tf.float64)) total_true = tf.reduce_sum(tf.cast(y_true>10, tf.float32)) #if tf.math.less(total_true, tf.constant([1])): # return 0. return tp/(total_true+K.epsilon()) def get_unet(): concat_axis = 3 inputs = layers.Input(shape=(512, 512, 3)) feats = 8#16 bn0 = BatchNormalization(axis=3)(inputs) conv1 = layers.Conv2D(feats, (3, 3), activation='relu', padding='same', name='conv1_1')(bn0) bn2 = BatchNormalization(axis=3)(conv1) pool1 = layers.MaxPooling2D(pool_size=(2, 2))(bn2) #256 conv2 = layers.Conv2D(2*feats, (3, 3), activation='relu', padding='same')(pool1) bn4 = BatchNormalization(axis=3)(conv2) pool2 = layers.MaxPooling2D(pool_size=(2, 2))(bn4) #128 conv3 = layers.Conv2D(4*feats, (3, 3), activation='relu', padding='same')(pool2) bn6 = BatchNormalization(axis=3)(conv3) pool3 = layers.MaxPooling2D(pool_size=(2, 2))(bn6) #64 conv4 = layers.Conv2D(8*feats, (3, 3), activation='relu', padding='same')(pool3) bn8 = BatchNormalization(axis=3)(conv4) pool4 = layers.MaxPooling2D(pool_size=(2, 2))(bn8) #32 conv5 = layers.Conv2D(16*feats, (3, 3), activation='relu', padding='same')(pool4) bn10 = BatchNormalization(axis=3)(conv5) pool5 = layers.MaxPooling2D(pool_size=(2, 2))(bn10) #16 conv6 = layers.Conv2D(32*feats, (3, 3), activation='relu', padding='same')(pool5) bn11 = BatchNormalization(axis=3)(conv6) up_conv6 = layers.UpSampling2D(size=(2, 2))(bn11) #32 up7 = layers.concatenate([up_conv6, conv5], axis=concat_axis) conv7 = layers.Conv2D(16*feats, (3, 3), activation='relu', padding='same')(up7) bn13 = BatchNormalization(axis=3)(conv7) up_conv5 = layers.UpSampling2D(size=(2, 2))(bn13) #64 up6 = layers.concatenate([up_conv5, conv4], axis=concat_axis) conv6 = layers.Conv2D(8*feats, (3, 3), activation='relu', padding='same')(up6) bn15 = BatchNormalization(axis=3)(conv6) up_conv6 = layers.UpSampling2D(size=(2, 2))(bn15) #128 up7 = layers.concatenate([up_conv6, conv3], axis=concat_axis) conv7 = layers.Conv2D(4*feats, (3, 3), activation='relu', padding='same')(up7) bn13 = BatchNormalization(axis=3)(conv7) # Rectify last convolution layer to constraint output to positive precipitation values. conv8 = layers.Conv2D(1, (1, 1), activation='relu')(bn13) model = models.Model(inputs=inputs, outputs=conv8) return model def get_band_data(loc, dates, b, mean=None, std=None): y = np.concatenate([np.load(f"Y_{loc}_{d}.npy") for d in dates], axis=0) y = np.clip(y,0,30) x11 = np.concatenate([np.load(f"X_B11_{loc}_{d}.npy") for d in dates], axis=0) x16 = np.concatenate([np.load(f"X_B16_{loc}_{d}.npy") for d in dates], axis=0) xi = np.concatenate([np.load(f"X_B{b}_{loc}_{d}.npy") for d in dates], axis=0) if mean is None: mean = [x11.mean(),x16.mean(),xi.mean()] std = [x11.std(),x16.std(),xi.std()] x11 = (x11-mean[0])/std[0] x16 = (x16-mean[1])/std[1] xi = (xi-mean[2])/std[2] x = np.stack((x11,x16,xi), axis=3) x11 = None x16 = None xi = None return x, y[:,:,:,None], mean, std if __name__ == "__main__": parser = argparse.ArgumentParser(description='Himawari-GPM Band comparison') parser.add_argument('-b1', '--band1', help='Band 1 in list', type=int, required=True) parser.add_argument('-b2', '--band2', help='Band 2 in list', type=int, required=True) parser.add_argument('-b3', '--band3', help='Band 3 in list', type=int, required=True) parser.add_argument('-loc', '--location', help='Geographic location', type=str, required=True) parser.add_argument('-val', '--validation', help='Month used for validation', type=int, required=True) parser.add_argument('-s', '--seed', help='Random seed', type=int, required=False, default=1) args = parser.parse_args() seed(args.seed) if os.path.isfile(f'model_3months_200epochs_8chann_v{args.validation}_{args.location}_s{args.seed}_b{args.band1}_{args.band2}_{args.band3}.h5'): exit() tf.random.set_seed(args.seed) dates = ["201811","201812","201901","201902"] x_train, y_train, mean, std = get_band_data(args.location, [x for i, x in enumerate(dates) if i!=args.validation], args.band3) x_test, y_test, _, _ = get_band_data(args.location, [x for i, x in enumerate(dates) if i==args.validation], args.band3, mean, std) print(x_train.shape, y_train.shape) print("MSE train", np.mean(np.square(y_train))) print("MSE test", np.mean(np.square(y_test))) model = get_unet() print(model.summary()) opt = Adagrad(lr=0.0001) model.compile(loss='mse', metrics=[accuracy05,precision05,recall05,accuracy1,precision1,recall1,accuracy5,precision5,recall5,accuracy10,precision10,recall10], optimizer=opt) history = model.fit(x_train, y_train, validation_data=(x_test, y_test), shuffle=True, epochs=200, verbose=1) with open(f'history_3months_200epochs_8chann_v{args.validation}_{args.location}_s{args.seed}_b{args.band1}_{args.band2}_{args.band3}.pkl', 'wb') as f: pickle.dump(history.history, f) model.save(f'model_3months_200epochs_8chann_v{args.validation}_{args.location}_s{args.seed}_b{args.band1}_{args.band2}_{args.band3}.h5')
StarcoderdataPython
191302
<reponame>pulina/tastypie-queryset-client from decimal import Decimal from datetime import datetime #from django.conf import settings #settings.DEBUG = True from testcases import ( TestServerTestCase, get_client ) from django.core.management import call_command from .utils import id_generator def _getDateTimeField(klass): call_command('loaddata', 'small_data.json') for i in klass.client.inbox_message.objects.all(): klass.assertTrue(isinstance(i.ctime, datetime)) def _setDateTimeField(klass): ctime = datetime.now() utime = datetime.now() message = klass.client.message( subject=id_generator(), body=id_generator(), ctime=ctime, utime=utime) message.save() klass.assertTrue(isinstance(message.ctime, datetime)) klass.assertTrue(isinstance(message.utime, datetime)) # klass.assertTrue(message.ctime == ctime) # lag # klass.assertTrue(message.utime == utime) # lag message_ = klass.client.message.objects.get(id=message.id) klass.assertTrue(message.id == message_.id) def _DecimalField(klass): decimal_test = Decimal('0.2') # Test save strict = klass.client.strict(decimal_test=decimal_test) strict.save() # Tests klass.assertTrue(isinstance(strict.decimal_test, Decimal)) klass.assertTrue(strict.decimal_test == decimal_test) # Get strict_ = klass.client.strict.objects.get(id=strict.id) klass.assertTrue(strict.id == strict_.id) # Search strict_ = klass.client.strict.objects.filter(decimal_test=decimal_test) klass.assertTrue(strict_.count() == 1) def _FloatField(klass): float_test = float(0.2) # Test save strict = klass.client.strict(float_test=float_test) strict.save() # Tests klass.assertTrue(isinstance(strict.float_test, float)) klass.assertTrue(strict.float_test == float_test) # Get strict_ = klass.client.strict.objects.get(id=strict.id) klass.assertTrue(strict.id == strict_.id) # Search strict_ = klass.client.strict.objects.filter(float_test=float_test) klass.assertTrue(strict_.count() == 1) def _IntegerField(klass): integer_test = 10 # Test save strict = klass.client.strict(integer_test=integer_test) strict.save() # Tests klass.assertTrue(isinstance(strict.integer_test, int)) klass.assertTrue(strict.integer_test == integer_test) # Get strict_ = klass.client.strict.objects.get(id=strict.id) klass.assertTrue(strict.id == strict_.id) # Search strict_ = klass.client.strict.objects.filter(integer_test=integer_test) klass.assertTrue(strict_.count() == 1) def _BooleanField(klass): pass def _GenericIPAddressField(klass): pass class StrictTestCase(TestServerTestCase): def