id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
/curvlinops-for-pytorch-1.1.0.tar.gz/curvlinops-for-pytorch-1.1.0/docs/examples/basic_usage/example_matrix_vector_products.py
r""" Matrix-vector products ====================== This tutorial contains a basic demonstration how to set up ``LinearOperators`` for the Hessian and the GGN and how to multiply them to a vector. First, the imports. """ import matplotlib.pyplot as plt import numpy import torch from torch import nn from curvlinops import GGNLinearOperator, HessianLinearOperator from curvlinops.examples.functorch import functorch_ggn, functorch_hessian from curvlinops.examples.utils import report_nonclose # make deterministic torch.manual_seed(0) numpy.random.seed(0) # %% # Setup # ----- # Let's create some toy data, a small MLP, and use mean-squared error as loss function. N = 4 D_in = 7 D_hidden = 5 D_out = 3 DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") X = torch.rand(N, D_in).to(DEVICE) y = torch.rand(N, D_out).to(DEVICE) model = nn.Sequential( nn.Linear(D_in, D_hidden), nn.ReLU(), nn.Linear(D_hidden, D_hidden), nn.Sigmoid(), nn.Linear(D_hidden, D_out), ).to(DEVICE) params = [p for p in model.parameters() if p.requires_grad] loss_function = nn.MSELoss(reduction="mean").to(DEVICE) # %% # Hessian-vector products # ----------------------- # # Setting up a linear operator for the Hessian is straightforward. data = [(X, y)] H = HessianLinearOperator(model, loss_function, params, data) # %% # # We can now multiply by the Hessian. This operation will be carried out in # PyTorch under the hood, but the operator is compatible with ``scipy``, so we # can just pass a ``numpy`` vector to the matrix-multiplication. D = H.shape[0] v = numpy.random.rand(D) Hv = H @ v # %% # # To verify the result, we compute the Hessian using ``functorch``, using a # utility function from ``curvlinops.examples``: H_mat = functorch_hessian(model, loss_function, params, data).detach().cpu().numpy() # %% # # Let's check that the multiplication onto ``v`` leads to the same result: Hv_functorch = H_mat @ v print("Comparing Hessian-vector product with functorch's Hessian-vector product.") report_nonclose(Hv, Hv_functorch) # %% # Hessian-matrix products # ----------------------- # # We can also compute the Hessian's matrix representation with the linear # operator, simply by multiplying it onto the identity matrix. (Of course, this # only works if the Hessian is small enough.) H_mat_from_linop = H @ numpy.eye(D) # %% # # This should yield the same matrix as with :code:`functorch`. print("Comparing Hessian with functorch's Hessian.") report_nonclose(H_mat, H_mat_from_linop) # %% # # Last, here's a visualization of the Hessian. plt.figure() plt.title("Hessian") plt.imshow(H_mat) plt.colorbar() # %% # GGN-vector products # ------------------- # # Setting up a linear operator for the Fisher/GGN is identical to the Hessian. GGN = GGNLinearOperator(model, loss_function, params, data) # %% # # Let's compute a GGN-vector product. D = H.shape[0] v = numpy.random.rand(D) GGNv = GGN @ v # %% # # To verify the result, we will use ``functorch`` to compute the GGN. For that, # we use that the GGN corresponds to the Hessian if we replace the neural # network by its linearization. This is implemented in a utility function of # :code:`curvlinops.examples`: GGN_mat = functorch_ggn(model, loss_function, params, data).detach().cpu().numpy() GGNv_functorch = GGN_mat @ v print("Comparing GGN-vector product with functorch's GGN-vector product.") report_nonclose(GGNv, GGNv_functorch) # %% # GGN-matrix products # ------------------- # # We can also compute the GGN matrix representation with the linear operator, # simply by multiplying it onto the identity matrix. (Of course, this only # works if the GGN is small enough.) GGN_mat_from_linop = GGN @ numpy.eye(D) # %% # # This should yield the same matrix as with :code:`functorch`. print("Comparing GGN with functorch's GGN.") report_nonclose(GGN_mat, GGN_mat_from_linop) # %% # # Last, here's a visualization of the GGN. plt.figure() plt.title("GGN") plt.imshow(GGN_mat) plt.colorbar() # %% # Visual comparison: Hessian and GGN # ---------------------------------- # # To conclude, let's plot both the Hessian and GGN using the same limits min_value = min(GGN_mat.min(), H_mat.min()) max_value = max(GGN_mat.max(), H_mat.max()) fig, ax = plt.subplots(ncols=2) ax[0].set_title("Hessian") ax[0].imshow(H_mat, vmin=min_value, vmax=max_value) ax[1].set_title("GGN") ax[1].imshow(GGN_mat, vmin=min_value, vmax=max_value)
PypiClean
/python3-weixin-0.0.9.zip/python3-weixin-0.0.9/py3weixin/lib/WXBizMsgCrypt.py
# TODO 重构加密解密 import base64 import string import random import hashlib import time import struct from Crypto.Cipher import AES import xml.etree.cElementTree as ET import sys import socket reload(sys) import ierror class FormatException(Exception): pass def throw_exception(message, exception_class=FormatException): """my define raise exception function""" raise exception_class(message) class SHA1: """计算公众平台的消息签名接口""" def getSHA1(self, token, timestamp, nonce, encrypt): """用SHA1算法生成安全签名 @param token: 票据 @param timestamp: 时间戳 @param encrypt: 密文 @param nonce: 随机字符串 @return: 安全签名 """ try: sortlist = [token, timestamp, nonce, encrypt] sortlist.sort() sha = hashlib.sha1() sha.update("".join(sortlist)) return ierror.WXBizMsgCrypt_OK, sha.hexdigest() except Exception: return ierror.WXBizMsgCrypt_ComputeSignature_Error, None class XMLParse: """提供提取消息格式中的密文及生成回复消息格式的接口""" # xml消息模板 AES_TEXT_RESPONSE_TEMPLATE = """ <xml> <Encrypt><![CDATA[%(msg_encrypt)s]]></Encrypt> <MsgSignature><![CDATA[%(msg_signaturet)s]]></MsgSignature> <TimeStamp>%(timestamp)s</TimeStamp> <Nonce><![CDATA[%(nonce)s]]></Nonce> </xml> """ def extract(self, xmltext): """提取出xml数据包中的加密消息 @param xmltext: 待提取的xml字符串 @return: 提取出的加密消息字符串 """ try: xml_tree = ET.fromstring(xmltext) encrypt = xml_tree.find("Encrypt") touser_name = xml_tree.find("ToUserName") return ierror.WXBizMsgCrypt_OK, encrypt.text, touser_name.text except Exception: return ierror.WXBizMsgCrypt_ParseXml_Error, None, None def generate(self, encrypt, signature, timestamp, nonce): """生成xml消息 @param encrypt: 加密后的消息密文 @param signature: 安全签名 @param timestamp: 时间戳 @param nonce: 随机字符串 @return: 生成的xml字符串 """ resp_dict = { 'msg_encrypt': encrypt, 'msg_signaturet': signature, 'timestamp': timestamp, 'nonce': nonce } resp_xml = self.AES_TEXT_RESPONSE_TEMPLATE % resp_dict return resp_xml class PKCS7Encoder(): """提供基于PKCS7算法的加解密接口""" block_size = 32 def encode(self, text): """ 对需要加密的明文进行填充补位 @param text: 需要进行填充补位操作的明文 @return: 补齐明文字符串 """ text_length = len(text) # 计算需要填充的位数 amount_to_pad = self.block_size - (text_length % self.block_size) if amount_to_pad == 0: amount_to_pad = self.block_size # 获得补位所用的字符 pad = chr(amount_to_pad) return text + pad * amount_to_pad def decode(self, decrypted): """删除解密后明文的补位字符 @param decrypted: 解密后的明文 @return: 删除补位字符后的明文 """ pad = ord(decrypted[-1]) if pad < 1 or pad > 32: pad = 0 return decrypted[:-pad] class Prpcrypt(object): """提供接收和推送给公众平台消息的加解密接口""" def __init__(self, key): # self.key = base64.b64decode(key+"=") self.key = key # 设置加解密模式为AES的CBC模式 self.mode = AES.MODE_CBC def encrypt(self, text, appid): """对明文进行加密 @param text: 需要加密的明文 @return: 加密得到的字符串 """ # 16位随机字符串添加到明文开头 text = self.get_random_str() + struct.pack("I", socket.htonl(len(text))) + text + appid # 使用自定义的填充方式对明文进行补位填充 pkcs7 = PKCS7Encoder() text = pkcs7.encode(text) # 加密 cryptor = AES.new(self.key, self.mode, self.key[:16]) try: ciphertext = cryptor.encrypt(text) # 使用BASE64对加密后的字符串进行编码 return ierror.WXBizMsgCrypt_OK, base64.b64encode(ciphertext) except Exception: return ierror.WXBizMsgCrypt_EncryptAES_Error, None def decrypt(self, text, appid): """对解密后的明文进行补位删除 @param text: 密文 @return: 删除填充补位后的明文 """ try: cryptor = AES.new(self.key, self.mode, self.key[:16]) # 使用BASE64对密文进行解码,然后AES-CBC解密 plain_text = cryptor.decrypt(base64.b64decode(text)) except Exception: return ierror.WXBizMsgCrypt_DecryptAES_Error, None try: pad = ord(plain_text[-1]) # 去掉补位字符串 # pkcs7 = PKCS7Encoder() # plain_text = pkcs7.encode(plain_text) # 去除16位随机字符串 content = plain_text[16:-pad] xml_len = socket.ntohl(struct.unpack("I", content[:4])[0]) xml_content = content[4:xml_len+4] from_appid = content[xml_len+4:] except Exception: return ierror.WXBizMsgCrypt_IllegalBuffer, None if from_appid != appid: return ierror.WXBizMsgCrypt_ValidateAppid_Error, None return 0, xml_content def get_random_str(self): """ 随机生成16位字符串 @return: 16位字符串 """ rule = string.letters + string.digits str = random.sample(rule, 16) return "".join(str) class WXBizMsgCrypt(object): # 构造函数 # @param sToken: 公众平台上,开发者设置的Token # @param sEncodingAESKey: 公众平台上,开发者设置的EncodingAESKey # @param sAppId: 企业号的AppId def __init__(self, sToken, sEncodingAESKey, sAppId): try: self.key = base64.b64decode(sEncodingAESKey + "=") assert len(self.key) == 32 except: throw_exception("[error]: EncodingAESKey unvalid !", FormatException) self.token = sToken self.appid = sAppId def EncryptMsg(self, sReplyMsg, sNonce, timestamp=None): # 将公众号回复用户的消息加密打包 # @param sReplyMsg: 企业号待回复用户的消息,xml格式的字符串 # @param sTimeStamp: 时间戳,可以自己生成,也可以用URL参数的timestamp,如为None则自动用当前时间 # @param sNonce: 随机串,可以自己生成,也可以用URL参数的nonce # sEncryptMsg: 加密后的可以直接回复用户的密文,包括msg_signature, timestamp, nonce, encrypt的xml格式的字符串, # return:成功0,sEncryptMsg,失败返回对应的错误码None pc = Prpcrypt(self.key) ret, encrypt = pc.encrypt(sReplyMsg, self.appid) if ret != 0: return ret, None if timestamp is None: timestamp = str(int(time.time())) # 生成安全签名 sha1 = SHA1() ret, signature = sha1.getSHA1(self.token, timestamp, sNonce, encrypt) if ret != 0: return ret, None xmlParse = XMLParse() return ret, xmlParse.generate(encrypt, signature, timestamp, sNonce) def DecryptMsg(self, sPostData, sMsgSignature, sTimeStamp, sNonce): # 检验消息的真实性,并且获取解密后的明文 # @param sMsgSignature: 签名串,对应URL参数的msg_signature # @param sTimeStamp: 时间戳,对应URL参数的timestamp # @param sNonce: 随机串,对应URL参数的nonce # @param sPostData: 密文,对应POST请求的数据 # xml_content: 解密后的原文,当return返回0时有效 # @return: 成功0,失败返回对应的错误码 # 验证安全签名 xmlParse = XMLParse() ret, encrypt, touser_name = xmlParse.extract(sPostData) if ret != 0: return ret, None sha1 = SHA1() ret, signature = sha1.getSHA1(self.token, sTimeStamp, sNonce, encrypt) if ret != 0: return ret, None if not signature == sMsgSignature: return ierror.WXBizMsgCrypt_ValidateSignature_Error, None pc = Prpcrypt(self.key) ret, xml_content = pc.decrypt(encrypt, self.appid) return ret, xml_content
PypiClean
/arctic_aarch64-1.80.1-py3-none-any.whl/arctic/_util.py
import logging import numpy as np import pymongo from pandas import DataFrame try: from pandas.testing import assert_frame_equal except ImportError: from pandas.util.testing import assert_frame_equal from ._config import FW_POINTERS_CONFIG_KEY, FwPointersCfg logger = logging.getLogger(__name__) NP_OBJECT_DTYPE = np.dtype('O') # Avoid import-time extra logic _use_new_count_api = None def get_fwptr_config(version): return FwPointersCfg[version.get(FW_POINTERS_CONFIG_KEY, FwPointersCfg.DISABLED.name)] def _detect_new_count_api(): try: mongo_v = [int(v) for v in pymongo.version.split('.')] return mongo_v[0] >= 3 and mongo_v[1] >= 7 except: return False def indent(s, num_spaces): s = s.split('\n') s = [(num_spaces * ' ') + line for line in s] s = '\n'.join(s) return s def are_equals(o1, o2, **kwargs): try: if isinstance(o1, DataFrame): assert_frame_equal(o1, o2, kwargs) return True return o1 == o2 except Exception: return False def enable_sharding(arctic, library_name, hashed=True, key='symbol'): """ Enable sharding on a library Parameters: ----------- arctic: `arctic.Arctic` Arctic class library_name: `basestring` library name hashed: `bool` if True, use hashed sharding, if False, use range sharding See https://docs.mongodb.com/manual/core/hashed-sharding/, as well as https://docs.mongodb.com/manual/core/ranged-sharding/ for details. key: `basestring` key to be used for sharding. Defaults to 'symbol', applicable to all of Arctic's built-in stores except for BSONStore, which typically uses '_id'. See https://docs.mongodb.com/manual/core/sharding-shard-key/ for details. """ c = arctic._conn lib = arctic[library_name]._arctic_lib dbname = lib._db.name library_name = lib.get_top_level_collection().name try: c.admin.command('enablesharding', dbname) except pymongo.errors.OperationFailure as e: if 'already enabled' not in str(e): raise if not hashed: logger.info("Range sharding '" + key + "' on: " + dbname + '.' + library_name) c.admin.command('shardCollection', dbname + '.' + library_name, key={key: 1}) else: logger.info("Hash sharding '" + key + "' on: " + dbname + '.' + library_name) c.admin.command('shardCollection', dbname + '.' + library_name, key={key: 'hashed'}) def mongo_count(collection, filter=None, **kwargs): filter = {} if filter is None else filter global _use_new_count_api _use_new_count_api = _detect_new_count_api() if _use_new_count_api is None else _use_new_count_api # This is a temporary compatibility fix for compatibility with pymongo>=3.7, and also avoid deprecation warnings if _use_new_count_api: # Projection is ignored for count_documents return collection.count_documents(filter=filter, **kwargs) else: return collection.count(filter=filter, **kwargs)
PypiClean
/scoreplayer_external-0.2.11-py3-none-any.whl/scoreplayer_external.py
from zeroconf import ServiceBrowser, Zeroconf, ServiceStateChange, IPVersion from pythonosc import osc_message_builder, udp_client, dispatcher, osc_server import time import socket import threading from datetime import datetime from itertools import zip_longest from queue import Queue #Convenience function from itertools recipes def grouper(iterable, n, fillvalue=None): "Collect data into fixed-length chunks or blocks" # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx" args = [iter(iterable)] * n return zip_longest(*args, fillvalue=fillvalue) #The scoreObject class is used to provide a python representation of objects #drawn onto the ScorePlayer canvas. It is subclassed for specific object types. class scoreObject: _addressPrefix = '/Renderer/Command/' def __init__(self, name, external): self.name = name self.external = external self.removed = False #Every object can have its colour set. def setColour(self, r, g, b, a=255): self.sendCommand('setColour', int(r), int(g), int(b), int(a)) #The method used to actually send the OSC command via our external object. #It checks to make sure that the object hasn't already been removed on the player. def sendCommand(self, command, *args): if self.removed: print ('{} has been removed'.format(self.name)) return self.external.sendMessage(scoreObject._addressPrefix + self.name + '/' + command, *args) class scoreNonLineObject(scoreObject): #Commands common to all objects but lines. #(Abstract class not used for actual objects) def addLayer(self, objname, part, x, y, width, height): self.sendCommand('addLayer', objname, part, int(x), int(y), int(width), int(height)) return scoreLayerObject(objname, self.external) def addScroller(self, objname, part, x, y, width, height, scrollerWidth, speed): self.sendCommand('addScroller', objname, part, int(x), int(y), int(width), int(height), int(scrollerWidth), float(speed)) return scoreScrollerObject(objname, self.external) def addText(self, objname, part, x, y, fontSize=36): self.sendCommand('addText', objname, part, int(x), int(y), float(fontSize)) return scoreTextObject(objname, self.external) def addGlyph(self, objname, part, x, y, glyphSize=36): self.sendCommand('addGlyph', objname, part, int(x), int(y), float(glyphSize)) return scoreGlyphObject(objname, self.external) def addStave(self, objname, part, x, y, width, height, lineWidth): self.sendCommand('addStave', objname, part, int(x), int(y), int(width), int(height), int(lineWidth)) return scoreStaveObject(objname, self.external) def addLine(self, objname, part, x1, y1, x2, y2, lineWidth): self.sendCommand('addLine', objname, part, int(x1), int(y1), int(x2), int(y2), int(lineWidth)) return scoreLineObject(objname, self.external) class scoreNonLineCanvasObject(scoreNonLineObject): #Commands common to all objects but lines and the canvas. def remove(self): self.sendCommand('remove') self.removed = True def setOpacity(self, opacity): self.sendCommand('setOpacity', float(opacity)) def fade(self, opacity, duration): self.sendCommand('fade', float(opacity), float(duration)) def setPosition(self, x, y): self.sendCommand('setPosition', int(x), int(y)) def move(self, x, y, duration): self.sendCommand('move', int(x), int(y), float(duration)) class scoreCanvasObject(scoreNonLineObject): def clear(self): self.sendCommand('clear') class scoreLineObject(scoreObject): def remove(self): self.sendCommand('remove') self.removed = True def setOpacity(self, opacity): self.sendCommand('setOpacity', float(opacity)) def fade(self, opacity, duration): self.sendCommand('fade', float(opacity), float(duration)) def setWidth(self, width): self.sendCommand('setWidth', int(width)) def setStartPoint(self, x, y): self.sendCommand('setStartPoint', int(x), int(y)) def setEndPoint(self, x, y): self.sendCommand('setEndPoint', int(x), int(y)) class scoreLayerObject(scoreNonLineCanvasObject): def loadImage(self, imgname, autosizing=0): self.sendCommand('loadImage', imgname, autosizing) def clearImage(self): self.sendCommand('clearImage') def setSize(self, width, height): self.sendCommand('setSize', int(width), int(height)) class scoreScrollerObject(scoreLayerObject): #This inherits from the Layer Object. This may need to change in future. def setScrollerWidth(self, scrollerWidth): self.sendCommand('setScrollerWidth', int(scrollerWidth)) def setScrollerPosition(self, scrollerPosition): self.sendCommand('setScrollerPosition', int(scrollerPosition)) def setScrollerSpeed(self, scrollerSpeed): self.sendCommand('setScrollerSpeed', float(scrollerSpeed)) def start(self): self.sendCommand('start') def stop(self): self.sendCommand('stop') class scoreTextObject(scoreNonLineCanvasObject): def setText(self, text): self.sendCommand('setText', text) def setFont(self, font): self.sendCommand('setFont', font) def setFontSize(self, fontSize): self.sendCommand('setFontSize', float(fontSize)) class scoreGlyphObject(scoreNonLineCanvasObject): def setGlyph(self, glyphType): self.sendCommand('setGlyph', glyphType) def setGlyphSize(self, glyphSize): self.sendCommand('setGlyphSize', float(glyphSize)) class scoreStaveObject(scoreNonLineCanvasObject): def clear(self): self.sendCommand('clear') def setSize(self, width, height): self.sendCommand('setSize', int(width), int(height)) def setLineWidth(self, lineWidth): self.sendCommand('setLineWidth', int(lineWidth)) def setClef(self, clef, position): self.sendCommand('setClef', clef, int(position)) def removeClef(self, position): self.sendCommand('removeClef', int(position)) def addNotehead(self, note, position, filled=1): self.sendCommand('addNotehead', note, int(position), int(filled)) def addNote(self, note, position, duration): self.sendCommand('addNote', note, int(position), int(duration)) def removeNote(self, note, position): self.sendCommand('removeNote', note, int(position)) class scorePlayerExternal: #The protocol version expected. Current version is 16. protocolVersion = 16 def __init__(self): self.__services = {} self.listeningPort = 7000 self.__service = None self.__connectionHandler = None self.errorHandler = None self.disconnectionHandler = None self.__statusHandler = None self.__clientListHandler = None self.playHandler = None self.pauseHandler = None self.resetHandler = None self.tickHandler = None self.loadHandler = None self.seekHandler = None self.seekingHandler = None self.extMessageHandler = None self.otherMessageHandler = None self.printTicks = False self.printMessages = False self.printTimestamp = True self.printToQueue = False self.printQueue = Queue() self.__location = 0 self.__zeroconf = None self.__connected = False self.__registrationTimer = None #Set up our message routing and start listening on our port. self.__dispatcher = dispatcher.Dispatcher() self.__dispatcher.map('/Server/*', self.__printMessage) self.__dispatcher.map('/Control/*', self.__printMessage) self.__dispatcher.map('/External/*', self.__extMessage) self.__dispatcher.map('/Server/RegistrationOK', self.__onConnect) self.__dispatcher.map('/Server/BadProtocolVersion', self.__onError) self.__dispatcher.map('/Server/Bye!', self.__onDisconnect) self.__dispatcher.map('/External/NewServer', self.__onReconnect) self.__dispatcher.map('/Control/Play', self.__onPlay) self.__dispatcher.map('/Control/Pause', self.__onPause) self.__dispatcher.map('/Control/Reset', self.__onReset) self.__dispatcher.map('/Control/Seek', self.__whileSeeking) self.__dispatcher.map('/Control/SeekFinished', self.__onSeek) self.__dispatcher.map('/Tick', self.__onTick) self.__dispatcher.map('/Server/LoadComplete', self.__onLoad) self.__dispatcher.map('/Server/RequestRejected', self.__onError) self.__dispatcher.map('/External/Error', self.__onError) self.__dispatcher.map('/Status', self.__statusReceived) self.__dispatcher.map('/Server/ClientList', self.__clientListReceived) self.__dispatcher.set_default_handler(self.__otherMessage) #Start our zeroconf browser. self.__startBonjour() #If our port is unavailable, increase the port number by 1 and try again. while True: try: self.__server = osc_server.ThreadingOSCUDPServer(('0.0.0.0', self.listeningPort), self.__dispatcher) break except: self.listeningPort += 1 self.__server_thread = threading.Thread(target=self.__server.serve_forever) self.__server_thread.start() print('Listening on port {}'.format(self.listeningPort)) def __startBonjour(self): if self.__zeroconf == None: #Set up our service browser self.__services.clear() #self.__zeroconf = Zeroconf(ip_version=IPVersion.All) self.__zeroconf = Zeroconf() self.__browser = ServiceBrowser(self.__zeroconf, '_decibel._udp.local.', handlers=[self.__serviceChange]) time.sleep(1) def __stopBonjour(self): if self.__zeroconf != None: self.__browser.cancel() self.__zeroconf.close() self.__zeroconf = None def __parseServiceName(self, service): serverName = service.server scoreName = service.name if serverName.endswith('.local.'): serverName = serverName[:-7] scoreName = scoreName[:(scoreName.find(service.type)) - 1] scoreName = scoreName[:(scoreName.rfind('.'))] return [serverName, scoreName] def findServers(self): self.__startBonjour() serverList = [] for service in self.__services.values(): serverDetails = self.__parseServiceName(service) address = socket.inet_ntoa(service.addresses[0]) serverList.append([*serverDetails, address, service.port]) return serverList def selectServer(self): self.__startBonjour() while True: i = 1 print('Choose an iPad to connect to') servers = [] #List each service we've discovered for service in self.__services.values(): if not service is None: serverDetails = self.__parseServiceName(service) print('{}: {} ({})'.format(i, serverDetails[0], serverDetails[1])) #Save the service info to an array servers.append(service) i += 1 print('Or\n{}: Refresh List'.format(i)) while True: try: selection = int(input('Enter Selection: ')) except ValueError: print('Invalid selection') continue if selection == i: print() break elif selection >= i or selection < 0: print('Invalid selection') else: self.__service = servers[selection - 1] return def connect(self, connectionHandler, errorHandler=None): if self.__service is None: print('No server selected') return #Connect to our server address = socket.inet_ntoa(self.__service.addresses[0]) return self.connectToAddress(address, self.__service.port, connectionHandler, errorHandler) def __registrationTimeout(self): self.__printMessage('/External/RegistrationTimeout', 'Connection timed out') self.__onError('/External/RegistrationTimeout', 'Connection timed out') self.__registrationTimer = None #Connect to a specified address and port. This can be used if the required service cannot #be found using zeroconf. def connectToAddress(self, address, port, connectionHandler=None, errorHandler=None): if self.__connected: #Disconnect if we're connected. self.disconnect() #Stop our zeroconf browser self.__stopBonjour() self.__connectionHandler = connectionHandler self.errorHandler = errorHandler self.__client = udp_client.SimpleUDPClient(address, port) self.__client.send_message('/Server/RegisterExternal', ['Decibel Networking Protocol v' + str(scorePlayerExternal.protocolVersion), self.listeningPort]) if self.__registrationTimer != None: self.__registrationTimer.cancel() self.__registrationTimer = threading.Timer(5, self.__registrationTimeout) self.__registrationTimer.start() if self.__connectionHandler is not None: return scoreCanvasObject('canvas', self) def sendMessage(self, message, *args): if not self.__connected: print('Not connected') return self.__client.send_message(message, args) def __serviceChange(self, zeroconf, service_type, name, state_change): if state_change is ServiceStateChange.Added: self.__services[name] = zeroconf.get_service_info(service_type, name) elif state_change is ServiceStateChange.Removed: del self.__services[name] def __onConnect(self, oscAddress): if self.__registrationTimer != None: self.__registrationTimer.cancel() self.__registrationTimer = None self.__connected = True if self.__connectionHandler is not None: handler = self.__connectionHandler self.__connectionHandler = None #time.sleep(0.1) handler() def __onError(self, oscAddress, *oscArgs): if self.errorHandler is not None: if len(oscArgs) > 0: self.errorHandler(oscAddress, oscArgs[0]) else: self.errorHandler(oscAddress, None) def __onPlay(self, oscAddress): if self.playHandler is not None: self.playHandler() def __onPause(self, oscAddress, location): self.__location = location if self.pauseHandler is not None: self.pauseHandler(location) def __onReset(self, oscAddress): self.__location = 0 if self.resetHandler is not None: self.resetHandler() def __whileSeeking(self, oscAddress, location): self.__location = location if self.seekingHandler is not None: self.seekingHandler(location) def __onSeek(self, oscAddress): if self.seekHandler is not None: self.seekHandler(self.__location) def __onTick(self, oscAddress, location): self.__printMessage(oscAddress, location) self.__location = location if self.tickHandler is not None: self.tickHandler(location) def __extMessage(self, oscAddress, *oscArgs): self.__printMessage(oscAddress, *oscArgs) #Add capabilites here later if oscAddress == "/External/NewServer" or oscAddress == "/External/Error": #These are dealt with elsewhere. return if self.extMessageHandler is not None: self.extMessageHandler(oscAddress, *oscArgs) def __otherMessage(self, oscAddress, *oscArgs): self.__printMessage(oscAddress, *oscArgs) if self.otherMessageHandler is not None: self.otherMessageHandler(oscAddress, *oscArgs) def __onLoad(self, oscAddress): self.__location = 0 if self.loadHandler is not None: self.loadHandler() def __statusReceived(self, oscAddress, *oscArgs): self.__printMessage(oscAddress, *oscArgs) if self.__statusHandler is not None: if len(oscArgs) < 7: #We don't have the right number of arguments. return #Format our status message into a dictionary. status = { "name": oscArgs[0], "composer": oscArgs[1], "scoreType": oscArgs[2], "scoreVersion": oscArgs[3], "playerState": oscArgs[4], "location": oscArgs[5], "duration": oscArgs[6] } handler = self.__statusHandler self.__statusHandler = None handler(status) def __clientListReceived(self, oscAddress, *oscArgs): if self.__clientListHandler is not None: clientList = [] for device,version in grouper(oscArgs, 2): currentClient = { "deviceName": device, "version": version } clientList.append(currentClient) handler = self.__clientListHandler self.__clientListHandler = None handler(clientList) def __printMessage(self, oscAddress, *oscArgs): if oscAddress == '/Tick': if not self.printTicks: return elif not self.printMessages: return argsString = '' for arg in oscArgs: if isinstance(arg, str): argsString += '"{}", '.format(arg) else: argsString += '{}, '.format(arg) if len(argsString) > 1: argsString = argsString[:-2] if self.printTimestamp: outString = '{}: {} {}'.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), oscAddress, argsString) else: outString = '{} {}'.format(oscAddress, argsString) if self.printToQueue: outString = outString.rstrip() self.printQueue.put(outString) else: #Explicitly print our newline so it isn't separated from the message when multiple #messages arrive at the same time. outString = outString.rstrip() + '\n' print(outString, end="") #Connect our external to a new device if the old server has left the network. def __onReconnect(self, oscAddress, address, port): self.connectToAddress(address, port) def __onDisconnect(self, oscAddress): if self.disconnectionHandler is not None: self.disconnectionHandler() def disconnect(self): self.sendMessage('/Server/UnregisterExternal', self.listeningPort) self.__connected = False def shutdown(self): self.disconnect() self.__server.shutdown() #Stop bonjour on the off chance that it is running self.__stopBonjour() #Commands to easily send basic control signals to the iPad def play(self): self.sendMessage('/Control/Play') def pause(self, location=-1): if location == -1: location = self.__location self.sendMessage('/Control/Pause', float(location)) def reset(self): self.sendMessage('/Control/Reset') def loadScore(self, name, composer, scoreType, scoreVersion='0'): self.sendMessage('/Server/LoadRequest', name, composer, scoreType, scoreVersion) def getStatus(self, statusHandler): self.__statusHandler = statusHandler self.sendMessage('/Master/GetStatus') def getClientList(self, clientListHandler): self.__clientListHandler = clientListHandler self.sendMessage('/Server/GetClientList')
PypiClean
/kessel_sqladmin-0.5.0-py3-none-any.whl/kessel_sqladmin-0.5.0.dist-info/licenses/LICENSE.md
Copyright © 2022, Amin Alaee. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
PypiClean
/django_url_simplify-0.0.2-py3-none-any.whl/django_url_simplify-0.0.2.dist-info/DESCRIPTION.rst
============ Url Simplify ============ .. image:: https://badge.fury.io/py/django-url-simplify.svg :target: https://badge.fury.io/py/django-url-simplify Url Simplify is a simple Django app which generates simplified base62 urls from regular ones. Detailed documentation is in the "docs" directory. Quick start ----------- 1. Add ``url_simplify`` to your INSTALLED_APPS setting like this:: INSTALLED_APPS = [ ... 'url_simplify', ] 2. Include the ``url_simplify`` URLconf in your project urls.py like this:: path('url_simplify/', include('url_simplify.urls')), 3. Run `python manage.py migrate` to create the url_simplify models. 4. Start the development server and visit http://127.0.0.1:8000/admin/ to create a url_simplify (you'll need the Admin app enabled). 5. Visit http://127.0.0.1:8000/url_simplify/ to start generating simplified urls.
PypiClean
/taskcc-alipay-sdk-python-3.3.398.tar.gz/taskcc-alipay-sdk-python-3.3.398/alipay/aop/api/domain/AlipayInsSceneApplicationOutsideApplyModel.py
import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.InsPerson import InsPerson from alipay.aop.api.domain.InsPerson import InsPerson class AlipayInsSceneApplicationOutsideApplyModel(object): def __init__(self): self._applicant = None self._biz_factor = None self._effect_end_time = None self._effect_start_time = None self._insureds = None self._out_biz_no = None self._period = None self._premium = None self._prod_code = None self._source = None self._sum_insured = None @property def applicant(self): return self._applicant @applicant.setter def applicant(self, value): if isinstance(value, InsPerson): self._applicant = value else: self._applicant = InsPerson.from_alipay_dict(value) @property def biz_factor(self): return self._biz_factor @biz_factor.setter def biz_factor(self, value): self._biz_factor = value @property def effect_end_time(self): return self._effect_end_time @effect_end_time.setter def effect_end_time(self, value): self._effect_end_time = value @property def effect_start_time(self): return self._effect_start_time @effect_start_time.setter def effect_start_time(self, value): self._effect_start_time = value @property def insureds(self): return self._insureds @insureds.setter def insureds(self, value): if isinstance(value, list): self._insureds = list() for i in value: if isinstance(i, InsPerson): self._insureds.append(i) else: self._insureds.append(InsPerson.from_alipay_dict(i)) @property def out_biz_no(self): return self._out_biz_no @out_biz_no.setter def out_biz_no(self, value): self._out_biz_no = value @property def period(self): return self._period @period.setter def period(self, value): self._period = value @property def premium(self): return self._premium @premium.setter def premium(self, value): self._premium = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def source(self): return self._source @source.setter def source(self, value): self._source = value @property def sum_insured(self): return self._sum_insured @sum_insured.setter def sum_insured(self, value): self._sum_insured = value def to_alipay_dict(self): params = dict() if self.applicant: if hasattr(self.applicant, 'to_alipay_dict'): params['applicant'] = self.applicant.to_alipay_dict() else: params['applicant'] = self.applicant if self.biz_factor: if hasattr(self.biz_factor, 'to_alipay_dict'): params['biz_factor'] = self.biz_factor.to_alipay_dict() else: params['biz_factor'] = self.biz_factor if self.effect_end_time: if hasattr(self.effect_end_time, 'to_alipay_dict'): params['effect_end_time'] = self.effect_end_time.to_alipay_dict() else: params['effect_end_time'] = self.effect_end_time if self.effect_start_time: if hasattr(self.effect_start_time, 'to_alipay_dict'): params['effect_start_time'] = self.effect_start_time.to_alipay_dict() else: params['effect_start_time'] = self.effect_start_time if self.insureds: if isinstance(self.insureds, list): for i in range(0, len(self.insureds)): element = self.insureds[i] if hasattr(element, 'to_alipay_dict'): self.insureds[i] = element.to_alipay_dict() if hasattr(self.insureds, 'to_alipay_dict'): params['insureds'] = self.insureds.to_alipay_dict() else: params['insureds'] = self.insureds if self.out_biz_no: if hasattr(self.out_biz_no, 'to_alipay_dict'): params['out_biz_no'] = self.out_biz_no.to_alipay_dict() else: params['out_biz_no'] = self.out_biz_no if self.period: if hasattr(self.period, 'to_alipay_dict'): params['period'] = self.period.to_alipay_dict() else: params['period'] = self.period if self.premium: if hasattr(self.premium, 'to_alipay_dict'): params['premium'] = self.premium.to_alipay_dict() else: params['premium'] = self.premium if self.prod_code: if hasattr(self.prod_code, 'to_alipay_dict'): params['prod_code'] = self.prod_code.to_alipay_dict() else: params['prod_code'] = self.prod_code if self.source: if hasattr(self.source, 'to_alipay_dict'): params['source'] = self.source.to_alipay_dict() else: params['source'] = self.source if self.sum_insured: if hasattr(self.sum_insured, 'to_alipay_dict'): params['sum_insured'] = self.sum_insured.to_alipay_dict() else: params['sum_insured'] = self.sum_insured return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayInsSceneApplicationOutsideApplyModel() if 'applicant' in d: o.applicant = d['applicant'] if 'biz_factor' in d: o.biz_factor = d['biz_factor'] if 'effect_end_time' in d: o.effect_end_time = d['effect_end_time'] if 'effect_start_time' in d: o.effect_start_time = d['effect_start_time'] if 'insureds' in d: o.insureds = d['insureds'] if 'out_biz_no' in d: o.out_biz_no = d['out_biz_no'] if 'period' in d: o.period = d['period'] if 'premium' in d: o.premium = d['premium'] if 'prod_code' in d: o.prod_code = d['prod_code'] if 'source' in d: o.source = d['source'] if 'sum_insured' in d: o.sum_insured = d['sum_insured'] return o
PypiClean
/pytest-collect-formatter-0.4.0.tar.gz/pytest-collect-formatter-0.4.0/README.rst
======================== pytest-collect-formatter ======================== Pytest plugin for formatting output of the collected tests. * Free software: MIT license Requirements ------------ * pyyaml * dicttoxml Installation ------------ You can install "pytest-collect-formatter" via `pip`_:: $ pip install pytest-collect-formatter Usage ----- * Use this plugin by running pytest normally and use the following options to customize collection format, it's better to use with `--collect-only` option >>> collect-formatter: --collect-output-file=COLLECT_OUTPUT_FILE Saves collected test items to the file --collect-format=COLLECT_FORMAT Saves collected test items specified format [xml, yaml, json] --collect-type=COLLECT_TYPE Format output results in classic pytest view or in 'path' view [classic, path], default classic Example of usage ---------------- $ pytest tests --collect-output-file my_tests_structure.xml --collect-format xml And you will get the my_tests_structure.xml Exmpales of formats ------------------- PATH ____ JSON .. code-block:: [ { "type": "path", "title": "examples", "children": [ { "type": "path", "title": "tests", "children": [ { "type": "path", "title": "test_formatter", "children": [ { "type": "path", "title": "test_fromatter_v1.py", "children": [ { "type": "pytest_unit", "title": "TestFormatter", "children": [ { "type": "pytest_unit", "title": "test_inside_class", "children": [] }, { ... YAML .. code-block:: - children: - children: - children: - children: - children: - children: [] title: test_inside_class type: pytest_unit - children: [] title: test_inside_class_parametrize[1] type: pytest_unit - children: [] title: test_inside_class_parametrize[2] type: pytest_unit - children: [] title: test_inside_class_parametrize[3] ... XML .. code-block:: <?xml version="1.0" ?> <root> <item> <type>path</type> <title>examples</title> <children> <item> <type>path</type> <title>tests</title> <children> <item> <type>path</type> <title>test_formatter</title> <children> <item> <type>path</type> <title>test_fromatter_v1.py</title> <children> <item> <type>pytest_unit</type> <title>TestFormatter</title> <children> <item> <type>pytest_unit</type> <title>test_inside_class</title> <children/> </item> ... CLASSIC _______ JSON .. code-block:: [ { "type": "Package", "value": "test_formatter", "children": [ { "type": "Module", "value": "test_fromatter_v1.py", "children": [ { "type": "Class", "value": "TestFormatter", "children": [ { "type": "Function", "value": "test_inside_class" } .... YAML .. code-block:: - children: - children: - children: - type: Function value: test_inside_class - type: Function value: test_inside_class_parametrize[1] - type: Function value: test_inside_class_parametrize[2] - type: Function value: test_inside_class_parametrize[3] - type: Function value: test_inside_class_parametrize[4] type: Class value: TestFormatter - type: Function value: test_outside_of_class type: Module value: test_fromatter_v1.py type: Package value: test_formatter .... XML .. code-block:: <?xml version="1.0" ?> <root> <item> <type>Package</type> <value>test_formatter</value> <children> <item> <type>Module</type> <value>test_fromatter_v1.py</value> <children> <item> <type>Class</type> <value>TestFormatter</value> <children> <item> <type>Function</type> <value>test_inside_class</value> </item> <item> <type>Function</type> <value>test_inside_class_parametrize[1]</value> </item> <item> <type>Function</type> <value>test_inside_class_parametrize[2]</value> </item> <item> <type>Function</type> <value>test_inside_class_parametrize[3]</value> </item> <item> <type>Function</type> <value>test_inside_class_parametrize[4]</value> </item> </children> </item> <item> <type>Function</type> <value>test_outside_of_class</value> </item> </children> </item> </children> .... More examples could be found in examples folder as well as tests structure Issues ------ If you encounter any problems, please `file an issue`_ along with a detailed description. Credits ------- .. _`file an issue`: https://github.com/pytest-dev/pytest-slack/issues .. _`pip`: https://pypi.python.org/pypi/pip/
PypiClean
/grav_toolbox-0.2.3-py3-none-any.whl/gravtools/CG5_utils/cg5_survey.py
import pandas as pd import numpy as np import re import datetime as dt from gravtools.models.exceptions import InvaliFileContentError from gravtools import settings class DataCursor: """Data cursor for matplotlib plot. X and Y coordinates are printed life to the plot canvas. From: https://stackoverflow.com/questions/4652439/is-there-a-matplotlib-equivalent-of-matlabs-datacursormode """ # text_template = 'x: %0.2f\ny: %0.2f' x, y = 0.0, 0.0 xoffset, yoffset = -20, 20 text_template = 'x: %0.2f\ny: %0.2f' def __init__(self, ax): self.ax = ax self.annotation = ax.annotate(self.text_template, xy=(self.x, self.y), xytext=(self.xoffset, self.yoffset), textcoords='offset points', ha='right', va='bottom', bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5), arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0') ) self.annotation.set_visible(False) def __call__(self, event): self.event = event # xdata, ydata = event.artist.get_data() # self.x, self.y = xdata[event.ind], ydata[event.ind] self.x, self.y = event.mouseevent.xdata, event.mouseevent.ydata if self.x is not None: self.annotation.xy = self.x, self.y self.annotation.set_text(self.text_template % (self.x, self.y)) self.annotation.set_visible(True) event.canvas.draw() class CG5SurveyParameters: """CG-5 Survey parameters. Scintrex CG-5 survey parameters from the 'CG-5 SURVEY' block in the observation file (text format). The class is initialized either by the :py:meth:`.__init__`, method by passing the attributes as keyword arguments directly, or by the class method :py:meth:`.populate_from_obs_file_string` that parses the content of a CG-5 observation file (txt). Attributes ---------- survey_name : str Name of gravity survey. client : str Client of survey. operator : str Name of the survey's operator. long_deg : float Geographical longitude at begin of survey [°]. lat_deg : float Geographical latitude at begin of survey [°]. zone : str Timezone of all time records. date_time : datetime object Start epoch of the survey. """ def __init__(self, *args, **kwargs): """ Parameters ---------- *args Variable length argument list. **kwargs : dict Keyword arguments that are parsed to class attributes. """ self.survey_name = kwargs.get('survey_name', '') # string self.instrument_sn = kwargs.get('instrument_sn', '') # string self.client = kwargs.get('client', '') # string self.operator = kwargs.get('operator', '') # string self.long_deg = kwargs.get('long_deg', np.nan) # float self.lat_deg = kwargs.get('lat_deg', np.nan) # float self.zone = kwargs.get('zone', '') # string self.date_time = kwargs.get('date_time', None) # datetime object (timezone aware) @classmethod def create_from_obs_file_string(cls, str_obs_file): """ Create instance of class :py:class:`.CG5SurveyParameters` by parsing a CG-5 observation file string. Parameters ---------- str_obs_file : str Content of the CG-5 observation file (.txt). Returns ------- Object: :py:class:`.CG5SurveyParameters` Initialized class instance. """ # Parse observation file string: # expr = r'(\/\tCG-5 SURVEY\s*\n\/\s+Survey name:\s*(?P<survey_name>\S+)\s*\n\/\tInstrument S\/N:\s*(?P<instrument_sn>\S+)\s*\n\/\tClient:\s*(?P<client>\S+)\s*\n\/\tOperator:\s*(?P<operator>\S+)\s*\n\/\tDate:\s*(?P<date_year>\d{4})\/\s*(?P<date_month>\d{1,2})\/\s*(?P<date_day>\d{1,2})\s*\n\/\tTime:\s*(?P<time_hour>\d{2}):(?P<time_minu>\d{2}):(?P<time_sec>\d{2})\s*\n\/\tLONG:\s*(?P<long_num>\d*\.?\d*)\s+(?P<long_dir>[E|N|S|W])\s*\n\/\tLAT:\s*(?P<lat_num>\d*\.?\d*)\s+(?P<lat_dir>[E|N|S|W])\s*\n\/\tZONE:\s*(?P<zone>\d*)\s*\n\/\tGMT DIFF.:\s*(?P<gmt_diff>\d*\.?\d*))+\s*\n' expr = r'(\/\tCG-5 SURVEY\s*\n\/\s+Survey name:\s*(?P<survey_name>\S+)\s*\n' \ r'\/\tInstrument S\/N:\s*(?P<instrument_sn>\S+)\s*\n' \ r'\/\tClient:\s*(?P<client>\S+)\s*\n' \ r'\/\tOperator:\s*(?P<operator>\S+)\s*\n' \ r'\/\tDate:\s*(?P<date_year>\d{4})\/\s*(?P<date_month>\d{1,2})\/\s*(?P<date_day>\d{1,2})\s*\n' \ r'\/\tTime:\s*(?P<time_hour>\d{2}):(?P<time_minu>\d{2}):(?P<time_sec>\d{2})\s*\n' \ r'\/\tLONG:\s*(?P<long_num>\d*\.?\d*)\s+(?P<long_dir>[E|N|S|W])\s*\n' \ r'\/\tLAT:\s*(?P<lat_num>\d*\.?\d*)\s+(?P<lat_dir>[E|N|S|W])\s*\n' \ r'\/\tZONE:\s*(?P<zone>\d*)\s*\n' \ r'\/\tGMT DIFF.:\s*(?P<gmt_diff>\d*\.?\d*))+\s*\n' # Read survey blocks from obs file string (only one block allowed!): survey_count = 0 # number of survey blocks in obs file string for survey_block in re.finditer(expr, str_obs_file): survey_dict = survey_block.groupdict() survey_count += 1 if survey_count == 1: # OK => Parse data in string: # Handle geographic locations: longitude_deg = float(survey_dict['long_num']) if survey_dict['long_dir'] == "W": longitude_deg = -longitude_deg latitude_deg = float(survey_dict['lat_num']) if survey_dict['lat_dir'] == "S": latitude_deg = -latitude_deg instrument_sn = survey_dict['instrument_sn'] # instrument serial number return cls(survey_name=survey_dict['survey_name'], instrument_sn=instrument_sn, client=survey_dict['client'], operator=survey_dict['operator'], long_deg=longitude_deg, lat_deg=latitude_deg, zone=survey_dict['zone'], date_time=dt.datetime(int(survey_dict['date_year']), int(survey_dict['date_month']), int(survey_dict['date_day']), int(survey_dict['time_hour']), int(survey_dict['time_sec']), tzinfo=dt.timezone(dt.timedelta(hours=float(survey_dict['gmt_diff']))) ) ) elif survey_count == 0: # Not available return cls() # Initialize with default values else: # More than 1 block found => Error! raise InvaliFileContentError('{} "CG-5 SURVEY" blocks found in observation file, ' 'but only one expected.'.format(survey_count)) # Error Msg, wenn der Block mehr als einmal gefunden wird. class CG5SetupParameters: """CG-5 Survey parameters. Scintrex CG-5 Setup parameters from the 'CG-5 SETUP PARAMETERS' block in the observation file (text format). The class is initialized either by the :py:meth:`.__init__`, method by passing the attributes as keyword arguments directly, or by the class method :py:meth:`.populate_from_obs_file_string` that parses the content of a CG-5 observation file (txt). Attributes ---------- gcal1 : float Calibration factor GCAL1. tiltxs : float XXXXXXXX tiltys : float XXXXXXXX tiltxo : float XXXXXXXX tiltyo : float XXXXXXXX tempco : float XXXXXXXX drift : float Linear drift factor (long-term drift). drift_date_time_start : datetime object (TZ aware) Start epoch for the determination of th linear long-term drift. """ def __init__(self, *args, **kwargs): """ Parameters ---------- *args Variable length argument list. **kwargs : dict Keyword arguments that are parsed to class attributes. """ self.gcal1 = kwargs.get('gcal1', np.nan) # float self.tiltxs = kwargs.get('tiltxs', np.nan) # float self.tiltys = kwargs.get('tiltys', np.nan) # string self.tiltxo = kwargs.get('tiltxo', np.nan) # float self.tiltyo = kwargs.get('tiltyo', np.nan) # float self.tempco = kwargs.get('tempco', np.nan) # float self.drift = kwargs.get('drift', np.nan) # float self.drift_date_time_start = kwargs.get('drift_date_time_start', None) # datetime object (timezone aware) @classmethod def create_from_obs_file_string(cls, str_obs_file): """ Create instance of class :py:class:`.CG5SetupParameters` by parsing a CG-5 observation file string. Parameters ---------- str_obs_file : str Content of the CG-5 observation file (.txt). Returns ------- Object: :py:class:`.CG5SetupParameters` Initializes class instance. """ # Parse observation file string: expr = r"\/\tCG-5 SETUP PARAMETERS\s*\n\/\s+Gref:\s*(?P<gref>\S+)\s*\n\/\s+Gcal1:\s*(" \ r"?P<gcal1>\S+)\s*\n\/\s+TiltxS:\s*(?P<tiltxs>\S+)\s*\n\/\s+TiltyS:\s*(" \ r"?P<tiltys>\S+)\s*\n\/\s+TiltxO:\s*(?P<tiltxo>\S+)\s*\n\/\s+TiltyO:\s*(" \ r"?P<tiltyo>\S+)\s*\n\/\s+Tempco:\s*(?P<tempco>\S+)\s*\n\/\s+Drift:\s*(" \ r"?P<drift>\S+)\s*\n\/\s+DriftTime Start:\s*(?P<drift_time_start>\S+)\s*\n\/\s+DriftDate Start:\s*(" \ r"?P<drift_date_start>\S+)\s*\n" # Read setup parameters blocks from obs file string (only one block allowed!): block_count = 0 # number of survey blocks in obs file string for survey_block in re.finditer(expr, str_obs_file): setup_dict = survey_block.groupdict() block_count += 1 if block_count == 1: # OK => Parse data in string: return cls(gref=float(setup_dict['gref']), gcal1=float(setup_dict['gcal1']), tiltxs=float(setup_dict['tiltxs']), tiltys=float(setup_dict['tiltys']), tiltxo=float(setup_dict['tiltxo']), tiltyo=float(setup_dict['tiltyo']), tempco=float(setup_dict['tempco']), drift=float(setup_dict['drift']), drift_date_time_start=dt.datetime.strptime( setup_dict["drift_date_start"] + setup_dict["drift_time_start"], "%Y/%m/%d%H:%M:%S") ) elif block_count == 0: # Not available return cls() # Initialize with default values else: # More than 1 block found => Error! raise InvaliFileContentError('{} "CG-5 SETUP PARAMETERS" in observation file found, but maximum one ' 'expected.'.format(block_count)) # def is_valid(self) -> bool: # """???""" # # TODO # return True class CG5OptionsParameters: """CG-5 instrumental options (filters, corrections, output). Scintrex CG-5 options from the 'CG-5 OPTIONS' block in the observation file (text format). The class is initialized either by the :py:meth:`.__init__`, method by passing the attributes as keyword arguments directly, or by the class method :py:meth:`.populate_from_obs_file_string` that parses the content of a CG-5 observation file (txt). Attributes ---------- tide_correction : bool Tide correction (on/off). cont_tilt : bool Continuous tilt correction (on/off). auto_rejection : bool Auto rejection of outliers (on/off). terrain_correction : bool Terrain correction (on/off). seismic_filter : bool Seismic filter (on/off). raw_data : bool Raw data output (on/off). """ def __init__(self, *args, **kwargs): """ Parameters ---------- *args Variable length argument list. **kwargs : dict Keyword arguments that are parsed to class attributes. """ self.tide_correction = kwargs.get('tide_correction', None) # bool self.cont_tilt = kwargs.get('cont_tilt', None) # bool self.auto_rejection = kwargs.get('auto_rejection', None) # bool self.terrain_correction = kwargs.get('terrain_correction', None) # bool self.seismic_filter = kwargs.get('seismic_filter', None) # bool self.raw_data = kwargs.get('raw_data', None) # bool # # self.tide_correction = kwargs.get('tide_correction', False) # bool # self.cont_tilt = kwargs.get('cont_tilt', False) # bool # self.auto_rejection = kwargs.get('auto_rejection', False) # bool # self.terrain_correction = kwargs.get('terrain_correction', False) # bool # self.seismic_filter = kwargs.get('seismic_filter', False) # bool # self.raw_data = kwargs.get('raw_data', False) # bool @classmethod def create_from_obs_file_string(cls, str_obs_file): """ Create instance of class :py:class:`.CG5OptionsParameters` by parsing a CG-5 observation file string. Parameters ---------- str_obs_file : str Content of the CG-5 observation file (.txt). Returns ------- Object: :py:class:`.CG5OptionsParameters` Initializes class instance. """ # Parse observation file string: expr = r"\/\tCG-5 OPTIONS\s*\n\/\s+Tide Correction:\s*(?P<tide_correction>\S+)\s*\n\/\s+Cont. Tilt:\s*(" \ r"?P<cont_tilt>\S+)\s*\n\/\s+Auto Rejection:\s*(?P<auto_rejection>\S+)\s*\n\/\s+Terrain Corr.:\s*(" \ r"?P<terrain_correction>\S+)\s*\n\/\s+Seismic Filter:\s*(?P<seismic_filter>\S+)\s*\n\/\s+Raw Data:\s*(" \ r"?P<raw_data>\S+)\s*\n" # Read setup parameters blocks from obs file string (only one block allowed!): block_count = 0 # number of survey blocks in obs file string for options_block in re.finditer(expr, str_obs_file): options_dict = options_block.groupdict() block_count += 1 if block_count == 1: # OK => Parse data in string: return cls(tide_correction=options_dict['tide_correction'] == "YES", # bool cont_tilt=options_dict['cont_tilt'] == "YES", # bool auto_rejection=options_dict['auto_rejection'] == "YES", # bool terrain_correction=options_dict['terrain_correction'] == "YES", # bool seismic_filter=options_dict['seismic_filter'] == "YES", # bool raw_data=options_dict['raw_data'] == "YES", ) # bool elif block_count == 0: # Not available return cls() # Initialize with default values else: # More than 1 block found => Error! raise InvaliFileContentError('{} "CG-5 OPTIONS" in observation file found, but maximum one ' 'expected.'.format(block_count)) # def is_valid(self) -> bool: # """???""" # # TODO # return True class CG5Survey: """CG-5 survey data. Class instances may contain the information available in the following sections of Scintrex CG-5 observation files (txt format): - Survey Parameter block (as instance of :py:obj:`.CG5SurveyParameters`) - Setup block (as instance of :py:obj:`.CG5SetupParameters`) - Options block (as instance of :py:obj:`.CG5OptionsParameters`) - Observations (as pandas dataframe) If the class is initialized without setting the observations file attribute (`obs_filename`), no observation file is load and the object is initialized empty. Attributes ---------- obs_filename : str Name (and path) to CG-5 observation file (txt format) survey_parameters : :py:class:`.CG5SurveyParameters` Survey Parameter of the Parameters block in the observation file. setup_parameters : :py:class:`.CG5SetupParameters` Setup Parameter of the Setup block in the observation file. options : :py:class:`.CG5OptionsParameters` Instrumental options from the Options block in the observation file. obs_df : pandas data frame Contains the actual observation data records with the colums defined in `self._OBS_DF_COLUMN_NAMES`. """ # Column names of the dataframe containing tha actual observation data: _OBS_DF_COLUMN_NAMES = ('lat_deg', # Latitude [deg] : 'lon_deg', # Longitude [deg] 'alt_m', # Altitude [m] 'g_mgal', # Determined gravity (corrected) [mGal] 'sd_mgal', # Standard deviation of determined gravity [mGal] 'tiltx', 'tilty', 'temp', 'tide', # Tidal correction determined by the CG-5 [mGal] 'duration_sec', # Duration of the current setup [sec] 'rej', # Number of rejected single measurements 'time_str', # Reference time = mid of setup with duration `duration_sec`) (dropped later) 'dec_time_date', 'terrain', # Terrain correction [??] 'date', # Date (dropped later) 'station_name', # Station name : str 'dhf_m', # Distance between instrument top and physical reference point [m] 'dhb_m', # Distance between instrument top and ground [m] 'atm_pres_hpa', # Measured atmospheric pressure [hPa] 'setup_id', # Unique ID of this observation (=setup) ) # obs_epoch : datetime object (added to df later) # Rename columns: df.rename(columns = {'$b':'B'}, inplace = True) # Non-numeric columns in the observation dataframe: _OBS_DF_NON_NUMERIC_COLUMNS = ['station_name', 'date', 'time_str'] def __init__(self, obs_filename='', survey_parameters=CG5SurveyParameters(), setup_parameters=CG5SetupParameters(), options=CG5OptionsParameters() ): """ Parameters ---------- obs_filename : str, optional Name (and path) to CG-5 observation file (txt format). survey_parameters : :py:class:`.CG5SurveyParameters`, optional Survey Parameter of the Parameters block in the observation file. setup_parameters : :py:class:`.CG5SetupParameters`, optional Setup Parameter of the Setup block in the observation file. options : :py:class:`.CG5OptionsParameters`, optional Instrumental options from the Options block in the observation file. """ self.obs_filename = obs_filename assert isinstance(survey_parameters, CG5SurveyParameters), \ "survey_parameters is not an instance of CG5SurveyParameters" self.survey_parameters = survey_parameters assert isinstance(setup_parameters, CG5SetupParameters), \ "setup_parameters is not an instance of CG5SetupParameters" self.setup_parameters = setup_parameters assert isinstance(options, CG5OptionsParameters), \ "options is not an instance of CG5OptionsParameters" self.options = options # Read observation file, if a valid filename is available and valid. Otherwise initialize obs_df as None. if self.obs_filename: self.read_obs_file(obs_filename) else: self.obs_df = None # Initialize as None def __str__(self): if self.obs_df is None: return 'Empty CG-5 Survey.' else: if not self.survey_parameters.survey_name: return 'Unnamed CG-5 Survey with {} observations (file: {}).'.format(len(self.obs_df), self.obs_filename.split('/')[-1]) else: return 'CG-5 Survey "{}" with {} observations (file: {}).'.format(self.survey_parameters.survey_name, len(self.obs_df), self.obs_filename.split('/')[-1]) @staticmethod def resolve_station_name(station_name_in): """Convert station name from Scintrex observation file (as Note) to the naming convention used in the output file (BEV conventions). Parameters ---------- station_name_in : str Station name string as written to the observation file as note. Returns ------- Corrected station name : str """ station_name_in = station_name_in.upper() # Check first letter of name in order detect the station type: if station_name_in[0] == 'S': station_name_out = station_name_in elif station_name_in[0] == 'P': station_name_out = 'P ' + station_name_in[1:] elif station_name_in[0] == 'T' and '.' in station_name_in: [str1_tmp, str2_tmp] = station_name_in.split('.') station_name_out = 'T{0:>4} {1:>3}'.format(str1_tmp[1:], str2_tmp) elif station_name_in[0] == 'N': station_name_out = station_name_in else: station_name_out = station_name_in.replace('.', '-') return station_name_out.upper() @staticmethod def get_dhb_dhf(dh_str): """Convert dhb and dhf from notes in the CG-5 observation file to an actual number. In the notes '.' is used instead of '-'. Parameters ---------- dh_str : str Height difference [m] with '.' instead of '-'. Returns ------- Height difference [m] : float """ if dh_str.startswith('.'): dh_str = '-' + dh_str[1:] return float(dh_str) def read_obs_file(self, obs_filename): """Read CG-5 observation file (txt) and populate the object. Notes ----- Ignore comment lines that start with "#". Parameters ---------- obs_filename : str Name (and path) to CG-5 observation file (txt format). """ COMMENT_MARKER = '#' self.obs_filename = obs_filename # with open(self.obs_filename, 'r') as content_file: # str_obs_file = content_file.read() # Read in file and ignore comment lines: file_handle = open(self.obs_filename, 'r') lines = [] for line in file_handle: line_tmp = line.strip() if not line_tmp.startswith(COMMENT_MARKER): lines.append(line_tmp) file_handle.close() str_obs_file = '\n'.join(lines) # Remove all or add one end-of-line symbols from end of string: # - Last character of string has to be a \n so that regex works correctly! number_of_trailing_eol_symbols = 0 str_idx = -1 while str_obs_file[str_idx] == '\n': number_of_trailing_eol_symbols += 1 str_idx -= 1 if number_of_trailing_eol_symbols == 0: str_obs_file += '\n' elif number_of_trailing_eol_symbols > 1: str_obs_file = str_obs_file[0:str_idx+2] # ### Match blocks with regex ### # CG-5 SURVEY block: self.survey_parameters = CG5SurveyParameters.create_from_obs_file_string(str_obs_file) self.setup_parameters = CG5SetupParameters.create_from_obs_file_string(str_obs_file) self.options = CG5OptionsParameters.create_from_obs_file_string(str_obs_file) # Get Observations # ### 3 possibilities: ### # Initialize empty dataframe and append observation blocks at each station # Warning: Better performance, when preparing the data as list (appending) and then converting to df at once. # See: https://stackoverflow.com/questions/13784192/creating-an-empty-pandas-dataframe-then-filling-it obs_list = [] # Collect all obs data in this list and then convert to pd dataframe. # 1.) Station name & dbh=dhf expr = '\/\tNote: \t(?P<station_name>\S+)\s+(?P<dh_cm>-?[.0-9]+)\s*[\r?\n](?P<obs_data>(?:\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s*[\r?\n])+)' for obs_block in re.finditer(expr, str_obs_file): obs_dict = obs_block.groupdict() station_name = self.resolve_station_name(obs_dict['station_name']) dhf_m = float(obs_dict['dh_cm']) * 1e-2 dhb_m = float(obs_dict['dh_cm']) * 1e-2 atm_pres_hpa = None lines = obs_dict['obs_data'].splitlines() # Create unique ID (= UNIX timestamp of first observation) for each setup on a station: # - To distinguish multiple setups (with multiple observations each) on multiple stations time_str = lines[0].split()[-1] + ' ' + lines[0].split()[11] setup_id = int(dt.datetime.timestamp(dt.datetime.strptime(time_str, "%Y/%m/%d %H:%M:%S"))) for line in lines: line_items = line.split() line_items.append(station_name) line_items.append(dhf_m) line_items.append(dhb_m) line_items.append(atm_pres_hpa) line_items.append(setup_id) obs_list.append(line_items) # 2.) Station name & dbh=dhf & pressure expr = '\/\tNote: \t(?P<station_name>\S+)\s+(?P<dh_cm>-?[.0-9]+)\s*[\r?\n](?P<obs_data>(?:\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s*[\r?\n])+)\/\tNote: \t(?P<pres>[0-9]{3,4}[.]{0,1}[0-9]*)' for obs_block in re.finditer(expr, str_obs_file): obs_dict = obs_block.groupdict() station_name = self.resolve_station_name(obs_dict['station_name']) dhf_m = float(obs_dict['dh_cm']) * 1e-2 dhb_m = float(obs_dict['dh_cm']) * 1e-2 atm_pres_hpa = float(obs_dict['pres']) lines = obs_dict['obs_data'].splitlines() # Create unique ID (= UNIX timestamp of first observation) for each setup on a station: # - To distinguish multiple setups (with multiple observations each) on multiple stations time_str = lines[0].split()[-1] + ' ' + lines[0].split()[11] setup_id = int(dt.datetime.timestamp(dt.datetime.strptime(time_str, "%Y/%m/%d %H:%M:%S"))) for line in lines: line_items = line.split() line_items.append(station_name) line_items.append(dhf_m) line_items.append(dhb_m) line_items.append(atm_pres_hpa) line_items.append(setup_id) obs_list.append(line_items) # 3.) Station name & dhb & dhf expr = '\/\tNote: \t(?P<station_name>\S+)\s+(?P<dhb_cm>-?[.0-9]+)\s+(?P<dhf_cm>-?[.0-9]+)\s*[\r?\n](?P<obs_data>(?:\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s*[\r?\n])+)' for obs_block in re.finditer(expr, str_obs_file): obs_dict = obs_block.groupdict() station_name = self.resolve_station_name(obs_dict['station_name']) dhf_m = float(obs_dict['dhf_cm']) * 1e-2 dhb_m = float(obs_dict['dhb_cm']) * 1e-2 atm_pres_hpa = None lines = obs_dict['obs_data'].splitlines() # Create unique ID (= UNIX timestamp of first observation) for each setup on a station: # - To distinguish multiple setups (with multiple observations each) on multiple stations time_str = lines[0].split()[-1] + ' ' + lines[0].split()[11] setup_id = int(dt.datetime.timestamp(dt.datetime.strptime(time_str, "%Y/%m/%d %H:%M:%S"))) for line in lines: line_items = line.split() line_items.append(station_name) line_items.append(dhf_m) line_items.append(dhb_m) line_items.append(atm_pres_hpa) line_items.append(setup_id) obs_list.append(line_items) # 4.) Station name & dhb & dhf & pressure # expr = "\/\s+Note:\s+(?P<station_name>\S+)\s+(?P<dhb_cm>\S+)\s+(?P<dhf_cm>\S+)\s*\n(?P<obs_data>(?:\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s*[\r\n])+)" expr = '\/\tNote: \t(?P<station_name>\S+)\s+(?P<dhb_cm>-?[.0-9]+)\s+(?P<dhf_cm>-?[.0-9]+)\s*[\r?\n](?P<obs_data>(?:\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s*[\r?\n])+)\/\tNote: \t(?P<pres>[0-9]{3,4}[.]{0,1}[0-9]*)' for obs_block in re.finditer(expr, str_obs_file): obs_dict = obs_block.groupdict() station_name = self.resolve_station_name(obs_dict['station_name']) dhf_m = float(obs_dict['dhf_cm']) * 1e-2 dhb_m = float(obs_dict['dhb_cm']) * 1e-2 atm_pres_hpa = float(obs_dict['pres']) lines = obs_dict['obs_data'].splitlines() # Create unique ID (= UNIX timestamp of first observation) for each setup on a station: # - To distinguish multiple setups (with multiple observations each) on multiple stations time_str = lines[0].split()[-1] + ' ' + lines[0].split()[11] setup_id = int(dt.datetime.timestamp(dt.datetime.strptime(time_str, "%Y/%m/%d %H:%M:%S"))) for line in lines: line_items = line.split() line_items.append(station_name) line_items.append(dhf_m) line_items.append(dhb_m) line_items.append(atm_pres_hpa) line_items.append(setup_id) obs_list.append(line_items) # Create pandas dataframe of prepared list: self.obs_df = pd.DataFrame(obs_list, columns=self._OBS_DF_COLUMN_NAMES) # Remove duplicates entries that were matched with and without pressure: setup_ids = self.obs_df['setup_id'].unique().tolist() setup_ids_diplicates = [] for setup_id in setup_ids: tmp_filter = self.obs_df['setup_id'] == setup_id if (~self.obs_df.loc[tmp_filter, 'atm_pres_hpa'].isna()).any(): # Entries with pressure found setup_ids_diplicates.append(setup_id) if setup_ids_diplicates: tmp_filter = ~(self.obs_df['atm_pres_hpa'].isna() & self.obs_df['setup_id'].isin(setup_ids_diplicates)) self.obs_df = self.obs_df.loc[tmp_filter].copy(deep=True) # Convert numeric columns to numeric dtypes: cols = self.obs_df.columns.drop(self._OBS_DF_NON_NUMERIC_COLUMNS) self.obs_df[cols] = self.obs_df[cols].apply(pd.to_numeric, errors='raise') # Sort observations by time and date and reset index: self.obs_df.sort_values(by='dec_time_date', inplace=True, ignore_index=True) # Convert date and time to datetime objects (aware, if UTC offset is available): if self.survey_parameters.date_time is not None: self.obs_df['obs_epoch'] = pd.to_datetime( self.obs_df['date'] + ' ' + self.obs_df['time_str'], format='%Y/%m/%d %H:%M:%S') self.obs_df['obs_epoch'] = self.obs_df['obs_epoch'].dt.tz_localize('UTC') # Set timezone = UTC self.obs_df['obs_epoch'] = self.obs_df['obs_epoch'] + pd.Timedelta(self.survey_parameters.date_time.utcoffset()) else: # tz unaware time self.obs_df['obs_epoch'] = pd.to_datetime( self.obs_df['date'] + ' ' + self.obs_df['time_str'], format='%Y/%m/%d %H:%M:%S') self.obs_df.drop(columns=['time_str', 'date'], inplace=True) # Drop columns that are not required any more def plot_g_values(self, station_names=None): """Plot g-values of selected or all stations in the df. Notes ----- This method requires matplotlib as optional dependency! Parameters ---------- station_names : list of str, optional List of names of stations for which the observations will be plotted. The default value is None which implied that the data of all stations is plotted. """ # Check if obs data is available first: if self.obs_df is not None: # Get list of station names and loop over them: if station_names is None: station_names = self.obs_df['station_name'].unique() fig, ax = plt.subplots() for station_name in station_names: x = self.obs_df[self.obs_df['station_name'] == station_name].obs_epoch y = self.obs_df[self.obs_df['station_name'] == station_name].g_mgal * 1e3 # µGal ax.scatter(x, y, label=station_name) ax.legend() ax.grid(True) ax.set_xlabel('Time') ax.set_ylabel('g [µGal]') ax.set_title('survey: ' + self.survey_parameters.survey_name) # Data cursor: fig.canvas.mpl_connect('pick_event', DataCursor(plt.gca())) plt.show() # Run as standalone program: if __name__ == "__main__": import matplotlib.pyplot as plt path = settings.PATH_OBS_FILE_CG5 + settings.NAME_OBS_FILE_CG5 s1 = CG5Survey() s1.read_obs_file(path) # s1.plot_g_values(['1-164-04', '1-164-12', '1-164-11']) # s1.plot_g_values(['TEST']) s1.plot_g_values() else: pass
PypiClean
/dash_echarts-0.0.12.9-py3-none-any.whl/dash_echarts/examples/custom_profit.py
import dash_echarts import dash, random from dash.dependencies import Input, Output import dash_html_components as html import dash_core_components as dcc from dash.exceptions import PreventUpdate def main(): ''' dash_echarts examples name: custom profit with echarts author: dameng <[email protected]> ''' app = dash.Dash(__name__) raw = [ [10, 16, 3, 'A'], [16, 18, 15, 'B'], [18, 26, 12, 'C'], [26, 32, 22, 'D'], [32, 56, 7, 'E'], [56, 62, 17, 'F'] ]; color_list = ['#4f81bd', '#c0504d', '#9bbb59', '#604a7b', '#948a54', '#e46c0b']; data = [] for i,e in enumerate(raw): data.append({ 'value': e, 'itemStyle': { 'color': color_list[i] } }) option = { 'title': { 'text': 'Profit', 'left': 'center' }, 'tooltip': { }, 'xAxis': { 'scale': True }, 'yAxis': { }, 'series': [{ 'type': 'custom', 'renderItem': 'ri', 'label': { 'show': True, 'position': 'top' }, 'dimensions': ['from', 'to', 'profit'], 'encode': { 'x': [0, 1], 'y': 2, 'tooltip': [0, 1, 2], 'itemName': 3 }, 'data': data }] }; app.layout = html.Div([ dash_echarts.DashECharts( option = option, id='echarts', fun_keys=['renderItem'], funs= { 'ri': ''' function renderItem(params, api) { var yValue = api.value(2); var start = api.coord([api.value(0), yValue]); var size = api.size([api.value(1) - api.value(0), yValue]); var style = api.style(); return { type: 'rect', shape: { x: start[0], y: start[1], width: size[0], height: size[1] }, style: style }; } ''' }, style={ "width": '100vw', "height": '100vh', } ), dcc.Interval(id="interval", interval=1 * 1000, n_intervals=0), ]) app.run_server(debug=True) if __name__ == '__main__': main()
PypiClean
/docutools-2022.4.11-py3-none-any.whl/lcdoc/mkdocs/stats/__init__.py
from lcdoc import log import json import os import sys from mkdocs.config import config_options from lcdoc.const import LogStats, PageStats, Stats from lcdoc.mkdocs.tools import MDPlugin, app from lcdoc.tools import dirname, exists, project, read_file, write_file last_stats = {} def get_fn_and_set_last(self, config): """On serve and '-' we work with the cached last stats. Else we read the file if present""" fn = self.config['dump_stats'] if not fn: app.info('no stats file configured') return None if fn == '-': return fn else: fn = project.abs_path(fn, config, mkdirs=True) if exists(fn): os.rename(fn, fn + '.prev.json') if last_stats: return fn l = read_file(fn + '.prev.json', dflt='') if l: last_stats.update(json.loads(l)) return fn # write_file(fn, json.dumps(s, sort_keys=True, indent=4)) # app.info('Have written stats', keys=len(s), file=fn) def get_diff(s, minval): isminv = lambda v, m=minval: isinstance(v, float) and v == m d, o = {'added': {}, 'changed': {}}, last_stats d['removed'] = [k for k in o if not k in s and not isminv(o[k])] for k, v in s.items(): vo = o.get(k) if vo is None: if isinstance(v, float) and v < 2 * minval: continue d['added'][k] = v elif vo != v: if isinstance(vo, float) and isinstance(v, float): if int(vo * 10) == int(v * 10): continue d['changed'][k] = [vo, v] d['changed'].pop('Filtered_0_Values', 0) for k in {'added', 'removed', 'changed'}: if not d.get(k): d.pop(k) return d def filter_logs(sever): """beyond info we kept all logs in a ram cache (log_majors) Here we return those incl. and beyond sever(=warning or error or fatal) """ l = log.log_majors if not sever or not sever in l: return logs = [] m = log.log_levels [logs.append([k, l.get(k)]) for k in m[m.index(sever) :] if l.get(k)] return logs, sum([len(i[1]) for i in logs]) def by_ts(store): def d(l, L): l.insert(1, log.level_by_name[L]) if not l[-1]: l.pop() return l k = lambda i: i[0] return sorted([d(l, L) for L, logs in store.items() for l in logs], key=k) class StatsPlugin(MDPlugin): # :docs:stats_config C = config_options.Choice log_maj = lambda d, C=C: C(['warning', 'error', 'fatal', 'none'], default=d) config_scheme = ( # if not starting with "/": relative to project root. # for stdout: set file="-" ('dump_stats', config_options.Type(str, default='build/lcd-stats.json')), # round floats to this precision: ('round_digits', config_options.Type(int, default=2)), # omit zero values: ('filter_0', config_options.Type(bool, default=True)), # helpfull to see changes at serve ('print_diff', config_options.Type(bool, default=True)), # write the logs as json (same dir than fn) ('dump_logs', config_options.Type(str, default='build/lcd-logs.json')), # print all logs from this level again at end of build: ('repeat_major_log_events', log_maj('warning')), # fail mkdocs build on errors, you don't want broken docs published: ('fail_build_on_log_events', log_maj('error')), ) # :docs:stats_config def on_post_build(self, config): from lcdoc.tools import flatten fn = get_fn_and_set_last(self, config) rd = self.config['round_digits'] minval = 5 * 10 ** -rd filter_0 = self.config['filter_0'] s = {'Global': Stats, 'Pages': PageStats, 'Log': LogStats} s = flatten(s, sep='.', tpljoin='') if rd: r = lambda v: round(v, rd) if type(v) == float else v s = dict([(k, r(v)) for k, v in s.items()]) l = len(s) if filter_0: s = dict(filter(lambda x: x[1] > minval, s.items())) f = l - len(s) if f: s['Filtered_0_Values'] = f if last_stats and self.config['print_diff']: diff = get_diff(s, minval=minval) msg = 'Stats changes since last run' msg = ('No s' + msg[1:]) if not diff else msg app.info(msg, json=diff) last_stats.clear() last_stats.update(s) kw = dict(filtered_near_zero_vals=filter_0) if filter_0: kw['minval'] = minval if fn == '-': app.info('Collected Stats', hint='pipe into jq to consolidate', **kw) print(json.dumps(s, sort_keys=True)) elif fn: write_file(fn, json.dumps(s, sort_keys=True, indent=4)) app.info('Have written stats', keys=len(s), file=fn, **kw) sever = self.config['repeat_major_log_events'] logs, cnt = filter_logs(sever=sever) if logs: app.info('Logs of severity %s and higher' % sever, json=logs, count=cnt) l = log.log_majors fn = self.config['dump_logs'] if fn: fn = project.abs_path(fn, config, mkdirs=True) if exists(fn): os.rename(fn, fn + '.prev.json') ol, j = by_ts(l), json.dumps write_file(fn, '\n'.join(j(i, default=str) for i in ol)) app.info('Dumped logs', fn=fn, count=len(ol)) bsever = self.config['fail_build_on_log_events'] if bsever != sever: logs, cnt = filter_logs(sever=bsever) if logs: # won't interrupt server mode for this m = app.error if 'serve' in sys.argv else app.die m('Build is broken, have %s critical logs' % cnt) [i.clear() for k, i in l.items()]
PypiClean
/Intrst_algrms-0.7.2-py3-none-any.whl/knapsack_problem/funcs.py
from itertools import combinations from typing import Tuple, List, Generator, Any, Union, Iterator from knapsack_problem.ref_func import knapsack_standard_solution, Item # @profile def knapsack_1_standard_solution(items: Tuple[Item], weight_limit: int) -> Item: """ https://codereview.stackexchange.com/a/20581 Solve the knapsack problem by finding the most valuable subsequence of items that weighs no more than weight_limit. items must be a sequence of pairs (value, weight), where value is a number and weight is a non-negative integer. weight_limit is a non-negative integer. Return a pair whose first element is the sum of values in the most valuable subsequence, and whose second element is the subsequence. """ return knapsack_standard_solution(items, weight_limit) # @profile def knapsack_2_solution(items: Tuple[Item], weight_limit: int) -> Item: """ my own function, written thanks to the site: https://foxford.ru/wiki/informatika/algoritm-ukladki-ryukzaka """ w = weight_limit f = [[0] * (w + 1) for i in range(len(items) + 1)] for i, item in enumerate(items): weight = item.weight value = item.value for j in range(1, w + 1): if j >= weight: f[i][j] = max(f[i - 1][j], f[i - 1][j - weight] + value) else: f[i][j] = f[i - 1][j] for k in reversed(range(len(items))): if f[k][w] != f[k - 1][w]: yield items[k] w -= items[k].weight # @profile def knapsack_3_solution(items: Tuple[Item], weight_limit: int) -> Item: """ Given a list of items with name, value and weight. Return the optimal value with total weight <= allowed weight and list of picked items. https://codereview.stackexchange.com/a/125386 """ # find which item are picked def fetch_items(k: List[List[int]], weight_limit: int, items: Tuple[Item]): for item, weights_p, weights_n in zip(items[::-1], k[-2::-1], k[::-1]): if weights_n[weight_limit] != weights_p[weight_limit]: yield item weight_limit -= item.weight k = [ [0] * (weight_limit + 1) for x in range(len(items) + 1) ] for next_idx, (item, weights) in enumerate(zip(items, k), 1): for w, current_weight in enumerate(weights[1:], 1): if item.weight <= w: k[next_idx][w] = max( item.value + weights[w - item.weight], current_weight ) else: k[next_idx][w] = current_weight return fetch_items(k, weight_limit, items) # @profile def knapsack_4_bruteforce_solution(items: Tuple[Item], weight_limit: int) -> Union[Item, List[None]]: """ Brute force algorithm http://rosettacode.org/mw/index.php?title=Knapsack_problem/0-1&action=edit&section=62 """ def any_comb(items: Tuple[Item]) -> Generator: """return combinations of any length from the items""" return (comb for r in range(1, len(items) + 1) for comb in combinations(items, r) ) def total_value(comb: Tuple[Any]) -> Tuple[int, int]: """Totalise a particular combination of items""" totwt = totval = 0 for _, val, wt in comb: totwt += wt totval += val return (totval, -totwt) if totwt <= weight_limit else (0, 0) bagged = max(any_comb(items), key=total_value) # max val or min wt if values equal if bagged[0].weight <= weight_limit: return bagged return [] # @profile def knapsack_5_dynamic_solution(items: Tuple[Item], weight_limit: int) -> Item: """ Dynamic programming solution http://rosettacode.org/mw/index.php?title=Knapsack_problem/0-1&action=edit&section=63 """ table = [[0] * (weight_limit + 1) for j in range(len(items) + 1)] for j, item in enumerate(items, 1): _, val, wt = item for w in range(1, weight_limit + 1): if wt > w: table[j][w] = table[j - 1][w] else: table[j][w] = max(table[j - 1][w], table[j - 1][w - wt] + val) w = weight_limit for j in range(len(items), 0, -1): was_added = table[j][w] != table[j - 1][w] if was_added: item, val, wt = items[j - 1] yield items[j - 1] w -= wt # @profile def knapsack_6_recursive_dynamic_solution(items: Tuple[Item], weight_limit: int) -> Tuple[Item]: """ Recursive dynamic programming algorithm http://rosettacode.org/mw/index.php?title=Knapsack_problem/0-1&action=edit&section=64 """ def total_value(items: Tuple[Item], weight_limit: int) -> int: return sum([x.value for x in items]) if sum([x.weight for x in items]) <= weight_limit else 0 cache = {} def solve(items: Tuple[Item], weight_limit: int) -> Tuple: if not items: return () if (items, weight_limit) not in cache: head = items[0] tail = items[1:] include = (head,) + solve(tail, weight_limit - head[2]) dont_include = solve(tail, weight_limit) if total_value(include, weight_limit) > total_value(dont_include, weight_limit): answer = include else: answer = dont_include cache[(items, weight_limit)] = answer return cache[(items, weight_limit)] return solve(items, weight_limit) # @profile def knapsack_greedy_solution(items: Tuple[Item], weight_limit: int) -> Iterator: """ Return a list of items with the maximum value, subject to the constraint that their combined weight must not exceed max_weight. Implements the well-known "greedy approximation algorithm" for the knapsack problem (first described by George Dantzig in 1957). https://codereview.stackexchange.com/a/62871 """ def efficiency(item: Item) -> float: """Return efficiency of item (its value per unit weight).""" return float(item.value) / float(item.weight) def pack(item: Item) -> bool: # Attempt to pack item; return True if successful. if item.weight <= pack.max_weight: pack.max_weight -= item.weight return True else: return False pack.max_weight = weight_limit return filter(pack, sorted(items, key=efficiency, reverse=True)) if __name__ == '__main__': import time from data import pack_up_static_knapsack_3 funcs = [ knapsack_1_standard_solution, knapsack_2_solution, knapsack_3_solution, knapsack_4_bruteforce_solution, knapsack_5_dynamic_solution, knapsack_6_recursive_dynamic_solution, knapsack_greedy_solution ] for func in funcs: list(func(*pack_up_static_knapsack_3())) time.sleep(0.3)
PypiClean
/OctoBot-0.4.54.tar.gz/OctoBot-0.4.54/octobot/storage/trading_metadata.py
