id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
/pulumi_aws-6.1.0a1693529760.tar.gz/pulumi_aws-6.1.0a1693529760/pulumi_aws/ec2transitgateway/route_table_propagation.py
import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['RouteTablePropagationArgs', 'RouteTablePropagation'] @pulumi.input_type class RouteTablePropagationArgs: def __init__(__self__, *, transit_gateway_attachment_id: pulumi.Input[str], transit_gateway_route_table_id: pulumi.Input[str]): """ The set of arguments for constructing a RouteTablePropagation resource. :param pulumi.Input[str] transit_gateway_attachment_id: Identifier of EC2 Transit Gateway Attachment. :param pulumi.Input[str] transit_gateway_route_table_id: Identifier of EC2 Transit Gateway Route Table. """ pulumi.set(__self__, "transit_gateway_attachment_id", transit_gateway_attachment_id) pulumi.set(__self__, "transit_gateway_route_table_id", transit_gateway_route_table_id) @property @pulumi.getter(name="transitGatewayAttachmentId") def transit_gateway_attachment_id(self) -> pulumi.Input[str]: """ Identifier of EC2 Transit Gateway Attachment. """ return pulumi.get(self, "transit_gateway_attachment_id") @transit_gateway_attachment_id.setter def transit_gateway_attachment_id(self, value: pulumi.Input[str]): pulumi.set(self, "transit_gateway_attachment_id", value) @property @pulumi.getter(name="transitGatewayRouteTableId") def transit_gateway_route_table_id(self) -> pulumi.Input[str]: """ Identifier of EC2 Transit Gateway Route Table. """ return pulumi.get(self, "transit_gateway_route_table_id") @transit_gateway_route_table_id.setter def transit_gateway_route_table_id(self, value: pulumi.Input[str]): pulumi.set(self, "transit_gateway_route_table_id", value) @pulumi.input_type class _RouteTablePropagationState: def __init__(__self__, *, resource_id: Optional[pulumi.Input[str]] = None, resource_type: Optional[pulumi.Input[str]] = None, transit_gateway_attachment_id: Optional[pulumi.Input[str]] = None, transit_gateway_route_table_id: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering RouteTablePropagation resources. :param pulumi.Input[str] resource_id: Identifier of the resource :param pulumi.Input[str] resource_type: Type of the resource :param pulumi.Input[str] transit_gateway_attachment_id: Identifier of EC2 Transit Gateway Attachment. :param pulumi.Input[str] transit_gateway_route_table_id: Identifier of EC2 Transit Gateway Route Table. """ if resource_id is not None: pulumi.set(__self__, "resource_id", resource_id) if resource_type is not None: pulumi.set(__self__, "resource_type", resource_type) if transit_gateway_attachment_id is not None: pulumi.set(__self__, "transit_gateway_attachment_id", transit_gateway_attachment_id) if transit_gateway_route_table_id is not None: pulumi.set(__self__, "transit_gateway_route_table_id", transit_gateway_route_table_id) @property @pulumi.getter(name="resourceId") def resource_id(self) -> Optional[pulumi.Input[str]]: """ Identifier of the resource """ return pulumi.get(self, "resource_id") @resource_id.setter def resource_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_id", value) @property @pulumi.getter(name="resourceType") def resource_type(self) -> Optional[pulumi.Input[str]]: """ Type of the resource """ return pulumi.get(self, "resource_type") @resource_type.setter def resource_type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_type", value) @property @pulumi.getter(name="transitGatewayAttachmentId") def transit_gateway_attachment_id(self) -> Optional[pulumi.Input[str]]: """ Identifier of EC2 Transit Gateway Attachment. """ return pulumi.get(self, "transit_gateway_attachment_id") @transit_gateway_attachment_id.setter def transit_gateway_attachment_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "transit_gateway_attachment_id", value) @property @pulumi.getter(name="transitGatewayRouteTableId") def transit_gateway_route_table_id(self) -> Optional[pulumi.Input[str]]: """ Identifier of EC2 Transit Gateway Route Table. """ return pulumi.get(self, "transit_gateway_route_table_id") @transit_gateway_route_table_id.setter def transit_gateway_route_table_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "transit_gateway_route_table_id", value) class RouteTablePropagation(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, transit_gateway_attachment_id: Optional[pulumi.Input[str]] = None, transit_gateway_route_table_id: Optional[pulumi.Input[str]] = None, __props__=None): """ Manages an EC2 Transit Gateway Route Table propagation. ## Example Usage ```python import pulumi import pulumi_aws as aws example = aws.ec2transitgateway.RouteTablePropagation("example", transit_gateway_attachment_id=aws_ec2_transit_gateway_vpc_attachment["example"]["id"], transit_gateway_route_table_id=aws_ec2_transit_gateway_route_table["example"]["id"]) ``` ## Import Using `pulumi import`, import `aws_ec2_transit_gateway_route_table_propagation` using the EC2 Transit Gateway Route Table identifier, an underscore, and the EC2 Transit Gateway Attachment identifier. For example: ```sh $ pulumi import aws:ec2transitgateway/routeTablePropagation:RouteTablePropagation example tgw-rtb-12345678_tgw-attach-87654321 ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] transit_gateway_attachment_id: Identifier of EC2 Transit Gateway Attachment. :param pulumi.Input[str] transit_gateway_route_table_id: Identifier of EC2 Transit Gateway Route Table. """ ... @overload def __init__(__self__, resource_name: str, args: RouteTablePropagationArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Manages an EC2 Transit Gateway Route Table propagation. ## Example Usage ```python import pulumi import pulumi_aws as aws example = aws.ec2transitgateway.RouteTablePropagation("example", transit_gateway_attachment_id=aws_ec2_transit_gateway_vpc_attachment["example"]["id"], transit_gateway_route_table_id=aws_ec2_transit_gateway_route_table["example"]["id"]) ``` ## Import Using `pulumi import`, import `aws_ec2_transit_gateway_route_table_propagation` using the EC2 Transit Gateway Route Table identifier, an underscore, and the EC2 Transit Gateway Attachment identifier. For example: ```sh $ pulumi import aws:ec2transitgateway/routeTablePropagation:RouteTablePropagation example tgw-rtb-12345678_tgw-attach-87654321 ``` :param str resource_name: The name of the resource. :param RouteTablePropagationArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(RouteTablePropagationArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, transit_gateway_attachment_id: Optional[pulumi.Input[str]] = None, transit_gateway_route_table_id: Optional[pulumi.Input[str]] = None, __props__=None): opts = pulumi.ResourceOptions.merge(_utilities.get_resource_opts_defaults(), opts) if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = RouteTablePropagationArgs.__new__(RouteTablePropagationArgs) if transit_gateway_attachment_id is None and not opts.urn: raise TypeError("Missing required property 'transit_gateway_attachment_id'") __props__.__dict__["transit_gateway_attachment_id"] = transit_gateway_attachment_id if transit_gateway_route_table_id is None and not opts.urn: raise TypeError("Missing required property 'transit_gateway_route_table_id'") __props__.__dict__["transit_gateway_route_table_id"] = transit_gateway_route_table_id __props__.__dict__["resource_id"] = None __props__.__dict__["resource_type"] = None super(RouteTablePropagation, __self__).__init__( 'aws:ec2transitgateway/routeTablePropagation:RouteTablePropagation', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, resource_id: Optional[pulumi.Input[str]] = None, resource_type: Optional[pulumi.Input[str]] = None, transit_gateway_attachment_id: Optional[pulumi.Input[str]] = None, transit_gateway_route_table_id: Optional[pulumi.Input[str]] = None) -> 'RouteTablePropagation': """ Get an existing RouteTablePropagation resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] resource_id: Identifier of the resource :param pulumi.Input[str] resource_type: Type of the resource :param pulumi.Input[str] transit_gateway_attachment_id: Identifier of EC2 Transit Gateway Attachment. :param pulumi.Input[str] transit_gateway_route_table_id: Identifier of EC2 Transit Gateway Route Table. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _RouteTablePropagationState.__new__(_RouteTablePropagationState) __props__.__dict__["resource_id"] = resource_id __props__.__dict__["resource_type"] = resource_type __props__.__dict__["transit_gateway_attachment_id"] = transit_gateway_attachment_id __props__.__dict__["transit_gateway_route_table_id"] = transit_gateway_route_table_id return RouteTablePropagation(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="resourceId") def resource_id(self) -> pulumi.Output[str]: """ Identifier of the resource """ return pulumi.get(self, "resource_id") @property @pulumi.getter(name="resourceType") def resource_type(self) -> pulumi.Output[str]: """ Type of the resource """ return pulumi.get(self, "resource_type") @property @pulumi.getter(name="transitGatewayAttachmentId") def transit_gateway_attachment_id(self) -> pulumi.Output[str]: """ Identifier of EC2 Transit Gateway Attachment. """ return pulumi.get(self, "transit_gateway_attachment_id") @property @pulumi.getter(name="transitGatewayRouteTableId") def transit_gateway_route_table_id(self) -> pulumi.Output[str]: """ Identifier of EC2 Transit Gateway Route Table. """ return pulumi.get(self, "transit_gateway_route_table_id")
PypiClean
/reg-bench-0.0.3.tar.gz/reg-bench-0.0.3/reg_bench/symbolic_regression/util.py
import collections import inspect import sys from functools import partial from inspect import getframeinfo from inspect import getmodulename from inspect import stack from itertools import repeat import numpy as np import toolz def poly(x, i): return np.sum(x ** j for j in range(1, i + 1)) test_data = collections.namedtuple("TestData", "data target") def generate_data_set(testfunction, num_points, dist, params): dim = len(inspect.getfullargspec(testfunction).args) if isinstance(params, dict): dist_ = lambda size, params: dist(size=size, **params) else: dist_ = nd_dist_factory(dist) data = dist_(size=(dim, num_points), params=params) target = testfunction(*data) return test_data(data=data, target=target) def nd_dist_factory(dist): return lambda size, params: np.array( [dist(size=s, **p) for s, p in zip(repeat(size[1], times=size[0]), params)] ) def generate_uniform_data_set(testfunction, num_points, ranges, rng=np.random): to_dict = lambda range_: dict(low=range_[0], high=range_[1]) params = (to_dict(range_) for range_ in ranges) if toolz.isiterable(ranges[0]) else to_dict(ranges) return generate_data_set(testfunction, num_points, rng.uniform, params) def isiterable(x): try: iter(x) return True except TypeError: return False def generate_evenly_spaced_data_set(testfunction, step_sizes, ranges): dim = len(inspect.getfullargspec(testfunction).args) if len(ranges) == 2 and not isiterable(ranges[0]): ranges = repeat(ranges, times=dim) else: if dim != len(ranges): raise ValueError if isinstance(step_sizes, float): step_sizes = repeat(step_sizes, times=dim) else: if dim != len(step_sizes): raise ValueError grid = np.meshgrid( *[ np.linspace(l, u, (u - l) / step_size + 1, endpoint=True) for (l, u), step_size in zip(ranges, step_sizes) ] ) data = np.array([g.flatten() for g in grid]) return test_data(data=data, target=testfunction(*data)) def generator_from_helper(helper, shift=0, i=()): caller = getframeinfo(stack()[1][0]) # find current_module by looking up caller in stack name = getmodulename(caller.filename) current_module = [mod for mname, mod in sys.modules.items() if name == mname.split(".")[-1]][0] context = dir(current_module) for f, fname in ( (getattr(current_module, func), func) for func in context if "{}_func".format(name) in func ): f_ = partial(helper, func=f) n = int(fname.split("_func")[-1]) if n in i or not i: generator_name = "generate_{}{}".format(name, n + shift) if generator_name not in context: setattr(current_module, generator_name, f_) # register generator function in current_module
PypiClean
/Cherrydoor-0.8.1-py3-none-any.whl/cherrydoor/static/components/ManageUsers.js
const ManageUsers = { data() { return { users: [], available_permissions: this.user.permissions, new_user: { username: "", password: "", permissions: Object.keys(this.user.permissions).reduce( (obj, permission) => { obj[permission] = false; if (permission == "enter") obj["enter"] = true; return obj; }, {} ), cards: [], password: "", }, original_users: [], }; }, inject: ["user", "socket"], mounted() { this.socket.on("users", (data) => { if (data != null) { this.$data.original_users = JSON.parse(JSON.stringify(data.users)); data.users.forEach((user) => { user.edit = { permissions: false, cards: user.cards.map((x) => false), username: false, }; }); this.$data.users = data.users; } }); this.socket.emit("enter_room", { room: "users" }); }, methods: { addUser() { this.$data.users.push({ username: this.$data.new_user.username, permissions: JSON.parse( JSON.stringify(this.$data.new_user.permissions) ), cards: this.$data.new_user.cards.slice(), password: this.$data.new_user.password, edit: { permissions: false, cards: [false], username: false }, }); this.$data.new_user = { username: "", permissions: [], cards: [], password: "", }; }, submitUsers() { const original_users = this.$data.original_users; function difference(a, b) { a = new Set(a); b = new Set(b); return new Set([...a].filter((x) => !b.has(x))); } const changed_users = this.$data.users .slice(0, original_users.length) .map((user, i) => { if (user.username !== original_users[i].username) { user.current_username = original_users[i].username; } return user; }) .filter((user, i) => { if ( user.username === original_users[i].username && difference( Object.values(user.permissions), Object.values(original_users[i].permissions) ).size === 0 && difference(user.cards, original_users[i].cards).size === 0 ) { return false; } return true; }); this.socket.emit("modify_users", { users: changed_users }); const new_users = this.$data.users.slice(original_users.length); this.socket.emit("create_users", { users: new_users }); }, getCard(userIndex, cardIndex) { this.socket.emit("get_card", (data) => { if (userIndex === null) { this.$data.new_user.cards[cardIndex] = data.uid; } else { this.$data.users[userIndex].cards[cardIndex] = data.uid; } }); }, deleteUser(username) { if (confirm(`czy na pewno chcesz usunąć użytkownika ${username}?`)) { this.socket.emit("delete_user", { username: username }); } }, addCard(index = null) { if (index === null) { this.$data.new_user.cards.push(""); } else { this.$data.users[index].cards.push(""); this.$data.users[index].edit.cards.push(true); } }, }, template: ` <ul class="manage-users"> <li class="user" v-for="(usr, i) in users" :key="i"> <div class="input-editable"> <input class="username existing-user" v-model="usr.username" :disabled="!usr.edit.username" /> <button @click="usr.edit.username = true" class="edit-button edit-username btn waves-effect waves-light right" v-if="!usr.edit.username" > Edit </button> </div> <div class="user-permissions existing-user" v-if="usr.permissions!=undefined"> <div class="page__checkbox input-field" v-for="(has_permission, permission, index) in usr.permissions" > <label class="checkbox"> <input type="checkbox" :name="permission" :id="permission+i" :aria-label="permission" class="checkbox-input" v-model="has_permission" :disabled="!usr.edit.permissions" /> <span class="checkbox-label"> <span class="checkbox-text">{{permission}}</span> </span> </label> </div> <button class="edit-button edit-permissions btn waves-effect waves-light right" @click="usr.edit.permissions = true" v-if="!usr.edit.permissions" > Edit permissions </button> </div> <ul class="user-cards existing-user"> <li v-for="(card, index) in usr.cards"> <div class="input-editable"> <input class="card-uid existing-user" v-model="usr.cards[index]" :disabled="!usr.edit.cards[index]" /> <button class="edit-button edit-card btn waves-effect waves-light right" @click="usr.edit.cards[index]=true" aria-label="Edit card" v-if="!usr.edit.cards[index]" > Edit</button> <button class="edit-button reader-input btn waves-effect waves-light" @click="getCard(i, index)" aria-label="Get card from reader" > Get card from reader </button> </div> </li> <li> <button class="new-card plus-button" @click="addCard(i)">Add card</button> </li> </ul> <button class="delete-button btn waves-effect waves-light" @click="deleteUser(usr.username)" aria-label="Delete user" > Delete user </button> </li> <li class="user new-user"> <h3>Nowy użytkownik</h3> <label for="new-user-username">Nazwa użytkownika:</label> <input class="username new-user" v-model="new_user.username" id="new-user-username" /> <label for="new-user-password">Hasło: <br/> <small>opcjonalne - konieczne tylko do logowania do panelu</small></label> <input type="password" class="password new-user" v-model="new_user.password" id="new-user-password" /> <div class="user-permissions new-user"> <div class="page__checkbox input-field" v-for="(has_permission, permission) in available_permissions" > <label class="checkbox" v-if="has_permission"> <input type="checkbox" :name="permission" :aria-label="permission" class="checkbox-input" v-model="new_user.permissions[permission]" /> <span class="checkbox-label"> <span class="checkbox-text">{{permission}}</span> </span> </label> </div> </div> <ul class="user-cards new-user"> <li v-for="(card, index) in new_user.cards"> <div class="input-editable"> <input class="card-uid new-user" v-model="new_user.cards[index]" /> <button class="edit-button reader-input btn waves-effect waves-light" @click="getCard(null, index)" aria-label="Get card from reader" > Get card from reader </button> </div> </li> <li> <button class="new-card plus-button" @click="addCard()">Add card</button> </li> </ul> <button class="new-user plus-button" @click="addUser()">Add user</button> </li> <li> <button class="submit-user btn" @click="submitUsers()">Save</button> </li> </ul> `, }; export default ManageUsers;
PypiClean
/EDDIE-Tool-1.0.0.tar.gz/EDDIE-Tool-1.0.0/eddietool/common/Directives/icmp.py
import inet import array import struct ICMP_MINLEN = 8 ICMP_MASKLEN = 12 ICMP_ECHOREPLY = 0 ICMP_UNREACH = 3 ICMP_UNREACH_NET = 0 ICMP_UNREACH_HOST = 1 ICMP_UNREACH_PROTOCOL = 2 ICMP_UNREACH_PORT = 3 ICMP_UNREACH_NEEDFRAG = 4 ICMP_UNREACH_SRCFAIL = 5 ICMP_SOURCEQUENCH = 4 ICMP_REDIRECT = 5 ICMP_REDIRECT_NET = 0 ICMP_REDIRECT_HOST = 1 ICMP_REDIRECT_TOSNET = 2 ICMP_REDIRECT_TOSHOST = 3 ICMP_ECHO = 8 ICMP_TIMXCEED = 11 ICMP_TIMXCEED_INTRANS = 0 ICMP_TIMXCEED_REASS = 1 ICMP_PARAMPROB = 12 ICMP_TSTAMP = 13 ICMP_TSTAMPREPLY = 14 ICMP_IREQ = 15 ICMP_IREQREPLY = 16 ICMP_MASKREQ = 17 ICMP_MASKREPLY = 18 class Packet: """Basic ICMP packet definition. Equivalent to ICMP_ECHO_REQUEST and ICMP_REPLY packets. Other packets are defined as subclasses probably. """ def __init__(self, packet=None, cksum=1): if packet: self.__disassemble(packet, cksum) else: self.type = 0 self.code = 0 self.cksum = 0 self.id = 0 self.seq = 0 self.data = '' def __repr__(self): return "<ICMP packet %d %d %d %d>" % (self.type, self.code, self.id, self.seq) def assemble(self, cksum=1): idseq = struct.pack('hh', self.id, self.seq) packet = chr(self.type) + chr(self.code) + '\000\000' + idseq \ + self.data if cksum: self.cksum = inet.cksum(packet) packet = chr(self.type) + chr(self.code) \ + struct.pack('H', self.cksum) + idseq + self.data # Don't need to do any byte-swapping, because idseq is # appplication defined and others are single byte values. self.__packet = packet return self.__packet def __disassemble(self, packet, cksum=1): if cksum: our_cksum = inet.cksum(packet) if our_cksum != 0: raise ValueError, packet self.type = ord(packet[0]) self.code = ord(packet[1]) elts = struct.unpack('hhh', packet[2:8]) [self.cksum, self.id, self.seq] = map(lambda x:x & 0xffff, elts) self.data = packet[8:] def __compute_cksum(self): "Use inet.cksum instead" packet = self.packet if len(packet) & 1: packet = packet + '\0' words = array.array('h', packet) sum = 0 for word in words: sum = sum + (word & 0xffff) hi = sum >> 16 lo = sum & 0xffff sum = hi + lo sum = sum + (sum >> 16) return (~sum) & 0xffff class TimeExceeded(Packet): def __init__(self, packet=None, cksum=1): Packet.__init__(self, packet, cksum) if packet: if self.type != ICMP_TIMXCEED: raise ValueError, "supplied packet of wrong type" else: self.type = ICMP_TIMXCEED self.id = self.seq = 0 class Unreachable(Packet): def __init__(self, packet=None, cksum=1): Packet.__init__(self, packet, cksum) if packet: if self.type != ICMP_UNREACH: raise ValueError, "supplied packet of wrong type" else: self.type = ICMP_UNREACH self.id = self.seq = 0
PypiClean
/HtmlList-2.2.2.zip/HtmlList-2.2.2/htmllist/break_html_page.py
# TODO: Add optional already built DOM object input. """ The module defines BreakHtmlPage class that works with the DOM model. It is almost twice as slow than break_html_page2 !!! But it uses DOM. This module uses html5lib to parse the HTML page http://code.google.com/p/html5lib/ There is an option to use this class without working with html5lib (and then it doesn't have to be present). Using the "set_dom" method to set an external DOM object, and not using the "feed" and "close" methods. I added the hash code of the parent Tag in the HTML tree to the identity of each Tag object. That makes two tags equal only if they under the exact same path in the HTML tree. """ from xml.dom import Node from StringIO import StringIO # NOTE: I import html5lib inside the "close" method, so the lib don't have to # be present if we are working with a prepared DOM object. from break_page_seq import BreakPageSeq from utills import quote_html ENCODING = "utf-8" # TODO: Do I always need utf-8? NOT_SELF_CLOSE = "div", "button" ## Private functions that work with the traverse_element function ## def _write_elm(buff): """ Return a function (closure) that renders element into buff """ def __write_elm(elm): """ Render an HTML element """ if elm.nodeType == Node.ELEMENT_NODE: buff.write('<' + elm.nodeName.encode(ENCODING)) if elm.attributes: for name,value in elm.attributes.items(): value = quote_html(value) buff.write(' %s="%s"' % ( name.encode(ENCODING), value.encode(ENCODING))) if elm.hasChildNodes() or elm.nodeName in NOT_SELF_CLOSE: buff.write('>') else: buff.write(' />') elif elm.nodeType == Node.COMMENT_NODE: buff.write("<!-- %s -->" % elm.nodeValue.encode(ENCODING)) else: buff.write(elm.nodeValue.encode(ENCODING)) return __write_elm def _write_close_elm(buff): """ Same for close element (tag) """ def __write_close_elm(elm): if elm.nodeType == Node.ELEMENT_NODE and ( \ elm.hasChildNodes() or elm.nodeName in NOT_SELF_CLOSE): buff.write('</%s>' % elm.nodeName.encode(ENCODING)) return __write_close_elm def traverse_tree(root, stop_elm=None): """ Experimental function, I don't use it as it is way too slow """ _stop = False def _traverse_tree(root, stop_elm): if not root or root is stop_elm: traverse_tree._stop = True return yield root if not _stop and root.firstChild: for itm in _traverse_tree(root.firstChild, stop_elm): yield itm if not _stop and root.nextSibling: for itm in _traverse_tree(root.nextSibling, stop_elm): yield itm return _traverse_tree(root, stop_elm) class StopTraversing(object): pass class BreakHtmlPage(BreakPageSeq): """ Implements the BreakHtmlPage class using DOM and html5lib. This class will not return an overlapping HTML sections. """ def close(self): """ Parse the HTML buffer """ # I import html5lib only when I am going to use it from html5lib import HTMLParser from html5lib import treebuilders parser = HTMLParser(tree=treebuilders.getTreeBuilder("dom")) doc = parser.parse(self._html) self._html.close() self.set_dom(doc) def set_dom(self, dom): """ This public method is unique for this implementation of BreakHtmlPage. It lets the system to set an already prepared DOM object, so we don't need to parse the document again. """ dom.normalize() self._orig_lst = tuple(self._traverse_tree(dom.documentElement)) ## Class Methods ## @classmethod def _traverse_tree(cls, root_elm, stop_elm=None, stop_at_root=True): """ An help method that creates an iterator that traverses a DOM tree. It stops in the end of the tree or when elm equal to stop_elm. If stop_at_root is False it will continue to the sibling of the given root, if exists. """ elm = root_elm back_up = False while not elm is None and not elm is stop_elm: if not back_up: yield elm if not back_up and elm.hasChildNodes(): back_up = False elm = elm.firstChild elif elm.nextSibling: back_up = False elm = elm.nextSibling else: back_up = True elm = elm.parentNode if stop_at_root and elm is root_elm: break @classmethod def traverse_list(cls, elm_lst, elm_func, elm_close_func=None, stop_elm=None, parents=None): """ See base class documentation parents is for internal use only """ if not elm_lst: return None if parents is None: parents = set() for elm in elm_lst: if elm is stop_elm: return StopTraversing if elm.parentNode in parents: continue res = elm_func(elm) if not res is None: return res res = cls.traverse_list( elm.childNodes, elm_func, elm_close_func, stop_elm, parents) if not res is None: return res if elm_close_func: res = elm_close_func(elm) if not res is None: return res parents.add(elm) return None @classmethod def list2text(cls, lst, stop_elm=None): """ See base class documentation """ buff = StringIO() cls.traverse_list( lst, _write_elm(buff), _write_close_elm(buff), stop_elm) return buff.getvalue() @classmethod def words_between_elements(cls, start, end): """ See base class documentation """ lst = [len(elm.nodeValue.split()) for elm in \ cls._traverse_tree(start, end, stop_at_root=False) \ if elm.nodeType == Node.TEXT_NODE and elm.nodeValue.strip()] return sum(lst) @classmethod def get_element_name(cls, elm): """ Return the element (tag) name """ return elm.nodeName @classmethod def get_element_attrs(cls, elm): """ Return the element (tag) attributes dictionary or None """ if not elm.attributes: return None return elm.attributes def get_all_element_data(cls, elm): """ Return a tuple of the element name, attributes and the hash value of the Tag of the parent element. This will make two tags to be equal only if they have the same name and format attributes AND have the exact same path from the document root. """ return cls.get_element_name(elm), cls.get_element_attrs(elm), \ elm.parentNode._tag._hash if cls.is_tag_element(elm.parentNode) \ else None @classmethod def is_tag_element(cls, elm): """ See base class documentation """ return elm and elm.nodeType == Node.ELEMENT_NODE @classmethod def is_text_elm(cls, elm): """ See base class documentation """ if elm.nodeType == Node.TEXT_NODE and elm.data.strip(): return True return None @classmethod def test2(cls, verbose): """ Add a test for the tree like functionality to the standard tests I make it happen mainly in the get_all_element_data method """ cls.test(verbose) from repeat_pattern import RepeatPattern if verbose: print "Testing tree attributes..." html = """<body> <div> <span><a>AAA</a></span> <span><a>BBB</a></span> </div> <span><a>CCC</a></span> <!-- Should not take this occurrence --> </body>""" bhp = cls() bhp.feed(html) bhp.close() rp = RepeatPattern() #print ">>>", tuple(bhp.get_tag_list()) rp.process(tuple(bhp.get_tag_list())) assert rp.repeats == 2, "Found %s occurrences" % rp.repeats if __name__ == '__main__': BreakHtmlPage.test2(verbose=True) print "Test Passed"
PypiClean
/python-aliyun-sdk-core-2.13.37.tar.gz/python-aliyun-sdk-core-2.13.37/aliyunsdkcore/vendored/requests/packages/chardet/codingstatemachine.py
import logging from .enums import MachineState class CodingStateMachine(object): """ A state machine to verify a byte sequence for a particular encoding. For each byte the detector receives, it will feed that byte to every active state machine available, one byte at a time. The state machine changes its state based on its previous state and the byte it receives. There are 3 states in a state machine that are of interest to an auto-detector: START state: This is the state to start with, or a legal byte sequence (i.e. a valid code point) for character has been identified. ME state: This indicates that the state machine identified a byte sequence that is specific to the charset it is designed for and that there is no other possible encoding which can contain this byte sequence. This will to lead to an immediate positive answer for the detector. ERROR state: This indicates the state machine identified an illegal byte sequence for that encoding. This will lead to an immediate negative answer for this encoding. Detector will exclude this encoding from consideration from here on. """ def __init__(self, sm): self._model = sm self._curr_byte_pos = 0 self._curr_char_len = 0 self._curr_state = None self.logger = logging.getLogger(__name__) self.reset() def reset(self): self._curr_state = MachineState.START def next_state(self, c): # for each byte we get its class # if it is first byte, we also get byte length byte_class = self._model['class_table'][c] if self._curr_state == MachineState.START: self._curr_byte_pos = 0 self._curr_char_len = self._model['char_len_table'][byte_class] # from byte's class and state_table, we get its next state curr_state = (self._curr_state * self._model['class_factor'] + byte_class) self._curr_state = self._model['state_table'][curr_state] self._curr_byte_pos += 1 return self._curr_state def get_current_charlen(self): return self._curr_char_len def get_coding_state_machine(self): return self._model['name'] @property def language(self): return self._model['language']
PypiClean
/cohesity-sdk-1.1.0.tar.gz/cohesity-sdk-1.1.0/cohesity_sdk/cluster/model/bond_member.py
import re # noqa: F401 import sys # noqa: F401 from cohesity_sdk.cluster.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from cohesity_sdk.cluster.model.interface_stats import InterfaceStats from cohesity_sdk.cluster.model.uplink_switch import UplinkSwitch globals()['InterfaceStats'] = InterfaceStats globals()['UplinkSwitch'] = UplinkSwitch class BondMember(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('speed',): { 'None': None, '1GBIT/S': "1Gbit/s", '10GBIT/S': "10Gbit/s", '25GBIT/S': "25Gbit/s", '40GBIT/S': "40Gbit/s", '100GBIT/S': "100Gbit/s", 'UNKNOWN': "Unknown", }, ('link_state',): { 'None': None, 'UP': "Up", 'DOWN': "Down", }, } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'name': (str, none_type,), # noqa: E501 'mac_address': (str, none_type,), # noqa: E501 'speed': (str, none_type,), # noqa: E501 'link_state': (str, none_type,), # noqa: E501 'active_secondary': (bool, none_type,), # noqa: E501 'slot': (str, none_type,), # noqa: E501 'stats': (InterfaceStats,), # noqa: E501 'uplink_switch': (UplinkSwitch,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'name': 'name', # noqa: E501 'mac_address': 'macAddress', # noqa: E501 'speed': 'speed', # noqa: E501 'link_state': 'linkState', # noqa: E501 'active_secondary': 'activeSecondary', # noqa: E501 'slot': 'slot', # noqa: E501 'stats': 'stats', # noqa: E501 'uplink_switch': 'uplinkSwitch', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """BondMember - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) name (str, none_type): Name of the bond secondary.. [optional] # noqa: E501 mac_address (str, none_type): MAC address of the bond secondary.. [optional] # noqa: E501 speed (str, none_type): Speed of the bond secondary.. [optional] # noqa: E501 link_state (str, none_type): Bond secondary link state.. [optional] # noqa: E501 active_secondary (bool, none_type): Specifies whether or not this is a active secondary. This is only valid in ActiveBackup bonding mode.. [optional] # noqa: E501 slot (str, none_type): Slot information of the bond secondary.. [optional] # noqa: E501 stats (InterfaceStats): [optional] # noqa: E501 uplink_switch (UplinkSwitch): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
PypiClean
/pytest_hypo_25-2.3.tar.gz/pytest_hypo_25-2.3/pytest_hypo_25/internal/escalation.py
import os import sys import traceback from inspect import getframeinfo from pathlib import Path from typing import Dict import hypothesis from hypothesis.errors import ( DeadlineExceeded, HypothesisException, MultipleFailures, StopTest, UnsatisfiedAssumption, ) def belongs_to(package): if not hasattr(package, "__file__"): # pragma: no cover return lambda filepath: False root = Path(package.__file__).resolve().parent cache = {str: {}, bytes: {}} def accept(filepath): ftype = type(filepath) try: return cache[ftype][filepath] except KeyError: pass abspath = Path(filepath).resolve() try: abspath.relative_to(root) result = True except ValueError: result = False cache[ftype][filepath] = result return result accept.__name__ = "is_%s_file" % (package.__name__,) return accept PREVENT_ESCALATION = os.getenv("HYPOTHESIS_DO_NOT_ESCALATE") == "true" FILE_CACHE = {} # type: Dict[bytes, bool] is_hypothesis_file = belongs_to(hypothesis) HYPOTHESIS_CONTROL_EXCEPTIONS = (DeadlineExceeded, StopTest, UnsatisfiedAssumption) def mark_for_escalation(e): if not isinstance(e, HYPOTHESIS_CONTROL_EXCEPTIONS): e.hypothesis_internal_always_escalate = True def escalate_hypothesis_internal_error(): if PREVENT_ESCALATION: return error_type, e, tb = sys.exc_info() if getattr(e, "hypothesis_internal_never_escalate", False): return if getattr(e, "hypothesis_internal_always_escalate", False): raise filepath = traceback.extract_tb(tb)[-1][0] if is_hypothesis_file(filepath) and not isinstance( e, (HypothesisException,) + HYPOTHESIS_CONTROL_EXCEPTIONS ): raise def get_trimmed_traceback(): """Return the current traceback, minus any frames added by Hypothesis.""" error_type, _, tb = sys.exc_info() # Avoid trimming the traceback if we're in verbose mode, or the error # was raised inside Hypothesis (and is not a MultipleFailures) if hypothesis.settings.default.verbosity >= hypothesis.Verbosity.debug or ( is_hypothesis_file(traceback.extract_tb(tb)[-1][0]) and not isinstance(error_type, MultipleFailures) ): return tb while tb is not None and ( # If the frame is from one of our files, it's been added by Hypothesis. is_hypothesis_file(getframeinfo(tb.tb_frame)[0]) # But our `@proxies` decorator overrides the source location, # so we check for an attribute it injects into the frame too. or tb.tb_frame.f_globals.get("__hypothesistracebackhide__") is True ): tb = tb.tb_next return tb
PypiClean
/shells_cae-0.0.19.tar.gz/shells_cae-0.0.19/shells_cae/eb_solver.py
import cffi import os import numpy as np import sys from typing import Sequence, Union __all__ = ['PointMassTrajectorySolver', 'PointMassTrajectoryHSolver'] def load_lib(): HERE = os.path.dirname(__file__) if sys.platform.startswith('linux'): LIB_FILE_NAME = os.path.abspath(os.path.join(HERE, ".", "compiled", "build", "bin", "lib", "libsextbal.so")) elif sys.platform.startswith('win32'): LIB_FILE_NAME = os.path.abspath(os.path.join(HERE, ".", "compiled", "build", "bin", "libsextbal.dll")) else: raise Exception('Неподдерживаемая платформа') ffi = cffi.FFI() ffi.cdef( ''' void count_eb(double *y0, double d, double q, double *cx_list, double *mach_list, int n_mach,\n double max_distance, double tstep, double tmax); ''' ) ffi.cdef( ''' void dense_count_eb(double *y_array, double d, double q, double *cx_list, double *mach_list, int n_mach,\n double max_distance, double tstep, double tmax, int *n_tsteps); ''' ) ffi.cdef( ''' typedef struct shell{ double d; double L; double q; double A; double B; double mu; double c_q; double h; } shell; ''' ) ffi.cdef( ''' void dense_count_eb_h( double *y_array, double *cx_list, double *mach_list, int n_mach, shell *ashell, double *diag_vals, double eta, double sigma_dop, double delta_dop, double *sigma_array, double *delta_array, double max_distance, double tstep, double tmax, int *n_tsteps ); ''' ) bal_lib = ffi.dlopen(LIB_FILE_NAME) return ffi, bal_lib FFI, EBAL_LIB = load_lib() class PointMassTrajectorySolver: mah_list = np.array([0.4, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6]) cx_list = np.array([0.157, 0.158, 0.158, 0.160, 0.190, 0.325, 0.378, 0.385, 0.381, 0.371, 0.361, 0.351, 0.342, 0.332, 0.324, 0.316, 0.309, 0.303, 0.297, 0.292, 0.287, 0.283, 0.279, 0.277, 0.273, 0.270, 0.267, 0.265, 0.263, 0.263, 0.261, 0.260]) name = 'point_mass_eb_solver' preprocess_data = dict( d=None, q=None, theta_angle=None, v0=None, cx_list=None, mach_list=None ) def preprocessor(self, data: dict, global_state: dict): self.preprocess_data['d'] = data['gun_char']['d'] self.preprocess_data['q'] = global_state['mcc_solver']['shell']['q'] self.preprocess_data['theta_angle'] = data['initial_cond']['theta0'] self.preprocess_data['v0'] = data['initial_cond']['V'] self.preprocess_data['cx_list'] = global_state['mcdrag_solver']['cx_list'] self.preprocess_data['mach_list'] = global_state['mcdrag_solver']['mach_list'] def run(self, data: dict, global_state: dict): eb_data = self.preprocess_data eb_settings = data['point_mass_eb_settings'] v0 = eb_data['v0'] theta_angle = eb_data['theta_angle'] q = eb_data['q'] d = eb_data['d'] cx_list = eb_data['cx_list'] mach_list = eb_data['mach_list'] max_distance = eb_settings['max_distance'] tstep = eb_settings['tstep'] tmax = eb_settings['tmax'] y0 = np.array([0., 0., v0, np.deg2rad(theta_angle)], dtype=np.float64, order='F') cx_list = np.asfortranarray(cx_list, dtype=np.float64) mach_list = np.asfortranarray(mach_list, dtype=np.float64) y0_ptr = FFI.cast("double*", y0.__array_interface__['data'][0]) cx_list_ptr = FFI.cast("double*", cx_list.__array_interface__['data'][0]) mach_list_ptr = FFI.cast("double*", mach_list.__array_interface__['data'][0]) EBAL_LIB.count_eb( y0_ptr, d, q, cx_list_ptr, mach_list_ptr, len(cx_list), max_distance, tstep, tmax ) global_state[PointMassTrajectorySolver.name] = dict(L_max=y0[0], vc=y0[2]) class PointMassTrajectoryHSolver: name = 'point_mass_ebh_solver' preprocess_data = dict( d=None, L=None, q=None, A=None, B=None, h=None, mu=None, c_q=None, sigma_dop=0.6, delta_dop=2., theta_angle=None, v0=None, cx_list=None, mach_list=None ) def preprocessor(self, data: dict, global_state: dict): self.preprocess_data['d'] = data['gun_char']['d'] self.preprocess_data['eta_k'] = data['gun_char']['eta_k'] self.preprocess_data['q'] = global_state['mcc_solver']['shell']['q'] self.preprocess_data['L'] = global_state['geometry_solver']['L_all'] self.preprocess_data['A'] = global_state['mcc_solver']['shell']['A'] self.preprocess_data['B'] = global_state['mcc_solver']['shell']['B'] self.preprocess_data['h'] = global_state['mcc_solver']['shell']['h'] self.preprocess_data['mu'] = global_state['mcc_solver']['shell']['mu'] self.preprocess_data['c_q'] = global_state['mcc_solver']['shell']['c_q'] self.preprocess_data['theta_angle'] = data['initial_cond']['theta0'] self.preprocess_data['v0'] = data['initial_cond']['V'] self.preprocess_data['cx_list'] = global_state['kontur_solver']['cx_list'] self.preprocess_data['mach_list'] = global_state['kontur_solver']['mach_list'] def _get_fortran_shell(self): ashell = FFI.new('shell *ashell') ashell[0].d = self.preprocess_data['d'] ashell[0].q = self.preprocess_data['q'] ashell[0].A = self.preprocess_data['A'] ashell[0].B = self.preprocess_data['B'] ashell[0].mu = self.preprocess_data['mu'] ashell[0].c_q = self.preprocess_data['c_q'] ashell[0].L = self.preprocess_data['L'] ashell[0].h = self.preprocess_data['h'] return ashell # Определение по диаграмме устойчивости правильность полёта def stability_define(self, m, n, eta_k, h, d, hd_kr, eta_kr): # Гироскопическая устойчивость h_d = h / d eta_list = [i / 1000 for i in range(100)] h_d_sigma_list = [(eta ** 2) * m for eta in eta_list] # Направленность полёта h_d_stab_list = [eta * n for eta in eta_list] # Определяем устойчив ли снаряд # ДОДЕЛАТЬ def run(self, data: dict, global_state: dict): ebh_settings = data['settings']['point_mass_eb'] tstep = ebh_settings['tstep'] tmax = ebh_settings['tmax'] eta_k = self.preprocess_data['eta_k'] ashell = self._get_fortran_shell() n_tsteps = FFI.new('int *') n_tsteps[0] = int(tmax / tstep) cx_list = self.preprocess_data['cx_list'] mach_list = self.preprocess_data['mach_list'] cx_list = np.asfortranarray(cx_list, dtype=np.float64) mach_list = np.asfortranarray(mach_list, dtype=np.float64) y_array = np.zeros((5, n_tsteps[0]), dtype=np.float64, order='F') y_array[:, 0] = [0., 0., self.preprocess_data['v0'], np.deg2rad(self.preprocess_data['theta_angle']), 0.0] sigma_array = np.zeros(n_tsteps[0], dtype=np.float64, order='F') delta_array = np.zeros(n_tsteps[0], dtype=np.float64, order='F') diag_vals_array = np.empty(4, dtype=np.float64, order='F') y_array_ptr = FFI.cast("double*", y_array.__array_interface__['data'][0]) cx_list_ptr = FFI.cast("double*", cx_list.__array_interface__['data'][0]) mach_list_ptr = FFI.cast("double*", mach_list.__array_interface__['data'][0]) sigma_array_ptr = FFI.cast("double*", sigma_array.__array_interface__['data'][0]) delta_array_ptr = FFI.cast("double*", delta_array.__array_interface__['data'][0]) diag_vals_array_ptr = FFI.cast("double*", diag_vals_array.__array_interface__['data'][0]) EBAL_LIB.dense_count_eb_h( y_array_ptr, cx_list_ptr, mach_list_ptr, len(cx_list), ashell, diag_vals_array_ptr, eta_k, self.preprocess_data['sigma_dop'], np.deg2rad(self.preprocess_data['delta_dop']), sigma_array_ptr, delta_array_ptr, ebh_settings['max_distance'], tstep, tmax, n_tsteps ) # Диаграмма устойчивости self.stability_define(m=diag_vals_array[0], n=diag_vals_array[1], eta_k=eta_k, h=global_state['mcc_solver']['shell']['h'], d=data['shell_size']['d'], hd_kr=diag_vals_array[2], eta_kr=diag_vals_array[3]) t_s = np.linspace(0., tstep * n_tsteps[0], n_tsteps[0]) y_array = y_array[:, :n_tsteps[0]] sigma_array = sigma_array[:n_tsteps[0]] delta_array = delta_array[:n_tsteps[0]] y_array[3] = np.rad2deg(y_array[3]) global_state[PointMassTrajectoryHSolver.name] = dict( m=diag_vals_array[0], n=diag_vals_array[1], hd_kr=diag_vals_array[2], eta_kr=diag_vals_array[3], L_max=y_array[0, -1], vc=y_array[2, -1], t_array=t_s, x_array=y_array[0], y_array=y_array[1], v_array=y_array[2], theta_array=y_array[3], omega_array=y_array[4], sigma_array=sigma_array, delta_array=delta_array )
PypiClean
/certora-cli-alpha-jtoman-try-catch-20230515.16.47.942035.tar.gz/certora-cli-alpha-jtoman-try-catch-20230515.16.47.942035/certora_cli/Shared/certoraLogging.py
import logging import sys from typing import Dict, Any, Set, Optional, Iterable, List from Shared.certoraUtils import write_json_file, red_text, orange_text, get_debug_log_file from Shared.certoraUtils import get_resource_errors_file class ColoredString(logging.Formatter): def __init__(self, msg_fmt: str = "%(name)s - %(message)s") -> None: super().__init__(msg_fmt) def format(self, record: logging.LogRecord) -> str: to_ret = super().format(record) if record.levelno == logging.WARN: return orange_text("WARNING") + ": " + to_ret elif record.levelno >= logging.ERROR: # aka ERROR, FATAL, and CRITICAL return red_text(record.levelname) + ": " + to_ret else: # aka WARNING, INFO, and DEBUG return record.levelname + ": " + to_ret class TopicFilter(logging.Filter): def __init__(self, names: Iterable[str]) -> None: super().__init__() self.logged_names = set(names) def filter(self, record: logging.LogRecord) -> bool: return (record.name in self.logged_names) or record.levelno >= logging.WARN class ResourceErrorHandler(logging.NullHandler): """ A handler that creates a JSON error report for all problems concerning resources, like Solidity and spec files. The handler gathers log messages, filters them, and maintain a local data state. To generate the report, dump_to_log must be called. It should be called in the shutdown code of certoraRun.py This class is a Singleton, which should prevent most concurrency issues. ~~~~ Filter logic: We only care about messages with a topic in resource topics, that are of logging level CRITICAL. We prettify the message string itself to be concise and less verbose. TODO - fetch typechecking errors from a file. The typechecking jar should generate an errors file, giving us more control. Note - we have no choice but to filter SOLC errors, for example. """ resource_topics = ["solc", "type_check"] """ errors_info is a JSON object that should look like this: { "topics": [ { "name": "", "messages": [ { "message": "", "location": [] } ] } ] } """ errors_info: Dict[str, Any] = { "topics": [] } # ~~~ Message editing constants """ If one of this identifiers is present in the message, we log it. This is to avoid superfluous messages like "typechecking failed". "Severe compiler warning:" is there to handle errors originating from certoraBuild.check_for_errors_and_warnings() """ error_identifiers = ["Syntax error", "Severe compiler warning:", "error:\n"] # We delete these prefixes and everything that came before them prefix_delimiters = ["ERROR ALWAYS - ", "ParserError:\n", "error:\n"] def __init__(self) -> None: super(ResourceErrorHandler, self).__init__() def handle(self, record: logging.LogRecord) -> bool: if (record.name in self.resource_topics) and record.levelno >= logging.CRITICAL: message = record.getMessage() for identifier in self.error_identifiers: if identifier in message: for delimiter in self.prefix_delimiters: if delimiter in message: message = message.split(delimiter)[1].strip() message = message.splitlines()[0] # Removing all but the first remaining line # Adding the message to errors_info error_dict = { "message": message, "location": [] # TODO - add location in the future, at least for Syntax errors } topic_found = False for topic in self.errors_info["topics"]: if topic["name"] == record.name: topic["messages"].append(error_dict) topic_found = True break if not topic_found: topic_dict = { "name": record.name, "messages": [ error_dict ] } self.errors_info["topics"].append(topic_dict) break # Do not log the same error twice, even if it has more than one identifier return True def dump_to_log(self) -> None: write_json_file(self.errors_info, get_resource_errors_file()) def close(self) -> None: self.dump_to_log() super().close() class DebugLogHandler(logging.FileHandler): """ A handler that writes all errors, of all levels Debug-critical, to the debug log file and sends it to the cloud. The problems reported are concerning the topics depicted below at the logging_setup() function. """ def __init__(self) -> None: super().__init__(get_debug_log_file()) self.set_name("debug_log") self.level = logging.DEBUG # Always set this handler's log-level to debug self.addFilter(TopicFilter(["arguments", "build_conf", "finder_instrumentaton", "rpc", "run", "solc", "type_check", "verification" ])) class LoggingManager(): """ A class that manages logs, be they file logs or stdout logs. Used for: * Adding or removing logs * Setting log levels and outputs * Checking whether we are in debug mode via LoggingManager().is_debugging """ def __init__(self, quiet: bool = False, debug: bool = False, debug_topics: Optional[List[str]] = None, show_debug_topics: bool = False) -> None: """ @param quiet: if true, we show minimal log messages, and logging level is WARNING. @param debug: Ignored if quiet is True. If it is None, we are not in DEBUG mode, and logging level is WARNING. Otherwise, logging level is DEBUG, and it is a list of debug topic names. Only debug messages related to loggers of those topics are recorded. If it is an empty list, we record ALL topics. @param show_debug_topics: Ignored if either quiet is True or debug is None. If True, sets the logging message format to show the topic of the logger that sent them. """ self.debug_log_handler = DebugLogHandler() self.resource_error_handler = ResourceErrorHandler() self.stdout_handler = logging.StreamHandler(stream=sys.stdout) self.handlers: Set[logging.Handler] = set() root_logger = logging.root self.orig_root_log_level = root_logger.level # used to restore the root logger's level after exit root_logger.setLevel(logging.NOTSET) # We record all logs in the debug log file handler_list: List[logging.Handler] = [self.debug_log_handler, self.stdout_handler, self.resource_error_handler] for handler in handler_list: self.__add_handler(handler) self.set_log_level_and_format(quiet, debug, debug_topics, show_debug_topics) def __tear_down(self) -> None: """ A destructor - releases all resources and restores the root logger to the state it was in before this class was constructed """ root_logger = logging.root root_logger.setLevel(self.orig_root_log_level) while self.handlers: _handler = next(iter(self.handlers)) self.__remove_handler(_handler) def __add_handler(self, handler: logging.Handler) -> None: """ Adds a new handler to the root logger """ if handler not in self.handlers: self.handlers.add(handler) logging.root.addHandler(handler) else: logging.warning(f"Tried to add a handler that was already active: {handler}") def __remove_handler(self, handler: logging.Handler) -> None: """ Closes and removes a handler from the root logger """ if handler in self.handlers: try: handler.close() except Exception as e: logging.warning(f"Failed to close {handler}: {repr(e)}") self.handlers.remove(handler) logging.root.removeHandler(handler) else: logging.warning(f"Tried to remove a handler that is not active: {handler}") def set_log_level_and_format( self, is_quiet: bool = False, debug: bool = False, debug_topics: Optional[List[str]] = None, show_debug_topics: bool = False) -> None: """ Sets the logging level and log message format. @param is_quiet: if true, we show minimal log messages, and logging level is WARNING. No debug topics can be enabled. @param debug: if true, we show debug information (for all topics) @param debug_topics: Ignored if is_quiet is True. If it is None, we are not in DEBUG mode, and logging level is WARNING. Otherwise, logging level is DEBUG, and it is a list of debug topic names. Only debug messages related to loggers of those topics are recorded. If it is an empty list, we record ALL topics. @param show_debug_topics: Ignored if either quiet is True or debug is None. If True, sets the logging message format to show the topic of the logger that sent them. """ self.__format_stdout_log_messages(show_debug_topics) self.__set_logging_level(is_quiet, debug, debug_topics) def remove_debug_logger(self) -> None: self.__remove_handler(self.debug_log_handler) def __format_stdout_log_messages(self, show_debug_topics: bool) -> None: """ Sets the log message format. @param show_debug_topics: If True, sets the logging message format to show the topic of the logger that sent them. """ if show_debug_topics: base_message = "%(name)s - %(message)s" else: base_message = "%(message)s" if sys.stdout.isatty(): self.stdout_handler.setFormatter(ColoredString(base_message)) else: self.stdout_handler.setFormatter(logging.Formatter(f'%(levelname)s: {base_message}')) def __set_logging_level(self, is_quiet: bool, debug: bool = False, debug_topics: Optional[List[str]] = None) \ -> None: """ Sets the logging level. @param is_quiet: if true, we show minimal log messages, and logging level is WARNING. No debug topics can be enabled @param debug: is debug enabled @param debug_topics: Ignored if is_quiet is True. If it is None, we are not in DEBUG mode, and logging level is WARNING. Otherwise, logging level is DEBUG, and it is a list of debug topic names. Only debug messages related to loggers of those topics are recorded. If it is an empty list, we record ALL topics. """ if is_quiet or not debug: self.__set_handlers_level(logging.WARNING) self.is_debugging = False else: self.__set_handlers_level(logging.DEBUG) self.is_debugging = True self.__set_topics_filter(debug_topics) def __set_handlers_level(self, level: int) -> None: """ Sets the level of all handlers to the given logging level, except the debug log handler @param level - A logging level such as logging.DEBUG We assume the level is a number that represents valid logging level! """ for handler in self.handlers: if handler != self.debug_log_handler: handler.setLevel(level) def __set_topics_filter(self, debug_topics: Optional[List[str]] = None) -> None: """ Adds a filter to the stdout logger to ignore logging topics not provided. @param debug_topics - If it is None, we are not in DEBUG mode, and logging level is WARNING. Otherwise, logging level is DEBUG, and it is a list of debug topic names. Only debug messages related to loggers of those topics are recorded. If it is an empty list, we record ALL topics. """ for _filter in self.stdout_handler.filters: self.stdout_handler.removeFilter(_filter) if self.is_debugging and debug_topics is not None and len(debug_topics) > 0: topics = [n.strip() for n in debug_topics] self.stdout_handler.addFilter(TopicFilter(topics)) def __del__(self) -> None: self.__tear_down()
PypiClean
/pyGSTi-0.9.11.2-cp37-cp37m-win_amd64.whl/pygsti/baseobjs/opcalc/slowopcalc.py
#*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** from functools import partial as _partial import numpy as _np # Has an optimized cython implementation def _typed_bulk_eval_compact_polynomials(vtape, ctape, paramvec, dest_shape, dtype="auto"): """ Evaluate many compact polynomial forms at a given set of variable values. Parameters ---------- vtape, ctape : numpy.ndarray Specifies "variable" and "coefficient" 1D numpy arrays to evaluate. These "tapes" can be generated by concatenating the tapes of individual complact-polynomial tuples returned by :meth:`Polynomial.compact`. paramvec : array-like An object that can be indexed so that `paramvec[i]` gives the numerical value to substitute for i-th polynomial variable (x_i). dest_shape : tuple The shape of the final array of evaluated polynomials. The resulting 1D array of evaluated polynomials is reshaped accordingly. dtype : {"auto", "real", "complex} The type of the coefficient array that is returned. Returns ------- numpy.ndarray An array of the same type as the coefficient tape or with the type given by `dtype`, and with shape given by `dest_shape`. """ if dtype == "auto": result = _np.empty(dest_shape, ctape.dtype) # auto-determine type? elif dtype == "complex": result = _np.empty(dest_shape, complex) elif dtype == "real": result = _np.empty(dest_shape, 'd') else: raise ValueError("Invalid dtype: %s" % dtype) res = result.flat # for 1D access c = 0; i = 0; r = 0 while i < vtape.size: poly_val = 0 nTerms = vtape[i]; i += 1 #print("POLY w/%d terms (i=%d)" % (nTerms,i)) for m in range(nTerms): nVars = vtape[i]; i += 1 # number of variable indices in this term a = ctape[c]; c += 1 #print(" TERM%d: %d vars, coeff=%s" % (m,nVars,str(a))) for k in range(nVars): a *= paramvec[vtape[i]]; i += 1 poly_val += a #print(" -> added %s to poly_val = %s" % (str(a),str(poly_val))," i=%d, vsize=%d" % (i,vtape.size)) res[r] = poly_val; r += 1 assert(c == ctape.size), "Coeff Tape length error: %d != %d !" % (c, ctape.size) assert(r == result.size), "Result/Tape size mismatch: only %d result entries filled!" % r return result # These have separate cython implementations but the same python implementation, so we'll simply alias the names bulk_eval_compact_polynomials_real = _partial(_typed_bulk_eval_compact_polynomials, dtype='real') bulk_eval_compact_polynomials_complex = _partial(_typed_bulk_eval_compact_polynomials, dtype='complex') def _typed_bulk_eval_compact_polynomials_derivs(vtape, ctape, wrt_params, paramvec, dest_shape, dtype="auto"): #Note: assumes wrt_params is SORTED but doesn't assert it like Python version does vtape_sz = vtape.size wrt_sz = wrt_params.size assert(len(dest_shape) == 2) assert(len(wrt_params) == dest_shape[1]) if dtype == "auto": result = _np.zeros(dest_shape, ctape.dtype) # auto-determine type? elif dtype == "complex": result = _np.zeros(dest_shape, complex) # indices [iPoly, iParam] elif dtype == "real": result = _np.zeros(dest_shape, 'd') # indices [iPoly, iParam] else: raise ValueError("Invalid dtype: %s" % dtype) c = 0; i = 0; iPoly = 0 while i < vtape_sz: j = i # increment j instead of i for this poly nTerms = vtape[j]; j += 1 #print "POLY w/%d terms (i=%d)" % (nTerms,i) for m in range(nTerms): coeff = ctape[c]; c += 1 nVars = vtape[j]; j += 1 # number of variable indices in this term #print " TERM%d: %d vars, coeff=%s" % (m,nVars,str(coeff)) cur_iWrt = 0 j0 = j # the vtape index where the current term starts j1 = j + nVars # the ending index #Loop to get counts of each variable index that is also in `wrt`. # Once we've passed an element of `wrt` process it, since there can't # see it any more (the var indices are sorted). while j < j1: # loop over variable indices for this term # can't be while True above in case nVars == 0 (then vtape[j] isn't valid) #find an iVar that is also in wrt. # - increment the cur_iWrt or j as needed while cur_iWrt < wrt_sz and vtape[j] > wrt_params[cur_iWrt]: # condition to increment cur_iWrt cur_iWrt += 1 # so wrt_params[cur_iWrt] >= vtape[j] if cur_iWrt == wrt_sz: break # no more possible iVars we're interested in; # we're done with all wrt elements # - at this point we know wrt[cur_iWrt] is valid and wrt[cur_iWrt] >= tape[j] cur_wrt = wrt_params[cur_iWrt] while j < j1 and vtape[j] < cur_wrt: j += 1 # so vtape[j] >= wrt[cur_iWrt] if j == j1: break # no more iVars - we're done #print " check j=%d, val=%d, wrt=%d, cur_iWrt=%d" % (j,vtape[j],cur_wrt,cur_iWrt) if vtape[j] == cur_wrt: #Yay! a value we're looking for is present in the vtape. # Figure out how many there are (easy since vtape is sorted # and we'll always stop on the first one) cnt = 0 while j < j1 and vtape[j] == cur_wrt: cnt += 1; j += 1 #Process cur_iWrt: add a term to evaluated poly for derivative w.r.t. wrt_params[cur_iWrt] a = coeff * cnt for k in range(j0, j1): if k == j - 1: continue # remove this index a *= paramvec[vtape[k]] result[iPoly, cur_iWrt] += a cur_iWrt += 1 # processed this wrt param - move to next one j = j1 # move to next term; j may not have been incremented if we exited b/c of cur_iWrt reaching end i = j # update location in vtape after processing poly - actually could just use i instead of j it seems?? iPoly += 1 return result # These have separate cython implementations but the same python implementation, so we'll simply alias the names bulk_eval_compact_polynomials_derivs_real = _partial(_typed_bulk_eval_compact_polynomials_derivs, dtype='real') bulk_eval_compact_polynomials_derivs_complex = _partial(_typed_bulk_eval_compact_polynomials_derivs, dtype='complex') def abs_sum_bulk_eval_compact_polynomials_complex(vtape, ctape, paramvec, dest_size, **kwargs): """Equivalent to np.sum(np.abs(bulk_eval_compact_polynomials_complex(.)))""" return _np.sum(_np.abs(bulk_eval_compact_polynomials_complex(vtape, ctape, paramvec, (dest_size,), **kwargs))) def compact_deriv(vtape, ctape, wrt_params): """ Take the derivative of one or more compact Polynomials with respect to one or more variables/parameters. Parameters ---------- vtape, ctape : numpy.ndarray Specifies "variable" and "coefficient" 1D numpy arrays to differentiate. These "tapes" can be generated by concatenating the tapes of individual complact-polynomial tuples returned by :meth:`Polynomial.compact`. wrt_params : list The variable indices to differentiate with respect to. They must be sorted in ascending order. E.g. "[0,3]" means separatey differentiate w.r.t x_0 and x_3 (concatenated first by wrt_param then by poly). Returns ------- vtape, ctape : numpy.ndarray """ result_vtape = [] result_ctape = [] wrt = sorted(wrt_params) assert(wrt == list(wrt_params)), "`wrt_params` (%s) must be in ascending order!" % wrt_params #print("TAPE SIZE = ",vtape.size) c = 0; i = 0 while i < vtape.size: j = i # increment j instead of i for this poly nTerms = vtape[j]; j += 1 dctapes = [list() for x in range(len(wrt))] dvtapes = [list() for x in range(len(wrt))] dnterms = [0] * len(wrt) #print("POLY w/%d terms (i=%d)" % (nTerms,i)) for m in range(nTerms): coeff = ctape[c]; c += 1 nVars = vtape[j]; j += 1 # number of variable indices in this term #print(" TERM%d: %d vars, coeff=%s" % (m,nVars,str(coeff))) cur_iWrt = 0 j0 = j # the vtape index where the current term starts #Loop to get counts of each variable index that is also in `wrt`. # Once we've passed an element of `wrt` process it, since there can't # see it any more (the var indices are sorted). while j < j0 + nVars: # loop over variable indices for this term # can't be while True above in case nVars == 0 (then vtape[j] isn't valid) #find an iVar that is also in wrt. # - increment the cur_iWrt or j as needed while cur_iWrt < len(wrt) and vtape[j] > wrt[cur_iWrt]: # condition to increment cur_iWrt cur_iWrt += 1 # so wrt[cur_iWrt] >= vtape[j] if cur_iWrt == len(wrt): break # no more possible iVars we're interested in; # we're done with all wrt elements # - at this point we know wrt[cur_iWrt] is valid and wrt[cur_iWrt] >= tape[j] while j < j0 + nVars and vtape[j] < wrt[cur_iWrt]: j += 1 # so vtape[j] >= wrt[cur_iWrt] if j == j0 + nVars: break # no more iVars - we're done #print(" check j=%d, val=%d, wrt=%d, cur_iWrt=%d" % (j,vtape[j],wrt[cur_iWrt],cur_iWrt)) if vtape[j] == wrt[cur_iWrt]: #Yay! a value we're looking for is present in the vtape. # Figure out how many there are (easy since vtape is sorted # and we'll always stop on the first one) cnt = 0 while j < j0 + nVars and vtape[j] == wrt[cur_iWrt]: cnt += 1; j += 1 #Process cur_iWrt: add a term to tape for cur_iWrt dvars = list(vtape[j0:j - 1]) + list(vtape[j:j0 + nVars]) # removes last wrt[cur_iWrt] var dctapes[cur_iWrt].append(coeff * cnt) dvtapes[cur_iWrt].extend([nVars - 1] + dvars) dnterms[cur_iWrt] += 1 # print(" wrt=%d found cnt=%d: adding deriv term coeff=%f vars=%s" \ # % (wrt[cur_iWrt], cnt, coeff*cnt, [nVars-1] + dvars)) cur_iWrt += 1 # processed this wrt param - move to next one #Now term has been processed, adding derivative terms to the dctapes and dvtapes "tape-lists" # We continue processing terms, adding to these tape lists, until all the terms of the # current poly are processed. Then we can concatenate the tapes for each wrt_params element. # Move to next term; j may not have been incremented if we exited b/c of cur_iWrt reaching end j = j0 + nVars #Now all terms are processed - concatenate tapes for wrt_params and add to resulting tape. for nTerms, dvtape, dctape in zip(dnterms, dvtapes, dctapes): result_vtape.extend([nTerms] + dvtape) result_ctape.extend(dctape) i = j # update location in vtape after processing poly - actually could just use i instead of j it seems?? return _np.array(result_vtape, _np.int64), _np.array(result_ctape, complex) def float_product(ar): return _np.prod(ar)
PypiClean
/pysnmp-bw-5.0.3.tar.gz/pysnmp-bw-5.0.3/pysnmp/hlapi/v3arch/lcd.py
from pyasn1.compat.octets import null from pysnmp import error from pysnmp import nextid from pysnmp.entity import config from pysnmp.hlapi.v3arch.auth import * __all__ = ['CommandGeneratorLcdConfigurator', 'NotificationOriginatorLcdConfigurator'] class AbstractLcdConfigurator(object): nextID = nextid.Integer(0xffffffff) cacheKeys = [] def _getCache(self, snmpEngine): cacheId = self.__class__.__name__ cache = snmpEngine.getUserContext(cacheId) if cache is None: cache = dict([(x, {}) for x in self.cacheKeys]) snmpEngine.setUserContext(**{cacheId: cache}) return cache def configure(self, snmpEngine, *args, **kwargs): pass def unconfigure(self, snmpEngine, *args, **kwargs): pass class CommandGeneratorLcdConfigurator(AbstractLcdConfigurator): cacheKeys = ['auth', 'parm', 'tran', 'addr'] def configure(self, snmpEngine, authData, transportTarget, contextName, **options): cache = self._getCache(snmpEngine) if isinstance(authData, CommunityData): if authData.communityIndex not in cache['auth']: config.addV1System( snmpEngine, authData.communityIndex, authData.communityName, authData.contextEngineId, authData.contextName, authData.tag, authData.securityName ) cache['auth'][authData.communityIndex] = authData elif isinstance(authData, UsmUserData): authDataKey = authData.userName, authData.securityEngineId if authDataKey not in cache['auth']: config.addV3User( snmpEngine, authData.userName, authData.authProtocol, authData.authKey, authData.privProtocol, authData.privKey, securityEngineId=authData.securityEngineId, securityName=authData.securityName, authKeyType=authData.authKeyType, privKeyType=authData.privKeyType ) cache['auth'][authDataKey] = authData else: raise error.PySnmpError('Unsupported authentication object') paramsKey = (authData.securityName, authData.securityLevel, authData.mpModel) if paramsKey in cache['parm']: paramsName, useCount = cache['parm'][paramsKey] cache['parm'][paramsKey] = paramsName, useCount + 1 else: paramsName = 'p%s' % self.nextID() config.addTargetParams( snmpEngine, paramsName, authData.securityName, authData.securityLevel, authData.mpModel ) cache['parm'][paramsKey] = paramsName, 1 if transportTarget.TRANSPORT_DOMAIN in cache['tran']: transport, useCount = cache['tran'][transportTarget.TRANSPORT_DOMAIN] transportTarget.verifyDispatcherCompatibility(snmpEngine) cache['tran'][transportTarget.TRANSPORT_DOMAIN] = transport, useCount + 1 elif config.getTransport(snmpEngine, transportTarget.TRANSPORT_DOMAIN): transportTarget.verifyDispatcherCompatibility(snmpEngine) else: transport = transportTarget.openClientMode() config.addTransport( snmpEngine, transportTarget.TRANSPORT_DOMAIN, transport ) cache['tran'][transportTarget.TRANSPORT_DOMAIN] = transport, 1 transportKey = (paramsName, transportTarget.TRANSPORT_DOMAIN, transportTarget.transportAddr, transportTarget.timeout, transportTarget.retries, transportTarget.tagList, transportTarget.iface) if transportKey in cache['addr']: addrName, useCount = cache['addr'][transportKey] cache['addr'][transportKey] = addrName, useCount + 1 else: addrName = 'a%s' % self.nextID() config.addTargetAddr( snmpEngine, addrName, transportTarget.TRANSPORT_DOMAIN, transportTarget.transportAddr, paramsName, transportTarget.timeout * 100, transportTarget.retries, transportTarget.tagList ) cache['addr'][transportKey] = addrName, 1 return addrName, paramsName def unconfigure(self, snmpEngine, authData=None, contextName=null, **options): cache = self._getCache(snmpEngine) if authData: if isinstance(authData, CommunityData): authDataKey = authData.communityIndex elif isinstance(authData, UsmUserData): authDataKey = authData.userName, authData.securityEngineId else: raise error.PySnmpError('Unsupported authentication object') if authDataKey in cache['auth']: authDataKeys = (authDataKey,) else: raise error.PySnmpError('Unknown authData %s' % (authData,)) else: authDataKeys = list(cache['auth'].keys()) addrNames, paramsNames = set(), set() for authDataKey in authDataKeys: authDataX = cache['auth'][authDataKey] del cache['auth'][authDataKey] if isinstance(authDataX, CommunityData): config.delV1System( snmpEngine, authDataX.communityIndex ) elif isinstance(authDataX, UsmUserData): config.delV3User( snmpEngine, authDataX.userName, authDataX.securityEngineId ) else: raise error.PySnmpError('Unsupported authentication object') paramsKey = (authDataX.securityName, authDataX.securityLevel, authDataX.mpModel) if paramsKey in cache['parm']: paramsName, useCount = cache['parm'][paramsKey] useCount -= 1 if useCount: cache['parm'][paramsKey] = paramsName, useCount else: del cache['parm'][paramsKey] config.delTargetParams(snmpEngine, paramsName) paramsNames.add(paramsName) else: raise error.PySnmpError('Unknown target %s' % (paramsKey,)) addrKeys = [x for x in cache['addr'] if x[0] == paramsName] for addrKey in addrKeys: addrName, useCount = cache['addr'][addrKey] useCount -= 1 if useCount: cache['addr'][addrKey] = addrName, useCount else: config.delTargetAddr(snmpEngine, addrName) del cache['addr'][addrKey] addrNames.add(addrKey) if addrKey[1] in cache['tran']: transport, useCount = cache['tran'][addrKey[1]] if useCount > 1: useCount -= 1 cache['tran'][addrKey[1]] = transport, useCount else: config.delTransport(snmpEngine, addrKey[1]) transport.closeTransport() del cache['tran'][addrKey[1]] return addrNames, paramsNames class NotificationOriginatorLcdConfigurator(AbstractLcdConfigurator): cacheKeys = ['auth', 'name'] _cmdGenLcdCfg = CommandGeneratorLcdConfigurator() def configure(self, snmpEngine, authData, transportTarget, notifyType, contextName, **options): cache = self._getCache(snmpEngine) notifyName = None # Create matching transport tags if not given by user. Not good! if not transportTarget.tagList: transportTarget.tagList = str( hash((authData.securityName, transportTarget.transportAddr)) ) if isinstance(authData, CommunityData) and not authData.tag: authData.tag = transportTarget.tagList.split()[0] addrName, paramsName = self._cmdGenLcdCfg.configure( snmpEngine, authData, transportTarget, contextName, **options) tagList = transportTarget.tagList.split() if not tagList: tagList = [''] for tag in tagList: notifyNameKey = paramsName, tag, notifyType if notifyNameKey in cache['name']: notifyName, paramsName, useCount = cache['name'][notifyNameKey] cache['name'][notifyNameKey] = notifyName, paramsName, useCount + 1 else: notifyName = 'n%s' % self.nextID() config.addNotificationTarget( snmpEngine, notifyName, paramsName, tag, notifyType) cache['name'][notifyNameKey] = notifyName, paramsName, 1 authDataKey = authData.securityName, authData.securityModel, authData.securityLevel, contextName if authDataKey in cache['auth']: authDataX, subTree, useCount = cache['auth'][authDataKey] cache['auth'][authDataKey] = authDataX, subTree, useCount + 1 else: subTree = (1, 3, 6) config.addVacmUser( snmpEngine,authData.securityModel, authData.securityName, authData.securityLevel, (), (), subTree, contextName=contextName) cache['auth'][authDataKey] = authData, subTree, 1 return notifyName def unconfigure(self, snmpEngine, authData=None, contextName=null, **options): cache = self._getCache(snmpEngine) if authData: authDataKey = authData.securityName, authData.securityModel, authData.securityLevel, contextName if authDataKey in cache['auth']: authDataKeys = (authDataKey,) else: raise error.PySnmpError('Unknown authData %s' % (authData,)) else: authDataKeys = tuple(cache['auth']) addrNames, paramsNames = self._cmdGenLcdCfg.unconfigure( snmpEngine, authData, contextName, **options) notifyAndParamsNames = [ (cache['name'][x], x) for x in cache['name'].keys() if x[0] in paramsNames ] for (notifyName, paramsName, useCount), notifyNameKey in notifyAndParamsNames: useCount -= 1 if useCount: cache['name'][notifyNameKey] = notifyName, paramsName, useCount else: config.delNotificationTarget(snmpEngine, notifyName, paramsName) del cache['name'][notifyNameKey] for authDataKey in authDataKeys: authDataX, subTree, useCount = cache['auth'][authDataKey] useCount -= 1 if useCount: cache['auth'][authDataKey] = authDataX, subTree, useCount else: config.delTrapUser( snmpEngine, authDataX.securityModel, authDataX.securityName, authDataX.securityLevel, subTree) del cache['auth'][authDataKey]
PypiClean
/sym_api_client_python-2.0b5.tar.gz/sym_api_client_python-2.0b5/symphony/bdk/gen/login_api/authentication_api.py
import re # noqa: F401 import sys # noqa: F401 from symphony.bdk.gen.api_client import ApiClient, Endpoint as _Endpoint from symphony.bdk.gen.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from symphony.bdk.gen.login_model.authenticate_extension_app_request import AuthenticateExtensionAppRequest from symphony.bdk.gen.login_model.authenticate_request import AuthenticateRequest from symphony.bdk.gen.login_model.error import Error from symphony.bdk.gen.login_model.extension_app_tokens import ExtensionAppTokens from symphony.bdk.gen.login_model.token import Token class AuthenticationApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def __pubkey_app_authenticate_post( self, authenticate_request, **kwargs ): """Authenticate an App with public key # noqa: E501 Based on an authentication request token signed by the application's RSA private key, authenticate the API caller and return a session token. A HTTP 401 Unauthorized error is returned on errors during authentication (e.g. invalid app, malformed authentication token, app's public key not imported in the pod, invalid token signature etc.). # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = login_api.pubkey_app_authenticate_post(authenticate_request, async_req=True) >>> result = thread.get() Args: authenticate_request (AuthenticateRequest): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Token If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['authenticate_request'] = \ authenticate_request return self.call_with_http_info(**kwargs) self.pubkey_app_authenticate_post = _Endpoint( settings={ 'response_type': (Token,), 'auth': [], 'endpoint_path': '/pubkey/app/authenticate', 'operation_id': 'pubkey_app_authenticate_post', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'authenticate_request', ], 'required': [ 'authenticate_request', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'authenticate_request': (AuthenticateRequest,), }, 'attribute_map': { }, 'location_map': { 'authenticate_request': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__pubkey_app_authenticate_post ) def __pubkey_app_user_user_id_authenticate_post( self, session_token, user_id, **kwargs ): """Authenticate an application in a delegated context to act on behalf of a user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = login_api.pubkey_app_user_user_id_authenticate_post(session_token, user_id, async_req=True) >>> result = thread.get() Args: session_token (str): App Session authentication token. user_id (int): the user ID Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Token If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['session_token'] = \ session_token kwargs['user_id'] = \ user_id return self.call_with_http_info(**kwargs) self.pubkey_app_user_user_id_authenticate_post = _Endpoint( settings={ 'response_type': (Token,), 'auth': [], 'endpoint_path': '/pubkey/app/user/{userId}/authenticate', 'operation_id': 'pubkey_app_user_user_id_authenticate_post', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'session_token', 'user_id', ], 'required': [ 'session_token', 'user_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'session_token': (str,), 'user_id': (int,), }, 'attribute_map': { 'session_token': 'sessionToken', 'user_id': 'userId', }, 'location_map': { 'session_token': 'header', 'user_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__pubkey_app_user_user_id_authenticate_post ) def __pubkey_app_username_username_authenticate_post( self, session_token, username, **kwargs ): """Authenticate an application in a delegated context to act on behalf of a user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = login_api.pubkey_app_username_username_authenticate_post(session_token, username, async_req=True) >>> result = thread.get() Args: session_token (str): App Session authentication token. username (str): the username Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Token If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['session_token'] = \ session_token kwargs['username'] = \ username return self.call_with_http_info(**kwargs) self.pubkey_app_username_username_authenticate_post = _Endpoint( settings={ 'response_type': (Token,), 'auth': [], 'endpoint_path': '/pubkey/app/username/{username}/authenticate', 'operation_id': 'pubkey_app_username_username_authenticate_post', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'session_token', 'username', ], 'required': [ 'session_token', 'username', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'session_token': (str,), 'username': (str,), }, 'attribute_map': { 'session_token': 'sessionToken', 'username': 'username', }, 'location_map': { 'session_token': 'header', 'username': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__pubkey_app_username_username_authenticate_post ) def __pubkey_authenticate_post( self, authenticate_request, **kwargs ): """Authenticate with public key # noqa: E501 Based on an authentication request token signed by the caller's RSA private key, authenticate the API caller and return a session token. A HTTP 401 Unauthorized error is returned on errors during authentication (e.g. invalid user, malformed authentication token, user's public key not imported in the pod, invalid token signature etc.). # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = login_api.pubkey_authenticate_post(authenticate_request, async_req=True) >>> result = thread.get() Args: authenticate_request (AuthenticateRequest): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Token If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['authenticate_request'] = \ authenticate_request return self.call_with_http_info(**kwargs) self.pubkey_authenticate_post = _Endpoint( settings={ 'response_type': (Token,), 'auth': [], 'endpoint_path': '/pubkey/authenticate', 'operation_id': 'pubkey_authenticate_post', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'authenticate_request', ], 'required': [ 'authenticate_request', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'authenticate_request': (AuthenticateRequest,), }, 'attribute_map': { }, 'location_map': { 'authenticate_request': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__pubkey_authenticate_post ) def __v1_pubkey_app_authenticate_extension_app_post( self, authenticate_request, **kwargs ): """Authenticate extension app with public key # noqa: E501 Based on an authentication request token signed by the caller's RSA private key, authenticate the API caller and return a session token. A HTTP 401 Unauthorized error is returned on errors during authentication (e.g. invalid user, malformed authentication token, user's public key not imported in the pod, invalid token signature etc.). # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = login_api.v1_pubkey_app_authenticate_extension_app_post(authenticate_request, async_req=True) >>> result = thread.get() Args: authenticate_request (AuthenticateExtensionAppRequest): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: ExtensionAppTokens If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['authenticate_request'] = \ authenticate_request return self.call_with_http_info(**kwargs) self.v1_pubkey_app_authenticate_extension_app_post = _Endpoint( settings={ 'response_type': (ExtensionAppTokens,), 'auth': [], 'endpoint_path': '/v1/pubkey/app/authenticate/extensionApp', 'operation_id': 'v1_pubkey_app_authenticate_extension_app_post', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'authenticate_request', ], 'required': [ 'authenticate_request', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'authenticate_request': (AuthenticateExtensionAppRequest,), }, 'attribute_map': { }, 'location_map': { 'authenticate_request': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__v1_pubkey_app_authenticate_extension_app_post )
PypiClean
/alipay_sdk_python-3.6.740-py3-none-any.whl/alipay/aop/api/domain/AlipayFundAllocSignQueryModel.py
import json from alipay.aop.api.constant.ParamConstants import * class AlipayFundAllocSignQueryModel(object): def __init__(self): self._agreement_no = None self._biz_scene = None self._out_biz_no = None self._product_code = None @property def agreement_no(self): return self._agreement_no @agreement_no.setter def agreement_no(self, value): self._agreement_no = value @property def biz_scene(self): return self._biz_scene @biz_scene.setter def biz_scene(self, value): self._biz_scene = value @property def out_biz_no(self): return self._out_biz_no @out_biz_no.setter def out_biz_no(self, value): self._out_biz_no = value @property def product_code(self): return self._product_code @product_code.setter def product_code(self, value): self._product_code = value def to_alipay_dict(self): params = dict() if self.agreement_no: if hasattr(self.agreement_no, 'to_alipay_dict'): params['agreement_no'] = self.agreement_no.to_alipay_dict() else: params['agreement_no'] = self.agreement_no if self.biz_scene: if hasattr(self.biz_scene, 'to_alipay_dict'): params['biz_scene'] = self.biz_scene.to_alipay_dict() else: params['biz_scene'] = self.biz_scene if self.out_biz_no: if hasattr(self.out_biz_no, 'to_alipay_dict'): params['out_biz_no'] = self.out_biz_no.to_alipay_dict() else: params['out_biz_no'] = self.out_biz_no if self.product_code: if hasattr(self.product_code, 'to_alipay_dict'): params['product_code'] = self.product_code.to_alipay_dict() else: params['product_code'] = self.product_code return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayFundAllocSignQueryModel() if 'agreement_no' in d: o.agreement_no = d['agreement_no'] if 'biz_scene' in d: o.biz_scene = d['biz_scene'] if 'out_biz_no' in d: o.out_biz_no = d['out_biz_no'] if 'product_code' in d: o.product_code = d['product_code'] return o
PypiClean
/Orange3-3.35.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/Orange/base.py
import inspect import itertools from collections.abc import Iterable import re import warnings from typing import Callable, Dict, Optional import numpy as np import scipy from Orange.data import Table, Storage, Instance, Value, Domain from Orange.data.filter import HasClass from Orange.data.table import DomainTransformationError from Orange.data.util import one_hot from Orange.misc.environ import cache_dir from Orange.misc.wrapper_meta import WrapperMeta from Orange.preprocess import Continuize, RemoveNaNColumns, SklImpute, Normalize from Orange.statistics.util import all_nan from Orange.util import Reprable, OrangeDeprecationWarning, wrap_callback, \ dummy_callback __all__ = ["Learner", "Model", "SklLearner", "SklModel", "ReprableWithPreprocessors"] class ReprableWithPreprocessors(Reprable): def _reprable_omit_param(self, name, default, value): if name == "preprocessors": default_cls = type(self).preprocessors if value is default or value is default_cls: return True else: try: return all(p1 is p2 for p1, p2 in itertools.zip_longest(value, default_cls)) except (ValueError, TypeError): return False else: return super()._reprable_omit_param(name, default, value) class Learner(ReprableWithPreprocessors): """The base learner class. Preprocessors can behave in a number of different ways, all of which are described here. If the user does not pass a preprocessor argument into the Learner constructor, the default learner preprocessors are used. We assume the user would simply like to get things done without having to worry about preprocessors. If the user chooses to pass in their own preprocessors, we assume they know what they are doing. In this case, only the user preprocessors are used and the default preprocessors are ignored. In case the user would like to use the default preprocessors as well as their own ones, the `use_default_preprocessors` flag should be set. Parameters ---------- preprocessors : Preprocessor or tuple[Preprocessor], optional User defined preprocessors. If the user specifies their own preprocessors, the default ones will not be used, unless the `use_default_preprocessors` flag is set. Attributes ---------- preprocessors : tuple[Preprocessor] (default None) The used defined preprocessors that will be used on any data. use_default_preprocessors : bool (default False) This flag indicates whether to use the default preprocessors that are defined on the Learner class. Since preprocessors can be applied in a number of ways active_preprocessors : tuple[Preprocessor] The processors that will be used when data is passed to the learner. This depends on whether the user has passed in their own preprocessors and whether the `use_default_preprocessors` flag is set. This property is needed mainly because of the `Fitter` class, which can not know in advance, which preprocessors it will need to use. Therefore this resolves the active preprocessors using a lazy approach. params : dict The params that the learner is constructed with. """ supports_multiclass = False supports_weights = False #: A sequence of data preprocessors to apply on data prior to #: fitting the model preprocessors = () # Note: Do not use this class attribute. # It remains here for compatibility reasons. learner_adequacy_err_msg = '' def __init__(self, preprocessors=None): self.use_default_preprocessors = False if isinstance(preprocessors, Iterable): self.preprocessors = tuple(preprocessors) elif preprocessors: self.preprocessors = (preprocessors,) # pylint: disable=R0201 def fit(self, X, Y, W=None): raise RuntimeError( "Descendants of Learner must overload method fit or fit_storage") def fit_storage(self, data): """Default implementation of fit_storage defaults to calling fit. Derived classes must define fit_storage or fit""" X, Y, W = data.X, data.Y, data.W if data.has_weights() else None return self.fit(X, Y, W) def __call__(self, data, progress_callback=None): reason = self.incompatibility_reason(data.domain) if reason is not None: raise ValueError(reason) origdomain = data.domain if isinstance(data, Instance): data = Table(data.domain, [data]) origdata = data if progress_callback is None: progress_callback = dummy_callback progress_callback(0, "Preprocessing...") try: cb = wrap_callback(progress_callback, end=0.1) data = self.preprocess(data, progress_callback=cb) except TypeError: data = self.preprocess(data) warnings.warn("A keyword argument 'progress_callback' has been " "added to the preprocess() signature. Implementing " "the method without the argument is deprecated and " "will result in an error in the future.", OrangeDeprecationWarning) if len(data.domain.class_vars) > 1 and not self.supports_multiclass: raise TypeError("%s doesn't support multiple class variables" % self.__class__.__name__) progress_callback(0.1, "Fitting...") model = self._fit_model(data) model.used_vals = [np.unique(y).astype(int) for y in data.Y[:, None].T] if not hasattr(model, "domain") or model.domain is None: # some models set domain themself and it should be respected # e.g. calibration learners set the base_learner's domain which # would be wrongly overwritten if we set it here for any model model.domain = data.domain model.supports_multiclass = self.supports_multiclass model.name = self.name model.original_domain = origdomain model.original_data = origdata progress_callback(1) return model def _fit_model(self, data): if type(self).fit is Learner.fit: return self.fit_storage(data) else: X, Y, W = data.X, data.Y, data.W if data.has_weights() else None return self.fit(X, Y, W) def preprocess(self, data, progress_callback=None): """Apply the `preprocessors` to the data""" if progress_callback is None: progress_callback = dummy_callback n_pps = len(list(self.active_preprocessors)) for i, pp in enumerate(self.active_preprocessors): progress_callback(i / n_pps) data = pp(data) progress_callback(1) return data @property def active_preprocessors(self): yield from self.preprocessors if (self.use_default_preprocessors and self.preprocessors is not type(self).preprocessors): yield from type(self).preprocessors # pylint: disable=no-self-use def incompatibility_reason(self, _: Domain) -> Optional[str]: """Return None if a learner can fit domain or string explaining why it can not.""" return None @property def name(self): """Return a short name derived from Learner type name""" try: return self.__name except AttributeError: name = self.__class__.__name__ if name.endswith('Learner'): name = name[:-len('Learner')] if name.endswith('Fitter'): name = name[:-len('Fitter')] if isinstance(self, SklLearner) and name.startswith('Skl'): name = name[len('Skl'):] name = name or 'learner' # From http://stackoverflow.com/a/1176023/1090455 <3 self.name = re.sub(r'([a-z0-9])([A-Z])', r'\1 \2', re.sub(r'(.)([A-Z][a-z]+)', r'\1 \2', name)).lower() return self.name @name.setter def name(self, value): self.__name = value def __str__(self): return self.name class Model(Reprable): supports_multiclass = False supports_weights = False Value = 0 Probs = 1 ValueProbs = 2 def __init__(self, domain=None, original_domain=None): self.domain = domain if original_domain is not None: self.original_domain = original_domain else: self.original_domain = domain self.used_vals = None def predict(self, X): if type(self).predict_storage is Model.predict_storage: raise TypeError("Descendants of Model must overload method predict") else: Y = np.zeros((len(X), len(self.domain.class_vars))) Y[:] = np.nan table = Table(self.domain, X, Y) return self.predict_storage(table) def predict_storage(self, data): if isinstance(data, Storage): return self.predict(data.X) elif isinstance(data, Instance): return self.predict(np.atleast_2d(data.x)) raise TypeError("Unrecognized argument (instance of '{}')" .format(type(data).__name__)) def get_backmappers(self, data): backmappers = [] n_values = [] dataclasses = data.domain.class_vars modelclasses = self.domain.class_vars if not (modelclasses and dataclasses): return None, [] # classless model or data; don't touch if len(dataclasses) != len(modelclasses): raise DomainTransformationError( "Mismatching number of model's classes and data classes") for dataclass, modelclass in zip(dataclasses, modelclasses): if dataclass != modelclass: if dataclass.name != modelclass.name: raise DomainTransformationError( f"Model for '{modelclass.name}' " f"cannot predict '{dataclass.name}'") else: raise DomainTransformationError( f"Variables '{modelclass.name}' in the model is " "incompatible with the variable of the same name " "in the data.") n_values.append(dataclass.is_discrete and len(dataclass.values)) if dataclass is not modelclass and dataclass.is_discrete: backmappers.append(dataclass.get_mapper_from(modelclass)) else: backmappers.append(None) if all(x is None for x in backmappers): backmappers = None return backmappers, n_values def backmap_value(self, value, mapped_probs, n_values, backmappers): if backmappers is None: return value if value.ndim == 2: # For multitarget, recursive call by columns new_value = np.zeros(value.shape) for i, n_value, backmapper in zip( itertools.count(), n_values, backmappers): new_value[:, i] = self.backmap_value( value[:, i], mapped_probs[:, i, :], [n_value], [backmapper]) return new_value backmapper = backmappers[0] if backmapper is None: return value value = backmapper(value) nans = np.isnan(value) if not np.any(nans) or n_values[0] < 2: return value if mapped_probs is not None: value[nans] = np.argmax(mapped_probs[nans], axis=1) else: value[nans] = np.random.RandomState(0).choice( backmapper(np.arange(0, n_values[0] - 1)), (np.sum(nans), )) return value def backmap_probs(self, probs, n_values, backmappers): if backmappers is None: return probs if probs.ndim == 3: new_probs = np.zeros((len(probs), len(n_values), max(n_values)), dtype=probs.dtype) for i, n_value, backmapper in zip( itertools.count(), n_values, backmappers): new_probs[:, i, :n_value] = self.backmap_probs( probs[:, i, :], [n_value], [backmapper]) return new_probs backmapper = backmappers[0] if backmapper is None: return probs n_value = n_values[0] new_probs = np.zeros((len(probs), n_value), dtype=probs.dtype) for col in range(probs.shape[1]): target = backmapper(col) if not np.isnan(target): new_probs[:, int(target)] = probs[:, col] tots = np.sum(new_probs, axis=1) zero_sum = tots == 0 new_probs[zero_sum] = 1 tots[zero_sum] = n_value new_probs = new_probs / tots[:, None] return new_probs def data_to_model_domain( self, data: Table, progress_callback: Callable = dummy_callback ) -> Table: """ Transforms data to the model domain if possible. Parameters ---------- data Data to be transformed to the model domain progress_callback Callback - callable - to report the progress Returns ------- Transformed data table Raises ------ DomainTransformationError Error indicates that transformation is not possible since domains are not compatible """ if data.domain == self.domain: return data progress_callback(0) if self.original_domain.attributes != data.domain.attributes \ and data.X.size \ and not all_nan(data.X): progress_callback(0.5) new_data = data.transform(self.original_domain) if all_nan(new_data.X): raise DomainTransformationError( "domain transformation produced no defined values") progress_callback(0.75) data = new_data.transform(self.domain) progress_callback(1) return data progress_callback(0.5) data = data.transform(self.domain) progress_callback(1) return data def __call__(self, data, ret=Value): multitarget = len(self.domain.class_vars) > 1 def one_hot_probs(value): if not multitarget: return one_hot( value, dim=len(self.domain.class_var.values) if self.domain is not None else None ) max_card = max(len(c.values) for c in self.domain.class_vars) probs = np.zeros(value.shape + (max_card,), float) for i in range(len(self.domain.class_vars)): probs[:, i, :] = one_hot(value[:, i]) return probs def extend_probabilities(probs): """ Since SklModels and models implementing `fit` and not `fit_storage` do not guarantee correct prediction dimensionality, extend dimensionality of probabilities when it does not match the number of values in the domain. """ class_vars = self.domain.class_vars max_values = max(len(cv.values) for cv in class_vars) if max_values == probs.shape[-1]: return probs if not self.supports_multiclass: probs = probs[:, np.newaxis, :] probs_ext = np.zeros((len(probs), len(class_vars), max_values)) for c, used_vals in enumerate(self.used_vals): for i, cv in enumerate(used_vals): probs_ext[:, c, cv] = probs[:, c, i] if not self.supports_multiclass: probs_ext = probs_ext[:, 0, :] return probs_ext def fix_dim(x): return x[0] if one_d else x if not 0 <= ret <= 2: raise ValueError("invalid value of argument 'ret'") if ret > 0 and any(v.is_continuous for v in self.domain.class_vars): raise ValueError("cannot predict continuous distributions") # Convert 1d structures to 2d and remember doing it one_d = True if isinstance(data, Instance): data = Table.from_list(data.domain, [data]) elif isinstance(data, (list, tuple)) \ and not isinstance(data[0], (list, tuple)): data = [data] elif isinstance(data, np.ndarray) and data.ndim == 1: data = np.atleast_2d(data) else: one_d = False # if sparse convert to csr_matrix if scipy.sparse.issparse(data): data = data.tocsr() # Call the predictor backmappers = None n_values = [] if isinstance(data, (np.ndarray, scipy.sparse.csr_matrix)): prediction = self.predict(data) elif isinstance(data, Table): backmappers, n_values = self.get_backmappers(data) data = self.data_to_model_domain(data) prediction = self.predict_storage(data) elif isinstance(data, (list, tuple)): data = Table.from_list(self.original_domain, data) data = data.transform(self.domain) prediction = self.predict_storage(data) else: raise TypeError("Unrecognized argument (instance of '{}')" .format(type(data).__name__)) # Parse the result into value and probs if isinstance(prediction, tuple): value, probs = prediction elif prediction.ndim == 1 + multitarget: value, probs = prediction, None elif prediction.ndim == 2 + multitarget: value, probs = None, prediction else: raise TypeError("model returned a %i-dimensional array", prediction.ndim) # Ensure that we have what we need to return; backmapp everything if probs is None and (ret != Model.Value or backmappers is not None): probs = one_hot_probs(value) if probs is not None: probs = extend_probabilities(probs) probs = self.backmap_probs(probs, n_values, backmappers) if ret != Model.Probs: if value is None: value = np.argmax(probs, axis=-1) # probs are already backmapped else: value = self.backmap_value(value, probs, n_values, backmappers) # Return what we need to if ret == Model.Probs: return fix_dim(probs) if isinstance(data, Instance) and not multitarget: value = [Value(self.domain.class_var, value[0])] if ret == Model.Value: return fix_dim(value) else: # ret == Model.ValueProbs return fix_dim(value), fix_dim(probs) def __getstate__(self): """Skip (possibly large) data when pickling models""" state = self.__dict__ if 'original_data' in state: state = state.copy() state['original_data'] = None return state class SklModel(Model, metaclass=WrapperMeta): used_vals = None def __init__(self, skl_model): self.skl_model = skl_model def predict(self, X): value = self.skl_model.predict(X) # SVM has probability attribute which defines if method compute probs has_prob_attr = hasattr(self.skl_model, "probability") if (has_prob_attr and self.skl_model.probability or not has_prob_attr and hasattr(self.skl_model, "predict_proba")): probs = self.skl_model.predict_proba(X) return value, probs return value def __repr__(self): # Params represented as a comment because not passed into constructor return super().__repr__() + ' # params=' + repr(self.params) class SklLearner(Learner, metaclass=WrapperMeta): """ ${skldoc} Additional Orange parameters preprocessors : list, optional An ordered list of preprocessors applied to data before training or testing. Defaults to `[RemoveNaNClasses(), Continuize(), SklImpute(), RemoveNaNColumns()]` """ __wraps__ = None __returns__ = SklModel _params = {} preprocessors = default_preprocessors = [ HasClass(), Continuize(), RemoveNaNColumns(), SklImpute()] @property def params(self): return self._params @params.setter def params(self, value): self._params = self._get_sklparams(value) def _get_sklparams(self, values): skllearner = self.__wraps__ if skllearner is not None: spec = list( inspect.signature(skllearner.__init__).parameters.keys() ) # first argument is 'self' assert spec[0] == "self" params = { name: values[name] for name in spec[1:] if name in values } else: raise TypeError("Wrapper does not define '__wraps__'") return params def preprocess(self, data, progress_callback=None): data = super().preprocess(data, progress_callback) if any(v.is_discrete and len(v.values) > 2 for v in data.domain.attributes): raise ValueError("Wrapped scikit-learn methods do not support " + "multinomial variables.") return data def __call__(self, data, progress_callback=None): m = super().__call__(data, progress_callback) m.params = self.params return m def _initialize_wrapped(self): # pylint: disable=not-callable return self.__wraps__(**self.params) def fit(self, X, Y, W=None): clf = self._initialize_wrapped() Y = Y.reshape(-1) if W is None or not self.supports_weights: return self.__returns__(clf.fit(X, Y)) return self.__returns__(clf.fit(X, Y, sample_weight=W.reshape(-1))) @property def supports_weights(self): """Indicates whether this learner supports weighted instances. """ return 'sample_weight' in self.__wraps__.fit.__code__.co_varnames def __getattr__(self, item): try: return self.params[item] except (KeyError, AttributeError): raise AttributeError(item) from None # TODO: Disallow (or mirror) __setattr__ for keys in params? def __dir__(self): dd = super().__dir__() return list(sorted(set(dd) | set(self.params.keys()))) class TreeModel(Model): pass class RandomForestModel(Model): """Interface for random forest models """ @property def trees(self): """Return a list of Trees in the forest Returns ------- List[Tree] """ class KNNBase: """Base class for KNN (classification and regression) learners """ # pylint: disable=unused-argument def __init__(self, n_neighbors=5, metric="euclidean", weights="uniform", algorithm='auto', metric_params=None, preprocessors=None): super().__init__(preprocessors=preprocessors) self.params = vars() def fit(self, X, Y, W=None): if self.params["metric_params"] is None and \ self.params.get("metric") == "mahalanobis": self.params["metric_params"] = {"V": np.cov(X.T)} return super().fit(X, Y, W) class NNBase: """Base class for neural network (classification and regression) learners """ preprocessors = SklLearner.preprocessors + [Normalize()] # pylint: disable=unused-argument,too-many-arguments def __init__(self, hidden_layer_sizes=(100,), activation='relu', solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, preprocessors=None): super().__init__(preprocessors=preprocessors) self.params = vars() class CatGBModel(Model, metaclass=WrapperMeta): def __init__(self, cat_model, cat_features, domain): super().__init__(domain) self.cat_model = cat_model self.cat_features = cat_features def __call__(self, data, ret=Model.Value): if isinstance(data, Table): with data.force_unlocked(data.X): return super().__call__(data, ret) else: return super().__call__(data, ret) def predict(self, X): if self.cat_features: X = X.astype(str) value = self.cat_model.predict(X).flatten() if hasattr(self.cat_model, "predict_proba"): probs = self.cat_model.predict_proba(X) return value, probs return value def __repr__(self): # Params represented as a comment because not passed into constructor return super().__repr__() + ' # params=' + repr(self.params) class CatGBBaseLearner(Learner, metaclass=WrapperMeta): """ ${skldoc} Additional Orange parameters preprocessors : list, optional An ordered list of preprocessors applied to data before training or testing. Defaults to `[RemoveNaNClasses(), RemoveNaNColumns()]` """ supports_weights = True __wraps__ = None __returns__ = CatGBModel _params = {} preprocessors = default_preprocessors = [ HasClass(), RemoveNaNColumns(), ] # pylint: disable=unused-argument,too-many-arguments,too-many-locals def __init__(self, iterations=None, learning_rate=None, depth=None, l2_leaf_reg=None, model_size_reg=None, rsm=None, loss_function=None, border_count=None, feature_border_type=None, per_float_feature_quantization=None, input_borders=None, output_borders=None, fold_permutation_block=None, od_pval=None, od_wait=None, od_type=None, nan_mode=None, counter_calc_method=None, leaf_estimation_iterations=None, leaf_estimation_method=None, thread_count=None, random_seed=None, use_best_model=None, verbose=False, logging_level=None, metric_period=None, ctr_leaf_count_limit=None, store_all_simple_ctr=None, max_ctr_complexity=None, has_time=None, allow_const_label=None, classes_count=None, class_weights=None, one_hot_max_size=None, random_strength=None, name=None, ignored_features=None, train_dir=cache_dir(), custom_loss=None, custom_metric=None, eval_metric=None, bagging_temperature=None, save_snapshot=None, snapshot_file=None, snapshot_interval=None, fold_len_multiplier=None, used_ram_limit=None, gpu_ram_part=None, allow_writing_files=False, final_ctr_computation_mode=None, approx_on_full_history=None, boosting_type=None, simple_ctr=None, combinations_ctr=None, per_feature_ctr=None, task_type=None, device_config=None, devices=None, bootstrap_type=None, subsample=None, sampling_unit=None, dev_score_calc_obj_block_size=None, max_depth=None, n_estimators=None, num_boost_round=None, num_trees=None, colsample_bylevel=None, random_state=None, reg_lambda=None, objective=None, eta=None, max_bin=None, scale_pos_weight=None, gpu_cat_features_storage=None, data_partition=None, metadata=None, early_stopping_rounds=None, cat_features=None, grow_policy=None, min_data_in_leaf=None, min_child_samples=None, max_leaves=None, num_leaves=None, score_function=None, leaf_estimation_backtracking=None, ctr_history_unit=None, monotone_constraints=None, feature_weights=None, penalties_coefficient=None, first_feature_use_penalties=None, model_shrink_rate=None, model_shrink_mode=None, langevin=None, diffusion_temperature=None, posterior_sampling=None, boost_from_average=None, text_features=None, tokenizers=None, dictionaries=None, feature_calcers=None, text_processing=None, preprocessors=None): super().__init__(preprocessors=preprocessors) self.params = vars() @property def params(self): return self._params @params.setter def params(self, value): self._params = self._get_wrapper_params(value) def _get_wrapper_params(self, values): spec = list(inspect.signature( self.__wraps__.__init__).parameters.keys()) return {name: values[name] for name in spec[1:] if name in values} def __call__(self, data, progress_callback=None): m = super().__call__(data, progress_callback) m.params = self.params return m def fit_storage(self, data: Table): with data.force_unlocked(data.X): domain, X, Y, W = data.domain, data.X, data.Y.reshape(-1), None if self.supports_weights and data.has_weights(): W = data.W.reshape(-1) # pylint: disable=not-callable clf = self.__wraps__(**self.params) cat_features = [i for i, attr in enumerate(domain.attributes) if attr.is_discrete] if cat_features: X = X.astype(str) cat_model = clf.fit(X, Y, cat_features=cat_features, sample_weight=W) return self.__returns__(cat_model, cat_features, domain) def __getattr__(self, item): try: return self.params[item] except (KeyError, AttributeError): raise AttributeError(item) from None def __dir__(self): dd = super().__dir__() return list(sorted(set(dd) | set(self.params.keys()))) class XGBBase(SklLearner): """Base class for xgboost (classification and regression) learners """ preprocessors = default_preprocessors = [ HasClass(), Continuize(), RemoveNaNColumns(), ] def __init__(self, preprocessors=None, **kwargs): super().__init__(preprocessors=preprocessors) self.params = kwargs @SklLearner.params.setter def params(self, values: Dict): self._params = values
PypiClean
/gu-django-tinymce-2.7.2.tar.gz/gu-django-tinymce-2.7.2/tinymce/media/tiny_mce/themes/advanced/langs/cy_dlg.js
tinyMCE.addI18n('cy.advanced_dlg',{"link_list":"Rhestr cysylltau","link_is_external":"Mae\'r URL a rydych wedi rhoi yn edrych fel cyswllt allannol, ydych chi eisiau ychwanegu\'r rhagddodiad http:// sydd angen?","link_is_email":"Mae\'r URL a rydych wedi rhoi yn edrych fel cyferiad e-bost, ydych chi eisiau ychwanegu\'r rhagddodiad mailto: sydd angen?","link_titlefield":"Teitl","link_target_blank":"Agor cyswllt mewn ffenst newydd","link_target_same":"Agor cyswllt yn yr un ffenst","link_target":"Targed","link_url":"URL cyswllt","link_title":"Mewnosod/golygu cyswllt","image_align_right":"De","image_align_left":"Chwith","image_align_textbottom":"Gwaelod testun","image_align_texttop":"Pen testun","image_align_bottom":"Gwaelod","image_align_middle":"Canol","image_align_top":"Pen","image_align_baseline":"Gwaelodlin","image_align":"Aliniad","image_hspace":"Gofod llorweddol","image_vspace":"Gofod fertigol","image_dimensions":"Dimensiynau","image_alt":"disgrifiad delwedd","image_list":"Rhestr delweddau","image_border":"Border","image_src":"URL delwedd","image_title":"Mewnosod/golygu delwedd","charmap_title":"Dewis n\u00f4d addasiedig","colorpicker_name":"Enw:","colorpicker_color":"Lliw:","colorpicker_named_title":"Lliwiau wedi\'u enwi","colorpicker_named_tab":"Wedi\'u enwi","colorpicker_palette_title":"Lliwiau palet","colorpicker_palette_tab":"Palet","colorpicker_picker_title":"Dewisydd lliw","colorpicker_picker_tab":"Dweisydd","colorpicker_title":"Dewis lliw","code_wordwrap":"Amlapio geiriau","code_title":"Golygydd Ffynhonell HTML","anchor_name":"Enw angor","anchor_title":"Mewnosod/golygu angor","about_loaded":"Ategion wedi llwytho","about_version":"Fersion","about_author":"Awdur","about_plugin":"Ategyn","about_plugins":"Ategion","about_license":"Twyddedd","about_help":"Cymorth","about_general":"Ynglyn","about_title":"Ynglyn TinyMCE","charmap_usage":"Defnyddiwch saethau dde a chwith i fforio.","anchor_invalid":"Penodwch enw angor dilys.","accessibility_help":"Cymorth Hygyrchedd","accessibility_usage_title":"Defnydd Cyffredin","invalid_color_value":"Gwerth lliw annilys"});
PypiClean
/esi_syncopy-2023.7.tar.gz/esi_syncopy-2023.7/syncopy/synthdata/analog.py