setUp(self): self.start_test_server() self.client = get_client() def tearDown(self): self.stop_test_server() def test_getDateTimeField(self): _getDateTimeField(self) def test_setDateTimeField(self): _setDateTimeField(self) def test_DecimalField(self): _DecimalField(self) def test_FloatField(self): _FloatField(self) def test_IntegerField(self): _IntegerField(self) def test_BooleanField(self): _BooleanField(self) def test_GenericIPAddressField(self): _GenericIPAddressField(self) class NotStrictTestCase(TestServerTestCase): def setUp(self): self.start_test_server() self.client = get_client(strict_field=False) def tearDown(self): self.stop_test_server() # TODO: Json serialize error # def test_getDateTimeField(self): # _getDateTimeField(self) # TODO: Json serialize error # def test_setDateTimeField(self): # _setDateTimeField(self) # TODO: Str response # def test_DecimalField(self): # _DecimalField(self) def test_FloatField(self): _FloatField(self) def test_IntegerField(self): _IntegerField(self) def test_BooleanField(self): _BooleanField(self) def test_GenericIPAddressField(self): _GenericIPAddressField(self)
StarcoderdataPython
67763
<gh_stars>0 import sys from pathlib import Path path = str(Path(__file__).parents[1].resolve()) sys.path.append(path) import argparse import random import numpy as np import librosa import rospy from std_msgs.msg import UInt8MultiArray from imperio.sonorus.audio.utils import audio_int2float from imperio.robot.hr.lip_control import PhonemesPublisher from imperio.robot.hr.lip_control.utils import drop_random, shift_time class PhonemesPublisherOnVoice(object): def __init__(self, shift=0, duration=0.02, seed=None, drop_th=0.8): self.shift = shift self.duration = duration self.seed = seed self.drop_th = drop_th self.random = random.Random(seed) rospy.Subscriber("/hr/control/audio/stream", UInt8MultiArray, self.callback) self.pub = PhonemesPublisher( default_viseme_params=dict(magnitude=0.99, rampin=0.01, rampout=0.01,), ) def callback(self, msg): phonemes = self.pub.random(self.duration, chunk=self.duration) phonemes = drop_random(phonemes, seed=self.seed, drop_th=self.drop_th) phonemes = shift_time(phonemes, shift=self.shift) # if phonemes: self.pub.publish(phonemes) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-s", "--shift", type=float, default=0, help="Time shift in seconds after the audio message is received. Default is 0 secs.", ) parser.add_argument( "-d", "--duration", type=float, default=0.02, help="Duration in seconds for which phonemes will be played for each audio message received. Default is 0.02 secs.", ) args = parser.parse_args() rospy.init_node("phoneme_publisher") PhonemesPublisherOnVoice(shift=args.shift, duration=args.duration) rospy.spin()
StarcoderdataPython
82082
<filename>samples/fn_functions.py #!/usr/bin/env python3 # The MIT License (MIT) # # Copyright (c) 2017 allancth # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from datetime import datetime def add(a: int, b: int) -> int: return a + b def multiply(a, b): return a * b def subtract(a, b): return b - a def divide(a, b): return a / b def greet(name: str="World") -> str: print("Hello {0}!".format(name)) def fib(n: int=0) -> int: if n == 0: return 0 if n == 1: return 1 return fib(n - 1) + fib(n - 2) result = add(1, 2) print(result) greet("Alice") greet() for i in range(10): print(fib(i)) def get_date(): return datetime.now().day, datetime.now().month, datetime.now().year t = get_date() print(t) print("{0}-{1}-{2}".format(t[2], t[1], t[0])) d, m, y = get_date() print("{0}-{1}-{2}".format(y, m, d))
StarcoderdataPython
3386682
<gh_stars>1-10 import tensorflow as tf class TextClassifierCNNModel(object): def __init__(self, seq_length=600, num_classes=10, vocab_size=5000, embedding_dim=64, num_filters=256, kernel_size=5, learning_rate=1e-3): self.name = 'text_classify_cnn' # 1. Define input & output. self.input = tf.placeholder(tf.int32, [None, seq_length], name='input') self.output = tf.placeholder(tf.float32, [None, num_classes], name='output') self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') # 2. Define embedding. with tf.device('/cpu:0'): embedding = tf.get_variable('embedding', [vocab_size, embedding_dim]) embedding_inputs = tf.nn.embedding_lookup(embedding, self.input) # 3. Define CNN. with tf.name_scope("cnn"): conv_layer = tf.layers.conv1d(embedding_inputs, num_filters, kernel_size, name='conv') max_pooling_layer = tf.reduce_max(conv_layer, reduction_indices=[1], name='mp') # 4. Define FCN. with tf.name_scope("fcn"): fc_1 = tf.layers.dense(max_pooling_layer, 128, name='fc_1') fc_1 = tf.contrib.layers.dropout(fc_1, self.keep_prob) fc_1 = tf.nn.relu(fc_1) self.net = tf.layers.dense(fc_1, num_classes, name='fc_2') self.predict = tf.argmax(tf.nn.softmax(self.net), 1) # 5. Define optimization. with tf.name_scope("optimize"): cross_entropy = tf.nn.softmax_cross_entropy_with_logits( logits=self.net, labels=self.output) self.loss = tf.reduce_mean(cross_entropy) self.optimizer = tf.train.AdamOptimizer( learning_rate=learning_rate).minimize(self.loss) # 6. Define accuracy. with tf.name_scope("accuracy"): correct_predict = tf.equal(tf.argmax(self.output, 1), self.predict) self.accuracy = tf.reduce_mean(tf.cast(correct_predict, tf.float32))
StarcoderdataPython
3294610
from datetime import timedelta import arrow from django.conf import settings from django.contrib.auth import get_user_model from django.core.files.base import ContentFile from django.utils import timezone from model_bakery import baker from devilry.apps.core.deliverystore import MemoryDeliveryStore from devilry.apps.core.models import Assignment from devilry.apps.core.models import AssignmentGroup from devilry.apps.core.models import Deadline from devilry.apps.core.models import Delivery from devilry.apps.core.models import FileMeta from devilry.apps.core.models import Period from devilry.apps.core.models import RelatedExaminer from devilry.apps.core.models import RelatedStudent from devilry.apps.core.models import StaticFeedback from devilry.apps.core.models import StaticFeedbackFileAttachment from devilry.apps.core.models import Subject from devilry.devilry_comment.models import CommentFile class ReloadableDbBuilderInterface(object): def update(self, **attributes): raise NotImplementedError() def reload_from_db(self): raise NotImplementedError() class UserBuilder(ReloadableDbBuilderInterface): """ The old user builder class. Use :class:`.UserBuilder2` for new tests. """ def __init__(self, username, full_name=None, email=None, is_superuser=False): email = email or <EMAIL>'.