id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
/classipy-1.1.1.tar.gz/classipy-1.1.1/classy/predict.py
import logging import sys from classy.generate import fix_column_offset from sklearn.externals import joblib from .data import load_index, get_n_rows, load_vocabulary from .extract import row_generator, row_generator_from_file from .transform import FeatureEncoder, transform_input L = logging.getLogger(__name__) def predict_labels(args): L.debug("%s", args) if args.text: stream_predictor(args) else: batch_predictor(args) def batch_predictor(args): if not args.index: raise ValueError('missing input data file (inverted index)') elif len(args.index) > 1: raise ValueError('more than one input data file (inverted index)') data = load_index(args.index[0]) pipeline = joblib.load(args.model) predictions = pipeline.predict(data.index.tocsr()) scores = get_scores(pipeline, data) if args.scores else None text_ids = get_or_make_text_ids(data) make_label = str if args.label: n_labels = len(args.label) make_label = lambda i: (args.label[i] if i < n_labels else i) if args.scores: report_with_scores(predictions, scores, text_ids, make_label) else: report_labels(predictions, text_ids, make_label) def report_labels(predictions, text_ids, make_label): for text_id, prediction in zip(text_ids, predictions): print(text_id, make_label(prediction), sep='\t') def report_with_scores(predictions, scores, text_ids, make_label): for text_id, prediction, i_scores in \ zip(text_ids, predictions, scores): if isinstance(i_scores, float): i_scores = (i_scores,) score_str = '\t'.join('{: 0.8f}'.format(s) for s in i_scores) print(text_id, make_label(prediction), score_str, sep='\t') def get_scores(pipeline, data): try: return pipeline.predict_proba(data.index.tocsr()) except AttributeError: # svm and others do not have proba return pipeline.decision_function(data.index.tocsr()) def get_or_make_text_ids(data): if data.text_ids: text_ids = data.text_ids else: text_ids = range(1, get_n_rows(data) + 1) return text_ids def stream_predictor(args): if args.vocabulary is None: raise ValueError( 'missing required option for text input: --vocabulary VOCAB' ) vocabulary = load_vocabulary(args.vocabulary) dialect = 'excel' if args.csv else 'plain' args.annotate = fix_column_offset(args.annotate) args.feature = fix_column_offset(args.feature) if not args.index: gen = row_generator(sys.stdin, dialect=dialect) predict_from(gen, args, vocabulary) else: for file in args.index: gen = row_generator_from_file(file, dialect=dialect, encoding=args.encoding) predict_from(gen, args, vocabulary) def predict_from(text, args, vocab): stream = transform_input(text, args) id_col = find_id_col(args) stream = FeatureEncoder(stream, vocabulary=vocab, id_col=id_col, label_col=None) pipeline = joblib.load(args.model) make_label = str here = '\t' if args.scores else '\n' # append score or not no_proba = False if args.label: n_labels = len(args.label) make_label = lambda i: args.label[i] if i < n_labels else i for text_id, features in stream: prediction = pipeline.predict(features) assert prediction.shape[0] == 1, "not a single prediction: %s" % str( prediction.shape ) print(text_id, make_label(prediction[0]), sep='\t', end=here) if args.scores: append_scores(pipeline, features, no_proba) def append_scores(pipeline, features, no_proba): if no_proba: scores = pipeline.decision_function(features)[0] else: try: scores = pipeline.predict_proba(features)[0] except AttributeError: # svm and other do not have this scores = pipeline.decision_function(features)[0] no_proba = True if isinstance(scores, float): scores = (scores,) print('\t'.join('{: 0.8f}'.format(s) for s in scores)) def find_id_col(args): if args.no_id: id_col = None elif args.id_second: id_col = 1 elif args.id_last: id_col = -1 else: id_col = 0 return id_col
PypiClean
/monopoly_simulator_test-0.0.9.tar.gz/monopoly_simulator_test-0.0.9/monopoly_simulator/background_agent_v3_2.py
from monopoly_simulator import agent_helper_functions_v2 as agent_helper_functions# helper functions are internal to the agent and will not be recorded in the function log. from monopoly_simulator import diagnostics from monopoly_simulator.bank import Bank from monopoly_simulator.flag_config import flag_config_dict import logging logger = logging.getLogger('monopoly_simulator.logging_info.background_agent') UNSUCCESSFUL_LIMIT = 2 """ All external decision_agent functions must have the exact signatures we have indicated in this document. Beyond that, we impose no restrictions (you can make the decision agent as complex as you like (including maintaining state), and we use good faith to ensure you do not manipulate the gameboard. We will have mechanisms to check for inadvertent changes or inconsistencies that get introduced in the gameboard (due to any reason, including possible subtle errors in the simulator itself) a short while later. If you decision agent does maintain state, or some kind of global data structure, please be careful when assigning the same decision agent (as we do) to each player. We do provide some basic state to you already via 'code' in the make_*_move functions. Specifically, if code is 1 it means the 'previous' move selected by the player was successful, and if -1 it means it was unsuccessful. code of -1 is usually returned when an allowable move is invoked with parameters that preempt the action from happening e.g., the player may decide to mortgage property that is already mortgaged, which will return the failure code of -1 when the game actually tries to mortgage the property in action_choices. Be careful to note what each function is supposed to return in addition to adhering to the expected signature. The examples here are good guides. Your functions can be called whatever you like, but the keys in decision_agent_methods should not be changed. The respective functions must adhere in their signatures to the examples here. The agent in this file is simple and rule-based, rather than adaptive but capable of taking good actions in a number of eventualities. We detail the logic behind each decision in a separate document. This is the agent that will serve as the 'background' agent for purposes of evaluation. """ def make_pre_roll_move(player, current_gameboard, allowable_moves, code): """ Many actions are possible in pre_roll but we prefer to save the logic for out_of_turn. The only decision we'll make here is whether we want to leave jail (if we're in jail). :param player: A Player instance. You should expect this to be the player that is 'making' the decision (i.e. the player instantiated with the functions specified by this decision agent). :param current_gameboard: A dict. The global data structure representing the current game board. :param allowable_moves: A set of function names, each of which is defined in action_choices (imported in this file), and that will always be a subset of the action choices for pre_die_roll in the game schema. Your returned action choice name must be from allowable_moves; we will check for this when you return. :param code: See the preamble of this file for an explanation of this code :return: A 2-element tuple, the first of which is the name of the action you want to take, and the second is a dictionary of parameters that will be passed into the function representing that action when it is executed. The dictionary must exactly contain the keys and expected value types expected by that action in action_choices """ ''' phase_game defines which phase the player is in during the game 0 -> preroll 1 -> out of turn 2 -> postroll count_unsuccessful_tries in the agent memory keeps a record of unsuccessful actions executed by that player agent in each phase_game. If this count reaches UNSUCCESSFUL_LIMIT before a phase_game change, then the player has no option but to either skip_turn or conclude_actions. This count resets to 0 when the phase_game changes. This ensures that the game doesnot go on for too long trying to execute unsuccessful actions. ''' for p in current_gameboard['players']: if 'phase_game' not in p.agent._agent_memory: p.agent._agent_memory['phase_game'] = 0 p.agent._agent_memory['count_unsuccessful_tries'] = 0 if player.agent._agent_memory['phase_game'] != 0: player.agent._agent_memory['phase_game'] = 0 for p in current_gameboard['players']: if p.status != 'lost': p.agent._agent_memory['count_unsuccessful_tries'] = 0 if code == flag_config_dict['failure_code']: player.agent._agent_memory['count_unsuccessful_tries'] += 1 logger.debug(player.player_name + ' has executed an unsuccessful preroll action, incrementing unsuccessful_tries ' + 'counter to ' + str(player.agent._agent_memory['count_unsuccessful_tries'])) if player.agent._agent_memory['count_unsuccessful_tries'] >= UNSUCCESSFUL_LIMIT: logger.debug(player.player_name + ' has reached preroll unsuccessful action limits.') if "skip_turn" in allowable_moves: logger.debug(player.player_name+ ': I am skipping turn since I have crossed unsuccessful limits.') player.agent._agent_memory['previous_action'] = "skip_turn" return ("skip_turn", dict()) elif "concluded_actions" in allowable_moves: # player.agent._agent_memory['previous_action'] = action_choices.concluded_actions logger.debug(player.player_name+ ': I am concluding actions since I have crossed unsuccessful limits.') return ("concluded_actions", dict()) else: logger.error("Exception") raise Exception if player.current_cash >= current_gameboard['go_increment']: # if we don't have enough money, best to stay put. param = dict() param['player'] = player.player_name param['current_gameboard'] = "current_gameboard" if "use_get_out_of_jail_card" in allowable_moves: logger.debug(player.player_name+': I am using get out of jail card.') player.agent._agent_memory['previous_action'] = "use_get_out_of_jail_card" return ("use_get_out_of_jail_card", param) elif "pay_jail_fine" in allowable_moves: logger.debug(player.player_name+': I am going to pay jail fine.') player.agent._agent_memory['previous_action'] = "pay_jail_fine" return ("pay_jail_fine", param) # if we ran the gamut, and did not return, then it's time to skip turn or conclude actions if "skip_turn" in allowable_moves: # testing hypothetical simulator (will comment when done testing). Note that this was written for the Python 2 # version (the GNOME repo). Make sure to appropriately modify by instantiating agent instead of sending in the # decision agent methods as being done below. # player_decision_agents = dict() # import simple_decision_agent_1 # player_decision_agents['player_1'] = simple_decision_agent_1.decision_agent_methods # the reason I am doing this for all agents is to avoid infinite loops. # player_decision_agents['player_2'] = simple_decision_agent_1.decision_agent_methods # player_decision_agents['player_3'] = simple_decision_agent_1.decision_agent_methods # player_decision_agents['player_4'] = simple_decision_agent_1.decision_agent_methods # alternate_univ = hypothetical_simulator.initialize_hypothetical_universe(current_gameboard, player_decision_agents) # logger.debug(player.player_name,' has spawned alternate universe to try out things.') # hypothetical_winner = hypothetical_simulator.simulate_hypothetical_game(hypothetical_gameboard=alternate_univ, # die_roll_substitute=hypothetical_simulator.die_roll_substitute,num_total_die_rolls=15) # we will only run for fifteen die rolls. # if hypothetical_winner is None: # logger.debug(diagnostics.logger.debug_player_cash_balances(alternate_univ)) # else: # logger.debug(hypothetical_winner.player_name) logger.debug(player.player_name+ ': I am skipping turn') player.agent._agent_memory['previous_action'] = "skip_turn" return ("skip_turn", dict()) elif "concluded_actions" in allowable_moves: # player.agent._agent_memory['previous_action'] = action_choices.concluded_actions logger.debug(player.player_name+ ': I am concluding actions') return ("concluded_actions", dict()) else: logger.error("Exception") raise Exception def make_out_of_turn_move(player, current_gameboard, allowable_moves, code): """ The agent is in the out-of-turn phase and must decide what to do (next). This simple dummy agent skips the turn, and doesn't do anything. :param player: A Player instance. You should expect this to be the player that is 'making' the decision (i.e. the player instantiated with the functions specified by this decision agent). :param current_gameboard: A dict. The global data structure representing the current game board. :param allowable_moves: A set of function names, each of which is defined in action_choices (imported in this file), and that will always be a subset of the action choices for out_of_turn in the game schema. Your returned action choice must be from allowable_moves; we will check for this when you return. :param code: See the preamble of this file for an explanation of this code :return: A 2-element tuple, the first of which is the name of the action you want to take, and the second is a dictionary of parameters that will be passed into the function representing that action when it is executed. The dictionary must exactly contain the keys and expected value types expected by that action in action_choices """ ''' Agent V3 This updated version of the agent can make trade offers with MULTIPLE players simultaneously. All strategies available in Agent V2 is still available in V3 Note that this version of the agent also engages in the trade of only one set of properties like the previous version, ie - only one property will be requested if it is a buy property offer or - only one property will be offered if it is a sell property offer or - only one property will be offered and one property requested during an exchange property offer. Agent V2 NOTE: The background agent that could make_sell_property_offer is deprecated (available as background_agent_v1_deprecated.py) This version of the agent can only make_trade_offer and accept trade offer. Trade involves buy or sell or exchange property offers. Accept_sell_property_offer function is still available in case some different agent decides to make a sell property offer. Ideally, accept_sell_property_offer() function should never enter allowable moves. Make sell property offer can be replicated by making a trade offer that only offers to sell properties in return for cash and doesnot involve a buy property or exchange property offer. A buy property offer can be duplicated by including only requested properties by offering cash without offering properties. Properties and cash can be exchanged which lets both players get an advantage of increasing their respective number of monopolies. This version of the agent background_agent_v1 supports making sell property offers in return for cash via make_trade_offer, buy trade offers and exchange property offers. Note that this version of the agent engages in the trade of only one set of properties, ie - only one property will be requested if it is a buy property offer or - only one property will be offered if it is a sell property offer or - only one property will be offered and one property requested during an exchange property offer. ''' ''' phase_game defines which phase the player is in during the game 0 -> preroll 1 -> out of turn 2 -> postroll count_unsuccessful_tries in the agent memory keeps a record of unsuccessful actions executed by that player agent in each phase_game. If this count reaches UNSUCCESSFUL_LIMIT before a phase_game change, then the player has no option but to either skip_turn or conclude_actions. This count resets to 0 when the phase_game changes. This ensures that the game doesnot go on for too long trying to execute unsuccessful actions. ''' for p in current_gameboard['players']: if 'phase_game' not in p.agent._agent_memory: p.agent._agent_memory['phase_game'] = 1 p.agent._agent_memory['count_unsuccessful_tries'] = 0 if player.agent._agent_memory['phase_game'] != 1: player.agent._agent_memory['phase_game'] = 1 player.agent._agent_memory['count_unsuccessful_tries'] = 0 if isinstance(code, list): code_flag = 0 for c in code: if c == flag_config_dict['failure_code']: code_flag = 1 break if code_flag: player.agent._agent_memory['count_unsuccessful_tries'] += 1 logger.debug(player.player_name + ' has executed an unsuccessful out of turn action, incrementing unsuccessful_tries ' + 'counter to ' + str(player.agent._agent_memory['count_unsuccessful_tries'])) elif code == flag_config_dict['failure_code']: player.agent._agent_memory['count_unsuccessful_tries'] += 1 logger.debug(player.player_name + ' has executed an unsuccessful out of turn action, incrementing unsuccessful_tries ' + 'counter to ' + str(player.agent._agent_memory['count_unsuccessful_tries'])) if player.agent._agent_memory['count_unsuccessful_tries'] >= UNSUCCESSFUL_LIMIT: logger.debug(player.player_name + ' has reached out of turn unsuccessful action limits.') if "skip_turn" in allowable_moves: logger.debug(player.player_name+ ': I am skipping turn since I have crossed unsuccessful limits.') player.agent._agent_memory['previous_action'] = "skip_turn" return ("skip_turn", dict()) elif "concluded_actions" in allowable_moves: # player.agent._agent_memory['previous_action'] = action_choices.concluded_actions logger.debug(player.player_name+ ': I am concluding actions since I have crossed unsuccessful limits.') return ("concluded_actions", dict()) else: logger.error("Exception") raise Exception if "accept_trade_offer" in allowable_moves: param = dict() param['player'] = player.player_name param['current_gameboard'] = "current_gameboard" logger.debug(player.player_name+ ': Should I accept the trade offer by '+player.outstanding_trade_offer['from_player'].player_name+'?') logger.debug('('+player.player_name+' currently has cash balance of '+str(player.current_cash)+')') if (player.outstanding_trade_offer['cash_offered'] <= 0 and len(player.outstanding_trade_offer['property_set_offered'])==0) and \ (player.outstanding_trade_offer['cash_wanted'] > 0 or len(player.outstanding_trade_offer['property_set_wanted']) > 0): logger.debug('Asking for free money or property without money or property in return.') logger.debug(player.player_name + " rejected trade offer from " + player.outstanding_trade_offer['from_player'].player_name) pass #asking for free money or property without anything in return(ie no money and no property offered), -->reject the trade offer elif player.outstanding_trade_offer['cash_wanted'] - player.outstanding_trade_offer['cash_offered'] > player.current_cash: logger.debug('Cash wanted from me in the trade offer is more than the cash in hand with me or I am near bankruptcy situation and need to play safe.') logger.debug(player.player_name + " rejected trade offer from " + player.outstanding_trade_offer['from_player'].player_name) pass #cash wanted is more than that offered and the net difference exceeds the cash that the player has --> then reject the tade offer else: reject_flag = 0 offered_properties_net_worth = 0 wanted_properties_net_worth = 0 for prop in player.outstanding_trade_offer['property_set_wanted']: if prop.is_mortgaged: reject_flag = 1 #cannot trade mortgaged properties, reject trade offer logger.debug('Trade offer invovlves mortgaged properties.') logger.debug(player.player_name + " rejected trade offer from " + player.outstanding_trade_offer['from_player'].player_name) break else: wanted_properties_net_worth += prop.price if reject_flag == 0: for prop in player.outstanding_trade_offer['property_set_offered']: if prop.is_mortgaged: reject_flag = 1 #from_player cannot offer mortgaged properties, reject trade offer logger.debug('Trade offer invovlves mortgaged properties.') logger.debug(player.player_name + " rejected trade offer from " + player.outstanding_trade_offer['from_player'].player_name) break else: offered_properties_net_worth += prop.price if reject_flag == 0: #GOAL -- increase monopolies #calculate the net worth of offer vs net worth of request --> makes sense to accept trade only if the offer is greater than request #net worth of offer = cash + total price of all houses #positive net_amount_requested implies that the requested net amount is greater than offered net amount net_offer_worth = (offered_properties_net_worth + player.outstanding_trade_offer['cash_offered']) - \ (wanted_properties_net_worth + player.outstanding_trade_offer['cash_wanted']) net_amount_requested = -1*net_offer_worth count_create_new_monopoly = 0 count_lose_existing_monopoly = 0 ##ideally player doesnot have to worry about losing monopolies since the player who makes the offer #only requests for lone properties for prop in player.outstanding_trade_offer['property_set_offered']: if agent_helper_functions.will_property_complete_set(player,prop,current_gameboard): count_create_new_monopoly += 1 for prop in player.outstanding_trade_offer['property_set_wanted']: if prop.color in player.full_color_sets_possessed: count_lose_existing_monopoly += 1 #if you end up losing more monopolies than gaining monopolies (although this condition should never come up) then reject trade offer if count_lose_existing_monopoly - count_create_new_monopoly > 0: logger.debug('Player loses more monopolies than he gains.') logger.debug(player.player_name + " rejected trade offer from " + player.outstanding_trade_offer['from_player'].player_name) reject_flag = 1 #if you end up losing the same number of monopolies as you gain, then accept the offer based on the following multiple conditions. #Basically you get no new monopolies since ideally you dont lose monopolies (only properties that dont belong to your monopolized color # groups are only requested from you in the trade.) elif count_lose_existing_monopoly - count_create_new_monopoly == 0: if (player.outstanding_trade_offer['cash_wanted'] - player.outstanding_trade_offer['cash_offered']) >= player.current_cash: logger.debug('Cash wanted from me in the trade offer is more than the cash in hand with me or I am near bankruptcy situation and need to play safe.') logger.debug(player.player_name + " rejected trade offer from " + player.outstanding_trade_offer['from_player'].player_name) reject_flag = 1 ##just double checking although this condition was verified before getting here. elif player.current_cash - (player.outstanding_trade_offer['cash_wanted'] - player.outstanding_trade_offer['cash_offered']) < current_gameboard['go_increment']/2: logger.debug('Cash wanted from me in the trade offer is more than the cash in hand with me or I am near bankruptcy situation and need to play safe.') logger.debug(player.player_name + " rejected trade offer from " + player.outstanding_trade_offer['from_player'].player_name) reject_flag = 1 ##too risky if players cash after transaction drops below half of go_increment value --> hence reject trade offer elif (player.current_cash - (player.outstanding_trade_offer['cash_wanted'] - player.outstanding_trade_offer['cash_offered']) < current_gameboard['go_increment']) \ and net_offer_worth <= 0: logger.debug('No gain from accepting trade offer.') logger.debug(player.player_name + " rejected trade offer from " + player.outstanding_trade_offer['from_player'].player_name) reject_flag =1 ##if player has cash > go_increement/2 and < go_increement but net worth of total transaction is negative --> reject trade offer else: reject_flag =0 ##accept only if you end up getting a higher net worth by accepting the trade although you get no new monopolies #else you get to monopolize more locations than you had before --> then ACCEPT THE TRADE OFFER elif count_create_new_monopoly - count_lose_existing_monopoly > 0: if (player.outstanding_trade_offer['cash_wanted'] - player.outstanding_trade_offer['cash_offered']) >= player.current_cash: logger.debug('Cash wanted from me in the trade offer is more than the cash in hand with me or I am near bankruptcy situation and need to play safe.') logger.debug(player.player_name + " rejected trade offer from " + player.outstanding_trade_offer['from_player'].player_name) reject_flag = 1 ##just double checking although this condition was verified before getting here. else: reject_flag = 0 if reject_flag == 0 and player.agent._agent_memory['previous_action'] != "accept_trade_offer": # so that does not keep trying to accept a trade offer that got declined previously logger.debug(player.player_name + " accepted trade offer from " + player.outstanding_trade_offer['from_player'].player_name) logger.debug(player.player_name + " recieved amount = " + str(player.outstanding_trade_offer['cash_offered']) + " and offered amount = " + str(player.outstanding_trade_offer['cash_wanted']) + " during trade") player.agent._agent_memory['previous_action'] = "accept_trade_offer" return ("accept_trade_offer", param) elif reject_flag == 1: #logger.debug(player.player_name + " rejected trade offer from " + player.outstanding_trade_offer['from_player'].player_name) pass if "accept_sell_property_offer" in allowable_moves: ## Ideally accept_sell_offer should never enter allowable moves since henceforth make_trade_offer also takes care of make_sell_offer and ## accept_trade_offer takes care of accept_sell_offer. ## This case is included to accomodate a make_sell_property offer raised by an external agent. ## Our agent will never make a sell property offer, only makes trade offers which raises an accpet_trade_offer action. param = dict() param['player'] = player.player_name param['current_gameboard'] = "current_gameboard" # we accept an offer under one of two conditions: logger.debug(player.player_name+ ': Should I accept the offer by '+player.outstanding_property_offer['from_player'].player_name+' to buy '+\ player.outstanding_property_offer['asset'].name+' for '+str(player.outstanding_property_offer['price'])+'?') logger.debug('('+player.player_name+' currently has cash balance of '+str(player.current_cash)+')') if player.outstanding_property_offer['asset'].is_mortgaged or player.outstanding_property_offer['price']>player.current_cash: pass # ignore the offer if the property is mortgaged or will result in insolvency. This pass doesn't require 'filling' in. elif player.current_cash-player.outstanding_property_offer['price'] >= current_gameboard['go_increment'] and \ player.outstanding_property_offer['price']<=player.outstanding_property_offer['asset'].price: # 1. we can afford it, and it's at or below market rate so let's buy it logger.debug(player.player_name+ ': I am accepting the offer to buy '+player.outstanding_property_offer['asset'].name+' since I can afford' \ 'it and it is being offered at or below market rate.') player.agent._agent_memory['previous_action'] = "accept_sell_property_offer" return ("accept_sell_property_offer", param) elif agent_helper_functions.will_property_complete_set(player, player.outstanding_property_offer['asset'],current_gameboard): # 2. less affordable, but we stand to gain by monopoly if player.current_cash - player.outstanding_property_offer['price'] >= current_gameboard['go_increment']/2: # risky, but worth it logger.debug(player.player_name+ ': I am accepting the offer to buy '+ player.outstanding_property_offer[ 'asset'].name+ ' since I can afford ' \ 'it (albeit barely so) and it will let me complete my color set.') player.agent._agent_memory['previous_action'] = "accept_sell_property_offer" return ("accept_sell_property_offer", param) if player.status != 'current_move': # these actions are considered only if it's NOT our turn to roll the dice. if "improve_property" in allowable_moves: # beef up full color sets to maximize rent potential. param = agent_helper_functions.identify_improvement_opportunity(player, current_gameboard) if param: if player.agent._agent_memory['previous_action'] == "improve_property" and code == flag_config_dict['failure_code']: logger.debug(player.player_name+ ': I want to improve property '+param['asset'].name+ ' but I cannot, due to reasons I do not understand. Aborting improvement attempt...') else: logger.debug(player.player_name+ ': I am going to improve property '+param['asset'].name) player.agent._agent_memory['previous_action'] = "improve_property" param['player'] = param['player'].player_name param['asset'] = param['asset'].name param['current_gameboard'] = "current_gameboard" return ("improve_property", param) player_mortgaged_assets_list = list() if player.mortgaged_assets: player_mortgaged_assets_list = _set_to_sorted_list_mortgaged_assets(player.mortgaged_assets) for m in player_mortgaged_assets_list: if player.current_cash-(m.mortgage*(1+current_gameboard['bank'].mortgage_percentage)) >= current_gameboard['go_increment'] and "free_mortgage" in allowable_moves: # free mortgages till we can afford it. the second condition should not be necessary but just in case. param = dict() param['player'] = player.player_name param['asset'] = m.name param['current_gameboard'] = "current_gameboard" logger.debug(player.player_name+ ': I am going to free mortgage on '+ m.name) player.agent._agent_memory['previous_action'] = "free_mortgage" return ("free_mortgage", param) else: #purpose_flags are sent while curating a trade offer to imply why the trade offer was made: ## 1 --> low on cash, urgently in need of cash ## 2 --> gain monopoly if player.current_cash < current_gameboard['go_increment'] and "make_trade_offer" in allowable_moves: # in this case, the trade offer is a duplication of make_sell_property_offer since the player is in urgent need of cash and #cannot strategize a trade potential_offer_list = agent_helper_functions.identify_property_trade_offer_to_player(player, current_gameboard) potential_request_list = agent_helper_functions.identify_property_trade_wanted_from_player(player, current_gameboard) param_list = agent_helper_functions.curate_trade_offer_multiple_players(player, potential_offer_list, potential_request_list, current_gameboard, purpose_flag=1) #logger.debug(param) return_action_list = [] return_param_list = [] if param_list and player.agent._agent_memory['previous_action'] != "make_trade_offer": # we only make one offer per turn. Otherwise we'd # be stuck in a loop if len(param_list)>1: logger.debug(player.player_name + ": I am going to make trade offers to multiple players, ie " + str(len(param_list)) + " players.") for param in param_list: logger.debug(player.player_name+ ': I am making an offer to trade '+list(param['offer']['property_set_offered'])[0].name+' to '+ param['to_player'].player_name+' for '+str(param['offer']['cash_wanted'])+' dollars') param['from_player'] = param['from_player'].player_name param['to_player'] = param['to_player'].player_name prop_set_offered = set() for item in param['offer']['property_set_offered']: prop_set_offered.add(item.name) param['offer']['property_set_offered'] = prop_set_offered prop_set_wanted = set() for item in param['offer']['property_set_wanted']: prop_set_wanted.add(item.name) param['offer']['property_set_wanted'] = prop_set_wanted player.agent._agent_memory['previous_action'] = "make_trade_offer" return_action_list.append("make_trade_offer") return_param_list.append(param) return (return_action_list, return_param_list) elif "make_trade_offer" in allowable_moves: # trade offer is being curated to maximise monopolies potential_offer_list = agent_helper_functions.identify_property_trade_offer_to_player(player, current_gameboard) potential_request_list = agent_helper_functions.identify_property_trade_wanted_from_player(player, current_gameboard) param_list = agent_helper_functions.curate_trade_offer_multiple_players(player, potential_offer_list, potential_request_list, current_gameboard, purpose_flag=2) #logger.debug(param) return_action_list = [] return_param_list = [] if param_list and player.agent._agent_memory['previous_action'] != "make_trade_offer": # we only make one offer per turn. Otherwise we'd # be stuck in a loop if len(param_list)>1: logger.debug(player.player_name + ": I am going to make trade offers to multiple players, ie " + str(len(param_list)) + " players.") for param in param_list: logger.debug(player.player_name+ ': I am making a trade offer with '+ param['to_player'].player_name) param['from_player'] = param['from_player'].player_name param['to_player'] = param['to_player'].player_name prop_set_offered = set() for item in param['offer']['property_set_offered']: prop_set_offered.add(item.name) param['offer']['property_set_offered'] = prop_set_offered prop_set_wanted = set() for item in param['offer']['property_set_wanted']: prop_set_wanted.add(item.name) param['offer']['property_set_wanted'] = prop_set_wanted player.agent._agent_memory['previous_action'] = "make_trade_offer" return_action_list.append("make_trade_offer") return_param_list.append(param) return (return_action_list, return_param_list) # if we ran the gamut, and did not return, then it's time to skip turn or conclude actions if "skip_turn" in allowable_moves: logger.debug(player.player_name+ ': I am skipping turn') player.agent._agent_memory['previous_action'] = "skip_turn" return ("skip_turn", dict()) elif "concluded_actions" in allowable_moves: logger.debug(player.player_name+ ': I am concluding actions') # player.agent._agent_memory['previous_action'] = action_choices.concluded_actions return ("concluded_actions", dict()) else: logger.error("Exception") raise Exception def make_post_roll_move(player, current_gameboard, allowable_moves, code): """ The agent is in the post-roll phase and must decide what to do (next). The main decision we make here is singular: should we buy the property we landed on, if that option is available? --If we do buy the property, we end the phase by concluding the turn. --If we cannot buy a property, we conclude the turn. If we have negative cash balance, we do not handle it here, but in the handle_negative_cash_balance function. This means that the background agent never calls any of the mortgage or sell properties here UNLESS we need to mortgage or sell a property in order to buy the current one and it is well worth our while. Note that if your agent decides not to buy the property before concluding the turn, the property will move to auction before your turn formally concludes. This background agent never sells a house or hotel in post_roll. :param player: A Player instance. You should expect this to be the player that is 'making' the decision (i.e. the player instantiated with the functions specified by this decision agent). :param current_gameboard: A dict. The global data structure representing the current game board. :param allowable_moves: A set of functions, each of which is defined in action_choices (imported in this file), and that will always be a subset of the action choices for post-die-roll in the game schema. Your returned action choice must be from allowable_moves; we will check for this when you return. :param code: See the preamble of this file for an explanation of this code :return: A 2-element tuple, the first of which is the action you want to take, and the second is a dictionary of parameters that will be passed into the function representing that action when it is executed. The dictionary must exactly contain the keys and expected value types expected by that action in action_choices """ ''' phase_game defines which phase the player is in during the game 0 -> preroll 1 -> out of turn 2 -> postroll count_unsuccessful_tries in the agent memory keeps a record of unsuccessful actions executed by that player agent in each phase_game. If this count reaches UNSUCCESSFUL_LIMIT before a phase_game change, then the player has no option but to either skip_turn or conclude_actions. This count resets to 0 when the phase_game changes. This ensures that the game doesnot go on for too long trying to execute unsuccessful actions. ''' for p in current_gameboard['players']: if 'phase_game' not in p.agent._agent_memory: p.agent._agent_memory['phase_game'] = 2 p.agent._agent_memory['count_unsuccessful_tries'] = 0 if player.agent._agent_memory['phase_game'] != 2: player.agent._agent_memory['phase_game'] = 2 for p in current_gameboard['players']: if p.status != 'lost': p.agent._agent_memory['count_unsuccessful_tries'] = 0 if code == flag_config_dict['failure_code']: player.agent._agent_memory['count_unsuccessful_tries'] += 1 logger.debug(player.player_name + ' has executed an unsuccessful postroll action, incrementing unsuccessful_tries ' + 'counter to ' + str(player.agent._agent_memory['count_unsuccessful_tries'])) if player.agent._agent_memory['count_unsuccessful_tries'] >= UNSUCCESSFUL_LIMIT: logger.debug(player.player_name + ' has reached postroll unsuccessful action limits.') if "concluded_actions" in allowable_moves: # player.agent._agent_memory['previous_action'] = action_choices.concluded_actions logger.debug(player.player_name+ ': I am concluding actions since I have crossed unsuccessful limits.') return ("concluded_actions", dict()) else: logger.error("Exception") raise Exception current_location = current_gameboard['location_sequence'][player.current_position] if "buy_property" in allowable_moves: if code == flag_config_dict['failure_code']: logger.debug(player.player_name+': I did not succeed the last time in buying this property. Concluding actions...') return ("concluded_actions", dict()) params = dict() params['player'] = player.player_name params['asset'] = current_location.name params['current_gameboard'] = "current_gameboard" if make_buy_property_decision(player, current_gameboard, current_location): logger.debug(player.player_name+ ': I am attempting to buy property '+current_location.name) player.agent._agent_memory['previous_action'] = "buy_property" return ("buy_property", params) else: # make_buy returned false, but is there still a chance? if agent_helper_functions.will_property_complete_set(player,current_location,current_gameboard): # if we can raise enough money, then the 'next' time around we'll succeed in buying to_mortgage = agent_helper_functions.identify_potential_mortgage(player,current_location.price,True) if to_mortgage: params['asset'] = to_mortgage.name logger.debug(player.player_name+ ': I am attempting to mortgage property '+ params['asset']) player.agent._agent_memory['previous_action'] = "mortgage_property" return ("mortgage_property", params) else: # last chance. to_sell = agent_helper_functions.identify_potential_sale(player, current_gameboard, current_location.price,True) if to_sell: params['asset'] = to_sell.name logger.debug(player.player_name+ ': I am attempting to sell property '+ current_location.name+' to the bank') player.agent._agent_memory['previous_action'] = "sell_property" return ("sell_property", params) if "concluded_actions" in allowable_moves: # player.agent._agent_memory['previous_action'] = action_choices.concluded_actions return ("concluded_actions", dict()) else: logger.error("Exception") raise Exception def make_buy_property_decision(player, current_gameboard, asset): """ The agent decides to buy the property if: (i) it can 'afford' it. Our definition of afford is that we must have at least go_increment cash balance after the purchase. (ii) we can obtain a full color set through the purchase, and still have positive cash balance afterwards (though it may be less than go_increment). :param player: A Player instance. You should expect this to be the player that is 'making' the decision (i.e. the player instantiated with the functions specified by this decision agent). :param current_gameboard: A dict. The global data structure representing the current game board. :return: A Boolean. If True, then you decided to purchase asset from the bank, otherwise False. We allow you to purchase the asset even if you don't have enough cash; however, if you do you will end up with a negative cash balance and will have to handle that if you don't want to lose the game at the end of your move (see notes in handle_negative_cash_balance) """ decision = False if player.current_cash - asset.price >= current_gameboard['go_increment']: # case 1: can we afford it? logger.debug(player.player_name+ ': I will attempt to buy '+ asset.name+ ' from the bank.') decision = True elif asset.price <= player.current_cash and \ agent_helper_functions.will_property_complete_set(player,asset,current_gameboard): logger.debug(player.player_name+ ': I will attempt to buy '+ asset.name+ ' from the bank.') decision = True return decision def make_bid(player, current_gameboard, asset, current_bid): """ Decide the amount you wish to bid for asset in auction, given the current_bid that is currently going. If you don't return a bid that is strictly higher than current_bid you will be removed from the auction and won't be able to bid anymore. Note that it is not necessary that you are actually on the location on the board representing asset, since you will be invited to the auction automatically once a player who lands on a bank-owned asset rejects buying that asset (this could be you or anyone else). :param player: A Player instance. You should expect this to be the player that is 'making' the decision (i.e. the player instantiated with the functions specified by this decision agent). :param current_gameboard: A dict. The global data structure representing the current game board. :param asset: An purchaseable instance of Location (i.e. real estate, utility or railroad) :param current_bid: The current bid that is going in the auction. If you don't bid higher than this amount, the bank will remove you from the auction proceedings. You could also always return 0 to voluntarily exit the auction. :return: An integer that indicates what you wish to bid for asset """ if current_bid < asset.price: new_bid = current_bid + (asset.price-current_bid)/2 if new_bid < player.current_cash: return new_bid else: # We are aware that this can be simplified with a simple return 0 statement at the end. However in the final baseline agent # the return 0's would be replaced with more sophisticated rules. Think of them as placeholders. return 0 # this will lead to a rejection of the bid downstream automatically elif current_bid < player.current_cash and agent_helper_functions.will_property_complete_set(player,asset,current_gameboard): # We are prepared to bid more than the price of the asset only if it doesn't result in insolvency, and # if we can get a monopoly this way return current_bid+(player.current_cash-current_bid)/4 else: return 0 # no reason to bid def handle_negative_cash_balance(player, current_gameboard): """ You have a negative cash balance at the end of your move (i.e. your post-roll phase is over) and you must handle this issue before we move to the next player's pre-roll. If you do not succeed in restoring your cash balance to 0 or positive, bankruptcy proceeds will begin and you will lost the game. The background agent tries a number of things to get itself out of a financial hole. First, it checks whether mortgaging alone can save it. If not, then it begins selling unimproved properties in ascending order of price, the idea being that it might as well get rid of cheap properties. This may not be the most optimal move but it is reasonable. If it ends up selling all unimproved properties and is still insolvent, it starts selling improvements, followed by a sale of the (now) unimproved properties. :param player: A Player instance. You should expect this to be the player that is 'making' the decision (i.e. the player instantiated with the functions specified by this decision agent). :param current_gameboard: A dict. The global data structure representing the current game board. :return: -1 (failure code) if you do not try to address your negative cash balance, or 1 if you tried and believed you succeeded. Note that even if you do return 1 (successful move action), we will check to see whether you have non-negative cash balance. The rule of thumb is to return 1 (successful move action) as long as you 'try', or -1 if you don't try (in which case you will be declared bankrupt and lose the game) """ if player.current_cash >= 0: # prelim check to see if player has negative cash balance return (None, flag_config_dict['successful_action']) #player should evaluate all the possible options that can save it from bankruptcy and take most promising actions mortgage_potentials = list() max_sum = 0 sorted_player_assets_list = _set_to_sorted_list_assets(player.assets) for a in sorted_player_assets_list: if a.is_mortgaged: continue elif a.loc_class=='real_estate' and (a.num_houses>0 or a.num_hotels>0): continue else: mortgage_potentials.append((a, a.mortgage)) max_sum += a.mortgage if mortgage_potentials and max_sum+player.current_cash >= 0: # if the second condition is not met, no point in mortgaging sorted_potentials = sorted(mortgage_potentials, key=lambda x: x[1]) # sort by mortgage in ascending order for p in sorted_potentials: if player.current_cash >= 0: return (None, flag_config_dict['successful_action']) # we're done params = dict() params['player'] = player.player_name params['asset'] = p[0].name params['current_gameboard'] = "current_gameboard" logger.debug(player.player_name+ ': I am attempting to mortgage property '+ params['asset']) player.agent._agent_memory['previous_action'] = "mortgage_property" return ("mortgage_property", params) # if we got here, it means we're still in trouble. Next move is to sell unimproved properties. We don't check if # the total will cover our debts, since we're desperate at this point. # following sale potentials doesnot include properties from monopolized color groups sale_potentials = list() sorted_player_assets_list = _set_to_sorted_list_assets(player.assets) for a in sorted_player_assets_list: if a.color in player.full_color_sets_possessed: continue elif a.is_mortgaged: if (a.price*current_gameboard['bank'].property_sell_percentage)-Bank.calculate_mortgage_owed(a, current_gameboard) > 0: # default case, this will never be > 0 unless novelty is introduced sale_potentials.append((a, (a.price*current_gameboard['bank'].property_sell_percentage)-Bank.calculate_mortgage_owed(a, current_gameboard))) else: continue # no point selling a mortgaged property if you dont anything out of it elif a.loc_class=='real_estate' and (a.num_houses>0 or a.num_hotels>0): continue else: sale_potentials.append((a, a.price*current_gameboard['bank'].property_sell_percentage)) if sale_potentials: # if the second condition is not met, no point in mortgaging sorted_potentials = sorted(sale_potentials, key=lambda x: x[1]) # sort by mortgage in ascending order for p in sorted_potentials: if player.current_cash >= 0: return (None, flag_config_dict['successful_action']) # we're done params = dict() params['player'] = player.player_name params['asset'] = p[0].name params['current_gameboard'] = "current_gameboard" logger.debug(player.player_name + ': I am attempting to sell property '+ p[0].name + ' to the bank') player.agent._agent_memory['previous_action'] = "sell_property" return ("sell_property", params) # if selling properties from non monopolized color groups doesnot relieve the player from debt, then only we start thinking about giving up monopolized groups. # If we come across a unimproved property which belongs to a monopoly, we still have to loop through the other properties from the same color group and # sell the houses and hotels first because we cannot sell this property when the color group has improved properties # We first check if selling houses and hotels one by one on the other improved properties of the same color group relieves the player of his debt. If it does # then we return without selling the current property else we sell the property and the player loses monopoly of that color group. max_sum = 0 sale_potentials = list() sorted_player_assets_list = _set_to_sorted_list_assets(player.assets) for a in sorted_player_assets_list: if a.is_mortgaged: if a.price*current_gameboard['bank'].property_sell_percentage-Bank.calculate_mortgage_owed(a, current_gameboard) > 0: # default case, this will never be > 0 unless novelty is introduced sale_potentials.append((a, (a.price*current_gameboard['bank'].property_sell_percentage)-Bank.calculate_mortgage_owed(a, current_gameboard))) else: continue # no point selling mortgaged property if you dont get anything out of it elif a.loc_class=='real_estate' and (a.num_houses > 0 or a.num_hotels > 0): continue else: sale_potentials.append((a, a.price*current_gameboard['bank'].property_sell_percentage)) if sale_potentials: sorted_potentials = sorted(sale_potentials, key=lambda x: x[1]) # sort by sell value in ascending order for p in sorted_potentials: if player.current_cash >= 0: return (None, flag_config_dict['successful_action']) # we're done sorted_player_assets_list = _set_to_sorted_list_assets(player.assets) for prop in sorted_player_assets_list: if prop != p[0] and prop.color == p[0].color and p[0].color in player.full_color_sets_possessed: if hasattr(prop, 'num_hotels'): # add by Peter, for composite novelty if prop.num_hotels > 0: # if current asset has no hotels, prop can only have max of 1 hotel (uniform improvement rule) if player.current_cash >= 0: return (None, flag_config_dict['successful_action']) params = dict() params['player'] = player.player_name params['asset'] = prop.name params['current_gameboard'] = "current_gameboard" params['sell_house'] = False params['sell_hotel'] = True logger.debug(player.player_name+ ': I am attempting to sell hotel on '+ prop.name + ' to the bank') player.agent._agent_memory['previous_action'] = "sell_house_hotel" return ("sell_house_hotel", params) elif prop.num_houses > 0: # if current asset has no houses, prop can only have max of 1 house (uniform improvement rule) if player.current_cash >= 0: return (None, flag_config_dict['successful_action']) params = dict() params['player'] = player.player_name params['asset'] = prop.name params['current_gameboard'] = "current_gameboard" params['sell_house'] = True params['sell_hotel'] = False logger.debug(player.player_name+ ': I am attempting to sell house on '+ prop.name + ' to the bank') player.agent._agent_memory['previous_action'] = "sell_house_hotel" return ("sell_house_hotel", params) else: continue params = dict() params['player'] = player.player_name params['asset'] = p[0].name params['current_gameboard'] = "current_gameboard" logger.debug(player.player_name + ': I am attempting to sell property '+ p[0].name + ' to the bank') player.agent._agent_memory['previous_action'] = "sell_property" return ("sell_property", params) #we reach here if the player still hasnot cleared his debt. The above loop has now resulted in some more non monopolized properties. #Hence we have to go through the process of looping through these properties once again to decide on the potential properties that can be mortgaged or sold. mortgage_potentials = list() sorted_player_assets_list = _set_to_sorted_list_assets(player.assets) for a in sorted_player_assets_list: if a.is_mortgaged: continue elif a.loc_class=='real_estate' and (a.num_houses>0 or a.num_hotels>0): continue else: mortgage_potentials.append((a,a.mortgage)) if mortgage_potentials and max_sum+player.current_cash >= 0: # if the second condition is not met, no point in mortgaging sorted_potentials = sorted(mortgage_potentials, key=lambda x: x[1]) # sort by mortgage in ascending order for p in sorted_potentials: if player.current_cash >= 0: return (None, flag_config_dict['successful_action']) # we're done params = dict() params['player'] = player.player_name params['asset'] = p[0].name params['current_gameboard'] = "current_gameboard" logger.debug(player.player_name+ ': I am attempting to mortgage property '+ params['asset']) player.agent._agent_memory['previous_action'] = "mortgage_property" return ("mortgage_property", params) # following sale potentials loops through the properties that have become unmonopolized due to the above loops and # doesnot include properties from monopolized color groups sale_potentials = list() sorted_player_assets_list = _set_to_sorted_list_assets(player.assets) for a in sorted_player_assets_list: if a.color in player.full_color_sets_possessed: continue elif a.is_mortgaged: if (a.price*current_gameboard['bank'].property_sell_percentage)-Bank.calculate_mortgage_owed(a, current_gameboard) > 0: sale_potentials.append((a, (a.price*current_gameboard['bank'].property_sell_percentage)-Bank.calculate_mortgage_owed(a, current_gameboard))) else: continue elif a.loc_class=='real_estate' and (a.num_houses>0 or a.num_hotels>0): continue else: sale_potentials.append((a, a.price*current_gameboard['bank'].property_sell_percentage)) if sale_potentials: # if the second condition is not met, no point in mortgaging sorted_potentials = sorted(sale_potentials, key=lambda x: x[1]) # sort by mortgage in ascending order for p in sorted_potentials: if player.current_cash >= 0: return (None, flag_config_dict['successful_action']) # we're done params = dict() params['player'] = player.player_name params['asset'] = p[0].name params['current_gameboard'] = "current_gameboard" logger.debug(player.player_name + ': I am attempting to sell property '+ p[0].name + ' to the bank') player.agent._agent_memory['previous_action'] = "sell_property" return ("sell_property", params) count = 0 # if we're STILL not done, then the only option is to start selling houses and hotels from the remaining improved monopolized properties, if we have 'em while (player.num_total_houses > 0 or player.num_total_hotels > 0) and count <3: # often times, a sale may not succeed due to uniformity requirements. We keep trying till everything is sold, # or cash balance turns non-negative. count += 1 # there is a slim chance that it is impossible to sell an improvement unless the player does something first (e.g., replace 4 houses with a hotel). # The count ensures we terminate at some point, regardless. sorted_assets_list = _set_to_sorted_list_assets(player.assets) for a in sorted_assets_list: if a.loc_class == 'real_estate' and a.num_houses > 0: if player.current_cash >= 0: return (None, flag_config_dict['successful_action']) # we're done flag = True for same_colored_asset in current_gameboard['color_assets'][a.color]: if same_colored_asset == a: continue if same_colored_asset.num_houses > a.num_houses or a.num_hotels == 1: flag = False break if flag: params = dict() params['player'] = player.player_name params['asset'] = a.name params['current_gameboard'] = "current_gameboard" params['sell_house'] = True params['sell_hotel'] = False logger.debug(player.player_name+ ': I am attempting to sell house on '+ a.name + ' to the bank') player.agent._agent_memory['previous_action'] = "sell_house_hotel" return ("sell_house_hotel", params) elif a.loc_class == 'real_estate' and a.num_hotels > 0: if player.current_cash >= 0: return (None, flag_config_dict['successful_action']) # we're done flag = True for same_colored_asset in current_gameboard['color_assets'][a.color]: if same_colored_asset == a: continue if a.num_hotels == 1 and not (same_colored_asset.num_hotels == 1 or (same_colored_asset.num_hotels == 0 and same_colored_asset.num_houses == 0)) : # if there are no hotels on other properties, # there must not be houses either, otherwise the uniform improvement rule gets broken. The not on the # outside enforces this rule. flag = False break elif a.num_hotels < same_colored_asset.num_hotels: # need to follow uniform improvement rule flag = False break if flag: params = dict() params['player'] = player.player_name params['asset'] = a.name params['current_gameboard'] = "current_gameboard" params['sell_house'] = False params['sell_hotel'] = True logger.debug(player.player_name+ ': I am attempting to sell house on '+ a.name + ' to the bank') player.agent._agent_memory['previous_action'] = "sell_house_hotel" return ("sell_house_hotel", params) # final straw final_sale_assets = player.assets.copy() sorted_player_assets_list = _set_to_sorted_list_assets(final_sale_assets) for a in sorted_player_assets_list: if player.current_cash >= 0: return (None, flag_config_dict['successful_action']) # we're done if a.is_mortgaged: continue elif a.loc_class=='real_estate' and (a.num_houses>0 or a.num_hotels>0): continue params = dict() params['player'] = player.player_name params['asset'] = a.name params['current_gameboard'] = "current_gameboard" logger.debug(player.player_name + ': I am attempting to sell property '+ a.name + ' to the bank') player.agent._agent_memory['previous_action'] = "sell_property" return ("sell_property", params) return (None, flag_config_dict['successful_action']) # if we didn't succeed in establishing solvency, it will get caught by the simulator. Since we tried, we return 1. def _set_to_sorted_list_mortgaged_assets(player_mortgaged_assets): player_m_assets_list = list() player_m_assets_dict = dict() for item in player_mortgaged_assets: player_m_assets_dict[item.name] = item for sorted_key in sorted(player_m_assets_dict): player_m_assets_list.append(player_m_assets_dict[sorted_key]) return player_m_assets_list def _set_to_sorted_list_assets(player_assets): player_assets_list = list() player_assets_dict = dict() for item in player_assets: player_assets_dict[item.name] = item for sorted_key in sorted(player_assets_dict): player_assets_list.append(player_assets_dict[sorted_key]) return player_assets_list def _build_decision_agent_methods_dict(): """ This function builds the decision agent methods dictionary. :return: The decision agent dict. Keys should be exactly as stated in this example, but the functions can be anything as long as you use/expect the exact function signatures we have indicated in this document. """ ans = dict() ans['handle_negative_cash_balance'] = handle_negative_cash_balance ans['make_pre_roll_move'] = make_pre_roll_move ans['make_out_of_turn_move'] = make_out_of_turn_move ans['make_post_roll_move'] = make_post_roll_move ans['make_buy_property_decision'] = make_buy_property_decision ans['make_bid'] = make_bid ans['type'] = "decision_agent_methods" return ans decision_agent_methods = _build_decision_agent_methods_dict() # this is the main data structure that is needed by gameplay
PypiClean
/portapy-0.0.1.post2-py3-none-any.whl/portapy-js/node_modules/js-tokens/CHANGELOG.md
### Version 4.0.0 (2018-01-28) ### - Added: Support for ES2018. The only change needed was recognizing the `s` regex flag. - Changed: _All_ tokens returned by the `matchToToken` function now have a `closed` property. It is set to `undefined` for the tokens where “closed” doesn’t make sense. This means that all tokens objects have the same shape, which might improve performance. These are the breaking changes: - `'/a/s'.match(jsTokens)` no longer returns `['/', 'a', '/', 's']`, but `['/a/s']`. (There are of course other variations of this.) - Code that rely on some token objects not having the `closed` property could now behave differently. ### Version 3.0.2 (2017-06-28) ### - No code changes. Just updates to the readme. ### Version 3.0.1 (2017-01-30) ### - Fixed: ES2015 unicode escapes with more than 6 hex digits are now matched correctly. ### Version 3.0.0 (2017-01-11) ### This release contains one breaking change, that should [improve performance in V8][v8-perf]: > So how can you, as a JavaScript developer, ensure that your RegExps are fast? > If you are not interested in hooking into RegExp internals, make sure that > neither the RegExp instance, nor its prototype is modified in order to get the > best performance: > > ```js > var re = /./g; > re.exec(''); // Fast path. > re.new_property = 'slow'; > ``` This module used to export a single regex, with `.matchToToken` bolted on, just like in the above example. This release changes the exports of the module to avoid this issue. Before: ```js import jsTokens from "js-tokens" // or: var jsTokens = require("js-tokens") var matchToToken = jsTokens.matchToToken ``` After: ```js import jsTokens, {matchToToken} from "js-tokens" // or: var jsTokens = require("js-tokens").default var matchToToken = require("js-tokens").matchToToken ``` [v8-perf]: http://v8project.blogspot.se/2017/01/speeding-up-v8-regular-expressions.html ### Version 2.0.0 (2016-06-19) ### - Added: Support for ES2016. In other words, support for the `**` exponentiation operator. These are the breaking changes: - `'**'.match(jsTokens)` no longer returns `['*', '*']`, but `['**']`. - `'**='.match(jsTokens)` no longer returns `['*', '*=']`, but `['**=']`. ### Version 1.0.3 (2016-03-27) ### - Improved: Made the regex ever so slightly smaller. - Updated: The readme. ### Version 1.0.2 (2015-10-18) ### - Improved: Limited npm package contents for a smaller download. Thanks to @zertosh! ### Version 1.0.1 (2015-06-20) ### - Fixed: Declared an undeclared variable. ### Version 1.0.0 (2015-02-26) ### - Changed: Merged the 'operator' and 'punctuation' types into 'punctuator'. That type is now equivalent to the Punctuator token in the ECMAScript specification. (Backwards-incompatible change.) - Fixed: A `-` followed by a number is now correctly matched as a punctuator followed by a number. It used to be matched as just a number, but there is no such thing as negative number literals. (Possibly backwards-incompatible change.) ### Version 0.4.1 (2015-02-21) ### - Added: Support for the regex `u` flag. ### Version 0.4.0 (2015-02-21) ### - Improved: `jsTokens.matchToToken` performance. - Added: Support for octal and binary number literals. - Added: Support for template strings. ### Version 0.3.1 (2015-01-06) ### - Fixed: Support for unicode spaces. They used to be allowed in names (which is very confusing), and some unicode newlines were wrongly allowed in strings and regexes. ### Version 0.3.0 (2014-12-19) ### - Changed: The `jsTokens.names` array has been replaced with the `jsTokens.matchToToken` function. The capturing groups of `jsTokens` are no longer part of the public API; instead use said function. See this [gist] for an example. (Backwards-incompatible change.) - Changed: The empty string is now considered an “invalid” token, instead an “empty” token (its own group). (Backwards-incompatible change.) - Removed: component support. (Backwards-incompatible change.) [gist]: https://gist.github.com/lydell/be49dbf80c382c473004 ### Version 0.2.0 (2014-06-19) ### - Changed: Match ES6 function arrows (`=>`) as an operator, instead of its own category (“functionArrow”), for simplicity. (Backwards-incompatible change.) - Added: ES6 splats (`...`) are now matched as an operator (instead of three punctuations). (Backwards-incompatible change.) ### Version 0.1.0 (2014-03-08) ### - Initial release.
PypiClean
/combi-1.1.4.tar.gz/combi-1.1.4/docs/theme/static/doctools.js
if (!window.console || !console.firebug) { var names = ["log", "debug", "info", "warn", "error", "assert", "dir", "dirxml", "group", "groupEnd", "time", "timeEnd", "count", "trace", "profile", "profileEnd"]; window.console = {}; for (var i = 0; i < names.length; ++i) window.console[names[i]] = function() {} } /** * small helper function to urldecode strings */ jQuery.urldecode = function(x) { return decodeURIComponent(x).replace(/\+/g, ' '); } /** * small helper function to urlencode strings */ jQuery.urlencode = encodeURIComponent; /** * This function returns the parsed url parameters of the * current request. Multiple values per key are supported, * it will always return arrays of strings for the value parts. */ jQuery.getQueryParameters = function(s) { if (typeof s == 'undefined') s = document.location.search; var parts = s.substr(s.indexOf('?') + 1).split('&'); var result = {}; for (var i = 0; i < parts.length; i++) { var tmp = parts[i].split('=', 2); var key = jQuery.urldecode(tmp[0]); var value = jQuery.urldecode(tmp[1]); if (key in result) result[key].push(value); else result[key] = [value]; } return result; } /** * small function to check if an array contains * a given item. */ jQuery.contains = function(arr, item) { for (var i = 0; i < arr.length; i++) { if (arr[i] == item) return true; } return false; } /** * highlight a given string on a jquery object by wrapping it in * span elements with the given class name. */ jQuery.fn.highlightText = function(text, className) { function highlight(node) { if (node.nodeType == 3) { var val = node.nodeValue; var pos = val.toLowerCase().indexOf(text); if (pos >= 0 && !jQuery.className.has(node.parentNode, className)) { var span = document.createElement("span"); span.className = className; span.appendChild(document.createTextNode(val.substr(pos, text.length))); node.parentNode.insertBefore(span, node.parentNode.insertBefore( document.createTextNode(val.substr(pos + text.length)), node.nextSibling)); node.nodeValue = val.substr(0, pos); } } else if (!jQuery(node).is("button, select, textarea")) { jQuery.each(node.childNodes, function() { highlight(this) }); } } return this.each(function() { highlight(this); }); } /** * Small JavaScript module for the documentation. */ var Documentation = { init : function() { this.fixFirefoxAnchorBug(); this.highlightSearchWords(); this.initModIndex(); }, /** * i18n support */ TRANSLATIONS : {}, PLURAL_EXPR : function(n) { return n == 1 ? 0 : 1; }, LOCALE : 'unknown', // gettext and ngettext don't access this so that the functions // can savely bound to a different name (_ = Documentation.gettext) gettext : function(string) { var translated = Documentation.TRANSLATIONS[string]; if (typeof translated == 'undefined') return string; return (typeof translated == 'string') ? translated : translated[0]; }, ngettext : function(singular, plural, n) { var translated = Documentation.TRANSLATIONS[singular]; if (typeof translated == 'undefined') return (n == 1) ? singular : plural; return translated[Documentation.PLURALEXPR(n)]; }, addTranslations : function(catalog) { for (var key in catalog.messages) this.TRANSLATIONS[key] = catalog.messages[key]; this.PLURAL_EXPR = new Function('n', 'return +(' + catalog.plural_expr + ')'); this.LOCALE = catalog.locale; }, /** * add context elements like header anchor links */ addContextElements : function() { $('div[id] > :header:first').each(function() { $('<a class="headerlink">\u00B6</a>'). attr('href', '#' + this.id). attr('title', _('Permalink to this headline')). appendTo(this); }); $('dt[id]').each(function() { $('<a class="headerlink">\u00B6</a>'). attr('href', '#' + this.id). attr('title', _('Permalink to this definition')). appendTo(this); }); }, /** * workaround a firefox stupidity */ fixFirefoxAnchorBug : function() { if (document.location.hash && $.browser.mozilla) window.setTimeout(function() { document.location.href += ''; }, 10); }, /** * highlight the search words provided in the url in the text */ highlightSearchWords : function() { var params = $.getQueryParameters(); var terms = (params.highlight) ? params.highlight[0].split(/\s+/) : []; if (terms.length) { var body = $('div.body'); window.setTimeout(function() { $.each(terms, function() { body.highlightText(this.toLowerCase(), 'highlight'); }); }, 10); $('<li class="highlight-link"><a href="javascript:Documentation.' + 'hideSearchWords()">' + _('Hide Search Matches') + '</a></li>') .appendTo($('.sidebar .this-page-menu')); } }, /** * init the modindex toggle buttons */ initModIndex : function() { var togglers = $('img.toggler').click(function() { var src = $(this).attr('src'); var idnum = $(this).attr('id').substr(7); console.log($('tr.cg-' + idnum).toggle()); if (src.substr(-9) == 'minus.png') $(this).attr('src', src.substr(0, src.length-9) + 'plus.png'); else $(this).attr('src', src.substr(0, src.length-8) + 'minus.png'); }).css('display', ''); if (DOCUMENTATION_OPTIONS.COLLAPSE_MODINDEX) { togglers.click(); } }, /** * helper function to hide the search marks again */ hideSearchWords : function() { $('.sidebar .this-page-menu li.highlight-link').fadeOut(300); $('span.highlight').removeClass('highlight'); }, /** * make the url absolute */ makeURL : function(relativeURL) { return DOCUMENTATION_OPTIONS.URL_ROOT + '/' + relativeURL; }, /** * get the current relative url */ getCurrentURL : function() { var path = document.location.pathname; var parts = path.split(/\//); $.each(DOCUMENTATION_OPTIONS.URL_ROOT.split(/\//), function() { if (this == '..') parts.pop(); }); var url = parts.join('/'); return path.substring(url.lastIndexOf('/') + 1, path.length - 1); } }; // quick alias for translations _ = Documentation.gettext; $(document).ready(function() { Documentation.init(); });
PypiClean
/mindspore_gpu-1.10.0-cp39-cp39-manylinux1_x86_64.whl/mindspore/_akg/akg/topi/x86/conv2d_int8.py
"""Conv2D int8 schedule on x86""" import re import tvm from tvm import autotvm from tvm.autotvm.task import get_config from tvm.autotvm.task.topi_integration import deserialize_args from ..nn.conv2d import _get_workload as _get_conv2d_workload from .. import generic, tag from ..generic import conv2d as conv2d_generic from ..util import get_const_tuple from ..nn.conv2d import conv2d_NCHWc_int8 from .. import nn from . import conv2d_avx_1x1, conv2d_avx_common def _get_default_config_int8(cfg, data, kernel, strides, padding, out_dtype, is_depthwise=False, layout='NCHW'): """ Get default schedule config for the workload """ assert not is_depthwise, "Depthwise Int8 not supported" wkl = _get_conv2d_workload(data, kernel, strides, padding, out_dtype, layout) is_kernel_1x1 = wkl.hkernel == 1 and wkl.wkernel == 1 if is_kernel_1x1: conv2d_generic.fallback_schedule_cpu_1x1_int8( cfg, wkl, int32_lanes=16, num_int8_elements=4) else: conv2d_generic.fallback_schedule_cpu_common_int8( cfg, wkl, int32_lanes=16, num_int8_elements=4) def _is_int8_hw_support(data_dtype, kernel_dtype): """ Checks to ensure that we can use Intel DLBoost instructions 1) The datatypes are correct. 2) LLVM version has support for the instructions. 3) Target is skylake and above. """ # 1) Check datatypes is_dtype_support = data_dtype == 'uint8' and kernel_dtype == 'int8' # 2) Check LLVM support llvm_version = tvm.codegen.llvm_version_major() is_llvm_support = llvm_version >= 8 # 3) Check target mcpu = tvm.target.current_target().mcpu is_target_support = False if mcpu == 'skylake-avx512' or mcpu == 'cascadelake': is_target_support = True return is_dtype_support and is_llvm_support and is_target_support def _create_tuning_space_int8(cfg, data, kernel, strides, padding, dilation, layout): """Create schedule configuration from input arguments""" dshape = get_const_tuple(data.shape) kshape = get_const_tuple(kernel.shape) pat = re.compile(r'NCHW.+(\d+)c') if layout == 'NCHW': n, ic, h, w = dshape oc, _, kh, kw = kshape elif layout == 'NHWC': n, h, w, ic = dshape kh, kw, oc, _ = kshape elif pat.match(layout) is not None: n, ic_chunk, h, w, ic_bn = dshape target = tvm.target.current_target(allow_none=False) oc_chunk, k_ic, kh, kw, k_ic_f, oc_bn, k_ic_s = kshape ic = ic_chunk * ic_bn assert ic == k_ic * k_ic_f * k_ic_s oc = oc_chunk*oc_bn else: raise ValueError("Not support this layout {} with " "schedule template.".format(layout)) is_kernel_1x1 = kh == 1 and kw == 1 ph, pw = padding if isinstance(padding, (tuple, list)) else (padding, padding) sh, sw = strides if isinstance(strides, (tuple, list)) else (strides, strides) oh = (h - kh + 2 * ph) // sh + 1 ow = (w - kw + 2 * pw) // sw + 1 # Create schedule config cfg.define_split('tile_ic', ic, num_outputs=2, filter=lambda y: y.size[-1] % 4 == 0) cfg.define_split('tile_oc', oc, num_outputs=2, filter=lambda y: y.size[-1] % 16 == 0) cfg.define_split("tile_ow", ow, num_outputs=2, filter=lambda y: y.size[-1] <= 64) if is_kernel_1x1: cfg.define_knob("tile_oh", [1, 2] if oh > 1 else [1]) else: cfg.define_knob("unroll_kw", [True, False]) # Define template function for autotvm task # We define schedule template in this function instead of # declaration function since actual input arguments need # to be altered by the schedule selected. @autotvm.task.register("topi_x86_conv2d_NCHWc_int8") def _topi_nn_conv2d_NCHWc_int8(*args, **kwargs): assert not kwargs, "Do not support kwargs in template function call" args = deserialize_args(args) if len(args) == 7: data, kernel, strides, padding, dilation, origin_layout, dtype = args else: assert len(args) == 8 data, kernel, strides, padding, dilation, origin_layout, out_layout, dtype = args raw_data_shape = get_const_tuple(data.shape) raw_kernel_shape = get_const_tuple(kernel.shape) # get config here cfg = get_config() _create_tuning_space_int8(cfg, data, kernel, strides, padding, dilation, origin_layout) # change shape with the value in config ic_bn, oc_bn, ow_bn = (cfg["tile_ic"].size[-1], cfg["tile_oc"].size[-1], cfg["tile_ow"].size[-1]) data_layout = "NCHW%dc" % ic_bn out_layout = "NCHW%dc" % oc_bn # Set up the new shape for data and kernel new_data_shape = (raw_data_shape[0], raw_data_shape[1] // ic_bn, raw_data_shape[2], raw_data_shape[3], ic_bn) n_elems = 4 new_kernel_shape = (raw_kernel_shape[0] // oc_bn, raw_kernel_shape[1] // ic_bn, raw_kernel_shape[2], raw_kernel_shape[3], ic_bn // n_elems, oc_bn, n_elems) new_data = tvm.placeholder(new_data_shape, data.dtype) new_kernel = tvm.placeholder(new_kernel_shape, kernel.dtype) C = _declaration_conv_NCHWc_int8(cfg, new_data, new_kernel, strides, padding, dilation, data_layout, out_layout, dtype) s = _schedule_conv2d_NCHWc_int8(cfg, [C]) return s, [new_data, new_kernel, C] @autotvm.register_topi_compute(conv2d_NCHWc_int8, 'cpu', 'direct') def _declaration_conv_NCHWc_int8(cfg, data, kernel, strides, padding, dilation, layout, out_layout, out_dtype): return nn.conv2d_NCHWc_int8_compute(data, kernel, strides, padding, dilation, layout, out_layout, out_dtype) @autotvm.register_topi_schedule(generic.schedule_conv2d_NCHWc_int8, 'cpu', ['direct']) def _schedule_conv2d_NCHWc_int8(cfg, outs): """Create schedule for tensors""" s = tvm.create_schedule([x.op for x in outs]) scheduled_ops = [] def traverse(op): """Traverse operators from computation graph""" # inline all one-to-one-mapping operators except the last stage (output) if tag.is_broadcast(op.tag): if op not in s.outputs: s[op].compute_inline() for tensor in op.input_tensors: if isinstance(tensor.op, tvm.tensor.ComputeOp) and tensor.op not in scheduled_ops: traverse(tensor.op) if 'conv2d_NCHWc_int8' in op.tag: conv_out = op.output(0) kernel = conv_out.op.input_tensors[1] data_vec = conv_out.op.input_tensors[0] data = data_vec.op.input_tensors[0] \ if isinstance(data_vec.op, tvm.tensor.ComputeOp) and "pad" not in data_vec.op.tag \ else data_vec if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag: data_pad = data data = data_pad.op.input_tensors[0] args = [s, cfg, data_vec, conv_out, outs[0]] target = tvm.target.current_target(allow_none=False) # int8 conv kernel is 7-dim _, _, kh, kw, _, _, _ = get_const_tuple(kernel.shape) if kh == 1 and kw == 1: conv2d_avx_1x1._schedule_conv_NCHWc_int8(*args) else: conv2d_avx_common._schedule_conv_NCHWc_int8(*args) scheduled_ops.append(op) traverse(outs[0].op) return s @autotvm.register_topi_schedule(generic.schedule_conv2d_nhwc_pack, 'cpu', ['direct']) def schedule_conv2d_nhwc_pack(cfg, outs): """Create schedule for tensors""" s = tvm.create_schedule([x.op for x in outs]) output_op = outs[0].op scheduled_ops = [] def traverse(op): """Traverse operators from computation graph""" # inline all one-to-one-mapping operators except the last stage (output) if tag.is_broadcast(op.tag): if op not in s.outputs: s[op].compute_inline() else: # inject custom schedule if len(op.axis) == 4: # schedule bias + bn + relu n, h, w, c = op.axis fused = s[op].fuse(n, h, w) s[op].parallel(fused) s[op].vectorize(c) for tensor in op.input_tensors: if isinstance(tensor.op, tvm.tensor.ComputeOp) and tensor.op not in scheduled_ops: traverse(tensor.op) if 'conv2d_nhwc_pack_int8' in op.tag: conv_out = op.output(0) kernel = conv_out.op.input_tensors[1] data_vec = conv_out.op.input_tensors[0] data = data_vec.op.input_tensors[0] \ if isinstance(data_vec.op, tvm.tensor.ComputeOp) and "pad" not in data_vec.op.tag \ else data_vec if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag: data_pad = data data = data_pad.op.input_tensors[0] args = [s, cfg, data_vec, conv_out, outs[0]] if data.dtype == 'uint8': kh, kw, _, _, _ = get_const_tuple(kernel.shape) if kh == 1 and kw == 1: conv2d_avx_1x1._schedule_conv_nhwc_pack_int8(*args) else: raise ValueError("Only support 1x1 kernel with " "schedule_conv2d_nhwc_pack.") else: raise ValueError("Not support this data type {} with " "schedule_conv2d_nhwc_pack. Only support int8".format(data.dtype)) scheduled_ops.append(op) traverse(output_op) return s
PypiClean
/spyder-terminal-1.2.2.tar.gz/spyder-terminal-1.2.2/spyder_terminal/server/static/components/regenerator-transform/src/replaceShorthandObjectMethod.js
import * as util from "./util"; // this function converts a shorthand object generator method into a normal // (non-shorthand) object property which is a generator function expression. for // example, this: // // var foo = { // *bar(baz) { return 5; } // } // // should be replaced with: // // var foo = { // bar: function*(baz) { return 5; } // } // // to do this, it clones the parameter array and the body of the object generator // method into a new FunctionExpression. // // this method can be passed any Function AST node path, and it will return // either: // a) the path that was passed in (iff the path did not need to be replaced) or // b) the path of the new FunctionExpression that was created as a replacement // (iff the path did need to be replaced) // // In either case, though, the caller can count on the fact that the return value // is a Function AST node path. // // If this function is called with an AST node path that is not a Function (or with an // argument that isn't an AST node path), it will throw an error. export default function replaceShorthandObjectMethod(path) { const t = util.getTypes(); if (!path.node || !t.isFunction(path.node)) { throw new Error("replaceShorthandObjectMethod can only be called on Function AST node paths."); } // this function only replaces shorthand object methods (called ObjectMethod // in Babel-speak). if (!t.isObjectMethod(path.node)) { return path; } // this function only replaces generators. if (!path.node.generator) { return path; } const parameters = path.node.params.map(function (param) { return t.cloneDeep(param); }) const functionExpression = t.functionExpression( null, // id parameters, // params t.cloneDeep(path.node.body), // body path.node.generator, path.node.async ); util.replaceWithOrRemove(path, t.objectProperty( t.cloneDeep(path.node.key), // key functionExpression, //value path.node.computed, // computed false // shorthand ) ); // path now refers to the ObjectProperty AST node path, but we want to return a // Function AST node path for the function expression we created. we know that // the FunctionExpression we just created is the value of the ObjectProperty, // so return the "value" path off of this path. return path.get("value"); }
PypiClean
/daot-0.7.4.zip/daot-0.7.4/dao/builtins/quasiquote.py
from dao import builtin from dao.builtin import Builtin, Function from dao.term import CommandCall from dao.solve import DaoSyntaxError, mycont # quasiquote and backquote ## dao and t language ## (if (> i 1) i (+ i 1)) ##`(if ,i>1: ,i; else ,i+1) def evaluate_quasiquote_list_cont(solver, cont, exps): @mycont(cont) def quasi_cont(result, solver): if len(exps)==0: yield cont, result else: element0 = exps[0] left_cont = evaluate_quasiquote_list_cont(solver, cont, exps[1:]) if element0==(): yield left_cont, result+((),) return if not isinstance(element0, tuple): if element0==unquote or element0==unquote_slice: raise DaoSyntaxError else: yield left_cont, result+(element0,) return elif len(element0)==2: if element0[0]==unquote: @mycont(quasi_cont) def gather_cont(value, solver): yield left_cont, result+(value,) yield solver.cont(element0[1], gather_cont), True return elif element0[0]==unquote_slice: @mycont(quasi_cont) def gather_cont(value, solver): yield left_cont, result+value yield solver.cont(element0[1], gather_cont), True return elif element0[0]==unquote or element0[0]==unquote_slice: raise DaoSyntaxError @mycont(quasi_cont) def gather_cont(value, solver): yield left_cont, result+(value,) yield evaluate_quasiquote_list_cont(solver, gather_cont, element0), () return quasi_cont @builtin.macro('quasiquote') def quasiquote(solver, cont, item): if not isinstance(item, tuple) or item==(): yield cont, item return elif len(item)==2: if item[0]==unquote: yield solver.cont(item[1], cont), True return elif item[0]==unquote_slice: raise DaoSyntaxError elif item[0]==unquote or item[0]==unquote_slice: raise DaoSyntaxError yield evaluate_quasiquote_list_cont(solver, cont, item), () @builtin.macro('unquote') def unquote(solver, cont, *args): raise DaoSyntaxError @builtin.macro('unquote_slice') def unquote_slice(solver, cont, *args): raise DaoSyntaxError ##Back when JAR first suggested making quasiquote standard, I transcribed ##my quasiquote implementation from the C-coded reader into Scheme-coded ##syntactic-extensions. I promised to send the code to David Bartley at ##TI and figured some of the rest of you might be interested as well. ## ##I believe that this gives different results from JAR's, because it can ##actually fold up explicit calls to "list" and "list*" (for better or for ##worse). It also insists that quasiquote, unquote, and unquote-splice ##forms be well-formed, rather than ignoring those that aren't. As with ##JAR's, nested quasiquotes work properly. ## ##Because quasiquote and company are expanded at compile time rather than ##read time, it is reasonable to write code that produces quasiquote forms. ## ##"list*" (Common Lisp's name) is the same as JAR's "cons*". The meaning ##of everything else should be obvious. ## ##(let ((check ## (lambda (x) ## (unless (and (pair? (cdr x)) (null? (cddr x))) ## (ferror (car x) "invalid form ~s" x))))) ## (define-macro! quasiquote (x) ## (recur f ((x x)) ## (cond ## ((not (pair? x)) `',x) ## ((eq? (car x) 'quasiquote) (check x) (f (f (cadr x)))) ## ((eq? (car x) 'unquote) (check x) (cadr x)) ## ((eq? (car x) 'unquote-splice) ## (ferror 'unquote-splice "invalid context for ~s" x)) ## ((and (pair? (car x)) (eq? (caar x) 'unquote-splice)) ## (check (car x)) ## (let ((d (f (cdr x)))) ## (if (equal? d '(quote ())) ## (cadar x) ## `(append ,(cadar x) ,d)))) ## (else ## (let ((a (f (car x))) (d (f (cdr x)))) ## (if (pair? d) ## (if (eq? (car d) 'quote) ## (if (and (pair? a) (eq? (car a) 'quote)) ## `'(,(cadr a) . ,(cadr d)) ## (if (null? (cadr d)) ## `(list ,a) ## `(list* ,a ,d))) ## (if (memq (car d) '(list list*)) ## `(,(car d) ,a ,@(cdr d)) ## `(list* ,a ,d))) ## `(list* ,a ,d)))))))) ## ##(define-macro! unquote (x) ## (ferror 'unquote ## "unquote form ,~s not valid outside of quasiquote" ## x)) ## ##(define-macro! unquote-splice (x) ## (ferror 'unquote ## "unquote-splice form ,@~s not valid outside of quasiquote" ## x)) ##;; usage: (qq (x y (uq (+ 1 2)) (uq@ (list 1 2 3)))) ## ;; ==> (x y 3 1 2 3) ## ## (define-macro (qq s-expr) ## (qq-eval s-expr)) ## ## ## ;; Since qq is a macro you can't use (args) within. ## ;; Use qq-eval instead which is not a macro and thus ## ;; (args) will not capture the qq's (args). ## ## ;; usage: (qq-eval '(x y (uq (+ 1 2)) (uq@ (list 1 2 3)))) ## ;; ==> (x y 3 1 2 3) ## (define (qq-eval s-expr , i) ## (if (list? s-expr) ## (begin ## (setq i 0) ## (while (< i (length s-expr)) ## (let ((ss-expr (nth i s-expr))) ## (if (list? ss-expr) ## (cond ## ((= 'uq (first ss-expr)) ## (nth-set i s-expr (eval (qq-eval (last ss-expr)))) ## (inc 'i)) ## ((= 'uq@ (first ss-expr)) ## (let ((ss-exprs (eval (qq-eval (last ss-expr))))) ## (if (list? ss-exprs) ## (begin ## (pop s-expr i) ## (dotimes (j (length ss-exprs)) ## (push (nth j ss-exprs) s-expr i) ## (inc 'i))) ## (begin ## (nth-set i s-expr ss-exprs) ## (inc 'i))))) ## (true ## (nth-set i s-expr (qq-eval ss-expr)) ## (inc 'i))) ## (begin ## (inc 'i) ## s-expr)))) ## s-expr) ## s-expr)) ## ## ;; Abbreviation for lambda or fn ## ## (define-macro (\ ) ## (eval (qq-eval '(lambda (uq (first (args))) (uq@ (rest (args))))))) ## ## ## ;; Abbreviation for define ## ## (define-macro (: _var-or-fn _value) ## (if (list? _var-or-fn) ## (eval (qq-eval '(define (uq _var-or-fn) (uq@ (rest (args)))))) ## (eval (qq (set _var-or-fn (uq _value)))))) ##
PypiClean
/python-appengine-1.9.15.tar.gz/python-appengine-1.9.15/google/appengine/api/blobstore/blobstore_service_pb.py
from google.net.proto import ProtocolBuffer import array import dummy_thread as thread __pychecker__ = """maxreturns=0 maxbranches=0 no-callinit unusednames=printElemNumber,debug_strs no-special""" if hasattr(ProtocolBuffer, 'ExtendableProtocolMessage'): _extension_runtime = True _ExtendableProtocolMessage = ProtocolBuffer.ExtendableProtocolMessage else: _extension_runtime = False _ExtendableProtocolMessage = ProtocolBuffer.ProtocolMessage from google.appengine.api.api_base_pb import * import google.appengine.api.api_base_pb class BlobstoreServiceError(ProtocolBuffer.ProtocolMessage): OK = 0 INTERNAL_ERROR = 1 URL_TOO_LONG = 2 PERMISSION_DENIED = 3 BLOB_NOT_FOUND = 4 DATA_INDEX_OUT_OF_RANGE = 5 BLOB_FETCH_SIZE_TOO_LARGE = 6 ARGUMENT_OUT_OF_RANGE = 8 INVALID_BLOB_KEY = 9 _ErrorCode_NAMES = { 0: "OK", 1: "INTERNAL_ERROR", 2: "URL_TOO_LONG", 3: "PERMISSION_DENIED", 4: "BLOB_NOT_FOUND", 5: "DATA_INDEX_OUT_OF_RANGE", 6: "BLOB_FETCH_SIZE_TOO_LARGE", 8: "ARGUMENT_OUT_OF_RANGE", 9: "INVALID_BLOB_KEY", } def ErrorCode_Name(cls, x): return cls._ErrorCode_NAMES.get(x, "") ErrorCode_Name = classmethod(ErrorCode_Name) def __init__(self, contents=None): pass if contents is not None: self.MergeFromString(contents) def MergeFrom(self, x): assert x is not self def Equals(self, x): if x is self: return 1 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 return initialized def ByteSize(self): n = 0 return n def ByteSizePartial(self): n = 0 return n def Clear(self): pass def OutputUnchecked(self, out): pass def OutputPartial(self, out): pass def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" return res def _BuildTagLookupTable(sparse, maxtag, default=None): return tuple([sparse.get(i, default) for i in xrange(0, 1+maxtag)]) _TEXT = _BuildTagLookupTable({ 0: "ErrorCode", }, 0) _TYPES = _BuildTagLookupTable({ 0: ProtocolBuffer.Encoder.NUMERIC, }, 0, ProtocolBuffer.Encoder.MAX_TYPE) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" _PROTO_DESCRIPTOR_NAME = 'apphosting.BlobstoreServiceError' class CreateUploadURLRequest(ProtocolBuffer.ProtocolMessage): has_success_path_ = 0 success_path_ = "" has_max_upload_size_bytes_ = 0 max_upload_size_bytes_ = 0 has_max_upload_size_per_blob_bytes_ = 0 max_upload_size_per_blob_bytes_ = 0 has_gs_bucket_name_ = 0 gs_bucket_name_ = "" def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def success_path(self): return self.success_path_ def set_success_path(self, x): self.has_success_path_ = 1 self.success_path_ = x def clear_success_path(self): if self.has_success_path_: self.has_success_path_ = 0 self.success_path_ = "" def has_success_path(self): return self.has_success_path_ def max_upload_size_bytes(self): return self.max_upload_size_bytes_ def set_max_upload_size_bytes(self, x): self.has_max_upload_size_bytes_ = 1 self.max_upload_size_bytes_ = x def clear_max_upload_size_bytes(self): if self.has_max_upload_size_bytes_: self.has_max_upload_size_bytes_ = 0 self.max_upload_size_bytes_ = 0 def has_max_upload_size_bytes(self): return self.has_max_upload_size_bytes_ def max_upload_size_per_blob_bytes(self): return self.max_upload_size_per_blob_bytes_ def set_max_upload_size_per_blob_bytes(self, x): self.has_max_upload_size_per_blob_bytes_ = 1 self.max_upload_size_per_blob_bytes_ = x def clear_max_upload_size_per_blob_bytes(self): if self.has_max_upload_size_per_blob_bytes_: self.has_max_upload_size_per_blob_bytes_ = 0 self.max_upload_size_per_blob_bytes_ = 0 def has_max_upload_size_per_blob_bytes(self): return self.has_max_upload_size_per_blob_bytes_ def gs_bucket_name(self): return self.gs_bucket_name_ def set_gs_bucket_name(self, x): self.has_gs_bucket_name_ = 1 self.gs_bucket_name_ = x def clear_gs_bucket_name(self): if self.has_gs_bucket_name_: self.has_gs_bucket_name_ = 0 self.gs_bucket_name_ = "" def has_gs_bucket_name(self): return self.has_gs_bucket_name_ def MergeFrom(self, x): assert x is not self if (x.has_success_path()): self.set_success_path(x.success_path()) if (x.has_max_upload_size_bytes()): self.set_max_upload_size_bytes(x.max_upload_size_bytes()) if (x.has_max_upload_size_per_blob_bytes()): self.set_max_upload_size_per_blob_bytes(x.max_upload_size_per_blob_bytes()) if (x.has_gs_bucket_name()): self.set_gs_bucket_name(x.gs_bucket_name()) def Equals(self, x): if x is self: return 1 if self.has_success_path_ != x.has_success_path_: return 0 if self.has_success_path_ and self.success_path_ != x.success_path_: return 0 if self.has_max_upload_size_bytes_ != x.has_max_upload_size_bytes_: return 0 if self.has_max_upload_size_bytes_ and self.max_upload_size_bytes_ != x.max_upload_size_bytes_: return 0 if self.has_max_upload_size_per_blob_bytes_ != x.has_max_upload_size_per_blob_bytes_: return 0 if self.has_max_upload_size_per_blob_bytes_ and self.max_upload_size_per_blob_bytes_ != x.max_upload_size_per_blob_bytes_: return 0 if self.has_gs_bucket_name_ != x.has_gs_bucket_name_: return 0 if self.has_gs_bucket_name_ and self.gs_bucket_name_ != x.gs_bucket_name_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_success_path_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: success_path not set.') return initialized def ByteSize(self): n = 0 n += self.lengthString(len(self.success_path_)) if (self.has_max_upload_size_bytes_): n += 1 + self.lengthVarInt64(self.max_upload_size_bytes_) if (self.has_max_upload_size_per_blob_bytes_): n += 1 + self.lengthVarInt64(self.max_upload_size_per_blob_bytes_) if (self.has_gs_bucket_name_): n += 1 + self.lengthString(len(self.gs_bucket_name_)) return n + 1 def ByteSizePartial(self): n = 0 if (self.has_success_path_): n += 1 n += self.lengthString(len(self.success_path_)) if (self.has_max_upload_size_bytes_): n += 1 + self.lengthVarInt64(self.max_upload_size_bytes_) if (self.has_max_upload_size_per_blob_bytes_): n += 1 + self.lengthVarInt64(self.max_upload_size_per_blob_bytes_) if (self.has_gs_bucket_name_): n += 1 + self.lengthString(len(self.gs_bucket_name_)) return n def Clear(self): self.clear_success_path() self.clear_max_upload_size_bytes() self.clear_max_upload_size_per_blob_bytes() self.clear_gs_bucket_name() def OutputUnchecked(self, out): out.putVarInt32(10) out.putPrefixedString(self.success_path_) if (self.has_max_upload_size_bytes_): out.putVarInt32(16) out.putVarInt64(self.max_upload_size_bytes_) if (self.has_max_upload_size_per_blob_bytes_): out.putVarInt32(24) out.putVarInt64(self.max_upload_size_per_blob_bytes_) if (self.has_gs_bucket_name_): out.putVarInt32(34) out.putPrefixedString(self.gs_bucket_name_) def OutputPartial(self, out): if (self.has_success_path_): out.putVarInt32(10) out.putPrefixedString(self.success_path_) if (self.has_max_upload_size_bytes_): out.putVarInt32(16) out.putVarInt64(self.max_upload_size_bytes_) if (self.has_max_upload_size_per_blob_bytes_): out.putVarInt32(24) out.putVarInt64(self.max_upload_size_per_blob_bytes_) if (self.has_gs_bucket_name_): out.putVarInt32(34) out.putPrefixedString(self.gs_bucket_name_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 10: self.set_success_path(d.getPrefixedString()) continue if tt == 16: self.set_max_upload_size_bytes(d.getVarInt64()) continue if tt == 24: self.set_max_upload_size_per_blob_bytes(d.getVarInt64()) continue if tt == 34: self.set_gs_bucket_name(d.getPrefixedString()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_success_path_: res+=prefix+("success_path: %s\n" % self.DebugFormatString(self.success_path_)) if self.has_max_upload_size_bytes_: res+=prefix+("max_upload_size_bytes: %s\n" % self.DebugFormatInt64(self.max_upload_size_bytes_)) if self.has_max_upload_size_per_blob_bytes_: res+=prefix+("max_upload_size_per_blob_bytes: %s\n" % self.DebugFormatInt64(self.max_upload_size_per_blob_bytes_)) if self.has_gs_bucket_name_: res+=prefix+("gs_bucket_name: %s\n" % self.DebugFormatString(self.gs_bucket_name_)) return res def _BuildTagLookupTable(sparse, maxtag, default=None): return tuple([sparse.get(i, default) for i in xrange(0, 1+maxtag)]) ksuccess_path = 1 kmax_upload_size_bytes = 2 kmax_upload_size_per_blob_bytes = 3 kgs_bucket_name = 4 _TEXT = _BuildTagLookupTable({ 0: "ErrorCode", 1: "success_path", 2: "max_upload_size_bytes", 3: "max_upload_size_per_blob_bytes", 4: "gs_bucket_name", }, 4) _TYPES = _BuildTagLookupTable({ 0: ProtocolBuffer.Encoder.NUMERIC, 1: ProtocolBuffer.Encoder.STRING, 2: ProtocolBuffer.Encoder.NUMERIC, 3: ProtocolBuffer.Encoder.NUMERIC, 4: ProtocolBuffer.Encoder.STRING, }, 4, ProtocolBuffer.Encoder.MAX_TYPE) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" _PROTO_DESCRIPTOR_NAME = 'apphosting.CreateUploadURLRequest' class CreateUploadURLResponse(ProtocolBuffer.ProtocolMessage): has_url_ = 0 url_ = "" def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def url(self): return self.url_ def set_url(self, x): self.has_url_ = 1 self.url_ = x def clear_url(self): if self.has_url_: self.has_url_ = 0 self.url_ = "" def has_url(self): return self.has_url_ def MergeFrom(self, x): assert x is not self if (x.has_url()): self.set_url(x.url()) def Equals(self, x): if x is self: return 1 if self.has_url_ != x.has_url_: return 0 if self.has_url_ and self.url_ != x.url_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_url_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: url not set.') return initialized def ByteSize(self): n = 0 n += self.lengthString(len(self.url_)) return n + 1 def ByteSizePartial(self): n = 0 if (self.has_url_): n += 1 n += self.lengthString(len(self.url_)) return n def Clear(self): self.clear_url() def OutputUnchecked(self, out): out.putVarInt32(10) out.putPrefixedString(self.url_) def OutputPartial(self, out): if (self.has_url_): out.putVarInt32(10) out.putPrefixedString(self.url_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 10: self.set_url(d.getPrefixedString()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_url_: res+=prefix+("url: %s\n" % self.DebugFormatString(self.url_)) return res def _BuildTagLookupTable(sparse, maxtag, default=None): return tuple([sparse.get(i, default) for i in xrange(0, 1+maxtag)]) kurl = 1 _TEXT = _BuildTagLookupTable({ 0: "ErrorCode", 1: "url", }, 1) _TYPES = _BuildTagLookupTable({ 0: ProtocolBuffer.Encoder.NUMERIC, 1: ProtocolBuffer.Encoder.STRING, }, 1, ProtocolBuffer.Encoder.MAX_TYPE) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" _PROTO_DESCRIPTOR_NAME = 'apphosting.CreateUploadURLResponse' class DeleteBlobRequest(ProtocolBuffer.ProtocolMessage): has_token_ = 0 token_ = "" def __init__(self, contents=None): self.blob_key_ = [] if contents is not None: self.MergeFromString(contents) def blob_key_size(self): return len(self.blob_key_) def blob_key_list(self): return self.blob_key_ def blob_key(self, i): return self.blob_key_[i] def set_blob_key(self, i, x): self.blob_key_[i] = x def add_blob_key(self, x): self.blob_key_.append(x) def clear_blob_key(self): self.blob_key_ = [] def token(self): return self.token_ def set_token(self, x): self.has_token_ = 1 self.token_ = x def clear_token(self): if self.has_token_: self.has_token_ = 0 self.token_ = "" def has_token(self): return self.has_token_ def MergeFrom(self, x): assert x is not self for i in xrange(x.blob_key_size()): self.add_blob_key(x.blob_key(i)) if (x.has_token()): self.set_token(x.token()) def Equals(self, x): if x is self: return 1 if len(self.blob_key_) != len(x.blob_key_): return 0 for e1, e2 in zip(self.blob_key_, x.blob_key_): if e1 != e2: return 0 if self.has_token_ != x.has_token_: return 0 if self.has_token_ and self.token_ != x.token_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 return initialized def ByteSize(self): n = 0 n += 1 * len(self.blob_key_) for i in xrange(len(self.blob_key_)): n += self.lengthString(len(self.blob_key_[i])) if (self.has_token_): n += 1 + self.lengthString(len(self.token_)) return n def ByteSizePartial(self): n = 0 n += 1 * len(self.blob_key_) for i in xrange(len(self.blob_key_)): n += self.lengthString(len(self.blob_key_[i])) if (self.has_token_): n += 1 + self.lengthString(len(self.token_)) return n def Clear(self): self.clear_blob_key() self.clear_token() def OutputUnchecked(self, out): for i in xrange(len(self.blob_key_)): out.putVarInt32(10) out.putPrefixedString(self.blob_key_[i]) if (self.has_token_): out.putVarInt32(18) out.putPrefixedString(self.token_) def OutputPartial(self, out): for i in xrange(len(self.blob_key_)): out.putVarInt32(10) out.putPrefixedString(self.blob_key_[i]) if (self.has_token_): out.putVarInt32(18) out.putPrefixedString(self.token_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 10: self.add_blob_key(d.getPrefixedString()) continue if tt == 18: self.set_token(d.getPrefixedString()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" cnt=0 for e in self.blob_key_: elm="" if printElemNumber: elm="(%d)" % cnt res+=prefix+("blob_key%s: %s\n" % (elm, self.DebugFormatString(e))) cnt+=1 if self.has_token_: res+=prefix+("token: %s\n" % self.DebugFormatString(self.token_)) return res def _BuildTagLookupTable(sparse, maxtag, default=None): return tuple([sparse.get(i, default) for i in xrange(0, 1+maxtag)]) kblob_key = 1 ktoken = 2 _TEXT = _BuildTagLookupTable({ 0: "ErrorCode", 1: "blob_key", 2: "token", }, 2) _TYPES = _BuildTagLookupTable({ 0: ProtocolBuffer.Encoder.NUMERIC, 1: ProtocolBuffer.Encoder.STRING, 2: ProtocolBuffer.Encoder.STRING, }, 2, ProtocolBuffer.Encoder.MAX_TYPE) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" _PROTO_DESCRIPTOR_NAME = 'apphosting.DeleteBlobRequest' class FetchDataRequest(ProtocolBuffer.ProtocolMessage): has_blob_key_ = 0 blob_key_ = "" has_start_index_ = 0 start_index_ = 0 has_end_index_ = 0 end_index_ = 0 def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def blob_key(self): return self.blob_key_ def set_blob_key(self, x): self.has_blob_key_ = 1 self.blob_key_ = x def clear_blob_key(self): if self.has_blob_key_: self.has_blob_key_ = 0 self.blob_key_ = "" def has_blob_key(self): return self.has_blob_key_ def start_index(self): return self.start_index_ def set_start_index(self, x): self.has_start_index_ = 1 self.start_index_ = x def clear_start_index(self): if self.has_start_index_: self.has_start_index_ = 0 self.start_index_ = 0 def has_start_index(self): return self.has_start_index_ def end_index(self): return self.end_index_ def set_end_index(self, x): self.has_end_index_ = 1 self.end_index_ = x def clear_end_index(self): if self.has_end_index_: self.has_end_index_ = 0 self.end_index_ = 0 def has_end_index(self): return self.has_end_index_ def MergeFrom(self, x): assert x is not self if (x.has_blob_key()): self.set_blob_key(x.blob_key()) if (x.has_start_index()): self.set_start_index(x.start_index()) if (x.has_end_index()): self.set_end_index(x.end_index()) def Equals(self, x): if x is self: return 1 if self.has_blob_key_ != x.has_blob_key_: return 0 if self.has_blob_key_ and self.blob_key_ != x.blob_key_: return 0 if self.has_start_index_ != x.has_start_index_: return 0 if self.has_start_index_ and self.start_index_ != x.start_index_: return 0 if self.has_end_index_ != x.has_end_index_: return 0 if self.has_end_index_ and self.end_index_ != x.end_index_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_blob_key_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: blob_key not set.') if (not self.has_start_index_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: start_index not set.') if (not self.has_end_index_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: end_index not set.') return initialized def ByteSize(self): n = 0 n += self.lengthString(len(self.blob_key_)) n += self.lengthVarInt64(self.start_index_) n += self.lengthVarInt64(self.end_index_) return n + 3 def ByteSizePartial(self): n = 0 if (self.has_blob_key_): n += 1 n += self.lengthString(len(self.blob_key_)) if (self.has_start_index_): n += 1 n += self.lengthVarInt64(self.start_index_) if (self.has_end_index_): n += 1 n += self.lengthVarInt64(self.end_index_) return n def Clear(self): self.clear_blob_key() self.clear_start_index() self.clear_end_index() def OutputUnchecked(self, out): out.putVarInt32(10) out.putPrefixedString(self.blob_key_) out.putVarInt32(16) out.putVarInt64(self.start_index_) out.putVarInt32(24) out.putVarInt64(self.end_index_) def OutputPartial(self, out): if (self.has_blob_key_): out.putVarInt32(10) out.putPrefixedString(self.blob_key_) if (self.has_start_index_): out.putVarInt32(16) out.putVarInt64(self.start_index_) if (self.has_end_index_): out.putVarInt32(24) out.putVarInt64(self.end_index_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 10: self.set_blob_key(d.getPrefixedString()) continue if tt == 16: self.set_start_index(d.getVarInt64()) continue if tt == 24: self.set_end_index(d.getVarInt64()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_blob_key_: res+=prefix+("blob_key: %s\n" % self.DebugFormatString(self.blob_key_)) if self.has_start_index_: res+=prefix+("start_index: %s\n" % self.DebugFormatInt64(self.start_index_)) if self.has_end_index_: res+=prefix+("end_index: %s\n" % self.DebugFormatInt64(self.end_index_)) return res def _BuildTagLookupTable(sparse, maxtag, default=None): return tuple([sparse.get(i, default) for i in xrange(0, 1+maxtag)]) kblob_key = 1 kstart_index = 2 kend_index = 3 _TEXT = _BuildTagLookupTable({ 0: "ErrorCode", 1: "blob_key", 2: "start_index", 3: "end_index", }, 3) _TYPES = _BuildTagLookupTable({ 0: ProtocolBuffer.Encoder.NUMERIC, 1: ProtocolBuffer.Encoder.STRING, 2: ProtocolBuffer.Encoder.NUMERIC, 3: ProtocolBuffer.Encoder.NUMERIC, }, 3, ProtocolBuffer.Encoder.MAX_TYPE) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" _PROTO_DESCRIPTOR_NAME = 'apphosting.FetchDataRequest' class FetchDataResponse(ProtocolBuffer.ProtocolMessage): has_data_ = 0 data_ = "" def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def data(self): return self.data_ def set_data(self, x): self.has_data_ = 1 self.data_ = x def clear_data(self): if self.has_data_: self.has_data_ = 0 self.data_ = "" def has_data(self): return self.has_data_ def MergeFrom(self, x): assert x is not self if (x.has_data()): self.set_data(x.data()) def Equals(self, x): if x is self: return 1 if self.has_data_ != x.has_data_: return 0 if self.has_data_ and self.data_ != x.data_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_data_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: data not set.') return initialized def ByteSize(self): n = 0 n += self.lengthString(len(self.data_)) return n + 2 def ByteSizePartial(self): n = 0 if (self.has_data_): n += 2 n += self.lengthString(len(self.data_)) return n def Clear(self): self.clear_data() def OutputUnchecked(self, out): out.putVarInt32(8002) out.putPrefixedString(self.data_) def OutputPartial(self, out): if (self.has_data_): out.putVarInt32(8002) out.putPrefixedString(self.data_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 8002: self.set_data(d.getPrefixedString()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_data_: res+=prefix+("data: %s\n" % self.DebugFormatString(self.data_)) return res def _BuildTagLookupTable(sparse, maxtag, default=None): return tuple([sparse.get(i, default) for i in xrange(0, 1+maxtag)]) kdata = 1000 _TEXT = _BuildTagLookupTable({ 0: "ErrorCode", 1000: "data", }, 1000) _TYPES = _BuildTagLookupTable({ 0: ProtocolBuffer.Encoder.NUMERIC, 1000: ProtocolBuffer.Encoder.STRING, }, 1000, ProtocolBuffer.Encoder.MAX_TYPE) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" _PROTO_DESCRIPTOR_NAME = 'apphosting.FetchDataResponse' class CloneBlobRequest(ProtocolBuffer.ProtocolMessage): has_blob_key_ = 0 blob_key_ = "" has_mime_type_ = 0 mime_type_ = "" has_target_app_id_ = 0 target_app_id_ = "" def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def blob_key(self): return self.blob_key_ def set_blob_key(self, x): self.has_blob_key_ = 1 self.blob_key_ = x def clear_blob_key(self): if self.has_blob_key_: self.has_blob_key_ = 0 self.blob_key_ = "" def has_blob_key(self): return self.has_blob_key_ def mime_type(self): return self.mime_type_ def set_mime_type(self, x): self.has_mime_type_ = 1 self.mime_type_ = x def clear_mime_type(self): if self.has_mime_type_: self.has_mime_type_ = 0 self.mime_type_ = "" def has_mime_type(self): return self.has_mime_type_ def target_app_id(self): return self.target_app_id_ def set_target_app_id(self, x): self.has_target_app_id_ = 1 self.target_app_id_ = x def clear_target_app_id(self): if self.has_target_app_id_: self.has_target_app_id_ = 0 self.target_app_id_ = "" def has_target_app_id(self): return self.has_target_app_id_ def MergeFrom(self, x): assert x is not self if (x.has_blob_key()): self.set_blob_key(x.blob_key()) if (x.has_mime_type()): self.set_mime_type(x.mime_type()) if (x.has_target_app_id()): self.set_target_app_id(x.target_app_id()) def Equals(self, x): if x is self: return 1 if self.has_blob_key_ != x.has_blob_key_: return 0 if self.has_blob_key_ and self.blob_key_ != x.blob_key_: return 0 if self.has_mime_type_ != x.has_mime_type_: return 0 if self.has_mime_type_ and self.mime_type_ != x.mime_type_: return 0 if self.has_target_app_id_ != x.has_target_app_id_: return 0 if self.has_target_app_id_ and self.target_app_id_ != x.target_app_id_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_blob_key_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: blob_key not set.') if (not self.has_mime_type_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: mime_type not set.') if (not self.has_target_app_id_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: target_app_id not set.') return initialized def ByteSize(self): n = 0 n += self.lengthString(len(self.blob_key_)) n += self.lengthString(len(self.mime_type_)) n += self.lengthString(len(self.target_app_id_)) return n + 3 def ByteSizePartial(self): n = 0 if (self.has_blob_key_): n += 1 n += self.lengthString(len(self.blob_key_)) if (self.has_mime_type_): n += 1 n += self.lengthString(len(self.mime_type_)) if (self.has_target_app_id_): n += 1 n += self.lengthString(len(self.target_app_id_)) return n def Clear(self): self.clear_blob_key() self.clear_mime_type() self.clear_target_app_id() def OutputUnchecked(self, out): out.putVarInt32(10) out.putPrefixedString(self.blob_key_) out.putVarInt32(18) out.putPrefixedString(self.mime_type_) out.putVarInt32(26) out.putPrefixedString(self.target_app_id_) def OutputPartial(self, out): if (self.has_blob_key_): out.putVarInt32(10) out.putPrefixedString(self.blob_key_) if (self.has_mime_type_): out.putVarInt32(18) out.putPrefixedString(self.mime_type_) if (self.has_target_app_id_): out.putVarInt32(26) out.putPrefixedString(self.target_app_id_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 10: self.set_blob_key(d.getPrefixedString()) continue if tt == 18: self.set_mime_type(d.getPrefixedString()) continue if tt == 26: self.set_target_app_id(d.getPrefixedString()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_blob_key_: res+=prefix+("blob_key: %s\n" % self.DebugFormatString(self.blob_key_)) if self.has_mime_type_: res+=prefix+("mime_type: %s\n" % self.DebugFormatString(self.mime_type_)) if self.has_target_app_id_: res+=prefix+("target_app_id: %s\n" % self.DebugFormatString(self.target_app_id_)) return res def _BuildTagLookupTable(sparse, maxtag, default=None): return tuple([sparse.get(i, default) for i in xrange(0, 1+maxtag)]) kblob_key = 1 kmime_type = 2 ktarget_app_id = 3 _TEXT = _BuildTagLookupTable({ 0: "ErrorCode", 1: "blob_key", 2: "mime_type", 3: "target_app_id", }, 3) _TYPES = _BuildTagLookupTable({ 0: ProtocolBuffer.Encoder.NUMERIC, 1: ProtocolBuffer.Encoder.STRING, 2: ProtocolBuffer.Encoder.STRING, 3: ProtocolBuffer.Encoder.STRING, }, 3, ProtocolBuffer.Encoder.MAX_TYPE) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" _PROTO_DESCRIPTOR_NAME = 'apphosting.CloneBlobRequest' class CloneBlobResponse(ProtocolBuffer.ProtocolMessage): has_blob_key_ = 0 blob_key_ = "" def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def blob_key(self): return self.blob_key_ def set_blob_key(self, x): self.has_blob_key_ = 1 self.blob_key_ = x def clear_blob_key(self): if self.has_blob_key_: self.has_blob_key_ = 0 self.blob_key_ = "" def has_blob_key(self): return self.has_blob_key_ def MergeFrom(self, x): assert x is not self if (x.has_blob_key()): self.set_blob_key(x.blob_key()) def Equals(self, x): if x is self: return 1 if self.has_blob_key_ != x.has_blob_key_: return 0 if self.has_blob_key_ and self.blob_key_ != x.blob_key_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_blob_key_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: blob_key not set.') return initialized def ByteSize(self): n = 0 n += self.lengthString(len(self.blob_key_)) return n + 1 def ByteSizePartial(self): n = 0 if (self.has_blob_key_): n += 1 n += self.lengthString(len(self.blob_key_)) return n def Clear(self): self.clear_blob_key() def OutputUnchecked(self, out): out.putVarInt32(10) out.putPrefixedString(self.blob_key_) def OutputPartial(self, out): if (self.has_blob_key_): out.putVarInt32(10) out.putPrefixedString(self.blob_key_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 10: self.set_blob_key(d.getPrefixedString()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_blob_key_: res+=prefix+("blob_key: %s\n" % self.DebugFormatString(self.blob_key_)) return res def _BuildTagLookupTable(sparse, maxtag, default=None): return tuple([sparse.get(i, default) for i in xrange(0, 1+maxtag)]) kblob_key = 1 _TEXT = _BuildTagLookupTable({ 0: "ErrorCode", 1: "blob_key", }, 1) _TYPES = _BuildTagLookupTable({ 0: ProtocolBuffer.Encoder.NUMERIC, 1: ProtocolBuffer.Encoder.STRING, }, 1, ProtocolBuffer.Encoder.MAX_TYPE) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" _PROTO_DESCRIPTOR_NAME = 'apphosting.CloneBlobResponse' class DecodeBlobKeyRequest(ProtocolBuffer.ProtocolMessage): def __init__(self, contents=None): self.blob_key_ = [] if contents is not None: self.MergeFromString(contents) def blob_key_size(self): return len(self.blob_key_) def blob_key_list(self): return self.blob_key_ def blob_key(self, i): return self.blob_key_[i] def set_blob_key(self, i, x): self.blob_key_[i] = x def add_blob_key(self, x): self.blob_key_.append(x) def clear_blob_key(self): self.blob_key_ = [] def MergeFrom(self, x): assert x is not self for i in xrange(x.blob_key_size()): self.add_blob_key(x.blob_key(i)) def Equals(self, x): if x is self: return 1 if len(self.blob_key_) != len(x.blob_key_): return 0 for e1, e2 in zip(self.blob_key_, x.blob_key_): if e1 != e2: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 return initialized def ByteSize(self): n = 0 n += 1 * len(self.blob_key_) for i in xrange(len(self.blob_key_)): n += self.lengthString(len(self.blob_key_[i])) return n def ByteSizePartial(self): n = 0 n += 1 * len(self.blob_key_) for i in xrange(len(self.blob_key_)): n += self.lengthString(len(self.blob_key_[i])) return n def Clear(self): self.clear_blob_key() def OutputUnchecked(self, out): for i in xrange(len(self.blob_key_)): out.putVarInt32(10) out.putPrefixedString(self.blob_key_[i]) def OutputPartial(self, out): for i in xrange(len(self.blob_key_)): out.putVarInt32(10) out.putPrefixedString(self.blob_key_[i]) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 10: self.add_blob_key(d.getPrefixedString()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" cnt=0 for e in self.blob_key_: elm="" if printElemNumber: elm="(%d)" % cnt res+=prefix+("blob_key%s: %s\n" % (elm, self.DebugFormatString(e))) cnt+=1 return res def _BuildTagLookupTable(sparse, maxtag, default=None): return tuple([sparse.get(i, default) for i in xrange(0, 1+maxtag)]) kblob_key = 1 _TEXT = _BuildTagLookupTable({ 0: "ErrorCode", 1: "blob_key", }, 1) _TYPES = _BuildTagLookupTable({ 0: ProtocolBuffer.Encoder.NUMERIC, 1: ProtocolBuffer.Encoder.STRING, }, 1, ProtocolBuffer.Encoder.MAX_TYPE) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" _PROTO_DESCRIPTOR_NAME = 'apphosting.DecodeBlobKeyRequest' class DecodeBlobKeyResponse(ProtocolBuffer.ProtocolMessage): def __init__(self, contents=None): self.decoded_ = [] if contents is not None: self.MergeFromString(contents) def decoded_size(self): return len(self.decoded_) def decoded_list(self): return self.decoded_ def decoded(self, i): return self.decoded_[i] def set_decoded(self, i, x): self.decoded_[i] = x def add_decoded(self, x): self.decoded_.append(x) def clear_decoded(self): self.decoded_ = [] def MergeFrom(self, x): assert x is not self for i in xrange(x.decoded_size()): self.add_decoded(x.decoded(i)) def Equals(self, x): if x is self: return 1 if len(self.decoded_) != len(x.decoded_): return 0 for e1, e2 in zip(self.decoded_, x.decoded_): if e1 != e2: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 return initialized def ByteSize(self): n = 0 n += 1 * len(self.decoded_) for i in xrange(len(self.decoded_)): n += self.lengthString(len(self.decoded_[i])) return n def ByteSizePartial(self): n = 0 n += 1 * len(self.decoded_) for i in xrange(len(self.decoded_)): n += self.lengthString(len(self.decoded_[i])) return n def Clear(self): self.clear_decoded() def OutputUnchecked(self, out): for i in xrange(len(self.decoded_)): out.putVarInt32(10) out.putPrefixedString(self.decoded_[i]) def OutputPartial(self, out): for i in xrange(len(self.decoded_)): out.putVarInt32(10) out.putPrefixedString(self.decoded_[i]) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 10: self.add_decoded(d.getPrefixedString()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" cnt=0 for e in self.decoded_: elm="" if printElemNumber: elm="(%d)" % cnt res+=prefix+("decoded%s: %s\n" % (elm, self.DebugFormatString(e))) cnt+=1 return res def _BuildTagLookupTable(sparse, maxtag, default=None): return tuple([sparse.get(i, default) for i in xrange(0, 1+maxtag)]) kdecoded = 1 _TEXT = _BuildTagLookupTable({ 0: "ErrorCode", 1: "decoded", }, 1) _TYPES = _BuildTagLookupTable({ 0: ProtocolBuffer.Encoder.NUMERIC, 1: ProtocolBuffer.Encoder.STRING, }, 1, ProtocolBuffer.Encoder.MAX_TYPE) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" _PROTO_DESCRIPTOR_NAME = 'apphosting.DecodeBlobKeyResponse' class CreateEncodedGoogleStorageKeyRequest(ProtocolBuffer.ProtocolMessage): has_filename_ = 0 filename_ = "" def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def filename(self): return self.filename_ def set_filename(self, x): self.has_filename_ = 1 self.filename_ = x def clear_filename(self): if self.has_filename_: self.has_filename_ = 0 self.filename_ = "" def has_filename(self): return self.has_filename_ def MergeFrom(self, x): assert x is not self if (x.has_filename()): self.set_filename(x.filename()) def Equals(self, x): if x is self: return 1 if self.has_filename_ != x.has_filename_: return 0 if self.has_filename_ and self.filename_ != x.filename_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_filename_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: filename not set.') return initialized def ByteSize(self): n = 0 n += self.lengthString(len(self.filename_)) return n + 1 def ByteSizePartial(self): n = 0 if (self.has_filename_): n += 1 n += self.lengthString(len(self.filename_)) return n def Clear(self): self.clear_filename() def OutputUnchecked(self, out): out.putVarInt32(10) out.putPrefixedString(self.filename_) def OutputPartial(self, out): if (self.has_filename_): out.putVarInt32(10) out.putPrefixedString(self.filename_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 10: self.set_filename(d.getPrefixedString()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_filename_: res+=prefix+("filename: %s\n" % self.DebugFormatString(self.filename_)) return res def _BuildTagLookupTable(sparse, maxtag, default=None): return tuple([sparse.get(i, default) for i in xrange(0, 1+maxtag)]) kfilename = 1 _TEXT = _BuildTagLookupTable({ 0: "ErrorCode", 1: "filename", }, 1) _TYPES = _BuildTagLookupTable({ 0: ProtocolBuffer.Encoder.NUMERIC, 1: ProtocolBuffer.Encoder.STRING, }, 1, ProtocolBuffer.Encoder.MAX_TYPE) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" _PROTO_DESCRIPTOR_NAME = 'apphosting.CreateEncodedGoogleStorageKeyRequest' class CreateEncodedGoogleStorageKeyResponse(ProtocolBuffer.ProtocolMessage): has_blob_key_ = 0 blob_key_ = "" def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def blob_key(self): return self.blob_key_ def set_blob_key(self, x): self.has_blob_key_ = 1 self.blob_key_ = x def clear_blob_key(self): if self.has_blob_key_: self.has_blob_key_ = 0 self.blob_key_ = "" def has_blob_key(self): return self.has_blob_key_ def MergeFrom(self, x): assert x is not self if (x.has_blob_key()): self.set_blob_key(x.blob_key()) def Equals(self, x): if x is self: return 1 if self.has_blob_key_ != x.has_blob_key_: return 0 if self.has_blob_key_ and self.blob_key_ != x.blob_key_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_blob_key_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: blob_key not set.') return initialized def ByteSize(self): n = 0 n += self.lengthString(len(self.blob_key_)) return n + 1 def ByteSizePartial(self): n = 0 if (self.has_blob_key_): n += 1 n += self.lengthString(len(self.blob_key_)) return n def Clear(self): self.clear_blob_key() def OutputUnchecked(self, out): out.putVarInt32(10) out.putPrefixedString(self.blob_key_) def OutputPartial(self, out): if (self.has_blob_key_): out.putVarInt32(10) out.putPrefixedString(self.blob_key_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 10: self.set_blob_key(d.getPrefixedString()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_blob_key_: res+=prefix+("blob_key: %s\n" % self.DebugFormatString(self.blob_key_)) return res def _BuildTagLookupTable(sparse, maxtag, default=None): return tuple([sparse.get(i, default) for i in xrange(0, 1+maxtag)]) kblob_key = 1 _TEXT = _BuildTagLookupTable({ 0: "ErrorCode", 1: "blob_key", }, 1) _TYPES = _BuildTagLookupTable({ 0: ProtocolBuffer.Encoder.NUMERIC, 1: ProtocolBuffer.Encoder.STRING, }, 1, ProtocolBuffer.Encoder.MAX_TYPE) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" _PROTO_DESCRIPTOR_NAME = 'apphosting.CreateEncodedGoogleStorageKeyResponse' if _extension_runtime: pass __all__ = ['BlobstoreServiceError','CreateUploadURLRequest','CreateUploadURLResponse','DeleteBlobRequest','FetchDataRequest','FetchDataResponse','CloneBlobRequest','CloneBlobResponse','DecodeBlobKeyRequest','DecodeBlobKeyResponse','CreateEncodedGoogleStorageKeyRequest','CreateEncodedGoogleStorageKeyResponse']
PypiClean
/bpy36-1.0.0-py3-none-any.whl/bpy2/2.79/scripts/addons/mesh_bsurfaces.py