# Builtin/3rd party package imports import numpy as np # syncopy imports from .utils import collect_trials _2pi = np.pi * 2 # ---- Synthetic AnalogData ---- @collect_trials def white_noise(nSamples=1000, nChannels=2, seed=None): """ Plain white noise with unity standard deviation. Parameters ---------- nSamples : int Number of samples per trial nChannels : int Number of channels seed : int or None Set to a number to get reproducible random numbers Returns -------- wn : :class:`syncopy.AnalogData` or numpy.ndarray """ rng = np.random.default_rng(seed) signal = rng.normal(size=(nSamples, nChannels)).astype("f4") return signal @collect_trials def linear_trend(y_max, nSamples=1000, nChannels=2): """ A linear trend on all channels from 0 to `y_max` in `nSamples`. Parameters ---------- y_max : float Ordinate value at the last sample, slope is then given by samplerate * y_max / nSamples nSamples : int Number of samples per trial nChannels : int Number of channels Returns -------- trend : :class:`syncopy.AnalogData` or numpy.ndarray """ trend = np.linspace(0, y_max, nSamples, dtype="f4") return np.column_stack([trend for _ in range(nChannels)]) @collect_trials def harmonic(freq, samplerate, nSamples=1000, nChannels=2): """ A harmonic with frequency `freq`. Parameters ---------- freq : float Frequency of the harmonic in Hz samplerate : float Sampling rate in Hz nSamples : int Number of samples per trial nChannels : int Number of channels Returns -------- harm : :class:`syncopy.AnalogData` or numpy.ndarray """ # the sampling times vector needed for construction tvec = np.arange(nSamples) * 1 / samplerate # the harmonic harm = np.cos(2 * np.pi * freq * tvec, dtype="f4") return np.column_stack([harm for _ in range(nChannels)]) # noisy phase evolution <-> phase diffusion @collect_trials def phase_diffusion( freq, eps=0.1, samplerate=1000, nChannels=2, nSamples=1000, rand_ini=False, return_phase=False, seed=None, ): r""" Linear (harmonic) phase evolution plus a Brownian noise term inducing phase diffusion around the deterministic phase velocity (angular frequency). The linear phase increments are given by .. math:: \Delta \phi = 2\pi \frac{freq}{samplerate} The Brownian increments are scaled with `eps` relative to these phase increments, meaning the relative phase diffusion is frequency independent. Parameters ---------- freq : float Harmonic frequency in Hz eps : float Scaled Brownian increments `1` means the single Wiener step has on average the size of the harmonic increments samplerate : float Sampling rate in Hz nChannels : int Number of channels nSamples : int Number of samples in time rand_ini : bool, optional If set to ``True`` initial phases are randomized return_phase : bool, optional If set to true returns the phases in radians seed: None or int Set to an `int` to get reproducible results, or `None` for random ones. Returns ------- phases : :class:`syncopy.AnalogData` or numpy.ndarray Synthetic `nSamples` x `nChannels` data array simulating noisy phase evolution/diffusion Examples -------- Weak phase diffusion around the 60Hz harmonic: >>> signals = spy.synthdata.phase_diffusion(freq=60, eps=0.01) Return the unwrapped phase directly: >>> phases = spy.synthdata.phase_diffusion(freq=60, eps=0.01, return_phase=True) """ # white noise wn = white_noise(nSamples=nSamples, nChannels=nChannels, seed=seed, nTrials=None) tvec = np.linspace(0, nSamples / samplerate, nSamples, dtype="f4") omega0 = 2 * np.pi * freq lin_phase = np.tile(omega0 * tvec, (nChannels, 1)).T # randomize initial phase if rand_ini: rng = np.random.default_rng(seed) ps0 = 2 * np.pi * rng.uniform(size=nChannels).astype("f4") lin_phase += ps0 # relative Brownian increments rel_eps = np.sqrt(omega0 / samplerate * eps) brown_incr = rel_eps * wn # combine harmonic and diffusive dyncamics phases = lin_phase + np.cumsum(brown_incr, axis=0) if not return_phase: return np.cos(phases) else: return phases @collect_trials def ar2_network(AdjMat=None, nSamples=1000, alphas=(0.55, -0.8), seed=None): """ Simulation of a network of coupled AR(2) processes With the default parameters the individual processes (as in Dhamala 2008) have a spectral peak at 40Hz with a sampling frequency of 200Hz. NOTE: There is no check for stability: setting the `alphas` ad libitum and/or defining large and dense (many connections) systems will almost surely lead to an unstable system NOTE: One can set the number of channels via the shape of the supplied `AdjMat`. Defaults to 2. Parameters ---------- AdjMat : np.ndarray or None `nChannel` x `nChannel` adjacency matrix where entry ``(i,j)`` is the coupling strength from channel ``i -> j``. If left at `None`, the default 2 Channel system with unidirectional ``2 -> 1`` coupling is generated. See also `mk_RandomAdjMat`. nSamples : int, optional Number of samples in time alphas : 2-element sequence, optional The AR(2) parameters for lag1 and lag2 seed : None or int. Random seed to init random number generator, passed on to `np.random.default_rng` function. When using this function with an `nTrials` argument (`@collect_trials` wrapper), and you *do* want the data of all trials to be identical (and reproducible), pass a single scalar seed and set 'seed_per_trial=False'. Returns ------- signal : numpy.ndarray The `nSamples` x `nChannel` solution of the network dynamics """ # default system layout as in Dhamala 2008: # unidirectional (2->1) coupling if AdjMat is None: AdjMat = np.zeros((2, 2), dtype=np.float32) AdjMat[1, 0] = 0.25 else: # cast to our standard type AdjMat = AdjMat.astype(np.float32) nChannels = AdjMat.shape[0] alpha1, alpha2 = alphas # diagonal 'self-interaction' with lag 1 DiagMat = np.diag(nChannels * [alpha1]) signal = np.zeros((nSamples, nChannels), dtype=np.float32) # pick the 1st values at random rng = np.random.default_rng(seed) signal[:2, :] = rng.normal(size=(2, nChannels)) for i in range(2, nSamples): signal[i, :] = (DiagMat + AdjMat.T) @ signal[i - 1, :] + alpha2 * signal[i - 2, :] signal[i, :] += rng.normal(size=(nChannels)) return signal @collect_trials def red_noise(alpha, nSamples=1000, nChannels=2, seed=None): """ Uncoupled multi-channel AR(1) process realizations. For `alpha` close to 1 can be used as a surrogate 1/f background. Parameters ---------- alpha : float Must lie within the [0, 1) interval nSamples : int Number of samples per trial nChannels : int Number of channels seed : int or None Set to a number to get reproducible random numbers Returns -------- signal : :class:`syncopy.AnalogData` or numpy.ndarray """ # configure AR2 network to arrive at the uncoupled # AR1 processes alphas = [alpha, 0] AdjMat = np.diag(np.zeros(nChannels)) signal = ar2_network(AdjMat=AdjMat, nSamples=nSamples, alphas=alphas, seed=seed, nTrials=None) return signal def ar2_peak_freq(a1, a2, samplerate=1): """ Helper function to tune spectral peak of AR(2) process """ if np.any((a1**2 + 4 * a2) > 0): raise ValueError("No complex roots!") return np.arccos(a1 * (a2 - 1) / (4 * a2)) * 1 / _2pi * samplerate def mk_RandomAdjMat(nChannels=3, conn_thresh=0.25, max_coupling=0.25, seed=None): """ Create a random adjacency matrix for the network of AR(2) processes where entry ``(i,j)`` is the coupling strength from channel ``i -> j`` Parameters --------- nChannels : int Number of channels (network nodes) conn_thresh : float Connectivity threshold for the Bernoulli sampling of the network connections. Setting ``conn_thresh = 1`` yields a fully connected network (not recommended). max_coupling : float < 0.5, optional Total input into single channel normalized by number of couplings (for stability). seed: None or int, passed on to `np.random.default_rng`. Set to an int to get reproducible results. Returns ------- AdjMat : numpy.ndarray `nChannels` x `nChannels` adjacency matrix where """ # random numbers in [0,1) rng = np.random.default_rng(seed) AdjMat = rng.random((nChannels, nChannels)) # all smaller than threshold elements get set to 1 (coupled) AdjMat = (AdjMat < conn_thresh).astype(float) # set diagonal to 0 to easier identify coupling np.fill_diagonal(AdjMat, 0) # normalize such that total input # does not exceed max. coupling norm = AdjMat.sum(axis=0) norm[norm == 0] = 1 AdjMat = AdjMat / norm[None, :] * max_coupling return AdjMat
PypiClean
/jupyros-0.7.0a0.tar.gz/jupyros-0.7.0a0/js/node_modules/webpack/lib/wasm/EnableWasmLoadingPlugin.js
"use strict"; /** @typedef {import("../../declarations/WebpackOptions").LibraryOptions} LibraryOptions */ /** @typedef {import("../../declarations/WebpackOptions").WasmLoadingType} WasmLoadingType */ /** @typedef {import("../Compiler")} Compiler */ /** @type {WeakMap<Compiler, Set<WasmLoadingType>>} */ const enabledTypes = new WeakMap(); const getEnabledTypes = compiler => { let set = enabledTypes.get(compiler); if (set === undefined) { set = new Set(); enabledTypes.set(compiler, set); } return set; }; class EnableWasmLoadingPlugin { /** * @param {WasmLoadingType} type library type that should be available */ constructor(type) { this.type = type; } /** * @param {Compiler} compiler the compiler instance * @param {WasmLoadingType} type type of library * @returns {void} */ static setEnabled(compiler, type) { getEnabledTypes(compiler).add(type); } /** * @param {Compiler} compiler the compiler instance * @param {WasmLoadingType} type type of library * @returns {void} */ static checkEnabled(compiler, type) { if (!getEnabledTypes(compiler).has(type)) { throw new Error( `Library type "${type}" is not enabled. ` + "EnableWasmLoadingPlugin need to be used to enable this type of wasm loading. " + 'This usually happens through the "output.enabledWasmLoadingTypes" option. ' + 'If you are using a function as entry which sets "wasmLoading", you need to add all potential library types to "output.enabledWasmLoadingTypes". ' + "These types are enabled: " + Array.from(getEnabledTypes(compiler)).join(", ") ); } } /** * Apply the plugin * @param {Compiler} compiler the compiler instance * @returns {void} */ apply(compiler) { const { type } = this; // Only enable once const enabled = getEnabledTypes(compiler); if (enabled.has(type)) return; enabled.add(type); if (typeof type === "string") { switch (type) { case "fetch": { // TODO webpack 6 remove FetchCompileWasmPlugin const FetchCompileWasmPlugin = require("../web/FetchCompileWasmPlugin"); const FetchCompileAsyncWasmPlugin = require("../web/FetchCompileAsyncWasmPlugin"); new FetchCompileWasmPlugin({ mangleImports: compiler.options.optimization.mangleWasmImports }).apply(compiler); new FetchCompileAsyncWasmPlugin().apply(compiler); break; } case "async-node": { // TODO webpack 6 remove ReadFileCompileWasmPlugin const ReadFileCompileWasmPlugin = require("../node/ReadFileCompileWasmPlugin"); // @ts-expect-error typescript bug for duplicate require const ReadFileCompileAsyncWasmPlugin = require("../node/ReadFileCompileAsyncWasmPlugin"); new ReadFileCompileWasmPlugin({ mangleImports: compiler.options.optimization.mangleWasmImports }).apply(compiler); new ReadFileCompileAsyncWasmPlugin({ type }).apply(compiler); break; } case "async-node-module": { // @ts-expect-error typescript bug for duplicate require const ReadFileCompileAsyncWasmPlugin = require("../node/ReadFileCompileAsyncWasmPlugin"); new ReadFileCompileAsyncWasmPlugin({ type, import: true }).apply( compiler ); break; } case "universal": throw new Error( "Universal WebAssembly Loading is not implemented yet" ); default: throw new Error(`Unsupported wasm loading type ${type}. Plugins which provide custom wasm loading types must call EnableWasmLoadingPlugin.setEnabled(compiler, type) to disable this error.`); } } else { // TODO support plugin instances here // apply them to the compiler } } } module.exports = EnableWasmLoadingPlugin;
PypiClean
/py-pure-client-1.38.0.tar.gz/py-pure-client-1.38.0/pypureclient/flasharray/FA_2_22/models/host_performance_by_array.py
import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_22 import models class HostPerformanceByArray(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'bytes_per_mirrored_write': 'int', 'bytes_per_op': 'int', 'bytes_per_read': 'int', 'bytes_per_write': 'int', 'mirrored_write_bytes_per_sec': 'int', 'mirrored_writes_per_sec': 'int', 'qos_rate_limit_usec_per_mirrored_write_op': 'int', 'qos_rate_limit_usec_per_read_op': 'int', 'qos_rate_limit_usec_per_write_op': 'int', 'queue_usec_per_mirrored_write_op': 'int', 'queue_usec_per_read_op': 'int', 'queue_usec_per_write_op': 'int', 'read_bytes_per_sec': 'int', 'reads_per_sec': 'int', 'san_usec_per_mirrored_write_op': 'int', 'san_usec_per_read_op': 'int', 'san_usec_per_write_op': 'int', 'service_usec_per_mirrored_write_op': 'int', 'service_usec_per_read_op': 'int', 'service_usec_per_write_op': 'int', 'time': 'int', 'usec_per_mirrored_write_op': 'int', 'usec_per_read_op': 'int', 'usec_per_write_op': 'int', 'write_bytes_per_sec': 'int', 'writes_per_sec': 'int', 'service_usec_per_read_op_cache_reduction': 'float', 'id': 'str', 'name': 'str', 'array': 'Resource' } attribute_map = { 'bytes_per_mirrored_write': 'bytes_per_mirrored_write', 'bytes_per_op': 'bytes_per_op', 'bytes_per_read': 'bytes_per_read', 'bytes_per_write': 'bytes_per_write', 'mirrored_write_bytes_per_sec': 'mirrored_write_bytes_per_sec', 'mirrored_writes_per_sec': 'mirrored_writes_per_sec', 'qos_rate_limit_usec_per_mirrored_write_op': 'qos_rate_limit_usec_per_mirrored_write_op', 'qos_rate_limit_usec_per_read_op': 'qos_rate_limit_usec_per_read_op', 'qos_rate_limit_usec_per_write_op': 'qos_rate_limit_usec_per_write_op', 'queue_usec_per_mirrored_write_op': 'queue_usec_per_mirrored_write_op', 'queue_usec_per_read_op': 'queue_usec_per_read_op', 'queue_usec_per_write_op': 'queue_usec_per_write_op', 'read_bytes_per_sec': 'read_bytes_per_sec', 'reads_per_sec': 'reads_per_sec', 'san_usec_per_mirrored_write_op': 'san_usec_per_mirrored_write_op', 'san_usec_per_read_op': 'san_usec_per_read_op', 'san_usec_per_write_op': 'san_usec_per_write_op', 'service_usec_per_mirrored_write_op': 'service_usec_per_mirrored_write_op', 'service_usec_per_read_op': 'service_usec_per_read_op', 'service_usec_per_write_op': 'service_usec_per_write_op', 'time': 'time', 'usec_per_mirrored_write_op': 'usec_per_mirrored_write_op', 'usec_per_read_op': 'usec_per_read_op', 'usec_per_write_op': 'usec_per_write_op', 'write_bytes_per_sec': 'write_bytes_per_sec', 'writes_per_sec': 'writes_per_sec', 'service_usec_per_read_op_cache_reduction': 'service_usec_per_read_op_cache_reduction', 'id': 'id', 'name': 'name', 'array': 'array' } required_args = { } def __init__( self, bytes_per_mirrored_write=None, # type: int bytes_per_op=None, # type: int bytes_per_read=None, # type: int bytes_per_write=None, # type: int mirrored_write_bytes_per_sec=None, # type: int mirrored_writes_per_sec=None, # type: int qos_rate_limit_usec_per_mirrored_write_op=None, # type: int qos_rate_limit_usec_per_read_op=None, # type: int qos_rate_limit_usec_per_write_op=None, # type: int queue_usec_per_mirrored_write_op=None, # type: int queue_usec_per_read_op=None, # type: int queue_usec_per_write_op=None, # type: int read_bytes_per_sec=None, # type: int reads_per_sec=None, # type: int san_usec_per_mirrored_write_op=None, # type: int san_usec_per_read_op=None, # type: int san_usec_per_write_op=None, # type: int service_usec_per_mirrored_write_op=None, # type: int service_usec_per_read_op=None, # type: int service_usec_per_write_op=None, # type: int time=None, # type: int usec_per_mirrored_write_op=None, # type: int usec_per_read_op=None, # type: int usec_per_write_op=None, # type: int write_bytes_per_sec=None, # type: int writes_per_sec=None, # type: int service_usec_per_read_op_cache_reduction=None, # type: float id=None, # type: str name=None, # type: str array=None, # type: models.Resource ): """ Keyword args: bytes_per_mirrored_write (int): The average I/O size per mirrored write. Measured in bytes. bytes_per_op (int): The average I/O size for both read and write (all) operations. bytes_per_read (int): The average I/O size per read. Measured in bytes. bytes_per_write (int): The average I/O size per write. Measured in bytes. mirrored_write_bytes_per_sec (int): The number of mirrored bytes written per second. mirrored_writes_per_sec (int): The number of mirrored writes per second. qos_rate_limit_usec_per_mirrored_write_op (int): The average time it takes the array to process a mirrored I/O write request. Measured in microseconds. qos_rate_limit_usec_per_read_op (int): The average time spent waiting due to QoS rate limiting for a read request. Measured in microseconds. qos_rate_limit_usec_per_write_op (int): The average time that a write I/O request spends waiting as a result of the volume reaching its QoS bandwidth limit. Measured in microseconds. queue_usec_per_mirrored_write_op (int): The average time that a mirrored write I/O request spends in the array waiting to be served. Measured in microseconds. queue_usec_per_read_op (int): The average time that a read I/O request spends in the array waiting to be served. Measured in microseconds. queue_usec_per_write_op (int): The average time that a write I/O request spends in the array waiting to be served. Measured in microseconds. read_bytes_per_sec (int): The number of bytes read per second. reads_per_sec (int): The number of read requests processed per second. san_usec_per_mirrored_write_op (int): The average time required to transfer data from the initiator to the array for a mirrored write request. Measured in microseconds. san_usec_per_read_op (int): The average time required to transfer data from the array to the initiator for a read request. Measured in microseconds. san_usec_per_write_op (int): The average time required to transfer data from the initiator to the array for a write request. Measured in microseconds. service_usec_per_mirrored_write_op (int): The average time required for the array to service a mirrored write request. Measured in microseconds. service_usec_per_read_op (int): The average time required for the array to service a read request. Measured in microseconds. service_usec_per_write_op (int): The average time required for the array to service a write request. Measured in microseconds. time (int): The time when the sample performance data was taken. Measured in milliseconds since the UNIX epoch. usec_per_mirrored_write_op (int): The average time it takes the array to process a mirrored I/O write request. Measured in microseconds. The average time does not include SAN time, queue time, or QoS rate limit time. usec_per_read_op (int): The average time it takes the array to process an I/O read request. Measured in microseconds. The average time does not include SAN time, queue time, or QoS rate limit time. usec_per_write_op (int): The average time it takes the array to process an I/O write request. Measured in microseconds. The average time does not include SAN time, queue time, or QoS rate limit time. write_bytes_per_sec (int): The number of bytes written per second. writes_per_sec (int): The number of write requests processed per second. service_usec_per_read_op_cache_reduction (float): The percentage reduction in `service_usec_per_read_op` due to data cache hits. For example, a value of 0.25 indicates that the value of `service_usec_per_read_op` is 25&#37; lower than it would have been without any data cache hits. id (str): A globally unique, system-generated ID. The ID cannot be modified and cannot refer to another resource. name (str): A user-specified name. The name must be locally unique and can be changed. array (Resource): The array on which the performance metrics were recorded. """ if bytes_per_mirrored_write is not None: self.bytes_per_mirrored_write = bytes_per_mirrored_write if bytes_per_op is not None: self.bytes_per_op = bytes_per_op if bytes_per_read is not None: self.bytes_per_read = bytes_per_read if bytes_per_write is not None: self.bytes_per_write = bytes_per_write if mirrored_write_bytes_per_sec is not None: self.mirrored_write_bytes_per_sec = mirrored_write_bytes_per_sec if mirrored_writes_per_sec is not None: self.mirrored_writes_per_sec = mirrored_writes_per_sec if qos_rate_limit_usec_per_mirrored_write_op is not None: self.qos_rate_limit_usec_per_mirrored_write_op = qos_rate_limit_usec_per_mirrored_write_op if qos_rate_limit_usec_per_read_op is not None: self.qos_rate_limit_usec_per_read_op = qos_rate_limit_usec_per_read_op if qos_rate_limit_usec_per_write_op is not None: self.qos_rate_limit_usec_per_write_op = qos_rate_limit_usec_per_write_op if queue_usec_per_mirrored_write_op is not None: self.queue_usec_per_mirrored_write_op = queue_usec_per_mirrored_write_op if queue_usec_per_read_op is not None: self.queue_usec_per_read_op = queue_usec_per_read_op if queue_usec_per_write_op is not None: self.queue_usec_per_write_op = queue_usec_per_write_op if read_bytes_per_sec is not None: self.read_bytes_per_sec = read_bytes_per_sec if reads_per_sec is not None: self.reads_per_sec = reads_per_sec if san_usec_per_mirrored_write_op is not None: self.san_usec_per_mirrored_write_op = san_usec_per_mirrored_write_op if san_usec_per_read_op is not None: self.san_usec_per_read_op = san_usec_per_read_op if san_usec_per_write_op is not None: self.san_usec_per_write_op = san_usec_per_write_op if service_usec_per_mirrored_write_op is not None: self.service_usec_per_mirrored_write_op = service_usec_per_mirrored_write_op if service_usec_per_read_op is not None: self.service_usec_per_read_op = service_usec_per_read_op if service_usec_per_write_op is not None: self.service_usec_per_write_op = service_usec_per_write_op if time is not None: self.time = time if usec_per_mirrored_write_op is not None: self.usec_per_mirrored_write_op = usec_per_mirrored_write_op if usec_per_read_op is not None: self.usec_per_read_op = usec_per_read_op if usec_per_write_op is not None: self.usec_per_write_op = usec_per_write_op if write_bytes_per_sec is not None: self.write_bytes_per_sec = write_bytes_per_sec if writes_per_sec is not None: self.writes_per_sec = writes_per_sec if service_usec_per_read_op_cache_reduction is not None: self.service_usec_per_read_op_cache_reduction = service_usec_per_read_op_cache_reduction if id is not None: self.id = id if name is not None: self.name = name if array is not None: self.array = array def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `HostPerformanceByArray`".format(key)) if key == "bytes_per_mirrored_write" and value is not None: if value < 0: raise ValueError("Invalid value for `bytes_per_mirrored_write`, must be a value greater than or equal to `0`") if key == "bytes_per_op" and value is not None: if value < 0: raise ValueError("Invalid value for `bytes_per_op`, must be a value greater than or equal to `0`") if key == "bytes_per_read" and value is not None: if value < 0: raise ValueError("Invalid value for `bytes_per_read`, must be a value greater than or equal to `0`") if key == "bytes_per_write" and value is not None: if value < 0: raise ValueError("Invalid value for `bytes_per_write`, must be a value greater than or equal to `0`") if key == "mirrored_write_bytes_per_sec" and value is not None: if value < 0: raise ValueError("Invalid value for `mirrored_write_bytes_per_sec`, must be a value greater than or equal to `0`") if key == "mirrored_writes_per_sec" and value is not None: if value < 0: raise ValueError("Invalid value for `mirrored_writes_per_sec`, must be a value greater than or equal to `0`") if key == "qos_rate_limit_usec_per_mirrored_write_op" and value is not None: if value < 0: raise ValueError("Invalid value for `qos_rate_limit_usec_per_mirrored_write_op`, must be a value greater than or equal to `0`") if key == "qos_rate_limit_usec_per_read_op" and value is not None: if value < 0: raise ValueError("Invalid value for `qos_rate_limit_usec_per_read_op`, must be a value greater than or equal to `0`") if key == "qos_rate_limit_usec_per_write_op" and value is not None: if value < 0: raise ValueError("Invalid value for `qos_rate_limit_usec_per_write_op`, must be a value greater than or equal to `0`") if key == "queue_usec_per_mirrored_write_op" and value is not None: if value < 0: raise ValueError("Invalid value for `queue_usec_per_mirrored_write_op`, must be a value greater than or equal to `0`") if key == "queue_usec_per_read_op" and value is not None: if value < 0: raise ValueError("Invalid value for `queue_usec_per_read_op`, must be a value greater than or equal to `0`") if key == "queue_usec_per_write_op" and value is not None: if value < 0: raise ValueError("Invalid value for `queue_usec_per_write_op`, must be a value greater than or equal to `0`") if key == "read_bytes_per_sec" and value is not None: if value < 0: raise ValueError("Invalid value for `read_bytes_per_sec`, must be a value greater than or equal to `0`") if key == "reads_per_sec" and value is not None: if value < 0: raise ValueError("Invalid value for `reads_per_sec`, must be a value greater than or equal to `0`") if key == "san_usec_per_mirrored_write_op" and value is not None: if value < 0: raise ValueError("Invalid value for `san_usec_per_mirrored_write_op`, must be a value greater than or equal to `0`") if key == "san_usec_per_read_op" and value is not None: if value < 0: raise ValueError("Invalid value for `san_usec_per_read_op`, must be a value greater than or equal to `0`") if key == "san_usec_per_write_op" and value is not None: if value < 0: raise ValueError("Invalid value for `san_usec_per_write_op`, must be a value greater than or equal to `0`") if key == "service_usec_per_mirrored_write_op" and value is not None: if value < 0: raise ValueError("Invalid value for `service_usec_per_mirrored_write_op`, must be a value greater than or equal to `0`") if key == "service_usec_per_read_op" and value is not None: if value < 0: raise ValueError("Invalid value for `service_usec_per_read_op`, must be a value greater than or equal to `0`") if key == "service_usec_per_write_op" and value is not None: if value < 0: raise ValueError("Invalid value for `service_usec_per_write_op`, must be a value greater than or equal to `0`") if key == "usec_per_mirrored_write_op" and value is not None: if value < 0: raise ValueError("Invalid value for `usec_per_mirrored_write_op`, must be a value greater than or equal to `0`") if key == "usec_per_read_op" and value is not None: if value < 0: raise ValueError("Invalid value for `usec_per_read_op`, must be a value greater than or equal to `0`") if key == "usec_per_write_op" and value is not None: if value < 0: raise ValueError("Invalid value for `usec_per_write_op`, must be a value greater than or equal to `0`") if key == "write_bytes_per_sec" and value is not None: if value < 0: raise ValueError("Invalid value for `write_bytes_per_sec`, must be a value greater than or equal to `0`") if key == "writes_per_sec" and value is not None: if value < 0: raise ValueError("Invalid value for `writes_per_sec`, must be a value greater than or equal to `0`") if key == "service_usec_per_read_op_cache_reduction" and value is not None: if value > 1.0: raise ValueError("Invalid value for `service_usec_per_read_op_cache_reduction`, value must be less than or equal to `1.0`") if value < 0.0: raise ValueError("Invalid value for `service_usec_per_read_op_cache_reduction`, must be a value greater than or equal to `0.0`") self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def __getitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `HostPerformanceByArray`".format(key)) return object.__getattribute__(self, key) def __setitem__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `HostPerformanceByArray`".format(key)) object.__setattr__(self, key, value) def __delitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `HostPerformanceByArray`".format(key)) object.__delattr__(self, key) def keys(self): return self.attribute_map.keys() def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(HostPerformanceByArray, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, HostPerformanceByArray): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
PypiClean
/kiwitcms-12.4.tar.gz/kiwitcms-12.4/tcms/node_modules/moment/dist/moment.js
var hookCallback; function hooks() { return hookCallback.apply(null, arguments); } // This is done to register the method called with moment() // without creating circular dependencies. function setHookCallback(callback) { hookCallback = callback; } function isArray(input) { return ( input instanceof Array || Object.prototype.toString.call(input) === '[object Array]' ); } function isObject(input) { // IE8 will treat undefined and null as object if it wasn't for // input != null return ( input != null && Object.prototype.toString.call(input) === '[object Object]' ); } function hasOwnProp(a, b) { return Object.prototype.hasOwnProperty.call(a, b); } function isObjectEmpty(obj) { if (Object.getOwnPropertyNames) { return Object.getOwnPropertyNames(obj).length === 0; } else { var k; for (k in obj) { if (hasOwnProp(obj, k)) { return false; } } return true; } } function isUndefined(input) { return input === void 0; } function isNumber(input) { return ( typeof input === 'number' || Object.prototype.toString.call(input) === '[object Number]' ); } function isDate(input) { return ( input instanceof Date || Object.prototype.toString.call(input) === '[object Date]' ); } function map(arr, fn) { var res = [], i, arrLen = arr.length; for (i = 0; i < arrLen; ++i) { res.push(fn(arr[i], i)); } return res; } function extend(a, b) { for (var i in b) { if (hasOwnProp(b, i)) { a[i] = b[i]; } } if (hasOwnProp(b, 'toString')) { a.toString = b.toString; } if (hasOwnProp(b, 'valueOf')) { a.valueOf = b.valueOf; } return a; } function createUTC(input, format, locale, strict) { return createLocalOrUTC(input, format, locale, strict, true).utc(); } function defaultParsingFlags() { // We need to deep clone this object. return { empty: false, unusedTokens: [], unusedInput: [], overflow: -2, charsLeftOver: 0, nullInput: false, invalidEra: null, invalidMonth: null, invalidFormat: false, userInvalidated: false, iso: false, parsedDateParts: [], era: null, meridiem: null, rfc2822: false, weekdayMismatch: false, }; } function getParsingFlags(m) { if (m._pf == null) { m._pf = defaultParsingFlags(); } return m._pf; } var some; if (Array.prototype.some) { some = Array.prototype.some; } else { some = function (fun) { var t = Object(this), len = t.length >>> 0, i; for (i = 0; i < len; i++) { if (i in t && fun.call(this, t[i], i, t)) { return true; } } return false; }; } function isValid(m) { if (m._isValid == null) { var flags = getParsingFlags(m), parsedParts = some.call(flags.parsedDateParts, function (i) { return i != null; }), isNowValid = !isNaN(m._d.getTime()) && flags.overflow < 0 && !flags.empty && !flags.invalidEra && !flags.invalidMonth && !flags.invalidWeekday && !flags.weekdayMismatch && !flags.nullInput && !flags.invalidFormat && !flags.userInvalidated && (!flags.meridiem || (flags.meridiem && parsedParts)); if (m._strict) { isNowValid = isNowValid && flags.charsLeftOver === 0 && flags.unusedTokens.length === 0 && flags.bigHour === undefined; } if (Object.isFrozen == null || !Object.isFrozen(m)) { m._isValid = isNowValid; } else { return isNowValid; } } return m._isValid; } function createInvalid(flags) { var m = createUTC(NaN); if (flags != null) { extend(getParsingFlags(m), flags); } else { getParsingFlags(m).userInvalidated = true; } return m; } // Plugins that add properties should also add the key here (null value), // so we can properly clone ourselves. var momentProperties = (hooks.momentProperties = []), updateInProgress = false; function copyConfig(to, from) { var i, prop, val, momentPropertiesLen = momentProperties.length; if (!isUndefined(from._isAMomentObject)) { to._isAMomentObject = from._isAMomentObject; } if (!isUndefined(from._i)) { to._i = from._i; } if (!isUndefined(from._f)) { to._f = from._f; } if (!isUndefined(from._l)) { to._l = from._l; } if (!isUndefined(from._strict)) { to._strict = from._strict; } if (!isUndefined(from._tzm)) { to._tzm = from._tzm; } if (!isUndefined(from._isUTC)) { to._isUTC = from._isUTC; } if (!isUndefined(from._offset)) { to._offset = from._offset; } if (!isUndefined(from._pf)) { to._pf = getParsingFlags(from); } if (!isUndefined(from._locale)) { to._locale = from._locale; } if (momentPropertiesLen > 0) { for (i = 0; i < momentPropertiesLen; i++) { prop = momentProperties[i]; val = from[prop]; if (!isUndefined(val)) { to[prop] = val; } } } return to; } // Moment prototype object function Moment(config) { copyConfig(this, config); this._d = new Date(config._d != null ? config._d.getTime() : NaN); if (!this.isValid()) { this._d = new Date(NaN); } // Prevent infinite loop in case updateOffset creates new moment // objects. if (updateInProgress === false) { updateInProgress = true; hooks.updateOffset(this); updateInProgress = false; } } function isMoment(obj) { return ( obj instanceof Moment || (obj != null && obj._isAMomentObject != null) ); } function warn(msg) { if ( hooks.suppressDeprecationWarnings === false && typeof console !== 'undefined' && console.warn ) { console.warn('Deprecation warning: ' + msg); } } function deprecate(msg, fn) { var firstTime = true; return extend(function () { if (hooks.deprecationHandler != null) { hooks.deprecationHandler(null, msg); } if (firstTime) { var args = [], arg, i, key, argLen = arguments.length; for (i = 0; i < argLen; i++) { arg = ''; if (typeof arguments[i] === 'object') { arg += '\n[' + i + '] '; for (key in arguments[0]) { if (hasOwnProp(arguments[0], key)) { arg += key + ': ' + arguments[0][key] + ', '; } } arg = arg.slice(0, -2); // Remove trailing comma and space } else { arg = arguments[i]; } args.push(arg); } warn( msg + '\nArguments: ' + Array.prototype.slice.call(args).join('') + '\n' + new Error().stack ); firstTime = false; } return fn.apply(this, arguments); }, fn); } var deprecations = {}; function deprecateSimple(name, msg) { if (hooks.deprecationHandler != null) { hooks.deprecationHandler(name, msg); } if (!deprecations[name]) { warn(msg); deprecations[name] = true; } } hooks.suppressDeprecationWarnings = false; hooks.deprecationHandler = null; function isFunction(input) { return ( (typeof Function !== 'undefined' && input instanceof Function) || Object.prototype.toString.call(input) === '[object Function]' ); } function set(config) { var prop, i; for (i in config) { if (hasOwnProp(config, i)) { prop = config[i]; if (isFunction(prop)) { this[i] = prop; } else { this['_' + i] = prop; } } } this._config = config; // Lenient ordinal parsing accepts just a number in addition to // number + (possibly) stuff coming from _dayOfMonthOrdinalParse. // TODO: Remove "ordinalParse" fallback in next major release. this._dayOfMonthOrdinalParseLenient = new RegExp( (this._dayOfMonthOrdinalParse.source || this._ordinalParse.source) + '|' + /\d{1,2}/.source ); } function mergeConfigs(parentConfig, childConfig) { var res = extend({}, parentConfig), prop; for (prop in childConfig) { if (hasOwnProp(childConfig, prop)) { if (isObject(parentConfig[prop]) && isObject(childConfig[prop])) { res[prop] = {}; extend(res[prop], parentConfig[prop]); extend(res[prop], childConfig[prop]); } else if (childConfig[prop] != null) { res[prop] = childConfig[prop]; } else { delete res[prop]; } } } for (prop in parentConfig) { if ( hasOwnProp(parentConfig, prop) && !hasOwnProp(childConfig, prop) && isObject(parentConfig[prop]) ) { // make sure changes to properties don't modify parent config res[prop] = extend({}, res[prop]); } } return res; } function Locale(config) { if (config != null) { this.set(config); } } var keys; if (Object.keys) { keys = Object.keys; } else { keys = function (obj) { var i, res = []; for (i in obj) { if (hasOwnProp(obj, i)) { res.push(i); } } return res; }; } var defaultCalendar = { sameDay: '[Today at] LT', nextDay: '[Tomorrow at] LT', nextWeek: 'dddd [at] LT', lastDay: '[Yesterday at] LT', lastWeek: '[Last] dddd [at] LT', sameElse: 'L', }; function calendar(key, mom, now) { var output = this._calendar[key] || this._calendar['sameElse']; return isFunction(output) ? output.call(mom, now) : output; } function zeroFill(number, targetLength, forceSign) { var absNumber = '' + Math.abs(number), zerosToFill = targetLength - absNumber.length, sign = number >= 0; return ( (sign ? (forceSign ? '+' : '') : '-') + Math.pow(10, Math.max(0, zerosToFill)).toString().substr(1) + absNumber ); } var formattingTokens = /(\[[^\[]*\])|(\\)?([Hh]mm(ss)?|Mo|MM?M?M?|Do|DDDo|DD?D?D?|ddd?d?|do?|w[o|w]?|W[o|W]?|Qo?|N{1,5}|YYYYYY|YYYYY|YYYY|YY|y{2,4}|yo?|gg(ggg?)?|GG(GGG?)?|e|E|a|A|hh?|HH?|kk?|mm?|ss?|S{1,9}|x|X|zz?|ZZ?|.)/g, localFormattingTokens = /(\[[^\[]*\])|(\\)?(LTS|LT|LL?L?L?|l{1,4})/g, formatFunctions = {}, formatTokenFunctions = {}; // token: 'M' // padded: ['MM', 2] // ordinal: 'Mo' // callback: function () { this.month() + 1 } function addFormatToken(token, padded, ordinal, callback) { var func = callback; if (typeof callback === 'string') { func = function () { return this[callback](); }; } if (token) { formatTokenFunctions[token] = func; } if (padded) { formatTokenFunctions[padded[0]] = function () { return zeroFill(func.apply(this, arguments), padded[1], padded[2]); }; } if (ordinal) { formatTokenFunctions[ordinal] = function () { return this.localeData().ordinal( func.apply(this, arguments), token ); }; } } function removeFormattingTokens(input) { if (input.match(/\[[\s\S]/)) { return input.replace(/^\[|\]$/g, ''); } return input.replace(/\\/g, ''); } function makeFormatFunction(format) { var array = format.match(formattingTokens), i, length; for (i = 0, length = array.length; i < length; i++) { if (formatTokenFunctions[array[i]]) { array[i] = formatTokenFunctions[array[i]]; } else { array[i] = removeFormattingTokens(array[i]); } } return function (mom) { var output = '', i; for (i = 0; i < length; i++) { output += isFunction(array[i]) ? array[i].call(mom, format) : array[i]; } return output; }; } // format date using native date object function formatMoment(m, format) { if (!m.isValid()) { return m.localeData().invalidDate(); } format = expandFormat(format, m.localeData()); formatFunctions[format] = formatFunctions[format] || makeFormatFunction(format); return formatFunctions[format](m); } function expandFormat(format, locale) { var i = 5; function replaceLongDateFormatTokens(input) { return locale.longDateFormat(input) || input; } localFormattingTokens.lastIndex = 0; while (i >= 0 && localFormattingTokens.test(format)) { format = format.replace( localFormattingTokens, replaceLongDateFormatTokens ); localFormattingTokens.lastIndex = 0; i -= 1; } return format; } var defaultLongDateFormat = { LTS: 'h:mm:ss A', LT: 'h:mm A', L: 'MM/DD/YYYY', LL: 'MMMM D, YYYY', LLL: 'MMMM D, YYYY h:mm A', LLLL: 'dddd, MMMM D, YYYY h:mm A', }; function longDateFormat(key) { var format = this._longDateFormat[key], formatUpper = this._longDateFormat[key.toUpperCase()]; if (format || !formatUpper) { return format; } this._longDateFormat[key] = formatUpper .match(formattingTokens) .map(function (tok) { if ( tok === 'MMMM' || tok === 'MM' || tok === 'DD' || tok === 'dddd' ) { return tok.slice(1); } return tok; }) .join(''); return this._longDateFormat[key]; } var defaultInvalidDate = 'Invalid date'; function invalidDate() { return this._invalidDate; } var defaultOrdinal = '%d', defaultDayOfMonthOrdinalParse = /\d{1,2}/; function ordinal(number) { return this._ordinal.replace('%d', number); } var defaultRelativeTime = { future: 'in %s', past: '%s ago', s: 'a few seconds', ss: '%d seconds', m: 'a minute', mm: '%d minutes', h: 'an hour', hh: '%d hours', d: 'a day', dd: '%d days', w: 'a week', ww: '%d weeks', M: 'a month', MM: '%d months', y: 'a year', yy: '%d years', }; function relativeTime(number, withoutSuffix, string, isFuture) { var output = this._relativeTime[string]; return isFunction(output) ? output(number, withoutSuffix, string, isFuture) : output.replace(/%d/i, number); } function pastFuture(diff, output) { var format = this._relativeTime[diff > 0 ? 'future' : 'past']; return isFunction(format) ? format(output) : format.replace(/%s/i, output); } var aliases = {}; function addUnitAlias(unit, shorthand) { var lowerCase = unit.toLowerCase(); aliases[lowerCase] = aliases[lowerCase + 's'] = aliases[shorthand] = unit; } function normalizeUnits(units) { return typeof units === 'string' ? aliases[units] || aliases[units.toLowerCase()] : undefined; } function normalizeObjectUnits(inputObject) { var normalizedInput = {}, normalizedProp, prop; for (prop in inputObject) { if (hasOwnProp(inputObject, prop)) { normalizedProp = normalizeUnits(prop); if (normalizedProp) { normalizedInput[normalizedProp] = inputObject[prop]; } } } return normalizedInput; } var priorities = {}; function addUnitPriority(unit, priority) { priorities[unit] = priority; } function getPrioritizedUnits(unitsObj) { var units = [], u; for (u in unitsObj) { if (hasOwnProp(unitsObj, u)) { units.push({ unit: u, priority: priorities[u] }); } } units.sort(function (a, b) { return a.priority - b.priority; }); return units; } function isLeapYear(year) { return (year % 4 === 0 && year % 100 !== 0) || year % 400 === 0; } function absFloor(number) { if (number < 0) { // -0 -> 0 return Math.ceil(number) || 0; } else { return Math.floor(number); } } function toInt(argumentForCoercion) { var coercedNumber = +argumentForCoercion, value = 0; if (coercedNumber !== 0 && isFinite(coercedNumber)) { value = absFloor(coercedNumber); } return value; } function makeGetSet(unit, keepTime) { return function (value) { if (value != null) { set$1(this, unit, value); hooks.updateOffset(this, keepTime); return this; } else { return get(this, unit); } }; } function get(mom, unit) { return mom.isValid() ? mom._d['get' + (mom._isUTC ? 'UTC' : '') + unit]() : NaN; } function set$1(mom, unit, value) { if (mom.isValid() && !isNaN(value)) { if ( unit === 'FullYear' && isLeapYear(mom.year()) && mom.month() === 1 && mom.date() === 29 ) { value = toInt(value); mom._d['set' + (mom._isUTC ? 'UTC' : '') + unit]( value, mom.month(), daysInMonth(value, mom.month()) ); } else { mom._d['set' + (mom._isUTC ? 'UTC' : '') + unit](value); } } } // MOMENTS function stringGet(units) { units = normalizeUnits(units); if (isFunction(this[units])) { return this[units](); } return this; } function stringSet(units, value) { if (typeof units === 'object') { units = normalizeObjectUnits(units); var prioritized = getPrioritizedUnits(units), i, prioritizedLen = prioritized.length; for (i = 0; i < prioritizedLen; i++) { this[prioritized[i].unit](units[prioritized[i].unit]); } } else { units = normalizeUnits(units); if (isFunction(this[units])) { return this[units](value); } } return this; } var match1 = /\d/, // 0 - 9 match2 = /\d\d/, // 00 - 99 match3 = /\d{3}/, // 000 - 999 match4 = /\d{4}/, // 0000 - 9999 match6 = /[+-]?\d{6}/, // -999999 - 999999 match1to2 = /\d\d?/, // 0 - 99 match3to4 = /\d\d\d\d?/, // 999 - 9999 match5to6 = /\d\d\d\d\d\d?/, // 99999 - 999999 match1to3 = /\d{1,3}/, // 0 - 999 match1to4 = /\d{1,4}/, // 0 - 9999 match1to6 = /[+-]?\d{1,6}/, // -999999 - 999999 matchUnsigned = /\d+/, // 0 - inf matchSigned = /[+-]?\d+/, // -inf - inf matchOffset = /Z|[+-]\d\d:?\d\d/gi, // +00:00 -00:00 +0000 -0000 or Z matchShortOffset = /Z|[+-]\d\d(?::?\d\d)?/gi, // +00 -00 +00:00 -00:00 +0000 -0000 or Z matchTimestamp = /[+-]?\d+(\.\d{1,3})?/, // 123456789 123456789.123 // any word (or two) characters or numbers including two/three word month in arabic. // includes scottish gaelic two word and hyphenated months matchWord = /[0-9]{0,256}['a-z\u00A0-\u05FF\u0700-\uD7FF\uF900-\uFDCF\uFDF0-\uFF07\uFF10-\uFFEF]{1,256}|[\u0600-\u06FF\/]{1,256}(\s*?[\u0600-\u06FF]{1,256}){1,2}/i, regexes; regexes = {}; function addRegexToken(token, regex, strictRegex) { regexes[token] = isFunction(regex) ? regex : function (isStrict, localeData) { return isStrict && strictRegex ? strictRegex : regex; }; } function getParseRegexForToken(token, config) { if (!hasOwnProp(regexes, token)) { return new RegExp(unescapeFormat(token)); } return regexes[token](config._strict, config._locale); } // Code from http://stackoverflow.com/questions/3561493/is-there-a-regexp-escape-function-in-javascript function unescapeFormat(s) { return regexEscape( s .replace('\\', '') .replace( /\\(\[)|\\(\])|\[([^\]\[]*)\]|\\(.)/g, function (matched, p1, p2, p3, p4) { return p1 || p2 || p3 || p4; } ) ); } function regexEscape(s) { return s.replace(/[-\/\\^$*+?.()|[\]{}]/g, '\\$&'); } var tokens = {}; function addParseToken(token, callback) { var i, func = callback, tokenLen; if (typeof token === 'string') { token = [token]; } if (isNumber(callback)) { func = function (input, array) { array[callback] = toInt(input); }; } tokenLen = token.length; for (i = 0; i < tokenLen; i++) { tokens[token[i]] = func; } } function addWeekParseToken(token, callback) { addParseToken(token, function (input, array, config, token) { config._w = config._w || {}; callback(input, config._w, config, token); }); } function addTimeToArrayFromToken(token, input, config) { if (input != null && hasOwnProp(tokens, token)) { tokens[token](input, config._a, config, token); } } var YEAR = 0, MONTH = 1, DATE = 2, HOUR = 3, MINUTE = 4, SECOND = 5, MILLISECOND = 6, WEEK = 7, WEEKDAY = 8; function mod(n, x) { return ((n % x) + x) % x; } var indexOf; if (Array.prototype.indexOf) { indexOf = Array.prototype.indexOf; } else { indexOf = function (o) { // I know var i; for (i = 0; i < this.length; ++i) { if (this[i] === o) { return i; } } return -1; }; } function daysInMonth(year, month) { if (isNaN(year) || isNaN(month)) { return NaN; } var modMonth = mod(month, 12); year += (month - modMonth) / 12; return modMonth === 1 ? isLeapYear(year) ? 29 : 28 : 31 - ((modMonth % 7) % 2); } // FORMATTING addFormatToken('M', ['MM', 2], 'Mo', function () { return this.month() + 1; }); addFormatToken('MMM', 0, 0, function (format) { return this.localeData().monthsShort(this, format); }); addFormatToken('MMMM', 0, 0, function (format) { return this.localeData().months(this, format); }); // ALIASES addUnitAlias('month', 'M'); // PRIORITY addUnitPriority('month', 8); // PARSING addRegexToken('M', match1to2); addRegexToken('MM', match1to2, match2); addRegexToken('MMM', function (isStrict, locale) { return locale.monthsShortRegex(isStrict); }); addRegexToken('MMMM', function (isStrict, locale) { return locale.monthsRegex(isStrict); }); addParseToken(['M', 'MM'], function (input, array) { array[MONTH] = toInt(input) - 1; }); addParseToken(['MMM', 'MMMM'], function (input, array, config, token) { var month = config._locale.monthsParse(input, token, config._strict); // if we didn't find a month name, mark the date as invalid. if (month != null) { array[MONTH] = month; } else { getParsingFlags(config).invalidMonth = input; } }); // LOCALES var defaultLocaleMonths = 'January_February_March_April_May_June_July_August_September_October_November_December'.split( '_' ), defaultLocaleMonthsShort = 'Jan_Feb_Mar_Apr_May_Jun_Jul_Aug_Sep_Oct_Nov_Dec'.split('_'), MONTHS_IN_FORMAT = /D[oD]?(\[[^\[\]]*\]|\s)+MMMM?/, defaultMonthsShortRegex = matchWord, defaultMonthsRegex = matchWord; function localeMonths(m, format) { if (!m) { return isArray(this._months) ? this._months : this._months['standalone']; } return isArray(this._months) ? this._months[m.month()] : this._months[ (this._months.isFormat || MONTHS_IN_FORMAT).test(format) ? 'format' : 'standalone' ][m.month()]; } function localeMonthsShort(m, format) { if (!m) { return isArray(this._monthsShort) ? this._monthsShort : this._monthsShort['standalone']; } return isArray(this._monthsShort) ? this._monthsShort[m.month()] : this._monthsShort[ MONTHS_IN_FORMAT.test(format) ? 'format' : 'standalone' ][m.month()]; } function handleStrictParse(monthName, format, strict) { var i, ii, mom, llc = monthName.toLocaleLowerCase(); if (!this._monthsParse) { // this is not used this._monthsParse = []; this._longMonthsParse = []; this._shortMonthsParse = []; for (i = 0; i < 12; ++i) { mom = createUTC([2000, i]); this._shortMonthsParse[i] = this.monthsShort( mom, '' ).toLocaleLowerCase(); this._longMonthsParse[i] = this.months(mom, '').toLocaleLowerCase(); } } if (strict) { if (format === 'MMM') { ii = indexOf.call(this._shortMonthsParse, llc); return ii !== -1 ? ii : null; } else { ii = indexOf.call(this._longMonthsParse, llc); return ii !== -1 ? ii : null; } } else { if (format === 'MMM') { ii = indexOf.call(this._shortMonthsParse, llc); if (ii !== -1) { return ii; } ii = indexOf.call(this._longMonthsParse, llc); return ii !== -1 ? ii : null; } else { ii = indexOf.call(this._longMonthsParse, llc); if (ii !== -1) { return ii; } ii = indexOf.call(this._shortMonthsParse, llc); return ii !== -1 ? ii : null; } } } function localeMonthsParse(monthName, format, strict) { var i, mom, regex; if (this._monthsParseExact) { return handleStrictParse.call(this, monthName, format, strict); } if (!this._monthsParse) { this._monthsParse = []; this._longMonthsParse = []; this._shortMonthsParse = []; } // TODO: add sorting // Sorting makes sure if one month (or abbr) is a prefix of another // see sorting in computeMonthsParse for (i = 0; i < 12; i++) { // make the regex if we don't have it already mom = createUTC([2000, i]); if (strict && !this._longMonthsParse[i]) { this._longMonthsParse[i] = new RegExp( '^' + this.months(mom, '').replace('.', '') + '$', 'i' ); this._shortMonthsParse[i] = new RegExp( '^' + this.monthsShort(mom, '').replace('.', '') + '$', 'i' ); } if (!strict && !this._monthsParse[i]) { regex = '^' + this.months(mom, '') + '|^' + this.monthsShort(mom, ''); this._monthsParse[i] = new RegExp(regex.replace('.', ''), 'i'); } // test the regex if ( strict && format === 'MMMM' && this._longMonthsParse[i].test(monthName) ) { return i; } else if ( strict && format === 'MMM' && this._shortMonthsParse[i].test(monthName) ) { return i; } else if (!strict && this._monthsParse[i].test(monthName)) { return i; } } } // MOMENTS function setMonth(mom, value) { var dayOfMonth; if (!mom.isValid()) { // No op return mom; } if (typeof value === 'string') { if (/^\d+$/.test(value)) { value = toInt(value); } else { value = mom.localeData().monthsParse(value); // TODO: Another silent failure? if (!isNumber(value)) { return mom; } } } dayOfMonth = Math.min(mom.date(), daysInMonth(mom.year(), value)); mom._d['set' + (mom._isUTC ? 'UTC' : '') + 'Month'](value, dayOfMonth); return mom; } function getSetMonth(value) { if (value != null) { setMonth(this, value); hooks.updateOffset(this, true); return this; } else { return get(this, 'Month'); } } function getDaysInMonth() { return daysInMonth(this.year(), this.month()); } function monthsShortRegex(isStrict) { if (this._monthsParseExact) { if (!hasOwnProp(this, '_monthsRegex')) { computeMonthsParse.call(this); } if (isStrict) { return this._monthsShortStrictRegex; } else { return this._monthsShortRegex; } } else { if (!hasOwnProp(this, '_monthsShortRegex')) { this._monthsShortRegex = defaultMonthsShortRegex; } return this._monthsShortStrictRegex && isStrict ? this._monthsShortStrictRegex : this._monthsShortRegex; } } function monthsRegex(isStrict) { if (this._monthsParseExact) { if (!hasOwnProp(this, '_monthsRegex')) { computeMonthsParse.call(this); } if (isStrict) { return this._monthsStrictRegex; } else { return this._monthsRegex; } } else { if (!hasOwnProp(this, '_monthsRegex')) { this._monthsRegex = defaultMonthsRegex; } return this._monthsStrictRegex && isStrict ? this._monthsStrictRegex : this._monthsRegex; } } function computeMonthsParse() { function cmpLenRev(a, b) { return b.length - a.length; } var shortPieces = [], longPieces = [], mixedPieces = [], i, mom; for (i = 0; i < 12; i++) { // make the regex if we don't have it already mom = createUTC([2000, i]); shortPieces.push(this.monthsShort(mom, '')); longPieces.push(this.months(mom, '')); mixedPieces.push(this.months(mom, '')); mixedPieces.push(this.monthsShort(mom, '')); } // Sorting makes sure if one month (or abbr) is a prefix of another it // will match the longer piece. shortPieces.sort(cmpLenRev); longPieces.sort(cmpLenRev); mixedPieces.sort(cmpLenRev); for (i = 0; i < 12; i++) { shortPieces[i] = regexEscape(shortPieces[i]); longPieces[i] = regexEscape(longPieces[i]); } for (i = 0; i < 24; i++) { mixedPieces[i] = regexEscape(mixedPieces[i]); } this._monthsRegex = new RegExp('^(' + mixedPieces.join('|') + ')', 'i'); this._monthsShortRegex = this._monthsRegex; this._monthsStrictRegex = new RegExp( '^(' + longPieces.join('|') + ')', 'i' ); this._monthsShortStrictRegex = new RegExp( '^(' + shortPieces.join('|') + ')', 'i' ); } // FORMATTING addFormatToken('Y', 0, 0, function () { var y = this.year(); return y <= 9999 ? zeroFill(y, 4) : '+' + y; }); addFormatToken(0, ['YY', 2], 0, function () { return this.year() % 100; }); addFormatToken(0, ['YYYY', 4], 0, 'year'); addFormatToken(0, ['YYYYY', 5], 0, 'year'); addFormatToken(0, ['YYYYYY', 6, true], 0, 'year'); // ALIASES addUnitAlias('year', 'y'); // PRIORITIES addUnitPriority('year', 1); // PARSING addRegexToken('Y', matchSigned); addRegexToken('YY', match1to2, match2); addRegexToken('YYYY', match1to4, match4); addRegexToken('YYYYY', match1to6, match6); addRegexToken('YYYYYY', match1to6, match6); addParseToken(['YYYYY', 'YYYYYY'], YEAR); addParseToken('YYYY', function (input, array) { array[YEAR] = input.length === 2 ? hooks.parseTwoDigitYear(input) : toInt(input); }); addParseToken('YY', function (input, array) { array[YEAR] = hooks.parseTwoDigitYear(input); }); addParseToken('Y', function (input, array) { array[YEAR] = parseInt(input, 10); }); // HELPERS function daysInYear(year) { return isLeapYear(year) ? 366 : 365; } // HOOKS hooks.parseTwoDigitYear = function (input) { return toInt(input) + (toInt(input) > 68 ? 1900 : 2000); }; // MOMENTS var getSetYear = makeGetSet('FullYear', true); function getIsLeapYear() { return isLeapYear(this.year()); } function createDate(y, m, d, h, M, s, ms) { // can't just apply() to create a date: // https://stackoverflow.com/q/181348 var date; // the date constructor remaps years 0-99 to 1900-1999 if (y < 100 && y >= 0) { // preserve leap years using a full 400 year cycle, then reset date = new Date(y + 400, m, d, h, M, s, ms); if (isFinite(date.getFullYear())) { date.setFullYear(y); } } else { date = new Date(y, m, d, h, M, s, ms); } return date; } function createUTCDate(y) { var date, args; // the Date.UTC function remaps years 0-99 to 1900-1999 if (y < 100 && y >= 0) { args = Array.prototype.slice.call(arguments); // preserve leap years using a full 400 year cycle, then reset args[0] = y + 400; date = new Date(Date.UTC.apply(null, args)); if (isFinite(date.getUTCFullYear())) { date.setUTCFullYear(y); } } else { date = new Date(Date.UTC.apply(null, arguments)); } return date; } // start-of-first-week - start-of-year function firstWeekOffset(year, dow, doy) { var // first-week day -- which january is always in the first week (4 for iso, 1 for other) fwd = 7 + dow - doy, // first-week day local weekday -- which local weekday is fwd fwdlw = (7 + createUTCDate(year, 0, fwd).getUTCDay() - dow) % 7; return -fwdlw + fwd - 1; } // https://en.wikipedia.org/wiki/ISO_week_date#Calculating_a_date_given_the_year.2C_week_number_and_weekday function dayOfYearFromWeeks(year, week, weekday, dow, doy) { var localWeekday = (7 + weekday - dow) % 7, weekOffset = firstWeekOffset(year, dow, doy), dayOfYear = 1 + 7 * (week - 1) + localWeekday + weekOffset, resYear, resDayOfYear; if (dayOfYear <= 0) { resYear = year - 1; resDayOfYear = daysInYear(resYear) + dayOfYear; } else if (dayOfYear > daysInYear(year)) { resYear = year + 1; resDayOfYear = dayOfYear - daysInYear(year); } else { resYear = year; resDayOfYear = dayOfYear; } return { year: resYear, dayOfYear: resDayOfYear, }; } function weekOfYear(mom, dow, doy) { var weekOffset = firstWeekOffset(mom.year(), dow, doy), week = Math.floor((mom.dayOfYear() - weekOffset - 1) / 7) + 1, resWeek, resYear; if (week < 1) { resYear = mom.year() - 1; resWeek = week + weeksInYear(resYear, dow, doy); } else if (week > weeksInYear(mom.year(), dow, doy)) { resWeek = week - weeksInYear(mom.year(), dow, doy); resYear = mom.year() + 1; } else { resYear = mom.year(); resWeek = week; } return { week: resWeek, year: resYear, }; } function weeksInYear(year, dow, doy) { var weekOffset = firstWeekOffset(year, dow, doy), weekOffsetNext = firstWeekOffset(year + 1, dow, doy); return (daysInYear(year) - weekOffset + weekOffsetNext) / 7; } // FORMATTING addFormatToken('w', ['ww', 2], 'wo', 'week'); addFormatToken('W', ['WW', 2], 'Wo', 'isoWeek'); // ALIASES addUnitAlias('week', 'w'); addUnitAlias('isoWeek', 'W'); // PRIORITIES addUnitPriority('week', 5); addUnitPriority('isoWeek', 5); // PARSING addRegexToken('w', match1to2); addRegexToken('ww', match1to2, match2); addRegexToken('W', match1to2); addRegexToken('WW', match1to2, match2); addWeekParseToken( ['w', 'ww', 'W', 'WW'], function (input, week, config, token) { week[token.substr(0, 1)] = toInt(input); } ); // HELPERS // LOCALES function localeWeek(mom) { return weekOfYear(mom, this._week.dow, this._week.doy).week; } var defaultLocaleWeek = { dow: 0, // Sunday is the first day of the week. doy: 6, // The week that contains Jan 6th is the first week of the year. }; function localeFirstDayOfWeek() { return this._week.dow; } function localeFirstDayOfYear() { return this._week.doy; } // MOMENTS function getSetWeek(input) { var week = this.localeData().week(this); return input == null ? week : this.add((input - week) * 7, 'd'); } function getSetISOWeek(input) { var week = weekOfYear(this, 1, 4).week; return input == null ? week : this.add((input - week) * 7, 'd'); } // FORMATTING addFormatToken('d', 0, 'do', 'day'); addFormatToken('dd', 0, 0, function (format) { return this.localeData().weekdaysMin(this, format); }); addFormatToken('ddd', 0, 0, function (format) { return this.localeData().weekdaysShort(this, format); }); addFormatToken('dddd', 0, 0, function (format) { return this.localeData().weekdays(this, format); }); addFormatToken('e', 0, 0, 'weekday'); addFormatToken('E', 0, 0, 'isoWeekday'); // ALIASES addUnitAlias('day', 'd'); addUnitAlias('weekday', 'e'); addUnitAlias('isoWeekday', 'E'); // PRIORITY addUnitPriority('day', 11); addUnitPriority('weekday', 11); addUnitPriority('isoWeekday', 11); // PARSING addRegexToken('d', match1to2); addRegexToken('e', match1to2); addRegexToken('E', match1to2); addRegexToken('dd', function (isStrict, locale) { return locale.weekdaysMinRegex(isStrict); }); addRegexToken('ddd', function (isStrict, locale) { return locale.weekdaysShortRegex(isStrict); }); addRegexToken('dddd', function (isStrict, locale) { return locale.weekdaysRegex(isStrict); }); addWeekParseToken(['dd', 'ddd', 'dddd'], function (input, week, config, token) { var weekday = config._locale.weekdaysParse(input, token, config._strict); // if we didn't get a weekday name, mark the date as invalid if (weekday != null) { week.d = weekday; } else { getParsingFlags(config).invalidWeekday = input; } }); addWeekParseToken(['d', 'e', 'E'], function (input, week, config, token) { week[token] = toInt(input); }); // HELPERS function parseWeekday(input, locale) { if (typeof input !== 'string') { return input; } if (!isNaN(input)) { return parseInt(input, 10); } input = locale.weekdaysParse(input); if (typeof input === 'number') { return input; } return null; } function parseIsoWeekday(input, locale) { if (typeof input === 'string') { return locale.weekdaysParse(input) % 7 || 7; } return isNaN(input) ? null : input; } // LOCALES function shiftWeekdays(ws, n) { return ws.slice(n, 7).concat(ws.slice(0, n)); } var defaultLocaleWeekdays = 'Sunday_Monday_Tuesday_Wednesday_Thursday_Friday_Saturday'.split('_'), defaultLocaleWeekdaysShort = 'Sun_Mon_Tue_Wed_Thu_Fri_Sat'.split('_'), defaultLocaleWeekdaysMin = 'Su_Mo_Tu_We_Th_Fr_Sa'.split('_'), defaultWeekdaysRegex = matchWord, defaultWeekdaysShortRegex = matchWord, defaultWeekdaysMinRegex = matchWord; function localeWeekdays(m, format) { var weekdays = isArray(this._weekdays) ? this._weekdays : this._weekdays[ m && m !== true && this._weekdays.isFormat.test(format) ? 'format' : 'standalone' ]; return m === true ? shiftWeekdays(weekdays, this._week.dow) : m ? weekdays[m.day()] : weekdays; } function localeWeekdaysShort(m) { return m === true ? shiftWeekdays(this._weekdaysShort, this._week.dow) : m ? this._weekdaysShort[m.day()] : this._weekdaysShort; } function localeWeekdaysMin(m) { return m === true ? shiftWeekdays(this._weekdaysMin, this._week.dow) : m ? this._weekdaysMin[m.day()] : this._weekdaysMin; } function handleStrictParse$1(weekdayName, format, strict) { var i, ii, mom, llc = weekdayName.toLocaleLowerCase(); if (!this._weekdaysParse) { this._weekdaysParse = []; this._shortWeekdaysParse = []; this._minWeekdaysParse = []; for (i = 0; i < 7; ++i) { mom = createUTC([2000, 1]).day(i); this._minWeekdaysParse[i] = this.weekdaysMin( mom, '' ).toLocaleLowerCase(); this._shortWeekdaysParse[i] = this.weekdaysShort( mom, '' ).toLocaleLowerCase(); this._weekdaysParse[i] = this.weekdays(mom, '').toLocaleLowerCase(); } } if (strict) { if (format === 'dddd') { ii = indexOf.call(this._weekdaysParse, llc); return ii !== -1 ? ii : null; } else if (format === 'ddd') { ii = indexOf.call(this._shortWeekdaysParse, llc); return ii !== -1 ? ii : null; } else { ii = indexOf.call(this._minWeekdaysParse, llc); return ii !== -1 ? ii : null; } } else { if (format === 'dddd') { ii = indexOf.call(this._weekdaysParse, llc); if (ii !== -1) { return ii; } ii = indexOf.call(this._shortWeekdaysParse, llc); if (ii !== -1) { return ii; } ii = indexOf.call(this._minWeekdaysParse, llc); return ii !== -1 ? ii : null; } else if (format === 'ddd') { ii = indexOf.call(this._shortWeekdaysParse, llc); if (ii !== -1) { return ii; } ii = indexOf.call(this._weekdaysParse, llc); if (ii !== -1) { return ii; } ii = indexOf.call(this._minWeekdaysParse, llc); return ii !== -1 ? ii : null; } else { ii = indexOf.call(this._minWeekdaysParse, llc); if (ii !== -1) { return ii; } ii = indexOf.call(this._weekdaysParse, llc); if (ii !== -1) { return ii; } ii = indexOf.call(this._shortWeekdaysParse, llc); return ii !== -1 ? ii : null; } } } function localeWeekdaysParse(weekdayName, format, strict) { var i, mom, regex; if (this._weekdaysParseExact) { return handleStrictParse$1.call(this, weekdayName, format, strict); } if (!this._weekdaysParse) { this._weekdaysParse = []; this._minWeekdaysParse = []; this._shortWeekdaysParse = []; this._fullWeekdaysParse = []; } for (i = 0; i < 7; i++) { // make the regex if we don't have it already mom = createUTC([2000, 1]).day(i); if (strict && !this._fullWeekdaysParse[i]) { this._fullWeekdaysParse[i] = new RegExp( '^' + this.weekdays(mom, '').replace('.', '\\.?') + '$', 'i' ); this._shortWeekdaysParse[i] = new RegExp( '^' + this.weekdaysShort(mom, '').replace('.', '\\.?') + '$', 'i' ); this._minWeekdaysParse[i] = new RegExp( '^' + this.weekdaysMin(mom, '').replace('.', '\\.?') + '$', 'i' ); } if (!this._weekdaysParse[i]) { regex = '^' + this.weekdays(mom, '') + '|^' + this.weekdaysShort(mom, '') + '|^' + this.weekdaysMin(mom, ''); this._weekdaysParse[i] = new RegExp(regex.replace('.', ''), 'i'); } // test the regex if ( strict && format === 'dddd' && this._fullWeekdaysParse[i].test(weekdayName) ) { return i; } else if ( strict && format === 'ddd' && this._shortWeekdaysParse[i].test(weekdayName) ) { return i; } else if ( strict && format === 'dd' && this._minWeekdaysParse[i].test(weekdayName) ) { return i; } else if (!strict && this._weekdaysParse[i].test(weekdayName)) { return i; } } } // MOMENTS function getSetDayOfWeek(input) { if (!this.isValid()) { return input != null ? this : NaN; } var day = this._isUTC ? this._d.getUTCDay() : this._d.getDay(); if (input != null) { input = parseWeekday(input, this.localeData()); return this.add(input - day, 'd'); } else { return day; } } function getSetLocaleDayOfWeek(input) { if (!this.isValid()) { return input != null ? this : NaN; } var weekday = (this.day() + 7 - this.localeData()._week.dow) % 7; return input == null ? weekday : this.add(input - weekday, 'd'); } function getSetISODayOfWeek(input) { if (!this.isValid()) { return input != null ? this : NaN; } // behaves the same as moment#day except // as a getter, returns 7 instead of 0 (1-7 range instead of 0-6) // as a setter, sunday should belong to the previous week. if (input != null) { var weekday = parseIsoWeekday(input, this.localeData()); return this.day(this.day() % 7 ? weekday : weekday - 7); } else { return this.day() || 7; } } function weekdaysRegex(isStrict) { if (this._weekdaysParseExact) { if (!hasOwnProp(this, '_weekdaysRegex')) { computeWeekdaysParse.call(this); } if (isStrict) { return this._weekdaysStrictRegex; } else { return this._weekdaysRegex; } } else { if (!hasOwnProp(this, '_weekdaysRegex')) { this._weekdaysRegex = defaultWeekdaysRegex; } return this._weekdaysStrictRegex && isStrict ? this._weekdaysStrictRegex : this._weekdaysRegex; } } function weekdaysShortRegex(isStrict) { if (this._weekdaysParseExact) { if (!hasOwnProp(this, '_weekdaysRegex')) { computeWeekdaysParse.call(this); } if (isStrict) { return this._weekdaysShortStrictRegex; } else { return this._weekdaysShortRegex; } } else { if (!hasOwnProp(this, '_weekdaysShortRegex')) { this._weekdaysShortRegex = defaultWeekdaysShortRegex; } return this._weekdaysShortStrictRegex && isStrict ? this._weekdaysShortStrictRegex : this._weekdaysShortRegex; } } function weekdaysMinRegex(isStrict) { if (this._weekdaysParseExact) { if (!hasOwnProp(this, '_weekdaysRegex')) { computeWeekdaysParse.call(this); } if (isStrict) { return this._weekdaysMinStrictRegex; } else { return this._weekdaysMinRegex; } } else { if (!hasOwnProp(this, '_weekdaysMinRegex')) { this._weekdaysMinRegex = defaultWeekdaysMinRegex; } return this._weekdaysMinStrictRegex && isStrict ? this._weekdaysMinStrictRegex : this._weekdaysMinRegex; } } function computeWeekdaysParse() { function cmpLenRev(a, b) { return b.length - a.length; } var minPieces = [], shortPieces = [], longPieces = [], mixedPieces = [], i, mom, minp, shortp, longp; for (i = 0; i < 7; i++) { // make the regex if we don't have it already mom = createUTC([2000, 1]).day(i); minp = regexEscape(this.weekdaysMin(mom, '')); shortp = regexEscape(this.weekdaysShort(mom, '')); longp = regexEscape(this.weekdays(mom, '')); minPieces.push(minp); shortPieces.push(shortp); longPieces.push(longp); mixedPieces.push(minp); mixedPieces.push(shortp); mixedPieces.push(longp); } // Sorting makes sure if one weekday (or abbr) is a prefix of another it // will match the longer piece. minPieces.sort(cmpLenRev); shortPieces.sort(cmpLenRev); longPieces.sort(cmpLenRev); mixedPieces.sort(cmpLenRev); this._weekdaysRegex = new RegExp('^(' + mixedPieces.join('|') + ')', 'i'); this._weekdaysShortRegex = this._weekdaysRegex; this._weekdaysMinRegex = this._weekdaysRegex; this._weekdaysStrictRegex = new RegExp( '^(' + longPieces.join('|') + ')', 'i' ); this._weekdaysShortStrictRegex = new RegExp( '^(' + shortPieces.join('|') + ')', 'i' ); this._weekdaysMinStrictRegex = new RegExp( '^(' + minPieces.join('|') + ')', 'i' ); } // FORMATTING function hFormat() { return this.hours() % 12 || 12; } function kFormat() { return this.hours() || 24; } addFormatToken('H', ['HH', 2], 0, 'hour'); addFormatToken('h', ['hh', 2], 0, hFormat); addFormatToken('k', ['kk', 2], 0, kFormat); addFormatToken('hmm', 0, 0, function () { return '' + hFormat.apply(this) + zeroFill(this.minutes(), 2); }); addFormatToken('hmmss', 0, 0, function () { return ( '' + hFormat.apply(this) + zeroFill(this.minutes(), 2) + zeroFill(this.seconds(), 2) ); }); addFormatToken('Hmm', 0, 0, function () { return '' + this.hours() + zeroFill(this.minutes(), 2); }); addFormatToken('Hmmss', 0, 0, function () { return ( '' + this.hours() + zeroFill(this.minutes(), 2) + zeroFill(this.seconds(), 2) ); }); function meridiem(token, lowercase) { addFormatToken(token, 0, 0, function () { return this.localeData().meridiem( this.hours(), this.minutes(), lowercase ); }); } meridiem('a', true); meridiem('A', false); // ALIASES addUnitAlias('hour', 'h'); // PRIORITY addUnitPriority('hour', 13); // PARSING function matchMeridiem(isStrict, locale) { return locale._meridiemParse; } addRegexToken('a', matchMeridiem); addRegexToken('A', matchMeridiem); addRegexToken('H', match1to2); addRegexToken('h', match1to2); addRegexToken('k', match1to2); addRegexToken('HH', match1to2, match2); addRegexToken('hh', match1to2, match2); addRegexToken('kk', match1to2, match2); addRegexToken('hmm', match3to4); addRegexToken('hmmss', match5to6); addRegexToken('Hmm', match3to4); addRegexToken('Hmmss', match5to6); addParseToken(['H', 'HH'], HOUR); addParseToken(['k', 'kk'], function (input, array, config) { var kInput = toInt(input); array[HOUR] = kInput === 24 ? 0 : kInput; }); addParseToken(['a', 'A'], function (input, array, config) { config._isPm = config._locale.isPM(input); config._meridiem = input; }); addParseToken(['h', 'hh'], function (input, array, config) { array[HOUR] = toInt(input); getParsingFlags(config).bigHour = true; }); addParseToken('hmm', function (input, array, config) { var pos = input.length - 2; array[HOUR] = toInt(input.substr(0, pos)); array[MINUTE] = toInt(input.substr(pos)); getParsingFlags(config).bigHour = true; }); addParseToken('hmmss', function (input, array, config) { var pos1 = input.length - 4, pos2 = input.length - 2; array[HOUR] = toInt(input.substr(0, pos1)); array[MINUTE] = toInt(input.substr(pos1, 2)); array[SECOND] = toInt(input.substr(pos2)); getParsingFlags(config).bigHour = true; }); addParseToken('Hmm', function (input, array, config) { var pos = input.length - 2; array[HOUR] = toInt(input.substr(0, pos)); array[MINUTE] = toInt(input.substr(pos)); }); addParseToken('Hmmss', function (input, array, config) { var pos1 = input.length - 4, pos2 = input.length - 2; array[HOUR] = toInt(input.substr(0, pos1)); array[MINUTE] = toInt(input.substr(pos1, 2)); array[SECOND] = toInt(input.substr(pos2)); }); // LOCALES function localeIsPM(input) { // IE8 Quirks Mode & IE7 Standards Mode do not allow accessing strings like arrays // Using charAt should be more compatible. return (input + '').toLowerCase().charAt(0) === 'p'; } var defaultLocaleMeridiemParse = /[ap]\.?m?\.?/i, // Setting the hour should keep the time, because the user explicitly // specified which hour they want. So trying to maintain the same hour (in // a new timezone) makes sense. Adding/subtracting hours does not follow // this rule. getSetHour = makeGetSet('Hours', true); function localeMeridiem(hours, minutes, isLower) { if (hours > 11) { return isLower ? 'pm' : 'PM'; } else { return isLower ? 'am' : 'AM'; } } var baseConfig = { calendar: defaultCalendar, longDateFormat: defaultLongDateFormat, invalidDate: defaultInvalidDate, ordinal: defaultOrdinal, dayOfMonthOrdinalParse: defaultDayOfMonthOrdinalParse, relativeTime: defaultRelativeTime, months: defaultLocaleMonths, monthsShort: defaultLocaleMonthsShort, week: defaultLocaleWeek, weekdays: defaultLocaleWeekdays, weekdaysMin: defaultLocaleWeekdaysMin, weekdaysShort: defaultLocaleWeekdaysShort, meridiemParse: defaultLocaleMeridiemParse, }; // internal storage for locale config files var locales = {}, localeFamilies = {}, globalLocale; function commonPrefix(arr1, arr2) { var i, minl = Math.min(arr1.length, arr2.length); for (i = 0; i < minl; i += 1) { if (arr1[i] !== arr2[i]) { return i; } } return minl; } function normalizeLocale(key) { return key ? key.toLowerCase().replace('_', '-') : key; } // pick the locale from the array // try ['en-au', 'en-gb'] as 'en-au', 'en-gb', 'en', as in move through the list trying each // substring from most specific to least, but move to the next array item if it's a more specific variant than the current root function chooseLocale(names) { var i = 0, j, next, locale, split; while (i < names.length) { split = normalizeLocale(names[i]).split('-'); j = split.length; next = normalizeLocale(names[i + 1]); next = next ? next.split('-') : null; while (j > 0) { locale = loadLocale(split.slice(0, j).join('-')); if (locale) { return locale; } if ( next && next.length >= j && commonPrefix(split, next) >= j - 1 ) { //the next array item is better than a shallower substring of this one break; } j--; } i++; } return globalLocale; } function isLocaleNameSane(name) { // Prevent names that look like filesystem paths, i.e contain '/' or '\' return name.match('^[^/\\\\]*$') != null; } function loadLocale(name) { var oldLocale = null, aliasedRequire; // TODO: Find a better way to register and load all the locales in Node if ( locales[name] === undefined && typeof module !== 'undefined' && module && module.exports && isLocaleNameSane(name) ) { try { oldLocale = globalLocale._abbr; aliasedRequire = require; aliasedRequire('./locale/' + name); getSetGlobalLocale(oldLocale); } catch (e) { // mark as not found to avoid repeating expensive file require call causing high CPU // when trying to find en-US, en_US, en-us for every format call locales[name] = null; // null means not found } } return locales[name]; } // This function will load locale and then set the global locale. If // no arguments are passed in, it will simply return the current global // locale key. function getSetGlobalLocale(key, values) { var data; if (key) { if (isUndefined(values)) { data = getLocale(key); } else { data = defineLocale(key, values); } if (data) { // moment.duration._locale = moment._locale = data; globalLocale = data; } else { if (typeof console !== 'undefined' && console.warn) { //warn user if arguments are passed but the locale could not be set console.warn( 'Locale ' + key + ' not found. Did you forget to load it?' ); } } } return globalLocale._abbr; } function defineLocale(name, config) { if (config !== null) { var locale, parentConfig = baseConfig; config.abbr = name; if (locales[name] != null) { deprecateSimple( 'defineLocaleOverride', 'use moment.updateLocale(localeName, config) to change ' + 'an existing locale. moment.defineLocale(localeName, ' + 'config) should only be used for creating a new locale ' + 'See http://momentjs.com/guides/#/warnings/define-locale/ for more info.' ); parentConfig = locales[name]._config; } else if (config.parentLocale != null) { if (locales[config.parentLocale] != null) { parentConfig = locales[config.parentLocale]._config; } else { locale = loadLocale(config.parentLocale); if (locale != null) { parentConfig = locale._config; } else { if (!localeFamilies[config.parentLocale]) { localeFamilies[config.parentLocale] = []; } localeFamilies[config.parentLocale].push({ name: name, config: config, }); return null; } } } locales[name] = new Locale(mergeConfigs(parentConfig, config)); if (localeFamilies[name]) { localeFamilies[name].forEach(function (x) { defineLocale(x.name, x.config); }); } // backwards compat for now: also set the locale // make sure we set the locale AFTER all child locales have been // created, so we won't end up with the child locale set. getSetGlobalLocale(name); return locales[name]; } else { // useful for testing delete locales[name]; return null; } } function updateLocale(name, config) { if (config != null) { var locale, tmpLocale, parentConfig = baseConfig; if (locales[name] != null && locales[name].parentLocale != null) { // Update existing child locale in-place to avoid memory-leaks locales[name].set(mergeConfigs(locales[name]._config, config)); } else { // MERGE tmpLocale = loadLocale(name); if (tmpLocale != null) { parentConfig = tmpLocale._config; } config = mergeConfigs(parentConfig, config); if (tmpLocale == null) { // updateLocale is called for creating a new locale // Set abbr so it will have a name (getters return // undefined otherwise). config.abbr = name; } locale = new Locale(config); locale.parentLocale = locales[name]; locales[name] = locale; } // backwards compat for now: also set the locale getSetGlobalLocale(name); } else { // pass null for config to unupdate, useful for tests if (locales[name] != null) { if (locales[name].parentLocale != null) { locales[name] = locales[name].parentLocale; if (name === getSetGlobalLocale()) { getSetGlobalLocale(name); } } else if (locales[name] != null) { delete locales[name]; } } } return locales[name]; } // returns locale data function getLocale(key) { var locale; if (key && key._locale && key._locale._abbr) { key = key._locale._abbr; } if (!key) { return globalLocale; } if (!isArray(key)) { //short-circuit everything else locale = loadLocale(key); if (locale) { return locale; } key = [key]; } return chooseLocale(key); } function listLocales() { return keys(locales); } function checkOverflow(m) { var overflow, a = m._a; if (a && getParsingFlags(m).overflow === -2) { overflow = a[MONTH] < 0 || a[MONTH] > 11 ? MONTH : a[DATE] < 1 || a[DATE] > daysInMonth(a[YEAR], a[MONTH]) ? DATE : a[HOUR] < 0 || a[HOUR] > 24 || (a[HOUR] === 24 && (a[MINUTE] !== 0 || a[SECOND] !== 0 || a[MILLISECOND] !== 0)) ? HOUR : a[MINUTE] < 0 || a[MINUTE] > 59 ? MINUTE : a[SECOND] < 0 || a[SECOND] > 59 ? SECOND : a[MILLISECOND] < 0 || a[MILLISECOND] > 999 ? MILLISECOND : -1; if ( getParsingFlags(m)._overflowDayOfYear && (overflow < YEAR || overflow > DATE) ) { overflow = DATE; } if (getParsingFlags(m)._overflowWeeks && overflow === -1) { overflow = WEEK; } if (getParsingFlags(m)._overflowWeekday && overflow === -1) { overflow = WEEKDAY; } getParsingFlags(m).overflow = overflow; } return m; } // iso 8601 regex // 0000-00-00 0000-W00 or 0000-W00-0 + T + 00 or 00:00 or 00:00:00 or 00:00:00.000 + +00:00 or +0000 or +00) var extendedIsoRegex = /^\s*((?:[+-]\d{6}|\d{4})-(?:\d\d-\d\d|W\d\d-\d|W\d\d|\d\d\d|\d\d))(?:(T| )(\d\d(?::\d\d(?::\d\d(?:[.,]\d+)?)?)?)([+-]\d\d(?::?\d\d)?|\s*Z)?)?$/, basicIsoRegex = /^\s*((?:[+-]\d{6}|\d{4})(?:\d\d\d\d|W\d\d\d|W\d\d|\d\d\d|\d\d|))(?:(T| )(\d\d(?:\d\d(?:\d\d(?:[.,]\d+)?)?)?)([+-]\d\d(?::?\d\d)?|\s*Z)?)?$/, tzRegex = /Z|[+-]\d\d(?::?\d\d)?/, isoDates = [ ['YYYYYY-MM-DD', /[+-]\d{6}-\d\d-\d\d/], ['YYYY-MM-DD', /\d{4}-\d\d-\d\d/], ['GGGG-[W]WW-E', /\d{4}-W\d\d-\d/], ['GGGG-[W]WW', /\d{4}-W\d\d/, false], ['YYYY-DDD', /\d{4}-\d{3}/], ['YYYY-MM', /\d{4}-\d\d/, false], ['YYYYYYMMDD', /[+-]\d{10}/], ['YYYYMMDD', /\d{8}/], ['GGGG[W]WWE', /\d{4}W\d{3}/], ['GGGG[W]WW', /\d{4}W\d{2}/, false], ['YYYYDDD', /\d{7}/], ['YYYYMM', /\d{6}/, false], ['YYYY', /\d{4}/, false], ], // iso time formats and regexes isoTimes = [ ['HH:mm:ss.SSSS', /\d\d:\d\d:\d\d\.\d+/], ['HH:mm:ss,SSSS', /\d\d:\d\d:\d\d,\d+/], ['HH:mm:ss', /\d\d:\d\d:\d\d/], ['HH:mm', /\d\d:\d\d/], ['HHmmss.SSSS', /\d\d\d\d\d\d\.\d+/], ['HHmmss,SSSS', /\d\d\d\d\d\d,\d+/], ['HHmmss', /\d\d\d\d\d\d/], ['HHmm', /\d\d\d\d/], ['HH', /\d\d/], ], aspNetJsonRegex = /^\/?Date\((-?\d+)/i, // RFC 2822 regex: For details see https://tools.ietf.org/html/rfc2822#section-3.3 rfc2822 = /^(?:(Mon|Tue|Wed|Thu|Fri|Sat|Sun),?\s)?(\d{1,2})\s(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\s(\d{2,4})\s(\d\d):(\d\d)(?::(\d\d))?\s(?:(UT|GMT|[ECMP][SD]T)|([Zz])|([+-]\d{4}))$/, obsOffsets = { UT: 0, GMT: 0, EDT: -4 * 60, EST: -5 * 60, CDT: -5 * 60, CST: -6 * 60, MDT: -6 * 60, MST: -7 * 60, PDT: -7 * 60, PST: -8 * 60, }; // date from iso format function configFromISO(config) { var i, l, string = config._i, match = extendedIsoRegex.exec(string) || basicIsoRegex.exec(string), allowTime, dateFormat, timeFormat, tzFormat, isoDatesLen = isoDates.length, isoTimesLen = isoTimes.length; if (match) { getParsingFlags(config).iso = true; for (i = 0, l = isoDatesLen; i < l; i++) { if (isoDates[i][1].exec(match[1])) { dateFormat = isoDates[i][0]; allowTime = isoDates[i][2] !== false; break; } } if (dateFormat == null) { config._isValid = false; return; } if (match[3]) { for (i = 0, l = isoTimesLen; i < l; i++) { if (isoTimes[i][1].exec(match[3])) { // match[2] should be 'T' or space timeFormat = (match[2] || ' ') + isoTimes[i][0]; break; } } if (timeFormat == null) { config._isValid = false; return; } } if (!allowTime && timeFormat != null) { config._isValid = false; return; } if (match[4]) { if (tzRegex.exec(match[4])) { tzFormat = 'Z'; } else { config._isValid = false; return; } } config._f = dateFormat + (timeFormat || '') + (tzFormat || ''); configFromStringAndFormat(config); } else { config._isValid = false; } } function extractFromRFC2822Strings( yearStr, monthStr, dayStr, hourStr, minuteStr, secondStr ) { var result = [ untruncateYear(yearStr), defaultLocaleMonthsShort.indexOf(monthStr), parseInt(dayStr, 10), parseInt(hourStr, 10), parseInt(minuteStr, 10), ]; if (secondStr) { result.push(parseInt(secondStr, 10)); } return result; } function untruncateYear(yearStr) { var year = parseInt(yearStr, 10); if (year <= 49) { return 2000 + year; } else if (year <= 999) { return 1900 + year; } return year; } function preprocessRFC2822(s) { // Remove comments and folding whitespace and replace multiple-spaces with a single space return s .replace(/\([^()]*\)|[\n\t]/g, ' ') .replace(/(\s\s+)/g, ' ') .replace(/^\s\s*/, '') .replace(/\s\s*$/, ''); } function checkWeekday(weekdayStr, parsedInput, config) { if (weekdayStr) { // TODO: Replace the vanilla JS Date object with an independent day-of-week check. var weekdayProvided = defaultLocaleWeekdaysShort.indexOf(weekdayStr), weekdayActual = new Date( parsedInput[0], parsedInput[1], parsedInput[2] ).getDay(); if (weekdayProvided !== weekdayActual) { getParsingFlags(config).weekdayMismatch = true; config._isValid = false; return false; } } return true; } function calculateOffset(obsOffset, militaryOffset, numOffset) { if (obsOffset) { return obsOffsets[obsOffset]; } else if (militaryOffset) { // the only allowed military tz is Z return 0; } else { var hm = parseInt(numOffset, 10), m = hm % 100, h = (hm - m) / 100; return h * 60 + m; } } // date and time from ref 2822 format function configFromRFC2822(config) { var match = rfc2822.exec(preprocessRFC2822(config._i)), parsedArray; if (match) { parsedArray = extractFromRFC2822Strings( match[4], match[3], match[2], match[5], match[6], match[7] ); if (!checkWeekday(match[1], parsedArray, config)) { return; } config._a = parsedArray; config._tzm = calculateOffset(match[8], match[9], match[10]); config._d = createUTCDate.apply(null, config._a); config._d.setUTCMinutes(config._d.getUTCMinutes() - config._tzm); getParsingFlags(config).rfc2822 = true; } else { config._isValid = false; } } // date from 1) ASP.NET, 2) ISO, 3) RFC 2822 formats, or 4) optional fallback if parsing isn't strict function configFromString(config) { var matched = aspNetJsonRegex.exec(config._i); if (matched !== null) { config._d = new Date(+matched[1]); return; } configFromISO(config); if (config._isValid === false) { delete config._isValid; } else { return; } configFromRFC2822(config); if (config._isValid === false) { delete config._isValid; } else { return; } if (config._strict) { config._isValid = false; } else { // Final attempt, use Input Fallback hooks.createFromInputFallback(config); } } hooks.createFromInputFallback = deprecate( 'value provided is not in a recognized RFC2822 or ISO format. moment construction falls back to js Date(), ' + 'which is not reliable across all browsers and versions. Non RFC2822/ISO date formats are ' + 'discouraged. Please refer to http://momentjs.com/guides/#/warnings/js-date/ for more info.', function (config) { config._d = new Date(config._i + (config._useUTC ? ' UTC' : '')); } ); // Pick the first defined of two or three arguments. function defaults(a, b, c) { if (a != null) { return a; } if (b != null) { return b; } return c; } function currentDateArray(config) { // hooks is actually the exported moment object var nowValue = new Date(hooks.now()); if (config._useUTC) { return [ nowValue.getUTCFullYear(), nowValue.getUTCMonth(), nowValue.getUTCDate(), ]; } return [nowValue.getFullYear(), nowValue.getMonth(), nowValue.getDate()]; } // convert an array to a date. // the array should mirror the parameters below // note: all values past the year are optional and will default to the lowest possible value. // [year, month, day , hour, minute, second, millisecond] function configFromArray(config) { var i, date, input = [], currentDate, expectedWeekday, yearToUse; if (config._d) { return; } currentDate = currentDateArray(config); //compute day of the year from weeks and weekdays if (config._w && config._a[DATE] == null && config._a[MONTH] == null) { dayOfYearFromWeekInfo(config); } //if the day of the year is set, figure out what it is if (config._dayOfYear != null) { yearToUse = defaults(config._a[YEAR], currentDate[YEAR]); if ( config._dayOfYear > daysInYear(yearToUse) || config._dayOfYear === 0 ) { getParsingFlags(config)._overflowDayOfYear = true; } date = createUTCDate(yearToUse, 0, config._dayOfYear); config._a[MONTH] = date.getUTCMonth(); config._a[DATE] = date.getUTCDate(); } // Default to current date. // * if no year, month, day of month are given, default to today // * if day of month is given, default month and year // * if month is given, default only year // * if year is given, don't default anything for (i = 0; i < 3 && config._a[i] == null; ++i) { config._a[i] = input[i] = currentDate[i]; } // Zero out whatever was not defaulted, including time for (; i < 7; i++) { config._a[i] = input[i] = config._a[i] == null ? (i === 2 ? 1 : 0) : config._a[i]; } // Check for 24:00:00.000 if ( config._a[HOUR] === 24 && config._a[MINUTE] === 0 && config._a[SECOND] === 0 && config._a[MILLISECOND] === 0 ) { config._nextDay = true; config._a[HOUR] = 0; } config._d = (config._useUTC ? createUTCDate : createDate).apply( null, input ); expectedWeekday = config._useUTC ? config._d.getUTCDay() : config._d.getDay(); // Apply timezone offset from input. The actual utcOffset can be changed // with parseZone. if (config._tzm != null) { config._d.setUTCMinutes(config._d.getUTCMinutes() - config._tzm); } if (config._nextDay) { config._a[HOUR] = 24; } // check for mismatching day of week if ( config._w && typeof config._w.d !== 'undefined' && config._w.d !== expectedWeekday ) { getParsingFlags(config).weekdayMismatch = true; } } function dayOfYearFromWeekInfo(config) { var w, weekYear, week, weekday, dow, doy, temp, weekdayOverflow, curWeek; w = config._w; if (w.GG != null || w.W != null || w.E != null) { dow = 1; doy = 4; // TODO: We need to take the current isoWeekYear, but that depends on // how we interpret now (local, utc, fixed offset). So create // a now version of current config (take local/utc/offset flags, and // create now). weekYear = defaults( w.GG, config._a[YEAR], weekOfYear(createLocal(), 1, 4).year ); week = defaults(w.W, 1); weekday = defaults(w.E, 1); if (weekday < 1 || weekday > 7) { weekdayOverflow = true; } } else { dow = config._locale._week.dow; doy = config._locale._week.doy; curWeek = weekOfYear(createLocal(), dow, doy); weekYear = defaults(w.gg, config._a[YEAR], curWeek.year); // Default to current week. week = defaults(w.w, curWeek.week); if (w.d != null) { // weekday -- low day numbers are considered next week weekday = w.d; if (weekday < 0 || weekday > 6) { weekdayOverflow = true; } } else if (w.e != null) { // local weekday -- counting starts from beginning of week weekday = w.e + dow; if (w.e < 0 || w.e > 6) { weekdayOverflow = true; } } else { // default to beginning of week weekday = dow; } } if (week < 1 || week > weeksInYear(weekYear, dow, doy)) { getParsingFlags(config)._overflowWeeks = true; } else if (weekdayOverflow != null) { getParsingFlags(config)._overflowWeekday = true; } else { temp = dayOfYearFromWeeks(weekYear, week, weekday, dow, doy); config._a[YEAR] = temp.year; config._dayOfYear = temp.dayOfYear; } } // constant that refers to the ISO standard hooks.ISO_8601 = function () {}; // constant that refers to the RFC 2822 form hooks.RFC_2822 = function () {}; // date from string and format string function configFromStringAndFormat(config) { // TODO: Move this to another part of the creation flow to prevent circular deps if (config._f === hooks.ISO_8601) { configFromISO(config); return; } if (config._f === hooks.RFC_2822) { configFromRFC2822(config); return; } config._a = []; getParsingFlags(config).empty = true; // This array is used to make a Date, either with `new Date` or `Date.UTC` var string = '' + config._i, i, parsedInput, tokens, token, skipped, stringLength = string.length, totalParsedInputLength = 0, era, tokenLen; tokens = expandFormat(config._f, config._locale).match(formattingTokens) || []; tokenLen = tokens.length; for (i = 0; i < tokenLen; i++) { token = tokens[i]; parsedInput = (string.match(getParseRegexForToken(token, config)) || [])[0]; if (parsedInput) { skipped = string.substr(0, string.indexOf(parsedInput)); if (skipped.length > 0) { getParsingFlags(config).unusedInput.push(skipped); } string = string.slice( string.indexOf(parsedInput) + parsedInput.length ); totalParsedInputLength += parsedInput.length; } // don't parse if it's not a known token if (formatTokenFunctions[token]) { if (parsedInput) { getParsingFlags(config).empty = false; } else { getParsingFlags(config).unusedTokens.push(token); } addTimeToArrayFromToken(token, parsedInput, config); } else if (config._strict && !parsedInput) { getParsingFlags(config).unusedTokens.push(token); } } // add remaining unparsed input length to the string getParsingFlags(config).charsLeftOver = stringLength - totalParsedInputLength; if (string.length > 0) { getParsingFlags(config).unusedInput.push(string); } // clear _12h flag if hour is <= 12 if ( config._a[HOUR] <= 12 && getParsingFlags(config).bigHour === true && config._a[HOUR] > 0 ) { getParsingFlags(config).bigHour = undefined; } getParsingFlags(config).parsedDateParts = config._a.slice(0); getParsingFlags(config).meridiem = config._meridiem; // handle meridiem config._a[HOUR] = meridiemFixWrap( config._locale, config._a[HOUR], config._meridiem ); // handle era era = getParsingFlags(config).era; if (era !== null) { config._a[YEAR] = config._locale.erasConvertYear(era, config._a[YEAR]); } configFromArray(config); checkOverflow(config); } function meridiemFixWrap(locale, hour, meridiem) { var isPm; if (meridiem == null) { // nothing to do return hour; } if (locale.meridiemHour != null) { return locale.meridiemHour(hour, meridiem); } else if (locale.isPM != null) { // Fallback isPm = locale.isPM(meridiem); if (isPm && hour < 12) { hour += 12; } if (!isPm && hour === 12) { hour = 0; } return hour; } else { // this is not supposed to happen return hour; } } // date from string and array of format strings function configFromStringAndArray(config) { var tempConfig, bestMoment, scoreToBeat, i, currentScore, validFormatFound, bestFormatIsValid = false, configfLen = config._f.length; if (configfLen === 0) { getParsingFlags(config).invalidFormat = true; config._d = new Date(NaN); return; } for (i = 0; i < configfLen; i++) { currentScore = 0; validFormatFound = false; tempConfig = copyConfig({}, config); if (config._useUTC != null) { tempConfig._useUTC = config._useUTC; } tempConfig._f = config._f[i]; configFromStringAndFormat(tempConfig); if (isValid(tempConfig)) { validFormatFound = true; } // if there is any input that was not parsed add a penalty for that format currentScore += getParsingFlags(tempConfig).charsLeftOver; //or tokens currentScore += getParsingFlags(tempConfig).unusedTokens.length * 10; getParsingFlags(tempConfig).score = currentScore; if (!bestFormatIsValid) { if ( scoreToBeat == null || currentScore < scoreToBeat || validFormatFound ) { scoreToBeat = currentScore; bestMoment = tempConfig; if (validFormatFound) { bestFormatIsValid = true; } } } else { if (currentScore < scoreToBeat) { scoreToBeat = currentScore; bestMoment = tempConfig; } } } extend(config, bestMoment || tempConfig); } function configFromObject(config) { if (config._d) { return; } var i = normalizeObjectUnits(config._i), dayOrDate = i.day === undefined ? i.date : i.day; config._a = map( [i.year, i.month, dayOrDate, i.hour, i.minute, i.second, i.millisecond], function (obj) { return obj && parseInt(obj, 10); } ); configFromArray(config); } function createFromConfig(config) { var res = new Moment(checkOverflow(prepareConfig(config))); if (res._nextDay) { // Adding is smart enough around DST res.add(1, 'd'); res._nextDay = undefined; } return res; } function prepareConfig(config) { var input = config._i, format = config._f; config._locale = config._locale || getLocale(config._l); if (input === null || (format === undefined && input === '')) { return createInvalid({ nullInput: true }); } if (typeof input === 'string') { config._i = input = config._locale.preparse(input); } if (isMoment(input)) { return new Moment(checkOverflow(input)); } else if (isDate(input)) { config._d = input; } else if (isArray(format)) { configFromStringAndArray(config); } else if (format) { configFromStringAndFormat(config); } else { configFromInput(config); } if (!isValid(config)) { config._d = null; } return config; } function configFromInput(config) { var input = config._i; if (isUndefined(input)) { config._d = new Date(hooks.now()); } else if (isDate(input)) { config._d = new Date(input.valueOf()); } else if (typeof input === 'string') { configFromString(config); } else if (isArray(input)) { config._a = map(input.slice(0), function (obj) { return parseInt(obj, 10); }); configFromArray(config); } else if (isObject(input)) { configFromObject(config); } else if (isNumber(input)) { // from milliseconds config._d = new Date(input); } else { hooks.createFromInputFallback(config); } } function createLocalOrUTC(input, format, locale, strict, isUTC) { var c = {}; if (format === true || format === false) { strict = format; format = undefined; } if (locale === true || locale === false) { strict = locale; locale = undefined; } if ( (isObject(input) && isObjectEmpty(input)) || (isArray(input) && input.length === 0) ) { input = undefined; } // object construction must be done this way. // https://github.com/moment/moment/issues/1423 c._isAMomentObject = true; c._useUTC = c._isUTC = isUTC; c._l = locale; c._i = input; c._f = format; c._strict = strict; return createFromConfig(c); } function createLocal(input, format, locale, strict) { return createLocalOrUTC(input, format, locale, strict, false); } var prototypeMin = deprecate( 'moment().min is deprecated, use moment.max instead. http://momentjs.com/guides/#/warnings/min-max/', function () { var other = createLocal.apply(null, arguments); if (this.isValid() && other.isValid()) { return other < this ? this : other; } else { return createInvalid(); } } ), prototypeMax = deprecate( 'moment().max is deprecated, use moment.min instead. http://momentjs.com/guides/#/warnings/min-max/', function () { var other = createLocal.apply(null, arguments); if (this.isValid() && other.isValid()) { return other > this ? this : other; } else { return createInvalid(); } } ); // Pick a moment m from moments so that m[fn](other) is true for all // other. This relies on the function fn to be transitive. // // moments should either be an array of moment objects or an array, whose // first element is an array of moment objects. function pickBy(fn, moments) { var res, i; if (moments.length === 1 && isArray(moments[0])) { moments = moments[0]; } if (!moments.length) { return createLocal(); } res = moments[0]; for (i = 1; i < moments.length; ++i) { if (!moments[i].isValid() || moments[i][fn](res)) { res = moments[i]; } } return res; } // TODO: Use [].sort instead? function min() { var args = [].slice.call(arguments, 0); return pickBy('isBefore', args); } function max() { var args = [].slice.call(arguments, 0); return pickBy('isAfter', args); } var now = function () { return Date.now ? Date.now() : +new Date(); }; var ordering = [ 'year', 'quarter', 'month', 'week', 'day', 'hour', 'minute', 'second', 'millisecond', ]; function isDurationValid(m) { var key, unitHasDecimal = false, i, orderLen = ordering.length; for (key in m) { if ( hasOwnProp(m, key) && !( indexOf.call(ordering, key) !== -1 && (m[key] == null || !isNaN(m[key])) ) ) { return false; } } for (i = 0; i < orderLen; ++i) { if (m[ordering[i]]) { if (unitHasDecimal) { return false; // only allow non-integers for smallest unit } if (parseFloat(m[ordering[i]]) !== toInt(m[ordering[i]])) { unitHasDecimal = true; } } } return true; } function isValid$1() { return this._isValid; } function createInvalid$1() { return createDuration(NaN); } function Duration(duration) { var normalizedInput = normalizeObjectUnits(duration), years = normalizedInput.year || 0, quarters = normalizedInput.quarter || 0, months = normalizedInput.month || 0, weeks = normalizedInput.week || normalizedInput.isoWeek || 0, days = normalizedInput.day || 0, hours = normalizedInput.hour || 0, minutes = normalizedInput.minute || 0, seconds = normalizedInput.second || 0, milliseconds = normalizedInput.millisecond || 0; this._isValid = isDurationValid(normalizedInput); // representation for dateAddRemove this._milliseconds = +milliseconds + seconds * 1e3 + // 1000 minutes * 6e4 + // 1000 * 60 hours * 1000 * 60 * 60; //using 1000 * 60 * 60 instead of 36e5 to avoid floating point rounding errors https://github.com/moment/moment/issues/2978 // Because of dateAddRemove treats 24 hours as different from a // day when working around DST, we need to store them separately this._days = +days + weeks * 7; // It is impossible to translate months into days without knowing // which months you are are talking about, so we have to store // it separately. this._months = +months + quarters * 3 + years * 12; this._data = {}; this._locale = getLocale(); this._bubble(); } function isDuration(obj) { return obj instanceof Duration; } function absRound(number) { if (number < 0) { return Math.round(-1 * number) * -1; } else { return Math.round(number); } } // compare two arrays, return the number of differences function compareArrays(array1, array2, dontConvert) { var len = Math.min(array1.length, array2.length), lengthDiff = Math.abs(array1.length - array2.length), diffs = 0, i; for (i = 0; i < len; i++) { if ( (dontConvert && array1[i] !== array2[i]) || (!dontConvert && toInt(array1[i]) !== toInt(array2[i])) ) { diffs++; } } return diffs + lengthDiff; } // FORMATTING function offset(token, separator) { addFormatToken(token, 0, 0, function () { var offset = this.utcOffset(), sign = '+'; if (offset < 0) { offset = -offset; sign = '-'; } return ( sign + zeroFill(~~(offset / 60), 2) + separator + zeroFill(~~offset % 60, 2) ); }); } offset('Z', ':'); offset('ZZ', ''); // PARSING addRegexToken('Z', matchShortOffset); addRegexToken('ZZ', matchShortOffset); addParseToken(['Z', 'ZZ'], function (input, array, config) { config._useUTC = true; config._tzm = offsetFromString(matchShortOffset, input); }); // HELPERS // timezone chunker // '+10:00' > ['10', '00'] // '-1530' > ['-15', '30'] var chunkOffset = /([\+\-]|\d\d)/gi; function offsetFromString(matcher, string) { var matches = (string || '').match(matcher), chunk, parts, minutes; if (matches === null) { return null; } chunk = matches[matches.length - 1] || []; parts = (chunk + '').match(chunkOffset) || ['-', 0, 0]; minutes = +(parts[1] * 60) + toInt(parts[2]); return minutes === 0 ? 0 : parts[0] === '+' ? minutes : -minutes; } // Return a moment from input, that is local/utc/zone equivalent to model. function cloneWithOffset(input, model) { var res, diff; if (model._isUTC) { res = model.clone(); diff = (isMoment(input) || isDate(input) ? input.valueOf() : createLocal(input).valueOf()) - res.valueOf(); // Use low-level api, because this fn is low-level api. res._d.setTime(res._d.valueOf() + diff); hooks.updateOffset(res, false); return res; } else { return createLocal(input).local(); } } function getDateOffset(m) { // On Firefox.24 Date#getTimezoneOffset returns a floating point. // https://github.com/moment/moment/pull/1871 return -Math.round(m._d.getTimezoneOffset()); } // HOOKS // This function will be called whenever a moment is mutated. // It is intended to keep the offset in sync with the timezone. hooks.updateOffset = function () {}; // MOMENTS // keepLocalTime = true means only change the timezone, without // affecting the local hour. So 5:31:26 +0300 --[utcOffset(2, true)]--> // 5:31:26 +0200 It is possible that 5:31:26 doesn't exist with offset // +0200, so we adjust the time as needed, to be valid. // // Keeping the time actually adds/subtracts (one hour) // from the actual represented time. That is why we call updateOffset // a second time. In case it wants us to change the offset again // _changeInProgress == true case, then we have to adjust, because // there is no such time in the given timezone. function getSetOffset(input, keepLocalTime, keepMinutes) { var offset = this._offset || 0, localAdjust; if (!this.isValid()) { return input != null ? this : NaN; } if (input != null) { if (typeof input === 'string') { input = offsetFromString(matchShortOffset, input); if (input === null) { return this; } } else if (Math.abs(input) < 16 && !keepMinutes) { input = input * 60; } if (!this._isUTC && keepLocalTime) { localAdjust = getDateOffset(this); } this._offset = input; this._isUTC = true; if (localAdjust != null) { this.add(localAdjust, 'm'); } if (offset !== input) { if (!keepLocalTime || this._changeInProgress) { addSubtract( this, createDuration(input - offset, 'm'), 1, false ); } else if (!this._changeInProgress) { this._changeInProgress = true; hooks.updateOffset(this, true); this._changeInProgress = null; } } return this; } else { return this._isUTC ? offset : getDateOffset(this); } } function getSetZone(input, keepLocalTime) { if (input != null) { if (typeof input !== 'string') { input = -input; } this.utcOffset(input, keepLocalTime); return this; } else { return -this.utcOffset(); } } function setOffsetToUTC(keepLocalTime) { return this.utcOffset(0, keepLocalTime); } function setOffsetToLocal(keepLocalTime) { if (this._isUTC) { this.utcOffset(0, keepLocalTime); this._isUTC = false; if (keepLocalTime) { this.subtract(getDateOffset(this), 'm'); } } return this; } function setOffsetToParsedOffset() { if (this._tzm != null) { this.utcOffset(this._tzm, false, true); } else if (typeof this._i === 'string') { var tZone = offsetFromString(matchOffset, this._i); if (tZone != null) { this.utcOffset(tZone); } else { this.utcOffset(0, true); } } return this; } function hasAlignedHourOffset(input) { if (!this.isValid()) { return false; } input = input ? createLocal(input).utcOffset() : 0; return (this.utcOffset() - input) % 60 === 0; } function isDaylightSavingTime() { return ( this.utcOffset() > this.clone().month(0).utcOffset() || this.utcOffset() > this.clone().month(5).utcOffset() ); } function isDaylightSavingTimeShifted() { if (!isUndefined(this._isDSTShifted)) { return this._isDSTShifted; } var c = {}, other; copyConfig(c, this); c = prepareConfig(c); if (c._a) { other = c._isUTC ? createUTC(c._a) : createLocal(c._a); this._isDSTShifted = this.isValid() && compareArrays(c._a, other.toArray()) > 0; } else { this._isDSTShifted = false; } return this._isDSTShifted; } function isLocal() { return this.isValid() ? !this._isUTC : false; } function isUtcOffset() { return this.isValid() ? this._isUTC : false; } function isUtc() { return this.isValid() ? this._isUTC && this._offset === 0 : false; } // ASP.NET json date format regex var aspNetRegex = /^(-|\+)?(?:(\d*)[. ])?(\d+):(\d+)(?::(\d+)(\.\d*)?)?$/, // from http://docs.closure-library.googlecode.com/git/closure_goog_date_date.js.source.html // somewhat more in line with 4.4.3.2 2004 spec, but allows decimal anywhere // and further modified to allow for strings containing both week and day isoRegex = /^(-|\+)?P(?:([-+]?[0-9,.]*)Y)?(?:([-+]?[0-9,.]*)M)?(?:([-+]?[0-9,.]*)W)?(?:([-+]?[0-9,.]*)D)?(?:T(?:([-+]?[0-9,.]*)H)?(?:([-+]?[0-9,.]*)M)?(?:([-+]?[0-9,.]*)S)?)?$/; function createDuration(input, key) { var duration = input, // matching against regexp is expensive, do it on demand match = null, sign, ret, diffRes; if (isDuration(input)) { duration = { ms: input._milliseconds, d: input._days, M: input._months, }; } else if (isNumber(input) || !isNaN(+input)) { duration = {}; if (key) { duration[key] = +input; } else { duration.milliseconds = +input; } } else if ((match = aspNetRegex.exec(input))) { sign = match[1] === '-' ? -1 : 1; duration = { y: 0, d: toInt(match[DATE]) * sign, h: toInt(match[HOUR]) * sign, m: toInt(match[MINUTE]) * sign, s: toInt(match[SECOND]) * sign, ms: toInt(absRound(match[MILLISECOND] * 1000)) * sign, // the millisecond decimal point is included in the match }; } else if ((match = isoRegex.exec(input))) { sign = match[1] === '-' ? -1 : 1; duration = { y: parseIso(match[2], sign), M: parseIso(match[3], sign), w: parseIso(match[4], sign), d: parseIso(match[5], sign), h: parseIso(match[6], sign), m: parseIso(match[7], sign), s: parseIso(match[8], sign), }; } else if (duration == null) { // checks for null or undefined duration = {}; } else if ( typeof duration === 'object' && ('from' in duration || 'to' in duration) ) { diffRes = momentsDifference( createLocal(duration.from), createLocal(duration.to) ); duration = {}; duration.ms = diffRes.milliseconds; duration.M = diffRes.months; } ret = new Duration(duration); if (isDuration(input) && hasOwnProp(input, '_locale')) { ret._locale = input._locale; } if (isDuration(input) && hasOwnProp(input, '_isValid')) { ret._isValid = input._isValid; } return ret; } createDuration.fn = Duration.prototype; createDuration.invalid = createInvalid$1; function parseIso(inp, sign) { // We'd normally use ~~inp for this, but unfortunately it also // converts floats to ints. // inp may be undefined, so careful calling replace on it. var res = inp && parseFloat(inp.replace(',', '.')); // apply sign while we're at it return (isNaN(res) ? 0 : res) * sign; } function positiveMomentsDifference(base, other) { var res = {}; res.months = other.month() - base.month() + (other.year() - base.year()) * 12; if (base.clone().add(res.months, 'M').isAfter(other)) { --res.months; } res.milliseconds = +other - +base.clone().add(res.months, 'M'); return res; } function momentsDifference(base, other) { var res; if (!(base.isValid() && other.isValid())) { return { milliseconds: 0, months: 0 }; } other = cloneWithOffset(other, base); if (base.isBefore(other)) { res = positiveMomentsDifference(base, other); } else { res = positiveMomentsDifference(other, base); res.milliseconds = -res.milliseconds; res.months = -res.months; } return res; } // TODO: remove 'name' arg after deprecation is removed function createAdder(direction, name) { return function (val, period) { var dur, tmp; //invert the arguments, but complain about it if (period !== null && !isNaN(+period)) { deprecateSimple( name, 'moment().' + name + '(period, number) is deprecated. Please use moment().' + name + '(number, period). ' + 'See http://momentjs.com/guides/#/warnings/add-inverted-param/ for more info.' ); tmp = val; val = period; period = tmp; } dur = createDuration(val, period); addSubtract(this, dur, direction); return this; }; } function addSubtract(mom, duration, isAdding, updateOffset) { var milliseconds = duration._milliseconds, days = absRound(duration._days), months = absRound(duration._months); if (!mom.isValid()) { // No op return; } updateOffset = updateOffset == null ? true : updateOffset; if (months) { setMonth(mom, get(mom, 'Month') + months * isAdding); } if (days) { set$1(mom, 'Date', get(mom, 'Date') + days * isAdding); } if (milliseconds) { mom._d.setTime(mom._d.valueOf() + milliseconds * isAdding); } if (updateOffset) { hooks.updateOffset(mom, days || months); } } var add = createAdder(1, 'add'), subtract = createAdder(-1, 'subtract'); function isString(input) { return typeof input === 'string' || input instanceof String; } // type MomentInput = Moment | Date | string | number | (number | string)[] | MomentInputObject | void; // null | undefined function isMomentInput(input) { return ( isMoment(input) || isDate(input) || isString(input) || isNumber(input) || isNumberOrStringArray(input) || isMomentInputObject(input) || input === null || input === undefined ); } function isMomentInputObject(input) { var objectTest = isObject(input) && !isObjectEmpty(input), propertyTest = false, properties = [ 'years', 'year', 'y', 'months', 'month', 'M', 'days', 'day', 'd', 'dates', 'date', 'D', 'hours', 'hour', 'h', 'minutes', 'minute', 'm', 'seconds', 'second', 's', 'milliseconds', 'millisecond', 'ms', ], i, property, propertyLen = properties.length; for (i = 0; i < propertyLen; i += 1) { property = properties[i]; propertyTest = propertyTest || hasOwnProp(input, property); } return objectTest && propertyTest; } function isNumberOrStringArray(input) { var arrayTest = isArray(input), dataTypeTest = false; if (arrayTest) { dataTypeTest = input.filter(function (item) { return !isNumber(item) && isString(input); }).length === 0; } return arrayTest && dataTypeTest; } function isCalendarSpec(input) { var objectTest = isObject(input) && !isObjectEmpty(input), propertyTest = false, properties = [ 'sameDay', 'nextDay', 'lastDay', 'nextWeek', 'lastWeek', 'sameElse', ], i, property; for (i = 0; i < properties.length; i += 1) { property = properties[i]; propertyTest = propertyTest || hasOwnProp(input, property); } return objectTest && propertyTest; } function getCalendarFormat(myMoment, now) { var diff = myMoment.diff(now, 'days', true); return diff < -6 ? 'sameElse' : diff < -1 ? 'lastWeek' : diff < 0 ? 'lastDay' : diff < 1 ? 'sameDay' : diff < 2 ? 'nextDay' : diff < 7 ? 'nextWeek' : 'sameElse'; } function calendar$1(time, formats) { // Support for single parameter, formats only overload to the calendar function if (arguments.length === 1) { if (!arguments[0]) { time = undefined; formats = undefined; } else if (isMomentInput(arguments[0])) { time = arguments[0]; formats = undefined; } else if (isCalendarSpec(arguments[0])) { formats = arguments[0]; time = undefined; } } // We want to compare the start of today, vs this. // Getting start-of-today depends on whether we're local/utc/offset or not. var now = time || createLocal(), sod = cloneWithOffset(now, this).startOf('day'), format = hooks.calendarFormat(this, sod) || 'sameElse', output = formats && (isFunction(formats[format]) ? formats[format].call(this, now) : formats[format]); return this.format( output || this.localeData().calendar(format, this, createLocal(now)) ); } function clone() { return new Moment(this); } function isAfter(input, units) { var localInput = isMoment(input) ? input : createLocal(input); if (!(this.isValid() && localInput.isValid())) { return false; } units = normalizeUnits(units) || 'millisecond'; if (units === 'millisecond') { return this.valueOf() > localInput.valueOf(); } else { return localInput.valueOf() < this.clone().startOf(units).valueOf(); } } function isBefore(input, units) { var localInput = isMoment(input) ? input : createLocal(input); if (!(this.isValid() && localInput.isValid())) { return false; } units = normalizeUnits(units) || 'millisecond'; if (units === 'millisecond') { return this.valueOf() < localInput.valueOf(); } else { return this.clone().endOf(units).valueOf() < localInput.valueOf(); } } function isBetween(from, to, units, inclusivity) { var localFrom = isMoment(from) ? from : createLocal(from), localTo = isMoment(to) ? to : createLocal(to); if (!(this.isValid() && localFrom.isValid() && localTo.isValid())) { return false; } inclusivity = inclusivity || '()'; return ( (inclusivity[0] === '(' ? this.isAfter(localFrom, units) : !this.isBefore(localFrom, units)) && (inclusivity[1] === ')' ? this.isBefore(localTo, units) : !this.isAfter(localTo, units)) ); } function isSame(input, units) { var localInput = isMoment(input) ? input : createLocal(input), inputMs; if (!(this.isValid() && localInput.isValid())) { return false; } units = normalizeUnits(units) || 'millisecond'; if (units === 'millisecond') { return this.valueOf() === localInput.valueOf(); } else { inputMs = localInput.valueOf(); return ( this.clone().startOf(units).valueOf() <= inputMs && inputMs <= this.clone().endOf(units).valueOf() ); } } function isSameOrAfter(input, units) { return this.isSame(input, units) || this.isAfter(input, units); } function isSameOrBefore(input, units) { return this.isSame(input, units) || this.isBefore(input, units); } function diff(input, units, asFloat) { var that, zoneDelta, output; if (!this.isValid()) { return NaN; } that = cloneWithOffset(input, this); if (!that.isValid()) { return NaN; } zoneDelta = (that.utcOffset() - this.utcOffset()) * 6e4; units = normalizeUnits(units); switch (units) { case 'year': output = monthDiff(this, that) / 12; break; case 'month': output = monthDiff(this, that); break; case 'quarter': output = monthDiff(this, that) / 3; break; case 'second': output = (this - that) / 1e3; break; // 1000 case 'minute': output = (this - that) / 6e4; break; // 1000 * 60 case 'hour': output = (this - that) / 36e5; break; // 1000 * 60 * 60 case 'day': output = (this - that - zoneDelta) / 864e5; break; // 1000 * 60 * 60 * 24, negate dst case 'week': output = (this - that - zoneDelta) / 6048e5; break; // 1000 * 60 * 60 * 24 * 7, negate dst default: output = this - that; } return asFloat ? output : absFloor(output); } function monthDiff(a, b) { if (a.date() < b.date()) { // end-of-month calculations work correct when the start month has more // days than the end month. return -monthDiff(b, a); } // difference in months var wholeMonthDiff = (b.year() - a.year()) * 12 + (b.month() - a.month()), // b is in (anchor - 1 month, anchor + 1 month) anchor = a.clone().add(wholeMonthDiff, 'months'), anchor2, adjust; if (b - anchor < 0) { anchor2 = a.clone().add(wholeMonthDiff - 1, 'months'); // linear across the month adjust = (b - anchor) / (anchor - anchor2); } else { anchor2 = a.clone().add(wholeMonthDiff + 1, 'months'); // linear across the month adjust = (b - anchor) / (anchor2 - anchor); } //check for negative zero, return zero if negative zero return -(wholeMonthDiff + adjust) || 0; } hooks.defaultFormat = 'YYYY-MM-DDTHH:mm:ssZ'; hooks.defaultFormatUtc = 'YYYY-MM-DDTHH:mm:ss[Z]'; function toString() { return this.clone().locale('en').format('ddd MMM DD YYYY HH:mm:ss [GMT]ZZ'); } function toISOString(keepOffset) { if (!this.isValid()) { return null; } var utc = keepOffset !== true, m = utc ? this.clone().utc() : this; if (m.year() < 0 || m.year() > 9999) { return formatMoment( m, utc ? 'YYYYYY-MM-DD[T]HH:mm:ss.SSS[Z]' : 'YYYYYY-MM-DD[T]HH:mm:ss.SSSZ' ); } if (isFunction(Date.prototype.toISOString)) { // native implementation is ~50x faster, use it when we can if (utc) { return this.toDate().toISOString(); } else { return new Date(this.valueOf() + this.utcOffset() * 60 * 1000) .toISOString() .replace('Z', formatMoment(m, 'Z')); } } return formatMoment( m, utc ? 