<EMAIL>(username) if settings.CRADMIN_LEGACY_USE_EMAIL_AUTH_BACKEND: username = '' self.user = get_user_model().objects.create_user( username=username, email=email, is_superuser=is_superuser, password='<PASSWORD>', fullname=full_name or '') def update(self, **attributes): for attrname, value in attributes.items(): setattr(self.user, attrname, value) self.user.save() self.reload_from_db() def reload_from_db(self): self.user = get_user_model().objects.get(id=self.user.id) class UserBuilder2(ReloadableDbBuilderInterface): """ A user builder much more suitable for :class:`devilry.devilry_account.model.User` than :class:`.UserBuilder`. Use this insted of :class:`.UserBuilder` for new tests. """ def __init__(self, **kwargs): self.user = baker.make_recipe('devilry.devilry_account.user', **kwargs) self.user.save() def update(self, **attributes): for attrname, value in attributes.items(): setattr(self.user, attrname, value) self.user.save() self.reload_from_db() def reload_from_db(self): self.user = get_user_model().objects.get(id=self.user.id) def add_emails(self, *emails): for email in emails: self.user.useremail_set.create(email=email, use_for_notifications=False) return self def add_primary_email(self, email, use_for_notifications=True): self.user.useremail_set.create(email=email, use_for_notifications=use_for_notifications, is_primary=True) return self def add_usernames(self, *usernames): for username in usernames: self.user.username_set.create(username=username, is_primary=False) return self def add_notification_emails(self, *emails): for email in emails: self.user.useremail_set.create(email=email, use_for_notifications=True) return self def add_primary_username(self, username): self.user.username_set.create(username=username, is_primary=True) return self class CoreBuilderBase(ReloadableDbBuilderInterface): object_attribute_name = None def _save(self): getattr(self, self.object_attribute_name).save() def get_object(self): return getattr(self, self.object_attribute_name) def __set_object_value(self, attribute, value): setattr(self.get_object(), attribute, value) def update(self, **attributes): for attribute, value in attributes.items(): self.__set_object_value(attribute, value) self._save() self.reload_from_db() def reload_from_db(self): obj = getattr(self, self.object_attribute_name) setattr(self, self.object_attribute_name, obj.__class__.objects.get(pk=obj.pk)) @classmethod def make(cls, **kwargs): """ Creates a usable object of this builders model. Use this when you just need an object with no special meaning. """ raise NotImplementedError() class BaseNodeBuilderBase(CoreBuilderBase): modelcls = None #: Used to generate unique names. sequencenumber = 0 def __init__(self, short_name=None, long_name=None, **kwargs): if not short_name: short_name = '{}{}'.format(self.object_attribute_name, self.sequencenumber) full_kwargs = { 'short_name': short_name, 'long_name': long_name or short_name } full_kwargs.update(kwargs) setattr(self, self.object_attribute_name, self.modelcls.objects.create(**full_kwargs)) BaseNodeBuilderBase.sequencenumber += 1 def add_admins(self, *users): for user in users: obj = getattr(self, self.object_attribute_name) obj.admins.add(user) return self class FileMetaBuilder(CoreBuilderBase): object_attribute_name = 'filemeta' def __init__(self, delivery, filename, data): self.filemeta = FileMeta.objects.create(delivery=delivery, filename=filename, size=0) f = FileMeta.deliverystore.write_open(self.filemeta) f.write(data) f.close() self.filemeta.size = len(data) self.filemeta.save() class StaticFeedbackFileAttachmentBuilder(CoreBuilderBase): object_attribute_name = 'fileattachment' def __init__(self, staticfeedback, filename='test.txt', filedata='Testdata'): self.fileattachment = StaticFeedbackFileAttachment(staticfeedback=staticfeedback, filename=filename) self.fileattachment.file.save(filename, ContentFile(filedata)) class StaticFeedbackBuilder(CoreBuilderBase): object_attribute_name = 'feedback' def __init__(self, **kwargs): self.feedback = StaticFeedback.objects.create(**kwargs) def add_fileattachment(self, **kwargs): kwargs['staticfeedback'] = self.feedback return StaticFeedbackFileAttachmentBuilder(**kwargs) class DeliveryBuilder(CoreBuilderBase): object_attribute_name = 'delivery' @classmethod def set_memory_deliverystore(cls): FileMeta.deliverystore = MemoryDeliveryStore() def __init__(self, **kwargs): if 'time_of_delivery' not in kwargs: kwargs['time_of_delivery'] = timezone.now() self.delivery = Delivery(**kwargs) if 'number' not in kwargs: self.delivery.set_number() self.delivery.save() def _save(self): self.delivery.save() def add_filemeta(self, **kwargs): kwargs['delivery'] = self.delivery return FileMetaBuilder(**kwargs) def add_feedback(self, **kwargs): kwargs['delivery'] = self.delivery return StaticFeedbackBuilder(**kwargs) def add_passed_feedback(self, **kwargs): kwargs['points'] = 1 kwargs['grade'] = 'Passed' kwargs['is_passing_grade'] = True kwargs['delivery'] = self.delivery return StaticFeedbackBuilder(**kwargs) def add_failed_feedback(self, **kwargs): kwargs['points'] = 0 kwargs['grade'] = 'Failed' kwargs['is_passing_grade'] = False kwargs['delivery'] = self.delivery return StaticFeedbackBuilder(**kwargs) def add_passed_A_feedback(self, **kwargs): kwargs['points'] = 100 kwargs['grade'] = 'A' kwargs['is_passing_grade'] = True kwargs['delivery'] = self.delivery return StaticFeedbackBuilder(**kwargs) def add_failed_F_feedback(self, **kwargs): kwargs['points'] = 0 kwargs['grade'] = 'F' kwargs['is_passing_grade'] = False kwargs['delivery'] = self.delivery return StaticFeedbackBuilder(**kwargs) class DeadlineBuilder(CoreBuilderBase): object_attribute_name = 'deadline' def __init__(self, **kwargs): self.deadline = Deadline.objects.create(**kwargs) def add_delivery(self, **kwargs): kwargs['deadline'] = self.deadline kwargs['successful'] = kwargs.get('successful', True) return DeliveryBuilder(**kwargs) def add_delivery_after_deadline(self, timedeltaobject, **kwargs): if 'time_of_delivery' in kwargs: raise ValueError( 'add_delivery_after_deadline does not accept ``time_of_delivery`` as kwarg, it sets it automatically.') kwargs['time_of_delivery'] = self.deadline.deadline + timedeltaobject return self.add_delivery(**kwargs) def add_delivery_before_deadline(self, timedeltaobject, **kwargs): if 'time_of_delivery' in kwargs: raise ValueError( 'add_delivery_before_deadline does not accept ``time_of_delivery`` as kwarg, it sets it automatically.') kwargs['time_of_delivery'] = self.deadline.deadline - timedeltaobject return self.add_delivery(**kwargs) def add_delivery_x_hours_after_deadline(self, hours, **kwargs): return self.add_delivery_after_deadline(timedelta(hours=hours), **kwargs) def add_delivery_x_hours_before_deadline(self, hours, **kwargs): return self.add_delivery_before_deadline(timedelta(hours=hours), **kwargs) class CommentFileBuilder(CoreBuilderBase): object_attribute_name = 'comment_file' def __init__(self, **kwargs): fileobject = ContentFile(kwargs['data'], kwargs['filename']) del (kwargs['data']) kwargs['filesize'] = fileobject.size self.comment_file = CommentFile.objects.create(**kwargs) self.comment_file.file = fileobject self.comment_file.save() class GroupCommentBuilder(CoreBuilderBase): object_attribute_name = 'groupcomment' @classmethod def quickadd_ducku_duck1010_active_assignment1_group_feedbackset_groupcomment(cls, studentuser=None, examiner=None, comment=None): students = [] if studentuser: students.append(studentuser) return FeedbackSetBuilder \ .quickadd_ducku_duck1010_active_assignment1_group_feedbackset(studentuser=studentuser, examiner=examiner) \ .add_groupcomment( user=studentuser, user_role='student', instant_publish=True, visible_for_students=True, text=comment if comment is not None else 'Lorem ipsum I dont know it from memory bla bla bla..', published_datetime=arrow.get(timezone.now()).replace(weeks=-4, days=-3, hours=-10).datetime) def __init__(self, **kwargs): kwargs['comment_type'] = 'groupcomment' self.groupcomment = baker.make('devilry_group.GroupComment', **kwargs) def add_file(self, **kwargs): kwargs['comment'] = self.groupcomment return CommentFileBuilder(**kwargs) def add_files(self, files): retval = [] for fileobject in files: retval.append(self.add_file(**fileobject)) @classmethod def make(cls, **kwargs): feedbacksetbuilder_kwargs = {} for key in list(kwargs.keys()): if key.startswith('feedback_set__'): feedbacksetbuilder_kwargs[key[len('feedback_set__'):]] = kwargs.pop(key) groupbuilder = FeedbackSetBuilder.make(**feedbacksetbuilder_kwargs) return cls(feedback_set=groupbuilder.feedback_set, **kwargs) class FeedbackSetBuilder(CoreBuilderBase): object_attribute_name = 'feedback_set' @classmethod def quickadd_ducku_duck1010_active_assignment1_group_feedbackset(cls, studentuser=None, examiner=None): students = [] if studentuser: students.append(studentuser) return AssignmentGroupBuilder \ .quickadd_ducku_duck1010_active_assignment1_group(studentuser=studentuser) \ .add_feedback_set(points=10, published_by=examiner, created_by=examiner, deadline_datetime=arrow.get(timezone.now()).replace(weeks=-4).datetime) def __init__(self, **kwargs): self.feedback_set = baker.make('devilry_group.FeedbackSet', **kwargs) def add_groupcomment(self, files=[], **kwargs): kwargs['feedback_set'] = self.feedback_set groupcomment = GroupCommentBuilder(**kwargs) groupcomment.add_files(files) return groupcomment.groupcomment @classmethod def make(cls, **kwargs): groupbuilder_kwargs = {} for key in list(kwargs.keys()): if key.startswith('group__'): groupbuilder_kwargs[key[len('group__'):]] = kwargs.pop(key) groupbuilder = AssignmentGroupBuilder.make(**groupbuilder_kwargs) return cls(group=groupbuilder.group, **kwargs) class AssignmentGroupBuilder(CoreBuilderBase): object_attribute_name = 'group' @classmethod def quickadd_ducku_duck1010_active_assignment1_group(cls, studentuser=None): students = [] if studentuser: students.append(studentuser) return AssignmentBuilder \ .quickadd_ducku_duck1010_active_assignment1() \ .add_group(students=students) def __init__(self, students=[], candidates=[], examiners=[], relatedstudents=[], **kwargs): self.group = AssignmentGroup.objects.create(**kwargs) self.add_students(*students) self.add_candidates(*candidates) self.add_examiners(*examiners) self.add_candidates_from_relatedstudents(*relatedstudents) def add_candidates_from_relatedstudents(self, *relatedstudents): for relatedstudent in relatedstudents: self.group.candidates.create(relatedstudent=relatedstudent, student_id=relatedstudent.user_id) def add_students(self, *users): for user in users: period = self.group.period relatedstudent = RelatedStudent.objects.get_or_create(user=user, period=period)[0] self.group.candidates.create(relatedstudent=relatedstudent) return self def add_candidates(self, *candidates): for candidate in candidates: self.group.candidates.add(candidate) return self def add_examiners(self, *users): for user in users: period = self.group.period relatedexaminer = RelatedExaminer.objects.get_or_create(user=user, period=period)[0] self.group.examiners.create(relatedexaminer=relatedexaminer) return self def add_deadline(self, **kwargs): kwargs['assignment_group'] = self.group return DeadlineBuilder(**kwargs) def add_deadline_in_x_weeks(self, weeks, **kwargs): if 'deadline' in kwargs: raise ValueError('add_deadline_in_x_weeks does not accept ``deadline`` as kwarg, it sets it automatically.') kwargs['deadline'] = arrow.get(timezone.now()).replace(weeks=+weeks).datetime return self.add_deadline(**kwargs) def add_deadline_x_weeks_ago(self, weeks, **kwargs): if 'deadline' in kwargs: raise ValueError( 'add_deadline_x_weeks_ago does not accept ``deadline`` as kwarg, it sets it automatically.') kwargs['deadline'] = arrow.get(timezone.now()).replace(weeks=-weeks).datetime return self.add_deadline(**kwargs) def add_feedback_set(self, **kwargs): kwargs['group'] = self.group return FeedbackSetBuilder(**kwargs) @classmethod def make(cls, **kwargs): assignmentbuilder_kwargs = {} for key in list(kwargs.keys()): if key.startswith('assignment__'): assignmentbuilder_kwargs[key[len('assignment__'):]] = kwargs.pop(key) assignmentbuilder = AssignmentBuilder.make(**assignmentbuilder_kwargs) return cls(parentnode=assignmentbuilder.assignment, **kwargs) class AssignmentBuilder(BaseNodeBuilderBase): object_attribute_name = 'assignment' modelcls = Assignment @classmethod def quickadd_ducku_duck1010_active_assignment1(cls): return PeriodBuilder.quickadd_ducku_duck1010_active() \ .add_assignment('assignment1') def __init__(self, *args, **kwargs): if not 'publishing_time' in kwargs: kwargs['publishing_time'] = timezone.now() super(AssignmentBuilder, self).__init__(*args, **kwargs) def add_group(self, *args, **kwargs): kwargs['parentnode'] = self.assignment return AssignmentGroupBuilder(*args, **kwargs) @classmethod def make(cls, **kwargs): if 'publishing_time' in kwargs: return PeriodBuilder.make().add_assignment(**kwargs) else: return PeriodBuilder.make().add_assignment_in_x_weeks(weeks=1, **kwargs) class PeriodBuilder(BaseNodeBuilderBase): object_attribute_name = 'period' modelcls = Period def __init__(self, *args, **kwargs): relatedstudents = kwargs.pop('relatedstudents', None) relatedexaminers = kwargs.pop('relatedexaminers', None) super(PeriodBuilder, self).__init__(*args, **kwargs) if relatedstudents: self.add_relatedstudents(*relatedstudents) if relatedexaminers: self.add_relatedexaminers(*relatedexaminers) @classmethod def quickadd_ducku_duck1010_active(cls): return SubjectBuilder.quickadd_ducku_duck1010() \ .add_6month_active_period() def add_assignment(self, *args, **kwargs): kwargs['parentnode'] = self.period if 'first_deadline' not in kwargs: kwargs['first_deadline'] = timezone.now() return AssignmentBuilder(*args, **kwargs) def add_assignment_x_weeks_ago(self, weeks, **kwargs): kwargs['publishing_time'] = arrow.get(timezone.now()).replace(weeks=-weeks).datetime return self.add_assignment(**kwargs) def add_assignment_in_x_weeks(self, weeks, **kwargs): kwargs['publishing_time'] = arrow.get(timezone.now()).replace(weeks=+weeks).datetime return self.add_assignment(**kwargs) def add_relatedstudents(self, *users): relatedstudents = [] for user in users: if isinstance(user, RelatedStudent): relatedstudent = user else: relatedstudent = RelatedStudent( user=user) relatedstudent.period = self.period relatedstudents.append(relatedstudent) RelatedStudent.objects.bulk_create(relatedstudents) return self def add_relatedexaminers(self, *users): relatedexaminers = [] for user in users: if isinstance(user, RelatedExaminer): relatedexaminer = user else: relatedexaminer = RelatedExaminer( user=user) relatedexaminer.period = self.period relatedexaminers.append(relatedexaminer) RelatedExaminer.objects.bulk_create(relatedexaminers) return self @classmethod def make(cls, **kwargs): return SubjectBuilder.make().add_period(**kwargs) class SubjectBuilder(BaseNodeBuilderBase): object_attribute_name = 'subject' modelcls = Subject @classmethod def quickadd_ducku_duck1010(cls, **kwargs): return SubjectBuilder('duck1010', **kwargs) def add_period(self, *args, **kwargs): kwargs['parentnode'] = self.subject if 'start_time' not in kwargs: kwargs['start_time'] = arrow.get(timezone.now()).replace(days=-(30 * 3)).datetime if 'end_time' not in kwargs: kwargs['end_time'] = arrow.get(timezone.now()).replace(days=30 * 3).datetime return PeriodBuilder(*args, **kwargs) def add_6month_active_period(self, **kwargs): kwargs['parentnode'] = self.subject if 'start_time' in kwargs or 'end_time' in kwargs: raise ValueError( 'add_6month_active_period does not accept ``start_time`` or ``end_time`` as kwargs, it sets them automatically.') kwargs['start_time'] = arrow.get(timezone.now()).replace(days=-(30 * 3)).datetime kwargs['end_time'] = arrow.get(timezone.now()).replace(days=30 * 3).datetime if not 'short_name' in kwargs: kwargs['short_name'] = 'active' return self.add_period(**kwargs) def add_6month_lastyear_period(self, **kwargs): kwargs['parentnode'] = self.subject if 'start_time' in kwargs or 'end_time' in kwargs: raise ValueError( 'add_6month_lastyear_period does not accept ``start_time`` or ``end_time`` as kwargs, it sets them automatically.') kwargs['start_time'] = arrow.get(timezone.now()).replace(days=-(365 + 30 * 3)).datetime kwargs['end_time'] = arrow.get(timezone.now()).replace(days=-(365 - 30 * 3)).datetime if not 'short_name' in kwargs: kwargs['short_name'] = 'lastyear' return self.add_period(**kwargs) def add_6month_nextyear_period(self, **kwargs): kwargs['parentnode'] = self.subject if 'start_time' in kwargs or 'end_time' in kwargs: raise ValueError( 'add_6month_nextyear_period does not accept ``start_time`` or ``end_time`` as kwargs, it sets them automatically.') kwargs['start_time'] = arrow.get(timezone.now()).replace(days=365 - 30 * 3).datetime kwargs['end_time'] = arrow.get(timezone.now()).replace(days=365 + 30 * 3).datetime if not 'short_name' in kwargs: kwargs['short_name'] = 'nextyear' return self.add_period(**kwargs) @classmethod def make(cls, **kwargs): return SubjectBuilder(**kwargs)
StarcoderdataPython
3295258
<filename>db_tools/cli.py import click from datetime import datetime from pathlib import Path from captif_db_config import Config from db_tools import __version__ from db_tools.tools import ( generate_duplicate_database, dump_database, restore_database, ) @click.version_option(__version__, prog_name="db-tools") @click.group() def cli(): pass @click.command(name="dump") @click.option("--config-file", "config_file", required=True) @click.option("--backup-name", "backup_name", default="", help="text to be appended to the database name when generating a filename") @click.argument("database", required=True) @click.argument("tables", nargs=-1) @click.argument("backup-path", required=True) def cli_dump_database(config_file, backup_name, database, tables, backup_path): """Dump database to a sql file. """ config = Config(config_file) if backup_name == "": backup_name = datetime.now().strftime("%Y%m%d_%H%M") sql_file = Path(backup_path).joinpath(f"{database}_{backup_name}.sql") dump_database(config, database, sql_file, tables) @click.command(name="restore") @click.option("--config-file", "config_file", required=True) @click.argument('database', required=True) @click.argument('path', required=True) def cli_restore_database(config_file, database, path): """Restore database from backup file. The name of the new database must be provided. """ config = Config(config_file) restore_database(config, database, path) @click.command(name="duplicate") @click.option("--config-file", "config_file", required=True) @click.argument('database', required=True) @click.argument("tables", nargs=-1) def cli_duplicate_database(config_file, database, tables): """Generate a duplicate copy of a database with '_copy' appended to the name. """ config = Config(config_file) generate_duplicate_database(config, database, tables) cli.add_command(cli_dump_database) cli.add_command(cli_restore_database) cli.add_command(cli_duplicate_database) if __name__ == '__main__': cli()
StarcoderdataPython
149286
<gh_stars>0 # MAKE_ENDS def make_ends(nums): return [nums[0], nums[0]] if len(nums)<2 else [nums[0], nums[len(nums)-1]]
StarcoderdataPython
4834876
# -*- coding: utf-8 -*- #------------------------------------------------------------------------------- # Name: ifields_methods.py # Purpose: store custom methods for wrapper class of IFields Interface # Licence: MIT License #------------------------------------------------------------------------------- """Store custom methods for wrapper class of IFields Interface. name := repr(zos_obj).split()[0].split('.')[-1].lower() + '_methods.py' """ from __future__ import print_function from __future__ import division from win32com.client import CastTo as _CastTo, constants as _constants from pyzos.zosutils import wrapped_zos_object as _wrapped_zos_object # Overridden methods # ------------------ # Extra methods # -------------
StarcoderdataPython
3266131
#FLM: Remove empty glyphs # Removes all empty glyphs from a font font = fl.font glyphs = font.glyphs namesToKeep = [ '.notdef', 'NULL', 'CR', 'space' ] # Find all the empty glyphs for glyph in reversed(glyphs): if not glyph.nodes and not glyph.components: if not glyph.name in namesToKeep: del glyphs[font.FindGlyph(glyph.name)] fl.UpdateFont()
StarcoderdataPython
1674815
import smart_imports smart_imports.all() class GeneralTest(utils_testcase.TestCase): def setUp(self): super(GeneralTest, self).setUp() game_logic.create_test_map() self.account = self.accounts_factory.create_account() self.storage = game_logic_storage.LogicStorage() self.storage.load_account_data(self.account.id) self.hero = self.storage.accounts_to_heroes[self.account.id] self.action_idl = self.hero.actions.current_action self.bundle_id = self.action_idl.bundle_id def test_TEXTGEN_TYPE(self): for action_class in list(prototypes.ACTION_TYPES.values()): self.assertTrue('TEXTGEN_TYPE' in action_class.__dict__) def test_percents_consistency(self): # just test that quest will be ended while not self.action_idl.leader: self.storage.process_turn() game_turn.increment() self.assertEqual(self.storage.tests_get_last_action().percents, self.hero.last_action_percents) def test_action_default_serialization(self): default_action = helpers.TestAction(hero=self.hero, bundle_id=self.bundle_id, state=helpers.TestAction.STATE.UNINITIALIZED) self.assertEqual(default_action.serialize(), {'bundle_id': self.bundle_id, 'state': helpers.TestAction.STATE.UNINITIALIZED, 'percents': 0.0, 'description': None, 'type': helpers.TestAction.TYPE.value, 'visited_places': [], 'created_at_turn': game_turn.number()}) deserialized_action = helpers.TestAction.deserialize(default_action.serialize()) deserialized_action.hero = self.hero self.assertEqual(default_action, deserialized_action) def test_action_full_serialization(self): mob = mobs_storage.mobs.create_mob_for_hero(self.hero) account_2 = self.accounts_factory.create_account() self.storage.load_account_data(account_2.id) hero_2 = self.storage.accounts_to_heroes[account_2.id] meta_action = meta_actions.ArenaPvP1x1.create(self.storage, self.hero, hero_2) default_action = helpers.TestAction(hero=self.hero, bundle_id=self.bundle_id, state=helpers.TestAction.STATE.UNINITIALIZED, created_at_turn=666, context=helpers.TestAction.CONTEXT_MANAGER(), description='description', place_id=2, mob=mob, data={'xxx': 'yyy'}, break_at=0.75, percents_barier=77, extra_probability=0.6, mob_context=helpers.TestAction.CONTEXT_MANAGER(), textgen_id='textgen_id', info_link='/bla-bla', meta_action=meta_action, replane_required=True, visited_places={13}, path=navigation_path.Path(cells=[(1, 2)])) self.assertEqual(default_action.serialize(), {'bundle_id': self.bundle_id, 'state': helpers.TestAction.STATE.UNINITIALIZED, 'context': helpers.TestAction.CONTEXT_MANAGER().serialize(), 'mob_context': helpers.TestAction.CONTEXT_MANAGER().serialize(), 'mob': mob.serialize(), 'textgen_id': 'textgen_id', 'extra_probability': 0.6, 'percents_barier': 77, 'percents': 0.0, 'description': 'description', 'type': helpers.TestAction.TYPE.value, 'created_at_turn': 666, 'place_id': 2, 'data': {'xxx': 'yyy'}, 'info_link': '/bla-bla', 'break_at': 0.75, 'meta_action': meta_action.serialize(), 'replane_required': True, 'visited_places': [13], 'path': navigation_path.Path(cells=[(1, 2)]).serialize()}) deserialized_action = helpers.TestAction.deserialize(default_action.serialize()) deserialized_action.hero = self.hero self.assertEqual(default_action, deserialized_action)