import math import numpy import octobot_commons.enums as common_enums import octobot_commons.constants as commons_constants import octobot_commons.databases as commons_databases import octobot_commons.configuration as commons_configuration import octobot_commons.time_frame_manager as time_frame_manager import octobot_backtesting.api as backtesting_api import octobot_trading.api as trading_api import octobot_trading.enums as trading_enums import octobot.backtesting as backtesting async def clear_run_metadata(bot_id): run_db = commons_databases.RunDatabasesProvider.instance().get_run_db(bot_id) await run_db.delete(common_enums.DBTables.METADATA.value, None) async def store_run_metadata(bot_id, exchange_managers, start_time, user_inputs=None, flush=False) -> dict: run_db = commons_databases.RunDatabasesProvider.instance().get_run_db(bot_id) user_inputs = user_inputs or await commons_configuration.get_user_inputs(run_db) run_dbs_identifier = commons_databases.RunDatabasesProvider.instance().get_run_databases_identifier(bot_id) metadata = await _get_trading_metadata(exchange_managers, start_time, user_inputs, run_dbs_identifier, False, None) await run_db.log( common_enums.DBTables.METADATA.value, metadata ) if flush: await run_db.flush() return metadata async def store_backtesting_run_metadata(exchange_managers, start_time, user_inputs, run_dbs_identifier, name) -> dict: run_metadata = await _get_trading_metadata(exchange_managers, start_time, user_inputs, run_dbs_identifier, True, name) # use local database as a lock is required async with commons_databases.DBWriter.database( run_dbs_identifier.get_backtesting_metadata_identifier(), with_lock=True) as writer: await writer.log(common_enums.DBTables.METADATA.value, run_metadata) return run_metadata async def _get_trading_metadata(exchange_managers, run_start_time, user_inputs, run_dbs_identifier, is_backtesting, name) \ -> dict: trading_mode = trading_api.get_trading_modes(exchange_managers[0])[0] multi_exchanges_data = await _get_multi_exchange_data(exchange_managers, is_backtesting) single_exchange_data = await _get_single_exchange_data( exchange_managers[0], trading_mode, run_start_time, user_inputs, run_dbs_identifier, is_backtesting, name ) return { **single_exchange_data, **multi_exchanges_data, **(await trading_mode.get_additional_metadata(is_backtesting)) } async def _get_multi_exchange_data(exchange_managers, is_backtesting): symbols = list(set( symbol for exchange_manager in exchange_managers for symbol in trading_api.get_trading_pairs(exchange_manager) )) time_frames = list(set( tf.value for exchange_manager in exchange_managers for tf in trading_api.get_relevant_time_frames(exchange_manager) )) data_files = list(set( data_file for exchange_manager in exchange_managers for data_file in trading_api.get_backtesting_data_files(exchange_manager) )) if is_backtesting else [] profitability = numpy.average(tuple( float(trading_api.get_profitability_stats(exchange_manager)[0]) for exchange_manager in exchange_managers )) profitability_percent = numpy.average(tuple( float(trading_api.get_profitability_stats(exchange_manager)[1]) for exchange_manager in exchange_managers )) markets_profitability = _get_markets_profitability(exchange_managers, time_frames) if is_backtesting else {} exchange_names = [ trading_api.get_exchange_name(exchange_manager) for exchange_manager in exchange_managers ] future_contracts_by_exchange = _get_future_contracts_by_exchange(exchange_managers) trades = [ trade for exchange_manager in exchange_managers for trade in trading_api.get_trade_history(exchange_manager, include_cancelled=False) ] entries = [ trade for trade in trades if trade.status is trading_enums.OrderStatus.FILLED and trade.side is trading_enums.TradeOrderSide.BUY ] win_rate = round(numpy.average(tuple( float(trading_api.get_win_rate(exchange_manager) * 100) for exchange_manager in exchange_managers )), 3) wins = 0 if math.isnan(win_rate) else round(win_rate * len(entries) / 100) draw_down = round(numpy.average(tuple( float(trading_api.get_draw_down(exchange_manager)) for exchange_manager in exchange_managers )), 3) r_sq_end_balance = await _get_coefficient_of_determination(exchange_managers, False) r_sq_max_balance = await _get_coefficient_of_determination(exchange_managers, True) duration = round(max( backtesting_api.get_backtesting_duration(exchange_manager.exchange.backtesting) for exchange_manager in exchange_managers ), 3) if is_backtesting else 0 if trading_api.get_is_backtesting(exchange_managers[0]): start_time = min( backtesting_api.get_backtesting_starting_time(exchange_manager.exchange.backtesting) for exchange_manager in exchange_managers ) end_time = max( backtesting_api.get_backtesting_ending_time(exchange_manager.exchange.backtesting) for exchange_manager in exchange_managers ) else: start_time = exchange_managers[0].exchange.get_exchange_current_time() end_time = -1 origin_portfolio, end_portfolio = _get_portfolio(exchange_managers) backtesting_only_metadata = { common_enums.BacktestingMetadata.DURATION.value: duration, common_enums.BacktestingMetadata.BACKTESTING_FILES.value: data_files, } if is_backtesting else {} return { **backtesting_only_metadata, **{ common_enums.BacktestingMetadata.GAINS.value: round(float(profitability), 8), common_enums.BacktestingMetadata.PERCENT_GAINS.value: round(float(profitability_percent), 3), common_enums.BacktestingMetadata.MARKETS_PROFITABILITY.value: {c: f"{round(float(v) * 100, 2)}%" for c, v in markets_profitability.items()}, common_enums.BacktestingMetadata.END_PORTFOLIO.value: str(end_portfolio), common_enums.BacktestingMetadata.START_PORTFOLIO.value: str(origin_portfolio), common_enums.BacktestingMetadata.WIN_RATE.value: win_rate, common_enums.BacktestingMetadata.DRAW_DOWN.value: draw_down or 0, common_enums.BacktestingMetadata.COEFFICIENT_OF_DETERMINATION_MAX_BALANCE.value: r_sq_max_balance or 0, common_enums.BacktestingMetadata.COEFFICIENT_OF_DETERMINATION_END_BALANCE.value: r_sq_end_balance or 0, common_enums.BacktestingMetadata.SYMBOLS.value: symbols, common_enums.BacktestingMetadata.TIME_FRAMES.value: time_frames, common_enums.BacktestingMetadata.ENTRIES.value: len(entries), common_enums.BacktestingMetadata.WINS.value: wins, common_enums.BacktestingMetadata.LOSES.value: len(entries) - wins, common_enums.BacktestingMetadata.TRADES.value: len(trades), common_enums.DBRows.EXCHANGES.value: exchange_names, common_enums.DBRows.START_TIME.value: start_time, common_enums.DBRows.END_TIME.value: end_time, common_enums.DBRows.FUTURE_CONTRACTS.value: future_contracts_by_exchange, } } async def _get_coefficient_of_determination(exchange_managers, use_high_instead_of_end_balance): try: return numpy.average([ await trading_api.get_coefficient_of_determination( exchange_manager, use_high_instead_of_end_balance=use_high_instead_of_end_balance ) for exchange_manager in exchange_managers ]) except KeyError: return None def _get_markets_profitability(exchange_managers, time_frames): markets_profitability = {} min_tf = time_frame_manager.find_min_time_frame(time_frames) for exchange_manager in exchange_managers: for symbol in trading_api.get_trading_pairs(exchange_manager): if symbol is markets_profitability: continue try: markets_profitability[symbol] = \ backtesting.IndependentBacktesting.get_market_delta(symbol, exchange_manager, min_tf) except Exception: pass return markets_profitability def _get_portfolio(exchange_managers): origin_portfolio = {} end_portfolio = {} for exchange_manager in exchange_managers: try: exchange_origin_portfolio = trading_api.get_origin_portfolio(exchange_manager, as_decimal=False) except AttributeError: # no initialized portfolio on this exchange continue exchange_end_portfolio = trading_api.get_portfolio(exchange_manager, as_decimal=False) for portfolio in (exchange_origin_portfolio, exchange_end_portfolio): for values in portfolio.values(): values.pop("available", None) if exchange_manager.is_future: for position in trading_api.get_positions(exchange_manager): try: exchange_end_portfolio[position.get_currency()]["position"] = float(position.quantity) except KeyError: exchange_end_portfolio[position.get_currency()] = { commons_constants.PORTFOLIO_AVAILABLE: 0, commons_constants.PORTFOLIO_TOTAL: 0, "position": float(position.quantity), } for exchange_portfolio, portfolio in zip((exchange_origin_portfolio, exchange_end_portfolio), (origin_portfolio, end_portfolio)): for currency, value_dict in exchange_portfolio.items(): try: pf_value = portfolio[currency] except KeyError: pf_value = {} portfolio[currency] = pf_value for key, value in value_dict.items(): pf_value[key] = pf_value.get(key, 0) + value return origin_portfolio, end_portfolio def _get_future_contracts_by_exchange(exchange_managers): return { trading_api.get_exchange_name(exchange_manager): { symbol: { "contract_type": contract.contract_type.value, "position_mode": contract.position_mode.value, "margin_type": contract.margin_type.value } for symbol, contract in trading_api.get_pair_contracts(exchange_manager).items() if symbol in trading_api.get_trading_pairs(exchange_manager) and trading_api.is_handled_contract(contract) } for exchange_manager in exchange_managers if exchange_manager.is_future and hasattr(exchange_manager.exchange, "pair_contracts") } async def _get_single_exchange_data(exchange_manager, trading_mode, run_start_time, user_inputs, run_dbs_identifier, is_backtesting, name): exchange_type = trading_enums.ExchangeTypes.FUTURE.value if exchange_manager.is_future \ else trading_enums.ExchangeTypes.SPOT.value if user_inputs is None: user_inputs = {} formatted_user_inputs = {} for user_input in user_inputs: if not user_input["is_nested_config"]: try: formatted_user_inputs[user_input["tentacle"]][user_input["name"]] = user_input["value"] except KeyError: formatted_user_inputs[user_input["tentacle"]] = { user_input["name"]: user_input["value"] } leverage = 0 if exchange_manager.is_future and hasattr(exchange_manager.exchange, "get_pair_future_contract"): leverage = float(next(iter(trading_api.get_pair_contracts(exchange_manager).values())).current_leverage) backtesting_only_metadata = { common_enums.BacktestingMetadata.ID.value: run_dbs_identifier.backtesting_id, common_enums.BacktestingMetadata.OPTIMIZATION_CAMPAIGN.value: run_dbs_identifier.optimization_campaign_name, common_enums.BacktestingMetadata.USER_INPUTS.value: formatted_user_inputs, } if is_backtesting else {} return { **backtesting_only_metadata, **{ common_enums.BacktestingMetadata.TIMESTAMP.value: run_start_time, common_enums.BacktestingMetadata.NAME.value: name or trading_mode.get_name(), common_enums.BacktestingMetadata.LEVERAGE.value: leverage, common_enums.DBRows.TRADING_TYPE.value: exchange_type, common_enums.DBRows.REFERENCE_MARKET.value: trading_api.get_reference_market(exchange_manager.config), } }
PypiClean
/python-docx-1-0.0.2.tar.gz/python-docx-1-0.0.2/docx/oxml/ns.py
from __future__ import absolute_import, print_function, unicode_literals nsmap = { "a": "http://schemas.openxmlformats.org/drawingml/2006/main", "c": "http://schemas.openxmlformats.org/drawingml/2006/chart", "cp": "http://schemas.openxmlformats.org/package/2006/metadata/core-properties", "dc": "http://purl.org/dc/elements/1.1/", "dcmitype": "http://purl.org/dc/dcmitype/", "dcterms": "http://purl.org/dc/terms/", "dgm": "http://schemas.openxmlformats.org/drawingml/2006/diagram", "m": "http://schemas.openxmlformats.org/officeDocument/2006/math", "pic": "http://schemas.openxmlformats.org/drawingml/2006/picture", "r": "http://schemas.openxmlformats.org/officeDocument/2006/relationships", "sl": "http://schemas.openxmlformats.org/schemaLibrary/2006/main", "vt" : ("http://schemas.openxmlformats.org/officeDocument/2006/docPropsVTypes"), "w": "http://schemas.openxmlformats.org/wordprocessingml/2006/main", 'w14': "http://schemas.microsoft.com/office/word/2010/wordml", "wp": "http://schemas.openxmlformats.org/drawingml/2006/wordprocessingDrawing", "xml": "http://www.w3.org/XML/1998/namespace", "xsi": "http://www.w3.org/2001/XMLSchema-instance", } pfxmap = dict((value, key) for key, value in nsmap.items()) class NamespacePrefixedTag(str): """ Value object that knows the semantics of an XML tag having a namespace prefix. """ def __new__(cls, nstag, *args): return super(NamespacePrefixedTag, cls).__new__(cls, nstag) def __init__(self, nstag): self._pfx, self._local_part = nstag.split(':') self._ns_uri = nsmap[self._pfx] @property def clark_name(self): return '{%s}%s' % (self._ns_uri, self._local_part) @classmethod def from_clark_name(cls, clark_name): nsuri, local_name = clark_name[1:].split('}') nstag = '%s:%s' % (pfxmap[nsuri], local_name) return cls(nstag) @property def local_part(self): """ Return the local part of the tag as a string. E.g. 'foobar' is returned for tag 'f:foobar'. """ return self._local_part @property def nsmap(self): """ Return a dict having a single member, mapping the namespace prefix of this tag to it's namespace name (e.g. {'f': 'http://foo/bar'}). This is handy for passing to xpath calls and other uses. """ return {self._pfx: self._ns_uri} @property def nspfx(self): """ Return the string namespace prefix for the tag, e.g. 'f' is returned for tag 'f:foobar'. """ return self._pfx @property def nsuri(self): """ Return the namespace URI for the tag, e.g. 'http://foo/bar' would be returned for tag 'f:foobar' if the 'f' prefix maps to 'http://foo/bar' in nsmap. """ return self._ns_uri def nsdecls(*prefixes): """ Return a string containing a namespace declaration for each of the namespace prefix strings, e.g. 'p', 'ct', passed as *prefixes*. """ return ' '.join(['xmlns:%s="%s"' % (pfx, nsmap[pfx]) for pfx in prefixes]) def nspfxmap(*nspfxs): """ Return a dict containing the subset namespace prefix mappings specified by *nspfxs*. Any number of namespace prefixes can be supplied, e.g. namespaces('a', 'r', 'p'). """ return dict((pfx, nsmap[pfx]) for pfx in nspfxs) def qn(tag): """ Stands for "qualified name", a utility function to turn a namespace prefixed tag name into a Clark-notation qualified tag name for lxml. For example, ``qn('p:cSld')`` returns ``'{http://schemas.../main}cSld'``. """ prefix, tagroot = tag.split(':') uri = nsmap[prefix] return '{%s}%s' % (uri, tagroot)
PypiClean
/imshowpair-0.1.0.tar.gz/imshowpair-0.1.0/LICENSE.rst
.. -*- rst -*- License ======= Copyright (c) 2018-2019, Lev E. Givon. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Lev E. Givon nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
PypiClean
/xentica-0.2.0.tar.gz/xentica-0.2.0/CONTRIBUTING.md
# Contributing Guidelines Dear fellow CA enthusiast, If you are reading this guidelines, you are probably as passionate about the idea of self-emergence of lifeforms in cellular automata as we are. Or maybe you are interested in multi-dimensional CA models that could help us understand the laws of physics underlying the quantum level. Either way, in case you are seeking to contribute to our project, that's how you can do it. 1. Try to install Xentica framework along with Moire GUI, run some examples and give us feedback on any problems you met in the process. Feedback is twofold merit. On one hand, it is the the quickest way to fix the problems occured with particular system setups and to make the whole core framework more available to the mass use. At the other hand, it is the signal that the project is not unclaimed, which gives the core developers the inspiration to move on. 2. In case you succeed with the previous step, you can try to build your own CA models with Xentica, again giving us feedback on any problems you met. Maybe, you'll also miss some stuff and have some ideas about the new features. We are glad to listen and discuss anything that come to your mind during Xentica usage experience. Sharing of the source code for your own Xentica models is highly appreciated too. 3. In the process, you'll definitely read through the Xentica official documentation. The other way to contribute is help us to improve this doc. Typos, syntax or stylistic mistakes, if you know how to fix them, please let us know. Core developers are not native English, so any editorial help would be appreciated. 4. [LOCKED] Pull Requests are now locked until version 0.3. The main reason, because the framework is in very early development, and is a subject to massive and (possibly) backward-incompatible changes. If you are really willing to contribute some code in future, please contact us, and we'll update you as soon as framework API become at least semi-stable with Pull Requests opened. 5. [LOCKED] This item is hidden even from core developers =) The easier way to give us feedback is by [open an issue](https://github.com/a5kin/xentica/issues/new) at GitHub. When doing so, please follow the [Code of Conduct](https://github.com/a5kin/xentica/blob/master/CODE_OF_CONDUCT.md), we are abiding. In general, just be benevolent and respect others. And stay inspired with the beautiful world of multi-dimensional cellular automata. With Planck-level blessings,\ Xentica Core Team
PypiClean
/pulumi_kubernetes-4.2.0a1693403901-py3-none-any.whl/pulumi_kubernetes/networking/v1beta1/IngressClass.py
import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ... import core as _core from ... import meta as _meta from ._inputs import * __all__ = ['IngressClassInitArgs', 'IngressClass'] @pulumi.input_type class IngressClassInitArgs: def __init__(__self__, *, api_version: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, metadata: Optional[pulumi.Input['_meta.v1.ObjectMetaArgs']] = None, spec: Optional[pulumi.Input['IngressClassSpecArgs']] = None): """ The set of arguments for constructing a IngressClass resource. :param pulumi.Input[str] api_version: APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources :param pulumi.Input[str] kind: Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds :param pulumi.Input['_meta.v1.ObjectMetaArgs'] metadata: Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata :param pulumi.Input['IngressClassSpecArgs'] spec: Spec is the desired state of the IngressClass. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status """ if api_version is not None: pulumi.set(__self__, "api_version", 'networking.k8s.io/v1beta1') if kind is not None: pulumi.set(__self__, "kind", 'IngressClass') if metadata is not None: pulumi.set(__self__, "metadata", metadata) if spec is not None: pulumi.set(__self__, "spec", spec) @property @pulumi.getter(name="apiVersion") def api_version(self) -> Optional[pulumi.Input[str]]: """ APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources """ return pulumi.get(self, "api_version") @api_version.setter def api_version(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "api_version", value) @property @pulumi.getter def kind(self) -> Optional[pulumi.Input[str]]: """ Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds """ return pulumi.get(self, "kind") @kind.setter def kind(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kind", value) @property @pulumi.getter def metadata(self) -> Optional[pulumi.Input['_meta.v1.ObjectMetaArgs']]: """ Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata """ return pulumi.get(self, "metadata") @metadata.setter def metadata(self, value: Optional[pulumi.Input['_meta.v1.ObjectMetaArgs']]): pulumi.set(self, "metadata", value) @property @pulumi.getter def spec(self) -> Optional[pulumi.Input['IngressClassSpecArgs']]: """ Spec is the desired state of the IngressClass. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status """ return pulumi.get(self, "spec") @spec.setter def spec(self, value: Optional[pulumi.Input['IngressClassSpecArgs']]): pulumi.set(self, "spec", value) class IngressClass(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, api_version: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, metadata: Optional[pulumi.Input[pulumi.InputType['_meta.v1.ObjectMetaArgs']]] = None, spec: Optional[pulumi.Input[pulumi.InputType['IngressClassSpecArgs']]] = None, __props__=None): """ IngressClass represents the class of the Ingress, referenced by the Ingress Spec. The `ingressclass.kubernetes.io/is-default-class` annotation can be used to indicate that an IngressClass should be considered default. When a single IngressClass resource has this annotation set to true, new Ingress resources without a class specified will be assigned this default class. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] api_version: APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources :param pulumi.Input[str] kind: Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds :param pulumi.Input[pulumi.InputType['_meta.v1.ObjectMetaArgs']] metadata: Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata :param pulumi.Input[pulumi.InputType['IngressClassSpecArgs']] spec: Spec is the desired state of the IngressClass. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status """ ... @overload def __init__(__self__, resource_name: str, args: Optional[IngressClassInitArgs] = None, opts: Optional[pulumi.ResourceOptions] = None): """ IngressClass represents the class of the Ingress, referenced by the Ingress Spec. The `ingressclass.kubernetes.io/is-default-class` annotation can be used to indicate that an IngressClass should be considered default. When a single IngressClass resource has this annotation set to true, new Ingress resources without a class specified will be assigned this default class. :param str resource_name: The name of the resource. :param IngressClassInitArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(IngressClassInitArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, api_version: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, metadata: Optional[pulumi.Input[pulumi.InputType['_meta.v1.ObjectMetaArgs']]] = None, spec: Optional[pulumi.Input[pulumi.InputType['IngressClassSpecArgs']]] = None, __props__=None): opts = pulumi.ResourceOptions.merge(_utilities.get_resource_opts_defaults(), opts) if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = IngressClassInitArgs.__new__(IngressClassInitArgs) __props__.__dict__["api_version"] = 'networking.k8s.io/v1beta1' __props__.__dict__["kind"] = 'IngressClass' __props__.__dict__["metadata"] = metadata __props__.__dict__["spec"] = spec alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="kubernetes:networking.k8s.io/v1:IngressClass")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(IngressClass, __self__).__init__( 'kubernetes:networking.k8s.io/v1beta1:IngressClass', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'IngressClass': """ Get an existing IngressClass resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = IngressClassInitArgs.__new__(IngressClassInitArgs) __props__.__dict__["api_version"] = None __props__.__dict__["kind"] = None __props__.__dict__["metadata"] = None __props__.__dict__["spec"] = None return IngressClass(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="apiVersion") def api_version(self) -> pulumi.Output[str]: """ APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources """ return pulumi.get(self, "api_version") @property @pulumi.getter def kind(self) -> pulumi.Output[str]: """ Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds """ return pulumi.get(self, "kind") @property @pulumi.getter def metadata(self) -> pulumi.Output['_meta.v1.outputs.ObjectMeta']: """ Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata """ return pulumi.get(self, "metadata") @property @pulumi.getter def spec(self) -> pulumi.Output['outputs.IngressClassSpec']: """ Spec is the desired state of the IngressClass. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status """ return pulumi.get(self, "spec")
PypiClean
/py-pure-client-1.38.0.tar.gz/py-pure-client-1.38.0/pypureclient/flasharray/FA_2_15/models/protection_group_snapshot_post.py
import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_15 import models class ProtectionGroupSnapshotPost(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'name': 'str', 'created': 'int', 'destroyed': 'bool', 'pod': 'FixedReference', 'source': 'FixedReference', 'space': 'Space', 'suffix': 'str', 'time_remaining': 'int', 'eradication_config': 'ProtectionGroupEradicationConfig' } attribute_map = { 'id': 'id', 'name': 'name', 'created': 'created', 'destroyed': 'destroyed', 'pod': 'pod', 'source': 'source', 'space': 'space', 'suffix': 'suffix', 'time_remaining': 'time_remaining', 'eradication_config': 'eradication_config' } required_args = { } def __init__( self, id=None, # type: str name=None, # type: str created=None, # type: int destroyed=None, # type: bool pod=None, # type: models.FixedReference source=None, # type: models.FixedReference space=None, # type: models.Space suffix=None, # type: str time_remaining=None, # type: int eradication_config=None, # type: models.ProtectionGroupEradicationConfig ): """ Keyword args: id (str): A globally unique, system-generated ID. The ID cannot be modified and cannot refer to another resource. name (str): A user-specified name. The name must be locally unique and can be changed. created (int): The snapshot creation time of the original snapshot source. Measured in milliseconds since the UNIX epoch. destroyed (bool) pod (FixedReference): The pod in which the protection group of the protection group snapshot resides. source (FixedReference): The original protection group from which this snapshot was taken. space (Space): Returns provisioned size and physical storage consumption data for each protection group. suffix (str): The name suffix appended to the protection group name to make up the full protection group snapshot name in the form `PGROUP.SUFFIX`. If `suffix` is not specified, the protection group name is in the form `PGROUP.NNN`, where `NNN` is a unique monotonically increasing number. If multiple protection group snapshots are created at a time, the suffix name is appended to those snapshots. time_remaining (int): The amount of time left until the destroyed snapshot is permanently eradicated. Measured in milliseconds. Before the `time_remaining` period has elapsed, the destroyed snapshot can be recovered by setting `destroyed=false`. eradication_config (ProtectionGroupEradicationConfig) """ if id is not None: self.id = id if name is not None: self.name = name if created is not None: self.created = created if destroyed is not None: self.destroyed = destroyed if pod is not None: self.pod = pod if source is not None: self.source = source if space is not None: self.space = space if suffix is not None: self.suffix = suffix if time_remaining is not None: self.time_remaining = time_remaining if eradication_config is not None: self.eradication_config = eradication_config def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ProtectionGroupSnapshotPost`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def __getitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ProtectionGroupSnapshotPost`".format(key)) return object.__getattribute__(self, key) def __setitem__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ProtectionGroupSnapshotPost`".format(key)) object.__setattr__(self, key, value) def __delitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ProtectionGroupSnapshotPost`".format(key)) object.__delattr__(self, key) def keys(self): return self.attribute_map.keys() def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ProtectionGroupSnapshotPost, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ProtectionGroupSnapshotPost): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
PypiClean
/schemaorg_types-0.4.0.tar.gz/schemaorg_types-0.4.0/schemaorg_types/MedicalOrganization.py
from __future__ import annotations from datetime import * from time import * from typing import * from pydantic import * class MedicalOrganization(BaseModel): """A medical organization (physical or not), such as hospital, institution or clinic. References: https://schema.org/MedicalOrganization Note: Model Depth 3 Attributes: potentialAction: (Optional[Union[List[Union[str, Any]], str, Any]]): Indicates a potential Action, which describes an idealized action in which this thing would play an 'object' role. mainEntityOfPage: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): Indicates a page (or other CreativeWork) for which this thing is the main entity being described. See [background notes](/docs/datamodel.html#mainEntityBackground) for details. subjectOf: (Optional[Union[List[Union[str, Any]], str, Any]]): A CreativeWork or Event about this Thing. url: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): URL of the item. alternateName: (Union[List[Union[str, Any]], str, Any]): An alias for the item. sameAs: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): URL of a reference Web page that unambiguously indicates the item's identity. E.g. the URL of the item's Wikipedia page, Wikidata entry, or official website. description: (Union[List[Union[str, Any]], str, Any]): A description of the item. disambiguatingDescription: (Union[List[Union[str, Any]], str, Any]): A sub property of description. A short description of the item used to disambiguate from other, similar items. Information from other properties (in particular, name) may be necessary for the description to be useful for disambiguation. identifier: (Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]): The identifier property represents any kind of identifier for any kind of [[Thing]], such as ISBNs, GTIN codes, UUIDs etc. Schema.org provides dedicated properties for representing many of these, either as textual strings or as URL (URI) links. See [background notes](/docs/datamodel.html#identifierBg) for more details. image: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): An image of the item. This can be a [[URL]] or a fully described [[ImageObject]]. name: (Union[List[Union[str, Any]], str, Any]): The name of the item. additionalType: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): An additional type for the item, typically used for adding more specific types from external vocabularies in microdata syntax. This is a relationship between something and a class that the thing is in. In RDFa syntax, it is better to use the native RDFa syntax - the 'typeof' attribute - for multiple types. Schema.org tools may have only weaker understanding of extra types, in particular those defined externally. serviceArea: (Optional[Union[List[Union[str, Any]], str, Any]]): The geographic area where the service is provided. founder: (Optional[Union[List[Union[str, Any]], str, Any]]): A person who founded this organization. isicV4: (Union[List[Union[str, Any]], str, Any]): The International Standard of Industrial Classification of All Economic Activities (ISIC), Revision 4 code for a particular organization, business person, or place. hasPOS: (Optional[Union[List[Union[str, Any]], str, Any]]): Points-of-Sales operated by the organization or person. globalLocationNumber: (Union[List[Union[str, Any]], str, Any]): The [Global Location Number](http://www.gs1.org/gln) (GLN, sometimes also referred to as International Location Number or ILN) of the respective organization, person, or place. The GLN is a 13-digit number used to identify parties and physical locations. member: (Optional[Union[List[Union[str, Any]], str, Any]]): A member of an Organization or a ProgramMembership. Organizations can be members of organizations; ProgramMembership is typically for individuals. knowsAbout: (Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]): Of a [[Person]], and less typically of an [[Organization]], to indicate a topic that is known about - suggesting possible expertise but not implying it. We do not distinguish skill levels here, or relate this to educational content, events, objectives or [[JobPosting]] descriptions. makesOffer: (Optional[Union[List[Union[str, Any]], str, Any]]): A pointer to products or services offered by the organization or person. ownershipFundingInfo: (Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]): For an [[Organization]] (often but not necessarily a [[NewsMediaOrganization]]), a description of organizational ownership structure; funding and grants. In a news/media setting, this is with particular reference to editorial independence. Note that the [[funder]] is also available and can be used to make basic funder information machine-readable. founders: (Optional[Union[List[Union[str, Any]], str, Any]]): A person who founded this organization. legalName: (Union[List[Union[str, Any]], str, Any]): The official name of the organization, e.g. the registered company name. actionableFeedbackPolicy: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): For a [[NewsMediaOrganization]] or other news-related [[Organization]], a statement about public engagement activities (for news media, the newsroom’s), including involving the public - digitally or otherwise -- in coverage decisions, reporting and activities after publication. areaServed: (Union[List[Union[str, Any]], str, Any]): The geographic area where a service or offered item is provided. parentOrganization: (Optional[Union[List[Union[str, Any]], str, Any]]): The larger organization that this organization is a [[subOrganization]] of, if any. slogan: (Union[List[Union[str, Any]], str, Any]): A slogan or motto associated with the item. department: (Optional[Union[List[Union[str, Any]], str, Any]]): A relationship between an organization and a department of that organization, also described as an organization (allowing different urls, logos, opening hours). For example: a store with a pharmacy, or a bakery with a cafe. keywords: (Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]): Keywords or tags used to describe some item. Multiple textual entries in a keywords list are typically delimited by commas, or by repeating the property. reviews: (Optional[Union[List[Union[str, Any]], str, Any]]): Review of the item. memberOf: (Optional[Union[List[Union[str, Any]], str, Any]]): An Organization (or ProgramMembership) to which this Person or Organization belongs. publishingPrinciples: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): The publishingPrinciples property indicates (typically via [[URL]]) a document describing the editorial principles of an [[Organization]] (or individual, e.g. a [[Person]] writing a blog) that relate to their activities as a publisher, e.g. ethics or diversity policies. When applied to a [[CreativeWork]] (e.g. [[NewsArticle]]) the principles are those of the party primarily responsible for the creation of the [[CreativeWork]].While such policies are most typically expressed in natural language, sometimes related information (e.g. indicating a [[funder]]) can be expressed using schema.org terminology. employee: (Optional[Union[List[Union[str, Any]], str, Any]]): Someone working for this organization. award: (Union[List[Union[str, Any]], str, Any]): An award won by or for this item. email: (Union[List[Union[str, Any]], str, Any]): Email address. contactPoints: (Optional[Union[List[Union[str, Any]], str, Any]]): A contact point for a person or organization. diversityStaffingReport: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): For an [[Organization]] (often but not necessarily a [[NewsMediaOrganization]]), a report on staffing diversity issues. In a news context this might be for example ASNE or RTDNA (US) reports, or self-reported. foundingDate: (Optional[Union[List[Union[str, Any, date]], str, Any, date]]): The date that this organization was founded. owns: (Optional[Union[List[Union[str, Any]], str, Any]]): Products owned by the organization or person. awards: (Union[List[Union[str, Any]], str, Any]): Awards won by or for this item. review: (Optional[Union[List[Union[str, Any]], str, Any]]): A review of the item. dissolutionDate: (Optional[Union[List[Union[str, Any, date]], str, Any, date]]): The date that this organization was dissolved. funding: (Optional[Union[List[Union[str, Any]], str, Any]]): A [[Grant]] that directly or indirectly provide funding or sponsorship for this item. See also [[ownershipFundingInfo]]. interactionStatistic: (Optional[Union[List[Union[str, Any]], str, Any]]): The number of interactions for the CreativeWork using the WebSite or SoftwareApplication. The most specific child type of InteractionCounter should be used. events: (Optional[Union[List[Union[str, Any]], str, Any]]): Upcoming or past events associated with this place or organization. seeks: (Optional[Union[List[Union[str, Any]], str, Any]]): A pointer to products or services sought by the organization or person (demand). employees: (Optional[Union[List[Union[str, Any]], str, Any]]): People working for this organization. unnamedSourcesPolicy: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): For an [[Organization]] (typically a [[NewsMediaOrganization]]), a statement about policy on use of unnamed sources and the decision process required. subOrganization: (Optional[Union[List[Union[str, Any]], str, Any]]): A relationship between two organizations where the first includes the second, e.g., as a subsidiary. See also: the more specific 'department' property. foundingLocation: (Optional[Union[List[Union[str, Any]], str, Any]]): The place where the Organization was founded. funder: (Optional[Union[List[Union[str, Any]], str, Any]]): A person or organization that supports (sponsors) something through some kind of financial contribution. iso6523Code: (Union[List[Union[str, Any]], str, Any]): An organization identifier as defined in ISO 6523(-1). Note that many existing organization identifiers such as [leiCode](https://schema.org/leiCode), [duns](https://schema.org/duns) and [vatID](https://schema.org/vatID) can be expressed as an ISO 6523 identifier by setting the ICD part of the ISO 6523 identifier accordingly. diversityPolicy: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): Statement on diversity policy by an [[Organization]] e.g. a [[NewsMediaOrganization]]. For a [[NewsMediaOrganization]], a statement describing the newsroom’s diversity policy on both staffing and sources, typically providing staffing data. hasMerchantReturnPolicy: (Optional[Union[List[Union[str, Any]], str, Any]]): Specifies a MerchantReturnPolicy that may be applicable. event: (Optional[Union[List[Union[str, Any]], str, Any]]): Upcoming or past event associated with this place, organization, or action. duns: (Union[List[Union[str, Any]], str, Any]): The Dun & Bradstreet DUNS number for identifying an organization or business person. alumni: (Optional[Union[List[Union[str, Any]], str, Any]]): Alumni of an organization. ethicsPolicy: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): Statement about ethics policy, e.g. of a [[NewsMediaOrganization]] regarding journalistic and publishing practices, or of a [[Restaurant]], a page describing food source policies. In the case of a [[NewsMediaOrganization]], an ethicsPolicy is typically a statement describing the personal, organizational, and corporate standards of behavior expected by the organization. leiCode: (Union[List[Union[str, Any]], str, Any]): An organization identifier that uniquely identifies a legal entity as defined in ISO 17442. vatID: (Union[List[Union[str, Any]], str, Any]): The Value-added Tax ID of the organization or person. knowsLanguage: (Union[List[Union[str, Any]], str, Any]): Of a [[Person]], and less typically of an [[Organization]], to indicate a known language. We do not distinguish skill levels or reading/writing/speaking/signing here. Use language codes from the [IETF BCP 47 standard](http://tools.ietf.org/html/bcp47). correctionsPolicy: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): For an [[Organization]] (e.g. [[NewsMediaOrganization]]), a statement describing (in news media, the newsroom’s) disclosure and correction policy for errors. logo: (Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]]): An associated logo. hasCredential: (Optional[Union[List[Union[str, Any]], str, Any]]): A credential awarded to the Person or Organization. address: (Union[List[Union[str, Any]], str, Any]): Physical address of the item. brand: (Optional[Union[List[Union[str, Any]], str, Any]]): The brand(s) associated with a product or service, or the brand(s) maintained by an organization or business person. nonprofitStatus: (Optional[Union[List[Union[str, Any]], str, Any]]): nonprofitStatus indicates the legal status of a non-profit organization in its primary place of business. contactPoint: (Optional[Union[List[Union[str, Any]], str, Any]]): A contact point for a person or organization. hasOfferCatalog: (Optional[Union[List[Union[str, Any]], str, Any]]): Indicates an OfferCatalog listing for this Organization, Person, or Service. members: (Optional[Union[List[Union[str, Any]], str, Any]]): A member of this organization. aggregateRating: (Optional[Union[List[Union[str, Any]], str, Any]]): The overall rating, based on a collection of reviews or ratings, of the item. faxNumber: (Union[List[Union[str, Any]], str, Any]): The fax number. telephone: (Union[List[Union[str, Any]], str, Any]): The telephone number. taxID: (Union[List[Union[str, Any]], str, Any]): The Tax / Fiscal ID of the organization or person, e.g. the TIN in the US or the CIF/NIF in Spain. naics: (Union[List[Union[str, Any]], str, Any]): The North American Industry Classification System (NAICS) code for a particular organization or business person. location: (Union[List[Union[str, Any]], str, Any]): The location of, for example, where an event is happening, where an organization is located, or where an action takes place. numberOfEmployees: (Optional[Union[List[Union[str, Any]], str, Any]]): The number of employees in an organization, e.g. business. sponsor: (Optional[Union[List[Union[str, Any]], str, Any]]): A person or organization that supports a thing through a pledge, promise, or financial contribution. E.g. a sponsor of a Medical Study or a corporate sponsor of an event. healthPlanNetworkId: (Union[List[Union[str, Any]], str, Any]): Name or unique ID of network. (Networks are often reused across different insurance plans.) medicalSpecialty: (Optional[Union[List[Union[str, Any]], str, Any]]): A medical specialty of the provider. isAcceptingNewPatients: (Optional[Union[List[Union[str, StrictBool, Any]], str, StrictBool, Any]]): Whether the provider is accepting new patients. """ type_: str = Field(default="MedicalOrganization", alias="@type", const=True) potentialAction: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="Indicates a potential Action, which describes an idealized action in which this thing" "would play an 'object' role.", ) mainEntityOfPage: Optional[ Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any] ] = Field( default=None, description="Indicates a page (or other CreativeWork) for which this thing is the main entity being" "described. See [background notes](/docs/datamodel.html#mainEntityBackground)" "for details.", ) subjectOf: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A CreativeWork or Event about this Thing.", ) url: Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]] = Field( default=None, description="URL of the item.", ) alternateName: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="An alias for the item.", ) sameAs: Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]] = Field( default=None, description="URL of a reference Web page that unambiguously indicates the item's identity. E.g. the" "URL of the item's Wikipedia page, Wikidata entry, or official website.", ) description: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="A description of the item.", ) disambiguatingDescription: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="A sub property of description. A short description of the item used to disambiguate from" "other, similar items. Information from other properties (in particular, name) may" "be necessary for the description to be useful for disambiguation.", ) identifier: Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any] = Field( default=None, description="The identifier property represents any kind of identifier for any kind of [[Thing]]," "such as ISBNs, GTIN codes, UUIDs etc. Schema.org provides dedicated properties for" "representing many of these, either as textual strings or as URL (URI) links. See [background" "notes](/docs/datamodel.html#identifierBg) for more details.", ) image: Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]] = Field( default=None, description="An image of the item. This can be a [[URL]] or a fully described [[ImageObject]].", ) name: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="The name of the item.", ) additionalType: Optional[ Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any] ] = Field( default=None, description="An additional type for the item, typically used for adding more specific types from external" "vocabularies in microdata syntax. This is a relationship between something and a class" "that the thing is in. In RDFa syntax, it is better to use the native RDFa syntax - the 'typeof'" "attribute - for multiple types. Schema.org tools may have only weaker understanding" "of extra types, in particular those defined externally.", ) serviceArea: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="The geographic area where the service is provided.", ) founder: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A person who founded this organization.", ) isicV4: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="The International Standard of Industrial Classification of All Economic Activities" "(ISIC), Revision 4 code for a particular organization, business person, or place.", ) hasPOS: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="Points-of-Sales operated by the organization or person.", ) globalLocationNumber: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="The [Global Location Number](http://www.gs1.org/gln) (GLN, sometimes also referred" "to as International Location Number or ILN) of the respective organization, person," "or place. The GLN is a 13-digit number used to identify parties and physical locations.", ) member: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A member of an Organization or a ProgramMembership. Organizations can be members of" "organizations; ProgramMembership is typically for individuals.", ) knowsAbout: Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any] = Field( default=None, description="Of a [[Person]], and less typically of an [[Organization]], to indicate a topic that" "is known about - suggesting possible expertise but not implying it. We do not distinguish" "skill levels here, or relate this to educational content, events, objectives or [[JobPosting]]" "descriptions.", ) makesOffer: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A pointer to products or services offered by the organization or person.", ) ownershipFundingInfo: Union[ List[Union[str, AnyUrl, Any]], str, AnyUrl, Any ] = Field( default=None, description="For an [[Organization]] (often but not necessarily a [[NewsMediaOrganization]])," "a description of organizational ownership structure; funding and grants. In a news/media" "setting, this is with particular reference to editorial independence. Note that the" "[[funder]] is also available and can be used to make basic funder information machine-readable.", ) founders: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A person who founded this organization.", ) legalName: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="The official name of the organization, e.g. the registered company name.", ) actionableFeedbackPolicy: Optional[ Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any] ] = Field( default=None, description="For a [[NewsMediaOrganization]] or other news-related [[Organization]], a statement" "about public engagement activities (for news media, the newsroom’s), including involving" "the public - digitally or otherwise -- in coverage decisions, reporting and activities" "after publication.", ) areaServed: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="The geographic area where a service or offered item is provided.", ) parentOrganization: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="The larger organization that this organization is a [[subOrganization]] of, if any.", ) slogan: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="A slogan or motto associated with the item.", ) department: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A relationship between an organization and a department of that organization, also" "described as an organization (allowing different urls, logos, opening hours). For" "example: a store with a pharmacy, or a bakery with a cafe.", ) keywords: Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any] = Field( default=None, description="Keywords or tags used to describe some item. Multiple textual entries in a keywords list" "are typically delimited by commas, or by repeating the property.", ) reviews: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="Review of the item.", ) memberOf: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="An Organization (or ProgramMembership) to which this Person or Organization belongs.", ) publishingPrinciples: Optional[ Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any] ] = Field( default=None, description="The publishingPrinciples property indicates (typically via [[URL]]) a document describing" "the editorial principles of an [[Organization]] (or individual, e.g. a [[Person]]" "writing a blog) that relate to their activities as a publisher, e.g. ethics or diversity" "policies. When applied to a [[CreativeWork]] (e.g. [[NewsArticle]]) the principles" "are those of the party primarily responsible for the creation of the [[CreativeWork]].While" "such policies are most typically expressed in natural language, sometimes related" "information (e.g. indicating a [[funder]]) can be expressed using schema.org terminology.", ) employee: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="Someone working for this organization.", ) award: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="An award won by or for this item.", ) email: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="Email address.", ) contactPoints: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A contact point for a person or organization.", ) diversityStaffingReport: Optional[ Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any] ] = Field( default=None, description="For an [[Organization]] (often but not necessarily a [[NewsMediaOrganization]])," "a report on staffing diversity issues. In a news context this might be for example ASNE" "or RTDNA (US) reports, or self-reported.", ) foundingDate: Optional[Union[List[Union[str, Any, date]], str, Any, date]] = Field( default=None, description="The date that this organization was founded.", ) owns: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="Products owned by the organization or person.", ) awards: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="Awards won by or for this item.", ) review: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A review of the item.", ) dissolutionDate: Optional[ Union[List[Union[str, Any, date]], str, Any, date] ] = Field( default=None, description="The date that this organization was dissolved.", ) funding: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A [[Grant]] that directly or indirectly provide funding or sponsorship for this item." "See also [[ownershipFundingInfo]].", ) interactionStatistic: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="The number of interactions for the CreativeWork using the WebSite or SoftwareApplication." "The most specific child type of InteractionCounter should be used.", ) events: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="Upcoming or past events associated with this place or organization.", ) seeks: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A pointer to products or services sought by the organization or person (demand).", ) employees: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="People working for this organization.", ) unnamedSourcesPolicy: Optional[ Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any] ] = Field( default=None, description="For an [[Organization]] (typically a [[NewsMediaOrganization]]), a statement about" "policy on use of unnamed sources and the decision process required.", ) subOrganization: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A relationship between two organizations where the first includes the second, e.g.," "as a subsidiary. See also: the more specific 'department' property.", ) foundingLocation: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="The place where the Organization was founded.", ) funder: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A person or organization that supports (sponsors) something through some kind of financial" "contribution.", ) iso6523Code: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="An organization identifier as defined in ISO 6523(-1). Note that many existing organization" "identifiers such as [leiCode](https://schema.org/leiCode), [duns](https://schema.org/duns)" "and [vatID](https://schema.org/vatID) can be expressed as an ISO 6523 identifier" "by setting the ICD part of the ISO 6523 identifier accordingly.", ) diversityPolicy: Optional[ Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any] ] = Field( default=None, description="Statement on diversity policy by an [[Organization]] e.g. a [[NewsMediaOrganization]]." "For a [[NewsMediaOrganization]], a statement describing the newsroom’s diversity" "policy on both staffing and sources, typically providing staffing data.", ) hasMerchantReturnPolicy: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="Specifies a MerchantReturnPolicy that may be applicable.", ) event: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="Upcoming or past event associated with this place, organization, or action.", ) duns: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="The Dun & Bradstreet DUNS number for identifying an organization or business person.", ) alumni: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="Alumni of an organization.", ) ethicsPolicy: Optional[ Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any] ] = Field( default=None, description="Statement about ethics policy, e.g. of a [[NewsMediaOrganization]] regarding journalistic" "and publishing practices, or of a [[Restaurant]], a page describing food source policies." "In the case of a [[NewsMediaOrganization]], an ethicsPolicy is typically a statement" "describing the personal, organizational, and corporate standards of behavior expected" "by the organization.", ) leiCode: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="An organization identifier that uniquely identifies a legal entity as defined in ISO" "17442.", ) vatID: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="The Value-added Tax ID of the organization or person.", ) knowsLanguage: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="Of a [[Person]], and less typically of an [[Organization]], to indicate a known language." "We do not distinguish skill levels or reading/writing/speaking/signing here. Use" "language codes from the [IETF BCP 47 standard](http://tools.ietf.org/html/bcp47).", ) correctionsPolicy: Optional[ Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any] ] = Field( default=None, description="For an [[Organization]] (e.g. [[NewsMediaOrganization]]), a statement describing" "(in news media, the newsroom’s) disclosure and correction policy for errors.", ) logo: Optional[Union[List[Union[str, AnyUrl, Any]], str, AnyUrl, Any]] = Field( default=None, description="An associated logo.", ) hasCredential: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A credential awarded to the Person or Organization.", ) address: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="Physical address of the item.", ) brand: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="The brand(s) associated with a product or service, or the brand(s) maintained by an organization" "or business person.", ) nonprofitStatus: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="nonprofitStatus indicates the legal status of a non-profit organization in its primary" "place of business.", ) contactPoint: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A contact point for a person or organization.", ) hasOfferCatalog: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="Indicates an OfferCatalog listing for this Organization, Person, or Service.", ) members: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A member of this organization.", ) aggregateRating: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="The overall rating, based on a collection of reviews or ratings, of the item.", ) faxNumber: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="The fax number.", ) telephone: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="The telephone number.", ) taxID: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="The Tax / Fiscal ID of the organization or person, e.g. the TIN in the US or the CIF/NIF in" "Spain.", ) naics: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="The North American Industry Classification System (NAICS) code for a particular organization" "or business person.", ) location: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="The location of, for example, where an event is happening, where an organization is located," "or where an action takes place.", ) numberOfEmployees: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="The number of employees in an organization, e.g. business.", ) sponsor: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A person or organization that supports a thing through a pledge, promise, or financial" "contribution. E.g. a sponsor of a Medical Study or a corporate sponsor of an event.", ) healthPlanNetworkId: Union[List[Union[str, Any]], str, Any] = Field( default=None, description="Name or unique ID of network. (Networks are often reused across different insurance" "plans.)", ) medicalSpecialty: Optional[Union[List[Union[str, Any]], str, Any]] = Field( default=None, description="A medical specialty of the provider.", ) isAcceptingNewPatients: Optional[ Union[List[Union[str, StrictBool, Any]], str, StrictBool, Any] ] = Field( default=None, description="Whether the provider is accepting new patients.", )
PypiClean
/lisa_data_challenge-1.2.0-cp39-cp39-macosx_13_0_arm64.whl/ldc/waveform/lisabeta/fast_bhb.py
import numpy as np import numpy.lib.recfunctions as rfn import xarray as xr from ldc.common.series import FrequencySeries from ldc.lisa.orbits import AnalyticOrbits from ldc.common import tools from ldc.common.series import TDI import lisaconstants ASTRONOMICAL_YEAR = lisaconstants.SIDEREALYEAR_J2000DAY*24*60*60 AU_SI = lisaconstants.ASTRONOMICAL_UNIT class FastBHB : def __init__(self, bbh_type, T=6.2914560e7, delta_t=5, approx="IMRPhenomD", orbits=None, modes=None): """ Parameters initilization of the black holes binaries class T : duration in second (will be converted in year for lisabeta) deltat : time step in second approx : approximant for the IMRPhenom waveform computation orbits : LISA's orbit type """ #Type of BBH waveform if bbh_type.lower() in ["mbhb","sobhb", "sbbh"] : self.bbh_type = bbh_type else : raise NotImplementedError("Only MBHB and SOBHB are available.") #Wave duration and time step self.Tobs = T self.Tobs_yr = self.Tobs/ASTRONOMICAL_YEAR self.dt = delta_t #Orbits initialization if orbits is not None: if not isinstance(orbits, AnalyticOrbits): raise TypeError('FastBHB approximation requires analytic orbits') else: init_time = orbits.initial_position*ASTRONOMICAL_YEAR/(2 * np.pi) lisa_params = { 'OrbitOmega' : (2*np.pi) / ASTRONOMICAL_YEAR, 'OrbitPhi0' : orbits.initial_rotation, 'Orbitt0' : init_time, 'OrbitR' : AU_SI, 'OrbitL' : orbits.arm_length} else: # TODO: to be removed in the end import lisabeta.lisa.pyresponse as pyresponse lisa_params = pyresponse.LISAconstDict["Proposal"] #Waveform parameters used by lisabeta self.wvf_pars = { "minf": 1e-5, "maxf": 0.1, "timetomerger_max": 1.0, "fend": None, "tmin": None, "tmax": self.Tobs_yr, "TDI": "TDIAET", "acc": 1e-4, "order_fresnel_stencil": 0, "approximant": approx, "modes": modes, "LISAconst": lisa_params, "responseapprox": "full", "frozenLISA": False, "TDIrescaled": False } @property def citation(self): return 'arXiv:1806.10734' def get_waveform(self, template=None, beta=None, lam=None, chi1=None, chi2=None, m1=None, m2=None, Deltat=None, phi=None, psi=None, inc=None, dist=None): """ Return the waveform frequency range, amplitude and phase for mode (2,2) """ # TODO: There might be a way to remove duplicates with get_fd_tdiaet # Check that lisabeta is installed # TODO: to be removed in the end try: import lisabeta.lisa.lisa as lisa except ImportError: print("Could not import lisabeta.lisa.lisa") return None, None, None #Rename parameters to match lisabeta notation if template is not None: params = self.rename_as_lisabeta(template) else: params = locals() params["lambda"] = lam #Generate the waveform of the BHB if self.bbh_type.lower() == "mbhb" : sig = lisa.GenerateLISATDI_SMBH(params, **self.wvf_pars) if self.bbh_type.lower() in ["sobhb", "sbbh"]: sig = lisa.GenerateLISATDI_SOBH(params, **self.wvf_pars) md = (2,2) frq = sig[md]['freq'] amp = sig[md]['amp'] phase = sig[md]['phase'] return frq, amp, phase def get_tc(self, template): """ Return time of coaelescence from initial frequency """ import lisabeta.waveforms.bbh.pyIMRPhenomD as pyIMRPhenomD gridfreq0 = np.array([0.1]) params = self.rename_as_lisabeta(template) syst = pyIMRPhenomD.IMRPhenomDh22AmpPhase(gridfreq0, params['m1'], params['m2'], params['chi1'], params['chi2'], params['dist']) tc = -syst.compute_toff(params['fstart']) return tc def get_fd_tdiaet(self, template=None, freqs=None, tdi2=False): """ Return TDI A,E,T in frequency domain. """ # Check that lisabeta is installed # TODO: to be removed in the end try: import lisabeta.lisa.lisa as lisa except ImportError: print("Could not import lisabeta.lisa.lisa") return None, None, None #Get the waveform parameters if template is not None: params = self.rename_as_lisabeta(template) else: params = locals() params["lambda"] = lam #If the simulation relies on TDI2, use AET observables if tdi2: self.wvf_pars["TDI"] = "TDI2AET" #Generate the TDI waveform of the BHB if self.bbh_type.lower() == "mbhb" : sig = lisa.GenerateLISATDISignal_SMBH(params, **self.wvf_pars) if self.bbh_type.lower() in ["sobhb", "sbbh"]: sig = lisa.GenerateLISATDISignal_SOBH(params, **self.wvf_pars) #Signal info df = 1/self.Tobs mds = sig['tdi']['modes'] #Compute frequency range if not given if freqs is None : fmin = self.wvf_pars['minf'] fmax = self.wvf_pars['maxf'] for mod in mds: fmin = min(fmin, np.min(sig['tdi'][mod]['freq'])) fmax = max(fmax, np.max(sig['tdi'][mod]['freq'])) fmin = np.floor(fmin/df)*df # redefine f0 to be an integer x df freqs = np.arange(fmin, fmax, df) linearscale = True else: df = freqs[1]-freqs[0] linearscale = np.isclose(np.sum(np.diff(freqs)-df), 0) #kmin = int(np.rint(freqs[0]/df)) #Get TDI signal tdifreqseries = lisa.EvaluateTDIFreqseries(sig["tdi"], freqs) #Compute the waveform in the frequendy domain A = np.zeros(len(freqs), dtype=np.complex128) E = np.zeros(len(freqs), dtype=np.complex128) T = np.zeros(len(freqs), dtype=np.complex128) for md in mds: A += np.conj(tdifreqseries[md]['chan1']) E += np.conj(tdifreqseries[md]['chan2']) T += np.conj(tdifreqseries[md]['chan3']) if linearscale: A = FrequencySeries(A, fs=freqs, name="A") E = FrequencySeries(E, fs=freqs, name="E") T = FrequencySeries(T, fs=freqs, name="T") else: fs = xr.DataArray(freqs, dims=('f'), attrs={'units': '1/s'}) A = xr.DataArray(A, dims=('f'), coords={'f': fs}, name='A', attrs={'df': df}) E = xr.DataArray(E, dims=('f'), coords={'f': fs}, name='E', attrs={'df': df}) T = xr.DataArray(T, dims=('f'), coords={'f': fs}, name='T', attrs={'df': df}) return A,E,T def get_fd_tdixyz(self,**kwargs): """ Return TDI X,Y,Z in frequency domain. """ #Get the AET combination A,E,T = self.get_fd_tdiaet(**kwargs) #Create a TDI object tdi = TDI(dict(zip(['A', 'E', 'T'], [A, E, T]))) #Convert to XYZ combination tdi.AET2XYZ() return tdi["X"],tdi["Y"],tdi["Z"] def get_td_tdiaet(self, **kwargs): """ Return TDI A,E,T in time domain. """ #Get the waveform in the frequency domain fA, fE, fT = self.get_fd_tdiaet(**kwargs) #Compute the waveform in the time domain tA = fA.ts.ifft(dt=self.dt) tE = fE.ts.ifft(dt=self.dt) tT = fT.ts.ifft(dt=self.dt) return (tA,tE,tT) def get_td_tdixyz(self, **kwargs): """ Return TDI X,Y,Z in time domain. """ #Get the AET combination A,E,T = self.get_td_tdiaet(**kwargs) #Create a TDI object tdi = TDI(dict(zip(['A', 'E', 'T'], [A, E, T]))) #Convert to XYZ combination tdi.AET2XYZ() return (tdi["X"],tdi["Y"],tdi["Z"]) def rename_as_lisabeta(self, params_i): """ Rename fields to match lisabeta parameter names """ #Copy the parameters params = params_i.copy() #Spin projection if 'PolarAngleOfSpin1' in params.keys(): params["Spin1"] = params['Spin1']*np.cos(params['PolarAngleOfSpin1']) params["Spin2"] = params['Spin2']*np.cos(params['PolarAngleOfSpin2']) k_param = ['PolarAngleOfSpin1', 'PolarAngleOfSpin2', 'ObservationDuration', 'Cadence', 'Redshift'] if self.bbh_type.lower() == "mbhb" : psi, incl = tools.aziPolAngleL2PsiIncl(params["EclipticLatitude"], params["EclipticLongitude"], params['InitialPolarAngleL'], params['InitialAzimuthalAngleL']) params['Polarization'] = psi params['Inclination'] = incl k_param.extend(['InitialPolarAngleL','InitialAzimuthalAngleL']) for k in k_param : if k in params.keys(): params.pop(k) #Parameters to match between LDC notation and lisabeta dmatch = dict({'Mass1': "m1", 'Mass2': "m2", 'Spin1': "chi1", 'Spin2': "chi2", 'Distance': 'dist', 'Inclination': 'inc', 'EclipticLongitude': "lambda", 'EclipticLatitude': "beta", "InitialFrequency": "fstart", 'Polarization': 'psi', }) #Adding additionnal parameters if self.bbh_type.lower() == "mbhb" : dmatch['CoalescenceTime'] ='Deltat' dmatch['PhaseAtCoalescence']='phi' if self.bbh_type.lower() in ["sobhb", "sbbh"]: dmatch['InitialPhase']='phi' #Return only the relevant parameters new_params = dict() if isinstance(params, dict): for k,v in params.items(): if k in dmatch.keys() : new_params[dmatch[k]] = params[k] else: new_params = rfn.rename_fields(params, dmatch) return new_params
PypiClean
/ARGs_OAP-2.3.2.tar.gz/ARGs_OAP-2.3.2/ARGs_OAP/bin/bbmap/docs/readme_config.txt
BBTools Config File Readme Written by Brian Bushnell Last updated May 12, 2015 A config file is a text file with a set of parameters that will be added to the command line. The format is one parameter per line, with the # symbol indicating comments. To use a config file, use the config=file flag. For example, take BBDuk: bbduk.sh in=reads.fq out=trimmed.fq ref=ref.fa k=23 mink=11 hdist=1 tbo tpe That is equivalent to: bbduk.sh in=reads.fq out=trimmed.fq ref=ref.fa config=trimadapters.txt ...if trimadapters.txt contained these lines: k=23 mink=11 hdist=1 tbo tpe Any parameter placed AFTER the config file will override the same parameter if it is in the config file. For example, in this case k=20 will be used: bbduk.sh in=reads.fq out=trimmed.fq ref=ref.fa config=trimadapters.txt k=20 But in this case, k=23 will be used, from the config file: bbduk.sh in=reads.fq out=trimmed.fq ref=ref.fa k=20 config=trimadapters.txt What are config files for? Well, mainly, to overcome difficulties like whitespace in file paths, or command lines that are too long. There are some example config files in bbmap/config/. They are not used unless you specifically tell a program to use them.
PypiClean
/pytdx-async-1.62.tar.gz/pytdx-async-1.62/pytdx/reader/lc_min_bar_reader.py
from __future__ import unicode_literals, division import pandas as pd import os from pytdx.reader.base_reader import TdxFileNotFoundException, TdxNotAssignVipdocPathException from pytdx.reader.base_reader import BaseReader from collections import OrderedDict """ 网传秘籍... 二、通达信5分钟线*.lc5文件和*.lc1文件 文件名即股票代码 每32个字节为一个5分钟数据,每字段内低字节在前 00 ~ 01 字节:日期,整型, 设其值为num,则日期计算方法为: year=floor(num/2048)+2004; month=floor(mod(num,2048)/100); day=mod(mod(num,2048),100); 02 ~ 03 字节: 从0点开始至目前的分钟数,整型 04 ~ 07 字节:开盘价,float型 08 ~ 11 字节:最高价,float型 12 ~ 15 字节:最低价, float型 16 ~ 19 字节:收盘价,float型 20 ~ 23 字节:成交额,float型 24 ~ 27 字节:成交量(股),整型 28 ~ 31 字节:(保留) """ class TdxLCMinBarReader(BaseReader): """ 读取通达信分钟数据 """ def parse_data_by_file(self, fname): if not os.path.isfile(fname): raise TdxFileNotFoundException('no tdx kline data, pleaes check path %s', fname) with open(fname, 'rb') as f: content = f.read() raw_li = self.unpack_records("<HHfffffII", content) data = [] for row in raw_li: year, month, day = self._parse_date(row[0]) hour, minute = self._parse_time(row[1]) data.append(OrderedDict([ ("date", "%04d-%02d-%02d %02d:%02d" % (year, month, day, hour, minute)), ("year", year), ('month', month), ('day', day), ('hour', hour), ('minute', minute), ('open', row[2]), ('high', row[3]), ('low', row[4]), ('close', row[5]), ('amount', row[6]), ('volume', row[7]), #('unknown', row[8]) ])) return data return [] def get_df(self, code_or_file, exchange=None): #if exchange == None: # 只传入了一个参数 data = self.parse_data_by_file(code_or_file) #else: # data = [self._df_convert(row) for row in self.get_kline_by_code(code_or_file, exchange)] df = pd.DataFrame(data=data) df.index = pd.to_datetime(df.date) return df[['open', 'high', 'low', 'close', 'amount', 'volume']] def _parse_date(self, num): year = num // 2048 + 2004 month = (num % 2048) // 100 day = (num % 2048) % 100 return year, month, day def _parse_time(self, num): return (num // 60) , (num % 60) if __name__ == '__main__': reader = TdxLCMinBarReader() df = reader.get_df("/Users/rainx/Downloads/sz000001.lc5") print(df) print(df['2017-07-26'].sum())
PypiClean
/boot-synth-1.2.0.tar.gz/boot-synth-1.2.0/synth/projects_master/nginx_router/frontend/react/node_modules/hpack.js/node_modules/readable-stream/doc/wg-meetings/2015-01-30.md
# streams WG Meeting 2015-01-30 ## Links * **Google Hangouts Video**: http://www.youtube.com/watch?v=I9nDOSGfwZg * **GitHub Issue**: https://github.com/iojs/readable-stream/issues/106 * **Original Minutes Google Doc**: https://docs.google.com/document/d/17aTgLnjMXIrfjgNaTUnHQO7m3xgzHR2VXBTmi03Qii4/ ## Agenda Extracted from https://github.com/iojs/readable-stream/labels/wg-agenda prior to meeting. * adopt a charter [#105](https://github.com/iojs/readable-stream/issues/105) * release and versioning strategy [#101](https://github.com/iojs/readable-stream/issues/101) * simpler stream creation [#102](https://github.com/iojs/readable-stream/issues/102) * proposal: deprecate implicit flowing of streams [#99](https://github.com/iojs/readable-stream/issues/99) ## Minutes ### adopt a charter * group: +1's all around ### What versioning scheme should be adopted? * group: +1’s 3.0.0 * domenic+group: pulling in patches from other sources where appropriate * mikeal: version independently, suggesting versions for io.js * mikeal+domenic: work with TC to notify in advance of changes simpler stream creation ### streamline creation of streams * sam: streamline creation of streams * domenic: nice simple solution posted but, we lose the opportunity to change the model may not be backwards incompatible (double check keys) **action item:** domenic will check ### remove implicit flowing of streams on(‘data’) * add isFlowing / isPaused * mikeal: worrying that we’re documenting polyfill methods – confuses users * domenic: more reflective API is probably good, with warning labels for users * new section for mad scientists (reflective stream access) * calvin: name the “third state” * mikeal: maybe borrow the name from whatwg? * domenic: we’re missing the “third state” * consensus: kind of difficult to name the third state * mikeal: figure out differences in states / compat * mathias: always flow on data – eliminates third state * explore what it breaks **action items:** * ask isaac for ability to list packages by what public io.js APIs they use (esp. Stream) * ask rod/build for infrastructure * **chris**: explore the “flow on data” approach * add isPaused/isFlowing * add new docs section * move isPaused to that section
PypiClean
/iminuit-2.22.0.tar.gz/iminuit-2.22.0/doc/notebooks/conditional_variable.ipynb
# Fit PDF with conditional variable In this example, we show an unusual fit where the total sample is not drawn form a single probability distribution, but each individual sample $x$ is drawn from a different distribution, whose parameters are determined by a conditional variable $y$. In our example, we are drawing samples $x$ from varying Gaussian distributions. The location of each Gaussian is a function of the conditional variable $y$, but all share the same width parameter $\sigma$. We fit the shared parameter $\sigma$, but also the parameters $a$ and $b$ which determine how the location of each gaussian depends on $y$, assuming a line function $\mu = a + b y$. This tutorial reproduces a [corresponding one from RooFit](https://root.cern.ch/doc/master/rf303__conditional_8C.html). ``` import iminuit from iminuit.cost import UnbinnedNLL from iminuit import Minuit import numpy as np import numba as nb import boost_histogram as bh import matplotlib.pyplot as plt from scipy.stats import norm from numba_stats import norm as norm_nb print("iminuit version", iminuit.__version__) rng = np.random.default_rng(1) # conditional variable: each sample is paired with a random y parameter y = rng.normal(0, 10, size=10000) y = y[np.abs(y) < 10] # truncate at 10 # location of each gaussian is a function of y def mu(y, a, b): return a + b * y # draw samples from Gaussians whose locations depend on y truth = {"a": 0, "b": 0.5, "sigma": 1.0} x = rng.normal(mu(y, truth["a"], truth["b"]), truth["sigma"]) ``` The distribution in $x$ is more broad than the usual Gaussian because it is a convolution of many Gaussian distributions with varying means. We can visualise this by binning the data in $x$ and $y$. ``` ax_x = bh.axis.Regular(100, -10, 10) ax_y = bh.axis.Regular(5, -10, 10) h = bh.Histogram(ax_x, ax_y) h.fill(x, y) for i, (a, b) in enumerate(ax_y): plt.stairs(h.values()[:,i], ax_x.edges, label=f"[{a}, {b})", fill=True, alpha=0.2) h1 = h[:, sum] plt.stairs(h1.values(), ax_x.edges, color="k", label="total") plt.xlabel("x") plt.ylabel("events") plt.legend(title="y interval", frameon=False, handlelength=1.2); ``` ## Fit with conditional variable The random distribution of $x$ depends on the value of $y$. We can exploit that information in the likelihood function to obtain a more accurate estimate of the parameters. ``` def model(xy, a, b, sigma): x, y = xy mu = a + b * y # cannot use norm.pdf from numba_stats here, because it is not vectorized in mu return norm.pdf(x, mu, sigma) nll = UnbinnedNLL((x, y), model) m = Minuit(nll, 0.0, 0.0, 2.0) m.limits["sigma"] = (0, None) m.migrad() # construct model representation for comparison with data histogram a, b, sigma = m.values # get expected content per bin from cdf, sum over the individual cdfs v = np.diff(np.sum(norm.cdf(ax_x.edges[:,np.newaxis], mu(y, a, b), sigma), axis=1)) plt.stairs(v, ax_x.edges, label="model", zorder=5, lw=2) plt.errorbar(ax_x.centers, h1.values(), h1.variances() ** 0.5, fmt="ok", label="data") plt.xlabel("x") plt.ylabel("events") plt.legend(frameon=False); ``` ## Fit without conditional variable We can also ignore the dependence of $x$ and $y$ and just fit the total $x$ distribution with a model built from the distribution of $y$ values. This also works in this case, but information is lost and therefore the parameter uncertainties become larger than in the previous case. On top of that, the calculation is much slower, because building the pdf is more expensive. We parallelise the computation with numba. ``` nb.config.THREADING_LAYER = 'workqueue' @nb.njit(parallel=True, fastmath=True) def model(x, a, b, sigma): mu = a + b * y total = np.zeros_like(x) for i in nb.prange(len(mu)): total += norm_nb.pdf(x, mu[i], sigma) return total nll = UnbinnedNLL(x, model) m2 = Minuit(nll, 0.0, 0.0, 2.0) m2.limits["sigma"] = (0, None) m2.migrad() fig, ax = plt.subplots(1, 3, figsize=(8, 2), constrained_layout=True) for par, axi in zip(m.parameters, ax): axi.set_title(par) t = truth[par] axi.axhline(t, ls="--", color="0.5") axi.errorbar(["with\n conditional"], m.values[par], m.errors[par], fmt="ok") axi.errorbar(["without\n conditional"], m2.values[par], m2.errors[par], fmt="or") axi.set_xlim(-0.5, 1.5) dt = 2 * m2.errors[par] axi.set_ylim(t - dt, t + dt) ```
PypiClean
/ladybug-display-0.10.1.tar.gz/ladybug-display-0.10.1/ladybug_display/extension/study/radiation.py
from ladybug_geometry.bounding import bounding_box from ladybug_geometry.geometry3d import Mesh3D from ladybug.color import Colorset, Color from ladybug.legend import LegendParameters from ladybug.graphic import GraphicContainer from ladybug.datatype.energyintensity import Radiation from ladybug.datatype.energyflux import Irradiance from ladybug_display.geometry3d import DisplayText3D, DisplayMesh3D, DisplayFace3D from ladybug_display.visualization import VisualizationSet, AnalysisGeometry, \ VisualizationData, ContextGeometry def radiation_study_to_vis_set( radiation_study, legend_parameters=None, plot_irradiance=False, include_title=True, include_context=False): """Translate radiation study into a VisualizationSet. Args: radiation_study: A Ladybug-Radiance RadiationStudy object. legend_parameters: An optional LegendParameter object to change the display of the radiation study. If None, default legend parameters will be used. (Default: None). plot_irradiance: Boolean to note whether the results should be plotted with units of total Radiation (kWh/m2) [False] or with units of average Irradiance (W/m2) [True]. (Default: False). include_title: Boolean to note whether the title should be included in the output visualization. (Default: True). include_context: Boolean to note whether the context geometry should be included in the output visualization. (Default: False). Returns: A VisualizationSet with the radiation study represented as an AnalysisGeometry. This includes these objects in the following order. - Radiation_Data -- An AnalysisGeometry for the radiation data. - Title -- A ContextGeometry with text for the title of the study. This layer will be excluded if include_title is False. - Context_Geometry -- A ContextGeometry with the shading context used in the study. This layer will be excluded when include_context is False. """ # get the radiation data if plot_irradiance: d_type, unit, title = Irradiance(), 'W/m2', 'Incident Irradiance' rad_data = radiation_study.irradiance_values else: d_type, unit, title = Radiation(), 'kWh/m2', 'Incident Radiation' rad_data = radiation_study.radiation_values if radiation_study.is_benefit: title = '{} Benefit/Harm'.format(title) # process the legend parameters and override the legend colors if legend_parameters is not None: assert isinstance(legend_parameters, LegendParameters), \ 'Expected LegendParameters. Got {}.'.format(type(legend_parameters)) l_par = legend_parameters.duplicate() else: l_par = LegendParameters() if radiation_study.is_benefit: if l_par.min is None: l_par.min = min((min(rad_data), -max(rad_data))) if l_par.max is None: l_par.max = max((-min(rad_data), max(rad_data))) if l_par.are_colors_default: l_par.colors = reversed(Colorset.benefit_harm()) else: if l_par.min is None: l_par.min = 0 if l_par.max is None: l_par.max = max(rad_data) # create the visualization set object vis_set = VisualizationSet('RadiationStudy', ()) vis_set.display_name = 'Radiation Study' # create the AnalysisGeometry vis_data = VisualizationData(rad_data, l_par, d_type, unit) mesh_geo = AnalysisGeometry( 'Radiation_Data', [radiation_study.study_mesh], [vis_data]) mesh_geo.display_name = 'Radiation Data' mesh_geo.display_mode = 'Surface' vis_set.add_geometry(mesh_geo) # create the ContextGeometry for the title if include_title: all_geo = (radiation_study.study_mesh,) + radiation_study.context_geometry min_pt, max_pt = bounding_box(all_geo) graphic = GraphicContainer( rad_data, min_pt, max_pt, l_par, d_type, unit) study_title = DisplayText3D( title, graphic.lower_title_location, graphic.legend_parameters.text_height, None, graphic.legend_parameters.font, 'Left', 'Top') title_geo = ContextGeometry('Title', [study_title]) vis_set.add_geometry(title_geo) # create the ContextGeometry for the context if include_context: con_color = Color(125, 125, 125, 125) con_geos = [] for geo in radiation_study.context_geometry: if isinstance(geo, Mesh3D): con_geos.append(DisplayMesh3D(geo, con_color)) else: # it's a Face3D con_geos.append(DisplayFace3D(geo, con_color)) context_geo = ContextGeometry('Context_Geometry', con_geos) context_geo.display_name = 'Context Geometry' vis_set.add_geometry(context_geo) return vis_set
PypiClean
/AbSort-0.0.1.tar.gz/AbSort-0.0.1/README.txt
AbSort ======= Absort is Powerful Python package that performs 8 different types of stable and unstable Sorting algorithms on List Data Structure with full of documentation. This package will be more beneficial(Usefull) for competitive programmers and developers. So based on your requirement choose your sorting algorithm. USAGE ====== importing Library ----------------- - import AbSort Creating the Object sortObj = AbSort.SortingAlgo() awsort ====== myList = [490, 395, 388, 496, 497, 350, 469, 435, 310, 1, 3, 2, 7, 4] - Genearting the Sort Result sortedResult = sortObj.awsort(myList) - Science know the SortedResult variable contains the Sorted List we can print the sorted list saying print(sortedResult) SelectionSort ============= myList = [490, 395, 388, 496, 497, 350, 469, 435, 310, 1, 3, 2, 7, 4] - Genearting the Sort Result sortedResult = sortObj.selectionSort(myList) - Science know the SortedResult variable contains the Sorted List we can print the sorted list saying print(sortedResult) mergeSort ========= myList = [490, 395, 388, 496, 497, 350, 469, 435, 310, 1, 3, 2, 7, 4] - Genearting the Sort Result sortedResult = sortObj.mergeSort(myList) - Science know the SortedResult variable contains the Sorted List we can print the sorted list saying print(sortedResult) quickSort ========= myList = [490, 395, 388, 496, 497, 350, 469, 435, 310, 1, 3, 2, 7, 4] - Genearting the Sort Result sortedResult = sortObj.quickSort(myList) - Science know the SortedResult variable contains the Sorted List we can print the sorted list saying print(sortedResult) bogoSort ======== myList = [490, 395, 388, 496, 497, 350, 469, 435, 310, 1, 3, 2, 7, 4] - Genearting the Sort Result sortedResult = sortObj.bogoSort(myList) - Science know the SortedResult variable contains the Sorted List we can print the sorted list saying print(sortedResult) insertionSort ============= myList = [490, 395, 388, 496, 497, 350, 469, 435, 310, 1, 3, 2, 7, 4] - Genearting the Sort Result sortedResult = sortObj.insertionSort(myList) - Science know the SortedResult variable contains the Sorted List we can print the sorted list saying print(sortedResult) binaryInsertionSort =================== myList = [490, 395, 388, 496, 497, 350, 469, 435, 310, 1, 3, 2, 7, 4] - Genearting the Sort Result sortedResult = sortObj.binaryInsertionSort(myList) - Science know the SortedResult variable contains the Sorted List we can print the sorted list saying print(sortedResult) bubbleSort ========== myList = [490, 395, 388, 496, 497, 350, 469, 435, 310, 1, 3, 2, 7, 4] - Genearting the Sort Result sortedResult = sortObj.bubbleSort(myList) - Science know the SortedResult variable contains the Sorted List we can print the sorted list saying print(sortedResult) Dependencies ============ - Python v3.x is Required.
