id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
1608535
<filename>lib/loaders/gt_mrcn_loader.py """ data_json has 0. refs: [{ref_id, ann_id, box, image_id, split, category_id, sent_ids, att_wds}] 1. images: [{image_id, ref_ids, file_name, width, height, h5_id}] 2. anns: [{ann_id, category_id, image_id, box, h5_id}] 3. sentences: [{sent_id, tokens, h5_id}] 4. word_to_ix: {word: ix} 5. att_to_ix : {att_wd: ix} 6. att_to_cnt: {att_wd: cnt} 7. label_length: L Note, box in [xywh] format label_h5 has /labels is (M, max_length) uint32 array of encoded labels, zeros padded """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path as osp import numpy as np import h5py import json import random from loaders.loader import Loader import torch from torch.autograd import Variable from functools import cmp_to_key # mrcn path from mrcn import inference_no_imdb # box functions def xywh_to_xyxy(boxes): """Convert [x y w h] box format to [x1 y1 x2 y2] format.""" return np.hstack((boxes[:, 0:2], boxes[:, 0:2] + boxes[:, 2:4] - 1)) def xyxy_to_xywh(boxes): """Convert [x1 y1 x2 y2] box format to [x y w h] format.""" return np.hstack((boxes[:, 0:2], boxes[:, 2:4] - boxes[:, 0:2] + 1)) class GtMRCNLoader(Loader): def __init__(self, data_json, data_h5): # parent loader instance Loader.__init__(self, data_json, data_h5) # prepare attributes self.att_to_ix = self.info['att_to_ix'] self.ix_to_att = {ix: wd for wd, ix in self.att_to_ix.items()} self.num_atts = len(self.att_to_ix) self.att_to_cnt = self.info['att_to_cnt'] # img_iterators for each split self.split_ix = {} self.iterators = {} for image_id, image in self.Images.items(): # we use its ref's split (there is assumption that each image only has one split) split = self.Refs[image['ref_ids'][0]]['split'] if split not in self.split_ix: self.split_ix[split] = [] self.iterators[split] = 0 self.split_ix[split] += [image_id] for k, v in self.split_ix.items(): print('assigned %d images to split %s' % (len(v), k)) def prepare_mrcn(self, head_feats_dir, args): """ Arguments: head_feats_dir: cache/feats/dataset_splitBy/net_imdb_tag, containing all image conv_net feats args: imdb_name, net_name, iters, tag """ self.head_feats_dir = head_feats_dir self.mrcn = inference_no_imdb.Inference(args) assert args.net_name == 'res101' self.pool5_dim = 1024 self.fc7_dim = 2048 # load different kinds of feats def loadFeats(self, Feats): # Feats = {feats_name: feats_path} self.feats = {} self.feat_dim = None for feats_name, feats_path in Feats.items(): if osp.isfile(feats_path): self.feats[feats_name] = h5py.File(feats_path, 'r') self.feat_dim = self.feats[feats_name]['fc7'].shape[1] assert self.feat_dim == self.fc7_dim print('FeatLoader loading [%s] from %s [feat_dim %s]' % \ (feats_name, feats_path, self.feat_dim)) # shuffle split def shuffle(self, split): random.shuffle(self.split_ix[split]) # reset iterator def resetIterator(self, split): self.iterators[split] = 0 # expand list by seq_per_ref, i.e., [a,b], 3 -> [aaabbb] def expand_list(self, L, n): out = [] for l in L: out += [l] * n return out # get batch of data def getBatch(self, split, opt): # options batch_size = opt.get('batch_size', 5) seq_per_ref = opt.get('seq_per_ref', 3) sample_ratio = opt.get('visual_sample_ratio', 0.3) # sample ratio, st vs dt split_ix = self.split_ix[split] max_index = len(split_ix) - 1 # don't forget to -1 wrapped = False # fetch image_ids batch_image_ids = [] for i in range(batch_size): ri = self.iterators[split] ri_next = ri + 1 if ri_next > max_index: ri_next = 0 wrapped = True self.iterators[split] = ri_next image_id = split_ix[ri] batch_image_ids += [image_id] # fetch feats batch_ref_ids = [] batch_pos_ann_ids, batch_pos_sent_ids, batch_pos_pool5, batch_pos_fc7 = [], [], [], [] batch_pos_cxt_fc7, batch_pos_cxt_lfeats = [], [] batch_neg_ann_ids, batch_neg_sent_ids, batch_neg_pool5, batch_neg_fc7 = [], [], [], [] batch_neg_cxt_fc7, batch_neg_cxt_lfeats = [], [] for image_id in batch_image_ids: ref_ids = self.Images[image_id]['ref_ids'] batch_ref_ids += self.expand_list(ref_ids, seq_per_ref) # fetch head and im_info head, im_info = self.image_to_head(image_id) head = Variable(torch.from_numpy(head).cuda()) # get image related ids image_pos_ann_ids, image_neg_ann_ids = [], [] for ref_id in ref_ids: ref_ann_id = self.Refs[ref_id]['ann_id'] # pos ids pos_ann_ids = [ref_ann_id] * seq_per_ref pos_sent_ids = self.fetch_sent_ids_by_ref_id(ref_id, seq_per_ref) # neg ids neg_ann_ids, neg_sent_ids = self.sample_neg_ids(ref_ann_id, seq_per_ref, sample_ratio) # add to image and batch image_pos_ann_ids += pos_ann_ids image_neg_ann_ids += neg_ann_ids batch_pos_sent_ids += pos_sent_ids batch_neg_sent_ids += neg_sent_ids # fetch feats pos_ann_boxes = xywh_to_xyxy(np.vstack([self.Anns[ann_id]['box'] for ann_id in image_pos_ann_ids])) image_pos_pool5, image_pos_fc7 = self.fetch_grid_feats(pos_ann_boxes, head, im_info) # (num_pos, k, 7, 7) batch_pos_pool5 += [image_pos_pool5] batch_pos_fc7 += [image_pos_fc7] neg_ann_boxes = xywh_to_xyxy(np.vstack([self.Anns[ann_id]['box'] for ann_id in image_neg_ann_ids])) image_neg_pool5, image_neg_fc7 = self.fetch_grid_feats(neg_ann_boxes, head, im_info) # (num_neg, k, 7, 7) batch_neg_pool5 += [image_neg_pool5] batch_neg_fc7 += [image_neg_fc7] # add to batch batch_pos_ann_ids += image_pos_ann_ids batch_neg_ann_ids += image_neg_ann_ids # get feats and labels pos_fc7 = torch.cat(batch_pos_fc7, 0); pos_fc7.detach() pos_pool5 = torch.cat(batch_pos_pool5, 0); pos_pool5.detach() pos_lfeats = self.compute_lfeats(batch_pos_ann_ids) pos_dif_lfeats = self.compute_dif_lfeats(batch_pos_ann_ids) pos_labels = np.vstack([self.fetch_seq(sent_id) for sent_id in batch_pos_sent_ids]) neg_fc7 = torch.cat(batch_neg_fc7, 0); neg_fc7.detach() neg_pool5 = torch.cat(batch_neg_pool5, 0); neg_pool5.detach() neg_lfeats = self.compute_lfeats(batch_neg_ann_ids) neg_dif_lfeats = self.compute_dif_lfeats(batch_neg_ann_ids) neg_labels = np.vstack([self.fetch_seq(sent_id) for sent_id in batch_neg_sent_ids]) # fetch cxt_fc7 and cxt_lfeats pos_cxt_fc7, pos_cxt_lfeats, pos_cxt_ann_ids = self.fetch_cxt_feats(batch_pos_ann_ids, opt) neg_cxt_fc7, neg_cxt_lfeats, neg_cxt_ann_ids = self.fetch_cxt_feats(batch_neg_ann_ids, opt) pos_cxt_fc7 = Variable(torch.from_numpy(pos_cxt_fc7).cuda()) pos_cxt_lfeats = Variable(torch.from_numpy(pos_cxt_lfeats).cuda()) neg_cxt_fc7 = Variable(torch.from_numpy(neg_cxt_fc7).cuda()) neg_cxt_lfeats = Variable(torch.from_numpy(neg_cxt_lfeats).cuda()) # fetch attributes for batch_pos_ann_ids ONLY att_labels, select_ixs = self.fetch_attribute_label(batch_pos_ann_ids) # convert to Variable pos_lfeats = Variable(torch.from_numpy(pos_lfeats).cuda()) pos_dif_lfeats = Variable(torch.from_numpy(pos_dif_lfeats).cuda()) pos_labels = Variable(torch.from_numpy(pos_labels).long().cuda()) neg_lfeats = Variable(torch.from_numpy(neg_lfeats).cuda()) neg_dif_lfeats = Variable(torch.from_numpy(neg_dif_lfeats).cuda()) neg_labels = Variable(torch.from_numpy(neg_labels).long().cuda()) # chunk pos_labels and neg_labels using max_len max_len = max((pos_labels != 0).sum(1).max().data[0], (neg_labels != 0).sum(1).max().data[0]) pos_labels = pos_labels[:, :max_len] neg_labels = neg_labels[:, :max_len] # return data = {} data['ref_ids'] = batch_ref_ids data['ref_ann_ids'] = batch_pos_ann_ids data['ref_sent_ids'] = batch_pos_sent_ids data['ref_cxt_ann_ids'] = pos_cxt_ann_ids data['Feats'] = {'fc7': pos_fc7, 'pool5': pos_pool5, 'lfeats': pos_lfeats, 'dif_lfeats': pos_dif_lfeats, 'cxt_fc7': pos_cxt_fc7, 'cxt_lfeats': pos_cxt_lfeats} data['labels'] = pos_labels data['neg_ann_ids'] = batch_neg_ann_ids data['neg_sent_ids'] = batch_neg_sent_ids data['neg_Feats'] = {'fc7': neg_fc7, 'pool5': neg_pool5, 'lfeats': neg_lfeats, 'dif_lfeats': neg_dif_lfeats, 'cxt_fc7': neg_cxt_fc7, 'cxt_lfeats': neg_cxt_lfeats} data['neg_labels'] = neg_labels data['neg_cxt_ann_ids'] = neg_cxt_ann_ids data['att_labels'] = att_labels # (num_pos_ann_ids, num_atts) data['select_ixs'] = select_ixs # variable size data['bounds'] = {'it_pos_now': self.iterators[split], 'it_max': max_index, 'wrapped': wrapped} return data def sample_neg_ids(self, ann_id, seq_per_ref, sample_ratio): """Return - neg_ann_ids : list of ann_ids that are negative to target ann_id - neg_sent_ids: list of sent_ids that are negative to target ann_id """ st_ref_ids, st_ann_ids, dt_ref_ids, dt_ann_ids = self.fetch_neighbour_ids(ann_id) # neg ann neg_ann_ids, neg_sent_ids = [], [] for k in range(seq_per_ref): # neg_ann_id for negative visual representation: mainly from same-type objects if len(st_ann_ids) > 0 and np.random.uniform(0, 1, 1) < sample_ratio: neg_ann_id = random.choice(st_ann_ids) elif len(dt_ann_ids) > 0: neg_ann_id = random.choice(dt_ann_ids) else: neg_ann_id = random.choice(list(self.Anns.keys())) neg_ann_ids += [neg_ann_id] # neg_ref_id for negative language representations: mainly from same-type "referred" objects if len(st_ref_ids) > 0 and np.random.uniform(0, 1, 1) < sample_ratio: neg_ref_id = random.choice(st_ref_ids) elif len(dt_ref_ids) > 0: neg_ref_id = random.choice(dt_ref_ids) else: neg_ref_id = random.choice(list(self.Refs.keys())) neg_sent_id = random.choice(self.Refs[neg_ref_id]['sent_ids']) neg_sent_ids += [neg_sent_id] return neg_ann_ids, neg_sent_ids def fetch_neighbour_ids(self, ref_ann_id): """ For a given ref_ann_id, we return - st_ann_ids: same-type neighbouring ann_ids (not including itself) - dt_ann_ids: different-type neighbouring ann_ids Ordered by distance to the input ann_id """ ref_ann = self.Anns[ref_ann_id] x, y, w, h = ref_ann['box'] rx, ry = x+w/2, y+h/2 def compare(ann_id0, ann_id1): x, y, w, h = self.Anns[ann_id0]['box'] ax0, ay0 = x+w/2, y+h/2 x, y, w, h = self.Anns[ann_id1]['box'] ax1, ay1 = x+w/2, y+h/2 # closer --> former if (rx-ax0)**2 + (ry-ay0)**2 <= (rx-ax1)**2 + (ry-ay1)**2: return -1 else: return 1 image = self.Images[ref_ann['image_id']] ann_ids = list(image['ann_ids']) # copy in case the raw list is changed ann_ids = sorted(ann_ids, key=cmp_to_key(compare)) st_ref_ids, st_ann_ids, dt_ref_ids, dt_ann_ids = [], [], [], [] for ann_id in ann_ids: if ann_id != ref_ann_id: if self.Anns[ann_id]['category_id'] == ref_ann['category_id']: st_ann_ids += [ann_id] if ann_id in self.annToRef: st_ref_ids += [self.annToRef[ann_id]['ref_id']] else: dt_ann_ids += [ann_id] if ann_id in self.annToRef: dt_ref_ids += [self.annToRef[ann_id]['ref_id']] return st_ref_ids, st_ann_ids, dt_ref_ids, dt_ann_ids def fetch_sent_ids_by_ref_id(self, ref_id, num_sents): """ Sample #num_sents sents for each ref_id. """ sent_ids = list(self.Refs[ref_id]['sent_ids']) if len(sent_ids) < num_sents: append_sent_ids = [random.choice(sent_ids) for _ in range(num_sents - len(sent_ids))] sent_ids += append_sent_ids else: random.shuffle(sent_ids) sent_ids = sent_ids[:num_sents] assert len(sent_ids) == num_sents return sent_ids def combine_feats(self, feats0, feats1): feats = {} for k, v in feats0.items(): feats[k] = torch.cat([feats0[k], feats1[k]]) return feats def image_to_head(self, image_id): """Returns head: float32 (1, 1024, H, W) im_info: float32 [[im_h, im_w, im_scale]] """ feats_h5 = osp.join(self.head_feats_dir, str(image_id)+'.h5') feats = h5py.File(feats_h5, 'r') head, im_info = feats['head'], feats['im_info'] return np.array(head), np.array(im_info) def fetch_grid_feats(self, boxes, net_conv, im_info): """returns - pool5 (n, 1024, 7, 7) - fc7 (n, 2048, 7, 7) """ pool5, fc7 = self.mrcn.box_to_spatial_fc7(net_conv, im_info, boxes) return pool5, fc7 def compute_lfeats(self, ann_ids): # return ndarray float32 (#ann_ids, 5) lfeats = np.empty((len(ann_ids), 5), dtype=np.float32) for ix, ann_id in enumerate(ann_ids): ann = self.Anns[ann_id] image = self.Images[ann['image_id']] x, y, w, h = ann['box'] ih, iw = image['height'], image['width'] lfeats[ix] = np.array([[x/iw, y/ih, (x+w-1)/iw, (y+h-1)/ih, w*h/(iw*ih)]], np.float32) return lfeats def compute_dif_lfeats(self, ann_ids, topK=5): # return ndarray float32 (#ann_ids, 5*topK) dif_lfeats = np.zeros((len(ann_ids), 5*topK), dtype=np.float32) for i, ref_ann_id in enumerate(ann_ids): # reference box rbox = self.Anns[ref_ann_id]['box'] rcx, rcy, rw, rh = rbox[0]+rbox[2]/2, rbox[1]+rbox[3]/2, rbox[2], rbox[3] # candidate boxes _, st_ann_ids, _, _ = self.fetch_neighbour_ids(ref_ann_id) for j, cand_ann_id in enumerate(st_ann_ids[:topK]): cbox = self.Anns[cand_ann_id]['box'] cx1, cy1, cw, ch = cbox[0], cbox[1], cbox[2], cbox[3] dif_lfeats[i, j*5:(j+1)*5] = \ np.array([(cx1-rcx)/rw, (cy1-rcy)/rh, (cx1+cw-rcx)/rw, (cy1+ch-rcy)/rh, cw*ch/(rw*rh)]) return dif_lfeats def fetch_cxt_feats(self, ann_ids, opt): """ Return - cxt_feats : ndarray (#ann_ids, topK, fc7_dim) - cxt_lfeats : ndarray (#ann_ids, topK, 5) - cxt_ann_ids: [[ann_id]] of size (#ann_ids, topK), padded with -1 Note we only use neighbouring "different"(+"same") objects for computing context objects, zeros padded. """ topK = opt['num_cxt'] cxt_feats = np.zeros((len(ann_ids), topK, self.fc7_dim), dtype=np.float32) cxt_lfeats = np.zeros((len(ann_ids), topK, 5), dtype=np.float32) cxt_ann_ids = [[-1 for _ in range(topK)] for _ in range(len(ann_ids))] # (#ann_ids, topK) for i, ref_ann_id in enumerate(ann_ids): # reference box rbox = self.Anns[ref_ann_id]['box'] rcx, rcy, rw, rh = rbox[0]+rbox[2]/2, rbox[1]+rbox[3]/2, rbox[2], rbox[3] # candidate boxes _, st_ann_ids, _, dt_ann_ids = self.fetch_neighbour_ids(ref_ann_id) if opt['with_st'] > 0: cand_ann_ids = dt_ann_ids + st_ann_ids else: cand_ann_ids = dt_ann_ids cand_ann_ids = cand_ann_ids[:topK] for j, cand_ann_id in enumerate(cand_ann_ids): cand_ann = self.Anns[cand_ann_id] cbox = cand_ann['box'] cx1, cy1, cw, ch = cbox[0], cbox[1], cbox[2], cbox[3] cxt_lfeats[i, j, :] = np.array([(cx1-rcx)/rw, (cy1-rcy)/rh, (cx1+cw-rcx)/rw, (cy1+ch-rcy)/rh, cw*ch/(rw*rh)]) cxt_feats[i, j, :] = self.feats['ann']['fc7'][cand_ann['h5_id'], :] cxt_ann_ids[i][j] = cand_ann_id return cxt_feats, cxt_lfeats, cxt_ann_ids # weights = 1/sqrt(cnt) def get_attribute_weights(self, scale=10): # return weights for each concept, ordered by cpt_ix cnts = [self.att_to_cnt[self.ix_to_att[ix]] for ix in range(self.num_atts)] cnts = np.array(cnts) weights = 1/cnts**0.5 weights = (weights - np.min(weights)) / (np.max(weights) - np.min(weights)) weights = weights * (scale-1) + 1 return torch.from_numpy(weights).float() def fetch_attribute_label(self, ref_ann_ids): """Return - labels : Variable float (N, num_atts) - select_ixs: Variable long (n, ) """ labels = np.zeros((len(ref_ann_ids), self.num_atts)) select_ixs = [] for i, ref_ann_id in enumerate(ref_ann_ids): ref = self.annToRef[ref_ann_id] if len(ref['att_wds']) > 0: select_ixs += [i] for wd in ref['att_wds']: labels[i, self.att_to_ix[wd]] = 1 return Variable(torch.from_numpy(labels).float().cuda()), Variable(torch.LongTensor(select_ixs).cuda()) def decode_attribute_label(self, scores): """Inputs - scores: Variable (cuda) (n, num_atts), after sigmoid range [0,1] - labels: list of [[att, sc], [att, sc], ...] """ scores = scores.data.cpu().numpy() N = scores.shape[0] labels = [] for i in range(N): label = [] score = scores[i] # (num_atts, ) for j, sc in enumerate(list(score)): label += [(self.ix_to_att[j], sc)] labels.append(label) return labels def getAttributeBatch(self, split): wrapped = False split_ix = self.split_ix[split] max_index = len(split_ix) - 1 ri = self.iterators[split] ri_next = ri+1 if ri_next > max_index: ri_next = 0 wrapped = True self.iterators[split] = ri_next image_id = split_ix[ri] image = self.Images[image_id] # fetch head and im_info head, im_info = self.image_to_head(image_id) head = Variable(torch.from_numpy(head).cuda()) # fetch ann_ids owning attributes ref_ids = image['ref_ids'] ann_ids = [self.Refs[ref_id]['ann_id'] for ref_id in ref_ids] ann_boxes = xywh_to_xyxy(np.vstack([self.Anns[ann_id]['box'] for ann_id in ann_ids])) pool5, fc7 = self.fetch_grid_feats(ann_boxes, head, im_info) # (#ann_ids, k, 7, 7) lfeats = self.compute_lfeats(ann_ids) dif_lfeats = self.compute_dif_lfeats(ann_ids) # move to Variable lfeats = Variable(torch.from_numpy(lfeats).cuda()) dif_lfeats = Variable(torch.from_numpy(dif_lfeats).cuda()) # return data data = {} data['image_id'] = image_id data['ref_ids'] = ref_ids data['ann_ids'] = ann_ids data['Feats'] = {'pool5': pool5, 'fc7': fc7, 'lfeats': lfeats, 'dif_lfeats': dif_lfeats} data['bounds'] = {'it_pos_now': self.iterators[split], 'it_max': max_index, 'wrapped': wrapped} return data def getSentBatch(self, sent_id, opt): # Fetch feats according to the sent_id ref = self.sentToRef[sent_id] image_id = ref['image_id'] image = self.Images[image_id] # fetch head and im_info head, im_info = self.image_to_head(image_id) head = Variable(torch.from_numpy(head).cuda()) # fetch feats ann_ids = image['ann_ids'] ann_boxes = xywh_to_xyxy(np.vstack([self.Anns[ann_id]['box'] for ann_id in ann_ids])) pool5, fc7 = self.fetch_grid_feats(ann_boxes, head, im_info) # (#ann_ids, k, 7, 7) lfeats = self.compute_lfeats(ann_ids) dif_lfeats = self.compute_dif_lfeats(ann_ids) cxt_fc7, cxt_lfeats, cxt_ann_ids = self.fetch_cxt_feats(ann_ids, opt) labels = np.array([self.fetch_seq(sent_id)]).astype(np.int32) # move to Variable lfeats = Variable(torch.from_numpy(lfeats).cuda()) labels = Variable(torch.from_numpy(labels).long().cuda()) dif_lfeats = Variable(torch.from_numpy(dif_lfeats).cuda()) cxt_fc7 = Variable(torch.from_numpy(cxt_fc7).cuda()) cxt_lfeats = Variable(torch.from_numpy(cxt_lfeats).cuda()) # return data data = {} data['image_id'] = image_id data['ann_ids'] = ann_ids data['cxt_ann_ids'] = cxt_ann_ids data['Feats'] = {'pool5': pool5, 'fc7': fc7, 'lfeats': lfeats, 'dif_lfeats': dif_lfeats, 'cxt_fc7': cxt_fc7, 'cxt_lfeats': cxt_lfeats} data['labels'] = labels return data def getTestBatch(self, split, opt): # Fetch feats according to the image_split_ix # current image wrapped = False split_ix = self.split_ix[split] max_index = len(split_ix) - 1 ri = self.iterators[split] ri_next = ri+1 if ri_next > max_index: ri_next = 0 wrapped = True self.iterators[split] = ri_next image_id = split_ix[ri] image = self.Images[image_id] # fetch head and im_info head, im_info = self.image_to_head(image_id) head = Variable(torch.from_numpy(head).cuda()) # fetch feats ann_ids = image['ann_ids'] ann_boxes = xywh_to_xyxy(np.vstack([self.Anns[ann_id]['box'] for ann_id in ann_ids])) pool5, fc7 = self.fetch_grid_feats(ann_boxes, head, im_info) # (#ann_ids, k, 7, 7) lfeats = self.compute_lfeats(ann_ids) dif_lfeats = self.compute_dif_lfeats(ann_ids) cxt_fc7, cxt_lfeats, cxt_ann_ids = self.fetch_cxt_feats(ann_ids, opt) # fetch sents sent_ids = [] gd_ixs = [] for ref_id in image['ref_ids']: ref = self.Refs[ref_id] for sent_id in ref['sent_ids']: sent_ids += [sent_id] gd_ixs += [ann_ids.index(ref['ann_id'])] labels = np.vstack([self.fetch_seq(sent_id) for sent_id in sent_ids]) # move to Variable lfeats = Variable(torch.from_numpy(lfeats).cuda()) labels = Variable(torch.from_numpy(labels).long().cuda()) dif_lfeats = Variable(torch.from_numpy(dif_lfeats).cuda()) cxt_fc7 = Variable(torch.from_numpy(cxt_fc7).cuda()) cxt_lfeats = Variable(torch.from_numpy(cxt_lfeats).cuda()) # return data data = {} data['image_id'] = image_id data['ann_ids'] = ann_ids data['cxt_ann_ids'] = cxt_ann_ids data['sent_ids'] = sent_ids data['gd_ixs'] = gd_ixs data['Feats'] = {'pool5': pool5, 'fc7': fc7, 'lfeats': lfeats, 'dif_lfeats': dif_lfeats, 'cxt_fc7': cxt_fc7, 'cxt_lfeats': cxt_lfeats} data['labels'] = labels data['bounds'] = {'it_pos_now': self.iterators[split], 'it_max': max_index, 'wrapped': wrapped} return data def getImageBatch(self, image_id, sent_ids=None, opt={}): # fetch head and im_info image = self.Images[image_id] head, im_info = self.image_to_head(image_id) head = Variable(torch.from_numpy(head).cuda()) # fetch feats ann_ids = image['ann_ids'] ann_boxes = xywh_to_xyxy(np.vstack([self.Anns[ann_id]['box'] for ann_id in ann_ids])) pool5, fc7 = self.fetch_grid_feats(ann_boxes, head, im_info) # (#ann_ids, k, 7, 7) lfeats = self.compute_lfeats(ann_ids) dif_lfeats = self.compute_dif_lfeats(ann_ids) cxt_fc7, cxt_lfeats, cxt_ann_ids = self.fetch_cxt_feats(ann_ids, opt) # fetch sents gd_ixs = [] if sent_ids is None: sent_ids = [] for ref_id in image['ref_ids']: ref = self.Refs[ref_id] for sent_id in ref['sent_ids']: sent_ids += [sent_id] gd_ixs += [ann_ids.index(ref['ann_id'])] else: # given sent_id, we find the gd_ix for sent_id in sent_ids: ref = self.sentToRef[sent_id] gd_ixs += [ann_ids.index(ref['ann_id'])] labels = np.vstack([self.fetch_seq(sent_id) for sent_id in sent_ids]) # move to Variable lfeats = Variable(torch.from_numpy(lfeats).cuda()) labels = Variable(torch.from_numpy(labels).long().cuda()) dif_lfeats = Variable(torch.from_numpy(dif_lfeats).cuda()) cxt_fc7 = Variable(torch.from_numpy(cxt_fc7).cuda()) cxt_lfeats = Variable(torch.from_numpy(cxt_lfeats).cuda()) # return data data = {} data['image_id'] = image_id data['ann_ids'] = ann_ids data['cxt_ann_ids'] = cxt_ann_ids data['sent_ids'] = sent_ids data['gd_ixs'] = gd_ixs data['Feats'] = {'pool5': pool5, 'fc7': fc7, 'lfeats': lfeats, 'dif_lfeats': dif_lfeats, 'cxt_fc7': cxt_fc7, 'cxt_lfeats': cxt_lfeats} data['labels'] = labels return data
StarcoderdataPython
1637652
# -*- coding:utf-8 -*- ''' 获取最大利益 author:zhangyu date:2020/3/24 ''' from typing import List class Solution: def massage(self, nums: List[int]) -> int: ''' 求最大利润 Args: nums:数组 Returns: 最大利润 ''' if not nums or len(nums) < 1: return 0 length = len(nums) dp = [0] * length dp[0] = nums[0] dp[1] = max(nums[0], nums[1]) for i in range(2, length): dp[i] = max(nums[i] + dp[i - 2], dp[i - 1]) return dp[length - 1] if __name__ == '__main__': nums = [1, 2, 3, 1] solution = Solution() max_profit = solution.massage(nums) assert max_profit == 4
StarcoderdataPython
4838029
<reponame>DLR-SC/tigl from tigl3.geometry import CTiglPointsToBSplineInterpolation from tigl3.occ_helpers.containers import float_array, int_array, point_array from OCC.Core.Geom import Geom_BSplineCurve def interpolate_points(points, params=None, degree=3, close_continuous=False): """ Creates a b-spline that passes through the given points using b-spline interpolation. :param points: Array of points (numpy array also works!). First dimension over number of points, second must be 3! :param params: Optional list of parameters (list of floats), at which the points should be interpolated. This has a strong effect on the final curve shape. :param degree: Polynomial degree of the resulting b-spline curve. :param close_continuous: If True, the start and end of the curve will be continuous (only, if first and last point is equal!) :return: The resulting curve (Geom_BSplineCurve) """ occ_points_array = point_array(points) if params is None: interp = CTiglPointsToBSplineInterpolation(occ_points_array, degree, close_continuous) else: if len(params) != len(points): raise RuntimeError("Number of parameters don't match number of points") interp = CTiglPointsToBSplineInterpolation(occ_points_array, params, degree, close_continuous) curve = interp.curve() return curve def bspline_curve(cp, knots, mults, degree): """ Creates a BSplineCurve from the control points, knots, multiplicites and degree :param points: Array of points (numpy array also works!). First dimension over number of points, second must be 3! :param knots: Knot vector (not flattened) :param mults: Multiplicity vector. Each entry defined the multiplicity of the corresponding knot :param degree: Polynomial degree of the resulting b-spline curve. :return: The resulting curve (Geom_BSplineCurve) """ assert(len(knots) == len(mults)) assert(degree >= 1) occ_cp = point_array(cp) occ_knots = float_array(knots) occ_mults = int_array(mults) curve = Geom_BSplineCurve(occ_cp.Array1(), occ_knots.Array1(), occ_mults.Array1(), degree) return curve
StarcoderdataPython
1635066
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE file in the project root for full license information. from MiniFramework.EnumDef_6_0 import * from MiniFramework.Layer import * class DropoutLayer(CLayer): def __init__(self, input_size, ratio=0.5): self.dropout_ratio = ratio # the bigger, the more unit dropped self.mask = None self.input_size = input_size self.output_size = input_size def forward(self, input, train=True): assert(input.ndim == 2) if train: self.mask = np.random.rand(*input.shape) > self.dropout_ratio self.z = input * self.mask else: self.z = input * (1.0 - self.dropout_ratio) return self.z def backward(self, delta_in, idx): delta_out = self.mask * delta_in return delta_out
StarcoderdataPython
162469
from typing import ( List, Tuple, ) from hummingbot.strategy.market_symbol_pair import MarketSymbolPair from hummingbot.strategy.simple_trade import ( SimpleTradeStrategy ) from hummingbot.strategy.simple_trade.simple_trade_config_map import simple_trade_config_map def start(self): try: order_amount = simple_trade_config_map.get("order_amount").value order_type = simple_trade_config_map.get("order_type").value is_buy = simple_trade_config_map.get("is_buy").value time_delay = simple_trade_config_map.get("time_delay").value market = simple_trade_config_map.get("market").value.lower() raw_market_symbol = simple_trade_config_map.get("market_symbol_pair").value.upper() order_price = None cancel_order_wait_time = None if order_type == "limit": order_price = simple_trade_config_map.get("order_price").value cancel_order_wait_time = simple_trade_config_map.get("cancel_order_wait_time").value try: assets: Tuple[str, str] = self._initialize_market_assets(market, [raw_market_symbol])[0] except ValueError as e: self._notify(str(e)) return market_names: List[Tuple[str, List[str]]] = [(market, [raw_market_symbol])] self._initialize_wallet(token_symbols=list(set(assets))) self._initialize_markets(market_names) self.assets = set(assets) maker_data = [self.markets[market], raw_market_symbol] + list(assets) self.market_symbol_pairs = [MarketSymbolPair(*maker_data)] strategy_logging_options = SimpleTradeStrategy.OPTION_LOG_ALL self.strategy = SimpleTradeStrategy(market_infos=[MarketSymbolPair(*maker_data)], order_type=order_type, order_price=order_price, cancel_order_wait_time=cancel_order_wait_time, is_buy=is_buy, time_delay=time_delay, order_amount=order_amount, logging_options=strategy_logging_options) except Exception as e: self._notify(str(e)) self.logger().error("Unknown error during initialization.", exc_info=True)
StarcoderdataPython
4841206
<reponame>xcsp3team/pycsp3 """ See https://en.wikipedia.org/wiki/Shikaku See "Shikaku as a Constraint Problem" by <NAME> Example of Execution: python3 Shikaku.py -data=Shikaku_grid1.json """ from pycsp3 import * nRows, nCols, rooms = data nRooms = len(rooms) def no_overlapping(i, j): leftmost = i if rooms[i].col <= rooms[j].col else j rightmost = j if leftmost == i else i p = r[leftmost] <= l[rightmost] if rooms[leftmost].row == rooms[rightmost].row: return p if rooms[leftmost].row > rooms[rightmost].row: return p | (t[leftmost] >= b[rightmost]) return p | (b[leftmost] <= t[rightmost]) # l[i] is the position of the left border of the ith room l = VarArray(size=nRooms, dom=range(nCols + 1)) # r[i] is the position of the right border of the ith room r = VarArray(size=nRooms, dom=range(nCols + 1)) # t[i] is the position of the top border of the ith room t = VarArray(size=nRooms, dom=range(nRows + 1)) # b[i] is the position of the bottom border of the ith room b = VarArray(size=nRooms, dom=range(nRows + 1)) satisfy( # each room must be surrounded by its borders [(l[i] <= col, r[i] > col, t[i] <= row, b[i] > row) for i, (row, col, _) in enumerate(rooms)], # respecting the surface of each room [(r[i] - l[i]) * (b[i] - t[i]) == val for i, (_, _, val) in enumerate(rooms)], # rooms must not overlap [no_overlapping(i, j) for i, j in combinations(range(nRooms), 2)] ) """ Comments 1) it is also possible to write (but this is less compact): [l[i] <= rooms[i].col for i in range(nRooms)], [r[i] > rooms[i].col for i in range(nRooms)], [t[i] <= rooms[i].row for i in range(nRooms)], [b[i] > rooms[i].row for i in range(nRooms)], """
StarcoderdataPython
191275
<gh_stars>0 __copyright__ = """This file is part of SCINE Utilities. This code is licensed under the 3-clause BSD license. Copyright ETH Zurich, Laboratory of Physical Chemistry, Reiher Group. See LICENSE.txt for details. """ from conans import ConanFile class TestPackageConan(ConanFile): def build(self): pass def test(self): if self.options["scine_xtb_wrapper"].python: self.output.info("Trying to import 'scine_xtb_wrapper'") import scine_xtb_wrapper self.output.info("Import worked")
StarcoderdataPython
3387074
import numpy as np from torch import nn from torch.nn import init from torch.nn.functional import elu from braindecode.torch_ext.init import glorot_weight_zero_bias from braindecode.torch_ext.modules import Expression from braindecode.torch_ext.util import np_to_var class EEGNet(object): """ EEGNet model from [EEGNet]_. Notes ----- This implementation is not guaranteed to be correct, has not been checked by original authors, only reimplemented from the paper description. References ---------- .. [EEGNet] <NAME>., <NAME>., <NAME>., Gordon, <NAME>., <NAME>., & <NAME>. (2016). EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces. arXiv preprint arXiv:1611.08024. """ def __init__(self, in_chans, n_classes, final_conv_length='auto', input_time_length=None, pool_mode='max', second_kernel_size=(2,32), third_kernel_size=(8,4), drop_prob=0.25 ): if final_conv_length == 'auto': assert input_time_length is not None self.__dict__.update(locals()) del self.self def create_network(self): pool_class = dict(max=nn.MaxPool2d, mean=nn.AvgPool2d)[self.pool_mode] model = nn.Sequential() n_filters_1 = 16 model.add_module('conv_1', nn.Conv2d( self.in_chans, n_filters_1, (1, 1), stride=1, bias=True)) model.add_module('bnorm_1', nn.BatchNorm2d( n_filters_1, momentum=0.01, affine=True, eps=1e-3),) model.add_module('elu_1', Expression(elu)) # transpose to examples x 1 x (virtual, not EEG) channels x time model.add_module('permute_1', Expression(lambda x: x.permute(0,3,1,2))) model.add_module('drop_1', nn.Dropout(p=self.drop_prob)) n_filters_2 = 4 # keras padds unequal padding more in front, so padding # too large should be ok. # Not padding in time so that croped training makes sense # https://stackoverflow.com/questions/43994604/padding-with-even-kernel-size-in-a-convolutional-layer-in-keras-theano model.add_module('conv_2', nn.Conv2d( 1, n_filters_2, self.second_kernel_size, stride=1, padding=(self.second_kernel_size[0] // 2, 0), bias=True)) model.add_module('bnorm_2',nn.BatchNorm2d( n_filters_2, momentum=0.01, affine=True, eps=1e-3),) model.add_module('elu_2', Expression(elu)) model.add_module('pool_2', pool_class( kernel_size=(2, 4), stride=(2, 4))) model.add_module('drop_2', nn.Dropout(p=self.drop_prob)) n_filters_3 = 4 model.add_module('conv_3', nn.Conv2d( n_filters_2, n_filters_3, self.third_kernel_size, stride=1, padding=(self.third_kernel_size[0] // 2, 0), bias=True)) model.add_module('bnorm_3',nn.BatchNorm2d( n_filters_3, momentum=0.01, affine=True, eps=1e-3),) model.add_module('elu_3', Expression(elu)) model.add_module('pool_3', pool_class( kernel_size=(2, 4), stride=(2, 4))) model.add_module('drop_3', nn.Dropout(p=self.drop_prob)) out = model(np_to_var(np.ones( (1, self.in_chans, self.input_time_length, 1), dtype=np.float32))) n_out_virtual_chans = out.cpu().data.numpy().shape[2] if self.final_conv_length == 'auto': n_out_time = out.cpu().data.numpy().shape[3] self.final_conv_length = n_out_time model.add_module('conv_classifier', nn.Conv2d( n_filters_3, self.n_classes, (n_out_virtual_chans, self.final_conv_length,), bias=True)) model.add_module('softmax', nn.LogSoftmax()) # Transpose back to the the logic of braindecode, # so time in third dimension (axis=2) model.add_module('permute_2', Expression(lambda x: x.permute(0,1,3,2))) # remove empty dim at end and potentially remove empty time dim # do not just use squeeze as we never want to remove first dim def squeeze_output(x): assert x.size()[3] == 1 x = x[:,:,:,0] if x.size()[2] == 1: x = x[:,:,0] return x model.add_module('squeeze', Expression(squeeze_output)) glorot_weight_zero_bias(model) return model
StarcoderdataPython
3230151
#!/usr/bin/env python # vim: ai ts=4 sts=4 et sw=4 import django_tables2 as tables from rapidsms.contrib.messagelog.models import Message class MessageTable(tables.Table): class Meta: model = Message exclude = ('id', ) order_by = ('-date', ) attrs = { 'class': 'table table-striped table-bordered table-condensed' }
StarcoderdataPython
1658459
<filename>FizzBuzz.py<gh_stars>0 """ Created by akiselev on 2019-06-21 """ #!/usr/bin/python for num in range(1,21): string="" if num % 3 == 0: string += "fizz" if num % 5 == 0: string += "buzz" if (num % 3 != 0) and (num % 5 != 0) : string = str(num) print (string)
StarcoderdataPython
87474
<reponame>trevor-ngugi/instagram-clone # -*- coding: utf-8 -*- # Generated by Django 1.11.17 on 2020-02-09 09:03 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('gram', '0002_profile'), ] operations = [ migrations.AddField( model_name='image', name='post_time', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='image', name='profile', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='gram.Profile'), preserve_default=False, ), ]
StarcoderdataPython
3230701
<reponame>bemxio/osu-replay-parser import lzma import struct from datetime import datetime, timezone, timedelta from typing import List, Optional import base64 from dataclasses import dataclass from osrparse.utils import (Mod, GameMode, ReplayEvent, ReplayEventOsu, ReplayEventCatch, ReplayEventMania, ReplayEventTaiko, Key, KeyMania, KeyTaiko, LifeBarState) class _Unpacker: """ Helper class for dealing with the ``.osr`` format. Not intended to be used by consumers. """ def __init__(self, replay_data): self.replay_data = replay_data self.offset = 0 def string_length(self, binarystream): result = 0 shift = 0 while True: byte = binarystream[self.offset] self.offset += 1 result = result |((byte & 0b01111111) << shift) if (byte & 0b10000000) == 0x00: break shift += 7 return result def unpack_string(self): if self.replay_data[self.offset] == 0x00: self.offset += 1 elif self.replay_data[self.offset] == 0x0b: self.offset += 1 string_length = self.string_length(self.replay_data) offset_end = self.offset + string_length string = self.replay_data[self.offset:offset_end].decode("utf-8") self.offset = offset_end return string else: raise ValueError("Expected the first byte of a string to be 0x00 " f"or 0x0b, but got {self.replay_data[self.offset]}") def unpack_once(self, specifier): # always use little endian specifier = f"<{specifier}" unpacked = struct.unpack_from(specifier, self.replay_data, self.offset) self.offset += struct.calcsize(specifier) # `struct.unpack_from` always returns a tuple, even if there's only one # element return unpacked[0] def unpack_timestamp(self): ticks = self.unpack_once("q") timestamp = datetime.min + timedelta(microseconds=ticks/10) timestamp = timestamp.replace(tzinfo=timezone.utc) return timestamp def unpack_play_data(self, mode): replay_length = self.unpack_once("i") offset_end = self.offset + replay_length data = self.replay_data[self.offset:offset_end] data = lzma.decompress(data, format=lzma.FORMAT_AUTO) data = data.decode("ascii") (replay_data, rng_seed) = self.parse_replay_data(data, mode) self.offset = offset_end return (replay_data, rng_seed) @staticmethod def parse_replay_data(replay_data_str, mode): # remove trailing comma to make splitting easier replay_data_str = replay_data_str[:-1] events = [event.split('|') for event in replay_data_str.split(',')] rng_seed = None play_data = [] for event in events: time_delta = int(event[0]) x = event[1] y = event[2] keys = int(event[3]) if time_delta == -12345 and event == events[-1]: rng_seed = keys continue if mode is GameMode.STD: keys = Key(keys) event = ReplayEventOsu(time_delta, float(x), float(y), keys) if mode is GameMode.TAIKO: event = ReplayEventTaiko(time_delta, int(x), KeyTaiko(keys)) if mode is GameMode.CTB: event = ReplayEventCatch(time_delta, float(x), int(keys) == 1) if mode is GameMode.MANIA: event = ReplayEventMania(time_delta, KeyMania(keys)) play_data.append(event) return (play_data, rng_seed) def unpack_replay_id(self): # old replays had replay_id stored as a short (4 bytes) instead of a # long (8 bytes), so fall back to short if necessary. # lazer checks against the gameversion before trying to parse as a # short, but there may be some weirdness with replays that were set # during this time but downloaded later having actually correct (long) # replay_ids, since they were likely manually migrated at some point # after the switch to long took place. # See: # https://github.com/ppy/osu/blob/84e1ff79a0736aa6c7a44804b585ab1c54a843 # 99/osu.Game/Scoring/Legacy/LegacyScoreDecoder.cs#L78-L81 try: replay_id = self.unpack_once("q") except struct.error: replay_id = self.unpack_once("l") return replay_id def unpack_life_bar(self): life_bar = self.unpack_string() if not life_bar: return None # remove trailing comma to make splitting easier life_bar = life_bar[:-1] states = [state.split("|") for state in life_bar.split(",")] return [LifeBarState(int(s[0]), float(s[1])) for s in states] def unpack(self): mode = GameMode(self.unpack_once("b")) game_version = self.unpack_once("i") beatmap_hash = self.unpack_string() username = self.unpack_string() replay_hash = self.unpack_string() count_300 = self.unpack_once("h") count_100 = self.unpack_once("h") count_50 = self.unpack_once("h") count_geki = self.unpack_once("h") count_katu = self.unpack_once("h") count_miss = self.unpack_once("h") score = self.unpack_once("i") max_combo = self.unpack_once("h") perfect = self.unpack_once("?") mods = Mod(self.unpack_once("i")) life_bar_graph = self.unpack_life_bar() timestamp = self.unpack_timestamp() (replay_data, rng_seed) = self.unpack_play_data(mode) replay_id = self.unpack_replay_id() return Replay(mode, game_version, beatmap_hash, username, replay_hash, count_300, count_100, count_50, count_geki, count_katu, count_miss, score, max_combo, perfect, mods, life_bar_graph, timestamp, replay_data, replay_id, rng_seed) class _Packer: def __init__(self, replay, *, dict_size=None, mode=None): self.replay = replay self.dict_size = dict_size or 1 << 21 self.mode = mode or lzma.MODE_FAST def pack_byte(self, data): return struct.pack("<B", data) def pack_short(self, data): return struct.pack("<H", data) def pack_int(self, data): return struct.pack("<I", data) def pack_long(self, data): return struct.pack("<Q", data) def pack_ULEB128(self, data): # https://github.com/mohanson/leb128 r, i = [], len(data) while True: byte = i & 0x7f i = i >> 7 if (i == 0 and byte & 0x40 == 0) or (i == -1 and byte & 0x40 != 0): r.append(byte) return b"".join(map(self.pack_byte, r)) r.append(0x80 | byte) def pack_string(self, data): if data: return (self.pack_byte(11) + self.pack_ULEB128(data) + data.encode("utf-8")) return self.pack_byte(11) + self.pack_byte(0) def pack_timestamp(self): # windows ticks starts at year 0001, in contrast to unix time (1970). # 62135596800 is the number of seconds between these two years and is # added to account for this difference. # The factor of 10000000 converts seconds to ticks. ticks = (62135596800 + self.replay.timestamp.timestamp()) * 10000000 ticks = int(ticks) return self.pack_long(ticks) def pack_life_bar(self): data = "" if self.replay.life_bar_graph is None: return self.pack_string(data) for state in self.replay.life_bar_graph: life = state.life # store 0 or 1 instead of 0.0 or 1.0 if int(life) == life: life = int(state.life) data += f"{state.time}|{life}," return self.pack_string(data) def pack_replay_data(self): data = "" for event in self.replay.replay_data: t = event.time_delta if isinstance(event, ReplayEventOsu): data += f"{t}|{event.x}|{event.y}|{event.keys.value}," elif isinstance(event, ReplayEventTaiko): data += f"{t}|{event.x}|0|{event.keys.value}," elif isinstance(event, ReplayEventCatch): data += f"{t}|{event.x}|0|{int(event.dashing)}," elif isinstance(event, ReplayEventMania): data += f"{t}|{event.keys.value}|0|0," if self.replay.rng_seed: data += f"-12345|0|0|{self.replay.rng_seed}," filters = [ { "id": lzma.FILTER_LZMA1, "dict_size": self.dict_size, "mode": self.mode } ] data = data.encode("ascii") compressed = lzma.compress(data, format=lzma.FORMAT_ALONE, filters=filters) return self.pack_int(len(compressed)) + compressed def pack(self): r = self.replay data = b"" data += self.pack_byte(r.mode.value) data += self.pack_int(r.game_version) data += self.pack_string(r.beatmap_hash) data += self.pack_string(r.username) data += self.pack_string(r.replay_hash) data += self.pack_short(r.count_300) data += self.pack_short(r.count_100) data += self.pack_short(r.count_50) data += self.pack_short(r.count_geki) data += self.pack_short(r.count_katu) data += self.pack_short(r.count_miss) data += self.pack_int(r.score) data += self.pack_short(r.max_combo) data += self.pack_byte(r.perfect) data += self.pack_int(r.mods.value) data += self.pack_life_bar() data += self.pack_timestamp() data += self.pack_replay_data() data += self.pack_long(r.replay_id) return data @dataclass class Replay: """ A replay found in a ``.osr`` file, or following the osr format. To create a replay, you likely want ``Replay.from_path``, ``Replay.from_file``, or ``Replay.from_string``. Attributes ---------- mode: GameMode The game mode this replay was played on. game_version: int The game version this replay was played on. beatmap_hash: str The hash of the beatmap this replay was played on. username: str The user that played this replay. replay_hash: The hash of this replay. count_300: int The number of 300 judgments in this replay. count_100: int The number of 100 judgments in this replay. count_50: int The number of 50 judgments in this replay. count_geki: int The number of geki judgments in this replay. count_katu: int The number of katu judgments in this replay. count_miss: int The number of misses in this replay. score: int The score of this replay. max_combo: int The maximum combo attained in this replay. perfect: bool Whether this replay was perfect or not. mods: Mod The mods this replay was played with. life_bar_graph: Optional[List[LifeBarState]] The life bar of this replay over time. replay_data: List[ReplayEvent] The replay data of the replay, including cursor position and keys pressed. replay_id: int The replay id of this replay, or 0 if not submitted. rng_seed: Optional[int] The rng seed of this replay, or ``None`` if not present (typically not present on older replays). """ mode: GameMode game_version: int beatmap_hash: str username: str replay_hash: str count_300: int count_100: int count_50: int count_geki: int count_katu: int count_miss: int score: int max_combo: int perfect: bool mods: Mod life_bar_graph: Optional[List[LifeBarState]] timestamp: datetime replay_data: List[ReplayEvent] replay_id: int rng_seed: Optional[int] @staticmethod def from_path(path): """ Creates a new ``Replay`` object from the ``.osr`` file at the given ``path``. Parameters ---------- path: str or os.PathLike The path to the osr file to read from. Returns ------- Replay The parsed replay object. """ with open(path, "rb") as f: return Replay.from_file(f) @staticmethod def from_file(file): """ Creates a new ``Replay`` object from an open file object. Parameters ---------- file: file-like The file object to read from. Returns ------- Replay The parsed replay object. """ data = file.read() return Replay.from_string(data) @staticmethod def from_string(data): """ Creates a new ``Replay`` object from a string containing ``.osr`` data. Parameters ---------- data: str The data to parse. Returns ------- Replay The parsed replay object. """ return _Unpacker(data).unpack() def write_path(self, path, *, dict_size=None, mode=None): """ Writes the replay to the given ``path``. Parameters ---------- path: str or os.PathLike The path to where to write the replay. Notes ----- This uses the current values of any attributes, and so can be used to create an edited version of a replay, by first reading a replay, editing an attribute, then writing the replay back to its file. """ with open(path, "wb") as f: self.write_file(f, dict_size=dict_size, mode=mode) def write_file(self, file, *, dict_size=None, mode=None): """ Writes the replay to an open file object. Parameters ---------- file: file-like The file object to write to. """ packed = self.pack(dict_size=dict_size, mode=mode) file.write(packed) def pack(self, *, dict_size=None, mode=None): """ Returns the text representing this ``Replay``, in ``.osr`` format. The text returned by this method is suitable for writing to a file as a valid ``.osr`` file. Returns ------- str The text representing this ``Replay``, in ``.osr`` format. """ return _Packer(self, dict_size=dict_size, mode=mode).pack() def parse_replay_data(data_string, *, decoded=False, decompressed=False, mode=GameMode.STD) -> List[ReplayEvent]: """ Parses the replay data portion of a replay from a string. This method is siutable for use with the replay data returned by api v1's ``/get_replay`` endpoint, for instance. Parameters ---------- data_string: str or bytes The replay data to parse. decoded: bool Whether ``data_string`` has already been decoded from a b64 representation. Api v1 returns a base 64 encoded string, for instance. decompressed: bool Whether ``data_string`` has already been both decompressed from lzma, and decoded to ascii. |br| For instance, the following two calls are equivalent: ``` >>> parse_replay_data(lzma_string, decoded=True) >>> ... >>> lzma_string = lzma.decompress(lzma_string).decode("ascii") >>> parse_replay_data(lzma_string, decompressed=True) ``` |br| If ``decompressed`` is ``True``, ``decoded`` is automatically set to ``True`` as well (ie, if ``decompressed`` is ``True``, we will assume ``data_string`` is not base 64 encoded). mode: GameMode What mode to parse the replay data as. """ # assume the data is already decoded if it's been decompressed if not decoded and not decompressed: data_string = base64.b64decode(data_string) if not decompressed: data_string = lzma.decompress(data_string, format=lzma.FORMAT_AUTO) data_string = data_string.decode("ascii") (replay_data, _seed) = _Unpacker.parse_replay_data(data_string, mode) return replay_data