StarcoderdataPython
3220056
# coding: utf-8 # /*########################################################################## # # Copyright (c) 2016-2021 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """ This module contains utilitaries used by other dialog modules. """ __authors__ = ["<NAME>"] __license__ = "MIT" __date__ = "25/10/2017" import os import types from silx.gui import qt def samefile(path1, path2): """Portable :func:`os.path.samepath` function. :param str path1: A path to a file :param str path2: Another path to a file :rtype: bool """ if path1 == path2: return True if path1 == "": return False if path2 == "": return False return os.path.samefile(path1, path2) def findClosestSubPath(hdf5Object, path): """Find the closest existing path from the hdf5Object using a subset of the provided path. Returns None if no path found. It is possible if the path is a relative path. :param h5py.Node hdf5Object: An HDF5 node :param str path: A path :rtype: str """ if path in ["", "/"]: return "/" names = path.split("/") if path[0] == "/": names.pop(0) for i in range(len(names)): n = len(names) - i path2 = "/".join(names[0:n]) if path2 == "": return "" if path2 in hdf5Object: return path2 if path[0] == "/": return "/" return None def patchToConsumeReturnKey(widget): """ Monkey-patch a widget to consume the return key instead of propagating it to the dialog. """ assert(not hasattr(widget, "_oldKeyPressEvent")) def keyPressEvent(self, event): k = event.key() result = self._oldKeyPressEvent(event) if k in [qt.Qt.Key_Return, qt.Qt.Key_Enter]: event.accept() return result widget._oldKeyPressEvent = widget.keyPressEvent widget.keyPressEvent = types.MethodType(keyPressEvent, widget)
StarcoderdataPython
134110
import xlwt # 这是操作excel的库,需要安装这个库 命令: pip install xlwt import requests from lxml import etree # 上面这两行是需要装的库 # 目前只取了列表页店铺名和商品名和价格信息,评价数暂时拿不到 def get_lsf_info_from_jd(): """京东螺狮粉部分信息""" # 这是请求头信息 headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36", } # 这是京东搜索螺狮粉的链接 url = 'https://search.jd.com/Search?keyword=%E8%9E%BA%E7%8B%AE%E7%B2%89&qrst=1&stock=1&page=100&s=1&click=0' # 这是发送请求 类似于浏览器中输入上面网址 res = requests.get(url, headers=headers) # res是请求之后返回的数据 也就是页面数据 data_html是解析返回的数据 data_html = etree.HTML(res.content) divs = data_html.xpath('//div[contains(@class, "gl-i-wrap")]') data_list = [] # 下面这些是解析拼接的过程,很复杂,应该有更好的方法 for d in divs: data_dict = {} print('价格: ', d.xpath('./div[2]/strong/i')[0].text) print('店铺: ', d.xpath('./div[5]/span/a/@title')[0] if d.xpath('./div[5]/span/a/@title') else '无信息') # 将商品价格店铺存入字典中,方便后期写入excel data_dict['price'] = d.xpath('./div[2]/strong/i')[0].text data_dict['shop'] = d.xpath('./div[5]/span/a/@title')[0] if d.xpath('./div[5]/span/a/@title') else '无信息' if d.xpath('./div[3]/a/@title') != ['']: print('商品: ', d.xpath('./div[3]/a/@title')[0]) # 将商品名称存入字典中,方便后期写入excel data_dict['name'] = d.xpath('./div[3]/a/@title')[0] else: goods_1 = d.xpath('./div[3]/a/em/text()') goods_2 = d.xpath('./div[3]/a/em/font/text()') if len(goods_1) > len(goods_2): a = '' for i in range(len(goods_2)): a += goods_1[i] a += goods_2[i] a += goods_1[-1] else: a = '' for i in range(len(goods_2)): a += goods_1[i] a += goods_2[i] print('商品: ', a) # 将商品名称存入字典中,方便后期写入excel data_dict['name'] = a print('-' * 50) # 将每个商品存入列表中,列表中最终会有多个商品的信息,方便一次性写入excel中 data_list.append(data_dict) # 将列表中的数据统一写入excel中 # 创建 xls 文件对象, 就是创建一个excel文件 wb = xlwt.Workbook() # 新增表单页,就是excel下面的sheet名字,可以创建多个 sh1 = wb.add_sheet('京东商品') # 然后按照位置来添加数据,括号里面第一个参数是行,第二个参数是列,第三个参数是写入的数据,表示excel中第几行第几列写入什么数据 sh1.write(0, 0, '商品名') # 表示第一行第一列写入'商品名',行列从0开始 sh1.write(0, 1, '店铺名') sh1.write(0, 2, '价格') # 用循环将列表中的数据写入excel中 for index, data in enumerate(data_list): # 因为第一行(第一行是数字0)有商品名,店铺名等数据,所以数据从第二行开始写入,index也是从0开始,所以index需要加1 sh1.write(index + 1, 0, data['name']) sh1.write(index + 1, 1, data['shop']) sh1.write(index + 1, 2, data['price']) # 最后保存文件即可,括号内就是你要生称的excel文件名,文件会生成在当前目录下 wb.save('test_w.xls') # get_lsf_info_from_jd() # 淘宝获取数据 def get_lsf_info_from_tb(): # url = 'https://detail.tmall.com/item.htm?spm=a230r.1.14.1.1a782a9d4L50l6&id=598614273525&ns=1&abbucket=20' url = 'https://s.taobao.com/search?q=%E8%9E%BA%E7%8B%AE%E7%B2%89&imgfile=&commend=all&ssid=s5-e&search_type=item&sourceId=tb.index&spm=a21bo.2017.201856-taobao-item.1&ie=utf8&initiative_id=tbindexz_20170306&bcoffset=0&ntoffset=6&p4ppushleft=1%2C48&sort=sale-desc' headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", } res = requests.get(url, headers=headers) # print(res.content) data_html = etree.HTML(res.content) divs = data_html.xpath('//div[contains(@class, "item J_MouserOnverReq")]') # divs = data_html.xpath('//*[@id="mainsrp-itemlist"]/div/div/div[1]/div[1]/div[2]/div[2]') # divs = data_html.xpath('//*[@id="mainsrp-itemlist"]/div/div/div[1]/div[1]/div[2]/div[2]') print(divs) for i in divs: a =1 # divs = data_html.xpath('//*[@id="J_DetailMeta"]/div[1]/div[1]/div/div[1]/h1/text()') # prices = data_html.xpath('//*[@id="J_PromoPrice"]/dd/div/span/text()') # old_prices = data_html.xpath('//*[@id="J_StrPriceModBox"]/dd/span/text()') # count = data_html.xpath('//*[@id="J_DetailMeta"]/div[1]/div[1]/div/ul/li[1]/div/span[2]/text()') # comment_count = data_html.xpath('//*[@id="J_ItemRates"]/div/span[2]/text()') # print(divs) # print(prices) # print(old_prices) # print(count) # print(comment_count) get_lsf_info_from_tb()
StarcoderdataPython
1693687
from setuptools import setup setup( name='autodsp', version='0.0.1', description='Code to reproduce the 2021 WASPAA paper titled AUTO-DSP: LEARNING TO OPTIMIZE ACOUSTIC ECHO CANCELLERS.', author='<NAME>, <NAME>, <NAME>', author_email='<EMAIL>', url='https://github.com/jmcasebeer/autodsp', packages=['autodsp'], license='University of Illinois Open Source License', install_requires=[ 'matplotlib==3.4.3', 'numpy==1.21.2', 'pandas==1.3.3', 'scipy==1.7.1', 'tqdm==4.62.3', 'wandb==0.12.4', ] )
StarcoderdataPython
3201208
# coding: utf-8 from __future__ import absolute_import, unicode_literals from enum import Enum from six import text_type class TextEnum(text_type, Enum): def __repr__(self): return self._value_ # pylint:disable=no-member def __str__(self): return str(self.value) # pylint:disable=no-member
StarcoderdataPython
121992