'YYYY-MM-DD[T]HH:mm:ss.SSS[Z]' : 'YYYY-MM-DD[T]HH:mm:ss.SSSZ' ); } /** * Return a human readable representation of a moment that can * also be evaluated to get a new moment which is the same * * @link https://nodejs.org/dist/latest/docs/api/util.html#util_custom_inspect_function_on_objects */ function inspect() { if (!this.isValid()) { return 'moment.invalid(/* ' + this._i + ' */)'; } var func = 'moment', zone = '', prefix, year, datetime, suffix; if (!this.isLocal()) { func = this.utcOffset() === 0 ? 'moment.utc' : 'moment.parseZone'; zone = 'Z'; } prefix = '[' + func + '("]'; year = 0 <= this.year() && this.year() <= 9999 ? 'YYYY' : 'YYYYYY'; datetime = '-MM-DD[T]HH:mm:ss.SSS'; suffix = zone + '[")]'; return this.format(prefix + year + datetime + suffix); } function format(inputString) { if (!inputString) { inputString = this.isUtc() ? hooks.defaultFormatUtc : hooks.defaultFormat; } var output = formatMoment(this, inputString); return this.localeData().postformat(output); } function from(time, withoutSuffix) { if ( this.isValid() && ((isMoment(time) && time.isValid()) || createLocal(time).isValid()) ) { return createDuration({ to: this, from: time }) .locale(this.locale()) .humanize(!withoutSuffix); } else { return this.localeData().invalidDate(); } } function fromNow(withoutSuffix) { return this.from(createLocal(), withoutSuffix); } function to(time, withoutSuffix) { if ( this.isValid() && ((isMoment(time) && time.isValid()) || createLocal(time).isValid()) ) { return createDuration({ from: this, to: time }) .locale(this.locale()) .humanize(!withoutSuffix); } else { return this.localeData().invalidDate(); } } function toNow(withoutSuffix) { return this.to(createLocal(), withoutSuffix); } // If passed a locale key, it will set the locale for this // instance. Otherwise, it will return the locale configuration // variables for this instance. function locale(key) { var newLocaleData; if (key === undefined) { return this._locale._abbr; } else { newLocaleData = getLocale(key); if (newLocaleData != null) { this._locale = newLocaleData; } return this; } } var lang = deprecate( 'moment().lang() is deprecated. Instead, use moment().localeData() to get the language configuration. Use moment().locale() to change languages.', function (key) { if (key === undefined) { return this.localeData(); } else { return this.locale(key); } } ); function localeData() { return this._locale; } var MS_PER_SECOND = 1000, MS_PER_MINUTE = 60 * MS_PER_SECOND, MS_PER_HOUR = 60 * MS_PER_MINUTE, MS_PER_400_YEARS = (365 * 400 + 97) * 24 * MS_PER_HOUR; // actual modulo - handles negative numbers (for dates before 1970): function mod$1(dividend, divisor) { return ((dividend % divisor) + divisor) % divisor; } function localStartOfDate(y, m, d) { // the date constructor remaps years 0-99 to 1900-1999 if (y < 100 && y >= 0) { // preserve leap years using a full 400 year cycle, then reset return new Date(y + 400, m, d) - MS_PER_400_YEARS; } else { return new Date(y, m, d).valueOf(); } } function utcStartOfDate(y, m, d) { // Date.UTC remaps years 0-99 to 1900-1999 if (y < 100 && y >= 0) { // preserve leap years using a full 400 year cycle, then reset return Date.UTC(y + 400, m, d) - MS_PER_400_YEARS; } else { return Date.UTC(y, m, d); } } function startOf(units) { var time, startOfDate; units = normalizeUnits(units); if (units === undefined || units === 'millisecond' || !this.isValid()) { return this; } startOfDate = this._isUTC ? utcStartOfDate : localStartOfDate; switch (units) { case 'year': time = startOfDate(this.year(), 0, 1); break; case 'quarter': time = startOfDate( this.year(), this.month() - (this.month() % 3), 1 ); break; case 'month': time = startOfDate(this.year(), this.month(), 1); break; case 'week': time = startOfDate( this.year(), this.month(), this.date() - this.weekday() ); break; case 'isoWeek': time = startOfDate( this.year(), this.month(), this.date() - (this.isoWeekday() - 1) ); break; case 'day': case 'date': time = startOfDate(this.year(), this.month(), this.date()); break; case 'hour': time = this._d.valueOf(); time -= mod$1( time + (this._isUTC ? 0 : this.utcOffset() * MS_PER_MINUTE), MS_PER_HOUR ); break; case 'minute': time = this._d.valueOf(); time -= mod$1(time, MS_PER_MINUTE); break; case 'second': time = this._d.valueOf(); time -= mod$1(time, MS_PER_SECOND); break; } this._d.setTime(time); hooks.updateOffset(this, true); return this; } function endOf(units) { var time, startOfDate; units = normalizeUnits(units); if (units === undefined || units === 'millisecond' || !this.isValid()) { return this; } startOfDate = this._isUTC ? utcStartOfDate : localStartOfDate; switch (units) { case 'year': time = startOfDate(this.year() + 1, 0, 1) - 1; break; case 'quarter': time = startOfDate( this.year(), this.month() - (this.month() % 3) + 3, 1 ) - 1; break; case 'month': time = startOfDate(this.year(), this.month() + 1, 1) - 1; break; case 'week': time = startOfDate( this.year(), this.month(), this.date() - this.weekday() + 7 ) - 1; break; case 'isoWeek': time = startOfDate( this.year(), this.month(), this.date() - (this.isoWeekday() - 1) + 7 ) - 1; break; case 'day': case 'date': time = startOfDate(this.year(), this.month(), this.date() + 1) - 1; break; case 'hour': time = this._d.valueOf(); time += MS_PER_HOUR - mod$1( time + (this._isUTC ? 0 : this.utcOffset() * MS_PER_MINUTE), MS_PER_HOUR ) - 1; break; case 'minute': time = this._d.valueOf(); time += MS_PER_MINUTE - mod$1(time, MS_PER_MINUTE) - 1; break; case 'second': time = this._d.valueOf(); time += MS_PER_SECOND - mod$1(time, MS_PER_SECOND) - 1; break; } this._d.setTime(time); hooks.updateOffset(this, true); return this; } function valueOf() { return this._d.valueOf() - (this._offset || 0) * 60000; } function unix() { return Math.floor(this.valueOf() / 1000); } function toDate() { return new Date(this.valueOf()); } function toArray() { var m = this; return [ m.year(), m.month(), m.date(), m.hour(), m.minute(), m.second(), m.millisecond(), ]; } function toObject() { var m = this; return { years: m.year(), months: m.month(), date: m.date(), hours: m.hours(), minutes: m.minutes(), seconds: m.seconds(), milliseconds: m.milliseconds(), }; } function toJSON() { // new Date(NaN).toJSON() === null return this.isValid() ? this.toISOString() : null; } function isValid$2() { return isValid(this); } function parsingFlags() { return extend({}, getParsingFlags(this)); } function invalidAt() { return getParsingFlags(this).overflow; } function creationData() { return { input: this._i, format: this._f, locale: this._locale, isUTC: this._isUTC, strict: this._strict, }; } addFormatToken('N', 0, 0, 'eraAbbr'); addFormatToken('NN', 0, 0, 'eraAbbr'); addFormatToken('NNN', 0, 0, 'eraAbbr'); addFormatToken('NNNN', 0, 0, 'eraName'); addFormatToken('NNNNN', 0, 0, 'eraNarrow'); addFormatToken('y', ['y', 1], 'yo', 'eraYear'); addFormatToken('y', ['yy', 2], 0, 'eraYear'); addFormatToken('y', ['yyy', 3], 0, 'eraYear'); addFormatToken('y', ['yyyy', 4], 0, 'eraYear'); addRegexToken('N', matchEraAbbr); addRegexToken('NN', matchEraAbbr); addRegexToken('NNN', matchEraAbbr); addRegexToken('NNNN', matchEraName); addRegexToken('NNNNN', matchEraNarrow); addParseToken( ['N', 'NN', 'NNN', 'NNNN', 'NNNNN'], function (input, array, config, token) { var era = config._locale.erasParse(input, token, config._strict); if (era) { getParsingFlags(config).era = era; } else { getParsingFlags(config).invalidEra = input; } } ); addRegexToken('y', matchUnsigned); addRegexToken('yy', matchUnsigned); addRegexToken('yyy', matchUnsigned); addRegexToken('yyyy', matchUnsigned); addRegexToken('yo', matchEraYearOrdinal); addParseToken(['y', 'yy', 'yyy', 'yyyy'], YEAR); addParseToken(['yo'], function (input, array, config, token) { var match; if (config._locale._eraYearOrdinalRegex) { match = input.match(config._locale._eraYearOrdinalRegex); } if (config._locale.eraYearOrdinalParse) { array[YEAR] = config._locale.eraYearOrdinalParse(input, match); } else { array[YEAR] = parseInt(input, 10); } }); function localeEras(m, format) { var i, l, date, eras = this._eras || getLocale('en')._eras; for (i = 0, l = eras.length; i < l; ++i) { switch (typeof eras[i].since) { case 'string': // truncate time date = hooks(eras[i].since).startOf('day'); eras[i].since = date.valueOf(); break; } switch (typeof eras[i].until) { case 'undefined': eras[i].until = +Infinity; break; case 'string': // truncate time date = hooks(eras[i].until).startOf('day').valueOf(); eras[i].until = date.valueOf(); break; } } return eras; } function localeErasParse(eraName, format, strict) { var i, l, eras = this.eras(), name, abbr, narrow; eraName = eraName.toUpperCase(); for (i = 0, l = eras.length; i < l; ++i) { name = eras[i].name.toUpperCase(); abbr = eras[i].abbr.toUpperCase(); narrow = eras[i].narrow.toUpperCase(); if (strict) { switch (format) { case 'N': case 'NN': case 'NNN': if (abbr === eraName) { return eras[i]; } break; case 'NNNN': if (name === eraName) { return eras[i]; } break; case 'NNNNN': if (narrow === eraName) { return eras[i]; } break; } } else if ([name, abbr, narrow].indexOf(eraName) >= 0) { return eras[i]; } } } function localeErasConvertYear(era, year) { var dir = era.since <= era.until ? +1 : -1; if (year === undefined) { return hooks(era.since).year(); } else { return hooks(era.since).year() + (year - era.offset) * dir; } } function getEraName() { var i, l, val, eras = this.localeData().eras(); for (i = 0, l = eras.length; i < l; ++i) { // truncate time val = this.clone().startOf('day').valueOf(); if (eras[i].since <= val && val <= eras[i].until) { return eras[i].name; } if (eras[i].until <= val && val <= eras[i].since) { return eras[i].name; } } return ''; } function getEraNarrow() { var i, l, val, eras = this.localeData().eras(); for (i = 0, l = eras.length; i < l; ++i) { // truncate time val = this.clone().startOf('day').valueOf(); if (eras[i].since <= val && val <= eras[i].until) { return eras[i].narrow; } if (eras[i].until <= val && val <= eras[i].since) { return eras[i].narrow; } } return ''; } function getEraAbbr() { var i, l, val, eras = this.localeData().eras(); for (i = 0, l = eras.length; i < l; ++i) { // truncate time val = this.clone().startOf('day').valueOf(); if (eras[i].since <= val && val <= eras[i].until) { return eras[i].abbr; } if (eras[i].until <= val && val <= eras[i].since) { return eras[i].abbr; } } return ''; } function getEraYear() { var i, l, dir, val, eras = this.localeData().eras(); for (i = 0, l = eras.length; i < l; ++i) { dir = eras[i].since <= eras[i].until ? +1 : -1; // truncate time val = this.clone().startOf('day').valueOf(); if ( (eras[i].since <= val && val <= eras[i].until) || (eras[i].until <= val && val <= eras[i].since) ) { return ( (this.year() - hooks(eras[i].since).year()) * dir + eras[i].offset ); } } return this.year(); } function erasNameRegex(isStrict) { if (!hasOwnProp(this, '_erasNameRegex')) { computeErasParse.call(this); } return isStrict ? this._erasNameRegex : this._erasRegex; } function erasAbbrRegex(isStrict) { if (!hasOwnProp(this, '_erasAbbrRegex')) { computeErasParse.call(this); } return isStrict ? this._erasAbbrRegex : this._erasRegex; } function erasNarrowRegex(isStrict) { if (!hasOwnProp(this, '_erasNarrowRegex')) { computeErasParse.call(this); } return isStrict ? this._erasNarrowRegex : this._erasRegex; } function matchEraAbbr(isStrict, locale) { return locale.erasAbbrRegex(isStrict); } function matchEraName(isStrict, locale) { return locale.erasNameRegex(isStrict); } function matchEraNarrow(isStrict, locale) { return locale.erasNarrowRegex(isStrict); } function matchEraYearOrdinal(isStrict, locale) { return locale._eraYearOrdinalRegex || matchUnsigned; } function computeErasParse() { var abbrPieces = [], namePieces = [], narrowPieces = [], mixedPieces = [], i, l, eras = this.eras(); for (i = 0, l = eras.length; i < l; ++i) { namePieces.push(regexEscape(eras[i].name)); abbrPieces.push(regexEscape(eras[i].abbr)); narrowPieces.push(regexEscape(eras[i].narrow)); mixedPieces.push(regexEscape(eras[i].name)); mixedPieces.push(regexEscape(eras[i].abbr)); mixedPieces.push(regexEscape(eras[i].narrow)); } this._erasRegex = new RegExp('^(' + mixedPieces.join('|') + ')', 'i'); this._erasNameRegex = new RegExp('^(' + namePieces.join('|') + ')', 'i'); this._erasAbbrRegex = new RegExp('^(' + abbrPieces.join('|') + ')', 'i'); this._erasNarrowRegex = new RegExp( '^(' + narrowPieces.join('|') + ')', 'i' ); } // FORMATTING addFormatToken(0, ['gg', 2], 0, function () { return this.weekYear() % 100; }); addFormatToken(0, ['GG', 2], 0, function () { return this.isoWeekYear() % 100; }); function addWeekYearFormatToken(token, getter) { addFormatToken(0, [token, token.length], 0, getter); } addWeekYearFormatToken('gggg', 'weekYear'); addWeekYearFormatToken('ggggg', 'weekYear'); addWeekYearFormatToken('GGGG', 'isoWeekYear'); addWeekYearFormatToken('GGGGG', 'isoWeekYear'); // ALIASES addUnitAlias('weekYear', 'gg'); addUnitAlias('isoWeekYear', 'GG'); // PRIORITY addUnitPriority('weekYear', 1); addUnitPriority('isoWeekYear', 1); // PARSING addRegexToken('G', matchSigned); addRegexToken('g', matchSigned); addRegexToken('GG', match1to2, match2); addRegexToken('gg', match1to2, match2); addRegexToken('GGGG', match1to4, match4); addRegexToken('gggg', match1to4, match4); addRegexToken('GGGGG', match1to6, match6); addRegexToken('ggggg', match1to6, match6); addWeekParseToken( ['gggg', 'ggggg', 'GGGG', 'GGGGG'], function (input, week, config, token) { week[token.substr(0, 2)] = toInt(input); } ); addWeekParseToken(['gg', 'GG'], function (input, week, config, token) { week[token] = hooks.parseTwoDigitYear(input); }); // MOMENTS function getSetWeekYear(input) { return getSetWeekYearHelper.call( this, input, this.week(), this.weekday(), this.localeData()._week.dow, this.localeData()._week.doy ); } function getSetISOWeekYear(input) { return getSetWeekYearHelper.call( this, input, this.isoWeek(), this.isoWeekday(), 1, 4 ); } function getISOWeeksInYear() { return weeksInYear(this.year(), 1, 4); } function getISOWeeksInISOWeekYear() { return weeksInYear(this.isoWeekYear(), 1, 4); } function getWeeksInYear() { var weekInfo = this.localeData()._week; return weeksInYear(this.year(), weekInfo.dow, weekInfo.doy); } function getWeeksInWeekYear() { var weekInfo = this.localeData()._week; return weeksInYear(this.weekYear(), weekInfo.dow, weekInfo.doy); } function getSetWeekYearHelper(input, week, weekday, dow, doy) { var weeksTarget; if (input == null) { return weekOfYear(this, dow, doy).year; } else { weeksTarget = weeksInYear(input, dow, doy); if (week > weeksTarget) { week = weeksTarget; } return setWeekAll.call(this, input, week, weekday, dow, doy); } } function setWeekAll(weekYear, week, weekday, dow, doy) { var dayOfYearData = dayOfYearFromWeeks(weekYear, week, weekday, dow, doy), date = createUTCDate(dayOfYearData.year, 0, dayOfYearData.dayOfYear); this.year(date.getUTCFullYear()); this.month(date.getUTCMonth()); this.date(date.getUTCDate()); return this; } // FORMATTING addFormatToken('Q', 0, 'Qo', 'quarter'); // ALIASES addUnitAlias('quarter', 'Q'); // PRIORITY addUnitPriority('quarter', 7); // PARSING addRegexToken('Q', match1); addParseToken('Q', function (input, array) { array[MONTH] = (toInt(input) - 1) * 3; }); // MOMENTS function getSetQuarter(input) { return input == null ? Math.ceil((this.month() + 1) / 3) : this.month((input - 1) * 3 + (this.month() % 3)); } // FORMATTING addFormatToken('D', ['DD', 2], 'Do', 'date'); // ALIASES addUnitAlias('date', 'D'); // PRIORITY addUnitPriority('date', 9); // PARSING addRegexToken('D', match1to2); addRegexToken('DD', match1to2, match2); addRegexToken('Do', function (isStrict, locale) { // TODO: Remove "ordinalParse" fallback in next major release. return isStrict ? locale._dayOfMonthOrdinalParse || locale._ordinalParse : locale._dayOfMonthOrdinalParseLenient; }); addParseToken(['D', 'DD'], DATE); addParseToken('Do', function (input, array) { array[DATE] = toInt(input.match(match1to2)[0]); }); // MOMENTS var getSetDayOfMonth = makeGetSet('Date', true); // FORMATTING addFormatToken('DDD', ['DDDD', 3], 'DDDo', 'dayOfYear'); // ALIASES addUnitAlias('dayOfYear', 'DDD'); // PRIORITY addUnitPriority('dayOfYear', 4); // PARSING addRegexToken('DDD', match1to3); addRegexToken('DDDD', match3); addParseToken(['DDD', 'DDDD'], function (input, array, config) { config._dayOfYear = toInt(input); }); // HELPERS // MOMENTS function getSetDayOfYear(input) { var dayOfYear = Math.round( (this.clone().startOf('day') - this.clone().startOf('year')) / 864e5 ) + 1; return input == null ? dayOfYear : this.add(input - dayOfYear, 'd'); } // FORMATTING addFormatToken('m', ['mm', 2], 0, 'minute'); // ALIASES addUnitAlias('minute', 'm'); // PRIORITY addUnitPriority('minute', 14); // PARSING addRegexToken('m', match1to2); addRegexToken('mm', match1to2, match2); addParseToken(['m', 'mm'], MINUTE); // MOMENTS var getSetMinute = makeGetSet('Minutes', false); // FORMATTING addFormatToken('s', ['ss', 2], 0, 'second'); // ALIASES addUnitAlias('second', 's'); // PRIORITY addUnitPriority('second', 15); // PARSING addRegexToken('s', match1to2); addRegexToken('ss', match1to2, match2); addParseToken(['s', 'ss'], SECOND); // MOMENTS var getSetSecond = makeGetSet('Seconds', false); // FORMATTING addFormatToken('S', 0, 0, function () { return ~~(this.millisecond() / 100); }); addFormatToken(0, ['SS', 2], 0, function () { return ~~(this.millisecond() / 10); }); addFormatToken(0, ['SSS', 3], 0, 'millisecond'); addFormatToken(0, ['SSSS', 4], 0, function () { return this.millisecond() * 10; }); addFormatToken(0, ['SSSSS', 5], 0, function () { return this.millisecond() * 100; }); addFormatToken(0, ['SSSSSS', 6], 0, function () { return this.millisecond() * 1000; }); addFormatToken(0, ['SSSSSSS', 7], 0, function () { return this.millisecond() * 10000; }); addFormatToken(0, ['SSSSSSSS', 8], 0, function () { return this.millisecond() * 100000; }); addFormatToken(0, ['SSSSSSSSS', 9], 0, function () { return this.millisecond() * 1000000; }); // ALIASES addUnitAlias('millisecond', 'ms'); // PRIORITY addUnitPriority('millisecond', 16); // PARSING addRegexToken('S', match1to3, match1); addRegexToken('SS', match1to3, match2); addRegexToken('SSS', match1to3, match3); var token, getSetMillisecond; for (token = 'SSSS'; token.length <= 9; token += 'S') { addRegexToken(token, matchUnsigned); } function parseMs(input, array) { array[MILLISECOND] = toInt(('0.' + input) * 1000); } for (token = 'S'; token.length <= 9; token += 'S') { addParseToken(token, parseMs); } getSetMillisecond = makeGetSet('Milliseconds', false); // FORMATTING addFormatToken('z', 0, 0, 'zoneAbbr'); addFormatToken('zz', 0, 0, 'zoneName'); // MOMENTS function getZoneAbbr() { return this._isUTC ? 'UTC' : ''; } function getZoneName() { return this._isUTC ? 'Coordinated Universal Time' : ''; } var proto = Moment.prototype; proto.add = add; proto.calendar = calendar$1; proto.clone = clone; proto.diff = diff; proto.endOf = endOf; proto.format = format; proto.from = from; proto.fromNow = fromNow; proto.to = to; proto.toNow = toNow; proto.get = stringGet; proto.invalidAt = invalidAt; proto.isAfter = isAfter; proto.isBefore = isBefore; proto.isBetween = isBetween; proto.isSame = isSame; proto.isSameOrAfter = isSameOrAfter; proto.isSameOrBefore = isSameOrBefore; proto.isValid = isValid$2; proto.lang = lang; proto.locale = locale; proto.localeData = localeData; proto.max = prototypeMax; proto.min = prototypeMin; proto.parsingFlags = parsingFlags; proto.set = stringSet; proto.startOf = startOf; proto.subtract = subtract; proto.toArray = toArray; proto.toObject = toObject; proto.toDate = toDate; proto.toISOString = toISOString; proto.inspect = inspect; if (typeof Symbol !== 'undefined' && Symbol.for != null) { proto[Symbol.for('nodejs.util.inspect.custom')] = function () { return 'Moment<' + this.format() + '>'; }; } proto.toJSON = toJSON; proto.toString = toString; proto.unix = unix; proto.valueOf = valueOf; proto.creationData = creationData; proto.eraName = getEraName; proto.eraNarrow = getEraNarrow; proto.eraAbbr = getEraAbbr; proto.eraYear = getEraYear; proto.year = getSetYear; proto.isLeapYear = getIsLeapYear; proto.weekYear = getSetWeekYear; proto.isoWeekYear = getSetISOWeekYear; proto.quarter = proto.quarters = getSetQuarter; proto.month = getSetMonth; proto.daysInMonth = getDaysInMonth; proto.week = proto.weeks = getSetWeek; proto.isoWeek = proto.isoWeeks = getSetISOWeek; proto.weeksInYear = getWeeksInYear; proto.weeksInWeekYear = getWeeksInWeekYear; proto.isoWeeksInYear = getISOWeeksInYear; proto.isoWeeksInISOWeekYear = getISOWeeksInISOWeekYear; proto.date = getSetDayOfMonth; proto.day = proto.days = getSetDayOfWeek; proto.weekday = getSetLocaleDayOfWeek; proto.isoWeekday = getSetISODayOfWeek; proto.dayOfYear = getSetDayOfYear; proto.hour = proto.hours = getSetHour; proto.minute = proto.minutes = getSetMinute; proto.second = proto.seconds = getSetSecond; proto.millisecond = proto.milliseconds = getSetMillisecond; proto.utcOffset = getSetOffset; proto.utc = setOffsetToUTC; proto.local = setOffsetToLocal; proto.parseZone = setOffsetToParsedOffset; proto.hasAlignedHourOffset = hasAlignedHourOffset; proto.isDST = isDaylightSavingTime; proto.isLocal = isLocal; proto.isUtcOffset = isUtcOffset; proto.isUtc = isUtc; proto.isUTC = isUtc; proto.zoneAbbr = getZoneAbbr; proto.zoneName = getZoneName; proto.dates = deprecate( 'dates accessor is deprecated. Use date instead.', getSetDayOfMonth ); proto.months = deprecate( 'months accessor is deprecated. Use month instead', getSetMonth ); proto.years = deprecate( 'years accessor is deprecated. Use year instead', getSetYear ); proto.zone = deprecate( 'moment().zone is deprecated, use moment().utcOffset instead. http://momentjs.com/guides/#/warnings/zone/', getSetZone ); proto.isDSTShifted = deprecate( 'isDSTShifted is deprecated. See http://momentjs.com/guides/#/warnings/dst-shifted/ for more information', isDaylightSavingTimeShifted ); function createUnix(input) { return createLocal(input * 1000); } function createInZone() { return createLocal.apply(null, arguments).parseZone(); } function preParsePostFormat(string) { return string; } var proto$1 = Locale.prototype; proto$1.calendar = calendar; proto$1.longDateFormat = longDateFormat; proto$1.invalidDate = invalidDate; proto$1.ordinal = ordinal; proto$1.preparse = preParsePostFormat; proto$1.postformat = preParsePostFormat; proto$1.relativeTime = relativeTime; proto$1.pastFuture = pastFuture; proto$1.set = set; proto$1.eras = localeEras; proto$1.erasParse = localeErasParse; proto$1.erasConvertYear = localeErasConvertYear; proto$1.erasAbbrRegex = erasAbbrRegex; proto$1.erasNameRegex = erasNameRegex; proto$1.erasNarrowRegex = erasNarrowRegex; proto$1.months = localeMonths; proto$1.monthsShort = localeMonthsShort; proto$1.monthsParse = localeMonthsParse; proto$1.monthsRegex = monthsRegex; proto$1.monthsShortRegex = monthsShortRegex; proto$1.week = localeWeek; proto$1.firstDayOfYear = localeFirstDayOfYear; proto$1.firstDayOfWeek = localeFirstDayOfWeek; proto$1.weekdays = localeWeekdays; proto$1.weekdaysMin = localeWeekdaysMin; proto$1.weekdaysShort = localeWeekdaysShort; proto$1.weekdaysParse = localeWeekdaysParse; proto$1.weekdaysRegex = weekdaysRegex; proto$1.weekdaysShortRegex = weekdaysShortRegex; proto$1.weekdaysMinRegex = weekdaysMinRegex; proto$1.isPM = localeIsPM; proto$1.meridiem = localeMeridiem; function get$1(format, index, field, setter) { var locale = getLocale(), utc = createUTC().set(setter, index); return locale[field](utc, format); } function listMonthsImpl(format, index, field) { if (isNumber(format)) { index = format; format = undefined; } format = format || ''; if (index != null) { return get$1(format, index, field, 'month'); } var i, out = []; for (i = 0; i < 12; i++) { out[i] = get$1(format, i, field, 'month'); } return out; } // () // (5) // (fmt, 5) // (fmt) // (true) // (true, 5) // (true, fmt, 5) // (true, fmt) function listWeekdaysImpl(localeSorted, format, index, field) { if (typeof localeSorted === 'boolean') { if (isNumber(format)) { index = format; format = undefined; } format = format || ''; } else { format = localeSorted; index = format; localeSorted = false; if (isNumber(format)) { index = format; format = undefined; } format = format || ''; } var locale = getLocale(), shift = localeSorted ? locale._week.dow : 0, i, out = []; if (index != null) { return get$1(format, (index + shift) % 7, field, 'day'); } for (i = 0; i < 7; i++) { out[i] = get$1(format, (i + shift) % 7, field, 'day'); } return out; } function listMonths(format, index) { return listMonthsImpl(format, index, 'months'); } function listMonthsShort(format, index) { return listMonthsImpl(format, index, 'monthsShort'); } function listWeekdays(localeSorted, format, index) { return listWeekdaysImpl(localeSorted, format, index, 'weekdays'); } function listWeekdaysShort(localeSorted, format, index) { return listWeekdaysImpl(localeSorted, format, index, 'weekdaysShort'); } function listWeekdaysMin(localeSorted, format, index) { return listWeekdaysImpl(localeSorted, format, index, 'weekdaysMin'); } getSetGlobalLocale('en', { eras: [ { since: '0001-01-01', until: +Infinity, offset: 1, name: 'Anno Domini', narrow: 'AD', abbr: 'AD', }, { since: '0000-12-31', until: -Infinity, offset: 1, name: 'Before Christ', narrow: 'BC', abbr: 'BC', }, ], dayOfMonthOrdinalParse: /\d{1,2}(th|st|nd|rd)/, ordinal: function (number) { var b = number % 10, output = toInt((number % 100) / 10) === 1 ? 'th' : b === 1 ? 'st' : b === 2 ? 'nd' : b === 3 ? 'rd' : 'th'; return number + output; }, }); // Side effect imports hooks.lang = deprecate( 'moment.lang is deprecated. Use moment.locale instead.', getSetGlobalLocale ); hooks.langData = deprecate( 'moment.langData is deprecated. Use moment.localeData instead.', getLocale ); var mathAbs = Math.abs; function abs() { var data = this._data; this._milliseconds = mathAbs(this._milliseconds); this._days = mathAbs(this._days); this._months = mathAbs(this._months); data.milliseconds = mathAbs(data.milliseconds); data.seconds = mathAbs(data.seconds); data.minutes = mathAbs(data.minutes); data.hours = mathAbs(data.hours); data.months = mathAbs(data.months); data.years = mathAbs(data.years); return this; } function addSubtract$1(duration, input, value, direction) { var other = createDuration(input, value); duration._milliseconds += direction * other._milliseconds; duration._days += direction * other._days; duration._months += direction * other._months; return duration._bubble(); } // supports only 2.0-style add(1, 's') or add(duration) function add$1(input, value) { return addSubtract$1(this, input, value, 1); } // supports only 2.0-style subtract(1, 's') or subtract(duration) function subtract$1(input, value) { return addSubtract$1(this, input, value, -1); } function absCeil(number) { if (number < 0) { return Math.floor(number); } else { return Math.ceil(number); } } function bubble() { var milliseconds = this._milliseconds, days = this._days, months = this._months, data = this._data, seconds, minutes, hours, years, monthsFromDays; // if we have a mix of positive and negative values, bubble down first // check: https://github.com/moment/moment/issues/2166 if ( !( (milliseconds >= 0 && days >= 0 && months >= 0) || (milliseconds <= 0 && days <= 0 && months <= 0) ) ) { milliseconds += absCeil(monthsToDays(months) + days) * 864e5; days = 0; months = 0; } // The following code bubbles up values, see the tests for // examples of what that means. data.milliseconds = milliseconds % 1000; seconds = absFloor(milliseconds / 1000); data.seconds = seconds % 60; minutes = absFloor(seconds / 60); data.minutes = minutes % 60; hours = absFloor(minutes / 60); data.hours = hours % 24; days += absFloor(hours / 24); // convert days to months monthsFromDays = absFloor(daysToMonths(days)); months += monthsFromDays; days -= absCeil(monthsToDays(monthsFromDays)); // 12 months -> 1 year years = absFloor(months / 12); months %= 12; data.days = days; data.months = months; data.years = years; return this; } function daysToMonths(days) { // 400 years have 146097 days (taking into account leap year rules) // 400 years have 12 months === 4800 return (days * 4800) / 146097; } function monthsToDays(months) { // the reverse of daysToMonths return (months * 146097) / 4800; } function as(units) { if (!this.isValid()) { return NaN; } var days, months, milliseconds = this._milliseconds; units = normalizeUnits(units); if (units === 'month' || units === 'quarter' || units === 'year') { days = this._days + milliseconds / 864e5; months = this._months + daysToMonths(days); switch (units) { case 'month': return months; case 'quarter': return months / 3; case 'year': return months / 12; } } else { // handle milliseconds separately because of floating point math errors (issue #1867) days = this._days + Math.round(monthsToDays(this._months)); switch (units) { case 'week': return days / 7 + milliseconds / 6048e5; case 'day': return days + milliseconds / 864e5; case 'hour': return days * 24 + milliseconds / 36e5; case 'minute': return days * 1440 + milliseconds / 6e4; case 'second': return days * 86400 + milliseconds / 1000; // Math.floor prevents floating point math errors here case 'millisecond': return Math.floor(days * 864e5) + milliseconds; default: throw new Error('Unknown unit ' + units); } } } // TODO: Use this.as('ms')? function valueOf$1() { if (!this.isValid()) { return NaN; } return ( this._milliseconds + this._days * 864e5 + (this._months % 12) * 2592e6 + toInt(this._months / 12) * 31536e6 ); } function makeAs(alias) { return function () { return this.as(alias); }; } var asMilliseconds = makeAs('ms'), asSeconds = makeAs('s'), asMinutes = makeAs('m'), asHours = makeAs('h'), asDays = makeAs('d'), asWeeks = makeAs('w'), asMonths = makeAs('M'), asQuarters = makeAs('Q'), asYears = makeAs('y'); function clone$1() { return createDuration(this); } function get$2(units) { units = normalizeUnits(units); return this.isValid() ? this[units + 's']() : NaN; } function makeGetter(name) { return function () { return this.isValid() ? this._data[name] : NaN; }; } var milliseconds = makeGetter('milliseconds'), seconds = makeGetter('seconds'), minutes = makeGetter('minutes'), hours = makeGetter('hours'), days = makeGetter('days'), months = makeGetter('months'), years = makeGetter('years'); function weeks() { return absFloor(this.days() / 7); } var round = Math.round, thresholds = { ss: 44, // a few seconds to seconds s: 45, // seconds to minute m: 45, // minutes to hour h: 22, // hours to day d: 26, // days to month/week w: null, // weeks to month M: 11, // months to year }; // helper function for moment.fn.from, moment.fn.fromNow, and moment.duration.fn.humanize function substituteTimeAgo(string, number, withoutSuffix, isFuture, locale) { return locale.relativeTime(number || 1, !!withoutSuffix, string, isFuture); } function relativeTime$1(posNegDuration, withoutSuffix, thresholds, locale) { var duration = createDuration(posNegDuration).abs(), seconds = round(duration.as('s')), minutes = round(duration.as('m')), hours = round(duration.as('h')), days = round(duration.as('d')), months = round(duration.as('M')), weeks = round(duration.as('w')), years = round(duration.as('y')), a = (seconds <= thresholds.ss && ['s', seconds]) || (seconds < thresholds.s && ['ss', seconds]) || (minutes <= 1 && ['m']) || (minutes < thresholds.m && ['mm', minutes]) || (hours <= 1 && ['h']) || (hours < thresholds.h && ['hh', hours]) || (days <= 1 && ['d']) || (days < thresholds.d && ['dd', days]); if (thresholds.w != null) { a = a || (weeks <= 1 && ['w']) || (weeks < thresholds.w && ['ww', weeks]); } a = a || (months <= 1 && ['M']) || (months < thresholds.M && ['MM', months]) || (years <= 1 && ['y']) || ['yy', years]; a[2] = withoutSuffix; a[3] = +posNegDuration > 0; a[4] = locale; return substituteTimeAgo.apply(null, a); } // This function allows you to set the rounding function for relative time strings function getSetRelativeTimeRounding(roundingFunction) { if (roundingFunction === undefined) { return round; } if (typeof roundingFunction === 'function') { round = roundingFunction; return true; } return false; } // This function allows you to set a threshold for relative time strings function getSetRelativeTimeThreshold(threshold, limit) { if (thresholds[threshold] === undefined) { return false; } if (limit === undefined) { return thresholds[threshold]; } thresholds[threshold] = limit; if (threshold === 's') { thresholds.ss = limit - 1; } return true; } function humanize(argWithSuffix, argThresholds) { if (!this.isValid()) { return this.localeData().invalidDate(); } var withSuffix = false, th = thresholds, locale, output; if (typeof argWithSuffix === 'object') { argThresholds = argWithSuffix; argWithSuffix = false; } if (typeof argWithSuffix === 'boolean') { withSuffix = argWithSuffix; } if (typeof argThresholds === 'object') { th = Object.assign({}, thresholds, argThresholds); if (argThresholds.s != null && argThresholds.ss == null) { th.ss = argThresholds.s - 1; } } locale = this.localeData(); output = relativeTime$1(this, !withSuffix, th, locale); if (withSuffix) { output = locale.pastFuture(+this, output); } return locale.postformat(output); } var abs$1 = Math.abs; function sign(x) { return (x > 0) - (x < 0) || +x; } function toISOString$1() { // for ISO strings we do not use the normal bubbling rules: // * milliseconds bubble up until they become hours // * days do not bubble at all // * months bubble up until they become years // This is because there is no context-free conversion between hours and days // (think of clock changes) // and also not between days and months (28-31 days per month) if (!this.isValid()) { return this.localeData().invalidDate(); } var seconds = abs$1(this._milliseconds) / 1000, days = abs$1(this._days), months = abs$1(this._months), minutes, hours, years, s, total = this.asSeconds(), totalSign, ymSign, daysSign, hmsSign; if (!total) { // this is the same as C#'s (Noda) and python (isodate)... // but not other JS (goog.date) return 'P0D'; } // 3600 seconds -> 60 minutes -> 1 hour minutes = absFloor(seconds / 60); hours = absFloor(minutes / 60); seconds %= 60; minutes %= 60; // 12 months -> 1 year years = absFloor(months / 12); months %= 12; // inspired by https://github.com/dordille/moment-isoduration/blob/master/moment.isoduration.js s = seconds ? seconds.toFixed(3).replace(/\.?0+$/, '') : ''; totalSign = total < 0 ? '-' : ''; ymSign = sign(this._months) !== sign(total) ? '-' : ''; daysSign = sign(this._days) !== sign(total) ? '-' : ''; hmsSign = sign(this._milliseconds) !== sign(total) ? '-' : ''; return ( totalSign + 'P' + (years ? ymSign + years + 'Y' : '') + (months ? ymSign + months + 'M' : '') + (days ? daysSign + days + 'D' : '') + (hours || minutes || seconds ? 'T' : '') + (hours ? hmsSign + hours + 'H' : '') + (minutes ? hmsSign + minutes + 'M' : '') + (seconds ? hmsSign + s + 'S' : '') ); } var proto$2 = Duration.prototype; proto$2.isValid = isValid$1; proto$2.abs = abs; proto$2.add = add$1; proto$2.subtract = subtract$1; proto$2.as = as; proto$2.asMilliseconds = asMilliseconds; proto$2.asSeconds = asSeconds; proto$2.asMinutes = asMinutes; proto$2.asHours = asHours; proto$2.asDays = asDays; proto$2.asWeeks = asWeeks; proto$2.asMonths = asMonths; proto$2.asQuarters = asQuarters; proto$2.asYears = asYears; proto$2.valueOf = valueOf$1; proto$2._bubble = bubble; proto$2.clone = clone$1; proto$2.get = get$2; proto$2.milliseconds = milliseconds; proto$2.seconds = seconds; proto$2.minutes = minutes; proto$2.hours = hours; proto$2.days = days; proto$2.weeks = weeks; proto$2.months = months; proto$2.years = years; proto$2.humanize = humanize; proto$2.toISOString = toISOString$1; proto$2.toString = toISOString$1; proto$2.toJSON = toISOString$1; proto$2.locale = locale; proto$2.localeData = localeData; proto$2.toIsoString = deprecate( 'toIsoString() is deprecated. Please use toISOString() instead (notice the capitals)', toISOString$1 ); proto$2.lang = lang; // FORMATTING addFormatToken('X', 0, 0, 'unix'); addFormatToken('x', 0, 0, 'valueOf'); // PARSING addRegexToken('x', matchSigned); addRegexToken('X', matchTimestamp); addParseToken('X', function (input, array, config) { config._d = new Date(parseFloat(input) * 1000); }); addParseToken('x', function (input, array, config) { config._d = new Date(toInt(input)); }); //! moment.js hooks.version = '2.29.4'; setHookCallback(createLocal); hooks.fn = proto; hooks.min = min; hooks.max = max; hooks.now = now; hooks.utc = createUTC; hooks.unix = createUnix; hooks.months = listMonths; hooks.isDate = isDate; hooks.locale = getSetGlobalLocale; hooks.invalid = createInvalid; hooks.duration = createDuration; hooks.isMoment = isMoment; hooks.weekdays = listWeekdays; hooks.parseZone = createInZone; hooks.localeData = getLocale; hooks.isDuration = isDuration; hooks.monthsShort = listMonthsShort; hooks.weekdaysMin = listWeekdaysMin; hooks.defineLocale = defineLocale; hooks.updateLocale = updateLocale; hooks.locales = listLocales; hooks.weekdaysShort = listWeekdaysShort; hooks.normalizeUnits = normalizeUnits; hooks.relativeTimeRounding = getSetRelativeTimeRounding; hooks.relativeTimeThreshold = getSetRelativeTimeThreshold; hooks.calendarFormat = getCalendarFormat; hooks.prototype = proto; // currently HTML5 input type only supports 24-hour formats hooks.HTML5_FMT = { DATETIME_LOCAL: 'YYYY-MM-DDTHH:mm', // <input type="datetime-local" /> DATETIME_LOCAL_SECONDS: 'YYYY-MM-DDTHH:mm:ss', // <input type="datetime-local" step="1" /> DATETIME_LOCAL_MS: 'YYYY-MM-DDTHH:mm:ss.SSS', // <input type="datetime-local" step="0.001" /> DATE: 'YYYY-MM-DD', // <input type="date" /> TIME: 'HH:mm', // <input type="time" /> TIME_SECONDS: 'HH:mm:ss', // <input type="time" step="1" /> TIME_MS: 'HH:mm:ss.SSS', // <input type="time" step="0.001" /> WEEK: 'GGGG-[W]WW', // <input type="week" /> MONTH: 'YYYY-MM', // <input type="month" /> }; export default hooks;
PypiClean
/redash_stmo-2020.5.1-py3-none-any.whl/redash_stmo/query_runner/presto.py
import collections import logging from pyhive import presto from redash.query_runner import register from redash.query_runner.presto import Presto logger = logging.getLogger(__name__) class STMOPresto(Presto): """ A custom Presto query runner. Currently empty. """ @classmethod def type(cls): """Overrides the name to match the name of the parent query runner""" return "presto" class STMOConnection(presto.Connection): """ A custom Presto connection that uses the custom Presto cursor as the default cursor. """ def cursor(self): return STMOPrestoCursor(*self._args, **self._kwargs) class STMOPrestoCursor(presto.Cursor): """ A custom Presto cursor that processes the data after it has been handled by the parent cursor to apply various transformations. """ def _process_response(self, response): super(STMOPrestoCursor, self)._process_response(response) self._data = self._process_data() def _process_data(self): processed_data = collections.deque() for row in self._data: # the top-level is an iterable of records (i.e. rows) item = [] for column, row in zip(self._columns, row): item.append(self._format_data(column["typeSignature"], row)) processed_data.append(item) return processed_data def _format_data(self, column, data): """Given a Presto column and its data, return a more human-readable format of its data for some data types.""" type = column["rawType"] try: iter(data) # check if the data is iterable except TypeError: return data # non-iterables can simply be directly shown # records should have their fields associated with types # but keep the tuple format for backward-compatibility if type == "row": keys = column["literalArguments"] values = [ self._format_data(c, d) for c, d in zip(column["typeArguments"], data) ] return tuple(zip(keys, values)) # arrays should have their element types associated with each element elif type == "array": rep = [column["typeArguments"][0]] * len(data) return [self._format_data(c, d) for c, d in zip(rep, data)] # maps should have their value types associated with each value # (note that keys are always strings), but keep the tuple format # for backward-compatibility elif type == "map": value_type = column["typeArguments"][1] return [ (k, self._format_data(value_type, v)) for k, v in data.items() ] else: # unknown type, don't process it return data def stmo_connect(*args, **kwargs): """ A custom connect function to be used to override the default pyhive.presto.connect function. """ return STMOConnection(*args, **kwargs) def extension(app): logger.info("Loading Redash Extension for the custom Presto query runner") # Monkeypatch the pyhive.presto.connect function presto.connect = stmo_connect # and register our own STMOPresto query runner class # which automatically overwrites the default presto query runner register(STMOPresto) logger.info("Loaded Redash Extension for the custom Presto query runner") return stmo_connect
PypiClean
/django-urlmagic-0.4.6.tar.gz/django-urlmagic-0.4.6/urlmagic/core.py
from abc import ABCMeta from django.conf import settings from django.conf.urls import url from django.contrib.auth.decorators import permission_required from django.db.models.fields import SlugField from urlmagic.views import core from urlmagic.utils import model_names class UrlGenerator(object): __metaclass__ = ABCMeta default_views = { "add": core.ContextCreateView, "delete": core.ContextDeleteView, "detail": core.ContextDetailView, "edit": core.ContextUpdateView, "list": core.ContextListView, } @classmethod def get_model_key(cls, model): for field in model._meta.fields: if field.db_index and field._unique and isinstance(field, SlugField): return field.name return "pk" @classmethod def adjust_result(cls, r): return r @classmethod def adjust_dict(cls, model, d): return d @classmethod def list(cls, model, **kwargs): return cls.adjust_result(cls.list_inner(model, **cls.adjust_dict(model, kwargs))) @classmethod def add(cls, model, **kwargs): return cls.adjust_result(cls.add_inner(model, **cls.adjust_dict(model, kwargs))) @classmethod def detail(cls, model, **kwargs): return cls.adjust_result(cls.detail_inner(model, **cls.adjust_dict(model, kwargs))) @classmethod def edit(cls, model, **kwargs): return cls.adjust_result(cls.edit_inner(model, **cls.adjust_dict(model, kwargs))) @classmethod def delete(cls, model, **kwargs): return cls.adjust_result(cls.delete_inner(model, **cls.adjust_dict(model, kwargs))) @classmethod def list_inner( cls, model=None, queryset=None, name_format="{role}_{model_system}_list", permission_format=False, template_format="{role}/{model_system}_list.html", url_format="^{model_plural_short}/$", view=None, view_kwargs=None, format_kwargs=None, ): format_kwargs = format_kwargs or {} format_kwargs.update(model_names(model)) view_kwargs = view_kwargs or {} view_kwargs.setdefault("extra_context", {}) view_kwargs["extra_context"].update(format_kwargs) view_kwargs.setdefault("model", model) view_kwargs.setdefault("queryset", queryset) view_kwargs.setdefault("paginate_by", getattr(settings, "PAGINATE_PER_PAGE", 50)) view_kwargs.setdefault("template_name", template_format.format(**format_kwargs)) response = url( url_format.format(**format_kwargs), (view or cls.default_views.get("list", core.ContextListView)).as_view(**view_kwargs), name=name_format.format(**format_kwargs) ) if permission_format: if permission_format is True: permission_format = "{model_module}.change_{model_system}" response._callback = permission_required(permission_format.format(**format_kwargs))(response._callback) return response @classmethod def add_inner( cls, model=None, queryset=None, form_class=None, name_format="{role}_{model_system}_add", permission_format=False, template_format="{role}/{model_system}_add.html", url_format="^{model_plural_short}/add/$", view=None, view_kwargs=None, format_kwargs=None, ): format_kwargs = format_kwargs or {} format_kwargs.update(model_names(model)) view_kwargs = view_kwargs or {} view_kwargs.setdefault("extra_context", {}) view_kwargs["extra_context"].update(format_kwargs) view_kwargs.setdefault("form_class", form_class) view_kwargs.setdefault("model", model) view_kwargs.setdefault("queryset", queryset) view_kwargs.setdefault("template_name", template_format.format(**format_kwargs)) response = url( url_format.format(**format_kwargs), (view or cls.default_views.get("add", core.ContextCreateView)).as_view(**view_kwargs), name=name_format.format(**format_kwargs) ) if permission_format: if permission_format is True: permission_format = "{model_module}.add_{model_system}" response._callback = permission_required(permission_format.format(**format_kwargs))(response._callback) return response @classmethod def detail_inner( cls, model=None, queryset=None, name_format="{role}_{model_system}_detail", permission_format=False, template_format="{role}/{model_system}_detail.html", model_key=None, url_format="^{model_plural_short}/(?P<{model_key}>[^/]+)/$", view=None, view_kwargs=None, format_kwargs=None, ): format_kwargs = format_kwargs or {} format_kwargs.setdefault("model_key", model_key or cls.get_model_key(model)) format_kwargs.update(model_names(model)) view_kwargs = view_kwargs or {} view_kwargs.setdefault("extra_context", {}) view_kwargs["extra_context"].update(format_kwargs) view_kwargs.setdefault("model", model) view_kwargs.setdefault("queryset", queryset) view_kwargs.setdefault("template_name", template_format.format(**format_kwargs)) response = url( url_format.format(**format_kwargs), (view or cls.default_views.get("detail", core.ContextDetailView)).as_view(**view_kwargs), name=name_format.format(**format_kwargs) ) if permission_format: if permission_format is True: permission_format = "{model_module}.change_{model_system}" response._callback = permission_required(permission_format.format(**format_kwargs))(response._callback) return response @classmethod def edit_inner( cls, model=None, queryset=None, form_class=None, name_format="{role}_{model_system}_edit", permission_format=False, template_format="{role}/{model_system}_edit.html", model_key=None, url_format="^{model_plural_short}/(?P<{model_key}>[^/]+)/edit/$", view=None, view_kwargs=None, format_kwargs=None, ): format_kwargs = format_kwargs or {} format_kwargs.setdefault("model_key", model_key or cls.get_model_key(model)) format_kwargs.update(model_names(model)) view_kwargs = view_kwargs or {} view_kwargs.setdefault("extra_context", {}) view_kwargs["extra_context"].update(format_kwargs) view_kwargs.setdefault("form_class", form_class) view_kwargs.setdefault("model", model) view_kwargs.setdefault("queryset", queryset) view_kwargs.setdefault("template_name", template_format.format(**format_kwargs)) response = url( url_format.format(**format_kwargs), (view or cls.default_views.get("edit", core.ContextUpdateView)).as_view(**view_kwargs), name=name_format.format(**format_kwargs) ) if permission_format: if permission_format is True: permission_format = "{model_module}.change_{model_system}" response._callback = permission_required(permission_format.format(**format_kwargs))(response._callback) return response @classmethod def delete_inner( cls, model=None, queryset=None, name_format="{role}_{model_system}_delete", permission_format=False, template_format="{role}/{model_system}_delete.html", model_key=None, url_format="^{model_plural_short}/(?P<{model_key}>[^/]+)/delete/$", view=None, view_kwargs=None, format_kwargs=None, ): format_kwargs = format_kwargs or {} format_kwargs.setdefault("model_key", model_key or cls.get_model_key(model)) format_kwargs.update(model_names(model)) view_kwargs = view_kwargs or {} view_kwargs.setdefault("extra_context", {}) view_kwargs["extra_context"].update(format_kwargs) view_kwargs.setdefault("success_url", "../..") view_kwargs.setdefault("model", model) view_kwargs.setdefault("queryset", queryset) view_kwargs.setdefault("template_name", template_format.format(**format_kwargs)) response = url( url_format.format(**format_kwargs), (view or cls.default_views.get("delete", core.ContextDeleteView)).as_view(**view_kwargs), name=name_format.format(**format_kwargs) ) if permission_format: if permission_format is True: permission_format = "{model_module}.delete_{model_system}" response._callback = permission_required(permission_format.format(**format_kwargs))(response._callback) return response @classmethod def singular_add(cls, model, **kwargs): kwargs.setdefault("name_format", "{role}_{model_system}_add") kwargs.setdefault("url_format", "^{model_singular_short}/add/$") return cls.add(model, **kwargs) @classmethod def singular_edit(cls, model, **kwargs): kwargs.setdefault("name_format", "{role}_{model_system}_edit") kwargs.setdefault("url_format", "^{model_singular_short}/edit/$") kwargs.setdefault("view_kwargs", {}) kwargs["view_kwargs"].setdefault("success_url", ".") return cls.edit(model, **kwargs) @classmethod def singular_detail(cls, model, **kwargs): kwargs.setdefault("name_format", "{role}_{model_system}_detail") kwargs.setdefault("url_format", "^{model_singular_short}/$") return cls.detail(model, **kwargs) @classmethod def singular_delete(cls, model, **kwargs): kwargs.setdefault("name_format", "{role}_{model_system}_delete") kwargs.setdefault("url_format", "^{model_singular_short}/delete/$") return cls.delete(model, **kwargs)
PypiClean
/pmagpy-4.2.114.tar.gz/pmagpy-4.2.114/help_files/demag_gui_help.py
zij_help = """Zijderveld plot of current specimen measurement data and fits plot interactions: - click and drag to zoom or pan (default=zoom) - right click to toggle zoom or pan - middle click to home - double click 2 measurements to set them as bounds fit symbols: - diamond = selected fit - small diamond = bad fit - circle = good fit""" spec_eqarea_help = """Specimen Eqarea plot shows measurement data in white and all fits plot interactions: - click and drag to zoom or pan (default=zoom) - right click to toggle zoom or pan - middle click to home - double click to view selected fit fit symbols: - diamond = selected fit - small diamond = bad fit - circle = good fit""" MM0_help = """M/M0 plot for data with the bounds of fits plot interactions: - click and drag to zoom or pan (default=zoom) - right click to toggle zoom or pan - middle click to home fit symbols: - diamond = selected fit - small diamond = bad fit - circle = good fit""" high_level_eqarea_help = """High Level Mean Eqarea plot plot interactions: - click and drag to zoom or pan (default=zoom) - right click to toggle zoom or pan - middle click to home - double click to view selected fit fit symbols and colors: - diamond = selected fit - small diamond = bad fit - circle = good fit - black = fisher mean of displayed data check sample orient symbols: - triangle = wrong drill direction - delta = wrong compass direction - dotted plane = rotated sample direction during measurement (lighter points are lower hemisphere)""" logger_help = """ List of all measurement entries for current specimen column labels: - i: index - Step: type of step N = NRM T = Thermal AF = Alternating Field - Dec: Declination - Inc: Inclination - M: Magnetic Moment colored entries: - blue: measurements that are part of current fit - red: bad measurement - dark blue: highlighted (grey on mac) interaction: - right click to toggle measurement bad - double click two measurements to set new bounds of current fit""" specimens_box_help = """Displays current specimen and has dropdown of all specimens for which there is valid measurement data. You can also enter another specimen name into the box and when you hit enter the GUI will try to switch to that specimen if it exists.""" nextbutton_help = """Switches current specimen to next specimen. Hotkey: ctrl-left""" prevbutton_help = """Switches current specimen to previous specimen. Hotkey: ctrl-right""" coordinates_box_help = """Shows current coordinate system and has a dropdown menu of all coordinate systems for which there are specimens with valid measurement data. Hotkeys: - specimen: ctrl-P - geographic: ctrl-g - tilt-corrected: ctrl-t""" orthogonal_box_help = """Zijderveld orientation options""" fit_box_help = """Displays current fit name and has dropdown of all fits for the current specimen. Fits can be renamed here by typing new name into the box and hitting enter. Hotkeys: - ctrl-up: previous fit - ctrl-down: next fit""" add_fit_button_help = """Adds a new fit to the current specimen. Hotkey: ctrl-n""" tmin_box_help = """Shows lower bound of current fit and has dropdown menu of all measurement steps.""" tmax_box_help = """Shows upper bound of current fit and has dropdown menu of all measurement steps.""" save_fit_btn_help = """Saves current interpretations to demag_gui.redo file so they can be reloaded in another session. Hotkey: ctrl-s""" delete_fit_btn_help = """Deletes current fit and reverts your current fit to the previous fit. Hotkey: ctrl-D""" PCA_type_help = """Shows the current fit's regression or mean type.""" plane_display_help = """How to display plane fits on eqarea plots: bfv = Best Fit Vector wp = Whole plane""" level_box_help = """Shows the current level at which interpretations will be displayed on the high level mean eqarea plot in the far right of the GUI.""" level_names_help = """Shows the available samples, sites, locations, or studies which can be displayed on the high level mean eqarea plot""" mean_type_help = """Type of mean to preform on all interpretations currently plotted on the high level mean eqarea plot""" mean_fit_help = """Which interpretations to display in the high level mean plot. If 'All' then all interpretations are displayed reguardless of name, else only interpretations of name == value will be displayed""" warning_help = """Message box to display any relevent problems with the current specimen and it's interpretations to the user.""" switch_stats_btn_help = """These buttons allow you to cycle through all current high level mean statistics in the case where you are doing a fisher by polarity mean."""
PypiClean
/msgraph-sdk-1.0.0a3.tar.gz/msgraph-sdk-1.0.0a3/msgraph/generated/groups/item/sites/item/onenote/notebooks/item/sections/item/pages/item/parent_notebook/parent_notebook_request_builder.py
from __future__ import annotations from dataclasses import dataclass from kiota_abstractions.get_path_parameters import get_path_parameters from kiota_abstractions.method import Method from kiota_abstractions.request_adapter import RequestAdapter from kiota_abstractions.request_information import RequestInformation from kiota_abstractions.request_option import RequestOption from kiota_abstractions.response_handler import ResponseHandler from kiota_abstractions.serialization import Parsable, ParsableFactory from typing import Any, Callable, Dict, List, Optional, Union from .............models import notebook from .............models.o_data_errors import o_data_error class ParentNotebookRequestBuilder(): """ Provides operations to manage the parentNotebook property of the microsoft.graph.onenotePage entity. """ def __init__(self,request_adapter: RequestAdapter, path_parameters: Optional[Union[Dict[str, Any], str]] = None) -> None: """ Instantiates a new ParentNotebookRequestBuilder and sets the default values. Args: pathParameters: The raw url or the Url template parameters for the request. requestAdapter: The request adapter to use to execute the requests. """ if path_parameters is None: raise Exception("path_parameters cannot be undefined") if request_adapter is None: raise Exception("request_adapter cannot be undefined") # Url template to use to build the URL for the current request builder self.url_template: str = "{+baseurl}/groups/{group%2Did}/sites/{site%2Did}/onenote/notebooks/{notebook%2Did}/sections/{onenoteSection%2Did}/pages/{onenotePage%2Did}/parentNotebook{?%24select,%24expand}" url_tpl_params = get_path_parameters(path_parameters) self.path_parameters = url_tpl_params self.request_adapter = request_adapter def create_get_request_information(self,request_configuration: Optional[ParentNotebookRequestBuilderGetRequestConfiguration] = None) -> RequestInformation: """ The notebook that contains the page. Read-only. Args: requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. Returns: RequestInformation """ request_info = RequestInformation() request_info.url_template = self.url_template request_info.path_parameters = self.path_parameters request_info.http_method = Method.GET request_info.headers["Accept"] = "application/json" if request_configuration: request_info.add_request_headers(request_configuration.headers) request_info.set_query_string_parameters_from_raw_object(request_configuration.query_parameters) request_info.add_request_options(request_configuration.options) return request_info async def get(self,request_configuration: Optional[ParentNotebookRequestBuilderGetRequestConfiguration] = None, response_handler: Optional[ResponseHandler] = None) -> Optional[notebook.Notebook]: """ The notebook that contains the page. Read-only. Args: requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. responseHandler: Response handler to use in place of the default response handling provided by the core service Returns: Optional[notebook.Notebook] """ request_info = self.create_get_request_information( request_configuration ) error_mapping: Dict[str, ParsableFactory] = { "4XX": o_data_error.ODataError, "5XX": o_data_error.ODataError, } if not self.request_adapter: raise Exception("Http core is null") return await self.request_adapter.send_async(request_info, notebook.Notebook, response_handler, error_mapping) @dataclass class ParentNotebookRequestBuilderGetQueryParameters(): """ The notebook that contains the page. Read-only. """ # Expand related entities expand: Optional[List[str]] = None # Select properties to be returned select: Optional[List[str]] = None def get_query_parameter(self,original_name: Optional[str] = None) -> str: """ Maps the query parameters names to their encoded names for the URI template parsing. Args: originalName: The original query parameter name in the class. Returns: str """ if original_name is None: raise Exception("original_name cannot be undefined") if original_name == "expand": return "%24expand" if original_name == "select": return "%24select" return original_name @dataclass class ParentNotebookRequestBuilderGetRequestConfiguration(): """ Configuration for the request such as headers, query parameters, and middleware options. """ # Request headers headers: Optional[Dict[str, str]] = None # Request options options: Optional[List[RequestOption]] = None # Request query parameters query_parameters: Optional[ParentNotebookRequestBuilder.ParentNotebookRequestBuilderGetQueryParameters] = None
PypiClean
/idem-vault-2.0.0.tar.gz/idem-vault-2.0.0/idem_vault/states/vault/secrets/kv_v2/secret.py
import copy from typing import Dict import dict_tools.data __contracts__ = ["resource"] async def present( hub, ctx, name: str, *, resource_id: (str, "alias=path"), data: Dict, disable_read: bool = False, ) -> Dict: """ Creates or update a secret stored with Vault KV_v2 secret engine. Args: name(string): An Idem name of the resource. path(string): The full logical path to write the data. This should be prefixed 'with secret/'. data(string, optional): Data to be written in the format of a JSON object. disable_read(bool, optional): Set this field to True if the vault authentication does not have read access. However, if the value is True, this Idem state operation is not idempotent, and Idem state comment output will always assume it is a "create" operation. Defaults to False. Request Syntax: [vault-secret-name]: vault.secrets.kv_v2.secret.present: - resource_Id: 'string' # Can also be specified as "path" - data: 'string' - disable_read: 'boolean' Returns: Dict[str, Any] Examples: .. code-block:: sls my-secret: vault.secrets.kv_v2.secret.present: - resource_id: secret/test # Can also be specified as "path" - data: '{"my-birthday": "2012-10-17"}' """ result = { "name": name, "result": True, "old_state": None, "new_state": None, "comment": (), } # data is converted to SafeNamespaceDict to avoid it being converted to string and printed to console. data = dict_tools.data.SafeNamespaceDict(data) if not disable_read: read_ret = await hub.exec.vault.secrets.kv_v2.secret.get(ctx, path=resource_id) if not read_ret["result"]: if "InvalidPath" not in str(read_ret["comment"]): result["result"] = False result["comment"] = read_ret["comment"] return result else: result["old_state"] = { "name": name, "path": resource_id, "data": dict_tools.data.SafeNamespaceDict(read_ret["ret"]["data"]), } else: hub.log.debug(f"vault.secrets.kv_v2.secret '{name}' read has been disabled.") result["comment"] = ( f"vault.secrets.kv_v2.secret '{name}' read has been disabled.", ) if (result["old_state"] is not None) and result["old_state"]["data"] == data: result["comment"] = result["comment"] + ( f"vault.secrets.kv_v2.secret '{name}' has no property need to be updated.", ) result["new_state"] = copy.deepcopy(result["old_state"]) return result elif result["old_state"] is None: if ctx.get("test", False): result["comment"] = (f"Would create vault.secrets.kv_v2.secret '{name}'.",) result["new_state"] = {"name": name, "path": resource_id, "data": data} return result else: if ctx.get("test", False): result["comment"] = (f"Would update vault.secrets.kv_v2.secret '{name}'.",) result["new_state"] = {"name": name, "path": resource_id, "data": data} return result write_ret = await hub.exec.hvac.client.secrets.kv.v2.create_or_update_secret( ctx, path=resource_id, secret=data ) if not write_ret["result"]: result["result"] = False result["comment"] = write_ret["comment"] return result result["new_state"] = {"name": name, "path": resource_id, "data": data} if result["old_state"] is None: result["comment"] = (f"Created vault.secrets.kv_v2.secret '{name}'.",) else: result["comment"] = (f"Updated vault.secrets.kv_v2.secret '{name}'.",) return result async def absent( hub, ctx, name: str, *, resource_id: (str, "alias=path"), delete_all_versions: bool = False, ) -> Dict: """ Delete a secret stored with Vault KV_v2 secret engine. Args: name(string): An Idem name of the resource. resource_id (string): The full logical path to write the data. This argument can also be specified using the alias "path." This should be prefixed with 'secret/'. delete_all_versions(bool, optional): Set this field to True if the vault authentication does not have read access. However, if the value is True, this Idem state operation is not idempotent. Defaults to False. Request Syntax: [vault-secret-name]: vault.secrets.kv_v2.secret.absent: - resource_id: 'string' # Can also be specified as "path" - delete_all_versions: 'boolean' Returns: Dict[str, Any] Examples: .. code-block:: sls my-secret: vault.secrets.kv_v2.secret.absent: - resource_id: secret/test # Can also be specified as "path" """ result = { "name": name, "result": True, "old_state": None, "new_state": None, "comment": (), } read_ret = await hub.exec.vault.secrets.kv_v2.secret.get(ctx, path=resource_id) if not read_ret["result"]: if "InvalidPath" in str(read_ret["comment"]): result["comment"] = ( f"vault.secrets.kv_v2.secret '{name}' is already absent.", ) else: result["result"] = False result["comment"] = read_ret["comment"] return result # "data" is not populated to reduce data exposure. result["old_state"] = {"name": name, "path": resource_id} delete_version = [read_ret["metadata"]["version"]] if delete_all_versions: version_ret = await hub.exec.hvac.client.secrets.kv.v2.read_secret_metadata( ctx, path=resource_id ) if not version_ret["result"]: result["result"] = False result["comment"] = version_ret["comment"] return result delete_version = list(version_ret["ret"]["data"]["versions"].keys()) if ctx.get("test", False): if delete_all_versions: result["comment"] = ( f"Would delete vault.secrets.kv_v2.secret '{name}' all versions.", ) else: result["comment"] = (f"Would delete vault.secrets.kv_v2.secret '{name}'.",) return result delete_ret = await hub.exec.hvac.client.secrets.kv.v2.destroy_secret_versions( ctx, path=resource_id, versions=delete_version ) if not delete_ret["result"]: result["result"] = False result["comment"] = read_ret["comment"] elif delete_all_versions: result["comment"] = ( f"Deleted vault.secrets.kv_v2.secret '{name}' all versions.", ) else: result["comment"] = (f"Deleted vault.secrets.kv_v2.secret '{name}'.",) return result async def describe(hub, ctx): """ Vault doesn't allow enumeration of secrets """ return {}
PypiClean
/Helios_Scanner-1.1-py3-none-any.whl/helios/webapp/phpmyadmin.py
from helios.webapp import base_app import re from helios.core.utils import requests_response_to_dict import json import requests try: from urlparse import urljoin except ImportError: from urllib.parse import urljoin # This script detects vulnerabilities in the following PHP based products: # - phpMyAdmin class Scanner(base_app.BaseAPP): def __init__(self): self.name = "phpMyAdmin" self.types = [] def detect(self, url): directories = ['phpmyadmin', 'pma', 'phpMyAdmin', ''] for d in directories: path = urljoin(url, d) response = self.send(path) if response and response.status_code == 200 and "phpmyadmin.css.php" in response.text: self.app_url = path return True return False def test(self, url): docu_url = urljoin(url, "Documentation.html") docu_response = self.send(docu_url) version = None if docu_response: get_version = re.search(r'<title>phpMyAdmin\s([\d\.]+)\s', docu_response.text) if get_version: version = get_version.group(1) self.logger.info("phpMyAdmin version %s was identified from the Documentation.html file" % version) if version: db = self.get_db("phpmyadmin_vulns.json") data = json.loads(db) pma_vulns = data['phpMyAdmin'] self.match_versions(pma_vulns, version, url) self.test_auth(url) def test_auth(self, url): sess = requests.session() default_creds = ['root:', 'root:admin', 'root:root'] init_req = sess.get(url) if not init_req: self.logger.warning("Unable to test authentication, invalid initial response") return token_re = re.search('name="token".+?value="(.+?)"', init_req.text) for entry in default_creds: if not token_re: self.logger.warning("Unable to test authentication, no token") return user, passwd = entry.split(':') payload = {'lang': 'en', 'pma_username': user, 'pma_password': passwd, 'token': token_re.group(1)} post_url = urljoin(url, 'index.php') post_response = sess.post(post_url, payload) if post_response and 'Refresh' in post_response.headers: returl = post_response.headers['Refresh'].split(';')[1].strip() retdata = sess.get(returl) if retdata: if 'class="loginform">' not in retdata.text: match_str = "Possible positive authentication for user: %s and password %s on %s " % \ (user, passwd, url) result = { 'request': requests_response_to_dict(post_response), 'match': match_str } self.logger.info(match_str) self.results.append(result) return else: token_re = re.search('name="token".+?value="(.+?)"', retdata.text)
PypiClean
/z3c.indexer-0.6.1.zip/z3c.indexer-0.6.1/src/z3c/indexer/query.py
__docformat__ = "reStructuredText" import zope.component from z3c.indexer import interfaces class QueryMixin(object): """Index query.""" def __init__(self, indexOrName): if isinstance(indexOrName, basestring): self.index = zope.component.getUtility(interfaces.IIndex, name=indexOrName) else: # indexOrName is a index self.index = indexOrName class TextQuery(QueryMixin): """Text query.""" zope.interface.implements(interfaces.ITextQuery) def __init__(self, indexOrName, value): super(TextQuery, self).__init__(indexOrName) self.value = value def apply(self): return self.index.apply(self.value) class Eq(QueryMixin): """Equal query.""" zope.interface.implements(interfaces.IEqQuery) def __init__(self, indexOrName, value): assert value is not None super(Eq, self).__init__(indexOrName) self.value = value def apply(self): return self.index.applyEq(self.value) class NotEq(QueryMixin): """Not equal query.""" zope.interface.implements(interfaces.INotEqQuery) def __init__(self, indexOrName, value): assert value is not None super(NotEq, self).__init__(indexOrName) self.value = value def apply(self): return self.index.applyNotEq(self.value) class Between(QueryMixin): """Between query.""" zope.interface.implements(interfaces.IBetweenQuery) def __init__(self, indexOrName, min_value, max_value, exclude_min=False, exclude_max=False): super(Between, self).__init__(indexOrName) self.min_value = min_value self.max_value = max_value self.exclude_min = exclude_min self.exclude_max = exclude_max def apply(self): return self.index.applyBetween(self.min_value, self.max_value, self.exclude_min, self.exclude_max) class Ge(QueryMixin): """Greater (or equal) query.""" zope.interface.implements(interfaces.IGeQuery) def __init__(self, indexOrName, min_value, exclude_min=False): super(Ge, self).__init__(indexOrName) self.min_value = min_value self.exclude_min = exclude_min def apply(self): return self.index.applyGe(self.min_value, self.exclude_min) class Le(QueryMixin): """Less (or equal) query.""" zope.interface.implements(interfaces.ILeQuery) def __init__(self, indexOrName, max_value, exclude_max=False): super(Le, self).__init__(indexOrName) self.max_value = max_value self.exclude_max = exclude_max def apply(self): return self.index.applyLe(self.max_value, self.exclude_max) class In(QueryMixin): """In query.""" zope.interface.implements(interfaces.IInQuery) def __init__(self, indexOrName, values): super(In, self).__init__(indexOrName) self.values = values def apply(self): return self.index.applyIn(self.values) class AnyOf(QueryMixin): """Any of query. The result will be the docids whose values contain any of the given values. """ zope.interface.implements(interfaces.IAnyOfQuery) def __init__(self, indexOrName, values): super(AnyOf, self).__init__(indexOrName) self.values = values def apply(self): return self.index.applyAnyOf(self.values) class AllOf(QueryMixin): """Any of query. The result will be the docids whose values contain all of the given values. """ zope.interface.implements(interfaces.IAllOfQuery) def __init__(self, indexOrName, values): super(AllOf, self).__init__(indexOrName) self.values = values def apply(self): return self.index.applyAllOf(self.values) class ExtentAny(QueryMixin): """ExtentAny query.""" zope.interface.implements(interfaces.IExtentAnyQuery) def __init__(self, indexOrName, extent): super(ExtentAny, self).__init__(indexOrName) self.extent = extent def apply(self): return self.index.applyExtentAny(self.extent) class ExtentNone(QueryMixin): """ExtentNone query.""" zope.interface.implements(interfaces.IExtentNoneQuery) def __init__(self, indexOrName, extent): super(ExtentNone, self).__init__(indexOrName) self.extent = extent def apply(self): return self.index.applyExtentNone(self.extent)
PypiClean
/v3/model/resize_instance_volume_option.py
import pprint import re import six class ResizeInstanceVolumeOption: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'group_id': 'str', 'size': 'int' } attribute_map = { 'group_id': 'group_id', 'size': 'size' } def __init__(self, group_id=None, size=None): """ResizeInstanceVolumeOption - a model defined in huaweicloud sdk""" self._group_id = None self._size = None self.discriminator = None if group_id is not None: self.group_id = group_id self.size = size @property def group_id(self): """Gets the group_id of this ResizeInstanceVolumeOption. 角色组ID。 - 对于集群实例,该参数为shard组ID。 - 对于副本集实例,不传该参数。 - 对于副本集和单节点实例,不传该参数。 :return: The group_id of this ResizeInstanceVolumeOption. :rtype: str """ return self._group_id @group_id.setter def group_id(self, group_id): """Sets the group_id of this ResizeInstanceVolumeOption. 角色组ID。 - 对于集群实例,该参数为shard组ID。 - 对于副本集实例,不传该参数。 - 对于副本集和单节点实例,不传该参数。 :param group_id: The group_id of this ResizeInstanceVolumeOption. :type: str """ self._group_id = group_id @property def size(self): """Gets the size of this ResizeInstanceVolumeOption. 待扩容到的磁盘容量。取值为10的整数倍,并且大于当前磁盘容量。 - 对于集群实例,表示扩容到的单个shard组的磁盘容量。取值范围:10GB~2000GB。 - 对于副本集实例,表示扩容到的实例的磁盘容量,取值范围:10GB~2000GB。 - 对于单节点实例,表示扩容到的实例的磁盘容量,取值范围:10GB~1000GB。 :return: The size of this ResizeInstanceVolumeOption. :rtype: int """ return self._size @size.setter def size(self, size): """Sets the size of this ResizeInstanceVolumeOption. 待扩容到的磁盘容量。取值为10的整数倍,并且大于当前磁盘容量。 - 对于集群实例,表示扩容到的单个shard组的磁盘容量。取值范围:10GB~2000GB。 - 对于副本集实例,表示扩容到的实例的磁盘容量,取值范围:10GB~2000GB。 - 对于单节点实例,表示扩容到的实例的磁盘容量,取值范围:10GB~1000GB。 :param size: The size of this ResizeInstanceVolumeOption. :type: int """ self._size = size def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ResizeInstanceVolumeOption): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
PypiClean
/zephyrus-sc2-parser-0.3.8.tar.gz/zephyrus-sc2-parser-0.3.8/zephyrus_sc2_parser/gamedata/16561/unit_data.py
units = {'Protoss': {'Probe': {'obj_id': 106, 'priority': 33, 'type': ['unit', 'worker'], 'mineral_cost': 50, 'gas_cost': 0, 'supply': 1}, 'Zealot': {'obj_id': 95, 'priority': 39, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 0, 'supply': 2, 'cooldown': 446}, 'Stalker': {'obj_id': 96, 'priority': 60, 'type': ['unit'], 'mineral_cost': 125, 'gas_cost': 50, 'supply': 2, 'cooldown': 512}, 'Sentry': {'obj_id': 99, 'priority': 87, 'type': ['unit'], 'mineral_cost': 50, 'gas_cost': 100, 'supply': 2, 'energy': 50, 'cooldown': 512}, 'Adept': {'obj_id': 773, 'priority': 57, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 25, 'supply': 2, 'cooldown': 446}, 'HighTemplar': {'obj_id': 97, 'priority': 93, 'type': ['unit'], 'mineral_cost': 50, 'gas_cost': 150, 'supply': 2, 'energy': 50, 'cooldown': 714}, 'DarkTemplar': {'obj_id': 98, 'priority': 56, 'type': ['unit'], 'mineral_cost': 125, 'gas_cost': 125, 'supply': 2, 'cooldown': 714}, 'Archon': {'obj_id': 163, 'priority': 45, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 300, 'supply': 4}, 'Observer': {'obj_id': 104, 'priority': 36, 'type': ['unit'], 'mineral_cost': 25, 'gas_cost': 75, 'supply': 1}, 'ObserverSiegeMode': {'obj_id': [1169], 'priority': 36, 'type': ['unit'], 'mineral_cost': 25, 'gas_cost': 75, 'supply': 1}, 'WarpPrism': {'obj_id': 103, 'priority': 69, 'type': ['unit'], 'mineral_cost': 250, 'gas_cost': 0, 'supply': 2}, 'WarpPrismPhasing': {'obj_id': 158, 'priority': 69, 'type': ['unit'], 'mineral_cost': 250, 'gas_cost': 0, 'supply': 2}, 'Immortal': {'obj_id': 105, 'priority': 44, 'type': ['unit'], 'mineral_cost': 275, 'gas_cost': 100, 'supply': 4}, 'Colossus': {'obj_id': 23, 'priority': 48, 'type': ['unit'], 'mineral_cost': 300, 'gas_cost': 200, 'supply': 6}, 'Disruptor': {'obj_id': 772, 'priority': 72, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 150, 'supply': 3}, 'Phoenix': {'obj_id': 100, 'priority': 81, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 100, 'supply': 2, 'energy': 50}, 'VoidRay': {'obj_id': 102, 'priority': 78, 'type': ['unit'], 'mineral_cost': 200, 'gas_cost': 150, 'supply': 4}, 'Oracle': {'obj_id': 541, 'priority': 84, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 150, 'supply': 3, 'energy': 50}, 'Tempest': {'obj_id': 542, 'priority': 50, 'type': ['unit'], 'mineral_cost': 250, 'gas_cost': 175, 'supply': 5}, 'Carrier': {'obj_id': 101, 'priority': 51, 'type': ['unit'], 'mineral_cost': 350, 'gas_cost': 250, 'supply': 6}, 'Interceptor': {'obj_id': 107, 'priority': None, 'type': ['unit'], 'mineral_cost': 0, 'gas_cost': 0, 'supply': 0}, 'Mothership': {'obj_id': 30, 'priority': 96, 'type': ['unit'], 'mineral_cost': 400, 'gas_cost': 400, 'supply': 8, 'energy': 50}}, 'Terran': {'SCV': {'obj_id': 67, 'priority': 58, 'type': ['unit', 'worker'], 'mineral_cost': 50, 'gas_cost': 0, 'supply': 1}, 'MULE': {'obj_id': 277, 'priority': 56, 'type': ['unit'], 'mineral_cost': 0, 'gas_cost': 0, 'supply': 0}, 'Marine': {'obj_id': 70, 'priority': 78, 'type': ['unit'], 'mineral_cost': 50, 'gas_cost': 0, 'supply': 1}, 'Reaper': {'obj_id': 71, 'priority': 70, 'type': ['unit'], 'mineral_cost': 50, 'gas_cost': 50, 'supply': 1}, 'Marauder': {'obj_id': 73, 'priority': 76, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 25, 'supply': 2}, 'Ghost': {'obj_id': 72, 'priority': 82, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 125, 'supply': 2, 'energy': 75}, 'Hellion': {'obj_id': 75, 'priority': 66, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 0, 'supply': 2}, 'HellionTank': {'obj_id': 527, 'priority': 6, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 0, 'supply': 2}, 'WidowMine': {'obj_id': 544, 'priority': 54, 'type': ['unit'], 'mineral_cost': 75, 'gas_cost': 25, 'supply': 2}, 'WidowMineBurrowed': {'obj_id': 546, 'priority': 54, 'type': ['unit'], 'mineral_cost': 75, 'gas_cost': 25, 'supply': 2}, 'Cyclone': {'obj_id': 770, 'priority': 71, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 100, 'supply': 3}, 'SiegeTank': {'obj_id': 55, 'priority': 74, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 125, 'supply': 3}, 'SiegeTankSieged': {'obj_id': 54, 'priority': 74, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 125, 'supply': 3}, 'Thor': {'obj_id': 74, 'priority': 52, 'type': ['unit'], 'mineral_cost': 300, 'gas_cost': 200, 'supply': 6}, 'ThorAP': {'obj_id': 769, 'priority': 52, 'type': ['unit'], 'mineral_cost': 300, 'gas_cost': 200, 'supply': 6}, 'VikingFighter': {'obj_id': 57, 'priority': 68, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 75, 'supply': 2}, 'VikingAssault': {'obj_id': 56, 'priority': 68, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 75, 'supply': 2}, 'Medivac': {'obj_id': 76, 'priority': 60, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 100, 'supply': 2, 'energy': 50}, 'Liberator': {'obj_id': 766, 'priority': 72, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 150, 'supply': 3}, 'LiberatorAG': {'obj_id': 819, 'priority': 72, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 150, 'supply': 3}, 'Raven': {'obj_id': 78, 'priority': 84, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 200, 'supply': 2, 'energy': 50}, 'AutoTurret': {'obj_id': 53, 'priority': 2, 'type': ['building'], 'mineral_cost': 0, 'gas_cost': 0, 'supply': 0}, 'Banshee': {'obj_id': 77, 'priority': 64, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 100, 'supply': 3, 'energy': 50}, 'Battlecruiser': {'obj_id': 79, 'priority': 80, 'type': ['unit'], 'mineral_cost': 400, 'gas_cost': 300, 'supply': 6}}, 'Zerg': {'Larva': {'obj_id': 176, 'priority': 58, 'type': ['unit'], 'mineral_cost': 0, 'gas_cost': 0, 'supply': 0}, 'Egg': {'obj_id': 125, 'priority': 54, 'type': ['unit'], 'mineral_cost': 0, 'gas_cost': 0, 'supply': 0}, 'Drone': {'obj_id': 126, 'priority': 60, 'type': ['unit', 'worker'], 'mineral_cost': 50, 'gas_cost': 0, 'supply': 1}, 'Overlord': {'obj_id': 128, 'priority': 72, 'type': ['unit', 'supply'], 'mineral_cost': 100, 'gas_cost': 0, 'supply': 0}, 'Queen': {'obj_id': 148, 'priority': 101, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 0, 'supply': 2, 'energy': 25}, 'Zergling': {'obj_id': 127, 'priority': 68, 'type': ['unit'], 'mineral_cost': 25, 'gas_cost': 0, 'supply': 0.5}, 'Baneling': {'obj_id': 29, 'priority': 82, 'type': ['unit'], 'mineral_cost': 50, 'gas_cost': 25, 'supply': 0.5}, 'Roach': {'obj_id': 132, 'priority': 80, 'type': ['unit'], 'mineral_cost': 75, 'gas_cost': 25, 'supply': 2}, 'Ravager': {'obj_id': 765, 'priority': 92, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 100, 'supply': 3}, 'TransportOverlordCocoon': {'obj_id': 948, 'priority': 1, 'type': ['unit', 'supply'], 'mineral_cost': 125, 'gas_cost': 25, 'supply': 0}, 'OverlordCocoon': {'obj_id': 150, 'priority': 1, 'type': ['unit', 'supply'], 'mineral_cost': 150, 'gas_cost': 50, 'supply': 0}, 'Overseer': {'obj_id': 151, 'priority': 74, 'type': ['unit', 'supply'], 'mineral_cost': 150, 'gas_cost': 50, 'supply': 0, 'energy': 50}, 'OverseerSiegeMode': {'obj_id': [151], 'priority': 74, 'type': ['unit', 'supply'], 'mineral_cost': 150, 'gas_cost': 50, 'supply': 0, 'energy': 50}, 'OverlordTransport': {'obj_id': 949, 'priority': 73, 'type': ['unit', 'supply'], 'mineral_cost': 125, 'gas_cost': 25, 'supply': 0}, 'Hydralisk': {'obj_id': 129, 'priority': 70, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 50, 'supply': 2}, 'LurkerMP': {'obj_id': 548, 'priority': 90, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 150, 'supply': 3}, 'LurkerMPEgg': {'obj_id': 547, 'priority': 54, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 150, 'supply': 3}, 'LurkerMPBurrowed': {'obj_id': 549, 'priority': 90, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 150, 'supply': 3}, 'Mutalisk': {'obj_id': 130, 'priority': 76, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 100, 'supply': 2}, 'Corruptor': {'obj_id': 134, 'priority': 84, 'type': ['unit'], 'mineral_cost': 150, 'gas_cost': 100, 'supply': 2}, 'SwarmHostMP': {'obj_id': 540, 'priority': 86, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 75, 'supply': 3}, 'LocustMP': {'obj_id': 535, 'priority': 54, 'type': ['unit'], 'mineral_cost': 0, 'gas_cost': 0, 'supply': 0}, 'LocustMPFlying': {'obj_id': 771, 'priority': 56, 'type': ['unit'], 'mineral_cost': 0, 'gas_cost': 0, 'supply': 0}, 'LocustMPPrecursor': {'obj_id': 851, 'priority': 54, 'type': ['unit'], 'mineral_cost': 0, 'gas_cost': 0, 'supply': 0}, 'Infestor': {'obj_id': 133, 'priority': 94, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 150, 'supply': 2, 'energy': 50}, 'InfestedTerransEgg': {'obj_id': 175, 'priority': 54, 'type': ['unit'], 'mineral_cost': 0, 'gas_cost': 0, 'supply': 0}, 'InfestorTerran': {'obj_id': 27, 'priority': 66, 'type': ['unit'], 'mineral_cost': 0, 'gas_cost': 0, 'supply': 0}, 'Viper': {'obj_id': 545, 'priority': 96, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 200, 'supply': 3, 'energy': 50}, 'Ultralisk': {'obj_id': 131, 'priority': 88, 'type': ['unit'], 'mineral_cost': 300, 'gas_cost': 200, 'supply': 6}, 'BroodLord': {'obj_id': 136, 'priority': 78, 'type': ['unit'], 'mineral_cost': 300, 'gas_cost': 250, 'supply': 4}, 'BroodlingEscort': {'obj_id': 165, 'priority': None, 'type': ['unit'], 'mineral_cost': 0, 'gas_cost': 0, 'supply': 0}, 'Broodling': {'obj_id': 300, 'priority': 62, 'type': ['unit'], 'mineral_cost': 0, 'gas_cost': 0, 'supply': 0}, 'RavagerCocoon': {'obj_id': 764, 'priority': 54, 'type': ['unit'], 'mineral_cost': 100, 'gas_cost': 100, 'supply': 3}, 'BanelingCocoon': {'obj_id': 28, 'priority': 54, 'type': ['unit'], 'mineral_cost': 50, 'gas_cost': 25, 'supply': 0.5}, 'BroodLordCocoon': {'obj_id': 135, 'priority': 1, 'type': ['unit'], 'mineral_cost': 300, 'gas_cost': 250, 'supply': 3}}}
PypiClean
/opencv_contrib_cuda_python-4.8.0.74-cp36-abi3-win_amd64.whl/cv2/gapi/__init__.py
__all__ = ['op', 'kernel'] import sys import cv2 as cv # NB: Register function in specific module def register(mname): def parameterized(func): sys.modules[mname].__dict__[func.__name__] = func return func return parameterized @register('cv2.gapi') def networks(*args): return cv.gapi_GNetPackage(list(map(cv.detail.strip, args))) @register('cv2.gapi') def compile_args(*args): return list(map(cv.GCompileArg, args)) @register('cv2') def GIn(*args): return [*args] @register('cv2') def GOut(*args): return [*args] @register('cv2') def gin(*args): return [*args] @register('cv2.gapi') def descr_of(*args): return [*args] @register('cv2') class GOpaque(): # NB: Inheritance from c++ class cause segfault. # So just aggregate cv.GOpaqueT instead of inheritance def __new__(cls, argtype): return cv.GOpaqueT(argtype) class Bool(): def __new__(self): return cv.GOpaqueT(cv.gapi.CV_BOOL) class Int(): def __new__(self): return cv.GOpaqueT(cv.gapi.CV_INT) class Double(): def __new__(self): return cv.GOpaqueT(cv.gapi.CV_DOUBLE) class Float(): def __new__(self): return cv.GOpaqueT(cv.gapi.CV_FLOAT) class String(): def __new__(self): return cv.GOpaqueT(cv.gapi.CV_STRING) class Point(): def __new__(self): return cv.GOpaqueT(cv.gapi.CV_POINT) class Point2f(): def __new__(self): return cv.GOpaqueT(cv.gapi.CV_POINT2F) class Point3f(): def __new__(self): return cv.GOpaqueT(cv.gapi.CV_POINT3F) class Size(): def __new__(self): return cv.GOpaqueT(cv.gapi.CV_SIZE) class Rect(): def __new__(self): return cv.GOpaqueT(cv.gapi.CV_RECT) class Prim(): def __new__(self): return cv.GOpaqueT(cv.gapi.CV_DRAW_PRIM) class Any(): def __new__(self): return cv.GOpaqueT(cv.gapi.CV_ANY) @register('cv2') class GArray(): # NB: Inheritance from c++ class cause segfault. # So just aggregate cv.GArrayT instead of inheritance def __new__(cls, argtype): return cv.GArrayT(argtype) class Bool(): def __new__(self): return cv.GArrayT(cv.gapi.CV_BOOL) class Int(): def __new__(self): return cv.GArrayT(cv.gapi.CV_INT) class Double(): def __new__(self): return cv.GArrayT(cv.gapi.CV_DOUBLE) class Float(): def __new__(self): return cv.GArrayT(cv.gapi.CV_FLOAT) class String(): def __new__(self): return cv.GArrayT(cv.gapi.CV_STRING) class Point(): def __new__(self): return cv.GArrayT(cv.gapi.CV_POINT) class Point2f(): def __new__(self): return cv.GArrayT(cv.gapi.CV_POINT2F) class Point3f(): def __new__(self): return cv.GArrayT(cv.gapi.CV_POINT3F) class Size(): def __new__(self): return cv.GArrayT(cv.gapi.CV_SIZE) class Rect(): def __new__(self): return cv.GArrayT(cv.gapi.CV_RECT) class Scalar(): def __new__(self): return cv.GArrayT(cv.gapi.CV_SCALAR) class Mat(): def __new__(self): return cv.GArrayT(cv.gapi.CV_MAT) class GMat(): def __new__(self): return cv.GArrayT(cv.gapi.CV_GMAT) class Prim(): def __new__(self): return cv.GArray(cv.gapi.CV_DRAW_PRIM) class Any(): def __new__(self): return cv.GArray(cv.gapi.CV_ANY) # NB: Top lvl decorator takes arguments def op(op_id, in_types, out_types): garray_types= { cv.GArray.Bool: cv.gapi.CV_BOOL, cv.GArray.Int: cv.gapi.CV_INT, cv.GArray.Double: cv.gapi.CV_DOUBLE, cv.GArray.Float: cv.gapi.CV_FLOAT, cv.GArray.String: cv.gapi.CV_STRING, cv.GArray.Point: cv.gapi.CV_POINT, cv.GArray.Point2f: cv.gapi.CV_POINT2F, cv.GArray.Point3f: cv.gapi.CV_POINT3F, cv.GArray.Size: cv.gapi.CV_SIZE, cv.GArray.Rect: cv.gapi.CV_RECT, cv.GArray.Scalar: cv.gapi.CV_SCALAR, cv.GArray.Mat: cv.gapi.CV_MAT, cv.GArray.GMat: cv.gapi.CV_GMAT, cv.GArray.Prim: cv.gapi.CV_DRAW_PRIM, cv.GArray.Any: cv.gapi.CV_ANY } gopaque_types= { cv.GOpaque.Size: cv.gapi.CV_SIZE, cv.GOpaque.Rect: cv.gapi.CV_RECT, cv.GOpaque.Bool: cv.gapi.CV_BOOL, cv.GOpaque.Int: cv.gapi.CV_INT, cv.GOpaque.Double: cv.gapi.CV_DOUBLE, cv.GOpaque.Float: cv.gapi.CV_FLOAT, cv.GOpaque.String: cv.gapi.CV_STRING, cv.GOpaque.Point: cv.gapi.CV_POINT, cv.GOpaque.Point2f: cv.gapi.CV_POINT2F, cv.GOpaque.Point3f: cv.gapi.CV_POINT3F, cv.GOpaque.Size: cv.gapi.CV_SIZE, cv.GOpaque.Rect: cv.gapi.CV_RECT, cv.GOpaque.Prim: cv.gapi.CV_DRAW_PRIM, cv.GOpaque.Any: cv.gapi.CV_ANY } type2str = { cv.gapi.CV_BOOL: 'cv.gapi.CV_BOOL' , cv.gapi.CV_INT: 'cv.gapi.CV_INT' , cv.gapi.CV_DOUBLE: 'cv.gapi.CV_DOUBLE' , cv.gapi.CV_FLOAT: 'cv.gapi.CV_FLOAT' , cv.gapi.CV_STRING: 'cv.gapi.CV_STRING' , cv.gapi.CV_POINT: 'cv.gapi.CV_POINT' , cv.gapi.CV_POINT2F: 'cv.gapi.CV_POINT2F' , cv.gapi.CV_POINT3F: 'cv.gapi.CV_POINT3F' , cv.gapi.CV_SIZE: 'cv.gapi.CV_SIZE', cv.gapi.CV_RECT: 'cv.gapi.CV_RECT', cv.gapi.CV_SCALAR: 'cv.gapi.CV_SCALAR', cv.gapi.CV_MAT: 'cv.gapi.CV_MAT', cv.gapi.CV_GMAT: 'cv.gapi.CV_GMAT', cv.gapi.CV_DRAW_PRIM: 'cv.gapi.CV_DRAW_PRIM' } # NB: Second lvl decorator takes class to decorate def op_with_params(cls): if not in_types: raise Exception('{} operation should have at least one input!'.format(cls.__name__)) if not out_types: raise Exception('{} operation should have at least one output!'.format(cls.__name__)) for i, t in enumerate(out_types): if t not in [cv.GMat, cv.GScalar, *garray_types, *gopaque_types]: raise Exception('{} unsupported output type: {} in position: {}' .format(cls.__name__, t.__name__, i)) def on(*args): if len(in_types) != len(args): raise Exception('Invalid number of input elements!\nExpected: {}, Actual: {}' .format(len(in_types), len(args))) for i, (t, a) in enumerate(zip(in_types, args)): if t in garray_types: if not isinstance(a, cv.GArrayT): raise Exception("{} invalid type for argument {}.\nExpected: {}, Actual: {}" .format(cls.__name__, i, cv.GArrayT.__name__, type(a).__name__)) elif a.type() != garray_types[t]: raise Exception("{} invalid GArrayT type for argument {}.\nExpected: {}, Actual: {}" .format(cls.__name__, i, type2str[garray_types[t]], type2str[a.type()])) elif t in gopaque_types: if not isinstance(a, cv.GOpaqueT): raise Exception("{} invalid type for argument {}.\nExpected: {}, Actual: {}" .format(cls.__name__, i, cv.GOpaqueT.__name__, type(a).__name__)) elif a.type() != gopaque_types[t]: raise Exception("{} invalid GOpaque type for argument {}.\nExpected: {}, Actual: {}" .format(cls.__name__, i, type2str[gopaque_types[t]], type2str[a.type()])) else: if t != type(a): raise Exception('{} invalid input type for argument {}.\nExpected: {}, Actual: {}' .format(cls.__name__, i, t.__name__, type(a).__name__)) op = cv.gapi.__op(op_id, cls.outMeta, *args) out_protos = [] for i, out_type in enumerate(out_types): if out_type == cv.GMat: out_protos.append(op.getGMat()) elif out_type == cv.GScalar: out_protos.append(op.getGScalar()) elif out_type in gopaque_types: out_protos.append(op.getGOpaque(gopaque_types[out_type])) elif out_type in garray_types: out_protos.append(op.getGArray(garray_types[out_type])) else: raise Exception("""In {}: G-API operation can't produce the output with type: {} in position: {}""" .format(cls.__name__, out_type.__name__, i)) return tuple(out_protos) if len(out_protos) != 1 else out_protos[0] # NB: Extend operation class cls.id = op_id cls.on = staticmethod(on) return cls return op_with_params def kernel(op_cls): # NB: Second lvl decorator takes class to decorate def kernel_with_params(cls): # NB: Add new members to kernel class cls.id = op_cls.id cls.outMeta = op_cls.outMeta return cls return kernel_with_params cv.gapi.wip.GStreamerPipeline = cv.gapi_wip_gst_GStreamerPipeline
PypiClean
/pyhtm-0.1.5.tar.gz/pyhtm-0.1.5/docs/source/installation.rst
.. highlight:: shell ============ Installation ============ From PyPI --------- You can install the library from PyPI through `pip`: .. code:: $ pip install pyhtm From Source ----------- The source code for ``htm`` can be obtained from its `GitLab repo`_ and installed like so: .. parsed-literal:: $ git clone https://gitlab.com/noao/antares/htm $ cd htm $ git checkout |version| $ python setup.py install .. _GitLab repo: https://gitlab.com/noao/antares/htm Installing for Development -------------------------- If you plan on contributing to the development of the ANTARES HTM utilites or if you want to run the latest (unreleased and maybe unstable) version of the library, you may want to install in development mode: .. parsed-literal:: $ git clone https://gitlab.com/noao/antares/htm $ cd htm $ python setup.py develop
PypiClean
/rst2html5-tools-0.5.3.tar.gz/rst2html5-tools-0.5.3/html5css3/thirdparty/deckjs/test/spec.goto.js
describe('Deck JS Quick Go-To', function() { var $d = $(document); beforeEach(function() { loadFixtures('standard.html'); if (Modernizr.history) { history.replaceState({}, "", "#") } else { window.location.hash = '#'; } $.deck('.slide'); }); describe('showGoTo()', function() { it('should show the go-to helper', function() { expect($(defaults.selectors.container)).not.toHaveClass(defaults.classes.goto); $.deck('showGoTo'); expect($(defaults.selectors.container)).toHaveClass(defaults.classes.goto); }); it('should focus the go-to input', function() { $.deck('showGoTo'); expect($(defaults.selectors.gotoInput)[0]).toEqual(document.activeElement); }); it('should set aria-hidden to false', function() { var $gotoForm = $(defaults.selectors.gotoForm); $.deck('showGoTo'); expect($gotoForm).toHaveAttr('aria-hidden', 'false'); }); }); describe('hideGoTo()', function() { beforeEach(function() { $.deck('showGoTo'); $.deck('hideGoTo'); }); it('should hide the go-to helper', function() { expect($(defaults.selectors.container)).not.toHaveClass(defaults.classes.goto); }); it('should blur the go-to input', function() { expect($(defaults.selectors.gotoInput)[0]).not.toEqual(document.activeElement); }); it('should set aria-hidden to true', function() { var $gotoForm = $(defaults.selectors.gotoForm); $.deck('hideGoTo'); expect($gotoForm).toHaveAttr('aria-hidden', 'true'); }); }); describe('toggleGoTo()', function() { it('should toggle the go-to helper on and off', function() { expect($(defaults.selectors.container)).not.toHaveClass(defaults.classes.goto); $.deck('toggleGoTo'); expect($(defaults.selectors.container)).toHaveClass(defaults.classes.goto); $.deck('toggleGoTo'); expect($(defaults.selectors.container)).not.toHaveClass(defaults.classes.goto); }); }); describe('Go-To submit', function() { beforeEach(function() { $.deck('showGoTo'); }); it('should hide the go-to helper', function() { $(defaults.selectors.gotoInput).val('3'); $(defaults.selectors.gotoForm).submit(); expect($(defaults.selectors.container)).not.toHaveClass(defaults.classes.goto); }); it('should go to the slide number entered', function() { $(defaults.selectors.gotoInput).val('3'); $(defaults.selectors.gotoForm).submit(); expect($.deck('getSlide')).toEqual($.deck('getSlide'), 2); }); it('should go to the slide id entered', function() { $(defaults.selectors.gotoInput).val('custom-id'); $(defaults.selectors.gotoForm).submit(); expect($.deck('getSlide')).toEqual($.deck('getSlide'), 1); }); it('should go nowhere if the number is negative', function() { $(defaults.selectors.gotoInput).val('-2'); $(defaults.selectors.gotoForm).submit(); expect($.deck('getSlide')).toEqual($.deck('getSlide'), 0); }); it('should go nowhere if the number is greater than the number of slides', function() { $(defaults.selectors.gotoInput).val('9'); $(defaults.selectors.gotoForm).submit(); expect($.deck('getSlide')).toEqual($.deck('getSlide'), 0); }); it('should go nowhere if the id does not exist', function() { $(defaults.selectors.gotoInput).val('do-not-exist'); $(defaults.selectors.gotoForm).submit(); expect($.deck('getSlide')).toEqual($.deck('getSlide'), 0); }); }); describe('Datalist population', function() { it('should fill in options with all the slide ids', function() { var $dataOptions = $(defaults.selectors.gotoDatalist).find('option'); expect($dataOptions.length).toEqual(5); expect($dataOptions.eq(0).attr('value')).toEqual('slide-0'); expect($dataOptions.eq(1).attr('value')).toEqual('custom-id'); }); }); describe('key bindings', function() { var e; beforeEach(function() { e = jQuery.Event('keydown.deckgoto'); }); it('should toggle the go-to helper if the specified key is pressed', function() { e.which = 71; // g $d.trigger(e); expect($(defaults.selectors.container)).toHaveClass(defaults.classes.goto); $d.trigger(e); expect($(defaults.selectors.container)).not.toHaveClass(defaults.classes.goto); }); }); describe('countNested false', function() { beforeEach(function() { loadFixtures('nesteds.html'); $.deck('.slide', { countNested: false }); $.deck('showGoTo'); }); it('should ignore nested slides when given a slide number', function() { $(defaults.selectors.gotoInput).val('4'); $(defaults.selectors.gotoForm).submit(); expect($.deck('getSlide')).toHaveId('after'); }); it('should respect top side of new slide range', function() { $.deck('go', 0); $(defaults.selectors.gotoInput).val('6'); $(defaults.selectors.gotoForm).submit(); expect($.deck('getSlide')).toHaveId('slide-0'); }); }); });
PypiClean
/nexuscloud-client-1.0.9.tar.gz/nexuscloud-client-1.0.9/docs/NexusInsightsApiV1EndpointsSummaryGet200Response.md
# NexusInsightsApiV1EndpointsSummaryGet200Response ## Properties Name | Type | Description | Notes ------------ | ------------- | ------------- | ------------- **endpoint_stats** | [**NexusInsightsApiV1EndpointsSummaryGet200ResponseEndpointStats**](NexusInsightsApiV1EndpointsSummaryGet200ResponseEndpointStats.md) | | [optional] **any string name** | **bool, date, datetime, dict, float, int, list, str, none_type** | any string name can be used but the value must be the correct type | [optional] [[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
PypiClean
/file_io-0.4.6-py3-none-any.whl/fileio/providers/filesys_cloud.py