StarcoderdataPython
3332087
""" """ import time, zlib, re from calendar import timegm from .rtlibRepl import minidom import wx from WikiExceptions import * import Consts from .MiscEvent import MiscEventSourceMixin, KeyFunctionSink from . import Exporters, Serialization from . import StringOps # from ..StringOps import applyBinCompact, getBinCompactForDiff, \ # fileContentToUnicode, BOM_UTF8, formatWxDate # # from ..Serialization import serToXmlUnicode, serFromXmlUnicode, serToXmlInt, \ # serFromXmlInt, iterXmlElementFlat # # from ..DocPages import AbstractWikiPage DAMAGED = object() class TrashBag(object): """ A trash bag contains all parts of a wikiword, wikipage content itself and dependent datablocks (e.g. old versions). It provides also a small subset of WikiData API to allow read-only access to the items in the bag. """ __slots__ = ("trashcan", "trashTimeStamp", "bagId", "contentStorageMode", "originalUnifiedName", "xmlNode") def __init__(self, trashcan): # , contentStorageMode = u"single" self.trashcan = trashcan self.trashTimeStamp = time.time() self.bagId = 0 # Invalid, numbers start with 1 # self.contentStorageMode = contentStorageMode # Unified name of main content before it was trashed. # Normally this is a "wikipage/..." but the trash bag can contain # additional items self.originalUnifiedName = None self.xmlNode = None def getTrashcan(self): return self.trashcan def getFormattedTrashDate(self, formatStr): return StringOps.formatWxDate(formatStr, wx.DateTimeFromTimeT( self.trashTimeStamp)) def serializeOverviewToXmlProd(self, xmlDoc): """ Create XML node to contain all overview information (not content) about this object. """ xmlNode = self.xmlNode if xmlNode is None: xmlNode = xmlDoc.createElement(u"trashBag") self.serializeOverviewToXml(xmlNode, xmlDoc) return xmlNode def serializeOverviewToXml(self, xmlNode, xmlDoc): """ Create XML node to contain all overview information (not content) about this object. """ Serialization.serToXmlInt(xmlNode, xmlDoc, u"bagId", self.bagId, replace=True) Serialization.serToXmlUnicode(xmlNode, xmlDoc, u"originalUnifiedName", self.originalUnifiedName, replace=True) Serialization.serToXmlUnicode(xmlNode, xmlDoc, u"trashTime", unicode(time.strftime( "%Y-%m-%d/%H:%M:%S", time.gmtime(self.trashTimeStamp))), replace=True) # Serialization.serToXmlUnicode(xmlNode, xmlDoc, u"contentStorageMode", # self.contentStorageMode, replace=True) def serializeOverviewFromXml(self, xmlNode): """ Set object state from data in xmlNode) """ self.xmlNode = xmlNode self.bagId = Serialization.serFromXmlInt(xmlNode, u"bagId") self.originalUnifiedName = Serialization.serFromXmlUnicode(xmlNode, u"originalUnifiedName") timeStr = Serialization.serFromXmlUnicode(xmlNode, u"trashTime") self.trashTimeStamp = timegm(time.strptime(timeStr, "%Y-%m-%d/%H:%M:%S")) def getPacketUnifiedName(self): if self.bagId == 0: return None else: return u"trashcan/trashBag/packet/bagId/%s" % self.bagId def getPacketData(self): unifName = self.getPacketUnifiedName() if unifName is None: return None return self.trashcan.getWikiDocument().retrieveDataBlock(unifName, None) def deletePacket(self): """ Delete associated packet (if any). Should only be called from Trashcan """ unifName = self.getPacketUnifiedName() if unifName is None: return self.trashcan.getWikiDocument().deleteDataBlock(unifName) self.bagId = 0 class Trashcan(MiscEventSourceMixin): def __init__(self, wikiDocument): MiscEventSourceMixin.__init__(self) self.wikiDocument = wikiDocument self.trashBags = [] self.trashBagIds = set() self.xmlNode = None self.__sinkWikiDoc = KeyFunctionSink(( ("changed wiki configuration", self.onChangedWikiConfiguration), )) self.wikiDocument.getMiscEvent().addListener(self.__sinkWikiDoc) def getWikiDocument(self): return self.wikiDocument def close(self): self.wikiDocument.getMiscEvent().removeListener(self.__sinkWikiDoc) def isInDatabase(self): """ Can be called before readOverview() to check if the version overview is already in database. """ unifName = u"trashcan/overview" return self.wikiDocument.retrieveDataBlock(unifName) is not None def onChangedWikiConfiguration(self, miscEvt): self._removeOldest() def _removeOldest(self): """ Remove oldest trashbags if there are more in the can than configuration setting allows """ remCount = len(self.trashBags) - self.wikiDocument.getWikiConfig()\ .getint("main", "trashcan_maxNoOfBags", 200) if remCount <= 0: return for bag in self.trashBags[:remCount]: self.trashBagIds.discard(bag.bagId) del self.trashBags[:remCount] def _addTrashBag(self, trashBag): """ Adds bag to trashcan. Also checks if there are too many bags according to settings and removes the oldest one(s). The bag must already have a unique bagId """ assert trashBag.bagId > 0 self.trashBags.append(trashBag) self.trashBagIds.add(trashBag.bagId) self._removeOldest() self.writeOverview() def storeWikiWord(self, word): """ Store wikiword (including versions) in a trash bag and return bag id """ bag = TrashBag(self) for bagId in xrange(1, len(self.trashBagIds) + 2): if not bagId in self.trashBagIds: break else: raise InternalError(u"Trashcan: No free bagId???") bag.bagId = bagId data = Exporters.getSingleWikiWordPacket(self.wikiDocument, word) self.wikiDocument.storeDataBlock(bag.getPacketUnifiedName(), data, storeHint=self.getStorageHint()) bag.originalUnifiedName = u"wikipage/" + word self._addTrashBag(bag) return bagId def deleteBag(self, bag): """ Deletes bag from trashcan. Only the bagId of the bag parameter is used so to delete a bag with a particular bagId just create a "fake" bag and set bagId accordingly. """ bagId = bag.bagId if bag.bagId == 0: return for i, tb in enumerate(self.trashBags): if tb.bagId == bagId: del self.trashBags[i] self.trashBagIds.discard(bagId) tb.deletePacket() return def readOverview(self): """ Read and decode overview from database. Most functions can be called only after this was called (exception: isInDatabase()) """ unifName = u"trashcan/overview" content = self.wikiDocument.retrieveDataBlock(unifName, default=DAMAGED) if content is DAMAGED: raise Exception(_(u"Trashcan data damaged")) # TODO: Specific exception elif content is None: self.trashBags = [] self.trashBagIds = set() self.xmlNode = None return xmlDoc = minidom.parseString(content) xmlNode = xmlDoc.firstChild self.serializeFromXml(xmlNode) # def getDependentDataBlocks(self): # assert not self.isInvalid() # # unifiedPageName = self.basePage.getUnifiedPageName() # # result = [u"versioning/overview/" + unifiedPageName] # # for entry in self.versionEntries: # result.append(u"versioning/packet/versionNo/%s/%s" % (entry.versionNumber, # unifiedPageName)) # # return result @staticmethod def deleteBrokenData(wikiDocument): """ Delete all trashcan data in case existing data is broken and can't be deleted in regular ways. """ dataBlocks = wikiDocument.getDataBlockUnifNamesStartingWith( u"trashcan/") for db in dataBlocks: wikiDocument.deleteDataBlock(db) def writeOverview(self): unifName = u"trashcan/overview" if len(self.trashBags) == 0: self.wikiDocument.deleteDataBlock(unifName) return xmlDoc = minidom.getDOMImplementation().createDocument(None, None, None) xmlNode = self.serializeToXmlProd(xmlDoc) xmlDoc.appendChild(xmlNode) content = xmlDoc.toxml("utf-8") self.wikiDocument.storeDataBlock(unifName, content, storeHint=self.getStorageHint()) def clear(self): """ Delete all data from trashcan (called when user empties trashcan) """ self.trashBags = [] self.trashBagIds = set() self.xmlNode = None self.deleteBrokenData(self.wikiDocument) def getTrashBags(self): return self.trashBags def getStorageHint(self): """ Return appropriate storage hint according to option settings. """ if self.wikiDocument.getWikiConfig().getint("main", "trashcan_storageLocation", 0) != 1: return Consts.DATABLOCK_STOREHINT_INTERN else: return Consts.DATABLOCK_STOREHINT_EXTERN # @staticmethod # def decodeContent(encContent, encoding): # if encoding is None: # return encContent # if encoding == "zlib": # return zlib.decompress(encContent) # # @staticmethod # def encodeContent(content, encoding): # if encoding is None: # return content # if encoding == "zlib": # return zlib.compress(content) def serializeToXmlProd(self, xmlDoc): """ Create XML node to contain all information about this object. """ xmlNode = self.xmlNode if xmlNode is None: xmlNode = xmlDoc.createElement(u"trashcanOverview") self.serializeToXml(xmlNode, xmlDoc) return xmlNode def serializeToXml(self, xmlNode, xmlDoc): """ Modify XML node to contain all information about this object. """ xmlNode.setAttribute(u"formatVersion", u"0") xmlNode.setAttribute(u"readCompatVersion", u"0") xmlNode.setAttribute(u"writeCompatVersion", u"0") for xmlEntry in Serialization.iterXmlElementFlat(xmlNode, u"trashBag"): xmlNode.removeChild(xmlEntry) for entry in self.trashBags: entryNode = entry.serializeOverviewToXmlProd(xmlDoc) xmlNode.appendChild(entryNode) def serializeFromXml(self, xmlNode): """ Set object state from data in xmlNode. """ formatVer = int(xmlNode.getAttribute(u"writeCompatVersion")) if formatVer > 0: SerializationException("Wrong version no. %s for trashcan overview" % formatVer) self.xmlNode = xmlNode trashBags = [] trashBagIds = set() for xmlEntry in Serialization.iterXmlElementFlat(xmlNode, u"trashBag"): entry = TrashBag(self) entry.serializeOverviewFromXml(xmlEntry) trashBags.append(entry) trashBagIds.add(entry.bagId) # Order trash bags by trash date trashBags.sort(key=lambda entry: entry.trashTimeStamp) self.trashBags = trashBags self.trashBagIds = trashBagIds # def getVersionContentRaw(self, versionNumber): # if len(self.trashBags) == 0: # raise InternalError(u"Tried to retrieve non-existing " # u"version number %s from empty list." % versionNumber) # # if versionNumber == -1: # versionNumber = self.trashBags[-1].versionNumber # # base = None # workList = [] # for i in xrange(len(self.trashBags) - 1, -1, -1): # entry = self.trashBags[i] # if entry.contentDifferencing == u"complete": # workList = [] # base = entry # else: # workList.append(entry) # # if entry.versionNumber == versionNumber: # break # else: # raise InternalError(u"Tried to retrieve non-existing " # u"version number %s." % versionNumber) # # if base is None: # raise InternalError(u"No base version found for getVersionContent(%s)" % # versionNumber) # # unifName = u"versioning/packet/versionNo/%s/%s" % (base.versionNumber, # self.basePage.getUnifiedPageName()) # # content = self.wikiDocument.retrieveDataBlock(unifName, default=DAMAGED) # if content is DAMAGED: # raise VersioningException(_(u"Versioning data damaged")) # elif content is None: # raise InternalError(u"Tried to retrieve non-existing " # u"packet for version number %s" % versionNumber) # # content = self.decodeContent(content, entry.contentEncoding) # # for entry in workList: # unifName = u"versioning/packet/versionNo/%s/%s" % (entry.versionNumber, # self.basePage.getUnifiedPageName()) # packet = self.wikiDocument.retrieveDataBlock(unifName, default=None) # if content is DAMAGED: # raise VersioningException(_(u"Versioning data damaged")) # elif content is None: # raise InternalError(u"Tried to retrieve non-existing " # u"packet for version number %s" % versionNumber) # # # content = applyBinCompact(content, packet) # # return content # # # def getVersionContent(self, versionNumber): # return fileContentToUnicode(self.getVersionContentRaw(versionNumber)) # # # def addVersion(self, content, entry): # """ # entry.versionNumber is assumed invalid and will be filled by this function. # """ # if isinstance(content, unicode): # content = BOM_UTF8 + content.encode("utf-8") # assert isinstance(content, str) # # completeStep = max(self.wikiDocument.getWikiConfig().getint("main", # "versioning_completeSteps", 10), 0) # # if completeStep == 0: # asRevDiff = True # else: # if len(self.trashBags) < completeStep: # asRevDiff = True # else: # asRevDiff = False # for e in reversed(self.trashBags[-completeStep:-1]): # if e.contentDifferencing == "complete": # asRevDiff = True # break # # self.maxVersionNumber += 1 # newHeadVerNo = self.maxVersionNumber # # newHeadUnifName = u"versioning/packet/versionNo/%s/%s" % \ # (newHeadVerNo, self.basePage.getUnifiedPageName()) # # self.wikiDocument.storeDataBlock(newHeadUnifName, content, # storeHint=self.getStorageHint()) # # entry.versionNumber = newHeadVerNo # entry.contentDifferencing = "complete" # entry.contentEncoding = None # self.trashBags.append(entry) # # if len(self.trashBags) > 1: # if asRevDiff: # prevHeadEntry = self.trashBags[-2] # prevHeadContent = self.getVersionContentRaw(prevHeadEntry.versionNumber) # # unifName = u"versioning/packet/versionNo/%s/%s" % (prevHeadEntry.versionNumber, # self.basePage.getUnifiedPageName()) # diffPacket = getBinCompactForDiff(content, prevHeadContent) # # if len(diffPacket) < len(prevHeadContent): # prevHeadEntry.contentDifferencing = "revdiff" # prevHeadEntry.contentEncoding = None # self.wikiDocument.storeDataBlock(unifName, diffPacket, # storeHint=self.getStorageHint()) # # self.fireMiscEventKeys(("appended version", "changed version overview")) # # # def deleteVersion(self, versionNumber): # if len(self.trashBags) == 0: # raise InternalError("Non-existing version %s to delete (empty list)." % # versionNumber) # # if versionNumber == -1: # versionNumber = self.trashBags[-1].versionNumber # # if versionNumber == self.trashBags[0].versionNumber: # # Delete oldest # unifName = u"versioning/packet/versionNo/%s/%s" % (versionNumber, # self.basePage.getUnifiedPageName()) # # self.wikiDocument.deleteDataBlock(unifName) # del self.trashBags[0] # self.fireMiscEventKeys(("deleted version", "changed version overview")) # # return # # if versionNumber == self.trashBags[-1].versionNumber: # # Delete newest # # # We can assume here that len(self.trashBags) >= 2 otherwise # # previous "if" would have been true. # # prevHeadEntry = self.trashBags[-2] # newContent = self.getVersionContentRaw(prevHeadEntry.versionNumber) # # unifName = u"versioning/packet/versionNo/%s/%s" % (prevHeadEntry.versionNumber, # self.basePage.getUnifiedPageName()) # prevHeadEntry.contentDifferencing = "complete" # self.wikiDocument.storeDataBlock(unifName, newContent, # storeHint=self.getStorageHint()) # # unifName = u"versioning/packet/versionNo/%s/%s" % (versionNumber, # self.basePage.getUnifiedPageName()) # self.wikiDocument.deleteDataBlock(unifName) # del self.trashBags[-1] # self.fireMiscEventKeys(("deleted version", "changed version overview")) # # return # # # Delete some version in-between: Not supported yet. # raise InternalError("In-between version %s to delete." % # versionNumber) # class WikiPageSnapshot(AbstractWikiPage): # def __init__(self, wikiDocument, baseWikiPage, versionNo): # AbstractWikiPage.__init__(self, wikiDocument, baseWikiPage.getWikiWord()) # # self.baseWikiPage = baseWikiPage # self.versionNumber = versionNo # # self.content = self.baseWikiPage.getVersionOverview().getVersionContent( # versionNo) # # # def getSnapshotBaseDocPage(self): # return self.baseWikiPage # # def getSnapshotVersionNumber(self): # return self.versionNumber # # # def getContent(self): # return self.content # # # def getUnifiedPageName(self): # if self.versionNumber == 0: # return None # # return u"versioning/version/versionNo/%s/%s" % (self.versionNumber, # self.baseWikiPage.getWikiWord()) # # # def isReadOnlyEffect(self): # """ # Return true if page is effectively read-only, this means # "for any reason", regardless if error or intention. # """ # return True # # # def getVersionOverview(self): # return self.baseWikiPage.getVersionOverview() # # def getExistingVersionOverview(self): # return self.baseWikiPage.getExistingVersionOverview() # # def setPresentation(self, data, startPos): # """ # Set (a part of) the presentation tuple. This is silently ignored # if the "write access failed" or "read access failed" flags are # set in the wiki document. # data -- tuple with new presentation data # startPos -- start position in the presentation tuple which should be # overwritten with data. # """ # pass # TODO?
StarcoderdataPython
774
<reponame>zhiqwang/mmdeploy _base_ = ['../_base_/base_tensorrt_static-300x300.py']
StarcoderdataPython
93209
# Import the converted model's class import numpy as np import random import tensorflow as tf from tensorflow.python.ops import rnn, rnn_cell from posenet import GoogLeNet as PoseNet import cv2 from tqdm import tqdm import math batch_size = 75 max_iterations = 30000 # Set this path to your project directory path = 'path_to_project/' # Set this path to your dataset directory directory = 'path_to_datasets/KingsCollege/' dataset = 'dataset_test.txt' class datasource(object): def __init__(self, images, poses): self.images = images self.poses = poses class vecsource(object): def __init__(self, vecs, poses): self.vecs = vecs self.poses = poses def centeredCrop(img, output_side_length): height, width, depth = img.shape new_height = output_side_length new_width = output_side_length if height > width: new_height = output_side_length * height / width else: new_width = output_side_length * width / height height_offset = (new_height - output_side_length) / 2 width_offset = (new_width - output_side_length) / 2 cropped_img = img[height_offset:height_offset + output_side_length, width_offset:width_offset + output_side_length] return cropped_img def preprocess(images): images_out = [] #final result #Resize and crop and compute mean! images_cropped = [] for i in tqdm(range(len(images))): X = cv2.imread(images[i]) X = cv2.resize(X, (455, 256)) X = centeredCrop(X, 224) images_cropped.append(X) #compute images mean N = 0 mean = np.zeros((1, 3, 224, 224)) for X in tqdm(images_cropped): X = np.transpose(X,(2,0,1)) mean[0][0] += X[:,:,0] mean[0][1] += X[:,:,1] mean[0][2] += X[:,:,2] N += 1 mean[0] /= N #Subtract mean from all images for X in tqdm(images_cropped): X = np.transpose(X,(2,0,1)) X = X - mean X = np.squeeze(X) X = np.transpose(X, (1,2,0)) Y = np.expand_dims(X, axis=0) images_out.append(Y) return images_out def get_data(): poses = [] images = [] with open(directory+dataset) as f: next(f) # skip the 3 header lines next(f) next(f) for line in f: fname, p0,p1,p2,p3,p4,p5,p6 = line.split() p0 = float(p0) p1 = float(p1) p2 = float(p2) p3 = float(p3) p4 = float(p4) p5 = float(p5) p6 = float(p6) poses.append((p0,p1,p2,p3,p4,p5,p6)) images.append(directory+fname) images = preprocess(images) return datasource(images, poses) def gen_data(source): while True: indices = range(len(source.images)) random.shuffle(indices) for i in indices: image = source.images[i] pose_x = source.poses[i][0:3] pose_q = source.poses[i][3:7] yield image, pose_x, pose_q def gen_data_batch(source): data_gen = gen_data(source) while True: image_batch = [] pose_x_batch = [] pose_q_batch = [] for _ in range(batch_size): image, pose_x, pose_q = next(data_gen) image_batch.append(image) pose_x_batch.append(pose_x) pose_q_batch.append(pose_q) yield np.array(image_batch), np.array(pose_x_batch), np.array(pose_q_batch) def main(): image = tf.placeholder(tf.float32, [1, 224, 224, 3]) datasource = get_data() results = np.zeros((len(datasource.images),2)) net = PoseNet({'data': image}) p3_x = net.layers['cls3_fc_pose_xyz'] p3_q = net.layers['cls3_fc_pose_wpqr'] init = tf.initialize_all_variables() outputFile = "PoseNet.ckpt" saver = tf.train.Saver() with tf.Session() as sess: # Load the data sess.run(init) saver.restore(sess, path + 'PoseNet.ckpt') data_gen = gen_data_batch(datasource) for i in range(len(datasource.images)): np_image = datasource.images[i] feed = {image: np_image} pose_q= np.asarray(datasource.poses[i][3:7]) pose_x= np.asarray(datasource.poses[i][0:3]) predicted_x, predicted_q = sess.run([p3_x, p3_q], feed_dict=feed) pose_q = np.squeeze(pose_q) pose_x = np.squeeze(pose_x) predicted_q = np.squeeze(predicted_q) predicted_x = np.squeeze(predicted_x) #Compute Individual Sample Error q1 = pose_q / np.linalg.norm(pose_q) q2 = predicted_q / np.linalg.norm(predicted_q) d = abs(np.sum(np.multiply(q1,q2))) theta = 2 * np.arccos(d) * 180/math.pi error_x = np.linalg.norm(pose_x-predicted_x) results[i,:] = [error_x,theta] print 'Iteration: ', i, ' Error XYZ (m): ', error_x, ' Error Q (degrees): ', theta median_result = np.median(results,axis=0) print 'Median error ', median_result[0], 'm and ', median_result[1], 'degrees.' if __name__ == '__main__': main()
StarcoderdataPython
1643300
ram=int(input("ingresa el valor de la ram")) tb=int(input("ingresa el valor de los bloques de la ram")) y=int(ram/tb) print("el valor de Y es:",y) if(ram % tb != 0): y= y + 1 print("el valor de Y es:",y) datos={} i=0 bloq=0 while i<=y: aux=bloq tar=input("ingrese nombre de la tarea") bloq= int(input("ingrese los bloques de la tarea")) bloq=i+bloq if(bloq<=y): for i in range(i,bloq): datos[i]=tar i=bloq print("valor de i"+str(i)) else : print("La tarea no se pudo agregar") i=bloq print(datos) band1 = 1 j=0 print("y "+str(y)) while band1==1: tare = input("ingresa la tarea a eliminar") for j in range(j,y): print("j="+str(j)+" elemento:"+datos[j]) if datos[j] == tare: print(tare) datos[j]="" else: print("else"+datos[j]) j=0 #i=bloq+1 print(datos) band1 = 0
StarcoderdataPython
3354513
<reponame>raface/python-bizdays_calendar class BizdaysException(Exception): pass class FormattingException(Exception): pass class FileException(Exception): pass class ConfigException(Exception): pass class ConnectionException(Exception): pass
StarcoderdataPython
17892
## Copyright 2014 Cognitect. All Rights Reserved. ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS-IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. import itertools from transit.pyversion import imap, izip def mapcat(f, i): return itertools.chain.from_iterable(imap(f, i)) def pairs(i): return izip(*[iter(i)] * 2) cycle = itertools.cycle def take(n, i): return itertools.islice(i, 0, n)
StarcoderdataPython
3205708
<filename>src/hepqpr/qallse/seeding/storage.py from .utils import * class DoubletInfo: """ Holds information about doublet for a given spacepoint when it is considered as the middle spacepoint. Output of the doubletCounting step write there """ def __init__(self, nbSpacepoints): # number of inner doublet (other spacepoint has a smaller radius) self.nInner = np.zeros(nbSpacepoints, dtype=np.int64) # number of outer doublet (other spacepoint has a bigger radius) self.nOuter = np.zeros(nbSpacepoints, dtype=np.int64) # True if at least one inner and one outer doublet, false otherwise self.good = np.zeros(nbSpacepoints, dtype=np.bool8) class DoubletStorage: """ Store the doublets generated by the algorithm for a given event """ def __init__(self): self.inner = [] self.outer = [] def make_dataframe(self): self.doublets = pd.DataFrame({'inner': self.inner, 'outer': self.outer}) class SpacepointLayerRange: """ Class holding the startIndex and endIndex of each layer for each phi slice in the object SpacepointStorage """ def __init__(self, nLayers): # starting idx of each layer for a given phi slice self.layerBegin = np.zeros(nLayers, dtype=np.int64) # one element after the last idx self.layerEnd = np.zeros(nLayers, dtype=np.int64) class SpacepointStorage: """ Class holding all the spacepoints and informations about the phi slices """ def __init__(self, spacepoints, config): """ Init the spacepoints storage. Spacepoints are expected to be given as a pandas dataframe. Only spacepoints from a single event and modules/layers according to the DetectorModel should be given """ # Contains the type of the spacepoints (Pixel = true, SCT = False) self.type = np.zeros(spacepoints.shape[0], dtype=np.bool8) # Contains the z coordinate of the spacepoints self.z = np.zeros(spacepoints.shape[0]) # Contains the r coordinate of the spacepoints self.r = np.zeros(spacepoints.shape[0]) # Contains the x coordinate of the spacepoints self.x = np.zeros(spacepoints.shape[0]) # Contains the y coordinate of the spacepoints self.y = np.zeros(spacepoints.shape[0]) # Contains the hit_id of the spacepoints self.hit_id = np.zeros(spacepoints.shape[0]) # id given to a spacepoint, used only for computing efficiency between the standard and modified seeding, # it's not necessary for the seeding self.idsp = np.zeros(spacepoints.shape[0], dtype=np.int64) # fill these arrays, not implemented self.covZ = np.ones(spacepoints.shape[0]) * 100 self.covR = np.ones(spacepoints.shape[0]) * 100 # start/end index of each phi slice/layer self.phiSlices = [SpacepointLayerRange(config.nLayers) for _ in range(config.nPhiSlices)] spacepoints['phi'] = calc_phi(spacepoints['x'], spacepoints['y']) spacepoints['bin_phi'] = scale_phi(spacepoints['phi'], config.nPhiSlices) spacepoints['r'] = calc_r(spacepoints['x'], spacepoints['y']) self.module_ids = np.zeros(spacepoints.shape[0]) # define the position of a given detector layer layNoToIdx = {2: 0, 4: 1, 6: 2, 8: 3} volToOffset = {8: 0, 13: 4, 17: 8} crtIdx = 0 for (sliceid, volid, layid), df in spacepoints.groupby(['bin_phi', 'volume_id', 'layer_id'], sort=False): layIdx = volToOffset[volid] + layNoToIdx[layid] nbHits = df.shape[0] self.phiSlices[sliceid].layerBegin[layIdx] = crtIdx nextIdx = crtIdx + nbHits self.phiSlices[sliceid].layerEnd[layIdx] = nextIdx pixel = df['volume_id'] == 8 self.type[crtIdx:nextIdx] = pixel.values self.x[crtIdx:nextIdx] = df['x'].values self.y[crtIdx:nextIdx] = df['y'].values self.z[crtIdx:nextIdx] = df['z'].values self.r[crtIdx:nextIdx] = df['r'].values self.hit_id[crtIdx:nextIdx] = df['hit_id'].values self.idsp[crtIdx:nextIdx] = df['hit_id'].values self.module_ids[crtIdx:nextIdx] = df['module_id'].values crtIdx = nextIdx
StarcoderdataPython
4833397
<reponame>zywek123/accessible_output2<filename>build/lib/accessible_output2/platform_utils/paths.py import inspect import platform import os import sys from functools import wraps def merge_paths(func): @wraps(func) def merge_paths_wrapper(*a, **k): return unicode(os.path.join(func(**k), *a)) return merge_paths_wrapper def windows_path(path_id): import ctypes path = ctypes.create_unicode_buffer(260) if ctypes.windll.shell32.SHGetFolderPathW(0, path_id, 0, 0, ctypes.byref(path)) != 0: raise ctypes.WinError() return path.value def app_data_path(app_name=None): """Cross-platform method for determining where to put application data.""" """Requires the name of the application""" plat = platform.system() if plat == 'Windows': path = windows_path(0x01a) elif plat == 'Darwin': path = os.path.join(os.path.expanduser('~'), 'Library', 'Application Support') elif plat == 'Linux': path = os.path.expanduser('~') app_name = '.%s' % app_name.replace(' ', '_') return os.path.join(path, app_name) def prepare_app_data_path(app_name): """Creates the application's data directory, given its name.""" dir = app_data_path(app_name) if not os.path.exists(dir): os.mkdir(dir) def is_frozen(): """Return a bool indicating if application is compressed""" import imp return hasattr(sys, 'frozen') or imp.is_frozen("__main__") def get_executable(): if is_frozen(): return sys.executable return sys.argv[0] def get_module(): return inspect.stack()[2][1] def app_path(): """Always determine the path to the main module, even when run with py2exe or otherwise frozen""" return os.path.abspath(os.path.dirname(get_executable())) def module_path(): return os.path.abspath(os.path.dirname(get_module())) def executable_path(): return os.path.join(app_path(), get_executable()) def ensure_path(path): if not os.path.exists(path): os.makedirs(path) def documents_path(): """On windows, returns the path to My Documents. On OSX, returns the user's Documents folder. For anything else, returns the user's home directory.""" plat = platform.system() if plat == 'Windows': return windows_path(0x005) elif plat == 'Darwin': path = os.path.join(os.path.expanduser('~'), 'Documents') else: path = os.path.expanduser('~') return path
StarcoderdataPython
1763487
<filename>api/tacticalrmm/accounts/migrations/0007_update_agent_primary_key.py<gh_stars>100-1000 # Generated by Django 3.1.2 on 2020-11-01 22:54 from django.db import migrations def link_agents_to_users(apps, schema_editor): Agent = apps.get_model("agents", "Agent") User = apps.get_model("accounts", "User") for agent in Agent.objects.all(): user = User.objects.filter(username=agent.agent_id).first() if user: user.agent = agent user.save() class Migration(migrations.Migration): dependencies = [ ("accounts", "0006_user_agent"), ] operations = [ migrations.RunPython(link_agents_to_users, migrations.RunPython.noop), ]
StarcoderdataPython
1740055
<reponame>ipendlet/ord-schema # Copyright 2020 Open Reaction Database Project Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Creates reaction-related badges for ord-data.""" import glob import os import requests from absl import app from absl import flags from absl import logging from ord_schema.proto import dataset_pb2 FLAGS = flags.FLAGS flags.DEFINE_string('root', None, 'ORD root.') flags.DEFINE_string('output', None, 'Output SVG filename.') def main(argv): del argv # Only used by app.run(). num_reactions = 0 for filename in glob.glob(os.path.join(FLAGS.root, '*', '*.pb')): with open(filename, 'rb') as f: dataset = dataset_pb2.Dataset.FromString(f.read()) logging.info('%s:\t%d', filename, len(dataset.reactions)) num_reactions += len(dataset.reactions) args = { 'label': 'Reactions', 'message': num_reactions, 'color': 'informational', } response = requests.get('https://img.shields.io/static/v1', params=args) with open(FLAGS.output, 'w') as f: f.write(response.text) if __name__ == '__main__': flags.mark_flags_as_required(['root', 'output']) app.run(main)
StarcoderdataPython
3351449
# -*- coding: utf-8 -*- """ Created on Thu Dec 6 10:13:52 2018 @author: slauniai DEMO HOW TO RUN POINT-SCALE MODEL FOR A SINGLE OR MULTIPLE SITES. """ import numpy as np import pandas as pd import matplotlib.pyplot as plt # import model and functions to read data from spafhy_point import SpaFHy_point from spafhy_io import read_HydeDaily # , read_FMI_weather eps = np.finfo(float).eps # machine epsilon """ Select demo version: 1 - run for one site, 2 = several runs with varying parameters. reproduce Fig. 3 3 = as demo 1 but for 3 different soil types 4 = as demo 3 but in single call """ demo = 1 #%% """ demo 1: """ if demo == 1: # set up model for single site; here use FIHy as example from spafhy_parameters import parameters_FIHy # read parameters pgen, pcpy, pbu = parameters_FIHy() # read forcing data to dataframe dat, FORC = read_HydeDaily(pgen['forcing_file']) FORC['Prec'] = FORC['Prec'] / pgen['dt'] # mms-1 FORC['T'] = FORC['Ta'].copy() # np.array cmask is needed to apply model components at a single point cmask = np.ones(1) # create model instance model = SpaFHy_point(pgen, pcpy, pbu, FORC, cmask=cmask, cpy_outputs=True, bu_outputs=True) # simple model run with default parameters: Nsteps = len(model.FORC) # length of forcing model._run(0, Nsteps) # calls class function _run to execute model from t=0 to t=Nsteps # during model run, resutls are stored in two dictionaries: # canopycrid outputs: model.cpy.results # bucketgid outputs: model.bu.resutls # extract them, convert to dataframe and save to csv cres = model.cpy.results bres = model.bu.results del bres['ET'] # also bucket returns ET but in [m] so remove key res = {**cres, **bres} # combine into one dict res = {key: np.ravel(res[key]) for key in res.keys()} # and ravel # convert to dataframe and save results = pd.DataFrame(data=res, columns=res.keys(), index=model.FORC.index, dtype=float) results.to_csv(pgen['output_file'] + '.csv', sep=';') del res, cres, bres #%% now, let's draw timeseries of root zone and organic layer water content and ET # components to Fig. 2 plt.figure() plt.subplot(211) plt.plot(results[['Wliq', 'Wliq_top']]) plt.legend([r'$\theta$', r'$\theta_{org}$']) plt.ylabel(r'$\theta$ (m$^{3}$ m$^{-3}$)') plt.subplot(212) plt.plot(results[['Evap', 'Transpi', 'Efloor']]) plt.legend(['E', 'Tr', 'Ef']) plt.ylabel('mm d$^{-1}$') #%% """ demo 2: override parameters and run 3 simulations """ if demo == 2: # set up model for single site; here use FIHy as example from spafhy_parameters import parameters_FIHy # read parameters pgen, pcpy, pbu = parameters_FIHy() # read forcing data to dataframe dat, FORC = read_HydeDaily(pgen['forcing_file']) FORC['Prec'] = FORC['Prec'] / pgen['dt'] # mms-1 FORC['T'] = FORC['Ta'].copy() # np.array cmask is needed to apply model components at a single point cmask = np.ones(1) # run model for 3 different parameter combinations: vary # g1_conif, g1_decid, wmax, wmaxsnow by +/- 20%, 20%, 20%, 30% p =[ [1.0, 1.0, 1.0, 1.0], # nominal [0.8, 0.8, 0.8, 0.7], # low-ET case [1.2, 1.2, 1.2, 1.3] # high-ET case ] # save results to list out = [] for k in range(3): a = p[k] # read nominal parameters and modify some of them pgen, pcpy, pbu = parameters_FIHy() pcpy['physpara']['g1_conif'] *= a[0] pcpy['physpara']['g1_decid'] *= a[1] pcpy['interc']['wmax'] *= a[2] pcpy['interc']['wmaxsnow'] *= a[3] # create model instance and run: model = SpaFHy_point(pgen, pcpy, pbu, FORC, cmask=cmask, cpy_outputs=True, bu_outputs=True) nsteps=len(FORC) model._run(0, nsteps) # extract results, convert to dataframe, print to file and append to out cres = model.cpy.results bres = model.bu.results del bres['ET'] res = {**cres, **bres} # combine into one dict res = {key: np.ravel(res[key]) for key in res.keys()} # and convert each variable into 1D array results = pd.DataFrame(data=res, columns=res.keys(), index=model.FORC.index) results.to_csv(pgen['output_file'] + '_sim_' + str(k) + '.csv', sep=';') out.append(results) del model, res, cres, bres, results, pcpy, pgen, pbu # plot Fig 3 equivalent from make_Fig3 import draw_Fig3 draw_Fig3(dat, out) #%% """ demo 3: as demo2 but run for 3 different soil types defined in soil_properties""" if demo == 3: # soil classes soilclass = np.array([1, 2, 3]) # coarse, medium, fine cmask = np.ones(1) # set up model for single site; here use FIHy as example from spafhy_parameters import parameters_FIHy, soil_properties from spafhy_io import preprocess_soildata # read forcing data to dataframe dat, FORC = read_HydeDaily(pgen['forcing_file']) FORC['Prec'] = FORC['Prec'] / pgen['dt'] # mms-1 FORC['T'] = FORC['Ta'].copy() out = [] # run ofe 3 soil classes for k in range(3): # read parameters and soil properties pgen, pcpy, pbu = parameters_FIHy() psoil = soil_properties() # get soil properties based on soilclass and update pbu pbu = preprocess_soildata(pbu, psoil, soilclass[k], cmask=cmask, spatial=True) print(pbu) # create model instance and run: model = SpaFHy_point(pgen, pcpy, pbu, FORC, cmask=cmask, cpy_outputs=True, bu_outputs=True) nsteps=len(FORC) model._run(0, nsteps) # extract results, convert to dataframe, print to file and append to out cres = model.cpy.results bres = model.bu.results del bres['ET'] res = {**cres, **bres} # combine into one dict res = {key: np.ravel(res[key]) for key in res.keys()} # and convert each variable into 1D array results = pd.DataFrame(data=res, columns=res.keys(), index=model.FORC.index) results.to_csv(pgen['output_file'] + '_sim_' + str(k) + '.csv', sep=';') out.append(results) del model, res, cres, bres, results, pcpy, pgen, pbu # plot figure of soil water content and Transpiration at each soil class plt.figure() ax1 = plt.subplot(211) ax1.plot(out[2]['Wliq'], label='fine text') ax1.plot(out[1]['Wliq'], label='medium text') ax1.plot(out[0]['Wliq'], label='coarse text') ax1.legend() ax1.set_ylabel(r'$\theta$ (m$^{3}$ m$^{-3}$)') ax2 = plt.subplot(212, sharex=ax1) ax2.plot(out[2]['Transpi'], label='fine text') ax2.plot(out[1]['Transpi'], label='medium text') ax2.plot(out[0]['Transpi'], label='coarse text') ax2.legend() ax2.set_ylabel('mm d$^{-1}$') #%% """ demo 4: as demo2 but run all 3 different soil types at once""" if demo == 4: # soil classes soilclass = np.array([1, 2, 3]) # coarse, medium, fine cmask = np.ones(3) # set up model for single site; here use FIHy as example from spafhy_parameters import parameters_FIHy, soil_properties from spafhy_io import preprocess_soildata # read parameters and soil properties pgen, pcpy, pbu = parameters_FIHy() psoil = soil_properties() # read forcing data to dataframe dat, FORC = read_HydeDaily(pgen['forcing_file']) FORC['Prec'] = FORC['Prec'] / pgen['dt'] # mms-1 FORC['T'] = FORC['Ta'].copy() # get soil properties based on soilclass and update pbu pbu = preprocess_soildata(pbu, psoil, soilclass, cmask=cmask, spatial=True) #print(pbu) # create model instance and run: model = SpaFHy_point(pgen, pcpy, pbu, FORC, cmask=cmask, cpy_outputs=True, bu_outputs=True) nsteps=len(FORC) model._run(0, nsteps) # extract results, convert to dataframe, print to file and append to out cres = model.cpy.results bres = model.bu.results del bres['ET'] res = {**cres, **bres} # combine into one dict res = {key: np.array(res[key]) for key in res.keys()} # now res is dict where each key contains np.array which shape is (nsteps,3) # to save each column into separate csv-file and plot figures, we do follwing: out = [] n = 0 for s in soilclass: dummy = {key: res[key][:,n] for key in res.keys()} results = pd.DataFrame(data=dummy, columns=res.keys(), index=model.FORC.index) results.to_csv(pgen['output_file'] + '_sim_' + str(s) + '.csv', sep=';') n += 1 out.append(results) del model, res, cres, bres, results, pcpy, pgen, pbu # plot figure of soil water content and Transpiration at each soil class plt.figure() ax1 = plt.subplot(211) ax1.plot(out[2]['Wliq'], label='fine text') ax1.plot(out[1]['Wliq'], label='medium text') ax1.plot(out[0]['Wliq'], label='coarse text') ax1.legend() ax1.set_ylabel(r'$\theta$ (m$^{3}$ m$^{-3}$)') ax2 = plt.subplot(212, sharex=ax1) ax2.plot(out[2]['Transpi'], label='fine text') ax2.plot(out[1]['Transpi'], label='medium text') ax2.plot(out[0]['Transpi'], label='coarse text') ax2.legend() ax2.set_ylabel('mm d$^{-1}$')
StarcoderdataPython
1757711
<reponame>daintlab/unknown-detection-benchmarks import torch import torch.nn as nn import torch.nn.functional as F import math def conv3x3(in_planes, out_planes, stride=1): " 3x3 convolution with padding " return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion=1 def __init__(self, inplanes, planes, stride=1, downsample=None, dropRate=0.0): super(BasicBlock, self).__init__() self.dropRate = dropRate self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) if self.dropRate > 0: out = F.dropout(out, p=self.dropRate, inplace=False, training=True) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) if self.dropRate > 0: out = F.dropout(out, p=self.dropRate, inplace=False, training=True) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion=4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes*4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes*4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet_Cifar(nn.Module): def __init__(self, block, layers, num_classes=40, dropRate=0.0): super(ResNet_Cifar, self).__init__() self.dropRate = dropRate self.inplanes = 16 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.relu = nn.ReLU(inplace=True) self.layer1 = self._make_layer(block, 16, layers[0]) self.layer2 = self._make_layer(block, 32, layers[1], stride=2) self.layer3 = self._make_layer(block, 64, layers[2], stride=2) self.avgpool = nn.AvgPool2d(8, stride=1) self.fc = nn.Linear(64 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion) ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, dropRate=self.dropRate)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, dropRate=self.dropRate)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.avgpool(x) x = x.view(x.size(0), -1) if self.dropRate > 0: x = F.dropout(x, p=0.1, inplace=False, training=True) x = self.fc(x) return x # function to extract the multiple features def feature_list(self, x): out_list = [] out = self.relu(self.bn1(self.conv1(x))) out_list.append(out) out = self.layer1(out) out_list.append(out) out = self.layer2(out) out_list.append(out) out = self.layer3(out) out_list.append(out) out = self.avgpool(out) out = out.view(out.size(0), -1) y = self.fc(out) return y, out_list # function to extract a specific feature def intermediate_forward(self, x, layer_index): out = F.relu(self.bn1(self.conv1(x))) if layer_index == 1: out = self.layer1(out) elif layer_index == 2: out = self.layer1(out) out = self.layer2(out) elif layer_index == 3: out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) return out # function to extract the penultimate features def penultimate_forward(self, x): out = self.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) penultimate = self.layer3(out) out = self.avgpool(penultimate) out = out.view(out.size(0), -1) y = self.fc(out) return y, penultimate def resnet20(**kwargs): model = ResNet_Cifar(BasicBlock, [3, 3, 3], **kwargs) return model def resnet110(**kwargs): model = ResNet_Cifar(BasicBlock, [18, 18, 18], **kwargs) return model
StarcoderdataPython
97540
import re import time from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from random import seed from random import random from random import randint class Scraper(object): """Able to start up a browser, to authenticate to Instagram and get followers and people following a specific user.""" def __init__(self): self.driver = webdriver.Chrome('drivers/chromedriver2') def close(self): """Close the browser.""" self.driver.close() def authenticate(self, username, password): """Log in to Instagram with the provided credentials.""" print('\nLogging in…') self.driver.get('https://www.instagram.com') # Go to log in login_link = WebDriverWait(self.driver, 5).until( EC.presence_of_element_located((By.LINK_TEXT, 'Forgot password?')) ) # Authenticate username_input = self.driver.find_element_by_xpath( '//input[@name="username"]' ) password_input = self.driver.find_element_by_xpath( '//input[@name="password"]' ) username_input.send_keys(username) password_input.send_keys(password) password_input.send_keys(Keys.RETURN) time.sleep(10) def get_users(self, group, target, link, verbose = False): f = open("links.txt", "a") """Return a list of links to the users profiles found.""" if link is None: wblink = self._get_link(group, target) if wblink is None: return [] self._open_dialog(wblink) if self.users_list_container is None: return None else: wblink = self._get_link_by_link(group, link) if wblink is None: return [] self._open_dialog(wblink) if self.users_list_container is None: return None print('\nGetting {} users…{}'.format( self.expected_number, '\n' if verbose else '' )) links = [] last_user_index = 0 updated_list = self._get_updated_user_list() initial_scrolling_speed = 5 retry = 2 # While there are more users scroll and save the results while updated_list[last_user_index] is not updated_list[-1] or retry > 0: self._scroll(self.users_list_container, initial_scrolling_speed) for index, user in enumerate(updated_list): if index < last_user_index: continue if index > 100: return links try: link_to_user = user.find_element(By.TAG_NAME, 'a').get_attribute('href') last_user_index = index if link_to_user not in links: links.append(link_to_user) if verbose: f.write(link_to_user + "\n") print( '{0:.2f} {1:s}'.format( index, link_to_user ) ) except: if (initial_scrolling_speed > 1): initial_scrolling_speed -= 1 pass updated_list = self._get_updated_user_list() if updated_list[last_user_index] is updated_list[-1]: retry -= 1 f.close() print('100% Complete') return links def _open_dialog(self, link): """Open a specific dialog and identify the div containing the users list.""" link.click() self.expected_number = int( re.search('(\d+)', link.text).group(1) ) time.sleep(1) try: self.users_list_container = self.driver.find_element_by_xpath( '//div[@role="dialog"]//ul/parent::div' ) except: self.users_list_container = None def _get_link(self, group, target): """Return the element linking to the users list dialog.""" print('\nNavigating to %s profile…' % target) self.driver.get('https://www.instagram.com/%s/' % target) try: return WebDriverWait(self.driver, 5).until( EC.presence_of_element_located((By.PARTIAL_LINK_TEXT, group)) ) except: return None def _get_link_by_link(self, group, link): """Return the element linking to the users list dialog.""" print('\nNavigating to %s profile…' % link) self.driver.get(link) try: return WebDriverWait(self.driver, 5).until( EC.presence_of_element_located((By.PARTIAL_LINK_TEXT, group)) ) except: return None def _get_updated_user_list(self): """Return all the list items included in the users list.""" return self.users_list_container.find_elements(By.XPATH, 'ul//li') def _scroll(self, element, times = 1): """Scroll a specific element one or more times with small delay between them.""" while times > 0: self.driver.execute_script( 'arguments[0].scrollTop = arguments[0].scrollHeight', element ) time.sleep(random() * randint(2, 5)) times -= 1
StarcoderdataPython
100270