PypiClean
/tensorflow_object_detection-0.0.6.tar.gz/tensorflow_object_detection-0.0.6/tf_object_detection/research/object_detection/tpu_exporters/ssd.py
"""Python library for ssd model, tailored for TPU inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-import-not-at-top # Checking TF version, because this module relies on TPUPartitionedCall # in tensorflow.python.tpu, which is not available until TF r1.14. major, minor, _ = tf.__version__.split('.') # pylint: disable=protected-access if int(major) < 1 or (int(major == 1) and int(minor) < 14): raise RuntimeError( 'TensorFlow version >= 1.14 is required. Found ({}).'.format( tf.__version__)) # pylint: disable=protected-access from tensorflow.python.framework import function from tensorflow.python.tpu import functional as tpu_functional from tensorflow.python.tpu.ops import tpu_ops from object_detection import exporter from object_detection.builders import model_builder from object_detection.tpu_exporters import utils ANCHORS = 'anchors' BOX_ENCODINGS = 'box_encodings' CLASS_PREDICTIONS_WITH_BACKGROUND = 'class_predictions_with_background' def get_prediction_tensor_shapes(pipeline_config): """Gets static shapes of tensors by building the graph on CPU. This function builds the graph on CPU and obtain static shapes of output tensors from TPUPartitionedCall. Shapes information are later used for setting shapes of tensors when TPU graphs are built. This is necessary because tensors coming out of TPUPartitionedCall lose their shape information, which are needed for a lot of CPU operations later. Args: pipeline_config: A TrainEvalPipelineConfig proto. Returns: A python dict of tensors' names and their shapes. """ detection_model = model_builder.build( pipeline_config.model, is_training=False) _, input_tensors = exporter.input_placeholder_fn_map['image_tensor']() inputs = tf.cast(input_tensors, dtype=tf.float32) preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs) prediction_dict = detection_model.predict(preprocessed_inputs, true_image_shapes) return { BOX_ENCODINGS: prediction_dict[BOX_ENCODINGS].shape.as_list(), CLASS_PREDICTIONS_WITH_BACKGROUND: prediction_dict[CLASS_PREDICTIONS_WITH_BACKGROUND].shape.as_list(), ANCHORS: prediction_dict[ANCHORS].shape.as_list(), } def recover_shape(preprocessed_inputs, prediction_outputs, shapes_info): """Recovers shape from TPUPartitionedCall. Args: preprocessed_inputs: 4D tensor, shaped (batch, channels, height, width) prediction_outputs: Python list of tensors, in the following order - box_encodings - 3D tensor, shaped (code_size, batch, num_anchors); class_predictions_with_background - 3D tensor, shaped (num_classes + 1, batch, num_anchors); anchors - 2D tensor, shaped (4, num_anchors) shapes_info: Python dict of tensor shapes as lists. Returns: preprocessed_inputs: 4D tensor, shaped (batch, height, width, channels) box_encodings: 3D tensor, shaped (batch, num_anchors, code_size) class_predictions_with_background: 3D tensor, shaped (batch, num_anchors, num_classes + 1) anchors: 2D tensor, shaped (num_anchors, 4) """ # Dimshuffle: (b, c, h, w) -> (b, h, w, c) preprocessed_inputs = tf.transpose(preprocessed_inputs, perm=[0, 2, 3, 1]) box_encodings = tf.transpose(prediction_outputs[0], perm=[1, 2, 0]) # [None, None, detection_model._box_coder.code_size] box_encodings.set_shape(shapes_info[BOX_ENCODINGS]) class_predictions_with_background = tf.transpose( prediction_outputs[1], perm=[1, 2, 0]) # [None, None, num_classes + 1] class_predictions_with_background.set_shape( shapes_info[CLASS_PREDICTIONS_WITH_BACKGROUND]) anchors = tf.transpose(prediction_outputs[2], perm=[1, 0]) # [None, 4] anchors.set_shape(shapes_info[ANCHORS]) return (preprocessed_inputs, box_encodings, class_predictions_with_background, anchors) def build_graph(pipeline_config, shapes_info, input_type='encoded_image_string_tensor', use_bfloat16=False): """Builds TPU serving graph of ssd to be exported. Args: pipeline_config: A TrainEvalPipelineConfig proto. shapes_info: A python dict of tensors' names and their shapes, returned by `get_prediction_tensor_shapes()`. input_type: One of 'encoded_image_string_tensor': a 1d tensor with dtype=tf.string 'image_tensor': a 4d tensor with dtype=tf.uint8 'tf_example': a 1d tensor with dtype=tf.string use_bfloat16: If true, use tf.bfloat16 on TPU. Returns: placeholder_tensor: A placeholder tensor, type determined by `input_type`. result_tensor_dict: A python dict of tensors' names and tensors. """ detection_model = model_builder.build( pipeline_config.model, is_training=False) placeholder_tensor, input_tensors = \ exporter.input_placeholder_fn_map[input_type]() inputs = tf.cast(input_tensors, dtype=tf.float32) preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs) # Dimshuffle: (b, h, w, c) -> (b, c, h, w) # This is to avoid extra padding due to TPU memory layout: # We swap larger dimensions in and smaller dimensions out, so that small # dimensions don't get padded tens / hundreds times of its own size. # This trick is applied to other similar tensors below. preprocessed_inputs = tf.transpose(preprocessed_inputs, perm=[0, 3, 1, 2]) if use_bfloat16: preprocessed_inputs = tf.cast(preprocessed_inputs, dtype=tf.bfloat16) def predict_tpu_subgraph(preprocessed_inputs, true_image_shapes): """Wraps over the CPU version of `predict()`. This builds a same graph as the original `predict()`, manipulates result tensors' dimensions to be memory efficient on TPU, and returns them as list of tensors. Args: preprocessed_inputs: A 4D tensor of shape (batch, channels, height, width) true_image_shapes: True image shapes tensor. Returns: A Python list of tensors: box_encodings: 3D tensor of shape (code_size, batch_size, num_anchors) class_predictions_with_background: 3D tensor, shape (num_classes + 1, batch_size, num_anchors) anchors: 2D tensor of shape (4, num_anchors) """ # Dimshuffle: (b, c, h, w) -> (b, h, w, c) preprocessed_inputs = tf.transpose(preprocessed_inputs, perm=[0, 2, 3, 1]) if use_bfloat16: with tf.contrib.tpu.bfloat16_scope(): prediction_dict = detection_model.predict(preprocessed_inputs, true_image_shapes) else: prediction_dict = detection_model.predict(preprocessed_inputs, true_image_shapes) # Dimshuffle: (batch, anchors, depth) -> (depth, batch, anchors) return [ tf.transpose(prediction_dict[BOX_ENCODINGS], perm=[2, 0, 1]), tf.transpose( prediction_dict[CLASS_PREDICTIONS_WITH_BACKGROUND], perm=[2, 0, 1]), tf.transpose(prediction_dict[ANCHORS], perm=[1, 0]), ] @function.Defun(capture_resource_var_by_value=False) def predict_tpu(): return tf.contrib.tpu.rewrite(predict_tpu_subgraph, [preprocessed_inputs, true_image_shapes]) prediction_outputs = tpu_functional.TPUPartitionedCall( args=predict_tpu.captured_inputs, device_ordinal=tpu_ops.tpu_ordinal_selector(), Tout=[o.type for o in predict_tpu.definition.signature.output_arg], f=predict_tpu) (preprocessed_inputs, box_encodings, class_predictions_with_background, anchors) = recover_shape(preprocessed_inputs, prediction_outputs, shapes_info) output_tensors = { 'preprocessed_inputs': preprocessed_inputs, BOX_ENCODINGS: box_encodings, CLASS_PREDICTIONS_WITH_BACKGROUND: class_predictions_with_background, ANCHORS: anchors, } if use_bfloat16: output_tensors = utils.bfloat16_to_float32_nested(output_tensors) postprocessed_tensors = detection_model.postprocess(output_tensors, true_image_shapes) result_tensor_dict = exporter.add_output_tensor_nodes(postprocessed_tensors, 'inference_op') return placeholder_tensor, result_tensor_dict
PypiClean
/django-filebrowser-4.0.3.tar.gz/django-filebrowser-4.0.3/docs/_build/_static/js/modernizr.min.js
;window.Modernizr=function(a,b,c){function D(a){j.cssText=a}function E(a,b){return D(n.join(a+";")+(b||""))}function F(a,b){return typeof a===b}function G(a,b){return!!~(""+a).indexOf(b)}function H(a,b){for(var d in a){var e=a[d];if(!G(e,"-")&&j[e]!==c)return b=="pfx"?e:!0}return!1}function I(a,b,d){for(var e in a){var f=b[a[e]];if(f!==c)return d===!1?a[e]:F(f,"function")?f.bind(d||b):f}return!1}function J(a,b,c){var d=a.charAt(0).toUpperCase()+a.slice(1),e=(a+" "+p.join(d+" ")+d).split(" ");return F(b,"string")||F(b,"undefined")?H(e,b):(e=(a+" "+q.join(d+" ")+d).split(" "),I(e,b,c))}function K(){e.input=function(c){for(var d=0,e=c.length;d<e;d++)u[c[d]]=c[d]in k;return u.list&&(u.list=!!b.createElement("datalist")&&!!a.HTMLDataListElement),u}("autocomplete autofocus list placeholder max min multiple pattern required step".split(" ")),e.inputtypes=function(a){for(var d=0,e,f,h,i=a.length;d<i;d++)k.setAttribute("type",f=a[d]),e=k.type!=="text",e&&(k.value=l,k.style.cssText="position:absolute;visibility:hidden;",/^range$/.test(f)&&k.style.WebkitAppearance!==c?(g.appendChild(k),h=b.defaultView,e=h.getComputedStyle&&h.getComputedStyle(k,null).WebkitAppearance!=="textfield"&&k.offsetHeight!==0,g.removeChild(k)):/^(search|tel)$/.test(f)||(/^(url|email)$/.test(f)?e=k.checkValidity&&k.checkValidity()===!1:e=k.value!=l)),t[a[d]]=!!e;return t}("search tel url email datetime date month week time datetime-local number range color".split(" "))}var d="2.6.2",e={},f=!0,g=b.documentElement,h="modernizr",i=b.createElement(h),j=i.style,k=b.createElement("input"),l=":)",m={}.toString,n=" -webkit- -moz- -o- -ms- ".split(" "),o="Webkit Moz O ms",p=o.split(" "),q=o.toLowerCase().split(" "),r={svg:"http://www.w3.org/2000/svg"},s={},t={},u={},v=[],w=v.slice,x,y=function(a,c,d,e){var f,i,j,k,l=b.createElement("div"),m=b.body,n=m||b.createElement("body");if(parseInt(d,10))while(d--)j=b.createElement("div"),j.id=e?e[d]:h+(d+1),l.appendChild(j);return f=["&#173;",'<style id="s',h,'">',a,"</style>"].join(""),l.id=h,(m?l:n).innerHTML+=f,n.appendChild(l),m||(n.style.background="",n.style.overflow="hidden",k=g.style.overflow,g.style.overflow="hidden",g.appendChild(n)),i=c(l,a),m?l.parentNode.removeChild(l):(n.parentNode.removeChild(n),g.style.overflow=k),!!i},z=function(b){var c=a.matchMedia||a.msMatchMedia;if(c)return c(b).matches;var d;return y("@media "+b+" { #"+h+" { position: absolute; } }",function(b){d=(a.getComputedStyle?getComputedStyle(b,null):b.currentStyle)["position"]=="absolute"}),d},A=function(){function d(d,e){e=e||b.createElement(a[d]||"div"),d="on"+d;var f=d in e;return f||(e.setAttribute||(e=b.createElement("div")),e.setAttribute&&e.removeAttribute&&(e.setAttribute(d,""),f=F(e[d],"function"),F(e[d],"undefined")||(e[d]=c),e.removeAttribute(d))),e=null,f}var a={select:"input",change:"input",submit:"form",reset:"form",error:"img",load:"img",abort:"img"};return d}(),B={}.hasOwnProperty,C;!F(B,"undefined")&&!F(B.call,"undefined")?C=function(a,b){return B.call(a,b)}:C=function(a,b){return b in a&&F(a.constructor.prototype[b],"undefined")},Function.prototype.bind||(Function.prototype.bind=function(b){var c=this;if(typeof c!="function")throw new TypeError;var d=w.call(arguments,1),e=function(){if(this instanceof e){var a=function(){};a.prototype=c.prototype;var f=new a,g=c.apply(f,d.concat(w.call(arguments)));return Object(g)===g?g:f}return c.apply(b,d.concat(w.call(arguments)))};return e}),s.flexbox=function(){return J("flexWrap")},s.canvas=function(){var a=b.createElement("canvas");return!!a.getContext&&!!a.getContext("2d")},s.canvastext=function(){return!!e.canvas&&!!F(b.createElement("canvas").getContext("2d").fillText,"function")},s.webgl=function(){return!!a.WebGLRenderingContext},s.touch=function(){var c;return"ontouchstart"in a||a.DocumentTouch&&b instanceof DocumentTouch?c=!0:y(["@media (",n.join("touch-enabled),("),h,")","{#modernizr{top:9px;position:absolute}}"].join(""),function(a){c=a.offsetTop===9}),c},s.geolocation=function(){return"geolocation"in navigator},s.postmessage=function(){return!!a.postMessage},s.websqldatabase=function(){return!!a.openDatabase},s.indexedDB=function(){return!!J("indexedDB",a)},s.hashchange=function(){return A("hashchange",a)&&(b.documentMode===c||b.documentMode>7)},s.history=function(){return!!a.history&&!!history.pushState},s.draganddrop=function(){var a=b.createElement("div");return"draggable"in a||"ondragstart"in a&&"ondrop"in a},s.websockets=function(){return"WebSocket"in a||"MozWebSocket"in a},s.rgba=function(){return D("background-color:rgba(150,255,150,.5)"),G(j.backgroundColor,"rgba")},s.hsla=function(){return D("background-color:hsla(120,40%,100%,.5)"),G(j.backgroundColor,"rgba")||G(j.backgroundColor,"hsla")},s.multiplebgs=function(){return D("background:url(https://),url(https://),red url(https://)"),/(url\s*\(.*?){3}/.test(j.background)},s.backgroundsize=function(){return J("backgroundSize")},s.borderimage=function(){return J("borderImage")},s.borderradius=function(){return J("borderRadius")},s.boxshadow=function(){return J("boxShadow")},s.textshadow=function(){return b.createElement("div").style.textShadow===""},s.opacity=function(){return E("opacity:.55"),/^0.55$/.test(j.opacity)},s.cssanimations=function(){return J("animationName")},s.csscolumns=function(){return J("columnCount")},s.cssgradients=function(){var a="background-image:",b="gradient(linear,left top,right bottom,from(#9f9),to(white));",c="linear-gradient(left top,#9f9, white);";return D((a+"-webkit- ".split(" ").join(b+a)+n.join(c+a)).slice(0,-a.length)),G(j.backgroundImage,"gradient")},s.cssreflections=function(){return J("boxReflect")},s.csstransforms=function(){return!!J("transform")},s.csstransforms3d=function(){var a=!!J("perspective");return a&&"webkitPerspective"in g.style&&y("@media (transform-3d),(-webkit-transform-3d){#modernizr{left:9px;position:absolute;height:3px;}}",function(b,c){a=b.offsetLeft===9&&b.offsetHeight===3}),a},s.csstransitions=function(){return J("transition")},s.fontface=function(){var a;return y('@font-face {font-family:"font";src:url("https://")}',function(c,d){var e=b.getElementById("smodernizr"),f=e.sheet||e.styleSheet,g=f?f.cssRules&&f.cssRules[0]?f.cssRules[0].cssText:f.cssText||"":"";a=/src/i.test(g)&&g.indexOf(d.split(" ")[0])===0}),a},s.generatedcontent=function(){var a;return y(["#",h,"{font:0/0 a}#",h,':after{content:"',l,'";visibility:hidden;font:3px/1 a}'].join(""),function(b){a=b.offsetHeight>=3}),a},s.video=function(){var a=b.createElement("video"),c=!1;try{if(c=!!a.canPlayType)c=new Boolean(c),c.ogg=a.canPlayType('video/ogg; codecs="theora"').replace(/^no$/,""),c.h264=a.canPlayType('video/mp4; codecs="avc1.42E01E"').replace(/^no$/,""),c.webm=a.canPlayType('video/webm; codecs="vp8, vorbis"').replace(/^no$/,"")}catch(d){}return c},s.audio=function(){var a=b.createElement("audio"),c=!1;try{if(c=!!a.canPlayType)c=new Boolean(c),c.ogg=a.canPlayType('audio/ogg; codecs="vorbis"').replace(/^no$/,""),c.mp3=a.canPlayType("audio/mpeg;").replace(/^no$/,""),c.wav=a.canPlayType('audio/wav; codecs="1"').replace(/^no$/,""),c.m4a=(a.canPlayType("audio/x-m4a;")||a.canPlayType("audio/aac;")).replace(/^no$/,"")}catch(d){}return c},s.localstorage=function(){try{return localStorage.setItem(h,h),localStorage.removeItem(h),!0}catch(a){return!1}},s.sessionstorage=function(){try{return sessionStorage.setItem(h,h),sessionStorage.removeItem(h),!0}catch(a){return!1}},s.webworkers=function(){return!!a.Worker},s.applicationcache=function(){return!!a.applicationCache},s.svg=function(){return!!b.createElementNS&&!!b.createElementNS(r.svg,"svg").createSVGRect},s.inlinesvg=function(){var a=b.createElement("div");return a.innerHTML="<svg/>",(a.firstChild&&a.firstChild.namespaceURI)==r.svg},s.smil=function(){return!!b.createElementNS&&/SVGAnimate/.test(m.call(b.createElementNS(r.svg,"animate")))},s.svgclippaths=function(){return!!b.createElementNS&&/SVGClipPath/.test(m.call(b.createElementNS(r.svg,"clipPath")))};for(var L in s)C(s,L)&&(x=L.toLowerCase(),e[x]=s[L](),v.push((e[x]?"":"no-")+x));return e.input||K(),e.addTest=function(a,b){if(typeof a=="object")for(var d in a)C(a,d)&&e.addTest(d,a[d]);else{a=a.toLowerCase();if(e[a]!==c)return e;b=typeof b=="function"?b():b,typeof f!="undefined"&&f&&(g.className+=" "+(b?"":"no-")+a),e[a]=b}return e},D(""),i=k=null,function(a,b){function k(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x<style>"+b+"</style>",d.insertBefore(c.lastChild,d.firstChild)}function l(){var a=r.elements;return typeof a=="string"?a.split(" "):a}function m(a){var b=i[a[g]];return b||(b={},h++,a[g]=h,i[h]=b),b}function n(a,c,f){c||(c=b);if(j)return c.createElement(a);f||(f=m(c));var g;return f.cache[a]?g=f.cache[a].cloneNode():e.test(a)?g=(f.cache[a]=f.createElem(a)).cloneNode():g=f.createElem(a),g.canHaveChildren&&!d.test(a)?f.frag.appendChild(g):g}function o(a,c){a||(a=b);if(j)return a.createDocumentFragment();c=c||m(a);var d=c.frag.cloneNode(),e=0,f=l(),g=f.length;for(;e<g;e++)d.createElement(f[e]);return d}function p(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return r.shivMethods?n(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+l().join().replace(/\w+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(r,b.frag)}function q(a){a||(a=b);var c=m(a);return r.shivCSS&&!f&&!c.hasCSS&&(c.hasCSS=!!k(a,"article,aside,figcaption,figure,footer,header,hgroup,nav,section{display:block}mark{background:#FF0;color:#000}")),j||p(a,c),a}var c=a.html5||{},d=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,e=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,f,g="_html5shiv",h=0,i={},j;(function(){try{var a=b.createElement("a");a.innerHTML="<xyz></xyz>",f="hidden"in a,j=a.childNodes.length==1||function(){b.createElement("a");var a=b.createDocumentFragment();return typeof a.cloneNode=="undefined"||typeof a.createDocumentFragment=="undefined"||typeof a.createElement=="undefined"}()}catch(c){f=!0,j=!0}})();var r={elements:c.elements||"abbr article aside audio bdi canvas data datalist details figcaption figure footer header hgroup mark meter nav output progress section summary time video",shivCSS:c.shivCSS!==!1,supportsUnknownElements:j,shivMethods:c.shivMethods!==!1,type:"default",shivDocument:q,createElement:n,createDocumentFragment:o};a.html5=r,q(b)}(this,b),e._version=d,e._prefixes=n,e._domPrefixes=q,e._cssomPrefixes=p,e.mq=z,e.hasEvent=A,e.testProp=function(a){return H([a])},e.testAllProps=J,e.testStyles=y,e.prefixed=function(a,b,c){return b?J(a,b,c):J(a,"pfx")},g.className=g.className.replace(/(^|\s)no-js(\s|$)/,"$1$2")+(f?" js "+v.join(" "):""),e}(this,this.document),function(a,b,c){function d(a){return"[object Function]"==o.call(a)}function e(a){return"string"==typeof a}function f(){}function g(a){return!a||"loaded"==a||"complete"==a||"uninitialized"==a}function h(){var a=p.shift();q=1,a?a.t?m(function(){("c"==a.t?B.injectCss:B.injectJs)(a.s,0,a.a,a.x,a.e,1)},0):(a(),h()):q=0}function i(a,c,d,e,f,i,j){function k(b){if(!o&&g(l.readyState)&&(u.r=o=1,!q&&h(),l.onload=l.onreadystatechange=null,b)){"img"!=a&&m(function(){t.removeChild(l)},50);for(var d in y[c])y[c].hasOwnProperty(d)&&y[c][d].onload()}}var j=j||B.errorTimeout,l=b.createElement(a),o=0,r=0,u={t:d,s:c,e:f,a:i,x:j};1===y[c]&&(r=1,y[c]=[]),"object"==a?l.data=c:(l.src=c,l.type=a),l.width=l.height="0",l.onerror=l.onload=l.onreadystatechange=function(){k.call(this,r)},p.splice(e,0,u),"img"!=a&&(r||2===y[c]?(t.insertBefore(l,s?null:n),m(k,j)):y[c].push(l))}function j(a,b,c,d,f){return q=0,b=b||"j",e(a)?i("c"==b?v:u,a,b,this.i++,c,d,f):(p.splice(this.i++,0,a),1==p.length&&h()),this}function k(){var a=B;return a.loader={load:j,i:0},a}var l=b.documentElement,m=a.setTimeout,n=b.getElementsByTagName("script")[0],o={}.toString,p=[],q=0,r="MozAppearance"in l.style,s=r&&!!b.createRange().compareNode,t=s?l:n.parentNode,l=a.opera&&"[object Opera]"==o.call(a.opera),l=!!b.attachEvent&&!l,u=r?"object":l?"script":"img",v=l?"script":u,w=Array.isArray||function(a){return"[object Array]"==o.call(a)},x=[],y={},z={timeout:function(a,b){return b.length&&(a.timeout=b[0]),a}},A,B;B=function(a){function b(a){var a=a.split("!"),b=x.length,c=a.pop(),d=a.length,c={url:c,origUrl:c,prefixes:a},e,f,g;for(f=0;f<d;f++)g=a[f].split("="),(e=z[g.shift()])&&(c=e(c,g));for(f=0;f<b;f++)c=x[f](c);return c}function g(a,e,f,g,h){var i=b(a),j=i.autoCallback;i.url.split(".").pop().split("?").shift(),i.bypass||(e&&(e=d(e)?e:e[a]||e[g]||e[a.split("/").pop().split("?")[0]]),i.instead?i.instead(a,e,f,g,h):(y[i.url]?i.noexec=!0:y[i.url]=1,f.load(i.url,i.forceCSS||!i.forceJS&&"css"==i.url.split(".").pop().split("?").shift()?"c":c,i.noexec,i.attrs,i.timeout),(d(e)||d(j))&&f.load(function(){k(),e&&e(i.origUrl,h,g),j&&j(i.origUrl,h,g),y[i.url]=2})))}function h(a,b){function c(a,c){if(a){if(e(a))c||(j=function(){var a=[].slice.call(arguments);k.apply(this,a),l()}),g(a,j,b,0,h);else if(Object(a)===a)for(n in m=function(){var b=0,c;for(c in a)a.hasOwnProperty(c)&&b++;return b}(),a)a.hasOwnProperty(n)&&(!c&&!--m&&(d(j)?j=function(){var a=[].slice.call(arguments);k.apply(this,a),l()}:j[n]=function(a){return function(){var b=[].slice.call(arguments);a&&a.apply(this,b),l()}}(k[n])),g(a[n],j,b,n,h))}else!c&&l()}var h=!!a.test,i=a.load||a.both,j=a.callback||f,k=j,l=a.complete||f,m,n;c(h?a.yep:a.nope,!!i),i&&c(i)}var i,j,l=this.yepnope.loader;if(e(a))g(a,0,l,0);else if(w(a))for(i=0;i<a.length;i++)j=a[i],e(j)?g(j,0,l,0):w(j)?B(j):Object(j)===j&&h(j,l);else Object(a)===a&&h(a,l)},B.addPrefix=function(a,b){z[a]=b},B.addFilter=function(a){x.push(a)},B.errorTimeout=1e4,null==b.readyState&&b.addEventListener&&(b.readyState="loading",b.addEventListener("DOMContentLoaded",A=function(){b.removeEventListener("DOMContentLoaded",A,0),b.readyState="complete"},0)),a.yepnope=k(),a.yepnope.executeStack=h,a.yepnope.injectJs=function(a,c,d,e,i,j){var k=b.createElement("script"),l,o,e=e||B.errorTimeout;k.src=a;for(o in d)k.setAttribute(o,d[o]);c=j?h:c||f,k.onreadystatechange=k.onload=function(){!l&&g(k.readyState)&&(l=1,c(),k.onload=k.onreadystatechange=null)},m(function(){l||(l=1,c(1))},e),i?k.onload():n.parentNode.insertBefore(k,n)},a.yepnope.injectCss=function(a,c,d,e,g,i){var e=b.createElement("link"),j,c=i?h:c||f;e.href=a,e.rel="stylesheet",e.type="text/css";for(j in d)e.setAttribute(j,d[j]);g||(n.parentNode.insertBefore(e,n),m(c,0))}}(this,document),Modernizr.load=function(){yepnope.apply(window,[].slice.call(arguments,0))};
PypiClean
/cubicweb-sherpa-0.11.0.tar.gz/cubicweb-sherpa-0.11.0/cubicweb_sherpa/views/__init__.py
from jinja2 import Environment, PackageLoader, select_autoescape from cubicweb.view import View from cubicweb.web.views import urlrewrite, startup, uicfg _REWRITE_RULES = [] _JINJA_ENV = Environment(loader=PackageLoader('cubicweb_sherpa.views'), autoescape=select_autoescape(enabled_extensions=('html',))) def jinja_render(template_name, **ctx): """Return a string containing result of rendering of Jinja2's `template_name` with `ctx` as context. """ template = _JINJA_ENV.get_template(template_name + '.jinja2.html') return template.render(**ctx) class JinjaStaticView(View): """Abstract base class to render static pages from a jinja template.""" __abstract__ = True template_name = None title = None def call(self, **kw): self.w(jinja_render(self.template_name, **self.build_context())) def build_context(self): return { 'title': self._cw._(self.title), 'build_url': self._cw.build_url, 'data_url': self._cw.datadir_url, } def jinja_static_view(template_name, title=None, regid=None, path=None): """Generate a sub-class of :class:`JinjaStaticView` parametrized with its `template_name` and `title`. `__regid__` is built by prepending 'sherpa.' to `template_name` or may be explicitly specified using `regid`. A path to access to view is automatically generated and will match `template_name` unless explicitly specified using `path` argument. """ class_name = template_name.capitalize() + 'View' if regid is None: regid = 'sherpa.' + template_name if path is None: path = '/' + template_name _REWRITE_RULES.append((path, {'vid': regid})) return type(class_name, (JinjaStaticView,), {'__regid__': regid, 'template_name': template_name, 'title': title}) IndexView = jinja_static_view('index', 'view_index', regid='index', path='/') ProjectView = jinja_static_view('project', u'Sherpa un générateur de profils') UtilisationView = jinja_static_view('utilisation', u'Pour commencer') SedaView = jinja_static_view('seda', u'Le SEDA') Seda2SchemaView = jinja_static_view('schema_seda', u'Schéma du SEDA 2') AProposView = jinja_static_view('apropos', u'À propos') ContactView = jinja_static_view('contact', 'Contact') ArchiveUnitView = jinja_static_view('archive_unit', u"Unités d'archive") ARecordView = jinja_static_view('authority_record', u"Notices d'autorité") # add our rewrite rules, has to be done once the list if filled because of metaclass magic class SherpaReqRewriter(urlrewrite.SimpleReqRewriter): ignore_baseclass_rules = True global _REWRITE_RULES rules = tuple(_REWRITE_RULES) del _REWRITE_RULES uicfg.autoform_section.tag_subject_of(('CWUser', 'primary_email', '*'), 'main', 'hidden') def authority_record_kind_vocabulary(form, field): """Vocabulary function for AuthorityRecord.kind skipping "unknown" value.""" rset = form._cw.execute('Any X, XN WHERE X name XN, X is AgentKind, ' 'X name != "unknown-agent-kind"') return [(entity.dc_title(), str(entity.eid)) for entity in rset.entities()] uicfg.autoform_field_kwargs.tag_attribute(('AuthorityRecord', 'agent_kind'), {'choices': authority_record_kind_vocabulary}) def registration_callback(vreg): vreg.register_all(globals().values(), __name__, (IndexView,)) vreg.register_and_replace(IndexView, startup.IndexView) from cubicweb.web.views import actions, bookmark, cwuser vreg.unregister(actions.SelectAction) vreg.unregister(actions.CancelSelectAction) vreg.unregister(actions.ViewAction) vreg.unregister(actions.MultipleEditAction) vreg.unregister(actions.CopyAction) vreg.unregister(actions.AddNewAction) vreg.unregister(actions.AddRelatedActions) vreg.unregister(actions.ViewSameCWEType) vreg.unregister(actions.UserPreferencesAction) vreg.unregister(actions.ManageAction) vreg.unregister(actions.PoweredByAction) vreg.unregister(bookmark.BookmarksBox) vreg.unregister(cwuser.UserPreferencesEntityAction)
PypiClean
/django-rte-0.4.0.tar.gz/django-rte-0.4.0/rte/static/rte/tiny_mce/plugins/contextmenu/editor_plugin.js
(function(){var a=tinymce.dom.Event,c=tinymce.each,b=tinymce.DOM;tinymce.create("tinymce.plugins.ContextMenu",{init:function(e){var h=this,f,d,i;h.editor=e;d=e.settings.contextmenu_never_use_native;h.onContextMenu=new tinymce.util.Dispatcher(this);f=e.onContextMenu.add(function(j,k){if((i!==0?i:k.ctrlKey)&&!d){return}a.cancel(k);if(k.target.nodeName=="IMG"){j.selection.select(k.target)}h._getMenu(j).showMenu(k.clientX||k.pageX,k.clientY||k.pageY);a.add(j.getDoc(),"click",function(l){g(j,l)});j.nodeChanged()});e.onRemove.add(function(){if(h._menu){h._menu.removeAll()}});function g(j,k){i=0;if(k&&k.button==2){i=k.ctrlKey;return}if(h._menu){h._menu.removeAll();h._menu.destroy();a.remove(j.getDoc(),"click",g)}}e.onMouseDown.add(g);e.onKeyDown.add(g);e.onKeyDown.add(function(j,k){if(k.shiftKey&&!k.ctrlKey&&!k.altKey&&k.keyCode===121){a.cancel(k);f(j,k)}})},getInfo:function(){return{longname:"Contextmenu",author:"Moxiecode Systems AB",authorurl:"http://tinymce.moxiecode.com",infourl:"http://wiki.moxiecode.com/index.php/TinyMCE:Plugins/contextmenu",version:tinymce.majorVersion+"."+tinymce.minorVersion}},_getMenu:function(e){var g=this,d=g._menu,j=e.selection,f=j.isCollapsed(),h=j.getNode()||e.getBody(),i,k;if(d){d.removeAll();d.destroy()}k=b.getPos(e.getContentAreaContainer());d=e.controlManager.createDropMenu("contextmenu",{offset_x:k.x+e.getParam("contextmenu_offset_x",0),offset_y:k.y+e.getParam("contextmenu_offset_y",0),constrain:1,keyboard_focus:true});g._menu=d;d.add({title:"advanced.cut_desc",icon:"cut",cmd:"Cut"}).setDisabled(f);d.add({title:"advanced.copy_desc",icon:"copy",cmd:"Copy"}).setDisabled(f);d.add({title:"advanced.paste_desc",icon:"paste",cmd:"Paste"});if((h.nodeName=="A"&&!e.dom.getAttrib(h,"name"))||!f){d.addSeparator();d.add({title:"advanced.link_desc",icon:"link",cmd:e.plugins.advlink?"mceAdvLink":"mceLink",ui:true});d.add({title:"advanced.unlink_desc",icon:"unlink",cmd:"UnLink"})}d.addSeparator();d.add({title:"advanced.image_desc",icon:"image",cmd:e.plugins.advimage?"mceAdvImage":"mceImage",ui:true});d.addSeparator();i=d.addMenu({title:"contextmenu.align"});i.add({title:"contextmenu.left",icon:"justifyleft",cmd:"JustifyLeft"});i.add({title:"contextmenu.center",icon:"justifycenter",cmd:"JustifyCenter"});i.add({title:"contextmenu.right",icon:"justifyright",cmd:"JustifyRight"});i.add({title:"contextmenu.full",icon:"justifyfull",cmd:"JustifyFull"});g.onContextMenu.dispatch(g,d,h,f);return d}});tinymce.PluginManager.add("contextmenu",tinymce.plugins.ContextMenu)})();
PypiClean
/PyPermissions-0.1.4.tar.gz/PyPermissions-0.1.4/pypermissions/decorators.py
from pypermissions.permission import PermissionSet def _prepare_runtime_permission(self, perm=None, runkw=None, args=None, kwargs=None): """This function parses the provided string arguments to decorators into the actual values for use when the decorator is being evaluated. This allows for permissions to be created that rely on arguments that are provided to the function. :param perm: The permission string to parse :param runkw: The run-time components to be inserted into the permission :param args: The arguments provided to the decorated function :param kwargs: The keyword arguments provided to the decorated function :rtype: :py:class:`str` """ permission = perm if not permission: return False for key, value in runkw.iteritems(): val_split = value.split('.') for attr in val_split: if attr == "self": value = self continue elif attr in kwargs: value = kwargs.get(attr) continue value = getattr(value, attr) permission = permission.replace('{'+key+'}', value) return permission def set_has_permission(perm=None, perm_set=None, on_failure=None, perm_check=None, **runkw): """This decorator checks if the provided permission set has the permission specified. It allows for the permission to rely on runtime information via runkw; which be used to modify perm based on arguments provided to the decorated function. For many use cases, this can be extended by decorating it with a custom decorator that will capture the current user making the function call, and providing their permissions as the perm_set. The function provided for use when the check fails will be called with the decorated functions arguments. :param perm: The permission to be checked. May contain {} tags to be replaced at run time. :param perm_set: The permission set being checked for the permission. :param on_failure: A function that gets called instead of the decorated function when perm_set does not have the specified permission. :param perm_check: The PermissionSet function to be used when evaluating for perm. :param runkw: The mappings to be used to create the actual permission at run time. """ def decorator(function): def check_permission(self, *args, **kwargs): permission = _prepare_runtime_permission(self, perm, runkw, args, kwargs) # No permission provided, so everyone has permission. if not permission: return function(self, *args, **kwargs) if not perm_set: return on_failure(self, *args, **kwargs) if not perm_check(perm_set, permission): return on_failure(self, *args, **kwargs) return function(self, *args, **kwargs) return check_permission return decorator def set_grants_permission(perm=None, perm_set=None, on_failure=None, **runkw): """This decorator checks if the provided permission set has the permission specified. It allows for the permission to rely on runtime information via runkw; which be used to modify perm based on arguments provided to the decorated function. For many use cases, this can be extended by decorating it with a custom decorator that will capture the current user making the function call, and providing their permissions as the perm_set. The function provided for use when the check fails will be called with the decorated functions arguments. :param perm: The permission to be checked. May contain {} tags to be replaced at run time. :param perm_set: The permission set being checked for the permission. :param on_failure: A function that gets called instead of the decorated function when perm_set does not have the specified permission. :param runkw: The mappings to be used to create the actual permission at run time. """ return set_has_permission(perm, perm_set, on_failure, perm_check=PermissionSet.grants_permission, **runkw) def set_has_any_permission(perm=None, perm_set=None, on_failure=None, **runkw): """This decorator checks if the provided permission set has a permission of the form specified. It allows for the permission to rely on runtime information via runkw; which be used to modify perm based on arguments provided to the decorated function. For many use cases, this can be extended by decorating it with a custom decorator that will capture the current user making the function call, and providing their permissions as the perm_set. The function provided for use when the check fails will be called with the decorated functions arguments. :param perm: The permission to be checked. May contain {} tags to be replaced at run time. :param perm_set: The permission set being checked for the permission. :param on_failure: A function that gets called instead of the decorated function when perm_set does not have the specified permission. :param runkw: The mappings to be used to create the actual permission at run time. """ return set_has_permission(perm, perm_set, on_failure, perm_check=PermissionSet.has_any_permission, **runkw)
PypiClean
/xadmin_croxlink2-0.7.0.3.tar.gz/xadmin_croxlink2-0.7.0.3/xadmin/static/xadmin/vendor/jquery-ui/jquery.ui.sortable.min.js
(function(t){function e(t,e,i){return t>e&&e+i>t}function i(t){return/left|right/.test(t.css("float"))||/inline|table-cell/.test(t.css("display"))}t.widget("ui.sortable",t.ui.mouse,{version:"1.10.2",widgetEventPrefix:"sort",ready:!1,options:{appendTo:"parent",axis:!1,connectWith:!1,containment:!1,cursor:"auto",cursorAt:!1,dropOnEmpty:!0,forcePlaceholderSize:!1,forceHelperSize:!1,grid:!1,handle:!1,helper:"original",items:"> *",opacity:!1,placeholder:!1,revert:!1,scroll:!0,scrollSensitivity:20,scrollSpeed:20,scope:"default",tolerance:"intersect",zIndex:1e3,activate:null,beforeStop:null,change:null,deactivate:null,out:null,over:null,receive:null,remove:null,sort:null,start:null,stop:null,update:null},_create:function(){var t=this.options;this.containerCache={},this.element.addClass("ui-sortable"),this.refresh(),this.floating=this.items.length?"x"===t.axis||i(this.items[0].item):!1,this.offset=this.element.offset(),this._mouseInit(),this.ready=!0},_destroy:function(){this.element.removeClass("ui-sortable ui-sortable-disabled"),this._mouseDestroy();for(var t=this.items.length-1;t>=0;t--)this.items[t].item.removeData(this.widgetName+"-item");return this},_setOption:function(e,i){"disabled"===e?(this.options[e]=i,this.widget().toggleClass("ui-sortable-disabled",!!i)):t.Widget.prototype._setOption.apply(this,arguments)},_mouseCapture:function(e,i){var s=null,n=!1,a=this;return this.reverting?!1:this.options.disabled||"static"===this.options.type?!1:(this._refreshItems(e),t(e.target).parents().each(function(){return t.data(this,a.widgetName+"-item")===a?(s=t(this),!1):undefined}),t.data(e.target,a.widgetName+"-item")===a&&(s=t(e.target)),s?!this.options.handle||i||(t(this.options.handle,s).find("*").addBack().each(function(){this===e.target&&(n=!0)}),n)?(this.currentItem=s,this._removeCurrentsFromItems(),!0):!1:!1)},_mouseStart:function(e,i,s){var n,a,o=this.options;if(this.currentContainer=this,this.refreshPositions(),this.helper=this._createHelper(e),this._cacheHelperProportions(),this._cacheMargins(),this.scrollParent=this.helper.scrollParent(),this.offset=this.currentItem.offset(),this.offset={top:this.offset.top-this.margins.top,left:this.offset.left-this.margins.left},t.extend(this.offset,{click:{left:e.pageX-this.offset.left,top:e.pageY-this.offset.top},parent:this._getParentOffset(),relative:this._getRelativeOffset()}),this.helper.css("position","absolute"),this.cssPosition=this.helper.css("position"),this.originalPosition=this._generatePosition(e),this.originalPageX=e.pageX,this.originalPageY=e.pageY,o.cursorAt&&this._adjustOffsetFromHelper(o.cursorAt),this.domPosition={prev:this.currentItem.prev()[0],parent:this.currentItem.parent()[0]},this.helper[0]!==this.currentItem[0]&&this.currentItem.hide(),this._createPlaceholder(),o.containment&&this._setContainment(),o.cursor&&"auto"!==o.cursor&&(a=this.document.find("body"),this.storedCursor=a.css("cursor"),a.css("cursor",o.cursor),this.storedStylesheet=t("<style>*{ cursor: "+o.cursor+" !important; }</style>").appendTo(a)),o.opacity&&(this.helper.css("opacity")&&(this._storedOpacity=this.helper.css("opacity")),this.helper.css("opacity",o.opacity)),o.zIndex&&(this.helper.css("zIndex")&&(this._storedZIndex=this.helper.css("zIndex")),this.helper.css("zIndex",o.zIndex)),this.scrollParent[0]!==document&&"HTML"!==this.scrollParent[0].tagName&&(this.overflowOffset=this.scrollParent.offset()),this._trigger("start",e,this._uiHash()),this._preserveHelperProportions||this._cacheHelperProportions(),!s)for(n=this.containers.length-1;n>=0;n--)this.containers[n]._trigger("activate",e,this._uiHash(this));return t.ui.ddmanager&&(t.ui.ddmanager.current=this),t.ui.ddmanager&&!o.dropBehaviour&&t.ui.ddmanager.prepareOffsets(this,e),this.dragging=!0,this.helper.addClass("ui-sortable-helper"),this._mouseDrag(e),!0},_mouseDrag:function(e){var i,s,n,a,o=this.options,r=!1;for(this.position=this._generatePosition(e),this.positionAbs=this._convertPositionTo("absolute"),this.lastPositionAbs||(this.lastPositionAbs=this.positionAbs),this.options.scroll&&(this.scrollParent[0]!==document&&"HTML"!==this.scrollParent[0].tagName?(this.overflowOffset.top+this.scrollParent[0].offsetHeight-e.pageY<o.scrollSensitivity?this.scrollParent[0].scrollTop=r=this.scrollParent[0].scrollTop+o.scrollSpeed:e.pageY-this.overflowOffset.top<o.scrollSensitivity&&(this.scrollParent[0].scrollTop=r=this.scrollParent[0].scrollTop-o.scrollSpeed),this.overflowOffset.left+this.scrollParent[0].offsetWidth-e.pageX<o.scrollSensitivity?this.scrollParent[0].scrollLeft=r=this.scrollParent[0].scrollLeft+o.scrollSpeed:e.pageX-this.overflowOffset.left<o.scrollSensitivity&&(this.scrollParent[0].scrollLeft=r=this.scrollParent[0].scrollLeft-o.scrollSpeed)):(e.pageY-t(document).scrollTop()<o.scrollSensitivity?r=t(document).scrollTop(t(document).scrollTop()-o.scrollSpeed):t(window).height()-(e.pageY-t(document).scrollTop())<o.scrollSensitivity&&(r=t(document).scrollTop(t(document).scrollTop()+o.scrollSpeed)),e.pageX-t(document).scrollLeft()<o.scrollSensitivity?r=t(document).scrollLeft(t(document).scrollLeft()-o.scrollSpeed):t(window).width()-(e.pageX-t(document).scrollLeft())<o.scrollSensitivity&&(r=t(document).scrollLeft(t(document).scrollLeft()+o.scrollSpeed))),r!==!1&&t.ui.ddmanager&&!o.dropBehaviour&&t.ui.ddmanager.prepareOffsets(this,e)),this.positionAbs=this._convertPositionTo("absolute"),this.options.axis&&"y"===this.options.axis||(this.helper[0].style.left=this.position.left+"px"),this.options.axis&&"x"===this.options.axis||(this.helper[0].style.top=this.position.top+"px"),i=this.items.length-1;i>=0;i--)if(s=this.items[i],n=s.item[0],a=this._intersectsWithPointer(s),a&&s.instance===this.currentContainer&&n!==this.currentItem[0]&&this.placeholder[1===a?"next":"prev"]()[0]!==n&&!t.contains(this.placeholder[0],n)&&("semi-dynamic"===this.options.type?!t.contains(this.element[0],n):!0)){if(this.direction=1===a?"down":"up","pointer"!==this.options.tolerance&&!this._intersectsWithSides(s))break;this._rearrange(e,s),this._trigger("change",e,this._uiHash());break}return this._contactContainers(e),t.ui.ddmanager&&t.ui.ddmanager.drag(this,e),this._trigger("sort",e,this._uiHash()),this.lastPositionAbs=this.positionAbs,!1},_mouseStop:function(e,i){if(e){if(t.ui.ddmanager&&!this.options.dropBehaviour&&t.ui.ddmanager.drop(this,e),this.options.revert){var s=this,n=this.placeholder.offset(),a=this.options.axis,o={};a&&"x"!==a||(o.left=n.left-this.offset.parent.left-this.margins.left+(this.offsetParent[0]===document.body?0:this.offsetParent[0].scrollLeft)),a&&"y"!==a||(o.top=n.top-this.offset.parent.top-this.margins.top+(this.offsetParent[0]===document.body?0:this.offsetParent[0].scrollTop)),this.reverting=!0,t(this.helper).animate(o,parseInt(this.options.revert,10)||500,function(){s._clear(e)})}else this._clear(e,i);return!1}},cancel:function(){if(this.dragging){this._mouseUp({target:null}),"original"===this.options.helper?this.currentItem.css(this._storedCSS).removeClass("ui-sortable-helper"):this.currentItem.show();for(var e=this.containers.length-1;e>=0;e--)this.containers[e]._trigger("deactivate",null,this._uiHash(this)),this.containers[e].containerCache.over&&(this.containers[e]._trigger("out",null,this._uiHash(this)),this.containers[e].containerCache.over=0)}return this.placeholder&&(this.placeholder[0].parentNode&&this.placeholder[0].parentNode.removeChild(this.placeholder[0]),"original"!==this.options.helper&&this.helper&&this.helper[0].parentNode&&this.helper.remove(),t.extend(this,{helper:null,dragging:!1,reverting:!1,_noFinalSort:null}),this.domPosition.prev?t(this.domPosition.prev).after(this.currentItem):t(this.domPosition.parent).prepend(this.currentItem)),this},serialize:function(e){var i=this._getItemsAsjQuery(e&&e.connected),s=[];return e=e||{},t(i).each(function(){var i=(t(e.item||this).attr(e.attribute||"id")||"").match(e.expression||/(.+)[\-=_](.+)/);i&&s.push((e.key||i[1]+"[]")+"="+(e.key&&e.expression?i[1]:i[2]))}),!s.length&&e.key&&s.push(e.key+"="),s.join("&")},toArray:function(e){var i=this._getItemsAsjQuery(e&&e.connected),s=[];return e=e||{},i.each(function(){s.push(t(e.item||this).attr(e.attribute||"id")||"")}),s},_intersectsWith:function(t){var e=this.positionAbs.left,i=e+this.helperProportions.width,s=this.positionAbs.top,n=s+this.helperProportions.height,a=t.left,o=a+t.width,r=t.top,h=r+t.height,l=this.offset.click.top,c=this.offset.click.left,u=s+l>r&&h>s+l&&e+c>a&&o>e+c;return"pointer"===this.options.tolerance||this.options.forcePointerForContainers||"pointer"!==this.options.tolerance&&this.helperProportions[this.floating?"width":"height"]>t[this.floating?"width":"height"]?u:e+this.helperProportions.width/2>a&&o>i-this.helperProportions.width/2&&s+this.helperProportions.height/2>r&&h>n-this.helperProportions.height/2},_intersectsWithPointer:function(t){var i="x"===this.options.axis||e(this.positionAbs.top+this.offset.click.top,t.top,t.height),s="y"===this.options.axis||e(this.positionAbs.left+this.offset.click.left,t.left,t.width),n=i&&s,a=this._getDragVerticalDirection(),o=this._getDragHorizontalDirection();return n?this.floating?o&&"right"===o||"down"===a?2:1:a&&("down"===a?2:1):!1},_intersectsWithSides:function(t){var i=e(this.positionAbs.top+this.offset.click.top,t.top+t.height/2,t.height),s=e(this.positionAbs.left+this.offset.click.left,t.left+t.width/2,t.width),n=this._getDragVerticalDirection(),a=this._getDragHorizontalDirection();return this.floating&&a?"right"===a&&s||"left"===a&&!s:n&&("down"===n&&i||"up"===n&&!i)},_getDragVerticalDirection:function(){var t=this.positionAbs.top-this.lastPositionAbs.top;return 0!==t&&(t>0?"down":"up")},_getDragHorizontalDirection:function(){var t=this.positionAbs.left-this.lastPositionAbs.left;return 0!==t&&(t>0?"right":"left")},refresh:function(t){return this._refreshItems(t),this.refreshPositions(),this},_connectWith:function(){var t=this.options;return t.connectWith.constructor===String?[t.connectWith]:t.connectWith},_getItemsAsjQuery:function(e){var i,s,n,a,o=[],r=[],h=this._connectWith();if(h&&e)for(i=h.length-1;i>=0;i--)for(n=t(h[i]),s=n.length-1;s>=0;s--)a=t.data(n[s],this.widgetFullName),a&&a!==this&&!a.options.disabled&&r.push([t.isFunction(a.options.items)?a.options.items.call(a.element):t(a.options.items,a.element).not(".ui-sortable-helper").not(".ui-sortable-placeholder"),a]);for(r.push([t.isFunction(this.options.items)?this.options.items.call(this.element,null,{options:this.options,item:this.currentItem}):t(this.options.items,this.element).not(".ui-sortable-helper").not(".ui-sortable-placeholder"),this]),i=r.length-1;i>=0;i--)r[i][0].each(function(){o.push(this)});return t(o)},_removeCurrentsFromItems:function(){var e=this.currentItem.find(":data("+this.widgetName+"-item)");this.items=t.grep(this.items,function(t){for(var i=0;e.length>i;i++)if(e[i]===t.item[0])return!1;return!0})},_refreshItems:function(e){this.items=[],this.containers=[this];var i,s,n,a,o,r,h,l,c=this.items,u=[[t.isFunction(this.options.items)?this.options.items.call(this.element[0],e,{item:this.currentItem}):t(this.options.items,this.element),this]],d=this._connectWith();if(d&&this.ready)for(i=d.length-1;i>=0;i--)for(n=t(d[i]),s=n.length-1;s>=0;s--)a=t.data(n[s],this.widgetFullName),a&&a!==this&&!a.options.disabled&&(u.push([t.isFunction(a.options.items)?a.options.items.call(a.element[0],e,{item:this.currentItem}):t(a.options.items,a.element),a]),this.containers.push(a));for(i=u.length-1;i>=0;i--)for(o=u[i][1],r=u[i][0],s=0,l=r.length;l>s;s++)h=t(r[s]),h.data(this.widgetName+"-item",o),c.push({item:h,instance:o,width:0,height:0,left:0,top:0})},refreshPositions:function(e){this.offsetParent&&this.helper&&(this.offset.parent=this._getParentOffset());var i,s,n,a;for(i=this.items.length-1;i>=0;i--)s=this.items[i],s.instance!==this.currentContainer&&this.currentContainer&&s.item[0]!==this.currentItem[0]||(n=this.options.toleranceElement?t(this.options.toleranceElement,s.item):s.item,e||(s.width=n.outerWidth(),s.height=n.outerHeight()),a=n.offset(),s.left=a.left,s.top=a.top);if(this.options.custom&&this.options.custom.refreshContainers)this.options.custom.refreshContainers.call(this);else for(i=this.containers.length-1;i>=0;i--)a=this.containers[i].element.offset(),this.containers[i].containerCache.left=a.left,this.containers[i].containerCache.top=a.top,this.containers[i].containerCache.width=this.containers[i].element.outerWidth(),this.containers[i].containerCache.height=this.containers[i].element.outerHeight();return this},_createPlaceholder:function(e){e=e||this;var i,s=e.options;s.placeholder&&s.placeholder.constructor!==String||(i=s.placeholder,s.placeholder={element:function(){var s=e.currentItem[0].nodeName.toLowerCase(),n=t(e.document[0].createElement(s)).addClass(i||e.currentItem[0].className+" ui-sortable-placeholder").removeClass("ui-sortable-helper");return"tr"===s?n.append("<td colspan='99'>&#160;</td>"):"img"===s&&n.attr("src",e.currentItem.attr("src")),i||n.css("visibility","hidden"),n},update:function(t,n){(!i||s.forcePlaceholderSize)&&(n.height()||n.height(e.currentItem.innerHeight()-parseInt(e.currentItem.css("paddingTop")||0,10)-parseInt(e.currentItem.css("paddingBottom")||0,10)),n.width()||n.width(e.currentItem.innerWidth()-parseInt(e.currentItem.css("paddingLeft")||0,10)-parseInt(e.currentItem.css("paddingRight")||0,10)))}}),e.placeholder=t(s.placeholder.element.call(e.element,e.currentItem)),e.currentItem.after(e.placeholder),s.placeholder.update(e,e.placeholder)},_contactContainers:function(s){var n,a,o,r,h,l,c,u,d,p,f=null,m=null;for(n=this.containers.length-1;n>=0;n--)if(!t.contains(this.currentItem[0],this.containers[n].element[0]))if(this._intersectsWith(this.containers[n].containerCache)){if(f&&t.contains(this.containers[n].element[0],f.element[0]))continue;f=this.containers[n],m=n}else this.containers[n].containerCache.over&&(this.containers[n]._trigger("out",s,this._uiHash(this)),this.containers[n].containerCache.over=0);if(f)if(1===this.containers.length)this.containers[m].containerCache.over||(this.containers[m]._trigger("over",s,this._uiHash(this)),this.containers[m].containerCache.over=1);else{for(o=1e4,r=null,p=f.floating||i(this.currentItem),h=p?"left":"top",l=p?"width":"height",c=this.positionAbs[h]+this.offset.click[h],a=this.items.length-1;a>=0;a--)t.contains(this.containers[m].element[0],this.items[a].item[0])&&this.items[a].item[0]!==this.currentItem[0]&&(!p||e(this.positionAbs.top+this.offset.click.top,this.items[a].top,this.items[a].height))&&(u=this.items[a].item.offset()[h],d=!1,Math.abs(u-c)>Math.abs(u+this.items[a][l]-c)&&(d=!0,u+=this.items[a][l]),o>Math.abs(u-c)&&(o=Math.abs(u-c),r=this.items[a],this.direction=d?"up":"down"));if(!r&&!this.options.dropOnEmpty)return;if(this.currentContainer===this.containers[m])return;r?this._rearrange(s,r,null,!0):this._rearrange(s,null,this.containers[m].element,!0),this._trigger("change",s,this._uiHash()),this.containers[m]._trigger("change",s,this._uiHash(this)),this.currentContainer=this.containers[m],this.options.placeholder.update(this.currentContainer,this.placeholder),this.containers[m]._trigger("over",s,this._uiHash(this)),this.containers[m].containerCache.over=1}},_createHelper:function(e){var i=this.options,s=t.isFunction(i.helper)?t(i.helper.apply(this.element[0],[e,this.currentItem])):"clone"===i.helper?this.currentItem.clone():this.currentItem;return s.parents("body").length||t("parent"!==i.appendTo?i.appendTo:this.currentItem[0].parentNode)[0].appendChild(s[0]),s[0]===this.currentItem[0]&&(this._storedCSS={width:this.currentItem[0].style.width,height:this.currentItem[0].style.height,position:this.currentItem.css("position"),top:this.currentItem.css("top"),left:this.currentItem.css("left")}),(!s[0].style.width||i.forceHelperSize)&&s.width(this.currentItem.width()),(!s[0].style.height||i.forceHelperSize)&&s.height(this.currentItem.height()),s},_adjustOffsetFromHelper:function(e){"string"==typeof e&&(e=e.split(" ")),t.isArray(e)&&(e={left:+e[0],top:+e[1]||0}),"left"in e&&(this.offset.click.left=e.left+this.margins.left),"right"in e&&(this.offset.click.left=this.helperProportions.width-e.right+this.margins.left),"top"in e&&(this.offset.click.top=e.top+this.margins.top),"bottom"in e&&(this.offset.click.top=this.helperProportions.height-e.bottom+this.margins.top)},_getParentOffset:function(){this.offsetParent=this.helper.offsetParent();var e=this.offsetParent.offset();return"absolute"===this.cssPosition&&this.scrollParent[0]!==document&&t.contains(this.scrollParent[0],this.offsetParent[0])&&(e.left+=this.scrollParent.scrollLeft(),e.top+=this.scrollParent.scrollTop()),(this.offsetParent[0]===document.body||this.offsetParent[0].tagName&&"html"===this.offsetParent[0].tagName.toLowerCase()&&t.ui.ie)&&(e={top:0,left:0}),{top:e.top+(parseInt(this.offsetParent.css("borderTopWidth"),10)||0),left:e.left+(parseInt(this.offsetParent.css("borderLeftWidth"),10)||0)}},_getRelativeOffset:function(){if("relative"===this.cssPosition){var t=this.currentItem.position();return{top:t.top-(parseInt(this.helper.css("top"),10)||0)+this.scrollParent.scrollTop(),left:t.left-(parseInt(this.helper.css("left"),10)||0)+this.scrollParent.scrollLeft()}}return{top:0,left:0}},_cacheMargins:function(){this.margins={left:parseInt(this.currentItem.css("marginLeft"),10)||0,top:parseInt(this.currentItem.css("marginTop"),10)||0}},_cacheHelperProportions:function(){this.helperProportions={width:this.helper.outerWidth(),height:this.helper.outerHeight()}},_setContainment:function(){var e,i,s,n=this.options;"parent"===n.containment&&(n.containment=this.helper[0].parentNode),("document"===n.containment||"window"===n.containment)&&(this.containment=[0-this.offset.relative.left-this.offset.parent.left,0-this.offset.relative.top-this.offset.parent.top,t("document"===n.containment?document:window).width()-this.helperProportions.width-this.margins.left,(t("document"===n.containment?document:window).height()||document.body.parentNode.scrollHeight)-this.helperProportions.height-this.margins.top]),/^(document|window|parent)$/.test(n.containment)||(e=t(n.containment)[0],i=t(n.containment).offset(),s="hidden"!==t(e).css("overflow"),this.containment=[i.left+(parseInt(t(e).css("borderLeftWidth"),10)||0)+(parseInt(t(e).css("paddingLeft"),10)||0)-this.margins.left,i.top+(parseInt(t(e).css("borderTopWidth"),10)||0)+(parseInt(t(e).css("paddingTop"),10)||0)-this.margins.top,i.left+(s?Math.max(e.scrollWidth,e.offsetWidth):e.offsetWidth)-(parseInt(t(e).css("borderLeftWidth"),10)||0)-(parseInt(t(e).css("paddingRight"),10)||0)-this.helperProportions.width-this.margins.left,i.top+(s?Math.max(e.scrollHeight,e.offsetHeight):e.offsetHeight)-(parseInt(t(e).css("borderTopWidth"),10)||0)-(parseInt(t(e).css("paddingBottom"),10)||0)-this.helperProportions.height-this.margins.top])},_convertPositionTo:function(e,i){i||(i=this.position);var s="absolute"===e?1:-1,n="absolute"!==this.cssPosition||this.scrollParent[0]!==document&&t.contains(this.scrollParent[0],this.offsetParent[0])?this.scrollParent:this.offsetParent,a=/(html|body)/i.test(n[0].tagName);return{top:i.top+this.offset.relative.top*s+this.offset.parent.top*s-("fixed"===this.cssPosition?-this.scrollParent.scrollTop():a?0:n.scrollTop())*s,left:i.left+this.offset.relative.left*s+this.offset.parent.left*s-("fixed"===this.cssPosition?-this.scrollParent.scrollLeft():a?0:n.scrollLeft())*s}},_generatePosition:function(e){var i,s,n=this.options,a=e.pageX,o=e.pageY,r="absolute"!==this.cssPosition||this.scrollParent[0]!==document&&t.contains(this.scrollParent[0],this.offsetParent[0])?this.scrollParent:this.offsetParent,h=/(html|body)/i.test(r[0].tagName);return"relative"!==this.cssPosition||this.scrollParent[0]!==document&&this.scrollParent[0]!==this.offsetParent[0]||(this.offset.relative=this._getRelativeOffset()),this.originalPosition&&(this.containment&&(e.pageX-this.offset.click.left<this.containment[0]&&(a=this.containment[0]+this.offset.click.left),e.pageY-this.offset.click.top<this.containment[1]&&(o=this.containment[1]+this.offset.click.top),e.pageX-this.offset.click.left>this.containment[2]&&(a=this.containment[2]+this.offset.click.left),e.pageY-this.offset.click.top>this.containment[3]&&(o=this.containment[3]+this.offset.click.top)),n.grid&&(i=this.originalPageY+Math.round((o-this.originalPageY)/n.grid[1])*n.grid[1],o=this.containment?i-this.offset.click.top>=this.containment[1]&&i-this.offset.click.top<=this.containment[3]?i:i-this.offset.click.top>=this.containment[1]?i-n.grid[1]:i+n.grid[1]:i,s=this.originalPageX+Math.round((a-this.originalPageX)/n.grid[0])*n.grid[0],a=this.containment?s-this.offset.click.left>=this.containment[0]&&s-this.offset.click.left<=this.containment[2]?s:s-this.offset.click.left>=this.containment[0]?s-n.grid[0]:s+n.grid[0]:s)),{top:o-this.offset.click.top-this.offset.relative.top-this.offset.parent.top+("fixed"===this.cssPosition?-this.scrollParent.scrollTop():h?0:r.scrollTop()),left:a-this.offset.click.left-this.offset.relative.left-this.offset.parent.left+("fixed"===this.cssPosition?-this.scrollParent.scrollLeft():h?0:r.scrollLeft())}},_rearrange:function(t,e,i,s){i?i[0].appendChild(this.placeholder[0]):e.item[0].parentNode.insertBefore(this.placeholder[0],"down"===this.direction?e.item[0]:e.item[0].nextSibling),this.counter=this.counter?++this.counter:1;var n=this.counter;this._delay(function(){n===this.counter&&this.refreshPositions(!s)})},_clear:function(t,e){this.reverting=!1;var i,s=[];if(!this._noFinalSort&&this.currentItem.parent().length&&this.placeholder.before(this.currentItem),this._noFinalSort=null,this.helper[0]===this.currentItem[0]){for(i in this._storedCSS)("auto"===this._storedCSS[i]||"static"===this._storedCSS[i])&&(this._storedCSS[i]="");this.currentItem.css(this._storedCSS).removeClass("ui-sortable-helper")}else this.currentItem.show();for(this.fromOutside&&!e&&s.push(function(t){this._trigger("receive",t,this._uiHash(this.fromOutside))}),!this.fromOutside&&this.domPosition.prev===this.currentItem.prev().not(".ui-sortable-helper")[0]&&this.domPosition.parent===this.currentItem.parent()[0]||e||s.push(function(t){this._trigger("update",t,this._uiHash())}),this!==this.currentContainer&&(e||(s.push(function(t){this._trigger("remove",t,this._uiHash())}),s.push(function(t){return function(e){t._trigger("receive",e,this._uiHash(this))}}.call(this,this.currentContainer)),s.push(function(t){return function(e){t._trigger("update",e,this._uiHash(this))}}.call(this,this.currentContainer)))),i=this.containers.length-1;i>=0;i--)e||s.push(function(t){return function(e){t._trigger("deactivate",e,this._uiHash(this))}}.call(this,this.containers[i])),this.containers[i].containerCache.over&&(s.push(function(t){return function(e){t._trigger("out",e,this._uiHash(this))}}.call(this,this.containers[i])),this.containers[i].containerCache.over=0);if(this.storedCursor&&(this.document.find("body").css("cursor",this.storedCursor),this.storedStylesheet.remove()),this._storedOpacity&&this.helper.css("opacity",this._storedOpacity),this._storedZIndex&&this.helper.css("zIndex","auto"===this._storedZIndex?"":this._storedZIndex),this.dragging=!1,this.cancelHelperRemoval){if(!e){for(this._trigger("beforeStop",t,this._uiHash()),i=0;s.length>i;i++)s[i].call(this,t);this._trigger("stop",t,this._uiHash())}return this.fromOutside=!1,!1}if(e||this._trigger("beforeStop",t,this._uiHash()),this.placeholder[0].parentNode.removeChild(this.placeholder[0]),this.helper[0]!==this.currentItem[0]&&this.helper.remove(),this.helper=null,!e){for(i=0;s.length>i;i++)s[i].call(this,t);this._trigger("stop",t,this._uiHash())}return this.fromOutside=!1,!0},_trigger:function(){t.Widget.prototype._trigger.apply(this,arguments)===!1&&this.cancel()},_uiHash:function(e){var i=e||this;return{helper:i.helper,placeholder:i.placeholder||t([]),position:i.position,originalPosition:i.originalPosition,offset:i.positionAbs,item:i.currentItem,sender:e?e.element:null}}})})(jQuery);
PypiClean
/sematic-0.0.2.alpha.1654672757-py3-none-any.whl/sqlalchemy/dialects/firebird/kinterbasdb.py
# noqa import decimal from re import match from .base import FBDialect from .base import FBExecutionContext from ... import types as sqltypes from ... import util class _kinterbasdb_numeric(object): def bind_processor(self, dialect): def process(value): if isinstance(value, decimal.Decimal): return str(value) else: return value return process class _FBNumeric_kinterbasdb(_kinterbasdb_numeric, sqltypes.Numeric): pass class _FBFloat_kinterbasdb(_kinterbasdb_numeric, sqltypes.Float): pass class FBExecutionContext_kinterbasdb(FBExecutionContext): @property def rowcount(self): if self.execution_options.get( "enable_rowcount", self.dialect.enable_rowcount ): return self.cursor.rowcount else: return -1 class FBDialect_kinterbasdb(FBDialect): driver = "kinterbasdb" supports_statement_cache = True supports_sane_rowcount = False supports_sane_multi_rowcount = False execution_ctx_cls = FBExecutionContext_kinterbasdb supports_native_decimal = True colspecs = util.update_copy( FBDialect.colspecs, { sqltypes.Numeric: _FBNumeric_kinterbasdb, sqltypes.Float: _FBFloat_kinterbasdb, }, ) def __init__( self, type_conv=200, concurrency_level=1, enable_rowcount=True, retaining=False, **kwargs ): super(FBDialect_kinterbasdb, self).__init__(**kwargs) self.enable_rowcount = enable_rowcount self.type_conv = type_conv self.concurrency_level = concurrency_level self.retaining = retaining if enable_rowcount: self.supports_sane_rowcount = True @classmethod def dbapi(cls): return __import__("kinterbasdb") def do_execute(self, cursor, statement, parameters, context=None): # kinterbase does not accept a None, but wants an empty list # when there are no arguments. cursor.execute(statement, parameters or []) def do_rollback(self, dbapi_connection): dbapi_connection.rollback(self.retaining) def do_commit(self, dbapi_connection): dbapi_connection.commit(self.retaining) def create_connect_args(self, url): opts = url.translate_connect_args(username="user") if opts.get("port"): opts["host"] = "%s/%s" % (opts["host"], opts["port"]) del opts["port"] opts.update(url.query) util.coerce_kw_type(opts, "type_conv", int) type_conv = opts.pop("type_conv", self.type_conv) concurrency_level = opts.pop( "concurrency_level", self.concurrency_level ) if self.dbapi is not None: initialized = getattr(self.dbapi, "initialized", None) if initialized is None: # CVS rev 1.96 changed the name of the attribute: # https://kinterbasdb.cvs.sourceforge.net/viewvc/kinterbasdb/ # Kinterbasdb-3.0/__init__.py?r1=1.95&r2=1.96 initialized = getattr(self.dbapi, "_initialized", False) if not initialized: self.dbapi.init( type_conv=type_conv, concurrency_level=concurrency_level ) return ([], opts) def _get_server_version_info(self, connection): """Get the version of the Firebird server used by a connection. Returns a tuple of (`major`, `minor`, `build`), three integers representing the version of the attached server. """ # This is the simpler approach (the other uses the services api), # that for backward compatibility reasons returns a string like # LI-V6.3.3.12981 Firebird 2.0 # where the first version is a fake one resembling the old # Interbase signature. fbconn = connection.connection version = fbconn.server_version return self._parse_version_info(version) def _parse_version_info(self, version): m = match( r"\w+-V(\d+)\.(\d+)\.(\d+)\.(\d+)( \w+ (\d+)\.(\d+))?", version ) if not m: raise AssertionError( "Could not determine version from string '%s'" % version ) if m.group(5) != None: return tuple([int(x) for x in m.group(6, 7, 4)] + ["firebird"]) else: return tuple([int(x) for x in m.group(1, 2, 3)] + ["interbase"]) def is_disconnect(self, e, connection, cursor): if isinstance( e, (self.dbapi.OperationalError, self.dbapi.ProgrammingError) ): msg = str(e) return ( "Error writing data to the connection" in msg or "Unable to complete network request to host" in msg or "Invalid connection state" in msg or "Invalid cursor state" in msg or "connection shutdown" in msg ) else: return False dialect = FBDialect_kinterbasdb
PypiClean
/django_oidc_provider2-0.9.1-py3-none-any.whl/oidc_provider/migrations/0001_initial.py
from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ ('auth', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Client', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(default=b'', max_length=100)), ('client_id', models.CharField(unique=True, max_length=255)), ('client_secret', models.CharField(unique=True, max_length=255)), ('response_type', models.CharField(max_length=30, choices=[ (b'code', b'code (Authorization Code Flow)'), (b'id_token', b'id_token (Implicit Flow)'), (b'id_token token', b'id_token token (Implicit Flow)')])), ('_redirect_uris', models.TextField(default=b'')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='Code', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('expires_at', models.DateTimeField()), ('_scope', models.TextField(default=b'')), ('code', models.CharField(unique=True, max_length=255)), ('client', models.ForeignKey(to='oidc_provider.Client', on_delete=models.CASCADE)), ], options={ 'abstract': False, }, bases=(models.Model,), ), migrations.CreateModel( name='Token', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('expires_at', models.DateTimeField()), ('_scope', models.TextField(default=b'')), ('access_token', models.CharField(unique=True, max_length=255)), ('_id_token', models.TextField()), ('client', models.ForeignKey(to='oidc_provider.Client', on_delete=models.CASCADE)), ], options={ 'abstract': False, }, bases=(models.Model,), ), migrations.CreateModel( name='UserInfo', fields=[ ('user', models.OneToOneField(primary_key=True, serialize=False, to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE)), ('given_name', models.CharField(max_length=255, null=True, blank=True)), ('family_name', models.CharField(max_length=255, null=True, blank=True)), ('middle_name', models.CharField(max_length=255, null=True, blank=True)), ('nickname', models.CharField(max_length=255, null=True, blank=True)), ('gender', models.CharField(max_length=100, null=True, choices=[(b'F', b'Female'), (b'M', b'Male')])), ('birthdate', models.DateField(null=True)), ('zoneinfo', models.CharField(default=b'', max_length=100, null=True, blank=True)), ('preferred_username', models.CharField(max_length=255, null=True, blank=True)), ('profile', models.URLField(default=b'', null=True, blank=True)), ('picture', models.URLField(default=b'', null=True, blank=True)), ('website', models.URLField(default=b'', null=True, blank=True)), ('email_verified', models.NullBooleanField(default=False)), ('locale', models.CharField(max_length=100, null=True, blank=True)), ('phone_number', models.CharField(max_length=255, null=True, blank=True)), ('phone_number_verified', models.NullBooleanField(default=False)), ('address_street_address', models.CharField(max_length=255, null=True, blank=True)), ('address_locality', models.CharField(max_length=255, null=True, blank=True)), ('address_region', models.CharField(max_length=255, null=True, blank=True)), ('address_postal_code', models.CharField(max_length=255, null=True, blank=True)), ('address_country', models.CharField(max_length=255, null=True, blank=True)), ('updated_at', models.DateTimeField(auto_now=True, null=True)), ], options={ }, bases=(models.Model,), ), migrations.AddField( model_name='token', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE), preserve_default=True, ), migrations.AddField( model_name='code', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE), preserve_default=True, ), ]
PypiClean
/wxPython-zombie-3.1.5.6.tar.gz/wxPython-zombie-3.1.5.6/wx/demo/ActiveX_IEHtmlWindow.py
# 11/18/2003 - Jeff Grimmett ([email protected]) # # o Updated for wx namespace import wx if wx.Platform == '__WXMSW__': import wx.lib.iewin as iewin #---------------------------------------------------------------------- class TestPanel(wx.Panel): def __init__(self, parent, log, frame=None): wx.Panel.__init__( self, parent, -1, style=wx.TAB_TRAVERSAL|wx.CLIP_CHILDREN|wx.NO_FULL_REPAINT_ON_RESIZE ) self.log = log self.current = "http://wxPython.org/" self.frame = frame if frame: self.titleBase = frame.GetTitle() sizer = wx.BoxSizer(wx.VERTICAL) btnSizer = wx.BoxSizer(wx.HORIZONTAL) self.ie = iewin.IEHtmlWindow(self) btn = wx.Button(self, -1, "Open", style=wx.BU_EXACTFIT) self.Bind(wx.EVT_BUTTON, self.OnOpenButton, btn) btnSizer.Add(btn, 0, wx.EXPAND|wx.ALL, 2) btn = wx.Button(self, -1, "Home", style=wx.BU_EXACTFIT) self.Bind(wx.EVT_BUTTON, self.OnHomeButton, btn) btnSizer.Add(btn, 0, wx.EXPAND|wx.ALL, 2) btn = wx.Button(self, -1, "<--", style=wx.BU_EXACTFIT) self.Bind(wx.EVT_BUTTON, self.OnPrevPageButton, btn) btnSizer.Add(btn, 0, wx.EXPAND|wx.ALL, 2) self.Bind(wx.EVT_UPDATE_UI, self.OnCheckCanGoBack, btn) btn = wx.Button(self, -1, "-->", style=wx.BU_EXACTFIT) self.Bind(wx.EVT_BUTTON, self.OnNextPageButton, btn) btnSizer.Add(btn, 0, wx.EXPAND|wx.ALL, 2) self.Bind(wx.EVT_UPDATE_UI, self.OnCheckCanGoForward, btn) btn = wx.Button(self, -1, "Stop", style=wx.BU_EXACTFIT) self.Bind(wx.EVT_BUTTON, self.OnStopButton, btn) btnSizer.Add(btn, 0, wx.EXPAND|wx.ALL, 2) btn = wx.Button(self, -1, "Search", style=wx.BU_EXACTFIT) self.Bind(wx.EVT_BUTTON, self.OnSearchPageButton, btn) btnSizer.Add(btn, 0, wx.EXPAND|wx.ALL, 2) btn = wx.Button(self, -1, "Refresh", style=wx.BU_EXACTFIT) self.Bind(wx.EVT_BUTTON, self.OnRefreshPageButton, btn) btnSizer.Add(btn, 0, wx.EXPAND|wx.ALL, 2) txt = wx.StaticText(self, -1, "Location:") btnSizer.Add(txt, 0, wx.CENTER|wx.ALL, 2) self.location = wx.ComboBox( self, -1, "", style=wx.CB_DROPDOWN|wx.TE_PROCESS_ENTER ) self.Bind(wx.EVT_COMBOBOX, self.OnLocationSelect, self.location) self.location.Bind(wx.EVT_KEY_UP, self.OnLocationKey) self.location.Bind(wx.EVT_CHAR, self.IgnoreReturn) btnSizer.Add(self.location, 1, wx.EXPAND|wx.ALL, 2) sizer.Add(btnSizer, 0, wx.EXPAND) sizer.Add(self.ie, 1, wx.EXPAND) self.ie.LoadUrl(self.current) self.location.Append(self.current) self.SetSizer(sizer) # Since this is a wx.Window we have to call Layout ourselves self.Bind(wx.EVT_SIZE, self.OnSize) ## Hook up the event handlers for the IE window. Using ## AddEventSink is how we tell the COM system to look in this ## object for method names matching the COM Event names. They ## are automatically looked for in the ActiveXCtrl class, (so ## deriving a new class from IEHtmlWindow would also have been ## a good appraoch) and now they will be looked for here too. self.ie.AddEventSink(self) def ShutdownDemo(self): # put the frame title back if self.frame: self.frame.SetTitle(self.titleBase) def OnSize(self, evt): self.Layout() def OnLocationSelect(self, evt): url = self.location.GetStringSelection() self.log.write('OnLocationSelect: %s\n' % url) self.ie.Navigate(url) def OnLocationKey(self, evt): if evt.GetKeyCode() == wx.WXK_RETURN: URL = self.location.GetValue() self.location.Append(URL) self.ie.Navigate(URL) else: evt.Skip() def IgnoreReturn(self, evt): if evt.GetKeyCode() != wx.WXK_RETURN: evt.Skip() def OnOpenButton(self, event): dlg = wx.TextEntryDialog(self, "Open Location", "Enter a full URL or local path", self.current, wx.OK|wx.CANCEL) dlg.CentreOnParent() if dlg.ShowModal() == wx.ID_OK: self.current = dlg.GetValue() self.ie.Navigate(self.current) dlg.Destroy() def OnHomeButton(self, event): self.ie.GoHome() ## ET Phone Home! def OnPrevPageButton(self, event): self.ie.GoBack() def OnNextPageButton(self, event): self.ie.GoForward() def OnCheckCanGoBack(self, event): event.Enable(self.ie.CanGoBack()) def OnCheckCanGoForward(self, event): event.Enable(self.ie.CanGoForward()) def OnStopButton(self, evt): self.ie.Stop() def OnSearchPageButton(self, evt): self.ie.GoSearch() def OnRefreshPageButton(self, evt): self.ie.Refresh(iewin.REFRESH_COMPLETELY) # Here are some of the event methods for the IE COM events. See # the MSDN docs for DWebBrowserEvents2 for details on what events # are available, and what the parameters are. def BeforeNavigate2(self, this, pDisp, URL, Flags, TargetFrameName, PostData, Headers, Cancel): self.log.write('BeforeNavigate2: %s\n' % URL[0]) if URL[0] == 'http://www.microsoft.com/': if wx.MessageBox("Are you sure you want to visit Microsoft?", style=wx.YES_NO|wx.ICON_QUESTION) == wx.NO: # This is how you can cancel loading a page. The # Cancel parameter is defined as an [in,out] type and # so setting the value means it will be returned and # checked in the COM control. Cancel[0] = True def NewWindow3(self, this, pDisp, Cancel, Flags, urlContext, URL): self.log.write('NewWindow3: %s\n' % URL) Cancel[0] = True # Veto the creation of a new window. #def ProgressChange(self, this, progress, progressMax): # self.log.write('ProgressChange: %d of %d\n' % (progress, progressMax)) def DocumentComplete(self, this, pDisp, URL): self.current = URL[0] self.location.SetValue(self.current) def TitleChange(self, this, Text): if self.frame: self.frame.SetTitle(self.titleBase + ' -- ' + Text) def StatusTextChange(self, this, Text): if self.frame: self.frame.SetStatusText(Text) #---------------------------------------------------------------------- # for the demo framework... def runTest(frame, nb, log): if wx.Platform == '__WXMSW__': win = TestPanel(nb, log, frame) return win else: from wx.lib.msgpanel import MessagePanel win = MessagePanel(nb, 'This demo only works on Microsoft Windows.', 'Sorry', wx.ICON_WARNING) return win overview = """\ <html><body> <h2>wx.lib.iewin.IEHtmlWindow</h2> The wx.lib.iewin.IEHtmlWindow class is one example of using ActiveX controls from wxPython using the new wx.activex module. This allows you to use an ActiveX control as if it is a wx.Window, you can call its methods, set/get properties, and receive events from the ActiveX control in a very intuitive way. <p> Using this class is simpler than ActiveXWrapper, doesn't rely on the win32all extensions, and is more "wx\'ish", meaning that it uses events and etc. as would be expected from any other wx window. </body></html> """ if __name__ == '__main__': import sys,os import run run.main(['', os.path.basename(sys.argv[0])] + sys.argv[1:]) #----------------------------------------------------------------------
PypiClean
/connected_vehicle_client-2.0.1.tar.gz/connected_vehicle_client-2.0.1/src/models/r_instance_with_unit.py
import datetime from typing import Any, Dict, List, Type, TypeVar, Union import attr from dateutil.parser import isoparse from ..types import UNSET, Unset T = TypeVar("T", bound="RInstanceWithUnit") @attr.s(auto_attribs=True) class RInstanceWithUnit: """ Attributes: value (Union[Unset, str]): timestamp (Union[Unset, datetime.datetime]): unit (Union[Unset, str]): """ value: Union[Unset, str] = UNSET timestamp: Union[Unset, datetime.datetime] = UNSET unit: Union[Unset, str] = UNSET additional_properties: Dict[str, Any] = attr.ib(init=False, factory=dict) def to_dict(self) -> Dict[str, Any]: value = self.value timestamp: Union[Unset, str] = UNSET if not isinstance(self.timestamp, Unset): timestamp = self.timestamp.isoformat() unit = self.unit field_dict: Dict[str, Any] = {} field_dict.update(self.additional_properties) field_dict.update({}) if value is not UNSET: field_dict["value"] = value if timestamp is not UNSET: field_dict["timestamp"] = timestamp if unit is not UNSET: field_dict["unit"] = unit return field_dict @classmethod def from_dict(cls: Type[T], src_dict: Dict[str, Any]) -> T: d = src_dict.copy() value = d.pop("value", UNSET) _timestamp = d.pop("timestamp", UNSET) timestamp: Union[Unset, datetime.datetime] if isinstance(_timestamp, Unset): timestamp = UNSET else: timestamp = isoparse(_timestamp) unit = d.pop("unit", UNSET) r_instance_with_unit = cls( value=value, timestamp=timestamp, unit=unit, ) r_instance_with_unit.additional_properties = d return r_instance_with_unit @property def additional_keys(self) -> List[str]: return list(self.additional_properties.keys()) def __getitem__(self, key: str) -> Any: return self.additional_properties[key] def __setitem__(self, key: str, value: Any) -> None: self.additional_properties[key] = value def __delitem__(self, key: str) -> None: del self.additional_properties[key] def __contains__(self, key: str) -> bool: return key in self.additional_properties
PypiClean
/Lagring-0.2.7.1.tar.gz/Lagring-0.2.7.1/lagring/core.py
import os import io import shutil import uuid from .classproperty import classproperty from .exception import StorageException from .logger import log class _AssetSource: def __init__(self, src, extension=None): self.src = src self.extension = self._normalise_extension(extension) @staticmethod def _normalise_extension(extension): if extension: return extension if extension[:1] == '.' else '.' + extension else: return '' def __bool__(self): return self.type is not None @property def type(self): if self.src is None: return None elif isinstance(self.src, str): if os.path.isfile(self.src): return 'file' elif os.path.isdir(self.src): return 'directory' else: raise StorageException('Path not found') elif isinstance(self.src, io.IOBase): return 'stream' else: raise StorageException('Unknown source type') @property def stream(self): if self.src is None: return None elif isinstance(self.src, str): if os.path.isfile(self.src): return open(self.src, 'rb') else: raise StorageException('File not found') elif isinstance(self.src, io.IOBase): return self.src else: raise StorageException('Unknown source type') @property def path(self): if isinstance(self.src, str): if os.path.isfile(self.src) or os.path.isdir(self.src): return self.src else: return None class LagringCore(object): ''' Storage base functionality ''' def __init__(self, root, url_base='', write_allowed=True): ''' root - file storage base directory url_base - URL base write_allowed - set this to False for read-only access ''' self.url_base = url_base self.root = root self.write_allowed = write_allowed if not os.path.exists(self.root): os.makedirs(self.root) log.info('Storage root has been created in "{}"'.format(self.root)) @classproperty def asset_source_adapter(cls): return _AssetSource def _put(self, src, bucket, filename): ''' Save asset file src - source bucket - storage directory filename - filename without directory ''' bucket_path = os.path.join(self.root, bucket) if not os.path.exists(bucket_path): os.makedirs(bucket_path) dest_path = os.path.join(bucket_path, filename) type = src.type if type == 'file': shutil.copy(src.path, dest_path) elif type == 'directory': shutil.copytree(src.path, dest_path) elif type == 'stream': with open(dest_path, 'wb') as dest_obj: shutil.copyfileobj(src.stream, dest_obj) asset_path = os.path.join(bucket, filename) log.debug('Added "{}"'.format(asset_path)) return asset_path def _trash(self, asset_path): ''' Delete file ''' abs_path = self.abs_path(asset_path) if os.path.isfile(abs_path): os.remove(abs_path) elif os.path.isdir(abs_path): shutil.rmtree(abs_path) else: log.warning('Non-existent path to delete "{}"'.format(asset_path)) return log.debug('Deleted "{}"'.format(asset_path)) def _bucket(self, entity_type, entity_id, asset_name): ''' Storage bucket path ''' hex = '{0:0{1}x}'.format(entity_id, 8) return '{}/{}/{}/{}/{}'.format(entity_type, asset_name, hex[0:2], hex[2:4], hex[4:6]) def add(self, entity_type, entity_id, asset_name, src): ''' Add file or directory to the storage New filename contains random part so the old version must be explicitly deleted Returns path to the asset ''' if not self.write_allowed: raise StorageException("Storage is in read-only mode") # генерим путь к ассету bucket = self._bucket(entity_type, entity_id, asset_name) filename = '{}-{}{}'.format( entity_id, str(uuid.uuid4())[:6], # some random src.extension) asset_path = self._put(src, bucket, filename) log.debug( 'Asset added: entity=({}, {}), asset_name={}'\ .format(entity_type, entity_id, asset_name)) return asset_path def delete(self, path): ''' Delete asset ''' if not self.write_allowed: raise StorageException("Storage is in read-only mode") self._trash(path) def url(self, path): ''' Get asset URL ''' return self.url_base + \ ('' if self.url_base.endswith('/') else '/') + \ path def abs_path(self, path): ''' Get asset absolute path ''' return os.path.join(self.root, path)