bl_info = { "name": "Bsurfaces GPL Edition", "author": "Eclectiel", "version": (1, 5, 1), "blender": (2, 76, 0), "location": "View3D > EditMode > ToolShelf", "description": "Modeling and retopology tool", "wiki_url": "https://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Bsurfaces_1.5", "category": "Mesh", } import bpy import bmesh import operator from mathutils import Vector from mathutils.geometry import ( intersect_line_line, intersect_point_line, ) from math import ( degrees, pi, sqrt, ) from bpy.props import ( BoolProperty, FloatProperty, IntProperty, StringProperty, PointerProperty, ) from bpy.types import ( Operator, Panel, PropertyGroup, AddonPreferences, ) class VIEW3D_PT_tools_SURFSK_mesh(Panel): bl_space_type = 'VIEW_3D' bl_region_type = 'TOOLS' bl_category = 'Tools' bl_context = "mesh_edit" bl_label = "Bsurfaces" @classmethod def poll(cls, context): return context.active_object def draw(self, context): layout = self.layout scn = context.scene.bsurfaces col = layout.column(align=True) row = layout.row() row.separator() col.operator("gpencil.surfsk_add_surface", text="Add Surface") col.operator("gpencil.surfsk_edit_strokes", text="Edit Strokes") col.prop(scn, "SURFSK_cyclic_cross") col.prop(scn, "SURFSK_cyclic_follow") col.prop(scn, "SURFSK_loops_on_strokes") col.prop(scn, "SURFSK_automatic_join") col.prop(scn, "SURFSK_keep_strokes") class VIEW3D_PT_tools_SURFSK_curve(Panel): bl_space_type = 'VIEW_3D' bl_region_type = 'TOOLS' bl_context = "curve_edit" bl_category = 'Tools' bl_label = "Bsurfaces" @classmethod def poll(cls, context): return context.active_object def draw(self, context): layout = self.layout col = layout.column(align=True) row = layout.row() row.separator() col.operator("curve.surfsk_first_points", text="Set First Points") col.operator("curve.switch_direction", text="Switch Direction") col.operator("curve.surfsk_reorder_splines", text="Reorder Splines") # Returns the type of strokes used def get_strokes_type(main_object): strokes_type = "" strokes_num = 0 # Check if they are grease pencil try: # Get the active grease pencil layer strokes_num = len(main_object.grease_pencil.layers.active.active_frame.strokes) if strokes_num > 0: strokes_type = "GP_STROKES" except: pass # Check if they are curves, if there aren't grease pencil strokes if strokes_type == "": if len(bpy.context.selected_objects) == 2: for ob in bpy.context.selected_objects: if ob != bpy.context.scene.objects.active and ob.type == "CURVE": strokes_type = "EXTERNAL_CURVE" strokes_num = len(ob.data.splines) # Check if there is any non-bezier spline for i in range(len(ob.data.splines)): if ob.data.splines[i].type != "BEZIER": strokes_type = "CURVE_WITH_NON_BEZIER_SPLINES" break elif ob != bpy.context.scene.objects.active and ob.type != "CURVE": strokes_type = "EXTERNAL_NO_CURVE" elif len(bpy.context.selected_objects) > 2: strokes_type = "MORE_THAN_ONE_EXTERNAL" # Check if there is a single stroke without any selection in the object if strokes_num == 1 and main_object.data.total_vert_sel == 0: if strokes_type == "EXTERNAL_CURVE": strokes_type = "SINGLE_CURVE_STROKE_NO_SELECTION" elif strokes_type == "GP_STROKES": strokes_type = "SINGLE_GP_STROKE_NO_SELECTION" if strokes_num == 0 and main_object.data.total_vert_sel > 0: strokes_type = "SELECTION_ALONE" if strokes_type == "": strokes_type = "NO_STROKES" return strokes_type # Surface generator operator class GPENCIL_OT_SURFSK_add_surface(Operator): bl_idname = "gpencil.surfsk_add_surface" bl_label = "Bsurfaces add surface" bl_description = "Generates surfaces from grease pencil strokes, bezier curves or loose edges" bl_options = {'REGISTER', 'UNDO'} edges_U = IntProperty( name="Cross", description="Number of face-loops crossing the strokes", default=1, min=1, max=200 ) edges_V = IntProperty( name="Follow", description="Number of face-loops following the strokes", default=1, min=1, max=200 ) cyclic_cross = BoolProperty( name="Cyclic Cross", description="Make cyclic the face-loops crossing the strokes", default=False ) cyclic_follow = BoolProperty( name="Cyclic Follow", description="Make cyclic the face-loops following the strokes", default=False ) loops_on_strokes = BoolProperty( name="Loops on strokes", description="Make the loops match the paths of the strokes", default=False ) automatic_join = BoolProperty( name="Automatic join", description="Join automatically vertices of either surfaces generated " "by crosshatching, or from the borders of closed shapes", default=False ) join_stretch_factor = FloatProperty( name="Stretch", description="Amount of stretching or shrinking allowed for " "edges when joining vertices automatically", default=1, min=0, max=3, subtype='FACTOR' ) def draw(self, context): layout = self.layout col = layout.column(align=True) row = layout.row() if not self.is_fill_faces: row.separator() if not self.is_crosshatch: if not self.selection_U_exists: col.prop(self, "edges_U") row.separator() if not self.selection_V_exists: col.prop(self, "edges_V") row.separator() row.separator() if not self.selection_U_exists: if not ( (self.selection_V_exists and not self.selection_V_is_closed) or (self.selection_V2_exists and not self.selection_V2_is_closed) ): col.prop(self, "cyclic_cross") if not self.selection_V_exists: if not ( (self.selection_U_exists and not self.selection_U_is_closed) or (self.selection_U2_exists and not self.selection_U2_is_closed) ): col.prop(self, "cyclic_follow") col.prop(self, "loops_on_strokes") col.prop(self, "automatic_join") if self.automatic_join: row.separator() col.separator() row.separator() col.prop(self, "join_stretch_factor") # Get an ordered list of a chain of vertices def get_ordered_verts(self, ob, all_selected_edges_idx, all_selected_verts_idx, first_vert_idx, middle_vertex_idx, closing_vert_idx): # Order selected vertices. verts_ordered = [] if closing_vert_idx is not None: verts_ordered.append(ob.data.vertices[closing_vert_idx]) verts_ordered.append(ob.data.vertices[first_vert_idx]) prev_v = first_vert_idx prev_ed = None finish_while = False while True: edges_non_matched = 0 for i in all_selected_edges_idx: if ob.data.edges[i] != prev_ed and ob.data.edges[i].vertices[0] == prev_v and \ ob.data.edges[i].vertices[1] in all_selected_verts_idx: verts_ordered.append(ob.data.vertices[ob.data.edges[i].vertices[1]]) prev_v = ob.data.edges[i].vertices[1] prev_ed = ob.data.edges[i] elif ob.data.edges[i] != prev_ed and ob.data.edges[i].vertices[1] == prev_v and \ ob.data.edges[i].vertices[0] in all_selected_verts_idx: verts_ordered.append(ob.data.vertices[ob.data.edges[i].vertices[0]]) prev_v = ob.data.edges[i].vertices[0] prev_ed = ob.data.edges[i] else: edges_non_matched += 1 if edges_non_matched == len(all_selected_edges_idx): finish_while = True if finish_while: break if closing_vert_idx is not None: verts_ordered.append(ob.data.vertices[closing_vert_idx]) if middle_vertex_idx is not None: verts_ordered.append(ob.data.vertices[middle_vertex_idx]) verts_ordered.reverse() return tuple(verts_ordered) # Calculates length of a chain of points. def get_chain_length(self, object, verts_ordered): matrix = object.matrix_world edges_lengths = [] edges_lengths_sum = 0 for i in range(0, len(verts_ordered)): if i == 0: prev_v_co = matrix * verts_ordered[i].co else: v_co = matrix * verts_ordered[i].co v_difs = [prev_v_co[0] - v_co[0], prev_v_co[1] - v_co[1], prev_v_co[2] - v_co[2]] edge_length = abs(sqrt(v_difs[0] * v_difs[0] + v_difs[1] * v_difs[1] + v_difs[2] * v_difs[2])) edges_lengths.append(edge_length) edges_lengths_sum += edge_length prev_v_co = v_co return edges_lengths, edges_lengths_sum # Calculates the proportion of the edges of a chain of edges, relative to the full chain length. def get_edges_proportions(self, edges_lengths, edges_lengths_sum, use_boundaries, fixed_edges_num): edges_proportions = [] if use_boundaries: verts_count = 1 for l in edges_lengths: edges_proportions.append(l / edges_lengths_sum) verts_count += 1 else: verts_count = 1 for n in range(0, fixed_edges_num): edges_proportions.append(1 / fixed_edges_num) verts_count += 1 return edges_proportions # Calculates the angle between two pairs of points in space def orientation_difference(self, points_A_co, points_B_co): # each parameter should be a list with two elements, # and each element should be a x,y,z coordinate vec_A = points_A_co[0] - points_A_co[1] vec_B = points_B_co[0] - points_B_co[1] angle = vec_A.angle(vec_B) if angle > 0.5 * pi: angle = abs(angle - pi) return angle # Calculate the which vert of verts_idx list is the nearest one # to the point_co coordinates, and the distance def shortest_distance(self, object, point_co, verts_idx): matrix = object.matrix_world for i in range(0, len(verts_idx)): dist = (point_co - matrix * object.data.vertices[verts_idx[i]].co).length if i == 0: prev_dist = dist nearest_vert_idx = verts_idx[i] shortest_dist = dist if dist < prev_dist: prev_dist = dist nearest_vert_idx = verts_idx[i] shortest_dist = dist return nearest_vert_idx, shortest_dist # Returns the index of the opposite vert tip in a chain, given a vert tip index # as parameter, and a multidimentional list with all pairs of tips def opposite_tip(self, vert_tip_idx, all_chains_tips_idx): opposite_vert_tip_idx = None for i in range(0, len(all_chains_tips_idx)): if vert_tip_idx == all_chains_tips_idx[i][0]: opposite_vert_tip_idx = all_chains_tips_idx[i][1] if vert_tip_idx == all_chains_tips_idx[i][1]: opposite_vert_tip_idx = all_chains_tips_idx[i][0] return opposite_vert_tip_idx # Simplifies a spline and returns the new points coordinates def simplify_spline(self, spline_coords, segments_num): simplified_spline = [] points_between_segments = round(len(spline_coords) / segments_num) simplified_spline.append(spline_coords[0]) for i in range(1, segments_num): simplified_spline.append(spline_coords[i * points_between_segments]) simplified_spline.append(spline_coords[len(spline_coords) - 1]) return simplified_spline # Cleans up the scene and gets it the same it was at the beginning, # in case the script is interrupted in the middle of the execution def cleanup_on_interruption(self): # If the original strokes curve comes from conversion # from grease pencil and wasn't made by hand, delete it if not self.using_external_curves: try: bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.original_curve.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.original_curve.name] bpy.ops.object.delete() except: pass bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.main_object.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name] else: bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.original_curve.name].select = True bpy.data.objects[self.main_object.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Returns a list with the coords of the points distributed over the splines # passed to this method according to the proportions parameter def distribute_pts(self, surface_splines, proportions): # Calculate the length of each final surface spline surface_splines_lengths = [] surface_splines_parsed = [] for sp_idx in range(0, len(surface_splines)): # Calculate spline length surface_splines_lengths.append(0) for i in range(0, len(surface_splines[sp_idx].bezier_points)): if i == 0: prev_p = surface_splines[sp_idx].bezier_points[i] else: p = surface_splines[sp_idx].bezier_points[i] edge_length = (prev_p.co - p.co).length surface_splines_lengths[sp_idx] += edge_length prev_p = p # Calculate vertex positions with appropriate edge proportions, and ordered, for each spline for sp_idx in range(0, len(surface_splines)): surface_splines_parsed.append([]) surface_splines_parsed[sp_idx].append(surface_splines[sp_idx].bezier_points[0].co) prev_p_co = surface_splines[sp_idx].bezier_points[0].co p_idx = 0 for prop_idx in range(len(proportions) - 1): target_length = surface_splines_lengths[sp_idx] * proportions[prop_idx] partial_segment_length = 0 finish_while = False while True: # if not it'll pass the p_idx as an index bellow and crash if p_idx < len(surface_splines[sp_idx].bezier_points): p_co = surface_splines[sp_idx].bezier_points[p_idx].co new_dist = (prev_p_co - p_co).length # The new distance that could have the partial segment if # it is still shorter than the target length potential_segment_length = partial_segment_length + new_dist # If the potential is still shorter, keep adding if potential_segment_length < target_length: partial_segment_length = potential_segment_length p_idx += 1 prev_p_co = p_co # If the potential is longer than the target, calculate the target # (a point between the last two points), and assign elif potential_segment_length > target_length: remaining_dist = target_length - partial_segment_length vec = p_co - prev_p_co vec.normalize() intermediate_co = prev_p_co + (vec * remaining_dist) surface_splines_parsed[sp_idx].append(intermediate_co) partial_segment_length += remaining_dist prev_p_co = intermediate_co finish_while = True # If the potential is equal to the target, assign elif potential_segment_length == target_length: surface_splines_parsed[sp_idx].append(p_co) prev_p_co = p_co finish_while = True if finish_while: break # last point of the spline surface_splines_parsed[sp_idx].append( surface_splines[sp_idx].bezier_points[len(surface_splines[sp_idx].bezier_points) - 1].co ) return surface_splines_parsed # Counts the number of faces that belong to each edge def edge_face_count(self, ob): ed_keys_count_dict = {} for face in ob.data.polygons: for ed_keys in face.edge_keys: if ed_keys not in ed_keys_count_dict: ed_keys_count_dict[ed_keys] = 1 else: ed_keys_count_dict[ed_keys] += 1 edge_face_count = [] for i in range(len(ob.data.edges)): edge_face_count.append(0) for i in range(len(ob.data.edges)): ed = ob.data.edges[i] v1 = ed.vertices[0] v2 = ed.vertices[1] if (v1, v2) in ed_keys_count_dict: edge_face_count[i] = ed_keys_count_dict[(v1, v2)] elif (v2, v1) in ed_keys_count_dict: edge_face_count[i] = ed_keys_count_dict[(v2, v1)] return edge_face_count # Fills with faces all the selected vertices which form empty triangles or quads def fill_with_faces(self, object): all_selected_verts_count = self.main_object_selected_verts_count bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT') # Calculate average length of selected edges all_selected_verts = [] original_sel_edges_count = 0 for ed in object.data.edges: if object.data.vertices[ed.vertices[0]].select and object.data.vertices[ed.vertices[1]].select: coords = [] coords.append(object.data.vertices[ed.vertices[0]].co) coords.append(object.data.vertices[ed.vertices[1]].co) original_sel_edges_count += 1 if not ed.vertices[0] in all_selected_verts: all_selected_verts.append(ed.vertices[0]) if not ed.vertices[1] in all_selected_verts: all_selected_verts.append(ed.vertices[1]) tuple(all_selected_verts) # Check if there is any edge selected. If not, interrupt the script if original_sel_edges_count == 0 and all_selected_verts_count > 0: return 0 # Get all edges connected to selected verts all_edges_around_sel_verts = [] edges_connected_to_sel_verts = {} verts_connected_to_every_vert = {} for ed_idx in range(len(object.data.edges)): ed = object.data.edges[ed_idx] include_edge = False if ed.vertices[0] in all_selected_verts: if not ed.vertices[0] in edges_connected_to_sel_verts: edges_connected_to_sel_verts[ed.vertices[0]] = [] edges_connected_to_sel_verts[ed.vertices[0]].append(ed_idx) include_edge = True if ed.vertices[1] in all_selected_verts: if not ed.vertices[1] in edges_connected_to_sel_verts: edges_connected_to_sel_verts[ed.vertices[1]] = [] edges_connected_to_sel_verts[ed.vertices[1]].append(ed_idx) include_edge = True if include_edge is True: all_edges_around_sel_verts.append(ed_idx) # Get all connected verts to each vert if not ed.vertices[0] in verts_connected_to_every_vert: verts_connected_to_every_vert[ed.vertices[0]] = [] if not ed.vertices[1] in verts_connected_to_every_vert: verts_connected_to_every_vert[ed.vertices[1]] = [] verts_connected_to_every_vert[ed.vertices[0]].append(ed.vertices[1]) verts_connected_to_every_vert[ed.vertices[1]].append(ed.vertices[0]) # Get all verts connected to faces all_verts_part_of_faces = [] all_edges_faces_count = [] all_edges_faces_count += self.edge_face_count(object) # Get only the selected edges that have faces attached. count_faces_of_edges_around_sel_verts = {} selected_verts_with_faces = [] for ed_idx in all_edges_around_sel_verts: count_faces_of_edges_around_sel_verts[ed_idx] = all_edges_faces_count[ed_idx] if all_edges_faces_count[ed_idx] > 0: ed = object.data.edges[ed_idx] if not ed.vertices[0] in selected_verts_with_faces: selected_verts_with_faces.append(ed.vertices[0]) if not ed.vertices[1] in selected_verts_with_faces: selected_verts_with_faces.append(ed.vertices[1]) all_verts_part_of_faces.append(ed.vertices[0]) all_verts_part_of_faces.append(ed.vertices[1]) tuple(selected_verts_with_faces) # Discard unneeded verts from calculations participating_verts = [] movable_verts = [] for v_idx in all_selected_verts: vert_has_edges_with_one_face = False # Check if the actual vert has at least one edge connected to only one face for ed_idx in edges_connected_to_sel_verts[v_idx]: if count_faces_of_edges_around_sel_verts[ed_idx] == 1: vert_has_edges_with_one_face = True # If the vert has two or less edges connected and the vert is not part of any face. # Or the vert is part of any face and at least one of # the connected edges has only one face attached to it. if (len(edges_connected_to_sel_verts[v_idx]) == 2 and v_idx not in all_verts_part_of_faces) or \ len(edges_connected_to_sel_verts[v_idx]) == 1 or \ (v_idx in all_verts_part_of_faces and vert_has_edges_with_one_face): participating_verts.append(v_idx) if v_idx not in all_verts_part_of_faces: movable_verts.append(v_idx) # Remove from movable verts list those that are part of closed geometry (ie: triangles, quads) for mv_idx in movable_verts: freeze_vert = False mv_connected_verts = verts_connected_to_every_vert[mv_idx] for actual_v_idx in all_selected_verts: count_shared_neighbors = 0 checked_verts = [] for mv_conn_v_idx in mv_connected_verts: if mv_idx != actual_v_idx: if mv_conn_v_idx in verts_connected_to_every_vert[actual_v_idx] and \ mv_conn_v_idx not in checked_verts: count_shared_neighbors += 1 checked_verts.append(mv_conn_v_idx) if actual_v_idx in mv_connected_verts: freeze_vert = True break if count_shared_neighbors == 2: freeze_vert = True break if freeze_vert: break if freeze_vert: movable_verts.remove(mv_idx) # Calculate merge distance for participating verts shortest_edge_length = None for ed in object.data.edges: if ed.vertices[0] in movable_verts and ed.vertices[1] in movable_verts: v1 = object.data.vertices[ed.vertices[0]] v2 = object.data.vertices[ed.vertices[1]] length = (v1.co - v2.co).length if shortest_edge_length is None: shortest_edge_length = length else: if length < shortest_edge_length: shortest_edge_length = length if shortest_edge_length is not None: edges_merge_distance = shortest_edge_length * 0.5 else: edges_merge_distance = 0 # Get together the verts near enough. They will be merged later remaining_verts = [] remaining_verts += participating_verts for v1_idx in participating_verts: if v1_idx in remaining_verts and v1_idx in movable_verts: verts_to_merge = [] coords_verts_to_merge = {} verts_to_merge.append(v1_idx) v1_co = object.data.vertices[v1_idx].co coords_verts_to_merge[v1_idx] = (v1_co[0], v1_co[1], v1_co[2]) for v2_idx in remaining_verts: if v1_idx != v2_idx: v2_co = object.data.vertices[v2_idx].co dist = (v1_co - v2_co).length if dist <= edges_merge_distance: # Add the verts which are near enough verts_to_merge.append(v2_idx) coords_verts_to_merge[v2_idx] = (v2_co[0], v2_co[1], v2_co[2]) for vm_idx in verts_to_merge: remaining_verts.remove(vm_idx) if len(verts_to_merge) > 1: # Calculate middle point of the verts to merge. sum_x_co = 0 sum_y_co = 0 sum_z_co = 0 movable_verts_to_merge_count = 0 for i in range(len(verts_to_merge)): if verts_to_merge[i] in movable_verts: v_co = object.data.vertices[verts_to_merge[i]].co sum_x_co += v_co[0] sum_y_co += v_co[1] sum_z_co += v_co[2] movable_verts_to_merge_count += 1 middle_point_co = [ sum_x_co / movable_verts_to_merge_count, sum_y_co / movable_verts_to_merge_count, sum_z_co / movable_verts_to_merge_count ] # Check if any vert to be merged is not movable shortest_dist = None are_verts_not_movable = False verts_not_movable = [] for v_merge_idx in verts_to_merge: if v_merge_idx in participating_verts and v_merge_idx not in movable_verts: are_verts_not_movable = True verts_not_movable.append(v_merge_idx) if are_verts_not_movable: # Get the vert connected to faces, that is nearest to # the middle point of the movable verts shortest_dist = None for vcf_idx in verts_not_movable: dist = abs((object.data.vertices[vcf_idx].co - Vector(middle_point_co)).length) if shortest_dist is None: shortest_dist = dist nearest_vert_idx = vcf_idx else: if dist < shortest_dist: shortest_dist = dist nearest_vert_idx = vcf_idx coords = object.data.vertices[nearest_vert_idx].co target_point_co = [coords[0], coords[1], coords[2]] else: target_point_co = middle_point_co # Move verts to merge to the middle position for v_merge_idx in verts_to_merge: if v_merge_idx in movable_verts: # Only move the verts that are not part of faces object.data.vertices[v_merge_idx].co[0] = target_point_co[0] object.data.vertices[v_merge_idx].co[1] = target_point_co[1] object.data.vertices[v_merge_idx].co[2] = target_point_co[2] # Perform "Remove Doubles" to weld all the disconnected verts bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT') bpy.ops.mesh.remove_doubles(threshold=0.0001) bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT') # Get all the definitive selected edges, after weldding selected_edges = [] edges_per_vert = {} # Number of faces of each selected edge for ed in object.data.edges: if object.data.vertices[ed.vertices[0]].select and object.data.vertices[ed.vertices[1]].select: selected_edges.append(ed.index) # Save all the edges that belong to each vertex. if not ed.vertices[0] in edges_per_vert: edges_per_vert[ed.vertices[0]] = [] if not ed.vertices[1] in edges_per_vert: edges_per_vert[ed.vertices[1]] = [] edges_per_vert[ed.vertices[0]].append(ed.index) edges_per_vert[ed.vertices[1]].append(ed.index) # Check if all the edges connected to each vert have two faces attached to them. # To discard them later and make calculations faster a = [] a += self.edge_face_count(object) tuple(a) verts_surrounded_by_faces = {} for v_idx in edges_per_vert: edges = edges_per_vert[v_idx] edges_with_two_faces_count = 0 for ed_idx in edges_per_vert[v_idx]: if a[ed_idx] == 2: edges_with_two_faces_count += 1 if edges_with_two_faces_count == len(edges_per_vert[v_idx]): verts_surrounded_by_faces[v_idx] = True else: verts_surrounded_by_faces[v_idx] = False # Get all the selected vertices selected_verts_idx = [] for v in object.data.vertices: if v.select: selected_verts_idx.append(v.index) # Get all the faces of the object all_object_faces_verts_idx = [] for face in object.data.polygons: face_verts = [] face_verts.append(face.vertices[0]) face_verts.append(face.vertices[1]) face_verts.append(face.vertices[2]) if len(face.vertices) == 4: face_verts.append(face.vertices[3]) all_object_faces_verts_idx.append(face_verts) # Deselect all vertices bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT') bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT') # Make a dictionary with the verts related to each vert related_key_verts = {} for ed_idx in selected_edges: ed = object.data.edges[ed_idx] if not verts_surrounded_by_faces[ed.vertices[0]]: if not ed.vertices[0] in related_key_verts: related_key_verts[ed.vertices[0]] = [] if not ed.vertices[1] in related_key_verts[ed.vertices[0]]: related_key_verts[ed.vertices[0]].append(ed.vertices[1]) if not verts_surrounded_by_faces[ed.vertices[1]]: if not ed.vertices[1] in related_key_verts: related_key_verts[ed.vertices[1]] = [] if not ed.vertices[0] in related_key_verts[ed.vertices[1]]: related_key_verts[ed.vertices[1]].append(ed.vertices[0]) # Get groups of verts forming each face faces_verts_idx = [] for v1 in related_key_verts: # verts-1 .... for v2 in related_key_verts: # verts-2 if v1 != v2: related_verts_in_common = [] v2_in_rel_v1 = False v1_in_rel_v2 = False for rel_v1 in related_key_verts[v1]: # Check if related verts of verts-1 are related verts of verts-2 if rel_v1 in related_key_verts[v2]: related_verts_in_common.append(rel_v1) if v2 in related_key_verts[v1]: v2_in_rel_v1 = True if v1 in related_key_verts[v2]: v1_in_rel_v2 = True repeated_face = False # If two verts have two related verts in common, they form a quad if len(related_verts_in_common) == 2: # Check if the face is already saved all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx for f_verts in all_faces_to_check_idx: repeated_verts = 0 if len(f_verts) == 4: if v1 in f_verts: repeated_verts += 1 if v2 in f_verts: repeated_verts += 1 if related_verts_in_common[0] in f_verts: repeated_verts += 1 if related_verts_in_common[1] in f_verts: repeated_verts += 1 if repeated_verts == len(f_verts): repeated_face = True break if not repeated_face: faces_verts_idx.append( [v1, related_verts_in_common[0], v2, related_verts_in_common[1]] ) # If Two verts have one related vert in common and # they are related to each other, they form a triangle elif v2_in_rel_v1 and v1_in_rel_v2 and len(related_verts_in_common) == 1: # Check if the face is already saved. all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx for f_verts in all_faces_to_check_idx: repeated_verts = 0 if len(f_verts) == 3: if v1 in f_verts: repeated_verts += 1 if v2 in f_verts: repeated_verts += 1 if related_verts_in_common[0] in f_verts: repeated_verts += 1 if repeated_verts == len(f_verts): repeated_face = True break if not repeated_face: faces_verts_idx.append([v1, related_verts_in_common[0], v2]) # Keep only the faces that don't overlap by ignoring quads # that overlap with two adjacent triangles faces_to_not_include_idx = [] # Indices of faces_verts_idx to eliminate all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx for i in range(len(faces_verts_idx)): for t in range(len(all_faces_to_check_idx)): if i != t: verts_in_common = 0 if len(faces_verts_idx[i]) == 4 and len(all_faces_to_check_idx[t]) == 3: for v_idx in all_faces_to_check_idx[t]: if v_idx in faces_verts_idx[i]: verts_in_common += 1 # If it doesn't have all it's vertices repeated in the other face if verts_in_common == 3: if i not in faces_to_not_include_idx: faces_to_not_include_idx.append(i) # Build faces discarding the ones in faces_to_not_include me = object.data bm = bmesh.new() bm.from_mesh(me) num_faces_created = 0 for i in range(len(faces_verts_idx)): if i not in faces_to_not_include_idx: bm.faces.new([bm.verts[v] for v in faces_verts_idx[i]]) num_faces_created += 1 bm.to_mesh(me) bm.free() for v_idx in selected_verts_idx: self.main_object.data.vertices[v_idx].select = True bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT') bpy.ops.mesh.normals_make_consistent(inside=False) bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT') return num_faces_created # Crosshatch skinning def crosshatch_surface_invoke(self, ob_original_splines): self.is_crosshatch = False self.crosshatch_merge_distance = 0 objects_to_delete = [] # duplicated strokes to be deleted. # If the main object uses modifiers deactivate them temporarily until the surface is joined # (without this the surface verts merging with the main object doesn't work well) self.modifiers_prev_viewport_state = [] if len(self.main_object.modifiers) > 0: for m_idx in range(len(self.main_object.modifiers)): self.modifiers_prev_viewport_state.append( self.main_object.modifiers[m_idx].show_viewport ) self.main_object.modifiers[m_idx].show_viewport = False bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[ob_original_splines.name].select = True bpy.context.scene.objects.active = bpy.data.objects[ob_original_splines.name] if len(ob_original_splines.data.splines) >= 2: bpy.ops.object.duplicate('INVOKE_REGION_WIN') ob_splines = bpy.context.object ob_splines.name = "SURFSKIO_NE_STR" # Get estimative merge distance (sum up the distances from the first point to # all other points, then average them and then divide them) first_point_dist_sum = 0 first_dist = 0 second_dist = 0 coords_first_pt = ob_splines.data.splines[0].bezier_points[0].co for i in range(len(ob_splines.data.splines)): sp = ob_splines.data.splines[i] if coords_first_pt != sp.bezier_points[0].co: first_dist = (coords_first_pt - sp.bezier_points[0].co).length if coords_first_pt != sp.bezier_points[len(sp.bezier_points) - 1].co: second_dist = (coords_first_pt - sp.bezier_points[len(sp.bezier_points) - 1].co).length first_point_dist_sum += first_dist + second_dist if i == 0: if first_dist != 0: shortest_dist = first_dist elif second_dist != 0: shortest_dist = second_dist if shortest_dist > first_dist and first_dist != 0: shortest_dist = first_dist if shortest_dist > second_dist and second_dist != 0: shortest_dist = second_dist self.crosshatch_merge_distance = shortest_dist / 20 # Recalculation of merge distance bpy.ops.object.duplicate('INVOKE_REGION_WIN') ob_calc_merge_dist = bpy.context.object ob_calc_merge_dist.name = "SURFSKIO_CALC_TMP" objects_to_delete.append(ob_calc_merge_dist) # Smooth out strokes a little to improve crosshatch detection bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT') for i in range(4): bpy.ops.curve.smooth('INVOKE_REGION_WIN') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Convert curves into mesh ob_calc_merge_dist.data.resolution_u = 12 bpy.ops.object.convert(target='MESH', keep_original=False) # Find "intersection-nodes" bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT') bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', threshold=self.crosshatch_merge_distance) bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Remove verts with less than three edges verts_edges_count = {} for ed in ob_calc_merge_dist.data.edges: v = ed.vertices if v[0] not in verts_edges_count: verts_edges_count[v[0]] = 0 if v[1] not in verts_edges_count: verts_edges_count[v[1]] = 0 verts_edges_count[v[0]] += 1 verts_edges_count[v[1]] += 1 nodes_verts_coords = [] for v_idx in verts_edges_count: v = ob_calc_merge_dist.data.vertices[v_idx] if verts_edges_count[v_idx] < 3: v.select = True # Remove them bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.mesh.delete('INVOKE_REGION_WIN', type='VERT') bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT') # Remove doubles to discard very near verts from calculations of distance bpy.ops.mesh.remove_doubles( 'INVOKE_REGION_WIN', threshold=self.crosshatch_merge_distance * 4.0 ) bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Get all coords of the resulting nodes nodes_verts_coords = [(v.co[0], v.co[1], v.co[2]) for v in ob_calc_merge_dist.data.vertices] # Check if the strokes are a crosshatch if len(nodes_verts_coords) >= 3: self.is_crosshatch = True shortest_dist = None for co_1 in nodes_verts_coords: for co_2 in nodes_verts_coords: if co_1 != co_2: dist = (Vector(co_1) - Vector(co_2)).length if shortest_dist is not None: if dist < shortest_dist: shortest_dist = dist else: shortest_dist = dist self.crosshatch_merge_distance = shortest_dist / 3 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[ob_splines.name].select = True bpy.context.scene.objects.active = bpy.data.objects[ob_splines.name] # Deselect all points bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Smooth splines in a localized way, to eliminate "saw-teeth" # like shapes when there are many points for sp in ob_splines.data.splines: angle_sum = 0 angle_limit = 2 # Degrees for t in range(len(sp.bezier_points)): # Because on each iteration it checks the "next two points" # of the actual. This way it doesn't go out of range if t <= len(sp.bezier_points) - 3: p1 = sp.bezier_points[t] p2 = sp.bezier_points[t + 1] p3 = sp.bezier_points[t + 2] vec_1 = p1.co - p2.co vec_2 = p2.co - p3.co if p2.co != p1.co and p2.co != p3.co: angle = vec_1.angle(vec_2) angle_sum += degrees(angle) if angle_sum >= angle_limit: # If sum of angles is grater than the limit if (p1.co - p2.co).length <= self.crosshatch_merge_distance: p1.select_control_point = True p1.select_left_handle = True p1.select_right_handle = True p2.select_control_point = True p2.select_left_handle = True p2.select_right_handle = True if (p1.co - p2.co).length <= self.crosshatch_merge_distance: p3.select_control_point = True p3.select_left_handle = True p3.select_right_handle = True angle_sum = 0 sp.bezier_points[0].select_control_point = False sp.bezier_points[0].select_left_handle = False sp.bezier_points[0].select_right_handle = False sp.bezier_points[len(sp.bezier_points) - 1].select_control_point = False sp.bezier_points[len(sp.bezier_points) - 1].select_left_handle = False sp.bezier_points[len(sp.bezier_points) - 1].select_right_handle = False # Smooth out strokes a little to improve crosshatch detection bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') for i in range(15): bpy.ops.curve.smooth('INVOKE_REGION_WIN') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Simplify the splines for sp in ob_splines.data.splines: angle_sum = 0 sp.bezier_points[0].select_control_point = True sp.bezier_points[0].select_left_handle = True sp.bezier_points[0].select_right_handle = True sp.bezier_points[len(sp.bezier_points) - 1].select_control_point = True sp.bezier_points[len(sp.bezier_points) - 1].select_left_handle = True sp.bezier_points[len(sp.bezier_points) - 1].select_right_handle = True angle_limit = 15 # Degrees for t in range(len(sp.bezier_points)): # Because on each iteration it checks the "next two points" # of the actual. This way it doesn't go out of range if t <= len(sp.bezier_points) - 3: p1 = sp.bezier_points[t] p2 = sp.bezier_points[t + 1] p3 = sp.bezier_points[t + 2] vec_1 = p1.co - p2.co vec_2 = p2.co - p3.co if p2.co != p1.co and p2.co != p3.co: angle = vec_1.angle(vec_2) angle_sum += degrees(angle) # If sum of angles is grater than the limit if angle_sum >= angle_limit: p1.select_control_point = True p1.select_left_handle = True p1.select_right_handle = True p2.select_control_point = True p2.select_left_handle = True p2.select_right_handle = True p3.select_control_point = True p3.select_left_handle = True p3.select_right_handle = True angle_sum = 0 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.select_all(action='INVERT') bpy.ops.curve.delete(type='VERT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') objects_to_delete.append(ob_splines) bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Check if the strokes are a crosshatch if self.is_crosshatch: all_points_coords = [] for i in range(len(ob_splines.data.splines)): all_points_coords.append([]) all_points_coords[i] = [Vector((x, y, z)) for x, y, z in [bp.co for bp in ob_splines.data.splines[i].bezier_points]] all_intersections = [] checked_splines = [] for i in range(len(all_points_coords)): for t in range(len(all_points_coords[i]) - 1): bp1_co = all_points_coords[i][t] bp2_co = all_points_coords[i][t + 1] for i2 in range(len(all_points_coords)): if i != i2 and i2 not in checked_splines: for t2 in range(len(all_points_coords[i2]) - 1): bp3_co = all_points_coords[i2][t2] bp4_co = all_points_coords[i2][t2 + 1] intersec_coords = intersect_line_line( bp1_co, bp2_co, bp3_co, bp4_co ) if intersec_coords is not None: dist = (intersec_coords[0] - intersec_coords[1]).length if dist <= self.crosshatch_merge_distance * 1.5: temp_co, percent1 = intersect_point_line( intersec_coords[0], bp1_co, bp2_co ) if (percent1 >= -0.02 and percent1 <= 1.02): temp_co, percent2 = intersect_point_line( intersec_coords[1], bp3_co, bp4_co ) if (percent2 >= -0.02 and percent2 <= 1.02): # Format: spline index, first point index from # corresponding segment, percentage from first point of # actual segment, coords of intersection point all_intersections.append( (i, t, percent1, ob_splines.matrix_world * intersec_coords[0]) ) all_intersections.append( (i2, t2, percent2, ob_splines.matrix_world * intersec_coords[1]) ) checked_splines.append(i) # Sort list by spline, then by corresponding first point index of segment, # and then by percentage from first point of segment: elements 0 and 1 respectively all_intersections.sort(key=operator.itemgetter(0, 1, 2)) self.crosshatch_strokes_coords = {} for i in range(len(all_intersections)): if not all_intersections[i][0] in self.crosshatch_strokes_coords: self.crosshatch_strokes_coords[all_intersections[i][0]] = [] self.crosshatch_strokes_coords[all_intersections[i][0]].append( all_intersections[i][3] ) # Save intersection coords else: self.is_crosshatch = False # Delete all duplicates for o in objects_to_delete: bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[o.name].select = True bpy.context.scene.objects.active = bpy.data.objects[o.name] bpy.ops.object.delete() # If the main object has modifiers, turn their "viewport view status" to # what it was before the forced deactivation above if len(self.main_object.modifiers) > 0: for m_idx in range(len(self.main_object.modifiers)): self.main_object.modifiers[m_idx].show_viewport = self.modifiers_prev_viewport_state[m_idx] return # Part of the Crosshatch process that is repeated when the operator is tweaked def crosshatch_surface_execute(self): # If the main object uses modifiers deactivate them temporarily until the surface is joined # (without this the surface verts merging with the main object doesn't work well) self.modifiers_prev_viewport_state = [] if len(self.main_object.modifiers) > 0: for m_idx in range(len(self.main_object.modifiers)): self.modifiers_prev_viewport_state.append(self.main_object.modifiers[m_idx].show_viewport) self.main_object.modifiers[m_idx].show_viewport = False bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') me_name = "SURFSKIO_STK_TMP" me = bpy.data.meshes.new(me_name) all_verts_coords = [] all_edges = [] for st_idx in self.crosshatch_strokes_coords: for co_idx in range(len(self.crosshatch_strokes_coords[st_idx])): coords = self.crosshatch_strokes_coords[st_idx][co_idx] all_verts_coords.append(coords) if co_idx > 0: all_edges.append((len(all_verts_coords) - 2, len(all_verts_coords) - 1)) me.from_pydata(all_verts_coords, all_edges, []) me.update() ob = bpy.data.objects.new(me_name, me) ob.data = me bpy.context.scene.objects.link(ob) bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[ob.name].select = True bpy.context.scene.objects.active = bpy.data.objects[ob.name] # Get together each vert and its nearest, to the middle position verts = ob.data.vertices checked_verts = [] for i in range(len(verts)): shortest_dist = None if i not in checked_verts: for t in range(len(verts)): if i != t and t not in checked_verts: dist = (verts[i].co - verts[t].co).length if shortest_dist is not None: if dist < shortest_dist: shortest_dist = dist nearest_vert = t else: shortest_dist = dist nearest_vert = t middle_location = (verts[i].co + verts[nearest_vert].co) / 2 verts[i].co = middle_location verts[nearest_vert].co = middle_location checked_verts.append(i) checked_verts.append(nearest_vert) # Calculate average length between all the generated edges ob = bpy.context.object lengths_sum = 0 for ed in ob.data.edges: v1 = ob.data.vertices[ed.vertices[0]] v2 = ob.data.vertices[ed.vertices[1]] lengths_sum += (v1.co - v2.co).length edges_count = len(ob.data.edges) # possible division by zero here average_edge_length = lengths_sum / edges_count if edges_count != 0 else 0.0001 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT') bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', threshold=average_edge_length / 15.0) bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') final_points_ob = bpy.context.scene.objects.active # Make a dictionary with the verts related to each vert related_key_verts = {} for ed in final_points_ob.data.edges: if not ed.vertices[0] in related_key_verts: related_key_verts[ed.vertices[0]] = [] if not ed.vertices[1] in related_key_verts: related_key_verts[ed.vertices[1]] = [] if not ed.vertices[1] in related_key_verts[ed.vertices[0]]: related_key_verts[ed.vertices[0]].append(ed.vertices[1]) if not ed.vertices[0] in related_key_verts[ed.vertices[1]]: related_key_verts[ed.vertices[1]].append(ed.vertices[0]) # Get groups of verts forming each face faces_verts_idx = [] for v1 in related_key_verts: # verts-1 .... for v2 in related_key_verts: # verts-2 if v1 != v2: related_verts_in_common = [] v2_in_rel_v1 = False v1_in_rel_v2 = False for rel_v1 in related_key_verts[v1]: # Check if related verts of verts-1 are related verts of verts-2 if rel_v1 in related_key_verts[v2]: related_verts_in_common.append(rel_v1) if v2 in related_key_verts[v1]: v2_in_rel_v1 = True if v1 in related_key_verts[v2]: v1_in_rel_v2 = True repeated_face = False # If two verts have two related verts in common, they form a quad if len(related_verts_in_common) == 2: # Check if the face is already saved for f_verts in faces_verts_idx: repeated_verts = 0 if len(f_verts) == 4: if v1 in f_verts: repeated_verts += 1 if v2 in f_verts: repeated_verts += 1 if related_verts_in_common[0] in f_verts: repeated_verts += 1 if related_verts_in_common[1] in f_verts: repeated_verts += 1 if repeated_verts == len(f_verts): repeated_face = True break if not repeated_face: faces_verts_idx.append([v1, related_verts_in_common[0], v2, related_verts_in_common[1]]) # If Two verts have one related vert in common and they are # related to each other, they form a triangle elif v2_in_rel_v1 and v1_in_rel_v2 and len(related_verts_in_common) == 1: # Check if the face is already saved. for f_verts in faces_verts_idx: repeated_verts = 0 if len(f_verts) == 3: if v1 in f_verts: repeated_verts += 1 if v2 in f_verts: repeated_verts += 1 if related_verts_in_common[0] in f_verts: repeated_verts += 1 if repeated_verts == len(f_verts): repeated_face = True break if not repeated_face: faces_verts_idx.append([v1, related_verts_in_common[0], v2]) # Keep only the faces that don't overlap by ignoring # quads that overlap with two adjacent triangles faces_to_not_include_idx = [] # Indices of faces_verts_idx to eliminate for i in range(len(faces_verts_idx)): for t in range(len(faces_verts_idx)): if i != t: verts_in_common = 0 if len(faces_verts_idx[i]) == 4 and len(faces_verts_idx[t]) == 3: for v_idx in faces_verts_idx[t]: if v_idx in faces_verts_idx[i]: verts_in_common += 1 # If it doesn't have all it's vertices repeated in the other face if verts_in_common == 3: if i not in faces_to_not_include_idx: faces_to_not_include_idx.append(i) # Build surface all_surface_verts_co = [] verts_idx_translation = {} for i in range(len(final_points_ob.data.vertices)): coords = final_points_ob.data.vertices[i].co all_surface_verts_co.append([coords[0], coords[1], coords[2]]) # Verts of each face. all_surface_faces = [] for i in range(len(faces_verts_idx)): if i not in faces_to_not_include_idx: face = [] for v_idx in faces_verts_idx[i]: face.append(v_idx) all_surface_faces.append(face) # Build the mesh surf_me_name = "SURFSKIO_surface" me_surf = bpy.data.meshes.new(surf_me_name) me_surf.from_pydata(all_surface_verts_co, [], all_surface_faces) me_surf.update() ob_surface = bpy.data.objects.new(surf_me_name, me_surf) bpy.context.scene.objects.link(ob_surface) # Delete final points temporal object bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[final_points_ob.name].select = True bpy.context.scene.objects.active = bpy.data.objects[final_points_ob.name] bpy.ops.object.delete() # Delete isolated verts if there are any bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[ob_surface.name].select = True bpy.context.scene.objects.active = bpy.data.objects[ob_surface.name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.mesh.select_all(action='DESELECT') bpy.ops.mesh.select_face_by_sides(type='NOTEQUAL') bpy.ops.mesh.delete() bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Join crosshatch results with original mesh # Calculate a distance to merge the verts of the crosshatch surface to the main object edges_length_sum = 0 for ed in ob_surface.data.edges: edges_length_sum += ( ob_surface.data.vertices[ed.vertices[0]].co - ob_surface.data.vertices[ed.vertices[1]].co ).length if len(ob_surface.data.edges) > 0: average_surface_edges_length = edges_length_sum / len(ob_surface.data.edges) else: average_surface_edges_length = 0.0001 # Make dictionary with all the verts connected to each vert, on the new surface object. surface_connected_verts = {} for ed in ob_surface.data.edges: if not ed.vertices[0] in surface_connected_verts: surface_connected_verts[ed.vertices[0]] = [] surface_connected_verts[ed.vertices[0]].append(ed.vertices[1]) if ed.vertices[1] not in surface_connected_verts: surface_connected_verts[ed.vertices[1]] = [] surface_connected_verts[ed.vertices[1]].append(ed.vertices[0]) # Duplicate the new surface object, and use shrinkwrap to # calculate later the nearest verts to the main object bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.object.duplicate('INVOKE_REGION_WIN') final_ob_duplicate = bpy.context.scene.objects.active bpy.ops.object.modifier_add('INVOKE_REGION_WIN', type='SHRINKWRAP') final_ob_duplicate.modifiers["Shrinkwrap"].wrap_method = "NEAREST_VERTEX" final_ob_duplicate.modifiers["Shrinkwrap"].target = self.main_object bpy.ops.object.modifier_apply('INVOKE_REGION_WIN', apply_as='DATA', modifier='Shrinkwrap') # Make list with verts of original mesh as index and coords as value main_object_verts_coords = [] for v in self.main_object.data.vertices: coords = self.main_object.matrix_world * v.co # To avoid problems when taking "-0.00" as a different value as "0.00" for c in range(len(coords)): if "%.3f" % coords[c] == "-0.00": coords[c] = 0 main_object_verts_coords.append(["%.3f" % coords[0], "%.3f" % coords[1], "%.3f" % coords[2]]) tuple(main_object_verts_coords) # Determine which verts will be merged, snap them to the nearest verts # on the original verts, and get them selected crosshatch_verts_to_merge = [] if self.automatic_join: for i in range(len(ob_surface.data.vertices)): # Calculate the distance from each of the connected verts to the actual vert, # and compare it with the distance they would have if joined. # If they don't change much, that vert can be joined merge_actual_vert = True if len(surface_connected_verts[i]) < 4: for c_v_idx in surface_connected_verts[i]: points_original = [] points_original.append(ob_surface.data.vertices[c_v_idx].co) points_original.append(ob_surface.data.vertices[i].co) points_target = [] points_target.append(ob_surface.data.vertices[c_v_idx].co) points_target.append(final_ob_duplicate.data.vertices[i].co) vec_A = points_original[0] - points_original[1] vec_B = points_target[0] - points_target[1] dist_A = (points_original[0] - points_original[1]).length dist_B = (points_target[0] - points_target[1]).length if not ( points_original[0] == points_original[1] or points_target[0] == points_target[1] ): # If any vector's length is zero angle = vec_A.angle(vec_B) / pi else: angle = 0 # Set a range of acceptable variation in the connected edges if dist_B > dist_A * 1.7 * self.join_stretch_factor or \ dist_B < dist_A / 2 / self.join_stretch_factor or \ angle >= 0.15 * self.join_stretch_factor: merge_actual_vert = False break else: merge_actual_vert = False if merge_actual_vert: coords = final_ob_duplicate.data.vertices[i].co # To avoid problems when taking "-0.000" as a different value as "0.00" for c in range(len(coords)): if "%.3f" % coords[c] == "-0.00": coords[c] = 0 comparison_coords = ["%.3f" % coords[0], "%.3f" % coords[1], "%.3f" % coords[2]] if comparison_coords in main_object_verts_coords: # Get the index of the vert with those coords in the main object main_object_related_vert_idx = main_object_verts_coords.index(comparison_coords) if self.main_object.data.vertices[main_object_related_vert_idx].select is True or \ self.main_object_selected_verts_count == 0: ob_surface.data.vertices[i].co = final_ob_duplicate.data.vertices[i].co ob_surface.data.vertices[i].select = True crosshatch_verts_to_merge.append(i) # Make sure the vert in the main object is selected, # in case it wasn't selected and the "join crosshatch" option is active self.main_object.data.vertices[main_object_related_vert_idx].select = True # Delete duplicated object bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[final_ob_duplicate.name].select = True bpy.context.scene.objects.active = bpy.data.objects[final_ob_duplicate.name] bpy.ops.object.delete() # Join crosshatched surface and main object bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[ob_surface.name].select = True bpy.data.objects[self.main_object.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name] bpy.ops.object.join('INVOKE_REGION_WIN') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Perform Remove doubles to merge verts if not (self.automatic_join is False and self.main_object_selected_verts_count == 0): bpy.ops.mesh.remove_doubles(threshold=0.0001) bpy.ops.mesh.select_all(action='DESELECT') # If the main object has modifiers, turn their "viewport view status" # to what it was before the forced deactivation above if len(self.main_object.modifiers) > 0: for m_idx in range(len(self.main_object.modifiers)): self.main_object.modifiers[m_idx].show_viewport = self.modifiers_prev_viewport_state[m_idx] return {'FINISHED'} def rectangular_surface(self): # Selected edges all_selected_edges_idx = [] all_selected_verts = [] all_verts_idx = [] for ed in self.main_object.data.edges: if ed.select: all_selected_edges_idx.append(ed.index) # Selected vertices if not ed.vertices[0] in all_selected_verts: all_selected_verts.append(self.main_object.data.vertices[ed.vertices[0]]) if not ed.vertices[1] in all_selected_verts: all_selected_verts.append(self.main_object.data.vertices[ed.vertices[1]]) # All verts (both from each edge) to determine later # which are at the tips (those not repeated twice) all_verts_idx.append(ed.vertices[0]) all_verts_idx.append(ed.vertices[1]) # Identify the tips and "middle-vertex" that separates U from V, if there is one all_chains_tips_idx = [] for v_idx in all_verts_idx: if all_verts_idx.count(v_idx) < 2: all_chains_tips_idx.append(v_idx) edges_connected_to_tips = [] for ed in self.main_object.data.edges: if (ed.vertices[0] in all_chains_tips_idx or ed.vertices[1] in all_chains_tips_idx) and \ not (ed.vertices[0] in all_verts_idx and ed.vertices[1] in all_verts_idx): edges_connected_to_tips.append(ed) # Check closed selections # List with groups of three verts, where the first element of the pair is # the unselected vert of a closed selection and the other two elements are the # selected neighbor verts (it will be useful to determine which selection chain # the unselected vert belongs to, and determine the "middle-vertex") single_unselected_verts_and_neighbors = [] # To identify a "closed" selection (a selection that is a closed chain except # for one vertex) find the vertex in common that have the edges connected to tips. # If there is a vertex in common, that one is the unselected vert that closes # the selection or is a "middle-vertex" single_unselected_verts = [] for ed in edges_connected_to_tips: for ed_b in edges_connected_to_tips: if ed != ed_b: if ed.vertices[0] == ed_b.vertices[0] and \ not self.main_object.data.vertices[ed.vertices[0]].select and \ ed.vertices[0] not in single_unselected_verts: # The second element is one of the tips of the selected # vertices of the closed selection single_unselected_verts_and_neighbors.append( [ed.vertices[0], ed.vertices[1], ed_b.vertices[1]] ) single_unselected_verts.append(ed.vertices[0]) break elif ed.vertices[0] == ed_b.vertices[1] and \ not self.main_object.data.vertices[ed.vertices[0]].select and \ ed.vertices[0] not in single_unselected_verts: single_unselected_verts_and_neighbors.append( [ed.vertices[0], ed.vertices[1], ed_b.vertices[0]] ) single_unselected_verts.append(ed.vertices[0]) break elif ed.vertices[1] == ed_b.vertices[0] and \ not self.main_object.data.vertices[ed.vertices[1]].select and \ ed.vertices[1] not in single_unselected_verts: single_unselected_verts_and_neighbors.append( [ed.vertices[1], ed.vertices[0], ed_b.vertices[1]] ) single_unselected_verts.append(ed.vertices[1]) break elif ed.vertices[1] == ed_b.vertices[1] and \ not self.main_object.data.vertices[ed.vertices[1]].select and \ ed.vertices[1] not in single_unselected_verts: single_unselected_verts_and_neighbors.append( [ed.vertices[1], ed.vertices[0], ed_b.vertices[0]] ) single_unselected_verts.append(ed.vertices[1]) break middle_vertex_idx = None tips_to_discard_idx = [] # Check if there is a "middle-vertex", and get its index for i in range(0, len(single_unselected_verts_and_neighbors)): actual_chain_verts = self.get_ordered_verts( self.main_object, all_selected_edges_idx, all_verts_idx, single_unselected_verts_and_neighbors[i][1], None, None ) if single_unselected_verts_and_neighbors[i][2] != \ actual_chain_verts[len(actual_chain_verts) - 1].index: middle_vertex_idx = single_unselected_verts_and_neighbors[i][0] tips_to_discard_idx.append(single_unselected_verts_and_neighbors[i][1]) tips_to_discard_idx.append(single_unselected_verts_and_neighbors[i][2]) # List with pairs of verts that belong to the tips of each selection chain (row) verts_tips_same_chain_idx = [] if len(all_chains_tips_idx) >= 2: checked_v = [] for i in range(0, len(all_chains_tips_idx)): if all_chains_tips_idx[i] not in checked_v: v_chain = self.get_ordered_verts( self.main_object, all_selected_edges_idx, all_verts_idx, all_chains_tips_idx[i], middle_vertex_idx, None ) verts_tips_same_chain_idx.append([v_chain[0].index, v_chain[len(v_chain) - 1].index]) checked_v.append(v_chain[0].index) checked_v.append(v_chain[len(v_chain) - 1].index) # Selection tips (vertices). verts_tips_parsed_idx = [] if len(all_chains_tips_idx) >= 2: for spec_v_idx in all_chains_tips_idx: if (spec_v_idx not in tips_to_discard_idx): verts_tips_parsed_idx.append(spec_v_idx) # Identify the type of selection made by the user if middle_vertex_idx is not None: # If there are 4 tips (two selection chains), and # there is only one single unselected vert (the middle vert) if len(all_chains_tips_idx) == 4 and len(single_unselected_verts_and_neighbors) == 1: selection_type = "TWO_CONNECTED" else: # The type of the selection was not identified, the script stops. self.report({'WARNING'}, "The selection isn't valid.") bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') self.cleanup_on_interruption() self.stopping_errors = True return{'CANCELLED'} else: if len(all_chains_tips_idx) == 2: # If there are 2 tips selection_type = "SINGLE" elif len(all_chains_tips_idx) == 4: # If there are 4 tips selection_type = "TWO_NOT_CONNECTED" elif len(all_chains_tips_idx) == 0: if len(self.main_splines.data.splines) > 1: selection_type = "NO_SELECTION" else: # If the selection was not identified and there is only one stroke, # there's no possibility to build a surface, so the script is interrupted self.report({'WARNING'}, "The selection isn't valid.") bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') self.cleanup_on_interruption() self.stopping_errors = True return{'CANCELLED'} else: # The type of the selection was not identified, the script stops self.report({'WARNING'}, "The selection isn't valid.") bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') self.cleanup_on_interruption() self.stopping_errors = True return{'CANCELLED'} # If the selection type is TWO_NOT_CONNECTED and there is only one stroke, stop the script if selection_type == "TWO_NOT_CONNECTED" and len(self.main_splines.data.splines) == 1: self.report({'WARNING'}, "At least two strokes are needed when there are two not connected selections") bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') self.cleanup_on_interruption() self.stopping_errors = True return{'CANCELLED'} bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.main_splines.name].select = True bpy.context.scene.objects.active = bpy.context.scene.objects[self.main_splines.name] # Enter editmode for the new curve (converted from grease pencil strokes), to smooth it out bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.smooth('INVOKE_REGION_WIN') bpy.ops.curve.smooth('INVOKE_REGION_WIN') bpy.ops.curve.smooth('INVOKE_REGION_WIN') bpy.ops.curve.smooth('INVOKE_REGION_WIN') bpy.ops.curve.smooth('INVOKE_REGION_WIN') bpy.ops.curve.smooth('INVOKE_REGION_WIN') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') self.selection_U_exists = False self.selection_U2_exists = False self.selection_V_exists = False self.selection_V2_exists = False self.selection_U_is_closed = False self.selection_U2_is_closed = False self.selection_V_is_closed = False self.selection_V2_is_closed = False # Define what vertices are at the tips of each selection and are not the middle-vertex if selection_type == "TWO_CONNECTED": self.selection_U_exists = True self.selection_V_exists = True closing_vert_U_idx = None closing_vert_V_idx = None closing_vert_U2_idx = None closing_vert_V2_idx = None # Determine which selection is Selection-U and which is Selection-V points_A = [] points_B = [] points_first_stroke_tips = [] points_A.append( self.main_object.matrix_world * self.main_object.data.vertices[verts_tips_parsed_idx[0]].co ) points_A.append( self.main_object.matrix_world * self.main_object.data.vertices[middle_vertex_idx].co ) points_B.append( self.main_object.matrix_world * self.main_object.data.vertices[verts_tips_parsed_idx[1]].co ) points_B.append( self.main_object.matrix_world * self.main_object.data.vertices[middle_vertex_idx].co ) points_first_stroke_tips.append( self.main_splines.data.splines[0].bezier_points[0].co ) points_first_stroke_tips.append( self.main_splines.data.splines[0].bezier_points[ len(self.main_splines.data.splines[0].bezier_points) - 1 ].co ) angle_A = self.orientation_difference(points_A, points_first_stroke_tips) angle_B = self.orientation_difference(points_B, points_first_stroke_tips) if angle_A < angle_B: first_vert_U_idx = verts_tips_parsed_idx[0] first_vert_V_idx = verts_tips_parsed_idx[1] else: first_vert_U_idx = verts_tips_parsed_idx[1] first_vert_V_idx = verts_tips_parsed_idx[0] elif selection_type == "SINGLE" or selection_type == "TWO_NOT_CONNECTED": first_sketched_point_first_stroke_co = self.main_splines.data.splines[0].bezier_points[0].co last_sketched_point_first_stroke_co = \ self.main_splines.data.splines[0].bezier_points[ len(self.main_splines.data.splines[0].bezier_points) - 1 ].co first_sketched_point_last_stroke_co = \ self.main_splines.data.splines[ len(self.main_splines.data.splines) - 1 ].bezier_points[0].co if len(self.main_splines.data.splines) > 1: first_sketched_point_second_stroke_co = self.main_splines.data.splines[1].bezier_points[0].co last_sketched_point_second_stroke_co = \ self.main_splines.data.splines[1].bezier_points[ len(self.main_splines.data.splines[1].bezier_points) - 1 ].co single_unselected_neighbors = [] # Only the neighbors of the single unselected verts for verts_neig_idx in single_unselected_verts_and_neighbors: single_unselected_neighbors.append(verts_neig_idx[1]) single_unselected_neighbors.append(verts_neig_idx[2]) all_chains_tips_and_middle_vert = [] for v_idx in all_chains_tips_idx: if v_idx not in single_unselected_neighbors: all_chains_tips_and_middle_vert.append(v_idx) all_chains_tips_and_middle_vert += single_unselected_verts all_participating_verts = all_chains_tips_and_middle_vert + all_verts_idx # The tip of the selected vertices nearest to the first point of the first sketched stroke nearest_tip_to_first_st_first_pt_idx, shortest_distance_to_first_stroke = \ self.shortest_distance( self.main_object, first_sketched_point_first_stroke_co, all_chains_tips_and_middle_vert ) # If the nearest tip is not from a closed selection, get the opposite tip vertex index if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or \ nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx: nearest_tip_to_first_st_first_pt_opposite_idx = \ self.opposite_tip( nearest_tip_to_first_st_first_pt_idx, verts_tips_same_chain_idx ) # The tip of the selected vertices nearest to the last point of the first sketched stroke nearest_tip_to_first_st_last_pt_idx, temp_dist = \ self.shortest_distance( self.main_object, last_sketched_point_first_stroke_co, all_chains_tips_and_middle_vert ) # The tip of the selected vertices nearest to the first point of the last sketched stroke nearest_tip_to_last_st_first_pt_idx, shortest_distance_to_last_stroke = \ self.shortest_distance( self.main_object, first_sketched_point_last_stroke_co, all_chains_tips_and_middle_vert ) if len(self.main_splines.data.splines) > 1: # The selected vertex nearest to the first point of the second sketched stroke # (This will be useful to determine the direction of the closed # selection V when extruding along strokes) nearest_vert_to_second_st_first_pt_idx, temp_dist = \ self.shortest_distance( self.main_object, first_sketched_point_second_stroke_co, all_verts_idx ) # The selected vertex nearest to the first point of the second sketched stroke # (This will be useful to determine the direction of the closed # selection V2 when extruding along strokes) nearest_vert_to_second_st_last_pt_idx, temp_dist = \ self.shortest_distance( self.main_object, last_sketched_point_second_stroke_co, all_verts_idx ) # Determine if the single selection will be treated as U or as V edges_sum = 0 for i in all_selected_edges_idx: edges_sum += ( (self.main_object.matrix_world * self.main_object.data.vertices[self.main_object.data.edges[i].vertices[0]].co) - (self.main_object.matrix_world * self.main_object.data.vertices[self.main_object.data.edges[i].vertices[1]].co) ).length average_edge_length = edges_sum / len(all_selected_edges_idx) # Get shortest distance from the first point of the last stroke to any participating vertex temp_idx, shortest_distance_to_last_stroke = \ self.shortest_distance( self.main_object, first_sketched_point_last_stroke_co, all_participating_verts ) # If the beginning of the first stroke is near enough, and its orientation # difference with the first edge of the nearest selection chain is not too high, # interpret things as an "extrude along strokes" instead of "extrude through strokes" if shortest_distance_to_first_stroke < average_edge_length / 4 and \ shortest_distance_to_last_stroke < average_edge_length and \ len(self.main_splines.data.splines) > 1: self.selection_U_exists = False self.selection_V_exists = True # If the first selection is not closed if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or \ nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx: self.selection_V_is_closed = False first_neighbor_V_idx = None closing_vert_U_idx = None closing_vert_U2_idx = None closing_vert_V_idx = None closing_vert_V2_idx = None first_vert_V_idx = nearest_tip_to_first_st_first_pt_idx if selection_type == "TWO_NOT_CONNECTED": self.selection_V2_exists = True first_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx else: self.selection_V_is_closed = True closing_vert_V_idx = nearest_tip_to_first_st_first_pt_idx # Get the neighbors of the first (unselected) vert of the closed selection U. vert_neighbors = [] for verts in single_unselected_verts_and_neighbors: if verts[0] == nearest_tip_to_first_st_first_pt_idx: vert_neighbors.append(verts[1]) vert_neighbors.append(verts[2]) break verts_V = self.get_ordered_verts( self.main_object, all_selected_edges_idx, all_verts_idx, vert_neighbors[0], middle_vertex_idx, None ) for i in range(0, len(verts_V)): if verts_V[i].index == nearest_vert_to_second_st_first_pt_idx: # If the vertex nearest to the first point of the second stroke # is in the first half of the selected verts if i >= len(verts_V) / 2: first_vert_V_idx = vert_neighbors[1] break else: first_vert_V_idx = vert_neighbors[0] break if selection_type == "TWO_NOT_CONNECTED": self.selection_V2_exists = True # If the second selection is not closed if nearest_tip_to_first_st_last_pt_idx not in single_unselected_verts or \ nearest_tip_to_first_st_last_pt_idx == middle_vertex_idx: self.selection_V2_is_closed = False first_neighbor_V2_idx = None closing_vert_V2_idx = None first_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx else: self.selection_V2_is_closed = True closing_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx # Get the neighbors of the first (unselected) vert of the closed selection U vert_neighbors = [] for verts in single_unselected_verts_and_neighbors: if verts[0] == nearest_tip_to_first_st_last_pt_idx: vert_neighbors.append(verts[1]) vert_neighbors.append(verts[2]) break verts_V2 = self.get_ordered_verts( self.main_object, all_selected_edges_idx, all_verts_idx, vert_neighbors[0], middle_vertex_idx, None ) for i in range(0, len(verts_V2)): if verts_V2[i].index == nearest_vert_to_second_st_last_pt_idx: # If the vertex nearest to the first point of the second stroke # is in the first half of the selected verts if i >= len(verts_V2) / 2: first_vert_V2_idx = vert_neighbors[1] break else: first_vert_V2_idx = vert_neighbors[0] break else: self.selection_V2_exists = False else: self.selection_U_exists = True self.selection_V_exists = False # If the first selection is not closed if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or \ nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx: self.selection_U_is_closed = False first_neighbor_U_idx = None closing_vert_U_idx = None points_tips = [] points_tips.append( self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_idx].co ) points_tips.append( self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_opposite_idx].co ) points_first_stroke_tips = [] points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co) points_first_stroke_tips.append( self.main_splines.data.splines[0].bezier_points[ len(self.main_splines.data.splines[0].bezier_points) - 1 ].co ) vec_A = points_tips[0] - points_tips[1] vec_B = points_first_stroke_tips[0] - points_first_stroke_tips[1] # Compare the direction of the selection and the first # grease pencil stroke to determine which is the "first" vertex of the selection if vec_A.dot(vec_B) < 0: first_vert_U_idx = nearest_tip_to_first_st_first_pt_opposite_idx else: first_vert_U_idx = nearest_tip_to_first_st_first_pt_idx else: self.selection_U_is_closed = True closing_vert_U_idx = nearest_tip_to_first_st_first_pt_idx # Get the neighbors of the first (unselected) vert of the closed selection U vert_neighbors = [] for verts in single_unselected_verts_and_neighbors: if verts[0] == nearest_tip_to_first_st_first_pt_idx: vert_neighbors.append(verts[1]) vert_neighbors.append(verts[2]) break points_first_and_neighbor = [] points_first_and_neighbor.append( self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_idx].co ) points_first_and_neighbor.append( self.main_object.matrix_world * self.main_object.data.vertices[vert_neighbors[0]].co ) points_first_stroke_tips = [] points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co) points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[1].co) vec_A = points_first_and_neighbor[0] - points_first_and_neighbor[1] vec_B = points_first_stroke_tips[0] - points_first_stroke_tips[1] # Compare the direction of the selection and the first grease pencil stroke to # determine which is the vertex neighbor to the first vertex (unselected) of # the closed selection. This will determine the direction of the closed selection if vec_A.dot(vec_B) < 0: first_vert_U_idx = vert_neighbors[1] else: first_vert_U_idx = vert_neighbors[0] if selection_type == "TWO_NOT_CONNECTED": self.selection_U2_exists = True # If the second selection is not closed if nearest_tip_to_last_st_first_pt_idx not in single_unselected_verts or \ nearest_tip_to_last_st_first_pt_idx == middle_vertex_idx: self.selection_U2_is_closed = False first_neighbor_U2_idx = None closing_vert_U2_idx = None first_vert_U2_idx = nearest_tip_to_last_st_first_pt_idx else: self.selection_U2_is_closed = True closing_vert_U2_idx = nearest_tip_to_last_st_first_pt_idx # Get the neighbors of the first (unselected) vert of the closed selection U vert_neighbors = [] for verts in single_unselected_verts_and_neighbors: if verts[0] == nearest_tip_to_last_st_first_pt_idx: vert_neighbors.append(verts[1]) vert_neighbors.append(verts[2]) break points_first_and_neighbor = [] points_first_and_neighbor.append( self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_last_st_first_pt_idx].co ) points_first_and_neighbor.append( self.main_object.matrix_world * self.main_object.data.vertices[vert_neighbors[0]].co ) points_last_stroke_tips = [] points_last_stroke_tips.append( self.main_splines.data.splines[ len(self.main_splines.data.splines) - 1 ].bezier_points[0].co ) points_last_stroke_tips.append( self.main_splines.data.splines[ len(self.main_splines.data.splines) - 1 ].bezier_points[1].co ) vec_A = points_first_and_neighbor[0] - points_first_and_neighbor[1] vec_B = points_last_stroke_tips[0] - points_last_stroke_tips[1] # Compare the direction of the selection and the last grease pencil stroke to # determine which is the vertex neighbor to the first vertex (unselected) of # the closed selection. This will determine the direction of the closed selection if vec_A.dot(vec_B) < 0: first_vert_U2_idx = vert_neighbors[1] else: first_vert_U2_idx = vert_neighbors[0] else: self.selection_U2_exists = False elif selection_type == "NO_SELECTION": self.selection_U_exists = False self.selection_V_exists = False # Get an ordered list of the vertices of Selection-U verts_ordered_U = [] if self.selection_U_exists: verts_ordered_U = self.get_ordered_verts( self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_U_idx, middle_vertex_idx, closing_vert_U_idx ) verts_ordered_U_indices = [x.index for x in verts_ordered_U] # Get an ordered list of the vertices of Selection-U2 verts_ordered_U2 = [] if self.selection_U2_exists: verts_ordered_U2 = self.get_ordered_verts( self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_U2_idx, middle_vertex_idx, closing_vert_U2_idx ) verts_ordered_U2_indices = [x.index for x in verts_ordered_U2] # Get an ordered list of the vertices of Selection-V verts_ordered_V = [] if self.selection_V_exists: verts_ordered_V = self.get_ordered_verts( self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_V_idx, middle_vertex_idx, closing_vert_V_idx ) verts_ordered_V_indices = [x.index for x in verts_ordered_V] # Get an ordered list of the vertices of Selection-V2 verts_ordered_V2 = [] if self.selection_V2_exists: verts_ordered_V2 = self.get_ordered_verts( self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_V2_idx, middle_vertex_idx, closing_vert_V2_idx ) verts_ordered_V2_indices = [x.index for x in verts_ordered_V2] # Check if when there are two-not-connected selections both have the same # number of verts. If not terminate the script if ((self.selection_U2_exists and len(verts_ordered_U) != len(verts_ordered_U2)) or (self.selection_V2_exists and len(verts_ordered_V) != len(verts_ordered_V2))): # Display a warning self.report({'WARNING'}, "Both selections must have the same number of edges") self.cleanup_on_interruption() self.stopping_errors = True return{'CANCELLED'} # Calculate edges U proportions # Sum selected edges U lengths edges_lengths_U = [] edges_lengths_sum_U = 0 if self.selection_U_exists: edges_lengths_U, edges_lengths_sum_U = self.get_chain_length( self.main_object, verts_ordered_U ) if self.selection_U2_exists: edges_lengths_U2, edges_lengths_sum_U2 = self.get_chain_length( self.main_object, verts_ordered_U2 ) # Sum selected edges V lengths edges_lengths_V = [] edges_lengths_sum_V = 0 if self.selection_V_exists: edges_lengths_V, edges_lengths_sum_V = self.get_chain_length( self.main_object, verts_ordered_V ) if self.selection_V2_exists: edges_lengths_V2, edges_lengths_sum_V2 = self.get_chain_length( self.main_object, verts_ordered_V2 ) bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=bpy.context.scene.bsurfaces.SURFSK_precision) bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Proportions U edges_proportions_U = [] edges_proportions_U = self.get_edges_proportions( edges_lengths_U, edges_lengths_sum_U, self.selection_U_exists, self.edges_U ) verts_count_U = len(edges_proportions_U) + 1 if self.selection_U2_exists: edges_proportions_U2 = [] edges_proportions_U2 = self.get_edges_proportions( edges_lengths_U2, edges_lengths_sum_U2, self.selection_U2_exists, self.edges_V ) verts_count_U2 = len(edges_proportions_U2) + 1 # Proportions V edges_proportions_V = [] edges_proportions_V = self.get_edges_proportions( edges_lengths_V, edges_lengths_sum_V, self.selection_V_exists, self.edges_V ) verts_count_V = len(edges_proportions_V) + 1 if self.selection_V2_exists: edges_proportions_V2 = [] edges_proportions_V2 = self.get_edges_proportions( edges_lengths_V2, edges_lengths_sum_V2, self.selection_V2_exists, self.edges_V ) verts_count_V2 = len(edges_proportions_V2) + 1 # Cyclic Follow: simplify sketched curves, make them Cyclic, and complete # the actual sketched curves with a "closing segment" if self.cyclic_follow and not self.selection_V_exists and not \ ((self.selection_U_exists and not self.selection_U_is_closed) or (self.selection_U2_exists and not self.selection_U2_is_closed)): simplified_spline_coords = [] simplified_curve = [] ob_simplified_curve = [] splines_first_v_co = [] for i in range(len(self.main_splines.data.splines)): # Create a curve object for the actual spline "cyclic extension" simplified_curve.append(bpy.data.curves.new('SURFSKIO_simpl_crv', 'CURVE')) ob_simplified_curve.append(bpy.data.objects.new('SURFSKIO_simpl_crv', simplified_curve[i])) bpy.context.scene.objects.link(ob_simplified_curve[i]) simplified_curve[i].dimensions = "3D" spline_coords = [] for bp in self.main_splines.data.splines[i].bezier_points: spline_coords.append(bp.co) # Simplification simplified_spline_coords.append(self.simplify_spline(spline_coords, 5)) # Get the coordinates of the first vert of the actual spline splines_first_v_co.append(simplified_spline_coords[i][0]) # Generate the spline spline = simplified_curve[i].splines.new('BEZIER') # less one because one point is added when the spline is created spline.bezier_points.add(len(simplified_spline_coords[i]) - 1) for p in range(0, len(simplified_spline_coords[i])): spline.bezier_points[p].co = simplified_spline_coords[i][p] spline.use_cyclic_u = True spline_bp_count = len(spline.bezier_points) bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[ob_simplified_curve[i].name].select = True bpy.context.scene.objects.active = bpy.context.scene.objects[ob_simplified_curve[i].name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT') bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type='AUTOMATIC') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Select the "closing segment", and subdivide it ob_simplified_curve[i].data.splines[0].bezier_points[0].select_control_point = True ob_simplified_curve[i].data.splines[0].bezier_points[0].select_left_handle = True ob_simplified_curve[i].data.splines[0].bezier_points[0].select_right_handle = True ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].select_control_point = True ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].select_left_handle = True ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].select_right_handle = True bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') segments = sqrt( (ob_simplified_curve[i].data.splines[0].bezier_points[0].co - ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].co).length / self.average_gp_segment_length ) for t in range(2): bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=segments) # Delete the other vertices and make it non-cyclic to # keep only the needed verts of the "closing segment" bpy.ops.curve.select_all(action='INVERT') bpy.ops.curve.delete(type='VERT') ob_simplified_curve[i].data.splines[0].use_cyclic_u = False bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Add the points of the "closing segment" to the original curve from grease pencil stroke first_new_index = len(self.main_splines.data.splines[i].bezier_points) self.main_splines.data.splines[i].bezier_points.add( len(ob_simplified_curve[i].data.splines[0].bezier_points) - 1 ) for t in range(1, len(ob_simplified_curve[i].data.splines[0].bezier_points)): self.main_splines.data.splines[i].bezier_points[t - 1 + first_new_index].co = \ ob_simplified_curve[i].data.splines[0].bezier_points[t].co # Delete the temporal curve bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[ob_simplified_curve[i].name].select = True bpy.context.scene.objects.active = bpy.context.scene.objects[ob_simplified_curve[i].name] bpy.ops.object.delete() # Get the coords of the points distributed along the sketched strokes, # with proportions-U of the first selection pts_on_strokes_with_proportions_U = self.distribute_pts( self.main_splines.data.splines, edges_proportions_U ) sketched_splines_parsed = [] if self.selection_U2_exists: # Initialize the multidimensional list with the proportions of all the segments proportions_loops_crossing_strokes = [] for i in range(len(pts_on_strokes_with_proportions_U)): proportions_loops_crossing_strokes.append([]) for t in range(len(pts_on_strokes_with_proportions_U[0])): proportions_loops_crossing_strokes[i].append(None) # Calculate the proportions of each segment of the loops-U from pts_on_strokes_with_proportions_U for lp in range(len(pts_on_strokes_with_proportions_U[0])): loop_segments_lengths = [] for st in range(len(pts_on_strokes_with_proportions_U)): # When on the first stroke, add the segment from the selection to the dirst stroke if st == 0: loop_segments_lengths.append( ((self.main_object.matrix_world * verts_ordered_U[lp].co) - pts_on_strokes_with_proportions_U[0][lp]).length ) # For all strokes except for the last, calculate the distance # from the actual stroke to the next if st != len(pts_on_strokes_with_proportions_U) - 1: loop_segments_lengths.append( (pts_on_strokes_with_proportions_U[st][lp] - pts_on_strokes_with_proportions_U[st + 1][lp]).length ) # When on the last stroke, add the segments # from the last stroke to the second selection if st == len(pts_on_strokes_with_proportions_U) - 1: loop_segments_lengths.append( (pts_on_strokes_with_proportions_U[st][lp] - (self.main_object.matrix_world * verts_ordered_U2[lp].co)).length ) # Calculate full loop length loop_seg_lengths_sum = 0 for i in range(len(loop_segments_lengths)): loop_seg_lengths_sum += loop_segments_lengths[i] # Fill the multidimensional list with the proportions of all the segments for st in range(len(pts_on_strokes_with_proportions_U)): proportions_loops_crossing_strokes[st][lp] = \ loop_segments_lengths[st] / loop_seg_lengths_sum # Calculate proportions for each stroke for st in range(len(pts_on_strokes_with_proportions_U)): actual_stroke_spline = [] # Needs to be a list for the "distribute_pts" method actual_stroke_spline.append(self.main_splines.data.splines[st]) # Calculate the proportions for the actual stroke. actual_edges_proportions_U = [] for i in range(len(edges_proportions_U)): proportions_sum = 0 # Sum the proportions of this loop up to the actual. for t in range(0, st + 1): proportions_sum += proportions_loops_crossing_strokes[t][i] # i + 1, because proportions_loops_crossing_strokes refers to loops, # and the proportions refer to edges, so we start at the element 1 # of proportions_loops_crossing_strokes instead of element 0 actual_edges_proportions_U.append( edges_proportions_U[i] - ((edges_proportions_U[i] - edges_proportions_U2[i]) * proportions_sum) ) points_actual_spline = self.distribute_pts(actual_stroke_spline, actual_edges_proportions_U) sketched_splines_parsed.append(points_actual_spline[0]) else: sketched_splines_parsed = pts_on_strokes_with_proportions_U # If the selection type is "TWO_NOT_CONNECTED" replace the # points of the last spline with the points in the "target" selection if selection_type == "TWO_NOT_CONNECTED": if self.selection_U2_exists: for i in range(0, len(sketched_splines_parsed[len(sketched_splines_parsed) - 1])): sketched_splines_parsed[len(sketched_splines_parsed) - 1][i] = \ self.main_object.matrix_world * verts_ordered_U2[i].co # Create temporary curves along the "control-points" found # on the sketched curves and the mesh selection mesh_ctrl_pts_name = "SURFSKIO_ctrl_pts" me = bpy.data.meshes.new(mesh_ctrl_pts_name) ob_ctrl_pts = bpy.data.objects.new(mesh_ctrl_pts_name, me) ob_ctrl_pts.data = me bpy.context.scene.objects.link(ob_ctrl_pts) cyclic_loops_U = [] first_verts = [] second_verts = [] last_verts = [] for i in range(0, verts_count_U): vert_num_in_spline = 1 if self.selection_U_exists: ob_ctrl_pts.data.vertices.add(1) last_v = ob_ctrl_pts.data.vertices[len(ob_ctrl_pts.data.vertices) - 1] last_v.co = self.main_object.matrix_world * verts_ordered_U[i].co vert_num_in_spline += 1 for t in range(0, len(sketched_splines_parsed)): ob_ctrl_pts.data.vertices.add(1) v = ob_ctrl_pts.data.vertices[len(ob_ctrl_pts.data.vertices) - 1] v.co = sketched_splines_parsed[t][i] if vert_num_in_spline > 1: ob_ctrl_pts.data.edges.add(1) ob_ctrl_pts.data.edges[len(ob_ctrl_pts.data.edges) - 1].vertices[0] = \ len(ob_ctrl_pts.data.vertices) - 2 ob_ctrl_pts.data.edges[len(ob_ctrl_pts.data.edges) - 1].vertices[1] = \ len(ob_ctrl_pts.data.vertices) - 1 if t == 0: first_verts.append(v.index) if t == 1: second_verts.append(v.index) if t == len(sketched_splines_parsed) - 1: last_verts.append(v.index) last_v = v vert_num_in_spline += 1 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[ob_ctrl_pts.name].select = True bpy.context.scene.objects.active = bpy.data.objects[ob_ctrl_pts.name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.mesh.select_all(action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Determine which loops-U will be "Cyclic" for i in range(0, len(first_verts)): # When there is Cyclic Cross there is no need of # Automatic Join, (and there are at least three strokes) if self.automatic_join and not self.cyclic_cross and \ selection_type != "TWO_CONNECTED" and len(self.main_splines.data.splines) >= 3: v = ob_ctrl_pts.data.vertices first_point_co = v[first_verts[i]].co second_point_co = v[second_verts[i]].co last_point_co = v[last_verts[i]].co # Coordinates of the point in the center of both the first and last verts. verts_center_co = [ (first_point_co[0] + last_point_co[0]) / 2, (first_point_co[1] + last_point_co[1]) / 2, (first_point_co[2] + last_point_co[2]) / 2 ] vec_A = second_point_co - first_point_co vec_B = second_point_co - Vector(verts_center_co) # Calculate the length of the first segment of the loop, # and the length it would have after moving the first vert # to the middle position between first and last length_original = (second_point_co - first_point_co).length length_target = (second_point_co - Vector(verts_center_co)).length angle = vec_A.angle(vec_B) / pi # If the target length doesn't stretch too much, and the # its angle doesn't change to much either if length_target <= length_original * 1.03 * self.join_stretch_factor and \ angle <= 0.008 * self.join_stretch_factor and not self.selection_U_exists: cyclic_loops_U.append(True) # Move the first vert to the center coordinates ob_ctrl_pts.data.vertices[first_verts[i]].co = verts_center_co # Select the last verts from Cyclic loops, for later deletion all at once v[last_verts[i]].select = True else: cyclic_loops_U.append(False) else: # If "Cyclic Cross" is active then "all" crossing curves become cyclic if self.cyclic_cross and not self.selection_U_exists and not \ ((self.selection_V_exists and not self.selection_V_is_closed) or (self.selection_V2_exists and not self.selection_V2_is_closed)): cyclic_loops_U.append(True) else: cyclic_loops_U.append(False) # The cyclic_loops_U list needs to be reversed. cyclic_loops_U.reverse() # Delete the previously selected (last_)verts. bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.mesh.delete('INVOKE_REGION_WIN', type='VERT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Create curves from control points. bpy.ops.object.convert('INVOKE_REGION_WIN', target='CURVE', keep_original=False) ob_curves_surf = bpy.context.scene.objects.active bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.spline_type_set('INVOKE_REGION_WIN', type='BEZIER') bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type='AUTOMATIC') # Make Cyclic the splines designated as Cyclic. for i in range(0, len(cyclic_loops_U)): ob_curves_surf.data.splines[i].use_cyclic_u = cyclic_loops_U[i] # Get the coords of all points on first loop-U, for later comparison with its # subdivided version, to know which points of the loops-U are crossed by the # original strokes. The indices wiil be the same for the other loops-U if self.loops_on_strokes: coords_loops_U_control_points = [] for p in ob_ctrl_pts.data.splines[0].bezier_points: coords_loops_U_control_points.append(["%.4f" % p.co[0], "%.4f" % p.co[1], "%.4f" % p.co[2]]) tuple(coords_loops_U_control_points) # Calculate number of edges-V in case option "Loops on strokes" is active or inactive if self.loops_on_strokes and not self.selection_V_exists: edges_V_count = len(self.main_splines.data.splines) * self.edges_V else: edges_V_count = len(edges_proportions_V) # The Follow precision will vary depending on the number of Follow face-loops precision_multiplier = round(2 + (edges_V_count / 15)) curve_cuts = bpy.context.scene.bsurfaces.SURFSK_precision * precision_multiplier # Subdivide the curves bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=curve_cuts) # The verts position shifting that happens with splines subdivision. # For later reorder splines points verts_position_shift = curve_cuts + 1 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Reorder coordinates of the points of each spline to put the first point of # the spline starting at the position it was the first point before sudividing # the curve. And make a new curve object per spline (to handle memory better later) splines_U_objects = [] for i in range(len(ob_curves_surf.data.splines)): spline_U_curve = bpy.data.curves.new('SURFSKIO_spline_U_' + str(i), 'CURVE') ob_spline_U = bpy.data.objects.new('SURFSKIO_spline_U_' + str(i), spline_U_curve) bpy.context.scene.objects.link(ob_spline_U) spline_U_curve.dimensions = "3D" # Add points to the spline in the new curve object ob_spline_U.data.splines.new('BEZIER') for t in range(len(ob_curves_surf.data.splines[i].bezier_points)): if cyclic_loops_U[i] is True and not self.selection_U_exists: # If the loop is cyclic if t + verts_position_shift <= len(ob_curves_surf.data.splines[i].bezier_points) - 1: point_index = t + verts_position_shift else: point_index = t + verts_position_shift - len(ob_curves_surf.data.splines[i].bezier_points) else: point_index = t # to avoid adding the first point since it's added when the spline is created if t > 0: ob_spline_U.data.splines[0].bezier_points.add(1) ob_spline_U.data.splines[0].bezier_points[t].co = \ ob_curves_surf.data.splines[i].bezier_points[point_index].co if cyclic_loops_U[i] is True and not self.selection_U_exists: # If the loop is cyclic # Add a last point at the same location as the first one ob_spline_U.data.splines[0].bezier_points.add(1) ob_spline_U.data.splines[0].bezier_points[len(ob_spline_U.data.splines[0].bezier_points) - 1].co = \ ob_spline_U.data.splines[0].bezier_points[0].co else: ob_spline_U.data.splines[0].use_cyclic_u = False splines_U_objects.append(ob_spline_U) bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[ob_spline_U.name].select = True bpy.context.scene.objects.active = bpy.data.objects[ob_spline_U.name] # When option "Loops on strokes" is active each "Cross" loop will have # its own proportions according to where the original strokes "touch" them if self.loops_on_strokes: # Get the indices of points where the original strokes "touch" loops-U points_U_crossed_by_strokes = [] for i in range(len(splines_U_objects[0].data.splines[0].bezier_points)): bp = splines_U_objects[0].data.splines[0].bezier_points[i] if ["%.4f" % bp.co[0], "%.4f" % bp.co[1], "%.4f" % bp.co[2]] in coords_loops_U_control_points: points_U_crossed_by_strokes.append(i) # Make a dictionary with the number of the edge, in the selected chain V, corresponding to each stroke edge_order_number_for_splines = {} if self.selection_V_exists: # For two-connected selections add a first hypothetic stroke at the begining. if selection_type == "TWO_CONNECTED": edge_order_number_for_splines[0] = 0 for i in range(len(self.main_splines.data.splines)): sp = self.main_splines.data.splines[i] v_idx, dist_temp = self.shortest_distance( self.main_object, sp.bezier_points[0].co, verts_ordered_V_indices ) # Get the position (edges count) of the vert v_idx in the selected chain V edge_idx_in_chain = verts_ordered_V_indices.index(v_idx) # For two-connected selections the strokes go after the # hypothetic stroke added before, so the index adds one per spline if selection_type == "TWO_CONNECTED": spline_number = i + 1 else: spline_number = i edge_order_number_for_splines[spline_number] = edge_idx_in_chain # Get the first and last verts indices for later comparison if i == 0: first_v_idx = v_idx elif i == len(self.main_splines.data.splines) - 1: last_v_idx = v_idx if self.selection_V_is_closed: # If there is no last stroke on the last vertex (same as first vertex), # add a hypothetic spline at last vert order if first_v_idx != last_v_idx: edge_order_number_for_splines[(len(self.main_splines.data.splines) - 1) + 1] = \ len(verts_ordered_V_indices) - 1 else: if self.cyclic_cross: edge_order_number_for_splines[len(self.main_splines.data.splines) - 1] = \ len(verts_ordered_V_indices) - 2 edge_order_number_for_splines[(len(self.main_splines.data.splines) - 1) + 1] = \ len(verts_ordered_V_indices) - 1 else: edge_order_number_for_splines[len(self.main_splines.data.splines) - 1] = \ len(verts_ordered_V_indices) - 1 # Get the coords of the points distributed along the # "crossing curves", with appropriate proportions-V surface_splines_parsed = [] for i in range(len(splines_U_objects)): sp_ob = splines_U_objects[i] # If "Loops on strokes" option is active, calculate the proportions for each loop-U if self.loops_on_strokes: # Segments distances from stroke to stroke dist = 0 full_dist = 0 segments_distances = [] for t in range(len(sp_ob.data.splines[0].bezier_points)): bp = sp_ob.data.splines[0].bezier_points[t] if t == 0: last_p = bp.co else: actual_p = bp.co dist += (last_p - actual_p).length if t in points_U_crossed_by_strokes: segments_distances.append(dist) full_dist += dist dist = 0 last_p = actual_p # Calculate Proportions. used_edges_proportions_V = [] for t in range(len(segments_distances)): if self.selection_V_exists: if t == 0: order_number_last_stroke = 0 segment_edges_length_V = 0 segment_edges_length_V2 = 0 for order in range(order_number_last_stroke, edge_order_number_for_splines[t + 1]): segment_edges_length_V += edges_lengths_V[order] if self.selection_V2_exists: segment_edges_length_V2 += edges_lengths_V2[order] for order in range(order_number_last_stroke, edge_order_number_for_splines[t + 1]): # Calculate each "sub-segment" (the ones between each stroke) length if self.selection_V2_exists: proportion_sub_seg = (edges_lengths_V2[order] - ((edges_lengths_V2[order] - edges_lengths_V[order]) / len(splines_U_objects) * i)) / (segment_edges_length_V2 - (segment_edges_length_V2 - segment_edges_length_V) / len(splines_U_objects) * i) sub_seg_dist = segments_distances[t] * proportion_sub_seg else: proportion_sub_seg = edges_lengths_V[order] / segment_edges_length_V sub_seg_dist = segments_distances[t] * proportion_sub_seg used_edges_proportions_V.append(sub_seg_dist / full_dist) order_number_last_stroke = edge_order_number_for_splines[t + 1] else: for c in range(self.edges_V): # Calculate each "sub-segment" (the ones between each stroke) length sub_seg_dist = segments_distances[t] / self.edges_V used_edges_proportions_V.append(sub_seg_dist / full_dist) actual_spline = self.distribute_pts(sp_ob.data.splines, used_edges_proportions_V) surface_splines_parsed.append(actual_spline[0]) else: if self.selection_V2_exists: used_edges_proportions_V = [] for p in range(len(edges_proportions_V)): used_edges_proportions_V.append( edges_proportions_V2[p] - ((edges_proportions_V2[p] - edges_proportions_V[p]) / len(splines_U_objects) * i) ) else: used_edges_proportions_V = edges_proportions_V actual_spline = self.distribute_pts(sp_ob.data.splines, used_edges_proportions_V) surface_splines_parsed.append(actual_spline[0]) # Set the verts of the first and last splines to the locations # of the respective verts in the selections if self.selection_V_exists: for i in range(0, len(surface_splines_parsed[0])): surface_splines_parsed[len(surface_splines_parsed) - 1][i] = \ self.main_object.matrix_world * verts_ordered_V[i].co if selection_type == "TWO_NOT_CONNECTED": if self.selection_V2_exists: for i in range(0, len(surface_splines_parsed[0])): surface_splines_parsed[0][i] = self.main_object.matrix_world * verts_ordered_V2[i].co # When "Automatic join" option is active (and the selection type is not "TWO_CONNECTED"), # merge the verts of the tips of the loops when they are "near enough" if self.automatic_join and selection_type != "TWO_CONNECTED": # Join the tips of "Follow" loops that are near enough and must be "closed" if not self.selection_V_exists and len(edges_proportions_U) >= 3: for i in range(len(surface_splines_parsed[0])): sp = surface_splines_parsed loop_segment_dist = (sp[0][i] - sp[1][i]).length full_loop_dist = loop_segment_dist * self.edges_U verts_middle_position_co = [ (sp[0][i][0] + sp[len(sp) - 1][i][0]) / 2, (sp[0][i][1] + sp[len(sp) - 1][i][1]) / 2, (sp[0][i][2] + sp[len(sp) - 1][i][2]) / 2 ] points_original = [] points_original.append(sp[1][i]) points_original.append(sp[0][i]) points_target = [] points_target.append(sp[1][i]) points_target.append(Vector(verts_middle_position_co)) vec_A = points_original[0] - points_original[1] vec_B = points_target[0] - points_target[1] # check for zero angles, not sure if it is a great fix if vec_A.length != 0 and vec_B.length != 0: angle = vec_A.angle(vec_B) / pi edge_new_length = (Vector(verts_middle_position_co) - sp[1][i]).length else: angle = 0 edge_new_length = 0 # If after moving the verts to the middle point, the segment doesn't stretch too much if edge_new_length <= loop_segment_dist * 1.5 * \ self.join_stretch_factor and angle < 0.25 * self.join_stretch_factor: # Avoid joining when the actual loop must be merged with the original mesh if not (self.selection_U_exists and i == 0) and \ not (self.selection_U2_exists and i == len(surface_splines_parsed[0]) - 1): # Change the coords of both verts to the middle position surface_splines_parsed[0][i] = verts_middle_position_co surface_splines_parsed[len(surface_splines_parsed) - 1][i] = verts_middle_position_co # Delete object with control points and object from grease pencil convertion bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[ob_ctrl_pts.name].select = True bpy.context.scene.objects.active = bpy.data.objects[ob_ctrl_pts.name] bpy.ops.object.delete() for sp_ob in splines_U_objects: bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[sp_ob.name].select = True bpy.context.scene.objects.active = bpy.data.objects[sp_ob.name] bpy.ops.object.delete() # Generate surface # Get all verts coords all_surface_verts_co = [] for i in range(0, len(surface_splines_parsed)): # Get coords of all verts and make a list with them for pt_co in surface_splines_parsed[i]: all_surface_verts_co.append(pt_co) # Define verts for each face all_surface_faces = [] for i in range(0, len(all_surface_verts_co) - len(surface_splines_parsed[0])): if ((i + 1) / len(surface_splines_parsed[0]) != int((i + 1) / len(surface_splines_parsed[0]))): all_surface_faces.append( [i + 1, i, i + len(surface_splines_parsed[0]), i + len(surface_splines_parsed[0]) + 1] ) # Build the mesh surf_me_name = "SURFSKIO_surface" me_surf = bpy.data.meshes.new(surf_me_name) me_surf.from_pydata(all_surface_verts_co, [], all_surface_faces) me_surf.update() ob_surface = bpy.data.objects.new(surf_me_name, me_surf) bpy.context.scene.objects.link(ob_surface) # Select all the "unselected but participating" verts, from closed selection # or double selections with middle-vertex, for later join with remove doubles for v_idx in single_unselected_verts: self.main_object.data.vertices[v_idx].select = True # Join the new mesh to the main object ob_surface.select = True self.main_object.select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name] bpy.ops.object.join('INVOKE_REGION_WIN') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', threshold=0.0001) bpy.ops.mesh.normals_make_consistent('INVOKE_REGION_WIN', inside=False) bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT') return{'FINISHED'} def execute(self, context): bpy.context.user_preferences.edit.use_global_undo = False if not self.is_fill_faces: bpy.ops.wm.context_set_value(data_path='tool_settings.mesh_select_mode', value='True, False, False') # Build splines from the "last saved splines". last_saved_curve = bpy.data.curves.new('SURFSKIO_last_crv', 'CURVE') self.main_splines = bpy.data.objects.new('SURFSKIO_last_crv', last_saved_curve) bpy.context.scene.objects.link(self.main_splines) last_saved_curve.dimensions = "3D" for sp in self.last_strokes_splines_coords: spline = self.main_splines.data.splines.new('BEZIER') # less one because one point is added when the spline is created spline.bezier_points.add(len(sp) - 1) for p in range(0, len(sp)): spline.bezier_points[p].co = [sp[p][0], sp[p][1], sp[p][2]] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.main_splines.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_splines.name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT') # Important to make it vector first and then automatic, otherwise the # tips handles get too big and distort the shrinkwrap results later bpy.ops.curve.handle_type_set(type='VECTOR') bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type='AUTOMATIC') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') self.main_splines.name = "SURFSKIO_temp_strokes" if self.is_crosshatch: strokes_for_crosshatch = True strokes_for_rectangular_surface = False else: strokes_for_rectangular_surface = True strokes_for_crosshatch = False bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.main_object.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') if strokes_for_rectangular_surface: self.rectangular_surface() elif strokes_for_crosshatch: self.crosshatch_surface_execute() # Delete main splines bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.main_splines.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_splines.name] bpy.ops.object.delete() bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.main_object.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.context.user_preferences.edit.use_global_undo = self.initial_global_undo_state return{'FINISHED'} def invoke(self, context, event): self.initial_global_undo_state = bpy.context.user_preferences.edit.use_global_undo self.main_object = bpy.context.scene.objects.active self.main_object_selected_verts_count = int(self.main_object.data.total_vert_sel) bpy.context.user_preferences.edit.use_global_undo = False bpy.ops.wm.context_set_value(data_path='tool_settings.mesh_select_mode', value='True, False, False') # Out Edit mode and In again to make sure the actual mesh selections are being taken bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bsurfaces_props = bpy.context.scene.bsurfaces self.cyclic_cross = bsurfaces_props.SURFSK_cyclic_cross self.cyclic_follow = bsurfaces_props.SURFSK_cyclic_follow self.automatic_join = bsurfaces_props.SURFSK_automatic_join self.loops_on_strokes = bsurfaces_props.SURFSK_loops_on_strokes self.keep_strokes = bsurfaces_props.SURFSK_keep_strokes self.edges_U = 5 if self.loops_on_strokes: self.edges_V = 1 else: self.edges_V = 5 self.is_fill_faces = False self.stopping_errors = False self.last_strokes_splines_coords = [] # Determine the type of the strokes self.strokes_type = get_strokes_type(self.main_object) # Check if it will be used grease pencil strokes or curves # If there are strokes to be used if self.strokes_type == "GP_STROKES" or self.strokes_type == "EXTERNAL_CURVE": if self.strokes_type == "GP_STROKES": # Convert grease pencil strokes to curve bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.gpencil.convert('INVOKE_REGION_WIN', type='CURVE', use_link_strokes=False) # XXX gpencil.convert now keep org object as active/selected, *not* newly created curve! # XXX This is far from perfect, but should work in most cases... # self.original_curve = bpy.context.object for ob in bpy.context.selected_objects: if ob != bpy.context.scene.objects.active and ob.name.startswith("GP_Layer"): self.original_curve = ob self.using_external_curves = False elif self.strokes_type == "EXTERNAL_CURVE": for ob in bpy.context.selected_objects: if ob != bpy.context.scene.objects.active: self.original_curve = ob self.using_external_curves = True bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Make sure there are no objects left from erroneous # executions of this operator, with the reserved names used here for o in bpy.data.objects: if o.name.find("SURFSKIO_") != -1: bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[o.name].select = True bpy.context.scene.objects.active = bpy.data.objects[o.name] bpy.ops.object.delete() bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.original_curve.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.original_curve.name] bpy.ops.object.duplicate('INVOKE_REGION_WIN') self.temporary_curve = bpy.context.scene.objects.active # Deselect all points of the curve bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Delete splines with only a single isolated point for i in range(len(self.temporary_curve.data.splines)): sp = self.temporary_curve.data.splines[i] if len(sp.bezier_points) == 1: sp.bezier_points[0].select_control_point = True bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.delete(type='VERT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.temporary_curve.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.temporary_curve.name] # Set a minimum number of points for crosshatch minimum_points_num = 15 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Check if the number of points of each curve has at least the number of points # of minimum_points_num, which is a bit more than the face-loops limit. # If not, subdivide to reach at least that number of ponts for i in range(len(self.temporary_curve.data.splines)): sp = self.temporary_curve.data.splines[i] if len(sp.bezier_points) < minimum_points_num: for bp in sp.bezier_points: bp.select_control_point = True if (len(sp.bezier_points) - 1) != 0: # Formula to get the number of cuts that will make a curve # of N number of points have near to "minimum_points_num" # points, when subdividing with this number of cuts subdivide_cuts = int( (minimum_points_num - len(sp.bezier_points)) / (len(sp.bezier_points) - 1) ) + 1 else: subdivide_cuts = 0 bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=subdivide_cuts) bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Detect if the strokes are a crosshatch and do it if it is self.crosshatch_surface_invoke(self.temporary_curve) if not self.is_crosshatch: bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.temporary_curve.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.temporary_curve.name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Set a minimum number of points for rectangular surfaces minimum_points_num = 60 # Check if the number of points of each curve has at least the number of points # of minimum_points_num, which is a bit more than the face-loops limit. # If not, subdivide to reach at least that number of ponts for i in range(len(self.temporary_curve.data.splines)): sp = self.temporary_curve.data.splines[i] if len(sp.bezier_points) < minimum_points_num: for bp in sp.bezier_points: bp.select_control_point = True if (len(sp.bezier_points) - 1) != 0: # Formula to get the number of cuts that will make a curve of # N number of points have near to "minimum_points_num" points, # when subdividing with this number of cuts subdivide_cuts = int( (minimum_points_num - len(sp.bezier_points)) / (len(sp.bezier_points) - 1) ) + 1 else: subdivide_cuts = 0 bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=subdivide_cuts) bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Save coordinates of the actual strokes (as the "last saved splines") for sp_idx in range(len(self.temporary_curve.data.splines)): self.last_strokes_splines_coords.append([]) for bp_idx in range(len(self.temporary_curve.data.splines[sp_idx].bezier_points)): coords = self.temporary_curve.matrix_world * \ self.temporary_curve.data.splines[sp_idx].bezier_points[bp_idx].co self.last_strokes_splines_coords[sp_idx].append([coords[0], coords[1], coords[2]]) # Check for cyclic splines, put the first and last points in the middle of their actual positions for sp_idx in range(len(self.temporary_curve.data.splines)): if self.temporary_curve.data.splines[sp_idx].use_cyclic_u is True: first_p_co = self.last_strokes_splines_coords[sp_idx][0] last_p_co = self.last_strokes_splines_coords[sp_idx][ len(self.last_strokes_splines_coords[sp_idx]) - 1 ] target_co = [ (first_p_co[0] + last_p_co[0]) / 2, (first_p_co[1] + last_p_co[1]) / 2, (first_p_co[2] + last_p_co[2]) / 2 ] self.last_strokes_splines_coords[sp_idx][0] = target_co self.last_strokes_splines_coords[sp_idx][ len(self.last_strokes_splines_coords[sp_idx]) - 1 ] = target_co tuple(self.last_strokes_splines_coords) # Estimation of the average length of the segments between # each point of the grease pencil strokes. # Will be useful to determine whether a curve should be made "Cyclic" segments_lengths_sum = 0 segments_count = 0 random_spline = self.temporary_curve.data.splines[0].bezier_points for i in range(0, len(random_spline)): if i != 0 and len(random_spline) - 1 >= i: segments_lengths_sum += (random_spline[i - 1].co - random_spline[i].co).length segments_count += 1 self.average_gp_segment_length = segments_lengths_sum / segments_count # Delete temporary strokes curve object bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.temporary_curve.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.temporary_curve.name] bpy.ops.object.delete() bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.main_object.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') self.execute(context) # Set again since "execute()" will turn it again to its initial value bpy.context.user_preferences.edit.use_global_undo = False # If "Keep strokes" option is not active, delete original strokes curve object if (not self.stopping_errors and not self.keep_strokes) or self.is_crosshatch: bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.original_curve.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.original_curve.name] bpy.ops.object.delete() bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.main_object.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Delete grease pencil strokes if self.strokes_type == "GP_STROKES" and not self.stopping_errors: bpy.ops.gpencil.active_frame_delete('INVOKE_REGION_WIN') bpy.context.user_preferences.edit.use_global_undo = self.initial_global_undo_state if not self.stopping_errors: return {"FINISHED"} else: return{"CANCELLED"} elif self.strokes_type == "SELECTION_ALONE": self.is_fill_faces = True created_faces_count = self.fill_with_faces(self.main_object) bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.context.user_preferences.edit.use_global_undo = self.initial_global_undo_state if created_faces_count == 0: self.report({'WARNING'}, "There aren't any strokes attatched to the object") return {"CANCELLED"} else: return {"FINISHED"} bpy.context.user_preferences.edit.use_global_undo = self.initial_global_undo_state if self.strokes_type == "EXTERNAL_NO_CURVE": self.report({'WARNING'}, "The secondary object is not a Curve.") return{"CANCELLED"} elif self.strokes_type == "MORE_THAN_ONE_EXTERNAL": self.report({'WARNING'}, "There shouldn't be more than one secondary object selected.") return{"CANCELLED"} elif self.strokes_type == "SINGLE_GP_STROKE_NO_SELECTION" or \ self.strokes_type == "SINGLE_CURVE_STROKE_NO_SELECTION": self.report({'WARNING'}, "It's needed at least one stroke and one selection, or two strokes.") return{"CANCELLED"} elif self.strokes_type == "NO_STROKES": self.report({'WARNING'}, "There aren't any strokes attatched to the object") return{"CANCELLED"} elif self.strokes_type == "CURVE_WITH_NON_BEZIER_SPLINES": self.report({'WARNING'}, "All splines must be Bezier.") return{"CANCELLED"} else: return{"CANCELLED"} # Edit strokes operator class GPENCIL_OT_SURFSK_edit_strokes(Operator): bl_idname = "gpencil.surfsk_edit_strokes" bl_label = "Bsurfaces edit strokes" bl_description = "Edit the grease pencil strokes or curves used" def execute(self, context): # Determine the type of the strokes self.strokes_type = get_strokes_type(self.main_object) # Check if strokes are grease pencil strokes or a curves object selected_objs = bpy.context.selected_objects if self.strokes_type == "EXTERNAL_CURVE" or self.strokes_type == "SINGLE_CURVE_STROKE_NO_SELECTION": for ob in selected_objs: if ob != bpy.context.scene.objects.active: curve_ob = ob bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[curve_ob.name].select = True bpy.context.scene.objects.active = bpy.data.objects[curve_ob.name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') elif self.strokes_type == "GP_STROKES" or self.strokes_type == "SINGLE_GP_STROKE_NO_SELECTION": # Convert grease pencil strokes to curve bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.gpencil.convert('INVOKE_REGION_WIN', type='CURVE', use_link_strokes=False) for ob in bpy.context.selected_objects: if ob != bpy.context.scene.objects.active and ob.name.startswith("GP_Layer"): ob_gp_strokes = ob # ob_gp_strokes = bpy.context.object # Delete grease pencil strokes bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.main_object.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name] bpy.ops.gpencil.active_frame_delete('INVOKE_REGION_WIN') # Clean up curves bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[ob_gp_strokes.name].select = True bpy.context.scene.objects.active = bpy.data.objects[ob_gp_strokes.name] curve_crv = ob_gp_strokes.data bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.spline_type_set('INVOKE_REGION_WIN', type="BEZIER") bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type="AUTOMATIC") bpy.data.curves[curve_crv.name].show_handles = False bpy.data.curves[curve_crv.name].show_normal_face = False elif self.strokes_type == "EXTERNAL_NO_CURVE": self.report({'WARNING'}, "The secondary object is not a Curve.") return{"CANCELLED"} elif self.strokes_type == "MORE_THAN_ONE_EXTERNAL": self.report({'WARNING'}, "There shouldn't be more than one secondary object selected.") return{"CANCELLED"} elif self.strokes_type == "NO_STROKES" or self.strokes_type == "SELECTION_ALONE": self.report({'WARNING'}, "There aren't any strokes attatched to the object") return{"CANCELLED"} else: return{"CANCELLED"} def invoke(self, context, event): self.main_object = bpy.context.object self.execute(context) return {"FINISHED"} class CURVE_OT_SURFSK_reorder_splines(Operator): bl_idname = "curve.surfsk_reorder_splines" bl_label = "Bsurfaces reorder splines" bl_description = "Defines the order of the splines by using grease pencil strokes" bl_options = {'REGISTER', 'UNDO'} def execute(self, context): objects_to_delete = [] # Convert grease pencil strokes to curve. bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.gpencil.convert('INVOKE_REGION_WIN', type='CURVE', use_link_strokes=False) for ob in bpy.context.selected_objects: if ob != bpy.context.scene.objects.active and ob.name.startswith("GP_Layer"): GP_strokes_curve = ob # GP_strokes_curve = bpy.context.object objects_to_delete.append(GP_strokes_curve) bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[GP_strokes_curve.name].select = True bpy.context.scene.objects.active = bpy.data.objects[GP_strokes_curve.name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT') bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=100) bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.object.duplicate('INVOKE_REGION_WIN') GP_strokes_mesh = bpy.context.object objects_to_delete.append(GP_strokes_mesh) GP_strokes_mesh.data.resolution_u = 1 bpy.ops.object.convert(target='MESH', keep_original=False) bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.main_curve.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_curve.name] bpy.ops.object.duplicate('INVOKE_REGION_WIN') curves_duplicate_1 = bpy.context.object objects_to_delete.append(curves_duplicate_1) minimum_points_num = 500 # Some iterations since the subdivision operator # has a limit of 100 subdivisions per iteration for x in range(round(minimum_points_num / 100)): # Check if the number of points of each curve has at least the number of points # of minimum_points_num. If not, subdivide to reach at least that number of ponts for i in range(len(curves_duplicate_1.data.splines)): sp = curves_duplicate_1.data.splines[i] if len(sp.bezier_points) < minimum_points_num: for bp in sp.bezier_points: bp.select_control_point = True if (len(sp.bezier_points) - 1) != 0: # Formula to get the number of cuts that will make a curve of N # number of points have near to "minimum_points_num" points, # when subdividing with this number of cuts subdivide_cuts = int( (minimum_points_num - len(sp.bezier_points)) / (len(sp.bezier_points) - 1) ) + 1 else: subdivide_cuts = 0 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=subdivide_cuts) bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.object.duplicate('INVOKE_REGION_WIN') curves_duplicate_2 = bpy.context.object objects_to_delete.append(curves_duplicate_2) # Duplicate the duplicate and add Shrinkwrap to it, with the grease pencil strokes curve as target bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[curves_duplicate_2.name].select = True bpy.context.scene.objects.active = bpy.data.objects[curves_duplicate_2.name] bpy.ops.object.modifier_add('INVOKE_REGION_WIN', type='SHRINKWRAP') curves_duplicate_2.modifiers["Shrinkwrap"].wrap_method = "NEAREST_VERTEX" curves_duplicate_2.modifiers["Shrinkwrap"].target = GP_strokes_mesh bpy.ops.object.modifier_apply('INVOKE_REGION_WIN', apply_as='DATA', modifier='Shrinkwrap') # Get the distance of each vert from its original position to its position with Shrinkwrap nearest_points_coords = {} for st_idx in range(len(curves_duplicate_1.data.splines)): for bp_idx in range(len(curves_duplicate_1.data.splines[st_idx].bezier_points)): bp_1_co = curves_duplicate_1.matrix_world * \ curves_duplicate_1.data.splines[st_idx].bezier_points[bp_idx].co bp_2_co = curves_duplicate_2.matrix_world * \ curves_duplicate_2.data.splines[st_idx].bezier_points[bp_idx].co if bp_idx == 0: shortest_dist = (bp_1_co - bp_2_co).length nearest_points_coords[st_idx] = ("%.4f" % bp_2_co[0], "%.4f" % bp_2_co[1], "%.4f" % bp_2_co[2]) dist = (bp_1_co - bp_2_co).length if dist < shortest_dist: nearest_points_coords[st_idx] = ("%.4f" % bp_2_co[0], "%.4f" % bp_2_co[1], "%.4f" % bp_2_co[2]) shortest_dist = dist # Get all coords of GP strokes points, for comparison GP_strokes_coords = [] for st_idx in range(len(GP_strokes_curve.data.splines)): GP_strokes_coords.append( [("%.4f" % x if "%.4f" % x != "-0.00" else "0.00", "%.4f" % y if "%.4f" % y != "-0.00" else "0.00", "%.4f" % z if "%.4f" % z != "-0.00" else "0.00") for x, y, z in [bp.co for bp in GP_strokes_curve.data.splines[st_idx].bezier_points]] ) # Check the point of the GP strokes with the same coords as # the nearest points of the curves (with shrinkwrap) # Dictionary with GP stroke index as index, and a list as value. # The list has as index the point index of the GP stroke # nearest to the spline, and as value the spline index GP_connection_points = {} for gp_st_idx in range(len(GP_strokes_coords)): GPvert_spline_relationship = {} for splines_st_idx in range(len(nearest_points_coords)): if nearest_points_coords[splines_st_idx] in GP_strokes_coords[gp_st_idx]: GPvert_spline_relationship[ GP_strokes_coords[gp_st_idx].index(nearest_points_coords[splines_st_idx]) ] = splines_st_idx GP_connection_points[gp_st_idx] = GPvert_spline_relationship # Get the splines new order splines_new_order = [] for i in GP_connection_points: dict_keys = sorted(GP_connection_points[i].keys()) # Sort dictionaries by key for k in dict_keys: splines_new_order.append(GP_connection_points[i][k]) # Reorder curve_original_name = self.main_curve.name bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[self.main_curve.name].select = True bpy.context.scene.objects.active = bpy.data.objects[self.main_curve.name] self.main_curve.name = "SURFSKIO_CRV_ORD" bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') for sp_idx in range(len(self.main_curve.data.splines)): self.main_curve.data.splines[0].bezier_points[0].select_control_point = True bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.separate('EXEC_REGION_WIN') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') # Get the names of the separated splines objects in the original order splines_unordered = {} for o in bpy.data.objects: if o.name.find("SURFSKIO_CRV_ORD") != -1: spline_order_string = o.name.partition(".")[2] if spline_order_string != "" and int(spline_order_string) > 0: spline_order_index = int(spline_order_string) - 1 splines_unordered[spline_order_index] = o.name # Join all splines objects in final order for order_idx in splines_new_order: bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[splines_unordered[order_idx]].select = True bpy.data.objects["SURFSKIO_CRV_ORD"].select = True bpy.context.scene.objects.active = bpy.data.objects["SURFSKIO_CRV_ORD"] bpy.ops.object.join('INVOKE_REGION_WIN') # Go back to the original name of the curves object. bpy.context.object.name = curve_original_name # Delete all unused objects for o in objects_to_delete: bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[o.name].select = True bpy.context.scene.objects.active = bpy.data.objects[o.name] bpy.ops.object.delete() bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.data.objects[curve_original_name].select = True bpy.context.scene.objects.active = bpy.data.objects[curve_original_name] bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.gpencil.active_frame_delete('INVOKE_REGION_WIN') return {"FINISHED"} def invoke(self, context, event): self.main_curve = bpy.context.object there_are_GP_strokes = False try: # Get the active grease pencil layer strokes_num = len(self.main_curve.grease_pencil.layers.active.active_frame.strokes) if strokes_num > 0: there_are_GP_strokes = True except: pass if there_are_GP_strokes: self.execute(context) self.report({'INFO'}, "Splines have been reordered") else: self.report({'WARNING'}, "Draw grease pencil strokes to connect splines") return {"FINISHED"} class CURVE_OT_SURFSK_first_points(Operator): bl_idname = "curve.surfsk_first_points" bl_label = "Bsurfaces set first points" bl_description = "Set the selected points as the first point of each spline" bl_options = {'REGISTER', 'UNDO'} def execute(self, context): splines_to_invert = [] # Check non-cyclic splines to invert for i in range(len(self.main_curve.data.splines)): b_points = self.main_curve.data.splines[i].bezier_points if i not in self.cyclic_splines: # Only for non-cyclic splines if b_points[len(b_points) - 1].select_control_point: splines_to_invert.append(i) # Reorder points of cyclic splines, and set all handles to "Automatic" # Check first selected point cyclic_splines_new_first_pt = {} for i in self.cyclic_splines: sp = self.main_curve.data.splines[i] for t in range(len(sp.bezier_points)): bp = sp.bezier_points[t] if bp.select_control_point or bp.select_right_handle or bp.select_left_handle: cyclic_splines_new_first_pt[i] = t break # To take only one if there are more # Reorder for spline_idx in cyclic_splines_new_first_pt: sp = self.main_curve.data.splines[spline_idx] spline_old_coords = [] for bp_old in sp.bezier_points: coords = (bp_old.co[0], bp_old.co[1], bp_old.co[2]) left_handle_type = str(bp_old.handle_left_type) left_handle_length = float(bp_old.handle_left.length) left_handle_xyz = ( float(bp_old.handle_left.x), float(bp_old.handle_left.y), float(bp_old.handle_left.z) ) right_handle_type = str(bp_old.handle_right_type) right_handle_length = float(bp_old.handle_right.length) right_handle_xyz = ( float(bp_old.handle_right.x), float(bp_old.handle_right.y), float(bp_old.handle_right.z) ) spline_old_coords.append( [coords, left_handle_type, right_handle_type, left_handle_length, right_handle_length, left_handle_xyz, right_handle_xyz] ) for t in range(len(sp.bezier_points)): bp = sp.bezier_points if t + cyclic_splines_new_first_pt[spline_idx] + 1 <= len(bp) - 1: new_index = t + cyclic_splines_new_first_pt[spline_idx] + 1 else: new_index = t + cyclic_splines_new_first_pt[spline_idx] + 1 - len(bp) bp[t].co = Vector(spline_old_coords[new_index][0]) bp[t].handle_left.length = spline_old_coords[new_index][3] bp[t].handle_right.length = spline_old_coords[new_index][4] bp[t].handle_left_type = "FREE" bp[t].handle_right_type = "FREE" bp[t].handle_left.x = spline_old_coords[new_index][5][0] bp[t].handle_left.y = spline_old_coords[new_index][5][1] bp[t].handle_left.z = spline_old_coords[new_index][5][2] bp[t].handle_right.x = spline_old_coords[new_index][6][0] bp[t].handle_right.y = spline_old_coords[new_index][6][1] bp[t].handle_right.z = spline_old_coords[new_index][6][2] bp[t].handle_left_type = spline_old_coords[new_index][1] bp[t].handle_right_type = spline_old_coords[new_index][2] # Invert the non-cyclic splines designated above for i in range(len(splines_to_invert)): bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') self.main_curve.data.splines[splines_to_invert[i]].bezier_points[0].select_control_point = True bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') bpy.ops.curve.switch_direction() bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT') # Keep selected the first vert of each spline bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') for i in range(len(self.main_curve.data.splines)): if not self.main_curve.data.splines[i].use_cyclic_u: bp = self.main_curve.data.splines[i].bezier_points[0] else: bp = self.main_curve.data.splines[i].bezier_points[ len(self.main_curve.data.splines[i].bezier_points) - 1 ] bp.select_control_point = True bp.select_right_handle = True bp.select_left_handle = True bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN') return {'FINISHED'} def invoke(self, context, event): self.main_curve = bpy.context.object # Check if all curves are Bezier, and detect which ones are cyclic self.cyclic_splines = [] for i in range(len(self.main_curve.data.splines)): if self.main_curve.data.splines[i].type != "BEZIER": self.report({'WARNING'}, "All splines must be Bezier type") return {'CANCELLED'} else: if self.main_curve.data.splines[i].use_cyclic_u: self.cyclic_splines.append(i) self.execute(context) self.report({'INFO'}, "First points have been set") return {'FINISHED'} # Add-ons Preferences Update Panel # Define Panel classes for updating panels = ( VIEW3D_PT_tools_SURFSK_mesh, VIEW3D_PT_tools_SURFSK_curve, ) def update_panel(self, context): message = "Bsurfaces GPL Edition: Updating Panel locations has failed" try: for panel in panels: if "bl_rna" in panel.__dict__: bpy.utils.unregister_class(panel) for panel in panels: panel.bl_category = context.user_preferences.addons[__name__].preferences.category bpy.utils.register_class(panel) except Exception as e: print("\n[{}]\n{}\n\nError:\n{}".format(__name__, message, e)) pass class BsurfPreferences(AddonPreferences): # this must match the addon name, use '__package__' # when defining this in a submodule of a python package. bl_idname = __name__ category = StringProperty( name="Tab Category", description="Choose a name for the category of the panel", default="Tools", update=update_panel ) def draw(self, context): layout = self.layout row = layout.row() col = row.column() col.label(text="Tab Category:") col.prop(self, "category", text="") # Properties class BsurfacesProps(PropertyGroup): SURFSK_cyclic_cross = BoolProperty( name="Cyclic Cross", description="Make cyclic the face-loops crossing the strokes", default=False ) SURFSK_cyclic_follow = BoolProperty( name="Cyclic Follow", description="Make cyclic the face-loops following the strokes", default=False ) SURFSK_keep_strokes = BoolProperty( name="Keep strokes", description="Keeps the sketched strokes or curves after adding the surface", default=False ) SURFSK_automatic_join = BoolProperty( name="Automatic join", description="Join automatically vertices of either surfaces " "generated by crosshatching, or from the borders of closed shapes", default=True ) SURFSK_loops_on_strokes = BoolProperty( name="Loops on strokes", description="Make the loops match the paths of the strokes", default=True ) SURFSK_precision = IntProperty( name="Precision", description="Precision level of the surface calculation", default=2, min=1, max=100 ) classes = ( VIEW3D_PT_tools_SURFSK_mesh, VIEW3D_PT_tools_SURFSK_curve, GPENCIL_OT_SURFSK_add_surface, GPENCIL_OT_SURFSK_edit_strokes, CURVE_OT_SURFSK_reorder_splines, CURVE_OT_SURFSK_first_points, BsurfPreferences, BsurfacesProps, ) def register(): for cls in classes: bpy.utils.register_class(cls) bpy.types.Scene.bsurfaces = PointerProperty(type=BsurfacesProps) update_panel(None, bpy.context) def unregister(): for cls in classes: bpy.utils.unregister_class(cls) del bpy.types.Scene.bsurfaces if __name__ == "__main__": register()
PypiClean
/engines/veusz_engine.py
from .bot_engine import BotEngine from .plotter_utils import get_line_color, get_line_type, get_marker_type from dataclasses import dataclass, field from typing import Any, List, Union import numpy as np import os, sys, re try: import veusz.embed as veusz from veusz.embed import Embedded except Exception as e: Embedded = object print(f"Veusz is not available: {e}") try: from storer import Storer except: print("Storer is not available. Aborting..."); sys.exit(1) class VeuszEngineError(Exception): pass @dataclass class VeuszEngine(BotEngine): internal_name : str = "[VeuszEngine]" # g : Embedded = None title : str = field(default="Notitle") pages_info : dict = field(default_factory=dict) _xy : Any = None # flag for animation # showkey : bool = True keyBorderHide : bool = True keyFontSize : int = 14 plotLine : bool = True # xname : str = "x" yname : str = "y" xlog : bool = False ylog : bool = False ymin : str = "Auto" ymax : str = "Auto" xmin : str = "Auto" xmax : str = "Auto" # transparency : float = 50.0 def __post_init__(self): self.storer = Storer(exit_dump=False) self.g = veusz.Embedded(name=self.title, hidden=self.hidden) self.g.EnableToolbar() self.init_pages() def _init(self, page_name=""): # creating initial values for plotting per page. self.storer.put(what="xname", name=page_name+"/xname") self.storer.put(what="yname", name=page_name+"/yname") self.storer.put(what=False, name=page_name+"/xlog") self.storer.put(what=False, name=page_name+"/ylog") self.storer.put(what="Auto", name=page_name+"/xmin") self.storer.put(what="Auto", name=page_name+"/xmax") self.storer.put(what="Auto", name=page_name+"/ymin") self.storer.put(what="Auto", name=page_name+"/ymax") def init_pages(self): if self.pages_info: for page in self.pages_info: self._init(page_name=page) for prop in self.pages_info[page]: self.storer.put(what=self.pages_info[page][prop] , name=page+"/"+prop) else: self._init(page_name="page1") self.storer.put(what=self.xname , name="page1/xname") self.storer.put(what=self.yname , name="page1/yname") self.storer.put(what=self.xlog , name="page1/xlog") self.storer.put(what=self.ylog , name="page1/ylog") self.storer.put(what=self.xmin , name="page1/xmin") self.storer.put(what=self.xmax , name="page1/xmax") self.storer.put(what=self.ymax , name="page1/ymax") self.storer.put(what=self.ymin , name="page1/ymin") def get_page(self, name="page1"): try: self.page = self.g.Root[name] _num_lines = self.storer.get(name=name+ "/_num_lines") __num_lines = self.storer.get(name=name+"/__num_lines") # if save_previous_state is applied except KeyError: self.page = self.g.Root.Add("page") self.page.Rename(name) __num_lines = 1; _num_lines = 1 self.storer.put(what=_num_lines, name=name+ "/_num_lines") self.storer.put(what=__num_lines, name=name+ "/__num_lines") self.page.width.val = '15cm' self.page.height.val = '10cm' try: self.graph = self.g.Root[name + '/graph1'] except: self.graph = self.page.Add('graph') try: # key exist self.key = self.g.Root[name + "/graph1/key1"] except: if self.showkey: self.graph.Add('key') self.graph.key1.Border.hide.val = self.keyBorderHide self.graph.key1.Text.size.val = f"{str(self.keyFontSize)}pt" return _num_lines, __num_lines def plot( self, x : List, y : List, key_name_f : str = "", key_name : str = "", markersize : str = "2.5pt", plotLine : bool = True, color_num : Union[str, int] = "auto", marker_type : Union[str, int] = "auto", line_type : Union[str, int] = "auto", save_previous_state: bool = False, animation : bool = False, errorStyle : str = None, internal_text : str = "", page : str = "page1", ): _num_lines, __num_lines = self.get_page(name=page) if animation: color_num = _num_lines line_type = _num_lines save_previous_state = True xy = self._xy if save_previous_state: _num_lines -= 1 if color_num == "auto": color_num = _num_lines if line_type == "auto": line_type = _num_lines if not animation: x_dataname = self.xname + str(_num_lines) + str(save_previous_state) + str(__num_lines) + str(page) y_dataname = self.yname + str(_num_lines) + str(save_previous_state) + str(__num_lines) + str(page) else: x_dataname = self.xname + str(_num_lines) + str(save_previous_state) + str(page) y_dataname = self.yname + str(_num_lines) + str(save_previous_state) + str(page) x_dataname += internal_text y_dataname += internal_text if len(np.shape(x)) == 2: x_arr = np.array(x) x_data, x_data_err = x_arr[:,0], x[:,1] self.g.SetData(x_dataname, x_data, symerr=x_data_err) else: x_arr = np.array(x) x_data = x_arr self.g.SetData(x_dataname, x_data) if len(np.shape(y)) == 2: y_arr = np.array(y) y_data, y_data_err = y_arr[:,0], y_arr[:,1] self.g.SetData(y_dataname, y_data, symerr=y_data_err) else: y_arr = np.array(y) y_data = y_arr self.g.SetData(y_dataname, y_data) # self.graph = self.g.Root[name + '/graph1'] if animation: if not self._xy: self._xy = xy = self.g.Root[page + '/graph1'].Add('xy') else: xy = self.g.Root[page + '/graph1'].Add('xy') # nn.plotter_progress.g.Root.xyz_file.graph1.xy1.Clone(nn.plotter_progress.g.Root.xyz_file.graph1, 'xy7') xy.xData.val = x_dataname xy.yData.val = y_dataname if marker_type != "auto": xy.marker.val = get_marker_type(marker_type) else: xy.marker.val = get_marker_type(line_type) if color_num % 2: xy.MarkerFill.color.val = get_line_color(color_num) else: xy.MarkerFill.color.val = 'white' xy.MarkerLine.color.val = get_line_color(color_num) xy.markerSize.val = markersize xy.PlotLine.width.val = '1pt' xy.PlotLine.style.val = get_line_type(line_type) xy.PlotLine.color.val = get_line_color(color_num) xy.PlotLine.hide.val = not plotLine if errorStyle: xy.errorStyle.val = errorStyle xy.FillBelow.color.val = get_line_color(color_num) xy.FillBelow.transparency.val = self.transparency xy.FillAbove.color.val = get_line_color(color_num) xy.FillAbove.transparency.val = self.transparency #ErrorBarLine/style xy.ErrorBarLine.color.val = get_line_type(line_type) xy.ErrorBarLine.style.val = get_line_type(line_type) else: xy.errorStyle.val = 'none' xy.ErrorBarLine.width.val = '1pt' xy.ErrorBarLine.color.val = get_line_color(color_num) if self.showkey and key_name_f: xy.key.val = self.name_converter(key_name_f) if self.showkey and key_name: xy.key.val = key_name x_axis = self.graph.x y_axis = self.graph.y x_axis.label.val = self.storer.get(page+"/xname") # self.xname y_axis.label.val = self.storer.get(page+"/yname") # self.yname x_axis.log.val = self.storer.get(page+"/xlog") # self.xlog y_axis.log.val = self.storer.get(page+"/ylog") # self.ylog x_axis.min.val = self.storer.get(page+"/xmin") # self.xmin x_axis.max.val = self.storer.get(page+"/xmax") # self.xmax y_axis.min.val = self.storer.get(page+"/ymin") # self.ymin y_axis.max.val = self.storer.get(page+"/ymax") # self.ymax _num_lines += 1 __num_lines += 1 self.storer.put(_num_lines, name=page+ "/_num_lines") self.storer.put(__num_lines, name=page+ "/__num_lines") def export(self, filename:str = "output.pdf", extension:str = "pdf", color:bool = True, page:int = 0, dpi:int = 100, antialias:bool = True, quality:int = 85, backcolor:str = '#ffffff00', pdfdpi:int = 150, svgtextastext:bool = False): if not filename or not extension: print(f"{self.internal_name} You have to specify filename and extension!") print(f"{self.internal_name} For example: filename='my_amazing_figure', extension='pdf'") print(f"{self.internal_name} color=True, extension='pdf', quality='85', pdfdpi='150'") print(f"{self.internal_name} Available extensions: [pdf]/[eps]/[ps]/[svg]/[jpg]/[jpeg]/[bmp]/[png]") else: self.g.Export(filename, color=color, page=page, dpi=dpi, antialias=antialias, quality=quality, backcolor=backcolor, pdfdpi=pdfdpi, svgtextastext=svgtextastext) def save(self, filename=None): if not filename: print(f"{self.internal_name} You have to specify filename! [Labels from Y and X will be added automatically]") else: if filename.find(".") != -1 or filename.find(":") or filename.find("\\") or filename.find("*") or filename.find("/") or filename.find("\\\\"): print(f"{self.internal_name} I found forbidden symbols [.]/[:]...") filename.replace(".", "").replace(":", "_").replace("\\\\","").replace("*", "").replace("/", "_").replace("\\", "") # latex reduction xname = self.xname.replace("\\italic", "").replace("{", "").replace("}","").replace("_", "").replace("^", "").replace("\\\\", "").replace("\\", "").replace("/", "_").replace("*", "") yname = self.yname.replace("\\italic", "").replace("{", "").replace("}","").replace("_", "").replace("^", "").replace("\\\\", "").replace("\\", "").replace("/", "_").replace("*", "") # space reduction xname = xname.replace(" ", "") yname = yname.replace(" ", "") name4saving = filename+"_"+yname+"_"+xname if not os.path.exists(name4saving+".vsz"): self.g.Save(name4saving+".vsz") else: print(f"{self.internal_name} The file exists!") i = 0 while os.path.exists(name4saving+str(i)+".vsz"): i+=1 name4saving += str(i) + ".vsz" self.g.Save(name4saving) print(f"{self.internal_name} Saved! filename: {name4saving}")