<gh_stars>0 import sklearn.base import numpy as np class ProbT(sklearn.base.BaseEstimator, sklearn.base.TransformerMixin): """Wraps a sklearn classifier (ClassifierMixin) to use the output of their .predict_proba method. Args: model (sklearn.base.ClassifierMixin): A sklearn classification model drop (bool): Flag if to drop the column with the 0 probabilties Example: from sklearn.pipeline import Pipeline from pipelinetweak.pipe import ProbT from sklearn.linear_model import LinearRegression from sklearn.dummy import DummyRegressor model = Pipeline(steps=[ ('trans', ProbT(LogisticRegression(), drop=False)), ('pred', DummyRegressor()) ]) model.fit(X, y) Y_pred = model.predict(X) """ def __init__(self, model: sklearn.base.ClassifierMixin, drop: bool = True) -> None: self.model = model self.drop = drop def fit(self, *args, **kwargs) -> 'ProbT': self.model.fit(*args, **kwargs) return self def transform(self, X: np.ndarray, **transform_params) -> np.ndarray: Z = self.model.predict_proba(X) if self.drop: return Z[:, 1:] else: return Z
StarcoderdataPython
138467
<reponame>esorot/upb<gh_stars>0 # copybara:strip_for_google3_begin def pyproto_test_wrapper(name): src = name + "_wrapper.py" native.py_test( name = name, srcs = [src], legacy_create_init = False, main = src, data = ["@com_google_protobuf//:testdata"], deps = [ "//python:message_ext", "@com_google_protobuf//:python_common_test_protos", "@com_google_protobuf//:python_specific_test_protos", "@com_google_protobuf//:python_srcs", ], ) # copybara:replace_for_google3_begin # # def pyproto_test_wrapper(name): # src = name + "_wrapper.py" # native.py_test( # name = name, # srcs = [src], # main = src, # deps = [ # "//net/proto2/python/internal:" + name + "_for_deps", # "//net/proto2/python/public:use_upb_protos", # ], # ) # # copybara:replace_for_google3_end
StarcoderdataPython
4817270
from __future__ import print_function import torch from api import config_fun import train_helper cfg = config_fun.config() model = train_helper.get_model(cfg, pretrained=False) model_pa = torch.nn.DataParallel(model) model_cuda = model.cuda() print(type(model)) print(type(model_cuda)) print(type(model_pa)) print(type(model_pa.module)) print(isinstance(model, torch.nn.DataParallel)) print(isinstance(model, torch.nn.Module)) print(isinstance(model_cuda, torch.nn.DataParallel)) print(isinstance(model_cuda, torch.nn.Module)) print(isinstance(model_pa, torch.nn.DataParallel)) print(isinstance(model_pa.module, torch.nn.DataParallel)) print(isinstance(model_pa.module, torch.nn.Module))
StarcoderdataPython
3290069
<filename>Text-Based-Browser/browser.py import sys import os from pathlib import Path import requests from bs4 import BeautifulSoup from colorama import init, Fore, Back, Style def get_url_file(dir, url): url_key = url.replace(".", "_").replace("_com", "").replace("_org", "") return os.sep.join([dir, url_key + ".txt"]) def read_file(url): with open(get_url_file(dir, url), "r", encoding='UTF-8') as file: for line in file.readlines(): print(line, end="") file.close() def write_file(url, page): with open(get_url_file(dir, url), "w", encoding='UTF-8') as file: file.write(page) file.close() def get_page(url): url_path = "http://" + url page = requests.get(url_path) soup = BeautifulSoup(page.content, 'html.parser') page = soup.find_all(text=True) output = '' whitelist = [ 'title', 'p', 'a', 'ul', 'ol', 'li', 'headers', ] for t in page: if t.parent.name in whitelist and len(t) > 1: if t.parent.name == 'a': print(Fore.BLUE + '{} '.format(t)) else: print(Fore.BLACK + '{} '.format(t)) output += '{} '.format(t) return output if __name__ == '__main__': init() if len(sys.argv) > 1: dir = sys.argv[1] Path(dir).mkdir(parents=True, exist_ok=True) visited_pages = [] url = input() while url != 'exit': if url == 'back': if len(visited_pages) > 0: url = visited_pages.pop(0) read_file(url) else: try: read_file(url) visited_pages.append(url) except FileNotFoundError: try: output = get_page(url) write_file(url, output) except Exception as e: print("Error - invalid link") print(e) url = input()
StarcoderdataPython
123823
<filename>Notatki/5_GUI/1_Tkinter/przyklad.py # Programowanie I R # Graficzny interfejs użytkownika: Tkinter - przykład #*********************************************************************************** # Importujemy niezbędne moduły #*********************************************************************************** # Pakiet Tkinter: podstawowa funkcjonalność from tkinter import * # Pakiet Tkinter: współcześnie wyglądające kontrolki from tkinter.ttk import * # Pakiet Tkinter: okno MessageBox from tkinter import messagebox #*********************************************************************************** # Projektujemy główne okno aplikacji #*********************************************************************************** # Główne okno aplikacji. MainForm = Tk() MainForm.title("Tkinter - przykład") MainForm.geometry("300x100") # Kontrolka 1.: etykieta. lblInfo = Label(MainForm, text = "Wpisz jakiś tekst: ") lblInfo.grid(column = 0, row = 0) # Kontrolka 2.: pole do wprowadzania tekstu. txtText = Entry(MainForm, width = 30) txtText.grid(column = 1, row = 0) # Kontrolka 3.: etykieta. lblTextInfo = Label(MainForm, text = "Wpisany tekst: ") lblTextInfo.grid(column = 0, row = 1) # Kontrolka 4.: etykieta. lblText = Label(MainForm, text = "(brak)") lblText.grid(column = 1, row = 1) # Kontrolka 5.: przycisk. def btnOK_Clicked(): # Metoda wywoływana w chwili kliknięcia przycisku btnOK. # Zmieniamy napis na etykiecie lblText. # Metoda txtText.get() zwraca tekst wpisany do pola txtText. lblText.configure(text = txtText.get()) # Wyświetlamy okno MessageBox. messagebox.showinfo("Tkinter - przykład", txtText.get()) btnOK = Button(MainForm, text = "OK", command = btnOK_Clicked) btnOK.grid(column = 1, row = 2) #*********************************************************************************** # Przekazujemy "sterowanie" aplikacją do jej okna głównego #*********************************************************************************** MainForm.mainloop()
StarcoderdataPython
140384
# -- Project information ----------------------------------------------------- project = "2i2c Pilot Hubs Infrastructure" copyright = "2020, 2i2c.org" author = "2<EMAIL>" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "myst_parser", "sphinx.ext.intersphinx", "sphinx_panels", ] intersphinx_mapping = { "z2jh": ("https://zero-to-jupyterhub.readthedocs.io/en/latest/", None), "tc": ("https://team-compass.2i2c.org/en/latest/", None), } # -- MyST configuration --------------------------------------------------- myst_enable_extensions = [ "deflist", "colon_fence", ] source_suffix = [".rst", ".md"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for MyST ------------------------------------------------- panels_add_bootstrap_css = False myst_enable_extensions = [ "colon_fence", "deflist", "linkify", ] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_book_theme" html_theme_options = { "repository_url": "https://github.com/2i2c-org/pilot-hubs", "use_issues_button": True, "use_repository_button": True, } # -- Custom scripts ----------------------------------------- # Pull latest list of communities served by pilot-hubs/ from yaml import safe_load import pandas as pd from pathlib import Path import subprocess def render_hubs(): # Grab the latest list of clusters defined in pilot-hubs/ clusters = Path("../config/hubs").glob("*") # Add list of repos managed outside pilot-hubs hub_list = [{ 'name': 'University of Toronto', 'domain': 'jupyter.utoronto.ca', 'id': 'utoronto', 'template': 'base-hub ([deployment repo](https://github.com/utoronto-2i2c/jupyterhub-deploy/))' }] for cluster_info in clusters: if "schema" in cluster_info.name: continue # For each cluster, grab it's YAML w/ the config for each hub yaml = cluster_info.read_text() cluster = safe_load(yaml) # For each hub in cluster, grab its metadata and add it to the list for hub in cluster['hubs']: config = hub['config'] # Config is sometimes nested if 'basehub' in config: hub_config = config['basehub']['jupyterhub'] else: hub_config = config['jupyterhub'] # Domain can be a list if isinstance(hub['domain'], list): hub['domain'] = hub['domain'][0] hub_list.append({ 'name': hub_config['custom']['homepage']['templateVars']['org']['name'], 'domain': f"[{hub['domain']}](https://{hub['domain']})", "id": hub['name'], "template": hub['template'], }) df = pd.DataFrame(hub_list) path_tmp = Path("tmp") path_tmp.mkdir(exist_ok=True) path_table = path_tmp / "hub-table.csv" df.to_csv(path_table, index=None) def render_tfdocs(): tf_path = Path('../terraform') # Output path is relative to terraform directory output_path = Path('../docs/reference/terraform.md') # Template for output file is in ../terraform/.terraform-docs.yml subprocess.check_call([ 'terraform-docs', 'markdown', f"--output-file={output_path}", f'--config={str(tf_path / ".terraform-docs.yml")}', str(tf_path) ]) render_hubs() render_tfdocs()
StarcoderdataPython
32033
<gh_stars>1-10 import matplotlib import numpy as np import matplotlib.cm as cm import matplotlib.pyplot as plt import random from sympy import symbols, diff, N def fun(X, Y): return 2*(np.exp(-X**2 - Y**2))# - np.exp(-(X - 1)**2 - (Y - 1)**2)) def symfun(X, Y): return 2*(np.exp(1)**(-X**2 - Y**2))# - np.exp(1)**(-(X - 1)**2 - (Y - 1)**2)) delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = fun(X, Y) fig, ax = plt.subplots() CS = ax.contour(X, Y, Z) ax.clabel(CS, inline=1, fontsize=10) ax.set_title('Simplest default with labels') o=[(random.random()-0.5)*4, (random.random()-0.5)*4] x, y = symbols('x y', real=True) dx=diff(symfun(x, y), x) dy=diff(symfun(x,y), y) d=[dx.subs({x:o[0], y:o[1]}), dy.subs({x:o[0], y:o[1]})] alpha=0.7 i=0 while bool((d[0]**2+d[1]**2)>=1e-4) and i<1000: d=[dx.subs({x:o[0], y:o[1]}), dy.subs({x:o[0], y:o[1]})] no=[o[0]+d[0]*alpha, o[1]+d[1]*alpha] #plt.plot(np.array([o[0], no[0]]), np.array([o[1], no[1]]), color="#"+hex(i)[2:]+""+hex(i)[2:]+""+hex(i)[2:]) plt.plot(o[0], o[1], color="#"+hex(i%(256-16)+16)[2:]+""+hex(i%(256-16)+16)[2:]+""+hex(i%(256-16)+16)[2:], marker='o') o=no i+=1 plt.plot(o[0], o[1], color="#"+hex(i%(256-16)+16)[2:]+""+hex(i%(256-16)+16)[2:]+""+hex(i%(256-16)+16)[2:], marker='o') plt.show()
StarcoderdataPython
156496
import copy from collections import OrderedDict from typing import List import numpy as np from opticverge.core.chromosome.abstract_chromosome import AbstractChromosome from opticverge.core.chromosome.function_chromosome import FunctionChromosome from opticverge.core.generator.int_distribution_generator import rand_int from opticverge.core.generator.options_generator import rand_options from opticverge.core.generator.real_generator import rand_real class RandArrayChromosome(FunctionChromosome): """ The chromosome for generating fixed or dynamic arrays """ def __init__(self, generator: AbstractChromosome, length: int, fixed: bool = False): """ The constructor for this class Args: generator (AbstractChromosome): An instance of a class derived from an AbstractChromosome length (int): The length of the array fixed (bool): Whether the array length is fixed """ super(RandArrayChromosome, self).__init__(generator, OrderedDict()) """ The generator is responsible for producing each entry within the array """ self.__generator = generator """ The length represents the initial size of the array if fixed is True """ self.__length = length """ Fixed represents whether the array is subject to change during the evolutionary process. """ self.__fixed = fixed def generate(self, **kwargs): # determine the length of the array to generate length: int = self.__length if self.__fixed is True else rand_int(1, self.__length) # generate each of the positions of the array using the generator for i in range(length): self.genotype[i] = self.__generator.generate(**kwargs) # the phenotype of an array represents the values from the genotype, # since we use an OrderedDict as our base representation we are safe to # use list(self.genotype.values()) self.phenotype = list(self.genotype.values()) return self.phenotype def mutate(self, mutation_probability: float, **kwargs): """ The mutation function for the array_chromosome When mutating the ArrayChromosome we use a number of techniques to modify the contents. 1. Iterate through each entry in the array and with some probability change the value based on the generator 2. Then select pairs of positions at random with some probability and swap their values 3. If fixed is set to False then: a) Attempt to add an item to the array with some probability b) Attempt to remove an item from the array with some probability Args: mutation_probability: The likelihood that we will change the array **kwargs: Returns: """ # 1. Attempt to mutate each value for key, val in self.genotype.items(): if rand_real() < mutation_probability: self.genotype[key] = self.__generator.generate(**kwargs) # 2. Attempt to swap positions of the array keys: List[str or int] = list(self.genotype.keys()) if len(keys) > 1: # select the number of items to modify in the list items_to_select: int = rand_int(2, len(keys)) selected: List[str or int] = rand_options(keys, items_to_select) shuffled: List[np.int64] = copy.copy(selected) np.random.shuffle(shuffled) for i, key in enumerate(selected): if rand_real() < mutation_probability: self.genotype[selected[i]], self.genotype[shuffled[i]] = self.genotype[shuffled[i]], self.genotype[ selected[i]] # TODO: Sensibly define how to insert/update an OrderedDict # 3. Attempt to add and remove items to the array # if self.__fixed is False: # # # Add # num_positions = rand_int(1, len(keys)) # # # create a temporary placeholder to update the OrderedDict # temp_phenotype = list(self.genotype.values()) # # for i in range(num_positions): # # if rand_real() < mutation_probability: # position = rand_int(0, len(self.genotype.keys())) # temp_phenotype.insert(position, self.__generator.generate(**kwargs)) # # # Remove self.phenotype = list(self.genotype.values()) return self.phenotype
StarcoderdataPython
194915
<filename>packages/augur-core/tests/trading/test_claimTradingProceeds.py #!/usr/bin/env python from eth_tester.exceptions import TransactionFailed from pytest import raises, fixture, mark from utils import fix, AssertLog, EtherDelta, TokenDelta, BuyWithCash, nullAddress from constants import YES, NO def captureLog(contract, logs, message): translated = contract.translator.listen(message) if not translated: return logs.append(translated) def acquireLongShares(kitchenSinkFixture, cash, market, outcome, amount, approvalAddress, sender): if amount == 0: return shareToken = kitchenSinkFixture.contracts["ShareToken"] cost = amount * market.getNumTicks() with BuyWithCash(cash, cost, sender, "complete set buy"): assert shareToken.publicBuyCompleteSets(market.address, amount, sender = sender) for otherOutcome in range(0, market.getNumberOfOutcomes()): if otherOutcome == outcome: continue shareToken.safeTransferFrom(sender, kitchenSinkFixture.accounts[8], shareToken.getTokenId(market.address, otherOutcome), amount, "", sender = sender) def acquireShortShareSet(kitchenSinkFixture, cash, market, outcome, amount, approvalAddress, sender): if amount == 0: return cost = amount * market.getNumTicks() shareToken = kitchenSinkFixture.contracts["ShareToken"] with BuyWithCash(cash, cost, sender, "complete set buy"): assert shareToken.publicBuyCompleteSets(market.address, amount, sender = sender) shareToken.safeTransferFrom(sender, kitchenSinkFixture.accounts[8], shareToken.getTokenId(market.address, outcome), amount, "", sender = sender) def finalizeMarket(fixture, market, payoutNumerators): prepare_finalize_market(fixture, market, payoutNumerators) assert market.finalize() def prepare_finalize_market(fixture, market, payoutNumerators): # set timestamp to after market end fixture.contracts["Time"].setTimestamp(market.getEndTime() + 1) # have kitchenSinkFixture.accounts[0] submit designated report market.doInitialReport(payoutNumerators, "", 0) # set timestamp to after designated dispute end disputeWindow = fixture.applySignature('DisputeWindow', market.getDisputeWindow()) fixture.contracts["Time"].setTimestamp(disputeWindow.getEndTime() + 1) # finalize the market def test_helpers(kitchenSinkFixture, scalarMarket): market = scalarMarket shareToken= kitchenSinkFixture.contracts['ShareToken'] finalizeMarket(kitchenSinkFixture, market, [0,0,40*10**4]) assert shareToken.calculateCreatorFee(market.address, fix('3')) == fix('0.03') assert shareToken.calculateReportingFee(market.address, fix('5')) == fix('0.05') assert shareToken.calculateProceeds(market.address, YES, 7) == 7 * market.getNumTicks() assert shareToken.calculateProceeds(market.address, NO, fix('11')) == fix('0') (proceeds, shareholderShare, creatorShare, reporterShare) = shareToken.divideUpWinnings(market.address, YES, 13) assert proceeds == 13.0 * market.getNumTicks() assert reporterShare == 13.0 * market.getNumTicks() * 0.01 assert creatorShare == 13.0 * market.getNumTicks() * 0.01 assert shareholderShare == 13.0 * market.getNumTicks() * 0.98 def test_redeem_shares_in_yesNo_market(kitchenSinkFixture, universe, cash, market): shareToken = kitchenSinkFixture.contracts["ShareToken"] expectedValue = 1 * market.getNumTicks() expectedReporterFees = expectedValue / universe.getOrCacheReportingFeeDivisor() expectedMarketCreatorFees = expectedValue / market.getMarketCreatorSettlementFeeDivisor() expectedSettlementFees = expectedReporterFees + expectedMarketCreatorFees expectedPayout = expectedValue - expectedSettlementFees assert universe.getOpenInterestInAttoCash() == 0 # get YES shares with a1 acquireLongShares(kitchenSinkFixture, cash, market, YES, 1, shareToken.address, sender = kitchenSinkFixture.accounts[1]) assert universe.getOpenInterestInAttoCash() == 1 * market.getNumTicks() # get NO shares with a2 acquireShortShareSet(kitchenSinkFixture, cash, market, YES, 1, shareToken.address, sender = kitchenSinkFixture.accounts[2]) assert universe.getOpenInterestInAttoCash() == 2 * market.getNumTicks() finalizeMarket(kitchenSinkFixture, market, [0, 0, 10**2]) tradingProceedsClaimedLog = { 'market': market.address, 'numPayoutTokens': expectedPayout, 'numShares': 1, 'sender': kitchenSinkFixture.accounts[1], 'fees': 2, } with TokenDelta(cash, expectedMarketCreatorFees, market.getOwner(), "market creator fees not paid"): with TokenDelta(cash, expectedReporterFees, universe.getOrCreateNextDisputeWindow(False), "Reporter fees not paid"): # redeem shares with a1 with AssertLog(kitchenSinkFixture, "TradingProceedsClaimed", tradingProceedsClaimedLog): shareToken.claimTradingProceeds(market.address, kitchenSinkFixture.accounts[1], nullAddress) # redeem shares with a2 shareToken.claimTradingProceeds(market.address, kitchenSinkFixture.accounts[2], nullAddress) # assert a1 ends up with cash (minus fees) and a2 does not assert cash.balanceOf(kitchenSinkFixture.accounts[1]) == expectedPayout assert shareToken.balanceOfMarketOutcome(market.address, YES, kitchenSinkFixture.accounts[1]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, YES, kitchenSinkFixture.accounts[2]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, NO, kitchenSinkFixture.accounts[1]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, NO, kitchenSinkFixture.accounts[2]) == 0 def test_redeem_shares_in_categorical_market(kitchenSinkFixture, universe, cash, categoricalMarket): market = categoricalMarket shareToken = kitchenSinkFixture.contracts["ShareToken"] numTicks = market.getNumTicks() expectedValue = numTicks expectedSettlementFees = expectedValue * 0.02 expectedPayout = expectedValue - expectedSettlementFees assert universe.getOpenInterestInAttoCash() == 0 # get long shares with a1 acquireLongShares(kitchenSinkFixture, cash, market, 3, 1, shareToken.address, sender = kitchenSinkFixture.accounts[1]) assert universe.getOpenInterestInAttoCash() == 1 * numTicks # get short shares with a2 acquireShortShareSet(kitchenSinkFixture, cash, market, 3, 1, shareToken.address, sender = kitchenSinkFixture.accounts[2]) assert universe.getOpenInterestInAttoCash() == 2 * numTicks prepare_finalize_market(kitchenSinkFixture, market, [0, 0, 0, numTicks]) # redeem shares with a1 shareToken.claimTradingProceeds(market.address, kitchenSinkFixture.accounts[1], nullAddress) assert market.isFinalized() # redeem shares with a2 shareToken.claimTradingProceeds(market.address, kitchenSinkFixture.accounts[2], nullAddress) assert universe.getOpenInterestInAttoCash() == 0 # assert both accounts are paid (or not paid) accordingly assert cash.balanceOf(kitchenSinkFixture.accounts[1]) == expectedPayout assert cash.balanceOf(kitchenSinkFixture.accounts[2]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, 2, kitchenSinkFixture.accounts[1]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, 2, kitchenSinkFixture.accounts[2]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, 1, kitchenSinkFixture.accounts[1]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, 1, kitchenSinkFixture.accounts[2]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, 0, kitchenSinkFixture.accounts[1]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, 0, kitchenSinkFixture.accounts[2]) == 0 def test_redeem_shares_in_scalar_market(kitchenSinkFixture, universe, cash, scalarMarket): market = scalarMarket shareToken = kitchenSinkFixture.contracts["ShareToken"] expectedValue = 1 * market.getNumTicks() expectedSettlementFees = expectedValue * 0.02 expectedPayout = expectedValue - expectedSettlementFees assert universe.getOpenInterestInAttoCash() == 0 # get YES shares with a1 acquireLongShares(kitchenSinkFixture, cash, market, YES, 1, shareToken.address, sender = kitchenSinkFixture.accounts[1]) assert universe.getOpenInterestInAttoCash() == 1 * market.getNumTicks() # get NO shares with a2 acquireShortShareSet(kitchenSinkFixture, cash, market, YES, 1, shareToken.address, sender = kitchenSinkFixture.accounts[2]) assert universe.getOpenInterestInAttoCash() == 2 * market.getNumTicks() finalizeMarket(kitchenSinkFixture, market, [0, 10**5, 3*10**5]) # redeem shares with a1 shareToken.claimTradingProceeds(market.address, kitchenSinkFixture.accounts[1], nullAddress) # redeem shares with a2 shareToken.claimTradingProceeds(market.address, kitchenSinkFixture.accounts[2], nullAddress) # assert a1 ends up with cash (minus fees) and a2 does not assert cash.balanceOf(kitchenSinkFixture.accounts[1]) == expectedPayout * 3 / 4 assert cash.balanceOf(kitchenSinkFixture.accounts[2]) == expectedPayout * 1 / 4 assert shareToken.balanceOfMarketOutcome(market.address, YES, kitchenSinkFixture.accounts[1]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, YES, kitchenSinkFixture.accounts[2]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, NO, kitchenSinkFixture.accounts[1]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, NO, kitchenSinkFixture.accounts[2]) == 0 def test_reedem_failure(kitchenSinkFixture, cash, market): shareToken = kitchenSinkFixture.contracts['ShareToken'] # get YES shares with a1 acquireLongShares(kitchenSinkFixture, cash, market, YES, 1, shareToken.address, sender = kitchenSinkFixture.accounts[1]) # get NO shares with a2 acquireShortShareSet(kitchenSinkFixture, cash, market, YES, 1, shareToken.address, sender = kitchenSinkFixture.accounts[2]) # can't claim trading proceeds before market ends with raises(TransactionFailed): shareToken.claimTradingProceeds(market.address, kitchenSinkFixture.accounts[1], nullAddress) # set timestamp to after market end kitchenSinkFixture.contracts["Time"].setTimestamp(market.getEndTime() + 1) # have kitchenSinkFixture.accounts[0] subimt designated report (75% high, 25% low, range -10*10^18 to 30*10^18) market.doInitialReport([0, 0, 100], "", 0) # set timestamp to after designated dispute end disputeWindow = kitchenSinkFixture.applySignature('DisputeWindow', market.getDisputeWindow()) kitchenSinkFixture.contracts["Time"].setTimestamp(disputeWindow.getEndTime() + 1) # validate that everything else is OK assert shareToken.claimTradingProceeds(market.address, kitchenSinkFixture.accounts[1], nullAddress) assert market.isFinalized() def test_redeem_shares_in_multiple_markets(kitchenSinkFixture, universe, cash, market, scalarMarket): shareToken = kitchenSinkFixture.contracts['ShareToken'] augurTrading = kitchenSinkFixture.contracts['AugurTrading'] # Get scalar LONG shares with a1 expectedValue = 1 * scalarMarket.getNumTicks() * 3 / 4 expectedSettlementFees = expectedValue * 0.02 expectedPayout = expectedValue - expectedSettlementFees acquireLongShares(kitchenSinkFixture, cash, scalarMarket, YES, 1, shareToken.address, sender = kitchenSinkFixture.accounts[1]) finalizeMarket(kitchenSinkFixture, scalarMarket, [0, 10**5, 3*10**5]) # get YES shares with a1 expectedValue = 1 * market.getNumTicks() expectedSettlementFees = expectedValue * 0.02 expectedPayout += expectedValue - expectedSettlementFees acquireLongShares(kitchenSinkFixture, cash, market, YES, 1, shareToken.address, sender = kitchenSinkFixture.accounts[1]) finalizeMarket(kitchenSinkFixture, market, [0, 0, 10**2]) with TokenDelta(cash, expectedPayout, kitchenSinkFixture.accounts[1], "Claiming multiple markets did not give expected payout"): assert augurTrading.claimMarketsProceeds([market.address, scalarMarket.address], kitchenSinkFixture.accounts[1], nullAddress) def test_redeem_shares_affiliate(kitchenSinkFixture, universe, cash, market): shareToken = kitchenSinkFixture.contracts['ShareToken'] expectedValue = 100 * market.getNumTicks() expectedReporterFees = expectedValue / universe.getOrCacheReportingFeeDivisor() expectedMarketCreatorFees = expectedValue / market.getMarketCreatorSettlementFeeDivisor() expectedSettlementFees = expectedReporterFees + expectedMarketCreatorFees expectedPayout = expectedValue - expectedSettlementFees expectedAffiliateFees = expectedMarketCreatorFees / market.affiliateFeeDivisor() expectedMarketCreatorFees = expectedMarketCreatorFees - expectedAffiliateFees assert universe.getOpenInterestInAttoCash() == 0 affiliateAddress = kitchenSinkFixture.accounts[5] # get YES shares with a1 acquireLongShares(kitchenSinkFixture, cash, market, YES, 100, shareToken.address, sender = kitchenSinkFixture.accounts[1]) # get NO shares with a2 acquireShortShareSet(kitchenSinkFixture, cash, market, YES, 100, shareToken.address, sender = kitchenSinkFixture.accounts[2]) finalizeMarket(kitchenSinkFixture, market, [0, 0, 10**2]) with TokenDelta(cash, expectedMarketCreatorFees, market.getOwner(), "market creator fees not paid"): with TokenDelta(cash, expectedAffiliateFees, affiliateAddress, "affiliate fees not paid"): # redeem shares with a1 shareToken.claimTradingProceeds(market.address, kitchenSinkFixture.accounts[1], affiliateAddress) # redeem shares with a2 shareToken.claimTradingProceeds(market.address, kitchenSinkFixture.accounts[2], affiliateAddress) # assert a1 ends up with cash (minus fees) and a2 does not assert cash.balanceOf(kitchenSinkFixture.accounts[1]) == expectedPayout assert shareToken.balanceOfMarketOutcome(market.address, YES, kitchenSinkFixture.accounts[1]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, YES, kitchenSinkFixture.accounts[2]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, NO, kitchenSinkFixture.accounts[1]) == 0 assert shareToken.balanceOfMarketOutcome(market.address, NO, kitchenSinkFixture.accounts[2]) == 0
StarcoderdataPython
1669056
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # noqa from __future__ import unicode_literals import datetime import time import unicodedata import urllib from django.conf import settings from django.utils.translation import ugettext as _ # Avoid shadowing the login() and logout() views below. from django.contrib.auth import (login as auth_login, logout as auth_logout) from django.contrib.auth.forms import AuthenticationForm from django.contrib.auth.views import redirect_to_login from django.contrib.sites.shortcuts import get_current_site from django.http import HttpResponseRedirect, HttpResponse from django.shortcuts import resolve_url from django.template.response import TemplateResponse from django.utils.six.moves.urllib.parse import urlparse from django.utils import timezone from common.log import logger from bkaccount.encryption import encrypt, decrypt, salt from bkaccount.models import Loignlog, BkToken, UserInfo class AccountSingleton(object): """ 单例基类 """ _instance = None def __new__(cls, *args, **kwargs): if not isinstance(cls._instance, cls): cls._instance = object.__new__(cls, *args, **kwargs) return cls._instance class Account(AccountSingleton): """ 账号体系相关的基类Account 提供通用的账号功能 """ # cookie名称 BK_COOKIE_NAME = settings.BK_COOKIE_NAME # cookie 有效期,默认为1天 BK_COOKIE_AGE = settings.BK_COOKIE_AGE # 登录回调链接 REDIRECT_FIELD_NAME = 'c_url' # 登录连接 BK_LOGIN_URL = str(settings.LOGIN_URL) # 允许误差时间,防止多台机器时间误差, 1分钟 BK_TOKEN_OFFSET_ERROR_TIME = settings.BK_TOKEN_OFFSET_ERROR_TIME def is_safe_url(self, url, host=None): """ 判断url是否与当前host的根域一致 以下情况返回False: 1)根域不一致 2)url的scheme不为:https(s) 3)url为空 """ if url is not None: url = url.strip() if not url: return False # Chrome treats \ completely as / url = url.replace('\\', '/') # Chrome considers any URL with more than two slashes to be absolute, but # urlparse is not so flexible. Treat any url with three slashes as unsafe. if url.startswith('///'): return False url_info = urlparse(url) # Forbid URLs like http:///example.com - with a scheme, but without a hostname. # In that URL, example.com is not the hostname but, a path component. However, # Chrome will still consider example.com to be the hostname, so we must not # allow this syntax. if not url_info.netloc and url_info.scheme: return False # Forbid URLs that start with control characters. Some browsers (like # Chrome) ignore quite a few control characters at the start of a # URL and might consider the URL as scheme relative. if unicodedata.category(url[0])[0] == 'C': return False url_domain = url_info.netloc.split(':')[0].split('.')[-2] if url_info.netloc else '' host_domain = host.split(':')[0].split('.')[-2] if host else '' return ((not url_info.netloc or url_domain == host_domain) and (not url_info.scheme or url_info.scheme in ['http', 'https'])) def get_bk_token(self, username): """ 生成用户的登录态 """ bk_token = '' expire_time = int(time.time()) # 重试5次 retry_count = 0 while not bk_token and retry_count < 5: now_time = int(time.time()) expire_time = now_time + self.BK_COOKIE_AGE plain_token = '%s|%s|%s' % (expire_time, username, salt()) bk_token = encrypt(plain_token) try: BkToken.objects.create(token=bk_token) except Exception as error: logger.exception('Login ticket failed to be saved during ticket generation, error: {}'.format(error)) # 循环结束前将bk_token置空后重新生成 bk_token = '' if retry_count < 4 else bk_token retry_count += 1 return bk_token, datetime.datetime.fromtimestamp(expire_time, timezone.get_current_timezone()) def _is_bk_token_valid(self, bk_token): """ 验证用户登录态 """ if not bk_token: error_msg = _("缺少参数bk_token") return False, None, error_msg try: plain_bk_token = decrypt(bk_token) except Exception as error: plain_bk_token = '' logger.exception("Parameter parse failed, error: {}".format(error)) # 参数bk_token非法 error_msg = _("参数bk_token非法") if not plain_bk_token: return False, None, error_msg token_info = plain_bk_token.split('|') if not token_info or len(token_info) < 3: return False, None, error_msg try: is_logout = BkToken.objects.get(token=bk_token).is_logout except BkToken.DoesNotExist: error_msg = _("不存在该bk_token的记录") return False, None, error_msg expire_time = int(token_info[0]) now_time = int(time.time()) # token已注销 if is_logout: error_msg = _("登录态已注销") return False, None, error_msg # token有效期已过 if now_time > expire_time + self.BK_TOKEN_OFFSET_ERROR_TIME: error_msg = _("登录态已过期") return False, None, error_msg # token有效期大于当前时间的有效期 if expire_time - now_time > self.BK_COOKIE_AGE + self.BK_TOKEN_OFFSET_ERROR_TIME: error_msg = _("登录态有效期不合法") return False, None, error_msg username = token_info[1] return True, username, "" def is_bk_token_valid(self, request): bk_token = request.COOKIES.get(self.BK_COOKIE_NAME) return self._is_bk_token_valid(bk_token) def set_bk_token_invalid(self, request, response=None): """ 将登录票据设置为不合法 """ bk_token = request.COOKIES.get(self.BK_COOKIE_NAME) if bk_token: BkToken.objects.filter(token=bk_token).update(is_logout=True) if response is not None: # delete cookie response.delete_cookie(self.BK_COOKIE_NAME, domain=settings.BK_COOKIE_DOMAIN) return response return None def record_login_log(self, request, user, app_id): """ 记录用户登录日志 """ host = request.get_host() login_browser = request.META.get('HTTP_USER_AGENT') or 'unknown' # 获取用户ip login_ip = request.META.get('HTTP_X_FORWARDED_FOR') or 'REMOTE_ADDR' Loignlog.objects.record_login(user, login_browser, login_ip, host, app_id) def redirect_login(self, request): """ 重定向到登录页面. 登录态验证不通过时调用 """ if request.is_ajax(): return HttpResponse(status=401) path = request.build_absolute_uri() resolved_login_url = resolve_url(self.BK_LOGIN_URL) # If the login url is the same scheme and net location then just # use the path as the "next" url. login_scheme, login_netloc = urlparse(resolved_login_url)[:2] current_scheme, current_netloc = urlparse(path)[:2] if ((not login_scheme or login_scheme == current_scheme) and (not login_netloc or login_netloc == current_netloc)): path = settings.SITE_URL[:-1] + request.get_full_path() return redirect_to_login( path, resolved_login_url, self.REDIRECT_FIELD_NAME) def login(self, request, template_name='login/login.html', authentication_form=AuthenticationForm, current_app=None, extra_context=None): """ 登录页面和登录动作 """ redirect_field_name = self.REDIRECT_FIELD_NAME redirect_to = request.POST.get(redirect_field_name, request.GET.get(redirect_field_name, '')) app_id = request.POST.get('app_id', request.GET.get('app_id', '')) if request.method == 'POST': form = authentication_form(request, data=request.POST) if form.is_valid(): return self.login_success_response(request, form, redirect_to, app_id) else: form = authentication_form(request) current_site = get_current_site(request) context = { 'form': form, redirect_field_name: redirect_to, 'site': current_site, 'site_name': current_site.name, 'app_id': app_id, } if extra_context is not None: context.update(extra_context) if current_app is not None: request.current_app = current_app response = TemplateResponse(request, template_name, context) response = self.set_bk_token_invalid(request, response) return response def logout(self, request, next_page=None): """ 登出并重定向到登录页面 """ redirect_field_name = self.REDIRECT_FIELD_NAME auth_logout(request) if (redirect_field_name in request.POST or redirect_field_name in request.GET): next_page = request.POST.get(redirect_field_name, request.GET.get(redirect_field_name)) # Security check -- don't allow redirection to a different host. if not self.is_safe_url(url=next_page, host=request.get_host()): next_page = request.path if next_page: # Redirect to this page until the session has been cleared. response = HttpResponseRedirect(next_page) else: # Redirect to login url. response = HttpResponseRedirect("{}?{}".format(self.BK_LOGIN_URL, "is_from_logout=1")) # 将登录票据设置为不合法 response = self.set_bk_token_invalid(request, response) return response def login_failed_response(self, request, redirect_to, app_id): """ 登录失败跳转,目前重定向到登录,后续可返还支持自定义的错误页面 """ redirect_url = self.BK_LOGIN_URL query = {} if redirect_to: query[self.REDIRECT_FIELD_NAME] = redirect_to if app_id: query['app_id'] = app_id if len(query): redirect_url = "{}?{}".format(self.BK_LOGIN_URL, urllib.urlencode(query)) response = HttpResponseRedirect(redirect_url) response = self.set_bk_token_invalid(request, response) return response def login_success_response(self, request, user_or_form, redirect_to, app_id): """ 用户验证成功后,登录处理 """ # 判读是form还是user if isinstance(user_or_form, AuthenticationForm): user = user_or_form.get_user() username = user_or_form.cleaned_data.get('username', '') else: user = user_or_form username = user.username # 检查回调URL是否安全,防钓鱼 if not self.is_safe_url(url=redirect_to, host=request.get_host()): redirect_to = resolve_url('{}accounts/user/list/'.format(settings.SITE_URL)) # 设置用户登录 auth_login(request, user) # 记录登录日志 self.record_login_log(request, user, app_id) bk_token, expire_time = self.get_bk_token(username) response = HttpResponseRedirect(redirect_to) response.set_cookie(self.BK_COOKIE_NAME, bk_token, expires=expire_time, domain=settings.BK_COOKIE_DOMAIN, httponly=True) # set cookie for app or platform bk_user_info, is_created = UserInfo.objects.get_or_create(user=user) response.set_cookie(settings.LANGUAGE_COOKIE_NAME, bk_user_info.language, # max_age=settings.LANGUAGE_COOKIE_AGE, expires=expire_time, path=settings.LANGUAGE_COOKIE_PATH, domain=settings.LANGUAGE_COOKIE_DOMAIN) return response def login_redirect_response(self, request, redirect_url, is_from_logout): """ 登录重定向 """ response = HttpResponseRedirect(redirect_url) # 来自注销,则需清除蓝鲸bk_token if is_from_logout: response = self.set_bk_token_invalid(request, response) return response
StarcoderdataPython
1775609
#! /usr/bin/env python from typing import Optional import numpy as np # type: ignore from scipy.constants import g # type: ignore def compact( dz: np.ndarray, porosity: np.ndarray, c: float = 5e-8, rho_grain: float = 2650.0, excess_pressure: float = 0.0, porosity_min: float = 0.0, porosity_max: float = 1.0, rho_void: float = 1000.0, gravity: float = g, return_dz: Optional[np.ndarray] = None, ) -> np.ndarray: """Compact a column of sediment. Parameters ---------- dz : ndarray of float Array of sediment thicknesses with depth (the first element is the top of the sediment column) [meters]. porosity : ndarray or number Sediment porosity [-]. c : ndarray or number, optional Compaction coefficient that describes how easily the sediment is to compact [Pa^-1]. rho_grain : ndarray or number, optional Grain density of the sediment [kg / m^3]. excess_pressure : ndarray or number, optional Excess pressure with depth [Pa]. porosity_min : ndarray or number, optional Minimum porosity that can be achieved by the sediment. This is the porosity of the sediment in its closest-compacted state [-]. porosity_max : ndarray or number, optional Maximum porosity of the sediment. This is the porosity of the sediment without any compaction [-]. rho_void : ndarray or number, optional Density of the interstitial fluid [kg / m^3]. gravity : float, optional Acceleration due to gravity [m / s^2]. return_dz : ndarray of float, optional If provided, an output array into which to place the calculated compacted layer thicknesses. Returns ------- porosity : ndarray New porosities after compaction. """ dz, porosity = np.asarray(dz, dtype=float), np.asarray(porosity, dtype=float) load = (rho_grain - rho_void) * dz * (1.0 - porosity) * gravity overlying_load = np.cumsum(load, axis=0) - load - excess_pressure porosity_new = porosity_min + (porosity_max - porosity_min) * np.exp( -c * overlying_load ) np.minimum(porosity_new, porosity, out=porosity_new) if return_dz is not None: if return_dz.dtype is dz.dtype and return_dz.shape == dz.shape: contains_sediment = porosity_new < 1.0 np.divide( dz * (1.0 - porosity), 1.0 - porosity_new, where=contains_sediment, out=return_dz, ) return_dz[~contains_sediment] = 0.0 else: raise TypeError( "size and shape of return_dz ({0}, {1}) must be that of dz ({2}, {3})".format( return_dz.dtype, return_dz.shape, dz.dtype, dz.shape ) ) return porosity_new
StarcoderdataPython
3329495
<reponame>computerboy0555/GBVision from .recording_opencv_window import RecordingOpenCVWindow from .feed_window import FeedWindow class RecordingFeedWindow(RecordingOpenCVWindow, FeedWindow): """ a basic window that displays the stream from a stream receiver """
StarcoderdataPython
144318
import os import requests import json class SimulationManagerException(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message def createSimulation(incident_id, num_nodes, requested_walltime, kind, executable, queuestate_callbacks={}, directory=None, template_dir=None, comment=None, number_instances=1, associated_datasets=[]): arguments = { 'incident_id': incident_id, 'num_nodes':num_nodes, 'requested_walltime' : requested_walltime, 'kind':kind, 'executable':executable, 'number_instances':number_instances, 'queuestate_calls':queuestate_callbacks, 'associated_datasets':associated_datasets } if directory is not None: arguments["directory"]=directory if comment is not None: arguments["comment"]=comment if template_dir is not None: arguments["template_dir"]=template_dir createResponse = requests.post(_get_SM_URL()+'/create', json=arguments) if createResponse.status_code == 201: return createResponse.json()["simulation_id"] else: raise SimulationManagerException(createResponse.status_code, createResponse.text) def submitSimulation(sim_id): submitobj = {'simulation_uuid' : sim_id} response = requests.post(_get_SM_URL()+'/submit', json=submitobj) if response.status_code != 200: raise SimulationManagerException(response.status_code, response.text) def groupSimulations(sim_ids): submitobj = {'simulation_uuids' : sim_ids} response = requests.post(_get_SM_URL()+'/group', json=submitobj) if response.status_code != 200: raise SimulationManagerException(response.status_code, response.text) def refreshSimilation(sim_id): response = requests.post(_get_SM_URL()+'/refresh/'+sim_id) if response.status_code != 200: raise SimulationManagerException(response.status_code, response.text) def cancelSimulation(sim_id): response = requests.delete(_get_SM_URL()+'/simulation/'+sim_id) if response.status_code != 200: raise SimulationManagerException(response.status_code, response.text) #returns information about the simulation with sim_id as a dictionary def getSimulationInfo(sim_id): response = requests.get(_get_SM_URL()+'/info/'+sim_id) if response.status_code != 200: raise SimulationManagerException(response.status_code, response.text) return json.loads(response.text) def getSMHealth(): try: health_status = requests.get(_get_SM_URL() + '/health') return health_status.status_code == 200 except: return False def _get_SM_URL(): if "VESTEC_SM_URI" in os.environ: return os.environ["VESTEC_SM_URI"] else: return 'http://localhost:5500/SM'
StarcoderdataPython
3380687
import os import uuid import unittest from spaceone.core.unittest.runner import RichTestRunner from spaceone.tester.unittest import TestCase, to_json, print_json def random_string(): return uuid.uuid4().hex TOKEN = os.environ.get('KEYCLOAK_TOKEN', 'export KEYCLOAK_TOKEN=<KEY>') OPENID_CONFIGURATION = os.environ.get('OPENID_CONFIGURATION', 'export OPENID_CONFIGURATION=https://yyyyy') CLIENT_ID = os.environ.get('CLIENT_ID','export CLIENT_ID=zzzzzzz') CLIENT_SECRET = os.environ.get('CLIENT_SECRET', 'export CLIENT_SECRET=aaaaaaaaa') OPTIONS = { 'openid-configuration': OPENID_CONFIGURATION, 'auth_type': 'keycloak_oidc', 'client_id': CLIENT_ID } SECRET_DATA = { 'client_id': CLIENT_ID, 'client_secret': CLIENT_SECRET } SCHEMA = 'oauth2_client_credentials' class TestOAuth(TestCase): <EMAIL>('WRONG ACCESS_TOKEN') def test_login(self): credentials = SECRET_DATA user_credentials = { 'access_token': TOKEN } user_info = self.identity.Auth.login({'options':OPTIONS, 'secret_data':credentials, 'schema': SCHEMA, 'user_credentials':user_credentials}) user_info_json = to_json(user_info) print(user_info_json) self.assertEqual(user_info_json['state'], 'ENABLED') def test_init(self): credentials = {} auth_v_info = self.identity.Auth.init({'options':OPTIONS}) j = to_json(auth_v_info) print(j) def test_verify(self): credentials = SECRET_DATA auth_v_info = self.identity.Auth.verify({'options':OPTIONS, 'secret_data': credentials, 'schema': SCHEMA}) j = to_json(auth_v_info) print(j) def test_find_user_id(self): credentials = SECRET_DATA user_id = '<EMAIL>' keyword = 'mz.co.kr' users_info = self.identity.Auth.find({'options':OPTIONS, 'secret_data':credentials, 'schema': SCHEMA, 'user_id':user_id}) j = to_json(users_info) print(j) self.assertEqual(j['total_count'], 1) def test_find_keyword(self): credentials = SECRET_DATA keyword = 'mz.co.kr' users_info = self.identity.Auth.find({'options':OPTIONS, 'secret_data':credentials, 'schema': SCHEMA, 'keyword':keyword}) j = to_json(users_info) print(j) self.assertGreaterEqual(j['total_count'], 1) def test_find_failure(self): """ not found users """ credentials = SECRET_DATA user_id = '<EMAIL>' try: users_info = self.identity.Auth.find({'options':OPTIONS, 'secret_data':credentials, 'schema': SCHEMA, 'user_id':user_id}) except Exception as e: print(e) if __name__ == "__main__": unittest.main(testRunner=RichTestRunner)
StarcoderdataPython
1757540