PypiClean
/lib_bgp_data-0.3.0-py3-none-any.whl/lib_bgp_data/api/__init__.py
from flask import Flask from werkzeug.contrib.fixers import ProxyFix from werkzeug.routing import BaseConverter from flasgger import Swagger from ..utils import Thread_Safe_Logger as Logger from ..database import Database __author__ = "Justin Furuness" __credits__ = ["Justin Furuness", "Reynaldo Morillo"] __Lisence__ = "BSD" __maintainer__ = "Justin Furuness" __email__ = "[email protected]" __status__ = "Development" # http://exploreflask.com/en/latest/views.html#custom-converters class ListConverter(BaseConverter): """Converts a comma separated url into a list.""" def to_python(self, value): return value.split(',') def to_url(self, values): return ','.join([BaseConverter.to_url(value) for value in values]) def create_app(args={}): """Creates the application and runs it.""" application = Flask(__name__) # For flasgger docs swagger = Swagger(application) # Fixes the proxy problems we've been having application.wsgi_app = ProxyFix(application.wsgi_app) # For the list converter application.url_map.converters['list'] = ListConverter # Creates the database application.db = Database(Logger(args)) # Imports all the blueprints that we have # From the flask tutorial I watched they did it all here, # so I assume that is correct from .averages import averages_app from .extrapolator_engine_results import extrapolator_engine_results_app\ as exr_app from .hijacks import hijacks_app from .policies import policies_app from .relationships import relationships_app from .roas import roas_app from .rpki_validity_results import RPKI_app for sub_app in [averages_app, exr_app, hijacks_app, policies_app, relationships_app, roas_app, RPKI_app]: # Sets the database sub_app.db = application.db # Registers the blueprint application.register_blueprint(sub_app) # Runs the application. Do NOT use in prod!!! application.run(host='0.0.0.0', debug=True)
PypiClean
/Sympathy-4.0.1-py3-none-any.whl/sympathy/app/windows/library_view.py
import json import itertools import os import PySide6.QtCore as QtCore import PySide6.QtGui as QtGui import PySide6.QtWidgets as QtWidgets from .. import util from .. import appcore from .. import settings from .. import tree_view from sympathy.utils.prim import uri_to_path from sympathy.app import flow from sympathy.app.datatypes import DataType class LibraryGroupItem(tree_view.TreeItem): """A LibraryItem is a folder item in the library model.""" def __init__(self, name, parent, style, tool_tip=''): super().__init__() self._name = name self._parent = parent self._style = style self._icon = QtGui.QIcon() self._icon.addPixmap( style.standardPixmap(QtWidgets.QStyle.SP_DirClosedIcon), QtGui.QIcon.Normal, QtGui.QIcon.Off) self._icon.addPixmap( style.standardPixmap(QtWidgets.QStyle.SP_DirOpenIcon), QtGui.QIcon.Normal, QtGui.QIcon.On) self._tool_tip = tool_tip or name def icon(self): return self._icon def identifier(self): return self._name def tool_tip(self): return self._tool_tip class FlatLibraryGroupItem(LibraryGroupItem): """A FlatLibraryGroupItem is a header item for a sequence of tags.""" def __init__(self, name, parent, style): super().__init__(name, parent, style) self._icon = QtGui.QIcon() def highlighted(self): """Highlighted text""" return '<font color="#999999">{}</font>'.format(self._highlighted_text) class LibraryNodeItem(tree_view.LeafItem): """A LibraryNodeItem is a leaf item in the library model representing a Node. """ icon_cache = {} def __init__(self, node, parent): super().__init__() def escape(s): return (s.replace('&', '&amp;') .replace('<', '&lt;') .replace('>', '&gt;')) self._parent = parent self._node = node self._name = node.name self._tool_tip = '<b>{}</b><p>{}</p>{} -> {}'.format( self._node.name, self._node.description, ', '.join([escape(str(p.datatype)) for p in self._node.inputs]), ', '.join([escape(str(p.datatype)) for p in self._node.outputs])) def is_leaf(self): return True def icon(self): if self._node.has_svg_icon: icon_path = uri_to_path(self._node.icon) if icon_path in self.icon_cache: return self.icon_cache[icon_path] else: result = QtGui.QIcon(icon_path) self.icon_cache[icon_path] = result return result else: return QtGui.QIcon(util.icon_path('sub_application.svg')) def identifier(self): return self._node.node_identifier def tool_tip(self): return self._tool_tip def node(self): return self._node class LibraryModel(tree_view.TreeModel): """ The library model. Responsible for building and updating the (viewed) library. """ tags = ['Unknown'] def __init__(self, library_root, style, exclude_builtins=False, parent=None): self._library_root = library_root self._old_root = None self._style = style self._exclude_builtins = exclude_builtins super().__init__(LibraryGroupItem('Root', None, self._style), parent=parent) def _build_model(self): """Build the tree model using path for hierarchy.""" def hidden_node(node): if not settings.instance()['Gui/library_show_hidden']: tags = node.tags if node.tags else self.tags for tag in tags: if tag.startswith('Hidden.'): return True return False libraries = self._library_root.libraries # Attempt to avoid crash in gc. self._old_root = self._get_root() root = LibraryGroupItem('Root', None, self._style) self._set_root(root) try: self._old_root.deleteLater() except AttributeError: pass for library in self._library_root.libraries: name = library.name child = LibraryGroupItem(name, root, self._style) libs = {} paths = set() all_nodes = set() all_nodes.update({n for n in library.nodes}) paths.update({tuple(n.path) for n in library.nodes}) # Add possibly missing levels subpaths = set() for path in paths: subpaths.update({path[:i + 1] for i, _ in enumerate(path)}) paths.update(subpaths) max_depth = max([len(n) for n in paths]) if paths else 0 root.add_child(child) for depth_ in range(max_depth): depth = depth_ + 1 libraries = [p for p in sorted(paths) if len(p) == depth] for lib in libraries: if (self._exclude_builtins and (lib[0] == 'sympathy' or lib[0] == 'internal')): continue else: if depth == 1: parent = child else: parent = libs[lib[:-1]] item = LibraryGroupItem(lib[-1], parent, self._style) parent.add_child(item) libs[lib] = item for node in (n for n in all_nodes if tuple(n.path) == lib): if not hidden_node(node): node_item = LibraryNodeItem(node, item) item.add_child(node_item) def mimeTypes(self): return [appcore.AppCore.mime_type_node()] def mimeData(self, indices): nodes = [] for index in indices: nodes.append(self.data(index, tree_view.IdentityRole)) mime_data = QtCore.QMimeData() mime_data.setData(appcore.AppCore.mime_type_node(), json.dumps(nodes).encode('ascii')) return mime_data class SeparateTagLibraryModel(LibraryModel): def __init__(self, library_root, style, model_type='Disk', parent=None): self._model_type = model_type super().__init__(library_root, style, parent=parent) def _build_tags(self, parent, tags, path, tag_mapping): if tags and not tags.term: for tag in tags: child = LibraryGroupItem( tag.name, parent, self._style, tag.desc) parent.add_child(child) self._build_tags( child, tag, '.'.join([path, tag.key]) if path else tag.key, tag_mapping) else: tag_mapping[path] = parent def _build_node(self, node, tag_mapping): tags = node.tags if not tags: tags = self.tags # Filter hidden nodes. if not settings.instance()['Gui/library_show_hidden']: for tag in tags: try: if tag.startswith('Hidden.'): return except Exception: return for tag in tags: parent = tag_mapping.get(tag, None) if parent: child = LibraryNodeItem(node, parent) parent.add_child(child) # Insert based on the first available tag. return for tag in self.tags: parent = tag_mapping[tag] child = LibraryNodeItem(node, parent) parent.add_child(child) def _build_model(self): """ Build the tree model using tags separated by libraries for hierarchy. """ if self._model_type == 'Disk': return super()._build_model() root = LibraryGroupItem('Root', None, self._style) self._set_root(root) for library in self._library_root.libraries: name = library.name child = LibraryGroupItem(name, root, self._style) tag_mapping = { tag: LibraryGroupItem(tag, child, self._style) for tag in self.tags} for value in tag_mapping.values(): child.add_child(value) root.add_child(child) if self._library_root.tags: self._build_tags(child, self._library_root.tags.root, None, tag_mapping) for node in library.nodes: self._build_node(node, tag_mapping) class TagLibraryModel(SeparateTagLibraryModel): tags = ['Unknown'] def __init__(self, library_root, style, model_type='Disk', parent=None): super().__init__(library_root, style, model_type=model_type, parent=parent) def _build_model(self): """Build the tree model using path for hierarchy.""" if self._model_type in ['Disk', 'Separated']: return super()._build_model() elif self._model_type != 'Tag': return # Proceed with 'Tag Layout'. tag_mapping = {} libraries = self._library_root.libraries all_nodes = set() for lib in libraries: all_nodes.update({n for n in lib.nodes}) root = LibraryGroupItem('Root', None, self._style) self._set_root(root) for tag in self.tags: if tag not in tag_mapping: child = LibraryGroupItem(tag, root, self._style) root.add_child(child) tag_mapping[tag] = child if self._library_root.tags: self._build_tags(root, self._library_root.tags.root, None, tag_mapping) for node in all_nodes: self._build_node(node, tag_mapping) def set_type(self, model_type): model_type_prev = self._model_type self._model_type = model_type if self._model_type != model_type_prev: self.update_model() class FlatTagLibraryModel(TagLibraryModel): tags = ['Unknown'] def __init__(self, library_root, style, model_type='Disk', parent=None): super().__init__(library_root, style, model_type=model_type, parent=parent) def _all_tags(self): def inner(tags, path, res): if tags: if tags.term: res['.'.join(tag.key for tag in path)] = path else: for tag in tags: inner(tag, path + [tag], res) res = {} inner(self._library_root.tags.root, [], res) return res def _build_model(self): """Build the tree model using path for hierarchy.""" if self._model_type in ['Disk', 'Tag', 'Separated']: return super()._build_model() elif self._model_type != 'FlatTag': return # Proceed with 'FlatTag Layout'. tag_mapping = {} libraries = self._library_root.libraries all_nodes = set() all_tags = self._all_tags() for lib in libraries: all_nodes.update({n for n in lib.nodes}) root = LibraryGroupItem('Root', None, self._style) self._set_root(root) for tag in itertools.chain(all_tags, self.tags): if tag not in tag_mapping: tags = all_tags.get(tag) name = self.tags[0] if tags: name = '/'.join(tag.name for tag in tags) child = FlatLibraryGroupItem(name, root, self._style) root.add_child(child) tag_mapping[tag] = child for node in all_nodes: self._build_node(node, tag_mapping) def flags(self, index): if self._model_type != 'FlatTag': return super().flags(index) if not index.isValid(): return 0 item = self._get_item(index) if item is not None and item.is_leaf(): return (QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsDragEnabled | QtCore.Qt.ItemIsSelectable) else: return QtCore.Qt.NoItemFlags class LibraryWidget(tree_view.TreeView): def __init__(self, parent=None): super().__init__(parent) self.setObjectName('Gui::MainWindow::Library::View') class LibraryFilterProxyModel(tree_view.TreeFilterProxyModelBase): """ Proxy model that supplies sorting and filtering for the library model. """ def __init__(self, parent=None): self._input_type = None self._output_type = None self._current_libraries = set() super().__init__(parent) def _show_item(self, item): node = item.node() if node is None: return False if not node.installed and (os.path.normcase(os.path.abspath( os.path.dirname(node.library))) not in self._current_libraries): return False input_match = self._match_port_type(self._input_type, node._inputs) output_match = self._match_port_type( self._output_type, node._outputs) return input_match and output_match def _match_port_type(self, type_, ports): if type_ is not None: return any(port.datatype.match(type_) for port in ports) return True def update_port_type(self, datatype, output): if not isinstance(datatype, DataType): datatype = None if output: self._output_type = datatype else: self._input_type = datatype self.update_filter(self._filter) return datatype def set_current_libraries(self, libraries): prev = self._current_libraries self._current_libraries = set([os.path.normcase(x) for x in libraries]) if prev != self._current_libraries: self.invalidateFilter() self.sort(0, QtCore.Qt.AscendingOrder) class LibraryView(tree_view.FilterTreeView): """Library view combination widget - library view and filter edit.""" def __init__(self, parent=None): tree_model = LibraryFilterProxyModel() tree_widget = LibraryWidget() self._model_type = 'Disk' super().__init__(tree_model, tree_widget, parent) self.setObjectName('Gui::MainWindow::Library::ViewWidget') self._view_style = self._view.styleSheet() @QtCore.Slot(str) def set_model_type(self, model_type): self._model_type = model_type self._setup_view() self._model.set_type(model_type) def set_model(self, model): self._model_type = model._model_type super().set_model(model) def _setup_view(self): if self._model_type == 'FlatTag': self._view.setIndentation(0) self._view.setItemsExpandable(False) self._view.expandAll() # this is prevents showing the branch icons in the FlatTag mode self._view.setStyleSheet( 'QTreeView::branch { border-image: url(none.png); }') else: self._view.setStyleSheet(self._view_style) super()._setup_view() def update_libraries(self, flow): self._proxy_model.set_current_libraries(util.library_paths(flow)) @QtCore.Slot(str) def update_input_filter(self, new_type=None): self._update_port_filter(new_type, output=False) @QtCore.Slot(str) def update_output_filter(self, new_type=None): self._update_port_filter(new_type, output=True) def _get_port_datatype(self, new_type): if isinstance(new_type, DataType): return new_type elif new_type: return DataType.from_str(new_type) return None def _update_port_filter(self, new_type, output): datatype = self._get_port_datatype(new_type) used_datatype = self._proxy_model.update_port_type( datatype, output=output) self._handle_expanding(isinstance(used_datatype, DataType)) def _handle_expanding(self, state): if state or (self._model and self._model_type == 'FlatTag'): self._view.expandAll() else: self._view.collapseAll() def _handle_switch_to_list_view(self): self._view.setFocus() try: proxy_index = self._proxy_model.index(0, 0) if self._model_type == 'FlatTag': if not proxy_index.parent().isValid(): proxy_index = self._proxy_model.index(0, 0, proxy_index) self._view.setCurrentIndex(proxy_index) except Exception: pass @QtCore.Slot(flow.Flow) def current_flow_changed(self, flow): self._proxy_model.set_current_libraries(util.library_paths(flow)) if self._proxy_model._filter != '': self._handle_expanding(self._proxy_model._filter != '') class QuickSearchDialog(QtWidgets.QDialog): item_accepted = QtCore.Signal(object, object, QtCore.QPointF) def __init__( self, library_root, flow_, port, scene_position, title=None, parent=None): super().__init__( parent, QtCore.Qt.Popup | QtCore.Qt.FramelessWindowHint) self._library_root = library_root self._port = port self._title = title model_type = 'FlatTag' self._model = FlatTagLibraryModel( self._library_root, self.style(), model_type=model_type, parent=self) self.scene_position = scene_position self._view = LibraryView(parent=self) self._view.current_flow_changed(flow_) self._view.set_model(self._model) settings_ = settings.instance() matcher_type = settings_['Gui/library_matcher_type'] highlighter_type = settings_['Gui/library_highlighter_type'] highlighter_color = settings_['Gui/library_highlighter_color'] self._view.set_highlighter( (matcher_type, highlighter_type, highlighter_color)) if self._port is not None: if self._port.type == flow.Type.InputPort: self._view.update_output_filter(self._port.datatype) else: self._view.update_input_filter(self._port.datatype) layout = QtWidgets.QVBoxLayout() layout.setContentsMargins(3, 3, 3, 3) layout.setSpacing(2) if self._title is not None: title_label = QtWidgets.QLabel(self._title) layout.addWidget(title_label) layout.addWidget(self._view) self.setLayout(layout) self._view.item_accepted.connect(self._accept) def _accept(self, item): self.item_accepted.emit(item, self._port, self.scene_position) self.accept() def focus_filter(self): self._view.focus_filter()
PypiClean
/django-dojo-0.0.1.tar.gz/django-dojo-0.0.1/dojo/static/dojo/dijit/form/CheckBox.js
define([ "require", "dojo/_base/declare", // declare "dojo/dom-attr", // domAttr.set "dojo/has", // has("dijit-legacy-requires") "dojo/query", // query "dojo/ready", "./ToggleButton", "./_CheckBoxMixin", "dojo/text!./templates/CheckBox.html", "dojo/NodeList-dom" // NodeList.addClass/removeClass ], function(require, declare, domAttr, has, query, ready, ToggleButton, _CheckBoxMixin, template){ // module: // dijit/form/CheckBox // Back compat w/1.6, remove for 2.0 if(has("dijit-legacy-requires")){ ready(0, function(){ var requires = ["dijit/form/RadioButton"]; require(requires); // use indirection so modules not rolled into a build }); } return declare("dijit.form.CheckBox", [ToggleButton, _CheckBoxMixin], { // summary: // Same as an HTML checkbox, but with fancy styling. // // description: // User interacts with real html inputs. // On onclick (which occurs by mouse click, space-bar, or // using the arrow keys to switch the selected radio button), // we update the state of the checkbox/radio. // // There are two modes: // // 1. High contrast mode // 2. Normal mode // // In case 1, the regular html inputs are shown and used by the user. // In case 2, the regular html inputs are invisible but still used by // the user. They are turned quasi-invisible and overlay the background-image. templateString: template, baseClass: "dijitCheckBox", _setValueAttr: function(/*String|Boolean*/ newValue, /*Boolean*/ priorityChange){ // summary: // Handler for value= attribute to constructor, and also calls to // set('value', val). // description: // During initialization, just saves as attribute to the `<input type=checkbox>`. // // After initialization, // when passed a boolean, controls whether or not the CheckBox is checked. // If passed a string, changes the value attribute of the CheckBox (the one // specified as "value" when the CheckBox was constructed // (ex: `<input data-dojo-type="dijit/CheckBox" value="chicken">`). // // `widget.set('value', string)` will check the checkbox and change the value to the // specified string. // // `widget.set('value', boolean)` will change the checked state. if(typeof newValue == "string"){ this.inherited(arguments); newValue = true; } if(this._created){ this.set('checked', newValue, priorityChange); } }, _getValueAttr: function(){ // summary: // Hook so get('value') works. // description: // If the CheckBox is checked, returns the value attribute. // Otherwise returns false. return (this.checked ? this.value : false); }, // Override behavior from Button, since we don't have an iconNode _setIconClassAttr: null, postMixInProperties: function(){ this.inherited(arguments); // Need to set initial checked state as part of template, so that form submit works. // domAttr.set(node, "checked", bool) doesn't work on IE until node has been attached // to <body>, see #8666 this.checkedAttrSetting = this.checked ? "checked" : ""; }, _fillContent: function(){ // Override Button::_fillContent() since it doesn't make sense for CheckBox, // since CheckBox doesn't even have a container }, _onFocus: function(){ if(this.id){ query("label[for='"+this.id+"']").addClass("dijitFocusedLabel"); } this.inherited(arguments); }, _onBlur: function(){ if(this.id){ query("label[for='"+this.id+"']").removeClass("dijitFocusedLabel"); } this.inherited(arguments); } }); });
PypiClean
/django_sql_dashboard-1.1-py3-none-any.whl/django_sql_dashboard/admin.py
from html import escape from django.contrib import admin from django.utils.safestring import mark_safe from .models import Dashboard, DashboardQuery class DashboardQueryInline(admin.TabularInline): model = DashboardQuery extra = 1 def has_change_permission(self, request, obj=None): if obj is None: return True return obj.user_can_edit(request.user) def get_readonly_fields(self, request, obj=None): if not request.user.has_perm("django_sql_dashboard.execute_sql"): return ("sql",) else: return tuple() @admin.register(Dashboard) class DashboardAdmin(admin.ModelAdmin): list_display = ("slug", "title", "owned_by", "view_policy", "view_dashboard") inlines = [ DashboardQueryInline, ] raw_id_fields = ("owned_by",) fieldsets = ( ( None, {"fields": ("slug", "title", "description", "owned_by", "created_at")}, ), ( "Permissions", {"fields": ("view_policy", "edit_policy", "view_group", "edit_group")}, ), ) def view_dashboard(self, obj): return mark_safe( '<a href="{path}">{path}</a>'.format(path=escape(obj.get_absolute_url())) ) def save_model(self, request, obj, form, change): if not obj.owned_by_id: obj.owned_by = request.user obj.save() def has_change_permission(self, request, obj=None): if obj is None: return True if request.user.is_superuser: return True return obj.user_can_edit(request.user) def get_readonly_fields(self, request, obj): readonly_fields = ["created_at"] if not request.user.is_superuser: readonly_fields.append("owned_by") return readonly_fields def get_queryset(self, request): if request.user.is_superuser: # Superusers should be able to see all dashboards. return super().get_queryset(request) # Otherwise, show only the dashboards the user has edit access to. return Dashboard.get_editable_by_user(request.user)
PypiClean
/bluesky-widgets-0.0.15.tar.gz/bluesky-widgets-0.0.15/docs/source/installation.rst
============ Installation ============ This project currently has no *required* dependencies. The libraries you need will depend on which graphical frontend(s) you plan to use. We recommend to upgrade ``pip`` and ``setuptools`` first, as recent versions of these specifically make installing what follows tend to succeed better.::: $ pip install --upgrade pip setuptools The examples perform data generation and access using some bluesky projects::: $ pip install suitcase-msgpack bluesky databroker ophyd and they use Qt::: $ pip install qtpy pyqt5 Finally, install the project itself::: $ pip install bluesky-widgets
PypiClean
/delta_nlp-0.3.2-cp36-cp36m-macosx_10_9_x86_64.whl/delta/layers/common_layers.py
"""Common layers.""" import delta.compat as tf from absl import logging #pylint: disable=invalid-name def conv2d(x, name, filter_size, in_channels, out_channels, strides, bias=True): """2D convolution.""" with tf.variable_scope(name): kernel = tf.get_variable( name='DW', shape=[filter_size[0], filter_size[1], in_channels, out_channels], dtype=tf.float32, initializer=tf.initializers.glorot_uniform()) if bias: b = tf.get_variable( name='bias', shape=[out_channels], dtype=tf.float32, initializer=tf.constant_initializer(0.0)) out = tf.nn.conv2d( x, kernel, [1, strides[0], strides[1], 1], padding='SAME') if bias: out = tf.nn.bias_add(out, b) return out def max_pool(x, ksize, strides): """Max Pooling.""" return tf.nn.max_pool( x, ksize=[1, ksize[0], ksize[1], 1], strides=[1, strides[0], strides[1], 1], padding='VALID', name='max_pool') def linear(x, names, shapes, has_bias=True): """Linear Layer.""" assert len(shapes) == 2 with tf.variable_scope(names): weights = tf.get_variable( name='weights', shape=shapes, initializer=tf.initializers.glorot_uniform()) if has_bias: bias = tf.get_variable( name='bias', shape=shapes[1], initializer=tf.initializers.glorot_uniform()) return tf.matmul(x, weights) + bias else: return tf.matmul(x, weights) def attention(inputs, attention_size, time_major=False, return_alphas=False): """Attention layer.""" if isinstance(inputs, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. inputs = tf.concat(inputs, 2) if time_major: # (T,B,D) => (B,T,D) inputs = tf.transpose(inputs, [1, 0, 2]) time_size = inputs.shape[1].value # T value - time size of the RNN layer hidden_size = inputs.shape[2].value # D value - hidden size of the RNN layer # Trainable parameters W_omega = tf.get_variable( name='W_omega', initializer=tf.random_normal([hidden_size, attention_size], stddev=0.1)) b_omega = tf.get_variable( name='b_omega', initializer=tf.random_normal([attention_size], stddev=0.1)) u_omega = tf.get_variable( name='u_omega', initializer=tf.random_normal([attention_size, 1], stddev=0.1)) # Applying fully connected layer with non-linear activation to each of the B*T timestamps; # the shape of `v` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size #v = tf.tanh(tf.tensordot(inputs, W_omega, axes=1) + b_omega) #v = tf.sigmoid(tf.tensordot(inputs, W_omega, axes=1) + b_omega) # (B, T, D) dot (D, Atten) logging.info('attention inputs: {}'.format(inputs.shape)) inputs_reshaped = tf.reshape(inputs, [-1, hidden_size]) dot = tf.matmul(inputs_reshaped, W_omega) dot = tf.reshape(dot, [-1, time_size, attention_size]) v = tf.sigmoid(dot + b_omega) logging.info(f'attention vector: {v.shape}') # For each of the timestamps its vector of size A from `v` is reduced with `u` vector # (B, T, Atten) dot (Atten) #vu = tf.tensordot(v, u_omega, axes=1) # (B,T) shape v = tf.reshape(v, [-1, attention_size]) vu = tf.matmul(v, u_omega) # (B,T) shape vu = tf.squeeze(vu, axis=-1) vu = tf.reshape(vu, [-1, time_size]) logging.info(f'attention energe: {vu.shape}') alphas = tf.nn.softmax(vu) # (B,T) shape also # Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape # [batch, time] -> [batch, time, 1] alphas = tf.expand_dims(alphas, -1) # [batch, time, dim] -> [batch, dim] output = tf.reduce_sum(inputs * alphas, 1) if not return_alphas: return output return output, alphas def embedding_look_up(text_inputs, vocab_size, embedding_size): """Embedding layer.""" with tf.variable_scope("embedding"): W = tf.get_variable( name='W', initializer=tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0)) embedding_chars = tf.nn.embedding_lookup(W, text_inputs) embedding_chars_expanded = tf.expand_dims(embedding_chars, -1) return embedding_chars_expanded #pylint: disable=too-many-locals def conv_pool(embedded_chars_expanded, filter_sizes, embedding_size, num_filters, sequence_length): """ text conv and max pooling to get one-dimension vector to representation of text :param filter_sizes: :return: """ pooled_outputs = [] for _, filter_size in enumerate(filter_sizes): with tf.variable_scope("conv-maxpool-%s" % filter_size): # Convolution Layer filter_shape = [filter_size, embedding_size, 1, num_filters] W = tf.get_variable( name='W', initializer=tf.truncated_normal(filter_shape, stddev=0.1)) b = tf.get_variable( name='b', initializer=tf.constant(0.1, shape=[num_filters])) conv = tf.nn.conv2d( embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID", name="conv") # Apply nonlinearity h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # Maxpooling over the outputs pooled = tf.nn.max_pool( h, ksize=[1, sequence_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID', name="pool") pooled_outputs.append(pooled) # Combine all the pooled features num_filters_total = num_filters * len(filter_sizes) h_pool = tf.concat(pooled_outputs, 3) h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total]) return h_pool_flat
PypiClean
/vgs_api_client-0.0.45-py3-none-any.whl/vgs_api_client/model/inline_response200.py
import re # noqa: F401 import sys # noqa: F401 from vgs_api_client.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from vgs_api_client.exceptions import ApiAttributeError def lazy_import(): from vgs_api_client.model.revealed_data import RevealedData globals()['RevealedData'] = RevealedData class InlineResponse200(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'data': ({str: (RevealedData,)},), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'data': 'data', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """InlineResponse200 - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) data ({str: (RevealedData,)}): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """InlineResponse200 - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) data ({str: (RevealedData,)}): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
PypiClean
/jupyterlab_myst-2.0.2.tar.gz/jupyterlab_myst-2.0.2/tailwind.config.js
const colors = require('tailwindcss/colors'); module.exports = { darkMode: ['class', '[data-jp-theme-light="false"]'], content: [ './src/**/*.{js,ts,jsx,tsx}', 'node_modules/myst-to-react/dist/**/*.{js,ts,jsx,tsx}', 'node_modules/@myst-theme/frontmatter/dist/**/*.{js,ts,jsx,tsx}', // Occasionally look to these folders as well in development only '.yalc/myst-to-react/dist/**/*.{js,ts,jsx,tsx}', '.yalc/@myst-theme/frontmatter/dist/**/*.{js,ts,jsx,tsx}' ], theme: { extend: { colors: { primary: colors.blue, success: colors.green[500] }, // See https://github.com/tailwindlabs/tailwindcss-typography/blob/master/src/styles.js typography: theme => ({ DEFAULT: { css: { p: { color: 'var(--jp-content-font-color1)', fontFamily: 'var(--jp-content-font-family)', fontSize: 'var(--jp-content-font-size1)', lineHeight: 'var(--jp-content-line-height)', marginTop: 0, marginBottom: '1em' }, 'h1,h2,h3,h4,h5,h6': { lineHeight: 'var(--jp-content-heading-line-height, 1)', fontWeight: 'var(--jp-content-heading-font-weight, 500)', fontStyle: 'normal', marginTop: 'var(--jp-content-heading-margin-top, 1.2em)', marginBottom: 'var(--jp-content-heading-margin-bottom, 0.8em)', color: 'var(--jp-content-font-color1)' }, 'h1:first-child,h2:first-child,h3:first-child,h4:first-child,h5:first-child,h6:first-child': { marginTop: 'calc(0.5 * var(--jp-content-heading-margin-top))' }, 'h1:last-child,h2:last-child,h3:last-child,h4:last-child,h5:last-child,h6:last-child': { marginBottom: 'calc(0.5 * var(--jp-content-heading-margin-bottom))' }, h1: { fontSize: 'var(--jp-content-font-size5)' }, h2: { fontSize: 'var(--jp-content-font-size4)' }, h3: { fontSize: 'var(--jp-content-font-size3)' }, h4: { fontSize: 'var(--jp-content-font-size2)' }, h5: { fontSize: 'var(--jp-content-font-size1)' }, h6: { fontSize: 'var(--jp-content-font-size0)' }, code: { fontWeight: 'inherit', color: 'var(--jp-content-font-color1)', fontFamily: 'var(--jp-code-font-family)', fontSize: 'inherit', lineHeight: 'var(--jp-code-line-height)', padding: 0, whiteSpace: 'pre-wrap', backgroundColor: 'var(--jp-layout-color2)', padding: '1px 5px' }, 'code::before': { content: '' }, 'code::after': { content: '' }, 'blockquote p:first-of-type::before': { content: 'none' }, 'blockquote p:first-of-type::after': { content: 'none' }, li: { marginTop: '0.25rem', marginBottom: '0.25rem' }, a: { textDecoration: 'none', color: 'var(--jp-content-link-color, #1976d2)', // --md-blue-700 fontWeight: 400, '&:hover': { color: 'var(--jp-content-link-color, #1976d2)', // --md-blue-700 textDecoration: 'underline', fontWeight: 400 } }, 'li > p, dd > p, header > p, footer > p': { marginTop: '0.25rem', marginBottom: '0.25rem' } } }, stone: { css: { '--tw-prose-bullets': 'var(--jp-content-font-color1)' } } }), keyframes: { load: { '0%': { width: '0%' }, '100%': { width: '50%' } }, fadeIn: { '0%': { opacity: 0.0 }, '25%': { opacity: 0.25 }, '50%': { opacity: 0.5 }, '75%': { opacity: 0.75 }, '100%': { opacity: 1 } } }, animation: { load: 'load 2.5s ease-out', 'fadein-fast': 'fadeIn 1s ease-out' } } }, corePlugins: { preflight: false }, plugins: [require('@tailwindcss/typography')] };
PypiClean
/ebook-converter-noimage-4.12.2.tar.gz/ebook-converter-noimage-4.12.2/ebook_converter/ebooks/metadata/pdf.py
import functools import os import re import shutil import subprocess from ebook_converter.ptempfile import TemporaryDirectory from ebook_converter.ebooks.metadata import ( MetaInformation, string_to_authors, check_isbn, check_doi) def read_info(outputdir, get_cover): ''' Read info dict and cover from a pdf file named src.pdf in outputdir. Note that this function changes the cwd to outputdir and is therefore not thread safe. Run it using fork_job. This is necessary as there is no safe way to pass unicode paths via command line arguments. This also ensures that if poppler crashes, no stale file handles are left for the original file, only for src.pdf.''' pdfinfo = 'pdfinfo' pdftoppm = 'pdftoppm' source_file = os.path.join(outputdir, 'src.pdf') cover_file = os.path.join(outputdir, 'cover') ans = {} try: raw = subprocess.check_output([pdfinfo, '-enc', 'UTF-8', '-isodates', source_file]) except subprocess.CalledProcessError as e: print(f'pdfinfo errored out with return code: {e.returncode}') return None try: info_raw = raw.decode('utf-8') except UnicodeDecodeError: print('pdfinfo returned no UTF-8 data') return None for line in info_raw.splitlines(): if ':' not in line: continue field, val = line.partition(':')[::2] val = val.strip() if field and val: ans[field] = val.strip() # Now read XMP metadata # Versions of poppler before 0.47.0 used to print out both the Info dict # and XMP metadata packet together. However, since that changed in # https://cgit.freedesktop.org/poppler/poppler/commit/?id=c91483aceb1b640771f572cb3df9ad707e5cad0d # we can no longer rely on it. try: raw = subprocess.check_output([pdfinfo, '-meta', source_file]).strip() except subprocess.CalledProcessError as e: print('pdfinfo failed to read XML metadata with return code: ' f'{e.returncode}') else: parts = re.split(br'^Metadata:', raw, 1, flags=re.MULTILINE) if len(parts) > 1: # old poppler < 0.47.0 raw = parts[1].strip() if raw: ans['xmp_metadata'] = raw if get_cover: try: subprocess.check_call([pdftoppm, '-singlefile', '-jpeg', '-cropbox', source_file, cover_file]) except subprocess.CalledProcessError as e: print(f'pdftoppm errored out with return code: {e.returncode}') return ans def page_images(pdfpath, outputdir='.', first=1, last=1, image_format='jpeg', prefix='page-images'): pdftoppm = 'pdftoppm' outputdir = os.path.abspath(outputdir) args = {} try: subprocess.check_call([ pdftoppm, '-cropbox', '-' + image_format, '-f', str(first), '-l', str(last), pdfpath, os.path.join(outputdir, prefix) ], **args) except subprocess.CalledProcessError as e: raise ValueError('Failed to render PDF, pdftoppm errorcode: %s' % e.returncode) def is_pdf_encrypted(path_to_pdf): pdfinfo = 'pdfinfo' raw = subprocess.check_output([pdfinfo, path_to_pdf]) q = re.search(br'^Encrypted:\s*(\S+)', raw, flags=re.MULTILINE) if q is not None: return q.group(1) == b'yes' return False def get_metadata(stream, cover=True): with TemporaryDirectory('_pdf_metadata_read') as pdfpath: stream.seek(0) with open(os.path.join(pdfpath, 'src.pdf'), 'wb') as f: shutil.copyfileobj(stream, f) info = read_info(pdfpath, bool(cover)) if info is None: raise ValueError('Could not read info dict from PDF') covpath = os.path.join(pdfpath, 'cover.jpg') cdata = None if cover and os.path.exists(covpath): with open(covpath, 'rb') as f: cdata = f.read() title = info.get('Title', None) or 'Unknown' au = info.get('Author', None) if au is None: au = ['Unknown'] else: au = string_to_authors(au) mi = MetaInformation(title, au) creator = info.get('Creator', None) if creator: mi.book_producer = creator keywords = info.get('Keywords', None) mi.tags = [] if keywords: mi.tags = [x.strip() for x in keywords.split(',')] isbn = [check_isbn(x) for x in mi.tags if check_isbn(x)] if isbn: mi.isbn = isbn = isbn[0] mi.tags = [x for x in mi.tags if check_isbn(x) != isbn] subject = info.get('Subject', None) if subject: mi.tags.insert(0, subject) if 'xmp_metadata' in info: from ebook_converter.ebooks.metadata.xmp import consolidate_metadata mi = consolidate_metadata(mi, info) # Look for recognizable identifiers in the info dict, if they were not # found in the XMP metadata for scheme, check_func in {'doi': check_doi, 'isbn': check_isbn}.items(): if scheme not in mi.get_identifiers(): for k, v in info.items(): if k != 'xmp_metadata': val = check_func(v) if val: mi.set_identifier(scheme, val) break if cdata: mi.cover_data = ('jpeg', cdata) return mi get_quick_metadata = functools.partial(get_metadata, cover=False) def set_metadata(stream, mi): return None
PypiClean
/proto_clip_toolkit-0.1.tar.gz/proto_clip_toolkit-0.1/proto_clip_toolkit/utils/tsne.py
import torch import os import matplotlib.pyplot as plt import argparse import yaml import sys from pathlib import Path p = Path(__file__).parents[3] sys.path.append(str(p)) from proto_datasets import build_dataset from sklearn.manifold import TSNE from matplotlib.offsetbox import OffsetImage, AnnotationBbox from utils import build_cache_model, get_textual_memory_bank import json import cv2 def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--config', dest='config', help='settings of Proto-CLIP in yaml format', required=True) parser.add_argument('--splits_path', dest='splits_path', help='path to the splits file for the particular dataset', required=True) parser.add_argument('--memory_bank_v_path', dest='memory_bank_v_path', help='path to the visual embeddings memory bank', required=True) parser.add_argument('--memory_bank_t_path', dest='memory_bank_t_path', help='path to the textual embeddings memory bank', required=True) parser.add_argument('--after_train', dest='after_train', help='save embeddings after training', action='store_true') args = parser.parse_args() return args def parse_splits_file(config_path): """Returns the map class id to the class name using the splits json file.""" class_id_mapping = {} f = open(config_path) data = json.load(f) for config_data in data["train"]: class_id_mapping[config_data[1]] = config_data[2] return class_id_mapping def get_image_samples(txt_path, n_classes): """Returns a single representative image sample for each class.""" f = open(txt_path, "r") data = f.readlines() data = [x.strip("\n") for x in data] output_image_locations = [] for i in range(n_classes): #We pick the first sample of the support set for a given class. img_idx = i*16 output_image_locations.append(data[img_idx]) return output_image_locations def get_tsne_coordinates(z_img_proto, z_text_proto, n_class): """Returns the 2-dimensional t-SNE coordinates for the image and the text embeddings.""" X = torch.vstack(( z_img_proto, z_text_proto, # zq_imgs.view(-1, zq_imgs.shape[-1]) )).cpu().data.numpy() tsne_X = TSNE(n_components=2, perplexity=10, random_state=1).fit_transform(X) zi, zt = tsne_X[:n_class], tsne_X[n_class: ] return zi, zt def plot_tsne_after(z_img_proto, z_text_proto, txt_prompts): """Returns the t-SNE plot for the visual and textual embeddings after training.""" n_class = z_img_proto.shape[0] zi, zt = get_tsne_coordinates(z_img_proto, z_text_proto, n_class) image_locations = get_image_samples("./image_locations.txt", n_class) _, ax = plt.subplots(figsize=(50, 50)) fontsize = 10 for idx, (x, y) in enumerate(zip(zi[:, 0], zi[:, 1])): img = plt.imread(image_locations[idx]) img = cv2.resize(img, (48, 48)) imagebox = OffsetImage(img) # Adjust the zoom level as desired ab = AnnotationBbox(imagebox, (x, y), frameon=False, zorder=1) # ax.set_aspect('equal') ax.scatter(x, y, zorder=4, s=32, c='cyan', marker=".") ax.add_artist(ab) ax.annotate( txt_prompts[idx], xy=(x, y + 1), ha='center', c="crimson", fontsize=fontsize) ax.scatter(zt[:, 0], zt[:, 1], c='aquamarine', zorder=3, marker="+", s=128) ax.axis('off') plt.savefig("./test_plot_after.png", dpi=300) def plot_tsne_before(z_img_proto, z_text_proto, txt_prompts): """Returns the t-SNE plot for the visual and textual embeddings before training.""" n_class = z_img_proto.shape[0] zi, zt = get_tsne_coordinates(z_img_proto, z_text_proto, n_class) image_locations = get_image_samples("./image_locations.txt", n_class) _, ax = plt.subplots(figsize=(50, 50)) fontsize = 25 for idx, (x, y) in enumerate(zip(zi[:, 0], zi[:, 1])): img = plt.imread(image_locations[idx]) img = cv2.resize(img, (48, 48)) imagebox = OffsetImage(img) # Adjust the zoom level as desired ab = AnnotationBbox(imagebox, (x, y), frameon=False, zorder=1) ax.scatter(x, y, zorder=4, s=32, c='cyan', marker=".") ax.add_artist(ab) ax.scatter(zt[:, 0], zt[:, 1], c='lightseagreen', zorder=3, marker="P", s=128) for i in range(len(txt_prompts)): ax.annotate( txt_prompts[i], (zt[i, 0], zt[i, 1] + 0.2), c='crimson', fontsize=fontsize) ax.axis('off') plt.savefig("./test_plot_before.png", dpi=300) if __name__=="__main__": args = get_arguments() cfg = yaml.load(open(args.config, 'r'), Loader=yaml.Loader) dataset = build_dataset(cfg['dataset'], cfg['root_path'], cfg['shots']) if not args.after_train: #This function will not work if you do not have the cache available. #You would need to create the cache and place the initial embeddings inside it. #An easy way to do it is to run the main.py for 1 epoch. visual_memory_keys, visual_mem_values = build_cache_model(cfg, None, None) text_prompts, textual_memory_bank = get_textual_memory_bank(cfg, [], None, None) embeddings_v = visual_memory_keys.t() embeddings_t = textual_memory_bank.t() else: best_model_path_v = args.memory_bank_v_path best_model_path_t = args.memory_bank_t_path try: embeddings_v = torch.load(best_model_path_v) embeddings_t = torch.load(best_model_path_t) except: raise FileNotFoundError(f"File does not exist: {best_model_path_v} and {best_model_path_t}") NxK, ndim= embeddings_v.shape K = cfg['shots'] N = NxK//K zs_imgs = embeddings_v.view(-1, K, ndim) zs_imgs = zs_imgs / zs_imgs.norm(dim=-1, keepdim=True) z_img_proto = zs_imgs.mean(dim=1) z_img_proto = z_img_proto / z_img_proto.norm(dim=-1, keepdim=True) zs_text = embeddings_t z_text_proto = zs_text / zs_text.norm(dim=-1, keepdim=True) class_id_mapping = parse_splits_file(args.splits_path) if args.after_train: plot_tsne_after(z_img_proto, z_text_proto, list(class_id_mapping.values())) else: plot_tsne_before(z_img_proto, z_text_proto, list(class_id_mapping.values()))
PypiClean
/nbclean-0.3.2.tar.gz/nbclean-0.3.2/examples/modify_notebooks.ipynb
``` import nbclean as nbc ``` # Modifying notebooks with `nbclean` It's common to want to modify notebook code, outputs, etc according to some guidelines that you choose. Below are a few examples for how to do this with `nbclean`. To demonstrate, we'll use a notebook with lots of different information in it. We'll modify some cells, delete others, etc. Click the button below to see the "original" version of the notebook, it has explanations for how `nbclean` should treat each cell. <a href="test_notebooks/test_notebook.ipynb"><button>Click here to see<br />the original notebook!</button></a> Below we'll read in the notebook with `nbclean`, and then run several processors on it. Note that these processors will treat cells differently depending on tags, cell content, etc. ``` # Here are paths to our notebooks path_original_notebook = './test_notebooks/test_notebook.ipynb' path_save = './test_notebooks/' # Clear different parts of the notebook cells based on tags ntbk = nbc.NotebookCleaner(path_original_notebook) ntbk.clear('output', tag='hide_output') ntbk.clear('content', tag='hide_content') ntbk.clear('stderr', tag='hide_stderr') # Removing entire cells ntbk.remove_cells(tag='remove') # Removing entire cells if they're empty and match a tag ntbk.remove_cells(tag='remove_if_empty', empty=True) # Removing entire cells based on text present in the source ntbk.remove_cells(search_text="# HIDDEN") # Replacing text text_replace_begin = '### SOLUTION BEGIN' text_replace_end = '### SOLUTION END' ntbk.replace_text(text_replace_begin, text_replace_end) ``` Finally, we'll save the notebook to a new "cleaned" location. ``` # Now we'll save the notebook to inspect ntbk.save(path_save + 'test_notebook_saved.ipynb') ``` <a href="test_notebooks/test_notebook_saved.ipynb"><button>Click here to see<br />the saved notebook!</button></a>
PypiClean
/flying_discs-0.3.0-py3-none-any.whl/flying_discs/morrison/coordinates.py
from __future__ import annotations from dataclasses import dataclass from typing import Sequence import numpy as np @dataclass class MorrisonPosition2D: x: float z: float vx: float vz: float ax: float az: float class MorrisonTrajectory2D: # pylint: disable=too-many-instance-attributes, invalid-name def __init__(self, positions: Sequence[MorrisonPosition2D]) -> None: self.positions = positions self.X = np.array([p.x for p in self.positions]) self.Z = np.array([p.z for p in self.positions]) self.VX = np.array([p.vx for p in self.positions]) self.VZ = np.array([p.vz for p in self.positions]) self.AX = np.array([p.ax for p in self.positions]) self.AZ = np.array([p.az for p in self.positions]) self.__n = 0 # iterator count def __iter__(self) -> "MorrisonTrajectory2D": self.__n = 0 return self def __next__(self) -> MorrisonPosition2D: if self.__n <= len(self.positions) - 1: result = self.positions[self.__n] self.__n += 1 return result raise StopIteration def __getitem__(self, i: int) -> MorrisonPosition2D: return self.positions[i] def __len__(self) -> int: return len(self.positions) def __eq__(self, o: object) -> bool: return self.positions == o @dataclass class MorrisonPosition3D: x: float y: float z: float vx: float vy: float vz: float ax: float ay: float az: float class MorrisonTrajectory3D: # pylint: disable=too-many-instance-attributes, invalid-name def __init__(self, positions: Sequence[MorrisonPosition3D]) -> None: self.positions = positions self.X = np.array([p.x for p in self.positions]) self.Y = np.array([p.y for p in self.positions]) self.Z = np.array([p.z for p in self.positions]) self.VX = np.array([p.vx for p in self.positions]) self.VY = np.array([p.vy for p in self.positions]) self.VZ = np.array([p.vz for p in self.positions]) self.AX = np.array([p.ax for p in self.positions]) self.AY = np.array([p.ay for p in self.positions]) self.AZ = np.array([p.az for p in self.positions]) self.__n = 0 # iterator count def __iter__(self) -> "MorrisonTrajectory3D": self.__n = 0 return self def __next__(self) -> MorrisonPosition3D: if self.__n <= len(self.positions) - 1: result = self.positions[self.__n] self.__n += 1 return result raise StopIteration def __getitem__(self, i: int) -> MorrisonPosition3D: return self.positions[i] def __len__(self) -> int: return len(self.positions) def __eq__(self, o: object) -> bool: return self.positions == o
PypiClean
/py-ms-consulate-1.0.0.tar.gz/py-ms-consulate-1.0.0/consulate/utils.py
import re from urllib import parse as _urlparse from consulate import exceptions DURATION_PATTERN = re.compile(r"^(?:(?:-|)(?:\d+|\d+\.\d+)(?:µs|ms|s|m|h))+$") def is_string(value): """Python 2 & 3 safe way to check if a value is either an instance of str or unicode. :param mixed value: The value to evaluate :rtype: bool """ checks = [isinstance(value, t) for t in [bytes, str]] return any(checks) def maybe_encode(value): """If the value passed in is a str, encode it as UTF-8 bytes for Python 3 :param str|bytes value: The value to maybe encode :rtype: bytes """ try: return value.encode("utf-8") except AttributeError: return value def _response_error(response): """Return the decoded response error or status code if no content exists. :param requests.response response: The HTTP response :rtype: str """ return response.body.decode("utf-8") if hasattr(response, "body") and response.body else str(response.status_code) def response_ok(response, raise_on_404=False): """Evaluate the HTTP response and raise the appropriate exception if required. :param requests.response response: The HTTP response :param bool raise_on_404: Raise an exception on 404 error :rtype: bool :raises: consulate.exceptions.ConsulateException """ result = False if response.status_code == 200: result = True elif response.status_code == 400: raise exceptions.ClientError(_response_error(response)) elif response.status_code == 401: raise exceptions.ACLDisabled(_response_error(response)) elif response.status_code == 403: raise exceptions.Forbidden(_response_error(response)) elif response.status_code == 404 and raise_on_404: raise exceptions.NotFound(_response_error(response)) elif response.status_code == 500: raise exceptions.ServerError(_response_error(response)) return result def validate_go_interval(value, _model=None): """Validate the value passed in returning :data:`True` if it is a Go Duration value. :param str value: The string to check :param consulate.models.base.Model _model: Optional model passed in :rtype: bool """ return DURATION_PATTERN.match(value) is not None def validate_url(value, _model=None): """Validate that the value passed in is a URL, returning :data:`True` if it is. :param str value: The string to check :param consulate.models.base.Model _model: Optional model passed in :rtype: bool """ parsed = _urlparse.urlparse(value) return parsed.scheme and parsed.netloc
PypiClean
/globus_action_provider_tools-0.13.0rc1-py3-none-any.whl/globus_action_provider_tools/authorization.py
import logging from itertools import chain from globus_action_provider_tools.authentication import AuthState from globus_action_provider_tools.data_types import ActionStatus from globus_action_provider_tools.errors import AuthenticationError log = logging.getLogger(__name__) def authorize_action_access_or_404(status: ActionStatus, auth_state: AuthState) -> None: """ Determines whether or not a principal is allowed to view an ActionStatus. If not allowed to view the ActionStatus, this function will raise an AuthenticationError. """ if status.monitor_by is None: allowed_set = set([status.creator_id]) else: allowed_set = set(chain([status.creator_id], status.monitor_by)) authorized = auth_state.check_authorization( allowed_set, allow_all_authenticated_users=True ) if not authorized: log.info( f"None of {auth_state.effective_identity}'s identities are allowed to view " f"{status.action_id}. User Identities={auth_state.principals} Allowed " f"Identities={allowed_set}" ) raise AuthenticationError(f"No Action with id {status.action_id}") def authorize_action_management_or_404( status: ActionStatus, auth_state: AuthState ) -> None: """ Determines whether or not a principal is allowed to manage an ActionStatus. If not allowed to view the ActionStatus, this function will raise an AuthenticationError. """ if status.manage_by is None: allowed_set = set([status.creator_id]) else: allowed_set = set(chain([status.creator_id], status.manage_by)) authorized = auth_state.check_authorization( allowed_set, allow_all_authenticated_users=True ) if not authorized: log.info( f"None of {auth_state.effective_identity}'s identities are allowed to manage " f"{status.action_id}. User Identities={auth_state.principals} Allowed " f"Identities={allowed_set}" ) raise AuthenticationError(f"No Action with id {status.action_id}")
PypiClean
/easybuild-easyblocks-4.8.0.tar.gz/easybuild-easyblocks-4.8.0/easybuild/easyblocks/o/openmpi.py
import os import re from distutils.version import LooseVersion import easybuild.tools.toolchain as toolchain from easybuild.easyblocks.generic.configuremake import ConfigureMake from easybuild.framework.easyconfig.constants import EASYCONFIG_CONSTANTS from easybuild.tools.build_log import EasyBuildError from easybuild.tools.config import build_option from easybuild.tools.modules import get_software_root from easybuild.tools.systemtools import check_os_dependency, get_shared_lib_ext from easybuild.tools.toolchain.mpi import get_mpi_cmd_template class EB_OpenMPI(ConfigureMake): """OpenMPI easyblock.""" def configure_step(self): """Custom configuration step for OpenMPI.""" def config_opt_used(key, enable_opt=False): """Helper function to check whether a configure option is already specified in 'configopts'.""" if enable_opt: regex = '--(disable|enable)-%s' % key else: regex = '--(with|without)-%s' % key return bool(re.search(regex, self.cfg['configopts'])) config_opt_names = [ # suppress failure modes in relation to mpirun path 'mpirun-prefix-by-default', # build shared libraries 'shared', ] for key in config_opt_names: if not config_opt_used(key, enable_opt=True): self.cfg.update('configopts', '--enable-%s' % key) # List of EasyBuild dependencies for which OMPI has known options known_dependencies = ('CUDA', 'hwloc', 'libevent', 'libfabric', 'PMIx', 'UCX', 'UCC') # Value to use for `--with-<dep>=<value>` if the dependency is not specified in the easyconfig # No entry is interpreted as no option added at all # This is to make builds reproducible even when the system libraries are changed and avoids failures # due to e.g. finding only PMIx but not libevent on the system unused_dep_value = dict() # Known options since version 3.0 (no earlier ones checked) if LooseVersion(self.version) >= LooseVersion('3.0'): # Default to disable the option with "no" unused_dep_value = {dep: 'no' for dep in known_dependencies} # For these the default is to use an internal copy and not using any is not supported for dep in ('hwloc', 'libevent', 'PMIx'): unused_dep_value[dep] = 'internal' # handle dependencies for dep in known_dependencies: opt_name = dep.lower() # If the option is already used, don't add it if config_opt_used(opt_name): continue # libfabric option renamed in OpenMPI 3.1.0 to ofi if dep == 'libfabric' and LooseVersion(self.version) >= LooseVersion('3.1'): opt_name = 'ofi' # Check new option name. They are synonyms since 3.1.0 for backward compatibility if config_opt_used(opt_name): continue dep_root = get_software_root(dep) # If the dependency is loaded, specify its path, else use the "unused" value, if any if dep_root: opt_value = dep_root else: opt_value = unused_dep_value.get(dep) if opt_value is not None: self.cfg.update('configopts', '--with-%s=%s' % (opt_name, opt_value)) if bool(get_software_root('PMIx')) != bool(get_software_root('libevent')): raise EasyBuildError('You must either use both PMIx and libevent as dependencies or none of them. ' 'This is to enforce the same libevent is used for OpenMPI as for PMIx or ' 'the behavior may be unpredictable.') # check whether VERBS support should be enabled if not config_opt_used('verbs'): # for OpenMPI v4.x, the openib BTL should be disabled when UCX is used; # this is required to avoid "error initializing an OpenFabrics device" warnings, # see also https://www.open-mpi.org/faq/?category=all#ofa-device-error is_ucx_enabled = ('--with-ucx' in self.cfg['configopts'] and '--with-ucx=no' not in self.cfg['configopts']) if LooseVersion(self.version) >= LooseVersion('4.0.0') and is_ucx_enabled: verbs = False else: # auto-detect based on available OS packages os_packages = EASYCONFIG_CONSTANTS['OS_PKG_IBVERBS_DEV'][0] verbs = any(check_os_dependency(osdep) for osdep in os_packages) # for OpenMPI v5.x, the verbs support is removed, only UCX is available # see https://github.com/open-mpi/ompi/pull/6270 if LooseVersion(self.version) <= LooseVersion('5.0.0'): if verbs: self.cfg.update('configopts', '--with-verbs') else: self.cfg.update('configopts', '--without-verbs') super(EB_OpenMPI, self).configure_step() def test_step(self): """Test step for OpenMPI""" # Default to `make check` if nothing is set. Disable with "runtest = False" in the EC if self.cfg['runtest'] is None: self.cfg['runtest'] = 'check' super(EB_OpenMPI, self).test_step() def load_module(self, *args, **kwargs): """ Load (temporary) module file, after resetting to initial environment. Also put RPATH wrappers back in place if needed, to ensure that sanity check commands work as expected. """ super(EB_OpenMPI, self).load_module(*args, **kwargs) # ensure RPATH wrappers are in place, otherwise compiling minimal test programs will fail if build_option('rpath'): if self.toolchain.options.get('rpath', True): self.toolchain.prepare_rpath_wrappers(rpath_filter_dirs=self.rpath_filter_dirs, rpath_include_dirs=self.rpath_include_dirs) def sanity_check_step(self): """Custom sanity check for OpenMPI.""" bin_names = ['mpicc', 'mpicxx', 'mpif90', 'mpifort', 'mpirun', 'ompi_info', 'opal_wrapper'] if LooseVersion(self.version) >= LooseVersion('5.0.0'): bin_names.append('prterun') else: bin_names.append('orterun') bin_files = [os.path.join('bin', x) for x in bin_names] shlib_ext = get_shared_lib_ext() lib_names = ['mpi_mpifh', 'mpi', 'open-pal'] if LooseVersion(self.version) >= LooseVersion('5.0.0'): lib_names.append('prrte') else: lib_names.extend(['ompitrace', 'open-rte']) lib_files = [os.path.join('lib', 'lib%s.%s' % (x, shlib_ext)) for x in lib_names] inc_names = ['mpi-ext', 'mpif-config', 'mpif', 'mpi', 'mpi_portable_platform'] if LooseVersion(self.version) >= LooseVersion('5.0.0'): inc_names.append('prte') inc_files = [os.path.join('include', x + '.h') for x in inc_names] custom_paths = { 'files': bin_files + inc_files + lib_files, 'dirs': [], } # make sure MPI compiler wrappers pick up correct compilers expected = { 'mpicc': os.getenv('CC', 'gcc'), 'mpicxx': os.getenv('CXX', 'g++'), 'mpifort': os.getenv('FC', 'gfortran'), 'mpif90': os.getenv('F90', 'gfortran'), } # actual pattern for gfortran is "GNU Fortran" for key in ['mpifort', 'mpif90']: if expected[key] == 'gfortran': expected[key] = "GNU Fortran" # for PGI, correct pattern is "pgfortran" with mpif90 if expected['mpif90'] == 'pgf90': expected['mpif90'] = 'pgfortran' custom_commands = ["%s --version | grep '%s'" % (key, expected[key]) for key in sorted(expected.keys())] # Add minimal test program to sanity checks # Run with correct MPI launcher mpi_cmd_tmpl, params = get_mpi_cmd_template(toolchain.OPENMPI, dict(), mpi_version=self.version) # Limit number of ranks to 8 to avoid it failing due to hyperthreading ranks = min(8, self.cfg['parallel']) for src, compiler in (('hello_c.c', 'mpicc'), ('hello_mpifh.f', 'mpifort'), ('hello_usempi.f90', 'mpif90')): src_path = os.path.join(self.cfg['start_dir'], 'examples', src) if os.path.exists(src_path): test_exe = os.path.join(self.builddir, 'mpi_test_' + os.path.splitext(src)[0]) self.log.info("Adding minimal MPI test program to sanity checks: %s", test_exe) # Build test binary custom_commands.append("%s %s -o %s" % (compiler, src_path, test_exe)) # Run the test if chosen if build_option('mpi_tests'): params.update({'nr_ranks': ranks, 'cmd': test_exe}) # Allow oversubscription for this test (in case of hyperthreading) custom_commands.append("OMPI_MCA_rmaps_base_oversubscribe=1 " + mpi_cmd_tmpl % params) # Run with 1 process which may trigger other bugs # See https://github.com/easybuilders/easybuild-easyconfigs/issues/12978 params['nr_ranks'] = 1 custom_commands.append(mpi_cmd_tmpl % params) super(EB_OpenMPI, self).sanity_check_step(custom_paths=custom_paths, custom_commands=custom_commands)
PypiClean
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/submissions/abx17.py
import collections import functools import shutil from datetime import datetime from pathlib import Path from typing import Tuple, Optional import numpy as np import pandas as pd from pydantic import Field from zerospeech import validators from zerospeech.data_loaders import load_dataframe from zerospeech.datasets import ZRC2017Dataset from zerospeech.generics import ( FileTypes, FileListItem, Namespace, Item, FileItem ) from zerospeech.leaderboards import EntryDetails, LeaderboardBenchmarkName, LeaderboardEntry from zerospeech.leaderboards.abx17 import ABX17LeaderboardEntry, ABX17LeaderboardScores from zerospeech.misc import load_obj from zerospeech.tasks.abx.abx17 import ABXParameters from ._model import MetaFile, Submission, SubmissionValidation, validation_fn, add_item, ScoreDir class ABX17SubmissionValidator(SubmissionValidation): """ File Validation for an ABX17 submission""" dataset: ZRC2017Dataset = Field(default_factory=lambda: ZRC2017Dataset.load()) @staticmethod def basic_abx_checks(item_list: FileListItem, abx_item: FileItem, tag: str): # wav_list are compared to items inside item file df = pd.read_csv(abx_item.file, sep=' ') f_list_checks = [ # Verify that all necessary files are present functools.partial( validators.file_list_stem_check, expected=[str(f) for f in df['#file']] ) ] additional_checks = [ # Verify that type of array is float functools.partial( validators.numpy_dtype_check, dtype=np.dtype('float') ), # Verify that array has 2 dimensions functools.partial( validators.numpy_dimensions_check, ndim=2 ), # Verify that files have the same dimensions validators.numpy_col_comparison(1) ] results = validators.numpy_array_list_check( item_list, f_list_checks=f_list_checks, additional_checks=additional_checks ) # add item tag add_item(tag, results) return results @validation_fn(target='english_1s') def validate_english_1s(self, english_1s: FileListItem): abx_item = self.dataset.index.subsets.english.items.abx_1s_item return self.basic_abx_checks(item_list=english_1s, abx_item=abx_item, tag='english_1s') @validation_fn(target='english_10s') def validate_english_10s(self, english_10s: FileListItem): abx_item = self.dataset.index.subsets.english.items.abx_10s_item return self.basic_abx_checks(item_list=english_10s, abx_item=abx_item, tag='english_10s') @validation_fn(target='english_120s') def validate_english_120s(self, english_120s: FileListItem): abx_item = self.dataset.index.subsets.english.items.abx_120s_item return self.basic_abx_checks(item_list=english_120s, abx_item=abx_item, tag='english_120s') @validation_fn(target='french_1s') def validate_french_1s(self, french_1s: FileListItem): abx_item = self.dataset.index.subsets.french.items.abx_1s_item return self.basic_abx_checks(item_list=french_1s, abx_item=abx_item, tag='french_1s') @validation_fn(target='french_10s') def validate_french_10s(self, french_10s: FileListItem): abx_item = self.dataset.index.subsets.french.items.abx_10s_item return self.basic_abx_checks(item_list=french_10s, abx_item=abx_item, tag='french_10s') @validation_fn(target='french_120s') def validate_french_120s(self, french_120s: FileListItem): abx_item = self.dataset.index.subsets.french.items.abx_120s_item return self.basic_abx_checks(item_list=french_120s, abx_item=abx_item, tag='french_120s') @validation_fn(target='mandarin_1s') def validate_mandarin_1s(self, mandarin_1s: FileListItem): abx_item = self.dataset.index.subsets.mandarin.items.abx_1s_item return self.basic_abx_checks(item_list=mandarin_1s, abx_item=abx_item, tag='mandarin_1s') @validation_fn(target='mandarin_10s') def validate_mandarin_10s(self, mandarin_10s: FileListItem): abx_item = self.dataset.index.subsets.mandarin.items.abx_10s_item return self.basic_abx_checks(item_list=mandarin_10s, abx_item=abx_item, tag='mandarin_10s') @validation_fn(target='mandarin_120s') def validate_mandarin_120s(self, mandarin_120s: FileListItem): abx_item = self.dataset.index.subsets.mandarin.items.abx_120s_item return self.basic_abx_checks(item_list=mandarin_120s, abx_item=abx_item, tag='mandarin_120s') @validation_fn(target='german_1s') def validate_german_1s(self, german_1s: FileListItem): abx_item = self.dataset.index.subsets.german.items.abx_1s_item return self.basic_abx_checks(item_list=german_1s, abx_item=abx_item, tag='german_1s') @validation_fn(target='german_10s') def validate_german_10s(self, german_10s: FileListItem): abx_item = self.dataset.index.subsets.german.items.abx_10s_item return self.basic_abx_checks(item_list=german_10s, abx_item=abx_item, tag='german_10s') @validation_fn(target='german_120s') def validate_german_120s(self, german_120s: FileListItem): abx_item = self.dataset.index.subsets.german.items.abx_120s_item return self.basic_abx_checks(item_list=german_120s, abx_item=abx_item, tag='german_120s') @validation_fn(target='wolof_1s') def validate_wolof_1s(self, wolof_1s: FileListItem): abx_item = self.dataset.index.subsets.wolof.items.abx_1s_item return self.basic_abx_checks(item_list=wolof_1s, abx_item=abx_item, tag='wolof_1s') @validation_fn(target='wolof_10s') def validate_wolof_10s(self, wolof_10s: FileListItem): abx_item = self.dataset.index.subsets.wolof.items.abx_10s_item return self.basic_abx_checks(item_list=wolof_10s, abx_item=abx_item, tag='wolof_10s') @validation_fn(target='wolof_120s') def validate_wolof_120s(self, wolof_120s: FileListItem): abx_item = self.dataset.index.subsets.wolof.items.abx_120s_item return self.basic_abx_checks(item_list=wolof_120s, abx_item=abx_item, tag='wolof_120s') class ABX17ScoreDir(ScoreDir): params: Optional[ABXParameters] = ABXParameters() @property def scores(self): csv_file = (self.location / self.params.result_filename).with_suffix('.csv') return load_dataframe(csv_file) def get_details(self) -> EntryDetails: """ Build entry details """ train_set = "" gpu_budget = "" if self.meta_file is not None: train_set = self.meta_file.model_info.train_set gpu_budget = self.meta_file.model_info.gpu_budget return EntryDetails( train_set=train_set, benchmarks=[LeaderboardBenchmarkName.ABX_17], gpu_budget=gpu_budget, parameters=self.params.to_meta() ) def build_scores(self) -> ABX17LeaderboardScores: """ extract scores from csv """ score_template = collections.defaultdict(lambda: collections.defaultdict(lambda: collections.defaultdict(dict))) for _, row in self.scores.iterrows(): score_template[row['language']][f"t_{row['duration']}"][row['type']] = row["score"] return ABX17LeaderboardScores.parse_obj(score_template) def build_meta_data(self): """ Build leaderboard metadata """ return dict( model_id=self.meta_file.model_info.model_id, submission_id="", index=None, submission_date=datetime.now(), submitted_by=self.meta_file.username, description=self.meta_file.model_info.system_description, publication=dict( author_short=self.meta_file.publication.author_label, authors=self.meta_file.publication.authors, paper_title=self.meta_file.publication.paper_title, paper_ref=self.meta_file.publication.paper_url, bib_ref=self.meta_file.publication.bib_reference, paper_url=self.meta_file.publication.paper_url, pub_year=self.meta_file.publication.publication_year, team_name=self.meta_file.publication.team, institution=self.meta_file.publication.institution, code=self.meta_file.code_url, DOI=self.meta_file.publication.DOI, open_science=self.meta_file.open_source, ), details=dict( train_set=self.meta_file.model_info.train_set, benchmarks=[], gpu_budget=self.meta_file.model_info.gpu_budget, parameters=self.params.to_meta(), ) ) def build_leaderboard(self) -> LeaderboardEntry: """ Build leaderboard entry for the current submission """ self.load_meta() return ABX17LeaderboardEntry.parse_obj( dict( **self.build_meta_data(), scores=self.build_scores() ) ) class ABX17Submission(Submission): """ Submission for ABX-17 """ sets: Tuple = ('1s', '10s', '120s') tasks: Tuple = ('english', 'french', 'mandarin', 'german', 'wolof') @classmethod def load( cls, path: Path, *, tasks=('english', 'french', 'mandarin', 'german', 'wolof'), sets=('1s', '10s', '120s') ): # submission object submission = cls( sets=sets, tasks=tasks, location=path ) # if params not set export defaults if not submission.params_file.is_file(): params = ABXParameters() params.result_filename = "scores.csv" params.export(submission.params_file) # Load items file_ext = submission.params.score_file_type.replace('.', '') file_ext = FileTypes(file_ext) items = dict() if 'english' in tasks: if '1s' in sets: items['english_1s'] = FileListItem.from_dir( path / 'english/1s', f_type=file_ext ) if '10s' in sets: items['english_10s'] = FileListItem.from_dir( path / 'english/10s', f_type=file_ext ) if '120s' in sets: items['english_120s'] = FileListItem.from_dir( path / 'english/120s', f_type=file_ext ) if 'french' in tasks: if '1s' in sets: items['french_1s'] = FileListItem.from_dir( path / 'french/1s', f_type=file_ext ) if '10s' in sets: items['french_10s'] = FileListItem.from_dir( path / 'french/10s', f_type=file_ext ) if '120s' in sets: items['french_120s'] = FileListItem.from_dir( path / 'french/120s', f_type=file_ext ) if 'mandarin' in tasks: if '1s' in sets: items['mandarin_1s'] = FileListItem.from_dir( path / 'mandarin/1s', f_type=file_ext ) if '10s' in sets: items['mandarin_10s'] = FileListItem.from_dir( path / 'mandarin/10s', f_type=file_ext ) if '120s' in sets: items['mandarin_120s'] = FileListItem.from_dir( path / 'mandarin/120s', f_type=file_ext ) if 'german' in tasks: # retro-compatibility with old format gloc = path / 'LANG1' if not gloc.is_dir(): gloc = path / 'german' if '1s' in sets: items['german_1s'] = FileListItem.from_dir( gloc / '1s', f_type=file_ext ) if '10s' in sets: items['german_10s'] = FileListItem.from_dir( gloc / '10s', f_type=file_ext ) if '120s' in sets: items['german_120s'] = FileListItem.from_dir( gloc / '120s', f_type=file_ext ) if 'wolof' in tasks: # retro-compatibility with old format gloc = path / 'LANG2' if not gloc.is_dir(): gloc = path / 'wolof' if '1s' in sets: items['wolof_1s'] = FileListItem.from_dir( gloc / '1s', f_type=file_ext ) if '10s' in sets: items['wolof_10s'] = FileListItem.from_dir( gloc / '10s', f_type=file_ext ) if '120s' in sets: items['wolof_120s'] = FileListItem.from_dir( gloc / '120s', f_type=file_ext ) submission.items = Namespace[Item](store=items) return submission def load_parameters(self) -> "ABXParameters": if self.params_file.is_file(): obj = load_obj(self.params_file) return ABXParameters.parse_obj(obj) return ABXParameters() def __validate_submission__(self): """ Run validation on the submission data """ self.validation_output += ABX17SubmissionValidator().validate(self) def get_scores(self): """ Load score Dir""" return ABX17ScoreDir( submission_dir=self.location, location=self.score_dir, params=self.params ) def __zippable__(self): return [ ("", self.meta_file), ("", self.params_file), *[("english/1s/", f) for f in self.items.english_1s], *[("english/10s/", f) for f in self.items.english_10s], *[("english/120s/", f) for f in self.items.english_120s], *[("french/1s/", f) for f in self.items.french_1s], *[("french/10s/", f) for f in self.items.french_10s], *[("french/120s/", f) for f in self.items.french_120s], *[("mandarin/1s/", f) for f in self.items.mandarin_1s], *[("mandarin/10s/", f) for f in self.items.mandarin_10s], *[("mandarin/120s/", f) for f in self.items.mandarin_120s], *[("german/1s/", f) for f in self.items.german_1s], *[("german/10s/", f) for f in self.items.german_10s], *[("german/120s/", f) for f in self.items.german_120s], *[("wolof/1s/", f) for f in self.items.wolof_1s], *[("wolof/10s/", f) for f in self.items.wolof_10s], *[("wolof/120s/", f) for f in self.items.wolof_120s], *[("scores/", f) for f in self.score_dir.iterdir()] ] @classmethod def init_dir(cls, location: Path): # create sub-directories location.mkdir(exist_ok=True, parents=True) (location / 'english' / "1s").mkdir(exist_ok=True, parents=True) (location / 'english' / "10s").mkdir(exist_ok=True, parents=True) (location / 'english' / "120s").mkdir(exist_ok=True, parents=True) (location / 'french' / "1s").mkdir(exist_ok=True, parents=True) (location / 'french' / "10s").mkdir(exist_ok=True, parents=True) (location / 'french' / "120s").mkdir(exist_ok=True, parents=True) (location / 'mandarin' / "1s").mkdir(exist_ok=True, parents=True) (location / 'mandarin' / "10s").mkdir(exist_ok=True, parents=True) (location / 'mandarin' / "120s").mkdir(exist_ok=True, parents=True) (location / 'german' / "1s").mkdir(exist_ok=True, parents=True) (location / 'german' / "10s").mkdir(exist_ok=True, parents=True) (location / 'german' / "120s").mkdir(exist_ok=True, parents=True) (location / 'wolof' / "1s").mkdir(exist_ok=True, parents=True) (location / 'wolof' / "10s").mkdir(exist_ok=True, parents=True) (location / 'wolof' / "120s").mkdir(exist_ok=True, parents=True) # scores dir (location / 'scores').mkdir(exist_ok=True, parents=True) # create parameters file ABXParameters().export(location / ABXParameters.file_stem) # create meta-template template = MetaFile.to_template(benchmark_name="abx17") template.to_yaml( file=location / MetaFile.file_stem, excluded={ "file_stem": True, "model_info": {"model_id"}, "publication": {"bib_reference", "DOI"} } ) instruction_file = Path(__file__).parent / "instructions.md" if instruction_file.is_file(): shutil.copy(instruction_file, location / 'help.md')
PypiClean
/django-codemirror2-0.2.tar.gz/django-codemirror2-0.2/codemirror2/static/codemirror2/mode/solr/solr.js
(function(mod) { if (typeof exports == "object" && typeof module == "object") // CommonJS mod(require("../../lib/codemirror")); else if (typeof define == "function" && define.amd) // AMD define(["../../lib/codemirror"], mod); else // Plain browser env mod(CodeMirror); })(function(CodeMirror) { "use strict"; CodeMirror.defineMode("solr", function() { "use strict"; var isStringChar = /[^\s\|\!\+\-\*\?\~\^\&\:\(\)\[\]\{\}\^\"\\]/; var isOperatorChar = /[\|\!\+\-\*\?\~\^\&]/; var isOperatorString = /^(OR|AND|NOT|TO)$/i; function isNumber(word) { return parseFloat(word, 10).toString() === word; } function tokenString(quote) { return function(stream, state) { var escaped = false, next; while ((next = stream.next()) != null) { if (next == quote && !escaped) break; escaped = !escaped && next == "\\"; } if (!escaped) state.tokenize = tokenBase; return "string"; }; } function tokenOperator(operator) { return function(stream, state) { var style = "operator"; if (operator == "+") style += " positive"; else if (operator == "-") style += " negative"; else if (operator == "|") stream.eat(/\|/); else if (operator == "&") stream.eat(/\&/); else if (operator == "^") style += " boost"; state.tokenize = tokenBase; return style; }; } function tokenWord(ch) { return function(stream, state) { var word = ch; while ((ch = stream.peek()) && ch.match(isStringChar) != null) { word += stream.next(); } state.tokenize = tokenBase; if (isOperatorString.test(word)) return "operator"; else if (isNumber(word)) return "number"; else if (stream.peek() == ":") return "field"; else return "string"; }; } function tokenBase(stream, state) { var ch = stream.next(); if (ch == '"') state.tokenize = tokenString(ch); else if (isOperatorChar.test(ch)) state.tokenize = tokenOperator(ch); else if (isStringChar.test(ch)) state.tokenize = tokenWord(ch); return (state.tokenize != tokenBase) ? state.tokenize(stream, state) : null; } return { startState: function() { return { tokenize: tokenBase }; }, token: function(stream, state) { if (stream.eatSpace()) return null; return state.tokenize(stream, state); } }; }); CodeMirror.defineMIME("text/x-solr", "solr"); });
PypiClean
/bmcs-0.0.2a28-py3-none-any.whl/stats/spirrid_bak/old/demo_pullout.py