PypiClean
/tencentcloud-sdk-python-3.0.973.tar.gz/tencentcloud-sdk-python-3.0.973/tencentcloud/irp/v20220324/models.py
import warnings from tencentcloud.common.abstract_model import AbstractModel class AuthorInfo(AbstractModel): """作者信息 """ def __init__(self): r""" :param _Id: 作者id 注意:此字段可能返回 null,表示取不到有效值。 :type Id: str :param _Name: 作者名称 注意:此字段可能返回 null,表示取不到有效值。 :type Name: str :param _SourceId: 作者来源 注意:此字段可能返回 null,表示取不到有效值。 :type SourceId: int :param _FollowType: 关注类型:1-关注,2-取关 注意:此字段可能返回 null,表示取不到有效值。 :type FollowType: int :param _IconUrl: 作者头像icon地址 注意:此字段可能返回 null,表示取不到有效值。 :type IconUrl: str """ self._Id = None self._Name = None self._SourceId = None self._FollowType = None self._IconUrl = None @property def Id(self): return self._Id @Id.setter def Id(self, Id): self._Id = Id @property def Name(self): return self._Name @Name.setter def Name(self, Name): self._Name = Name @property def SourceId(self): return self._SourceId @SourceId.setter def SourceId(self, SourceId): self._SourceId = SourceId @property def FollowType(self): return self._FollowType @FollowType.setter def FollowType(self, FollowType): self._FollowType = FollowType @property def IconUrl(self): return self._IconUrl @IconUrl.setter def IconUrl(self, IconUrl): self._IconUrl = IconUrl def _deserialize(self, params): self._Id = params.get("Id") self._Name = params.get("Name") self._SourceId = params.get("SourceId") self._FollowType = params.get("FollowType") self._IconUrl = params.get("IconUrl") memeber_set = set(params.keys()) for name, value in vars(self).items(): property_name = name[1:] if property_name in memeber_set: memeber_set.remove(property_name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DislikeInfo(AbstractModel): """不喜欢信息 """ def __init__(self): r""" :param _Type: 不喜欢的物料类别,对应物料上传协议中的字段名,如authorId,keyword,topic等 :type Type: str :param _Value: type对应字段名的值,如具体的topic名,作者id等 :type Value: str """ self._Type = None self._Value = None @property def Type(self): return self._Type @Type.setter def Type(self, Type): self._Type = Type @property def Value(self): return self._Value @Value.setter def Value(self, Value): self._Value = Value def _deserialize(self, params): self._Type = params.get("Type") self._Value = params.get("Value") memeber_set = set(params.keys()) for name, value in vars(self).items(): property_name = name[1:] if property_name in memeber_set: memeber_set.remove(property_name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DocBehavior(AbstractModel): """行为数据 """ def __init__(self): r""" :param _ItemId: 内容唯一ID,如 2824324234 :type ItemId: str :param _BehaviorType: 行为类型 :type BehaviorType: int :param _BehaviorValue: 行为值 :type BehaviorValue: str :param _BehaviorTimestamp: 行为时间戳: 秒级时间戳(默认为当前时间),不能延迟太久,尽量实时上报,否则会影响推荐结果的准确性。 :type BehaviorTimestamp: int :param _SceneId: 场景id,在控制台创建场景后获取。 :type SceneId: str :param _UserIdList: 用户id列表 :type UserIdList: list of UserIdInfo :param _RecTraceId: 会话id,使用获取推荐结果中返回的RecTraceId填入。<br>注意:如果和在线推荐请求中的traceId不同,会影响行为特征归因,影响推荐算法效果 :type RecTraceId: str :param _Source: 算法来源:用来区分行为来源于哪个算法。值为**business,tencent,other** 三者之一<br>● business 表示业务自己的算法对照组<br>● tencent 为腾讯算法<br>● other 为其他算法 :type Source: str :param _ItemType: 物料类型 :type ItemType: int :param _AppId: 微信开放平台上查看appId :type AppId: str :param _VideoPlayDuration: 回传video_over事件的时候,回传的用户播放视频的总时长(真正播放的,拖动不算,单位为秒) :type VideoPlayDuration: int :param _ReferrerItemId: 来源物料内容:用来标识在指定内容页面产生的行为,如需要统计用户在A内容详情页里,对推荐内容B点击等行为,则ReferrerItemId代表内容A,ItemId代表内容B :type ReferrerItemId: str :param _Country: 国家,统一用简写,比如中国则填写CN :type Country: str :param _Province: 省 :type Province: str :param _City: 城市 :type City: str :param _District: 区县 :type District: str :param _IP: 客户端ip :type IP: str :param _Network: 客户端网络类型 :type Network: str :param _Platform: 客户端平台,ios/android/h5 :type Platform: str :param _AppVersion: 客户端app版本 :type AppVersion: str :param _OsVersion: 操作系统版本 :type OsVersion: str :param _DeviceModel: 机型 :type DeviceModel: str :param _Extension: json字符串,用于行为数据的扩展 :type Extension: str """ self._ItemId = None self._BehaviorType = None self._BehaviorValue = None self._BehaviorTimestamp = None self._SceneId = None self._UserIdList = None self._RecTraceId = None self._Source = None self._ItemType = None self._AppId = None self._VideoPlayDuration = None self._ReferrerItemId = None self._Country = None self._Province = None self._City = None self._District = None self._IP = None self._Network = None self._Platform = None self._AppVersion = None self._OsVersion = None self._DeviceModel = None self._Extension = None @property def ItemId(self): return self._ItemId @ItemId.setter def ItemId(self, ItemId): self._ItemId = ItemId @property def BehaviorType(self): return self._BehaviorType @BehaviorType.setter def BehaviorType(self, BehaviorType): self._BehaviorType = BehaviorType @property def BehaviorValue(self): return self._BehaviorValue @BehaviorValue.setter def BehaviorValue(self, BehaviorValue): self._BehaviorValue = BehaviorValue @property def BehaviorTimestamp(self): return self._BehaviorTimestamp @BehaviorTimestamp.setter def BehaviorTimestamp(self, BehaviorTimestamp): self._BehaviorTimestamp = BehaviorTimestamp @property def SceneId(self): return self._SceneId @SceneId.setter def SceneId(self, SceneId): self._SceneId = SceneId @property def UserIdList(self): return self._UserIdList @UserIdList.setter def UserIdList(self, UserIdList): self._UserIdList = UserIdList @property def RecTraceId(self): return self._RecTraceId @RecTraceId.setter def RecTraceId(self, RecTraceId): self._RecTraceId = RecTraceId @property def Source(self): return self._Source @Source.setter def Source(self, Source): self._Source = Source @property def ItemType(self): return self._ItemType @ItemType.setter def ItemType(self, ItemType): self._ItemType = ItemType @property def AppId(self): return self._AppId @AppId.setter def AppId(self, AppId): self._AppId = AppId @property def VideoPlayDuration(self): return self._VideoPlayDuration @VideoPlayDuration.setter def VideoPlayDuration(self, VideoPlayDuration): self._VideoPlayDuration = VideoPlayDuration @property def ReferrerItemId(self): return self._ReferrerItemId @ReferrerItemId.setter def ReferrerItemId(self, ReferrerItemId): self._ReferrerItemId = ReferrerItemId @property def Country(self): return self._Country @Country.setter def Country(self, Country): self._Country = Country @property def Province(self): return self._Province @Province.setter def Province(self, Province): self._Province = Province @property def City(self): return self._City @City.setter def City(self, City): self._City = City @property def District(self): return self._District @District.setter def District(self, District): self._District = District @property def IP(self): return self._IP @IP.setter def IP(self, IP): self._IP = IP @property def Network(self): return self._Network @Network.setter def Network(self, Network): self._Network = Network @property def Platform(self): return self._Platform @Platform.setter def Platform(self, Platform): self._Platform = Platform @property def AppVersion(self): return self._AppVersion @AppVersion.setter def AppVersion(self, AppVersion): self._AppVersion = AppVersion @property def OsVersion(self): return self._OsVersion @OsVersion.setter def OsVersion(self, OsVersion): self._OsVersion = OsVersion @property def DeviceModel(self): return self._DeviceModel @DeviceModel.setter def DeviceModel(self, DeviceModel): self._DeviceModel = DeviceModel @property def Extension(self): return self._Extension @Extension.setter def Extension(self, Extension): self._Extension = Extension def _deserialize(self, params): self._ItemId = params.get("ItemId") self._BehaviorType = params.get("BehaviorType") self._BehaviorValue = params.get("BehaviorValue") self._BehaviorTimestamp = params.get("BehaviorTimestamp") self._SceneId = params.get("SceneId") if params.get("UserIdList") is not None: self._UserIdList = [] for item in params.get("UserIdList"): obj = UserIdInfo() obj._deserialize(item) self._UserIdList.append(obj) self._RecTraceId = params.get("RecTraceId") self._Source = params.get("Source") self._ItemType = params.get("ItemType") self._AppId = params.get("AppId") self._VideoPlayDuration = params.get("VideoPlayDuration") self._ReferrerItemId = params.get("ReferrerItemId") self._Country = params.get("Country") self._Province = params.get("Province") self._City = params.get("City") self._District = params.get("District") self._IP = params.get("IP") self._Network = params.get("Network") self._Platform = params.get("Platform") self._AppVersion = params.get("AppVersion") self._OsVersion = params.get("OsVersion") self._DeviceModel = params.get("DeviceModel") self._Extension = params.get("Extension") memeber_set = set(params.keys()) for name, value in vars(self).items(): property_name = name[1:] if property_name in memeber_set: memeber_set.remove(property_name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DocItem(AbstractModel): """推荐物料信息 """ def __init__(self): r""" :param _ItemId: 内容唯一id :type ItemId: str :param _ItemType: 内容类型 :type ItemType: int :param _Status: 内容状态:1 - 上架, 2 - 下架 :type Status: int :param _PublishTimestamp: 内容生成时间,秒级时间戳(1639624786),需大于0 :type PublishTimestamp: int :param _SourceId: 物料来源ID :type SourceId: int :param _Title: 标题名称 :type Title: str :param _Content: 内容正文 :type Content: str :param _Author: 作者 :type Author: str :param _AuthorId: 作者id :type AuthorId: str :param _Keyword: 标签关键词,多个用英文分号分割 :type Keyword: str :param _Desc: 内容物料描述:物料的描述信息,推荐系统会对内容的描述信息,使用否LP技术,进行分词、提取关键词,作为news的特征使用。 :type Desc: str :param _PicUrlList: 图片url :type PicUrlList: list of str :param _VideoUrlList: 视频url :type VideoUrlList: list of str :param _VideoDuration: 视频时长,时间秒 :type VideoDuration: int :param _CategoryLevel: 类目层级数,例如3级类目,则填3,和CategoryPath字段的类数据匹配 :type CategoryLevel: int :param _CategoryPath: 类目路径,一级二级三级等依次用英文冒号联接,如体育:“足球:巴塞罗那” :type CategoryPath: str :param _Country: 国家,统一用简写,比如中国则填写CN :type Country: str :param _Province: 省 :type Province: str :param _City: 城市 :type City: str :param _District: 区县 :type District: str :param _ExpireTimestamp: 内容过期时间,秒级时间戳(1639624786),如未填,则默认PublishTimestamp往后延一年 :type ExpireTimestamp: int :param _Topic: 所属话题 :type Topic: str :param _AuthorFans: 作者粉丝数 :type AuthorFans: int :param _AuthorLevel: 作者评级 :type AuthorLevel: str :param _CollectCnt: 内容累计收藏次数 :type CollectCnt: int :param _PraiseCnt: 内容累积点赞次数 :type PraiseCnt: int :param _CommentCnt: 内容累计评论次数 :type CommentCnt: int :param _ShareCnt: 内容累计分享次数 :type ShareCnt: int :param _RewardCnt: 内容累积打赏数 :type RewardCnt: int :param _Score: 内容质量评分,类似豆瓣电影的评分,这里为100分制,比如97分,满分100分,最低0分,范围外的将会被拦截 :type Score: float :param _PoolIdList: 内容池id,用于分内容池召回,一个内容支持指定一个或多个内容池, 内容池id不建议使用0(0表示不区分内容池) :type PoolIdList: list of str :param _TagInfoList: 描述用户标签 :type TagInfoList: list of TagInfo :param _Extension: json字符串,用于物料数据的扩展 :type Extension: str """ self._ItemId = None self._ItemType = None self._Status = None self._PublishTimestamp = None self._SourceId = None self._Title = None self._Content = None self._Author = None self._AuthorId = None self._Keyword = None self._Desc = None self._PicUrlList = None self._VideoUrlList = None self._VideoDuration = None self._CategoryLevel = None self._CategoryPath = None self._Country = None self._Province = None self._City = None self._District = None self._ExpireTimestamp = None self._Topic = None self._AuthorFans = None self._AuthorLevel = None self._CollectCnt = None self._PraiseCnt = None self._CommentCnt = None self._ShareCnt = None self._RewardCnt = None self._Score = None self._PoolIdList = None self._TagInfoList = None self._Extension = None @property def ItemId(self): return self._ItemId @ItemId.setter def ItemId(self, ItemId): self._ItemId = ItemId @property def ItemType(self): return self._ItemType @ItemType.setter def ItemType(self, ItemType): self._ItemType = ItemType @property def Status(self): return self._Status @Status.setter def Status(self, Status): self._Status = Status @property def PublishTimestamp(self): return self._PublishTimestamp @PublishTimestamp.setter def PublishTimestamp(self, PublishTimestamp): self._PublishTimestamp = PublishTimestamp @property def SourceId(self): return self._SourceId @SourceId.setter def SourceId(self, SourceId): self._SourceId = SourceId @property def Title(self): return self._Title @Title.setter def Title(self, Title): self._Title = Title @property def Content(self): return self._Content @Content.setter def Content(self, Content): self._Content = Content @property def Author(self): return self._Author @Author.setter def Author(self, Author): self._Author = Author @property def AuthorId(self): return self._AuthorId @AuthorId.setter def AuthorId(self, AuthorId): self._AuthorId = AuthorId @property def Keyword(self): return self._Keyword @Keyword.setter def Keyword(self, Keyword): self._Keyword = Keyword @property def Desc(self): return self._Desc @Desc.setter def Desc(self, Desc): self._Desc = Desc @property def PicUrlList(self): return self._PicUrlList @PicUrlList.setter def PicUrlList(self, PicUrlList): self._PicUrlList = PicUrlList @property def VideoUrlList(self): return self._VideoUrlList @VideoUrlList.setter def VideoUrlList(self, VideoUrlList): self._VideoUrlList = VideoUrlList @property def VideoDuration(self): return self._VideoDuration @VideoDuration.setter def VideoDuration(self, VideoDuration): self._VideoDuration = VideoDuration @property def CategoryLevel(self): return self._CategoryLevel @CategoryLevel.setter def CategoryLevel(self, CategoryLevel): self._CategoryLevel = CategoryLevel @property def CategoryPath(self): return self._CategoryPath @CategoryPath.setter def CategoryPath(self, CategoryPath): self._CategoryPath = CategoryPath @property def Country(self): return self._Country @Country.setter def Country(self, Country): self._Country = Country @property def Province(self): return self._Province @Province.setter def Province(self, Province): self._Province = Province @property def City(self): return self._City @City.setter def City(self, City): self._City = City @property def District(self): return self._District @District.setter def District(self, District): self._District = District @property def ExpireTimestamp(self): return self._ExpireTimestamp @ExpireTimestamp.setter def ExpireTimestamp(self, ExpireTimestamp): self._ExpireTimestamp = ExpireTimestamp @property def Topic(self): return self._Topic @Topic.setter def Topic(self, Topic): self._Topic = Topic @property def AuthorFans(self): return self._AuthorFans @AuthorFans.setter def AuthorFans(self, AuthorFans): self._AuthorFans = AuthorFans @property def AuthorLevel(self): return self._AuthorLevel @AuthorLevel.setter def AuthorLevel(self, AuthorLevel): self._AuthorLevel = AuthorLevel @property def CollectCnt(self): return self._CollectCnt @CollectCnt.setter def CollectCnt(self, CollectCnt): self._CollectCnt = CollectCnt @property def PraiseCnt(self): return self._PraiseCnt @PraiseCnt.setter def PraiseCnt(self, PraiseCnt): self._PraiseCnt = PraiseCnt @property def CommentCnt(self): return self._CommentCnt @CommentCnt.setter def CommentCnt(self, CommentCnt): self._CommentCnt = CommentCnt @property def ShareCnt(self): return self._ShareCnt @ShareCnt.setter def ShareCnt(self, ShareCnt): self._ShareCnt = ShareCnt @property def RewardCnt(self): return self._RewardCnt @RewardCnt.setter def RewardCnt(self, RewardCnt): self._RewardCnt = RewardCnt @property def Score(self): return self._Score @Score.setter def Score(self, Score): self._Score = Score @property def PoolIdList(self): return self._PoolIdList @PoolIdList.setter def PoolIdList(self, PoolIdList): self._PoolIdList = PoolIdList @property def TagInfoList(self): return self._TagInfoList @TagInfoList.setter def TagInfoList(self, TagInfoList): self._TagInfoList = TagInfoList @property def Extension(self): return self._Extension @Extension.setter def Extension(self, Extension): self._Extension = Extension def _deserialize(self, params): self._ItemId = params.get("ItemId") self._ItemType = params.get("ItemType") self._Status = params.get("Status") self._PublishTimestamp = params.get("PublishTimestamp") self._SourceId = params.get("SourceId") self._Title = params.get("Title") self._Content = params.get("Content") self._Author = params.get("Author") self._AuthorId = params.get("AuthorId") self._Keyword = params.get("Keyword") self._Desc = params.get("Desc") self._PicUrlList = params.get("PicUrlList") self._VideoUrlList = params.get("VideoUrlList") self._VideoDuration = params.get("VideoDuration") self._CategoryLevel = params.get("CategoryLevel") self._CategoryPath = params.get("CategoryPath") self._Country = params.get("Country") self._Province = params.get("Province") self._City = params.get("City") self._District = params.get("District") self._ExpireTimestamp = params.get("ExpireTimestamp") self._Topic = params.get("Topic") self._AuthorFans = params.get("AuthorFans") self._AuthorLevel = params.get("AuthorLevel") self._CollectCnt = params.get("CollectCnt") self._PraiseCnt = params.get("PraiseCnt") self._CommentCnt = params.get("CommentCnt") self._ShareCnt = params.get("ShareCnt") self._RewardCnt = params.get("RewardCnt") self._Score = params.get("Score") self._PoolIdList = params.get("PoolIdList") if params.get("TagInfoList") is not None: self._TagInfoList = [] for item in params.get("TagInfoList"): obj = TagInfo() obj._deserialize(item) self._TagInfoList.append(obj) self._Extension = params.get("Extension") memeber_set = set(params.keys()) for name, value in vars(self).items(): property_name = name[1:] if property_name in memeber_set: memeber_set.remove(property_name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class PortraitInfo(AbstractModel): """画像信息 """ def __init__(self): r""" :param _UserIdList: 用户id列表 :type UserIdList: list of UserIdInfo :param _AppId: 如果"userIdType"是10则必传,在微信开放平台上查看appId :type AppId: str :param _Age: 用户年龄,值域在 0-200 :type Age: int :param _Gender: 用户性别:0-未知,1-男, 2-女 :type Gender: int :param _Degree: 用户学历 :小学,初中,高中,大专,本科,硕士,博士 :type Degree: str :param _School: 用户毕业学校全称 :type School: str :param _Occupation: 用户职业,保证业务的唯一性 :type Occupation: str :param _Industry: 用户所属行业,保证业务的唯一性 :type Industry: str :param _ResidentCountry: 用户常驻国家,统一用简写,比如中国则填写CN :type ResidentCountry: str :param _ResidentProvince: 用户常驻省份 :type ResidentProvince: str :param _ResidentCity: 用户常驻城市 :type ResidentCity: str :param _ResidentDistrict: 用户常驻区县 :type ResidentDistrict: str :param _PhoneMd5: 用户手机的MD5值 :type PhoneMd5: str :param _PhoneImei: 用户手机的IMEI号 :type PhoneImei: str :param _Idfa: 设备idfa信息 :type Idfa: str :param _RegisterTimestamp: 用户注册时间,秒级时间戳(1639624786) :type RegisterTimestamp: int :param _MembershipLevel: 用户会员等级 :type MembershipLevel: str :param _LastLoginTimestamp: 用户上一次登录时间,秒级时间戳(1639624786) :type LastLoginTimestamp: int :param _LastLoginIp: 用户上一次登录的ip :type LastLoginIp: str :param _LastModifyTimestamp: 用户信息的最后修改时间戳,秒级时间戳(1639624786) :type LastModifyTimestamp: int :param _TagInfoList: 用户标签 :type TagInfoList: list of TagInfo :param _AuthorInfoList: 用户关注作者列表 :type AuthorInfoList: list of AuthorInfo :param _DislikeInfoList: 用户不喜欢列表 :type DislikeInfoList: list of DislikeInfo :param _Extension: json字符串,用于画像数据的扩展 :type Extension: str :param _Oaid: 设备oaid信息 :type Oaid: str :param _AndroidId: 设备AndroidId信息 :type AndroidId: str """ self._UserIdList = None self._AppId = None self._Age = None self._Gender = None self._Degree = None self._School = None self._Occupation = None self._Industry = None self._ResidentCountry = None self._ResidentProvince = None self._ResidentCity = None self._ResidentDistrict = None self._PhoneMd5 = None self._PhoneImei = None self._Idfa = None self._RegisterTimestamp = None self._MembershipLevel = None self._LastLoginTimestamp = None self._LastLoginIp = None self._LastModifyTimestamp = None self._TagInfoList = None self._AuthorInfoList = None self._DislikeInfoList = None self._Extension = None self._Oaid = None self._AndroidId = None @property def UserIdList(self): return self._UserIdList @UserIdList.setter def UserIdList(self, UserIdList): self._UserIdList = UserIdList @property def AppId(self): return self._AppId @AppId.setter def AppId(self, AppId): self._AppId = AppId @property def Age(self): return self._Age @Age.setter def Age(self, Age): self._Age = Age @property def Gender(self): return self._Gender @Gender.setter def Gender(self, Gender): self._Gender = Gender @property def Degree(self): return self._Degree @Degree.setter def Degree(self, Degree): self._Degree = Degree @property def School(self): return self._School @School.setter def School(self, School): self._School = School @property def Occupation(self): return self._Occupation @Occupation.setter def Occupation(self, Occupation): self._Occupation = Occupation @property def Industry(self): return self._Industry @Industry.setter def Industry(self, Industry): self._Industry = Industry @property def ResidentCountry(self): return self._ResidentCountry @ResidentCountry.setter def ResidentCountry(self, ResidentCountry): self._ResidentCountry = ResidentCountry @property def ResidentProvince(self): return self._ResidentProvince @ResidentProvince.setter def ResidentProvince(self, ResidentProvince): self._ResidentProvince = ResidentProvince @property def ResidentCity(self): return self._ResidentCity @ResidentCity.setter def ResidentCity(self, ResidentCity): self._ResidentCity = ResidentCity @property def ResidentDistrict(self): return self._ResidentDistrict @ResidentDistrict.setter def ResidentDistrict(self, ResidentDistrict): self._ResidentDistrict = ResidentDistrict @property def PhoneMd5(self): return self._PhoneMd5 @PhoneMd5.setter def PhoneMd5(self, PhoneMd5): self._PhoneMd5 = PhoneMd5 @property def PhoneImei(self): return self._PhoneImei @PhoneImei.setter def PhoneImei(self, PhoneImei): self._PhoneImei = PhoneImei @property def Idfa(self): return self._Idfa @Idfa.setter def Idfa(self, Idfa): self._Idfa = Idfa @property def RegisterTimestamp(self): return self._RegisterTimestamp @RegisterTimestamp.setter def RegisterTimestamp(self, RegisterTimestamp): self._RegisterTimestamp = RegisterTimestamp @property def MembershipLevel(self): return self._MembershipLevel @MembershipLevel.setter def MembershipLevel(self, MembershipLevel): self._MembershipLevel = MembershipLevel @property def LastLoginTimestamp(self): return self._LastLoginTimestamp @LastLoginTimestamp.setter def LastLoginTimestamp(self, LastLoginTimestamp): self._LastLoginTimestamp = LastLoginTimestamp @property def LastLoginIp(self): return self._LastLoginIp @LastLoginIp.setter def LastLoginIp(self, LastLoginIp): self._LastLoginIp = LastLoginIp @property def LastModifyTimestamp(self): return self._LastModifyTimestamp @LastModifyTimestamp.setter def LastModifyTimestamp(self, LastModifyTimestamp): self._LastModifyTimestamp = LastModifyTimestamp @property def TagInfoList(self): return self._TagInfoList @TagInfoList.setter def TagInfoList(self, TagInfoList): self._TagInfoList = TagInfoList @property def AuthorInfoList(self): return self._AuthorInfoList @AuthorInfoList.setter def AuthorInfoList(self, AuthorInfoList): self._AuthorInfoList = AuthorInfoList @property def DislikeInfoList(self): return self._DislikeInfoList @DislikeInfoList.setter def DislikeInfoList(self, DislikeInfoList): self._DislikeInfoList = DislikeInfoList @property def Extension(self): return self._Extension @Extension.setter def Extension(self, Extension): self._Extension = Extension @property def Oaid(self): return self._Oaid @Oaid.setter def Oaid(self, Oaid): self._Oaid = Oaid @property def AndroidId(self): return self._AndroidId @AndroidId.setter def AndroidId(self, AndroidId): self._AndroidId = AndroidId def _deserialize(self, params): if params.get("UserIdList") is not None: self._UserIdList = [] for item in params.get("UserIdList"): obj = UserIdInfo() obj._deserialize(item) self._UserIdList.append(obj) self._AppId = params.get("AppId") self._Age = params.get("Age") self._Gender = params.get("Gender") self._Degree = params.get("Degree") self._School = params.get("School") self._Occupation = params.get("Occupation") self._Industry = params.get("Industry") self._ResidentCountry = params.get("ResidentCountry") self._ResidentProvince = params.get("ResidentProvince") self._ResidentCity = params.get("ResidentCity") self._ResidentDistrict = params.get("ResidentDistrict") self._PhoneMd5 = params.get("PhoneMd5") self._PhoneImei = params.get("PhoneImei") self._Idfa = params.get("Idfa") self._RegisterTimestamp = params.get("RegisterTimestamp") self._MembershipLevel = params.get("MembershipLevel") self._LastLoginTimestamp = params.get("LastLoginTimestamp") self._LastLoginIp = params.get("LastLoginIp") self._LastModifyTimestamp = params.get("LastModifyTimestamp") if params.get("TagInfoList") is not None: self._TagInfoList = [] for item in params.get("TagInfoList"): obj = TagInfo() obj._deserialize(item) self._TagInfoList.append(obj) if params.get("AuthorInfoList") is not None: self._AuthorInfoList = [] for item in params.get("AuthorInfoList"): obj = AuthorInfo() obj._deserialize(item) self._AuthorInfoList.append(obj) if params.get("DislikeInfoList") is not None: self._DislikeInfoList = [] for item in params.get("DislikeInfoList"): obj = DislikeInfo() obj._deserialize(item) self._DislikeInfoList.append(obj) self._Extension = params.get("Extension") self._Oaid = params.get("Oaid") self._AndroidId = params.get("AndroidId") memeber_set = set(params.keys()) for name, value in vars(self).items(): property_name = name[1:] if property_name in memeber_set: memeber_set.remove(property_name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class RecItemData(AbstractModel): """推荐内容信息 """ def __init__(self): r""" :param _ItemId: 推荐的内容id,即用户行为上报中的itemId :type ItemId: str :param _ItemType: 物料子类型,包括如下: 1-图文、2-长视频(横视频)、3-短视频(横视频)、4-小说、5-小视频(竖视频)、6-纯文本 注意:此字段可能返回 null,表示取不到有效值。 :type ItemType: int :param _Weight: 推荐内容的权重,取值范围[0,1000000] 注意:此字段可能返回 null,表示取不到有效值。 :type Weight: int :param _Score: 推荐预测分 注意:此字段可能返回 null,表示取不到有效值。 :type Score: float :param _Keyword: 关键词,多个用英文分号分割,和物料上传的keyword一致 注意:此字段可能返回 null,表示取不到有效值。 :type Keyword: str """ self._ItemId = None self._ItemType = None self._Weight = None self._Score = None self._Keyword = None @property def ItemId(self): return self._ItemId @ItemId.setter def ItemId(self, ItemId): self._ItemId = ItemId @property def ItemType(self): return self._ItemType @ItemType.setter def ItemType(self, ItemType): self._ItemType = ItemType @property def Weight(self): return self._Weight @Weight.setter def Weight(self, Weight): self._Weight = Weight @property def Score(self): return self._Score @Score.setter def Score(self, Score): self._Score = Score @property def Keyword(self): return self._Keyword @Keyword.setter def Keyword(self, Keyword): self._Keyword = Keyword def _deserialize(self, params): self._ItemId = params.get("ItemId") self._ItemType = params.get("ItemType") self._Weight = params.get("Weight") self._Score = params.get("Score") self._Keyword = params.get("Keyword") memeber_set = set(params.keys()) for name, value in vars(self).items(): property_name = name[1:] if property_name in memeber_set: memeber_set.remove(property_name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class RecommendContentRequest(AbstractModel): """RecommendContent请求参数结构体 """ def __init__(self): r""" :param _Bid: 业务id :type Bid: str :param _SceneId: 场景id:比如有“猜你喜欢”,“热门内容”等推荐模块,每一个模块都有一个scene_id来表示。 在控制台创建场景后获取。需要跟行为上报时的id一致 :type SceneId: str :param _UserIdList: 用户唯一ID数组,每个数组元素详见userId结构体,若不填,则接口返回热门结果 :type UserIdList: list of UserIdInfo :param _RecTraceId: 会话id:必须和行为数据上报时所填写的traceId相同,用于行为数据来自于那次在线推荐请求的归因。**注意:此处如果没传,则响应会返回一个全局唯一ID返回给客户,并需客户透传给行为日志上报接口** :type RecTraceId: str :param _ItemCnt: 推荐数量:物料优选的结果, 默认50个,目前最多支持200个的内容返回,如果返回个数更多,会影响性能,容易超时。 :type ItemCnt: int :param _PoolId: 物料池id,用于召回该pool_id下的商品,如果有多个,用英文;分割。**注意:此处poolId需和物料上报时的poolIdList对应上** :type PoolId: str :param _CurrentItemId: 来源物料id,即用户当前浏览的物料id,用于在内容详情页获取关联推荐内容 :type CurrentItemId: str :param _ResponseTimeout: 请求响应超时时间,单位ms,默认300ms,数值设置的过小,会影响推荐效果,最小支持250ms :type ResponseTimeout: int :param _ItemTypeRatio: 返回结果中不同物料类型的比例,比例顺序需严格按照(图文,长视频,短视频,小视频)进行。只允许传[0,100]数字,多个请用**英文冒号**分割,且加起来不能超过100,以及比例数量不能超过**场景绑定的物料类型**(图文,长视频,短视频,小视频)数。**示例:**图文和短视频比例为40%:60%时,则填40:60图文和短视频比例为0%:100%时,则填0:100图文,长视频和短视频的比例为,图文占20%,剩余80%由长视频和短视频随机返回,则填20:80或仅填20均可 :type ItemTypeRatio: str """ self._Bid = None self._SceneId = None self._UserIdList = None self._RecTraceId = None self._ItemCnt = None self._PoolId = None self._CurrentItemId = None self._ResponseTimeout = None self._ItemTypeRatio = None @property def Bid(self): return self._Bid @Bid.setter def Bid(self, Bid): self._Bid = Bid @property def SceneId(self): return self._SceneId @SceneId.setter def SceneId(self, SceneId): self._SceneId = SceneId @property def UserIdList(self): return self._UserIdList @UserIdList.setter def UserIdList(self, UserIdList): self._UserIdList = UserIdList @property def RecTraceId(self): return self._RecTraceId @RecTraceId.setter def RecTraceId(self, RecTraceId): self._RecTraceId = RecTraceId @property def ItemCnt(self): return self._ItemCnt @ItemCnt.setter def ItemCnt(self, ItemCnt): self._ItemCnt = ItemCnt @property def PoolId(self): return self._PoolId @PoolId.setter def PoolId(self, PoolId): self._PoolId = PoolId @property def CurrentItemId(self): return self._CurrentItemId @CurrentItemId.setter def CurrentItemId(self, CurrentItemId): self._CurrentItemId = CurrentItemId @property def ResponseTimeout(self): return self._ResponseTimeout @ResponseTimeout.setter def ResponseTimeout(self, ResponseTimeout): self._ResponseTimeout = ResponseTimeout @property def ItemTypeRatio(self): return self._ItemTypeRatio @ItemTypeRatio.setter def ItemTypeRatio(self, ItemTypeRatio): self._ItemTypeRatio = ItemTypeRatio def _deserialize(self, params): self._Bid = params.get("Bid") self._SceneId = params.get("SceneId") if params.get("UserIdList") is not None: self._UserIdList = [] for item in params.get("UserIdList"): obj = UserIdInfo() obj._deserialize(item) self._UserIdList.append(obj) self._RecTraceId = params.get("RecTraceId") self._ItemCnt = params.get("ItemCnt") self._PoolId = params.get("PoolId") self._CurrentItemId = params.get("CurrentItemId") self._ResponseTimeout = params.get("ResponseTimeout") self._ItemTypeRatio = params.get("ItemTypeRatio") memeber_set = set(params.keys()) for name, value in vars(self).items(): property_name = name[1:] if property_name in memeber_set: memeber_set.remove(property_name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class RecommendContentResponse(AbstractModel): """RecommendContent返回参数结构体 """ def __init__(self): r""" :param _RecTraceId: 推荐追踪id,用于行为上报。每次接口调用返回的traceId不同 :type RecTraceId: str :param _DataList: 标识具体的物料信息 :type DataList: list of RecItemData :param _RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self._RecTraceId = None self._DataList = None self._RequestId = None @property def RecTraceId(self): return self._RecTraceId @RecTraceId.setter def RecTraceId(self, RecTraceId): self._RecTraceId = RecTraceId @property def DataList(self): return self._DataList @DataList.setter def DataList(self, DataList): self._DataList = DataList @property def RequestId(self): return self._RequestId @RequestId.setter def RequestId(self, RequestId): self._RequestId = RequestId def _deserialize(self, params): self._RecTraceId = params.get("RecTraceId") if params.get("DataList") is not None: self._DataList = [] for item in params.get("DataList"): obj = RecItemData() obj._deserialize(item) self._DataList.append(obj) self._RequestId = params.get("RequestId") class ReportActionRequest(AbstractModel): """ReportAction请求参数结构体 """ def __init__(self): r""" :param _Bid: 业务id :type Bid: str :param _DocBehaviorList: 上报的行为对象数组,数量不超过50 :type DocBehaviorList: list of DocBehavior """ self._Bid = None self._DocBehaviorList = None @property def Bid(self): return self._Bid @Bid.setter def Bid(self, Bid): self._Bid = Bid @property def DocBehaviorList(self): return self._DocBehaviorList @DocBehaviorList.setter def DocBehaviorList(self, DocBehaviorList): self._DocBehaviorList = DocBehaviorList def _deserialize(self, params): self._Bid = params.get("Bid") if params.get("DocBehaviorList") is not None: self._DocBehaviorList = [] for item in params.get("DocBehaviorList"): obj = DocBehavior() obj._deserialize(item) self._DocBehaviorList.append(obj) memeber_set = set(params.keys()) for name, value in vars(self).items(): property_name = name[1:] if property_name in memeber_set: memeber_set.remove(property_name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class ReportActionResponse(AbstractModel): """ReportAction返回参数结构体 """ def __init__(self): r""" :param _RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self._RequestId = None @property def RequestId(self): return self._RequestId @RequestId.setter def RequestId(self, RequestId): self._RequestId = RequestId def _deserialize(self, params): self._RequestId = params.get("RequestId") class ReportMaterialRequest(AbstractModel): """ReportMaterial请求参数结构体 """ def __init__(self): r""" :param _Bid: 业务id :type Bid: str :param _DocItemList: 上报的信息流数组,一次数量不超过50 :type DocItemList: list of DocItem """ self._Bid = None self._DocItemList = None @property def Bid(self): return self._Bid @Bid.setter def Bid(self, Bid): self._Bid = Bid @property def DocItemList(self): return self._DocItemList @DocItemList.setter def DocItemList(self, DocItemList): self._DocItemList = DocItemList def _deserialize(self, params): self._Bid = params.get("Bid") if params.get("DocItemList") is not None: self._DocItemList = [] for item in params.get("DocItemList"): obj = DocItem() obj._deserialize(item) self._DocItemList.append(obj) memeber_set = set(params.keys()) for name, value in vars(self).items(): property_name = name[1:] if property_name in memeber_set: memeber_set.remove(property_name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class ReportMaterialResponse(AbstractModel): """ReportMaterial返回参数结构体 """ def __init__(self): r""" :param _RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self._RequestId = None @property def RequestId(self): return self._RequestId @RequestId.setter def RequestId(self, RequestId): self._RequestId = RequestId def _deserialize(self, params): self._RequestId = params.get("RequestId") class ReportPortraitRequest(AbstractModel): """ReportPortrait请求参数结构体 """ def __init__(self): r""" :param _Bid: 推荐平台上的业务id :type Bid: str :param _PortraitList: 上报的用户画像数组,数量不超过50 :type PortraitList: list of PortraitInfo """ self._Bid = None self._PortraitList = None @property def Bid(self): return self._Bid @Bid.setter def Bid(self, Bid): self._Bid = Bid @property def PortraitList(self): return self._PortraitList @PortraitList.setter def PortraitList(self, PortraitList): self._PortraitList = PortraitList def _deserialize(self, params): self._Bid = params.get("Bid") if params.get("PortraitList") is not None: self._PortraitList = [] for item in params.get("PortraitList"): obj = PortraitInfo() obj._deserialize(item) self._PortraitList.append(obj) memeber_set = set(params.keys()) for name, value in vars(self).items(): property_name = name[1:] if property_name in memeber_set: memeber_set.remove(property_name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class ReportPortraitResponse(AbstractModel): """ReportPortrait返回参数结构体 """ def __init__(self): r""" :param _RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self._RequestId = None @property def RequestId(self): return self._RequestId @RequestId.setter def RequestId(self, RequestId): self._RequestId = RequestId def _deserialize(self, params): self._RequestId = params.get("RequestId") class TagInfo(AbstractModel): """标题信息 """ def __init__(self): r""" :param _Id: 标签id 注意:此字段可能返回 null,表示取不到有效值。 :type Id: str :param _Name: 标签名 注意:此字段可能返回 null,表示取不到有效值。 :type Name: str :param _Weight: 推荐权重 注意:此字段可能返回 null,表示取不到有效值。 :type Weight: float """ self._Id = None self._Name = None self._Weight = None @property def Id(self): return self._Id @Id.setter def Id(self, Id): self._Id = Id @property def Name(self): return self._Name @Name.setter def Name(self, Name): self._Name = Name @property def Weight(self): return self._Weight @Weight.setter def Weight(self, Weight): self._Weight = Weight def _deserialize(self, params): self._Id = params.get("Id") self._Name = params.get("Name") self._Weight = params.get("Weight") memeber_set = set(params.keys()) for name, value in vars(self).items(): property_name = name[1:] if property_name in memeber_set: memeber_set.remove(property_name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class UserIdInfo(AbstractModel): """用户信息 """ def __init__(self): r""" :param _UserIdType: 用户ID类型: 1 - qq 2 - qq_md5:md5后的qq 3 - imei:设备imei(安卓10之后不会再授权imei,安卓10之后的imei映射关系可能拿不到,故安卓10之后的设备建议用oaid) 4 - imei_md5:md5后的imei 5 - idfa: Apple 向用户设备随机分配的设备标识符 6 - idfa_md5:md5之后的idfa 7 - gdt_openid:广点通生成的openid 8 - oaid:安卓10之后一种非永久性设备标识符 9 - oaid_md5:md5后的oaid 10 - wx_openid:微信openid 11 - qq_openid:QQ的openid 12 - phone:电话号码 13 - phone_md5:md5后的电话号码 14 - phone_sha256:SHA256加密的手机号 15 - phone_sm3:国密SM3加密的手机号 1000 - 客户自定义id :type UserIdType: int :param _UserId: 用户id :type UserId: str """ self._UserIdType = None self._UserId = None @property def UserIdType(self): return self._UserIdType @UserIdType.setter def UserIdType(self, UserIdType): self._UserIdType = UserIdType @property def UserId(self): return self._UserId @UserId.setter def UserId(self, UserId): self._UserId = UserId def _deserialize(self, params): self._UserIdType = params.get("UserIdType") self._UserId = params.get("UserId") memeber_set = set(params.keys()) for name, value in vars(self).items(): property_name = name[1:] if property_name in memeber_set: memeber_set.remove(property_name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set))
PypiClean
/django_xprez-0.2.3-py3-none-any.whl/xprez/static/xprez/admin/libs/handlebars/handlebars.runtime.min.js
!function(a,b){"object"==typeof exports&&"object"==typeof module?module.exports=b():"function"==typeof define&&define.amd?define([],b):"object"==typeof exports?exports.Handlebars=b():a.Handlebars=b()}(this,function(){return function(a){function b(d){if(c[d])return c[d].exports;var e=c[d]={exports:{},id:d,loaded:!1};return a[d].call(e.exports,e,e.exports,b),e.loaded=!0,e.exports}var c={};return b.m=a,b.c=c,b.p="",b(0)}([function(a,b,c){"use strict";function d(){var a=new h.HandlebarsEnvironment;return n.extend(a,h),a.SafeString=j["default"],a.Exception=l["default"],a.Utils=n,a.escapeExpression=n.escapeExpression,a.VM=p,a.template=function(b){return p.template(b,a)},a}var e=c(1)["default"],f=c(2)["default"];b.__esModule=!0;var g=c(3),h=e(g),i=c(17),j=f(i),k=c(5),l=f(k),m=c(4),n=e(m),o=c(18),p=e(o),q=c(19),r=f(q),s=d();s.create=d,r["default"](s),s["default"]=s,b["default"]=s,a.exports=b["default"]},function(a,b){"use strict";b["default"]=function(a){if(a&&a.__esModule)return a;var b={};if(null!=a)for(var c in a)Object.prototype.hasOwnProperty.call(a,c)&&(b[c]=a[c]);return b["default"]=a,b},b.__esModule=!0},function(a,b){"use strict";b["default"]=function(a){return a&&a.__esModule?a:{"default":a}},b.__esModule=!0},function(a,b,c){"use strict";function d(a,b,c){this.helpers=a||{},this.partials=b||{},this.decorators=c||{},i.registerDefaultHelpers(this),j.registerDefaultDecorators(this)}var e=c(2)["default"];b.__esModule=!0,b.HandlebarsEnvironment=d;var f=c(4),g=c(5),h=e(g),i=c(6),j=c(14),k=c(16),l=e(k),m="4.0.5";b.VERSION=m;var n=7;b.COMPILER_REVISION=n;var o={1:"<= 1.0.rc.2",2:"== 1.0.0-rc.3",3:"== 1.0.0-rc.4",4:"== 1.x.x",5:"== 2.0.0-alpha.x",6:">= 2.0.0-beta.1",7:">= 4.0.0"};b.REVISION_CHANGES=o;var p="[object Object]";d.prototype={constructor:d,logger:l["default"],log:l["default"].log,registerHelper:function(a,b){if(f.toString.call(a)===p){if(b)throw new h["default"]("Arg not supported with multiple helpers");f.extend(this.helpers,a)}else this.helpers[a]=b},unregisterHelper:function(a){delete this.helpers[a]},registerPartial:function(a,b){if(f.toString.call(a)===p)f.extend(this.partials,a);else{if("undefined"==typeof b)throw new h["default"]('Attempting to register a partial called "'+a+'" as undefined');this.partials[a]=b}},unregisterPartial:function(a){delete this.partials[a]},registerDecorator:function(a,b){if(f.toString.call(a)===p){if(b)throw new h["default"]("Arg not supported with multiple decorators");f.extend(this.decorators,a)}else this.decorators[a]=b},unregisterDecorator:function(a){delete this.decorators[a]}};var q=l["default"].log;b.log=q,b.createFrame=f.createFrame,b.logger=l["default"]},function(a,b){"use strict";function c(a){return k[a]}function d(a){for(var b=1;b<arguments.length;b++)for(var c in arguments[b])Object.prototype.hasOwnProperty.call(arguments[b],c)&&(a[c]=arguments[b][c]);return a}function e(a,b){for(var c=0,d=a.length;d>c;c++)if(a[c]===b)return c;return-1}function f(a){if("string"!=typeof a){if(a&&a.toHTML)return a.toHTML();if(null==a)return"";if(!a)return a+"";a=""+a}return m.test(a)?a.replace(l,c):a}function g(a){return a||0===a?p(a)&&0===a.length?!0:!1:!0}function h(a){var b=d({},a);return b._parent=a,b}function i(a,b){return a.path=b,a}function j(a,b){return(a?a+".":"")+b}b.__esModule=!0,b.extend=d,b.indexOf=e,b.escapeExpression=f,b.isEmpty=g,b.createFrame=h,b.blockParams=i,b.appendContextPath=j;var k={"&":"&amp;","<":"&lt;",">":"&gt;",'"':"&quot;","'":"&#x27;","`":"&#x60;","=":"&#x3D;"},l=/[&<>"'`=]/g,m=/[&<>"'`=]/,n=Object.prototype.toString;b.toString=n;var o=function(a){return"function"==typeof a};o(/x/)&&(b.isFunction=o=function(a){return"function"==typeof a&&"[object Function]"===n.call(a)}),b.isFunction=o;var p=Array.isArray||function(a){return a&&"object"==typeof a?"[object Array]"===n.call(a):!1};b.isArray=p},function(a,b){"use strict";function c(a,b){var e=b&&b.loc,f=void 0,g=void 0;e&&(f=e.start.line,g=e.start.column,a+=" - "+f+":"+g);for(var h=Error.prototype.constructor.call(this,a),i=0;i<d.length;i++)this[d[i]]=h[d[i]];Error.captureStackTrace&&Error.captureStackTrace(this,c),e&&(this.lineNumber=f,this.column=g)}b.__esModule=!0;var d=["description","fileName","lineNumber","message","name","number","stack"];c.prototype=new Error,b["default"]=c,a.exports=b["default"]},function(a,b,c){"use strict";function d(a){g["default"](a),i["default"](a),k["default"](a),m["default"](a),o["default"](a),q["default"](a),s["default"](a)}var e=c(2)["default"];b.__esModule=!0,b.registerDefaultHelpers=d;var f=c(7),g=e(f),h=c(8),i=e(h),j=c(9),k=e(j),l=c(10),m=e(l),n=c(11),o=e(n),p=c(12),q=e(p),r=c(13),s=e(r)},function(a,b,c){"use strict";b.__esModule=!0;var d=c(4);b["default"]=function(a){a.registerHelper("blockHelperMissing",function(b,c){var e=c.inverse,f=c.fn;if(b===!0)return f(this);if(b===!1||null==b)return e(this);if(d.isArray(b))return b.length>0?(c.ids&&(c.ids=[c.name]),a.helpers.each(b,c)):e(this);if(c.data&&c.ids){var g=d.createFrame(c.data);g.contextPath=d.appendContextPath(c.data.contextPath,c.name),c={data:g}}return f(b,c)})},a.exports=b["default"]},function(a,b,c){"use strict";var d=c(2)["default"];b.__esModule=!0;var e=c(4),f=c(5),g=d(f);b["default"]=function(a){a.registerHelper("each",function(a,b){function c(b,c,f){j&&(j.key=b,j.index=c,j.first=0===c,j.last=!!f,k&&(j.contextPath=k+b)),i+=d(a[b],{data:j,blockParams:e.blockParams([a[b],b],[k+b,null])})}if(!b)throw new g["default"]("Must pass iterator to #each");var d=b.fn,f=b.inverse,h=0,i="",j=void 0,k=void 0;if(b.data&&b.ids&&(k=e.appendContextPath(b.data.contextPath,b.ids[0])+"."),e.isFunction(a)&&(a=a.call(this)),b.data&&(j=e.createFrame(b.data)),a&&"object"==typeof a)if(e.isArray(a))for(var l=a.length;l>h;h++)h in a&&c(h,h,h===a.length-1);else{var m=void 0;for(var n in a)a.hasOwnProperty(n)&&(void 0!==m&&c(m,h-1),m=n,h++);void 0!==m&&c(m,h-1,!0)}return 0===h&&(i=f(this)),i})},a.exports=b["default"]},function(a,b,c){"use strict";var d=c(2)["default"];b.__esModule=!0;var e=c(5),f=d(e);b["default"]=function(a){a.registerHelper("helperMissing",function(){if(1!==arguments.length)throw new f["default"]('Missing helper: "'+arguments[arguments.length-1].name+'"')})},a.exports=b["default"]},function(a,b,c){"use strict";b.__esModule=!0;var d=c(4);b["default"]=function(a){a.registerHelper("if",function(a,b){return d.isFunction(a)&&(a=a.call(this)),!b.hash.includeZero&&!a||d.isEmpty(a)?b.inverse(this):b.fn(this)}),a.registerHelper("unless",function(b,c){return a.helpers["if"].call(this,b,{fn:c.inverse,inverse:c.fn,hash:c.hash})})},a.exports=b["default"]},function(a,b){"use strict";b.__esModule=!0,b["default"]=function(a){a.registerHelper("log",function(){for(var b=[void 0],c=arguments[arguments.length-1],d=0;d<arguments.length-1;d++)b.push(arguments[d]);var e=1;null!=c.hash.level?e=c.hash.level:c.data&&null!=c.data.level&&(e=c.data.level),b[0]=e,a.log.apply(a,b)})},a.exports=b["default"]},function(a,b){"use strict";b.__esModule=!0,b["default"]=function(a){a.registerHelper("lookup",function(a,b){return a&&a[b]})},a.exports=b["default"]},function(a,b,c){"use strict";b.__esModule=!0;var d=c(4);b["default"]=function(a){a.registerHelper("with",function(a,b){d.isFunction(a)&&(a=a.call(this));var c=b.fn;if(d.isEmpty(a))return b.inverse(this);var e=b.data;return b.data&&b.ids&&(e=d.createFrame(b.data),e.contextPath=d.appendContextPath(b.data.contextPath,b.ids[0])),c(a,{data:e,blockParams:d.blockParams([a],[e&&e.contextPath])})})},a.exports=b["default"]},function(a,b,c){"use strict";function d(a){g["default"](a)}var e=c(2)["default"];b.__esModule=!0,b.registerDefaultDecorators=d;var f=c(15),g=e(f)},function(a,b,c){"use strict";b.__esModule=!0;var d=c(4);b["default"]=function(a){a.registerDecorator("inline",function(a,b,c,e){var f=a;return b.partials||(b.partials={},f=function(e,f){var g=c.partials;c.partials=d.extend({},g,b.partials);var h=a(e,f);return c.partials=g,h}),b.partials[e.args[0]]=e.fn,f})},a.exports=b["default"]},function(a,b,c){"use strict";b.__esModule=!0;var d=c(4),e={methodMap:["debug","info","warn","error"],level:"info",lookupLevel:function(a){if("string"==typeof a){var b=d.indexOf(e.methodMap,a.toLowerCase());a=b>=0?b:parseInt(a,10)}return a},log:function(a){if(a=e.lookupLevel(a),"undefined"!=typeof console&&e.lookupLevel(e.level)<=a){var b=e.methodMap[a];console[b]||(b="log");for(var c=arguments.length,d=Array(c>1?c-1:0),f=1;c>f;f++)d[f-1]=arguments[f];console[b].apply(console,d)}}};b["default"]=e,a.exports=b["default"]},function(a,b){"use strict";function c(a){this.string=a}b.__esModule=!0,c.prototype.toString=c.prototype.toHTML=function(){return""+this.string},b["default"]=c,a.exports=b["default"]},function(a,b,c){"use strict";function d(a){var b=a&&a[0]||1,c=r.COMPILER_REVISION;if(b!==c){if(c>b){var d=r.REVISION_CHANGES[c],e=r.REVISION_CHANGES[b];throw new q["default"]("Template was precompiled with an older version of Handlebars than the current runtime. Please update your precompiler to a newer version ("+d+") or downgrade your runtime to an older version ("+e+").")}throw new q["default"]("Template was precompiled with a newer version of Handlebars than the current runtime. Please update your runtime to a newer version ("+a[1]+").")}}function e(a,b){function c(c,d,e){e.hash&&(d=o.extend({},d,e.hash),e.ids&&(e.ids[0]=!0)),c=b.VM.resolvePartial.call(this,c,d,e);var f=b.VM.invokePartial.call(this,c,d,e);if(null==f&&b.compile&&(e.partials[e.name]=b.compile(c,a.compilerOptions,b),f=e.partials[e.name](d,e)),null!=f){if(e.indent){for(var g=f.split("\n"),h=0,i=g.length;i>h&&(g[h]||h+1!==i);h++)g[h]=e.indent+g[h];f=g.join("\n")}return f}throw new q["default"]("The partial "+e.name+" could not be compiled when running in runtime-only mode")}function d(b){function c(b){return""+a.main(e,b,e.helpers,e.partials,g,i,h)}var f=arguments.length<=1||void 0===arguments[1]?{}:arguments[1],g=f.data;d._setup(f),!f.partial&&a.useData&&(g=j(b,g));var h=void 0,i=a.useBlockParams?[]:void 0;return a.useDepths&&(h=f.depths?b!==f.depths[0]?[b].concat(f.depths):f.depths:[b]),(c=k(a.main,c,e,f.depths||[],g,i))(b,f)}if(!b)throw new q["default"]("No environment passed to template");if(!a||!a.main)throw new q["default"]("Unknown template object: "+typeof a);a.main.decorator=a.main_d,b.VM.checkRevision(a.compiler);var e={strict:function(a,b){if(!(b in a))throw new q["default"]('"'+b+'" not defined in '+a);return a[b]},lookup:function(a,b){for(var c=a.length,d=0;c>d;d++)if(a[d]&&null!=a[d][b])return a[d][b]},lambda:function(a,b){return"function"==typeof a?a.call(b):a},escapeExpression:o.escapeExpression,invokePartial:c,fn:function(b){var c=a[b];return c.decorator=a[b+"_d"],c},programs:[],program:function(a,b,c,d,e){var g=this.programs[a],h=this.fn(a);return b||e||d||c?g=f(this,a,h,b,c,d,e):g||(g=this.programs[a]=f(this,a,h)),g},data:function(a,b){for(;a&&b--;)a=a._parent;return a},merge:function(a,b){var c=a||b;return a&&b&&a!==b&&(c=o.extend({},b,a)),c},noop:b.VM.noop,compilerInfo:a.compiler};return d.isTop=!0,d._setup=function(c){c.partial?(e.helpers=c.helpers,e.partials=c.partials,e.decorators=c.decorators):(e.helpers=e.merge(c.helpers,b.helpers),a.usePartial&&(e.partials=e.merge(c.partials,b.partials)),(a.usePartial||a.useDecorators)&&(e.decorators=e.merge(c.decorators,b.decorators)))},d._child=function(b,c,d,g){if(a.useBlockParams&&!d)throw new q["default"]("must pass block params");if(a.useDepths&&!g)throw new q["default"]("must pass parent depths");return f(e,b,a[b],c,0,d,g)},d}function f(a,b,c,d,e,f,g){function h(b){var e=arguments.length<=1||void 0===arguments[1]?{}:arguments[1],h=g;return g&&b!==g[0]&&(h=[b].concat(g)),c(a,b,a.helpers,a.partials,e.data||d,f&&[e.blockParams].concat(f),h)}return h=k(c,h,a,g,d,f),h.program=b,h.depth=g?g.length:0,h.blockParams=e||0,h}function g(a,b,c){return a?a.call||c.name||(c.name=a,a=c.partials[a]):a="@partial-block"===c.name?c.data["partial-block"]:c.partials[c.name],a}function h(a,b,c){c.partial=!0,c.ids&&(c.data.contextPath=c.ids[0]||c.data.contextPath);var d=void 0;if(c.fn&&c.fn!==i&&(c.data=r.createFrame(c.data),d=c.data["partial-block"]=c.fn,d.partials&&(c.partials=o.extend({},c.partials,d.partials))),void 0===a&&d&&(a=d),void 0===a)throw new q["default"]("The partial "+c.name+" could not be found");return a instanceof Function?a(b,c):void 0}function i(){return""}function j(a,b){return b&&"root"in b||(b=b?r.createFrame(b):{},b.root=a),b}function k(a,b,c,d,e,f){if(a.decorator){var g={};b=a.decorator(b,g,c,d&&d[0],e,f,d),o.extend(b,g)}return b}var l=c(1)["default"],m=c(2)["default"];b.__esModule=!0,b.checkRevision=d,b.template=e,b.wrapProgram=f,b.resolvePartial=g,b.invokePartial=h,b.noop=i;var n=c(4),o=l(n),p=c(5),q=m(p),r=c(3)},function(a,b){(function(c){"use strict";b.__esModule=!0,b["default"]=function(a){var b="undefined"!=typeof c?c:window,d=b.Handlebars;a.noConflict=function(){return b.Handlebars===a&&(b.Handlebars=d),a}},a.exports=b["default"]}).call(b,function(){return this}())}])});
PypiClean
/iredis_bin-1.9.4-cp310-cp310-manylinux2010_x86_64.whl/iredis_bin-1.9.4.data/scripts/lib/curses/ascii.py
NUL = 0x00 # ^@ SOH = 0x01 # ^A STX = 0x02 # ^B ETX = 0x03 # ^C EOT = 0x04 # ^D ENQ = 0x05 # ^E ACK = 0x06 # ^F BEL = 0x07 # ^G BS = 0x08 # ^H TAB = 0x09 # ^I HT = 0x09 # ^I LF = 0x0a # ^J NL = 0x0a # ^J VT = 0x0b # ^K FF = 0x0c # ^L CR = 0x0d # ^M SO = 0x0e # ^N SI = 0x0f # ^O DLE = 0x10 # ^P DC1 = 0x11 # ^Q DC2 = 0x12 # ^R DC3 = 0x13 # ^S DC4 = 0x14 # ^T NAK = 0x15 # ^U SYN = 0x16 # ^V ETB = 0x17 # ^W CAN = 0x18 # ^X EM = 0x19 # ^Y SUB = 0x1a # ^Z ESC = 0x1b # ^[ FS = 0x1c # ^\ GS = 0x1d # ^] RS = 0x1e # ^^ US = 0x1f # ^_ SP = 0x20 # space DEL = 0x7f # delete controlnames = [ "NUL", "SOH", "STX", "ETX", "EOT", "ENQ", "ACK", "BEL", "BS", "HT", "LF", "VT", "FF", "CR", "SO", "SI", "DLE", "DC1", "DC2", "DC3", "DC4", "NAK", "SYN", "ETB", "CAN", "EM", "SUB", "ESC", "FS", "GS", "RS", "US", "SP" ] def _ctoi(c): if type(c) == type(""): return ord(c) else: return c def isalnum(c): return isalpha(c) or isdigit(c) def isalpha(c): return isupper(c) or islower(c) def isascii(c): return 0 <= _ctoi(c) <= 127 # ? def isblank(c): return _ctoi(c) in (9, 32) def iscntrl(c): return 0 <= _ctoi(c) <= 31 or _ctoi(c) == 127 def isdigit(c): return 48 <= _ctoi(c) <= 57 def isgraph(c): return 33 <= _ctoi(c) <= 126 def islower(c): return 97 <= _ctoi(c) <= 122 def isprint(c): return 32 <= _ctoi(c) <= 126 def ispunct(c): return isgraph(c) and not isalnum(c) def isspace(c): return _ctoi(c) in (9, 10, 11, 12, 13, 32) def isupper(c): return 65 <= _ctoi(c) <= 90 def isxdigit(c): return isdigit(c) or \ (65 <= _ctoi(c) <= 70) or (97 <= _ctoi(c) <= 102) def isctrl(c): return 0 <= _ctoi(c) < 32 def ismeta(c): return _ctoi(c) > 127 def ascii(c): if type(c) == type(""): return chr(_ctoi(c) & 0x7f) else: return _ctoi(c) & 0x7f def ctrl(c): if type(c) == type(""): return chr(_ctoi(c) & 0x1f) else: return _ctoi(c) & 0x1f def alt(c): if type(c) == type(""): return chr(_ctoi(c) | 0x80) else: return _ctoi(c) | 0x80 def unctrl(c): bits = _ctoi(c) if bits == 0x7f: rep = "^?" elif isprint(bits & 0x7f): rep = chr(bits & 0x7f) else: rep = "^" + chr(((bits & 0x7f) | 0x20) + 0x20) if bits & 0x80: return "!" + rep return rep
PypiClean
/block.bootstrap.pytorch-0.1.6.tar.gz/block.bootstrap.pytorch-0.1.6/block/models/metrics/compute_oe_accuracy.py
import argparse import json import random import os from os.path import join import sys from bootstrap.lib.logger import Logger from block.external.VQA.PythonHelperTools.vqaTools.vqa import VQA from block.external.VQA.PythonEvaluationTools.vqaEvaluation.vqaEval import VQAEval def real_split_name(split): if split in ['train', 'val']: return split+'2014' elif split == 'test': return split+'2015' elif split == 'testdev': return 'test-dev2015' else: raise ValueError() def main(dir_vqa, dir_exp, dir_rslt, epoch, split, cmd_line=True, logs_name="logs", rm=True): real_split = real_split_name(split) if cmd_line: Logger(dir_exp, name=f'{logs_name}_{split}_oe') diranno = join(dir_vqa, 'raw', 'annotations') annFile = join(diranno, 'mscoco_%s_annotations.json' % (real_split)) quesFile = join(diranno, 'OpenEnded_mscoco_%s_questions.json' % (real_split)) vqa = VQA(annFile, quesFile) taskType = 'OpenEnded' dataType = 'mscoco' dataSubType = real_split resultType = 'model' fileTypes = ['results', 'accuracy', 'evalQA', 'evalQuesType', 'evalAnsType'] [resFile, accuracyFile, evalQAFile, evalQuesTypeFile, evalAnsTypeFile] = \ ['%s/%s_%s_%s_%s_%s.json' % (dir_rslt, taskType, dataType, dataSubType, resultType, fileType) for fileType in fileTypes] vqaRes = vqa.loadRes(resFile, quesFile) vqaEval = VQAEval(vqa, vqaRes, n=2) quesIds = [int(d['question_id']) for d in json.loads(open(resFile).read())] # if split != 'train': # annQuesIds = [int(d['question_id']) for d in json.loads(open(annFile).read())['annotations']] # assert len(set(quesIds) - set(annQuesIds)) == 0, "Some questions in results are not in annotations" # assert len(set(annQuesIds) - set(quesIds)) == 0, "Some questions in annotations are not in results" vqaEval.evaluate(quesIds=quesIds) mode = 'train' if 'train' in split else 'eval' Logger().log_value(f'{mode}_epoch.epoch', epoch) Logger().log_value(f'{mode}_epoch.overall', vqaEval.accuracy['overall']) for key in vqaEval.accuracy['perQuestionType']: rkey = key.replace(' ', '_') Logger().log_value(f'{mode}_epoch.perQuestionType.{rkey}', vqaEval.accuracy['perQuestionType'][key]) for key in vqaEval.accuracy['perAnswerType']: rkey = key.replace(' ', '_') Logger().log_value(f'{mode}_epoch.perAnswerType.{rkey}', vqaEval.accuracy['perAnswerType'][key]) Logger().flush() json.dump(vqaEval.accuracy, open(accuracyFile, 'w')) if rm: os.system('rm -rf '+dir_rslt) if __name__=="__main__": parser = argparse.ArgumentParser() parser.add_argument('--dir_vqa', type=str, default='/local/cadene/data/vqa') parser.add_argument('--dir_exp', type=str, default='logs/16_12_13_20:39:55/') parser.add_argument('--dir_rslt', type=str, default='logs/16_12_13_20:39:55/results/train/epoch,1') parser.add_argument('--epoch', type=int, default=1) parser.add_argument('--split', type=str, default='train') parser.add_argument('--logs_name', type=str, default='logs') parser.add_argument('--rm', type=int, default=1) args = parser.parse_args() main(args.dir_vqa, args.dir_exp, args.dir_rslt, args.epoch, args.split, logs_name=args.logs_name, rm=args.rm) #json.dump(vqaEval.evalQA, open(evalQAFile, 'w')) #json.dump(vqaEval.evalQuesType, open(evalQuesTypeFile, 'w')) #json.dump(vqaEval.evalAnsType, open(evalAnsTypeFile, 'w'))
PypiClean
/Super_ML-0.0.3-py3-none-any.whl/auto_machine_learning/hyperparameter_optimization/hpo.py
from sklearn.model_selection import train_test_split from auto_machine_learning.utils import get_model, get_features from auto_machine_learning.hyperparameter_optimization.hpo_methods import * #---------------------------------------------------------------------------------------------------------------------# def get_trained_model(dataset, label, model_name, task, method_name='standard', max_evals=100, test_size=0.3, random_state=1): ''' Train the model with given data and hpo method . Returns the trained model Parameters: dataset(dataframe) : data to be used for training model label (string): target column of the dataframe task (string) : type of task model_name(string) : name of the model on which data is to be trained method_name(string) : Name of the hyper parameter method to be used while training max_evals(int) : Number of evaluators test_size(float) : Fraction of the data to be used for testing random_state(int) : Random state to be used Returns: model (model object) : the trained model on which hpo is performed ''' features = get_features(dataset, label) X, Y = dataset[features], dataset[label] X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state = random_state) model = get_model(model_name) if method_name=='standard': model=model() trained_model = model.fit(X_train,Y_train) print('Standard Model without HPO') print('Model Trained') return trained_model elif method_name == 'grid_search': trained_model = grid_search(model, X_train, Y_train) elif method_name == 'random_search': trained_model = random_search(model, X_train, Y_train) # elif method_name == 'bayesian_gp': # trained_model = bayesian_gp(model, X_train, Y_train) elif method_name == 'bayesian_tpe': trained_model = bayesian_tpe(model, X_train, X_test, Y_train, Y_test, task, max_evals=max_evals) else: raise Exception("'No hpo method named {}'.format(method_name)") print('Hyperparameters Optimized') print('Model Trained') return trained_model #---------------------------------------------------------------------------------------------------------------------#
PypiClean
/odooku_odoo_purchase-11.0.7-py35-none-any.whl/odoo/addons/purchase/models/stock.py
from odoo import api, fields, models, _ from odoo.exceptions import UserError class StockPicking(models.Model): _inherit = 'stock.picking' purchase_id = fields.Many2one('purchase.order', related='move_lines.purchase_line_id.order_id', string="Purchase Orders", readonly=True) class StockMove(models.Model): _inherit = 'stock.move' purchase_line_id = fields.Many2one('purchase.order.line', 'Purchase Order Line', ondelete='set null', index=True, readonly=True) created_purchase_line_id = fields.Many2one('purchase.order.line', 'Created Purchase Order Line', ondelete='set null', readonly=True, copy=False) @api.model def _prepare_merge_moves_distinct_fields(self): distinct_fields = super(StockMove, self)._prepare_merge_moves_distinct_fields() distinct_fields += ['purchase_line_id', 'created_purchase_line_id'] return distinct_fields @api.model def _prepare_merge_move_sort_method(self, move): move.ensure_one() keys_sorted = super(StockMove, self)._prepare_merge_move_sort_method(move) keys_sorted += [move.purchase_line_id.id, move.created_purchase_line_id.id] return keys_sorted @api.multi def _get_price_unit(self): """ Returns the unit price for the move""" self.ensure_one() if self.purchase_line_id and self.product_id.id == self.purchase_line_id.product_id.id: line = self.purchase_line_id order = line.order_id price_unit = line.price_unit if line.taxes_id: price_unit = line.taxes_id.with_context(round=False).compute_all(price_unit, currency=line.order_id.currency_id, quantity=1.0)['total_excluded'] if line.product_uom.id != line.product_id.uom_id.id: price_unit *= line.product_uom.factor / line.product_id.uom_id.factor if order.currency_id != order.company_id.currency_id: price_unit = order.currency_id.compute(price_unit, order.company_id.currency_id, round=False) return price_unit return super(StockMove, self)._get_price_unit() def _prepare_extra_move_vals(self, qty): vals = super(StockMove, self)._prepare_extra_move_vals(qty) vals['purchase_line_id'] = self.purchase_line_id.id return vals def _prepare_move_split_vals(self, uom_qty): vals = super(StockMove, self)._prepare_move_split_vals(uom_qty) vals['purchase_line_id'] = self.purchase_line_id.id return vals def _clean_merged(self): super(StockMove, self)._clean_merged() self.write({'created_purchase_line_id': False}) def _action_cancel(self): for move in self: if move.created_purchase_line_id: try: activity_type_id = self.env.ref('mail.mail_activity_data_todo').id except ValueError: activity_type_id = False self.env['mail.activity'].create({ 'activity_type_id': activity_type_id, 'note': _('A sale order that generated this purchase order has been deleted. Check if an action is needed.'), 'user_id': move.created_purchase_line_id.product_id.responsible_id.id, 'res_id': move.created_purchase_line_id.order_id.id, 'res_model_id': self.env.ref('purchase.model_purchase_order').id, }) return super(StockMove, self)._action_cancel() class StockWarehouse(models.Model): _inherit = 'stock.warehouse' buy_to_resupply = fields.Boolean('Purchase to resupply this warehouse', default=True, help="When products are bought, they can be delivered to this warehouse") buy_pull_id = fields.Many2one('procurement.rule', 'Buy rule') @api.multi def _get_buy_pull_rule(self): try: buy_route_id = self.env['ir.model.data'].get_object_reference('purchase', 'route_warehouse0_buy')[1] except: buy_route_id = self.env['stock.location.route'].search([('name', 'like', _('Buy'))]) buy_route_id = buy_route_id[0].id if buy_route_id else False if not buy_route_id: raise UserError(_("Can't find any generic Buy route.")) return { 'name': self._format_routename(_(' Buy')), 'location_id': self.in_type_id.default_location_dest_id.id, 'route_id': buy_route_id, 'action': 'buy', 'picking_type_id': self.in_type_id.id, 'warehouse_id': self.id, 'group_propagation_option': 'none', } @api.multi def create_routes(self): res = super(StockWarehouse, self).create_routes() # super applies ensure_one() if self.buy_to_resupply: buy_pull_vals = self._get_buy_pull_rule() buy_pull = self.env['procurement.rule'].create(buy_pull_vals) res['buy_pull_id'] = buy_pull.id return res @api.multi def write(self, vals): if 'buy_to_resupply' in vals: if vals.get("buy_to_resupply"): for warehouse in self: if not warehouse.buy_pull_id: buy_pull_vals = self._get_buy_pull_rule() buy_pull = self.env['procurement.rule'].create(buy_pull_vals) vals['buy_pull_id'] = buy_pull.id else: for warehouse in self: if warehouse.buy_pull_id: warehouse.buy_pull_id.unlink() return super(StockWarehouse, self).write(vals) @api.multi def _get_all_routes(self): routes = super(StockWarehouse, self).get_all_routes_for_wh() routes |= self.filtered(lambda self: self.buy_to_resupply and self.buy_pull_id and self.buy_pull_id.route_id).mapped('buy_pull_id').mapped('route_id') return routes @api.multi def _update_name_and_code(self, name=False, code=False): res = super(StockWarehouse, self)._update_name_and_code(name, code) warehouse = self[0] #change the buy procurement rule name if warehouse.buy_pull_id and name: warehouse.buy_pull_id.write({'name': warehouse.buy_pull_id.name.replace(warehouse.name, name, 1)}) return res @api.multi def _update_routes(self): res = super(StockWarehouse, self)._update_routes() for warehouse in self: if warehouse.in_type_id.default_location_dest_id != warehouse.buy_pull_id.location_id: warehouse.buy_pull_id.write({'location_id': warehouse.in_type_id.default_location_dest_id.id}) return res class ReturnPicking(models.TransientModel): _inherit = "stock.return.picking" def _prepare_move_default_values(self, return_line, new_picking): vals = super(ReturnPicking, self)._prepare_move_default_values(return_line, new_picking) vals['purchase_line_id'] = return_line.move_id.purchase_line_id.id return vals class Orderpoint(models.Model): _inherit = "stock.warehouse.orderpoint" def _quantity_in_progress(self): res = super(Orderpoint, self)._quantity_in_progress() for poline in self.env['purchase.order.line'].search([('state','in',('draft','sent','to approve')),('orderpoint_id','in',self.ids)]): res[poline.orderpoint_id.id] += poline.product_uom._compute_quantity(poline.product_qty, poline.orderpoint_id.product_uom, round=False) return res def action_view_purchase(self): """ This function returns an action that display existing purchase orders of given orderpoint. """ action = self.env.ref('purchase.purchase_rfq') result = action.read()[0] # Remvove the context since the action basically display RFQ and not PO. result['context'] = {} order_line_ids = self.env['purchase.order.line'].search([('orderpoint_id', '=', self.id)]) purchase_ids = order_line_ids.mapped('order_id') result['domain'] = "[('id','in',%s)]" % (purchase_ids.ids) return result class PushedFlow(models.Model): _inherit = "stock.location.path" def _prepare_move_copy_values(self, move_to_copy, new_date): res = super(PushedFlow, self)._prepare_move_copy_values(move_to_copy, new_date) res['purchase_line_id'] = None return res
PypiClean
/pytest-yapf3-0.7.0.tar.gz/pytest-yapf3-0.7.0/README.md
# pytest-yapf3 <!-- [![Travis](https://travis-ci.org/yanqd0/pytest-yapf3.svg?branch=master)](https://travis-ci.org/yanqd0/pytest-yapf3) --> <!-- [![AppVeyor](https://ci.appveyor.com/api/projects/status/umf6393qo2y7afog/branch/master?svg=true)](https://ci.appveyor.com/project/yanqd0/pytest-yapf3/branch/master) --> <!-- [![codecov](https://codecov.io/gh/yanqd0/pytest-yapf3/branch/master/graph/badge.svg)](https://codecov.io/gh/yanqd0/pytest-yapf3) --> [![Python PyTest](https://github.com/yanqd0/pytest-yapf3/actions/workflows/python-pytest.yml/badge.svg)](https://github.com/yanqd0/pytest-yapf3/actions/workflows/python-pytest.yml) [![CII Best Practices](https://bestpractices.coreinfrastructure.org/projects/3446/badge)](https://bestpractices.coreinfrastructure.org/projects/3446) [![Code style: yapf](https://img.shields.io/badge/code%20style-yapf-blue)](https://github.com/google/yapf) Validate your Python file format with yapf. This is a [pytest] plugin, which make sure your python file is exactly formatted by yapf, or it will crash when running `pytest`. [pytest]:https://pytest.org/ ## Install [![Version](https://img.shields.io/pypi/v/pytest-yapf3)](https://pypi.org/project/pytest-yapf3/) [![Python](https://img.shields.io/pypi/pyversions/pytest-yapf3)](https://pypi.org/project/pytest-yapf3/) [![Format](https://img.shields.io/pypi/format/pytest-yapf3)](https://pypi.org/project/pytest-yapf3/) [![Status](https://img.shields.io/pypi/status/pytest-yapf3)](https://pypi.org/classifiers/) [![Download](https://img.shields.io/pypi/dm/pytest-yapf3)](https://pypi.org/project/pytest-yapf3/) [![MIT](https://img.shields.io/pypi/l/pytest-yapf3)](https://github.com/yanqd0/pytest-yapf3/blob/master/LICENSE) ```sh pip install pytest-yapf3 ``` Requires: - Python 3.6 or above - Pytest: - `pytest>=5.4,<8` when `pytest-yapf3<0.7` - `pytest>=7` when `pytest-yapf3>=0.7` If someone use this with Python 3.5 or Pytest less than 5.4, set `'pytest-yapf3<0.6.0'`. ## Usage Modify `setup.cfg` (or `pytest.ini`): ```ini [tool:pytest] addopts = --yapf --yapfdiff yapf-ignore = setup.py src/package/auto_generated/**.py ``` Add `--yapf` to [pytest] configuration `addopts`. If run with `pytest -m yapf`, only `yapf` is checked. By default, only line summaries is displayed. With an optional `--yapfdiff`, a full text of `yapf -d` is displayed. If not configured here, `pytest --yapfdiff` will also work. An optional `yapf-ignore` is supported. Each line specifies a glob pattern of files which should not check `yapf`. The `pytest` will cache success results of pytest-yapf3, and will not check again if files not changed. Sometimes you may want to disable it. There are 2 ways: - `pytest -p no:cacheprovider` This may crash if any other pytest plugin not supports. - `rm -rf .pytest_cache/v/yapf` This is ugly, but safe for any environment. ## Features and Todos - [x] Basic support to validate `yapf`. - [x] Fix the diff line count error and improve the performance. - [x] Display `YAPF-check` as the error session name. - [x] Display `YAPF` in `pytest --verbose`. - [x] Add `yapf` as a marker to enable `pytest -m yapf`. - [x] Support `yapf-ignore` to ignore specified files. - [x] Skip running if a file is not changed. - [x] 100% test coverage. ## Develop Prepare the environment: ```sh pipenv install --dev pipenv shell ``` Run test: ```sh pytest ``` ## Badge Like [black], if your project always pass yapf checking provided by this project, you can use an unofficial badge to show off. [black]:https://github.com/psf/black#show-your-style ### Markdown (README.md) ```markdown [![Code style: yapf](https://img.shields.io/badge/code%20style-yapf-blue)](https://github.com/google/yapf) ``` ### reStructuredText (README.rst) ```rst .. image:: https://img.shields.io/badge/code%20style-yapf-blue :target: https://github.com/google/yapf :alt: Code style: yapf ``` ## License > The MIT License (MIT) > > Copyright (c) 2019~2022 Yan QiDong This repository is forked from [pytest-yapf] in 2019, which is [not maintained] since 2017. Besides extra features, the project structure is adjusted, and the code is enhanced to pass linters like flake8, pylint and, of course, yapf. The `3` in `pytest-yapf3` means this package supports Python 3 only. [pytest-yapf]:https://github.com/django-stars/pytest-yapf [not maintained]:https://github.com/django-stars/pytest-yapf/issues/1
PypiClean
/encuentro-4.0.tar.gz/encuentro-4.0/external/youtube-dl/youtube_dl/extractor/mtv.py
from __future__ import unicode_literals import re from .common import InfoExtractor from ..compat import ( compat_urllib_parse, compat_str, ) from ..utils import ( ExtractorError, find_xpath_attr, fix_xml_ampersands, HEADRequest, sanitized_Request, unescapeHTML, url_basename, RegexNotFoundError, ) def _media_xml_tag(tag): return '{http://search.yahoo.com/mrss/}%s' % tag class MTVServicesInfoExtractor(InfoExtractor): _MOBILE_TEMPLATE = None _LANG = None @staticmethod def _id_from_uri(uri): return uri.split(':')[-1] # This was originally implemented for ComedyCentral, but it also works here @staticmethod def _transform_rtmp_url(rtmp_video_url): m = re.match(r'^rtmpe?://.*?/(?P<finalid>gsp\..+?/.*)$', rtmp_video_url) if not m: return rtmp_video_url base = 'http://viacommtvstrmfs.fplive.net/' return base + m.group('finalid') def _get_feed_url(self, uri): return self._FEED_URL def _get_thumbnail_url(self, uri, itemdoc): search_path = '%s/%s' % (_media_xml_tag('group'), _media_xml_tag('thumbnail')) thumb_node = itemdoc.find(search_path) if thumb_node is None: return None else: return thumb_node.attrib['url'] def _extract_mobile_video_formats(self, mtvn_id): webpage_url = self._MOBILE_TEMPLATE % mtvn_id req = sanitized_Request(webpage_url) # Otherwise we get a webpage that would execute some javascript req.add_header('User-Agent', 'curl/7') webpage = self._download_webpage(req, mtvn_id, 'Downloading mobile page') metrics_url = unescapeHTML(self._search_regex(r'<a href="(http://metrics.+?)"', webpage, 'url')) req = HEADRequest(metrics_url) response = self._request_webpage(req, mtvn_id, 'Resolving url') url = response.geturl() # Transform the url to get the best quality: url = re.sub(r'.+pxE=mp4', 'http://mtvnmobile.vo.llnwd.net/kip0/_pxn=0+_pxK=18639+_pxE=mp4', url, 1) return [{'url': url, 'ext': 'mp4'}] def _extract_video_formats(self, mdoc, mtvn_id): if re.match(r'.*/(error_country_block\.swf|geoblock\.mp4|copyright_error\.flv(?:\?geo\b.+?)?)$', mdoc.find('.//src').text) is not None: if mtvn_id is not None and self._MOBILE_TEMPLATE is not None: self.to_screen('The normal version is not available from your ' 'country, trying with the mobile version') return self._extract_mobile_video_formats(mtvn_id) raise ExtractorError('This video is not available from your country.', expected=True) formats = [] for rendition in mdoc.findall('.//rendition'): try: _, _, ext = rendition.attrib['type'].partition('/') rtmp_video_url = rendition.find('./src').text if rtmp_video_url.endswith('siteunavail.png'): continue formats.append({ 'ext': ext, 'url': self._transform_rtmp_url(rtmp_video_url), 'format_id': rendition.get('bitrate'), 'width': int(rendition.get('width')), 'height': int(rendition.get('height')), }) except (KeyError, TypeError): raise ExtractorError('Invalid rendition field.') self._sort_formats(formats) return formats def _extract_subtitles(self, mdoc, mtvn_id): subtitles = {} for transcript in mdoc.findall('.//transcript'): if transcript.get('kind') != 'captions': continue lang = transcript.get('srclang') subtitles[lang] = [{ 'url': compat_str(typographic.get('src')), 'ext': typographic.get('format') } for typographic in transcript.findall('./typographic')] return subtitles def _get_video_info(self, itemdoc): uri = itemdoc.find('guid').text video_id = self._id_from_uri(uri) self.report_extraction(video_id) mediagen_url = itemdoc.find('%s/%s' % (_media_xml_tag('group'), _media_xml_tag('content'))).attrib['url'] # Remove the templates, like &device={device} mediagen_url = re.sub(r'&[^=]*?={.*?}(?=(&|$))', '', mediagen_url) if 'acceptMethods' not in mediagen_url: mediagen_url += '&' if '?' in mediagen_url else '?' mediagen_url += 'acceptMethods=fms' mediagen_doc = self._download_xml(mediagen_url, video_id, 'Downloading video urls') item = mediagen_doc.find('./video/item') if item is not None and item.get('type') == 'text': message = '%s returned error: ' % self.IE_NAME if item.get('code') is not None: message += '%s - ' % item.get('code') message += item.text raise ExtractorError(message, expected=True) description_node = itemdoc.find('description') if description_node is not None: description = description_node.text.strip() else: description = None title_el = None if title_el is None: title_el = find_xpath_attr( itemdoc, './/{http://search.yahoo.com/mrss/}category', 'scheme', 'urn:mtvn:video_title') if title_el is None: title_el = itemdoc.find('.//{http://search.yahoo.com/mrss/}title') if title_el is None: title_el = itemdoc.find('.//title') or itemdoc.find('./title') if title_el.text is None: title_el = None title = title_el.text if title is None: raise ExtractorError('Could not find video title') title = title.strip() # This a short id that's used in the webpage urls mtvn_id = None mtvn_id_node = find_xpath_attr(itemdoc, './/{http://search.yahoo.com/mrss/}category', 'scheme', 'urn:mtvn:id') if mtvn_id_node is not None: mtvn_id = mtvn_id_node.text return { 'title': title, 'formats': self._extract_video_formats(mediagen_doc, mtvn_id), 'subtitles': self._extract_subtitles(mediagen_doc, mtvn_id), 'id': video_id, 'thumbnail': self._get_thumbnail_url(uri, itemdoc), 'description': description, } def _get_videos_info(self, uri): video_id = self._id_from_uri(uri) feed_url = self._get_feed_url(uri) data = compat_urllib_parse.urlencode({'uri': uri}) info_url = feed_url + '?' if self._LANG: info_url += 'lang=%s&' % self._LANG info_url += data return self._get_videos_info_from_url(info_url, video_id) def _get_videos_info_from_url(self, url, video_id): idoc = self._download_xml( url, video_id, 'Downloading info', transform_source=fix_xml_ampersands) return self.playlist_result( [self._get_video_info(item) for item in idoc.findall('.//item')]) def _real_extract(self, url): title = url_basename(url) webpage = self._download_webpage(url, title) try: # the url can be http://media.mtvnservices.com/fb/{mgid}.swf # or http://media.mtvnservices.com/{mgid} og_url = self._og_search_video_url(webpage) mgid = url_basename(og_url) if mgid.endswith('.swf'): mgid = mgid[:-4] except RegexNotFoundError: mgid = None if mgid is None or ':' not in mgid: mgid = self._search_regex( [r'data-mgid="(.*?)"', r'swfobject.embedSWF\(".*?(mgid:.*?)"'], webpage, 'mgid', default=None) if not mgid: sm4_embed = self._html_search_meta( 'sm4:video:embed', webpage, 'sm4 embed', default='') mgid = self._search_regex( r'embed/(mgid:.+?)["\'&?/]', sm4_embed, 'mgid') videos_info = self._get_videos_info(mgid) return videos_info class MTVServicesEmbeddedIE(MTVServicesInfoExtractor): IE_NAME = 'mtvservices:embedded' _VALID_URL = r'https?://media\.mtvnservices\.com/embed/(?P<mgid>.+?)(\?|/|$)' _TEST = { # From http://www.thewrap.com/peter-dinklage-sums-up-game-of-thrones-in-45-seconds-video/ 'url': 'http://media.mtvnservices.com/embed/mgid:uma:video:mtv.com:1043906/cp~vid%3D1043906%26uri%3Dmgid%3Auma%3Avideo%3Amtv.com%3A1043906', 'md5': 'cb349b21a7897164cede95bd7bf3fbb9', 'info_dict': { 'id': '1043906', 'ext': 'mp4', 'title': 'Peter Dinklage Sums Up \'Game Of Thrones\' In 45 Seconds', 'description': '"Sexy sexy sexy, stabby stabby stabby, beautiful language," says Peter Dinklage as he tries summarizing "Game of Thrones" in under a minute.', }, } @staticmethod def _extract_url(webpage): mobj = re.search( r'<iframe[^>]+?src=(["\'])(?P<url>(?:https?:)?//media.mtvnservices.com/embed/.+?)\1', webpage) if mobj: return mobj.group('url') def _get_feed_url(self, uri): video_id = self._id_from_uri(uri) site_id = uri.replace(video_id, '') config_url = ('http://media.mtvnservices.com/pmt/e1/players/{0}/' 'context4/context5/config.xml'.format(site_id)) config_doc = self._download_xml(config_url, video_id) feed_node = config_doc.find('.//feed') feed_url = feed_node.text.strip().split('?')[0] return feed_url def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) mgid = mobj.group('mgid') return self._get_videos_info(mgid) class MTVIE(MTVServicesInfoExtractor): _VALID_URL = r'''(?x)^https?:// (?:(?:www\.)?mtv\.com/videos/.+?/(?P<videoid>[0-9]+)/[^/]+$| m\.mtv\.com/videos/video\.rbml\?.*?id=(?P<mgid>[^&]+))''' _FEED_URL = 'http://www.mtv.com/player/embed/AS3/rss/' _TESTS = [ { 'url': 'http://www.mtv.com/videos/misc/853555/ours-vh1-storytellers.jhtml', 'md5': '850f3f143316b1e71fa56a4edfd6e0f8', 'info_dict': { 'id': '853555', 'ext': 'mp4', 'title': 'Taylor Swift - "Ours (VH1 Storytellers)"', 'description': 'Album: Taylor Swift performs "Ours" for VH1 Storytellers at Harvey Mudd College.', }, }, ] def _get_thumbnail_url(self, uri, itemdoc): return 'http://mtv.mtvnimages.com/uri/' + uri def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) video_id = mobj.group('videoid') uri = mobj.groupdict().get('mgid') if uri is None: webpage = self._download_webpage(url, video_id) # Some videos come from Vevo.com m_vevo = re.search( r'(?s)isVevoVideo = true;.*?vevoVideoId = "(.*?)";', webpage) if m_vevo: vevo_id = m_vevo.group(1) self.to_screen('Vevo video detected: %s' % vevo_id) return self.url_result('vevo:%s' % vevo_id, ie='Vevo') uri = self._html_search_regex(r'/uri/(.*?)\?', webpage, 'uri') return self._get_videos_info(uri) class MTVIggyIE(MTVServicesInfoExtractor): IE_NAME = 'mtviggy.com' _VALID_URL = r'https?://www\.mtviggy\.com/videos/.+' _TEST = { 'url': 'http://www.mtviggy.com/videos/arcade-fire-behind-the-scenes-at-the-biggest-music-experiment-yet/', 'info_dict': { 'id': '984696', 'ext': 'mp4', 'title': 'Arcade Fire: Behind the Scenes at the Biggest Music Experiment Yet', } } _FEED_URL = 'http://all.mtvworldverticals.com/feed-xml/' class MTVDEIE(MTVServicesInfoExtractor): IE_NAME = 'mtv.de' _VALID_URL = r'https?://(?:www\.)?mtv\.de/(?:artists|shows|news)/(?:[^/]+/)*(?P<id>\d+)-[^/#?]+/*(?:[#?].*)?$' _TESTS = [{ 'url': 'http://www.mtv.de/artists/10571-cro/videos/61131-traum', 'info_dict': { 'id': 'music_video-a50bc5f0b3aa4b3190aa', 'ext': 'mp4', 'title': 'MusicVideo_cro-traum', 'description': 'Cro - Traum', }, 'params': { # rtmp download 'skip_download': True, }, }, { # mediagen URL without query (e.g. http://videos.mtvnn.com/mediagen/e865da714c166d18d6f80893195fcb97) 'url': 'http://www.mtv.de/shows/933-teen-mom-2/staffeln/5353/folgen/63565-enthullungen', 'info_dict': { 'id': 'local_playlist-f5ae778b9832cc837189', 'ext': 'mp4', 'title': 'Episode_teen-mom-2_shows_season-5_episode-1_full-episode_part1', }, 'params': { # rtmp download 'skip_download': True, }, }, { # single video in pagePlaylist with different id 'url': 'http://www.mtv.de/news/77491-mtv-movies-spotlight-pixels-teil-3', 'info_dict': { 'id': 'local_playlist-4e760566473c4c8c5344', 'ext': 'mp4', 'title': 'Article_mtv-movies-spotlight-pixels-teil-3_short-clips_part1', 'description': 'MTV Movies Supercut', }, 'params': { # rtmp download 'skip_download': True, }, }] def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) playlist = self._parse_json( self._search_regex( r'window\.pagePlaylist\s*=\s*(\[.+?\]);\n', webpage, 'page playlist'), video_id) # news pages contain single video in playlist with different id if len(playlist) == 1: return self._get_videos_info_from_url(playlist[0]['mrss'], video_id) for item in playlist: item_id = item.get('id') if item_id and compat_str(item_id) == video_id: return self._get_videos_info_from_url(item['mrss'], video_id)
PypiClean
/kipartman-0.6.2.tar.gz/kipartman-0.6.2/kipartbase/__main__.py
import os, sys sys.path.append(os.path.dirname(os.path.abspath(__file__))) #sys.path.append(os.path.join(os.path.dirname(__file__), 'kipartbase')) import connexion from swagger_server.encoder import JSONEncoder from os.path import expanduser import argparse home = expanduser("~") def migrate(): os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(["manage.py", "migrate"]) def serve(args=None): app = connexion.App(__name__, specification_dir='./swagger_server/swagger/') app.app.json_encoder = JSONEncoder app.add_api('swagger.yaml', arguments={'title': 'Kipartman api specifications'}) # add a static file server from flask import Flask, request, send_from_directory @app.route('/file/<path:path>') def send_js(path): return send_from_directory(os.path.join(os.environ['DATA_DIR'], '/storage'), path) app.run(port=8200, debug=True) def main(args=None): """The main routine.""" if args is None: args = sys.argv[1:] parser = argparse.ArgumentParser(description='Kipartbase, the kicad part manager backend') parser.add_argument('-d', '--data', help='data dir (default: ~/.kipartman)') args = parser.parse_args(args) if args.data: os.environ['DATA_DIR'] = args.data else: os.environ['DATA_DIR'] = os.getenv('KIPARTBASE_PATH', os.path.join(os.path.expanduser("~"), '.kipartman')) if os.path.exists(os.environ['DATA_DIR'])==False: os.mkdir(os.environ['DATA_DIR']) os.chdir(os.path.dirname(__file__)) # do django migrations migrate() # serve api serve() if __name__ == '__main__': main()
PypiClean
/FlexGet-3.9.6-py3-none-any.whl/flexget/components/notify/notifiers/cronitor.py
import socket from loguru import logger from requests.exceptions import RequestException from flexget import plugin from flexget.event import event from flexget.plugin import PluginWarning from flexget.utils.requests import Session as RequestSession requests = RequestSession(max_retries=3) plugin_name = "cronitor" logger = logger.bind(name=plugin_name) class Cronitor: """ Example:: cronitor: ABC123 Or: cronitor: monitor_code: ABC123 on_start: yes on_abort: no message: Ping host: foo.bar auth_key: secret """ base_url = "https://cronitor.link/{monitor_code}/{status}" schema = { "oneOf": [ { "type": "object", "properties": { "monitor_code": {"type": "string"}, "on_start": {"type": "boolean"}, "on_abort": {"type": "boolean"}, "message": {"type": "string"}, "host": {"type": "string"}, "auth_key": {"type": "string"}, }, "required": ["monitor_code"], "additionalProperties": False, }, {"type": "string"}, ] } @staticmethod def prepare_config(config): if isinstance(config, str): config = {"monitor_code": config} config.setdefault("on_start", True) config.setdefault("on_abort", True) config.setdefault("host", socket.gethostname()) return config def _send_request(self, status, config, task_name): url = self.base_url.format(monitor_code=config["monitor_code"], status=status) message = config.get("message", f"{task_name} task {status}") data = {"msg": message, "host": config["host"]} if config.get("auth_key"): data["auth_key"] = config["auth_key"] try: rsp = requests.get(url, params=data) rsp.raise_for_status() except RequestException as e: raise PluginWarning(f"Could not report to cronitor: {e}") def on_task_start(self, task, config): config = self.prepare_config(config) if not config["on_start"]: return self._send_request("run", config, task.name) def on_task_abort(self, task, config): config = self.prepare_config(config) if not config["on_abort"]: return self._send_request("fail", config, task.name) def on_task_exit(self, task, config): config = self.prepare_config(config) self._send_request("complete", config, task.name) @event("plugin.register") def register_plugin(): plugin.register(Cronitor, plugin_name, api_ver=2)
PypiClean
/django3-dashing-0.5.2.tar.gz/django3-dashing-0.5.2/dashing/static/dashing/libs/moment/locale/nl.js
(function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(require('../moment')) : typeof define === 'function' && define.amd ? define(['moment'], factory) : factory(global.moment) }(this, function (moment) { 'use strict'; var monthsShortWithDots = 'jan._feb._mrt._apr._mei_jun._jul._aug._sep._okt._nov._dec.'.split('_'), monthsShortWithoutDots = 'jan_feb_mrt_apr_mei_jun_jul_aug_sep_okt_nov_dec'.split('_'); var nl = moment.defineLocale('nl', { months : 'januari_februari_maart_april_mei_juni_juli_augustus_september_oktober_november_december'.split('_'), monthsShort : function (m, format) { if (/-MMM-/.test(format)) { return monthsShortWithoutDots[m.month()]; } else { return monthsShortWithDots[m.month()]; } }, weekdays : 'zondag_maandag_dinsdag_woensdag_donderdag_vrijdag_zaterdag'.split('_'), weekdaysShort : 'zo._ma._di._wo._do._vr._za.'.split('_'), weekdaysMin : 'Zo_Ma_Di_Wo_Do_Vr_Za'.split('_'), longDateFormat : { LT : 'HH:mm', LTS : 'LT:ss', L : 'DD-MM-YYYY', LL : 'D MMMM YYYY', LLL : 'D MMMM YYYY LT', LLLL : 'dddd D MMMM YYYY LT' }, calendar : { sameDay: '[vandaag om] LT', nextDay: '[morgen om] LT', nextWeek: 'dddd [om] LT', lastDay: '[gisteren om] LT', lastWeek: '[afgelopen] dddd [om] LT', sameElse: 'L' }, relativeTime : { future : 'over %s', past : '%s geleden', s : 'een paar seconden', m : 'één minuut', mm : '%d minuten', h : 'één uur', hh : '%d uur', d : 'één dag', dd : '%d dagen', M : 'één maand', MM : '%d maanden', y : 'één jaar', yy : '%d jaar' }, ordinalParse: /\d{1,2}(ste|de)/, ordinal : function (number) { return number + ((number === 1 || number === 8 || number >= 20) ? 'ste' : 'de'); }, week : { dow : 1, // Monday is the first day of the week. doy : 4 // The week that contains Jan 4th is the first week of the year. } }); return nl; }));
PypiClean
/templateproj-1.0.1.tar.gz/templateproj-1.0.1/README.md
<!-- * @Author: BDFD * @Date: 2021-10-27 18:39:19 * @LastEditTime: 2021-10-27 21:22:31 * @LastEditors: Please set LastEditors * @Description: In User Settings Edit * @FilePath: \6.0-PyPI_Missing_Value_Table\README.md --> # Package Name Package function description ## Installation `pip install package-name` ## How to use it? Function of the package ## License copyright @ 2021 BDFD This repository is licensed under the MIT license. See LICENSE for details. ### References https://github.com/bdfd/6.0-PyPI_Template
PypiClean
/odoo_addon_l10n_ro_fiscal_validation-16.0.1.2.0-py3-none-any.whl/odoo/addons/l10n_ro_fiscal_validation/models/res_partner.py
import logging import time import requests from odoo import api, fields, models _logger = logging.getLogger(__name__) CEDILLATRANS = bytes.maketrans( "\u015f\u0163\u015e\u0162".encode("utf8"), "\u0219\u021b\u0218\u021a".encode("utf8"), ) headers = { "User-Agent": "Mozilla/5.0 (compatible; MSIE 7.01; Windows NT 5.0)", "Content-Type": "application/json;", } ANAF_BULK_URL = "https://webservicesp.anaf.ro/AsynchWebService/api/v8/ws/tva" ANAF_CORR = "https://webservicesp.anaf.ro/AsynchWebService/api/v8/ws/tva?id=%s" class ResPartner(models.Model): _inherit = "res.partner" @api.model def update_l10n_ro_vat_subjected(self): anaf_dict = [] check_date = fields.Date.to_string(fields.Date.today()) # Build list of vat numbers to be checked on ANAF for partner in self: anaf_dict.append(partner.l10n_ro_vat_number) chunk = [] chunks = [] # Process 500 vat numbers once max_no = 499 for position in range(0, len(anaf_dict), max_no): chunk = anaf_dict[position : position + max_no] chunks.append(chunk) for chunk in chunks: anaf_ask = [] for item in chunk: if item: anaf_ask.append({"cui": int(item), "data": check_date}) try: res = requests.post( ANAF_BULK_URL, json=anaf_ask, headers=headers, timeout=30 ) if res.status_code == 200: result = {} try: result = res.json() except Exception: _logger.warning("ANAF sync not working: %s" % res.content) if result.get("correlationId"): time.sleep(3) resp = False try: resp = requests.get( ANAF_CORR % result["correlationId"], timeout=30 ) except Exception as e: _logger.warning("ANAF sync not working: %s" % e) if resp and resp.status_code == 200: resp = resp.json() for result_partner in resp["found"] + resp["notfound"]: vat = result_partner.get("date_generale").get("cui") if vat: partners = self.search( [ ("l10n_ro_vat_number", "=", vat), ("is_company", "=", True), ] ) for partner in partners: data = partner._Anaf_to_Odoo(result_partner) partner.update(data) except Exception: _logger.warning("ANAF sync not working: %s" % res.content) @api.model def update_l10n_ro_vat_subjected_all(self): partners = self.search( [ ("l10n_ro_vat_number", "!=", False), ("l10n_ro_vat_number", "!=", ""), ("country_id", "=", self.env.ref("base.ro").id), ("is_company", "=", True), ] ) partners.update_l10n_ro_vat_subjected() @api.model def _update_l10n_ro_vat_subjected_all(self): self.update_l10n_ro_vat_subjected_all()
PypiClean
/pd3f_flair-0.6.0.1-py3-none-any.whl/flair/datasets/sequence_labeling.py
import logging import re import os from pathlib import Path from typing import Union, Dict, List import flair from flair.data import Corpus, FlairDataset, Sentence, Token from flair.datasets.base import find_train_dev_test_files from flair.file_utils import cached_path log = logging.getLogger("flair") class ColumnCorpus(Corpus): def __init__( self, data_folder: Union[str, Path], column_format: Dict[int, str], train_file=None, test_file=None, dev_file=None, tag_to_bioes=None, column_delimiter: str = r"\s+", comment_symbol: str = None, encoding: str = "utf-8", document_separator_token: str = None, skip_first_line: bool = False, in_memory: bool = True, ): """ Instantiates a Corpus from CoNLL column-formatted task data such as CoNLL03 or CoNLL2000. :param data_folder: base folder with the task data :param column_format: a map specifying the column format :param train_file: the name of the train file :param test_file: the name of the test file :param dev_file: the name of the dev file, if None, dev data is sampled from train :param tag_to_bioes: whether to convert to BIOES tagging scheme :param column_delimiter: default is to split on any separatator, but you can overwrite for instance with "\t" to split only on tabs :param comment_symbol: if set, lines that begin with this symbol are treated as comments :param document_separator_token: If provided, multiple sentences are read into one object. Provide the string token that indicates that a new document begins :param skip_first_line: set to True if your dataset has a header line :param in_memory: If set to True, the dataset is kept in memory as Sentence objects, otherwise does disk reads :return: a Corpus with annotated train, dev and test data """ # find train, dev and test files if not specified dev_file, test_file, train_file = \ find_train_dev_test_files(data_folder, dev_file, test_file, train_file) # get train data train = ColumnDataset( train_file, column_format, tag_to_bioes, encoding=encoding, comment_symbol=comment_symbol, column_delimiter=column_delimiter, in_memory=in_memory, document_separator_token=document_separator_token, skip_first_line=skip_first_line, ) # read in test file if exists test = ColumnDataset( test_file, column_format, tag_to_bioes, encoding=encoding, comment_symbol=comment_symbol, column_delimiter=column_delimiter, in_memory=in_memory, document_separator_token=document_separator_token, skip_first_line=skip_first_line, ) if test_file is not None else None # read in dev file if exists dev = ColumnDataset( dev_file, column_format, tag_to_bioes, encoding=encoding, comment_symbol=comment_symbol, column_delimiter=column_delimiter, in_memory=in_memory, document_separator_token=document_separator_token, skip_first_line=skip_first_line, ) if dev_file is not None else None super(ColumnCorpus, self).__init__(train, dev, test, name=str(data_folder)) class ColumnDataset(FlairDataset): # special key for space after SPACE_AFTER_KEY = "space-after" def __init__( self, path_to_column_file: Union[str, Path], column_name_map: Dict[int, str], tag_to_bioes: str = None, column_delimiter: str = r"\s+", comment_symbol: str = None, in_memory: bool = True, document_separator_token: str = None, encoding: str = "utf-8", skip_first_line: bool = False, ): """ Instantiates a column dataset (typically used for sequence labeling or word-level prediction). :param path_to_column_file: path to the file with the column-formatted data :param column_name_map: a map specifying the column format :param tag_to_bioes: whether to convert to BIOES tagging scheme :param column_delimiter: default is to split on any separatator, but you can overwrite for instance with "\t" to split only on tabs :param comment_symbol: if set, lines that begin with this symbol are treated as comments :param in_memory: If set to True, the dataset is kept in memory as Sentence objects, otherwise does disk reads :param document_separator_token: If provided, multiple sentences are read into one object. Provide the string token that indicates that a new document begins :param skip_first_line: set to True if your dataset has a header line """ if type(path_to_column_file) is str: path_to_column_file = Path(path_to_column_file) assert path_to_column_file.exists() self.path_to_column_file = path_to_column_file self.tag_to_bioes = tag_to_bioes self.column_name_map = column_name_map self.column_delimiter = column_delimiter self.comment_symbol = comment_symbol self.document_separator_token = document_separator_token # store either Sentence objects in memory, or only file offsets self.in_memory = in_memory if self.in_memory: self.sentences: List[Sentence] = [] else: self.indices: List[int] = [] self.total_sentence_count: int = 0 # most data sets have the token text in the first column, if not, pass 'text' as column self.text_column: int = 0 for column in self.column_name_map: if column_name_map[column] == "text": self.text_column = column # determine encoding of text file self.encoding = encoding sentence: Sentence = Sentence() sentence_started: bool = False with open(str(self.path_to_column_file), encoding=self.encoding) as f: # skip first line if to selected if skip_first_line: f.readline() line = f.readline() position = 0 while line: if self.comment_symbol is not None and line.startswith(comment_symbol): line = f.readline() continue if self.__line_completes_sentence(line): if sentence_started: if self.in_memory: if self.tag_to_bioes is not None: sentence.convert_tag_scheme( tag_type=self.tag_to_bioes, target_scheme="iobes" ) self.sentences.append(sentence) else: self.indices.append(position) position = f.tell() self.total_sentence_count += 1 sentence: Sentence = Sentence() sentence_started = False elif self.in_memory: token = self._parse_token(line) if not line.isspace(): sentence.add_token(token) sentence_started = True elif not line.isspace(): sentence_started = True line = f.readline() if sentence_started: if self.in_memory: self.sentences.append(sentence) else: self.indices.append(position) self.total_sentence_count += 1 def _parse_token(self, line: str) -> Token: fields: List[str] = re.split(self.column_delimiter, line) token = Token(fields[self.text_column]) for column in self.column_name_map: if len(fields) > column: if column != self.text_column and self.column_name_map[column] != self.SPACE_AFTER_KEY: token.add_label( self.column_name_map[column], fields[column] ) if self.column_name_map[column] == self.SPACE_AFTER_KEY and fields[column] == '-': token.whitespace_after = False return token def __line_completes_sentence(self, line: str) -> bool: sentence_completed = line.isspace() if self.document_separator_token: sentence_completed = False fields: List[str] = re.split(self.column_delimiter, line) if len(fields) >= self.text_column: if fields[self.text_column] == self.document_separator_token: sentence_completed = True return sentence_completed def is_in_memory(self) -> bool: return self.in_memory def __len__(self): return self.total_sentence_count def __getitem__(self, index: int = 0) -> Sentence: if self.in_memory: sentence = self.sentences[index] else: with open(str(self.path_to_column_file), encoding=self.encoding) as file: file.seek(self.indices[index]) line = file.readline() sentence: Sentence = Sentence() while line: if self.comment_symbol is not None and line.startswith( self.comment_symbol ): line = file.readline() continue if self.__line_completes_sentence(line): if len(sentence) > 0: if self.tag_to_bioes is not None: sentence.convert_tag_scheme( tag_type=self.tag_to_bioes, target_scheme="iobes" ) return sentence else: token = self._parse_token(line) if not line.isspace(): sentence.add_token(token) line = file.readline() return sentence class BIOFID(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "lemma", 2: "pos", 3: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary biofid_path = "https://raw.githubusercontent.com/texttechnologylab/BIOfid/master/BIOfid-Dataset-NER/" cached_path(f"{biofid_path}train.conll", Path("datasets") / dataset_name) cached_path(f"{biofid_path}dev.conll", Path("datasets") / dataset_name) cached_path(f"{biofid_path}test.conll", Path("datasets") / dataset_name) super(BIOFID, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class CONLL_03(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, document_as_sequence: bool = False, ): """ Initialize the CoNLL-03 corpus. This is only possible if you've manually downloaded it to your machine. Obtain the corpus from https://www.clips.uantwerpen.be/conll2003/ner/ and put the eng.testa, .testb, .train files in a folder called 'conll_03'. Then set the base_path parameter in the constructor to the path to the parent directory where the conll_03 folder resides. :param base_path: Path to the CoNLL-03 corpus (i.e. 'conll_03' folder) on your machine :param tag_to_bioes: NER by default, need not be changed, but you could also select 'pos' or 'np' to predict POS tags or chunks respectively :param in_memory: If True, keeps dataset in memory giving speedups in training. :param document_as_sequence: If True, all sentences of a document are read into a single Sentence object """ if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "pos", 2: "np", 3: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # check if data there if not data_folder.exists(): log.warning("-" * 100) log.warning(f'WARNING: CoNLL-03 dataset not found at "{data_folder}".') log.warning( 'Instructions for obtaining the data can be found here: https://www.clips.uantwerpen.be/conll2003/ner/"' ) log.warning("-" * 100) super(CONLL_03, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory, document_separator_token=None if not document_as_sequence else "-DOCSTART-", ) class CONLL_03_GERMAN(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, document_as_sequence: bool = False, ): """ Initialize the CoNLL-03 corpus for German. This is only possible if you've manually downloaded it to your machine. Obtain the corpus from https://www.clips.uantwerpen.be/conll2003/ner/ and put the respective files in a folder called 'conll_03_german'. Then set the base_path parameter in the constructor to the path to the parent directory where the conll_03_german folder resides. :param base_path: Path to the CoNLL-03 corpus (i.e. 'conll_03_german' folder) on your machine :param tag_to_bioes: NER by default, need not be changed, but you could also select 'lemma', 'pos' or 'np' to predict word lemmas, POS tags or chunks respectively :param in_memory: If True, keeps dataset in memory giving speedups in training. :param document_as_sequence: If True, all sentences of a document are read into a single Sentence object """ if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "lemma", 2: "pos", 3: "np", 4: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # check if data there if not data_folder.exists(): log.warning("-" * 100) log.warning(f'WARNING: CoNLL-03 dataset not found at "{data_folder}".') log.warning( 'Instructions for obtaining the data can be found here: https://www.clips.uantwerpen.be/conll2003/ner/"' ) log.warning("-" * 100) super(CONLL_03_GERMAN, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory, document_separator_token=None if not document_as_sequence else "-DOCSTART-", ) class CONLL_03_DUTCH(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, document_as_sequence: bool = False, ): """ Initialize the CoNLL-03 corpus for Dutch. The first time you call this constructor it will automatically download the dataset. :param base_path: Default is None, meaning that corpus gets auto-downloaded and loaded. You can override this to point to a different folder but typically this should not be necessary. :param tag_to_bioes: NER by default, need not be changed, but you could also select 'pos' to predict POS tags instead :param in_memory: If True, keeps dataset in memory giving speedups in training. :param document_as_sequence: If True, all sentences of a document are read into a single Sentence object """ if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "pos", 2: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary conll_02_path = "https://www.clips.uantwerpen.be/conll2002/ner/data/" cached_path(f"{conll_02_path}ned.testa", Path("datasets") / dataset_name) cached_path(f"{conll_02_path}ned.testb", Path("datasets") / dataset_name) cached_path(f"{conll_02_path}ned.train", Path("datasets") / dataset_name) super(CONLL_03_DUTCH, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, encoding="latin-1", in_memory=in_memory, document_separator_token=None if not document_as_sequence else "-DOCSTART-", ) class TWITTER_NER(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, document_as_sequence: bool = False, ): """ Initialize a dataset called twitter_ner which can be found on the following page: https://raw.githubusercontent.com/aritter/twitter_nlp/master/data/annotated/ner.txt. The first time you call this constructor it will automatically download the dataset. :param base_path: Default is None, meaning that corpus gets auto-downloaded and loaded. You can override this to point to a different folder but typically this should not be necessary. :param tag_to_bioes: NER by default, need not be changed :param in_memory: If True, keeps dataset in memory giving speedups in training. :param document_as_sequence: If True, all sentences of a document are read into a single Sentence object """ if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: 'text', 1: 'ner'} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary twitter_ner_path = "https://raw.githubusercontent.com/aritter/twitter_nlp/master/data/annotated/" cached_path(f"{twitter_ner_path}ner.txt", Path("datasets") / dataset_name) super(TWITTER_NER, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, encoding="latin-1", train_file="ner.txt", in_memory=in_memory, document_separator_token=None if not document_as_sequence else "-DOCSTART-", ) class MIT_RESTAURANTS(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, document_as_sequence: bool = False, ): """ Initialize the experimental MIT Restaurant corpus available on https://groups.csail.mit.edu/sls/downloads/restaurant/. The first time you call this constructor it will automatically download the dataset. :param base_path: Default is None, meaning that corpus gets auto-downloaded and loaded. You can override this to point to a different folder but typically this should not be necessary. :param tag_to_bioes: NER by default, need not be changed, but you could also select 'pos' to predict POS tags instead :param in_memory: If True, keeps dataset in memory giving speedups in training. :param document_as_sequence: If True, all sentences of a document are read into a single Sentence object """ if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary mit_restaurants_path = "https://megantosh.s3.eu-central-1.amazonaws.com/MITRestoCorpus/" cached_path(f"{mit_restaurants_path}test.txt", Path("datasets") / dataset_name) cached_path(f"{mit_restaurants_path}train.txt", Path("datasets") / dataset_name) super(MIT_RESTAURANTS, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, encoding="latin-1", in_memory=in_memory, document_separator_token=None if not document_as_sequence else "-DOCSTART-", ) def add_IOB_tags(data_file: Union[str, Path], encoding: str = "utf8", ner_column: int = 1): """ Function that adds IOB tags if only chunk names are provided (e.g. words are tagged PER instead of B-PER or I-PER). Replaces '0' with 'O' as the no-chunk tag since ColumnCorpus expects the letter 'O'. Additionally it removes lines with no tags in the data file and can also be used if the data is only partially IOB tagged. Parameters ---------- data_file : Union[str, Path] Path to the data file. encoding : str, optional Encoding used in open function. The default is "utf8". ner_column : int, optional Specifies the ner-tagged column. The default is 1 (the second column). """ def add_I_prefix(current_line: List[str], ner: int, tag: str): for i in range(0, len(current_line)): if i == 0: f.write(line_list[i]) elif i == ner: f.write(' I-' + tag) else: f.write(' ' + current_line[i]) f.write('\n') with open(file=data_file, mode='r', encoding=encoding) as f: lines = f.readlines() with open(file=data_file, mode='w', encoding=encoding) as f: pred = 'O' # remembers ner tag of predecessing line for line in lines: line_list = line.split() if len(line_list) > 2: # word with tags ner_tag = line_list[ner_column] if ner_tag in ['0', 'O']: # no chunk for i in range(0,len(line_list)): if i == 0: f.write(line_list[i]) elif i == ner_column: f.write(' O') else: f.write(' ' + line_list[i]) f.write('\n') pred = 'O' elif '-' not in ner_tag: # no IOB tags if pred == 'O': # found a new chunk add_I_prefix(line_list, ner_column, ner_tag) pred = ner_tag else: # found further part of chunk or new chunk directly after old chunk add_I_prefix(line_list, ner_column, ner_tag) pred = ner_tag else: # line already has IOB tag (tag contains '-') f.write(line) pred = ner_tag.split('-')[1] elif len(line_list) == 0: # empty line f.write('\n') pred = 'O' def add_IOB2_tags(data_file: Union[str, Path], encoding: str = "utf8"): """ Function that adds IOB2 tags if only chunk names are provided (e.g. words are tagged PER instead of B-PER or I-PER). Replaces '0' with 'O' as the no-chunk tag since ColumnCorpus expects the letter 'O'. Additionally it removes lines with no tags in the data file and can also be used if the data is only partially IOB tagged. Parameters ---------- data_file : Union[str, Path] Path to the data file. encoding : str, optional Encoding used in open function. The default is "utf8". """ with open(file=data_file, mode='r', encoding=encoding) as f: lines = f.readlines() with open(file=data_file, mode='w', encoding=encoding) as f: pred = 'O' # remembers tag of predecessing line for line in lines: line_list = line.split() if len(line_list) == 2: # word with tag word = line_list[0] tag = line_list[1] if tag in ['0', 'O']: # no chunk f.write(word + ' O\n') pred = 'O' elif '-' not in tag: # no IOB tags if pred == 'O': # found a new chunk f.write(word + ' B-' + tag + '\n') pred = tag else: # found further part of chunk or new chunk directly after old chunk if pred == tag: f.write(word + ' I-' + tag + '\n') else: f.write(word + ' B-' + tag + '\n') pred = tag else: # line already has IOB tag (tag contains '-') f.write(line) pred = tag.split('-')[1] elif len(line_list) == 0: # empty line f.write('\n') pred = 'O' class CONLL_03_SPANISH(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, ): """ Initialize the CoNLL-03 corpus for Spanish. The first time you call this constructor it will automatically download the dataset. :param base_path: Default is None, meaning that corpus gets auto-downloaded and loaded. You can override this to point to a different folder but typically this should not be necessary. :param tag_to_bioes: NER by default, should not be changed :param in_memory: If True, keeps dataset in memory giving speedups in training. :param document_as_sequence: If True, all sentences of a document are read into a single Sentence object """ if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary conll_02_path = "https://www.clips.uantwerpen.be/conll2002/ner/data/" cached_path(f"{conll_02_path}esp.testa", Path("datasets") / dataset_name) cached_path(f"{conll_02_path}esp.testb", Path("datasets") / dataset_name) cached_path(f"{conll_02_path}esp.train", Path("datasets") / dataset_name) super(CONLL_03_SPANISH, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, encoding="latin-1", in_memory=in_memory, ) class CONLL_2000(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "np", in_memory: bool = True, ): """ Initialize the CoNLL-2000 corpus for English chunking. The first time you call this constructor it will automatically download the dataset. :param base_path: Default is None, meaning that corpus gets auto-downloaded and loaded. You can override this to point to a different folder but typically this should not be necessary. :param tag_to_bioes: 'np' by default, should not be changed, but you can set 'pos' instead to predict POS tags :param in_memory: If True, keeps dataset in memory giving speedups in training. """ if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "pos", 2: "np"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary conll_2000_path = "https://www.clips.uantwerpen.be/conll2000/chunking/" data_file = Path(flair.cache_root) / "datasets" / dataset_name / "train.txt" if not data_file.is_file(): cached_path( f"{conll_2000_path}train.txt.gz", Path("datasets") / dataset_name ) cached_path( f"{conll_2000_path}test.txt.gz", Path("datasets") / dataset_name ) import gzip, shutil with gzip.open( Path(flair.cache_root) / "datasets" / dataset_name / "train.txt.gz", "rb", ) as f_in: with open( Path(flair.cache_root) / "datasets" / dataset_name / "train.txt", "wb", ) as f_out: shutil.copyfileobj(f_in, f_out) with gzip.open( Path(flair.cache_root) / "datasets" / dataset_name / "test.txt.gz", "rb" ) as f_in: with open( Path(flair.cache_root) / "datasets" / dataset_name / "test.txt", "wb", ) as f_out: shutil.copyfileobj(f_in, f_out) super(CONLL_2000, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class DANE(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {1: 'text', 3: 'pos', 9: 'ner'} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary data_path = Path(flair.cache_root) / "datasets" / dataset_name train_data_file = data_path / "ddt.train.conllu" if not train_data_file.is_file(): temp_file = cached_path( 'https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip', Path("datasets") / dataset_name ) from zipfile import ZipFile with ZipFile(temp_file, 'r') as zip_file: zip_file.extractall(path=data_path) # Remove CoNLL-U meta information in the last column for part in ['train', 'dev', 'test']: lines = [] data_file = "ddt.{}.conllu".format(part) with open(data_path / data_file, 'r') as file: for line in file: if line.startswith("#") or line == "\n": lines.append(line) lines.append(line.replace("name=", "").replace("|SpaceAfter=No", "")) with open(data_path / data_file, 'w') as file: file.writelines(lines) print(data_path / data_file) super(DANE, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory, comment_symbol="#" ) class EUROPARL_NER_GERMAN(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = False, ): """ Initialize the EUROPARL_NER_GERMAN corpus. The first time you call this constructor it will automatically download the dataset. :param base_path: Default is None, meaning that corpus gets auto-downloaded and loaded. You can override this to point to a different folder but typically this should not be necessary. :param tag_to_bioes: 'ner' by default, should not be changed. :param in_memory: If True, keeps dataset in memory giving speedups in training. Not recommended due to heavy RAM usage. :param document_as_sequence: If True, all sentences of a document are read into a single Sentence object """ if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: 'text', 1: 'lemma', 2: 'pos', 3: 'np', 4: 'ner'} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary europarl_ner_german_path = "https://nlpado.de/~sebastian/software/ner/" cached_path(f"{europarl_ner_german_path}ep-96-04-15.conll", Path("datasets") / dataset_name) cached_path(f"{europarl_ner_german_path}ep-96-04-16.conll", Path("datasets") / dataset_name) add_IOB_tags(data_file=Path(data_folder / "ep-96-04-15.conll"), encoding="latin-1", ner_column=4) add_IOB_tags(data_file=Path(data_folder / "ep-96-04-16.conll"), encoding="latin-1", ner_column=4) super(EUROPARL_NER_GERMAN, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, encoding="latin-1", in_memory=in_memory, train_file='ep-96-04-16.conll', test_file='ep-96-04-15.conll' ) class GERMEVAL_14(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, ): """ Initialize the GermEval NER corpus for German. This is only possible if you've manually downloaded it to your machine. Obtain the corpus from https://sites.google.com/site/germeval2014ner/data and put it into some folder. Then point the base_path parameter in the constructor to this folder :param base_path: Path to the GermEval corpus on your machine :param tag_to_bioes: 'ner' by default, should not be changed. :param in_memory:If True, keeps dataset in memory giving speedups in training. """ if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {1: "text", 2: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # check if data there if not data_folder.exists(): log.warning("-" * 100) log.warning(f'WARNING: GermEval-14 dataset not found at "{data_folder}".') log.warning( 'Instructions for obtaining the data can be found here: https://sites.google.com/site/germeval2014ner/data"' ) log.warning("-" * 100) super(GERMEVAL_14, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, comment_symbol="#", in_memory=in_memory, ) class INSPEC(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "keyword", in_memory: bool = True, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "keyword"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name inspec_path = "https://raw.githubusercontent.com/midas-research/keyphrase-extraction-as-sequence-labeling-data/master/Inspec" cached_path(f"{inspec_path}/train.txt", Path("datasets") / dataset_name) cached_path(f"{inspec_path}/test.txt", Path("datasets") / dataset_name) if not "dev.txt" in os.listdir(data_folder): cached_path(f"{inspec_path}/valid.txt", Path("datasets") / dataset_name) # rename according to train - test - dev - convention os.rename(data_folder / "valid.txt", data_folder / "dev.txt") super(INSPEC, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class LER_GERMAN(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = False, ): """ Initialize the LER_GERMAN (Legal Entity Recognition) corpus. The first time you call this constructor it will automatically download the dataset. :param base_path: Default is None, meaning that corpus gets auto-downloaded and loaded. You can override this to point to a different folder but typically this should not be necessary. :param in_memory: If True, keeps dataset in memory giving speedups in training. Not recommended due to heavy RAM usage. :param document_as_sequence: If True, all sentences of a document are read into a single Sentence object """ if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary ler_path = "https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/" cached_path(f"{ler_path}ler.conll", Path("datasets") / dataset_name) super(LER_GERMAN, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory, train_file='ler.conll' ) class NER_BASQUE(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary ner_basque_path = "http://ixa2.si.ehu.eus/eiec/" data_path = Path(flair.cache_root) / "datasets" / dataset_name data_file = data_path / "named_ent_eu.train" if not data_file.is_file(): cached_path( f"{ner_basque_path}/eiec_v1.0.tgz", Path("datasets") / dataset_name ) import tarfile, shutil with tarfile.open( Path(flair.cache_root) / "datasets" / dataset_name / "eiec_v1.0.tgz", "r:gz", ) as f_in: corpus_files = ( "eiec_v1.0/named_ent_eu.train", "eiec_v1.0/named_ent_eu.test", ) for corpus_file in corpus_files: f_in.extract(corpus_file, data_path) shutil.move(f"{data_path}/{corpus_file}", data_path) super(NER_BASQUE, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class NER_FINNISH(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary ner_finnish_path = "https://raw.githubusercontent.com/mpsilfve/finer-data/master/data/digitoday." cached_path(f"{ner_finnish_path}2014.train.csv", Path("datasets") / dataset_name) cached_path(f"{ner_finnish_path}2014.dev.csv", Path("datasets") / dataset_name) cached_path(f"{ner_finnish_path}2015.test.csv", Path("datasets") / dataset_name) _remove_lines_without_annotations(data_file=Path(data_folder / "digitoday.2015.test.csv")) super(NER_FINNISH, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory, skip_first_line=True ) def _remove_lines_without_annotations(data_file: Union[str, Path] = None): with open(data_file, 'r') as f: lines = f.readlines() with open(data_file, 'w') as f: for line in lines: if len(line.split()) != 1: f.write(line) class NER_SWEDISH(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, ): """ Initialize the NER_SWEDISH corpus for Swedish. The first time you call this constructor it will automatically download the dataset. :param base_path: Default is None, meaning that corpus gets auto-downloaded and loaded. You can override this to point to a different folder but typically this should not be necessary. :param in_memory: If True, keeps dataset in memory giving speedups in training. :param document_as_sequence: If True, all sentences of a document are read into a single Sentence object """ if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary ner_spraakbanken_path = "https://raw.githubusercontent.com/klintan/swedish-ner-corpus/master/" cached_path(f"{ner_spraakbanken_path}test_corpus.txt", Path("datasets") / dataset_name) cached_path(f"{ner_spraakbanken_path}train_corpus.txt", Path("datasets") / dataset_name) # data is not in IOB2 format. Thus we transform it to IOB2 add_IOB2_tags(data_file=Path(data_folder / "test_corpus.txt")) add_IOB2_tags(data_file=Path(data_folder / "train_corpus.txt")) super(NER_SWEDISH, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory, ) class SEMEVAL2017(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "keyword", in_memory: bool = True, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "keyword"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name semeval2017_path = "https://raw.githubusercontent.com/midas-research/keyphrase-extraction-as-sequence-labeling-data/master/SemEval-2017" cached_path(f"{semeval2017_path}/train.txt", Path("datasets") / dataset_name) cached_path(f"{semeval2017_path}/test.txt", Path("datasets") / dataset_name) cached_path(f"{semeval2017_path}/dev.txt", Path("datasets") / dataset_name) super(SEMEVAL2017, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class SEMEVAL2010(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "keyword", in_memory: bool = True, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "keyword"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name semeval2010_path = "https://raw.githubusercontent.com/midas-research/keyphrase-extraction-as-sequence-labeling-data/master/processed_semeval-2010" cached_path(f"{semeval2010_path}/train.txt", Path("datasets") / dataset_name) cached_path(f"{semeval2010_path}/test.txt", Path("datasets") / dataset_name) super(SEMEVAL2010, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class WIKINER_ENGLISH(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = False, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "pos", 2: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary _download_wikiner("en", dataset_name) super(WIKINER_ENGLISH, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class WIKINER_GERMAN(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = False, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "pos", 2: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary _download_wikiner("de", dataset_name) super(WIKINER_GERMAN, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class WIKINER_DUTCH(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = False, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "pos", 2: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary _download_wikiner("nl", dataset_name) super(WIKINER_DUTCH, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class WIKINER_FRENCH(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = False, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "pos", 2: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary _download_wikiner("fr", dataset_name) super(WIKINER_FRENCH, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class WIKINER_ITALIAN(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = False, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "pos", 2: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary _download_wikiner("it", dataset_name) super(WIKINER_ITALIAN, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class WIKINER_SPANISH(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = False, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "pos", 2: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary _download_wikiner("es", dataset_name) super(WIKINER_SPANISH, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class WIKINER_PORTUGUESE(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = False, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "pos", 2: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary _download_wikiner("pt", dataset_name) super(WIKINER_PORTUGUESE, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class WIKINER_POLISH(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = False, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "pos", 2: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary _download_wikiner("pl", dataset_name) super(WIKINER_POLISH, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class WIKINER_RUSSIAN(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = False, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "pos", 2: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary _download_wikiner("ru", dataset_name) super(WIKINER_RUSSIAN, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class WNUT_17(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, tag_to_bioes: str = "ner", in_memory: bool = True, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "ner"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary wnut_path = "https://noisy-text.github.io/2017/files/" cached_path(f"{wnut_path}wnut17train.conll", Path("datasets") / dataset_name) cached_path(f"{wnut_path}emerging.dev.conll", Path("datasets") / dataset_name) cached_path( f"{wnut_path}emerging.test.annotated", Path("datasets") / dataset_name ) super(WNUT_17, self).__init__( data_folder, columns, tag_to_bioes=tag_to_bioes, in_memory=in_memory ) class BIOSCOPE(ColumnCorpus): def __init__( self, base_path: Union[str, Path] = None, in_memory: bool = True, ): if type(base_path) == str: base_path: Path = Path(base_path) # column format columns = {0: "text", 1: "tag"} # this dataset name dataset_name = self.__class__.__name__.lower() # default dataset folder is the cache root if not base_path: base_path = Path(flair.cache_root) / "datasets" data_folder = base_path / dataset_name # download data if necessary bioscope_path = "https://raw.githubusercontent.com/whoisjones/BioScopeSequenceLabelingData/master/sequence_labeled/" cached_path(f"{bioscope_path}output.txt", Path("datasets") / dataset_name) super(BIOSCOPE, self).__init__( data_folder, columns, in_memory=in_memory, train_file="output.txt" ) def _download_wikiner(language_code: str, dataset_name: str): # download data if necessary wikiner_path = ( "https://raw.githubusercontent.com/dice-group/FOX/master/input/Wikiner/" ) lc = language_code data_file = ( Path(flair.cache_root) / "datasets" / dataset_name / f"aij-wikiner-{lc}-wp3.train" ) if not data_file.is_file(): cached_path( f"{wikiner_path}aij-wikiner-{lc}-wp3.bz2", Path("datasets") / dataset_name ) import bz2, shutil # unpack and write out in CoNLL column-like format bz_file = bz2.BZ2File( Path(flair.cache_root) / "datasets" / dataset_name / f"aij-wikiner-{lc}-wp3.bz2", "rb", ) with bz_file as f, open( Path(flair.cache_root) / "datasets" / dataset_name / f"aij-wikiner-{lc}-wp3.train", "w", encoding="utf-8" ) as out: for line in f: line = line.decode("utf-8") words = line.split(" ") for word in words: out.write("\t".join(word.split("|")) + "\n")