from __future__ import annotations import os import hashlib import datetime from typing import ClassVar from fsspec.callbacks import Callback from fileio.aiopath.wrap import to_thread from fileio.core.flavours import _pathz_windows_flavour, _pathz_posix_flavour from fileio.providers.base import * from fileio.utils import logger from fileio.providers.filesys import get_accessor, get_cloud_filesystem, AccessorLike, CloudFileSystemLike if TYPE_CHECKING: from fileio.core.generic import PathLike class CloudFileSystemPurePath(PurePath): _prefix: str = None _provider: str = None _win_pathz: ClassVar = 'PureCloudFileSystemWindowsPath' _posix_pathz: ClassVar = 'PureCloudFileSystemPosixPath' def _init(self, template: Optional[PurePath] = None): self._accessor: AccessorLike = get_accessor(self._prefix) def __new__(cls, *args): if cls is CloudFileSystemPurePath or issubclass(cls, CloudFileSystemPurePath): cls = cls._win_pathz if os.name == 'nt' else cls._posix_pathz cls = globals()[cls] return cls._from_parts(args) def _new(self, *parts): """Create a new `Path` child of same type.""" return type(self)(*parts) class PureCloudFileSystemPosixPath(CloudFileSystemPurePath): """PurePath subclass for non-Windows systems. On a POSIX system, instantiating a PurePath should return this object. However, you can also instantiate it directly on any system. """ _flavour = _pathz_posix_flavour _pathlike = posixpath __slots__ = () class PureCloudFileSystemWindowsPath(CloudFileSystemPurePath): """PurePath subclass for Windows systems. On a Windows system, instantiating a PurePath should return this object. However, you can also instantiate it directly on any system. """ _flavour = _pathz_windows_flavour _pathlike = ntpath __slots__ = () class CloudFileSystemPath(Path, CloudFileSystemPurePath): """ Our customized class that incorporates both sync and async methods """ _flavour = _pathz_windows_flavour if os.name == 'nt' else _pathz_posix_flavour _accessor: AccessorLike = None _pathlike = posixpath _prefix = None _provider = None _win_pathz: ClassVar = 'CloudFileSystemWindowsPath' _posix_pathz: ClassVar = 'CloudFileSystemPosixPath' def _init(self, template: Optional['CloudFileSystemPath'] = None): self._accessor: AccessorLike = get_accessor(self._prefix) self._closed = False self._fileio = None def __new__(cls, *parts, **kwargs): if cls is CloudFileSystemPath or issubclass(cls, CloudFileSystemPath): cls = cls._win_pathz if os.name == 'nt' else cls._posix_pathz cls = globals()[cls] self = cls._from_parts(parts, init=False) if not self._flavour.is_supported: name: str = cls.__name__ raise NotImplementedError(f"cannot instantiate {name} on your system") self._init() return self def __repr__(self): return f'{self.__class__.__name__}("{self.string}")' def __str__(self): return self.string @property def _path(self) -> str: return self._cloudstr if self.is_cloud else str(self) @property def _cloudpath(self) -> str: """ Returns the `__fspath__` string representation without the uri_scheme """ if self._prefix in self.parts[0]: return self._pathlike.join(*self.parts[1:]) return self._pathlike.join(*self.parts) @property def _bucket(self) -> str: """ Returns the `__fspath__` string representation without the uri_scheme """ if self._prefix in self.parts[0]: return self.parts[1] return self.parts[0] @property def _bucketstr(self) -> str: """ Returns the `__fspath__` string representation without the uri_scheme """ return f'{self._prefix}://{self._bucket}' @property def _pathkeys(self) -> str: """ Returns the `__fspath__` string representation without the uri_scheme """ if self._bucket in self.parts[0]: return self._pathlike.join(*self.parts[1:]) if self._bucket in self.parts[1]: return self._pathlike.join(*self.parts[2:]) return self._pathlike.join(*self.parts) def get_path_key(self, filename: Optional[str] = None) -> str: """ Used to return relative/path/to/file.ext """ filename = filename or self.name parts = None if self._bucket in self.parts[0]: parts = self.parts[1:-1] elif self._bucket in self.parts[1]: parts = self.parts[2:-1] else: parts = self.parts[:-1] return self._pathlike.join(*parts, filename) @property def _cloudstr(self) -> str: """ Reconstructs the proper cloud URI """ if self._prefix not in self.parts[0]: return f'{self._prefix}://' + '/'.join(self.parts) return f'{self._prefix}://' + '/'.join(self.parts[1:]) @property def posix_(self): """Return the string representation of the path with forward (/) slashes.""" f = self._flavour return str(self).replace(f.sep, '/') @property def string(self) -> str: return self._cloudstr if self.is_cloud else self.posix_ @property def filename_(self) -> str: """ Returns the filename if is file, else '' """ return self.parts[-1] if self.is_file() else '' @property def ext_(self) -> str: """ Returns the extension for a file """ return self.suffix @property def extension(self) -> str: """ Returns the extension for a file """ return self.suffix @property def stat_(self) -> stat_result: """ Returns the stat results for path """ return self.stat() @property def hash_(self) -> str: """ Hash of file properties, to tell if it has changed """ return self._accessor.ukey(self._cloudpath) @property def info_(self): """ Return info of path """ return self._accessor.info(path=self._path) @property def metadata_(self): """ Return metadata of path """ return self._accessor.metadata(self._cloudpath) @property def path_info_(self): """ Return info of path """ return self._accessor.info(path=self._cloudpath) @property def size_(self) -> Optional[Union[float, int]]: """ Size in bytes of file """ return self._accessor.size(self._cloudpath) if self.is_file_ else None @property def modified_(self) -> 'datetime.datetime': """ Return the last modified timestamp of file at path as a datetime """ r = self.stat_ #self._accessor.modified(self._cloudpath) ts = r.get('updated', '') return datetime.datetime.strptime(ts, '%Y-%m-%dT%H:%M:%S.%fZ') if ts else None #return r.get('updated') @property def checksum(self): return self._accessor.checksum(path=self._path) @property def last_modified(self) -> 'datetime.datetime': ts = self.info_.get('LastModified') return ts or self.modified_ @property def etag(self): """ returns the file etag """ rez = self.path_info_.get('ETag') if rez: rez = rez.replace('"', '').strip() return rez @property def file_size(self): """ returns the total file size in bytes """ return self.path_info_.get('Size') @property def content_type(self): """ returns the ContentType attribute of the file """ return self.path_info_.get('ContentType') @property def object_type(self): """ returns the Type attribute of the file """ return self.path_info_.get('type') @property def is_cloud(self) -> bool: return self._prefix in self.parts[0] or self._prefix in self.parts[1] if self._prefix else False @property def is_pathz(self) -> bool: return True @property def exists_(self) -> bool: return self.exists() @property def is_file_(self) -> bool: return self.is_file() @property def is_dir_(self) -> bool: return self.is_dir() @property def home_(self) -> Type['CloudFileSystemPath']: return self.home() @property async def async_exists_(self) -> bool: return await self.async_exists() @property async def async_is_file_(self) -> bool: return await self.async_is_file() @property async def async_is_dir_(self) -> bool: return await self.async_is_dir() @property async def async_home_(self) -> Type['CloudFileSystemPath']: return await self.async_home() @property async def async_stat_(self) -> stat_result: """ Returns the stat results for path """ return await self.async_stat() @property async def async_hash_(self) -> str: """ Hash of file properties, to tell if it has changed """ return await self._accessor.async_ukey(self._cloudpath) @property async def async_size_(self) -> Optional[Union[float, int]]: """ Size in bytes of file """ if await self.async_is_file_: return await self._accessor.async_size(self._cloudpath) return None @property async def async_metadata_(self): """ Return metadata of path """ return await self._accessor.async_metadata(self._cloudpath) @property async def async_modified_(self) -> 'datetime.datetime': """ Return the last modified timestamp of file at path as a datetime """ if self._prefix == 'gs': r = await self.async_stat_ ts = r.get('updated', '') if ts: return datetime.datetime.strptime(ts, '%Y-%m-%dT%H:%M:%S.%fZ')#.isoformat() return ts return await self._accessor.async_modified(self._cloudpath) @property async def async_path_info_(self): """ Return info of path """ return await self.async_info() def open(self, mode: FileMode = 'r', buffering: int = -1, encoding: Optional[str] = DEFAULT_ENCODING, errors: Optional[str] = ON_ERRORS, newline: Optional[str] = NEWLINE, block_size: int = 5242880, compression: str = None, **kwargs: Any) -> IO[Union[str, bytes]]: """ Open the file pointed by this path and return a file object, as the built-in open() function does. """ return self._accessor.open(self._cloudpath, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline) def async_open(self, mode: FileMode = 'r', buffering: int = -1, encoding: Optional[str] = DEFAULT_ENCODING, errors: Optional[str] = ON_ERRORS, newline: Optional[str] = NEWLINE, block_size: int = 5242880, compression: str = None, **kwargs: Any) -> IterableAIOFile: """ Asyncronously Open the file pointed by this path and return a file object, as the built-in open() function does. compression = infer doesn't work all that well. """ #self._fileio = self._accessor.open(self._cloudpath, mode=mode, encoding=encoding, errors=errors, block_size=block_size, compression=compression, newline=newline, buffering=buffering, **kwargs) #print(type(self._fileio)) #return get_cloud_file(self._fileio) return get_cloud_file(self._accessor.open(self._cloudpath, mode=mode, encoding=encoding, errors=errors, block_size=block_size, compression=compression, newline=newline, buffering=buffering, **kwargs)) def reader(self, mode: FileMode = 'r', buffering: int = -1, encoding: Optional[str] = DEFAULT_ENCODING, errors: Optional[str] = ON_ERRORS, newline: Optional[str] = NEWLINE, block_size: int = 5242880, compression: str = None, **kwargs: Any) -> IO[Union[str, bytes]]: """ Open the file pointed by this path and return a file object, as the built-in open() function does. """ return self._accessor.open(self._cloudpath, mode=mode, buffering=buffering, encoding=encoding, errors=errors, block_size=block_size, compression=compression, newline=newline, **kwargs) def async_reader(self, mode: FileMode = 'r', buffering: int = -1, encoding: Optional[str] = DEFAULT_ENCODING, errors: Optional[str] = ON_ERRORS, newline: Optional[str] = NEWLINE, block_size: int = 5242880, compression: str = None, **kwargs: Any) -> IterableAIOFile: """ Asyncronously Open the file pointed by this path and return a file object, as the built-in open() function does. """ return get_cloud_file(self._accessor.open(self._cloudpath, mode=mode, buffering=buffering, encoding=encoding, errors=errors, block_size=block_size, compression=compression, newline=newline, **kwargs)) def appender(self, mode: FileMode = 'a', buffering: int = -1, encoding: Optional[str] = DEFAULT_ENCODING, errors: Optional[str] = ON_ERRORS, newline: Optional[str] = NEWLINE, block_size: int = 5242880, compression: str = None, **kwargs: Any) -> IO[Union[str, bytes]]: """ Open the file pointed by this path and return a file object, as the built-in open() function does. """ return self._accessor.open(self._cloudpath, mode=mode, buffering=buffering, encoding=encoding, errors=errors, block_size=block_size, compression=compression, newline=newline, **kwargs) def async_appender(self, mode: FileMode = 'a', buffering: int = -1, encoding: Optional[str] = DEFAULT_ENCODING, errors: Optional[str] = ON_ERRORS, newline: Optional[str] = NEWLINE, block_size: int = 5242880, compression: str = None, **kwargs: Any) -> IterableAIOFile: """ Asyncronously Open the file pointed by this path and return a file object, as the built-in open() function does. """ return get_cloud_file(self._accessor.open(self._cloudpath, mode=mode, buffering=buffering, encoding=encoding, errors=errors, block_size=block_size, compression=compression, newline=newline, **kwargs)) def writer(self, mode: FileMode = 'w', buffering: int = -1, encoding: Optional[str] = DEFAULT_ENCODING, errors: Optional[str] = ON_ERRORS, newline: Optional[str] = NEWLINE, block_size: int = 5242880, compression: str = None, **kwargs: Any) -> IO[Union[str, bytes]]: """ Open the file pointed by this path and return a file object, as the built-in open() function does. """ #self.touch() return self._accessor.open(self._cloudpath, mode=mode, buffering=buffering, encoding=encoding, errors=errors, block_size=block_size, compression=compression, newline=newline, **kwargs) def async_writer(self, mode: FileMode = 'w', buffering: int = -1, encoding: Optional[str] = DEFAULT_ENCODING, errors: Optional[str] = ON_ERRORS, newline: Optional[str] = NEWLINE, block_size: int = 5242880, compression: str = None, **kwargs: Any) -> IterableAIOFile: """ Asyncronously Open the file pointed by this path and return a file object, as the built-in open() function does. """ #self.touch() return get_cloud_file(self._accessor.open(self._cloudpath, mode=mode, buffering=buffering, encoding=encoding, errors=errors, block_size=block_size, compression=compression, newline=newline, **kwargs)) def read_text(self, encoding: str | None = DEFAULT_ENCODING, errors: str | None = ON_ERRORS) -> str: with self.open('r', encoding=encoding, errors=errors) as file: return file.read() async def async_read_text(self, encoding: str | None = DEFAULT_ENCODING, errors: str | None = ON_ERRORS) -> str: async with self.async_open('r', encoding=encoding, errors=errors) as file: return await file.read() def read_bytes(self) -> bytes: with self.open('rb') as file: return file.read() async def async_read_bytes(self) -> bytes: async with self.async_open('rb') as file: return await file.read() def write_bytes(self, data: bytes) -> int: """ Open the file in bytes mode, write to it, and close the file. """ # type-check for the buffer interface before truncating the file view = memoryview(data) with self.open(mode='wb') as f: return f.write(data) async def async_write_bytes(self, data: bytes) -> int: """ Open the file in bytes mode, write to it, and close the file. """ # type-check for the buffer interface before truncating the file view = memoryview(data) async with self.async_open(mode='wb') as f: return await f.write(data) def append_text(self, data: str, encoding: Optional[str] = DEFAULT_ENCODING, errors: Optional[str] = ON_ERRORS, newline: Optional[str] = NEWLINE) -> int: """ Open the file in text mode, write to it, and close the file. """ if not isinstance(data, str): raise TypeError(f'data must be str, not {type(data).__name__}') with self.open(mode='a', encoding=encoding, errors=errors, newline=newline) as f: n = f.write(data) n += f.write(newline) return n async def async_append_text(self, data: str, encoding: Optional[str] = DEFAULT_ENCODING, errors: Optional[str] = ON_ERRORS, newline: Optional[str] = NEWLINE) -> int: """ Open the file in text mode, write to it, and close the file. """ if not isinstance(data, str): raise TypeError(f'data must be str, not {type(data).__name__}') async with self.async_open(mode='a', encoding=encoding, errors=errors, newline=newline) as f: n = await f.write(data) n += await f.write(newline) return n def write_text(self, data: str, encoding: Optional[str] = DEFAULT_ENCODING, errors: Optional[str] = ON_ERRORS, newline: Optional[str] = NEWLINE) -> int: """ Open the file in text mode, write to it, and close the file. """ if not isinstance(data, str): raise TypeError(f'data must be str, not {type(data).__name__}') with self.open(mode='w', encoding=encoding, errors=errors, newline=newline) as f: return f.write(data) async def async_write_text(self, data: str, encoding: Optional[str] = DEFAULT_ENCODING, errors: Optional[str] = ON_ERRORS, newline: Optional[str] = NEWLINE) -> int: """ Open the file in text mode, write to it, and close the file. """ if not isinstance(data, str): raise TypeError(f'data must be str, not {type(data).__name__}') async with self.async_open(mode='w', encoding=encoding, errors=errors, newline=newline) as f: return await f.write(data) def touch(self, truncate: bool = True, data = None, exist_ok: bool = True, **kwargs): """ Create this file with the given access mode, if it doesn't exist. """ if exist_ok: try: self._accessor.stat(self._cloudpath) # Avoid exception chaining except OSError: pass else: return try: self._accessor.touch(self._cloudpath, truncate = truncate, data = data, **kwargs) except Exception as e: with self.open('wb') as f: f.write(b'') f.flush() async def async_touch(self, truncate: bool = True, data = None, exist_ok: bool = True, **kwargs): """ Create this file with the given access mode, if it doesn't exist. """ if exist_ok: try: await self._accessor.async_stat(self._cloudpath) # Avoid exception chaining except OSError: pass else: return await self._accessor.async_touch(self._cloudpath, truncate = truncate, data = data, **kwargs) def mkdir(self, mode: int = 0o777, parents: bool = True, exist_ok: bool = True): """ Create a new directory at this given path. """ try: self._accessor.mkdir(self._cloudpath, parents = parents, exist_ok = exist_ok) except FileNotFoundError: if not parents or self.parent == self: raise self.parent.mkdir(parents=True, exist_ok=True) self.mkdir(mode, parents=False, exist_ok=exist_ok) except OSError: # Cannot rely on checking for EEXIST, since the operating system # could give priority to other errors like EACCES or EROFS if not exist_ok or not self.is_dir(): raise async def async_mkdir(self, parents: bool = True, exist_ok: bool = True): """ Create a new directory at this given path. """ try: await self._accessor.async_mkdir(self._cloudpath, create_parents = parents, exist_ok = exist_ok) except FileNotFoundError: if not parents or self.parent == self: raise await self.parent.async_mkdir(parents=True, exist_ok=True) await self.async_mkdir(parents=False, exist_ok=exist_ok) except OSError: # Cannot rely on checking for EEXIST, since the operating system # could give priority to other errors like EACCES or EROFS if not exist_ok or not await self.async_is_dir(): raise async def async_makedirs(self, parents: bool = True, exist_ok: bool = True): """ Create a new directory at this given path. """ try: await self._accessor.async_makedirs(self._cloudpath, exist_ok = exist_ok) except FileNotFoundError: if not parents or self.parent == self: raise await self.parent.async_makedirs(exist_ok=True) await self.async_makedirs(exist_ok=exist_ok) except OSError: # Cannot rely on checking for EEXIST, since the operating system # could give priority to other errors like EACCES or EROFS if not exist_ok or not await self.async_is_dir(): raise async def chmod(self, mode: int): """ Change the permissions of the path, like os.chmod(). """ raise NotImplementedError async def async_chmod(self, mode: int): """ Change the permissions of the path, like os.chmod(). """ raise NotImplementedError def lchmod(self, mode: int): """ Like chmod(), except if the path points to a symlink, the symlink's permissions are changed, rather than its target's. """ raise NotImplementedError async def async_lchmod(self, mode: int): """ Like chmod(), except if the path points to a symlink, the symlink's permissions are changed, rather than its target's. """ raise NotImplementedError def unlink(self, missing_ok: bool = False): """ Remove this file or link. If the path is a directory, use rmdir() instead. """ try: self._accessor.rm_file(self._cloudpath) except FileNotFoundError: if not missing_ok: raise async def async_unlink(self, missing_ok: bool = False): """ Remove this file or link. If the path is a directory, use rmdir() instead. """ try: await self._accessor.async_rm_file(self._cloudpath) except FileNotFoundError: if not missing_ok: raise def rm(self, recursive: bool = False, maxdepth: int = None, missing_ok: bool = False): """ Remove this file. If the path is a directory, use rmdir() instead. """ try: self._accessor.rm(self._path, recursive = recursive, maxdepth = maxdepth) except: if not missing_ok: raise async def async_rm(self, recursive: bool = False, maxdepth: int = None, missing_ok: bool = False): """ Remove this file. If the path is a directory, use rmdir() instead. """ try: self._accessor.async_rm(self._path, recursive = recursive, maxdepth = maxdepth) except: if not missing_ok: raise def rm_file(self, missing_ok: bool = True): """ Remove this file. If the path is a directory, use rmdir() instead. """ try: self._accessor.rm_file(self._path) return True except Exception as e: if missing_ok: return False raise e from e async def async_rm_file(self, missing_ok: bool = True): """ Remove this file. If the path is a directory, use rmdir() instead. """ try: await self._accessor.async_rm_file(self._path) return True except Exception as e: if missing_ok: return False raise e from e # async def async_unlink(self, missing_ok: bool = False): # """ # Remove this file or link. # If the path is a directory, use rmdir() instead. # """ # try: await self._accessor.async_unlink(self._cloudpath, missing_ok = missing_ok) # except FileNotFoundError: # if not missing_ok: raise def rmdir(self, force: bool = False, recursive: bool = True, skip_errors: bool = True): """ Remove this directory. The directory must be empty. """ try: return self._accessor.rmdir(self._cloudpath) except Exception as e: if force: return self._accessor.rmdir(self._cloudpath, recursive = recursive) if skip_errors: return raise e async def async_rmdir(self, force: bool = False, recursive: bool = True, skip_errors: bool = True): """ Remove this directory. The directory must be empty. """ try: return await self._accessor.async_rmdir(self._cloudpath) except Exception as e: if force: return await self._accessor.async_rmdir(self._cloudpath, recursive = recursive) if skip_errors: return raise e def link_to(self, target: str): """ Create a hard link pointing to a path named target. """ raise NotImplementedError async def async_link_to(self, target: str): """ Create a hard link pointing to a path named target. """ raise NotImplementedError def rename(self, target: Union[str, Type['CloudFileSystemPath']]) -> Type['CloudFileSystemPath']: """ Rename this path to the target path. The target path may be absolute or relative. Relative paths are interpreted relative to the current working directory, *not* the directory of the Path object. Returns the new Path instance pointing to the target path. """ self._accessor.rename(self._cloudpath, target) return type(self)(target) async def async_rename(self, target: Union[str, Type['CloudFileSystemPath']]) -> Type['CloudFileSystemPath']: """ Rename this path to the target path. The target path may be absolute or relative. Relative paths are interpreted relative to the current working directory, *not* the directory of the Path object. Returns the new Path instance pointing to the target path. """ await self._accessor.async_rename(self._cloudpath, target) return type(self)(target) def replace(self, target: str) -> Type['CloudFileSystemPath']: """ Rename this path to the target path, overwriting if that path exists. The target path may be absolute or relative. Relative paths are interpreted relative to the current working directory, *not* the directory of the Path object. Returns the new Path instance pointing to the target path. """ self._accessor.replace(self._cloudpath, target) return type(self)(target) async def async_replace(self, target: str) -> Type['CloudFileSystemPath']: """ Rename this path to the target path, overwriting if that path exists. The target path may be absolute or relative. Relative paths are interpreted relative to the current working directory, *not* the directory of the Path object. Returns the new Path instance pointing to the target path. """ await self._accessor.async_replace(self._cloudpath, target) return type(self)(target) def symlink_to(self, target: str, target_is_directory: bool = False): """ Make this path a symlink pointing to the given path. Note the order of arguments (self, target) is the reverse of os.symlink's. """ raise NotImplementedError async def async_symlink_to(self, target: str, target_is_directory: bool = False): """ Make this path a symlink pointing to the given path. Note the order of arguments (self, target) is the reverse of os.symlink's. """ raise NotImplementedError def exists(self) -> bool: """ Whether this path exists. """ return self._accessor.exists(self._cloudpath) async def async_exists(self) -> bool: """ Whether this path exists. """ return await self._accessor.async_exists(self._cloudpath) @classmethod def cwd(cls: type) -> str: """Return a new path pointing to the current working directory (as returned by os.getcwd()). """ cwd: str = os.getcwd() return cls(cwd) @classmethod def home(cls: type) -> Type['CloudFileSystemPath']: """Return a new path pointing to the user's home directory (as returned by os.path.expanduser('~')). """ homedir: str = cls()._flavour.gethomedir(None) return cls(homedir) @classmethod async def async_home(cls: type) -> Type['CloudFileSystemPath']: """Return a new path pointing to the user's home directory (as returned by os.path.expanduser('~')). """ coro = cls()._flavour.async_gethomedir(None) homedir: str = await coro return cls(homedir) def samefile(self, other_path: Union[Type['CloudFileSystemPath'], Paths]) -> bool: """Return whether other_path is the same or not as this file (as returned by os.path.samefile()). """ if isinstance(other_path, Paths.__args__): other_path = Type['CloudFileSystemPath'](other_path) if isinstance(other_path, Type['CloudFileSystemPath']): try: other_st = other_path.stat() except AttributeError: other_st = self._accessor.stat(other_path) else: try: other_st = other_path.stat() except AttributeError: other_st = other_path._accessor.stat(other_path) return os.path.samestat(self.stat(), other_st) async def async_samefile(self, other_path: Union[Type['CloudFileSystemPath'], Paths]) -> bool: """Return whether other_path is the same or not as this file (as returned by os.path.samefile()). """ if isinstance(other_path, Paths.__args__): other_path = Type['CloudFileSystemPath'](other_path) if isinstance(other_path, Type['CloudFileSystemPath']): try: other_st = await other_path.async_stat() except AttributeError: other_st = await self._accessor.async_stat(other_path) else: try: other_st = await to_thread(other_path.stat) except AttributeError: other_st = await to_thread(other_path._accessor.stat, other_path) return os.path.samestat(await self.async_stat(),other_st) def iterdir(self) -> Iterable[Type['CloudFileSystemPath']]: """Iterate over the files in this directory. Does not yield any result for the special paths '.' and '..'. """ for name in self._accessor.listdir(self): if name in {'.', '..'}: continue yield self._make_child_relpath(name) async def async_iterdir(self) -> AsyncIterable[Type['CloudFileSystemPath']]: """Iterate over the files in this directory. Does not yield any result for the special paths '.' and '..'. """ # for name in await self._accessor.async_listdir(self): async for name in self._accessor.async_listdir(self): if name in {'.', '..'}: continue yield self._make_child_relpath(name) def glob(self, pattern: str = '*', as_path: bool = True) -> Iterable[Union[str, Type['CloudFileSystemPath']]]: """Iterate over this subtree and yield all existing files (of any kind, including directories) matching the given relative pattern. Warning: doesn't work as expected. Use Find Instead. """ if not pattern: raise ValueError("Unacceptable pattern: {!r}".format(pattern)) #if self.is_cloud: glob_pattern = self._cloudpath + ('/' if self.is_dir() and not self._cloudpath.endswith('/') and not pattern.startswith('/') else '') + pattern try: matches = self._accessor.glob(glob_pattern) if not matches: return matches if self.is_cloud: matches = [f'{self._prefix}://{m}' for m in matches] if as_path: matches = [type(self)(m) for m in matches] return matches except Exception as e: logger.error(e) return self.find(pattern = pattern, as_string = not as_path) async def async_glob(self, pattern: str = '*', as_path: bool = True) -> AsyncIterable[Type['CloudFileSystemPath']]: """Iterate over this subtree and yield all existing files (of any kind, including directories) matching the given relative pattern. """ if not pattern: raise ValueError("Unacceptable pattern: {!r}".format(pattern)) glob_pattern = self._cloudpath + ('/' if self.is_dir() and not self._cloudpath.endswith('/') and not pattern.startswith('/') else '') + pattern try: matches = await self._accessor.async_glob(glob_pattern) if not matches: return matches if self.is_cloud: matches = [f'{self._prefix}://{m}' for m in matches] if as_path: matches = [type(self)(m) for m in matches] return matches except Exception as e: logger.error(e) return await self.async_find(pattern = pattern, as_string = not as_path) def find(self, pattern: str = "*", as_string: bool = False, maxdepth: int = None, withdirs: bool = None, detail: bool = False) -> Union[List[str], List[Type['CloudFileSystemPath']]]: """ List all files below path. Like posix find command without conditions """ matches = self._accessor.find(path = self._cloudstr, maxdepth = maxdepth, withdirs = withdirs, detail = detail, prefix = pattern) if self.is_cloud: matches = [f'{self._prefix}://{m}' for m in matches] if not as_string: matches = [type(self)(m) for m in matches] return matches async def async_find(self, pattern: str = "*", as_string: bool = False, maxdepth: int = None, withdirs: bool = None, detail: bool = False) -> Union[List[str], List[Type['CloudFileSystemPath']]]: """ List all files below path. Like posix find command without conditions """ matches = await self._accessor.async_find(path = self._cloudstr, maxdepth = maxdepth, withdirs = withdirs, detail = detail, prefix = pattern) if self.is_cloud: matches = [f'{self._prefix}://{m}' for m in matches] if not as_string: matches = [type(self)(m) for m in matches] return matches def rglob(self, pattern: str, as_path: bool = True) -> Iterable[Union[str, Type['CloudFileSystemPath']]]: """Recursively yield all existing files (of any kind, including directories) matching the given relative pattern, anywhere in this subtree. """ return self.glob(pattern = f'**/{pattern}', as_path = as_path) async def async_rglob(self, pattern: str) -> AsyncIterable[Union[str, Type['CloudFileSystemPath']]]: """Recursively yield all existing files (of any kind, including directories) matching the given relative pattern, anywhere in this subtree. """ return await self.async_glob(f'**/{pattern}') def cat(self, recursive: bool = False, on_error: str = 'raise', **kwargs): """ Fetch paths’ contents Parameters recursive: bool If True, assume the path(s) are directories, and get all the contained files on_error“raise”, “omit”, “return” If raise, an underlying exception will be raised (converted to KeyError if the type is in self.missing_exceptions); if omit, keys with exception will simply not be included in the output; if “return”, all keys are included in the output, but the value will be bytes or an exception instance. kwargs: passed to cat_file """ return self._accessor.cat(self._cloudstr, recursive = recursive, on_error = on_error, **kwargs) async def async_cat(self, recursive: bool = False, on_error: str = 'raise', **kwargs): """ Fetch paths’ contents Parameters recursive: bool If True, assume the path(s) are directories, and get all the contained files on_error“raise”, “omit”, “return” If raise, an underlying exception will be raised (converted to KeyError if the type is in self.missing_exceptions); if omit, keys with exception will simply not be included in the output; if “return”, all keys are included in the output, but the value will be bytes or an exception instance. kwargs: passed to cat_file """ return await self._accessor.async_cat(self._cloudstr, recursive = recursive, on_error = on_error, **kwargs) def cat_file(self, as_bytes: bool = False, start: int = None, end: int = None, **kwargs): """ Parameters start, end: int Bytes limits of the read. If negative, backwards from end, like usual python slices. Either can be None for start or end of file, respectively kwargs: passed to ``open()``. """ res = self._accessor.cat_file(self._cloudstr, start = start, end = end, **kwargs) if not as_bytes and isinstance(res, bytes): res = res.decode('UTF-8') return res async def async_cat_file(self, as_bytes: bool = False, start: int = None, end: int = None, **kwargs): """ Parameters start, end: int Bytes limits of the read. If negative, backwards from end, like usual python slices. Either can be None for start or end of file, respectively kwargs: passed to ``open()``. """ res = await self._accessor.async_cat_file(self._cloudstr, start = start, end = end, **kwargs) if not as_bytes and isinstance(res, bytes): res = res.decode('UTF-8') return res def pipe(self, value: Union[bytes, str], **kwargs): """ Put value into path (counterpart to cat) """ if not isinstance(value, bytes): value = value.encode('UTF-8') return self._accessor.pipe(self._cloudstr, value = value, **kwargs) async def async_pipe(self, value: Union[bytes, str], **kwargs): """ Put value into path (counterpart to cat) """ if not isinstance(value, bytes): value = value.encode('UTF-8') return await self._accessor.async_pipe(self._cloudstr, value = value, **kwargs) def pipe_file(self, value: Union[bytes, str], **kwargs): """ Put value into path (counterpart to cat) """ if not isinstance(value, bytes): value = value.encode('UTF-8') return self._accessor.pipe_file(self._cloudstr, value = value, **kwargs) async def async_pipe_file(self, value: Union[bytes, str], **kwargs): """ Put value into path (counterpart to cat) """ if not isinstance(value, bytes): value = value.encode('UTF-8') return await self._accessor.async_pipe_file(self._cloudstr, value = value, **kwargs) def absolute(self) -> Type['CloudFileSystemPath']: """Return an absolute version of this path. This function works even if the path doesn't point to anything. No normalization is done, i.e. all '.' and '..' will be kept along. Use resolve() to get the canonical path to a file. """ raise NotImplementedError def resolve(self, strict: bool = False) -> Type['CloudFileSystemPath']: """ Make the path absolute, resolving all symlinks on the way and also normalizing it (for example turning slashes into backslashes under Windows). """ s: Optional[str] = self._flavour.resolve(self, strict=strict) if s is None: self.stat() path = self.absolute() s = str(path) # Now we have no symlinks in the path, it's safe to normalize it. normed: str = self._flavour.pathmod.normpath(s) obj = self._from_parts((normed,), init=False) obj._init(template=self) return obj async def async_resolve(self, strict: bool = False) -> Type['CloudFileSystemPath']: """ Make the path absolute, resolving all symlinks on the way and also normalizing it (for example turning slashes into backslashes under Windows). """ s: Optional[str] = await self._flavour.async_resolve(self, strict=strict) if s is None: await self.async_stat() path = await self.absolute() s = str(path) # Now we have no symlinks in the path, it's safe to normalize it. normed: str = self._flavour.pathmod.normpath(s) obj = self._from_parts((normed,), init=False) obj._init(template=self) return obj def stat(self) -> stat_result: """ Return the result of the stat() system call on this path, like os.stat() does. """ return self._accessor.stat(self._cloudpath) async def async_stat(self) -> stat_result: """ Return the result of the stat() system call on this path, like os.stat() does. """ return await self._accessor.async_stat(self._cloudpath) def info(self): """ Return the result of the info() system call on this path, like """ return self._accessor.info(self._cloudpath) async def async_info(self): """ Return the result of the info() system call on this path, like os.stat() does. """ return await self._accessor.async_info(self._cloudpath) def lstat(self) -> stat_result: """ Like stat(), except if the path points to a symlink, the symlink's status information is returned, rather than its target's. """ raise NotImplementedError async def async_lstat(self) -> stat_result: """ Like stat(), except if the path points to a symlink, the symlink's status information is returned, rather than its target's. """ raise NotImplementedError def owner(self) -> str: """ Return the login name of the file owner. """ raise NotImplementedError async def async_owner(self) -> str: """ Return the login name of the file owner. """ raise NotImplementedError def group(self) -> str: """ Return the group name of the file gid. """ raise NotImplementedError async def async_group(self) -> str: """ Return the group name of the file gid. """ raise NotImplementedError def is_dir(self) -> bool: """ Whether this path is a directory. """ return self._accessor.is_dir(self._cloudpath) async def async_is_dir(self) -> bool: """ Whether this path is a directory. """ return await self._accessor.async_is_dir(self._cloudpath) def is_symlink(self) -> bool: """ Whether this path is a symbolic link. """ raise NotImplementedError async def async_is_symlink(self) -> bool: """ Whether this path is a symbolic link. """ raise NotImplementedError def is_file(self) -> bool: """ Whether this path is a regular file (also True for symlinks pointing to regular files). """ return self._accessor.is_file(self._cloudpath) async def async_is_file(self) -> bool: """ Whether this path is a regular file (also True for symlinks pointing to regular files). """ return await self._accessor.async_is_file(self._cloudpath) @staticmethod def _get_pathlike(path: 'PathLike'): """ Returns the path of the file. """ from fileio.core.generic import get_path return get_path(path) def copy(self, dest: 'PathLike', recursive: bool = False, overwrite: bool = False, skip_errors: bool = False): """ Copies the File to the Dir/File. """ dest = self._get_pathlike(dest) if dest.is_dir() and self.is_file(): dest = dest.joinpath(self.filename_) if dest.exists() and not overwrite and dest.is_file(): if skip_errors: return dest raise ValueError(f'File {dest._path} exists') if dest.is_cloud: self._accessor.copy(self._path, dest._path, recursive) else: self._accessor.get(self._path, dest._path, recursive) return dest async def async_copy(self, dest: 'PathLike', recursive: bool = False, overwrite: bool = False, skip_errors: bool = False): """ Copies the File to the Dir/File. """ dest = self._get_pathlike(dest) if await dest.async_is_dir() and await self.async_is_file(): dest = dest.joinpath(self.filename_) if await dest.async_exists() and not overwrite and await dest.async_is_file(): if skip_errors: return dest raise ValueError(f'File {dest._path} exists') if dest.is_cloud: await self._accessor.async_copy(self._cloudpath, dest._cloudpath, recursive = recursive) else: await self._accessor.async_get(self._cloudpath, dest.string, recursive = recursive) return dest def copy_file(self, dest: 'PathLike', recursive: bool = False, overwrite: bool = False, skip_errors: bool = False): """ Copies this File to the the Dest Path """ dest = self._get_pathlike(dest) if dest.is_dir() and self.is_file(): dest = dest.joinpath(self.filename_) if dest.exists() and not overwrite and dest.is_file(): if skip_errors: return dest raise ValueError(f'File {dest._path} exists') if dest.is_cloud: self._accessor.copy(self._path, dest._path, recursive) else: self._accessor.get(self._path, dest._path, recursive) return dest async def async_copy_file(self, dest: 'PathLike', recursive: bool = False, overwrite: bool = False, skip_errors: bool = False): """ Copies this File to the the Dest Path """ dest = self._get_pathlike(dest) if await dest.async_is_dir() and await self.async_is_file(): dest = dest.joinpath(self.filename_) if await dest.async_exists() and not overwrite and await dest.async_is_file(): if skip_errors: return dest raise ValueError(f'File {dest._path} exists') if dest.is_cloud: await self._accessor.async_copy(self._cloudpath, dest._cloudpath, recursive = recursive) else: await self._accessor.async_get(self._cloudpath, dest.string, recursive = recursive) return dest def put(self, src: 'PathLike', recursive: bool = False, callback: Optional[Callable] = Callback(), **kwargs): """ Copy file(s) from src to this FilePath WIP support for cloud-to-cloud """ src = self._get_pathlike(src) assert not src.is_cloud, 'Cloud to Cloud support not supported at this time' return self._accessor.put(src.string, self._cloudpath, recursive=recursive, callback=callback, **kwargs) async def async_put(self, src: 'PathLike', recursive: bool = False, callback: Optional[Callable] = Callback(), **kwargs): """ Copy file(s) from src to this FilePath WIP support for cloud-to-cloud """ src = self._get_pathlike(src) assert not src.is_cloud, 'Cloud to Cloud support not supported at this time' return await self._accessor.async_put(src.string, self._cloudpath, recursive=recursive, callback=callback, **kwargs) def put_file(self, src: 'PathLike', callback: Optional[Callable] = Callback(), **kwargs): """ Copy single file to remote WIP support for cloud-to-cloud """ src = self._get_pathlike(src) assert not src.is_cloud, 'Cloud to Cloud support not supported at this time' return self._accessor.put_file(src.string, self._cloudpath, callback=callback, **kwargs) async def async_put_file(self, src: 'PathLike', callback: Optional[Callable] = Callback(), **kwargs): """ Copy single file to remote WIP support for cloud-to-cloud """ src = self._get_pathlike(src) assert not src.is_cloud, 'Cloud to Cloud support not supported at this time' return await self._accessor.async_put_file(src.string, self._cloudpath, callback=callback, **kwargs) def get(self, dest: 'PathLike', recursive: bool = False, callback: Optional[Callable] = Callback(), **kwargs): """ Copy the remote file(s) to dest (local) WIP support for cloud-to-cloud """ dest = self._get_pathlike(dest) assert not dest.is_cloud, 'Cloud to Cloud support not supported at this time' return self._accessor.get(self._cloudpath, dest.string, recursive=recursive, callback=callback, **kwargs) async def async_get(self, dest: 'PathLike', recursive: bool = False, callback: Optional[Callable] = Callback(), **kwargs): """ Copy the remote file(s) to dest (local) WIP support for cloud-to-cloud """ dest = self._get_pathlike(dest) assert not dest.is_cloud, 'Cloud to Cloud support not supported at this time' return await self._accessor.async_get(self._cloudpath, dest.string, recursive=recursive, callback=callback, **kwargs) def get_file(self, dest: 'PathLike', callback: Optional[Callable] = Callback(), **kwargs): """ Copies this file to dest (local) WIP support for cloud-to-cloud """ dest = self._get_pathlike(dest) assert not dest.is_cloud, 'Cloud to Cloud support not supported at this time' return self._accessor.get_file(self._cloudpath, dest.string, callback=callback, **kwargs) async def async_get_file(self, dest: 'PathLike', callback: Optional[Callable] = Callback(), **kwargs): """ Copies this file to dest (local) WIP support for cloud-to-cloud """ dest = self._get_pathlike(dest) assert not dest.is_cloud, 'Cloud to Cloud support not supported at this time' return await self._accessor.async_get_file(self._cloudpath, dest.string, callback=callback, **kwargs) def is_mount(self) -> bool: """ Check if this path is a POSIX mount point """ # Need to exist and be a dir return False if not self.exists() or not self.is_dir() else False #raise NotImplementedError async def async_is_mount(self) -> bool: """ Check if this path is a POSIX mount point """ # Need to exist and be a dir if not await self.async_exists() or not await self.async_is_dir(): return False return False #raise NotImplementedError def is_block_device(self) -> bool: """ Whether this path is a block device. """ return False #raise NotImplementedError async def async_is_block_device(self) -> bool: """ Whether this path is a block device. """ return False #raise NotImplementedError def is_char_device(self) -> bool: """ Whether this path is a character device. """ return False #raise NotImplementedError async def async_is_char_device(self) -> bool: """ Whether this path is a character device. """ return False def is_fifo(self) -> bool: """ Whether this path is a FIFO. """ return False async def async_is_fifo(self) -> bool: """ Whether this path is a FIFO. """ return False def is_socket(self) -> bool: """ Whether this path is a socket. """ return False async def async_is_socket(self) -> bool: """ Whether this path is a socket. """ return False def expanduser(self) -> Type['CloudFileSystemPath']: """ Return a new path with expanded ~ and ~user constructs (as returned by os.path.expanduser) """ if (not self._drv and not self._root and self._parts and self._parts[0][:1] == '~'): homedir = self._flavour.gethomedir(self._parts[0][1:]) return self._from_parts([homedir] + self._parts[1:]) return self async def async_expanduser(self) -> Type['CloudFileSystemPath']: """ Return a new path with expanded ~ and ~user constructs (as returned by os.path.expanduser) """ if (not self._drv and not self._root and self._parts and self._parts[0][:1] == '~'): homedir = await self._flavour.async_gethomedir(self._parts[0][1:]) return self._from_parts([homedir] + self._parts[1:]) return self def iterdir(self) -> Iterable[Type['CloudFileSystemPath']]: names = self._accessor.listdir(self) for name in names: if name in {'.', '..'}: continue yield self._make_child_relpath(name) async def async_iterdir(self) -> AsyncIterable[Type['CloudFileSystemPath']]: names = await self._accessor.async_listdir(self) for name in names: if name in {'.', '..'}: continue yield self._make_child_relpath(name) def _raise_closed(self): raise ValueError("I/O operation on closed path") def _raise_open(self): raise ValueError("I/O operation on already open path") # We sort of assume that it will be used to open a file def __enter__(self): #if self._fileio: self._raise_open() #if not self._fileio: # self._fileio = self.open() if self._closed: self._raise_closed() return self def __exit__(self, t, v, tb): self._closed = True async def __aenter__(self): if self._closed: self._raise_closed() return self async def __aexit__(self, exc_type, exc, tb): self._closed = True """ Other Methods """ def url(self, **kwargs): return self._accessor.url(self._cloudpath, **kwargs) async def async_url(self, **kwargs): return await self._accessor.async_url(self._cloudpath, **kwargs) def setxattr(self, **kwargs): return self._accessor.setxattr(self._cloudpath, **kwargs) async def async_setxattr(self, **kwargs): return await self._accessor.async_setxattr(self._cloudpath, **kwargs) def cloze(self, **kwargs): if self._fileio: self._fileio.commit() return self._accessor.invalidate_cache(self._cloudpath) async def async_cloze(self, **kwargs): return await self._accessor.async_invalidate_cache(self._cloudpath) def get_checksum( self, method: str = 'md5', chunk_size: int = 1024, **kwargs ): """ Creates the checksum for the file """ hashmethod = getattr(hashlib, method) hasher = hashmethod() with self.open('rb') as f: for chunk in iter(lambda: f.read(chunk_size), b''): hasher.update(chunk) checksum = hasher.hexdigest() del hasher return checksum async def async_get_checksum( self, method: str = 'md5', chunk_size: int = 1024, **kwargs ): """ Creates the checksum for the file """ hashmethod = getattr(hashlib, method) hasher = hashmethod() async with self.async_open('rb') as f: for chunk in await iter(lambda: f.read(chunk_size), b""): hasher.update(chunk) checksum = hasher.hexdigest() del hasher return checksum class CloudFileSystemPosixPath(PosixPath, CloudFileSystemPath, PureCloudFileSystemPosixPath): __slots__ = () class CloudFileSystemWindowsPath(WindowsPath, CloudFileSystemPath, PureCloudFileSystemWindowsPath): __slots__ = () def is_mount(self) -> int: raise NotImplementedError("CloudFileSystemPath.is_mount() is unsupported on this system") async def async_is_mount(self) -> int: raise NotImplementedError("CloudFileSystemPath.async_is_mount() is unsupported on this system") os.PathLike.register(CloudFileSystemPurePath) os.PathLike.register(CloudFileSystemPath) os.PathLike.register(PureCloudFileSystemPosixPath) os.PathLike.register(CloudFileSystemWindowsPath) os.PathLike.register(CloudFileSystemPosixPath) os.PathLike.register(PureCloudFileSystemWindowsPath) def register_pathlike(pathz: List[Union[PosixPath, CloudFileSystemPath, WindowsPath, CloudFileSystemWindowsPath, CloudFileSystemPosixPath, PureCloudFileSystemWindowsPath, Any]]): for p in pathz: os.PathLike.register(p) __all__ = ( 'ClassVar', 'AccessorLike', 'CloudFileSystemLike', 'get_accessor', 'get_cloud_filesystem', 'CloudFileSystemPurePath', 'PurePath', 'PureCloudFileSystemPosixPath', 'PureCloudFileSystemWindowsPath', 'CloudFileSystemPath', 'Path', '_pathz_windows_flavour', '_pathz_posix_flavour', 'CloudFileSystemPosixPath', 'CloudFileSystemWindowsPath', 'register_pathlike' )
PypiClean
/SwiftCodeGen-0.3.tar.gz/SwiftCodeGen-0.3/README.rst
************ SwiftCodeGen ************ A command line utility to generate model and web service classes in Swift programming language. This is a simple and lightweight tool for developers to automate a part of effort. The tool will generate all the required model classes and web service classes based on `Alamofire <https://github.com/Alamofire/Alamofire>`_ and `ObjectMapper <https://github.com/Hearst-DD/ObjectMapper>`_ with a single command. ============ Installation ============ SwiftCodeGen is written in Python, and it requires python 2.7 or above to work. Install SwiftGen and use simple commands. $ pip install SwiftCodeGen If you have already a version installed... $ pip install SwiftCodeGen --update ===== Usage ===== SwiftCodeGen uses `SwiftGenConf.json` file to keep api details and other common properties to configure basic setups. It also uses template files to generate model and service classes. More documentation can be found `here <https://github.com/akhilraj-rajkumar/swift-code-gen#swiftcodegen>`_ .
PypiClean
/func_timeouts-1.0.2.tar.gz/func_timeouts-1.0.2/func_timeouts/dafunc.py
import copy import inspect import threading import time import types import sys from .exceptions import FunctionTimedOut from .StoppableThread import StoppableThread try: from .py3_raise import raise_exception except SyntaxError: from .py2_raise import raise_exception except ImportError: from .py2_raise import raise_exception from functools import wraps __all__ = ('func_timeout', 'func_set_timeout') def func_timeout(timeout, func, args=(), kwargs=None): ''' func_timeout - Runs the given function for up to #timeout# seconds. Raises any exceptions #func# would raise, returns what #func# would return (unless timeout is exceeded), in which case it raises FunctionTimedOut @param timeout <float> - Maximum number of seconds to run #func# before terminating @param func <function> - The function to call @param args <tuple> - Any ordered arguments to pass to the function @param kwargs <dict/None> - Keyword arguments to pass to the function. @raises - FunctionTimedOut if #timeout# is exceeded, otherwise anything #func# could raise will be raised If the timeout is exceeded, FunctionTimedOut will be raised within the context of the called function every two seconds until it terminates, but will not block the calling thread (a new thread will be created to perform the join). If possible, you should try/except FunctionTimedOut to return cleanly, but in most cases it will 'just work'. @return - The return value that #func# gives ''' if not kwargs: kwargs = {} if not args: args = () ret = [] exception = [] isStopped = False def funcwrap(args2, kwargs2): try: ret.append( func(*args2, **kwargs2) ) except FunctionTimedOut: # Don't print traceback to stderr if we time out pass except Exception as e: exc_info = sys.exc_info() if isStopped is False: # Assemble the alternate traceback, excluding this function # from the trace (by going to next frame) # Pytohn3 reads native from __traceback__, # python2 has a different form for "raise" e.__traceback__ = exc_info[2].tb_next exception.append( e ) thread = StoppableThread(target=funcwrap, args=(args, kwargs)) thread.daemon = True thread.start() thread.join(timeout) stopException = None if thread.isAlive(): isStopped = True class FunctionTimedOutTempType(FunctionTimedOut): def __init__(self): return FunctionTimedOut.__init__(self, '', timeout, func, args, kwargs) FunctionTimedOutTemp = type('FunctionTimedOut' + str( hash( "%d_%d_%d_%d" %(id(timeout), id(func), id(args), id(kwargs))) ), FunctionTimedOutTempType.__bases__, dict(FunctionTimedOutTempType.__dict__)) stopException = FunctionTimedOutTemp thread._stopThread(stopException) thread.join(min(.1, timeout / 50.0)) raise FunctionTimedOut('', timeout, func, args, kwargs) else: # We can still cleanup the thread here.. # Still give a timeout... just... cuz.. thread.join(.5) if exception: raise_exception(exception) if ret: return ret[0] def func_set_timeout(timeout, allowOverride=False): ''' func_set_timeout - Decorator to run a function with a given/calculated timeout (max execution time). Optionally (if #allowOverride is True), adds a paramater, "forceTimeout", to the function which, if provided, will override the default timeout for that invocation. If #timeout is provided as a lambda/function, it will be called prior to each invocation of the decorated function to calculate the timeout to be used for that call, based on the arguments passed to the decorated function. For example, you may have a "processData" function whose execution time depends on the number of "data" elements, so you may want a million elements to have a much higher timeout than seven elements.) If #allowOverride is True AND a kwarg of "forceTimeout" is passed to the wrapped function, that timeout will be used for that single call. @param timeout <float OR lambda/function> - **If float:** Default number of seconds max to allow function to execute before throwing FunctionTimedOut **If lambda/function: If a function/lambda is provided, it will be called for every invocation of the decorated function (unless #allowOverride=True and "forceTimeout" was passed) to determine the timeout to use based on the arguments to the decorated function. The arguments as passed into the decorated function will be passed to this function. They either must match exactly to what the decorated function has, OR if you prefer to get the *args (list of ordered args) and **kwargs ( key : value keyword args form), define your calculate function like: def calculateTimeout(*args, **kwargs): ... or lambda like: calculateTimeout = lambda *args, **kwargs : ... otherwise the args to your calculate function should match exactly the decorated function. @param allowOverride <bool> Default False, if True adds a keyword argument to the decorated function, "forceTimeout" which, if provided, will override the #timeout. If #timeout was provided as a lambda / function, it will not be called. @throws FunctionTimedOut If time alloted passes without function returning naturally @see func_timeout ''' # Try to be as efficent as possible... don't compare the args more than once # Helps closure issue on some versions of python defaultTimeout = copy.copy(timeout) isTimeoutAFunction = bool( issubclass(timeout.__class__, (types.FunctionType, types.MethodType, types.LambdaType, types.BuiltinFunctionType, types.BuiltinMethodType) ) ) if not isTimeoutAFunction: if not issubclass(timeout.__class__, (float, int)): try: timeout = float(timeout) except: raise ValueError('timeout argument must be a float/int for number of seconds, or a function/lambda which gets passed the function arguments and returns a calculated timeout (as float or int). Passed type: < %s > is not of any of these, and cannot be converted to a float.' %( timeout.__class__.__name__, )) if not allowOverride and not isTimeoutAFunction: # Only defaultTimeout provided. Simple function wrapper def _function_decorator(func): return wraps(func)(lambda *args, **kwargs : func_timeout(defaultTimeout, func, args=args, kwargs=kwargs)) # def _function_wrapper(*args, **kwargs): # return func_timeout(defaultTimeout, func, args=args, kwargs=kwargs) # return _function_wrapper return _function_decorator if not isTimeoutAFunction: # allowOverride is True and timeout is not a function. Simple conditional on every call def _function_decorator(func): def _function_wrapper(*args, **kwargs): if 'forceTimeout' in kwargs: useTimeout = kwargs.pop('forceTimeout') else: useTimeout = defaultTimeout return func_timeout(useTimeout, func, args=args, kwargs=kwargs) return wraps(func)(_function_wrapper) return _function_decorator # At this point, timeout IS known to be a function. timeoutFunction = timeout if allowOverride: # Could use a lambda here... but want traceback to highlight the calculate function, # and not the invoked function def _function_decorator(func): def _function_wrapper(*args, **kwargs): if 'forceTimeout' in kwargs: useTimeout = kwargs.pop('forceTimeout') else: useTimeout = timeoutFunction(*args, **kwargs) return func_timeout(useTimeout, func, args=args, kwargs=kwargs) return wraps(func)(_function_wrapper) return _function_decorator # Cannot override, and calculate timeout function def _function_decorator(func): def _function_wrapper(*args, **kwargs): useTimeout = timeoutFunction(*args, **kwargs) return func_timeout(useTimeout, func, args=args, kwargs=kwargs) return wraps(func)(_function_wrapper) return _function_decorator def timeout(): def _function_decorator(func): def _function_wrapper(*args, **kwargs): if 'timeout' in kwargs: timeout_val = kwargs.pop('timeout') else: return func(*args, **kwargs) return func_timeout(timeout_val, func, args=args, kwargs=kwargs) return wraps(func)(_function_wrapper) return _function_decorator
PypiClean
/ruamel.yaml.cmd-0.6.5-py3-none-any.whl/ruamel/yaml/cmd/__main__.py
import argparse import importlib import sys import typing from . import __version__ class HelpFormatter(argparse.RawDescriptionHelpFormatter): def __init__(self, *args: typing.Any, **kw: typing.Any): kw['max_help_position'] = 40 super().__init__(*args, **kw) def _fill_text(self, text: str, width: int, indent: str) -> str: import textwrap paragraphs = [] for paragraph in text.splitlines(): paragraphs.append(textwrap.fill(paragraph, width, initial_indent=indent, subsequent_indent=indent)) return '\n'.join(paragraphs) class ArgumentParser(argparse.ArgumentParser): def __init__(self, *args: typing.Any, **kw: typing.Any): kw['formatter_class'] = HelpFormatter super().__init__(*args, **kw) class DefaultVal(str): def __init__(self, val: typing.Any): self.val = val def __str__(self) -> str: return str(self.val) class CountAction(argparse.Action): def __call__( self, parser: typing.Any, namespace: argparse.Namespace, values: typing.Union[str, typing.Sequence[str], None], option_string: typing.Optional[str] = None, ) -> None: if self.const is None: self.const = 1 try: val = getattr(namespace, self.dest) + self.const except TypeError: # probably None val = self.const setattr(namespace, self.dest, val) def main(cmdarg: typing.Optional[typing.List[str]]=None) -> int: cmdarg = sys.argv if cmdarg is None else cmdarg parsers = [] parsers.append(ArgumentParser()) parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), dest='_gl_verbose', metavar='VERBOSE', nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=None, dest='_gl_indent', metavar='IND', help='set indent level (default: auto)', action='store') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)', action='store') parsers[-1].add_argument('--flow', default=None, dest='_gl_flow', action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=None, dest='_gl_semi', action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=None, dest='_gl_literal', action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=None, dest='_gl_write', action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=None, dest='_gl_output', metavar='OUT', help='write to file %(metavar)s instead of stdout', action='store') parsers[-1].add_argument('--smart-string', default=None, dest='_gl_smart_string', action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') parsers[-1].add_argument('--version', action='store_true', help='show program\'s version number and exit') subp = parsers[-1].add_subparsers() px = subp.add_parser('rt', aliases=['round-trip'], description='round trip on YAML document, test if first or second round stabilizes document', help='test round trip on YAML document') px.set_defaults(subparser_func='rt') parsers.append(px) parsers[-1].add_argument('--save', action='store_true', help="save the rewritten data back\n to the input file (if it doesn't exist a '.orig' backup will be made)\n ") parsers[-1].add_argument('--width', default=80, metavar='W', type=int, help='set width of output (default: %(default)s') parsers[-1].add_argument('file', nargs='+') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('me', aliases=['merge-expand'], description='expand merges in input file to output file', help='expand merges in input file to output file') px.set_defaults(subparser_func='me') parsers.append(px) parsers[-1].add_argument('--allow-anchors', action='store_true', help='allow "normal" anchors/aliases in output') parsers[-1].add_argument('file', nargs=2) parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('json', aliases=['from-json'], description='convert JSON to block-style YAML', help='convert JSON to block-style YAML') px.set_defaults(subparser_func='json') parsers.append(px) parsers[-1].add_argument('--width', default=80, metavar='W', type=int, help='set width of output (default: %(default)s') parsers[-1].add_argument('--mozlz4', action='store_true', help='decode mozilla lz4') parsers[-1].add_argument('file', nargs='+') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('ini', aliases=['from-ini'], description='convert .ini/config file to block YAML', help='convert .ini/config to block YAML') px.set_defaults(subparser_func='ini') parsers.append(px) parsers[-1].add_argument('--basename', '-b', action='store_true', help='re-use basename of .ini file for .yaml file, instead of writing to stdout') parsers[-1].add_argument('--test', action='store_true') parsers[-1].add_argument('file') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('pon', aliases=['from-pon'], description='convert .pon config file to block YAML', help='convert .pon config file to block YAML') px.set_defaults(subparser_func='pon') parsers.append(px) parsers[-1].add_argument('file', nargs='+') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('htmltable', description='convert YAML to html tables. If hierarchy is two levels deep (\nsequence/mapping over sequence/mapping) this is mapped to one table\nIf the hierarchy is three deep, a list of 2 deep tables is assumed, but\nany non-list/mapp second level items are considered text.\nRow level keys are inserted in first column (unless --no-row-key),\nitem level keys are used as classes for the TD. \n', help='convert YAML to HTML tables') px.set_defaults(subparser_func='htmltable') parsers.append(px) parsers[-1].add_argument('--level', action='store_true', help='print # levels and exit') parsers[-1].add_argument('--check') parsers[-1].add_argument('file') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('from-html', description='convert HTML to YAML. Tags become keys with as\nvalue a list. The first item in the list is a key value pair with\nkey ".attribute" if attributes are available followed by tag and string\nsegment items. Lists with one item are by default flattened.\n', help='convert HTML to YAML') px.set_defaults(subparser_func='from_html') parsers.append(px) parsers[-1].add_argument('--no-body', action='store_true', help='drop top level html and body from HTML code segments') parsers[-1].add_argument('--strip', action='store_true', help='strip whitespace surrounding strings') parsers[-1].add_argument('file') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('from-csv', aliases=['csv'], description='convert CSV to YAML.\nBy default generates a sequence of rows, with the items in a 2nd level\nsequence.\n', help='convert CSV to YAML') px.set_defaults(subparser_func='from_csv') parsers.append(px) parsers[-1].add_argument('--mapping', '-m', action='store_true', help='generate sequence of mappings with first line as keys') parsers[-1].add_argument('--delimeter', default=",", metavar='DELIM', help='field delimiter (default %(default)s)') parsers[-1].add_argument('--strip', action='store_true', help='strip leading & trailing spaces from strings') parsers[-1].add_argument('--no-process', dest='process', action='store_false', help='do not try to convert elements into int/float/bool/datetime') parsers[-1].add_argument('file') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('from-dirs', aliases=['fromdirs'], description='Combine multiple YAML files into one.\nPath chunks (directories) are converted to mapping entries, the YAML contents\nthe value of the (last) key. If there are multiple files in one directory, the\nfilenames are used as well (or specify --use-file-name).\n', help='combine multiple YAML files into one') px.set_defaults(subparser_func='from_dirs') parsers.append(px) parsers[-1].add_argument('--use-file-names', action='store_true') parsers[-1].add_argument('--sequence', action='store_true', help='no paths, each YAML content is made an element of a root level sequence') parsers[-1].add_argument('file', nargs='+', help='full path names (a/b/data.yaml)') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('pickle', aliases=['from-pickle', 'frompickle'], description='Load Python pickle file(s) and dump as YAML\n', help='convert Python pickle file(s) to YAML') px.set_defaults(subparser_func='pickle') parsers.append(px) parsers[-1].add_argument('--create-to-yaml', action='store_true', help='create a tagged to_yaml method even if available') parsers[-1].add_argument('file', nargs='*') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('mapping', aliases=['map'], help='create new YAML file with at root a mapping with key and file content') px.set_defaults(subparser_func='mapping') parsers.append(px) parsers[-1].add_argument('key', help='key of the new root-level mapping') parsers[-1].add_argument('file', help='file with YAML content that will be value for key') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('add', help='add a value to a path in the data structure loaded from YAML', description='Add a value to a path in the data structure loaded from YAML. Use value are resolved like in YAML, use --str if necessary The value is the last args token. The "path" in the data structure is taken from all other args, interpreting numerical values as indices in list/seq.\nE.g.:\n yaml add --parents --value Windows test.yaml computers os type\n yaml add --file test.yaml computers os secure false\n yaml add --str test.yaml computers.os.year 2019\n') px.set_defaults(subparser_func='add') parsers.append(px) parsers[-1].add_argument('--parents', action='store_true', help='create parents if necessary') parsers[-1].add_argument('--item', action='store_true', help='create item') parsers[-1].add_argument('--key', action='store_true', help='create key, even if not found in siblings of item') parsers[-1].add_argument('--str', action='store_true', help='store value as string') parsers[-1].add_argument('--file', help='use FILE instead of first argument as YAML file') parsers[-1].add_argument('--value', help='use FILE instead of first argument as YAML file') parsers[-1].add_argument('--sep', help='set separator for splitting single element path') parsers[-1].add_argument('args', nargs='*', help='[file] path in yaml/path.in.yaml [value]') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('sort', description='Load the file, check if path leads to a mapping, sort by key\nand write back. No path -> work on root of data structure.\nFile is not written if mapping is already in sorted order.\n', help='sort the keys of a mapping in a YAML file') px.set_defaults(subparser_func='sort') parsers.append(px) parsers[-1].add_argument('--file', help='use FILE instead of first argument as YAML file') parsers[-1].add_argument('args', nargs='*', help='[file] [path in yaml/path.in.yaml]') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('edit', help='Edit a YAML document, save over orginal only when loadable', description='Edits a copy of the file argument and only updates the file when the copy is loadable YAML. The copy is not removed after exiting editor if not parseable and used (if not older than the original file) to continue.\nCopy is named .ye.<filename>\n') px.set_defaults(subparser_func='edit') parsers.append(px) parsers[-1].add_argument('file', help='file to edit using $EDITOR') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('tokens', help='show tokens') px.set_defaults(subparser_func='tokens') parsers.append(px) parsers[-1].add_argument('file', help='file to edit using $EDITOR') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('events', help='show events') px.set_defaults(subparser_func='events') parsers.append(px) parsers[-1].add_argument('file', help='file to edit using $EDITOR') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('generate', description='generate a file filled with random YAML until it reaches size\n', help='generate a file filled with random YAML until it reaches size\n') px.set_defaults(subparser_func='generate') parsers.append(px) parsers[-1].add_argument('--size', default=10, help='size in Kb') parsers[-1].add_argument('--levels', help='levels in file (e.g. sm_s1m) ') parsers[-1].add_argument('file', help='name of the file to generate') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') px = subp.add_parser('analyse') px.set_defaults(subparser_func='analyse') parsers.append(px) parsers[-1].add_argument('--typ', help='YAML typ to create') parsers[-1].add_argument('--pure', action='store_true', help='create pure YAML instance') parsers[-1].add_argument('file', help='name of the file to load') parsers[-1].add_argument('--verbose', '-v', default=DefaultVal(0), nargs=0, help='increase verbosity level', action=CountAction, const=1) parsers[-1].add_argument('--indent', default=DefaultVal(None), metavar='IND', help='set indent level (default: auto)') parsers[-1].add_argument('--bsi', dest='block_seq_indent', metavar='BLOCK_SEQ_IND', type=int, help='set block sequence indent level (default: auto)') parsers[-1].add_argument('--flow', default=DefaultVal(False), action='store_true', help='use flow-style YAML instead of block style') parsers[-1].add_argument('--semi', default=DefaultVal(False), action='store_true', help='write block style YAML except for "leaf" mapping/dict') parsers[-1].add_argument('--literal', default=DefaultVal(False), action='store_true', help='convert scalars with newlines to literal block style') parsers[-1].add_argument('--write', '-w', default=DefaultVal(False), action='store_true', help='write individual .yaml files (reusing basename), instead of stdout') parsers[-1].add_argument('--output', '-o', default=DefaultVal(None), metavar='OUT', help='write to file %(metavar)s instead of stdout') parsers[-1].add_argument('--smart-string', default=DefaultVal(False), action='store_true', help='set literal block style on strings with \\n otherwise plain if possible') parsers.pop() if '--version' in cmdarg[1:]: if '-v' in cmdarg[1:] or '--verbose' in cmdarg[1:]: return list_versions(pkg_name='ruamel.yaml.cmd', version=None, pkgs=['configobj', 'ruamel.yaml.convert', 'ruamel.yaml', 'ruamel.yaml.base', 'lz4']) print(__version__) return 0 if '--help-all' in cmdarg[1:]: try: parsers[0].parse_args(['--help']) except SystemExit: pass for sc in parsers[1:]: print('-' * 72) try: parsers[0].parse_args([sc.prog.split()[1], '--help']) except SystemExit: pass sys.exit(0) args = parsers[0].parse_args(args=cmdarg[1:]) for gl in ['verbose', 'indent', 'flow', 'semi', 'literal', 'write', 'output', 'smart_string']: glv = getattr(args, '_gl_' + gl, None) if isinstance(getattr(args, gl, None), (DefaultVal, type(None))) and glv is not None: setattr(args, gl, glv) delattr(args, '_gl_' + gl) if isinstance(getattr(args, gl, None), DefaultVal): setattr(args, gl, getattr(args, gl).val) cls = getattr(importlib.import_module('ruamel.yaml.cmd.yaml_cmd'), 'YAMLCommand') obj = cls(args) funcname = getattr(args, 'subparser_func', None) if funcname is None: parsers[0].parse_args(['--help']) fun = getattr(obj, funcname + '_subcommand', None) if fun is None: fun = getattr(obj, funcname) ret_val = fun() if ret_val is None: return 0 if isinstance(ret_val, int): return ret_val return -1 def list_versions(pkg_name: str, version: typing.Union[str, None], pkgs: typing.Sequence[str]) -> int: version_data = [ ('Python', '{v.major}.{v.minor}.{v.micro}'.format(v=sys.version_info)), (pkg_name, __version__ if version is None else version), ] for pkg in pkgs: try: version_data.append( (pkg, getattr(importlib.import_module(pkg), '__version__', '--')) ) except ModuleNotFoundError: version_data.append((pkg, 'NA')) except KeyError: pass longest = max([len(x[0]) for x in version_data]) + 1 for pkg, ver in version_data: print('{:{}s} {}'.format(pkg + ':', longest, ver)) return 0 if __name__ == '__main__': sys.exit(main())
PypiClean
/hetdex_api-0.8.7.tar.gz/hetdex_api-0.8.7/hetdex_api/sqlite_utils.py
import sqlite3 from sqlite3 import Error import numpy as np import os.path as op FILENAME_PREFIX = "elixer_reports_" #keep the trailing underscore REPORT_TYPES = ["report","nei","mini"] try: from hetdex_api.config import HDRconfig except: # print("Warning! Cannot find or import HDRconfig from hetdex_api!!") pass #key is the HDR version number, value is list of directories that contain ELiXer imaging databses #Base paths # xx0 = standard hetdex # xx6 = broad emission lines (still in with the xx0 detections as of hdr2.1) # xx9 = continuum sources DICT_DB_PATHS = {10: ["/work/03946/hetdex/hdr1/detect/image_db" ], 20: ["/scratch/03261/polonius/hdr2/detect/image_db", "/work/03261/polonius/hdr2/detect/image_db", "/work/03946/hetdex/hdr2/detect/image_db" ], 21: ["/scratch/03946/hetdex/hdr2.1/detect/image_db", "/scratch/03261/polonius/hdr2.1/detect/image_db", "/work/03946/hetdex/hdr2.1/detect/image_db", "/work/03261/polonius/hdr2.1/detect/image_db" ], } # # add paths from hetdex_api to search (place in first position) # for v in DICT_DB_PATHS.keys(): try: release_number = v/10.0 if v % 10 == 0: release_string = "hdr{:d}".format(int(release_number)) else: release_string = "hdr{:2.1f}".format(release_number) DICT_DB_PATHS[v].insert(0,op.join(HDRconfig(survey=release_string).elix_dir)) except:# Exception as e: #print(e) continue def get_elixer_report_db_path(detectid,report_type="report"): """ Return the top (first found) path to database file based on the detectid (assumes the HDR version is part of the prefix, i.e. HDR1 files are 1000*, HDR2 are 2000*, and so on) :param detectid: :param report_type: choose one of "report" (normal ELiXer report image) [default] "nei" (ELiXer neighborhood image) "mini" (ELiXer mini-report image for phone app) :return: None or database filename """ detect_prefix = None db_path = None try: detect_prefix = int(np.int64(detectid) / 1e5) hdr_prefix = int(np.int64(detectid)/1e8) #keep the leading underscore if report_type == "report": ext = "" elif report_type == "nei": ext = "_nei" elif report_type == "mini": ext = "_mini" else: #assume same as report ext = "" if detect_prefix is not None: if hdr_prefix in DICT_DB_PATHS.keys(): paths = DICT_DB_PATHS[hdr_prefix] for p in paths: if op.exists(p): fqfn = op.join(p, FILENAME_PREFIX + str(detect_prefix) + ext + ".db") if op.isfile(fqfn): db_path = fqfn break else: #print("Invalid HDR version") return None except Error as e: print(e) return db_path def get_db_connection(fn,readonly=True): """ return a SQLite3 databse connection object for the provide databse filename assumes file exists (will trap exception if not and return None) :param fn: :return: None or connection object """ conn = None try: if fn is not None: if readonly: conn = sqlite3.connect("file:" +fn + "?mode=ro",uri=True) else: conn = sqlite3.connect(fn) except Error as e: print(e) return conn def fetch_elixer_report_image(conn,detectid): """ Return a single image (image type (png, jpg) and report type (report, neighborhood, mini) depend on the database connection :param conn: a sqlite3.Connection object or a path to a database :param detectid: HETDEX detectid (int64 or string) :return: None or single image """ try: keep_conn_open = True if type(conn) != sqlite3.Connection: #could be a file if op.isfile(conn): conn = get_db_connection(conn,readonly=True) if type(conn) != sqlite3.Connection: print("Invalid databse connection.") return None keep_conn_open = False else: print("Invalid database connection.") return None cursor = conn.cursor() sql_read_blob = """SELECT image from report where detectid = ?""" cursor.execute(sql_read_blob, (str(detectid),)) image = cursor.fetchall() #get back a list of tuples (each list entry is one row, the tuple is the row, so #we want the 1st entry (detectid is unique, so should be one or none, and the second column which is the image) cursor.close() if not keep_conn_open: conn.close() if image is not None: if len(image) == 1: return image[0][0] elif len(image) == 0: print("No matching detectid found") return None else: print("Unexpected number of images returned") return None else: print("None returned from image fetch.") return None except Error as e: print(e) return None def build_elixer_report_image_db(db_name,img_dir,img_regex): """ Not for general use. Should normally be called once per image type per grouping of (100,000) per data release. If db already exists, this will insert new images and replace existing images (if detectIDs match) This DOES NOT validate the images or check that they are appropriate for the db_name. Progress is reported per 100 inserts Insert speed does not depend on database size, but does depend on disk speed (local vs network, SSD vs HD, etc) :param db_name: name (with path) of the SQLite output db :param img_dir: location of all images to be imported (is NOT recursive) :param img_regex: generally simple wildcard, like "*.png" or "*nei.png" or "*.jpg", etc :return: """ import glob import re import time # import gzip #only get about 5% compression on pngs at much higher cpu cost import datetime def build_schema(conn): # build up sql commands to issue try: sql_create_report_image_table = """ CREATE TABLE IF NOT EXISTS report ( detectid BIGINT PRIMARY KEY, image BLOB NOT NULL ); """ # create report table cursor = conn.cursor() cursor.execute(sql_create_report_image_table) cursor.close() conn.commit() #create index: not necessary; is autocreated with BIGING Primary Key # sql_create_index = """ CREATE UNIQUE INDEX idx_detectid ON report (detectid); """ # cursor = conn.cursor(sql_create_index) # cursor.execute() # cursor.close() # conn.commit() return True except Exception as e: print(e) return False def read_image(fn): blob_data = None detectid = None try: #assume name like <detectid><optional chars>.png detectid = int(re.findall('\d+',op.basename(fn).split(".")[0])[0]) with open(fn, 'rb') as file: blob_data = file.read() except Exception as e: print("Exception in read_image (bad detectid):", fn, e) return blob_data, detectid def insert_image(conn, detectid, data): if (detectid is None) or (data is None): return try: cursor = conn.cursor() sql_insert_blob = """ INSERT INTO report (detectid, image) VALUES (?, ?)""" try: cursor.execute(sql_insert_blob, (detectid, data)) conn.commit() except Exception as e: if type(e) == sqlite3.IntegrityError: # could be image already exists, in which case overwrite try: sql_update_blob = """ UPDATE report SET image = ? WHERE detectid = ?""" cursor.execute(sql_update_blob, (data, detectid)) conn.commit() except Exception as e: print("second exception in insert_image:", detectid, e) else: print("exception in insert_image:", detectid, e) cursor.close() except Exception as e: print(e) try: cursor.close() except: pass def import_images_from_path(conn,img_dir,img_regex): ct = 0 total_inserts = 0 estimated_total = 0 modulo = 100 #print a status statement every modulo inserts filelist = glob.glob(op.join(img_dir, img_regex)) # just the reports, not the neighbors or mini estimated_total = len(filelist) print(f"Inserting {estimated_total} images ... ") if estimated_total < 1: return #nothing to do start_time = int(round(time.time() * 1000)) for f in filelist: try: blob, detectid = read_image(f) insert_image(conn, detectid, blob) ct += 1 except Exception as e: print("exception in import_images_from_path:", e) if ct >= modulo: try: time_diff = int(round(time.time() * 1000)) - start_time total_inserts += ct per_insert_time = time_diff / ct / 1000. print(f"{db_name}: Inserted {ct} ({per_insert_time:#0.3f}s per insert). Total {total_inserts}/{estimated_total} " f"({float(total_inserts / estimated_total) * 100.:#0.1f}%). " f"Remaining time ({datetime.timedelta(seconds=round(per_insert_time * (estimated_total - total_inserts)))}) ...") start_time = int(round(time.time() * 1000)) # reset the timer ct = 0 except: print("print progress failed....") #final log (remainder after last block of inserts try: time_diff = int(round(time.time() * 1000)) - start_time total_inserts += ct per_insert_time = time_diff / ct / 1000. print(f"Inserted {ct} ({per_insert_time:#0.3f}s per insert). Total {total_inserts}/{estimated_total} " f"({float(total_inserts / estimated_total) * 100.:#0.1f}%). ") except: print("print progress failed....") # # main execution part # try: if not op.isfile(db_name): conn = sqlite3.connect(db_name) #not read only if type(conn) != sqlite3.Connection: print("Failed to create db connection") return False elif not build_schema(conn): print("Failed to build schema") return False else: conn = get_db_connection(db_name,readonly=False) if type(conn) != sqlite3.Connection: print("Failed to create db connection") return False import_images_from_path(conn,img_dir,img_regex) except Exception as e: print(e) # 20200529 DD # will revisit later if this idea becomes useful # # def build_local_imaging_dbs(): # """ # super simplified for testing # build the imaging databases using default settings in the current directory # :return: # """ # import glob # #get the list of images and report types # rpt_min, rpt_max = None, None # rpt_list = sorted(glob.glob("*[0-9].png")) # if (rpt_list is not None) and (len(rpt_list) > 0): # rpt_min = int(rpt_list[0].rstrip(".png")) # rpt_max = int(rpt_list[-1].rstrip(".png")) # # nei_min, nei_max = None, None # nei_list = sorted(glob.glob("*[0-9]*nei.png")) # if (nei_list is not None) and (len(nei_list) > 0): # nei_min = rpt_list[0].rstrip("nei.png") # nei_max = rpt_list[-1].rstrip("nei.png") # nei_min = int(nei_min.replace("_","")) #might not have an "_" # nei_max = int(nei_max.replace("_", "")) # # mini_min, mini_max = None, None # mini_list = sorted(glob.glob("*[0-9]*mini.png")) # if (mini_list is not None) and (len(mini_list) > 0): # mini_min = rpt_list[0].rstrip("mini.png") # mini_max = rpt_list[-1].rstrip("mini.png") # mini_min = int(mini_min.replace("_","")) #might not have an "_" # mini_max = int(mini_max.replace("_", "")) # # #organize by # class ConnMgr(): """ Primitive container for managing SQLite connection (to avoid repeated path search and connection building) Just for reading """ def __init__(self): self.conn_dict = {} #key = detectid_prefix + type (i.e. "10003" or "10004nei" or "20007mini" def __del__(self): self.close_conns() def get_connection(self,detectid,report_type="report"): conn = None try: if not report_type in REPORT_TYPES: return None detect_prefix = int(np.int64(detectid) / 1e5) dkey = str(detect_prefix)+report_type if dkey in self.conn_dict.keys(): conn = self.conn_dict[dkey] else: try: #all ConnMgr connections are read-only (uri=True) conn = get_db_connection(get_elixer_report_db_path(detectid,report_type),readonly=True) if type(conn) != sqlite3.Connection: conn = None else: self.conn_dict[dkey] = conn except Exception as e: print(e) except Exception as e: print(e) return conn def close_conns(self): for key in self.conn_dict.keys(): try: self.conn_dict[key].close() except: pass self.conn_dict.clear() def fetch_image(self,detectid,report_type="report"): """ wrapper just to make code cleaner :param detectid: :param report_type: :return: """ img = None try: conn = self.get_connection(detectid,report_type) if type(conn) == sqlite3.Connection: img = fetch_elixer_report_image(conn,detectid) except Exception as e: print(e) raise return img
PypiClean
/defi_protocols-0.0.9.tar.gz/defi_protocols-0.0.9/defi_protocols/Bancor.py
from defi_protocols.functions import * #---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # LITERALS #---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # Contracts for calling liquidity pools and underlying tokens BANCOR_NETWORK_ADDRESS = '0xeEF417e1D5CC832e619ae18D2F140De2999dD4fB' BANCOR_NETWORK_INFO_ADDRESS = '0x8E303D296851B320e6a697bAcB979d13c9D6E760' BNT_TOKEN = '0x1F573D6Fb3F13d689FF844B4cE37794d79a7FF1C' #---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # ABIs #---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # Network ABI - liquidityPools ABI_NETWORK = '[{"inputs":[],"name":"liquidityPools","outputs":[{"internalType":"contract Token[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"}]' # NetworkInfo ABI - poolToken, withdrawalAmounts ABI_NETWORK_INFO = '[{"inputs":[{"internalType":"contract Token","name":"pool","type":"address"}],"name":"poolToken","outputs":[{"internalType":"contract IPoolToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract Token","name":"pool","type":"address"},{"internalType":"uint256","name":"poolTokenAmount","type":"uint256"}],"name":"withdrawalAmounts","outputs":[{"components":[{"internalType":"uint256","name":"totalAmount","type":"uint256"},{"internalType":"uint256","name":"baseTokenAmount","type":"uint256"},{"internalType":"uint256","name":"bntAmount","type":"uint256"}],"internalType":"struct WithdrawalAmounts","name":"","type":"tuple"}],"stateMutability":"view","type":"function"}]' # ABI of the pools - balanceOf, reserveToken ABI_POOL = '[{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserveToken","outputs":[{"internalType":"contract Token","name":"","type":"address"}],"stateMutability":"view","type":"function"}]' def underlying(token_address: str, wallet: str, block: int, blockchain: str, web3=None, execution=1, index=0, decimals=True, reward=False) -> list: # If the number of executions is greater than the MAX_EXECUTIONS variable -> returns None and halts if execution > MAX_EXECUTIONS: return None balances = [] try: if web3 is None: web3 = get_node(blockchain, block=block, index=index) wallet = web3.toChecksumAddress(wallet) bancor_poolcontract=get_contract(token_address, blockchain, web3=web3, abi=ABI_POOL, block=block) balance = bancor_poolcontract.functions.balanceOf(wallet).call(block_identifier=block) reserve_token = bancor_poolcontract.functions.reserveToken().call() pooltokens_contract = get_contract(BANCOR_NETWORK_INFO_ADDRESS, blockchain, web3=web3, abi=ABI_NETWORK_INFO, block=block) bancor_pool = pooltokens_contract.functions.withdrawalAmounts(reserve_token,balance).call() if balance != 0: if decimals is True: decimals0 = get_decimals(reserve_token, blockchain, web3=web3) decimals1 = get_decimals(BNT_TOKEN, blockchain, web3=web3) amount0 = bancor_pool[1] / 10 ** decimals0 amount1 = bancor_pool[2] / 10 ** decimals1 else: amount0 = bancor_pool[0] amount1 = bancor_pool[2] balances.append([reserve_token, amount0]) balances.append([BNT_TOKEN, amount1]) return balances except GetNodeIndexError: return underlying(token_address, wallet, block, blockchain, reward=reward, decimals=decimals, index=0, execution=execution + 1) except: return underlying(token_address, wallet, block, blockchain, reward=reward, decimals=decimals, index=index + 1, execution=execution) def underlying_all(wallet: str, block: int, blockchain: str, web3=None, execution=1, index=0, decimals=True, reward=False) -> list: """ :param wallet: :param lptoken_address: :param block: :param blockchain: :param web3: :param execution: :param index: :param decimals: :param reward: :return: """ # If the number of executions is greater than the MAX_EXECUTIONS variable -> returns None and halts if execution > MAX_EXECUTIONS: return None balances = [] try: if web3 is None: web3 = get_node(blockchain, block=block, index=index) wallet = web3.toChecksumAddress(wallet) liquiditypools_contract = get_contract(BANCOR_NETWORK_ADDRESS, blockchain, web3=web3, abi=ABI_NETWORK, block=block) liquidity_pools = liquiditypools_contract.functions.liquidityPools().call() network_info_address = get_contract(BANCOR_NETWORK_INFO_ADDRESS, blockchain, web3=web3, abi=ABI_NETWORK_INFO, block=block) for pool in liquidity_pools: bn_token = network_info_address.functions.reserveToken(pool).call() balance = underlying(bn_token, wallet, block, blockchain, web3, execution, index, decimals, reward) balances.append(balance) return balances except GetNodeIndexError: return underlying_all(wallet, block, blockchain, reward=reward, decimals=decimals, index=0, execution=execution + 1) except: return underlying_all(wallet, block, blockchain, reward=reward, decimals=decimals, index=index + 1, execution=execution) #to test #wallet='0x849d52316331967b6ff1198e5e32a0eb168d039d' #token_address = '0x36FAbE4cAeF8c190550b6f93c306A5644E7dCef6' #bancor = underlying(token_address, wallet,'latest',ETHEREUM) #print(bancor)
PypiClean
/zarenacord-2.0.0.tar.gz/zarenacord-2.0.0/discord/errors.py
from __future__ import annotations from typing import Dict, List, Optional, TYPE_CHECKING, Any, Tuple, Union if TYPE_CHECKING: from aiohttp import ClientResponse, ClientWebSocketResponse try: from requests import Response _ResponseType = Union[ClientResponse, Response] except ModuleNotFoundError: _ResponseType = ClientResponse from .interactions import Interaction __all__ = ( 'DiscordException', 'ClientException', 'NoMoreItems', 'GatewayNotFound', 'HTTPException', 'Forbidden', 'NotFound', 'DiscordServerError', 'InvalidData', 'InvalidArgument', 'LoginFailure', 'ConnectionClosed', 'PrivilegedIntentsRequired', 'InteractionResponded', ) class DiscordException(Exception): """Base exception class for discord.py Ideally speaking, this could be caught to handle any exceptions raised from this library. """ pass class ClientException(DiscordException): """Exception that's raised when an operation in the :class:`Client` fails. These are usually for exceptions that happened due to user input. """ pass class NoMoreItems(DiscordException): """Exception that is raised when an async iteration operation has no more items.""" pass class GatewayNotFound(DiscordException): """An exception that is raised when the gateway for Discord could not be found""" def __init__(self): message = 'The gateway to connect to discord was not found.' super().__init__(message) def _flatten_error_dict(d: Dict[str, Any], key: str = '') -> Dict[str, str]: items: List[Tuple[str, str]] = [] for k, v in d.items(): new_key = key + '.' + k if key else k if isinstance(v, dict): try: _errors: List[Dict[str, Any]] = v['_errors'] except KeyError: items.extend(_flatten_error_dict(v, new_key).items()) else: items.append((new_key, ' '.join(x.get('message', '') for x in _errors))) else: items.append((new_key, v)) return dict(items) class HTTPException(DiscordException): """Exception that's raised when an HTTP request operation fails. Attributes ------------ response: :class:`aiohttp.ClientResponse` The response of the failed HTTP request. This is an instance of :class:`aiohttp.ClientResponse`. In some cases this could also be a :class:`requests.Response`. text: :class:`str` The text of the error. Could be an empty string. status: :class:`int` The status code of the HTTP request. code: :class:`int` The Discord specific error code for the failure. """ def __init__(self, response: _ResponseType, message: Optional[Union[str, Dict[str, Any]]]): self.response: _ResponseType = response self.status: int = response.status # type: ignore self.code: int self.text: str if isinstance(message, dict): self.code = message.get('code', 0) base = message.get('message', '') errors = message.get('errors') if errors: errors = _flatten_error_dict(errors) helpful = '\n'.join('In %s: %s' % t for t in errors.items()) self.text = base + '\n' + helpful else: self.text = base else: self.text = message or '' self.code = 0 fmt = '{0.status} {0.reason} (error code: {1})' if len(self.text): fmt += ': {2}' super().__init__(fmt.format(self.response, self.code, self.text)) class Forbidden(HTTPException): """Exception that's raised for when status code 403 occurs. Subclass of :exc:`HTTPException` """ pass class NotFound(HTTPException): """Exception that's raised for when status code 404 occurs. Subclass of :exc:`HTTPException` """ pass class DiscordServerError(HTTPException): """Exception that's raised for when a 500 range status code occurs. Subclass of :exc:`HTTPException`. .. versionadded:: 1.5 """ pass class InvalidData(ClientException): """Exception that's raised when the library encounters unknown or invalid data from Discord. """ pass class InvalidArgument(ClientException): """Exception that's raised when an argument to a function is invalid some way (e.g. wrong value or wrong type). This could be considered the analogous of ``ValueError`` and ``TypeError`` except inherited from :exc:`ClientException` and thus :exc:`DiscordException`. """ pass class LoginFailure(ClientException): """Exception that's raised when the :meth:`Client.login` function fails to log you in from improper credentials or some other misc. failure. """ pass class ConnectionClosed(ClientException): """Exception that's raised when the gateway connection is closed for reasons that could not be handled internally. Attributes ----------- code: :class:`int` The close code of the websocket. reason: :class:`str` The reason provided for the closure. shard_id: Optional[:class:`int`] The shard ID that got closed if applicable. """ def __init__(self, socket: ClientWebSocketResponse, *, shard_id: Optional[int], code: Optional[int] = None): # This exception is just the same exception except # reconfigured to subclass ClientException for users self.code: int = code or socket.close_code or -1 # aiohttp doesn't seem to consistently provide close reason self.reason: str = '' self.shard_id: Optional[int] = shard_id super().__init__(f'Shard ID {self.shard_id} WebSocket closed with {self.code}') class PrivilegedIntentsRequired(ClientException): """Exception that's raised when the gateway is requesting privileged intents but they're not ticked in the developer page yet. Go to https://discord.com/developers/applications/ and enable the intents that are required. Currently these are as follows: - :attr:`Intents.members` - :attr:`Intents.presences` Attributes ----------- shard_id: Optional[:class:`int`] The shard ID that got closed if applicable. """ def __init__(self, shard_id: Optional[int]): self.shard_id: Optional[int] = shard_id msg = ( 'Shard ID %s is requesting privileged intents that have not been explicitly enabled in the ' 'developer portal. It is recommended to go to https://discord.com/developers/applications/ ' 'and explicitly enable the privileged intents within your application\'s page. If this is not ' 'possible, then consider disabling the privileged intents instead.' ) super().__init__(msg % shard_id) class InteractionResponded(ClientException): """Exception that's raised when sending another interaction response using :class:`InteractionResponse` when one has already been done before. An interaction can only respond once. .. versionadded:: 2.0 Attributes ----------- interaction: :class:`Interaction` The interaction that's already been responded to. """ def __init__(self, interaction: Interaction): self.interaction: Interaction = interaction super().__init__('This interaction has already been responded to before')
PypiClean
/hassmart_homeassistant-0.65.4.tar.gz/hassmart_homeassistant-0.65.4/homeassistant/components/system_log/__init__.py
import asyncio from collections import deque from io import StringIO import logging import re import traceback import voluptuous as vol from homeassistant import __path__ as HOMEASSISTANT_PATH from homeassistant.components.http import HomeAssistantView import homeassistant.helpers.config_validation as cv from homeassistant.const import EVENT_HOMEASSISTANT_STOP CONF_MAX_ENTRIES = 'max_entries' CONF_MESSAGE = 'message' CONF_LEVEL = 'level' CONF_LOGGER = 'logger' DATA_SYSTEM_LOG = 'system_log' DEFAULT_MAX_ENTRIES = 50 DEPENDENCIES = ['http'] DOMAIN = 'system_log' EVENT_SYSTEM_LOG = 'system_log_event' SERVICE_CLEAR = 'clear' SERVICE_WRITE = 'write' CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Optional(CONF_MAX_ENTRIES, default=DEFAULT_MAX_ENTRIES): cv.positive_int, }), }, extra=vol.ALLOW_EXTRA) SERVICE_CLEAR_SCHEMA = vol.Schema({}) SERVICE_WRITE_SCHEMA = vol.Schema({ vol.Required(CONF_MESSAGE): cv.string, vol.Optional(CONF_LEVEL, default='error'): vol.In(['debug', 'info', 'warning', 'error', 'critical']), vol.Optional(CONF_LOGGER): cv.string, }) def _figure_out_source(record, call_stack, hass): paths = [HOMEASSISTANT_PATH[0], hass.config.config_dir] try: # If netdisco is installed check its path too. from netdisco import __path__ as netdisco_path paths.append(netdisco_path[0]) except ImportError: pass # If a stack trace exists, extract file names from the entire call stack. # The other case is when a regular "log" is made (without an attached # exception). In that case, just use the file where the log was made from. if record.exc_info: stack = [x[0] for x in traceback.extract_tb(record.exc_info[2])] else: index = -1 for i, frame in enumerate(call_stack): if frame == record.pathname: index = i break if index == -1: # For some reason we couldn't find pathname in the stack. stack = [record.pathname] else: stack = call_stack[0:index+1] # Iterate through the stack call (in reverse) and find the last call from # a file in Home Assistant. Try to figure out where error happened. paths_re = r'(?:{})/(.*)'.format('|'.join([re.escape(x) for x in paths])) for pathname in reversed(stack): # Try to match with a file within Home Assistant match = re.match(paths_re, pathname) if match: return match.group(1) # Ok, we don't know what this is return record.pathname def _exception_as_string(exc_info): buf = StringIO() if exc_info: traceback.print_exception(*exc_info, file=buf) return buf.getvalue() class LogErrorHandler(logging.Handler): """Log handler for error messages.""" def __init__(self, hass, maxlen): """Initialize a new LogErrorHandler.""" super().__init__() self.hass = hass self.records = deque(maxlen=maxlen) def _create_entry(self, record, call_stack): return { 'timestamp': record.created, 'level': record.levelname, 'message': record.getMessage(), 'exception': _exception_as_string(record.exc_info), 'source': _figure_out_source(record, call_stack, self.hass), } def emit(self, record): """Save error and warning logs. Everything logged with error or warning is saved in local buffer. A default upper limit is set to 50 (older entries are discarded) but can be changed if needed. """ if record.levelno >= logging.WARN: stack = [] if not record.exc_info: try: stack = [f for f, _, _, _ in traceback.extract_stack()] except ValueError: # On Python 3.4 under py.test getting the stack might fail. pass entry = self._create_entry(record, stack) self.records.appendleft(entry) self.hass.bus.fire(EVENT_SYSTEM_LOG, entry) @asyncio.coroutine def async_setup(hass, config): """Set up the logger component.""" conf = config.get(DOMAIN) if conf is None: conf = CONFIG_SCHEMA({DOMAIN: {}})[DOMAIN] handler = LogErrorHandler(hass, conf.get(CONF_MAX_ENTRIES)) logging.getLogger().addHandler(handler) hass.http.register_view(AllErrorsView(handler)) @asyncio.coroutine def async_service_handler(service): """Handle logger services.""" if service.service == 'clear': handler.records.clear() return if service.service == 'write': logger = logging.getLogger( service.data.get(CONF_LOGGER, '{}.external'.format(__name__))) level = service.data[CONF_LEVEL] getattr(logger, level)(service.data[CONF_MESSAGE]) @asyncio.coroutine def async_shutdown_handler(event): """Remove logging handler when Home Assistant is shutdown.""" # This is needed as older logger instances will remain logging.getLogger().removeHandler(handler) hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, async_shutdown_handler) hass.services.async_register( DOMAIN, SERVICE_CLEAR, async_service_handler, schema=SERVICE_CLEAR_SCHEMA) hass.services.async_register( DOMAIN, SERVICE_WRITE, async_service_handler, schema=SERVICE_WRITE_SCHEMA) return True class AllErrorsView(HomeAssistantView): """Get all logged errors and warnings.""" url = "/api/error/all" name = "api:error:all" def __init__(self, handler): """Initialize a new AllErrorsView.""" self.handler = handler @asyncio.coroutine def get(self, request): """Get all errors and warnings.""" # deque is not serializable (it's just "list-like") so it must be # converted to a list before it can be serialized to json return self.json(list(self.handler.records))
PypiClean
/eric-ide-22.7.1.tar.gz/eric-ide-22.7.1/eric7/Plugins/UiExtensionPlugins/Translator/TranslatorEngines/GoogleV1Engine.py
# Copyright (c) 2014 - 2022 Detlev Offenbach <[email protected]> # """ Module implementing the Google V1 translation engine. """ import json import re from PyQt6.QtCore import QByteArray, QUrl, QTimer import Utilities from .TranslationEngine import TranslationEngine class GoogleV1Engine(TranslationEngine): """ Class implementing the translation engine for the old Google translation service. """ TranslatorUrl = "https://translate.googleapis.com/translate_a/single" TextToSpeechUrl = "https://translate.google.com/translate_tts" TextToSpeechLimit = 100 def __init__(self, plugin, parent=None): """ Constructor @param plugin reference to the plugin object @type TranslatorPlugin @param parent reference to the parent object @type QObject """ super().__init__(plugin, parent) QTimer.singleShot(0, self.availableTranslationsLoaded.emit) def engineName(self): """ Public method to return the name of the engine. @return engine name @rtype str """ return "googlev1" def supportedLanguages(self): """ Public method to get the supported languages. @return list of supported language codes @rtype list of str """ return ["ar", "be", "bg", "bs", "ca", "cs", "da", "de", "el", "en", "es", "et", "fi", "fr", "ga", "gl", "hi", "hr", "hu", "id", "is", "it", "iw", "ja", "ka", "ko", "lt", "lv", "mk", "mt", "nl", "no", "pl", "pt", "ro", "ru", "sk", "sl", "sq", "sr", "sv", "th", "tl", "tr", "uk", "vi", "zh-CN", "zh-TW", ] def hasTTS(self): """ Public method indicating the Text-to-Speech capability. @return flag indicating the Text-to-Speech capability @rtype bool """ return True def getTranslation(self, requestObject, text, originalLanguage, translationLanguage): """ Public method to translate the given text. @param requestObject reference to the request object @type TranslatorRequest @param text text to be translated @type str @param originalLanguage language code of the original @type str @param translationLanguage language code of the translation @type str @return tuple of translated text and flag indicating success @rtype tuple of (str, bool) """ params = QByteArray( "client=gtx&sl={0}&tl={1}&dt=t&dt=bd&ie=utf-8&oe=utf-8&q=".format( originalLanguage, translationLanguage).encode("utf-8")) encodedText = ( QByteArray(Utilities.html_encode(text).encode("utf-8")) .toPercentEncoding() ) request = params + encodedText response, ok = requestObject.post(QUrl(self.TranslatorUrl), request) if ok: try: # clean up the response response = re.sub(r',{2,}', ',', response) responseDict = json.loads(response) except ValueError: return self.tr("Google V1: Invalid response received"), False if isinstance(responseDict, dict): sentences = responseDict["sentences"] result = "" for sentence in sentences: result += sentence["trans"].replace("\n", "<br/>") if ( self.plugin.getPreferences("GoogleEnableDictionary") and "dict" in responseDict ): dictionary = responseDict["dict"] for value in dictionary: result += "<hr/><u><b>{0}</b> - {1}</u><br/>".format( text, value["pos"]) for entry in value["entry"]: previous = (entry["previous_word"] + " " if "previous_word" in entry else "") word = entry["word"] reverse = entry["reverse_translation"] result += "<br/>{0}<b>{1}</b> - {2}".format( previous, word, ", ".join(reverse)) if value != dictionary[-1]: result += "<br/>" elif isinstance(responseDict, list): sentences = responseDict[0] result = ( "".join([s[0] for s in sentences]).replace("\n", "<br/>") ) if ( self.plugin.getPreferences("GoogleEnableDictionary") and len(responseDict) > 2 ): if not responseDict[1]: result = self.tr("Google V1: No translation found.") ok = False else: for wordTypeList in responseDict[1]: result += "<hr/><u><b>{0}</b> - {1}</u>".format( wordTypeList[0], wordTypeList[-2]) for wordsList in wordTypeList[2]: reverse = wordsList[0] words = wordsList[1] result += "<br/><b>{0}</b> - {1}".format( reverse, ", ".join(words)) else: result = responseDict else: result = response return result, ok def getTextToSpeechData(self, requestObject, text, language): """ Public method to pronounce the given text. @param requestObject reference to the request object @type TranslatorRequest @param text text to be pronounced @type str @param language language code of the text @type str @return tuple with pronounce data or error string and success flag @rtype tuple of (QByteArray or str, bool) """ text = text.split("\n\n", 1)[0] if len(text) > self.TextToSpeechLimit: return (self.tr("Google V1: Only texts up to {0} characters are" " allowed.") .format(self.TextToSpeechLimit), False) url = QUrl(self.TextToSpeechUrl + "?client=tw-ob&ie=utf-8&tl={0}&q={1}".format( language, text)) return requestObject.get(url)
PypiClean
/sentry-nos-9.0.0.tar.gz/sentry-nos-9.0.0/src/sentry/south_migrations/0143_fill_project_orgs.py
import datetime from south.db import db from south.v2 import DataMigration from django.db import IntegrityError, models, transaction def atomic_save(model): try: with transaction.atomic(): model.save() except transaction.TransactionManagementError: # sqlite isn't happy model.save() class Migration(DataMigration): def forwards(self, orm): from sentry.constants import RESERVED_ORGANIZATION_SLUGS from sentry.db.models.utils import slugify_instance from sentry.utils.query import RangeQuerySetWrapperWithProgressBar Project = orm['sentry.Project'] queryset = Project.objects.filter(organization__isnull=True).select_related( 'team', 'team__organization' ) for project in RangeQuerySetWrapperWithProgressBar(queryset): project.organization = project.team.organization try: atomic_save(project) except IntegrityError: # we also need to update the slug here based on the new constraints slugify_instance( project, project.name, (models.Q(organization=project.organization) | models.Q(team=project.team), ) ) project.save() def backwards(self, orm): pass models = { 'sentry.accessgroup': { 'Meta': { 'unique_together': "(('team', 'name'),)", 'object_name': 'AccessGroup' }, 'data': ('django.db.models.fields.TextField', [], { 'null': 'True', 'blank': 'True' }), 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'managed': ('django.db.models.fields.BooleanField', [], { 'default': 'False' }), 'members': ( 'django.db.models.fields.related.ManyToManyField', [], { 'to': "orm['sentry.User']", 'symmetrical': 'False' } ), 'name': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'projects': ( 'django.db.models.fields.related.ManyToManyField', [], { 'to': "orm['sentry.Project']", 'symmetrical': 'False' } ), 'team': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Team']" }), 'type': ('django.db.models.fields.IntegerField', [], { 'default': '50' }) }, 'sentry.activity': { 'Meta': { 'object_name': 'Activity' }, 'data': ('django.db.models.fields.TextField', [], { 'null': 'True' }), 'datetime': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'event': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Event']", 'null': 'True' } ), 'group': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']", 'null': 'True' } ), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'ident': ('django.db.models.fields.CharField', [], { 'max_length': '64', 'null': 'True' }), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" }), 'type': ('django.db.models.fields.PositiveIntegerField', [], {}), 'user': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.User']", 'null': 'True' } ) }, 'sentry.alert': { 'Meta': { 'object_name': 'Alert' }, 'data': ('django.db.models.fields.TextField', [], { 'null': 'True' }), 'datetime': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'group': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']", 'null': 'True' } ), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'message': ('django.db.models.fields.TextField', [], {}), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" }), 'related_groups': ( 'django.db.models.fields.related.ManyToManyField', [], { 'related_name': "'related_alerts'", 'symmetrical': 'False', 'through': "orm['sentry.AlertRelatedGroup']", 'to': "orm['sentry.Group']" } ), 'status': ( 'django.db.models.fields.PositiveIntegerField', [], { 'default': '0', 'db_index': 'True' } ) }, 'sentry.alertrelatedgroup': { 'Meta': { 'unique_together': "(('group', 'alert'),)", 'object_name': 'AlertRelatedGroup' }, 'alert': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Alert']" }), 'data': ('django.db.models.fields.TextField', [], { 'null': 'True' }), 'group': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']" }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }) }, 'sentry.auditlogentry': { 'Meta': { 'object_name': 'AuditLogEntry' }, 'actor': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'audit_actors'", 'to': "orm['sentry.User']" } ), 'data': ('sentry.db.models.fields.gzippeddict.GzippedDictField', [], {}), 'datetime': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'event': ('django.db.models.fields.PositiveIntegerField', [], {}), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'organization': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Organization']" } ), 'target_object': ('django.db.models.fields.PositiveIntegerField', [], { 'null': 'True' }), 'target_user': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'audit_targets'", 'null': 'True', 'to': "orm['sentry.User']" } ) }, 'sentry.broadcast': { 'Meta': { 'object_name': 'Broadcast' }, 'badge': ( 'django.db.models.fields.CharField', [], { 'max_length': '32', 'null': 'True', 'blank': 'True' } ), 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'is_active': ('django.db.models.fields.BooleanField', [], { 'default': 'True', 'db_index': 'True' }), 'link': ( 'django.db.models.fields.URLField', [], { 'max_length': '200', 'null': 'True', 'blank': 'True' } ), 'message': ('django.db.models.fields.CharField', [], { 'max_length': '256' }) }, 'sentry.event': { 'Meta': { 'unique_together': "(('project', 'event_id'),)", 'object_name': 'Event', 'db_table': "'sentry_message'", 'index_together': "(('group', 'datetime'),)" }, 'checksum': ('django.db.models.fields.CharField', [], { 'max_length': '32', 'db_index': 'True' }), 'data': ('django.db.models.fields.TextField', [], { 'null': 'True', 'blank': 'True' }), 'datetime': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'db_index': 'True' } ), 'event_id': ( 'django.db.models.fields.CharField', [], { 'max_length': '32', 'null': 'True', 'db_column': "'message_id'" } ), 'group': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'blank': 'True', 'related_name': "'event_set'", 'null': 'True', 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'message': ('django.db.models.fields.TextField', [], {}), 'num_comments': ('django.db.models.fields.PositiveIntegerField', [], { 'default': '0', 'null': 'True' }), 'platform': ('django.db.models.fields.CharField', [], { 'max_length': '64', 'null': 'True' }), 'project': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']", 'null': 'True' } ), 'time_spent': ('django.db.models.fields.IntegerField', [], { 'null': 'True' }) }, 'sentry.eventmapping': { 'Meta': { 'unique_together': "(('project', 'event_id'),)", 'object_name': 'EventMapping' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'event_id': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'group': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']" }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" }) }, 'sentry.group': { 'Meta': { 'unique_together': "(('project', 'checksum'),)", 'object_name': 'Group', 'db_table': "'sentry_groupedmessage'" }, 'active_at': ('django.db.models.fields.DateTimeField', [], { 'null': 'True', 'db_index': 'True' }), 'checksum': ('django.db.models.fields.CharField', [], { 'max_length': '32', 'db_index': 'True' }), 'culprit': ( 'django.db.models.fields.CharField', [], { 'max_length': '200', 'null': 'True', 'db_column': "'view'", 'blank': 'True' } ), 'data': ('django.db.models.fields.TextField', [], { 'null': 'True', 'blank': 'True' }), 'first_seen': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'db_index': 'True' } ), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'is_public': ( 'django.db.models.fields.NullBooleanField', [], { 'default': 'False', 'null': 'True', 'blank': 'True' } ), 'last_seen': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'db_index': 'True' } ), 'level': ( 'django.db.models.fields.PositiveIntegerField', [], { 'default': '40', 'db_index': 'True', 'blank': 'True' } ), 'logger': ( 'django.db.models.fields.CharField', [], { 'default': "'root'", 'max_length': '64', 'db_index': 'True', 'blank': 'True' } ), 'message': ('django.db.models.fields.TextField', [], {}), 'num_comments': ('django.db.models.fields.PositiveIntegerField', [], { 'default': '0', 'null': 'True' }), 'platform': ('django.db.models.fields.CharField', [], { 'max_length': '64', 'null': 'True' }), 'project': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']", 'null': 'True' } ), 'resolved_at': ('django.db.models.fields.DateTimeField', [], { 'null': 'True', 'db_index': 'True' }), 'score': ('django.db.models.fields.IntegerField', [], { 'default': '0' }), 'status': ( 'django.db.models.fields.PositiveIntegerField', [], { 'default': '0', 'db_index': 'True' } ), 'time_spent_count': ('django.db.models.fields.IntegerField', [], { 'default': '0' }), 'time_spent_total': ('django.db.models.fields.IntegerField', [], { 'default': '0' }), 'times_seen': ( 'django.db.models.fields.PositiveIntegerField', [], { 'default': '1', 'db_index': 'True' } ) }, 'sentry.groupassignee': { 'Meta': { 'object_name': 'GroupAssignee', 'db_table': "'sentry_groupasignee'" }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'group': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'assignee_set'", 'unique': 'True', 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'project': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'assignee_set'", 'to': "orm['sentry.Project']" } ), 'user': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'sentry_assignee_set'", 'to': "orm['sentry.User']" } ) }, 'sentry.groupbookmark': { 'Meta': { 'unique_together': "(('project', 'user', 'group'),)", 'object_name': 'GroupBookmark' }, 'group': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'bookmark_set'", 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'project': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'bookmark_set'", 'to': "orm['sentry.Project']" } ), 'user': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'sentry_bookmark_set'", 'to': "orm['sentry.User']" } ) }, 'sentry.grouphash': { 'Meta': { 'unique_together': "(('project', 'hash'),)", 'object_name': 'GroupHash' }, 'group': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']", 'null': 'True' } ), 'hash': ('django.db.models.fields.CharField', [], { 'max_length': '32', 'db_index': 'True' }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'project': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']", 'null': 'True' } ) }, 'sentry.groupmeta': { 'Meta': { 'unique_together': "(('group', 'key'),)", 'object_name': 'GroupMeta' }, 'group': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']" }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'value': ('django.db.models.fields.TextField', [], {}) }, 'sentry.grouprulestatus': { 'Meta': { 'unique_together': "(('rule', 'group'),)", 'object_name': 'GroupRuleStatus' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'group': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']" }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" }), 'rule': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Rule']" }), 'status': ('django.db.models.fields.PositiveSmallIntegerField', [], { 'default': '0' }) }, 'sentry.groupseen': { 'Meta': { 'unique_together': "(('user', 'group'),)", 'object_name': 'GroupSeen' }, 'group': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']" }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'last_seen': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" }), 'user': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.User']", 'db_index': 'False' } ) }, 'sentry.grouptagkey': { 'Meta': { 'unique_together': "(('project', 'group', 'key'),)", 'object_name': 'GroupTagKey' }, 'group': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']" }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'project': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']", 'null': 'True' } ), 'values_seen': ('django.db.models.fields.PositiveIntegerField', [], { 'default': '0' }) }, 'sentry.grouptagvalue': { 'Meta': { 'unique_together': "(('project', 'key', 'value', 'group'),)", 'object_name': 'GroupTagValue', 'db_table': "'sentry_messagefiltervalue'" }, 'first_seen': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True' } ), 'group': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'grouptag'", 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'last_seen': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True' } ), 'project': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'grouptag'", 'null': 'True', 'to': "orm['sentry.Project']" } ), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], { 'default': '0' }), 'value': ('django.db.models.fields.CharField', [], { 'max_length': '200' }) }, 'sentry.lostpasswordhash': { 'Meta': { 'object_name': 'LostPasswordHash' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'hash': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'user': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.User']", 'unique': 'True' } ) }, 'sentry.option': { 'Meta': { 'object_name': 'Option' }, 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'unique': 'True', 'max_length': '64' }), 'last_updated': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'value': ('sentry.db.models.fields.pickle.UnicodePickledObjectField', [], {}) }, 'sentry.organization': { 'Meta': { 'object_name': 'Organization' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'members': ( 'django.db.models.fields.related.ManyToManyField', [], { 'related_name': "'org_memberships'", 'symmetrical': 'False', 'through': "orm['sentry.OrganizationMember']", 'to': "orm['sentry.User']" } ), 'name': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'owner': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.User']" }), 'slug': ( 'django.db.models.fields.SlugField', [], { 'max_length': '50', 'unique': 'True', 'null': 'True' } ), 'status': ('django.db.models.fields.PositiveIntegerField', [], { 'default': '0' }) }, 'sentry.organizationmember': { 'Meta': { 'unique_together': "(('organization', 'user'), ('organization', 'email'))", 'object_name': 'OrganizationMember' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'email': ( 'django.db.models.fields.EmailField', [], { 'max_length': '75', 'null': 'True', 'blank': 'True' } ), 'has_global_access': ('django.db.models.fields.BooleanField', [], { 'default': 'True' }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'organization': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'member_set'", 'to': "orm['sentry.Organization']" } ), 'teams': ( 'django.db.models.fields.related.ManyToManyField', [], { 'to': "orm['sentry.Team']", 'symmetrical': 'False', 'blank': 'True' } ), 'type': ('django.db.models.fields.PositiveIntegerField', [], { 'default': '50' }), 'user': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'blank': 'True', 'related_name': "'sentry_orgmember_set'", 'null': 'True', 'to': "orm['sentry.User']" } ) }, 'sentry.pendingteammember': { 'Meta': { 'unique_together': "(('team', 'email'),)", 'object_name': 'PendingTeamMember' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'email': ('django.db.models.fields.EmailField', [], { 'max_length': '75' }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'team': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'pending_member_set'", 'to': "orm['sentry.Team']" } ), 'type': ('django.db.models.fields.IntegerField', [], { 'default': '50' }) }, 'sentry.project': { 'Meta': { 'unique_together': "(('team', 'slug'), ('organization', 'slug'))", 'object_name': 'Project' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'name': ('django.db.models.fields.CharField', [], { 'max_length': '200' }), 'organization': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Organization']", 'null': 'True' } ), 'platform': ('django.db.models.fields.CharField', [], { 'max_length': '32', 'null': 'True' }), 'public': ('django.db.models.fields.BooleanField', [], { 'default': 'False' }), 'slug': ('django.db.models.fields.SlugField', [], { 'max_length': '50', 'null': 'True' }), 'status': ( 'django.db.models.fields.PositiveIntegerField', [], { 'default': '0', 'db_index': 'True' } ), 'team': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Team']" }) }, 'sentry.projectkey': { 'Meta': { 'object_name': 'ProjectKey' }, 'date_added': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'null': 'True' } ), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'label': ( 'django.db.models.fields.CharField', [], { 'max_length': '64', 'null': 'True', 'blank': 'True' } ), 'project': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'key_set'", 'to': "orm['sentry.Project']" } ), 'public_key': ( 'django.db.models.fields.CharField', [], { 'max_length': '32', 'unique': 'True', 'null': 'True' } ), 'roles': ('django.db.models.fields.BigIntegerField', [], { 'default': '1' }), 'secret_key': ( 'django.db.models.fields.CharField', [], { 'max_length': '32', 'unique': 'True', 'null': 'True' } ), 'user': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.User']", 'null': 'True' } ), 'user_added': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'related_name': "'keys_added_set'", 'null': 'True', 'to': "orm['sentry.User']" } ) }, 'sentry.projectoption': { 'Meta': { 'unique_together': "(('project', 'key'),)", 'object_name': 'ProjectOption', 'db_table': "'sentry_projectoptions'" }, 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" }), 'value': ('sentry.db.models.fields.pickle.UnicodePickledObjectField', [], {}) }, 'sentry.release': { 'Meta': { 'unique_together': "(('project', 'version'),)", 'object_name': 'Release' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" }), 'version': ('django.db.models.fields.CharField', [], { 'max_length': '64' }) }, 'sentry.rule': { 'Meta': { 'object_name': 'Rule' }, 'data': ('sentry.db.models.fields.gzippeddict.GzippedDictField', [], {}), 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'label': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" }) }, 'sentry.tagkey': { 'Meta': { 'unique_together': "(('project', 'key'),)", 'object_name': 'TagKey', 'db_table': "'sentry_filterkey'" }, 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'label': ('django.db.models.fields.CharField', [], { 'max_length': '64', 'null': 'True' }), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" }), 'values_seen': ('django.db.models.fields.PositiveIntegerField', [], { 'default': '0' }) }, 'sentry.tagvalue': { 'Meta': { 'unique_together': "(('project', 'key', 'value'),)", 'object_name': 'TagValue', 'db_table': "'sentry_filtervalue'" }, 'data': ('django.db.models.fields.TextField', [], { 'null': 'True', 'blank': 'True' }), 'first_seen': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True' } ), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'last_seen': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True' } ), 'project': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']", 'null': 'True' } ), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], { 'default': '0' }), 'value': ('django.db.models.fields.CharField', [], { 'max_length': '200' }) }, 'sentry.team': { 'Meta': { 'object_name': 'Team' }, 'date_added': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'null': 'True' } ), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'name': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'organization': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Organization']" } ), 'owner': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.User']" }), 'slug': ('django.db.models.fields.SlugField', [], { 'unique': 'True', 'max_length': '50' }), 'status': ('django.db.models.fields.PositiveIntegerField', [], { 'default': '0' }) }, 'sentry.teammember': { 'Meta': { 'unique_together': "(('team', 'user'),)", 'object_name': 'TeamMember' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'team': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Team']" }), 'type': ('django.db.models.fields.IntegerField', [], { 'default': '50' }), 'user': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.User']" }) }, 'sentry.user': { 'Meta': { 'object_name': 'User', 'db_table': "'auth_user'" }, 'date_joined': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'email': ('django.db.models.fields.EmailField', [], { 'max_length': '75', 'blank': 'True' }), 'first_name': ('django.db.models.fields.CharField', [], { 'max_length': '30', 'blank': 'True' }), 'id': ('django.db.models.fields.AutoField', [], { 'primary_key': 'True' }), 'is_active': ('django.db.models.fields.BooleanField', [], { 'default': 'True' }), 'is_managed': ('django.db.models.fields.BooleanField', [], { 'default': 'False' }), 'is_staff': ('django.db.models.fields.BooleanField', [], { 'default': 'False' }), 'is_superuser': ('django.db.models.fields.BooleanField', [], { 'default': 'False' }), 'last_login': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'last_name': ('django.db.models.fields.CharField', [], { 'max_length': '30', 'blank': 'True' }), 'password': ('django.db.models.fields.CharField', [], { 'max_length': '128' }), 'username': ('django.db.models.fields.CharField', [], { 'unique': 'True', 'max_length': '128' }) }, 'sentry.useroption': { 'Meta': { 'unique_together': "(('user', 'project', 'key'),)", 'object_name': 'UserOption' }, 'id': ('sentry.db.models.fields.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'project': ( 'sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']", 'null': 'True' } ), 'user': ('sentry.db.models.fields.FlexibleForeignKey', [], { 'to': "orm['sentry.User']" }), 'value': ('sentry.db.models.fields.pickle.UnicodePickledObjectField', [], {}) } } complete_apps = ['sentry'] symmetrical = True