Created on May 27, 2010 @author: rostislav ''' from stats.spirrid_bak.old.spirrid import SPIRRID from matplotlib import pyplot as plt from quaducom.pullout.constant_friction_finite_fiber import ConstantFrictionFiniteFiber def run(): # Quantities for the response function # and randomization # construct a default response function for a single filament rf = ConstantFrictionFiniteFiber(fu = 1200e15, qf = 1200, L = 0.02, A = 0.00000002, E = 210.e9, z = 0.004, phi = 0.5, f = 0.01) # construct the integrator and provide it with the response function. s = SPIRRID(rf = rf, min_eps = 0.00, max_eps = 0.0008, n_eps = 380) # construct the random variables n_int = 25 s.add_rv('E_mod', distribution = 'uniform', loc = 170.e9, scale = 250.e9, n_int = n_int) s.add_rv('L', distribution = 'uniform', loc = 0.02, scale = 0.03, n_int = n_int) s.add_rv('phi', distribution = 'sin_distr', loc = 0., scale = 1., n_int = n_int) s.add_rv('z', distribution = 'uniform', loc = 0, scale = rf.L / 2., n_int = n_int) # define a tables with the run configurations to start in a batch run_list = [ ( {'cached_dG' : False, 'compiled_QdG_loop' : True, 'compiled_eps_loop' : True }, 'bx-', '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot g[\\theta_1] g[\\theta_2] \dots g[\\theta_n] ) $ - %4.2f sec' ), ( {'cached_dG' : False, 'compiled_QdG_loop' : True, 'compiled_eps_loop' : False }, 'r-2', '$\mathrm{P}_{e} ( \mathrm{C}_{\\theta} ( q(e,\\theta) \cdot g[\\theta_1] g[\\theta_2] \dots g[\\theta_n] ) ) $ - %4.2f sec', ), ( {'cached_dG' : True, 'compiled_QdG_loop' : True, 'compiled_eps_loop' : True }, 'go-', '$\mathrm{C}_{e,\\theta} ( q(e,\\theta) \cdot G[\\theta] ) $ - %4.2f sec', ), ( {'cached_dG' : True, 'compiled_QdG_loop' : False, 'compiled_eps_loop' : False }, 'b--', '$\mathrm{P}_{e} ( \mathrm{N}_{\\theta} ( q(e,\\theta) \cdot G[\\theta] ) ) $ - %4.2f sec' ), ] for idx, run in enumerate(run_list): run_options, plot_options, legend_string = run print('run', idx, end=' ') s.set(**run_options) s.mean_curve.plot(plt, plot_options, linewidth = 2, label = legend_string % s.exec_time) print('execution time', s.exec_time) # def f(): # print 'exec_time', s.exec_time # # global f # # import cProfile # # cProfile.run('f()', 'spirrid.tprof') # import pstats # p = pstats.Stats('spirrid.tprof') # p.strip_dirs() # print 'cumulative' # p.sort_stats('cumulative').print_stats(50) # print 'time' # p.sort_stats('time').print_stats(50) plt.xlabel('strain [-]') plt.ylabel('stress') plt.legend(loc = 'lower right') plt.title(s.rf.title) plt.show() if __name__ == '__main__': run()
PypiClean
/reqmgr2ms-pileup-2.2.4rc1.tar.gz/reqmgr2ms-pileup-2.2.4rc1/src/python/WMCore/Services/DBS/DBSWriterObjects.py
from __future__ import print_function from builtins import int import logging from DBSAPI.dbsException import * from DBSAPI.dbsApiException import * from DBSAPI.dbsPrimaryDataset import DbsPrimaryDataset from DBSAPI.dbsAlgorithm import DbsAlgorithm from DBSAPI.dbsQueryableParameterSet import DbsQueryableParameterSet from DBSAPI.dbsProcessedDataset import DbsProcessedDataset from DBSAPI.dbsFile import DbsFile from DBSAPI.dbsFileBlock import DbsFileBlock from DBSAPI.dbsStorageElement import DbsStorageElement from DBSAPI.dbsRun import DbsRun from DBSAPI.dbsLumiSection import DbsLumiSection def makeTierList(dataTier): """ _makeTierList_ Standard tool to split data tiers if they contain - chars *** Do not use outside of this module *** """ tierList = dataTier.split("-") return tierList def createPrimaryDataset(datasetInfo, apiRef = None): """ _createPrimaryDataset_ Create and return a Primary Dataset object. If apiRef is not None, it is used to insert the dataset into the DBS """ if 'PrimaryDatasetType' in datasetInfo: PrimaryDatasetType = datasetInfo['PrimaryDatasetType'] else: PrimaryDatasetType = 'mc' logging.debug("Inserting PrimaryDataset %s with Type %s", datasetInfo["PrimaryDataset"], PrimaryDatasetType) primary = DbsPrimaryDataset(Name = datasetInfo["PrimaryDataset"], Type=PrimaryDatasetType) if apiRef != None: apiRef.insertPrimaryDataset(primary) return primary def createAlgorithm(datasetInfo, configMetadata = None, apiRef = None): """ _createAlgorithm_ Create an algorithm assuming that datasetInfo is a ProdCommon.MCPayloads.DatasetInfo like dictionary """ exeName = datasetInfo['ApplicationName'] appVersion = datasetInfo['ApplicationVersion'] appFamily = datasetInfo["ApplicationFamily"] # # HACK: Problem with large PSets (is this still relevant ?) # # Repacker jobs have no PSetContent/PSetHash # psetContent = datasetInfo.get('PSetContent',None) if psetContent == None: psetContent = "PSET_CONTENT_NOT_AVAILABLE" psetHash = datasetInfo.get('PSetHash',None) if psetHash == None: psetHash = "NO_PSET_HASH" else: if psetHash.find(";"): # no need for fake hash in new schema psetHash = psetHash.split(";")[0] psetHash = psetHash.replace("hash=", "") ## No more hacks #msg = ">>>>>>>>>>>>>>>>>>>>>>>>>>>>\n" #msg += "TEST HACK USED FOR PSetContent\n" #msg += ">>>>>>>>>>>>>>>>>>>>>>>>>>>>" #logging.warning(msg) #print msg #psetContent = "This is not a PSet" # # HACK: 100 char limit on cfg file name if configMetadata != None: cfgName = configMetadata['name'] if len(cfgName) > 100: msg = ">>>>>>>>>>>>>>>>>>>>>>>>>>>>\n" msg += "TEST HACK USED FOR Config File Name" msg += ">>>>>>>>>>>>>>>>>>>>>>>>>>>>" logging.warning(msg) print(msg) configMetadata['name'] = cfgName[-99] psetInstance = DbsQueryableParameterSet( Hash = psetHash, Name = configMetadata['name'], Version = configMetadata['version'], Type = configMetadata['Type'], Annotation = configMetadata['annotation'], Content = psetContent, ) algorithmInstance = DbsAlgorithm( ExecutableName = exeName, ApplicationVersion = appVersion, ApplicationFamily = appFamily, ParameterSetID = psetInstance ) else: psetInstance = DbsQueryableParameterSet( Hash = psetHash) algorithmInstance = DbsAlgorithm( ExecutableName = exeName, ApplicationVersion = appVersion, ApplicationFamily = appFamily, ParameterSetID = psetInstance ) if apiRef != None: apiRef.insertAlgorithm(algorithmInstance) return algorithmInstance def createAlgorithmForInsert(datasetInfo): """ _createPartialAlgorithm_ Create an Algorithm instance that uses the minimal info needed to insert a file """ exeName = datasetInfo['ApplicationName'] appVersion = datasetInfo['ApplicationVersion'] appFamily = datasetInfo["ApplicationFamily"] # # Repacker jobs have no PsetContent/PSetHash # psetContent = datasetInfo.get('PSetContent',None) if psetContent == None: psetContent = "PSET_CONTENT_NOT_AVAILABLE" psetHash = datasetInfo.get('PSetHash',None) if psetHash == None: psetHash = "NO_PSET_HASH" else: if psetHash.find(";"): # no need for fake hash in new schema psetHash = psetHash.split(";")[0] psetHash = psetHash.replace("hash=", "") psetInstance = DbsQueryableParameterSet( Hash = psetHash) algorithmInstance = DbsAlgorithm( ExecutableName = exeName, ApplicationVersion = appVersion, ApplicationFamily = appFamily, ParameterSetID = psetInstance ) return algorithmInstance def createMergeAlgorithm(datasetInfo, apiRef = None): """ _createMergeAlgorithm_ Create a DbsAlgorithm for a merge dataset """ exeName = datasetInfo['ApplicationName'] version = datasetInfo['ApplicationVersion'] family = datasetInfo.get('ApplicationFamily', None) if (family == None) or not (family) : family = datasetInfo['OutputModuleName'] mergeAlgo = DbsAlgorithm ( ExecutableName = exeName, ApplicationVersion = version, ApplicationFamily = family, ) if apiRef != None: apiRef.insertAlgorithm(mergeAlgo) return mergeAlgo def createProcessedDataset(primaryDataset, algorithm, datasetInfo, apiRef = None): """ _createProcessedDataset_ """ physicsGroup = datasetInfo.get("PhysicsGroup", "NoGroup") status = datasetInfo.get("Status", "VALID") dataTier = datasetInfo['DataTier'] globalTag = datasetInfo.get('Conditions', None) if globalTag is None: globalTag = '' parents = [] inputDataset = datasetInfo.get('ParentDataset', None) if inputDataset != None: parents.append(inputDataset) tierList = makeTierList(datasetInfo['DataTier']) name = datasetInfo['ProcessedDataset'] algolist=[] if algorithm not in ('', None): algolist=list(algorithm) processedDataset = DbsProcessedDataset ( PrimaryDataset = primaryDataset, AlgoList=algolist, Name = name, TierList = tierList, ParentList = parents, PhysicsGroup = physicsGroup, Status = status, GlobalTag = globalTag, ) if apiRef != None: apiRef.insertProcessedDataset(processedDataset) # logging.debug("PrimaryDataset: %s ProcessedDataset: %s DataTierList: %s requested by PhysicsGroup: %s ", primaryDataset['Name'], name, tierList, physicsGroup) return processedDataset def createDBSFiles(fjrFileInfo, jobType = None, apiRef = None): """ _createDBSFiles_ Create a list of DBS File instances from the file details contained in a FwkJobRep.FileInfo instance describing an output file Does not insert files, returns as list of DbsFile objects Does insert runs and lumisections if DBS API reference is passed """ results = [] inputLFNs = [ x['LFN'] for x in fjrFileInfo.inputFiles] checksum = fjrFileInfo.checksums['cksum'] adler32sum = fjrFileInfo.checksums.get('adler32', '') nEvents = int(fjrFileInfo['TotalEvents']) if len(fjrFileInfo.dataset)<=0: logging.error("No dataset info found in FWJobReport!") return results # // # // Set FileType #// if 'FileType' in fjrFileInfo: fileType = fjrFileInfo['FileType'] else: fileType = 'EDM' # # FIXME: at this point I should use the mc or data event type from # the jobreport. Until this is supported by the framework, # we use the workaround that mc job reports have an empty # lumisections list (stripped in DBSInterface) # lumiList = [] if ( len(fjrFileInfo.getLumiSections()) > 0 ): # # insert runs (for data files from detector) # if ( apiRef != None ): for runinfo in fjrFileInfo.runs: run = DbsRun( RunNumber = int(runinfo), NumberOfEvents = 0, NumberOfLumiSections = 0, TotalLuminosity = 0, StoreNumber = 0, StartOfRun = 0, EndOfRun = 0, ) apiRef.insertRun(run) # # insert lumisections (for data files from detector) # associate files with lumisections (for all data files) # for lumiinfo in fjrFileInfo.getLumiSections(): lumi = DbsLumiSection( LumiSectionNumber = int(lumiinfo['LumiSectionNumber']), StartEventNumber = 0, EndEventNumber = 0, LumiStartTime = 0, LumiEndTime = 0, RunNumber = int(lumiinfo['RunNumber']), ) # Isnt needed, causes monster slowdown #if ( apiRef != None ): # apiRef.insertLumiSection(lumi) lumiList.append(lumi) logging.debug("Lumi associated to file is: %s" % ([x for x in lumiList])) # // # // Dataset info related to files and creation of DbsFile object #// for dataset in fjrFileInfo.dataset: primary = createPrimaryDataset(dataset) if jobType == "Merge": algo = createMergeAlgorithm(dataset) else: algo = createAlgorithmForInsert(dataset) processed = createProcessedDataset(primary, algo, dataset) dbsFileInstance = DbsFile( Checksum = checksum, Adler32 = adler32sum, NumberOfEvents = nEvents, LogicalFileName = fjrFileInfo['LFN'], FileSize = int(fjrFileInfo['Size']), Status = "VALID", ValidationStatus = 'VALID', FileType = fileType, Dataset = processed, TierList = makeTierList(dataset['DataTier']), AlgoList = [algo], LumiList = lumiList, ParentList = inputLFNs, BranchList = fjrFileInfo.branches, ) results.append(dbsFileInstance) return results def createDBSStorageElement(pnn): """ _createDBSStorageElement_ """ return DbsStorageElement(Name = pnn) def createDBSFileBlock(blockName): """ _createDBSFileBlock_ return a DbsFileBlock object with the block name provided NOTE: This method DOES NOT create a new block in DBS """ return DbsFileBlock(Name=blockName)
PypiClean
/tensorflow_cpu-2.14.0rc1-cp311-cp311-macosx_10_15_x86_64.whl/tensorflow/python/distribute/tpu_replicated_variable.py
"""A Variable class that is replicated to logical cores for model parallelism.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import abc import contextlib from tensorflow.python.compiler.xla.experimental import xla_sharding from tensorflow.python.distribute import tpu_util from tensorflow.python.eager import context from tensorflow.python.framework import config from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_conversion_registry from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gen_resource_variable_ops from tensorflow.python.ops import gen_tpu_partition_ops as tpu_partition_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables as variables_lib from tensorflow.python.saved_model import save_context from tensorflow.python.trackable import base as trackable def _on_device_update(update_fn, var, value, **kwargs): with ops.device(var.device): return update_fn(var, value, **kwargs) class TPUReplicatedVariable(variables_lib.Variable): """Container for replicated `Variables` that are treated as a single variable. This class maintains a list of replicated variables that are stored on separate logic TPU devices. TF2XLA bridge accesses these variables as if they were a single variable. """ def __init__(self, variables, name='TPUReplicatedVariable'): """Treats `variables` as a replicated list of `tf.Variable`s. Example: ``` variables = [ tf.Variable(..., shape=(10, 100), dtype=tf.float32), tf.Variable(..., shape=(10, 100), dtype=tf.float32), tf.Variable(..., shape=(10, 100), dtype=tf.float32), tf.Variable(..., shape=(10, 100), dtype=tf.float32), ] replicated_variable = TPUReplicatedVariable(variables) assert replicated_variable.shape.as_list() == [10, 100] ``` Args: variables: A list of `ResourceVariable`s that comprise this replicated variable. Variables should not be shared between different `TPUReplicatedVariable` objects. name: String. Name of this container. Defaults to "TPUReplicatedVariable". """ if not isinstance(variables, abc.Sequence) or not variables or any( not isinstance(v, variables_lib.Variable) for v in variables): raise TypeError('Argument `variables` should be a non-empty list of ' f'`variables.Variable`s. Received {variables}') if any(v.dtype != variables[0].dtype for v in variables): raise ValueError( 'All elements in argument `variables` must have the same dtype. ' f'Received dtypes: {[v.dtype for v in variables]}') if any(v.shape != variables[0].shape for v in variables): raise ValueError( 'All elements in argument `variables` must have the same shape. ' f'Received shapes: {[v.shape for v in variables]}') self._vars = variables self._name = name self._common_name = self._name.split(':')[0] self._cached_value = None def __iter__(self): """Return an iterable for accessing the underlying sharded variables.""" return iter(self._vars) @property def name(self): """The name of this object. Used for checkpointing.""" return self._name @property def dtype(self): """The dtype of all `Variable`s in this object.""" return self._vars[0].dtype @property def is_initialized(self): return self._vars[0].is_initialized @property def trainable(self): return self._vars[0].trainable @property def device(self): """The device this variable is on.""" return self._vars[0].device @contextlib.contextmanager def _handle_graph(self): with self.handle.graph.as_default(): yield @contextlib.contextmanager def _assign_dependencies(self): if self._cached_value is not None: with ops.control_dependencies([self._cached_value]): yield else: yield @property def constraint(self): return self._vars[0].constraint @property def _in_graph_mode(self): return self._vars[0]._in_graph_mode # pylint: disable=protected-access @property def _unique_id(self): return self._vars[0]._unique_id # pylint: disable=protected-access @property def graph(self): return self._vars[0].graph @property def _shared_name(self): return self._common_name @property def synchronization(self): return variable_scope.VariableSynchronization.NONE @property def aggregation(self): return variable_scope.VariableAggregation.NONE @property def variables(self): """The list of `Variables`.""" if save_context.in_save_context(): return [self._vars[0]] return self._vars def _export_to_saved_model_graph(self, object_map, tensor_map, options, **kwargs): """For implementing `Trackable`.""" first_var = self._vars[0] resource_list = first_var._export_to_saved_model_graph( # pylint:disable=protected-access object_map, tensor_map, options, **kwargs) for v in self._vars[1:]: object_map[v] = object_map[first_var] tensor_map[v.handle] = tensor_map[first_var.handle] resource_list.append(v.handle) object_map[self] = object_map[first_var] tensor_map[self] = tensor_map[first_var.handle] resource_list.append(self) return resource_list def _gather_saveables_for_saved_model(self): return {trackable.VARIABLE_VALUE_KEY: self._vars[0]} @property def shape(self): return self._vars[0].shape @property def handle(self): if save_context.in_save_context() or context.executing_eagerly(): return self._vars[0].handle if tpu_util.enclosing_tpu_context() is None: raise NotImplementedError('TPUReplicatedVariable.handle is not available ' 'outside tpu context or save context') else: with tpu_util.outside_or_skip_tpu_context(): packed_var = getattr(self, '_packed_var', None) # TODO(b/202047549): Enable packed variables with soft device placement if packed_var is None or config.get_soft_device_placement(): tensor = tpu_partition_ops.tpu_partitioned_input_v2( [v.handle for v in self._vars], partition_dims=[], is_packed=False) else: tensor = tpu_partition_ops.tpu_partitioned_input_v2( [packed_var.packed_handle], partition_dims=[], is_packed=True) return xla_sharding.replicate(tensor) def _read_variable_op(self): return gen_resource_variable_ops.read_variable_op(self.handle, self.dtype) def _dense_var_to_tensor(self, dtype=None, name=None, as_ref=False): """Converts a variable to a tensor.""" # pylint: disable=protected-access if tpu_util.enclosing_tpu_context() is None: return self.read_value() else: return self._read_variable_op() def read_value(self): return self._vars[0].read_value() def _update(self, update_fn, value, **kwargs): """Converts the value to tensor and updates the variable list.""" input_tensor = ops.convert_to_tensor( value, name='value_in_tensor', dtype=self.dtype) return control_flow_ops.group( *tuple( _on_device_update(update_fn, v, input_tensor, **kwargs) for v in self.variables)) def assign(self, value, use_locking=False, name=None, read_value=True): if tpu_util.enclosing_tpu_context() is None or context.executing_eagerly(): assign_fn = lambda var, *a, **ka: var.assign(*a, **ka) return self._update( assign_fn, value=value, use_locking=use_locking, name=name, read_value=read_value) else: return tpu_util.make_raw_assign_fn( gen_resource_variable_ops.assign_variable_op)( self, value=value, use_locking=use_locking, name=name, read_value=read_value) def assign_sub(self, value, use_locking=False, name=None, read_value=True): if tpu_util.enclosing_tpu_context() is None or context.executing_eagerly(): assign_sub_fn = lambda var, *a, **ka: var.assign_sub(*a, **ka) return self._update( assign_sub_fn, value=value, use_locking=use_locking, name=name, read_value=read_value) else: return tpu_util.make_raw_assign_fn( gen_resource_variable_ops.assign_sub_variable_op)( self, value=value, use_locking=use_locking, name=name, read_value=read_value) def assign_add(self, value, use_locking=False, name=None, read_value=True): if tpu_util.enclosing_tpu_context() is None or context.executing_eagerly(): assign_add_fn = lambda var, *a, **ka: var.assign_add(*a, **ka) return self._update( assign_add_fn, value=value, use_locking=use_locking, name=name, read_value=read_value) else: return tpu_util.make_raw_assign_fn( gen_resource_variable_ops.assign_add_variable_op)( self, value=value, use_locking=use_locking, name=name, read_value=read_value) def __str__(self): debug_str = ',\n'.join( ' %d: %s' % (i, v) for i, v in enumerate(self._vars)) return '%s:{\n%s\n}' % (self.__class__.__name__, debug_str) def __repr__(self): debug_repr = ',\n'.join( ' %d: %r' % (i, v) for i, v in enumerate(self._vars)) return '%s:{\n%s\n}' % (self.__class__.__name__, debug_repr) # Register a conversion function which reads the value of the variable, # allowing instances of the class to be used as tensors. def _tensor_conversion_tpu_replicated_var(var, dtype=None, name=None, as_ref=False): return var._dense_var_to_tensor(dtype=dtype, name=name, as_ref=as_ref) # pylint: disable=protected-access tensor_conversion_registry.register_tensor_conversion_function( TPUReplicatedVariable, _tensor_conversion_tpu_replicated_var)
PypiClean
/VideoToSMI_Server-0.0.4-py3-none-any.whl/VideoToSMIServer/Server.py
from videotosmi import Video from ConfigHelper import Config from deepgeo import Utils import http.server as BaseHTTPServer import shutil import cgi class ServerConfig: IP = "127.0.0.1" PORT = 80 MODEL_NAME = "mscoco" MODEL_CONFIG_PATH = "" MODEL_ENGINE = "maskrcnn" FRAME_SET = 60 ROTATION= -90 FILTER = [] IS_RANDOM_NAME = True VIDEO_FOLDER = "" def toFile(self, path): config = Config(self) config.toFile(path) def fromFile(self, path): config = Config(path) config.setObject(self) def save_file(obj, image_path, filename): file = obj.file.read() open(image_path + "/%s" % filename, "wb").write(file) return image_path+filename class Server: def __init__(self, config:ServerConfig): self.config = config self.server = self._init_Server_() def _init_Server_(self): CONFIG = self.config class __(BaseHTTPServer.BaseHTTPRequestHandler): def __init__(self, *args): self.video = Video() self.config = CONFIG self.video.add_model(self.config.MODEL_NAME,self.config.MODEL_ENGINE,self.config.MODEL_CONFIG_PATH) self.config.VIDEO_FOLDER = Utils.create_folder(self.config.VIDEO_FOLDER) BaseHTTPServer.BaseHTTPRequestHandler.__init__(self, *args) def write_file(self, file_path): with open(file_path, 'rb') as content: shutil.copyfileobj(content, self.wfile) def write_data(self, data): try: self.wfile.write(data) except Exception as e: print(e, " Fixed: change UTF-8") self.wfile.write(bytes(data, "utf-8")) def do_GET(self): url = str(self.path).split("/")[-1] ext = url.split(".")[-1] if len(url) <= 4 or ext!="smi": self.send_response(404) self.end_headers() else: self.send_response(200) self.send_header('Access-Control-Allow-Origin', '*') self.send_header('Content-type', 'application/text; charset=utf-8') self.end_headers() self.write_file(self.config.VIDEO_FOLDER+url) def do_POST(self): form = cgi.FieldStorage( fp=self.rfile, headers=self.headers, environ={'REQUEST_METHOD': 'POST', 'CONTENT_TYPE': self.headers['Content-Type'], }) key = list(form.keys())[0] obj = form[key] filename = str(obj).split("FieldStorage('"+key+"', '")[1].split("', ")[0] if self.config.IS_RANDOM_NAME: filename= Utils.create_name(filename.split(".")[-1],self.config.VIDEO_FOLDER) img_names = save_file(obj,image_path=self.config.VIDEO_FOLDER, filename=filename) self.video.detect(img_names,self.config.MODEL_NAME, frame_set=self.config.FRAME_SET, rotation=self.config.ROTATION, ftr=self.config.FILTER) self.send_response(200) self.send_header('Access-Control-Allow-Origin', '*') self.send_header('Content-type', 'text/html; charset=utf-8') self.end_headers() file_name = img_names.split(".")[0].split("/")[-1]+".smi" self.write_data(file_name) return __ def Run(self): s = BaseHTTPServer.HTTPServer((self.config.IP, self.config.PORT), self.server) print("{}:{} ... 대기".format(str(self.config.IP), str(self.config.PORT))) s.serve_forever()
PypiClean
/ansible-8.3.0-py3-none-any.whl/ansible_collections/amazon/aws/plugins/modules/backup_selection.py
# Copyright: Contributors to the Ansible project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) DOCUMENTATION = r""" module: backup_selection short_description: Create, delete and modify AWS Backup selection version_added: 6.0.0 description: - Manages AWS Backup selections. - For more information see the AWS documentation for backup selections U(https://docs.aws.amazon.com/aws-backup/latest/devguide/assigning-resources.html). options: backup_plan_name: description: - Uniquely identifies the backup plan to be associated with the selection of resources. required: true type: str aliases: - plan_name backup_selection_name: description: - The display name of a resource selection document. Must contain 1 to 50 alphanumeric or '-_.' characters. required: true type: str aliases: - selection_name iam_role_arn: description: - The ARN of the IAM role that Backup uses to authenticate when backing up the target resource. type: str resources: description: - A list of Amazon Resource Names (ARNs) to assign to a backup plan. The maximum number of ARNs is 500 without wildcards, or 30 ARNs with wildcards. If you need to assign many resources to a backup plan, consider a different resource selection strategy, such as assigning all resources of a resource type or refining your resource selection using tags. type: list elements: str list_of_tags: description: - A list of conditions that you define to assign resources to your backup plans using tags. - Condition operators are case sensitive. - When you specify more than one condition in I(list_of_tags), you assign all resources that match AT LEAST ONE condition (using OR logic). type: list elements: dict suboptions: condition_type: description: - An operation applied to a key-value pair used to assign resources to your backup plan. - Condition only supports C(STRINGEQUALS). type: str condition_key: description: - The key in a key-value pair. type: str condition_value: description: - The value in a key-value pair. type: str not_resources: description: - A list of Amazon Resource Names (ARNs) to exclude from a backup plan. The maximum number of ARNs is 500 without wildcards, or 30 ARNs with wildcards. If you need to exclude many resources from a backup plan, consider a different resource selection strategy, such as assigning only one or a few resource types or refining your resource selection using tags. type: list elements: str conditions: description: - A list of conditions (expressed as a dict) that you define to assign resources to your backup plans using tags. - When you specify more than one condition in I(conditions), you only assign the resources that match ALL conditions (using AND logic). - I(conditions) supports C(string_equals), C(string_like), C(string_not_equals), and C(string_not_like). I(list_of_tags) only supports C(string_equals). type: dict suboptions: string_equals: description: - Filters the values of your tagged resources for only those resources that you tagged with the same value. type: list default: [] elements: dict suboptions: condition_key: description: - The key in a key-value pair. - I(condition_key) in the I(conditions) option must use the AWS resource tag prefix, e.g. 'aws:ResourceTag/key-name' type: str condition_value: description: The value in a key-value pair. type: str string_like: description: - Filters the values of your tagged resources for matching tag values with the use of a wildcard character (*) anywhere in the string. For example, "prod*" or "*rod*" matches the tag value "production". type: list default: [] elements: dict suboptions: condition_key: description: - The key in a key-value pair. - I(condition_key) in the I(conditions) option must use the AWS resource tag prefix, e.g. 'aws:ResourceTag/key-name' type: str condition_value: description: The value in a key-value pair. type: str string_not_equals: description: - Filters the values of your tagged resources for only those resources that you tagged that do not have the same value. type: list default: [] elements: dict suboptions: condition_key: description: - The key in a key-value pair. - I(condition_key) in the I(conditions) option must use the AWS resource tag prefix, e.g. 'aws:ResourceTag/key-name' type: str condition_value: description: The value in a key-value pair. type: str string_not_like: description: - Filters the values of your tagged resources for non-matching tag values with the use of a wildcard character (*) anywhere in the string. type: list default: [] elements: dict suboptions: condition_key: description: - The key in a key-value pair. - I(condition_key) in the I(conditions) option must use the AWS resource tag prefix, e.g. 'aws:ResourceTag/key-name' type: str condition_value: description: The value in a key-value pair. type: str state: description: - Create, delete a backup selection. default: present choices: ['present', 'absent'] type: str author: - Kristof Imre Szabo (@krisek) - Alina Buzachis (@alinabuzachis) extends_documentation_fragment: - amazon.aws.common.modules - amazon.aws.region.modules - amazon.aws.boto3 """ EXAMPLES = r""" - name: Create backup selection amazon.aws.backup_selection: selection_name: elastic backup_plan_name: 1111f877-1ecf-4d79-9718-a861cd09df3b iam_role_arn: arn:aws:iam::111122223333:role/system-backup resources: - arn:aws:elasticfilesystem:*:*:file-system/* """ RETURN = r""" backup_selection: description: Backup selection details. returned: always type: complex contains: backup_plan_id: description: Backup plan id. returned: always type: str sample: "1111f877-1ecf-4d79-9718-a861cd09df3b" creation_date: description: Backup plan creation date. returned: always type: str sample: "2023-01-24T10:08:03.193000+01:00" iam_role_arn: description: The ARN of the IAM role that Backup uses. returned: always type: str sample: "arn:aws:iam::111122223333:role/system-backup" selection_id: description: Backup selection id. returned: always type: str sample: "1111c217-5d71-4a55-8728-5fc4e63d437b" selection_name: description: Backup selection name. returned: always type: str sample: elastic conditions: description: List of conditions (expressed as a dict) that are defined to assign resources to the backup plan using tags. returned: always type: dict sample: {} list_of_tags: description: Conditions defined to assign resources to the backup plans using tags. returned: always type: list elements: dict sample: [] not_resources: description: List of Amazon Resource Names (ARNs) that are excluded from the backup plan. returned: always type: list sample: [] resources: description: List of Amazon Resource Names (ARNs) that are assigned to the backup plan. returned: always type: list sample: [] """ import json try: import botocore except ImportError: pass # Handled by AnsibleAWSModule from ansible_collections.amazon.aws.plugins.module_utils.ec2 import AWSRetry from ansible_collections.amazon.aws.plugins.module_utils.core import AnsibleAWSModule from ansible_collections.amazon.aws.plugins.module_utils.backup import get_selection_details from ansible_collections.amazon.aws.plugins.module_utils.backup import get_plan_details from ansible.module_utils.common.dict_transformations import snake_dict_to_camel_dict from ansible.module_utils.common.dict_transformations import camel_dict_to_snake_dict def check_for_update(current_selection, backup_selection_data, iam_role_arn): update_needed = False if current_selection[0].get("IamRoleArn", None) != iam_role_arn: update_needed = True fields_to_check = [ { "field_name": "Resources", "field_value_from_aws": json.dumps(current_selection[0].get("Resources", None), sort_keys=True), "field_value": json.dumps(backup_selection_data.get("Resources", []), sort_keys=True), }, { "field_name": "ListOfTags", "field_value_from_aws": json.dumps(current_selection[0].get("ListOfTags", None), sort_keys=True), "field_value": json.dumps(backup_selection_data.get("ListOfTags", []), sort_keys=True), }, { "field_name": "NotResources", "field_value_from_aws": json.dumps(current_selection[0].get("NotResources", None), sort_keys=True), "field_value": json.dumps(backup_selection_data.get("NotResources", []), sort_keys=True), }, { "field_name": "Conditions", "field_value_from_aws": json.dumps(current_selection[0].get("Conditions", None), sort_keys=True), "field_value": json.dumps(backup_selection_data.get("Conditions", []), sort_keys=True), }, ] for field_to_check in fields_to_check: if field_to_check["field_value_from_aws"] != field_to_check["field_value"]: if ( field_to_check["field_name"] != "Conditions" and field_to_check["field_value_from_aws"] != "[]" and field_to_check["field_value"] != "null" ): # advanced settings to be updated update_needed = True if ( field_to_check["field_name"] == "Conditions" and field_to_check["field_value_from_aws"] != '{"StringEquals": [], "StringLike": [], "StringNotEquals": [], "StringNotLike": []}' and field_to_check["field_value"] != "null" ): update_needed = True return update_needed def main(): argument_spec = dict( backup_selection_name=dict(type="str", required=True, aliases=["selection_name"]), backup_plan_name=dict(type="str", required=True, aliases=["plan_name"]), iam_role_arn=dict(type="str"), resources=dict(type="list", elements="str"), conditions=dict( type="dict", options=dict( string_equals=dict( type="list", default=[], elements="dict", options=dict( condition_key=dict(type="str", no_log=False), condition_value=dict(type="str"), ), ), string_like=dict( type="list", default=[], elements="dict", options=dict( condition_key=dict(type="str", no_log=False), condition_value=dict(type="str"), ), ), string_not_equals=dict( type="list", default=[], elements="dict", options=dict( condition_key=dict(type="str", no_log=False), condition_value=dict(type="str"), ), ), string_not_like=dict( type="list", default=[], elements="dict", options=dict( condition_key=dict(type="str", no_log=False), condition_value=dict(type="str"), ), ), ), ), not_resources=dict(type="list", elements="str"), list_of_tags=dict( type="list", elements="dict", options=dict( condition_type=dict(type="str"), condition_key=dict(type="str", no_log=False), condition_value=dict(type="str"), ), ), state=dict(default="present", choices=["present", "absent"]), ) required_if = [ ("state", "present", ["backup_selection_name", "backup_plan_name", "iam_role_arn"]), ("state", "absent", ["backup_selection_name", "backup_plan_name"]), ] module = AnsibleAWSModule(argument_spec=argument_spec, required_if=required_if, supports_check_mode=True) state = module.params.get("state") backup_selection_name = module.params.get("selection_name") backup_plan_name = module.params.get("backup_plan_name") iam_role_arn = module.params.get("iam_role_arn") resources = module.params.get("resources") list_of_tags = module.params.get("list_of_tags") not_resources = module.params.get("not_resources") conditions = module.params.get("conditions") try: client = module.client("backup", retry_decorator=AWSRetry.jittered_backoff()) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws(e, msg="Failed to connect to AWS") results = {"changed": False, "exists": False, "backup_selection": {}} current_selection = get_selection_details(module, client, backup_plan_name, backup_selection_name) if state == "present": # build data specified by user update_needed = False backup_selection_data = {"SelectionName": backup_selection_name, "IamRoleArn": iam_role_arn} if resources: backup_selection_data["Resources"] = resources if list_of_tags: backup_selection_data["ListOfTags"] = snake_dict_to_camel_dict(list_of_tags, capitalize_first=True) if not_resources: backup_selection_data["NotResources"] = not_resources if conditions: backup_selection_data["Conditions"] = snake_dict_to_camel_dict(conditions, capitalize_first=True) if current_selection: results["exists"] = True update_needed = check_for_update(current_selection, backup_selection_data, iam_role_arn) if update_needed: if module.check_mode: results["changed"] = True module.exit_json(**results, msg="Would have created selection if not in check mode") try: client.delete_backup_selection( aws_retry=True, SelectionId=current_selection[0]["SelectionId"], BackupPlanId=current_selection[0]["BackupPlanId"], ) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws(e, msg="Failed to delete selection") elif not update_needed: results["exists"] = True # state is present but backup vault doesnt exist if not current_selection or update_needed: results["changed"] = True results["exists"] = True plan = get_plan_details(module, client, backup_plan_name) if module.check_mode: module.exit_json(**results, msg="Would have created selection if not in check mode") try: client.create_backup_selection( BackupSelection=backup_selection_data, BackupPlanId=plan[0]["backup_plan_id"] ) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws(e, msg="Failed to create selection") new_selection = get_selection_details(module, client, backup_plan_name, backup_selection_name) results["backup_selection"] = camel_dict_to_snake_dict(*new_selection) elif state == "absent": if current_selection: results["changed"] = True if module.check_mode: module.exit_json(**results, msg="Would have deleted backup selection if not in check mode") try: client.delete_backup_selection( aws_retry=True, SelectionId=current_selection[0]["SelectionId"], BackupPlanId=current_selection[0]["BackupPlanId"], ) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws(e, msg="Failed to delete selection") module.exit_json(**results) if __name__ == "__main__": main()
PypiClean
/merqube_client_lib-0.21.0-py3-none-any.whl/merqube_client_lib/pydantic_v2_types.py
from __future__ import annotations from datetime import date, datetime from enum import Enum from typing import Any, Dict, List, Optional, Union from pydantic import ( BaseModel, ConfigDict, Field, PositiveFloat, RootModel, StrictBool, StrictStr, conint, constr, ) from typing_extensions import Literal class Role(Enum): data_point = "data point" verification = "verification" calculation = "calculation" development = "development" administration = "administration" class CalcFreq(Enum): Daily = "Daily" Daily__EOD = "Daily, EOD" Intraday = "Intraday" class DisplayMonth(Enum): Jan = "Jan" Feb = "Feb" Mar = "Mar" Apr = "Apr" May = "May" Jun = "Jun" Jul = "Jul" Aug = "Aug" Sep = "Sep" Oct = "Oct" Nov = "Nov" Dec = "Dec" class FieldModel(BaseModel): display_name: Optional[StrictStr] = None field_name: Optional[StrictStr] = None class PortfolioDisplay(BaseModel): fields: Optional[List[FieldModel]] = None class RebalFreq(Enum): Annual = "Annual" Daily = "Daily" Monthly = "Monthly" Quarterly = "Quarterly" Semi_Annual = "Semi-Annual" Weekly = "Weekly" Bi_Monthly = "Bi-Monthly" Intraday = "Intraday" None_ = "None" class Stage(Enum): prod = "prod" test = "test" development = "development" class WeightingMethod(Enum): Other = "Other" Equal = "Equal" class IndexClassDefinitionPost(BaseModel): model_config = ConfigDict( extra="forbid", ) name: StrictStr namespace: Optional[StrictStr] = None index_class_args_spec: Dict[str, Any] class IndexSpec(BaseModel): index_class: Optional[StrictStr] = None index_class_args: Optional[Dict[str, Any]] = Field( None, description="should validate against index_class_args_spec field of the IndexClassDefinition identified by index_class", ) index_variables: Optional[Dict[str, Any]] = Field(None, description="TODO") version: Optional[int] = None class Type(Enum): security = "security" index = "index" class Related(BaseModel): default_display: StrictBool = False id: StrictStr metric: Optional[StrictStr] = None name: StrictStr type: Type class ChartType(Enum): line = "line" spline = "spline" area = "area" bar = "bar" column = "column" class CompareMode(Enum): absolute = "absolute" percent = "percent" class ConstructorType(Enum): chart = "chart" stockChart = "stockChart" class Value(BaseModel): model_config = ConfigDict( extra="forbid", ) display_name: StrictStr path: StrictStr class Datum(BaseModel): model_config = ConfigDict( extra="forbid", ) url: StrictStr array_field: StrictStr values: List[Value] key_field: StrictStr class CustomCharts(BaseModel): model_config = ConfigDict( extra="forbid", ) name: StrictStr xlabel: StrictStr ylabel: StrictStr chart_type: ChartType = ChartType.line compare_mode: CompareMode = CompareMode.percent constructor_type: ConstructorType = ConstructorType.stockChart size: float = 12 data: Optional[List[Datum]] = None class IndexBenchmark(BaseModel): model_config = ConfigDict( extra="forbid", ) ticker: StrictStr = Field( ..., description="accepts either FSYM_ID, or MQI:XXX to benchmark against another index.", example="MQI:XXX" ) threshold: float = Field( ..., description="the deviation that triggers an outlier event, IE, the daily difference of the index vs the daily difference of the underlying should not be more than this percent", example=0.05, ) index_metric: StrictStr = Field( "price_return", description="the metric of this index to compare against the ticker/threshold, eg can compare some other metric of this index than price_return", example="total_return", ) benchmark_metric: StrictStr = Field( "price_return", description="only accepted if the ticker is an MQI. The metric of the benchmark index to compare against; eg can compare to some other metric than price_return of the benchmark", example="total_return", ) class Provider(Enum): bloomberg = "bloomberg" reuters = "reuters" morningstar = "morningstar" factset = "factset" nasdaq = "nasdaq" wind = "wind" secapi = "secapi" class BloombergProviderKwargsPostType(Enum): EOD = "EOD" RT = "RT" EOD_AND_RT = "EOD_AND_RT" class BloombergProviderKwargs(BaseModel): model_config = ConfigDict( extra="forbid", ) post_type: BloombergProviderKwargsPostType class ReutersProviderKwargsPostType(Enum): EOD = "EOD" RT = "RT" EOD_AND_RT = "EOD_AND_RT" class ReutersProviderKwargs(BaseModel): model_config = ConfigDict( extra="forbid", ) post_type: Optional[ReutersProviderKwargsPostType] = None class SecapiProviderKwargs(BaseModel): model_config = ConfigDict( extra="forbid", ) security_type: StrictStr security_name: StrictStr metric: StrictStr class NasdaqEnv(Enum): testing = "testing" production = "production" class NasdaqProviderKwargs(BaseModel): model_config = ConfigDict( extra="forbid", ) nasdaq_env: NasdaqEnv = Field(..., description="Which Nasdaq environment to send data to") eod_date_delta: Optional[int] = Field( None, description="How many days to offset the Nasdaq date (T if before 6:30pm EST otherwise T + 1) when getting EOD data from the Index", ) class Compression(Enum): NONE = "NONE" GZIP = "GZIP" class LayoutType(Enum): SINGLE_FILE = "SINGLE_FILE" YEARLY_DIR_DAILY_FILE = "YEARLY_DIR_DAILY_FILE" class DataCollectionsSpec(BaseModel): model_config = ConfigDict( extra="allow", ) index_dc_subtype: StrictStr = Field( ..., description="Index Data Collection Subtype object key moves to array after transformation" ) auto_persist: StrictBool = Field( False, description="Boolean to indicate whether to automatically persist the data. Default is False." ) compression: Compression = Compression.GZIP date_col: StrictStr = "date" format: Literal["csv"] = "csv" layout_type: LayoutType = Field( LayoutType.SINGLE_FILE, description="SINGLE_FILE: one file. YEARLY_DIR_DAILY_FILE: one directory per year, each day, a file with YYYYMMDD format.", ) location: StrictStr name: constr(pattern=r"^[A-Za-z0-9_]*$", min_length=3, max_length=128, strict=True) seed_file_path: Optional[StrictStr] = Field(None, description="Seed file for the data collection.") start_time: Optional[StrictStr] = None class RealTimeTradeType(Enum): ELIGIBLE = "ELIGIBLE" INELIGIBLE = "INELIGIBLE" class PortfolioUom(Enum): WEIGHT = "WEIGHT" SHARES = "SHARES" class EquityIdentifierType(Enum): RIC = "RIC" CURRENCY_CODE = "CURRENCY_CODE" SEDOL = "SEDOL" FSYM_ID = "FSYM_ID" TICKER = "TICKER" BBG_TICKER = "BBG_TICKER" CUSIP = "CUSIP" class AssetType(Enum): CASH = "CASH" THIRD_PARTY_INDEX = "THIRD_PARTY_INDEX" EQUITY = "EQUITY" MUTUAL_FUND = "MUTUAL_FUND" MERQUBE_INDEX = "MERQUBE_INDEX" class SecurityCreationResponse(BaseModel): id: Optional[StrictStr] = None inserts: Optional[int] = None class DataType(Enum): string = "string" float64 = "float64" datetime64 = "datetime64" int64 = "int64" bool = "bool" object = "object" class MetricsSchema(BaseModel): data_type: DataType description: StrictStr = Field(..., description="a description of what this metric represents") name: StrictStr = Field(..., description="metric name") object_schema: Optional[Dict[str, Any]] = Field( None, description="optional - this supports complex objects, ie you can specify the metric is of this schema. THis allows you to upload a json schema itself of this metric. THis is for downstream users of this metric.", ) class IdentifierType(Enum): RIC = "RIC" secapi_name = "secapi_name" class Security(BaseModel): model_config = ConfigDict( extra="forbid", ) identifier_type: IdentifierType identifier_value: StrictStr = Field(..., example="AAPL.QQ") security_type: StrictStr = Field(..., example="equity") class SecurityListPost(BaseModel): model_config = ConfigDict( extra="forbid", ) name: StrictStr = Field(..., description="unique name among all other security lists") namespace: Optional[StrictStr] = None realtime: Optional[StrictBool] = None securities: List[Security] class OptionResponse(BaseModel): price: Optional[float] = Field(None, description="Option Price") vol: Optional[float] = Field(None, description="Implied Volatility") interest_rate: Optional[float] = Field(None, description="Implied Interest Rate") dividend_yield: Optional[float] = Field(None, description="Implied Dividend Yield for the underlying") spot: Optional[float] = Field(None, description="Underlying spot price") delta: Optional[float] = Field(None, description="Delta of this option") theta: Optional[float] = Field(None, description="Theta of the option being priced") gamma: Optional[float] = Field(None, description="Gamma of the option being priced") vega: Optional[float] = Field(None, description="Vega of the option being priced") bid_ask_spread: Optional[float] = Field( None, description="Spread between Bid and Ask prices of the option being priced" ) request_id: Optional[StrictStr] = Field(None, description="Request ID sent in the request") class FindStrikeResponse(BaseModel): strike: Optional[float] = Field(None, description="Strike that prices to the given budget.") spot: Optional[float] = Field(None, description="Underlying spot price.") strike_percentage: Optional[float] = Field( None, description="Strike as a percentage of the underlying spot price that prices to the given budget." ) request_id: Optional[StrictStr] = Field(None, description="Request ID sent in the request") class DeadlineType(Enum): calculation = "calculation" restatement = "restatement" class OgPriority(Enum): P1 = "P1" P2 = "P2" P3 = "P3" class Deadline(BaseModel): model_config = ConfigDict( extra="forbid", ) time_of_day: constr(pattern=r"^(?:[01]\d|2[0-3]):(?:[0-5]\d):(?:[0-5]\d)$", strict=True) = Field( ..., description="the time of day of the deadline" ) deadline_type: DeadlineType = DeadlineType.calculation next_day: StrictBool = Field( False, description="set this to true if the index starts running on day T but the deadline does not pass until T+1 in that index timezone", ) og_priority: OgPriority = OgPriority.P1 business_days_prior: int = Field(0, description="the amount of days before T to check for data existence") metrics: Optional[List[StrictStr]] = Field( None, description="the list of metrics to check in the deadline checker script" ) class MetricsArrItem(BaseModel): id: Optional[StrictStr] = Field(None, example="price_return") value: Optional[float] = Field(None, example=1000.0000000000002) class MetricsArr(RootModel): root: List[MetricsArrItem] class MetricsDef(BaseModel): name: Optional[StrictStr] = Field(None, example="daily_return") type: Optional[StrictStr] = Field(None, example="double") class ErrorCodes(BaseModel): code: Optional[StrictStr] = None message: Optional[StrictStr] = None class IntradayPublishConfigBloombergTargetParams(BaseModel): model_config = ConfigDict( extra="forbid", ) rounding_decimals: Optional[int] = None ticker: Optional[StrictStr] = None class IntradayPublishConfigReutersTargetParams(BaseModel): model_config = ConfigDict( extra="forbid", ) rounding_decimals: Optional[int] = None ticker: Optional[StrictStr] = None post_type: Optional[ReutersProviderKwargsPostType] = None class RunStateStatus(Enum): PENDING_CREATION = "PENDING_CREATION" SUCCEEDED = "SUCCEEDED" FAILED = "FAILED" RUNNING = "RUNNING" class ClientIndexConfigBase(BaseModel): base_date: constr(pattern=r"^[0-9]{4}[-/][0-9]{2}[-/][0-9]{2}", strict=True) = Field( ..., description="the date that the index has level 'base_value'", example="2000-01-04" ) base_value: Optional[PositiveFloat] = Field( None, description="set the index value on base_date to this base_value", example=1000.0 ) bbg_ticker: Optional[StrictStr] = Field( None, description="due to the limitations of the Bloomberg ticker creation process (no API), this must be a pre-created ticker. You can email MerQube a list of tickers to create on your behalf at [email protected]. Then, you provide those as input to these indices", example="MY_TICKER", ) currency: StrictStr = Field("USD", description="set to the currency of the index", example="USD") description: StrictStr = Field( ..., description="set to the description of the index, which will show on merqube.com", example="My Index Description", ) email_list: List[StrictStr] = Field( default_factory=list, description="list of emails to send daily dissemination reports, and the initial backtest reports, to; if not specified, no emails will be sent", example=["[email protected]", "[email protected]"], ) is_intraday: StrictBool = Field(False, description="set to True if the index is intraday", example=False) name: StrictStr = Field( ..., description="set to the name of the index. Commonly people use the ticker as the name, but that is not necessary. Must be globally unique - you will get a 409 if this index name is taken ", example="My Index", ) namespace: StrictStr = Field(..., description="set to the namespace of the index", example="mycompany") title: StrictStr = Field( ..., description="set to the title of the index that shows up on merqube.com", example="My Index Title" ) class ReinvestmentType(Enum): AT_OPEN = "AT_OPEN" AT_CLOSE = "AT_CLOSE" class ClientSSTRSpecific(BaseModel): model_config = ConfigDict( extra="forbid", ) ric: StrictStr = Field(..., description="set to the RIC of the underlying equity", example="LMVH.PA") reinvestment_type: ReinvestmentType = ReinvestmentType.AT_OPEN class ClientSSTRConfig(ClientIndexConfigBase, ClientSSTRSpecific): pass model_config = ConfigDict( extra="forbid", ) class FeeType(Enum): fixed = "fixed" percentage_pre = "percentage_pre" percentage_post = "percentage_post" class ClientDecrementSpecific(BaseModel): model_config = ConfigDict( extra="forbid", ) fee_value: float = Field( ..., description="set to the value of the fee to apply. For fixed, this is bps, for percentage_pre/post this is given as a percentage", example=0.05, ) fee_type: FeeType = Field(..., description="set to the type of fee to apply", example="fixed") day_count_convention: StrictStr = Field( ..., description="must either adapt to a fixed number of days in a year e.g. 'f360' or to Actual ISDA convention, i.e. 'actual'", example="f360", ) ric: StrictStr = Field(..., description="set to the RIC of the underlying SSTR", example="LMVH.PA") start_date: Optional[date] = Field( None, description="set to the start date of the index if it is to differ from base_date. If this is specified, it must be before base_date. In this case the base_date, base_value is used as a fixed intercept, with the index level starting from start_date and passing through that intercept", example="2004-01-04", ) class ClientDecrementConfig(ClientIndexConfigBase, ClientDecrementSpecific): pass model_config = ConfigDict( extra="forbid", ) class LevelOverride(BaseModel): model_config = ConfigDict( extra="forbid", ) date: constr(pattern=r"^[0-9]{4}[-][0-9]{2}[-][0-9]{2}", strict=True) level: Any comment: Optional[StrictStr] = None class ClientMultiEBConsituent(BaseModel): date: constr(pattern=r"^[0-9]{4}-[0-9]{2}-[0-9]{2}", strict=True) = Field(..., example="2022-03-11") identifier: StrictStr = Field(..., example="AAPL.OQ") quantity: Any = Field( ..., description="the number of shares or percentage of portfolio of this constituent", example=-0.2512355 ) security_type: AssetType = Field(..., example="EQUITY") class CorporateActions(BaseModel): model_config = ConfigDict( extra="forbid", ) reinvest_dividends: StrictBool = True class ClientMultiEBPortUpdate(BaseModel): model_config = ConfigDict( extra="forbid", ) constituents: List[ClientMultiEBConsituent] = Field( default_factory=list, description="The EB portfolio directory", example=[ {"date": "2022-03-11", "identifier": "AAPL.OQ", "quantity": -0.2512355, "security_type": "EQUITY"}, {"date": "2022-03-11", "identifier": "USD", "quantity": 60.0, "security_type": "CASH"}, ], ) class ClientMultiEBPortInitial(ClientMultiEBPortUpdate): base_date: constr(pattern=r"^[0-9]{4}[-/][0-9]{2}[-/][0-9]{2}", strict=True) = Field( ..., description="the date that the index has level 'base_value'", example="2000-01-04" ) base_value: PositiveFloat = Field( ..., description="set the index value on base_date to this base_value", example=1000.0 ) class MerqTimestamp(RootModel): root: Union[ datetime, date, constr( pattern=r"^[0-9]{4}-[0-9]{2}-[0-9]{2}(?:[ T][0-9]{2}:[0-9]{2}:[0-9]{2})?(?:[.][0-9]{1,6})?$", strict=True ), ] = Field(..., example=["2021-01-01", "2021-01-01T01:01:01", "2021-01-01T01:01:01.zzzzz"]) class Status(BaseModel): created_at: Optional[StrictStr] = None created_by: Optional[StrictStr] = None last_modified: StrictStr last_modified_by: Optional[StrictStr] = None locked_after: Optional[datetime] = Field( None, description="If this is set (non null), the manifest is locked for all edits to any other field after this timestamp. A PUT/PATCH may be used to first unlock the manifest, by setting this field (to a max of one hour in the future), or to `null` again, to make other edits.", ) class CalendarIdentifiers(BaseModel): calendar_identifiers: Optional[List[constr(pattern=r"^(FUT|MIC|FX|SM|MQI):.+$", strict=True)]] = None class HolidaysToAdd(BaseModel): holidays_to_add: Optional[List[date]] = None class Operator(Enum): union = "union" intersection = "intersection" difference = "difference" class NestedCalendarSchema(BaseModel): model_config = ConfigDict( extra="forbid", ) operator: Operator children: List[Union[CalendarIdentifiers, HolidaysToAdd, NestedCalendarSchema]] class Condition(Enum): any = "any" all = "all" custom = "custom" class WeekmaskEnum(Enum): Mon = "Mon" Tue = "Tue" Wed = "Wed" Thu = "Thu" Fri = "Fri" Sat = "Sat" Sun = "Sun" class FlatCalendarSchema(BaseModel): model_config = ConfigDict( extra="forbid", ) calendar_identifiers: List[constr(pattern=r"^(FUT|MIC|FX|SM|MQI):.+$", strict=True)] = Field(default_factory=list) swaps_monitor_codes: List[constr(pattern=r"^[a-zA-Z]{3}$", strict=True)] = Field(default_factory=list) condition: Condition = Condition.all holidays_to_add: List[date] = Field(default_factory=list) holidays_to_remove: List[date] = Field(default_factory=list) weekmask: List[WeekmaskEnum] = Field( [WeekmaskEnum.Mon, WeekmaskEnum.Tue, WeekmaskEnum.Wed, WeekmaskEnum.Thu, WeekmaskEnum.Fri], description="weekmask of valid business days", ) class HolidayCalendarSpec(RootModel): root: Union[FlatCalendarSchema, NestedCalendarSchema] class ArgumentsOrEnvVars(RootModel): root: List[List[StrictStr]] class PodKwargs(BaseModel): name: Optional[StrictStr] = None class SubPod(BaseModel): model_config = ConfigDict( extra="forbid", ) arguments: Optional[ArgumentsOrEnvVars] = None command: StrictStr pod_type: StrictStr uuid: StrictStr env_vars: Optional[ArgumentsOrEnvVars] = None pod_kwargs: Optional[PodKwargs] = None class S3Bucket(BaseModel): model_config = ConfigDict( extra="forbid", ) bucket: StrictStr path: Optional[StrictStr] = None class AirflowConfig(BaseModel): model_config = ConfigDict( extra="forbid", ) description: Optional[StrictStr] = Field(None, description="A short description related with the generated runner") s3_location: Optional[S3Bucket] = Field( None, description="Bucket and path where the generated dag should be stored. If not defined `merq-airflow-dags-airflow2` is defined in merqutil", ) dag: Optional[Dict[str, Any]] = Field(None, description="use this to set kwargs for the dag") pod: Optional[Dict[str, Any]] = Field(None, description="use this to set kwargs for the pod") env: Optional[Dict[str, Any]] = Field(None, description="use this to set ENV variables in the pod") subpods: Optional[List[SubPod]] = None class EmailDissapiConfig(BaseModel): recipient_list: List[StrictStr] = Field(..., min_length=1) email_list: Optional[List[StrictStr]] = None bcc_list: Optional[List[StrictStr]] = None cc_list: Optional[List[StrictStr]] = None subject: StrictStr content: Optional[StrictStr] = None file_keys: Optional[List[StrictStr]] = None class SftpDissapiConfig(BaseModel): sftp_ids: List[StrictStr] file_keys: List[StrictStr] class S3DissapiConfig(BaseModel): bucket: StrictStr key_prefix: StrictStr file_keys: List[StrictStr] class DisseminationDestinations(BaseModel): email_dissapi_configs: Optional[List[EmailDissapiConfig]] = Field(None, min_length=1) sftp_dissapi_configs: Optional[List[SftpDissapiConfig]] = None s3_dissapi_configs: Optional[List[S3DissapiConfig]] = None class IndexReport(BaseModel): uuid: StrictStr program_args: Optional[Dict[str, Any]] = None dissemination_destinations: Optional[DisseminationDestinations] = None class RunConfigLabelAdditional(BaseModel): label: StrictStr = Field(..., description="unique label of this rc") class HolidayCalendar(BaseModel): cal_type: Optional[StrictStr] = Field(None, example="MIC") mic: Optional[StrictStr] = Field(None, example="XNYS") class Schedule(BaseModel): model_config = ConfigDict( extra="forbid", ) retries: int retry_interval_min: int schedule_start: StrictStr schedule_cron: Optional[StrictStr] = None timeout_delta: Optional[StrictStr] = Field(None, example="minutes=17") business_days_prior: Optional[int] = Field(None, example=1) holiday_calendar: Optional[HolidayCalendar] = None class CopyFromManifest(BaseModel): copy_from_uuid: StrictStr = Field(..., description="the uuid of the resource to start from") field_deletes: Optional[List[StrictStr]] = Field(None, description="fields to delete from the from-manifest") field_updates: Optional[Dict[str, Any]] = Field( None, description="a dictionary of top level keys that the original manifest will be updated with (ie `manifest.update(this[field_updates])`. Top level keys can be added or replaced. To change the namespace, add namespace to the field_updates dict. The new manifest must be valid per the original resource definition.", ) name: StrictStr = Field(..., description="the name of the new resource") class CrudExtra(BaseModel): model_config = ConfigDict( extra="forbid", ) id: StrictStr namespace: StrictStr status: Status class Administrative(BaseModel): model_config = ConfigDict( extra="forbid", ) role: Role deadlines: Optional[List[Deadline]] = None class IndexClassDefinitionPatchPutGet(IndexClassDefinitionPost, CrudExtra): pass model_config = ConfigDict( extra="forbid", ) class Webpage(BaseModel): custom_charts: Optional[List[CustomCharts]] = None visible: StrictBool = True class IdentifierUUIDPost(BaseModel): model_config = ConfigDict( extra="forbid", ) display_name: Optional[StrictStr] = None index_name: StrictStr metric: Optional[StrictStr] = None name: StrictStr = Field(..., description="unique name among all other Identifiers of the provider resource type.") namespace: Optional[StrictStr] = None rounding_decimals: Optional[int] = None provider_kwargs: Optional[ Union[BloombergProviderKwargs, ReutersProviderKwargs, SecapiProviderKwargs, NasdaqProviderKwargs] ] = None start_date: Optional[date] = None ticker: StrictStr class IdentifierUUIDPatchPutGet(IdentifierUUIDPost, CrudExtra): pass model_config = ConfigDict( extra="forbid", ) class IdentifierUUIDRef(BaseModel): model_config = ConfigDict( extra="forbid", ) name: StrictStr provider: Provider class ListDataCollections(BaseModel): model_config = ConfigDict( extra="allow", ) data_collection: List[DataCollectionsSpec] = Field(default_factory=list) class BasketPosition(BaseModel): model_config = ConfigDict( extra="forbid", ) amount: float = Field(..., title="Amount") asset_type: AssetType identifier: StrictStr = Field(..., title="Identifier") identifier_type: EquityIdentifierType position_id: Optional[StrictStr] = Field(None, title="Position Id") class RicEquityPosition(BasketPosition): model_config = ConfigDict( extra="forbid", ) real_time_trade_types: Optional[List[RealTimeTradeType]] = None use_primary_listing: StrictBool = Field( False, description="use the security's primary listing rather than the one from the identifier", title="Use Primary Listing", ) class NewSecurity(BaseModel): model_config = ConfigDict( extra="forbid", ) name: StrictStr namespace: StrictStr = Field( ..., description="the calling user must have permission to this namespace to create the security in this namespace", ) eff_ts: Optional[MerqTimestamp] = Field( None, description="DEPRECATED: this is no longer used for security creates, but allowed for backwards compatibility", ) prov_ts: MerqTimestamp source: Optional[StrictStr] = None class SecurityMetrics(BaseModel): eff_ts: MerqTimestamp id: StrictStr = Field(..., example="0000699a-fcd7-45d4-8ce4-064a4ffeced0") metric: StrictStr = Field(..., example="Level") source: Optional[StrictStr] = Field(None, example="some_gcp_feed") prov_ts: MerqTimestamp value: Union[StrictStr, float, int, StrictBool, List, Dict[str, Any]] class SecurityMetricsDeletion(BaseModel): eff_ts: MerqTimestamp id: StrictStr = Field(..., example="0000699a-fcd7-45d4-8ce4-064a4ffeced0") metric: StrictStr = Field(..., example="Level") prov_ts: Optional[MerqTimestamp] = None source: Optional[StrictStr] = Field(None, example="some_gcp_feed") class SecurityListPatchPutGet(SecurityListPost, CrudExtra): pass model_config = ConfigDict( extra="forbid", ) class Metrics(BaseModel): ts: Optional[datetime] = Field(None, description="iso8601 format") metrics: Optional[MetricsArr] = None class Stats(BaseModel): annual_volatility: Optional[float] = Field(None, example=3.717606464173326) annualized_return: Optional[float] = Field(None, example=6.665050717276233) cumulative_return: Optional[float] = Field(None, example=2.7597506251556547) id: Optional[StrictStr] = Field(None, example="YTD") max_drawdown: Optional[float] = Field(None, example=-1.3877029296510448) sharpe_ratio: Optional[float] = Field(None, example=1.759543308780235) start_date: Optional[MerqTimestamp] = None end_date: Optional[MerqTimestamp] = None class IntradayTickFilter(BaseModel): model_config = ConfigDict( extra="forbid", ) start_date: Optional[MerqTimestamp] = None end_date: Optional[MerqTimestamp] = None start_time: Optional[StrictStr] = Field( None, description="Inclusive start time of the day to start running this intraday index. Format is %H:%M:%S.%f. This should be in the timezone of the index based on tzinfo.", example=74340.262345, ) end_time: Optional[StrictStr] = Field( None, description="Inclusive end time of the day to stop running this intraday index. Format is %H:%M:%S.%f. This should be in the timezone of the index based on tzinfo.", example=74340.262345, ) days_of_week: Optional[List[int]] = Field( None, description="Which days of the week to run the index. Each day of the week is denoted by an integer with Monday = 0 and Sunday = 6", ) exclude_holidays: Optional[StrictBool] = Field( None, description="If this is True use the index holiday calendar to decide which days to run the index. It will only run on non-holidays.", ) class IntradayPublishConfigTargetBase(BaseModel): active_time_ranges: Optional[List[IntradayTickFilter]] = Field( None, description="Time ranges during which values should be published to this target. Target level active_time_ranges override publish_config metric level active_time_ranges.", ) class IntradayPublishConfigDbTarget(IntradayPublishConfigTargetBase): target: Literal["db"] class IntradayPublishConfigSecapiTarget(IntradayPublishConfigTargetBase): target: Literal["secapi"] class IntradayPublishConfigBloombergTarget(IntradayPublishConfigTargetBase): target: Literal["bloomberg"] params: Optional[IntradayPublishConfigBloombergTargetParams] = None class IntradayPublishConfigReutersTarget(IntradayPublishConfigTargetBase): target: Literal["reuters"] params: Optional[IntradayPublishConfigReutersTargetParams] = None class IntradayPublishConfigTarget(RootModel): root: Union[ IntradayPublishConfigDbTarget, IntradayPublishConfigSecapiTarget, IntradayPublishConfigBloombergTarget, IntradayPublishConfigReutersTarget, ] class IntradayPublishConfigItem(BaseModel): model_config = ConfigDict( extra="forbid", ) default_active_time_ranges: Optional[List[IntradayTickFilter]] = Field( None, description="Time ranges during which values should be published for this metric. This will be overriden if a target level active_time_ranges is set.", ) targets: List[IntradayPublishConfigTarget] = Field(..., description="List of targets to send this index metric too") class IntradayPublishConfig(RootModel): root: Optional[Dict[str, Union[IntradayPublishConfigItem, List[IntradayPublishConfigTarget]]]] = None class RunState(BaseModel): status: RunStateStatus calculation_start_ts: Optional[ constr(pattern=r"^\d{4}-\d{2}-\d{2}(T|\s)\d{2}:\d{2}:\d{2}(\.\d{6})?$", strict=True) ] = Field( None, description="set to the start of the last calculation, if the status is not PENDING_CREATION (has not ever started)", ) error: Optional[StrictStr] = Field(None, description="An error message if status is FAILED") class ClientMultiEBSpecific(BaseModel): model_config = ConfigDict( extra="forbid", ) corporate_actions: CorporateActions = Field( {"reinvest_dividends": True}, description="how to handle corporate actions", example={"reinvest_dividends": True}, ) holiday_calendar: Optional[HolidayCalendarSpec] = None level_overrides: Optional[List[LevelOverride]] = Field( None, description="optional level overrides for the index on certain days.", example=[ {"date": "2022-03-18", "level": 1364.344, "comment": "test for some special day for some special reason"} ], ) run_hour: int = Field( ..., description="set to the hour of day to run the index in the index's timezone", example=16 ) run_minute: int = Field(..., description="set to the minute of the hour to run the index ", example=30) timezone: StrictStr = Field("US/Eastern", description="set to the timezone of the index", example="US/Eastern") class ClientMultiEBConfig(ClientIndexConfigBase, ClientMultiEBPortInitial, ClientMultiEBSpecific): pass model_config = ConfigDict( extra="forbid", ) class RunConfig(BaseModel): model_config = ConfigDict( extra="allow", ) airflow_config: Optional[AirflowConfig] = None command: Optional[StrictStr] = None command_arguments: Optional[ArgumentsOrEnvVars] = None index_report_uuids: Optional[List[StrictStr]] = None index_reports: Optional[Union[List[StrictStr], List[IndexReport]]] = None job_enabled: StrictBool holiday_calendar: Optional[HolidayCalendarSpec] = None pod_image_and_tag: Optional[StrictStr] = Field(None, description="overrides the image") schedule: Schedule tzinfo: Optional[StrictStr] = None class RunConfigLabel(RunConfig, RunConfigLabelAdditional): pass model_config = ConfigDict( extra="allow", ) class Intraday(BaseModel): model_config = ConfigDict( extra="forbid", ) enabled: StrictBool = Field(..., description="If the intraday process should be run or not") security_id: Optional[StrictStr] = Field( None, description="Security ID of the intraday_index security where ticker data is served" ) ticker_period: Optional[float] = Field(None, description="Duration between ticker datapoints. In seconds") tzinfo: Optional[StrictStr] = Field(None, description="Timezone of intraday tick timestamp comparisons") active_time_ranges: Optional[List[IntradayTickFilter]] = None publish_config: Optional[IntradayPublishConfig] = None calculation_max_retry_delay: Optional[conint(ge=0)] = Field( None, description="How many seconds to keep retrying the real time calculation before setting the force flag. Defalts to 0 which means retry forever.", ) resource_cpu_request: Optional[conint(ge=1)] = Field( None, description="Minimum cpu resources requested in milliCPU" ) resource_memory_request: Optional[conint(ge=0)] = Field( None, description="Minimum memory resources requested in mebibytes." ) heartbeat_timeout: Optional[conint(ge=1)] = Field( None, description="Max number of seconds between heartbeats before the rtindex pod is considered unhealthy" ) startup_failure_timeout: Optional[conint(ge=1)] = Field( None, description="Max number of seconds to wait for the first heartbeat from the rtindex pod before considering it a failed startup. By default it will wait 40sec", ) data_refresh_period: Optional[conint(ge=0)] = Field( None, description="After the rtindex refreshes its data this is the number of seconds to wait before refreshing again. 0 means do not refresh. Defaults to 3600 seconds (60min)", ) class IndexDefinitionPost(BaseModel): model_config = ConfigDict( extra="forbid", ) administrative: Administrative base_date: Optional[constr(pattern=r"^[0-9]{4}[-/][0-9]{2}[-/][0-9]{2}", strict=True)] = Field( None, description="the date that the index has level 'base_value'", example="2000-01-04" ) base_year: Optional[int] = None benchmark: Optional[Union[IndexBenchmark, List[IndexBenchmark]]] = None buffer_end: Optional[float] = None buffer_start: Optional[float] = None calc_freq: Optional[CalcFreq] = None currency: Optional[StrictStr] = None custom_metrics: Optional[List[MetricsSchema]] = None description: StrictStr display_month: Optional[DisplayMonth] = None documents: Optional[Dict[str, Any]] = None excess_strategy: Optional[Literal["keep_in_cash"]] = None family: StrictStr family_description: Optional[StrictStr] = None first_value_date: Optional[constr(pattern=r"^[0-9]{4}[-/][0-9]{2}[-/][0-9]{2}", strict=True)] = Field( None, description="the first date that the index has a value; if set, will be < base_date", example="2000-01-04" ) identifiers: Optional[List[IdentifierUUIDRef]] = Field(None, min_length=0) index_class_uuid: Optional[StrictStr] = None intraday: Optional[Intraday] = Field( None, description="Only available for indexes with intraday tick computation", title="Intraday Details" ) launch_date: StrictStr methodology: Optional[StrictStr] = None month: Optional[int] = None name: constr(pattern=r"^[a-zA-Z][a-zA-Z0-9-_]{0,99}$", strict=True) namespace: Optional[StrictStr] = None plot_metric: Optional[StrictStr] = None portfolio_allocation_display: Optional[StrictBool] = Field( None, description="whether or not portfolio_allocations are shown on the website. False by default" ) portfolio_display: Optional[PortfolioDisplay] = None rebal_freq: Optional[RebalFreq] = None related: Optional[List[Related]] = None run_configuration: Optional[RunConfig] = None run_configurations: Optional[List[RunConfigLabel]] = None spec: Optional[IndexSpec] = None stage: Stage tags: Optional[StrictStr] = None title: StrictStr webpage: Optional[Webpage] = None weighting_method: Optional[WeightingMethod] = None class IndexDefinitionPatchPutGet(IndexDefinitionPost, CrudExtra): pass model_config = ConfigDict( extra="forbid", ) class EquityBasketPortfolio(BaseModel): model_config = ConfigDict( extra="forbid", ) positions: List[Union[BasketPosition, RicEquityPosition]] = Field(..., title="Positions") timestamp: constr(pattern=r"^\d{4}-\d{2}-\d{2}(T|\s)\d{2}:\d{2}:\d{2}(\.\d{6})?$", strict=True) = Field( ..., description="the time at which the portfolio should take effect", title="Timestamp" ) unit_of_measure: PortfolioUom share_selection_date: Optional[ constr(pattern=r"^\d{4}-\d{2}-\d{2}(T|\s)\d{2}:\d{2}:\d{2}(\.\d{6})?$", strict=True) ] = Field( None, description="Share selection date, if specified, should be before the effective date (parameter 'timestamp') for this Target Portfolio. In case when the unit_of_measure is set to WEIGHT, we first determine the shares using the prices on the share selection date. If any constituent is de-listed by the share selection date, then that constituent's weight is distributed to other constituents before selecting the shares. We then apply the corporate actions from the share selection date to the day before the portfolio effective date. In case when the unit_of_measure is set to SHARES, we follow the similar steps as above, except the step of determining shares, as it is not needed.", ) divisor: Optional[float] = Field( None, description="A scaling factor to apply for the SHARES of the portfolio constituents" ) class ClientTemplateResponse(BaseModel): post_template: Optional[IndexDefinitionPost] = Field(None, description="a full index manifest that can be posted") bbg_ident_template: Optional[IdentifierUUIDPost] = Field( None, description="only returned if the client specified a bbg ticker" ) target_ports: Optional[List[EquityBasketPortfolio]] = Field( None, description="only returns for indices where the client should post the target portfolios" ) NestedCalendarSchema.model_rebuild()
PypiClean
/notion-gcal-sync-1.1.12.tar.gz/notion-gcal-sync-1.1.12/notion_gcal_sync/install.py
import logging import os import sys import click as click import yaml from notion_gcal_sync.clients.GCalClient import GCalClient from notion_gcal_sync.config import Config CONFIG_PATH = os.path.join(os.path.expanduser("~"), ".notion-gcal-sync") CONFIG_FILE = os.path.join(CONFIG_PATH, "config.yml") CONFIG_DEFAULT_FILE = os.path.join(CONFIG_PATH, "config.default.yml") TOKEN_FILE = os.path.join(CONFIG_PATH, "token.json") CLIENT_SECRET_FILE = os.path.join(CONFIG_PATH, "client_secret.json") def confirm_create_path(path: str) -> bool: logging.info("{} does not exist".format(path)) if click.confirm("Create non-existing {}?".format(path), default=True): return True return False def config_path_created() -> bool: if os.path.exists(CONFIG_PATH): return True if not confirm_create_path(CONFIG_PATH): return False logging.info("Creating {}".format(CONFIG_PATH)) os.mkdir(CONFIG_PATH) return True def config_file_created() -> bool: if os.path.exists(CONFIG_FILE): return True if not confirm_create_path(CONFIG_FILE): return False logging.info("Configuring {}".format(CONFIG_FILE)) config_dict = {} for key, val in Config().to_dict().items(): if key in ["gcal_calendars", "notion_columns"]: continue if key == "gcal_default_calendar_name": gcal_mail = click.prompt(text="google_mail (e.g [email protected])", default=None) config_dict["gcal_default_calendar_name"] = "Default" config_dict["gcal_calendars"] = {"Default": gcal_mail} continue config_dict[key] = click.prompt(text="{}".format(key), default=val) logging.info("Writing configured values to {}".format(CONFIG_FILE)) Config(**config_dict).to_yaml() logging.info("Open {} to configure additional values.".format(CONFIG_FILE)) return True def client_secret_created() -> bool: if not os.path.exists(TOKEN_FILE) and os.path.exists(CLIENT_SECRET_FILE): logging.info("{} does not exist".format(TOKEN_FILE)) logging.info("Generating token file {}".format(TOKEN_FILE)) GCalClient.get_credentials() if os.path.exists(TOKEN_FILE): return True logging.error("{} nor {} exist".format(CLIENT_SECRET_FILE, TOKEN_FILE)) logging.info( "Please follow the instructions on setting up the client_secret.json: " "https://github.com/Ravio1i/notion-gcal-sync/blob/main/docs/setup.md#setup-credentials-for-google-calendar" ) return False def configure(): confirmed = config_path_created() and config_file_created() and client_secret_created() if not confirmed: logging.info("Exiting...") sys.exit() with open(CONFIG_FILE, "r") as yaml_file: yaml_cfg = yaml.safe_load(yaml_file) return Config(**yaml_cfg)
PypiClean
/netoprmgr-1.3.5.tar.gz/netoprmgr-1.3.5/pip/_internal/vcs/mercurial.py