PypiClean
/pypcs-0.0.5.tar.gz/pypcs-0.0.5/pyPCS/_basicData.py
import math # 打印函数运行的时间 def _prt_func_time(func): def f(*args, **kwargs): from time import time st = time() _return = func(*args, **kwargs) print("Time: \033[0;33m" + str(time() - st) + "pypcs\033[0m") return _return return f # 打印函数每运行一定次数的时间 def _prt_funcs_time(times): def __prt_funcs_time(func): st = 0 counter = 0 def f(*args, **kwargs): from time import time nonlocal counter, st st = time() if counter == 0 else st counter += 1 if counter == times: print(time() - st) counter = 0 return func(*args, **kwargs) return f return __prt_funcs_time # 打印函数运行过的次数 def _prt_func_run_num(func): counter = 0 def f(*args, **kwargs): nonlocal counter counter += 1 print(counter) return func(*args, **kwargs) return f value_note = { 0: 'C', 1: '#C', 2: 'D', 3: '#D', 4: 'E', 5: 'F', 6: '#F', 7: 'G', 8: '#G', 9: 'A', 10: '#A', 11: 'B', # 第一行用于音级集和判断音名 21: 'A0', 22: '#A0', 23: 'B0', 24: 'C1', 25: '#C1', 26: 'D1', 27: '#D1', 28: 'E1', 29: 'F1', 30: '#F1', 31: 'G1', 32: '#G1', 33: 'A1', 34: '#A1', 35: 'B1', 36: 'C2', 37: '#C2', 38: 'D2', 39: '#D2', 40: 'E2', 41: 'F2', 42: '#F2', 43: 'G2', 44: '#G2', 45: 'A2', 46: '#A2', 47: 'B2', 48: 'C3', 49: '#C3', 50: 'D3', 51: '#D3', 52: 'E3', 53: 'F3', 54: '#F3', 55: 'G3', 56: '#G3', 57: 'A3', 58: '#A3', 59: 'B3', 60: 'C4', 61: '#C4', 62: 'D4', 63: '#D4', 64: 'E4', 65: 'F4', 66: '#F4', 67: 'G4', 68: '#G4', 69: 'A4', 70: '#A4', 71: 'B4', 72: 'C5', 73: '#C5', 74: 'D5', 75: '#D5', 76: 'E5', 77: 'F5', 78: '#F5', 79: 'G5', 80: '#G5', 81: 'A5', 82: '#A5', 83: 'B5', 84: 'C6', 85: '#C6', 86: 'D6', 87: '#D6', 88: 'E6', 89: 'F6', 90: '#F6', 91: 'G6', 92: '#G6', 93: 'A6', 94: '#A6', 95: 'B6', 96: 'C7', 97: '#C7', 98: 'D7', 99: '#D7', 100: 'E7', 101: 'F7', 102: '#F7', 103: 'G7', 104: '#G7', 105: 'A7', 106: '#A7', 107: 'B7', 108: 'C8' } # 倒过来 note_value = { 'A0': 21, '#A0': 22, 'B0': 23, 'C1': 24, '#C1': 25, 'D1': 26, '#D1': 27, 'E1': 28, 'F1': 29, '#F1': 30, 'G1': 31, '#G1': 32, 'A1': 33, '#A1': 34, 'B1': 35, 'C2': 36, '#C2': 37, 'D2': 38, '#D2': 39, 'E2': 40, 'F2': 41, '#F2': 42, 'G2': 43, '#G2': 44, 'A2': 45, '#A2': 46, 'B2': 47, 'C3': 48, '#C3': 49, 'D3': 50, '#D3': 51, 'E3': 52, 'F3': 53, '#F3': 54, 'G3': 55, '#G3': 56, 'A3': 57, '#A3': 58, 'B3': 59, 'C4': 60, '#C4': 61, 'D4': 62, '#D4': 63, 'E4': 64, 'F4': 65, '#F4': 66, 'G4': 67, '#G4': 68, 'A4': 69, '#A4': 70, 'B4': 71, 'C5': 72, '#C5': 73, 'D5': 74, '#D5': 75, 'E5': 76, 'F5': 77, '#F5': 78, 'G5': 79, '#G5': 80, 'A5': 81, '#A5': 82, 'B5': 83, 'C6': 84, '#C6': 85, 'D6': 86, '#D6': 87, 'E6': 88, 'F6': 89, '#F6': 90, 'G6': 91, '#G6': 92, 'A6': 93, '#A6': 94, 'B6': 95, 'C7': 108, '#C7': 97, 'D7': 98, '#D7': 99, 'E7': 100, 'F7': 101, '#F7': 102, 'G7': 103, '#G7': 104, 'A7': 105, '#A7': 106, 'B7': 107, 'C8': 108, # 若输入小写 'a0': 21, '#a0': 22, 'b0': 23, 'c1': 24, '#c1': 25, 'd1': 26, '#d1': 27, 'e1': 28, 'f1': 29, '#f1': 30, 'g1': 31, '#g1': 32, 'a1': 33, '#a1': 34, 'b1': 35, 'c2': 36, '#c2': 37, 'd2': 38, '#d2': 39, 'e2': 40, 'f2': 41, '#f2': 42, 'g2': 43, '#g2': 44, 'a2': 45, '#a2': 46, 'b2': 47, 'c3': 48, '#c3': 49, 'd3': 50, '#d3': 51, 'e3': 52, 'f3': 53, '#f3': 54, 'g3': 55, '#g3': 56, 'a3': 57, '#a3': 58, 'b3': 59, 'c4': 60, '#c4': 61, 'd4': 62, '#d4': 63, 'e4': 64, 'f4': 65, '#f4': 66, 'g4': 67, '#g4': 68, 'a4': 69, '#a4': 70, 'b4': 71, 'c5': 72, '#c5': 73, 'd5': 74, '#d5': 75, 'e5': 76, 'f5': 77, '#f5': 78, 'g5': 79, '#g5': 80, 'a5': 81, '#a5': 82, 'b5': 83, 'c6': 84, '#c6': 85, 'd6': 86, '#d6': 87, 'e6': 88, 'f6': 89, '#f6': 90, 'g6': 91, '#g6': 92, 'a6': 93, '#a6': 94, 'b6': 95, 'c7': 108, '#c7': 97, 'd7': 98, '#d7': 99, 'e7': 100, 'f7': 101, '#f7': 102, 'g7': 103, '#g7': 104, 'a7': 105, '#a7': 106, 'b7': 107, 'c8': 108, # 如果没有输入音区: 'C': 60, '#C': 61, 'D': 62, '#D': 63, 'E': 64, 'F': 65, '#F': 66, 'G': 67, '#G': 68, 'A': 69, '#A': 70, 'B': 71, # 如果没有音区也没有大小写 'c': 60, '#c': 61, 'd': 62, '#d': 63, 'e': 64, 'f': 65, '#f': 66, 'g': 67, '#g': 68, 'a': 69, '#a': 70, 'b': 71 } # note_names = list(note_value.key()) notes_names = [ 'A0', '#A0', 'B0', 'C1', '#C1', 'D1', '#D1', 'E1', 'F1', '#F1', 'G1', '#G1', 'A1', '#A1', 'B1', 'C2', '#C2', 'D2', '#D2', 'E2', 'F2', '#F2', 'G2', '#G2', 'A2', '#A2', 'B2', 'C3', '#C3', 'D3', '#D3', 'E3', 'F3', '#F3', 'G3', '#G3', 'A3', '#A3', 'B3', 'C4', '#C4', 'D4', '#D4', 'E4', 'F4', '#F4', 'G4', '#G4', 'A4', '#A4', 'B4', 'C5', '#C5', 'D5', '#D5', 'E5', 'F5', '#F5', 'G5', '#G5', 'A5', '#A5', 'B5', 'C6', '#C6', 'D6', '#D6', 'E6', 'F6', '#F6', 'G6', '#G6', 'A6', '#A6', 'B6', 'C7', '#C7', 'D7', '#D7', 'E7', 'F7', '#F7', 'G7', '#G7', 'A7', '#A7', 'B7', 'C8', 'a0', '#a0', 'b0', 'c1', '#c1', 'd1', '#d1', 'e1', 'f1', '#f1', 'g1', '#g1', 'a1', '#a1', 'b1', 'c2', '#c2', 'd2', '#d2', 'e2', 'f2', '#f2', 'g2', '#g2', 'a2', '#a2', 'b2', 'c3', '#c3', 'd3', '#d3', 'e3', 'f3', '#f3', 'g3', '#g3', 'a3', '#a3', 'b3', 'c4', '#c4', 'd4', '#d4', 'e4', 'f4', '#f4', 'g4', '#g4', 'a4', '#a4', 'b4', 'c5', '#c5', 'd5', '#d5', 'e5', 'f5', '#f5', 'g5', '#g5', 'a5', '#a5', 'b5', 'c6', '#c6', 'd6', '#d6', 'e6', 'f6', '#f6', 'g6', '#g6', 'a6', '#a6', 'b6', 'c7', '#c7', 'd7', '#d7', 'e7', 'f7', '#f7', 'g7', '#g7', 'a7', '#a7', 'b7', 'c8', 'C', '#C', 'D', '#D', 'E', 'F', '#F', 'G', '#G', 'A', '#A', 'B', 'c', '#c', 'd', '#d', 'e', 'f', '#f', 'g', '#g', 'a', '#a', 'b' ] ChordsAttributes = { } chords_chroma_vector = { # # 三和弦 # # 大三和弦 index: 'C': [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0], # 12*0 '#C': [0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0], 'D': [0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0], '#D': [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0], 'E': [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1], 'F': [1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0], '#F': [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0], 'G': [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1], 'bA': [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0], 'A': [0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0], 'bB': [0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0], 'B': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1], # 小三和弦 'Cm': [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], # 12*1 '#Cm': [0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0], 'Dm': [0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0], '#Dm': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0], 'Em': [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1], 'Fm': [1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0], '#Fm': [0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0], 'Gm': [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0], 'bAm': [0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1], 'Am': [1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0], 'bBm': [0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0], 'Bm': [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1], # 减三和弦 'Cdim': [1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0], # 12*2 '#Cdim': [0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0], 'Ddim': [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], '#Ddim': [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], 'Edim': [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0], 'Fdim': [0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1], '#Fdim': [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0], 'Gdim': [0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], 'bAdim': [0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1], 'Adim': [1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0], 'bBdim': [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0], 'Bdim': [0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1], # 增三和弦 'C/E/#Gaug': [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0], # 12*3 'bDaug/F/A': [0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0], 'D/#F/#Aaug': [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], 'bD/G/Baug': [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], # 挂二/四和弦 'Csus2/Gsus4': [1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0], # 4 + 12*3 '#Csus2/bAsus4': [0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0], 'Dsus2/Asus4': [0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0], '#Dsus2/bBsus4': [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], 'Esus2/Bsus4': [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1], 'Fsus2/Csus4': [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0], '#Fsus2/#Csus4': [0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0], 'Gsus2/Dsus4': [0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0], 'bAsus2/#Dsus4': [0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0], 'Asus2/Esus4': [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1], 'bBsus2/Fsus4': [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0], 'Bsus2/#Fsus4': [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], # # 省略音七和弦 # 大七和弦(或增大七和弦)省略五音 'CM7,-5': [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], # 4 + 12*4 '#CM7,-5': [1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], 'DM7,-5': [0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0], '#DM7,-5': [0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0], 'EM7,-5': [0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0], 'FM7,-5': [0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0], '#FM7,-5': [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0], 'GM7,-5': [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1], 'bAM7,-5': [1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0], 'AM7,-5': [0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0], 'bBM7,-5': [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0], 'BM7,-5': [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1], # 小大七和弦省略五音(有没有减大七和弦?) 'CmM7,-5': [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1], # 4 + 12*5 '#CmM7,-5': [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 'DmM7,-5': [0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0], '#DmM7,-5': [0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0], 'EmM7,-5': [0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0], 'FmM7,-5': [0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0], '#FmM7,-5': [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0], 'GmM7,-5': [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0], 'bAmM7,-5': [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1], 'AmM7,-5': [1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0], 'bBmM7,-5': [0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0], 'BmM7,-5': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1], # 属七和弦(或增小七和弦)省略五音 'C7,-5': [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0], # 4 + 12*6 '#C7,-5': [0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1], 'D7,-5': [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0], '#D7,-5': [0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], 'E7,-5': [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0], 'F7,-5': [0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0], '#F7,-5': [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0], 'G7,-5': [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1], 'bA7,-5': [1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0], 'A7,-5': [0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0], 'bB7,-5': [0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0], 'B7,-5': [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1], # 属七和弦(或小七和弦)省略三音 'C7,-3': [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # 4 + 12*7 '#C7,-3': [0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1], 'D7,-3': [1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0], '#D7,-3': [0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0], 'E7,-3': [0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1], 'F7,-3': [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0], '#F7,-3': [0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], 'G7,-3': [0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0], 'bA7,-3': [0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0], 'A7,-3': [0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0], 'bB7,-3': [0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0], 'B7,-3': [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1], # 小七和弦(或半减七和弦)省略五音 'Cm7,-5': [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0], # 4 + 12*8 '#Cm7,-5': [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], 'Dm7,-5': [1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0], '#Dm7,-5': [0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0], 'Em7,-5': [0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0], 'Fm7,-5': [0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0], '#Fm7,-5': [0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0], 'Gm7,-5': [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0], 'bAm7,-5': [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1], 'Am7,-5': [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0], 'bBm7,-5': [0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0], 'Bm7,-5': [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1], # 半减七和弦省略三音 'Cm7-3': [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0], # 4 + 12*9 '#Cm7-3': [0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1], 'Dm7-3': [1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0], '#Dm7-3': [0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0], 'Em7-3': [0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0], 'Fm7-3': [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1], '#Fm7-3': [1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], 'Gm7-3': [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0], 'bAm7-3': [0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0], 'Am7-3': [0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0], 'bBm7-3': [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0], 'Bm7-3': [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1], # # 七和弦 # 大七和弦 'CM7': [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1], # 4 + 12*10 '#CM7': [1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0], 'DM7': [0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0], '#DM7': [0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0], 'EM7': [0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1], 'FM7': [1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0], '#FM7': [0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0], 'GM7': [0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1], 'bAM7': [1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0], 'AM7': [0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0], 'bBM7': [0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0], 'BM7': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1], # 增大七和弦(半增七和弦) 'Caug7': [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1], # 4 + 12*11 '#Caug7': [1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0], 'Daug7': [0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], '#Daug7': [0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1], 'Eaug7': [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0], 'Faug7': [0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0], '#Faug7': [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0], 'Gaug7': [0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1], 'bAaug7': [1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0], 'Aaug7': [0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0], 'bBaug7': [0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0], 'Baug7': [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1], # 小大七和弦 'CmM7': [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], # 4 + 12*12 '#CmM7': [1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0], 'DmM7': [0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0], '#DmM7': [0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0], 'EmM7': [0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1], 'FmM7': [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0], '#FmM7': [0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0], 'GmM7': [0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0], 'bAmM7': [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1], 'AmM7': [1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0], 'bBmM7': [0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0], 'BmM7': [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1], # 属七和弦 'C7': [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0], # 4 + 12*13 '#C7': [0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1], 'D7': [1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0], '#D7': [0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0], 'E7': [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1], 'F7': [1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0], '#F7': [0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0], 'G7': [0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1], 'bA7': [1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0], 'A7': [0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0], 'bB7': [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0], 'B7': [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1], # 小七和弦 'Cm7': [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0], # 4 + 12*14 '#Cm7': [0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1], 'Dm7': [1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0], '#Dm7': [0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0], 'Em7': [0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1], 'Fm7': [1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0], '#Fm7': [0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0], 'Gm7': [0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0], 'bAm7': [0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1], 'Am7': [1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0], 'bBm7': [0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0], 'Bm7': [0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1], # 半减七和弦(导七和弦,旧名减小七和弦) 'Cm7-5': [1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0], # 4 + 12*15 '#Cm7-5': [0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1], 'Dm7-5': [1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], '#Dm7-5': [0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], 'Em7-5': [0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0], 'Fm7-5': [0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1], '#Fm7-5': [1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0], 'Gm7-5': [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0], 'bAm7-5': [0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1], 'Am7-5': [1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0], 'bBm7-5': [0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0], 'Bm7-5': [0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1], # 减七和弦 'C/#D/#F/A dim7': [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], # 4 + 12*16 '#C/E/G/bB dim7': [0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0], 'D/F/bA/B dim7': [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1], # # 六和弦和挂留七和弦 # 大六和弦 'C6': [1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0], # 7 + 12*16 '#C6': [0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0], 'D6': [0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1], '#D6': [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0], 'E6': [0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1], 'F6': [1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0], '#F6': [0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0], 'G6': [0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1], 'bA6': [1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0], 'A6': [0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0], 'bB6': [0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0], 'B6': [0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1], # 小六和弦 'Cm6': [1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0], # 7 + 12*17 '#Cm6': [0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0], 'Dm6': [0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1], '#Dm6': [1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0], 'Em6': [0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1], 'Fm6': [1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], '#Fm6': [0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], 'Gm6': [0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0], 'bAm6': [0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1], 'Am6': [1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0], 'bBm6': [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0], 'Bm6': [0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1], # 属七挂四和弦 'C7sus4': [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0], # 7 + 12*18 '#C7sus4': [0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1], 'D7sus4': [1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0], '#D7sus4': [0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0], 'E7sus4': [0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1], 'F7sus4': [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], '#F7sus4': [0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1], 'G7sus4': [1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0], 'bA7sus4': [0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0], 'A7sus4': [0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0], 'bB7sus4': [0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0], 'B7sus4': [0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1], # # 省略音九和弦: # 大九和弦省略七音(或三和弦add9) 'Cadd9': [1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0], # 7 + 12*19 '#Cadd9': [0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0], 'Dadd9': [0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0], '#Dadd9': [0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0], 'Eadd9': [0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1], 'Fadd9': [1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0], '#Fadd9': [0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0], 'Gadd9': [0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1], 'bAadd9': [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0], 'Aadd9': [0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1], 'bBadd9': [1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0], 'Badd9': [0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1], # 大九和弦省略三音(也是五音的大三和弦加四音) 'CM9,-3': [1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1], # 7 + 12*20 '#CM9,-3': [1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0], 'DM9,-3': [0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0], '#DM9,-3': [0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0], 'EM9,-3': [0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1], 'FM9,-3': [1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0], '#FM9,-3': [0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0], 'GM9,-3': [0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0], 'bAM9,-3': [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0], 'AM9,-3': [0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1], 'bBM9,-3': [1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0], 'BM9,-3': [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1], # 大九和弦(小九和弦)省略五音 'CM9,-5': [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1], # 7 + 12*21 '#CM9,-5': [1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0], 'DM9,-5': [0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0], '#DM9,-5': [0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0], 'EM9,-5': [0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0], 'FM9,-5': [0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0], '#FM9,-5': [0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0], 'GM9,-5': [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1], 'bAM9,-5': [1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0], 'AM9,-5': [0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1], 'bBM9,-5': [1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0], 'BM9,-5': [0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1], # TODO: unfinished } # The circle of fifth value of a pitch-class. # 五度圈音级集和: note_cof_value = {0: 0, 1: -5, 2: 2, 3: -3, 4: 4, 5: -1, 6: 6, 7: 1, 8: -4, 9: 3, 10: -2, 11: 5} # 五度圈角度映射: note_cof_angle = { 0: math.pi * 7 / 12, 1: math.pi * 17 / 12, 2: math.pi / 4, 3: math.pi * 13 / 12, 4: -math.pi / 12, 5: math.pi * 3 / 4, 6: -math.pi*5/12, 7: math.pi * 5/12, 8: math.pi*5/4, 9: math.pi/12, 10: math.pi*11/12, 11: -math.pi*1/4} # 紧张度计算的音程预设值 note_tension = {0: 0, 1: 32, 2: 8, 3: 4, 4: 2, 5: 1, 6: 16, 7: 1, 8: 2, 9: 4, 10: 8, 11: 32} # 泛音强度 overtone_strength = {12: 0.85, 19: 0.825, 24: 0.8, 28: 0.75, 31: 0.7, 34: 0.6, 36: 0.6, 38: 0.5} # 音程和不协和度之间的关系 interval_dissonance_t1 = { 0: 0, 1: 5.5, 2: 3.3, 3: 2, 4: 2.3, 5: 1.5, 6: 3, 7: 0.5, 8: 2.8, 9: 1, 10: 1.8, 11: 2.9, 12: 0, 13: 2.2, 14: 1.5, 15: 1, 16: 1.2, 17: 0.7, 18: 2, 19: 0, 20: 1.4, 21: 0.5, 22: 0.9, 23: 1.4, 24: 0, 25: 1, 26: 0, 27: 0.4, 28: 0, 29: 0.3, 30: 1, 31: 0, 32: 0.6, 33: 0.2, 34: 0.1, 35: 0.6, 36: 0, 37: 0.5, 38: 0, 39: 0.2, 40: 0, 41: 0.15, 42: 0.5, 43: 0, 44: 0.3, 45: 0.1, 46: 0, 47: 0.3, 48: 0 } interval_dissonance_t2 = { 0: 0, 1: 5.5, 2: 3.3, 3: 2, 4: 2.3, 5: 1.5, 6: 3, 7: 0.5, 8: 2.8, 9: 1, 10: 1.8, 11: 2.9, 12: 0, 13: 3.2, 14: 2.1, 15: 1.3, 16: 1.4, 17: 1, 18: 2, 19: 0, 20: 1.8, 21: 0.7, 22: 1.2, 23: 2, 24: 0, 25: 1.6, 26: 1, 27: 0.6, 28: 0, 29: 0.7, 30: 1, 31: 0, 32: 0.9, 33: 0.35, 34: 0, 35: 1, 36: 0, 37: 0.5, 38: 0, 39: 0.2, 40: 0, 41: 0.15, 42: 0.5, 43: 0, 44: 0.3, 45: 0.1, 46: 0, 47: 0.3, 48: 0 }
PypiClean
/adversarial_robustness_toolbox-1.15.1-py3-none-any.whl/art/attacks/inference/attribute_inference/meminf_based.py
from __future__ import absolute_import, division, print_function, unicode_literals import logging from typing import Optional, Union, List, TYPE_CHECKING import numpy as np from art.estimators.estimator import BaseEstimator from art.estimators.classification.classifier import ClassifierMixin from art.attacks.attack import AttributeInferenceAttack, MembershipInferenceAttack from art.estimators.regression import RegressorMixin from art.exceptions import EstimatorError if TYPE_CHECKING: from art.utils import CLASSIFIER_TYPE, REGRESSOR_TYPE logger = logging.getLogger(__name__) class AttributeInferenceMembership(AttributeInferenceAttack): """ Implementation of a an attribute inference attack that utilizes a membership inference attack. The idea is to find the target feature value that causes the membership inference attack to classify the sample as a member with the highest confidence. """ _estimator_requirements = (BaseEstimator, (ClassifierMixin, RegressorMixin)) def __init__( self, estimator: Union["CLASSIFIER_TYPE", "REGRESSOR_TYPE"], membership_attack: MembershipInferenceAttack, attack_feature: Union[int, slice] = 0, ): """ Create an AttributeInferenceMembership attack instance. :param estimator: Target estimator. :param membership_attack: The membership inference attack to use. Should be fit/calibrated in advance, and should support returning probabilities. Should also support the target estimator. :param attack_feature: The index of the feature to be attacked or a slice representing multiple indexes in case of a one-hot encoded feature. """ super().__init__(estimator=estimator, attack_feature=attack_feature) if not membership_attack.is_estimator_valid(estimator, estimator_requirements=self.estimator_requirements): raise EstimatorError(membership_attack.__class__, membership_attack.estimator_requirements, estimator) self.membership_attack = membership_attack self._check_params() def infer(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> np.ndarray: """ Infer the attacked feature. :param x: Input to attack. Includes all features except the attacked feature. :param y: The labels expected by the membership attack. :param values: Possible values for attacked feature. For a single column feature this should be a simple list containing all possible values, in increasing order (the smallest value in the 0 index and so on). For a multi-column feature (for example 1-hot encoded and then scaled), this should be a list of lists, where each internal list represents a column (in increasing order) and the values represent the possible values for that column (in increasing order). :type values: list :return: The inferred feature values. """ if self.estimator.input_shape is not None: if isinstance(self.attack_feature, int) and self.estimator.input_shape[0] != x.shape[1] + 1: raise ValueError("Number of features in x + 1 does not match input_shape of the estimator") if "values" not in kwargs: raise ValueError("Missing parameter `values`.") values: Optional[List] = kwargs.get("values") if not values: raise ValueError("`values` cannot be None or empty") if y is not None: if y.shape[0] != x.shape[0]: raise ValueError("Number of rows in x and y do not match") # single index if isinstance(self.attack_feature, int): first = True for value in values: v_full = np.full((x.shape[0], 1), value).astype(x.dtype) x_value = np.concatenate((x[:, : self.attack_feature], v_full), axis=1) x_value = np.concatenate((x_value, x[:, self.attack_feature :]), axis=1) predicted = self.membership_attack.infer(x_value, y, probabilities=True) if first: probabilities = predicted first = False else: probabilities = np.hstack((probabilities, predicted)) # needs to be of type float so we can later replace back the actual values value_indexes = np.argmax(probabilities, axis=1).astype(x.dtype) pred_values = np.zeros_like(value_indexes) for index, value in enumerate(values): pred_values[value_indexes == index] = value else: # 1-hot encoded feature. Can also be scaled. first = True # assumes that the second value is the "positive" value and that there can only be one positive column for index, value in enumerate(values): curr_value = np.zeros((x.shape[0], len(values))) curr_value[:, index] = value[1] for not_index, not_value in enumerate(values): if not_index != index: curr_value[:, not_index] = not_value[0] x_value = np.concatenate((x[:, : self.attack_feature.start], curr_value), axis=1) x_value = np.concatenate((x_value, x[:, self.attack_feature.start :]), axis=1) predicted = self.membership_attack.infer(x_value, y, probabilities=True) if first: probabilities = predicted else: probabilities = np.hstack((probabilities, predicted)) first = False value_indexes = np.argmax(probabilities, axis=1).astype(x.dtype) pred_values = np.zeros_like(probabilities) for index, value in enumerate(values): curr_value = np.zeros(len(values)) curr_value[index] = value[1] for not_index, not_value in enumerate(values): if not_index != index: curr_value[not_index] = not_value[0] pred_values[value_indexes == index] = curr_value return pred_values def _check_params(self) -> None: super()._check_params() if not isinstance(self.membership_attack, MembershipInferenceAttack): raise ValueError("membership_attack should be a sub-class of MembershipInferenceAttack")
PypiClean
/barbara_updater-1.2.1.tar.gz/barbara_updater-1.2.1/barbara.py
import smbus import requests from bs4 import BeautifulSoup from bs4.element import Tag import time #allows the sleep commands from time import strftime import datetime as dt from datetime import datetime, timedelta import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator) from matplotlib import pyplot as plt from matplotlib import rcParams import matplotlib.dates as mdates import pandas as pd import json import io from io import BytesIO from PIL import Image import matplotlib.image as mpimg import traceback from PIL import Image, ImageDraw, ImageFont import re import imageio from matplotlib.animation import FuncAnimation import os #from google.oauth2 import service_account #from google.oauth2.credentials import Credentials #from googleapiclient.discovery import build #from google_auth_oauthlib.flow import InstalledAppFlow #from googleapiclient.http import MediaIoBaseUpload from math import radians, sin, cos, sqrt, atan2 from geopy.geocoders import Nominatim from geopy.exc import GeocoderTimedOut import urllib.parse from geopy.exc import GeocoderUnavailable import subprocess from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options import threading #allows to manage hang ups in solenium import tkinter as tk from tkinter import IntVar, Checkbutton import tkinter as tk from tkinter import ttk, IntVar xs = [] ys = [] #global sonde_letter_identifier global radar_identifier global day global hourmin_str now = datetime.now() current_year = float(now.strftime("%Y")) def get_location(): try: response = requests.get('http://ip-api.com/json') data = response.json() if data['status'] == 'success': lat = data['lat'] lon = data['lon'] return float(lat), float(lon) except requests.exceptions.RequestException: pass return None def get_aobs_site(latitude, longitude): global baro_input aobs_url = generate_aobs_url(latitude, longitude) nearest_html = requests.get(aobs_url) nearest_soup = BeautifulSoup(nearest_html.content, 'html.parser') panel_title = nearest_soup.find('h2', class_='panel-title') if panel_title: aobs_site = panel_title.text.strip() current_conditions = nearest_soup.find(id='current_conditions_detail') if current_conditions and isinstance(current_conditions, Tag): tds = current_conditions.find_all('td') if len(tds) > 5 and tds[5].string is not None: baro_input = tds[5].string.strip() try: baro_input = float(baro_input[:5]) return aobs_site except ValueError: print("This site doesn't have a barometric pressure reading we can use.") print("Please choose an alternate site when given the chance.") else: print("The barometric reading at this site is not available for use.") else: print("Observation site not found.") return None def get_standard_radar_site_url(latitude, longitude): global radar_site, radar_site_url aobs_url = generate_aobs_url(latitude, longitude) nws_html = requests.get(aobs_url) nws_soup = BeautifulSoup(nws_html.content, 'html.parser') radar_img = nws_soup.find('img', src=lambda src: src and 'radar.weather.gov/ridge/standard' in src) if radar_img: radar_src = radar_img['src'] radar_site_url = radar_src.split('"')[0] radar_site = radar_src.split("standard/")[1][:4] radar_site_url = radar_site_url.replace('_0.gif', '_loop.gif') return radar_site_url return "Standard Radar site URL not found" def generate_aobs_url(latitude, longitude, aobs_site=''): aobs_url = f"https://forecast.weather.gov/MapClick.php?lon={longitude}&lat={latitude}" if aobs_site: aobs_url += f"&site={aobs_site}" return aobs_url # station_list_url is list of radiosonde sites station_list_url = "https://www1.ncdc.noaa.gov/pub/data/igra/igra2-station-list.txt" def get_nearest_radiosonde_station(latitude, longitude): response = requests.get(station_list_url) station_data = response.text.splitlines()[2:] # Skip header lines min_distance = float('inf') nearest_station = None for station in station_data: station_info = station.split() try: station_lat = float(station_info[1]) station_lon = float(station_info[2]) sonde_town = " ".join(station_info[5:-3]) # Join town name with spaces sonde_state = station_info[4] station_year = station_info[-2] # Second column from the right if station_year.isdigit() and int(station_year) in {current_year, current_year - 1}: distance = calculate_distance(latitude, longitude, station_lat, station_lon) if distance < min_distance: min_distance = distance nearest_station = sonde_town + ", " + sonde_state except (ValueError, IndexError): continue # Skip station if there are errors in extracting data return nearest_station def calculate_distance(latitude1, longitude1, latitude2, longitude2): # Convert degrees to radians lat1, lon1, lat2, lon2 = map(radians, [latitude1, longitude1, latitude2, longitude2]) # Haversine formula for distance calculation dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance = 6371 * c # Earth radius in kilometers return distance # Example usage location = get_location() if location: latitude, longitude = location aobs_site = get_aobs_site(latitude, longitude) standard_radar_site_url = get_standard_radar_site_url(latitude, longitude) if aobs_site: print("Welcome to The Weather Observer!") print("In order to begin, your new instrument needs to be calibrated,") print("and you need to make choices about which weather to observe.") print(" ") print("The nearest NWS Observation site found is:", aobs_site) print("This site will be used to calibrate the first barometric pressure reading.") print("The current barometric pressure reading there is: {:.2f} inches".format(baro_input)) print(" ") print("The nearest radar site is:", radar_site) print("This site will be used to display local radar.") nearest_radiosonde_station = get_nearest_radiosonde_station(latitude, longitude) print(" ") print("The nearest radiosonde site is:", nearest_radiosonde_station) print("This site will be used to show a skew t log p diagram.") print(" ") else: print("Default observation site not found.") # Suppress the error message by redirecting standard error output to /dev/null os.system("onboard 2>/dev/null &") valid_choices = ['y', 'n'] try: change_site = input("Do you want to change the site used for calibration? (y/n): ") while change_site.lower() not in valid_choices: print("Invalid input. Please enter 'y' or 'n'.") change_site = input("Do you want to change the site used for calibration? (y/n): ") except KeyboardInterrupt: # Perform cleanup tasks or handle interruption during input prompt print("\nKeyboardInterrupt occurred. Opening terminal window...") # Open a new terminal window subprocess.run(["lxterminal"]) if change_site.lower() == "y": while True: alternative_town = input("Please enter the town name: ") alternative_state = input("Please enter the 2-letter ID for the state: ").upper() try: # Geocode the alternative town to get the latitude and longitude geolocator = Nominatim(user_agent="geocoder_app") location = geolocator.geocode(f"{alternative_town}, {alternative_state}", country_codes="us") if location is not None: alternative_latitude = location.latitude alternative_longitude = location.longitude # Generate the NWS URL for the alternative site aobs_url = generate_aobs_url(alternative_latitude, alternative_longitude) alternative_html = requests.get(aobs_url) alternative_soup = BeautifulSoup(alternative_html.content, 'html.parser') current_conditions_detail = alternative_soup.find(id='current_conditions_detail') if current_conditions_detail is not None: nearest_baro = current_conditions_detail.find_all('td')[5] if nearest_baro is not None: baro_string = nearest_baro.string.strip() baro_match = re.search(r'\d+\.\d+', baro_string) if baro_match: baro_input = float(baro_match.group()) observation_site = alternative_soup.find("h2", class_="panel-title").text.strip() print("Closest observation site to", alternative_town + ", " + alternative_state, "is:", observation_site) print("The barometric pressure reading there is: {:.2f} inches".format(baro_input)) confirm_site = input("Is this the observation site you want to use? (y/n): ") if confirm_site.lower() == "y": break # Exit the loop and continue with the selected observation site else: print("This site doesn't have a barometric pressure reading that can be used.") else: print("Failed to retrieve barometric pressure data for the alternative observation site.") else: print("Failed to retrieve latitude and longitude for the specified town and state.") except GeocoderUnavailable: print("Geocoding service is unavailable. Please try again later.") else: print("Using default calibration site.") # Ask user to make display choices starting here box_variables = [None] * 12 print(" ") input("Press Enter when you're ready to make your display choices...") class BinaryChoiceGUI: def __init__(self, root): self.root = root self.root.title("Choose Displays") self.root.geometry("1050x600") # Create a custom style for the checkboxes style = ttk.Style() style.configure("Custom.TCheckbutton", font=("Helvetica", 14, "bold")) # Change font size here self.choice_vars = [] self.choices = ['Barograph', 'National Radar', 'Local Radar', 'Lightning', 'GOES16 East Satellite', 'Local Satellite', 'National Surface Analysis', 'Local Station Plots', 'Radiosonde', '500mb Vorticity', 'GFS 1 Week', 'GFS 2 Week'] self.create_ui() def create_ui(self): instruction_text = "Please select your display choices:" instructions_label = tk.Label(self.root, text=instruction_text, font=("Helvetica", 12, "bold")) instructions_label.pack(pady=10) self.column1_frame = tk.Frame(self.root) self.column2_frame = tk.Frame(self.root) self.column3_frame = tk.Frame(self.root) self.v_spacing = 65 self.h_spacing = 65 for index in range(len(self.choices)): var = IntVar(value=0) self.choice_vars.append(var) choice_check_button = ttk.Checkbutton( self.column1_frame if index < 4 else (self.column2_frame if index < 8 else self.column3_frame), text=self.choices[index], variable=var, onvalue=1, offvalue=0, style="Custom.TCheckbutton" ) choice_check_button.pack(side=tk.TOP, padx=10, pady=(5, self.v_spacing), anchor='w') if index == 0: var.set(1) # Set the variable to 1 (selected/checked) choice_check_button.state(["disabled"]) # Disable the button elif index in (5, 9, 10, 11): # Boxes 6, 10, 11, 12 var.set(2) # Set the variable to 2 (unchecked) choice_check_button.state(["disabled"]) # Disable the button self.column1_frame.pack(side=tk.LEFT, padx=(20, self.h_spacing)) self.column2_frame.pack(side=tk.LEFT, padx=(self.h_spacing, self.h_spacing)) self.column3_frame.pack(side=tk.LEFT, padx=(self.h_spacing, 20)) submit_frame = tk.Frame(self.root) submit_frame.pack(side=tk.BOTTOM, padx=20, pady=10, anchor='se') self.submit_button = tk.Button(submit_frame, text="Submit", command=self.submit_choices, font=("Helvetica", 16, "bold"), padx=20, pady=10) # Change font size, padx, and pady here self.submit_button.pack() def submit_choices(self): global box_variables box_variables = [1 if var.get() == 1 else 2 for var in self.choice_vars] self.root.destroy() def main(): root = tk.Tk() gui = BinaryChoiceGUI(root) root.mainloop() if __name__ == "__main__": main() # Is this a user choice? if box_variables[2] == 1: print(" ") radar_identifier = radar_site[-3:] change_radar_site = input("Do you want to change the radar site? (y/n): ") while change_radar_site.lower() not in ["y", "n"]: print("Invalid input. Please enter 'y' or 'n'.") change_radar_site = input("Do you want to change the radar site? (y/n): ") if change_radar_site.lower() == "y": confirmed = False while not confirmed: radar_identifier = input("Please enter the 3-letter identifier of the radar site: ").upper() radar_url = f"https://radar.weather.gov/ridge/standard/K{radar_identifier}_loop.gif" response = requests.head(radar_url) if response.status_code == 200: radar_site_url = radar_url print("The local radar site has been updated to:", radar_identifier) confirm_choice = input("Is this the radar site you want? (y/n): ") while confirm_choice.lower() not in ["y", "n"]: print("Invalid input. Please enter 'y' or 'n'.") confirm_choice = input("Is this the radar site you want? (y/n): ") if confirm_choice.lower() == "y": confirmed = True else: print("Please choose another radar site.") else: print("Invalid radar site. Please choose another radar site.") else: pass # using this website to keep track of radiosonde sites # https://www1.ncdc.noaa.gov/pub/data/igra/igra2-station-list.txt # will write to them and ask when master list is updated upon change of year # Is this a user choice? if box_variables[8] == 1: print("") global sonde_letter_identifier sonde_letter_identifier = nearest_radiosonde_station change_radiosonde_site = input("Do you want to change the radiosonde site? (y/n): ") while change_radiosonde_site.lower() not in valid_choices: print("Invalid input. Please enter 'y' or 'n'.") change_radiosonde_site = input("Do you want to change the radiosonde site? (y/n): ") if change_radiosonde_site.lower() == "y": radiosonde_state = input("Please enter the 2-letter ID of the state: ").upper() # Check if the entered value is a 2-letter state ID while len(radiosonde_state) != 2 or not radiosonde_state.isalpha(): print("Invalid state ID. Please enter a 2-letter state ID.") radiosonde_state = input("Please enter the 2-letter ID of the state: ").upper() response = requests.get(station_list_url) station_data = response.text.splitlines()[2:] # Skip header lines active_radiosonde_sites = [] for station in station_data: station_info = station.split() sonde_state = station_info[4] sonde_town = " ".join(station_info[5:-3]) # Join town name with spaces station_year = station_info[-2] # Second column from the right if station_year.isdigit() and int(station_year) in {current_year, current_year - 1}: if sonde_state == radiosonde_state: active_radiosonde_sites.append(sonde_town) while not active_radiosonde_sites: print("No active radiosonde sites found in", radiosonde_state) radiosonde_state = input("Please enter another 2-letter ID of the state: ").upper() # Check if the entered value is a 2-letter state ID while len(radiosonde_state) != 2 or not radiosonde_state.isalpha(): print("Invalid state ID. Please enter a 2-letter state ID.") radiosonde_state = input("Please enter the 2-letter ID of the state: ").upper() active_radiosonde_sites = [] for station in station_data: station_info = station.split() sonde_state = station_info[4] sonde_town = " ".join(station_info[5:-3]) # Join town name with spaces station_year = station_info[-2] # Second column from the right if station_year.isdigit() and int(station_year) in {current_year, current_year - 1}: if sonde_state == radiosonde_state: active_radiosonde_sites.append(sonde_town) if active_radiosonde_sites: print("Available Radiosonde Sites in", radiosonde_state + ":") for site in active_radiosonde_sites: print(site) alternative_town = input("Please enter the town from the above list: ").upper() selected_radiosonde_station = None for station in station_data: station_info = station.split() sonde_state = station_info[4] sonde_town = " ".join(station_info[5:-3]) # Join town name with spaces if sonde_state == radiosonde_state and sonde_town == alternative_town: selected_radiosonde_station = sonde_town + ", " + sonde_state break if selected_radiosonde_station is not None: print("New radiosonde site:", selected_radiosonde_station) while True: try: # Use geopy to get the latitude and longitude of the town geolocator = Nominatim(user_agent="my_app") location = geolocator.geocode(f"{sonde_town}, {sonde_state}, USA") if location is None: print("Location not found.") else: latitude = location.latitude longitude = location.longitude # Build the URL for the NWS office based on latitude and longitude nws_url = f"https://forecast.weather.gov/MapClick.php?lat={latitude}&lon={longitude}" try: # Fetch the HTML content of the NWS office page response = requests.get(nws_url) response.raise_for_status() # Parse the HTML content soup = BeautifulSoup(response.content, "html.parser") # Find the Local Forecast Office link and extract the 3-letter code local_forecast_link = soup.find("a", id="localWFO") if local_forecast_link: local_forecast_url = local_forecast_link["href"] # Extract the NWS 3-letter code from the Local Forecast Office URL code_match = re.search(r"https://www.weather.gov/([A-Za-z]{3})/", local_forecast_url) if code_match: sonde_letter_identifier = code_match.group(1).upper() # Convert to uppercase #print(f"NWS 3-Letter Code for {sonde_town}, {sonde_state}: {sonde_letter_identifier}") else: print("NWS 3-Letter Code not found in the Local Forecast Office URL.") else: print("Could not match site with its 3-letter code.") except requests.RequestException as e: print("Error occurred during API request:", str(e)) break except requests.RequestException as e: print("Error occurred during API request:", str(e)) else: # Use default town and state to generate the sonde_letter_identifier sonde_town, sonde_state = nearest_radiosonde_station.split(", ") try: # Use geopy to get the latitude and longitude of the town geolocator = Nominatim(user_agent="my_app") location = geolocator.geocode(f"{sonde_town}, {sonde_state}, USA") if location is None: print("Location not found.") else: latitude = location.latitude longitude = location.longitude # Build the URL for the NWS office based on latitude and longitude nws_url = f"https://forecast.weather.gov/MapClick.php?lat={latitude}&lon={longitude}" try: # Fetch the HTML content of the NWS office page response = requests.get(nws_url) response.raise_for_status() # Parse the HTML content soup = BeautifulSoup(response.content, "html.parser") # Find the Local Forecast Office link and extract the 3-letter code local_forecast_link = soup.find("a", id="localWFO") if local_forecast_link: local_forecast_url = local_forecast_link["href"] # Extract the NWS 3-letter code from the Local Forecast Office URL code_match = re.search(r"https://www.weather.gov/([A-Za-z]{3})/", local_forecast_url) if code_match: sonde_letter_identifier = code_match.group(1).upper() # Convert to uppercase print(f"NWS 3-Letter Code for {sonde_town}, {sonde_state}: {sonde_letter_identifier}") else: print("NWS 3-Letter Code not found in the Local Forecast Office URL.") else: print("Could not match site with its 3-letter code.") except requests.RequestException as e: print("Error occurred during API request:", str(e)) except requests.RequestException as e: print("Error occurred during API request:", str(e)) valid_choices = ['y', 'n'] # Prompt the user to pick 3 observation sites print(" ") print("You will now choose 3 observation sites to be displayed at the top of the display.") # Observation Site 1 confirmed_site_1 = False while not confirmed_site_1: print(" ") # Prompt the user to choose between a buoy and a regular observation site use_buoy = input("Do you want to choose a buoy as an observation site? (y/n): ").lower() while use_buoy not in ['y', 'n']: print("Please respond with 'y' or 'n'.") use_buoy = input("Do you want to choose a buoy as an observation site? (y/n): ").lower() if use_buoy == 'y': alternative_town_1 = input("Enter the 5-character code for the buoy: ").upper() # Build the URL using the buoy code aobs_url = f"https://www.ndbc.noaa.gov/station_page.php?station={alternative_town_1}" response = requests.get(aobs_url) if response.status_code == 200: confirmed_site_1 = True else: print("Not able to find data for that buoy. Please choose another site.") else: print(" ") alternative_town_1 = input("Please enter the town name for Observation Site 1: ") alternative_state_1 = input("Please enter the 2-letter ID for the state for Observation Site 1: ").upper() try: # Geocode the alternative town to get the latitude and longitude geolocator = Nominatim(user_agent="geocoder_app") location_1 = geolocator.geocode(f"{alternative_town_1}, {alternative_state_1}", country_codes="us") if location_1 is not None: alternative_latitude_1 = location_1.latitude alternative_longitude_1 = location_1.longitude # Generate the NWS URL for the alternative site aobs_url = generate_aobs_url(alternative_latitude_1, alternative_longitude_1) alternative_html = requests.get(aobs_url) alternative_soup = BeautifulSoup(alternative_html.content, 'html.parser') extended_forecast = alternative_soup.find("div", id="seven-day-forecast") current_conditions = alternative_soup.find("div", id="current-conditions") if extended_forecast is not None: aobs_town = extended_forecast.find("h2", class_="panel-title").text.strip() aobs_obs_site = current_conditions.find("h2", class_="panel-title").text.strip() print("The nearest official observation to " + alternative_town_1.title(), "is " + aobs_obs_site) confirm_observation_site_1 = input("Is this the observation site you want? (y/n): ") if confirm_observation_site_1.lower() == "y": confirmed_site_1 = True else: print("Please choose another observation site for Observation Site 1.") else: print("Failed to retrieve observation site for Observation Site 1.") else: print("Failed to retrieve latitude and longitude for the specified town and state for Observation Site 1.") except GeocoderUnavailable: print("Geocoding service is unavailable. Please try again later.") # Observation Site 2 confirmed_site_2 = False while not confirmed_site_2: print(" ") alternative_town_2 = input("Please enter the town name for Observation Site 2: ") alternative_state_2 = input("Please enter the 2-letter ID for the state for Observation Site 2: ").upper() try: # Geocode the alternative town to get the latitude and longitude geolocator = Nominatim(user_agent="geocoder_app") location_2 = geolocator.geocode(f"{alternative_town_2}, {alternative_state_2}", country_codes="us") if location_2 is not None: alternative_latitude_2 = location_2.latitude alternative_longitude_2 = location_2.longitude # Generate the NWS URL for the alternative site bobs_url = generate_aobs_url(alternative_latitude_2, alternative_longitude_2) alternative_html = requests.get(bobs_url) alternative_soup = BeautifulSoup(alternative_html.content, 'html.parser') extended_forecast = alternative_soup.find("div", id="seven-day-forecast") current_conditions = alternative_soup.find("div", id="current-conditions") if extended_forecast is not None: bobs_town = extended_forecast.find("h2", class_="panel-title").text.strip() bobs_obs_site = current_conditions.find("h2", class_="panel-title").text.strip() print("The nearest official observation to " + alternative_town_2.title(), "is " + bobs_obs_site) confirm_observation_site_2 = input("Is this the observation site you want? (y/n): ") if confirm_observation_site_2.lower() == "y": confirmed_site_2 = True else: print("Please choose another observation site for Observation Site 2.") else: print("Failed to retrieve observation site for Observation Site 2.") else: print("Failed to retrieve latitude and longitude for the specified town and state for Observation Site 2.") except GeocoderUnavailable: print("Geocoding service is unavailable. Please try again later.") # Observation Site 3 confirmed_site_3 = False while not confirmed_site_3: print(" ") alternative_town_3 = input("Please enter the town name for Observation Site 3: ") alternative_state_3 = input("Please enter the 2-letter ID for the state for Observation Site 3: ").upper() try: # Geocode the alternative town to get the latitude and longitude geolocator = Nominatim(user_agent="geocoder_app") location_3 = geolocator.geocode(f"{alternative_town_3}, {alternative_state_3}", country_codes="us") if location_3 is not None: alternative_latitude_3 = location_3.latitude alternative_longitude_3 = location_3.longitude # Generate the NWS URL for the alternative site cobs_url = generate_aobs_url(alternative_latitude_3, alternative_longitude_3) alternative_html = requests.get(cobs_url) alternative_soup = BeautifulSoup(alternative_html.content, 'html.parser') extended_forecast = alternative_soup.find("div", id="seven-day-forecast") current_conditions = alternative_soup.find("div", id="current-conditions") if extended_forecast is not None: cobs_town = extended_forecast.find("h2", class_="panel-title").text.strip() cobs_obs_site = current_conditions.find("h2", class_="panel-title").text.strip() print("The nearest official observation to " + alternative_town_3.title(), "is " + cobs_obs_site) confirm_observation_site_3 = input("Is this the observation site you want? (y/n): ") if confirm_observation_site_3.lower() == "y": confirmed_site_3 = True else: print("Please choose another observation site for Observation Site 3.") else: print("Failed to retrieve observation site for Observation Site 3.") else: print("Failed to retrieve latitude and longitude for the specified town and state for Observation Site 3.") except GeocoderUnavailable: print("Geocoding service is unavailable. Please try again later.") # Is this a user choice? if box_variables[3] == 1: # Determine center of lightning map lightning_geolocator = Nominatim(user_agent="lightning_map") while True: print(" ") print("The lightning detection map is about 850 miles wide") lightning_town = input("Name the city/town to center the lightning detection map: ") lightning_state = input("Enter the two-letter state ID for that town: ") # Combine town and state into a search query lightning_query = f"{lightning_town}, {lightning_state}" # Use geocoder to get coordinates lightning_location = lightning_geolocator.geocode(lightning_query) if lightning_location: lightning_lat = lightning_location.latitude lightning_lon = lightning_location.longitude break else: print("Location not found.") # Is this a user choice? if box_variables[7] == 1: # Determine center of sfc model map sfc_model_geolocator = Nominatim(user_agent="sfc_model_map") while True: print(" ") sfc_model_town = input("Name the city/town to center the map with station model plots: ") sfc_model_state = input("Enter the two-letter state ID for that town: ") # Combine town and state into a search queary sfc_model_query = f"{sfc_model_town}, {sfc_model_state}" #Use geocoder to get coordinates sfc_model_location = sfc_model_geolocator.geocode(sfc_model_query) if sfc_model_location: sfc_model_lat = sfc_model_location.latitude sfc_model_lon = sfc_model_location.longitude break else: print("Location not found") # Finish setting up graphics display parameters rcParams['figure.figsize'] = 12,6 # Create a figure for plotting light_blue = (0.8, 0.9, 1.0) fig = plt.figure(facecolor=light_blue) ax = fig.add_subplot(1, 1, 1) bx = fig.add_subplot(1, 1, 1, label="unique_label") #shut off Thonny navigation toolbar if fig.canvas.toolbar: fig.canvas.toolbar.pack_forget() plt.axis('off') # This function is called periodically from FuncAnimation def animate(i, xs, ys): global correction_factor global cycle_counter, frame_index #added while trying to display looping radar # Get I2C bus bus = smbus.SMBus(1) # HP203B address, 0x77(118) # Send OSR and channel setting command, 0x44(68) bus.write_byte(0x77, 0x44 | 0x00) time.sleep(0.5) # HP203B address, 0x77(118) # Read data back from 0x10(16), 6 bytes # cTemp MSB, cTemp CSB, cTemp LSB, pressure MSB, pressure CSB, pressure LSB data = bus.read_i2c_block_data(0x77, 0x10, 6) # Convert the data to 20-bits # Correct for 160 feet above sea level # cpressure is pressure corrected for elevation cTemp = (((data[0] & 0x0F) * 65536) + (data[1] * 256) + data[2]) / 100.00 fTemp = (cTemp * 1.8) + 32 pressure = (((data[3] & 0x0F) * 65536) + (data[4] * 256) + data[5]) / 100.00 cpressure = (pressure * 1.0058) inHg = (cpressure * .029529) #print (inHg) if i < 1: correction_factor = (baro_input/inHg) inHg = correction_factor * inHg #print (baro_input, correction_factor, inHg) # HP203B address, 0x77(118) # Send OSR and channel setting command, 0x44(68) bus.write_byte(0x77, 0x44 | 0x01) time.sleep(0.5) # HP203B address, 0x76(118) # Read data back from 0x31(49), 3 bytes # altitude MSB, altitude CSB, altitude LSB data = bus.read_i2c_block_data(0x77, 0x31, 3) # Convert the data to 20-bits altitude = (((data[0] & 0x0F) * 65536) + (data[1] * 256) + data[2]) / 100.00 if i > 1: # Specify the file path to your credentials JSON file #credentials_path = '/home/pi/Downloads/credentials.json' # Define the scopes for accessing Google Drive #scopes = ['https://www.googleapis.com/auth/drive.file'] # Load the saved credentials from the token file #credentials = Credentials.from_authorized_user_file('token.json', scopes) # Create the drive_service object #drive_service = build('drive', 'v3', credentials=credentials) # Save the image using plt.savefig() plt.savefig('baro_trace.png') # Upload the image to Google Drive #file_metadata = {'name': 'baro_trace.png'} #media_body = MediaIoBaseUpload(open('baro_trace.png', 'rb'), mimetype='image/png') #upload_request = drive_service.files().create(body=file_metadata, media_body=media_body) #upload_response = upload_request.execute() #file_id = upload_response['id'] #permission = drive_service.permissions().create(fileId=file_id, body={'role': 'reader', 'type': 'anyone'}).execute() #image_download_url = f"https://drive.google.com/uc?id={file_id}" #print(f"Image URL: {image_download_url}") # Read the saved image file #with open('baro_trace.png', 'rb') as image_file: #image_data = image_file.read() # Get the file ID of the previous image (assuming you have stored it previously) #previous_image_file_id = '1G3d1WDyUcFmEdD3re8oKi45tM8MP7oma' # Update the existing file with the latest image data #media_body = MediaIoBaseUpload(io.BytesIO(image_data), mimetype='image/png') #update_request = drive_service.files().update(fileId=previous_image_file_id, media_body=media_body) #update_response = update_request.execute() #print("Image updated successfully in Google Drive.") ax.clear() bx.clear() now = datetime.now() # current date and time day = now.strftime("%A") hourmin_str = now.strftime("%H:%M") # Adjust margins fig.subplots_adjust(left=0.125, right=0.90, bottom=0, top=0.88) ax.text(0, 1.09, "The", transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(0, 1.05, "Weather", transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(0, 1.01, "Observer", transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.11, 1.01, f'Last Updated\n{now.strftime("%A")}\n{now.strftime("%I:%M %P")}', transform=ax.transAxes, fontweight='light', fontstyle='italic', horizontalalignment='left', fontsize=6) try: global atemp, awtemp, awind, btemp, bwind, ctemp, cwind if aobs_url.startswith("https://www.ndbc.noaa.gov/"): try: buoy_code = "Buoy: " + alternative_town_1 ax.text(.2, 1.1, str(buoy_code), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=9) ax.text(.2, 1.07, str(atemp), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=9) ax.text(.2, 1.04, str(awtemp), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=9) ax.text(.2, 1.01, str(awind), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=9) except Exception as e: print("2nd print of buoy data", e) pass else: ax.text(.20, 1.09, alternative_town_1.title(), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.20, 1.05, atemp, transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.20, 1.01, awind, transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) except Exception as e: print( "a obs error:", e) pass try: ax.text(.50, 1.09, alternative_town_2.title(), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.50, 1.05, btemp, transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.50, 1.01, bwind, transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) except Exception as e: print("b Obs error:", e) pass try: ax.text(.80, 1.09, alternative_town_3.title(), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.80, 1.05, ctemp, transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.80, 1.01, cwind, transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) except Exception as e: print("c obs error:", e) pass # Is this a user choice? if box_variables[1] == 1: # Display the national composite radar image in the subplot try: # Scrape and save the regional composite radar image radar_url = 'https://radar.weather.gov/ridge/standard/CONUS_0.gif' radar_response = requests.get(radar_url) radar_content = radar_response.content radar_image = Image.open(BytesIO(radar_content)) radar_image.save('radar.png', 'PNG') if radar_response.status_code == 200: radar_image = Image.open('radar.png') bx.imshow(radar_image) ax.axis('off') bx.axis('off') plt.draw() plt.pause(7) else: pass except Exception as e: print("Scrape, save and Display regional radar", e) pass # Is this a user choice? if box_variables[2] == 1: # Scrape, Save and Display local radar loop in the subplot try: global radar_identifier radar_loop_url = f"https://radar.weather.gov/ridge/standard/K{radar_identifier}_loop.gif" # Scrape and save the radar GIF radar_loop_response = requests.get(radar_loop_url) if radar_loop_response.status_code == 200: with open('radar_loop.gif', 'wb') as f: f.write(radar_loop_response.content) # Open the radar GIF and extract frames radar_loop_image = Image.open('radar_loop.gif') radar_frames = [] try: while True: radar_frames.append(radar_loop_image.copy()) radar_loop_image.seek(len(radar_frames)) # Move to the next frame except EOFError: pass # Display the frames in a loop, cycling 1 time num_cycles = 1 plt.ion() # Turn on interactive mode # Pre-load the frames into memory before starting the loop preloaded_frames = [radar_frame.copy() for radar_frame in radar_frames] for cycle in range(num_cycles): for radar_frame in preloaded_frames: bx.imshow(radar_frame) ax.axis('off') bx.axis('off') plt.draw() plt.pause(0.01) # Pause for a short duration between frames except Exception as e: print("Scrape, Save and Display local radar", e) pass # Is this a user choice? if box_variables[3] == 1: #Use Selenium to get lightning data # URL of the website to capture lightning_url = ( "https://www.lightningmaps.org/?lang=en#m=oss;t=1;s=200;o=0;b=0.00;ts=0;d=2;dl=2;dc=0;y=" + str(lightning_lat) + ";x=" + str(lightning_lon) + ";z=6;" ) # Configure Chrome options for headless mode chrome_options = Options() chrome_options.add_argument("--headless") chrome_options.add_argument("--disable-gpu") # Use the system-installed ChromeDriver executable driver = webdriver.Chrome(service=Service("chromedriver"), options=chrome_options) # Navigate to the URL driver.get(lightning_url) try: # Wait for the "Got it!" button to be clickable wait = WebDriverWait(driver, 30) got_it_button = wait.until(EC.element_to_be_clickable((By.XPATH, "//a[@class='cc-btn cc-dismiss']"))) # Click the "Got it!" button got_it_button.click() time.sleep(5) # Capture a screenshot of the entire page lightning_screenshot = driver.get_screenshot_as_png() # Close the WebDriver driver.quit() # Display the screenshot using PIL lightning_screenshot_image = Image.open(io.BytesIO(lightning_screenshot)) lightning_screenshot_crop = lightning_screenshot_image.crop((0, 0, lightning_screenshot_image.width, lightning_screenshot_image.height - 90)) bx.imshow(lightning_screenshot_crop, aspect='equal') ax.axis('off') bx.axis('off') plt.draw() plt.pause(7) except TimeoutError: print("Selenium & Display lightning image: Timeout occurred (30 seconds). Exiting current attempt.") except Exception as e: print("Selenium & Display lightning image:", e) # Is this a user choice? if box_variables[4] == 1: # Scrape, Save and Display the national satellite image in the subplot try: satellite_url = 'https://cdn.star.nesdis.noaa.gov/GOES16/ABI/CONUS/GEOCOLOR/1250x750.jpg' satellite_response = requests.get(satellite_url) satellite_content = satellite_response.content satellite_image = Image.open(BytesIO(satellite_content)) satellite_image.save('satellite.png', 'PNG') if satellite_response.status_code == 200: satellite_image = Image.open('satellite.png') bx.imshow(satellite_image, aspect='equal') ax.axis('off') bx.axis('off') plt.draw() plt.pause(7) else: pass except Exception as e: print("Scrape, Save and Display satellite image", e) pass # Is this a user choice? if box_variables[6] == 1: # Scrape, Save and Display the national surface analysis in the subplot try: sfc_url = 'https://www.wpc.ncep.noaa.gov/basicwx/92fndfd.gif' sfc_response = requests.get(sfc_url) sfc_content = sfc_response.content sfc_image = Image.open(BytesIO(sfc_content)) sfc_image.save('sfc.png', 'PNG') if sfc_response.status_code == 200: sfc_image = Image.open('sfc.png') bx.imshow(sfc_image) ax.axis('off') bx.axis('off') plt.draw() plt.pause(7) else: pass except Exception as e: print("Scrape, Save and Display sfc analysis", e) pass # Is this a user choice? if box_variables[7] == 1: #Build, take, and display snapshot of local station models timeout_seconds = 30 try: global station_model_url # URL of the website to capture map of station model #station_model_url = "http://www.wrh.noaa.gov/map/?&zoom=9&scroll_zoom=false&center=43.7568782054261,-70.02367715840926&boundaries=false,false,false,false,false,false,false,false,false,false,false&tab=observation&obs=true&obs_type=weather&elements=temp,dew,wind,gust,slp&temp_filter=-80,130&gust_filter=0,150&rh_filter=0,100&elev_filter=-300,14000&precip_filter=0.01,30&obs_popup=false&fontsize=4&obs_density=60&obs_provider=ALL" base_url = "http://www.wrh.noaa.gov/map/?&zoom=9&scroll_zoom=false" other_params = "&boundaries=false,false,false,false,false,false,false,false,false,false,false&tab=observation&obs=true&obs_type=weather&elements=temp,dew,wind,gust,slp&temp_filter=-80,130&gust_filter=0,150&rh_filter=0,100&elev_filter=-300,14000&precip_filter=0.01,30&obs_popup=false&fontsize=4&obs_density=60&obs_provider=ALL" lat_lon_params = "&center=" + str(sfc_model_lat) + "," + str(sfc_model_lon) station_model_url = base_url + lat_lon_params + other_params # Configure Chrome options for headless mode chrome_options = Options() chrome_options.add_argument("--headless") chrome_options.add_argument("--disable-gpu") # Set the desired aspect ratio desired_aspect_ratio = 1.8 # Width should be 1.8x the height # Calculate the browser window size to achieve the desired aspect ratio desired_width = 1200 # Adjust this value as needed desired_height = int(desired_width / desired_aspect_ratio) # Set the browser window size chrome_options.add_argument(f"--window-size={desired_width},{desired_height}") # Use the system-installed ChromeDriver executable driver = webdriver.Chrome(service=Service("chromedriver"), options=chrome_options) # Navigate to the URL driver.get(station_model_url) # Find and wait for the close button to be clickable, then click it close_button_locator = (By.CSS_SELECTOR, "a.panel-close") wait = WebDriverWait(driver, timeout_seconds) wait.until(EC.element_to_be_clickable(close_button_locator)).click() time.sleep(10) # Capture a screenshot of the entire page station_model_screenshot = driver.get_screenshot_as_png() # Close the WebDriver driver.quit() # Display the screenshot using PIL station_model_screenshot_image = Image.open(io.BytesIO(station_model_screenshot)) station_model_screenshot_crop = station_model_screenshot_image.crop((42, 0, station_model_screenshot_image.width, station_model_screenshot_image.height)) bx.imshow(station_model_screenshot_crop, aspect='equal') ax.axis('off') bx.axis('off') plt.draw() plt.pause(7) except Exception as e: print("Selenium Station models on sfc plot", e) pass # Is this a user choice? if box_variables[8] == 1: # Scrape, Save and Display the GYX sounding in the subplot try: # Get current UTC time and date scrape_now = datetime.utcnow() if scrape_now.hour >= 1 and scrape_now.hour < 13: # Use 00z for current UTC date date_str = scrape_now.strftime("%y%m%d00") hour_str = "00Z" else: # Use 12z for current UTC date hour_str = "12Z" date_str = scrape_now.strftime("%y%m%d12") if scrape_now.hour < 1: # Use previous UTC date for 00z images scrape_now -= timedelta(days=1) date_str = scrape_now.strftime("%y%m%d12") month_str = scrape_now.strftime("%b").capitalize() day_str = str(scrape_now.day) # Construct image URL sound_url = f"https://www.spc.noaa.gov/exper/soundings/{date_str}_OBS/{sonde_letter_identifier}.gif" # Send a GET request to the image URL to get the image content sound_response = requests.get(sound_url) # Save the image using Pillow sound_img = Image.open(BytesIO(sound_response.content)) # Crop the top 50 pixels from the image crop_box = (0, 250, sound_img.width, sound_img.height) sound_img = sound_img.crop(crop_box) sound_img.save('sound.png', 'PNG') # Pause for 2 seconds include this time when showing baro plt.pause(2) if sound_response.status_code == 200: sound_img = Image.open('sound.png') # Calculate the aspect ratio of the image sound_img = sound_img.convert('RGBA') aspect_ratio = sound_img.width / sound_img.height # Set the size of the displayed image to 8 inches by 8 inches display_width = 0.83 display_height = 1 # Calculate the extent of the displayed image display_extent = [0, display_width, 0, display_height / aspect_ratio] # Create a new image with a white background sound_img_with_white_bg = Image.new('RGBA', (int(sound_img.width), int(sound_img.height)), (255, 255, 255, 255)) sound_img_with_white_bg.paste(sound_img, (0, 0), sound_img) sound_img_with_white_bg.save('sound_img.png', 'PNG') # Display the image with the adjusted extent ax.axis('off') bx.axis('off') bx.imshow(sound_img_with_white_bg, extent=display_extent) # Add the text to the subplot bx.text(0.28, 0.89, f'{month_str} {day_str} {hour_str}\n{sonde_town} {sonde_state}', ha='left', va='center', fontweight='bold', transform=bx.transAxes) plt.draw() plt.pause(13) else: pass except Exception as e: print("Scrape, Save and Display sounding", e) pass bx.clear() bx.axis('off') # Set custom margins fig.subplots_adjust(left=0.125, right=0.9, bottom=0.11, top=0.88) else: pass if ".ndbc." in aobs_url: try: #Scrape for buoy data aurl = aobs_url ahtml = requests.get(aurl)# requests instance time.sleep(5) asoup = BeautifulSoup(ahtml.text,'html.parser') awd = asoup.find(class_="dataTable").find_all('td')[0] awd = awd.string.split()[0] aws = asoup.find(class_="dataTable").find_all('td')[1] aws = float(aws.string) * 1.15078 aws = round(aws) aws = " at {} mph".format(aws) awg = asoup.find(class_="dataTable").find_all('td')[2] awg = round(float(awg.string) * 1.15078) awg = " G{}".format(awg) awind = awd + aws + awg awt = asoup.find(class_="dataTable") awt = awt.find_all('td')[10] awt = awt.string if not "-" in awt: awtemp = "Water Temp: " + str(round(float(awt.string))) + chr(176) else: awtemp = "Water Temp: -" pass aat = asoup.find(class_="dataTable") aat = aat.find_all('td')[9] atemp = "Air Temp: " + str(round(float(aat.string))) + chr(176) except Exception as e: print("Scrape buoy data", e) pass else: #scrape for land aobs aurl = aobs_url try: # Send a GET request to the website and store the response in a variable ahtml = requests.get(aurl) # Parse the HTML content of the website using BeautifulSoup asoup = BeautifulSoup(ahtml.content, 'html.parser') # Find the current temperature, wind direction, and wind speed atemp = asoup.find('p', class_='myforecast-current-lrg').text atemp = atemp[:-1] awind = asoup.find(id='current_conditions_detail')('td')[3] awind = awind.string except Exception as e: print("Scrape PWM data", e) pass #scrape for bobs burl = bobs_url try: # Send a GET request to the website and store the response in a variable bhtml = requests.get(burl) # Parse the HTML content of the website using BeautifulSoup bsoup = BeautifulSoup(bhtml.content, 'html.parser') # Find the current temperature, wind direction, and wind speed btemp = bsoup.find('p', class_='myforecast-current-lrg').text btemp = btemp[:-1] bwind = bsoup.find(id='current_conditions_detail')('td')[3] bwind = bwind.string except Exception as e: print("Scrape station b data", e) pass # scrape for cobs curl = cobs_url try: # Send a GET request to the website and store the response in a variable chtml = requests.get(curl) # Parse the HTML content of the website using BeautifulSoup csoup = BeautifulSoup(chtml.content, 'html.parser') # Find the current temperature, wind direction, and wind speed ctemp = csoup.find('p', class_='myforecast-current-lrg').text ctemp = ctemp[:-1] cwind = csoup.find(id='current_conditions_detail')('td')[3] cwind = cwind.string except Exception as e: print("Scrape buoy data", e) pass # Get time stamp now = datetime.now() # current date and time year = now.strftime("%Y") month = now.strftime("%m") day = now.strftime("%d") time_str = now.strftime("%H:%M:%S") hourmin_str = now.strftime("%H:%M") hms = now.strftime("%H:%M:%S") day = now.strftime("%A") date_time = now.strftime("%m/%d/%Y, %H:%M:%S") date_time = pd.to_datetime(date_time) #allows us to label x-axis now = datetime.now() # current date and time time_delta = dt.timedelta(minutes=4200) start_time = now - time_delta #sec = now.strftime("%S") # Set axis limits and labels ax.set_xlim(start_time, now) dtext=date_time #Build xs and ys arrays xs.append(date_time) ys.append(inHg) #Limit x and y lists to 20 items xs = xs[-4200:] #Adjust this neg number to how many obs plotted in one window ys = ys[-4200:] #At a rate of 1 plot/min for 24 hours change this to 1440 #Draw x and y lists ax.clear() ax.plot(xs, ys, 'r-') ax.text(0, 1.09, "The", transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(0, 1.05, "Weather", transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(0, 1.01, "Observer", transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.11, 1.01, f'Last Updated\n{now.strftime("%A")}\n{now.strftime("%I:%M %P")}', transform=ax.transAxes, fontweight='light', fontstyle='italic', horizontalalignment='left', fontsize=7) if ".ndbc." in aobs_url: try: buoy_code = "Buoy: " + alternative_town_1 ax.text(.2, 1.1, str(buoy_code), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=9) ax.text(.2, 1.07, str(atemp), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=9) ax.text(.2, 1.04, str(awtemp), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=9) ax.text(.2, 1.01, str(awind), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=9) except Exception as e: print("2nd print of buoy data", e) pass else: try: ax.text(.20, 1.09, alternative_town_1.title(), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.20, 1.05, atemp, transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.20, 1.01, awind, transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) except Exception as e: print("2nd aobs error:", e) pass try: ax.text(.50, 1.09, alternative_town_2.title(), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.50, 1.05, btemp, transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.50, 1.01, bwind, transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) except Exception as e: print("2nd bobs error:", e) pass try: ax.text(.80, 1.09, alternative_town_3.title(), transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.80, 1.05, ctemp, transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) ax.text(.80, 1.01, cwind, transform=ax.transAxes, fontweight='bold', horizontalalignment='left', fontsize=12) except Exception as e: print("2nd cobs error:", e) pass #set up background colors gold = 30.75 yellow = 30.35 white = 30.00 gainsboro = 29.65 darkgrey = 29.25 ax.axhline(gold, color='gold', lw=77, alpha=.5) ax.axhline(yellow, color='yellow', lw=46, alpha=.2) ax.axhline(white, color='white', lw=40, alpha=.2) ax.axhline(gainsboro, color='gainsboro', lw=46, alpha=.5) ax.axhline(darkgrey, color='darkgrey', lw=77, alpha=.5) #Lines on minor ticks for t in np.arange(29, 31, 0.05): ax.axhline(t, color='black', lw=.5, alpha=.2) for u in np.arange(29, 31, 0.25): ax.axhline(u, color='black', lw=.7) ax.tick_params(axis='x', direction='inout', length=5, width=1, color='black') ax.set_ylim(29, 31) ax.plot(xs, ys, 'r-') plt.grid(True, color='.01',) #Draws default horiz and vert grid lines plt.ylabel("Inches of Mercury") #plt.title("Barometric Pressure") ax.yaxis.set_minor_locator(AutoMinorLocator(5)) #Puts small ticks between labeled ticks ax.yaxis.set_major_formatter(FormatStrFormatter('%2.2f')) # disable removing overlapping locations ax.xaxis.remove_overlapping_locs = False print(i) ax.xaxis.set( major_locator=mdates.HourLocator((0,4,8,12,16,20)), major_formatter=mdates.DateFormatter('%-I%P'), minor_locator=mdates.DayLocator(), minor_formatter=mdates.DateFormatter("\n%a,%-m/%-d"), ) ax.set_xlim(dt.datetime.now() - dt.timedelta(minutes=4200), dt.datetime.now()) #this line seems responsible for vertical lines ax.grid(which='major', axis='both', linestyle='-', linewidth=1, color='black', alpha=1, zorder=10) plt.show(block=False) #command to close Onboard keyboard os.system("pkill onboard") try: # Set up plot to call animate() function periodically ani = animation.FuncAnimation(fig, animate, fargs=(xs, ys), interval=3000, save_count=len(xs)) ani.save('animation.gif', writer='pillow') except AttributeError: pass except IndexError: pass
PypiClean
/mapfish.plugin.client-0.2.tar.gz/mapfish.plugin.client-0.2/mapfishpluginclient/template/+package+/public/lib/openlayers/lib/OpenLayers/Handler/RegularPolygon.js
* @requires OpenLayers/Handler/Drag.js */ /** * Class: OpenLayers.Handler.RegularPolygon * Handler to draw a regular polygon on the map. Polygon is displayed on mouse * down, moves or is modified on mouse move, and is finished on mouse up. * The handler triggers callbacks for 'done' and 'cancel'. Create a new * instance with the <OpenLayers.Handler.RegularPolygon> constructor. * * Inherits from: * - <OpenLayers.Handler> */ OpenLayers.Handler.RegularPolygon = OpenLayers.Class(OpenLayers.Handler.Drag, { /** * APIProperty: sides * {Integer} Number of sides for the regular polygon. Needs to be greater * than 2. Defaults to 4. */ sides: 4, /** * APIProperty: radius * {Float} Optional radius in map units of the regular polygon. If this is * set to some non-zero value, a polygon with a fixed radius will be * drawn and dragged with mose movements. If this property is not * set, dragging changes the radius of the polygon. Set to null by * default. */ radius: null, /** * APIProperty: snapAngle * {Float} If set to a non-zero value, the handler will snap the polygon * rotation to multiples of the snapAngle. Value is an angle measured * in degrees counterclockwise from the positive x-axis. */ snapAngle: null, /** * APIProperty: snapToggle * {String} If set, snapToggle is checked on mouse events and will set * the snap mode to the opposite of what it currently is. To disallow * toggling between snap and non-snap mode, set freehandToggle to * null. Acceptable toggle values are 'shiftKey', 'ctrlKey', and * 'altKey'. Snap mode is only possible if this.snapAngle is set to a * non-zero value. */ snapToggle: 'shiftKey', /** * APIProperty: persist * {Boolean} Leave the feature rendered until clear is called. Default * is false. If set to true, the feature remains rendered until * clear is called, typically by deactivating the handler or starting * another drawing. */ persist: false, /** * APIProperty: irregular * {Boolean} Draw an irregular polygon instead of a regular polygon. * Default is false. If true, the initial mouse down will represent * one corner of the polygon bounds and with each mouse movement, the * polygon will be stretched so the opposite corner of its bounds * follows the mouse position. This property takes precedence over * the radius property. If set to true, the radius property will * be ignored. */ irregular: false, /** * Property: angle * {Float} The angle from the origin (mouse down) to the current mouse * position, in radians. This is measured counterclockwise from the * positive x-axis. */ angle: null, /** * Property: fixedRadius * {Boolean} The polygon has a fixed radius. True if a radius is set before * drawing begins. False otherwise. */ fixedRadius: false, /** * Property: feature * {<OpenLayers.Feature.Vector>} The currently drawn polygon feature */ feature: null, /** * Property: layer * {<OpenLayers.Layer.Vector>} The temporary drawing layer */ layer: null, /** * Property: origin * {<OpenLayers.Geometry.Point>} Location of the first mouse down */ origin: null, /** * Constructor: OpenLayers.Handler.RegularPolygon * Create a new regular polygon handler. * * Parameters: * control - {<OpenLayers.Control>} The control that owns this handler * callbacks - {Object} An object with a properties whose values are * functions. Various callbacks described below. * options - {Object} An object with properties to be set on the handler. * If the options.sides property is not specified, the number of sides * will default to 4. * * Named callbacks: * create - Called when a sketch is first created. Callback called with * the creation point geometry and sketch feature. * done - Called when the sketch drawing is finished. The callback will * recieve a single argument, the sketch geometry. * cancel - Called when the handler is deactivated while drawing. The * cancel callback will receive a geometry. */ initialize: function(control, callbacks, options) { this.style = OpenLayers.Util.extend(OpenLayers.Feature.Vector.style['default'], {}); OpenLayers.Handler.prototype.initialize.apply(this, [control, callbacks, options]); this.options = (options) ? options : new Object(); }, /** * APIMethod: setOptions * * Parameters: * newOptions - {Object} */ setOptions: function (newOptions) { OpenLayers.Util.extend(this.options, newOptions); OpenLayers.Util.extend(this, newOptions); }, /** * APIMethod: activate * Turn on the handler. * * Return: * {Boolean} The handler was successfully activated */ activate: function() { var activated = false; if(OpenLayers.Handler.prototype.activate.apply(this, arguments)) { // create temporary vector layer for rendering geometry sketch var options = { displayInLayerSwitcher: false, // indicate that the temp vector layer will never be out of range // without this, resolution properties must be specified at the // map-level for this temporary layer to init its resolutions // correctly calculateInRange: OpenLayers.Function.True }; this.layer = new OpenLayers.Layer.Vector(this.CLASS_NAME, options); this.map.addLayer(this.layer); activated = true; } return activated; }, /** * APIMethod: deactivate * Turn off the handler. * * Return: * {Boolean} The handler was successfully deactivated */ deactivate: function() { var deactivated = false; if(OpenLayers.Handler.Drag.prototype.deactivate.apply(this, arguments)) { // call the cancel callback if mid-drawing if(this.dragging) { this.cancel(); } // If a layer's map property is set to null, it means that that // layer isn't added to the map. Since we ourself added the layer // to the map in activate(), we can assume that if this.layer.map // is null it means that the layer has been destroyed (as a result // of map.destroy() for example. if (this.layer.map != null) { this.layer.destroy(false); if (this.feature) { this.feature.destroy(); } } this.layer = null; this.feature = null; deactivated = true; } return deactivated; }, /** * Method: down * Start drawing a new feature * * Parameters: * evt - {Event} The drag start event */ down: function(evt) { this.fixedRadius = !!(this.radius); var maploc = this.map.getLonLatFromPixel(evt.xy); this.origin = new OpenLayers.Geometry.Point(maploc.lon, maploc.lat); // create the new polygon if(!this.fixedRadius || this.irregular) { // smallest radius should not be less one pixel in map units // VML doesn't behave well with smaller this.radius = this.map.getResolution(); } if(this.persist) { this.clear(); } this.feature = new OpenLayers.Feature.Vector(); this.createGeometry(); this.callback("create", [this.origin, this.feature]); this.layer.addFeatures([this.feature], {silent: true}); this.layer.drawFeature(this.feature, this.style); }, /** * Method: move * Respond to drag move events * * Parameters: * evt - {Evt} The move event */ move: function(evt) { var maploc = this.map.getLonLatFromPixel(evt.xy); var point = new OpenLayers.Geometry.Point(maploc.lon, maploc.lat); if(this.irregular) { var ry = Math.sqrt(2) * Math.abs(point.y - this.origin.y) / 2; this.radius = Math.max(this.map.getResolution() / 2, ry); } else if(this.fixedRadius) { this.origin = point; } else { this.calculateAngle(point, evt); this.radius = Math.max(this.map.getResolution() / 2, point.distanceTo(this.origin)); } this.modifyGeometry(); if(this.irregular) { var dx = point.x - this.origin.x; var dy = point.y - this.origin.y; var ratio; if(dy == 0) { ratio = dx / (this.radius * Math.sqrt(2)); } else { ratio = dx / dy; } this.feature.geometry.resize(1, this.origin, ratio); this.feature.geometry.move(dx / 2, dy / 2); } this.layer.drawFeature(this.feature, this.style); }, /** * Method: up * Finish drawing the feature * * Parameters: * evt - {Event} The mouse up event */ up: function(evt) { this.finalize(); // the mouseup method of superclass doesn't call the // "done" callback if there's been no move between // down and up if (this.start == this.last) { this.callback("done", [evt.xy]); } }, /** * Method: out * Finish drawing the feature. * * Parameters: * evt - {Event} The mouse out event */ out: function(evt) { this.finalize(); }, /** * Method: createGeometry * Create the new polygon geometry. This is called at the start of the * drag and at any point during the drag if the number of sides * changes. */ createGeometry: function() { this.angle = Math.PI * ((1/this.sides) - (1/2)); if(this.snapAngle) { this.angle += this.snapAngle * (Math.PI / 180); } this.feature.geometry = OpenLayers.Geometry.Polygon.createRegularPolygon( this.origin, this.radius, this.sides, this.snapAngle ); }, /** * Method: modifyGeometry * Modify the polygon geometry in place. */ modifyGeometry: function() { var angle, dx, dy, point; var ring = this.feature.geometry.components[0]; // if the number of sides ever changes, create a new geometry if(ring.components.length != (this.sides + 1)) { this.createGeometry(); ring = this.feature.geometry.components[0]; } for(var i=0; i<this.sides; ++i) { point = ring.components[i]; angle = this.angle + (i * 2 * Math.PI / this.sides); point.x = this.origin.x + (this.radius * Math.cos(angle)); point.y = this.origin.y + (this.radius * Math.sin(angle)); point.clearBounds(); } }, /** * Method: calculateAngle * Calculate the angle based on settings. * * Parameters: * point - {<OpenLayers.Geometry.Point>} * evt - {Event} */ calculateAngle: function(point, evt) { var alpha = Math.atan2(point.y - this.origin.y, point.x - this.origin.x); if(this.snapAngle && (this.snapToggle && !evt[this.snapToggle])) { var snapAngleRad = (Math.PI / 180) * this.snapAngle; this.angle = Math.round(alpha / snapAngleRad) * snapAngleRad; } else { this.angle = alpha; } }, /** * APIMethod: cancel * Finish the geometry and call the "cancel" callback. */ cancel: function() { // the polygon geometry gets cloned in the callback method this.callback("cancel", null); this.finalize(); }, /** * Method: finalize * Finish the geometry and call the "done" callback. */ finalize: function() { this.origin = null; this.radius = this.options.radius; }, /** * APIMethod: clear * Clear any rendered features on the temporary layer. This is called * when the handler is deactivated, canceled, or done (unless persist * is true). */ clear: function() { this.layer.renderer.clear(); this.layer.destroyFeatures(); }, /** * Method: callback * Trigger the control's named callback with the given arguments * * Parameters: * name - {String} The key for the callback that is one of the properties * of the handler's callbacks object. * args - {Array} An array of arguments with which to call the callback * (defined by the control). */ callback: function (name, args) { // override the callback method to always send the polygon geometry if (this.callbacks[name]) { this.callbacks[name].apply(this.control, [this.feature.geometry.clone()]); } // since sketch features are added to the temporary layer // they must be cleared here if done or cancel if(!this.persist && (name == "done" || name == "cancel")) { this.clear(); } }, CLASS_NAME: "OpenLayers.Handler.RegularPolygon" });
PypiClean
/joulescope_ui-1.0.29.tar.gz/joulescope_ui-1.0.29/joulescope_ui/widgets/sidebar/sidebar_widget.py
from PySide6 import QtCore, QtGui, QtWidgets from joulescope_ui import N_, register, tooltip_format, pubsub_singleton from joulescope_ui.styles import styled_widget, color_as_qcolor from joulescope_ui.widgets import DeviceControlWidget from joulescope_ui.widgets import MemoryWidget from joulescope_ui.widgets import HelpWidget from joulescope_ui.widgets import HamburgerWidget from joulescope_ui.widgets.flyout import FlyoutWidget _DEVICE_TOOLTIP = tooltip_format( N_('Device control'), N_("""\ Click to show the device control widget which displays the connected devices and their settings. Use this widget to open and close devices and configure their operation.\ """)) _MEMORY_TOOLTIP = tooltip_format( N_('Memory buffer settings'), N_("""\ Streaming signal sample data is stored in your host computer's RAM. Click this button to show the memory management widget which allows you to configure the memory used by this Joulescope UI instance.\ """)) _SETTINGS_TOOLTIP = tooltip_format( N_('Settings'), N_("""\ Click to show the settings which allows you to change the global, default, and individual instance settings for devices and widgets. Default changes may not affect existing instances, and may only apply to future instances.\ """)) _HELP_TOOLTIP = tooltip_format( N_('Get help'), N_("""\ Click to display help options.\ """)) _MISC_TOOLTIP = tooltip_format( N_('Additional settings and actions'), N_("""\ Click to display additional settings and actions.\ """)) @register @styled_widget(N_('sidebar')) class SideBar(QtWidgets.QWidget): # Note: does NOT implement widget CAPABILITY, since not instantiable by user or available as a dock widget. SETTINGS = { 'flyout_width': { 'dtype': 'int', 'brief': N_('The flyout width in pixels.'), 'default': 300, }, } def __init__(self, parent): self._parent = parent super().__init__(parent) self.setObjectName('side_bar_icons') size_policy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) size_policy.setHeightForWidth(True) self.setSizePolicy(size_policy) self._style_cache = None self._selected_area = None self._selected_area_brush = QtGui.QBrush self._buttons_by_name = {} self._buttons_by_flyout_idx = {} self._buttons_blink = [] self._buttons_flyout = [] self._flyout: FlyoutWidget = None self._layout = QtWidgets.QVBoxLayout() self._layout.setSpacing(6) self._layout.setContentsMargins(3, 3, 3, 3) self.setLayout(self._layout) self._add_blink_button('target_power', 'target_power') self._add_blink_button('signal_play', 'signal_stream_enable') b = self._add_blink_button('signal_record', 'signal_stream_record') b.toggled.connect(self._on_signal_stream_record_toggled) self._add_blink_button('statistics_play', 'statistics_stream_enable') b = self._add_blink_button('statistics_record', 'statistics_stream_record') b.toggled.connect(self._on_statistics_stream_record_toggled) self._add_button('device', _DEVICE_TOOLTIP) self._add_button('memory', _MEMORY_TOOLTIP) b = self._add_button('settings', _SETTINGS_TOOLTIP) b.clicked.connect(self._on_settings_pressed) self._spacer = QtWidgets.QSpacerItem(10, 0, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self._layout.addItem(self._spacer) self._add_button('help', _HELP_TOOLTIP) self._add_button('misc', _MISC_TOOLTIP) self.mousePressEvent = self._on_mousePressEvent pubsub_singleton.subscribe('registry/ui/events/blink_slow', self._on_blink, ['pub', 'retain']) def register(self): pubsub = pubsub_singleton pubsub.register(self, 'sidebar:0', parent='ui') self._flyout = FlyoutWidget(self._parent, self) pubsub.register(self._flyout, 'flyout:0', parent='sidebar:0') # Create the device control flyout widget for the sidebar d = DeviceControlWidget() pubsub.register(d, 'device_control_widget:flyout', parent='flyout:0') self.widget_set('device', d) # Create the memory flyout widget for the sidebar m = MemoryWidget() pubsub.register(m, 'memory_widget:flyout', parent='flyout:0') self.widget_set('memory', m) # Create the help flyout widget for the sidebar m = HelpWidget(self._flyout) pubsub.register(m, 'help_widget:flyout', parent='flyout:0') self.widget_set('help', m) # Create the hamburger flyout widget for the sidebar m = HamburgerWidget() pubsub.register(m, 'hamburger_widget:flyout', parent='flyout:0') self.widget_set('misc', m) def _on_mousePressEvent(self, event): if event.button() == QtCore.Qt.LeftButton: self.on_cmd_show(-1) event.accept() def _on_signal_stream_record_toggled(self, checked): if bool(checked): pubsub_singleton.publish('registry/SignalRecord/actions/!start_request', None) else: pubsub_singleton.publish('registry/SignalRecord/actions/!stop', None) def _on_statistics_stream_record_toggled(self, checked): if bool(checked): pubsub_singleton.publish('registry/StatisticsRecord/actions/!start_request', None) else: pubsub_singleton.publish('registry/StatisticsRecord/actions/!stop', None) def _on_settings_pressed(self, checked): pubsub_singleton.publish('registry/view/actions/!widget_open', { 'value': 'registry/settings', 'floating': True, }) def _add_blink_button(self, name, app_setting): topic = f'registry/app/settings/{app_setting}' meta = pubsub_singleton.metadata(topic) tooltip = tooltip_format(meta.brief, meta.detail) button = self._add_button(name, tooltip) button.setProperty('blink', False) button.setCheckable(True) self._buttons_blink.append(button) def update_from_pubsub(value): block_state = button.blockSignals(True) button.setChecked(bool(value)) button.blockSignals(block_state) pubsub_singleton.subscribe(topic, update_from_pubsub, ['pub', 'retain']) button.toggled.connect(lambda checked: pubsub_singleton.publish(topic, bool(checked))) return button def widget_set(self, name, widget): button = self._buttons_by_name[name] button.setProperty('selected', False) idx = self._flyout.addWidget(widget) self._buttons_by_flyout_idx[idx] = button button.clicked.connect(lambda: self.on_cmd_show(idx)) def _add_button(self, name, tooltip): button = QtWidgets.QPushButton(self) button.setObjectName(name) button.setFlat(True) button.setFixedSize(32, 32) button.setToolTip(tooltip) self._buttons_by_name[name] = button self._layout.addWidget(button) return button def _on_blink(self, value): for b in self._buttons_blink: b.setProperty('blink', value) b.style().unpolish(b) b.style().polish(b) def on_cmd_show(self, value): value = self._flyout.on_cmd_show(value) if value is not None and value >= 0: button = self._buttons_by_flyout_idx[value] self._selected_area = button.geometry() else: self._selected_area = None self.update() def paintEvent(self, event): s = self._style if s is None: return if self._selected_area is not None: r = self.geometry() x, w = r.x(), r.width() r = self._selected_area y, h = r.y() - 3, r.height() + 6 painter = QtGui.QPainter(self) painter.setRenderHint(QtGui.QPainter.RenderHint.Antialiasing) painter.fillRect(x, y, w, h, s['selected_background_brush']) painter.fillRect(x + w - 1, y, 2, h, s['selected_side_brush']) def resizeEvent(self, event: QtGui.QResizeEvent) -> None: self._flyout.on_sidebar_geometry(self.geometry()) @property def _style(self): if self._style_cache is not None: return self._style_cache if self.style_obj is None: self._style_cache = None return None v = self.style_obj['vars'] self._style_cache = { 'selected_background_brush': QtGui.QBrush(color_as_qcolor(v['sidebar.util_background'])), 'selected_side_brush': QtGui.QBrush(color_as_qcolor(v['sidebar.util_foreground'])), }
PypiClean
/simple_plus-7.0b2.tar.gz/simple_plus-7.0b2/simplepro/static/admin/mdeditor/js/lib/codemirror/mode/cobol/cobol.js
(function(mod) { if (typeof exports == "object" && typeof module == "object") // CommonJS mod(require("../../lib/codemirror")); else if (typeof define == "function" && define.amd) // AMD define(["../../lib/codemirror"], mod); else // Plain browser env mod(CodeMirror); })(function(CodeMirror) { "use strict"; CodeMirror.defineMode("cobol", function () { var BUILTIN = "builtin", COMMENT = "comment", STRING = "string", ATOM = "atom", NUMBER = "number", KEYWORD = "keyword", MODTAG = "header", COBOLLINENUM = "def", PERIOD = "link"; function makeKeywords(str) { var obj = {}, words = str.split(" "); for (var i = 0; i < words.length; ++i) obj[words[i]] = true; return obj; } var atoms = makeKeywords("TRUE FALSE ZEROES ZEROS ZERO SPACES SPACE LOW-VALUE LOW-VALUES "); var keywords = makeKeywords( "ACCEPT ACCESS ACQUIRE ADD ADDRESS " + "ADVANCING AFTER ALIAS ALL ALPHABET " + "ALPHABETIC ALPHABETIC-LOWER ALPHABETIC-UPPER ALPHANUMERIC ALPHANUMERIC-EDITED " + "ALSO ALTER ALTERNATE AND ANY " + "ARE AREA AREAS ARITHMETIC ASCENDING " + "ASSIGN AT ATTRIBUTE AUTHOR AUTO " + "AUTO-SKIP AUTOMATIC B-AND B-EXOR B-LESS " + "B-NOT B-OR BACKGROUND-COLOR BACKGROUND-COLOUR BEEP " + "BEFORE BELL BINARY BIT BITS " + "BLANK BLINK BLOCK BOOLEAN BOTTOM " + "BY CALL CANCEL CD CF " + "CH CHARACTER CHARACTERS CLASS CLOCK-UNITS " + "CLOSE COBOL CODE CODE-SET COL " + "COLLATING COLUMN COMMA COMMIT COMMITMENT " + "COMMON COMMUNICATION COMP COMP-0 COMP-1 " + "COMP-2 COMP-3 COMP-4 COMP-5 COMP-6 " + "COMP-7 COMP-8 COMP-9 COMPUTATIONAL COMPUTATIONAL-0 " + "COMPUTATIONAL-1 COMPUTATIONAL-2 COMPUTATIONAL-3 COMPUTATIONAL-4 COMPUTATIONAL-5 " + "COMPUTATIONAL-6 COMPUTATIONAL-7 COMPUTATIONAL-8 COMPUTATIONAL-9 COMPUTE " + "CONFIGURATION CONNECT CONSOLE CONTAINED CONTAINS " + "CONTENT CONTINUE CONTROL CONTROL-AREA CONTROLS " + "CONVERTING COPY CORR CORRESPONDING COUNT " + "CRT CRT-UNDER CURRENCY CURRENT CURSOR " + "DATA DATE DATE-COMPILED DATE-WRITTEN DAY " + "DAY-OF-WEEK DB DB-ACCESS-CONTROL-KEY DB-DATA-NAME DB-EXCEPTION " + "DB-FORMAT-NAME DB-RECORD-NAME DB-SET-NAME DB-STATUS DBCS " + "DBCS-EDITED DE DEBUG-CONTENTS DEBUG-ITEM DEBUG-LINE " + "DEBUG-NAME DEBUG-SUB-1 DEBUG-SUB-2 DEBUG-SUB-3 DEBUGGING " + "DECIMAL-POINT DECLARATIVES DEFAULT DELETE DELIMITED " + "DELIMITER DEPENDING DESCENDING DESCRIBED DESTINATION " + "DETAIL DISABLE DISCONNECT DISPLAY DISPLAY-1 " + "DISPLAY-2 DISPLAY-3 DISPLAY-4 DISPLAY-5 DISPLAY-6 " + "DISPLAY-7 DISPLAY-8 DISPLAY-9 DIVIDE DIVISION " + "DOWN DROP DUPLICATE DUPLICATES DYNAMIC " + "EBCDIC EGI EJECT ELSE EMI " + "EMPTY EMPTY-CHECK ENABLE END END. END-ACCEPT END-ACCEPT. " + "END-ADD END-CALL END-COMPUTE END-DELETE END-DISPLAY " + "END-DIVIDE END-EVALUATE END-IF END-INVOKE END-MULTIPLY " + "END-OF-PAGE END-PERFORM END-READ END-RECEIVE END-RETURN " + "END-REWRITE END-SEARCH END-START END-STRING END-SUBTRACT " + "END-UNSTRING END-WRITE END-XML ENTER ENTRY " + "ENVIRONMENT EOP EQUAL EQUALS ERASE " + "ERROR ESI EVALUATE EVERY EXCEEDS " + "EXCEPTION EXCLUSIVE EXIT EXTEND EXTERNAL " + "EXTERNALLY-DESCRIBED-KEY FD FETCH FILE FILE-CONTROL " + "FILE-STREAM FILES FILLER FINAL FIND " + "FINISH FIRST FOOTING FOR FOREGROUND-COLOR " + "FOREGROUND-COLOUR FORMAT FREE FROM FULL " + "FUNCTION GENERATE GET GIVING GLOBAL " + "GO GOBACK GREATER GROUP HEADING " + "HIGH-VALUE HIGH-VALUES HIGHLIGHT I-O I-O-CONTROL " + "ID IDENTIFICATION IF IN INDEX " + "INDEX-1 INDEX-2 INDEX-3 INDEX-4 INDEX-5 " + "INDEX-6 INDEX-7 INDEX-8 INDEX-9 INDEXED " + "INDIC INDICATE INDICATOR INDICATORS INITIAL " + "INITIALIZE INITIATE INPUT INPUT-OUTPUT INSPECT " + "INSTALLATION INTO INVALID INVOKE IS " + "JUST JUSTIFIED KANJI KEEP KEY " + "LABEL LAST LD LEADING LEFT " + "LEFT-JUSTIFY LENGTH LENGTH-CHECK LESS LIBRARY " + "LIKE LIMIT LIMITS LINAGE LINAGE-COUNTER " + "LINE LINE-COUNTER LINES LINKAGE LOCAL-STORAGE " + "LOCALE LOCALLY LOCK " + "MEMBER MEMORY MERGE MESSAGE METACLASS " + "MODE MODIFIED MODIFY MODULES MOVE " + "MULTIPLE MULTIPLY NATIONAL NATIVE NEGATIVE " + "NEXT NO NO-ECHO NONE NOT " + "NULL NULL-KEY-MAP NULL-MAP NULLS NUMBER " + "NUMERIC NUMERIC-EDITED OBJECT OBJECT-COMPUTER OCCURS " + "OF OFF OMITTED ON ONLY " + "OPEN OPTIONAL OR ORDER ORGANIZATION " + "OTHER OUTPUT OVERFLOW OWNER PACKED-DECIMAL " + "PADDING PAGE PAGE-COUNTER PARSE PERFORM " + "PF PH PIC PICTURE PLUS " + "POINTER POSITION POSITIVE PREFIX PRESENT " + "PRINTING PRIOR PROCEDURE PROCEDURE-POINTER PROCEDURES " + "PROCEED PROCESS PROCESSING PROGRAM PROGRAM-ID " + "PROMPT PROTECTED PURGE QUEUE QUOTE " + "QUOTES RANDOM RD READ READY " + "REALM RECEIVE RECONNECT RECORD RECORD-NAME " + "RECORDS RECURSIVE REDEFINES REEL REFERENCE " + "REFERENCE-MONITOR REFERENCES RELATION RELATIVE RELEASE " + "REMAINDER REMOVAL RENAMES REPEATED REPLACE " + "REPLACING REPORT REPORTING REPORTS REPOSITORY " + "REQUIRED RERUN RESERVE RESET RETAINING " + "RETRIEVAL RETURN RETURN-CODE RETURNING REVERSE-VIDEO " + "REVERSED REWIND REWRITE RF RH " + "RIGHT RIGHT-JUSTIFY ROLLBACK ROLLING ROUNDED " + "RUN SAME SCREEN SD SEARCH " + "SECTION SECURE SECURITY SEGMENT SEGMENT-LIMIT " + "SELECT SEND SENTENCE SEPARATE SEQUENCE " + "SEQUENTIAL SET SHARED SIGN SIZE " + "SKIP1 SKIP2 SKIP3 SORT SORT-MERGE " + "SORT-RETURN SOURCE SOURCE-COMPUTER SPACE-FILL " + "SPECIAL-NAMES STANDARD STANDARD-1 STANDARD-2 " + "START STARTING STATUS STOP STORE " + "STRING SUB-QUEUE-1 SUB-QUEUE-2 SUB-QUEUE-3 SUB-SCHEMA " + "SUBFILE SUBSTITUTE SUBTRACT SUM SUPPRESS " + "SYMBOLIC SYNC SYNCHRONIZED SYSIN SYSOUT " + "TABLE TALLYING TAPE TENANT TERMINAL " + "TERMINATE TEST TEXT THAN THEN " + "THROUGH THRU TIME TIMES TITLE " + "TO TOP TRAILING TRAILING-SIGN TRANSACTION " + "TYPE TYPEDEF UNDERLINE UNEQUAL UNIT " + "UNSTRING UNTIL UP UPDATE UPON " + "USAGE USAGE-MODE USE USING VALID " + "VALIDATE VALUE VALUES VARYING VLR " + "WAIT WHEN WHEN-COMPILED WITH WITHIN " + "WORDS WORKING-STORAGE WRITE XML XML-CODE " + "XML-EVENT XML-NTEXT XML-TEXT ZERO ZERO-FILL " ); var builtins = makeKeywords("- * ** / + < <= = > >= "); var tests = { digit: /\d/, digit_or_colon: /[\d:]/, hex: /[0-9a-f]/i, sign: /[+-]/, exponent: /e/i, keyword_char: /[^\s\(\[\;\)\]]/, symbol: /[\w*+\-]/ }; function isNumber(ch, stream){ // hex if ( ch === '0' && stream.eat(/x/i) ) { stream.eatWhile(tests.hex); return true; } // leading sign if ( ( ch == '+' || ch == '-' ) && ( tests.digit.test(stream.peek()) ) ) { stream.eat(tests.sign); ch = stream.next(); } if ( tests.digit.test(ch) ) { stream.eat(ch); stream.eatWhile(tests.digit); if ( '.' == stream.peek()) { stream.eat('.'); stream.eatWhile(tests.digit); } if ( stream.eat(tests.exponent) ) { stream.eat(tests.sign); stream.eatWhile(tests.digit); } return true; } return false; } return { startState: function () { return { indentStack: null, indentation: 0, mode: false }; }, token: function (stream, state) { if (state.indentStack == null && stream.sol()) { // update indentation, but only if indentStack is empty state.indentation = 6 ; //stream.indentation(); } // skip spaces if (stream.eatSpace()) { return null; } var returnType = null; switch(state.mode){ case "string": // multi-line string parsing mode var next = false; while ((next = stream.next()) != null) { if (next == "\"" || next == "\'") { state.mode = false; break; } } returnType = STRING; // continue on in string mode break; default: // default parsing mode var ch = stream.next(); var col = stream.column(); if (col >= 0 && col <= 5) { returnType = COBOLLINENUM; } else if (col >= 72 && col <= 79) { stream.skipToEnd(); returnType = MODTAG; } else if (ch == "*" && col == 6) { // comment stream.skipToEnd(); // rest of the line is a comment returnType = COMMENT; } else if (ch == "\"" || ch == "\'") { state.mode = "string"; returnType = STRING; } else if (ch == "'" && !( tests.digit_or_colon.test(stream.peek()) )) { returnType = ATOM; } else if (ch == ".") { returnType = PERIOD; } else if (isNumber(ch,stream)){ returnType = NUMBER; } else { if (stream.current().match(tests.symbol)) { while (col < 71) { if (stream.eat(tests.symbol) === undefined) { break; } else { col++; } } } if (keywords && keywords.propertyIsEnumerable(stream.current().toUpperCase())) { returnType = KEYWORD; } else if (builtins && builtins.propertyIsEnumerable(stream.current().toUpperCase())) { returnType = BUILTIN; } else if (atoms && atoms.propertyIsEnumerable(stream.current().toUpperCase())) { returnType = ATOM; } else returnType = null; } } return returnType; }, indent: function (state) { if (state.indentStack == null) return state.indentation; return state.indentStack.indent; } }; }); CodeMirror.defineMIME("text/x-cobol", "cobol"); });
PypiClean
/teramesh-hardware-tester-0.9.0.tar.gz/teramesh-hardware-tester-0.9.0/teramesh_hardware_tester/idrc_esp_tools/nvs_partition_gen.py
import argparse import array import binascii import codecs import datetime import distutils.dir_util import os import random import struct import sys import zlib from builtins import bytes, int, range from io import open from itertools import zip_longest VERSION1_PRINT = 'V1 - Multipage Blob Support Disabled' VERSION2_PRINT = 'V2 - Multipage Blob Support Enabled' def reverse_hexbytes(addr_tmp): addr = [] reversed_bytes = '' for i in range(0, len(addr_tmp), 2): addr.append(addr_tmp[i:i + 2]) reversed_bytes = ''.join(reversed(addr)) return reversed_bytes """ Class for standard NVS page structure """ class Page(object): PAGE_PARAMS = { 'max_size': 4096, 'max_old_blob_size': 1984, 'max_new_blob_size': 4000, 'max_entries': 126 } # Item type codes U8 = 0x01 I8 = 0x11 U16 = 0x02 I16 = 0x12 U32 = 0x04 I32 = 0x14 U64 = 0x08 I64 = 0x18 SZ = 0x21 BLOB = 0x41 BLOB_DATA = 0x42 BLOB_IDX = 0x48 # Few Page constants HEADER_SIZE = 32 BITMAPARRAY_OFFSET = 32 BITMAPARRAY_SIZE_IN_BYTES = 32 FIRST_ENTRY_OFFSET = 64 SINGLE_ENTRY_SIZE = 32 CHUNK_ANY = 0xFF ACTIVE = 0xFFFFFFFE FULL = 0xFFFFFFFC VERSION1 = 0xFF VERSION2 = 0xFE def __init__(self, page_num, version, is_rsrv_page=False): self.entry_num = 0 self.bitmap_array = array.array('B') self.version = version self.page_buf = bytearray(b'\xff') * Page.PAGE_PARAMS['max_size'] if not is_rsrv_page: self.bitmap_array = self.create_bitmap_array() self.set_header(page_num, version) def set_header(self, page_num, version): # set page state to active page_header = bytearray(b'\xff') * 32 page_state_active_seq = Page.ACTIVE struct.pack_into('<I', page_header, 0, page_state_active_seq) # set page sequence number struct.pack_into('<I', page_header, 4, page_num) # set version if version == Page.VERSION2: page_header[8] = Page.VERSION2 elif version == Page.VERSION1: page_header[8] = Page.VERSION1 # set header's CRC crc_data = bytes(page_header[4:28]) crc = zlib.crc32(crc_data, 0xFFFFFFFF) struct.pack_into('<I', page_header, 28, crc & 0xFFFFFFFF) self.page_buf[0:len(page_header)] = page_header def create_bitmap_array(self): bitarray = array.array('B') charsize = 32 # bitmaparray has 256 bits, hence 32 bytes fill = 255 # Fill all 8 bits with 1's bitarray.extend((fill,) * charsize) return bitarray def write_bitmaparray(self): bitnum = self.entry_num * 2 byte_idx = bitnum // 8 # Find byte index in the array bit_offset = bitnum & 7 # Find bit offset in given byte index mask = ~(1 << bit_offset) self.bitmap_array[byte_idx] &= mask start_idx = Page.BITMAPARRAY_OFFSET end_idx = Page.BITMAPARRAY_OFFSET + Page.BITMAPARRAY_SIZE_IN_BYTES self.page_buf[start_idx:end_idx] = self.bitmap_array def write_entry_to_buf(self, data, entrycount,nvs_obj): data_offset = Page.FIRST_ENTRY_OFFSET + (Page.SINGLE_ENTRY_SIZE * self.entry_num) start_idx = data_offset end_idx = data_offset + len(data) self.page_buf[start_idx:end_idx] = data # Set bitmap array for entries in current page for i in range(0, entrycount): self.write_bitmaparray() self.entry_num += 1 def set_crc_header(self, entry_struct): crc_data = bytearray(b'28') crc_data[0:4] = entry_struct[0:4] crc_data[4:28] = entry_struct[8:32] crc_data = bytes(crc_data) crc = zlib.crc32(crc_data, 0xFFFFFFFF) struct.pack_into('<I', entry_struct, 4, crc & 0xFFFFFFFF) return entry_struct def write_varlen_binary_data(self, entry_struct, ns_index, key, data, data_size, total_entry_count, encoding, nvs_obj): chunk_start = 0 chunk_count = 0 chunk_index = Page.CHUNK_ANY offset = 0 remaining_size = data_size tailroom = None while True: chunk_size = 0 # Get the size available in current page tailroom = (Page.PAGE_PARAMS['max_entries'] - self.entry_num - 1) * Page.SINGLE_ENTRY_SIZE assert tailroom >= 0, 'Page overflow!!' # Split the binary data into two and store a chunk of available size onto curr page if tailroom < remaining_size: chunk_size = tailroom else: chunk_size = remaining_size remaining_size = remaining_size - chunk_size # Change type of data to BLOB_DATA entry_struct[1] = Page.BLOB_DATA # Calculate no. of entries data chunk will require datachunk_rounded_size = (chunk_size + 31) & ~31 datachunk_entry_count = datachunk_rounded_size // 32 datachunk_total_entry_count = datachunk_entry_count + 1 # +1 for the entry header # Set Span entry_struct[2] = datachunk_total_entry_count # Update the chunkIndex chunk_index = chunk_start + chunk_count entry_struct[3] = chunk_index # Set data chunk data_chunk = data[offset:offset + chunk_size] # Compute CRC of data chunk struct.pack_into('<H', entry_struct, 24, chunk_size) if type(data) != bytes: data_chunk = bytes(data_chunk, encoding='utf8') crc = zlib.crc32(data_chunk, 0xFFFFFFFF) struct.pack_into('<I', entry_struct, 28, crc & 0xFFFFFFFF) # compute crc of entry header entry_struct = self.set_crc_header(entry_struct) # write entry header self.write_entry_to_buf(entry_struct, 1,nvs_obj) # write actual data self.write_entry_to_buf(data_chunk, datachunk_entry_count,nvs_obj) chunk_count = chunk_count + 1 if remaining_size or (tailroom - chunk_size) < Page.SINGLE_ENTRY_SIZE: nvs_obj.create_new_page() self = nvs_obj.cur_page offset = offset + chunk_size # All chunks are stored, now store the index if not remaining_size: # Initialise data field to 0xff data_array = bytearray(b'\xff') * 8 entry_struct[24:32] = data_array # change type of data to BLOB_IDX entry_struct[1] = Page.BLOB_IDX # Set Span entry_struct[2] = 1 # Update the chunkIndex chunk_index = Page.CHUNK_ANY entry_struct[3] = chunk_index struct.pack_into('<I', entry_struct, 24, data_size) entry_struct[28] = chunk_count entry_struct[29] = chunk_start # compute crc of entry header entry_struct = self.set_crc_header(entry_struct) # write last entry self.write_entry_to_buf(entry_struct, 1,nvs_obj) break return entry_struct def write_single_page_entry(self, entry_struct, data, datalen, data_entry_count, nvs_obj): # compute CRC of data struct.pack_into('<H', entry_struct, 24, datalen) if type(data) != bytes: data = bytes(data, encoding='utf8') crc = zlib.crc32(data, 0xFFFFFFFF) struct.pack_into('<I', entry_struct, 28, crc & 0xFFFFFFFF) # compute crc of entry header entry_struct = self.set_crc_header(entry_struct) # write entry header self.write_entry_to_buf(entry_struct, 1, nvs_obj) # write actual data self.write_entry_to_buf(data, data_entry_count, nvs_obj) """ Low-level function to write variable length data into page buffer. Data should be formatted according to encoding specified. """ def write_varlen_data(self, key, data, encoding, ns_index,nvs_obj): # Set size of data datalen = len(data) if datalen > Page.PAGE_PARAMS['max_old_blob_size']: if self.version == Page.VERSION1: raise InputError(' Input File: Size (%d) exceeds max allowed length `%s` bytes for key `%s`.' % (datalen, Page.PAGE_PARAMS['max_old_blob_size'], key)) else: if encoding == 'string': raise InputError(' Input File: Size (%d) exceeds max allowed length `%s` bytes for key `%s`.' % (datalen, Page.PAGE_PARAMS['max_old_blob_size'], key)) # Calculate no. of entries data will require rounded_size = (datalen + 31) & ~31 data_entry_count = rounded_size // 32 total_entry_count = data_entry_count + 1 # +1 for the entry header # Check if page is already full and new page is needed to be created right away if self.entry_num >= Page.PAGE_PARAMS['max_entries']: raise PageFullError() elif (self.entry_num + total_entry_count) >= Page.PAGE_PARAMS['max_entries']: if not (self.version == Page.VERSION2 and encoding in ['hex2bin', 'binary', 'base64']): raise PageFullError() # Entry header entry_struct = bytearray(b'\xff') * 32 # Set Namespace Index entry_struct[0] = ns_index # Set Span if self.version == Page.VERSION2: if encoding == 'string': entry_struct[2] = data_entry_count + 1 # Set Chunk Index chunk_index = Page.CHUNK_ANY entry_struct[3] = chunk_index else: entry_struct[2] = data_entry_count + 1 # set key key_array = b'\x00' * 16 entry_struct[8:24] = key_array entry_struct[8:8 + len(key)] = key.encode() # set Type if encoding == 'string': entry_struct[1] = Page.SZ elif encoding in ['hex2bin', 'binary', 'base64']: entry_struct[1] = Page.BLOB if self.version == Page.VERSION2 and (encoding in ['hex2bin', 'binary', 'base64']): entry_struct = self.write_varlen_binary_data(entry_struct,ns_index,key,data, datalen,total_entry_count, encoding, nvs_obj) else: self.write_single_page_entry(entry_struct, data, datalen, data_entry_count, nvs_obj) """ Low-level function to write data of primitive type into page buffer. """ def write_primitive_data(self, key, data, encoding, ns_index,nvs_obj): # Check if entry exceeds max number of entries allowed per page if self.entry_num >= Page.PAGE_PARAMS['max_entries']: raise PageFullError() entry_struct = bytearray(b'\xff') * 32 entry_struct[0] = ns_index # namespace index entry_struct[2] = 0x01 # Span chunk_index = Page.CHUNK_ANY entry_struct[3] = chunk_index # write key key_array = b'\x00' * 16 entry_struct[8:24] = key_array entry_struct[8:8 + len(key)] = key.encode() if encoding == 'u8': entry_struct[1] = Page.U8 struct.pack_into('<B', entry_struct, 24, data) elif encoding == 'i8': entry_struct[1] = Page.I8 struct.pack_into('<b', entry_struct, 24, data) elif encoding == 'u16': entry_struct[1] = Page.U16 struct.pack_into('<H', entry_struct, 24, data) elif encoding == 'i16': entry_struct[1] = Page.I16 struct.pack_into('<h', entry_struct, 24, data) elif encoding == 'u32': entry_struct[1] = Page.U32 struct.pack_into('<I', entry_struct, 24, data) elif encoding == 'i32': entry_struct[1] = Page.I32 struct.pack_into('<i', entry_struct, 24, data) elif encoding == 'u64': entry_struct[1] = Page.U64 struct.pack_into('<Q', entry_struct, 24, data) elif encoding == 'i64': entry_struct[1] = Page.I64 struct.pack_into('<q', entry_struct, 24, data) # Compute CRC crc_data = bytearray(b'28') crc_data[0:4] = entry_struct[0:4] crc_data[4:28] = entry_struct[8:32] crc_data = bytes(crc_data) crc = zlib.crc32(crc_data, 0xFFFFFFFF) struct.pack_into('<I', entry_struct, 4, crc & 0xFFFFFFFF) # write to file self.write_entry_to_buf(entry_struct, 1,nvs_obj) """ Get page buffer data of a given page """ def get_data(self): return self.page_buf """ NVS class encapsulates all NVS specific operations to create a binary with given key-value pairs. Binary can later be flashed onto device via a flashing utility. """ class NVS(object): def __init__(self, fout, input_size, version, encrypt=False, key_input=None): self.size = input_size self.encrypt = encrypt self.encr_key = None self.namespace_idx = 0 self.page_num = -1 self.pages = [] self.version = version self.fout = fout if self.encrypt: self.encr_key = key_input self.cur_page = self.create_new_page(version) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): if exc_type is None and exc_value is None: # Create pages for remaining available size while True: try: self.create_new_page() except InsufficientSizeError: self.size = None # Creating the last reserved page self.create_new_page(is_rsrv_page=True) break result = self.get_binary_data() self.fout.write(result) def create_new_page(self, version=None, is_rsrv_page=False): # Set previous page state to FULL before creating new page if self.pages: curr_page_state = struct.unpack('<I', self.cur_page.page_buf[0:4])[0] if curr_page_state == Page.ACTIVE: page_state_full_seq = Page.FULL struct.pack_into('<I', self.cur_page.page_buf, 0, page_state_full_seq) # Set version for NVS binary generated version = self.version # Update available size as each page is created if self.size == 0: raise InsufficientSizeError('Error: Size parameter is less than the size of data in csv.Please increase size.') if not is_rsrv_page: self.size = self.size - Page.PAGE_PARAMS['max_size'] self.page_num += 1 # Set version for each page and page header new_page = Page(self.page_num, version, is_rsrv_page) self.pages.append(new_page) self.cur_page = new_page return new_page """ Write namespace entry and subsequently increase namespace count so that all upcoming entries will be mapped to a new namespace. """ def write_namespace(self, key): self.namespace_idx += 1 try: self.cur_page.write_primitive_data(key, self.namespace_idx, 'u8', 0,self) except PageFullError: new_page = self.create_new_page() new_page.write_primitive_data(key, self.namespace_idx, 'u8', 0,self) """ Write key-value pair. Function accepts value in the form of ascii character and converts it into appropriate format before calling Page class's functions to write entry into NVS format. Function handles PageFullError and creates a new page and re-invokes the function on a new page. We don't have to guard re-invocation with try-except since no entry can span multiple pages. """ def write_entry(self, key, value, encoding): if encoding == 'hex2bin': value = value.strip() if len(value) % 2 != 0: raise InputError('%s: Invalid data length. Should be multiple of 2.' % key) value = binascii.a2b_hex(value) if encoding == 'base64': value = binascii.a2b_base64(value) if encoding == 'string': if type(value) == bytes: value = value.decode() value += '\0' encoding = encoding.lower() varlen_encodings = ['string', 'binary', 'hex2bin', 'base64'] primitive_encodings = ['u8', 'i8', 'u16', 'i16', 'u32', 'i32', 'u64', 'i64'] if encoding in varlen_encodings: try: self.cur_page.write_varlen_data(key, value, encoding, self.namespace_idx,self) except PageFullError: new_page = self.create_new_page() new_page.write_varlen_data(key, value, encoding, self.namespace_idx,self) elif encoding in primitive_encodings: try: self.cur_page.write_primitive_data(key, int(value), encoding, self.namespace_idx,self) except PageFullError: new_page = self.create_new_page() new_page.write_primitive_data(key, int(value), encoding, self.namespace_idx,self) else: raise InputError('%s: Unsupported encoding' % encoding) """ Return accumulated data of all pages """ def get_binary_data(self): data = bytearray() for page in self.pages: data += page.get_data() return data class PageFullError(RuntimeError): """ Represents error when current page doesn't have sufficient entries left to accommodate current request """ def __init__(self): super(PageFullError, self).__init__() class InputError(RuntimeError): """ Represents error on the input """ def __init__(self, e): print('\nError:') super(InputError, self).__init__(e) class InsufficientSizeError(RuntimeError): """ Represents error when NVS Partition size given is insufficient to accomodate the data in the given csv file """ def __init__(self, e): super(InsufficientSizeError, self).__init__(e) def nvs_open(result_obj, input_size, version=None, is_encrypt=False, key=None): """ Wrapper to create and NVS class object. This object can later be used to set key-value pairs :param result_obj: File/Stream object to dump resultant binary. If data is to be dumped into memory, one way is to use BytesIO object :param input_size: Size of Partition :return: NVS class instance """ return NVS(result_obj, input_size, version, encrypt=is_encrypt, key_input=key) def write_entry(nvs_instance, key, datatype, encoding, value): """ Wrapper to set key-value pair in NVS format :param nvs_instance: Instance of an NVS class returned by nvs_open() :param key: Key of the data :param datatype: Data type. Valid values are "file", "data" and "namespace" :param encoding: Data encoding. Valid values are "u8", "i8", "u16", "i16", "u32", "i32", "u64", "i64", "string", "binary", "hex2bin" and "base64" :param value: Data value in ascii encoded string format for "data" datatype and filepath for "file" datatype :return: None """ if datatype == 'file': abs_file_path = value if os.path.isabs(value) is False: script_dir = os.getcwd() abs_file_path = os.path.join(script_dir, value) with open(abs_file_path, 'rb') as f: value = f.read() if datatype == 'namespace': nvs_instance.write_namespace(key) else: nvs_instance.write_entry(key, value, encoding) def nvs_close(nvs_instance): """ Wrapper to finish writing to NVS and write data to file/stream object provided to nvs_open method :param nvs_instance: Instance of NVS class returned by nvs_open() :return: None """ nvs_instance.__exit__(None, None, None) def check_size(size): ''' Checks for input partition size :param size: Input partition size ''' try: # Set size input_size = int(size, 0) if input_size % 4096 != 0: sys.exit('Size of partition must be multiple of 4096') # Update size as a page needs to be reserved of size 4KB input_size = input_size - Page.PAGE_PARAMS['max_size'] if input_size < (2 * Page.PAGE_PARAMS['max_size']): sys.exit('Minimum NVS partition size needed is 0x3000 bytes.') return input_size except Exception as e: print(e) sys.exit(0) def set_target_filepath(outdir, filepath): ''' Set target file path: <outdir>/<filepath> :param outdir: Target output dir to store files :param filepath: Path of target file ''' bin_ext = '.bin' # Expand if tilde(~) provided in path outdir = os.path.expanduser(outdir) if filepath: key_file_name, ext = os.path.splitext(filepath) if not ext: filepath = key_file_name + bin_ext elif bin_ext not in ext: sys.exit('Error: `%s`. Only `%s` extension allowed.' % (filepath, bin_ext)) # Create dir if does not exist if not (os.path.isdir(outdir)): distutils.dir_util.mkpath(outdir) filedir, filename = os.path.split(filepath) filedir = os.path.join(outdir,filedir,'') if filedir and not os.path.isdir(filedir): distutils.dir_util.mkpath(filedir) if os.path.isabs(filepath): if not outdir == os.getcwd(): print('\nWarning: `%s` \n\t==> absolute path given so outdir is ignored for this file.' % filepath) # Set to empty as outdir is ignored here outdir = '' # Set full path - outdir + filename filepath = os.path.join(outdir, '') + filepath return outdir, filepath def generate(args, is_encr_enabled=False, encr_key=None): ''' Generate NVS Partition :param args: Command line arguments given :param is_encr_enabled: Encryption enabled/disabled :param encr_key: Key to encrypt NVS partition ''' is_dir_new = False bin_ext = '.bin' input_size = check_size(args.size) if args.version == 1: args.version = Page.VERSION1 elif args.version == 2: args.version = Page.VERSION2 # Check if key file has .bin extension filename, ext = os.path.splitext(args.output) if bin_ext not in ext: sys.exit('Error: `%s`. Only `.bin` extension allowed.' % args.output) args.outdir, args.output = set_target_filepath(args.outdir, args.output) input_file = open(args.input, 'rt', encoding='utf8') output_file = open(args.output, 'wb') with open(args.input, 'rt', encoding='utf8') as input_file,\ open(args.output, 'wb') as output_file,\ nvs_open(output_file, input_size, args.version, is_encrypt=is_encr_enabled, key=encr_key) as nvs_obj: if nvs_obj.version == Page.VERSION1: version_set = VERSION1_PRINT else: version_set = VERSION2_PRINT print('\nCreating NVS binary with version:', version_set) line = input_file.readline().strip() # Comments are skipped while line.startswith('#'): line = input_file.readline().strip() if not isinstance(line, str): line = line.encode('utf-8') header = line.split(',') while True: line = input_file.readline().strip() if not isinstance(line, str): line = line.encode('utf-8') value = line.split(',') if len(value) == 1 and '' in value: break data = dict(zip_longest(header, value)) try: # Check key length if len(data['key']) > 15: raise InputError('Length of key `{}` should be <= 15 characters.'.format(data['key'])) write_entry(nvs_obj, data['key'], data['type'], data['encoding'], data['value']) except InputError as e: print(e) filedir, filename = os.path.split(args.output) if filename: print('\nWarning: NVS binary not created...') os.remove(args.output) if is_dir_new and not filedir == os.getcwd(): print('\nWarning: Output dir not created...') os.rmdir(filedir) sys.exit(-2) print('\nCreated NVS binary: ===>', args.output) def main(): parser = argparse.ArgumentParser() subparser = parser.add_subparsers() parser_gen = subparser.add_parser('generate', help='Generate NVS partition', formatter_class=argparse.RawTextHelpFormatter) parser_gen.set_defaults(func=generate) parser_gen.add_argument('input', default=None, help='Path to CSV file to parse') parser_gen.add_argument('output', default=None, help='Path to output NVS binary file') parser_gen.add_argument('size', default=None, help='Size of NVS partition in bytes\ \n(must be multiple of 4096)') parser_gen.add_argument('--version', choices=[1,2], default=2, type=int, help='''Set multipage blob version.\ \nVersion 1 - Multipage blob support disabled.\ \nVersion 2 - Multipage blob support enabled.\ \nDefault: Version 2''') parser_gen.add_argument('--outdir', default=os.getcwd(), help='Output directory to store files created\ \n(Default: current directory)') args = parser.parse_args() args.func(args) if __name__ == '__main__': main()