"""Test module for the user profile endpoint""" import os import pytest from unittest.mock import Mock from tempfile import NamedTemporaryFile from django.urls import resolve, reverse from django.core.files.uploadedfile import SimpleUploadedFile from rest_framework.test import APIClient import cloudinary.uploader from PIL import Image from src.apps.core.utilities.messages import ERRORS, MESSAGES from tests.fixtures.user_profile import (NEW_PROFILE, INVALID_PROFILE, MOCK_RESPONSE) PROFILE_URL = reverse('user:profile') PROFILE_PHOTO_URL = reverse('user:photo') api_client = APIClient() @pytest.mark.django_db class TestUserProfileView: """Class to test the user profile views""" def test_profile_url_succeeds(self): """Test the paths""" assert resolve(PROFILE_URL).view_name == 'user:profile' def test_getting_a_logged_in_user_profile_succeeds(self, auth_header, client): """Test getting logged in users profile""" response = client.get(PROFILE_URL, **auth_header) resp_data = response.data data = resp_data['data'] assert response.status_code == 200 assert resp_data['status'] == 'success' assert data['first_name'] is None assert data['last_name'] is None assert data['middle_name'] is None assert data['gender'] is None assert data['phone'] is None assert data['seat_preference'] is None assert data['dob'] is None def test_getting_a_logged_in_user_profile_without_auth_fails(self, client): """Test getting logged in users profile""" response = client.get(PROFILE_URL) resp_data = response.data assert response.status_code == 401 assert resp_data['status'] == 'error' assert resp_data['user_message'] == ERRORS['AUTH_01'] def test_updating_user_profile_succeeds(self, client, auth_header): """Test that logged in user can update profile""" response = client.patch(PROFILE_URL, content_type='application/json', data=NEW_PROFILE, **auth_header) resp_data = response.data data = resp_data['data'] assert response.status_code == 200 assert resp_data['status'] == 'success' assert data['first_name'] == NEW_PROFILE['first_name'] assert data['last_name'] == NEW_PROFILE['last_name'] assert data['middle_name'] == NEW_PROFILE['middle_name'] assert data['gender'] == NEW_PROFILE['gender'] assert data['phone'] == NEW_PROFILE['phone'] assert data['seat_preference'] == NEW_PROFILE['seat_preference'] assert data['dob'] == NEW_PROFILE['dob'] def test_updating_user_profile_with_invalid_data_fails( self, client, auth_header): """Test that logged in user cannot update profile with invalid data""" response = client.patch(PROFILE_URL, content_type='application/json', data=INVALID_PROFILE, **auth_header) resp_data = response.data data = resp_data['errors'] assert response.status_code == 400 assert resp_data['status'] == 'error' assert data['middle_name'][0] == ERRORS['USR_07'] assert data['phone'][0] == ERRORS['USR_07'] def test_updating_a_logged_in_user_profile_without_auth_fails( self, client): """Test getting logged in users profile""" response = client.patch(PROFILE_URL) resp_data = response.data assert response.status_code == 401 assert resp_data['status'] == 'error' assert resp_data['user_message'] == ERRORS['AUTH_01'] def test_user_can_upload_profile_photo_succeeds(self, client, auth_header, create_image): """Test that a user can upload profile photograph.""" # Mock the cloudinary SDK cloudinary.uploader.upload = Mock(return_value=MOCK_RESPONSE) cloudinary.uploader.destroy = Mock() # set up form data profile_photo = create_image(None, 'photo_pic.png') photo_file = SimpleUploadedFile('test_photo.png', profile_photo.getvalue(), content_type='image/png') data = dict(photo=photo_file) response = api_client.put(PROFILE_PHOTO_URL, data=data, format="multipart", **auth_header) resp_data = response.data assert response.status_code == 200 assert resp_data['status'] == 'success' assert resp_data['user_message'] == MESSAGES['PHOTO_UPLOAD'] assert resp_data['data'] == [] assert cloudinary.uploader.upload.called assert cloudinary.uploader.upload.call_count == 1 assert cloudinary.uploader.destroy.called assert cloudinary.uploader.destroy.call_count == 1 def test_user_cannot_upload_profile_photo_of_invalid_type_fails( self, client, auth_header, create_image): """Test that a user cannot upload profile photograph invalild file type.""" # set up form data profile_photo = create_image(None, 'photo_pic.png') photo_file = SimpleUploadedFile('test_photo.png', profile_photo.getvalue(), content_type='text/plain') data = dict(photo=photo_file) response = api_client.put(PROFILE_PHOTO_URL, data=data, format="multipart", **auth_header) resp_data = response.data data = resp_data['errors'] assert response.status_code == 400 assert resp_data['status'] == 'error' assert data['photo'][0] == ERRORS['USR_11'] def test_user_cannot_upload_profile_photo_with_invalid_file_fails( self, client, auth_header): """Test that a user cannot upload profile photograph without file""" response = api_client.put(PROFILE_PHOTO_URL, data={}, format="multipart", **auth_header) resp_data = response.data data = resp_data['errors'] assert response.status_code == 400 assert resp_data['status'] == 'error' assert data['photo'][0] == ERRORS['USR_04'] def test_uploading_profile_photo_with_file_exceeding_max_size_fails( self, client, auth_header, create_image): """Test uploading profile photograph exceeding max 2mb""" base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) filename = os.path.join(base_dir, 'fixtures/media/high_resoulution.jpg') image = Image.open(filename) picture = NamedTemporaryFile() image.save(picture, format="JPEG") picture.seek(0) response = api_client.put(PROFILE_PHOTO_URL, data={'photo': picture}, format="multipart", **auth_header) resp_data = response.data data = resp_data['errors'] assert response.status_code == 400 assert resp_data['status'] == 'error' assert data['photo'][0] == ERRORS['USR_10'] def test_the_exception_handler_succeeds(self, client, auth_header, create_image): """Raise exception on upload""" # Mock the cloudinary SDK cloudinary.uploader.upload = Mock(return_value=Exception('Test')) cloudinary.uploader.destroy = Mock() # set up form data profile_photo = create_image(None, 'photo_pic.png') photo_file = SimpleUploadedFile('test_photo.png', profile_photo.getvalue(), content_type='image/png') data = dict(photo=photo_file) response = api_client.put(PROFILE_PHOTO_URL, data=data, format="multipart", **auth_header) resp_data = response.data assert response.status_code == 200 assert resp_data['status'] == 'success' assert resp_data['user_message'] == MESSAGES['PHOTO_UPLOAD'] assert resp_data['data'] == [] assert cloudinary.uploader.upload.called assert cloudinary.uploader.upload.call_count == 1
StarcoderdataPython
1665639
<gh_stars>1-10 import pytest from lamberthub.universal_solvers import izzo @pytest.mark.parametrize("M", [1, 2, 3]) def test_minimum_time_of_flight_convergence(M): ll = -1 x_T_min_expected, T_min_expected = izzo._compute_T_min( ll, M, maxiter=10, atol=1e-8, rtol=1e-10 ) y = izzo._compute_y(x_T_min_expected, ll) T_min = izzo._tof_equation_y(x_T_min_expected, y, 0.0, ll, M) assert T_min_expected == T_min
StarcoderdataPython
194371
#!/usr/bin/env python # generate a jsonl version of a small slice of a dataset that can be fed to megatron-lm preprocessor import sys from datasets import load_dataset dataset_name = "stas/openwebtext-10k" # subset to jsonlines n_samples = 1000 ds = load_dataset(dataset_name, split='train') ds_small = ds.select(range(n_samples)) path = f"openwebtext-{n_samples}.jsonl" ds_small.to_json(path, orient="records", lines=True)
StarcoderdataPython
1606690
<reponame>Django-Lessons/lesson-31-python-logging<gh_stars>1-10 class Disk(): def __init__(self): pass def free(self): return 0 def total(self): return 0
StarcoderdataPython
1765809
# Multiples of 3 and 5 # Find the sum of all the multiples of 3 or 5 def multiplesOf3and5(num): sums = sum(n for n in range(num) if n%3 == 0 or n%5 == 0) return sums
StarcoderdataPython
126900