PypiClean
/bronx_beta-2.0.0b2-py3-none-any.whl/bronx/system/mf.py
from __future__ import print_function, absolute_import, unicode_literals, division from six import BytesIO import ftplib import netrc import re import uuid from bronx.fancies import loggers logger = loggers.getLogger(__name__) #: No automatic export __all__ = [] def prestage(resource_paths, mail=None, archive_machine='hendrix', stagedir='/DemandeMig/ChargeEnEspaceRapide'): """ Puts a pre-staging request on **archive_machine** for the given list of resources **resource_paths**, and return the path to the submitted request file. :param resource_paths: list of paths to requested resources :param mail: if given, used for informing about the request progress. :param archive_machine: name of the archive machine. Will probably not work for other than *hendrix* for now... :param stagedir: directory in which prestaging request are to be put on **archive_machine** .. note:: Uses *~/.netrc* to connect to **archive_machine**. """ # build request if mail is not None: if re.match(r'([a-zA-Z\-]+)\.([a-zA-Z\-]+)\@meteo.fr', mail): request = ["#MAIL=" + mail + '\n', ] else: logger.warning('invalid **mail** format: ' + mail) request = [] else: request = [] request += [r + '\n' for r in resource_paths] # connect to archive try: (_login, _, _passwd) = netrc.netrc().authenticators(archive_machine) except TypeError: if netrc.netrc().authenticators(archive_machine) is None: raise IOError("host " + archive_machine + " is unknown in .netrc") else: raise ftp = ftplib.FTP(archive_machine) ftp.login(_login, _passwd) # send request request_filename = '.'.join([_login, 'staging_request', uuid.uuid4().hex[:8], # [:8] safe enough ? 'MIG']) f = BytesIO() f.writelines([line.encode('utf-8') for line in request]) f.seek(0) ftp.cwd(stagedir) ftp.storbinary('STOR ' + request_filename, f) f.close() ftp.quit() # send back request identifier return '/'.join([stagedir, request_filename])
PypiClean
/alipay_sdk_python-3.6.740-py3-none-any.whl/alipay/aop/api/request/MybankCreditSceneprodBillQueryRequest.py
import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.MybankCreditSceneprodBillQueryModel import MybankCreditSceneprodBillQueryModel class MybankCreditSceneprodBillQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, MybankCreditSceneprodBillQueryModel): self._biz_content = value else: self._biz_content = MybankCreditSceneprodBillQueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'mybank.credit.sceneprod.bill.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
PypiClean
/scml-agents-0.4.2.tar.gz/scml-agents-0.4.2/scml_agents/scml2020/team_17/whagent.py
import functools import math import time from abc import abstractmethod from dataclasses import dataclass from pprint import pformat, pprint from typing import Any, Dict, List, Optional, Tuple, Union import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from negmas import ( AgentMechanismInterface, AspirationNegotiator, Breach, Contract, Issue, LinearUtilityFunction, MechanismState, Negotiator, SAONegotiator, UtilityFunction, ) from negmas.helpers import get_class, humanize_time, instantiate from negmas.outcomes.base_issue import make_issue from negmas.outcomes.issue_ops import enumerate_issues from scml.scml2020 import ( AWI, DecentralizingAgent, Failure, MovingRangeNegotiationManager, PredictionBasedTradingStrategy, RandomAgent, SCML2020Agent, SCML2020World, TradeDrivenProductionStrategy, ) from scml.scml2020.agents import ( BuyCheapSellExpensiveAgent, DecentralizingAgent, DoNothingAgent, IndDecentralizingAgent, ) from scml.scml2020.common import ANY_LINE, NO_COMMAND, TIME, is_system_agent from scml.scml2020.components import ( FixedTradePredictionStrategy, SignAllPossible, TradePredictionStrategy, ) from scml.scml2020.components.negotiation import ( IndependentNegotiationsManager, NegotiationManager, StepNegotiationManager, ) from scml.scml2020.components.prediction import MeanERPStrategy from scml.scml2020.components.production import ( DemandDrivenProductionStrategy, ProductionStrategy, SupplyDrivenProductionStrategy, ) from scml.scml2020.components.trading import TradingStrategy from scml.scml2020.services.controllers import StepController, SyncController from scml.utils import anac2020_collusion, anac2020_std from tabulate import tabulate __all__ = ["WhAgent"] class AllmakeProductionStrategy(ProductionStrategy): def step(self): super().step() commands = NO_COMMAND * np.ones(self.awi.n_lines, dtype=int) inputs = min(self.awi.state.inventory[self.awi.my_input_product], len(commands)) commands[:inputs] = self.awi.my_input_product commands[inputs:] = NO_COMMAND self.awi.set_commands(commands) def on_contracts_finalized( self: "SCML2020Agent", signed: List[Contract], cancelled: List[Contract], rejectors: List[List[str]], ) -> None: latest = self.awi.n_steps - 2 earliest_production = self.awi.current_step for contract in signed: is_seller = contract.annotation["seller"] == self.id if is_seller: continue step = contract.agreement["time"] if step > latest + 1 or step < earliest_production: continue input_product = contract.annotation["product"] if self.awi.current_step == (self.awi.n_steps - 1): if self.awi.profile.costs[0, self.awi.my_input_product] > ( self.awi.catalog_prices[self.awi.my_input_product] / 2 ): continue steps, _ = self.awi.schedule_production( process=input_product, repeats=contract.agreement["quantity"], # step=(step, latest), step=-1, line=-1, method="earliest", partial_ok=True, ) self.schedule_range[contract.id] = ( min(steps) if len(steps) > 0 else -1, max(steps) if len(steps) > 0 else -1, is_seller, ) class AvoidOverproductionTradingStrategy( FixedTradePredictionStrategy, MeanERPStrategy, TradingStrategy ): def init(self): super().init() self.inputs_needed = np.zeros(self.awi.n_steps, dtype=int) self.outputs_needed = np.zeros(self.awi.n_steps, dtype=int) self.inputs_secured = np.zeros(self.awi.n_steps, dtype=int) self.outputs_secured = np.zeros(self.awi.n_steps, dtype=int) def on_contracts_finalized( self, signed: List[Contract], cancelled: List[Contract], rejectors: List[List[str]], ) -> None: super().on_contracts_finalized(signed, cancelled, rejectors) for contract in signed: q, u, t = ( contract.agreement["quantity"], contract.agreement["unit_price"], contract.agreement["time"], ) if contract.annotation["seller"] == self.id: self.outputs_secured[t] += q else: self.inputs_secured[t] += q def sign_all_contracts(self, contracts: List[Contract]) -> List[Optional[str]]: super().sign_all_contracts(contracts) signatures = [None] * len(contracts) contracts = sorted( zip(contracts, range(len(contracts))), key=lambda x: ( x[0].agreement["unit_price"], x[0].agreement["time"], 0 if is_system_agent(x[0].annotation["seller"]) or is_system_agent(x[0].annotation["buyer"]) else 1, x[0].agreement["unit_price"], # x[0].agreement["time"], ), ) sold, bought = 0, 0 s = self.awi.current_step for contract, indx in contracts: is_seller = contract.annotation["seller"] == self.id q, u, t = ( contract.agreement["quantity"], contract.agreement["unit_price"], contract.agreement["time"], ) if t < s and len(contract.issues) == 3: continue if self.awi.my_suppliers == ["SELLER"]: if q > self.awi.n_lines: continue if is_seller: if t > self.awi.n_steps - 2: continue zaiko = 0 for zzaiko in self.outputs_needed: zaiko += zzaiko if zaiko < 1: if t < s + 3: continue sellprice = max( ( self.awi.catalog_prices[self.awi.my_output_product] - self.awi.catalog_prices[self.awi.my_input_product] - self.awi.profile.costs[0, self.awi.my_input_product] ) // 2 - 1, 0, ) if ( u < self.awi.catalog_prices[self.awi.my_output_product] - sellprice ): continue cansell = zaiko + (self.awi.n_lines - self.inputs_needed[t]) if q <= cansell: self.outputs_needed[t] -= q self.inputs_needed[t] += q else: continue else: wantbuy = 0 needtime = -1 for step in range(self.awi.n_steps): wantbuy += self.inputs_needed[step] if self.inputs_needed[step] > 0 and needtime == -1: needtime = step if wantbuy > 0: self.outputs_needed[t] += q self.inputs_needed[t] -= q else: continue elif self.awi.my_consumers == ["BUYER"]: if q > self.awi.n_lines: continue if is_seller: zaiko = 0 for zzaiko in self.outputs_needed: zaiko += zzaiko if zaiko < 1: if t < s + 2: continue cansell = zaiko if q <= cansell: self.outputs_needed[t] -= q self.inputs_needed[t] += q else: continue else: if t > s + 5: continue wantbuy = self.awi.n_lines - self.outputs_needed[t] if wantbuy > 0: self.outputs_needed[t] += q self.inputs_needed[t] -= q else: continue else: if q > self.awi.n_lines: continue if is_seller: if t > self.awi.n_steps - 2: continue zaiko = 0 for zzaiko in self.outputs_needed: zaiko += zzaiko if zaiko < q: if t < s + 2: continue sellprice = max( ( self.awi.catalog_prices[self.awi.my_output_product] - self.awi.catalog_prices[self.awi.my_input_product] - self.awi.profile.costs[0, self.awi.my_input_product] ) // 2 - 1, 0, ) if ( u < self.awi.catalog_prices[self.awi.my_output_product] - sellprice ): continue cansell = zaiko + (self.awi.n_lines - self.inputs_needed[t]) if q <= cansell: self.outputs_needed[t] -= q self.inputs_needed[t] += q else: continue else: if t < s: continue havetobuy = 0 needtime = s - 1 for step in range(self.awi.n_steps): havetobuy += self.inputs_needed[step] if self.inputs_needed[step] > 0 and needtime <= (s - 1): needtime = step if t >= needtime: continue if needtime == s + 1: if u < self.awi.catalog_prices[self.awi.my_input_product]: continue elif needtime < s + 3: buyprice2 = max( ( self.awi.catalog_prices[self.awi.my_output_product] - self.awi.catalog_prices[self.awi.my_input_product] ) // 2 - 1, 0, ) if ( u < self.awi.catalog_prices[self.awi.my_input_product] + buyprice2 ): continue else: buyprice = max( ( self.awi.catalog_prices[self.awi.my_output_product] - self.awi.catalog_prices[self.awi.my_input_product] - self.awi.profile.costs[0, self.awi.my_input_product] ) // 2 - 1, 0, ) if ( u < self.awi.catalog_prices[self.awi.my_input_product] + buyprice ): continue if havetobuy > 0: self.outputs_needed[t] += q self.inputs_needed[t] -= q else: continue signatures[indx] = self.id if is_seller: sold += q else: bought += q return signatures def _format(self, c: Contract): super()._format(c) return ( f"{f'>' if c.annotation['seller'] == self.id else '<'}" f"{c.annotation['buyer'] if c.annotation['seller'] == self.id else c.annotation['seller']}: " f"{c.agreement['quantity']} of {c.annotation['product']} @ {c.agreement['unit_price']} on {c.agreement['time']}" ) def on_agent_bankrupt( self, agent: str, contracts: List[Contract], quantities: List[int], compensation_money: int, ) -> None: super().on_agent_bankrupt(agent, contracts, quantities, compensation_money) for contract, new_quantity in zip(contracts, quantities): q = contract.agreement["quantity"] if new_quantity == q: continue t = contract.agreement["time"] missing = q - new_quantity if t < self.awi.current_step: continue if contract.annotation["seller"] == self.id: self.outputs_secured[t] -= missing if t > 0: self.inputs_needed[t - 1] -= missing else: self.inputs_secured[t] += missing if t < self.awi.n_steps - 1: self.outputs_needed[t + 1] -= missing @dataclass class ControllerInfo: controller: StepController time_step: int is_seller: bool time_range: Tuple[int, int] target: int expected: int done: bool = False class PreNegotiationManager(IndependentNegotiationsManager): def respond_to_negotiation_request( self, initiator: str, issues: List[Issue], annotation: Dict[str, Any], mechanism: AgentMechanismInterface, ) -> Optional[Negotiator]: return self.negotiator(annotation["seller"] == self.id, issues=issues) def negotiator( self, is_seller: bool, issues=None, outcomes=None, partner=None ) -> SAONegotiator: params = self.negotiator_params params["ufun"] = self.create_ufun( is_seller=is_seller, outcomes=outcomes, issues=issues ) return instantiate(self.negotiator_type, **params) def _start_negotiations( self, product: int, sell: bool, step: int, qvalues: Tuple[int, int], uvalues: Tuple[int, int], tvalues: Tuple[int, int], partners: List[str], ) -> None: super()._start_negotiations( product, sell, step, qvalues, uvalues, tvalues, partners ) issues = [ make_issue((int(qvalues[0]), int(max(qvalues))), name="quantity"), make_issue((int(tvalues[0]), int(max(tvalues))), name="time"), make_issue((int(uvalues[0]), int(max(uvalues))), name="unit_price"), ] sortpartner = {} if self.awi.current_step > 4: reportstep = ((self.awi.current_step // 5) - 1) * 5 for k in self.awi.reports_at_step(reportstep).values(): for ne in partners: if ne == k.agent_id and k.breach_level < 1.0: sortpartner[k.agent_id] = k.breach_level if len(sortpartner) != 0: sortpartners = sorted(sortpartner.items(), key=lambda x: x[1]) sortpartners_list = [i[0] for i in sortpartners] for partner in sortpartners_list: self.awi.request_negotiation( is_buy=not sell, product=product, quantity=qvalues, unit_price=uvalues, time=tvalues, partner=partner, negotiator=self.negotiator(sell, issues=issues), ) else: for partner in partners: self.awi.request_negotiation( is_buy=not sell, product=product, quantity=qvalues, unit_price=uvalues, time=tvalues, partner=partner, negotiator=self.negotiator(sell, issues=issues), ) else: for partner in partners: self.awi.request_negotiation( is_buy=not sell, product=product, quantity=qvalues, unit_price=uvalues, time=tvalues, partner=partner, negotiator=self.negotiator(sell, issues=issues), ) def target_quantity(self, step: int, sell: bool) -> int: if sell: if sum(self.outputs_secured) < self.awi.n_lines * ( self.awi.n_steps - self.awi.current_step - 2 ): sellnum = min(self.awi.n_lines, self.outputs_secured[step]) else: sellnum = 0 else: if sum(self.inputs_secured) < self.awi.n_lines * ( self.awi.n_steps - self.awi.current_step - 2 ): buynum = min(self.awi.n_lines, sum(self.outputs_secured)) else: buynum = 0 if step == self.awi.current_step - 1: return 0 if sell else 0 return sellnum if sell else buynum def acceptable_unit_price(self, step: int, sell: bool) -> int: return ( self.awi.catalog_prices[self.awi.my_output_product] if sell else self.awi.catalog_prices[self.awi.my_input_product] ) def create_ufun( self, is_seller: bool, issues=None, outcomes=None ) -> UtilityFunction: if is_seller: return LinearUtilityFunction((0, 0.25, 1), issues=issues, outcomes=outcomes) return LinearUtilityFunction((0, -0.5, -0.8), issues=issues, outcomes=outcomes) class WhAgent( AvoidOverproductionTradingStrategy, PreNegotiationManager, AllmakeProductionStrategy, SCML2020Agent, ): def init(self): super().init() def step(self): super().step()
PypiClean
/uk_bin_collection-0.9.0.tar.gz/uk_bin_collection-0.9.0/uk_bin_collection/uk_bin_collection/councils/DerbyshireDalesDistrictCouncil.py
from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import Select from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from uk_bin_collection.uk_bin_collection.common import * from uk_bin_collection.uk_bin_collection.get_bin_data import \ AbstractGetBinDataClass # import the wonderful Beautiful Soup and the URL grabber class CouncilClass(AbstractGetBinDataClass): """ Concrete classes have to implement all abstract operations of the base class. They can also override some operations with a default implementation. """ def parse_data(self, page: str, **kwargs) -> dict: page = "https://selfserve.derbyshiredales.gov.uk/renderform.aspx?t=103&k=9644C066D2168A4C21BCDA351DA2642526359DFF" data = {"bins": []} user_uprn = kwargs.get("uprn") user_postcode = kwargs.get("postcode") check_uprn(user_uprn) check_postcode(user_postcode) # Set up Selenium to run 'headless' options = webdriver.ChromeOptions() options.add_argument("--headless") options.add_argument("--no-sandbox") options.add_argument("--disable-gpu") options.add_argument("--disable-dev-shm-usage") options.add_experimental_option("excludeSwitches", ["enable-logging"]) # Create Selenium webdriver driver = webdriver.Chrome(options=options) driver.get(page) # Populate postcode field inputElement_postcode = driver.find_element( By.ID, "ctl00_ContentPlaceHolder1_FF2924TB", ) inputElement_postcode.send_keys(user_postcode) # Click search button driver.find_element( By.ID, "ctl00_ContentPlaceHolder1_FF2924BTN", ).click() # Wait for the 'Select address' dropdown to appear and select option matching UPRN dropdown = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.ID, "ctl00_ContentPlaceHolder1_FF2924DDL")) ) # Create a 'Select' for it, then select the matching URPN option dropdownSelect = Select(dropdown) dropdownSelect.select_by_value("U" + user_uprn) # Wait for the submit button to appear, then click it to get the collection dates submit = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.ID, "ctl00_ContentPlaceHolder1_btnSubmit")) ) submit.click() soup = BeautifulSoup(driver.page_source, features="html.parser") bin_rows = soup.find("div", id="ctl00_ContentPlaceHolder1_pnlConfirmation") \ .find("div", {"class": "row"}).find_all("div", {"class": "row"}) if bin_rows: for bin_row in bin_rows: bin_data = bin_row.find_all("div") if bin_data and bin_data[0] and bin_data[1]: collection_date = datetime.strptime(bin_data[0].get_text(strip=True), "%A%d %B, %Y") dict_data = { "type": bin_data[1].get_text(strip=True), "collectionDate": collection_date.strftime(date_format), } data["bins"].append(dict_data) data["bins"].sort( key=lambda x: datetime.strptime(x.get("collectionDate"), date_format) ) return data
PypiClean
/azureml_pipeline_core-1.53.0-py3-none-any.whl/azureml/pipeline/core/_parallel_run_step_base.py
"""Contains functionality to add a step to run user script in parallel mode on multiple AmlCompute targets.""" import argparse import logging import re import json import os import sys import warnings from itertools import chain import azureml.core from azureml.core.runconfig import RunConfiguration from azureml.core.compute import AmlCompute from azureml.data import TabularDataset, FileDataset from azureml.data.constants import UPLOAD_MODE from azureml.data.data_reference import DataReference from azureml.data.dataset_consumption_config import DatasetConsumptionConfig from azureml.data.output_dataset_config import ( OutputTabularDatasetConfig, OutputFileDatasetConfig, OutputDatasetConfig, LinkFileOutputDatasetConfig, LinkTabularOutputDatasetConfig, ) from azureml.pipeline.core._parallel_run_config_base import _ParallelRunConfigBase from azureml.pipeline.core._python_script_step_base import _PythonScriptStepBase from azureml.pipeline.core.graph import PipelineParameter from azureml.pipeline.core.graph import ParamDef from azureml.pipeline.core.pipeline_output_dataset import PipelineOutputFileDataset from azureml.pipeline.core.pipeline_output_dataset import PipelineOutputTabularDataset from azureml.pipeline.core.builder import PipelineData DEFAULT_BATCH_SCORE_MAIN_FILE_NAME = "driver/amlbi_main.py" DEFAULT_MINI_BATCH_SIZE = 1 DEFAULT_MINI_BATCH_SIZE_FILEDATASET = 10 DEFAULT_MINI_BATCH_SIZE_TABULARDATASET = 1024 * 1024 FILE_TYPE_INPUT = "file" TABULAR_TYPE_INPUT = "tabular" REQUIRED_DATAPREP_EXTRAS = { TABULAR_TYPE_INPUT: "fuse,pandas", FILE_TYPE_INPUT: "fuse", } ALLOWED_INPUT_TYPES = ( DatasetConsumptionConfig, PipelineOutputFileDataset, PipelineOutputTabularDataset, OutputFileDatasetConfig, OutputTabularDatasetConfig, LinkFileOutputDatasetConfig, LinkTabularOutputDatasetConfig, ) INPUT_TYPE_DICT = { TabularDataset: TABULAR_TYPE_INPUT, PipelineOutputTabularDataset: TABULAR_TYPE_INPUT, OutputTabularDatasetConfig: TABULAR_TYPE_INPUT, LinkTabularOutputDatasetConfig: TABULAR_TYPE_INPUT, FileDataset: FILE_TYPE_INPUT, PipelineOutputFileDataset: FILE_TYPE_INPUT, OutputFileDatasetConfig: FILE_TYPE_INPUT, LinkFileOutputDatasetConfig: FILE_TYPE_INPUT, } PARALLEL_RUN_VERSION = "v1" # current packages which also install azureml-dataprep[fuse,pandas] DATAPREP_FUSE_PANDAS_PACKAGES = [ "azureml-dataprep[fuse,pandas]", "azureml-dataprep[pandas,fuse]", "azureml-automl-runtime", "azureml-contrib-dataset", "azureml-datadrift", "azureml-dataset-runtime[pandas,fuse]", "azureml-dataset-runtime[fuse,pandas]", "azureml-opendatasets", "azureml-train-automl", "azureml-train-automl-runtime", ] # current packages which also install azureml-dataprep[fuse] DATAPREP_FUSE_ONLY_PACKAGES = [ "azureml-dataprep[fuse]", "azureml-dataset-runtime[fuse]", "azureml-defaults", "azureml-sdk", ] DATAPREP_FUSE_PACKAGES = list(chain(DATAPREP_FUSE_PANDAS_PACKAGES, DATAPREP_FUSE_ONLY_PACKAGES)) REQUIRED_DATAPREP_PACKAGES = { TABULAR_TYPE_INPUT: DATAPREP_FUSE_PANDAS_PACKAGES, FILE_TYPE_INPUT: DATAPREP_FUSE_PACKAGES, } class _ParallelRunStepBase(_PythonScriptStepBase): r""" Creates an Azure Machine Learning Pipeline step to process large amounts of data asynchronously and in parallel. For an example of using ParallelRunStep, see the notebook https://aka.ms/batch-inference-notebooks. .. remarks:: _ParallelRunStepBase can be used for processing large amounts of data in parallel. Common use cases are training an ML model or running offline inference to generate predictions on a batch of observations. _ParallelRunStepBase works by breaking up your data into batches that are processed in parallel. The batch size node count, and other tunable parameters to speed up your parallel processing can be controlled with the :class:`azureml.pipeline.steps.ParallelRunConfig` class. _ParallelRunStepBase can work with either :class:`azureml.data.TabularDataset` or :class:`azureml.data.FileDataset` as input. To use _ParallelRunStepBase: * Create a :class:`azureml.pipeline.steps.ParallelRunConfig` object to specify how batch processing is performed, with parameters to control batch size, number of nodes per compute target, and a reference to your custom Python script. * Create a _ParallelRunStepBase object that uses the ParallelRunConfig object, define inputs and outputs for the step. * Use the configured _ParallelRunStepBase object in a :class:`azureml.pipeline.core.Pipeline` just as you would with pipeline step types defined in the :mod:`azureml.pipeline.steps` package. Examples of working with _ParallelRunStepBase and ParallelRunConfig classes for batch inference are discussed in the following articles: * `Tutorial: Build an Azure Machine Learning pipeline for batch scoring <https://docs.microsoft.com/azure/machine-learning/tutorial-pipeline-batch-scoring-classification>`_. This article shows how to use these two classes for asynchronous batch scoring in a pipeline and enable a REST endpoint to run the pipeline. * `Run batch inference on large amounts of data by using Azure Machine Learning <https://docs.microsoft.com/azure/machine-learning/how-to-use-parallel-run-step>`_. This article shows how to process large amounts of data asynchronously and in parallel with a custom inference script and a pre-trained image classification model bases on the MNIST dataset. .. code:: python from azureml.pipeline.steps import ParallelRunStep, ParallelRunConfig parallel_run_config = ParallelRunConfig( source_directory=scripts_folder, entry_script=script_file, mini_batch_size="5", error_threshold=10, # Optional, allowed failed count on mini batch items allowed_failed_count=15, # Optional, allowed failed count on mini batches allowed_failed_percent=10, # Optional, allowed failed percent on mini batches output_action="append_row", environment=batch_env, compute_target=compute_target, node_count=2) parallelrun_step = ParallelRunStep( name="predict-digits-mnist", parallel_run_config=parallel_run_config, inputs=[ named_mnist_ds ], output=output_dir, arguments=[ "--extra_arg", "example_value" ], allow_reuse=True ) For more information about this example, see the notebook https://aka.ms/batch-inference-notebooks. :param name: Name of the step. Must be unique to the workspace, only consist of lowercase letters, numbers, or dashes, start with a letter, and be between 3 and 32 characters long. :type name: str :param parallel_run_config: A _ParallelRunConfigBase object used to determine required run properties. :type parallel_run_config: azureml.pipeline.core._ParallelRunConfigBase :param inputs: List of input datasets. All datasets in the list should be of same type. Input data will be partitioned for parallel processing. Each dataset in the list is partitioned into mini-batches separately, and each of the mini-batches is treated equally in the parallel processing. :type inputs: list[azureml.data.dataset_consumption_config.DatasetConsumptionConfig or azureml.data.dataset_consumption_config.PipelineOutputFileDataset or azureml.data.dataset_consumption_config.PipelineOutputTabularDataset] :param output: Output port binding, may be used by later pipeline steps. :type output: azureml.pipeline.core.builder.PipelineData, azureml.pipeline.core.graph.OutputPortBinding :param side_inputs: List of side input reference data. Side inputs will not be partitioned as input data. :type side_inputs: list[azureml.pipeline.core.graph.InputPortBinding or azureml.data.data_reference.DataReference or azureml.pipeline.core.PortDataReference or azureml.pipeline.core.builder.PipelineData or azureml.pipeline.core.pipeline_output_dataset.PipelineOutputFileDataset or azureml.pipeline.core.pipeline_output_dataset.PipelineOutputTabularDataset or azureml.data.dataset_consumption_config.DatasetConsumptionConfig] :param arguments: List of command-line arguments to pass to the Python entry_script. :type arguments: list[str] :param allow_reuse: Whether the step should reuse previous results when run with the same settings/inputs. If this is false, a new run will always be generated for this step during pipeline execution. :type allow_reuse: bool """ def __init__( self, name, parallel_run_config, inputs, output=None, side_inputs=None, arguments=None, allow_reuse=True, ): r"""Create an Azure ML Pipeline step to process large amounts of data asynchronously and in parallel. For an example of using ParallelRunStep, see the notebook link https://aka.ms/batch-inference-notebooks. :param name: Name of the step. Must be unique to the workspace, only consist of lowercase letters, numbers, or dashes, start with a letter, and be between 3 and 32 characters long. :type name: str :param parallel_run_config: A ParallelRunConfig object used to determine required run properties. :type parallel_run_config: azureml.pipeline.steps.ParallelRunConfig :param inputs: List of input datasets. All datasets in the list should be of same type. Input data will be partitioned for parallel processing. :type inputs: list[azureml.data.dataset_consumption_config.DatasetConsumptionConfig or azureml.data.dataset_consumption_config.PipelineOutputFileDataset or azureml.data.dataset_consumption_config.PipelineOutputTabularDataset] :param output: Output port binding, may be used by later pipeline steps. :type output: azureml.pipeline.core.builder.PipelineData, azureml.pipeline.core.graph.OutputPortBinding :param side_inputs: List of side input reference data. Side inputs will not be partitioned as input data. :type side_inputs: list[azureml.pipeline.core.graph.InputPortBinding or azureml.data.data_reference.DataReference or azureml.pipeline.core.PortDataReference or azureml.pipeline.core.builder.PipelineData or azureml.pipeline.core.pipeline_output_dataset.PipelineOutputFileDataset or azureml.pipeline.core.pipeline_output_dataset.PipelineOutputTabularDataset or azureml.data.dataset_consumption_config.DatasetConsumptionConfig] :param arguments: List of command-line arguments to pass to the Python entry_script. :type arguments: list[str] :param allow_reuse: Whether the step should reuse previous results when run with the same settings/inputs. If this is false, a new run will always be generated for this step during pipeline execution. :type allow_reuse: bool """ self._name = name self._parallel_run_config = parallel_run_config self._inputs = inputs self._output = output self._side_inputs = side_inputs self._arguments = arguments self._node_count = self._parallel_run_config.node_count self._process_count_per_node = self._parallel_run_config.process_count_per_node self._mini_batch_size = self._parallel_run_config.mini_batch_size self._partition_keys = self._parallel_run_config.partition_keys self._error_threshold = self._parallel_run_config.error_threshold self._allowed_failed_count = self._parallel_run_config.allowed_failed_count self._allowed_failed_percent = self._parallel_run_config.allowed_failed_percent self._logging_level = self._parallel_run_config.logging_level self._run_invocation_timeout = self._parallel_run_config.run_invocation_timeout self._run_max_try = self._parallel_run_config.run_max_try self._input_compute_target = self._parallel_run_config.compute_target self._pystep_inputs = [] self._pystep_side_inputs = [] self._input_ds_type = None self._glob_syntax_pattern = re.compile(r"[\^\\\$\|\?\*\+\(\)\[\]\{\}]") self._module_logger = logging.getLogger(__name__) self._rank_mini_batch_count = self._get_rank_mini_batch_count() self._platform = self._get_os_type_from_env(self._parallel_run_config.environment) self._process_inputs_output_dataset_configs() self._validate() self._get_pystep_inputs() if self._side_inputs: self._handle_side_inputs() pipeline_runconfig_params = self._get_pipeline_runconfig_params() prun_runconfig = self._generate_runconfig() prun_main_file_args = self._generate_main_file_args() if self._side_inputs: self._pystep_inputs += self._pystep_side_inputs compute_target = self._input_compute_target if isinstance(compute_target, str): compute_target = (compute_target, AmlCompute._compute_type) super(_ParallelRunStepBase, self).__init__( name=self._name, source_directory=self._parallel_run_config.source_directory, script_name=self._parallel_run_config.entry_script, runconfig=prun_runconfig, runconfig_pipeline_params=pipeline_runconfig_params, arguments=prun_main_file_args, compute_target=compute_target, inputs=self._pystep_inputs, outputs=self._output, allow_reuse=allow_reuse, ) @staticmethod def _get_os_type_from_env(env): """Return os of the given Environment, return either "windows" or "linux". If no os specified in given env, defaults to "Linux". """ if env is not None and env.docker is not None and env.docker.platform is not None: os_type = env.docker.platform.os if os_type and isinstance(os_type, str): return os_type.lower() return "linux" @property def running_on_windows(self): """Return True if the platform is windows.""" return self._platform.lower() == "windows" def _get_rank_mini_batch_count(self): """Return the number of rank mini batch.""" if not self._arguments: return 0 parser = argparse.ArgumentParser(description="Parallel Run Step") parser.add_argument( "--rank_mini_batch_count", type=int, required=False, default=0, help="The number of rank mini batches to create." " A rank mini batch doesn't take any input. It is used to run entry script without any input dataset." " For example, start N processes to run the entry script." " The default value is '0', where there is no rank mini batch. A negative value will be considered as '0'." " If this value is greater than 0, other input will be ignored .", ) args, _ = parser.parse_known_args([str(arg) for arg in self._arguments]) return args.rank_mini_batch_count def _validate(self): """Validate input params to init parallel run step class.""" self._validate_arguments() self._validate_inputs() self._validate_output() self._validate_parallel_run_config() self._validate_source_directory() self._validate_entry_script() def _validate_arguments(self): """Validate the additional arguments.""" reserved_args = [ "mini_batch_size", "error_threshold", "allowed_failed_count", "allowed_failed_percent", "output", "output_action", "logging_level", "process_count_per_node", "run_invocation_timeout", "run_max_try", "append_row_file_name", "partition_keys", ] if not self._arguments: return # Ensure the first one start with "-" if not self._arguments[0].startswith("-"): raise ValueError( "Found invalid argument '{}'." " As your arguments will be merged with reserved argument," " you can only use keyword argument.".format(self._arguments[0]) ) for item in self._arguments: # Check argument with "--" if isinstance(item, str) and item.startswith("--"): name = item[2:] parts = name.split("=") if len(parts) > 1: name = parts[0] if name in reserved_args: raise ValueError( "'{}' is a reserved argument in ParallelRunStep, " "please use another argument name instead.".format(name) ) def _get_input_type(self, in_ds, is_primary_input=True): input_type = type(in_ds) ds_mapping_type = None if input_type == DatasetConsumptionConfig: # Dataset mode needs to be direct except when we convert it to data reference. # This will be removed in next release. real_ds_obj = in_ds.dataset if isinstance(in_ds.dataset, PipelineParameter): real_ds_obj = in_ds.dataset.default_value if ( isinstance(real_ds_obj, (TabularDataset, OutputTabularDatasetConfig, LinkTabularOutputDatasetConfig)) ) and in_ds.mode != "direct": raise Exception("Please ensure input dataset consumption mode is direct") if isinstance(real_ds_obj, FileDataset) and self._partition_keys and in_ds.mode != "direct": if is_primary_input: raise Exception("Please ensure input dataset consumption mode is direct for partitioned dataset") ds_mapping_type = INPUT_TYPE_DICT[type(real_ds_obj)] elif input_type == PipelineOutputFileDataset or input_type == PipelineOutputTabularDataset: # Dataset mode needs to be direct except when we convert it to data reference. # This will be removed in next release. if input_type == PipelineOutputTabularDataset and in_ds._input_mode != "direct": raise Exception("Please ensure pipeline input dataset consumption mode is direct") ds_mapping_type = INPUT_TYPE_DICT[input_type] else: raise Exception("Step input must be of any type: {}, found {}".format(ALLOWED_INPUT_TYPES, input_type)) return ds_mapping_type def _validate_inputs(self): """Validate all inputs are same type and ensure they meet dataset requirement.""" assert (isinstance(self._inputs, list) and self._inputs != []) or self._rank_mini_batch_count > 0, ( "The parameter 'inputs' must be a list and have at least one element" " or rank_mini_batch_count must be greater than zero." ) if self._inputs: self._input_ds_type = self._get_input_type(self._inputs[0]) for input_ds in self._inputs: if self._input_ds_type != self._get_input_type(input_ds): raise Exception("All inputs of step must be same type") else: # self._rank_mini_batch_count > 0 Set to FileDataset for void tasks. self._input_ds_type = FILE_TYPE_INPUT def _validate_output(self): if self._parallel_run_config.output_action.lower() != "summary_only" and self._output is None: raise Exception("Please specify output parameter.") if self._output is not None: self._output = [self._output] def _validate_parallel_run_config(self): """Validate parallel run config.""" if not isinstance(self._parallel_run_config, _ParallelRunConfigBase): raise Exception("Param parallel_run_config must be a azureml.pipeline.steps.ParallelRunConfig") if self._parallel_run_config.mini_batch_size is None: if self._input_ds_type == FILE_TYPE_INPUT: self._mini_batch_size = DEFAULT_MINI_BATCH_SIZE_FILEDATASET elif self._input_ds_type == TABULAR_TYPE_INPUT: self._mini_batch_size = DEFAULT_MINI_BATCH_SIZE_TABULARDATASET def _validate_source_directory(self): """Validate the source_directory param.""" source_dir = self._parallel_run_config.source_directory if source_dir and source_dir != "": if not os.path.exists(source_dir): raise ValueError("The value '{0}' specified in source_directory doesn't exist.".format(source_dir)) if not os.path.isdir(source_dir): raise ValueError( "The value '{0}' specified in source_directory is not a directory.".format(source_dir) ) full_path = os.path.abspath(source_dir) if full_path not in sys.path: sys.path.insert(0, full_path) def _validate_entry_script(self): """Validate the entry script.""" source_dir = self._parallel_run_config.source_directory entry_script = self._parallel_run_config.entry_script # In validation of ParallelRunConfig, verify if the entry_script is required. # Here we don't verify again. if entry_script and entry_script != "": if source_dir and source_dir != "": # entry script must be in this directory full_path = os.path.join(source_dir, entry_script) if not os.path.exists(full_path): raise ValueError("The value '{0}' specified in entry_script doesn't exist.".format(entry_script)) if not os.path.isfile(full_path): raise ValueError("The value '{0}' specified in entry_script is not a file.".format(entry_script)) def _convert_to_mount_mode(self, in_ds): """Convert inputs into mount mode.""" if isinstance(in_ds, PipelineOutputFileDataset): if in_ds._input_mode != "mount" or in_ds._input_path_on_compute is None: return in_ds.as_mount() elif isinstance(in_ds, DatasetConsumptionConfig): if in_ds.mode != "mount" or in_ds.path_on_compute is None: return in_ds.as_mount() return in_ds def _get_pystep_inputs(self): """Process and convert inputs before adding to pystep_inputs.""" def _process_file_dataset(file_ds): """Process file dataset.""" if self.running_on_windows: self._pystep_inputs.append(file_ds) else: mounted_ds = self._convert_to_mount_mode(file_ds) self._pystep_inputs.append(mounted_ds) if self._partition_keys: self._pystep_inputs = self._inputs else: if self._input_ds_type == FILE_TYPE_INPUT: for input_ds in self._inputs: _process_file_dataset(input_ds) elif self._input_ds_type == TABULAR_TYPE_INPUT: self._pystep_inputs = self._inputs def _handle_side_inputs(self): """Handle side inputs.""" for input_ds in self._side_inputs: if type(input_ds) != PipelineData and type(input_ds) != DataReference: input_type = self._get_input_type(input_ds, is_primary_input=False) if input_type == FILE_TYPE_INPUT: mounted_ds = self._convert_to_mount_mode(input_ds) self._pystep_side_inputs.append(mounted_ds) # Update original DatasetConsumptionConfig reference in arguments to # new DatasetConsumptionConfig with mount if self._arguments is not None and isinstance(self._arguments, list): for arg_index, side_input_arg in enumerate(self._arguments): if side_input_arg == input_ds: self._arguments[arg_index] = mounted_ds break continue self._pystep_side_inputs.append(input_ds) def _get_pipeline_runconfig_params(self): """ Generate pipeline parameters for runconfig. :return: runconfig pipeline parameters :rtype: dict """ prun_runconfig_pipeline_params = {} if isinstance(self._node_count, PipelineParameter): prun_runconfig_pipeline_params["NodeCount"] = self._node_count return prun_runconfig_pipeline_params def _generate_runconfig(self): """ Generate runconfig for parallel run step. :return: runConfig :rtype: RunConfig """ run_config = RunConfiguration() if isinstance(self._node_count, PipelineParameter): run_config.node_count = self._node_count.default_value else: run_config.node_count = self._node_count if isinstance(self._input_compute_target, AmlCompute): run_config.target = self._input_compute_target run_config.framework = "Python" # For AmlCompute we need to set run_config.docker.use_docker = True run_config.docker.use_docker = True run_config.environment = self._parallel_run_config.environment run_config.environment_variables.update(self._parallel_run_config.environment_variables) if self.running_on_windows: # For windows compute, always use "ParallelTask". run_config.communicator = "ParallelTask" conda_dependencies = run_config.environment.python.conda_dependencies pip_packages = list(conda_dependencies.pip_packages) if conda_dependencies else [] self._check_required_pip_packages(pip_packages) return run_config def _check_required_pip_packages(self, pip_packages): """Check whether required pip package added""" findings_core = [ pip for pip in pip_packages if pip.startswith("azureml") and not pip.startswith("azureml-dataset-runtime") ] if not findings_core: warnings.warn( """ ParallelRunStep requires azureml-core package to provide the functionality. Please add azureml-core package in CondaDependencies.""", UserWarning, ) # search to see if any other package may have included it as direct or transitive dependency required_dataprep_packages = REQUIRED_DATAPREP_PACKAGES[self._input_ds_type] findings_dataprep = filter( lambda x: [pip for pip in pip_packages if pip.startswith(x)], required_dataprep_packages ) if not next(findings_dataprep, False): extra = REQUIRED_DATAPREP_EXTRAS[self._input_ds_type] warnings.warn( """ ParallelRunStep requires azureml-dataset-runtime[{}] for {} dataset. Please add relevant package in CondaDependencies.""".format( extra, self._input_ds_type ), UserWarning, ) def _generate_main_file_args(self): """ Generate main args for entry script. :return: The generated main args for entry script. :rtype: array """ main_args = [ "--client_sdk_version", azureml.core.VERSION, "--scoring_module_name", self._parallel_run_config.entry_script, "--mini_batch_size", self._mini_batch_size, "--error_threshold", self._error_threshold, "--output_action", self._parallel_run_config.output_action, "--logging_level", self._logging_level, "--run_invocation_timeout", self._run_invocation_timeout, "--run_max_try", self._run_max_try, "--create_snapshot_at_runtime", "True", ] if self._allowed_failed_count is not None: main_args += ["--allowed_failed_count", self._allowed_failed_count] if self._allowed_failed_percent is not None: main_args += ["--allowed_failed_percent", self._allowed_failed_percent] # Use this variable to dismiss: W503 line break before binary operator is_append_row = self._parallel_run_config.output_action.lower() == "append_row" if is_append_row and self._parallel_run_config.append_row_file_name is not None: main_args += ["--append_row_file_name", self._parallel_run_config.append_row_file_name] if self._output is not None: main_args += ["--output", self._output[0]] if self._process_count_per_node is not None: main_args += ["--process_count_per_node", self._process_count_per_node] if self._partition_keys is not None: main_args += ["--partition_keys"] if isinstance(self._partition_keys, PipelineParameter): main_args += [self._partition_keys] else: main_args += [json.dumps(self._partition_keys)] if self._arguments is not None and isinstance(self._arguments, list): main_args += self._arguments if self._input_ds_type == TABULAR_TYPE_INPUT: for index, in_ds in enumerate(self._pystep_inputs): ds_name = in_ds.input_name if isinstance(in_ds, PipelineOutputTabularDataset) else in_ds.name main_args += ["--input_ds_{0}".format(index), ds_name] elif self._input_ds_type == FILE_TYPE_INPUT: for index, in_ds in enumerate(self._pystep_inputs): if isinstance(in_ds, DatasetConsumptionConfig) or isinstance(in_ds, PipelineOutputFileDataset): ds_name = in_ds.input_name if isinstance(in_ds, PipelineOutputFileDataset) else in_ds.name main_args += ["--input_fds_{0}".format(index), ds_name] else: main_args += ["--input{0}".format(index), in_ds] # In order make dataset as pipeline parameter works, we need add it as a param in main_args for index, in_ds in enumerate(self._pystep_inputs): if isinstance(in_ds, DatasetConsumptionConfig) and isinstance(in_ds.dataset, PipelineParameter): main_args += ["--input_pipeline_param_{0}".format(index), in_ds] return main_args def _generate_batch_inference_metadata(self): """ Generate batch inference metadata which will be register to MMS service. :return: The generated batch inference metadata. :rtype: str """ def _get_default_value(in_param): default_value = in_param # partition_keys is of list type and need to be json dumped if isinstance(in_param, list): default_value = json.dumps(in_param) if isinstance(in_param, PipelineParameter): default_value = in_param.default_value return default_value batch_inferencing_metadata = { "Name": self._name, "ComputeName": self._input_compute_target if isinstance(self._input_compute_target, str) else self._input_compute_target.name, "EntryScript": self._parallel_run_config.entry_script, "NodeCount": _get_default_value(self._node_count), "ProcessCountPerNode": _get_default_value(self._process_count_per_node), "MiniBatchSize": _get_default_value(self._mini_batch_size), "PartitionKeys": _get_default_value(self._partition_keys), "ErrorThreshold": _get_default_value(self._parallel_run_config.error_threshold), "OutputAction": self._parallel_run_config.output_action, "EnvironmentName": self._parallel_run_config.environment.name, "EnvironmentVersion": self._parallel_run_config.environment.version, "version": PARALLEL_RUN_VERSION, "platform": self._platform, "RunInvocationTimeout": _get_default_value(self._run_invocation_timeout), "RunMaxTry": _get_default_value(self._run_max_try), "LoggingLevel": _get_default_value(self._logging_level), } val = _get_default_value(self._parallel_run_config.allowed_failed_count) if val is not None: batch_inferencing_metadata["AllowedFailedCount"] = val val = _get_default_value(self._parallel_run_config.allowed_failed_percent) if val is not None: batch_inferencing_metadata["AllowedFailedPercent"] = val return json.dumps(batch_inferencing_metadata) def _process_inputs_output_dataset_configs(self): if not self._inputs: return for i in range(len(self._inputs)): input = self._inputs[i] if isinstance(input, OutputDatasetConfig): self._inputs[i] = input.as_input() if self._arguments and input in self._arguments: arg_index = self._arguments.index(input) self._arguments[arg_index] = self._inputs[i] if self._side_inputs: for i in range(len(self._side_inputs)): side_input = self._side_inputs[i] if isinstance(side_input, OutputDatasetConfig): self._side_inputs[i] = side_input.as_input() if self._arguments and side_input in self._arguments: arg_index = self._arguments.index(side_input) self._arguments[arg_index] = self._side_inputs[i] if isinstance(self._output, OutputFileDatasetConfig): # Windows compute does not support mount, set to upload mode here. if self.running_on_windows: if self._output.mode != UPLOAD_MODE: self._output = self._output.as_upload() def create_node(self, graph, default_datastore, context): """ Create a node for :class:`azureml.pipeline.steps.PythonScriptStep` and add it to the specified graph. This method is not intended to be used directly. When a pipeline is instantiated with ParallelRunStep, Azure Machine Learning automatically passes the parameters required through this method so that the step can be added to a pipeline graph that represents the workflow. :param graph: Graph object. :type graph: azureml.pipeline.core.graph.Graph :param default_datastore: Default datastore. :type default_datastore: azureml.data.azure_storage_datastore.AbstractAzureStorageDatastore or azureml.data.azure_data_lake_datastore.AzureDataLakeDatastore :param context: Context. :type context: azureml.pipeline.core._GraphContext :return: The created node. :rtype: azureml.pipeline.core.graph.Node """ node = super(_ParallelRunStepBase, self).create_node(graph, default_datastore, context) node.get_param("BatchInferencingMetaData").set_value(self._generate_batch_inference_metadata()) node.get_param("Script").set_value(DEFAULT_BATCH_SCORE_MAIN_FILE_NAME) return node def create_module_def( self, execution_type, input_bindings, output_bindings, param_defs=None, create_sequencing_ports=True, allow_reuse=True, version=None, arguments=None, ): """ Create the module definition object that describes the step. This method is not intended to be used directly. :param execution_type: The execution type of the module. :type execution_type: str :param input_bindings: The step input bindings. :type input_bindings: list :param output_bindings: The step output bindings. :type output_bindings: list :param param_defs: The step param definitions. :type param_defs: list :param create_sequencing_ports: If true, sequencing ports will be created for the module. :type create_sequencing_ports: bool :param allow_reuse: If true, the module will be available to be reused in future Pipelines. :type allow_reuse: bool :param version: The version of the module. :type version: str :param arguments: Annotated arguments list to use when calling this module. :type arguments: builtin.list :return: The module def object. :rtype: azureml.pipeline.core.graph.ModuleDef """ if param_defs is None: param_defs = [] else: param_defs = list(param_defs) batch_inference_metadata_param_def = ParamDef( name="BatchInferencingMetaData", set_env_var=False, is_metadata_param=True, default_value="None", env_var_override=False, ) param_defs.append(batch_inference_metadata_param_def) return super(_ParallelRunStepBase, self).create_module_def( execution_type=execution_type, input_bindings=input_bindings, output_bindings=output_bindings, param_defs=param_defs, create_sequencing_ports=create_sequencing_ports, allow_reuse=allow_reuse, version=version, module_type="BatchInferencing", arguments=arguments, )
PypiClean
/octodns_hetzner-0.0.2-py3-none-any.whl/octodns_hetzner/__init__.py
from collections import defaultdict from requests import Session import logging from octodns.record import Record from octodns.provider import ProviderException from octodns.provider.base import BaseProvider __VERSION__ = '0.0.2' class HetznerClientException(ProviderException): pass class HetznerClientNotFound(HetznerClientException): def __init__(self): super(HetznerClientNotFound, self).__init__('Not Found') class HetznerClientUnauthorized(HetznerClientException): def __init__(self): super(HetznerClientUnauthorized, self).__init__('Unauthorized') class HetznerClient(object): BASE_URL = 'https://dns.hetzner.com/api/v1' def __init__(self, token): session = Session() session.headers.update({'Auth-API-Token': token}) self._session = session def _do(self, method, path, params=None, data=None): url = f'{self.BASE_URL}{path}' response = self._session.request(method, url, params=params, json=data) if response.status_code == 401: raise HetznerClientUnauthorized() if response.status_code == 404: raise HetznerClientNotFound() response.raise_for_status() return response def _do_json(self, method, path, params=None, data=None): return self._do(method, path, params, data).json() def zone_get(self, name): params = {'name': name} return self._do_json('GET', '/zones', params)['zones'][0] def zone_create(self, name, ttl=None): data = {'name': name, 'ttl': ttl} return self._do_json('POST', '/zones', data=data)['zone'] def zone_records_get(self, zone_id): params = {'zone_id': zone_id} records = self._do_json('GET', '/records', params=params)['records'] for record in records: if record['name'] == '@': record['name'] = '' return records def zone_record_create(self, zone_id, name, _type, value, ttl=None): data = {'name': name or '@', 'ttl': ttl, 'type': _type, 'value': value, 'zone_id': zone_id} self._do('POST', '/records', data=data) def zone_record_delete(self, zone_id, record_id): self._do('DELETE', f'/records/{record_id}') class HetznerProvider(BaseProvider): SUPPORTS_GEO = False SUPPORTS_DYNAMIC = False SUPPORTS_ROOT_NS = True SUPPORTS = set(('A', 'AAAA', 'CAA', 'CNAME', 'MX', 'NS', 'SRV', 'TXT')) def __init__(self, id, token, *args, **kwargs): self.log = logging.getLogger(f'HetznerProvider[{id}]') self.log.debug('__init__: id=%s, token=***', id) super(HetznerProvider, self).__init__(id, *args, **kwargs) self._client = HetznerClient(token) self._zone_records = {} self._zone_metadata = {} self._zone_name_to_id = {} def _append_dot(self, value): if value == '@' or value[-1] == '.': return value return f'{value}.' def zone_metadata(self, zone_id=None, zone_name=None): if zone_name is not None: if zone_name in self._zone_name_to_id: zone_id = self._zone_name_to_id[zone_name] else: zone = self._client.zone_get(name=zone_name[:-1]) zone_id = zone['id'] self._zone_name_to_id[zone_name] = zone_id self._zone_metadata[zone_id] = zone return self._zone_metadata[zone_id] def _record_ttl(self, record): default_ttl = self.zone_metadata(zone_id=record['zone_id'])['ttl'] return record['ttl'] if 'ttl' in record else default_ttl def _data_for_multiple(self, _type, records): values = [record['value'].replace(';', '\\;') for record in records] return { 'ttl': self._record_ttl(records[0]), 'type': _type, 'values': values } _data_for_A = _data_for_multiple _data_for_AAAA = _data_for_multiple def _data_for_CAA(self, _type, records): values = [] for record in records: value_without_spaces = record['value'].replace(' ', '') flags = value_without_spaces[0] tag = value_without_spaces[1:].split('"')[0] value = record['value'].split('"')[1] values.append({ 'flags': int(flags), 'tag': tag, 'value': value, }) return { 'ttl': self._record_ttl(records[0]), 'type': _type, 'values': values } def _data_for_CNAME(self, _type, records): record = records[0] return { 'ttl': self._record_ttl(record), 'type': _type, 'value': self._append_dot(record['value']) } def _data_for_MX(self, _type, records): values = [] for record in records: value_stripped_split = record['value'].strip().split(' ') preference = value_stripped_split[0] exchange = value_stripped_split[-1] values.append({ 'preference': int(preference), 'exchange': self._append_dot(exchange) }) return { 'ttl': self._record_ttl(records[0]), 'type': _type, 'values': values } def _data_for_NS(self, _type, records): values = [] for record in records: values.append(self._append_dot(record['value'])) return { 'ttl': self._record_ttl(records[0]), 'type': _type, 'values': values, } def _data_for_SRV(self, _type, records): values = [] for record in records: value_stripped = record['value'].strip() priority = value_stripped.split(' ')[0] weight = value_stripped[len(priority):].strip().split(' ')[0] target = value_stripped.split(' ')[-1] port = value_stripped[:-len(target)].strip().split(' ')[-1] values.append({ 'port': int(port), 'priority': int(priority), 'target': self._append_dot(target), 'weight': int(weight) }) return { 'ttl': self._record_ttl(records[0]), 'type': _type, 'values': values } _data_for_TXT = _data_for_multiple def zone_records(self, zone): if zone.name not in self._zone_records: try: zone_id = self.zone_metadata(zone_name=zone.name)['id'] self._zone_records[zone.name] = \ self._client.zone_records_get(zone_id) except HetznerClientNotFound: return [] return self._zone_records[zone.name] def populate(self, zone, target=False, lenient=False): self.log.debug('populate: name=%s, target=%s, lenient=%s', zone.name, target, lenient) values = defaultdict(lambda: defaultdict(list)) for record in self.zone_records(zone): _type = record['type'] if _type not in self.SUPPORTS: self.log.warning('populate: skipping unsupported %s record', _type) continue values[record['name']][record['type']].append(record) before = len(zone.records) for name, types in values.items(): for _type, records in types.items(): data_for = getattr(self, f'_data_for_{_type}') record = Record.new(zone, name, data_for(_type, records), source=self, lenient=lenient) zone.add_record(record, lenient=lenient) exists = zone.name in self._zone_records self.log.info('populate: found %s records, exists=%s', len(zone.records) - before, exists) return exists def _params_for_multiple(self, record): for value in record.values: yield { 'value': value.replace('\\;', ';'), 'name': record.name, 'ttl': record.ttl, 'type': record._type } _params_for_A = _params_for_multiple _params_for_AAAA = _params_for_multiple def _params_for_CAA(self, record): for value in record.values: data = f'{value.flags} {value.tag} "{value.value}"' yield { 'value': data, 'name': record.name, 'ttl': record.ttl, 'type': record._type } def _params_for_single(self, record): yield { 'value': record.value, 'name': record.name, 'ttl': record.ttl, 'type': record._type } _params_for_CNAME = _params_for_single def _params_for_MX(self, record): for value in record.values: data = f'{value.preference} {value.exchange}' yield { 'value': data, 'name': record.name, 'ttl': record.ttl, 'type': record._type } _params_for_NS = _params_for_multiple def _params_for_SRV(self, record): for value in record.values: data = f'{value.priority} {value.weight} {value.port} ' \ f'{value.target}' yield { 'value': data, 'name': record.name, 'ttl': record.ttl, 'type': record._type } _params_for_TXT = _params_for_multiple def _apply_Create(self, zone_id, change): new = change.new params_for = getattr(self, f'_params_for_{new._type}') for params in params_for(new): self._client.zone_record_create(zone_id, params['name'], params['type'], params['value'], params['ttl']) def _apply_Update(self, zone_id, change): # It's way simpler to delete-then-recreate than to update self._apply_Delete(zone_id, change) self._apply_Create(zone_id, change) def _apply_Delete(self, zone_id, change): existing = change.existing zone = existing.zone for record in self.zone_records(zone): if existing.name == record['name'] and \ existing._type == record['type']: self._client.zone_record_delete(zone_id, record['id']) def _apply(self, plan): desired = plan.desired changes = plan.changes self.log.debug('_apply: zone=%s, len(changes)=%d', desired.name, len(changes)) try: zone_id = self.zone_metadata(zone_name=desired.name)['id'] except HetznerClientNotFound: self.log.debug('_apply: no matching zone, creating domain') zone_id = self._client.zone_create(desired.name[:-1])['id'] for change in changes: class_name = change.__class__.__name__ getattr(self, f'_apply_{class_name}')(zone_id, change) # Clear out the cache if any self._zone_records.pop(desired.name, None)
PypiClean
/CoCa_pytorch-0.0.9-py3-none-any.whl/coca_pytorch/coca_pytorch.py
import torch from torch import einsum, nn import torch.nn.functional as F from einops import rearrange, repeat # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # normalization # they use layernorm without bias, something that pytorch does not offer class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.ones(dim)) self.register_buffer("beta", torch.zeros(dim)) def forward(self, x): return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta) # residual class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, *args, **kwargs): return self.fn(x, *args, **kwargs) + x # to latents class EmbedToLatents(nn.Module): def __init__(self, dim, dim_latents): super().__init__() self.to_latents = nn.Linear(dim, dim_latents, bias=False) def forward(self, x): latents = self.to_latents(x) return F.normalize(latents, dim=-1) # rotary positional embedding # https://arxiv.org/abs/2104.09864 class RotaryEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) def forward(self, max_seq_len, *, device): seq = torch.arange(max_seq_len, device=device, dtype=self.inv_freq.dtype) freqs = einsum("i , j -> i j", seq, self.inv_freq) return torch.cat((freqs, freqs), dim=-1) def rotate_half(x): x = rearrange(x, "... (j d) -> ... j d", j=2) x1, x2 = x.unbind(dim=-2) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(pos, t): return (t * pos.cos()) + (rotate_half(t) * pos.sin()) # classic Noam Shazeer paper, except here they use SwiGLU instead of the more popular GEGLU for gating the feedforward # https://arxiv.org/abs/2002.05202 class SwiGLU(nn.Module): def forward(self, x): x, gate = x.chunk(2, dim=-1) return F.silu(gate) * x # parallel attention and feedforward with residual # discovered by Wang et al + EleutherAI from GPT-J fame class ParallelTransformerBlock(nn.Module): def __init__(self, dim, dim_head=64, heads=8, ff_mult=4): super().__init__() self.norm = LayerNorm(dim) attn_inner_dim = dim_head * heads ff_inner_dim = dim * ff_mult self.fused_dims = (attn_inner_dim, dim_head, dim_head, (ff_inner_dim * 2)) self.heads = heads self.scale = dim_head**-0.5 self.rotary_emb = RotaryEmbedding(dim_head) self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False) self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False) self.ff_out = nn.Sequential( SwiGLU(), nn.Linear(ff_inner_dim, dim, bias=False) ) # for caching causal mask and rotary embeddings self.mask = None self.pos_emb = None def get_mask(self, n, device): if self.mask is not None and self.mask.shape[-1] >= n: return self.mask[:n, :n].to(device) mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1) self.mask = mask return mask def get_rotary_embedding(self, n, device): if self.pos_emb is not None and self.pos_emb.shape[-2] >= n: return self.pos_emb[:n].to(device) pos_emb = self.rotary_emb(n, device=device) self.pos_emb = pos_emb return pos_emb def forward(self, x, attn_mask=None): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, device, h = x.shape[1], x.device, self.heads # pre layernorm x = self.norm(x) # attention queries, keys, values, and feedforward inner q, k, v, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1) # split heads # they use multi-query single-key-value attention, yet another Noam Shazeer paper # they found no performance loss past a certain scale, and more efficient decoding obviously # https://arxiv.org/abs/1911.02150 q = rearrange(q, "b n (h d) -> b h n d", h=h) # rotary embeddings positions = self.get_rotary_embedding(n, device) q, k = map(lambda t: apply_rotary_pos_emb(positions, t), (q, k)) # scale q = q * self.scale # similarity sim = einsum("b h i d, b j d -> b h i j", q, k) # causal mask causal_mask = self.get_mask(n, device) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) # extra attention mask - for masking out attention from text CLS token to padding if exists(attn_mask): attn_mask = rearrange(attn_mask, 'b i j -> b 1 i j') sim = sim.masked_fill(~attn_mask, -torch.finfo(sim.dtype).max) # attention sim = sim - sim.amax(dim=-1, keepdim=True).detach() attn = sim.softmax(dim=-1) # aggregate values out = einsum("b h i j, b j d -> b h i d", attn, v) # merge heads out = rearrange(out, "b h n d -> b n (h d)") return self.attn_out(out) + self.ff_out(ff) # cross attention - using multi-query + one-headed key / values as in PaLM w/ optional parallel feedforward class CrossAttention(nn.Module): def __init__( self, dim, *, context_dim=None, dim_head=64, heads=8, parallel_ff=False, ff_mult=4, norm_context=False ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 inner_dim = heads * dim_head context_dim = default(context_dim, dim) self.norm = LayerNorm(dim) self.context_norm = LayerNorm(context_dim) if norm_context else nn.Identity() self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_kv = nn.Linear(context_dim, dim_head * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) # whether to have parallel feedforward ff_inner_dim = ff_mult * dim self.ff = nn.Sequential( nn.Linear(dim, ff_inner_dim * 2, bias=False), SwiGLU(), nn.Linear(ff_inner_dim, dim, bias=False) ) if parallel_ff else None def forward(self, x, context): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ # pre-layernorm, for queries and context x = self.norm(x) context = self.context_norm(context) # get queries q = self.to_q(x) q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads) # scale q = q * self.scale # get key / values k, v = self.to_kv(context).chunk(2, dim=-1) # query / key similarity sim = einsum('b h i d, b j d -> b h i j', q, k) # attention sim = sim - sim.amax(dim=-1, keepdim=True) attn = sim.softmax(dim=-1) # aggregate out = einsum('b h i j, b j d -> b h i d', attn, v) # merge and combine heads out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) # add parallel feedforward (for multimodal layers) if exists(self.ff): out = out + self.ff(x) return out # transformer class CoCa(nn.Module): def __init__( self, *, dim, num_tokens, unimodal_depth, multimodal_depth, dim_latents = None, image_dim = None, num_img_queries=256, dim_head=64, heads=8, ff_mult=4, img_encoder=None, caption_loss_weight=1., contrastive_loss_weight=1., pad_id=0 ): super().__init__() self.dim = dim self.pad_id = pad_id self.caption_loss_weight = caption_loss_weight self.contrastive_loss_weight = contrastive_loss_weight # token embeddings self.token_emb = nn.Embedding(num_tokens, dim) self.text_cls_token = nn.Parameter(torch.randn(dim)) # image encoder self.img_encoder = img_encoder # attention pooling for image tokens self.img_queries = nn.Parameter(torch.randn(num_img_queries + 1, dim)) # num image queries for multimodal, but 1 extra CLS for contrastive learning self.img_attn_pool = CrossAttention(dim=dim, context_dim=image_dim, dim_head=dim_head, heads=heads, norm_context=True) self.img_attn_pool_norm = LayerNorm(dim) self.text_cls_norm = LayerNorm(dim) # to latents dim_latents = default(dim_latents, dim) self.img_to_latents = EmbedToLatents(dim, dim_latents) self.text_to_latents = EmbedToLatents(dim, dim_latents) # contrastive learning temperature self.temperature = nn.Parameter(torch.Tensor([1.])) # unimodal layers self.unimodal_layers = nn.ModuleList([]) for ind in range(unimodal_depth): self.unimodal_layers.append( Residual(ParallelTransformerBlock(dim=dim, dim_head=dim_head, heads=heads, ff_mult=ff_mult)), ) # multimodal layers self.multimodal_layers = nn.ModuleList([]) for ind in range(multimodal_depth): self.multimodal_layers.append(nn.ModuleList([ Residual(ParallelTransformerBlock(dim=dim, dim_head=dim_head, heads=heads, ff_mult=ff_mult)), Residual(CrossAttention(dim=dim, dim_head=dim_head, heads=heads, parallel_ff=True, ff_mult=ff_mult)) ])) # to logits self.to_logits = nn.Sequential( LayerNorm(dim), nn.Linear(dim, num_tokens, bias=False) ) # they used embedding weight tied projection out to logits, not common, but works self.to_logits[-1].weight = self.token_emb.weight nn.init.normal_(self.token_emb.weight, std=0.02) def embed_text(self, text): batch, device = text.shape[0], text.device seq = text.shape[1] text_tokens = self.token_emb(text) # append text cls tokens text_cls_tokens = repeat(self.text_cls_token, 'd -> b 1 d', b=batch) text_tokens = torch.cat((text_tokens, text_cls_tokens), dim=-2) # create specific mask for text cls token at the end # to prevent it from attending to padding cls_mask = rearrange(text!=self.pad_id, 'b j -> b 1 j') attn_mask = F.pad(cls_mask, (0, 1, seq, 0), value=True) # go through unimodal layers for attn_ff in self.unimodal_layers: text_tokens = attn_ff(text_tokens, attn_mask=attn_mask) # get text cls token text_tokens, text_cls_tokens = text_tokens[:, :-1], text_tokens[:, -1] text_embeds = self.text_cls_norm(text_cls_tokens) return text_embeds, text_tokens def embed_image(self, images=None, image_tokens=None): # encode images into embeddings # with the img_encoder passed in at init # it can also accept precomputed image tokens assert not (exists(images) and exists(image_tokens)) if exists(images): assert exists(self.img_encoder), 'img_encoder must be passed in for automatic image encoding' image_tokens = self.img_encoder(images) # attention pool image tokens img_queries = repeat(self.img_queries, 'n d -> b n d', b=image_tokens.shape[0]) img_queries = self.img_attn_pool(img_queries, image_tokens) img_queries = self.img_attn_pool_norm(img_queries) return img_queries[:, 0], img_queries[:, 1:] def forward( self, text, images=None, image_tokens=None, labels=None, return_loss=False, return_embeddings=False ): batch, device = text.shape[0], text.device if return_loss and not exists(labels): text, labels = text[:, :-1], text[:, 1:] text_embeds, text_tokens = self.embed_text(text) image_embeds, image_tokens = self.embed_image(images=images, image_tokens=image_tokens) # return embeddings if that is what the researcher wants if return_embeddings: return text_embeds, image_embeds # go through multimodal layers for attn_ff, cross_attn in self.multimodal_layers: text_tokens = attn_ff(text_tokens) text_tokens = cross_attn(text_tokens, image_tokens) logits = self.to_logits(text_tokens) if not return_loss: return logits # shorthand ce = F.cross_entropy # calculate caption loss (cross entropy loss) logits = rearrange(logits, 'b n c -> b c n') caption_loss = ce(logits, labels, ignore_index=self.pad_id) caption_loss = caption_loss * self.caption_loss_weight # embedding to latents text_latents = self.text_to_latents(text_embeds) image_latents = self.img_to_latents(image_embeds) # calculate contrastive loss sim = einsum('i d, j d -> i j', text_latents, image_latents) sim = sim * self.temperature.exp() contrastive_labels = torch.arange(batch, device=device) contrastive_loss = (ce(sim, contrastive_labels) + ce(sim.t(), contrastive_labels)) * 0.5 contrastive_loss = contrastive_loss * self.contrastive_loss_weight return caption_loss + contrastive_loss
PypiClean
/msgraph_beta_sdk-1.0.0a9-py3-none-any.whl/msgraph/generated/governance_role_assignment_requests/item/subject/subject_request_builder.py
from __future__ import annotations from dataclasses import dataclass from kiota_abstractions.get_path_parameters import get_path_parameters from kiota_abstractions.method import Method from kiota_abstractions.request_adapter import RequestAdapter from kiota_abstractions.request_information import RequestInformation from kiota_abstractions.request_option import RequestOption from kiota_abstractions.response_handler import ResponseHandler from kiota_abstractions.serialization import Parsable, ParsableFactory from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING, Union if TYPE_CHECKING: from ....models import governance_subject from ....models.o_data_errors import o_data_error class SubjectRequestBuilder(): """ Provides operations to manage the subject property of the microsoft.graph.governanceRoleAssignmentRequest entity. """ def __init__(self,request_adapter: RequestAdapter, path_parameters: Optional[Union[Dict[str, Any], str]] = None) -> None: """ Instantiates a new SubjectRequestBuilder and sets the default values. Args: pathParameters: The raw url or the Url template parameters for the request. requestAdapter: The request adapter to use to execute the requests. """ if path_parameters is None: raise Exception("path_parameters cannot be undefined") if request_adapter is None: raise Exception("request_adapter cannot be undefined") # Url template to use to build the URL for the current request builder self.url_template: str = "{+baseurl}/governanceRoleAssignmentRequests/{governanceRoleAssignmentRequest%2Did}/subject{?%24select,%24expand}" url_tpl_params = get_path_parameters(path_parameters) self.path_parameters = url_tpl_params self.request_adapter = request_adapter async def delete(self,request_configuration: Optional[SubjectRequestBuilderDeleteRequestConfiguration] = None) -> None: """ Delete navigation property subject for governanceRoleAssignmentRequests Args: requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. """ request_info = self.to_delete_request_information( request_configuration ) from ....models.o_data_errors import o_data_error error_mapping: Dict[str, ParsableFactory] = { "4XX": o_data_error.ODataError, "5XX": o_data_error.ODataError, } if not self.request_adapter: raise Exception("Http core is null") return await self.request_adapter.send_no_response_content_async(request_info, error_mapping) async def get(self,request_configuration: Optional[SubjectRequestBuilderGetRequestConfiguration] = None) -> Optional[governance_subject.GovernanceSubject]: """ Read-only. The user/group principal. Args: requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. Returns: Optional[governance_subject.GovernanceSubject] """ request_info = self.to_get_request_information( request_configuration ) from ....models.o_data_errors import o_data_error error_mapping: Dict[str, ParsableFactory] = { "4XX": o_data_error.ODataError, "5XX": o_data_error.ODataError, } if not self.request_adapter: raise Exception("Http core is null") from ....models import governance_subject return await self.request_adapter.send_async(request_info, governance_subject.GovernanceSubject, error_mapping) async def patch(self,body: Optional[governance_subject.GovernanceSubject] = None, request_configuration: Optional[SubjectRequestBuilderPatchRequestConfiguration] = None) -> Optional[governance_subject.GovernanceSubject]: """ Update the navigation property subject in governanceRoleAssignmentRequests Args: body: The request body requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. Returns: Optional[governance_subject.GovernanceSubject] """ if body is None: raise Exception("body cannot be undefined") request_info = self.to_patch_request_information( body, request_configuration ) from ....models.o_data_errors import o_data_error error_mapping: Dict[str, ParsableFactory] = { "4XX": o_data_error.ODataError, "5XX": o_data_error.ODataError, } if not self.request_adapter: raise Exception("Http core is null") from ....models import governance_subject return await self.request_adapter.send_async(request_info, governance_subject.GovernanceSubject, error_mapping) def to_delete_request_information(self,request_configuration: Optional[SubjectRequestBuilderDeleteRequestConfiguration] = None) -> RequestInformation: """ Delete navigation property subject for governanceRoleAssignmentRequests Args: requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. Returns: RequestInformation """ request_info = RequestInformation() request_info.url_template = self.url_template request_info.path_parameters = self.path_parameters request_info.http_method = Method.DELETE if request_configuration: request_info.add_request_headers(request_configuration.headers) request_info.add_request_options(request_configuration.options) return request_info def to_get_request_information(self,request_configuration: Optional[SubjectRequestBuilderGetRequestConfiguration] = None) -> RequestInformation: """ Read-only. The user/group principal. Args: requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. Returns: RequestInformation """ request_info = RequestInformation() request_info.url_template = self.url_template request_info.path_parameters = self.path_parameters request_info.http_method = Method.GET request_info.headers["Accept"] = ["application/json"] if request_configuration: request_info.add_request_headers(request_configuration.headers) request_info.set_query_string_parameters_from_raw_object(request_configuration.query_parameters) request_info.add_request_options(request_configuration.options) return request_info def to_patch_request_information(self,body: Optional[governance_subject.GovernanceSubject] = None, request_configuration: Optional[SubjectRequestBuilderPatchRequestConfiguration] = None) -> RequestInformation: """ Update the navigation property subject in governanceRoleAssignmentRequests Args: body: The request body requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. Returns: RequestInformation """ if body is None: raise Exception("body cannot be undefined") request_info = RequestInformation() request_info.url_template = self.url_template request_info.path_parameters = self.path_parameters request_info.http_method = Method.PATCH request_info.headers["Accept"] = ["application/json"] if request_configuration: request_info.add_request_headers(request_configuration.headers) request_info.add_request_options(request_configuration.options) request_info.set_content_from_parsable(self.request_adapter, "application/json", body) return request_info @dataclass class SubjectRequestBuilderDeleteRequestConfiguration(): """ Configuration for the request such as headers, query parameters, and middleware options. """ # Request headers headers: Optional[Dict[str, Union[str, List[str]]]] = None # Request options options: Optional[List[RequestOption]] = None @dataclass class SubjectRequestBuilderGetQueryParameters(): """ Read-only. The user/group principal. """ def get_query_parameter(self,original_name: Optional[str] = None) -> str: """ Maps the query parameters names to their encoded names for the URI template parsing. Args: originalName: The original query parameter name in the class. Returns: str """ if original_name is None: raise Exception("original_name cannot be undefined") if original_name == "expand": return "%24expand" if original_name == "select": return "%24select" return original_name # Expand related entities expand: Optional[List[str]] = None # Select properties to be returned select: Optional[List[str]] = None @dataclass class SubjectRequestBuilderGetRequestConfiguration(): """ Configuration for the request such as headers, query parameters, and middleware options. """ # Request headers headers: Optional[Dict[str, Union[str, List[str]]]] = None # Request options options: Optional[List[RequestOption]] = None # Request query parameters query_parameters: Optional[SubjectRequestBuilder.SubjectRequestBuilderGetQueryParameters] = None @dataclass class SubjectRequestBuilderPatchRequestConfiguration(): """ Configuration for the request such as headers, query parameters, and middleware options. """ # Request headers headers: Optional[Dict[str, Union[str, List[str]]]] = None # Request options options: Optional[List[RequestOption]] = None
PypiClean
/api-shop-1.14.1.tar.gz/api-shop-1.14.1/api_shop/api_shop.py
import json import traceback import os import re import time import importlib from .i18n import i18n_init from .__init__ import __version__ from .url_parse import parse_rule from .autofill import auto_fill, check_fill_methods BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) i18 = i18n_init('zh') _ = i18._ class Namespace(dict): def __getattr__(self, name): if name in self.keys(): return self.get(name) else: raise AttributeError(_('no attributes found')+'{}'.format(name)) def __setattr__(self, name, value): self.update({name: value}) class ApiInit(Namespace): '''接口初始化内,用于内部传递状态和配置加载多框架支持''' # 框架基础配置 class FW(Namespace): # 配置框架需要使用的方法 # 例如 if api.framework.name=='django':api.framework.JsonResponse # 就可以加载django的JsonResponse方法 framework_models = { 'django': { 'django.http': ['JsonResponse', 'HttpResponse'], }, 'flask': { 'flask': ['render_template_string', 'jsonify'] }, 'bottle': { 'bottle': ['template', 'HTTPResponse'] } } framework_order = ['django', 'flask', 'bottle'] framework_return = { 'django': { 'json': 'JsonResponse', 'json_status_code_in_func': True, 'http': 'HttpResponse', 'http_status_code_in_func': True, 'template': 'HttpResponse' }, 'flask': { 'json': 'jsonify', 'json_status_code_in_func': False, 'http': None, 'http_status_code_in_func': False, 'template': None # 直接返回字符串 }, 'bottle': { 'json': 'HTTPResponse', 'json_status_code_in_func': True, # json的状态码是否在方法内 'http': 'HTTPResponse', 'http_status_code_in_func': True, # http的状态码是否在方法内 'template': None # 直接返回字符串 }, } def template(self, string): # 返回模板字符串 if self.func_dict.get('template'): return self[self.func_dict.get('template')](string) else: return string def json(self, data, status_code=200): # 返回json字符串 model_name = self.func_dict.get('json') flag = self.func_dict.get('json_status_code_in_func') if model_name: if flag: return self[model_name](data, status=status_code) else: return self[model_name](data), status_code else: return data, status_code def http(self, data, status_code=200): # 返回http model_name = self.func_dict.get('http') flag = self.func_dict.get('http_status_code_in_func') if model_name: if flag: return self[model_name](data, status=status_code) else: return self[model_name](data), status_code else: return data, status_code def load_fw_model(self, fwname, err_out=False): '''加载框架的方法''' if not self.framework_models.get(fwname): # 暂时不支持这个框架 raise BaseException(_('Not support') + ' {} , ('.format(fwname) + _( 'supported framework as follows:') + ' , '.join(self.framework_order) + ')') current_fw = self.framework_models.get(fwname) haserr = False for path in current_fw: try: model = importlib.import_module(path) except: return for key in current_fw[path]: if not hasattr(model, key): if err_out: raise BaseException( _('Framework version is not compatible.')) else: haserr = True self[key] = getattr(model, key) if not haserr: self.name = fwname def __init__(self, fwname=None): self.name = None if fwname and type(fwname): self.load_fw_model(fwname.lower(), True) else: # 从默认顺序加载框架 for fwname in self.framework_order: self.load_fw_model(fwname) if not self.name: if not fwname: raise BaseException( _('supported framework as follows:') + ' , '.join(self.framework_order)) else: raise BaseException(_('Did not find the framework') + fwname) self.func_dict = self.framework_return.get(self.name) # 用model来制作返回值说明 class ApiResponseModelFields(): '''用来包含模型的部分字段''' def __init__(self, model, fields: list = None, return_type=set): self.model = model self.type = return_type self.fwname = '' if 'django.db.models' in str(type(model)): self.fwname = 'django' elif 'sqlalchemy.orm' in str(type(model)): self.fwname = 'flask' self.fields = fields def __new__(cls, *args, **kwargs): model = kwargs.get('model') fields = kwargs.get('fields') if len(args) >= 1: model = args[0] if len(args) >= 2: fields = args[1] if fields: return object.__new__(cls) return model def get_fields(self): # 返回模型字段 nameList = [] for field in self.fields: key = None if type(field) == str: # 传入的字符串描述字段名称 key = field elif self.fwname == 'django' and hasattr(field, 'field_name'): key = field.field_name elif self.fwname == 'flask' and hasattr(field, 'name'): key = field.name # raise BaseException(_('request.method and method are not equal')) if key: nameList.append(key) objList = [] if self.fwname == 'django': for obj in self.model._meta.fields: if obj.name in nameList: objList.append(obj) if self.fwname == 'flask': for obj in self.model.__table__._columns: if obj.name in nameList: objList.append(obj) if self.type == set: return set(objList) return objList api = ApiInit() class ApiDataClass(Namespace): '''api-data类''' def __init__(self, data=None): if data: self.update(data) def dict(self): return self def to_dict(self): return self def get_json(self): return self def is_ajax(self): return False def get_api_result_json(api_class, method, data=None, request=None, not200=True): ''' 直接调用api代码,并拿到返回json api_class 是业务api类的对象(不是实例) method 是请求方法,str格式 data 是附加数据,dict格式 request=None 是当前request,如果method和request.method不相同,请自己封装一个适合业务代码用的request,如果业务代码不用reqeust,请不要传入。 not200=True 是允许status_code不等于200的结果,为False的时候,遇到200以外程序中断并抛错 return json,status_code ''' print(_('Please use the ApiShop.api_run instance method instead of this method, this method will be removed in later versions!!')) response = get_api_result_response( api_class, method, data, request, not200) if not response: # 无结果 return None status_code = getattr(response, 'status_code') if not200 == False and status_code != 200: raise BaseException(_('api-shop return result is not success.')) fw = api.get('framework') fwname = fw.get('name') if fwname == 'flask': if hasattr(response, 'is_json') and response.is_json: ret = response.get_json() else: ret = None if fwname == 'django': if response.content: ret = json.loads(response.content) else: ret = None if fwname == 'bottle': ret = response.body return ret, status_code def get_api_result_response(api_class, method, data=None, request=None, not200=True): ''' 绕过参数检查调用 api业务代码 返回response api_class 是业务api类的对象(不是实例) method 是请求方法,str格式 data 是附加数据,dict格式 request=None 是当前request,业务代码如果不使用,可以不传递 not200=True 是允许status_code不等于200的结果,为False的时候,遇到200以外程序中断并抛错 返回值是 response ''' print(_('Please use the ApiShop.api_run instance method instead of this method, this method will be removed in later versions!!')) d_ = ApiDataClass(data) fw = api.get('framework') fwname = fw.get('name') if request: if request.method != method: raise BaseException(_('request.method and method are not equal')) else: request = ApiDataClass(data) request.method = method tup = api_class(request, d_) if type(tup) == tuple: status_code = tup[1] res = tup[0] elif hasattr(tup, 'status_code'): res = tup status_code = getattr(tup, 'status_code') if not200 == False and status_code != 200: raise BaseException(_('api-shop return result is not success.')) return res def return_response(msg=None, status_code=400): # 返回错误信息 if msg: ret = {'msg': msg} else: ret = {} if not api.BAD_REQUEST: ret.update({'status': api.bad_request_error_status}) status_code = 200 if api.use_gateway: single_apishop = SingleApiShop.get_single_apishop() gateway_response = None if single_apishop: gateway_response = single_apishop.before_running( response=(ret, status_code) ) if gateway_response: return gateway_response return api.framework.json(ret, status_code) class Api(): '''制作api接口的最终方法时,请继承本类,用法类似Flask-RESTful的Resource 例子: class your_api(Api): def get(self,request,data): # request 是当前的请求上下文 # data 是被参数过滤器过滤并格式化后的请求附带数据 return response def post(self,request,data): # 同上 def put(self,request,data): # 同上 def delete(self,request,data): # 同上 def patch(self,request,data): # 同上 ''' def __new__(self, request, data=None, json=None, method=None): if not method: method = request.method method = method.lower() single = SingleApiShop.get_single_apishop() if hasattr(self, method): func = getattr(self, method) retdata = func(self, request, data) status_code = 200 if type(retdata) == tuple: ret = retdata[0] status_code = retdata[1] or 200 else: ret = retdata # 允许返回空body if ret == None: ret = {} if json: return ret, status_code elif type(ret) == dict: return api.framework.json(ret, status_code) else: return api.framework.http(ret, status_code) else: return return_response(_('not found in conf') + '{}'.format(method)) class ApiShop(): def __init__(self, conf=None, options=None): ''' 配置api工厂参数,格式如下: conf = [ { 'url': 'login', 'class': 'account.views.api_login', 'name': '账户登录', 'methods': { 'POST': [ {'name':'username', 'type': str, 'required': True, 'min': 3, 'max': 24, 'description': '用户名'}, {'name':'password', 'type': str, 'required': True, 'min': 3, 'max': 24, 'description': '密码'}, ] } }, ] options = { 'base_url':'/api/',# 基础url,用以组合给前端的api url } ''' if not conf: conf = [] self.i18n = i18 self.options = { 'version': __version__, 'base_url': '/api/', # 基础url,用以组合给前端的api url # 参数bad_request如果是真,发生错误返回一个坏请求给前端,否则都返回200的response,里面附带status=error和msg附带错误信息 'bad_request': True, 'bad_request_error_status': 'error', 'document': BASE_DIR + '/api_shop/static/document.html', # 文档路由渲染的模板 'lang': 'en', 'debug': True, # 默认开启调试信息 'docs_mock':False, # 文档模式下,是否使用mock数据 'use_gateway':False, # 是否封装了网关层,如果封装了,那么api-shop将不会处理请求,而是直接返回给网关 'auto_create_folder': False, # 自动创建文件夹 'auto_create_file': False, # 自动创建文件 'auto_create_class': False, # 自动创建类 'auto_create_method': False, # 自动创建方法 } self.document_version = '' if options: self.options.update(options) try: if self.options.get('document'): self.document_name = self.options.get('document') else: self.document_name = BASE_DIR + '/api_shop/static/document.html' self.document_version = time.ctime( os.stat(self.document_name).st_mtime) self.document = open(self.document_name, mode='r', encoding='utf-8').read() except: self.document = '<h1>' + _('document template not found') + '</h1>' # 指定框架 api.framework = FW(self.options.get('framework')) # 扩展语言包 if type(self.options.get('lang_pack')) == dict: self.i18n.lang.update(self.options.get('lang_pack')) # 切换语言 self.i18n.lang_name = self.options.get('lang') api.BAD_REQUEST = self.options.get('bad_request', True) api.use_gateway = self.options.get('use_gateway') api.bad_request_error_status = self.options.get( 'bad_request_error_status') # 当前加载的url和function的字典 self.url_dict = {} # url方法字典 self.url_methods = {} self.api_data = [] self.conf = self.__make_model(conf) self.__init_url_rules() def __class_to_json(self, methods): '''将python的dict数据对象类切换成字符串''' string = str(methods) # .__str__() # 替换类名称 class_list = re.compile(r"""<class '[\w|\.]*'>""", 0).findall(string) for line in class_list: string = string.replace(line, "'{}'".format(line.split("'")[1])) # 替换其他对象名称 others = re.compile(r'''<[\s|\S.]*>''', 0).findall(string) for line in others: try: string = string.replace( line, "'{}'".format(line.split(" ")[1])) except: string = string.replace(line, "'{}'".format(line)) return eval(string) def __dynamic_import(self, thisconf): name = thisconf['class'] if type(name) != str: # 直接传入的对象 return name components = name.split('.') path = '.'.join(components[:-1]) try: exec('from {} import {}'.format(path, components[-1])) return eval(components[-1]) except Exception as ie: if self.options.get('debug') == True: print('\n\n******* api-shop errmsg *******\n') print('currnet_api:\nurl: {}\nclass: {}\n'.format( thisconf.get('url'), thisconf.get('class'))) traceback.print_exc() if auto_fill(thisconf, self.options) == True: # 自动生成文件或者方法,成功后重试一次。 return self.__dynamic_import(thisconf) else: os._exit(0) def __make_model(self, conf): # 将字符串里的function模块和函数加载进来,并写入到run_function字段方便调用。 for i in range(len(conf)): # model = dynamic_import(conf[i]['class']) model = self.__dynamic_import(conf[i]) model.api_run = self.api_run if type(conf[i]['class']) != str: # 直接使用对象 conf[i]['class'] = self.__class_to_json(conf[i]['class']) if type(conf[i]['url']) == list: # 支持多url表达方式 for url in conf[i]['url']: self.url_dict.update({ url: model, }) self.url_methods.update({ url: conf[i]['methods'], }) else: self.url_dict.update({ conf[i]['url']: model, }) self.url_methods.update({ conf[i]['url']: conf[i]['methods'], }) conf[i]['methods'] = self.__class_to_json(conf[i]['methods']) if hasattr(model, '__doc__'): # 接口文档说明 conf[i]['document'] = getattr(model, '__doc__') conf[i]['methods_documents'] = {} # 方法文档说明 conf[i]['methods_return'] = {} # 方法返回值说明 if hasattr(model, 'response_docs'): docs_obj = getattr(model, 'response_docs') response_docs = {} for key in ['get', 'post', 'delete', 'put', 'patch']: if docs_obj.get(key): nodes = docs_obj.get(key) roots = self.__find_response_docs(key.upper(), nodes) response_docs.update({key.upper(): roots}) conf[i]['methods_return'] = response_docs if self.options.get('auto_create_method'): check_fill_methods(model, conf[i]) for key in ['get', 'post', 'delete', 'put', 'patch']: # 把业务类子方法的文档添加到数据表 if hasattr(model, key): mt = getattr(model, key) if hasattr(mt, '__doc__'): conf[i]['methods_documents'].update( {key.upper(): getattr(mt, '__doc__')}) return conf def __mk_django_model_field_doc(self, field): # 把django字段模型提取成文档字段 if not hasattr(field, 'column'): raise BaseException( _("Django's independent fields must use the ApiResponseModelFields class")) return { 'name': field.column, 'type': type(field).__name__, 'desc': field.verbose_name, } def __mk_flask_model_field_doc(self, field): return { 'name': field.name, 'type': str(field.type), 'desc': field.comment, } def __find_response_docs(self, key, docs_node): # 容器层 children = [] type_ = '' desc = '' str_type = str(type(docs_node)) if type(docs_node) == str: # 手写描述规定格式:key:type:desc # 比如photos:Array:照片url字符串组成的列表数据 arr = docs_node.split(':') if len(arr) == 3: key = arr[0] type_ = arr[1] desc = arr[2] else: desc = docs_node elif type(docs_node) == dict: # 字典容器递归 type_ = 'Object' for k, v in docs_node.items(): this = self.__find_response_docs(k, v) if type(this) == list: children += this elif type(this) == dict: children.append(this) elif type(docs_node) == set: # 集合,用来表示单个对象 type_ = 'Object' for v in docs_node: this = self.__find_response_docs(key, v) if type(this) == list: children += this elif type(this) == dict: children.append(this) elif type(docs_node) == list: # 列表对象,包含可能多组字段 type_ = 'Array' for v in docs_node: this = self.__find_response_docs(key, v) if type(this) == list: children += this elif type(this) == dict: children.append(this) elif 'django.db.models' in str_type: if hasattr(docs_node, '_meta'): for obj in docs_node._meta.fields: children.append(self.__mk_django_model_field_doc(obj)) else: # 单独django字段 children.append(self.__mk_django_model_field_doc(docs_node)) return children elif 'ApiResponseModelFields' in str_type: # 解析部分字段 fields = docs_node.get_fields() this = self.__find_response_docs(key, fields) return this['children'] elif 'sqlalchemy.sql.schema.Column' in str_type or 'sqlalchemy.orm.attributes' in str_type: # flask 单独字段 return self.__mk_flask_model_field_doc(docs_node) elif 'sqlalchemy.orm' in str_type: # flask的models if hasattr(docs_node, '__table__'): for obj in docs_node.__table__._columns: children.append(self.__mk_flask_model_field_doc(obj)) return { 'name': key, 'type': type_, 'desc': desc, 'children': children } def __not_find_url_function(self, request): # 如果找不到业务模块 return return_response(_('no such interface')) def __find_api_function(self, url): # 查找api所指向的模块 if (type(url) == tuple and len(url) > 0): url = url[0] key, value_dict = self.__find_url_rule(url) model = self.url_dict.get(key) if model: return model, key, value_dict return self.__not_find_url_function, None, None def __find_api_methons(self, url): # 查找api所指向的方法 return self.url_methods.get(url) def __find_url_rule(self, url): # 从规则列表中匹配当前访问的url value_dict = {} for obj in self.rule_maps: url_ = url line = obj['line'] key = obj['key'] for rule in line: m = re.match(rule['regex'], url_) if not m: break pos, end = m.span() url_ = url_[end:] # 截断url if rule['type'] == 'variable': # 动态查找 value_dict.update({ rule['variable']: m.group(0) # {'value':'test'} }) if url_: # 有剩余url,表示该行不匹配 continue else: return key, value_dict return None, None def __add_url_rules(self, rule): this_rule = [] _converter_args_re = re.compile(r''' (?P<value> (\w+) )''', re.VERBOSE | re.UNICODE) for converter, arguments, variable in parse_rule(rule): if converter is None: # 静态地址 this_rule.append({ 'regex': re.escape(variable), 'type': 'static' }) else: # 动态查询 this_rule.append({ 'regex': _converter_args_re, 'variable': variable, 'converter': converter, 'type': 'variable' }) self.rule_maps.append({ 'line': this_rule, 'key': rule }) def __init_url_rules(self): self.rule_maps = [] # 规则映射表 for rule in self.url_dict.keys(): self.__add_url_rules(rule) def get_parameter(self, request): # 获取参数 data = {} # 获取django的request数据 if api.framework.name == 'django': if hasattr(request,'GET') and request.GET: for k, v in request.GET.items(): if k.endswith('[]'): # 从get传递过来的同名参数,需要重组成list对象 v = request.GET.getlist(k) k = k[:-2] data.update({k: v}) elif hasattr(request,'POST') and request.POST: data.update(request.POST.dict()) elif hasattr(request,'is_ajax') and request.is_ajax(): # axios payload 方式传递数据 # 如果使用axios,必须指定'X-Requested-With'='XMLHttpRequest' data.update(json.loads(request.body)) else: try: data.update(json.loads(request.body)) except: pass if api.framework.name == 'flask': if request.args: data.update(request.args.to_dict()) elif request.form: data.update(request.form.to_dict()) else: try: # 某些特殊错误的封装,将get,Content-Type: application/json jd = request.get_json() if jd: data.update(jd) except: pass if api.framework.name == 'bottle': if request.GET: data.update(request.GET) if request.POST: data.update(request.POST) if request.json: data.update(request.json) return data def __verify(self, conf, name, value): # 校验数据并转换格式 required_ = conf.get('required') type_ = conf.get('type') min_ = conf.get('min') max_ = conf.get('max') default_ = conf.get('default') options = conf.get('options') not_converting = False # 没有值得情况,包括'',[],()这种,但是要排除0,因为0经常用于标记值 if not value and value != 0 and not default_ is None: # 默认值如果是一个函数,运行它,并不再检查类型转换 if callable(default_): value = default_() not_converting = True else: value = default_ # 检查必要值 if required_ == True and not value and value != 0: return _('parameter')+' {} '.format(name)+_('is required'), None if value == '' and type_ != str: # 如果是空字符串,但是要求类型不是字符串,就转换成None value = None # 检查空值,这个时候因为有些空值还处于字符串形态,比如'[]',所以有可能会被跳过 if not value and value != 0: if required_: return _('parameter')+' {} '.format(name)+_('can not be empty'), None, else: return None, value # 检查并转换类型 if not_converting == False and type_ and type(value) != type_: try: if type_ in [list, dict, set, tuple]: # 容器类,json验证后转换 value = type_(json.loads(value)) elif type_ == bool: if value == 'true': value = True else: value = False else: # 其他类型或者类型转换器 value = type_(value) except: return _('parameter')+' {} '.format(name)+_('must be type')+' {} '.format(type_), None # 检查转换后的'',[],(),{}都放弃长度检查,0继续检查大小。 if not value and value != 0: if required_: return _('parameter')+' {} '.format(name)+_('can not be empty'), None else: return None, value # 检查可选项目 if options and type(options) == list: if value not in options: return _('parameter') + ' {} '.format(name) + _('must be in the list of options') + ' : {}'.format(json.dumps(options)), None # 检查最小值/长度 if min_: if type(value) in [str, list, dict, set]: if len(value) < min_: return _('parameter')+' {} '.format(name)+_('minimum length')+' {} '.format(min_), None elif type(value) in [int, float, complex]: if value < min_: return _('parameter')+' {} '.format(name)+_('minimum value')+' {} '.format(min_), None else: # 其他自定义类型 if value < type_(min_): return _('parameter')+' {} '.format(name)+_('minimum value')+' {} '.format(min_), None # 检查最大值/长度 if max_: if type(value) in [str, list, dict, set]: if len(value) > max_: return _('parameter')+' {} '.format(name)+_('maximum length')+' {} '.format(max_), None elif type(value) in [int, float, bool, complex]: if value > max_: return _('parameter')+' {} '.format(name)+_('maximum value')+' {} '.format(max_), None else: # 其他自定义类型 if value > type_(max_): return _('parameter')+' {} '.format(name)+_('maximum value')+' {} '.format(max_), None return None, value def verify_parameter(self, request, par_conf, value_dict=None, parameter=None): # 校验参数合法性,并转换成参数对象 if type(par_conf) != list: return _('The wrong configuration, methons must be loaded inside the list container.'), None if parameter is None: parameter = self.get_parameter(request) if value_dict: parameter.update(value_dict) adc = ApiDataClass() errmsg = [] # 从参数配置获取参数 for line in par_conf: key = line['name'] errmsg_, value = self.__verify(line, key, parameter.get(key)) if errmsg_: errmsg.append(errmsg_) else: setattr(adc, key, value) return errmsg, adc def api_run(self, request, url, method=None, parameter=None, json=True): '''在代码中直接运行接口,方便复用接口代码 request 直接传入当前request, url 就是你想要访问的接口url method 如果不传入,就是 = request.method parameter 请求参数,如果不传入,就没有参数传入到api中 json 默认True返回json数据,False就会返回response ''' if not method: method = request.method model, key, value_dict = self.__find_api_function(url) methons = self.__find_api_methons(key) errmsg = '' code = 400 if methons and not method is None: # 有配置方法和参数,校验参数合法性,并转换参数 par_conf = methons.get(method.upper()) if parameter is None: parameter = {} errmsg, data = self.verify_parameter( None, par_conf, value_dict=value_dict, parameter=parameter) else: code = 404 errmsg = _('no such interface method') if errmsg: if json: return {'msg': errmsg}, code return return_response(errmsg) ret = model(request, data, json, method) return ret def before_running(self, **kwargs): '''运行前钩子''' def after_running(self, **kwargs): '''运行后钩子''' def add_api(self, name, url, methods): '''装饰器添加接口''' def wrap(cls): conf = self.__make_model([{ 'url': url, 'class': cls, 'name': name, 'methods': methods }]) self.conf += conf urllist = [] if type(url) == str: urllist.append(url) else: urllist = url for u in urllist: self.__add_url_rules(u) return cls return wrap def api_entry(self, request, *url): '''api入口''' model, key, value_dict = self.__find_api_function(url) methons = self.__find_api_methons(key) if methons and not methons.get(request.method) is None: # 有配置方法和参数,校验参数合法性,并转换参数 errmsg, data = self.verify_parameter( request, methons.get(request.method), value_dict) if errmsg: return return_response(errmsg) if hasattr(self, 'before_running'): before_running_ret = self.before_running( request=request, data=data, model=model, key=key) if before_running_ret: return before_running_ret # 运行接口,如果要使用网关,就直接先返回一个数据 ret = model(request, data,json=self.options.get('use_gateway')) if hasattr(self, 'after_running'): new_ret = self.after_running( request=request, response=ret, model=model, key=key) if new_ret: return new_ret return ret else: return return_response(_('no such interface method'), 404) def render_documents(self, request, *url): '''渲染文档''' if self.document_version != time.ctime(os.stat(self.document_name).st_mtime): # 如果文档发生变化,读取文档。 self.document = open(self.document_name, mode='r', encoding='utf-8').read() return api.framework.template(self.document) def get_api_data(self, request, *url): '''返回给文档页面数据''' return api.framework.json({'data': self.conf, 'options': self.options}) single_apishop = None def singleton(cls): class SingletonWrapper(cls): def __new__(cls, *args, **kwargs): global single_apishop if not single_apishop: single_apishop = super().__new__(cls) elif kwargs and kwargs.get('force'): # 参数里包含force=True,强制覆盖上一个 single_apishop = super().__new__(cls) elif args or kwargs: # 有参数自动覆盖上一个 single_apishop = super().__new__(cls) return single_apishop return SingletonWrapper @singleton class SingleApiShop(ApiShop): '''单例模式的ApiShop 这个单例和单例装饰器的区别是: 1、每次初始化,如果有参数,就会覆盖上一次的类和参数。 2、每次初始化,如果参数中force=True,就会覆盖上一次的类和参数。(包括继承后的) 使用get_single_apishop获取实例 ''' @staticmethod def get_single_apishop(): '''获取单例实例''' global single_apishop return single_apishop get_single_apishop = SingleApiShop.get_single_apishop
PypiClean
/dq-notebook-6.0.2.tar.gz/dq-notebook-6.0.2/docs/source/examples/Notebook/Running Code.ipynb
# Running Code First and foremost, the Jupyter Notebook is an interactive environment for writing and running code. The notebook is capable of running code in a wide range of languages. However, each notebook is associated with a single kernel. This notebook is associated with the IPython kernel, therefore runs Python code. ## Code cells allow you to enter and run code Run a code cell using `Shift-Enter` or pressing the <button class='btn btn-default btn-xs'><i class="icon-step-forward fa fa-step-forward"></i></button> button in the toolbar above: ``` a = 10 print(a) ``` There are two other keyboard shortcuts for running code: * `Alt-Enter` runs the current cell and inserts a new one below. * `Ctrl-Enter` run the current cell and enters command mode. ## Managing the Kernel Code is run in a separate process called the Kernel. The Kernel can be interrupted or restarted. Try running the following cell and then hit the <button class='btn btn-default btn-xs'><i class='icon-stop fa fa-stop'></i></button> button in the toolbar above. ``` import time time.sleep(10) ``` If the Kernel dies you will be prompted to restart it. Here we call the low-level system libc.time routine with the wrong argument via ctypes to segfault the Python interpreter: ``` import sys from ctypes import CDLL # This will crash a Linux or Mac system # equivalent calls can be made on Windows # Uncomment these lines if you would like to see the segfault # dll = 'dylib' if sys.platform == 'darwin' else 'so.6' # libc = CDLL("libc.%s" % dll) # libc.time(-1) # BOOM!! ``` ## Cell menu The "Cell" menu has a number of menu items for running code in different ways. These includes: * Run and Select Below * Run and Insert Below * Run All * Run All Above * Run All Below ## Restarting the kernels The kernel maintains the state of a notebook's computations. You can reset this state by restarting the kernel. This is done by clicking on the <button class='btn btn-default btn-xs'><i class='fa fa-repeat icon-repeat'></i></button> in the toolbar above. ## sys.stdout and sys.stderr The stdout and stderr streams are displayed as text in the output area. ``` print("hi, stdout") from __future__ import print_function print('hi, stderr', file=sys.stderr) ``` ## Output is asynchronous All output is displayed asynchronously as it is generated in the Kernel. If you execute the next cell, you will see the output one piece at a time, not all at the end. ``` import time, sys for i in range(8): print(i) time.sleep(0.5) ``` ## Large outputs To better handle large outputs, the output area can be collapsed. Run the following cell and then single- or double- click on the active area to the left of the output: ``` for i in range(50): print(i) ``` Beyond a certain point, output will scroll automatically: ``` for i in range(500): print(2**i - 1) ```
PypiClean
/py-pure-client-1.38.0.tar.gz/py-pure-client-1.38.0/pypureclient/pure1/Pure1_1_0/models/support_contract_get_response.py
import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.pure1.Pure1_1_0 import models class SupportContractGetResponse(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'continuation_token': 'str', 'total_item_count': 'int', 'items': 'list[SupportContract]' } attribute_map = { 'continuation_token': 'continuation_token', 'total_item_count': 'total_item_count', 'items': 'items' } required_args = { } def __init__( self, continuation_token=None, # type: str total_item_count=None, # type: int items=None, # type: List[models.SupportContract] ): """ Keyword args: continuation_token (str): Continuation token that can be provided in the continuation_token query param to get the next page of data. If you use the continuation token to page through data you are guaranteed to get all items exactly once regardless of how items are modified. If an item is added or deleted during the pagination then it may or may not be returned. The continuation token is generated if the limit is less than the remaining number of items, and the default sort is used (no sort is specified). total_item_count (int): Total number of items after applying filter params. items (list[SupportContract]) """ if continuation_token is not None: self.continuation_token = continuation_token if total_item_count is not None: self.total_item_count = total_item_count if items is not None: self.items = items def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `SupportContractGetResponse`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(SupportContractGetResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SupportContractGetResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
PypiClean
/azure-mgmt-privatedns-1.1.0b1.zip/azure-mgmt-privatedns-1.1.0b1/azure/mgmt/privatedns/operations/_private_zones_operations.py