from __future__ import absolute_import import logging import os from pip._vendor.six.moves import configparser from pip._internal.exceptions import BadCommand, InstallationError from pip._internal.utils.misc import display_path from pip._internal.utils.subprocess import make_command from pip._internal.utils.temp_dir import TempDirectory from pip._internal.utils.typing import MYPY_CHECK_RUNNING from pip._internal.utils.urls import path_to_url from pip._internal.vcs.versioncontrol import ( VersionControl, find_path_to_setup_from_repo_root, vcs, ) if MYPY_CHECK_RUNNING: from pip._internal.utils.misc import HiddenText from pip._internal.vcs.versioncontrol import RevOptions logger = logging.getLogger(__name__) class Mercurial(VersionControl): name = 'hg' dirname = '.hg' repo_name = 'clone' schemes = ( 'hg', 'hg+file', 'hg+http', 'hg+https', 'hg+ssh', 'hg+static-http', ) @staticmethod def get_base_rev_args(rev): return [rev] def export(self, location, url): # type: (str, HiddenText) -> None """Export the Hg repository at the url to the destination location""" with TempDirectory(kind="export") as temp_dir: self.unpack(temp_dir.path, url=url) self.run_command( ['archive', location], show_stdout=False, cwd=temp_dir.path ) def fetch_new(self, dest, url, rev_options): # type: (str, HiddenText, RevOptions) -> None rev_display = rev_options.to_display() logger.info( 'Cloning hg %s%s to %s', url, rev_display, display_path(dest), ) self.run_command(make_command('clone', '--noupdate', '-q', url, dest)) self.run_command( make_command('update', '-q', rev_options.to_args()), cwd=dest, ) def switch(self, dest, url, rev_options): # type: (str, HiddenText, RevOptions) -> None repo_config = os.path.join(dest, self.dirname, 'hgrc') config = configparser.RawConfigParser() try: config.read(repo_config) config.set('paths', 'default', url.secret) with open(repo_config, 'w') as config_file: config.write(config_file) except (OSError, configparser.NoSectionError) as exc: logger.warning( 'Could not switch Mercurial repository to %s: %s', url, exc, ) else: cmd_args = make_command('update', '-q', rev_options.to_args()) self.run_command(cmd_args, cwd=dest) def update(self, dest, url, rev_options): # type: (str, HiddenText, RevOptions) -> None self.run_command(['pull', '-q'], cwd=dest) cmd_args = make_command('update', '-q', rev_options.to_args()) self.run_command(cmd_args, cwd=dest) @classmethod def get_remote_url(cls, location): url = cls.run_command( ['showconfig', 'paths.default'], show_stdout=False, cwd=location).strip() if cls._is_local_repository(url): url = path_to_url(url) return url.strip() @classmethod def get_revision(cls, location): """ Return the repository-local changeset revision number, as an integer. """ current_revision = cls.run_command( ['parents', '--template={rev}'], show_stdout=False, cwd=location).strip() return current_revision @classmethod def get_requirement_revision(cls, location): """ Return the changeset identification hash, as a 40-character hexadecimal string """ current_rev_hash = cls.run_command( ['parents', '--template={node}'], show_stdout=False, cwd=location).strip() return current_rev_hash @classmethod def is_commit_id_equal(cls, dest, name): """Always assume the versions don't match""" return False @classmethod def get_subdirectory(cls, location): """ Return the path to setup.py, relative to the repo root. Return None if setup.py is in the repo root. """ # find the repo root repo_root = cls.run_command( ['root'], show_stdout=False, cwd=location).strip() if not os.path.isabs(repo_root): repo_root = os.path.abspath(os.path.join(location, repo_root)) return find_path_to_setup_from_repo_root(location, repo_root) @classmethod def controls_location(cls, location): if super(Mercurial, cls).controls_location(location): return True try: cls.run_command( ['identify'], cwd=location, show_stdout=False, on_returncode='raise', log_failed_cmd=False) return True except (BadCommand, InstallationError): return False vcs.register(Mercurial)
PypiClean
/cs272_project-0.2.0.tar.gz/cs272_project-0.2.0/cs272_project/model.py
import logging import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import CrossEntropyLoss logger = logging.getLogger(__name__) from transformers import GPT2PreTrainedModel, GPT2Model class AS2HeadModel(nn.Module): def __init__(self, config): super().__init__() mlp_neurons = 1024 self.linear1 = nn.Linear(config.hidden_size, mlp_neurons) self.linear2 = nn.Linear(mlp_neurons, 1) self.dropout = nn.Dropout(config.resid_pdrop) self.ln_1 = nn.LayerNorm(mlp_neurons, eps=config.layer_norm_epsilon) self.act = F.relu self.act_out = torch.sigmoid def forward(self, hidden_states, cls_index=None): output = hidden_states[:, -1, :] output = self.linear1(output) output = self.act(output) output = self.ln_1(output) output = self.dropout(output) output = self.linear2(output) output = self.act_out(output) return output class GPT2TANDAModel(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) config.num_labels = 1 self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.as2_head = AS2HeadModel(config) self.init_weights() self.loss_fct = CrossEntropyLoss() def get_output_embeddings(self): return self.lm_head def forward( self, input_ids=None, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, mc_token_ids=None, lm_labels=None, mc_labels=None, ): transformer_outputs = self.transformer( input_ids, past=past, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) mc_logits = self.as2_head(hidden_states) outputs = (lm_logits, mc_logits) + transformer_outputs[1:] if mc_labels is not None: loss = self.loss_fct(mc_logits, mc_labels) outputs = (loss,) + outputs if lm_labels is not None: shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = lm_labels[..., 1:].contiguous() loss = self.loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) outputs = (loss,) + outputs return outputs # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)
PypiClean
/py-pure-client-1.38.0.tar.gz/py-pure-client-1.38.0/pypureclient/flasharray/FA_2_4/models/username.py
import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_4 import models class Username(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'username': 'str' } attribute_map = { 'username': 'username' } required_args = { } def __init__( self, username=None, # type: str ): """ Keyword args: username (str): The username of the user. """ if username is not None: self.username = username def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Username`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def __getitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Username`".format(key)) return object.__getattribute__(self, key) def __setitem__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Username`".format(key)) object.__setattr__(self, key, value) def __delitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Username`".format(key)) object.__delattr__(self, key) def keys(self): return self.attribute_map.keys() def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Username, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Username): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
PypiClean
/aim-with-auth-support-3.15.2.post12.tar.gz/aim-with-auth-support-3.15.2.post12/README.md
<div align="center"> <img src="https://user-images.githubusercontent.com/13848158/154338760-edfe1885-06f3-4e02-87fe-4b13a403516b.png"> <h3>An easy-to-use & supercharged open-source experiment tracker</h3> Aim logs your training runs, enables a beautiful UI to compare them and an API to query them programmatically. </div> <br/> <img src="https://user-images.githubusercontent.com/13848158/154338753-34484cda-95b8-4da8-a610-7fdf198c05fd.png"> <p align="center"> <a href="#about-aim"><b>About</b></a> &bull; <a href="#why-use-aim"><b>Features</b></a> &bull; <a href="#demos"><b>Demos</b></a> &bull; <a href="https://github.com/aimhubio/aim/tree/main/examples"><b>Examples</b></a> &bull; <a href="#quick-start"><b>Quick Start</b></a> &bull; <a href="https://aimstack.readthedocs.io/en/latest/"><b>Documentation</b></a> &bull; <a href="#roadmap"><b>Roadmap</b></a> &bull; <a href="https://community.aimstack.io/"><b>Discord Community</b></a> &bull; <a href="https://twitter.com/aimstackio"><b>Twitter</b></a> </p> <div align="center"> [![Platform Support](https://img.shields.io/badge/platform-Linux%20%7C%20macOS-blue)]() [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/aim)](https://pypi.org/project/aim/) [![PyPI Package](https://img.shields.io/pypi/v/aim?color=yellow)](https://pypi.org/project/aim/) [![License](https://img.shields.io/badge/License-Apache%202.0-orange.svg)](https://opensource.org/licenses/Apache-2.0) [![PyPI Downloads](https://img.shields.io/pypi/dw/aim?color=green)](https://pypi.org/project/aim/) [![Issues](https://img.shields.io/github/issues/aimhubio/aim)](http://github.com/aimhubio/aim/issues) </div> <div align="center"> <sub>Integrates seamlessly with your favorite tools</sub> <br/> <br/> <img src="https://user-images.githubusercontent.com/13848158/155354389-d0301620-77ea-4629-a743-f7aa249e14b5.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354496-b39d7b1c-63ef-40f0-9e59-c08d2c5e337c.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354380-3755c741-6960-42ca-b93e-84a8791f088c.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354342-7df0ef5e-63d2-4df7-b9f1-d2fc0e95f53f.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354392-afbff3de-c845-4d86-855d-53df569f91d1.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354355-89210506-e7e5-4d37-b2d6-ad3fda62ef13.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354397-8af8e1d3-4067-405e-9d42-1f131663ed22.png" width="60" /> <br/> <img src="https://user-images.githubusercontent.com/13848158/155354513-f7486146-3891-4f3f-934f-e58bbf9ce695.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354500-c0471ce6-b2ce-4172-b9e4-07a197256303.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354361-9f911785-008d-4b75-877e-651e026cf47e.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354373-1879ae61-b5d1-41f0-a4f1-04b639b6f05e.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354483-75d9853f-7154-4d95-8190-9ad7a73d6654.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354329-cf7c3352-a72a-478d-82a7-04e3833b03b7.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354349-dcdf3bc3-d7a9-4f34-8258-4824a57f59c7.png" width="60" /> <img src="https://user-images.githubusercontent.com/13848158/155354471-518f1814-7a41-4b23-9caf-e516507343f1.png" width="60" /> <img src="https://user-images.githubusercontent.com/48801049/165162736-2cc5da39-38aa-4093-874f-e56d0ba9cea2.png" width="60" /> <img src="https://user-images.githubusercontent.com/48801049/165074282-36ad18eb-1124-434d-8439-728c22cd7ac7.png" width="60" /> </div> <div align="center"> <br/> <kbd> <img width="650px" src="https://user-images.githubusercontent.com/13848158/136374529-af267918-5dc6-4a4e-8ed2-f6333a332f96.gif" /> </kbd> </div> # About Aim | Track and version ML runs | Visualize runs via beautiful UI | Query runs metadata via SDK | |:--------------------:|:------------------------:|:-------------------:| | <img width="600px" src="https://user-images.githubusercontent.com/13848158/154337794-e9310239-6614-41b3-a95b-bb91f0bb6c4f.png"> | <img width="600px" src="https://user-images.githubusercontent.com/13848158/154337788-03fe5b31-0fa3-44af-ae79-2861707d8602.png"> | <img width="600px" src="https://user-images.githubusercontent.com/13848158/154337793-85175c78-5659-4dd0-bb2d-05017278e2fa.png"> | Aim is an open-source, self-hosted ML experiment tracking tool. It's good at tracking lots (1000s) of training runs and it allows you to compare them with a performant and beautiful UI. You can use not only the great Aim UI but also its SDK to query your runs' metadata programmatically. That's especially useful for automations and additional analysis on a Jupyter Notebook. Aim's mission is to democratize AI dev tools. # Why use Aim? ### Compare 100s of runs in a few clicks - build models faster - Compare, group and aggregate 100s of metrics thanks to effective visualizations. - Analyze, learn correlations and patterns between hparams and metrics. - Easy pythonic search to query the runs you want to explore. ### Deep dive into details of each run for easy debugging - Hyperparameters, metrics, images, distributions, audio, text - all available at hand on an intuitive UI to understand the performance of your model. - Easily track plots built via your favourite visualisation tools, like plotly and matplotlib. - Analyze system resource usage to effectively utilize computational resources. ### Have all relevant information organised and accessible for easy governance - Centralized dashboard to holistically view all your runs, their hparams and results. - Use SDK to query/access all your runs and tracked metadata. - You own your data - Aim is open source and self hosted. # Demos | Machine translation | lightweight-GAN | |:---:|:---:| | <a href="http://play.aimstack.io:10001/metrics?grouping=HQGdK9Xxy35e6sY1CYkCmk1WbWMN2AsCNfJJ3d1RJYLtrVPMoF5UpGiA6CF8bEJnfzRsKpqespf3AEuKSVrhUYvYk9MxzNGA9XZWYUf6phEg8AMbZGLRVDXnAPDuo8tueqsST1ZLizWzQwDYJWHUza6pyB2Eojt9uWqNHUdb858TqDRnCJzqiVJXKXEzFWUyvU8MckJo1qpqWWCTb4GpYN6DUJZx2GXDGR21e2xxd4m7PmNUnbA9B3apLttZoipJF6c3v7tNUKmb6irpqnNB3yc57tqYDa1XZuKfDxkMtyFdQ1x95K4jjsTVwhftEWLze35QNcxNXRCGGS9o9yEfTLG26GUX2zjPZFCjjMGU6vV7z1xRccK8MyoGrLSgAQCbvk68dTGBHpXUBvCRq8N&chart=FviZzVrt4fVQPjpCLr9sVGGrcR5etSroyqambiKpm3nTgpyv4eQxKuwNX9uN8UtKmzYUhUyTMBEANHmtbwjLApkvnYeNbxGNC6PVcoqi65m1XJnSrvgt8WiD89BapFAWRUwAGx6SWD7KZPsk3RQyysU7W7FjD3Q99NusxFGhsEfD6HXc7i8xH9KHDRGjLwh6x9VTtSp4FS8HEvpLSiiJoX7LCTi8pB7dXvrQ8G5w3jPsFz4qXYFdsVaCNL1BpFFZuiqQNkfbnM84gEq7UmiV1VzM4oS3AgQHxADG3kpBVp6eKTey9F1Swd4FcUkFA9QEPjgQgqwRGjkquZ2bdDDVLBnCh7JPvboP2kifCiZZ5MDdV9MMx6PKHp4DusWyWLXiHQYPkpGPWBiuccMUXDsuJaCWJbuABdY7CyiJMv1jdHYkjabygSxehPVyEDefWAtjBfv2vaeM1xv63jadbmpKYFxft7qmuT9HvVxiGvRgs4RQFxy8K4rtFBca3HNs1mDaaY81gy9MGXyw7BS5Fniu92jaJpsWDdg6Y3AQBLZtrpJy2obEZ4yzJaCVT7JUNPAyyCUNLck393VFLoEkaD9CU5npK5R7tj1c1G3gkMNQXnSXy5NpSj8deMmXV5qz3JKu1nq2caGQKcqjzy2gLkExdm674AMFjSg9yFjK6VqASXQ17NKtWRUvaYoxGbHDAFQaMKWKh8QLm22QA9mKT8NksLptWozbgDvafnQLNMvezLU5bvKV5o75PAWYiRB56RcYfEhzaB6YWdgL7TJicyY5rFi6Az8UZ7wqB3N5iMuZdpxhKn5KbZDxyuUMuvVt24i5LVPPmmwQtqxMoJ4aLo48a2YvDW6TAkdQjNjvn6KcEEz6GTixujb1YHhMUD8v4AepWKEwKz1ddEca1P2wLQjbpihCuaqbxeohnuZZLogJdUBojBEDgrnrrVpPBaLLEkGSpkJbtrsKUuEeBo1AF3yNgHftLbynGpobVF5DhmsmddmiA6c8vSTokJxHhjpnW8mAcNHBRtmVJCT7VkdHSAhNypM4Hivwfx5jCccG9LauKmCeRMDzHiA57TX9W6ttcPHSvUyQorARQAd2oeNY4H83hZjHh9Bt8iwKZRt4xK6hrTR8tif7hq8eURXrGH9Ys7TzykXK8FHHWvLNzNnYf3E4a9NkD43MjfKvMM1hj4Q2K8MHbmRCqrmFrHP5kim9shq6mhLPTgwha32nvnrBkfPQVPwpGTzKuwE&select=CdsQ7jVNkogQhRzQR3e28Ek39AZ4Ma2y37k5zJaf9EZmQhMjy8GtGm4LGU6dRFuAVG7mYww5xDrQAE74KHQ3Kk1e6661RmcmNALAUjtHyCmrTVBMCnBGNiuq1y7EzmxoodYHU1BV1rnoefQAw2kTBtbWi11hV1P4LcwFCcXfUWF6rpRC7ehEnUCTqUV4bkGVJPLcmk9mdmiGwa2YgmnSShNGPVGZiEi1rMVECyngSRVdqdZwAeXBGWFLfqF1KbZeCo4MTF4SSmFupJ9zLhYbuojEbopyFWHQ6xs3sq9epPeaQziLM4Js7oFYRmuFWUYdFqnZngmewXWmi7tQAgVqhiT6dMjG2eTdfgX6WuRSuoHALkh2XJhHA6GfZLUcxC5Ni9YyKuBTamtaYarbNNJJ8z15WWvuUkLpjgHdEpE2h924xFdu8aoZNuiQxYGvcndaW1BTGMXS5fTKPqYfe2n8Ky2HWPkcX3hEXtyawu1F9BndKNaXLPgsdAoFBArBZnSe28YtSmTa5LRucKVBAxakvv5MWMXchAmpaGFQbZyYUoMgQLcJd7Y96x6zSR7nhwr5Ar81BrmqYz2WFLuk7osUbwsc9HbSG6CQt8p6Vg2u7DjKaZXW8pjkPHAKrHWtHEDiJPJ5rj6VsdFm3"> <img width="800px" src="https://user-images.githubusercontent.com/13848158/154340796-c9e91b13-8ee0-4a67-bcde-8cf3aaa7ba99.jpg"> </a> | <a href="http://play.aimstack.io:10002/images?grouping=E1zQzcmtDR3wibEa1MVysTvCyZEv1T8ixkCxTWExCyMnHtX2HyiF9eszvPgfd2xdJ5TUTKGpSs1bsLVq5tHAV3uWtsZmmckn6HjNtVCMyQDJpwhiEy5tAyw&select=2NEXuD7fFoaLcwRjymjA1wLmUrGs9s3AiXcCW82C367SwJt18CAB6xzkMGowrUDuDwggE1huaPVcQJpQUsmAQx1CnGiqCUBp2jPMd5mMNPX2QKQMcmvu9ZykBNkeBvCQFPd9ERuQD2g1EjWuvyJ3H53mAZTfp94LCXvR9CUsG5ei2CjQUzfZLM6DCyUr1GPaEVnY5f1EwzicNxXuoutkBgqCqaobJ7Do4q4eHAA6ooiWU6ekS3D2sLj6qYwhVTjfGCPfbWwBiH83nFkY3fLExzdeTY2zeUHeeYikQR9S7xHbVD8WvjekdQVp8X4dNLJZxiVmEqHpPRnU3ZrYsMhE7yFAAgjJwPNUzLTt6YFrtZBcmc4rwAC2oyrqysUSEr6gzL6LcJ6yuqDGf9D5tzftHbTLDkhc8B2sCgTS&images=9vt2MvuQj2Q7jxGQYhNH6ZnWw4CsEzubFcFotuqCHfzvuruDs6pyWfhqhinD4hCiYsAURXgJbmq2L5z4vEQMbrE7iTy8XHNndPBPyuCEvRpxGwwFkukX3YGkVhNDQmUPtBagKbsMAgUASJM8hFtKboqbu9KWTModsjd4Qag7aL1KbJCzBYmZLCpKMSf6eKUTQtfwLLWbgquEx6oahAoSujV6aZ5cjsjN4JdGtPbicySpccgLDQHaQYTHCseA6sPVaEwCsoQDJAcTnjEVFFUUUW5HbPkrNgeRKb8M9pxudrweRQ3gNukLx5yizxQKrmcKU7saxLraqYUA2y5LmEQohsWGUq8sKkvGDH6oNLx2ytJsdVM5PGieENXMAaPg3KuWYXXTwixzwscdDsHSWeiXTGj1QxUKiBCnfwkZ7pZbYMCSgczSn9WpwygrKhb2znSYhn4gFzCsdjiXPPDv9LpPzkFVbsMCvk1CadqpwxTfxNmteKm7CQVViyCrvheGAk5rKpPzaBc5agyvfKpUqgRarxojnG8a4s1Y7qFT1rNVSC13C9h5fG54dDoFHxDyvej3bVTMDYsAiie3eVA3yEskyBGwApPNtjLY2H4b9jTmR3V7jnA9moFGfwMiXUjt8eoJsWTNkqBdRGSnqdva8zi5bApQaggnLebgCRpK1g8VvPrVS3ABQC8aMZJ2vibebHePWs1ahWZ2AXUUYwcuSRkiUWHwgtG9U1x6rR41UxFFNvW9rpDsU99DWzYpdgxfU75wTEPb2qeXYPxV1zVt5ixcFfA3Lvtsp5XXyfHY9FaNFeKKzAUQXPAkMWG4yH4Tp5me8Nt4puBC4pvJrboVcQdSsYhtxj2YwUjzN7Jyn9BV28dtRFPdtFUUc9pKpLvhZAD6XPDtKqrN3pG3LwYTKAiMDtC6tHvDqhQGuJGQZH5cVyTKkT48Xup4znass8tJxUJwacVQa6x2ewyd8AXCfc4j9bPQssabADmc1ho5Eghn5qe82cEcyG1okdfBCRMfmZ5EeCeKQYmoXddxM2cAwfJzCzG9bGtaMvXk3VV8TrSiRKjg3Exbftv8gx12QAzoBP9zosuULFpEAPZF1TvHJbEUmYgu9gwuRTAS3qYiywB7dsCq8wsTr7qmwt8WFFucpte8WvrkRGYy1GA7bD6uPhvS6sr1Wv259oB7Tkr5kirMo6Vdkz8ex9zVd4h2AP1J1dy8cqXaSk5B3HTZ6n1qdAMt4faLtt8SNqg4EqcvXx6r2J1czzXAPa9oSseYifvedcMyxnWkcTvno4QA6sp6zH25ubEwPAVzZZk35nNoJPasH3PgEgLafGPLCsPDD2sku5djPjfqkbDLUWMYm7BbTr7xK8v4UoTS485rPiF6VKoNQSuEnKQMT3uNRTS4EXNMjyRfUs4gk1217EhGVLhfqiZQyG4gqEhcJE3phLydLskk36PyGEbyFyvigjwvrK6boJnFpesze6Czc13HdWbWp6LHLseYujigdmdktU6EQb5KmghstmJ9gUF14JVPjYP57xtv19UT8XDuaJfwJn9z3U17ZDFnQ5zbXKSwD9ikMEd6VFo1xLBRHSmRdFSqcC96s23qWmMhheGtv6tTQAkq7CB1J1gy3skuFJXqhs1RvFWbFFUCLmHeTCtskEsQVP5Rkzat5Jn3QtSqCiRpEGc9Ykd5bWFAaqoudGcqEt993tVfVS3ZrVKAa6NDmbtAcdnfsUZxDt2muRPJDNVCBNW5k8XvevMpMsL3uCETtdutufp1VyLur2Yyx5WA8AeeFeDBxRxad3ZHbH27XdMpxWHF26hnbQAewspG1weRpVW9Ebc4Lc53RBeu8gVmTbKydrri1FHaYySZqCxht8bN4kdqSmkymmcTN3cfRN9DmzcmfKG6GbTDeCA9oXz5cVqrGXZcAiaj1oinnByW7W8GwhtK1Tzd7LG74Nu35DUdPCJXMH2ug4SEa3yXERXCaLvAHvFZAS89e7RUPpr3nTTrQLurjHSdkJ39pwEJpDcDjeWHsJSmTG1x195e6xvMmgPxAZd3Lzyk8Cxme8p1cY7FehSbTPc3zAAwi9LDGYyoQRcdbRHPLJ2W8rt9KeNfNq9moa1RVFPCPvhGuuyycT4f4QkP4Nvy4iUCaB5d8B1hcgmtg2X9Zpg6GUR32RYneQigK6S9ZYPNnaFeCNZZrwaYjkDpKMTMB6N24JC1TEAH8en3kXzf8CpLWeJpxoyB3hcCxjFHLYaovzgfGPeFBPY6ADDUcT3xkpUUEybdxE1cX7drHvBwyGqeU5g7i424tydxqufUgPY5sF9bM6mdoA3AvqDD9B3Zai71irxYXX8e6rRck4RwptJgBMX2gbotizoz9LrUwFQ2naBfJvbfEhZNCzME8a7H2YiVcq4Z6pkfbT1uMLfaixfw8nQCzVRbJAyVZgGzVbBj242LpD48R6VmxGcU5t2XkN8hZyYdBk1Uds9QyUG9VpC8ka7HjkvxBMknk6v4BjMnHnAj4ZxDUxMWEDbWw6iWD3iYWzVn3n5dzRcAqCQv3m2ZUnwuHHCTVJVZKZVyxrFP5eznpNv87RUXMfjbXypoLJFVtMoq81y82hYRFSkbAUwzhhoXBAGeBGDmDcwky2Hf7ZmfkzDLnRke916VxhTRLr8c6nXokCn8xwweuJHFeBqx7D88gpRbn5RrnH33545zyzyNpZpabQUGY3L7G3QznVw6wCS9x7FMixW2mgCeeWFhPDiz5Kz6DyyjaT413VSoRBCRakNcitYHUXqqCUPsFmZ3LTedA8jN99fYzse5LX36TSVbjnM7XmiZ8vNoH5mUsawmvG7NXbhgoyhx4rzL7t57A4g7sQg4YhGAFzEbXrh416riiPH8r52on2VEqkjNPDnybSg3cwuR6rPfMWA7YoyEAp14aStUPaKqbM9omConMxZde5o2DpjS86G5vDBY1o7F4LnBHLHRxKfqAkTPjvEdhaYY2uY6i598po9b2fAtpUGCbXnzcNrV5Vei5WkiQAqRT6whGr29PTLsAVGed71drx7BqzNiDcFJBL9dVrVoPqYLvrYVGi89MuuWuirD7CRhXWahysjrNpFf4aHXmuXS3UD7SFgkqAZzL1hrVq77K8UhGMMWLUzE9gjP6PH4xL6fJetKaRGZNpbsqDoKuBkBAk9j1nGpYMAyuo2H2AWUyj8PUgAbi1e4KPeqNqMVT85oZ9jkCggYczgNhT8gw5QsMarouMctMdbokxRfxz2xt9r2DuNmbEmq9e13Tqv94VrzR91R2o7pvH7YUFtJvcoJwR8K5jyof5SfKHT53zaBKxkLfCpPP3qR9ZCbAzVbreFKsQnCcZpd643VA9wtgKXxc375NwKj4QbnvafKNU9qc455d3S3o57mU4DFA7yHSqY1q41zySxfXYx4txL4TiqeyyTQu7KcHYbTUYRs69pkE1rWRW84N1qmisw2o7iLQPrhWkixrRDRk5toYWQg6ZDZExCyedYBGjsUAut"> <img width="800px" src="https://user-images.githubusercontent.com/13848158/154340790-bc7b7a21-e8a1-43a1-809d-4060b5bfb60f.jpg"> </a> | | Training logs of a neural translation model(from WMT'19 competition). | Training logs of 'lightweight' GAN, proposed in ICLR 2021. | | FastSpeech 2 | Simple MNIST | |:---:|:---:| | <a href="http://play.aimstack.io:10004/runs/d9e89aa7875e44b2ba85612a/audios"> <img width="800px" src="https://user-images.githubusercontent.com/13848158/154340778-dbe19620-2f27-4298-b0cb-caf3904760f1.jpg"> </a> | <a href="http://play.aimstack.io:10003/runs/7f083da898624a2c98e0f363/distributions"> <img width="800px" src="https://user-images.githubusercontent.com/13848158/154340785-a7e4d9fd-d048-4207-8cd1-c4edff9cca6a.jpg"> </a> | | Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". | Simple MNIST training logs. | # Quick Start Follow the steps below to get started with Aim. **1. Install Aim on your training environment** ```shell pip3 install aim ``` **2. Integrate Aim with your code** ```python from aim import Run # Initialize a new run run = Run() # Log run parameters run["hparams"] = { "learning_rate": 0.001, "batch_size": 32, } # Log metrics for i in range(10): run.track(i, name='loss', step=i, context={ "subset":"train" }) run.track(i, name='acc', step=i, context={ "subset":"train" }) ``` _See the full list of supported trackable objects(e.g. images, text, etc) [here](https://aimstack.readthedocs.io/en/latest/quick_start/supported_types.html)._ **3. Run the training as usual and start Aim UI** ```shell aim up ``` **4. Or query runs programmatically via SDK** ```python from aim import Repo my_repo = Repo('/path/to/aim/repo') query = "metric.name == 'loss'" # Example query # Get collection of metrics for run_metrics_collection in my_repo.query_metrics(query).iter_runs(): for metric in run_metrics_collection: # Get run params params = metric.run[...] # Get metric values steps, metric_values = metric.values.sparse_numpy() ``` # Integrations <details> <summary> Integrate PyTorch Lightning </summary> ```python from aim.pytorch_lightning import AimLogger # ... trainer = pl.Trainer(logger=AimLogger(experiment='experiment_name')) # ... ``` _See documentation [here](https://aimstack.readthedocs.io/en/latest/quick_start/integrations.html#integration-with-pytorch-lightning)._ </details> <details> <summary> Integrate Hugging Face </summary> ```python from aim.hugging_face import AimCallback # ... aim_callback = AimCallback(repo='/path/to/logs/dir', experiment='mnli') trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, callbacks=[aim_callback], # ... ) # ... ``` _See documentation [here](https://aimstack.readthedocs.io/en/latest/quick_start/integrations.html#integration-with-hugging-face)._ </details> <details> <summary> Integrate Keras & tf.keras </summary> ```python import aim # ... model.fit(x_train, y_train, epochs=epochs, callbacks=[ aim.keras.AimCallback(repo='/path/to/logs/dir', experiment='experiment_name') # Use aim.tensorflow.AimCallback in case of tf.keras aim.tensorflow.AimCallback(repo='/path/to/logs/dir', experiment='experiment_name') ]) # ... ``` _See documentation [here](https://aimstack.readthedocs.io/en/latest/quick_start/integrations.html#integration-with-keras-tf-keras)._ </details> <details> <summary> Integrate KerasTuner </summary> ```python from aim.keras_tuner import AimCallback # ... tuner.search( train_ds, validation_data=test_ds, callbacks=[AimCallback(tuner=tuner, repo='.', experiment='keras_tuner_test')], ) # ... ``` _See documentation [here](https://aimstack.readthedocs.io/en/latest/quick_start/integrations.html#integration-with-kerastuner)._ </details> <details> <summary> Integrate XGBoost </summary> ```python from aim.xgboost import AimCallback # ... aim_callback = AimCallback(repo='/path/to/logs/dir', experiment='experiment_name') bst = xgb.train(param, xg_train, num_round, watchlist, callbacks=[aim_callback]) # ... ``` _See documentation [here](https://aimstack.readthedocs.io/en/latest/quick_start/integrations.html#integration-with-xgboost)._ </details> <details> <summary> Integrate CatBoost </summary> ```python from aim.catboost import AimLogger # ... model.fit(train_data, train_labels, log_cout=AimLogger(loss_function='Logloss'), logging_level="Info") # ... ``` _See documentation [here](https://aimstack.readthedocs.io/en/latest/quick_start/integrations.html#integration-with-catboost)._ </details> <details> <summary> Integrate fastai </summary> ```python from aim.fastai import AimCallback # ... learn = cnn_learner(dls, resnet18, pretrained=True, loss_func=CrossEntropyLossFlat(), metrics=accuracy, model_dir="/tmp/model/", cbs=AimCallback(repo='.', experiment='fastai_test')) # ... ``` _See documentation [here](https://aimstack.readthedocs.io/en/latest/quick_start/integrations.html#integration-with-fastai)._ </details> <details> <summary> Integrate LightGBM </summary> ```python from aim.lightgbm import AimCallback # ... aim_callback = AimCallback(experiment='lgb_test') aim_callback.experiment['hparams'] = params gbm = lgb.train(params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, callbacks=[aim_callback, lgb.early_stopping(stopping_rounds=5)]) # ... ``` _See documentation [here](https://aimstack.readthedocs.io/en/latest/quick_start/integrations.html#integration-with-lightgbm)._ </details> <details> <summary> Integrate PyTorch Ignite </summary> ```python from aim.pytorch_ignite import AimLogger # ... aim_logger = AimLogger() aim_logger.log_params({ "model": model.__class__.__name__, "pytorch_version": str(torch.__version__), "ignite_version": str(ignite.__version__), }) aim_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="train", output_transform=lambda loss: {'loss': loss} ) # ... ``` _See documentation [here](https://aimstack.readthedocs.io/en/latest/quick_start/integrations.html#integration-with-pytorch-ignite)._ </details> # Comparisons to familiar tools ### Tensorboard **Training run comparison** Order of magnitude faster training run comparison with Aim - The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI. - With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. **TensorBoard doesn't have features to group, aggregate the metrics** **Scalability** - Aim is built to handle 1000s of training runs - both on the backend and on the UI. - TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared. **Beloved TB visualizations to be added on Aim** - Embedding projector. - Neural network visualization. ### MLFlow MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features. **Run comparison** - Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params. - MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available. **UI Scalability** - Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing! - MLflow UI becomes slow to use when there are a few hundreds of runs. ### Weights and Biases Hosted vs self-hosted - Weights and Biases is a hosted closed-source MLOps platform. - Aim is self-hosted, free and open-source experiment tracking tool. # Roadmap ## Detailed Sprints :sparkle: The [Aim product roadmap](https://github.com/orgs/aimhubio/projects/3) - The `Backlog` contains the issues we are going to choose from and prioritize weekly - The issues are mainly prioritized by the highly-requested features ## High-level roadmap The high-level features we are going to work on the next few months ### Done - [x] Live updates (Shipped: _Oct 18 2021_) - [x] Images tracking and visualization (Start: _Oct 18 2021_, Shipped: _Nov 19 2021_) - [x] Distributions tracking and visualization (Start: _Nov 10 2021_, Shipped: _Dec 3 2021_) - [x] Jupyter integration (Start: _Nov 18 2021_, Shipped: _Dec 3 2021_) - [x] Audio tracking and visualization (Start: _Dec 6 2021_, Shipped: _Dec 17 2021_) - [x] Transcripts tracking and visualization (Start: _Dec 6 2021_, Shipped: _Dec 17 2021_) - [x] Plotly integration (Start: _Dec 1 2021_, Shipped: _Dec 17 2021_) - [x] Colab integration (Start: _Nov 18 2021_, Shipped: _Dec 17 2021_) - [x] Centralized tracking server (Start: _Oct 18 2021_, Shipped: _Jan 22 2022_) - [x] Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: _Dec 17 2021_, Shipped: _Feb 3 2022_) - [x] Track git info, env vars, CLI arguments, dependencies (Start: _Jan 17 2022_, Shipped: _Feb 3 2022_) - [x] MLFlow adaptor (visualize MLflow logs with Aim) (Start: _Feb 14 2022_, Shipped: _Feb 22 2022_) - [x] Activeloop Hub integration (Start: _Feb 14 2022_, Shipped: _Feb 22 2022_) - [x] PyTorch-Ignite integration (Start: _Feb 14 2022_, Shipped: _Feb 22 2022_) - [x] Run summary and overview info(system params, CLI args, git info, ...) (Start: _Feb 14 2022_, Shipped: _Mar 9 2022_) - [x] Add DVC related metadata into aim run (Start: _Mar 7 2022_, Shipped: _Mar 26 2022_) - [x] Ability to attach notes to Run from UI (Start: _Mar 7 2022_, Shipped: _Apr 29 2022_) - [x] Fairseq integration (Start: _Mar 27 2022_, Shipped: _Mar 29 2022_) - [x] LightGBM integration (Start: _Apr 14 2022_, Shipped: _May 17 2022_) - [x] CatBoost integration (Start: _Apr 20 2022_, Shipped: _May 17 2022_) - [x] Run execution details(display stdout/stderr logs) (Start: _Apr 25 2022_, Shipped: _May 17 2022_) - [x] Long sequences(up to 5M of steps) support (Start: _Apr 25 2022_, Shipped: _Jun 22 2022_) - [x] Figures Explorer (Start: _Mar 1 2022_, Shipped: _Aug 21 2022_) - [x] Notify on stuck runs (Start: _Jul 22 2022_, Shipped: _Aug 21 2022_) - [x] Integration with KerasTuner (Start: _Aug 10 2022_, Shipped: _Aug 21 2022_) - [x] Integration with WandB (Start: _Aug 15 2022_, Shipped: _Aug 21 2022_) - [x] Stable remote tracking server (Start: _Jun 15 2022_, Shipped: _Aug 21 2022_) - [x] Integration with fast.ai (Start: _Aug 22 2022_, Shipped: _Oct 6 2022_) - [x] Integration with MXNet (Start: _Sep 20 2022_, Shipped: _Oct 6 2022_) - [x] Project overview page (Start: _Sep 1 2022_, Shipped: _Oct 6 2022_) ### In Progress - [ ] Remote tracking server scaling (Start: _Sep 1 2022_) - [ ] Aim SDK low-level interface (Start: _Aug 22 2022_) ### To Do **Aim UI** - Runs management - Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard - Explorers - Audio Explorer - Text Explorer - Distributions Explorer - Dashboards – customizable layouts with embedded explorers **SDK and Storage** - Scalability - Smooth UI and SDK experience with over 10.000 runs - Runs management - CLI interfaces - Reporting - runs summary and run details in a CLI compatible format - Manipulations – copy, move, delete runs, params and sequences **Integrations** - ML Frameworks: - Shortlist: MONAI, SpaCy, Raytune, PaddlePaddle - Datasets versioning tools - Shortlist: HuggingFace Datasets - Resource management tools - Shortlist: Kubeflow, Slurm - Workflow orchestration tools - Others: Hydra, Google MLMD, Streamlit, ... ### On hold - scikit-learn integration - Cloud storage support – store runs blob(e.g. images) data on the cloud (Start: _Mar 21 2022_) - Artifact storage – store files, model checkpoints, and beyond (Start: _Mar 21 2022_) ## Community ### If you have questions 1. [Read the docs](https://aimstack.readthedocs.io/en/latest/) 2. [Open a feature request or report a bug](https://github.com/aimhubio/aim/issues) 3. [Join Discord community server](https://community.aimstack.io/)
PypiClean
/django-allauth-james-0.20.0.tar.gz/django-allauth-james-0.20.0/allauth/socialaccount/providers/twitter/south_migrations/0003_tosocialaccount.py
from south.v2 import DataMigration class Migration(DataMigration): depends_on = (('socialaccount', '0002_genericmodels'),) def forwards(self, orm): # Migrate apps app_id_to_sapp = {} for app in orm.TwitterApp.objects.all(): sapp = orm['socialaccount.SocialApp'].objects \ .create(site=app.site, provider='twitter', name=app.name, key=app.consumer_key, secret=app.consumer_secret) app_id_to_sapp[app.id] = sapp # Migrate accounts acc_id_to_sacc = {} for acc in orm.TwitterAccount.objects.all(): sacc = acc.socialaccount_ptr sacc.uid = str(acc.social_id) sacc.extra_data = { 'screen_name': acc.username, 'profile_image_url': acc.profile_image_url } sacc.provider = 'twitter' sacc.save() acc_id_to_sacc[acc.id] = sacc def backwards(self, orm): "Write your backwards methods here." models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'sites.site': { 'Meta': {'ordering': "('domain',)", 'object_name': 'Site', 'db_table': "'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'socialaccount.socialaccount': { 'Meta': {'object_name': 'SocialAccount'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'extra_data': ('allauth.socialaccount.fields.JSONField', [], {'default': "'{}'"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'provider': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'uid': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'socialaccount.socialapp': { 'Meta': {'object_name': 'SocialApp'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'provider': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'secret': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sites.Site']"}) }, 'socialaccount.socialtoken': { 'Meta': {'unique_together': "(('app', 'account'),)", 'object_name': 'SocialToken'}, 'account': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['socialaccount.SocialAccount']"}), 'app': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['socialaccount.SocialApp']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'token': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'token_secret': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}) }, 'twitter.twitteraccount': { 'Meta': {'object_name': 'TwitterAccount', '_ormbases': ['socialaccount.SocialAccount']}, 'profile_image_url': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'social_id': ('django.db.models.fields.BigIntegerField', [], {'unique': 'True'}), 'socialaccount_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['socialaccount.SocialAccount']", 'unique': 'True', 'primary_key': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '15'}) }, 'twitter.twitterapp': { 'Meta': {'object_name': 'TwitterApp'}, 'access_token_url': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'authorize_url': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'consumer_key': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'consumer_secret': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'request_token_url': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sites.Site']"}) } } complete_apps = ['socialaccount', 'twitter']
PypiClean
/fds.sdk.QuotesAPIforDigitalPortals-0.11.1-py3-none-any.whl/fds/sdk/QuotesAPIforDigitalPortals/model/inline_response20046.py
import re # noqa: F401 import sys # noqa: F401 from fds.sdk.QuotesAPIforDigitalPortals.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from fds.sdk.QuotesAPIforDigitalPortals.exceptions import ApiAttributeError def lazy_import(): from fds.sdk.QuotesAPIforDigitalPortals.model.inline_response20046_data import InlineResponse20046Data from fds.sdk.QuotesAPIforDigitalPortals.model.inline_response200_meta import InlineResponse200Meta globals()['InlineResponse20046Data'] = InlineResponse20046Data globals()['InlineResponse200Meta'] = InlineResponse200Meta class InlineResponse20046(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'data': ([InlineResponse20046Data],), # noqa: E501 'meta': (InlineResponse200Meta,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'data': 'data', # noqa: E501 'meta': 'meta', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """InlineResponse20046 - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) data ([InlineResponse20046Data]): List of benchmarks.. [optional] # noqa: E501 meta (InlineResponse200Meta): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """InlineResponse20046 - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) data ([InlineResponse20046Data]): List of benchmarks.. [optional] # noqa: E501 meta (InlineResponse200Meta): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
PypiClean
/mxnet_cu112-2.0.0b1-py3-none-manylinux2014_x86_64.whl/mxnet/numpy/utils.py
import numpy as onp __all__ = ['float16', 'float32', 'float64', 'uint8', 'int32', 'int8', 'int64', 'int16', 'uint16', 'uint32', 'uint64', 'bool', 'bool_', 'pi', 'inf', 'nan', 'PZERO', 'NZERO', 'newaxis', 'e', 'NINF', 'PINF', 'NAN', 'NaN', '_STR_2_DTYPE_', '_DTYPE_2_STR_', '_type_promotion_table', 'integer_dtypes', 'floating_dtypes', 'boolean_dtypes', 'numeric_dtypes'] py_bool = bool float16 = onp.dtype(onp.float16) float32 = onp.dtype(onp.float32) float64 = onp.dtype(onp.float64) uint8 = onp.dtype(onp.uint8) int32 = onp.dtype(onp.int32) int8 = onp.dtype(onp.int8) int64 = onp.dtype(onp.int64) bool_ = onp.dtype(onp.bool_) bool = onp.dtype(onp.bool) int16 = onp.dtype(onp.int16) uint16 = onp.dtype(onp.uint16) uint32 = onp.dtype(onp.uint32) uint64 = onp.dtype(onp.uint64) pi = onp.pi inf = onp.inf nan = onp.nan PZERO = onp.PZERO NZERO = onp.NZERO NINF = onp.NINF PINF = onp.PINF e = onp.e NAN = onp.NAN NaN = onp.NaN newaxis = None _STR_2_DTYPE_ = {'float16': float16, 'float32': float32, 'float64': float64, 'float': float64, 'int8': int8, 'int16': int16, 'int32': int32, 'int64': int64, 'int': int64, 'uint8': uint8, 'uint16': uint16, 'uint32': uint32, 'uint64': uint64, 'bool': bool, 'bool_': bool_, 'None': None} _DTYPE_2_STR_ = {float16: 'float16', float32: 'float32', float64: 'float64', float: 'float64', int8: 'int8', int16: 'int16', int32: 'int32', int64: 'int64', int:'int64', uint8: 'uint8', uint16: 'uint16', uint32: 'uint32', uint64: 'uint64', bool: 'bool', bool_: 'bool_', py_bool: 'bool', None: 'None'} _ONP_OP_MODULES = [onp, onp.linalg, onp.random, onp.fft] def _get_np_op(name): """Get official NumPy operator with `name`. If not found, raise ValueError.""" for mod in _ONP_OP_MODULES: op = getattr(mod, name, None) if op is not None: return op raise ValueError('Operator `{}` is not supported by `mxnet.numpy`.'.format(name)) _type_promotion_table = { # signed integer type promotion (int8, int8): int8, (int8, int16): int16, (int8, int32): int32, (int8, int64): int64, (int16, int16): int16, (int16, int32): int32, (int16, int64): int64, (int32, int32): int32, (int32, int64): int64, (int64, int64): int64, # unsigned integer type promotion (uint8, uint8): uint8, (uint8, uint16): uint16, (uint8, uint32): uint32, (uint8, uint64): uint64, (uint16, uint16): uint16, (uint16, uint32): uint32, (uint16, uint64): uint64, (uint32, uint32): uint32, (uint32, uint64): uint64, (uint64, uint64): uint64, # mixed signed and unsigned integer type promotion (int8, uint8): int16, (int8, uint16): int32, (int8, uint32): int64, (int16, uint8): int16, (int16, uint16): int32, (int16, uint32): int64, (int32, uint8): int32, (int32, uint16): int32, (int32, uint32): int64, (int64, uint8): int64, (int64, uint16): int64, (int64, uint32): int64, # float type promotion (float16, float16): float16, (float16, float32): float32, (float16, float64): float64, (float32, float32): float32, (float32, float64): float64, (float64, float64): float64, # bool type promotion (bool, bool): bool, # mixed integer and float16 type promotion (int8, float16): float16, (int16, float16): float16, (int32, float16): float16, (int64, float16): float16, (uint8, float16): float16, (uint16, float16): float16, (uint32, float16): float16, (uint64, float16): float16, # mixed integer and float16 type promotion (int8, float32): float32, (int16, float32): float32, (int32, float32): float32, (int64, float32): float32, (uint8, float32): float32, (uint16, float32): float32, (uint32, float32): float32, (uint64, float32): float32, # mixed integer and float32 type promotion (int8, float32): float32, (int16, float32): float32, (int32, float32): float32, (int64, float32): float32, (uint8, float32): float32, (uint16, float32): float32, (uint32, float32): float32, (uint64, float32): float32, # mixed integer and float64 type promotion (int8, float64): float64, (int16, float64): float64, (int32, float64): float64, (int64, float64): float64, (uint8, float64): float64, (uint16, float64): float64, (uint32, float64): float64, (uint64, float64): float64, # mixed bool and other type promotion (bool, int8): int8, (bool, int16): int16, (bool, int32): int32, (bool, int64): int64, (bool, uint8): uint8, (bool, uint16): uint16, (bool, uint32): uint32, (bool, uint64): uint64, (bool, float16): float16, (bool, float32): float32, (bool, float64): float64, } integer_dtypes = [ int8, int16, int32, int64, uint8, uint16, uint32, uint64, ] floating_dtypes = [ float16, float32, float64, ] numeric_dtypes = [ *integer_dtypes, *floating_dtypes, ] boolean_dtypes = [ bool_, ]
PypiClean
/scikit-optimize-w-2020.1.2.tar.gz/scikit-optimize-w-2020.1.2/doc/whats_new/v0.7.rst
.. include:: _contributors.rst .. currentmodule:: skopt .. _changes_0_7_2: Version 0.7.2 ============= **February 2020** :mod:`skopt.optimizer` ---------------------- - |Feature| update_next() and get_results() added to Optimize and add more examples :pr:`837` by :user:`Holger Nahrstaedt <holgern>` and :user:`Sigurd Carlsen <sigurdcarlsen>` - |Fix| Fix random forest regressor (Add missing min_impurity_decrease) :pr:`829` by :user:`Holger Nahrstaedt <holgern>` :mod:`skopt.utils` ------------------ - |Enhancement| Add expected_minimum_random_sampling :pr:`830` by :user:`Holger Nahrstaedt <holgern>` - |FIX| Return ordereddict in point_asdict and add some more unit tests. :pr:`840` by :user:`Holger Nahrstaedt <holgern>` - |Enhancement| Added `check_list_types` and `check_dimension_names` :pr:`803` by :user:`Hvass-Labs <Hvass-Labs>` and :user:`Holger Nahrstaedt <holgern>` :mod:`skopt.plots` ------------------ - |Enhancement| Add more parameter to plot_objective and more plot examples :pr:`830` by :user:`Holger Nahrstaedt <holgern>` and :user:`Sigurd Carlsen <sigurdcarlsen>` :mod:`skopt.searchcv` --------------------- - |Fix| Fix searchcv rank (issue #831) :pr:`832` by :user:`Holger Nahrstaedt <holgern>` :mod:`skopt.space` ------------------ * |Fix| Fix integer normalize by using round() :pr:`830` by :user:`Holger Nahrstaedt <holgern>` Miscellaneous ------------- * |Fix| Fix doc examples * |Fix| Fix license detection in github :pr:`827` by :user:`Holger Nahrstaedt <holgern>` * |Enhancement| Add doctest to CI .. _changes_0_7_1: Version 0.7.1 ============= **February 2020** :mod:`skopt.space` ------------------ * |Fix| Fix categorical space (issue #821) :pr:`823` by :user:`Holger Nahrstaedt <holgern>` * |Enhancement| int can be set as dtype to fix issue #790 :pr:`807` by :user:`Holger Nahrstaedt <holgern>` * |Feature| New StringEncoder, can be used in Categoricals * Remove string conversion in Identity * |Enhancement| dtype can be set in Integer and Real Miscellaneous ------------- - Sphinx documentation :pr:`809` by :user:`Holger Nahrstaedt <holgern>` - notebooks are replaced by sphinx-gallery :pr:`811` by :user:`Holger Nahrstaedt <holgern>` - Improve sphinx doc :pr:`819` by :user:`Holger Nahrstaedt <holgern>` - Old pdoc scripts are removed and replaced by sphinx :pr:`822` by :user:`Holger Nahrstaedt <holgern>` .. _changes_0_7: Version 0.7 =========== **January 2020** :mod:`skopt.optimizer` ---------------------- - |Enhancement| Models queue has now a customizable size (model_queue_size). :pr:`803` by :user:`Kajetan Tukendorf <Bacoknight>` and :user:`Holger Nahrstaedt <holgern>` - |Enhancement| Add log-uniform prior to Integer space :pr:`805` by :user:`Alex Liebscher <liebscher>` :mod:`skopt.plots` ------------------ - |Enhancement| Support for plotting categorical dimensions :pr:`806` by :user:`jkleint <jkleint>` :mod:`skopt.searchcv` --------------------- - |Fix| Allow BayesSearchCV to work with sklearn 0.21. :pr:`777` by :user:`Kit Choi <kitchoi>` Miscellaneous ------------- - |Fix| Reduce the amount of deprecation warnings in unit tests :pr:`808` by :user:`Holger Nahrstaedt <holgern>` - |Fix| Reduce the amount of deprecation warnings in unit tests :pr:`802` by :user:`Alex Liebscher <liebscher>` - joblib instead of sklearn.externals.joblib :pr:`776` by :user:`Vince Jankovics <vakker>` - Improve travis CI unit tests (Different sklearn version are checked) :pr:`804` by :user:`Holger Nahrstaedt <holgern>` - Removed `versioneer` support, to keep things simple and to fix pypi deploy :pr:`816` by :user:`Holger Nahrstaedt <holgern>`
PypiClean
/taskcc-alipay-sdk-python-3.3.398.tar.gz/taskcc-alipay-sdk-python-3.3.398/alipay/aop/api/request/AlipayCommerceCityfacilitatorVoucherBatchqueryRequest.py
import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.AlipayCommerceCityfacilitatorVoucherBatchqueryModel import AlipayCommerceCityfacilitatorVoucherBatchqueryModel class AlipayCommerceCityfacilitatorVoucherBatchqueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, AlipayCommerceCityfacilitatorVoucherBatchqueryModel): self._biz_content = value else: self._biz_content = AlipayCommerceCityfacilitatorVoucherBatchqueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.commerce.cityfacilitator.voucher.batchquery' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
PypiClean
/minimal-snowplow-tracker-0.0.2.tar.gz/minimal-snowplow-tracker-0.0.2/snowplow_tracker/subject.py
SUPPORTED_PLATFORMS = set(["pc", "tv", "mob", "cnsl", "iot", "web", "srv", "app"]) DEFAULT_PLATFORM = "pc" class Subject(object): """ Class for an event subject, where we view events as of the form (Subject) -> (Verb) -> (Object) """ def __init__(self): self.standard_nv_pairs = {"p": DEFAULT_PLATFORM} def set_platform(self, value): """ :param value: One of ["pc", "tv", "mob", "cnsl", "iot", "web", "srv", "app"] :type value: supported_platform :rtype: subject """ self.standard_nv_pairs["p"] = value return self def set_user_id(self, user_id): """ :param user_id: User ID :type user_id: string :rtype: subject """ self.standard_nv_pairs["uid"] = user_id return self def set_screen_resolution(self, width, height): """ :param width: Width of the screen :param height: Height of the screen :type width: int,>0 :type height: int,>0 :rtype: subject """ self.standard_nv_pairs["res"] = "".join([str(width), "x", str(height)]) return self def set_viewport(self, width, height): """ :param width: Width of the viewport :param height: Height of the viewport :type width: int,>0 :type height: int,>0 :rtype: subject """ self.standard_nv_pairs["vp"] = "".join([str(width), "x", str(height)]) return self def set_color_depth(self, depth): """ :param depth: Depth of the color on the screen :type depth: int :rtype: subject """ self.standard_nv_pairs["cd"] = depth return self def set_timezone(self, timezone): """ :param timezone: Timezone as a string :type timezone: string :rtype: subject """ self.standard_nv_pairs["tz"] = timezone return self def set_lang(self, lang): """ Set language. :param lang: Language the application is set to :type lang: string :rtype: subject """ self.standard_nv_pairs["lang"] = lang return self def set_domain_user_id(self, duid): """ Set the domain user ID :param duid: Domain user ID :type duid: string :rtype: subject """ self.standard_nv_pairs["duid"] = duid return self def set_ip_address(self, ip): """ Set the domain user ID :param ip: IP address :type ip: string :rtype: subject """ self.standard_nv_pairs["ip"] = ip return self def set_useragent(self, ua): """ Set the user agent :param ua: User agent :type ua: string :rtype: subject """ self.standard_nv_pairs["ua"] = ua return self def set_network_user_id(self, nuid): """ Set the network user ID field This overwrites the nuid field set by the collector :param nuid: Network user ID :type nuid: string :rtype: subject """ self.standard_nv_pairs["tnuid"] = nuid return self
PypiClean
/cli_chess-1.1.0-py3-none-any.whl/cli_chess/menus/menu_presenter.py
from __future__ import annotations from cli_chess.utils.logging import log from cli_chess.utils.event import Event from enum import Enum from typing import TYPE_CHECKING, List if TYPE_CHECKING: from cli_chess.menus import MenuOption, MultiValueMenuOption, MenuCategory, MenuModel, MultiValueMenuModel, MenuView, MultiValueMenuView class MenuPresenter: def __init__(self, model: MenuModel, view: MenuView): self.model = model self.view = view self.selection = self.model.get_menu_options()[0].option self.e_selection_updated = Event() def get_menu_category(self) -> MenuCategory: """Get the menu category""" return self.model.get_menu_category() def get_menu_options(self) -> List[MenuOption]: """Returns all menu options regardless of their enabled/visibility state""" return self.model.get_menu_options() def get_visible_menu_options(self) -> List[MenuOption]: """Returns all menu options which are visible""" visible_options = [] for opt in self.get_menu_options(): if not opt.visible: continue else: visible_options.append(opt) return visible_options def select_handler(self, selected_option: int): """Called on menu item selection. Classes that inherit from this class should override this method if specific tasks need to execute when the selected option changes """ try: self.selection = self.model.get_menu_options()[selected_option].option log.debug(f"Menu selection: {self.selection}") self._notify_selection_updated(self.selection) except Exception as e: # Todo: Print error to view element log.exception(f"Exception caught: {e}") raise e def has_focus(self) -> bool: """Queries the view to determine if the menu has focus""" return self.view.has_focus() def _notify_selection_updated(self, selected_option: int) -> None: """Notifies listeners that the selection has been updated""" self.e_selection_updated.notify(selected_option) class MultiValueMenuPresenter(MenuPresenter): def __init__(self, model: MultiValueMenuModel, view: MultiValueMenuView): self.model = model self.view = view super().__init__(self.model, self.view) def value_cycled_handler(self, selected_option: Enum) -> None: """Called when the selected options value is cycled. Classes that inherit from this class should override this method if they need to be alerted when the selected option changes """ pass def get_menu_options(self) -> List[MultiValueMenuOption]: """Returns all menu options regardless of their enabled/visibility state""" return super().get_menu_options() def get_visible_menu_options(self) -> List[MultiValueMenuOption]: """Returns all menu options which are visible""" return super().get_visible_menu_options()
PypiClean
/ndms2_client-0.1.2.tar.gz/ndms2_client-0.1.2/ndms2_client/client.py
import logging import re from typing import Dict, List, Tuple, Union, NamedTuple, Optional from .connection import Connection _LOGGER = logging.getLogger(__name__) _VERSION_CMD = 'show version' _ARP_CMD = 'show ip arp' _ASSOCIATIONS_CMD = 'show associations' _HOTSPOT_CMD = 'show ip hotspot' _INTERFACE_CMD = 'show interface %s' _INTERFACES_CMD = 'show interface' _ARP_REGEX = re.compile( r'(?P<name>.*?)\s+' + r'(?P<ip>([0-9]{1,3}[.]){3}[0-9]{1,3})?\s+' + r'(?P<mac>(([0-9a-f]{2}[:-]){5}([0-9a-f]{2})))\s+' + r'(?P<interface>([^ ]+))\s+' ) class Device(NamedTuple): mac: str name: str ip: str interface: str class RouterInfo(NamedTuple): name: str fw_version: str fw_channel: str model: str hw_version: str manufacturer: str vendor: str region: str @classmethod def from_dict(cls, info: dict) -> "RouterInfo": return RouterInfo( name=str(info.get('description', info.get('model', 'NDMS2 Router'))), fw_version=str(info.get('title', info.get('release'))), fw_channel=str(info.get('sandbox', 'unknown')), model=str(info.get('model', info.get('hw_id'))), hw_version=str(info.get('hw_version', 'N/A')), manufacturer=str(info.get('manufacturer')), vendor=str(info.get('vendor')), region=str(info.get('region', 'N/A')), ) class InterfaceInfo(NamedTuple): name: str type: Optional[str] description: Optional[str] link: Optional[str] connected: Optional[str] state: Optional[str] mtu: Optional[int] address: Optional[str] mask: Optional[str] uptime: Optional[int] security_level: Optional[str] mac: Optional[str] @classmethod def from_dict(cls, info: dict) -> "InterfaceInfo": return InterfaceInfo( name=_str(info.get('interface-name')) or str(info['id']), type=_str(info.get('type')), description=_str(info.get('description')), link=_str(info.get('link')), connected=_str(info.get('connected')), state=_str(info.get('state')), mtu=_int(info.get('mtu')), address=_str(info.get('address')), mask=_str(info.get('mask')), uptime=_int(info.get('uptime')), security_level=_str(info.get('security-level')), mac=_str(info.get('mac')), ) class Client(object): def __init__(self, connection: Connection): self._connection = connection def get_router_info(self) -> RouterInfo: info = _parse_dict_lines(self._connection.run_command(_VERSION_CMD)) _LOGGER.debug('Raw router info: %s', str(info)) assert isinstance(info, dict), 'Router info response is not a dictionary' return RouterInfo.from_dict(info) def get_interfaces(self) -> List[InterfaceInfo]: collection = _parse_collection_lines(self._connection.run_command(_INTERFACES_CMD)) _LOGGER.debug('Raw interfaces info: %s', str(collection)) assert isinstance(collection, list), 'Interfaces info response is not a collection' return [InterfaceInfo.from_dict(info) for info in collection] def get_interface_info(self, interface_name) -> Optional[InterfaceInfo]: info = _parse_dict_lines(self._connection.run_command(_INTERFACE_CMD % interface_name)) _LOGGER.debug('Raw interface info: %s', str(info)) assert isinstance(info, dict), 'Interface info response is not a dictionary' if 'id' in info: return InterfaceInfo.from_dict(info) return None def get_devices(self, *, try_hotspot=True, include_arp=True, include_associated=True) -> List[Device]: """ Fetches a list of connected devices online :param try_hotspot: first try `ip hotspot` command. This is the most precise information on devices known to be online :param include_arp: if try_hotspot is False or no hotspot devices detected :param include_associated: :return: """ devices = [] if try_hotspot: devices = _merge_devices(devices, self.get_hotspot_devices()) if len(devices) > 0: return devices if include_arp: devices = _merge_devices(devices, self.get_arp_devices()) if include_associated: devices = _merge_devices(devices, self.get_associated_devices()) return devices def get_hotspot_devices(self) -> List[Device]: hotspot_info = self.__get_hotspot_info() return [Device( mac=info.get('mac').upper(), name=info.get('name'), ip=info.get('ip'), interface=info['interface'].get('name', '') ) for info in hotspot_info.values() if 'interface' in info and info.get('link') == 'up'] def get_arp_devices(self) -> List[Device]: lines = self._connection.run_command(_ARP_CMD) result = _parse_table_lines(lines, _ARP_REGEX) return [Device( mac=info.get('mac').upper(), name=info.get('name') or None, ip=info.get('ip'), interface=info.get('interface') ) for info in result if info.get('mac') is not None] def get_associated_devices(self): associations = _parse_dict_lines(self._connection.run_command(_ASSOCIATIONS_CMD)) items = associations.get('station', []) if not isinstance(items, list): items = [items] aps = set([info.get('ap') for info in items]) ap_to_bridge = {} for ap in aps: ap_info = _parse_dict_lines(self._connection.run_command(_INTERFACE_CMD % ap)) ap_to_bridge[ap] = ap_info.get('group') or ap_info.get('interface-name') # try enriching the results with hotspot additional info hotspot_info = self.__get_hotspot_info() devices = [] for info in items: mac = info.get('mac') if mac is not None and info.get('authenticated') in ['1', 'yes']: host_info = hotspot_info.get(mac) devices.append(Device( mac=mac.upper(), name=host_info.get('name') if host_info else None, ip=host_info.get('ip') if host_info else None, interface=ap_to_bridge.get(info.get('ap'), info.get('ap')) )) return devices # hotspot info is only available in newest firmware (2.09 and up) and in router mode # however missing command error will lead to empty dict returned def __get_hotspot_info(self): info = _parse_dict_lines(self._connection.run_command(_HOTSPOT_CMD)) items = info.get('host', []) if not isinstance(items, list): items = [items] return {item.get('mac'): item for item in items} def _str(value: Optional[any]) -> Optional[str]: if value is None: return None return str(value) def _int(value: Optional[any]) -> Optional[int]: if value is None: return None return int(value) def _merge_devices(*lists: List[Device]) -> List[Device]: res = {} for l in lists: for dev in l: key = (dev.interface, dev.mac) if key in res: old_dev = res.get(key) res[key] = Device( mac=old_dev.mac, name=old_dev.name or dev.name, ip=old_dev.ip or dev.ip, interface=old_dev.interface ) else: res[key] = dev return list(res.values()) def _parse_table_lines(lines: List[str], regex: re) -> List[Dict[str, any]]: """Parse the lines using the given regular expression. If a line can't be parsed it is logged and skipped in the output. """ results = [] for line in lines: match = regex.search(line) if not match: _LOGGER.debug('Could not parse line: %s', line) continue results.append(match.groupdict()) return results def _fix_continuation_lines(lines: List[str]) -> List[str]: indent = 0 continuation_possible = False fixed_lines = [] # type: List[str] for line in lines: if len(line.strip()) == 0: continue if continuation_possible and len(line[:indent].strip()) == 0: prev_line = fixed_lines.pop() line = prev_line.rstrip() + line[(indent + 1):].lstrip() else: assert ':' in line, 'Found a line with no colon when continuation is not possible: ' + line colon_pos = line.index(':') comma_pos = line.index(',') if ',' in line[:colon_pos] else None indent = comma_pos if comma_pos is not None else colon_pos continuation_possible = len(line[(indent + 1):].strip()) > 0 fixed_lines.append(line) return fixed_lines def _parse_dict_lines(lines: List[str]) -> Dict[str, any]: response = {} indent = 0 stack = [(None, indent, response)] # type: List[Tuple[str, int, Union[str, dict]]] stack_level = 0 for line in _fix_continuation_lines(lines): if len(line.strip()) == 0: continue _LOGGER.debug(line) # exploding the line colon_pos = line.index(':') comma_pos = line.index(',') if ',' in line[:colon_pos] else None key = line[:colon_pos].strip() value = line[(colon_pos + 1):].strip() new_indent = comma_pos if comma_pos is not None else colon_pos # assuming line is like 'mac-access, id = Bridge0: ...' if comma_pos is not None: key = line[:comma_pos].strip() value = {key: value} if value != '' else {} args = line[comma_pos + 1:colon_pos].split(',') for arg in args: sub_key, sub_value = [p.strip() for p in arg.split('=', 1)] value[sub_key] = sub_value # up and down the stack if new_indent > indent: # new line is a sub-value of parent stack_level += 1 indent = new_indent stack.append(None) else: while new_indent < indent and len(stack) > 0: # getting one level up stack_level -= 1 stack.pop() _, indent, _ = stack[stack_level] if stack_level < 1: break assert indent == new_indent, 'Irregular indentation detected' stack[stack_level] = key, indent, value # current containing object obj_key, obj_indent, obj = stack[stack_level - 1] # we are the first child of the containing object if not isinstance(obj, dict): # need to convert it from empty string to empty object assert obj == '', 'Unexpected nested object format' _, _, parent_obj = stack[stack_level - 2] obj = {} # containing object might be in a list also if isinstance(parent_obj[obj_key], list): parent_obj[obj_key].pop() parent_obj[obj_key].append(obj) else: parent_obj[obj_key] = obj stack[stack_level - 1] = obj_key, obj_indent, obj # current key is already in object means there should be an array of values if key in obj: if not isinstance(obj[key], list): obj[key] = [obj[key]] obj[key].append(value) else: obj[key] = value return response def _parse_collection_lines(lines: List[str]) -> List[Dict[str, any]]: _HEADER_REGEXP = re.compile(r'^(\w+),\s*name\s*=\s*\"([^"]+)\"') result = [] item_lines = [] # type: List[str] for line in lines: if len(line.strip()) == 0: continue match = _HEADER_REGEXP.match(line) if match: if len(item_lines) > 0: result.append(_parse_dict_lines(item_lines)) item_lines = [] else: item_lines.append(line) if len(item_lines) > 0: result.append(_parse_dict_lines(item_lines)) return result
PypiClean
/FamcyDev-0.3.71-py3-none-any.whl/Famcy/bower_components/bootstrap-table/src/locale/bootstrap-table-bg-BG.js
$.fn.bootstrapTable.locales['bg-BG'] = $.fn.bootstrapTable.locales['bg'] = { formatCopyRows () { return 'Copy Rows' }, formatPrint () { return 'Print' }, formatLoadingMessage () { return 'Зареждане, моля изчакайте' }, formatRecordsPerPage (pageNumber) { return `${pageNumber} реда на страница` }, formatShowingRows (pageFrom, pageTo, totalRows, totalNotFiltered) { if (totalNotFiltered !== undefined && totalNotFiltered > 0 && totalNotFiltered > totalRows) { return `Показани редове от ${pageFrom} до ${pageTo} от ${totalRows} реда (филтрирани от общо ${totalNotFiltered} реда)` } return `Показани редове от ${pageFrom} до ${pageTo} от общо ${totalRows} реда` }, formatSRPaginationPreText () { return 'предишна страница' }, formatSRPaginationPageText (page) { return `до страница ${page}` }, formatSRPaginationNextText () { return 'следваща страница' }, formatDetailPagination (totalRows) { return `Показани ${totalRows} реда` }, formatClearSearch () { return 'Изчистване на търсенето' }, formatSearch () { return 'Търсене' }, formatNoMatches () { return 'Не са намерени съвпадащи записи' }, formatPaginationSwitch () { return 'Скриване/Показване на странициране' }, formatPaginationSwitchDown () { return 'Показване на странициране' }, formatPaginationSwitchUp () { return 'Скриване на странициране' }, formatRefresh () { return 'Обновяване' }, formatToggle () { return 'Превключване' }, formatToggleOn () { return 'Показване на изглед карта' }, formatToggleOff () { return 'Скриване на изглед карта' }, formatColumns () { return 'Колони' }, formatColumnsToggleAll () { return 'Превключване на всички' }, formatFullscreen () { return 'Цял екран' }, formatAllRows () { return 'Всички' }, formatAutoRefresh () { return 'Автоматично обновяване' }, formatExport () { return 'Експорт на данни' }, formatJumpTo () { return 'ОТИДИ' }, formatAdvancedSearch () { return 'Разширено търсене' }, formatAdvancedCloseButton () { return 'Затваряне' }, formatFilterControlSwitch () { return 'Hide/Show controls' }, formatFilterControlSwitchHide () { return 'Hide controls' }, formatFilterControlSwitchShow () { return 'Show controls' } } $.extend($.fn.bootstrapTable.defaults, $.fn.bootstrapTable.locales['bg-BG'])
PypiClean
/distributions_gbi-0.1.tar.gz/distributions_gbi-0.1/distributions_gbi/Gaussiandistribution.py
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution class Gaussian(Distribution): """ Gaussian distribution class for calculating and visualizing a Gaussian distribution. Attributes: mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats extracted from the data file """ def __init__(self, mu=0, sigma=1): Distribution.__init__(self, mu, sigma) def calculate_mean(self): """Function to calculate the mean of the data set. Args: None Returns: float: mean of the data set """ avg = 1.0 * sum(self.data) / len(self.data) self.mean = avg return self.mean def calculate_stdev(self, sample=True): """Function to calculate the standard deviation of the data set. Args: sample (bool): whether the data represents a sample or population Returns: float: standard deviation of the data set """ if sample: n = len(self.data) - 1 else: n = len(self.data) mean = self.calculate_mean() sigma = 0 for d in self.data: sigma += (d - mean) ** 2 sigma = math.sqrt(sigma / n) self.stdev = sigma return self.stdev def plot_histogram(self): """Function to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ plt.hist(self.data) plt.title('Histogram of Data') plt.xlabel('data') plt.ylabel('count') def pdf(self, x): """Probability density function calculator for the gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output """ return (1.0 / (self.stdev * math.sqrt(2*math.pi))) * math.exp(-0.5*((x - self.mean) / self.stdev) ** 2) def plot_histogram_pdf(self, n_spaces = 50): """Function to plot the normalized histogram of the data and a plot of the probability density function along the same range Args: n_spaces (int): number of data points Returns: list: x values for the pdf plot list: y values for the pdf plot """ mu = self.mean sigma = self.stdev min_range = min(self.data) max_range = max(self.data) # calculates the interval between x values interval = 1.0 * (max_range - min_range) / n_spaces x = [] y = [] # calculate the x values to visualize for i in range(n_spaces): tmp = min_range + interval*i x.append(tmp) y.append(self.pdf(tmp)) # make the plots fig, axes = plt.subplots(2,sharex=True) fig.subplots_adjust(hspace=.5) axes[0].hist(self.data, density=True) axes[0].set_title('Normed Histogram of Data') axes[0].set_ylabel('Density') axes[1].plot(x, y) axes[1].set_title('Normal Distribution for \n Sample Mean and Sample Standard Deviation') axes[0].set_ylabel('Density') plt.show() return x, y def __add__(self, other): """Function to add together two Gaussian distributions Args: other (Gaussian): Gaussian instance Returns: Gaussian: Gaussian distribution """ result = Gaussian() result.mean = self.mean + other.mean result.stdev = math.sqrt(self.stdev ** 2 + other.stdev ** 2) return result def __repr__(self): """Function to output the characteristics of the Gaussian instance Args: None Returns: string: characteristics of the Gaussian """ return "mean {}, standard deviation {}".format(self.mean, self.stdev)
PypiClean
/Pillow-SIMD-9.0.0.post0.tar.gz/Pillow-SIMD-9.0.0.post0/docs/reference/Image.rst
.. py:module:: PIL.Image .. py:currentmodule:: PIL.Image :py:mod:`~PIL.Image` Module =========================== The :py:mod:`~PIL.Image` module provides a class with the same name which is used to represent a PIL image. The module also provides a number of factory functions, including functions to load images from files, and to create new images. Examples -------- Open, rotate, and display an image (using the default viewer) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The following script loads an image, rotates it 45 degrees, and displays it using an external viewer (usually xv on Unix, and the Paint program on Windows). .. code-block:: python from PIL import Image with Image.open("hopper.jpg") as im: im.rotate(45).show() Create thumbnails ^^^^^^^^^^^^^^^^^ The following script creates nice thumbnails of all JPEG images in the current directory preserving aspect ratios with 128x128 max resolution. .. code-block:: python from PIL import Image import glob, os size = 128, 128 for infile in glob.glob("*.jpg"): file, ext = os.path.splitext(infile) with Image.open(infile) as im: im.thumbnail(size) im.save(file + ".thumbnail", "JPEG") Functions --------- .. autofunction:: open .. warning:: To protect against potential DOS attacks caused by "`decompression bombs`_" (i.e. malicious files which decompress into a huge amount of data and are designed to crash or cause disruption by using up a lot of memory), Pillow will issue a ``DecompressionBombWarning`` if the number of pixels in an image is over a certain limit, :py:data:`PIL.Image.MAX_IMAGE_PIXELS`. This threshold can be changed by setting :py:data:`PIL.Image.MAX_IMAGE_PIXELS`. It can be disabled by setting ``Image.MAX_IMAGE_PIXELS = None``. If desired, the warning can be turned into an error with ``warnings.simplefilter('error', Image.DecompressionBombWarning)`` or suppressed entirely with ``warnings.simplefilter('ignore', Image.DecompressionBombWarning)``. See also `the logging documentation`_ to have warnings output to the logging facility instead of stderr. If the number of pixels is greater than twice :py:data:`PIL.Image.MAX_IMAGE_PIXELS`, then a ``DecompressionBombError`` will be raised instead. .. _decompression bombs: https://en.wikipedia.org/wiki/Zip_bomb .. _the logging documentation: https://docs.python.org/3/library/logging.html#integration-with-the-warnings-module Image processing ^^^^^^^^^^^^^^^^ .. autofunction:: alpha_composite .. autofunction:: blend .. autofunction:: composite .. autofunction:: eval .. autofunction:: merge Constructing images ^^^^^^^^^^^^^^^^^^^ .. autofunction:: new .. autofunction:: fromarray .. autofunction:: frombytes .. autofunction:: frombuffer Generating images ^^^^^^^^^^^^^^^^^ .. autofunction:: effect_mandelbrot .. autofunction:: effect_noise .. autofunction:: linear_gradient .. autofunction:: radial_gradient Registering plugins ^^^^^^^^^^^^^^^^^^^ .. note:: These functions are for use by plugin authors. Application authors can ignore them. .. autofunction:: register_open .. autofunction:: register_mime .. autofunction:: register_save .. autofunction:: register_save_all .. autofunction:: register_extension .. autofunction:: register_extensions .. autofunction:: registered_extensions .. autofunction:: register_decoder .. autofunction:: register_encoder The Image Class --------------- .. autoclass:: PIL.Image.Image An instance of the :py:class:`~PIL.Image.Image` class has the following methods. Unless otherwise stated, all methods return a new instance of the :py:class:`~PIL.Image.Image` class, holding the resulting image. .. automethod:: PIL.Image.Image.alpha_composite .. automethod:: PIL.Image.Image.convert The following example converts an RGB image (linearly calibrated according to ITU-R 709, using the D65 luminant) to the CIE XYZ color space: .. code-block:: python rgb2xyz = ( 0.412453, 0.357580, 0.180423, 0, 0.212671, 0.715160, 0.072169, 0, 0.019334, 0.119193, 0.950227, 0) out = im.convert("RGB", rgb2xyz) .. automethod:: PIL.Image.Image.copy .. automethod:: PIL.Image.Image.crop This crops the input image with the provided coordinates: .. code-block:: python from PIL import Image with Image.open("hopper.jpg") as im: # The crop method from the Image module takes four coordinates as input. # The right can also be represented as (left+width) # and lower can be represented as (upper+height). (left, upper, right, lower) = (20, 20, 100, 100) # Here the image "im" is cropped and assigned to new variable im_crop im_crop = im.crop((left, upper, right, lower)) .. automethod:: PIL.Image.Image.draft .. automethod:: PIL.Image.Image.effect_spread .. automethod:: PIL.Image.Image.entropy .. automethod:: PIL.Image.Image.filter This blurs the input image using a filter from the ``ImageFilter`` module: .. code-block:: python from PIL import Image, ImageFilter with Image.open("hopper.jpg") as im: # Blur the input image using the filter ImageFilter.BLUR im_blurred = im.filter(filter=ImageFilter.BLUR) .. automethod:: PIL.Image.Image.frombytes .. automethod:: PIL.Image.Image.getbands This helps to get the bands of the input image: .. code-block:: python from PIL import Image with Image.open("hopper.jpg") as im: print(im.getbands()) # Returns ('R', 'G', 'B') .. automethod:: PIL.Image.Image.getbbox This helps to get the bounding box coordinates of the input image: .. code-block:: python from PIL import Image with Image.open("hopper.jpg") as im: print(im.getbbox()) # Returns four coordinates in the format (left, upper, right, lower) .. automethod:: PIL.Image.Image.getchannel .. automethod:: PIL.Image.Image.getcolors .. automethod:: PIL.Image.Image.getdata .. automethod:: PIL.Image.Image.getexif .. automethod:: PIL.Image.Image.getextrema .. automethod:: PIL.Image.Image.getpalette .. automethod:: PIL.Image.Image.getpixel .. automethod:: PIL.Image.Image.getprojection .. automethod:: PIL.Image.Image.histogram .. automethod:: PIL.Image.Image.paste .. automethod:: PIL.Image.Image.point .. automethod:: PIL.Image.Image.putalpha .. automethod:: PIL.Image.Image.putdata .. automethod:: PIL.Image.Image.putpalette .. automethod:: PIL.Image.Image.putpixel .. automethod:: PIL.Image.Image.quantize .. automethod:: PIL.Image.Image.reduce .. automethod:: PIL.Image.Image.remap_palette .. automethod:: PIL.Image.Image.resize This resizes the given image from ``(width, height)`` to ``(width/2, height/2)``: .. code-block:: python from PIL import Image with Image.open("hopper.jpg") as im: # Provide the target width and height of the image (width, height) = (im.width // 2, im.height // 2) im_resized = im.resize((width, height)) .. automethod:: PIL.Image.Image.rotate This rotates the input image by ``theta`` degrees counter clockwise: .. code-block:: python from PIL import Image with Image.open("hopper.jpg") as im: # Rotate the image by 60 degrees counter clockwise theta = 60 # Angle is in degrees counter clockwise im_rotated = im.rotate(angle=theta) .. automethod:: PIL.Image.Image.save .. automethod:: PIL.Image.Image.seek .. automethod:: PIL.Image.Image.show .. automethod:: PIL.Image.Image.split .. automethod:: PIL.Image.Image.tell .. automethod:: PIL.Image.Image.thumbnail .. automethod:: PIL.Image.Image.tobitmap .. automethod:: PIL.Image.Image.tobytes .. automethod:: PIL.Image.Image.transform .. automethod:: PIL.Image.Image.transpose This flips the input image by using the :data:`FLIP_LEFT_RIGHT` method. .. code-block:: python from PIL import Image with Image.open("hopper.jpg") as im: # Flip the image from left to right im_flipped = im.transpose(method=Image.FLIP_LEFT_RIGHT) # To flip the image from top to bottom, # use the method "Image.FLIP_TOP_BOTTOM" .. automethod:: PIL.Image.Image.verify .. automethod:: PIL.Image.Image.load .. automethod:: PIL.Image.Image.close Image Attributes ---------------- Instances of the :py:class:`Image` class have the following attributes: .. py:attribute:: Image.filename :type: str The filename or path of the source file. Only images created with the factory function ``open`` have a filename attribute. If the input is a file like object, the filename attribute is set to an empty string. .. py:attribute:: Image.format :type: Optional[str] The file format of the source file. For images created by the library itself (via a factory function, or by running a method on an existing image), this attribute is set to :data:`None`. .. py:attribute:: Image.mode :type: str Image mode. This is a string specifying the pixel format used by the image. Typical values are “1”, “L”, “RGB”, or “CMYK.” See :ref:`concept-modes` for a full list. .. py:attribute:: Image.size :type: tuple[int] Image size, in pixels. The size is given as a 2-tuple (width, height). .. py:attribute:: Image.width :type: int Image width, in pixels. .. py:attribute:: Image.height :type: int Image height, in pixels. .. py:attribute:: Image.palette :type: Optional[PIL.ImagePalette.ImagePalette] Colour palette table, if any. If mode is "P" or "PA", this should be an instance of the :py:class:`~PIL.ImagePalette.ImagePalette` class. Otherwise, it should be set to :data:`None`. .. py:attribute:: Image.info :type: dict A dictionary holding data associated with the image. This dictionary is used by file handlers to pass on various non-image information read from the file. See documentation for the various file handlers for details. Most methods ignore the dictionary when returning new images; since the keys are not standardized, it’s not possible for a method to know if the operation affects the dictionary. If you need the information later on, keep a reference to the info dictionary returned from the open method. Unless noted elsewhere, this dictionary does not affect saving files. .. py:attribute:: Image.is_animated :type: bool ``True`` if this image has more than one frame, or ``False`` otherwise. This attribute is only defined by image plugins that support animated images. Plugins may leave this attribute undefined if they don't support loading animated images, even if the given format supports animated images. Given that this attribute is not present for all images use ``getattr(image, "is_animated", False)`` to check if Pillow is aware of multiple frames in an image regardless of its format. .. seealso:: :attr:`~Image.n_frames`, :func:`~Image.seek` and :func:`~Image.tell` .. py:attribute:: Image.n_frames :type: int The number of frames in this image. This attribute is only defined by image plugins that support animated images. Plugins may leave this attribute undefined if they don't support loading animated images, even if the given format supports animated images. Given that this attribute is not present for all images use ``getattr(image, "n_frames", 1)`` to check the number of frames that Pillow is aware of in an image regardless of its format. .. seealso:: :attr:`~Image.is_animated`, :func:`~Image.seek` and :func:`~Image.tell` Classes ------- .. autoclass:: PIL.Image.Exif :members: :undoc-members: :show-inheritance: .. autoclass:: PIL.Image.ImagePointHandler .. autoclass:: PIL.Image.ImageTransformHandler Constants --------- .. data:: NONE .. data:: MAX_IMAGE_PIXELS Set to 89,478,485, approximately 0.25GB for a 24-bit (3 bpp) image. See :py:meth:`~PIL.Image.open` for more information about how this is used. Transpose methods ^^^^^^^^^^^^^^^^^ Used to specify the :meth:`Image.transpose` method to use. .. data:: FLIP_LEFT_RIGHT .. data:: FLIP_TOP_BOTTOM .. data:: ROTATE_90 .. data:: ROTATE_180 .. data:: ROTATE_270 .. data:: TRANSPOSE .. data:: TRANSVERSE Transform methods ^^^^^^^^^^^^^^^^^ Used to specify the :meth:`Image.transform` method to use. .. data:: AFFINE Affine transform .. data:: EXTENT Cut out a rectangular subregion .. data:: PERSPECTIVE Perspective transform .. data:: QUAD Map a quadrilateral to a rectangle .. data:: MESH Map a number of source quadrilaterals in one operation Resampling filters ^^^^^^^^^^^^^^^^^^ See :ref:`concept-filters` for details. .. data:: NEAREST :noindex: .. data:: BOX :noindex: .. data:: BILINEAR :noindex: .. data:: HAMMING :noindex: .. data:: BICUBIC :noindex: .. data:: LANCZOS :noindex: Some filters are also available under the following names for backwards compatibility: .. data:: NONE :noindex: :value: NEAREST .. data:: LINEAR :value: BILINEAR .. data:: CUBIC :value: BICUBIC .. data:: ANTIALIAS :value: LANCZOS Dither modes ^^^^^^^^^^^^ Used to specify the dithering method to use for the :meth:`~Image.convert` and :meth:`~Image.quantize` methods. .. data:: NONE :noindex: No dither .. comment: (not implemented) .. data:: ORDERED .. data:: RASTERIZE .. data:: FLOYDSTEINBERG Floyd-Steinberg dither Palettes ^^^^^^^^ Used to specify the pallete to use for the :meth:`~Image.convert` method. .. data:: WEB .. data:: ADAPTIVE Quantization methods ^^^^^^^^^^^^^^^^^^^^ Used to specify the quantization method to use for the :meth:`~Image.quantize` method. .. data:: MEDIANCUT Median cut. Default method, except for RGBA images. This method does not support RGBA images. .. data:: MAXCOVERAGE Maximum coverage. This method does not support RGBA images. .. data:: FASTOCTREE Fast octree. Default method for RGBA images. .. data:: LIBIMAGEQUANT libimagequant Check support using :py:func:`PIL.features.check_feature` with ``feature="libimagequant"``.