PypiClean
/bio_gopher-1.0.3-py3-none-any.whl/gopher/saliency_embed.py
import logomaker import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import subprocess import tensorflow as tf import umap.umap_ as umap from gopher import utils from tensorflow import keras def select(embeddings, lower_lim_1=None, upper_lim_1=None, lower_lim_2=None, upper_lim_2=None, idr=''): ''' This funciton selects embedding points of a UMAP for downstream tasks :param embeddings: UMAP 2D embeddings in pandas dataframe :param lower_lim_1: X axis lower lim :param upper_lim_1: X axis upper lim :param lower_lim_2: Y axis lower lim :param upper_lim_2: Y axis upper lim :param idr: if 'y' filter only IDR peaks if 'n' only non-IDR peaks (if not set to anything take all) :return: mask filter ''' mask = np.zeros((embeddings['UMAP 1'].shape[0])) + 1 if lower_lim_1: mask *= (embeddings['UMAP 1'] > lower_lim_1).values if upper_lim_1: mask *= (embeddings['UMAP 1'] < upper_lim_1).values if lower_lim_2: mask *= (embeddings['UMAP 2'] > lower_lim_2).values if upper_lim_2: mask *= (embeddings['UMAP 2'] < upper_lim_2).values if idr == 'y': print('Choosing only IDR') mask *= (embeddings['IDR'] == True).values if idr == 'n': print('Choosing only non IDR') mask *= (embeddings['IDR'] != True).values return mask.astype(bool) def get_cell_line_overlaps(file_prefix, bedfile1, bedfile2, fraction_overlap=0.5): """ This function filters overlapping bed ranges and returns start coordinates of points that have idr overlaps. Useful for "annotating" whole chromosome chunks as idr or non-idr :param file_prefix: output csv file prefix :param bedfile1: first bedfile (the ranges of which will be annotated) :param bedfile2: second bedfile that contains the idr regions :param fraction_overlap: minimum fraction of overlap needed to call a sequence idr :return: vector of starting positions of idr sequences in the test set """ cmd = 'bedtools intersect -f {} -wa -a {} -b {} | uniq > {}_IDR.bed'.format(fraction_overlap, bedfile1, bedfile2, file_prefix) process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) _ = process.communicate() out_filename = '{}_IDR.bed'.format(file_prefix) df = pd.read_csv(out_filename, sep='\t', header=None) idr_starts = df.iloc[:, 1].values os.remove(out_filename) return idr_starts def label_idr_peaks(C, cell_line, bedfile1, bedfile2, fraction_overlap=0.5): """ Function to classify each coordinate as idr or non-idr :param C: iterable of coordinates in the format saved in the tfr datasets :param cell_line: cell line to select the corresponding IDR peaks :return: list of boolean values indicating if peak is present at that coordinate """ idr_class = [] file_prefix = 'cell_line_{}'.format(cell_line) idr_starts = get_cell_line_overlaps(file_prefix, bedfile1, bedfile2, fraction_overlap=fraction_overlap) idr_class.append([True if int(str(c).strip('\'b').split('_')[1]) in idr_starts else False for c in C]) idr_class = [item for sublist in idr_class for item in sublist] return idr_class def get_embeddings(input_features): """ This function puts embeddings as a pandas dataframe :param input_features: intermediate representations :return: pandas dataframe of embeddings """ reducer = umap.UMAP(random_state=28) embedding = reducer.fit_transform(input_features) df = pd.DataFrame({'UMAP 1': embedding[:, 1], 'UMAP 2': embedding[:, 0]}) print('Finished embedding in UMAP') return df def tomtom_upstream(model_path, filter_layer, seq, output_path, threshold=0.5, pad=3): model = utils.read_model(model_path, True)[0] max_filter, counter = filter_max_align_batch(seq, model, layer=filter_layer) clip_filter = clip_filters(max_filter, threshold=threshold, pad=pad) meme_generate(clip_filter, output_file=ooutput_path + '.txt') def meme_generate(W, output_file='meme.txt', prefix='filter'): """generate a meme file for a set of filters, W ∈ (N,L,A)""" # background frequency nt_freqs = [1. / 4 for i in range(4)] # open file for writing f = open(output_file, 'w') # print intro material f.write('MEME version 4\n') f.write('\n') f.write('ALPHABET= ACGT\n') f.write('\n') f.write('Background letter frequencies:\n') f.write('A %.4f C %.4f G %.4f T %.4f \n' % tuple(nt_freqs)) f.write('\n') for j, pwm in enumerate(W): L, A = pwm.shape f.write('MOTIF %s%d \n' % (prefix, j)) f.write('letter-probability matrix: alength= 4 w= %d nsites= %d \n' % (L, L)) for i in range(L): f.write('%.4f %.4f %.4f %.4f \n' % tuple(pwm[i, :])) f.write('\n') f.close() def clip_filters(W, threshold=0.5, pad=3): """clip uninformative parts of conv filters""" W_clipped = [] for w in W: L, A = w.shape entropy = np.log2(4) + np.sum(w * np.log2(w + 1e-7), axis=1) index = np.where(entropy > threshold)[0] if index.any(): start = np.maximum(np.min(index) - pad, 0) end = np.minimum(np.max(index) + pad + 1, L) W_clipped.append(w[start:end, :]) else: W_clipped.append(w) return W_clipped def filter_max_align_batch(X, model, layer=3, window=24, threshold=0.5, batch_size=1024, max_align=1e4, verbose=1): """get alignment of filter activations for visualization""" if verbose: print("Calculating filter PPM based on activation-based alignments") N, L, A = X.element_spec.shape num_filters = model.layers[layer].output.shape[2] # Set the left and right window sizes window_left = int(window / 2) window_right = window - window_left # get feature maps of 1st convolutional layer after activation intermediate = keras.Model(inputs=model.inputs, outputs=model.layers[layer].output) # dataset = tf.data.Dataset.from_tensor_slices(X) # batches = X.batch(batch_size) batches = X # loop over batches to capture MAX activation if verbose: print(' Calculating MAX activation') MAX = np.zeros(num_filters) for x in batches: # get feature map for mini-batch fmap = intermediate.predict(x) # loop over each filter to find "active" positions for f in range(num_filters): MAX[f] = np.maximum(MAX[f], np.max(fmap[:, :, f])) # loop over each filter to find "active" positions W = [] counts = [] for f in range(num_filters): if verbose: print(" processing %d out of %d filters" % (f + 1, num_filters)) status = 0 # compile sub-model to get feature map intermediate = keras.Model(inputs=model.inputs, outputs=model.layers[layer].output[:, :, f]) # loop over each batch # dataset = tf.data.Dataset.from_tensor_slices(X) seq_align_sum = np.zeros((window, A)) # running sum counter = 0 # counts the number of sequences in alignment status = 1 # monitors whether depth of alignment has reached max_align for x in X: if status: # get feature map for a batch sequences fmaps = intermediate.predict(x) # Find regions above threshold for data_index, fmap in enumerate(fmaps): if status: pos_index = np.where(fmap > MAX[f] * threshold)[0] # Make a sequence alignment centered about each activation (above threshold) for i in range(len(pos_index)): if status: # Determine position of window about each filter activation start_window = pos_index[i] - window_left end_window = pos_index[i] + window_right # Check to make sure positions are valid if (start_window > 0) & (end_window < L): seq_align_sum += x[data_index, start_window:end_window, :].numpy() counter += 1 if counter > max_align: status = 0 else: break else: break else: if verbose: print(" alignment has reached max depth for all filters") break # calculate position probability matrix of filter if verbose: print(" %d sub-sequences above threshold" % (counter)) if counter > 0: W.append(seq_align_sum / counter) else: W.append(np.ones((window, A)) / A) counts.append(counter) return np.array(W), np.array(counts) class Explainer(): """wrapper class for attribution maps""" def __init__(self, model, class_index=None, func=tf.math.reduce_mean, binary=False): self.model = model self.class_index = class_index self.func = func self.binary = binary def saliency_maps(self, X, batch_size=128): return function_batch(X, saliency_map, batch_size, model=self.model, class_index=self.class_index, func=self.func, binary=self.binary) def function_batch(X, fun, batch_size=128, **kwargs): """ run a function in batches """ dataset = tf.data.Dataset.from_tensor_slices(X) outputs = [] for x in dataset.batch(batch_size): f = fun(x, **kwargs) outputs.append(f) return np.concatenate(outputs, axis=0) def grad_times_input_to_df(x, grad, alphabet='ACGT'): """generate pandas dataframe for saliency plot based on grad x inputs """ x_index = np.argmax(np.squeeze(x), axis=1) grad = np.squeeze(grad) L, A = grad.shape seq = '' saliency = np.zeros((L)) for i in range(L): seq += alphabet[x_index[i]] saliency[i] = grad[i,x_index[i]] # create saliency matrix saliency_df = logomaker.saliency_to_matrix(seq=seq, values=saliency) return saliency_df @tf.function def saliency_map(X, model, class_index=None, func=tf.math.reduce_mean, binary=False): """fast function to generate saliency maps""" if not tf.is_tensor(X): X = tf.Variable(X) with tf.GradientTape() as tape: tape.watch(X) if binary: outputs = model(X)[:, class_index] else: outputs = tf.math.reduce_mean(model(X)[:, :, class_index], axis=1) return tape.gradient(outputs, X) def plot_mean_coverages(data_and_labels, ax): """ Plot average coverage and std as a shade :param data_and_labels: iterable of pairs of data points and label :param ax: figure axis :return: """ for i, (data, label, p) in enumerate(data_and_labels): x = np.arange(data.shape[1]) est = np.mean(data, axis=0) sd = np.std(data, axis=0) cis = (est - sd, est + sd) ax.fill_between(x, cis[0], cis[1], alpha=0.08, color=p) ax.plot(x, est, p, label=label) def plot_attribution_map(saliency_df, ax=None, figsize=(20,1)): """plot an attribution map using logomaker""" logomaker.Logo(saliency_df, figsize=figsize, ax=ax) if ax is None: ax = plt.gca() ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('none') ax.xaxis.set_ticks_position('none') plt.xticks([]) plt.yticks([]) def plot_saliency_logos_oneplot(saliency_scores, X_sample, window=20, titles=[], filename=None): """ Function for plotting and saving saliency maps :param saliency_scores: pre-computed saliency scores :param X_sample: input sequences :param window: window around peak saliency to plot :param titles: title of each subplot :param filename: filepath where the svg will be saved :return: None """ N, L, A = X_sample.shape fig, axs = plt.subplots(N, 1, figsize=[20, 2 * N]) for i in range(N): ax = axs[i] x_sample = np.expand_dims(X_sample[i], axis=0) scores = np.expand_dims(saliency_scores[i], axis=0) # find window to plot saliency maps (about max saliency value) index = np.argmax(np.max(np.abs(scores), axis=2), axis=1)[0] if index - window < 0: start = 0 end = window * 2 + 1 elif index + window > L: start = L - window * 2 - 1 end = L else: start = index - window end = index + window saliency_df = grad_times_input_to_df(x_sample[:, start:end, :], scores[:, start:end, :]) plot_attribution_map(saliency_df, ax, figsize=(20, 1)) if len(titles): ax.set_title(titles[i]) plt.tight_layout() if filename: assert not os.path.isfile(filename), 'File exists!' plt.savefig(filename, format='svg') #------------------------------------------------------------------------------ def smoothgrad(x, model, num_samples=50, mean=0.0, stddev=0.1, class_index=None, func=tf.math.reduce_mean): _,L,A = x.shape x_noise = tf.tile(x, (num_samples,1,1)) + tf.random.normal((num_samples,L,A), mean, stddev) grad = saliency_map(x_noise, model, class_index=class_index, func=func) return tf.reduce_mean(grad, axis=0, keepdims=True) #------------------------------------------------------------------------------ def integrated_grad(x, model, baseline, num_steps=25, class_index=None, func=tf.math.reduce_mean): def integral_approximation(gradients): # riemann_trapezoidal grads = (gradients[:-1] + gradients[1:]) / tf.constant(2.0) integrated_gradients = tf.math.reduce_mean(grads, axis=0) return integrated_gradients def interpolate_data(baseline, x, steps): steps_x = steps[:, tf.newaxis, tf.newaxis] delta = x - baseline x = baseline + steps_x * delta return x steps = tf.linspace(start=0.0, stop=1.0, num=num_steps+1) x_interp = interpolate_data(baseline, x, steps) grad = saliency_map(x_interp, model, class_index=class_index, func=func) avg_grad = integral_approximation(grad) avg_grad= np.expand_dims(avg_grad, axis=0) return avg_grad #------------------------------------------------------------------------------ def expected_integrated_grad(x, model, baselines, num_steps=25, class_index=None, func=tf.math.reduce_mean): """average integrated gradients across different backgrounds""" grads = [] for baseline in baselines: grads.append(integrated_grad(x, model, baseline, num_steps=num_steps, class_index=class_index, func=tf.math.reduce_mean)) return np.mean(np.array(grads), axis=0) #------------------------------------------------------------------------------ def mutagenesis(x, model, class_index=None): """ in silico mutagenesis analysis for a given sequence""" def generate_mutagenesis(x): _,L,A = x.shape x_mut = [] for l in range(L): for a in range(A): x_new = np.copy(x) x_new[0,l,:] = 0 x_new[0,l,a] = 1 x_mut.append(x_new) return np.concatenate(x_mut, axis=0) def reconstruct_map(predictions): _,L,A = x.shape mut_score = np.zeros((1,L,A)) k = 0 for l in range(L): for a in range(A): mut_score[0,l,a] = predictions[k] k += 1 return mut_score def get_score(x, model, class_index): score = model.predict(x) if class_index == None: score = np.sqrt(np.sum(score**2, axis=-1, keepdims=True)) else: score = score[:,class_index] return score # generate mutagenized sequences x_mut = generate_mutagenesis(x) # get baseline wildtype score wt_score = get_score(x, model, class_index) predictions = get_score(x_mut, model, class_index) # reshape mutagenesis predictiosn mut_score = reconstruct_map(predictions) return mut_score - wt_score
PypiClean
/message_server_xBarbarian-0.6.7-py3-none-any.whl/server/server/main_window.py
from PyQt5.QtWidgets import QMainWindow, QAction, qApp, QApplication, QLabel, QTableView from PyQt5.QtGui import QStandardItemModel, QStandardItem from PyQt5.QtCore import QTimer from server.stat_window import StatWindow from server.config_window import ConfigWindow from server.add_user import RegisterUser from server.remove_user import DelUserDialog class MainWindow(QMainWindow): '''Класс - основное окно сервера.''' def __init__(self, database, server, config): # Конструктор предка super().__init__() # База данных сервера self.database = database self.server_thread = server self.config = config # Ярлык выхода self.exitAction = QAction('Выход', self) self.exitAction.setShortcut('Ctrl+Q') self.exitAction.triggered.connect(qApp.quit) # Кнопка обновить список клиентов self.refresh_button = QAction('Обновить список', self) # Кнопка настроек сервера self.config_btn = QAction('Настройки сервера', self) # Кнопка регистрации пользователя self.register_btn = QAction('Регистрация пользователя', self) # Кнопка удаления пользователя self.remove_btn = QAction('Удаление пользователя', self) # Кнопка вывести историю сообщений self.show_history_button = QAction('История клиентов', self) # Статусбар self.statusBar() self.statusBar().showMessage('Server Working') # Тулбар self.toolbar = self.addToolBar('MainBar') self.toolbar.addAction(self.exitAction) self.toolbar.addAction(self.refresh_button) self.toolbar.addAction(self.show_history_button) self.toolbar.addAction(self.config_btn) self.toolbar.addAction(self.register_btn) self.toolbar.addAction(self.remove_btn) # Настройки геометрии основного окна # Поскольку работать с динамическими размерами мы не умеем, и мало # времени на изучение, размер окна фиксирован. self.setFixedSize(800, 600) self.setWindowTitle('Messaging Server alpha release') # Надпись о том, что ниже список подключённых клиентов self.label = QLabel('Список подключённых клиентов:', self) self.label.setFixedSize(240, 15) self.label.move(10, 25) # Окно со списком подключённых клиентов. self.active_clients_table = QTableView(self) self.active_clients_table.move(10, 45) self.active_clients_table.setFixedSize(780, 400) # Таймер, обновляющий список клиентов 1 раз в секунду self.timer = QTimer() self.timer.timeout.connect(self.create_users_model) self.timer.start(1000) # Связываем кнопки с процедурами self.refresh_button.triggered.connect(self.create_users_model) self.show_history_button.triggered.connect(self.show_statistics) self.config_btn.triggered.connect(self.server_config) self.register_btn.triggered.connect(self.reg_user) self.remove_btn.triggered.connect(self.rem_user) # Последним параметром отображаем окно. self.show() def create_users_model(self): '''Метод заполняющий таблицу активных пользователей.''' list_users = self.database.active_users_list() list = QStandardItemModel() list.setHorizontalHeaderLabels( ['Имя Клиента', 'IP Адрес', 'Порт', 'Время подключения']) for row in list_users: user, ip, port, time = row user = QStandardItem(user) user.setEditable(False) ip = QStandardItem(ip) ip.setEditable(False) port = QStandardItem(str(port)) port.setEditable(False) # Уберём милисекунды из строки времени, т.к. такая точность не # требуется. time = QStandardItem(str(time.replace(microsecond=0))) time.setEditable(False) list.appendRow([user, ip, port, time]) self.active_clients_table.setModel(list) self.active_clients_table.resizeColumnsToContents() self.active_clients_table.resizeRowsToContents() def show_statistics(self): '''Метод создающий окно со статистикой клиентов.''' global stat_window stat_window = StatWindow(self.database) stat_window.show() def server_config(self): '''Метод создающий окно с настройками сервера.''' global config_window # Создаём окно и заносим в него текущие параметры config_window = ConfigWindow(self.config) def reg_user(self): '''Метод создающий окно регистрации пользователя.''' global reg_window reg_window = RegisterUser(self.database, self.server_thread) reg_window.show() def rem_user(self): '''Метод создающий окно удаления пользователя.''' global rem_window rem_window = DelUserDialog(self.database, self.server_thread) rem_window.show()
PypiClean
/OBITools-1.2.13.tar.gz/OBITools-1.2.13/distutils.ext/obidistutils/serenity/pip/_vendor/distlib/metadata.py
from __future__ import unicode_literals import codecs from email import message_from_file import json import logging import re from . import DistlibException, __version__ from .compat import StringIO, string_types, text_type from .markers import interpret from .util import extract_by_key, get_extras from .version import get_scheme, PEP426_VERSION_RE logger = logging.getLogger(__name__) class MetadataMissingError(DistlibException): """A required metadata is missing""" class MetadataConflictError(DistlibException): """Attempt to read or write metadata fields that are conflictual.""" class MetadataUnrecognizedVersionError(DistlibException): """Unknown metadata version number.""" class MetadataInvalidError(DistlibException): """A metadata value is invalid""" # public API of this module __all__ = ['Metadata', 'PKG_INFO_ENCODING', 'PKG_INFO_PREFERRED_VERSION'] # Encoding used for the PKG-INFO files PKG_INFO_ENCODING = 'utf-8' # preferred version. Hopefully will be changed # to 1.2 once PEP 345 is supported everywhere PKG_INFO_PREFERRED_VERSION = '1.1' _LINE_PREFIX = re.compile('\n \|') _241_FIELDS = ('Metadata-Version', 'Name', 'Version', 'Platform', 'Summary', 'Description', 'Keywords', 'Home-page', 'Author', 'Author-email', 'License') _314_FIELDS = ('Metadata-Version', 'Name', 'Version', 'Platform', 'Supported-Platform', 'Summary', 'Description', 'Keywords', 'Home-page', 'Author', 'Author-email', 'License', 'Classifier', 'Download-URL', 'Obsoletes', 'Provides', 'Requires') _314_MARKERS = ('Obsoletes', 'Provides', 'Requires', 'Classifier', 'Download-URL') _345_FIELDS = ('Metadata-Version', 'Name', 'Version', 'Platform', 'Supported-Platform', 'Summary', 'Description', 'Keywords', 'Home-page', 'Author', 'Author-email', 'Maintainer', 'Maintainer-email', 'License', 'Classifier', 'Download-URL', 'Obsoletes-Dist', 'Project-URL', 'Provides-Dist', 'Requires-Dist', 'Requires-Python', 'Requires-External') _345_MARKERS = ('Provides-Dist', 'Requires-Dist', 'Requires-Python', 'Obsoletes-Dist', 'Requires-External', 'Maintainer', 'Maintainer-email', 'Project-URL') _426_FIELDS = ('Metadata-Version', 'Name', 'Version', 'Platform', 'Supported-Platform', 'Summary', 'Description', 'Keywords', 'Home-page', 'Author', 'Author-email', 'Maintainer', 'Maintainer-email', 'License', 'Classifier', 'Download-URL', 'Obsoletes-Dist', 'Project-URL', 'Provides-Dist', 'Requires-Dist', 'Requires-Python', 'Requires-External', 'Private-Version', 'Obsoleted-By', 'Setup-Requires-Dist', 'Extension', 'Provides-Extra') _426_MARKERS = ('Private-Version', 'Provides-Extra', 'Obsoleted-By', 'Setup-Requires-Dist', 'Extension') _ALL_FIELDS = set() _ALL_FIELDS.update(_241_FIELDS) _ALL_FIELDS.update(_314_FIELDS) _ALL_FIELDS.update(_345_FIELDS) _ALL_FIELDS.update(_426_FIELDS) EXTRA_RE = re.compile(r'''extra\s*==\s*("([^"]+)"|'([^']+)')''') def _version2fieldlist(version): if version == '1.0': return _241_FIELDS elif version == '1.1': return _314_FIELDS elif version == '1.2': return _345_FIELDS elif version == '2.0': return _426_FIELDS raise MetadataUnrecognizedVersionError(version) def _best_version(fields): """Detect the best version depending on the fields used.""" def _has_marker(keys, markers): for marker in markers: if marker in keys: return True return False keys = [] for key, value in fields.items(): if value in ([], 'UNKNOWN', None): continue keys.append(key) possible_versions = ['1.0', '1.1', '1.2', '2.0'] # first let's try to see if a field is not part of one of the version for key in keys: if key not in _241_FIELDS and '1.0' in possible_versions: possible_versions.remove('1.0') if key not in _314_FIELDS and '1.1' in possible_versions: possible_versions.remove('1.1') if key not in _345_FIELDS and '1.2' in possible_versions: possible_versions.remove('1.2') if key not in _426_FIELDS and '2.0' in possible_versions: possible_versions.remove('2.0') # possible_version contains qualified versions if len(possible_versions) == 1: return possible_versions[0] # found ! elif len(possible_versions) == 0: raise MetadataConflictError('Unknown metadata set') # let's see if one unique marker is found is_1_1 = '1.1' in possible_versions and _has_marker(keys, _314_MARKERS) is_1_2 = '1.2' in possible_versions and _has_marker(keys, _345_MARKERS) is_2_0 = '2.0' in possible_versions and _has_marker(keys, _426_MARKERS) if int(is_1_1) + int(is_1_2) + int(is_2_0) > 1: raise MetadataConflictError('You used incompatible 1.1/1.2/2.0 fields') # we have the choice, 1.0, or 1.2, or 2.0 # - 1.0 has a broken Summary field but works with all tools # - 1.1 is to avoid # - 1.2 fixes Summary but has little adoption # - 2.0 adds more features and is very new if not is_1_1 and not is_1_2 and not is_2_0: # we couldn't find any specific marker if PKG_INFO_PREFERRED_VERSION in possible_versions: return PKG_INFO_PREFERRED_VERSION if is_1_1: return '1.1' if is_1_2: return '1.2' return '2.0' _ATTR2FIELD = { 'metadata_version': 'Metadata-Version', 'name': 'Name', 'version': 'Version', 'platform': 'Platform', 'supported_platform': 'Supported-Platform', 'summary': 'Summary', 'description': 'Description', 'keywords': 'Keywords', 'home_page': 'Home-page', 'author': 'Author', 'author_email': 'Author-email', 'maintainer': 'Maintainer', 'maintainer_email': 'Maintainer-email', 'license': 'License', 'classifier': 'Classifier', 'download_url': 'Download-URL', 'obsoletes_dist': 'Obsoletes-Dist', 'provides_dist': 'Provides-Dist', 'requires_dist': 'Requires-Dist', 'setup_requires_dist': 'Setup-Requires-Dist', 'requires_python': 'Requires-Python', 'requires_external': 'Requires-External', 'requires': 'Requires', 'provides': 'Provides', 'obsoletes': 'Obsoletes', 'project_url': 'Project-URL', 'private_version': 'Private-Version', 'obsoleted_by': 'Obsoleted-By', 'extension': 'Extension', 'provides_extra': 'Provides-Extra', } _PREDICATE_FIELDS = ('Requires-Dist', 'Obsoletes-Dist', 'Provides-Dist') _VERSIONS_FIELDS = ('Requires-Python',) _VERSION_FIELDS = ('Version',) _LISTFIELDS = ('Platform', 'Classifier', 'Obsoletes', 'Requires', 'Provides', 'Obsoletes-Dist', 'Provides-Dist', 'Requires-Dist', 'Requires-External', 'Project-URL', 'Supported-Platform', 'Setup-Requires-Dist', 'Provides-Extra', 'Extension') _LISTTUPLEFIELDS = ('Project-URL',) _ELEMENTSFIELD = ('Keywords',) _UNICODEFIELDS = ('Author', 'Maintainer', 'Summary', 'Description') _MISSING = object() _FILESAFE = re.compile('[^A-Za-z0-9.]+') def _get_name_and_version(name, version, for_filename=False): """Return the distribution name with version. If for_filename is true, return a filename-escaped form.""" if for_filename: # For both name and version any runs of non-alphanumeric or '.' # characters are replaced with a single '-'. Additionally any # spaces in the version string become '.' name = _FILESAFE.sub('-', name) version = _FILESAFE.sub('-', version.replace(' ', '.')) return '%s-%s' % (name, version) class LegacyMetadata(object): """The legacy metadata of a release. Supports versions 1.0, 1.1 and 1.2 (auto-detected). You can instantiate the class with one of these arguments (or none): - *path*, the path to a metadata file - *fileobj* give a file-like object with metadata as content - *mapping* is a dict-like object - *scheme* is a version scheme name """ # TODO document the mapping API and UNKNOWN default key def __init__(self, path=None, fileobj=None, mapping=None, scheme='default'): if [path, fileobj, mapping].count(None) < 2: raise TypeError('path, fileobj and mapping are exclusive') self._fields = {} self.requires_files = [] self._dependencies = None self.scheme = scheme if path is not None: self.read(path) elif fileobj is not None: self.read_file(fileobj) elif mapping is not None: self.update(mapping) self.set_metadata_version() def set_metadata_version(self): self._fields['Metadata-Version'] = _best_version(self._fields) def _write_field(self, fileobj, name, value): fileobj.write('%s: %s\n' % (name, value)) def __getitem__(self, name): return self.get(name) def __setitem__(self, name, value): return self.set(name, value) def __delitem__(self, name): field_name = self._convert_name(name) try: del self._fields[field_name] except KeyError: raise KeyError(name) def __contains__(self, name): return (name in self._fields or self._convert_name(name) in self._fields) def _convert_name(self, name): if name in _ALL_FIELDS: return name name = name.replace('-', '_').lower() return _ATTR2FIELD.get(name, name) def _default_value(self, name): if name in _LISTFIELDS or name in _ELEMENTSFIELD: return [] return 'UNKNOWN' def _remove_line_prefix(self, value): return _LINE_PREFIX.sub('\n', value) def __getattr__(self, name): if name in _ATTR2FIELD: return self[name] raise AttributeError(name) # # Public API # # dependencies = property(_get_dependencies, _set_dependencies) def get_fullname(self, filesafe=False): """Return the distribution name with version. If filesafe is true, return a filename-escaped form.""" return _get_name_and_version(self['Name'], self['Version'], filesafe) def is_field(self, name): """return True if name is a valid metadata key""" name = self._convert_name(name) return name in _ALL_FIELDS def is_multi_field(self, name): name = self._convert_name(name) return name in _LISTFIELDS def read(self, filepath): """Read the metadata values from a file path.""" fp = codecs.open(filepath, 'r', encoding='utf-8') try: self.read_file(fp) finally: fp.close() def read_file(self, fileob): """Read the metadata values from a file object.""" msg = message_from_file(fileob) self._fields['Metadata-Version'] = msg['metadata-version'] # When reading, get all the fields we can for field in _ALL_FIELDS: if field not in msg: continue if field in _LISTFIELDS: # we can have multiple lines values = msg.get_all(field) if field in _LISTTUPLEFIELDS and values is not None: values = [tuple(value.split(',')) for value in values] self.set(field, values) else: # single line value = msg[field] if value is not None and value != 'UNKNOWN': self.set(field, value) self.set_metadata_version() def write(self, filepath, skip_unknown=False): """Write the metadata fields to filepath.""" fp = codecs.open(filepath, 'w', encoding='utf-8') try: self.write_file(fp, skip_unknown) finally: fp.close() def write_file(self, fileobject, skip_unknown=False): """Write the PKG-INFO format data to a file object.""" self.set_metadata_version() for field in _version2fieldlist(self['Metadata-Version']): values = self.get(field) if skip_unknown and values in ('UNKNOWN', [], ['UNKNOWN']): continue if field in _ELEMENTSFIELD: self._write_field(fileobject, field, ','.join(values)) continue if field not in _LISTFIELDS: if field == 'Description': values = values.replace('\n', '\n |') values = [values] if field in _LISTTUPLEFIELDS: values = [','.join(value) for value in values] for value in values: self._write_field(fileobject, field, value) def update(self, other=None, **kwargs): """Set metadata values from the given iterable `other` and kwargs. Behavior is like `dict.update`: If `other` has a ``keys`` method, they are looped over and ``self[key]`` is assigned ``other[key]``. Else, ``other`` is an iterable of ``(key, value)`` iterables. Keys that don't match a metadata field or that have an empty value are dropped. """ def _set(key, value): if key in _ATTR2FIELD and value: self.set(self._convert_name(key), value) if not other: # other is None or empty container pass elif hasattr(other, 'keys'): for k in other.keys(): _set(k, other[k]) else: for k, v in other: _set(k, v) if kwargs: for k, v in kwargs.items(): _set(k, v) def set(self, name, value): """Control then set a metadata field.""" name = self._convert_name(name) if ((name in _ELEMENTSFIELD or name == 'Platform') and not isinstance(value, (list, tuple))): if isinstance(value, string_types): value = [v.strip() for v in value.split(',')] else: value = [] elif (name in _LISTFIELDS and not isinstance(value, (list, tuple))): if isinstance(value, string_types): value = [value] else: value = [] if logger.isEnabledFor(logging.WARNING): project_name = self['Name'] scheme = get_scheme(self.scheme) if name in _PREDICATE_FIELDS and value is not None: for v in value: # check that the values are valid if not scheme.is_valid_matcher(v.split(';')[0]): logger.warning( '%r: %r is not valid (field %r)', project_name, v, name) # FIXME this rejects UNKNOWN, is that right? elif name in _VERSIONS_FIELDS and value is not None: if not scheme.is_valid_constraint_list(value): logger.warning('%r: %r is not a valid version (field %r)', project_name, value, name) elif name in _VERSION_FIELDS and value is not None: if not scheme.is_valid_version(value): logger.warning('%r: %r is not a valid version (field %r)', project_name, value, name) if name in _UNICODEFIELDS: if name == 'Description': value = self._remove_line_prefix(value) self._fields[name] = value def get(self, name, default=_MISSING): """Get a metadata field.""" name = self._convert_name(name) if name not in self._fields: if default is _MISSING: default = self._default_value(name) return default if name in _UNICODEFIELDS: value = self._fields[name] return value elif name in _LISTFIELDS: value = self._fields[name] if value is None: return [] res = [] for val in value: if name not in _LISTTUPLEFIELDS: res.append(val) else: # That's for Project-URL res.append((val[0], val[1])) return res elif name in _ELEMENTSFIELD: value = self._fields[name] if isinstance(value, string_types): return value.split(',') return self._fields[name] def check(self, strict=False): """Check if the metadata is compliant. If strict is True then raise if no Name or Version are provided""" self.set_metadata_version() # XXX should check the versions (if the file was loaded) missing, warnings = [], [] for attr in ('Name', 'Version'): # required by PEP 345 if attr not in self: missing.append(attr) if strict and missing != []: msg = 'missing required metadata: %s' % ', '.join(missing) raise MetadataMissingError(msg) for attr in ('Home-page', 'Author'): if attr not in self: missing.append(attr) # checking metadata 1.2 (XXX needs to check 1.1, 1.0) if self['Metadata-Version'] != '1.2': return missing, warnings scheme = get_scheme(self.scheme) def are_valid_constraints(value): for v in value: if not scheme.is_valid_matcher(v.split(';')[0]): return False return True for fields, controller in ((_PREDICATE_FIELDS, are_valid_constraints), (_VERSIONS_FIELDS, scheme.is_valid_constraint_list), (_VERSION_FIELDS, scheme.is_valid_version)): for field in fields: value = self.get(field, None) if value is not None and not controller(value): warnings.append('Wrong value for %r: %s' % (field, value)) return missing, warnings def todict(self, skip_missing=False): """Return fields as a dict. Field names will be converted to use the underscore-lowercase style instead of hyphen-mixed case (i.e. home_page instead of Home-page). """ self.set_metadata_version() mapping_1_0 = ( ('metadata_version', 'Metadata-Version'), ('name', 'Name'), ('version', 'Version'), ('summary', 'Summary'), ('home_page', 'Home-page'), ('author', 'Author'), ('author_email', 'Author-email'), ('license', 'License'), ('description', 'Description'), ('keywords', 'Keywords'), ('platform', 'Platform'), ('classifier', 'Classifier'), ('download_url', 'Download-URL'), ) data = {} for key, field_name in mapping_1_0: if not skip_missing or field_name in self._fields: data[key] = self[field_name] if self['Metadata-Version'] == '1.2': mapping_1_2 = ( ('requires_dist', 'Requires-Dist'), ('requires_python', 'Requires-Python'), ('requires_external', 'Requires-External'), ('provides_dist', 'Provides-Dist'), ('obsoletes_dist', 'Obsoletes-Dist'), ('project_url', 'Project-URL'), ('maintainer', 'Maintainer'), ('maintainer_email', 'Maintainer-email'), ) for key, field_name in mapping_1_2: if not skip_missing or field_name in self._fields: if key != 'project_url': data[key] = self[field_name] else: data[key] = [','.join(u) for u in self[field_name]] elif self['Metadata-Version'] == '1.1': mapping_1_1 = ( ('provides', 'Provides'), ('requires', 'Requires'), ('obsoletes', 'Obsoletes'), ) for key, field_name in mapping_1_1: if not skip_missing or field_name in self._fields: data[key] = self[field_name] return data def add_requirements(self, requirements): if self['Metadata-Version'] == '1.1': # we can't have 1.1 metadata *and* Setuptools requires for field in ('Obsoletes', 'Requires', 'Provides'): if field in self: del self[field] self['Requires-Dist'] += requirements # Mapping API # TODO could add iter* variants def keys(self): return list(_version2fieldlist(self['Metadata-Version'])) def __iter__(self): for key in self.keys(): yield key def values(self): return [self[key] for key in self.keys()] def items(self): return [(key, self[key]) for key in self.keys()] def __repr__(self): return '<%s %s %s>' % (self.__class__.__name__, self.name, self.version) METADATA_FILENAME = 'pydist.json' class Metadata(object): """ The metadata of a release. This implementation uses 2.0 (JSON) metadata where possible. If not possible, it wraps a LegacyMetadata instance which handles the key-value metadata format. """ METADATA_VERSION_MATCHER = re.compile('^\d+(\.\d+)*$') NAME_MATCHER = re.compile('^[0-9A-Z]([0-9A-Z_.-]*[0-9A-Z])?$', re.I) VERSION_MATCHER = PEP426_VERSION_RE SUMMARY_MATCHER = re.compile('.{1,2047}') METADATA_VERSION = '2.0' GENERATOR = 'distlib (%s)' % __version__ MANDATORY_KEYS = { 'name': (), 'version': (), 'summary': ('legacy',), } INDEX_KEYS = ('name version license summary description author ' 'author_email keywords platform home_page classifiers ' 'download_url') DEPENDENCY_KEYS = ('extras run_requires test_requires build_requires ' 'dev_requires provides meta_requires obsoleted_by ' 'supports_environments') SYNTAX_VALIDATORS = { 'metadata_version': (METADATA_VERSION_MATCHER, ()), 'name': (NAME_MATCHER, ('legacy',)), 'version': (VERSION_MATCHER, ('legacy',)), 'summary': (SUMMARY_MATCHER, ('legacy',)), } __slots__ = ('_legacy', '_data', 'scheme') def __init__(self, path=None, fileobj=None, mapping=None, scheme='default'): if [path, fileobj, mapping].count(None) < 2: raise TypeError('path, fileobj and mapping are exclusive') self._legacy = None self._data = None self.scheme = scheme #import pdb; pdb.set_trace() if mapping is not None: try: self._validate_mapping(mapping, scheme) self._data = mapping except MetadataUnrecognizedVersionError: self._legacy = LegacyMetadata(mapping=mapping, scheme=scheme) self.validate() else: data = None if path: with open(path, 'rb') as f: data = f.read() elif fileobj: data = fileobj.read() if data is None: # Initialised with no args - to be added self._data = { 'metadata_version': self.METADATA_VERSION, 'generator': self.GENERATOR, } else: if not isinstance(data, text_type): data = data.decode('utf-8') try: self._data = json.loads(data) self._validate_mapping(self._data, scheme) except ValueError: # Note: MetadataUnrecognizedVersionError does not # inherit from ValueError (it's a DistlibException, # which should not inherit from ValueError). # The ValueError comes from the json.load - if that # succeeds and we get a validation error, we want # that to propagate self._legacy = LegacyMetadata(fileobj=StringIO(data), scheme=scheme) self.validate() common_keys = set(('name', 'version', 'license', 'keywords', 'summary')) none_list = (None, list) none_dict = (None, dict) mapped_keys = { 'run_requires': ('Requires-Dist', list), 'build_requires': ('Setup-Requires-Dist', list), 'dev_requires': none_list, 'test_requires': none_list, 'meta_requires': none_list, 'extras': ('Provides-Extra', list), 'modules': none_list, 'namespaces': none_list, 'exports': none_dict, 'commands': none_dict, 'classifiers': ('Classifier', list), 'source_url': ('Download-URL', None), 'metadata_version': ('Metadata-Version', None), } del none_list, none_dict def __getattribute__(self, key): common = object.__getattribute__(self, 'common_keys') mapped = object.__getattribute__(self, 'mapped_keys') if key in mapped: lk, maker = mapped[key] if self._legacy: if lk is None: result = None if maker is None else maker() else: result = self._legacy.get(lk) else: value = None if maker is None else maker() result = self._data.get(key, value) elif key not in common: result = object.__getattribute__(self, key) elif self._legacy: result = self._legacy.get(key) else: result = self._data.get(key) return result def _validate_value(self, key, value, scheme=None): if key in self.SYNTAX_VALIDATORS: pattern, exclusions = self.SYNTAX_VALIDATORS[key] if (scheme or self.scheme) not in exclusions: m = pattern.match(value) if not m: raise MetadataInvalidError('%r is an invalid value for ' 'the %r property' % (value, key)) def __setattr__(self, key, value): self._validate_value(key, value) common = object.__getattribute__(self, 'common_keys') mapped = object.__getattribute__(self, 'mapped_keys') if key in mapped: lk, _ = mapped[key] if self._legacy: if lk is None: raise NotImplementedError self._legacy[lk] = value else: self._data[key] = value elif key not in common: object.__setattr__(self, key, value) else: if key == 'keywords': if isinstance(value, string_types): value = value.strip() if value: value = value.split() else: value = [] if self._legacy: self._legacy[key] = value else: self._data[key] = value @property def name_and_version(self): return _get_name_and_version(self.name, self.version, True) @property def provides(self): if self._legacy: result = self._legacy['Provides-Dist'] else: result = self._data.setdefault('provides', []) s = '%s (%s)' % (self.name, self.version) if s not in result: result.append(s) return result @provides.setter def provides(self, value): if self._legacy: self._legacy['Provides-Dist'] = value else: self._data['provides'] = value def get_requirements(self, reqts, extras=None, env=None): """ Base method to get dependencies, given a set of extras to satisfy and an optional environment context. :param reqts: A list of sometimes-wanted dependencies, perhaps dependent on extras and environment. :param extras: A list of optional components being requested. :param env: An optional environment for marker evaluation. """ if self._legacy: result = reqts else: result = [] extras = get_extras(extras or [], self.extras) for d in reqts: if 'extra' not in d and 'environment' not in d: # unconditional include = True else: if 'extra' not in d: # Not extra-dependent - only environment-dependent include = True else: include = d.get('extra') in extras if include: # Not excluded because of extras, check environment marker = d.get('environment') if marker: include = interpret(marker, env) if include: result.extend(d['requires']) for key in ('build', 'dev', 'test'): e = ':%s:' % key if e in extras: extras.remove(e) # A recursive call, but it should terminate since 'test' # has been removed from the extras reqts = self._data.get('%s_requires' % key, []) result.extend(self.get_requirements(reqts, extras=extras, env=env)) return result @property def dictionary(self): if self._legacy: return self._from_legacy() return self._data @property def dependencies(self): if self._legacy: raise NotImplementedError else: return extract_by_key(self._data, self.DEPENDENCY_KEYS) @dependencies.setter def dependencies(self, value): if self._legacy: raise NotImplementedError else: self._data.update(value) def _validate_mapping(self, mapping, scheme): if mapping.get('metadata_version') != self.METADATA_VERSION: raise MetadataUnrecognizedVersionError() missing = [] for key, exclusions in self.MANDATORY_KEYS.items(): if key not in mapping: if scheme not in exclusions: missing.append(key) if missing: msg = 'Missing metadata items: %s' % ', '.join(missing) raise MetadataMissingError(msg) for k, v in mapping.items(): self._validate_value(k, v, scheme) def validate(self): if self._legacy: missing, warnings = self._legacy.check(True) if missing or warnings: logger.warning('Metadata: missing: %s, warnings: %s', missing, warnings) else: self._validate_mapping(self._data, self.scheme) def todict(self): if self._legacy: return self._legacy.todict(True) else: result = extract_by_key(self._data, self.INDEX_KEYS) return result def _from_legacy(self): assert self._legacy and not self._data result = { 'metadata_version': self.METADATA_VERSION, 'generator': self.GENERATOR, } lmd = self._legacy.todict(True) # skip missing ones for k in ('name', 'version', 'license', 'summary', 'description', 'classifier'): if k in lmd: if k == 'classifier': nk = 'classifiers' else: nk = k result[nk] = lmd[k] kw = lmd.get('Keywords', []) if kw == ['']: kw = [] result['keywords'] = kw keys = (('requires_dist', 'run_requires'), ('setup_requires_dist', 'build_requires')) for ok, nk in keys: if ok in lmd and lmd[ok]: result[nk] = [{'requires': lmd[ok]}] result['provides'] = self.provides author = {} maintainer = {} return result LEGACY_MAPPING = { 'name': 'Name', 'version': 'Version', 'license': 'License', 'summary': 'Summary', 'description': 'Description', 'classifiers': 'Classifier', } def _to_legacy(self): def process_entries(entries): reqts = set() for e in entries: extra = e.get('extra') env = e.get('environment') rlist = e['requires'] for r in rlist: if not env and not extra: reqts.add(r) else: marker = '' if extra: marker = 'extra == "%s"' % extra if env: if marker: marker = '(%s) and %s' % (env, marker) else: marker = env reqts.add(';'.join((r, marker))) return reqts assert self._data and not self._legacy result = LegacyMetadata() nmd = self._data for nk, ok in self.LEGACY_MAPPING.items(): if nk in nmd: result[ok] = nmd[nk] r1 = process_entries(self.run_requires + self.meta_requires) r2 = process_entries(self.build_requires + self.dev_requires) if self.extras: result['Provides-Extra'] = sorted(self.extras) result['Requires-Dist'] = sorted(r1) result['Setup-Requires-Dist'] = sorted(r2) # TODO: other fields such as contacts return result def write(self, path=None, fileobj=None, legacy=False, skip_unknown=True): if [path, fileobj].count(None) != 1: raise ValueError('Exactly one of path and fileobj is needed') self.validate() if legacy: if self._legacy: legacy_md = self._legacy else: legacy_md = self._to_legacy() if path: legacy_md.write(path, skip_unknown=skip_unknown) else: legacy_md.write_file(fileobj, skip_unknown=skip_unknown) else: if self._legacy: d = self._from_legacy() else: d = self._data if fileobj: json.dump(d, fileobj, ensure_ascii=True, indent=2, sort_keys=True) else: with codecs.open(path, 'w', 'utf-8') as f: json.dump(d, f, ensure_ascii=True, indent=2, sort_keys=True) def add_requirements(self, requirements): if self._legacy: self._legacy.add_requirements(requirements) else: run_requires = self._data.setdefault('run_requires', []) always = None for entry in run_requires: if 'environment' not in entry and 'extra' not in entry: always = entry break if always is None: always = { 'requires': requirements } run_requires.insert(0, always) else: rset = set(always['requires']) | set(requirements) always['requires'] = sorted(rset) def __repr__(self): name = self.name or '(no name)' version = self.version or 'no version' return '<%s %s %s (%s)>' % (self.__class__.__name__, self.metadata_version, name, version)
PypiClean
/clawpack-5.9.0.tar.gz/clawpack-5.9.0/geoclaw/examples/tsunami/chile2010/setplot_speeds.py
from __future__ import absolute_import from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from clawpack.geoclaw import topotools from six.moves import range try: TG32412 = np.loadtxt('32412_notide.txt') except: print("*** Could not load DART data file") #-------------------------- def setplot(plotdata): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from numpy import linspace plotdata.clearfigures() # clear any old figures,axes,items data # To plot gauge locations on pcolor or contour plot, use this as # an afteraxis function: def addgauges(current_data): from clawpack.visclaw import gaugetools gaugetools.plot_gauge_locations(current_data.plotdata, \ gaugenos='all', format_string='ko', add_labels=True) # ======================================================================== # Water helper functions # ======================================================================== def b(cd): return cd.q[3,:,:] - cd.q[0,:,:] def extract_eta(h,eta,DRY_TOL=10**-3): index = np.nonzero((np.abs(h) < DRY_TOL) + (h == np.nan)) eta[index[0],index[1]] = np.nan return eta def extract_velocity(h,hu,DRY_TOL=10**-8): u = np.zeros(hu.shape) index = np.nonzero((np.abs(h) > DRY_TOL) * (h != np.nan)) u[index[0],index[1]] = hu[index[0],index[1]] / h[index[0],index[1]] return u def eta(cd): return extract_eta(cd.q[0,:,:],cd.q[3,:,:]) def water_u(cd): return extract_velocity(cd.q[0,:,:],cd.q[1,:,:]) def water_v(cd): return extract_velocity(cd.q[0,:,:],cd.q[2,:,:]) def water_speed(current_data): u = water_u(current_data) v = water_v(current_data) return np.sqrt(u**2+v**2) #----------------------------------------- # Figure for surface #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface', figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Surface' plotaxes.scaled = True def fixup(current_data): import pylab addgauges(current_data) t = current_data.t t = t / 3600. # hours pylab.title('Surface at %4.2f hours' % t, fontsize=20) pylab.xticks(fontsize=15) pylab.yticks(fontsize=15) plotaxes.afteraxes = fixup # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = -0.2 plotitem.pcolor_cmax = 0.2 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0,0,0] plotitem.patchedges_show = 1 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [1,1,0] plotitem.patchedges_show = 1 plotaxes.xlimits = [-120,-60] plotaxes.ylimits = [-60,0] # add contour lines of bathy if desired: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.contour_levels = linspace(-3000,-3000,1) plotitem.amr_contour_colors = ['y'] # color on each level plotitem.kwargs = {'linestyles':'solid','linewidths':2} plotitem.amr_contour_show = [1,0,0] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 #----------------------------------------- # Figure for velocities #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Speeds', figno=1) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('speeds') plotaxes.title = 'Speeds' plotaxes.scaled = True def fixup(current_data): import pylab addgauges(current_data) t = current_data.t t = t / 3600. # hours pylab.title('Speeds at %4.2f hours' % t, fontsize=20) pylab.xticks(fontsize=15) pylab.yticks(fontsize=15) plotaxes.afteraxes = fixup # Speed plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = water_speed plotitem.pcolor_cmap = plt.get_cmap('PuBu') plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 0.01 plotitem.add_colorbar = True plotitem.amr_celledges_show = [0,0,0] plotitem.patchedges_show = 1 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 100.0 plotitem.add_colorbar = False plotitem.amr_celledges_show = [1,1,0] plotitem.patchedges_show = 1 plotaxes.xlimits = [-120,-60] plotaxes.ylimits = [-60,0] #----------------------------------------- # Figures for gauges #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \ type='each_gauge') plotfigure.clf_each_gauge = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.xlimits = 'auto' plotaxes.ylimits = 'auto' plotaxes.title = 'Surface' # Plot surface as blue curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.plot_var = 3 plotitem.plotstyle = 'b-' # Plot topo as green curve: plotitem = plotaxes.new_plotitem(plot_type='1d_plot') plotitem.show = False def gaugetopo(current_data): q = current_data.q h = q[0,:] eta = q[3,:] topo = eta - h return topo # plotitem.plot_var = gaugetopo # plotitem.plotstyle = 'g-' def add_zeroline(current_data): from pylab import plot, legend, xticks, floor, axis, xlabel t = current_data.t gaugeno = current_data.gaugeno if gaugeno == 32412: try: plot(TG32412[:,0], TG32412[:,1], 'r') legend(['GeoClaw','Obs'],'lower right') except: pass axis((0,t.max(),-0.3,0.3)) plot(t, 0*t, 'k') n = int(floor(t.max()/3600.) + 2) xticks([3600*i for i in range(n)], ['%i' % i for i in range(n)]) xlabel('time (hours)') plotaxes.afteraxes = add_zeroline #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? return plotdata
PypiClean
/py-pure-client-1.38.0.tar.gz/py-pure-client-1.38.0/pypureclient/flashblade/FB_2_2/models/policy_member_with_remote_get_response.py
import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flashblade.FB_2_2 import models class PolicyMemberWithRemoteGetResponse(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'continuation_token': 'str', 'total_item_count': 'int', 'items': 'list[PolicyMemberWithRemote]' } attribute_map = { 'continuation_token': 'continuation_token', 'total_item_count': 'total_item_count', 'items': 'items' } required_args = { } def __init__( self, continuation_token=None, # type: str total_item_count=None, # type: int items=None, # type: List[models.PolicyMemberWithRemote] ): """ Keyword args: continuation_token (str): Continuation token that can be provided in the `continuation_token` query param to get the next page of data. If you use the `continuation_token` to page through data you are guaranteed to get all items exactly once regardless of how items are modified. If an item is added or deleted during the pagination then it may or may not be returned. The `continuation_token` is generated if the `limit` is less than the remaining number of items, and the default sort is used (no sort is specified). total_item_count (int): Total number of items after applying `filter` params. items (list[PolicyMemberWithRemote]): A list of members for policies. """ if continuation_token is not None: self.continuation_token = continuation_token if total_item_count is not None: self.total_item_count = total_item_count if items is not None: self.items = items def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `PolicyMemberWithRemoteGetResponse`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): return None else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(PolicyMemberWithRemoteGetResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PolicyMemberWithRemoteGetResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
PypiClean
/taskcc-alipay-sdk-python-3.3.398.tar.gz/taskcc-alipay-sdk-python-3.3.398/alipay/aop/api/request/AntMerchantExpandItemDeleteRequest.py
import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.AntMerchantExpandItemDeleteModel import AntMerchantExpandItemDeleteModel class AntMerchantExpandItemDeleteRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, AntMerchantExpandItemDeleteModel): self._biz_content = value else: self._biz_content = AntMerchantExpandItemDeleteModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'ant.merchant.expand.item.delete' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
PypiClean
/spacy_wrap-1.4.4-py3-none-any.whl/spacy_wrap/layers/clf_transformer_model.py
import copy from typing import Callable, Type, Union from spacy_transformers.align import get_alignment from spacy_transformers.data_classes import HFObjects, WordpieceBatch from spacy_transformers.layers.hf_wrapper import HFWrapper from spacy_transformers.layers.transformer_model import ( _convert_transformer_inputs, _convert_transformer_outputs, forward, huggingface_from_pretrained, huggingface_tokenize, set_pytorch_transformer, ) from spacy_transformers.truncate import truncate_oversize_splits from thinc.api import Model from transformers import ( AutoModelForSequenceClassification, AutoModelForTokenClassification, ) def init(model: Model, X=None, Y=None): if model.attrs["has_transformer"]: return name = model.attrs["name"] tok_cfg = model._init_tokenizer_config trf_cfg = model._init_transformer_config hf_model = huggingface_from_pretrained( name, tok_cfg, trf_cfg, model_cls=model.layers[0].shims[0].model_cls, ) model.attrs["set_transformer"](model, hf_model) tokenizer = model.tokenizer # Call the model with a batch of inputs to infer the width if X: # If we're dealing with actual texts, do the work to setup the wordpieces # batch properly docs = X get_spans = model.attrs["get_spans"] nested_spans = get_spans(docs) flat_spans = [] for doc_spans in nested_spans: flat_spans.extend(doc_spans) token_data = huggingface_tokenize(tokenizer, [span.text for span in flat_spans]) wordpieces = WordpieceBatch.from_batch_encoding(token_data) align = get_alignment( flat_spans, wordpieces.strings, tokenizer.all_special_tokens, ) wordpieces, align = truncate_oversize_splits( wordpieces, align, tokenizer.model_max_length, ) else: texts = ["hello world", "foo bar"] token_data = huggingface_tokenize(tokenizer, texts) wordpieces = WordpieceBatch.from_batch_encoding(token_data) model.layers[0].initialize(X=wordpieces) class ClassificationTransformerModel(Model): """This is a variation of the TransformerModel from spacy-transformers with some utility regarding listeners removed.""" def __init__( self, name: str, get_spans: Callable, model_cls: Union[ Type[AutoModelForTokenClassification], Type[AutoModelForSequenceClassification], ], tokenizer_config: dict = {}, transformer_config: dict = {}, mixed_precision: bool = False, grad_scaler_config: dict = {}, ): """get_spans (Callable[[List[Doc]], List[Span]]): A function to extract spans from the batch of Doc objects. This is used to manage long documents, by cutting them into smaller sequences before running the transformer. The spans are allowed to overlap, and you can also omit sections of the Doc if they are not relevant. tokenizer_config (dict): Settings to pass to the transformers tokenizer. transformer_config (dict): Settings to pass to the transformers forward pass. """ hf_model = HFObjects(None, None, None, tokenizer_config, transformer_config) wrapper = HFWrapper( hf_model, convert_inputs=_convert_transformer_inputs, convert_outputs=_convert_transformer_outputs, mixed_precision=mixed_precision, grad_scaler_config=grad_scaler_config, model_cls=model_cls, ) super().__init__( "clf_transformer", forward, init=init, layers=[wrapper], dims={"nO": None}, attrs={ "get_spans": get_spans, "name": name, "set_transformer": set_pytorch_transformer, "has_transformer": False, "flush_cache_chance": 0.0, }, ) @property def tokenizer(self): return self.layers[0].shims[0]._hfmodel.tokenizer @property def transformer(self): return self.layers[0].shims[0]._hfmodel.transformer @property def _init_tokenizer_config(self): return self.layers[0].shims[0]._hfmodel._init_tokenizer_config @property def _init_transformer_config(self): return self.layers[0].shims[0]._hfmodel._init_transformer_config def copy(self): """Create a copy of the model, its attributes, and its parameters. Any child layers will also be deep-copied. The copy will receive a distinct `model.id` value. """ copied = ClassificationTransformerModel(self.name, self.attrs["get_spans"]) params = {} for name in self.param_names: params[name] = self.get_param(name) if self.has_param(name) else None copied.params = copy.deepcopy(params) copied.dims = copy.deepcopy(self._dims) copied.layers[0] = copy.deepcopy(self.layers[0]) for name in self.grad_names: copied.set_grad(name, self.get_grad(name).copy()) return copied
PypiClean
/msgraph_beta_sdk-1.0.0a9-py3-none-any.whl/msgraph/generated/me/messages/item/mark_as_junk/mark_as_junk_request_builder.py
from __future__ import annotations from dataclasses import dataclass from kiota_abstractions.get_path_parameters import get_path_parameters from kiota_abstractions.method import Method from kiota_abstractions.request_adapter import RequestAdapter from kiota_abstractions.request_information import RequestInformation from kiota_abstractions.request_option import RequestOption from kiota_abstractions.response_handler import ResponseHandler from kiota_abstractions.serialization import Parsable, ParsableFactory from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING, Union if TYPE_CHECKING: from . import mark_as_junk_post_request_body from .....models import message from .....models.o_data_errors import o_data_error class MarkAsJunkRequestBuilder(): """ Provides operations to call the markAsJunk method. """ def __init__(self,request_adapter: RequestAdapter, path_parameters: Optional[Union[Dict[str, Any], str]] = None) -> None: """ Instantiates a new MarkAsJunkRequestBuilder and sets the default values. Args: pathParameters: The raw url or the Url template parameters for the request. requestAdapter: The request adapter to use to execute the requests. """ if path_parameters is None: raise Exception("path_parameters cannot be undefined") if request_adapter is None: raise Exception("request_adapter cannot be undefined") # Url template to use to build the URL for the current request builder self.url_template: str = "{+baseurl}/me/messages/{message%2Did}/markAsJunk" url_tpl_params = get_path_parameters(path_parameters) self.path_parameters = url_tpl_params self.request_adapter = request_adapter async def post(self,body: Optional[mark_as_junk_post_request_body.MarkAsJunkPostRequestBody] = None, request_configuration: Optional[MarkAsJunkRequestBuilderPostRequestConfiguration] = None) -> Optional[message.Message]: """ Invoke action markAsJunk Args: body: The request body requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. Returns: Optional[message.Message] """ if body is None: raise Exception("body cannot be undefined") request_info = self.to_post_request_information( body, request_configuration ) from .....models.o_data_errors import o_data_error error_mapping: Dict[str, ParsableFactory] = { "4XX": o_data_error.ODataError, "5XX": o_data_error.ODataError, } if not self.request_adapter: raise Exception("Http core is null") from .....models import message return await self.request_adapter.send_async(request_info, message.Message, error_mapping) def to_post_request_information(self,body: Optional[mark_as_junk_post_request_body.MarkAsJunkPostRequestBody] = None, request_configuration: Optional[MarkAsJunkRequestBuilderPostRequestConfiguration] = None) -> RequestInformation: """ Invoke action markAsJunk Args: body: The request body requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. Returns: RequestInformation """ if body is None: raise Exception("body cannot be undefined") request_info = RequestInformation() request_info.url_template = self.url_template request_info.path_parameters = self.path_parameters request_info.http_method = Method.POST request_info.headers["Accept"] = ["application/json"] if request_configuration: request_info.add_request_headers(request_configuration.headers) request_info.add_request_options(request_configuration.options) request_info.set_content_from_parsable(self.request_adapter, "application/json", body) return request_info @dataclass class MarkAsJunkRequestBuilderPostRequestConfiguration(): """ Configuration for the request such as headers, query parameters, and middleware options. """ # Request headers headers: Optional[Dict[str, Union[str, List[str]]]] = None # Request options options: Optional[List[RequestOption]] = None
PypiClean
/kinstabot-0.117.5-py3-none-any.whl/instabot/api/api_photo.py
from __future__ import unicode_literals import imghdr import os import shutil import struct import json import time import random from uuid import uuid4 from . import config def download_photo(self, media_id, filename, media=False, folder="photos"): if not media: self.media_info(media_id) if not self.last_json.get("items"): return True media = self.last_json["items"][0] if media["media_type"] == 2: return True elif media["media_type"] == 1: filename = ( "{username}_{media_id}.jpg".format( username=media["user"]["username"], media_id=media_id ) if not filename else "{fname}.jpg".format(fname=filename) ) images = media["image_versions2"]["candidates"] fname = os.path.join(folder, filename) if os.path.exists(fname): self.logger.info("File already esists, skipping...") return os.path.abspath(fname) response = self.session.get(images[0]["url"], stream=True) if response.status_code == 200: with open(fname, "wb") as f: response.raw.decode_content = True shutil.copyfileobj(response.raw, f) return os.path.abspath(fname) else: success = False video_included = False for index in range(len(media["carousel_media"])): if media["carousel_media"][index]["media_type"] != 1: video_included = True continue filename_i = ( "{username}_{media_id}_{i}.jpg".format( username=media["user"]["username"], media_id=media_id, i=index ) if not filename else "{fname}_{i}.jpg".format(fname=filename, i=index) ) images = media["carousel_media"][index]["image_versions2"]["candidates"] fname = os.path.join(folder, filename_i) if os.path.exists(fname): return os.path.abspath(fname) response = self.session.get(images[0]["url"], stream=True) if response.status_code == 200: success = True with open(fname, "wb") as f: response.raw.decode_content = True shutil.copyfileobj(response.raw, f) if success: return os.path.abspath(fname) elif video_included: return True def compatible_aspect_ratio(size): min_ratio, max_ratio = 4.0 / 5.0, 90.0 / 47.0 width, height = size ratio = width * 1.0 / height * 1.0 print("FOUND: w:{w} h:{h} r:{r}".format(w=width, h=height, r=ratio)) return min_ratio <= ratio <= max_ratio def configure_photo(self, upload_id, photo, caption="", user_tags=None, is_sidecar=False): width, height = get_image_size(photo) data = { "media_folder": "Instagram", "source_type": 4, "caption": caption, "upload_id": upload_id, "device": self.device_settings, "edits": { "crop_original_size": [width * 1.0, height * 1.0], "crop_center": [0.0, 0.0], "crop_zoom": 1.0, }, "extra": {"source_width": width, "source_height": height}, } if user_tags: data['usertags'] = user_tags if is_sidecar: return data data = self.json_data(data) return self.send_request("media/configure/?", data) def upload_photo( self, photo, caption=None, upload_id=None, from_video=False, force_resize=False, options={}, user_tags=None, is_sidecar=False ): """Upload photo to Instagram @param photo Path to photo file (String) @param caption Media description (String) @param upload_id Unique upload_id (String). When None, then generate automatically @param from_video A flag that signals whether the photo is loaded from the video or by itself (Boolean, DEPRECATED: not used) @param force_resize Force photo resize (Boolean) @param options Object with difference options, e.g. configure_timeout, rename (Dict) Designed to reduce the number of function arguments! This is the simplest request object. @param user_tags Tag other users (List) usertags = [ {"user_id": user_id, "position": [x, y]} ] @param is_sidecar An album element (Boolean) @return Object with state of uploading to Instagram (or False), Dict for is_sidecar """ if user_tags is None: usertags = None else: tags = {'in': [{'user_id': user['user_id'], 'position': [user['x'], user['y']]} for user in user_tags]} usertags = json.dumps(tags, separators=(',', ':')) options = dict({"configure_timeout": 15, "rename": True}, **(options or {})) if upload_id is None: upload_id = int(time.time() * 1000) if not photo: return False if not compatible_aspect_ratio(get_image_size(photo)): self.logger.error("Photo does not have a compatible photo aspect ratio.") if force_resize: photo = resize_image(photo) else: return False waterfall_id = str(uuid4()) # upload_name example: '1576102477530_0_7823256191' # upload_name example: 'fb_uploader_1585807380927' upload_name = "fb_uploader_{upload_id}".format(upload_id=upload_id) rupload_params = { "retry_context": '{"num_step_auto_retry":0,"num_reupload":0,"num_step_manual_retry":0}', "media_type": "1", "xsharing_user_ids": "[]", "upload_id": upload_id, "image_compression": json.dumps( {"lib_name": "moz", "lib_version": "3.1.m", "quality": "80"} ), } if is_sidecar: rupload_params["is_sidecar"] = "1" photo_data = open(photo, "rb").read() photo_len = str(len(photo_data)) self.session.headers.update( { "Accept-Encoding": "gzip", "X-Instagram-Rupload-Params": json.dumps(rupload_params), "X_FB_PHOTO_WATERFALL_ID": waterfall_id, "X-Entity-Type": "image/jpeg", "Offset": "0", "X-Entity-Name": upload_name, "X-Entity-Length": photo_len, "Content-Type": "application/octet-stream", "Content-Length": photo_len, "Accept-Encoding": "gzip", } ) response = self.session.post( "https://{domain}/rupload_igphoto/{name}".format( domain=config.API_DOMAIN, name=upload_name ), data=photo_data, ) if response.status_code != 200: self.logger.error( "Photo Upload failed with the following response: {}".format(response) ) return False # update the upload id upload_id = int(response.json()['upload_id']) if from_video: # Not configure when from_video is True return True # CONFIGURE configure_timeout = options.get("configure_timeout") for attempt in range(4): if configure_timeout: time.sleep(configure_timeout) if is_sidecar: configuration = self.configure_photo(upload_id, photo, caption, usertags, is_sidecar=True) if options.get("rename"): os.rename(photo, "{fname}.REMOVE_ME".format(fname=photo)) return configuration elif self.configure_photo(upload_id, photo, caption, usertags, is_sidecar=False): media = self.last_json.get("media") self.expose() if options.get("rename"): os.rename(photo, "{fname}.REMOVE_ME".format(fname=photo)) return media return False def upload_album( self, photos, caption=None, upload_id=None, from_video=False, force_resize=False, options={}, user_tags=None ): """Upload album to Instagram @param photos List of paths to photo files (List of strings) @param caption Media description (String) @param upload_id Unique upload_id (String). When None, then generate automatically @param from_video A flag that signals whether the photo is loaded from the video or by itself (Boolean, DEPRECATED: not used) @param force_resize Force photo resize (Boolean) @param options Object with difference options, e.g. configure_timeout, rename (Dict) Designed to reduce the number of function arguments! This is the simplest request object. @param user_tags @return Boolean """ if not photos: return False photo_metas = [] for photo in photos: result = self.upload_photo(photo, caption, None, from_video, force_resize, options, user_tags, is_sidecar=True) if not result: self.logger.error("Could not upload photo {photo} for the album!".format(photo=photo)) return False photo_metas.append(result) if upload_id is None: upload_id = int(time.time() * 1000) data = self.json_data({ "caption": caption, "client_sidecar_id": upload_id, "children_metadata": photo_metas }) return self.send_request("media/configure_sidecar/?", post=data) def get_image_size(fname): with open(fname, "rb") as fhandle: head = fhandle.read(24) if len(head) != 24: raise RuntimeError("Invalid Header") if imghdr.what(fname) == "png": check = struct.unpack(">i", head[4:8])[0] if check != 0x0D0A1A0A: raise RuntimeError("PNG: Invalid check") width, height = struct.unpack(">ii", head[16:24]) elif imghdr.what(fname) == "gif": width, height = struct.unpack("<HH", head[6:10]) elif imghdr.what(fname) == "jpeg": fhandle.seek(0) # Read 0xff next size = 2 ftype = 0 while not 0xC0 <= ftype <= 0xCF: fhandle.seek(size, 1) byte = fhandle.read(1) while ord(byte) == 0xFF: byte = fhandle.read(1) ftype = ord(byte) size = struct.unpack(">H", fhandle.read(2))[0] - 2 # We are at a SOFn block fhandle.seek(1, 1) # Skip `precision' byte. height, width = struct.unpack(">HH", fhandle.read(4)) else: raise RuntimeError("Unsupported format") return width, height def resize_image(fname): from math import ceil try: from PIL import Image, ExifTags except ImportError as e: print("ERROR: {err}".format(err=e)) print( "Required module `PIL` not installed\n" "Install with `pip install Pillow` and retry" ) return False print("Analizing `{fname}`".format(fname=fname)) h_lim = {"w": 90.0, "h": 47.0} v_lim = {"w": 4.0, "h": 5.0} img = Image.open(fname) (w, h) = img.size deg = 0 try: for orientation in ExifTags.TAGS.keys(): if ExifTags.TAGS[orientation] == "Orientation": break exif = dict(img._getexif().items()) o = exif[orientation] if o == 3: deg = 180 if o == 6: deg = 270 if o == 8: deg = 90 if deg != 0: print("Rotating by {d} degrees".format(d=deg)) img = img.rotate(deg, expand=True) (w, h) = img.size except (AttributeError, KeyError, IndexError) as e: print("No exif info found (ERR: {err})".format(err=e)) pass img = img.convert("RGBA") ratio = w * 1.0 / h * 1.0 print("FOUND w:{w}, h:{h}, ratio={r}".format(w=w, h=h, r=ratio)) if w > h: print("Horizontal image") if ratio > (h_lim["w"] / h_lim["h"]): print("Cropping image") cut = int(ceil((w - h * h_lim["w"] / h_lim["h"]) / 2)) left = cut right = w - cut top = 0 bottom = h img = img.crop((left, top, right, bottom)) (w, h) = img.size if w > 1080: print("Resizing image") nw = 1080 nh = int(ceil(1080.0 * h / w)) img = img.resize((nw, nh), Image.ANTIALIAS) elif w < h: print("Vertical image") if ratio < (v_lim["w"] / v_lim["h"]): print("Cropping image") cut = int(ceil((h - w * v_lim["h"] / v_lim["w"]) / 2)) left = 0 right = w top = cut bottom = h - cut img = img.crop((left, top, right, bottom)) (w, h) = img.size if h > 1080: print("Resizing image") nw = int(ceil(1080.0 * w / h)) nh = 1080 img = img.resize((nw, nh), Image.ANTIALIAS) else: print("Square image") if w > 1080: print("Resizing image") img = img.resize((1080, 1080), Image.ANTIALIAS) (w, h) = img.size new_fname = "{fname}.CONVERTED.jpg".format(fname=fname) print("Saving new image w:{w} h:{h} to `{f}`".format(w=w, h=h, f=new_fname)) new = Image.new("RGB", img.size, (255, 255, 255)) new.paste(img, (0, 0, w, h), img) new.save(new_fname, quality=95) return new_fname def stories_shaper(fname): """ Find out the size of the uploaded image. Processing is not needed if the image is already 1080x1920 pixels. Otherwise, the image height should be 1920 pixels. Substrate formation: Crop the image under 1080x1920 pixels and apply a Gaussian Blur filter. Centering the image depending on its aspect ratio and paste it onto the substrate. Save the image. """ try: from PIL import Image, ImageFilter except ImportError as e: print("ERROR: {err}".format(err=e)) print( "Required module `PIL` not installed\n" "Install with `pip install Pillow` and retry" ) return False img = Image.open(fname) if (img.size[0], img.size[1]) == (1080, 1920): print("Image is already 1080x1920. Just converting image.") new_fname = "{fname}.STORIES.jpg".format(fname=fname) new = Image.new("RGB", (img.size[0], img.size[1]), (255, 255, 255)) new.paste(img, (0, 0, img.size[0], img.size[1])) new.save(new_fname) return new_fname else: min_width = 1080 min_height = 1920 if img.size[1] != 1920: height_percent = min_height / float(img.size[1]) width_size = int(float(img.size[0]) * float(height_percent)) img = img.resize((width_size, min_height), Image.ANTIALIAS) else: pass if img.size[0] < 1080: width_percent = min_width / float(img.size[0]) height_size = int(float(img.size[1]) * float(width_percent)) img_bg = img.resize((min_width, height_size), Image.ANTIALIAS) else: pass img_bg = img.crop( ( int((img.size[0] - 1080) / 2), int((img.size[1] - 1920) / 2), int(1080 + ((img.size[0] - 1080) / 2)), int(1920 + ((img.size[1] - 1920) / 2)), ) ).filter(ImageFilter.GaussianBlur(100)) if img.size[1] > img.size[0]: height_percent = min_height / float(img.size[1]) width_size = int(float(img.size[0]) * float(height_percent)) img = img.resize((width_size, min_height), Image.ANTIALIAS) if img.size[0] > 1080: width_percent = min_width / float(img.size[0]) height_size = int(float(img.size[1]) * float(width_percent)) img = img.resize((min_width, height_size), Image.ANTIALIAS) img_bg.paste( img, (int(540 - img.size[0] / 2), int(960 - img.size[1] / 2)) ) else: img_bg.paste(img, (int(540 - img.size[0] / 2), 0)) else: width_percent = min_width / float(img.size[0]) height_size = int(float(img.size[1]) * float(width_percent)) img = img.resize((min_width, height_size), Image.ANTIALIAS) img_bg.paste(img, (int(540 - img.size[0] / 2), int(960 - img.size[1] / 2))) new_fname = "{fname}.STORIES.jpg".format(fname=fname) print( "Saving new image w:{w} h:{h} to `{f}`".format( w=img_bg.size[0], h=img_bg.size[1], f=new_fname ) ) new = Image.new("RGB", (img_bg.size[0], img_bg.size[1]), (255, 255, 255)) new.paste(img_bg, (0, 0, img_bg.size[0], img_bg.size[1])) new.save(new_fname) return new_fname
PypiClean
/columbia-discord-bot-0.2.1.tar.gz/columbia-discord-bot-0.2.1/docs/_build/html/_static/pygments/lexers/fortran.py
import re from pygments.lexer import RegexLexer, bygroups, include, words, using, default from pygments.token import Text, Comment, Operator, Keyword, Name, String, \ Number, Punctuation, Generic __all__ = ['FortranLexer', 'FortranFixedLexer'] class FortranLexer(RegexLexer): """ Lexer for FORTRAN 90 code. .. versionadded:: 0.10 """ name = 'Fortran' url = 'https://fortran-lang.org/' aliases = ['fortran', 'f90'] filenames = ['*.f03', '*.f90', '*.F03', '*.F90'] mimetypes = ['text/x-fortran'] flags = re.IGNORECASE | re.MULTILINE # Data Types: INTEGER, REAL, COMPLEX, LOGICAL, CHARACTER and DOUBLE PRECISION # Operators: **, *, +, -, /, <, >, <=, >=, ==, /= # Logical (?): NOT, AND, OR, EQV, NEQV # Builtins: # http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/Table-of-Intrinsic-Functions.html tokens = { 'root': [ (r'^#.*\n', Comment.Preproc), (r'!.*\n', Comment), include('strings'), include('core'), (r'[a-z][\w$]*', Name), include('nums'), (r'[\s]+', Text.Whitespace), ], 'core': [ # Statements (r'\b(DO)(\s+)(CONCURRENT)\b', bygroups(Keyword, Text.Whitespace, Keyword)), (r'\b(GO)(\s*)(TO)\b', bygroups(Keyword, Text.Whitespace, Keyword)), (words(( 'ABSTRACT', 'ACCEPT', 'ALL', 'ALLSTOP', 'ALLOCATABLE', 'ALLOCATE', 'ARRAY', 'ASSIGN', 'ASSOCIATE', 'ASYNCHRONOUS', 'BACKSPACE', 'BIND', 'BLOCK', 'BLOCKDATA', 'BYTE', 'CALL', 'CASE', 'CLASS', 'CLOSE', 'CODIMENSION', 'COMMON', 'CONTIGUOUS', 'CONTAINS', 'CONTINUE', 'CRITICAL', 'CYCLE', 'DATA', 'DEALLOCATE', 'DECODE', 'DEFERRED', 'DIMENSION', 'DO', 'ELEMENTAL', 'ELSE', 'ENCODE', 'END', 'ENDASSOCIATE', 'ENDBLOCK', 'ENDDO', 'ENDENUM', 'ENDFORALL', 'ENDFUNCTION', 'ENDIF', 'ENDINTERFACE', 'ENDMODULE', 'ENDPROGRAM', 'ENDSELECT', 'ENDSUBMODULE', 'ENDSUBROUTINE', 'ENDTYPE', 'ENDWHERE', 'ENTRY', 'ENUM', 'ENUMERATOR', 'EQUIVALENCE', 'ERROR STOP', 'EXIT', 'EXTENDS', 'EXTERNAL', 'EXTRINSIC', 'FILE', 'FINAL', 'FORALL', 'FORMAT', 'FUNCTION', 'GENERIC', 'IF', 'IMAGES', 'IMPLICIT', 'IMPORT', 'IMPURE', 'INCLUDE', 'INQUIRE', 'INTENT', 'INTERFACE', 'INTRINSIC', 'IS', 'LOCK', 'MEMORY', 'MODULE', 'NAMELIST', 'NULLIFY', 'NONE', 'NON_INTRINSIC', 'NON_OVERRIDABLE', 'NOPASS', 'ONLY', 'OPEN', 'OPTIONAL', 'OPTIONS', 'PARAMETER', 'PASS', 'PAUSE', 'POINTER', 'PRINT', 'PRIVATE', 'PROGRAM', 'PROCEDURE', 'PROTECTED', 'PUBLIC', 'PURE', 'READ', 'RECURSIVE', 'RESULT', 'RETURN', 'REWIND', 'SAVE', 'SELECT', 'SEQUENCE', 'STOP', 'SUBMODULE', 'SUBROUTINE', 'SYNC', 'SYNCALL', 'SYNCIMAGES', 'SYNCMEMORY', 'TARGET', 'THEN', 'TYPE', 'UNLOCK', 'USE', 'VALUE', 'VOLATILE', 'WHERE', 'WRITE', 'WHILE'), prefix=r'\b', suffix=r'\s*\b'), Keyword), # Data Types (words(( 'CHARACTER', 'COMPLEX', 'DOUBLE PRECISION', 'DOUBLE COMPLEX', 'INTEGER', 'LOGICAL', 'REAL', 'C_INT', 'C_SHORT', 'C_LONG', 'C_LONG_LONG', 'C_SIGNED_CHAR', 'C_SIZE_T', 'C_INT8_T', 'C_INT16_T', 'C_INT32_T', 'C_INT64_T', 'C_INT_LEAST8_T', 'C_INT_LEAST16_T', 'C_INT_LEAST32_T', 'C_INT_LEAST64_T', 'C_INT_FAST8_T', 'C_INT_FAST16_T', 'C_INT_FAST32_T', 'C_INT_FAST64_T', 'C_INTMAX_T', 'C_INTPTR_T', 'C_FLOAT', 'C_DOUBLE', 'C_LONG_DOUBLE', 'C_FLOAT_COMPLEX', 'C_DOUBLE_COMPLEX', 'C_LONG_DOUBLE_COMPLEX', 'C_BOOL', 'C_CHAR', 'C_PTR', 'C_FUNPTR'), prefix=r'\b', suffix=r'\s*\b'), Keyword.Type), # Operators (r'(\*\*|\*|\+|-|\/|<|>|<=|>=|==|\/=|=)', Operator), (r'(::)', Keyword.Declaration), (r'[()\[\],:&%;.]', Punctuation), # Intrinsics (words(( 'Abort', 'Abs', 'Access', 'AChar', 'ACos', 'ACosH', 'AdjustL', 'AdjustR', 'AImag', 'AInt', 'Alarm', 'All', 'Allocated', 'ALog', 'AMax', 'AMin', 'AMod', 'And', 'ANInt', 'Any', 'ASin', 'ASinH', 'Associated', 'ATan', 'ATanH', 'Atomic_Define', 'Atomic_Ref', 'BesJ', 'BesJN', 'Bessel_J0', 'Bessel_J1', 'Bessel_JN', 'Bessel_Y0', 'Bessel_Y1', 'Bessel_YN', 'BesY', 'BesYN', 'BGE', 'BGT', 'BLE', 'BLT', 'Bit_Size', 'BTest', 'CAbs', 'CCos', 'Ceiling', 'CExp', 'Char', 'ChDir', 'ChMod', 'CLog', 'Cmplx', 'Command_Argument_Count', 'Complex', 'Conjg', 'Cos', 'CosH', 'Count', 'CPU_Time', 'CShift', 'CSin', 'CSqRt', 'CTime', 'C_Loc', 'C_Associated', 'C_Null_Ptr', 'C_Null_Funptr', 'C_F_Pointer', 'C_F_ProcPointer', 'C_Null_Char', 'C_Alert', 'C_Backspace', 'C_Form_Feed', 'C_FunLoc', 'C_Sizeof', 'C_New_Line', 'C_Carriage_Return', 'C_Horizontal_Tab', 'C_Vertical_Tab', 'DAbs', 'DACos', 'DASin', 'DATan', 'Date_and_Time', 'DbesJ', 'DbesJN', 'DbesY', 'DbesYN', 'Dble', 'DCos', 'DCosH', 'DDiM', 'DErF', 'DErFC', 'DExp', 'Digits', 'DiM', 'DInt', 'DLog', 'DMax', 'DMin', 'DMod', 'DNInt', 'Dot_Product', 'DProd', 'DSign', 'DSinH', 'DShiftL', 'DShiftR', 'DSin', 'DSqRt', 'DTanH', 'DTan', 'DTime', 'EOShift', 'Epsilon', 'ErF', 'ErFC', 'ErFC_Scaled', 'ETime', 'Execute_Command_Line', 'Exit', 'Exp', 'Exponent', 'Extends_Type_Of', 'FDate', 'FGet', 'FGetC', 'FindLoc', 'Float', 'Floor', 'Flush', 'FNum', 'FPutC', 'FPut', 'Fraction', 'FSeek', 'FStat', 'FTell', 'Gamma', 'GError', 'GetArg', 'Get_Command', 'Get_Command_Argument', 'Get_Environment_Variable', 'GetCWD', 'GetEnv', 'GetGId', 'GetLog', 'GetPId', 'GetUId', 'GMTime', 'HostNm', 'Huge', 'Hypot', 'IAbs', 'IAChar', 'IAll', 'IAnd', 'IAny', 'IArgC', 'IBClr', 'IBits', 'IBSet', 'IChar', 'IDate', 'IDiM', 'IDInt', 'IDNInt', 'IEOr', 'IErrNo', 'IFix', 'Imag', 'ImagPart', 'Image_Index', 'Index', 'Int', 'IOr', 'IParity', 'IRand', 'IsaTty', 'IShft', 'IShftC', 'ISign', 'Iso_C_Binding', 'Is_Contiguous', 'Is_Iostat_End', 'Is_Iostat_Eor', 'ITime', 'Kill', 'Kind', 'LBound', 'LCoBound', 'Len', 'Len_Trim', 'LGe', 'LGt', 'Link', 'LLe', 'LLt', 'LnBlnk', 'Loc', 'Log', 'Log_Gamma', 'Logical', 'Long', 'LShift', 'LStat', 'LTime', 'MaskL', 'MaskR', 'MatMul', 'Max', 'MaxExponent', 'MaxLoc', 'MaxVal', 'MClock', 'Merge', 'Merge_Bits', 'Move_Alloc', 'Min', 'MinExponent', 'MinLoc', 'MinVal', 'Mod', 'Modulo', 'MvBits', 'Nearest', 'New_Line', 'NInt', 'Norm2', 'Not', 'Null', 'Num_Images', 'Or', 'Pack', 'Parity', 'PError', 'Precision', 'Present', 'Product', 'Radix', 'Rand', 'Random_Number', 'Random_Seed', 'Range', 'Real', 'RealPart', 'Rename', 'Repeat', 'Reshape', 'RRSpacing', 'RShift', 'Same_Type_As', 'Scale', 'Scan', 'Second', 'Selected_Char_Kind', 'Selected_Int_Kind', 'Selected_Real_Kind', 'Set_Exponent', 'Shape', 'ShiftA', 'ShiftL', 'ShiftR', 'Short', 'Sign', 'Signal', 'SinH', 'Sin', 'Sleep', 'Sngl', 'Spacing', 'Spread', 'SqRt', 'SRand', 'Stat', 'Storage_Size', 'Sum', 'SymLnk', 'System', 'System_Clock', 'Tan', 'TanH', 'Time', 'This_Image', 'Tiny', 'TrailZ', 'Transfer', 'Transpose', 'Trim', 'TtyNam', 'UBound', 'UCoBound', 'UMask', 'Unlink', 'Unpack', 'Verify', 'XOr', 'ZAbs', 'ZCos', 'ZExp', 'ZLog', 'ZSin', 'ZSqRt'), prefix=r'\b', suffix=r'\s*\b'), Name.Builtin), # Booleans (r'\.(true|false)\.', Name.Builtin), # Comparing Operators (r'\.(eq|ne|lt|le|gt|ge|not|and|or|eqv|neqv)\.', Operator.Word), ], 'strings': [ (r'"(\\[0-7]+|\\[^0-7]|[^"\\])*"', String.Double), (r"'(\\[0-7]+|\\[^0-7]|[^'\\])*'", String.Single), ], 'nums': [ (r'\d+(?![.e])(_([1-9]|[a-z]\w*))?', Number.Integer), (r'[+-]?\d*\.\d+([ed][-+]?\d+)?(_([1-9]|[a-z]\w*))?', Number.Float), (r'[+-]?\d+\.\d*([ed][-+]?\d+)?(_([1-9]|[a-z]\w*))?', Number.Float), (r'[+-]?\d+(\.\d*)?[ed][-+]?\d+(_([1-9]|[a-z]\w*))?', Number.Float), ], } class FortranFixedLexer(RegexLexer): """ Lexer for fixed format Fortran. .. versionadded:: 2.1 """ name = 'FortranFixed' aliases = ['fortranfixed'] filenames = ['*.f', '*.F'] flags = re.IGNORECASE def _lex_fortran(self, match, ctx=None): """Lex a line just as free form fortran without line break.""" lexer = FortranLexer() text = match.group(0) + "\n" for index, token, value in lexer.get_tokens_unprocessed(text): value = value.replace('\n', '') if value != '': yield index, token, value tokens = { 'root': [ (r'[C*].*\n', Comment), (r'#.*\n', Comment.Preproc), (r' {0,4}!.*\n', Comment), (r'(.{5})', Name.Label, 'cont-char'), (r'.*\n', using(FortranLexer)), ], 'cont-char': [ (' ', Text, 'code'), ('0', Comment, 'code'), ('.', Generic.Strong, 'code'), ], 'code': [ (r'(.{66})(.*)(\n)', bygroups(_lex_fortran, Comment, Text.Whitespace), 'root'), (r'(.*)(\n)', bygroups(_lex_fortran, Text.Whitespace), 'root'), default('root'), ] }
PypiClean
/pyqtgraph-for-dubble-bubble-2016.11.2.tar.gz/pyqtgraph-for-dubble-bubble-2016.11.2/pyqtgraph/graphicsItems/ErrorBarItem.py
from ..Qt import QtGui, QtCore from .GraphicsObject import GraphicsObject from .. import getConfigOption from .. import functions as fn __all__ = ['ErrorBarItem'] class ErrorBarItem(GraphicsObject): def __init__(self, **opts): """ All keyword arguments are passed to setData(). """ GraphicsObject.__init__(self) self.opts = dict( x=None, y=None, height=None, width=None, top=None, bottom=None, left=None, right=None, beam=None, pen=None ) self.setData(**opts) def setData(self, **opts): """ Update the data in the item. All arguments are optional. Valid keyword options are: x, y, height, width, top, bottom, left, right, beam, pen * x and y must be numpy arrays specifying the coordinates of data points. * height, width, top, bottom, left, right, and beam may be numpy arrays, single values, or None to disable. All values should be positive. * top, bottom, left, and right specify the lengths of bars extending in each direction. * If height is specified, it overrides top and bottom. * If width is specified, it overrides left and right. * beam specifies the width of the beam at the end of each bar. * pen may be any single argument accepted by pg.mkPen(). This method was added in version 0.9.9. For prior versions, use setOpts. """ self.opts.update(opts) self.path = None self.update() self.prepareGeometryChange() self.informViewBoundsChanged() def setOpts(self, **opts): # for backward compatibility self.setData(**opts) def drawPath(self): p = QtGui.QPainterPath() x, y = self.opts['x'], self.opts['y'] if x is None or y is None: return beam = self.opts['beam'] height, top, bottom = self.opts['height'], self.opts['top'], self.opts['bottom'] if height is not None or top is not None or bottom is not None: ## draw vertical error bars if height is not None: y1 = y - height/2. y2 = y + height/2. else: if bottom is None: y1 = y else: y1 = y - bottom if top is None: y2 = y else: y2 = y + top for i in range(len(x)): p.moveTo(x[i], y1[i]) p.lineTo(x[i], y2[i]) if beam is not None and beam > 0: x1 = x - beam/2. x2 = x + beam/2. if height is not None or top is not None: for i in range(len(x)): p.moveTo(x1[i], y2[i]) p.lineTo(x2[i], y2[i]) if height is not None or bottom is not None: for i in range(len(x)): p.moveTo(x1[i], y1[i]) p.lineTo(x2[i], y1[i]) width, right, left = self.opts['width'], self.opts['right'], self.opts['left'] if width is not None or right is not None or left is not None: ## draw vertical error bars if width is not None: x1 = x - width/2. x2 = x + width/2. else: if left is None: x1 = x else: x1 = x - left if right is None: x2 = x else: x2 = x + right for i in range(len(x)): p.moveTo(x1[i], y[i]) p.lineTo(x2[i], y[i]) if beam is not None and beam > 0: y1 = y - beam/2. y2 = y + beam/2. if width is not None or right is not None: for i in range(len(x)): p.moveTo(x2[i], y1[i]) p.lineTo(x2[i], y2[i]) if width is not None or left is not None: for i in range(len(x)): p.moveTo(x1[i], y1[i]) p.lineTo(x1[i], y2[i]) self.path = p self.prepareGeometryChange() def paint(self, p, *args): if self.path is None: self.drawPath() pen = self.opts['pen'] if pen is None: pen = getConfigOption('foreground') p.setPen(fn.mkPen(pen)) p.drawPath(self.path) def boundingRect(self): if self.path is None: self.drawPath() return self.path.boundingRect()
PypiClean
/troposphere_mate-0.0.14.tar.gz/troposphere_mate-0.0.14/troposphere_mate/core/orch_core.py
try: from typing import List, Tuple except: pass from collections import OrderedDict DEPLOY_NOW_SIGNAL_TIER_NAME = "deploy" DEPLOY_NOW_SIGNAL_TIER_ENV = "now" def extract_all_env_tag(plan): """ :type plan: List[List[str, str]] :param plan: [(can_id1, env_tag1), (can_id2, env_tag2), ...] :rtype: List[str] """ env_tag_dict = OrderedDict() for tier_name, tier_env in plan: if tier_name.lower() == DEPLOY_NOW_SIGNAL_TIER_NAME and tier_env.lower() == DEPLOY_NOW_SIGNAL_TIER_ENV: pass else: env_tag_dict[tier_env] = None return list(env_tag_dict) def resolve_pipeline(plan): """ Convert the item-to-deploy pipeline syntax to several execution plan. :type plan: List[List[str, str]] :param plan: [(can_id1, env_tag1), (can_id2, env_tag2), ...] :rtype: List[Tuple[List[str], str]]] """ pipeline_change_set = list() job = ([], None) previous_env = None for tier_name, tier_env in plan: if tier_name.lower() == DEPLOY_NOW_SIGNAL_TIER_NAME and tier_env.lower() == DEPLOY_NOW_SIGNAL_TIER_ENV: if job != pipeline_change_set[-1]: pipeline_change_set.append(job) job = (list(job[0]), job[1]) # new job just do a deep copy of the old one, since it encounters a deploy now signal continue if tier_env != previous_env: # if it is not empty, then it could be a item right after a deploy now signal if len(pipeline_change_set): if job != pipeline_change_set[-1]: pipeline_change_set.append(job) else: # if it is empty, then it is the first job, just append it pipeline_change_set.append(job) previous_env = tier_env job = ([tier_name, ], tier_env) else: job[0].append(tier_name) if job != pipeline_change_set[-1]: pipeline_change_set.append(job) pipeline_change_set = pipeline_change_set[1:] dct = dict() pipeline = list() for tier_list, tier_env in pipeline_change_set: if tier_env in dct: for tier_name in tier_list: if tier_name not in dct[tier_env]: dct[tier_env].append(tier_name) else: dct[tier_env] = tier_list pipeline.append((list(dct[tier_env]), tier_env)) return pipeline class ResourceFilter(object): """ Construct a Resource Filter Class to decide if a specific AWS Resource should be ignored or not. 1. Explicit Deny 2. Explicit Allow 3. Default Deny """ def __init__(self, ignored_stack_id_list, allowed_stack_id_list): self.ignored_stack_id_list = ignored_stack_id_list self.allowed_stack_id_list = allowed_stack_id_list def filter(self, resource, template): """ Check if we want to keep this resource in the cloudformation. If ``True``, we keep it. if ``False`` we call ``Template.remove_resource(resource)`` to remove it, :type resource: AWSObject :type template: Template :rtype: bool """ # if resource. if resource.resource_type == "AWS::CloudFormation::Stack": if resource.title in self.allowed_stack_id_list: return True else: return False else: return True
PypiClean
/theseus-ai-nightly-2023.4.21.tar.gz/theseus-ai-nightly-2023.4.21/theseus/optimizer/sparse_linearization.py
from typing import List, Optional import numpy as np import torch from theseus.core import Objective from theseus.utils.sparse_matrix_utils import sparse_mv, sparse_mtv from .linear_system import SparseStructure from .linearization import Linearization from .variable_ordering import VariableOrdering class SparseLinearization(Linearization): def __init__( self, objective: Objective, ordering: Optional[VariableOrdering] = None, **kwargs, ): super().__init__(objective, ordering) # we prepare the indices for At as csc matrix (or A as csr, same thing) # for similarity with dense_linearization code we build A as csr, then # actually we have At as csc and can feed it to `cholesky_AAt` routine # we want a unique set of rowPtr/colInd indices for A for all batches # we also save pointers to the data block, so that we can later quickly # write the data blocks A_col_ind: List[int] = [] A_row_ptr: List[int] = [0] # ptr to data block (stride = sum of variable.dim() cost_function_block_pointers = [] cost_function_row_block_starts = [] # where data start for this row block cost_function_stride = [] # total jacobian cols for _, cost_function in enumerate(self.objective._get_jacobians_iter()): num_rows = cost_function.dim() col_slices_indices = [] for var_idx_in_cost_function, variable in enumerate( cost_function.optim_vars ): var_idx_in_order = self.ordering.index_of( cost_function.optim_var_at(var_idx_in_cost_function).name ) var_start_col = self.var_start_cols[var_idx_in_order] num_cols = variable.dof() col_slice = slice(var_start_col, var_start_col + num_cols) col_slices_indices.append((col_slice, var_idx_in_cost_function)) # sort according to how they will be written inside A col_slices_indices.sort() sorted_block_sizes = [(s.stop - s.start) for s, _ in col_slices_indices] sorted_block_pointers = np.cumsum([0] + sorted_block_sizes)[:-1] sorted_indices = np.array([i for _, i in col_slices_indices]) block_pointers: np.ndarray = np.ndarray( (len(col_slices_indices),), dtype=int ) block_pointers[sorted_indices] = sorted_block_pointers cost_function_block_pointers.append(block_pointers) cost_function_row_block_starts.append(len(A_col_ind)) col_ind = [c for s, _ in col_slices_indices for c in range(s.start, s.stop)] cost_function_stride.append(len(col_ind)) for _ in range(num_rows): A_col_ind += col_ind A_row_ptr.append(len(A_col_ind)) # not batched, these data are the same across batches self.cost_function_block_pointers = cost_function_block_pointers self.cost_function_row_block_starts: np.ndarray = np.array( cost_function_row_block_starts, dtype=int ) self.cost_function_stride: np.ndarray = np.array( cost_function_stride, dtype=int ) self.A_row_ptr: np.ndarray = np.array(A_row_ptr, dtype=int) self.A_col_ind: np.ndarray = np.array(A_col_ind, dtype=int) # batched data self.A_val: torch.Tensor = None self.b: torch.Tensor = None # computed lazily by self._atb_impl() and reset to None by # self._linearize_jacobian_impl() self._Atb: torch.Tensor = None # computed lazily by self.diagonal_scaling() and reset to None by # self._linearize_jacobian_impl() self._AtA_diag: torch.Tensor = None # If true, it signals to linear solvers that any computation resulting from # matrix (At * A) must be detached from the compute graph self.detached_hessian = False def _linearize_jacobian_impl(self): self._detached_hessian = False self._Atb = None self._AtA_diag = None # those will be fully overwritten, no need to zero: self.A_val = torch.empty( size=(self.objective.batch_size, len(self.A_col_ind)), device=self.objective.device, dtype=self.objective.dtype, ) self.b = torch.empty( size=(self.objective.batch_size, self.num_rows), device=self.objective.device, dtype=self.objective.dtype, ) err_row_idx = 0 for f_idx, cost_function in enumerate(self.objective._get_jacobians_iter()): jacobians, error = cost_function.weighted_jacobians_error() num_rows = cost_function.dim() row_slice = slice(err_row_idx, err_row_idx + num_rows) # we will view the blocks of rows inside `A_val` as `num_rows` x `stride` matrix block_start = self.cost_function_row_block_starts[f_idx] stride = self.cost_function_stride[f_idx] block = self.A_val[:, block_start : block_start + stride * num_rows].view( -1, num_rows, stride ) block_pointers = self.cost_function_block_pointers[f_idx] for var_idx_in_cost_function, var_jacobian in enumerate(jacobians): # the proper block is written, using the precomputed index in `block_pointers` num_cols = var_jacobian.shape[2] pointer = block_pointers[var_idx_in_cost_function] block[:, :, pointer : pointer + num_cols] = var_jacobian self.b[:, row_slice] = -error err_row_idx += cost_function.dim() def structure(self): return SparseStructure( self.A_col_ind, self.A_row_ptr, self.num_rows, self.num_cols, dtype=np.float64 if self.objective.dtype == torch.double else np.float32, ) def _linearize_hessian_impl(self, _detach_hessian: bool = False): # Some of our sparse solvers don't require explicitly computing the # hessian approximation, so we only compute the jacobian here and let each # solver handle this as needed self._linearize_jacobian_impl() self.detached_hessian = _detach_hessian def _ata_impl(self) -> torch.Tensor: raise NotImplementedError("AtA is not yet implemented for SparseLinearization.") def _atb_impl(self) -> torch.Tensor: if self._Atb is None: A_row_ptr = torch.tensor(self.A_row_ptr, dtype=torch.int32).to( self.objective.device ) A_col_ind = A_row_ptr.new_tensor(self.A_col_ind) # unsqueeze at the end for consistency with DenseLinearization self._Atb = sparse_mtv( self.num_cols, A_row_ptr, A_col_ind, self.A_val.double(), self.b.double(), ).unsqueeze(2) return self._Atb.to(dtype=self.A_val.dtype) def Av(self, v: torch.Tensor) -> torch.Tensor: A_row_ptr = torch.tensor(self.A_row_ptr, dtype=torch.int32).to( self.objective.device ) A_col_ind = A_row_ptr.new_tensor(self.A_col_ind) return sparse_mv( self.num_cols, A_row_ptr, A_col_ind, self.A_val.double(), v.double() ).to(v.dtype) def diagonal_scaling(self, v: torch.Tensor) -> torch.Tensor: assert v.ndim == 2 assert v.shape[1] == self.num_cols if self._AtA_diag is None: A_val = self.A_val self._AtA_diag = torch.zeros(A_val.shape[0], self.num_cols) for row in range(self.num_rows): start = self.A_row_ptr[row] end = self.A_row_ptr[row + 1] columns = self.A_col_ind[start:end] self._AtA_diag[:, columns] += A_val[:, start:end] ** 2 return self._AtA_diag * v
PypiClean
/django-celery-beat-yywing2-2.0.0.tar.gz/django-celery-beat-yywing2-2.0.0/docs/copyright.rst
Copyright ========= *django-celery-beat User Manual* by Ask Solem .. |copy| unicode:: U+000A9 .. COPYRIGHT SIGN Copyright |copy| 2016, Ask Solem All rights reserved. This material may be copied or distributed only subject to the terms and conditions set forth in the `Creative Commons Attribution-ShareAlike 4.0 International` <http://creativecommons.org/licenses/by-sa/4.0/legalcode>`_ license. You may share and adapt the material, even for commercial purposes, but you must give the original author credit. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same license or a license compatible to this one. .. note:: While the django-celery-beat *documentation* is offered under the Creative Commons *Attribution-ShareAlike 4.0 International* license the django-celery-beat *software* is offered under the `BSD License (3 Clause) <http://www.opensource.org/licenses/BSD-3-Clause>`_
PypiClean
/dsin100daysv29-6.0.1.tar.gz/dsin100daysv29-6.0.1/notebook/static/components/MathJax/jax/output/HTML-CSS/fonts/STIX-Web/Size5/Regular/Main.js
MathJax.OutputJax["HTML-CSS"].FONTDATA.FONTS.STIXMathJax_Size5={directory:"Size5/Regular",family:"STIXMathJax_Size5",testString:"\u00A0\u02C6\u02C7\u02DC\u02F7\u0302\u0303\u0305\u030C\u0330\u0332\u0338\u203E\u20D0\u20D1",32:[0,0,250,0,0],160:[0,0,250,0,0],710:[816,-572,2328,0,2328],711:[816,-572,2328,0,2328],732:[780,-617,2328,0,2328],759:[-117,280,2328,0,2328],770:[816,-572,2328,0,2328],771:[780,-617,2328,0,2328],773:[820,-770,3000,0,3000],780:[816,-572,2328,0,2328],816:[-117,280,2328,0,2328],818:[-127,177,3000,0,3000],824:[960,454,0,-561,-123],8254:[820,-770,3000,0,3000],8400:[749,-584,3000,0,3000],8401:[749,-584,3000,0,3000],8406:[735,-482,3000,0,3000],8407:[735,-482,3000,0,3000],8428:[-123,288,3000,0,3000],8429:[-123,288,3000,0,3000],8430:[-26,279,3000,0,3000],8431:[-26,279,3000,0,3000],9140:[766,-544,3237,90,3147],9141:[139,83,3237,90,3147],9180:[80,189,3237,0,3237],9181:[842,-573,3237,0,3237],9182:[181,90,3238,0,3238],9183:[844,-573,3238,0,3238],9184:[66,212,3164,0,3164],9185:[842,-564,3164,0,3164],57344:[705,300,450,50,400],57345:[705,305,450,50,174],57346:[700,305,450,50,400],57347:[705,300,450,50,400],57348:[705,305,450,276,400],57349:[700,305,450,50,400],57350:[687,318,450,50,415],57351:[687,323,450,50,150],57352:[682,323,450,50,415],57353:[687,318,450,35,400],57354:[687,323,450,300,400],57355:[682,323,450,35,400],57356:[705,300,640,260,600],57357:[705,305,640,260,380],57358:[705,305,640,40,380],57359:[700,305,640,260,600],57360:[705,300,640,40,380],57361:[705,305,640,260,600],57362:[700,305,640,40,380],57363:[820,-770,1000,0,1000],57364:[-127,177,1000,0,1000],57365:[749,-584,870,0,871],57366:[634,-584,480,-10,490],57367:[749,-584,871,0,871],57368:[735,-482,871,0,872],57369:[736,-482,871,0,872],57370:[-127,177,480,-10,490],57371:[-123,288,871,0,871],57372:[-123,288,871,0,871],57373:[-26,279,871,0,872],57374:[-25,279,871,0,872],57375:[386,-120,315,0,315],57376:[405,-101,686,210,476],57377:[486,-20,315,0,315],57378:[1855,0,1184,112,895],57379:[635,0,1184,829,895],57380:[626,0,1184,829,1211],57381:[2140,0,1184,112,895],57382:[2135,0,1184,112,895],57383:[955,-554,1820,-25,1830],57384:[955,-820,633,-1,634],57385:[955,-554,1820,-10,1845],57386:[140,261,1820,-25,1830],57387:[-126,261,633,-1,634],57388:[140,261,1820,-10,1845],57389:[955,-342,1820,-25,1830],57390:[955,-342,1820,-10,1845],57391:[352,261,1820,-25,1830],57392:[352,261,1820,-10,1845],57393:[955,-512,897,-25,908],57394:[1218,-820,1844,-10,1854],57395:[955,-512,897,-11,922],57396:[182,261,897,-25,908],57397:[-126,524,1844,-10,1854],57398:[182,261,897,-11,922],57399:[405,-101,1033,229,805],57400:[405,-101,926,230,696],57401:[541,35,315,0,315],57402:[700,301,600,35,566],57403:[700,301,600,35,566],57404:[1066,79,688,294,574],57405:[610,25,688,294,394],57406:[1086,59,688,115,394]};MathJax.Callback.Queue(["initFont",MathJax.OutputJax["HTML-CSS"],"STIXMathJax_Size5"],["loadComplete",MathJax.Ajax,MathJax.OutputJax["HTML-CSS"].fontDir+"/Size5/Regular/Main.js"]);
PypiClean
/smartautomatic_server_frontend-20220907.2-py3-none-any.whl/sas_frontend/frontend_es5/5074c137.js
"use strict";(self.webpackChunksmartautomatic_server_frontend=self.webpackChunksmartautomatic_server_frontend||[]).push([[68353],{18601:function(e,t,n){n.d(t,{qN:function(){return u.q},Wg:function(){return v}});var r,o,i=n(87480),a=n(33310),u=n(78220);function c(e){return c="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},c(e)}function s(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}function l(e,t){for(var n=0;n<t.length;n++){var r=t[n];r.enumerable=r.enumerable||!1,r.configurable=!0,"value"in r&&(r.writable=!0),Object.defineProperty(e,r.key,r)}}function f(e,t,n){return f="undefined"!=typeof Reflect&&Reflect.get?Reflect.get:function(e,t,n){var r=function(e,t){for(;!Object.prototype.hasOwnProperty.call(e,t)&&null!==(e=m(e)););return e}(e,t);if(r){var o=Object.getOwnPropertyDescriptor(r,t);return o.get?o.get.call(n):o.value}},f(e,t,n||e)}function d(e,t){return d=Object.setPrototypeOf||function(e,t){return e.__proto__=t,e},d(e,t)}function p(e){var t=function(){if("undefined"==typeof Reflect||!Reflect.construct)return!1;if(Reflect.construct.sham)return!1;if("function"==typeof Proxy)return!0;try{return Boolean.prototype.valueOf.call(Reflect.construct(Boolean,[],(function(){}))),!0}catch(e){return!1}}();return function(){var n,r=m(e);if(t){var o=m(this).constructor;n=Reflect.construct(r,arguments,o)}else n=r.apply(this,arguments);return h(this,n)}}function h(e,t){if(t&&("object"===c(t)||"function"==typeof t))return t;if(void 0!==t)throw new TypeError("Derived constructors may only return object or undefined");return function(e){if(void 0===e)throw new ReferenceError("this hasn't been initialised - super() hasn't been called");return e}(e)}function m(e){return m=Object.setPrototypeOf?Object.getPrototypeOf:function(e){return e.__proto__||Object.getPrototypeOf(e)},m(e)}var y=null!==(o=null===(r=window.ShadyDOM)||void 0===r?void 0:r.inUse)&&void 0!==o&&o,v=function(e){!function(e,t){if("function"!=typeof t&&null!==t)throw new TypeError("Super expression must either be null or a function");e.prototype=Object.create(t&&t.prototype,{constructor:{value:e,writable:!0,configurable:!0}}),t&&d(e,t)}(i,e);var t,n,r,o=p(i);function i(){var e;return s(this,i),(e=o.apply(this,arguments)).disabled=!1,e.containingForm=null,e.formDataListener=function(t){e.disabled||e.setFormData(t.formData)},e}return t=i,n=[{key:"findFormElement",value:function(){if(!this.shadowRoot||y)return null;for(var e=this.getRootNode().querySelectorAll("form"),t=0,n=Array.from(e);t<n.length;t++){var r=n[t];if(r.contains(this))return r}return null}},{key:"connectedCallback",value:function(){var e;f(m(i.prototype),"connectedCallback",this).call(this),this.containingForm=this.findFormElement(),null===(e=this.containingForm)||void 0===e||e.addEventListener("formdata",this.formDataListener)}},{key:"disconnectedCallback",value:function(){var e;f(m(i.prototype),"disconnectedCallback",this).call(this),null===(e=this.containingForm)||void 0===e||e.removeEventListener("formdata",this.formDataListener),this.containingForm=null}},{key:"click",value:function(){this.formElement&&!this.disabled&&(this.formElement.focus(),this.formElement.click())}},{key:"firstUpdated",value:function(){var e=this;f(m(i.prototype),"firstUpdated",this).call(this),this.shadowRoot&&this.mdcRoot.addEventListener("change",(function(t){e.dispatchEvent(new Event("change",t))}))}}],n&&l(t.prototype,n),r&&l(t,r),i}(u.H);v.shadowRootOptions={mode:"open",delegatesFocus:!0},(0,i.__decorate)([(0,a.Cb)({type:Boolean})],v.prototype,"disabled",void 0)},14114:function(e,t,n){n.d(t,{P:function(){return r}});var r=function(e){return function(t,n){if(t.constructor._observers){if(!t.constructor.hasOwnProperty("_observers")){var r=t.constructor._observers;t.constructor._observers=new Map,r.forEach((function(e,n){return t.constructor._observers.set(n,e)}))}}else{t.constructor._observers=new Map;var o=t.updated;t.updated=function(e){var t=this;o.call(this,e),e.forEach((function(e,n){var r=t.constructor._observers.get(n);void 0!==r&&r.call(t,t[n],e)}))}}t.constructor._observers.set(n,e)}}},22814:function(e,t,n){function r(e,t,n,r,o,i,a){try{var u=e[i](a),c=u.value}catch(s){return void n(s)}u.done?t(c):Promise.resolve(c).then(r,o)}function o(e){return function(){var t=this,n=arguments;return new Promise((function(o,i){var a=e.apply(t,n);function u(e){r(a,o,i,u,c,"next",e)}function c(e){r(a,o,i,u,c,"throw",e)}u(void 0)}))}}n.d(t,{iI:function(){return i},W2:function(){return a},TZ:function(){return u}});"".concat(location.protocol,"//").concat(location.host);var i=function(e,t){return e.callWS({type:"auth/sign_path",path:t})},a=function(){var e=o(regeneratorRuntime.mark((function e(t,n,r,o){return regeneratorRuntime.wrap((function(e){for(;;)switch(e.prev=e.next){case 0:return e.abrupt("return",t.callWS({type:"config/auth_provider/smartautomatic/create",user_id:n,username:r,password:o}));case 1:case"end":return e.stop()}}),e)})));return function(t,n,r,o){return e.apply(this,arguments)}}(),u=function(){var e=o(regeneratorRuntime.mark((function e(t,n,r){return regeneratorRuntime.wrap((function(e){for(;;)switch(e.prev=e.next){case 0:return e.abrupt("return",t.callWS({type:"config/auth_provider/smartautomatic/admin_change_password",user_id:n,password:r}));case 1:case"end":return e.stop()}}),e)})));return function(t,n,r){return e.apply(this,arguments)}}()},9893:function(e,t,n){n.d(t,{Qo:function(){return r},kb:function(){return i},cs:function(){return a}});var r="custom:",o=window;"customCards"in o||(o.customCards=[]);var i=o.customCards,a=function(e){return i.find((function(t){return t.type===e}))}},51444:function(e,t,n){n.d(t,{_:function(){return i}});var r=n(47181),o=function(){return Promise.all([n.e(29563),n.e(98985),n.e(85084),n.e(3555),n.e(34821),n.e(72420)]).then(n.bind(n,72420))},i=function(e){(0,r.B)(e,"show-dialog",{dialogTag:"ha-voice-command-dialog",dialogImport:o,dialogParams:{}})}},27849:function(e,t,n){n(39841);var r,o=n(50856);n(28426);function i(e){return i="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},i(e)}function a(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}function u(e,t){for(var n=0;n<t.length;n++){var r=t[n];r.enumerable=r.enumerable||!1,r.configurable=!0,"value"in r&&(r.writable=!0),Object.defineProperty(e,r.key,r)}}function c(e,t){return c=Object.setPrototypeOf||function(e,t){return e.__proto__=t,e},c(e,t)}function s(e){var t=function(){if("undefined"==typeof Reflect||!Reflect.construct)return!1;if(Reflect.construct.sham)return!1;if("function"==typeof Proxy)return!0;try{return Boolean.prototype.valueOf.call(Reflect.construct(Boolean,[],(function(){}))),!0}catch(e){return!1}}();return function(){var n,r=f(e);if(t){var o=f(this).constructor;n=Reflect.construct(r,arguments,o)}else n=r.apply(this,arguments);return l(this,n)}}function l(e,t){if(t&&("object"===i(t)||"function"==typeof t))return t;if(void 0!==t)throw new TypeError("Derived constructors may only return object or undefined");return function(e){if(void 0===e)throw new ReferenceError("this hasn't been initialised - super() hasn't been called");return e}(e)}function f(e){return f=Object.setPrototypeOf?Object.getPrototypeOf:function(e){return e.__proto__||Object.getPrototypeOf(e)},f(e)}var d=function(e){!function(e,t){if("function"!=typeof t&&null!==t)throw new TypeError("Super expression must either be null or a function");e.prototype=Object.create(t&&t.prototype,{constructor:{value:e,writable:!0,configurable:!0}}),t&&c(e,t)}(f,customElements.get("app-header-layout"));var t,n,i,l=s(f);function f(){return a(this,f),l.apply(this,arguments)}return t=f,i=[{key:"template",get:function(){return(0,o.d)(r||(e=['\n <style>\n :host {\n display: block;\n /**\n * Force app-header-layout to have its own stacking context so that its parent can\n * control the stacking of it relative to other elements (e.g. app-drawer-layout).\n * This could be done using `isolation: isolate`, but that\'s not well supported\n * across browsers.\n */\n position: relative;\n z-index: 0;\n }\n\n #wrapper ::slotted([slot="header"]) {\n @apply --layout-fixed-top;\n z-index: 1;\n }\n\n #wrapper.initializing ::slotted([slot="header"]) {\n position: relative;\n }\n\n :host([has-scrolling-region]) {\n height: 100%;\n }\n\n :host([has-scrolling-region]) #wrapper ::slotted([slot="header"]) {\n position: absolute;\n }\n\n :host([has-scrolling-region])\n #wrapper.initializing\n ::slotted([slot="header"]) {\n position: relative;\n }\n\n :host([has-scrolling-region]) #wrapper #contentContainer {\n @apply --layout-fit;\n overflow-y: auto;\n -webkit-overflow-scrolling: touch;\n }\n\n :host([has-scrolling-region]) #wrapper.initializing #contentContainer {\n position: relative;\n }\n\n #contentContainer {\n /* Create a stacking context here so that all children appear below the header. */\n position: relative;\n z-index: 0;\n /* Using \'transform\' will cause \'position: fixed\' elements to behave like\n \'position: absolute\' relative to this element. */\n transform: translate(0);\n margin-left: env(safe-area-inset-left);\n margin-right: env(safe-area-inset-right);\n }\n\n @media print {\n :host([has-scrolling-region]) #wrapper #contentContainer {\n overflow-y: visible;\n }\n }\n </style>\n\n <div id="wrapper" class="initializing">\n <slot id="headerSlot" name="header"></slot>\n\n <div id="contentContainer"><slot></slot></div>\n <slot id="fab" name="fab"></slot>\n </div>\n '],(t=['\n <style>\n :host {\n display: block;\n /**\n * Force app-header-layout to have its own stacking context so that its parent can\n * control the stacking of it relative to other elements (e.g. app-drawer-layout).\n * This could be done using \\`isolation: isolate\\`, but that\'s not well supported\n * across browsers.\n */\n position: relative;\n z-index: 0;\n }\n\n #wrapper ::slotted([slot="header"]) {\n @apply --layout-fixed-top;\n z-index: 1;\n }\n\n #wrapper.initializing ::slotted([slot="header"]) {\n position: relative;\n }\n\n :host([has-scrolling-region]) {\n height: 100%;\n }\n\n :host([has-scrolling-region]) #wrapper ::slotted([slot="header"]) {\n position: absolute;\n }\n\n :host([has-scrolling-region])\n #wrapper.initializing\n ::slotted([slot="header"]) {\n position: relative;\n }\n\n :host([has-scrolling-region]) #wrapper #contentContainer {\n @apply --layout-fit;\n overflow-y: auto;\n -webkit-overflow-scrolling: touch;\n }\n\n :host([has-scrolling-region]) #wrapper.initializing #contentContainer {\n position: relative;\n }\n\n #contentContainer {\n /* Create a stacking context here so that all children appear below the header. */\n position: relative;\n z-index: 0;\n /* Using \'transform\' will cause \'position: fixed\' elements to behave like\n \'position: absolute\' relative to this element. */\n transform: translate(0);\n margin-left: env(safe-area-inset-left);\n margin-right: env(safe-area-inset-right);\n }\n\n @media print {\n :host([has-scrolling-region]) #wrapper #contentContainer {\n overflow-y: visible;\n }\n }\n </style>\n\n <div id="wrapper" class="initializing">\n <slot id="headerSlot" name="header"></slot>\n\n <div id="contentContainer"><slot></slot></div>\n <slot id="fab" name="fab"></slot>\n </div>\n '])||(t=e.slice(0)),r=Object.freeze(Object.defineProperties(e,{raw:{value:Object.freeze(t)}}))));var e,t}}],(n=null)&&u(t.prototype,n),i&&u(t,i),f}();customElements.define("ha-app-layout",d)},51153:function(e,t,n){n.d(t,{l$:function(){return a},Z6:function(){return u},Do:function(){return c}});n(10175),n(80251),n(99471),n(14888),n(69377),n(95035),n(6169),n(41043),n(57464),n(24617),n(82778);var r=n(7778),o=new Set(["entity","entities","button","entity-button","glance","grid","light","sensor","thermostat","weather-forecast"]),i={"alarm-panel":function(){return Promise.all([n.e(29563),n.e(98985),n.e(3555),n.e(77639)]).then(n.bind(n,77639))},area:function(){return Promise.all([n.e(73826),n.e(97282),n.e(95795)]).then(n.bind(n,95795))},calendar:function(){return Promise.resolve().then(n.bind(n,80251))},conditional:function(){return n.e(68857).then(n.bind(n,68857))},"empty-state":function(){return n.e(67284).then(n.bind(n,67284))},"energy-compare":function(){return Promise.all([n.e(80985),n.e(73826),n.e(55424),n.e(61046)]).then(n.bind(n,61046))},"energy-carbon-consumed-gauge":function(){return Promise.all([n.e(54444),n.e(80985),n.e(73826),n.e(55424),n.e(49915),n.e(43283),n.e(19490)]).then(n.bind(n,19490))},"energy-date-selection":function(){return Promise.all([n.e(80985),n.e(73826),n.e(55424),n.e(23754),n.e(55139)]).then(n.bind(n,10346))},"energy-devices-graph":function(){return Promise.all([n.e(80985),n.e(5287),n.e(73826),n.e(55424),n.e(62336),n.e(94576)]).then(n.bind(n,94576))},"energy-distribution":function(){return Promise.all([n.e(80985),n.e(73826),n.e(55424),n.e(9928)]).then(n.bind(n,9928))},"energy-gas-graph":function(){return Promise.all([n.e(80985),n.e(73826),n.e(55424),n.e(62336),n.e(41305)]).then(n.bind(n,41305))},"energy-grid-neutrality-gauge":function(){return Promise.all([n.e(54444),n.e(80985),n.e(73826),n.e(55424),n.e(49915),n.e(32176)]).then(n.bind(n,32176))},"energy-solar-consumed-gauge":function(){return Promise.all([n.e(54444),n.e(80985),n.e(73826),n.e(55424),n.e(49915),n.e(43283),n.e(85930)]).then(n.bind(n,85930))},"energy-solar-graph":function(){return Promise.all([n.e(80985),n.e(73826),n.e(55424),n.e(62336),n.e(70310)]).then(n.bind(n,70310))},"energy-sources-table":function(){return Promise.all([n.e(80985),n.e(40521),n.e(73826),n.e(55424),n.e(62336),n.e(17595),n.e(16938)]).then(n.bind(n,16938))},"energy-usage-graph":function(){return Promise.all([n.e(80985),n.e(73826),n.e(55424),n.e(62336),n.e(9897)]).then(n.bind(n,9897))},"entity-filter":function(){return n.e(33688).then(n.bind(n,33688))},error:function(){return Promise.all([n.e(77426),n.e(55796)]).then(n.bind(n,55796))},gauge:function(){return Promise.all([n.e(49915),n.e(43283)]).then(n.bind(n,43283))},"history-graph":function(){return Promise.all([n.e(9874),n.e(62336),n.e(70731),n.e(38026)]).then(n.bind(n,38026))},"horizontal-stack":function(){return n.e(89173).then(n.bind(n,89173))},humidifier:function(){return n.e(68558).then(n.bind(n,68558))},iframe:function(){return n.e(95018).then(n.bind(n,95018))},logbook:function(){return Promise.all([n.e(9874),n.e(99528),n.e(40967),n.e(90851)]).then(n.bind(n,8436))},map:function(){return Promise.all([n.e(23956),n.e(60076)]).then(n.bind(n,60076))},markdown:function(){return Promise.all([n.e(4940),n.e(26607)]).then(n.bind(n,51282))},"media-control":function(){return Promise.all([n.e(62744),n.e(67794),n.e(11866)]).then(n.bind(n,11866))},"picture-elements":function(){return Promise.all([n.e(98762),n.e(97282),n.e(6315),n.e(99810),n.e(70128)]).then(n.bind(n,83358))},"picture-entity":function(){return Promise.all([n.e(97282),n.e(41500)]).then(n.bind(n,41500))},"picture-glance":function(){return Promise.all([n.e(97282),n.e(66621)]).then(n.bind(n,66621))},picture:function(){return n.e(45338).then(n.bind(n,45338))},"plant-status":function(){return n.e(48723).then(n.bind(n,48723))},"safe-mode":function(){return Promise.all([n.e(29563),n.e(79071),n.e(24103),n.e(88278),n.e(6294),n.e(86630),n.e(98124),n.e(94066),n.e(24503)]).then(n.bind(n,24503))},"shopping-list":function(){return Promise.all([n.e(29563),n.e(98985),n.e(41985),n.e(3555),n.e(73826),n.e(43376)]).then(n.bind(n,43376))},starting:function(){return n.e(47873).then(n.bind(n,47873))},"statistics-graph":function(){return Promise.all([n.e(62336),n.e(17595),n.e(95396)]).then(n.bind(n,95396))},"vertical-stack":function(){return n.e(26136).then(n.bind(n,26136))}},a=function(e){return(0,r.Xm)("card",e,o,i,void 0,void 0)},u=function(e){return(0,r.Tw)("card",e,o,i,void 0,void 0)},c=function(e){return(0,r.ED)(e,"card",o,i)}},7778:function(e,t,n){n.d(t,{Pc:function(){return u},N2:function(){return c},Tw:function(){return d},Xm:function(){return p},ED:function(){return h}});var r=n(47181),o=n(9893);function i(e,t,n,r,o,i,a){try{var u=e[i](a),c=u.value}catch(s){return void n(s)}u.done?t(c):Promise.resolve(c).then(r,o)}function a(e){return a="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},a(e)}var u=function(e){var t=document.createElement("hui-error-card");return customElements.get("hui-error-card")?t.setConfig(e):(Promise.all([n.e(77426),n.e(55796)]).then(n.bind(n,55796)),customElements.whenDefined("hui-error-card").then((function(){customElements.upgrade(t),t.setConfig(e)}))),t},c=function(e,t){return{type:"error",error:e,origConfig:t}},s=function(e,t){var n=document.createElement(e);return n.setConfig(t),n},l=function(e,t){return u(c(e,t))},f=function(e){return e.startsWith(o.Qo)?e.substr(o.Qo.length):void 0},d=function(e,t,n,r,o,i){try{return p(e,t,n,r,o,i)}catch(a){return console.error(e,t.type,a),l(a.message,t)}},p=function(e,t,n,o,i,u){if(!t||"object"!==a(t))throw new Error("Config is not an object");if(!(t.type||u||i&&"entity"in t))throw new Error("No card type configured");var c,d=t.type?f(t.type):void 0;if(d)return function(e,t){if(customElements.get(e))return s(e,t);var n=l("Custom element doesn't exist: ".concat(e,"."),t);if(!e.includes("-"))return n;n.style.display="None";var o=window.setTimeout((function(){n.style.display=""}),2e3);return customElements.whenDefined(e).then((function(){clearTimeout(o),(0,r.B)(n,"ll-rebuild")})),n}(d,t);if(i&&!t.type&&t.entity){var p=t.entity.split(".",1)[0];c="".concat(i[p]||i._domain_not_found,"-entity")}else c=t.type||u;if(void 0===c)throw new Error("No type specified");var h="hui-".concat(c,"-").concat(e);if(o&&c in o)return o[c](),function(e,t){if(customElements.get(e))return s(e,t);var n=document.createElement(e);return customElements.whenDefined(e).then((function(){try{customElements.upgrade(n),n.setConfig(t)}catch(e){(0,r.B)(n,"ll-rebuild")}})),n}(h,t);if(n&&n.has(c))return s(h,t);throw new Error("Unknown type encountered: ".concat(c))},h=function(){var e,t=(e=regeneratorRuntime.mark((function e(t,n,r,o){var i,a,u,c;return regeneratorRuntime.wrap((function(e){for(;;)switch(e.prev=e.next){case 0:if(!(i=f(t))){e.next=8;break}if(!(a=customElements.get(i))){e.next=5;break}return e.abrupt("return",a);case 5:if(i.includes("-")){e.next=7;break}throw new Error("Custom element not found: ".concat(i));case 7:return e.abrupt("return",new Promise((function(e,t){setTimeout((function(){return t(new Error("Custom element not found: ".concat(i)))}),2e3),customElements.whenDefined(i).then((function(){return e(customElements.get(i))}))})));case 8:if(u="hui-".concat(t,"-").concat(n),c=customElements.get(u),!r||!r.has(t)){e.next=12;break}return e.abrupt("return",c);case 12:if(!o||!(t in o)){e.next=14;break}return e.abrupt("return",c||o[t]().then((function(){return customElements.get(u)})));case 14:throw new Error("Unknown type: ".concat(t));case 15:case"end":return e.stop()}}),e)})),function(){var t=this,n=arguments;return new Promise((function(r,o){var a=e.apply(t,n);function u(e){i(a,r,o,u,c,"next",e)}function c(e){i(a,r,o,u,c,"throw",e)}u(void 0)}))});return function(e,n,r,o){return t.apply(this,arguments)}}()},89026:function(e,t,n){n.d(t,{t:function(){return i},Q:function(){return a}});var r=n(7778),o={picture:function(){return n.e(69130).then(n.bind(n,69130))},buttons:function(){return Promise.all([n.e(42109),n.e(32587)]).then(n.bind(n,32587))},graph:function(){return n.e(25773).then(n.bind(n,25773))}},i=function(e){return(0,r.Tw)("header-footer",e,void 0,o,void 0,void 0)},a=function(e){return(0,r.ED)(e,"header-footer",void 0,o)}},37482:function(e,t,n){n.d(t,{m:function(){return u},T:function(){return c}});n(12141),n(31479),n(23266),n(65716),n(97600),n(83896),n(45340),n(56427),n(23658);var r=n(7778),o=new Set(["media-player-entity","scene-entity","script-entity","sensor-entity","text-entity","toggle-entity","button","call-service"]),i={"button-entity":function(){return n.e(85611).then(n.bind(n,85611))},"climate-entity":function(){return n.e(35642).then(n.bind(n,35642))},"cover-entity":function(){return Promise.all([n.e(69448),n.e(16755)]).then(n.bind(n,16755))},"group-entity":function(){return n.e(81534).then(n.bind(n,81534))},"input-button-entity":function(){return n.e(83968).then(n.bind(n,83968))},"humidifier-entity":function(){return n.e(41102).then(n.bind(n,41102))},"input-datetime-entity":function(){return Promise.all([n.e(29563),n.e(98985),n.e(79071),n.e(24103),n.e(88278),n.e(6294),n.e(3555),n.e(86630),n.e(12545),n.e(88101)]).then(n.bind(n,22350))},"input-number-entity":function(){return Promise.all([n.e(29563),n.e(98985),n.e(3555),n.e(12335)]).then(n.bind(n,12335))},"input-select-entity":function(){return Promise.all([n.e(29563),n.e(79071),n.e(24103),n.e(88278),n.e(6294),n.e(86630),n.e(25675)]).then(n.bind(n,25675))},"input-text-entity":function(){return Promise.all([n.e(29563),n.e(98985),n.e(3555),n.e(73943)]).then(n.bind(n,73943))},"lock-entity":function(){return n.e(61596).then(n.bind(n,61596))},"number-entity":function(){return Promise.all([n.e(29563),n.e(98985),n.e(3555),n.e(66778)]).then(n.bind(n,66778))},"select-entity":function(){return Promise.all([n.e(29563),n.e(79071),n.e(24103),n.e(88278),n.e(6294),n.e(86630),n.e(35994)]).then(n.bind(n,35994))},"timer-entity":function(){return n.e(31203).then(n.bind(n,31203))},conditional:function(){return n.e(97749).then(n.bind(n,97749))},"weather-entity":function(){return n.e(71850).then(n.bind(n,71850))},divider:function(){return n.e(41930).then(n.bind(n,41930))},section:function(){return n.e(94832).then(n.bind(n,94832))},weblink:function(){return n.e(44689).then(n.bind(n,44689))},cast:function(){return n.e(25840).then(n.bind(n,25840))},buttons:function(){return Promise.all([n.e(42109),n.e(82137)]).then(n.bind(n,82137))},attribute:function(){return Promise.resolve().then(n.bind(n,45340))},text:function(){return n.e(63459).then(n.bind(n,63459))}},a={_domain_not_found:"text",alert:"toggle",automation:"toggle",button:"button",climate:"climate",cover:"cover",fan:"toggle",group:"group",humidifier:"humidifier",input_boolean:"toggle",input_button:"input-button",input_number:"input-number",input_select:"input-select",input_text:"input-text",light:"toggle",lock:"lock",media_player:"media-player",number:"number",remote:"toggle",scene:"scene",script:"script",select:"select",sensor:"sensor",siren:"toggle",switch:"toggle",timer:"timer",vacuum:"toggle",water_heater:"climate",input_datetime:"input-datetime",weather:"weather"},u=function(e){return(0,r.Tw)("row",e,o,i,a,void 0)},c=function(e){return(0,r.ED)(e,"row",o,i)}},44295:function(e,t,n){n.r(t);n(53268),n(12730);var r,o,i,a=n(37500),u=n(33310),c=n(14516),s=n(7323),l=(n(10983),n(48932),n(51444)),f=(n(27849),n(11654)),d=n(51153);function p(e){return p="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},p(e)}function h(e,t){return t||(t=e.slice(0)),Object.freeze(Object.defineProperties(e,{raw:{value:Object.freeze(t)}}))}function m(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}function y(e,t){return y=Object.setPrototypeOf||function(e,t){return e.__proto__=t,e},y(e,t)}function v(e){var t=function(){if("undefined"==typeof Reflect||!Reflect.construct)return!1;if(Reflect.construct.sham)return!1;if("function"==typeof Proxy)return!0;try{return Boolean.prototype.valueOf.call(Reflect.construct(Boolean,[],(function(){}))),!0}catch(e){return!1}}();return function(){var n,r=A(e);if(t){var o=A(this).constructor;n=Reflect.construct(r,arguments,o)}else n=r.apply(this,arguments);return b(this,n)}}function b(e,t){if(t&&("object"===p(t)||"function"==typeof t))return t;if(void 0!==t)throw new TypeError("Derived constructors may only return object or undefined");return g(e)}function g(e){if(void 0===e)throw new ReferenceError("this hasn't been initialised - super() hasn't been called");return e}function w(){w=function(){return e};var e={elementsDefinitionOrder:[["method"],["field"]],initializeInstanceElements:function(e,t){["method","field"].forEach((function(n){t.forEach((function(t){t.kind===n&&"own"===t.placement&&this.defineClassElement(e,t)}),this)}),this)},initializeClassElements:function(e,t){var n=e.prototype;["method","field"].forEach((function(r){t.forEach((function(t){var o=t.placement;if(t.kind===r&&("static"===o||"prototype"===o)){var i="static"===o?e:n;this.defineClassElement(i,t)}}),this)}),this)},defineClassElement:function(e,t){var n=t.descriptor;if("field"===t.kind){var r=t.initializer;n={enumerable:n.enumerable,writable:n.writable,configurable:n.configurable,value:void 0===r?void 0:r.call(e)}}Object.defineProperty(e,t.key,n)},decorateClass:function(e,t){var n=[],r=[],o={static:[],prototype:[],own:[]};if(e.forEach((function(e){this.addElementPlacement(e,o)}),this),e.forEach((function(e){if(!P(e))return n.push(e);var t=this.decorateElement(e,o);n.push(t.element),n.push.apply(n,t.extras),r.push.apply(r,t.finishers)}),this),!t)return{elements:n,finishers:r};var i=this.decorateConstructor(n,t);return r.push.apply(r,i.finishers),i.finishers=r,i},addElementPlacement:function(e,t,n){var r=t[e.placement];if(!n&&-1!==r.indexOf(e.key))throw new TypeError("Duplicated element ("+e.key+")");r.push(e.key)},decorateElement:function(e,t){for(var n=[],r=[],o=e.decorators,i=o.length-1;i>=0;i--){var a=t[e.placement];a.splice(a.indexOf(e.key),1);var u=this.fromElementDescriptor(e),c=this.toElementFinisherExtras((0,o[i])(u)||u);e=c.element,this.addElementPlacement(e,t),c.finisher&&r.push(c.finisher);var s=c.extras;if(s){for(var l=0;l<s.length;l++)this.addElementPlacement(s[l],t);n.push.apply(n,s)}}return{element:e,finishers:r,extras:n}},decorateConstructor:function(e,t){for(var n=[],r=t.length-1;r>=0;r--){var o=this.fromClassDescriptor(e),i=this.toClassDescriptor((0,t[r])(o)||o);if(void 0!==i.finisher&&n.push(i.finisher),void 0!==i.elements){e=i.elements;for(var a=0;a<e.length-1;a++)for(var u=a+1;u<e.length;u++)if(e[a].key===e[u].key&&e[a].placement===e[u].placement)throw new TypeError("Duplicated element ("+e[a].key+")")}}return{elements:e,finishers:n}},fromElementDescriptor:function(e){var t={kind:e.kind,key:e.key,placement:e.placement,descriptor:e.descriptor};return Object.defineProperty(t,Symbol.toStringTag,{value:"Descriptor",configurable:!0}),"field"===e.kind&&(t.initializer=e.initializer),t},toElementDescriptors:function(e){var t;if(void 0!==e)return(t=e,function(e){if(Array.isArray(e))return e}(t)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(t)||function(e,t){if(e){if("string"==typeof e)return C(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);return"Object"===n&&e.constructor&&(n=e.constructor.name),"Map"===n||"Set"===n?Array.from(e):"Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)?C(e,t):void 0}}(t)||function(){throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()).map((function(e){var t=this.toElementDescriptor(e);return this.disallowProperty(e,"finisher","An element descriptor"),this.disallowProperty(e,"extras","An element descriptor"),t}),this)},toElementDescriptor:function(e){var t=String(e.kind);if("method"!==t&&"field"!==t)throw new TypeError('An element descriptor\'s .kind property must be either "method" or "field", but a decorator created an element descriptor with .kind "'+t+'"');var n=O(e.key),r=String(e.placement);if("static"!==r&&"prototype"!==r&&"own"!==r)throw new TypeError('An element descriptor\'s .placement property must be one of "static", "prototype" or "own", but a decorator created an element descriptor with .placement "'+r+'"');var o=e.descriptor;this.disallowProperty(e,"elements","An element descriptor");var i={kind:t,key:n,placement:r,descriptor:Object.assign({},o)};return"field"!==t?this.disallowProperty(e,"initializer","A method descriptor"):(this.disallowProperty(o,"get","The property descriptor of a field descriptor"),this.disallowProperty(o,"set","The property descriptor of a field descriptor"),this.disallowProperty(o,"value","The property descriptor of a field descriptor"),i.initializer=e.initializer),i},toElementFinisherExtras:function(e){return{element:this.toElementDescriptor(e),finisher:x(e,"finisher"),extras:this.toElementDescriptors(e.extras)}},fromClassDescriptor:function(e){var t={kind:"class",elements:e.map(this.fromElementDescriptor,this)};return Object.defineProperty(t,Symbol.toStringTag,{value:"Descriptor",configurable:!0}),t},toClassDescriptor:function(e){var t=String(e.kind);if("class"!==t)throw new TypeError('A class descriptor\'s .kind property must be "class", but a decorator created a class descriptor with .kind "'+t+'"');this.disallowProperty(e,"key","A class descriptor"),this.disallowProperty(e,"placement","A class descriptor"),this.disallowProperty(e,"descriptor","A class descriptor"),this.disallowProperty(e,"initializer","A class descriptor"),this.disallowProperty(e,"extras","A class descriptor");var n=x(e,"finisher");return{elements:this.toElementDescriptors(e.elements),finisher:n}},runClassFinishers:function(e,t){for(var n=0;n<t.length;n++){var r=(0,t[n])(e);if(void 0!==r){if("function"!=typeof r)throw new TypeError("Finishers must return a constructor.");e=r}}return e},disallowProperty:function(e,t,n){if(void 0!==e[t])throw new TypeError(n+" can't have a ."+t+" property.")}};return e}function k(e){var t,n=O(e.key);"method"===e.kind?t={value:e.value,writable:!0,configurable:!0,enumerable:!1}:"get"===e.kind?t={get:e.value,configurable:!0,enumerable:!1}:"set"===e.kind?t={set:e.value,configurable:!0,enumerable:!1}:"field"===e.kind&&(t={configurable:!0,writable:!0,enumerable:!0});var r={kind:"field"===e.kind?"field":"method",key:n,placement:e.static?"static":"field"===e.kind?"own":"prototype",descriptor:t};return e.decorators&&(r.decorators=e.decorators),"field"===e.kind&&(r.initializer=e.value),r}function E(e,t){void 0!==e.descriptor.get?t.descriptor.get=e.descriptor.get:t.descriptor.set=e.descriptor.set}function P(e){return e.decorators&&e.decorators.length}function _(e){return void 0!==e&&!(void 0===e.value&&void 0===e.writable)}function x(e,t){var n=e[t];if(void 0!==n&&"function"!=typeof n)throw new TypeError("Expected '"+t+"' to be a function");return n}function O(e){var t=function(e,t){if("object"!==p(e)||null===e)return e;var n=e[Symbol.toPrimitive];if(void 0!==n){var r=n.call(e,t||"default");if("object"!==p(r))return r;throw new TypeError("@@toPrimitive must return a primitive value.")}return("string"===t?String:Number)(e)}(e,"string");return"symbol"===p(t)?t:String(t)}function C(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function S(e,t,n){return S="undefined"!=typeof Reflect&&Reflect.get?Reflect.get:function(e,t,n){var r=function(e,t){for(;!Object.prototype.hasOwnProperty.call(e,t)&&null!==(e=A(e)););return e}(e,t);if(r){var o=Object.getOwnPropertyDescriptor(r,t);return o.get?o.get.call(n):o.value}},S(e,t,n||e)}function A(e){return A=Object.setPrototypeOf?Object.getPrototypeOf:function(e){return e.__proto__||Object.getPrototypeOf(e)},A(e)}!function(e,t,n,r){var o=w();if(r)for(var i=0;i<r.length;i++)o=r[i](o);var a=t((function(e){o.initializeInstanceElements(e,u.elements)}),n),u=o.decorateClass(function(e){for(var t=[],n=function(e){return"method"===e.kind&&e.key===i.key&&e.placement===i.placement},r=0;r<e.length;r++){var o,i=e[r];if("method"===i.kind&&(o=t.find(n)))if(_(i.descriptor)||_(o.descriptor)){if(P(i)||P(o))throw new ReferenceError("Duplicated methods ("+i.key+") can't be decorated.");o.descriptor=i.descriptor}else{if(P(i)){if(P(o))throw new ReferenceError("Decorators can't be placed on different accessors with for the same property ("+i.key+").");o.decorators=i.decorators}E(i,o)}else t.push(i)}return t}(a.d.map(k)),e);o.initializeClassElements(a.F,u.elements),o.runClassFinishers(a.F,u.finishers)}([(0,u.Mo)("ha-panel-shopping-list")],(function(e,t){var n=function(t){!function(e,t){if("function"!=typeof t&&null!==t)throw new TypeError("Super expression must either be null or a function");e.prototype=Object.create(t&&t.prototype,{constructor:{value:e,writable:!0,configurable:!0}}),t&&y(e,t)}(r,t);var n=v(r);function r(){var t;m(this,r);for(var o=arguments.length,i=new Array(o),a=0;a<o;a++)i[a]=arguments[a];return t=n.call.apply(n,[this].concat(i)),e(g(t)),t}return r}(t);return{F:n,d:[{kind:"field",decorators:[(0,u.Cb)({attribute:!1})],key:"hass",value:void 0},{kind:"field",decorators:[(0,u.Cb)({type:Boolean,reflect:!0})],key:"narrow",value:void 0},{kind:"field",decorators:[(0,u.SB)()],key:"_card",value:void 0},{kind:"field",key:"_conversation",value:function(){var e=this;return(0,c.Z)((function(t){return(0,s.p)(e.hass,"conversation")}))}},{kind:"method",key:"firstUpdated",value:function(e){S(A(n.prototype),"firstUpdated",this).call(this,e),this._card=(0,d.Z6)({type:"shopping-list"}),this._card.hass=this.hass}},{kind:"method",key:"updated",value:function(e){S(A(n.prototype),"updated",this).call(this,e),e.has("hass")&&(this._card.hass=this.hass)}},{kind:"method",key:"render",value:function(){return(0,a.dy)(r||(r=h(['\n <ha-app-layout>\n <app-header fixed slot="header">\n <app-toolbar>\n <ha-menu-button\n .hass=',"\n .narrow=","\n ></ha-menu-button>\n <div main-title>","</div>\n ",'\n </app-toolbar>\n </app-header>\n <div id="columns">\n <div class="column">',"</div>\n </div>\n </ha-app-layout>\n "])),this.hass,this.narrow,this.hass.localize("panel.shopping_list"),this._conversation(this.hass.config.components)?(0,a.dy)(o||(o=h(["\n <ha-icon-button\n .label=","\n .path=","\n @click=","\n ></ha-icon-button>\n "])),this.hass.localize("ui.panel.shopping_list.start_conversation"),"M12,2A3,3 0 0,1 15,5V11A3,3 0 0,1 12,14A3,3 0 0,1 9,11V5A3,3 0 0,1 12,2M19,11C19,14.53 16.39,17.44 13,17.93V21H11V17.93C7.61,17.44 5,14.53 5,11H7A5,5 0 0,0 12,16A5,5 0 0,0 17,11H19Z",this._showVoiceCommandDialog):"",this._card)}},{kind:"method",key:"_showVoiceCommandDialog",value:function(){(0,l._)(this)}},{kind:"get",static:!0,key:"styles",value:function(){return[f.Qx,(0,a.iv)(i||(i=h(["\n :host {\n display: block;\n height: 100%;\n }\n app-header {\n --mdc-theme-primary: var(--app-header-text-color);\n }\n :host([narrow]) app-toolbar mwc-button {\n width: 65px;\n }\n .heading {\n overflow: hidden;\n white-space: nowrap;\n margin-top: 4px;\n }\n #columns {\n display: flex;\n flex-direction: row;\n justify-content: center;\n margin-left: 4px;\n margin-right: 4px;\n }\n .column {\n flex: 1 0 0;\n max-width: 500px;\n min-width: 0;\n }\n "])))]}}]}}),a.oi)},81563:function(e,t,n){function r(e){return r="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},r(e)}n.d(t,{E_:function(){return m},i9:function(){return p},_Y:function(){return s},pt:function(){return i},OR:function(){return u},hN:function(){return a},ws:function(){return h},fk:function(){return l},hl:function(){return d}});var o=n(15304).Al.H,i=function(e){return null===e||"object"!=r(e)&&"function"!=typeof e},a=function(e,t){var n,r;return void 0===t?void 0!==(null===(n=e)||void 0===n?void 0:n._$litType$):(null===(r=e)||void 0===r?void 0:r._$litType$)===t},u=function(e){return void 0===e.strings},c=function(){return document.createComment("")},s=function(e,t,n){var r,i=e._$AA.parentNode,a=void 0===t?e._$AB:t._$AA;if(void 0===n){var u=i.insertBefore(c(),a),s=i.insertBefore(c(),a);n=new o(u,s,e,e.options)}else{var l,f=n._$AB.nextSibling,d=n._$AM,p=d!==e;if(p)null===(r=n._$AQ)||void 0===r||r.call(n,e),n._$AM=e,void 0!==n._$AP&&(l=e._$AU)!==d._$AU&&n._$AP(l);if(f!==a||p)for(var h=n._$AA;h!==f;){var m=h.nextSibling;i.insertBefore(h,a),h=m}}return n},l=function(e,t){var n=arguments.length>2&&void 0!==arguments[2]?arguments[2]:e;return e._$AI(t,n),e},f={},d=function(e){var t=arguments.length>1&&void 0!==arguments[1]?arguments[1]:f;return e._$AH=t},p=function(e){return e._$AH},h=function(e){var t;null===(t=e._$AP)||void 0===t||t.call(e,!1,!0);for(var n=e._$AA,r=e._$AB.nextSibling;n!==r;){var o=n.nextSibling;n.remove(),n=o}},m=function(e){e._$AR()}},57835:function(e,t,n){n.d(t,{Xe:function(){return r.Xe},pX:function(){return r.pX},XM:function(){return r.XM}});var r=n(38941)}}]);