<gh_stars>0 # -*- coding: utf-8 -*- from optparse import make_option import sys import traceback from django.conf import settings from django.core.management.base import NoArgsCommand from django.core.management.color import no_style from django.utils.datastructures import SortedDict from django.utils.importlib import import_module from django_sqlalchemy.core import engines class Command(NoArgsCommand): option_list = NoArgsCommand.option_list + ( make_option('--noinput', action='store_false', dest='interactive', default=True, help='Tells Django to NOT prompt the user for input of any kind.'), make_option('--database', action='store', dest='database', default='default', help='Nominates a database to synchronize. ' 'Defaults to the "default" database.'), ) help = "Create the database tables for all apps in INSTALLED_APPS whose tables haven't already been created." def handle_noargs(self, **options): verbosity = int(options.get('verbosity')) interactive = options.get('interactive') show_traceback = options.get('traceback') self.style = no_style() db = options.get('database') engine = engines[db] for app_path in settings.INSTALLED_APPS: try: app_mod = import_module(app_path + '.models') except ImportError: continue base_klass = getattr(app_mod, 'Base', None) if not base_klass: continue if verbosity >= 1: print "SQLALchemy: Installing tables from %s..." % (app_path) base_klass.metadata.create_all(engine) ## Install custom SQL for the app (but only if this ## is a model we've just created) #if verbosity >= 1: # print "Installing custom SQL ..." #for app_name, model_list in manifest.items(): # for model in model_list: # if model in created_models: # custom_sql = custom_sql_for_model(model, self.style, connection) # if custom_sql: # if verbosity >= 2: # print "Installing custom SQL for %s.%s model" % (app_name, model._meta.object_name) # try: # for sql in custom_sql: # cursor.execute(sql) # except Exception, e: # sys.stderr.write("Failed to install custom SQL for %s.%s model: %s\n" % \ # (app_name, model._meta.object_name, e)) # if show_traceback: # traceback.print_exc() # transaction.rollback_unless_managed(using=db) # else: # transaction.commit_unless_managed(using=db) # else: # if verbosity >= 3: # print "No custom SQL for %s.%s model" % (app_name, model._meta.object_name) #if verbosity >= 1: # print "Installing indexes ..." ## Install SQL indices for all newly created models #for app_name, model_list in manifest.items(): # for model in model_list: # if model in created_models: # index_sql = connection.creation.sql_indexes_for_model(model, self.style) # if index_sql: # if verbosity >= 2: # print "Installing index for %s.%s model" % (app_name, model._meta.object_name) # try: # for sql in index_sql: # cursor.execute(sql) # except Exception, e: # sys.stderr.write("Failed to install index for %s.%s model: %s\n" % \ # (app_name, model._meta.object_name, e)) # transaction.rollback_unless_managed(using=db) # else: # transaction.commit_unless_managed(using=db) ## Load initial_data fixtures (unless that has been disabled) #if load_initial_data: # from django.core.management import call_command # call_command('loaddata', 'initial_data', verbosity=verbosity, database=db)
StarcoderdataPython
4812483
<filename>whampy/tests/test_load_SkySurvey.py import pytest import numpy as np import astropy.units as u from ..skySurvey import SkySurvey from ..skySurvey import directory # Set up the random number generator. np.random.seed(1234) # When running tests locally: filename = "/Users/dk/Data/WHAM/wham-ss-DR1-v161116-170912.fits" def test_remote_load(): """ Ensure survey loads from default remote link """ survey = SkySurvey(mode = "remote") assert survey["VELOCITY"].unit == u.km/u.s survey = SkySurvey() def test_idlsav_load(): import os.path """ Ensure IDL Save File loading also works """ filename = os.path.join(directory, "data/wham-ss-DR1-v161116-170912.sav") survey_idl = SkySurvey(filename = filename) assert survey["DATA"].unit == u.R * u.s / u.km def test_idlsav_load_varerror(): import os.path """ Ensure IDL Save File loading fails if WHAM data not there """ filename = os.path.join(directory, "data/wham-ss-DR1-v161116-170912.sav") try: surveey_idl = SkySurvey(filename = filename, idl_var = "test_fail") except TypeError: assert True else: assert False # def test_idlsav_load_nointen(): # import os.path # """ # Ensure IDL Save File loading also works for developer versions that # don't have a "INTEN" field # Note: This test is not yet implemented - need a test IDL Save File # """ # cur_directory = os.path.dirname(__file__) # filename = os.path.join(cur_directory, "test_data/test_no_inten.sav") # survey_idl = SkySurvey(filename = filename) # assert survey["INTEN"].unit == u.R def test_section_circle(): from astropy.coordinates import Angle """ Ensure survey section extraction works """ l = Angle(np.random.random(1) * 360.*u.deg).wrap_at("180d") b = Angle((np.random.random(1) * 180.*u.deg) - 90*u.deg) center = [l.value,b.value] radius = np.random.random()*30. circle = survey.sky_section(center, radius) assert circle["DATA"].unit == u.R / u.km * u.s def test_section_circle_coord_radius_number(): from astropy.coordinates import Angle from astropy.coordinates import SkyCoord """ Ensure survey section extraction works """ l = Angle(np.random.random(1) * 360.*u.deg).wrap_at("180d") b = Angle((np.random.random(1) * 180.*u.deg) - 90*u.deg) center = SkyCoord(l = l, b = b, frame = 'galactic') radius = np.random.random()*30. if radius < 5: radius = 5 circle = survey.sky_section(center, radius) assert circle["DATA"].unit == u.R / u.km * u.s def test_section_rect_coord(): from astropy.coordinates import Angle from astropy.coordinates import SkyCoord """ Ensure survey section extraction works """ l = Angle(np.random.random(2) * 360.*u.deg).wrap_at("180d") b = Angle((np.random.random(2) * 180.*u.deg) - 90*u.deg) bounds = SkyCoord(l = l, b = b, frame = 'galactic') rect = survey.sky_section(bounds) assert rect["DATA"].unit == u.R / u.km * u.s def test_section_rect(): from astropy.coordinates import Angle from astropy.coordinates import SkyCoord """ Ensure survey section extraction works """ l = Angle(np.random.random(2) * 360.*u.deg).wrap_at("180d") b = Angle((np.random.random(2) * 180.*u.deg) - 90*u.deg) bounds = [l.min().value, l.max().value, b.min().value, b.max().value] rect = survey.sky_section(bounds) assert rect["DATA"].unit == u.R / u.km * u.s def test_section_no_wrap(): from astropy.coordinates import Angle from astropy.coordinates import SkyCoord """ Ensure survey section extraction works """ l = Angle(np.random.random(2) * 360.*u.deg).wrap_at("360d") b = Angle((np.random.random(2) * 180.*u.deg) - 90*u.deg) bounds = [l.min().value, l.max().value, b.min().value, b.max().value] rect = survey.sky_section(bounds, wrap_at_180 = False) assert rect["DATA"].unit == u.R / u.km * u.s def test_bounds_error(): try: survey.sky_section(np.random.random(5)) except TypeError: assert True else: assert False def test_no_radius(): try: survey.sky_section(np.random.random(1), radius = None) except TypeError: assert True else: assert False def test_no_radius_coord(): from astropy.coordinates import SkyCoord try: survey.sky_section(SkyCoord(l = np.random.random(1) * u.deg, b = np.random.random(1) * u.deg, frame = 'galactic'), radius = None) except TypeError: assert True else: assert False def test_no_radius_len2(): try: survey.sky_section(np.random.random(2), radius = None) except TypeError: assert True else: assert False
StarcoderdataPython