PypiClean
/OpenHands-0.1.4.1.tar.gz/OpenHands-0.1.4.1/openhands/models/encoder/graph/decoupled_gcn.py
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import math from omegaconf import OmegaConf from .graph_utils import SpatialGraph # https://github.com/jackyjsy/CVPR21Chal-SLR def conv_init(conv): nn.init.kaiming_normal_(conv.weight, mode="fan_out") nn.init.constant_(conv.bias, 0) def bn_init(bn, scale): nn.init.constant_(bn.weight, scale) nn.init.constant_(bn.bias, 0) def find_drop_size(num_nodes, num_edges, K=1): B_sum = 0 for i in range(1, K + 1): B_sum += (2 * num_edges / num_nodes) * math.pow( (2 * num_edges / num_nodes) - 1, i - 1 ) return B_sum class DropGraphTemporal(nn.Module): def __init__(self, block_size=7): super(DropGraphTemporal, self).__init__() self.block_size = block_size def forward(self, x, keep_prob): self.keep_prob = keep_prob if not self.training or self.keep_prob == 1: return x n, c, t, v = x.size() input_abs = torch.mean(torch.mean(torch.abs(x), dim=3), dim=1).detach() input_abs = (input_abs / torch.sum(input_abs) * input_abs.numel()).view(n, 1, t) gamma = (1.0 - self.keep_prob) / self.block_size input1 = x.permute(0, 1, 3, 2).contiguous().view(n, c * v, t) M = torch.bernoulli(torch.clamp(input_abs * gamma, max=1.0)).repeat(1, c * v, 1) m_sum = F.max_pool1d( M, kernel_size=[self.block_size], stride=1, padding=self.block_size // 2 ) mask = (1 - m_sum).to(device=m_sum.device, dtype=m_sum.dtype) return ( (input1 * mask * mask.numel() / mask.sum()) .view(n, c, v, t) .permute(0, 1, 3, 2) ) class DropGraphSpatial(nn.Module): def __init__(self, num_points, drop_size): super(DropGraphSpatial, self).__init__() self.drop_size = drop_size self.num_points = num_points def forward(self, x, keep_prob, A): self.keep_prob = keep_prob if not self.training or self.keep_prob == 1: return x n, c, t, v = x.size() input_abs = torch.mean(torch.mean(torch.abs(x), dim=2), dim=1).detach() input_abs = input_abs / torch.sum(input_abs) * input_abs.numel() gamma = (1.0 - self.keep_prob) / (1 + self.drop_size) M_seed = torch.bernoulli(torch.clamp(input_abs * gamma, max=1.0)).to( device=x.device, dtype=x.dtype ) M = torch.matmul(M_seed, A) M[M > 0.001] = 1.0 M[M < 0.5] = 0.0 mask = (1 - M).view(n, 1, 1, self.num_points) return x * mask * mask.numel() / mask.sum() class TCNUnit(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=9, stride=1, use_drop=True, drop_size=1.92, num_points=25, block_size=41, ): super(TCNUnit, self).__init__() pad = int((kernel_size - 1) / 2) self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0), stride=(stride, 1), ) self.bn = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() conv_init(self.conv) bn_init(self.bn, 1) self.use_drop = use_drop if use_drop: self.dropS = DropGraphSpatial(num_points=num_points, drop_size=drop_size) self.dropT = DropGraphTemporal(block_size=block_size) def forward(self, x, keep_prob=None, A=None): x = self.bn(self.conv(x)) if self.use_drop: x = self.dropT(self.dropS(x, keep_prob, A), keep_prob) return x class DecoupledGCNUnit(nn.Module): def __init__(self, in_channels, out_channels, A, groups, num_points, num_subset=3): super(DecoupledGCNUnit, self).__init__() self.num_points = num_points self.in_channels = in_channels self.out_channels = out_channels self.groups = groups self.num_subset = num_subset self.decoupled_A = nn.Parameter( torch.tensor( np.reshape(A, [3, 1, num_points, num_points]), dtype=torch.float32 ).repeat(1, groups, 1, 1), requires_grad=True, ) if in_channels != out_channels: self.down = nn.Sequential( nn.Conv2d(in_channels, out_channels, 1), nn.BatchNorm2d(out_channels) ) else: self.down = lambda x: x self.bn0 = nn.BatchNorm2d(out_channels * num_subset) self.bn = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() self.linear_weight = nn.Parameter( torch.zeros(in_channels, out_channels * num_subset), requires_grad=True ) self.linear_bias = nn.Parameter( torch.zeros(1, out_channels * num_subset, 1, 1), requires_grad=True ) self.eye_list = nn.Parameter( torch.stack([torch.eye(num_points) for _ in range(out_channels)]), requires_grad=False, ) for m in self.modules(): if isinstance(m, nn.Conv2d): conv_init(m) elif isinstance(m, nn.BatchNorm2d): bn_init(m, 1) bn_init(self.bn, 1e-6) nn.init.normal_( self.linear_weight, 0, math.sqrt(0.5 / (out_channels * num_subset)) ) nn.init.constant_(self.linear_bias, 1e-6) def norm(self, A): b, c, h, w = A.size() A = A.view(c, self.num_points, self.num_points) D_list = torch.sum(A, 1).view(c, 1, self.num_points) D_list_12 = (D_list + 0.001) ** (-1) D_12 = self.eye_list * D_list_12 A = torch.bmm(A, D_12).view(b, c, h, w) return A def forward(self, x0): learn_adj = self.decoupled_A.repeat(1, self.out_channels // self.groups, 1, 1) normed_adj = torch.cat( [ self.norm(learn_adj[0:1, ...]), self.norm(learn_adj[1:2, ...]), self.norm(learn_adj[2:3, ...]), ], 0, ) x = torch.einsum("nctw,cd->ndtw", (x0, self.linear_weight)).contiguous() x = x + self.linear_bias x = self.bn0(x) n, kc, t, v = x.size() x = x.view(n, self.num_subset, kc // self.num_subset, t, v) x = torch.einsum("nkctv,kcvw->nctw", (x, normed_adj)) x = self.bn(x) x += self.down(x0) x = self.relu(x) return x class DecoupledGCN_TCN_unit(nn.Module): """ Single unit of a stack of Decoupled GCN and TCN layers. Args: in_channels (int): Number of channels in the input sequence data out_channels (int): Number of channels produced by the convolution A (ndarray): 2D array containing the adjacency matrix groups (int): Number of Decouple groups to use num_points (int): Number of spatial joints block_size (int): Block size used for Temporal masking in Dropgraph drop_size (int): drop size used for spatial dropgraph masking. stride (int): Default 1, residual (bool): To use residual connections or not. Default: ``True`` use_attention (bool): To use self attention layer or not. Default: ``True`` """ def __init__( self, in_channels, out_channels, A, groups, num_points, block_size, drop_size, stride=1, residual=True, use_attention=True, ): super(DecoupledGCN_TCN_unit, self).__init__() num_joints = A.shape[-1] self.gcn1 = DecoupledGCNUnit(in_channels, out_channels, A, groups, num_points) self.tcn1 = TCNUnit( out_channels, out_channels, stride=stride, num_points=num_points, drop_size=drop_size, ) self.relu = nn.ReLU() self.A = nn.Parameter( torch.tensor( np.sum( np.reshape(A.astype(np.float32), [3, num_points, num_points]), axis=0, ), dtype=torch.float32, ), requires_grad=False, ) if not residual: self.residual = lambda x: 0 elif (in_channels == out_channels) and (stride == 1): self.residual = lambda x: x else: self.residual = TCNUnit( in_channels, out_channels, kernel_size=1, stride=stride, use_drop=False ) self.drop_spatial = DropGraphSpatial(num_points=num_points, drop_size=drop_size) self.drop_temporal = DropGraphTemporal(block_size=block_size) self.use_attention = use_attention if self.use_attention: self.sigmoid = nn.Sigmoid() # Temporal attention self.conv_ta = nn.Conv1d(out_channels, 1, 9, padding=4) nn.init.constant_(self.conv_ta.weight, 0) nn.init.constant_(self.conv_ta.bias, 0) # Spatial Attention ker_jpt = num_joints - 1 if not num_joints % 2 else num_joints pad = (ker_jpt - 1) // 2 self.conv_sa = nn.Conv1d(out_channels, 1, ker_jpt, padding=pad) nn.init.xavier_normal_(self.conv_sa.weight) nn.init.constant_(self.conv_sa.bias, 0) # Channel Attention rr = 2 self.fc1c = nn.Linear(out_channels, out_channels // rr) self.fc2c = nn.Linear(out_channels // rr, out_channels) nn.init.kaiming_normal_(self.fc1c.weight) nn.init.constant_(self.fc1c.bias, 0) nn.init.constant_(self.fc2c.weight, 0) nn.init.constant_(self.fc2c.bias, 0) def forward(self, x, keep_prob): y = self.gcn1(x) if self.use_attention: # spatial attention se = y.mean(-2) # N C V se1 = self.sigmoid(self.conv_sa(se)) y = y * se1.unsqueeze(-2) + y # temporal attention se = y.mean(-1) se1 = self.sigmoid(self.conv_ta(se)) y = y * se1.unsqueeze(-1) + y # channel attention se = y.mean(-1).mean(-1) se1 = self.relu(self.fc1c(se)) se2 = self.sigmoid(self.fc2c(se1)) y = y * se2.unsqueeze(-1).unsqueeze(-1) + y y = self.tcn1(y, keep_prob, self.A) x_skip = self.residual(x) x_skip = self.drop_spatial(x_skip, keep_prob, self.A) x_skip = self.drop_temporal(x_skip, keep_prob) return self.relu(y + x_skip) class DecoupledGCN(nn.Module): """ ST-GCN backbone with Decoupled GCN layers, Self Attention and DropGraph proposed in the paper: `Skeleton Aware Multi-modal Sign Language Recognition <https://arxiv.org/pdf/2103.08833.pdf>`_ Args: in_channels (int): Number of channels in the input data. graph_cfg (dict): The arguments for building the graph. groups (int): Number of Decouple groups to use. Default: 8. block_size (int): Block size used for Temporal masking in Dropgraph. Default: 41. n_out_features (int): Output Embedding dimension. Default: 256. """ def __init__( self, in_channels, graph_args, groups=8, block_size=41, n_out_features = 256 ): super(DecoupledGCN, self).__init__() graph_args = OmegaConf.to_container(graph_args) num_points = graph_args["num_nodes"] inward_edges = graph_args["inward_edges"] self.graph = SpatialGraph(num_points, inward_edges) A = self.graph.A self.data_bn = nn.BatchNorm1d(in_channels * num_points) drop_size = find_drop_size(self.graph.num_nodes, len(self.graph.inward_edges)) self.l1 = DecoupledGCN_TCN_unit( in_channels, 64, A, groups, num_points, block_size, drop_size=drop_size, residual=False, ) self.l2 = DecoupledGCN_TCN_unit( 64, 64, A, groups, num_points, block_size, drop_size=drop_size ) self.l3 = DecoupledGCN_TCN_unit( 64, 64, A, groups, num_points, block_size, drop_size=drop_size ) self.l4 = DecoupledGCN_TCN_unit( 64, 64, A, groups, num_points, block_size, drop_size=drop_size ) self.l5 = DecoupledGCN_TCN_unit( 64, 128, A, groups, num_points, block_size, drop_size=drop_size, stride=2 ) self.l6 = DecoupledGCN_TCN_unit( 128, 128, A, groups, num_points, block_size, drop_size=drop_size ) self.l7 = DecoupledGCN_TCN_unit( 128, 128, A, groups, num_points, block_size, drop_size=drop_size ) self.l8 = DecoupledGCN_TCN_unit( 128, 256, A, groups, num_points, block_size, drop_size=drop_size, stride=2 ) self.l9 = DecoupledGCN_TCN_unit( 256, 256, A, groups, num_points, block_size, drop_size=drop_size ) self.n_out_features = n_out_features self.l10 = DecoupledGCN_TCN_unit( 256, self.n_out_features, A, groups, num_points, block_size, drop_size=drop_size, ) bn_init(self.data_bn, 1) def forward(self, x, keep_prob=0.9): """ Args: x (torch.Tensor): Input graph sequence of shape :math:`(N, in\_channels, T_{in}, V_{in})` keep_prob (float): The probability to keep the node. Default: 0.9. Returns: torch.Tensor: Output embedding of shape :math:`(N, n\_out\_features)` where: - :math:`N` is a batch size, - :math:`T_{in}` is a length of input sequence, - :math:`V_{in}` is the number of graph nodes, - :math:`n\_out\_features` is the `n\_out\_features' value. """ N, C, T, V = x.size() x = x.permute(0, 3, 1, 2).contiguous().view(N, V * C, T) x = self.data_bn(x) x = ( x.view(N, V, C, T) .permute(0, 2, 3, 1) # NVCT -> NCTV .contiguous() ) x = self.l1(x, 1.0) x = self.l2(x, 1.0) x = self.l3(x, 1.0) x = self.l4(x, 1.0) x = self.l5(x, 1.0) x = self.l6(x, 1.0) x = self.l7(x, keep_prob) x = self.l8(x, keep_prob) x = self.l9(x, keep_prob) x = self.l10(x, keep_prob) # x.shape: (N,C,T,V) c_new = x.size(1) x = x.reshape(N, c_new, -1) return x.mean(2)
PypiClean
/mindspore_ascend-1.10.0-cp39-none-any.whl/mindspore/_akg/akg/ops/math/ascend/approximate_equal.py
"""operator dsl function: approximate_equal""" import akg.tvm from akg.utils.kernel_exec import product_is_mini from akg.utils import validation_check as utils from akg.utils.format_transform import get_shape from ..sub import sub from ..abs import abs from ..cast import cast @utils.check_input_type(akg.tvm.tensor.Tensor, akg.tvm.tensor.Tensor, (float, type(None)), (str, type(None))) def approximate_equal(x, y, tolerance=1e-5, target=utils.CCE): """ abs(x-y) less than or equal to the tolerance Args: x (tvm.tensor.Tensor): Tensor of type float16, float32. y (tvm.tensor.Tensor): Tensor of type float16, float32. tolerance (float): default is 1e-5 Returns: tvm.tensor.Tensor. If abs(x-y) less than or equal to the tolerance return True, else return False. Supported Platforms: 'Ascend' """ if tolerance < 0: raise RuntimeError("tolerance should >= 0") # check shape utils.check_shape(x) utils.check_shape(y) shape = get_shape(x) if shape != get_shape(y): raise RuntimeError("input shape must be same, but got %s vs %s", shape, get_shape(y)) # check input tensor data_type utils.ops_dtype_check(x.dtype, utils.DtypeForDavinci.ALL_FLOAT) utils.ops_dtype_check(y.dtype, utils.DtypeForDavinci.ALL_FLOAT) dtype = x.dtype if dtype != y.dtype: raise RuntimeError("input type must be same, but got %s vs %s", dtype, y.dtype) res_vsub = sub(x, y, target) res_vabs = abs(res_vsub, target) # As vcmp_lt and vsel instruction don't support fp32 on mini # It can be simplified by some methods, such as , "auto cast" if product_is_mini(): dtype = "float16" res_vabs = cast(res_vabs, dtype, target) t = akg.tvm.compute(shape, lambda *indice: akg.tvm.const(1, dtype), "t") f = akg.tvm.compute(shape, lambda *indice: akg.tvm.const(0, dtype), "f") res = akg.tvm.compute(shape, lambda *indice: akg.tvm.expr.Select( res_vabs[indice] <= akg.tvm.const(tolerance, dtype), t[indice], f[indice])) # It can be be simplified that let cast op support fp16 and fp32 to bool type res_fp16 = cast(res, "float16", target) res_bool = akg.tvm.compute(shape, lambda *indice: res_fp16(*indice).astype("bool")) return res_bool
PypiClean
/hiv-aapcnt-2019.4.tar.gz/hiv-aapcnt-2019.4/hivaapcnt/hivaapcnt.py
import os import json from copy import deepcopy from . import data RES_DIRECTORY = os.path.dirname(data.__file__) class HIVAAPcnt: singletons = {} def __new__(cls, treatment, subtype): resource_name = '{}{}.json'.format(treatment, subtype) if resource_name in cls.singletons: return cls.singletons[resource_name] self = super(HIVAAPcnt, cls).__new__(cls) self.__init_resource(resource_name) cls.singletons[resource_name] = self return self def __init_resource(self, resource_name): with open(os.path.join(RES_DIRECTORY, resource_name)) as fp: aapcnts = self.__aapcnts = json.load(fp) aapcnts_dict = {} for aapcnt in aapcnts: genepos = (aapcnt['gene'], aapcnt['position']) aapcnts_dict.setdefault(genepos, {})[aapcnt['aa']] = aapcnt self.__aapcnts_dict = aapcnts_dict def get(self, gene=None, position=None, aa=None): if gene is None: # make a copy in case of any modification result = self.__aapcnts elif position is None: result = [aapcnt for aapcnt in self.__aapcnts if aapcnt['gene'] == gene] elif aa is None: result = self.__aapcnts_dict[(gene, position)] else: result = self.__aapcnts_dict[(gene, position)][aa] return deepcopy(result) """ Returns the highest amino acid prevalence associated with each of the AA in a mixture. """ def get_highest_aa_percent_value(self, gene, position, mixture): pcntval = .0 gpos = (gene, position) for aa in mixture: aa_pcntval = self.__aapcnts_dict[gpos][aa]['percent'] pcntval = max(pcntval, aa_pcntval) return pcntval """Returns True if the given mutation contains any unusual AA""" def contains_unusual_aa(self, gene, position, aas): gpos = (gene, position) for aa in aas: aapcnt = self.__aapcnts_dict[gpos][aa] if aapcnt['isUnusual']: return True return False
PypiClean
/cosmospy_protobuf-0.3.0.tar.gz/cosmospy_protobuf-0.3.0/src/cosmospy_protobuf/cosmos/bank/v1beta1/query_pb2.py
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder _sym_db = _symbol_database.Default() from ....cosmos.base.query.v1beta1 import pagination_pb2 as cosmos_dot_base_dot_query_dot_v1beta1_dot_pagination__pb2 from ....gogoproto import gogo_pb2 as gogoproto_dot_gogo__pb2 from ....google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from ....cosmos.base.v1beta1 import coin_pb2 as cosmos_dot_base_dot_v1beta1_dot_coin__pb2 from ....cosmos.bank.v1beta1 import bank_pb2 as cosmos_dot_bank_dot_v1beta1_dot_bank__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x1fcosmos/bank/v1beta1/query.proto\x12\x13cosmos.bank.v1beta1\x1a*cosmos/base/query/v1beta1/pagination.proto\x1a\x14gogoproto/gogo.proto\x1a\x1cgoogle/api/annotations.proto\x1a\x1ecosmos/base/v1beta1/coin.proto\x1a\x1ecosmos/bank/v1beta1/bank.proto"?\n\x13QueryBalanceRequest\x12\x0f\n\x07address\x18\x01 \x01(\t\x12\r\n\x05denom\x18\x02 \x01(\t:\x08\x88\xa0\x1f\x00\xe8\xa0\x1f\x00"B\n\x14QueryBalanceResponse\x12*\n\x07balance\x18\x01 \x01(\x0b2\x19.cosmos.base.v1beta1.Coin"p\n\x17QueryAllBalancesRequest\x12\x0f\n\x07address\x18\x01 \x01(\t\x12:\n\npagination\x18\x02 \x01(\x0b2&.cosmos.base.query.v1beta1.PageRequest:\x08\x88\xa0\x1f\x00\xe8\xa0\x1f\x00"\xb6\x01\n\x18QueryAllBalancesResponse\x12]\n\x08balances\x18\x01 \x03(\x0b2\x19.cosmos.base.v1beta1.CoinB0\xc8\xde\x1f\x00\xaa\xdf\x1f(github.com/cosmos/cosmos-sdk/types.Coins\x12;\n\npagination\x18\x02 \x01(\x0b2\'.cosmos.base.query.v1beta1.PageResponse"v\n\x1dQuerySpendableBalancesRequest\x12\x0f\n\x07address\x18\x01 \x01(\t\x12:\n\npagination\x18\x02 \x01(\x0b2&.cosmos.base.query.v1beta1.PageRequest:\x08\x88\xa0\x1f\x00\xe8\xa0\x1f\x00"\xbc\x01\n\x1eQuerySpendableBalancesResponse\x12]\n\x08balances\x18\x01 \x03(\x0b2\x19.cosmos.base.v1beta1.CoinB0\xc8\xde\x1f\x00\xaa\xdf\x1f(github.com/cosmos/cosmos-sdk/types.Coins\x12;\n\npagination\x18\x02 \x01(\x0b2\'.cosmos.base.query.v1beta1.PageResponse"_\n\x17QueryTotalSupplyRequest\x12:\n\npagination\x18\x01 \x01(\x0b2&.cosmos.base.query.v1beta1.PageRequest:\x08\x88\xa0\x1f\x00\xe8\xa0\x1f\x00"\xb4\x01\n\x18QueryTotalSupplyResponse\x12[\n\x06supply\x18\x01 \x03(\x0b2\x19.cosmos.base.v1beta1.CoinB0\xc8\xde\x1f\x00\xaa\xdf\x1f(github.com/cosmos/cosmos-sdk/types.Coins\x12;\n\npagination\x18\x02 \x01(\x0b2\'.cosmos.base.query.v1beta1.PageResponse"%\n\x14QuerySupplyOfRequest\x12\r\n\x05denom\x18\x01 \x01(\t"H\n\x15QuerySupplyOfResponse\x12/\n\x06amount\x18\x01 \x01(\x0b2\x19.cosmos.base.v1beta1.CoinB\x04\xc8\xde\x1f\x00"\x14\n\x12QueryParamsRequest"H\n\x13QueryParamsResponse\x121\n\x06params\x18\x01 \x01(\x0b2\x1b.cosmos.bank.v1beta1.ParamsB\x04\xc8\xde\x1f\x00"X\n\x1aQueryDenomsMetadataRequest\x12:\n\npagination\x18\x01 \x01(\x0b2&.cosmos.base.query.v1beta1.PageRequest"\x92\x01\n\x1bQueryDenomsMetadataResponse\x126\n\tmetadatas\x18\x01 \x03(\x0b2\x1d.cosmos.bank.v1beta1.MetadataB\x04\xc8\xde\x1f\x00\x12;\n\npagination\x18\x02 \x01(\x0b2\'.cosmos.base.query.v1beta1.PageResponse"*\n\x19QueryDenomMetadataRequest\x12\r\n\x05denom\x18\x01 \x01(\t"S\n\x1aQueryDenomMetadataResponse\x125\n\x08metadata\x18\x01 \x01(\x0b2\x1d.cosmos.bank.v1beta1.MetadataB\x04\xc8\xde\x1f\x002\xed\t\n\x05Query\x12\x98\x01\n\x07Balance\x12(.cosmos.bank.v1beta1.QueryBalanceRequest\x1a).cosmos.bank.v1beta1.QueryBalanceResponse"8\x82\xd3\xe4\x93\x022\x120/cosmos/bank/v1beta1/balances/{address}/by_denom\x12\x9b\x01\n\x0bAllBalances\x12,.cosmos.bank.v1beta1.QueryAllBalancesRequest\x1a-.cosmos.bank.v1beta1.QueryAllBalancesResponse"/\x82\xd3\xe4\x93\x02)\x12\'/cosmos/bank/v1beta1/balances/{address}\x12\xb7\x01\n\x11SpendableBalances\x122.cosmos.bank.v1beta1.QuerySpendableBalancesRequest\x1a3.cosmos.bank.v1beta1.QuerySpendableBalancesResponse"9\x82\xd3\xe4\x93\x023\x121/cosmos/bank/v1beta1/spendable_balances/{address}\x12\x8f\x01\n\x0bTotalSupply\x12,.cosmos.bank.v1beta1.QueryTotalSupplyRequest\x1a-.cosmos.bank.v1beta1.QueryTotalSupplyResponse"#\x82\xd3\xe4\x93\x02\x1d\x12\x1b/cosmos/bank/v1beta1/supply\x12\x8e\x01\n\x08SupplyOf\x12).cosmos.bank.v1beta1.QuerySupplyOfRequest\x1a*.cosmos.bank.v1beta1.QuerySupplyOfResponse"+\x82\xd3\xe4\x93\x02%\x12#/cosmos/bank/v1beta1/supply/{denom}\x12\x80\x01\n\x06Params\x12\'.cosmos.bank.v1beta1.QueryParamsRequest\x1a(.cosmos.bank.v1beta1.QueryParamsResponse"#\x82\xd3\xe4\x93\x02\x1d\x12\x1b/cosmos/bank/v1beta1/params\x12\xa6\x01\n\rDenomMetadata\x12..cosmos.bank.v1beta1.QueryDenomMetadataRequest\x1a/.cosmos.bank.v1beta1.QueryDenomMetadataResponse"4\x82\xd3\xe4\x93\x02.\x12,/cosmos/bank/v1beta1/denoms_metadata/{denom}\x12\xa1\x01\n\x0eDenomsMetadata\x12/.cosmos.bank.v1beta1.QueryDenomsMetadataRequest\x1a0.cosmos.bank.v1beta1.QueryDenomsMetadataResponse",\x82\xd3\xe4\x93\x02&\x12$/cosmos/bank/v1beta1/denoms_metadataB+Z)github.com/cosmos/cosmos-sdk/x/bank/typesb\x06proto3') _globals = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'cosmos.bank.v1beta1.query_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None DESCRIPTOR._serialized_options = b'Z)github.com/cosmos/cosmos-sdk/x/bank/types' _QUERYBALANCEREQUEST._options = None _QUERYBALANCEREQUEST._serialized_options = b'\x88\xa0\x1f\x00\xe8\xa0\x1f\x00' _QUERYALLBALANCESREQUEST._options = None _QUERYALLBALANCESREQUEST._serialized_options = b'\x88\xa0\x1f\x00\xe8\xa0\x1f\x00' _QUERYALLBALANCESRESPONSE.fields_by_name['balances']._options = None _QUERYALLBALANCESRESPONSE.fields_by_name['balances']._serialized_options = b'\xc8\xde\x1f\x00\xaa\xdf\x1f(github.com/cosmos/cosmos-sdk/types.Coins' _QUERYSPENDABLEBALANCESREQUEST._options = None _QUERYSPENDABLEBALANCESREQUEST._serialized_options = b'\x88\xa0\x1f\x00\xe8\xa0\x1f\x00' _QUERYSPENDABLEBALANCESRESPONSE.fields_by_name['balances']._options = None _QUERYSPENDABLEBALANCESRESPONSE.fields_by_name['balances']._serialized_options = b'\xc8\xde\x1f\x00\xaa\xdf\x1f(github.com/cosmos/cosmos-sdk/types.Coins' _QUERYTOTALSUPPLYREQUEST._options = None _QUERYTOTALSUPPLYREQUEST._serialized_options = b'\x88\xa0\x1f\x00\xe8\xa0\x1f\x00' _QUERYTOTALSUPPLYRESPONSE.fields_by_name['supply']._options = None _QUERYTOTALSUPPLYRESPONSE.fields_by_name['supply']._serialized_options = b'\xc8\xde\x1f\x00\xaa\xdf\x1f(github.com/cosmos/cosmos-sdk/types.Coins' _QUERYSUPPLYOFRESPONSE.fields_by_name['amount']._options = None _QUERYSUPPLYOFRESPONSE.fields_by_name['amount']._serialized_options = b'\xc8\xde\x1f\x00' _QUERYPARAMSRESPONSE.fields_by_name['params']._options = None _QUERYPARAMSRESPONSE.fields_by_name['params']._serialized_options = b'\xc8\xde\x1f\x00' _QUERYDENOMSMETADATARESPONSE.fields_by_name['metadatas']._options = None _QUERYDENOMSMETADATARESPONSE.fields_by_name['metadatas']._serialized_options = b'\xc8\xde\x1f\x00' _QUERYDENOMMETADATARESPONSE.fields_by_name['metadata']._options = None _QUERYDENOMMETADATARESPONSE.fields_by_name['metadata']._serialized_options = b'\xc8\xde\x1f\x00' _QUERY.methods_by_name['Balance']._options = None _QUERY.methods_by_name['Balance']._serialized_options = b'\x82\xd3\xe4\x93\x022\x120/cosmos/bank/v1beta1/balances/{address}/by_denom' _QUERY.methods_by_name['AllBalances']._options = None _QUERY.methods_by_name['AllBalances']._serialized_options = b"\x82\xd3\xe4\x93\x02)\x12'/cosmos/bank/v1beta1/balances/{address}" _QUERY.methods_by_name['SpendableBalances']._options = None _QUERY.methods_by_name['SpendableBalances']._serialized_options = b'\x82\xd3\xe4\x93\x023\x121/cosmos/bank/v1beta1/spendable_balances/{address}' _QUERY.methods_by_name['TotalSupply']._options = None _QUERY.methods_by_name['TotalSupply']._serialized_options = b'\x82\xd3\xe4\x93\x02\x1d\x12\x1b/cosmos/bank/v1beta1/supply' _QUERY.methods_by_name['SupplyOf']._options = None _QUERY.methods_by_name['SupplyOf']._serialized_options = b'\x82\xd3\xe4\x93\x02%\x12#/cosmos/bank/v1beta1/supply/{denom}' _QUERY.methods_by_name['Params']._options = None _QUERY.methods_by_name['Params']._serialized_options = b'\x82\xd3\xe4\x93\x02\x1d\x12\x1b/cosmos/bank/v1beta1/params' _QUERY.methods_by_name['DenomMetadata']._options = None _QUERY.methods_by_name['DenomMetadata']._serialized_options = b'\x82\xd3\xe4\x93\x02.\x12,/cosmos/bank/v1beta1/denoms_metadata/{denom}' _QUERY.methods_by_name['DenomsMetadata']._options = None _QUERY.methods_by_name['DenomsMetadata']._serialized_options = b'\x82\xd3\xe4\x93\x02&\x12$/cosmos/bank/v1beta1/denoms_metadata' _globals['_QUERYBALANCEREQUEST']._serialized_start = 216 _globals['_QUERYBALANCEREQUEST']._serialized_end = 279 _globals['_QUERYBALANCERESPONSE']._serialized_start = 281 _globals['_QUERYBALANCERESPONSE']._serialized_end = 347 _globals['_QUERYALLBALANCESREQUEST']._serialized_start = 349 _globals['_QUERYALLBALANCESREQUEST']._serialized_end = 461 _globals['_QUERYALLBALANCESRESPONSE']._serialized_start = 464 _globals['_QUERYALLBALANCESRESPONSE']._serialized_end = 646 _globals['_QUERYSPENDABLEBALANCESREQUEST']._serialized_start = 648 _globals['_QUERYSPENDABLEBALANCESREQUEST']._serialized_end = 766 _globals['_QUERYSPENDABLEBALANCESRESPONSE']._serialized_start = 769 _globals['_QUERYSPENDABLEBALANCESRESPONSE']._serialized_end = 957 _globals['_QUERYTOTALSUPPLYREQUEST']._serialized_start = 959 _globals['_QUERYTOTALSUPPLYREQUEST']._serialized_end = 1054 _globals['_QUERYTOTALSUPPLYRESPONSE']._serialized_start = 1057 _globals['_QUERYTOTALSUPPLYRESPONSE']._serialized_end = 1237 _globals['_QUERYSUPPLYOFREQUEST']._serialized_start = 1239 _globals['_QUERYSUPPLYOFREQUEST']._serialized_end = 1276 _globals['_QUERYSUPPLYOFRESPONSE']._serialized_start = 1278 _globals['_QUERYSUPPLYOFRESPONSE']._serialized_end = 1350 _globals['_QUERYPARAMSREQUEST']._serialized_start = 1352 _globals['_QUERYPARAMSREQUEST']._serialized_end = 1372 _globals['_QUERYPARAMSRESPONSE']._serialized_start = 1374 _globals['_QUERYPARAMSRESPONSE']._serialized_end = 1446 _globals['_QUERYDENOMSMETADATAREQUEST']._serialized_start = 1448 _globals['_QUERYDENOMSMETADATAREQUEST']._serialized_end = 1536 _globals['_QUERYDENOMSMETADATARESPONSE']._serialized_start = 1539 _globals['_QUERYDENOMSMETADATARESPONSE']._serialized_end = 1685 _globals['_QUERYDENOMMETADATAREQUEST']._serialized_start = 1687 _globals['_QUERYDENOMMETADATAREQUEST']._serialized_end = 1729 _globals['_QUERYDENOMMETADATARESPONSE']._serialized_start = 1731 _globals['_QUERYDENOMMETADATARESPONSE']._serialized_end = 1814 _globals['_QUERY']._serialized_start = 1817 _globals['_QUERY']._serialized_end = 3078
PypiClean
/accelbyte_py_sdk-0.48.0.tar.gz/accelbyte_py_sdk-0.48.0/accelbyte_py_sdk/api/social/operations/user_statistic/bulk_reset_user_stat_it_ed9334.py
# template file: ags_py_codegen # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import # AccelByte Gaming Services Social Service (2.9.4) from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Union from .....core import Operation from .....core import HeaderStr from .....core import HttpResponse from ...models import ADTOObjectForResettingUserStatItems from ...models import BulkStatOperationResult from ...models import ValidationErrorEntity class BulkResetUserStatItemValues(Operation): """Bulk reset user's statitem values (bulkResetUserStatItemValues) Bulk reset user's statitem values for given namespace and user. Other detail info: + *Required permission*: resource="ADMIN:NAMESPACE:{namespace}:USER:{userId}:STATITEM", action=4 (UPDATE) + *Returns*: bulk updated result Required Permission(s): - ADMIN:NAMESPACE:{namespace}:USER:{userId}:STATITEM [UPDATE] Properties: url: /social/v2/admin/namespaces/{namespace}/users/{userId}/statitems/value/reset/bulk method: PUT tags: ["UserStatistic"] consumes: ["application/json"] produces: ["application/json"] securities: [BEARER_AUTH] or [BEARER_AUTH] body: (body) OPTIONAL List[ADTOObjectForResettingUserStatItems] in body namespace: (namespace) REQUIRED str in path user_id: (userId) REQUIRED str in path additional_key: (additionalKey) OPTIONAL str in query Responses: 200: OK - List[BulkStatOperationResult] (successful operation) 422: Unprocessable Entity - ValidationErrorEntity (20002: validation error) """ # region fields _url: str = "/social/v2/admin/namespaces/{namespace}/users/{userId}/statitems/value/reset/bulk" _method: str = "PUT" _consumes: List[str] = ["application/json"] _produces: List[str] = ["application/json"] _securities: List[List[str]] = [["BEARER_AUTH"], ["BEARER_AUTH"]] _location_query: str = None body: List[ADTOObjectForResettingUserStatItems] # OPTIONAL in [body] namespace: str # REQUIRED in [path] user_id: str # REQUIRED in [path] additional_key: str # OPTIONAL in [query] # endregion fields # region properties @property def url(self) -> str: return self._url @property def method(self) -> str: return self._method @property def consumes(self) -> List[str]: return self._consumes @property def produces(self) -> List[str]: return self._produces @property def securities(self) -> List[List[str]]: return self._securities @property def location_query(self) -> str: return self._location_query # endregion properties # region get methods # endregion get methods # region get_x_params methods def get_all_params(self) -> dict: return { "body": self.get_body_params(), "path": self.get_path_params(), "query": self.get_query_params(), } def get_body_params(self) -> Any: if not hasattr(self, "body") or self.body is None: return None return [i.to_dict() for i in self.body] def get_path_params(self) -> dict: result = {} if hasattr(self, "namespace"): result["namespace"] = self.namespace if hasattr(self, "user_id"): result["userId"] = self.user_id return result def get_query_params(self) -> dict: result = {} if hasattr(self, "additional_key"): result["additionalKey"] = self.additional_key return result # endregion get_x_params methods # region is/has methods # endregion is/has methods # region with_x methods def with_body( self, value: List[ADTOObjectForResettingUserStatItems] ) -> BulkResetUserStatItemValues: self.body = value return self def with_namespace(self, value: str) -> BulkResetUserStatItemValues: self.namespace = value return self def with_user_id(self, value: str) -> BulkResetUserStatItemValues: self.user_id = value return self def with_additional_key(self, value: str) -> BulkResetUserStatItemValues: self.additional_key = value return self # endregion with_x methods # region to methods def to_dict(self, include_empty: bool = False) -> dict: result: dict = {} if hasattr(self, "body") and self.body: result["body"] = [ i0.to_dict(include_empty=include_empty) for i0 in self.body ] elif include_empty: result["body"] = [] if hasattr(self, "namespace") and self.namespace: result["namespace"] = str(self.namespace) elif include_empty: result["namespace"] = "" if hasattr(self, "user_id") and self.user_id: result["userId"] = str(self.user_id) elif include_empty: result["userId"] = "" if hasattr(self, "additional_key") and self.additional_key: result["additionalKey"] = str(self.additional_key) elif include_empty: result["additionalKey"] = "" return result # endregion to methods # region response methods # noinspection PyMethodMayBeStatic def parse_response( self, code: int, content_type: str, content: Any ) -> Tuple[ Union[None, List[BulkStatOperationResult]], Union[None, HttpResponse, ValidationErrorEntity], ]: """Parse the given response. 200: OK - List[BulkStatOperationResult] (successful operation) 422: Unprocessable Entity - ValidationErrorEntity (20002: validation error) ---: HttpResponse (Undocumented Response) ---: HttpResponse (Unexpected Content-Type Error) ---: HttpResponse (Unhandled Error) """ pre_processed_response, error = self.pre_process_response( code=code, content_type=content_type, content=content ) if error is not None: return None, None if error.is_no_content() else error code, content_type, content = pre_processed_response if code == 200: return [BulkStatOperationResult.create_from_dict(i) for i in content], None if code == 422: return None, ValidationErrorEntity.create_from_dict(content) return self.handle_undocumented_response( code=code, content_type=content_type, content=content ) # endregion response methods # region static methods @classmethod def create( cls, namespace: str, user_id: str, body: Optional[List[ADTOObjectForResettingUserStatItems]] = None, additional_key: Optional[str] = None, **kwargs, ) -> BulkResetUserStatItemValues: instance = cls() instance.namespace = namespace instance.user_id = user_id if body is not None: instance.body = body if additional_key is not None: instance.additional_key = additional_key return instance @classmethod def create_from_dict( cls, dict_: dict, include_empty: bool = False ) -> BulkResetUserStatItemValues: instance = cls() if "body" in dict_ and dict_["body"] is not None: instance.body = [ ADTOObjectForResettingUserStatItems.create_from_dict( i0, include_empty=include_empty ) for i0 in dict_["body"] ] elif include_empty: instance.body = [] if "namespace" in dict_ and dict_["namespace"] is not None: instance.namespace = str(dict_["namespace"]) elif include_empty: instance.namespace = "" if "userId" in dict_ and dict_["userId"] is not None: instance.user_id = str(dict_["userId"]) elif include_empty: instance.user_id = "" if "additionalKey" in dict_ and dict_["additionalKey"] is not None: instance.additional_key = str(dict_["additionalKey"]) elif include_empty: instance.additional_key = "" return instance @staticmethod def get_field_info() -> Dict[str, str]: return { "body": "body", "namespace": "namespace", "userId": "user_id", "additionalKey": "additional_key", } @staticmethod def get_required_map() -> Dict[str, bool]: return { "body": False, "namespace": True, "userId": True, "additionalKey": False, } # endregion static methods
PypiClean
/collective.logbook-1.0.0.tar.gz/collective.logbook-1.0.0/collective/logbook/utils.py
import logging import re from email.mime.text import MIMEText from collective.logbook.config import HEX_REGEX from collective.logbook.config import LOGGER from collective.logbook.config import LOGLEVEL from plone import api as ploneapi def get_portal(): """Get the portal object :returns: Portal object :rtype: object """ return ploneapi.portal.getSite() def get_plone_version(): """Get the Plone version :returns: Plone version :rtype: str or list """ return ploneapi.env.plone_version() def is_plone5(): """Check for Plone 5 series :returns: True if Plone 5 :rtype: boolean """ version = get_plone_version() return version.startswith('5') def is_patch_applied(): """Checks if the monkey patch was already applied """ from Products.SiteErrorLog.SiteErrorLog import SiteErrorLog from collective.logbook.monkey import raising actual_raising = getattr(SiteErrorLog.raising, 'im_func', SiteErrorLog.raising) return actual_raising is raising def is_logbook_enabled(): """Checks if logbook logging is enabled """ return ploneapi.portal.get_registry_record('logbook.logbook_enabled') def is_logbook_large_site_enabled(): """Checks if logbook logging is enabled """ return ploneapi.portal.get_registry_record('logbook.logbook_large_site') def get_logbook_log_mails(): """Returns the emails to notify on new errors """ return ploneapi.portal.get_registry_record('logbook.logbook_log_mails') def log(msg, level=LOGLEVEL): """Log the message """ # get the numeric value of the level. defaults to 0 (NOTSET) level = logging.getLevelName(level.upper()) or 0 LOGGER.log(level, msg) def send_email(message, subject, recipients): """Send the message to the list of recipients """ log('Sending Email to %r' % recipients) # Handle a single recipient address gracefully if not is_list(recipients): recipients = [recipients] # convert to HTML email body = MIMEText(message, _subtype="html", _charset="utf8") # Send email to all of the recipients for recipient in recipients: try: # Note: `plone.api.portal.send_email` takes care about the fetching # the correct sender name and email address ploneapi.portal.send_email( recipient=recipient, subject=subject, body=body, ) # Do not create another logbook error during the message sending except Exception as exc: log('Failed sending email to recipient(s): {} with error: {}' .format(','.join(recipients), str(exc)), level='error') def is_list(thing): """ checks if an object is a list type >>> is_list([]) True >>> is_list(list()) True >>> is_list('[]') False >>> is_list({}) False """ return isinstance(thing, (list, tuple)) def filtered_error_tail(error): """ last 5 lines of traceback with replaced oid's """ tb_text = error.get('tb_text', '') tail = tb_text.splitlines()[-5:] filtered_tail = list(map(hexfilter, tail)) return filtered_tail def hexfilter(text): """ unify hex numbers """ return HEX_REGEX.sub('0x0000000', text) # http://grok.zope.org/documentation/how-to/automatic-form-generation email_expr = re.compile( r"^(\w&.%#$&'\*+-/=?^_`{}|~]+!)*[\w&.%#$&'\*+-/=?^_`{}|~]+" r"@(([0-9a-z]([0-9a-z-]*[0-9a-z])?\.)+[a-z]{2,6}|([0-9]{1,3}" r"\.){3}[0-9]{1,3})$", re.IGNORECASE) check_email = email_expr.match
PypiClean
/ThreadingWrapper-0.0.1.tar.gz/ThreadingWrapper-0.0.1/README.md
# pythreading-wrapper > pip install pythreading-wrapper usage ```commandline from concurrency import FunctionArgs, MultiThreading # a long running process that returns results based on # a parameter passed def long_running_process(param1: int): time.sleep(1) return param1 # imagine a large data set that needs to be chunked data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] def chunk(start: int, end: int): return data[start:end] if __name__ == "__main__": mp = MultiThreading() # run the process 5 times in parallel # the resturn types will be captured inside a dictionary #-------------------------------------------------------- # use case 1 : getting data for different parameters passed args = [FunctionArgs(long_running_process, output_var=item, param1=item) for item in range(5)] op: dict = threading.execute_async(*args) assert len(op.items()) == 5 # will be True assert op[1] == 1 # will be 1 assert op[2] == 2 # will be 2 assert op[3] == 3 # will be 3 assert op[4] == 4 # will be 4 #-------------------------------------------------------- # use case 2 : getting data by chunks from a large dataset # run the process 5 times in parallel # the resturn types will be captured inside a dictionary args = [FunctionArgs(chunk, output_var='', start=item, end=item+2) for item in range(0, 10, 2)] op: list = threading.execute_by_chunks_async(*args) print(op) assert data[1] in op # op will contain 1 assert data[3] in op # op will contain 3 assert data[5] in op # op will contain 5 assert data[7] in op # op will contain 7 ```
PypiClean
/textual_mandelbrot-0.5.0-py3-none-any.whl/textual_mandelbrot/mandelbrot.py
############################################################################## # Python imports. from __future__ import annotations from decimal import Decimal from operator import mul, truediv from time import monotonic from typing import Iterator, Callable from typing_extensions import Self ############################################################################## # Textual imports. from textual.binding import Binding from textual.color import Color from textual.message import Message ############################################################################## # Textual-canvas imports. from textual_canvas import Canvas ############################################################################## # Local imports. from .colouring import default_map ############################################################################## def _mandelbrot( x: Decimal, y: Decimal, multibrot: float, max_iteration: int ) -> int: """Return the Mandelbrot calculation for the point. Args: x: The x location of the point to calculate. y: The y location of the point to calculate. multibrot: The 'multibrot' value to use in the calculation. max_iteration: The maximum number of iterations to calculate for. Returns: The number of loops to escape, or 0 if it didn't. Note: The point is considered to be stable, considered to have not escaped, if the `max_iteration` has been hit without the calculation going above 2.0. """ c1 = complex( x, y ) c2 = 0j for n in range( max_iteration ): if abs( c2 ) > 2: return n c2 = c1 + ( c2 ** multibrot ) return 0 ############################################################################## class Mandelbrot( Canvas ): """A Mandelbrot-plotting widget.""" DEFAULT_CSS = """ Mandelbrot { width: 1fr; height: 1fr; } """ BINDINGS = [ Binding( "up, w, k", "move( 0, -1 )", "Up", show=False ), Binding( "shift+up, W, K", "move( 0, -1, 50 )", "Up", show=False ), Binding( "down, s, j", "move( 0, 1 )", "Down", show=False ), Binding( "shift+down, S, J", "move( 0, 1, 50 )", "Down", show=False ), Binding( "left, a, h", "move( -1, 0 )", "Left", show=False ), Binding( "shift+left, A, H", "move( -1, 0, 50 )", "Left", show=False ), Binding( "right, d, l", "move( 1, 0 )", "Right", show=False ), Binding( "shift+right, D, L", "move( 1, 0, 50 )", "Right", show=False ), Binding( "pageup, right_square_bracket", "zoom( -1.2 )", "In", key_display="PgUp" ), Binding( "pagedown, left_square_bracket", "zoom( 1.2 )", "Out", key_display="PgDn" ), Binding( "ctrl+pageup, right_curly_bracket", "zoom( -2.0 )", "In+", key_display="Ctrl+PgUp" ), Binding( "ctrl+pagedown, left_curly_bracket", "zoom( 2.0 )", "Out+", key_display="Ctrl+PgDn" ), Binding( "*, ctrl+up", "multibrot( 1 )", "Mul+" ), Binding( "/, ctrl+down", "multibrot( -1 )", "Mul-" ), Binding( "ctrl+shift+up", "multibrot( 0.05 )", "Mul+", show=False ), Binding( "ctrl+shift+down", "multibrot( -0.05 )", "Mul-", show=False ), Binding( "home", "zero", "0, 0", key_display="Home" ), Binding( "comma", "max_iter( -10 )","Res-" ), Binding( "less_than_sign", "max_iter( -100 )", "Res--" ), Binding( "full_stop", "max_iter( 10 )", "Res+" ), Binding( "greater_than_sign", "max_iter( 100 )", "Res++" ), Binding( "ctrl+r", "reset", "Reset" ), Binding( "escape", "app.quit", "Exit" ) ] """Keyboard bindings for the widget.""" class Changed( Message ): """Message sent when the range of the display changes. This will be sent if the user (un)zooms or moves the display. """ def __init__( self, mandelbrot: Mandelbrot, elapsed: float ) -> None: """Initialise the message. Args: mandelbrot: The Mandelbrot causing the message. elapsed: The time elapsed while calculating the plot. """ super().__init__() self.mandelbrot: Mandelbrot = mandelbrot """The Mandelbrot widget that caused the event.""" self.elapsed = elapsed """The time that elapsed during the drawing of the current view.""" @property def control(self) -> Mandelbrot: """Alias for the reference to the Mandelbrot widget.""" return self.mandelbrot def __init__( self, width: int, height: int, colour_source: Callable[ [ int, int ], Color ] = default_map, name: str | None = None, id: str | None = None, # pylint:disable=redefined-builtin classes: str | None = None, disabled: bool = False ): """Initialise the canvas. Args: width: The width of the Mandelbrot set canvas. height: The height of the Mandelbrot set canvas. colour_source: Optional function for providing colours. name: The name of the Mandelbrot widget. id: The ID of the Mandelbrot widget in the DOM. classes: The CSS classes of the Mandelbrot widget. disabled: Whether the Mandelbrot widget is disabled or not. """ super().__init__( width, height, name=name, id=id, classes=classes, disabled=disabled ) self._max_iteration: int = 80 """Maximum number of iterations to perform.""" self._multibrot: Decimal = Decimal( 2.0 ) """The 'multibrot' value.""" self._from_x: Decimal = Decimal( -2.5 ) """Start X position for the plot.""" self._to_x: Decimal = Decimal( 1.5 ) """End X position for the plot.""" self._from_y: Decimal = Decimal( -1.5 ) """Start Y position for the plot.""" self._to_y: Decimal = Decimal( 1.5 ) """End Y position for the plot.""" self._colour_source = colour_source """Source of colour for the plot.""" @property def max_iteration( self ) -> int: """Maximum number of iterations to perform.""" return self._max_iteration @property def multibrot( self ) -> Decimal: """The 'multibrot' value.""" return self._multibrot @property def from_x( self ) -> Decimal: """Start X position for the plot.""" return self._from_x @property def to_x( self ) -> Decimal: """End X position for the plot.""" return self._to_x @property def from_y( self ) -> Decimal: """Start Y position for the plot.""" return self._from_y @property def to_y( self ) -> Decimal: """End Y position for the plot.""" return self._to_y def reset( self ) -> Self: """Reset the plot. Returns: Self. """ self._max_iteration = 80 self._multibrot = Decimal( 2 ) self._from_x = Decimal( -2.5 ) self._to_x = Decimal( 1.5 ) self._from_y = Decimal( -1.5 ) self._to_y = Decimal( 1.5 ) return self def set_colour_source( self, colour_source: Callable[ [ int, int ], Color ] ) -> Self: """Set a new colour source. Args: colour_source: The new colour source. Returns: Self. """ self._colour_source = colour_source return self.plot() def _frange( self, r_from: Decimal, r_to: Decimal, size: int ) -> Iterator[ Decimal ]: """Generate a float range for the plot. Args: r_from: The value to generate from. r_to: The value to generate to. size: The size of canvas in the desired direction. Yields: Values between the range to fit the plot. """ steps = 0 step = Decimal( r_to - r_from ) / Decimal( size ) n = Decimal( r_from ) while n < r_to and steps < size: yield n n += step steps += 1 def plot( self ) -> Self: """Plot the Mandelbrot set using the current conditions. Returns: Self. """ start = monotonic() with self.app.batch_update(): for x_pixel, x_point in enumerate( self._frange( self._from_x, self._to_x, self.width ) ): for y_pixel, y_point in enumerate( self._frange( self._from_y, self._to_y, self.height ) ): self.set_pixel( x_pixel, y_pixel, self._colour_source( _mandelbrot( x_point, y_point, float( self._multibrot ), self._max_iteration ), self._max_iteration ) ) self.post_message( self.Changed( self, monotonic() - start ) ) return self def on_mount( self ) -> None: """Get the plotter going once the DOM is ready.""" self.plot() def action_move( self, x: int, y: int, steps: int=5 ) -> None: """Move the Mandelbrot Set within the view. Args: x: The amount and direction to move in X. y: The amount and direction to move in Y. """ x_step = Decimal( x * ( ( self._to_x - self._from_x ) / steps ) ) y_step = Decimal( y * ( ( self._to_y - self._from_y ) / steps ) ) self._from_x += x_step self._to_x += x_step self._from_y += y_step self._to_y += y_step self.plot() def action_zero( self ) -> None: """Move the view to 0, 0.""" width = ( self._to_x - self._from_x ) / Decimal( 2 ) height = ( self._to_y - self._from_y ) / Decimal( 2 ) self._from_x = -width self._to_x = width self._from_y = -height self._to_y = height self.plot() @staticmethod def _scale( from_pos: Decimal, to_pos: Decimal, zoom: Decimal ) -> tuple[ Decimal, Decimal ]: """Scale a dimension. Args: from_pos: The start position of the dimension. to_pos: The end position of the dimension. Returns: The new start and end positions. """ # Figure the operator from the sign. by = truediv if zoom < 0 else mul # We don't need the sign anymore. zoom = Decimal( abs( zoom ) ) # Calculate the old and new dimensions. old_dim = to_pos - from_pos new_dim = Decimal( by( old_dim, zoom ) ) # Return the adjusted points. return ( from_pos + Decimal( ( old_dim - new_dim ) / 2 ), to_pos - Decimal( ( old_dim - new_dim ) / 2 ) ) def action_zoom( self, zoom: Decimal ) -> None: """Zoom in our out. Args: zoom: The amount to zoom by. """ self._from_x, self._to_x = self._scale( self._from_x, self._to_x, zoom ) self._from_y, self._to_y = self._scale( self._from_y, self._to_y, zoom ) self.plot() def action_max_iter( self, change: int ) -> None: """Change the maximum number of iterations for a calculation. Args: change: The amount to change by. """ # Keep a lower bound for the max iteration. if ( self._max_iteration + change ) >= 10: self._max_iteration += change self.plot() else: self.app.bell() def action_multibrot( self, change: Decimal ) -> None: """Change the 'multibrot' modifier. Args: change: The amount to change by. """ if ( self._multibrot + Decimal( change ) ) > 0: self._multibrot += Decimal( change ) self.plot() else: self.app.bell() def action_reset( self ) -> None: """Reset the display of the Mandelbrot set back to initial conditions.""" self.reset().plot() ### mandelbrot.py ends here
PypiClean
/solentware_base-5.0-py3-none-any.whl/solentware_base/core/wherevalues.py
import re DOUBLE_QUOTE_STRING = r'".*?"' SINGLE_QUOTE_STRING = r"'.*?'" IN = r"in" TO = r"to" NOT = r"not" LIKE = r"like" FROM = r"from" ABOVE = r"above" BELOW = r"below" STRING = r"[^\s]+" LEADING_SPACE = r"(?<=\s)" TRAILING_SPACE = r"(?=\s)" WHEREVALUES_RE = re.compile( r"|".join( ( DOUBLE_QUOTE_STRING, SINGLE_QUOTE_STRING, NOT.join((LEADING_SPACE, TRAILING_SPACE)), LIKE.join((LEADING_SPACE, TRAILING_SPACE)), FROM.join((LEADING_SPACE, TRAILING_SPACE)), ABOVE.join((LEADING_SPACE, TRAILING_SPACE)), BELOW.join((LEADING_SPACE, TRAILING_SPACE)), TO.join((LEADING_SPACE, TRAILING_SPACE)), IN.join((LEADING_SPACE, TRAILING_SPACE)), STRING, ) ).join((r"(", r")")), flags=re.IGNORECASE | re.DOTALL, ) KEYWORDS = frozenset( ( TO, IN, NOT, LIKE, FROM, ABOVE, BELOW, ) ) class WhereValuesError(Exception): """Exception for WhereValues class.""" class WhereValues: """Find index values matching the query in statement.""" def __init__(self, statement): """Create WhereValues instance for statement.""" self.statement = statement self.tokens = None self.node = None self._error_token_offset = None self._not = False self._processors = None def lex(self): """Split instance's statement into tokens.""" tokens = [] strings = [] for word in WHEREVALUES_RE.split(self.statement): if word.lower() in KEYWORDS: if strings: tokens.append(" ".join([_trim(s) for s in strings if s])) strings.clear() tokens.append(word.lower()) elif word.strip(): strings.append(word.strip()) if strings: tokens.append(" ".join([_trim(s) for s in strings if s])) strings.clear() self.tokens = tokens def parse(self): """Parse instance's tokens to create node structure to do query. The structure is simple, consisting of a single node, a ValuesClause object. """ self.node = ValuesClause() state = self._set_fieldname for item, token in enumerate(self.tokens): state = state(token) if not state: self._error_token_offset = item break else: self.node.valid_phrase = True def validate(self, db, dbset): """Verify self's statement has a valid search for db and dbset. db - the database. dbset - the table in the database. The field must exist in table dbset of database db. One only of above_value and from_value can be siven. One only of below_value and to_value can be siven. """ if self._error_token_offset is not None: return self.tokens[: self._error_token_offset] if self.node is None: return None node = self.node # Valid values are None or a compiled regular expression. # The attribute is bound to the string which failed to compile if the # compilation failed. if isinstance(node.like_pattern, str): return False if not node.valid_phrase: return node.valid_phrase if node.field is None: return False if not db.exists(dbset, node.field): return False if node.above_value is not None and node.from_value is not None: return False if node.below_value is not None and node.to_value is not None: return False return True def evaluate(self, processors): """Evaluate the query using the processor. processors - A FindValues object. The processor will know how to access the field in the statement. The answer to the query defined in instance's statement is put in the self.node.result attribute. """ if self.node is None: return self._processors = processors try: self.node.evaluate_node_result(processors) finally: self._processors = None def error(self, token): """Return False, token is an unexpected keyword or value.""" return False def _set_fieldname(self, token): """Set field name and return method to process next token.""" if token.lower() in KEYWORDS: return self.error(token) self.node.field = token return self._set_not_from_to_like_in_ def _set_from_value(self, token): """Set from value and return method to process next token.""" if token.lower() in KEYWORDS: return self.error(token) self.node.from_value = token return self._set_not_to_like_in_ def _set_above_value(self, token): """Set above value and return method to process next token.""" if token.lower() in KEYWORDS: return self.error(token) self.node.above_value = token return self._set_not_to_like_in_ def _set_to_value(self, token): """Set to value and return method to process next token.""" if token.lower() in KEYWORDS: return self.error(token) self.node.to_value = token return self._set_not_like_in_ def _set_below_value(self, token): """Set to value and return method to process next token.""" if token.lower() in KEYWORDS: return self.error(token) self.node.below_value = token return self._set_not_like_in_ def _set_like_value(self, token): """Set like value and return method to process next token.""" # If 'token' really must be one of the keywords the construct # "fieldname from 'token' to 'token'" must be used to achieve the # same result. # Normally "fieldname like \At\Z" will do. if token.lower() in KEYWORDS: return self.error(token) try: self.node.like_pattern = re.compile(token) except: self.node.like_pattern = token if self._not: self.node.like = False self._not = False return self._set_not_in_ def _set_in__value(self, token): """Set 'in set' value and return method to process next token.""" if token.lower() in KEYWORDS: return self.error(token) self.node.in__set = token if self._not: self.node.in_ = False self._not = False return self._finish def _set_not_from_to_like_in_(self, token): """Set not or condition and return method to process next token. 'from', 'above', 'to', 'below', 'like', and 'in', are accepted conditions. """ if token.lower() == NOT: self._not = True return self._set_like_in_ if token.lower() == FROM: return self._set_from_value if token.lower() == ABOVE: return self._set_above_value if token.lower() == TO: return self._set_to_value if token.lower() == BELOW: return self._set_below_value if token.lower() == LIKE: return self._set_like_value if token.lower() == IN: return self._set_in__value return self.error(token) def _set_not_to_like_in_(self, token): """Set not or condition and return method to process next token. 'to', 'below', 'like', and 'in', are accepted conditions. """ if token.lower() == NOT: self._not = True return self._set_like_in_ if token.lower() == TO: return self._set_to_value if token.lower() == BELOW: return self._set_below_value if token.lower() == LIKE: return self._set_like_value if token.lower() == IN: return self._set_in__value return self.error(token) def _set_not_like_in_(self, token): """Set not or condition and return method to process next token. 'like' and 'in' are accepted conditions. """ if token.lower() == NOT: self._not = True return self._set_like_in_ if token.lower() == LIKE: return self._set_like_value if token.lower() == IN: return self._set_in__value return self.error(token) def _set_not_in_(self, token): """Set not or condition and return method to process next token. 'in' is accepted condition. """ if token.lower() == NOT: self._not = True return self._set_in_ if token.lower() == IN: return self._set_in__value return self.error(token) def _set_like_in_(self, token): """Set condition and return method to process next token. 'like' and 'in' are accepted conditions. """ if token.lower() == LIKE: return self._set_like_value if token.lower() == IN: return self._set_in__value return self.error(token) def _set_in_(self, token): """Set condition and return method to process next token. 'in' is accepted condition. """ if token.lower() == IN: return self._set_in__value return self.error(token) def _finish(self, token): """Set error if any token found after final valid token.""" return self.error(token) class ValuesClause: """Phrase in WhereValues specification. The WhereValues parser binds ValuesClause attributes to the field name, condition, and values, found in a phrase of a 'find values' statement; and states whether the attributes describe a valid phrase. The attributes are: valid_phrase - True if the phrase can be evaluated. field - Name of field on database whose value is compared. above_value - field value matches if greater than above_value. below_value - field value matches if less than below_value. from_value - field value matches if greater than or equal from_value. to_value - field value matches if less than or equal to_value. like - True if field value matches if it matches like_pattern. like_pattern - Regular expression to evaluate 'like'. in_ - True if field value matches if it is in the in__set set of values. in__set - Iterable of values to evaluate 'in'. result - List of values found when node is evaluated. The syntax of the value selection statement leads to these possibilities: Range is defined by one of the valuesclause attribute sets: above_value and below_value are not None above_value and to_value are not None from_value and to_value are not None from_value and below_value are not None above_value is not None to_value is not None from_value is not None below_value is not None above_value, to_value, from_value, and below_value, are None, Filters are defined by one of the valuesclause attribute sets: like is False and like_pattern is None like is True and like_pattern is not None in_ is False and in__set is None in_ is True and in__set is an iterable Any pairing of the 'like' and 'in_' attribute sets above. A range and a filter may appear in the same phrase. """ def __init__(self): """Initialiase a node. valid_phrase is set False, like and in_ are set True, and the rest are set None. """ self.valid_phrase = False # Phrase self.field = None self.above_value = None self.below_value = None self.from_value = None self.to_value = None self.like = True self.like_pattern = None self.in_ = True self.in__set = None # Evaluation self.result = None def evaluate_node_result(self, processors): """Evaluate self's phrase with the processors FindValues object. Call processor's find_values() method to evaluate node's phrase and bind node's result attribute to the answer. """ if self.valid_phrase: processors.find_values(self) def apply_pattern_and_set_filters_to_value(self, value): """Apply 'like' and 'value set' constraints to value. This method is intended for use as a callback by a FindValues object. The underlying database engine may, or may not, have internal methods able to do either or both these functions. This method assumes the use of Python regular expressions to do 'like' constraints and Python set operations to do 'value set' constraints. """ if self.like_pattern: if not self.like_pattern.search(value): if self.like: return False elif not self.like: return False if self.in__set is not None: if self.in_: return value in self.in__set return value not in self.in__set return True def _trim(string): """Return string with one leading and trailing ' or " removed. The two quote characters allow values containing spaces. """ if string[0] in "'\"": return string[1:-1] return string
PypiClean
/apache-flink-1.17.1.tar.gz/apache-flink-1.17.1/pyflink/fn_execution/beam/beam_boot.py
import argparse import logging import os import sys import grpc from apache_beam.portability.api.org.apache.beam.model.fn_execution.v1.beam_fn_api_pb2 import \ StartWorkerRequest from apache_beam.portability.api.org.apache.beam.model.fn_execution.v1.beam_fn_api_pb2_grpc import ( BeamFnExternalWorkerPoolStub) from apache_beam.portability.api.org.apache.beam.model.fn_execution.v1.beam_provision_api_pb2 \ import GetProvisionInfoRequest from apache_beam.portability.api.org.apache.beam.model.fn_execution.v1.beam_provision_api_pb2_grpc \ import ProvisionServiceStub from apache_beam.portability.api.org.apache.beam.model.pipeline.v1.endpoints_pb2 import ( ApiServiceDescriptor) from google.protobuf import json_format, text_format def check_not_empty(check_str, error_message): if check_str == "": logging.fatal(error_message) exit(1) python_exec = sys.executable if __name__ == "__main__": # print INFO and higher level messages logging.basicConfig(stream=sys.stdout, level=logging.INFO) parser = argparse.ArgumentParser() parser.add_argument("--id", default="", help="Local identifier (required).") parser.add_argument("--provision_endpoint", default="", help="Provision endpoint (required).") parser.add_argument("--semi_persist_dir", default="/tmp", help="Local semi-persistent directory (optional).") args = parser.parse_known_args()[0] worker_id = args.id provision_endpoint = args.provision_endpoint semi_persist_dir = args.semi_persist_dir check_not_empty(worker_id, "No id provided.") check_not_empty(provision_endpoint, "No provision endpoint provided.") logging.info("Initializing Python harness: %s" % " ".join(sys.argv)) if 'PYTHON_LOOPBACK_SERVER_ADDRESS' in os.environ: logging.info("Starting up Python harness in loopback mode.") params = dict(os.environ) params.update({'SEMI_PERSISTENT_DIRECTORY': semi_persist_dir}) with grpc.insecure_channel(os.environ['PYTHON_LOOPBACK_SERVER_ADDRESS']) as channel: client = BeamFnExternalWorkerPoolStub(channel=channel) request = StartWorkerRequest( worker_id=worker_id, provision_endpoint=ApiServiceDescriptor(url=provision_endpoint), params=params) response = client.StartWorker(request) if response.error: raise RuntimeError("Error starting worker: %s" % response.error) else: logging.info("Starting up Python harness in a standalone process.") metadata = [("worker_id", worker_id)] # read job information from provision stub with grpc.insecure_channel(provision_endpoint) as channel: client = ProvisionServiceStub(channel=channel) info = client.GetProvisionInfo(GetProvisionInfoRequest(), metadata=metadata).info options = json_format.MessageToJson(info.pipeline_options) logging_endpoint = info.logging_endpoint.url control_endpoint = info.control_endpoint.url os.environ["WORKER_ID"] = worker_id os.environ["PIPELINE_OPTIONS"] = options os.environ["SEMI_PERSISTENT_DIRECTORY"] = semi_persist_dir os.environ["LOGGING_API_SERVICE_DESCRIPTOR"] = text_format.MessageToString( ApiServiceDescriptor(url=logging_endpoint)) os.environ["CONTROL_API_SERVICE_DESCRIPTOR"] = text_format.MessageToString( ApiServiceDescriptor(url=control_endpoint)) env = dict(os.environ) if "FLINK_BOOT_TESTING" in os.environ and os.environ["FLINK_BOOT_TESTING"] == "1": logging.info("Shut down Python harness due to FLINK_BOOT_TESTING is set.") exit(0) from pyflink.fn_execution.beam import beam_sdk_worker_main beam_sdk_worker_main.main()
PypiClean
/Pyomo-6.6.2-cp39-cp39-win_amd64.whl/pyomo/common/deprecation.py
import logging import functools import inspect import itertools import sys import textwrap import types from pyomo.common.errors import DeveloperError _doc_flag = '.. deprecated::' def default_deprecation_msg(obj, user_msg, version, remove_in): """Generate the default deprecation message. See deprecated() function for argument details. """ if user_msg is None: if inspect.isclass(obj): _obj = ' class' elif inspect.ismethod(obj): _obj = ' method' elif inspect.isfunction(obj) or inspect.isbuiltin(obj): _obj = ' function' else: # either @deprecated() an unknown type or called from # deprecation_warning() _obj = '' _qual = getattr(obj, '__qualname__', '') or '' if _qual.endswith('.__init__') or _qual.endswith('.__new__'): _obj = f' class ({_qual.rsplit(".", 1)[0]})' elif _qual and _obj: _obj += f' ({_qual})' user_msg = ( 'This%s has been deprecated and may be removed in a ' 'future release.' % (_obj,) ) comment = [] if version: comment.append('deprecated in %s' % (version,)) if remove_in: comment.append('will be removed in (or after) %s' % (remove_in)) if comment: return user_msg + " (%s)" % (', '.join(comment),) else: return user_msg def _deprecation_docstring(obj, msg, version, remove_in): # Note that _deprecation_docstring is guaranteed to be called by # @deprecated in all situations where we would be creating a # meaningful deprecation message (classes, functions, and methods), # so this is a convenient place to check that the version is # specified. if version is None: raise DeveloperError("@deprecated(): missing 'version' argument") return ( f'{_doc_flag} {version}\n' f' {default_deprecation_msg(obj, msg, None, remove_in)}\n' ) def _wrap_class(cls, msg, logger, version, remove_in): _doc = None # Note: __new_member__ is where enum.Enum buries the user's original # __new__ method for field in ('__new__', '__init__', '__new_member__'): _funcDoc = getattr(getattr(cls, field, None), '__doc__', '') or '' _flagIdx = _funcDoc.find(_doc_flag) if _flagIdx >= 0: _doc = _funcDoc[_flagIdx:] break # Note: test 'msg is not None' to revert back to the user-supplied # message. Checking the fields above is still useful as it lets us know # if there is already a deprecation message on either new or init. if msg is not None or _doc is None: _doc = _deprecation_docstring(cls, msg, version, remove_in) if cls.__doc__: _doc = cls.__doc__ + '\n\n' + _doc cls.__doc__ = 'DEPRECATED.\n\n' + _doc if _flagIdx < 0: # No deprecation message on __init__ or __new__: go through and # find the "most derived" implementation of either __new__ or # __init__ and wrap that (breaking ties in favor of __init__) field = '__init__' for c in reversed(cls.__mro__): for f in ('__new__', '__init__'): if getattr(c, f, None) is not getattr(cls, f, None): field = f setattr( cls, field, _wrap_func(getattr(cls, field), msg, logger, version, remove_in) ) return cls def _wrap_func(func, msg, logger, version, remove_in): message = default_deprecation_msg(func, msg, version, remove_in) @functools.wraps( func, assigned=('__module__', '__name__', '__qualname__', '__annotations__') ) def wrapper(*args, **kwargs): cf = _find_calling_frame(1) deprecation_warning(message, logger, version='', calling_frame=cf) return func(*args, **kwargs) wrapper.__doc__ = 'DEPRECATED.\n\n' _doc = func.__doc__ or '' if _doc: wrapper.__doc__ += _doc + '\n\n' wrapper.__doc__ += _deprecation_docstring(func, msg, version, remove_in) return wrapper def _find_calling_frame(module_offset): g = [globals()] calling_frame = inspect.currentframe().f_back while calling_frame is not None: if calling_frame.f_globals is g[-1]: calling_frame = calling_frame.f_back elif len(g) < module_offset: g.append(calling_frame.f_globals) else: break return calling_frame def in_testing_environment(): """Return True if we are currently running in a "testing" environment This currently includes if nose, nose2, pytest, or Sphinx are running (imported). """ return any(mod in sys.modules for mod in ('nose', 'nose2', 'pytest', 'sphinx')) def deprecation_warning( msg, logger=None, version=None, remove_in=None, calling_frame=None ): """Standardized formatter for deprecation warnings This is a standardized routine for formatting deprecation warnings so that things look consistent and "nice". Args: msg (str): the deprecation message to format logger (str): the logger to use for emitting the warning (default: the calling pyomo package, or "pyomo") version (str): [required] the version in which the decorated object was deprecated. General practice is to set version to the current development version (from `pyomo --version`) during development and update it to the actual release as part of the release process. remove_in (str): the version in which the decorated object will be removed from the code. calling_frame (frame): the original frame context that triggered the deprecation warning. Example ------- >>> from pyomo.common.deprecation import deprecation_warning >>> deprecation_warning('This functionality is deprecated.', version='1.2.3') WARNING: DEPRECATED: This functionality is deprecated. (deprecated in 1.2.3) ... """ if version is None: raise DeveloperError("deprecation_warning() missing 'version' argument") if logger is None: if calling_frame is not None: cf = calling_frame else: # The relevant module is the one that holds the # function/method that called deprecation_warning cf = _find_calling_frame(1) if cf is not None: logger = cf.f_globals.get('__name__', None) if logger is not None and not logger.startswith('pyomo'): logger = None if logger is None: logger = 'pyomo' if isinstance(logger, str): logger = logging.getLogger(logger) msg = textwrap.fill( f'DEPRECATED: {default_deprecation_msg(None, msg, version, remove_in)}', width=70, ) if calling_frame is None: # The useful thing to let the user know is what called the # function that generated the deprecation warning. The current # globals() is *this* module. Walking up the stack to find the # frame where the globals() changes tells us the module that is # issuing the deprecation warning. As we assume that *that* # module will not trigger its own deprecation warnings, we will # walk farther up until the globals() changes again. calling_frame = _find_calling_frame(2) if calling_frame is not None: info = inspect.getframeinfo(calling_frame) msg += "\n(called from %s:%s)" % (info.filename.strip(), info.lineno) if deprecation_warning.emitted_warnings is not None: if msg in deprecation_warning.emitted_warnings: return deprecation_warning.emitted_warnings.add(msg) logger.warning(msg) if in_testing_environment(): deprecation_warning.emitted_warnings = None else: deprecation_warning.emitted_warnings = set() def deprecated(msg=None, logger=None, version=None, remove_in=None): """Decorator to indicate that a function, method, or class is deprecated. This decorator will cause a warning to be logged when the wrapped function or method is called, or when the deprecated class is constructed. This decorator also updates the target object's docstring to indicate that it is deprecated. Args: msg (str): a custom deprecation message (default: "This {function|class} has been deprecated and may be removed in a future release.") logger (str): the logger to use for emitting the warning (default: the calling pyomo package, or "pyomo") version (str): [required] the version in which the decorated object was deprecated. General practice is to set version to the current development version (from `pyomo --version`) during development and update it to the actual release as part of the release process. remove_in (str): the version in which the decorated object will be removed from the code. Example ------- >>> from pyomo.common.deprecation import deprecated >>> @deprecated(version='1.2.3') ... def sample_function(x): ... return 2*x >>> sample_function(5) WARNING: DEPRECATED: This function (sample_function) has been deprecated and may be removed in a future release. (deprecated in 1.2.3) ... 10 """ def wrap(obj): if inspect.isclass(obj): return _wrap_class(obj, msg, logger, version, remove_in) else: return _wrap_func(obj, msg, logger, version, remove_in) return wrap def _import_object(name, target, version, remove_in, msg): from importlib import import_module modname, targetname = target.rsplit('.', 1) _object = getattr(import_module(modname), targetname) if msg is None: if inspect.isclass(_object): _type = 'class' elif inspect.isfunction(_object): _type = 'function' else: _type = 'attribute' msg = ( f"the '{name}' {_type} has been moved to '{target}'." " Please update your import." ) deprecation_warning(msg, version=version, remove_in=remove_in) return _object def relocated_module(new_name, msg=None, logger=None, version=None, remove_in=None): """Provide a deprecation path for moved / renamed modules Upon import, the old module (that called `relocated_module()`) will be replaced in `sys.modules` by an alias that points directly to the new module. As a result, the old module should have only two lines of executable Python code (the import of `relocated_module` and the call to it). Parameters ---------- new_name: str The new (fully-qualified) module name msg: str A custom deprecation message. logger: str The logger to use for emitting the warning (default: the calling pyomo package, or "pyomo") version: str [required] The version in which the module was renamed or moved. General practice is to set version to the current development version (from `pyomo --version`) during development and update it to the actual release as part of the release process. remove_in: str The version in which the module will be removed from the code. Example ------- >>> from pyomo.common.deprecation import relocated_module >>> relocated_module('pyomo.common.deprecation', version='1.2.3') WARNING: DEPRECATED: The '...' module has been moved to 'pyomo.common.deprecation'. Please update your import. (deprecated in 1.2.3) ... """ from importlib import import_module new_module = import_module(new_name) # The relevant module (the one being deprecated) is the one that # holds the function/method that called deprecated_module(). The # relevant calling frame for the deprecation warning is the first # frame in the stack that doesn't look like the importer (i.e., the # thing that imported the deprecated module). cf = _find_calling_frame(1) old_name = cf.f_globals.get('__name__', '<stdin>') cf = cf.f_back if cf is not None: importer = cf.f_back.f_globals['__name__'].split('.')[0] while cf is not None and cf.f_globals['__name__'].split('.')[0] == importer: cf = cf.f_back if cf is None: cf = _find_calling_frame(1) sys.modules[old_name] = new_module if msg is None: msg = ( f"The '{old_name}' module has been moved to '{new_name}'. " 'Please update your import.' ) deprecation_warning(msg, logger, version, remove_in, cf) def relocated_module_attribute( local, target, version, remove_in=None, msg=None, f_globals=None ): """Provide a deprecation path for moved / renamed module attributes This function declares that a local module attribute has been moved to another location. For Python 3.7+, it leverages a module.__getattr__ method to manage the deferred import of the object from the new location (on request), as well as emitting the deprecation warning. Parameters ---------- local: str The original (local) name of the relocated attribute target: str The new absolute import name of the relocated attribute version: str The Pyomo version when this move was released (passed to deprecation_warning) remove_in: str The Pyomo version when this deprecation path will be removed (passed to deprecation_warning) msg: str If not None, then this specifies a custom deprecation message to be emitted when the attribute is accessed from its original location. """ if version is None: raise DeveloperError("relocated_module_attribute(): missing 'version' argument") # Historical note: This method only works for Python >= 3.7. There # were backports to previous Python interpreters, but were removed # after SHA 4e04819aaeefc2c08b7718460918885e12343451 if f_globals is None: f_globals = inspect.currentframe().f_back.f_globals if f_globals['__name__'].startswith('importlib.'): raise DeveloperError( "relocated_module_attribute() called from a cythonized " "module without passing f_globals" ) _relocated = f_globals.get('__relocated_attrs__', None) if _relocated is None: f_globals['__relocated_attrs__'] = _relocated = {} _mod_getattr = f_globals.get('__getattr__', None) def __getattr__(name): info = _relocated.get(name, None) if info is not None: target_obj = _import_object(name, *info) f_globals[name] = target_obj return target_obj elif _mod_getattr is not None: return _mod_getattr(name) raise AttributeError( "module '%s' has no attribute '%s'" % (f_globals['__name__'], name) ) f_globals['__getattr__'] = __getattr__ _relocated[local] = (target, version, remove_in, msg) class RenamedClass(type): """Metaclass to provide a deprecation path for renamed classes This metaclass provides a mechanism for renaming old classes while still preserving isinstance / issubclass relationships. Examples -------- >>> from pyomo.common.deprecation import RenamedClass >>> class NewClass(object): ... pass >>> class OldClass(metaclass=RenamedClass): ... __renamed__new_class__ = NewClass ... __renamed__version__ = '6.0' Deriving from the old class generates a warning: >>> class DerivedOldClass(OldClass): ... pass WARNING: DEPRECATED: Declaring class 'DerivedOldClass' derived from 'OldClass'. The class 'OldClass' has been renamed to 'NewClass'. (deprecated in 6.0) ... As does instantiating the old class: >>> old = OldClass() WARNING: DEPRECATED: Instantiating class 'OldClass'. The class 'OldClass' has been renamed to 'NewClass'. (deprecated in 6.0) ... Finally, `isinstance` and `issubclass` still work, for example: >>> isinstance(old, NewClass) True >>> class NewSubclass(NewClass): ... pass >>> new = NewSubclass() >>> isinstance(new, OldClass) WARNING: DEPRECATED: Checking type relative to 'OldClass'. The class 'OldClass' has been renamed to 'NewClass'. (deprecated in 6.0) ... True """ def __new__(cls, name, bases, classdict, *args, **kwargs): new_class = classdict.get('__renamed__new_class__', None) if new_class is not None: def __renamed__new__(cls, *args, **kwargs): cls.__renamed__warning__("Instantiating class '%s'." % (cls.__name__,)) return new_class(*args, **kwargs) classdict['__new__'] = __renamed__new__ def __renamed__warning__(msg): version = classdict.get('__renamed__version__') remove_in = classdict.get('__renamed__remove_in__') deprecation_warning( "%s The class '%s' has been renamed to '%s'." % (msg, name, new_class.__name__), version=version, remove_in=remove_in, calling_frame=_find_calling_frame(1), ) classdict['__renamed__warning__'] = __renamed__warning__ if not classdict.get('__renamed__version__'): raise DeveloperError( "Declaring class '%s' using the RenamedClass metaclass, " "but without specifying the __renamed__version__ class " "attribute" % (name,) ) renamed_bases = [] for base in bases: new_class = getattr(base, '__renamed__new_class__', None) if new_class is not None: base.__renamed__warning__( "Declaring class '%s' derived from '%s'." % (name, base.__name__) ) base = new_class # Flag that this class is derived from a renamed class classdict.setdefault('__renamed__new_class__', None) # Avoid duplicates (in case someone does a diamond between # the renamed class and [a class derived from] the new # class) if base not in renamed_bases: renamed_bases.append(base) # Add the new class as a "base class" of the renamed class (this # makes issubclass(renamed, new_class) work correctly). As we # still never create an actual instance of renamed, this doesn't # affect the API) if new_class is not None and new_class not in renamed_bases: renamed_bases.append(new_class) if new_class is None and '__renamed__new_class__' not in classdict: if not any( hasattr(base, '__renamed__new_class__') for mro in itertools.chain.from_iterable( base.__mro__ for base in renamed_bases ) ): raise TypeError( "Declaring class '%s' using the RenamedClass metaclass, " "but without specifying the __renamed__new_class__ class " "attribute" % (name,) ) return super().__new__( cls, name, tuple(renamed_bases), classdict, *args, **kwargs ) def __instancecheck__(cls, instance): # Note: the warning is issued by subclasscheck return any( cls.__subclasscheck__(c) for c in {type(instance), instance.__class__} ) def __subclasscheck__(cls, subclass): if hasattr(cls, '__renamed__warning__'): cls.__renamed__warning__( "Checking type relative to '%s'." % (cls.__name__,) ) if subclass is cls: return True elif getattr(cls, '__renamed__new_class__') is not None: return issubclass(subclass, getattr(cls, '__renamed__new_class__')) else: return super().__subclasscheck__(subclass)
PypiClean
/MESSI_RCCLab-0.0.12.tar.gz/MESSI_RCCLab-0.0.12/README.md
# MESSI ## Multi Ensamble Strategy for Structural Elucidation Authors: Ariel M. Sarotti & María M. Zanardi Usage: `MESSI_RCCLab: Multi Ensamble Strategy for Structural Elucidation` ### Installation Requirements **MESSI.py** needs python 3.8 or later to work. You can install the module from the command line console using: `pip3 install MESSI` ### User Guide You need to create a folder containing the following files: 1. The gaussian outputs of the NMR and NBO calculations (all conformers for all isomers). 2. The excel file containing the experimental data and the labels of each nucleus associated with each experimental value. See the [project repository](https://github.com/Sarotti-Lab/ML_J_DP4) for more details. We still have to make GitHub repository
PypiClean
/sIBL_GUI-4.0.8.tar.gz/sIBL_GUI-4.0.8/sibl_gui/components/addons/loaderScriptOptions/loaderScriptOptions.py