PypiClean
/hpvsim-1.2.3.tar.gz/hpvsim-1.2.3/docs/modules.rst
API reference ============= .. automodule:: hpvsim :members: :undoc-members: :show-inheritance: Subpackages ----------- .. toctree:: :maxdepth: 4 hpvsim.data Submodules ---------- .. toctree:: :maxdepth: 4 hpvsim.analysis hpvsim.base hpvsim.calibration hpvsim.defaults hpvsim.hiv hpvsim.immunity hpvsim.interventions hpvsim.misc hpvsim.parameters hpvsim.people hpvsim.plotting hpvsim.population hpvsim.run hpvsim.settings hpvsim.sim hpvsim.utils hpvsim.version
PypiClean
/qs-qrcode-1.2.tar.gz/qs-qrcode-1.2/qsqrcode/constant.py
alignment_location = [ None, None, (6, 18), (6, 22), (6, 26), (6, 30), (6, 34), (6, 22, 38), (6, 24, 42), (6, 26, 46), (6, 28, 50), (6, 30, 54), (6, 32, 58), (6, 34, 62), (6, 26, 46, 66), (6, 26, 48, 70), (6, 26, 50, 74), (6, 30, 54, 78), (6, 30, 56, 82), (6, 30, 58, 86), (6, 34, 62, 90), (6, 28, 50, 72, 94), (6, 26, 50, 74, 98), (6, 30, 54, 78, 102), (6, 28, 54, 80, 106), (6, 32, 58, 84, 110), (6, 30, 58, 86, 114), (6, 34, 62, 90, 118), (6, 26, 50, 74, 98, 122), (6, 30, 54, 78, 102, 126), (6, 26, 52, 78, 104, 130), (6, 30, 56, 82, 108, 134), (6, 34, 60, 86, 112, 138), (6, 30, 58, 86, 114, 142), (6, 34, 62, 90, 118, 146), (6, 30, 54, 78, 102, 126, 150), (6, 24, 50, 76, 102, 128, 154), (6, 28, 54, 80, 106, 132, 158), (6, 32, 58, 84, 110, 136, 162), (6, 26, 54, 82, 110, 138, 166), (6, 30, 58, 86, 114, 142, 170) ] level_map = {'L': 0, 'M': 1, 'Q': 2, 'H': 3} format_info_str = [ ['111011111000100', '111001011110011', '111110110101010', '111100010011101', '110011000101111', '110001100011000', '110110001000001', '110100101110110'], ['101010000010010', '101000100100101', '101111001111100', '101101101001011', '100010111111001', '100000011001110', '100111110010111', '100101010100000'], ['011010101011111', '011000001101000', '011111100110001', '011101000000110', '010010010110100', '010000110000011', '010111011011010', '010101111101101'], ['001011010001001', '001001110111110', '001110011100111', '001100111010000', '000011101100010', '000001001010101', '000110100001100', '000100000111011'] ] version_info_str = [ None, None, None, None, None, None, None, '000111110010010100', '001000010110111100', '001001101010011001', '001010010011010011', '001011101111110110', '001100011101100010', '001101100001000111', '001110011000001101', '001111100100101000', '010000101101111000', '010001010001011101', '010010101000010111', '010011010100110010', '010100100110100110', '010101011010000011', '010110100011001001', '010111011111101100', '011000111011000100', '011001000111100001', '011010111110101011', '011011000010001110', '011100110000011010', '011101001100111111', '011110110101110101', '011111001001010000', '100000100111010101', '100001011011110000', '100010100010111010', '100011011110011111', '100100101100001011', '100101010000101110', '100110101001100100', '100111010101000001', '101000110001101001' ] character_amount = { 'L': [(41, 25, 17, 10), (77, 47, 32, 20), (127, 77, 53, 32), (187, 114, 78, 48), (255, 154, 106, 65), (322, 195, 134, 82), (370, 224, 154, 95), (461, 279, 192, 118), (552, 335, 230, 141), (652, 395, 271, 167), (772, 468, 321, 198), (883, 535, 367, 226), (1022, 619, 425, 262), (1101, 667, 458, 282), (1250, 758, 520, 320), (1408, 854, 586, 361), (1548, 938, 644, 397), (1725, 1046, 718, 442), (1903, 1153, 792, 488), (2061, 1249, 858, 528), (2232, 1352, 929, 572), (2409, 1460, 1003, 618), (2620, 1588, 1091, 672), (2812, 1704, 1171, 721), (3057, 1853, 1273, 784), (3283, 1990, 1367, 842), (3517, 2132, 1465, 902), (3669, 2223, 1528, 940), (3909, 2369, 1628, 1002), (4158, 2520, 1732, 1066), (4417, 2677, 1840, 1132), (4686, 2840, 1952, 1201), (4965, 3009, 2068, 1273), (5253, 3183, 2188, 1347), (5529, 3351, 2303, 1417), (5836, 3537, 2431, 1496), (6153, 3729, 2563, 1577), (6479, 3927, 2699, 1661), (6743, 4087, 2809, 1729), (7089, 4296, 2953, 1817)], 'M': [(34, 20, 14, 8), (63, 38, 26, 16), (101, 61, 42, 26), (149, 90, 62, 38), (202, 122, 84, 52), (255, 154, 106, 65), (293, 178, 122, 75), (365, 221, 152, 93), (432, 262, 180, 111), (513, 311, 213, 131), (604, 366, 251, 155), (691, 419, 287, 177), (796, 483, 331, 204), (871, 528, 362, 223), (991, 600, 412, 254), (1082, 656, 450, 277), (1212, 734, 504, 310), (1346, 816, 560, 345), (1500, 909, 624, 384), (1600, 970, 666, 410), (1708, 1035, 711, 438), (1872, 1134, 779, 480), (2059, 1248, 857, 528), (2188, 1326, 911, 561), (2395, 1451, 997, 614), (2544, 1542, 1059, 652), (2701, 1637, 1125, 692), (2857, 1732, 1190, 732), (3035, 1839, 1264, 778), (3289, 1994, 1370, 843), (3486, 2113, 1452, 894), (3693, 2238, 1538, 947), (3909, 2369, 1628, 1002), (4134, 2506, 1722, 1060), (4343, 2632, 1809, 1113), (4588, 2780, 1911, 1176), (4775, 2894, 1989, 1224), (5039, 3054, 2099, 1292), (5313, 3220, 2213, 1362), (5596, 3391, 2331, 1435)], 'Q': [(27, 16, 11, 7), (48, 29, 20, 12), (77, 47, 32, 20), (111, 67, 46, 28), (144, 87, 60, 37), (178, 108, 74, 45), (207, 125, 86, 53), (259, 157, 108, 66), (312, 189, 130, 80), (364, 221, 151, 93), (427, 259, 177, 109), (489, 296, 203, 125), (580, 352, 241, 149), (621, 376, 258, 159), (703, 426, 292, 180), (775, 470, 322, 198), (876, 531, 364, 224), (948, 574, 394, 243), (1063, 644, 442, 272), (1159, 702, 482, 297), (1224, 742, 509, 314), (1358, 823, 565, 348), (1468, 890, 611, 376), (1588, 963, 661, 407), (1718, 1041, 715, 440), (1804, 1094, 751, 462), (1933, 1172, 805, 496), (2085, 1263, 868, 534), (2181, 1322, 908, 559), (2358, 1429, 982, 604), (2473, 1499, 1030, 634), (2670, 1618, 1112, 684), (2805, 1700, 1168, 719), (2949, 1787, 1228, 756), (3081, 1867, 1283, 790), (3244, 1966, 1351, 832), (3417, 2071, 1423, 876), (3599, 2181, 1499, 923), (3791, 2298, 1579, 972), (3993, 2420, 1663, 1024)], 'H': [(17, 10, 7, 4), (34, 20, 14, 8), (58, 35, 24, 15), (82, 50, 34, 21), (106, 64, 44, 27), (139, 84, 58, 36), (154, 93, 64, 39), (202, 122, 84, 52), (235, 143, 98, 60), (288, 174, 119, 74), (331, 200, 137, 85), (374, 227, 155, 96), (427, 259, 177, 109), (468, 283, 194, 120), (530, 321, 220, 136), (602, 365, 250, 154), (674, 408, 280, 173), (746, 452, 310, 191), (813, 493, 338, 208), (919, 557, 382, 235), (969, 587, 403, 248), (1056, 640, 439, 270), (1108, 672, 461, 284), (1228, 744, 511, 315), (1286, 779, 535, 330), (1425, 864, 593, 365), (1501, 910, 625, 385), (1581, 958, 658, 405), (1677, 1016, 698, 430), (1782, 1080, 742, 457), (1897, 1150, 790, 486), (2022, 1226, 842, 518), (2157, 1307, 898, 553), (2301, 1394, 958, 590), (2361, 1431, 983, 605), (2524, 1530, 1051, 647), (2625, 1591, 1093, 673), (2735, 1658, 1139, 701), (2927, 1774, 1219, 750), (3057, 1852, 1273, 784)] } mode_map = {'numeric': 0, 'alphanumeric': 1, 'byte': 2, 'kanji': 3} mode_indicator_map = {'numeric': '0001', 'alphanumeric': '0010', 'byte': '0100', 'kanji': '1000'} character_count_indicator_map = [None, (10, 9, 8, 8), (10, 9, 8, 8), (10, 9, 8, 8), (10, 9, 8, 8), (10, 9, 8, 8), (10, 9, 8, 8), (10, 9, 8, 8), (10, 9, 8, 8), (10, 9, 8, 8), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (12, 11, 16, 10), (14, 13, 16, 12), (14, 13, 16, 12), (14, 13, 16, 12), (14, 13, 16, 12), (14, 13, 16, 12), (14, 13, 16, 12), (14, 13, 16, 12), (14, 13, 16, 12), (14, 13, 16, 12), (14, 13, 16, 12), (14, 13, 16, 12), (14, 13, 16, 12), (14, 13, 16, 12), (14, 13, 16, 12)] each_version_required_bytes = [ None, [19, 16, 13, 9], [34, 28, 22, 16], [55, 44, 34, 26], [80, 64, 48, 36], [108, 86, 62, 46], [136, 108, 76, 60], [156, 124, 88, 66], [194, 154, 110, 86], [232, 182, 132, 100], [274, 216, 154, 122], [324, 254, 180, 140], [370, 290, 206, 158], [428, 334, 244, 180], [461, 365, 261, 197], [523, 415, 295, 223], [589, 453, 325, 253], [647, 507, 367, 283], [721, 563, 397, 313], [795, 627, 445, 341], [861, 669, 485, 385], [932, 714, 512, 406], [1006, 782, 568, 442], [1094, 860, 614, 464], [1174, 914, 664, 514], [1276, 1000, 718, 538], [1370, 1062, 754, 596], [1468, 1128, 808, 628], [1531, 1193, 871, 661], [1631, 1267, 911, 701], [1735, 1373, 985, 745], [1843, 1455, 1033, 793], [1955, 1541, 1115, 845], [2071, 1631, 1171, 901], [2191, 1725, 1231, 961], [2306, 1812, 1286, 986], [2434, 1914, 1354, 1054], [2566, 1992, 1426, 1096], [2702, 2102, 1502, 1142], [2812, 2216, 1582, 1222], [2956, 2334, 1666, 1276] ] num_list = '0123456789' ecc_num_version_level_map = [ None, (7, 10, 13, 17), (10, 16, 22, 28), (15, 26, 18, 22), (20, 18, 26, 16), (26, 24, 18, 22), (18, 16, 24, 28), (20, 18, 18, 26), (24, 22, 22, 26), (30, 22, 20, 24), (18, 26, 24, 28), (20, 30, 28, 24), (24, 22, 26, 28), (26, 22, 24, 22), (30, 24, 20, 24), (22, 24, 30, 24), (24, 28, 24, 30), (28, 28, 28, 28), (30, 26, 28, 28), (28, 26, 26, 26), (28, 26, 30, 28), (28, 26, 28, 30), (28, 28, 30, 24), (30, 28, 30, 30), (30, 28, 30, 30), (26, 28, 30, 30), (28, 28, 28, 30), (30, 28, 30, 30), (30, 28, 30, 30), (30, 28, 30, 30), (30, 28, 30, 30), (30, 28, 30, 30), (30, 28, 30, 30), (30, 28, 30, 30), (30, 28, 30, 30), (30, 28, 30, 30), (30, 28, 30, 30), (30, 28, 30, 30), (30, 28, 30, 30), (30, 28, 30, 30), (30, 28, 30, 30) ] num_of_error_correction_blocks_2_error_correction_per_blocks = [ None, [(1, 19, 0, 0), (1, 16, 0, 0), (1, 13, 0, 0), (1, 9, 0, 0)], [(1, 34, 0, 0), (1, 28, 0, 0), (1, 22, 0, 0), (1, 16, 0, 0)], [(1, 55, 0, 0), (1, 44, 0, 0), (2, 17, 0, 0), (2, 13, 0, 0)], [(1, 80, 0, 0), (2, 32, 0, 0), (2, 24, 0, 0), (4, 9, 0, 0)], [(1, 108, 0, 0), (2, 43, 0, 0), (2, 15, 2, 16), (2, 11, 2, 12)], [(2, 68, 0, 0), (4, 27, 0, 0), (4, 19, 0, 0), (4, 15, 0, 0)], [(2, 78, 0, 0), (4, 31, 0, 0), (2, 14, 4, 15), (4, 13, 1, 14)], [(2, 97, 0, 0), (2, 38, 2, 39), (4, 18, 2, 19), (4, 14, 2, 15)], [(2, 116, 0, 0), (3, 36, 2, 37), (4, 16, 4, 17), (4, 12, 4, 13)], [(2, 68, 2, 69), (4, 43, 1, 44), (6, 19, 2, 20), (6, 15, 2, 16)], [(4, 81, 0, 0), (1, 50, 4, 51), (4, 22, 4, 23), (3, 12, 8, 13)], [(2, 92, 2, 93), (6, 36, 2, 37), (4, 20, 6, 21), (7, 14, 4, 15)], [(4, 107, 0, 0), (8, 37, 1, 38), (8, 20, 4, 21), (12, 11, 4, 12)], [(3, 115, 1, 116), (4, 40, 5, 41), (11, 16, 5, 17), (11, 12, 5, 13)], [(5, 87, 1, 88), (5, 41, 5, 42), (5, 24, 7, 25), (11, 12, 7, 13)], [(5, 98, 1, 99), (7, 45, 3, 46), (15, 19, 2, 20), (3, 15, 13, 16)], [(1, 107, 5, 108), (10, 46, 1, 47), (1, 22, 15, 23), (2, 14, 17, 15)], [(5, 120, 1, 121), (9, 43, 4, 44), (17, 22, 1, 23), (2, 14, 19, 15)], [(3, 113, 4, 114), (3, 44, 11, 45), (17, 21, 4, 22), (9, 13, 16, 14)], [(3, 107, 5, 108), (3, 41, 13, 42), (15, 24, 5, 25), (15, 15, 10, 16)], [(4, 116, 4, 117), (17, 42, 0, 0), (17, 22, 6, 23), (19, 16, 6, 17)], [(2, 111, 7, 112), (17, 46, 0, 0), (7, 24, 16, 25), (34, 13, 0, 0)], [(4, 121, 5, 122), (4, 47, 14, 48), (11, 24, 14, 25), (16, 15, 14, 16)], [(6, 117, 4, 118), (6, 45, 14, 46), (11, 24, 16, 25), (30, 16, 2, 17)], [(8, 106, 4, 107), (8, 47, 13, 48), (7, 24, 22, 25), (22, 15, 13, 16)], [(10, 114, 2, 115), (19, 46, 4, 47), (28, 22, 6, 23), (33, 16, 4, 17)], [(8, 122, 4, 123), (22, 45, 3, 46), (8, 23, 26, 24), (12, 15, 28, 16)], [(3, 117, 10, 118), (3, 45, 23, 46), (4, 24, 31, 25), (11, 15, 31, 16)], [(7, 116, 7, 117), (21, 45, 7, 46), (1, 23, 37, 24), (19, 15, 26, 16)], [(5, 115, 10, 116), (19, 47, 10, 48), (15, 24, 25, 25), (23, 15, 25, 16)], [(13, 115, 3, 116), (2, 46, 29, 47), (42, 24, 1, 25), (23, 15, 28, 16)], [(17, 115, 0, 0), (10, 46, 23, 47), (10, 24, 35, 25), (19, 15, 35, 16)], [(17, 115, 1, 116), (14, 46, 21, 47), (29, 24, 19, 25), (11, 15, 46, 16)], [(13, 115, 6, 116), (14, 46, 23, 47), (44, 24, 7, 25), (59, 16, 1, 17)], [(12, 121, 7, 122), (12, 47, 26, 48), (39, 24, 14, 25), (22, 15, 41, 16)], [(6, 121, 14, 122), (6, 47, 34, 48), (46, 24, 10, 25), (2, 15, 64, 16)], [(17, 122, 4, 123), (29, 46, 14, 47), (49, 24, 10, 25), (24, 15, 46, 16)], [(4, 122, 18, 123), (13, 46, 32, 47), (48, 24, 14, 25), (42, 15, 32, 16)], [(20, 117, 4, 118), (40, 47, 7, 48), (43, 24, 22, 25), (10, 15, 67, 16)], [(19, 118, 6, 119), (18, 47, 31, 48), (34, 24, 34, 25), (20, 15, 61, 16)] ] remainder_bits = (None, 0, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0) img_mode_2_color_map = {'1': [1, 0], 'L': [255, 0], 'RGB': [(255, 255, 255), (0, 0, 0)], 'RGBA': [(255, 255, 255, 255), (0, 0, 0, 255)]}
PypiClean
/panddas-0.2.14.tar.gz/panddas-0.2.14/lib-python/bamboo/stats/ospina.py
from scipy.optimize import fsolve import numpy import time def variable_sigma_d_log_likelihood(est_sigma, est_mu, obs_vals, obs_error): """Calculate the value of the differentiated log likelihood for the values of mu, sigma""" term1 = (obs_vals - est_mu)**2 / ((est_sigma**2 + obs_error**2)**2) term2 = 1 / (est_sigma**2 + obs_error**2) return numpy.sum(term1) - numpy.sum(term2) def estimate_true_underlying_sd(obs_vals, obs_error, est_mu=None, est_sigma=1e-16, try_number=1): """Given a set of observations `obs_vals` with estimated errors `obs_sigma`, estimate the mean and sd of the underlying distribution""" if try_number > 1: #print 'ITERATION {!s} - EST SIGMA: {!s}'.format(try_number, est_sigma) if try_number > 10: raise Exception('TOO MANY ITERATIONS IN OSPINA FUNCTION') obs_vals = numpy.array(obs_vals) obs_error = numpy.array(obs_error) if not est_mu: # Calculate the mean of the sample - this is a good estimator of the true mean est_mu = numpy.mean(obs_vals) # Estimate the sigma of the underlying distribution answer = abs(fsolve(func=variable_sigma_d_log_likelihood, x0=est_sigma, args=(est_mu, obs_vals, obs_error)))[0] if answer > 2e40: est_sigma = est_sigma/1000 answer = estimate_true_underlying_sd(obs_vals=obs_vals, obs_error=obs_error, est_mu=est_mu, est_sigma=est_sigma, try_number=try_number+1) return answer if __name__ == '__main__': # True values we are trying to estimate true_mean = 1 true_sd = 0.11 # Number of observations num_obs = 200 # Number of times to run num_cycles = 10000 guesses = [] start_t = time.time() for attempt in xrange(num_cycles): # print('============================>') # Sample the original distribution true_vals = true_mean + true_sd*numpy.random.randn(num_obs) # print('MEAN OF TRUE VALS: {!s} ({!s})'.format(round(numpy.mean(true_vals),3), true_mean)) # print(' STD OF TRUE VALS: {!s} ({!s})'.format(round(numpy.std(true_vals),3), true_sd)) # Create a random selection of sigmas for the different observations obs_error = numpy.abs(0.45 + 0.01*numpy.random.randn(num_obs)) # print('MEAN OF OBS ERROR: {!s} ({!s})'.format(round(numpy.mean(obs_error),3), '2ish')) # print(' STD OF OBS ERROR: {!s} ({!s})'.format(round(numpy.std(obs_error),3), '1ish')) # Noise to be added to the true observations obs_noise = numpy.random.randn(num_obs) # print('MEAN OF OBS NOISE: {!s} ({!s})'.format(round(numpy.mean(obs_noise),3), 0)) # print(' STD OF OBS NOISE: {!s} ({!s})'.format(round(numpy.std(obs_noise),3), 1)) # Create fake data! obs_vals = true_vals + obs_error * obs_noise # print(' MEAN OF OBS VALS: {!s}'.format(round(numpy.mean(obs_vals),3))) # print(' STD OF OBS VALS: {!s}'.format(round(numpy.std(obs_vals),3))) out = estimate_true_underlying_sd(obs_vals=obs_vals, obs_error=obs_error, est_sigma=0.1) print(' ESTIMATED VALUES: {!s}'.format(round(out,5))) guesses.append(out) print('============================>') end_t = time.time() print(' TIME TAKEN TOTAL: {!s} (Seconds)'.format(int(end_t - start_t))) print('TIME TAKEN PER CYCLE: {!s} (Millionths)'.format(int(1000000*(end_t-start_t)/num_cycles))) print('============================>') print('MEAN OF ESTIMATES: {!s}'.format(round(numpy.mean(guesses),5))) print(' STD OF ESTIMATES: {!s}'.format(round(numpy.std(guesses),5)))
PypiClean
/custom-awscli-1.27.51.tar.gz/custom-awscli-1.27.51/awscli/examples/iotsitewise/update-asset-property.rst
**Example 1: To update an asset property's alias** The following ``update-asset-property`` example updates a wind turbine asset's power property alias. :: aws iotsitewise update-asset-property \ --asset-id a1b2c3d4-5678-90ab-cdef-33333EXAMPLE \ --property-id a1b2c3d4-5678-90ab-cdef-55555EXAMPLE \ --property-alias "/examplecorp/windfarm/1/turbine/1/power" \ --property-notification-state DISABLED This command produces no output. For more information, see `Mapping industrial data streams to asset properties <https://docs.aws.amazon.com/iot-sitewise/latest/userguide/connect-data-streams.html>`__ in the *AWS IoT SiteWise User Guide*. **Example 2: To enable asset property notifications** The following ``update-asset-property`` example enables asset property update notifications for a wind turbine asset's power property. Property value updates are published to the MQTT topic ``$aws/sitewise/asset-models/<assetModelId>/assets/<assetId>/properties/<propertyId>``, where each ID is replaced by the property, asset, and model ID of the asset property. :: aws iotsitewise update-asset-property \ --asset-id a1b2c3d4-5678-90ab-cdef-33333EXAMPLE \ --property-id a1b2c3d4-5678-90ab-cdef-66666EXAMPLE \ --property-notification-state ENABLED \ --property-alias "/examplecorp/windfarm/1/turbine/1/power" This command produces no output. For more information, see `Interacting with other services <https://docs.aws.amazon.com/iot-sitewise/latest/userguide/interact-with-other-services.html>`__ in the *AWS IoT SiteWise User Guide*.
PypiClean
/skytime-0.16.1-py3-none-any.whl/build/lib/build/lib/build/lib/sktime/param_est/base.py
__author__ = ["fkiraly"] __all__ = ["BaseParamFitter"] from warnings import warn from sktime.base import BaseEstimator from sktime.datatypes import ( VectorizedDF, check_is_scitype, convert_to, scitype_to_mtype, update_data, ) from sktime.utils.sklearn import is_sklearn_transformer from sktime.utils.validation._dependencies import _check_estimator_deps def _coerce_to_list(obj): """Return [obj] if obj is not a list, otherwise obj.""" if not isinstance(obj, list): return [obj] else: return obj class BaseParamFitter(BaseEstimator): """Base parameter fitting estimator class. The base parameter fitter specifies the methods and method signatures that all parameter fitter have to implement. Specific implementations of these methods is deferred to concrete instances. """ # default tag values - these typically make the "safest" assumption _tags = { "X_inner_mtype": "pd.DataFrame", # which types do _fit/_predict, support for X? "scitype:X": "Series", # which X scitypes are supported natively? "capability:missing_values": False, # can estimator handle missing data? "capability:multivariate": False, # can estimator handle multivariate data? "python_version": None, # PEP 440 python version specifier to limit versions "python_dependencies": None, # string or str list of pkg soft dependencies } def __init__(self): self._is_fitted = False self._X = None super(BaseParamFitter, self).__init__() _check_estimator_deps(self) def __rmul__(self, other): """Magic * method, return concatenated ParamFitterPipeline, trafos on left. Overloaded multiplication operation for classifiers. Implemented for `other` being a transformer, otherwise returns `NotImplemented`. Parameters ---------- other: `sktime` transformer, must inherit from BaseTransformer otherwise, `NotImplemented` is returned Returns ------- BaseParamFitter object, concatenation of `other` (first) with `self` (last). """ from sktime.param_est.compose import ParamFitterPipeline from sktime.transformations.base import BaseTransformer from sktime.transformations.compose import TransformerPipeline from sktime.transformations.series.adapt import TabularToSeriesAdaptor # behaviour is implemented only if other inherits from BaseTransformer # in that case, distinctions arise from whether self or other is a pipeline # todo: this can probably be simplified further with "zero length" pipelines if isinstance(other, BaseTransformer): # ClassifierPipeline already has the dunder method defined if isinstance(self, ParamFitterPipeline): return other * self # if other is a TransformerPipeline but self is not, first unwrap it elif isinstance(other, TransformerPipeline): return ParamFitterPipeline(param_est=self, transformers=other.steps) # if neither self nor other are a pipeline, construct a ClassifierPipeline else: return ParamFitterPipeline(param_est=self, transformers=[other]) elif is_sklearn_transformer(other): return TabularToSeriesAdaptor(other) * self else: return NotImplemented def fit(self, X): """Fit estimator and estimate parameters. State change: Changes state to "fitted". Writes to self: Sets self._is_fitted flag to True. Writes `X` to self._X. Sets fitted model attributes ending in "_". Parameters ---------- X : time series in sktime compatible data container format Time series to which to fit the forecaster in the update. y can be in one of the following formats, must be same scitype as in fit: Series scitype: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel scitype: pd.DataFrame with 2-level row MultiIndex, 3D np.ndarray, list of Series pd.DataFrame, or nested pd.DataFrame Hierarchical scitype: pd.DataFrame with 3 or more level row MultiIndex For further details: on usage, see forecasting tutorial examples/01_forecasting.ipynb on specification of formats, examples/AA_datatypes_and_datasets.ipynb Returns ------- self : Reference to self. """ # check X is not None assert X is not None, "X cannot be None, but found None" # if fit is called, estimator is reset, including fitted state self.reset() # check and convert X/y X_inner = self._check_X(X=X) # set internal X to the new X self._update_X(X_inner) # checks and conversions complete, pass to inner fit ##################################################### self._fit(X=X_inner) # this should happen last self._is_fitted = True return self def update(self, X): """Update fitted parameters on more data. If no estimator-specific update method has been implemented, default fall-back is fitting to all observed data so far State required: Requires state to be "fitted". Accesses in self: Fitted model attributes ending in "_". Pointers to seen data, self._X self._is_fitted model attributes ending in "_". Writes to self: Update self._X with `X`, by appending rows. Updates fitted model attributes ending in "_". Parameters ---------- X : time series in sktime compatible data container format Time series to which to fit the forecaster in the update. y can be in one of the following formats, must be same scitype as in fit: Series scitype: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel scitype: pd.DataFrame with 2-level row MultiIndex, 3D np.ndarray, list of Series pd.DataFrame, or nested pd.DataFrame Hierarchical scitype: pd.DataFrame with 3 or more level row MultiIndex For further details: on usage, see forecasting tutorial examples/01_forecasting.ipynb on specification of formats, examples/AA_datatypes_and_datasets.ipynb Returns ------- self : reference to self """ self.check_is_fitted() if X is None or (hasattr(X, "__len__") and len(X) == 0): warn("empty y passed to update, no update was carried out") return self # input checks and minor coercions on X, y X_inner = self._check_X(X=X) # update internal X with the new X self._update_X(X_inner) # checks and conversions complete, pass to inner update self._update(X=X_inner) return self def _check_X(self, X=None): """Check and coerce X for fit/update functions. Parameters ---------- X : time series in sktime compatible data container format Time series to which to fit the forecaster in the update. y can be in one of the following formats, must be same scitype as in fit: Series scitype: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel scitype: pd.DataFrame with 2-level row MultiIndex, 3D np.ndarray, list of Series pd.DataFrame, or nested pd.DataFrame Hierarchical scitype: pd.DataFrame with 3 or more level row MultiIndex For further details: on usage, see forecasting tutorial examples/01_forecasting.ipynb on specification of formats, examples/AA_datatypes_and_datasets.ipynb Returns ------- X_inner : Series, Panel, or Hierarchical object compatible with self.get_tag("X_inner_mtype") format Case 1: self.get_tag("X_inner_mtype") supports scitype of X, then converted/coerced version of X, mtype determined by "X_inner_mtype" tag Case 2: None if X was None Raises ------ TypeError if X is not one of the permissible Series mtypes TypeError if X is of a different scitype as self.get_tag("scitype:X") """ if X is None: return None X_inner_mtype = _coerce_to_list(self.get_tag("X_inner_mtype")) # X_inner_scitype = mtype_to_scitype(X_inner_mtype, return_unique=True) ALLOWED_SCITYPES = _coerce_to_list(self.get_tag("scitype:X")) FORBIDDEN_MTYPES = ["numpyflat", "pd-wide"] for scitype in ALLOWED_SCITYPES: mtypes = set(scitype_to_mtype(scitype)) mtypes = list(mtypes.difference(FORBIDDEN_MTYPES)) mtypes_msg = f'"For {scitype} scitype: {mtypes}. ' # checking X X_valid, _, X_metadata = check_is_scitype( X, scitype=ALLOWED_SCITYPES, return_metadata=True, var_name="X" ) msg = ( "X must be in an sktime compatible format, " f"of scitypes {ALLOWED_SCITYPES}, " "for instance a pandas.DataFrame with sktime compatible time indices, " "or with MultiIndex and last(-1) level an sktime compatible time index." " See data format tutorial examples/AA_datatypes_and_datasets.ipynb," "If you think X is already in an sktime supported input format, " "run sktime.datatypes.check_raise(X, mtype) to diagnose the error, " "where mtype is the string of the type specification you want for y. " "Possible mtype specification strings are as follows. " ) if not X_valid: raise TypeError(msg + mtypes_msg) X_scitype = X_metadata["scitype"] # end checking X # converts X, converts None to None if X is None X_inner = convert_to( X, to_type=X_inner_mtype, as_scitype=X_scitype, ) return X_inner def _update_X(self, X): """Update internal memory of seen training data. Accesses in self: _X : only if exists, then assumed same type as X and same cols these assumptions should be guaranteed by calls Writes to self: _X : same type as X - new rows from X are added to current _X if _X does not exist, stores X as _X _X is guaranteed to be one of mtypes: pd.DataFrame, pd.Series, np.ndarray, pd-multiindex, numpy3D, pd_multiindex_hier Parameters ---------- X : time series in sktime compatible data container format Time series to which to fit the forecaster in the update. y can be in one of the following formats, must be same scitype as in fit: Series scitype: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel scitype: pd.DataFrame with 2-level row MultiIndex, 3D np.ndarray, list of Series pd.DataFrame, or nested pd.DataFrame Hierarchical scitype: pd.DataFrame with 3 or more level row MultiIndex For further details: on usage, see forecasting tutorial examples/01_forecasting.ipynb on specification of formats, examples/AA_datatypes_and_datasets.ipynb """ if X is not None: # unwrap X if VectorizedDF if isinstance(X, VectorizedDF): X = X.X_multiindex # if _X does not exist yet, initialize it with X if not hasattr(self, "_X") or self._X is None or not self.is_fitted: self._X = X else: self._X = update_data(self._X, X) def _fit(self, X): """Fit estimator and estimate parameters. private _fit containing the core logic, called from fit Writes to self: Sets fitted model attributes ending in "_". Parameters ---------- X : guaranteed to be of a type in self.get_tag("X_inner_mtype") Time series to which to fit the estimator. Returns ------- self : reference to self """ raise NotImplementedError("abstract method") def _update(self, X): """Update fitted parameters on more data. private _update containing the core logic, called from update State required: Requires state to be "fitted". Accesses in self: Fitted model attributes ending in "_" Writes to self: Sets fitted model attributes ending in "_" Parameters ---------- X : guaranteed to be of a type in self.get_tag("X_inner_mtype") Time series with which to update the estimator. Returns ------- self : reference to self """ # default to re-fitting if update is not implemented warn( f"NotImplementedWarning: {self.__class__.__name__} " f"does not have a custom `update` method implemented. " f"{self.__class__.__name__} will be refit each time " f"`update` is called." ) # refit with updated data, not only passed data self.fit(X=self._X) # todo: should probably be self._fit, not self.fit # but looping to self.fit for now to avoid interface break return self def _get_fitted_params(self): """Get fitted parameters. private _get_fitted_params, called from get_fitted_params State required: Requires state to be "fitted". Returns ------- fitted_params : dict """ # default retrieves all self attributes ending in "_" # and returns them with keys that have the "_" removed fitted_params = [attr for attr in dir(self) if attr.endswith("_")] fitted_params = [x for x in fitted_params if not x.startswith("_")] fitted_param_dict = {p[:-1]: getattr(self, p) for p in fitted_params} return fitted_param_dict
PypiClean
/orbit_nrel-1.0.8-py3-none-any.whl/ORBIT/phases/install/oss_install/floating.py
__author__ = "Jake Nunemaker" __copyright__ = "Copyright 2021, National Renewable Energy Laboratory" __maintainer__ = "Jake Nunemaker" __email__ = "[email protected]" from marmot import Agent, process, le from marmot._exceptions import AgentNotRegistered from ORBIT.core import WetStorage from ORBIT.core.logic import position_onsite from ORBIT.phases.install import InstallPhase from ORBIT.phases.install.mooring_install.mooring import ( install_mooring_line, install_mooring_anchor, perform_mooring_site_survey, ) class FloatingSubstationInstallation(InstallPhase): """ Offshore Substation (OSS) installation process using the quayside assembly and tow-out processes. """ phase = "Offshore Substation Installation" capex_category = "Offshore Substation" #: expected_config = { "num_substations": "int", "oss_install_vessel": "str", "site": {"distance": "km", "depth": "m"}, "offshore_substation_topside": { "unit_cost": "USD", "attach_time": "int | float (optional, default: 24)", }, "offshore_substation_substructure": { "type": "Floating", "takt_time": "int | float (optional, default: 0)", "unit_cost": "USD", "mooring_cost": "USD", "towing_speed": "int | float (optional, default: 6 km/h)", }, } def __init__(self, config, weather=None, **kwargs): """ Creates an instance of OffshoreSubstationInstallation. Parameters ---------- config : dict Simulation specific configuration. weather : np.ndarray Weather profile at site. """ super().__init__(weather, **kwargs) config = self.initialize_library(config, **kwargs) self.config = self.validate_config(config) self.initialize_port() self.setup_simulation(**kwargs) def setup_simulation(self, **kwargs): """ Initializes required objects for simulation. - Creates port - Creates support vessel + towing vessels """ self.distance = self.config["site"]["distance"] self.num_substations = self.config["num_substations"] self.initialize_substructure_production() self.initialize_installation_vessel() @property def system_capex(self): """Returns total procurement cost of the substation substructures, topsides and mooring.""" topside = self.config["offshore_substation_topside"]["unit_cost"] substructure = self.config["offshore_substation_substructure"][ "unit_cost" ] mooring = self.config["offshore_substation_substructure"][ "mooring_cost" ] return self.num_substations * (topside + substructure + mooring) def initialize_substructure_production(self): """ Initializes the production of the floating substation substructures at quayside. """ self.wet_storage = WetStorage(self.env, float("inf")) takt_time = self.config["offshore_substation_substructure"].get( "takt_time", 0 ) attach_time = self.config["offshore_substation_topside"].get( "attach_time", 24 ) to_assemble = [1] * self.num_substations self.assembly_line = SubstationAssemblyLine( to_assemble, takt_time, attach_time, self.wet_storage, 1 ) self.env.register(self.assembly_line) self.assembly_line.start() def initialize_installation_vessel(self): """Initialize the floating substation installation vessel.""" support = self.config["oss_install_vessel"] vessel = self.initialize_vessel( "Floating Substation Installation Vessel", support ) self.env.register(vessel) vessel.initialize(mobilize=False) self.support_vessel = vessel depth = self.config["site"]["depth"] towing_speed = self.config["offshore_substation_substructure"].get( "towing_speed", 6 ) install_floating_substations( self.support_vessel, self.wet_storage, self.distance, towing_speed, depth, self.num_substations, ) @property def detailed_output(self): return {} @process def install_floating_substations( vessel, feed, distance, towing_speed, depth, number ): """ Process steps that installation vessel at site performs to install floating substations. Parameters ---------- vessel : Agent Performing agent. feed : simply.Resource Wet storage for completed assemblies. distance : int | float Distance from port to site. towing_speed : int | float Speed at which completed assembly can be towed to site at (km/h). depth : int | float Site depth (m). number : int Number of substations to install. """ travel_time = distance / towing_speed for _ in range(number): start = vessel.env.now yield feed.get() delay = vessel.env.now - start if delay > 0: vessel.submit_action_log( "Delay: Waiting on Completed Assembly", delay ) yield vessel.task( "Tow Substation to Site", travel_time, constraints=vessel.operational_limits, ) yield position_onsite(vessel) yield vessel.task_wrapper( "Ballast to Operational Draft", 6, constraints={"windspeed": le(15), "waveheight": le(2.5)}, ) for _ in range (3): yield perform_mooring_site_survey(vessel) yield install_mooring_anchor(vessel, depth, "Suction Pile") yield install_mooring_line(vessel, depth) yield vessel.task_wrapper( "Connect Mooring Lines", 22, suspendable=True, constraints={"windspeed": le(15), "waveheight": le(2.5)}, ) yield vessel.task_wrapper( "Check Mooring Lines", 12, suspendable=True, constraints={"windspeed": le(15), "waveheight": le(2.5)}, ) yield vessel.transit(distance) class SubstationAssemblyLine(Agent): """Substation Assembly Line Class.""" def __init__(self, assigned, takt_time, attach_time, target, num): """ Creates an instance of `SubstructureAssemblyLine`. Parameters ---------- assigned : list List of assigned tasks. Can be shared with other assembly lines. takt_time : int | float Hours required to produce one substructure. attach_time : int | float Hours required to attach a topside to the substructure. target : simpy.Store Target storage. num : int Assembly line number designation. """ super().__init__(f"Substation Assembly Line {num}") self.assigned = assigned self.takt_time = takt_time self.attach_time = attach_time self.target = target def submit_action_log(self, action, duration, **kwargs): """ Submits a log representing a completed `action` performed over time `duration`. This method overwrites the default `submit_action_log` in `marmot.Agent`, adding operation cost to every submitted log within ORBIT. Parameters ---------- action : str Performed action. duration : int | float Duration of action. Raises ------ AgentNotRegistered """ if self.env is None: raise AgentNotRegistered(self) else: payload = { **kwargs, "agent": str(self), "action": action, "duration": float(duration), "cost": 0, } self.env._submit_log(payload, level="ACTION") @process def assemble_substructure(self): """ Simulation process for assembling a substructure. """ yield self.task("Substation Substructure Assembly", self.takt_time) yield self.task("Attach Topside", self.attach_time) substation = FloatingSubstation() start = self.env.now yield self.target.put(substation) delay = self.env.now - start if delay > 0: self.submit_action_log("Delay: No Wet Storage Available", delay) @process def start(self): """ Trigger the assembly line to run. Will attempt to pull a task from self.assigned and timeout for the assembly time. Shuts down after self.assigned is empty. """ while True: try: _ = self.assigned.pop(0) yield self.assemble_substructure() except IndexError: break class FloatingSubstation: """Floating Substructure Class.""" def __init__(self): """Creates an instance of `Substructure`.""" pass
PypiClean
/epicyon-1.3.0-py3-none-any.whl/manualapprove.py
__filename__ = "manualapprove.py" __author__ = "Bob Mottram" __license__ = "AGPL3+" __version__ = "1.2.0" __maintainer__ = "Bob Mottram" __email__ = "[email protected]" __status__ = "Production" import os from follow import followedAccountAccepts from follow import followedAccountRejects from follow import removeFromFollowRequests from utils import loadJson def manualDenyFollowRequest(session, baseDir: str, httpPrefix: str, nickname: str, domain: str, port: int, denyHandle: str, federationList: [], sendThreads: [], postLog: [], cachedWebfingers: {}, personCache: {}, debug: bool, projectVersion: str) -> None: """Manually deny a follow request """ handle = nickname + '@' + domain accountsDir = baseDir + '/accounts/' + handle # has this handle already been rejected? rejectedFollowsFilename = accountsDir + '/followrejects.txt' if os.path.isfile(rejectedFollowsFilename): if denyHandle in open(rejectedFollowsFilename).read(): removeFromFollowRequests(baseDir, nickname, domain, denyHandle, debug) print(denyHandle + ' has already been rejected as a follower of ' + nickname) return removeFromFollowRequests(baseDir, nickname, domain, denyHandle, debug) # Store rejected follows rejectsFile = open(rejectedFollowsFilename, "a+") rejectsFile.write(denyHandle + '\n') rejectsFile.close() denyNickname = denyHandle.split('@')[0] denyDomain = \ denyHandle.split('@')[1].replace('\n', '').replace('\r', '') denyPort = port if ':' in denyDomain: denyPort = denyDomain.split(':')[1] denyDomain = denyDomain.split(':')[0] followedAccountRejects(session, baseDir, httpPrefix, nickname, domain, port, denyNickname, denyDomain, denyPort, federationList, sendThreads, postLog, cachedWebfingers, personCache, debug, projectVersion) print('Follow request from ' + denyHandle + ' was denied.') def _approveFollowerHandle(accountDir: str, approveHandle: str) -> None: """ Record manually approved handles so that if they unfollow and then re-follow later then they don't need to be manually approved again """ approvedFilename = accountDir + '/approved.txt' if os.path.isfile(approvedFilename): if approveHandle not in open(approvedFilename).read(): approvedFile = open(approvedFilename, "a+") approvedFile.write(approveHandle + '\n') approvedFile.close() else: approvedFile = open(approvedFilename, "w+") approvedFile.write(approveHandle + '\n') approvedFile.close() def manualApproveFollowRequest(session, baseDir: str, httpPrefix: str, nickname: str, domain: str, port: int, approveHandle: str, federationList: [], sendThreads: [], postLog: [], cachedWebfingers: {}, personCache: {}, debug: bool, projectVersion: str) -> None: """Manually approve a follow request """ handle = nickname + '@' + domain print('Manual follow accept: ' + handle + ' approving follow request from ' + approveHandle) accountDir = baseDir + '/accounts/' + handle approveFollowsFilename = accountDir + '/followrequests.txt' if not os.path.isfile(approveFollowsFilename): print('Manual follow accept: follow requests file ' + approveFollowsFilename + ' not found') return # is the handle in the requests file? approveFollowsStr = '' with open(approveFollowsFilename, 'r') as fpFollowers: approveFollowsStr = fpFollowers.read() exists = False approveHandleFull = approveHandle if approveHandle in approveFollowsStr: exists = True elif '@' in approveHandle: reqNick = approveHandle.split('@')[0] reqDomain = approveHandle.split('@')[1].strip() reqPrefix = httpPrefix + '://' + reqDomain if reqPrefix + '/profile/' + reqNick in approveFollowsStr: exists = True approveHandleFull = reqPrefix + '/profile/' + reqNick elif reqPrefix + '/channel/' + reqNick in approveFollowsStr: exists = True approveHandleFull = reqPrefix + '/channel/' + reqNick elif reqPrefix + '/accounts/' + reqNick in approveFollowsStr: exists = True approveHandleFull = reqPrefix + '/accounts/' + reqNick if not exists: print('Manual follow accept: ' + approveHandleFull + ' not in requests file "' + approveFollowsStr.replace('\n', ' ') + '" ' + approveFollowsFilename) return approvefilenew = open(approveFollowsFilename + '.new', 'w+') updateApprovedFollowers = False followActivityfilename = None with open(approveFollowsFilename, 'r') as approvefile: for handleOfFollowRequester in approvefile: # is this the approved follow? if handleOfFollowRequester.startswith(approveHandleFull): handleOfFollowRequester = \ handleOfFollowRequester.replace('\n', '').replace('\r', '') port2 = port if ':' in handleOfFollowRequester: port2Str = handleOfFollowRequester.split(':')[1] if port2Str.isdigit(): port2 = int(port2Str) requestsDir = accountDir + '/requests' followActivityfilename = \ requestsDir + '/' + handleOfFollowRequester + '.follow' if os.path.isfile(followActivityfilename): followJson = loadJson(followActivityfilename) if followJson: approveNickname = approveHandle.split('@')[0] approveDomain = approveHandle.split('@')[1] approveDomain = \ approveDomain.replace('\n', '').replace('\r', '') approvePort = port2 if ':' in approveDomain: approvePort = approveDomain.split(':')[1] approveDomain = approveDomain.split(':')[0] print('Manual follow accept: Sending Accept for ' + handle + ' follow request from ' + approveNickname + '@' + approveDomain) followedAccountAccepts(session, baseDir, httpPrefix, nickname, domain, port, approveNickname, approveDomain, approvePort, followJson['actor'], federationList, followJson, sendThreads, postLog, cachedWebfingers, personCache, debug, projectVersion, False) updateApprovedFollowers = True else: # this isn't the approved follow so it will remain # in the requests file approvefilenew.write(handleOfFollowRequester) approvefilenew.close() followersFilename = accountDir + '/followers.txt' if updateApprovedFollowers: # update the followers print('Manual follow accept: updating ' + followersFilename) if os.path.isfile(followersFilename): if approveHandleFull not in open(followersFilename).read(): try: with open(followersFilename, 'r+') as followersFile: content = followersFile.read() if approveHandleFull + '\n' not in content: followersFile.seek(0, 0) followersFile.write(approveHandleFull + '\n' + content) except Exception as e: print('WARN: Manual follow accept. ' + 'Failed to write entry to followers file ' + str(e)) else: print('WARN: Manual follow accept: ' + approveHandleFull + ' already exists in ' + followersFilename) else: print('Manual follow accept: first follower accepted for ' + handle + ' is ' + approveHandleFull) followersFile = open(followersFilename, "w+") followersFile.write(approveHandleFull + '\n') followersFile.close() # only update the follow requests file if the follow is confirmed to be # in followers.txt if approveHandleFull in open(followersFilename).read(): # mark this handle as approved for following _approveFollowerHandle(accountDir, approveHandle) # update the follow requests with the handles not yet approved os.rename(approveFollowsFilename + '.new', approveFollowsFilename) # remove the .follow file if followActivityfilename: if os.path.isfile(followActivityfilename): os.remove(followActivityfilename) else: os.remove(approveFollowsFilename + '.new')
PypiClean
/ceh_core_infa-0.3.tar.gz/ceh_core_infa-0.3/ceh_core_infa/libs/af_lib/operators/interface/check_resource_locking_interface.py
from .base_interface import BaseInterface from .....libs.exceptions.exception import ResourceLockedException from .....libs.clients.ceh_resource_client import CehResourse class CheckResourceLockingInterfaceOld(BaseInterface): def __init__(self, xcom_params, *args, **kwargs): super().__init__(*args, **kwargs) self.xcom_params = xcom_params @staticmethod def __check_if_locked(resource_cd): cur_res = CehResourse.get_resourse(resource_cd=resource_cd) if not cur_res.state: return True cur_locked = CehResourse.get_resource_state( resource_cd=resource_cd ).is_locked if cur_locked: raise ResourceLockedException( f'The resource {resource_cd} is locked.' ) return cur_locked def execute(self): params = self.xcom_params.value.items() cache = set() for i, elem in params: resource_cd = elem['tgt_resource_name'] if resource_cd in cache: continue else: cache.add(resource_cd) self.log.info(f'Checking if {resource_cd} is locked') de = self.dynamic_executor( ex_func=self.__check_if_locked, op_kwargs={'resource_cd': resource_cd, }, timer=self.timer ) de.executor() self.log.info( f'The check is over. The resource {resource_cd} is free.' ) class CheckResourceLockingInterface(BaseInterface): def __init__(self, resources, *args, **kwargs): super().__init__(*args, **kwargs) self.resources = resources @staticmethod def __check_if_locked(resource_cd): cur_res = CehResourse.get_resourse(resource_cd=resource_cd) if not cur_res.state: return True cur_locked = CehResourse.get_resource_state( resource_cd=resource_cd ).is_locked if cur_locked: raise ResourceLockedException( f'The resource {resource_cd} is locked.' ) return cur_locked def execute(self): params = self.resources.items() cache = set() for i, elem in params: resource_cd = elem['tgt_resource_name'] if resource_cd in cache: continue else: cache.add(resource_cd) self.log.info(f'Checking if {resource_cd} is locked') de = self.dynamic_executor( ex_func=self.__check_if_locked, op_kwargs={'resource_cd': resource_cd, }, timer=self.timer ) de.executor() self.log.info( f'The check is over. The resource {resource_cd} is free.' )
PypiClean
/pulumi_yandex_unofficial-0.1.8.tar.gz/pulumi_yandex_unofficial-0.1.8/pulumi_yandex_unofficial/get_alb_target_group.py
import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from . import outputs __all__ = [ 'GetAlbTargetGroupResult', 'AwaitableGetAlbTargetGroupResult', 'get_alb_target_group', 'get_alb_target_group_output', ] @pulumi.output_type class GetAlbTargetGroupResult: """ A collection of values returned by getAlbTargetGroup. """ def __init__(__self__, created_at=None, description=None, folder_id=None, id=None, labels=None, name=None, target_group_id=None, targets=None): if created_at and not isinstance(created_at, str): raise TypeError("Expected argument 'created_at' to be a str") pulumi.set(__self__, "created_at", created_at) if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") pulumi.set(__self__, "description", description) if folder_id and not isinstance(folder_id, str): raise TypeError("Expected argument 'folder_id' to be a str") pulumi.set(__self__, "folder_id", folder_id) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if labels and not isinstance(labels, dict): raise TypeError("Expected argument 'labels' to be a dict") pulumi.set(__self__, "labels", labels) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if target_group_id and not isinstance(target_group_id, str): raise TypeError("Expected argument 'target_group_id' to be a str") pulumi.set(__self__, "target_group_id", target_group_id) if targets and not isinstance(targets, list): raise TypeError("Expected argument 'targets' to be a list") pulumi.set(__self__, "targets", targets) @property @pulumi.getter(name="createdAt") def created_at(self) -> str: """ Creation timestamp of this target group. """ return pulumi.get(self, "created_at") @property @pulumi.getter def description(self) -> str: """ Description of the target group. """ return pulumi.get(self, "description") @property @pulumi.getter(name="folderId") def folder_id(self) -> str: return pulumi.get(self, "folder_id") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter def labels(self) -> Mapping[str, str]: """ Labels to assign to this target group. * `target.0.ip_address` - IP address of the target. * `target.0.subnet_id` - ID of the subnet that targets are connected to. """ return pulumi.get(self, "labels") @property @pulumi.getter def name(self) -> str: return pulumi.get(self, "name") @property @pulumi.getter(name="targetGroupId") def target_group_id(self) -> str: return pulumi.get(self, "target_group_id") @property @pulumi.getter def targets(self) -> Sequence['outputs.GetAlbTargetGroupTargetResult']: return pulumi.get(self, "targets") class AwaitableGetAlbTargetGroupResult(GetAlbTargetGroupResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAlbTargetGroupResult( created_at=self.created_at, description=self.description, folder_id=self.folder_id, id=self.id, labels=self.labels, name=self.name, target_group_id=self.target_group_id, targets=self.targets) def get_alb_target_group(description: Optional[str] = None, folder_id: Optional[str] = None, name: Optional[str] = None, target_group_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAlbTargetGroupResult: """ Get information about a Yandex Application Load Balancer target group. For more information, see [Yandex.Cloud Application Load Balancer](https://cloud.yandex.com/en/docs/application-load-balancer/quickstart). ```python import pulumi import pulumi_yandex as yandex foo = yandex.get_alb_target_group(target_group_id="my-target-group-id") ``` This data source is used to define [Application Load Balancer Target Groups] that can be used by other resources. :param str description: Description of the target group. :param str folder_id: Folder that the resource belongs to. If value is omitted, the default provider folder is used. :param str name: - Name of the Target Group. :param str target_group_id: Target Group ID. """ __args__ = dict() __args__['description'] = description __args__['folderId'] = folder_id __args__['name'] = name __args__['targetGroupId'] = target_group_id opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('yandex:index/getAlbTargetGroup:getAlbTargetGroup', __args__, opts=opts, typ=GetAlbTargetGroupResult).value return AwaitableGetAlbTargetGroupResult( created_at=__ret__.created_at, description=__ret__.description, folder_id=__ret__.folder_id, id=__ret__.id, labels=__ret__.labels, name=__ret__.name, target_group_id=__ret__.target_group_id, targets=__ret__.targets) @_utilities.lift_output_func(get_alb_target_group) def get_alb_target_group_output(description: Optional[pulumi.Input[Optional[str]]] = None, folder_id: Optional[pulumi.Input[Optional[str]]] = None, name: Optional[pulumi.Input[Optional[str]]] = None, target_group_id: Optional[pulumi.Input[Optional[str]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetAlbTargetGroupResult]: """ Get information about a Yandex Application Load Balancer target group. For more information, see [Yandex.Cloud Application Load Balancer](https://cloud.yandex.com/en/docs/application-load-balancer/quickstart). ```python import pulumi import pulumi_yandex as yandex foo = yandex.get_alb_target_group(target_group_id="my-target-group-id") ``` This data source is used to define [Application Load Balancer Target Groups] that can be used by other resources. :param str description: Description of the target group. :param str folder_id: Folder that the resource belongs to. If value is omitted, the default provider folder is used. :param str name: - Name of the Target Group. :param str target_group_id: Target Group ID. """ ...
PypiClean
/RsCMPX_Gprf-4.0.171.tar.gz/RsCMPX_Gprf-4.0.171/RsCMPX_Gprf/Implementations/Trigger/Gprf/Measurement/Power/ParameterSetList/Offset.py
from typing import List from .......Internal.Core import Core from .......Internal.CommandsGroup import CommandsGroup from .......Internal import Conversions from .......Internal.Types import DataType from .......Internal.ArgSingleList import ArgSingleList from .......Internal.ArgSingle import ArgSingle # noinspection PyPep8Naming,PyAttributeOutsideInit,SpellCheckingInspection class OffsetCls: """Offset commands group definition. 2 total commands, 0 Subgroups, 2 group commands""" def __init__(self, core: Core, parent): self._core = core self._cmd_group = CommandsGroup("offset", core, parent) def set(self, index: int, trigger_offset: float) -> None: """SCPI: TRIGger:GPRF:MEASurement<Instance>:POWer:PSET:OFFSet \n Snippet: driver.trigger.gprf.measurement.power.parameterSetList.offset.set(index = 1, trigger_offset = 1.0) \n Defines a delay time relative to the trigger event for the parameter set <Index>. \n :param index: No help available :param trigger_offset: No help available """ param = ArgSingleList().compose_cmd_string(ArgSingle('index', index, DataType.Integer), ArgSingle('trigger_offset', trigger_offset, DataType.Float)) self._core.io.write(f'TRIGger:GPRF:MEASurement<Instance>:POWer:PSET:OFFSet {param}'.rstrip()) def get(self, index: int) -> float: """SCPI: TRIGger:GPRF:MEASurement<Instance>:POWer:PSET:OFFSet \n Snippet: value: float = driver.trigger.gprf.measurement.power.parameterSetList.offset.get(index = 1) \n Defines a delay time relative to the trigger event for the parameter set <Index>. \n :param index: No help available :return: trigger_offset: No help available""" param = Conversions.decimal_value_to_str(index) response = self._core.io.query_str(f'TRIGger:GPRF:MEASurement<Instance>:POWer:PSET:OFFSet? {param}') return Conversions.str_to_float(response) def get_all(self) -> List[float]: """SCPI: TRIGger:GPRF:MEASurement<Instance>:POWer:PSET:OFFSet:ALL \n Snippet: value: List[float] = driver.trigger.gprf.measurement.power.parameterSetList.offset.get_all() \n Defines a delay time relative to the trigger event for all parameter sets. \n :return: trigger_offset: Comma-separated list of 32 offsets, for parameter set 0 to 31 """ response = self._core.io.query_bin_or_ascii_float_list('TRIGger:GPRF:MEASurement<Instance>:POWer:PSET:OFFSet:ALL?') return response def set_all(self, trigger_offset: List[float]) -> None: """SCPI: TRIGger:GPRF:MEASurement<Instance>:POWer:PSET:OFFSet:ALL \n Snippet: driver.trigger.gprf.measurement.power.parameterSetList.offset.set_all(trigger_offset = [1.1, 2.2, 3.3]) \n Defines a delay time relative to the trigger event for all parameter sets. \n :param trigger_offset: Comma-separated list of 32 offsets, for parameter set 0 to 31 """ param = Conversions.list_to_csv_str(trigger_offset) self._core.io.write(f'TRIGger:GPRF:MEASurement<Instance>:POWer:PSET:OFFSet:ALL {param}')
PypiClean
/opendr-toolkit-pose-estimation-2.2.0.tar.gz/opendr-toolkit-pose-estimation-2.2.0/src/opendr/perception/pose_estimation/lightweight_open_pose/algorithm/scripts/prepare_train_labels.py
import json import pickle def prepare_annotations(annotations_per_image, images_info, net_input_size): """Prepare labels for training. For each annotated person calculates center to perform crop around it during the training. Also converts data to the internal format. :param annotations_per_image: all annotations for specified image id :param images_info: auxiliary information about all images :param net_input_size: network input size during training :return: list of prepared annotations """ prepared_annotations = [] for _, annotations in annotations_per_image.items(): previous_centers = [] for annotation in annotations[0]: if annotation['num_keypoints'] < 5 or annotation['area'] < 32 * 32: continue person_center = [annotation['bbox'][0] + annotation['bbox'][2] / 2, annotation['bbox'][1] + annotation['bbox'][3] / 2] is_close = False for previous_center in previous_centers: distance_to_previous = ((person_center[0] - previous_center[0]) ** 2 + (person_center[1] - previous_center[1]) ** 2) ** 0.5 if distance_to_previous < previous_center[2] * 0.3: is_close = True break if is_close: continue prepared_annotation = { 'img_paths': images_info[annotation['image_id']]['file_name'], 'img_width': images_info[annotation['image_id']]['width'], 'img_height': images_info[annotation['image_id']]['height'], 'objpos': person_center, 'image_id': annotation['image_id'], 'bbox': annotation['bbox'], 'segment_area': annotation['area'], 'scale_provided': annotation['bbox'][3] / net_input_size, 'num_keypoints': annotation['num_keypoints'], 'segmentations': annotations[1] } keypoints = [] for i in range(len(annotation['keypoints']) // 3): keypoint = [annotation['keypoints'][i * 3], annotation['keypoints'][i * 3 + 1], 2] if annotation['keypoints'][i * 3 + 2] == 1: keypoint[2] = 0 elif annotation['keypoints'][i * 3 + 2] == 2: keypoint[2] = 1 keypoints.append(keypoint) prepared_annotation['keypoints'] = keypoints prepared_other_annotations = [] for other_annotation in annotations[0]: if other_annotation == annotation: continue prepared_other_annotation = { 'objpos': [other_annotation['bbox'][0] + other_annotation['bbox'][2] / 2, other_annotation['bbox'][1] + other_annotation['bbox'][3] / 2], 'bbox': other_annotation['bbox'], 'segment_area': other_annotation['area'], 'scale_provided': other_annotation['bbox'][3] / net_input_size, 'num_keypoints': other_annotation['num_keypoints'] } keypoints = [] for i in range(len(other_annotation['keypoints']) // 3): keypoint = [other_annotation['keypoints'][i * 3], other_annotation['keypoints'][i * 3 + 1], 2] if other_annotation['keypoints'][i * 3 + 2] == 1: keypoint[2] = 0 elif other_annotation['keypoints'][i * 3 + 2] == 2: keypoint[2] = 1 keypoints.append(keypoint) prepared_other_annotation['keypoints'] = keypoints prepared_other_annotations.append(prepared_other_annotation) prepared_annotation['processed_other_annotations'] = prepared_other_annotations prepared_annotations.append(prepared_annotation) previous_centers.append((person_center[0], person_center[1], annotation['bbox'][2], annotation['bbox'][3])) return prepared_annotations def convert_annotations(labels, output_path="prepared_train_annotation.pkl", net_input_size=368): """ :param labels: path to json with keypoints train labels :param output_path: name of output file with prepared keypoints annotation, defaults to "prepared_train_annotation.pkl" :param net_input_size: network input size, defaults to 368 """ with open(labels, 'r') as f: data = json.load(f) annotations_per_image_mapping = {} for annotation in data['annotations']: if annotation['num_keypoints'] != 0 and not annotation['iscrowd']: if annotation['image_id'] not in annotations_per_image_mapping: annotations_per_image_mapping[annotation['image_id']] = [[], []] annotations_per_image_mapping[annotation['image_id']][0].append(annotation) crowd_segmentations_per_image_mapping = {} for annotation in data['annotations']: if annotation['iscrowd']: if annotation['image_id'] not in crowd_segmentations_per_image_mapping: crowd_segmentations_per_image_mapping[annotation['image_id']] = [] crowd_segmentations_per_image_mapping[annotation['image_id']].append(annotation['segmentation']) for image_id, crowd_segmentations in crowd_segmentations_per_image_mapping.items(): if image_id in annotations_per_image_mapping: annotations_per_image_mapping[image_id][1] = crowd_segmentations images_info = {} for image_info in data['images']: images_info[image_info['id']] = image_info prepared_annotations = prepare_annotations(annotations_per_image_mapping, images_info, net_input_size) with open(output_path, 'wb') as f: pickle.dump(prepared_annotations, f)
PypiClean
/streamlit-elements-0.1.0.tar.gz/streamlit-elements-0.1.0/streamlit_elements/frontend/build/_next/static/chunks/4814.79a05d5d2a98ae9d.js
"use strict";(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[4814],{544814:function(e,n,t){t.r(n),t.d(n,{InnerSwarmPlotCanvas:function(){return le},ResponsiveSwarmPlot:function(){return ie},ResponsiveSwarmPlotCanvas:function(){return ce},SwarmPlot:function(){return oe},SwarmPlotCanvas:function(){return se},SwarmPlotTooltip:function(){return Z},computeForces:function(){return T},computeNodes:function(){return G},computeOrdinalScale:function(){return R},computeValueScale:function(){return P},defaultProps:function(){return F},getSizeGenerator:function(){return A},renderCircleDefault:function(){return ue},useBorderWidth:function(){return Y},useForces:function(){return N},useNodeMouseHandlers:function(){return _},useOrdinalScale:function(){return O},useSwarmPlot:function(){return X},useSwarmPlotAnnotations:function(){return K},useSwarmPlotLayerContext:function(){return U},useValueScale:function(){return H}});var o=t(667294),i=t(543060),r=t(475370),a=t(34887),u=t(449742),l=t(785893),s=t(649446),c=t(43790),d=t(281763),f=t.n(d),v=t(968630),h=t.n(v),g=t(747037),p=t.n(g),m=t(227361),y=t.n(m),x=t(357603),M=t(66871),S=t(547148),w=t(627898),C=t(608691);function b(e){return e.x+e.vx}function k(e){return e.y+e.vy}function z(e){var n,t,o,i=(0,w.Z)(.1);function r(e){for(var i,r=0,a=n.length;r<a;++r)(i=n[r]).vx+=(o[r]-i.x)*t[r]*e}function a(){if(n){var r,a=n.length;for(t=new Array(a),o=new Array(a),r=0;r<a;++r)t[r]=isNaN(o[r]=+e(n[r],r,n))?0:+i(n[r],r,n)}}return"function"!==typeof e&&(e=(0,w.Z)(null==e?0:+e)),r.initialize=function(e){n=e,a()},r.strength=function(e){return arguments.length?(i="function"===typeof e?e:(0,w.Z)(+e),a(),r):i},r.x=function(n){return arguments.length?(e="function"===typeof n?n:(0,w.Z)(+n),a(),r):e},r}function W(e){var n,t,o,i=(0,w.Z)(.1);function r(e){for(var i,r=0,a=n.length;r<a;++r)(i=n[r]).vy+=(o[r]-i.y)*t[r]*e}function a(){if(n){var r,a=n.length;for(t=new Array(a),o=new Array(a),r=0;r<a;++r)t[r]=isNaN(o[r]=+e(n[r],r,n))?0:+i(n[r],r,n)}}return"function"!==typeof e&&(e=(0,w.Z)(null==e?0:+e)),r.initialize=function(e){n=e,a()},r.strength=function(e){return arguments.length?(i="function"===typeof e?e:(0,w.Z)(+e),a(),r):i},r.y=function(n){return arguments.length?(e="function"===typeof n?n:(0,w.Z)(+n),a(),r):e},r}var I=t(587503),E=t(75837),B=t(281472);function j(){return j=Object.assign||function(e){for(var n=1;n<arguments.length;n++){var t=arguments[n];for(var o in t)Object.prototype.hasOwnProperty.call(t,o)&&(e[o]=t[o])}return e},j.apply(this,arguments)}function L(e,n){if(null==e)return{};var t,o,i={},r=Object.keys(e);for(o=0;o<r.length;o++)t=r[o],n.indexOf(t)>=0||(i[t]=e[t]);return i}var V,Z=function(e){var n=e.id,t=e.formattedValue,o=e.color;return(0,l.jsx)(u._5,{id:n,value:t,enableChip:!0,color:o})},F={id:"id",value:"value",valueScale:{type:"linear",min:0,max:"auto"},groupBy:"group",size:6,spacing:2,layout:"vertical",gap:0,forceStrength:1,simulationIterations:120,colors:{scheme:"nivo"},colorBy:"group",borderWidth:0,borderColor:"rgba(0, 0, 0, 0)",layers:["grid","axes","circles","annotations","mesh"],enableGridX:!0,enableGridY:!0,axisTop:{},axisRight:{},axisBottom:{},axisLeft:{},isInteractive:!0,useMesh:!1,debugMesh:!1,tooltip:Z,animate:!0,motionConfig:"gentle",annotations:[],role:"img",pixelRatio:"undefined"!=typeof window&&null!=(V=window.devicePixelRatio)?V:1},R=function(e){var n=e.width,t=e.height,o=e.axis,i=e.groups,r=e.gap;if(!Array.isArray(i)||0===i.length)throw new Error("'groups' should be an array containing at least one item");var a,u=i.length;"x"===o?a=(t-r*(u-1))/u:"y"===o&&(a=(n-r*(u-1))/u);var l=i.map((function(e,n){return n*(a+r)+a/2}));return(0,x.Z)(l).domain(i)},P=function(e){var n=e.width,t=e.height,o=e.axis,i=e.getValue,r=e.scale,a=e.data.map(i);if("time"===r.type){var u=[{data:a.map((function(e){var n;return{data:(n={x:null,y:null},n[o]=e,n)}}))}],l=(0,E.OO)(u,o,r);return(0,E.ZN)(r,l,"x"===o?n:t,o)}var s=Math.min.apply(Math,a),c=Math.max.apply(Math,a);return(0,E.ZN)(r,{all:a,min:s,max:c},"x"===o?n:t,o)},A=function(e){if("function"==typeof e)return e;if(f()(e))return function(){return e};if(h()(e)){if(!p()(e.key))throw new Error("Size is invalid, key should be a string pointing to the property to use to determine node size");if(!Array.isArray(e.values)||2!==e.values.length)throw new Error("Size is invalid, values spec should be an array containing two values, min and max");if(!Array.isArray(e.sizes)||2!==e.sizes.length)throw new Error("Size is invalid, sizes spec should be an array containing two values, min and max");var n=(0,M.Z)().domain([e.values[0],e.values[1]]).range([e.sizes[0],e.sizes[1]]);return function(t){return n(y()(t,e.key))}}throw new Error("Size is invalid, it should be either a function, a number or an object")},T=function(e){var n,t,o=e.axis,i=e.valueScale,r=e.ordinalScale,a=e.spacing,u=e.forceStrength,l=function(e){var n,t,o,i=1,r=1;function a(){for(var e,a,l,s,c,d,f,v=n.length,h=0;h<r;++h)for(a=(0,S.Z)(n,b,k).visitAfter(u),e=0;e<v;++e)l=n[e],d=t[l.index],f=d*d,s=l.x+l.vx,c=l.y+l.vy,a.visit(g);function g(e,n,t,r,a){var u=e.data,v=e.r,h=d+v;if(!u)return n>s+h||r<s-h||t>c+h||a<c-h;if(u.index>l.index){var g=s-u.x-u.vx,p=c-u.y-u.vy,m=g*g+p*p;m<h*h&&(0===g&&(m+=(g=(0,C.Z)(o))*g),0===p&&(m+=(p=(0,C.Z)(o))*p),m=(h-(m=Math.sqrt(m)))/m*i,l.vx+=(g*=m)*(h=(v*=v)/(f+v)),l.vy+=(p*=m)*h,u.vx-=g*(h=1-h),u.vy-=p*h)}}}function u(e){if(e.data)return e.r=t[e.data.index];for(var n=e.r=0;n<4;++n)e[n]&&e[n].r>e.r&&(e.r=e[n].r)}function l(){if(n){var o,i,r=n.length;for(t=new Array(r),o=0;o<r;++o)i=n[o],t[i.index]=+e(i,o,n)}}return"function"!==typeof e&&(e=(0,w.Z)(null==e?1:+e)),a.initialize=function(e,t){n=e,o=t,l()},a.iterations=function(e){return arguments.length?(r=+e,a):r},a.strength=function(e){return arguments.length?(i=+e,a):i},a.radius=function(n){return arguments.length?(e="function"===typeof n?n:(0,w.Z)(+n),l(),a):e},a}((function(e){return e.size/2+a/2}));if("x"===o)n=z((function(e){return i(e.value)})).strength(u),t=W((function(e){return r(e.group)}));else{if("y"!==o)throw new Error("Invalid axis provided: "+o);n=z((function(e){return r(e.group)})),t=W((function(e){return i(e.value)})).strength(u)}return{x:n,y:t,collision:l}},G=function(e){var n,t,o=e.data,i=e.getId,r=e.layout,a=e.getValue,u=e.valueScale,l=e.getGroup,s=e.ordinalScale,c=e.getSize,d=e.forces,f=e.simulationIterations,v={horizontal:["x","y"],vertical:["y","x"]},h="time"===(t=e.valueScaleConfig).type&&"native"!==t.format?(0,E.KD)(t):function(e){return e},g=o.map((function(e){return{id:i(e),group:l(e),value:h(a(e)),size:c(e),data:j({},e)}})),p=(0,I.Z)(g).force("x",d.x).force("y",d.y).force("collide",d.collision).stop();return p.tick(f),(n={})[v[r][0]+"Scale"]=u,n[v[r][1]+"Scale"]=s,n.nodes=p.nodes(),n},H=function(e){var n=e.width,t=e.height,i=e.axis,r=e.getValue,a=e.scale,u=e.data;return(0,o.useMemo)((function(){return P({width:n,height:t,axis:i,getValue:r,scale:a,data:u})}),[n,t,i,r,a,u])},O=function(e){var n=e.width,t=e.height,i=e.axis,r=e.groups,a=e.gap;return(0,o.useMemo)((function(){return R({width:n,height:t,axis:i,groups:r,gap:a})}),[n,t,i,r,a])},N=function(e){var n=e.axis,t=e.valueScale,i=e.ordinalScale,r=e.spacing,a=e.forceStrength;return(0,o.useMemo)((function(){return T({axis:n,valueScale:t,ordinalScale:i,spacing:r,forceStrength:a})}),[n,t,i,r,a])},X=function(e){var n=e.data,t=e.width,r=e.height,a=e.id,u=e.value,l=e.valueFormat,c=e.valueScale,d=e.groups,f=e.groupBy,v=e.size,h=e.spacing,g=e.layout,p=e.gap,m=e.forceStrength,y=e.simulationIterations,x=e.colors,M=e.colorBy,S="horizontal"===g?"x":"y",w=(0,i.LR)(a),C=(0,i.LR)(u),b=(0,i.O_)(l),k=(0,i.LR)(f),z=function(e){return(0,o.useMemo)((function(){return A(e)}),[e])}(v),W=(0,i.LR)(M),I=(0,s.U)(x,W),E=H({width:t,height:r,axis:S,getValue:C,scale:c,data:n}),B=O({width:t,height:r,axis:S,groups:d,gap:p}),L=N({axis:S,valueScale:E,ordinalScale:B,spacing:h,forceStrength:m}),V=(0,o.useMemo)((function(){return G({data:n,getId:w,layout:g,getValue:C,valueScale:E,getGroup:k,ordinalScale:B,getSize:z,forces:L,simulationIterations:y,valueScaleConfig:c})}),[n,w,g,C,E,k,B,z,L,y,c]),Z=V.nodes,F=V.xScale,R=V.yScale;return{nodes:(0,o.useMemo)((function(){return Z.map((function(e){return j({},e,{formattedValue:b(e.value),color:I(e)})}))}),[Z,b,I]),xScale:F,yScale:R,getColor:I}},Y=function(e){return(0,o.useMemo)((function(){return"function"==typeof e?e:function(){return e}}),[e])},_=function(e){var n=e.isInteractive,t=e.onClick,i=e.onMouseEnter,r=e.onMouseLeave,a=e.onMouseMove,l=e.tooltip,s=(0,u.lL)(),c=s.showTooltipFromEvent,d=s.hideTooltip;return{onMouseEnter:(0,o.useCallback)((function(e,t){n&&(c(l(e),t),null==i||i(e,t))}),[n,i,c,l]),onMouseMove:(0,o.useCallback)((function(e,t){n&&(c(l(e),t),null==a||a(e,t))}),[n,a,c,l]),onMouseLeave:(0,o.useCallback)((function(e,t){n&&(d(),null==r||r(e,t))}),[n,d,r]),onClick:(0,o.useCallback)((function(e,o){n&&(null==t||t(e,o))}),[n,t])}},D=function(e){return{x:e.x,y:e.y}},q=function(e){return{size:e.size,width:e.size,height:e.size}},K=function(e,n){return(0,c.O2)({data:e,annotations:n,getPosition:D,getDimensions:q})},U=function(e){var n=e.nodes,t=e.xScale,i=e.yScale,r=e.innerWidth,a=e.innerHeight,u=e.outerWidth,l=e.outerHeight,s=e.margin;return(0,o.useMemo)((function(){return{nodes:n,xScale:t,yScale:i,innerWidth:r,innerHeight:a,outerWidth:u,outerHeight:l,margin:s}}),[n,t,i,r,a,u,l,s])},J=function(e){var n=e.nodes,t=e.borderWidth,r=e.borderColor,a=e.component,c=e.isInteractive,d=e.onMouseEnter,f=e.onMouseMove,v=e.onMouseLeave,h=e.onClick,g=e.tooltip,p=(0,u.lL)(),m=p.showTooltipFromEvent,y=p.hideTooltip,x=(0,o.useMemo)((function(){if(c)return function(e,n){m((0,o.createElement)(g,e),n),null==d||d(e,n)}}),[c,m,g,d]),M=(0,o.useMemo)((function(){if(c)return function(e,n){m((0,o.createElement)(g,e),n),null==f||f(e,n)}}),[c,m,g,f]),S=(0,o.useMemo)((function(){if(c)return function(e,n){y(),null==v||v(e,n)}}),[c,y,v]),w=(0,o.useMemo)((function(){if(c)return function(e,n){null==h||h(e,n)}}),[c,h]),C=(0,i.tf)(),b=C.animate,k=C.config,z=(0,i.Fg)(),W=Y(t),I=(0,s.Bf)(r,z),E=(0,o.useMemo)((function(){return e=I,{enter:function(n){return{x:n.x,y:n.y,radius:0,color:n.color,borderColor:e(n),opacity:0}},update:function(n){return{x:n.x,y:n.y,radius:n.size/2,color:n.color,borderColor:e(n),opacity:1}},leave:function(n){return{x:n.x,y:n.y,radius:0,color:n.color,borderColor:e(n),opacity:0}}};var e}),[I]),L=(0,B.useTransition)(n,{keys:function(e){return e.id},initial:E.update,from:E.enter,enter:E.update,update:E.update,leave:E.leave,config:k,immediate:!b});return(0,l.jsx)(l.Fragment,{children:L((function(e,n){return o.createElement(a,{key:n.id,node:n,style:j({},e,{radius:(t=e.radius,(0,B.to)([t],(function(e){return Math.max(0,e)}))),borderWidth:W(n)}),onMouseEnter:x,onMouseMove:M,onMouseLeave:S,onClick:w});var t}))})},Q=function(e){var n=e.node,t=e.style,o=e.onMouseEnter,i=e.onMouseMove,r=e.onMouseLeave,a=e.onClick;return(0,l.jsx)(B.animated.circle,{cx:t.x,cy:t.y,r:t.radius,fill:t.color,stroke:t.borderColor,strokeWidth:t.borderWidth,opacity:t.opacity,onMouseEnter:function(e){return null==o?void 0:o(n,e)},onMouseMove:function(e){return null==i?void 0:i(n,e)},onMouseLeave:function(e){return null==r?void 0:r(n,e)},onClick:function(e){return null==a?void 0:a(n,e)}},n.id)},$=function(e){var n=e.nodes,t=e.annotations,o=K(n,t);return(0,l.jsx)(l.Fragment,{children:o.map((function(e,n){return(0,l.jsx)(c.q6,j({},e),n)}))})},ee=["nodes"],ne=["theme","isInteractive","animate","motionConfig","renderWrapper"],te=function(e){var n=e.data,t=e.width,u=e.height,s=e.margin,c=e.id,d=void 0===c?F.id:c,f=e.value,v=void 0===f?F.value:f,h=e.valueScale,g=void 0===h?F.valueScale:h,p=e.valueFormat,m=e.groups,y=e.groupBy,x=void 0===y?F.groupBy:y,M=e.size,S=void 0===M?F.size:M,w=e.forceStrength,C=void 0===w?F.forceStrength:w,b=e.simulationIterations,k=void 0===b?F.simulationIterations:b,z=e.colors,W=void 0===z?F.colors:z,I=e.colorBy,E=void 0===I?F.colorBy:I,B=e.borderColor,j=void 0===B?F.borderColor:B,V=e.borderWidth,Z=void 0===V?F.borderWidth:V,R=e.layout,P=void 0===R?F.layout:R,A=e.spacing,T=void 0===A?F.spacing:A,G=e.gap,H=void 0===G?F.gap:G,O=e.layers,N=void 0===O?F.layers:O,Y=e.circleComponent,D=void 0===Y?Q:Y,q=e.useMesh,K=void 0===q?F.useMesh:q,ne=e.debugMesh,te=void 0===ne?F.debugMesh:ne,oe=e.enableGridX,ie=void 0===oe?F.enableGridX:oe,re=e.gridXValues,ae=e.enableGridY,ue=void 0===ae?F.enableGridY:ae,le=e.gridYValues,se=e.axisTop,ce=void 0===se?F.axisTop:se,de=e.axisRight,fe=void 0===de?F.axisRight:de,ve=e.axisBottom,he=void 0===ve?F.axisBottom:ve,ge=e.axisLeft,pe=void 0===ge?F.axisLeft:ge,me=e.isInteractive,ye=e.onMouseEnter,xe=e.onMouseMove,Me=e.onMouseLeave,Se=e.onClick,we=e.tooltip,Ce=void 0===we?F.tooltip:we,be=e.annotations,ke=void 0===be?F.annotations:be,ze=e.role,We=void 0===ze?F.role:ze,Ie=(0,i.Bs)(t,u,s),Ee=Ie.outerWidth,Be=Ie.outerHeight,je=Ie.margin,Le=Ie.innerWidth,Ve=Ie.innerHeight,Ze=X({width:Le,height:Ve,data:n,id:d,value:v,valueFormat:p,valueScale:g,groups:m,groupBy:x,size:S,spacing:T,layout:P,gap:H,colors:W,colorBy:E,forceStrength:C,simulationIterations:k}),Fe=Ze.nodes,Re=L(Ze,ee),Pe=Re.xScale,Ae=Re.yScale,Te=_({isInteractive:me,onClick:Se,onMouseEnter:ye,onMouseLeave:Me,onMouseMove:xe,tooltip:Ce}),Ge={grid:null,axes:null,circles:null,annotations:null,mesh:null};N.includes("grid")&&(Ge.grid=(0,l.jsx)(r.rj,{width:Le,height:Ve,xScale:ie?Pe:null,xValues:re,yScale:ue?Ae:null,yValues:le},"grid")),N.includes("axes")&&(Ge.axes=(0,l.jsx)(r.dk,{xScale:Pe,yScale:Ae,width:Le,height:Ve,top:null!=ce?ce:void 0,right:null!=fe?fe:void 0,bottom:null!=he?he:void 0,left:null!=pe?pe:void 0},"axes")),N.includes("circles")&&(Ge.circles=(0,l.jsx)(J,{nodes:Fe,borderWidth:Z,borderColor:j,isInteractive:me,tooltip:Ce,component:D,onMouseEnter:ye,onMouseMove:xe,onMouseLeave:Me,onClick:Se},"circles")),N.includes("annotations")&&(Ge.annotations=(0,l.jsx)($,{nodes:Fe,annotations:ke},"annotations")),me&&K&&(Ge.mesh=(0,l.jsx)(a.Mesh,{nodes:Fe,width:Le,height:Ve,onMouseEnter:Te.onMouseEnter,onMouseMove:Te.onMouseMove,onMouseLeave:Te.onMouseLeave,onClick:Te.onClick,debug:te},"mesh"));var He=U({nodes:Fe,xScale:Pe,yScale:Ae,innerWidth:Le,innerHeight:Ve,outerWidth:Ee,outerHeight:Be,margin:je});return(0,l.jsx)(i.tM,{width:Ee,height:Be,margin:je,role:We,children:N.map((function(e,n){return void 0!==Ge[e]?Ge[e]:"function"==typeof e?(0,l.jsx)(o.Fragment,{children:(0,o.createElement)(e,He)},n):null}))})},oe=function(e){var n=e.theme,t=e.isInteractive,o=void 0===t?F.isInteractive:t,r=e.animate,a=void 0===r?F.animate:r,u=e.motionConfig,s=void 0===u?F.motionConfig:u,c=e.renderWrapper,d=L(e,ne);return(0,l.jsx)(i.W2,{isInteractive:o,animate:a,motionConfig:s,theme:n,renderWrapper:c,children:(0,l.jsx)(te,j({isInteractive:o},d))})},ie=function(e){return(0,l.jsx)(i.d,{children:function(n){var t=n.width,o=n.height;return(0,l.jsx)(oe,j({width:t,height:o},e))}})},re=["nodes"],ae=["theme","isInteractive","animate","motionConfig","renderWrapper"],ue=function(e,n){var t=n.node,o=n.getBorderWidth,i=n.getBorderColor,r=o(t);r>0&&(e.strokeStyle=i(t),e.lineWidth=r),e.beginPath(),e.arc(t.x,t.y,t.size/2,0,2*Math.PI),e.fillStyle=t.color,e.fill(),r>0&&e.stroke()},le=function(e){var n=e.data,t=e.width,c=e.height,d=e.margin,v=e.id,h=void 0===v?F.id:v,g=e.value,p=void 0===g?F.value:g,m=e.valueFormat,y=e.valueScale,x=void 0===y?F.valueScale:y,M=e.groups,S=e.groupBy,w=void 0===S?F.groupBy:S,C=e.size,b=void 0===C?F.size:C,k=e.forceStrength,z=void 0===k?F.forceStrength:k,W=e.simulationIterations,I=void 0===W?F.simulationIterations:W,E=e.colors,B=void 0===E?F.colors:E,j=e.colorBy,V=void 0===j?F.colorBy:j,Z=e.borderColor,R=void 0===Z?F.borderColor:Z,P=e.layout,A=void 0===P?F.layout:P,T=e.spacing,G=void 0===T?F.spacing:T,H=e.gap,O=void 0===H?F.gap:H,N=e.layers,Y=void 0===N?F.layers:N,_=e.renderCircle,D=void 0===_?ue:_,q=e.debugMesh,K=void 0===q?F.debugMesh:q,U=e.enableGridX,J=e.gridXValues,Q=e.enableGridY,$=e.gridYValues,ee=e.axisTop,ne=void 0===ee?F.axisTop:ee,te=e.axisRight,oe=void 0===te?F.axisRight:te,ie=e.axisBottom,ae=void 0===ie?F.axisBottom:ie,le=e.axisLeft,se=void 0===le?F.axisLeft:le,ce=e.isInteractive,de=e.onMouseMove,fe=e.onClick,ve=e.tooltip,he=void 0===ve?F.tooltip:ve,ge=e.role,pe=void 0===ge?F.role:ge,me=e.pixelRatio,ye=void 0===me?F.pixelRatio:me,xe=(0,o.useRef)(null),Me=(0,i.Fg)(),Se=(0,o.useState)(null),we=Se[0],Ce=Se[1],be=(0,i.Bs)(t,c,d),ke=be.outerWidth,ze=be.outerHeight,We=be.margin,Ie=be.innerWidth,Ee=be.innerHeight,Be=X({width:Ie,height:Ee,data:n,id:h,value:p,valueFormat:m,valueScale:x,groups:M,groupBy:w,size:b,spacing:G,layout:A,gap:O,colors:B,colorBy:V,forceStrength:z,simulationIterations:I}),je=Be.nodes,Le=L(Be,re),Ve=Le.xScale,Ze=Le.yScale,Fe=(0,a.useVoronoiMesh)({points:je,width:Ie,height:Ee,debug:K}),Re=Fe.delaunay,Pe=Fe.voronoi,Ae=(0,s.Bf)(R,Me),Te=function(){return 1};(0,o.useEffect)((function(){if(xe.current){xe.current.width=ke*ye,xe.current.height=ze*ye;var e=xe.current.getContext("2d");e&&(e.scale(ye,ye),e.fillStyle=Me.background,e.fillRect(0,0,ke,ze),e.save(),e.translate(We.left,We.top),Y.forEach((function(n){"grid"===n&&f()(Me.grid.line.strokeWidth)&&Me.grid.line.strokeWidth>0&&(e.lineWidth=Me.grid.line.strokeWidth,e.strokeStyle=Me.grid.line.stroke,U&&(0,r.FA)(e,{width:Ie,height:Ee,scale:Ve,axis:"x",values:J}),Q&&(0,r.FA)(e,{width:Ie,height:Ee,scale:Ze,axis:"y",values:$})),"axes"===n&&(0,r.DZ)(e,{xScale:Ve,yScale:Ze,width:Ie,height:Ee,top:ne,right:oe,bottom:ae,left:se,theme:Me}),"circles"===n&&je.forEach((function(n){D(e,{node:n,getBorderWidth:Te,getBorderColor:Ae})})),"mesh"===n&&K&&Pe&&((0,a.renderVoronoiToCanvas)(e,Pe),we&&(0,a.renderVoronoiCellToCanvas)(e,Pe,we.index))})))}}),[xe,ke,ze,Ie,Ee,ye,We,Me,Y,Ve,Ze,U,J,Q,$,ne,oe,ae,se,Pe,K,we,je,D,Te,Ae]);var Ge=(0,o.useCallback)((function(e){if(!xe.current)return null;var n=(0,i.P6)(xe.current,e),t=n[0],o=n[1];if(!(0,i.zn)(We.left,We.top,Ie,Ee,t,o))return null;var r=Re.find(t-We.left,o-We.top);return je[r]}),[xe,We,Ie,Ee,Re,je]),He=(0,u.lL)(),Oe=He.showTooltipFromEvent,Ne=He.hideTooltip,Xe=(0,o.useCallback)((function(e,n){Oe((0,o.createElement)(he,e),n)}),[Oe,he]),Ye=(0,o.useCallback)((function(e){var n=Ge(e);Ce(n),n?(null==de||de(n,e),Xe(n,e)):Ne()}),[Ge,Ce,de,Xe,Ne]),_e=(0,o.useCallback)((function(){Ne(),Ce(null)}),[Ne,Ce]),De=(0,o.useCallback)((function(e){var n=Ge(e);n&&(null==fe||fe(n,e))}),[Ge,fe]);return(0,l.jsx)("canvas",{ref:xe,width:ke*ye,height:ze*ye,style:{width:ke,height:ze,cursor:ce?"auto":"normal"},role:pe,onMouseEnter:ce?Ye:void 0,onMouseMove:ce?Ye:void 0,onMouseLeave:ce?_e:void 0,onClick:ce?De:void 0})},se=function(e){var n=e.theme,t=e.isInteractive,o=void 0===t?F.isInteractive:t,r=e.animate,a=void 0===r?F.animate:r,u=e.motionConfig,s=void 0===u?F.motionConfig:u,c=e.renderWrapper,d=L(e,ae);return(0,l.jsx)(i.W2,{isInteractive:o,animate:a,motionConfig:s,theme:n,renderWrapper:c,children:(0,l.jsx)(le,j({isInteractive:o},d))})},ce=function(e){return(0,l.jsx)(i.d,{children:function(n){var t=n.width,o=n.height;return(0,l.jsx)(se,j({width:t,height:o},e))}})}}}]);
PypiClean
/safegate_pro-2021.7.6-py3-none-any.whl/homeassistant/components/mqtt/light/schema_template.py
import logging import voluptuous as vol from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_EFFECT, ATTR_FLASH, ATTR_HS_COLOR, ATTR_TRANSITION, ATTR_WHITE_VALUE, SUPPORT_BRIGHTNESS, SUPPORT_COLOR, SUPPORT_COLOR_TEMP, SUPPORT_EFFECT, SUPPORT_FLASH, SUPPORT_TRANSITION, SUPPORT_WHITE_VALUE, LightEntity, ) from homeassistant.const import ( CONF_NAME, CONF_OPTIMISTIC, CONF_STATE_TEMPLATE, STATE_OFF, STATE_ON, ) from homeassistant.core import callback import homeassistant.helpers.config_validation as cv from homeassistant.helpers.restore_state import RestoreEntity import homeassistant.util.color as color_util from .. import CONF_COMMAND_TOPIC, CONF_QOS, CONF_RETAIN, CONF_STATE_TOPIC, subscription from ... import mqtt from ..debug_info import log_messages from ..mixins import MQTT_ENTITY_COMMON_SCHEMA, MqttEntity from .schema import MQTT_LIGHT_SCHEMA_SCHEMA from .schema_basic import MQTT_LIGHT_ATTRIBUTES_BLOCKED _LOGGER = logging.getLogger(__name__) DOMAIN = "mqtt_template" DEFAULT_NAME = "MQTT Template Light" DEFAULT_OPTIMISTIC = False CONF_BLUE_TEMPLATE = "blue_template" CONF_BRIGHTNESS_TEMPLATE = "brightness_template" CONF_COLOR_TEMP_TEMPLATE = "color_temp_template" CONF_COMMAND_OFF_TEMPLATE = "command_off_template" CONF_COMMAND_ON_TEMPLATE = "command_on_template" CONF_EFFECT_LIST = "effect_list" CONF_EFFECT_TEMPLATE = "effect_template" CONF_GREEN_TEMPLATE = "green_template" CONF_MAX_MIREDS = "max_mireds" CONF_MIN_MIREDS = "min_mireds" CONF_RED_TEMPLATE = "red_template" CONF_WHITE_VALUE_TEMPLATE = "white_value_template" PLATFORM_SCHEMA_TEMPLATE = ( mqtt.MQTT_RW_PLATFORM_SCHEMA.extend( { vol.Optional(CONF_BLUE_TEMPLATE): cv.template, vol.Optional(CONF_BRIGHTNESS_TEMPLATE): cv.template, vol.Optional(CONF_COLOR_TEMP_TEMPLATE): cv.template, vol.Required(CONF_COMMAND_OFF_TEMPLATE): cv.template, vol.Required(CONF_COMMAND_ON_TEMPLATE): cv.template, vol.Optional(CONF_EFFECT_LIST): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_EFFECT_TEMPLATE): cv.template, vol.Optional(CONF_GREEN_TEMPLATE): cv.template, vol.Optional(CONF_MAX_MIREDS): cv.positive_int, vol.Optional(CONF_MIN_MIREDS): cv.positive_int, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_OPTIMISTIC, default=DEFAULT_OPTIMISTIC): cv.boolean, vol.Optional(CONF_RED_TEMPLATE): cv.template, vol.Optional(CONF_STATE_TEMPLATE): cv.template, vol.Optional(CONF_WHITE_VALUE_TEMPLATE): cv.template, } ) .extend(MQTT_ENTITY_COMMON_SCHEMA.schema) .extend(MQTT_LIGHT_SCHEMA_SCHEMA.schema) ) async def async_setup_entity_template( hass, config, async_add_entities, config_entry, discovery_data ): """Set up a MQTT Template light.""" async_add_entities([MqttLightTemplate(hass, config, config_entry, discovery_data)]) class MqttLightTemplate(MqttEntity, LightEntity, RestoreEntity): """Representation of a MQTT Template light.""" _attributes_extra_blocked = MQTT_LIGHT_ATTRIBUTES_BLOCKED def __init__(self, hass, config, config_entry, discovery_data): """Initialize a MQTT Template light.""" self._state = False self._topics = None self._templates = None self._optimistic = False # features self._brightness = None self._color_temp = None self._white_value = None self._hs = None self._effect = None MqttEntity.__init__(self, hass, config, config_entry, discovery_data) @staticmethod def config_schema(): """Return the config schema.""" return PLATFORM_SCHEMA_TEMPLATE def _setup_from_config(self, config): """(Re)Setup the entity.""" self._topics = { key: config.get(key) for key in (CONF_STATE_TOPIC, CONF_COMMAND_TOPIC) } self._templates = { key: config.get(key) for key in ( CONF_BLUE_TEMPLATE, CONF_BRIGHTNESS_TEMPLATE, CONF_COLOR_TEMP_TEMPLATE, CONF_COMMAND_OFF_TEMPLATE, CONF_COMMAND_ON_TEMPLATE, CONF_EFFECT_TEMPLATE, CONF_GREEN_TEMPLATE, CONF_RED_TEMPLATE, CONF_STATE_TEMPLATE, CONF_WHITE_VALUE_TEMPLATE, ) } optimistic = config[CONF_OPTIMISTIC] self._optimistic = ( optimistic or self._topics[CONF_STATE_TOPIC] is None or self._templates[CONF_STATE_TEMPLATE] is None ) async def _subscribe_topics(self): # noqa: C901 """(Re)Subscribe to topics.""" for tpl in self._templates.values(): if tpl is not None: tpl.hass = self.hass last_state = await self.async_get_last_state() @callback @log_messages(self.hass, self.entity_id) def state_received(msg): """Handle new MQTT messages.""" state = self._templates[ CONF_STATE_TEMPLATE ].async_render_with_possible_json_value(msg.payload) if state == STATE_ON: self._state = True elif state == STATE_OFF: self._state = False else: _LOGGER.warning("Invalid state value received") if self._templates[CONF_BRIGHTNESS_TEMPLATE] is not None: try: self._brightness = int( self._templates[ CONF_BRIGHTNESS_TEMPLATE ].async_render_with_possible_json_value(msg.payload) ) except ValueError: _LOGGER.warning("Invalid brightness value received") if self._templates[CONF_COLOR_TEMP_TEMPLATE] is not None: try: self._color_temp = int( self._templates[ CONF_COLOR_TEMP_TEMPLATE ].async_render_with_possible_json_value(msg.payload) ) except ValueError: _LOGGER.warning("Invalid color temperature value received") if ( self._templates[CONF_RED_TEMPLATE] is not None and self._templates[CONF_GREEN_TEMPLATE] is not None and self._templates[CONF_BLUE_TEMPLATE] is not None ): try: red = int( self._templates[ CONF_RED_TEMPLATE ].async_render_with_possible_json_value(msg.payload) ) green = int( self._templates[ CONF_GREEN_TEMPLATE ].async_render_with_possible_json_value(msg.payload) ) blue = int( self._templates[ CONF_BLUE_TEMPLATE ].async_render_with_possible_json_value(msg.payload) ) self._hs = color_util.color_RGB_to_hs(red, green, blue) except ValueError: _LOGGER.warning("Invalid color value received") if self._templates[CONF_WHITE_VALUE_TEMPLATE] is not None: try: self._white_value = int( self._templates[ CONF_WHITE_VALUE_TEMPLATE ].async_render_with_possible_json_value(msg.payload) ) except ValueError: _LOGGER.warning("Invalid white value received") if self._templates[CONF_EFFECT_TEMPLATE] is not None: effect = self._templates[ CONF_EFFECT_TEMPLATE ].async_render_with_possible_json_value(msg.payload) if effect in self._config.get(CONF_EFFECT_LIST): self._effect = effect else: _LOGGER.warning("Unsupported effect value received") self.async_write_ha_state() if self._topics[CONF_STATE_TOPIC] is not None: self._sub_state = await subscription.async_subscribe_topics( self.hass, self._sub_state, { "state_topic": { "topic": self._topics[CONF_STATE_TOPIC], "msg_callback": state_received, "qos": self._config[CONF_QOS], } }, ) if self._optimistic and last_state: self._state = last_state.state == STATE_ON if last_state.attributes.get(ATTR_BRIGHTNESS): self._brightness = last_state.attributes.get(ATTR_BRIGHTNESS) if last_state.attributes.get(ATTR_HS_COLOR): self._hs = last_state.attributes.get(ATTR_HS_COLOR) if last_state.attributes.get(ATTR_COLOR_TEMP): self._color_temp = last_state.attributes.get(ATTR_COLOR_TEMP) if last_state.attributes.get(ATTR_EFFECT): self._effect = last_state.attributes.get(ATTR_EFFECT) if last_state.attributes.get(ATTR_WHITE_VALUE): self._white_value = last_state.attributes.get(ATTR_WHITE_VALUE) @property def brightness(self): """Return the brightness of this light between 0..255.""" return self._brightness @property def color_temp(self): """Return the color temperature in mired.""" return self._color_temp @property def min_mireds(self): """Return the coldest color_temp that this light supports.""" return self._config.get(CONF_MIN_MIREDS, super().min_mireds) @property def max_mireds(self): """Return the warmest color_temp that this light supports.""" return self._config.get(CONF_MAX_MIREDS, super().max_mireds) @property def hs_color(self): """Return the hs color value [int, int].""" return self._hs @property def white_value(self): """Return the white property.""" return self._white_value @property def is_on(self): """Return True if entity is on.""" return self._state @property def assumed_state(self): """Return True if unable to access real state of the entity.""" return self._optimistic @property def effect_list(self): """Return the list of supported effects.""" return self._config.get(CONF_EFFECT_LIST) @property def effect(self): """Return the current effect.""" return self._effect async def async_turn_on(self, **kwargs): """Turn the entity on. This method is a coroutine. """ values = {"state": True} if self._optimistic: self._state = True if ATTR_BRIGHTNESS in kwargs: values["brightness"] = int(kwargs[ATTR_BRIGHTNESS]) if self._optimistic: self._brightness = kwargs[ATTR_BRIGHTNESS] if ATTR_COLOR_TEMP in kwargs: values["color_temp"] = int(kwargs[ATTR_COLOR_TEMP]) if self._optimistic: self._color_temp = kwargs[ATTR_COLOR_TEMP] if ATTR_HS_COLOR in kwargs: hs_color = kwargs[ATTR_HS_COLOR] # If there's a brightness topic set, we don't want to scale the RGB # values given using the brightness. if self._templates[CONF_BRIGHTNESS_TEMPLATE] is not None: brightness = 255 else: brightness = kwargs.get( ATTR_BRIGHTNESS, self._brightness if self._brightness is not None else 255, ) rgb = color_util.color_hsv_to_RGB( hs_color[0], hs_color[1], brightness / 255 * 100 ) values["red"] = rgb[0] values["green"] = rgb[1] values["blue"] = rgb[2] if self._optimistic: self._hs = kwargs[ATTR_HS_COLOR] if ATTR_WHITE_VALUE in kwargs: values["white_value"] = int(kwargs[ATTR_WHITE_VALUE]) if self._optimistic: self._white_value = kwargs[ATTR_WHITE_VALUE] if ATTR_EFFECT in kwargs: values["effect"] = kwargs.get(ATTR_EFFECT) if self._optimistic: self._effect = kwargs[ATTR_EFFECT] if ATTR_FLASH in kwargs: values["flash"] = kwargs.get(ATTR_FLASH) if ATTR_TRANSITION in kwargs: values["transition"] = kwargs[ATTR_TRANSITION] mqtt.async_publish( self.hass, self._topics[CONF_COMMAND_TOPIC], self._templates[CONF_COMMAND_ON_TEMPLATE].async_render( parse_result=False, **values ), self._config[CONF_QOS], self._config[CONF_RETAIN], ) if self._optimistic: self.async_write_ha_state() async def async_turn_off(self, **kwargs): """Turn the entity off. This method is a coroutine. """ values = {"state": False} if self._optimistic: self._state = False if ATTR_TRANSITION in kwargs: values["transition"] = kwargs[ATTR_TRANSITION] mqtt.async_publish( self.hass, self._topics[CONF_COMMAND_TOPIC], self._templates[CONF_COMMAND_OFF_TEMPLATE].async_render( parse_result=False, **values ), self._config[CONF_QOS], self._config[CONF_RETAIN], ) if self._optimistic: self.async_write_ha_state() @property def supported_features(self): """Flag supported features.""" features = SUPPORT_FLASH | SUPPORT_TRANSITION if self._templates[CONF_BRIGHTNESS_TEMPLATE] is not None: features = features | SUPPORT_BRIGHTNESS if ( self._templates[CONF_RED_TEMPLATE] is not None and self._templates[CONF_GREEN_TEMPLATE] is not None and self._templates[CONF_BLUE_TEMPLATE] is not None ): features = features | SUPPORT_COLOR | SUPPORT_BRIGHTNESS if self._config.get(CONF_EFFECT_LIST) is not None: features = features | SUPPORT_EFFECT if self._templates[CONF_COLOR_TEMP_TEMPLATE] is not None: features = features | SUPPORT_COLOR_TEMP if self._templates[CONF_WHITE_VALUE_TEMPLATE] is not None: features = features | SUPPORT_WHITE_VALUE return features
PypiClean
/PyQt-Fit-1.4.0.tar.gz/PyQt-Fit-1.4.0/docs/mod_plot_fit.rst
Module ``pyqt_fit.plot_fit`` ============================ .. automodule:: pyqt_fit.plot_fit Analyses of the residuals ------------------------- .. autofunction:: fit_evaluation .. autofunction:: residual_measures Plotting the residuals ---------------------- .. autofunction:: plot_dist_residuals .. autofunction:: plot_residuals .. autofunction:: scaled_location_plot .. autofunction:: qqplot .. autofunction:: plot_residual_tests General plotting ---------------- .. autofunction:: plot1d Output to a file ---------------- .. autofunction:: write1d Return types ------------ Most function return a tuple. For easier access, there are named tuple, i.e. tuples that can be accessed by name. .. class:: ResultStruct(...) .. note:: This is a class created with :py:func:`pyqt_fit.utils.namedtuple`. .. py:attribute:: fct Fitted function (i.e. result of the fitted function) .. py:attribute:: fct_desc Description of the function being fitted .. py:attribute:: param_names Name of the parameters fitted .. py:attribute:: xdata Explaining variables used for fitting .. py:attribute:: ydata Dependent variables observed during experiment .. py:attribute:: xname Name of the explaining variables .. py:attribute:: yname Name of the dependent variabled .. py:attribute:: res_name Name of the residuals .. py:attribute:: residuals Function used to compute the residuals .. py:attribute:: popt Optimal parameters .. py:attribute:: res Residuals computed with the parameters ``popt`` .. py:attribute:: yopts Evaluation of the optimized function on the observed points .. py:attribute:: eval_points Points on which the function has been interpolated (may be equal to xdata) .. py:attribute:: interpolation Interpolated function on ``eval_points`` (may be equal to ``yopt``) .. py:attribute:: sorted_yopts Evaluated function for each data points, sorted in increasing residual order .. py:attribute:: scaled_res Scaled residuals, ordered by increasing residuals .. py:attribute:: normq Expected values for the residuals, based on their quantile .. py:attribute:: CI List of confidence intervals evaluated (in percent) .. py:attribute:: CIs List of arrays giving the confidence intervals for the dependent variables and for the parameters. .. py:attribute:: CIresults Object returned by the confidence interval method .. class:: ResidualMeasures(scaled_res, res_IX, prob, normq) .. note:: This is a class created with :py:func:`pyqt_fit.utils.namedtuple`. .. py:attribute:: scaled_res Scaled residuals, sorted .. py:attribute:: res_IX Sorting indices for the residuals .. py:attribute:: prob Quantiles of the scaled residuals .. py:attribute:: normq Expected values of the quantiles for a normal distribution .. class:: ResTestResult(res_figure, residuals, scaled_residuals, qqplot, dist_residuals) .. note:: This is a class created with :py:func:`pyqt_fit.utils.namedtuple`. .. py:attribute:: res_figure Handle to the figure .. py:attribute:: residuals Handles created by :py:func:`plot_residuals` .. py:attribute:: scaled_residuals Handles created by :py:func:`scaled_location_plot` .. py:attribute:: qqplot Handles created by :py:func:`qqplot` .. py:attribute:: dist_residuals Handles created by :py:func:`plot_dist_residuals` .. class:: Plot1dResult(figure, estimate, data, CIs, \*ResTestResult) .. note:: This is a class create with :py:func:`pyqt_fit.utils.namedtuple`. Also, it contains all the first of :py:class:`ResTestResult` at the end of the tuple. .. py:attribute:: figure Handle to the figure with the data and fitted curve .. py:attribute:: estimate Handle to the fitted curve .. py:attribute:: data Handle to the data .. py:attribute:: CIs Handles to the confidence interval curves
PypiClean
/ReplayTables_andnp-5.6.0-py3-none-any.whl/ReplayTables/PER.py
import numpy as np from dataclasses import dataclass from typing import Optional from ReplayTables.interface import EID, LaggedTimestep, Batch from ReplayTables.ReplayBuffer import ReplayBuffer from ReplayTables.sampling.PrioritySampler import PrioritySampler @dataclass class PERConfig: new_priority_mode: str = 'max' uniform_probability: float = 1e-3 priority_exponent: float = 0.5 max_decay: float = 1. class PrioritizedReplay(ReplayBuffer): def __init__(self, max_size: int, lag: int, rng: np.random.Generator, config: Optional[PERConfig] = None): super().__init__(max_size, lag, rng) self._c = config or PERConfig() self._sampler: PrioritySampler = PrioritySampler( self._c.uniform_probability, max_size, self._rng, ) self._max_priority = 1e-16 def _on_add(self, transition: LaggedTimestep): if transition.extra is not None and 'priority' in transition.extra: priority = transition.extra['priority'] elif self._c.new_priority_mode == 'max': priority = self._max_priority elif self._c.new_priority_mode == 'mean': total_priority = self._sampler.total_priority() priority = total_priority / self.size() if priority == 0: priority = 1e-16 else: raise NotImplementedError() idx = self._idx_mapper.eid2idx(transition.eid) self._sampler.replace(idx, transition, priority=priority) def update_priorities(self, batch: Batch, priorities: np.ndarray): idxs = self._idx_mapper.eids2idxs(batch.eid) priorities = priorities ** self._c.priority_exponent self._sampler.update(idxs, batch, priorities=priorities) self._max_priority = max( self._c.max_decay * self._max_priority, priorities.max(), ) def delete_sample(self, eid: EID): idx = self._idx_mapper.eid2idx(eid) self._sampler.mask_sample(idx)
PypiClean
/alipay_sdk_python-3.6.740-py3-none-any.whl/alipay/aop/api/domain/AgWeatherWeeklyStats.py
import json from alipay.aop.api.constant.ParamConstants import * class AgWeatherWeeklyStats(object): def __init__(self): self._acc_precipitation = None self._acc_temperature = None self._create_date = None self._update_date = None @property def acc_precipitation(self): return self._acc_precipitation @acc_precipitation.setter def acc_precipitation(self, value): self._acc_precipitation = value @property def acc_temperature(self): return self._acc_temperature @acc_temperature.setter def acc_temperature(self, value): self._acc_temperature = value @property def create_date(self): return self._create_date @create_date.setter def create_date(self, value): self._create_date = value @property def update_date(self): return self._update_date @update_date.setter def update_date(self, value): self._update_date = value def to_alipay_dict(self): params = dict() if self.acc_precipitation: if hasattr(self.acc_precipitation, 'to_alipay_dict'): params['acc_precipitation'] = self.acc_precipitation.to_alipay_dict() else: params['acc_precipitation'] = self.acc_precipitation if self.acc_temperature: if hasattr(self.acc_temperature, 'to_alipay_dict'): params['acc_temperature'] = self.acc_temperature.to_alipay_dict() else: params['acc_temperature'] = self.acc_temperature if self.create_date: if hasattr(self.create_date, 'to_alipay_dict'): params['create_date'] = self.create_date.to_alipay_dict() else: params['create_date'] = self.create_date if self.update_date: if hasattr(self.update_date, 'to_alipay_dict'): params['update_date'] = self.update_date.to_alipay_dict() else: params['update_date'] = self.update_date return params @staticmethod def from_alipay_dict(d): if not d: return None o = AgWeatherWeeklyStats() if 'acc_precipitation' in d: o.acc_precipitation = d['acc_precipitation'] if 'acc_temperature' in d: o.acc_temperature = d['acc_temperature'] if 'create_date' in d: o.create_date = d['create_date'] if 'update_date' in d: o.update_date = d['update_date'] return o
PypiClean
/PyFunctional-1.4.3.tar.gz/PyFunctional-1.4.3/functional/io.py
import gzip import lzma import bz2 import io import builtins WRITE_MODE = "wt" class ReusableFile(object): """ Class which emulates the builtin file except that calling iter() on it will return separate iterators on different file handlers (which are automatically closed when iteration stops). This is useful for allowing a file object to be iterated over multiple times while keep evaluation lazy. """ # pylint: disable=too-many-instance-attributes def __init__( self, path, delimiter=None, mode="r", buffering=-1, encoding=None, errors=None, newline=None, ): """ Constructor arguments are passed directly to builtins.open :param path: passed to open :param delimiter: passed to open :param mode: passed to open :param buffering: passed to open :param encoding: passed to open :param errors: passed to open :param newline: passed to open :return: ReusableFile from the arguments """ self.path = path self.delimiter = delimiter self.mode = mode self.buffering = buffering self.encoding = encoding self.errors = errors self.newline = newline def __iter__(self): """ Returns a new iterator over the file using the arguments from the constructor. Each call to __iter__ returns a new iterator independent of all others :return: iterator over file """ # pylint: disable=no-member with builtins.open( self.path, mode=self.mode, buffering=self.buffering, encoding=self.encoding, errors=self.errors, newline=self.newline, ) as file_content: for line in file_content: yield line def read(self): # pylint: disable=no-member with builtins.open( self.path, mode=self.mode, buffering=self.buffering, encoding=self.encoding, errors=self.errors, newline=self.newline, ) as file_content: return file_content.read() class CompressedFile(ReusableFile): magic_bytes = None # pylint: disable=too-many-instance-attributes def __init__( self, path, delimiter=None, mode="rt", buffering=-1, compresslevel=9, encoding=None, errors=None, newline=None, ): super(CompressedFile, self).__init__( path, delimiter=delimiter, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) self.compresslevel = compresslevel @classmethod def is_compressed(cls, data): return data.startswith(cls.magic_bytes) class GZFile(CompressedFile): magic_bytes = b"\x1f\x8b\x08" # pylint: disable=too-many-instance-attributes def __init__( self, path, delimiter=None, mode="rt", buffering=-1, compresslevel=9, encoding=None, errors=None, newline=None, ): super(GZFile, self).__init__( path, delimiter=delimiter, mode=mode, buffering=buffering, compresslevel=compresslevel, encoding=encoding, errors=errors, newline=newline, ) def __iter__(self): if "t" in self.mode: with gzip.GzipFile(self.path, compresslevel=self.compresslevel) as gz_file: gz_file.read1 = gz_file.read with io.TextIOWrapper( gz_file, encoding=self.encoding, errors=self.errors, newline=self.newline, ) as file_content: for line in file_content: yield line else: with gzip.open( self.path, mode=self.mode, compresslevel=self.compresslevel ) as file_content: for line in file_content: yield line def read(self): with gzip.GzipFile(self.path, compresslevel=self.compresslevel) as gz_file: gz_file.read1 = gz_file.read with io.TextIOWrapper( gz_file, encoding=self.encoding, errors=self.errors, newline=self.newline, ) as file_content: return file_content.read() class BZ2File(CompressedFile): magic_bytes = b"\x42\x5a\x68" # pylint: disable=too-many-instance-attributes def __init__( self, path, delimiter=None, mode="rt", buffering=-1, compresslevel=9, encoding=None, errors=None, newline=None, ): super(BZ2File, self).__init__( path, delimiter=delimiter, mode=mode, buffering=buffering, compresslevel=compresslevel, encoding=encoding, errors=errors, newline=newline, ) def __iter__(self): with bz2.open( self.path, mode=self.mode, compresslevel=self.compresslevel, encoding=self.encoding, errors=self.errors, newline=self.newline, ) as file_content: for line in file_content: yield line def read(self): with bz2.open( self.path, mode=self.mode, compresslevel=self.compresslevel, encoding=self.encoding, errors=self.errors, newline=self.newline, ) as file_content: return file_content.read() class XZFile(CompressedFile): magic_bytes = b"\xfd\x37\x7a\x58\x5a\x00" # pylint: disable=too-many-instance-attributes def __init__( self, path, delimiter=None, mode="rt", buffering=-1, compresslevel=9, encoding=None, errors=None, newline=None, check=-1, preset=None, filters=None, format=None, ): super(XZFile, self).__init__( path, delimiter=delimiter, mode=mode, buffering=buffering, compresslevel=compresslevel, encoding=encoding, errors=errors, newline=newline, ) self.check = check self.preset = preset self.format = format self.filters = filters def __iter__(self): with lzma.open( self.path, mode=self.mode, format=self.format, check=self.check, preset=self.preset, filters=self.filters, encoding=self.encoding, errors=self.errors, newline=self.newline, ) as file_content: for line in file_content: yield line def read(self): with lzma.open( self.path, mode=self.mode, format=self.format, check=self.check, preset=self.preset, filters=self.filters, encoding=self.encoding, errors=self.errors, newline=self.newline, ) as file_content: return file_content.read() COMPRESSION_CLASSES = [GZFile, BZ2File, XZFile] N_COMPRESSION_CHECK_BYTES = max(len(cls.magic_bytes) for cls in COMPRESSION_CLASSES) def get_read_function(filename, disable_compression): if disable_compression: return ReusableFile else: with open(filename, "rb") as f: start_bytes = f.read(N_COMPRESSION_CHECK_BYTES) for cls in COMPRESSION_CLASSES: if cls.is_compressed(start_bytes): return cls return ReusableFile def universal_write_open( path, mode, buffering=-1, encoding=None, errors=None, newline=None, compresslevel=9, format=None, check=-1, preset=None, filters=None, compression=None, ): # pylint: disable=unexpected-keyword-arg,no-member if compression is None: return builtins.open( path, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) elif compression in ("gz", "gzip"): return gzip.open( path, mode=mode, compresslevel=compresslevel, errors=errors, newline=newline, encoding=encoding, ) elif compression in ("lzma", "xz"): return lzma.open( path, mode=mode, format=format, check=check, preset=preset, filters=filters, encoding=encoding, errors=errors, newline=newline, ) elif compression == "bz2": return bz2.open( path, mode=mode, compresslevel=compresslevel, encoding=encoding, errors=errors, newline=newline, ) else: raise ValueError( "compression must be None, gz, gzip, lzma, or xz and was {0}".format( compression ) )
PypiClean
/bee-django-crm-1.4.62.tar.gz/bee-django-crm-1.4.62/bee_django_crm/urls.py
__author__ = 'bee' from django.conf.urls import include, url from . import views urlpatterns = [ # ==Preuser== url(r'^test/$', views.test, name='test'), url(r'^migrate_to_fee/$', views.migrate_to_fee, name='migrate_to_fee'), url(r'^$', views.PreuserList.as_view(), name='index'), # url(r'^preuser/custom/reg/$', views.PreuserCustomReg.as_view(), name='preuser_custom_reg'), url(r'^preuser/list/$', views.PreuserList.as_view(), name='preuser_list'), url(r'^preuser/detail/(?P<pk>[0-9]+)$', views.PreuserDetail.as_view(), name='preuser_detail'), url(r'^preuser/add/$', views.PreuserCreate.as_view(), name='preuser_add'), url(r'^preuser/update/(?P<pk>[0-9]+)/$', views.update_preuser, name='preuser_update'), url(r'^preuser/delete/(?P<pk>[0-9]+)/$', views.PreuserDelete.as_view(), name='preuser_delete'), url(r'^preuser/reg/$', views.PreuserReg.as_view(), name='preuser_reg'), url(r'^preuser/reg/code', views.PreuserRegCode.as_view(), name='preuser_reg_code'), url(r'^preuser/reg_done/$', views.preuser_reg_done, name='preuser_reg_done'), url(r'^referral/preuser/list/$', views.ReferralPreuserList.as_view(), name='referral_preuser_list'), # 经由自己介绍的preuser列表 # api url(r'^preuser/api/get_name/$', views.get_name_with_user, name='get_name_with_user'), # =====reg code ===== url(r'^regcode/check/$', views.RegCodeCheck.as_view(), name='regcode_check'), # ==Source== url(r'^source/list/$', views.SourceList.as_view(), name='source_list'), url(r'^source/detail/(?P<pk>[0-9]+)/$', views.SourceDetail.as_view(), name='source_detail'), url(r'^source/update/(?P<pk>[0-9]+)/$', views.SourceUpdate.as_view(), name='source_update'), # 二维码图片地址 url(r'^qrcode/(?P<url>(.)+)$', views.qrcode_img, name='qrcode_img'), url(r'^source/qrcode/(?P<qrcode_type>(.)+)/(?P<source_id>[0-9]+)/(?P<landing_id>[0-9]+)/$', views.source_qrcode, name='source_qrcode'), url(r'^source/add/$', views.SourceCreate.as_view(), name='source_add'), # url(r'^source/update/(?P<pk>[0-9]+)/$', views.SourceUpdate.as_view(), name='source_update'), # url(r'^source/delete/(?P<pk>[0-9]+)/$', views.SourceDelete.as_view(), name='source_delete'), # 海报 url(r'^poster/detail/(?P<pk>[0-9]+)/$', views.PosterDetail.as_view(), name='poster_detail'), url(r'^poster/create/(?P<source_id>[0-9]+)/$', views.PosterCreate.as_view(), name='poster_create'), url(r'^poster/update/(?P<pk>[0-9]+)/$', views.PosterUpdate.as_view(), name='poster_update'), url(r'^poster/delete/(?P<pk>[0-9]+)/$', views.PosterDelete.as_view(), name='poster_delete'), # 用户海报页 url(r'^user/poster/$', views.UserPosterTemplate.as_view(), name='user_poster'), # 用户海报图片地址 url(r'^user/poster/image/(?P<poster_id>[0-9]+)/(?P<user_id>[0-9]+)/$', views.user_poster_image, name='user_poster_image'), # ==Preuser Track== url(r'^preuser/track/add/(?P<preuser_id>[0-9]+)/$', views.PreuserTrackCreate.as_view(), name='preuser_track_add'), # ==Application question== url(r'^application/question/list$', views.ApplicationQuestionList.as_view(), name='application_question_list'), url(r'^application/question/detail/(?P<pk>[0-9]+)$', views.ApplicationQuestionDetail.as_view(), name='application_question_detail'), url(r'^application/question/add/$', views.ApplicationQuestionCreate.as_view(), name='application_question_add'), url(r'^application/question/update/(?P<pk>[0-9]+)/$', views.ApplicationQuestionUpdate.as_view(), name='application_question_update'), url(r'^application/question/delete/(?P<pk>[0-9]+)/$', views.ApplicationQuestionDelete.as_view(), name='application_question_delete'), # ==Application option== url(r'^application/option/add/(?P<pk>[0-9]+)$', views.ApplicationOptionCreate.as_view(), name='application_option_add'), # ==Preuser Application== url(r'^preuser/application/add/(?P<preuser_id>[0-9]+)/$', views.PreuserApplicationView.as_view(), name='preuser_application_add'), url(r'^preuser/application/update_preuser/(?P<pk>[0-9]+)$', views.PreuserApplicationUpdate.as_view(), name='preuser_application_update_preuser'), url(r'^preuser/application/done/$', views.preuser_application_done, name='preuser_application_done'), # ==Contract== url(r'^contract/list/$', views.ContractList.as_view(), name='contract_list'), url(r'^contract/detail/(?P<pk>[0-9]+)/$', views.ContractDetail.as_view(), name='contract_detail'), url(r'^contract/add/$', views.ContractCreate.as_view(), name='contract_add'), url(r'^contract/update/(?P<pk>[0-9]+)/$', views.ContractUpdate.as_view(), name='contract_update'), url(r'^contract/update/agreement/(?P<pk>[0-9]+)/$', views.ContractUpdateAgreement.as_view(), name='contract_update_agreement'), url(r'^contract/delete/(?P<pk>[0-9]+)/$', views.ContractDelete.as_view(), name='contract_delete'), # ==Preuser Contract== url(r'^preuser/contract/list/(?P<preuser_id>[0-9]+)$', views.PreuserContractList.as_view(), name='preuser_contract_list'), # 所有学生的合同列表 # url(r'^preuser/contract/list/$', views.PreuserAllContractList.as_view(), # name='preuser_all_contract_list'), url(r'^preuser/contract/detail/(?P<pk>[0-9]+)$', views.PreuserContractDetail.as_view(), name='preuser_contract_detail'), url(r'^preuser/contract/agreement/(?P<preuser_contract_id>[0-9]+)$', views.PreuserContractAgreement.as_view(), name='preuser_contract_agreement'), url(r'^preuser/contract/add/(?P<preuser_id>[0-9]+)$', views.PreuserContractCreate.as_view(), name='preuser_contract_add'), url(r'^preuser/contract/update/(?P<pk>[0-9]+)$', views.PreuserContractUpdate.as_view(), name='preuser_contract_update'), url(r'^preuser/contract/delete/(?P<pk>[0-9]+)/$', views.PreuserContractDelete.as_view(), name='preuser_contract_delete'), # 缴费 url(r'^preuser/fee/list/(?P<preuser_id>[0-9]+)$', views.PreuserFeeList.as_view(), name='preuser_fee_list'), url(r'^preuser/fee/detail/(?P<pk>[0-9]+)$', views.PreuserFeeDetail.as_view(), name='preuser_fee_detail'), url(r'^preuser/fee/add/(?P<preuser_contract_id>[0-9]+)$', views.PreuserFeeCreate.as_view(), name='preuser_fee_add'), url(r'^preuser/fee/update/check/(?P<pk>[0-9]+)$', views.PreuserFeeUpdateCheck.as_view(), name='preuser_fee_update_check'), url(r'^preuser/fee/update/after/(?P<pk>[0-9]+)$', views.PreuserFeeUpdateAfter.as_view(), name='preuser_fee_update_after'), url(r'^preuser/fee/delete/(?P<pk>[0-9]+)/$', views.PreuserFeeDelete.as_view(), name='preuser_fee_delete'), # 课程卡用户创建 url(r'^code/create/$', views.CodeUserCreateTemplate.as_view(), name='code_user_create'), # =======微信小程序 ============ url(r'^wxapp/', include('bee_django_crm.wxapp_urls')), url(r'^campaign/record/list$', views.CampaignRecordList.as_view(), name='campaign_record_list'), url(r'^campaign/record/detail/(?P<pk>[0-9]+)$', views.CampaignRecordDetail.as_view(), name='campaign_record_detail'), url(r'^campaign/record/update/(?P<pk>[0-9]+)$', views.CampaignRecordUpdate.as_view(), name='campaign_record_update'), # 前台 url(r'^custom/reward/detail/(?P<pk>[0-9]+)', views.CustomRewardDetail.as_view(),name='custom_reward_detail'), url(r'^custom/campaign/record/list$', views.CustomCampaignRecordList.as_view(), name='custom_campaign_record_list'), ]
PypiClean
/kiara_plugin.tabular-0.4.29.tar.gz/kiara_plugin.tabular-0.4.29/README.md
[![PyPI status](https://img.shields.io/pypi/status/kiara_plugin.tabular.svg)](https://pypi.python.org/pypi/kiara_plugin.tabular/) [![PyPI version](https://img.shields.io/pypi/v/kiara_plugin.tabular.svg)](https://pypi.python.org/pypi/kiara_plugin.tabular/) [![PyPI pyversions](https://img.shields.io/pypi/pyversions/kiara_plugin.tabular.svg)](https://pypi.python.org/pypi/kiara_plugin.tabular/) [![Build Status](https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2FDHARPA-Project%2Fkiara%2Fbadge%3Fref%3Ddevelop&style=flat)](https://actions-badge.atrox.dev/DHARPA-Project/kiara_plugin.tabular/goto?ref=develop) [![Coverage Status](https://coveralls.io/repos/github/DHARPA-Project/kiara_plugin.tabular/badge.svg?branch=develop)](https://coveralls.io/github/DHARPA-Project/kiara_plugin.tabular?branch=develop) [![Code style](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black) # [**kiara**](https://dharpa.org/kiara.documentation) plugin: (tabular) kiara data-types and modules for working with tables and databases. - Documentation: [https://DHARPA-Project.github.io/kiara_plugin.tabular](https://DHARPA-Project.github.io/kiara_plugin.tabular) - Code: [https://github.com/DHARPA-Project/kiara_plugin.tabular](https://github.com/DHARPA-Project/kiara_plugin.tabular) - `kiara`: [https://dharpa.org/kiara.documentation](https://dharpa.org/kiara.documentation) ## Description TODO ## Development ### Requirements - Python (version >= 3.8) - pip, virtualenv - git - make (on Linux / Mac OS X -- optional) ### Prepare development environment If you only want to work on the modules, and not the core *Kiara* codebase, follow the instructions below. Otherwise, please check the notes on how to setup a *Kiara* development environment under (TODO). #### Linux & Mac OS X (using make) For *NIX-like operating system, setting up a development environment is relatively easy: ```console git clone https://github.com/DHARPA-Project/kiara_plugin.tabular.git cd kiara_plugin.tabular python3 -m venv .venv source .venv/bin/activate make init ``` #### Windows (or manual pip install) It's impossible to lay out all the ways Python can be installed on a machine, and virtual- (or conda-)envs can be created, so I'll assume you know how to do this. One simple way is to install the [Anaconda (individual edition)](https://docs.anaconda.com/anaconda/install/index.html), then use the Anaconda navigator to create a new environment, install the 'git' package in it (if your system does not already have it), and use the 'Open Terminal' option of that environment to start up a terminal that has that virtual-/conda-environment activated. Once that is done, `cd` into a directory where you want this project folder to live, and do: ```console # make sure your virtual env is activated!!! git clone https://github.com/DHARPA-Project/kiara_plugin.tabular.git cd kiara_plugin.tabular pip install --extra-index-url https://pypi.fury.io/dharpa/ -U -e .[all_dev] ``` #### Try it out After this is done, you should be able to run the included example module via: ```console kiara run tabular_example text_1="xxx" text_2="yyy" ... ... ``` ### Re-activate the development environment The 'prepare' step from above only has to be done once. After that, to re-enable your virtual environment, you'll need to navigate to the directory again (wherever that is, in your case), and run the ``source`` command from before again: ```console cd path/to/kiara_plugin.tabular source .venv/bin/activate # if it isn't activated already, for example by the Anaconda navigator kiara --help # or whatever, point is, kiara should be available for you now, ``` ### ``make`` targets (Linux & Mac OS X) - ``init``: init development project (install project & dev dependencies into virtualenv, as well as pre-commit git hook) - ``update-dependencies``: update development dependencies (mainly the core ``kiara`` package from git) - ``flake``: run *flake8* tests - ``mypy``: run mypy tests - ``test``: run unit tests - ``docs``: create static documentation pages (under ``build/site``) - ``serve-docs``: serve documentation pages (incl. auto-reload) for getting direct feedback when working on documentation - ``clean``: clean build directories For details (and other, minor targets), check the ``Makefile``. ### Running tests ``` console > make test # or > make coverage ``` ## Copyright & license This project is MPL v2.0 licensed, for the license text please check the [LICENSE](/LICENSE) file in this repository.