import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload import urllib.parse from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_create_or_update_request( resource_group_name: str, private_zone_name: str, subscription_id: str, *, if_match: Optional[str] = None, if_none_match: Optional[str] = None, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2020-06-01")) # type: Literal["2020-06-01"] content_type = kwargs.pop("content_type", _headers.pop("Content-Type", None)) # type: Optional[str] accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}", ) # pylint: disable=line-too-long path_format_arguments = { "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "privateZoneName": _SERIALIZER.url("private_zone_name", private_zone_name, "str"), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers if if_match is not None: _headers["If-Match"] = _SERIALIZER.header("if_match", if_match, "str") if if_none_match is not None: _headers["If-None-Match"] = _SERIALIZER.header("if_none_match", if_none_match, "str") if content_type is not None: _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) def build_update_request( resource_group_name: str, private_zone_name: str, subscription_id: str, *, if_match: Optional[str] = None, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2020-06-01")) # type: Literal["2020-06-01"] content_type = kwargs.pop("content_type", _headers.pop("Content-Type", None)) # type: Optional[str] accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}", ) # pylint: disable=line-too-long path_format_arguments = { "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "privateZoneName": _SERIALIZER.url("private_zone_name", private_zone_name, "str"), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers if if_match is not None: _headers["If-Match"] = _SERIALIZER.header("if_match", if_match, "str") if content_type is not None: _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="PATCH", url=_url, params=_params, headers=_headers, **kwargs) def build_delete_request( resource_group_name: str, private_zone_name: str, subscription_id: str, *, if_match: Optional[str] = None, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2020-06-01")) # type: Literal["2020-06-01"] accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}", ) # pylint: disable=line-too-long path_format_arguments = { "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "privateZoneName": _SERIALIZER.url("private_zone_name", private_zone_name, "str"), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers if if_match is not None: _headers["If-Match"] = _SERIALIZER.header("if_match", if_match, "str") _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) def build_get_request( resource_group_name: str, private_zone_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2020-06-01")) # type: Literal["2020-06-01"] accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}", ) # pylint: disable=line-too-long path_format_arguments = { "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "privateZoneName": _SERIALIZER.url("private_zone_name", private_zone_name, "str"), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) def build_list_request(subscription_id: str, *, top: Optional[int] = None, **kwargs: Any) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2020-06-01")) # type: Literal["2020-06-01"] accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/providers/Microsoft.Network/privateDnsZones") path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters if top is not None: _params["$top"] = _SERIALIZER.query("top", top, "int") _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) def build_list_by_resource_group_request( resource_group_name: str, subscription_id: str, *, top: Optional[int] = None, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2020-06-01")) # type: Literal["2020-06-01"] accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones", ) # pylint: disable=line-too-long path_format_arguments = { "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters if top is not None: _params["$top"] = _SERIALIZER.query("top", top, "int") _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) class PrivateZonesOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.privatedns.PrivateDnsManagementClient`'s :attr:`private_zones` attribute. """ models = _models def __init__(self, *args, **kwargs): input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") def _create_or_update_initial( self, resource_group_name: str, private_zone_name: str, parameters: Union[_models.PrivateZone, IO], if_match: Optional[str] = None, if_none_match: Optional[str] = None, **kwargs: Any ) -> Optional[_models.PrivateZone]: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2020-06-01"] content_type = kwargs.pop("content_type", _headers.pop("Content-Type", None)) # type: Optional[str] cls = kwargs.pop("cls", None) # type: ClsType[Optional[_models.PrivateZone]] content_type = content_type or "application/json" _json = None _content = None if isinstance(parameters, (IO, bytes)): _content = parameters else: _json = self._serialize.body(parameters, "PrivateZone") request = build_create_or_update_request( resource_group_name=resource_group_name, private_zone_name=private_zone_name, subscription_id=self._config.subscription_id, if_match=if_match, if_none_match=if_none_match, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self._create_or_update_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 201, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize("PrivateZone", pipeline_response) if response.status_code == 201: deserialized = self._deserialize("PrivateZone", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}"} # type: ignore @overload def begin_create_or_update( self, resource_group_name: str, private_zone_name: str, parameters: _models.PrivateZone, if_match: Optional[str] = None, if_none_match: Optional[str] = None, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[_models.PrivateZone]: """Creates or updates a Private DNS zone. Does not modify Links to virtual networks or DNS records within the zone. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). Required. :type private_zone_name: str :param parameters: Parameters supplied to the CreateOrUpdate operation. Required. :type parameters: ~azure.mgmt.privatedns.models.PrivateZone :param if_match: The ETag of the Private DNS zone. Omit this value to always overwrite the current zone. Specify the last-seen ETag value to prevent accidentally overwriting any concurrent changes. Default value is None. :type if_match: str :param if_none_match: Set to '*' to allow a new Private DNS zone to be created, but to prevent updating an existing zone. Other values will be ignored. Default value is None. :type if_none_match: str :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either PrivateZone or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.privatedns.models.PrivateZone] :raises ~azure.core.exceptions.HttpResponseError: """ @overload def begin_create_or_update( self, resource_group_name: str, private_zone_name: str, parameters: IO, if_match: Optional[str] = None, if_none_match: Optional[str] = None, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[_models.PrivateZone]: """Creates or updates a Private DNS zone. Does not modify Links to virtual networks or DNS records within the zone. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). Required. :type private_zone_name: str :param parameters: Parameters supplied to the CreateOrUpdate operation. Required. :type parameters: IO :param if_match: The ETag of the Private DNS zone. Omit this value to always overwrite the current zone. Specify the last-seen ETag value to prevent accidentally overwriting any concurrent changes. Default value is None. :type if_match: str :param if_none_match: Set to '*' to allow a new Private DNS zone to be created, but to prevent updating an existing zone. Other values will be ignored. Default value is None. :type if_none_match: str :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either PrivateZone or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.privatedns.models.PrivateZone] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace def begin_create_or_update( self, resource_group_name: str, private_zone_name: str, parameters: Union[_models.PrivateZone, IO], if_match: Optional[str] = None, if_none_match: Optional[str] = None, **kwargs: Any ) -> LROPoller[_models.PrivateZone]: """Creates or updates a Private DNS zone. Does not modify Links to virtual networks or DNS records within the zone. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). Required. :type private_zone_name: str :param parameters: Parameters supplied to the CreateOrUpdate operation. Is either a model type or a IO type. Required. :type parameters: ~azure.mgmt.privatedns.models.PrivateZone or IO :param if_match: The ETag of the Private DNS zone. Omit this value to always overwrite the current zone. Specify the last-seen ETag value to prevent accidentally overwriting any concurrent changes. Default value is None. :type if_match: str :param if_none_match: Set to '*' to allow a new Private DNS zone to be created, but to prevent updating an existing zone. Other values will be ignored. Default value is None. :type if_none_match: str :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either PrivateZone or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.privatedns.models.PrivateZone] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2020-06-01"] content_type = kwargs.pop("content_type", _headers.pop("Content-Type", None)) # type: Optional[str] cls = kwargs.pop("cls", None) # type: ClsType[_models.PrivateZone] polling = kwargs.pop("polling", True) # type: Union[bool, PollingMethod] lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token = kwargs.pop("continuation_token", None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( # type: ignore resource_group_name=resource_group_name, private_zone_name=private_zone_name, parameters=parameters, if_match=if_match, if_none_match=if_none_match, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): deserialized = self._deserialize("PrivateZone", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) # type: PollingMethod elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}"} # type: ignore def _update_initial( self, resource_group_name: str, private_zone_name: str, parameters: Union[_models.PrivateZone, IO], if_match: Optional[str] = None, **kwargs: Any ) -> Optional[_models.PrivateZone]: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2020-06-01"] content_type = kwargs.pop("content_type", _headers.pop("Content-Type", None)) # type: Optional[str] cls = kwargs.pop("cls", None) # type: ClsType[Optional[_models.PrivateZone]] content_type = content_type or "application/json" _json = None _content = None if isinstance(parameters, (IO, bytes)): _content = parameters else: _json = self._serialize.body(parameters, "PrivateZone") request = build_update_request( resource_group_name=resource_group_name, private_zone_name=private_zone_name, subscription_id=self._config.subscription_id, if_match=if_match, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self._update_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize("PrivateZone", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}"} # type: ignore @overload def begin_update( self, resource_group_name: str, private_zone_name: str, parameters: _models.PrivateZone, if_match: Optional[str] = None, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[_models.PrivateZone]: """Updates a Private DNS zone. Does not modify virtual network links or DNS records within the zone. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). Required. :type private_zone_name: str :param parameters: Parameters supplied to the Update operation. Required. :type parameters: ~azure.mgmt.privatedns.models.PrivateZone :param if_match: The ETag of the Private DNS zone. Omit this value to always overwrite the current zone. Specify the last-seen ETag value to prevent accidentally overwriting any concurrent changes. Default value is None. :type if_match: str :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either PrivateZone or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.privatedns.models.PrivateZone] :raises ~azure.core.exceptions.HttpResponseError: """ @overload def begin_update( self, resource_group_name: str, private_zone_name: str, parameters: IO, if_match: Optional[str] = None, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[_models.PrivateZone]: """Updates a Private DNS zone. Does not modify virtual network links or DNS records within the zone. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). Required. :type private_zone_name: str :param parameters: Parameters supplied to the Update operation. Required. :type parameters: IO :param if_match: The ETag of the Private DNS zone. Omit this value to always overwrite the current zone. Specify the last-seen ETag value to prevent accidentally overwriting any concurrent changes. Default value is None. :type if_match: str :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either PrivateZone or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.privatedns.models.PrivateZone] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace def begin_update( self, resource_group_name: str, private_zone_name: str, parameters: Union[_models.PrivateZone, IO], if_match: Optional[str] = None, **kwargs: Any ) -> LROPoller[_models.PrivateZone]: """Updates a Private DNS zone. Does not modify virtual network links or DNS records within the zone. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). Required. :type private_zone_name: str :param parameters: Parameters supplied to the Update operation. Is either a model type or a IO type. Required. :type parameters: ~azure.mgmt.privatedns.models.PrivateZone or IO :param if_match: The ETag of the Private DNS zone. Omit this value to always overwrite the current zone. Specify the last-seen ETag value to prevent accidentally overwriting any concurrent changes. Default value is None. :type if_match: str :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either PrivateZone or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.privatedns.models.PrivateZone] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2020-06-01"] content_type = kwargs.pop("content_type", _headers.pop("Content-Type", None)) # type: Optional[str] cls = kwargs.pop("cls", None) # type: ClsType[_models.PrivateZone] polling = kwargs.pop("polling", True) # type: Union[bool, PollingMethod] lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token = kwargs.pop("continuation_token", None) # type: Optional[str] if cont_token is None: raw_result = self._update_initial( # type: ignore resource_group_name=resource_group_name, private_zone_name=private_zone_name, parameters=parameters, if_match=if_match, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): deserialized = self._deserialize("PrivateZone", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) # type: PollingMethod elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}"} # type: ignore def _delete_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, private_zone_name: str, if_match: Optional[str] = None, **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2020-06-01"] cls = kwargs.pop("cls", None) # type: ClsType[None] request = build_delete_request( resource_group_name=resource_group_name, private_zone_name=private_zone_name, subscription_id=self._config.subscription_id, if_match=if_match, api_version=api_version, template_url=self._delete_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}"} # type: ignore @distributed_trace def begin_delete( self, resource_group_name: str, private_zone_name: str, if_match: Optional[str] = None, **kwargs: Any ) -> LROPoller[None]: """Deletes a Private DNS zone. WARNING: All DNS records in the zone will also be deleted. This operation cannot be undone. Private DNS zone cannot be deleted unless all virtual network links to it are removed. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). Required. :type private_zone_name: str :param if_match: The ETag of the Private DNS zone. Omit this value to always delete the current zone. Specify the last-seen ETag value to prevent accidentally deleting any concurrent changes. Default value is None. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2020-06-01"] cls = kwargs.pop("cls", None) # type: ClsType[None] polling = kwargs.pop("polling", True) # type: Union[bool, PollingMethod] lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token = kwargs.pop("continuation_token", None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( # type: ignore resource_group_name=resource_group_name, private_zone_name=private_zone_name, if_match=if_match, api_version=api_version, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) # type: PollingMethod elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}"} # type: ignore @distributed_trace def get(self, resource_group_name: str, private_zone_name: str, **kwargs: Any) -> _models.PrivateZone: """Gets a Private DNS zone. Retrieves the zone properties, but not the virtual networks links or the record sets within the zone. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). Required. :type private_zone_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PrivateZone or the result of cls(response) :rtype: ~azure.mgmt.privatedns.models.PrivateZone :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2020-06-01"] cls = kwargs.pop("cls", None) # type: ClsType[_models.PrivateZone] request = build_get_request( resource_group_name=resource_group_name, private_zone_name=private_zone_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("PrivateZone", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}"} # type: ignore @distributed_trace def list(self, top: Optional[int] = None, **kwargs: Any) -> Iterable["_models.PrivateZone"]: """Lists the Private DNS zones in all resource groups in a subscription. :param top: The maximum number of Private DNS zones to return. If not specified, returns up to 100 zones. Default value is None. :type top: int :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PrivateZone or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.privatedns.models.PrivateZone] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2020-06-01"] cls = kwargs.pop("cls", None) # type: ClsType[_models.PrivateZoneListResult] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( subscription_id=self._config.subscription_id, top=top, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("PrivateZoneListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data) list.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Network/privateDnsZones"} # type: ignore @distributed_trace def list_by_resource_group( self, resource_group_name: str, top: Optional[int] = None, **kwargs: Any ) -> Iterable["_models.PrivateZone"]: """Lists the Private DNS zones within a resource group. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param top: The maximum number of record sets to return. If not specified, returns up to 100 record sets. Default value is None. :type top: int :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PrivateZone or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.privatedns.models.PrivateZone] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2020-06-01"] cls = kwargs.pop("cls", None) # type: ClsType[_models.PrivateZoneListResult] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_by_resource_group_request( resource_group_name=resource_group_name, subscription_id=self._config.subscription_id, top=top, api_version=api_version, template_url=self.list_by_resource_group.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("PrivateZoneListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data) list_by_resource_group.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones"} # type: ignore
PypiClean
/pulumi_fortios-0.0.9.tar.gz/pulumi_fortios-0.0.9/pulumi_fortios/switch_controller_switch_profile.py
import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities __all__ = ['SwitchControllerSwitchProfileArgs', 'SwitchControllerSwitchProfile'] @pulumi.input_type class SwitchControllerSwitchProfileArgs: def __init__(__self__, *, login: Optional[pulumi.Input[str]] = None, login_passwd: Optional[pulumi.Input[str]] = None, login_passwd_override: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, revision_backup_on_logout: Optional[pulumi.Input[str]] = None, revision_backup_on_upgrade: Optional[pulumi.Input[str]] = None, vdomparam: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a SwitchControllerSwitchProfile resource. """ if login is not None: pulumi.set(__self__, "login", login) if login_passwd is not None: pulumi.set(__self__, "login_passwd", login_passwd) if login_passwd_override is not None: pulumi.set(__self__, "login_passwd_override", login_passwd_override) if name is not None: pulumi.set(__self__, "name", name) if revision_backup_on_logout is not None: pulumi.set(__self__, "revision_backup_on_logout", revision_backup_on_logout) if revision_backup_on_upgrade is not None: pulumi.set(__self__, "revision_backup_on_upgrade", revision_backup_on_upgrade) if vdomparam is not None: pulumi.set(__self__, "vdomparam", vdomparam) @property @pulumi.getter def login(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "login") @login.setter def login(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "login", value) @property @pulumi.getter(name="loginPasswd") def login_passwd(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "login_passwd") @login_passwd.setter def login_passwd(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "login_passwd", value) @property @pulumi.getter(name="loginPasswdOverride") def login_passwd_override(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "login_passwd_override") @login_passwd_override.setter def login_passwd_override(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "login_passwd_override", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="revisionBackupOnLogout") def revision_backup_on_logout(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "revision_backup_on_logout") @revision_backup_on_logout.setter def revision_backup_on_logout(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "revision_backup_on_logout", value) @property @pulumi.getter(name="revisionBackupOnUpgrade") def revision_backup_on_upgrade(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "revision_backup_on_upgrade") @revision_backup_on_upgrade.setter def revision_backup_on_upgrade(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "revision_backup_on_upgrade", value) @property @pulumi.getter def vdomparam(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "vdomparam") @vdomparam.setter def vdomparam(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "vdomparam", value) @pulumi.input_type class _SwitchControllerSwitchProfileState: def __init__(__self__, *, login: Optional[pulumi.Input[str]] = None, login_passwd: Optional[pulumi.Input[str]] = None, login_passwd_override: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, revision_backup_on_logout: Optional[pulumi.Input[str]] = None, revision_backup_on_upgrade: Optional[pulumi.Input[str]] = None, vdomparam: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering SwitchControllerSwitchProfile resources. """ if login is not None: pulumi.set(__self__, "login", login) if login_passwd is not None: pulumi.set(__self__, "login_passwd", login_passwd) if login_passwd_override is not None: pulumi.set(__self__, "login_passwd_override", login_passwd_override) if name is not None: pulumi.set(__self__, "name", name) if revision_backup_on_logout is not None: pulumi.set(__self__, "revision_backup_on_logout", revision_backup_on_logout) if revision_backup_on_upgrade is not None: pulumi.set(__self__, "revision_backup_on_upgrade", revision_backup_on_upgrade) if vdomparam is not None: pulumi.set(__self__, "vdomparam", vdomparam) @property @pulumi.getter def login(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "login") @login.setter def login(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "login", value) @property @pulumi.getter(name="loginPasswd") def login_passwd(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "login_passwd") @login_passwd.setter def login_passwd(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "login_passwd", value) @property @pulumi.getter(name="loginPasswdOverride") def login_passwd_override(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "login_passwd_override") @login_passwd_override.setter def login_passwd_override(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "login_passwd_override", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="revisionBackupOnLogout") def revision_backup_on_logout(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "revision_backup_on_logout") @revision_backup_on_logout.setter def revision_backup_on_logout(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "revision_backup_on_logout", value) @property @pulumi.getter(name="revisionBackupOnUpgrade") def revision_backup_on_upgrade(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "revision_backup_on_upgrade") @revision_backup_on_upgrade.setter def revision_backup_on_upgrade(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "revision_backup_on_upgrade", value) @property @pulumi.getter def vdomparam(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "vdomparam") @vdomparam.setter def vdomparam(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "vdomparam", value) class SwitchControllerSwitchProfile(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, login: Optional[pulumi.Input[str]] = None, login_passwd: Optional[pulumi.Input[str]] = None, login_passwd_override: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, revision_backup_on_logout: Optional[pulumi.Input[str]] = None, revision_backup_on_upgrade: Optional[pulumi.Input[str]] = None, vdomparam: Optional[pulumi.Input[str]] = None, __props__=None): """ Create a SwitchControllerSwitchProfile resource with the given unique name, props, and options. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. """ ... @overload def __init__(__self__, resource_name: str, args: Optional[SwitchControllerSwitchProfileArgs] = None, opts: Optional[pulumi.ResourceOptions] = None): """ Create a SwitchControllerSwitchProfile resource with the given unique name, props, and options. :param str resource_name: The name of the resource. :param SwitchControllerSwitchProfileArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(SwitchControllerSwitchProfileArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, login: Optional[pulumi.Input[str]] = None, login_passwd: Optional[pulumi.Input[str]] = None, login_passwd_override: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, revision_backup_on_logout: Optional[pulumi.Input[str]] = None, revision_backup_on_upgrade: Optional[pulumi.Input[str]] = None, vdomparam: Optional[pulumi.Input[str]] = None, __props__=None): opts = pulumi.ResourceOptions.merge(_utilities.get_resource_opts_defaults(), opts) if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = SwitchControllerSwitchProfileArgs.__new__(SwitchControllerSwitchProfileArgs) __props__.__dict__["login"] = login __props__.__dict__["login_passwd"] = None if login_passwd is None else pulumi.Output.secret(login_passwd) __props__.__dict__["login_passwd_override"] = login_passwd_override __props__.__dict__["name"] = name __props__.__dict__["revision_backup_on_logout"] = revision_backup_on_logout __props__.__dict__["revision_backup_on_upgrade"] = revision_backup_on_upgrade __props__.__dict__["vdomparam"] = vdomparam secret_opts = pulumi.ResourceOptions(additional_secret_outputs=["loginPasswd"]) opts = pulumi.ResourceOptions.merge(opts, secret_opts) super(SwitchControllerSwitchProfile, __self__).__init__( 'fortios:index/switchControllerSwitchProfile:SwitchControllerSwitchProfile', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, login: Optional[pulumi.Input[str]] = None, login_passwd: Optional[pulumi.Input[str]] = None, login_passwd_override: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, revision_backup_on_logout: Optional[pulumi.Input[str]] = None, revision_backup_on_upgrade: Optional[pulumi.Input[str]] = None, vdomparam: Optional[pulumi.Input[str]] = None) -> 'SwitchControllerSwitchProfile': """ Get an existing SwitchControllerSwitchProfile resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _SwitchControllerSwitchProfileState.__new__(_SwitchControllerSwitchProfileState) __props__.__dict__["login"] = login __props__.__dict__["login_passwd"] = login_passwd __props__.__dict__["login_passwd_override"] = login_passwd_override __props__.__dict__["name"] = name __props__.__dict__["revision_backup_on_logout"] = revision_backup_on_logout __props__.__dict__["revision_backup_on_upgrade"] = revision_backup_on_upgrade __props__.__dict__["vdomparam"] = vdomparam return SwitchControllerSwitchProfile(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def login(self) -> pulumi.Output[str]: return pulumi.get(self, "login") @property @pulumi.getter(name="loginPasswd") def login_passwd(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "login_passwd") @property @pulumi.getter(name="loginPasswdOverride") def login_passwd_override(self) -> pulumi.Output[str]: return pulumi.get(self, "login_passwd_override") @property @pulumi.getter def name(self) -> pulumi.Output[str]: return pulumi.get(self, "name") @property @pulumi.getter(name="revisionBackupOnLogout") def revision_backup_on_logout(self) -> pulumi.Output[str]: return pulumi.get(self, "revision_backup_on_logout") @property @pulumi.getter(name="revisionBackupOnUpgrade") def revision_backup_on_upgrade(self) -> pulumi.Output[str]: return pulumi.get(self, "revision_backup_on_upgrade") @property @pulumi.getter def vdomparam(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "vdomparam")
PypiClean
/Pyomo-6.6.2-cp39-cp39-win_amd64.whl/pyomo/gdp/plugins/bigm.py
import logging from pyomo.common.collections import ComponentMap from pyomo.common.config import ConfigDict, ConfigValue from pyomo.common.modeling import unique_component_name from pyomo.common.deprecation import deprecated, deprecation_warning from pyomo.contrib.cp.transform.logical_to_disjunctive_program import ( LogicalToDisjunctive, ) from pyomo.core import ( Block, BooleanVar, Connector, Constraint, Param, Set, SetOf, Var, Expression, SortComponents, TraversalStrategy, value, RangeSet, NonNegativeIntegers, Binary, Any, ) from pyomo.core.base import TransformationFactory, Reference import pyomo.core.expr as EXPR from pyomo.gdp import Disjunct, Disjunction, GDP_Error from pyomo.gdp.plugins.bigm_mixin import ( _BigM_MixIn, _get_bigM_suffix_list, _warn_for_unused_bigM_args, ) from pyomo.gdp.plugins.gdp_to_mip_transformation import GDP_to_MIP_Transformation from pyomo.gdp.transformed_disjunct import _TransformedDisjunct from pyomo.gdp.util import is_child_of, _get_constraint_transBlock, _to_dict from pyomo.core.util import target_list from pyomo.network import Port from pyomo.repn import generate_standard_repn from weakref import ref as weakref_ref, ReferenceType logger = logging.getLogger('pyomo.gdp.bigm') @TransformationFactory.register( 'gdp.bigm', doc="Relax disjunctive model using big-M terms." ) class BigM_Transformation(GDP_to_MIP_Transformation, _BigM_MixIn): """Relax disjunctive model using big-M terms. Relaxes a disjunctive model into an algebraic model by adding Big-M terms to all disjunctive constraints. This transformation accepts the following keyword arguments: bigM: A user-specified value (or dict) of M values to use (see below) targets: the targets to transform [default: the instance] M values are determined as follows: 1) if the constraint appears in the bigM argument dict 2) if the constraint parent_component appears in the bigM argument dict 3) if any block which is an ancestor to the constraint appears in the bigM argument dict 3) if 'None' is in the bigM argument dict 4) if the constraint or the constraint parent_component appear in a BigM Suffix attached to any parent_block() beginning with the constraint's parent_block and moving up to the root model. 5) if None appears in a BigM Suffix attached to any parent_block() between the constraint and the root model. 6) if the constraint is linear, estimate M using the variable bounds M values may be a single value or a 2-tuple specifying the M for the lower bound and the upper bound of the constraint body. Specifying "bigM=N" is automatically mapped to "bigM={None: N}". The transformation will create a new Block with a unique name beginning "_pyomo_gdp_bigm_reformulation". That Block will contain an indexed Block named "relaxedDisjuncts", which will hold the relaxed disjuncts. This block is indexed by an integer indicating the order in which the disjuncts were relaxed. Each block has a dictionary "_constraintMap": 'srcConstraints': ComponentMap(<transformed constraint>: <src constraint>) 'transformedConstraints': ComponentMap(<src constraint>: <transformed constraint>) All transformed Disjuncts will have a pointer to the block their transformed constraints are on, and all transformed Disjunctions will have a pointer to the corresponding 'Or' or 'ExactlyOne' constraint. """ CONFIG = ConfigDict("gdp.bigm") CONFIG.declare( 'targets', ConfigValue( default=None, domain=target_list, description="target or list of targets that will be relaxed", doc=""" This specifies the list of components to relax. If None (default), the entire model is transformed. Note that if the transformation is done out of place, the list of targets should be attached to the model before it is cloned, and the list will specify the targets on the cloned instance.""", ), ) CONFIG.declare( 'bigM', ConfigValue( default=None, domain=_to_dict, description="Big-M value used for constraint relaxation", doc=""" A user-specified value, dict, or ComponentMap of M values that override M-values found through model Suffixes or that would otherwise be calculated using variable domains.""", ), ) CONFIG.declare( 'assume_fixed_vars_permanent', ConfigValue( default=False, domain=bool, description="Boolean indicating whether or not to transform so that " "the transformed model will still be valid when fixed Vars are " "unfixed.", doc=""" This is only relevant when the transformation will be estimating values for M. If True, the transformation will calculate M values assuming that fixed variables will always be fixed to their current values. This means that if a fixed variable is unfixed after transformation, the transformed model is potentially no longer valid. By default, the transformation will assume fixed variables could be unfixed in the future and will use their bounds to calculate the M value rather than their value. Note that this could make for a weaker LP relaxation while the variables remain fixed. """, ), ) transformation_name = 'bigm' def __init__(self): super().__init__(logger) def _apply_to(self, instance, **kwds): self.used_args = ComponentMap() # If everything was sure to go well, # this could be a dictionary. But if # someone messes up and gives us a Var # as a key in bigMargs, I need the error # not to be when I try to put it into # this map! try: self._apply_to_impl(instance, **kwds) finally: self._restore_state() self.used_args.clear() def _apply_to_impl(self, instance, **kwds): self._process_arguments(instance, **kwds) # filter out inactive targets and handle case where targets aren't # specified. targets = self._filter_targets(instance) # transform logical constraints based on targets self._transform_logical_constraints(instance, targets) # we need to preprocess targets to make sure that if there are any # disjunctions in targets that their disjuncts appear before them in # the list. gdp_tree = self._get_gdp_tree_from_targets(instance, targets) preprocessed_targets = gdp_tree.reverse_topological_sort() bigM = self._config.bigM for t in preprocessed_targets: if t.ctype is Disjunction: self._transform_disjunctionData( t, t.index(), parent_disjunct=gdp_tree.parent(t), root_disjunct=gdp_tree.root_disjunct(t), ) else: # We know t is a Disjunct after preprocessing self._transform_disjunct( t, bigM, root_disjunct=gdp_tree.root_disjunct(t) ) # issue warnings about anything that was in the bigM args dict that we # didn't use _warn_for_unused_bigM_args(bigM, self.used_args, logger) def _transform_disjunctionData( self, obj, index, parent_disjunct=None, root_disjunct=None ): (transBlock, xorConstraint) = self._setup_transform_disjunctionData( obj, root_disjunct ) # add or (or xor) constraint or_expr = sum(disjunct.binary_indicator_var for disjunct in obj.disjuncts) rhs = 1 if parent_disjunct is None else parent_disjunct.binary_indicator_var if obj.xor: xorConstraint[index] = or_expr == rhs else: xorConstraint[index] = or_expr >= rhs # Mark the DisjunctionData as transformed by mapping it to its XOR # constraint. obj._algebraic_constraint = weakref_ref(xorConstraint[index]) # and deactivate for the writers obj.deactivate() def _transform_disjunct(self, obj, bigM, root_disjunct): root = ( root_disjunct.parent_block() if root_disjunct is not None else obj.parent_block() ) transBlock = self._add_transformation_block(root)[0] suffix_list = _get_bigM_suffix_list(obj) arg_list = self._get_bigM_arg_list(bigM, obj) relaxationBlock = self._get_disjunct_transformation_block(obj, transBlock) # we will keep a map of constraints (hashable, ha!) to a tuple to # indicate what their M value is and where it came from, of the form: # ((lower_value, lower_source, lower_key), (upper_value, upper_source, # upper_key)), where the first tuple is the information for the lower M, # the second tuple is the info for the upper M, source is the Suffix or # argument dictionary and None if the value was calculated, and key is # the key in the Suffix or argument dictionary, and None if it was # calculated. (Note that it is possible the lower or upper is # user-specified and the other is not, hence the need to store # information for both.) relaxationBlock.bigm_src = {} # This is crazy, but if the disjunction has been previously # relaxed, the disjunct *could* be deactivated. This is a big # deal for Hull, as it uses the component_objects / # component_data_objects generators. For BigM, that is OK, # because we never use those generators with active=True. I am # only noting it here for the future when someone (me?) is # comparing the two relaxations. # # Transform each component within this disjunct self._transform_block_components(obj, obj, bigM, arg_list, suffix_list) # deactivate disjunct to keep the writers happy obj._deactivate_without_fixing_indicator() def _transform_constraint( self, obj, disjunct, bigMargs, arg_list, disjunct_suffix_list ): # add constraint to the transformation block, we'll transform it there. transBlock = disjunct._transformation_block() bigm_src = transBlock.bigm_src constraintMap = transBlock._constraintMap disjunctionRelaxationBlock = transBlock.parent_block() # We will make indexes from ({obj.local_name} x obj.index_set() x ['lb', # 'ub']), but don't bother construct that set here, as taking Cartesian # products is kind of expensive (and redundant since we have the # original model) newConstraint = transBlock.transformedConstraints for i in sorted(obj.keys()): c = obj[i] if not c.active: continue lower = (None, None, None) upper = (None, None, None) # first, we see if an M value was specified in the arguments. # (This returns None if not) lower, upper = self._get_M_from_args(c, bigMargs, arg_list, lower, upper) M = (lower[0], upper[0]) if self._generate_debug_messages: logger.debug( "GDP(BigM): The value for M for constraint '%s' " "from the BigM argument is %s." % (c.name, str(M)) ) # if we didn't get something we need from args, try suffixes: if (M[0] is None and c.lower is not None) or ( M[1] is None and c.upper is not None ): # first get anything parent to c but below disjunct suffix_list = _get_bigM_suffix_list( c.parent_block(), stopping_block=disjunct ) # prepend that to what we already collected for the disjunct. suffix_list.extend(disjunct_suffix_list) lower, upper = self._update_M_from_suffixes( c, suffix_list, lower, upper ) M = (lower[0], upper[0]) if self._generate_debug_messages: logger.debug( "GDP(BigM): The value for M for constraint '%s' " "after checking suffixes is %s." % (c.name, str(M)) ) if c.lower is not None and M[0] is None: M = (self._estimate_M(c.body, c)[0] - c.lower, M[1]) lower = (M[0], None, None) if c.upper is not None and M[1] is None: M = (M[0], self._estimate_M(c.body, c)[1] - c.upper) upper = (M[1], None, None) if self._generate_debug_messages: logger.debug( "GDP(BigM): The value for M for constraint '%s' " "after estimating (if needed) is %s." % (c.name, str(M)) ) # save the source information bigm_src[c] = (lower, upper) self._add_constraint_expressions( c, i, M, disjunct.binary_indicator_var, newConstraint, constraintMap ) # deactivate because we relaxed c.deactivate() def _update_M_from_suffixes(self, constraint, suffix_list, lower, upper): # It's possible we found half the answer in args, but we are still # looking for half the answer. need_lower = constraint.lower is not None and lower[0] is None need_upper = constraint.upper is not None and upper[0] is None M = None # first we check if the constraint or its parent is a key in any of the # suffix lists for bigm in suffix_list: if constraint in bigm: M = bigm[constraint] (lower, upper, need_lower, need_upper) = self._process_M_value( M, lower, upper, need_lower, need_upper, bigm, constraint, constraint, ) if not need_lower and not need_upper: return lower, upper # if c is indexed, check for the parent component if constraint.parent_component() in bigm: parent = constraint.parent_component() M = bigm[parent] (lower, upper, need_lower, need_upper) = self._process_M_value( M, lower, upper, need_lower, need_upper, bigm, parent, constraint ) if not need_lower and not need_upper: return lower, upper # if we didn't get an M that way, traverse upwards through the blocks # and see if None has a value on any of them. if M is None: for bigm in suffix_list: if None in bigm: M = bigm[None] (lower, upper, need_lower, need_upper) = self._process_M_value( M, lower, upper, need_lower, need_upper, bigm, None, constraint ) if not need_lower and not need_upper: return lower, upper return lower, upper @deprecated( "The get_m_value_src function is deprecated. Use " "the get_M_value_src function if you need source " "information or the get_M_value function if you " "only need values.", version='5.7.1', ) def get_m_value_src(self, constraint): transBlock = _get_constraint_transBlock(constraint) ( (lower_val, lower_source, lower_key), (upper_val, upper_source, upper_key), ) = transBlock.bigm_src[constraint] if ( constraint.lower is not None and constraint.upper is not None and (not lower_source is upper_source or not lower_key is upper_key) ): raise GDP_Error( "This is why this method is deprecated: The lower " "and upper M values for constraint %s came from " "different sources, please use the get_M_value_src " "method." % constraint.name ) # if source and key are equal for the two, this is representable in the # old format. if constraint.lower is not None and lower_source is not None: return (lower_source, lower_key) if constraint.upper is not None and upper_source is not None: return (upper_source, upper_key) # else it was calculated: return (lower_val, upper_val) def get_M_value_src(self, constraint): """Return a tuple indicating how the M value used to transform constraint was specified. (In particular, this can be used to verify which BigM Suffixes were actually necessary to the transformation.) Return is of the form: ((lower_M_val, lower_M_source, lower_M_key), (upper_M_val, upper_M_source, upper_M_key)) If the constraint does not have a lower bound (or an upper bound), the first (second) element will be (None, None, None). Note that if a constraint is of the form a <= expr <= b or is an equality constraint, it is not necessarily true that the source of lower_M and upper_M are the same. If the M value came from an arg, source is the dictionary itself and key is the key in that dictionary which gave us the M value. If the M value came from a Suffix, source is the BigM suffix used and key is the key in that Suffix. If the transformation calculated the value, both source and key are None. Parameters ---------- constraint: Constraint, which must be in the subtree of a transformed Disjunct """ transBlock = _get_constraint_transBlock(constraint) # This is a KeyError if it fails, but it is also my fault if it # fails... (That is, it's a bug in the mapping.) return transBlock.bigm_src[constraint] def get_M_value(self, constraint): """Returns the M values used to transform constraint. Return is a tuple: (lower_M_value, upper_M_value). Either can be None if constraint does not have a lower or upper bound, respectively. Parameters ---------- constraint: Constraint, which must be in the subtree of a transformed Disjunct """ transBlock = _get_constraint_transBlock(constraint) # This is a KeyError if it fails, but it is also my fault if it # fails... (That is, it's a bug in the mapping.) lower, upper = transBlock.bigm_src[constraint] return (lower[0], upper[0]) def get_all_M_values_by_constraint(self, model): """Returns a dictionary mapping each constraint to a tuple: (lower_M_value, upper_M_value), where either can be None if the constraint does not have a lower or upper bound (respectively). Parameters ---------- model: A GDP model that has been transformed with BigM """ m_values = {} for disj in model.component_data_objects( Disjunct, active=None, descend_into=(Block, Disjunct) ): transBlock = disj.transformation_block # First check if it was transformed at all. if transBlock is not None: # If it was transformed with BigM, we get the M values. if hasattr(transBlock, 'bigm_src'): for cons in transBlock.bigm_src: m_values[cons] = self.get_M_value(cons) return m_values def get_largest_M_value(self, model): """Returns the largest M value for any constraint on the model. Parameters ---------- model: A GDP model that has been transformed with BigM """ return max( max(abs(m) for m in m_values if m is not None) for m_values in self.get_all_M_values_by_constraint(model).values() )
PypiClean
/ast-toolbox-2020.9.1.7.tar.gz/ast-toolbox-2020.9.1.7/examples/Plot/plot_top1.py
import csv import os.path from matplotlib import pyplot as plt n_trial = 5 top_k = 10 batch_size = 4000 # max_step = 5e6 prepath = "../" exps = ["CartpoleNdRewardt"] policies = ["GATRDInterStep1.0Fmax", "PSMCTSInterStep1.0Ec1.414K0.5A0.5Qmax", "PSMCTSTRInterStep1.0Ec1.414K0.5A0.5Qmax", "PSMCTSTRCInterStep1.0Ec1.414K0.5A0.5Qmax"] plot_name = "GATRD_PSMCTS" # colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'] colors = [] for i in range(len(policies)): colors.append('C' + str(i)) for exp in exps: plts = [] legends = [] fig = plt.figure(figsize=(10, 10)) for (policy_index, policy) in enumerate(policies): print(policy) for trial in range(n_trial): print(trial) steps = [] rewards = [] file_path = prepath + exp + '/Data/AST/Lexington/' + policy + '/' + str(trial) + '/process.csv' if os.path.exists(file_path): with open(file_path) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for (i, row) in enumerate(csv_reader): if i == 0: entry_dict = {} for index in range(len(row)): entry_dict[row[index]] = index else: # if int(row[entry_dict["StepNum"]]) > max_step: # break if int(row[entry_dict["StepNum"]]) % batch_size == 0: steps.append(int(row[entry_dict["StepNum"]])) rewards.append(max(0.0, float(row[entry_dict["reward 0"]]))) plot, = plt.plot(steps, rewards, color=colors[policy_index]) plts.append(plot) legends.append(policy + ' ' + str(trial)) plt.legend(plts, legends) plt.xlabel('Step number') plt.ylabel('Best reward') fig.savefig(prepath + exp + '/Data/Plot/top1/' + plot_name + '_top1.pdf') plt.close(fig)
PypiClean
/poetry-codeartifact-login-0.2.1.tar.gz/poetry-codeartifact-login-0.2.1/README.md
# Poetry AWS CodeArtifact Login A Poetry plugin for authenticating with AWS CodeArtifact. ## Requirements - `poetry >= 1.2.0` Install using the dedicated installation script. See [here](https://python-poetry.org/docs/#installation). - `AWS CLI v2` See [here](https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html) for installation guide. ## Intallation ``` poetry self add poetry-codeartifact-login ``` ## Usage AWS credentials will need to be configured on the system prior to usage. Typically this is done using the `aws configure` command and/or directly modifying the configuration files. See [here](https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html) for more info. They can also be set through [environment variables](https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html), which will take precedence over any configuration file values. Once credentials have been configured, you can log in to CodeArtifact: ``` poetry aws-login <source_name> ``` Assuming the credentials are configured properly and the identity they belong to has proper permissions, `poetry` will be configured with a short-lived authentication token that will automatically be used for installation of any packages in the authenticated source. See [here](https://python-poetry.org/docs/repositories/#private-repository-example) for more information on working with private repositories through `poetry`. If want to log in with a profile other than the default, you can do: ``` poetry aws-login <source_name> --profile <profile_name> ``` ## CLI Reference ``` poetry aws-login --help ```
PypiClean
/Transcrypt-3.7.16.tar.gz/Transcrypt-3.7.16/transcrypt/demos/parcel_demo/node_modules/htmlnano/node_modules/postcss-minify-font-values/lib/minify-family.js
var stringify = require('postcss-value-parser').stringify; var uniqs = require('./uniqs')('monospace'); // Note that monospace is missing intentionally from this list; we should not // remove instances of duplicated monospace keywords, it causes the font to be // rendered smaller in Chrome. var keywords = [ 'sans-serif', 'serif', 'fantasy', 'cursive' ]; function intersection(haystack, array) { return array.some(function (v) { return ~haystack.indexOf(v); }); }; module.exports = function (nodes, opts) { var family = []; var last = null; var i, max; nodes.forEach(function (node, index, nodes) { var value = node.value; if (node.type === 'string' || node.type === 'function') { family.push(node); } else if (node.type === 'word') { if (!last) { last = { type: 'word', value: '' }; family.push(last); } last.value += node.value; } else if (node.type === 'space') { if (last && index !== nodes.length - 1) { last.value += ' '; } } else { last = null; } }); family = family.map(function (node) { if (node.type === 'string') { if ( !opts.removeQuotes || intersection(node.value, keywords) || /[0-9]/.test(node.value.slice(0, 1)) ) { return stringify(node); } var escaped = node.value.split(/\s/).map(function (word, index, words) { var next = words[index + 1]; if (next && /^[^a-z]/i.test(next)) { return word + '\\'; } if (!/^[^a-z\d\xa0-\uffff_-]/i.test(word)) { return word.replace(/([^a-z\d\xa0-\uffff_-])/gi, '\\$1'); } if (/^[^a-z]/i.test(word) && index < 1) { return '\\' + word; } return word; }).join(' '); if (escaped.length < node.value.length + 2) { return escaped; } } return stringify(node); }); if (opts.removeAfterKeyword) { for (i = 0, max = family.length; i < max; i += 1) { if (~keywords.indexOf(family[i])) { family = family.slice(0, i + 1); break; } } } if (opts.removeDuplicates) { family = uniqs(family); } return [ { type: 'word', value: family.join() } ]; };
PypiClean
/pchem-0.2.tar.gz/pchem-0.2/apps/kinetics.py
import numpy as np import pandas as pd import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go import streamlit as st import io import base64 import re from collections import defaultdict from util import find, write_excel, process_file import util def combine_spectra(dataframes, labels, xcol, ycol, tol=1e-6): x_data = dataframes[0][xcol].values all_data = [x_data] col_names = [xcol] col_names.extend(labels) for df in dataframes: x = df[xcol].values if (len(x) != len(x_data)) or abs(x - x_data).max() > tol: st.write("X axes are different - Try deselecting `Same x axis?` and Submit again.") raise ValueError("X axis of each dataset should be the same!") y = df[ycol].values all_data.append(y) # ind, fname = ind_fname # before_ext = fname.split(".")[0] # col_names.append(f"{ind}-{before_ext}") return pd.DataFrame(np.array(all_data).T, columns=col_names) def limit_x_values(combined_data, x_column, settings): st.markdown("### Limit x Range") x_data = combined_data[x_column].values x_min_val = st.selectbox("Choose minimum x:", x_data, index=0 ) i_min = find(x_min_val, x_data) x_max_val = st.selectbox("Choose maximum x:", x_data, index=len(x_data)-1 ) i_max = find(x_max_val, x_data) combined_data = combined_data.iloc[i_min:i_max, :] settings['x_min'] = x_min_val settings['x_max'] = x_max_val return combined_data, settings def normalize_data(combined_data, x_column, settings): st.markdown("### Normalization options") x_data = combined_data[x_column].values processing_options = ['None', "Normalized", "Relative"] processing = st.selectbox("Processing?", processing_options) settings['processing'] = processing if processing == 'Normalized': normalize_wavelength = st.selectbox("Normalize data at: ", x_data) settings['normalization_wavelength'] = normalize_wavelength else: settings.pop('normalization_wavelength', 0) if processing == "Normalized": norm_ind = find(normalize_wavelength, x_data) y_data = combined_data.values[:, 1:] combined_data.values[:, 1:] = y_data / y_data[norm_ind] if processing == "Relative": # Should probably be tweaked a bit to be more convenient... y_data = combined_data.values[:, 1:] combined_data.values[:, 1:] = y_data / y_data.max(axis=0) return combined_data, settings def check_nans(df, col, threshold=0.5): return df[col].isna().sum() / len(df) > threshold @st.cache def sort_files_and_create_data(files, sort_files): if sort_files: files = sorted(files, key=lambda x: x.name.split('__')[-1]) else: files = files filenames = [(i, f.name) for i, f in enumerate(files)] data = [process_file(f) for f in files] return filenames, data @st.cache def create_data_dict(filenames, data): files_dict = defaultdict(lambda : dict(times=[], data=[], number=[], time=[])) # df_all = pd.DataFrame() for filename, d in zip(filenames, data): dataname, number, time = filename[1].split('__') dataname_short = dataname.strip('_Absorbance') hr, min_, sec, msec = time.split('-') msec = msec.split('.')[0] time = int(hr) * 3600 + int(min_)*60 + int(sec) + int(msec)/1000.0 dict_entry = files_dict[dataname_short] dict_entry['times'].append(time) dict_entry['data'].append(d) dict_entry['number'].append(number) dict_entry['time'].append(f'{hr}:{min_}:{sec}.{msec}') return files_dict def run(): df = None cols = None x_column = 'Wavelength (nm)' y_column = 'Absorbance' combined_data = None if 'ever_submitted' not in st.session_state: st.session_state.ever_submitted = False settings = {} st.markdown("""## UV-Vis Kinetics Analysis This helper will combine multiple UV-Vis files (from Ocean Optics Ocean View .csv export) plot/normalize the spectra, and output a single Excel file for easy plotting and analysis. """) sort_files = st.checkbox("Sort files?", value=True) files = st.file_uploader("Upload CSV or Excel Files", accept_multiple_files=True) if files: filenames, data = sort_files_and_create_data(files, sort_files) files_dict = create_data_dict(filenames, data) st.write("""### Data Summary""") st.markdown(f"{len(filenames)} data files from {len(files_dict)} experiments.") st.write("""## Labels Use the boxes below to change the labels for each kinetics experiment. """) labels = [st.text_input(key, value=key) for key in files_dict.keys()] same_x = False data_example = list(files_dict.values())[0]['data'][0] x_data = data_example[x_column].values # Use the first x data to set all the limits. wavelength_monitor = st.number_input("Monitor wavelength:", min_value=x_data.min(), max_value=x_data.max(), value=x_data.mean()) wavelength_bandwidth = st.number_input("Bandwidth", min_value=0.5, value=3.0) # Assuming all have the same x axis data kinetics_mask = ((x_data > wavelength_monitor-wavelength_bandwidth/2) * (x_data < wavelength_monitor+wavelength_bandwidth/2)) plot_kinetics = st.checkbox("Plot kinetics data?") dfs = [] for key, val in files_dict.items(): times = np.array(val['times']) times = times - times.min() # Times in seconds, relative to start of experiment data = np.array([np.mean(d[y_column].values[kinetics_mask]) for d in val['data']]) dfs.append( pd.DataFrame.from_dict({'Time (s)':times, 'A': data, 'name':key, 'wavelength': wavelength_monitor, 'bandwidth': wavelength_bandwidth, 'number': val['number'], 'time': val['time']}, orient='columns') ) df_kinetics = pd.concat(dfs, ignore_index=True) df_kinetics['Time (min)'] = df_kinetics['Time (s)'] / 60.0 st.write(df_kinetics) if plot_kinetics: scatter = px.line(df_kinetics, x='Time (s)', y='A', color='name', labels={'A': f'A @ {wavelength_monitor:.1f}±{wavelength_bandwidth/2} nm'}) st.plotly_chart(scatter) st.markdown("### Output options") filename = st.text_input("Filename:", value="kinetics-data") write_excel(df_kinetics, filename) if __name__ == "__main__": run()
PypiClean
/PyCIM-15.15.0.tar.gz/PyCIM-15.15.0/CIM15/IEC61968/PaymentMetering/__init__.py
from CIM15.IEC61968.PaymentMetering.VendorShift import VendorShift from CIM15.IEC61968.PaymentMetering.Transactor import Transactor from CIM15.IEC61968.PaymentMetering.CashierShift import CashierShift from CIM15.IEC61968.PaymentMetering.TariffProfile import TariffProfile from CIM15.IEC61968.PaymentMetering.AccountingUnit import AccountingUnit from CIM15.IEC61968.PaymentMetering.Transaction import Transaction from CIM15.IEC61968.PaymentMetering.TimeTariffInterval import TimeTariffInterval from CIM15.IEC61968.PaymentMetering.Charge import Charge from CIM15.IEC61968.PaymentMetering.AuxiliaryAgreement import AuxiliaryAgreement from CIM15.IEC61968.PaymentMetering.Tender import Tender from CIM15.IEC61968.PaymentMetering.ServiceSupplier import ServiceSupplier from CIM15.IEC61968.PaymentMetering.MerchantAgreement import MerchantAgreement from CIM15.IEC61968.PaymentMetering.LineDetail import LineDetail from CIM15.IEC61968.PaymentMetering.ConsumptionTariffInterval import ConsumptionTariffInterval from CIM15.IEC61968.PaymentMetering.Vendor import Vendor from CIM15.IEC61968.PaymentMetering.Cheque import Cheque from CIM15.IEC61968.PaymentMetering.AccountMovement import AccountMovement from CIM15.IEC61968.PaymentMetering.Shift import Shift from CIM15.IEC61968.PaymentMetering.Receipt import Receipt from CIM15.IEC61968.PaymentMetering.Due import Due from CIM15.IEC61968.PaymentMetering.BankAccountDetail import BankAccountDetail from CIM15.IEC61968.PaymentMetering.AuxiliaryAccount import AuxiliaryAccount from CIM15.IEC61968.PaymentMetering.Cashier import Cashier from CIM15.IEC61968.PaymentMetering.Card import Card from CIM15.IEC61968.PaymentMetering.MerchantAccount import MerchantAccount from CIM15.IEC61968.PaymentMetering.PointOfSale import PointOfSale nsURI = "http://iec.ch/TC57/2010/CIM-schema-cim15#PaymentMetering" nsPrefix = "cimPaymentMetering" class TenderKind(str): """Values are: unspecified, cheque, other, cash, card """ pass class ChequeKind(str): """Values are: other, postalOrder, bankOrder """ pass class ChargeKind(str): """Values are: other, demandCharge, consumptionCharge, auxiliaryCharge, taxCharge """ pass class TransactionKind(str): """Values are: other, serviceChargePayment, accountPayment, tokenSalePayment, tokenCancellation, taxChargePayment, tokenExchange, tokenGrant, diversePayment, auxiliaryChargePayment, meterConfigurationToken, tokenFreeIssue, transactionReversal """ pass class SupplierKind(str): """Values are: other, retailer, utility """ pass
PypiClean
/petab_select-0.1.10-py3-none-any.whl/petab_select/petab.py
from pathlib import Path from typing import List, Optional import petab from petab.C import ESTIMATE, NOMINAL_VALUE from .constants import PETAB_ESTIMATE_FALSE, TYPE_PARAMETER_DICT, TYPE_PATH class PetabMixin: """Useful things for classes that contain a PEtab problem. All attributes/methods are prefixed with `petab_`. """ def __init__( self, petab_yaml: Optional[TYPE_PATH] = None, petab_problem: Optional[petab.Problem] = None, parameters_as_lists: bool = False, ): if petab_yaml is None and petab_problem is None: raise ValueError( 'Please supply at least one of either the location of the ' 'PEtab problem YAML file, or an instance of the PEtab problem.' ) self.petab_yaml = petab_yaml if self.petab_yaml is not None: self.petab_yaml = Path(self.petab_yaml) self.petab_problem = petab_problem if self.petab_problem is None: self.petab_problem = petab.Problem.from_yaml(str(petab_yaml)) self.petab_parameters = { parameter_id: ( row[NOMINAL_VALUE] if row[ESTIMATE] == PETAB_ESTIMATE_FALSE else ESTIMATE ) for parameter_id, row in self.petab_problem.parameter_df.iterrows() } if parameters_as_lists: self.petab_parameters = { k: [v] for k, v in self.petab_parameters.items() } @property def petab_parameter_ids_estimated(self) -> List[str]: return [ parameter_id for parameter_id, parameter_value in self.petab_parameters.items() if parameter_value == ESTIMATE ] @property def petab_parameter_ids_fixed(self) -> List[str]: estimated = self.petab_parameter_ids_estimated return [ parameter_id for parameter_id in self.petab_parameters if parameter_id not in estimated ] @property def petab_parameters_singular(self) -> TYPE_PARAMETER_DICT: return { parameter_id: one(parameter_value) for parameter_id, parameter_value in self.petab_parameters }
PypiClean
/Django_patch-2.2.19-py3-none-any.whl/django/core/management/commands/sqlmigrate.py
from django.apps import apps from django.core.management.base import BaseCommand, CommandError from django.db import DEFAULT_DB_ALIAS, connections from django.db.migrations.executor import MigrationExecutor from django.db.migrations.loader import AmbiguityError class Command(BaseCommand): help = "Prints the SQL statements for the named migration." output_transaction = True def add_arguments(self, parser): parser.add_argument('app_label', help='App label of the application containing the migration.') parser.add_argument('migration_name', help='Migration name to print the SQL for.') parser.add_argument( '--database', default=DEFAULT_DB_ALIAS, help='Nominates a database to create SQL for. Defaults to the "default" database.', ) parser.add_argument( '--backwards', action='store_true', help='Creates SQL to unapply the migration, rather than to apply it', ) def execute(self, *args, **options): # sqlmigrate doesn't support coloring its output but we need to force # no_color=True so that the BEGIN/COMMIT statements added by # output_transaction don't get colored either. options['no_color'] = True return super().execute(*args, **options) def handle(self, *args, **options): # Get the database we're operating from connection = connections[options['database']] # Load up an executor to get all the migration data executor = MigrationExecutor(connection) # Resolve command-line arguments into a migration app_label, migration_name = options['app_label'], options['migration_name'] # Validate app_label try: apps.get_app_config(app_label) except LookupError as err: raise CommandError(str(err)) if app_label not in executor.loader.migrated_apps: raise CommandError("App '%s' does not have migrations" % app_label) try: migration = executor.loader.get_migration_by_prefix(app_label, migration_name) except AmbiguityError: raise CommandError("More than one migration matches '%s' in app '%s'. Please be more specific." % ( migration_name, app_label)) except KeyError: raise CommandError("Cannot find a migration matching '%s' from app '%s'. Is it in INSTALLED_APPS?" % ( migration_name, app_label)) targets = [(app_label, migration.name)] # Show begin/end around output only for atomic migrations self.output_transaction = migration.atomic # Make a plan that represents just the requested migrations and show SQL # for it plan = [(executor.loader.graph.nodes[targets[0]], options['backwards'])] sql_statements = executor.collect_sql(plan) return '\n'.join(sql_statements)
PypiClean
/buckaroo-0.3.17.tar.gz/buckaroo-0.3.17/docs/source/contributing.rst
.. _Contributing: ======================== Contributing to Buckaroo ======================== Buckaroo is actively looking for contributors. All forms of participation are welcome, from bug reports, to suggestions, to code contributions. Developing in the Jupyter Lab environment ========================================= The easiest way to develop and contribute to Buckaroo is to add ``Commands``. When I use Buckaroo to clean and explore a new dataset, I firt try to use the built in Buckaroo commands in the UI. When I want to perform a manipulation that doesn't yet exist in Buckaroo, I first drop down to raw pandas/python like I would before Buckaroo... Then I figure out how to expose that functionality as a ``Command``. While working with manatee data, I recognized that a column was probably date times, but a ``to_datetime`` ``Command`` didn't exist. So I wrote one. .. code-block:: python pd.to_datetime(df['REPDATE']).head() #outputs -> #0 1974-04-03 00:00:00+00:00 #1 1974-06-27 00:00:00+00:00 #Name: REPDATE, dtype: datetime64[ns, UTC] #pd.to_datetime is the transform I want... so I write it as a Command #and add it to the w widget with the @w.add_command decorator @w.add_command class to_datetime(Command): command_default = [s('to_datetime'), s('df'), "col"] command_pattern = [None] @staticmethod def transform(df, col): df[col] = pd.to_datetime(df[col]) return df @staticmethod def transform_to_py(df, col): return " df['%s'] = pd.to_datetime(df['%s'])" % (col, col) When you use the ``add_command`` decorator, the command is instantly added to the UI of the corresponding widget. Subsequent re-evalutations of the same cell, will replace a ``Command`` in the widget with the same name. This allows you to iteratively develop commands. Once you have developed a ``Command`` you can either continue to use it internally as with the ``add_command`` decorator or you can open a PR and add it to the builtin commands for Buckaroo `all_transforms.py <https://github.com/paddymul/buckaroo/blob/main/buckaroo/all_transforms.py>`_. The upside of just using the @add_command decorator is that you don't have to setup a development environment. Setting up a development environment ==================================== First, you need to fork the project. Then setup your environment: .. code-block:: bash # create a new conda environment conda create -n buckaroo-dev jupyterlab pandas nodejs yarn pip conda activate buckaroo-dev pip install build twine # download buckaroo from your GitHub fork git clone https://github.com/<your-github-username>/buckaroo.git # or start by cloning the main repo git clone https://github.com/paddymul/buckaroo.git # install JS dependencies and build js assets cd buckaroo yarn install # install Buckaroo in editable mode python -m pip install -ve . #in another shell, setup the typescript watcher conda activate buckaroo-dev yarn build && yarn watch #this will build the jupyter lab extension, and recompile on any code changes #start your jupyter lab server in another shell conda activate buckaroo-dev jupyter lab #work on your jupyter notebook from that lab server .. note:: Getting typescript updates from the widget into a jupyter lab notebook is a little tricky. The following steps ensure that typescript code changes are picked up. Loading typescript changes ========================== I make my changes, confirm that ``yarn watch`` has successfully compiled them. **then** I follow these steps to ensure the new code is loaded #. Go to the jupyter lab notebook in a browser #. Click the Kernel Menu > Restart Kernel and Clear all outputs #. Save the notebook #. Reload the web browser #. Execute the relevant cells It is sometimes helpful to put a console.log in ``js/plugin.ts`` and check that the updated log statement shows up in the browser to make sure you are executing the code you think you are.
PypiClean
/pytorch-functional-0.7.1.post4.tar.gz/pytorch-functional-0.7.1.post4/pytorch_functional/functions_utility.py
from __future__ import annotations from typing import Callable, Dict, Hashable, List, Tuple from torch import nn from . import useful_layers from .functional_model import SymbolicTensor def add_module_to_model(module, *args): assert isinstance(args[0], SymbolicTensor) return args[0](module, *args[1:]) def _replace_symbolic_with_value(container, extracted, navigation): """Search recursively for all occurences of SymbolicTensor and replace them with their value. At the same time save navigation to know, how to do indexing to get to them. If navigation for container ends up as [..., [1, 2, 0, "TEST", 5], ...] this means that to get the element you should index container[1][2][0]["TEST"][5]. """ if isinstance(container, SymbolicTensor): navigation.append(navigation[-1].copy()) extracted.append(container) return container.v if isinstance(container, List) or isinstance(container, Tuple): new_list = [] for i, x in enumerate(container): navigation[-1].append(i) new_list.append(_replace_symbolic_with_value(x, extracted, navigation)) navigation[-1].pop() return new_list if isinstance(container, Dict): new_dict = {} for k, v in container.items(): navigation[-1].append(k) new_dict[k] = _replace_symbolic_with_value(v, extracted, navigation) navigation[-1].pop() return new_dict return container def add_to_model(func: Callable | nn.Module, *args, **kwds): """Register a custom func or module in the computation graph. This should work will arbitrary functions and modules. In case of functions it might add a small delay to the call, because it is figuring out where the arguments should go. If this is unacceptable, please create a nn.Module from your func. All arguments, including Symbolic Tensors, should be passed after the ``func`` argument. They can be mixed and matched, even nested in lists, tuples and dictionaries. Convolution func example:: inputs = Input(shape=(3, 32, 32)) kernel = Input(shape=(16, 3, 3, 3), include_batch=False) bias = Input(shape=(16,), include_batch=False) output = add_function(F.conv2d, input=inputs, weight=k, bias=bias, padding=1) """ if isinstance(func, nn.Module) and not kwds: return add_module_to_model(func, *args) extracted_symbols: List[SymbolicTensor] = [] real_call_args = [] real_call_kwds = {} navigation: List[List[Hashable]] = [[]] real_call_args = _replace_symbolic_with_value(args, extracted_symbols, navigation) real_call_kwds = _replace_symbolic_with_value(kwds, extracted_symbols, navigation) navigation.pop() assert len(extracted_symbols) > 0, "No Symbolic Tensors detected in the input!" assert all((isinstance(symbol, SymbolicTensor) for symbol in extracted_symbols)) assert len(extracted_symbols) == len(navigation) def wrapper_function(*args): assert len(args) == len(navigation), f"Expected {len(navigation)} inputs, not {len(args)}!" for arg, navi in zip(args, navigation): obj = real_call_kwds if isinstance(navi[0], str) else real_call_args for idx in navi[:-1]: obj = obj[idx] obj[navi[-1]] = arg return func(*real_call_args, **real_call_kwds) module = useful_layers.NamedAnyOpLayer(op=wrapper_function, name=f"{func.__name__}({len(navigation)})") return extracted_symbols[0](module, *extracted_symbols[1:])
PypiClean
/pymvpa2-2.6.5.tar.gz/pymvpa2-2.6.5/mvpa2/measures/noiseperturbation.py
"""Derive sensitivity maps for a metric by selective noise perturbation""" __docformat__ = 'restructuredtext' if __debug__: from mvpa2.base import debug from mvpa2.support.copy import deepcopy import numpy as np from mvpa2.measures.base import FeaturewiseMeasure from mvpa2.datasets.base import Dataset class NoisePerturbationSensitivity(FeaturewiseMeasure): """Sensitivity based on the effect of noise perturbation on a measure. This is a `FeaturewiseMeasure` that uses a scalar `Measure` and selective noise perturbation to compute a sensitivity map. First the scalar `Measure` computed using the original dataset. Next the data measure is computed multiple times each with a single feature in the dataset perturbed by noise. The resulting difference in the scalar `Measure` is used as the sensitivity for the respective perturbed feature. Large differences are treated as an indicator of a feature having great impact on the scalar `Measure`. Notes ----- The computed sensitivity map might have positive and negative values! """ is_trained = True """Indicate that this measure is always trained.""" def __init__(self, datameasure, noise=np.random.normal): """ Parameters ---------- datameasure : `Measure` Used to quantify the effect of noise perturbation. noise: Callable Used to generate noise. The noise generator has to return an 1d array of n values when called the `size=n` keyword argument. This is the default interface of the random number generators in NumPy's `random` module. """ # init base classes first FeaturewiseMeasure.__init__(self) self.__datameasure = datameasure self.__noise = noise def _call(self, dataset): # first cast to floating point dtype, because noise is most likely # floating point as well and '+=' on int would not do the right thing if not np.issubdtype(dataset.samples.dtype, np.float): ds = dataset.copy(deep=False) ds.samples = dataset.samples.astype('float32') dataset = ds if __debug__: nfeatures = dataset.nfeatures # using a list here, to be able to handle output of unknown # dimensionality sens_map = [] # compute the datameasure on the original dataset # this is used as a baseline orig_measure = self.__datameasure(dataset) # do for every _single_ feature in the dataset for feature in xrange(dataset.nfeatures): if __debug__: debug('PSA', "Analyzing %i features: %i [%i%%]" \ % (nfeatures, feature+1, float(feature+1)/nfeatures*100,), cr=True) # store current feature to restore it later on current_feature = dataset.samples[:, feature].copy() # add noise to current feature dataset.samples[:, feature] += self.__noise(size=len(dataset)) # compute the datameasure on the perturbed dataset perturbed_measure = self.__datameasure(dataset) # restore the current feature dataset.samples[:, feature] = current_feature # difference from original datameasure is sensitivity sens_map.append(perturbed_measure.samples - orig_measure.samples) if __debug__: debug('PSA', '') # turn into an array and get rid of unnecessary axes -- ideally yielding # 2D array sens_map = np.array(sens_map).squeeze() # swap first to axis: we have nfeatures on first but want it as second # in a dataset sens_map = np.swapaxes(sens_map, 0, 1) return Dataset(sens_map)
PypiClean
/PyGall-0.12.tar.gz/PyGall-0.12/pygall/static/app/js/jquery.iframe-transport.js
(function ($) { 'use strict'; // Helper variable to create unique names for the transport iframes: var counter = 0; // The iframe transport accepts three additional options: // options.fileInput: a jQuery collection of file input fields // options.paramName: the parameter name for the file form data, // overrides the name property of the file input field(s) // options.formData: an array of objects with name and value properties, // equivalent to the return data of .serializeArray(), e.g.: // [{name: a, value: 1}, {name: b, value: 2}] $.ajaxTransport('iframe', function (options, originalOptions, jqXHR) { if (options.type === 'POST' || options.type === 'GET') { var form, iframe; return { send: function (headers, completeCallback) { form = $('<form style="display:none;"></form>'); // javascript:false as initial iframe src // prevents warning popups on HTTPS in IE6. // IE versions below IE8 cannot set the name property of // elements that have already been added to the DOM, // so we set the name along with the iframe HTML markup: iframe = $( '<iframe src="javascript:false;" name="iframe-transport-' + (counter += 1) + '"></iframe>' ).bind('load', function () { var fileInputClones; iframe .unbind('load') .bind('load', function () { var response; // Wrap in a try/catch block to catch exceptions thrown // when trying to access cross-domain iframe contents: try { response = iframe.contents(); // Google Chrome and Firefox do not throw an // exception when calling iframe.contents() on // cross-domain requests, so we unify the response: if (!response.length || !response[0].firstChild) { throw new Error(); } } catch (e) { response = undefined; } // The complete callback returns the // iframe content document as response object: completeCallback( 200, 'success', {'iframe': response} ); // Fix for IE endless progress bar activity bug // (happens on form submits to iframe targets): $('<iframe src="javascript:false;"></iframe>') .appendTo(form); form.remove(); }); form .prop('target', iframe.prop('name')) .prop('action', options.url) .prop('method', options.type); if (options.formData) { $.each(options.formData, function (index, field) { $('<input type="hidden"/>') .prop('name', field.name) .val(field.value) .appendTo(form); }); } if (options.fileInput && options.fileInput.length && options.type === 'POST') { fileInputClones = options.fileInput.clone(); // Insert a clone for each file input field: options.fileInput.after(function (index) { return fileInputClones[index]; }); if (options.paramName) { options.fileInput.each(function () { $(this).prop('name', options.paramName); }); } // Appending the file input fields to the hidden form // removes them from their original location: form .append(options.fileInput) .prop('enctype', 'multipart/form-data') // enctype must be set as encoding for IE: .prop('encoding', 'multipart/form-data'); } form.submit(); // Insert the file input fields at their original location // by replacing the clones with the originals: if (fileInputClones && fileInputClones.length) { options.fileInput.each(function (index, input) { var clone = $(fileInputClones[index]); $(input).prop('name', clone.prop('name')); clone.replaceWith(input); }); } }); form.append(iframe).appendTo('body'); }, abort: function () { if (iframe) { // javascript:false as iframe src aborts the request // and prevents warning popups on HTTPS in IE6. // concat is used to avoid the "Script URL" JSLint error: iframe .unbind('load') .prop('src', 'javascript'.concat(':false;')); } if (form) { form.remove(); } } }; } }); // The iframe transport returns the iframe content document as response. // The following adds converters from iframe to text, json, html, and script: $.ajaxSetup({ converters: { 'iframe text': function (iframe) { return iframe.text(); }, 'iframe json': function (iframe) { return $.parseJSON(iframe.text()); }, 'iframe html': function (iframe) { return iframe.find('body').html(); }, 'iframe script': function (iframe) { return $.globalEval(iframe.text()); } } }); }(jQuery));
PypiClean
/multi_task_nmt_lawhy-0.1.3-py3-none-any.whl/mnmt/translator/basic_translator.py
class BasicTranslator: def __init__(self, quiet_translate=True): """ Args: quiet_translate: determine whether to print translation or not """ self.quiet_translate = quiet_translate def translate(self, output, trg, trg_field, output_file=None): """ Args: output: [trg_length, batch_size, output_dim], model's output trg: [trg_length, batch_size], target reference trg_field: target language field output_file: save translation results in output_file """ raise NotImplementedError @staticmethod def matching(pred, ref, trg_field, quiet_translate, output_file=None): """ Args: pred: model's prediction, modified from model's output ref: target reference, modified from raw target reference {trg} trg_field: target language field quiet_translate: determine whether to print translation or not output_file: save translation results in output_file """ tally = 0 for j in range(pred.shape[0]): pred_j = pred[j, :] pred_j_toks = [] for t in pred_j: tok = trg_field.vocab.itos[t] if tok == '<eos>': break else: pred_j_toks.append(tok) pred_j = ''.join(pred_j_toks) ref_j = ref[j, :] ref_j_toks = [] for t in ref_j: tok = trg_field.vocab.itos[t] if tok == '<eos>': break else: ref_j_toks.append(tok) ref_j = ''.join(ref_j_toks) if not quiet_translate: print("Pred: {} | Ref: {}".format(pred_j, ref_j)) if output_file is not None: output_file.write(pred_j + '\t' + ref_j + '\n') # save output results in file if pred_j == ref_j: tally += 1 return tally
PypiClean
/alipay-sdk-python-pycryptodome-3.3.202.tar.gz/alipay-sdk-python-pycryptodome-3.3.202/alipay/aop/api/domain/AlipayCommerceIotSupplierAssetBatchqueryModel.py
import json from alipay.aop.api.constant.ParamConstants import * class AlipayCommerceIotSupplierAssetBatchqueryModel(object): def __init__(self): self._cur_page_num = None self._keyword = None self._page_size = None self._supplier_pid = None @property def cur_page_num(self): return self._cur_page_num @cur_page_num.setter def cur_page_num(self, value): self._cur_page_num = value @property def keyword(self): return self._keyword @keyword.setter def keyword(self, value): self._keyword = value @property def page_size(self): return self._page_size @page_size.setter def page_size(self, value): self._page_size = value @property def supplier_pid(self): return self._supplier_pid @supplier_pid.setter def supplier_pid(self, value): self._supplier_pid = value def to_alipay_dict(self): params = dict() if self.cur_page_num: if hasattr(self.cur_page_num, 'to_alipay_dict'): params['cur_page_num'] = self.cur_page_num.to_alipay_dict() else: params['cur_page_num'] = self.cur_page_num if self.keyword: if hasattr(self.keyword, 'to_alipay_dict'): params['keyword'] = self.keyword.to_alipay_dict() else: params['keyword'] = self.keyword if self.page_size: if hasattr(self.page_size, 'to_alipay_dict'): params['page_size'] = self.page_size.to_alipay_dict() else: params['page_size'] = self.page_size if self.supplier_pid: if hasattr(self.supplier_pid, 'to_alipay_dict'): params['supplier_pid'] = self.supplier_pid.to_alipay_dict() else: params['supplier_pid'] = self.supplier_pid return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayCommerceIotSupplierAssetBatchqueryModel() if 'cur_page_num' in d: o.cur_page_num = d['cur_page_num'] if 'keyword' in d: o.keyword = d['keyword'] if 'page_size' in d: o.page_size = d['page_size'] if 'supplier_pid' in d: o.supplier_pid = d['supplier_pid'] return o
PypiClean
/h2o_pysparkling_2.4-3.42.0.2.post1.tar.gz/h2o_pysparkling_2.4-3.42.0.2.post1/ai/h2o/sparkling/ml/models/H2ODRFMOJOModel.py
from ai.h2o.sparkling.ml.params.H2OMOJOModelParams import H2OTreeBasedSupervisedMOJOModelParams from pyspark.ml.util import _jvm from py4j.java_gateway import JavaObject from ai.h2o.sparkling.Initializer import Initializer from ai.h2o.sparkling.ml.models.H2OMOJOSettings import H2OMOJOSettings from ai.h2o.sparkling.ml.params.H2OTypeConverters import H2OTypeConverters from ai.h2o.sparkling.H2ODataFrameConverters import H2ODataFrameConverters from ai.h2o.sparkling.ml.params.HasIgnoredColsOnMOJO import HasIgnoredColsOnMOJO class H2ODRFMOJOModel(H2OTreeBasedSupervisedMOJOModelParams, HasIgnoredColsOnMOJO): @staticmethod def createFromMojo(pathToMojo, settings=H2OMOJOSettings.default()): # We need to make sure that Sparkling Water classes are available on the Spark driver and executor paths Initializer.load_sparkling_jar() javaModel = _jvm().ai.h2o.sparkling.ml.models.H2ODRFMOJOModel.createFromMojo(pathToMojo, settings.toJavaObject()) return H2ODRFMOJOModel(javaModel) def getCrossValidationModels(self): cvModels = self._java_obj.getCrossValidationModelsAsArray() if cvModels is None: return None elif isinstance(cvModels, JavaObject): return [H2ODRFMOJOModel(v) for v in cvModels] else: raise TypeError("Invalid type.") def getMtries(self): value = self._java_obj.getMtries() return value def getBinomialDoubleTrees(self): value = self._java_obj.getBinomialDoubleTrees() return value def getSampleRate(self): value = self._java_obj.getSampleRate() return value def getBalanceClasses(self): value = self._java_obj.getBalanceClasses() return value def getClassSamplingFactors(self): value = self._java_obj.getClassSamplingFactors() return H2OTypeConverters.scalaArrayToPythonArray(value) def getMaxAfterBalanceSize(self): value = self._java_obj.getMaxAfterBalanceSize() return value def getMaxConfusionMatrixSize(self): value = self._java_obj.getMaxConfusionMatrixSize() return value def getMaxDepth(self): value = self._java_obj.getMaxDepth() return value def getMinRows(self): value = self._java_obj.getMinRows() return value def getNbins(self): value = self._java_obj.getNbins() return value def getNbinsTopLevel(self): value = self._java_obj.getNbinsTopLevel() return value def getNbinsCats(self): value = self._java_obj.getNbinsCats() return value def getSeed(self): value = self._java_obj.getSeed() return value def getBuildTreeOneNode(self): value = self._java_obj.getBuildTreeOneNode() return value def getSampleRatePerClass(self): value = self._java_obj.getSampleRatePerClass() return H2OTypeConverters.scalaArrayToPythonArray(value) def getColSampleRatePerTree(self): value = self._java_obj.getColSampleRatePerTree() return value def getColSampleRateChangePerLevel(self): value = self._java_obj.getColSampleRateChangePerLevel() return value def getScoreTreeInterval(self): value = self._java_obj.getScoreTreeInterval() return value def getMinSplitImprovement(self): value = self._java_obj.getMinSplitImprovement() return value def getHistogramType(self): value = self._java_obj.getHistogramType() return value def getCalibrateModel(self): value = self._java_obj.getCalibrateModel() return value def getCalibrationMethod(self): value = self._java_obj.getCalibrationMethod() return value def getCheckConstantResponse(self): value = self._java_obj.getCheckConstantResponse() return value def getNfolds(self): value = self._java_obj.getNfolds() return value def getKeepCrossValidationModels(self): value = self._java_obj.getKeepCrossValidationModels() return value def getKeepCrossValidationPredictions(self): value = self._java_obj.getKeepCrossValidationPredictions() return value def getKeepCrossValidationFoldAssignment(self): value = self._java_obj.getKeepCrossValidationFoldAssignment() return value def getDistribution(self): value = self._java_obj.getDistribution() return value def getLabelCol(self): value = self._java_obj.getLabelCol() return value def getWeightCol(self): value = self._java_obj.getWeightCol() return value def getFoldCol(self): value = self._java_obj.getFoldCol() return value def getFoldAssignment(self): value = self._java_obj.getFoldAssignment() return value def getCategoricalEncoding(self): value = self._java_obj.getCategoricalEncoding() return value def getIgnoreConstCols(self): value = self._java_obj.getIgnoreConstCols() return value def getScoreEachIteration(self): value = self._java_obj.getScoreEachIteration() return value def getStoppingRounds(self): value = self._java_obj.getStoppingRounds() return value def getMaxRuntimeSecs(self): value = self._java_obj.getMaxRuntimeSecs() return value def getStoppingMetric(self): value = self._java_obj.getStoppingMetric() return value def getStoppingTolerance(self): value = self._java_obj.getStoppingTolerance() return value def getGainsliftBins(self): value = self._java_obj.getGainsliftBins() return value def getCustomMetricFunc(self): value = self._java_obj.getCustomMetricFunc() return value def getExportCheckpointsDir(self): value = self._java_obj.getExportCheckpointsDir() return value def getAucType(self): value = self._java_obj.getAucType() return value # Outputs
PypiClean
/jd/security/tde_client/http_report_client.py
import socket import platform from threading import RLock import os from seven_jd.jd.api.base import RestApi from jd import appinfo import random import time import json ALPHABET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz=+-*/_|<>^~@?%&" class HttpReportClient(object): def __init__(self, tde_client, server_url, access_token, app_key, app_secret): self.reports = dict() self.host_info = HttpReportClient.__get_host_info() self.parent = tde_client self.server_url = server_url self.access_token = access_token self.app_key = app_key self.app_secret = app_secret self.env_label = platform.system() + "|" + platform.version() + "|" + platform.python_version() self.type = {"init": 1, "exception": 2, "statistic": 3, "event": 4} self.level = {"info": 1, "warn": 2, "error": 3, "severe": 4} self.__lock = RLock() self.__add_cup_info() # statistic record present in long array # index: enccnt(0) deccnt(1) encerrcnt(2) decerrcnt(3) self.statistic = [0, 0, 0, 0] @staticmethod def __get_host_info(): name = socket.getfqdn(socket.gethostname()) addr = socket.gethostbyname(name) if addr is not None: return addr return "Unknown host" def __add_cup_info(self): lower_env_label = self.env_label.lower() cpu_info = 'Unknown' if lower_env_label.find('linux') != -1: cpu_info = os.popen('cat /proc/cpuinfo | grep "model name" | uniq').read().split(':')[1].rstrip( '\n').strip() elif lower_env_label.find('mac') != -1: cpu_info = os.popen('sysctl -n machdep.cpu.brand_string').read().rstrip('\n').strip() elif lower_env_label.find('windows') != -1: cmd_result = os.popen('wmic cpu get name') cpu_info = cmd_result.read().replace('Name', '').replace('\n', '', -1).strip() cmd_result.read() self.env_label = self.env_label + '|' + cpu_info def flush(self): self.insert_statistic_report() self.send_all_reports() def send_all_reports(self): with self.__lock: for key in self.reports.keys(): val = self.reports[key] request = JosSecretApiReportRequest(self.server_url, 80) request.businessId = val['businessId'] request.text = val['text'] request.attribute = json.dumps(val['attributes']) request.set_app_info(appinfo(self.app_key, self.app_secret)) res = request.getResponse(self.access_token) if res is not None and res.get('serviceCode') == 0: del self.reports[key] def insert_init_report(self): with self.__lock: init_msg = { 'businessId': ''.join(random.sample(ALPHABET, 40)), 'text': 'INIT', 'attributes': { 'type': self.type['init'], 'host': self.host_info, 'level': self.level['info'], 'service': self.parent.token['service'], 'sdk_ver': self.parent.sdk_version, 'env': self.env_label, 'ts': round(time.time() * 1000) } } self.reports[self.type['init']] = init_msg def insert_statistic_report(self): with self.__lock: statistic_msg = { 'businessId': ''.join(random.sample(ALPHABET, 40)), 'text': 'STATISTIC', 'attributes': { 'enccnt': str(self.statistic[0]), 'deccnt': str(self.statistic[1]), 'encerrcnt': str(self.statistic[2]), 'decerrcnt': str(self.statistic[3]), 'type': self.type['statistic'], 'host': self.host_info, 'level': self.level['info'], 'service': self.parent.token['service'], 'sdk_ver': self.parent.sdk_version, 'env': self.env_label, 'ts': round(time.time() * 1000) } } self.reports[self.type['statistic']] = statistic_msg self.statistic = [0, 0, 0, 0] def insert_event_report(self, event_code, event_detail): with self.__lock: event_msg = { 'businessId': ''.join(random.sample(ALPHABET, 40)), 'text': 'EVENT', 'attributes': { 'code': event_code, 'event': event_detail, 'type': self.type['event'], 'host': self.host_info, 'level': self.level['info'], 'service': self.parent.token['service'], 'sdk_ver': self.parent.sdk_version, 'env': self.env_label, 'ts': round(time.time() * 1000) } } request = JosSecretApiReportRequest(self.server_url, 80) request.businessId = event_msg['businessId'] request.text = event_msg['text'] request.set_app_info(appinfo(self.app_key, self.app_secret)) request.getResponse(self.access_token) def insert_key_update_event_report(self, event_code, event_detail, major_key_ver, key_list): with self.__lock: key_update_event_msg = { 'businessId': ''.join(random.sample(ALPHABET, 40)), 'text': 'EVENT', 'attributes': { 'cur_key': major_key_ver, 'keylist': key_list, 'type': self.type['event'], 'host': self.host_info, 'level': self.level['info'], 'service': self.parent.token['service'], 'sdk_ver': self.parent.sdk_version, 'env': self.env_label, 'ts': round(time.time() * 1000) } } request = JosSecretApiReportRequest(self.server_url, 80) request.businessId = key_update_event_msg['businessId'] request.text = key_update_event_msg['text'] request.attribute = json.dumps(key_update_event_msg['attributes']) request.set_app_info(appinfo(self.app_key, self.app_secret)) request.getResponse(self.access_token) def insert_err_report(self, code, detail, stack_trace, level): with self.__lock: err_msg = { 'businessId': ''.join(random.sample(ALPHABET, 40)), 'text': 'EXCEPTION', 'attributes': { 'type': self.type['exception'], 'host': self.host_info, 'level': level, 'service': self.parent.token['service'], 'sdk_ver': self.parent.sdk_version, 'env': self.env_label, 'ts': round(time.time() * 1000), 'code': code, 'msg': detail, 'heap': stack_trace } } if level == self.level['error'] or level == self.level['severe']: request = JosSecretApiReportRequest(self.server_url, 80) request.businessId = err_msg['businessId'] request.text = err_msg['text'] request.attribute = json.dumps(err_msg['attributes']) request.set_app_info(appinfo(self.app_key, self.app_secret)) request.getResponse(self.access_token) else: self.reports[code] = err_msg class JosSecretApiReportRequest(RestApi): def __init__(self, domain, port=80): RestApi.__init__(self, domain, port) self.serverUrl = None self.businessId = None self.text = None self.attribute = None def process_with_url_before_request(self, url): self.serverUrl = url def getapiname(self): return 'jingdong.jos.secret.api.report.get'
PypiClean
/authok-python-1.22.1.tar.gz/authok-python-1.22.1/authok/v3/management/rules.py
from .rest import RestClient class Rules(object): """Rules endpoint implementation. Args: domain (str): Your AuthOK domain, e.g: 'username.cn.authok.cn' token (str): Management API v1 Token telemetry (bool, optional): Enable or disable Telemetry (defaults to True) timeout (float or tuple, optional): Change the requests connect and read timeout. Pass a tuple to specify both values separately or a float to set both to it. (defaults to 5.0 for both) rest_options (RestClientOptions): Pass an instance of RestClientOptions to configure additional RestClient options, such as rate-limit retries. (defaults to None) """ def __init__(self, domain, token, telemetry=True, timeout=5.0, protocol="https", rest_options=None): self.domain = domain self.protocol = protocol self.client = RestClient(jwt=token, telemetry=telemetry, timeout=timeout, options=rest_options) def _url(self, id=None): url = '{}://{}/api/v1/rules'.format(self.protocol, self.domain) if id is not None: return '{}/{}'.format(url, id) return url def all(self, stage='login_success', enabled=True, fields=None, include_fields=True, page=None, per_page=None, include_totals=False): """Retrieves a list of all rules. Args: stage (str, optional): Retrieves rules that match the execution stage. Defaults to login_success. enabled (bool, optional): If provided, retrieves rules that match the value, otherwise all rules are retrieved. fields (list, optional): A list of fields to include or exclude (depending on include_fields) from the result. Leave empty to retrieve all fields. include_fields (bool, optional): True if the fields specified are to be included in the result, False otherwise. Defaults to True. page (int, optional): The result's page number (zero based). When not set, the default value is up to the server. per_page (int, optional): The amount of entries per page. When not set, the default value is up to the server. include_totals (bool, optional): True if the query summary is to be included in the result, False otherwise. Defaults to False. See: https://docs.authok.cn/api/management/v1#!/Rules/get_rules """ params = { 'stage': stage, 'fields': fields and ','.join(fields) or None, 'include_fields': str(include_fields).lower(), 'page': page, 'per_page': per_page, 'include_totals': str(include_totals).lower() } # since the default is True, this is here to disable the filter if enabled is not None: params['enabled'] = str(enabled).lower() return self.client.get(self._url(), params=params) def create(self, body): """Creates a new rule. Args: body (dict): Attributes for the newly created rule. See: https://docs.authok.cn/api/v1#!/Rules/post_rules """ return self.client.post(self._url(), data=body) def get(self, id, fields=None, include_fields=True): """Retrieves a rule by its ID. Args: id (str): The id of the rule to retrieve. fields (list, optional): A list of fields to include or exclude (depending on include_fields) from the result. Leave empty to retrieve all fields. include_fields (bool, optional): True if the fields specified are to be included in the result, False otherwise. Defaults to True. See: https://docs.authok.cn/api/management/v1#!/Rules/get_rules_by_id """ params = {'fields': fields and ','.join(fields) or None, 'include_fields': str(include_fields).lower()} return self.client.get(self._url(id), params=params) def delete(self, id): """Delete a rule. Args: id (str): The id of the rule to delete. See: https://docs.authok.cn/api/management/v1#!/Rules/delete_rules_by_id """ return self.client.delete(self._url(id)) def update(self, id, body): """Update an existing rule Args: id (str): The id of the rule to modify. body (dict): Attributes to modify. See: https://docs.authok.cn/api/v1#!/Rules/patch_rules_by_id """ return self.client.patch(self._url(id), data=body)
PypiClean
/sherpa_client-0.12.7-py3-none-any.whl/sherpa_client/models/delete_many_response.py
from typing import TYPE_CHECKING, Any, Dict, List, Type, TypeVar, Union import attr from ..types import UNSET, Unset if TYPE_CHECKING: from ..models.item_count import ItemCount from ..models.sherpa_job_bean import SherpaJobBean T = TypeVar("T", bound="DeleteManyResponse") @attr.s(auto_attribs=True) class DeleteManyResponse: """ Attributes: removed (int): details (Union[Unset, List['ItemCount']]): job (Union[Unset, SherpaJobBean]): """ removed: int details: Union[Unset, List["ItemCount"]] = UNSET job: Union[Unset, "SherpaJobBean"] = UNSET def to_dict(self) -> Dict[str, Any]: removed = self.removed details: Union[Unset, List[Dict[str, Any]]] = UNSET if not isinstance(self.details, Unset): details = [] for details_item_data in self.details: details_item = details_item_data.to_dict() details.append(details_item) job: Union[Unset, Dict[str, Any]] = UNSET if not isinstance(self.job, Unset): job = self.job.to_dict() field_dict: Dict[str, Any] = {} field_dict.update( { "removed": removed, } ) if details is not UNSET: field_dict["details"] = details if job is not UNSET: field_dict["job"] = job return field_dict @classmethod def from_dict(cls: Type[T], src_dict: Dict[str, Any]) -> T: from ..models.item_count import ItemCount from ..models.sherpa_job_bean import SherpaJobBean d = src_dict.copy() removed = d.pop("removed") details = [] _details = d.pop("details", UNSET) for details_item_data in _details or []: details_item = ItemCount.from_dict(details_item_data) details.append(details_item) _job = d.pop("job", UNSET) job: Union[Unset, SherpaJobBean] if isinstance(_job, Unset): job = UNSET else: job = SherpaJobBean.from_dict(_job) delete_many_response = cls( removed=removed, details=details, job=job, ) return delete_many_response
PypiClean
/clime_issue_density-0.3.1-py3-none-any.whl/clime_issue_density/args.py
from argparse import ArgumentParser, Namespace name: str = "CLIME" authors: list = [ "Nicholas M. Synovic", "Matthew Hyatt", "Sohini Thota", "George K. Thiruvathukal", ] def mainArgs() -> Namespace: parser: ArgumentParser = ArgumentParser( prog=f"{name} Issue Density", description="A tool to calculate the issue density of a repository", epilog=f"Author(s): {', '.join(authors)}", ) parser.add_argument( "-c", "--commits", help="Commits JSON file. DEFAULT: ./commits_loc.json", default="commits_loc.json", required=False, type=str, ) parser.add_argument( "-i", "--issues", help="Issues JSON file. DEFAULT: ./github_issues.json", default="github_issues.json", required=False, type=str, ) parser.add_argument( "-o", "--output", help="Output JSON file. DEFAULT: ./issue_density.json", default="issue_density.json", required=False, type=str, ) parser.add_argument( "-v", "--version", help="Display version of the tool", action="store_true", default=False, ) return parser.parse_args() def graphArgs() -> Namespace: parser: ArgumentParser = ArgumentParser( prog=f"{name} Issue Density Grapher", description="A tool to graph the issue density of a repository", epilog=f"Author(s): {', '.join(authors)}", ) parser.add_argument( "-i", "--input", help=f"JSON export from {name} GitHub Issue Density Compute. DEFAULT: ./issue_density.json", type=str, required=False, default="issue_density.json", ) parser.add_argument( "-o", "--output", help="Filename of the graph. DEFAULT: ./issue_density.pdf", type=str, required=False, default="issue_density.pdf", ) parser.add_argument( "--type", help="Type of figure to plot. DEFAULT: line", type=str, required=False, default="line", ) parser.add_argument( "--title", help='Title of the figure. DEFAULT: ""', type=str, required=False, default="", ) parser.add_argument( "--x-label", help='X axis label of the figure. DEFAULT: ""', type=str, required=False, default="", ) parser.add_argument( "--y-label", help='Y axis label of the figure. DEFAULT: ""', type=str, required=False, default="", ) parser.add_argument( "--stylesheet", help='Filepath of matplotlib stylesheet to use. DEFAULT: ""', type=str, required=False, default="", ) parser.add_argument( "-v", "--version", help="Display version of the tool", action="store_true", default=False, ) return parser.parse_args()
PypiClean
/tensorflow_tflex-1.13.1rc1-cp27-cp27mu-manylinux1_x86_64.whl/tensorflow_tflex-1.13.1rc1.data/purelib/tensorflow/python/ops/linalg/linear_operator_algebra.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools from tensorflow.python.framework import ops from tensorflow.python.util import tf_inspect _CHOLESKY_DECOMPS = {} _MATMUL = {} def _registered_function(type_list, registry): """Given a list of classes, finds the most specific function registered.""" enumerated_hierarchies = [enumerate(tf_inspect.getmro(t)) for t in type_list] # Get all possible combinations of hierarchies. cls_combinations = list(itertools.product(*enumerated_hierarchies)) def hierarchy_distance(cls_combination): candidate_distance = sum(c[0] for c in cls_combination) if tuple(c[1] for c in cls_combination) in registry: return candidate_distance return 10000 registered_combination = min(cls_combinations, key=hierarchy_distance) return registry.get(tuple(r[1] for r in registered_combination), None) def _registered_cholesky(type_a): """Get the Cholesky function registered for class a.""" return _registered_function([type_a], _CHOLESKY_DECOMPS) def _registered_matmul(type_a, type_b): """Get the Matmul function registered for classes a and b.""" return _registered_function([type_a, type_b], _MATMUL) def cholesky(lin_op_a, name=None): """Get the Cholesky factor associated to lin_op_a. Args: lin_op_a: The LinearOperator to decompose. name: Name to use for this operation. Returns: A LinearOperator that represents the lower Cholesky factor of `lin_op_a`. Raises: NotImplementedError: If no Cholesky method is defined for the LinearOperator type of `lin_op_a`. """ cholesky_fn = _registered_cholesky(type(lin_op_a)) if cholesky_fn is None: raise ValueError("No cholesky decomposition registered for {}".format( type(lin_op_a))) with ops.name_scope(name, "Cholesky"): return cholesky_fn(lin_op_a) def matmul(lin_op_a, lin_op_b, name=None): """Compute lin_op_a.matmul(lin_op_b). Args: lin_op_a: The LinearOperator on the left. lin_op_b: The LinearOperator on the right. name: Name to use for this operation. Returns: A LinearOperator that represents the matmul between `lin_op_a` and `lin_op_b`. Raises: NotImplementedError: If no matmul method is defined between types of `lin_op_a` and `lin_op_b`. """ matmul_fn = _registered_matmul(type(lin_op_a), type(lin_op_b)) if matmul_fn is None: raise ValueError("No matmul registered for {}.matmul({})".format( type(lin_op_a), type(lin_op_b))) with ops.name_scope(name, "Matmul"): return matmul_fn(lin_op_a, lin_op_b) class RegisterCholesky(object): """Decorator to register a Cholesky implementation function. Usage: @linear_operator_algebra.RegisterCholesky(lin_op.LinearOperatorIdentity) def _cholesky_identity(lin_op_a): # Return the identity matrix. """ def __init__(self, lin_op_cls_a): """Initialize the LinearOperator registrar. Args: lin_op_cls_a: the class of the LinearOperator to decompose. """ self._key = (lin_op_cls_a,) def __call__(self, cholesky_fn): """Perform the Cholesky registration. Args: cholesky_fn: The function to use for the Cholesky. Returns: cholesky_fn Raises: TypeError: if cholesky_fn is not a callable. ValueError: if a Cholesky function has already been registered for the given argument classes. """ if not callable(cholesky_fn): raise TypeError( "cholesky_fn must be callable, received: {}".format(cholesky_fn)) if self._key in _CHOLESKY_DECOMPS: raise ValueError("Cholesky({}) has already been registered to: {}".format( self._key[0].__name__, _CHOLESKY_DECOMPS[self._key])) _CHOLESKY_DECOMPS[self._key] = cholesky_fn return cholesky_fn class RegisterMatmul(object): """Decorator to register a Matmul implementation function. Usage: @linear_operator_algebra.RegisterMatmul( lin_op.LinearOperatorIdentity, lin_op.LinearOperatorIdentity) def _matmul_identity(a, b): # Return the identity matrix. """ def __init__(self, lin_op_cls_a, lin_op_cls_b): """Initialize the LinearOperator registrar. Args: lin_op_cls_a: the class of the LinearOperator to multiply. lin_op_cls_b: the class of the second LinearOperator to multiply. """ self._key = (lin_op_cls_a, lin_op_cls_b) def __call__(self, matmul_fn): """Perform the Matmul registration. Args: matmul_fn: The function to use for the Matmul. Returns: matmul_fn Raises: TypeError: if matmul_fn is not a callable. ValueError: if a Matmul function has already been registered for the given argument classes. """ if not callable(matmul_fn): raise TypeError( "matmul_fn must be callable, received: {}".format(matmul_fn)) if self._key in _MATMUL: raise ValueError("Matmul({}, {}) has already been registered.".format( self._key[0].__name__, self._key[1].__name__)) _MATMUL[self._key] = matmul_fn return matmul_fn
PypiClean
/py-pure-client-1.38.0.tar.gz/py-pure-client-1.38.0/pypureclient/flashblade/FB_2_10/models/__init__.py