<filename>dival/util/plot.py<gh_stars>10-100 # -*- coding: utf-8 -*- """Provides utility functions for visualization.""" from warnings import warn from math import ceil import matplotlib.pyplot as plt # import mpl_toolkits.axes_grid.axes_size as Size # from mpl_toolkits.axes_grid import Divider import numpy as np def plot_image(x, fig=None, ax=None, **kwargs): """Plot image using matplotlib's :meth:`imshow` method. Parameters ---------- x : array-like or PIL image The image data. For further information see `imshow documentation <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html>`_. fig : :class:`matplotlib.figure.Figure`, optional The figure to plot the image in. If ``fig is None``, but `ax` is given, it is retrieved from `ax`. If both ``fig is None`` and ``ax is None``, a new figure is created. ax : :class:`matplotlib.axes.Axes`, optional The axes to plot the image in. If `None`, an axes object is created in `fig`. kwargs : dict, optional Keyword arguments passed to ``ax.imshow``. Returns ------- im : :class:`matplotlib.image.AxesImage` The image that was plotted. ax : :class:`matplotlib.axes.Axes` The axes the image was plotted in. """ if fig is None: if ax is None: fig = plt.figure() else: fig = ax.get_figure() if ax is None: ax = fig.add_subplot(111) kwargs.setdefault('cmap', 'gray') xticks = kwargs.pop('xticks', None) yticks = kwargs.pop('yticks', None) if xticks is not None: ax.set_xticks(xticks) if yticks is not None: ax.set_yticks(yticks) im = ax.imshow(np.asarray(x).T, **kwargs) return im, ax def plot_images(x_list, nrows=1, ncols=-1, fig=None, vrange='equal', cbar='auto', rect=None, fig_size=None, **kwargs): """Plot multiple images using matplotlib's :meth:`imshow` method in subplots. Parameters ---------- x_list : sequence of (array-like or PIL image) List of the image data. For further information see `imshow documentation <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html>`_. nrows : int, optional The number of subplot rows (the default is 1). If -1, it is computed by ``ceil(len(x_list)/ncols)``, or set to 1 if `ncols` is not given. ncols : int, optional The number of subplot columns. If -1, it is computed by ``ceil(len(x_list)/nrows)`` (default). If both `nrows` and `ncols` are given, the value of `ncols` is ignored. vrange : {``'equal'``, ``'individual'``} or [list of ](float, float),\ optional Value ranges for the colors of the images. If a string is passed, the range is auto-computed: ``'equal'`` The same colors are used for all images. ``'individual'`` The colors differ between the images. If a tuple of floats is passed, it is used for all images. If a list of tuples of floats is passed, each tuple is used for one image. cbar : {``'one'``, ``'many'``, ``'auto'``, ``'none'``}, optional Colorbar option. If ``cbar=='one'``, one colorbar is shown. Only possible if the value ranges used for the colors (cf. `vrange`) are the same for all images. If ``cbar=='many'``, a colorbar is shown for every image. If ``cbar=='auto'``, either ``'one'`` or ``'many'`` is chosen, depending on whether `vrange` is equal for all images. If ``cbar=='none'``, no colorbars are shown. fig : :class:`matplotlib.figure.Figure`, optional The figure to plot the images in. If `None`, a new figure is created. kwargs : dict, optional Keyword arguments passed to `plot_image`, which in turn passes them to ``imshow``. Returns ------- im : ndarray of :class:`matplotlib.image.AxesImage` The images that were plotted. ax : ndarray of :class:`matplotlib.axes.Axes` The axes the images were plotted in. """ try: x_list = list(x_list) except TypeError: raise TypeError('x_list must be iterable. Pass a sequence or use ' '`plot_image` to plot single images.') for i in range(len(x_list)): x_list[i] = np.asarray(x_list[i]) if fig is None: fig = plt.figure() if nrows is None or nrows == -1: if ncols is None or ncols == -1: nrows = 1 else: nrows = ceil(len(x_list)/ncols) ncols = ceil(len(x_list)/nrows) if rect is None: rect = [0.1, 0.1, 0.8, 0.8] if fig_size is not None: fig.set_size_inches(fig_size) if isinstance(vrange, str): if vrange == 'equal': vrange_ = [(min((np.min(x) for x in x_list)), max((np.max(x) for x in x_list)))] * len(x_list) VRANGE_EQUAL = True elif vrange == 'individual': vrange_ = [(np.min(x), np.max(x)) for x in x_list] VRANGE_EQUAL = False else: raise ValueError("`vrange` must be 'equal' or 'individual'") elif isinstance(vrange, tuple) and len(vrange) == 2: vrange_ = [vrange] * len(x_list) VRANGE_EQUAL = True else: vrange_ = vrange VRANGE_EQUAL = False if not VRANGE_EQUAL: if cbar == 'one': warn("cannot use cbar='one' when vrange is not equal for all" "images, falling back to cbar='many'") if cbar != 'none': cbar = 'many' elif cbar == 'auto': cbar = 'one' ax = fig.subplots(nrows, ncols) if isinstance(ax, plt.Axes): ax = np.atleast_1d(ax) im = np.empty(ax.shape, dtype=object) for i, (x, ax_, v) in enumerate(zip(x_list, ax.flat, vrange_)): im_, _ = plot_image(x, ax=ax_, vmin=v[0], vmax=v[1], **kwargs) im.flat[i] = im_ if cbar == 'many': fig.colorbar(im_, ax=ax_) if cbar == 'one': fig.colorbar(im[0], ax=ax) return im, ax
StarcoderdataPython
157375
default_app_config = 'business.staff_accounts.apps.UserManagementConfig' """ This APP is for management of users Functions:- Adding staff Users and giving them initial details -Department -Staff Type -Departmental,General Managers have predefined roles depending on the departments they can access """
StarcoderdataPython
7173
import torch.nn as nn from .basic import * class squeeze_excitation_2d(nn.Module): """Squeeze-and-Excitation Block 2D Args: channel (int): number of input channels. channel_reduction (int): channel squeezing factor. spatial_reduction (int): pooling factor for x,y axes. """ def __init__(self, channel, channel_reduction=4, spatial_reduction=4, norm_mode='bn', act_mode='elu'): super(squeeze_excitation_2d, self).__init__() self.pool_size = (spatial_reduction, spatial_reduction) layers = [nn.AvgPool2d(kernel_size=self.pool_size, stride=self.pool_size)] layers += conv2d_norm_act(channel, channel // channel_reduction, kernel_size=1, padding=0, norm_mode=norm_mode, act_mode=act_mode, return_list=True) layers += conv2d_norm_act(channel // channel_reduction, channel, kernel_size=1, padding=0, norm_mode=norm_mode, return_list=True) layers = [nn.Sigmoid(), nn.Upsample(scale_factor=self.pool_size, mode='trilinear', align_corners=False)] self.se = nn.Sequential(*layers) def forward(self, x): y = self.se(x) z = x + y*x return z class squeeze_excitation_3d(nn.Module): """Squeeze-and-Excitation Block 3D Args: channel (int): number of input channels. channel_reduction (int): channel squeezing factor. spatial_reduction (int): pooling factor for x,y axes. z_reduction (int): pooling factor for z axis. """ def __init__(self, channel, channel_reduction=4, spatial_reduction=4, z_reduction=1, norm_mode='bn', act_mode='elu'): super(squeeze_excitation_3d, self).__init__() self.pool_size = (z_reduction, spatial_reduction, spatial_reduction) layers = [nn.AvgPool3d(kernel_size=self.pool_size, stride=self.pool_size)] layers += conv3d_norm_act(channel, channel//channel_reduction, kernel_size=1, padding=0, norm_mode=norm_mode, act_mode=act_mode, return_list=True) layers += conv3d_norm_act(channel//channel_reduction, channel, kernel_size=1, padding=0, norm_mode=norm_mode, return_list=True) layers += [nn.Sigmoid(), nn.Upsample(scale_factor=self.pool_size, mode='trilinear', align_corners=False)] self.se = nn.Sequential(*layers) def forward(self, x): y = self.se(x) z = x + y*x return z
StarcoderdataPython
42480
""" An AWS Lambda function used to run periodic background jobs on ECS. The complication with running these tasks is that we need to run them on the same version of the Docker image that the web servers are currently running on. """ import logging import boto3 from utils import env_list, env_param # Logging setup is done by Lambda logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # Initialize clients for the required services. ecs = boto3.client('ecs') def handler(event, context): """ The entry point into the lambda function. This function finds the version of the Docker image running a specific service on a specific ECS cluster and then launches a new task on the same ECS cluster running an overridden version of the same Docker image. Args: event: A dictionary containing information provided when the function was invoked. context: An unknown object containing additional context for the request. Returns: A dictionary containing a response code and status message. """ # The name of the ECS cluster running the existing API task. cluster = env_param('CLUSTER') # The name of the service running on the cluster whose image should # be used to run the background jobs. service = env_param('SERVICE') # The name of the container within the service to override. container_name = env_param('CONTAINER_NAME') # A list of security group IDs that the migration task should be # placed in. security_groups = env_list('SECURITY_GROUPS') # A list of subnet IDs corresponding to the subnets the migration # task may be placed in. subnet_ids = env_list('SUBNETS') logger.info('Beginning process of running background tasks.') logger.info( 'Searching cluster "%s" for "%s" service...', cluster, service, ) logger.info( 'Task to be executed with security groups %s in subnets %s', security_groups, subnet_ids, ) # The first step is to describe the service so we can get access to # the task definition being used. services_info = ecs.describe_services(cluster=cluster, services=[service]) assert len(services_info['services']) == 1, ( 'Received multiple services. Aborting!' ) logger.info('Received information about "%s" service.', service) service_info = services_info['services'][0] task_definition_arn = service_info['taskDefinition'] logger.info( 'ARN of task definition from service is %s', task_definition_arn, ) # Pull roles from task definition information. We run the background # task with the same roles that the API web server tasks normally # run under. task_definition = ecs.describe_task_definition( taskDefinition=task_definition_arn, ) execution_role = task_definition['taskDefinition']['executionRoleArn'] task_role = task_definition['taskDefinition']['taskRoleArn'] logger.info( 'Will execute task with role %s as role %s', task_role, execution_role, ) # Using the parameters we have pulled from the previous steps, we # launch what is essentially a modified version of the webserver # task that performs the tasks required to migrate between versions # of the codebase. ecs.run_task( cluster=cluster, launchType='FARGATE', overrides={ 'containerOverrides': [ { 'command': ['background-jobs'], 'name': container_name, }, ], # The role used by the ECS agent. 'executionRoleArn': execution_role, # The role our code runs under. 'taskRoleArn': task_role, }, networkConfiguration={ 'awsvpcConfiguration': { # Need to assign a public IP so the image can be pulled. 'assignPublicIp': 'ENABLED', 'securityGroups': security_groups, 'subnets': subnet_ids, }, }, taskDefinition=task_definition_arn, ) return { 'body': 'Success', 'statusCode': 200 }
StarcoderdataPython
1693003
from django.contrib import admin from .models import Tag, Article # admin.site.register(Tag) # admin.site.register(Article) def set_active(modeladmin, request, queryset): queryset.update(is_active = True) class ArticleAdmin(admin.ModelAdmin): list_display = ['article_name','article_text', 'is_active','article_rating'] actions = [set_active] class TagAdmin(admin.ModelAdmin): list_display = ['tag_name','is_active'] actions = [set_active] admin.site.register(Tag, TagAdmin) admin.site.register(Article, ArticleAdmin)
StarcoderdataPython
139396
<filename>mooiter/account.py<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- # Mooiter # Copyright 2010 <NAME> # See LICENCE for details. import sys import base64 #Test third party modules try: import tweepy from PyQt4 import QtGui from PyQt4 import QtCore except ImportError as e: print "Import Error" + e class TwitterAccount(QtGui.QDialog): def __init__(self, Parent=None): super(TwitterAccount, self).__init__(Parent) #Garbage collect on dialog close self.setAttribute(QtCore.Qt.WA_DeleteOnClose) self.settings = QtCore.QSettings("cutiepie4", "Mooiter") self.setWindowTitle("Account") vbox = QtGui.QVBoxLayout() hbox = QtGui.QHBoxLayout() vboxlabels = QtGui.QVBoxLayout() vboxedits = QtGui.QVBoxLayout() hboxbuttons = QtGui.QHBoxLayout() delete = QtGui.QPushButton('&Delete') buttonbox = QtGui.QDialogButtonBox(QtGui.QDialogButtonBox.Save| QtGui.QDialogButtonBox.Close) #Create horizontal line seperator = QtGui.QFrame() seperator.setFrameShape(QtGui.QFrame.HLine) seperator.setFrameShadow(QtGui.QFrame.Sunken) self.useredit = QtGui.QLineEdit() self.passwordedit = QtGui.QLineEdit() self.useredit.setMinimumWidth(200) self.passwordedit.setMinimumWidth(200) self.passwordedit.setEchoMode(QtGui.QLineEdit.Password) labeluser = QtGui.QLabel("&Username:") labelpassword = QtGui.QLabel("&Password:") labeluser.setBuddy(self.useredit) labelpassword.setBuddy(self.passwordedit) vboxlabels.addWidget(labeluser) vboxlabels.addWidget(labelpassword) vboxedits.addWidget(self.useredit) vboxedits.addWidget(self.passwordedit) hboxbuttons.addStretch() hboxbuttons.addWidget(delete) hboxbuttons.addWidget(buttonbox) hbox.addLayout(vboxlabels) hbox.addLayout(vboxedits) vbox.addLayout(hbox) vbox.addWidget(seperator) vbox.addLayout(hboxbuttons) self.setLayout(vbox) self.useredit.setFocus() self.setTabOrder(self.useredit, self.passwordedit) self.setTabOrder(delete, buttonbox) self.connect(buttonbox.button(QtGui.QDialogButtonBox.Save), QtCore.SIGNAL("clicked()"), self.new_account) self.connect(buttonbox, QtCore.SIGNAL("rejected()"), self, QtCore.SLOT("reject()")) self.connect(delete, QtCore.SIGNAL('clicked()'), self.delete_account) #Find out if an account already exists if self.settings.contains("User") and self.settings.contains("use"): username = base64.b64decode(self.settings.value("User").toString()) password = <PASSWORD>64.b64decode(self.settings.value("use").toString()) self.useredit.setText(unicode(username)) self.passwordedit.setText(unicode(password)) def new_account(self): """Verfiy and store twitter account details""" username = self.useredit.text() password = <PASSWORD>() #Verfiy twitter account exists on twitter. auth = tweepy.BasicAuthHandler(username, password) api = tweepy.API(auth) if not api.verify_credentials(): QtGui.QMessageBox.warning(self, 'Warning', "Could not authenticate twitter account", QtGui.QMessageBox.Ok) else: #Store username and password self.settings.setValue("User", (QtCore.QVariant\ (base64.b64encode(str(username))))) self.settings.setValue("use", (QtCore.QVariant\ (base64.b64encode(str(password))))) #Signal account change to main window self.emit(QtCore.SIGNAL("changed")) print "pie" def delete_account(self): """Remove all twitter account details""" self.settings.remove("User") self.settings.remove("use") self.useredit.setText("") self.passwordedit.setText("") #Signal account change to main window self.emit(QtCore.SIGNAL("changed")) if __name__ == "__main__": app = QtGui.QApplication(sys.argv) meep = TwitterAccount() meep.show() sys.exit(app.exec_())
StarcoderdataPython
20407
# "javascript" section for javascript. see @app.route('/config.js') in app/views.py # oauth constants HOSTNAME = "http://hackathon.chinacloudapp.cn" # host name of the UI site QQ_OAUTH_STATE = "openhackathon" # todo state should be constant. Actually it should be unguessable to prevent CSFA HACkATHON_API_ENDPOINT = "http://hackathon.chinacloudapp.cn:15000" Config = { "environment": "local", "login": { "github": { "access_token_url": 'https://github.com/login/oauth/access_token?client_id=a10e2290ed907918d5ab&client_secret=5b240a2a1bed6a6cf806fc2f34eb38a33ce03d75&redirect_uri=%s/github&code=' % HOSTNAME, "user_info_url": 'https://api.github.com/user?access_token=', "emails_info_url": 'https://api.github.com/user/emails?access_token=' }, "qq": { "access_token_url": 'https://graph.qq.com/oauth2.0/token?grant_type=authorization_code&client_id=101192358&client_secret=d94f8e7baee4f03371f52d21c4400cab&redirect_uri=%s/qq&code=' % HOSTNAME, "openid_url": 'https://graph.qq.com/oauth2.0/me?access_token=', "user_info_url": 'https://graph.qq.com/user/get_user_info?access_token=%s&oauth_consumer_key=%s&openid=%s' }, "gitcafe": { "access_token_url": 'https://api.gitcafe.com/oauth/token?client_id=25ba4f6f90603bd2f3d310d11c0665d937db8971c8a5db00f6c9b9852547d6b8&client_secret=e3d821e82d15096054abbc7fbf41727d3650cab6404a242373f5c446c0918634&redirect_uri=%s/gitcafe&grant_type=authorization_code&code=' % HOSTNAME }, "provider_enabled": ["github", "qq", "gitcafe"], "session_minutes": 60, "token_expiration_minutes": 60 * 24 }, "hackathon-api": { "endpoint": HACkATHON_API_ENDPOINT }, "javascript": { "renren": { "clientID": "client_id=7e0932f4c5b34176b0ca1881f5e88562", "redirect_url": "redirect_uri=%s/renren" % HOSTNAME, "scope": "scope=read_user_message+read_user_feed+read_user_photo", "response_type": "response_type=token", }, "github": { "clientID": "client_id=a10e2290ed907918d5ab", "redirect_uri": "redirect_uri=%s/github" % HOSTNAME, "scope": "scope=user", }, "google": { "clientID": "client_id=304944766846-7jt8jbm39f1sj4kf4gtsqspsvtogdmem.apps.googleusercontent.com", "redirect_url": "redirect_uri=%s/google" % HOSTNAME, "scope": "scope=https://www.googleapis.com/auth/userinfo.profile+https://www.googleapis.com/auth/userinfo.email", "response_type": "response_type=token", }, "qq": { "clientID": "client_id=101192358", "redirect_uri": "redirect_uri=%s/qq" % HOSTNAME, "scope": "scope=get_user_info", "state": "state=%s" % QQ_OAUTH_STATE, "response_type": "response_type=code", }, "gitcafe": { "clientID": "client_id=25ba4f6f90603bd2f3d310d11c0665d937db8971c8a5db00f6c9b9852547d6b8", "clientSecret": "client_secret=<KEY>", "redirect_uri": "redirect_uri=http://hackathon.chinacloudapp.cn/gitcafe", "response_type": "response_type=code", "scope": "scope=public" }, "hackathon": { "name": "open-xml-sdk", "endpoint": HACkATHON_API_ENDPOINT } } }
StarcoderdataPython
1781639
<reponame>amplify-education/bcfg2 from django.contrib.auth.models import User from nisauth import * class NISBackend(object): def authenticate(self, username=None, password=<PASSWORD>): try: print("start nis authenticate") n = nisauth(username, password) temp_pass = User.objects.make_random_password(100) nis_user = dict(username=username, ) user_session_obj = dict(email=username, first_name=None, last_name=None, uid=n.uid) user, created = User.objects.get_or_create(username=username) return user except NISAUTHError: e = sys.exc_info()[1] print(e) return None def get_user(self, user_id): try: return User.objects.get(pk=user_id) except User.DoesNotExist: e = sys.exc_info()[1] print(e) return None
StarcoderdataPython
1674106
<filename>source/lp_solver.py """ Solves the battery control problem using the LP formulation """ import numpy as np import pulp def solve_lp(load, price_buy, price_sell, h, b_0, b_max, b_min, eff_c, eff_d, d_max, d_min, commitment=None, eps=1e-5): """ Solves the LP asociated with controlling a battery Params: load, np.array: net consumption in KW (positive if consuming and negative if surplus or renewable) in each timeslot price_buy, np.array: price of buying each kWh in each timeslot price_sell, np.array: price of selling each kWh in each timeslot h, float: duration of each timeslot in hours b_0, float: initial energy in the battery in kWh b_max, float: maximum capacity of the battery in kWh b_min, float: minimum capacity of the battery in kWh eff_c, float: efficiency of charging the battery (0, 1] eff_d, float: efficiency of discharging the battery (0, 1] d_max, float: maximum amount of power that the battery can charge in kW d_min, float: maximum amount of power that the battery can discharge in kW Returns: """ N = load.shape[0] energy_cons = load * h keys = [str(i) for i in range(N)] inv_ec = 1.0 / eff_c x_c = pulp.LpVariable.dicts('xc', keys, 0, d_max * h) # 0 <= xc <= d_max * h x_d = pulp.LpVariable.dicts('xd', keys, 0, -d_min * h) # 0 <= xc <= - d_min * h ts = pulp.LpVariable.dicts('ts', keys) prob = pulp.LpProblem("Battery control",pulp.LpMinimize) prob += pulp.lpSum([ts[k] for k in keys]) # Objective functions E t_i for i in range(N): si = str(i) prob += (price_buy[i] * (x_c[si] * inv_ec - x_d[si] * eff_d + energy_cons[i])) <= ts[si] prob += (price_sell[i] * (x_c[si] * inv_ec - x_d[si] * eff_d + energy_cons[i])) <= ts[si] prob += pulp.lpSum([x_c[str(j)] - x_d[str(j)] for j in range(i + 1)]) <= b_max - b_0 prob += pulp.lpSum([x_c[str(j)] - x_d[str(j)] for j in range(i + 1)]) >= b_min - b_0 i = 0 si = '0' if commitment is not None: if commitment > 0: prob += (x_c[si] * inv_ec - x_d[si] * eff_d + energy_cons[i]) >= (commitment - eps) else: prob += (x_c[si] * inv_ec - x_d[si] * eff_d + energy_cons[i]) <= (commitment + eps) prob.solve(pulp.GLPK(msg=0)) #prob.solve() xs = np.array([x_c[k].varValue - x_d[k].varValue for k in keys]) xc = np.array([x_c[k].varValue for k in keys]) xd = np.array([x_d[k].varValue for k in keys]) return pulp.LpStatus[prob.status], pulp.value(prob.objective), xs, xc, xd
StarcoderdataPython
73901
from concurrent.futures import Future, ThreadPoolExecutor import logging from vonx.indy.messages import StoredCredential from vonx.web.view_helpers import ( IndyCredentialProcessor, IndyCredentialProcessorException, ) from api_indy.indy.credential import Credential, CredentialException, CredentialManager from .boot import run_django_proc LOGGER = logging.getLogger(__name__) class CredentialProcessorQueue(IndyCredentialProcessor): def __init__(self, max_threads=10): super(CredentialProcessorQueue, self).__init__() self._max_threads = max_threads def setup(self, app): app["credqueue"] = self app.on_startup.append(self.app_start) app.on_cleanup.append(self.app_stop) async def app_start(self, _app=None): self.start() async def app_stop(self, _app=None): self.stop() def start(self): self._executor = ThreadPoolExecutor(max_workers=self._max_threads) def stop(self): self._executor.shutdown(True) def start_batch(self) -> object: """ May return batch info used for caching and/or scheduling """ return {"manager": CredentialManager()} def get_manager(self, batch_info): if batch_info: return batch_info["manager"] return CredentialManager() def process_credential( self, stored: StoredCredential, origin_did: str = None, batch_info=None) -> Future: """ Perform credential processing and create related objects. Processing can be deferred until end_batch to determine appropriate chunk size, currently using naive :class:`ThreadPoolExecutor` """ cred = Credential(stored.cred.cred_data, stored.cred.cred_req_metadata, stored.cred_id) credential_manager = self.get_manager(batch_info) LOGGER.info("Processing credential %s for DID %s", stored.cred_id, origin_did) def proc(): try: return credential_manager.process(cred, origin_did) except CredentialException as e: raise IndyCredentialProcessorException(str(e)) from e return self._executor.submit(run_django_proc, proc) def end_batch(self, batch_info): """ Ensure that processing has been kicked off """ pass
StarcoderdataPython
1628259
# -*- coding: UTF-8 -*- # pep8: disable-msg=E501 # pylint: disable=C0301 import os import logging import getpass import tempfile __version__ = '0.0.5' __author__ = '<NAME>' __author_username__ = 'marco.lovato' __author_email__ = '<EMAIL>' __description__ = 'A command-line tool to create projects \ from templates, to start your python work.' log_filename = os.path.join(tempfile.gettempdir(), 'machete-' + getpass.getuser() + '.log') log = logging log.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s', filename=log_filename, filemode='a') def __path(filename): return os.path.join(os.path.dirname(os.path.realpath(__file__)), filename) # Jenkins if os.getenv("BUILD_NUMBER"): file_ = open(__path('build.info'), 'w') file_.write(os.getenv("TRAVIS_BUILD_NUMBER")) file_.close() # Travis if os.getenv("TRAVIS_BUILD_NUMBER"): file_ = open(__path('build.info'), 'w') file_.write(os.getenv("TRAVIS_BUILD_NUMBER")) file_.close() __build__ = '0' if os.path.exists(__path('build.info')): __build__ = open(__path('build.info')).read().strip() __version__ = __version__ + '.' + __build__
StarcoderdataPython
149682
from django.db import models import uuid from django.db.models.deletion import CASCADE from django.utils.translation import ugettext_lazy as _ from registry.models import Aircraft, Contact class AerobridgeCredential(models.Model): ''' A class to store tokens from Digital Sky ''' KEY_ENVIRONMENT = ((0, _('DIGITAL SKY OPERATOR')),(1, _('DIGITAL SKY MANUFACTURER')),(2, _('DIGITAL SKY PILOT')),(3, _('RFM')),(4, _('DSC / eMudra Token')),) TOKEN_TYPE= ((0, _('PUBLIC_KEY')),(1, _('PRIVATE_KEY')),(2, _('AUTHENTICATION TOKEN')),(4, _('OTHER')),) id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) name = models.CharField(max_length=100, help_text="Enter a description for the type of credential you are storing") token_type = models.IntegerField(choices=TOKEN_TYPE) association = models.IntegerField(choices=KEY_ENVIRONMENT, default = 4) token = models.BinaryField() is_active = models.BooleanField(default = True) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) def token_type_verbose(self): return dict(AerobridgeCredential.TOKEN_TYPE)[self.token_type]
StarcoderdataPython
3316379
<reponame>lunastorm/wissbi #!/usr/bin/env python import sys import re import socket sep_re = re.compile("^==> (\/.*) <==$") current_logger = "" hostname = socket.gethostname() while True: line = sys.stdin.readline() if len(line) == 0: break line = line.strip() if len(line) == 0: continue matcher = sep_re.match(line) if matcher != None: current_logger = matcher.group(1) continue sys.stdout.write("%s\t%s\t%s\n" % (hostname, current_logger, line)) sys.stdout.flush()
StarcoderdataPython
3209966
from napalm import get_network_driver import pprint as pp driver = get_network_driver('eos') device = driver('sw-2', 'admin', 'alta3') device.open() pp.pprint(device.compliance_report("/home/student/pyna/sw2_validate01.yml")) device.close()
StarcoderdataPython
1704177
<gh_stars>0 import asyncio import os import re import sqlite3 import click import pyperclip from salmon import config from salmon.common import AliasedCommands, commandgroup from salmon.database import DB_PATH from salmon.errors import ImageUploadFailed from salmon.images import imgur, mixtape, ptpimg, vgy loop = asyncio.get_event_loop() HOSTS = { "ptpimg": ptpimg, "mixtape": mixtape, "vgy.me": vgy, "imgur": imgur, } def validate_image_host(ctx, param, value): try: return HOSTS[value] except KeyError: raise click.BadParameter(f"{value} is not a valid image host") @commandgroup.group(cls=AliasedCommands) def images(): """Create and manage uploads to image hosts""" pass @images.command() @click.argument( "filepaths", type=click.Path(exists=True, dir_okay=False, resolve_path=True), nargs=-1, ) @click.option( "--image-host", "-i", help="The name of the image host to upload to", default=config.IMAGE_UPLOADER, callback=validate_image_host, ) def up(filepaths, image_host): """Upload images to an image host""" with sqlite3.connect(DB_PATH) as conn: conn.row_factory = sqlite3.Row cursor = conn.cursor() urls = [] try: tasks = [ loop.run_in_executor(None, lambda f=f: image_host.upload_file(f)) for f in filepaths ] for url, deletion_url in loop.run_until_complete(asyncio.gather(*tasks)): cursor.execute( "INSERT INTO image_uploads (url, deletion_url) VALUES (?, ?)", (url, deletion_url), ) click.secho(url) urls.append(url) conn.commit() if config.COPY_UPLOADED_URL_TO_CLIPBOARD: pyperclip.copy("\n".join(urls)) except (ImageUploadFailed, ValueError) as error: click.secho(f"Image Upload Failed. {error}", fg="red") raise ImageUploadFailed("Failed to upload image") from error @images.command() @click.option( "--limit", "-l", type=click.INT, default=20, help="The number of images to show" ) @click.option( "--offset", "-o", type=click.INT, default=0, help="The number of images to offset by", ) def ls(limit, offset): """View previously uploaded images""" with sqlite3.connect(DB_PATH) as conn: conn.row_factory = sqlite3.Row cursor = conn.cursor() cursor.execute( "SELECT id, url, deletion_url, time FROM image_uploads " "ORDER BY id DESC LIMIT ? OFFSET ?", (limit, offset), ) for row in cursor.fetchall(): click.secho(f"{row['id']:04d}. ", fg="yellow", nl=False) click.secho(f"{row['time']} ", fg="green", nl=False) click.secho(f"{row['url']} ", fg="cyan", nl=False) if row["deletion_url"]: click.secho(f"Delete: {row['deletion_url']}", fg="red") def chunker(seq, size=4): for pos in range(0, len(seq), size): yield seq[pos : pos + size] def upload_cover(path): """ Search a folder for a cover image, and if found, upload it. The image url is returned, otherwise None. """ for filename in os.listdir(path): if re.match(r"^(cover|folder)\.(jpe?g|png)$", filename, flags=re.IGNORECASE): click.secho( f"Uploading cover to {config.COVER_UPLOADER}...", fg="yellow", nl=False ) try: fpath = os.path.join(path, filename) try: url = loop.run_until_complete( loop.run_in_executor( None, lambda: HOSTS[config.COVER_UPLOADER].upload_file(fpath)[0], ) ) except (ImageUploadFailed, ValueError) as error: click.secho(f"Image Upload Failed. {error}", fg="red") raise ImageUploadFailed("Failed to upload image") from error except ImageUploadFailed: return click.secho(" failed :(", fg="red") click.secho(f" done! {url}", fg="yellow") return url click.secho( f"Did not find a cover to upload to {config.IMAGE_UPLOADER}...", fg="red" ) def upload_spectrals(spectrals, uploader=HOSTS[config.SPECS_UPLOADER], successful=None): """ Given the spectrals list of (filename, [spectral_url, ..]), send them to the coroutine upload handller and return a dictionary of filenames and spectral urls. """ response = {} successful = successful or set() one_failed = False for specs_block in chunker(spectrals): tasks = [ _spectrals_handler(sid, filename, sp, uploader) for sid, filename, sp in specs_block if sid not in successful ] for sid, urls in loop.run_until_complete(asyncio.gather(*tasks)): if urls: response = {**response, sid: urls} successful.add(sid) else: one_failed = True if one_failed: return {**response, **_handle_failed_spectrals(spectrals, successful)} return response def _handle_failed_spectrals(spectrals, successful): while True: host = click.prompt( click.style( "Some spectrals failed to upload. Which image host would you like to retry " f'with? (Options: {", ".join(HOSTS.keys())})', fg="magenta", bold=True, ), default="ptpimg", ).lower() if host not in HOSTS: click.secho( f"{host} is an invalid image host. Please choose another one.", fg="red" ) else: return upload_spectrals( spectrals, uploader=HOSTS[host], successful=successful ) async def _spectrals_handler(spec_id, filename, spectral_paths, uploader): try: click.secho(f"Uploading spectrals for {filename}...", fg="yellow") tasks = [ loop.run_in_executor(None, lambda f=f: uploader.upload_file(f)[0]) for f in spectral_paths ] return spec_id, await asyncio.gather(*tasks) except ImageUploadFailed as e: click.secho(f"Failed to upload spectrals for {filename}: {e}", fg="red") return spec_id, None
StarcoderdataPython
3205261
''' Given an integer n, count the total number of digit 1 appearing in all non-negative integers less than or equal to n. For example: Given n = 13, Return 6, because digit 1 occurred in the following numbers: 1, 10, 11, 12, 13. ''' class Solution(object): def countDigitOne(self, n): """ :type n: int :rtype: int """ x, m, count = n, 1, 0 while x > 0: lastDigit = x % 10 x //= 10 count += x * m if lastDigit == 1: count += n % m + 1 elif lastDigit > 1: count += m m *= 10 return count if __name__ == "__main__": assert Solution().countDigitOne(13) == 6
StarcoderdataPython
64126
<gh_stars>0 # Databricks notebook source # MAGIC %md # Using the DDS package on Databricks # MAGIC # MAGIC This notebook shows you a few features of the [dds package](https://github.com/tjhunter/dds_py). Install `dds-py` to your cluster via PyPI to run this notebook. # COMMAND ---------- dbutils.fs.rm("/data_managed", recurse=True) dbutils.fs.rm("/data_cache", recurse=True) # COMMAND ---------- # MAGIC %md ## Set up DDS for Databricks # COMMAND ---------- import dds dds.set_store("dbfs", data_dir="/data_managed", internal_dir="/data_cache") # COMMAND ---------- # MAGIC %md ## Hello world example # COMMAND ---------- @dds.data_function("/hello_data") def data(): print("Executing data()") return "Hello, world" data() # COMMAND ---------- # MAGIC %md The data is now on DBFS # COMMAND ---------- # MAGIC %fs ls /data_managed/ # COMMAND ---------- # MAGIC %fs head /data_managed/hello_data # COMMAND ---------- # MAGIC %md The data is also cached in the `/data_cache` directory: # COMMAND ---------- # MAGIC %fs ls /data_cache/blobs # COMMAND ---------- # Calling this function again does not trigger calculations, the data is stored on DBFS data() # COMMAND ---------- # MAGIC %md ## Plotting dependencies # MAGIC # MAGIC The following code introduces dependencies between multiple data functions. We can plot the dependencies with the `dds.eval` function: # COMMAND ---------- # Try modifying this variable to see what happens outside_var = 3 @dds.data_function("/f1") def f1(): print("eval f1") return 1 @dds.data_function("/f2") def f2(): print("eval f2") return outside_var + f1() @dds.data_function("/f3") def f3(): print("eval f3") return f1() + f2() # This is the first time we evaluate it, so everything will be evaluated. dds.codecs.databricks.displayGraph(f3) # COMMAND ---------- f3() # COMMAND ---------- # MAGIC %md Now see what happens when we modify the `outside_var` variable. DDS will detect that the `f2` function (and hence the `f3` function) will be modified and need to be rerun. # COMMAND ---------- outside_var = 5 dds.codecs.databricks.displayGraph(f3) # COMMAND ---------- f3()
StarcoderdataPython
3374111
<reponame>ajayhk/quant<filename>algos/Catch-Dips-the-fishing-algo-Live-Trade.py ''' This algorithm buys and keeps stocks when they suddenlly dip below a certain threshold For example, buy only when the stock dips 20% below the moving average (20) Sell happens when it is 2X of what we bought it at Performance: Works pretty well, mostly being higher than the buy and hold stragety or almost as good Not working when we do nasdaq 100 due to some runtime error ''' ########### IMPORT THE LIBRARIES USED IN THE ALGORITHM #################################### import datetime import pytz import pandas as pd from zipline.utils.tradingcalendar import get_early_closes ########### INITIALZE() IS RUN ONCE (OR IN LIVE TRADING ONCE EACH DAY BEFORE TRADING) ##### def initialize(context): # context.stock = sid(21724) context.max = 10000 context.min = 0 context.profit = 0.01 # stocks = [sid(8554), sid(3951), sid(24), sid(23709), sid(18522), sid(6295)] stocks = [sid(21724), sid(22257), sid(18522), sid(351), sid(6295), sid(20914)] # stocks = [sid(24), sid(114), sid(122), sid(630), sid(67), \ # sid(20680), sid(328), sid(14328), sid(368), sid(16841), \ # sid(9883), sid(337), sid(38650), sid(739), sid(27533), \ # sid(3806), sid(18529), sid(1209), sid(1406), sid(1419), \ # sid(15101), sid(17632), sid(39095), sid(1637), sid(1900), \ # sid(32301), sid(18870), sid(14014), sid(25317), sid(36930), \ # sid(12652), sid(26111), sid(24819), sid(24482), sid(2618), \ # sid(2663), sid(27543), sid(1787) , sid(2696), sid(42950), \ # sid(20208), sid(2853), sid(8816), sid(12213), sid(3212), \ # sid(9736), sid(23906), sid(26578), sid(22316), sid(13862), \ # sid(3951), sid(8655), sid(25339), sid(4246), sid(43405), \ # sid(27357), sid(32046), sid(4485), sid(43919), sid(4668), \ # sid(8677), sid(22802), sid(3450), sid(5061), sid(5121), \ # sid(5149), sid(5166), sid(23709), sid(13905), sid(19926), \ # sid(19725), sid(8857), sid(5767), sid(5787), sid(19917), \ # sid(6295), sid(6413), sid(6546), sid(20281), sid(6683), \ # sid(26169), sid(6872), sid(11901), sid(13940), sid(7061), \ # sid(15581), sid(24518), sid(7272), sid(39840), sid(7671), \ # sid(27872), sid(8017), sid(38817), sid(8045), sid(8132), \ # sid(8158), sid(24124), sid(8344), sid(8352), sid(14848)] context.stocks = stocks # add some specific securities context.no_of_stocks = 6 context.buy_and_hold_number = [0]*context.no_of_stocks context.run_once = 1 context.lastbuymonth = [0]*context.no_of_stocks context.lastbuyyear = [0]*context.no_of_stocks context.last_bought_date = [0]*context.no_of_stocks context.last_sold_date = [0]*context.no_of_stocks set_commission(commission.PerShare(cost=0.005)) set_slippage(slippage.FixedSlippage(spread=0.00)) ########### HANDLE_DATA() IS RUN ONCE PER MINUTE ####################### def handle_data(context, data): # If the stock has not yet started trading, exit it for stock in context.stocks : if stock not in data: log.info(stock) continue # Get the current exchange time, in local timezone: exchange_time = pd.Timestamp(get_datetime()).tz_convert('US/Eastern') today = exchange_time.day + exchange_time.month*30 + exchange_time.year*365 # This is to compare against the buy and hold strategy # So buy the first time when the algo runs, and then never sell if context.run_once == 1: i = 0 for stock in context.stocks : context.buy_and_hold_number[i] = (context.max/context.no_of_stocks)/data[stock].price log.info(stock) log.info(context.buy_and_hold_number[i]) context.run_once = 0 i = i + 1 i = 0 total_buy_and_hold = 0 for stock in context.stocks : # This is the graph of what would happen if we had just bought and kept total_buy_and_hold = total_buy_and_hold + context.buy_and_hold_number[i] * data[stock].price i = i + 1 # This is the graph of what would happen if we had just bought and kept record(BuyAndHold=total_buy_and_hold) # All the records i = 0 for stock in context.stocks : # This is the Price of the stock today record(PRICE=data[stock].price) # This is the value of the portfolio including current value of stock + cash we have record(PortfolioValue=context.portfolio.positions_value \ + int(context.portfolio.cash)) # this is the max of capital, to compare against the buy and hold value and portfolio values #record(InitialCapital=context.max) i = i + 1 i = -1 for stock in context.stocks : i = i + 1 if data[stock].price < 0.8*data[stock].vwap(20) and \ (int(today) > int(context.last_bought_date[i]) + 5) : # do all the buying here # amount to buy is lesser of the current cash we have and the # money remaining of the total value we allocate for this stock # amount_to_buy = min(context.portfolio.cash, \ # (context.max/context.no_of_stocks - context.portfolio.positions[stock].amount*data[stock].price)) if (context.portfolio.positions[stock].amount == 0) : amount_to_buy = min(context.portfolio.cash, (context.max/context.no_of_stocks)) else : amount_to_buy = min(context.portfolio.cash, \ (context.max/context.no_of_stocks) - context.portfolio.positions[stock].amount*data[stock].price) context.order_id = order_value(stock, 0.3*(amount_to_buy)) # Check the order to make sure that it has bought. Right now the filled below returns zero stock_order = get_order(context.order_id) # The check below shows if the object exists. Only if it exists, should you # refer to it. Otherwise you will get a runtime error if stock_order: message = ',buy,stock={stock},amount to buy={amount_to_buy},price={price},amount={amount}' message = message.format(stock=stock,amount=stock_order.amount, price=data[stock].price,amount_to_buy=amount_to_buy) log.info(message) record(BUY=data[stock].price) context.last_bought_date[i] = today continue continue # This doesnt give as good returns as the below except when we put the value to sell when three times # i = 0 # for stock in context.stocks : # if data[stock].price > 3*context.portfolio.positions[stock].cost_basis and \ # (int(today) > int(context.last_bought_date[i]) + 5) : # # do all the selling here # context.order_id = order(stock, -0.4*(context.portfolio.positions[stock].amount)) # # Check the order to make sure that it has bought. Right now the filled below returns zero # stock_order = get_order(context.order_id) # # The check below shows if the object exists. Only if it exists, should you # # refer to it. Otherwise you will get a runtime error # if stock_order: # message = ',sell,stock={stock},price={price},amount={amount}' # message = message.format(stock=stock,amount=stock_order.amount, price=data[stock].price) # log.info(message) # #record(SELL=data[stock].price) # context.last_sold_date[i] = today # continue # # continue # i = i + 1 i = 0 for stock in context.stocks : if data[stock].price > 2*context.portfolio.positions[stock].cost_basis : context.order_id = order(stock, -0.4*(context.portfolio.positions[stock].amount)) # update the date. This is used to make sure we trade only once a day # Check the order to make sure that it has bought. # Right now the filled below returns zero stock_order = get_order(context.order_id) # The check below shows if the object exists. Only if it exists, should you # refer to it. Otherwise you will get a runtime error if stock_order: # log the order amount and the amount that is filled context.last_sold_date[i] = today message = ',sell,sid={sid}.stocks={stock},amount={amount}' message = message.format(sid=stock,amount=stock_order.amount, stock=stock_order.filled) log.info(message) record(SELL=data[stock].price) i = i + 1
StarcoderdataPython
3210470
class Student: def __init__(self, first, last, courses=None): self.first_name = first self.last_name = last if courses == None: self.courses = [] else: self.courses = courses def add_course(self, course): if course not in self.courses: self.courses.append(course) else: print(f"{self.first_name} is already enrolled in the {course}") def remove_course(self, course): if course in self.courses: self.courses.remove(course) else: print(F"{course} not found.") def find_in_file(self, filename): with open(filename) as f: for line in f: first_name, last_name, course_details = Student.prep_record(line.strip()) Student_read_in = Student(first_name, last_name, course_details) if self == Student_read_in: return True return False # this is the function that checks, add, or modify existing record in the file. def add_to_file(self, filename): # This will check if record exist or not if self.find_in_file(filename): # If record exist, this will ask if you want to edit the rocord or cancel print( f"Record already exists, do you want to update {self.first_name.capitalize()} {self.last_name.capitalize()}'s record?") with open(filename) as o: for line in o: old_record = line u_response = input("Enter u to Update, c to Cancel -> ") record_to_update = Student.prep_to_write(self.first_name, self.last_name, self.courses) # If you choose to edit, this will perform the operation if u_response == "u": with open(filename, "w+") as to_update: to_update.write(record_to_update+"\n") return f"Record updated \nFrom: {old_record} \nTo: {record_to_update}" # If you choose to cancel, this will perform the operation else: return "No Changes made" # if record does not exist, this will add new rocord. else: record_to_add = Student.prep_to_write(self.first_name, self.last_name, self.courses) with open(filename, "a+") as to_write: to_write.write(record_to_add+"\n") return f"New record added: {record_to_add}" @staticmethod def prep_record(line): line = line.split(":") first_name, last_name = line[0].split(",") course_details = line[1].rstrip().split(",") return first_name, last_name, course_details @staticmethod def prep_to_write(first_name, last_name, courses): full_name = first_name+','+last_name courses =",".join(courses) return full_name+':'+courses def __eq__(self, other): return self.first_name == other.first_name and self.last_name == other.last_name def __len__(self): return len(self.courses) def __str__(self): return f"First Name: {self.first_name.capitalize()}\nLast Name: {self.last_name.capitalize()}\nCourses: {', '.join(map(str.capitalize, self.courses))}" # This is calling the file we will be working with file_name = "data.txt" # This are sample records to be added # mashrur = Student("mashrur", "hossain", ["python", "rubyon","javascript"]) # print(mashrur.add_to_file(file_name)) # joe = Student("joe", "schmo", ["python", "rubyoo", "javascript"]) # print(joe.add_to_file(file_name)) class StudentAthlete(Student): pass courses = ["python", "rubyon","javascript"] jane = StudentAthlete("jane", "doe",courses) print(jane.cour)
StarcoderdataPython
3312465