PypiClean
/advanced_telegram_bot-0.2.1-py3-none-any.whl/advancedbot/components/models/documentlink.py
from typing import Union import telegram as tg class DocumentLink: """ Model representing link to a downloadable document .......... Attrubutes ---------- name: str, public name of document (with extensinon) media_group_id: int, public telegram id of group of files mime_type: str, public MIME-type of document size: int, public size of document (in bytes) tg_document: telegram.Document, private `python-telegram-bot` class object providing document info tg_file: telegram.File, private `python-telegram-bot` class object providing download ability """ def __init__(self, tg_document: Union[tg.Document, tg.File], media_group_id: int = None) -> None: """ Constructor. ......... Arguments --------- tg_document: Union[telegram.Document, telegram.File], required `python-telegram-bot` class object providing document info media_group_id: int, optional (default is None) telegram id of group of files """ self.__tg_document: tg.Document = None self.__tg_file: tg.File = None self.name: str = None self.mime_type: str = None self.media_group_id: int = media_group_id if type(tg_document) == tg.Document: self.__tg_document = tg_document self.__tg_file = self.__tg_document.get_file() self.name = self.__tg_document.file_name self.mime_type = self.__tg_document.mime_type else: self.__tg_file = tg_document self.size: str = self.__tg_file.file_size def download(self, directory: str, name: str = None) -> str: """ Constructor. ......... Arguments --------- directory: str, required directory where to save downloaded file name: str, optional (default is None) name with which to save downloaded file if None, self name is given Returns ------ str path where document has been downloaded """ if name is None: name = self.name if not directory.endswith('/'): directory += '/' download_path: str = directory + name self.__tg_file.download(custom_path=download_path) return download_path
PypiClean
/nest-on-square-wheels-3.0.2.tar.gz/nest-on-square-wheels-3.0.2/data/pynest/examples/urbanczik_synapse_example.py
import numpy as np from matplotlib import pyplot as plt import nest def g_inh(amplitude, t_start, t_end): """ returns weights for the spike generator that drives the inhibitory somatic conductance. """ return lambda t: np.piecewise(t, [(t >= t_start) & (t < t_end)], [amplitude, 0.0]) def g_exc(amplitude, freq, offset, t_start, t_end): """ returns weights for the spike generator that drives the excitatory somatic conductance. """ return lambda t: np.piecewise(t, [(t >= t_start) & (t < t_end)], [lambda t: amplitude*np.sin(freq*t) + offset, 0.0]) def matching_potential(g_E, g_I, nrn_params): """ returns the matching potential as a function of the somatic conductances. """ E_E = nrn_params['soma']['E_ex'] E_I = nrn_params['soma']['E_in'] return (g_E*E_E + g_I*E_I) / (g_E + g_I) def V_w_star(V_w, nrn_params): """ returns the dendritic prediction of the somatic membrane potential. """ g_D = nrn_params['g_sp'] g_L = nrn_params['soma']['g_L'] E_L = nrn_params['soma']['E_L'] return (g_L*E_L + g_D*V_w) / (g_L + g_D) def phi(U, nrn_params): """ rate function of the soma """ phi_max = nrn_params['phi_max'] k = nrn_params['rate_slope'] beta = nrn_params['beta'] theta = nrn_params['theta'] return phi_max / (1.0 + k*np.exp(beta*(theta - U))) def h(U, nrn_params): """ derivative of the rate function phi """ k = nrn_params['rate_slope'] beta = nrn_params['beta'] theta = nrn_params['theta'] return 15.0*beta / (1.0 + np.exp(-beta*(theta - U)) / k) # simulation params n_pattern_rep = 100 # number of repetitions of the spike pattern pattern_duration = 200.0 t_start = 2.0*pattern_duration t_end = n_pattern_rep*pattern_duration + t_start simulation_time = t_end + 2.0*pattern_duration n_rep_total = int(np.around(simulation_time / pattern_duration)) resolution = 0.1 nest.SetKernelStatus({'resolution': resolution}) # neuron parameters nrn_model = 'pp_cond_exp_mc_urbanczik' nrn_params = { 't_ref': 3.0, # refractory period 'g_sp': 600.0, # soma-to-dendritic coupling conductance 'soma': { 'V_m': -70.0, # initial value of V_m 'C_m': 300.0, # capacitance of membrane 'E_L': -70.0, # resting potential 'g_L': 30.0, # somatic leak conductance 'E_ex': 0.0, # resting potential for exc input 'E_in': -75.0, # resting potential for inh input 'tau_syn_ex': 3.0, # time constant of exc conductance 'tau_syn_in': 3.0, # time constant of inh conductance }, 'dendritic': { 'V_m': -70.0, # initial value of V_m 'C_m': 300.0, # capacitance of membrane 'E_L': -70.0, # resting potential 'g_L': 30.0, # dendritic leak conductance 'tau_syn_ex': 3.0, # time constant of exc input current 'tau_syn_in': 3.0, # time constant of inh input current }, # parameters of rate function 'phi_max': 0.15, # max rate 'rate_slope': 0.5, # called 'k' in the paper 'beta': 1.0 / 3.0, 'theta': -55.0, } # synapse params syns = nest.GetDefaults(nrn_model)['receptor_types'] init_w = 0.3*nrn_params['dendritic']['C_m'] syn_params = { 'synapse_model': 'urbanczik_synapse_wr', 'receptor_type': syns['dendritic_exc'], 'tau_Delta': 100.0, # time constant of low pass filtering of the weight change 'eta': 0.17, # learning rate 'weight': init_w, 'Wmax': 4.5*nrn_params['dendritic']['C_m'], 'delay': resolution, } """ # in case you want to use the unitless quantities as in [1]: # neuron params: nrn_model = 'pp_cond_exp_mc_urbanczik' nrn_params = { 't_ref': 3.0, 'g_sp': 2.0, 'soma': { 'V_m': 0.0, 'C_m': 1.0, 'E_L': 0.0, 'g_L': 0.1, 'E_ex': 14.0 / 3.0, 'E_in': -1.0 / 3.0, 'tau_syn_ex': 3.0, 'tau_syn_in': 3.0, }, 'dendritic': { 'V_m': 0.0, 'C_m': 1.0, 'E_L': 0.0, 'g_L': 0.1, 'tau_syn_ex': 3.0, 'tau_syn_in': 3.0, }, # parameters of rate function 'phi_max': 0.15, 'rate_slope': 0.5, 'beta': 5.0, 'theta': 1.0, } # synapse params: syns = nest.GetDefaults(nrn_model)['receptor_types'] init_w = 0.2*nrn_params['dendritic']['g_L'] syn_params = { 'synapse_model': 'urbanczik_synapse_wr', 'receptor_type': syns['dendritic_exc'], 'tau_Delta': 100.0, 'eta': 0.0003 / (15.0*15.0*nrn_params['dendritic']['C_m']), 'weight': init_w, 'Wmax': 3.0*nrn_params['dendritic']['g_L'], 'delay': resolution, } """ # somatic input ampl_exc = 0.016*nrn_params['dendritic']['C_m'] offset = 0.018*nrn_params['dendritic']['C_m'] ampl_inh = 0.06*nrn_params['dendritic']['C_m'] freq = 2.0 / pattern_duration soma_exc_inp = g_exc(ampl_exc, 2.0*np.pi*freq, offset, t_start, t_end) soma_inh_inp = g_inh(ampl_inh, t_start, t_end) # dendritic input # create spike pattern by recording the spikes of a simulation of n_pg # poisson generators. The recorded spike times are then given to spike # generators. n_pg = 200 # number of poisson generators p_rate = 10.0 # rate in Hz pgs = nest.Create('poisson_generator', n=n_pg, params={'rate': p_rate}) prrt_nrns_pg = nest.Create('parrot_neuron', n_pg) nest.Connect(pgs, prrt_nrns_pg, {'rule': 'one_to_one'}) sr = nest.Create('spike_recorder', n_pg) nest.Connect(prrt_nrns_pg, sr, {'rule': 'one_to_one'}) nest.Simulate(pattern_duration) t_srs = [ssr.get('events', 'times') for ssr in sr] nest.ResetKernel() nest.SetKernelStatus({'resolution': resolution}) """ neuron and devices """ nrn = nest.Create(nrn_model, params=nrn_params) # poisson generators are connected to parrot neurons which are # connected to the mc neuron prrt_nrns = nest.Create('parrot_neuron', n_pg) # excitatory input to the soma spike_times_soma_inp = np.arange(resolution, simulation_time, resolution) sg_soma_exc = nest.Create('spike_generator', params={'spike_times': spike_times_soma_inp, 'spike_weights': soma_exc_inp(spike_times_soma_inp)}) # inhibitory input to the soma sg_soma_inh = nest.Create('spike_generator', params={'spike_times': spike_times_soma_inp, 'spike_weights': soma_inh_inp(spike_times_soma_inp)}) # excitatory input to the dendrite sg_prox = nest.Create('spike_generator', n=n_pg) # for recording all parameters of the Urbanczik neuron rqs = nest.GetDefaults(nrn_model)['recordables'] mm = nest.Create('multimeter', params={'record_from': rqs, 'interval': 0.1}) # for recoding the synaptic weights of the Urbanczik synapses wr = nest.Create('weight_recorder') # for recording the spiking of the soma sr_soma = nest.Create('spike_recorder') # create connections nest.Connect(sg_prox, prrt_nrns, {'rule': 'one_to_one'}) nest.CopyModel('urbanczik_synapse', 'urbanczik_synapse_wr', {'weight_recorder': wr[0]}) nest.Connect(prrt_nrns, nrn, syn_spec=syn_params) nest.Connect(mm, nrn, syn_spec={'delay': 0.1}) nest.Connect(sg_soma_exc, nrn, syn_spec={'receptor_type': syns['soma_exc'], 'weight': 10.0*resolution, 'delay': resolution}) nest.Connect(sg_soma_inh, nrn, syn_spec={'receptor_type': syns['soma_inh'], 'weight': 10.0*resolution, 'delay': resolution}) nest.Connect(nrn, sr_soma) # simulation divided into intervals of the pattern duration for i in np.arange(n_rep_total): # Set the spike times of the pattern for each spike generator for (sg, t_sp) in zip(sg_prox, t_srs): nest.SetStatus( sg, {'spike_times': np.array(t_sp) + i*pattern_duration}) nest.Simulate(pattern_duration) # read out devices # multimeter mm_events = mm.events t = mm_events['times'] V_s = mm_events['V_m.s'] V_d = mm_events['V_m.p'] V_d_star = V_w_star(V_d, nrn_params) g_in = mm_events['g_in.s'] g_ex = mm_events['g_ex.s'] I_ex = mm_events['I_ex.p'] I_in = mm_events['I_in.p'] U_M = matching_potential(g_ex, g_in, nrn_params) # weight recorder wr_events = wr.events senders = wr_events['senders'] targets = wr_events['targets'] weights = wr_events['weights'] times = wr_events['times'] # spike recorder spike_times_soma = sr_soma.get('events', 'times') # plot results fs = 22 lw = 2.5 fig1, (axA, axB, axC, axD) = plt.subplots(4, 1, sharex=True) # membrane potentials and matching potential axA.plot(t, V_s, lw=lw, label=r'$U$ (soma)', color='darkblue') axA.plot(t, V_d, lw=lw, label=r'$V_W$ (dendrit)', color='deepskyblue') axA.plot(t, V_d_star, lw=lw, label=r'$V_W^\ast$ (dendrit)', color='b', ls='--') axA.plot(t, U_M, lw=lw, label=r'$U_M$ (soma)', color='r', ls='-') axA.set_ylabel('membrane pot [mV]', fontsize=fs) axA.legend(fontsize=fs) # somatic conductances axB.plot(t, g_in, lw=lw, label=r'$g_I$', color='r') axB.plot(t, g_ex, lw=lw, label=r'$g_E$', color='coral') axB.set_ylabel('somatic cond', fontsize=fs) axB.legend(fontsize=fs) # dendritic currents axC.plot(t, I_ex, lw=lw, label=r'$I_ex$', color='r') axC.plot(t, I_in, lw=lw, label=r'$I_in$', color='coral') axC.set_ylabel('dend current', fontsize=fs) axC.legend(fontsize=fs) # rates axD.plot(t, phi(V_s, nrn_params), lw=lw, label=r'$\phi(U)$', color='darkblue') axD.plot(t, phi(V_d, nrn_params), lw=lw, label=r'$\phi(V_W)$', color='deepskyblue') axD.plot(t, phi(V_d_star, nrn_params), lw=lw, label=r'$\phi(V_W^\ast)$', color='b', ls='--') axD.plot(t, h(V_d_star, nrn_params), lw=lw, label=r'$h(V_W^\ast)$', color='g', ls='--') axD.plot(t, phi(V_s, nrn_params) - phi(V_d_star, nrn_params), lw=lw, label=r'$\phi(U) - \phi(V_W^\ast)$', color='r', ls='-') axD.plot(spike_times_soma, 0.0*np.ones(len(spike_times_soma)), 's', color='k', markersize=2) axD.legend(fontsize=fs) # synaptic weights fig2, axA = plt.subplots(1, 1) for i in np.arange(2, 200, 10): index = np.intersect1d(np.where(senders == i), np.where(targets == 1)) if not len(index) == 0: axA.step(times[index], weights[index], label='pg_{}'.format(i - 2), lw=lw) axA.set_title('Synaptic weights of Urbanczik synapses') axA.set_xlabel('time [ms]', fontsize=fs) axA.set_ylabel('weight', fontsize=fs) axA.legend(fontsize=fs - 4) plt.show()
PypiClean
/dronin-pyqtgraph-20160825.3.tar.gz/dronin-pyqtgraph-20160825.3/dronin_pyqtgraph/graphicsItems/PlotCurveItem.py
from ..Qt import QtGui, QtCore try: from ..Qt import QtOpenGL HAVE_OPENGL = True except: HAVE_OPENGL = False import numpy as np from .GraphicsObject import GraphicsObject from .. import functions as fn from ..Point import Point import struct, sys from .. import getConfigOption from .. import debug __all__ = ['PlotCurveItem'] class PlotCurveItem(GraphicsObject): """ Class representing a single plot curve. Instances of this class are created automatically as part of PlotDataItem; these rarely need to be instantiated directly. Features: - Fast data update - Fill under curve - Mouse interaction ==================== =============================================== **Signals:** sigPlotChanged(self) Emitted when the data being plotted has changed sigClicked(self) Emitted when the curve is clicked ==================== =============================================== """ sigPlotChanged = QtCore.Signal(object) sigClicked = QtCore.Signal(object) def __init__(self, *args, **kargs): """ Forwards all arguments to :func:`setData <pyqtgraph.PlotCurveItem.setData>`. Some extra arguments are accepted as well: ============== ======================================================= **Arguments:** parent The parent GraphicsObject (optional) clickable If True, the item will emit sigClicked when it is clicked on. Defaults to False. ============== ======================================================= """ GraphicsObject.__init__(self, kargs.get('parent', None)) self.clear() ## this is disastrous for performance. #self.setCacheMode(QtGui.QGraphicsItem.DeviceCoordinateCache) self.metaData = {} self.opts = { 'pen': fn.mkPen('w'), 'shadowPen': None, 'fillLevel': None, 'brush': None, 'stepMode': False, 'name': None, 'antialias': getConfigOption('antialias'), 'connect': 'all', 'mouseWidth': 8, # width of shape responding to mouse click } self.setClickable(kargs.get('clickable', False)) self.setData(*args, **kargs) def implements(self, interface=None): ints = ['plotData'] if interface is None: return ints return interface in ints def name(self): return self.opts.get('name', None) def setClickable(self, s, width=None): """Sets whether the item responds to mouse clicks. The *width* argument specifies the width in pixels orthogonal to the curve that will respond to a mouse click. """ self.clickable = s if width is not None: self.opts['mouseWidth'] = width self._mouseShape = None self._boundingRect = None def getData(self): return self.xData, self.yData def dataBounds(self, ax, frac=1.0, orthoRange=None): ## Need this to run as fast as possible. ## check cache first: cache = self._boundsCache[ax] if cache is not None and cache[0] == (frac, orthoRange): return cache[1] (x, y) = self.getData() if x is None or len(x) == 0: return (None, None) if ax == 0: d = x d2 = y elif ax == 1: d = y d2 = x ## If an orthogonal range is specified, mask the data now if orthoRange is not None: mask = (d2 >= orthoRange[0]) * (d2 <= orthoRange[1]) d = d[mask] #d2 = d2[mask] if len(d) == 0: return (None, None) ## Get min/max (or percentiles) of the requested data range if frac >= 1.0: # include complete data range # first try faster nanmin/max function, then cut out infs if needed. b = (np.nanmin(d), np.nanmax(d)) if any(np.isinf(b)): mask = np.isfinite(d) d = d[mask] b = (d.min(), d.max()) elif frac <= 0.0: raise Exception("Value for parameter 'frac' must be > 0. (got %s)" % str(frac)) else: # include a percentile of data range mask = np.isfinite(d) d = d[mask] b = np.percentile(d, [50 * (1 - frac), 50 * (1 + frac)]) ## adjust for fill level if ax == 1 and self.opts['fillLevel'] is not None: b = (min(b[0], self.opts['fillLevel']), max(b[1], self.opts['fillLevel'])) ## Add pen width only if it is non-cosmetic. pen = self.opts['pen'] spen = self.opts['shadowPen'] if not pen.isCosmetic(): b = (b[0] - pen.widthF()*0.7072, b[1] + pen.widthF()*0.7072) if spen is not None and not spen.isCosmetic() and spen.style() != QtCore.Qt.NoPen: b = (b[0] - spen.widthF()*0.7072, b[1] + spen.widthF()*0.7072) self._boundsCache[ax] = [(frac, orthoRange), b] return b def pixelPadding(self): pen = self.opts['pen'] spen = self.opts['shadowPen'] w = 0 if pen.isCosmetic(): w += pen.widthF()*0.7072 if spen is not None and spen.isCosmetic() and spen.style() != QtCore.Qt.NoPen: w = max(w, spen.widthF()*0.7072) if self.clickable: w = max(w, self.opts['mouseWidth']//2 + 1) return w def boundingRect(self): if self._boundingRect is None: (xmn, xmx) = self.dataBounds(ax=0) (ymn, ymx) = self.dataBounds(ax=1) if xmn is None: return QtCore.QRectF() px = py = 0.0 pxPad = self.pixelPadding() if pxPad > 0: # determine length of pixel in local x, y directions px, py = self.pixelVectors() try: px = 0 if px is None else px.length() except OverflowError: px = 0 try: py = 0 if py is None else py.length() except OverflowError: py = 0 # return bounds expanded by pixel size px *= pxPad py *= pxPad #px += self._maxSpotWidth * 0.5 #py += self._maxSpotWidth * 0.5 self._boundingRect = QtCore.QRectF(xmn-px, ymn-py, (2*px)+xmx-xmn, (2*py)+ymx-ymn) return self._boundingRect def viewTransformChanged(self): self.invalidateBounds() self.prepareGeometryChange() #def boundingRect(self): #if self._boundingRect is None: #(x, y) = self.getData() #if x is None or y is None or len(x) == 0 or len(y) == 0: #return QtCore.QRectF() #if self.opts['shadowPen'] is not None: #lineWidth = (max(self.opts['pen'].width(), self.opts['shadowPen'].width()) + 1) #else: #lineWidth = (self.opts['pen'].width()+1) #pixels = self.pixelVectors() #if pixels == (None, None): #pixels = [Point(0,0), Point(0,0)] #xmin = x.min() #xmax = x.max() #ymin = y.min() #ymax = y.max() #if self.opts['fillLevel'] is not None: #ymin = min(ymin, self.opts['fillLevel']) #ymax = max(ymax, self.opts['fillLevel']) #xmin -= pixels[0].x() * lineWidth #xmax += pixels[0].x() * lineWidth #ymin -= abs(pixels[1].y()) * lineWidth #ymax += abs(pixels[1].y()) * lineWidth #self._boundingRect = QtCore.QRectF(xmin, ymin, xmax-xmin, ymax-ymin) #return self._boundingRect def invalidateBounds(self): self._boundingRect = None self._boundsCache = [None, None] def setPen(self, *args, **kargs): """Set the pen used to draw the curve.""" self.opts['pen'] = fn.mkPen(*args, **kargs) self.invalidateBounds() self.update() def setShadowPen(self, *args, **kargs): """Set the shadow pen used to draw behind tyhe primary pen. This pen must have a larger width than the primary pen to be visible. """ self.opts['shadowPen'] = fn.mkPen(*args, **kargs) self.invalidateBounds() self.update() def setBrush(self, *args, **kargs): """Set the brush used when filling the area under the curve""" self.opts['brush'] = fn.mkBrush(*args, **kargs) self.invalidateBounds() self.update() def setFillLevel(self, level): """Set the level filled to when filling under the curve""" self.opts['fillLevel'] = level self.fillPath = None self.invalidateBounds() self.update() def setData(self, *args, **kargs): """ ============== ======================================================== **Arguments:** x, y (numpy arrays) Data to show pen Pen to use when drawing. Any single argument accepted by :func:`mkPen <pyqtgraph.mkPen>` is allowed. shadowPen Pen for drawing behind the primary pen. Usually this is used to emphasize the curve by providing a high-contrast border. Any single argument accepted by :func:`mkPen <pyqtgraph.mkPen>` is allowed. fillLevel (float or None) Fill the area 'under' the curve to *fillLevel* brush QBrush to use when filling. Any single argument accepted by :func:`mkBrush <pyqtgraph.mkBrush>` is allowed. antialias (bool) Whether to use antialiasing when drawing. This is disabled by default because it decreases performance. stepMode If True, two orthogonal lines are drawn for each sample as steps. This is commonly used when drawing histograms. Note that in this case, len(x) == len(y) + 1 connect Argument specifying how vertexes should be connected by line segments. Default is "all", indicating full connection. "pairs" causes only even-numbered segments to be drawn. "finite" causes segments to be omitted if they are attached to nan or inf values. For any other connectivity, specify an array of boolean values. ============== ======================================================== If non-keyword arguments are used, they will be interpreted as setData(y) for a single argument and setData(x, y) for two arguments. """ self.updateData(*args, **kargs) def updateData(self, *args, **kargs): profiler = debug.Profiler() if len(args) == 1: kargs['y'] = args[0] elif len(args) == 2: kargs['x'] = args[0] kargs['y'] = args[1] if 'y' not in kargs or kargs['y'] is None: kargs['y'] = np.array([]) if 'x' not in kargs or kargs['x'] is None: kargs['x'] = np.arange(len(kargs['y'])) for k in ['x', 'y']: data = kargs[k] if isinstance(data, list): data = np.array(data) kargs[k] = data if not isinstance(data, np.ndarray) or data.ndim > 1: raise Exception("Plot data must be 1D ndarray.") if 'complex' in str(data.dtype): raise Exception("Can not plot complex data types.") profiler("data checks") #self.setCacheMode(QtGui.QGraphicsItem.NoCache) ## Disabling and re-enabling the cache works around a bug in Qt 4.6 causing the cached results to display incorrectly ## Test this bug with test_PlotWidget and zoom in on the animated plot self.invalidateBounds() self.prepareGeometryChange() self.informViewBoundsChanged() self.yData = kargs['y'].view(np.ndarray) self.xData = kargs['x'].view(np.ndarray) profiler('copy') if 'stepMode' in kargs: self.opts['stepMode'] = kargs['stepMode'] if self.opts['stepMode'] is True: if len(self.xData) != len(self.yData)+1: ## allow difference of 1 for step mode plots raise Exception("len(X) must be len(Y)+1 since stepMode=True (got %s and %s)" % (self.xData.shape, self.yData.shape)) else: if self.xData.shape != self.yData.shape: ## allow difference of 1 for step mode plots raise Exception("X and Y arrays must be the same shape--got %s and %s." % (self.xData.shape, self.yData.shape)) self.path = None self.fillPath = None self._mouseShape = None #self.xDisp = self.yDisp = None if 'name' in kargs: self.opts['name'] = kargs['name'] if 'connect' in kargs: self.opts['connect'] = kargs['connect'] if 'pen' in kargs: self.setPen(kargs['pen']) if 'shadowPen' in kargs: self.setShadowPen(kargs['shadowPen']) if 'fillLevel' in kargs: self.setFillLevel(kargs['fillLevel']) if 'brush' in kargs: self.setBrush(kargs['brush']) if 'antialias' in kargs: self.opts['antialias'] = kargs['antialias'] profiler('set') self.update() profiler('update') self.sigPlotChanged.emit(self) profiler('emit') def generatePath(self, x, y): if self.opts['stepMode']: ## each value in the x/y arrays generates 2 points. x2 = np.empty((len(x),2), dtype=x.dtype) x2[:] = x[:,np.newaxis] if self.opts['fillLevel'] is None: x = x2.reshape(x2.size)[1:-1] y2 = np.empty((len(y),2), dtype=y.dtype) y2[:] = y[:,np.newaxis] y = y2.reshape(y2.size) else: ## If we have a fill level, add two extra points at either end x = x2.reshape(x2.size) y2 = np.empty((len(y)+2,2), dtype=y.dtype) y2[1:-1] = y[:,np.newaxis] y = y2.reshape(y2.size)[1:-1] y[0] = self.opts['fillLevel'] y[-1] = self.opts['fillLevel'] path = fn.arrayToQPath(x, y, connect=self.opts['connect']) return path def getPath(self): if self.path is None: x,y = self.getData() if x is None or len(x) == 0 or y is None or len(y) == 0: self.path = QtGui.QPainterPath() else: self.path = self.generatePath(*self.getData()) self.fillPath = None self._mouseShape = None return self.path @debug.warnOnException ## raising an exception here causes crash def paint(self, p, opt, widget): profiler = debug.Profiler() if self.xData is None or len(self.xData) == 0: return if HAVE_OPENGL and getConfigOption('enableExperimental') and isinstance(widget, QtOpenGL.QGLWidget): self.paintGL(p, opt, widget) return x = None y = None path = self.getPath() profiler('generate path') if self._exportOpts is not False: aa = self._exportOpts.get('antialias', True) else: aa = self.opts['antialias'] p.setRenderHint(p.Antialiasing, aa) if self.opts['brush'] is not None and self.opts['fillLevel'] is not None: if self.fillPath is None: if x is None: x,y = self.getData() p2 = QtGui.QPainterPath(self.path) p2.lineTo(x[-1], self.opts['fillLevel']) p2.lineTo(x[0], self.opts['fillLevel']) p2.lineTo(x[0], y[0]) p2.closeSubpath() self.fillPath = p2 profiler('generate fill path') p.fillPath(self.fillPath, self.opts['brush']) profiler('draw fill path') sp = fn.mkPen(self.opts['shadowPen']) cp = fn.mkPen(self.opts['pen']) ## Copy pens and apply alpha adjustment #sp = QtGui.QPen(self.opts['shadowPen']) #cp = QtGui.QPen(self.opts['pen']) #for pen in [sp, cp]: #if pen is None: #continue #c = pen.color() #c.setAlpha(c.alpha() * self.opts['alphaHint']) #pen.setColor(c) ##pen.setCosmetic(True) if sp is not None and sp.style() != QtCore.Qt.NoPen: p.setPen(sp) p.drawPath(path) p.setPen(cp) p.drawPath(path) profiler('drawPath') #print "Render hints:", int(p.renderHints()) #p.setPen(QtGui.QPen(QtGui.QColor(255,0,0))) #p.drawRect(self.boundingRect()) def paintGL(self, p, opt, widget): p.beginNativePainting() import OpenGL.GL as gl ## set clipping viewport view = self.getViewBox() if view is not None: rect = view.mapRectToItem(self, view.boundingRect()) #gl.glViewport(int(rect.x()), int(rect.y()), int(rect.width()), int(rect.height())) #gl.glTranslate(-rect.x(), -rect.y(), 0) gl.glEnable(gl.GL_STENCIL_TEST) gl.glColorMask(gl.GL_FALSE, gl.GL_FALSE, gl.GL_FALSE, gl.GL_FALSE) # disable drawing to frame buffer gl.glDepthMask(gl.GL_FALSE) # disable drawing to depth buffer gl.glStencilFunc(gl.GL_NEVER, 1, 0xFF) gl.glStencilOp(gl.GL_REPLACE, gl.GL_KEEP, gl.GL_KEEP) ## draw stencil pattern gl.glStencilMask(0xFF) gl.glClear(gl.GL_STENCIL_BUFFER_BIT) gl.glBegin(gl.GL_TRIANGLES) gl.glVertex2f(rect.x(), rect.y()) gl.glVertex2f(rect.x()+rect.width(), rect.y()) gl.glVertex2f(rect.x(), rect.y()+rect.height()) gl.glVertex2f(rect.x()+rect.width(), rect.y()+rect.height()) gl.glVertex2f(rect.x()+rect.width(), rect.y()) gl.glVertex2f(rect.x(), rect.y()+rect.height()) gl.glEnd() gl.glColorMask(gl.GL_TRUE, gl.GL_TRUE, gl.GL_TRUE, gl.GL_TRUE) gl.glDepthMask(gl.GL_TRUE) gl.glStencilMask(0x00) gl.glStencilFunc(gl.GL_EQUAL, 1, 0xFF) try: x, y = self.getData() pos = np.empty((len(x), 2)) pos[:,0] = x pos[:,1] = y gl.glEnableClientState(gl.GL_VERTEX_ARRAY) try: gl.glVertexPointerf(pos) pen = fn.mkPen(self.opts['pen']) color = pen.color() gl.glColor4f(color.red()/255., color.green()/255., color.blue()/255., color.alpha()/255.) width = pen.width() if pen.isCosmetic() and width < 1: width = 1 gl.glPointSize(width) gl.glEnable(gl.GL_LINE_SMOOTH) gl.glEnable(gl.GL_BLEND) gl.glBlendFunc(gl.GL_SRC_ALPHA, gl.GL_ONE_MINUS_SRC_ALPHA) gl.glHint(gl.GL_LINE_SMOOTH_HINT, gl.GL_NICEST) gl.glDrawArrays(gl.GL_LINE_STRIP, 0, pos.size / pos.shape[-1]) finally: gl.glDisableClientState(gl.GL_VERTEX_ARRAY) finally: p.endNativePainting() def clear(self): self.xData = None ## raw values self.yData = None self.xDisp = None ## display values (after log / fft) self.yDisp = None self.path = None self.fillPath = None self._mouseShape = None self._mouseBounds = None self._boundsCache = [None, None] #del self.xData, self.yData, self.xDisp, self.yDisp, self.path def mouseShape(self): """ Return a QPainterPath representing the clickable shape of the curve """ if self._mouseShape is None: view = self.getViewBox() if view is None: return QtGui.QPainterPath() stroker = QtGui.QPainterPathStroker() path = self.getPath() path = self.mapToItem(view, path) stroker.setWidth(self.opts['mouseWidth']) mousePath = stroker.createStroke(path) self._mouseShape = self.mapFromItem(view, mousePath) return self._mouseShape def mouseClickEvent(self, ev): if not self.clickable or ev.button() != QtCore.Qt.LeftButton: return if self.mouseShape().contains(ev.pos()): ev.accept() self.sigClicked.emit(self) class ROIPlotItem(PlotCurveItem): """Plot curve that monitors an ROI and image for changes to automatically replot.""" def __init__(self, roi, data, img, axes=(0,1), xVals=None, color=None): self.roi = roi self.roiData = data self.roiImg = img self.axes = axes self.xVals = xVals PlotCurveItem.__init__(self, self.getRoiData(), x=self.xVals, color=color) #roi.connect(roi, QtCore.SIGNAL('regionChanged'), self.roiChangedEvent) roi.sigRegionChanged.connect(self.roiChangedEvent) #self.roiChangedEvent() def getRoiData(self): d = self.roi.getArrayRegion(self.roiData, self.roiImg, axes=self.axes) if d is None: return while d.ndim > 1: d = d.mean(axis=1) return d def roiChangedEvent(self): d = self.getRoiData() self.updateData(d, self.xVals)
PypiClean
/msgraph_beta_sdk-1.0.0a9-py3-none-any.whl/msgraph/generated/groups/item/calendar_view/item/instances/item/tentatively_accept/tentatively_accept_request_builder.py
from __future__ import annotations from dataclasses import dataclass from kiota_abstractions.get_path_parameters import get_path_parameters from kiota_abstractions.method import Method from kiota_abstractions.request_adapter import RequestAdapter from kiota_abstractions.request_information import RequestInformation from kiota_abstractions.request_option import RequestOption from kiota_abstractions.response_handler import ResponseHandler from kiota_abstractions.serialization import Parsable, ParsableFactory from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING, Union if TYPE_CHECKING: from . import tentatively_accept_post_request_body from ........models.o_data_errors import o_data_error class TentativelyAcceptRequestBuilder(): """ Provides operations to call the tentativelyAccept method. """ def __init__(self,request_adapter: RequestAdapter, path_parameters: Optional[Union[Dict[str, Any], str]] = None) -> None: """ Instantiates a new TentativelyAcceptRequestBuilder and sets the default values. Args: pathParameters: The raw url or the Url template parameters for the request. requestAdapter: The request adapter to use to execute the requests. """ if path_parameters is None: raise Exception("path_parameters cannot be undefined") if request_adapter is None: raise Exception("request_adapter cannot be undefined") # Url template to use to build the URL for the current request builder self.url_template: str = "{+baseurl}/groups/{group%2Did}/calendarView/{event%2Did}/instances/{event%2Did1}/tentativelyAccept" url_tpl_params = get_path_parameters(path_parameters) self.path_parameters = url_tpl_params self.request_adapter = request_adapter async def post(self,body: Optional[tentatively_accept_post_request_body.TentativelyAcceptPostRequestBody] = None, request_configuration: Optional[TentativelyAcceptRequestBuilderPostRequestConfiguration] = None) -> None: """ Invoke action tentativelyAccept Args: body: The request body requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. """ if body is None: raise Exception("body cannot be undefined") request_info = self.to_post_request_information( body, request_configuration ) from ........models.o_data_errors import o_data_error error_mapping: Dict[str, ParsableFactory] = { "4XX": o_data_error.ODataError, "5XX": o_data_error.ODataError, } if not self.request_adapter: raise Exception("Http core is null") return await self.request_adapter.send_no_response_content_async(request_info, error_mapping) def to_post_request_information(self,body: Optional[tentatively_accept_post_request_body.TentativelyAcceptPostRequestBody] = None, request_configuration: Optional[TentativelyAcceptRequestBuilderPostRequestConfiguration] = None) -> RequestInformation: """ Invoke action tentativelyAccept Args: body: The request body requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. Returns: RequestInformation """ if body is None: raise Exception("body cannot be undefined") request_info = RequestInformation() request_info.url_template = self.url_template request_info.path_parameters = self.path_parameters request_info.http_method = Method.POST if request_configuration: request_info.add_request_headers(request_configuration.headers) request_info.add_request_options(request_configuration.options) request_info.set_content_from_parsable(self.request_adapter, "application/json", body) return request_info @dataclass class TentativelyAcceptRequestBuilderPostRequestConfiguration(): """ Configuration for the request such as headers, query parameters, and middleware options. """ # Request headers headers: Optional[Dict[str, Union[str, List[str]]]] = None # Request options options: Optional[List[RequestOption]] = None
PypiClean
/bob.bio.base-8.0.1b0.tar.gz/bob.bio.base-8.0.1b0/src/bob/bio/base/script/figure.py
import logging import math import click import matplotlib.pyplot as mpl from tabulate import tabulate import bob.measure import bob.measure.script.figure as measure_figure from bob.measure import plot LOGGER = logging.getLogger("bob.bio.base") class Roc(measure_figure.Roc): def __init__(self, ctx, scores, evaluation, func_load): super(Roc, self).__init__(ctx, scores, evaluation, func_load) self._x_label = ctx.meta.get("x_label") or "FMR" default_y_label = "1 - FNMR" if self._tpr else "FNMR" self._y_label = ctx.meta.get("y_label") or default_y_label class Det(measure_figure.Det): def __init__(self, ctx, scores, evaluation, func_load): super(Det, self).__init__(ctx, scores, evaluation, func_load) self._x_label = ctx.meta.get("x_label") or "FMR (%)" self._y_label = ctx.meta.get("y_label") or "FNMR (%)" class Cmc(measure_figure.PlotBase): """Handles the plotting of Cmc""" def __init__(self, ctx, scores, evaluation, func_load): super(Cmc, self).__init__(ctx, scores, evaluation, func_load) self._semilogx = ctx.meta.get("semilogx", True) self._titles = self._titles or ["CMC dev.", "CMC eval."] self._x_label = self._x_label or "Rank" self._y_label = self._y_label or "Identification rate" self._max_R = 0 def compute(self, idx, input_scores, input_names): """Plot CMC for dev and eval data using :py:func:`bob.measure.plot.cmc`""" mpl.figure(1) if self._eval: linestyle = "-" if not self._split else self._linestyles[idx] LOGGER.info("CMC dev. curve using %s", input_names[0]) rank = plot.cmc( input_scores[0], logx=self._semilogx, color=self._colors[idx], linestyle=linestyle, label=self._label("dev.", idx), ) self._max_R = max(rank, self._max_R) linestyle = "--" if self._split: mpl.figure(2) linestyle = self._linestyles[idx] LOGGER.info("CMC eval. curve using %s", input_names[1]) rank = plot.cmc( input_scores[1], logx=self._semilogx, color=self._colors[idx], linestyle=linestyle, label=self._label("eval.", idx), ) self._max_R = max(rank, self._max_R) else: LOGGER.info("CMC dev. curve using %s", input_names[0]) rank = plot.cmc( input_scores[0], logx=self._semilogx, color=self._colors[idx], linestyle=self._linestyles[idx], label=self._label("dev.", idx), ) self._max_R = max(rank, self._max_R) class Dir(measure_figure.PlotBase): """Handles the plotting of DIR curve""" def __init__(self, ctx, scores, evaluation, func_load): super(Dir, self).__init__(ctx, scores, evaluation, func_load) self._semilogx = ctx.meta.get("semilogx", True) self._rank = ctx.meta.get("rank", 1) self._titles = self._titles or ["DIR curve"] * 2 self._x_label = self._x_label or "False Positive Identification Rate" self._y_label = self._y_label or "True Positive Identification Rate" def compute(self, idx, input_scores, input_names): """Plot DIR for dev and eval data using :py:func:`bob.measure.plot.detection_identification_curve`""" mpl.figure(1) if self._eval: linestyle = "-" if not self._split else self._linestyles[idx] LOGGER.info("DIR dev. curve using %s", input_names[0]) plot.detection_identification_curve( input_scores[0], rank=self._rank, logx=self._semilogx, color=self._colors[idx], linestyle=linestyle, label=self._label("dev", idx), ) linestyle = "--" if self._split: mpl.figure(2) linestyle = self._linestyles[idx] LOGGER.info("DIR eval. curve using %s", input_names[1]) plot.detection_identification_curve( input_scores[1], rank=self._rank, logx=self._semilogx, color=self._colors[idx], linestyle=linestyle, label=self._label("eval", idx), ) else: LOGGER.info("DIR dev. curve using %s", input_names[0]) plot.detection_identification_curve( input_scores[0], rank=self._rank, logx=self._semilogx, color=self._colors[idx], linestyle=self._linestyles[idx], label=self._label("dev", idx), ) if self._min_dig is not None: mpl.xlim(xmin=math.pow(10, self._min_dig)) class Metrics(measure_figure.Metrics): """Compute metrics from score files""" def __init__( self, ctx, scores, evaluation, func_load, names=( "Failure to Acquire", "False Match Rate", "False Non Match Rate", "False Accept Rate", "False Reject Rate", "Half Total Error Rate", ), ): super(Metrics, self).__init__(ctx, scores, evaluation, func_load, names) def init_process(self): if self._criterion == "rr": self._thres = ( [None] * self.n_systems if self._thres is None else self._thres ) def compute(self, idx, input_scores, input_names): """Compute metrics for the given criteria""" title = self._legends[idx] if self._legends is not None else None headers = ["" or title, "Dev. %s" % input_names[0]] if self._eval and input_scores[1] is not None: headers.append("eval % s" % input_names[1]) if self._criterion == "rr": rr = bob.measure.recognition_rate(input_scores[0], self._thres[idx]) dev_rr = "%.1f%%" % (100 * rr) raws = [["RR", dev_rr]] if self._eval and input_scores[1] is not None: rr = bob.measure.recognition_rate( input_scores[1], self._thres[idx] ) eval_rr = "%.1f%%" % (100 * rr) raws[0].append(eval_rr) click.echo( tabulate(raws, headers, self._tablefmt), file=self.log_file ) elif self._criterion == "mindcf": if "cost" in self._ctx.meta: cost = self._ctx.meta.get("cost", 0.99) threshold = ( bob.measure.min_weighted_error_rate_threshold( input_scores[0][0], input_scores[0][1], cost ) if self._thres is None else self._thres[idx] ) if self._thres is None: click.echo( "[minDCF - Cost:%f] Threshold on Development set `%s`: %e" % (cost, input_names[0], threshold), file=self.log_file, ) else: click.echo( "[minDCF] User defined Threshold: %e" % threshold, file=self.log_file, ) # apply threshold to development set far, frr = bob.measure.farfrr( input_scores[0][0], input_scores[0][1], threshold ) dev_far_str = "%.1f%%" % (100 * far) dev_frr_str = "%.1f%%" % (100 * frr) dev_mindcf_str = "%.1f%%" % ( (cost * far + (1 - cost) * frr) * 100.0 ) raws = [ ["FAR", dev_far_str], ["FRR", dev_frr_str], ["minDCF", dev_mindcf_str], ] if self._eval and input_scores[1] is not None: # apply threshold to development set far, frr = bob.measure.farfrr( input_scores[1][0], input_scores[1][1], threshold ) eval_far_str = "%.1f%%" % (100 * far) eval_frr_str = "%.1f%%" % (100 * frr) eval_mindcf_str = "%.1f%%" % ( (cost * far + (1 - cost) * frr) * 100.0 ) raws[0].append(eval_far_str) raws[1].append(eval_frr_str) raws[2].append(eval_mindcf_str) click.echo( tabulate(raws, headers, self._tablefmt), file=self.log_file ) elif self._criterion == "cllr": cllr = bob.measure.calibration.cllr( input_scores[0][0], input_scores[0][1] ) min_cllr = bob.measure.calibration.min_cllr( input_scores[0][0], input_scores[0][1] ) dev_cllr_str = "%.1f%%" % cllr dev_min_cllr_str = "%.1f%%" % min_cllr raws = [["Cllr", dev_cllr_str], ["minCllr", dev_min_cllr_str]] if self._eval and input_scores[1] is not None: cllr = bob.measure.calibration.cllr( input_scores[1][0], input_scores[1][1] ) min_cllr = bob.measure.calibration.min_cllr( input_scores[1][0], input_scores[1][1] ) eval_cllr_str = "%.1f%%" % cllr eval_min_cllr_str = "%.1f%%" % min_cllr raws[0].append(eval_cllr_str) raws[1].append(eval_min_cllr_str) click.echo( tabulate(raws, headers, self._tablefmt), file=self.log_file ) else: title = self._legends[idx] if self._legends is not None else None all_metrics = self._get_all_metrics(idx, input_scores, input_names) headers = [" " or title, "Development"] rows = [ [self.names[0], all_metrics[0][0]], [self.names[1], all_metrics[0][1]], [self.names[2], all_metrics[0][2]], [self.names[3], all_metrics[0][3]], [self.names[4], all_metrics[0][4]], [self.names[5], all_metrics[0][5]], ] if self._eval: # computes statistics for the eval set based on the threshold a # priori headers.append("Evaluation") rows[0].append(all_metrics[1][0]) rows[1].append(all_metrics[1][1]) rows[2].append(all_metrics[1][2]) rows[3].append(all_metrics[1][3]) rows[4].append(all_metrics[1][4]) rows[5].append(all_metrics[1][5]) click.echo( tabulate(rows, headers, self._tablefmt), file=self.log_file ) class MultiMetrics(measure_figure.MultiMetrics): """Compute metrics from score files""" def __init__(self, ctx, scores, evaluation, func_load): super(MultiMetrics, self).__init__( ctx, scores, evaluation, func_load, names=( "Failure to Acquire", "False Match Rate", "False Non Match Rate", "False Accept Rate", "False Reject Rate", "Half Total Error Rate", ), ) class Hist(measure_figure.Hist): """Histograms for biometric scores""" def _setup_hist(self, neg, pos): self._title_base = "Biometric scores" self._density_hist(pos[0], n=0, label="Genuines", alpha=0.9, color="C2") self._density_hist( neg[0], n=1, label="Zero-effort impostors", alpha=0.8, color="C0" )
PypiClean
/collective.blog.portlets-1.6.zip/collective.blog.portlets-1.6/collective/blog/portlets/archive.py
from Products.CMFCore.utils import getToolByName from Products.CMFPlone.i18nl10n import monthname_msgid from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from collective.blog.portlets import _ from collective.blog.portlets.utils import find_assignment_context from plone.app.portlets.portlets import base from plone.portlets.interfaces import IPortletDataProvider from zope import schema from zope.formlib import form from zope.interface import implements class IArchivePortlet(IPortletDataProvider): """A portlet It inherits from IPortletDataProvider because for this portlet, the data that is being rendered and the portlet assignment itself are the same. """ header = schema.TextLine(title=_(u'Title of the portlet'), description=_(u'The text that will be shown as the title of the portlet'), required=False) archive_view = schema.TextLine(title=_(u"Archive view"), description=_(u"The name of the archive view"), default=u'blog_view', required=True) reversed = schema.Bool(title=_(u"Reverse year and month list"), description=_(u"When checked, the first shown year will be the current one, and then the previous ones. The same applies to the months"), default=False, ) depth = schema.Int(title=_(u"Sub-folder depth"), description=_(u"To include blog posts in subfolders, set this to the depth of the subfolders. 0 means no subfolders"), default=0, min=0, # Setting this to 1000000 or similar will slow down the site, # so let's prevent silly values. max=100, ) class Assignment(base.Assignment): """Portlet assignment. This is what is actually managed through the portlets UI and associated with columns. """ implements(IArchivePortlet) header = u'Monthly archive' archive_view = u'blog_view' reversed = False depth = 0 def __init__(self, header=u'Monthly archive', archive_view=u'blog_view', reversed=False, depth=0): self.header = header self.archive_view = archive_view self.reversed = reversed @property def title(self): """This property is used to give the title of the portlet in the "manage portlets" screen. """ return _("Monthly archive") class Renderer(base.Renderer): """Portlet renderer. This is registered in configure.zcml. The referenced page template is rendered, and the implicit variable 'view' will refer to an instance of this class. Other methods can be added and referenced in the template. """ render = ViewPageTemplateFile('archive.pt') def update(self): self._counts = {} catalog = getToolByName(self.context, 'portal_catalog') # Get the path of where the portlet is created. That's the blog. assignment_context = find_assignment_context(self.data, self.context) if assignment_context is None: assignment_context = self.context self.folder_path = '/'.join(assignment_context.getPhysicalPath()) self.folder_url = assignment_context.absolute_url() # Find the blog types: portal_properties = getToolByName(self.context, 'portal_properties', None) site_properties = getattr(portal_properties, 'site_properties', None) portal_types = site_properties.getProperty('blog_types', None) if portal_types == None: portal_types = ('Document', 'News Item', 'File') # Because of ExtendedPathIndex being braindead it's tricky (read: # impossible) to get all subobjects for all folders, without also # getting the folder. So we set a specific depth. brains = catalog(path={'query': self.folder_path, 'depth': self.data.depth + 1}, portal_type=portal_types) if not brains: return # Count the number of posts per month: allmonths = {} for brain in brains: effective = brain.effective year = str(effective.year()) if year == '1000': continue # No effective date == not published month = str(effective.month()) count = allmonths.setdefault((year, month), 0) allmonths[(year, month)] = count +1 for year, month in allmonths: year = str(year) month = str(month) # Make sure there is a year in the _counts dict: self._counts.setdefault(year, {}) # Add this month: months = self._counts[year] months[month] = allmonths[year, month] def years(self): items = sorted(self._counts.keys()) if self.data.reversed: return reversed(items) return items def months(self, year): # sort as integers, return as strings _months = sorted([int(m) for m in self._counts[year].keys()]) items = [str(m) for m in _months] if self.data.reversed: return reversed(items) return items def monthname(self, month): return monthname_msgid(month) def count(self, year, month): return self._counts[year][month] def archive_url(self, year, month): return '%s/%s?year=%s&month=%s' % (self.folder_url, self.data.archive_view, year, month) class AddForm(base.AddForm): """Portlet add form. This is registered in configure.zcml. The form_fields variable tells zope.formlib which fields to display. The create() method actually constructs the assignment that is being added. """ form_fields = form.Fields(IArchivePortlet) def create(self, data): return Assignment(**data) class EditForm(base.EditForm): """Portlet edit form. This is registered with configure.zcml. The form_fields variable tells zope.formlib which fields to display. """ form_fields = form.Fields(IArchivePortlet)
PypiClean
/hvl_ccb-0.14.1.tar.gz/hvl_ccb-0.14.1/hvl_ccb/dev/visa.py
import logging import re from datetime import datetime, timedelta from time import sleep from typing import Optional, Union from bitstring import BitArray from hvl_ccb.comm.visa import VisaCommunication, VisaCommunicationConfig from hvl_ccb.configuration import configdataclass from hvl_ccb.dev import SingleCommDevice from hvl_ccb.utils.poller import Poller from hvl_ccb.utils.typing import Number logger = logging.getLogger(__name__) @configdataclass class _VisaDeviceConfigBase: """ Required VisaDeviceConfig keys, separated from the default ones to enable config extension by inheritance with required keys. """ # NOTE: this class is unnecessary as there are no keys here; it's coded here only # to illustrate a solution; for detailed explanations of the issue see: # https://stackoverflow.com/questions/51575931/class-inheritance-in-python-3-7-dataclasses/ pass @configdataclass class _VisaDeviceConfigDefaultsBase: spoll_interval: Number = 0.5 """ Seconds to wait between status polling. """ spoll_start_delay: Number = 2 """ Seconds to delay the start of status polling. """ def clean_values(self): if self.spoll_interval <= 0: raise ValueError("Polling interval needs to be positive.") if self.spoll_start_delay < 0: raise ValueError("Polling start delay needs to be non-negative.") @configdataclass class VisaDeviceConfig(_VisaDeviceConfigDefaultsBase, _VisaDeviceConfigBase): """ Configdataclass for a VISA device. """ pass class VisaDevice(SingleCommDevice): """ Device communicating over the VISA protocol using VisaCommunication. """ def __init__( self, com: Union[VisaCommunication, VisaCommunicationConfig, dict], dev_config: Union[VisaDeviceConfig, dict, None] = None, ) -> None: super().__init__(com, dev_config) self._spoll_thread: Union[Poller, None] = None self._notify_operation_complete: bool = False @staticmethod def default_com_cls() -> type[VisaCommunication]: """ Return the default communication protocol for this device type, which is VisaCommunication. :return: the VisaCommunication class """ return VisaCommunication @staticmethod def config_cls(): return VisaDeviceConfig def get_identification(self) -> str: """ Queries `"*IDN?"` and returns the identification string of the connected device. :return: the identification string of the connected device """ return self.com.query("*IDN?") def start(self) -> None: """ Start the VisaDevice. Sets up the status poller and starts it. :return: """ super().start() self._spoll_thread = Poller( polling_interval_sec=self.config.spoll_interval, polling_delay_sec=self.config.spoll_start_delay, spoll_handler=self.spoll_handler, ) self._spoll_thread.start_polling() def stop(self) -> None: """ Stop the VisaDevice. Stops the polling thread and closes the communication protocol. :return: """ if self._spoll_thread: self._spoll_thread.stop_polling() super().stop() def spoll_handler(self): """ Reads the status byte and decodes it. The status byte STB is defined in IEEE 488.2. It provides a rough overview of the instrument status. :return: """ stb = self.com.spoll() if stb: bits = BitArray(length=8, int=stb) bits.reverse() if bits[0]: # has no meaning, always zero pass if bits[1]: # has no meaning, always zero pass if bits[2]: # error queue contains new error logger.debug(f"Error bit set in STB: {stb}") self.get_error_queue() if bits[3]: # Questionable Status QUES summary bit logger.debug(f"Questionable status bit set in STB: {stb}") if bits[4]: # Output buffer holds data (RTO 1024), MAV bit (Message available) pass if bits[5]: # Event status byte ESB, summary of ESR register (RTO 1024) logger.debug(f"Operation status bit set in STB: {stb}") # read event status register esr = int(self.com.query("*ESR?")) esr_bits = BitArray(length=8, int=esr) esr_bits.reverse() if esr_bits[0]: # Operation complete bit set. This bit is set on receipt of the # command *OPC exactly when all previous commands have been # executed. logger.debug(f"Operation complete bit set in ESR: {esr}") self._notify_operation_complete = True if bits[6]: # RQS/MSS bit (RTO 1024) pass if bits[7]: # Operation Status OPER summary bit pass def wait_operation_complete(self, timeout: Optional[float] = None) -> bool: """ Waits for a operation complete event. Returns after timeout [s] has expired or the operation complete event has been caught. :param timeout: Time in seconds to wait for the event; `None` for no timeout. :return: True, if OPC event is caught, False if timeout expired """ # reset event bit self._notify_operation_complete = False # compute timeout timeout_time = datetime.now() + timedelta(seconds=(timeout or 0)) # wait until event is caught while not self._notify_operation_complete: sleep(0.01) if timeout is not None and datetime.now() > timeout_time: break # if event was caught, return true if self._notify_operation_complete: self._notify_operation_complete = False return True # if timeout expired, return false return False def get_error_queue(self) -> str: """ Read out error queue and logs the error. :return: Error string """ err_string = self.com.query("SYSTem:ERRor:ALL?") for error in re.findall("[^,]+,[^,]+", err_string): logger.error(f"VISA Error from Device: {error}") return err_string def reset(self) -> None: """ Send `"*RST"` and `"*CLS"` to the device. Typically sets a defined state. """ self.com.write("*RST", "*CLS")
PypiClean
/thrillington-0.0.2a1-py3-none-any.whl/ram/modules.py
from typing import NamedTuple import numpy as np import tensorflow as tf class Glimpse(NamedTuple): """represents output of GlimpseSensor""" rho: tf.Tensor fixations: np.ndarray class GlimpseSensor(tf.keras.Model): """glimpse sensor, returns retina-like representation rho of a region of an image x, given a location l to 'fixate'. """ def __init__(self, g_w=8, k=3, s=2): """__init__ for GlimpseSensor Parameters ---------- g_w : int length of one side of square patches in glimpses extracted by glimpse sensor. Default is 8. k : int number of patches that the retina encoding rho(x,l) extracts at location l from image x. Default is 3. s : int scaling factor, controls size of successive patches. Default is 2. """ super(GlimpseSensor, self).__init__() self.g_w = g_w self.k = k self.s = s def glimpse(self, images, loc_normd): """take a "glimpse" of a batch of images. Returns retina-like representation rho(img, loc) consisting of patches from each image. Parameters ---------- images : tf.Tensor with shape (B, H, W, C). Minibatch of images. loc_normd : tf.Tensor with shape (B, 2). Location of retina "fixation", in normalized co-ordinates where center of image is (0,0), upper left corner is (-1,-1), and lower right corner is (1,1). Returns ------- Glimpse : NamedTuple typed tuple, with following fields rho : tf.Tensor with shape (B, k, g_w, g_w, retina-like representation of k patches of increasing size and decreasing resolution, centered around location loc within image img fixations: np.ndarray locations where glimpse sensor "fixates" converted from normalized values in loc_normd to pixels in co-ordinate plane of input images. top_left_corners: np.ndarray calculated top left corners of extracted glimpse 'patches'. Useful for plotting the glimpses. """ batch_size, img_H, img_W, C = images.shape.as_list() # convert image co-ordinates from normalized to co-ordinates within # the specific size of the images # first convert location to range from 0 to 1 # and then multiply by number of pixels - 1 (because of zero indexing) loc_0 = ((loc_normd[:, 0] + 1) / 2) * (img_H - 1) loc_0 = tf.cast(tf.round(loc_0), tf.int32) loc_1 = ((loc_normd[:, 1] + 1) / 2) * (img_W - 1) loc_1 = tf.cast(tf.round(loc_1), tf.int32) fixations = tf.stack([loc_0, loc_1], axis=1) rho = [] for ind in range(batch_size): img = images[ind, :, :, :] patches = [] for patch_num in range(self.k): size = self.g_w * (self.s ** patch_num) # pad image with zeros # (in case patch at current location extends beyond edges of image) img_padded = tf.image.pad_to_bounding_box(img, offset_height=size, offset_width=size, target_height=(size * 2) + img_H, target_width=(size * 2) + img_W) # compute top left corner of patch. # note we add 'size' to compensate for padding patch_x = fixations[ind, 0] - (size // 2) + size patch_y = fixations[ind, 1] - (size // 2) + size patch = tf.slice(img_padded, begin=tf.stack([patch_x, patch_y, 0]), size=tf.stack([size, size, C]) ) if size == self.g_w: # convert to float32 to be consistent with # tensors output after resizing patch = tf.cast(patch, dtype=tf.float32) else: # resize cropped image to (size x size) patch = tf.image.resize_images(patch, size=(self.g_w, self.g_w)) patches.append(patch) rho.append(patches) rho = tf.stack(rho) fixations = fixations.numpy() return Glimpse(rho, fixations) class GlimpseNetwork(tf.keras.Model): """Network that maps retina representation rho and location loc into a hidden space; defines a trainable bandwidth-limited sensor that produces the glimpse representation g_t Attributes ---------- self.forward : forward pass through network, accepts image and location tensors and returns tensor of glimpse representations g_t """ def __init__(self, g_w=8, k=3, s=2, h_g_units=128, h_l_units=128, h_gt_units=256): """__init__ function for GlimpseNetwork Parameters ---------- g_w : int size of square patches extracted by glimpse sensor. k : int number of patches to extract per glimpse. s : int scaling factor that controls size of successive patches. h_g_units : int number of units in fully-connected layer for retina-like representation rho. Default is 128. h_l_units : int number of units in fully-connected layer for location l. Default is 128. h_gt_units : int number of units in fully-connected layer for output g_t. This must be equal to the number of hidden units in the core network. Default is 256. """ super(GlimpseNetwork, self).__init__() self.g_w = g_w self.k = k self.s = s self.h_g_units = h_g_units self.h_l_units = h_l_units self.h_gt_units = h_gt_units self.glimpse_sensor = GlimpseSensor(g_w=g_w, k=k, s=s) self.theta_g_0 = tf.keras.layers.Dense(units=h_g_units, activation='relu') self.theta_g_1 = tf.keras.layers.Dense(units=h_l_units, activation='relu') self.linear_h_g = tf.keras.layers.Dense(units=h_g_units, activation='linear') self.linear_h_l = tf.keras.layers.Dense(units=h_l_units, activation='linear') self.theta_g_2 = tf.keras.layers.Dense(units=h_gt_units, activation='relu') def forward(self, images, loc): """computes forward pass through GlimpseNetwork Parameters ---------- images : tf.Tensor with shape (batch size, height, width, channels). Minibatch of images. loc : tf.Tensor with shape (batch size, 2). Location of retina "fixation", in normalized co-ordinates where center of image is (0,0), upper left corner is (-1,-1), and lower right corner is (1,1). Returns ------- Glimpse : NamedTuple typed tuple, with following fields rho : tf.Tensor with shape (batch size, number of glimpses, glimpse size, glimpse size, channels); Glimpse representation extracted by GlimpseSensor. fixations: np.ndarray locations where glimpse sensor "fixates" converted from normalized values in loc_normd to pixels in co-ordinate plane of input images. top_left_corners: np.ndarray calculated top left corners of extracted glimpse 'patches'. Useful for plotting the glimpses. g_t : tf.Tensor glimpse representation, output by glimpse network """ glimpse = self.glimpse_sensor.glimpse(images, loc) batch_size, k, g, _, channels = glimpse.rho.shape.as_list() rho_vec = tf.reshape(glimpse.rho, shape=(batch_size, k * g * g * channels)) h_g = self.theta_g_0(rho_vec) h_l = self.theta_g_1(loc) g_t = self.theta_g_2( self.linear_h_g(h_g) + self.linear_h_l(h_l) ) return glimpse, g_t class CoreNetwork(tf.keras.Model): """RNN that maintains an internal state which summarizes information extracted from the history of past observations. The external input to the network is the glimpse feature vector g_t. The output h_t = f_h(h_t_minus_1, g_t; theta_h) where theta_h is parameterized by the layers listed below in Attributes. Attributes ---------- self.linear_h_t_minus_1 : linear layer of units that accepts hidden state from the last time step as an input self.linear_g_t : linear layer of units that accepts the glimpse feature vector g_t as an input So h_t = f_h(h_t_minus_1, g_t) = Rect(Linear(h_t_minus_1) + Linear(g_t)) """ def __init__(self, hidden_size=256): """__init__ function for CoreNetwork. Note that in [1]_ the network as implemented here is only used for classification; an LSTM was used for dynamic environments. Parameters ---------- hidden_size : int Number of units in hidden layers that maintain internal state. Default is 256. """ super(CoreNetwork, self).__init__() self.hidden_size = hidden_size self.linear_h_t_minus_1 = tf.keras.layers.Dense(units=hidden_size) self.linear_g_t = tf.keras.layers.Dense(units=hidden_size) def forward(self, g_t, h_t_minus_1): """computes forward pass through CoreNetwork Parameters ---------- g_t : tf.Tensor glimpse feature vector h_t_minus_1 : tf.Tensor output of CoreNetwork from previous time step Returns ------- h_t : tf.Tensor = f_h(h_t_minus_1, g_t) = Rect(Linear(h_t_minus_1) + Linear(g_t)) = tf.relu(self.linear_g_t(g_t) + self.linear_h_t_minus_1(h_t_minus_1)) """ h_t = self.linear_g_t(g_t) + self.linear_h_t_minus_1(h_t_minus_1) h_t = tf.nn.relu(h_t) return h_t class LocationNetwork(tf.keras.Model): """Uses internal state `h_t` of core network to produce location coordinates `l_t` for the next time step. The location network is a fully-connected layer that parameterizes a normal distribution with mean mu and a constant standard deviation sigma (specified by the user). Locations are drawn from this distribution on each time step, by passing the hidden state h_t through the location network l_t. Attributes ---------- self.forward """ def __init__(self, loc_std, output_size=2): """__init__ for LocationNetwork Parameters ---------- loc_std : float standard deviation of normal distribution from which location co-ordinates are drawn. output_size : int dimensionality of output of fully connected layer in location network. Default is 2, i.e. x and y co-ordinates of a location. """ super(LocationNetwork, self).__init__() self.output_size = output_size self.loc_std = loc_std self.fc = tf.keras.layers.Dense(units=output_size, activation='tanh') def forward(self, h_t): """forward pass through LocationNetwork. Ues location policy to compute l_t, the location to glimpse next, given internal state `h_t` of core network. Passes h_t through a fully connected layer with tan_h activation to clamp the output between [-1, 1]. This results in mu of distribution with standard deviation self.loc_std. The location l_t is then drawn from this distribution then returned. Parameters ---------- h_t : tf.Tensor with shape (B, num_hidden). Output of core network. Returns ------- mu : tf.Tensor with shape (B, 2). mu parameter for normal distributions from which l_t will be drawn. Since l_t is a location with x and y co-ordinates, there is one value of mu for each distribution (the one that represents the x co-ordinate and the one that represents the y co-ordinate). l_t : tf.Tensor with shape (B, 2) """ mu = self.fc(h_t) y = tf.random_normal(mu.get_shape(), mean=mu, stddev=self.loc_std) # run through tanh again to bound between -1 and 1 l_t = tf.tanh(y) return mu, l_t class ActionNetwork(tf.keras.Model): """Uses internal state `h_t` of CoreNetwork to produce final output classification. Feeds hidden state `h_t` through a fully-connected layer followed by a softmax to yield the vector of output probabilities over the possible classes. """ def __init__(self, num_actions): super(ActionNetwork, self).__init__() self.num_actions = num_actions self.fc = tf.keras.layers.Dense(units=num_actions, activation='linear') def forward(self, h_t): """forward pass through ActionNetwork Returns ------- a_t : tf.Tensor "actions" to take, currently just classification """ a_t = self.fc(h_t) return a_t class BaselineNetwork(tf.keras.Model): """Provides estimate of (state) value that does not depend on actions taken. Used during optimization as a baseline, subtracted from return on each time step, to reduce variance of the policy function gradient. Attributes ---------- self.fc : tf.keras.layers.Dense fully-connected layer with Rectified Linear activation """ def __init__(self, output_size=1): """__init__ for BaselineNetwork Parameters ---------- output_size : int Number of units in fully-connected layer of BaselineNetwork. Should be a scalar, since it is the estimate of total return from the current state. Default is 1. """ super(BaselineNetwork, self).__init__() self.output_size = output_size self.fc = tf.keras.layers.Dense(units=output_size, activation='relu') def forward(self, h_t): """forward pass through BaselineNetwork. Returns ------- b_t : tf.Tensor baseline network output with size (batch, self.output_size) """ b_t = self.fc(h_t) return b_t
PypiClean
/FreePyBX-1.0-RC1.tar.gz/FreePyBX-1.0-RC1/freepybx/public/js/dojox/cometd/callbackPollTransport.js.uncompressed.js
define("dojox/cometd/callbackPollTransport", ["dijit","dojo","dojox","dojo/require!dojox/cometd/_base,dojox/cometd/longPollTransport,dojo/io/script"], function(dijit,dojo,dojox){ dojo.provide("dojox.cometd.callbackPollTransport"); dojo.require("dojox.cometd._base"); dojo.require("dojox.cometd.longPollTransport"); dojo.require("dojo.io.script"); dojox.cometd.callbackPollTransport = new function(){ this._connectionType = "callback-polling"; this._cometd = null; this.check = function(types, version, xdomain){ // we handle x-domain! return (dojo.indexOf(types, "callback-polling") >= 0); } this.tunnelInit = function(){ var message = { channel: "/meta/connect", clientId: this._cometd.clientId, connectionType: this._connectionType, id: "" + this._cometd.messageId++ }; message = this._cometd._extendOut(message); this.openTunnelWith([message]); } this.tunnelCollapse = dojox.cometd.longPollTransport.tunnelCollapse; this._connect = dojox.cometd.longPollTransport._connect; this.deliver = dojox.cometd.longPollTransport.deliver; this.openTunnelWith = function(content, url){ this._cometd._polling = true; var script = { load: dojo.hitch(this, function(data){ this._cometd._polling=false; this._cometd.deliver(data); this._cometd._backon(); this.tunnelCollapse(); }), error: dojo.hitch(this, function(err){ this._cometd._polling = false; this._cometd._publishMeta("connect",false); this._cometd._backoff(); this.tunnelCollapse(); }), url: (url || this._cometd.url), content: { message: dojo.toJson(content) }, callbackParamName: "jsonp" }; var connectTimeout = this._cometd._connectTimeout(); if(connectTimeout > 0){ script.timeout=connectTimeout; } dojo.io.script.get(script); } this.sendMessages = function(/*array*/ messages){ for(var i = 0; i < messages.length; i++){ messages[i].clientId = this._cometd.clientId; messages[i].id = ""+this._cometd.messageId++; messages[i]=this._cometd._extendOut(messages[i]); } var bindArgs = { url: this._cometd.url || dojo.config["cometdRoot"], load: dojo.hitch(this._cometd, "deliver"), callbackParamName: "jsonp", content: { message: dojo.toJson( messages ) }, error: dojo.hitch(this, function(err){ this._cometd._publishMeta("publish",false,{messages:messages}); }), timeout: this._cometd.expectedNetworkDelay }; return dojo.io.script.get(bindArgs); } this.startup = function(handshakeData){ if(this._cometd._connected){ return; } this.tunnelInit(); } // FIXME: what is this supposed to do? ;) this.disconnect = dojox.cometd.longPollTransport.disconnect; this.disconnect = function(){ var message = { channel: "/meta/disconnect", clientId: this._cometd.clientId, id: "" + this._cometd.messageId++ }; message = this._cometd._extendOut(message); dojo.io.script.get({ url: this._cometd.url || dojo.config["cometdRoot"], callbackParamName: "jsonp", content: { message: dojo.toJson([message]) } }); } this.cancelConnect = function(){} } dojox.cometd.connectionTypes.register("callback-polling", dojox.cometd.callbackPollTransport.check, dojox.cometd.callbackPollTransport); });
PypiClean
/Dominate_Layui-2020.6.25.post1-py3-none-any.whl/Dominate_Layui/Core.py
import inspect import os import shutil import dominate import Dominate_Layui.static from dominate.document import * from dominate.tags import * COUNTS = 0 def __getVarName(variable): callers_local_vars = inspect.currentframe().f_back.f_locals.items() return [var_name for var_name, var_val in callers_local_vars if var_val is variable] class HTMLDocument(document): pass def linkInit(doc:HTMLDocument) ->None: """To initialize layui, you need to pass in a document object""" doc.head+=script(src="static/layui/layui.all.js") doc.head+=script(src="static/layui/init.js") doc.head+=link(href="static/layui/css/layui.css",rel="stylesheet") doc.head+=link(href="static/layui/css/layui.mobile.css",rel="stylesheet") def FuncBtnAdd(doc:HTMLDocument,title:str,color:str="primary",radius:str="null",fluid:str="none",size:str="nr",onClick:str=None): """color:primary,normal,None,warm,danger radius:'null'/'radius' fluid:'none'/'fluid' size:lg,nr,sm,xs""" l=[doc,title,color,radius,fluid,size,onClick] front_attribute="layui-btn-" attribute="layui-btn" for i in l: if type(i)==type(None): l.remove(i) if not onClick: for i in l: #print(__getVarName(i)) if __getVarName(i)[1]!="doc": if __getVarName(i)[1]!="title": if i=="null" or i=="none": continue else: attribute+=" " attribute+=front_attribute+str(i) else: continue doc.body.add(button(title,Class=attribute)) else: for i in l: if __getVarName(i)[1]!="onClick": if __getVarName(i)[1]!="doc": if __getVarName(i)[1]!="title": if i=="null" or i=="none": continue else: attribute+=" " attribute+=front_attribute+str(i) else: continue else: continue doc.body.add(button(title,Class=attribute,onclick=onClick)) return def LinkBtnAdd(doc:HTMLDocument,title:str,color:str="primary",radius:str="null",fluid:str="none",size:str="nr",href:str=None): """color:primary,normal,None,warm,danger radius:'null'/'radius' fluid:'none'/'fluid' size:lg,nr,sm,xs""" l=[doc,title,color,radius,fluid,size,href] front_attribute="layui-btn-" attribute="layui-btn" for i in l: if type(i)==type(None): l.remove(i) for i in l: #print(__getVarName(i)) if __getVarName(i)[1]!="href": if __getVarName(i)[1]!="doc": if __getVarName(i)[1]!="title": if i=="null" or i=="none": continue else: attribute+=" " attribute+=front_attribute+str(i) else: continue link=a(href=href) link.add(button(title,Class=attribute)) doc.body.add(link) return def htmlbr(doc:HTMLDocument): '''Just a Tag<br>.''' doc.add(br(doc)) def render(doc:HTMLDocument,DocName:str): """Copy the static resources, Doc renders them into strings and writes them to the specified file""" __StaticGot() file=open(DocName,"w",encoding="utf-8") file.write(str(doc)) file.close() return (doc,DocName,len(str(doc))) def __copyFiles(sourceDir,targetDir): global COUNTS for f in os.listdir(sourceDir): sourceF = os.path.join(sourceDir, f) targetF = os.path.join(targetDir, f) if os.path.isfile(sourceF): if not os.path.exists(targetDir): os.makedirs(targetDir) COUNTS += 1 if not os.path.exists(targetF) or (os.path.exists(targetF) and (os.path.getsize(targetF) != os.path.getsize(sourceF))): open(targetF, "wb").write(open(sourceF, "rb").read()) else: if os.path.isdir(sourceF): __copyFiles(sourceF, targetF) COUNTS=0 def __StaticGot(): """Copy all static resources to the current directory""" path=os.path.dirname(Dominate_Layui.static.__file__) __copyFiles(path,"static") os.remove("static/__init__.py") shutil.rmtree("static/__pycache__") if "__main__"==__name__: Test=HTMLDocument() linkInit(Test) FuncBtnAdd(Test,title="Hello World",radius="radius",color="danger",onClick=("AlertBox('HEYSS')")) print(Test) __StaticGot()
PypiClean
/pelican-jupyter-0.10.1.tar.gz/pelican-jupyter-0.10.1/pelican_jupyter/vendor/liquid_tags/mdx_liquid_tags.py
import itertools import re import warnings import markdown # Define some regular expressions LIQUID_TAG = re.compile(r"\{%.*?%\}", re.MULTILINE | re.DOTALL) EXTRACT_TAG = re.compile(r"(?:\s*)(\S+)(?:\s*)") LT_CONFIG = { "CODE_DIR": "code", "NOTEBOOK_DIR": "notebooks", "FLICKR_API_KEY": "flickr", "GIPHY_API_KEY": "giphy", } LT_HELP = { "CODE_DIR": "Code directory for include_code subplugin", "NOTEBOOK_DIR": "Notebook directory for notebook subplugin", "FLICKR_API_KEY": "Flickr key for accessing the API", "GIPHY_API_KEY": "Giphy key for accessing the API", } class _LiquidTagsPreprocessor(markdown.preprocessors.Preprocessor): _tags = {} def __init__(self, configs): self.configs = configs def run(self, lines): page = "\n".join(lines) liquid_tags = LIQUID_TAG.findall(page) for i, markup in enumerate(liquid_tags): # remove {% %} markup = markup[2:-2] tag = EXTRACT_TAG.match(markup).groups()[0] markup = EXTRACT_TAG.sub("", markup, 1) if tag in self._tags: liquid_tags[i] = self._tags[tag](self, tag, markup.strip()) # add an empty string to liquid_tags so that chaining works liquid_tags.append("") # reconstruct string page = "".join(itertools.chain(*zip(LIQUID_TAG.split(page), liquid_tags))) # resplit the lines return page.split("\n") class LiquidTags(markdown.Extension): """Wrapper for MDPreprocessor""" def __init__(self, config): try: # Needed for markdown versions >= 2.5 for key, value in LT_CONFIG.items(): self.config[key] = [value, LT_HELP[key]] super(LiquidTags, self).__init__(**config) except AttributeError: # Markdown versions < 2.5 for key, value in LT_CONFIG.items(): config[key] = [config[key], LT_HELP[key]] super(LiquidTags, self).__init__(config) @classmethod def register(cls, tag): """Decorator to register a new include tag""" def dec(func): if tag in _LiquidTagsPreprocessor._tags: warnings.warn("Enhanced Markdown: overriding tag '%s'" % tag) _LiquidTagsPreprocessor._tags[tag] = func return func return dec def extendMarkdown(self, md, md_globals): self.htmlStash = md.htmlStash md.registerExtension(self) # for the include_code preprocessor, we need to re-run the # fenced code block preprocessor after substituting the code. # Because the fenced code processor is run before, {% %} tags # within equations will not be parsed as an include. md.preprocessors.add("mdincludes", _LiquidTagsPreprocessor(self), ">html_block") def makeExtension(configs=None): """Wrapper for a MarkDown extension""" return LiquidTags(configs=configs)
PypiClean
/django-static-angular-v1.3.15.tar.gz/django-static-angular-v1.3.15/django_static_angular/static/static_angular/js/i18n/angular-locale_en-gm.js
'use strict'; angular.module("ngLocale", [], ["$provide", function($provide) { var PLURAL_CATEGORY = {ZERO: "zero", ONE: "one", TWO: "two", FEW: "few", MANY: "many", OTHER: "other"}; function getDecimals(n) { n = n + ''; var i = n.indexOf('.'); return (i == -1) ? 0 : n.length - i - 1; } function getVF(n, opt_precision) { var v = opt_precision; if (undefined === v) { v = Math.min(getDecimals(n), 3); } var base = Math.pow(10, v); var f = ((n * base) | 0) % base; return {v: v, f: f}; } $provide.value("$locale", { "DATETIME_FORMATS": { "AMPMS": [ "AM", "PM" ], "DAY": [ "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" ], "ERANAMES": [ "Before Christ", "Anno Domini" ], "ERAS": [ "BC", "AD" ], "MONTH": [ "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December" ], "SHORTDAY": [ "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" ], "SHORTMONTH": [ "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" ], "fullDate": "EEEE, MMMM d, y", "longDate": "MMMM d, y", "medium": "MMM d, y h:mm:ss a", "mediumDate": "MMM d, y", "mediumTime": "h:mm:ss a", "short": "M/d/yy h:mm a", "shortDate": "M/d/yy", "shortTime": "h:mm a" }, "NUMBER_FORMATS": { "CURRENCY_SYM": "GMD", "DECIMAL_SEP": ".", "GROUP_SEP": ",", "PATTERNS": [ { "gSize": 3, "lgSize": 3, "maxFrac": 3, "minFrac": 0, "minInt": 1, "negPre": "-", "negSuf": "", "posPre": "", "posSuf": "" }, { "gSize": 3, "lgSize": 3, "maxFrac": 2, "minFrac": 2, "minInt": 1, "negPre": "\u00a4-", "negSuf": "", "posPre": "\u00a4", "posSuf": "" } ] }, "id": "en-gm", "pluralCat": function(n, opt_precision) { var i = n | 0; var vf = getVF(n, opt_precision); if (i == 1 && vf.v == 0) { return PLURAL_CATEGORY.ONE; } return PLURAL_CATEGORY.OTHER;} }); }]);
PypiClean
/ytd-0.0.1.tar.gz/ytd-0.0.1/detectron2/ObjectDetector.py
import cv2 as cv import json import time from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.utils.visualizer import ColorMode from detectron2 import model_zoo from detectron2.data import MetadataCatalog, DatasetCatalog from detectron2.modeling import build_model import torch import numpy as np from PIL import Image from com_ineuron_utils.utils import encodeImageIntoBase64 class Detector: def __init__(self,filename, model_name): # set model and test set self.filename = filename # obtain detectron2's default config self.cfg = get_cfg() # load values from a file # self.cfg.merge_from_file("config.yml") if model_name == 'faster_rcnn_R_50_C4': print(f'model:faster_rcnn_R_50_C4') self.model = 'faster_rcnn_R_50_C4_1x.yaml' self.cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/" + self.model)) self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Detection/" + self.model) elif model_name == 'faster_rcnn_R_50_FPN': print(f'model:faster_rcnn_R_50_FPN') self.model = 'faster_rcnn_R_50_FPN_3x.yaml' self.cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/"+self.model)) self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Detection/" + self.model) elif model_name == 'faster_rcnn_X_101_32x8d_FPN': print(f'model:faster_rcnn_X_101_32x8d_FPN') self.model = 'faster_rcnn_X_101_32x8d_FPN_3x.yaml' self.cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/"+self.model)) self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Detection/" + self.model) elif model_name == 'retinanet_R_50_FPN': print(f'model:retinanet_R_50_FPN') self.model = 'retinanet_R_50_FPN_3x.yaml' self.cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/"+self.model)) self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Detection/" + self.model) elif model_name == 'fast_rcnn_R_50_FPN': print(f'model:fast_rcnn_R_50_FPN') self.model = 'fast_rcnn_R_50_FPN_1x.yaml' self.cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/"+self.model)) self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Detection/" + self.model) else: raise Exception('Unknown model') # set device to cpu self.cfg.MODEL.DEVICE = "cpu" # get weights # self.cfg.MODEL.WEIGHTS = "model_final_f10217.pkl" # self.cfg.MODEL.WEIGHTS = "model_final.pth" # set the testing threshold for this model self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.50 # build model from weights # self.cfg.MODEL.WEIGHTS = self.convert_model_for_inference() # build model and convert for inference def convert_model_for_inference(self): # build model model = build_model(self.cfg) # save as checkpoint torch.save(model.state_dict(), 'checkpoint.pth') # return path to inference model return 'checkpoint.pth' def inference(self): # self.ROI = ROI predictor = DefaultPredictor(self.cfg) im = cv.imread(self.filename) t0 = time.time() outputs = predictor(im) t1 = time.time() metadata = MetadataCatalog.get(self.cfg.DATASETS.TRAIN[0]) # visualise v = Visualizer(im[:, :, ::-1], metadata=metadata, scale=1.2) v = v.draw_instance_predictions(outputs["instances"].to("cpu")) predicted_image = v.get_image() im_rgb = cv.cvtColor(predicted_image, cv.COLOR_RGB2BGR) cv.imwrite('output.jpg', im_rgb) # imagekeeper = [] opencodedbase64 = encodeImageIntoBase64("output.jpg") pred_bbox = outputs['instances'].pred_boxes.to('cpu') pred_bbox = pred_bbox.tensor.detach().numpy().tolist() pred_scores = outputs['instances'].scores.to('cpu').tolist() pred_time = round((t1 - t0), 3) print(pred_time) print(pred_scores) print(pred_bbox) # imagekeeper.append({"image": opencodedbase64.decode('utf-8')}) result = {"pred_bbox": str(pred_bbox), "pred_scores": str(pred_scores), "pred_time": str(pred_time), "image" : opencodedbase64.decode('utf-8')} return result
PypiClean
/mozuma-0.9.0.tar.gz/mozuma-0.9.0/README.md
# MoZuMa MoZuMa is a model zoo for multimedia search application. It provides an easy to use interface to run models for: - **Text to image retrieval**: Rank images by their similarity to a text query. - **Image similarity search**: Rank images by their similarity to query image. - **Image classification**: Add labels to images. - **Face detection**: Detect and retrieve images with similar faces. - **Object detection**: Detect and retrieve images with similar objects. - **Video keyframes extraction**: Retrieve the important frames of a video. Key-frames are used to apply all the other queries on videos. - **Multilingual text search**: Rank similar sentences from a text query in multiple languages. ## Quick links - [Documentation](https://mozuma.github.io/mozuma/) - [Models](https://mozuma.github.io/mozuma/models/) - [For developers](https://mozuma.github.io/mozuma/contributing/0-setup.md) ## Example gallery See `docs/examples/` for a collection of ready to use notebooks. ## Citation Please cite as: ```bibtex @inproceedings{mozuma, author = {Massonnet, St\'{e}phane and Romanelli, Marco and Lebret, R\'{e}mi and Poulsen, Niels and Aberer, Karl}, title = {MoZuMa: A Model Zoo for Multimedia Applications}, year = {2022}, isbn = {9781450392037}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3503161.3548542}, doi = {10.1145/3503161.3548542}, abstract = {Lots of machine learning models with applications in Multimedia Search are released as Open Source Software. However, integrating these models into an application is not always an easy task due to the lack of a consistent interface to run, train or distribute models. With MoZuMa, we aim at reducing this effort by providing a model zoo for image similarity, text-to-image retrieval, face recognition, object similarity search, video key-frames detection and multilingual text search implemented in a generic interface with a modular architecture. The code is released as Open Source Software at https://github.com/mozuma/mozuma.}, booktitle = {Proceedings of the 30th ACM International Conference on Multimedia}, pages = {7335–7338}, numpages = {4}, keywords = {multimedia search, vision and language, open source software}, location = {Lisboa, Portugal}, series = {MM '22} } ```
PypiClean
/juju-vnfm-1.0.0b19.tar.gz/juju-vnfm-1.0.0b19/README.rst
Juju Virtual Network Function Manager ===================================== This project is a Virtual Network Function Manager (VNFM) that enables `Juju`_ to work as a VNFM in the `Open Baton`_ environment. Requirements ------------ - Python 3.5.2+ - Juju 2.0+ Installation ------------ For installing the Juju-VNFM execute .. code:: bash pip install . inside the project’s root directory. **Note** that you have to use pip3 if your standard Python interpreter is python2. Usage ----- After you installed the Juju-VNFM you have to configure it. Create the file */etc/openbaton/juju/conf.ini*, make sure that the current user has write permissions for the file and execute: .. code:: bash jujuvnfm configure Then follow the instructions. Afterwards you can start the Juju-VNFM with the command *jujuvnfm start*. You can specify the number of threads started to handle NFVO requests by passing a number with the -t option: .. code:: bash jujuvnfm -t 10 start The default number of threads is five. .. _Juju: https://jujucharms.com/ .. _Open Baton: https://openbaton.github.io/
PypiClean
/hxrsnd-0.3.1.tar.gz/hxrsnd-0.3.1/scripts.py
# Imports from the Python standard library go here import logging # Imports from the third-party modules go here import numpy as np from ophyd import Component as Cmp from ophyd import Device, EpicsSignal from ophyd.sim import hw from ophyd.status import wait as status_wait # Imports from the HXRSnD module go here import snd_devices # Imports from other SLAC modules go here # Default logger logger = logging.getLogger(__name__) ############################################################################### # Good Design Practices # ############################################################################### # # Replace all print() statements with logger.info() statements # # ############################################################################### # The Main reason for this is the IPython shell will log everything you log in # log files IFF you use the logger methods, while also printing to the console. # Even better, is if you include various logger levels. To use the logger, # simply make the following substitution: # print("text") --> logger.info("text") # It is that simple, that the message will now be archived in the info level # (HXRSnD/logs/info.log) and debug level (HXRSnD/logs/debug.log) log files. # # Leave Comments # # ############################################################################### # This seems like it may not be that important, but the purpose of this file is # to temporarily hold scripts developed during beamtime to then be migrated by # us (PCDS) into the module. By leaving comments, you make it easier for # everyone to understand what the code is doing. ############################################################################### # Insert Code Below # ############################################################################### hw = hw() # Fake hardware for testing fake_motor = hw.motor class NotepadScanStatus(Device): istep = Cmp(EpicsSignal, ":ISTEP") isscan = Cmp(EpicsSignal, ":ISSCAN") nshots = Cmp(EpicsSignal, ":NSHOTS") nsteps = Cmp(EpicsSignal, ":NSTEPS") var0 = Cmp(EpicsSignal, ":SCANVAR00") var1 = Cmp(EpicsSignal, ":SCANVAR01") var2 = Cmp(EpicsSignal, ":SCANVAR02") var0_max = Cmp(EpicsSignal, ":MAX00") var1_max = Cmp(EpicsSignal, ":MAX01") var2_max = Cmp(EpicsSignal, ":MAX02") var0_min = Cmp(EpicsSignal, ":MIN00") var1_min = Cmp(EpicsSignal, ":MIN01") var2_min = Cmp(EpicsSignal, ":MIN02") def clean_fields(self): for sig_name in self.signal_names: sig = getattr(self, sig_name) val = sig.value if isinstance(val, (int, float)): sig.put(0) elif isinstance(val, str): sig.put('') notepad_scan_status = NotepadScanStatus('XCS:SCAN', name='xcs_scan_status') def ascan(motor, start, stop, num, events_per_point=360, record=False, controls=None, **kwargs): """ Quick re-implementation of old python for the transition """ daq = snd_devices.daq events = events_per_point status = notepad_scan_status status.clean_fields() if controls is None: controls = {} start_pos = motor.position def get_controls(motor, extra_controls): out_arr = {motor.name: motor} out_arr.update(extra_controls) return out_arr try: scan_controls = get_controls(motor, controls) daq.configure(record=record, controls=scan_controls) status.isscan.put(1) status.nshots.put(events_per_point) status.nsteps.put(num) status.var0.put(motor.name) status.var0_max.put(max((start, stop))) status.var0_min.put(min((start, stop))) for i, step in enumerate(np.linspace(start, stop, num)): logger.info(f'Beginning step {step}') try: mstat = motor.set(step, verify_move=False, **kwargs) except TypeError: mstat = motor.set(step, **kwargs) status.istep.put(i) status_wait(mstat) scan_controls = get_controls(motor, controls) daq.begin(events=events, controls=scan_controls) logger.info(f'Waiting for {events} events ...') daq.wait() finally: logger.info('DONE!') status.clean_fields() daq.end_run() daq.disconnect() try: motor.set(start_pos, verify_move=False, **kwargs) except TypeError: motor.set(start_pos, **kwargs)
PypiClean
/diacamma_syndic-2.6.12.23071414-py3-none-any.whl/diacamma/condominium/static/diacamma.condominium/doc_fr/_static/sphinx_highlight.js
"use strict"; const SPHINX_HIGHLIGHT_ENABLED = true /** * highlight a given string on a node by wrapping it in * span elements with the given class name. */ const _highlight = (node, addItems, text, className) => { if (node.nodeType === Node.TEXT_NODE) { const val = node.nodeValue; const parent = node.parentNode; const pos = val.toLowerCase().indexOf(text); if ( pos >= 0 && !parent.classList.contains(className) && !parent.classList.contains("nohighlight") ) { let span; const closestNode = parent.closest("body, svg, foreignObject"); const isInSVG = closestNode && closestNode.matches("svg"); if (isInSVG) { span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); } else { span = document.createElement("span"); span.classList.add(className); } span.appendChild(document.createTextNode(val.substr(pos, text.length))); parent.insertBefore( span, parent.insertBefore( document.createTextNode(val.substr(pos + text.length)), node.nextSibling ) ); node.nodeValue = val.substr(0, pos); if (isInSVG) { const rect = document.createElementNS( "http://www.w3.org/2000/svg", "rect" ); const bbox = parent.getBBox(); rect.x.baseVal.value = bbox.x; rect.y.baseVal.value = bbox.y; rect.width.baseVal.value = bbox.width; rect.height.baseVal.value = bbox.height; rect.setAttribute("class", className); addItems.push({ parent: parent, target: rect }); } } } else if (node.matches && !node.matches("button, select, textarea")) { node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); } }; const _highlightText = (thisNode, text, className) => { let addItems = []; _highlight(thisNode, addItems, text, className); addItems.forEach((obj) => obj.parent.insertAdjacentElement("beforebegin", obj.target) ); }; /** * Small JavaScript module for the documentation. */ const SphinxHighlight = { /** * highlight the search words provided in localstorage in the text */ highlightSearchWords: () => { if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight // get and clear terms from localstorage const url = new URL(window.location); const highlight = localStorage.getItem("sphinx_highlight_terms") || url.searchParams.get("highlight") || ""; localStorage.removeItem("sphinx_highlight_terms") url.searchParams.delete("highlight"); window.history.replaceState({}, "", url); // get individual terms from highlight string const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); if (terms.length === 0) return; // nothing to do // There should never be more than one element matching "div.body" const divBody = document.querySelectorAll("div.body"); const body = divBody.length ? divBody[0] : document.querySelector("body"); window.setTimeout(() => { terms.forEach((term) => _highlightText(body, term, "highlighted")); }, 10); const searchBox = document.getElementById("searchbox"); if (searchBox === null) return; searchBox.appendChild( document .createRange() .createContextualFragment( '<p class="highlight-link">' + '<a href="javascript:SphinxHighlight.hideSearchWords()">' + _("Hide Search Matches") + "</a></p>" ) ); }, /** * helper function to hide the search marks again */ hideSearchWords: () => { document .querySelectorAll("#searchbox .highlight-link") .forEach((el) => el.remove()); document .querySelectorAll("span.highlighted") .forEach((el) => el.classList.remove("highlighted")); localStorage.removeItem("sphinx_highlight_terms") }, initEscapeListener: () => { // only install a listener if it is really needed if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; document.addEventListener("keydown", (event) => { // bail for input elements if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; // bail with special keys if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { SphinxHighlight.hideSearchWords(); event.preventDefault(); } }); }, }; _ready(SphinxHighlight.highlightSearchWords); _ready(SphinxHighlight.initEscapeListener);
PypiClean
/cctbx_base-2020.8-0_py38h167b89d-cp38-cp38m-manylinux2010_x86_64.whl/mmtbx/proq2.py
from __future__ import absolute_import, division, print_function from HTMLParser import HTMLParser class ProQError(Exception): """ Module exception """ class JobFolderParseError(ProQError): """ Could not parse out job folder """ class JobFolderParser(HTMLParser): JOB_FOLDER_TEXT = "The job folder is located here:" def __init__(self): HTMLParser.__init__( self ) self.job_folder = None self.capture_next_anchor = False def handle_starttag(self, tag, attrs): if tag == "a" and self.capture_next_anchor: self.job_folder = None for ( key, value ) in attrs: if key == "href": self.job_folder = value self.capture_next_anchor = False def handle_data(self, data): if data.find( self.JOB_FOLDER_TEXT ) != -1: self.capture_next_anchor = True def parse_submission_page(stream): parser = JobFolderParser() for line in stream: parser.feed( line ) if parser.job_folder is not None: return parser.job_folder raise JobFolderParseError("Could not find job folder text") class Job(object): """ Interface to ProQ2 server """ SERVERURL = "http://duffman.it.liu.se/ProQ2/index.php" OUTPUTFILE = "input.pdb.orig.B" def __init__(self, pdbstr, name): from iotbx.pdb import download from six.moves import urllib data_for = { "pdb": pdbstr, "bfactorPDB": "Yes", "name": name, "nomail": "Yes", "do": "Submit", } stream = download.openurl( url = self.SERVERURL, data = urllib.parse.urlencode( list(data_for.items()) ), ) self.job_folder = parse_submission_page( stream = stream ) stream.close() def __call__(self): from iotbx.pdb import download return download.openurl( url = "%s/%s" % ( self.job_folder, self.OUTPUTFILE ), ) if __name__ == "__main__": import sys if len( sys.argv ) == 2: timeout = 600 elif len( sys.argv ) == 3: try: timeout = float( sys.argv[2] ) except ValueError as e: print("Cannot interpret as number: %s (%s)" % ( sys.argv[2], e )) else: print("Usage: %s PDBFILE <timeout = 600>" % sys.argv[0]) sys.exit( 1 ) pdbstr = open( sys.argv[1] ).read() sys.stdout.write( "Submitting job..." ) sys.stdout.flush() try: myjob = Job( pdbstr = pdbstr, name = "phenix.proq2" ) except JobFolderParseError as e: sys.stdout.write( "failed\n" ) print("Unexpected response: cannot find job folder") sys.exit( 1 ) sys.stdout.write( "done\n" ) print("Job folder:", myjob.job_folder) sys.stdout.write( "Waiting for results" ) sys.stdout.flush() from libtbx import progress from iotbx.pdb import download waiter = progress.complete_on_success( func = myjob, excspec = download.NotFound ) try: progress.wait( condition = waiter, waittime = 2, timeout = timeout, callback = progress.streamprint( stream = sys.stdout, character = "." ), ) except progress.TimeoutError as e: sys.stdout.write( "%s\n" % e ) sys.exit( 1 ) assert hasattr( waiter, "result" ) result = waiter.result.read() waiter.result.close() sys.stdout.write( "done\n" ) import os.path output = "proq2-%s" % os.path.basename( sys.argv[1] ) print("Output:", output) with open( output, "w" ) as ofile: ofile.write( result ) ofile.write( "\n" ) print("Done!")