from __future__ import absolute_import class ReferenceType(object): """Class just for type annotations. It's used for reference arg on api function. This allows user to pass collections of Model objects to the method without transforming them to ids or names. Should be Protocol type when the typing module will get support of it. """ def __init__(self): self.id = '' self.name = '' def quoteString(s): r"""Quote string according to https://wiki.purestorage.com/display/UXReviewers/Filtering >>> quote("a") "'a'" >>> quote("a\\b") "'a\\\\b'" >>> quote("a\\b") "'a\\\\b'" >>> quote("a'b") "'a\\'b'" >>> quote(None) None """ if s is None: return None quoted = str(s).replace("\\", "\\\\").replace("'", "\\'") return "'{}'".format(quoted) def quoteStrings(s): if s is None: return None return [quoteString(x) for x in s] # import models into model package from .active_directory import ActiveDirectory from .active_directory_get_response import ActiveDirectoryGetResponse from .active_directory_patch import ActiveDirectoryPatch from .active_directory_post import ActiveDirectoryPost from .active_directory_response import ActiveDirectoryResponse from .admin import Admin from .admin_api_token import AdminApiToken from .admin_api_token_get_response import AdminApiTokenGetResponse from .admin_api_token_response import AdminApiTokenResponse from .admin_cache import AdminCache from .admin_cache_get_response import AdminCacheGetResponse from .admin_get_response import AdminGetResponse from .admin_patch import AdminPatch from .admin_response import AdminResponse from .admin_setting import AdminSetting from .admin_settings_get_response import AdminSettingsGetResponse from .admin_settings_response import AdminSettingsResponse from .alert import Alert from .alert_get_response import AlertGetResponse from .alert_response import AlertResponse from .alert_watcher import AlertWatcher from .alert_watcher_get_response import AlertWatcherGetResponse from .alert_watcher_post import AlertWatcherPost from .alert_watcher_response import AlertWatcherResponse from .api_client import ApiClient from .api_clients_post import ApiClientsPost from .api_clients_response import ApiClientsResponse from .api_token import ApiToken from .api_version import ApiVersion from .array import Array from .array_connection import ArrayConnection from .array_connection_get_response import ArrayConnectionGetResponse from .array_connection_key import ArrayConnectionKey from .array_connection_key_get_response import ArrayConnectionKeyGetResponse from .array_connection_key_response import ArrayConnectionKeyResponse from .array_connection_path import ArrayConnectionPath from .array_connection_path_get_response import ArrayConnectionPathGetResponse from .array_connection_post import ArrayConnectionPost from .array_connection_response import ArrayConnectionResponse from .array_encryption import ArrayEncryption from .array_encryption_data_at_rest import ArrayEncryptionDataAtRest from .array_eradication_config import ArrayEradicationConfig from .array_factory_reset_token import ArrayFactoryResetToken from .array_factory_reset_token_get_response import ArrayFactoryResetTokenGetResponse from .array_factory_reset_token_response import ArrayFactoryResetTokenResponse from .array_get_response import ArrayGetResponse from .array_http_specific_performance import ArrayHttpSpecificPerformance from .array_http_specific_performance_get import ArrayHttpSpecificPerformanceGet from .array_nfs_specific_performance import ArrayNfsSpecificPerformance from .array_nfs_specific_performance_get import ArrayNfsSpecificPerformanceGet from .array_performance import ArrayPerformance from .array_performance_get_response import ArrayPerformanceGetResponse from .array_performance_replication_get_resp import ArrayPerformanceReplicationGetResp from .array_response import ArrayResponse from .array_s3_specific_performance import ArrayS3SpecificPerformance from .array_s3_specific_performance_get_resp import ArrayS3SpecificPerformanceGetResp from .array_space import ArraySpace from .array_space_get_response import ArraySpaceGetResponse from .arrays_supported_time_zones_get_response import ArraysSupportedTimeZonesGetResponse from .audit import Audit from .audit_get_response import AuditGetResponse from .audit_response import AuditResponse from .blade import Blade from .blade_get_response import BladeGetResponse from .bucket import Bucket from .bucket_defaults import BucketDefaults from .bucket_defaults_readonly import BucketDefaultsReadonly from .bucket_eradication_config import BucketEradicationConfig from .bucket_get_response import BucketGetResponse from .bucket_patch import BucketPatch from .bucket_performance import BucketPerformance from .bucket_performance_get_response import BucketPerformanceGetResponse from .bucket_post import BucketPost from .bucket_replica_link import BucketReplicaLink from .bucket_replica_link_get_response import BucketReplicaLinkGetResponse from .bucket_replica_link_post import BucketReplicaLinkPost from .bucket_replica_link_response import BucketReplicaLinkResponse from .bucket_response import BucketResponse from .bucket_s3_specific_performance import BucketS3SpecificPerformance from .bucket_s3_specific_performance_get_resp import BucketS3SpecificPerformanceGetResp from .built_in import BuiltIn from .built_in_no_id import BuiltInNoId from .built_in_relationship import BuiltInRelationship from .certificate import Certificate from .certificate_certificate_group_get_resp import CertificateCertificateGroupGetResp from .certificate_certificate_group_response import CertificateCertificateGroupResponse from .certificate_get_response import CertificateGetResponse from .certificate_group import CertificateGroup from .certificate_group_certificate_get_resp import CertificateGroupCertificateGetResp from .certificate_group_certificate_response import CertificateGroupCertificateResponse from .certificate_group_get_response import CertificateGroupGetResponse from .certificate_group_response import CertificateGroupResponse from .certificate_group_use import CertificateGroupUse from .certificate_group_use_get_response import CertificateGroupUseGetResponse from .certificate_patch import CertificatePatch from .certificate_post import CertificatePost from .certificate_response import CertificateResponse from .certificate_use import CertificateUse from .certificate_use_get_response import CertificateUseGetResponse from .client_performance import ClientPerformance from .client_performance_get_response import ClientPerformanceGetResponse from .continuous_replication_performance import ContinuousReplicationPerformance from .direction import Direction from .directory_service import DirectoryService from .directory_service_get_response import DirectoryServiceGetResponse from .directory_service_management import DirectoryServiceManagement from .directory_service_nfs import DirectoryServiceNfs from .directory_service_response import DirectoryServiceResponse from .directory_service_role import DirectoryServiceRole from .directory_service_roles_get_response import DirectoryServiceRolesGetResponse from .directory_service_roles_response import DirectoryServiceRolesResponse from .directory_service_smb import DirectoryServiceSmb from .dns import Dns from .dns_get_response import DnsGetResponse from .dns_response import DnsResponse from .drive import Drive from .drive_get_response import DriveGetResponse from .eula import Eula from .eula_get_response import EulaGetResponse from .eula_response import EulaResponse from .eula_signature import EulaSignature from .file_info import FileInfo from .file_lock import FileLock from .file_lock_get_response import FileLockGetResponse from .file_lock_nlm_reclamation_response import FileLockNlmReclamationResponse from .file_lock_range import FileLockRange from .file_lock_response import FileLockResponse from .file_session import FileSession from .file_session_get_response import FileSessionGetResponse from .file_session_response import FileSessionResponse from .file_system import FileSystem from .file_system_client import FileSystemClient from .file_system_clients_get_response import FileSystemClientsGetResponse from .file_system_clients_response import FileSystemClientsResponse from .file_system_get_response import FileSystemGetResponse from .file_system_group_performance import FileSystemGroupPerformance from .file_system_groups_performance_get_response import FileSystemGroupsPerformanceGetResponse from .file_system_lock_nlm_reclamation import FileSystemLockNlmReclamation from .file_system_patch import FileSystemPatch from .file_system_performance import FileSystemPerformance from .file_system_performance_get_response import FileSystemPerformanceGetResponse from .file_system_post import FileSystemPost from .file_system_replica_link import FileSystemReplicaLink from .file_system_replica_link_get_response import FileSystemReplicaLinkGetResponse from .file_system_replica_link_response import FileSystemReplicaLinkResponse from .file_system_response import FileSystemResponse from .file_system_snapshot import FileSystemSnapshot from .file_system_snapshot_get_response import FileSystemSnapshotGetResponse from .file_system_snapshot_get_transfer_response import FileSystemSnapshotGetTransferResponse from .file_system_snapshot_post import FileSystemSnapshotPost from .file_system_snapshot_response import FileSystemSnapshotResponse from .file_system_snapshot_transfer import FileSystemSnapshotTransfer from .file_system_snapshot_transfer_response import FileSystemSnapshotTransferResponse from .file_system_user_performance import FileSystemUserPerformance from .file_system_users_performance_get_response import FileSystemUsersPerformanceGetResponse from .fixed_location_reference import FixedLocationReference from .fixed_reference import FixedReference from .fixed_reference_name_only import FixedReferenceNameOnly from .fixed_reference_no_id import FixedReferenceNoId from .fixed_reference_no_resource_type import FixedReferenceNoResourceType from .fixed_reference_with_remote import FixedReferenceWithRemote from .group import Group from .group_quota import GroupQuota from .group_quota_get_response import GroupQuotaGetResponse from .group_quota_patch import GroupQuotaPatch from .group_quota_post import GroupQuotaPost from .group_quota_response import GroupQuotaResponse from .hardware import Hardware from .hardware_connector import HardwareConnector from .hardware_connector_get_response import HardwareConnectorGetResponse from .hardware_connector_performance import HardwareConnectorPerformance from .hardware_connector_performance_get_response import HardwareConnectorPerformanceGetResponse from .hardware_connector_response import HardwareConnectorResponse from .hardware_get_response import HardwareGetResponse from .hardware_response import HardwareResponse from .http import Http from .inline_response400 import InlineResponse400 from .inline_response401 import InlineResponse401 from .keytab import Keytab from .keytab_file_base64 import KeytabFileBase64 from .keytab_file_binary import KeytabFileBinary from .keytab_file_response import KeytabFileResponse from .keytab_get_response import KeytabGetResponse from .keytab_post import KeytabPost from .keytab_response import KeytabResponse from .kmip_server import KmipServer from .kmip_server_response import KmipServerResponse from .lifecycle_rule import LifecycleRule from .lifecycle_rule_config_extension import LifecycleRuleConfigExtension from .lifecycle_rule_get_response import LifecycleRuleGetResponse from .lifecycle_rule_patch import LifecycleRulePatch from .lifecycle_rule_post import LifecycleRulePost from .lifecycle_rule_response import LifecycleRuleResponse from .link_aggregation_group import LinkAggregationGroup from .link_aggregation_group_get_response import LinkAggregationGroupGetResponse from .link_aggregation_group_response import LinkAggregationGroupResponse from .linkaggregationgroup import Linkaggregationgroup from .location_reference import LocationReference from .login import Login from .login_banner_get_response import LoginBannerGetResponse from .logs_async import LogsAsync from .logs_async_get_response import LogsAsyncGetResponse from .logs_async_response import LogsAsyncResponse from .member import Member from .member_link import MemberLink from .multi_protocol import MultiProtocol from .multi_protocol_post import MultiProtocolPost from .network_interface import NetworkInterface from .network_interface_get_response import NetworkInterfaceGetResponse from .network_interface_patch import NetworkInterfacePatch from .network_interface_ping import NetworkInterfacePing from .network_interface_ping_get_response import NetworkInterfacePingGetResponse from .network_interface_ping_response import NetworkInterfacePingResponse from .network_interface_response import NetworkInterfaceResponse from .network_interface_trace import NetworkInterfaceTrace from .network_interface_trace_get_response import NetworkInterfaceTraceGetResponse from .network_interface_trace_response import NetworkInterfaceTraceResponse from .nfs import Nfs from .nfs_export_policy import NfsExportPolicy from .nfs_export_policy_get_response import NfsExportPolicyGetResponse from .nfs_export_policy_post import NfsExportPolicyPost from .nfs_export_policy_response import NfsExportPolicyResponse from .nfs_export_policy_rule import NfsExportPolicyRule from .nfs_export_policy_rule_base import NfsExportPolicyRuleBase from .nfs_export_policy_rule_get_response import NfsExportPolicyRuleGetResponse from .nfs_export_policy_rule_in_policy import NfsExportPolicyRuleInPolicy from .nfs_export_policy_rule_response import NfsExportPolicyRuleResponse from .nfs_patch import NfsPatch from .oauth_token_response import OauthTokenResponse from .object_backlog import ObjectBacklog from .object_lock_config_base import ObjectLockConfigBase from .object_lock_config_request_body import ObjectLockConfigRequestBody from .object_lock_config_response import ObjectLockConfigResponse from .object_store_access_key import ObjectStoreAccessKey from .object_store_access_key_get_response import ObjectStoreAccessKeyGetResponse from .object_store_access_key_post import ObjectStoreAccessKeyPost from .object_store_access_key_response import ObjectStoreAccessKeyResponse from .object_store_access_policy import ObjectStoreAccessPolicy from .object_store_access_policy_action import ObjectStoreAccessPolicyAction from .object_store_access_policy_action_get_response import ObjectStoreAccessPolicyActionGetResponse from .object_store_access_policy_action_response import ObjectStoreAccessPolicyActionResponse from .object_store_access_policy_get_response import ObjectStoreAccessPolicyGetResponse from .object_store_access_policy_patch import ObjectStoreAccessPolicyPatch from .object_store_access_policy_post import ObjectStoreAccessPolicyPost from .object_store_access_policy_response import ObjectStoreAccessPolicyResponse from .object_store_access_policy_rule import ObjectStoreAccessPolicyRule from .object_store_access_policy_rule_get_response import ObjectStoreAccessPolicyRuleGetResponse from .object_store_access_policy_rule_response import ObjectStoreAccessPolicyRuleResponse from .object_store_account import ObjectStoreAccount from .object_store_account_get_response import ObjectStoreAccountGetResponse from .object_store_account_patch import ObjectStoreAccountPatch from .object_store_account_post import ObjectStoreAccountPost from .object_store_account_response import ObjectStoreAccountResponse from .object_store_remote_credential_get_resp import ObjectStoreRemoteCredentialGetResp from .object_store_remote_credentials import ObjectStoreRemoteCredentials from .object_store_remote_credentials_post import ObjectStoreRemoteCredentialsPost from .object_store_remote_credentials_resp import ObjectStoreRemoteCredentialsResp from .object_store_user import ObjectStoreUser from .object_store_user_get_response import ObjectStoreUserGetResponse from .object_store_user_response import ObjectStoreUserResponse from .object_store_virtual_host import ObjectStoreVirtualHost from .object_store_virtual_host_get_response import ObjectStoreVirtualHostGetResponse from .object_store_virtual_host_response import ObjectStoreVirtualHostResponse from .page_info import PageInfo from .permission import Permission from .policy import Policy from .policy_base import PolicyBase from .policy_base_get_response import PolicyBaseGetResponse from .policy_base_renameable import PolicyBaseRenameable from .policy_base_response import PolicyBaseResponse from .policy_file_system_snapshot import PolicyFileSystemSnapshot from .policy_file_system_snapshot_get_response import PolicyFileSystemSnapshotGetResponse from .policy_file_system_snapshot_response import PolicyFileSystemSnapshotResponse from .policy_get_response import PolicyGetResponse from .policy_local_member import PolicyLocalMember from .policy_member import PolicyMember from .policy_member_get_response import PolicyMemberGetResponse from .policy_member_response import PolicyMemberResponse from .policy_member_with_remote import PolicyMemberWithRemote from .policy_member_with_remote_get_response import PolicyMemberWithRemoteGetResponse from .policy_member_with_remote_response import PolicyMemberWithRemoteResponse from .policy_patch import PolicyPatch from .policy_response import PolicyResponse from .policy_rule import PolicyRule from .policy_rule_index import PolicyRuleIndex from .policy_rule_index_in_policy import PolicyRuleIndexInPolicy from .policy_rule_object_access import PolicyRuleObjectAccess from .policy_rule_object_access_bulk_manage import PolicyRuleObjectAccessBulkManage from .policy_rule_object_access_condition import PolicyRuleObjectAccessCondition from .policy_rule_object_access_post import PolicyRuleObjectAccessPost from .quota_setting import QuotaSetting from .quota_setting_get_response import QuotaSettingGetResponse from .quota_setting_response import QuotaSettingResponse from .rapid_data_locking import RapidDataLocking from .rapid_data_locking_response import RapidDataLockingResponse from .reference import Reference from .relationship_performance_replication import RelationshipPerformanceReplication from .relationship_performance_replication_get_resp import RelationshipPerformanceReplicationGetResp from .replica_link_built_in import ReplicaLinkBuiltIn from .replication_performance import ReplicationPerformance from .resource import Resource from .resource_performance_replication import ResourcePerformanceReplication from .resource_performance_replication_get_response import ResourcePerformanceReplicationGetResponse from .resource_type import ResourceType from .role import Role from .role_get_response import RoleGetResponse from .smtp import SMTP from .session import Session from .session_get_response import SessionGetResponse from .smb import Smb from .smb_client_policy import SmbClientPolicy from .smb_client_policy_get_response import SmbClientPolicyGetResponse from .smb_client_policy_post import SmbClientPolicyPost from .smb_client_policy_response import SmbClientPolicyResponse from .smb_client_policy_rule import SmbClientPolicyRule from .smb_client_policy_rule_base import SmbClientPolicyRuleBase from .smb_client_policy_rule_get_response import SmbClientPolicyRuleGetResponse from .smb_client_policy_rule_in_policy import SmbClientPolicyRuleInPolicy from .smb_client_policy_rule_post import SmbClientPolicyRulePost from .smb_client_policy_rule_post_base import SmbClientPolicyRulePostBase from .smb_client_policy_rule_post_in_policy import SmbClientPolicyRulePostInPolicy from .smb_client_policy_rule_response import SmbClientPolicyRuleResponse from .smb_post import SmbPost from .smb_share_policy import SmbSharePolicy from .smb_share_policy_get_response import SmbSharePolicyGetResponse from .smb_share_policy_post import SmbSharePolicyPost from .smb_share_policy_response import SmbSharePolicyResponse from .smb_share_policy_rule import SmbSharePolicyRule from .smb_share_policy_rule_get_response import SmbSharePolicyRuleGetResponse from .smb_share_policy_rule_post import SmbSharePolicyRulePost from .smb_share_policy_rule_response import SmbSharePolicyRuleResponse from .smtp_server import SmtpServer from .smtp_server_get_response import SmtpServerGetResponse from .smtp_server_response import SmtpServerResponse from .snmp_agent import SnmpAgent from .snmp_agent_get_response import SnmpAgentGetResponse from .snmp_agent_mib import SnmpAgentMib from .snmp_agent_mib_response import SnmpAgentMibResponse from .snmp_agent_response import SnmpAgentResponse from .snmp_manager import SnmpManager from .snmp_manager_get_response import SnmpManagerGetResponse from .snmp_manager_post import SnmpManagerPost from .snmp_manager_response import SnmpManagerResponse from .snmp_manager_test import SnmpManagerTest from .snmp_v2c import SnmpV2c from .snmp_v3 import SnmpV3 from .snmp_v3_post import SnmpV3Post from .space import Space from .space_extended import SpaceExtended from .subnet import Subnet from .subnet_get_response import SubnetGetResponse from .subnet_response import SubnetResponse from .support import Support from .support_get_response import SupportGetResponse from .support_remote_assist_paths import SupportRemoteAssistPaths from .support_response import SupportResponse from .syslog_server import SyslogServer from .syslog_server_get_response import SyslogServerGetResponse from .syslog_server_post_or_patch import SyslogServerPostOrPatch from .syslog_server_response import SyslogServerResponse from .syslog_server_settings import SyslogServerSettings from .syslog_server_settings_get_response import SyslogServerSettingsGetResponse from .syslog_server_settings_response import SyslogServerSettingsResponse from .target import Target from .target_get_response import TargetGetResponse from .target_post import TargetPost from .target_response import TargetResponse from .test_result import TestResult from .test_result_get_response import TestResultGetResponse from .test_result_response import TestResultResponse from .throttle import Throttle from .time_window import TimeWindow from .time_zone import TimeZone from .user import User from .user_no_id import UserNoId from .user_quota import UserQuota from .user_quota_get_response import UserQuotaGetResponse from .user_quota_patch import UserQuotaPatch from .user_quota_post import UserQuotaPost from .user_quota_response import UserQuotaResponse from .verification_key import VerificationKey from .verification_key_get_response import VerificationKeyGetResponse from .verification_key_patch import VerificationKeyPatch from .verification_key_response import VerificationKeyResponse from .version import Version
PypiClean
/edb-deployment-3.15.0.tar.gz/edb-deployment-3.15.0/edbdeploy/commands/vmware.py
import argparse from ..options import * from .default import default_subcommand_parsers # VMWare sub-commands and options def subcommands(subparser): # List of the sub-commands we want to be available for the vmwarewkstn # command available_subcommands = [ 'configure', 'provision', 'deploy', 'destroy', 'remove', 'logs', 'list', 'display', 'ssh' ] # Get sub-commands parsers subcommand_parsers = default_subcommand_parsers( subparser, available_subcommands ) # vmware deploy sub-command options subcommand_parsers['configure'].add_argument( '-a', '--reference-architecture', dest='reference_architecture', choices=ReferenceArchitectureOption.choices, default=ReferenceArchitectureOption.default, metavar='<ref-arch-code>', help=ReferenceArchitectureOption.help ) subcommand_parsers['configure'].add_argument( '-u', '--edb-credentials', dest='edb_credentials', required=True, type=EDBCredentialsType, metavar='"<username>:<password>"', help="EDB Packages repository credentials." ).completer = edb_credentials_completer subcommand_parsers['configure'].add_argument( '-o', '--os', dest='operating_system', choices=VMWareOSOption.choices, default=VMWareOSOption.default, metavar='<operating-system>', help=OSOption.help ) subcommand_parsers['configure'].add_argument( '-t', '--pg-type', dest='postgres_type', choices=PgTypeOption.choices, default=PgTypeOption.default, metavar='<postgres-engine-type>', help=PgTypeOption.help ) subcommand_parsers['configure'].add_argument( '-v', '--pg-version', dest='postgres_version', choices=PgVersionOption.choices, default=PgVersionOption.default, metavar='<postgres-version>', help=PgVersionOption.help ) subcommand_parsers['configure'].add_argument( '-e', '--efm-version', dest='efm_version', choices=EFMVersionOptionVMWare.choices, default=EFMVersionOptionVMWare.default, metavar='<efm-version>', help=EFMVersionOptionVMWare.help ) subcommand_parsers['configure'].add_argument( '--use-hostname', dest='use_hostname', choices=UseHostnameOption.choices, default=UseHostnameOption.default, metavar='<use-hostname>', help=UseHostnameOption.help ) subcommand_parsers['configure'].add_argument( '-k', '--ssh-pub-key', dest='ssh_pub_key', type=argparse.FileType('r'), default=SSHPubKeyOption.default(), metavar='<ssh-public-key-file>', help=SSHPubKeyOption.help ) subcommand_parsers['configure'].add_argument( '-K', '--ssh-private-key', dest='ssh_priv_key', type=argparse.FileType('r'), default=SSHPrivKeyOption.default(), metavar='<ssh-private-key-file>', help=SSHPrivKeyOption.help ) subcommand_parsers['configure'].add_argument( '-s', '--spec', dest='spec_file', type=argparse.FileType('r'), metavar='<aws-spec-file>', help="AWS instances specification file, in JSON." ) subcommand_parsers['configure'].add_argument( '-m', '--mem-size', dest='mem_size', required=True, choices=MemSizeOptionsVMWare.choices, default=MemSizeOptionsVMWare.default, metavar="<mem-size>", help="Amount of memory to assign" ) subcommand_parsers['configure'].add_argument( '-c', '--cpu-count', dest='cpu_count', required=True, choices=CPUCountOptionsVMWare.choices, default=CPUCountOptionsVMWare.default, metavar="<cpu-count>", help="Number of CPUS to configure" ) # vmware deploy sub-command options subcommand_parsers['provision'].add_argument( '-S', '--skip-main-playbook', dest='skip_main_playbook', action='store_true', help="Skip main playbook of the reference architecture." ) # vmware deploy sub-command options subcommand_parsers['deploy'].add_argument( '-n', '--no-install-collection', dest='no_install_collection', action='store_true', help="Do not install the Ansible collection." ) subcommand_parsers['deploy'].add_argument( '-p', '--pre-deploy-ansible', dest='pre_deploy_ansible', type=argparse.FileType('r'), metavar='<pre-deploy-ansible-playbook>', help="Pre deploy ansible playbook." ) subcommand_parsers['deploy'].add_argument( '-P', '--post-deploy-ansible', dest='post_deploy_ansible', type=argparse.FileType('r'), metavar='<post-deploy-ansible-playbook>', help="Post deploy ansible playbook." ) subcommand_parsers['deploy'].add_argument( '-S', '--skip-main-playbook', dest='skip_main_playbook', action='store_true', help="Skip main playbook of the reference architecture." ) # vmware deploy sub-command options subcommand_parsers['destroy'].add_argument( '-S', '--skip-main-playbook', dest='skip_main_playbook', action='store_true', help="Skip main playbook of the reference architecture." ) # vmware logs sub-command options subcommand_parsers['logs'].add_argument( '-t', '--tail', dest='tail', action='store_true', help="Do not stop at the end of file." ) subcommand_parsers['deploy'].add_argument( '--disable-pipelining', dest='disable_pipelining', action='store_true', help="Disable Ansible pipelining." ) subcommand_parsers['ssh'].add_argument( metavar='<host-name>', dest='host', help="Node hostname" )
PypiClean
/DXC-RL-1.0.3.5.tar.gz/DXC-RL-1.0.3.5/dxc/ai/visualization/visualization.py
from yellowbrick.features import Rank2D #exploring raw data import matplotlib.pyplot as plt import missingno as msno #gauge dataset completeness import seaborn as sns #data exploration, distribution plotting import pandas as pd from datacleaner import autoclean import math from pandas.api.types import is_numeric_dtype from pandas_profiling import ProfileReport #VISUALIZATION #display the correlations in pairwise comparisons of all features def explore_features(df): df_copy = df.copy() #for some reason, the visualize doesn't accept categorical #variables. those have to be converted to strings for (col,data) in df_copy.iteritems(): if df_copy[col].dtype.name == "category": df_copy[col] = df_copy[col].astype(str) numeric_df = autoclean(df_copy) visualizer = Rank2D(algorithm="pearson") visualizer.fit_transform(numeric_df) visualizer.poof() #display a visual representation of missing fields in the given data def visualize_missing_data(df): msno.matrix(df, figsize=(15,8)) def explore_complete_data(df, title='Complete Data Report'): profile = ProfileReport(df, title, html={'style':{'full_width':False}}) return profile #plot the distribution of values of each field in the given data def plot_distributions(df): #set plot style sns.set(style="darkgrid") features = len(df.columns) #determine the number of columns in the plot grid and the width and height of each plot grid_cols = 3 plot_width = 5 plot_height = 3 #determine the width of the plot grid and number of rows grid_width = plot_width * grid_cols num_rows = math.ceil(features/grid_cols) #determine the width of the plot grid grid_height = plot_height * num_rows #lay out the plot grid fig1 = plt.figure(constrained_layout=True, figsize = (grid_width,grid_height)) gs = fig1.add_gridspec(ncols = grid_cols, nrows = num_rows) #step through the dataframe and add plots for each feature current_column = 0 current_row = 0 for col in df.columns: #set up a plot f1_ax1 = fig1.add_subplot(gs[current_row, current_column]) f1_ax1.set_title(col) #create a plot for numeric values if is_numeric_dtype(df[col]): sns.distplot(df[col], ax = f1_ax1).set_xlabel('') #creare a plot for categorical values if df[col].dtype.name == "category": sns.countplot(df[col], ax = f1_ax1, order = df[col].value_counts().index).set_xlabel('') #move to the next column current_column +=1 #determine if it is time to start a new row if current_column == grid_cols: current_column = 0 current_row +=1
PypiClean
/django-compressor-parceljs-2.3.6.tar.gz/django-compressor-parceljs-2.3.6/compressor/contrib/sekizai.py
from compressor.templatetags.compress import CompressorNode from compressor.exceptions import UncompressableFileError from compressor.base import Compressor from compressor.conf import settings from compressor.utils import get_class from django.template.base import TextNode def compress(context, data, name): """ Data is the string from the template (the list of js files in this case) Name is either 'js' or 'css' (the sekizai namespace) Basically passes the string through the {% compress 'js' %} template tag """ # separate compressable from uncompressable files parser = get_class(settings.COMPRESS_PARSER)(data) js_compressor, css_compressor = Compressor('js'), Compressor('css') compressable_elements, expanded_elements, deferred_elements = [], [], [] if name == 'js': for elem in parser.js_elems(): attribs = parser.elem_attribs(elem) try: if 'src' in attribs: js_compressor.get_basename(attribs['src']) except UncompressableFileError: if 'defer' in attribs: deferred_elements.append(elem) else: expanded_elements.append(elem) else: compressable_elements.append(elem) elif name == 'css': for elem in parser.css_elems(): attribs = parser.elem_attribs(elem) try: if parser.elem_name(elem) == 'link' and attribs['rel'].lower() == 'stylesheet': css_compressor.get_basename(attribs['href']) except UncompressableFileError: expanded_elements.append(elem) else: compressable_elements.append(elem) # reconcatenate them data = ''.join(parser.elem_str(e) for e in expanded_elements) expanded_node = CompressorNode(nodelist=TextNode(data), kind=name, mode='file') data = ''.join(parser.elem_str(e) for e in compressable_elements) compressable_node = CompressorNode(nodelist=TextNode(data), kind=name, mode='file') data = ''.join(parser.elem_str(e) for e in deferred_elements) deferred_node = CompressorNode(nodelist=TextNode(data), kind=name, mode='file') return '\n'.join([ expanded_node.get_original_content(context=context), compressable_node.render(context=context), deferred_node.get_original_content(context=context), ])
PypiClean
/django-arquea-2.4.17.tar.gz/django-arquea-2.4.17/configuracao/static/js/tiny_mce/langs/bg.js
tinyMCE.addI18n({bg:{common:{more_colors:"\u041e\u0449\u0435 \u0446\u0432\u0435\u0442\u043e\u0432\u0435",invalid_data:"\u0413\u0440\u0435\u0448\u043a\u0430: \u0412\u044a\u0432\u0435\u0434\u0435\u043d\u0438 \u0441\u0430 \u043d\u0435\u0432\u0430\u043b\u0438\u0434\u043d\u0438 \u0441\u0442\u043e\u0439\u043d\u043e\u0441\u0442\u0438, \u0442\u0435 \u0441\u0430 \u043c\u0430\u0440\u043a\u0438\u0440\u0430\u043d\u0438 \u0432 \u0447\u0435\u0440\u0432\u0435\u043d\u043e.",popup_blocked:"\u0421\u044a\u0436\u0430\u043b\u044f\u0432\u0430\u043c\u0435, \u043d\u043e \u0437\u0430\u0431\u0435\u043b\u044f\u0437\u0430\u0445\u043c\u0435, \u0447\u0435 \u0432\u0430\u0448\u0438\u044f\u0442 popup-blocker \u0435 \u0441\u043f\u0440\u044f\u043b \u043f\u0440\u043e\u0437\u043e\u0440\u0435\u0446 \u043a\u043e\u0439\u0442\u043e \u0441\u0435 \u0438\u0437\u043f\u043e\u043b\u0437\u0432\u0430 \u043e\u0442 \u043f\u0440\u043e\u0433\u0440\u0430\u043c\u0430\u0442\u0430. \u0429\u0435 \u0442\u0440\u044f\u0431\u0432\u0430 \u0434\u0430 \u0438\u0437\u043a\u043b\u044e\u0447\u0438\u0442\u0435 \u0431\u043b\u043e\u043a\u0438\u0440\u0430\u043d\u0435\u0442\u043e \u043d\u0430 \u043f\u043e\u043f\u044a\u043f\u0438 \u0437\u0430 \u0442\u043e\u0437\u0438 \u0441\u0430\u0439\u0442 \u0437\u0430 \u0434\u0430 \u0438\u0437\u043f\u043e\u043b\u0437\u0432\u0430\u0442\u0435 \u043f\u044a\u043b\u043d\u0430\u0442\u0430 \u0444\u0443\u043d\u043a\u0446\u0438\u043e\u043d\u0430\u043b\u043d\u043e\u0441\u0442.",clipboard_no_support:"\u041d\u0435 \u0441\u0435 \u043f\u043e\u0434\u0434\u044a\u0440\u0436\u0430 \u043e\u0442 \u0432\u0430\u0448\u0438\u044f\u0442 \u0431\u0440\u0430\u0443\u0437\u044a\u0440, \u0438\u0437\u043f\u043e\u043b\u0437\u0432\u0430\u0439\u0442\u0435 \u043a\u043b\u0430\u0432\u0438\u0430\u0442\u0443\u0440\u043d\u0438 \u043a\u043e\u043c\u0430\u043d\u0434\u0438.",clipboard_msg:"\u041a\u043e\u043f\u0438\u0440\u0430\u043d\u0435/\u041e\u0442\u0440\u044f\u0437\u0432\u0430\u043d\u0435/\u041f\u043e\u0441\u0442\u0430\u0432\u044f\u043d\u0435 \u043d\u0435 \u0435 \u0434\u043e\u0441\u0442\u044a\u043f\u043d\u043e \u043f\u043e\u0434 Mozilla \u0438 Firefox.\\n\u0416\u0435\u043b\u0430\u0435\u0442\u0435 \u043b\u0438 \u043f\u043e\u0432\u0435\u0447\u0435 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u044f \u0437\u0430 \u043f\u0440\u043e\u0431\u043b\u0435\u043c\u0430?",not_set:"-- \u041d\u0435\u0443\u0441\u0442\u0430\u043d\u043e\u0432\u0435\u043d\u043e --",class_name:"\u041a\u043b\u0430\u0441",browse:"Browse",close:"\u0417\u0430\u0442\u0432\u043e\u0440\u0438",cancel:"\u041e\u0442\u043a\u0430\u0436\u0438",update:"\u041e\u0431\u043d\u043e\u0432\u0438",insert:"\u0412\u043c\u044a\u043a\u043d\u0438",apply:"\u041f\u043e\u0442\u0432\u044a\u0440\u0434\u0438",edit_confirm:"\u0418\u0441\u043a\u0430\u0442\u0435 \u043b\u0438 \u0434\u0430 \u0438\u0437\u043f\u043e\u043b\u0437\u0432\u0430\u0442\u0435 WYSIWYG \u0440\u0435\u0436\u0438\u043c \u0437\u0430 \u0442\u043e\u0432\u0430 \u0442\u0435\u043a\u0441\u0442\u043e\u0432\u043e \u043f\u043e\u043b\u0435?"},contextmenu:{full:"\u0414\u0432\u0443\u0441\u0442\u0440\u0430\u043d\u043d\u043e",right:"\u0414\u044f\u0441\u043d\u043e",center:"\u0426\u0435\u043d\u0442\u044a\u0440",left:"\u041b\u044f\u0432\u043e",align:"\u041f\u043e\u0434\u0440\u0430\u0432\u043d\u044f\u0432\u0430\u043d\u0435"},insertdatetime:{day_short:"\u041d\u0434,\u041f\u043d,\u0412\u0442,\u0421\u0440,\u0427\u0442,\u041f\u0442,\u0421\u0431,\u041d\u0434",day_long:"\u041d\u0435\u0434\u0435\u043b\u044f,\u041f\u043e\u043d\u0435\u0434\u0435\u043b\u043d\u0438\u043a,\u0412\u0442\u043e\u0440\u043d\u0438\u043a,\u0421\u0440\u044f\u0434\u0430,\u0427\u0435\u0442\u0432\u044a\u0440\u0442\u044a\u043a,\u041f\u0435\u0442\u044a\u043a,\u0421\u044a\u0431\u043e\u0442\u0430,\u041d\u0435\u0434\u0435\u043b\u044f",months_short:"\u042f\u043d\u0443,\u0424\u0435\u0432,\u041c\u0430\u0440,\u0410\u043f\u0440,\u041c\u0430\u0439,\u042e\u043d\u0438,\u042e\u043b\u0438,\u0410\u0432\u0433,\u0421\u0435\u043f,\u041e\u043a\u0442,\u041d\u043e\u0435,\u0414\u0435\u043a",months_long:"\u042f\u043d\u0443\u0430\u0440\u0438,\u0424\u0435\u0432\u0440\u0443\u0430\u0440\u0438,\u041c\u0430\u0440\u0442,\u0410\u043f\u0440\u0438\u043b,\u041c\u0430\u0439,\u042e\u043d\u0438,\u042e\u043b\u0438,\u0410\u0432\u0433\u0443\u0441\u0442,\u0421\u0435\u043f\u0442\u0435\u043c\u0432\u0440\u0438,\u041e\u043a\u0442\u043e\u043c\u0432\u0440\u0438,\u041d\u043e\u0435\u043c\u0432\u0440\u0438,\u0414\u0435\u043a\u0435\u043c\u0432\u0440\u0438",inserttime_desc:"\u0412\u043c\u044a\u043a\u043d\u0438 \u0432\u0440\u0435\u043c\u0435",insertdate_desc:"\u0412\u043c\u044a\u043a\u043d\u0438 \u0434\u0430\u0442\u0430",time_fmt:"%H:%M:%S",date_fmt:"%Y-%m-%d"},print:{print_desc:"\u041e\u0442\u043f\u0435\u0447\u0430\u0442\u0430\u0439"},preview:{preview_desc:"\u041f\u0440\u0435\u0433\u043b\u0435\u0434"},directionality:{rtl_desc:"\u041f\u043e\u0441\u043e\u043a\u0430 \u043e\u0442\u0434\u044f\u0441\u043d\u043e \u043d\u0430 \u043b\u044f\u0432\u043e",ltr_desc:"\u041f\u043e\u0441\u043e\u043a\u0430 \u043e\u0442\u043b\u044f\u0432\u043e \u043d\u0430 \u0434\u044f\u0441\u043d\u043e"},layer:{content:"\u041d\u043e\u0432 \u0441\u043b\u043e\u0439...",absolute_desc:"\u0412\u043a\u043b\u044e\u0447\u0438 \u0430\u0431\u0441\u043e\u043b\u044e\u0442\u043d\u043e \u043f\u043e\u0437\u0438\u0446\u0438\u043e\u043d\u0438\u0440\u0430\u043d\u0435",backward_desc:"\u041f\u043e\u043a\u0430\u0436\u0438 \u043e\u0442\u0437\u0430\u0434",forward_desc:"\u041f\u043e\u043a\u0430\u0436\u0438 \u043e\u0442\u043f\u0440\u0435\u0434",insertlayer_desc:"\u0412\u043c\u044a\u043a\u043d\u0438 \u043d\u043e\u0432 \u0441\u043b\u043e\u0439"},save:{save_desc:"\u0417\u0430\u043f\u0438\u0448\u0438",cancel_desc:"\u041e\u0442\u043a\u0430\u0436\u0438 \u0432\u0441\u0438\u0447\u043a\u0438 \u043f\u0440\u043e\u043c\u0435\u043d\u0438"},nonbreaking:{nonbreaking_desc:"\u0412\u043c\u044a\u043a\u043d\u0438 \u043d\u0435\u043f\u0440\u0435\u043a\u044a\u0441\u0432\u0430\u0435\u043c \u0438\u043d\u0442\u0435\u0440\u0432\u0430\u043b"},iespell:{download:"ieSpell \u043d\u0435 \u0435 \u043e\u0442\u043a\u0440\u0438\u0442. \u0416\u0435\u043b\u0430\u0435\u0442\u0435 \u043b\u0438 \u0434\u0430 \u0433\u043e \u0438\u043d\u0441\u0442\u0430\u043b\u0438\u0440\u0430\u0442\u0435 \u0441\u0435\u0433\u0430?",iespell_desc:"\u041f\u0440\u043e\u0432\u0435\u0440\u0438 \u043f\u0440\u0430\u0432\u043e\u043f\u0438\u0441\u0430"},advhr:{advhr_desc:"\u0425\u043e\u0440\u0438\u0437\u043e\u043d\u0442\u0430\u043b\u043d\u0430 \u043b\u0438\u043d\u0438\u044f",delta_height:"",delta_width:""},emotions:{emotions_desc:"\u0415\u043c\u043e\u0442\u0438\u043a\u043e\u043d\u0438",delta_height:"",delta_width:""},searchreplace:{replace_desc:"\u0422\u044a\u0440\u0441\u0438/\u0417\u0430\u043c\u0435\u0441\u0442\u0438",search_desc:"\u0422\u044a\u0440\u0441\u0438",delta_width:"",delta_height:""},advimage:{image_desc:"\u0412\u043c\u044a\u043a\u043d\u0438/\u0420\u0435\u0434\u0430\u043a\u0442\u0438\u0440\u0430\u0439 \u043a\u0430\u0440\u0442\u0438\u043d\u043a\u0430",delta_width:"",delta_height:""},advlink:{link_desc:"\u0412\u043c\u044a\u043a\u043d\u0438/\u0420\u0435\u0434\u0430\u043a\u0442\u0438\u0440\u0430\u0439 \u0445\u0438\u043f\u0435\u0440\u0432\u0440\u044a\u0437\u043a\u0430",delta_height:"",delta_width:""},xhtmlxtras:{attribs_desc:"\u0412\u043c\u044a\u043a\u043d\u0438/\u0420\u0435\u0434\u0430\u043a\u0442\u0438\u0440\u0430\u0439 \u0430\u0442\u0440\u0438\u0431\u0443\u0442\u0438",ins_desc:"\u0412\u043c\u044a\u043a\u0432\u0430\u043d\u0435",del_desc:"\u0418\u0437\u0442\u0440\u0438\u0432\u0430\u043d\u0435",acronym_desc:"\u0410\u043a\u0440\u043e\u043d\u0438\u043c",abbr_desc:"\u0421\u044a\u043a\u0440\u0430\u0449\u0435\u043d\u0438\u0435",cite_desc:"\u0426\u0438\u0442\u0430\u0442",attribs_delta_height:"",attribs_delta_width:"",ins_delta_height:"",ins_delta_width:"",del_delta_height:"",del_delta_width:"",acronym_delta_height:"",acronym_delta_width:"",abbr_delta_height:"",abbr_delta_width:"",cite_delta_height:"",cite_delta_width:""},style:{desc:"\u0420\u0435\u0434\u0430\u043a\u0442\u0438\u0440\u0430\u0439 CSS \u0441\u0442\u0438\u043b",delta_height:"",delta_width:""},paste:{plaintext_mode:"\u041f\u043e\u0441\u0442\u0430\u0432\u0435\u043d\u043e\u0442\u043e \u0435 \u0432 \u0438\u0437\u0447\u0438\u0441\u0442\u0435\u043d \u0442\u0435\u043a\u0441\u0442\u043e\u0432 \u0440\u0435\u0436\u0438\u043c. \u0429\u0440\u0430\u043a\u043d\u0435\u0442\u0435 \u043e\u0442\u043d\u043e\u0432\u043e \u0434\u0430 \u043f\u0440\u0435\u043c\u0438\u043d\u0435\u0442\u0435 \u0432 \u043e\u0431\u0438\u043a\u043d\u043e\u0432\u0435\u043d \u0440\u0435\u0436\u0438\u043c \u043d\u0430 \u043f\u043e\u0441\u0442\u0430\u0432\u044f\u043d\u0435.",plaintext_mode_sticky:"\u041f\u043e\u0441\u0442\u0430\u0432\u0435\u043d\u043e\u0442\u043e \u0435 \u0432 \u0438\u0437\u0447\u0438\u0441\u0442\u0435\u043d \u0442\u0435\u043a\u0441\u0442\u043e\u0432 \u0440\u0435\u0436\u0438\u043c. \u0429\u0440\u0430\u043a\u043d\u0435\u0442\u0435 \u043e\u0442\u043d\u043e\u0432\u043e \u0434\u0430 \u043f\u0440\u0435\u043c\u0438\u043d\u0435\u0442\u0435 \u0432 \u043e\u0431\u0438\u043a\u043d\u043e\u0432\u0435\u043d \u0440\u0435\u0436\u0438\u043c \u043d\u0430 \u043f\u043e\u0441\u0442\u0430\u0432\u044f\u043d\u0435. \u0421\u043b\u0435\u0434 \u043a\u0430\u0442\u043e \u043f\u043e\u0441\u0442\u0430\u0432\u0438\u0442\u0435 \u0435\u043b\u0435\u043c\u0435\u043d\u0442\u0430 \u0449\u0435 \u0441\u0435 \u0432\u044a\u0440\u043d\u0435\u0442\u0435 \u0432 \u043d\u043e\u0440\u043c\u0430\u043b\u0435\u043d \u0440\u0435\u0436\u0438\u043c.",selectall_desc:"\u0418\u0437\u0431\u0435\u0440\u0438 \u0432\u0441\u0438\u0447\u043a\u0438",paste_word_desc:"\u041f\u043e\u0441\u0442\u0430\u0432\u0438 \u043e\u0442 Word",paste_text_desc:"\u041f\u043e\u0441\u0442\u0430\u0432\u0438 \u043a\u0430\u0442\u043e \u0442\u0435\u043a\u0441\u0442"},paste_dlg:{word_title:"\u0418\u0437\u043f\u043e\u043b\u0437\u0432\u0430\u0439\u0442\u0435 CTRL+V \u043d\u0430 \u043a\u043b\u0430\u0432\u0438\u0430\u0442\u0443\u0440\u0430\u0442\u0430 \u0437\u0430 \u0434\u0430 \u043f\u043e\u0441\u0442\u0430\u0432\u0438\u0442\u0435 \u0442\u0435\u043a\u0441\u0442\u0430 \u0432 \u043f\u0440\u043e\u0437\u043e\u0440\u0435\u0446\u0430.",text_linebreaks:"\u0417\u0430\u043f\u0430\u0437\u0438 \u043d\u043e\u0432\u0438\u0442\u0435 \u0440\u0435\u0434\u043e\u0432\u0435",text_title:"\u0418\u0437\u043f\u043e\u043b\u0437\u0432\u0430\u0439\u0442\u0435 CTRL+V \u043d\u0430 \u043a\u043b\u0430\u0432\u0438\u0430\u0442\u0443\u0440\u0430\u0442\u0430 \u0437\u0430 \u0434\u0430 \u043f\u043e\u0441\u0442\u0430\u0432\u0438\u0442\u0435 \u0442\u0435\u043a\u0441\u0442\u0430 \u0432 \u043f\u0440\u043e\u0437\u043e\u0440\u0435\u0446\u0430."},table:{cell:"\u041a\u043b\u0435\u0442\u043a\u0430",col:"\u041a\u043e\u043b\u043e\u043d\u0430",row:"\u0420\u0435\u0434",del:"\u0418\u0437\u0442\u0440\u0438\u0439 \u0442\u0430\u0431\u043b\u0438\u0446\u0430",copy_row_desc:"\u041a\u043e\u043f\u0438\u0440\u0430\u0439 \u0440\u0435\u0434",cut_row_desc:"\u041e\u0442\u0440\u0435\u0436\u0438 \u0440\u0435\u0434",paste_row_after_desc:"\u041f\u043e\u0441\u0442\u0430\u0432\u0438 \u0440\u0435\u0434 \u0441\u043b\u0435\u0434",paste_row_before_desc:"\u041f\u043e\u0441\u0442\u0430\u0432\u0438 \u0440\u0435\u0434 \u043f\u0440\u0435\u0434\u0438",props_desc:"\u0421\u0432\u043e\u0439\u0441\u0442\u0432\u0430 \u043d\u0430 \u0442\u0430\u0431\u043b\u0438\u0446\u0430\u0442\u0430",cell_desc:"\u0421\u0432\u043e\u0439\u0441\u0442\u0432\u0430 \u043d\u0430 \u043a\u043b\u0435\u0442\u043a\u0430\u0442\u0430",row_desc:"\u0421\u0432\u043e\u0439\u0441\u0442\u0432\u0430 \u043d\u0430 \u0440\u0435\u0434\u0430",merge_cells_desc:"\u0421\u043b\u0435\u0439 \u043a\u043b\u0435\u0442\u043a\u0438",split_cells_desc:"\u0420\u0430\u0437\u0434\u0435\u043b\u0438 \u0441\u043b\u0435\u0442\u0438 \u043a\u043b\u0435\u0442\u043a\u0438",delete_col_desc:"\u0418\u0437\u0442\u0440\u0438\u0439 \u043a\u043e\u043b\u043e\u043d\u0430",col_after_desc:"\u0412\u043c\u044a\u043a\u043d\u0438 \u043a\u043e\u043b\u043e\u043d\u0430 \u0441\u043b\u0435\u0434",col_before_desc:"\u0412\u043c\u044a\u043a\u043d\u0438 \u043a\u043e\u043b\u043e\u043d\u0430 \u043f\u0440\u0435\u0434\u0438",delete_row_desc:"\u0418\u0437\u0442\u0440\u0438\u0439 \u0440\u0435\u0434",row_after_desc:"\u0412\u043c\u044a\u043a\u043d\u0438 \u0440\u0435\u0434 \u0441\u043b\u0435\u0434",row_before_desc:"\u0412\u043c\u044a\u043a\u043d\u0438 \u0440\u0435\u0434 \u043f\u0440\u0435\u0434\u0438",desc:"\u0412\u043c\u044a\u043a\u043d\u0438 \u043d\u043e\u0432\u0430 \u0442\u0430\u0431\u043b\u0438\u0446\u0430",merge_cells_delta_height:"",merge_cells_delta_width:"",table_delta_height:"",table_delta_width:"",cellprops_delta_height:"",cellprops_delta_width:"",rowprops_delta_height:"",rowprops_delta_width:""},autosave:{warning_message:"\u0412\u0441\u0438\u0447\u043a\u0438 \u043d\u0430\u043f\u0440\u0430\u0432\u0435\u043d\u0438 \u043f\u0440\u043e\u043c\u0435\u043d\u0438 \u0449\u0435 \u0431\u044a\u0434\u0430\u0442 \u0437\u0430\u0433\u0443\u0431\u0435\u043d\u0438.\\n\\n\u0421\u0438\u0433\u0443\u0440\u043d\u0438 \u043b\u0438 \u0441\u0442\u0435, \u0447\u0435 \u0438\u0441\u043a\u0430\u0442\u0435 \u0434\u0430 \u0432\u044a\u0437\u0441\u0442\u0430\u043d\u043e\u0432\u0438\u0442\u0435 \u0437\u0430\u043f\u0430\u0437\u0435\u043d\u043e\u0442\u043e \u0441\u044a\u0434\u044a\u0440\u0436\u0430\u043d\u0438\u0435?.",restore_content:"\u0412\u044a\u0437\u0441\u0442\u0430\u043d\u043e\u0432\u044f\u0432\u0430\u043d\u0435 \u043d\u0430 \u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0447\u043d\u043e \u0437\u0430\u043f\u0430\u0437\u0435\u043d\u043e\u0442\u043e.",unload_msg:"\u041f\u0440\u043e\u043c\u0435\u043d\u0438\u0442\u0435 \u043a\u043e\u0438\u0442\u043e \u043d\u0430\u043f\u0440\u0430\u0432\u0438\u0445\u0442\u0435 \u0449\u0435 \u0441\u0435 \u0437\u0430\u0433\u0443\u0431\u044f\u0442 \u0430\u043a\u043e \u043e\u0442\u0438\u0434\u0435\u0442\u0435 \u043d\u0430 \u0434\u0440\u0443\u0433\u0430 \u0441\u0442\u0440\u0430\u043d\u0438\u0446\u0430."},fullscreen:{desc:"\u0412\u043a\u043b./\u0418\u0437\u043a\u043b. \u0446\u044f\u043b \u0435\u043a\u0440\u0430\u043d"},media:{edit:"\u0420\u0435\u0434\u0430\u043a\u0442\u0438\u0440\u0430\u043a \u043c\u0435\u0434\u0438\u0430",desc:"\u0412\u043c\u044a\u043a\u043d\u0438/\u0440\u0435\u0434\u0430\u043a\u0442\u0438\u0440\u0430\u0439 \u043c\u0435\u0434\u0438\u0430\u0442\u0430",delta_height:"",delta_width:""},fullpage:{desc:"\u041d\u0430\u0441\u0442\u0440\u043e\u0439\u043a\u0438 \u043d\u0430 \u0434\u043e\u043a\u0443\u043c\u0435\u043d\u0442\u0430",delta_width:"",delta_height:""},template:{desc:"\u0412\u043c\u044a\u043a\u043d\u0438 \u0441\u044a\u0434\u044a\u0440\u0436\u0430\u043d\u0438\u0435\u0442\u043e \u043d\u0430 \u0442\u0435\u043c\u043f\u043b\u0435\u0439\u0442"},visualchars:{desc:"\u0412\u043a\u043b./\u0418\u0437\u043a\u043b. \u043d\u0430 \u043a\u043e\u043d\u0442\u0440\u043e\u043b\u043d\u0438\u0442\u0435 \u0441\u0438\u043c\u0432\u043e\u043b\u0438."},spellchecker:{desc:"\u0412\u043a\u043b./\u0418\u0437\u043a\u043b. \u043f\u0440\u043e\u0432\u0435\u0440\u043a\u0430 \u043d\u0430 \u043f\u0440\u0430\u0432\u043e\u043f\u0438\u0441\u0430",menu:"\u041d\u0430\u0441\u0442\u0440\u043e\u0439\u043a\u0438 \u043d\u0430 \u043f\u0440\u043e\u0432\u0435\u0440\u043a\u0430\u0442\u0430 \u043d\u0430 \u043f\u0440\u0430\u0432\u043e\u043f\u0438\u0441",ignore_word:"\u0418\u0433\u043d\u043e\u0440\u0438\u0440\u0430\u0439 \u0434\u0443\u043c\u0430",ignore_words:"\u0418\u0433\u043d\u043e\u0440\u0438\u0440\u0430\u0439 \u0432\u0441\u0438\u0447\u043a\u0438",langs:"\u0415\u0437\u0438\u0446\u0438",wait:"\u041c\u043e\u043b\u044f \u0438\u0437\u0447\u0430\u043a\u0430\u0439\u0442\u0435...",sug:"\u041f\u0440\u0435\u0434\u043b\u043e\u0436\u0435\u043d\u0438\u044f",no_sug:"\u041d\u044f\u043c\u0430 \u043f\u0440\u0435\u0434\u043b\u043e\u0436\u0435\u043d\u0438\u044f",no_mpell:"\u041d\u044f\u043c\u0430 \u0433\u0440\u0435\u0448\u043d\u043e \u043d\u0430\u043f\u0438\u0441\u0430\u043d\u0438 \u0434\u0443\u043c\u0438."},pagebreak:{desc:"\u0412\u043c\u044a\u043a\u043d\u0438 \u043d\u043e\u0432\u0430 \u0441\u0442\u0440\u0430\u043d\u0438\u0446\u0430."},advlist:{types:"\u0421\u0438\u043c\u0432\u043e\u043b\u0438",def:"\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u0438",lower_alpha:"\u041c\u0430\u043b\u043a\u0438 \u043b\u0430\u0442\u0438\u043d\u0441\u043a\u0438 \u0431\u0443\u043a\u0432\u0438",lower_greek:"\u041c\u0430\u043b\u043a\u0438 \u0433\u0440\u044a\u0446\u043a\u0438 \u0431\u0443\u043a\u0432\u0438",lower_roman:"\u041c\u0430\u043b\u043a\u0438 \u0440\u0438\u043c\u0441\u043a\u0438 \u0446\u0438\u0444\u0440\u0438",upper_alpha:"\u0417\u0430\u0433\u043b\u0430\u0432\u043d\u0438 \u043b\u0430\u0442\u0438\u043d\u0441\u043a\u0438 \u0431\u0443\u043a\u0432\u0438",upper_roman:"\u0417\u0430\u0433\u043b\u0430\u0432\u043d\u0438 \u0440\u0438\u043c\u0441\u043a\u0438 \u0446\u0438\u0444\u0440\u0438",circle:"\u041a\u0440\u044a\u0433",disc:"\u041e\u043a\u0440\u044a\u0436\u043d\u043e\u0441\u0442",square:"\u041a\u0432\u0430\u0434\u0440\u0430\u0442"}}});
PypiClean
/rogii-solo-0.4.0.tar.gz/rogii-solo-0.4.0/src/rogii_solo/base.py
from abc import ABC, abstractmethod from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, TypeVar from pandas import DataFrame from rogii_solo.calculations.converters import convert_value, radians_to_degrees from rogii_solo.calculations.enums import EMeasureUnits from rogii_solo.papi.client import PapiClient from rogii_solo.types import DataList class Convertible: @staticmethod def convert_xy(value: float, measure_units: EMeasureUnits, force_to_meters: bool = False) -> Optional[float]: if value is not None: return convert_value(value, measure_units=measure_units, force_to_meters=force_to_meters) @staticmethod def convert_z(value: float, measure_units: EMeasureUnits) -> Optional[float]: if value is not None: return convert_value(value=value, measure_units=measure_units) @staticmethod def convert_angle(value: float) -> Optional[float]: if value is not None: return radians_to_degrees(value) class BaseObject(ABC, Convertible): """ Base data object """ @abstractmethod def to_dict(self, *args, **kwargs) -> Dict[str, Any]: """ Convert object to dict :return """ pass @abstractmethod def to_df(self, *args, **kwargs) -> DataFrame: """ Convert object to DataFrame :return """ pass def _find_by_path(self, obj: Dict or Iterable[Dict], path: str or Iterable[str], default: Any = None, divider: str = None, check_none: bool = False, to_list: bool = False, ) -> Any: """ Find nested key value in dict :param obj: :param path: :param default: :param divider: :param check_none: :param to_list: :return: """ if not obj: return None if not to_list else [] if not isinstance(obj, (List, Tuple, Set)): obj = [obj] if not isinstance(path, (List, Tuple, Set)): path = [path] result = [] if to_list else None for o in obj: for p in path: res = self.__find_by_path( obj=o, path=p, default=default, divider=divider, check_none=check_none, to_list=to_list, ) if to_list: result.extend(res) elif not to_list and res: result = res break return result def __find_by_path(self, obj: Dict, path: str, default: Any = None, divider: str = None, check_none: bool = False, to_list: bool = False, ) -> Any: if not obj: return None if not to_list else [] for p in path.split(divider or "."): if p not in obj or not obj[p]: return default if not to_list else [] obj = obj[p] obj = obj if not check_none else default if obj is None else obj if not to_list: return obj return obj if isinstance(obj, list) else [obj] if obj else [] class ComplexObject(BaseObject): """ Object with access to PAPI """ def __init__(self, papi_client: PapiClient): super().__init__() self._papi_client = papi_client def to_dict(self, *args, **kwargs) -> Dict[str, Any]: return {} def to_df(self, *args, **kwargs) -> DataFrame: return DataFrame([self.to_dict(*args, **kwargs)]) T = TypeVar('T', bound=BaseObject) class ObjectRepository(list[T]): """ List of objects with utility methods """ def __init__(self, objects: List[T] = None): if objects is None: objects = [] super().__init__(objects) def to_dict(self, get_converted: bool = True) -> DataList: """ Return list of dicts :return: """ return [object_.to_dict(get_converted) for object_ in self] def to_df(self, get_converted: bool = True) -> DataFrame: """ Convert list to Pandas DataFrame :return: """ return DataFrame(self.to_dict(get_converted)) def find_by_id(self, value) -> Optional[T]: """ Find object by ID :param value: :return: """ return self._find_by_attr(attr='uuid', value=value) def find_by_name(self, value) -> Optional[T]: """ Find object by name :param value: :return: """ return self._find_by_attr(attr='name', value=value) def _find_by_attr(self, attr: str, value) -> Optional[T]: return next((item for item in self if getattr(item, attr, None) == value), None)
PypiClean
/janis-pipelines.core-0.13.1.tar.gz/janis-pipelines.core-0.13.1/janis_core/ingestion/galaxy/gxwrappers/downloads/wrappers.py
import requests import tarfile import os from typing import Optional from janis_core.ingestion.galaxy.utils import galaxy as utils from janis_core.ingestion.galaxy.gxwrappers.downloads.cache import DownloadCache CACHE: DownloadCache = DownloadCache() def fetch_xml(owner: str, repo: str, revision: str, tool_id: str) -> str: """gets the wrapper locally or from toolshed then returns path to xml""" path: Optional[str] = None if not path: path = _fetch_cache(repo, revision, tool_id) if not path: path = _fetch_builtin(tool_id) if not path: path = _fetch_toolshed(owner, repo, revision, tool_id) if not path: raise RuntimeError(f'could not find wrapper for {tool_id}:{revision}') else: return path def get_builtin_tool_path(tool_id: str) -> Optional[str]: """returns path to xml file with id='tool_id'""" tool_directories = _get_builtin_tool_directories() for directory in tool_directories: xmlfile = utils.get_xml_by_id(directory, tool_id) if xmlfile: return os.path.join(directory, xmlfile) return None def _get_builtin_tool_directories() -> list[str]: out: list[str] = [] out += _get_builtin_tools_directories() out += _get_datatype_converter_directories() return out def _get_builtin_tools_directories() -> list[str]: import galaxy.tools tools_folder = str(galaxy.tools.__file__).rsplit('/', 1)[0] bundled_folders = os.listdir(f'{tools_folder}/bundled') bundled_folders = [f for f in bundled_folders if not f.startswith('__')] bundled_folders = [f'{tools_folder}/bundled/{f}' for f in bundled_folders] bundled_folders = [f for f in bundled_folders if os.path.isdir(f)] return [tools_folder] + bundled_folders def _get_datatype_converter_directories() -> list[str]: import galaxy.datatypes datatypes_folder = str(galaxy.datatypes.__file__).rsplit('/', 1)[0] converters_folder = f'{datatypes_folder}/converters' return [converters_folder] def _fetch_builtin(tool_id: str) -> Optional[str]: return get_builtin_tool_path(tool_id) def _fetch_cache(repo: str, revision: str, tool_id: str) -> Optional[str]: wrapper = CACHE.get(repo, revision) if wrapper: xml = utils.get_xml_by_id(wrapper, tool_id) if xml: return os.path.join(wrapper, xml) return None def _fetch_toolshed(owner: str, repo: str, revision: str, tool_id: str) -> Optional[str]: # download and add to cache url = _get_url_via_revision(owner, repo, revision) # logging.msg_downloading_tool(url) tar = _download_wrapper(url) CACHE.add(tar) # fetch from cache return _fetch_cache(repo, revision, tool_id) def _get_url_via_revision(owner: str, repo: str, revision: str) -> str: return f'https://toolshed.g2.bx.psu.edu/repos/{owner}/{repo}/archive/{revision}.tar.gz' def _download_wrapper(url: str) -> tarfile.TarFile: response = requests.get(url, stream=True) return tarfile.open(fileobj=response.raw, mode='r:gz')
PypiClean
/satnogs-db-1.51.tar.gz/satnogs-db-1.51/db/static/lib/admin-lte/plugins/moment/locale/tet.js
;(function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' && typeof require === 'function' ? factory(require('../moment')) : typeof define === 'function' && define.amd ? define(['../moment'], factory) : factory(global.moment) }(this, (function (moment) { 'use strict'; //! moment.js locale configuration var tet = moment.defineLocale('tet', { months: 'Janeiru_Fevereiru_Marsu_Abril_Maiu_Juñu_Jullu_Agustu_Setembru_Outubru_Novembru_Dezembru'.split( '_' ), monthsShort: 'Jan_Fev_Mar_Abr_Mai_Jun_Jul_Ago_Set_Out_Nov_Dez'.split('_'), weekdays: 'Domingu_Segunda_Tersa_Kuarta_Kinta_Sesta_Sabadu'.split('_'), weekdaysShort: 'Dom_Seg_Ters_Kua_Kint_Sest_Sab'.split('_'), weekdaysMin: 'Do_Seg_Te_Ku_Ki_Ses_Sa'.split('_'), longDateFormat: { LT: 'HH:mm', LTS: 'HH:mm:ss', L: 'DD/MM/YYYY', LL: 'D MMMM YYYY', LLL: 'D MMMM YYYY HH:mm', LLLL: 'dddd, D MMMM YYYY HH:mm', }, calendar: { sameDay: '[Ohin iha] LT', nextDay: '[Aban iha] LT', nextWeek: 'dddd [iha] LT', lastDay: '[Horiseik iha] LT', lastWeek: 'dddd [semana kotuk] [iha] LT', sameElse: 'L', }, relativeTime: { future: 'iha %s', past: '%s liuba', s: 'segundu balun', ss: 'segundu %d', m: 'minutu ida', mm: 'minutu %d', h: 'oras ida', hh: 'oras %d', d: 'loron ida', dd: 'loron %d', M: 'fulan ida', MM: 'fulan %d', y: 'tinan ida', yy: 'tinan %d', }, dayOfMonthOrdinalParse: /\d{1,2}(st|nd|rd|th)/, ordinal: function (number) { var b = number % 10, output = ~~((number % 100) / 10) === 1 ? 'th' : b === 1 ? 'st' : b === 2 ? 'nd' : b === 3 ? 'rd' : 'th'; return number + output; }, week: { dow: 1, // Monday is the first day of the week. doy: 4, // The week that contains Jan 4th is the first week of the year. }, }); return tet; })));
PypiClean
/napalm-yang-0.1.0.tar.gz/napalm-yang-0.1.0/napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/bgp/global_/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/__init__.py
from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ class config(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/bgp/global/afi-safis/afi-safi/l3vpn-ipv6-multicast/prefix-limit/config. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ __slots__ = ( "_path_helper", "_extmethods", "__max_prefixes", "__prevent_teardown", "__shutdown_threshold_pct", "__restart_timer", ) _yang_name = "config" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__max_prefixes = YANGDynClass( base=RestrictedClassType( base_type=long, restriction_dict={"range": ["0..4294967295"]}, int_size=32, ), is_leaf=True, yang_name="max-prefixes", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint32", is_config=True, ) self.__prevent_teardown = YANGDynClass( base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="prevent-teardown", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="boolean", is_config=True, ) self.__shutdown_threshold_pct = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), restriction_dict={"range": ["0..100"]}, ), is_leaf=True, yang_name="shutdown-threshold-pct", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-types:percentage", is_config=True, ) self.__restart_timer = YANGDynClass( base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="restart-timer", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="decimal64", is_config=True, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "bgp", "global", "afi-safis", "afi-safi", "l3vpn-ipv6-multicast", "prefix-limit", "config", ] def _get_max_prefixes(self): """ Getter method for max_prefixes, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/max_prefixes (uint32) YANG Description: Maximum number of prefixes that will be accepted from the neighbour """ return self.__max_prefixes def _set_max_prefixes(self, v, load=False): """ Setter method for max_prefixes, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/max_prefixes (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_max_prefixes is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_max_prefixes() directly. YANG Description: Maximum number of prefixes that will be accepted from the neighbour """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=long, restriction_dict={"range": ["0..4294967295"]}, int_size=32, ), is_leaf=True, yang_name="max-prefixes", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint32", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """max_prefixes must be of a type compatible with uint32""", "defined-type": "uint32", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="max-prefixes", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='uint32', is_config=True)""", } ) self.__max_prefixes = t if hasattr(self, "_set"): self._set() def _unset_max_prefixes(self): self.__max_prefixes = YANGDynClass( base=RestrictedClassType( base_type=long, restriction_dict={"range": ["0..4294967295"]}, int_size=32, ), is_leaf=True, yang_name="max-prefixes", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint32", is_config=True, ) def _get_prevent_teardown(self): """ Getter method for prevent_teardown, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/prevent_teardown (boolean) YANG Description: Do not tear down the BGP session when the maximum prefix limit is exceeded, but rather only log a warning. The default of this leaf is false, such that when it is not specified, the session is torn down. """ return self.__prevent_teardown def _set_prevent_teardown(self, v, load=False): """ Setter method for prevent_teardown, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/prevent_teardown (boolean) If this variable is read-only (config: false) in the source YANG file, then _set_prevent_teardown is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_prevent_teardown() directly. YANG Description: Do not tear down the BGP session when the maximum prefix limit is exceeded, but rather only log a warning. The default of this leaf is false, such that when it is not specified, the session is torn down. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="prevent-teardown", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="boolean", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """prevent_teardown must be of a type compatible with boolean""", "defined-type": "boolean", "generated-type": """YANGDynClass(base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="prevent-teardown", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='boolean', is_config=True)""", } ) self.__prevent_teardown = t if hasattr(self, "_set"): self._set() def _unset_prevent_teardown(self): self.__prevent_teardown = YANGDynClass( base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="prevent-teardown", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="boolean", is_config=True, ) def _get_shutdown_threshold_pct(self): """ Getter method for shutdown_threshold_pct, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/shutdown_threshold_pct (oc-types:percentage) YANG Description: Threshold on number of prefixes that can be received from a neighbour before generation of warning messages or log entries. Expressed as a percentage of max-prefixes """ return self.__shutdown_threshold_pct def _set_shutdown_threshold_pct(self, v, load=False): """ Setter method for shutdown_threshold_pct, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/shutdown_threshold_pct (oc-types:percentage) If this variable is read-only (config: false) in the source YANG file, then _set_shutdown_threshold_pct is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_shutdown_threshold_pct() directly. YANG Description: Threshold on number of prefixes that can be received from a neighbour before generation of warning messages or log entries. Expressed as a percentage of max-prefixes """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8, ), restriction_dict={"range": ["0..100"]}, ), is_leaf=True, yang_name="shutdown-threshold-pct", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-types:percentage", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """shutdown_threshold_pct must be of a type compatible with oc-types:percentage""", "defined-type": "oc-types:percentage", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': ['0..100']}), is_leaf=True, yang_name="shutdown-threshold-pct", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='oc-types:percentage', is_config=True)""", } ) self.__shutdown_threshold_pct = t if hasattr(self, "_set"): self._set() def _unset_shutdown_threshold_pct(self): self.__shutdown_threshold_pct = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), restriction_dict={"range": ["0..100"]}, ), is_leaf=True, yang_name="shutdown-threshold-pct", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-types:percentage", is_config=True, ) def _get_restart_timer(self): """ Getter method for restart_timer, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/restart_timer (decimal64) YANG Description: Time interval in seconds after which the BGP session is re-established after being torn down due to exceeding the max-prefix limit. """ return self.__restart_timer def _set_restart_timer(self, v, load=False): """ Setter method for restart_timer, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/restart_timer (decimal64) If this variable is read-only (config: false) in the source YANG file, then _set_restart_timer is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_restart_timer() directly. YANG Description: Time interval in seconds after which the BGP session is re-established after being torn down due to exceeding the max-prefix limit. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="restart-timer", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="decimal64", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """restart_timer must be of a type compatible with decimal64""", "defined-type": "decimal64", "generated-type": """YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="restart-timer", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='decimal64', is_config=True)""", } ) self.__restart_timer = t if hasattr(self, "_set"): self._set() def _unset_restart_timer(self): self.__restart_timer = YANGDynClass( base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="restart-timer", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="decimal64", is_config=True, ) max_prefixes = __builtin__.property(_get_max_prefixes, _set_max_prefixes) prevent_teardown = __builtin__.property( _get_prevent_teardown, _set_prevent_teardown ) shutdown_threshold_pct = __builtin__.property( _get_shutdown_threshold_pct, _set_shutdown_threshold_pct ) restart_timer = __builtin__.property(_get_restart_timer, _set_restart_timer) _pyangbind_elements = OrderedDict( [ ("max_prefixes", max_prefixes), ("prevent_teardown", prevent_teardown), ("shutdown_threshold_pct", shutdown_threshold_pct), ("restart_timer", restart_timer), ] ) class config(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/bgp/global/afi-safis/afi-safi/l3vpn-ipv6-multicast/prefix-limit/config. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ __slots__ = ( "_path_helper", "_extmethods", "__max_prefixes", "__prevent_teardown", "__shutdown_threshold_pct", "__restart_timer", ) _yang_name = "config" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__max_prefixes = YANGDynClass( base=RestrictedClassType( base_type=long, restriction_dict={"range": ["0..4294967295"]}, int_size=32, ), is_leaf=True, yang_name="max-prefixes", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint32", is_config=True, ) self.__prevent_teardown = YANGDynClass( base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="prevent-teardown", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="boolean", is_config=True, ) self.__shutdown_threshold_pct = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), restriction_dict={"range": ["0..100"]}, ), is_leaf=True, yang_name="shutdown-threshold-pct", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-types:percentage", is_config=True, ) self.__restart_timer = YANGDynClass( base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="restart-timer", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="decimal64", is_config=True, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "bgp", "global", "afi-safis", "afi-safi", "l3vpn-ipv6-multicast", "prefix-limit", "config", ] def _get_max_prefixes(self): """ Getter method for max_prefixes, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/max_prefixes (uint32) YANG Description: Maximum number of prefixes that will be accepted from the neighbour """ return self.__max_prefixes def _set_max_prefixes(self, v, load=False): """ Setter method for max_prefixes, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/max_prefixes (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_max_prefixes is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_max_prefixes() directly. YANG Description: Maximum number of prefixes that will be accepted from the neighbour """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=long, restriction_dict={"range": ["0..4294967295"]}, int_size=32, ), is_leaf=True, yang_name="max-prefixes", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint32", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """max_prefixes must be of a type compatible with uint32""", "defined-type": "uint32", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="max-prefixes", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='uint32', is_config=True)""", } ) self.__max_prefixes = t if hasattr(self, "_set"): self._set() def _unset_max_prefixes(self): self.__max_prefixes = YANGDynClass( base=RestrictedClassType( base_type=long, restriction_dict={"range": ["0..4294967295"]}, int_size=32, ), is_leaf=True, yang_name="max-prefixes", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint32", is_config=True, ) def _get_prevent_teardown(self): """ Getter method for prevent_teardown, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/prevent_teardown (boolean) YANG Description: Do not tear down the BGP session when the maximum prefix limit is exceeded, but rather only log a warning. The default of this leaf is false, such that when it is not specified, the session is torn down. """ return self.__prevent_teardown def _set_prevent_teardown(self, v, load=False): """ Setter method for prevent_teardown, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/prevent_teardown (boolean) If this variable is read-only (config: false) in the source YANG file, then _set_prevent_teardown is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_prevent_teardown() directly. YANG Description: Do not tear down the BGP session when the maximum prefix limit is exceeded, but rather only log a warning. The default of this leaf is false, such that when it is not specified, the session is torn down. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="prevent-teardown", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="boolean", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """prevent_teardown must be of a type compatible with boolean""", "defined-type": "boolean", "generated-type": """YANGDynClass(base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="prevent-teardown", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='boolean', is_config=True)""", } ) self.__prevent_teardown = t if hasattr(self, "_set"): self._set() def _unset_prevent_teardown(self): self.__prevent_teardown = YANGDynClass( base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="prevent-teardown", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="boolean", is_config=True, ) def _get_shutdown_threshold_pct(self): """ Getter method for shutdown_threshold_pct, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/shutdown_threshold_pct (oc-types:percentage) YANG Description: Threshold on number of prefixes that can be received from a neighbour before generation of warning messages or log entries. Expressed as a percentage of max-prefixes """ return self.__shutdown_threshold_pct def _set_shutdown_threshold_pct(self, v, load=False): """ Setter method for shutdown_threshold_pct, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/shutdown_threshold_pct (oc-types:percentage) If this variable is read-only (config: false) in the source YANG file, then _set_shutdown_threshold_pct is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_shutdown_threshold_pct() directly. YANG Description: Threshold on number of prefixes that can be received from a neighbour before generation of warning messages or log entries. Expressed as a percentage of max-prefixes """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8, ), restriction_dict={"range": ["0..100"]}, ), is_leaf=True, yang_name="shutdown-threshold-pct", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-types:percentage", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """shutdown_threshold_pct must be of a type compatible with oc-types:percentage""", "defined-type": "oc-types:percentage", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': ['0..100']}), is_leaf=True, yang_name="shutdown-threshold-pct", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='oc-types:percentage', is_config=True)""", } ) self.__shutdown_threshold_pct = t if hasattr(self, "_set"): self._set() def _unset_shutdown_threshold_pct(self): self.__shutdown_threshold_pct = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), restriction_dict={"range": ["0..100"]}, ), is_leaf=True, yang_name="shutdown-threshold-pct", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-types:percentage", is_config=True, ) def _get_restart_timer(self): """ Getter method for restart_timer, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/restart_timer (decimal64) YANG Description: Time interval in seconds after which the BGP session is re-established after being torn down due to exceeding the max-prefix limit. """ return self.__restart_timer def _set_restart_timer(self, v, load=False): """ Setter method for restart_timer, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/l3vpn_ipv6_multicast/prefix_limit/config/restart_timer (decimal64) If this variable is read-only (config: false) in the source YANG file, then _set_restart_timer is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_restart_timer() directly. YANG Description: Time interval in seconds after which the BGP session is re-established after being torn down due to exceeding the max-prefix limit. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="restart-timer", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="decimal64", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """restart_timer must be of a type compatible with decimal64""", "defined-type": "decimal64", "generated-type": """YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="restart-timer", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='decimal64', is_config=True)""", } ) self.__restart_timer = t if hasattr(self, "_set"): self._set() def _unset_restart_timer(self): self.__restart_timer = YANGDynClass( base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="restart-timer", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="decimal64", is_config=True, ) max_prefixes = __builtin__.property(_get_max_prefixes, _set_max_prefixes) prevent_teardown = __builtin__.property( _get_prevent_teardown, _set_prevent_teardown ) shutdown_threshold_pct = __builtin__.property( _get_shutdown_threshold_pct, _set_shutdown_threshold_pct ) restart_timer = __builtin__.property(_get_restart_timer, _set_restart_timer) _pyangbind_elements = OrderedDict( [ ("max_prefixes", max_prefixes), ("prevent_teardown", prevent_teardown), ("shutdown_threshold_pct", shutdown_threshold_pct), ("restart_timer", restart_timer), ] )
PypiClean
/llm_toys-0.1.1-py3-none-any.whl/llm_toys/hf/transformers/models/xlm_prophetnet/tokenization_xlm_prophetnet.py
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "prophetnet.tokenizer"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } PRETRAINED_INIT_CONFIGURATION = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab class XLMProphetNetTokenizer(PreTrainedTokenizer): """ Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="[SEP]", eos_token="[SEP]", sep_token="[SEP]", unk_token="[UNK]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, unk_token=unk_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab self.fairseq_tokens_to_ids = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): tok = f"[unused{i}]" self.fairseq_tokens_to_ids[tok] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab self.fairseq_offset = 12 self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(k) def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return ([0] * len(token_ids_0)) + [1] return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLMProphetNet does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] return len(token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.sp_model) + self.fairseq_offset def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> str: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A XLMProphetNet sequence has the following format: - single sequence: `X [SEP]` - pair of sequences: `A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return token_ids_0 + [self.sep_token_id] sep = [self.sep_token_id] return token_ids_0 + sep + token_ids_1 + sep
PypiClean
/django-adminlte3-amigne-0.1.99.tar.gz/django-adminlte3-amigne-0.1.99/adminlte3/static/admin-lte/plugins/codemirror/mode/rust/rust.js
(function(mod) { if (typeof exports == "object" && typeof module == "object") // CommonJS mod(require("../../lib/codemirror"), require("../../addon/mode/simple")); else if (typeof define == "function" && define.amd) // AMD define(["../../lib/codemirror", "../../addon/mode/simple"], mod); else // Plain browser env mod(CodeMirror); })(function(CodeMirror) { "use strict"; CodeMirror.defineSimpleMode("rust",{ start: [ // string and byte string {regex: /b?"/, token: "string", next: "string"}, // raw string and raw byte string {regex: /b?r"/, token: "string", next: "string_raw"}, {regex: /b?r#+"/, token: "string", next: "string_raw_hash"}, // character {regex: /'(?:[^'\\]|\\(?:[nrt0'"]|x[\da-fA-F]{2}|u\{[\da-fA-F]{6}\}))'/, token: "string-2"}, // byte {regex: /b'(?:[^']|\\(?:['\\nrt0]|x[\da-fA-F]{2}))'/, token: "string-2"}, {regex: /(?:(?:[0-9][0-9_]*)(?:(?:[Ee][+-]?[0-9_]+)|\.[0-9_]+(?:[Ee][+-]?[0-9_]+)?)(?:f32|f64)?)|(?:0(?:b[01_]+|(?:o[0-7_]+)|(?:x[0-9a-fA-F_]+))|(?:[0-9][0-9_]*))(?:u8|u16|u32|u64|i8|i16|i32|i64|isize|usize)?/, token: "number"}, {regex: /(let(?:\s+mut)?|fn|enum|mod|struct|type|union)(\s+)([a-zA-Z_][a-zA-Z0-9_]*)/, token: ["keyword", null, "def"]}, {regex: /(?:abstract|alignof|as|async|await|box|break|continue|const|crate|do|dyn|else|enum|extern|fn|for|final|if|impl|in|loop|macro|match|mod|move|offsetof|override|priv|proc|pub|pure|ref|return|self|sizeof|static|struct|super|trait|type|typeof|union|unsafe|unsized|use|virtual|where|while|yield)\b/, token: "keyword"}, {regex: /\b(?:Self|isize|usize|char|bool|u8|u16|u32|u64|f16|f32|f64|i8|i16|i32|i64|str|Option)\b/, token: "atom"}, {regex: /\b(?:true|false|Some|None|Ok|Err)\b/, token: "builtin"}, {regex: /\b(fn)(\s+)([a-zA-Z_][a-zA-Z0-9_]*)/, token: ["keyword", null ,"def"]}, {regex: /#!?\[.*\]/, token: "meta"}, {regex: /\/\/.*/, token: "comment"}, {regex: /\/\*/, token: "comment", next: "comment"}, {regex: /[-+\/*=<>!]+/, token: "operator"}, {regex: /[a-zA-Z_]\w*!/,token: "variable-3"}, {regex: /[a-zA-Z_]\w*/, token: "variable"}, {regex: /[\{\[\(]/, indent: true}, {regex: /[\}\]\)]/, dedent: true} ], string: [ {regex: /"/, token: "string", next: "start"}, {regex: /(?:[^\\"]|\\(?:.|$))*/, token: "string"} ], string_raw: [ {regex: /"/, token: "string", next: "start"}, {regex: /[^"]*/, token: "string"} ], string_raw_hash: [ {regex: /"#+/, token: "string", next: "start"}, {regex: /(?:[^"]|"(?!#))*/, token: "string"} ], comment: [ {regex: /.*?\*\//, token: "comment", next: "start"}, {regex: /.*/, token: "comment"} ], meta: { dontIndentStates: ["comment"], electricInput: /^\s*\}$/, blockCommentStart: "/*", blockCommentEnd: "*/", lineComment: "//", fold: "brace" } }); CodeMirror.defineMIME("text/x-rustsrc", "rust"); CodeMirror.defineMIME("text/rust", "rust"); });
PypiClean
/console_widgets-0.0.603.tar.gz/console_widgets-0.0.603/console_widgets/console_widgets.py
from .errors import * from .themes import * import inspect from collections import OrderedDict def write_roman(num): roman = OrderedDict() roman[1000] = "M" roman[900] = "CM" roman[500] = "D" roman[400] = "CD" roman[100] = "C" roman[90] = "XC" roman[50] = "L" roman[40] = "XL" roman[10] = "X" roman[9] = "IX" roman[5] = "V" roman[4] = "IV" roman[1] = "I" def roman_num(num): for r in roman.keys(): x, y = divmod(num, r) yield roman[r] * x num -= (r * x) if num <= 0: break return "".join([a for a in roman_num(num)]) ### IDEAS ## ------------------------------------------------------------------------------------------------ ## add a modify_width method which automagically modifies the width of a wigets after using the set method ## add the possibility to add a multi-line body for the widgets and other attributes ## ^ done only for the ConsoleWidget currently ## (+?) change allignment checking from COnsoleBox to another method (kinda done) ## (easy!) add Corners() class for the Box() class so that you don't need to use lists ## !!!!!!!!!!!!!!!!! ## (!!!important!!!) check the parsing of items in ConsoleList ## !!!!!!!!!!!!!!!!! ## add box and list themes ## remove subtitles from all objects, not just boxes def parse_text(text): if type(text) is str: parsed_text = text.split('\n') return parsed_text raise ParseError(text) class ConsoleWidget(): def __init__(self, title: str = "", subtitle: str = "", body: str = "", width: int = None): self.title = parse_text(title.upper()) self.subtitle = parse_text(subtitle.title()) self.body = parse_text(body) def show(self): for attribute in [self.title, self.subtitle, self.body]: if any(attribute): for line in attribute: print(line) print() def set(self, attr_val: dict = {}): if type(attr_val) is not dict: raise SetError(attr_val) [setattr(self, attribute, value) for attribute, value in attr_val.items()] ## ! This is a temporary solution to possibly changigng the max width when resetting an attribute #if type(self) is ConsoleList(): # self.width = max(17 + len(str(len(items))), max(map(len, map(str, [self.title, self.subtitle] + self.items)))) def get_attributes(self): ### This code is courtesy of Matt Luongo from StackOverflow ### https://stackoverflow.com/questions/9058305/getting-attributes-of-a-class attributes = inspect.getmembers(self, lambda a:not(inspect.isroutine(a))) return [a for a in attributes if not(a[0].startswith('__') and a[0].endswith('__'))] class ConsoleBox(ConsoleWidget): def __init__(self, title: str = "", subtitle: str = "", body: str = "", theme: str = "default", horizontal_margin: int = 0, vertical_margin: int = 0, allignment: str = "CENTER"): super(ConsoleBox, self).__init__() global box_themes self.title = parse_text(title) self.body = parse_text(body) self.horizontal_margin = horizontal_margin self.vertical_margin = vertical_margin self.allignment = allignment self.set_theme(theme) self.width = max(map(len, self.title + self.subtitle + self.body)) + 2 * self.horizontal_margin def set_theme(self, theme): self.box = theme if not self.box in box_themes: self.box = "default" self.set(box_themes[self.box]) def return_padding(self, padding): ## The function returns the left and right paddings if self.allignment == "CENTER": return (" " * ((padding // 2) + (padding % 2)), " " * (padding // 2)) if self.allignment == "LEFT": return ("", " " * padding) if self.allignment == "RIGHT": return (" " * padding, "") def show(self): ## for i in range(self.border_width): print(self.upper_left + self.upper_border * self.width + self.upper_right) if any(self.title): for title_line in self.title: title_padding = self.width - len(title_line) (left_t_padding, right_t_padding) = self.return_padding(title_padding) print(self.left_border + left_t_padding + title_line + right_t_padding + self.right_border) print(self.left_vertical + self.horizontal_line * self.width + self.right_vertical) if any(self.body): for body_line in self.body: body_padding = self.width - len(body_line) (left_b_padding, right_b_padding) = self.return_padding(body_padding) print(self.left_border + left_b_padding + body_line + right_b_padding + self.right_border) print(self.lower_left + self.lower_border * self.width + self.lower_right) class ConsoleList(ConsoleWidget): def __init__(self, title: str = "", subtitle: str = "", items: list = [], list_type: str = "default"): super(ConsoleList, self).__init__() self.title = parse_text(title) self.subtitle = parse_text(subtitle) self.items = [parse_text(item) for item in items] self.list_type = list_type self.width = max(map(len, map(str, self.title + self.subtitle + self.items))) def show(self): print("─" * self.width) for attribute in [self.title, self.subtitle]: if attribute: for line in attribute: print(line) print("─" * self.width) for item_number, item in enumerate(self.items): if item: print(f"{item_number + 1}. {item[0]}") for line in item[1:]: print(line) print("─" * self.width) class ConsoleSelection(ConsoleList): def __init__(self, title: str = "", subtitle: str = "", items: list = []): self.title = title self.subtitle = subtitle self.items = items self.width = max(17 + len(str(len(items))), max(map(len, map(str, [self.title, self.subtitle] + self.items)))) def select(self): super(ConsoleSelection, self).show() selection = input(f"Select [1-{len(self.items)}]: ") #print("─" * self.width) return selection
PypiClean
/tensorflow_cpu-2.14.0rc1-cp311-cp311-macosx_10_15_x86_64.whl/tensorflow/python/ops/ragged/segment_id_ops.py
"""Ops for converting between row_splits and segment_ids.""" from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.ragged import ragged_util from tensorflow.python.util import dispatch from tensorflow.python.util.tf_export import tf_export # For background on "segments" and "segment ids", see: # https://www.tensorflow.org/api_docs/python/tf/math#Segmentation @tf_export("ragged.row_splits_to_segment_ids") @dispatch.add_dispatch_support def row_splits_to_segment_ids(splits, name=None, out_type=None): """Generates the segmentation corresponding to a RaggedTensor `row_splits`. Returns an integer vector `segment_ids`, where `segment_ids[i] == j` if `splits[j] <= i < splits[j+1]`. Example: >>> print(tf.ragged.row_splits_to_segment_ids([0, 3, 3, 5, 6, 9])) tf.Tensor([0 0 0 2 2 3 4 4 4], shape=(9,), dtype=int64) Args: splits: A sorted 1-D integer Tensor. `splits[0]` must be zero. name: A name prefix for the returned tensor (optional). out_type: The dtype for the return value. Defaults to `splits.dtype`, or `tf.int64` if `splits` does not have a dtype. Returns: A sorted 1-D integer Tensor, with `shape=[splits[-1]]` Raises: ValueError: If `splits` is invalid. """ with ops.name_scope(name, "RaggedSplitsToSegmentIds", [splits]) as name: splits = ops.convert_to_tensor( splits, name="splits", preferred_dtype=dtypes.int64) if splits.dtype not in (dtypes.int32, dtypes.int64): raise ValueError("splits must have dtype int32 or int64") splits.shape.assert_has_rank(1) if tensor_shape.dimension_value(splits.shape[0]) == 0: raise ValueError("Invalid row_splits: []") if out_type is None: out_type = splits.dtype else: out_type = dtypes.as_dtype(out_type) row_lengths = splits[1:] - splits[:-1] nrows = array_ops.shape(splits, out_type=out_type)[-1] - 1 indices = math_ops.range(nrows) return ragged_util.repeat(indices, repeats=row_lengths, axis=0) # For background on "segments" and "segment ids", see: # https://www.tensorflow.org/api_docs/python/tf/math#Segmentation @tf_export("ragged.segment_ids_to_row_splits") @dispatch.add_dispatch_support def segment_ids_to_row_splits(segment_ids, num_segments=None, out_type=None, name=None): """Generates the RaggedTensor `row_splits` corresponding to a segmentation. Returns an integer vector `splits`, where `splits[0] = 0` and `splits[i] = splits[i-1] + count(segment_ids==i)`. Example: >>> print(tf.ragged.segment_ids_to_row_splits([0, 0, 0, 2, 2, 3, 4, 4, 4])) tf.Tensor([0 3 3 5 6 9], shape=(6,), dtype=int64) Args: segment_ids: A 1-D integer Tensor. num_segments: A scalar integer indicating the number of segments. Defaults to `max(segment_ids) + 1` (or zero if `segment_ids` is empty). out_type: The dtype for the return value. Defaults to `segment_ids.dtype`, or `tf.int64` if `segment_ids` does not have a dtype. name: A name prefix for the returned tensor (optional). Returns: A sorted 1-D integer Tensor, with `shape=[num_segments + 1]`. """ # Local import bincount_ops to avoid import-cycle. from tensorflow.python.ops import bincount_ops # pylint: disable=g-import-not-at-top if out_type is None: if isinstance(segment_ids, tensor.Tensor): out_type = segment_ids.dtype elif isinstance(num_segments, tensor.Tensor): out_type = num_segments.dtype else: out_type = dtypes.int64 else: out_type = dtypes.as_dtype(out_type) with ops.name_scope(name, "SegmentIdsToRaggedSplits", [segment_ids]) as name: # Note: we cast int64 tensors to int32, since bincount currently only # supports int32 inputs. segment_ids = ragged_util.convert_to_int_tensor(segment_ids, "segment_ids", dtype=dtypes.int32) segment_ids.shape.assert_has_rank(1) if num_segments is not None: num_segments = ragged_util.convert_to_int_tensor(num_segments, "num_segments", dtype=dtypes.int32) num_segments.shape.assert_has_rank(0) row_lengths = bincount_ops.bincount( segment_ids, minlength=num_segments, maxlength=num_segments, dtype=out_type) splits = array_ops.concat([[0], math_ops.cumsum(row_lengths)], axis=0) # Update shape information, if possible. if num_segments is not None: const_num_segments = tensor_util.constant_value(num_segments) if const_num_segments is not None: splits.set_shape(tensor_shape.TensorShape([const_num_segments + 1])) return splits
PypiClean
/sphinxcontrib-imagehelper-1.1.1.tar.gz/sphinxcontrib-imagehelper-1.1.1/README.rst
sphinxcontrib-imagehelper ========================== .. image:: https://travis-ci.org/tk0miya/sphinxcontrib-imagehelper.svg?branch=master :target: https://travis-ci.org/tk0miya/sphinxcontrib-imagehelper .. image:: https://coveralls.io/repos/tk0miya/sphinxcontrib-imagehelper/badge.png?branch=master :target: https://coveralls.io/r/tk0miya/sphinxcontrib-imagehelper?branch=master .. image:: https://codeclimate.com/github/tk0miya/sphinxcontrib-imagehelper/badges/gpa.svg :target: https://codeclimate.com/github/tk0miya/sphinxcontrib-imagehelper `sphinxcontrib-imagehelper` is helpers for creating image Sphinx extensions. Adding new image format support to Sphinx is too boring. This helper helps you to create image sphinx extensions. It provides these features: * Caching converted images * Conseal sphinx directory structure; determine path of images automatically * Support common options for image directive (cf. `:height:`, `:scale:`, `:align:`, and so on) * Enhance standard imaging directives; `image` and `figure` get capability to embed new image format With `sphinxcontrib-imagehelper`, all you have to do is only convert new image format to well known image formats. Install ======= :: $ pip install sphinxcontrib-imagehelper Example ======= :: from sphinxcontrib.imagehelper import ( add_image_type, add_image_directive, add_figure_directive, ImageConverter ) # Declare converter class inherits ImageConverter class MyImageConverter(ImageConverter): # Override `get_filename_for()` to determine filename def get_filename_for(self, node): # filename is came from its URI and configuration hashed = sha1((node['uri'] + self.app.config.some_convert_settings).encode('utf-8')).hexdigest() return 'myimage-%s.png' % hashed # Override `convert()` to convert new image format to well known image formats (PNG, JPG and so on) def convert(self, node, filename, to): # Hint: you can refer self.app.builder.format to switch conversion behavior succeeded = convert_myimage_to_png(filename, to, option1=node['option'], option2=self.app.config.some_convert_settings) if succeeded: return True # return True if conversion succeeded else: return False def setup(app) # Register new image type: myimage add_image_type(app, 'my', 'img', MyImageConverter) # Register my-image directive add_image_directive(app, 'my') # Register my-figure directive add_figure_directive(app, 'my') Helpers ======= `sphinxcontrib.imagehelper.add_image_type(app, name, ext, handler)` Register a new image type which is identified with file extension `ext`. The `handler` is used to convert image formats. `sphinxcontrib.imagehelper.ImageConverter` A handler class for converting image formats. It is used at `add_image_type()`. The developers of sphinx-extensions should create a handler class which inherits `ImageConverter`, and should override two following methods: `ImageConverter.option_spec` A definition of additional options. By default, it is empty dict. `ImageConverter.get_last_modified_for(self, node)` Determine last modified time of target image. By default, this method returns the timestamp of the image file. `ImageConverter.get_filename_for(self, node)` Determine a filename of converted image. By default, this method returns the filename replaced its extension with '.png':: def get_filename_for(self, node): return os.path.splitext(node['uri'])[0] + '.png' `ImageConverter.convert(self, node, filename, to)` Convert image to embedable format. By default, this method does nothing. `sphinxcontrib.imagehelper.add_image_directive(app, name, option_spec={})` Add a custom image directive to Sphinx. The directive is named as `name`-image (cf. astah-image). If `option_spec` is given, the new directive accepts custom options. `sphinxcontrib.imagehelper.add_figure_directive(app, name, option_spec={})` Add a custom figure directive to Sphinx. The directive is named as `name`-figure (cf. astah-figure). If `option_spec` is given, the new directive accepts custom options. `sphinxcontrib.imagehelper.generate_image_directive(name, option_spec={})` Generate a custom image directive class. The class is not registered to Sphinx. You can enhance the directive class with subclassing. `sphinxcontrib.imagehelper.generate_figure_directive(name, option_spec={})` Generate a custom figure directive class. The class is not registered to Sphinx. You can enhance the directive class with subclassing.
PypiClean
/jupancon-0.3.3.tar.gz/jupancon-0.3.3/README.md
# jupancon Database Connectors and SQL magics for [Jupyter](https://docs.jupyter.org/en/latest/). `jupancon` = Jupyter + Pandas + Connectors. ### Features - Connector to Redshift - Using user/pass - Using IAM profile - Connector to Bigquery (using google profile) - Connector to Databricks - Optional automatic tunnel setting through an SSH Bastion - Querying capabilities - IPython kernel magics for querying - Always returns [Pandas DataFrames](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html) - Some hidden stuff I rather not document just yet so you don't nuke your Warehouse :) Will do when it's safer to use ### Install ```bash pip install jupancon ``` ### Configure Write a `~/.jupancon/config.yml` YAML file that looks similar to the following C&P from my actual config file (heavily censored for obvious reasons): ```yaml default: my-redshift-cluster my-redshift-cluster: type: redshift host: XXXXXX.XXXXXX.XXXXXXX.redshift.amazonaws.com # explicitly setting redshift port (optional) port: 5439 user: XXXXXXXX pass: XXXXXXXX dbname: XXXXXX my-redshift-using-iamprofile: type: redshift host: XXXXXX.XXXXXX.XXXXXXX.redshift.amazonaws.com profile: XXXXXXXXX dbname: XXXXXX # NOTE: you can choose dbuser and it will be auto-created if it doesn't exist dbuser: XXXXXX cluster: XXXXXX my-gcp: type: bigquery project: XXXXX-XXXXX-123456 my-databricks: type: databricks server_hostname: XXXXXX.cloud.databricks.com http_path: /sql/XXX/XXXX/XXXXXXXXXX # optional catalog: XXXXXXX token: XXXXXXXXX my-redshift-behind-sshbastion: type: redshift use_bastion: true bastion_server: censored.bastion.server.com bastion_user: XXXXXX bastion_host: XXXXXX.XXXXXX.XXXXXX.redshift.amazonaws.com host: censored.main.server.com user: XXXXXXXX pass: XXXXXXXX dbname: XXXXXX ``` Jupancon will also pick environment variables (which have preference over the `config.yml`). - `JPC_DB_TYPE`: `redshift` or `bigquery` - `JPC_HOST`: for example, `XXXXXX.XXXXXX.XXXXXX.redshift.amazonaws.com` - `JPC_USER`: User name - `JPC_DB`: Database name - `JPC_PASS`: Password - `JPC_USE_BASTION`: `true` or leave blank - `JPC_BASTION_SERVER` - `JPC_BASTION_HOST` - `JPC_PROFILE`: IAM profile (for IAM connection only) - `JPC_CLUSTER`: Redshift cluster (for IAM connection only) - `JPC_DBUSER`: Redshift user (for IAM connection only) # How to use This library is developed primarily for usage within [Jupyter Lab](https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html). It's likely to work in Jupyter Notebook and Ipython, but untested and unsupported at this stage. It also works and is being used in regular scripts, but [it obviously loses its magic](https://ipython.readthedocs.io/en/stable/interactive/magics.html). ### Regular usage ```python from jupancon import query, list_schemas, list_tables list_schemas() list_tables() query("select * from foo") ``` ### Magical usage ```python from jupancon import load_magics load_magics() ``` ```sql select * from foo ``` ```sql df = %select * from foo ``` ```sql %%sql select * from foo where cond = 1 and label = 'my nice label' ``` # Development Current status: Jupancon has enough basic features that it's worth open sourcing, but the documentation is still lacking. ### TODO list - `list_table("schema")` to detect if schema doesn't exist and return error - Add query monitoring and cancelling functionality - Complete docs (low level stuff, exhaustive features, maybe sphinx/rdd?) - Add animated gifs to docs ### Features that aren't worth adding right now - Autocomplete and autodiscover of databases is possible, but not trivial at all. In addition, I'll like to find a way of not adding any extra configuration. Regardless, not worth it until the TODO list above is tackled. See [this project](https://github.com/jupyter-lsp/jupyterlab-lsp) for a successful example. - Because of the current architecture of Jupyter Lab, syntax highlighting is not feasible to add (as it was in Jupyter Notebook). This might change in the future. See this [git issue](https://github.com/jupyterlab/jupyterlab/issues/3869) for more details. ### A note about Unit Testing I would like to publish decent unit testing, but this library is hard to test because all the databases currently queried for it's development are either tests that cost me money or private (my clients') databases. Any ideas on how to write an open source, non exploitable set of unit tests for Redshift or BigQuery are very welcome.
PypiClean
/shimao-nosidebar-frontend-20180926.0.tar.gz/shimao-nosidebar-frontend-20180926.0/hass_frontend_es5/custom-panel-7baaafff.js
!function(e){function n(n){for(var t,o,u=n[0],i=n[1],c=0,l=[];c<u.length;c++)o=u[c],r[o]&&l.push(r[o][0]),r[o]=0;for(t in i)Object.prototype.hasOwnProperty.call(i,t)&&(e[t]=i[t]);for(a&&a(n);l.length;)l.shift()()}var t={},r={11:0};function o(n){if(t[n])return t[n].exports;var r=t[n]={i:n,l:!1,exports:{}};return e[n].call(r.exports,r,r.exports,o),r.l=!0,r.exports}o.e=function(e){var n=[],t=r[e];if(0!==t)if(t)n.push(t[2]);else{var u=new Promise(function(n,o){t=r[e]=[n,o]});n.push(t[2]=u);var i,c=document.getElementsByTagName("head")[0],a=document.createElement("script");a.charset="utf-8",a.timeout=120,o.nc&&a.setAttribute("nonce",o.nc),a.src=function(e){return o.p+""+{43:"61dbd42bf439af741251",44:"870fcc2320e7d91600a1",45:"a0c6ceca1f06db7c24f3",52:"fcdd53ccee1700ace44d"}[e]+".chunk.js"}(e),i=function(n){a.onerror=a.onload=null,clearTimeout(l);var t=r[e];if(0!==t){if(t){var o=n&&("load"===n.type?"missing":n.type),u=n&&n.target&&n.target.src,i=new Error("Loading chunk "+e+" failed.\n("+o+": "+u+")");i.type=o,i.request=u,t[1](i)}r[e]=void 0}};var l=setTimeout(function(){i({type:"timeout",target:a})},12e4);a.onerror=a.onload=i,c.appendChild(a)}return Promise.all(n)},o.m=e,o.c=t,o.d=function(e,n,t){o.o(e,n)||Object.defineProperty(e,n,{enumerable:!0,get:t})},o.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},o.t=function(e,n){if(1&n&&(e=o(e)),8&n)return e;if(4&n&&"object"==typeof e&&e&&e.__esModule)return e;var t=Object.create(null);if(o.r(t),Object.defineProperty(t,"default",{enumerable:!0,value:e}),2&n&&"string"!=typeof e)for(var r in e)o.d(t,r,function(n){return e[n]}.bind(null,r));return t},o.n=function(e){var n=e&&e.__esModule?function(){return e.default}:function(){return e};return o.d(n,"a",n),n},o.o=function(e,n){return Object.prototype.hasOwnProperty.call(e,n)},o.p="/frontend_es5/",o.oe=function(e){throw console.error(e),e};var u=window.webpackJsonp=window.webpackJsonp||[],i=u.push.bind(u);u.push=n,u=u.slice();for(var c=0;c<u.length;c++)n(u[c]);var a=i;o(o.s=188)}({145:function(e,n,t){"use strict";t.d(n,"a",function(){return i});var r=t(82),o=function(e,n){if(Array.isArray(e))return e;if(Symbol.iterator in Object(e))return function(e,n){var t=[],r=!0,o=!1,u=void 0;try{for(var i,c=e[Symbol.iterator]();!(r=(i=c.next()).done)&&(t.push(i.value),!n||t.length!==n);r=!0);}catch(e){o=!0,u=e}finally{try{!r&&c.return&&c.return()}finally{if(o)throw u}}return t}(e,n);throw new TypeError("Invalid attempt to destructure non-iterable instance")},u={};function i(e){if(e.html_url){var n=[t.e(44).then(t.bind(null,251))];return e.embed_iframe||n.push(Promise.all([t.e(52),t.e(45)]).then(t.bind(null,139))),Promise.all(n).then(function(n){return(0,o(n,1)[0].importHrefPromise)(e.html_url)})}return e.js_url?(e.js_url in u||(u[e.js_url]=Object(r.b)(e.js_url)),u[e.js_url]):e.module_url?Object(r.c)(e.module_url):Promise.reject("No valid url found in panel config.")}},146:function(e,n,t){"use strict";function r(e){var n="html_url"in e?"ha-panel-"+e.name:e.name;return document.createElement(n)}t.d(n,"a",function(){return r})},147:function(e,n,t){"use strict";function r(e,n){"setProperties"in e?e.setProperties(n):Object.keys(n).forEach(function(t){e[t]=n[t]})}t.d(n,"a",function(){return r})},188:function(e,n,t){"use strict";t.r(n);var r=t(82),o=t(145),u=t(146),i=t(147),c="customElements"in window&&"import"in document.createElement("link")&&"content"in document.createElement("template"),a=null;window.loadES5Adapter=function(){return a||(a=Promise.all([Object(r.b)("/static/custom-elements-es5-adapter.js").catch(),t.e(43).then(t.bind(null,143))])),a};var l=null;function s(e){null!==l&&Object(i.a)(l,e)}function d(e,n){var t=document.createElement("style");t.innerHTML="body{margin:0}",document.head.appendChild(t);var i=e.config._panel_custom,d=Promise.resolve();c||(d=d.then(function(){return Object(r.b)("/static/webcomponents-bundle.js")})),(d=d.then(function(){return window.loadES5Adapter()})).then(function(){return Object(o.a)(i)}).then(function(){return a||Promise.resolve()}).then(function(){var t=function(e){return window.parent.customPanel.fire(e.type,e.detail)};(l=Object(u.a)(i)).addEventListener("hass-open-menu",t),l.addEventListener("hass-close-menu",t),l.addEventListener("location-changed",function(){return window.parent.customPanel.navigate(window.location.pathname)}),s(Object.assign({panel:e},n)),document.body.appendChild(l)},function(n){console.error(n,e),alert("Unable to load the panel source: "+n+".")})}document.addEventListener("DOMContentLoaded",function(){return window.parent.customPanel.registerIframe(d,s)},{once:!0})},82:function(e,n,t){"use strict";function r(e,n,t){return new Promise(function(r,o){var u=document.createElement(e),i="src",c="body";switch(u.onload=function(){return r(n)},u.onerror=function(){return o(n)},e){case"script":u.async=!0,t&&(u.type=t);break;case"link":u.type="text/css",u.rel="stylesheet",i="href",c="head"}u[i]=n,document[c].appendChild(u)})}t.d(n,"a",function(){return o}),t.d(n,"b",function(){return u}),t.d(n,"c",function(){return i});var o=function(e){return r("link",e)},u=function(e){return r("script",e)},i=function(e){return r("script",e,"module")}}}); //# sourceMappingURL=custom-panel-7baaafff.js.map
PypiClean
/robotframework-python3-2.9.tar.gz/robotframework-python3-2.9/src/robot/model/keyword.py
from itertools import chain from operator import attrgetter from robot.utils import setter, unic from .itemlist import ItemList from .message import Message, Messages from .modelobject import ModelObject from .tags import Tags class Keyword(ModelObject): """Base model for single keyword.""" __slots__ = ['_name', 'doc', 'args', 'assign', 'timeout', 'type', '_sort_key', '_next_child_sort_key'] KEYWORD_TYPE = 'kw' SETUP_TYPE = 'setup' TEARDOWN_TYPE = 'teardown' FOR_LOOP_TYPE = 'for' FOR_ITEM_TYPE = 'foritem' keyword_class = None message_class = Message def __init__(self, name='', doc='', args=(), assign=(), tags=(), timeout=None, type='kw'): #: :class:`~.model.testsuite.TestSuite` or #: :class:`~.model.testcase.TestCase` or #: :class:`~.model.keyword.Keyword` that contains this keyword. self.parent = None self._name = name #: Keyword documentation. self.doc = doc #: Keyword arguments as a list of strings. self.args = args #: Assigned variables as a list of strings. self.assign = assign #: Keyword tags as a list like :class:`~.model.tags.Tags` object. self.tags = tags #: Keyword timeout. self.timeout = timeout #: Keyword type as a string. See class level ``XXX_TYPE`` constants. self.type = type #: Keyword messages as :class:`~.model.message.Message` instances. self.messages = None #: Child keywords as :class:`~.model.keyword.Keyword` instances. self.keywords = None self._sort_key = -1 self._next_child_sort_key = 0 @property def name(self): return self._name @name.setter def name(self, name): self._name = name @setter def parent(self, parent): if parent and parent is not self.parent: self._sort_key = getattr(parent, '_child_sort_key', -1) return parent @property def _child_sort_key(self): self._next_child_sort_key += 1 return self._next_child_sort_key @setter def tags(self, tags): return Tags(tags) @setter def keywords(self, keywords): return Keywords(self.keyword_class or self.__class__, self, keywords) @setter def messages(self, messages): return Messages(self.message_class, self, messages) @property def children(self): """Child keywords and messages in creation order.""" # It would be cleaner to store keywords/messages in same `children` # list and turn `keywords` and `messages` to properties that pick items # from it. That would require bigger changes to the model, though. return sorted(chain(self.keywords, self.messages), key=attrgetter('_sort_key')) @property def id(self): if not self.parent: return 'k1' return '%s-k%d' % (self.parent.id, self.parent.keywords.index(self)+1) def visit(self, visitor): visitor.visit_keyword(self) class Keywords(ItemList): __slots__ = [] def __init__(self, keyword_class=Keyword, parent=None, keywords=None): ItemList.__init__(self, keyword_class, {'parent': parent}, keywords) @property def setup(self): return self[0] if (self and self[0].type == 'setup') else None @property def teardown(self): return self[-1] if (self and self[-1].type == 'teardown') else None @property def all(self): return self @property def normal(self): kws = [kw for kw in self if kw.type not in ('setup', 'teardown')] return Keywords(self._item_class, self._common_attrs['parent'], kws) def __setitem__(self, index, item): old = self[index] ItemList.__setitem__(self, index, item) self[index]._sort_key = old._sort_key
PypiClean
/deepfos-celery-1.1.2.tar.gz/deepfos-celery-1.1.2/docs/history/changelog-2.3.rst
.. _changelog-2.3: =============================== Change history for Celery 2.3 =============================== .. contents:: :local: .. _version-2.3.4: 2.3.4 ===== :release-date: 2011-11-25 04:00 p.m. GMT :release-by: Ask Solem .. _v234-security-fixes: Security Fixes -------------- * [Security: `CELERYSA-0001`_] Daemons would set effective id's rather than real id's when the :option:`--uid <celery --uid>`/ :option:`--gid <celery --gid>` arguments to :program:`celery multi`, :program:`celeryd_detach`, :program:`celery beat` and :program:`celery events` were used. This means privileges weren't properly dropped, and that it would be possible to regain supervisor privileges later. .. _`CELERYSA-0001`: https://github.com/celery/celery/tree/master/docs/sec/CELERYSA-0001.txt Fixes ----- * Backported fix for #455 from 2.4 to 2.3. * StateDB wasn't saved at shutdown. * Fixes worker sometimes hanging when hard time limit exceeded. .. _version-2.3.3: 2.3.3 ===== :release-date: 2011-16-09 05:00 p.m. BST :release-by: Mher Movsisyan * Monkey patching :attr:`sys.stdout` could result in the worker crashing if the replacing object didn't define :meth:`isatty` (Issue #477). * ``CELERYD`` option in :file:`/etc/default/celeryd` shouldn't be used with generic init-scripts. .. _version-2.3.2: 2.3.2 ===== :release-date: 2011-10-07 05:00 p.m. BST :release-by: Ask Solem .. _v232-news: News ---- * Improved Contributing guide. If you'd like to contribute to Celery you should read the :ref:`Contributing Gudie <contributing>`. We're looking for contributors at all skill levels, so don't hesitate! * Now depends on Kombu 1.3.1 * ``Task.request`` now contains the current worker host name (Issue #460). Available as ``task.request.hostname``. * It's now easier for app subclasses to extend how they're pickled. (see :class:`celery.app.AppPickler`). .. _v232-fixes: Fixes ----- * `purge/discard_all` wasn't working correctly (Issue #455). * The coloring of log messages didn't handle non-ASCII data well (Issue #427). * [Windows] the multiprocessing pool tried to import ``os.kill`` even though this isn't available there (Issue #450). * Fixes case where the worker could become unresponsive because of tasks exceeding the hard time limit. * The :event:`task-sent` event was missing from the event reference. * ``ResultSet.iterate`` now returns results as they finish (Issue #459). This wasn't the case previously, even though the documentation states this was the expected behavior. * Retries will no longer be performed when tasks are called directly (using ``__call__``). Instead the exception passed to ``retry`` will be re-raised. * Eventlet no longer crashes if autoscale is enabled. growing and shrinking eventlet pools is still not supported. * ``py24`` target removed from :file:`tox.ini`. .. _version-2.3.1: 2.3.1 ===== :release-date: 2011-08-07 08:00 p.m. BST :release-by: Ask Solem Fixes ----- * The :setting:`CELERY_AMQP_TASK_RESULT_EXPIRES` setting didn't work, resulting in an AMQP related error about not being able to serialize floats while trying to publish task states (Issue #446). .. _version-2.3.0: 2.3.0 ===== :release-date: 2011-08-05 12:00 p.m. BST :tested: CPython: 2.5, 2.6, 2.7; PyPy: 1.5; Jython: 2.5.2 :release-by: Ask Solem .. _v230-important: Important Notes --------------- * Now requires Kombu 1.2.1 * Results are now disabled by default. The AMQP backend wasn't a good default because often the users were not consuming the results, resulting in thousands of queues. While the queues can be configured to expire if left unused, it wasn't possible to enable this by default because this was only available in recent RabbitMQ versions (2.1.1+) With this change enabling a result backend will be a conscious choice, which will hopefully lead the user to read the documentation and be aware of any common pitfalls with the particular backend. The default backend is now a dummy backend (:class:`celery.backends.base.DisabledBackend`). Saving state is simply an no-op, and AsyncResult.wait(), .result, .state, etc. will raise a :exc:`NotImplementedError` telling the user to configure the result backend. For help choosing a backend please see :ref:`task-result-backends`. If you depend on the previous default which was the AMQP backend, then you have to set this explicitly before upgrading:: CELERY_RESULT_BACKEND = 'amqp' .. note:: For :pypi:`django-celery` users the default backend is still ``database``, and results are not disabled by default. * The Debian init-scripts have been deprecated in favor of the generic-init.d init-scripts. In addition generic init-scripts for ``celerybeat`` and ``celeryev`` has been added. .. _v230-news: News ---- * Automatic connection pool support. The pool is used by everything that requires a broker connection, for example calling tasks, sending broadcast commands, retrieving results with the AMQP result backend, and so on. The pool is disabled by default, but you can enable it by configuring the :setting:`BROKER_POOL_LIMIT` setting:: BROKER_POOL_LIMIT = 10 A limit of 10 means a maximum of 10 simultaneous connections can co-exist. Only a single connection will ever be used in a single-thread environment, but in a concurrent environment (threads, greenlets, etc., but not processes) when the limit has been exceeded, any try to acquire a connection will block the thread and wait for a connection to be released. This is something to take into consideration when choosing a limit. A limit of :const:`None` or 0 means no limit, and connections will be established and closed every time. * Introducing Chords (taskset callbacks). A chord is a task that only executes after all of the tasks in a taskset has finished executing. It's a fancy term for "taskset callbacks" adopted from `Cω <http://research.microsoft.com/en-us/um/cambridge/projects/comega/>`_). It works with all result backends, but the best implementation is currently provided by the Redis result backend. Here's an example chord:: >>> chord(add.subtask((i, i)) ... for i in xrange(100))(tsum.subtask()).get() 9900 Please read the :ref:`Chords section in the user guide <canvas-chord>`, if you want to know more. * Time limits can now be set for individual tasks. To set the soft and hard time limits for a task use the ``time_limit`` and ``soft_time_limit`` attributes: .. code-block:: python import time @task(time_limit=60, soft_time_limit=30) def sleeptask(seconds): time.sleep(seconds) If the attributes are not set, then the workers default time limits will be used. New in this version you can also change the time limits for a task at runtime using the :func:`time_limit` remote control command:: >>> from celery.task import control >>> control.time_limit('tasks.sleeptask', ... soft=60, hard=120, reply=True) [{'worker1.example.com': {'ok': 'time limits set successfully'}}] Only tasks that starts executing after the time limit change will be affected. .. note:: Soft time limits will still not work on Windows or other platforms that don't have the ``SIGUSR1`` signal. * Redis backend configuration directive names changed to include the ``CELERY_`` prefix. ===================================== =================================== **Old setting name** **Replace with** ===================================== =================================== `REDIS_HOST` `CELERY_REDIS_HOST` `REDIS_PORT` `CELERY_REDIS_PORT` `REDIS_DB` `CELERY_REDIS_DB` `REDIS_PASSWORD` `CELERY_REDIS_PASSWORD` ===================================== =================================== The old names are still supported but pending deprecation. * PyPy: The default pool implementation used is now multiprocessing if running on PyPy 1.5. * multi: now supports "pass through" options. Pass through options makes it easier to use Celery without a configuration file, or just add last-minute options on the command line. Example use: .. code-block:: console $ celery multi start 4 -c 2 -- broker.host=amqp.example.com \ broker.vhost=/ \ celery.disable_rate_limits=yes * ``celerybeat``: Now retries establishing the connection (Issue #419). * ``celeryctl``: New ``list bindings`` command. Lists the current or all available bindings, depending on the broker transport used. * Heartbeat is now sent every 30 seconds (previously every 2 minutes). * ``ResultSet.join_native()`` and ``iter_native()`` is now supported by the Redis and Cache result backends. This is an optimized version of ``join()`` using the underlying backends ability to fetch multiple results at once. * Can now use SSL when sending error e-mails by enabling the :setting:`EMAIL_USE_SSL` setting. * ``events.default_dispatcher()``: Context manager to easily obtain an event dispatcher instance using the connection pool. * Import errors in the configuration module won't be silenced anymore. * ResultSet.iterate: Now supports the ``timeout``, ``propagate`` and ``interval`` arguments. * ``with_default_connection`` -> ``with default_connection`` * TaskPool.apply_async: Keyword arguments ``callbacks`` and ``errbacks`` has been renamed to ``callback`` and ``errback`` and take a single scalar value instead of a list. * No longer propagates errors occurring during process cleanup (Issue #365) * Added ``TaskSetResult.delete()``, which will delete a previously saved taskset result. * ``celerybeat`` now syncs every 3 minutes instead of only at shutdown (Issue #382). * Monitors now properly handles unknown events, so user-defined events are displayed. * Terminating a task on Windows now also terminates all of the tasks child processes (Issue #384). * worker: ``-I|--include`` option now always searches the current directory to import the specified modules. * Cassandra backend: Now expires results by using TTLs. * Functional test suite in ``funtests`` is now actually working properly, and passing tests. .. _v230-fixes: Fixes ----- * ``celeryev`` was trying to create the pidfile twice. * celery.contrib.batches: Fixed problem where tasks failed silently (Issue #393). * Fixed an issue where logging objects would give "<Unrepresentable", even though the objects were. * ``CELERY_TASK_ERROR_WHITE_LIST`` is now properly initialized in all loaders. * ``celeryd_detach`` now passes through command line configuration. * Remote control command ``add_consumer`` now does nothing if the queue is already being consumed from.