import tensorflow as tf import tensorflow.keras as ks from kgcnn.ops.partition import change_partition_by_name, partition_row_indexing from kgcnn.layers.base import GraphBaseLayer @tf.keras.utils.register_keras_serializable(package='kgcnn',name='PoolingTopK') class PoolingTopK(GraphBaseLayer): """Layer for pooling of nodes. Disjoint representation including length tensor. This implements a learnable score vector plus gate. Implements gPool of Gao et al. Args: k (float): relative number of nodes to remove. Default is 0.1 kernel_initializer (str): Score initialization. Default is 'glorot_uniform', kernel_regularizer (str): Score regularization. Default is None. kernel_constraint (bool): Score constrain. Default is None. """ def __init__(self, k=0.1, kernel_initializer='glorot_uniform', kernel_regularizer=None, kernel_constraint=None, **kwargs): """Initialize Layer.""" super(PoolingTopK, self).__init__(**kwargs) self.k = k self.kernel_initializer = ks.initializers.get(kernel_initializer) self.kernel_regularizer = ks.regularizers.get(kernel_regularizer) self.kernel_constraint = ks.constraints.get(kernel_constraint) self.units_p = None self.kernel_p = None def build(self, input_shape): """Build Layer.""" super(PoolingTopK, self).build(input_shape) self.units_p = int(input_shape[0][-1]) self.kernel_p = self.add_weight('score', shape=[1, self.units_p], initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, dtype=self.dtype, trainable=True) def call(self, inputs, **kwargs): """Forward pass. Args: inputs (list): [nodes, node_partition, edges, edge_partition, edge_indices] - nodes (tf.RaggedTensor): Node embeddings of shape (batch, [N], F) - edges (tf.RaggedTensor): Edge embeddings of shape (batch, [N], F) - edge_indices (tf.RaggedTensor): Edge index list of shape of shape (batch, [N], 2) Returns: tuple: [nodes, edges, edge_indices], [map_nodes, map_edges] - nodes (tf.RaggedTensor): Pooled node feature tensor - edges (tf.RaggedTensor): Pooled edge feature list - edge_indices (tf.RaggedTensor): Pooled edge index list - map_nodes (tf.RaggedTensor): Index map between original and pooled nodes - map_edges (tf.RaggedTensor): Index map between original and pooled edges """ self.assert_ragged_input_rank(inputs) dyn_inputs = inputs # We cast to values here node, nodelen = dyn_inputs[0].values, dyn_inputs[0].row_lengths() edgefeat, edgelen = dyn_inputs[1].values, dyn_inputs[1].row_lengths() edgeindref, _ = dyn_inputs[2].values, dyn_inputs[2].row_lengths() index_dtype = edgeindref.dtype # Get node properties nvalue = node nrowlength = tf.cast(nodelen, dtype=index_dtype) erowlength = tf.cast(edgelen, dtype=index_dtype) nids = tf.repeat(tf.range(tf.shape(nrowlength)[0], dtype=index_dtype), nrowlength) # Use kernel p to get score norm_p = ks.backend.sqrt(ks.backend.sum(ks.backend.square(self.kernel_p), axis=-1, keepdims=True)) nscore = ks.backend.sum(nvalue * self.kernel_p / norm_p, axis=-1) # Sort nodes according to score # Then sort after former node ids -> stable = True keeps previous order sort1 = tf.argsort(nscore, direction='ASCENDING', stable=False) nids_sorted1 = tf.gather(nids, sort1) sort2 = tf.argsort(nids_sorted1, direction='ASCENDING', stable=True) # Must be stable=true here sort12 = tf.gather(sort1, sort2) # index goes from 0 to batch*N, no in batch indexing nvalue_sorted = tf.gather(nvalue, sort12, axis=0) nscore_sorted = tf.gather(nscore, sort12, axis=0) # Make Mask nremove = tf.cast(tf.math.round(self.k * tf.cast(nrowlength, dtype=tf.keras.backend.floatx())), dtype=index_dtype) nkeep = nrowlength - nremove n_remove_keep = ks.backend.flatten( tf.concat([ks.backend.expand_dims(nremove, axis=-1), ks.backend.expand_dims(nkeep, axis=-1)], axis=-1)) mask_remove_keep = ks.backend.flatten(tf.concat( [ks.backend.expand_dims(tf.zeros_like(nremove, dtype=tf.bool), axis=-1), ks.backend.expand_dims(tf.ones_like(nkeep, tf.bool), axis=-1)], axis=-1)) mask = tf.repeat(mask_remove_keep, n_remove_keep) # Apply Mask to remove lower score nodes pooled_n = nvalue_sorted[mask] pooled_score = nscore_sorted[mask] pooled_id = nids[mask] # nids should not have changed by final sorting pooled_len = nkeep # shape=(batch,) pooled_index = tf.cast(sort12[mask], dtype=index_dtype) # the index goes from 0 to N*batch removed_index = tf.cast(sort12[tf.math.logical_not(mask)], dtype=index_dtype) # the index goes from 0 to N*batch # Pass through gate gated_n = pooled_n * ks.backend.expand_dims(tf.keras.activations.sigmoid(pooled_score), axis=-1) # Make index map for new nodes towards old index index_new_nodes = tf.range(tf.shape(pooled_index)[0], dtype=index_dtype) old_shape = tf.cast(ks.backend.expand_dims(tf.shape(nvalue)[0]), dtype=index_dtype) map_index = tf.scatter_nd(ks.backend.expand_dims(pooled_index, axis=-1), index_new_nodes, old_shape) # Shift index if necessary edge_ids = tf.repeat(tf.range(tf.shape(edgelen)[0], dtype=index_dtype), edgelen) shiftind = partition_row_indexing(edgeindref, nrowlength, edge_ids, partition_type_target="row_length", partition_type_index="value_rowids", from_indexing=self.node_indexing, to_indexing="batch") shiftind = tf.cast(shiftind, dtype=index_dtype) # already shifted by batch offset (sub-graphs) # Remove edges that were from filtered nodes via mask mask_edge = ks.backend.expand_dims(shiftind, axis=-1) == ks.backend.expand_dims( ks.backend.expand_dims(removed_index, axis=0), axis=0) # this creates large tensor (batch*#edges,2,remove) mask_edge = tf.math.logical_not(ks.backend.any(ks.backend.any(mask_edge, axis=-1), axis=-1)) clean_shiftind = shiftind[mask_edge] clean_edge_ids = edge_ids[mask_edge] # clean_edge_len = tf.math.segment_sum(tf.ones_like(clean_edge_ids), clean_edge_ids) clean_edge_len = tf.scatter_nd(tf.expand_dims(clean_edge_ids, axis=-1), tf.ones_like(clean_edge_ids), tf.cast(tf.shape(erowlength), dtype=index_dtype)) # Map edgeindex to new index new_edge_index = tf.concat([ks.backend.expand_dims(tf.gather(map_index, clean_shiftind[:, 0]), axis=-1), ks.backend.expand_dims(tf.gather(map_index, clean_shiftind[:, 1]), axis=-1)], axis=-1) batch_order = tf.argsort(new_edge_index[:, 0], axis=0, direction='ASCENDING', stable=True) new_edge_index_sorted = tf.gather(new_edge_index, batch_order, axis=0) # Remove the batch offset from edge_indices again for indexing type out_indexlist = partition_row_indexing(new_edge_index_sorted, pooled_len, clean_edge_ids, partition_type_target="row_length", partition_type_index="value_rowids", from_indexing="batch", to_indexing=self.node_indexing) # Correct edge features the same way (remove and reorder) edge_feat = edgefeat clean_edge_feat = edge_feat[mask_edge] clean_edge_feat_sorted = tf.gather(clean_edge_feat, batch_order, axis=0) # Make edge feature map for new edge features edge_position_old = tf.range(tf.shape(edgefeat)[0], dtype=index_dtype) edge_position_new = edge_position_old[mask_edge] edge_position_new = tf.gather(edge_position_new, batch_order, axis=0) # Collect output tensors out_node = gated_n out_edge = clean_edge_feat_sorted out_edge_index = out_indexlist # Change length to partition required out_np = pooled_len # row_length out_ep = clean_edge_len # row_length # Collect reverse pooling info # Remove batch offset for old indicies -> but with new length out_pool = partition_row_indexing(pooled_index, nrowlength, pooled_len, partition_type_target="row_length", partition_type_index="row_length", from_indexing="batch", to_indexing=self.node_indexing) out_pool_edge = partition_row_indexing(edge_position_new, erowlength, clean_edge_ids, partition_type_target="row_length", partition_type_index="value_rowids", from_indexing="batch", to_indexing=self.node_indexing) out = [tf.RaggedTensor.from_row_lengths(out_node, out_np, validate=self.ragged_validate), tf.RaggedTensor.from_row_lengths(out_edge, out_ep, validate=self.ragged_validate), tf.RaggedTensor.from_row_lengths(out_edge_index, out_ep, validate=self.ragged_validate)] out_map = [tf.RaggedTensor.from_row_lengths(out_pool, out_np, validate=self.ragged_validate), tf.RaggedTensor.from_row_lengths(out_pool_edge, out_ep, validate=self.ragged_validate)] return out, out_map def get_config(self): """Update layer config.""" config = super(PoolingTopK, self).get_config() config.update({"k": self.k}) config.update({ 'kernel_initializer': ks.initializers.serialize(self.kernel_initializer), 'kernel_regularizer': ks.regularizers.serialize(self.kernel_regularizer), 'kernel_constraint': ks.constraints.serialize(self.kernel_constraint), }) return config @tf.keras.utils.register_keras_serializable(package='kgcnn',name='UnPoolingTopK') class UnPoolingTopK(GraphBaseLayer): """Layer for un-pooling of nodes from PoolingTopK. The edge index information are not reverted since the tensor before pooling can be reused. Same holds for batch-assignment in number of nodes and edges information. """ def __init__(self, **kwargs): """Initialize Layer.""" super(UnPoolingTopK, self).__init__(**kwargs) def build(self, input_shape): """Build Layer.""" super(UnPoolingTopK, self).build(input_shape) def call(self, inputs, **kwargs): """Forward pass. Args: inputs (list): [node, edge, edge_indices, map_node, map_edge, node_pool, edge_pool, edge_indices_pool] - node (tf.RaggedTensor): Original node tensor - edge (tf.RaggedTensor): Original edge feature tensor - edge_indices (tf.RaggedTensor): Original index tensor - map_node (tf.RaggedTensor): Index map between original and pooled nodes - map_edge (tf.RaggedTensor): Index map between original and pooled edges - node_pool (tf.RaggedTensor): Pooled node tensor - edge_pool (tf.RaggedTensor): Pooled edge feature tensor - edge_indices (tf.RaggedTensor): Pooled index tensor Returns: List: [nodes, edges, edge_indices] - nodes (tf.RaggedTensor): Un-pooled node feature tensor - edges (tf.RaggedTensor): Un-pooled edge feature list - edge_indices (tf.RaggedTensor): Un-pooled edge index """ self.assert_ragged_input_rank(inputs) dyn_inputs = inputs # We cast to values here node_old, nrowlength = dyn_inputs[0].values, dyn_inputs[0].row_lengths() edge_old, erowlength = dyn_inputs[1].values, dyn_inputs[1].row_lengths() edgeind_old, _ = dyn_inputs[2].values, dyn_inputs[2].row_lengths() map_node, _ = dyn_inputs[3].values, dyn_inputs[3].row_lengths() map_edge, _ = dyn_inputs[4].values, dyn_inputs[4].row_lengths() node_new, pool_node_len = dyn_inputs[5].values, dyn_inputs[5].row_lengths() edge_new, pool_edge_id = dyn_inputs[6].values, dyn_inputs[6].value_rowids() edgeind_new, _ = dyn_inputs[7].values, dyn_inputs[7].row_lengths() # Correct map index for flatten batch offset map_node = partition_row_indexing(map_node, nrowlength, pool_node_len, partition_type_target="row_length", partition_type_index="row_length", from_indexing=self.node_indexing, to_indexing="batch") map_edge = partition_row_indexing(map_edge, erowlength, pool_edge_id, partition_type_target="row_length", partition_type_index="value_rowids", from_indexing=self.node_indexing, to_indexing="batch") index_dtype = map_node.dtype node_shape = tf.stack([tf.cast(tf.shape(node_old)[0], dtype=index_dtype), tf.cast(tf.shape(node_new)[1], dtype=index_dtype)]) out_node = tf.scatter_nd(ks.backend.expand_dims(map_node, axis=-1), node_new, node_shape) index_dtype = map_edge.dtype edge_shape = tf.stack([tf.cast(tf.shape(edge_old)[0], dtype=index_dtype), tf.cast(tf.shape(edge_new)[1], dtype=index_dtype)]) out_edge = tf.scatter_nd(ks.backend.expand_dims(map_edge, axis=-1), edge_new, edge_shape) outlist = [tf.RaggedTensor.from_row_lengths(out_node, nrowlength, validate=self.ragged_validate), tf.RaggedTensor.from_row_lengths(out_edge, erowlength, validate=self.ragged_validate), tf.RaggedTensor.from_row_lengths(edgeind_old, erowlength, validate=self.ragged_validate)] return outlist def get_config(self): """Update layer config.""" config = super(UnPoolingTopK, self).get_config() return config @tf.keras.utils.register_keras_serializable(package='kgcnn', name='AdjacencyPower') class AdjacencyPower(GraphBaseLayer): """Computes powers of the adjacency matrix. This implementation is a temporary solution. Note: Layer casts to dense until sparse matmul is supported. This can be very inefficient. Args: n (int): Power of the adjacency matrix. Default is 2. """ def __init__(self, n=2, **kwargs): """Initialize layer.""" super(AdjacencyPower, self).__init__(**kwargs) self.n = n def build(self, input_shape): """Build layer.""" super(AdjacencyPower, self).build(input_shape) def call(self, inputs, **kwargs): """Forward pass. Args: inputs (list): [nodes, edges, edge_indices] - nodes (tf.RaggedTensor): Node embeddings of shape (batch, [N], F) - edges (tf.RaggedTensor): Adjacency entries of shape (batch, [M], 1) - edge_indices (tf.RaggedTensor): Edge-index list referring to nodes of shape (batch, [M], 2) Returns: list: [edges, edge_indices] - edges (tf.RaggedTensor): Adjacency entries of shape (batch, [M], 1) - edge_indices (tf.RaggedTensor): Flatten index list of shape (batch, [M], 2) """ self.assert_ragged_input_rank(inputs) dyn_inputs = inputs nod, node_len = dyn_inputs[0].values, dyn_inputs[0].row_lengths() edge = dyn_inputs[1].values edge_index, edge_len = dyn_inputs[2].values, dyn_inputs[2].row_lengths() # batch-wise indexing edge_index = partition_row_indexing(edge_index, node_len, edge_len, partition_type_target="row_length", partition_type_index="row_length", from_indexing=self.node_indexing, to_indexing="sample") ind_batch = tf.cast(tf.expand_dims(tf.repeat(tf.range(tf.shape(edge_len)[0]), edge_len), axis=-1), dtype=edge_index.dtype) ind_all = tf.concat([ind_batch, edge_index], axis=-1) ind_all = tf.cast(ind_all, dtype=tf.int64) max_index = tf.reduce_max(node_len) dense_shape = tf.stack([tf.cast(tf.shape(node_len)[0], dtype=max_index.dtype), max_index, max_index]) adj = tf.zeros(dense_shape, dtype=edge.dtype) ind_flat = tf.range(tf.cast(tf.shape(node_len)[0], dtype=max_index.dtype) * max_index * max_index) adj = tf.expand_dims(adj, axis=-1) adj = tf.tensor_scatter_nd_update(adj, ind_all, edge[:, 0:1]) adj = tf.squeeze(adj, axis=-1) out0 = adj out = adj for i in range(self.n - 1): out = tf.linalg.matmul(out, out0) # debug_result = out # Make sparse mask = out > tf.keras.backend.epsilon() mask = tf.reshape(mask, (-1,)) out = tf.reshape(out, (-1,)) new_edge = out[mask] new_edge = tf.expand_dims(new_edge, axis=-1) new_indices = tf.unravel_index(ind_flat[mask], dims=dense_shape) new_egde_ids = new_indices[0] new_edge_index = tf.concat([tf.expand_dims(new_indices[1], axis=-1), tf.expand_dims(new_indices[2], axis=-1)], axis=-1) new_edge_len = tf.tensor_scatter_nd_add(tf.zeros_like(node_len), tf.expand_dims(new_egde_ids, axis=-1), tf.ones_like(new_egde_ids)) # batchwise indexing new_edge_index = partition_row_indexing(new_edge_index, node_len, new_edge_len, partition_type_target="row_length", partition_type_index="row_length", from_indexing="sample", to_indexing=self.node_indexing) outlist = [tf.RaggedTensor.from_row_lengths(new_edge, new_edge_len, validate=self.ragged_validate), tf.RaggedTensor.from_row_lengths(new_edge_index, new_edge_len, validate=self.ragged_validate)] return outlist def get_config(self): """Update layer config.""" config = super(AdjacencyPower, self).get_config() config.update({"n": self.n}) return config
StarcoderdataPython
1600288
import time import pytest import numpy as np import pandas as pd import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import filestore import filestore.api import filestore.handlers import hxnfly.fly import hxnfly.log from hxnfly.callbacks import FlyLiveCrossSection from hxnfly.fly2d import Fly2D from hxnfly.bs import FlyPlan2D from .fly_mock import (MockDetector, MockSignal) from .sim_detector import TestDetector from .fixtures import * def test_scan_points(): from hxnfly.fly2d import _get_scan_points point_args = (0.0, 1.0, 10, 1.0, 2.0, 10, ) points = list(_get_scan_points(*point_args, max_points=22)) assert len(points) == 5 assert sum(py for xi, xj, px, yi, yj, py in points) == 10 xis = [xi for xi, xj, px, yi, yj, py in points] xjs = [xj for xi, xj, px, yi, yj, py in points] assert min(xis) == 0.0 assert max(xjs) == 1.0 yis = [yi for xi, xj, px, yi, yj, py in points] yjs = [yj for xi, xj, px, yi, yj, py in points] assert min(yis) == 1.0 assert max(yjs) == 2.0 def make_2d_data(startx, endx, nptsx, starty, endy, nptsy, gathered_points=200, gate_enable='low_to_high'): # this is not entirely accurate... time = np.linspace(0, 10.0, gathered_points) gather_y = gathered_points // nptsy px = np.array(np.linspace(startx, endx, gather_y).tolist() * nptsy) py = np.array(sum(([pt] * gather_y for pt in np.linspace(starty, endy, nptsy)), [])) pz = np.random.rand(gathered_points) / 10.0 enable = [] npts = nptsx * nptsy exposed_count = (gathered_points // npts) - 1 for i in range(npts): if gate_enable == 'low_to_high': enable.extend([0] + [1] * exposed_count) else: enable.extend([1] + [0] * exposed_count) if gate_enable == 'low_to_high': enable[-1] = 0 else: enable[-1] = 1 return [np.array(v) for v in (time, enable, px, py, pz)] @pytest.fixture(scope='function', params=['with_mock_detector', 'with_sim_detector', 'relative']) def fly2d(request, monkeypatch, ppmac, gpascii, axes, positioners, sim_det, ipython, global_state): import hxntools.scans hxntools.scans.setup(debug_mode=True) def run_and_wait(*args, **kwargs): print('run and wait!') change_callback = kwargs.pop('change_callback') time.sleep(0.1) change_callback('Q1', 0, 1) time.sleep(1.0) return 0 monkeypatch.setattr(gpascii, 'run_and_wait', run_and_wait) if request.param == 'with_sim_detector': sim_det.count_time.put(0.01) detectors = [sim_det] else: detectors = [MockDetector('', name='det')] gpascii.set_variable('gather.samples', 100) gpascii.set_variable('gather.maxlines', 100) scan = Fly2D(axes=axes, positioners=positioners, detectors=detectors) startx, endx, nptsx = -1.0, 1.0, 2 starty, endy, nptsy = -1.0, 1.0, 2 exposure_time = 1.0 relative = (request.param == 'relative') scan.configure(positioners['testx'], startx, endx, nptsx, positioners['testy'], starty, endy, nptsy, exposure_time=exposure_time, relative=relative) npts = nptsx * nptsy sclr1 = ipython.user_ns['sclr1'] sclr1.mca_by_index[1].spectrum.put(np.array([exposure_time * 50e3] * npts)) gather_client = scan.gather_client # fake data for parsing gather_client.gathered = make_2d_data(startx, endx, nptsx, starty, endy, nptsy, gathered_points=500, gate_enable=scan._gate_enable) def FakeClass(*args, **kwargs): print('initialized with', args, kwargs) scan.configure_defaults = dict(return_speed=5.0, dead_time=0.007, fly_type='soft', max_points=16384) return scan testx, testy = positioners['testx'], positioners['testy'] FlyPlan2D.scans = {frozenset({testx, testy}): FakeClass, } return scan def test_fly2d(fly2d): # kickoff sends in the subscan number normally data = fly2d.run_subscan(0) df = pd.DataFrame(list(pd.DataFrame(data)['data'])) print('acquired data:') print(df) has_test_det = any(isinstance(det, TestDetector) for det in fly2d.detectors) if has_test_det: assert 'sim_tiff' in df for img_uid in df['sim_tiff']: print(img_uid, filestore.api.retrieve(img_uid).shape) print(fly2d.collect()) print(fly2d.describe()) def test_failed_fly2d(fly2d, gpascii, monkeypatch): def run_and_wait(*args, **kwargs): time.sleep(1.0) return 1 monkeypatch.setattr(gpascii, 'run_and_wait', run_and_wait) data = fly2d.run_subscan(0) assert data is None def test_flyplan2d(monkeypatch, positioners, fly2d, run_engine): scan_fcn = hxnfly.bs.FlyPlan2D() gen = scan_fcn(positioners['testx'], -1.0, 1.0, 2, positioners['testy'], -1.0, 1.0, 2, 1.0, dead_time=0.001, ) run_engine(gen) def test_flyplan2d_liveimage(request, monkeypatch, positioners, run_engine, fly2d, xspress3): fly2d.detectors.append(xspress3) scan_fcn = hxnfly.bs.FlyPlan2D() from hxnfly.callbacks import (FlyDataCallbacks, FlyLiveImage) monkeypatch.setattr(hxnfly.fly, 'Xspress3Detector', xspress3.__class__) xspress3.array_counter.put(4) # TODO is this done in configure_roi? xspress3.setup_fake_rois([('Fe', [1, 2, 3, 4]), ('Mo', [4, 3, 2, 1]) ]) liveimage = FlyLiveImage(['Fe', 'Mo']) scan_fcn.subs = [FlyDataCallbacks(), liveimage] gen = scan_fcn(positioners['testx'], -1.0, 1.0, 2, positioners['testy'], -1.0, 1.0, 2, 1.0, dead_time=0.001, ) run_engine(gen) plt.savefig('liveimage-{}.png'.format(request.node.name)) liveimage.disable() plt.clf() # TODO crossection plot needs fixing # @pytest.mark= def test_flyplan2d_crossection(request, monkeypatch, positioners, run_engine, fly2d, xspress3): fly2d.detectors.append(xspress3) scan_fcn = hxnfly.bs.FlyPlan2D() monkeypatch.setattr(hxnfly.fly, 'Xspress3Detector', xspress3.__class__) xspress3.array_counter.put(4) # TODO is this done in configure_roi? xspress3.setup_fake_rois([('Fe', [1, 2, 3, 4]), ('Mo', [4, 3, 2, 1]) ]) with pytest.raises(ValueError): # cross-section only does 1 at a time FlyLiveCrossSection(['Fe', 'Mo']) crossection = FlyLiveCrossSection(['Fe']) scan_fcn.subs = [crossection] gen = scan_fcn(positioners['testx'], -1.0, 1.0, 2, positioners['testy'], -1.0, 1.0, 2, 1.0, dead_time=0.001, ) run_engine(gen) crossection.disable() from PyQt4.QtGui import QPixmap live_fn = 'crossection-live-{}.png'.format(request.node.name) QPixmap.grabWindow(crossection.live_window.winId()).save(live_fn, 'png') crossection.live_window.close() if crossection._final_window is not None: final_fn = 'crossection-final-{}.png'.format(request.node.name) QPixmap.grabWindow(crossection.final_window.winId()).save(final_fn, 'png') crossection.final_window.close()
StarcoderdataPython
4804444
import pytest from ..checker import check from tenable.errors import APIError, UnexpectedValueError from tests.pytenable_log_handler import log_exception def test_queries_constructor_sort_field_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(sort_field=1, tool='1', type='1', filters=[('filtername', 'operator', 'value')]) def test_queries_constructor_description_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(description=1, tool='1', type='1') def test_queries_constructor_sort_direction_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(sort_direction=1, tool='1', type='1') def test_queries_constructor_sort_direction_unexpectedvalueerror(sc): with pytest.raises(UnexpectedValueError): sc.queries._constructor(sort_direction='nope', tool='1', type='1') def test_queries_constructor_offset_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(offset='one', tool='1', type='1') def test_queries_constructor_limit_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(limit='one', tool='1', type='1') def test_queries_constructor_owner_id_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(owner_id='one', tool='1', type='1') def test_queries_constructor_context_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(context=1, tool='1', type='1') def test_queries_constructor_browse_cols_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(browse_cols=1, tool='1', type='1') def test_queries_constructor_browse_sort_col_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(browse_sort_col=1, tool='1', type='1') def test_queries_constructor_browse_sort_dir_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(browse_sort_direction=1, tool='1', type='1') def test_queries_constructor_browse_sort_dir_unexpectedvalueerror(sc): with pytest.raises(UnexpectedValueError): sc.queries._constructor(browse_sort_direction='nope', tool='1', type='1') def test_queries_constructor_tags_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(tags=1, tool='1', type='ticket', filters=[('filtername', 'operator', [1, 2])]) @pytest.mark.vcr() def test_queries_constructor_success(sc): query = sc.queries._constructor( ('filtername', 'operator', 'value'), ('asset', 'op', 2), tool='vulndetails', type='thistype', tags='tag', sort_field='field1', sort_direction='asc', offset=0, limit=1000, owner_id=1, context='nothing', browse_cols=['something'], browse_sort_col='yes', browse_sort_direction='asc', query_id=1 ) assert isinstance(query, dict) assert query == { 'tool': 'vulndetails', 'type': 'thistype', 'tags': 'tag', 'filters': [{ 'filterName': 'filtername', 'operator': 'operator', 'value': 'value' }, { 'filterName': 'asset', 'operator': 'op', 'value': {'id': '2'} }], 'sortField': 'field1', 'sortDir': 'ASC', 'startOffset': 0, 'query_id': 1, 'endOffset': 1000, 'ownerID': '1', 'context': 'nothing', 'browseColumns': 'something', 'browseSortColumn': 'yes', 'browseSortDirection': 'ASC' } @pytest.fixture def query(request, sc, vcr): with vcr.use_cassette('test_queries_create_success'): query = sc.queries.create('New Query', 'vulndetails', 'vuln', ('pluginID', '=', '19506')) def teardown(): try: with vcr.use_cassette('test_queries_delete_success'): sc.queries.delete(int(query['id'])) except APIError as error: log_exception(error) request.addfinalizer(teardown) return query @pytest.mark.vcr() def test_queries_create_success(sc, query): assert isinstance(query, dict) check(query, 'id', str) check(query, 'name', str) check(query, 'description', str) check(query, 'tool', str) check(query, 'type', str) check(query, 'tags', str) check(query, 'context', str) check(query, 'browseColumns', str) check(query, 'browseSortColumn', str) check(query, 'browseSortDirection', str) check(query, 'createdTime', str) check(query, 'modifiedTime', str) check(query, 'status', str) check(query, 'filters', list) for filter in query['filters']: check(filter, 'filterName', str) check(filter, 'operator', str) check(filter, 'value', str) check(query, 'canManage', str) check(query, 'canUse', str) check(query, 'creator', dict) check(query['creator'], 'id', str) check(query['creator'], 'username', str) check(query['creator'], 'firstname', str) check(query['creator'], 'lastname', str) check(query, 'owner', dict) check(query['owner'], 'id', str) check(query['owner'], 'username', str) check(query['owner'], 'firstname', str) check(query['owner'], 'lastname', str) check(query, 'ownerGroup', dict) check(query['ownerGroup'], 'id', str) check(query['ownerGroup'], 'name', str) check(query['ownerGroup'], 'description', str) check(query, 'targetGroup', dict) check(query['targetGroup'], 'id', int) check(query['targetGroup'], 'name', str) check(query['targetGroup'], 'description', str) @pytest.mark.vcr() def test_queries_delete_success(sc, query): sc.queries.delete(int(query['id'])) @pytest.mark.vcr() def test_queries_details_success(sc, query): query = sc.queries.details(int(query['id'])) assert isinstance(query, dict) check(query, 'id', str) check(query, 'name', str) check(query, 'description', str) check(query, 'tool', str) check(query, 'type', str) check(query, 'tags', str) check(query, 'context', str) check(query, 'browseColumns', str) check(query, 'browseSortColumn', str) check(query, 'browseSortDirection', str) check(query, 'createdTime', str) check(query, 'modifiedTime', str) check(query, 'status', str) check(query, 'filters', list) for filter in query['filters']: check(filter, 'filterName', str) check(filter, 'operator', str) check(filter, 'value', str) check(query, 'canManage', str) check(query, 'canUse', str) check(query, 'creator', dict) check(query['creator'], 'id', str) check(query['creator'], 'username', str) check(query['creator'], 'firstname', str) check(query['creator'], 'lastname', str) check(query, 'owner', dict) check(query['owner'], 'id', str) check(query['owner'], 'username', str) check(query['owner'], 'firstname', str) check(query['owner'], 'lastname', str) check(query, 'ownerGroup', dict) check(query['ownerGroup'], 'id', str) check(query['ownerGroup'], 'name', str) check(query['ownerGroup'], 'description', str) check(query, 'targetGroup', dict) check(query['targetGroup'], 'id', int) check(query['targetGroup'], 'name', str) check(query['targetGroup'], 'description', str) @pytest.mark.vcr() def test_queries_details_success_for_fields(sc, query): q = sc.queries.details(int(query['id']), fields=["id", "name", "description"]) assert isinstance(q, dict) check(q, 'id', str) check(q, 'name', str) check(q, 'description', str) @pytest.mark.vcr() def test_queries_edit_success(sc, query): query = sc.queries.edit(int(query['id']), name='Updated Name') assert isinstance(query, dict) check(query, 'id', str) check(query, 'name', str) check(query, 'description', str) check(query, 'tool', str) check(query, 'type', str) check(query, 'tags', str) check(query, 'context', str) check(query, 'browseColumns', str) check(query, 'browseSortColumn', str) check(query, 'browseSortDirection', str) check(query, 'createdTime', str) check(query, 'modifiedTime', str) check(query, 'filters', list) for filter in query['filters']: check(filter, 'filterName', str) check(filter, 'operator', str) check(filter, 'value', str) check(query, 'canManage', str) check(query, 'canUse', str) check(query, 'creator', dict) check(query['creator'], 'id', str) check(query['creator'], 'username', str) check(query['creator'], 'firstname', str) check(query['creator'], 'lastname', str) check(query, 'owner', dict) check(query['owner'], 'id', str) check(query['owner'], 'username', str) check(query['owner'], 'firstname', str) check(query['owner'], 'lastname', str) check(query, 'ownerGroup', dict) check(query['ownerGroup'], 'id', str) check(query['ownerGroup'], 'name', str) check(query['ownerGroup'], 'description', str) check(query, 'targetGroup', dict) check(query['targetGroup'], 'id', int) check(query['targetGroup'], 'name', str) check(query['targetGroup'], 'description', str) @pytest.mark.vcr() def test_queries_list_success(sc, query): queries = sc.queries.list() assert isinstance(queries, dict) for ltype in ['manageable', 'usable']: for query in queries[ltype]: assert isinstance(query, dict) check(query, 'id', str) check(query, 'name', str) check(query, 'description', str) @pytest.mark.vcr() def test_queries_list_success_for_fields(sc): queries = sc.queries.list(fields=["id", "name"]) assert isinstance(queries, dict) for type in ['manageable', 'usable']: for query in queries[type]: assert isinstance(query, dict) check(query, 'id', str) check(query, 'name', str) @pytest.mark.vcr() def test_queries_tags_success(sc): tags = sc.queries.tags() assert isinstance(tags, list) for tag in tags: assert isinstance(tag, str) @pytest.mark.vcr() def test_queries_share_id_typeerror(sc): with pytest.raises(TypeError): sc.queries.share('one', 1) @pytest.mark.vcr() def test_queries_share_group_id_typeerror(sc): with pytest.raises(TypeError): sc.queries.share(1, 'one') @pytest.mark.vcr() def test_queries_share_success(sc, query, group): query = sc.queries.share(int(query['id']), int(group['id'])) assert isinstance(query, dict) check(query, 'id', str) check(query, 'name', str) check(query, 'description', str) check(query, 'tool', str) check(query, 'type', str) check(query, 'tags', str) check(query, 'context', str) check(query, 'browseColumns', str) check(query, 'browseSortColumn', str) check(query, 'browseSortDirection', str) check(query, 'createdTime', str) check(query, 'modifiedTime', str) check(query, 'status', str) check(query, 'filters', list) for filter in query['filters']: check(filter, 'filterName', str) check(filter, 'operator', str) check(filter, 'value', str) check(query, 'creator', dict) check(query['creator'], 'id', str) check(query['creator'], 'username', str) check(query['creator'], 'firstname', str) check(query['creator'], 'lastname', str) check(query, 'owner', dict) check(query['owner'], 'id', str) check(query['owner'], 'username', str) check(query['owner'], 'firstname', str) check(query['owner'], 'lastname', str) check(query, 'ownerGroup', dict) check(query['ownerGroup'], 'id', str) check(query['ownerGroup'], 'name', str) check(query['ownerGroup'], 'description', str) check(query, 'targetGroup', dict) check(query['targetGroup'], 'id', int) check(query['targetGroup'], 'name', str) check(query['targetGroup'], 'description', str)
StarcoderdataPython
4837835
# Imports import torch from torch import nn from torch.utils.data import DataLoader, SubsetRandomSampler, TensorDataset import torch.nn.functional as F import torch.optim as optim import numpy as np import random from sklearn.model_selection import train_test_split, KFold from sklearn.metrics import classification_report import matplotlib.pyplot as plt torch.manual_seed(42) np.random.seed(42) random.seed(42) device = "cuda" if torch.cuda.is_available() else "cpu" class LSTMClassifier(nn.Module): def __init__(self, weights_matrix): super().__init__() self.num_words, self.emb_dim = weights_matrix.size() self.embedding = nn.Embedding(self.num_words, self.emb_dim, padding_idx=0) self.embedding.load_state_dict({'weight': weights_matrix}) self.embedding.weight.requires_grad = False self.hidden_dim = 64 self.num_layers = 2 self.lstm = nn.LSTM(self.emb_dim, self.hidden_dim, num_layers=self.num_layers, bidirectional=True, dropout=0.2, batch_first=True) self.fc = nn.Linear(self.hidden_dim * self.num_layers, 1) self.init_weights() def init_weights(self): initrange = 0.5 self.embedding.weight.data.uniform_(-initrange, initrange) self.fc.weight.data.uniform_(-initrange, initrange) def forward(self, x): x = self.embedding(x) output, (hidden, cell) = self.lstm(x) # concatenate the values of the two hidden layers hidden = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1) x = self.fc(hidden) return torch.sigmoid(x).squeeze() def train_and_test_LSTM(trainset, testset, weights_matrix, batch_size = 32): trainloader = DataLoader(trainset, batch_size = batch_size, collate_fn=collate_fn, shuffle = True) testloader = DataLoader(testset, batch_size = batch_size, collate_fn=collate_fn, shuffle = True) model = LSTMClassifier(weights_matrix).to(device) trainLSTM(model, trainloader) pred_list = [] label_list = [] with torch.no_grad(): for i, (X, y) in enumerate(testloader): predicted_label = model(X) pred_list.extend((predicted_label >= 0.5).cpu().numpy()) # obtain all predictions label_list.extend(y.cpu().numpy()) target_names = ['non-hate', 'hate'] print(classification_report(label_list, pred_list, target_names=target_names)) return model def CV_eval_LSTM(trainset, weights_matrix, k_folds = 10, batch_size = 32): kfold = KFold(n_splits=k_folds, shuffle=True) total_accur = 0 for fold, (train_ind, valid_ind) in enumerate(kfold.split(trainset)): model = LSTMClassifier(weights_matrix).to(device) train_subsampler = SubsetRandomSampler(train_ind) valid_subsampler = SubsetRandomSampler(valid_ind) trainloader = DataLoader(trainset, batch_size = batch_size, collate_fn=collate_fn, sampler=train_subsampler) validloader = DataLoader(trainset, batch_size = batch_size, collate_fn=collate_fn, sampler=valid_subsampler) trained_model = trainLSTM(model, trainloader) accur = evalLSTM(trained_model, validloader) total_accur += accur del model del trained_model return total_accur / k_folds def evalLSTM(model, validloader): model.eval() total_acc, total_count = 0, 0 with torch.no_grad(): for i, (X, y) in enumerate(validloader): predicted_label = model(X) total_acc += ((predicted_label >= 0.5) == y).sum().item() total_count += len(y) return total_acc/total_count def trainLSTM(model, trainloader): LR = 1e-4 EPOCHS = 6 optimizer = optim.Adam(model.parameters(), lr = LR) criterion = nn.BCELoss() model.train() loss_per_epoch = [] for epoch in range(EPOCHS): running_loss = 0.0 cnt = 0 for i, (X, y) in enumerate(trainloader): optimizer.zero_grad() y = y.type(torch.FloatTensor).to(device) output = model(X) loss = criterion(output.to(device), y) running_loss += loss.item() cnt += len(X) loss.backward() optimizer.step() loss_per_epoch.append(running_loss / cnt) #print(running_loss / cnt) plt.plot(range(1, EPOCHS+1), loss_per_epoch) # plot loss over epochs return model def collate_fn(batch): MAX_SEQLEN = 64 # max allowed number of words per tweet to avoid memory overload label_list = [] text_list = torch.zeros((len(batch), MAX_SEQLEN), dtype=torch.int64) for i, (_text, _label) in enumerate(batch): label_list.append(_label) if _text.size(0) < MAX_SEQLEN: # if < MAX_SEQLEN, pad with padding_idx = 0 _text = F.pad(input=_text, pad=(1, MAX_SEQLEN - _text.size(0) - 1), mode='constant', value=0) elif _text.size(0) > MAX_SEQLEN: # truncate if > MAX_SEQLEN _text = _text[0:MAX_SEQLEN] text_list[i] = _text label_list = torch.tensor(label_list, dtype=torch.int64) return text_list.to(device), label_list.to(device)
StarcoderdataPython
97689
<reponame>openedx/openedx-census #!/usr/bin/env python """Automate the process of counting courses on Open edX sites.""" import asyncio import collections import csv import itertools import json import logging import os import pickle import pprint import re import time import traceback import urllib.parse import attr import click import requests import tqdm from census.helpers import NotTrying, ScrapeFail from census.html_report import html_report from census.keys import username, password from census.report_helpers import get_known_domains, hash_sites_together, sort_sites from census.session import SessionFactory from census.settings import ( STATS_SITE, UPDATE_JSON, SITES_CSV, SITES_PICKLE, MAX_REQUESTS, TIMEOUT, USER_AGENT, ) from census.sites import Attempt, Site, HashedSite, read_sites_csv, courses_and_orgs, totals, read_sites_flat, overcount from census.site_patterns import find_site_functions # We don't use anything from this module, it just registers all the parsers. from census import parsers HEADERS = { 'User-Agent': USER_AGENT, } GONE_MSGS = [ "Cannot connect to host", "Bad Gateway", "TimeoutError", "500", "503", "404", "530 get http", # Cloudflare DNS failures ] CERTIFICATE_MSGS = [ "certificate verify failed", "CertificateError:", ] FALSE_ALARM_CERTIFICATE_MSGS = [ "unable to get local issuer certificate", ] log = logging.getLogger(__name__) def all_have_snippets(errors, snippets): """Do all of the errors match one of the snippets?""" return all(any(snip in err for snip in snippets) for err in errors) async def parse_site(site, session_factory): for verify_ssl in [True, False]: async with session_factory.new(verify_ssl=verify_ssl, listeners=[site]) as session: start = time.time() errs = [] success = False for parser, args, kwargs, custom_parser in find_site_functions(site.url): attempt = Attempt(parser.__name__) err = None try: attempt.courses = await parser(site, session, *args, **kwargs) except NotTrying as exc: attempt.error = str(exc) except ScrapeFail as exc: attempt.error = f"{exc.__class__.__name__}: {exc}" err = str(exc) or exc.__class__.__name__ except Exception as exc: #print(f"Exception: {exc!r}, {exc}, {exc.__class__.__name__}") #print(traceback.format_exc()) attempt.error = traceback.format_exc() err = str(exc) or exc.__class__.__name__ else: success = True site.tried.append(attempt) if err: errs.append(err) if custom_parser: site.custom_parser_err = True else: if custom_parser: break if success: site.current_courses = site.attempt_course_count() if site.is_gone: char = 'B' else: if site.current_courses == site.latest_courses: char = '=' elif site.current_courses < site.latest_courses: char = '-' else: char = '+' else: if verify_ssl and all_have_snippets(errs, CERTIFICATE_MSGS): # We had an SSL error. Try again. But only mark it as an error if it wasn't # a false alarm error. if not all_have_snippets(errs, FALSE_ALARM_CERTIFICATE_MSGS): site.ssl_err = True site.tried = [] site.custom_parser_err = False log.debug("SSL error: %s", (errs,)) continue gone_content = site.current_courses is None and not site.is_openedx gone_http = all_have_snippets(errs, GONE_MSGS) if gone_content or gone_http: site.is_gone_now = True if site.is_gone: char = 'X' else: char = 'G' else: char = 'E' site.time = time.time() - start return char async def run(sites, session_kwargs): kwargs = dict(max_requests=MAX_REQUESTS, headers=HEADERS) kwargs.update(session_kwargs) factory = SessionFactory(**kwargs) tasks = [asyncio.ensure_future(parse_site(site, factory)) for site in sites] chars = collections.Counter() progress = tqdm.tqdm(asyncio.as_completed(tasks), total=len(tasks), smoothing=0.0) for completed in progress: char = await completed chars[char] += 1 desc = " ".join(f"{c}{v}" for c, v in sorted(chars.items())) progress.set_description(desc) progress.close() print() def scrape_sites(sites, session_kwargs): try: loop = asyncio.get_event_loop() future = asyncio.ensure_future(run(sites, session_kwargs)) # Some exceptions go to stderr and then to my except clause? Shut up. loop.set_exception_handler(lambda loop, context: None) loop.run_until_complete(future) except KeyboardInterrupt: pass @click.group(help=__doc__) def cli(): pass @cli.command() @click.option('--in', 'in_file', type=click.Path(exists=True), help="File of sites to scrape") @click.option('--log', 'log_level', type=str, default='info', help="Logging level to use") @click.option('--gone', is_flag=True, help="Scrape the sites we've recorded as gone") @click.option('--site', is_flag=True, help="Command-line arguments are URLs to scrape") @click.option('--summarize', is_flag=True, help="Summarize results instead of saving pickle") @click.option('--save', is_flag=True, help="Save the scraped pages in the save/ directory") @click.option('--out', 'out_file', type=click.File('wb'), default=SITES_PICKLE, help="Pickle file to write") @click.option('--timeout', type=int, help=f"Timeout in seconds for each request [{TIMEOUT}]", default=TIMEOUT) @click.argument('site_patterns', nargs=-1) def scrape(in_file, log_level, gone, site, summarize, save, out_file, timeout, site_patterns): """Visit sites and count their courses.""" logging.basicConfig(level=log_level.upper()) # aiohttp issues warnings about cookies, silence them (and all other warnings!) # WARNING:aiohttp.client:Can not load response cookies: Illegal key # The bad cookies were from http://rechum.sev.gob.mx logging.getLogger('aiohttp.client').setLevel(logging.ERROR) if site: # Exact sites provided on the command line sites = (Site.from_url(u) for u in site_patterns) else: # Make the list of sites we're going to scrape. in_file = in_file or SITES_CSV if in_file.endswith('.csv'): sites = read_sites_csv(in_file) else: sites = read_sites_flat(in_file) if site_patterns: sites = (s for s in sites if any(re.search(p, s.url) for p in site_patterns)) if not gone: sites = (s for s in sites if not s.is_gone) sites = list(sites) if len(sites) == 1: print("1 site") else: print(f"{len(sites)} sites") os.makedirs("save", exist_ok=True) # SCRAPE! session_kwargs = { 'save': save, 'timeout': timeout, } scrape_sites(sites, session_kwargs) if summarize: show_text_report(sites) else: with out_file: pickle.dump(sites, out_file) @cli.command() @click.option('--in', 'in_file', type=click.File('rb'), default=SITES_PICKLE, help='The sites.pickle file to read') def summary(in_file): with in_file: sites = pickle.load(in_file) summarize(sites) def summarize(sites): old, new = totals(sites) changed = sum(1 for s in sites if s.should_update()) gone = sum(1 for s in sites if s.is_gone_now and not s.is_gone) back = sum(1 for s in sites if not s.is_gone_now and s.is_gone and s.current_courses) print(f"{len(sites)} sites") print(f"Courses: {old} --> {new} ({new-old:+d}); Sites: {changed} changed, {gone} gone, {back} back") hashed_sites = collections.defaultdict(HashedSite) nohash_sites = [] for site in sites: if site.is_gone_now: continue if not site.current_courses: continue if site.fingerprint is None: hashed_site = HashedSite() hashed_site.sites.append(site) nohash_sites.append(hashed_site) else: hashed_site = hashed_sites[site.fingerprint] hashed_site.fingerprint = site.fingerprint hashed_site.sites.append(site) print(f"{len(nohash_sites)} with no hash, {len(hashed_sites)} with hash") if nohash_sites: print("No hash:") for site in nohash_sites: print(f" {site.best_url()}: {site.current_courses()}") chaff_sites = [] not_chaff_sites = [] for hashed_site in itertools.chain(hashed_sites.values(), nohash_sites): if hashed_site.all_chaff(): chaff_sites.append(hashed_site) else: not_chaff_sites.append(hashed_site) print(f"Total sites: {len(not_chaff_sites)} not chaff, {len(chaff_sites)} chaff") @cli.command() @click.option('--in', 'in_file', type=click.File('rb'), default=SITES_PICKLE, help='The sites.pickle file to read') @click.option('--out', 'out_file', type=click.File('w'), default="html/sites.html", help='The HTML file to write') @click.option('--skip-none', is_flag=True, help="Don't include sites with no count") @click.option('--only-new', is_flag=True, help="Only include sites we think are new") @click.option('--full', is_flag=True, help="Include courses, orgs, etc") def html(in_file, out_file, skip_none, only_new, full): """Write an HTML report.""" with in_file: sites = pickle.load(in_file) if skip_none: sites = [site for site in sites if site.current_courses is not None] # Prep data for reporting. old, new = totals(sites) if full: all_courses, all_orgs, all_course_ids = courses_and_orgs(sites) with open("course-ids.txt", "w") as f: f.write("".join(i + "\n" for i in sorted(all_course_ids))) else: all_courses = all_orgs = None html_report(out_file, sites, old, new, all_courses, all_orgs, only_new=only_new) @cli.command() @click.option('--in', 'in_file', type=click.File('rb'), default=SITES_PICKLE, help='The sites.pickle file to read') @click.option('--out', 'out_file', type=click.File('w'), default="html/sites.csv", help='The CSV file to write') def sheet(in_file, out_file): """Write a CSV file for importing into a spreadsheet. Always skips no-course sites. Only includes new sites. """ with in_file: sites = pickle.load(in_file) sites = [site for site in sites if site.current_courses is not None] known_domains = get_known_domains() hashed_sites = hash_sites_together(sites, known_domains, only_new=True) writer = csv.DictWriter(out_file, ["disposition", "language", "geography", "url", "courses", "sites", "tags", "aliases"]) writer.writeheader() for hashed_site in hashed_sites: url = hashed_site.best_url() other_urls = [site.url for site in hashed_site.sites if site.url != url] tags = {t for site in hashed_site.sites for t, _ in site.styled_tags()} writer.writerow({ "url": url, "courses": hashed_site.current_courses(), "sites": len(hashed_site.sites), "tags": ", ".join(sorted(tags)), "aliases": ", ".join(other_urls), }) print(f"Wrote {len(hashed_sites)} sites to {out_file.name}") @cli.command() @click.option('--in', 'in_file', type=click.File('rb'), default=SITES_PICKLE) def emails(in_file): """Write the emails found.""" with in_file: sites = pickle.load(in_file) emails = set() for site in sites: emails.update(site.emails) print("\n".join(sorted(emails))) @cli.command('json') @click.option('--in', 'in_file', type=click.File('rb'), default=SITES_PICKLE) def write_json(in_file): """Write the update.json file.""" with in_file: sites = pickle.load(in_file) # Prep data for reporting. sites_descending = sorted(sites, key=lambda s: s.latest_courses, reverse=True) all_courses, _, _ = courses_and_orgs(sites) json_update(sites_descending, all_courses, include_overcount=True) @cli.command('text') @click.option('--in', 'in_file', type=click.File('rb'), default=SITES_PICKLE, help='The sites.pickle file to read') def text_report(in_file): """Write a text report about site scraping.""" with in_file: sites = pickle.load(in_file) show_text_report(sites) def show_text_report(sites): old, new = totals(sites) sites = sorted(sites, key=lambda s: s.latest_courses, reverse=True) print(f"Found courses went from {old} to {new}") for site in sites: print(f"{site.url}: {site.latest_courses} --> {site.current_courses} ({site.fingerprint})") for attempt in site.tried: if attempt.error is not None: line = attempt.error.splitlines()[-1] else: line = f"Counted {attempt.courses} courses" print(f" {attempt.strategy}: {line}") tags = ", ".join(t for t, s in site.styled_tags()) if tags: print(f" [{tags}]") other = site.other_info + site.emails if other: print(f" Info: {'; '.join(set(other))}") def json_update(sites, all_courses, include_overcount=False): """Write a JSON file for uploading to the stats site. `all_courses` is a dict mapping course_ids to a set of sites running that course. """ data = {} site_updates = { s.url: { 'old_course_count': s.latest_courses, 'course_count': s.current_courses if s.current_courses is not None else s.latest_courses, 'is_gone': s.is_gone_now, } for s in sites if s.should_update() } data['sites'] = site_updates if include_overcount: data['overcount'] = overcount(all_courses) with open(UPDATE_JSON, "w") as update_json: json.dump(data, update_json, indent=4) def login(site, session): login_url = urllib.parse.urljoin(site, "/login/") resp = session.get(login_url) resp.raise_for_status() m = re.search(r'name="csrfmiddlewaretoken" value="([^"]+)"', resp.text) if m: csrftoken = m.group(1) else: raise Exception(f"No CSRF token found from {login_url}") resp = session.post(login_url, data={'username': username, 'password': password, 'csrfmiddlewaretoken': csrftoken}) if resp.status_code not in [200, 404]: resp.raise_for_status() @cli.command() @click.argument('site', default=STATS_SITE) def getcsv(site): """Get the sites.csv file from the app.""" with requests.Session() as s: login(site, s) csv_url = urllib.parse.urljoin(site, "/sites/csv/?include_gone=1&skip_lang_geo=1") resp = s.get(csv_url) if resp.status_code != 200: resp.raise_for_status() content = resp.content with open(SITES_CSV, "wb") as csv_file: csv_file.write(content) lines = content.splitlines() print(f"Wrote {len(lines)-1} sites to {SITES_CSV}") @cli.command() @click.argument('site', default=STATS_SITE) def post(site): """Post updated numbers to the stats-collecting site.""" with open(UPDATE_JSON) as f: data = f.read() with requests.Session() as s: login(site, s) bulk_url = urllib.parse.urljoin(site, "/sites/bulk_update/") resp = s.post(bulk_url, data=data) print(resp.text) @cli.command() @click.argument('site', default=STATS_SITE) def bulkcreate(site): """Upload a YAML file to create a number of sites. Create a bulk.yaml file like this: \b - url: https://loveandpowerinshakespearesplays.edunext.io/ course_count: 6 notes: edunext - url: https://lms.cursate.org course_count: 4 language: Spanish geography: Colombia notes: eduNEXT """ with open("bulk.yaml") as f: data = f.read() with requests.Session() as s: login(site, s) bulk_url = urllib.parse.urljoin(site, "/sites/bulk_create/") resp = s.post(bulk_url, data=data) print(resp.text) if __name__ == '__main__': cli()