#********************************************************************************************************************** #*** Future imports. #********************************************************************************************************************** from __future__ import unicode_literals #********************************************************************************************************************** #*** External imports. #********************************************************************************************************************** import os import re import sys if sys.version_info[:2] <= (2, 6): from ordereddict import OrderedDict else: from collections import OrderedDict from PyQt4.QtCore import QString from PyQt4.QtCore import Qt from PyQt4.QtGui import QColor from PyQt4.QtGui import QComboBox from PyQt4.QtGui import QDoubleSpinBox from PyQt4.QtGui import QLabel from PyQt4.QtGui import QLineEdit from PyQt4.QtGui import QPalette #********************************************************************************************************************** #*** Internal imports. #********************************************************************************************************************** import foundations.common import foundations.exceptions import foundations.io import foundations.parsers import foundations.strings import foundations.verbose import umbra.exceptions import umbra.ui.common from foundations.parsers import SectionsFileParser from manager.qwidgetComponent import QWidgetComponentFactory from sibl_gui.components.addons.loaderScriptOptions.views import TemplatesAttributes_QTableWidget from umbra.globals.constants import Constants from umbra.ui.widgets.variable_QPushButton import Variable_QPushButton #********************************************************************************************************************** #*** Module attributes. #********************************************************************************************************************** __author__ = "Thomas Mansencal" __copyright__ = "Copyright (C) 2008 - 2014 - Thomas Mansencal" __license__ = "GPL V3.0 - http://www.gnu.org/licenses/" __maintainer__ = "Thomas Mansencal" __email__ = "[email protected]" __status__ = "Production" __all__ = ["LOGGER", "COMPONENT_UI_FILE", "LoaderScriptOptions"] LOGGER = foundations.verbose.installLogger() COMPONENT_UI_FILE = os.path.join(os.path.dirname(__file__), "ui", "Loader_Script_Options.ui") #********************************************************************************************************************** #*** Module classes and definitions. #********************************************************************************************************************** class LoaderScriptOptions(QWidgetComponentFactory(uiFile=COMPONENT_UI_FILE)): """ | Definesthe :mod:`sibl_gui.components.addons.loaderScriptOptions.loaderScriptOptions` Component Interface class. | It provides override keys on request for the :mod:`sibl_gui.components.addons.loaderScript.loaderScript` Component. | It exposes Templates files **Common Attributes** and **Additional Attributes** sections so that the user can configure the behavior of the Loader Script. """ def __init__(self, parent=None, name=None, *args, **kwargs): """ Initializes the class. :param parent: Object parent. :type parent: QObject :param name: Component name. :type name: unicode :param \*args: Arguments. :type \*args: \* :param \*\*kwargs: Keywords arguments. :type \*\*kwargs: \*\* """ LOGGER.debug("> Initializing '{0}()' class.".format(self.__class__.__name__)) super(LoaderScriptOptions, self).__init__(parent, name, *args, **kwargs) # --- Setting class attributes. --- self.deactivatable = True self.__dockArea = 2 self.__engine = None self.__templatesOutliner = None self.__loaderScript = None self.__views = None self.__commonView = None self.__additionalView = None self.__namespaceSplitter = "|" self.__templatesSettingsDirectory = "templates/" self.__templateSettingsFile = None self.__templateCommonAttributesSection = "Common Attributes" self.__templateAdditionalAttributesSection = "Additional Attributes" self.__templateScriptSection = "Script" self.__optionsToolboxesHeaders = ["Value"] self.__uiLightGrayColor = QColor(240, 240, 240) self.__uiDarkGrayColor = QColor(160, 160, 160) self.__enumSplitter = ";" #****************************************************************************************************************** #*** Attributes properties. #****************************************************************************************************************** @property def dockArea(self): """ Property for **self.__dockArea** attribute. :return: self.__dockArea. :rtype: int """ return self.__dockArea @dockArea.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def dockArea(self, value): """ Setter for **self.__dockArea** attribute. :param value: Attribute value. :type value: int """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "dockArea")) @dockArea.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def dockArea(self): """ Deleter for **self.__dockArea** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "dockArea")) @property def engine(self): """ Property for **self.__engine** attribute. :return: self.__engine. :rtype: QObject """ return self.__engine @engine.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def engine(self, value): """ Setter for **self.__engine** attribute. :param value: Attribute value. :type value: QObject """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "engine")) @engine.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def engine(self): """ Deleter for **self.__engine** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "engine")) @property def templatesOutliner(self): """ Property for **self.__templatesOutliner** attribute. :return: self.__templatesOutliner. :rtype: QWidget """ return self.__templatesOutliner @templatesOutliner.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def templatesOutliner(self, value): """ Setter for **self.__templatesOutliner** attribute. :param value: Attribute value. :type value: QWidget """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "templatesOutliner")) @templatesOutliner.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def templatesOutliner(self): """ Deleter for **self.__templatesOutliner** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "templatesOutliner")) @property def loaderScript(self): """ Property for **self.__loaderScript** attribute. :return: self.__loaderScript. :rtype: QWidget """ return self.__loaderScript @loaderScript.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def loaderScript(self, value): """ Setter for **self.__loaderScript** attribute. :param value: Attribute value. :type value: QWidget """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "loaderScript")) @loaderScript.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def loaderScript(self): """ Deleter for **self.__loaderScript** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "loaderScript")) @property def views(self): """ Property for **self.__views** attribute. :return: self.__views. :rtype: tuple """ return self.__views @views.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def views(self, value): """ Setter for **self.__views** attribute. :param value: Attribute value. :type value: tuple """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "views")) @views.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def views(self): """ Deleter for **self.__views** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "views")) @property def commonView(self): """ Property for **self.__commonView** attribute. :return: self.__commonView. :rtype: QListView """ return self.__commonView @commonView.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def commonView(self, value): """ Setter for **self.__commonView** attribute. :param value: Attribute value. :type value: QListView """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "commonView")) @commonView.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def commonView(self): """ Deleter for **self.__commonView** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "view")) @property def additionalView(self): """ Property for **self.__additionalView** attribute. :return: self.__additionalView. :rtype: QListView """ return self.__additionalView @additionalView.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def additionalView(self, value): """ Setter for **self.__additionalView** attribute. :param value: Attribute value. :type value: QListView """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "additionalView")) @additionalView.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def additionalView(self): """ Deleter for **self.__additionalView** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "view")) @property def namespaceSplitter(self): """ Property for **self.__namespaceSplitter** attribute. :return: self.__namespaceSplitter. :rtype: unicode """ return self.__namespaceSplitter @namespaceSplitter.setter @foundations.exceptions.handleExceptions(AssertionError) def namespaceSplitter(self, value): """ Setter for **self.__namespaceSplitter** attribute. :param value: Attribute value. :type value: unicode """ if value is not None: assert type(value) is unicode, "'{0}' attribute: '{1}' type is not 'unicode'!".format( "namespaceSplitter", value) assert len(value) == 1, "'{0}' attribute: '{1}' has multiples characters!".format( "namespaceSplitter", value) assert not re.search(r"\w", value), "'{0}' attribute: '{1}' is an alphanumeric character!".format( "namespaceSplitter", value) self.__namespaceSplitter = value @namespaceSplitter.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def namespaceSplitter(self): """ Deleter for **self.__namespaceSplitter** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "namespaceSplitter")) @property def templatesSettingsDirectory(self): """ Property for **self.__templatesSettingsDirectory** attribute. :return: self.__templatesSettingsDirectory. :rtype: unicode """ return self.__templatesSettingsDirectory @templatesSettingsDirectory.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def templatesSettingsDirectory(self, value): """ Setter for **self.__templatesSettingsDirectory** attribute. :param value: Attribute value. :type value: unicode """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "templatesSettingsDirectory")) @templatesSettingsDirectory.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def templatesSettingsDirectory(self): """ Deleter for **self.__templatesSettingsDirectory** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "templatesSettingsDirectory")) @property def templateSettingsFile(self): """ Property for **self.__templateSettingsFile** attribute. :return: self.__templateSettingsFile. :rtype: unicode """ return self.__templateSettingsFile @templateSettingsFile.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def templateSettingsFile(self, value): """ Setter for **self.__templateSettingsFile** attribute. :param value: Attribute value. :type value: unicode """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "templateSettingsFile")) @templateSettingsFile.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def templateSettingsFile(self): """ Deleter for **self.__templateSettingsFile** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "templateSettingsFile")) @property def templateCommonAttributesSection(self): """ Property for **self.__templateCommonAttributesSection** attribute. :return: self.__templateCommonAttributesSection. :rtype: unicode """ return self.__templateCommonAttributesSection @templateCommonAttributesSection.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def templateCommonAttributesSection(self, value): """ Setter for **self.__templateCommonAttributesSection** attribute. :param value: Attribute value. :type value: unicode """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "templateCommonAttributesSection")) @templateCommonAttributesSection.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def templateCommonAttributesSection(self): """ Deleter for **self.__templateCommonAttributesSection** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "templateCommonAttributesSection")) @property def templateAdditionalAttributesSection(self): """ Property for **self.__templateAdditionalAttributesSection** attribute. :return: self.__templateAdditionalAttributesSection. :rtype: unicode """ return self.__templateAdditionalAttributesSection @templateAdditionalAttributesSection.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def templateAdditionalAttributesSection(self, value): """ Setter for **self.__templateAdditionalAttributesSection** attribute. :param value: Attribute value. :type value: unicode """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "templateAdditionalAttributesSection")) @templateAdditionalAttributesSection.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def templateAdditionalAttributesSection(self): """ Deleter for **self.__templateAdditionalAttributesSection** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format( self.__class__.__name__, "templateAdditionalAttributesSection")) @property def templateScriptSection(self): """ Property for **self.__templateScriptSection** attribute. :return: self.__templateScriptSection. :rtype: unicode """ return self.__templateScriptSection @templateScriptSection.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def templateScriptSection(self, value): """ Setter for **self.__templateScriptSection** attribute. :param value: Attribute value. :type value: unicode """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "templateScriptSection")) @templateScriptSection.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def templateScriptSection(self): """ Deleter for **self.__templateScriptSection** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "templateScriptSection")) @property def optionsToolboxesHeaders(self): """ Property for **self.__optionsToolboxesHeaders** attribute. :return: self.__optionsToolboxesHeaders. :rtype: list """ return self.__optionsToolboxesHeaders @optionsToolboxesHeaders.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def optionsToolboxesHeaders(self, value): """ Setter for **self.__optionsToolboxesHeaders** attribute. :param value: Attribute value. :type value: list """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "optionsToolboxesHeaders")) @optionsToolboxesHeaders.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def optionsToolboxesHeaders(self): """ Deleter for **self.__optionsToolboxesHeaders** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "optionsToolboxesHeaders")) @property def uiLightGrayColor(self): """ Property for **self.__uiLightGrayColor** attribute. :return: self.__uiLightGrayColor. :rtype: QColor """ return self.__uiLightGrayColor @uiLightGrayColor.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def uiLightGrayColor(self, value): """ Setter for **self.__uiLightGrayColor** attribute. :param value: Attribute value. :type value: QColor """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "uiLightGrayColor")) @uiLightGrayColor.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def uiLightGrayColor(self): """ Deleter for **self.__uiLightGrayColor** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "uiLightGrayColor")) @property def uiDarkGrayColor(self): """ Property for **self.__uiDarkGrayColor** attribute. :return: self.__uiDarkGrayColor. :rtype: QColor """ return self.__uiDarkGrayColor @uiDarkGrayColor.setter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def uiDarkGrayColor(self, value): """ Setter for **self.__uiDarkGrayColor** attribute. :param value: Attribute value. :type value: QColor """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is read only!".format(self.__class__.__name__, "uiDarkGrayColor")) @uiDarkGrayColor.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def uiDarkGrayColor(self): """ Deleter for **self.__uiDarkGrayColor** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "uiDarkGrayColor")) @property def enumSplitter(self): """ Property for **self.__enumSplitter** attribute. :return: self.__enumSplitter. :rtype: unicode """ return self.__enumSplitter @enumSplitter.setter @foundations.exceptions.handleExceptions(AssertionError) def enumSplitter(self, value): """ Setter for **self.__enumSplitter** attribute. :param value: Attribute value. :type value: unicode """ if value is not None: assert type(value) is unicode, "'{0}' attribute: '{1}' type is not 'unicode'!".format( "enumSplitter", value) assert len(value) == 1, "'{0}' attribute: '{1}' has multiples characters!".format("enumSplitter", value) assert not re.search(r"\w", value), "'{0}' attribute: '{1}' is an alphanumeric character!".format( "enumSplitter", value) self.__enumSplitter = value @enumSplitter.deleter @foundations.exceptions.handleExceptions(foundations.exceptions.ProgrammingError) def enumSplitter(self): """ Deleter for **self.__enumSplitter** attribute. """ raise foundations.exceptions.ProgrammingError( "{0} | '{1}' attribute is not deletable!".format(self.__class__.__name__, "enumSplitter")) #****************************************************************************************************************** #*** Class methods. #****************************************************************************************************************** def activate(self, engine): """ Activates the Component. :param engine: Engine to attach the Component to. :type engine: QObject :return: Method success. :rtype: bool """ LOGGER.debug("> Activating '{0}' Component.".format(self.__class__.__name__)) self.__engine = engine self.__templatesOutliner = self.__engine.componentsManager["core.templatesOutliner"] self.__loaderScript = self.__engine.componentsManager["addons.loaderScript"] self.__templatesSettingsDirectory = os.path.join(self.__engine.userApplicationDataDirectory, Constants.settingsDirectory, self.__templatesSettingsDirectory) not foundations.common.pathExists(self.__templatesSettingsDirectory) and \ os.makedirs(self.__templatesSettingsDirectory) self.__templateSettingsFile = None self.activated = True return True def deactivate(self): """ Deactivates the Component. :return: Method success. :rtype: bool """ LOGGER.debug("> Deactivating '{0}' Component.".format(self.__class__.__name__)) self.__engine = None self.__templatesOutliner = None self.__loaderScript = None self.__templatesSettingsDirectory = os.path.basename(os.path.abspath(self.__templatesSettingsDirectory)) self.__templateSettingsFile = None self.activated = False return True def initializeUi(self): """ Initializes the Component ui. :return: Method success. :rtype: bool """ LOGGER.debug("> Initializing '{0}' Component ui.".format(self.__class__.__name__)) umbra.ui.common.setToolBoxHeight(self.Loader_Script_Options_toolBox) self.Common_Attributes_tableWidget.setParent(None) self.Common_Attributes_tableWidget = TemplatesAttributes_QTableWidget(self, message="No Attributes to view!") self.Common_Attributes_tableWidget.setObjectName("Common_Attributes_tableWidget") self.Common_Attributes_page_gridLayout.addWidget(self.Common_Attributes_tableWidget, 0, 0) self.__commonView = self.Common_Attributes_tableWidget self.Additional_Attributes_tableWidget.setParent(None) self.Additional_Attributes_tableWidget = TemplatesAttributes_QTableWidget(self, message="No Attributes to view!") self.Additional_Attributes_tableWidget.setObjectName("Additional_Attributes_tableWidget") self.Additional_Attributes_page_gridLayout.addWidget(self.Additional_Attributes_tableWidget, 0, 0) self.__additionalView = self.Additional_Attributes_tableWidget self.__views = (self.__commonView, self.__additionalView) # Signals / Slots. self.__templatesOutliner.view.selectionModel().selectionChanged.connect( self.__templatesOutliner_view_selectionModel__selectionChanged) self.initializedUi = True return True def uninitializeUi(self): """ Uninitializes the Component ui. :return: Method success. :rtype: bool """ LOGGER.debug("> Uninitializing '{0}' Component ui.".format(self.__class__.__name__)) self.__views = None self.__commonView = None self.__additionalView = None # Signals / Slots. self.__templatesOutliner.view.selectionModel().selectionChanged.disconnect( self.__templatesOutliner_view_selectionModel__selectionChanged) self.initializedUi = False return True def addWidget(self): """ Adds the Component Widget to the engine. :return: Method success. :rtype: bool """ LOGGER.debug("> Adding '{0}' Component Widget.".format(self.__class__.__name__)) self.__engine.addDockWidget(Qt.DockWidgetArea(self.__dockArea), self) return True def removeWidget(self): """ Removes the Component Widget from the engine. :return: Method success. :rtype: bool """ LOGGER.debug("> Removing '{0}' Component Widget.".format(self.__class__.__name__)) self.__engine.removeDockWidget(self) self.setParent(None) return True @foundations.exceptions.handleExceptions(ValueError) def __view_setUi(self, section, view, overrides): """ Defines and sets the given View. :param section: Section attributes. :type section: dict :param view: Table Widget. :type view: QTableWidget :param overrides: Attributes overrides. :type overrides: dict """ LOGGER.debug("> Updating '{0}'.".format(view.objectName())) view.hide() self.__view_clearUi(view) view.setRowCount(len(section)) view.setColumnCount(len(self.__optionsToolboxesHeaders)) view.horizontalHeader().setStretchLastSection(True) view.setHorizontalHeaderLabels(self.__optionsToolboxesHeaders) view.horizontalHeader().hide() palette = QPalette() palette.setColor(QPalette.Base, Qt.transparent) view.setPalette(palette) verticalHeaderLabels = [] for row, attribute in enumerate(section): LOGGER.debug("> Current attribute: '{0}'.".format(attribute)) overridesValue = overrides[attribute] if attribute in overrides else None LOGGER.debug("> Settings value: '{0}'.".format(overridesValue or Constants.nullObject)) attributeCompound = foundations.parsers.getAttributeCompound(attribute, section[attribute]) if attributeCompound.name: verticalHeaderLabels.append(attributeCompound.alias) else: verticalHeaderLabels.append(foundations.strings.getNiceName(attributeCompound.name)) LOGGER.debug("> Attribute type: '{0}'.".format(attributeCompound.type)) if attributeCompound.type == "Boolean": state = True if int(overridesValue if overridesValue is not None else attributeCompound.value) else False item = Variable_QPushButton(self, state, (self.__uiLightGrayColor, self.__uiDarkGrayColor), ("True", "False")) item.setObjectName("Spread_Sheet_pushButton") item.setChecked(state) # Signals / Slots. item.clicked.connect(self.__view__valueChanged) elif attributeCompound.type == "Float": item = QDoubleSpinBox() item.setMinimum(0) item.setMaximum(65535) item.setValue(float(overridesValue if overridesValue is not None else attributeCompound.value)) # Signals / Slots. item.valueChanged.connect(self.__view__valueChanged) elif attributeCompound.type == "Enum": item = QComboBox() comboBoxItems = [enumItem.strip() for enumItem in attributeCompound.value.split(self.__enumSplitter)] item.addItems(comboBoxItems) if overridesValue in comboBoxItems: item.setCurrentIndex(comboBoxItems.index(overridesValue)) # Signals / Slots. item.currentIndexChanged.connect(self.__view__valueChanged) elif attributeCompound.type == "String": item = QLineEdit(QString(overridesValue if overridesValue is not None else attributeCompound.value)) item.setAlignment(Qt.AlignCenter) # Signals / Slots. item.editingFinished.connect(self.__view__valueChanged) else: item = QLabel(QString("Attribute Type Error!")) item.setStyleSheet("QLabel {background-color: rgb(210, 64, 32);}") item.setAlignment(Qt.AlignCenter) item.data = attributeCompound view.setCellWidget(row, 0, item) view.setVerticalHeaderLabels(verticalHeaderLabels) view.show() def __view_clearUi(self, view): """ Defines and sets the given View. :param view: Table Widget. :type view: QTableWidget """ LOGGER.debug("> Clearing '{0}'.".format(view.objectName())) view.clear() view.setRowCount(0) view.setColumnCount(0) def __views_setUi(self): """ Sets the Views. """ selectedTemplates = self.__templatesOutliner.getSelectedTemplates() template = foundations.common.getFirstItem(selectedTemplates) if not (template and foundations.common.pathExists(template.path)): for view in self.__views: self.__view_clearUi(view) return LOGGER.debug("> Attempting to read '{0}' Template settings file.".format(template.name)) commonAttributesOverrides = {} additionalAttributesOverrides = {} templateSettingsDirectory = os.path.join(self.__templatesSettingsDirectory, template.software, template.name) currentTemplateSettingsDirectory = os.path.join(templateSettingsDirectory, template.release) self.__templateSettingsFile = os.path.join(templateSettingsDirectory, template.release, os.path.basename(template.path)) not foundations.common.pathExists(currentTemplateSettingsDirectory) and \ foundations.io.setDirectory(currentTemplateSettingsDirectory) templateSettingsFile = None if foundations.common.pathExists(self.__templateSettingsFile): templateSettingsFile = self.__templateSettingsFile else: for version in sorted(( path for path in os.listdir(templateSettingsDirectory) if re.search(r"\d\.\d\.\d", path)), reverse=True, key=lambda x:(foundations.strings.getVersionRank(x))): path = os.path.join(templateSettingsDirectory, version, os.path.basename(template.path)) if foundations.common.pathExists(path): templateSettingsFile = path break if templateSettingsFile: LOGGER.debug("> Accessing '{0}' Template settings file: '{1}'.".format(template.name, templateSettingsFile)) templateSettingsSectionsFileParser = SectionsFileParser(templateSettingsFile) templateSettingsSectionsFileParser.parse() commonAttributesOverrides.update( templateSettingsSectionsFileParser.sections[self.__templateCommonAttributesSection]) additionalAttributesOverrides.update( templateSettingsSectionsFileParser.sections[self.__templateAdditionalAttributesSection]) else: LOGGER.debug("> No Template settings file found for : '{0}'.".format(template.name)) LOGGER.debug("> Parsing '{0}' Template for '{1}' and '{2}' section.".format( template.name, self.__templateCommonAttributesSection, self.__templateAdditionalAttributesSection)) templateSectionsFileParser = SectionsFileParser(template.path) templateSectionsFileParser.parse(rawSections=(self.__templateScriptSection)) self.__view_setUi(templateSectionsFileParser.sections.get(self.__templateCommonAttributesSection, {}), self.__commonView, commonAttributesOverrides) self.__view_setUi(templateSectionsFileParser.sections.get(self.__templateAdditionalAttributesSection, {}), self.__additionalView, additionalAttributesOverrides) def __view__valueChanged(self, *args): """ Defines the slot triggered by a View when value changed. :param \*args: Arguments. :type \*args: \* """ LOGGER.debug("> Initializing '{0}' Template settings file content.".format(self.__templateSettingsFile)) templateSettingsSectionsFileParser = SectionsFileParser(self.__templateSettingsFile) templateSettingsSectionsFileParser.sections = OrderedDict() for section, view in OrderedDict([(self.__templateCommonAttributesSection, self.Common_Attributes_tableWidget), (self.__templateAdditionalAttributesSection, self.Additional_Attributes_tableWidget)]).iteritems(): templateSettingsSectionsFileParser.sections[section] = OrderedDict() for row in range(view.rowCount()): widget = view.cellWidget(row, 0) if type(widget) is Variable_QPushButton: value = widget.text() == "True" and "1" or "0" elif type(widget) is QDoubleSpinBox: value = foundations.strings.toString(widget.value()) elif type(widget) is QComboBox: value = foundations.strings.toString(widget.currentText()) else: value = foundations.strings.toString(widget.text()) templateSettingsSectionsFileParser.sections[ section][foundations.namespace.removeNamespace(widget.data.name)] = value templateSettingsSectionsFileParser.write() def __templatesOutliner_view_selectionModel__selectionChanged(self, selectedItems, deselectedItems): """ Defines the slot triggered by **templatesOutliner.view** Model when selection changed :param selectedItems: Selected items. :type selectedItems: QItemSelection :param deselectedItems: Deselected items. :type deselectedItems: QItemSelection """ self.__views_setUi() def __updateOverrideKeys(self, view): """ Updates the Loader Script Component override keys. :param view: Table Widget. :type view: QTableWidget :return: Method success. :rtype: bool """ LOGGER.debug("> Updating override keys with '{0}' attributes.".format(view.objectName())) for row in range(view.rowCount()): widget = view.cellWidget(row, 0) if type(widget) is Variable_QPushButton: value = widget.text() == "True" and "1" or "0" elif type(widget) is QDoubleSpinBox: value = foundations.strings.toString(widget.value()) elif type(widget) is QComboBox: value = foundations.strings.toString(widget.currentText()) else: value = foundations.strings.toString(widget.text()) widget.data.value = value LOGGER.debug("> Adding '{0}' override key with value: '{1}'.".format(widget.data.name, widget.data.value)) self.__loaderScript.overrideKeys[widget.data.name] = widget.data return True @foundations.exceptions.handleExceptions(umbra.exceptions.notifyExceptionHandler, Exception) def getOverrideKeys(self): """ Gets override keys. :return: Method success. :rtype: bool """ LOGGER.info("{0} | Updating Loader Script override keys!".format(self.__class__.__name__)) success = True success *= self.__updateOverrideKeys(self.Common_Attributes_tableWidget) or False success *= self.__updateOverrideKeys(self.Additional_Attributes_tableWidget) or False if success: return True else: raise Exception("{0} | Exception raised while retrieving override keys!".format(self.__class__.__name__))
PypiClean
/python-openid3-2.2.6.zip/python-openid3-2.2.6/openid/test/discoverdata.py
import urllib.parse import os.path from openid.yadis.discover import DiscoveryResult, DiscoveryFailure from openid.yadis.constants import YADIS_HEADER_NAME tests_dir = os.path.dirname(__file__) data_path = os.path.join(tests_dir, 'data') testlist = [ # success, input_name, id_name, result_name (True, "equiv", "equiv", "xrds"), (True, "header", "header", "xrds"), (True, "lowercase_header", "lowercase_header", "xrds"), (True, "xrds", "xrds", "xrds"), (True, "xrds_ctparam", "xrds_ctparam", "xrds_ctparam"), (True, "xrds_ctcase", "xrds_ctcase", "xrds_ctcase"), (False, "xrds_html", "xrds_html", "xrds_html"), (True, "redir_equiv", "equiv", "xrds"), (True, "redir_header", "header", "xrds"), (True, "redir_xrds", "xrds", "xrds"), (False, "redir_xrds_html", "xrds_html", "xrds_html"), (True, "redir_redir_equiv", "equiv", "xrds"), (False, "404_server_response", None, None), (False, "404_with_header", None, None), (False, "404_with_meta", None, None), (False, "201_server_response", None, None), (False, "500_server_response", None, None), ] def getDataName(*components): sanitized = [] for part in components: if part in ['.', '..']: raise ValueError elif part: sanitized.append(part) if not sanitized: raise ValueError return os.path.join(data_path, *sanitized) def getExampleXRDS(): filename = getDataName('example-xrds.xml') return file(filename).read() example_xrds = getExampleXRDS() default_test_file = getDataName('test1-discover.txt') discover_tests = {} def readTests(filename): data = file(filename).read() tests = {} for case in data.split('\f\n'): (name, content) = case.split('\n', 1) tests[name] = content return tests def getData(filename, name): global discover_tests try: file_tests = discover_tests[filename] except KeyError: file_tests = discover_tests[filename] = readTests(filename) return file_tests[name] def fillTemplate(test_name, template, base_url, example_xrds): mapping = [ ('URL_BASE/', base_url), ('<XRDS Content>', example_xrds), ('YADIS_HEADER', YADIS_HEADER_NAME), ('NAME', test_name), ] for k, v in mapping: template = template.replace(k, v) return template def generateSample(test_name, base_url, example_xrds=example_xrds, filename=default_test_file): try: template = getData(filename, test_name) except IOError as why: import errno if why[0] == errno.ENOENT: raise KeyError(filename) else: raise return fillTemplate(test_name, template, base_url, example_xrds) def generateResult(base_url, input_name, id_name, result_name, success): input_url = urllib.parse.urljoin(base_url, input_name) # If the name is None then we expect the protocol to fail, which # we represent by None if id_name is None: assert result_name is None return input_url, DiscoveryFailure result = generateSample(result_name, base_url) headers, content = result.split('\n\n', 1) header_lines = headers.split('\n') for header_line in header_lines: if header_line.startswith('Content-Type:'): _, ctype = header_line.split(':', 1) ctype = ctype.strip() break else: ctype = None id_url = urllib.parse.urljoin(base_url, id_name) result = DiscoveryResult(input_url) result.normalized_uri = id_url if success: result.xrds_uri = urllib.parse.urljoin(base_url, result_name) result.content_type = ctype result.response_text = content return input_url, result
PypiClean
/pyFipper-0.1.3.tar.gz/pyFipper-0.1.3/pyrogram/methods/messages/stream_media.py
import math from typing import Union, Optional, BinaryIO import pyrogram from pyrogram import types from pyrogram.file_id import FileId class StreamMedia: async def stream_media( self: "pyrogram.Client", message: Union["types.Message", str], limit: int = 0, offset: int = 0 ) -> Optional[Union[str, BinaryIO]]: """Stream the media from a message chunk by chunk. You can use this method to partially download a file into memory or to selectively download chunks of file. The chunk maximum size is 1 MiB (1024 * 1024 bytes). .. include:: /_includes/usable-by/users-bots.rst Parameters: message (:obj:`~pyrogram.types.Message` | ``str``): Pass a Message containing the media, the media itself (message.audio, message.video, ...) or a file id as string. limit (``int``, *optional*): Limit the amount of chunks to stream. Defaults to 0 (stream the whole media). offset (``int``, *optional*): How many chunks to skip before starting to stream. Defaults to 0 (start from the beginning). Returns: ``Generator``: A generator yielding bytes chunk by chunk Example: .. code-block:: python # Stream the whole media async for chunk in app.stream_media(message): print(len(chunk)) # Stream the first 3 chunks only async for chunk in app.stream_media(message, limit=3): print(len(chunk)) # Stream the rest of the media by skipping the first 3 chunks async for chunk in app.stream_media(message, offset=3): print(len(chunk)) # Stream the last 3 chunks only (negative offset) async for chunk in app.stream_media(message, offset=-3): print(len(chunk)) """ available_media = ("audio", "document", "photo", "sticker", "animation", "video", "voice", "video_note", "new_chat_photo") if isinstance(message, types.Message): for kind in available_media: media = getattr(message, kind, None) if media is not None: break else: raise ValueError("This message doesn't contain any downloadable media") else: media = message if isinstance(media, str): file_id_str = media else: file_id_str = media.file_id file_id_obj = FileId.decode(file_id_str) file_size = getattr(media, "file_size", 0) if offset < 0: if file_size == 0: raise ValueError("Negative offsets are not supported for file ids, pass a Message object instead") chunks = math.ceil(file_size / 1024 / 1024) offset += chunks async for chunk in self.get_file(file_id_obj, file_size, limit, offset): yield chunk
PypiClean
/www_q_z/www_sinochemitc_com.py
import pandas as pd import re from selenium import webdriver from bs4 import BeautifulSoup from lmf.dbv2 import db_write from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.common.exceptions import NoSuchElementException, StaleElementReferenceException from selenium.common.exceptions import WebDriverException from selenium.webdriver.support.select import Select from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import json import time from zhulong4.util.etl import est_html, est_meta, add_info,est_meta_large _name_ = "www_sinochemitc_com" def f1(driver, num): locator = (By.XPATH, "//div[@class='zbdt-news-module-content']/div[1]//a") WebDriverWait(driver, 10).until(EC.presence_of_element_located(locator)) url = driver.current_url try: locator = (By.XPATH, "//span[@class='i-pager-info-c']") cnum = WebDriverWait(driver, 10).until(EC.presence_of_element_located(locator)).text.strip() except: cnum = 1 if num != int(cnum): val = driver.find_element_by_xpath("//div[@class='zbdt-news-module-content']/div[1]//a").get_attribute('href')[-15:] if num == 1: url = re.sub("-[0-9]*\.html", "-1.html", url) else: s = "-%d.html" % (num) if num > 1 else "-1.html" url = re.sub("-[0-9]*\.html", s, url) driver.get(url) locator = (By.XPATH, "//div[@class='zbdt-news-module-content']/div[1]//a[not(contains(@href, '%s'))]" % val) WebDriverWait(driver, 20).until(EC.presence_of_element_located(locator)) page = driver.page_source soup = BeautifulSoup(page, "html.parser") div = soup.find("div", class_='zbdt-news-module-content') lis = div.find_all('div', class_='zbdt-news-item') data = [] for li in lis: a = li.find("a") try: title = a['title'].strip() except: title = a.text.strip() link = a["href"] if 'http' in link: href = link else: href = 'http://www.sinochemitc.com/s/' + link span = li.find('div', class_='zbdt-news-item-date').text.strip() tmp = [title, span, href] data.append(tmp) df = pd.DataFrame(data=data) df['info'] = None return df def f2(driver): locator = (By.XPATH, "//div[@class='zbdt-news-module-content']/div[1]//a") WebDriverWait(driver, 10).until(EC.presence_of_element_located(locator)) try: locator = (By.XPATH, "//span[@class='i-pager-info-p']") total = WebDriverWait(driver, 10).until(EC.presence_of_element_located(locator)).text.strip() num = re.findall(r'(\d+)', total)[0] except: num = 1 driver.quit() return int(num) def f3(driver, url): driver.get(url) locator = (By.XPATH, "//div[@class='Gnews-detail']") WebDriverWait(driver, 10).until(EC.presence_of_all_elements_located(locator)) before = len(driver.page_source) time.sleep(0.1) after = len(driver.page_source) i = 0 while before != after: before = len(driver.page_source) time.sleep(0.1) after = len(driver.page_source) i += 1 if i > 5: break page = driver.page_source soup = BeautifulSoup(page, 'html.parser') div = soup.find('div', class_='Gnews-detail') return div data = [ ["qy_zhaobiao_gg", "http://www.sinochemitc.com/l/7239-18882-1.html", ["name", "ggstart_time", "href", "info"], f1, f2], ["qy_gqita_zhong_liu_gg", "http://www.sinochemitc.com/l/7241-18885-1.html", ["name", "ggstart_time", "href", "info"], f1, f2], ] def work(conp, **args): est_meta_large(conp, data=data, diqu="中国中化集团有限公司", **args) est_html(conp, f=f3, **args) if __name__ == '__main__': work(conp=["postgres", "since2015", "192.168.3.171", "guoziqiang3", "www_sinochemitc_com"]) # driver = webdriver.Chrome() # url = "http://www.sinochemitc.com/l/7239-18882-1.html" # driver.get(url) # df = f2(driver) # print(df) # # driver=webdriver.Chrome() # url = "http://www.sinochemitc.com/l/7239-18882-1.html" # driver.get(url) # for i in range(11, 13): # df=f1(driver, i) # print(df.values) # for i in df[2].values: # f = f3(driver, i) # print(f)
PypiClean
/kraken-4.3.11.tar.gz/kraken-4.3.11/docs/training.rst
.. _training: Training kraken =============== kraken is an optical character recognition package that can be trained fairly easily for a large number of scripts. In contrast to other system requiring segmentation down to glyph level before classification, it is uniquely suited for the recognition of connected scripts, because the neural network is trained to assign correct character to unsegmented training data. Both segmentation, the process finding lines and regions on a page image, and recognition, the conversion of line images into text, can be trained in kraken. To train models for either we require training data, i.e. examples of page segmentations and transcriptions that are similar to what we want to be able to recognize. For segmentation the examples are the location of baselines, i.e. the imaginary lines the text is written on, and polygons of regions. For recognition these are the text contained in a line. There are multiple ways to supply training data but the easiest is through PageXML or ALTO files. Installing kraken ----------------- The easiest way to install and use kraken is through `conda <https://www.anaconda.com/download/>`_. kraken works both on Linux and Mac OS X. After installing conda, download the environment file and create the environment for kraken: .. code-block:: console $ wget https://raw.githubusercontent.com/mittagessen/kraken/main/environment.yml $ conda env create -f environment.yml Each time you want to use the kraken environment in a shell is has to be activated first: .. code-block:: console $ conda activate kraken Image acquisition and preprocessing ----------------------------------- First a number of high quality scans, preferably color or grayscale and at least 300dpi are required. Scans should be in a lossless image format such as TIFF or PNG, images in PDF files have to be extracted beforehand using a tool such as ``pdftocairo`` or ``pdfimages``. While each of these requirements can be relaxed to a degree, the final accuracy will suffer to some extent. For example, only slightly compressed JPEG scans are generally suitable for training and recognition. Depending on the source of the scans some preprocessing such as splitting scans into pages, correcting skew and warp, and removing speckles can be advisable although it isn't strictly necessary as the segmenter can be trained to treat noisy material with a high accuracy. A fairly user-friendly software for semi-automatic batch processing of image scans is `Scantailor <http://scantailor.org>`_ albeit most work can be done using a standard image editor. The total number of scans required depends on the kind of model to train (segmentation or recognition), the complexity of the layout or the nature of the script to recognize. Only features that are found in the training data can later be recognized, so it is important that the coverage of typographic features is exhaustive. Training a small segmentation model for a particular kind of material might require less than a few hundred samples while a general model can well go into the thousands of pages. Likewise a specific recognition model for printed script with a small grapheme inventory such as Arabic or Hebrew requires around 800 lines, with manuscripts, complex scripts (such as polytonic Greek), and general models for multiple typefaces and hands needing more training data for the same accuracy. There is no hard rule for the amount of training data and it may be required to retrain a model after the initial training data proves insufficient. Most ``western`` texts contain between 25 and 40 lines per page, therefore upward of 30 pages have to be preprocessed and later transcribed. Annotation and transcription ---------------------------- kraken does not provide internal tools for the annotation and transcription of baselines, regions, and text. There are a number of tools available that can create ALTO and PageXML files containing the requisite information for either segmentation or recognition training: `escriptorium <https://escripta.hypotheses.org>`_ integrates kraken tightly including training and inference, `Aletheia <https://www.primaresearch.org/tools/Aletheia>`_ is a powerful desktop application that can create fine grained annotations. Dataset Compilation ------------------- .. _compilation: Training -------- .. _training_step: The training data, e.g. a collection of PAGE XML documents, obtained through annotation and transcription may now be used to train segmentation and/or transcription models. The training data in ``output_dir`` may now be used to train a new model by invoking the ``ketos train`` command. Just hand a list of images to the command such as: .. code-block:: console $ ketos train output_dir/*.png to start training. A number of lines will be split off into a separate held-out set that is used to estimate the actual recognition accuracy achieved in the real world. These are never shown to the network during training but will be recognized periodically to evaluate the accuracy of the model. Per default the validation set will comprise of 10% of the training data. Basic model training is mostly automatic albeit there are multiple parameters that can be adjusted: --output Sets the prefix for models generated during training. They will best as ``prefix_epochs.mlmodel``. --report How often evaluation passes are run on the validation set. It is an integer equal or larger than 1 with 1 meaning a report is created each time the complete training set has been seen by the network. --savefreq How often intermediate models are saved to disk. It is an integer with the same semantics as ``--report``. --load Continuing training is possible by loading an existing model file with ``--load``. To continue training from a base model with another training set refer to the full :ref:`ketos <ketos>` documentation. --preload Enables/disables preloading of the training set into memory for accelerated training. The default setting preloads data sets with less than 2500 lines, explicitly adding ``--preload`` will preload arbitrary sized sets. ``--no-preload`` disables preloading in all circumstances. Training a network will take some time on a modern computer, even with the default parameters. While the exact time required is unpredictable as training is a somewhat random process a rough guide is that accuracy seldom improves after 50 epochs reached between 8 and 24 hours of training. When to stop training is a matter of experience; the default setting employs a fairly reliable approach known as `early stopping <https://en.wikipedia.org/wiki/Early_stopping>`_ that stops training as soon as the error rate on the validation set doesn't improve anymore. This will prevent `overfitting <https://en.wikipedia.org/wiki/Overfitting>`_, i.e. fitting the model to recognize only the training data properly instead of the general patterns contained therein. .. code-block:: console $ ketos train output_dir/*.png Building training set [####################################] 100% Building validation set [####################################] 100% [270.2364] alphabet mismatch {'9', '8', '݂', '3', '݀', '4', '1', '7', '5', '\xa0'} Initializing model ✓ Accuracy report (0) -1.5951 3680 9550 epoch 0/-1 [####################################] 788/788 Accuracy report (1) 0.0245 3504 3418 epoch 1/-1 [####################################] 788/788 Accuracy report (2) 0.8445 3504 545 epoch 2/-1 [####################################] 788/788 Accuracy report (3) 0.9541 3504 161 epoch 3/-1 [------------------------------------] 13/788 0d 00:22:09 ... By now there should be a couple of models model_name-1.mlmodel, model_name-2.mlmodel, ... in the directory the script was executed in. Lets take a look at each part of the output. .. code-block:: console Building training set [####################################] 100% Building validation set [####################################] 100% shows the progress of loading the training and validation set into memory. This might take a while as preprocessing the whole set and putting it into memory is computationally intensive. Loading can be made faster without preloading at the cost of performing preprocessing repeatedly during the training process. .. code-block:: console [270.2364] alphabet mismatch {'9', '8', '݂', '3', '݀', '4', '1', '7', '5', '\xa0'} is a warning about missing characters in either the validation or training set, i.e. that the alphabets of the sets are not equal. Increasing the size of the validation set will often remedy this warning. .. code-block:: console Accuracy report (2) 0.8445 3504 545 this line shows the results of the validation set evaluation. The error after 2 epochs is 545 incorrect characters out of 3504 characters in the validation set for a character accuracy of 84.4%. It should decrease fairly rapidly. If accuracy remains around 0.30 something is amiss, e.g. non-reordered right-to-left or wildly incorrect transcriptions. Abort training, correct the error(s) and start again. After training is finished the best model is saved as ``model_name_best.mlmodel``. It is highly recommended to also archive the training log and data for later reference. ``ketos`` can also produce more verbose output with training set and network information by appending one or more ``-v`` to the command: .. code-block:: console $ ketos -vv train syr/*.png [0.7272] Building ground truth set from 876 line images [0.7281] Taking 88 lines from training for evaluation ... [0.8479] Training set 788 lines, validation set 88 lines, alphabet 48 symbols [0.8481] alphabet mismatch {'\xa0', '0', ':', '݀', '܇', '݂', '5'} [0.8482] grapheme count [0.8484] SPACE 5258 [0.8484] ܐ 3519 [0.8485] ܘ 2334 [0.8486] ܝ 2096 [0.8487] ܠ 1754 [0.8487] ܢ 1724 [0.8488] ܕ 1697 [0.8489] ܗ 1681 [0.8489] ܡ 1623 [0.8490] ܪ 1359 [0.8491] ܬ 1339 [0.8491] ܒ 1184 [0.8492] ܥ 824 [0.8492] . 811 [0.8493] COMBINING DOT BELOW 646 [0.8493] ܟ 599 [0.8494] ܫ 577 [0.8495] COMBINING DIAERESIS 488 [0.8495] ܚ 431 [0.8496] ܦ 428 [0.8496] ܩ 307 [0.8497] COMBINING DOT ABOVE 259 [0.8497] ܣ 256 [0.8498] ܛ 204 [0.8498] ܓ 176 [0.8499] ܀ 132 [0.8499] ܙ 81 [0.8500] * 66 [0.8501] ܨ 59 [0.8501] ܆ 40 [0.8502] [ 40 [0.8503] ] 40 [0.8503] 1 18 [0.8504] 2 11 [0.8504] ܇ 9 [0.8505] 3 8 [0.8505] 6 [0.8506] 5 5 [0.8506] NO-BREAK SPACE 4 [0.8507] 0 4 [0.8507] 6 4 [0.8508] : 4 [0.8508] 8 4 [0.8509] 9 3 [0.8510] 7 3 [0.8510] 4 3 [0.8511] SYRIAC FEMININE DOT 1 [0.8511] SYRIAC RUKKAKHA 1 [0.8512] Encoding training set [0.9315] Creating new model [1,1,0,48 Lbx100 Do] with 49 outputs [0.9318] layer type params [0.9350] 0 rnn direction b transposed False summarize False out 100 legacy None [0.9361] 1 dropout probability 0.5 dims 1 [0.9381] 2 linear augmented False out 49 [0.9918] Constructing RMSprop optimizer (lr: 0.001, momentum: 0.9) [0.9920] Set OpenMP threads to 4 [0.9920] Moving model to device cpu [0.9924] Starting evaluation run indicates that the training is running on 788 transcribed lines and a validation set of 88 lines. 49 different classes, i.e. Unicode code points, where found in these 788 lines. These affect the output size of the network; obviously only these 49 different classes/code points can later be output by the network. Importantly, we can see that certain characters occur markedly less often than others. Characters like the Syriac feminine dot and numerals that occur less than 10 times will most likely not be recognized well by the trained net. Evaluation and Validation ------------------------- While output during training is detailed enough to know when to stop training one usually wants to know the specific kinds of errors to expect. Doing more in-depth error analysis also allows to pinpoint weaknesses in the training data, e.g. above average error rates for numerals indicate either a lack of representation of numerals in the training data or erroneous transcription in the first place. First the trained model has to be applied to some line transcriptions with the `ketos test` command: .. code-block:: console $ ketos test -m syriac_best.mlmodel lines/*.png Loading model syriac_best.mlmodel ✓ Evaluating syriac_best.mlmodel Evaluating [#-----------------------------------] 3% 00:04:56 ... After all lines have been processed a evaluation report will be printed: .. code-block:: console === report === 35619 Characters 336 Errors 99.06% Accuracy 157 Insertions 81 Deletions 98 Substitutions Count Missed %Right 27046 143 99.47% Syriac 7015 52 99.26% Common 1558 60 96.15% Inherited Errors Correct-Generated 25 { } - { COMBINING DOT BELOW } 25 { COMBINING DOT BELOW } - { } 15 { . } - { } 15 { COMBINING DIAERESIS } - { } 12 { ܢ } - { } 10 { } - { . } 8 { COMBINING DOT ABOVE } - { } 8 { ܝ } - { } 7 { ZERO WIDTH NO-BREAK SPACE } - { } 7 { ܆ } - { } 7 { SPACE } - { } 7 { ܣ } - { } 6 { } - { ܝ } 6 { COMBINING DOT ABOVE } - { COMBINING DIAERESIS } 5 { ܙ } - { } 5 { ܬ } - { } 5 { } - { ܢ } 4 { NO-BREAK SPACE } - { } 4 { COMBINING DIAERESIS } - { COMBINING DOT ABOVE } 4 { } - { ܒ } 4 { } - { COMBINING DIAERESIS } 4 { ܗ } - { } 4 { } - { ܬ } 4 { } - { ܘ } 4 { ܕ } - { ܢ } 3 { } - { ܕ } 3 { ܐ } - { } 3 { ܗ } - { ܐ } 3 { ܝ } - { ܢ } 3 { ܀ } - { . } 3 { } - { ܗ } ..... The first section of the report consists of a simple accounting of the number of characters in the ground truth, the errors in the recognition output and the resulting accuracy in per cent. The next table lists the number of insertions (characters occurring in the ground truth but not in the recognition output), substitutions (misrecognized characters), and deletions (superfluous characters recognized by the model). Next is a grouping of errors (insertions and substitutions) by Unicode script. The final part of the report are errors sorted by frequency and a per character accuracy report. Importantly most errors are incorrect recognition of combining marks such as dots and diaereses. These may have several sources: different dot placement in training and validation set, incorrect transcription such as non-systematic transcription, or unclean speckled scans. Depending on the error source, correction most often involves adding more training data and fixing transcriptions. Sometimes it may even be advisable to remove unrepresentative data from the training set. Recognition ----------- The ``kraken`` utility is employed for all non-training related tasks. Optical character recognition is a multi-step process consisting of binarization (conversion of input images to black and white), page segmentation (extracting lines from the image), and recognition (converting line image to character sequences). All of these may be run in a single call like this: .. code-block:: console $ kraken -i INPUT_IMAGE OUTPUT_FILE binarize segment ocr -m MODEL_FILE producing a text file from the input image. There are also `hocr <http://hocr.info>`_ and `ALTO <https://www.loc.gov/standards/alto/>`_ output formats available through the appropriate switches: .. code-block:: console $ kraken -i ... ocr -h $ kraken -i ... ocr -a For debugging purposes it is sometimes helpful to run each step manually and inspect intermediate results: .. code-block:: console $ kraken -i INPUT_IMAGE BW_IMAGE binarize $ kraken -i BW_IMAGE LINES segment $ kraken -i BW_IMAGE OUTPUT_FILE ocr -l LINES ... It is also possible to recognize more than one file at a time by just chaining ``-i ... ...`` clauses like this: .. code-block:: console $ kraken -i input_1 output_1 -i input_2 output_2 ... Finally, there is a central repository containing freely available models. Getting a list of all available models: .. code-block:: console $ kraken list Retrieving model metadata for a particular model: .. code-block:: console $ kraken show arabic-alam-al-kutub name: arabic-alam-al-kutub.mlmodel An experimental model for Classical Arabic texts. Network trained on 889 lines of [0] as a test case for a general Classical Arabic model. Ground truth was prepared by Sarah Savant <[email protected]> and Maxim Romanov <[email protected]>. Vocalization was omitted in the ground truth. Training was stopped at ~35000 iterations with an accuracy of 97%. [0] Ibn al-Faqīh (d. 365 AH). Kitāb al-buldān. Edited by Yūsuf al-Hādī, 1st edition. Bayrūt: ʿĀlam al-kutub, 1416 AH/1996 CE. alphabet: !()-.0123456789:[] «»،؟ءابةتثجحخدذرزسشصضطظعغفقكلمنهوىي ARABIC MADDAH ABOVE, ARABIC HAMZA ABOVE, ARABIC HAMZA BELOW and actually fetching the model: .. code-block:: console $ kraken get arabic-alam-al-kutub The downloaded model can then be used for recognition by the name shown in its metadata, e.g.: .. code-block:: console $ kraken -i INPUT_IMAGE OUTPUT_FILE binarize segment ocr -m arabic-alam-al-kutub.mlmodel For more documentation see the kraken `website <http://kraken.re>`_.
PypiClean
/etsy_apiv3-2.1.5-py3-none-any.whl/etsy_apiv3/resources/ReceiptResource.py
from dataclasses import dataclass from etsy_apiv3.utils import EtsySession, Response from etsy_apiv3.models import Receipt, ReceiptType, Transaction from typing import Union from etsy_apiv3.utils.EtsyOauth2Session import EtsyOauth2Session @dataclass class ReceiptResource: """ Receipt Resource is the utility class to get receipts from Etsy """ session: Union[EtsySession, EtsyOauth2Session] def get_receipts(self, shop_id: int, limit=25, offset=0, type: ReceiptType = ReceiptType.UNSHIPPED, **kwargs) -> Response[Receipt]: """ Get Shop Receipts By Shop ID And Receipt Type Args: shop_id (int): Your SHOP ID limit (int, optional): Limit Of Receipt Objects. Defaults to 25. offset (int, optional): How many receipts to skip. Defaults to 0. type (ReceiptType, optional): Receipt type to find. Defaults to ReceiptType.UNSHIPPED. Returns: Response[Receipt]: Create Response Object Derived from the Receipt Object from json """ endpoint = f"shops/{shop_id}/receipts" params = {"limit": limit, "offset": offset} params.update(type) params.update(kwargs) json = self.session.request(endpoint=endpoint, params=params) return Response[Receipt](**json) def get_receipt_by_id(self, shop_id: int, receipt_id: int) -> Receipt: """ Find One Receipt By Shop ID And Receipt ID Args: shop_id (int): Your SHOP ID receipt_id (int): Receipt ID Returns: Receipt: Create Receipt Object from json """ endpoint = f"shops/{shop_id}/receipts/{receipt_id}" json = self.session.request(endpoint=endpoint) return Receipt(**json) async def aget_receipt_by_id(self, shop_id: int, receipt_id: int) -> Receipt: endpoint = f"shops/{shop_id}/receipts/{receipt_id}" json = await self.session.async_request(endpoint) return Receipt(**json) async def aget_receipts(self, shop_id: int, limit: int = 25, offset: int = 0, type: ReceiptType = ReceiptType.UNSHIPPED, **kwargs): """ Get Shop Receipts By Shop ID And Receipt Type Args: shop_id (int): Your SHOP ID limit (int, optional): Limit Of Receipt Objects. Defaults to 25. offset (int, optional): How many receipts to skip. Defaults to 0. type (ReceiptType, optional): Receipt type to find. Defaults to ReceiptType.UNSHIPPED. Returns: Response[Receipt]: Create Response Object Derived from the Receipt Object from json """ endpoint = f"shops/{shop_id}/receipts" params = {"limit": limit, "offset": offset} params.update(type) params.update(kwargs) json = await self.session.async_request(endpoint=endpoint, params=params) return Response[Receipt](**json) def create_shipment(self, shop_id: int, receipt_id: int, tracking_number: str, carrier_name: str, send_bcc: bool = True, note_to_buyer: str = "") -> Receipt: """ Adds tracking information to the receipt object Args: shop_id (int): SHOP ID receipt_id (int): Target Receipt ID tracking_number (str): Tracking Number carrier_name (str): Carrier Name Ex: UPS send_bcc (bool, optional): Send Mail. Defaults to True. note_to_buyer (str, optional): Note To Buyer From Seller. Defaults to "". Returns: Receipt: Receipt Object from json """ endpoint = f"shops/{shop_id}/receipts/{receipt_id}/tracking" data = { "tracking_code":tracking_number, "carrier_name":carrier_name, "send_bcc":send_bcc, "note_to_buyer":note_to_buyer } json = self.session.request(endpoint=endpoint, method="POST", data=data) return Receipt(**json) def update_shop_receipt(self, shop_id: int, receipt_id: int, was_shipped: bool = None, was_paid: bool = None) -> Receipt: endpoint = f"shops/{shop_id}/receipts/{receipt_id}" data = { "was_shipped": was_shipped, "was_paid": was_paid } response = self.session.request(endpoint, "PUT", data=data) return Receipt(**response) def get_transactions_by_listing(self, shop_id: int, listing_id: int, limit: int = 25, offset: int = 0) -> Response[Transaction]: endpoint = f"shops/{shop_id}/listings/{listing_id}/transactions" params = { "limit": limit, "offset": offset } response = self.session.request(endpoint, params=params) return Response[Transaction](**response) def get_transactions_by_receipt(self, shop_id: int, receipt_id: int) -> Response[Transaction]: endpoint = f"shops/{shop_id}/receipts/{receipt_id}/transactions" response = self.session.request(endpoint) return Response[Transaction](**response) def get_transaction_by_transaction_id(self, shop_id: int, transaction_id: int) -> Transaction: endpoint = f"shops/{shop_id}/transactions/{transaction_id}" response = self.session.request(endpoint) return Transaction(**response) def get_receipt_transactions_by_shop(self, shop_id: int, limit: int = 25, offset: int = 0) -> Response[Transaction]: endpoint = f"shops/{shop_id}/transactions" params = { "limit": limit, "offset": offset } response = self.session.request(endpoint, params=params) return Response[Transaction](**response)
PypiClean
/pulumi_oci-1.9.0a1693465256.tar.gz/pulumi_oci-1.9.0a1693465256/pulumi_oci/database/get_data_guard_associations.py
import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._inputs import * __all__ = [ 'GetDataGuardAssociationsResult', 'AwaitableGetDataGuardAssociationsResult', 'get_data_guard_associations', 'get_data_guard_associations_output', ] @pulumi.output_type class GetDataGuardAssociationsResult: """ A collection of values returned by getDataGuardAssociations. """ def __init__(__self__, data_guard_associations=None, database_id=None, filters=None, id=None): if data_guard_associations and not isinstance(data_guard_associations, list): raise TypeError("Expected argument 'data_guard_associations' to be a list") pulumi.set(__self__, "data_guard_associations", data_guard_associations) if database_id and not isinstance(database_id, str): raise TypeError("Expected argument 'database_id' to be a str") pulumi.set(__self__, "database_id", database_id) if filters and not isinstance(filters, list): raise TypeError("Expected argument 'filters' to be a list") pulumi.set(__self__, "filters", filters) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) @property @pulumi.getter(name="dataGuardAssociations") def data_guard_associations(self) -> Sequence['outputs.GetDataGuardAssociationsDataGuardAssociationResult']: """ The list of data_guard_associations. """ return pulumi.get(self, "data_guard_associations") @property @pulumi.getter(name="databaseId") def database_id(self) -> str: """ The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the reporting database. """ return pulumi.get(self, "database_id") @property @pulumi.getter def filters(self) -> Optional[Sequence['outputs.GetDataGuardAssociationsFilterResult']]: return pulumi.get(self, "filters") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") class AwaitableGetDataGuardAssociationsResult(GetDataGuardAssociationsResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetDataGuardAssociationsResult( data_guard_associations=self.data_guard_associations, database_id=self.database_id, filters=self.filters, id=self.id) def get_data_guard_associations(database_id: Optional[str] = None, filters: Optional[Sequence[pulumi.InputType['GetDataGuardAssociationsFilterArgs']]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetDataGuardAssociationsResult: """ This data source provides the list of Data Guard Associations in Oracle Cloud Infrastructure Database service. Lists all Data Guard associations for the specified database. ## Example Usage ```python import pulumi import pulumi_oci as oci test_data_guard_associations = oci.Database.get_data_guard_associations(database_id=oci_database_database["test_database"]["id"]) ``` :param str database_id: The database [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm). """ __args__ = dict() __args__['databaseId'] = database_id __args__['filters'] = filters opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('oci:Database/getDataGuardAssociations:getDataGuardAssociations', __args__, opts=opts, typ=GetDataGuardAssociationsResult).value return AwaitableGetDataGuardAssociationsResult( data_guard_associations=pulumi.get(__ret__, 'data_guard_associations'), database_id=pulumi.get(__ret__, 'database_id'), filters=pulumi.get(__ret__, 'filters'), id=pulumi.get(__ret__, 'id')) @_utilities.lift_output_func(get_data_guard_associations) def get_data_guard_associations_output(database_id: Optional[pulumi.Input[str]] = None, filters: Optional[pulumi.Input[Optional[Sequence[pulumi.InputType['GetDataGuardAssociationsFilterArgs']]]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetDataGuardAssociationsResult]: """ This data source provides the list of Data Guard Associations in Oracle Cloud Infrastructure Database service. Lists all Data Guard associations for the specified database. ## Example Usage ```python import pulumi import pulumi_oci as oci test_data_guard_associations = oci.Database.get_data_guard_associations(database_id=oci_database_database["test_database"]["id"]) ``` :param str database_id: The database [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm). """ ...
PypiClean
/bittrex-websocket-aio-0.0.0.3.0.tar.gz/bittrex-websocket-aio-0.0.0.3.0/README.rst
|logo| bittrex-websocket-aio ============================ |pypi-v| |pypi-pyversions| |pypi-l| |pypi-wheel| .. |pypi-v| image:: https://img.shields.io/pypi/v/bittrex-websocket-aio.svg :target: https://pypi.python.org/pypi/bittrex-websocket-aio .. |pypi-pyversions| image:: https://img.shields.io/pypi/pyversions/bittrex-websocket-aio.svg :target: https://pypi.python.org/pypi/bittrex-websocket-aio .. |pypi-l| image:: https://img.shields.io/pypi/l/bittrex-websocket-aio.svg :target: https://pypi.python.org/pypi/bittrex-websocket-aio .. |pypi-wheel| image:: https://img.shields.io/pypi/wheel/bittrex-websocket-aio.svg :target: https://pypi.python.org/pypi/bittrex-websocket-aio .. |logo| image:: /resources/py_btrx.svg :width: 60px What is ``bittrex-websocket-aio``? ---------------------------------- Python Bittrex WebSocket (PBW) is the first unofficial Python wrapper for the `Bittrex Websocket API <https://github.com/Bittrex/bittrex.github.io>`_. It provides users with a simple and easy to use interface to the `Bittrex Exchange <https://bittrex.com>`_. Users can use it to access real-time public data (e.g exchange status, summary ticks and order fills) and account-level data such as order and balance status. The goal of the package is to serve as a foundation block which users can use to build upon their applications. Examples usages can include maintaining live order books, recording trade history, analysing order flow and many more. The version is built upon ``asyncio`` which is Python's standard asynchronous I/O framework. If you are looking for a ``non-async`` version or you are using Python=2.7, then take a look at my other library: `bittrex-websocket <https://github.com/slazarov/python-bittrex-websocket>`_. -------------- Documentation http://python-bittrex-websocket-docs.readthedocs.io/en/latest/ Getting started/How-to http://python-bittrex-websocket-docs.readthedocs.io/en/latest/howto.html Methods http://python-bittrex-websocket-docs.readthedocs.io/en/latest/methods.html Changelog http://python-bittrex-websocket-docs.readthedocs.io/en/latest/changelog.html#bittrex-websocket-aio I am constantly working on new features. Make sure you stay up to date by regularly checking the official docs! **Having an issue or a question? Found a bug or perhaps you want to contribute? Open an issue!** Quick Start ----------- .. code:: bash pip install bittrex-websocket-aio .. code:: python #!/usr/bin/python # /examples/ticker_updates.py # Sample script showing how subscribe_to_exchange_deltas() works. # Overview: # --------- # 1) Creates a custom ticker_updates_container dict. # 2) Subscribes to N tickers and starts receiving market data. # 3) When information is received, checks if the ticker is # in ticker_updates_container and adds it if not. # 4) Disconnects when it has data information for each ticker. from bittrex_websocket.websocket_client import BittrexSocket from time import sleep def main(): class MySocket(BittrexSocket): async def on_public(self, msg): name = msg['M'] if name not in ticker_updates_container: ticker_updates_container[name] = msg print('Just received market update for {}.'.format(name)) # Create container ticker_updates_container = {} # Create the socket instance ws = MySocket() # Enable logging ws.enable_log() # Define tickers tickers = ['BTC-ETH', 'BTC-NEO', 'BTC-ZEC', 'ETH-NEO', 'ETH-ZEC'] # Subscribe to ticker information for ticker in tickers: sleep(0.01) ws.subscribe_to_exchange_deltas([ticker]) # Users can also subscribe without introducing delays during invoking but # it is the recommended way when you are subscribing to a large list of tickers. # ws.subscribe_to_exchange_deltas(tickers) while len(ticker_updates_container) < len(tickers): sleep(1) else: print('We have received updates for all tickers. Closing...') ws.disconnect() sleep(10) if __name__ == "__main__": main() Disclaimer ---------- I am not associated with Bittrex. Use the library at your own risk, I don't bear any responsibility if you end up losing your money.
PypiClean
/django_bpp-1.0.9-py3-none-any.whl/django_bpp/staticroot/os-homedir/readme.md
# os-homedir [![Build Status](https://travis-ci.org/sindresorhus/os-homedir.svg?branch=master)](https://travis-ci.org/sindresorhus/os-homedir) > Node.js 4 [`os.homedir()`](https://nodejs.org/api/os.html#os_os_homedir) [ponyfill](https://ponyfill.com) ## Install ``` $ npm install --save os-homedir ``` ## Usage ```js const osHomedir = require('os-homedir'); console.log(osHomedir()); //=> '/Users/sindresorhus' ``` ## Related - [user-home](https://github.com/sindresorhus/user-home) - Same as this module but caches the result - [home-or-tmp](https://github.com/sindresorhus/home-or-tmp) - Get the user home directory with fallback to the system temp directory ## License MIT © [Sindre Sorhus](https://sindresorhus.com)
PypiClean
/ansible-cmdb-1.30.tar.gz/ansible-cmdb-1.30/src/ansiblecmdb/util.py
import copy import os import stat def is_executable(path): """ Determine whether `path` points to an executable file. """ return stat.S_IXUSR & os.stat(path)[stat.ST_MODE] def deepupdate(target, src, overwrite=True): """Deep update target list, dict or set or other iterable with src For each k,v in src: if k doesn't exist in target, it is deep copied from src to target. Otherwise, if v is a list, target[k] is extended with src[k]. If v is a set, target[k] is updated with v, If v is a dict, recursively deep-update it. If `overwrite` is False, existing values in target will not be overwritten. Examples: >>> t = {'name': 'Ferry', 'hobbies': ['programming', 'sci-fi']} >>> deepupdate(t, {'hobbies': ['gaming']}) >>> print t {'name': 'Ferry', 'hobbies': ['programming', 'sci-fi', 'gaming']} """ for k, v in src.items(): if type(v) == list: if not k in target: target[k] = copy.deepcopy(v) elif overwrite is True: target[k].extend(v) elif type(v) == dict: if not k in target: target[k] = copy.deepcopy(v) else: deepupdate(target[k], v, overwrite=overwrite) elif type(v) == set: if not k in target: target[k] = v.copy() elif overwrite is True: if type(target[k]) == list: target[k].extend(v) elif type(target[k]) == set: target[k].update(v) else: raise TypeError("Cannot update {} with {}".format(type(target[k]), type(v))) else: if k not in target or overwrite is True: target[k] = copy.copy(v) def find_path(dirs, path_to_find): """ Go through a bunch of dirs and see if dir+path_to_find exists there. Returns the first dir that matches. Otherwise, return None. """ for dir in dirs: if os.path.exists(os.path.join(dir, path_to_find)): return dir return None def to_bool(s): """ Convert string `s` into a boolean. `s` can be 'true', 'True', 1, 'false', 'False', 0. Examples: >>> to_bool("true") True >>> to_bool("0") False >>> to_bool(True) True """ if isinstance(s, bool): return s elif s.lower() in ['true', '1']: return True elif s.lower() in ['false', '0']: return False else: raise ValueError("Can't cast '%s' to bool" % (s))
PypiClean
/yt-dlp-custom-0.0.1.tar.gz/yt-dlp-custom-0.0.1/yt_dlp/extractor/ninegag.py
from .common import InfoExtractor from ..utils import ( ExtractorError, determine_ext, int_or_none, traverse_obj, unescapeHTML, url_or_none, ) class NineGagIE(InfoExtractor): IE_NAME = '9gag' IE_DESC = '9GAG' _VALID_URL = r'https?://(?:www\.)?9gag\.com/gag/(?P<id>[^/?&#]+)' _TESTS = [{ 'url': 'https://9gag.com/gag/ae5Ag7B', 'info_dict': { 'id': 'ae5Ag7B', 'ext': 'webm', 'title': 'Capybara Agility Training', 'upload_date': '20191108', 'timestamp': 1573237208, 'thumbnail': 'https://img-9gag-fun.9cache.com/photo/ae5Ag7B_460s.jpg', 'categories': ['Awesome'], 'tags': ['Awesome'], 'duration': 44, 'like_count': int, 'dislike_count': int, 'comment_count': int, } }, { # HTML escaped title 'url': 'https://9gag.com/gag/av5nvyb', 'only_matching': True, }, { # Non Anonymous Uploader 'url': 'https://9gag.com/gag/ajgp66G', 'info_dict': { 'id': 'ajgp66G', 'ext': 'webm', 'title': 'Master Shifu! Or Splinter! You decide:', 'upload_date': '20220806', 'timestamp': 1659803411, 'thumbnail': 'https://img-9gag-fun.9cache.com/photo/ajgp66G_460s.jpg', 'categories': ['Funny'], 'tags': ['Funny'], 'duration': 26, 'like_count': int, 'dislike_count': int, 'comment_count': int, 'uploader': 'Peter Klaus', 'uploader_id': 'peterklaus12', 'uploader_url': 'https://9gag.com/u/peterklaus12', } }] def _real_extract(self, url): post_id = self._match_id(url) post = self._download_json( 'https://9gag.com/v1/post', post_id, query={ 'id': post_id })['data']['post'] if post.get('type') != 'Animated': raise ExtractorError( 'The given url does not contain a video', expected=True) duration = None formats = [] thumbnails = [] for key, image in (post.get('images') or {}).items(): image_url = url_or_none(image.get('url')) if not image_url: continue ext = determine_ext(image_url) image_id = key.strip('image') common = { 'url': image_url, 'width': int_or_none(image.get('width')), 'height': int_or_none(image.get('height')), } if ext in ('jpg', 'png'): webp_url = image.get('webpUrl') if webp_url: t = common.copy() t.update({ 'id': image_id + '-webp', 'url': webp_url, }) thumbnails.append(t) common.update({ 'id': image_id, 'ext': ext, }) thumbnails.append(common) elif ext in ('webm', 'mp4'): if not duration: duration = int_or_none(image.get('duration')) common['acodec'] = 'none' if image.get('hasAudio') == 0 else None for vcodec in ('vp8', 'vp9', 'h265'): c_url = image.get(vcodec + 'Url') if not c_url: continue c_f = common.copy() c_f.update({ 'format_id': image_id + '-' + vcodec, 'url': c_url, 'vcodec': vcodec, }) formats.append(c_f) common.update({ 'ext': ext, 'format_id': image_id, }) formats.append(common) section = traverse_obj(post, ('postSection', 'name')) tags = None post_tags = post.get('tags') if post_tags: tags = [] for tag in post_tags: tag_key = tag.get('key') if not tag_key: continue tags.append(tag_key) return { 'id': post_id, 'title': unescapeHTML(post.get('title')), 'timestamp': int_or_none(post.get('creationTs')), 'duration': duration, 'uploader': traverse_obj(post, ('creator', 'fullName')), 'uploader_id': traverse_obj(post, ('creator', 'username')), 'uploader_url': url_or_none(traverse_obj(post, ('creator', 'profileUrl'))), 'formats': formats, 'thumbnails': thumbnails, 'like_count': int_or_none(post.get('upVoteCount')), 'dislike_count': int_or_none(post.get('downVoteCount')), 'comment_count': int_or_none(post.get('commentsCount')), 'age_limit': 18 if post.get('nsfw') == 1 else None, 'categories': [section] if section else None, 'tags': tags, }
PypiClean
/Brian2GeNN-1.7.0-py3-none-any.whl/brian2genn/sphinxext/docscrape.py
import inspect import pydoc import re import textwrap from warnings import warn from sphinx.pycode import ModuleAnalyzer class Reader: """A line-based string reader.""" def __init__(self, data): """ Parameters ---------- data : str String with lines separated by '\n'. """ if isinstance(data, list): self._str = data else: self._str = data.split("\n") # store string as list of lines self.reset() def __getitem__(self, n): return self._str[n] def reset(self): self._l = 0 # current line nr def read(self): if not self.eof(): out = self[self._l] self._l += 1 return out else: return "" def seek_next_non_empty_line(self): for line in self[self._l :]: if line.strip(): break else: self._l += 1 def eof(self): return self._l >= len(self._str) def read_to_condition(self, condition_func): start = self._l for line in self[start:]: if condition_func(line): return self[start : self._l] self._l += 1 if self.eof(): return self[start : self._l + 1] return [] def read_to_next_empty_line(self): self.seek_next_non_empty_line() def is_empty(line): return not line.strip() return self.read_to_condition(is_empty) def read_to_next_unindented_line(self): def is_unindented(line): return line.strip() and (len(line.lstrip()) == len(line)) return self.read_to_condition(is_unindented) def peek(self, n=0): if self._l + n < len(self._str): return self[self._l + n] else: return "" def is_empty(self): return not "".join(self._str).strip() class NumpyDocString: def __init__(self, docstring, config=None): docstring = textwrap.dedent(docstring).split("\n") self._doc = Reader(docstring) self._parsed_data = { "Signature": "", "Summary": [""], "Extended Summary": [], "Parameters": [], "Returns": [], "Raises": [], "Warns": [], "Other Parameters": [], "Attributes": [], "Methods": [], "See Also": [], "Notes": [], "Warnings": [], "References": "", "Examples": "", "index": {}, } self._parse() def __getitem__(self, key): return self._parsed_data[key] def __setitem__(self, key, val): if key not in self._parsed_data: warn(f"Unknown section {key}") else: self._parsed_data[key] = val def _is_at_section(self): self._doc.seek_next_non_empty_line() if self._doc.eof(): return False l1 = self._doc.peek().strip() # e.g. Parameters if l1.startswith(".. index::"): return True l2 = self._doc.peek(1).strip() # ---------- or ========== return l2.startswith("-" * len(l1)) or l2.startswith("=" * len(l1)) def _strip(self, doc): start = stop = 0 for i, line in enumerate(doc): if line.strip(): start = i break for i, line in enumerate(doc[::-1]): if line.strip(): stop = i break return doc[start:-stop] def _read_to_next_section(self): section = self._doc.read_to_next_empty_line() while not self._is_at_section() and not self._doc.eof(): if not self._doc.peek(-1).strip(): # previous line was empty section += [""] section += self._doc.read_to_next_empty_line() return section def _read_sections(self): while not self._doc.eof(): data = self._read_to_next_section() name = data[0].strip() if name.startswith(".."): # index section yield name, data[1:] elif len(data) < 2: yield StopIteration else: yield name, self._strip(data[2:]) def _parse_param_list(self, content): r = Reader(content) params = [] while not r.eof(): header = r.read().strip() if " : " in header: arg_name, arg_type = header.split(" : ")[:2] else: arg_name, arg_type = header, "" desc = r.read_to_next_unindented_line() desc = dedent_lines(desc) params.append((arg_name, arg_type, desc)) return params _name_rgx = re.compile( r"^\s*(:(?P<role>\w+):`(?P<name>[a-zA-Z0-9_.-]+)`|" r" (?P<name2>[a-zA-Z0-9_.-]+))\s*", re.X, ) def _parse_see_also(self, content): """ func_name : Descriptive text continued text another_func_name : Descriptive text func_name1, func_name2, :meth:`func_name`, func_name3 """ items = [] def parse_item_name(text): """Match ':role:`name`' or 'name'""" m = self._name_rgx.match(text) if m: g = m.groups() if g[1] is None: return g[3], None else: return g[2], g[1] raise ValueError(f"{text} is not a item name") def push_item(name, rest): if not name: return name, role = parse_item_name(name) items.append((name, list(rest), role)) del rest[:] current_func = None rest = [] for line in content: if not line.strip(): continue m = self._name_rgx.match(line) if m and line[m.end() :].strip().startswith(":"): push_item(current_func, rest) current_func, line = line[: m.end()], line[m.end() :] rest = [line.split(":", 1)[1].strip()] if not rest[0]: rest = [] elif not line.startswith(" "): push_item(current_func, rest) current_func = None if "," in line: for func in line.split(","): if func.strip(): push_item(func, []) elif line.strip(): current_func = line elif current_func is not None: rest.append(line.strip()) push_item(current_func, rest) return items def _parse_index(self, section, content): """ .. index: default :refguide: something, else, and more """ def strip_each_in(lst): return [s.strip() for s in lst] out = {} section = section.split("::") if len(section) > 1: out["default"] = strip_each_in(section[1].split(","))[0] for line in content: line = line.split(":") if len(line) > 2: out[line[1]] = strip_each_in(line[2].split(",")) return out def _parse_summary(self): """Grab signature (if given) and summary""" if self._is_at_section(): return summary = self._doc.read_to_next_empty_line() summary_str = " ".join([s.strip() for s in summary]).strip() if re.compile(r"^([\w., ]+=)?\s*[\w.]+\(.*\)$").match(summary_str): self["Signature"] = summary_str if not self._is_at_section(): self["Summary"] = self._doc.read_to_next_empty_line() else: self["Summary"] = summary if not self._is_at_section(): self["Extended Summary"] = self._read_to_next_section() def _parse(self): self._doc.reset() self._parse_summary() for section, content in self._read_sections(): if not section.startswith(".."): section = " ".join([s.capitalize() for s in section.split(" ")]) if section in ( "Parameters", "Returns", "Raises", "Warns", "Other Parameters", "Attributes", "Methods", ): self[section] = self._parse_param_list(content) elif section.startswith(".. index::"): self["index"] = self._parse_index(section, content) elif section == "See Also": self["See Also"] = self._parse_see_also(content) else: self[section] = content # string conversion routines def _str_header(self, name, symbol="-"): return [name, len(name) * symbol] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [" " * indent + line] return out def _str_signature(self): if self["Signature"]: return [self["Signature"].replace("*", r"\*")] + [""] else: return [""] def _str_summary(self): if self["Summary"]: return self["Summary"] + [""] else: return [] def _str_extended_summary(self): if self["Extended Summary"]: return self["Extended Summary"] + [""] else: return [] def _str_param_list(self, name): out = [] if self[name]: out += self._str_header(name) for param, param_type, desc in self[name]: out += [f"{param} : {param_type}"] out += self._str_indent(desc) out += [""] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += self[name] out += [""] return out def _str_see_also(self, func_role): if not self["See Also"]: return [] out = [] out += self._str_header("See Also") last_had_desc = True for func, desc, role in self["See Also"]: if role: link = f":{role}:`{func}`" elif func_role: link = f":{func_role}:`{func}`" else: link = f"`{func}`_" if desc or last_had_desc: out += [""] out += [link] else: out[-1] += f", {link}" if desc: out += self._str_indent([" ".join(desc)]) last_had_desc = True else: last_had_desc = False out += [""] return out def _str_index(self): idx = self["index"] out = [] out += [f".. index:: {idx.get('default', '')}"] for section, references in idx.items(): if section == "default": continue out += [f" :{section}: {', '.join(references)}"] return out def __str__(self, func_role=""): out = [] out += self._str_signature() out += self._str_summary() out += self._str_extended_summary() for param_list in ( "Parameters", "Returns", "Other Parameters", "Raises", "Warns", ): out += self._str_param_list(param_list) out += self._str_section("Warnings") out += self._str_see_also(func_role) for s in ("Notes", "References", "Examples"): out += self._str_section(s) for param_list in ("Attributes", "Methods"): out += self._str_param_list(param_list) out += self._str_index() return "\n".join(out) def indent(str, indent=4): indent_str = " " * indent if str is None: return indent_str lines = str.split("\n") return "\n".join(indent_str + line for line in lines) def dedent_lines(lines): """Deindent a list of lines maximally""" return textwrap.dedent("\n".join(lines)).split("\n") def header(text, style="-"): return f"{text}\n{style * len(text)}\n" class FunctionDoc(NumpyDocString): def __init__(self, func, role="func", doc=None, config=None): self._f = func self._role = role # e.g. "func" or "meth" if doc is None: if func is None: raise ValueError("No function or docstring given") doc = inspect.getdoc(func) or "" NumpyDocString.__init__(self, doc) if not self["Signature"] and func is not None: func, func_name = self.get_func() try: # try to read signature argspec = str(inspect.signature(func)) argspec = argspec.replace("*", r"\*") signature = f"{func_name}{argspec}" except (TypeError, ValueError): signature = f"{func_name}()" self["Signature"] = signature def get_func(self): func_name = getattr(self._f, "__name__", self.__class__.__name__) if inspect.isclass(self._f): if callable(self._f): func = self._f.__call__ else: func = self._f.__init__ else: func = self._f return func, func_name def __str__(self): out = "" _, func_name = self.get_func() roles = {"func": "function", "meth": "method"} if self._role: if self._role not in roles: print(f"Warning: invalid role {self._role}") out += f".. {roles.get(self._role, '')}:: {func_name}\n \n\n" out += super().__str__(func_role=self._role) return out class ClassDoc(NumpyDocString): extra_public_methods = ["__call__"] def __init__(self, cls, doc=None, modulename="", func_doc=FunctionDoc, config=None): if not inspect.isclass(cls) and cls is not None: raise ValueError(f"Expected a class or None, but got {cls!r}") self._cls = cls if modulename and not modulename.endswith("."): modulename += "." self._mod = modulename if doc is None: if cls is None: raise ValueError("No class or documentation string given") doc = pydoc.getdoc(cls) NumpyDocString.__init__(self, doc) if not self["Methods"]: self["Methods"] = [(name, "", "") for name in sorted(self.methods)] if not self["Attributes"]: self["Attributes"] = [(name, "", "") for name in sorted(self.properties)] @property def methods(self): if self._cls is None: return [] methods = [ name for name, func in self._cls.__dict__.items() if ( (not name.startswith("_") or name in self.extra_public_methods) and ( (callable(func) and not isinstance(func, type)) or inspect.ismethoddescriptor(func) ) ) ] return methods @property def properties(self): if self._cls is None: return [] analyzer = ModuleAnalyzer.for_module(self._cls.__module__) instance_members = { attr_name for (class_name, attr_name) in analyzer.find_attr_docs().keys() if class_name == self._cls.__name__ } class_members = { name for name, func in self._cls.__dict__.items() if not name.startswith("_") and (func is None or inspect.isdatadescriptor(func)) } return instance_members | class_members
PypiClean