PypiClean
/audioldm2-0.0.9.tar.gz/audioldm2-0.0.9/app.py
from huggingface_hub import hf_hub_download import torch import os import gradio as gr from audioldm2 import text_to_audio, build_model from share_btn import community_icon_html, loading_icon_html, share_js os.environ["TOKENIZERS_PARALLELISM"] = "true" default_checkpoint="audioldm2-full" audioldm = None current_model_name = None def text2audio( text, guidance_scale, random_seed, n_candidates, model_name=default_checkpoint, ): global audioldm, current_model_name torch.set_float32_matmul_precision("high") if audioldm is None or model_name != current_model_name: audioldm = build_model(model_name=model_name) current_model_name = model_name audioldm = torch.compile(audioldm) # print(text, length, guidance_scale) waveform = text_to_audio( latent_diffusion=audioldm, text=text, seed=random_seed, duration=10, guidance_scale=guidance_scale, n_candidate_gen_per_text=int(n_candidates), ) # [bs, 1, samples] waveform = [ gr.make_waveform((16000, wave[0]), bg_image="bg.png") for wave in waveform ] # waveform = [(16000, np.random.randn(16000)), (16000, np.random.randn(16000))] if len(waveform) == 1: waveform = waveform[0] return waveform css = """ a { color: inherit; text-decoration: underline; } .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: #000000; background: #000000; } input[type='range'] { accent-color: #000000; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } #container-advanced-btns{ display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } #generated_id{ min-height: 700px } #setting_id{ margin-bottom: 12px; text-align: center; font-weight: 900; } """ iface = gr.Blocks(css=css) with iface: gr.HTML( """ <div style="text-align: center; max-width: 700px; margin: 0 auto;"> <div style=" display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; " > <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> AudioLDM 2: A General Framework for Audio, Music, and Speech Generation </h1> </div> <p style="margin-bottom: 10px; font-size: 94%"> <a href="https://arxiv.org/abs/2301.12503">[Paper]</a> <a href="https://audioldm.github.io/">[Project page]</a> </p> </div> """ ) gr.HTML( """ <h1 style="font-weight: 900; margin-bottom: 7px;"> AudioLDM 2: A General Framework for Audio, Music, and Speech Generation </h1> <p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <br/> <a href="https://huggingface.co/spaces/haoheliu/audioldm2-text2audio-text2music?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> <p/> """ ) with gr.Group(): with gr.Box(): ############# Input textbox = gr.Textbox( value="A forest of wind chimes singing a soothing melody in the breeze.", max_lines=1, label="Input your text here. Your text is important for the audio quality. Please ensure it is descriptive by using more adjectives.", elem_id="prompt-in", ) with gr.Accordion("Click to modify detailed configurations", open=False): seed = gr.Number( value=45, label="Change this value (any integer number) will lead to a different generation result.", ) # duration = gr.Slider( # 10, 10, value=10, step=2.5, label="Duration (seconds)" # ) guidance_scale = gr.Slider( 0, 6, value=3.5, step=0.5, label="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)", ) n_candidates = gr.Slider( 1, 3, value=3, step=1, label="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation", ) # model_name = gr.Dropdown( # ["audioldm-m-text-ft", "audioldm-s-text-ft", "audioldm-m-full","audioldm-s-full-v2", "audioldm-s-full", "audioldm-l-full"], value="audioldm-m-full", label="Choose the model to use. audioldm-m-text-ft and audioldm-s-text-ft are recommanded. -s- means small, -m- means medium and -l- means large", # ) ############# Output # outputs=gr.Audio(label="Output", type="numpy") outputs = gr.Video(label="Output", elem_id="output-video") # with gr.Group(elem_id="container-advanced-btns"): # # advanced_button = gr.Button("Advanced options", elem_id="advanced-btn") # with gr.Group(elem_id="share-btn-container"): # community_icon = gr.HTML(community_icon_html, visible=False) # loading_icon = gr.HTML(loading_icon_html, visible=False) # share_button = gr.Button("Share to community", elem_id="share-btn", visible=False) # outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")] btn = gr.Button("Submit").style(full_width=True) with gr.Group(elem_id="share-btn-container", visible=False): community_icon = gr.HTML(community_icon_html) loading_icon = gr.HTML(loading_icon_html) share_button = gr.Button("Share to community", elem_id="share-btn") # btn.click(text2audio, inputs=[ # textbox, duration, guidance_scale, seed, n_candidates, model_name], outputs=[outputs]) btn.click( text2audio, inputs=[textbox, guidance_scale, seed, n_candidates], outputs=[outputs], ) share_button.click(None, [], [], _js=share_js) gr.HTML( """ <div class="footer" style="text-align: center; max-width: 700px; margin: 0 auto;"> <p>Follow the latest update of AudioLDM on our<a href="https://github.com/haoheliu/AudioLDM" style="text-decoration: underline;" target="_blank"> Github repo</a> </p> <br> <p>Model by <a href="https://twitter.com/LiuHaohe" style="text-decoration: underline;" target="_blank">Haohe Liu</a></p> <br> </div> """ ) gr.Examples( [ [ "An excited crowd cheering at a sports game.", 3.5, 45, 3, default_checkpoint, ], [ "A cat is meowing for attention.", 3.5, 45, 3, default_checkpoint, ], [ "Birds singing sweetly in a blooming garden.", 3.5, 45, 3, default_checkpoint, ], [ "A modern synthesizer creating futuristic soundscapes.", 3.5, 45, 3, default_checkpoint, ], [ "The vibrant beat of Brazilian samba drums.", 3.5, 45, 3, default_checkpoint, ], ], fn=text2audio, # inputs=[textbox, duration, guidance_scale, seed, n_candidates, model_name], inputs=[textbox, guidance_scale, seed, n_candidates], outputs=[outputs], cache_examples=True, ) gr.HTML( """ <div class="acknowledgements"> <p>Essential Tricks for Enhancing the Quality of Your Generated Audio</p> <p>1. Try to use more adjectives to describe your sound. For example: "A man is speaking clearly and slowly in a large room" is better than "A man is speaking". This can make sure AudioLDM understands what you want.</p> <p>2. Try to use different random seeds, which can affect the generation quality significantly sometimes.</p> <p>3. It's better to use general terms like 'man' or 'woman' instead of specific names for individuals or abstract objects that humans may not be familiar with, such as 'mummy'.</p> </div> """ ) with gr.Accordion("Additional information", open=False): gr.HTML( """ <div class="acknowledgments"> <p> We build the model with data from <a href="http://research.google.com/audioset/">AudioSet</a>, <a href="https://freesound.org/">Freesound</a> and <a href="https://sound-effects.bbcrewind.co.uk/">BBC Sound Effect library</a>. We share this demo based on the <a href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf">UK copyright exception</a> of data for academic research. </p> </div> """ ) # <p>This demo is strictly for research demo purpose only. For commercial use please <a href="[email protected]">contact us</a>.</p> iface.queue(concurrency_count=3) iface.launch(debug=True) # iface.launch(debug=True, share=True)
PypiClean
/ECSctrl-0.4.0-py3-none-any.whl/ecsctrl/cli.py
import os import re from email.policy import default import click from ecsctrl.loader import VarsLoader from .boto_client import BotoClient from .service_updater import ServiceUpdater, TaskDefinitionServiceUpdater, WaitForUpdate from .yaml_converter import ( JOB_DEFINITION, SECRETS, SERVICE, TASK_DEFINITION, yaml_file_to_dict, ) def check_var(ctx, param, value): for v in value: if not re.match("^[^=]+=.*$", v): raise click.BadParameter( f"'{v}'. Variable has to be in format variable=value" ) return value # fmt: off @click.group() @click.option("--dry-run", is_flag=True, default=False, help="Do not call actual AWS API") @click.pass_context # fmt: on def cli(ctx, dry_run): ctx.ensure_object(dict) ctx.obj["dry_run"] = dry_run ctx.obj["boto_client"] = BotoClient("ecs", dry_run=dry_run) @cli.group(name="task-definition") @click.pass_context def task_definition(ctx): """Task definition management.""" def common_options(fn): # fmt: off fn = click.option("--env-file", "-e", multiple=True, type=str, help="Path to env-style file with variables")(fn) fn = click.option("--json-file", "-j", multiple=True, type=str, help="Path to json file with variable")(fn) fn = click.option("--var", "-v", multiple=True, type=str, callback=check_var, help="Single variable in format name=value")(fn) fn = click.option("--sys-env/--no-sys-env", is_flag=True, default=False, help="Uses system env as a source for template variables")(fn) # fmt: on return fn def wait_options(wait_for, many=False): def wrapper(fn): s = "s" if many else "" # fmt: off fn = click.option("--wait", "-w", is_flag=True, help=f"Waits for service{s} to finish {wait_for}")(fn) fn = click.option("--wait-timeout", default=600, type=int, help=f"Custom timeout in seconds (defaults to 600s)")(fn) # fmt: on return fn return wrapper # fmt: off @task_definition.command() @click.argument("spec-file", type=str) @common_options @click.option("--update-services-in-cluster", "-c", multiple=True, type=str, help="Updates all services deployed with this task in a particular cluster") @wait_options(wait_for="update", many=True) @click.pass_context # fmt: on def register( ctx, spec_file, env_file, json_file, var, sys_env, update_services_in_cluster, wait, wait_timeout, ): """Register task definition.""" vars = VarsLoader(env_file, var, json_file, sys_env).load() spec = yaml_file_to_dict(spec_file, vars, TASK_DEFINITION) task_family = spec.get("family", "N/A") click.echo(f"🗂 Registering task definition {task_family}.") response = ctx.obj["boto_client"].call("register_task_definition", **spec) task_definition_arn = response["taskDefinition"]["taskDefinitionArn"] click.echo(f"\t✅ done, task definition arn: {task_definition_arn}.") if update_services_in_cluster and not ctx.obj["dry_run"]: updated_services = {} for cluster_name in update_services_in_cluster: updater = TaskDefinitionServiceUpdater( ctx.obj["boto_client"], task_definition_arn, cluster_name ) updated_services_in_cluster = updater.update() updated_services[cluster_name] = updated_services_in_cluster if wait: waiter = WaitForUpdate(ctx.obj["boto_client"], updated_services) waiter.timeout = wait_timeout waiter.wait_for_all() @cli.group(name="batch-job-definition") @click.pass_context def batch_job_definition(ctx): """Batch job definition management.""" # fmt: off @batch_job_definition.command() @click.argument("spec-file", type=str) @common_options @click.pass_context # fmt: on def register( ctx, spec_file, env_file, json_file, var, sys_env, ): """Register AWS Batch job definition.""" vars = VarsLoader(env_file, var, json_file, sys_env).load() spec = yaml_file_to_dict(spec_file, vars, JOB_DEFINITION) job_definition_name = spec.get("jobDefinitionName", "N/A") click.echo(f"🗂 Registering batch job definition {job_definition_name}.") client = BotoClient("batch", dry_run=ctx.obj["boto_client"].dry_run) response = client.call("register_job_definition", **spec) job_definition_arn = response["jobDefinitionArn"] click.echo(f"\t✅ done, job definition arn: {job_definition_arn}.") @cli.group(name="service") @click.pass_context def service(ctx): """Service management.""" @service.command() @click.argument("spec-file", type=str) @common_options @wait_options(wait_for="creation") @click.pass_context def create( ctx, spec_file, env_file, json_file, var, sys_env, wait, wait_timeout, ): """Create a new service.""" vars = VarsLoader(env_file, var, json_file, sys_env).load() spec = yaml_file_to_dict(spec_file, vars, SERVICE) service_name = spec.get("serviceName") cluster_name = spec.get("cluster") click.echo(f"🏸 Creating service {service_name}.") response = ctx.obj["boto_client"].call("create_service", **spec) service_arn = response["service"]["serviceArn"] click.echo("\t✅ done.") if wait: waiter = WaitForUpdate( ctx.obj["boto_client"], {cluster_name: [(service_arn, service_name)]}, ) waiter.timeout = wait_timeout waiter.wait_for_all() @service.command() @click.argument("spec-file", type=str) @common_options @wait_options(wait_for="update") @click.pass_context def update( ctx, spec_file, env_file, json_file, var, sys_env, wait, wait_timeout, ): """Update an existing service.""" vars = VarsLoader(env_file, var, json_file, sys_env).load() spec = yaml_file_to_dict(spec_file, vars, SERVICE) service_name = spec.get("serviceName") cluster_name = spec.get("cluster") click.echo(f"🏸 Updating service {service_name}.") updater = ServiceUpdater() spec = updater.make_update_payload(spec) response = ctx.obj["boto_client"].call("update_service", **spec) service_arn = response["service"]["serviceArn"] click.echo("\t✅ done.") if wait: waiter = WaitForUpdate( ctx.obj["boto_client"], {cluster_name: [(service_arn, service_name)]}, ) waiter.timeout = wait_timeout waiter.wait_for_all() @service.command("create-or-update") @click.argument("spec-file", type=str) @common_options @wait_options(wait_for="update") @click.pass_context def create_or_update( ctx, spec_file, env_file, json_file, var, sys_env, wait, wait_timeout, ): """Check if service exists and update it or create a new one.""" vars = VarsLoader(env_file, var, json_file, sys_env).load() spec = yaml_file_to_dict(spec_file, vars, SERVICE) service_name = spec.get("serviceName") cluster_name = spec.get("cluster") response = ctx.obj["boto_client"].call( "describe_services", cluster=spec["cluster"], services=[service_name], ) service_exists = len(response["services"]) > 0 if service_exists: click.echo(f"🏸 Updating service {service_name}.") updater = ServiceUpdater() spec = updater.make_update_payload(spec) response = ctx.obj["boto_client"].call("update_service", **spec) click.echo("\t✅ done.") else: click.echo(f"🏸 Creating service {service_name}.") response = ctx.obj["boto_client"].call("create_service", **spec) click.echo("\t✅ done.") service_arn = response["service"]["serviceArn"] if wait: waiter = WaitForUpdate( ctx.obj["boto_client"], {cluster_name: [(service_arn, service_name)]}, ) waiter.timeout = wait_timeout waiter.wait_for_all() @cli.group(name="secrets") @click.pass_context def secrets(ctx): """Secrets management.""" @secrets.command() @click.argument("spec-file", type=str) @common_options @click.pass_context def store( ctx, spec_file, env_file, json_file, var, sys_env, ): """Store secret is Parameter Store.""" vars = VarsLoader(env_file, var, json_file, sys_env).load() spec = yaml_file_to_dict(spec_file, vars, SECRETS) ssm = BotoClient("ssm", dry_run=ctx.obj["boto_client"].dry_run) for secret_name, value in spec.items(): ssm_params = { "Name": secret_name, "Value": value, "Type": "SecureString", } click.echo(f"🔑 Storing secret {secret_name}.") response = ssm.call("put_parameter", **ssm_params) click.echo(f"\t✅ done, parameter version: {response['Version']}") @service.command() @click.argument("task-definition-spec-file", type=str) @click.argument("service-spec-file", type=str) @common_options @wait_options(wait_for="update") @click.pass_context def deploy( ctx, task_definition_spec_file, service_spec_file, env_file, json_file, var, sys_env, wait, wait_timeout, ): """All-in-one - register task definition and create or update service.""" vars = VarsLoader(env_file, var, json_file, sys_env).load() task_definition_spec = yaml_file_to_dict( task_definition_spec_file, vars, TASK_DEFINITION ) task_family = task_definition_spec.get("family", "N/A") click.echo(f"🗂 Registering task definition {task_family}.") response = ctx.obj["boto_client"].call( "register_task_definition", **task_definition_spec ) task_definition_arn = response["taskDefinition"]["taskDefinitionArn"] click.echo(f"\t✅ done, task definition arn: {task_definition_arn}.") service_spec = yaml_file_to_dict(service_spec_file, vars, SERVICE) service_name = service_spec.get("serviceName") cluster_name = service_spec.get("cluster") service_spec["taskDefinition"] = task_definition_arn response = ctx.obj["boto_client"].call( "describe_services", cluster=service_spec["cluster"], services=[service_name], ) service_exists = len(response["services"]) > 0 if service_exists: click.echo(f"🏸 Updating service {service_name}.") updater = ServiceUpdater() service_spec = updater.make_update_payload(service_spec) response = ctx.obj["boto_client"].call("update_service", **service_spec) click.echo("\t✅ done.") else: click.echo(f"🏸 Creating service {service_name}.") response = ctx.obj["boto_client"].call("create_service", **service_spec) click.echo("\t✅ done.") service_arn = response["service"]["serviceArn"] if wait: waiter = WaitForUpdate( ctx.obj["boto_client"], {cluster_name: [(service_arn, service_name)]}, ) waiter.timeout = wait_timeout waiter.wait_for_all()
PypiClean
/avimigrationtools-30.1.1.tar.gz/avimigrationtools-30.1.1/avi/migrationtools/avi_converter.py
import random import json import logging import os import string import yaml import avi.migrationtools from avi.migrationtools import avi_rest_lib from avi.migrationtools.config_patch import ConfigPatch from avi.migrationtools.vs_filter import filter_for_vs from avi.migrationtools.avi_migration_utils import MigrationUtil LOG = logging.getLogger(__name__) sdk_version = getattr(avi.migrationtools, '__version__', None) mg_util = MigrationUtil() class AviConverter(object): output_file_path = None patch = None vs_filter = None controller_ip = None user = None password = None tenant = None prefix = None skip_ref_object_list = ['cloud_ref', 'tenant_ref', 'se_group_ref'] def print_pip_and_controller_version(self): pass def convert(self): pass def process_for_utils(self, avi_config, skip_ref_objects=skip_ref_object_list): """ Check if patch args present then execute the config_patch.py with args :param avi_config: converted avi object dict :param skip_ref_objects: comma separated names of objects ref to be skipped :return: avi_config """ if self.patch: with open(self.patch) as f: patches = yaml.load(f, Loader=yaml.Loader) cp = ConfigPatch(avi_config, patches) avi_config = cp.patch() # Check if vs_filter args present then execute vs_filter.py with args if self.vs_filter: avi_config = filter_for_vs(avi_config, self.vs_filter, self.prefix, skip_ref_objects=skip_ref_objects) return avi_config def upload_config_to_controller(self, avi_config): """ Upload configuration to controller :param avi_config: converted avi object dict :return: """ print("Uploading Configuration to Controller...") avi_rest_lib.upload_config_to_controller( avi_config, self.controller_ip, self.user, self.password, self.tenant, self.controller_version) def download_gslb_config_form_controller(self): """ Downloading gslb configuration from controller and return the output json""" return avi_rest_lib.download_gslb_from_controller( self.controller_ip, self.user, self.password, self.password) def write_output(self, avi_config, output_dir, report_name): """ write output file for conversion :param avi_config: dict of converted avi object :param output_dir: location for output file :param report_name: name of file :param prefix: prefix for object :return: None """ report_path = output_dir + os.path.sep + report_name print("Converted Output Location: %s" % \ (report_path)) with open(report_path, "w", encoding='utf-8') as text_file: json.dump(avi_config, text_file, indent=4) LOG.info('written avi config file %s %s output.json', output_dir, os.path.sep) def init_logger_path(self): LOG.setLevel(logging.DEBUG) print("Log File Location: %s" % self.output_file_path) formatter = '[%(asctime)s] %(levelname)s [%(funcName)s:%(lineno)d] %(message)s' logging.basicConfig(filename=os.path.join(self.output_file_path, 'converter.log'), level=logging.DEBUG, format=formatter) def trim_object_length(self, avi_config): ''' Method for triming object length when it exceeds max allowed length param: passed migrated avi configuration ''' list_with_max_280_char = ['VsVip', 'PoolGroup', 'Pool', 'NetworkSecurityPolicy', 'HTTPPolicySet'] for key in avi_config.keys(): if key in ['UnsupportedProfiles','OneConnect']: pass elif key in list_with_max_280_char: self.trim_length_if_name_field_exceeds_max_char(avi_config[key], avi_config, key, 280) else: self.trim_length_if_name_field_exceeds_max_char(avi_config[key], avi_config, key, 256) def trim_length_if_name_field_exceeds_max_char(self, obj_config_dict, avi_config, obj_type, max_char): """ Trim object length Args: obj_config_dict: passed object configuration avi_config : passed migrated avi configuration obj_type : passed object type max_char : max allowed character for object length """ cp = ConfigPatch(avi_config, '') for obj_config in obj_config_dict: if len(obj_config['name']) > max_char: random_str = ''.join(random.choice(string.ascii_uppercase + string.ascii_lowercase + string.digits) for _ in range(3)) obj_config['description'] = obj_config['name'] new_obj_name = "%s-%s" % ((obj_config['name'])[:200],random_str) old_obj_ref, new_obj_ref = self.get_old_and_new_obj_ref( avi_config, obj_config, new_obj_name, obj_config['name'], obj_type) cp.update_references(obj_type, old_obj_ref, new_obj_ref, avi_cfg=avi_config) obj_config['name'] = "%s-%s" % ((obj_config['name'])[:200],random_str) def get_old_and_new_obj_ref(self, avi_config, obj_config, new_name, old_name, obj_type): ''' Method for getting object refrences ''' cp = ConfigPatch(avi_config, '') tenant = (cp.param_value_in_ref(obj_config.get('tenant_ref'), 'name') if 'tenant_ref' in obj_config else '') cloud = (cp.param_value_in_ref(obj_config.get('cloud_ref'), 'name') if 'cloud_ref' in obj_config else '') new_obj_ref = mg_util.get_object_ref( new_name, obj_type.lower(), tenant, cloud_name=cloud) old_obj_ref = mg_util.get_object_ref(old_name, obj_type.lower(), tenant, cloud_name=cloud) return old_obj_ref, new_obj_ref
PypiClean
/Bluebook-0.0.1.tar.gz/Bluebook-0.0.1/devtest/application/config.py
import os CWD = os.path.dirname(__file__) class Config(object): """ Flask config: http://flask.pocoo.org/docs/0.10/config/ """ SERVER_NAME = None DEBUG = True SECRET_KEY = "PLEASE CHANGE ME" # ------ APP_NAME = "" APP_VERSION = "0.0.1" # ADMIN_EMAIL = "[email protected]" ADMIN_NAME = "Admin Test" # ------- AWS CREDENTIALS ------------------------------------------------------ #: AWS Credentials # For: S3, SES Mailer, flask s3 AWS_ACCESS_KEY_ID = "AKIAIJ66SVCZPD4F3P6A" AWS_SECRET_ACCESS_KEY = "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" AWS_S3_BUCKET_NAME = "yoredis" # ------- DATABASES ------------------------------------------------------------ #: SQLAlchemy #: format: engine://USERNAME:PASSWORD@HOST:PORT/DB_NAME DATABASE_URI = "mysql+pymysql://root:[email protected]:3306/test_pylot" #"sqlite://///Users/mardochee.macxis/Projects/Python/flask-pilot/test/app.db" #: REDIS #: format: USERNAME:PASSWORD@HOST:PORT REDIS_URI = None # ------------------------------------------------------------------------------ # WEBASSETS # Flask-Assets # http://flask-assets.readthedocs.org/ ASSETS_DEBUG = False FLASK_ASSETS_USE_S3 = False # Flask-S3 # https://flask-s3.readthedocs.org/en/v0.1.4/ USE_S3 = False S3_BUCKET_DOMAIN = "" S3_BUCKET_NAME = AWS_S3_BUCKET_NAME S3_USE_HTTPS = False USE_S3_DEBUG = False S3_ONLY_MODIFIED = False # ------------------------------------------------------------------------------ #: SESSION #: Flask-KVSession is used to save the user's session #: Set the SESSION_URI to by using these examples below to set KVSession #: To use local session, just set SESSION_URI to None #: #: Redis: redis://username:password@host:6379/db #: S3: s3://username:[email protected]/bucket #: Google Storage: google_storage:username:[email protected]/bucket #: SQL: postgresql://username:password@host:3306/db #: mysql+pysql://username:password@host:3306/db #: sqlite:// #: Memcached: memcache://host:port #: SESSION_URI = None # ------------------------------------------------------------------------------ #: CLOUDSTORAGE #: Flask-CloudStorage is used to save upload on S3, Google Storage, #: Cloudfiles, Azure Blobs, and Local storage #: When using local storage, they can be accessed via http://yoursite/files #: CLOUDSTORAGE_PROVIDER: # The provider to use. By default it's 'LOCAL'. # You can use: # LOCAL, S3, GOOGLE_STORAGE, AZURE_BLOBS, CLOUDFILES CLOUDSTORAGE_PROVIDER = "LOCAL" #: CLOUDSTORAGE_KEY # The storage key. Leave it blank if PROVIDER is LOCAL CLOUDSTORAGE_KEY = AWS_ACCESS_KEY_ID #: CLOUDSTORAGE_SECRET #: The storage secret key. Leave it blank if PROVIDER is LOCAL CLOUDSTORAGE_SECRET = AWS_SECRET_ACCESS_KEY #: CLOUDSTORAGE_CONTAINER #: The Bucket name (for S3, Google storage, Azure, cloudfile) #: or the directory name (LOCAL) to access CLOUDSTORAGE_CONTAINER = "uploads" #: CLOUDSTORAGE_ALLOWED_EXTENSIONS #: List of extensions to allow CLOUDSTORAGE_ALLOWED_EXTENSIONS = [] #: CLOUDSTORAGE_LOCAL_PATH #: When POVIDER is LOCAL, the directory path where CONTAINER exists CLOUDSTORAGE_LOCAL_PATH = "%s/data" % CWD #: CLOUDSTORAGE_LOCAL_URL #: Url to access LOCAL file CLOUDSTORAGE_SERVE_FILES = True CLOUDSTORAGE_SERVE_FILES_URL = "files" #: CLOUDSTORAGE_SERVE_FILES_URL_SECURE #: Bool to serve files via http or https CLOUDSTORAGE_SERVE_FILES_URL_SECURE = False CLOUDSTORAGE_URI = "s3://{username}:{password}@s3.aws.amazon.com/{bucket}"\ .format(username=AWS_SECRET_ACCESS_KEY, password=AWS_SECRET_ACCESS_KEY, bucket=AWS_S3_BUCKET_NAME) # ------------------------------------------------------------------------------ #: MAILER #: To send mail using AWS SES or SMTP #: You can send raw email, or templated email for convenience #: MAILER_PROVIDER #: The mailer provider SES or SMTP MAILER_PROVIDER = "SMTP" #: MAILER_SES_ACCESS_KEY #: For SES The AWS_ACCESS_KEY_ID MAILER_SES_ACCESS_KEY = AWS_ACCESS_KEY_ID #: MAILER_SES_SECRET_KEY #: For SES The AWS_SECRET_ACCESS_KEY MAILER_SES_SECRET_KEY = AWS_SECRET_ACCESS_KEY #: MAILER_SENDER - The sender of the email by default #: For SES, this email must be authorized MAILER_SENDER = "[email protected]" #: MAILER_REPLY_TO #: The email to reply to by default MAILER_REPLY_TO = "[email protected]" #: MAILER_TEMPLATE #: a directory that contains the email template or a dict MAILER_TEMPLATE = "%s/var/ses-mailer" % CWD #: MAILER_TEMPLATE_CONTEXT #: a dict of all context to pass to the email by default MAILER_TEMPLATE_CONTEXT = { "site_name": "MyTestSite.com", "site_url": "http://mytestsite.com" } #: MAILER_SMTP_URI #: The uri for the smtp connection. It will use Flask-Mail #: format: smtp://USERNAME:PASSWORD@HOST:PORT #: with sll -> smtp+ssl://USERNAME:PASSWORD@HOST:PORT #: with ssl and tls -> smtp+ssl+tls://USERNAME:PASSWORD@HOST:PORT MAILER_SMTP_URI = "smtp+ssl://{username}:{password}@{host}:{port}"\ .format(username="", password="", host="smtp.gmail.com", port=465) #: PAGINATION_PER_PAGE : Total entries to display per page PAGINATION_PER_PAGE = 25 # ------------------------------------------------------------------------------ #: CACHE #: Flask-Cache is used to caching #: CACHE_TYPE #: The type of cache to use #: null, simple, redis, filesystem, CACHE_TYPE = "simple" #: CACHE_REDIS_URL #: If CHACHE_TYPE is 'redis', set the redis uri #: redis://username:password@host:port/db CACHE_REDIS_URL = "" #: CACHE_DIR #: Directory to store cache if CACHE_TYPE is filesystem, it will CACHE_DIR = "" # ------------------------------------------------------------------------------ #: RECAPTCHA #: Flask-Recaptcha #: Register your application at https://www.google.com/recaptcha/admin #: RECAPTCHA_SITE_KEY RECAPTCHA_SITE_KEY = "6LchGgITAAAAAG-5mgaxR-5QFwtxt1OByvdOkQJV" #: RECAPTCHA_SECRET_KEY RECAPTCHA_SECRET_KEY = "6LchGgITAAAAAIHo1JDof2SFOaqD9YEFzwMb5w77" # ------------------------------------------------------------------------------ #: GOOGLE ANALYTICS ID GOOGLE_ANALYTICS_ID = "" # ------------------------------------------------------------------------------ USER_ACCOUNT_ENABLE_EMAIL_LOGIN = True USER_ACCOUNT_ENABLE_SIGNUP = True USER_ACCOUNT_RESET_PASSWORD_METHOD = "TOKEN" # TOKEN | PASSWORD USER_ACCOUNT_ENABLE_AUTH_LOGIN = True USER_ACCOUNT_AUTH_CREDENTIALS = { "Facebook": { "consumer_key": "402239969943888", "consumer_secret": "" }, "Google": { "consumer_key": "402239969943888", "consumer_secret": "" }, "Twitter": { "consumer_key": "402239969943888", "consumer_secret": "" }, "WindowsLive": { "consumer_key": "402239969943888", "consumer_secret": "" }, "UbuntuOne": { "consumer_key": "402239969943888", "consumer_secret": "" } } # ----- LOGIN ----- LOGIN_RESET_PASSWORD_METHOD = "TOKEN" # PASSWORD | TOKEN LOGIN_EMAIL_ENABLE = True LOGIN_OAUTH_ENABLE = True LOGIN_SIGNUP_ENABLE = True LOGIN_OAUTH_CREDENTIALS = { "FACEBOOK": { "ENABLE": True, "CLIENT_ID": "" }, "GOOGLE": { "ENABLE": True, "CLIENT_ID": "" }, "TWITTER": { "ENABLE": False, "CLIENT_ID": "" } } # Maintenance # Turn maintenance page ON and OFF MAINTENANCE_ON = False # Contact # Email address for the contact page receipient CONTACT_PAGE_EMAIL_RECIPIENT = "[email protected]" COMPONENT_USER_ACCOUNT = { "email_login": True, "auth_login": True, "auth": { "Facebook": { } } } class Development(Config): pass class Production(Config): SECRET_KEY = None
PypiClean
/sifflet_sdk-0.3.2-py3-none-any.whl/client/model/multi_metrics_graph_dto.py
import re # noqa: F401 import sys # noqa: F401 from client.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from client.exceptions import ApiAttributeError def lazy_import(): from client.model.multi_metrics_graph_dto_all_of import MultiMetricsGraphDtoAllOf from client.model.rule_graph_dto import RuleGraphDto from client.model.rule_graph_dto_graph_points_inner import RuleGraphDtoGraphPointsInner globals()['MultiMetricsGraphDtoAllOf'] = MultiMetricsGraphDtoAllOf globals()['RuleGraphDto'] = RuleGraphDto globals()['RuleGraphDtoGraphPointsInner'] = RuleGraphDtoGraphPointsInner class MultiMetricsGraphDto(ModelComposed): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('empty_string_id',): { 'EDGE_165169_EMPTY_165169_STRING': "EDGE_165169_EMPTY_165169_STRING", }, ('graph_type',): { 'DUPLICATE': "DUPLICATE", 'COMPLETENESS': "COMPLETENESS", 'FRESHNESS': "FRESHNESS", 'NUMERICAL_TRANSFORMATION': "NUMERICAL_TRANSFORMATION", 'DISTRIBUTION': "DISTRIBUTION", 'MULTI_METRICS_GLOBAL_TIME_SERIES': "MULTI_METRICS_GLOBAL_TIME_SERIES", 'MULTI_METRICS_DIFFERENCE_TIME_SERIES': "MULTI_METRICS_DIFFERENCE_TIME_SERIES", 'NONE': "NONE", }, } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'empty_string_id': (str,), # noqa: E501 'graph_points': ([RuleGraphDtoGraphPointsInner],), # noqa: E501 'graph_type': (str,), # noqa: E501 'metric_names': ([str],), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'empty_string_id': 'emptyStringId', # noqa: E501 'graph_points': 'graphPoints', # noqa: E501 'graph_type': 'graphType', # noqa: E501 'metric_names': 'metricNames', # noqa: E501 } read_only_vars = { } @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """MultiMetricsGraphDto - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) empty_string_id (str): [optional] if omitted the server will use the default value of "EDGE_165169_EMPTY_165169_STRING" # noqa: E501 graph_points ([RuleGraphDtoGraphPointsInner]): [optional] # noqa: E501 graph_type (str): [optional] # noqa: E501 metric_names ([str]): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: for arg in args: if isinstance(arg, dict): kwargs.update(arg) else: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) constant_args = { '_check_type': _check_type, '_path_to_item': _path_to_item, '_spec_property_naming': _spec_property_naming, '_configuration': _configuration, '_visited_composed_classes': self._visited_composed_classes, } composed_info = validate_get_composed_info( constant_args, kwargs, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] discarded_args = composed_info[3] for var_name, var_value in kwargs.items(): if var_name in discarded_args and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self._additional_properties_model_instances: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', '_composed_instances', '_var_name_to_model_instances', '_additional_properties_model_instances', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """MultiMetricsGraphDto - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) empty_string_id (str): [optional] if omitted the server will use the default value of "EDGE_165169_EMPTY_165169_STRING" # noqa: E501 graph_points ([RuleGraphDtoGraphPointsInner]): [optional] # noqa: E501 graph_type (str): [optional] # noqa: E501 metric_names ([str]): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: for arg in args: if isinstance(arg, dict): kwargs.update(arg) else: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) constant_args = { '_check_type': _check_type, '_path_to_item': _path_to_item, '_spec_property_naming': _spec_property_naming, '_configuration': _configuration, '_visited_composed_classes': self._visited_composed_classes, } composed_info = validate_get_composed_info( constant_args, kwargs, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] discarded_args = composed_info[3] for var_name, var_value in kwargs.items(): if var_name in discarded_args and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self._additional_properties_model_instances: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.") @cached_property def _composed_schemas(): # we need this here to make our import statements work # we must store _composed_schemas in here so the code is only run # when we invoke this method. If we kept this at the class # level we would get an error because the class level # code would be run when this module is imported, and these composed # classes don't exist yet because their module has not finished # loading lazy_import() return { 'anyOf': [ ], 'allOf': [ MultiMetricsGraphDtoAllOf, RuleGraphDto, ], 'oneOf': [ ], }
PypiClean
/ContextPy3-1.0.tar.gz/ContextPy3-1.0/contextpy3.py
import sys import threading __all__ = ['Layer'] __all__ += ['active_layer', 'active_layers', 'inactive_layer', 'inactive_layers'] __all__ += ['proceed'] __all__ += ['before', 'after', 'around', 'base'] __all__ += ['global_activate_layer', 'global_deactivate_layer'] __version__ = "1.0" # system-global layer stack _BASELAYERS = (None,) # thread-local layer stack class TLS(threading.local): def __init__(self): super(threading.local, self).__init__() # pylint: disable=bad-super-call self.context = None self.active_layers = () _TLS = TLS() class Layer(object): def __init__(self, name=None): self._name = name or hex(id(self)) def __str__(self): return "<layer %s>" % (self._name) def __repr__(self): args = [] if self._name != hex(id(self)): args.append('name="%s"' % self._name) return "layer(%s)" % (", ".join(args)) class _LayerManager(object): def __init__(self, layers): self._layers = layers self._old_layers = () def __enter__(self): self._old_layers = _TLS.active_layers _TLS.active_layers = tuple(self._get_active_layers()) # pylint: disable=no-member def __exit__(self, exc_type, exc_value, exc_tb): _TLS.active_layers = self._old_layers class _LayerActivationManager(_LayerManager): def _get_active_layers(self): return [layer for layer in self._old_layers if layer not in self._layers] + self._layers class _LayerDeactivationManager(_LayerManager): def _get_active_layers(self): return [layer for layer in self._old_layers if layer not in self._layers] def active_layer(layer): return _LayerActivationManager([layer]) def inactive_layer(layer): return _LayerDeactivationManager([layer]) def active_layers(*layers): return _LayerActivationManager(list(layers)) def inactive_layers(*layers): return _LayerDeactivationManager(list(layers)) class _advice(object): def __init__(self, func, successor): if func: self._func = func else: self._func = None self._successor = successor def _invoke(self, context, args, kwargs): if (context[0] is None) and (context[1] is None): # Normal Python function no binding needed return self._func(*args, **kwargs) # Kind of instance method, class or static mehtod (binding needed) return self._func.__get__(context[0], context[1])(*args, **kwargs) @classmethod def createchain(cls, methods): if not methods: return _stop(None, None) method, when = methods[0] return when(method, cls.createchain(methods[1:])) class _before(_advice): def __call__(self, context, args, kwargs): self._invoke(context, args, kwargs) return self._successor(context, args, kwargs) class _around(_advice): def __call__(self, context, args, kwargs): backup = _TLS.context _TLS.context = context context[2] = self._successor result = self._invoke(context, args, kwargs) _TLS.context = backup return result class _after(_advice): def __call__(self, context, args, kwargs): result = self._successor(context, args, kwargs) kwargs_with_result = dict(__result__=result, **kwargs) return self._invoke(context, args, kwargs_with_result) class _stop(_advice): def __call__(self, context, args, kwargs): raise Exception( "called proceed() in innermost function, this probably means that" "you don't have a base method (`around` advice in None layer) or" "the base method itself calls proceed()") def proceed(*args, **kwargs): context = _TLS.context return context[2](context, args, kwargs) def _true(*_): return True def merge_layers(tuple1, tuple2): return tuple1 + tuple([layer for layer in tuple2 if layer not in tuple1]) class _layeredmethodinvocationproxy(object): __slots__ = ("_inst", "_cls", "_descriptor") def __init__(self, descriptor, inst, cls): self._inst = inst self._cls = cls self._descriptor = descriptor def __call__(self, *args, **kwargs): layers = merge_layers(_BASELAYERS, _TLS.active_layers) advice = ( self._descriptor.cache().get(layers) or self._descriptor.cache_methods(layers)) context = [self._inst, self._cls, None] result = advice(context, args, kwargs) return result class _layeredmethoddescriptor(object): def __init__(self, methods): self._methods = methods self._cache = {} def _clear_cache(self): self._cache = {} def cache(self): return self._cache def cache_methods(self, layers): layers = list(reversed(layers)) # For each active layer, get all methods and the when advice class related to this layer methods = sum([ list(reversed( [(lmwgm[1], lmwgm[2]) for lmwgm in self._methods if lmwgm[0] is currentlayer and lmwgm[3](active_layers)] )) for currentlayer in layers], []) self._cache[active_layers] = result = _advice.createchain(methods) return result def set_methods(self, methods): self._methods[:] = methods self._clear_cache() def get_methods(self): return list(self._methods) def register_method(self, method, when=_around, layer_=None, guard=_true, method_name=""): assert isinstance(layer_, (Layer, type(None))) assert issubclass(when, _advice) self.methods = self.methods + [ (layer_, method, when, guard, method_name)] methods = property(get_methods, set_methods) def __get__(self, inst, cls=None): return _layeredmethodinvocationproxy(self, inst, cls) # Used only for functions (no binding or invocation proxy needed) def __call__(self, *args, **kwargs): layers = merge_layers(_BASELAYERS, _TLS.active_layers) advice = self._cache.get(layers) or self.cache_methods(layers) # 2x None to identify: do not bound this function context = [None, None, None] result = advice(context, args, kwargs) return result def createlayeredmethod(base_method, partial_method): if base_method: return _layeredmethoddescriptor([(None, base_method, _around, _true)] + partial_method) return _layeredmethoddescriptor(partial_method) # Needed for a hack to get the name of the class/static method object class _dummyClass: pass def get_method_name(method): if isinstance(method, (classmethod, staticmethod)): # Bound the method to a dummy class to retrieve the original name return method.__get__(None, _dummyClass).__name__ return method.__name__ def __common(layer_, guard, when): assert isinstance(layer_, (Layer, type(None))), \ "layer_ argument must be a layer instance or None" assert callable(guard), "guard must be callable" assert issubclass(when, _advice) frame = sys._getframe(2).f_locals # pylint: disable=protected-access def decorator(method): method_name = get_method_name(method) current_method = frame.get(method_name) if issubclass(type(current_method), _layeredmethoddescriptor): #Append the new method current_method.register_method(method, when, layer_, guard, method_name) else: current_method = createlayeredmethod(current_method, [(layer_, method, when, guard, method_name)]) return current_method return decorator def before(layer_=None, guard=_true): return __common(layer_, guard, _before) def around(layer_=None, guard=_true): return __common(layer_, guard, _around) def after(layer_=None, guard=_true): return __common(layer_, guard, _after) def base(method): # look for the current entry in the __dict__ (class or module) frame = sys._getframe(1).f_locals # pylint: disable=protected-access method_name = get_method_name(method) current_method = frame.get(method_name) if issubclass(type(current_method), _layeredmethoddescriptor): # add the first entry of the layered method with the base entry current_method.methods = [(None, method, _around, _true)] + current_method.methods return current_method return method before.when = _before around.when = _around after.when = _after def global_activate_layer(layer): global _BASELAYERS if layer in _BASELAYERS: raise ValueError("layer is already active") _BASELAYERS += (layer,) return _BASELAYERS def global_deactivate_layer(layer): global _BASELAYERS old_layers = list(_BASELAYERS) if layer not in old_layers: raise ValueError("layer is not active") i = old_layers.index(layer) _BASELAYERS = tuple(old_layers[:i] + old_layers[i+1:]) return _BASELAYERS
PypiClean
/scancode-toolkit-32.0.6.tar.gz/scancode-toolkit-32.0.6/src/cluecode/finder.py
import string import re import ipaddress import urlpy from commoncode.text import toascii from cluecode import finder_data from textcode import analysis # Tracing flags TRACE = False TRACE_URL = False TRACE_EMAIL = False def logger_debug(*args): pass if TRACE or TRACE_URL or TRACE_EMAIL: import logging import sys logger = logging.getLogger(__name__) # logging.basicConfig(level=logging.DEBUG, stream=sys.stdout) logging.basicConfig(stream=sys.stdout) logger.setLevel(logging.DEBUG) def logger_debug(*args): return logger.debug(' '.join(isinstance(a, str) and a or repr(a) for a in args)) """ Find patterns in text lines such as a emails and URLs. Optionally apply filters to pattern matches. """ def find(location, patterns): """ Yield match and matched lines for patterns found in file at location as a tuple of (key, found text, text line). `patterns` is a list of tuples (key, compiled regex). Note: the location can be a list of lines for testing convenience. """ if TRACE: from pprint import pformat loc = pformat(location) logger_debug('find(location=%(loc)r,\n patterns=%(patterns)r)' % locals()) for line_number, line in analysis.numbered_text_lines(location, demarkup=False): for key, pattern in patterns: for match in pattern.findall(line): if TRACE: logger_debug('find: yielding match: key=%(key)r, ' 'match=%(match)r,\n line=%(line)r' % locals()) yield key, toascii(match), line, line_number def unique_filter(matches): """ Iterate over matches and yield unique matches. """ uniques = set() for key, match, line, line_number in matches: if (key, match,) in uniques: continue uniques.add((key, match,)) yield key, match, line, line_number def apply_filters(matches, *filters): """ Apply a sequence of `filters` to a `matches` iterable. Return a new filtered matches iterable. A filter must accept a single arg: an iterable of tuples of (key, match, line, line_number) and must return an iterable of tuples of (key, match, line, line_number). """ for filt in filters: matches = filt(matches) return matches def build_regex_filter(pattern): """ Return a filter function using regex pattern, filtering out matches matching this regex. The pattern should be text, not a compiled re. """ def re_filt(matches): if TRACE: logger_debug('re_filt: pattern="{}"'.format(pattern)) for key, match, line, line_number in matches: if matcher(match): if TRACE: logger_debug('re_filt: filtering match: "{}"'.format(match)) continue yield key, match, line, line_number matcher = re.compile(pattern, re.UNICODE | re.IGNORECASE).match return re_filt # A good reference page of email address regex is: # http://fightingforalostcause.net/misc/2006/compare-email-regex.php email # regex from http://www.regular-expressions.info/regexbuddy/email.html def emails_regex(): return re.compile('\\b[A-Z0-9._%-]+@[A-Z0-9.-]+\\.[A-Z]{2,4}\\b', re.IGNORECASE) def find_emails(location, unique=True): """ Yield an iterable of (email, line_number) found in file at ``location``. Only return unique items if ``unique`` is True. """ patterns = [('emails', emails_regex(),)] matches = find(location, patterns) if TRACE_EMAIL: matches = list(matches) for r in matches: logger_debug('find_emails: match:', r) filters = (junk_email_domains_filter, uninteresting_emails_filter) if unique: filters += (unique_filter,) matches = apply_filters(matches, *filters) for _key, email, _line, line_number in matches: yield email, line_number def junk_email_domains_filter(matches): """ Given an iterable of email matches, return an iterable where email with common uninteresting domains have been removed, such as local, non public or example.com emails. """ for key, email, line, line_number in matches: if is_good_email_domain(email): yield key, email, line, line_number else: if TRACE: logger_debug(f'junk_email_domains_filter: !is_good_host: {email!r}') def is_good_email_domain(email): """ Return True if the domain of the ``email`` string is valid, False otherwise such as for local, non public domains. For example:: >>> is_good_email_domain("[email protected]") True >>> is_good_email_domain("[email protected]") False >>> is_good_email_domain("[email protected]") False """ if not email: return False _dest, _, server = email.partition('@') if not is_good_host(server): return False fake_url = f'http://{server}' _host, domain = url_host_domain(fake_url) if not is_good_host(domain): return False return True def uninteresting_emails_filter(matches): """ Given an iterable of emails matches, return an iterable where common uninteresting emails have been removed. """ for key, email, line, line_number in matches: good_email = finder_data.classify_email(email) if not good_email: continue yield key, email, line, line_number # TODO: consider: http://www.regexguru.com/2008/11/detecting-urls-in-a-block-of-text/ # TODO: consider: http://blog.codinghorror.com/the-problem-with-urls/ schemes = 'https?|ftps?|sftp|rsync|ssh|svn|git|hg|https?\\+git|https?\\+svn|https?\\+hg' url_body = '[^\\s<>\\[\\]"]' def urls_regex(): # no space, no < >, no [ ] and no double quote return re.compile(''' ( # URLs with schemes (?:%(schemes)s)://%(url_body)s+ | # common URLs prefix without schemes (?:www|ftp)\\.%(url_body)s+ | # git style [email protected]:christophercantu/pipeline.git git\\@%(url_body)s+:%(url_body)s+\\.git )''' % globals() , re.UNICODE | re.VERBOSE | re.IGNORECASE) INVALID_URLS_PATTERN = '((?:' + schemes + ')://([$%*/_])+)' def find_urls(location, unique=True): """ Yield an iterable of (url, line_number) found in file at ``location``. Only return unique items if ``unique`` is True. `location` can be a list of strings for testing. """ patterns = [('urls', urls_regex(),)] matches = find(location, patterns) if TRACE: matches = list(matches) for m in matches: logger_debug('url match:', m) # the order of filters IS important filters = ( verbatim_crlf_url_cleaner, end_of_url_cleaner, empty_urls_filter, scheme_adder, user_pass_cleaning_filter, build_regex_filter(INVALID_URLS_PATTERN), canonical_url_cleaner, junk_url_hosts_filter, junk_urls_filter, ) if unique: filters += (unique_filter,) matches = apply_filters(matches, *filters) for _key, url, _line, line_number in matches: if TRACE_URL: logger_debug('find_urls: line_number:', line_number, '_line:', repr(_line), 'type(url):', type(url), 'url:', repr(url)) yield str(url), line_number EMPTY_URLS = set(['https', 'http', 'ftp', 'www', ]) def empty_urls_filter(matches): """ Given an iterable of URL matches, return an iterable without empty URLs. """ for key, match, line, line_number in matches: junk = match.lower().strip(string.punctuation).strip() if not junk or junk in EMPTY_URLS: if TRACE: logger_debug('empty_urls_filter: filtering match: %(match)r' % locals()) continue yield key, match, line, line_number def verbatim_crlf_url_cleaner(matches): """ Given an iterable of URL matches, return an iterable where literal end of lines and carriage return characters that may show up as-is, un-encoded in a URL have been removed. """ # FIXME: when is this possible and could happen? for key, url, line, line_number in matches: if not url.endswith('/'): url = url.replace('\n', '') url = url.replace('\r', '') yield key, url, line, line_number def end_of_url_cleaner(matches): """ Given an iterable of URL matches, return an iterable where junk characters commonly found at the end of a URL are removed. This is not entirely correct, but works practically. """ for key, url, line, line_number in matches: if not url.endswith('/'): url = url.replace(u'&lt;', u'<') url = url.replace(u'&gt;', u'>') url = url.replace(u'&amp;', u'&') url = url.rstrip(string.punctuation) url = url.split(u'\\')[0] url = url.split(u'<')[0] url = url.split(u'>')[0] url = url.split(u'(')[0] url = url.split(u')')[0] url = url.split(u'[')[0] url = url.split(u']')[0] url = url.split(u'"')[0] url = url.split(u"'")[0] yield key, url, line, line_number non_standard_urls_prefix = ('git@',) def is_filterable(url): """ Return True if a url is eligible for filtering. Certain URLs should not pass through certain filters (such as a [email protected] style urls) """ return not url.startswith(non_standard_urls_prefix) def scheme_adder(matches): """ Add a fake http:// scheme if there was none. """ for key, match, line, line_number in matches: if is_filterable(match): match = add_fake_scheme(match) yield key, match, line, line_number def add_fake_scheme(url): """ Add a fake http:// scheme to URL if has none. """ if not has_scheme(url): url = 'http://' + url.lstrip(':/').strip() return url def has_scheme(url): """ Return True if url has a scheme. """ return re.match('^(?:%(schemes)s)://.*' % globals(), url, re.UNICODE) def user_pass_cleaning_filter(matches): """ Given an iterable of URL matches, return an iterable where user and password are removed from the URLs host. """ for key, match, line, line_number in matches: if is_filterable(match): host, _domain = url_host_domain(match) if not host: if TRACE: logger_debug('user_pass_cleaning_filter: ' 'filtering match(no host): %(match)r' % locals()) continue if '@' in host: # strips any user/pass host = host.split(u'@')[-1] yield key, match, line, line_number DEFAULT_PORTS = { 'http': 80, 'https': 443 } def canonical_url(uri): """ Return the canonical representation of a given URI. This assumes the `uri` has a scheme. * When a default port corresponding for the scheme is explicitly declared (such as port 80 for http), the port will be removed from the output. * Fragments '#' are not removed. * Params and query string arguments are not reordered. """ try: parsed = urlpy.parse(uri) if not parsed: return if TRACE: logger_debug('canonical_url: parsed:', parsed) sanitized = parsed.sanitize() if TRACE: logger_debug('canonical_url: sanitized:', sanitized) punycoded = sanitized.punycode() if TRACE: logger_debug('canonical_url: punycoded:', punycoded) deport = punycoded.remove_default_port() if TRACE: logger_debug('canonical_url: deport:', deport) return str(sanitized) except Exception as e: if TRACE: logger_debug('canonical_url: failed for:', uri, 'with:', repr(e)) # ignore it pass def canonical_url_cleaner(matches): """ Given an iterable of URL matches, return an iterable where URLs have been canonicalized. """ for key, match, line, line_number in matches: if is_filterable(match): canonical = canonical_url(match) if TRACE: logger_debug('canonical_url_cleaner: ' 'match=%(match)r, canonical=%(canonical)r' % locals()) match = canonical if match: yield key, match , line, line_number IP_V4_RE = '^(\\d{1,3}\\.){0,3}\\d{1,3}$' def is_ip_v4(s): return re.compile(IP_V4_RE, re.UNICODE).match(s) IP_V6_RE = ( '^([0-9a-f]{0,4}:){2,7}[0-9a-f]{0,4}$' '|' '^([0-9a-f]{0,4}:){2,6}(\\d{1,3}\\.){0,3}\\d{1,3}$' ) def is_ip_v6(s): """ Return True is string s is an IP V6 address """ return re.compile(IP_V6_RE, re.UNICODE).match(s) def is_ip(s): """ Return True is string s is an IP address """ return is_ip_v4(s) or is_ip_v6(s) def get_ip(s): """ Return True is string s is an IP address """ if not is_ip(s): return False try: ip = ipaddress.ip_address(str(s)) return ip except ValueError: return False def is_private_ip(ip): """ Return true if ip object is a private or local IP. """ if ip: if isinstance(ip, ipaddress.IPv4Address): private = ( ip.is_reserved or ip.is_private or ip.is_multicast or ip.is_unspecified or ip.is_loopback or ip.is_link_local ) else: private( ip.is_multicast or ip.is_reserved or ip.is_link_local or ip.is_site_local or ip.is_private or ip.is_unspecified or ip.is_loopback ) return private def is_good_host(host): """ Return True if the host is not some local or uninteresting host. """ if not host: return False ip = get_ip(host) if ip: if is_private_ip(ip): return False return finder_data.classify_ip(host) # at this stage we have a host name, not an IP if '.' not in host: # private hostnames not in a domain, including localhost return False good_host = finder_data.classify_host(host) return good_host def url_host_domain(url): """ Return a tuple of the (host, domain) of a URL or None. Assumes that the URL has a scheme. """ try: parsed = urlpy.parse(url) host = parsed.host if not host: return None, None domain = parsed.pld return host.lower(), domain.lower() except Exception as e: if TRACE: logger_debug('url_host_domain: failed for:', url, 'with:', repr(e)) # ignore it return None, None def junk_url_hosts_filter(matches): """ Given an iterable of URL matches, return an iterable where URLs with common uninteresting hosts or domains have been removed, such as local, non public or example.com URLs. """ for key, match, line, line_number in matches: if is_filterable(match): host, domain = url_host_domain(match) if not is_good_host(host): if TRACE: logger_debug('junk_url_hosts_filter: ' '!is_good_host:%(host)r): %(match)r' % locals()) continue if not is_good_host(domain) and not is_ip(host): if TRACE: logger_debug('junk_url_hosts_filter: ''!is_good_host:%(domain)r ' 'and !is_ip:%(host)r: %(match)r' % locals()) continue yield key, match, line, line_number def junk_urls_filter(matches): """ Given an iterable of URL matches, return an iterable where URLs with common uninteresting URLs, or uninteresting URL hosts or domains have been removed, such as local, non public or example.com URLs. """ for key, match, line, line_number in matches: good_url = finder_data.classify_url(match) if not good_url: if TRACE: logger_debug('junk_url_filter: %(match)r' % locals()) continue yield key, match, line, line_number def find_pattern(location, pattern, unique=False): """ Find regex pattern in the text lines of file at location. Return all match groups joined as one unicode string. Only return unique items if unique is True. """ pattern = re.compile(pattern, re.UNICODE | re.IGNORECASE) matches = find(location, [(None, pattern,)]) if unique: matches = unique_filter(matches) for _key, match , _line, line_number in matches: yield match, line_number
PypiClean
/geezlibs1-2.0.0-py3-none-any.whl/geezlibs/filters.py
import inspect import re from typing import Callable, Union, List, Pattern import geezlibs from geezlibs import enums from geezlibs.types import Message, CallbackQuery, InlineQuery, InlineKeyboardMarkup, ReplyKeyboardMarkup, Update class Filter: async def __call__(self, client: "geezlibs.Client", update: Update): raise NotImplementedError def __invert__(self): return InvertFilter(self) def __and__(self, other): return AndFilter(self, other) def __or__(self, other): return OrFilter(self, other) class InvertFilter(Filter): def __init__(self, base): self.base = base async def __call__(self, client: "geezlibs.Client", update: Update): if inspect.iscoroutinefunction(self.base.__call__): x = await self.base(client, update) else: x = await client.loop.run_in_executor( client.executor, self.base, client, update ) return not x class AndFilter(Filter): def __init__(self, base, other): self.base = base self.other = other async def __call__(self, client: "geezlibs.Client", update: Update): if inspect.iscoroutinefunction(self.base.__call__): x = await self.base(client, update) else: x = await client.loop.run_in_executor( client.executor, self.base, client, update ) # short circuit if not x: return False if inspect.iscoroutinefunction(self.other.__call__): y = await self.other(client, update) else: y = await client.loop.run_in_executor( client.executor, self.other, client, update ) return x and y class OrFilter(Filter): def __init__(self, base, other): self.base = base self.other = other async def __call__(self, client: "geezlibs.Client", update: Update): if inspect.iscoroutinefunction(self.base.__call__): x = await self.base(client, update) else: x = await client.loop.run_in_executor( client.executor, self.base, client, update ) # short circuit if x: return True if inspect.iscoroutinefunction(self.other.__call__): y = await self.other(client, update) else: y = await client.loop.run_in_executor( client.executor, self.other, client, update ) return x or y CUSTOM_FILTER_NAME = "CustomFilter" def create(func: Callable, name: str = None, **kwargs) -> Filter: """Easily create a custom filter. Custom filters give you extra control over which updates are allowed or not to be processed by your handlers. Parameters: func (``Callable``): A function that accepts three positional arguments *(filter, client, update)* and returns a boolean: True if the update should be handled, False otherwise. The *filter* argument refers to the filter itself and can be used to access keyword arguments (read below). The *client* argument refers to the :obj:`~geezlibs.Client` that received the update. The *update* argument type will vary depending on which `Handler <handlers>`_ is coming from. For example, in a :obj:`~geezlibs.handlers.MessageHandler` the *update* argument will be a :obj:`~geezlibs.types.Message`; in a :obj:`~geezlibs.handlers.CallbackQueryHandler` the *update* will be a :obj:`~geezlibs.types.CallbackQuery`. Your function body can then access the incoming update attributes and decide whether to allow it or not. name (``str``, *optional*): Your filter's name. Can be anything you like. Defaults to "CustomFilter". **kwargs (``any``, *optional*): Any keyword argument you would like to pass. Useful when creating parameterized custom filters, such as :meth:`~geezlibs.filters.command` or :meth:`~geezlibs.filters.regex`. """ return type( name or func.__name__ or CUSTOM_FILTER_NAME, (Filter,), {"__call__": func, **kwargs} )() # region all_filter async def all_filter(_, __, ___): return True all = create(all_filter) """Filter all messages.""" # endregion # region me_filter async def me_filter(_, __, m: Message): return bool(m.from_user and m.from_user.is_self or getattr(m, "outgoing", False)) me = create(me_filter) """Filter messages generated by you yourself.""" # endregion # region bot_filter async def bot_filter(_, __, m: Message): return bool(m.from_user and m.from_user.is_bot) bot = create(bot_filter) """Filter messages coming from bots.""" # endregion # region incoming_filter async def incoming_filter(_, __, m: Message): return not m.outgoing incoming = create(incoming_filter) """Filter incoming messages. Messages sent to your own chat (Saved Messages) are also recognised as incoming.""" # endregion # region outgoing_filter async def outgoing_filter(_, __, m: Message): return m.outgoing outgoing = create(outgoing_filter) """Filter outgoing messages. Messages sent to your own chat (Saved Messages) are not recognized as outgoing.""" # endregion # region text_filter async def text_filter(_, __, m: Message): return bool(m.text) text = create(text_filter) """Filter text messages.""" # endregion # region reply_filter async def reply_filter(_, __, m: Message): return bool(m.reply_to_message_id) reply = create(reply_filter) """Filter messages that are replies to other messages.""" # endregion # region forwarded_filter async def forwarded_filter(_, __, m: Message): return bool(m.forward_date) forwarded = create(forwarded_filter) """Filter messages that are forwarded.""" # endregion # region caption_filter async def caption_filter(_, __, m: Message): return bool(m.caption) caption = create(caption_filter) """Filter media messages that contain captions.""" # endregion # region audio_filter async def audio_filter(_, __, m: Message): return bool(m.audio) audio = create(audio_filter) """Filter messages that contain :obj:`~geezlibs.types.Audio` objects.""" # endregion # region document_filter async def document_filter(_, __, m: Message): return bool(m.document) document = create(document_filter) """Filter messages that contain :obj:`~geezlibs.types.Document` objects.""" # endregion # region photo_filter async def photo_filter(_, __, m: Message): return bool(m.photo) photo = create(photo_filter) """Filter messages that contain :obj:`~geezlibs.types.Photo` objects.""" # endregion # region sticker_filter async def sticker_filter(_, __, m: Message): return bool(m.sticker) sticker = create(sticker_filter) """Filter messages that contain :obj:`~geezlibs.types.Sticker` objects.""" # endregion # region animation_filter async def animation_filter(_, __, m: Message): return bool(m.animation) animation = create(animation_filter) """Filter messages that contain :obj:`~geezlibs.types.Animation` objects.""" # endregion # region game_filter async def game_filter(_, __, m: Message): return bool(m.game) game = create(game_filter) """Filter messages that contain :obj:`~geezlibs.types.Game` objects.""" # endregion # region video_filter async def video_filter(_, __, m: Message): return bool(m.video) video = create(video_filter) """Filter messages that contain :obj:`~geezlibs.types.Video` objects.""" # endregion # region media_group_filter async def media_group_filter(_, __, m: Message): return bool(m.media_group_id) media_group = create(media_group_filter) """Filter messages containing photos or videos being part of an album.""" # endregion # region voice_filter async def voice_filter(_, __, m: Message): return bool(m.voice) voice = create(voice_filter) """Filter messages that contain :obj:`~geezlibs.types.Voice` note objects.""" # endregion # region video_note_filter async def video_note_filter(_, __, m: Message): return bool(m.video_note) video_note = create(video_note_filter) """Filter messages that contain :obj:`~geezlibs.types.VideoNote` objects.""" # endregion # region contact_filter async def contact_filter(_, __, m: Message): return bool(m.contact) contact = create(contact_filter) """Filter messages that contain :obj:`~geezlibs.types.Contact` objects.""" # endregion # region location_filter async def location_filter(_, __, m: Message): return bool(m.location) location = create(location_filter) """Filter messages that contain :obj:`~geezlibs.types.Location` objects.""" # endregion # region venue_filter async def venue_filter(_, __, m: Message): return bool(m.venue) venue = create(venue_filter) """Filter messages that contain :obj:`~geezlibs.types.Venue` objects.""" # endregion # region web_page_filter async def web_page_filter(_, __, m: Message): return bool(m.web_page) web_page = create(web_page_filter) """Filter messages sent with a webpage preview.""" # endregion # region poll_filter async def poll_filter(_, __, m: Message): return bool(m.poll) poll = create(poll_filter) """Filter messages that contain :obj:`~geezlibs.types.Poll` objects.""" # endregion # region dice_filter async def dice_filter(_, __, m: Message): return bool(m.dice) dice = create(dice_filter) """Filter messages that contain :obj:`~geezlibs.types.Dice` objects.""" # endregion # region private_filter async def private_filter(_, __, m: Message): return bool(m.chat and m.chat.type in {enums.ChatType.PRIVATE, enums.ChatType.BOT}) private = create(private_filter) """Filter messages sent in private chats.""" # endregion # region group_filter async def group_filter(_, __, m: Message): return bool(m.chat and m.chat.type in {enums.ChatType.GROUP, enums.ChatType.SUPERGROUP}) group = create(group_filter) """Filter messages sent in group or supergroup chats.""" # endregion # region channel_filter async def channel_filter(_, __, m: Message): return bool(m.chat and m.chat.type == enums.ChatType.CHANNEL) channel = create(channel_filter) """Filter messages sent in channels.""" # endregion # region new_chat_members_filter async def new_chat_members_filter(_, __, m: Message): return bool(m.new_chat_members) new_chat_members = create(new_chat_members_filter) """Filter service messages for new chat members.""" # endregion # region left_chat_member_filter async def left_chat_member_filter(_, __, m: Message): return bool(m.left_chat_member) left_chat_member = create(left_chat_member_filter) """Filter service messages for members that left the chat.""" # endregion # region new_chat_title_filter async def new_chat_title_filter(_, __, m: Message): return bool(m.new_chat_title) new_chat_title = create(new_chat_title_filter) """Filter service messages for new chat titles.""" # endregion # region new_chat_photo_filter async def new_chat_photo_filter(_, __, m: Message): return bool(m.new_chat_photo) new_chat_photo = create(new_chat_photo_filter) """Filter service messages for new chat photos.""" # endregion # region delete_chat_photo_filter async def delete_chat_photo_filter(_, __, m: Message): return bool(m.delete_chat_photo) delete_chat_photo = create(delete_chat_photo_filter) """Filter service messages for deleted photos.""" # endregion # region group_chat_created_filter async def group_chat_created_filter(_, __, m: Message): return bool(m.group_chat_created) group_chat_created = create(group_chat_created_filter) """Filter service messages for group chat creations.""" # endregion # region supergroup_chat_created_filter async def supergroup_chat_created_filter(_, __, m: Message): return bool(m.supergroup_chat_created) supergroup_chat_created = create(supergroup_chat_created_filter) """Filter service messages for supergroup chat creations.""" # endregion # region channel_chat_created_filter async def channel_chat_created_filter(_, __, m: Message): return bool(m.channel_chat_created) channel_chat_created = create(channel_chat_created_filter) """Filter service messages for channel chat creations.""" # endregion # region migrate_to_chat_id_filter async def migrate_to_chat_id_filter(_, __, m: Message): return bool(m.migrate_to_chat_id) migrate_to_chat_id = create(migrate_to_chat_id_filter) """Filter service messages that contain migrate_to_chat_id.""" # endregion # region migrate_from_chat_id_filter async def migrate_from_chat_id_filter(_, __, m: Message): return bool(m.migrate_from_chat_id) migrate_from_chat_id = create(migrate_from_chat_id_filter) """Filter service messages that contain migrate_from_chat_id.""" # endregion # region pinned_message_filter async def pinned_message_filter(_, __, m: Message): return bool(m.pinned_message) pinned_message = create(pinned_message_filter) """Filter service messages for pinned messages.""" # endregion # region game_high_score_filter async def game_high_score_filter(_, __, m: Message): return bool(m.game_high_score) game_high_score = create(game_high_score_filter) """Filter service messages for game high scores.""" # endregion # region reply_keyboard_filter async def reply_keyboard_filter(_, __, m: Message): return isinstance(m.reply_markup, ReplyKeyboardMarkup) reply_keyboard = create(reply_keyboard_filter) """Filter messages containing reply keyboard markups""" # endregion # region inline_keyboard_filter async def inline_keyboard_filter(_, __, m: Message): return isinstance(m.reply_markup, InlineKeyboardMarkup) inline_keyboard = create(inline_keyboard_filter) """Filter messages containing inline keyboard markups""" # endregion # region mentioned_filter async def mentioned_filter(_, __, m: Message): return bool(m.mentioned) mentioned = create(mentioned_filter) """Filter messages containing mentions""" # endregion # region via_bot_filter async def via_bot_filter(_, __, m: Message): return bool(m.via_bot) via_bot = create(via_bot_filter) """Filter messages sent via inline bots""" # endregion # region video_chat_started_filter async def video_chat_started_filter(_, __, m: Message): return bool(m.video_chat_started) video_chat_started = create(video_chat_started_filter) """Filter messages for started video chats""" # endregion # region video_chat_ended_filter async def video_chat_ended_filter(_, __, m: Message): return bool(m.video_chat_ended) video_chat_ended = create(video_chat_ended_filter) """Filter messages for ended video chats""" # endregion # region video_chat_members_invited_filter async def video_chat_members_invited_filter(_, __, m: Message): return bool(m.video_chat_members_invited) video_chat_members_invited = create(video_chat_members_invited_filter) """Filter messages for voice chat invited members""" # endregion # region service_filter async def service_filter(_, __, m: Message): return bool(m.service) service = create(service_filter) """Filter service messages. A service message contains any of the following fields set: *left_chat_member*, *new_chat_title*, *new_chat_photo*, *delete_chat_photo*, *group_chat_created*, *supergroup_chat_created*, *channel_chat_created*, *migrate_to_chat_id*, *migrate_from_chat_id*, *pinned_message*, *game_score*, *video_chat_started*, *video_chat_ended*, *video_chat_members_invited*. """ # endregion # region media_filter async def media_filter(_, __, m: Message): return bool(m.media) media = create(media_filter) """Filter media messages. A media message contains any of the following fields set: *audio*, *document*, *photo*, *sticker*, *video*, *animation*, *voice*, *video_note*, *contact*, *location*, *venue*, *poll*. """ # endregion # region scheduled_filter async def scheduled_filter(_, __, m: Message): return bool(m.scheduled) scheduled = create(scheduled_filter) """Filter messages that have been scheduled (not yet sent).""" # endregion # region from_scheduled_filter async def from_scheduled_filter(_, __, m: Message): return bool(m.from_scheduled) from_scheduled = create(from_scheduled_filter) """Filter new automatically sent messages that were previously scheduled.""" # endregion # region linked_channel_filter async def linked_channel_filter(_, __, m: Message): return bool(m.forward_from_chat and not m.from_user) linked_channel = create(linked_channel_filter) """Filter messages that are automatically forwarded from the linked channel to the group chat.""" # endregion # region command_filter def command(commands: Union[str, List[str]], prefixes: Union[str, List[str]] = "/", case_sensitive: bool = False): """Filter commands, i.e.: text messages starting with "/" or any other custom prefix. Parameters: commands (``str`` | ``list``): The command or list of commands as string the filter should look for. Examples: "start", ["start", "help", "settings"]. When a message text containing a command arrives, the command itself and its arguments will be stored in the *command* field of the :obj:`~geezlibs.types.Message`. prefixes (``str`` | ``list``, *optional*): A prefix or a list of prefixes as string the filter should look for. Defaults to "/" (slash). Examples: ".", "!", ["/", "!", "."], list(".:!"). Pass None or "" (empty string) to allow commands with no prefix at all. case_sensitive (``bool``, *optional*): Pass True if you want your command(s) to be case sensitive. Defaults to False. Examples: when True, command="Start" would trigger /Start but not /start. """ command_re = re.compile(r"([\"'])(.*?)(?<!\\)\1|(\S+)") async def func(flt, client: geezlibs.Client, message: Message): username = client.me.username or "" text = message.text or message.caption message.command = None if not text: return False for prefix in flt.prefixes: if not text.startswith(prefix): continue without_prefix = text[len(prefix):] for cmd in flt.commands: if not re.match(rf"^(?:{cmd}(?:@?{username})?)(?:\s|$)", without_prefix, flags=re.IGNORECASE if not flt.case_sensitive else 0): continue without_command = re.sub(rf"{cmd}(?:@?{username})?\s?", "", without_prefix, count=1, flags=re.IGNORECASE if not flt.case_sensitive else 0) # match.groups are 1-indexed, group(1) is the quote, group(2) is the text # between the quotes, group(3) is unquoted, whitespace-split text # Remove the escape character from the arguments message.command = [cmd] + [ re.sub(r"\\([\"'])", r"\1", m.group(2) or m.group(3) or "") for m in command_re.finditer(without_command) ] return True return False commands = commands if isinstance(commands, list) else [commands] commands = {c if case_sensitive else c.lower() for c in commands} prefixes = [] if prefixes is None else prefixes prefixes = prefixes if isinstance(prefixes, list) else [prefixes] prefixes = set(prefixes) if prefixes else {""} return create( func, "CommandFilter", commands=commands, prefixes=prefixes, case_sensitive=case_sensitive ) # endregion def regex(pattern: Union[str, Pattern], flags: int = 0): """Filter updates that match a given regular expression pattern. Can be applied to handlers that receive one of the following updates: - :obj:`~geezlibs.types.Message`: The filter will match ``text`` or ``caption``. - :obj:`~geezlibs.types.CallbackQuery`: The filter will match ``data``. - :obj:`~geezlibs.types.InlineQuery`: The filter will match ``query``. When a pattern matches, all the `Match Objects <https://docs.python.org/3/library/re.html#match-objects>`_ are stored in the ``matches`` field of the update object itself. Parameters: pattern (``str`` | ``Pattern``): The regex pattern as string or as pre-compiled pattern. flags (``int``, *optional*): Regex flags. """ async def func(flt, _, update: Update): if isinstance(update, Message): value = update.text or update.caption elif isinstance(update, CallbackQuery): value = update.data elif isinstance(update, InlineQuery): value = update.query else: raise ValueError(f"Regex filter doesn't work with {type(update)}") if value: update.matches = list(flt.p.finditer(value)) or None return bool(update.matches) return create( func, "RegexFilter", p=pattern if isinstance(pattern, Pattern) else re.compile(pattern, flags) ) # noinspection PyPep8Naming class user(Filter, set): """Filter messages coming from one or more users. You can use `set bound methods <https://docs.python.org/3/library/stdtypes.html#set>`_ to manipulate the users container. Parameters: users (``int`` | ``str`` | ``list``): Pass one or more user ids/usernames to filter users. For you yourself, "me" or "self" can be used as well. Defaults to None (no users). """ def __init__(self, users: Union[int, str, List[Union[int, str]]] = None): users = [] if users is None else users if isinstance(users, list) else [users] super().__init__( "me" if u in ["me", "self"] else u.lower().strip("@") if isinstance(u, str) else u for u in users ) async def __call__(self, _, message: Message): return (message.from_user and (message.from_user.id in self or (message.from_user.username and message.from_user.username.lower() in self) or ("me" in self and message.from_user.is_self))) # noinspection PyPep8Naming class chat(Filter, set): """Filter messages coming from one or more chats. You can use `set bound methods <https://docs.python.org/3/library/stdtypes.html#set>`_ to manipulate the chats container. Parameters: chats (``int`` | ``str`` | ``list``): Pass one or more chat ids/usernames to filter chats. For your personal cloud (Saved Messages) you can simply use "me" or "self". Defaults to None (no chats). """ def __init__(self, chats: Union[int, str, List[Union[int, str]]] = None): chats = [] if chats is None else chats if isinstance(chats, list) else [chats] super().__init__( "me" if c in ["me", "self"] else c.lower().strip("@") if isinstance(c, str) else c for c in chats ) async def __call__(self, _, message: Message): return (message.chat and (message.chat.id in self or (message.chat.username and message.chat.username.lower() in self) or ("me" in self and message.from_user and message.from_user.is_self and not message.outgoing)))
PypiClean
/PyScenes-0.0.1-py3-none-any.whl/pyscenes/pyscenes.py
# this code is a modification of pygame_functions by Steve Paget # https://github.com/StevePaget/Pygame_Functions import pygame import sys import os spriteGroup = pygame.sprite.OrderedUpdates() textboxGroup = pygame.sprite.OrderedUpdates() hiddenSprites = pygame.sprite.OrderedUpdates() screenRefresh = True class Mixer: def __init__(self): self.paused = False self.initialize() def initialize(self): pygame.mixer.pre_init(44100, -16, 2, 512) pygame.mixer.init() def pause(self): pygame.mixer.music.pause() self.paused = True def play(self, loops=0): if self.paused: pygame.mixer.music.unpause() else: pygame.mixer.music.play(loops) self.paused = False def stop(self): pygame.mixer.music.stop() def loadMusic(self, path): pygame.mixer.music.load(path) class Display: # screen is a pygame object def __init__(self, width, height): self.width = width self.height = height self.screen, self.background = self.createScreen() # see screenSize function def createScreen(self): screen = pygame.display.set_mode([self.width, self.height]) background = Background(screen) screen.fill(background.colour) background.surface = screen.copy() pygame.display.update() return screen, background def update(self): spriteRects = spriteGroup.draw(self.screen) textboxRects = textboxGroup.draw(self.screen) pygame.display.update() spriteGroup.clear(self.screen, self.background.surface) textboxGroup.clear(self.screen, self.background.surface) # contains methods related to managing game # should be self contained, no need to access anything anything in here # inputs are only processed for quit events here # all other input processing should be done through the scene itself class Game: def __init__(self, width, height, fps): self.fps = fps self.initialize() self.clock = pygame.time.Clock() self.display = Display(width, height) self.mixer = Mixer() def initialize(self): pygame.init() # see tick method def tick(self): self.clock.tick(self.fps) return self.clock.get_fps() # "main" method for running game, controlling system level def run_game(self, starting_scene): self.current_scene = starting_scene self.current_scene.setup() # Game Loop while self.current_scene is not None: pressed_keys = pygame.key.get_pressed() filtered_events = self.filter_events(pressed_keys) self.current_scene.process_input(filtered_events, pressed_keys) self.current_scene.update() self.current_scene.render(self.display.screen) self.current_scene = self.next_scene() self.display.update() self.tick() print("Game made with PyScenes.") def next_scene(self): # if scene called switch, clean it up, then set it to old scene state if self.current_scene.next is not self.current_scene: self.current_scene.cleanup() # if game is not terminating, setup next scene if self.current_scene.next is not None: print( "Switching from {} to {}...".format( self.current_scene, self.current_scene.next ) ) self.current_scene.next.setup() return self.current_scene.next # define external game events here # all other event handling should be done in scene class def filter_events(self, pressed_keys): filtered_events = [] for event in pygame.event.get(): quit_attempt = False if event.type == pygame.QUIT: quit_attempt = True elif event.type == pygame.KEYDOWN: alt_pressed = pressed_keys[pygame.K_LALT] or pressed_keys[pygame.K_RALT] if event.key == pygame.K_ESCAPE: quit_attempt = True elif event.key == pygame.K_F4 and alt_pressed: quit_attempt = True if quit_attempt: self.current_scene.terminate() else: filtered_events.append(event) return filtered_events keydict = { "space": pygame.K_SPACE, "esc": pygame.K_ESCAPE, "up": pygame.K_UP, "down": pygame.K_DOWN, "left": pygame.K_LEFT, "right": pygame.K_RIGHT, "return": pygame.K_RETURN, "a": pygame.K_a, "b": pygame.K_b, "c": pygame.K_c, "d": pygame.K_d, "e": pygame.K_e, "f": pygame.K_f, "g": pygame.K_g, "h": pygame.K_h, "i": pygame.K_i, "j": pygame.K_j, "k": pygame.K_k, "l": pygame.K_l, "m": pygame.K_m, "n": pygame.K_n, "o": pygame.K_o, "p": pygame.K_p, "q": pygame.K_q, "r": pygame.K_r, "s": pygame.K_s, "t": pygame.K_t, "u": pygame.K_u, "v": pygame.K_v, "w": pygame.K_w, "x": pygame.K_x, "y": pygame.K_y, "z": pygame.K_z, "1": pygame.K_1, "2": pygame.K_2, "3": pygame.K_3, "4": pygame.K_4, "5": pygame.K_5, "6": pygame.K_6, "7": pygame.K_7, "8": pygame.K_8, "9": pygame.K_9, "0": pygame.K_0, "num0": pygame.K_KP0, "num1": pygame.K_KP1, "num2": pygame.K_KP2, "num3": pygame.K_KP3, "num4": pygame.K_KP4, "num5": pygame.K_KP5, "num6": pygame.K_KP6, "num7": pygame.K_KP7, "num8": pygame.K_KP8, "num9": pygame.K_KP9, } class Background: def __init__(self, screen): self.colour = pygame.Color("black") self.screen = screen def setTiles(self, tiles): if type(tiles) is str: self.tiles = [[loadImage(tiles)]] elif type(tiles[0]) is str: self.tiles = [[loadImage(i) for i in tiles]] else: self.tiles = [[loadImage(i) for i in row] for row in tiles] self.stagePosX = 0 self.stagePosY = 0 self.tileWidth = self.tiles[0][0].get_width() self.tileHeight = self.tiles[0][0].get_height() self.screen.blit(self.tiles[0][0], [0, 0]) self.surface = self.screen.copy() def setBackgroundImage(self, img): self.setTiles(img) def scroll(self, x, y): self.stagePosX -= x self.stagePosY -= y col = (self.stagePosX % (self.tileWidth * len(self.tiles[0]))) // self.tileWidth xOff = 0 - self.stagePosX % self.tileWidth row = (self.stagePosY % (self.tileHeight * len(self.tiles))) // self.tileHeight yOff = 0 - self.stagePosY % self.tileHeight col2 = ( (self.stagePosX + self.tileWidth) % (self.tileWidth * len(self.tiles[0])) ) // self.tileWidth row2 = ( (self.stagePosY + self.tileHeight) % (self.tileHeight * len(self.tiles)) ) // self.tileHeight screen.blit(self.tiles[row][col], [xOff, yOff]) screen.blit(self.tiles[row][col2], [xOff + self.tileWidth, yOff]) screen.blit(self.tiles[row2][col], [xOff, yOff + self.tileHeight]) screen.blit( self.tiles[row2][col2], [xOff + self.tileWidth, yOff + self.tileHeight] ) self.surface = screen.copy() def setColour(self, colour): self.colour = parseColour(colour) screen.fill(self.colour) pygame.display.update() self.surface = screen.copy() def loadImage(fileName, useColorKey=False): if os.path.isfile(fileName): image = pygame.image.load(fileName) image = image.convert_alpha() # Return the image return image else: raise Exception( "Error loading image: " + fileName + " - Check filename and path?" ) if __name__ == "__main__": print("""PyScenes is not designed to be run directly.""")
PypiClean
/django_bpp-1.0.9-py3-none-any.whl/eksport_pbn/views.py
from braces.views import LoginRequiredMixin from crispy_forms.helper import FormHelper from crispy_forms_foundation.layout import Layout, Fieldset, Submit from django.contrib import messages from django.http.response import HttpResponseForbidden, HttpResponseRedirect from django.shortcuts import render from django.views.generic.base import TemplateView from django.views.generic.detail import DetailView from django.views.generic.edit import FormView from django.views.generic.list import ListView from sendfile import sendfile from bpp.models.struktura import Wydzial from eksport_pbn.forms import EksportDoPBNForm from eksport_pbn.models import PlikEksportuPBN from eksport_pbn.tasks import eksport_pbn class Generuj(LoginRequiredMixin, TemplateView): template_name = "generuj.html" def get(self, request, *args, **kwargs): wydzial = Wydzial.objects.get(pk=kwargs['wydzial']) rok = kwargs['rok'] eksport_pbn.delay(self.request.user.pk, kwargs['wydzial'], kwargs['rok']) messages.info(self.request, "Rozpoczęto generowanie eksportu PBN dla %s, rok %s" % (wydzial.nazwa, rok)) return HttpResponseRedirect("..") class SerwujPlik(LoginRequiredMixin, DetailView): template_name = "generuj.html" model = PlikEksportuPBN def get(self, request, *args, **kwargs): self.object = self.get_object() if self.object.owner == self.request.user: return sendfile(self.request, self.object.file.path, attachment=True, attachment_filename=self.object.get_fn() + ".zip", mimetype="application/octet-stream") return HttpResponseForbidden class WyborWydzialu(LoginRequiredMixin, ListView): model = Wydzial template_name = "wydzial_list.html" def get_context_data(self, **kwargs): return super(WyborWydzialu, self).get_context_data(**{ 'lata': [2013, 2014, 2015], 'ostatnie_raporty': PlikEksportuPBN.objects.filter(owner=self.request.user).order_by('-pk').exclude(file=None)[:10] }) class ZamowEksportDoPBN(LoginRequiredMixin, FormView): form_class = EksportDoPBNForm template_name = "zamow.html" def get_context_data(self, **kwargs): return super(ZamowEksportDoPBN, self).get_context_data( ostatnie_raporty=PlikEksportuPBN.objects.filter(owner=self.request.user).exclude(file='').order_by('-pk')[:10], ) def form_valid(self, form): obj = form.instance obj.owner = self.request.user obj.save() eksport_pbn.delay(obj.pk) messages.info(self.request, "Rozpoczęto generowanie eksportu PBN dla %s - %s" % (obj.wydzial.nazwa, obj.get_rok_string())) return HttpResponseRedirect('.')
PypiClean
/actfw_core-2.2.1-py3-none-any.whl/actfw_core/_private/agent_app_protocol/service_server.py
import base64 import copy import os import socket from pathlib import Path from typing import Optional import OpenSSL from ..compat.queue import SimpleQueue from ..schema.agent_app_protocol import ServiceKind, ServiceRequest, ServiceResponse, Status from ..util.result import ResultTuple from ..util.thread import LoopThread class AgentAppProtocolServiceServer: _path: Path _pkey: OpenSSL.crypto.PKey _thread: LoopThread _listener: Optional[socket.socket] def __init__(self, path: Path, pkey: OpenSSL.crypto.PKey) -> None: self._path = path self._pkey = pkey dummy_ch = SimpleQueue() self._thread = LoopThread(dummy_ch, self._loop_body) self._listener = None def path(self) -> Path: return self._path def startup(self) -> None: try: os.unlink(self._path) except FileNotFoundError: pass self._listener = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) self._listener.bind(str(self._path)) self._path.chmod(0o664) self._listener.settimeout(1) self._listener.listen(1) self._thread.startup() def teardown(self) -> None: self._thread.teardown() def join(self) -> None: self._thread.join() def _loop_body(self) -> None: assert self._listener is not None try: stream, _ = self._listener.accept() except socket.timeout: return request, err = ServiceRequest.parse(stream) if err is not None: response = ServiceResponse( copy.copy(request.id_), Status.GENERAL_ERROR, b"", ) stream.sendall(response.to_bytes()) return if request.kind == ServiceKind.RS_256: response = self._handle_rs_256(request) else: response = ServiceResponse( copy.copy(request.id_), Status.GENERAL_ERROR, b"", ) stream.sendall(response.to_bytes()) def _handle_rs_256(self, request: ServiceRequest) -> ServiceResponse: bs, err = _base64_decode_url_safe_no_pad(request.data) if err is not None: return ServiceResponse( copy.copy(request.id_), Status.GENERAL_ERROR, b"", ) bs = OpenSSL.crypto.sign(self._pkey, bs, "sha256") bs = _base64_encode_url_safe_no_pad(bs) return ServiceResponse( copy.copy(request.id_), Status.OK, bs, ) def _base64_decode_url_safe_no_pad(data: bytes) -> ResultTuple[bytes, bool]: """ Decode with config `base64::URL_SAFE_NO_PAD`. c.f. https://docs.rs/base64/0.13.0/base64/constant.URL_SAFE_NO_PAD.html """ missing_pad_len = -(len(data) % -4) data_ = data + b"=" * missing_pad_len try: return base64.urlsafe_b64decode(data_), None except Exception: return None, True def _base64_encode_url_safe_no_pad(data: bytes) -> bytes: """ Encode with config `base64::URL_SAFE_NO_PAD`. c.f. https://docs.rs/base64/0.13.0/base64/constant.URL_SAFE_NO_PAD.html """ return base64.urlsafe_b64encode(data).rstrip(b"=")
PypiClean
/akida_models-1.2.0.tar.gz/akida_models-1.2.0/akida_models/imagenet/imagenet_train.py
import os import argparse import numpy as np import tensorflow as tf try: import tensorflow_datasets as tfds except ImportError: tfds = None import keras from keras.callbacks import LearningRateScheduler from keras import Sequential from keras.optimizers import SGD, Adam from tensorflow_addons.optimizers import LAMB from keras.layers import Input from keras.models import clone_model import akida from cnn2snn import convert from quantizeml.layers import AddPositionEmbs, ClassToken from .preprocessing import preprocess_image, DATA_AUGMENTATION from ..training import (get_training_parser, freeze_model_before, print_history_stats, RestoreBest, save_model) from ..extract import extract_samples from ..transformers.model_vit import apply_embedding_weights from ..distiller import DeitDistiller from ..param_scheduler import get_cosine_lr_scheduler from ..utils import get_tensorboard_callback from ..model_io import load_model def get_imagenet_dataset(data_path, training, image_size, batch_size, data_aug=True, one_hot=False): """ Loads ImageNet 2012 dataset and builds a tf.dataset out of it. Args: data_path (str): path to the folder containing ImageNet tar files training (bool): True to retrieve training data, False for validation image_size (int): desired image size batch_size (int): the batch size data_aug (bool, optional): True to apply data augmentation (only train). Defaults to True. one_hot (bool, optional): whether to one hot labels or not. Defaults to False. Returns: tf.dataset, int: the requested dataset (train or validation) and the corresponding steps """ assert tfds is not None, "To load imagenet dataset, tensorflow-datasets module must\ be installed." # Build the dataset write_dir = os.path.join(data_path, 'tfds') download_and_prepare_kwargs = { 'download_dir': os.path.join(write_dir, 'downloaded'), 'download_config': tfds.download.DownloadConfig(manual_dir=data_path) } split = 'train' if training else 'validation' dataset, infos = tfds.load( 'imagenet2012', data_dir=os.path.join(write_dir, 'data'), split=split, shuffle_files=training, download=True, as_supervised=True, download_and_prepare_kwargs=download_and_prepare_kwargs, with_info=True) if training: dataset = dataset.shuffle(10000, reshuffle_each_iteration=True).repeat() data_aug = DATA_AUGMENTATION if data_aug else None dataset = dataset.map(lambda image, label: (preprocess_image( image, image_size, training, data_aug), label)) # One hot encode labels if requested if one_hot: num_classes = infos.features["label"].num_classes dataset = dataset.map(lambda image, label: (image, tf.one_hot(label, num_classes))) dataset = dataset.batch(batch_size) dataset = dataset.prefetch(1) # The following will silence a Tensorflow warning on auto shard policy options = tf.data.Options() options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.DATA dataset = dataset.with_options(options) return dataset, infos.splits[split].num_examples / batch_size def compile_model(model, optimizer="SGD", distiller_type="none"): """ Compiles the model. Args: model (keras.Model): the model to compile optimizer (str, optional): the optimizer to use. Defaults to "SGD". distiller_type (str, optional): string to select the loss in distillation. Only used when input model is of ``DeitDistiller`` type. Defaults to 'none'. Returns: bool: True if labels should be one-hot encoded, False if not. """ def _get_optim(optim_str): optim_str_low = optim_str.lower() if optim_str_low == "sgd": return SGD(momentum=0.9) elif optim_str_low == "adam": return Adam(epsilon=1e-8) elif optim_str_low == "lamb": return LAMB(epsilon=1e-8, weight_decay_rate=2e-2) else: raise ValueError(f"Unknown optimizer {optim_str}. " "Please choose one of these options: {SGD, ADAM, LAMB}") if isinstance(model, DeitDistiller): model.compile(optimizer=_get_optim(optimizer), metrics=['accuracy', 'top_k_categorical_accuracy'], student_loss_fn=keras.losses.CategoricalCrossentropy(from_logits=True), distiller_type=distiller_type) return True model.compile(optimizer=_get_optim(optimizer), loss=keras.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy', 'top_k_categorical_accuracy']) return True def evaluate(model, val_dataset, batch_size, num_samples, val_steps): """ Evaluates model performances. Args: model (keras.Model or akida.Model): the model to compile evaluate val_dataset (tf.dataset): validation dataset batch_size (int): the batch size num_samples (int): number of samples to use for Akida val_steps (int): validation steps """ if isinstance(model, akida.Model): correct_preds = 0 cur_samples = 0 total_samples = val_steps * batch_size if num_samples <= 0: num_samples = total_samples else: num_samples = min(num_samples, total_samples) it = val_dataset.as_numpy_iterator() print(f"Processing {num_samples} samples.") if num_samples > batch_size: n_batches = num_samples // batch_size if n_batches > 5: log_samples = (n_batches // 5) * batch_size else: log_samples = batch_size print(f"Logging every {log_samples} samples.") else: log_samples = num_samples while cur_samples < num_samples: x, y = next(it) y_ak = model.predict_classes(x.astype(np.uint8)) correct_preds += np.sum(y_ak == np.argmax(y, -1)) cur_samples += y_ak.shape[0] if cur_samples % log_samples == 0 and cur_samples < num_samples: # Log current accuracy accuracy = correct_preds / cur_samples print(f"Accuracy after {cur_samples}: {accuracy}") accuracy = correct_preds / cur_samples print(f"Accuracy after {cur_samples}: {accuracy}") else: history = model.evaluate(val_dataset, steps=val_steps) print(history) def rescale_legacy(base_model, input_size): """ Rescales the model by changing its input size. Args: base_model (keras.Model): the model to rescale input_size (int): desired model input size Returns: keras.Model: the rescaled model """ # Create the desired input input_shape = (input_size, input_size, base_model.input.shape[-1]) new_input = Input(input_shape) # Workaround to force the input shape update that is not working for # functional models: the input_tensors parameter is ignored as described in # https://github.com/tensorflow/tensorflow/issues/40617. if not isinstance(base_model, Sequential): base_model.layers[0]._batch_input_shape = (None, input_size, input_size, base_model.input.shape[-1]) new_input = None # Clone the model and replace input layer clone = clone_model(base_model, input_tensors=new_input) clone.set_weights(base_model.get_weights()) return clone def rescale_vit(base_model, input_size): """ Rescales the model by changing its input size in three steps: 1. Change the input layer, given the new input size values 2. Reconstruct model from config 3. Update weights, taking into account interpolation on PosEmbed layer Args: base_model (keras.Model): the model to rescale input_size (int): desired model input size Returns: keras.Model: the rescaled model """ # 1. Create the desired input layer: input_shape = (None, input_size, input_size, base_model.input.shape[-1]) num_tokens = sum(isinstance(ly, ClassToken) for ly in base_model.layers) # 2. Clone the model by modification of dict_config: # In models based on vision transformers, PositionEmbeding change its amount of parameters # given an input size. This is why we need to reconstruct the model. x_patch, y_patch = None, None clone_config = base_model.get_config() for layer_config in clone_config["layers"]: # 2.1. Change input size if layer_config["class_name"] == "InputLayer": layer_config["config"]["batch_input_shape"] = input_shape # 2.2. Recover total of patches in both directions if "Conv2D" in layer_config["class_name"]: x_patch = input_size // layer_config["config"]["kernel_size"][0] y_patch = input_size // layer_config["config"]["kernel_size"][1] # 2.3. Change values in reshape process elif layer_config["class_name"] == "Reshape": layer_config["config"]["target_shape"] = list(layer_config["config"]["target_shape"]) layer_config["config"]["target_shape"][0] = x_patch * y_patch # 2.5. Recompile model with new configuration clone = base_model.from_config(clone_config) # 3. Update weights: # Get weights from based model, and tranfer them into clone model, for base_layer, clone_layer in zip(base_model.layers, clone.layers): base_weights = base_layer.get_weights() if isinstance(base_layer, AddPositionEmbs): apply_embedding_weights(clone_layer, base_weights, (x_patch, y_patch), num_tokens) else: clone_layer.set_weights(base_weights) return clone def rescale(base_model, input_size): """ Rescale the model by architecture (if there is a vision transformer model or not) Args: base_model (keras.Model): the model to rescale input_size (int): desired model input size Returns: keras.Model: the rescaled model """ is_vit = any(isinstance(layer, AddPositionEmbs) for layer in base_model.layers) if is_vit: return rescale_vit(base_model, input_size) return rescale_legacy(base_model, input_size) def train(model, train_dataset, train_steps, val_dataset, val_steps, out_dir, num_epochs, tune=False, learning_rate=1e-1, initial_epoch=0, lr_policy='exp_decay'): """ Trains the model Args: model (keras.Model): the model to train train_dataset (tf.dataset): training dataset train_steps (int): train steps val_dataset (tf.dataset): validation dataset val_steps (int): validation steps out_dir (str): parent directory for logs folder num_epochs (int): the number of epochs tune (bool, optional): enable tuning (lower learning rate). Defaults to False. learning_rate (float, optional): the learning rate. Defaults to 1e-1. initial_epoch (int, optional): epoch at which to start training. Defaults to 0. lr_policy (str, optional): defines the learning rate policy to adopt. Values in ['exp_decay', 'cosine_decay', 'cosine_sched'] for exponential decay, cosine decay and cosine oscillation respectively. Defaults to 'exp_decay'. """ # 1. Define training callbacks callbacks = [] # 1.1 Learning rate scheduler if lr_policy == 'exp_decay': LR_START = learning_rate LR_END = 1e-4 # number of epochs you first keep the learning rate constant LR_EPOCH_CONSTANT = 10 # Modify default values for fine-tuning if tune: LR_START = 1e-4 LR_END = 1e-8 LR_EPOCH_CONSTANT = 2 if LR_EPOCH_CONSTANT >= num_epochs: lr_decay = LR_END / LR_START else: lr_decay = (LR_END / LR_START)**(1. / (num_epochs - LR_EPOCH_CONSTANT)) # This function keeps the learning rate at LR_START for the first N epochs # and decreases it exponentially after that. def agg_lr_scheduler(epoch): if epoch < LR_EPOCH_CONSTANT: return LR_START return LR_START * lr_decay**(epoch - (LR_EPOCH_CONSTANT - 1)) lr_scheduler = LearningRateScheduler(agg_lr_scheduler) elif lr_policy == 'cosine_decay': LR_START = learning_rate if tune: LR_EPOCH_CONSTANT = 2 # number of epochs you first keep the learning rate constant LR_MIN = 1e-8 else: LR_EPOCH_CONSTANT = 5 # number of epochs you first keep the learning rate constant LR_MIN = 1e-6 # Make sure to start with a learning rate higher than LR_MIN LR_MIN = LR_MIN if LR_START > LR_MIN else 0.1 * LR_START # If the number of epochs is too small, dont use WARMUP_LR if num_epochs < LR_EPOCH_CONSTANT: LR_EPOCH_CONSTANT = 0 # This function keeps the learning rate at LR_START for the first N epochs and decreases it # following # https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/CosineDecay def cos_lr_scheduler(epoch): if epoch < LR_EPOCH_CONSTANT: return LR_START step = min(epoch, num_epochs) - LR_EPOCH_CONSTANT cosine_decay = 0.5 * (1 + np.cos(np.pi * step / (num_epochs - LR_EPOCH_CONSTANT))) decayed = (1 - LR_MIN) * cosine_decay + LR_MIN return LR_START * decayed lr_scheduler = LearningRateScheduler(cos_lr_scheduler) elif lr_policy == 'cosine_sched': lr_scheduler = get_cosine_lr_scheduler(learning_rate, num_epochs * train_steps) else: raise ValueError(f"Unsupported learning rate policy '{lr_policy}'.") callbacks.append(lr_scheduler) # 1.2 Model checkpoints (save best model and retrieve it when training is complete) restore_model = RestoreBest(model) callbacks.append(restore_model) # 1.3 Tensorboard logs tensorboard = get_tensorboard_callback(out_dir, prefix='imagenet') callbacks.append(tensorboard) # 2. Train history = model.fit(train_dataset, steps_per_epoch=train_steps, epochs=num_epochs, callbacks=callbacks, validation_data=val_dataset, validation_steps=val_steps, initial_epoch=initial_epoch) print_history_stats(history) def main(): """ Entry point for script and CLI usage. """ global_parser = argparse.ArgumentParser(add_help=False) global_parser.add_argument( "-d", "--data_dir", type=str, default='/hdd/datasets/imagenet/', help="The directory containing the ImageNet data.") global_parser.add_argument("-o", "--out_dir", type=str, default='./logs', help="The output directory (logs, checkpoints).") parsers = get_training_parser(batch_size=128, extract=True, freeze_before=True, tune=True, global_parser=global_parser) train_parser = parsers[1] train_parser.add_argument("-lr", "--learning_rate", type=float, default=1e-1, help="Learning rate start value.") train_parser.add_argument("-ie", "--initial_epoch", type=int, default=0, help="Epoch at which to start training.") train_parser.add_argument("--optim", type=str, default="SGD", help="Optimizer to use. Defaults to %(default)s.") train_parser.add_argument("--data_aug", action='store_true', help="Enables custom DA.") train_parser.add_argument("--lr_policy", default='exp_decay', choices=['exp_decay', 'cosine_decay', 'cosine_sched'], help="Defines the learning rate scheduling. Values in " "['exp_decay', 'cosine_decay', 'cosine_sched'] which corresponds" " to exponential decay, cosine decay and cosine oscillation " "respectively.") train_parser.add_argument("--teacher", type=str, default=None, help="Teacher model use to train the model through Knowledge" "Distillation. The input model output an Add layer. " "Defaults to %(default)s.") train_parser.add_argument("-dt", "--distiller_type", type=str, default="soft", help="Define the distillation loss type. Defaults to %(default)s.") train_parser.add_argument("-a", "--alpha", type=float, default=0.5, help="Value for distiller losses weighting. Defaults to %(default)s.") tune_parser = parsers[2] tune_parser.add_argument("-ie", "--initial_epoch", type=int, default=0, help="Epoch at which to start training.") tune_parser.add_argument("-lr", "--learning_rate", type=float, default=6e-5, help="Learning rate start value.") tune_parser.add_argument("--data_aug", action='store_true', help="Enables custom DA.") tune_parser.add_argument("--optim", type=str, default="SGD", help="Optimizer to use. Defaults to %(default)s.") tune_parser.add_argument("--lr_policy", default='exp_decay', choices=['exp_decay', 'cosine_decay', 'cosine_sched'], help="Defines the learning rate scheduling. Values in " "['exp_decay', 'cosine_decay', 'cosine_sched'] which corresponds " "to exponential decay, cosine decay and cosine oscillation " "respectively.") tune_parser.add_argument("--teacher", type=str, default=None, help="Teacher model use to train the model through Knowledge" "Distillation. The input model output an Add layer. " "Defaults to %(default)s.") tune_parser.add_argument("-dt", "--distiller_type", type=str, default="soft", help="Define the distillation loss type. Defaults to %(default)s.") tune_parser.add_argument("-a", "--alpha", type=float, default=0.5, help="Value for distiller losses weighting. Defaults to %(default)s.") eval_parser = parsers[3] eval_parser.add_argument("-ns", "--num_samples", type=int, default=-1, help="Number of samples to use (for Akida)") subparsers = parsers[-1] rescale_parser = subparsers.add_parser("rescale", help="Rescale a model.", parents=[global_parser]) rescale_parser.add_argument("-i", "--input_size", type=int, required=True, help="The square input image size") rescale_parser.add_argument("-s", "--savemodel", type=str, default=None, help="Save model with the specified name") args = parsers[0].parse_args() # Load the source model model = load_model(args.model) im_size = model.input_shape[1] # Try to load the teacher model, used after to train with Knowledge Distillation # Hyperparameters takes from https://arxiv.org/pdf/2012.12877.pdf if getattr(args, 'teacher', False): if args.distiller_type not in ['none', 'soft', 'hard']: raise ValueError("Distiller type must be one of ['none', 'soft', 'hard']") teacher = load_model(args.teacher) train_model = DeitDistiller(model, teacher, alpha=args.alpha, temperature=3.0) else: train_model = model # Freeze the model if "freeze_before" in args: freeze_model_before(model, args.freeze_before) # Compile model one_hot = compile_model(train_model, optimizer=getattr(args, "optim", "SGD"), distiller_type=getattr(args, "distiller_type", "none")) # Load validation data if args.action in ['train', 'tune', 'eval']: val_ds, val_steps = get_imagenet_dataset(args.data_dir, False, im_size, args.batch_size, data_aug=False, one_hot=one_hot) # Load training data if args.action in ['train', 'tune', 'extract']: data_aug = args.data_aug if args.action in ['train', 'tune'] else False train_ds, train_steps = get_imagenet_dataset(args.data_dir, True, im_size, args.batch_size, data_aug, one_hot=one_hot) # Disable QuantizeML assertions os.environ["ASSERT_ENABLED"] = "0" # Train model if args.action in ['train', 'tune']: tune = args.action == 'tune' learning_rate = args.learning_rate if args.lr_policy == 'cosine_decay': # Tune learning rate following https://arxiv.org/pdf/2012.12877.pdf learning_rate *= args.batch_size / 512 train(train_model, train_ds, train_steps, val_ds, val_steps, args.out_dir, args.epochs, tune=tune, learning_rate=learning_rate, initial_epoch=args.initial_epoch, lr_policy=args.lr_policy) save_model(model, args.model, args.savemodel, args.action) elif args.action == 'eval': # Evaluate model accuracy if args.akida: model = convert(model) evaluate(model, val_ds, args.batch_size, args.num_samples, val_steps) elif args.action == 'rescale': # Rescale model m = rescale(model, args.input_size) save_model(m, args.model, args.savemodel, args.action) elif args.action == 'extract': # Extract samples from dataset extract_samples(args.savefile, train_ds, args.batch_size) if __name__ == "__main__": main()
PypiClean
/zertoapilib-0.0.1.tar.gz/zertoapilib-0.0.1/README.md
# pyzerto-unofficial ![Zerto Automation API Library Logo!](https://github.com/pilotschenck/pyzerto-unofficial/blob/main/zertoautomationapilibrary-logo.png?raw=true) ## Overview pyzerto-unofficial is a simple python3 API wrapper for the Zerto product by the eponymous corporation. It is intended to simplify the deployment and management of Zerto in a code-driven manner. Potential uses for this API wrapper are as diverse as you may wish to make it. An example script of automatically protecting tagged virtual machines (VMs) is included in this library. ## Motiviation and Audience The official Zerto API is a REST-driven architecture. This wrapper was developed to reduce the barrier of entry for anyone interested in automating Zerto tasks via Python by abstracting the effort of generating a session key, constructing correctly formatted CRUD requests, and identifying the correct URL endpoints for any given API call. This can benefit new Zerto users, Zerto partners deploying at-scale environments, and anyone with a Python and Zerto background. ## Disclaimer This is not an official Zerto product in any way, shape, or form. Support is community-driven and you should thoroughly test your scripts to ensure that you do not break anything by utilizing pyzerto-unofficial. In other words, don't blame us if it messes something up!! ## Usage ### The Zerto API, explained The Zerto Virtual Manager (or Zerto Cloud Appliance) acts as the management plane for all things Zerto-related in your environment. To use the Zerto API, you will need: * The IP address of your target ZVM or ZCA and access from the machine running the Python library over TCP port 9669 * Credentials of a valid admin-level account for your ZVM or ZCA. For a ZVM, this usually means an admin- or nearly- admin level vCenter account, and for a ZCA, this is usually the Administrator account of the underlying Windows instance or VM in AWS or Azure. Using the IP address of the ZVM/ZCA and a valid user account, you can generate an API session token, which will then need to be passed back to the ZVM/ZCA in the form of a properly formed header as well as a request body, if applicable, in order to run API calls to do interesting things like get local site information, create a virtual protection group (VPG) object, add VMs to said VPG, and so on. Furthermore, the ZVM/ZCA must have a valid license key installed in order to successfully run API calls (except for generating an API session token and applying a license!) ### Using the wrapper Start by executing zerto_auth.py. The function `login` accepts three arguments: `zvm_ip`, `zvm_user`, and `zvm_password`. This function will return a `dict` with the properly formatted headers for running API commands against the ZVM/ZCA, including a valid session token. From here, you can instansiate classes which can be found in `zvm.py`, `vra.py`, and `vpg.py` modules. The theory behind how the modules (and subsequent classes) were organized was based on the Zerto "object" that you would want to do interesting things to. For example, if you want to get information about datastores visible to the ZVM, you will find that method located in the `zvm` class under the `zvm` module. If you want to install or delete a VRA, you will find `installVra` and `delVra` in the `vra` class under the `vra` module. Even though all API calls are executed against a ZVM or ZCA, this modularization is intended to make sense to an admin. #### A special note on Virtual Protection Groups Virtual Protection Groups, or VPGs, require some specific clarification. To create and manage VPGs, you need to first create a "VPG Object", to which you will then add VMs and specify specific instructions such as length of journal, networks to attach do during a live failover or a test failover, and the like. However, none of your changes will be applied unless and until you *commit* the settings. One a VPG has been committed, the vpgSettings identifier *goes away*. Do not confuse the VPG identifier with a vpgSettings identifier; these are two different things. Roughly speaking, you can think of the `vpgs` class in the `vpg` module as anything having to do with existing VPG "containers" as a whole, and the `vpgSettings` class in the `vpg` module as having to do with what's *inside* a VPG (with the exception of creating a VPG to begin with). ### Example: Adding a license vczvmSession = login('10.0.10.50', '[email protected]', 'password') z = zvm.zvm('10.0.10.50, vczvmSession) z.addLicense('VALIDZERTOLICENSEKEYHERE') ### Example: Installing a VRA import json vczvmSession = login('10.0.10.50', '[email protected]', 'password') v = vra.vra('10.0.10.50', vczvmSession) testVraDict = { "DatastoreIdentifier":"GUID-OF-VCENTER.DATASTOREMOREF", "HostIdentifier":"GUID-OF-VCENTER.HOSTMOREF", "HostRootPassword":"ESXIPASSWORD, "MemoryInGb":3, "NumOfCpus":1, "NetworkIdentifier":"GUID-OF-VCENTER.NETWORKMOREF", "UsePublicKeyInsteadOfCredentials":False, "PopulatePostInstallation":False, "VraNetworkDataApi":{ "DefaultGateway":"192.168.1.1", "SubnetMask":"255.255.255.0", "VraIPAddress":"192.168.1.90", "VraIPConfigurationTypeApi":"Static" } } v.installVRA(json.dumps(testVraDict)) ### Example: Pairing a site with another site import json, requests vczvmSession = login('10.0.10.50', '[email protected]', 'password') awszcaSession = login('172.16.20.21', 'Administrator', 'password') zvmOnsite = zvm.zvm('10.0.10.50', vczvmSession) zcaInCloud = zvm.zvm('172.16.20.21', awszcaSession) zcaTokenObject = zcaInCloud.generatePeeringToken() zcaTokenActual = zcaTokenObject.json().get('Token') pairOutput = requests.post('https://10.0.10.50:9669/v1/peersites', headers=vczvmSession, data=json.dumps( {"HostName": '172.16.20.21', "Port":"9071", "Token":zcaTokenActual}), verify=False) ### Example: Create a VPG import json vczvmSession = login('10.0.10.50', '[email protected]', 'password') v = vpg.vpgSettings(zvm_ip, vczvmSession) vpgPayload = { "Basic":{ "JournalHistoryInHours":2, "Name":"TestVpg", "Priority":"Medium", "ProtectedSiteIdentifier":"IDENTIFIER1", "RecoverySiteIdentifier":"IDENTIFIER2", "RpoInSeconds":600, "ServiceProfileIdentifier": null, "TestIntervalInMinutes":0, "UseWanCompression":"True", "ZorgIdentifier": null }, "BootGroups":{ "BootGroups":[ { "BootDelayInSeconds":0, "BootGroupIdentifier":"00000000-0000-0000-0000-000000000000", "Name":"Default" } ] }, "Journal":{ "DatastoreIdentifier":"GUIDOFVCENTER.DATASTOREMOREF", "Limitation":{ "HardLimitInMB":0, "HardLimitInPercent":0, "WarningThresholdInMB":0, "WarningThresholdInPercent":0 } }, "LongTermRetention":null, "Networks":{ "Failover":{ "Hypervisor":{ "DefaultNetworkIdentifier":"GUIDOFVCENTER.NETWORKMOREF" } }, "FailoverTest":{ "Hypervisor":{ "DefaultNetworkIdentifier":"GUIDOFVCENTER.NETWORKMOREF" } } }, "Recovery":{ "DefaultDatastoreClusterIdentifier":null, "DefaultDatastoreIdentifier":"GUIDOFVCENTER.DATASTOREMOREF", "DefaultFolderIdentifier":"GUIDOFVCENTER.FOLDERMOREF", "DefaultHostClusterIdentifier":null, "DefaultHostIdentifier":"GUIDOFVCENTER.HOSTMOREF", "ResourcePoolIdentifier":null }, "Scripting":{ "PostRecovery":{ "Command":null, "Parameters":null, "TimeoutInSeconds":0 }, "PreRecovery":{ "Command":null, "Parameters":null, "TimeoutInSeconds":0 } }, "Vms":[] } vpgSettingsId = v.createNewVpgSettingsObject(json.dumps(vpgPayload)) v.commitSettingsObject(vpgSettingsId) ## Acknowledgements I would like to acknowledge several people for assisting, either directly or indirectly, in the creation of this library. Shaun Finn directly contributed to the zerto_auth and vra modules, and Wes Carroll provided insight and assistance based on his experiences designing and developing his excellent PowerShell API wrapper. I would also like to acknowledge Nick Costigan, Jacob Lucas and Chris Pacejo in providing their insight as professional developers.
PypiClean
/odooku_odoo_base-11.0.7-py35-none-any.whl/odoo/addons/bus/static/src/js/bus.js
odoo.define('bus.bus', function (require) { "use strict"; var local_storage = require('web.local_storage'); var session = require('web.session'); var Widget = require('web.Widget'); var bus = {}; var PARTNERS_PRESENCE_CHECK_PERIOD = 30000; // don't check presence more than once every 30s var TAB_HEARTBEAT_PERIOD = 10000; // 10 seconds var MASTER_TAB_HEARTBEAT_PERIOD = 1500; // 1.5 second bus.ERROR_DELAY = 10000; bus.Bus = Widget.extend({ init: function(){ var self = this; this._super(); this.options = {}; this.activated = false; this.bus_id = _.uniqueId('bus'); this.channels = []; this.last = 0; this.stop = false; this.is_master = true; // bus presence this.last_presence = new Date().getTime(); this.last_partners_presence_check = this.last_presence; this.set("window_focus", true); this.on("change:window_focus", this, function () { if (this.get("window_focus")) { this.trigger('window_focus', this.is_master); } }); $(window).on("focus." + this.bus_id, _.bind(this.focus_change, this, true)); $(window).on("blur." + this.bus_id, _.bind(this.focus_change, this, false)); $(window).on("unload." + this.bus_id, _.bind(this.focus_change, this, false)); _.each('click,keydown,keyup'.split(','), function(evtype) { $(window).on(evtype + "." + self.bus_id, function() { self.last_presence = new Date().getTime(); }); }); }, destroy: function () { var self = this; $(window).off("focus." + this.bus_id); $(window).off("blur." + this.bus_id); $(window).off("unload." + this.bus_id); _.each('click,keydown,keyup'.split(','), function(evtype) { $(window).off(evtype + "." + self.bus_id); }); }, start_polling: function(){ if(!this.activated){ this.poll(); this.stop = false; } }, stop_polling: function(){ this.activated = false; this.stop = true; this.channels = []; }, poll: function() { var self = this; self.activated = true; var now = new Date().getTime(); var options = _.extend({}, this.options, { bus_inactivity: now - this.get_last_presence(), }); if (this.last_partners_presence_check + PARTNERS_PRESENCE_CHECK_PERIOD > now) { options = _.omit(options, 'bus_presence_partner_ids'); } else { this.last_partners_presence_check = now; } var data = {channels: self.channels, last: self.last, options: options}; // The backend has a maximum cycle time of 50 seconds so give +10 seconds session.rpc('/longpolling/poll', data, {shadow : true, timeout: 60000}).then(function(result) { self.on_notification(result); if(!self.stop){ self.poll(); } }, function(unused, e) { // no error popup if request is interrupted or fails for any reason e.preventDefault(); // random delay to avoid massive longpolling setTimeout(_.bind(self.poll, self), bus.ERROR_DELAY + (Math.floor((Math.random()*20)+1)*1000)); }); }, on_notification: function(notifications) { var self = this; var notifs = _.map(notifications, function (notif) { if (notif.id > self.last) { self.last = notif.id; } return [notif.channel, notif.message]; }); this.trigger("notification", notifs); }, add_channel: function(channel){ this.channels.push(channel); this.channels = _.uniq(this.channels); }, delete_channel: function(channel){ this.channels = _.without(this.channels, channel); }, // bus presence : window focus/unfocus focus_change: function(focus) { this.set("window_focus", focus); }, is_odoo_focused: function () { return this.get("window_focus"); }, get_last_presence: function () { return this.last_presence; }, update_option: function(key, value){ this.options[key] = value; }, delete_option: function(key){ if(_.contains(_.keys(this.options), key)){ delete this.options[key]; } }, }); /** * CrossTabBus Widget * * Manage the communication before browser tab to allow only one tab polling for the others (performance improvement) * When a tab is opened, and the start_polling method is called, the tab is signaling through the localStorage to the * others. When a tab is closed, it signals its removing. If he was the master tab (the polling one), he choose another * one in the list of open tabs. This one start polling for the other. When a notification is recieved from the poll, it * is signaling through the localStorage too. * * localStorage used keys are: * * - bus.channels : shared public channel list to listen during the poll * - bus.options : shared options * - bus.notification : the received notifications from the last poll * - bus.tab_list : list of opened tab ids * - bus.tab_master : generated id of the master tab */ var CrossTabBus = bus.Bus.extend({ init: function(){ this._super.apply(this, arguments); this.is_master = false; this.is_registered = false; if (parseInt(getItem('bus.last_ts', 0)) + 50000 < new Date().getTime()) { setItem('bus.last', -1); } on("storage", this.on_storage.bind(this)); }, start_polling: function(){ var self = this; if (!this.is_registered) { this.is_registered = true; tab_manager.register_tab(function () { self.is_master = true; self.start_polling(); }, function () { self.is_master = false; self.stop_polling(); }, function () { // Write last_presence in local storage if it has been updated since last heartbeat var hb_period = this.is_master ? MASTER_TAB_HEARTBEAT_PERIOD : TAB_HEARTBEAT_PERIOD; if (self.last_presence + hb_period > new Date().getTime()) { setItem('bus.last_presence', self.last_presence); } }); if (this.is_master) { setItem('bus.channels', this.channels); setItem('bus.options', this.options); } else { this.channels = getItem('bus.channels', this.channels); this.options = getItem('bus.options', this.options); } return; // start_polling will be called again on tab registration } if (this.is_master) { this._super.apply(this, arguments); } }, on_notification: function(notifications){ if(this.is_master) { // broadcast to other tabs var last = getItem('bus.last', -1); var max_id = Math.max(last, 0); var new_notifications = _.filter(notifications, function (notif) { max_id = Math.max(max_id, notif.id); return notif.id < 0 || notif.id > last; }); this.last = max_id; if (new_notifications.length) { setItem('bus.last', max_id); setItem('bus.last_ts', new Date().getTime()); setItem('bus.notification', new_notifications); this._super(new_notifications); } } else { this._super.apply(this, arguments); } }, on_storage: function (e) { // use the value of event to not read from // localStorage (avoid race condition) var value = e.newValue; // notifications changed if(e.key === 'bus.notification'){ var notifs = JSON.parse(value); this.on_notification(notifs); } // update channels if(e.key === 'bus.channels'){ this.channels = JSON.parse(value); } // update options if(e.key === 'bus.options'){ this.options = JSON.parse(value); } // update focus if(e.key === 'bus.focus'){ this.set('window_focus', JSON.parse(value)); } }, add_channel: function(){ this._super.apply(this, arguments); setItem('bus.channels', this.channels); }, delete_channel: function(){ this._super.apply(this, arguments); setItem('bus.channels', this.channels); }, get_last_presence: function () { return getItem('bus.last_presence') || new Date().getTime(); }, update_option: function(){ this._super.apply(this, arguments); setItem('bus.options', this.options); }, delete_option: function(){ this._super.apply(this, arguments); setItem('bus.options', this.options); }, focus_change: function(focus) { this._super.apply(this, arguments); setItem('bus.focus', focus); }, }); //utility functions function on(type, listener) { if (window.addEventListener) { window.addEventListener(type, listener); } else { //IE8 window.attachEvent('on' + type, listener); } } function getItem(key, defaultValue) { var val = local_storage.getItem(key); return val ? JSON.parse(val) : defaultValue; } function setItem(key, value) { local_storage.setItem(key, JSON.stringify(value)); } var tab_manager = { peersKey: 'bus.peers', masterKey: 'bus.master', heartbeatKey: 'bus.heartbeat', isMaster: false, id: new Date().getTime() + ':' + (Math.random() * 1000000000 | 0), register_tab: function (is_master_callback, is_no_longer_master, on_heartbeat_callback) { this.is_master_callback = is_master_callback; this.is_no_longer_master = is_no_longer_master || function () {}; this.on_heartbeat_callback = on_heartbeat_callback || function () {}; var peers = getItem(tab_manager.peersKey, {}); peers[tab_manager.id] = new Date().getTime(); setItem(tab_manager.peersKey, peers); on('unload', function () { // unload peer var peers = getItem(tab_manager.peersKey, {}); delete peers[tab_manager.id]; setItem(tab_manager.peersKey, peers); // unload master if (tab_manager.isMaster) { local_storage.removeItem(tab_manager.masterKey); } }); if (!local_storage.getItem(tab_manager.masterKey)) { tab_manager.start_election(); } on('storage', function(e) { if (!e) { e = window.event;} if (e.key !== tab_manager.masterKey) { return; } if (e.newValue === null) { //master was unloaded tab_manager.start_election(); } }); tab_manager.heartbeat(); }, heartbeat: function () { var current = new Date().getTime(); var heartbeatValue = local_storage.getItem(tab_manager.heartbeatKey) || 0; var peers = getItem(tab_manager.peersKey, {}); if ((parseInt(heartbeatValue) + 5000) < current) { // Heartbeat is out of date. Electing new master tab_manager.start_election(); } if (tab_manager.isMaster) { //walk through all peers and kill old var cleanedPeers = {}; for (var peerName in peers) { if (peers[peerName] + 15000 > current) { cleanedPeers[peerName] = peers[peerName]; } } if (!tab_manager.is_last_heartbeat_mine()) { // someone else is also master... // it should not happen, except in some race condition situation. tab_manager.isMaster = false; tab_manager.last_heartbeat = 0; peers[tab_manager.id] = current; setItem(tab_manager.peersKey, peers); tab_manager.is_no_longer_master(); } else { tab_manager.last_heartbeat = current; local_storage.setItem(tab_manager.heartbeatKey, current); setItem(tab_manager.peersKey, cleanedPeers); } } else { //update own heartbeat peers[tab_manager.id] = current; setItem(tab_manager.peersKey, peers); } this.on_heartbeat_callback(); setTimeout(function(){ tab_manager.heartbeat(); }, tab_manager.isMaster ? MASTER_TAB_HEARTBEAT_PERIOD : TAB_HEARTBEAT_PERIOD); }, is_last_heartbeat_mine: function () { var heartbeatValue = local_storage.getItem(tab_manager.heartbeatKey) || 0; return (parseInt(heartbeatValue) === tab_manager.last_heartbeat); }, start_election: function () { if (tab_manager.isMaster) { return; } //check who's next var peers = getItem(tab_manager.peersKey, {}); var now = new Date().getTime(); var newMaster; for (var peerName in peers) { //check for dead peers if (peers[peerName] + 15000 < now) { continue; } newMaster = peerName; break; } if (newMaster === tab_manager.id) { //we're next in queue. Electing as master setItem(tab_manager.masterKey, tab_manager.id); tab_manager.last_heartbeat = new Date().getTime(); setItem(tab_manager.heartbeatKey, tab_manager.last_heartbeat); tab_manager.isMaster = true; tab_manager.is_master_callback(); //removing master peer from queue delete peers[newMaster]; setItem(tab_manager.peersKey, peers); } }, }; // bus singleton, depending of the browser : // if supporting LocalStorage, there will be only one tab polling if(typeof Storage !== "undefined"){ bus.bus = new CrossTabBus(); } else { bus.bus = new bus.Bus(); } return bus; });
PypiClean
/traits-enaml-0.3.0.tar.gz/traits-enaml-0.3.0/traits_enaml/testing/event_loop_helper.py
import contextlib import threading from enaml.application import deferred_call from enaml.qt import QtCore from traits.api import HasStrictTraits, Instance from traits_enaml.compat import QApplication class ConditionTimeoutError(RuntimeError): pass class EventLoopHelper(HasStrictTraits): qt_app = Instance(QApplication) def event_loop_with_timeout(self, repeat=2, timeout=10.0): """Helper function to send all posted events to the event queue and wait for them to be processed. This runs the real event loop and does not emulate it with QApplication.processEvents. Parameters ---------- repeat : int Number of times to process events. Default is 2. timeout: float, optional, keyword only Number of seconds to run the event loop. Default value is 10.0. """ def repeat_loop(condition, repeat): # We sendPostedEvents to ensure that enaml events are processed self.qt_app.sendPostedEvents() repeat = repeat - 1 if repeat <= 0: deferred_call(condition.set) else: deferred_call(repeat_loop, condition=condition, repeat=repeat) condition = threading.Event() deferred_call(repeat_loop, repeat=repeat, condition=condition) self.event_loop_until_condition( condition=condition.is_set, timeout=timeout) def event_loop(self, repeat=1): """Emulates an event loop `repeat` times with QApplication.processEvents. Parameters ---------- repeat : int Number of times to process events. Default is 1. """ for i in range(repeat): self.qt_app.sendPostedEvents() self.qt_app.processEvents() def event_loop_until_condition(self, condition, timeout=10.0): """Runs the real Qt event loop until the provided condition evaluates to True. Raises ConditionTimeoutError if the timeout occurs before the condition is satisfied. Parameters ---------- condition : callable A callable to determine if the stop criteria have been met. This should accept no arguments. timeout : float Number of seconds to run the event loop in the case that the trait change does not occur. """ def handler(): if condition(): self.qt_app.quit() condition_timer = QtCore.QTimer() condition_timer.setInterval(50) condition_timer.timeout.connect(handler) timeout_timer = QtCore.QTimer() timeout_timer.setSingleShot(True) timeout_timer.setInterval(timeout * 1000) timeout_timer.timeout.connect(self.qt_app.quit) timeout_timer.start() condition_timer.start() try: self.qt_app.exec_() if not timeout_timer.isActive(): # We exited the event loop on timeout raise ConditionTimeoutError('Timed out waiting for condition') finally: timeout_timer.stop() condition_timer.stop() @contextlib.contextmanager def delete_widget(self, widget, timeout=1.0): """Runs the real Qt event loop until the widget provided has been deleted. Raises ConditionTimeoutError on timeout. Parameters ---------- widget : QObject The widget whose deletion will stop the event loop. timeout : float Number of seconds to run the event loop in the case that the widget is not deleted. """ timer = QtCore.QTimer() timer.setSingleShot(True) timer.setInterval(timeout * 1000) timer.timeout.connect(self.qt_app.quit) widget.destroyed.connect(self.qt_app.quit) yield timer.start() self.qt_app.exec_() if not timer.isActive(): # We exited the event loop on timeout raise ConditionTimeoutError( 'Could not destroy widget before timeout: {!r}'.format(widget))
PypiClean
/pulumi_azure_nextgen-0.6.2a1613157620.tar.gz/pulumi_azure_nextgen-0.6.2a1613157620/pulumi_azure_nextgen/machinelearningservices/latest/list_notebook_keys.py
import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = [ 'ListNotebookKeysResult', 'AwaitableListNotebookKeysResult', 'list_notebook_keys', ] @pulumi.output_type class ListNotebookKeysResult: def __init__(__self__, primary_access_key=None, secondary_access_key=None): if primary_access_key and not isinstance(primary_access_key, str): raise TypeError("Expected argument 'primary_access_key' to be a str") pulumi.set(__self__, "primary_access_key", primary_access_key) if secondary_access_key and not isinstance(secondary_access_key, str): raise TypeError("Expected argument 'secondary_access_key' to be a str") pulumi.set(__self__, "secondary_access_key", secondary_access_key) @property @pulumi.getter(name="primaryAccessKey") def primary_access_key(self) -> str: return pulumi.get(self, "primary_access_key") @property @pulumi.getter(name="secondaryAccessKey") def secondary_access_key(self) -> str: return pulumi.get(self, "secondary_access_key") class AwaitableListNotebookKeysResult(ListNotebookKeysResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListNotebookKeysResult( primary_access_key=self.primary_access_key, secondary_access_key=self.secondary_access_key) def list_notebook_keys(resource_group_name: Optional[str] = None, workspace_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListNotebookKeysResult: """ Use this data source to access information about an existing resource. :param str resource_group_name: Name of the resource group in which workspace is located. :param str workspace_name: Name of Azure Machine Learning workspace. """ __args__ = dict() __args__['resourceGroupName'] = resource_group_name __args__['workspaceName'] = workspace_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:machinelearningservices/latest:listNotebookKeys', __args__, opts=opts, typ=ListNotebookKeysResult).value return AwaitableListNotebookKeysResult( primary_access_key=__ret__.primary_access_key, secondary_access_key=__ret__.secondary_access_key)
PypiClean