StarcoderdataPython
24183
import os import sys import json import argparse import progressbar from pathlib import Path from random import shuffle from time import time import torch from cpc.dataset import findAllSeqs from cpc.feature_loader import buildFeature, FeatureModule, loadModel, buildFeature_batch from cpc.criterion.clustering import kMeanCluster #from cpc.criterion.research.clustering import kMeanCluster def readArgs(pathArgs): print(f"Loading args from {pathArgs}") with open(pathArgs, 'r') as file: args = argparse.Namespace(**json.load(file)) return args def loadClusterModule(pathCheckpoint, norm_vec_len=False): print(f"Loading ClusterModule at {pathCheckpoint}") state_dict = torch.load(pathCheckpoint) if "state_dict" in state_dict: #kmeans clusterModule = kMeanCluster(torch.zeros(1, state_dict["n_clusters"], state_dict["dim"]), norm_vec_len) clusterModule.load_state_dict(state_dict["state_dict"]) else: #dpmeans clusterModule = kMeanCluster(state_dict["mu"]) clusterModule = clusterModule.cuda() return clusterModule def parseArgs(argv): # Run parameters parser = argparse.ArgumentParser(description='Quantize audio files using CPC Clustering Module.') parser.add_argument('pathCheckpoint', type=str, help='Path to the clustering checkpoint.') parser.add_argument('pathDB', type=str, help='Path to the dataset that we want to quantize.') parser.add_argument('pathOutput', type=str, help='Path to the output directory.') parser.add_argument('--pathSeq', type=str, help='Path to the sequences (file names) to be included used.') parser.add_argument('--split', type=str, default=None, help="If you want to divide the dataset in small splits, specify it " "with idxSplit-numSplits (idxSplit > 0), eg. --split 1-20.") parser.add_argument('--file_extension', type=str, default=".flac", help="Extension of the audio files in the dataset (default: .flac).") parser.add_argument('--max_size_seq', type=int, default=10240, help='Maximal number of frames to consider ' 'when computing a batch of features (defaut: 10240).') parser.add_argument('--batch_size', type=int, default=8, help='Batch size used to compute features ' 'when computing each file (defaut: 8).') parser.add_argument('--strict', type=bool, default=True, help='If activated, each batch of feature ' 'will contain exactly max_size_seq frames (defaut: True).') parser.add_argument('--debug', action='store_true', help="Load only a very small amount of files for " "debugging purposes.") parser.add_argument('--nobatch', action='store_true', help="Don't use batch implementation of when building features." "NOTE: This can have better quantized units as we can set " "model.gAR.keepHidden = True (line 162), but the quantization" "will be a bit longer.") parser.add_argument('--recursionLevel', type=int, default=1, help='Speaker level in pathDB (defaut: 1). This is only helpful' 'when --separate-speaker is activated.') parser.add_argument('--separate-speaker', action='store_true', help="Separate each speaker with a different output file.") parser.add_argument('--norm_vec_len', action='store_true', help="Normalize vector lengths.") return parser.parse_args(argv) def main(argv): # Args parser args = parseArgs(argv) print("=============================================================") print(f"Quantizing data from {args.pathDB}") print("=============================================================") # Check if directory exists if not os.path.exists(args.pathOutput): print("") print(f"Creating the output directory at {args.pathOutput}") Path(args.pathOutput).mkdir(parents=True, exist_ok=True) # Get splits if args.split: assert len(args.split.split("-"))==2 and int(args.split.split("-")[1]) >= int(args.split.split("-")[0]) >= 1, \ "SPLIT must be under the form idxSplit-numSplits (numSplits >= idxSplit >= 1), eg. --split 1-20" idx_split, num_splits = args.split.split("-") idx_split = int(idx_split) num_splits = int(num_splits) # Find all sequences print("") print(f"Looking for all {args.file_extension} files in {args.pathDB} with speakerLevel {args.recursionLevel}") seqNames, speakers = findAllSeqs(args.pathDB, speaker_level=args.recursionLevel, extension=args.file_extension, loadCache=True) if args.pathSeq: with open(args.pathSeq, 'r') as f: seqs = set([x.strip() for x in f]) filtered = [] for s in seqNames: if s[1].split('/')[-1].split('.')[0] in seqs: filtered.append(s) seqNames = filtered print(f"Done! Found {len(seqNames)} files and {len(speakers)} speakers!") if args.separate_speaker: seqNames_by_speaker = {} for seq in seqNames: speaker = seq[1].split("/")[args.recursionLevel-1] if speaker not in seqNames_by_speaker: seqNames_by_speaker[speaker] = [] seqNames_by_speaker[speaker].append(seq) # Check if output file exists if not args.split: nameOutput = "quantized_outputs.txt" else: nameOutput = f"quantized_outputs_split_{idx_split}-{num_splits}.txt" if args.separate_speaker is False: outputFile = os.path.join(args.pathOutput, nameOutput) assert not os.path.exists(outputFile), \ f"Output file {outputFile} already exists !!!" # Get splits if args.split: startIdx = len(seqNames) // num_splits * (idx_split-1) if idx_split == num_splits: endIdx = len(seqNames) else: endIdx = min(len(seqNames) // num_splits * idx_split, len(seqNames)) seqNames = seqNames[startIdx:endIdx] print("") print(f"Quantizing split {idx_split} out of {num_splits} splits, with {len(seqNames)} files (idx in range({startIdx}, {endIdx})).") # Debug mode if args.debug: nsamples=20 print("") print(f"Debug mode activated, only load {nsamples} samples!") # shuffle(seqNames) seqNames = seqNames[:nsamples] # Load Clustering args assert args.pathCheckpoint[-3:] == ".pt" if os.path.exists(args.pathCheckpoint[:-3] + "_args.json"): pathConfig = args.pathCheckpoint[:-3] + "_args.json" elif os.path.exists(os.path.join(os.path.dirname(args.pathCheckpoint), "checkpoint_args.json")): pathConfig = os.path.join(os.path.dirname(args.pathCheckpoint), "checkpoint_args.json") else: assert False, \ f"Args file not found in the directory {os.path.dirname(args.pathCheckpoint)}" clustering_args = readArgs(pathConfig) print("") print(f"Clutering args:\n{json.dumps(vars(clustering_args), indent=4, sort_keys=True)}") print('-' * 50) # Load CluterModule clusterModule = loadClusterModule(args.pathCheckpoint, norm_vec_len=args.norm_vec_len) clusterModule.cuda() # Load FeatureMaker print("") print("Loading CPC FeatureMaker") if 'level_gru' in vars(clustering_args) and clustering_args.level_gru is not None: updateConfig = argparse.Namespace(nLevelsGRU=clustering_args.level_gru) else: updateConfig = None model = loadModel([clustering_args.pathCheckpoint], updateConfig=updateConfig)[0] ## If we don't apply batch implementation, we can set LSTM model to keep hidden units ## making the quality of the quantized units better if args.nobatch: model.gAR.keepHidden = True featureMaker = FeatureModule(model, clustering_args.encoder_layer) if clustering_args.dimReduction is not None: dimRed = loadDimReduction(clustering_args.dimReduction, clustering_args.centroidLimits) featureMaker = torch.nn.Sequential(featureMaker, dimRed) if not clustering_args.train_mode: featureMaker.eval() featureMaker.cuda() def feature_function(x): if args.nobatch is False: res0 = buildFeature_batch(featureMaker, x, seqNorm=False, strict=args.strict, maxSizeSeq=args.max_size_seq, batch_size=args.batch_size) if args.norm_vec_len: # [!] we actually used CPC_audio/scripts/quantize_audio.py for that in the end res0Lengths = torch.sqrt((res0*res0).sum(2)) res0 = res0 / res0Lengths.view(*(res0Lengths.shape), 1) return res0 else: res0 = buildFeature(featureMaker, x, seqNorm=False, strict=args.strict) if args.norm_vec_len: # [!] we actually used CPC_audio/scripts/quantize_audio.py for that in the end res0Lengths = torch.sqrt((res0*res0).sum(2)) res0 = res0 / res0Lengths.view(*(res0Lengths.shape), 1) return res0 print("CPC FeatureMaker loaded!") # Quantization of files print("") print(f"Quantizing audio files...") seqQuantLines = [] bar = progressbar.ProgressBar(maxval=len(seqNames)) bar.start() start_time = time() for index, vals in enumerate(seqNames): bar.update(index) file_path = vals[1] file_path = os.path.join(args.pathDB, file_path) # Get features & quantizing cFeatures = feature_function(file_path).cuda() nGroups = cFeatures.size(-1)//clusterModule.Ck.size(-1) cFeatures = cFeatures.view(1, -1, clusterModule.Ck.size(-1)) if len(vals) > 2 and int(vals[-1]) > 9400000: # Librilight, to avoid OOM clusterModule = clusterModule.cpu() cFeatures = cFeatures.cpu() qFeatures = torch.argmin(clusterModule(cFeatures), dim=-1) clusterModule = clusterModule.cuda() else: qFeatures = torch.argmin(clusterModule(cFeatures), dim=-1) qFeatures = qFeatures[0].detach().cpu().numpy() # Transform to quantized line quantLine = ",".join(["-".join([str(i) for i in item]) for item in qFeatures.reshape(-1, nGroups)]) seqQuantLines.append(quantLine) bar.finish() print(f"...done {len(seqQuantLines)} files in {time()-start_time} seconds.") # Saving outputs print("") print(f"Saving outputs to {outputFile}") outLines = [] for vals, quantln in zip(seqNames, seqQuantLines): file_path = vals[1] file_name = os.path.splitext(os.path.basename(file_path))[0] outLines.append("\t".join([file_name, quantln])) with open(outputFile, "w") as f: f.write("\n".join(outLines)) if __name__ == "__main__": args = sys.argv[1:] main(args)
StarcoderdataPython
3224494
<filename>term2048/keypress.py<gh_stars>10-100 # -*- coding: UTF-8 -*- try: import termios except ImportError: # Assume windows import msvcrt UP, DOWN, RIGHT, LEFT = 72, 80, 77, 75 def getKey(): while True: if msvcrt.kbhit(): a = ord(msvcrt.getch()) return a else: # refs: # http://bytes.com/topic/python/answers/630206-check-keypress-linux-xterm # http://stackoverflow.com/a/2521032/735926 import sys import tty __fd = sys.stdin.fileno() __old = termios.tcgetattr(__fd) # Arrow keys # they are preceded by 27 and 91, hence the double 'if' in getKey. UP, DOWN, RIGHT, LEFT = 65, 66, 67, 68 # Vim keys K, J, L, H = 107, 106, 108, 104 __key_aliases = { K: UP, J: DOWN, L: RIGHT, H: LEFT, } def __getKey(): """Return a key pressed by the user""" try: tty.setcbreak(sys.stdin.fileno()) termios.tcflush(sys.stdin, termios.TCIOFLUSH) ch = sys.stdin.read(1) return ord(ch) if ch else None finally: termios.tcsetattr(__fd, termios.TCSADRAIN, __old) def getKey(): """ same as __getKey, but handle arrow keys """ k = __getKey() if k == 27: k = __getKey() if k == 91: k = __getKey() return __key_aliases.get(k, k) # legacy support getArrowKey = getKey
StarcoderdataPython
3259379
<reponame>zealoussnow/chromium<gh_stars>1000+ #!/usr/bin/env python # Copyright (c) 2021 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Creates a dummy RTS filter file if a real one doesn't exist yes. Real filter files are generated by the RTS binary for suites with any skippable tests. The rest of the suites need to have dummy files because gn will expect the file to be present. Implementation uses try / except because the filter files are written relatively close to when this code creates the dummy files. The following type of implementation would have a race condition: if not os.path.isfile(filter_file): open(filter_file, 'w') as fp: fp.write('*') """ import errno import os import sys def main(): filter_file = sys.argv[1] directory = os.path.dirname(filter_file) try: os.makedirs(directory) except OSError as err: if err.errno == errno.EEXIST: pass else: raise try: fp = os.open(filter_file, os.O_CREAT | os.O_EXCL | os.O_WRONLY) except OSError as err: if err.errno == errno.EEXIST: pass else: raise else: with os.fdopen(fp, 'w') as file_obj: file_obj.write('*') # '*' is a dummy that means run everything if __name__ == '__main__': sys.exit(main())
StarcoderdataPython
1636088
<gh_stars>1-10 # ladowanie danych do tablicy dwu-wymiarowej with open('../dane/dane.txt') as f: data = [] for line in f.readlines(): data.append(line[:-1].split(' ')) # wyszukanie minimum i maximum w tablicy brightest = 0 darkest = 256 # przejscie po kazdym wierszu for ln in data: # przejscie po kazdej liczbie w wierszu for number in ln: # podmiana min i max number = int(number) if number > brightest: brightest = number if number < darkest: darkest = number # wyswietlenie odpowiedzi answer = f'6.1. Najciemniejszy: {darkest}; najjasniejszy: {brightest}' print(answer)
StarcoderdataPython
1642435
""" Copyright MIT and Harvey Mudd College MIT License Summer 2020 Defines the interface of the Display module of the racecar_core library. """ import abc import numpy as np import math from typing import List, Tuple, Any from nptyping import NDArray import racecar_utils as rc_utils class Display(abc.ABC): """ Allows the user to print images to the screen. """ # The radii dots used to indicate points __BIG_DOT_RADIUS = 8 __SMALL_DOT_RADIUS = 4 __LIDAR_CAR_RADIUS = 2 @abc.abstractmethod def create_window(self) -> None: """ Creates an empty window into which images will be displayed. Note: It is not necessary to call create_window before any of the other display methods (show_color_image, show_depth_image, etc.). These methods will automatically create a new window if one was not already created. Example:: # Creates a window rc.camera.create_window() # Display an image in this window image = rc.camera.get_color_image() rc.display.show_color_image(image) """ pass @abc.abstractmethod def show_color_image(self, image: NDArray) -> None: """ Displays a color image in a window. Args: image: The color image to display to the the screen. Example:: image = rc.camera.get_color_image() # Show the image captured by the camera rc.display.show_color_image(image) """ pass def show_depth_image( self, image: NDArray[(Any, Any), np.float32], max_depth: int = 1000, points: List[Tuple[int, int]] = [], ) -> None: """ Displays a depth image in grayscale in a window. Args: image: The depth image to display to the screen. max_depth: The farthest depth to show in the image in cm. Anything past this depth is shown as black. points: A list of points in (pixel row, pixel column) format to show on the image as colored dots. Example:: depth_image = rc.camera.get_depth_image() # Show the depth_image captured by the camera. rc.display.show_depth_image(depth_image) # Show anything that is at most 500 cm away, and show a black cross at # row 3, column 5 rc.display.show_depth_image(depth_image, 500, [(3, 5)]) """ assert max_depth > 0, "max_depth must be positive." for point in points: assert ( 0 <= point[0] < image.shape[0] and 0 <= point[1] < image.shape[1] ), "The point {} is not a valid pixel row and column within image.".format( point ) color_image = rc_utils.colormap_depth_image(image, max_depth) # Draw a dot at each point in points for point in points: rc_utils.draw_circle( color_image, point, rc_utils.ColorBGR.green.value, radius=self.__BIG_DOT_RADIUS, ) rc_utils.draw_circle( color_image, point, rc_utils.ColorBGR.blue.value, radius=self.__SMALL_DOT_RADIUS, ) self.show_color_image(color_image) def show_lidar( self, samples: NDArray[Any, np.float32], radius: int = 128, max_range: int = 1000, highlighted_samples: List[Tuple[float, float]] = [], ) -> None: """ Displays a set of LIDAR samples. Args: samples: A complete LIDAR scan. radius: Half of the width or height (in pixels) of the generated image. max_range: The farthest depth to show in the image in cm. Anything past this depth is shown as black. highlighted_samples: A list of samples in (angle, distance) format to show as light blue dots. Angle must be in degrees from straight ahead (clockwise), and distance must be in cm. Note: Each sample in samples is shown as a red pixel. Each sample in highlighted_samples is shown as a blue pixel. The car is shown as a green dot at the center of the visualization. Warning: samples must be a complete LIDAR scan. This function assumes that each sample is equal angle appart, and that samples spans the entire 360 degrees. If this is not the case, the visualization will be inaccurate. Example:: depth_image = rc.camera.get_depth_image() # Show the depth_image captured by the camera. rc.display.show_depth_image(depth_image) # Show anything that is at most 500 cm away, and show a black cross at # row 3, column 5 rc.display.show_depth_image(depth_image, 500, [(3, 5)]) """ assert radius > 0, "radius must be positive." assert max_range > 0, "max_range must be positive." # Create a square black image with the requested radius image = np.zeros((2 * radius, 2 * radius, 3), np.uint8, "C") num_samples: int = len(samples) # Draw a red pixel for each non-zero sample less than max_range for i in range(num_samples): if 0 < samples[i] < max_range: angle: float = 2 * math.pi * i / num_samples length: float = radius * samples[i] / max_range r: int = int(radius - length * math.cos(angle)) c: int = int(radius + length * math.sin(angle)) image[r][c][2] = 255 # Draw a green dot to denote the car rc_utils.draw_circle( image, (radius, radius), rc_utils.ColorBGR.green.value, self.__LIDAR_CAR_RADIUS, ) # Draw a light blue pixel for each point in highlighted_samples for (angle, distance) in highlighted_samples: if 0 < distance < max_range: angle_rad = angle * math.pi / 180 length: float = radius * distance / max_range r: int = int(radius - length * math.cos(angle_rad)) c: int = int(radius + length * math.sin(angle_rad)) image[r][c][0] = 255 image[r][c][1] = 255 image[r][c][2] = 0 self.show_color_image(image)
StarcoderdataPython
3222918
from __future__ import print_function, division, absolute_import import pytest import subprocess32 as subprocess from runner import main as runner, _check_tool def test_bad_tx_cmd(): # Trigger a fatal error from a command line tool, to make sure # it is handled correctly. with pytest.raises(subprocess.CalledProcessError): runner(['-t', 'tx', '-o', 'bad_opt']) @pytest.mark.parametrize('tool_name', ['not_a_tool']) def test_check_tool_error(tool_name): assert isinstance(_check_tool(tool_name), tuple) @pytest.mark.parametrize('tool_name', [ 'detype1', 'type1', 'sfntedit', 'sfntdiff', 'makeotfexe']) def test_check_tool_unhacked(tool_name): assert _check_tool(tool_name) == tool_name def test_capture_error_message(): output_path = runner(['-t', 'makeotfexe', '-s', '-e']) with open(output_path, 'rb') as f: output = f.read() assert b"[FATAL] Source font file not found: font.ps" in output
StarcoderdataPython
1676832
import logging from contextlib import contextmanager from django.db import models from django_directed.models.abstract_base_models import BaseGraph try: from asgiref.local import Local as local except ImportError: from threading import local logger = logging.getLogger("django_directed") _threadlocals = local() def _set_current_graph_instance(graph_fullname, current_graph_instance): """Sets the graph in the local thread""" setattr(_threadlocals, graph_fullname, current_graph_instance) def get_current_graph_instance(graph_fullname): """Returns the graph if it exists in the local thread""" current_graph_instance = getattr(_threadlocals, graph_fullname, None) return current_graph_instance @contextmanager def graph_scope(graph): """ Context manager for graphs. Used to set and cleanup Graph instance. If nested, saves outer context and resets it at conclusion of scope. `value` should be Graph instance. graph = MyGraphModel.objects.get(pk=1) Using the context context manager: ```python with graph_scope(graph): Profile.objects.get(pk=1) ``` Using it as a decorator ```python @graph_scope(graph) def foo(): Profile.object.get(pk=1) ``` Using it in a task ```python def graph_do_some_task(graph_instance=None): with graph_scope(graph_instance): work() ``` """ if not isinstance(graph, BaseGraph): raise Exception("Wrong Graph type provided to graph_scope") graph_fullname = f"{graph._meta.app_label}.{graph._meta.label}" previous = getattr(_threadlocals, graph_fullname, None) _set_current_graph_instance(graph_fullname=graph_fullname, current_graph_instance=graph) try: yield finally: if previous is not None: _set_current_graph_instance(graph_fullname=graph_fullname, current_graph_instance=previous) else: delattr(_threadlocals, graph_fullname)
StarcoderdataPython
50620
<filename>TDMA_solver.py # Matrix solver (TDMA) # parameters required: # n: number of unknowns (length of x) # a: coefficient matrix # b: RHS/constant array # return output: # b: solution array def solve_TDMA(n, a, b): # forward substitution a[0][2] = -a[0][2] / a[0][1] b[0] = b[0] / a[0][1] for i in range(1, n): a[i][2] = -a[i][2] / (a[i][1] + a[i][0] * a[i - 1][2]) b[i] = (b[i] - a[i][0] * b[i - 1]) / (a[i][1] + a[i][0] * a[i - 1][2]) # backward elimination for i in range(n - 2, -1, -1): b[i] = a[i][2] * b[i + 1] + b[i] return b
StarcoderdataPython
4838191
<gh_stars>0 # <Copyright 2022, Argo AI, LLC. Released under the MIT license.> """Implements a pinhole camera interface.""" from __future__ import annotations from dataclasses import dataclass from functools import cached_property from pathlib import Path from typing import Tuple, Union import numpy as np import av2.geometry.geometry as geometry_utils import av2.utils.io as io_utils from av2.geometry.se3 import SE3 from av2.utils.typing import NDArrayBool, NDArrayFloat, NDArrayInt @dataclass(frozen=True) class Intrinsics: """Models a camera intrinsic matrix. Args: fx_px: Horizontal focal length in pixels. fy_px: Vertical focal length in pixels. cx_px: Horizontal focal center in pixels. cy_px: Vertical focal center in pixels. width_px: Width of image in pixels. height_px: Height of image in pixels. """ fx_px: float fy_px: float cx_px: float cy_px: float width_px: int height_px: int @cached_property def K(self) -> NDArrayFloat: """Camera intrinsic matrix.""" K: NDArrayFloat = np.eye(3, dtype=float) K[0, 0] = self.fx_px K[1, 1] = self.fy_px K[0, 2] = self.cx_px K[1, 2] = self.cy_px return K @dataclass(frozen=True) class PinholeCamera: """Parameterizes a pinhole camera with zero skew. Args: ego_SE3_cam: pose of camera in the egovehicle frame (inverse of extrinsics matrix). intrinsics: `Intrinsics` object containing intrinsic parameters and image dimensions. cam_name: sensor name that camera parameters correspond to. """ ego_SE3_cam: SE3 intrinsics: Intrinsics cam_name: str @property def width_px(self) -> int: """Return the width of the image in pixels.""" return self.intrinsics.width_px @property def height_px(self) -> int: """Return the height of the image in pixels.""" return self.intrinsics.height_px @cached_property def extrinsics(self) -> NDArrayFloat: """Return the camera extrinsics.""" return self.ego_SE3_cam.inverse().transform_matrix @classmethod def from_feather(cls, log_dir: Path, cam_name: str) -> PinholeCamera: """Create a pinhole camera model from a feather file. Note: Data is laid out with sensor names along row dimension, and columns are sensor attribute data. Args: log_dir: path to a log directory containing feather files w/ calibration info. cam_name: name of the camera. Returns: A new PinholeCamera object, containing camera extrinsics and intrinsics. """ intrinsics_path = log_dir / "calibration" / "intrinsics.feather" intrinsics_df = io_utils.read_feather(intrinsics_path).set_index("sensor_name") params = intrinsics_df.loc[cam_name] intrinsics = Intrinsics( fx_px=params["fx_px"], fy_px=params["fy_px"], cx_px=params["cx_px"], cy_px=params["cy_px"], width_px=int(params["width_px"]), height_px=int(params["height_px"]), ) sensor_name_to_pose = io_utils.read_ego_SE3_sensor(log_dir) return cls( ego_SE3_cam=sensor_name_to_pose[cam_name], intrinsics=intrinsics, cam_name=cam_name, ) def cull_to_view_frustum(self, uv: NDArrayFloat, points_cam: NDArrayFloat) -> NDArrayBool: """Cull 3d points to camera view frustum. Given a set of coordinates in the image plane and corresponding points in the camera coordinate reference frame, determine those points that have a valid projection into the image. 3d points with valid projections have x coordinates in the range [0,width_px-1], y-coordinates in the range [0,height_px-1], and a positive z-coordinate (lying in front of the camera frustum). Ref: https://en.wikipedia.org/wiki/Hidden-surface_determination#Viewing-frustum_culling Args: uv: Numpy array of shape (N,2) representing image plane coordinates in [0,W-1] x [0,H-1] where (H,W) are the image height and width. points_cam: Numpy array of shape (N,3) representing corresponding 3d points in the camera coordinate frame. Returns: Numpy boolean array of shape (N,) indicating which points fall within the camera view frustum. """ is_valid_x = np.logical_and(0 <= uv[:, 0], uv[:, 0] < self.width_px - 1) is_valid_y = np.logical_and(0 <= uv[:, 1], uv[:, 1] < self.height_px - 1) is_valid_z = points_cam[:, 2] > 0 is_valid_points: NDArrayBool = np.logical_and.reduce([is_valid_x, is_valid_y, is_valid_z]) return is_valid_points def project_ego_to_img( self, points_ego: NDArrayFloat, remove_nan: bool = False ) -> Tuple[NDArrayFloat, NDArrayFloat, NDArrayBool]: """Project a collection of 3d points (provided in the egovehicle frame) to the image plane. Args: points_ego: numpy array of shape (N,3) representing points in the egovehicle frame. remove_nan: whether to remove coordinates that project to invalid (NaN) values. Returns: uv: image plane coordinates, as Numpy array of shape (N,2). points_cam: camera frame coordinates as Numpy array of shape (N,3) representing is_valid_points: boolean indicator of valid cheirality and within image boundary, as boolean Numpy array of shape (N,). """ # convert cartesian to homogeneous coordinates. points_ego_hom = geometry_utils.cart_to_hom(points_ego) points_cam: NDArrayFloat = self.extrinsics @ points_ego_hom.T # remove bottom row of all 1s. uv = self.intrinsics.K @ points_cam[:3, :] uv = uv.T points_cam = points_cam.T if remove_nan: uv, points_cam = remove_nan_values(uv, points_cam) uv = uv[:, :2] / uv[:, 2].reshape(-1, 1) is_valid_points = self.cull_to_view_frustum(uv, points_cam) return uv, points_cam, is_valid_points def project_cam_to_img( self, points_cam: NDArrayFloat, remove_nan: bool = False ) -> Tuple[NDArrayFloat, NDArrayFloat, NDArrayBool]: """Project a collection of 3d points in the camera reference frame to the image plane. Args: points_cam: numpy array of shape (N,3) representing points in the egovehicle frame. remove_nan: whether to remove coordinates that project to invalid (NaN) values. Returns: uv: image plane coordinates, as Numpy array of shape (N,2). points_cam: camera frame coordinates as Numpy array of shape (N,3) representing is_valid_points: boolean indicator of valid cheirality and within image boundary, as boolean Numpy array of shape (N,). """ uv = self.intrinsics.K @ points_cam[:3, :] uv = uv.T points_cam = points_cam.T if remove_nan: uv, points_cam = remove_nan_values(uv, points_cam) uv = uv[:, :2] / uv[:, 2].reshape(-1, 1) is_valid_points = self.cull_to_view_frustum(uv, points_cam) return uv, points_cam, is_valid_points def project_ego_to_img_motion_compensated( self, points_lidar_time: NDArrayFloat, city_SE3_ego_cam_t: SE3, city_SE3_ego_lidar_t: SE3, ) -> Tuple[NDArrayFloat, NDArrayFloat, NDArrayBool]: """Project points in the ego frame to the image with motion compensation. Because of the high frame rate, motion compensation's role between the sensors is not very significant, moving points only by millimeters to centimeters. If the vehicle is moving at 25 miles per hour, equivalent to 11 meters/sec, then in 17 milliseconds (the max time between a lidar sweep and camera image capture) we should be able to move up to 187 millimeters. This can be verified in practice as the mean_change: mean_change = np.amax(points_h_cam_time.T[:,:3] - points_h_lidar_time ,axis=0) Adjust LiDAR points for egovehicle motion. This function accepts the egovehicle's pose in the city map both at camera time and also at the LiDAR time. We perform the following transformation: pt_egovehicle_cam_t = egovehicle_cam_t_SE3_city * city_SE3_egovehicle_lidar_t * pt_egovehicle_lidar_t Note that both "cam_time_points_h" and "lidar_time_points_h" are 3D points in the vehicle coordinate frame, but captured at different times. These LiDAR points always live in the vehicle frame, but just in different timestamps. If we take a lidar point in the egovehicle frame, captured at lidar time, and bring it into the map at this lidar timestamp, then we know the transformation from map to egovehicle reference frame at the time when the camera image was captured. Thus, we move from egovehicle @ lidar time, to the map (which is time agnostic), then we move from map to egovehicle @ camera time. Now we suddenly have lidar points living in the egovehicle frame @ camera time. Args: points_lidar_time: Numpy array of shape (N,3) city_SE3_ego_cam_t: egovehicle pose when camera image was recorded. city_SE3_ego_lidar_t: egovehicle pose when LiDAR sweep was recorded. Returns: uv: image plane coordinates, as Numpy array of shape (N,2). points_cam: Numpy array of shape (N,3) representing coordinates of points within the camera frame. is_valid_points_cam: boolean indicator of valid cheirality and within image boundary, as boolean Numpy array of shape (N,). Raises: ValueError: If `city_SE3_ego_cam_t` or `city_SE3_ego_lidar_t` is `None`. """ if city_SE3_ego_cam_t is None: raise ValueError("city_SE3_ego_cam_t cannot be `None`!") if city_SE3_ego_lidar_t is None: raise ValueError("city_SE3_ego_lidar_t cannot be `None`!") ego_cam_t_SE3_ego_lidar_t = city_SE3_ego_cam_t.inverse().compose(city_SE3_ego_lidar_t) points_cam_time = ego_cam_t_SE3_ego_lidar_t.transform_point_cloud(points_lidar_time) return self.project_ego_to_img(points_cam_time) @cached_property def right_clipping_plane(self) -> NDArrayFloat: """Form the right clipping plane for a camera view frustum. Returns: (4,) tuple of Hessian normal coefficients. """ a, b, c, d = -self.intrinsics.fx_px, 0.0, self.width_px / 2.0, 0.0 coeffs: NDArrayFloat = np.array([a, b, c, d]) / np.linalg.norm([a, b, c]) # type: ignore return coeffs @cached_property def left_clipping_plane(self) -> NDArrayFloat: """Form the left clipping plane for a camera view frustum. Returns: (4,) tuple of Hessian normal coefficients. """ a, b, c, d = self.intrinsics.fx_px, 0.0, self.width_px / 2.0, 0.0 coeffs: NDArrayFloat = np.array([a, b, c, d]) / np.linalg.norm([a, b, c]) # type: ignore return coeffs @cached_property def top_clipping_plane(self) -> NDArrayFloat: """Top clipping plane for a camera view frustum. Returns: (4,) tuple of Hessian normal coefficients. """ a, b, c, d = 0.0, self.intrinsics.fx_px, self.height_px / 2.0, 0.0 coeffs: NDArrayFloat = np.array([a, b, c, d]) / np.linalg.norm([a, b, c]) # type: ignore return coeffs @cached_property def bottom_clipping_plane(self) -> NDArrayFloat: """Bottom clipping plane for a camera view frustum. Returns: (4,) tuple of Hessian normal coefficients. """ a, b, c, d = 0.0, -self.intrinsics.fx_px, self.height_px / 2.0, 0.0 coeffs: NDArrayFloat = np.array([a, b, c, d]) / np.linalg.norm([a, b, c]) # type: ignore return coeffs def near_clipping_plane(self, near_clip_m: float) -> NDArrayFloat: """Near clipping plane for a camera view frustum. Args: near_clip_m: Near clipping plane distance in meters. Returns: (4,) tuple of Hessian normal coefficients. """ a, b, c, d = 0.0, 0.0, 1.0, -near_clip_m coeffs: NDArrayFloat = np.array([a, b, c, d]) return coeffs def frustum_planes(self, near_clip_dist: float = 0.5) -> NDArrayFloat: """Compute the planes enclosing the field of view (view frustum). Reference (1): https://en.wikipedia.org/wiki/Viewing_frustum Reference (2): https://en.wikipedia.org/wiki/Plane_(geometry) Solve for the coefficients of all frustum planes: ax + by + cz = d Args: near_clip_dist: Distance of the near clipping plane from the origin. Returns: (5, 4) matrix where each row corresponds to the coeffients of a plane. """ left_plane = self.left_clipping_plane right_plane = self.right_clipping_plane top_plane = self.top_clipping_plane bottom_plane = self.bottom_clipping_plane near_plane = self.near_clipping_plane(near_clip_dist) planes: NDArrayFloat = np.stack([left_plane, right_plane, near_plane, bottom_plane, top_plane]) return planes @cached_property def egovehicle_yaw_cam_rad(self) -> float: """Compute the camera's yaw, in the egovehicle frame. R takes the x axis to be a vector equivalent to the first column of R. Similarly, the y and z axes are transformed to be the second and third columns. Returns: Counter-clockwise angle from x=0 (in radians) of camera center ray, in the egovehicle frame. """ egovehicle_SE3_camera = self.ego_SE3_cam # the third column of this rotation matrix, is the new basis vector for the z axis (pointing out of camera) # take its x and y components (the z component is near zero, as close to horizontal) new_z_axis = egovehicle_SE3_camera.rotation[:, 2] dx, dy, dz = new_z_axis egovehicle_yaw_cam_rad = np.arctan2(dy, dx) return float(egovehicle_yaw_cam_rad) @cached_property def fov_theta_rad(self) -> float: """Compute the field of view of a camera frustum to use for view frustum culling during rendering. Returns: Angular extent of camera's field of view (measured in radians). """ fov_theta_rad = 2 * np.arctan(0.5 * self.width_px / self.intrinsics.fx_px) return float(fov_theta_rad) def compute_pixel_ray_directions(self, uv: Union[NDArrayFloat, NDArrayInt]) -> NDArrayFloat: """Given (u,v) coordinates and intrinsics, generate pixel rays in the camera coordinate frame. Assume +z points out of the camera, +y is downwards, and +x is across the imager. Args: uv: Numpy array of shape (N,2) with (u,v) coordinates Returns: Array of shape (N,3) with ray directions to each pixel, provided in the camera frame. Raises: ValueError: If input (u,v) coordinates are not (N,2) in shape. RuntimeError: If generated ray directions are not (N,3) in shape. """ fx, fy = self.intrinsics.fx_px, self.intrinsics.fy_px img_h, img_w = self.height_px, self.width_px if not np.isclose(fx, fy, atol=1e-3): raise ValueError(f"Focal lengths in the x and y directions must match: {fx} != {fy}") if uv.shape[1] != 2: raise ValueError("Input (u,v) coordinates must be (N,2) in shape.") # Approximation for principal point px = img_w / 2 py = img_h / 2 u = uv[:, 0] v = uv[:, 1] num_rays = uv.shape[0] ray_dirs = np.zeros((num_rays, 3)) # x center offset from center ray_dirs[:, 0] = u - px # y center offset from center ray_dirs[:, 1] = v - py ray_dirs[:, 2] = fx # elementwise multiplication of scalars requires last dim to match ray_dirs = ray_dirs / np.linalg.norm(ray_dirs, axis=1, keepdims=True) # type: ignore if ray_dirs.shape[1] != 3: raise RuntimeError("Ray directions must be (N,3)") return ray_dirs def remove_nan_values(uv: NDArrayFloat, points_cam: NDArrayFloat) -> Tuple[NDArrayFloat, NDArrayFloat]: """Remove NaN values from camera coordinates and image plane coordinates (accepts corrupt array). Args: uv: image plane coordinates, as Numpy array of shape (N,2). points_cam: Numpy array of shape (N,3) representing coordinates of points within the camera frame. Returns: uv_valid: subset of image plane coordinates, which contain no NaN coordinates. is_valid_points_cam: subset of 3d points within the camera frame, which contain no NaN coordinates. """ is_u_valid = np.logical_not(np.isnan(uv[:, 0])) is_v_valid = np.logical_not(np.isnan(uv[:, 1])) is_uv_valid = np.logical_and(is_u_valid, is_v_valid) uv_valid = uv[is_uv_valid] is_valid_points_cam = points_cam[is_uv_valid] return uv_valid, is_valid_points_cam
StarcoderdataPython
51743
# Copyright 2017 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Reads and parses lines from a serial device. Typically from an Arduino. Lines are expected to follow the InfluxDB's line protocol format (with the difference that the timestamp is allowed to be missing). """ import logging import time import serial class Sample(object): """Represents a single sample in the InfluxDB format.""" def __init__(self, line): """Parses a given line and stores in a new Sample. If timestamp is missing, the current time is used. Args: line: String to be parsed. Raises: ValueError if the line can't be parsed. """ words = line.strip().split(" ") if len(words) == 2: (self.tags_line, self.values_line) = words self.timestamp = time.time() elif len(words) == 3: (self.tags_line, self.values_line, timestamp) = words self.timestamp = float(timestamp) / 1000000000.0 else: raise ValueError("Unable to parse line {0!r}".format(line)) def AddTags(self, tag_line): """Adds tags from 'tag_line' into 'self.tags_line'.""" if tag_line: self.tags_line += "," self.tags_line += tag_line return self def FormatInfluxLine(self): """Formats the accumulated tags and values into an InfluxDB line.""" return "{0} {1} {2:d}".format( self.tags_line, self.values_line, long(self.timestamp * 1000000000)) def __str__(self): return '{0}(tags_line={1},values_line={2},timestamp={3})'.format( self.__class__.__name__, self.tags_line, self.values_line, self.timestamp) def __repr__(self): return "{0}({1!r})".format(self.__class__.__name__, self.FormatInfluxLine()) def SkipUntilNewLine(handle): """Skips data until a new-line character is received. This is needed so that the first sample is read from a complete line. """ logging.debug("Skipping until the end of a new line.") while not handle.readline(4096).endswith('\n'): pass class LineOverflowError(IOError): """Thrown when a line longer than a given limit is received.""" def __init__(self, line): super(LineOverflowError, self).__init__( "Received incomplete line {0!r}".format(line)) def SerialLines(device_url, baud_rate, read_timeout, max_line_length): """A generator that yields lines from a configured serial line. Will never exit normally, only with an exception when there is an error in the serial communication. """ with serial.serial_for_url(device_url, baudrate=baud_rate, timeout=read_timeout) as handle: SkipUntilNewLine(handle) while True: line = handle.readline(max_line_length) logging.debug("Received line %r", line) if not line.endswith('\n'): raise LineOverflowError(line) try: yield Sample(line.rstrip()) except ValueError: logging.exception("Failed to parse Sample from '%s'", line)
StarcoderdataPython
3265838
from JumpScale import j from JumpScale.grid.osis.OSISStoreMongo import OSISStoreMongo class mainclass(OSISStoreMongo): """ Defeault object implementation """ def __init__(self, *args, **kwargs): super(mainclass, self).__init__(*args, **kwargs) def set(self, key, value, waitIndex=False, session=None): db, counter = self._getMongoDB(session) dbval = {"_id": key, "guid": key, "value": value} db.save(dbval) return key def get(self, key, full=False, session=None): try: val = OSISStoreMongo.get(self, key, full, session=session) return val['value'] except: return None def delete(self, key, session=None): self.runTasklet('delete', key, session) db, counter = self._getMongoDB(session) try: res = OSISStoreMongo.get(self, key, True, session=session) db.remove(res["_id"]) except KeyError: pass
StarcoderdataPython
3212598
<reponame>Deltares/HYDROLIB-core import logging from typing import List, Literal, Optional from pydantic import Field from pydantic.class_validators import validator from pydantic.types import NonNegativeInt from hydrolib.core.io.ini.models import INIBasedModel, INIGeneral, INIModel from hydrolib.core.io.ini.util import ( get_split_string_on_delimiter_validator, make_list_length_root_validator, make_list_validator, ) logger = logging.getLogger(__name__) class OneDFieldGeneral(INIGeneral): """The 1D field file's `[General]` section with file meta data.""" class Comments(INIBasedModel.Comments): fileversion: Optional[str] = Field( "File version. Do not edit this.", alias="fileVersion" ) filetype: Optional[str] = Field( "File type. Should be '1dField'. Do not edit this.", alias="fileType", ) comments: Comments = Comments() _header: Literal["General"] = "General" fileversion: str = Field("2.00", alias="fileVersion") filetype: Literal["1dField"] = Field("1dField", alias="fileType") class OneDFieldGlobal(INIBasedModel): """The `[Global]` block with a uniform value for use inside a 1D field file.""" class Comments(INIBasedModel.Comments): quantity: Optional[str] = Field("The name of the quantity", alias="quantity") unit: Optional[str] = Field("The unit of the quantity", alias="unit") value: Optional[str] = Field( "The global default value for this quantity", alias="value" ) comments: Comments = Comments() _header: Literal["Global"] = "Global" quantity: str = Field(alias="quantity") unit: str = Field(alias="unit") value: float = Field(alias="value") class OneDFieldBranch(INIBasedModel): """ A `[Branch]` block for use inside a 1D field file. Each block can define value(s) on a particular branch. """ class Comments(INIBasedModel.Comments): branchid: Optional[str] = Field("The name of the branch", alias="branchId") numlocations: Optional[str] = Field( "Number of locations on branch. The default 0 value implies branch uniform values.", alias="numLocations", ) chainage: Optional[str] = Field( "Space separated list of locations on the branch (m). Locations sorted by increasing chainage. The keyword must be specified if numLocations >0.", alias="chainage", ) values: Optional[str] = Field( "Space separated list of numLocations values; one for each chainage specified. One value required if numLocations =0", alias="values", ) comments: Comments = Comments() _header: Literal["Branch"] = "Branch" branchid: str = Field(alias="branchId") numlocations: Optional[NonNegativeInt] = Field(0, alias="numLocations") chainage: Optional[List[float]] = Field(alias="chainage") values: List[float] = Field(alias="values") _split_to_list = get_split_string_on_delimiter_validator( "chainage", "values", delimiter=" ", ) _check_list_length_values = make_list_length_root_validator( "chainage", length_name="numlocations", list_required_with_length=True, ) _check_list_length_chainage = make_list_length_root_validator( "values", length_name="numlocations", list_required_with_length=True, min_length=1, ) def _get_identifier(self, data: dict) -> Optional[str]: return data.get("branchid") class OneDFieldModel(INIModel): """ The overall 1D field model that contains the contents of a 1D field file. This model is typically used when a [FMModel][hydrolib.core.io.mdu.models.FMModel]`.geometry.inifieldfile[..].initial[..].datafiletype==DataFileType.onedfield`. Attributes: general (OneDFieldGeneral): `[General]` block with file metadata. global_ (Optional[OneDFieldGlobal]): Optional `[Global]` block with uniform value. branch (List[OneDFieldBranch]): Definitions of `[Branch]` field values. """ general: OneDFieldGeneral = OneDFieldGeneral() global_: Optional[OneDFieldGlobal] = Field( alias="global" ) # to circumvent built-in kw branch: List[OneDFieldBranch] = [] _split_to_list = make_list_validator( "branch", ) @classmethod def _ext(cls) -> str: return ".ini" @classmethod def _filename(cls) -> str: return "1dfield"
StarcoderdataPython
3304892