PypiClean
/pyrundeck-0.10.0.tar.gz/pyrundeck-0.10.0/README.md
# Rundeck REST API client ![PyPI](https://img.shields.io/pypi/v/pyrundeck) ![PyPI - Downloads](https://img.shields.io/pypi/dm/pyrundeck) ![PyPI - License](https://img.shields.io/pypi/l/pyrundeck) ![Python Lint](https://github.com/pschmitt/pyrundeck/workflows/Python%20Lint/badge.svg) This is a Python REST API client for Rundeck 2.6+ ## Example ```python from pyrundeck import Rundeck rundeck = Rundeck('http://rundeck-url', token='sometoken', api_version=32, # this is not mandatory, it defaults to 18 ) run = rundeck.run_job(RUNDECK_JOB_ID, options={'option1': 'foo'}) running_jobs = rundeck.get_executions_for_job(job_id=RUNDECK_JOB_ID, status='running') for job in running_jobs['executions']: print("%s is running" % job['id']) ``` A token can be generated in the 'profile' page of Rundeck. Alternatively you can login with a username and password. Example using the file upload option ```python from pyrundeck import rundeck rd = Rundeck( rundeck_url, username=username, password=password, verify=False, api_version=19 # Required for file upload option ) # Use the file_key returned in the response to reference the file when running a job # Per documentation at https://docs.rundeck.com/docs/api/rundeck-api.html#upload-a-file-for-a-job-option response = rd.upload_file(RUNDECK_JOB_ID, OPTION_NAME, FILE_NAME_STRING_OR_IOFILEWRAPPER) file_key = response['options'][OPTION_NAME] rd.run_job(RUNDECK_JOB_ID, options={OPTION_NAME: file_key}) ``` ## See also - https://github.com/marklap/rundeckrun ## LICENSE GPL3
PypiClean
/infra_operator-1.0.23-py3-none-any.whl/infra_operator/clients/mod.py
import os import types import boto3 from infra_operator.clients.ghe import GHE def get_account_id(self): return self.get_caller_identity()["Account"] def find_distribution(self, Id=None, Alias=None, DomainName=None): if Id is None: pager = self.get_paginator("list_distributions") matched = [] for res in pager.paginate(): for dist in res["DistributionList"]["Items"]: if DomainName is None: if Alias in dist["Aliases"].get("Items", []): matched.append(dist) else: if dist["DomainName"] == DomainName: matched.append(dist) if len(matched) == 1: Id = matched[0]["Id"] elif len(matched) == 0: return None else: raise Exception( f"found {len(matched)} distribution with Alias: {Alias}. please specify by Id") res = self.get_distribution(Id=Id) res["Distribution"]["DistributionConfig"]["Id"] = Id res["Distribution"]["DistributionConfig"]["ETag"] = res["ETag"] res["Distribution"]["DistributionConfig"]["DomainName"] = res["Distribution"]["DomainName"] return res def list_continuous_deployment_policies_(self): res = self.list_continuous_deployment_policies() marker = res["ContinuousDeploymentPolicyList"] marker = None while True: if marker: res = self.list_continuous_deployment_policies(Marker=marker) else: res = self.list_continuous_deployment_policies() marker = res["ContinuousDeploymentPolicyList"].get("NextMarker") for one in res["ContinuousDeploymentPolicyList"]["Items"]: one["ContinuousDeploymentPolicy"]["ContinuousDeploymentPolicyConfig"]["Id"] = one["ContinuousDeploymentPolicy"]["Id"] yield one["ContinuousDeploymentPolicy"]["ContinuousDeploymentPolicyConfig"] if marker is None: break def try_get_continuous_deployment_policy(self, Id=None, StagingDistributionDnsNames=None): if Id is None: for one in self.list_continuous_deployment_policies_(): if set(one["StagingDistributionDnsNames"]["Items"]) == set(StagingDistributionDnsNames): Id = one["Id"] break if Id: return self.get_continuous_deployment_policy(Id=Id) def list_cache_policies_(self): marker = None while True: if marker: res = self.list_cache_policies(Marker=marker) else: res = self.list_cache_policies() marker = res["CachePolicyList"].get("NextMarker") for one in res["CachePolicyList"]["Items"]: one["CachePolicy"]["CachePolicyConfig"]["Id"] = one["CachePolicy"]["Id"] yield one["CachePolicy"]["CachePolicyConfig"] if marker is None: break def find_cache_policy(self, Id=None, Name=None): if Id is None: cache_policies = list(self.list_cache_policies_()) res = [one for one in cache_policies if one["Name"] == Name] if len(res) == 0: return None Id = res[0]["Id"] result = self.get_cache_policy(Id=Id) if result is None: return None Id = result["CachePolicy"]["Id"] config = result["CachePolicy"]["CachePolicyConfig"] config["Id"] = Id config["ETag"] = result["ETag"] return config cloudfront = boto3.client('cloudfront') cloudfront.find_distribution = types.MethodType(find_distribution, cloudfront) cloudfront.list_cache_policies_ = types.MethodType( list_cache_policies_, cloudfront) cloudfront.find_cache_policy = types.MethodType(find_cache_policy, cloudfront) cloudfront.list_continuous_deployment_policies_ = types.MethodType( list_continuous_deployment_policies_, cloudfront) cloudfront.try_get_continuous_deployment_policy = types.MethodType( try_get_continuous_deployment_policy, cloudfront) sts = boto3.client("sts") sts.get_account_id = types.MethodType(get_account_id, sts) def find_instance(this, InstanceId, Name): if InstanceId: return this.describe_instances(InstanceIds=[InstanceId]) else: return this.describe_instances(Filters=[{ 'Name': 'tag:Name', 'Values': [Name] }]) def find_volume(this, VolumeId=None, Name=None): if VolumeId: return this.describe_volumes(VolumeIds=[VolumeId]) else: return this.describe_volumes(Filters=[{ 'Name': 'tag:Name', 'Values': [Name] }]) def find_launch_template(this, LaunchTemplateId=None, LaunchTemplateName=None): if LaunchTemplateId: return this.describe_launch_templates(LaunchTemplateIds=[LaunchTemplateId]) else: return this.describe_launch_templates(LaunchTemplateNames=[LaunchTemplateName]) def update_instance(this, content, current): fields = [ "SourceDestCheck", "Attribute", "BlockDeviceMappings", "DisableApiTermination", "EbsOptimized", "EnaSupport", "Groups", "InstanceId", "InstanceInitiatedShutdownBehavior", "InstanceType", "Kernel", "Ramdisk", "SriovNetSupport", "UserData", "Value", "DisableApiStop", ] for field in fields: pass ec2 = boto3.client("ec2") ec2.find_instance = types.MethodType(find_instance, ec2) ec2.find_volume = types.MethodType(find_volume, ec2) ec2.find_launch_template = types.MethodType(find_launch_template, ec2) def find_repository(this, registryId, repositoryName): if registryId: return this.describe_repositories(registryId=registryId, repositoryNames=[repositoryName]) else: return this.describe_repositories(repositoryNames=[repositoryName]) ecr = boto3.client('ecr') ecr.find_repository = types.MethodType(find_repository, ecr) clients = { "ecr": ecr, "ecs": boto3.client('ecs'), "elbv2": boto3.client("elbv2"), "ec2": ec2, "iam": boto3.client("iam"), "appmesh": boto3.client("appmesh"), "servicediscovery": boto3.client("servicediscovery"), "secretsmanager": boto3.client("secretsmanager"), "ghe": GHE(base_url="https://git.toolsfdg.net/api/v3", login_or_token=os.getenv('GITHUB_TOKEN')), "application-autoscaling": boto3.client("application-autoscaling"), "sqs": boto3.resource('sqs'), "lambda": boto3.client('lambda'), "asg": boto3.client('autoscaling'), "cloudwatch": boto3.client('cloudwatch'), "cloudfront": cloudfront, "sts": sts, }
PypiClean
/pdc_dp_means-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/sklearn/neighbors/_graph.py
# Author: Jake Vanderplas <[email protected]> # Tom Dupre la Tour # # License: BSD 3 clause (C) INRIA, University of Amsterdam from ._base import KNeighborsMixin, RadiusNeighborsMixin from ._base import NeighborsBase from ._unsupervised import NearestNeighbors from ..base import TransformerMixin, ClassNamePrefixFeaturesOutMixin from ..utils._param_validation import StrOptions from ..utils.validation import check_is_fitted def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(["metric", "p", "metric_params"], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for the same parameter." % (func_param, param_name, est_params[param_name]) ) def _query_include_self(X, include_self, mode): """Return the query based on include_self param""" if include_self == "auto": include_self = mode == "connectivity" # it does not include each sample as its own neighbors if not include_self: X = None return X def kneighbors_graph( X, n_neighbors, *, mode="connectivity", metric="minkowski", p=2, metric_params=None, include_self=False, n_jobs=None, ): """Compute the (weighted) graph of k-Neighbors for points in X. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like of shape (n_samples, n_features) or BallTree Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, default='connectivity' Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, and 'distance' will return the distances between neighbors according to the given metric. metric : str, default='minkowski' Metric to use for distance computation. Default is "minkowski", which results in the standard Euclidean distance when p = 2. See the documentation of `scipy.spatial.distance <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and the metrics listed in :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric values. p : int, default=2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, default=None Additional keyword arguments for the metric function. include_self : bool or 'auto', default=False Whether or not to mark each sample as the first nearest neighbor to itself. If 'auto', then True is used for mode='connectivity' and False for mode='distance'. n_jobs : int, default=None The number of parallel jobs to run for neighbors search. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. Returns ------- A : sparse matrix of shape (n_samples, n_samples) Graph where A[i, j] is assigned the weight of edge that connects i to j. The matrix is of CSR format. See Also -------- radius_neighbors_graph: Compute the (weighted) graph of Neighbors for points in X. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2, mode='connectivity', include_self=True) >>> A.toarray() array([[1., 0., 1.], [0., 1., 1.], [1., 0., 1.]]) """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors( n_neighbors=n_neighbors, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, ).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X._fit_X, include_self, mode) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph( X, radius, *, mode="connectivity", metric="minkowski", p=2, metric_params=None, include_self=False, n_jobs=None, ): """Compute the (weighted) graph of Neighbors for points in X. Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like of shape (n_samples, n_features) or BallTree Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, default='connectivity' Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, and 'distance' will return the distances between neighbors according to the given metric. metric : str, default='minkowski' Metric to use for distance computation. Default is "minkowski", which results in the standard Euclidean distance when p = 2. See the documentation of `scipy.spatial.distance <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and the metrics listed in :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric values. p : int, default=2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, default=None Additional keyword arguments for the metric function. include_self : bool or 'auto', default=False Whether or not to mark each sample as the first nearest neighbor to itself. If 'auto', then True is used for mode='connectivity' and False for mode='distance'. n_jobs : int, default=None The number of parallel jobs to run for neighbors search. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. Returns ------- A : sparse matrix of shape (n_samples, n_samples) Graph where A[i, j] is assigned the weight of edge that connects i to j. The matrix is of CSR format. See Also -------- kneighbors_graph: Compute the weighted graph of k-neighbors for points in X. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5, mode='connectivity', ... include_self=True) >>> A.toarray() array([[1., 0., 1.], [0., 1., 0.], [1., 0., 1.]]) """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors( radius=radius, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, ).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X._fit_X, include_self, mode) return X.radius_neighbors_graph(query, radius, mode) class KNeighborsTransformer( ClassNamePrefixFeaturesOutMixin, KNeighborsMixin, TransformerMixin, NeighborsBase ): """Transform X into a (weighted) graph of k nearest neighbors. The transformed data is a sparse graph as returned by kneighbors_graph. Read more in the :ref:`User Guide <neighbors_transformer>`. .. versionadded:: 0.22 Parameters ---------- mode : {'distance', 'connectivity'}, default='distance' Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, and 'distance' will return the distances between neighbors according to the given metric. n_neighbors : int, default=5 Number of neighbors for each sample in the transformed sparse graph. For compatibility reasons, as each sample is considered as its own neighbor, one extra neighbor will be computed when mode == 'distance'. In this case, the sparse graph contains (n_neighbors + 1) neighbors. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto' Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDTree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, default=30 Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : str or callable, default='minkowski' Metric to use for distance computation. Default is "minkowski", which results in the standard Euclidean distance when p = 2. See the documentation of `scipy.spatial.distance <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and the metrics listed in :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric values. If metric is a callable function, it takes two arrays representing 1D vectors as inputs and must return one value indicating the distance between those vectors. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. p : int, default=2 Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, default=None Additional keyword arguments for the metric function. n_jobs : int, default=None The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- effective_metric_ : str or callable The distance metric used. It will be same as the `metric` parameter or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to 'minkowski' and `p` parameter set to 2. effective_metric_params_ : dict Additional keyword arguments for the metric function. For most metrics will be same with `metric_params` parameter, but may also contain the `p` parameter value if the `effective_metric_` attribute is set to 'minkowski'. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_samples_fit_ : int Number of samples in the fitted data. See Also -------- kneighbors_graph : Compute the weighted graph of k-neighbors for points in X. RadiusNeighborsTransformer : Transform X into a weighted graph of neighbors nearer than a radius. Examples -------- >>> from sklearn.datasets import load_wine >>> from sklearn.neighbors import KNeighborsTransformer >>> X, _ = load_wine(return_X_y=True) >>> X.shape (178, 13) >>> transformer = KNeighborsTransformer(n_neighbors=5, mode='distance') >>> X_dist_graph = transformer.fit_transform(X) >>> X_dist_graph.shape (178, 178) """ _parameter_constraints: dict = { **NeighborsBase._parameter_constraints, "mode": [StrOptions({"distance", "connectivity"})], } _parameter_constraints.pop("radius") def __init__( self, *, mode="distance", n_neighbors=5, algorithm="auto", leaf_size=30, metric="minkowski", p=2, metric_params=None, n_jobs=None, ): super(KNeighborsTransformer, self).__init__( n_neighbors=n_neighbors, radius=None, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, ) self.mode = mode def fit(self, X, y=None): """Fit the k-nearest neighbors transformer from the training dataset. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) or \ (n_samples, n_samples) if metric='precomputed' Training data. y : Ignored Not used, present for API consistency by convention. Returns ------- self : KNeighborsTransformer The fitted k-nearest neighbors transformer. """ self._validate_params() self._fit(X) self._n_features_out = self.n_samples_fit_ return self def transform(self, X): """Compute the (weighted) graph of Neighbors for points in X. Parameters ---------- X : array-like of shape (n_samples_transform, n_features) Sample data. Returns ------- Xt : sparse matrix of shape (n_samples_transform, n_samples_fit) Xt[i, j] is assigned the weight of edge that connects i to j. Only the neighbors have an explicit value. The diagonal is always explicit. The matrix is of CSR format. """ check_is_fitted(self) add_one = self.mode == "distance" return self.kneighbors_graph( X, mode=self.mode, n_neighbors=self.n_neighbors + add_one ) def fit_transform(self, X, y=None): """Fit to data, then transform it. Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. Parameters ---------- X : array-like of shape (n_samples, n_features) Training set. y : Ignored Not used, present for API consistency by convention. Returns ------- Xt : sparse matrix of shape (n_samples, n_samples) Xt[i, j] is assigned the weight of edge that connects i to j. Only the neighbors have an explicit value. The diagonal is always explicit. The matrix is of CSR format. """ return self.fit(X).transform(X) def _more_tags(self): return { "_xfail_checks": { "check_methods_sample_order_invariance": "check is not applicable." } } class RadiusNeighborsTransformer( ClassNamePrefixFeaturesOutMixin, RadiusNeighborsMixin, TransformerMixin, NeighborsBase, ): """Transform X into a (weighted) graph of neighbors nearer than a radius. The transformed data is a sparse graph as returned by `radius_neighbors_graph`. Read more in the :ref:`User Guide <neighbors_transformer>`. .. versionadded:: 0.22 Parameters ---------- mode : {'distance', 'connectivity'}, default='distance' Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, and 'distance' will return the distances between neighbors according to the given metric. radius : float, default=1.0 Radius of neighborhood in the transformed sparse graph. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto' Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDTree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, default=30 Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : str or callable, default='minkowski' Metric to use for distance computation. Default is "minkowski", which results in the standard Euclidean distance when p = 2. See the documentation of `scipy.spatial.distance <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and the metrics listed in :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric values. If metric is a callable function, it takes two arrays representing 1D vectors as inputs and must return one value indicating the distance between those vectors. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. p : int, default=2 Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, default=None Additional keyword arguments for the metric function. n_jobs : int, default=None The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- effective_metric_ : str or callable The distance metric used. It will be same as the `metric` parameter or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to 'minkowski' and `p` parameter set to 2. effective_metric_params_ : dict Additional keyword arguments for the metric function. For most metrics will be same with `metric_params` parameter, but may also contain the `p` parameter value if the `effective_metric_` attribute is set to 'minkowski'. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_samples_fit_ : int Number of samples in the fitted data. See Also -------- kneighbors_graph : Compute the weighted graph of k-neighbors for points in X. KNeighborsTransformer : Transform X into a weighted graph of k nearest neighbors. Examples -------- >>> import numpy as np >>> from sklearn.datasets import load_wine >>> from sklearn.cluster import DBSCAN >>> from sklearn.neighbors import RadiusNeighborsTransformer >>> from sklearn.pipeline import make_pipeline >>> X, _ = load_wine(return_X_y=True) >>> estimator = make_pipeline( ... RadiusNeighborsTransformer(radius=42.0, mode='distance'), ... DBSCAN(eps=25.0, metric='precomputed')) >>> X_clustered = estimator.fit_predict(X) >>> clusters, counts = np.unique(X_clustered, return_counts=True) >>> print(counts) [ 29 15 111 11 12] """ _parameter_constraints: dict = { **NeighborsBase._parameter_constraints, "mode": [StrOptions({"distance", "connectivity"})], } _parameter_constraints.pop("n_neighbors") def __init__( self, *, mode="distance", radius=1.0, algorithm="auto", leaf_size=30, metric="minkowski", p=2, metric_params=None, n_jobs=None, ): super(RadiusNeighborsTransformer, self).__init__( n_neighbors=None, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, ) self.mode = mode def fit(self, X, y=None): """Fit the radius neighbors transformer from the training dataset. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) or \ (n_samples, n_samples) if metric='precomputed' Training data. y : Ignored Not used, present for API consistency by convention. Returns ------- self : RadiusNeighborsTransformer The fitted radius neighbors transformer. """ self._validate_params() self._fit(X) self._n_features_out = self.n_samples_fit_ return self def transform(self, X): """Compute the (weighted) graph of Neighbors for points in X. Parameters ---------- X : array-like of shape (n_samples_transform, n_features) Sample data. Returns ------- Xt : sparse matrix of shape (n_samples_transform, n_samples_fit) Xt[i, j] is assigned the weight of edge that connects i to j. Only the neighbors have an explicit value. The diagonal is always explicit. The matrix is of CSR format. """ check_is_fitted(self) return self.radius_neighbors_graph(X, mode=self.mode, sort_results=True) def fit_transform(self, X, y=None): """Fit to data, then transform it. Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. Parameters ---------- X : array-like of shape (n_samples, n_features) Training set. y : Ignored Not used, present for API consistency by convention. Returns ------- Xt : sparse matrix of shape (n_samples, n_samples) Xt[i, j] is assigned the weight of edge that connects i to j. Only the neighbors have an explicit value. The diagonal is always explicit. The matrix is of CSR format. """ return self.fit(X).transform(X) def _more_tags(self): return { "_xfail_checks": { "check_methods_sample_order_invariance": "check is not applicable." } }
PypiClean
/backtradermsms-1.9.75.123-py3-none-any.whl/backtrader/lineiterator.py
from __future__ import (absolute_import, division, print_function, unicode_literals) import collections import operator import sys from .utils.py3 import map, range, zip, with_metaclass, string_types from .utils import DotDict from .lineroot import LineRoot, LineSingle from .linebuffer import LineActions, LineNum from .lineseries import LineSeries, LineSeriesMaker from .dataseries import DataSeries from . import metabase class MetaLineIterator(LineSeries.__class__): def donew(cls, *args, **kwargs): _obj, args, kwargs = \ super(MetaLineIterator, cls).donew(*args, **kwargs) # Prepare to hold children that need to be calculated and # influence minperiod - Moved here to support LineNum below _obj._lineiterators = collections.defaultdict(list) # Scan args for datas ... if none are found, # use the _owner (to have a clock) mindatas = _obj._mindatas lastarg = 0 _obj.datas = [] for arg in args: if isinstance(arg, LineRoot): _obj.datas.append(LineSeriesMaker(arg)) elif not mindatas: break # found not data and must not be collected else: try: _obj.datas.append(LineSeriesMaker(LineNum(arg))) except: # Not a LineNum and is not a LineSeries - bail out break mindatas = max(0, mindatas - 1) lastarg += 1 newargs = args[lastarg:] # If no datas have been passed to an indicator ... use the # main datas of the owner, easing up adding "self.data" ... if not _obj.datas and isinstance(_obj, (IndicatorBase, ObserverBase)): _obj.datas = _obj._owner.datas[0:mindatas] # Create a dictionary to be able to check for presence # lists in python use "==" operator when testing for presence with "in" # which doesn't really check for presence but for equality _obj.ddatas = {x: None for x in _obj.datas} # For each found data add access member - # for the first data 2 (data and data0) if _obj.datas: _obj.data = data = _obj.datas[0] for l, line in enumerate(data.lines): linealias = data._getlinealias(l) if linealias: setattr(_obj, 'data_%s' % linealias, line) setattr(_obj, 'data_%d' % l, line) for d, data in enumerate(_obj.datas): setattr(_obj, 'data%d' % d, data) for l, line in enumerate(data.lines): linealias = data._getlinealias(l) if linealias: setattr(_obj, 'data%d_%s' % (d, linealias), line) setattr(_obj, 'data%d_%d' % (d, l), line) # Parameter values have now been set before __init__ _obj.dnames = DotDict([(d._name, d) for d in _obj.datas if getattr(d, '_name', '')]) return _obj, newargs, kwargs def dopreinit(cls, _obj, *args, **kwargs): _obj, args, kwargs = \ super(MetaLineIterator, cls).dopreinit(_obj, *args, **kwargs) # if no datas were found use, use the _owner (to have a clock) _obj.datas = _obj.datas or [_obj._owner] # 1st data source is our ticking clock _obj._clock = _obj.datas[0] # To automatically set the period Start by scanning the found datas # No calculation can take place until all datas have yielded "data" # A data could be an indicator and it could take x bars until # something is produced _obj._minperiod = \ max([x._minperiod for x in _obj.datas] or [_obj._minperiod]) # The lines carry at least the same minperiod as # that provided by the datas for line in _obj.lines: line.addminperiod(_obj._minperiod) return _obj, args, kwargs def dopostinit(cls, _obj, *args, **kwargs): _obj, args, kwargs = \ super(MetaLineIterator, cls).dopostinit(_obj, *args, **kwargs) # my minperiod is as large as the minperiod of my lines _obj._minperiod = max([x._minperiod for x in _obj.lines]) # Recalc the period _obj._periodrecalc() # Register (my)self as indicator to owner once # _minperiod has been calculated if _obj._owner is not None: _obj._owner.addindicator(_obj) return _obj, args, kwargs class LineIterator(with_metaclass(MetaLineIterator, LineSeries)): _nextforce = False # force cerebro to run in next mode (runonce=False) _mindatas = 1 _ltype = LineSeries.IndType plotinfo = dict(plot=True, subplot=True, plotname='', plotskip=False, plotabove=False, plotlinelabels=False, plotlinevalues=True, plotvaluetags=True, plotymargin=0.0, plotyhlines=[], plotyticks=[], plothlines=[], plotforce=False, plotmaster=None,) def _periodrecalc(self): # last check in case not all lineiterators were assigned to # lines (directly or indirectly after some operations) # An example is Kaufman's Adaptive Moving Average indicators = self._lineiterators[LineIterator.IndType] indperiods = [ind._minperiod for ind in indicators] indminperiod = max(indperiods or [self._minperiod]) self.updateminperiod(indminperiod) def _stage2(self): super(LineIterator, self)._stage2() for data in self.datas: data._stage2() for lineiterators in self._lineiterators.values(): for lineiterator in lineiterators: lineiterator._stage2() def _stage1(self): super(LineIterator, self)._stage1() for data in self.datas: data._stage1() for lineiterators in self._lineiterators.values(): for lineiterator in lineiterators: lineiterator._stage1() def getindicators(self): return self._lineiterators[LineIterator.IndType] def getindicators_lines(self): return [x for x in self._lineiterators[LineIterator.IndType] if hasattr(x.lines, 'getlinealiases')] def getobservers(self): return self._lineiterators[LineIterator.ObsType] def addindicator(self, indicator): # store in right queue self._lineiterators[indicator._ltype].append(indicator) # use getattr because line buffers don't have this attribute if getattr(indicator, '_nextforce', False): # the indicator needs runonce=False o = self while o is not None: if o._ltype == LineIterator.StratType: o.cerebro._disable_runonce() break o = o._owner # move up the hierarchy def bindlines(self, owner=None, own=None): if not owner: owner = 0 if isinstance(owner, string_types): owner = [owner] elif not isinstance(owner, collections.Iterable): owner = [owner] if not own: own = range(len(owner)) if isinstance(own, string_types): own = [own] elif not isinstance(own, collections.Iterable): own = [own] for lineowner, lineown in zip(owner, own): if isinstance(lineowner, string_types): lownerref = getattr(self._owner.lines, lineowner) else: lownerref = self._owner.lines[lineowner] if isinstance(lineown, string_types): lownref = getattr(self.lines, lineown) else: lownref = self.lines[lineown] lownref.addbinding(lownerref) return self # Alias which may be more readable bind2lines = bindlines bind2line = bind2lines def _next(self): clock_len = self._clk_update() for indicator in self._lineiterators[LineIterator.IndType]: indicator._next() self._notify() if self._ltype == LineIterator.StratType: # supporting datas with different lengths minperstatus = self._getminperstatus() if minperstatus < 0: self.next() elif minperstatus == 0: self.nextstart() # only called for the 1st value else: self.prenext() else: # assume indicators and others operate on same length datas # although the above operation can be generalized if clock_len > self._minperiod: self.next() elif clock_len == self._minperiod: self.nextstart() # only called for the 1st value elif clock_len: self.prenext() def _clk_update(self): clock_len = len(self._clock) if clock_len != len(self): self.forward() return clock_len def _once(self): self.forward(size=self._clock.buflen()) for indicator in self._lineiterators[LineIterator.IndType]: indicator._once() for observer in self._lineiterators[LineIterator.ObsType]: observer.forward(size=self.buflen()) for data in self.datas: data.home() for indicator in self._lineiterators[LineIterator.IndType]: indicator.home() for observer in self._lineiterators[LineIterator.ObsType]: observer.home() self.home() # These 3 remain empty for a strategy and therefore play no role # because a strategy will always be executed on a next basis # indicators are each called with its min period self.preonce(0, self._minperiod - 1) self.oncestart(self._minperiod - 1, self._minperiod) self.once(self._minperiod, self.buflen()) for line in self.lines: line.oncebinding() def preonce(self, start, end): pass def oncestart(self, start, end): self.once(start, end) def once(self, start, end): pass def prenext(self): ''' This method will be called before the minimum period of all datas/indicators have been meet for the strategy to start executing ''' pass def nextstart(self): ''' This method will be called once, exactly when the minimum period for all datas/indicators have been meet. The default behavior is to call next ''' # Called once for 1st full calculation - defaults to regular next self.next() def next(self): ''' This method will be called for all remaining data points when the minimum period for all datas/indicators have been meet. ''' pass def _addnotification(self, *args, **kwargs): pass def _notify(self): pass def _plotinit(self): pass def qbuffer(self, savemem=0): if savemem: for line in self.lines: line.qbuffer() # If called, anything under it, must save for obj in self._lineiterators[self.IndType]: obj.qbuffer(savemem=1) # Tell datas to adjust buffer to minimum period for data in self.datas: data.minbuffer(self._minperiod) # This 3 subclasses can be used for identification purposes within LineIterator # or even outside (like in LineObservers) # for the 3 subbranches without generating circular import references class DataAccessor(LineIterator): PriceClose = DataSeries.Close PriceLow = DataSeries.Low PriceHigh = DataSeries.High PriceOpen = DataSeries.Open PriceVolume = DataSeries.Volume PriceOpenInteres = DataSeries.OpenInterest PriceDateTime = DataSeries.DateTime class IndicatorBase(DataAccessor): pass class ObserverBase(DataAccessor): pass class StrategyBase(DataAccessor): pass # Utility class to couple lines/lineiterators which may have different lengths # Will only work when runonce=False is passed to Cerebro class SingleCoupler(LineActions): def __init__(self, cdata, clock=None): super(SingleCoupler, self).__init__() self._clock = clock if clock is not None else self._owner self.cdata = cdata self.dlen = 0 self.val = float('NaN') def next(self): if len(self.cdata) > self.dlen: self.val = self.cdata[0] self.dlen += 1 self[0] = self.val class MultiCoupler(LineIterator): _ltype = LineIterator.IndType def __init__(self): super(MultiCoupler, self).__init__() self.dlen = 0 self.dsize = self.fullsize() # shorcut for number of lines self.dvals = [float('NaN')] * self.dsize def next(self): if len(self.data) > self.dlen: self.dlen += 1 for i in range(self.dsize): self.dvals[i] = self.data.lines[i][0] for i in range(self.dsize): self.lines[i][0] = self.dvals[i] def LinesCoupler(cdata, clock=None, **kwargs): if isinstance(cdata, LineSingle): return SingleCoupler(cdata, clock) # return for single line cdatacls = cdata.__class__ # copy important structures before creation try: LinesCoupler.counter += 1 # counter for unique class name except AttributeError: LinesCoupler.counter = 0 # Prepare a MultiCoupler subclass nclsname = str('LinesCoupler_%d' % LinesCoupler.counter) ncls = type(nclsname, (MultiCoupler,), {}) thismod = sys.modules[LinesCoupler.__module__] setattr(thismod, ncls.__name__, ncls) # Replace lines et al., to get a sensible clone ncls.lines = cdatacls.lines ncls.params = cdatacls.params ncls.plotinfo = cdatacls.plotinfo ncls.plotlines = cdatacls.plotlines obj = ncls(cdata, **kwargs) # instantiate # The clock is set here to avoid it being interpreted as a data by the # LineIterator background scanning code if clock is None: clock = getattr(cdata, '_clock', None) if clock is not None: nclock = getattr(clock, '_clock', None) if nclock is not None: clock = nclock else: nclock = getattr(clock, 'data', None) if nclock is not None: clock = nclock if clock is None: clock = obj._owner obj._clock = clock return obj # Add an alias (which seems a lot more sensible for "Single Line" lines LineCoupler = LinesCoupler
PypiClean
/machnamh-unmakingyou-0.0.23.tar.gz/machnamh-unmakingyou-0.0.23/machnamh/helper.py
# In[8]: from io import StringIO import os import sys from datetime import date import re import random import math from collections import Counter, namedtuple import gc import threading import time from itertools import cycle, chain, combinations import itertools import warnings import kaleido from contextlib import suppress import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from sklearn import datasets from sklearn.model_selection import cross_validate from sklearn import metrics from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import Normalizer from sklearn.preprocessing import StandardScaler from sklearn.compose import ColumnTransformer, make_column_transformer from sklearn.metrics import mean_squared_error, r2_score from sklearn.pipeline import Pipeline from sklearn import preprocessing #import pprint import pandas_profiling from pandas_profiling.config import config from pandas_profiling.model.base import Variable import phik import ipywidgets as widgets from ipywidgets import Layout, Button, Box from ipywidgets import interact, interact_manual from IPython.display import display, clear_output, HTML import plotly.express as px import plotly.graph_objs as go import plotly.figure_factory as ff from plotly.subplots import make_subplots #from plotly.graph_objs import graph_objs as go import ipyfilechooser from ipyfilechooser import FileChooser import dill from IPython.core.display import display, HTML import shap from aequitas.group import Group from aequitas.bias import Bias from aequitas.fairness import Fairness from aequitas.plotting import Plot from aequitas.preprocessing import preprocess_input_df from scipy import stats from scipy.stats import chi2_contingency from scipy.stats import chi2 from typing import Callable, Dict, List, Optional, Union import benfordslaw as bl import missingno as msno class helper_methods(): def __init__(self): self.text_color = "green" get_ipython().run_cell_magic('javascript', '', 'IPython.OutputArea.prototype._should_scroll = function(lines) {\n return false;\n}') self.worldview = """ <b>Worldview:</b> In the context of this framework a "Worldview" is a set of assumptions about a physical and social reality pertaining to a human feature or attribute, or to the measurement of same. As context must be taken into consideration there is no one fundamentally correct worldview but rather a reflection of a particular philosophy of life, or a conception of the world, as it relates to each of an individuals' apparently quantifiable features or attributes. In the case of this framework, the focus is, in particular, on the worldview held concerning any disparities in features or attributes that might be detected across groups within protected features such as race, gender, age etc. A disparity may, for example, refer to a non-proportionate representation or a significant difference in distribution. <br><br> Two worldviews have been defined for this purpose: <br> """ self.worldview_biological = """ <b>Inherent or biological worldview: </b>This worldview postulates that either chance or innate, inherent physiological, biochemical, neurological, cultural and/or genetic factors influence any disparities in features or attributes that might be detected across groups (categorised by race, gender, age etc). This worldview could be quite easily applied to the measurements of weight, height, BMI or similar easily quantifiable features to be used as predictors for a specific outcome. The worldview, however, becomes more complex for those human attributes or features which are harder to quantify, such as grit, determination, intelligence, cognitive ability, self-control, growth mindset, reasoning, imagination, reliability etc. This Inherent or biological worldview is closely aligned with the concept of <b>individual fairness</b>, where the fairness goal is to ensure that people who are ‘similar’ concerning a combination of the specific observable and measurable features or attributes deemed relevant to the task or capabilities at hand, should receive close or similar rankings and therefor achieve similar outcomes. With this worldview, observable and measurable features are considered to be inherently objective with no adjustments deemed necessary albeit with the knowledge that the human attributes or features considered critical to success may have been identified as such by the dominant group. Notwithstanding that a significant amount of the measurements used to gauge and/or measure these human features or attributes have been conceptualised, created or implemented by that same dominant group or that those historic outcomes may also have been influenced by prejudice towards a protected groups, or via favouritism towards the dominant group. This worldview might lead one to accept the idea that race, gender or class gaps are due to group shortcomings, not structural or systemic ones, and therefore the outcome “is what it is”, such that individuals should be ranked with no consideration to differences in outcome across groups. According to this worldview structural inequalities often perpetuated byracism, sexism and other prejudices <b>are not considered</b> to have any causal influence on outcomes. This worldview may also lead one to believe that representation of certain groups in specific fields (such as STEM) are disproportionate to the representation in the population due to inherently different preferences and/or abilities as opposed to the influence of social factors such as the exclusion, marginalisation, and undermining of the potential of the underrepresented group or to the favouritism (manifested through cognitive biases such as similarity bias etc) shown to other members of the dominant group. This worldview might lead one to conclude that certain groups of individuals do not avoid careers in certain sectors due to lack of mentorship or the existence of (or the perception of the existence of)an exclusionary workplace culture but rather because of their individual and inherent characteristics. """ self.worldview_social = """ <b>Social and environmental worldview: </b> This worldview postulates that social and environmental factors, such as family income, parental educational backgrounds, school, peer group, workplace, community, environmental availability of nutrition, correct environment for sleep, stereotype threat(and other cognitive biases ) often perpetuated by racism, sexism and other prejudices have influenced outcomes in terms of any detected disparities across groups. Differences in outcome may be a reflection of inequalities in a society which has led to these outcome. Identifying this has important implications for the financial, professional, and social futures of particular protected groups within the population. Discrimination, privilege, institutional racism , sexism, ablism are examples of causal influences which may impact outcomes or representation. Disparities may have been caused by intentional,explicit discrimination against a protected group or by subtle, unconscious, automatic discrimination as the result of favoritism towards the reference group, or by other social and systemic factors. The term "affirmative action" is often used to justify the offering of opportunities to members of protected groups who do not otherwise appear to merit the opportunity. The offering of the opportunity is often based upon personal qualities that are usually hard to quantify in an entirely objective way. However it is important to note that due to social and environmental factors many measurements relating to human performance, merit, ability, etc are also not necessarily objective. """ def display_html(self, text, color, size): content = "<" + size + ">" + "<text style='color:" + color + "'>" + text + "</text>" + "</" + size + ">" display (widgets.HTML(content, layout=Layout(width='100%'))) ################################################################################################# # VIEW Group representation in the data and display in the output area provided # ################################################################################################# def display_group_representation(self, data_frame, protected_features_list, output_area, _w=600, _h=600): try: with output_area: clear_output(wait = True) fig_wig_a, fig_wig_b = self.plot_donut(protected_features_list, data_frame, w=_w, h=_h, title = "Representation of Protected group(s) in the data"); accordion = widgets.Accordion(children=[fig_wig_b, fig_wig_a]) accordion.set_title(0, 'Tree Map View') accordion.set_title(1, 'Donut View') display(accordion) del fig_wig_a del fig_wig_b except: print ("Error in display_group_representation") ################################################################################################# # VIEW analysis of NUMERIC features across protected groups, also used to show outcome distributio # across groups ################################################################################################# def numeric_feature_analysis_across_groups(self, df, feature, protected_attributes_list, label_y, group_descriptions_dict,#will remove after refactor label_encoding_dict,#will remove after refactor reference_groups_dict,#will remove after refactor _w=600, _h=600, high_range_pos = True, feature_data_dict = None): local_layout = {'width': 'auto', 'visibility':'visible'} local_layout_hidden = {'width': 'auto', 'visibility':'hidden'} local_style = {'description_width':'initial'} HIGH_RANGE_POSITIVE = high_range_pos #If any of the protected features have a description replace the entry in the data-frame #with the description so it is easier to read. def show_analysis(selected_protected, label, curve_type, remove_outliers): #local method #plot the representation of data in the dataframe per protected group if selected_protected != "--select--": #define a progress bar thread data_frame = df.copy() #########TO REFACTOR- OBTAINING THE ORIGINAL PROTECTED FOR ANALYSIS######### #label_encoding_dict only used here. # if group_descriptions_dict.get(selected_protected, False) != False: # print("Descriptions have been saved for the Feature values") #if label_encoding_dict.get(selected_protected, False) != False: #print("Feature has been label encoded. view with pre-encoded values?") #if selected_protected+"_bm" in data_frame.columns: #print ("feature has had values merged, view analysis with pre-merged valies?") if feature_data_dict == None: #refactor to only use a feature_data_dict for feat in protected_attributes_list: #get_feature_info returns _choice_dict_for_drop, original_values, label_encoded_values, descriptions mapping = self.get_feature_info(feat, data_frame[feat].dropna().unique(), group_descriptions_dict, label_encoding_dict, {}, {})[0] keys = list( mapping.keys()) values = list (mapping.values()) reverse_mapping = dict(zip(values, keys)) data_frame[feat] = data_frame[feat].map(reverse_mapping)### #now the dataframe has the description. elif feature_data_dict != None:#HERE we will keep this after refactoring mapped_cols_df = self.map_values (data_frame, protected_attributes_list, feature_data_dict) #swap original cols with mapped cols... for feat in protected_attributes_list: data_frame[feat] = mapped_cols_df[feat] #########END TO REFACTOR-OBTAINING THE ORIGINAL PROTECTED FOR ANALYSIS END######### #data_frame[feat] now contains the values in the way we want to analyse. #ie merged, not-merged, encoded or not, with descriptions or not. progress = widgets.FloatProgress(value=0.0, min=0.0, max=1.0) progress.layout.width = '100%' finished = False def work(progress): total = 200 for i in range(total): if finished != True: time.sleep(0.2) progress.value = float(i+1)/total else: progress.value = 200 progress.style.bar_color = "green" break thread = threading.Thread(target=work, args=(progress,)) display(progress) #start the progress bar thread thread.start() #If a description was saved, use the desc rather than the actual values #to achieve this we change the contents of the column to reflect the #description, not the value. groups = data_frame[selected_protected].dropna().unique() tab = widgets.Tab() widget_html_arr = [] tab_titles = [] for group in groups: filtered = data_frame[data_frame[selected_protected]==group] html_summary, outliers = self.detect_outlier_and_describe(filtered[feature], 3, data_type = "numeric") widget_html_arr.append(widgets.HTML(html_summary)) tab_titles.append(str(group)) if remove_outliers == True: for val in outliers: indexNames = data_frame[ (data_frame[selected_protected] == group) & (data_frame[feature] == val) ].index data_frame.drop(indexNames , inplace=True) tab.children = widget_html_arr for x in range(len(tab_titles)): tab.set_title(x, tab_titles[x]) if curve_type == "normal": text = ''' <b>Normal distribution:</b> A parametric approach which represents the behavior of most of the situations in the universe. It's characterised by a bell shaped. The diameter, weight, strength, and many other characteristics of natural, human or machine-made items are normally distributed. In humans, performance, outcomes, grade point averages etc. are all normally distributed. The normal distribution really is a normal occurrence. If we compare the normal distribution of training data outcomes across two groups we can preform statistical test (such as the one below) to determine if there is a <b>significant variance</b> between groups''' if curve_type == "kde": text = ''' <b>Kernel Density estimate:</b> is a nonparametric approach. Parametric estimation requires a parametric family of distributions to be assumed(e.g Normal distribution). If you have a basis to believe the model is approxiamtely correct it is advantageous to do parametric inference. On the other hand it is possible that the data does not fit well to any member of the family. In that case it is better to use kernel density estimation because it will construct a density that reasonably fit the data. It does not require any assumption regarding parametric families.''' fig_wig_dist, dist_output_per_group, groups = self.plot_distribution(selected_protected, feature, data_frame, w=_w, h=_h, y_high_positive = HIGH_RANGE_POSITIVE, curve_type = curve_type) distOut = widgets.Output(layout={}) with distOut: display(fig_wig_dist)#as this returns an array of widgets display(HTML("""Interactive version available <a href="output_dist.html" target="_blank"> here</a>""")) self.display_html(text, "grey", "p") #########TO REFACTOR- OBTAINING THE Priviliged/Reference group######### #reference_groups_dict and group_descriptions_dict only used here #reference_group for t_test is the actual value in the dataframe (not the description) reference_group_to_use = '' if feature_data_dict == None: reference_group = reference_groups_dict[selected_protected] #Now if there is a description we should convert to the description try: reference_group_to_use = group_descriptions_dict [selected_protected][reference_group] except: reference_group_to_use = reference_group else: if feature_data_dict != None: #Here, keep this one after refactoring reference_group_to_use = feature_data_dict[selected_protected]['privileged_description'] if reference_group_to_use == '': reference_group_to_use = feature_data_dict[selected_protected]['original_privileged'] #'label_enc_privileged' #########TO REFACTOR END######### #Now add the two tailed T-test************* t_testOut = widgets.Output(layout={}) with t_testOut: clear_output(wait = True) self.get_t_test_info(dist_output_per_group, groups, reference_group_to_use) #Now add correlation matrix************* correlationOut = widgets.Output(layout={}) with correlationOut: clear_output(wait = True) self.feature_analysis_plot_correlation(data_frame[[feature]+[selected_protected]+[label_y]], label_y, feature, selected_protected) #Now add scatter plot************* scatterPlotOut = widgets.Output(layout={}) if label_y != feature: with scatterPlotOut: tab_scat = widgets.Tab() clear_output(wait = True) wig1 = go.FigureWidget(px.scatter_3d(data_frame[[feature]+[selected_protected]+[label_y]], x=label_y, y=feature, z=selected_protected, color=selected_protected, width=600, height=600, title=label_y+" "+feature+ " " + selected_protected)) wig2 = go.FigureWidget(px.scatter(data_frame[[feature]+[selected_protected]+[label_y]], x=label_y, y=feature, color=selected_protected, width=600, height=600, title=label_y+" "+feature)) tab_scat.children = [wig1,wig2] tab_scat.set_title(0, "3D view") tab_scat.set_title(1, "2D view") display(tab_scat) BenfordsLawOut = widgets.Output(layout={}) with BenfordsLawOut: benHTML = widgets.HTML(""" Also known as the Law of First Digits or the Phenomenon of Significant Digits, this law is the finding that the first numerals of the numbers found in series of records of the most varied sources do not display a uniform distribution, but rather are arranged in such a way that the digit “1” is the most frequent, followed by “2”, “3”...in a successively decreasing manner down to “9”. This can be a useful way of analysing data for fraud detection for example. <br><b>Note:</b> The law is not applicable to all numeric series but rather to those:<br> <b>*</b> With a high order of magnitude.<br> <b>*</b> No pre-established min or max <br> <b>*</b> Not numbers used as identifiers, e.g social security, identity, bank acc.<br> <b>*</b> Have a mean which is less than the median.<br> <b>*</b> Data is not concentrated around the mean.<br> """) display(benHTML) display (self.Benfords_law(data_frame[[feature]+[selected_protected]+[label_y]], feature, selected_protected)) if label_y != feature: accordion = widgets.Accordion(children=[distOut, tab, t_testOut, correlationOut, scatterPlotOut, BenfordsLawOut]) accordion.set_title(0, 'Distribution of ' + feature + ' grouped by '+selected_protected) accordion.set_title(1, 'Describe (min/max/mean/outliers) for ' + feature + ' grouped by '+selected_protected) accordion.set_title(2, 'Two tailed T-test for ' + feature + ' based on ' + selected_protected) accordion.set_title(3, 'Correlation between ' + feature + ", " + label_y + ' and '+ selected_protected) accordion.set_title(4, 'Scatter plot ' + feature + ' and ' + label_y) accordion.set_title(5, 'Benfords_law for ' + feature + ' based on ' + selected_protected ) accordion.selected_index=0 if label_y == feature: accordion = widgets.Accordion(children=[distOut, tab, t_testOut, correlationOut, BenfordsLawOut]) accordion.set_title(0, 'Distribution of ' + feature + ' grouped by '+selected_protected) accordion.set_title(1, 'Describe (min/max/mean/outliers) for ' + feature + ' grouped by '+selected_protected) accordion.set_title(2, 'Two tailed T-test for ' + feature + ' based on ' + selected_protected) accordion.set_title(3, 'Correlation between ' + feature + ' and '+ selected_protected) accordion.set_title(4,'Newcomb/Benford law for ' + feature + ' based on ' + selected_protected ) accordion.selected_index=0 display (accordion) finished = True del data_frame if feature == label_y: self.display_html("Analysis of the distribution of the target ("+ feature + ") across groups", "black", "h4") else: display(HTML("<h4>Select the protected feature:</h4> ")) interact(show_analysis, selected_protected = widgets.Dropdown(description = "Protected Feature", options = ["--select--"] + protected_attributes_list, layout = local_layout, style = local_style), label = widgets.HTML(description=f"<b><font color='black'>{'Density estimation configuration :'}</b>", style = {'description_width': 'initial'}, layout=Layout(width='90%') ), curve_type = widgets.Dropdown(description = "Density Estimation", options = {"Normal Distribution":"normal", "Kernel Density Estimation":"kde"}, layout = local_layout, style = local_style), remove_outliers = widgets.Checkbox(value=False, description='Remove outliers (per group) for analysis', disabled=False, layout = local_layout, style = local_style, indent=False), ); ################################################################################################# # VIEW analysis of CATEGORIC features across protected groups, also used to show outcome distributio # across groups ################################################################################################# def categoric_feature_analysis_across_groups(self, df, feature, protected_attributes_list, label_y, group_descriptions_dict, encoding_dict, reference_groups_dict, _w=600, _h=600, high_range_pos = True): local_layout = {'width': 'auto', 'visibility':'visible'} local_layout_hidden = {'width': 'auto', 'visibility':'hidden'} local_style = {'description_width':'initial'} HIGH_RANGE_POSITIVE = high_range_pos def show_analysis(selected_protected): #local method #choose is the protected attribute we will analyze against if selected_protected != "--select--": #If a description was saved, use the desc rather than the actual values #to achieve this we change the contents of the column to reflect the #description, not the value. data_frame = df.copy() for feat in protected_attributes_list: mapping = self.get_feature_info(feat, data_frame[feat].dropna().unique(), group_descriptions_dict, encoding_dict, {},{})[0] keys = list( mapping.keys()) values = list (mapping.values()) reverse_mapping = dict(zip(values, keys)) data_frame[feat] = data_frame[feat].map(reverse_mapping) #### #set up a threaded progress bar progress = widgets.FloatProgress(value=0.0, min=0.0, max=1.0) progress.layout.width = '100%' finished = False def work(progress): total = 200 for i in range(total): if finished != True: time.sleep(0.2) progress.value = float(i+1)/total else: progress.value = 200 progress.style.bar_color = "green" break thread = threading.Thread(target=work, args=(progress,)) display(progress) #start the progress bar thread.start() groups = data_frame[selected_protected].dropna().unique() output_values = data_frame[feature].dropna().unique() layout = go.Layout(xaxis=dict(type='category')) fig_hist_count = go.FigureWidget(layout=layout) fig_hist_percent = go.FigureWidget(layout=layout) with fig_hist_count.batch_update(): for group in groups: temp = data_frame[[selected_protected, feature]].fillna("@Unknown") temp = temp[temp[selected_protected]==group] if feature == label_y: if high_range_pos == True: temp.loc[(temp[feature] == 1)] = "1(Positive impact)" temp.loc[(temp[feature] == 0)] = "0(Negative impact)" elif high_range_pos == False: temp.loc[(temp[feature] == 0)] = "0(Positive impact)" temp.loc[(temp[feature] == 1)] = "1(Negative impact)" fig_hist_count.add_trace(go.Histogram( x=temp[feature], name = selected_protected +":"+group, histfunc="count", opacity=0.75)) fig_hist_percent.add_trace(go.Histogram( x=temp[feature], name = selected_protected +":"+group, histnorm = 'percent', opacity=0.75)) fig_hist_count.update_layout( title_text='Count across groups', # title of plot xaxis_title_text=feature, # xaxis label yaxis_title_text='Count', # yaxis label bargap = 0.2, # gap between bars of adjacent location coordinates bargroupgap = 0.1, # gap between bars of the same location coordinates legend_title = selected_protected, autosize = False ) fig_hist_percent.update_layout( title_text='Percentage across groups', # title of plot xaxis_title_text = selected_protected, # xaxis label yaxis_title_text='Percent', # yaxis label bargap=0.2, # gap between bars of adjacent location coordinates bargroupgap=0.1, # gap between bars of the same location coordinates legend_title = selected_protected, autosize=False ) ####get information about each group, such as the count, num unique values. describe_tab = widgets.Tab() widget_html_arr = [] tab_titles = [] for group in groups: filtered = data_frame[data_frame[selected_protected]==group] html_summary = self.detect_outlier_and_describe(filtered[feature], 3, data_type = "categoric")[0] widget_html_arr.append(widgets.HTML(html_summary)) tab_titles.append(str(group)) describe_tab.children = widget_html_arr for x in range(len(tab_titles)): describe_tab.set_title(x, tab_titles[x]) histOut = widgets.Output(layout={}) with histOut: hist_tab = widgets.Tab() hist_tab.children = [fig_hist_count,fig_hist_percent] hist_tab.set_title(0, "Count") hist_tab.set_title(1, "Percentage") display(hist_tab) describeOut = widgets.Output(layout={}) with describeOut: display(describe_tab) sigOut = widgets.Output(layout={}) with sigOut: #reference_group for t_test is the actual value in the dataframe (not the description) reference_group = reference_groups_dict[selected_protected] #Now if there is a description we should convert to the description try: reference_group_to_use = group_descriptions_dict [selected_protected][reference_group] except: reference_group_to_use = reference_group self.get_chi_square_test_info(data_frame[[feature]+[selected_protected]], feature, selected_protected, reference_group_to_use) correlationOut = widgets.Output(layout={}) with correlationOut: self.feature_analysis_plot_correlation(data_frame[[feature]+[selected_protected]+[label_y]], label_y,feature, selected_protected) accordion = widgets.Accordion(children=[histOut, describeOut, sigOut, correlationOut, ]) accordion.set_title(0, 'Count of ' + feature + ' grouped by '+ selected_protected) accordion.set_title(1, 'Describe ' + feature + ' grouped by '+ selected_protected) accordion.set_title(2, 'Pearson’s chi-squared significance test ' + feature + ' based on ' + selected_protected) accordion.set_title(3, 'Correlation between ' + feature + ", " + label_y + ' and '+ selected_protected) accordion.selected_index=0 display(accordion) #end the progress bar thread finished = True del data_frame if feature == label_y: self.display_html("Analysis of the distribution of the target ("+ feature + ") across groups.", "black", "h4") else: self.display_html("Analysis of input feature: "+ feature + " across groups.", "black", "h4") interact(show_analysis, selected_protected = widgets.Dropdown(description = "Protected Feature", options = ["--select--"] + protected_attributes_list, layout = local_layout, style = local_style), ) ################################################################################################ # Correlation plot for protected group and all values # ################################################################################################ def plot_correlation_per_group(self, data_frame, protected_feature): widget_dict = {} plt.figure(figsize=(8, 8)) for group in data_frame[protected_feature].dropna().unique(): print(group) temp_df = data_frame[data_frame[protected_feature]== group] temp_df.drop(protected_feature, axis=1, inplace = True ) corr = self.phi_k_correlation(temp_df) corr.reset_index(drop=True, inplace=True) corr["index"] = pd.Series(list(corr.columns)) corr = corr.set_index("index") heatmap = go.FigureWidget(go.Heatmap(z=corr, zmin=0, zmax=1, x=corr.columns, y=corr.columns, xgap=1, ygap=1, colorscale= px.colors.sequential.Blues, colorbar_thickness=20, colorbar_ticklen=3)) title = 'Correlation Matrix' with heatmap.batch_update(): heatmap.update_layout(go.Layout(title_text=title, title_x=0.5, width=300, height=300, xaxis_showgrid=False, yaxis_showgrid=False, yaxis_autorange='reversed' )) widget_dict[group] = heatmap return widget_dict box = widgets.HBox(widget_dict.values) display(box ) ################################################################################################# # Correlation plot for feature or label vs protected feature # ################################################################################################ def feature_analysis_plot_correlation(self, data_frame, label_y, feature, protected_feature): #remove any duplicate column that might occur when feature is the label data_frame = data_frame.loc[:,~data_frame.columns.duplicated()] html = widgets.HTML("""<b>Phik (φk)</b><br> Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here https://phik.readthedocs.io/en/latest/index.html""") display(html) plt.figure(figsize=(6, 6)) if label_y != feature: corr = self.phi_k_correlation(data_frame[[feature]+[protected_feature]+[label_y]]) res1 = corr.loc[ feature , : ][protected_feature] res2 = corr.loc[ feature , : ][label_y] text = "Correlation value for " + feature + " and " + protected_feature + " is " + str (res1) text = text + "<br>Correlation value for " + feature + " and " + label_y + " is " + str (res2) elif label_y == feature: corr = self.phi_k_correlation(data_frame[[label_y]+[protected_feature]]) res1 = corr.loc[ feature , : ][protected_feature] text = "Correlation value for " + feature + " and " + protected_feature + " is " + str (res1) corr.reset_index(drop=True, inplace=True) corr["index"] = pd.Series(list(corr.columns)) corr = corr.set_index("index") heatmap = go.FigureWidget(go.Heatmap(z=corr, x=corr.columns, y=corr.columns, xgap=1, ygap=1, colorscale= px.colors.sequential.Blues, colorbar_thickness=20, colorbar_ticklen=3)) title = 'Correlation Matrix' with heatmap.batch_update(): heatmap.update_layout(go.Layout(title_text=title, title_x=0.5, width=300, height=300, xaxis_showgrid=False, yaxis_showgrid=False, yaxis_autorange='reversed' )) display(heatmap) display (HTML(text)) ################################################################################################# # VIEW Counts of categorical features or output # view_categorical_counts(data_frame, feature, high_range_pos) ################################################################################################ def view_categorical_counts (self, data_frame, feature, high_range_pos = True ): layout = go.Layout(xaxis=dict(type='category')) if high_range_pos == True: data_frame.loc[(data_frame[feature] == 1),feature] = "1(Positive impact)" data_frame.loc[(data_frame[feature] == 0),feature] = "0(Negative impact)" elif high_range_pos == False: data_frame.loc[(data_frame[feature] == 0),feature] = "0(Positive impact)" data_frame.loc[(data_frame[feature] == 1),feature] = "1(Negative impact)" count = go.FigureWidget(layout=layout) pcnt = go.FigureWidget(layout=layout) count.add_trace(go.Histogram( x=data_frame[feature], histfunc="count", opacity=0.75)) pcnt.add_trace(go.Histogram( x=data_frame[feature], histnorm = 'percent', opacity=0.75)) count.update_layout( title_text='Count of total', # title of plot xaxis_title_text=feature, # xaxis label yaxis_title_text='Count', # yaxis label bargap = 0.2, # gap between bars of adjacent location coordinates bargroupgap = 0.1, # gap between bars of the same location coordinates autosize = False ) pcnt.update_layout( title_text='Percent of total', # title of plot xaxis_title_text=feature, # xaxis label yaxis_title_text='Percent', # yaxis label bargap=0.2, # gap between bars of adjacent location coordinates bargroupgap=0.1, # gap between bars of the same location coordinates autosize=False ) return count, pcnt ################################################################################################# # VIEW Counts of categorical features or output # view_categorical_counts(data_frame, selected_protected, feature, high_range_pos) ################################################################################################# def view_categorical_counts_for_protected(self, data_frame, protected_feature, feature, label_y, high_range_pos = True): groups = data_frame[protected_feature].dropna().unique() output_values = data_frame[protected_feature].dropna().unique() layout = go.Layout(xaxis=dict(type='category')) fig_hist_count = go.FigureWidget(layout=layout) fig_hist_percent = go.FigureWidget(layout=layout) with fig_hist_count.batch_update(): for group in groups: temp = data_frame[[protected_feature, feature]].fillna("@Unknown") temp = temp[temp[protected_feature]==group] if feature == label_y: if high_range_pos == True: temp.loc[(temp[feature] == 1),feature] = "1(Positive impact)" temp.loc[(temp[feature] == 0),feature] = "0(Negative impact)" elif high_range_pos == False: temp.loc[(temp[feature] == 0),feature] = "0(Positive impact)" temp.loc[(temp[feature] == 1),feature] = "1(Negative impact)" fig_hist_count.add_trace(go.Histogram( x=temp[feature], name = protected_feature +":"+group, histfunc="count", opacity=0.75)) fig_hist_percent.add_trace(go.Histogram( x=temp[feature], name = protected_feature +":"+group, histnorm = 'percent', opacity=0.75)) fig_hist_count.update_layout( title_text='Count across groups', # title of plot xaxis_title_text=feature, # xaxis label yaxis_title_text='Count', # yaxis label bargap = 0.2, # gap between bars of adjacent location coordinates bargroupgap = 0.1, # gap between bars of the same location coordinates legend_title = protected_feature, autosize = False ) fig_hist_percent.update_layout( title_text='Percentage across groups', # title of plot xaxis_title_text = feature, # xaxis label yaxis_title_text='Percent', # yaxis label bargap=0.2, # gap between bars of adjacent location coordinates bargroupgap=0.1, # gap between bars of the same location coordinates legend_title = protected_feature, autosize=False ) return fig_hist_count, fig_hist_percent ################################################################################################# # Convert encoded or merged features back to original values to allow for more # intuitive analysis of fairness. ################################################################################################# def convert_feature_column(self, df, feature, feature_data): # one-hot-encode (done) # label_encode (done) # merged (done) # merged and one-hot-encode (TODO) # merged and label_encode (TODO) if len(feature_data['values_description']) == 0: feature_data['values_description'] = feature_data['original_values'] # If the feature was one_hot_encoded but not merged, de-encode and return the original col, # and original vals with description(if exists) if feature_data['one_hot_enc'] == True and feature_data['values_merged'] == False: df[feature] = self.de_hot_encode_feature (df, feature_data['one_hot_enc_col_before'], feature_data['one_hot_enc_cols_after']) mapping_dict = dict(zip(feature_data['original_values'], feature_data['values_description'])) df[feature] = df[feature].map(mapping_dict) return df[feature] # If the feature was label encoded but not merged, return the original col, # and original vals with description(if exists) elif feature_data['label_enc'] == True and feature_data['values_merged'] == False: mapping_dict = dict(zip(feature_data['label_enc_values'], feature_data['values_description'])) df[feature] = df[feature].map(mapping_dict) return df[feature] # If the feature was merged but not one-hot encoded or label encoded elif feature_data['values_merged'] == True: print ("merged!") df[feature] = df[feature_data['before_merge_col']] mapping_dict = dict(zip(feature_data['original_values'], feature_data['values_description'])) df[feature] = df[feature].map(mapping_dict) return df[feature] else: return df[feature] ################################################################################################# # VIEW STATISTICS AROUND. THE PROTECTED FEATURES/ATTRIBUTES # ################################################################################################# def set_decision_boundary(self, df, data_summary): #if the function was already called, remove the generated column to start again. if data_summary.y_value +'_binary' in df.columns: df.drop(data_summary.y_value +'_binary', axis = 1, inplace = True) #copy the input data_frame to avoid permanent changes as we will de-encode etc. data_frame = df.copy() out1 = widgets.Output(layout={}) local_layout = {'width': 'auto', 'visibility':'visible'} local_layout_hidden = {'width': 'auto', 'visibility':'hidden'} local_style = {'description_width':'initial'} display (out1) layout = go.Layout(xaxis=dict(type='category')) try: with out1: clear_output(wait = True) self.display_html("Description of Target", self.text_color, "h3") if data_summary.Y_BINARY == True: self.display_html("The target is a binary value(1 or 0)", "black", "p") if data_summary.HIGH_RANGE_POSITIVE == True: impactTxt = "<b>Positive</b>" if data_summary.HIGH_RANGE_POSITIVE == False: impactTxt = "<b>Negative</b>" x = "An output of 1 has a <b>" + impactTxt + "</b> impact on an individual" self.display_html(str(x), self.text_color, "h4") elif data_summary.Y_CONTINUOUS == True: self.display_html("The target is a continuous value", "black", "p") y_Min = round(data_frame[data_summary.y_value].min(), 3) y_Mean = round(data_frame[data_summary.y_value].mean(), 3) y_Max = round(data_frame[data_summary.y_value].max(), 3) text = "" text = text + "Minimum: " + str(y_Min) + "<br>" text = text + "Mean: " +str(y_Mean)+ "<br>" text = text + "Max: " +str(y_Max)+ "<br>" self.display_html(text, "black", "p") if data_summary.HIGH_RANGE_POSITIVE == True: impactTxt = "<b>Positive</b>" if data_summary.HIGH_RANGE_POSITIVE == False: impactTxt = "<b>Negative</b>" x = "The Impact of a high output(ranking) on an individual or group is <b>" + impactTxt + ".</b>" self.display_html(str(x), "black", "p") self.display_html("Select the decision boundary between a positive and negative outcome for logistic regression training.", "black", "h4") text = """Logistic regression is a predictive modelling algorithm that is used when the target (Y ) is binary categorical. That is, it can take only two values e.g 1 or 0. The goal is to determine a mathematical equation that can be used to predict the probability of event 1, if you wish to use logistic regression to predict a successful outcome in terms of """ + data_summary.y_value + """, you must select a decision boundary after which the continuous value will represent 1""" self.display_html(text, "black", "p") #revert to thevalues as we wish to see them for protected_feat in data_summary.protected_before_transform: data_frame[protected_feat] = self.convert_feature_column( data_frame, protected_feat, data_summary.feature_data_dict[protected_feat]) def select_boundary(choose): #local method #plot the representation of data in the dataframe per protected group slider = widgets.IntSlider() def set_outcome (s): #data_summary.y_value if slider.description == "Select Percentile": try: data_frame.drop(data_summary.y_value +'_binary', axis = 1, inplace = True) except: pass s = s/100 data_frame[data_summary.y_value +'_Percentile_Rank'] = data_frame[data_summary.y_value].rank(pct = True) data_frame.loc[data_frame[data_summary.y_value +'_Percentile_Rank'] >= s, data_summary.y_value+'_binary'] = 1 data_frame.loc[data_frame[data_summary.y_value +'_Percentile_Rank'] < s, data_summary.y_value+'_binary'] = 0 data_frame.drop(data_summary.y_value +'_Percentile_Rank', axis = 1, inplace = True) #self.display_html(_text, self.text_color, "p") #total = data_frame[[data_summary.y_value, data_summary.y_value+'_binary']].groupby(data_summary.y_value+'_binary').count().reset_index() fig_widget_arr = [] tab_titles = [] hist_tab = widgets.Tab() count, pcnt = self.view_categorical_counts(data_frame.copy(), data_summary.y_value+'_binary', data_summary.HIGH_RANGE_POSITIVE) tab_titles.append("Total count") fig_widget_arr.append(count) tab_titles.append("Total percentage") fig_widget_arr.append(pcnt) for protected_feat in data_summary.protected_before_transform: #protected_total = data_frame[[data_summary.y_value, data_summary.y_value+'_binary', protected_feat]].groupby([data_summary.y_value+'_binary',protected_feat]).count().reset_index() #view_categorical_counts returns go.FigureWidget type. count, pcnt = self.view_categorical_counts_for_protected(data_frame.copy(), protected_feat, data_summary.y_value+'_binary', data_summary.y_value+'_binary', data_summary.HIGH_RANGE_POSITIVE) tab_titles.append(str(protected_feat) + " count") fig_widget_arr.append(count) tab_titles.append(str(protected_feat) + " percentage") fig_widget_arr.append(pcnt) hist_tab.children = fig_widget_arr for x in range(len(tab_titles)): hist_tab.set_title(x, tab_titles[x]) display(hist_tab) #Now apply the modification to the original input df df[data_summary.y_value+'_binary'] = data_frame[data_summary.y_value+'_binary'] elif slider.description == "Select n for Top_n": try: data_frame.drop(data_summary.y_value +'_binary', axis = 1, inplace = True) except: pass #Ascending means smallest to largest, go from smallest to largest, take the value in position s. yDivPoint = data_frame.sort_values(data_summary.y_value,ascending = False).head(s).min()[data_summary.y_value] data_frame.loc[data_frame[data_summary.y_value ] >= yDivPoint, data_summary.y_value+'_binary'] = 1 data_frame.loc[data_frame[data_summary.y_value ] < yDivPoint, data_summary.y_value+'_binary'] = 0 self.display_html("""The """ + str(s) + """th position has value of <b>""" + str(yDivPoint) + """</b>, any value equal to or above this will be set to <b>1</b>. Any value below this will be set to <b>0</b>""", "black", "p") fig_widget_arr = [] tab_titles = [] hist_tab = widgets.Tab() count, pcnt = self.view_categorical_counts(data_frame.copy(), data_summary.y_value+'_binary', data_summary.HIGH_RANGE_POSITIVE) tab_titles.append("Total count") fig_widget_arr.append(count) tab_titles.append("Total percentage") fig_widget_arr.append(pcnt) for protected_feat in data_summary.protected_before_transform: #protected_total = data_frame[[data_summary.y_value, data_summary.y_value+'_binary', protected_feat]].groupby([data_summary.y_value+'_binary',protected_feat]).count().reset_index() #view_categorical_counts returns go.FigureWidget type. count, pcnt = self.view_categorical_counts_for_protected(data_frame.copy(), protected_feat, data_summary.y_value+'_binary', data_summary.y_value+'_binary', data_summary.HIGH_RANGE_POSITIVE) tab_titles.append(str(protected_feat) + " count") fig_widget_arr.append(count) tab_titles.append(str(protected_feat) + " percentage") fig_widget_arr.append(pcnt) hist_tab.children = fig_widget_arr for x in range(len(tab_titles)): hist_tab.set_title(x, tab_titles[x]) display(hist_tab) #Now apply the modification to the original input df df[data_summary.y_value+'_binary'] = data_frame[data_summary.y_value+'_binary'] if choose == "Mean": try: data_frame.drop(data_summary.y_value +'_binary', axis = 1, inplace = True) except: pass text = "Values between " + str(y_Min) + " and " + str(y_Mean) + " will be converted to <b>0</b><br>" text = text + "Values between " + str(y_Mean) + " and " + str(y_Max) + " will be converted to <b>1</b>" self.display_html(text, "black", "p") data_frame.loc[data_frame[data_summary.y_value] >= y_Mean, data_summary.y_value+'_binary'] = 1 data_frame.loc[data_frame[data_summary.y_value] < y_Mean, data_summary.y_value+'_binary'] = 0 fig_widget_arr = [] tab_titles = [] hist_tab = widgets.Tab() count, pcnt = self.view_categorical_counts(data_frame.copy(), data_summary.y_value+'_binary', data_summary.HIGH_RANGE_POSITIVE) tab_titles.append("Total count") fig_widget_arr.append(count) tab_titles.append("Total percentage") fig_widget_arr.append(pcnt) for protected_feat in data_summary.protected_before_transform: #protected_total = data_frame[[data_summary.y_value, data_summary.y_value+'_binary', protected_feat]].groupby([data_summary.y_value+'_binary',protected_feat]).count().reset_index() #view_categorical_counts returns go.FigureWidget type. count, pcnt = self.view_categorical_counts_for_protected(data_frame.copy(), protected_feat, data_summary.y_value+'_binary', data_summary.y_value+'_binary', data_summary.HIGH_RANGE_POSITIVE) tab_titles.append(str(protected_feat) + " count") fig_widget_arr.append(count) tab_titles.append(str(protected_feat) + " percentage") fig_widget_arr.append(pcnt) hist_tab.children = fig_widget_arr for x in range(len(tab_titles)): hist_tab.set_title(x, tab_titles[x]) display(hist_tab) #Now apply the modification to the original input df df[data_summary.y_value+'_binary'] = data_frame[data_summary.y_value+'_binary'] if choose == "Percentile": slider = widgets.IntSlider( description = "Select Percentile", min=0, max=100, step=1, value=80, continuous_update=False, style = local_style) interact(set_outcome, s = slider) if choose == "Top-n": slider = widgets.IntSlider( description = "Select n for Top_n", min=10, max=1000, step=10, value=100, continuous_update=False, style = local_style) interact(set_outcome, s = slider) _choose = widgets.Dropdown( description = "Decision boundary determined by", options = ["Mean","Top-n","Percentile"], layout = local_layout, style = local_style) interact(select_boundary, choose = _choose) change = widgets.Button(description="View dataframe head") button_output = widgets.Output() def on_button_clicked(b): with button_output: clear_output(wait = True) display(df.head(5)) change.on_click(on_button_clicked) display(change, button_output) except Exception as e: self.display_html("Something went wrong in method", self.text_color, "h4") print (e) ################################################################################################# # # ################################################################################################# def create_label (self, row): names = list (row.index) values = list( row.values) text = "" for i in range (len(names)): text = text + ":" + names[i] + "_" + str(values[i]) text = text[1:] return text ################################################################################################# # # ################################################################################################# def plot_donut(self, attributes_list, data_frame, w=800, h=800, title = "Result"): num_of_donuts = len(attributes_list) if num_of_donuts > 6: num_of_donuts = 6 display (HTML("showing only the first 6 attributes")) sequential_color_list = [ px.colors.sequential.Blues, px.colors.sequential.Greens, px.colors.sequential.Oranges, px.colors.sequential.Purples, px.colors.sequential.Reds, px.colors.sequential.Greys, px.colors.sequential.algae, px.colors.sequential.amp] color_pool = cycle(sequential_color_list) pie_list = [] labels_arr = [] values_arr = [] color_arr = [] annotations_arr = [] annotate = dict(text='woops', x=0.5, y=0.6, font_size=15, showarrow=False) attribute_hierarchy = [] for a, pos in zip (attributes_list, range(len(attributes_list))): attribute_hierarchy.append(a) annotate['text'] = a annotate['y'] = annotate['y']-0.05 annotations_arr.append(annotate.copy()) data_frame["count"] = 0 df = data_frame[attribute_hierarchy+["count"]].fillna("@Unknown").groupby(attribute_hierarchy).count().reset_index().rename(columns={"count": "values"}) df['labels'] = df.apply(lambda row : self.create_label(row[attribute_hierarchy]), axis = 1) df['values'].fillna(0,inplace=True) c = [] s = [] if pos == 0: for l in range (len(df['labels'].to_numpy())): c.append(next(color_pool)[0]) if l >= len(sequential_color_list): l = l - len(sequential_color_list) s.append(l) df['colors'] = c df['color_pool_pos'] = s else: temp_list = list(df['values'].to_numpy())#changed from .list for count, color_index in zip(prev_counts, prev_color_pool) : match = 0 for value, pos in zip (temp_list, range(len(temp_list))): s.append(color_index) try: c.append (sequential_color_list[color_index][pos+1]) except: c.append (sequential_color_list[color_index][2]) match = match + value if match == count: del temp_list[0:pos+1] break df['colors'] = c df['color_pool_pos'] = s labels_arr.append (df['labels']) values_arr.append (df['values']) color_arr.append (df['colors']) prev_counts = df['values'].values prev_color_pool = df['color_pool_pos'].values hole = 0.8 x1 = 0 x2 =1 y1 = 0 y2 = 1 adjust = round((1.0 - hole)* 0.5,2) for x in range (num_of_donuts): pie_list.append(go.Pie( hole=hole, #Sets the fraction of the radius to cut out of the pie. Use this to make a donut chart sort=False, direction='clockwise', domain={'x': [x1, x2], 'y': [y1, y2]}, values=values_arr[x], labels=labels_arr[x], textinfo='label+percent', textposition='inside', name=attributes_list[x], marker={'colors': color_arr[x],'line': {'color': 'black', 'width': 1}} )) hole= round(hole - adjust, 2) x1 = round (x1 + adjust, 2) x2 = round (x2 - adjust, 2) y1 = round (y1 + adjust, 2) y2 = round (y2 - adjust, 2) fig = go.FigureWidget(data=pie_list);#need to reverse the order? fig.update_layout(autosize=False, width=w, height=h, margin=dict(l=50,r=50,b=100, t=100,pad=4), title=str(attribute_hierarchy), #Add annotations in the center of the donut pies. annotations=annotations_arr, legend_orientation="h", #paper_bgcolor='rgba(113, 136, 136, 1)', #for transparent set to (0,0,0,0) #plot_bgcolor='rgba(113, 136, 136, 1)', ); fig.update_traces(textposition='inside'); fig.update(layout_title_text=title, layout_showlegend=False ); df["all"] = "all" fig_2 = px.treemap(df, path=["all"]+attributes_list, values='values', ) fig_2.data[0].textinfo = 'current path+ label+value+percent parent+percent root' # # # # # Now create one donut per protected attribute for a clearer view if the call specifies this# # # # # # fig_2.update(layout_title_text=title, layout_showlegend=True ); fig_wig_2 = go.FigureWidget(fig_2); #as this can be a pointer to the input, clean it up data_frame.drop(["count"], axis=1, inplace = True) gc.collect() return fig, fig_wig_2 ################################################################################################# # Pearson’s Chi-Squared Test.... # METHOD USED TO Perform Independent chi_square_test. can be used as a test for independance # between categorical variables ################################################################################################# ################################################################################################# def get_chi_square_test_info(self, df, feature, protected_feature, ref_group): '''A categorical variable is a variable that may take on one of a set of labels. Here we will examine a categorical variable as they pertain to another categorical label, specifically a protected feature such as Gender(Male, Female), or Race(Black, White) as it pertains to another variable such as Score, Success etc, Large values of X^2 indicate that observed and expected frequencies are far apart. Small values of X^2 indicate that observed are close to expecteds. X^2 give a measure of the distance between observed and expected frequencies. expected frequency is that there will be no difference between observed and expected above what would be expected by chance (no statistically significant difference)''' try: groups = df[protected_feature].dropna().unique() table = pd.crosstab(df[protected_feature], df[feature]) prob = 0.95 #can be used to create multiple plots, however we only call it with attribute_list of len 1. def test_res(group_1, group_2): filter_table = table[table.index.isin([group_1,group_2])] for col in filter_table.columns: if filter_table[col].sum() == 0: filter_table.drop(col, inplace=True) chi2_stat, p_value, dof, expected = chi2_contingency(filter_table) ###### #Interprert the critical value # critical = chi2.ppf(prob, dof) #print ("critical(chi2.ppf(prob, dof)): ", critical) #if abs(chi2_stat) >= critical: #print('Dependent (reject H0)') #else: #print('Independent (fail to reject H0)') ####### # interpret p-value for consistency with other test #alpha = 1.0 - prob #print('significance=%.3f, p=%.3f' % (alpha, p_value)) #if p_value <= alpha: # print('Dependent (reject H0)') #else: # print('Independent (fail to reject H0)') #### matrix_twosample = [ ['', 'Chi-2 Test Statistic(T-Value)', 'P-value'], ['Sample Data', abs(chi2_stat), p_value] ] wig2 = go.FigureWidget(ff.create_table(matrix_twosample, index=True)) display (wig2) text = "There is a "+ str (round ((p_value*100),3)) + "% probability that a difference of " + str(chi2_stat) text = text + """ occured by chance. A usual interpretation is that a p-value of less than 0.05 (5% probability) is deemed to indicate that the difference has not occured by chance (rejecting H0)""" self.display_html(text, self.text_color, "p") self.display_html("Chi-Squared T-Test ", "black", "h3") text = ''' <b>Significant variance:</b> The statistic test will tell us if there is a significant difference in the distribution of categories, if this difference is due to chance, or how likely it is that it is not due to chance but rather to an unobserved factor. <br> <b>T-Value:</b>This value represents the distance between the observed distribution and the expected distribution in a fair world. The larger the value of T, the greater the evidence against the difference occuring by chance in a fair world. <br>''' self.display_html(text, "black", "p") interact(test_res, group_1 = widgets.Dropdown(description = "Reference Group", options = groups, value = ref_group, style = {'description_width': 'initial'}), group_2 = widgets.Dropdown(description = "Focal Group", options = groups) ); except Exception as e: self.display_html("Something went wrong generating the distribution, change the distribution type and ensure group is represented sufficiently to generate dist", self.text_color, "h4") print (e) ################################################################################################# # # METHOD USED TO Perform Independent t-Test. A t-test is a type of inferential statistic which is used to # determine if there is a significant difference between the means of two groups which may be # related in certain features ################################################################################################# def get_t_test_info(self, dist_output_per_group, groups, ref_group): try: #can be used to create multiple plots, however we only call it with attribute_list of len 1. def test_res(group_1, group_2): group_index_1 = list(groups).index(group_1) group_index_2 = list(groups).index(group_2) twosample_results = stats.ttest_ind(dist_output_per_group[group_index_1], dist_output_per_group[group_index_2]) matrix_twosample = [ ['', 'Test Statistic(T-Value)', 'P-value'], ['Sample Data', twosample_results[0], twosample_results[1]] ] wig2 = go.FigureWidget(ff.create_table(matrix_twosample, index=True)) display (wig2) text = "There is a "+ str (round ((twosample_results[1]*100),3)) + "% probability that a difference of " +str(twosample_results[0]) +" occured by chance." self.display_html(text, self.text_color, "p") self.display_html("Two-Tailed T-Test ", "black", "h3") text = ''' <b>Significant variance:</b> The statistic test will tell us if there is a significant variance in the distribution and if this variance is due to chance, or how likely it is that it is not due to chance but rather to an unobserved factor. <br> <b>T-Value:</b>This value represents the distance between the observed distribution and the expected distribution in a fair world. The larger the value of T, the greater the evidence against the difference occuring by chance in a fair world. <br>''' self.display_html(text, "black", "p") interact(test_res, group_1 = widgets.Dropdown(description = "Reference Group", options = groups, value = ref_group, style = {'description_width': 'initial'}), group_2 = widgets.Dropdown(description = "Focal Group", options = groups) ); except Exception as e: self.display_html("Something went wrong generating the distribution, change the distribution type and ensure group is represented sufficiently to generate dist", self.text_color, "h4") print (e) ################################################################################################# # # METHOD USED TO PLOT THE DISTRIBUTION OF THE OUTCOME ACROSS GROUPS ################################################################################################# def plot_distribution(self, attribute, y, data_frame, w=800, h=800, y_high_positive = True, curve_type = "kde"): try: #can be used to creatr multiple plots, however we only call it with attribute_list of len 1. dist_output_per_group = [] group_labels = [] groups = data_frame[attribute].dropna().unique() #For every group in the protected feature for group in range(len(groups)): group_df = data_frame[data_frame[attribute] == groups[group]] dist_output_per_group.append(group_df[y]) group_labels.append(attribute + "-" + str(groups[group])) # Add histogram data # Group data together #Add the dist of all combined groups dist_output_per_group.append(data_frame[y]) group_labels.append("All") # Create distplot with custom bin_size # Add title wig = go.Figure(ff.create_distplot(dist_output_per_group, group_labels, curve_type = curve_type, show_hist=False) )#, bin_size=[.1, .25, .5, 1]) with wig.batch_update(): wig.update_layout(autosize=False, width=900, height=500, #margin=dict(l=50,r=50,b=100, t=100,pad=4), #paper_bgcolor="LightSteelBlue", title=y +' distribution across ' + attribute, xaxis=dict(range=[data_frame[y].min(), data_frame[y].max()]) ) img_bytes = wig.to_image(format="png", engine="kaleido") wig.write_html("output_dist.html") image_wig = widgets.Image(value=img_bytes, format='png', width=800, height=500) del wig return image_wig, dist_output_per_group, groups except Exception as e: self.display_html("Something went wrong generating the distribution, change the distribution type and ensure group is represented sufficiently to generate dist", self.text_color, "h4") print (e) ################################################################################################# # #NOT FULLY IMPLEMENTED # ################################################################################################# def plot_output_ratios( ): sequential_color_list = [ px.colors.sequential.Greens, px.colors.sequential.Greys] df_ratios = data_frame[attributes_list+[impact_col_name]+[y_value]].groupby(attributes_list+[impact_col_name]).count().reset_index().rename(columns={y_value: "values"}) _total = df_ratios['values'].sum() _total_pos = df_ratios[(df_ratios[impact_col_name]=="Pos")]['values'].sum() _total_neg = df_ratios[(df_ratios[impact_col_name]=="Neg")]['values'].sum() one, isto = self.ratio(_total_pos, _total_neg) df_ratios['labels'] = df_ratios.apply(lambda row : self.create_label(row[attributes_list]), axis = 1) df_ratios['labels'].fillna(0,inplace=True) attr_list = [] attr_list.append("All") isto_list = [] isto_list.append(isto) pcnt_list = [] pcnt_list.append((_total_pos/(_total_pos+_total_neg))*100) for label in df_ratios['labels'].dropna().unique(): pos = df_ratios[(df_ratios['labels']==label) & (df_ratios[impact_col_name]=="Pos")]['values'] neg = df_ratios[(df_ratios['labels']==label) & (df_ratios[impact_col_name]=="Neg")]['values'] one, isto = self.ratio(pos.values[0], neg.values[0]) attr_list.append(label) isto_list.append(isto) pcnt = (pos.values[0]/(pos.values[0]+neg.values[0]))*100 if math.isnan(pcnt): pcnt_list.append(0) else: pcnt_list.append(pcnt) fig1 = go.Figure() fig1.add_trace(go.Bar( x=attr_list, y=isto_list, marker_color='indianred' )) # Here we modify the tickangle of the xaxis, resulting in rotated labels. fig1.update_layout(xaxis_tickangle=-45, title = "Ratio of Positive to Negative (for each 1 positive effect)", autosize=False, width=900, height=400,) fw = go.FigureWidget(fig1) ################################################################################################# # # ################################################################################################# def label_encoding(self, attributes_list, data_frame): # creating initial dataframe labelencoder = LabelEncoder() return_dict = {} for attribute in attributes_list: categories = data_frame[attribute].dropna().unique() temp_df = pd.DataFrame(categories, columns=[attribute]) # Assigning numerical values and storing in another column temp_df[attribute+"_benc"] = temp_df[attribute] temp_df[attribute] = labelencoder.fit_transform(temp_df[attribute]) # Convert this Temp_df into a dictionary temp_df.set_index(attribute+"_benc", inplace=True) return_dict.update(temp_df.to_dict()) data_frame[attribute+"_benc"] = data_frame[attribute] data_frame[attribute] = labelencoder.fit_transform(data_frame[attribute]) return return_dict ################################################################################################# # # ################################################################################################# def gcd(self, p, q): if (q == 0): return p else: return min(q, p) def ratio(self, a,b): _gcd = self.gcd(a,b) one = round(a/_gcd, 2) isto = round(b/_gcd, 2) if one != 1: isto = round (1/one, 2) one = 1.0 return one, isto ################################################################################################# # VIEW FAIRNESS MATRICS AEQUITAS # ################################################################################################# """Difference in means: The difference between the probability for a member of group-a be selected and the probability for a member of group-b to be selected. Disparate Impact: the Probability of a member of group-a be selected to be selected divided by the probability of a member of group-b to be selected False positive rate Ratio of false positive ratio's among protected groups False negative rate: Ratio of false negative ratio's among protected groups""" ################################################################################################# # VIEW FAIRNESS MATRICS AEQUITAS # ################################################################################################# """Difference in means: The difference between the probability for a member of group-a be selected and the probability for a member of group-b to be selected. Disparate Impact: the Probability of a member of group-a be selected to be selected divided by the probability of a member of group-b to be selected False positive rate Ratio of false positive ratio's among protected groups False negative rate: Ratio of false negative ratio's among protected groups""" def view_aequitas_fairness_metrics(self, X_df, y_target, y_pred, data_summary): #copying it here so we do not make any modifications to the original X_data_frame = X_df.copy() y_column_name = y_target.name _w=600 _h=600 protected_attributes_list = data_summary.protected_before_transform feature_data_dict = data_summary.feature_data_dict y_high_positive = data_summary.HIGH_RANGE_POSITIVE aeq_Plot = Plot() aeq_Group = Group() aeq_Bias = Bias() aeq_Fairness = Fairness() out1 = widgets.Output(layout={}) out2 = widgets.Output(layout={}) out3 = widgets.Output(layout={}) out4 = widgets.Output(layout={}) out5 = widgets.Output(layout={}) out6 = widgets.Output(layout={}) out7 = widgets.Output(layout={}) tab_contents = [out1, out2, out3, out4, out5, out6,out7] children = tab_contents tab = widgets.Tab(style={'description_layout':'auto', 'title_layout':'auto'}) tab.children = children tab.set_title(0, "Confusion Matrix") tab.set_title(1, "False Positive") tab.set_title(2, "False Negative") tab.set_title(3, "All Metrics") tab.set_title(4, "Disparate Impact") tab.set_title(5, "Fairness") tab.set_title(6, "Metrics reminder") local_layout = {'width': 'auto', 'visibility':'visible'} local_layout_hidden = {'width': 'auto', 'visibility':'hidden'} local_style = {'description_width':'initial'} #Convert the protected feature columns back to their values #before label encoding or one-hot encoding for feature in protected_attributes_list: X_data_frame[feature] = self.convert_feature_column(X_data_frame, feature, feature_data_dict[feature]) _choose_a = widgets.Dropdown(description = "Select protected feature", options = protected_attributes_list, layout = local_layout, style = local_style) _choose_b = widgets.Dropdown(description = "Select protected group", options = X_data_frame[_choose_a.value].dropna().unique(), layout = local_layout, style = local_style) _choose_measure = widgets.Dropdown(description = "Select metric", options = {'False Omission Rate' : 'for', 'False Discovery Rate' :'fdr', 'False Positive Rate': 'fpr', 'False Negative Rate': 'fnr', 'Negative Predictive Value': 'npv', 'Precision': 'precision', 'Predicted Positive Ratio_k' :'ppr', 'Predicted Positive Ratio_g': 'pprev', 'Group Prevalence':'prev'}, layout = local_layout, value = 'precision', style = local_style) _choose_disparity_measure = widgets.Dropdown(description = "Select disparity metric", options = {'False Positive Rate disparity': 'fpr_disparity', 'False Negative Rate disparity': 'fnr_disparity', 'Predicted Positive Ratio_k' : 'ppr_disparity', 'Predicted Positive Ratio_g disparity' :'pprev_disparity', 'Precision Disparity': 'precision_disparity', 'False Discovery Rate disparity': 'fdr_disparity', 'False Omission Rate disparity': 'for_disparity', 'True Positive Rate disparity': 'tpr_disparity', 'True Negative Rate disparity': 'tnr_disparity', 'npv_disparity': 'npv_disparity',}, layout = local_layout, value = 'fpr_disparity', style = local_style) html = '''<h3>Aequitas fairness via Machnamh: </h3> Aequitas is an open source bias audit toolkit for machine learning developers, analysts, and policymakers to audit machine learning models for discrimination and bias, and make informed and equitable decisions around developing and deploying predictive risk-assessment tools.<br>The Machnamh framework provides a dynamic interface to Aequitas API allowing for quick analysis and a useful user interface to help facilitate the translation of results''' display (HTML(html)) display(tab) df_aequitas = pd.concat([X_data_frame[protected_attributes_list], y_target, pd.DataFrame(y_pred, index=X_data_frame.index)], axis=1, sort=False); #Aequitas needs the true-y_value column to be called 'label_value' # and the prediction to be called 'scire' df_aequitas.rename(columns={y_column_name: 'label_value', 0: 'score'}, inplace=True); df_aequitas[df_aequitas.columns.difference(['label_value', 'score'])] = df_aequitas[ df_aequitas.columns.difference(['label_value', 'score'])].astype(str); cross_tab, _ = aeq_Group.get_crosstabs(df_aequitas) cross_tab.fillna(0, inplace = True) absolute_metrics = aeq_Group.list_absolute_metrics(cross_tab) #columns not in absolute Matrix counts_metrics = list (cross_tab[[col for col in cross_tab.columns if col not in absolute_metrics]].columns.values) counts_metrics.remove('model_id') counts_metrics.remove('score_threshold') counts_metrics.remove('k') ## Read images from file (because this is binary, maybe you can find how to use ByteIO) but this is more easy path = os.path.dirname(sys.modules[__name__].__file__) img2 = open(path + '/data/count.png', 'rb').read() img1 = open(path + '/data/absolute.png', 'rb').read() ## Create image widgets. You can use layout of ipywidgets only with widgets. ## Set image variable, image format and dimension. wi1 = widgets.Image(value=img1, format='png', width=300, height=400) wi2 = widgets.Image(value=img2, format='png', width=300, height=400) ## Side by side thanks to HBox widgets sidebyside = widgets.HBox([wi1, wi2]) ## Finally, show. with out1: clear_output(wait = True) tab = widgets.Tab() tab_names = [] output_arr = {} for feature in protected_attributes_list: priv = str(feature_data_dict[feature]['privileged_description']) output_arr[feature] = widgets.Output(layout={}) with output_arr[feature]: beneficial = "" punative = "" if y_high_positive == True: html = """You have indicated that a high ranking is beneficial to an individual or group, therefor <font color='red'><b>false negatives</b></font> can be particularally harmful. in terms of fairness!""" beneficial = ['tp','fp'] punitive = ['tn','fn'] equal_oppertunity = '''In this case a high outcome(or binary one) is <font color='green'>beneficial </font>so we are quantifying the equal oppertunity to have an apparently deserved <font color='green'>beneficial outcomes</font> (TPR)''' equal_odds = ''', and to have an apparently undeserved<font color='green'> beneficial outcome</font>''' equal_oppertunity_2 = '' elif y_high_positive == False: html = """You have indicated that a low ranking is beneficial to an individual or group, therefor <font color='red'><b>false positives</b></font> can be particularally harmful in terms of fairness!""" beneficial = ['tn','fn'] punitive = ['tp','fp'] equal_oppertunity = '''In this case a high outcome(or binary one) is <font color='red'>not beneficial </font>so we are quantifying the equal oppertunity to have <font color='red'>an apparently deserved non-beneficial outcome</font> ''' equal_odds = ''', and to have an apparently undeserved<font color='green'> non-beneficial outcome.</font>''' equal_oppertunity_2 = ''' Rectifying any discrepencies in oppertunity to a non-benificial outcome will cause negative outcomes for additional individuals.''' widgHTML = widgets.GridBox(children=[widgets.HTML(html)], layout=Layout( width='90%', ) ) display (widgHTML) one = widgets.Output(layout={}) two = widgets.Output(layout={}) three = widgets.Output(layout={}) accordion1 = widgets.Accordion(children=[one, two, three]) accordion1.set_title(0, "Absolute Metrics across " + feature + " groups") accordion1.set_title(1, "Group counts across " + feature + " groups") accordion1.set_title(2, "Metrics description ") with one: included = ['attribute_name', 'attribute_value'] + absolute_metrics display ( cross_tab[included][ cross_tab[included]['attribute_name'] == feature].round(2)) with two: display (cross_tab[counts_metrics][ cross_tab[counts_metrics]['attribute_name'] == feature] ) with three: display(sidebyside) accordion1.selected_index = None display(accordion1) self.make_confusion_matrix(cross_tab[counts_metrics], feature, group_names = ['True Neg','False Pos','False Neg','True Pos'], categories='auto', count=True, percent=True, cbar=True, xyticks=True, xyplotlabels=True, sum_stats=True, figsize=(3,3), cmap='Blues', title=None) fairness_measures_pd = cross_tab[counts_metrics][ cross_tab[counts_metrics]['attribute_name'] == feature] ###### Proportional parity######### fairness_measures_pd["Beneficial outcome percentage"] = fairness_measures_pd.apply(lambda row: ((row[beneficial[0]] + row[beneficial[1]])/row["group_size"])*100, axis=1) fairness_measures_pd["Beneficial outcome percentage"] = round(fairness_measures_pd["Beneficial outcome percentage"],2) fairness_measures_pd["Punative outcome percentage"] = fairness_measures_pd.apply(lambda row: ((row[punitive[0]] + row[punitive[1]])/row["group_size"])*100, axis=1) fairness_measures_pd["Punative outcome percentage"] = round(fairness_measures_pd["Punative outcome percentage"],2) display (HTML("""<h2><font color='green'>Proportional parity</h2><font color='black'> <b>Proportional parity:</b> Proportional parity is a representational based group fairness metric which states that each group should have the same proportion of beneficial(non-punative) outcomes. A desire to correct for the absence of proportional parity (when no biological or inherent reason accounts for its' absence) reflects a worldview which recognises the existance of prejudice and a wish to create a "decision maker" willing to apply corrective measures to counter historical discrimination against a particular group or groups and ensure that all groups are proportionately represented in beneficial outcomes. The "decision maker" is aware that such intervention may be reflected in a reduction of perceived utility of <i>current</i> model accuracy.<br> <b>Note</b> These values are calculated based on the group representation in the sample which does not necessarally match that of the population or the domain in which the model will be used.<br>""")) display (HTML("The privileged group has been set as: " + priv)) display(fairness_measures_pd[["attribute_value","Beneficial outcome percentage","Punative outcome percentage"]].rename(columns = {'attribute_value': 'Group'})) ####### Demographic parity (TP+FP) or (TN+FN) should be the same######### fairness_measures_pd["Beneficial outcome count"] = fairness_measures_pd.apply(lambda row: (row[beneficial[0]] + row[beneficial[1]]), axis=1) fairness_measures_pd["Punative outcome count"] = fairness_measures_pd.apply(lambda row: (row[punitive[0]] + row[punitive[1]]), axis=1) display (HTML("""<h2><font color='green'>Demographic parity</h2><font color='black'> <b>Demographic parity:</b> (also known as Independence or Statistical Parity,) is a representation based group fairness metric which states that each group should have an equal number of beneficial(non-punative) outcomes. A desire to correct for the absence of demographic parity (when no biological or inherent reason accounts for its' absence) reflects a worldview which recognises the existance of prejudice and a wish to create a "decision maker" willing to apply corrective measures to counter historical discrimination against a particular group or groups and ensure that all groups are proportionately represented in beneficial outcomes. The "decision maker" is aware that such intervention may be reflected in a reduction of perceived utility of <i>current</i> model accuracy. """)) display (HTML("The privileged group has been set as: " + priv)) display(fairness_measures_pd[["attribute_value","Beneficial outcome count","Punative outcome count"]].rename(columns = {'attribute_value': 'Group'})) ####### Equal oppertunity############################### def tpr(row): try: row = row["tp"] / (row["tp"] + row["fn"]) except: row = "0" return round(row * 100,2) fairness_measures_pd["True positive rate percentage"] = fairness_measures_pd.apply(lambda row: tpr(row),axis=1) fairness_measures_pd["Proportional to "+priv] = fairness_measures_pd.apply(lambda row: tpr(row),axis=1) display (HTML("""<h2><font color='green'>Equality of oppertunity</h2><font color='black'> <b>Equality of opportunity:</b> is an accuracy related fairness that is satisfied if the model correctly predicts class 1 outcomes at equal rates across groups. A desire by a 'decision maker' to satisfy equality of oppertunity reflects a worldview belief that we should ensure that those who appear to deserve a certain outcome(assistive or punitive ) should obtain that outcome independant of the group they belong to and that this outcome should be the same rate across groups, the desire is to ensure that no further prejudice or unfairness occurs although there is no consideration to actively apply corrective measures to counter historical discrimination reflected in the features used to determine the outcome. There is also no concern given to those situations where an outcome is incorrectly given when not deserved(which may indicate favoritism towards a particular group)<br> """ + equal_oppertunity + equal_oppertunity_2 +'''<br><br>The True Positive Rate (TPR) should be the same for each group, to satisfy Equality of opportunity.''')) display (HTML("The privileged group has been set as: " + priv)) display(fairness_measures_pd[["attribute_value","True positive rate percentage"]].rename(columns = {'attribute_value': 'Group'})) ######################Equalized odds ###################### def fpr(row): try: row = row["fp"] / (row["fp"] + row["tn"]) except: row = "0" return round(row * 100,2) fairness_measures_pd["False positive rate percentage"] = fairness_measures_pd.apply(lambda row: fpr(row),axis=1) display (HTML("""<h2><font color='green'>Equalized odds</h2><font color='black'> <b>Equalized odds:</b> is an accuracy related fairness that is satisfied if the model correctly predicts true class 1 outcomes at equal rates across groups. A desire by a 'decision maker' to satisfy equality of oppertunity reflects a worldview belief that we should ensure that those who appear to deserve a certain outcome(assistive or punitive ) should obtain that outcome independant of the group they belong to, and that those who do not deserve the outcome, should not obtain it(should not be mis-classified) and this should be the same rate across groups, the desire is to ensure that no further prejudice or unfairness occurs either through prejudice or favoritism, although there is no consideration to actively apply corrective measures to counter historical discrimination reflected in the features used to determine the outcome. )<br> """ + equal_oppertunity + equal_odds + equal_oppertunity_2 +'''<br><br>The True Positive Rate (TPR) and False Positive Rate (FPR) should be the same for each group to satisfy Equalised odds.''')) display (HTML("The privileged group has been set as: " + priv)) display(fairness_measures_pd[["attribute_value","True positive rate percentage", "False positive rate percentage"]].rename(columns = {'attribute_value': 'Group'})) tab.children = list(output_arr.values()) for i in range(len(protected_attributes_list)): tab.set_title(i, protected_attributes_list[i]) display (tab) with out2: #False Positive clear_output(wait = True) html = """<b>False Positive Rate:</b> The model predicted the subjects outcome was positive when in fact it was not, in other words <b>an incorrect decision to recommend for action!</b>""" if y_high_positive == True: html = html + '''You have indicated that a high outcome (ranking) has a positive impact on an individual therefore a high false positive rate will have a <font color='green'><b>positive impact</b></font> on an individual or group. ''' elif y_high_positive == False: html = html + '''You have indicated that a high outcome (ranking) has a negative impact on an individual therefore a high false positive rate will have a <font color='red'><b>negative impact</b></font> on an individual or group. ''' widgHTML = widgets.GridBox(children=[widgets.HTML(html)], layout=Layout( width='90%', ) ) display (widgHTML) fig1, (ax1) = plt.subplots(nrows=1, figsize=(10 ,5)); ax1 = aeq_Plot.plot_group_metric(cross_tab,'fpr', ax1); plt.tight_layout(); ax1.set_title('False Positive ratios'); plt.show(); plt.close(fig1); plt.clf(); with out3:#False Negative clear_output(wait = True) html = """<b>False Negative Rate:</b> The model predicted the subjects outcome was negative when in fact it was not, in other words <b>an incorrect decision not to recommend for action!</b> """ if y_high_positive == True: html = html + '''You have indicated that a high outcome (ranking) has a positive impact on an individual therefore a high false negative rate will have a<font color='red'> <b>negative impact </b></font> on an individual or group. ''' elif y_high_positive == False: html = html + '''You have indicated that a high outcome (ranking) has a negative impact on an individual therefore a high false negative rate will have a <font color='green'><b>positive impact </b></font> on an individual or group. ''' widgHTML = widgets.GridBox(children=[widgets.HTML(html)], layout=Layout( width='90%', ) ) display (widgHTML) fig1, (ax1) = plt.subplots(nrows=1, figsize=(10 ,5)); ax1 = aeq_Plot.plot_group_metric(cross_tab,'fnr', ax1); plt.tight_layout(); ax1.set_title('False Negative ratios'); plt.show() plt.close(fig1); plt.clf(); with out4:#ALL metrics clear_output(wait = True) if y_high_positive == True: html = '''You have indicated that a <b>high outcome(ranking)</b> has a<font color='green'> <b>positive impact</b></font> on an individual. ''' elif y_high_positive == False: html = '''You have indicated that a <b>high outcome(ranking)</b> has a <font color='red'></b>negative impact</b></font> on an individual. ''' display (HTML(html)) def show_any(choose_measure): fig1, (ax1) = plt.subplots(nrows=1); ax1 = aeq_Plot.plot_group_metric(cross_tab, choose_measure, ax1) plt.tight_layout() ax1.set_title(choose_measure) plt.show() plt.close(fig1) plt.clf() interact(show_any, choose_measure = _choose_measure); with out5: #Disparate clear_output(wait = True) dict_of_controls = {} dis_imp_html = '''<b>Disparate Impact:</b> A decision-making process suffers from disparate impact if the outcome of the decision disproportionately benefits one group or disproportionately hurts another group. It generally results from unintentional discrimination in decision-making systems. Disparities are calculated as a ratio of a metric for a group of interest compared to a reference group. For example, the False Negative Rate Disparity for Group-A compared to a reference Group-B is: FNR-B/FNR-A The calculated disparities are in relation to a reference group, which will always have a disparity of 1.0. Disparate impact is often measured by the eighty percent or four-fifths rule. ''' widgHTML = widgets.GridBox(children=[widgets.HTML(dis_imp_html)], layout=Layout( width='90%', ) ) display (widgHTML) for feature in protected_attributes_list: dict_of_controls[feature] = widgets.Dropdown(description = "Reference group for "+feature, options = X_data_frame[feature].dropna().unique(), value = feature_data_dict[feature]['privileged_description'], layout = local_layout, style = local_style) display(dict_of_controls[feature]) def show_disparity(button, space, choose_disparity_measure): #local method _ref_groups_dict = {} for c in dict_of_controls: _ref_groups_dict[c] = str(dict_of_controls[c].value) disparity = aeq_Bias.get_disparity_predefined_groups(cross_tab, original_df=df_aequitas, ref_groups_dict=_ref_groups_dict, alpha=0.05, mask_significance=True); num_rows = math.ceil( (len(protected_attributes_list))/2) fig = plt.figure(figsize=(12 ,6*num_rows)) plt.tight_layout() ax_dict = {} for x, num in zip (protected_attributes_list, range(len(protected_attributes_list))): ax_dict[x] = plt.subplot(1, 2, num+1) ax_dict[x] = aeq_Plot.plot_disparity(disparity, group_metric=choose_disparity_measure, attribute_name=x, significance_alpha=0.05, fig = fig, ax = ax_dict[x]); if y_high_positive == True: html = '''<b></b>You have indicated that a high outcome (ranking) has a <font color='green'><b>positive</b> </font> impact on a group or individual. <br> ''' elif y_high_positive == False: html = '''<b></b>You have indicated that a high outcome (ranking) has a <font color='red'><b>negative impact</b></font> on a group or individual. ''' display(HTML(html)) plt.show() display(HTML('''Sized based on group size, color based on disparity magnitude<br> Reference groups are displayed in grey with disparity = 1. <br> Disparities greater than 10x will show as 10x.<br> Disparities less than 0.1x will show as 0.1x.<br> Statistical siginificance(default 0.05) will show as ** on square.''')) plt.close(fig1) plt.clf() one = widgets.Output(layout={}) accordion1 = widgets.Accordion(children=[one]) accordion1.set_title(0, "All Calculated values ") with one: pd.set_option('display.max_columns', None) display (disparity) accordion1.selected_index = None display(accordion1) with out6: clear_output(wait = True) for ref in _ref_groups_dict: display(HTML("Reference group is " +_ref_groups_dict[ref] + " for " + ref)) display(HTML("Green bar indicates Fair.<br>Red bar indicates unfair.")) group_val_fairness= aeq_Fairness.get_group_value_fairness(disparity) parity_detrminations = aeq_Fairness.list_parities(group_val_fairness) aeq_Plot.plot_fairness_group_all(group_val_fairness, ncols=5, metrics = "all") one = widgets.Output(layout={}) accordion1 = widgets.Accordion(children=[one]) accordion1.set_title(0, "All Calculated values ") with one: display (group_val_fairness[['attribute_name', 'attribute_value']+parity_detrminations]) accordion1.selected_index = None display(accordion1) interact(show_disparity, button = widgets.ToggleButton( description='Apply selected Reference group', layout = local_layout, style = local_style), space = widgets.Label(' ', layout=widgets.Layout(width='100%')), choose_disparity_measure = _choose_disparity_measure ) with out7: html = '''<table class="wikitable" align="center" style="text-align:center; border:none; background:transparent;"> <tbody><tr> <td style="border:none;" colspan="2"> </td> <td style="background:#eeeebb;" colspan="2"><b>True condition</b> </td></tr> <tr> <td style="border:none;"> </td> <td style="background:#dddddd;"><a href="https://en.wikipedia.org/wiki/Statistical_population" title="Statistical population">Total population</a> </td> <td style="background:#ffffcc;">Condition positive </td> <td style="background:#ddddaa;">Condition negative </td> <td style="background:#eeeecc;font-size:90%;"><a href="https://en.wikipedia.org/wiki/Prevalence" title="Prevalence">Prevalence</a> <span style="font-size:118%;white-space:nowrap;">= <span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">&#931;&#160;Condition positive</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">&#931;&#160;Total population</span></span></span> </td> <td style="background:#cceecc;border-left:double silver;font-size:90%;" colspan="2"><a href="https://en.wikipedia.org/wiki/Accuracy_and_precision" title="Accuracy and precision">Accuracy</a> (ACC) = <span style="font-size:118%;"><span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">&#931;&#160;True positive + &#931; True negative</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">&#931;&#160;Total population</span></span></span> </td></tr> <tr> <td rowspan="2" class="nowrap unsortable" style="line-height:99%;vertical-align:middle;padding:.4em .4em .2em;background-position:50% .4em !important;min-width:0.875em;max-width:0.875em;width:0.875em;overflow:hidden;background:#bbeeee;"><div style="-webkit-writing-mode: vertical-rl; -o-writing-mode: vertical-rl; -ms-writing-mode: tb-rl;writing-mode: tb-rl; writing-mode: vertical-rl; layout-flow: vertical-ideographic;display: inline-block; -ms-transform: rotate(180deg); -webkit-transform: rotate(180deg); transform: rotate(180deg);;-ms-transform: none ;padding-left:1px;text-align:center;"><b>Predicted condition</b></div> </td> <td style="background:#ccffff;">Predicted condition<br />positive </td> <td style="background:#ccffcc;"><span style="color:#006600;"><b><a href="https://en.wikipedia.org/wiki/True_positive" class="mw-redirect" title="True positive">True positive</a></b></span> </td> <td style="background:#eedddd;"><span style="color:#cc0000;"><b><a href="https://en.wikipedia.org/wiki/False_positive" class="mw-redirect" title="False positive">False positive</a></b>,<br /><a href="https://en.wikipedia.org/wiki/Type_I_error" class="mw-redirect" title="Type I error">Type I error</a></span> </td> <td style="background:#ccffee;border-top:double silver;font-size:90%;"><a href="https://en.wikipedia.org/wiki/Positive_predictive_value" class="mw-redirect" title="Positive predictive value">Positive predictive value</a> (PPV), <a href="https://en.wikipedia.org/wiki/Precision_(information_retrieval)" class="mw-redirect" title="Precision (information retrieval)">Precision</a> = <span style="font-size:118%;white-space:nowrap;"><span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">&#931; True positive</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">&#931;&#160;Predicted&#160;condition&#160;positive</span></span></span> </td> <td style="background:#cceeff;border-top:double silver;font-size:90%;" colspan="2"><a href="https://en.wikipedia.org/wiki/False_discovery_rate" title="False discovery rate">False discovery rate</a> (FDR) = <span style="font-size:118%;white-space:nowrap;"><span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">&#931; False positive</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">&#931;&#160;Predicted&#160;condition&#160;positive</span></span></span> </td></tr> <tr> <td style="background:#aadddd;">Predicted condition<br />negative </td> <td style="background:#ffdddd;"><span style="color:#cc0000;"><b><a href="https://en.wikipedia.org/wiki/False_negative" class="mw-redirect" title="False negative">False negative</a></b>,<br /><a href="https://en.wikipedia.org/wiki/Type_II_error" class="mw-redirect" title="Type II error">Type II error</a></span> </td> <td style="background:#bbeebb;"><span style="color:#006600;"><b><a href="https://en.wikipedia.org/wiki/True_negative" class="mw-redirect" title="True negative">True negative</a></b></span> </td> <td style="background:#eeddee;border-bottom:double silver;font-size:90%;"><a href="https://en.wikipedia.org/wiki/False_omission_rate" class="mw-redirect" title="False omission rate">False omission rate</a> (FOR) = <span style="font-size:118%;white-space:nowrap;"><span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">&#931; False negative</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">&#931;&#160;Predicted&#160;condition&#160;negative</span></span></span> </td> <td style="background:#aaddcc;border-bottom:double silver;font-size:90%;" colspan="2"><a href="https://en.wikipedia.org/wiki/Negative_predictive_value" class="mw-redirect" title="Negative predictive value">Negative predictive value</a> (NPV) = <span style="font-size:118%;white-space:nowrap;"><span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">&#931; True negative</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">&#931;&#160;Predicted&#160;condition&#160;negative</span></span></span> </td></tr> <tr style="font-size:90%;"> <td style="border:none;vertical-align:bottom;padding:0 2px 0 0;color:#999999;" colspan="2" rowspan="2"> </td> <td style="background:#eeffcc;"><a href="https://en.wikipedia.org/wiki/True_positive_rate" class="mw-redirect" title="True positive rate">True positive rate</a> (TPR), <a href="https://en.wikipedia.org/wiki/Recall_(information_retrieval)" class="mw-redirect" title="Recall (information retrieval)">Recall</a>, <a href="https://en.wikipedia.org/wiki/Sensitivity_(tests)" class="mw-redirect" title="Sensitivity (tests)">Sensitivity</a>, probability&#160;of&#160;detection, <a href="https://en.wikipedia.org/wiki/Statistical_power" class="mw-redirect" title="Statistical power">Power</a> <span style="font-size:118%;white-space:nowrap;">= <span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">&#931; True positive</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">&#931;&#160;Condition&#160;positive</span></span></span> </td> <td style="background:#eeddbb;"><a href="https://en.wikipedia.org/wiki/False_positive_rate" title="False positive rate">False positive rate</a> (FPR), <a href="https://en.wikipedia.org/wiki/Information_retrieval" title="Information retrieval"><span class="nowrap">Fall-out</span></a>, probability&#160;of&#160;false&#160;alarm <span style="font-size:118%;white-space:nowrap;">= <span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">&#931; False positive</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">&#931;&#160;Condition&#160;negative</span></span></span> </td> <td style="background:#eeeeee;"><a href="https://en.wikipedia.org/wiki/Positive_likelihood_ratio" class="mw-redirect" title="Positive likelihood ratio">Positive likelihood ratio</a> <span class="nowrap">(LR+)</span> <span style="font-size:118%;white-space:nowrap;">= <span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">TPR</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">FPR</span></span></span> </td> <td style="background:#dddddd;" rowspan="2"><a href="https://en.wikipedia.org/wiki/Diagnostic_odds_ratio" title="Diagnostic odds ratio">Diagnostic odds ratio</a> (DOR) <span style="font-size:118%;white-space:nowrap;">= <span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">LR+</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">LR−</span></span></span> </td> <td style="background:#ddffdd;border-left:double silver;line-height:2;" rowspan="2"><a class="mw-selflink selflink">F<sub>1</sub> score</a> = <span style="font-size:118%;white-space:nowrap;">2 · <span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">Precision · Recall</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">Precision + Recall</span></span></span> </td></tr> <tr style="font-size:90%;"> <td style="background:#ffeecc;"><a href="https://en.wikipedia.org/wiki/False_negative_rate" class="mw-redirect" title="False negative rate">False negative rate</a> (FNR), Miss&#160;rate <span style="font-size:118%;white-space:nowrap;">= <span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">&#931; False negative</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">&#931;&#160;Condition&#160;positive</span></span></span> </td> <td style="background:#ddeebb;"><a href="https://en.wikipedia.org/wiki/Specificity_(tests)" class="mw-redirect" title="Specificity (tests)">Specificity</a> (SPC), Selectivity, <a href="https://en.wikipedia.org/wiki/True_negative_rate" class="mw-redirect" title="True negative rate">True negative rate</a> (TNR) <span style="font-size:118%;white-space:nowrap;">= <span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">&#931; True negative</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">&#931;&#160;Condition&#160;negative</span></span></span> </td> <td style="background:#cccccc;"><a href="https://en.wikipedia.org/wiki/Negative_likelihood_ratio" class="mw-redirect" title="Negative likelihood ratio">Negative likelihood ratio</a> <span class="nowrap">(LR−)</span> <span style="font-size:118%;white-space:nowrap;">= <span role="math" class="sfrac nowrap tion" style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span class="num" style="display:block; line-height:1em; margin:0 0.1em;">FNR</span><span class="slash visualhide">/</span><span class="den" style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">TNR</span></span></span> </td></tr></tbody></table>''' display(HTML("<b>Wikipedia Metrics overview</b>")) display(HTML(html)) gc.collect() def visualise_RMSE_model_eval(self, y_train, y_test, y_pred_train, y_pred_test): y_predictedTrain = y_pred_train y_predictedTest = y_pred_test y_test = y_test y_train = y_train '''We will be using Root mean squared error(RMSE) and Coefficient of Determination(R² score) to evaluate our model. RMSE is the square root of the average of the sum of the squares of residuals. The RMSE is the square root of the variance of the residuals. #It indicates the absolute fit of the model to the data–how close the observed data points are to the model’s #predicted values. Whereas R-squared is a relative measure of fit, RMSE is an absolute measure of fit. #As the square root of a variance, RMSE can be interpreted as the standard deviation of the unexplained variance, #and has the useful property of being in the same units as the response variable. #Lower values of RMSE indicate better fit. #RMSE is a good measure of how accurately the model predicts the response, and it is the most important criterion #for fit if the main purpose of the model is prediction. #Coefficient of Determination(R² score) - The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). #A constant model that always predicts the expected value of y, disregarding the input features, #would get a R^2 score of 0.0. #R-squared is between 0 and 1, Higher values are better because it means #that more variance is explained by the model.''' display("*****EVALUATING MODEL WITH TRAINING DATA:***") rmse = mean_squared_error(y_train, y_predictedTrain) r2 = r2_score(y_train, y_predictedTrain) display(' Root mean squared error: '+ str(rmse)) display(' R2 score: '+ str(r2)) display("*****EVALUATING MODEL WITH TEST DATA:******") rmse = mean_squared_error(y_test, y_predictedTest) r2 = r2_score(y_test, y_predictedTest) display(' Root mean squared error: ' + str(rmse)) display(' R2 score: '+ str(r2)) n_train = len(y_train) plt.figure(figsize=(20, 10)) plt.plot(range(n_train), y_train, label="train") plt.plot(range(n_train, len(y_test) + n_train), y_test, '-', label="test") plt.plot(range(n_train), y_predictedTrain, '--', label="prediction train") plt.plot(range(n_train, len(y_test) + n_train), y_predictedTest, '--', label="prediction test") plt.legend(loc=(1.01, 0)) plt.xlabel("Score") plt.ylabel("prediction") return plt def reload_data (self, pickle_path, data_frame_path, print_summary = True): # Reload the file data_summary = dill.load(open(pickle_path, "rb")) data_frame = pd.read_csv(data_frame_path) html = "" protected = [] non_protected = [] y_value = "" if print_summary == True: display(HTML("<b>Number of samples in dataset:</b> " + str(data_frame.shape[0]))) display (HTML("<b>All columns in data frame:</b> "+ str(data_frame.columns))) display(HTML("<b>Target:</b> "+ str (data_summary.y_value))) if data_summary.Y_CONTINUOUS == True: display(HTML("<b>Target type: </b>continuous")) display(HTML("<b>Num of unique values in target</b>: " + str ( len(data_frame[data_summary.y_value].dropna().unique())))) display(HTML("<b>Min:</b> " + str (data_frame[data_summary.y_value].min()))) display(HTML("<b>Max </b>: "+ str ( data_frame[data_summary.y_value].max()))) if data_summary.Y_BINARY == True: display(HTML("Output is binary")) if data_summary.HIGH_RANGE_POSITIVE == True: display(HTML("Output in high range has positive effect")) if data_summary.HIGH_RANGE_POSITIVE == False: display(HTML("Output in high range has negative effect")) display(HTML("<h3>Summary of Data transformation per feature:</h3>")) feature_data = data_summary.feature_data_dict html = html + "<ul>" for feature in feature_data:#in order of target, protected, other. html = html +"<li><b>"+feature+"</b><br>" html = html + "<ul>" html = html + "<li>Type: " + str(feature_data[feature]['type']) + "<br>" if feature_data[feature]['target'] == True: html = html + "<li>This is the target(y)<br>" y_value = feature elif feature_data[feature]['protected'] == True: html = html + "<li>This is a protected feature<br>" protected.append(feature) else: non_protected.append(feature) if feature_data[feature]['type'] == "categorical": html = html + "<li>Original Values: " + str(feature_data[feature]['original_values']) + "<br>" html = html + "<li>Value descriptions: " + str(feature_data[feature]['values_description']) + "<br>" if feature_data[feature]['label_enc'] == True: html = html + "<li>Label encoding was applied to this feature." + "<br>" html = html + "<li>Label encoded values: " + str(feature_data[feature]['label_enc_values']) + "<br>" if feature_data[feature]['one_hot_enc'] == True: html = html + "<li>One-Hot-Encoding was applied to this feature" + "<br>" html = html + "<li>The new columns are:" + str(feature_data[feature]['one_hot_enc_cols_after']) + "<br>" html = html + "<li>The original column before one-hot encoding:" + str(feature_data[feature]['one_hot_enc_col_before']) + "<br>" if feature_data[feature]['values_merged'] == True: html = html + "<li>Some values within the feature were merged." + "<br>" html = html + "<li>The values before the merge were: " + str(feature_data[feature]['before_merge_values']) + "<br>" html = html + "<li>The values after the merge are: " + str(feature_data[feature]['original_values']) + "<br>" if feature_data[feature]['scaled_using'] != "": html = html + "<li>Scaled/Normalised using: " + feature_data[feature]['scaled_using'] + "<br>" html = html + "<br>" html = html + "</ul>" html = html + "</ul>" display (HTML(html)) return data_frame, data_summary ################################################################################################# # Detect outliers and return for one column in dataset. # We find the z score for each of the data point in the dataset # and if the z score is greater than 3 than we can classify that point as an outlier. # Any point outside of "thresh" = 3 standard deviations would be an outlier. # ################################################################################################# def detect_outlier_and_describe(self, series, thresh = 3, data_type = "numeric"): outliers=[] threshold=thresh size = series.count() missing = series.isnull().sum() unique = len(series.unique()) pcnt_missing = missing/size *100 html = "" if data_type == "numeric": mean_1 = np.mean(series) std_1 =np.std(series) html = "Outlier is defind as any point outside " + str(thresh) + " standard deviations<br>" html = html + "Min: " + str(np.min(series)) + "<br>" html = html + "Max: " + str( np.max(series)) + "<br>" html = html + "Mean: " + str( mean_1) + "<br>" html = html + "Standard Deviation: "+ str( std_1) + "<br>" for y in series: z_score= (y - mean_1)/std_1 if np.abs(z_score) > threshold: outliers.append(y) html = html + "Number of outliers: "+ str( len(outliers)) + "<br>" html = html + "Outliers: "+ str(outliers) + "<br>" html = html + "Number of observations: "+ str( size) + "<br>" html = html + "Num of unique values: "+ str(unique) + "<br>" html = html + "Missing cells: "+ str( missing) + "<br>" html = html + "Missing cells%: "+ str( missing) + "<br>" return html, outliers ################################################################################################# # This function will return a Features dataframe, a Series with the Target and a list of the # features that will be used to train the model. The Features dataframe may contain additional features # such as the protected features(when not used for training), and tcolumns containing values before # any kind of merge of the data. ################################################################################################# def get_features_and_target(self, data_frame, data_summary, include_protected, continuous_to_binary_target = False): if include_protected == True: cols = data_summary.protected_after_transform + data_summary.non_protected_after_transform else: cols = data_summary.non_protected_after_transform if data_summary.y_value in cols: cols.remove(data_summary.y_value) if continuous_to_binary_target == True: if not data_summary.y_value + "_binary" in list(data_frame.columns): display(HTML("""<font style='color:orange;'>You have set <b>'continuous_to_binary_target = True'</b>, but no translation from continuous to binary was detected!<br> <font style='color:black;'>If the label is a continuous number then run the helper method <b>set_decision_boundary(data_frame, data_summary)</b> to convert a binary label to a continuous label before calling <b>get_features_and_target</b>. """)) return data_frame.drop(data_summary.y_value, axis = 1), data_frame[data_summary.y_value], cols else: return data_frame.drop([data_summary.y_value, data_summary.y_value + "_binary"], axis = 1), data_frame[data_summary.y_value + "_binary"], cols return data_frame.drop(data_summary.y_value, axis = 1), data_frame[data_summary.y_value], cols ################################################################################################# # # ################################################################################################# def shap_analysis(self, shap_values, explainer, x, data_summary): try: shap.initjs() except: print ( 'shap.initjs() failed to load javascript') outOverview = widgets.Output(layout={}) out1 = widgets.Output(layout={}) out2 = widgets.Output(layout={}) out3 = widgets.Output(layout={}) out4 = widgets.Output(layout={}) out5 = widgets.Output(layout={}) tab_contents = [out1, out2, out3, out4, out5] children = tab_contents tab = widgets.Tab(style={'description_layout':'auto', 'title_layout':'auto'}) tab.children = children tab.set_title(0, "Summary Importance plot") tab.set_title(1, "Importance plot") tab.set_title(2, "Dependence plot") tab.set_title(3, "Individual force plot") tab.set_title(4, "Collective force plot") local_layout = {'width': 'auto', 'visibility':'visible'} local_layout_hidden = {'width': 'auto', 'visibility':'hidden'} local_style = {'description_width':'initial'} display(outOverview) display(tab) _choose = widgets.Dropdown(description = "Select Feature", options = list(x.columns), layout = local_layout, style = local_style) all_comb = {} for f in data_summary.protected_after_transform: for a in x[f].unique(): all_comb[(f+":"+ str(a))] = a _protected = widgets.Dropdown(description = "Filter by Protected Feature", options = all_comb, layout = local_layout, style = local_style) toggle = widgets.ToggleButton( value=False, description='Generate', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' ) with outOverview: display (HTML('''<h3>SHAP interpretability via Machnamh</h3>(SHapley Additive exPlanations) KernelExplainer is a model-agnostic method which builds a weighted linear regression by using training/test data, training/test predictions, and whatever function that predicts the predicted values. SHAP values represent a feature's responsibility for a change in the model output. It computes the variable importance values based on the Shapley values from game theory, and the coefficients from a local linear regression. </br> see: https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf <br> It offer a high level of interpretability for a model, through two distinct approaches: <br><b>Global interpretability</b> — the SHAP values can show how much each predictor contributes, either positively or negatively, to the target variable. Similar to a variable importance plot however it also indicates the positive or negative relationship between each feature and the target output. <br><b>Local interpretability</b> — each observation is assigned it's own SHAP value. This provides a very granular level of transparency and interpretability where we can determine why an individual cases receive a specific prediction and the contribution of each feature to the prediction. Generally speaking variable importance algorithms usually only show the results across the entire dataset but not on each individual case.''')) with out1: html_desc = ''' <b>Summary importance plot </b><br><b>Feature importance:</b> Variables are ranked in descending order. The top variables contribute more to the model than the bottom ones and thus have high predictive power.<br> ''' wi1 = widgets.Output(layout=Layout(width='60%')) with wi1: shap.summary_plot(shap_values, x, plot_type="bar"); wi2 = widgets.HTML(value=html_desc,layout=Layout(width='30%') ) ; sidebyside = widgets.HBox([wi1, wi2]) display (sidebyside) with out2: display (HTML('''<b>Importance plot:</b> lists the most significant variables in descending order. The top variables contribute more to the model than the bottom ones and thus have high predictive power.''')) html_desc = ''' <b>Feature importance:</b> Variables are ranked in descending order.<br> <b>Impact:</b> Horizontal location indicates if effect of feature is associated with a higher or lower prediction.<br> <b>Original value:</b> Colour indicates if feature variable is high(red) or low(blue) for the particular observation.<br> <b>Correlation:</b> A high or low impact(indicated by colour), a positive or negative impact(indicated by position on x-axis) ''' wi1 = widgets.Output(layout={}) with wi1: shap.summary_plot(shap_values, x); wi2 = widgets.HTML(value=html_desc,layout=Layout(width='30%') ) sidebyside = widgets.HBox([wi1, wi2]) display (sidebyside) with out3: display (HTML ("The decision variable is " + str(data_summary.y_value))) display (HTML ('''To understand how a single feature effects the output of the model a dependency plot plots the SHAP value of that feature vs. the value of the feature for all the examples in a dataset.''')) def show_dependancy_plot(choose): html_desc = '''The dependency plots show relationship between the target ('''+ data_summary.y_value + ''') and the selected feature ('''+ choose + ''') to review if it is linear, monotonic or more complex. The additionla variable is the variable that the selected feature (''' + choose + ''') interacts with the most frequently. Vertical dispersion at a single value represents interaction effects with the other features. ''' display (HTML(html_desc)) display (shap.dependence_plot(choose, shap_values, x)) interact(show_dependancy_plot, choose = _choose); with out4: display (HTML ("The decision variable is " + str(data_summary.y_value))) display (HTML ('''<b>Individual Force plot</b> shows the features which each contribute to push the model output from the base value (the average model output over the dataset passed) to the model output. Features pushing the prediction higher are shown in red, those pushing the prediction lower are shown in blue.''')) # visualize the first prediction's explanation (use matplotlib=True to avoid Javascript) display (HTML ("<b>Generate random sample to investigate:</b>")) def show_individual_force_plot(protected, toggle): feat = _protected.label.split(':')[0] index = x[x[feat] == _protected.value].sample(1).index[0] display (shap.force_plot(explainer.expected_value, shap_values[index,:], x.iloc[index,:], matplotlib=True)) interact(show_individual_force_plot, protected = _protected, toggle = toggle); with out5: display (HTML ("The decision variable is " + str(data_summary.y_value))) display (HTML ('''<b>Collective Force plot</b> A combination of all individual force plots, each rotated 90 degrees, and stacked horizontally, to explanation an entire dataset.''')) display (shap.force_plot(explainer.expected_value, shap_values, x)) ################################################################################################# # # ################################################################################################# def get_protected (self, summary): return summary.protected_before_transform ################################################################################################# # # ################################################################################################# #def get_protected_before_merge (self, summary): # return summary.all_columns_in_x # print (list([all_columns_in_x.contains('_bm')])) # print (list(X_train.columns[X_train.columns.str.contains('_benc')])) ################################################################################################# # # ################################################################################################# #def get_protected_before_transform (self, summary): # all_cols = summary.all_columns_in_x # prot = summary.protected_x # new_prot = [] # for f in prot: # found = False # if f+'_bm' in all_cols: # new_prot.append(f+'_bm') # found = True # if f+'_benc' in all_cols: # new_prot.append(f+'_benc') # found = True # if f.endswith('_oh_benc'): # new_prot.append(f) # found = True # # if found == False: # new_prot.append(f) # return new_prot ################################################################################################# # # ################################################################################################# def serialise_ranked_list(self, X, y, y_prob_actual, y_prob_1, y_pred, save_to_path = './', name = ""): ranked_dict = {} ranked_dict['X'] = X ranked_dict['y'] = y ranked_dict['y_prob_actual'] = y_prob_actual ranked_dict[ 'y_prob_1'] = y_prob_1 ranked_dict['y_pred'] = y_pred path = save_to_path + name + "_ranked_data.pickle" dill.dump(ranked_dict, file = open(path, "wb")) display (HTML("Serialised data to dictionary 'ranked_dict', at " + path)) return path ################################################################################################# # # ################################################################################################# def reload_ranked_list (self, _path): path = _path ranked_dict = dill.load(open(path, "rb")) X = ranked_dict['X'] y = ranked_dict['y'] y_prob_actual = ranked_dict['y_prob_actual'] y_prob_1 = ranked_dict[ 'y_prob_1'] y_pred = ranked_dict['y_pred'] return X, y, y_prob_actual, y_prob_1, y_pred ################################################################################################# # # ################################################################################################# def run_shap_and_serialise_response(self, X_in, model_predict, count = 100, save_to_path = './'): x = shap.sample( X_in, count) x = x.reset_index(drop=True) explainer = shap.KernelExplainer(model_predict, x ) # The second argument is the "background" dataset; a size of 100 rows is gently encouraged by the code shap_values = explainer.shap_values(x, l1_reg="num_features(10)") print(f'length of SHAP values: {len(shap_values)}') print(f'Shape of each element: {shap_values[0].shape}') path = save_to_path + "shap_values.pickle" print ("Shap_values saved to", path) dill.dump(shap_values, file = open(path, "wb")) path = save_to_path + "shap_explainer.pickle" print ("Shap_explainer saved to", path) dill.dump(explainer, file = open(path, "wb")) path = save_to_path +"shap_x.pickle" print ("Shap_explainer saved to", path) dill.dump(x, file = open(path, "wb")) display (HTML ("The model-agnostic SHAP explainer <b>'KernelExplainer'</b> has been used.")) return explainer, shap_values, x ################################################################################################# # # ################################################################################################# def reload_shap_data (self, _path): path = _path shap_values_path = path + "/shap_values.pickle" explainer_path = path + "/shap_explainer.pickle" x_path = path + "/shap_x.pickle" shap_values = dill.load(open(shap_values_path, "rb")) explainer = dill.load(open(explainer_path, "rb")) x = dill.load(open(x_path, "rb")) # Reload the file return shap_values, explainer, x ################################################################################################# # # ################################################################################################# def get_features_type(self, df, unique_max): numeric_cat = [] obj = [] cat = [] boo = [] #pandas data types. # datetime64 - currently not supported by the tool # timedelta[ns] - currently not supported by the tool # object # int64 # float64 # bool # category for col in df.select_dtypes(include='number').columns: if len(df[col].dropna().unique()) <= unique_max: numeric_cat.append(col) for col in df.select_dtypes(include='object').columns: if len(df[col].dropna().unique()) <= unique_max: obj.append(col) for col in df.select_dtypes(include='category').columns: if len(df[col].dropna().unique()) <= unique_max: cat.append(col) for col in df.select_dtypes(include='bool').columns: if len(df[col].dropna().unique()) <= unique_max: boo.append(col) all_categorical = cat + obj + numeric_cat + boo all_numeric = list (df.columns) all_numeric = [ele for ele in all_numeric if ele not in all_categorical] return all_categorical, all_numeric ################################################################################################# # # ################################################################################################# def get_feature_info (self, feature, unique_values, group_descriptions_dict, label_encoding_dict, oh_encoding_dict, merged_dict, trace = False): values = unique_values decoded_values = [] original_values = [] label_encoded_values = [] keys = [] if feature in oh_encoding_dict: original_feature_bohe = oh_encoding_dict[feature]["Original_col"] original_value_bohe = oh_encoding_dict[feature]["Original_val"] if trace == True: print ("One Hot Encoded from feature:", original_feature_bohe, "value:",original_value_bohe) print ("One Hot Encoded values:", values) _choice_dict_for_drop = dict(zip(values, values)) original_values = values label_encoded_values = [] descriptions = values return _choice_dict_for_drop, original_values, label_encoded_values, descriptions def get_key(val): #local method in get_feature_info for key, value in label_encoding_dict[feature].items(): if val == value: return key return None #if feature is already encoded then unique_values will be the encoded versions #If feature does not have a description saved then return {x:x, y:y etc} as #the key value pairs for any dropdown. regardless of encoded or not. if feature not in group_descriptions_dict: original_values = values if feature in label_encoding_dict: for value in values: decoded_values.append(get_key(value)) original_values = decoded_values label_encoded_values = values descriptions = original_values _choice_dict_for_drop = dict(zip(original_values, label_encoded_values)) else: _choice_dict_for_drop = dict(zip(values, values)) descriptions = values if trace == True: print ("Original values ", original_values) print ("Label Encoded values ", label_encoded_values ) print ("Description ", descriptions ) print ("Key/Value for dropdown: ", _choice_dict_for_drop) return _choice_dict_for_drop, original_values, label_encoded_values, descriptions if feature in group_descriptions_dict: #first check if the input feature unique_values are the result of an Encode if feature in label_encoding_dict: for value in values: decoded_values.append(get_key(value)) original_values = decoded_values label_encoded_values = values if trace == True: print ("Original values ", original_values) print ("Label Encoded values ", label_encoded_values ) if feature not in label_encoding_dict: original_values = values label_encoded_values = [] if trace == True: print ("Original values ", original_values) print ("Label Encoded values ", label_encoded_values ) for key in original_values: if key not in group_descriptions_dict[feature]: keys.append(key) else: keys.append(group_descriptions_dict[feature][key]) # using zip() # to convert lists to dictionary _choice_dict_for_drop = dict(zip(keys,values)) descriptions = keys if trace == True: print ("Description: ", keys) print ("Key/Value for dropdown: ", _choice_dict_for_drop) if feature in merged_dict: print ("Merged Values: ", merged_dict[feature]) return _choice_dict_for_drop, original_values, label_encoded_values, descriptions ################################################################################################# # # ################################################################################################# def phi_k_correlation(self, df): intcols = [] selcols = [] for col in df.columns.tolist(): try: tmp = ( df[col] .value_counts(dropna=False) .reset_index() .dropna() .set_index("index") .iloc[:, 0] ) if tmp.index.inferred_type == "mixed": continue if pd.api.types.is_numeric_dtype(df[col]): intcols.append(col) selcols.append(col) elif df[col].nunique() <= config[ "categorical_maximum_correlation_distinct" ].get(int): selcols.append(col) except (TypeError, ValueError): continue if len(selcols) > 1: correlation = df[selcols].phik_matrix(interval_cols=intcols) return correlation else: return None ################################################################################################# # # ################################################################################################# def Benfords_law(self, df, feature, protected): groups = df[protected].dropna().unique() tab = widgets.Tab() widget_arr = {} tab_titles = [] fit_output = widgets.Output(layout={}) for group in groups: filtered = df[df[protected]==group] X = filtered[feature].values # # Make fit with fit_output: out = bl.fit(X) # # Plot widget_arr[group] = widgets.Output(layout={}) with widget_arr[group]: display(bl.plot(out, title='Benfords law for '+ str(feature) + ' and group '+ str(group), figsize=(8,4))); tab_titles.append(str(group)) widget_arr["Output"] = fit_output tab.children = list(widget_arr.values()) for x in range(len(tab_titles)): tab.set_title(x, tab_titles[x]) tab.set_title(x+1,"Output Trace") return tab def de_hot_encode_feature (self, df, original_col, hot_encoded_cols): num_chars = len(original_col) + 1 df[original_col] = 0 for col in hot_encoded_cols: map_to = col[num_chars:] df.loc[df[col] == 1, original_col] = map_to return df[original_col] def map_values (self, data_frame, protected_attributes_list, feature_data_dict): for feat in protected_attributes_list: #create a dictionary out of two lists.. if feature_data_dict[feat]['values_merged'] == True: display ("the feature was merged") display ("column before merge is ", feature_data_dict[feat]['before_merge_col']) #data_frame[feat] = data_frame['before_merge_col'] if feature_data_dict[feat]['one_hot_enc'] == True: #One_hot was applied original_col = feature_data_dict[feat]['one_hot_enc_col_before'] hot_encoded_cols = feature_data_dict[feat]['one_hot_enc_cols_after'] data_frame[feat] = self.de_hot_encode_feature(data_frame, original_col, hot_encoded_cols) #now if there are descriptions use the descriptions if len(feature_data_dict[feat]['values_description']) != 0: map_dictionary = dict(zip(feature_data_dict[feat]['original_values'], feature_data_dict[feat]['values_description'])) data_frame[feat] = data_frame[feat].map(map_dictionary) elif feature_data_dict[feat]['label_enc'] == True: #Label encoding was applied #if there are descriptions use the descriptions otherwise use the non-label encoded values if len(feature_data_dict[feat]['values_description']) != 0: map_dictionary = dict(zip(feature_data_dict[feat]['label_enc_values'], feature_data_dict[feat]['values_description'])) else: map_dictionary = dict(zip(feature_data_dict[feat]['label_enc_values'], feature_data_dict[feat]['original_values'])) data_frame[feat] = data_frame[feat].map(map_dictionary) else: #No encoding was applied if len(feature_data_dict[feat]['values_description']) != 0: map_dictionary = dict(zip(feature_data_dict[feat]['original_values'], feature_data_dict[feat]['values_description'])) data_frame[feat] = data_frame[feat].map(map_dictionary) return data_frame[protected_attributes_list] ################################################################################################# # copied from Medium article, will use it as a # ################################################################################################# def make_confusion_matrix(self, conf_matrix, feature, group_names=None, categories='auto', count=True, percent=True, cbar=True, xyticks=True, xyplotlabels=True, sum_stats=True, figsize=None, cmap='Blues', title=None): cm_all = conf_matrix.copy() ''' This function will make a pretty plot of an sklearn Confusion Matrix cm using a Seaborn heatmap visualization. Arguments --------- conf_matrix: Aequitas entire confusion matrix to be passed in feature The protected feature to view group_names: List of strings that represent the labels row by row to be shown in each square. categories: List of strings containing the categories to be displayed on the x,y axis. Default is 'auto' count: If True, show the raw number in the confusion matrix. Default is True. normalize: If True, show the proportions for each category. Default is True. cbar: If True, show the color bar. The cbar values are based off the values in the confusion matrix. Default is True. xyticks: If True, show x and y ticks. Default is True. xyplotlabels: If True, show 'True Label' and 'Predicted Label' on the figure. Default is True. sum_stats: If True, display summary statistics below the figure. Default is True. figsize: Tuple representing the figure size. Default will be the matplotlib rcParams value. cmap: Colormap of the values displayed from matplotlib.pyplot.cm. Default is 'Blues' See http://matplotlib.org/examples/color/colormaps_reference.html title: Title for the heatmap. Default is None. ''' out_dict = {} cm_all = cm_all[cm_all['attribute_name'] == feature] groups = cm_all['attribute_value'].unique() for group in groups: cm_group = cm_all[cm_all['attribute_value'] == group].squeeze() #squeese changes it to series tn = cm_group['tn'] fp = cm_group['fp'] fn = cm_group['fn'] tp = cm_group['tp'] cf = np.array([[tn, fp], [ fn, tp]]) out_dict[group] = widgets.Output(layout = {'border': 'solid 1px white', 'padding': '25px'}) # CODE TO GENERATE TEXT INSIDE EACH SQUARE blanks = ['' for i in range(cf.size)] if group_names and len(group_names)==cf.size: group_labels = ["{}\n".format(value) for value in group_names] else: group_labels = blanks if count: group_counts = ["{0:0.0f}\n".format(value) for value in cf.flatten()] else: group_counts = blanks if percent: group_percentages = ["{0:.2%}".format(value) for value in cf.flatten()/np.sum(cf)] else: group_percentages = blanks box_labels = [f"{v1}{v2}{v3}".strip() for v1, v2, v3 in zip(group_labels,group_counts,group_percentages)] box_labels = np.asarray(box_labels).reshape(cf.shape[0],cf.shape[1]) # CODE TO GENERATE SUMMARY STATISTICS & TEXT FOR SUMMARY STATS if sum_stats: #Accuracy is sum of diagonal divided by total observations accuracy = np.trace(cf) / float(np.sum(cf)) #if it is a binary confusion matrix, show some more stats if len(cf)==2: #Metrics for Binary Confusion Matrices precision = cf[1,1] / sum(cf[:,1]) recall = cf[1,1] / sum(cf[1,:]) f1_score = 2*precision*recall / (precision + recall) stats_text = """\n\nAccuracy={:0.3f} \nPrecision/Positive predictive value(PPV)={:0.3f} \nRecall/True Positive Rate/Sensitivity={:0.3f} \nF1 Score={:0.3f}""".format( accuracy,precision,recall,f1_score) html = '<font style="font-family:sans-serif; font-size:10px;color:black;">' html = html + "Accuracy: " + str(round(accuracy,2)) + "<br>" html = html + "Precision/Positive predictive value(PPV): " + str(round(precision,2)) + "<br>" html = html + "Recall/True Positive Rate/Sensitivity: " + str(round(recall,2)) + "<br>" html = html + "F1 Score=: " + str(round(f1_score,2)) + "<br>" else: stats_text = "\n\nAccuracy={:0.3f}".format(accuracy) else: stats_text = "" stats_text = ''#Going to use the HTML instead # SET FIGURE PARAMETERS ACCORDING TO OTHER ARGUMENTS if figsize==None: #Get default figure size if not set figsize = plt.rcParams.get('figure.figsize') if xyticks==False: #Do not show categories if xyticks is False categories=False # MAKE THE HEATMAP VISUALIZATION plt.figure(figsize=figsize) sns.heatmap(cf,annot=box_labels, fmt="", cmap=cmap, cbar=cbar, xticklabels=categories, yticklabels=categories ) if xyplotlabels: plt.ylabel('True label') plt.xlabel('Predicted label' + stats_text) else: plt.xlabel(stats_text) if title: plt.title(title) with out_dict[group]: display(HTML(group)) plt.show() display(HTML(html)) l = list(out_dict.values()) n = 3 outList = [] for i in range(n, len(l) + n, n): outList.append(l[i-n:i]) for chunk_of_3 in outList: display (widgets.HBox([*chunk_of_3], layout = Layout( padding = '10px', width='100%', display='flex', align_items='stretch', align_content='space-between', ) )) # In[ ]:
PypiClean
/ptcn-0.1.3.tar.gz/ptcn-0.1.3/README.md
# ptcn Tensorflow (2.x) implementation of a Temporal Convolutional Network architecture, with a probabilistic twist. This project indulges a couple of curiosities: 1. Working with convolutional sequence-to-sequence models a la [An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling](https://arxiv.org/abs/1803.01271) 2. Adding a bayesian twist to the network a la [Bayesian Segnet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding](https://arxiv.org/abs/1511.02680) This implementation has been inspired by other projects, including: - https://github.com/locuslab/TCN - https://github.com/Baichenjia/Tensorflow-TCN - https://github.com/philipperemy/keras-tcn
PypiClean