<filename>libgoods/scripts/examples/COOPS_FVCOM_multifile_example.py #!/usr/bin/env python from __future__ import print_function from libgoods import tri_grid, noaa_coops, nctools import datetime as dt import os from netCDF4 import num2date ''' Sample script to retrieve data from NOAA CO-OPS FVCOM netcdf "file" (can be OPeNDAP url), generate necessary grid topology (boundary info), and write GNOME compatible output. To script illustrates how to access data from multiple files (urls) by looping through a filelist. Also only extracts a small subset from unstructured grid file Alternatively, the list of filenames/urls can be passed directly when instantiating the ugrid object-- this creates a netcdf4 MFDataset and isa good option for not too many files (all output is written to one nc file for GNOME in this case) Since multiple files are created, also create a text file that can be loaded into GNOME pointing to the individual files ''' out_dir = 'ngofs' # start = dt.date(2018,10,2) # end = dt.date(2018,10,4) # date = start # dates = [] # while date <= end: # dates.append(date) # date += datetime.timedelta(days=1) #flist = ['fvcom_maine' + str(d.year) + str(d.month).zfill(2) + str(d.day).zfill(2) for d in dates] flist = noaa_coops.make_server_filelist('ngofs',3,dt.date(2019,5,30),end=None,test_exist=False) # the utools class requires a mapping of specific model variable names (values) # to common names (keys) so that the class methods can work with FVCOM, SELFE, # and ADCIRC which have different variable names # (This seemed easier than finding them by CF long_names etc) var_map = { 'longitude':'lon', \ 'latitude':'lat', \ 'time':'time', \ 'u_velocity':'u', \ 'v_velocity':'v', \ 'nodes_surrounding_ele':'nv',\ 'eles_surrounding_ele':'nbe',\ } # class instantiation creates a netCDF Dataset object as an attribute -- # use the first file in the list only ngofs = tri_grid.ugrid(flist[0]) #get longitude, latitude print('Downloading data dimensions') ngofs.get_dimensions(var_map,get_time=False) # get grid topo variables (nbe, nv) print('Downloading grid topo variables') ngofs.get_grid_topo(var_map) # subset bounding box nl = 30.7; sl = 28.1 wl = -90.4; el = -87.4 ngofs.find_nodes_eles_in_ss(nl,sl,wl,el) # find and order the boundary print('Finding boundary') bnd = ngofs.find_bndry_segs(subset=True) print('Ordering boundary') #In this case entire subset boundary will be set to land -- see COOPS_FVCOM_subset_example #for how to use entire domain boundary to correctly determine type of subset boundary ngofs.order_boundary(bnd) # GNOME needs to know whether the elements are ordered clockwise (FVCOM) or counter-clockwise (SELFE) ngofs.atts['nbe']['order'] = 'cw' try: os.mkdir(out_dir) except: pass for f in flist: print(f) ngofs.update(f) print('Downloading data dimensions') ngofs.get_dimensions(var_map,get_xy=False) of_dt = nctools.round_time(num2date(ngofs.data['time'][0],ngofs.atts['time']['units']),roundto=3600) ofn = of_dt.strftime('%Y%m%d_%H') + '.nc' if not os.path.exists(ofn): #get the data print('Downloading data') #ngofs.get_data(var_map) #First time step only ngofs.get_data(var_map,nindex=ngofs.nodes_in_ss) #All time steps in file print('Writing to GNOME file') ngofs.write_unstruc_grid(os.path.join(out_dir,ofn)) else: print(ofn + ' aready exists') nctools.make_filelist_for_GNOME(out_dir,'*.nc')
StarcoderdataPython
3329535
<reponame>shmuelamar/phonelocator<gh_stars>1-10 import pytest from phonelocator import locator @pytest.fixture(scope='function') def countries(): return { u'US': u'1', u'UG': u'256', u'IL': u'972', u'TZ': u'255', u'TW': u'886', u'AU': u'61', } @pytest.fixture(scope='function') def states(): return { u'US': { u'WY': [u'307'], u'WV': [u'304', u'681'], u'WI': [u'262', u'274', u'414', u'534', u'608', u'715', u'920'], u'WA': [u'206', u'253', u'360', u'425', u'509', u'564'], u'NY': [u'212'], }, u'AU': { u'WA': [u'85', u'86', u'89'], u'VIC': [u'33', u'34', u'35'], u'TAS': [u'36'], } } def test_get_phone_prefixes_from_default_files_smoke(): phone_prefixes = locator.get_phone_prefixes() assert isinstance(phone_prefixes.prefixes, dict) assert isinstance(phone_prefixes.prefix_lengths, list) def test_get_phone_prefixes(countries, states): phone_prefixes = locator.get_phone_prefixes(countries, states) assert len(phone_prefixes.prefixes) == 28 assert phone_prefixes.prefixes[u'972'] == [u'IL'] assert phone_prefixes.prefixes[u'1212'] == [u'US', u'NY'] assert u'1' not in phone_prefixes.prefixes assert u'61' not in phone_prefixes.prefixes def test_get_phone_prefixes_bad_file(states): with pytest.raises(ValueError): locator.get_phone_prefixes(countries={}, states=states) @pytest.mark.parametrize('phone_no,expected', [ (u'9721234567890', [u'IL']), (u'1212345678902', [u'US', u'NY']), (u'9999999999999', None), ]) def test_locate_phone(phone_no, expected, countries, states): phone_prefixes = locator.get_phone_prefixes(countries, states) assert locator.locate_phone(phone_no, phone_prefixes) == expected
StarcoderdataPython
1651014
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 TH<NAME>, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.conf import settings import env from api.client import BKComponentClient from api.utils.request import batch_request # TODO:待GSE KIT接入ESB后修改 GSE_KIT_API_ENTRY = env.BK_GSE_KIT_API_ENTRY or "{}/{}".format( settings.BK_PAAS_INNER_HOST, "api/c/compapi/v2/gse_kit" ) def _get_gse_kit_api(api_name): return "{}/{}/".format(GSE_KIT_API_ENTRY, api_name) class BKGseKitClient(BKComponentClient): def _pre_process_data(self, data): """ 去除值为None的可选字段 :param data: :return: """ data = super()._pre_process_data(data) for param in data.keys(): if data[param] is None: data.pop(param) return data def list_process( self, page_param, scope=None, expression_scope=None, bk_cloud_ids=None, process_status=None, is_auto=None, ): params = { "scope": scope, "expression_scope": expression_scope, "bk_cloud_ids": bk_cloud_ids, "process_status": process_status, "is_auto": is_auto } return batch_request(func=self._list_processes, params=params, page_param=page_param) def _list_processes( self, pagesize, page, scope=None, expression_scope=None, bk_cloud_ids=None, process_status=None, is_auto=None, ): return self._request( method="post", url=_get_gse_kit_api("list_process"), data={ "pagesize": pagesize, "page": page, "scope": scope, "expression_scope": expression_scope, "bk_cloud_ids": bk_cloud_ids, "process_status": process_status, "is_auto": is_auto } ) def create_job(self, bk_biz_id, job_object, job_action, scope=None, expression_scope=None ): """ 创建 gsekit 任务命令 """ param = { "job_object": job_object, "job_action": job_action, "scope": scope, "expression_scope": expression_scope } return self._request( method="post", url=_get_gse_kit_api("{bk_biz_id}/job".format(bk_biz_id=bk_biz_id)), data=param ) def job_status(self, bk_biz_id, job_task_id): """ 查询gsekit 任务状态 :param job_task_id: string """ param = { "job_task_id_list": [job_task_id] } return self._request( method="post", url=_get_gse_kit_api("{bk_biz_id}/job".format(bk_biz_id=bk_biz_id)), data=param )
StarcoderdataPython
167048
<reponame>DLR-RM/python-jsonconversion # Copyright (C) 2016-2017 DLR # # All rights reserved. This program and the accompanying materials are made # available under the terms of the 2-Clause BSD License ("Simplified BSD # License") which accompanies this distribution, and is available at # https://opensource.org/licenses/BSD-2-Clause # # Contributors: # <NAME> <<EMAIL>> from jsonconversion.jsonobject import JSONObject from testing_utils import convert_with_assertion class JO(JSONObject): def __init__(self, a, b, c): self.a = a self.b = b self.c = c @classmethod def from_dict(cls, _dict): return cls(_dict['a'], _dict['b'], _dict['c']) def to_dict(self): return {'a': self.a, 'b': self.b, 'c': self.c} def __eq__(self, other): return self.a == other.a and self.b == other.b and self.c == other.c def __str__(self): return "{0}: a = {1} {4}, b = {2} {5}, c = {3} {6}".format(self.__class__.__name__, self.a, self.b, self.c, type(self.a), type(self.b), type(self.c)) def test_simple_objects(): j1 = JO(1, 2, 3) j2 = JO(1.1, 2.2, 3.3) j3 = JO('a', "bcd", None) j4 = JO('1.1', "3", "0") j5 = JO(-2, "preempted", float) convert_with_assertion(j1) convert_with_assertion(j2) convert_with_assertion(j3) convert_with_assertion(j4) convert_with_assertion(j5) def test_nested_objects(): l1 = [JO(1, 2, 3), JO('1.1', "3", "0")] t1 = tuple(l1[:]) d1 = {0: l1[:], 1: tuple(t1)} convert_with_assertion(l1) convert_with_assertion(t1) convert_with_assertion(d1) def test_complex_objects(): j1 = JO({0: 'a', 1: int, 2: -5}, dict(enumerate(list("abc"))), (1, 2, 3)) j2 = JO([1, 2, {3: 'a'}, (4, 5, set([6, 7]))], {0: [1, 2], 1: (3, 4), 'abc': [{'x': 1, 'y': 2}]}, j1) j3 = JO({0: j1, 1: {0: j1}}, {0: list, 1: {0: float}}, {0: None, 1: {0: None}}) j4 = JO({0: JO(1, 2, 3), 1: {0: JO(1, 2, 3)}}, {0: JO(-2, "preempted", float), 1: {0: JO(-2, "preempted", float)}}, JO(-2, "preempted", float)) convert_with_assertion(j1) convert_with_assertion(j2) convert_with_assertion(j3) convert_with_assertion(j4)
StarcoderdataPython
4842521
<filename>tests/test_comm.py import unittest from qupy.framing.slip import Slip from qupy.comm.client import CommClient from qupy.comm.server import CommServer from qupy.comm.errors import CommError from qupy.interface.tcp import TcpSocketClient, TcpSocketServer from qupy.interface.errors import InterfaceTimeoutError class TestCommClient(unittest.TestCase): def setUp(self): self.framing_server = Slip() self.tcp_server = TcpSocketServer() self.framing_client = Slip() self.tcp_client = TcpSocketClient() self.comm_client = CommClient(self.tcp_client, self.framing_client) self.comm_server = CommServer(self.tcp_server, self.framing_server) self.tcp_server.bind() self.tcp_client.connect() self.tcp_server.listen() self.comm_server.start() self.comm_client.start() super().setUp() def tearDown(self): self.comm_client.stop() self.tcp_client.close() self.comm_server.stop() self.tcp_server.close() self.tcp_server.unbind() super().tearDown() def test_send_recv_client(self): tx_msg = b'abc' self.comm_client.send(tx_msg) rx_msg = self.comm_server.recv() self.assertEqual(rx_msg, tx_msg) tx_msg = b'def' self.comm_server.confirm(tx_msg) rx_msg = self.comm_client.recv() self.assertEqual(rx_msg, tx_msg) def test_send_no_recv_client(self): tx_msg = b'abc' self.comm_client.send(tx_msg) rx_msg = self.comm_server.recv() self.assertEqual(rx_msg, tx_msg) self.comm_server.confirm(None) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1725565
<filename>2018/Day21.py from Day19 import Device, make_command script = """\ #ip 3 seti 123 0 1 bani 1 456 1 eqri 1 72 1 addr 1 3 3 seti 0 0 3 seti 0 0 1 bori 1 65536 2 seti 10605201 9 1 bani 2 255 5 addr 1 5 1 bani 1 16777215 1 muli 1 65899 1 bani 1 16777215 1 gtir 256 2 5 addr 5 3 3 addi 3 1 3 seti 27 3 3 seti 0 3 5 addi 5 1 4 muli 4 256 4 gtrr 4 2 4 addr 4 3 3 addi 3 1 3 seti 25 3 3 addi 5 1 5 seti 17 5 3 setr 5 5 2 seti 7 6 3 eqrr 1 0 5 addr 5 3 3 seti 5 8 3""" ip_command, *program = list(map(make_command, script.splitlines())) if __name__ == "__main__": A_start = 0 while True: print(A_start) seen_states = [] dev = Device(A=A_start) dev.opsd[ip_command[0]](*ip_command[1]) while dev.ip_pos in range(0, len(program)) and len(seen_states)<=10000000: if not len(seen_states)%1000000: print("-> "+str(len(seen_states)//1000000)+"M") seen_states.append(list(dev)) com, args = program[dev.ip_pos] dev.opsd[com](dev, *args) dev.loop() if dev.ip_pos not in range(0, len(program)): break A_start += 1
StarcoderdataPython
3309154
from typing import List from geom2d import Circle, Rect, Segment, Point, Polygon, Vector from graphic.svg.attributes import attrs_to_str from graphic.svg.read import read_template __segment_template = read_template('line') __rect_template = read_template('rect') __circle_template = read_template('circle') __polygon_template = read_template('polygon') __polyline_template = read_template('polyline') __text_template = read_template('text') __group_template = read_template('group') def segment(seg: Segment, attributes=()): """ Returns an SVG line segment element as string. :param seg: `Segment` geometric primitive :param attributes: list of SVG attributes :return: <line x1="" y1="" x2="" y2="" ... /> """ return __segment_template \ .replace('{{x1}}', str(seg.start.x)) \ .replace('{{y1}}', str(seg.start.y)) \ .replace('{{x2}}', str(seg.end.x)) \ .replace('{{y2}}', str(seg.end.y)) \ .replace('{{attrs}}', attrs_to_str(attributes)) def rectangle(rect: Rect, attributes=()): """ Returns an SVG rectangle element as string. :param rect: `Rect` geometric primitive :param attributes: list of SVG attributes :return: <rect x="" y="" width="" height="" ... /> """ return __rect_template \ .replace('{{x}}', str(rect.origin.x)) \ .replace('{{y}}', str(rect.origin.y)) \ .replace('{{width}}', str(rect.size.width)) \ .replace('{{height}}', str(rect.size.height)) \ .replace('{{attrs}}', attrs_to_str(attributes)) def circle(circ: Circle, attributes=()): """ Returns an SVG circle element as string. :param circ: `Circle` geometric primitive :param attributes: list of SVG attributes :return: <circle cx="" cy="" r="" ... /> """ return __circle_template \ .replace('{{cx}}', str(circ.center.x)) \ .replace('{{cy}}', str(circ.center.y)) \ .replace('{{r}}', str(circ.radius)) \ .replace('{{attrs}}', attrs_to_str(attributes)) def polygon(pol: Polygon, attributes=()): """ Returns an SVG polygon element as string. :param pol: `Polygon` geometric primitive :param attributes: list of SVG attributes :return: <polygon points="" ... /> """ return __polygon_template \ .replace('{{points}}', __format_points(pol.vertices)) \ .replace('{{attrs}}', attrs_to_str(attributes)) def polyline(points: List[Point], attributes=()): """ Returns an SVG polyline element as string. :param points: sequence of `Point`s, the vertices of the polyline :param attributes: list of SVG attributes :return: <polyline points="" .../> """ return __polyline_template \ .replace('{{points}}', __format_points(points)) \ .replace('{{attrs}}', attrs_to_str(attributes)) def text(txt: str, pos: Point, disp: Vector, attrs_list=()): """ Returns an SVG text element as string. :param txt: the text :param pos: origin position for the text :param disp: displacement applied to the text :param attrs_list: list of SVG attributes :return: <text x="" y="" dx="" dy="" ...>Hello</text> """ return __text_template \ .replace('{{x}}', str(pos.x)) \ .replace('{{y}}', str(pos.y)) \ .replace('{{dx}}', str(disp.u)) \ .replace('{{dy}}', str(disp.v)) \ .replace('{{text}}', txt) \ .replace('{{attrs}}', attrs_to_str(attrs_list)) def group(primitives: List[str], attributes=()): """ Returns an SVG group element with the primitives list inside of it. :param primitives: list of SVG primitives as string. :param attributes: list of SVG attributes :return: <g ...>...</g> """ return __group_template \ .replace('{{content}}', '\n\t'.join(primitives)) \ .replace('{{attrs}}', attrs_to_str(attributes)) def arrow( _segment: Segment, length: float, height: float, attributes=() ): """ Returns an SVG group of primitives representing an arrow: a segment with an arrow head in its end. :param _segment: arrow's line segment :param length: arrow's head length :param height: arrow's head height :param attributes: list of SVG attributes :return: <g>...</g> """ director = _segment.direction_vector v_l = director.opposite().with_length(length) v_h1 = director.perpendicular().with_length(height / 2.0) v_h2 = v_h1.opposite() return group( [ segment(_segment), polyline([ _segment.end.displaced(v_l + v_h1), _segment.end, _segment.end.displaced(v_l + v_h2) ]) ], attributes ) def __format_points(points: List[Point]): return ' '.join([f'{p.x},{p.y}' for p in points])
StarcoderdataPython
4801114
<filename>CodeWars/7 Kyu/21 Sticks.py def makeMove(sticks): return max(sticks % 4, 1)
StarcoderdataPython
4841070
""" Network optimization """ import pandas as pd __author__ = "<NAME>" __copyright__ = "Copyright 2015, Architecture and Building Systems - ETH Zurich" __credits__ = ["<NAME>", "<NAME>", "<NAME>", "<NAME>"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" class NetworkOptimizationFeatures(object): """ This class just sets-ip constants of the linear model of the distribution. These results are extracted from the work of Florian at the chair. Unfortunately his work only worked for this case study and could not be used else where See the paper of Fonseca et al 2015 of the city energy analyst for more info on how that procedure used to work. """ def __init__(self, district_heating_network, district_cooling_network, locator): self.network_names = [''] for network_name in self.network_names: if district_heating_network: self.E_pump_DHN_W = pd.read_csv(locator.get_network_energy_pumping_requirements_file("DH", network_name))[ 'pressure_loss_total_kW'].values * 1000 self.mass_flow_rate_DHN = self.mass_flow_rate_plant(locator, network_name, "DH") self.thermallosses_DHN = pd.read_csv(locator.get_network_total_thermal_loss_file("DH", network_name))[ 'thermal_loss_total_kW'].values self.pipesCosts_DHN_USD = self.pipe_costs(locator, network_name, "DH") if district_cooling_network: self.E_pump_DCN_W = pd.read_csv(locator.get_network_energy_pumping_requirements_file("DC", network_name))[ 'pressure_loss_total_kW'].values * 1000 self.mass_flow_rate_DCN = self.mass_flow_rate_plant(locator, network_name, "DC") self.thermallosses_DCN = pd.read_csv(locator.get_network_total_thermal_loss_file("DC", network_name))[ 'thermal_loss_total_kW'].values self.pipesCosts_DCN_USD = self.pipe_costs(locator, network_name, "DC") def mass_flow_rate_plant(self, locator, network_name, network_type): mass_flow_df = pd.read_csv((locator.get_thermal_network_layout_massflow_nodes_file(network_type, network_name))) mass_flow_nodes_df = pd.read_csv((locator.get_thermal_network_node_types_csv_file(network_type, network_name))) # identify the node with the plant node_id = mass_flow_nodes_df.loc[mass_flow_nodes_df['Type'] == "PLANT", 'Name'].item() return mass_flow_df[node_id].values def pipe_costs(self, locator, network_name, network_type): edges_file = pd.read_csv(locator.get_thermal_network_edge_list_file(network_type, network_name)) piping_cost_data = pd.read_excel(locator.get_database_distribution_systems(), sheet_name="THERMAL_GRID") merge_df = edges_file.merge(piping_cost_data, left_on='Pipe_DN', right_on='Pipe_DN') merge_df['Inv_USD2015'] = merge_df['Inv_USD2015perm'] * merge_df['length_m'] pipe_costs = merge_df['Inv_USD2015'].sum() return pipe_costs
StarcoderdataPython
30140
# -*- coding: utf-8 -*- """ Created on Mon Aug 5 14:01:56 2019 @author: <NAME> This implementation use ST-ResNet for inflow / outflow bike prediction on the city of NY Article: https://arxiv.org/pdf/1610.00081.pdf References and credits: <NAME>, <NAME>, <NAME>. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction. In AAAI 2017. The dataset can be download checking the information on the following link: https://github.com/lucktroy/DeepST/tree/master/data/BikeNYC """ ################################################################################## # Libraries ################################################################################## import os import math from datetime import datetime from datetime import timedelta import numpy as np import h5py import matplotlib.pyplot as plt import matplotlib.cm import seaborn as sns sns.set() import keras.backend as K from keras.models import Model from keras.layers import Input, Dense, Reshape, Activation, Add, LeakyReLU from keras.layers import Conv2D , BatchNormalization, Lambda, concatenate from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping from keras.optimizers import Adam from keras.engine.topology import Layer np.random.seed(42) # My nickname Recruta42 ############################################################################################ # Load Dataset ############################################################################################ dataset_folder = 'dataset' dataset_file = os.path.join(dataset_folder,'NYC14_M16x8_T60_NewEnd.h5') images_folder = 'images' nyc_map = plt.imread(os.path.join(images_folder,'nyc.jpg')) # Plot New York Map f, ax = plt.subplots(figsize=(8,8)) ax.imshow(nyc_map) # Load dataset file f = h5py.File(dataset_file) data = f['data'][()] timestamps = f['date'][()] # Convert data from [batch x flow matrices x map height x map width] to [batch x map height x map width x flow matrices] data = np.transpose(data, (0, 2, 3, 1)) # Plot some samples from dataset n_samples = 5 for i in range(n_samples): # define the size of images f, (ax1, ax2) = plt.subplots(1, 2) f.set_figwidth(12) f.set_figheight(8) # randomly select a sample idx = np.random.randint(0, len(data)) inflow = data[idx][:,:,0] #input flow is the first matrix outflow = data[idx][:,:,1] #output flow is the second matrix date = datetime.strptime(timestamps[idx].decode("utf-8"), '%Y%m%d%H') hmax1 = sns.heatmap(inflow, cmap = matplotlib.cm.winter, alpha = 0.3, annot = False,zorder = 2, ax=ax1) hmax1.imshow(nyc_map,aspect = hmax1.get_aspect(),extent = hmax1.get_xlim() + hmax1.get_ylim(), zorder = 1) ax1.set_title('In Flow: {0}'.format(date)) hmax2 = sns.heatmap(outflow, cmap = matplotlib.cm.winter, alpha = 0.3, annot = False,zorder = 2, ax=ax2) hmax2.imshow(nyc_map,aspect = hmax2.get_aspect(),extent = hmax2.get_xlim() + hmax2.get_ylim(), zorder = 1) ax2.set_title('Out Flow: {0}'.format(date)) ############################################################################################ # Pre-Process Dataset ############################################################################################ # Convert timestamps from ASCII format to string formated_timestamps = [] for ts in timestamps: formated_timestamps.append(ts.decode("utf-8")) # Scale in flow and out flow values on the map matrices to a range between [-1,1] min_value = data.min() max_value = data.max() print("Minimum values: {0} , Maximum value: {1}".format(min_value,max_value)) data_scaled = 1. * (data - min_value) / (max_value - min_value) data_scaled = 2. * data_scaled - 1. print("Minimum scaled values: {0} , Maximum scaled value: {1}".format(data_scaled.min(),data_scaled.max())) ############################################################################################ # Create Train / Target data ############################################################################################ ''' Minimum granularity will be 1 hour To create the input for our model we need to aggregate the inflow and outflow matrices according to three interval of times defined in the article as: closeness, period and trend. For this project: * Closeness is a difference in 1 hour period between two matrices * Period is a difference is 24 hours period between two matrices * Trend is a difference is 7 days period between two matrices This means that for example, for a data (16 x 8 x 2) inflow/outflow matrices collected at time stamp: 2014 08 07 01:00:00 we will have to do the following transformations: Input closeness = len closeness stack of consecutive matrices distant between closeness interval. Ex: Len = 3 and interval = 1 hour - stack [2014 08 07 01:00:00, 2014 08 07 02:00:00 , 2014 08 07 03:00:00] matrices Input period = len period stack of consecutive matrices distant between period interval. Ex: Len = 4 and interval = 24 hours - stack [2014 08 07 01:00:00, 2014 08 08 01:00:00 , 2014 08 09 01:00:00, 2014 08 10 01:00:00] matrices Input trend = len trend stack of consecutive matrices distant between trend interval. Ex: Len = 4 and interval = 168 hours - stack [2014 08 07 01:00:00, 2014 08 14 01:00:00 , 2014 08 21 01:00:00, 2014 08 28 01:00:00] matrices This is an important information and the dataset should have little or almost NO disconnected interval between two inflow / outflow matrices meaning that we should avoid missing hours. ''' # Simple function that receives a string in format YmdH and convert to a datetime object def str_to_date(timestamp): # We can't direct stripe the data using datetime.strptime(ts, '%Y%m%d%H') # because the hours are in 01 to 24 format instead of 00 to 23 year, month, day, hour = int(timestamp[:4]), int(timestamp[4:6]), int(timestamp[6:8]), int(timestamp[8:])-1 converted_time = datetime(year, month, day, hour) return converted_time # Convert timestamp to a one hot encoded vector taking into account week way and if it is weekend or not def one_hot_day_week(timestamp): converted_time = str_to_date(timestamp) i = converted_time.weekday() one_hot_encoded = np.zeros((8)) # Day week (sunday, monday...) encoder one_hot_encoded[i] = 1 # Weekend / Not Weekend encoder if i >= 5: one_hot_encoded[7] = 0 else: one_hot_encoded[7] = 1 return one_hot_encoded closeness_interval = 1 # distance between hours period_interval = 24 * closeness_interval # number of time intervals in one day trend_interval = 7 * period_interval closeness_len = 3 # recent time (closeness) period_len = 4 # near history (period) trend_len = 4 # distant history (trend) closeness_range = [x * closeness_interval for x in range(1,closeness_len+1)] period_range = [x * period_interval for x in range(1,period_len + 1)] trend_range = [x * trend_interval for x in range(1,trend_len+1)] # Build a dictionary of time stamps. This will ease our work to convert between timestamps to indices to get # the in/out flow matrices. ts_dict = {} ts_list = [] for i, ts in enumerate(formated_timestamps): converted_time = str_to_date(ts) # Add converted time from string to a list for iteration and for a dictionary for search purposes ts_list.append(str_to_date(ts)) ts_dict[converted_time] = i # Create X, y data X_Closeness, X_Period, X_Trend, X_External, Y , Y_timestamp = [],[],[],[],[],[] # Crete the datasets for closeness, period and trend # Since we have future predictions as output we need to build the dataset based on the lates trend period as starting point starting_period = trend_interval * trend_len # We construct the X, y datasets based on a reversed time interval, from the latest trend to starting closeness for i in range(starting_period, len(formated_timestamps)): # Starting period date = str_to_date(formated_timestamps[i]) check_dates = [] # Get all dates in the closeness interval near the target for c in closeness_range: check_dates.append(date - timedelta(hours=c)) for p in period_range: check_dates.append(date - timedelta(hours=p)) for t in trend_range: check_dates.append(date - timedelta(hours=t)) # Check if all those selected dates exists in our timestamp dictionary and if not go to the next iteration break_flag = False for check_date in check_dates: if check_date not in ts_dict: print("Date frame missing!: {0} ".format(formated_timestamps[i])) break_flag = True if break_flag: continue # Parse again to create de dataset stacking the time range for closeness, period and trend # X Closeness xc = [] for c in closeness_range: xc.append(data_scaled[ts_dict[date - timedelta(hours=c)]]) xc = np.concatenate(xc,axis=-1) # X Period xp = [] for p in period_range: xp.append(data_scaled[ts_dict[date - timedelta(hours=p)]]) xp = np.concatenate(xp,axis=-1) # X Trend xt = [] for t in trend_range: xt.append(data_scaled[ts_dict[date - timedelta(hours=t)]]) xt = np.concatenate(xt,axis=-1) # Target y = data_scaled[ts_dict[date]] # Add each created set to the final datasets X_Closeness.append(xc) X_Period.append(xp) X_Trend.append(xt) X_External.append(one_hot_day_week(formated_timestamps[i])) Y.append(y) Y_timestamp.append(formated_timestamps[i]) X_Closeness = np.asarray(X_Closeness) X_Period = np.asarray(X_Period) X_Trend = np.asarray(X_Trend) X_External = np.asarray(X_External) Y = np.asarray(Y) print("X_Closeness shape: ", X_Closeness.shape) print("X_Period shape: ", X_Period.shape) print("X_Trend shape: ", X_Trend.shape) print("X_External shape: ", X_External.shape) print( "Y shape:", Y.shape) ############################################################################################ # Split dataset into Train / Test ############################################################################################ days_test = 10 n_test = 24 * days_test # Split dataset into training / test sets XC_train, XP_train, XT_train,XE_train, Y_train = X_Closeness[:-n_test], X_Period[:-n_test], X_Trend[:-n_test],X_External[:-n_test], Y[:-n_test] XC_test, XP_test, XT_test, XE_test, Y_test = X_Closeness[-n_test:], X_Period[-n_test:], X_Trend[-n_test:],X_External[-n_test:], Y[-n_test:] # Time stamp split so we can track the period timestamp_train, timestamp_test = Y_timestamp[:-n_test], Y_timestamp[-n_test:] # Concatenate closeness , period and trend X_train = [XC_train,XP_train,XT_train,XE_train] X_test = [XC_test,XP_test,XT_test,XE_test] print("X Train size: ", len(X_train)) print("X Test size: ", len(X_test)) ############################################################################################ # Spatial Temporal Residual Network ############################################################################################ ############################################################################################ # ResNet Identity Block ############################################################################################ def identity_block(inputs, filters, block_id): x = BatchNormalization(name='block_' + block_id + '_identity_batch_1')(inputs) x = Activation('relu', name='block_' + block_id + '_identity_relu_1')(x) x = Conv2D(filters, kernel_size=(3,3), strides=(1,1), padding='same', kernel_initializer='he_normal', name='block_' + block_id + '_identity_conv2d_1')(x) x = BatchNormalization(name='block_' + block_id + '_identity_batch_2')(x) x = Activation('relu',name='block_' + block_id + '_identity_relu_2')(x) x = Conv2D(filters, kernel_size=(3,3), strides=(1,1), padding='same', kernel_initializer='he_normal', name='block_' + block_id + '_identity_conv2d_2')(x) x = Add(name='block_' + block_id + '_add')([inputs,x]) return x ############################################################################################ # ResNet bottleNeck block ############################################################################################ def bottleneck_block(inputs,kernel_size, filters, block_id): f1, f2, f3 = filters x = Conv2D(f1, kernel_size=(1,1), use_bias=False, kernel_initializer='he_normal', name='block_' + block_id + '_identity_conv2d_1')(inputs) x = BatchNormalization(name='block_' + block_id + '_identity_batch_1')(x) x = Activation('relu', name='block_' + block_id + '_identity_relu_1')(x) x = Conv2D(f2, kernel_size = kernel_size, padding='same', use_bias=False, kernel_initializer='he_normal', name='block_' + block_id + '_identity_conv2d_2')(x) x = BatchNormalization(name='block_' + block_id + '_identity_batch_2')(x) x = Activation('relu',name='block_' + block_id + '_identity_relu_2')(x) x = Conv2D(f3, kernel_size=(1,1), use_bias=False, kernel_initializer='he_normal', name='block_' + block_id + '_identity_conv2d_3')(x) x = BatchNormalization(name='block_' + block_id + '_identity_batch_3')(x) x = Add(name='block_' + block_id + '_add')([x, inputs]) x = Activation('relu', name='block_' + block_id + '_identity_relu_3')(x) return x ############################################################################################ # ResNetXt group block ############################################################################################ def grouped_block(inputs, filters, cardinality, block_id): assert not filters % cardinality convolution_groups = [] n_convs = filters // cardinality for j in range(cardinality): group = Lambda(lambda z: z[:, :, :, j * n_convs:j * n_convs + n_convs])(inputs) convolution_groups.append(Conv2D(n_convs, kernel_size=(3, 3), strides=(1,1) , padding='same')(group)) x = concatenate(convolution_groups, name='block_Xt' + block_id + '_concatenate') return x ############################################################################################ # ResNet bottleNeck block ############################################################################################ def resnetXt_block(inputs, filters, cardinality, block_id): f1, f2, f3 = filters x = Conv2D(f1, kernel_size=(1,1), use_bias=False, kernel_initializer='he_normal', name='block_' + block_id + '_xt_conv2d_1')(inputs) x = BatchNormalization(name='block_' + block_id + '_xt_batch_1')(x) x = LeakyReLU(name='block_' + block_id + '_identity_leakyrelu_1')(x) x = grouped_block(x, f2, cardinality, block_id) x = BatchNormalization(name='block_' + block_id + '_identity_batch_2')(x) x = Activation('relu',name='block_' + block_id + '_identity_relu_2')(x) x = Conv2D(f3, kernel_size=(1,1), use_bias=False, kernel_initializer='he_normal', name='block_' + block_id + '_identity_conv2d_3')(x) x = BatchNormalization(name='block_' + block_id + '_identity_batch_3')(x) x = Add(name='block_' + block_id + '_add')([x, inputs]) x = LeakyReLU(name='block_' + block_id + '_identity_leakyrelu_relu_3')(x) return x ############################################################################################ # Fusion Block ############################################################################################ class FusionLayer(Layer): def __init__(self, **kwargs): super(FusionLayer, self).__init__(**kwargs) def build(self, input_shape): # Create a trainable weight variable for this layer. self.kernel = self.add_weight(name='kernel', shape=(input_shape[1:]), initializer='uniform', trainable=True) super(FusionLayer, self).build(input_shape) # Be sure to call this at the end def call(self, x, mask=None): return x * self.kernel def get_output_shape_for(self, input_shape): return input_shape ############################################################################################ # ST-ResNet version 1 ############################################################################################ def STResNet_v1(c_conf=(32, 32, 2, 3), p_conf=(32, 32, 2, 3), t_conf=(32, 32, 2, 3), output_shape = (32, 32, 2), res_units=3, external_dim = None): height, width, n_flows = output_shape main_inputs = [] Input_c = Input(shape=(c_conf[0], c_conf[1], c_conf[2] * c_conf[3]), name='input_c') Input_p = Input(shape=(p_conf[0], p_conf[1], p_conf[2] * p_conf[3]), name='input_p') Input_t = Input(shape=(t_conf[0], t_conf[1], t_conf[2] * t_conf[3]), name='input_t') main_inputs.append(Input_c) main_inputs.append(Input_p) main_inputs.append(Input_t) # Input x_c = Conv2D(64, kernel_size=(3,3),strides=(1,1), padding="same", name= 'conv_input_c')(Input_c) x_p = Conv2D(64, kernel_size=(3,3),strides=(1,1), padding="same", name= 'conv_input_p')(Input_p) x_t = Conv2D(64, kernel_size=(3,3),strides=(1,1), padding="same", name= 'conv_input_t')(Input_t) for i in range(res_units): x_c = identity_block(x_c, 64, block_id= str(i) +'_c') x_p = identity_block(x_p, 64, block_id= str(i) +'_p') x_t = identity_block(x_t, 64, block_id= str(i) +'_t') x_c = Conv2D(1, kernel_size=(3,3),strides=(1,1), padding="same", name= 'conv_output_c')(x_c) x_p = Conv2D(1, kernel_size=(3,3),strides=(1,1), padding="same", name= 'conv_output__p')(x_p) x_t = Conv2D(1, kernel_size=(3,3),strides=(1,1), padding="same", name= 'conv_output__t')(x_t) # Fusion Layers x_c = FusionLayer()(x_c) x_p = FusionLayer()(x_p) x_t = FusionLayer()(x_t) fusion = Add(name='temporal_fusion')([x_c,x_p,x_t]) ######################################################################### # External Block ######################################################################### if external_dim != None and external_dim > 0: # Concatenate external inputs with temporal inputs external_input = Input(shape=(external_dim,), name='external_input') main_inputs.append(external_input) embedding = Dense(10, name='external_dense_1')(external_input) embedding = Activation('relu')(embedding) embedding = Dense(height * width * n_flows* channels)(embedding) embedding = Activation('relu')(embedding) external_output = Reshape((height, width, n_flows ) ,name='external_output')(embedding) # Fuse with external output fusion = Add(name='external_fusion')([fusion,external_output]) final_output = Activation('tanh', name='Tanh')(fusion) model = Model(inputs=main_inputs,outputs=final_output) return model ############################################################################################ # Training pipeline ############################################################################################ # Metric for our model def rmse(y_true, y_pred): return K.mean(K.square(y_pred - y_true)) ** 0.5 # Hyperparameters epochs = 500 batch_size = 32 learning_rate = 0.0002 # callbacks model_path = 'saved_models' # File were the best model will be saved during checkpoint model_file = os.path.join(model_path,'nyc_bike_flow.h5') # Early stop to avoid overfitting our model early_stopping = EarlyStopping(monitor='val_rmse', patience=5, mode='min') # Check point for saving the best model check_pointer = ModelCheckpoint(model_file, monitor='val_rmse', mode='min',verbose=1, save_best_only=True) # Heatmap parameters map_height = 16 map_width = 8 n_flows = 2 c_conf=(map_height, map_width, n_flows, closeness_len) # closeness p_conf=(map_height, map_width, n_flows, period_len) # period t_conf=(map_height, map_width, n_flows, trend_len) # trend output_shape=(map_height, map_width, n_flows) external_dim = 8 # Create ST-ResNet Model model = STResNet_v1(c_conf,p_conf,t_conf, output_shape, res_units=3, external_dim = external_dim,unit_type = 'v2') # Create Optimizer optimizer = Adam(lr=learning_rate) model.compile(optimizer, loss='mse' , metrics=[rmse]) model.summary() # Train the model history = model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, validation_split=0.1, callbacks=[check_pointer,early_stopping], verbose=1) ############################################################################################ # Predict ############################################################################################ # If we want to test on a pre trained model use the following line model.load_weights(os.path.join(model_path,'bikenyc-0.0020.h5'), by_name=False) n_samples = 3 for i in range(n_samples): f, (ax1, ax2, ax3,ax4) = plt.subplots(1, 4) f.set_figwidth(14) f.set_figheight(6) # randomly select a sample idx = np.random.randint(0, len(X_test[0])) # Add single dimension to each input to simulate batch X = [X_test[0][idx][np.newaxis,...],X_test[1][idx][np.newaxis,...],X_test[2][idx][np.newaxis,...],X_test[3][idx][np.newaxis,...]] y_true = Y_test[idx] # Predict values using our trained model y_pred = model.predict(X) y_pred = np.squeeze(y_pred) date = hmax1 = sns.heatmap(y_true[:,:,0], cmap = matplotlib.cm.winter, alpha = 0.3, annot = False,zorder = 2, ax=ax1) hmax1.imshow(nyc_map,aspect = hmax1.get_aspect(),extent = hmax1.get_xlim() + hmax1.get_ylim(), zorder = 1) ax1.set_title('True In Flow: {0}'.format(timestamps[idx].decode("utf-8"))) hmax2 = sns.heatmap(y_pred[:,:,0], cmap = matplotlib.cm.winter, alpha = 0.3, annot = False,zorder = 2, ax=ax2) hmax2.imshow(nyc_map,aspect = hmax2.get_aspect(),extent = hmax2.get_xlim() + hmax2.get_ylim(), zorder = 1) ax2.set_title('Pred In Flow: {0}'.format(timestamps[idx].decode("utf-8"))) hmax3 = sns.heatmap(y_true[:,:,1], cmap = matplotlib.cm.winter, alpha = 0.3, annot = False,zorder = 2, ax=ax3) hmax3.imshow(nyc_map,aspect = hmax3.get_aspect(),extent = hmax3.get_xlim() + hmax3.get_ylim(), zorder = 1) ax3.set_title('True Out Flow: {0}'.format(timestamps[idx].decode("utf-8"))) hmax4 = sns.heatmap(y_pred[:,:,1], cmap = matplotlib.cm.winter, alpha = 0.3, annot = False,zorder = 2, ax=ax4) hmax4.imshow(nyc_map,aspect = hmax4.get_aspect(),extent = hmax4.get_xlim() + hmax4.get_ylim(), zorder = 1) ax4.set_title('Pred Out Flow: {0}'.format(timestamps[idx].decode("utf-8"))) ############################################################################################ # Evaluate ############################################################################################ # This information was provided in the original article an file ! ''' For NYC Bike data, there are 81 available grid-based areas, each of which includes at least ONE bike station. Therefore, we modify the final RMSE by multiplying the following factor (i.e., factor). ''' nb_area = 81 m_factor = math.sqrt(1. * map_height * map_width / nb_area) score = model.evaluate(X_train, Y_train, batch_size=Y_train.shape[0] // 48, verbose=0) print('Train score: %.6f rmse (norm): %.6f rmse (real): %.6f' % (score[0], score[1], score[1] * (max_value - min_value) / 2. * m_factor)) score = model.evaluate(X_test, Y_test, batch_size=Y_test.shape[0], verbose=0) print('Test score: %.6f rmse (norm): %.6f rmse (real): %.6f' % (score[0], score[1], score[1] * (max_value - min_value) / 2. * m_factor))
StarcoderdataPython
1686218
# imports import numpy as np import tensorflow as tf from numpy import random import math import time import matplotlib.pyplot as plt """Part 1 - Forward Propagation""" def initialize_parameters(layer_dims): """ Description: This function initializes weights and biases :param layer_dims: an array of the dimensions of each layer in the / network (layer 0 is the size of the flattened input, layer L is the output softmax) :return: a dictionary containing the initialized W and b parameters of each layer (W1…WL, b1…bL). """ parameters = {} for l in range(1, len(layer_dims)): parameters[f'W{l}'] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * np.sqrt(2 / layer_dims[l - 1]) parameters[f'b{l}'] = np.zeros(shape=(layer_dims[l], 1)) return parameters def linear_forward(A, W, b): """ Description: Implement the linear part of a layer's forward propagation. :param A: the activations of the previous layer :param W: the weight matrix of the current layer (of shape [size of current layer, size of previous layer]) :param b: the bias vector of the current layer (of shape [size of current layer, 1]) :return: Z: the linear component of the activation function (i.e., the value before applying the non-linear function) :return: linear_cache: a dictionary containing A, W, b (stored for making the backpropagation easier to compute) """ Z = np.dot(W, A) + b linear_cache = dict({'A': A, 'W': W, 'b': b}) return Z, linear_cache def softmax(Z): """ Description: Implementation of softmax function :param Z: the linear component of the activation function :return: A: the activations of the layer :return: activation_cache: returns Z, which will be useful for the backpropagation """ numerator = np.exp(Z) denominator = np.sum(numerator, axis=0, keepdims=True) A = numerator / denominator activation_cache = Z return A, activation_cache def relu(Z): """ Description: Implementation of relu function :param Z: the linear component of the activation function :return: A: the activations of the layer :return: activation_cache: returns Z, which will be useful for the backpropagation """ A = np.maximum(0, Z) activation_cache = Z return A, activation_cache def linear_activation_forward(A_prev, W, B, activation): """ Description: Implement the forward propagation for the LINEAR->ACTIVATION layer :param A_prev: activations of the previous layer :param W: the weights matrix of the current layer :param B: the bias vector of the current layer :param activation: the activation function to be used (a string, either “softmax” or “relu”) :return: A: the activations of the current layer :return: cache: a joint dictionary containing both linear_cache and activation_cache """ if activation in ['relu', 'softmax']: Z, linear_cache = linear_forward(A_prev, W, B) A, activation_cache = globals()[activation](Z) cache = dict({'linear_cache': linear_cache, 'activation_cache': activation_cache}) return A, cache else: raise NotImplementedError( "The given actiavtion function was not implemented. please choose one between {relu} and {softmax}") def l_model_forward(X, parameters, use_batchnorm): """ Description: Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SOFTMAX computation :param X: the data, numpy array of shape (input size, number of examples) :param parameters: the initialized W and b parameters of each layer :param use_batchnorm: a boolean flag used to determine whether to apply batchnorm after the activation/ :return:AL: the last post-activation value :return: caches: a list of all the cache objects generated by the linear_forward function """ caches = list() A_prev = X num_layers = int(len(parameters.keys()) / 2) for l in range(1, num_layers): W = parameters[f'W{l}'] B = parameters[f'b{l}'] A_prev, cache = linear_activation_forward(A_prev, W, B, 'relu') if use_batchnorm: A_prev = apply_batchnorm(A_prev) caches.append(cache) W = parameters[f'W{num_layers}'] B = parameters[f'b{num_layers}'] AL, cache = linear_activation_forward(A_prev, W, B, 'softmax') caches.append(cache) return AL, caches def compute_cost(AL, Y): """ Description: Implement the cost function defined by equation. The requested cost function is categorical cross-entropy loss. :param AL: probability vector corresponding to your label predictions, shape (num_of_classes, number of examples) :param Y: the labels vector (i.e. the ground truth) :return: cost: the cross-entropy cost """ inner_sum_classes = np.sum(Y * np.log(AL), axis=0, keepdims=True) outer_sum_samples = np.sum(inner_sum_classes, axis=1) m = AL.shape[1] cost = -1 / m * outer_sum_samples return cost def apply_batchnorm(A): """ Description: performs batchnorm on the received activation values of a given layer. :param A: the activation values of a given layer :return: NA: the normalized activation values, based on the formula learned in class """ mu = np.mean(A, axis=0, keepdims=True) variance = np.var(A, axis=0, keepdims=True) epsilon = 0.01 NA = (A - mu) / np.sqrt(variance + epsilon) return NA """Part 2 - Backward Propagation""" def linear_backward(dZ, cache): """ Description: Implements the linear part of the backward propagation process for a single layer :param dZ: the gradient of the cost with respect to the linear output of the current layer (layer l) :param cache: tuple of values (A_prev, W, b) coming from the forward propagation in the current layer :return:dA_prev: Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev :return: dW: Gradient of the cost with respect to W (current layer l), same shape as W :return: db: Gradient of the cost with respect to b (current layer l), same shape as b """ m = dZ.shape[1] dA_prev = np.dot(cache['W'].T, dZ) dW = (1 / m) * np.dot(dZ, cache['A'].T) db = (1 / m) * np.sum(dZ, axis=1, keepdims=True) return dA_prev, dW, db def linear_activation_backward(dA, cache, activation): """ Description: Implements the backward propagation for the LINEAR->ACTIVATION layer. The function first computes dZ and then applies the linear_backward function. :param dA: post activation gradient of the current layer :param cache: contains both the linear cache and the activations cache :param activation: the activation function name = ['relu' or 'softmax'] :return: dA_prev: Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev :return: dW: Gradient of the cost with respect to W (current layer l), same shape as W :return: db: Gradient of the cost with respect to b (current layer l), same shape as b """ if activation == 'softmax': dZ = softmax_backward(dA, cache['activation_cache']) elif activation == 'relu': dZ = relu_backward(dA, cache['activation_cache']) dA_prev, dW, db = linear_backward(dZ, cache['linear_cache']) return dA_prev, dW, db def relu_backward(dA, activation_cache): """ Description: Implements backward propagation for a ReLU unit :param dA: the post-activation gradient :param activation_cache: contains Z (stored during the forward propagation) :return: dZ: gradient of the cost with respect to Z """ derivative = activation_cache derivative[derivative >= 0] = 1 derivative[derivative < 0] = 0 dZ = dA * derivative return dZ def softmax_backward(dA, activation_cache): """ Description: Implements backward propagation for a softmax unit :param dA: the post-activation gradient :param activation_cache: contains Z (stored during the forward propagation) :return: dZ: gradient of the cost with respect to Z """ AL = activation_cache['AL'] Y = activation_cache['Y'] dZ = AL - Y return dZ def l_model_backward(AL, Y, caches): """ Description: Implement the backward propagation process for the entire network. :param AL: the probabilities vector, the output of the forward propagation (L_model_forward) :param Y: the true labels vector (the "ground truth" - true classifications) :param caches: list of caches containing for each layer: a) the linear cache; b) the activation cache :return: Grads: a dictionary with the gradients grads["dA" + str(l)] = ... grads["dW" + str(l)] = ... grads["db" + str(l)] = ... """ grads = dict() num_of_layers = len(caches) last_cache = caches[-1] last_cache['activation_cache'] = dict({'AL': AL, 'Y': Y, 'Z': last_cache['activation_cache']}) dA_prev, dW, db = linear_activation_backward(None, last_cache, "softmax") # dA = None cause not necessary grads["dA" + str(num_of_layers)] = dA_prev grads["dW" + str(num_of_layers)] = dW grads["db" + str(num_of_layers)] = db for l in range(num_of_layers - 1, 0, -1): dA_prev, dW, db = linear_activation_backward(dA_prev, caches[l - 1], "relu") grads["dA" + str(l)] = dA_prev grads["dW" + str(l)] = dW grads["db" + str(l)] = db return grads def update_parameters(parameters, grads, learning_rate): """ Description: Updates parameters using gradient descent :param parameters: a python dictionary containing the DNN architecture’s parameters :param grads: a python dictionary containing the gradients (generated by L_model_backward) :param learning_rate: the learning rate used to update the parameters (the “alpha”) :return: parameters: the updated values of the parameters object provided as input """ num_of_layers = int(len(parameters.keys()) / 2) for l in range(1, num_of_layers + 1): parameters[f"W{l}"] = parameters[f"W{l}"] - learning_rate * grads[f"dW{l}"] parameters[f"b{l}"] = parameters[f"b{l}"] - learning_rate * grads[f"db{l}"] return parameters """Part 3 - Train and Predict""" def train_validation_split(X, Y, train_size): """ Description: (auxiliary function) split the train set into train and validation sets :param X: train set samples :param Y: train set labels :param train_size: percentage of the train set :return: tuples of (x_train, y_train), (x_val, y_val) """ # create indices for train and validation sets indices = list(range(0, X.shape[1])) random.shuffle(indices) num_of_x_train_samples = math.ceil(X.shape[1] * train_size) # split train & validation x_train, y_train = X[:, indices[0:num_of_x_train_samples]], Y[:, indices[0:num_of_x_train_samples]] x_val, y_val = X[:, indices[num_of_x_train_samples:X.shape[1]]], Y[:, indices[num_of_x_train_samples:X.shape[1]]] return (x_train, y_train), (x_val, y_val) def l_layer_model(X, Y, layers_dims, learning_rate, num_iterations, batch_size): """ Description: Implements a L-layer neural network. All layers but the last should have the ReLU activation function, and the final layer will apply the softmax activation function. The size of the output layer should be equal to the number of labels in the data. Please select a batch size that enables your code to run well (i.e. no memory overflows while still running relatively fast). the function should use the earlier functions in the following order: initialize -> L_model_forward -> compute_cost -> L_model_backward -> update parameters :param X: the input data, a numpy array of shape (height*width , number_of_examples) :param Y: the “real” labels of the data, a vector of shape (num_of_classes, number of examples) :param layers_dims: a list containing the dimensions of each layer, including the input :param learning_rate: alpa parameter :param num_iterations: number of iterations - each iteration equals to one batch :param batch_size: the number of examples in a single training batch :return: parameters: the parameters learnt by the system during the training (the same parameters that were updated in the update_parameters function). :return: costs: the values of the cost function (calculated by the compute_cost function). One value is to be saved after each 100 training iterations (e.g. 3000 iterations -> 30 values). """ costs_val = [] costs_train = [] parameters = initialize_parameters(layers_dims) is_batchnorm = True # change to True when batchnorm is needed epoch = 0 val_accuracy = -1 train_accuracy = -1 log = [] (x_train, y_train), (x_val, y_val) = train_validation_split(X, Y, 0.8) # split x and y train sets to batches num_of_batches = math.ceil(x_train.shape[1] / batch_size) batches_x = np.array_split(x_train, num_of_batches, axis=1) batches_y = np.array_split(y_train, num_of_batches, axis=1) for num_of_iteration in range(0, num_iterations): batch_num = num_of_iteration % num_of_batches # current batch number current_batch_x, current_batch_y = batches_x[batch_num], batches_y[batch_num] # get current batches AL, caches = l_model_forward(current_batch_x, parameters, is_batchnorm) grads = l_model_backward(AL, current_batch_y, caches) parameters = update_parameters(parameters, grads, learning_rate) # each hundred iterations compute costs for current batch and validation set, and accuracy for validation and # train sets if num_of_iteration % 100 == 0: AL_val, caches_val = l_model_forward(x_val, parameters, is_batchnorm) costs_val.append(compute_cost(AL_val, y_val)) val_accuracy = predict(x_val, y_val, parameters) AL_batch, caches_train = l_model_forward(current_batch_x, parameters, is_batchnorm) costs_train.append(compute_cost(AL_batch, current_batch_y)) log.append(f"Iteration: {num_of_iteration}, Cost: {costs_train[-1]}") train_accuracy = predict(x_train, y_train, parameters) print( f"Epoch: {epoch}, Iteration: {num_of_iteration}, batch_loss: {costs_train[-1]}, train_accuracy: {train_accuracy}, val_loss: {costs_val[-1]}, validation_accuracy: {val_accuracy}") # stopping criterion - no improvement on the validation set - threshold = 0.05 if len(costs_val) > 2 and (costs_val[-1] - costs_val[-2] >= 0.005) and (costs_val[-2] - costs_val[-3] >= 0.005): print("Early stopping reached.") break # count epochs if num_of_iteration % num_of_batches == 0 and num_of_iteration > 0: epoch += 1 print(f"val_accuracy {val_accuracy}") plot_model_history(costs_val, "Validation") print(f"train_accuracy {train_accuracy}") plot_model_history(costs_train, "Training") print(*log, sep="\n") # for report return parameters, costs_train def predict(X, Y, parameters): """ Description: The function receives an input data and the true labels and calculates the accuracy of the trained neural network on the data. :param X: the input data, a numpy array of shape (height*width, number_of_examples) :param Y: the “real” labels of the data, a vector of shape (num_of_classes, number of examples) :param parameters: a python dictionary containing the DNN architecture’s parameters :return: accuracy – the accuracy measure of the neural net on the provided data (i.e. the percentage of the samples for which the correct label receives the highest confidence score). Use the softmax function to normalize the output values. """ is_batchnorm = True # change to True when batchnorm is needed AL, caches = l_model_forward(X, parameters, is_batchnorm) y_predict = (AL == np.amax(AL, axis=0)).astype(int) # the class with the maximum prob is the predicted class accuracy = np.sum(y_predict * Y) / AL.shape[1] # sum number of correct predictions return accuracy def plot_model_history(costs_list, type): """ Description: (auxiliary function) Plot graph of cost per 100 iterations :param costs_list: :param type: str - validation or training """ x_index = range(0, len(costs_list)*100, 100) plt.plot(x_index, costs_list) plt.title(f'{type} Model Costs') plt.ylabel('Costs') plt.xlabel('Iterations') plt.show() """Part 4 - MNIST classification - W/out batchnorm""" # load MNIST data (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data(path='mnist.npz') # normalize train and test sets x_train = x_train / 255 x_test = x_test / 255 # flatten matrices x_train = x_train.reshape(x_train.shape[0], 784).T x_test = x_test.reshape(x_test.shape[0], 784).T # encode y vectors to one hot vector num_of_classes = len(np.unique(y_train)) y_train_one_hot = np.zeros((num_of_classes, y_train.shape[0])) y_train_one_hot[y_train, np.arange(y_train.shape[0])] = 1 y_test_one_hot = np.zeros((num_of_classes, y_test.shape[0])) y_test_one_hot[y_test, np.arange(y_test.shape[0])] = 1 # run network layers_dims = [x_train.shape[0], 20, 7, 5, 10] learning_rate = 0.009 num_iterations = 50000 batch_size = 32 start = time.time() parameters, costs = l_layer_model(x_train, y_train_one_hot, layers_dims, learning_rate, num_iterations, batch_size) accuracy = predict(x_test, y_test_one_hot, parameters) print(f"Total time: {(time.time() - start)} seconds.") print(f"Test Accuracy: {accuracy}")
StarcoderdataPython
4833300
import django_tables2 as tables from django_tables2.utils import Accessor from utilities.tables import BaseTable, ToggleColumn from .models import SecretRole, Secret SECRETROLE_EDIT_LINK = """ {% if perms.secrets.change_secretrole %} <a href="{% url 'secrets:secretrole_edit' slug=record.slug %}">Edit</a> {% endif %} """ # # Secret roles # class SecretRoleTable(BaseTable): pk = ToggleColumn() name = tables.LinkColumn(verbose_name='Name') secret_count = tables.Column(verbose_name='Secrets') slug = tables.Column(verbose_name='Slug') edit = tables.TemplateColumn(template_code=SECRETROLE_EDIT_LINK, verbose_name='') class Meta(BaseTable.Meta): model = SecretRole fields = ('pk', 'name', 'secret_count', 'slug', 'edit') # # Secrets # class SecretTable(BaseTable): pk = ToggleColumn() device = tables.LinkColumn('secrets:secret', args=[Accessor('pk')], verbose_name='Device') role = tables.Column(verbose_name='Role') name = tables.Column(verbose_name='Name') last_updated = tables.DateTimeColumn(verbose_name='Last updated') class Meta(BaseTable.Meta): model = Secret fields = ('pk', 'device', 'role', 'name', 'last_updated')
StarcoderdataPython
3274396
<gh_stars>0 from nehushtan.httpd.exceptions.NehushtanHTTPError import NehushtanHTTPError class NehushtanRequestDeniedByFilterError(NehushtanHTTPError): """ Since 0.4.0 When a Filter denies a request """ def __init__(self, filter_name: str, error_message: str, http_code: int): super(NehushtanRequestDeniedByFilterError, self).__init__( f'Filter [{filter_name}] Denied Request: {error_message}', http_code )
StarcoderdataPython
1732389
<gh_stars>0 from .parser import Parser __version__ = "0.1.0" def convert(html: str) -> str: parser = Parser() parser.feed(html) result = [] for elem in parser.parse_result: result.append(elem.to_str()) return "\n".join(result)
StarcoderdataPython
123260
# -*- coding: utf-8 -*- # best for i/o sql interface for history stats #TODO: #sql for pin_id_4_goods #shop for pin_ids #chart_generator #statistical view import logging import datetime import threading import time import mysql.connector from mysql.connector import errorcode import redis # method example code # sqldb = mysql.connector.connect(host='localhost',database='iotbi',user='root',password='<PASSWORD>') ''' try: cnx = mysql.connector.connect(user='scott', database='employ') except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: print("Something is wrong with your user name or password") elif err.errno == errorcode.ER_BAD_DB_ERROR: print("Database does not exist") else: print(err) else: cnx.close() ''' rpool = redis.ConnectionPool(host='localhost', port=6379, db=0) rd = redis.Redis(connection_pool=rpool) ### set up logging logger = logging.getLogger('datamodel') logger.setLevel(logging.DEBUG) # fh fh = logging.FileHandler('datamodel.log') fh.setLevel(logging.DEBUG) # ch ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(message)s') fh.setFormatter(formatter) ch.setFormatter(formatter) logger.addHandler(fh) logger.addHandler(ch) # sql tables DB_NAME = 'iotbi' TABLES = {} TABLES['devicepinstats'] = ( "CREATE TABLE `devicepinstats` (" " `rec_no` int(11) NOT NULL AUTO_INCREMENT," " `date` date NOT NULL," " `devicepin` bigint NOT NULL," " `count` smallint NOT NULL," " PRIMARY KEY (`rec_no`)" ") ) ENGINE=InnoDB") # class DBPinstats: def __init__(self): # add sql conn # self.db = sqldb self.sql_init() self.sql_init_table() self.sql_close() # recon before use cnx/cursor def save_devicecount(self, devicepin, count): # # date : date # devicepin: hexstr # count: int script = ( "INSERT INTO devicepinstats " "(date, devicepin, count) " "VALUES (%s, %s, %s)") d = datetime.datetime.now().date() args = (d, int(devicepin, 16), count) try: o = self.sql_execute(script, args) return o def get_history(self, devicepin): # one device pin/4 a tuple # return days with counts query = ("SELECT date, devicepin, count FROM devicepinstats " "WHERE devicepin = %s AND date BETWEEN %s AND %s") d_end = datetime.datetime.now().date() d_start = datetime.datetime.now().date() - datetime.timedelta(days=7) args = (int(devicepin, 16), d_start, d_end) try: o = self.sql_execute(query, args) return o def sql_init(self): def create_database(cursor): try: cursor.execute( "CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'".format(DB_NAME) ) except mysql.connector.Error as err: print("failed create db") exit(1) try: cnx = mysql.connector.connect(user='root', # database='iotbi', password='<PASSWORD>', host='localhost' ) cursor = cnx.cursor() except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: logger.error('db access denied') # return logger.error('db conn error') return # execute command try: cursor.execute("USE {}".format(DB_NAME)) except mysql.connector.Error as err: print("Database {} does not exists.".format(DB_NAME)) if err.errno == errorcode.ER_BAD_DB_ERROR: create_database(cursor) print("Database {} created successfully.".format(DB_NAME)) cnx.database = DB_NAME else: print(err) exit(1) # else: self.cnx = cnx # self.sql_init_table() def sql_init_table(self): if self.cnx is None: return cursor = self.cnx.cursor() for table in TABLES: tablescript = TABLES[table] try: cursor.execute(tablescript) except mysql.connector.Error as err: if err.errno == errorcode.ER_TABLE_EXISTS_ERROR: logger.info('already exist table') else: logger.error(err.msg) else: logger.info('table OK') cursor.close() def sql_conn(self): if self.cnx is None: cnx = mysql.connector.connect(user='root', database='iotbi', password='<PASSWORD>', host='localhost' ) self.cnx = cnx def sql_close(self): if self.cnx is not None: self.cnx.close() def sql_execute(self, command, values): # if self.cnx is None: return else: cursor = self.cnx.cursor() try: cursor.execute(command, values) except mysql.connector.Error as err: logger.error(err.msg) cursor.close() return False else: cursor.close() return True sdb = DBPinstats() # sdb.sql_init() def dayswap(): # retrieve data from redis # then save it to sql sdb.sql_conn() while rd.llen('actionlist') > 0: el = rd.lpop('actionlist').decode('ascii') # loop 4 pins for i in range(4): k = '%s%s' % (el, i) counts = rd.get(k) rd.delete(k) # save it to sql #TODO o = sdb.save_devicecount(k, counts) sdb.sql_close() class WorkerThread(threading.Thread): """ worker thread """ def __init__(self, date): super(WorkerThread, self).__init__() self.date = date def run(self): while not self.stoprequest.isSet(): try: if datetime.datetime.now().date() - self.date >= datetime.timedelta(days=1): dayswap() else: time.sleep(3600) if __name__ == "__main__": if rd.get('date') is None: d = datetime.datetime.now().date() rd.set('date', d) else: ds = rd.get('date').decode('ascii') dsl = ds.split('-') d = datetime.datetime(dsl[0], dsl[1], dsl[2]) t = WorkerThread(date=d) t.start()
StarcoderdataPython
161061
<reponame>eas342/dust_mie from dust_mie import calc_mie import matplotlib.pyplot as plt median_r = 1.0 s = 0.5 r, dr = calc_mie.get_r_to_evaluate(r=median_r,s=s) n = calc_mie.lognorm(r,s=s,med=median_r) plt.plot(r,n) plt.xlabel('Particle Radius ($\mu$m)') plt.ylabel('Number') plt.savefig('radius_distribution.png')
StarcoderdataPython
170833
class AdvancedBoxScore: def __init__(self, seconds_played, offensive_rating, defensive_rating, teammate_assist_percentage, assist_to_turnover_ratio, assists_per_100_possessions, offensive_rebound_percentage, defensive_rebound_percentage, turnovers_per_100_possessions, effective_field_goal_percentage, true_shooting_percentage): self.seconds_played = seconds_played self.offensive_rating = offensive_rating self.defensive_rating = defensive_rating self.teammate_assist_percentage = teammate_assist_percentage self.assist_to_turnover_ratio = assist_to_turnover_ratio self.assists_per_100_possessions = assists_per_100_possessions self.offensive_rebound_percentage = offensive_rebound_percentage self.defensive_rebound_percentage = defensive_rebound_percentage self.turnovers_per_100_possessions = turnovers_per_100_possessions self.effective_field_goal_percentage = effective_field_goal_percentage self.true_shooting_percentage = true_shooting_percentage def __unicode__(self): return '{0} | {1}'.format(self.get_additional_unicode(), self.get_base_unicode) def get_base_unicode(self): return 'seconds played: {seconds_played} | offensive rating: {offensive_rating} | ' \ 'defensive rating: {defensive_rating} | teammate assist percentage: {teammate_assist_percentage} |' \ 'assist to turnover ratio: {assist_to_turnover_ratio} | ' \ 'assists per 100 possessions: {assists_per_100_possessions} | ' \ 'offensive rebound percentage: {offensive_rebound_percentage} |' \ 'defensive rebound percentage: {defensive_rebound_percentage} |' \ 'turnovers per 100 possessions: {turnovers_per_100_possessions} |' \ 'effective field goal percentage: {effective_field_goal_percentage} |' \ 'true shooting percentage: {true_shooting_percentage}'\ .format(seconds_played=self.seconds_played, offensive_rating=self.offensive_rating, defensive_rating=self.defensive_rating, teammate_assist_percentage=self.teammate_assist_percentage, assist_to_turnover_ratio=self.assist_to_turnover_ratio, assists_per_100_possessions=self.assists_per_100_possessions, offensive_rebound_percentage=self.offensive_rebound_percentage, defensive_rebound_percentage=self.defensive_rebound_percentage, turnovers_per_100_possessions=self.turnovers_per_100_possessions, effective_field_goal_percentage=self.effective_field_goal_percentage, true_shooting_percentage=self.true_shooting_percentage) def get_additional_unicode(self): return NotImplementedError('Should be implemented in concrete class') class AdvancedPlayerBoxScore(AdvancedBoxScore): def __init__(self, player, seconds_played, offensive_rating, defensive_rating, teammate_assist_percentage, assist_to_turnover_ratio, assists_per_100_possessions, offensive_rebound_percentage, defensive_rebound_percentage, turnovers_per_100_possessions, effective_field_goal_percentage, true_shooting_percentage, usage_percentage): self.player = player self.usage_percentage = usage_percentage AdvancedBoxScore.__init__(self, seconds_played=seconds_played, offensive_rating=offensive_rating, defensive_rating=defensive_rating, teammate_assist_percentage=teammate_assist_percentage, assist_to_turnover_ratio=assist_to_turnover_ratio, assists_per_100_possessions=assists_per_100_possessions, offensive_rebound_percentage=offensive_rebound_percentage, defensive_rebound_percentage=defensive_rebound_percentage, turnovers_per_100_possessions=turnovers_per_100_possessions, effective_field_goal_percentage=effective_field_goal_percentage, true_shooting_percentage=true_shooting_percentage) def get_additional_unicode(self): return 'player: {player} | usage percentage: {usage_percentage}'.format(player=self.player, usage_percentage=self.usage_percentage) class AdvancedTeamBoxScore(AdvancedBoxScore): def __init__(self, team, seconds_played, offensive_rating, defensive_rating, teammate_assist_percentage, assist_to_turnover_ratio, assists_per_100_possessions, offensive_rebound_percentage, defensive_rebound_percentage, turnovers_per_100_possessions, effective_field_goal_percentage, true_shooting_percentage): self.team = team AdvancedBoxScore.__init__(self, seconds_played=seconds_played, offensive_rating=offensive_rating, defensive_rating=defensive_rating, teammate_assist_percentage=teammate_assist_percentage, assist_to_turnover_ratio=assist_to_turnover_ratio, assists_per_100_possessions=assists_per_100_possessions, offensive_rebound_percentage=offensive_rebound_percentage, defensive_rebound_percentage=defensive_rebound_percentage, turnovers_per_100_possessions=turnovers_per_100_possessions, effective_field_goal_percentage=effective_field_goal_percentage, true_shooting_percentage=true_shooting_percentage) def get_additional_unicode(self): return 'team: {team}'.format(team=self.team) class TraditionalBoxScore: def __init__(self, seconds_played, field_goals_made, field_goals_attempted, three_point_field_goals_made, three_point_field_goals_attempted, free_throws_made, free_throws_attempted, offensive_rebounds, defensive_rebounds, assists, steals, blocks, turnovers, personal_fouls): self.seconds_played = seconds_played self.field_goals_made = field_goals_made self.field_goals_attempted = field_goals_attempted self.three_point_field_goals_made = three_point_field_goals_made self.three_point_field_goals_attempted = three_point_field_goals_attempted self.free_throws_made = free_throws_made self.free_throws_attempted = free_throws_attempted self.offensive_rebounds = offensive_rebounds self.defensive_rebounds = defensive_rebounds self.assists = assists self.steals = steals self.blocks = blocks self.turnovers = turnovers self.personal_fouls = personal_fouls def __unicode__(self): return '{0} | {1}'.format(self.get_additional_unicode(), self.get_base_unicode()) def get_base_unicode(self): return 'seconds played: {seconds_played} | field goals made: {field_goals_made} |' \ 'field goals attempted: {field_goals_attempted} | ' \ 'three point field goals made: {three_point_field_goals_made} | ' \ 'three point field goals attempted: {three_point_field_goals_attempted} | ' \ 'free throws made: {free_throws_made} |' 'free throws attempted: {free_throws_attempted} | ' \ 'offensive rebounds: {offensive rebounds} |' 'defensive rebounds: {defensive rebounds} | ' \ 'assists: {assists} | steals: {steals} | blocks: {blocks} | turnovers: {turnovers} | ' \ 'personal fouls: {personal_fouls}'.format(seconds_played=self.seconds_played, field_goals_made=self.field_goals_made, field_goals_attempted=self.field_goals_attempted, three_point_field_goals_made=self.three_point_field_goals_made, three_point_field_goals_attempted=self.three_point_field_goals_attempted, free_throws_made=self.free_throws_made, free_throws_attempted=self.free_throws_attempted, offensive_rebounds=self.offensive_rebounds, defensive_rebounds=self.defensive_rebounds, assists=self.assists, steals=self.steals, blocks=self.blocks, turnovers=self.turnovers, personal_fouls=self.personal_fouls) def get_additional_unicode(self): raise NotImplementedError('Implement in concrete classes') class TraditionalPlayerBoxScore(TraditionalBoxScore): def __init__(self, player, seconds_played, field_goals_made, field_goals_attempted, three_point_field_goals_made, three_point_field_goals_attempted, free_throws_made, free_throws_attempted, offensive_rebounds, defensive_rebounds, assists, steals, blocks, turnovers, personal_fouls, plus_minus): self.player = player self.plus_minus = plus_minus TraditionalBoxScore.__init__(self, seconds_played=seconds_played, field_goals_made=field_goals_made, field_goals_attempted=field_goals_attempted, three_point_field_goals_made=three_point_field_goals_made, three_point_field_goals_attempted=three_point_field_goals_attempted, free_throws_made=free_throws_made, free_throws_attempted=free_throws_attempted, offensive_rebounds=offensive_rebounds, defensive_rebounds=defensive_rebounds, assists=assists, steals=steals, blocks=blocks, turnovers=turnovers, personal_fouls=personal_fouls) def get_additional_unicode(self): return 'player: {player} | plus minus: {plus_minus}'.format(player=self.player, plus_minus=self.plus_minus) class TraditionalTeamBoxScore(TraditionalBoxScore): def __init__(self, team, seconds_played, field_goals_made, field_goals_attempted, free_throws_attempted, three_point_field_goals_made, three_point_field_goals_attempted, free_throws_made, offensive_rebounds, defensive_rebounds, assists, steals, blocks, turnovers, personal_fouls): self.team = team TraditionalBoxScore.__init__(self, seconds_played=seconds_played, field_goals_made=field_goals_made, field_goals_attempted=field_goals_attempted, three_point_field_goals_made=three_point_field_goals_made, three_point_field_goals_attempted=three_point_field_goals_attempted, free_throws_made=free_throws_made, free_throws_attempted=free_throws_attempted, offensive_rebounds=offensive_rebounds, defensive_rebounds=defensive_rebounds, assists=assists, steals=steals, blocks=blocks, turnovers=turnovers, personal_fouls=personal_fouls) def get_additional_unicode(self): return 'team: {team}'.format(self.team) class GameBoxScore: def __init__(self, game_id, player_box_scores, team_box_scores): self.game_id = game_id self.player_box_scores = player_box_scores self.team_box_scores = team_box_scores
StarcoderdataPython
139867
<reponame>IonaBrenac/BiblioAnalysis __all__ = ['ALIAS_UK', 'CHANGE', 'COUNTRIES', 'COUNTRIES_GPS', 'DIC_CHANGE_CHAR', 'IN_TO_MM', 'USA_STATES',] # Countries normalized names and GPS coordinates COUNTRY = ''' United States,Afghanistan,Albania,Algeria,American Samoa,Andorra,Angola, Anguilla,Antarctica,Antigua And Barbuda,Argentina,Armenia,Aruba,Australia, Austria,Azerbaijan,Bahamas,Bahrain,Bangladesh,Barbados,Belarus,Belgium, Belize,Benin,Bermuda,Bhutan,Bolivia,Bosnia And Herzegowina,Botswana,Bouvet Island, Brazil,Brunei Darussalam,Bulgaria,Burkina Faso,Burundi,Cambodia,Cameroon,Canada, Cape Verde,Cayman Islands,Central African Rep,Chad,Chile,China,Christmas Island, Cocos Islands,Colombia,Comoros,Congo,Cook Islands,Costa Rica,Cote D`ivoire,Croatia, Cuba,Cyprus,Czech Republic,Denmark,Djibouti,Dominica,Dominican Republic,East Timor, Ecuador,Egypt,El Salvador,Equatorial Guinea,Eritrea,Estonia,Ethiopia,Falkland Islands (Malvinas), Faroe Islands,Fiji,Finland,France,French Guiana,French Polynesia,French S. Territories, Gabon,Gambia,Georgia,Germany,Ghana,Gibraltar,Greece,Greenland,Grenada,Guadeloupe,Guam, Guatemala,Guinea,Guinea-bissau,Guyana,Haiti,Honduras,Hong Kong,Hungary,Iceland,India, Indonesia,Iran,Iraq,Ireland,Israel,Italy,Jamaica,Japan,Jordan,Kazakhstan,Kenya,Kiribati, North Korea,South Korea,Kuwait,Kyrgyzstan,Laos,Latvia,Lebanon,Lesotho,Liberia,Libya, Liechtenstein,Lithuania,Luxembourg,Macau,Macedonia,Madagascar,Malawi,Malaysia,Maldives, Mali,Malta,Marshall Islands,Martinique,Mauritania,Mauritius,Mayotte,Mexico,Micronesia, Moldova,Monaco,Mongolia,Montserrat,Morocco,Mozambique,Myanmar,Namibia,Nauru,Nepal,Netherlands, Netherlands Antilles,New Caledonia,New Zealand,Nicaragua,Niger,Nigeria,Niue,Norfolk Island, Northern Mariana Islands,Norway,Oman,Pakistan,Palau,Panama,Papua New Guinea,Paraguay,Peru, Philippines,Pitcairn,Poland,Portugal,Puerto Rico,Qatar,Reunion,Romania,Russian Federation, Rwanda,Saint Kitts And Nevis,Saint Lucia,St Vincent/Grenadines,Samoa,San Marino,Sao Tome, Saudi Arabia,Senegal,Seychelles,Sierra Leone,Singapore,Slovakia,Slovenia,Solomon Islands, Somalia,South Africa,Spain,Sri Lanka,St. Helena,St.Pierre,Sudan,Suriname,Swaziland,Sweden, Switzerland,Syrian Arab Republic,Taiwan,Tajikistan,Tanzania,Thailand,Togo,Tokelau,Tonga, Trinidad And Tobago,Tunisia,Turkey,Turkmenistan,Tuvalu,Uganda,Ukraine,United Arab Emirates, United Kingdom,Uruguay,Uzbekistan,Vanuatu,Vatican City State,Venezuela,Viet Nam,Virgin Islands (British), Virgin Islands (U.S.),Western Sahara,Yemen,Yugoslavia,Zaire,Zambia,Zimbabwe ''' COUNTRIES = [x.strip() for x in COUNTRY.split(',')] USA_STATES = '''AL,AK,AZ,AR,CA,CO,CT,DE,FL,GA,HI,ID,IL,IN,IA,KS,KY,LA,ME,MD,MA,MI,MN,MS,MO,MT, NE,NV,NH,NJ,NM,NY,NC,ND,OH,OK,OR,PA,RI,SC,SD,TN,TX,UT,VT,VA,WA,WV,WI,WY''' USA_STATES = [x.strip() for x in USA_STATES.split(',')] ALIAS_UK = '''England,Wales,North Ireland,Scotland''' ALIAS_UK = [x.strip() for x in ALIAS_UK.split(',')] COUNTRIES_GPS_STRING = '''Aruba:12.5,-69.97;Afghanistan:33,65;Angola:-12.5,18.5;Anguilla:18.25,-63.17; Albania:41,20;Andorra:42.5,1.5;United Arab Emirates:24,54;Argentina:-34,-64;Armenia:40,45; American Samoa:-14.33,-170;Antarctica:-90,0;French Southern and Antarctic Lands:-49.25,69.167; Antigua And Barbuda:17.05,-61.8;Australia:-27,133;Austria:47.3,13.3;Azerbaijan:40.5,47.5; Burundi:-3.5,30;Belgium:50.83,4;Benin:9.5,2.25;Burkina Faso:13,-2;Bangladesh:24,90;Bulgaria:43,25; Bahrain:26,50.55;Bahamas:24.25,-76;Bosnia And Herzegowina:44,18;Saint Barthélemy:18.5,-63.417; Belarus:53,28;Belize:17.25,-88.75;Bermuda:32.3,-64.75;Bolivia:-17,-65;Brazil:-10,-55; Barbados:13.16,-59.53;Brunei Darussalam:4.5,114.67;Bhutan:27.5,90.5;Bouvet Island:-54.43,3.4; Botswana:-22,24;Central African Rep:7,21;Canada:60,-95;Switzerland:47,8;Chile:-30,-71;China:35,105; IvoryCoast:8,-5;Cameroon:6,12;Congo:0,25;Republic of theCongo:-1,15;Cook Islands:-21.23,-159.77; Colombia:4,-72;Comoros:-12.17,44.25;Cape Verde:16,-24;Costa Rica:10,-84;Cuba:21.5,-80; Curacao:12.116667,-68.933333;Christmas Island:-10.5,105.66;Cayman Islands:19.5,-80.5;Cyprus:35,33; Czech Republic:49.75,15.5;Germany:51,9;Djibouti:11.5,43;Dominica:15.416,-61.33;Denmark:56,10; Dominican Republic:19,-70.7;Algeria:28,3;Ecuador:-2,-77.5;Egypt:27,30;Eritrea:15,39;Western Sahara:24.5,-13; Spain:40,-4;Estonia:59,26;Ethiopia:8,38;Finland:64,26;Fiji:-18,175;Falkland Islands:-51.75,-59; France:46,2;Faroe Islands:62,-7;Micronesia:6.917,158.25;Gabon:-1,11.75;United Kingdom:54,-2; Georgia:42,43.5;Guernsey:49.46,-2.583;Ghana:8,-2;Gibraltar:36.13,-5.35;Guinea:11,-10; Guadeloupe:16.25,-61.583;Gambia:13.47,-16.57;Guinea-bissau:12,-15;Equatorial Guinea:2,10;Greece:39,22; Grenada:12.117,-61.67;Greenland:72,-40;Guatemala:15.5,-90.25;French Guiana:4,-53;Guam:13.47,144.783; Guyana:5,-59;Hong Kong:22.267,114.188;Honduras:15,-86.5;Croatia:45.17,15.5;Haiti:19,-72.417;Hungary:47,20; Indonesia:-5,120;Isle of Man:54.25,-4.5;India:20,77;British Indian Ocean Territory:-6,71.5;Ireland:53,-8; Iran:32,53;Iraq:33,44;Iceland:65,-18;Israel:31.47,35.13;Italy:42.83,12.83;Jamaica:18.25,-77.5; Jersey:49.25,-2.17;Jordan:31,36;Japan:36,138;Kazakhstan:48,68;Kenya:1,38;Kyrgyzstan:41,75;Cambodia:13,105; Kiribati:1.417,173;Saint Kitts And Nevis:17.33,-62.75;South Korea:37,127.5;Kosovo:42.67,21.17;Kuwait:29.5,45.75; Laos:18,105;Lebanon:33.83,35.83;Liberia:6.5,-9.5;Libya:25,17;Saint Lucia:13.883,-60.97;Liechtenstein:47.27,9.53; Sri Lanka:7,81;Lesotho:-29.5,28.5;Lithuania:56,24;Luxembourg:49.75,6.16;Latvia:57,25;Macau:22.17,113.55; Saint Martin:18.083,-63.95;Morocco:32,-5;Monaco:43.73,7.4;Moldova:47,29;Madagascar:-20,47;Maldives:3.25,73; Mexico:23,-102;Marshall Islands:9,168;Macedonia:41.83,22;Mali:17,-4;Malta:35.83,14.583;Myanmar:22,98; Montenegro:42.5,19.3;Mongolia:46,105;Northern Mariana Islands:15.2,145.75;Mozambique:-18.25,35;Mauritania:20,-12; Montserrat:16.75,-62.2;Martinique:14.67,-61;Mauritius:-20.283,57.55;Malawi:-13.5,34;Malaysia:2.5,112.5; Mayotte:-12.83,45.17;Namibia:-22,17;New Caledonia:-21.5,165.5;Niger:16,8;Norfolk Island:-29.03,167.95; Nigeria:10,8;Nicaragua:13,-85;Niue:-19.03,-169.87;Netherlands:52.5,5.75;Norway:62,10;Nepal:28,84; Nauru:-0.53,166.917;New Zealand:-41,174;Oman:21,57;Pakistan:30,70;Panama:9,-80;Pitcairn:-25.07,-130.1; Peru:-10,-76;Philippines:13,122;Palau:7.5,134.5;Papua New Guinea:-6,147;Poland:52,20;Puerto Rico:18.25,-66.5; North Korea:40,127;Portugal:39.5,-8;Paraguay:-23,-58;Palestine:31.9,35.2;French Polynesia:-15,-140;Qatar:25.5,51.25; Reunion:-21.15,55.5;Romania:46,25;Russian Federation:60,100;Rwanda:-2,30;Saudi Arabia:25,45;Sudan:15,30;Senegal:14,-14; Singapore:1.36,103.8;SouthGeorgia:-54.5,-37;Svalbard and Jan Mayen:78,20;Solomon Islands:-8,159; Sierra Leone:8.5,-11.5;El Salvador:13.83,-88.916;San Marino:43.76,12.416;Somalia:10,49; SaintPierreandMiquelon:46.83,-56.33;Serbia:44,21;SouthSudan:7,30;Sao Tome:1,7; Suriname:4,-56;Slovakia:48.66,19.5;Slovenia:46.116,14.816;Sweden:62,15;Swaziland:-26.5,31.5; Sint Maarten:18.03,-63.05;Seychelles:-4.583,55.66;Syrian Arab Republic:35,38;TurksandCaicosIslands:21.75,-71.583; Chad:15,19;Togo:8,1.16;Thailand:15,100;Tajikistan:39,71;Tokelau:-9,-172;Turkmenistan:40,60;East Timor:-8.83,125.916; Tonga:-20,-175;Trinidad And Tobago:11,-61;Tunisia:34,9;Turkey:39,35;Tuvalu:-8,178;Taiwan:23.5,121;Tanzania:-6,35; Uganda:1,32;Ukraine:49,32;United States Minor Outlying Islands:19.2911437,166.618332;Uruguay:-33,-56;United States:38,-97; Uzbekistan:41,64;Vatican City State:41.9,12.45;St Vincent/Grenadines:13.25,-61.2;Venezuela:8,-66; Virgin Islands (British):18.431383,-64.62305;Virgin Islands (U.S.):18.35,-64.933333;Viet Nam:16.16,107.83; Vanuatu:-16,167;Wallis and Futuna:-13.3,-176.2;Samoa:-13.583,-172.33;Yemen:15,48;South Africa:-29,24; Zambia:-15,30;Zimbabwe:-20,30''' import re pattern = re.compile(r"^[\n]{0,1}(?P<country>[\w\s\-\(\)\./]+):(?P<long>[\d\.\-]+),(?P<lat>[\d\.\-]+)$",re.M) COUNTRIES_GPS = {} for country in COUNTRIES_GPS_STRING.split(';'): match = pattern.search(country) COUNTRIES_GPS[match.group("country")] = (float(match.group("long")),float(match.group("lat"))) # Character replacements DIC_CHANGE_CHAR = {"Ł":"L", # polish capital to L "ł":"l", # polish l "ı":"i", "‐":"-", # Non-Breaking Hyphen to hyphen-minus "Đ":"D", # D with stroke (Vietamese,South Slavic) to D ".":"", ",":""} CHANGE = str.maketrans(DIC_CHANGE_CHAR) IN_TO_MM = 25.4
StarcoderdataPython
26963
<filename>compiler/extensions/python/runtime/src/zserio/bitfield.py """ The module provides help methods for bit fields calculation. """ from zserio.exception import PythonRuntimeException def getBitFieldLowerBound(length): """ Gets the lower bound of a unsigned bitfield type with given length. :param length: Length of the unsigned bitfield in bits. :returns: The lowest value the unsigned bitfield can hold. :raises PythonRuntimeException: If unsigned bitfield with wrong length has been specified. """ _checkBitFieldLength(length, MAX_UNSIGNED_BITFIELD_BITS) return 0 def getBitFieldUpperBound(length): """ Gets the upper bound of a unsigned bitfield type with given length. :param length: Length of the unsigned bitfield in bits. :returns: The largest value the unsigned bitfield can hold. :raises PythonRuntimeException: If unsigned bitfield with wrong length has been specified. """ _checkBitFieldLength(length, MAX_UNSIGNED_BITFIELD_BITS) return (1 << length) - 1 def getSignedBitFieldLowerBound(length): """ Gets the lower bound of a signed bitfield type with given length. :param length: Length of the signed bitfield in bits. :returns: The lowest value the signed bitfield can hold. :raises PythonRuntimeException: If signed bitfield with wrong length has been specified. """ _checkBitFieldLength(length, MAX_SIGNED_BITFIELD_BITS) return -(1 << (length - 1)) def getSignedBitFieldUpperBound(length): """ Gets the upper bound of a signed bitfield type with given length. :param length: Length of the signed bitfield in bits. :returns: The largest value the signed bitfield can hold. :raises PythonRuntimeException: If signed bitfield with wrong length has been specified. """ _checkBitFieldLength(length, MAX_SIGNED_BITFIELD_BITS) return (1 << (length - 1)) - 1 def _checkBitFieldLength(length, maxBitFieldLength): if length <= 0 or length > maxBitFieldLength: raise PythonRuntimeException("Asking for bound of bitfield with invalid length %d!" % length) MAX_SIGNED_BITFIELD_BITS = 64 MAX_UNSIGNED_BITFIELD_BITS = 63
StarcoderdataPython
98863
<filename>alg1/batch_tests/BatchTest-batched.py import subprocess if __name__ == '__main__': commbatch = "python ../StressTest.py --bw_factor=1.0 --lat_factor=1.0 --res_factor=1.0 --vnf_sharing=0.0 --vnf_sharing_same_sg=0.0 --shareable_sg_count=4 --batch_length=4 --request_seed=" commnonbatch = "python ../StressTest.py --bw_factor=1.0 --lat_factor=1.0 --res_factor=1.0 --vnf_sharing=0.0 --vnf_sharing_same_sg=0.0 --shareable_sg_count=4 --batch_length=1 --request_seed=" for i in xrange(0,1500): batched = commbatch + str(i) + " 2>> batched.out" with open("batched.out", "a") as batch: batch.write("\nCommand seed: %s\n"%i) subprocess.call(batched, shell=True) with open("batched.out", "a") as batch: batch.write("\n============================================\n")
StarcoderdataPython
3216701
#!/usr/bin/env python3 #**************************************************************************************************************************************************** # Copyright (c) 2016 Freescale Semiconductor, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the Freescale Semiconductor, Inc. nor the names of # its contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # #**************************************************************************************************************************************************** from typing import List import os import os.path import xml.etree.ElementTree as ET from FslBuildGen import IOUtil from FslBuildGen.BasicConfig import BasicConfig from FslBuildGen.DataTypes import PackageLanguage from FslBuildGen.Exceptions import FileNotFoundException from FslBuildGen.Xml.Exceptions import XmlException from FslBuildGen.Xml.Exceptions import XmlInvalidRootElement from FslBuildGen.Xml.XmlBase import XmlBase class XmlNewVSProjectTemplate(XmlBase): def __init__(self, basicConfig: BasicConfig, xmlElement: ET.Element) -> None: super(XmlNewVSProjectTemplate, self).__init__(basicConfig, xmlElement) self.Name = XmlBase._ReadAttrib(self, xmlElement, 'Name') self.Description = XmlBase._ReadAttrib(self, xmlElement, 'Description') packageLanguage = XmlBase._ReadAttrib(self, xmlElement, 'PackageLanguage') self.PackageLanguage = PackageLanguage.FromString(packageLanguage) self.ProjectExtension = XmlBase._ReadAttrib(self, xmlElement, 'ProjectExtension', 'vcxproj') class XmlNewVSProjectTemplateFile(XmlBase): def __init__(self, basicConfig: BasicConfig, filename: str) -> None: if not os.path.isfile(filename): raise FileNotFoundException("Could not locate config file %s", filename) tree = ET.parse(filename) elem = tree.getroot() if elem.tag != 'FslBuildNewVSProjectTemplate': raise XmlInvalidRootElement("The file did not contain the expected root tag 'FslBuildNewVSProjectTemplate'") super(XmlNewVSProjectTemplateFile, self).__init__(basicConfig, elem) strVersion = XmlBase._ReadAttrib(self, elem, 'Version') if strVersion != "1": raise Exception("Unsupported version") xmlTemplate = self.__LoadTemplateConfiguration(basicConfig, elem) if len(xmlTemplate) != 1: raise XmlException("The file did not contain exactly one Template element") directoryName = IOUtil.GetDirectoryName(filename) self.Name = IOUtil.GetFileName(directoryName) self.Id = self.Name.lower() self.Version = 1 self.Template = xmlTemplate[0] self.Path = IOUtil.GetDirectoryName(filename) self.Prefix = ("%s_" % (self.Name)).upper() if self.Name != self.Template.Name: raise Exception("The parent template directory name '{0}' does not match the template name '{1}' {2}".format(self.Name, self.Template.Name, self.Path)) def __LoadTemplateConfiguration(self, basicConfig: BasicConfig, element: ET.Element) -> List[XmlNewVSProjectTemplate]: res = [] foundElements = element.findall("Template") for foundElement in foundElements: res.append(XmlNewVSProjectTemplate(basicConfig, foundElement)) return res
StarcoderdataPython
1785499
<filename>cache_purge_hooks/backends/varnishbackend.py import logging import subprocess from django.conf import settings logger = logging.getLogger('django.cache_purge_hooks') VARNISHADM_HOST = getattr(settings, 'VARNISHADM_HOST', 'localhost') VARNISHADM_PORT = getattr(settings, 'VARNISHADM_PORT', 6082) VARNISHADM_SECRET = getattr(settings, 'VARNISHADM_SECRET', '/etc/varnish/secret') VARNISHADM_SITE_DOMAIN = getattr(settings, 'VARNISHADM_SITE_DOMAIN', '.*') VARNISHADM_BIN = getattr(settings, 'VARNISHADM_ADM_BIN', '/usr/bin/varnishadm') class VarnishManager(object): def purge(self, url): command = 'ban req.http.host ~ "{host}" && req.url ~ "{url}"'.format( host=VARNISHADM_SITE_DOMAIN.encode('ascii'), url=url.encode('ascii'), ) self.send_command(command) def purge_all(self): self.purge('.*') def send_command(self, command): args = [VARNISHADM_BIN, '-S', VARNISHADM_SECRET, '-T', VARNISHADM_HOST+':'+str(VARNISHADM_PORT), command] try: subprocess.check_call(args) except subprocess.CalledProcessError as error: logger.error('Command "{0}" returned {1}'.format(' '.join(args), error.returncode)) return False else: logger.debug('Command "{0}" executed successfully'.format(' '.join(args))) return True
StarcoderdataPython
165392
<reponame>matthaeusheer/uncertify import logging import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import matplotlib from uncertify.visualization.plotting import set_matplotlib_rc from uncertify.common import DATA_DIR_PATH from typing import List LABEL_MAP = { 'rec_err': '$\ell_{1}$', 'kl_div': '$D_{KL}$', 'elbo': '$\mathcal{L}$', 'entropy': '$H_{\ell_{1}}$', 'entropy_rec_err_kl_div_elbo': '$H_{\ell_{1}}, \ell_{1}, D_{KL}, \mathcal{L}' } LOG = logging.getLogger(__name__) def do_pair_plot_statistics(statistics_dict: dict, dose_statistics: List[str], dataset_name: str, hue: str = 'is_lesional') -> sns.PairGrid: """ Arguments --------- statistics_dict: dictionary as returned by aggregate_slice_wise_statistics dose_statistics: statistics to use in the plot dataset_name: name of the dataset used for file naming hue: which column in the dataframe to use as hue """ sns.set_style({"xtick.direction": "in", "ytick.direction": "in", "xtick.major.size": 10, "ytick.major.size": 10, "xtick.minor.size": 7, "ytick.minor.size": 7}) stat_df = pd.DataFrame(statistics_dict) set_matplotlib_rc() matplotlib.rcParams.update({'font.size': 18, 'legend.fontsize': 16}) grid = sns.pairplot(stat_df, vars=dose_statistics, corner=True, plot_kws={"s": 10}, palette='viridis', hue=hue, diag_kws={'shade': False}, diag_kind='kde') grid.fig.set_size_inches(7, 7) grid.map_lower(sns.kdeplot, shade=True, thresh=0.05, alpha=0.7) if hue is not None: grid._legend.set_title('') new_labels = ['healthy', 'lesional'] for t, l in zip(grid._legend.texts, new_labels): t.set_text(l) # Set nice x and y labels for ax in grid.axes.flatten(): if ax is not None: ax.xaxis.set_major_locator(plt.MaxNLocator(3)) old_xlabel = ax.get_xlabel() old_ylabel = ax.get_ylabel() if old_xlabel in LABEL_MAP: ax.set_xlabel(LABEL_MAP[old_xlabel]) if old_ylabel in LABEL_MAP: ax.set_ylabel(LABEL_MAP[old_ylabel]) grid.tight_layout() grid.savefig(DATA_DIR_PATH / 'plots' / f'dose_pairplot_{dataset_name}.png') return grid
StarcoderdataPython
4813416
<filename>backend/test/test_unit/test_communication_utils.py from unittest.mock import patch from django.test import TestCase # Import module from backend.communication_utils import * class OSAware(TestCase): def setUp(self) -> None: self.data_linux = {'id': 42, 'file_path': '/home/user/test', 'folder': {'path': '/home/user/test_folder'}, 'clips': ['/home/user/test_folder/test_clip1.tvf', '/home/user/test_folder/test_clip2.tvf'], 'folders': [{'file_path': '/home/user/test/1'}, {'file_path': '/home/user/test/2'}]} self.data_windows = {'id': 42, 'file_path': '\\home\\user\\test', 'folder': {'path': '\\home\\user\\test_folder'}, 'clips': ['\\home\\user\\test_folder\\test_clip1.tvf', '\\home\\user\\test_folder\\test_clip2.tvf'], 'folders': [{'file_path': '\\home\\user\\test\\1'}, {'file_path': '\\home\\user\\test\\2'}]} @patch('backend.communication_utils.os') def test_linux(self, mock_os): mock_os.name = 'posix' mock_os.path.sep = '/' self.assertEqual(os_aware(self.data_linux), self.data_linux) self.assertEqual(os_aware(self.data_windows), self.data_linux) @patch('backend.communication_utils.os') def test_windows(self, mock_os): mock_os.name = 'nt' mock_os.path.sep = '\\' self.assertEqual(os_aware(self.data_linux), self.data_windows) self.assertEqual(os_aware(self.data_windows), self.data_windows)
StarcoderdataPython
115935
<gh_stars>0 N = int(input()) ans = 1e12 # 約数を求める。N**.5までで十分 for n in range(1, int(N ** 0.5) + 1): if N % n == 0: ans = min(ans, n + N // n - 2) print(ans)
StarcoderdataPython